Anorganische Chemie

Biomimetische Kupferkomplexe mit Schwefel-Guanidinliganden

Von der Fakultät für Naturwissenschaften Department Chemie der Universität Paderborn

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. -

genehmigte Dissertation

von ADAM NEUBA aus Tarnowitz

Paderborn 2009

Datum der Einreichung: 18.11.2009 Datum der mündlichen Prüfung: 16.12.2009

Erster Gutachter: Prof. Dr. Gerald Henkel Zweiter Gutachter: Priv. Doz. Dr. Hans Egold

Die experimentellen Untersuchungen zu dieser Arbeit wurden im Zeitraum von Juli 2005 bis Februar 2009 unter Anleitung von Prof. Dr. Gerald Henkel im Department Chemie der Universität Paderborn durchgeführt. Für Teresa, Heinrich, Sabrina und Laetitia Johanna

Das Pferd, das den Hafer verdient hat,

bekommt ihn nicht immer.

walisisches Sprichwort

Abstract

Im Rahmen dieser Doktorarbeit auf dem Gebiet der Bioanorganischen Chemie wurden biomimetische Kupferkomplexe mit Schwefel-Guanidinliganden synthetisiert. Charakteristisches Merkmal der eingesetzten Schwefel-Guanidinliganden ist die Kombination aus einer Thioether- oder Thiolat- sowie der basischen N_{Imin} -Donorfunktion der CN_3 -Guanidineinheit.

Im ersten Teil der vorliegenden Arbeit stand die Synthese und Charakterisierung neuartiger Schwefel-Guanidine im Vordergrund. Synthetisiert wurden mehrzähnige (NS- bzw. N₂S₂-Donorsatz) und tripodale (N₃S-Donorsatz) Thioether-Guanidine sowie Verbindungen mit einer redoxaktiven Disulfid-Einheit (NSSN-Donorsatz). Im zweiten Teil der Arbeit folgten Untersuchungen zu den Koordinationseigenschaften der dargestellten Guanidine. Die Umsetzung der Thioether-Guanidine mit Kupfer(I)-Salzen führte zu einer breiten Palette von Thioether-Kupfer(I)-Komplexen mit zum Teil neuartigen und ungewöhnlichen Strukturmotiven. Ausgehend von Trityl-Thioether- sowie Disulfid-Guandinen konnten zahlreiche neue Synthesewege zur Darstellung von thiolatverbrückten zweikernigen Kupfer(II)-, drei- und sechskernigen gemischtvalenten Kupfer(I/II)- sowie dreikernigen Kupfer(I)-Komplexen mit dem Thiolat-Guanidinliganden 2-(Guanidino)benzolthiolat $(\operatorname{Gua}_{ph}\mathrm{S}^{-})$ etabliert werden. Daneben führte die Umsetzung von Kupfer(I)-Salzen mit Disulfid-Guanidinen zu zwei-, vier- und achtkernigen Disulfid-Komplexen. Weiterführende spektroskopische, elektrochemische und magnetochemische Untersuchungen an ausgewählten Komplexen zeigten, dass zahlreiche Systeme strukturelle und/oder funktionelle Modellverbindungen für das Typ 1-Kupferzentrum ('Blaue' Kupferproteine) oder das Cu_A-Zentrum darstellen.

Neben einer Vielzahl von neuartigen Komplexen wurde auch eine einzigartige reversible 'Disulfid-Thiolat-Disulfid'-Austauschreaktion identifiziert und weitgehend charakterisiert. Die beobachtete Austauschreaktion stellt einen sehr seltenen Reaktionstyp in der Kupfer-Schwefel-Chemie dar und kann als Modellsystem für die reversible Disulfid-Spaltung in biologischen Systemen angesehen werden (z.B. die Reaktion von Glutathion zu Glutathion-Disulfid).

Die im Folgenden geschilderten Untersuchungen sollen zu einem tieferen Verständnis von Struktur, Funktion und Wirkungsweise der modellierten Kupfer-Schwefel-Metalloproteine beitragen.

Abstract

In this thesis covering a field of Bioinorganic Chemistry, biological relevant copper complexes with sulphur-containing guanidine ligands were synthesised. These ligands combine thioether- or thiolate S donor functions with basic N_{Imin} functionalities of CN_3 guanidine units.

The synthesis and characterisation of sulphur-containing guanidines is the main focus of the first part of the thesis. Multidentate (NS- resp. N₂S₂-Donorsets) and tripodal (N₃S-Donorsets) thioether-guanidines as well as molecules with redox-active disulfid units (NSSN-Donorset) were synthesised. In the second part of the thesis, the coordination properties of these guanidines towards Cu are investigated. The reaction of thioetherguanidines and copper(I) salts yielded numerous copper(I) thioether-guanidine complexes with novel and uncommon coordination properties. When trityl-thioether- or disulfideguanidines were used, thiolate-bridged oligomeric complexes including binuclear copper(II), tri- and hexanuclear mixed valent copper(I/II) and trinuclear copper(I) complexes containing 2-(guanidino)benzolthiolate ($Gua_{ph}S^-$) as ligands were obtained. In case of reactions of Cu(I) with disulfide-guanidines, di-, tetra- and octanuclear disulfide complexes are obtained as well. Further investigations based on spectroscopic, electrochemical and magnetochemical techniques were carried out using selected copper complexes. As a result, the physical and chemical properties indicate some structural and/or functional model character for active Cu protein sites like type 1 ('blue') copper and Cu_A.

Among various observations during the synthesis of novel sulphur-copper complexes, a unique reversible 'thiolat-disulfide-thiolate' interchange reaction has been identified and explored. This type of reaction is a rare example in copper-sulphur chemistry and possesses model character for the important reversible disulfid cleavage in biological systems (e.g. reaction of glutathione to glutathione disulfide).

The studies presented here contribute to a better understanding of structure, function and physical properties of sulphur containing metalloproteins.

Danksagung

An dieser Stelle möchte ich all jenen Menschen danken, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Doktorarbeit beigetragen haben.

Besonderer Dank gebührt meinen Eltern, die mich während meines Studiums unterstützt und mir diese Ausbildung ermöglicht haben. Auf diesem Wege möchte ich ihnen dafür danken.

Ich danke ganz herzlich Herrn Prof. Dr. Gerald Henkel für die interessante Themenstellung, die anregenden wissenschaftlichen Diskussionen sowie die freundliche Hilfsbereitschaft, die er mir stets entgegenbrachte.

Bei all denen, die mir beim Erstellen der Doktorarbeit behilflich waren, möchte ich mich an dieser Stelle ebenfalls bedanken: bei Herrn Dr. Ulrich Flörke für die Durchführung der zahlreichen Einkristall-Röntgenstrukturanalysen, Herrn Dr. Weber und Frau Karin Stolte für die massenspektrometrische Analyse, Herrn Priv. Doz. Dr. Hans Egold für die NMR-Analytik und die freundliche Übernahme des Zeitgutachtens.

Frau Dr. Sonja-Herres-Pawlis danke ich für die vielen hilfreichen Diskussionen sowie die DFT-Rechnungen. Mein Dank gilt auch Frau Roxana Haase und Herrn Martin Bernhard für ihre tatkräftige experimentelle Unterstützung. Herrn Tobias Hoppe aus dem Arbeitkreis von Prof. Dr. Schindler danke ich für die Durchführung von Begasungsexperimenten.

Spezieller Dank gilt Herrn Dr. Eckhard Bill, Herrn Dr. Eberhard Bothe und Frau Petra Höfer vom Max-Plack-Institut für Bioanorganische Chemie in Mülheim für magnetound elektrochemische Messungen. Herrn Dr. Reinhard Kremer vom Max-Plack-Institut für Festkörperforschung in Stuttgart und Herrn Dr. Biprajit Sarkar aus dem Arbeitskreis von Prof. Dr. Wolfgang Kaim danke ich ebenfalls für die zahlreichen magnetochemischen Messungen.

Der Universität Paderborn danke ich für die Gewährung eines Promotionsstipendiums.

Ein ganz besonderer Dank gilt meiner Ehefrau Sabrina. Sie hat mir in der Promotionszeit Freiräume geschaffen, stets Verständnis und Unterstützung sowie liebevolle Geduld entgegengebracht. Danke meine Süße!

Inhaltsverzeichnis

	₁ <u> </u>		1
Kapitel	I EII	hleitung	1
1.1	Bioano	rganische Chemie	1
1.2	Kupfer	in biologischen Systemen	3
1.3	Kupfer	in Metalloproteinen	5
	1.3.1	Überblick über kupferhaltige Metalloproteine	5
1.4	Kupfer	haltige Elektronentransfer-Proteine	6
	1.4.1	Typ 1-Zentren in blauen Kupferproteinen	7
	1.4.2	Das zweikernige Cu_A -Zentrum	9
1.5	Sauerst	toffaktivierung mit Kupferproteinen	11
	1.5.1	Die Dopamin- β -Hydroxylase (D β H) und Peptidylglycin- α -Monooxygenase (PHM)	12
1.6	Stand of	der Forschung	14
	1.6.1	Modellkomplexe für Typ 1-Kupferzentrum	15
	1.6.2	Modellkomlexe für das Cu_A -Zentrum	18
	1.6.3	Modellkomlexe für die Dopamin- β -Hydroxylase und die Peptidylglycin- α -Monooxygenase	19
	1.6.4	Thiolat-Disulfid-Austauschreaktionen in der Koordinationschemie .	21
1.7	Guanic	line - Eine neue Klasse von biomimetischen Liganden	24
	1.7.1	Komplexchemische Eigenschaften von Guanidinen	24
	1.7.2	Synthese von Guanidinen	26

	1.7.3	Koordinationschemie von Guanidinliganden - Kenntnisstand $\ .$	29
Kapitel	2 Z	ielsetzung und Gliederung	31
2.1	Zielse	tzung	31
2.2	Glied	erung der Arbeit	32
Kapitel	3 S	chwefel-Guanidinliganden	34
3.1	Synth	netische Aspekte und Motivation	34
	3.1.1	Zweizähnige Schwefel-Guanidinliganden	37
	3.1.2	Dreizähnige Schwefel-Guanidinliganden	38
	3.1.3	Vier- und fünfzähnige Schwefel-Guanidinliganden	38
	3.1.4	Disulfid-Guanidinliganden	39
	3.1.5	Tripodale Schwefel-Guanidinliganden	40
3.2	Krist	allstrukturen ausgewählter Schwefel-Guanidinliganden	43
	3.2.1	Kristallstruktur von Disulfid-Guanidinliganden	43
	3.2.2	Struktureller Vergleich protonierter Schwefel-Guandinliganden $\ .$.	45
3.3	Redo	xeigenschaften ausgewählter Schwefel-Guanidinliganden	48
Kapitel	4 K	Supferkomplexe mit Thioether-Guanidinliganden	51
4.1	Synth	netische Aspekte	51
4.2	Kupf	erkomplexe mit zweizähnigen Thioether-Guanindinliganden $\ . \ . \ .$	52
	4.2.1	Kristallstrukturen einkerniger Kupferguanidinkomplexe	53
	4.2.2	Kristallstrukturen zweikerniger Kupferguanidinkomplexe	58
	4.2.3	Kristallstrukturen von Koordinationspolymeren	63
4.3	Kupf	erkomplexe mit dreizähnigen Thioether-Guanidinliganden \ldots	68
	4.3.1	Kristallstrukturen einkerniger Kupferguanidinkomplexe	68
	4.3.2	Kristallstrukturen mehrkerniger Kupferguanidinkomplexe	70
4.4	Kupfe	erkomplexe mit vier- und fünfzähnigen Thioether-Guanindinliganden.	74

	4.4.1	Kristallstrukturen zweikerniger Kupferguanidinkomplexe 74	
4.5	5 Spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen		
	4.5.1	Spektroskopische Eigenschaften	
	4.5.2	Magnetochemische und cyclovoltammetrische Untersuchungen 79	
Kapitel	5 Ki	upferkomplexe mit tripodalen Thioether-Guanidinliganden 86	
5.1	Synthetische Aspekte		
5.2	Beschreibung der Kristallstrukturen		
5.3	Spektroskopische, magnetochemische und cyclovoltammetrische Untersu- chungen		
5.4	Sauers	toffaktivierung	
Kapitel	6 K	upferkomplexe mit Disulfid- und Thiolat-Guanidinliganden 100	
6.1	Ein ne	uartiger Kupfer-Thiolat-Cluster vom Typ $[\mathrm{Cu}_4^\mathrm{I}\mathrm{Cu}_2^\mathrm{II}(\mathrm{Gua}_{ph}\mathrm{S})_6]\mathrm{X}_2$ 102	
	6.1.1	Synthetische Aspekte	
	6.1.2	Beschreibung der Kristallstrukturen	
	6.1.3	Struktureller Vergleich mit Literaturverbindungen und dem Cu_A -Zentrum	
	6.1.4	Spektroskopische, magnetochemische und cyclovoltammetrische Un- tersuchungen	
	6.1.5	DFT-Berechnungen	
	6.1.6	$[Cu_6(Gua_{ph}S)_6]^{1+/2+/3+}$: Gemischtvalente Systeme der Class III 117	
6.2	Zweike	ernige Thiolat-Komplexe des Typs $[Cu_2^{II}(Gua_{ph}S)_2X_2]$	
	6.2.1	Synthetische Aspekte	
	6.2.2	Beschreibung der Kristallstrukturen	
	6.2.3	Spektroskopische, magnetochemische und cyclovoltammetrische Un- tersuchungen	
6.3	Dreike $[Cu_2^ICu_2^I]$	rnige Thiolat-Komplexe des Typs $[Cu_3^I(TMG_{ph}S)_3]$ und $u^{II}(TMG_{ph}S)_3I]$	

	6.3.1	Synthetische Aspekte	134
	6.3.2	Beschreibung der Kristallstrukturen	134
	6.3.3	Spektroskopische und cyclovoltammetrische Untersuchungen $\ . \ . \ .$	139
6.4	Neuart und [C	tige Disulfidkomplexe des Typs $[Cu_2^{I}((TMG_{ph}S)_2)_2](OTf)_2$ $U_n^{I}((TMG_{ph}S)_2)_2I_m] (n = 4, 8; m = 4, 8) \dots \dots \dots \dots \dots \dots$	142
	6.4.1	Synthetische Aspekte	142
	6.4.2	Beschreibung der Kristallstrukturen	143
	6.4.3	Spektroskopische und cyclovoltammetrische Untersuchungen $\ . \ . \ .$	150
6.5	Synthe	ese von Thiolat- und Disufidkomplexen: Reaktionsmechanismen $\ .\ .$.	152
Kapitel	7 Ei	ne reversible Disulfid-Thiolat-Disulfid-Austauschreaktion	156
7.1	Eine h	alogeninduzierte reversible Disulfid-Spaltung	156
7.2	Koord	inationschemische Aspekte	161
7.3	Thiola	t-Disulfid-Austauschreaktionen in der Literatur	164
Kapitel	8 Zı	usammenfassung	167
Kapitel	9 E>	xperimenteller Teil	173
Kapitel 9.1	9 EX	xperimenteller Teil neine Bemerkungen zum experimentellen Teil	173 173
Kapitel 9.1 9.2	9 E> Allgen Analyt	Apperimenteller Teil neine Bemerkungen zum experimentellen Teil	173 173 173
Kapitel 9.1 9.2 9.3	9 E> Allgem Analyt Synthe	sperimenteller Teil neine Bemerkungen zum experimentellen Teil sische und spektroskopische Methoden ese und Charakterisierung der Guanidinliganden	 173 173 173 175
Kapitel 9.1 9.2 9.3	9 E> Allgem Analyt Synthe 9.3.1	Apperimenteller Teil neine Bemerkungen zum experimentellen Teil Lische und spektroskopische Methoden Se und Charakterisierung der Guanidinliganden Synthese der Vilsmeier-Salze	 173 173 173 175 175
Kapitel 9.1 9.2 9.3	9 E> Allgen Analyt Synthe 9.3.1 9.3.2	Apperimenteller Teil neine Bemerkungen zum experimentellen Teil Lische und spektroskopische Methoden See und Charakterisierung der Guanidinliganden Synthese der Vilsmeier-Salze AAV für die Synthese von Schwefel-Guanidinliganden	 173 173 173 175 175 176
Kapitel 9.1 9.2 9.3	 9 E> Allgem Analyte Synthe 9.3.1 9.3.2 9.3.3 	cperimenteller Teil neine Bemerkungen zum experimentellen Teil tische und spektroskopische Methoden tische und Charakterisierung der Guanidinliganden Synthese der Vilsmeier-Salze AAV für die Synthese von Schwefel-Guanidinliganden Zweizähnige Schwefel-Guanidinliganden	 173 173 173 175 175 176 176
Kapitel 9.1 9.2 9.3	 9 Ex Allgen Analyt Synthe 9.3.1 9.3.2 9.3.3 9.3.4 	cische und spektroskopische Methoden	 173 173 173 175 175 176 183
Kapitel 9.1 9.2 9.3	 9 E> Allgen Analyte Synthe 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 	Apperimenteller Teil	 173 173 173 175 175 176 176 183 188
Kapitel 9.1 9.2 9.3	 9 E> Allgem Analyte Synthe 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 	sperimenteller Teil neine Bemerkungen zum experimentellen Teil sische und spektroskopische Methoden see und Charakterisierung der Guanidinliganden Synthese der Vilsmeier-Salze AAV für die Synthese von Schwefel-Guanidinliganden Zweizähnige Schwefel-Guanidinliganden Vier- und fünfzähnige Schwefel-Guanidinliganden Disulfid-Guanidinliganden	 173 173 173 175 175 176 176 183 188 191
Kapitel 9.1 9.2 9.3	 9 E> Allgen Analyte Synthe 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 	sperimenteller Teil	 173 173 173 175 175 176 176 183 188 191 193

9.4.1 Kupferkomlexe mit Thioether-Guanidinliganden		199
9.4.2 Kupferkomlexe mit tripodalen Thioether-Guanidinliganden .		206
9.4.3	Kupferkomplexe mit Thiolat- und Disulfid-Guanidinliganden $\ . \ .$.	207
Literaturverze	eichnis	212
Anhang		

Ligandenverzeichnis

L1-1	$\mathrm{TMG}_{ph}\mathrm{SMe}$	L1-2	$\mathrm{DMEG}_{ph}\mathrm{SMe}$
L2-1	$\mathrm{TMG}_{ph}\mathrm{SEt}$	L2-2	$DMEG_{ph}SEt$
L3-1	$\mathrm{TMG}_{ph}\mathrm{S}^{t}\mathrm{Bu}$	L3-2	$\mathrm{DMEG}_{ph}\mathrm{S}^{t}\mathrm{Bu}$
L4-1	$\mathrm{TMG}_{ph}\mathrm{SPh}$	L4-2	$DMEG_{ph}SPh$
L5-1	$\mathrm{TMG}_{ph}\mathrm{SBz}$	L5-2	$\mathrm{DMEG}_{ph}\mathrm{SBz}$
L6-1	$\mathrm{TMG}_{ph}\mathrm{SCPh}_3$	L6-2	$\mathrm{DMEG}_{ph}\mathrm{SCPh}_3$
L7-1	$\mathrm{TMG}_{et}\mathrm{SMe}$	L7-2	$\mathrm{DMEG}_{et}\mathrm{SMe}$
L8-1	$\mathrm{TMG}_{et}\mathrm{SEt}$	L8-2	$\mathrm{DMEG}_{et}\mathrm{SEt}$
L9-1	$\mathrm{TMG}_{et}\mathrm{S}^{t}\mathrm{Bu}$	L9-2	$\mathrm{DMEG}_{et}\mathrm{S}^{t}\mathrm{Bu}$
L10-1	$\mathrm{TMG}_{et}\mathrm{SCPh}_3$	L10-2	$\mathrm{DMEG}_{et}\mathrm{SCPh}_3$
L11-1	$\mathrm{TMG}_p\mathrm{SMe}$	L11-2	$\mathrm{DMEG}_p\mathrm{SMe}$
L12-1	$\mathrm{TMG}_{ph}\mathrm{S}_{bzPy}$	L12-2	$\text{DMEG}_{ph}\text{S}_{bzPy}$
L13-1	$\mathrm{TMG}_{ph}\mathrm{S}_{bz}\mathrm{NMe}_2$	L13-2	$\mathrm{DMEG}_{ph}\mathrm{S}_{bz}\mathrm{NMe}_2$
L14-1	$(\mathrm{TMG}_{et})_2\mathrm{S}$	L14-2	$(\mathrm{DMEG}_{et})_2\mathrm{S}$
L15-1	$\mathrm{TMG}_{ph}\mathrm{S}_{et}\mathrm{TMG}$	L15-2	$\mathrm{DMEG}_{ph}\mathrm{S}_{et}\mathrm{DMEG}$
L16-1	$\mathrm{TMG}_{ph}\mathrm{S}_{p}\mathrm{TMG}$	L16-2	$\mathrm{DMEG}_{ph}\mathrm{S}_p\mathrm{DMEG}$
L17-1	$(\mathrm{TMG}_{ph})_2\mathrm{S}$	L17-2	$(DMEG_{ph})_2S$
L18-1	$(\mathrm{TMG}_{et}\mathrm{S})_{2p}$	L18-2	$(DMEG_{et}S)_{2p}$
L19-1	$(\mathrm{TMG}_{ph}\mathrm{S})_{2p}$	L19-2	$(DMEG_{ph}S)_{2p}$
L20-1	$(\mathrm{TMG}_{et}\mathrm{S})_{2bzPy}$	L20-2	$(DMEG_{et}S)_{2bzPy}$
L21-1	$(\mathrm{TMG}_{ph}\mathrm{S})_{2bzPy}$	L21-2	$(DMEG_{ph}S)_{2bzPy}$
L22-1	$(\mathrm{TMG}_{ph}\mathrm{S})_2$	L22-2	$(DMEG_{ph}S)_2$
L23-1	$(\mathrm{TMG}_{et}\mathrm{S})_2$	L14-2	$(DMEG_{et}S)_2$
L24-1	$(\mathrm{TMG}_{et})_2 \mathrm{N}_{bz} \mathrm{SMe}$		
L25-1	$(\mathrm{TMG}_{et})_2 \mathrm{N}_{bz}\mathrm{SEt}$	L25-2	$(DMEG_{et})_2 N_{bz}SEt$
L26-1	$(\mathrm{TMG}_{et})_2 \mathrm{N}_{bz} \mathrm{S}^t \mathrm{Bu}$		
L27-1	$(\mathrm{TMG}_{et})_2 \mathrm{N}_{bz} \mathrm{SBz}$		

Komplexverzeichnis

$\mathbf{C1}$	$[\mathrm{Cu}(\mathrm{TMG}_{ph}\mathrm{S}^{t}\mathrm{Bu})\mathrm{I}]$	C26	$[Cu(DMEG_{ph}S_{et}DMEG)I]$
$\mathbf{C2}$	$[\mathrm{Cu}(\mathrm{TMG}_{et}\mathrm{S}^{t}\mathrm{Bu})\mathrm{I}]$	C27	$[\mathrm{Cu}((\mathrm{TMG}_{ph})_2\mathrm{S})\mathrm{I}]$
C3	$[Cu(DMEG_{et}SCPh_3)I]$	C28	$[Cu((DMEG_{et})_2S)I]$
$\mathbf{C4}$	$[Cu(DMEG_{et}S^tBu)_2](PF_6)$	C29	$[\mathrm{Cu}_2(\mathrm{DMEG}_{ph}\mathrm{S}_{bzPy})\mathrm{I}_2]_2$
C5	$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{S}^{t}\mathrm{Bu})\mathrm{Cl}_{2}]$	C30	$[Cu(DMEG_{ph}S_{bzPy}I]_n$
$\mathbf{C6}$	$[\mathrm{Cu}(\mathrm{TMG}_{ph}\mathrm{SMe})\mathrm{I}]_2$	C31	$[\mathrm{Cu}(\mathrm{TMG}_{ph}\mathrm{S})_{2bzPy}]_2(\mathrm{PF}_6)_2$
$\mathbf{C7}$	$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{SMe})\mathrm{I}]_2$	C32	$[Cu(DMEG_{ph}S)_{2bzPy}]_2(PF_6)_2 \cdot 2MeCN$
$\mathbf{C8}$	$[Cu(TMG_{ph}SEt)I]_2$	C33	$[\mathrm{Cu}_2((\mathrm{DMEG}_{ph}\mathrm{S})_{2bzPy})_2\mathrm{I}_2]\cdot 4\mathrm{MeCN}$
C9	$[Cu(DMEG_{ph}SEt)I]_2 \cdot MeCN$	C34	$[Cu(TMG_{et})_2N_{bz}SEt](ClO_4)$
C10	$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{S}^{t}\mathrm{Bu})\mathrm{I}]_{2}$	C35	$[Cu(TMG_{et})_2N_{bz}SEt](BPh_4)$
C11	$[Cu(TMG_{ph}SPh)I]_2$	C36	$[Cu((TMG_{et})_2N_{bz}SEt)Cl]Cl$
C12	$[Cu(DMEG_{ph}SPh)I]_2$	C37	$[(Cu(L25-1)Cl)_{0.19}(Cu(L25-1)I)_{0.81}]I \cdot MeCN$
C13	$[Cu(DMEG_{ph}SPh)Cl]_2$	C39	$[Cu_6(TMG_{ph}S)_6](PF_6)_2 \cdot 2MeCN$
C14	$[Cu(DMEG_{ph}SPh)Br]_2$	C40	$[Cu_6(DMEG_{ph}S)_6](PF_6)_2 \cdot 4MeCN$
C15	$[Cu(TMG_{ph}SBz)I]_2$	C41	$[Cu_6(TMG_{ph}S)_6](OTf)_2 \cdot 2Me_4NOTf$
C16	$[Cu(DMEG_{ph}SBz)I]_2$	C42	$[Cu_6(DMEG_{ph}S)_6](OTf)_2 \cdot 8MeCN$
C17	$[Cu(DMEG_{et}SEt)I]_2$	C43	$[Cu_6(TMG_{ph}S)_6](ClO_4)_2 \cdot 2MeCN$
C18	$[Cu(DMEG_{et}{}^tBu)I]_2$	C44	$[\mathrm{Cu}_6(\mathrm{DMEG}_{ph}\mathrm{S})_6](\mathrm{Cu}\mathrm{Cl}_2)_2 \cdot 2\mathrm{MeCN}$
C19	$[Cu(TMG_{et}CPh_3)I]_2$	C45	$[\mathrm{Cu}_2(\mathrm{TMG}_{ph}\mathrm{S})_2\mathrm{Cl}_2]$
C20	$[Cu(TMG_{et}SMe)I]_n$	C46	$[\mathrm{Cu}_2(\mathrm{TMG}_{ph}\mathrm{S})_2\mathrm{Br}_2]$
C21	$[\mathrm{Cu}(\mathrm{DMEG}_{et}\mathrm{SMe})\mathrm{I}]_n$	C47	$[\mathrm{Cu}_3(\mathrm{TMG}_{ph}\mathrm{S})_3]$
C22	$[\mathrm{Cu}(\mathrm{TMG}_{et}\mathrm{SEt})\mathrm{I}]_n$	C48	$[Cu_3(TMG_{ph}S)_3I] \cdot MeCN$
C23	$[\mathrm{Cu}_6(\mathrm{DMEG}_p\mathrm{SMe})_2\mathrm{I}_6]_n$	C49	$[\mathrm{Cu}_2((\mathrm{TMG}_{ph}\mathrm{S})_2)_2](\mathrm{OTf})_2$
C24	$[\mathrm{Cu}(\mathrm{TMG}_{ph}\mathrm{S}_{bzPy})\mathrm{I}]$	C50	$[\mathrm{Cu}_8((\mathrm{TMG}_{ph}\mathrm{S})_2)_2\mathrm{I}_8]$
C25	$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{S}_{bzPy})\mathrm{I}]$	C51	$[\mathrm{Cu}_4((\mathrm{TMG}_{ph}\mathrm{S})_2)_2\mathrm{I}_4]{\cdot}2\mathrm{MeCN}$

Abkürzungsverzeichnis

ax	Axial			
av	Mittelwert			
bz	Benzyl			
bzPy	Benzylpyridin			
^t Bu	tert-Butyl			
calc	berechneter Wert			
Cys	Cystein			
DFT	Dichtefunktionaltheorie			
et	Ethyl			
eq	Äquatorial			
EXAFS	Extended X-Ray Absorption Fine Structure			
\exp	experimenteller Wert			
Gua	Guanidin			
Gly	Glycin			
His	Histidin			
iso	Isotrop			
ESR	Elektronenspinresonanz			
ET	Elektronentransfer			
k _T	Elektronentransferrate			
LMCT	Ligand-Metal-charge-transfer			
mM	Millimol			
MCD	Magnetischer Zirkulardichroismus			
Me	Methyl			
MeCN	Acetonitril			
Met	Methionin			
MLCT	Metall-Ligand-charge-transfer			
MMCT	Metall-Metall-charge-transfer			
NHE	Normalwasserstoffelektrode			
р	Propylen			
ph	Phenyl			
R	Alkylrest			
SCE	gesättigte Kalomelelektrode			
SQUID	Superconducting Quantum Interference Device			
THF	Tetrahydrofuran			
XAS	Röntgenabsorptionsspektroskopie			
Ζ	Zwischenstufe			

Kapitel 1 Einleitung

1.1 Bioanorganische Chemie

«Metallionen zwischen Essenzialität und Toxizität» [1]

Die Bioanorganische Chemie entstand Ende der sechziger Jahre des letzten Jahrhunderts als eigenständiges interdisziplinäres Forschungsfeld der Anorganischen Chemie mit dem Fokus auf metallvermittelte Funktionen in Lebensprozessen. Weitere Einflüsse kamen aus der Biologie bzw. Mikrobiologie, der Physiologie, der Toxikologie und der Medizin. Einen wesentlichen Beitrag für den raschen Fortschritt auf dem Gebiet der Bioanorganischen Chemie lieferte auch die Physik mit der Bereitstellung von Nachweisverfahren und Untersuchungsmethoden wie z.B. der Röntgenbeugung und der Röntgenabsorptionsspektroskopie (XAS).

Das Grundgerüst biologischer Systeme wird von den Elementen Wasserstoff, Sauerstoff, Kohlenstoff und Stickstoff aufgebaut, doch schon im 17. Jahrhundert wurden weitere Hauptgruppenelemente als Bestandteile von Organismen entdeckt. Dies sind zu insgesamt 0.9 % die Elemente Natrium, Kalium, Magnesium, Calcium, Phosphor, Schwefel und Chlor.[2]

Die Bioanorganische Chemie beschäftigt sich mit der direkten und mittelbaren Rolle anorganischer Stoffe (oft Metallionen) in der belebten Natur. In Metalloproteinen, die ca. 30 % der Enzyme ausmachen, spielen insbesondere Übergangsmetalle als Spurenelemente eine wichtige Rolle. Metalloproteine und im Speziellen die Metalloenzyme sind essentielle Bestandteile aller Organismen und nehmen entscheidend an vielen lebenswichtigen Stoffwechselvorgängen teil. Jahrmillionen der Evolution führten zur Entwicklung dieser hochwirksamen und spezialisierten Biokatalysatoren, die auf faszinierende und zugleich

elegante Art und Weise vielseitige Reaktionen und komplexe Stoffwechselvorgänge katalysieren und steuern. Dabei ist die Funktion der Metallionen als Cofaktoren in den aktiven Zentren dieser Metalloproteine sehr unterschiedlich.[3] So ist zum Beispiel das Eisen im Hämoglobin für den elementaren Sauerstoff-Transport zuständig[4], und Natrium und Kalium sind an dem Aufbau von Ionengradienten sowie am osmotischen Gleichgewicht in der Zelle beteiligt. [5] Eisenhaltige Ferredoxine und zahlreiche Kupfer-Schwefel-Proteine sind für Elektronenübertragungsprozesse verantwortlich und mangan- und kupferhaltige Superoxiddismutasen und Katalasen katalysieren den Abbau zellschädigender und giftiger Stoffwechselprodukte der Atmungskette.[3] Metallionen übernehmen auch strukturelle Aufgaben, wie zum Beispiel das Zink in der genetischen Transkription oder spielen, wie das Calcium, eine wesentliche Rolle in der Signalübertragung zwischen den Zellen.[6] Struktur, Aufbau und die Funktionsweise von Metalloenzymen besitzen Berührungspunkte vor allem mit der Koordinationschemie und teils auch mit der Organometallchemie. Wechselbeziehungen bestehen auch mit der Materialwissenschaft über die Biomineralisation sowie mit der Medizin und der Technischen Chemie, die ständig auf der Suche ist nach neuen bzw. verbesserten Katalysatoren für eine Reihe energetisch aufwendiger Reaktionen. Metalloenzyme sind in der Lage, streng spezifisch und energieeffizient mannigfaltige komplexe chemische Reaktionen zu katalysieren, und werden damit seit einigen Jahren als geeignete Vorbilder für die Synthese einer neuen Klasse hochwirksamer Katalysatoren angesehen.[7a] Als unverzichtbare und elementare Grundlage für die Entwicklung dieser

Art Katalysatoren dienen Ergebnisse aus der Synthese und Charakterisierung sowie der Untersuchung der Eigenschaften und der Reaktivität von biomimetischen Modellkomplexen vieler Metalloenzyme. Dabei bilden die Modellkomplexe vereinfacht nur das aktive Zentrum eines Metalloenzyms nach ohne dessen große stabilisierende Proteinstruktur. Mit Hilfe dieser 'Sonden' gelingt es, die wesentlichen spektroskopischen und magnetochemischen Eigenschaften sowie die Wirkungsmechanismen eines Metalloenzyms besser zu verstehen und zu beschreiben auch gerade dann, wenn entsprechende Details für das Vorbild noch nicht oder unvollständig bekannt sind.[3a]

Damit kommt der biomimetischen anorganischen Chemie eine wichtige und zukunftsweisende Rolle zu, und erste Erfolge im Bereich der Medizin und Umwelt sowie im industriellen Sektor zeigen die immense Bedeutung dieses noch relativ jungen Forschungszweiges.[7]

1.2 Kupfer in biologischen Systemen

Mit einem Gewichtsanteil von 0.005 % zählt Kupfer zu den seltenen Metallen der Erdhülle. Es steht in der 11. Gruppe des Periodensystems und ist mit seiner hervorragenden thermischen und elektrischen Leitfähigkeit das wichtigste Element der metallverarbeitenden Industrie. Als leichtestes Homologes innerhalb der Gruppe 11 ist Kupfer ein sehr spezielles Element: In der Nachbargruppe 12 treten nur zweiwertige Ionen mit d¹⁰-Konfiguration auf. Die benachbarte Gruppe 10 ist ebenfalls durch die Stabilität der Oxidationsstufe +II, hier mit d⁸-Konfiguration, ausgezeichnet. Die Homologen des Kupfers, Silber und Gold, haben in Komplexen überwiegend geradzahlige d-Elektronenkonfigurationen und sehr niedrige Koordinationszahlen. Sie bevorzugen Liganden mit weichen Donorzentren und sind durch meist hohe, unphysiologische Redoxpotentiale sowie eine geringe Bioverfügbarkeit gekennzeichnet.[8]

Aus biologischer Sicht ist das komplexchemische Verhalten von Kupfer geprägt durch die mittelgroße Stabilität der Cu^I-d¹⁰-Konfiguration. Durch die fehlende Ligandenfeldstabilisierungsenergie ist das Cu^I-Ion recht flexibel bezüglich seiner Koordinationszahl und -geometrie und wird bevorzugt durch weiche Liganden wie R₂P, R-S⁻ und R-S-R' stabilisiert. Die Koordinationszahlen reichen von zwei (linear) bis vier (tetraedrisch), wobei das Optimum zwischen drei (trigonal-planar) und vier liegt. Die reine Dreifachkoordination bei Cu^I-Verbindungen wird oft durch zusätzliche schwach axial gebundene Liganden erweitert. Im Vergleich zu Cu^I-Ionen besitzt das kleinere Cu^{II}-Ion (d⁹) eine höhere Hvdratationsenergie und ist daher in wässrigen Lösungen stabiler. Cu^{II}-Ionen bevorzugen im Vergleich zu Cu^I-Ionen harte Donorfunktionen (N- und O-Donorsysteme) und werden verzerrt oktaedrisch (Jahn-Teller-Effekt) sowie quadratisch-planar koordiniert. Chemisch und spektroskopisch reizvoll sowie biologisch relevant ist das Vorkommen von Cu^I- und Cu^{II}-Ionen und potentiell reduzierenden Thiolat-Liganden. Durch geeignete Koordination und Ligandenwahl kann die übliche Elektronentransfer(ET)-Reaktion zu Cu^I-Verbindungen und die Bildung von Diorganodisulfiden vermieden werden, und es treten auffallend intensive Ligand-Metall-Charge-Transfer(LMCT)-Absorptionen im sichtbaren Bereich auf (Blaue Kupferproteine, siehe Kap 1.4).[8, 9]

Obwohl viele bekannte Kupfersalze antiseptisch wirken und in zu hoher Konzentration akute Gifte für viele Lebewesen darstellen, gehört Kupfer zu den essentiellen Spurenelementen. Kupfer ist ein elementarer Bestandteil in den prosthetischen Gruppen einer Reihe lebenswichtiger Metalloproteine, ohne dessen ausreichende Zufuhr ein Organismus nicht lebensfähig ist. Seine beiden Redoxpotentiale Cu^{I/II} und Cu^{I/0} liegen im Vergleich zu Redoxpotentialen anderer biologisch relevanter Redoxpaare wie Fe^{II/III} nahe beieinander (zwischen 0.0 und 0.6 V vs. NHE) und befähigen das Spurenelement, an elektronenübertragenden Enzymreaktionen teilzunehmen. Als Cofaktor von Metalloenzymen spielt Kupfer die Rolle des Empfängers und Spenders von Elektronen und ist somit von großer Bedeutung für Oxidations- und Reduktionsvorgänge.[10]

Metalle sind in der Natur nur bioverfügbar, wenn sie in einer Form vorhanden sind, die von Lebewesen direkt aufgenommen werden kann. Dazu müssen sie chemisch leicht verwertbar als Ionen vorliegen. Kupfer wird als freies Ion in der Umwelt rasch an Huminstoffe gebunden oder in Gewässern im Sediment eingelagert und damit in eine nicht bioverfügbare Form überführt. Pflanzen müssen die benötigte Menge des essentiellen Spurenelements Kupfer aus dem Boden gewinnen. Ein Teil des Kupfers wird durch Reaktion des Bodens mit dem Niederschlag gelöst und damit verfügbar gemacht. Wurzeln sind auch in der Lage, Kupfer durch Abgabe von Säure aus dem Boden herauszulösen. Dass Kupfer als essentielles Element eine besondere Stellung in der Entwicklung der Erdgeschichte eingenommen hat, liegt in der Evolution der Biosphäre. Die Urzeitatmosphäre schränkte die Bioverfügbarkeit des Kupfers durch eine reduzierende Atmosphäre stark ein. Die meisten Kupfer(I)-Verbindungen lagen in Form schwerlöslicher Mineralien (Halogenide, Chalcogenide) vor. Erst durch die massive Produktion von Oxidationsäquivalenten durch photosynthetisierende Organismen gelang die Umwandlung in wässrig (pH 7) lösliche Kupfer(II)-Verbindungen, infolgedessen die Cu^{II}-Ionen in den Stoffkreislauf aufgenommen werden konnten.

Mit einer Gesamtmenge von ca. 100 - 150 mg im Körper eines Erwachsenen ist Kupfer das dritthäufigste Spurenmetall im Organismus nach Zink und Eisen. Die Leber ist das zentrale Organ des Kupferstoffwechsels und der wichtigste Kupferspeicher des Organismus. Erhöhte Konzentrationen findet man aber auch in Muskeln, Herz und Nieren. Eine längerfristige Unterversorgung mit Kupfer (RDA-Wert: 1.5 - 3 mg) führt zu Kupfermangelerscheinungen wie Arterienschwäche, Leberstörungen und sekundären Anämien. Ein Defizit an Kupfer entsteht bei einer ausgewogenen Ernährung im Allgemeinen nicht. Kupfer kommt in Lebensmitteln vor allem in Innereien, Fischen, Schalentieren sowie in Nüssen, Kakao und in manchen grünen Gemüsen vor. Die Bioverfügbarkeit des mit der Nahrung aufgenommenen Kupfers beträgt etwa 10-70 %.[3b, 8]

1.3 Kupfer in Metalloproteinen

1.3.1 Überblick über kupferhaltige Metalloproteine

Von der Funktion her kann man zunächst zwei Hauptgruppen von kupferhaltigen Metalloproteinen unterscheiden: reine Elektronenübertragungs-Proteine und mit Sauerstoff oder dessen Metaboliten wechselwirkende Systeme. Vom strukturellen und spektroskopischen Standpunkt unterscheidet man drei verschiedene Typen von biologischen Kupfer-Zentren (Abb. 1.1).

Abbildung 1.1: Klassische Kupferzentren in Proteinen.

Daneben gibt es nicht klassische-Kupferzentren vom Typ $\rm Cu_A$ oder spezielle Kombinationen vom Typ $2/\rm Typ$ 3-Trimeren (Abb. 1.2).[3b]

Typische	Koordinationsgeometrie	Funktion, Struktur, spektroskopische Charakteristik
Typ (2+3)- Trimer	(His)N N(His) (His)N Cu N(His) HO Cu OH (His)N OH (His)N N(His)	O ₂ -Aktivierung für Oxidase Funktion z.B. Ascorbat Oxidase und Laccase in Pflanzen; intensiver LMCT-Übergang (S ⁻ _{Cys} -Cu ^{II}); normale Cu ^{II} -ESR-Parameter
Cu _A	HN (His) (His) (Met) (Cys-) (Cys-) (Cys-) (His) (Cys-) (His) (Cys-) (His) (Cys-) (His) (His) (Cys-) (His) (His) (Cys-) (His) (Cys-) (Cy	Reversibler Elektronentransfer z.B. N ₂ O- Reduktase, Cytochrom-c-Oxidase; gemischt- valenter Cu ^I Cu ^{II} -Zustand; verzerrt tetraedrische Koordination beider Cu-Atome, Cu-Cu-Abstand 240-250 pm; Absorption im nahen IR-Bereich; Spindelokalisation führt zu einem Sieben-Linien EPR-Signal
Cuz	(His)N V(His) (His)N Cu N(His) (His)N Cu N(His) (His)N N(His) (His)N N(His)	Reduktion von N ₂ O zu N ₂ in der Denitrifikation; im Grundzustand liegt vermutlich die gemischtvalente Spezies Cu(II) ₁ Cu(I) ₃ vor mit einem Spin von 1/2 (ESR, DFT); die katalytisch aktive Form ist jedoch Cu(I) ₄ ; verzerrt tetrae- drische Umgebung des μ_4 -Sulfids; starke Cu _Z - N ₂ O Rückbindung
MT-Cu	diverse Zentren	Regulations-, Speicher- und Transport-Form z.B. CUP2; Metallothionein (MT), Cu-Transport- ATPase; cysteinreiche Bindungsstellen

Abbildung 1.2: Nicht-Klassische Kupferzentren in Proteinen.

1.4 Kupferhaltige Elektronentransfer-Proteine

Redoxreaktionen bilden die Grundlage vieler biochemischer Prozesse und deshalb existieren zahlreiche Metalloproteine, die in der Lage sind, aus den aktiven Zentren heraus Redoxäquivalente bereitzustellen. Metalle sind ideal für eine derartige Funktion geeignet, denn das Wechseln der Oxidationsstufe ist ein typisches Charakteristikum der Chemie dieser Elemente. Eines der wichtigsten Redoxpaare ist aufgrund der guten Bioverfügbarkeit des Metalls und des biologisch günstigen Potentialbereiches von 0.0 - 0.6 V vs. NHE daher Cu^{I/II}. Durch geeignete Ligandierung der Kupferionen mit schwefel-, stickstoffund sauerstoffhaltigen Donorsystemen gelang es der Natur, das Potentialfenster in einem weiten Bereich zu variieren bzw. sehr exakt an notwendige biochemische Redoxprozesse anzupassen. Untersuchungen der letzten Jahre haben gezeigt, dass insbesondere die koordinierende Thiolat- (R-S⁻) und die neutrale Thioether-Donorfunktion (R-S-R') der Aminosäuren Cystein und Methionin die charakteristischen spektroskopischen Eigenschaften dieser Systeme bestimmen und großen Einfluss auf den Cu^{I/II}-Potentialbereich der Elektrontransferzentren besitzen. Um Energieverluste während des Elektronentransferprozesses zu minimieren, sind die metallbindenden Bereiche in elektronenübertragenden Proteinen deshalb so maßgeschneidert, dass die strukturelle Reorganisation bei Variation der Oxidationsstufe minimal ist. Dies hat eine sehr niedrige Aktivierungsenergie für den entsprechenden Redoxvorgang zur Folge. Die Elektronen können über weite Strecken (>1000 pm) hinweg transportiert werden, was für das Funktionieren vieler Prozesse von entscheidender Bedeutung ist. So ist das $Cu^{I/II}$ -Redoxpaar an Elektronentransferketten (Photosynthese) beteiligt oder dient als Elektronenreservoir für in der Nachbarschaft stattfindende Redoxreaktionen.

1.4.1 Typ 1-Zentren in blauen Kupferproteinen

Eine wichtige Klasse von Proteinen, die Elektronenübertragungsreaktionen durchführen, sind die sogenannten Blauen Kupferproteine. Dazu gehören die zwei bekanntesten Vertreter, das Plastocyanin und das Azurin, aber auch z.B. das Amicyanin oder das Stellacyanin. Plastocyanin fungiert als Elektrontransferzentrum zwischen dem Photosystem I und II in der Photosynthese einiger Cyanobakterien, grüner Algen und aller höheren Pflanzen. Das Azurin ist dagegen für den Ladungstransfer im periplasmatischen Raum oder zwischen einzelnen membrangebundenen Redoxpartnern einer Vielzahl Gram-negativer Bakterien verantwortlich.[11] Das aktive Zentrum der Blauen Kupferproteine in Plastocyanin oder Azurin ist bereits Anfang der neunziger Jahre mit Hilfe der Proteinkristallograhie detailliert strukturell charakterisiert worden. Kristallstrukturanalysen ergaben

Abbildung 1.3: Kristallstruktur und aktives Zentrum des Azurin (oxidierter Zustand) aus Alcaligenes denitripcans[12c] (Atomabstände in Å).

eine stark verzerrt tetraedrische Umgebung des Metallzentrums, wobei die Tetraederwinkel um bis zu 22° von der idealen Tetraedergeometrie (109.5°) abweichen können. Fest koordiniert sind zwei Histidin-Reste und ein Cysteinat-Ligand in einer typisch für Cu^I-Metallzentren annähernd trigonal-planaren Anordnung, wobei das Kupferatom mit 0.1 Å im Azurin und 0.4 Å im Plastocyanin etwas außerhalb der N(His)₂S-Ebene liegt. Hinzu kommt ein schwach gebundener Methionin-Rest, welcher die stark verzerrt tetraedrische Umgebung komplettiert (3+1-Koordination). Im Azurin ist zusätzlich ein axial sehr schwach gebundenes Carbonyl-Sauerstoffatom eines Histidin-Restes vorhanden (3+1+1-Koordination) (Abb. 1.3).[12] Daneben findet man in der Laccase, im Ceruloplasmin und einigen Azurin-Mutanten eine reine trigonal planare Koordinationsumgebung des Cu^{II}-Zentrums (3-Koordination) ohne Methionin- und Carbonylsauerstoff-Liganden.[13] Die am häufigsten anzutreffende stark verzerrte tetraedrische Koordinationsgeometrie (3+1-Koordination) wird durch die Proteinhülle fixiert und stellt einen Kompromiss (entatischer Zustand) zwischen einerseits Cu^I(d¹⁰) mit einer häufig tetraedrischen Koordination und 'weichen' S-Liganden und andererseits Cu^{II}(d⁹) mit bevorzugter quadratisch-planarer Gemoetrie und 'harten' N-Liganden dar. Die verzerrte Anordnung am Metall liegt damit vermutlich nahe an der Übergangszustands-Geometrie zwischen der tetraedrischen und planaren Energieminimum-Konfigurationen der beiden beteiligen Oxidationsstufen, wodurch die Geschwindigkeit der Elektronenübertragung erhöht wird. [3b] Das ungewöhnliche Verhalten der Typ 1-Kupferzentren ist vor allem auf den Cysteinat-Liganden zurückzuführen. Die intensive Lichtabsorption (600 nm, $\epsilon > 2000 \text{ M}^{-1} \text{ cm}^{-1}$) der oxidierten Form ist dem Ligand-Metall-Charge-Transfer (LMCT) $S^-_{Cvs} \rightarrow Cu^{II}$ zuzuordnen. Die Cu-S_{Cvs}-Bindung zeigt mit der relativ kurzen Bindungslänge von 2.13 Å einen starken kovalenten Charakter. Dies führt im EPR-Spektrum des ungepaarten Elektrons (Cu^{II}, d⁹) mit den magnetisch nicht sehr verschiedenen Kupferisotopen 63 Cu und 65 Cu zu deutlich geringerer Hyperfeinaufspaltung als bei normalen Cu^{II}-Zentren (Typ 1: g_{\parallel} = 2.226, g_{\perp} = 2.05, A_{\parallel} $= 63 \cdot 10^{-4} \text{ cm}^{-1}$, normales Cu(II) in z.B. CuCl₄²⁻: $g_{\parallel} = 2.221$, $g_{\perp} = 2.040$, $A_{\parallel} = 164 \cdot 10^{-1}$ $10^{-4}~{\rm cm^{-1}}).$ Jedoch auch schon im reduziertem Zustand gibt das Cysteinat-Schwefelatom Ladung an das Metallzentrum ab, was sich in einer Delokalisation des Spins vom Metall zum Cysteinat-Schwefelzentrum manifestiert und mittels ESR/ENDOR nachgewiesen wurde.[14] Von besonderem Interesse war die strukturelle Untersuchung der reduzierten Form der blauen Kupferproteine, was im Fall des Plastocyanins bei höheren pH-Werten (pH 7.8) gelang. Hier hat das Kupfer eine sehr ähnliche Umgebung, wobei lediglich eine leichte Verlängerung der Cu-N_{His}-Bindungen im Vergleich zum oxidiertem Protein auftritt (2.13 vs. 2.39 Å). Dies spiegelt noch einmal die relativ geringe Reorganisierungsenergie der beiden Oxidationszustände wider.[3a]

Der Potentialbereich $Cu^{I/II}$ von Proteinen mit Typ 1-Kupferzentren liegt zwischen 0.18 und 1 V vs. NHE.[11, 15] Verantwortlich für die relativ hohen $Cu^{I/II}$ -Potentiale sind neben

der besonderen Stabilisierung niedriger Oxidationsstufen durch die 'weichen' Schwefel-Liganden (Met, Cys) die Cu^{II}-destabilisierende Abweichung von der quadratisch-planaren oder -pyramidalen Konfiguration. Dabei üben die axial gebundenen Liganden einen erheblichen Einfluss auf das Cu^{I/II}-Potential aus. So führte die isostrukturelle Substitution von Methionin durch Selenoether, Alkoxyalkane, perfluorierte Thioether und Alkylgruppen - entsprechend dem zunehmenden hydrophoben Charakter der Substituenten - zum Anstieg des Cu^{I/II}-Potentials um bis zu 150 mV. Die Substitution wirkte sich jedoch gering auf die ESR- und UV/Vis-Spektren aus. Dagegen ergab die Subsitution von Cystein durch Selenocystein deutliche Veränderungen der ESR- und UV/Vis-Spektren bei nur geringen Auswirkungen auf das Reduktionspotential des Kupferzentrums.[17] Solomon et al. zeigten in DFT-Studien, dass die Variation der Cu- S_{Met} -Bindungslänge das Cu^{I/II}-Potential um bis zu 1 V beeinflussen kann. [18] Genauere DFT-Untersuchungen von Ryde et al. relativierten diese Aussage und ergaben nur einen geringen Einfluss der Cu-S_{Met}-Bindungslänge (ca. 70 mV).[19] Zwischen dem Carbonyl-Sauerstoff und dem Cu^{II}-Zentrum wurden zunächst keine nennenswerten kovalenten, sondern nur ionische Bindungsanteile festgestellt.[20] Neuste Röntgenstrukturdaten zufolge variiert die Cu-O_{Gly}-Bindungslänge jedoch stärker als bisher angenommen (2.5 bis 6 Å). Auf der Grundlage dieser neusten Strukturdaten zeigten Jensen et al., dass mit einer Verlängerung der Cu-O_{Glv}-Bindung eine Erhöhung des Reduktionspotentials einhergeht. [15]

Interessanterweise stellte sich bei der Strukturaufklärung des aktiven Zentrums von Plastocyanin bei niedrigen pH-Werten (pH 3.8) heraus, dass einer der Histidinliganden protoniert wird und vom Kupferzentrum dissoziiert. Gleichzeitig verkürzt sich die Bindung zwischen Kupfer und Methionin auf 2.5 Å. Dies erklärt frühere Beobachtungen, wonach das Reduktionspotential des Proteins vom pH-Wert abhängt.[3a]

1.4.2 Das zweikernige Cu_A-Zentrum

Das in der Natur vorkommende Cu_A -Zentrum ist eines der am intensivsten untersuchten und charakterisierten Elektrontransfer-Systeme. Es wirkt als Elektronentransferzentrum in der Cytochrom-c-Oxidase (CcO), einer terminalen Oxidase der Atmungskette eukaryotischer Mitochondrien und einiger aerober Bakterien, und in der Distickstoffoxid-Reduktase (N₂OR) denitrifizierender Bakterien.[16]

Einkristallstrukturanalysen der vollständigen Enzyme aus Paracosscus denitrificans[21], Thermus thermophilus[22] und Rinderherzmitochondrien[23] konnten den Aufbau des Cu_A-Zentrums eindeutig klären und vorangegangene EXAFS-Ergebnisse bestätigen, die erstmals eine Cystein-Verbrückung beider Kupferatome im aktiven Zentrum nachweisen konnten.[86] Demzufolge ist das Cu_A-Zentrum eine zweikernige, fast planare, rhombische Cu₂S₂-Kupfereinheit, deren Kupferionen an je einen Histidinrest koordiniert und durch die Schwefelatome von zwei Cysteinresten überbrückt sind. Zusätzlich sind in axialer Position schwach gebundene Liganden wie das Thioether-Schwefelatom von Methionin und die

Carbonyl-Sauerstoffatome von Isoleucin, Histidin und Glutamat vorhanden (Abb. 1.4). ENDOR- und ESR-Untersuchungen an natürlichen Cu_A-Zentren und mit ¹⁵N-Histidin angereicherten Proben ergaben unter Berücksichtigung der ^{63,65}Cu-Kopplung, dass beide Kupfer-Atome in einem gemischtvalenten Cu^{+1.5}-Zustand mit einem zwischen den Metall-Atomen vollständig delokalisierten Elektron vorliegen (Class III). Das gemessene und anhand von Modellverbindungen berechnete Sieben-Linien-ESR-Spektrum konnte nur mit der Wechselwirkung eines Elektronenspins mit zwei äquivalenten Kupfer-Kerspins (I = 3/2) interpretiert werden. [11, 25] Die Austauschkopplung der beiden Kupferatome, die einen geringen Abstand von 2.4 - 2.5 Å besitzen, erfolgt nur zum Teil über die Cystein-Schwefel-Brücken. Eine direkte σ -Cu-Cu-Bindung gilt mit Hilfe von kombinierten UV/Vis-, MCD-, XAS- und DFT-Untersuchungen jedoch weitgehend als gesichert. Die spektroskopischen Eigenschaften von Cu_A-Zentren unterscheiden sich deutlich von blauen Typ 1-Kupferzentren. Sie zeichnen zwei $S^-_{Cys} \rightarrow Cu LMCT$ -Banden (ca. 480 und 540 nm) sowie ein $Cu_{(\psi)} \rightarrow Cu_{(\psi^*)}$ -Übergang (Übergang von Cu-Cu bindenden zu antibindenden Molekülorbitalen des Class III gemischtvalenten Systems) im nahen IR-Bereich (ca. 780 nm) aus. [26] In der CcO oder N_2OR ist das Cu_A-Zentrum für die Übernahme und Weiterleitung von Elektronen zwischen Metall-Cofaktoren unterschiedlicher Proteinuntereinheiten verantwortlich, die im letzten Schritt Sauerstoff zu Wasser bzw. Distickstoffoxid zu Stickstoff reduzieren. Dabei wird das Cu_A-Zentrum reversibel aus dem gemischtvalenten [Cu^{+1.5}-Cu^{+1.5}]-Zustand in die [Cu⁺¹-Cu⁺¹]-Form überführt. Das Redoxpotential für diese Redoxreaktion liegt im Bereich von 260 mV vs. NHE, wobei die axialen Liganden im Cu_A-Zentrum einen im Vergleich zu den blauen ET-Zentren weit geringeren Einfluss auf

Abbildung 1.4: Zwei Untereinheiten der Cytochrom-c-Oxidase sowie das Cu_A-Zentrum aus *Paracoccus denitrificans*[21] (Atomabstände in Å).

das Potential besitzen. Beispielsweise zeigen einander entsprechende Mutationen am konservierten, axial gebundenen Methioninrest im blauen Kupferprotein und im Cu_A-Azurin, dass das Methionin am Cu_A-Zentrum das Potential um weniger als 25 mV.[27] Gleichzeitig ergaben Untersuchungen an biosynthetischem Azurin mit einem Cu_A-Zentrum eine um den Faktor drei größere Elektrontransferrate (k_{ET} : 650 ± 60 s⁻¹ vs. 250 ± 20 s⁻¹).[11, 28] Im direkten Vergleich mit den blauen Kupfersystemen ist das Cu_A-Zentrum das effizientere ET-Zentrum. Der zweikernige Aufbau mit der rautenförmigen Cu₂S₂-Einheit ist in der Lage, die strukturelle Reorganisationen bei Änderungen der Oxidationsstufe zu minimieren und Reduktionspotentialänderungen durch Variation der axialen Liganden sehr genau zu steuern.

1.5 Sauerstoffaktivierung mit Kupferproteinen

Sauerstoffaktivierende Kupferproteine katalysieren eine ganze Reihe elementarer Stoffwechselreaktionen und zählen damit zu den biologisch wichtigsten Metalloenzymen.[3b] Sie sind z.B. an der reversiblen Disauerstoff-Koordination (Hämocyanin), an der mit der Oxidation von Substraten gekoppelten Zwei-Elektronen-Reduktion zu Peroxid (Amin-, Galactose- und Catechol-Oxidasen), an der Aktivierung zur Hydroxylierung (Dopamin- β -Hydroxylase, Peptidylglycin- α -hydroxylierende Monooxygenase, Tyrosinase und partikuläre Methan-Monooxygenase) und an der mit der Substratoxidation einhergehenden Vier-Elektronen-Reduktion zu Wasser (Laccase, Ascorbat-Oxidase, Caeruloplasmin und Fet3p) sowie an Protonen-Pumpen (Cytochrom-c-Oxidase) beteiligt.[29] Die Aktivierung von Disauerstoff durch Kupferproteine verläuft über Sauerstoff-Zwischenstufen, die oft

Abbildung 1.5: Übersicht über bekannte und charakterisierte Cu_nO_m-Spezies.

ungewöhnliche spektroskopische, geometrische und elektronische Strukturen aufweisen. Mit einer Vielzahl von Kupfer-Modellkomplexen ist es gelungen, eine ganze Reihe von Sauerstoffspezies zu charakterisieren, die als Intermediate in Stoffwechselvorgängen nachgewiesen wurden oder vermutet werden (Abb. 1.5).[30] Die spektroskopische und quantenmechanische Untersuchung dieser Zwischenstufen hat Beziehungen zwischen geometrischen und elektronischen Strukturen und der Funktion aufzeigen können, und detaillierte Abläufe des Reaktionsverlaufs konnten für die reversible Bindung von Sauerstoff, die Hydroxylierung und die H-Atom-Abspaltung von unterschiedlichen Substraten sowie die reduktive Spaltung der O-O-Bindung bei der Bildung von Wasser entwickelt werden.[30a] In der Regel wird das Kupferzentrum (Typ 2/3-Kupferzentren) dieser Metalloenzyme von stickstoff- und sauerstoffhaltigen Liganden (Histidin, Wasser oder Hydroxid) koordiniert (vgl. Abbildung 1.1). Es gibt jedoch auch Ausnahmen wie bei der Dopamin β -Hydroxylase und der Peptidylglycin α -hydroxylierenden Monooxygenase, die einen koordinierenden Methionin-Liganden am Kupferzentrum besitzen.

1.5.1 Die Dopamin- β -Hydroxylase und die Peptidylglycin- α -Monooxygenase

Neben den Elektronentransferzentren findet man auch in einigen sauerstoffaktivierenden Kupferzentren wie der Dopamin- β -Hydroxylase (D β H) und der Peptidylglycin- α -hydroxylierenden Monooxygenase (PHM) eine schwefelreiche Koordinationsumgebung des Metallzentrums. Die Dopamin- β -Hydroxylase und Peptidylglycin- α -hydroxylierenden Monooxygenase sind in der Lage, Sauerstoff zu binden und zu spalten, um aliphatische Substrate zu hydroxylie-

Abb. 1.6: Katalytische Reaktion der $D\beta M$ (**A**) und PHM (**B**).

ren. Dabei ist D β H für die Biosynthese der Catecholamine, einer wichtigen Klasse von Neurotransmittern, von zentraler Bedeutung. Es katalysiert die Umwandlung von Dopamin zu Noradrenalin, einer Vorstufe des Adrenalins.[31, 33] PHM ist zusammen mit der Peptidylglycin- α -amidierenden Lyase (PAL) Bestandteil der bifunktionalen Peptidylglycin- α -amidierenden Monooxygenase (PAM). Dieses Enzym ist für die Biosynthese einer weiteren Gruppe von Neurotransmittern und Hormonen zuständig, den Peptidamiden (Abb. 1.6).[32, 33] Die Struktur des katalytischen Kerns (PHMcc) der PHM konnte sowohl in einer oxidierten[34] wie auch einer reduzierten Form[35] aufgeklärt werden. Es besitzt zwei Kupferzentren, das Cu_M- und das Cu_H-Zentrum (auch als Cu_B und Cu_A bezeichnet), die einen Abstand von ca. 11 Å besitzen. In der oxidierten Form ist

das Cu_M von zwei Histidinliganden, einem Methionin- sowie einem schwach gebundenen Wasser- oder Hydroxid-Liganden verzerrt tetraedrisch koordiniert. Das Kupferatom im Cu_M-Zentrum gleicht, bis auf einen fehlenden Cysteinat-Liganden, den klassischen Kupferzentren des Typs 1, die üblicherweise Elektronentransfer-Funktionen übernehmen. Das Cu_{H} -Zentrum ist ausschließlich von drei Histidinliganden (äquatoriale Lage) quadratischpyramidal koordiniert und besitzt zwei Koordinationslücken (Abb. 1.7). Es gehört damit zu den klassischen Typ 2-Kupferzentren. In der reduzierten Form bleibt der Cu_M-Cu_H-Abstand fast unverändert (10.4 vs. 10.6 Å). Die Koordinationsumgebung der beiden Kupferzentren ist ebenfalls gleich, jedoch nimmt die Cu_M-S_{Met}-Bindungslänge signifikant ab (EXAFS-Daten: 2.25/2.8 Å; X-Ray: 2.27/2.45 Å), was auf eine deutliche Stabilisierung der reduzierten Form durch den Methionin-Liganden hindeutet. Die Proteinstruktur der $D\beta H$ ist nicht bekannt. EXAFS-Untersuchungen wie auch eine Übereinstimmung der Primärstruktur beider Enzyme in einem Bereich, zu dem auch die Kupferliganden gehören, deuten allerdings daraufhin, dass die aktiven Zentren von PHM und $D\beta H$ strukturell analog aufgebaut sind. [36] Um den Katalysemechanismus der PHM zu entschlüsseln, wurden intensive Untersuchungen mit EXAFS- und ESR-Techniken sowie kinetische-, fluoreszenzspektroskopische und theoretische Studien durchgeführt. Die Bindung von Sauerstoff und die Reaktion mit dem Substrat findet ausschließlich am Cu_M -Zentrum statt. Das Cu_H -Zentrum stellt das für die Reaktion notwendige Redoxäquivalent dem Cu_M-Zentrum zur Verfügung. Es wird angenommen, dass die Reaktion durch Abspaltung eines Wasserstoffatoms vom Substrat (dem Benzylwasserstoffatom in D β H oder dem α -Wasserstoffatom in PHM), über einen bislang nicht beobachteten Hydroperoxid-Cu^{II}_M-Komplex abläuft. Das

Abbildung 1.7: Kristallstruktur und aktives Zentrum einer tierischen PHM im oxidierten Zustand[34] (Atomabstände in Å).

zweite zur Bildung des Hydroperoxids benötigte Elektron stammt vom Cu_H . Da ESR-Untersuchungen keine magnetische Kopplung der beiden Kupfer-Zentren zeigten, ist die Existenz einer festen Ligandenbrücke unwahrscheinlich, daher ist der Transportmechanismus des zweiten Elektrons zum Cu_M unklar. Es wurde vorgeschlagen, dass entweder ein neuer Pfad für die Elektronenübertragung gebildet wird, indem Substratmoleküle die beiden entfernten Kupferatome verbrücken, oder dass die Reaktion über eine O₂-Reduktion zu Superoxid am Cu_H - und einen Superoxid-Channeling zum Cu_M -Zentrum abläuft. Auch bezüglich der Reihenfolge des Elektronentransfers zwischen beiden Kupferzentren und der Wasserstoffabstraktion vom Substrat während der Katalyse gibt es unterschiedliche Auffassungen.[37]

Kürzlich wurde die Struktur einer PHM, in der an das Cu_M gleichzeitig ein Subtratanalogon sowie eine Sauerstoffspezies koordinieren, bestimmt (präkatalytischer Zustand).[38] Der Cu_M -O-O Winkel von 110° und die O-O Bindungslänge von 1.23 Å ist nur mit einem end-on η^1 - Cu^{II} -Superoxo- (vgl. Tabelle 1.5) oder Cu^I -O₂-Adukt, aber nicht mit einer Kupfer-Peroxo- oder Hydroperoxo-Spezies vereinbar, welches an das Kupferatom im Cu_M bindet. Der erste Schritt der Katalyse ist demnach vermutlich der Transfer eines Elektrons vom Cu_H -Zentrum und die Bildung einer Cu_M^I -Superoxo-Spezies, die das Substrat unter H-Abstraktion angreift. Wahrscheinlicher ist jedoch die Übertragung eines Elektrons und Protons gefolgt von der Bildung einer Cu_M^{II} -Hydroperoxo-Spezies, die unter O-O Bindungsspaltung schließlich zu der reaktiven Kupfer-Oxo-Spezies { Cu^{II} -O·} bzw. { $Cu^{III}=O$ } umlagert und die Hydroxlierung einleitet.[37] Jüngste experimentelle Ergebnisse von Karlin et al. stützen diese Ergebnisse (vgl. Kap. 1.6.4).[39]

So scheint insgesamt die Zuordnung der unterschiedlichen Funktionen der Kupferzentren - zum einen als Sauerstoff-Bindungsstelle und Ort des Wasserstofftransfers, zum anderen als Elektronenreservoir - gesichert, der genaue Ablauf der Reaktion zwischen den beiden Kupferzentren ist aber bisher nicht genau bekannt. Auch die genaue Funktion und der Einfluss der koordinierenden S(Met)-Donorgruppe auf die Bildung der reaktiven Sauerstoff-Spezies am Cu_M -Zentrum ist unklar.

1.6 Stand der Forschung

Die Synthese, Charakterisierung und Untersuchung niedermolekularer Modellverbindungen für Kupfer-Schwefel-Metalloproteine hat in den letzten Jahren enorm an Bedeutung und Aufmerksamkeit gewonnen. So konnte eine Vielzahl von Kupferkomplexen mit stickstoff-, thiolat- und thioether-haltigen Ligandensystemen synthetisiert werden, die als biomimetische Modellkomplexe für das Typ 1-Kupferzentrum, das Cu_A-Zentrum sowie die PHM und D β H angesehen werden können. Es existieren jedoch nur wenige Modellsysteme, welche die strukturell-konstitutiven Besonderheiten, die spektroskopischen und redoxchemischen sowie katalytischen Eigenschaften der natürlichen Vorbilder vergleichbar wiedergeben.

Im Folgenden soll ein kleiner Überblick über die wichtigsten Modellkomplexe gegeben werden. Das gesamte weitreichende Spektrum der synthetisierten und charakterisierten Modellsysteme ist in zahlreichen Reviewartikeln zusammengestellt.[40]

1.6.1 Modellkomlexe für das Typ 1-Kupferzentrum

Den Durchbruch in der Synthese von Kupfer(II)-Modellkomplexen für das Typ 1-Kupferzentrum gelang Kitajima et al. mit der Darstellung der Verbindung TpCuSR (Tp = $Tris(3,5-diisopropylpyrazolyl)hydroborat = HB(pz)_3^-, R = C_6F_5$ (Ki1), CPh_3 (Ki2)) (Abb. 1.8).[41] Eine Kristallstruktur existiert jedoch von dem Komplex Ki1. Der tripodal aufgebaute, sterisch anspruchsvolle Pyrazolylborat-Ligand stabilisiert das Cu^{II}-Atom mit einem N_3S -Donorsatz in einer trigonal-pyramidalen Koordinationsgeometrie. Die kurze Cu-S-Bindungslänge von 2.18 Å, das axiale ESR-Spektrum mit einer kleinen Hyperfeinaufspaltung sowie eine LMCT-Absorptionsbande bei ca. 600 nm sind die wesentlichen Merkmale mit biomimetischem Modellcharakter. Jedoch gibt es auch vier deutliche Unterschiede zu den Vorbildern aus der Natur: der N(His)₂S(Met)-Donorsatz ist durch den anionischen Liganden $HB(pz)_3^-$ ersetzt, die Thiolat-Donorfunktion des Cystein-Liganden wird durch $C_6F_5S^-$ bzw. Ph_3CS^- modelliert, das Redoxpotential $Cu^{I/II}$ liegt bei ca. -0.340 vs. NHE und die Koordinationsumgebung des Cu^{II}-Zentrums tendiert deutlich Richtung trigonal-pyramidal. Trotz dieser signifikanten Abweichungen konnten tiefgreifende DFT-, MCD-, XAS- und Resonanz Raman-Untersuchungen den guten spektroskopischen und teilweise strukturellen Modellcharakter bestätigen sowie die wesentlichen Unterschiede herausstellen. Im Vergleich zum Plastocyanin und Azurin besitzt die Cu-S-Bindung im Modellkomplex deutlich größere kovalente Bindungsanteile (52 % S p vs. 38 % S p), zugleich führt die Konstitution des tripodalen anionischen Pyrazolylliganden zu einer trigonal-pyramidalen Koordinationsumgebung und damit zu Unterschieden im UV/Vis-Spektrum. Zwei weitere eindrucksvolle Modellkomplexe auf der Basis von sterisch anspruchvollen β -Diketiminat-Liganden (2,4-(iPr₂phimdo)₂p⁻) stammen aus dem Arbeitskreis von Tolman. Die Umsetzung von K[2,4-(iPr₂phimdo)₂p] mit CuCl₂ und anschließende Umsalzung mit NaSCPh $_3$ führte zu dem einkernigen Komplex **To1** mit terminal koordinierendem Ph₃CS⁻-Anion (Abb. 1.8).[42, 44] Hier ist das Cu^{II}-Atom fast trigonal-planar koordiniert und liegt ca. 0.2 Å oberhalb der N₂S-Ebene. Die wesentlichen Strukturparameter wie die Cu-N- sowie Cu-S-Bindungslängen liegen mit 1.9 Å und 2.1 Å genau im Bereich der bekannten Typ 1-Kupferzentren (z.B. Azurin, Laccase; vgl. Kap. 1.4.1). Übereinstimmende ESR- (g_{\parallel} = 2.17, A_{\parallel} = 111 \cdot 10^{-4} \ \rm cm^{-1}) und UV/Vis-Spektren (600, 749 nm) vervollständigen den besseren Modellcharakter für die trigonal-planaren Systeme (z.B. in der Laccase). Deutliche Abweichungen sind mit -0.18 V vs. NHE im Cu^{I/II}-Redoxpotential zu finden, zumal trigonal-planare Typ 1-Kupferzentren die höchsten Redoxpotentiale mit > 0.7 V vs. NHE besitzen. Der Modellkomplex zeigt damit sehr gute spektroskopische und strukturelle Übereinstimmungen mit den natürlichen Vorbildern, jedoch geben Raman-Messungen zusammen mit den Redoxeigenschaften deutliche Hinweise auf wesentliche Unterschiede in der elektronischen Struktur des Modellkomplexes.

Mit der Verbindung **To2** (Abb. 1.8) gelang die Synthese des ersten Modellkomplexes mit einem N₂SS*-Donorsatz, der über eine Thiolat(S)- und Thioether(S*)-Donorfunktion verfügt.[43, 44] Die Koordination am Cu^{II}-Zentrum ist abgeflacht tetraedrisch und mit einem Winkel von 55.10° zwischen der N₂Cu- und S₂Cu-Ebene deutlich in Richtung quadratisch-planar verzerrt, was zu unverkennbaren strukturellen Unterschieden im Vergleich zum klassischen Typ 1-Kupferzentren führt (Verzerrungen dieser Art findet man in 'Typ 1.5'-Zentren z.B. einigen Azurin-Mutanten und Nitrit-Reduktasen[45]). Als Folge der geometrischen Verzerrung sowie der längeren Cu-S-Bindung (Cu-S/S*: 2.24/2.40, Cu-N: 1.95/1.98 Å) weist das ESR-Signal ($g_{\parallel} = 2.17$, $A_{\parallel} = 98 \cdot 10^{-4}$ cm⁻¹) und ein Shift der S→Cu LMCT-Absorptionsbande im UV/Vis-Spektrum (691 nm) deutliche Übereinstimmungen zu 'Typ 1.5'-Kupferzentren auf. Das Redoxpotential von **To2** liegt mit -0.20 V vs. NHE im Bereich von **To1** und damit weit von den biologischen Zielvorgaben entfernt. Mit Hilfe des tripodalen Liganden N₂(StBu)₂ (N₂(StBu)₂=bis[2-(tert-butylthio)benzyl](2pyridylmethyl)amin) gelang Belle et al. die Synthese der Komplexe [Cu^I(N₂(StBu)₂)](OTf) (**Be1**) sowie [Cu^{II}(N₂(StBu)₂)](OTf)₂ (**Be2**) (Abb. 1.8).[46] Im Komplex **Be1** liegt eine

Abbildung 1.8: Schwefel-Kupfer-Modellkomplexe für Typ 1-Kupferzentren und für das Cu_A-Zentrum.

verzerrt tetraedische Koordination vor mit Cu-S-Bindungslängen von ca. 2.25 Å. In **Be2** komplettiert das axial gebundene Sulfonat-Anion sowie ein äquatorial koordinierendes Wassermolekül die gestreckte oktaedrische Koordinationsgeometrie des Cu^{II}-Zentrums. Die Cu-S-Bindungslängen sind hier mit 2.35 Å für das äquatorial und 2.76 Å für das axial gebundene Thioether-Schwefel-Atom untereinander deutlich unterschiedlich und im Vergleich zu **Be1** signifikant länger. Im Gegensatz zu den Modellkomplexen von Kitajima und Tolman gibt es keine spektroskopischen, magnetochemischen sowie kaum strukturelle Beziehungen zu den klassischen Typ 1-Kupferzentren. Cyclovoltammetrische Studien ergaben jedoch einen Ein-Elektronen-Transfer-Mechanismus in der Oxidation von **Be1** zu **Be2**, vergleichbar zu den Typ 1-Kupferzentren. Ungewöhnlich ist auch das hohe Cu^{I/II}-Redoxpotential von 0.570 V vs. NHE, das den redoxchemischen Modellcharakter dieser Komplexe für Typ 1-Kupferzentren prägt.

In der Literatur werden zahlreiche Kupfer(II)-Thiolat-Komplexe der allgemeinen Form $\operatorname{CuN}_2\operatorname{S}_2$, $\operatorname{CuN}_2\operatorname{S}_2^*$, $\operatorname{CuN}_2\operatorname{S}_2^*$, CuN_4 (N_4 = Cyclam-Derivate) oder $\operatorname{Cu}(\operatorname{pyt})_2$ (pyt = Pyridinthion-Derivate) mit makro- und polymakrozyklischen Liganden und tetra-, penta- und hexa-koordnierenden $\operatorname{Cu}^{\mathrm{II}}$ -Zentren beschrieben. Die meisten dieser Komplexe besitzen keine tetraedrische Koordinationsgeometrie (oft findet man verzerrt quadratisch-planar) und keine chrakteristische spektroskopische Signatur, die auf einen biomimetischen Modellcharakter hindeuten würden. Einige Komplexe zeichnen sich jedoch durch erhöhte Redoxpotentiale aus, die im Bereich von 0 bis 0.35 V vs. NHE liegen.[40c]

Insgesamt ist die Anzahl an biomimetisch relevanten Kupferkomplexen für Typ 1-Kupferzentren überschaubar und die Modellsysteme lassen sich grob in zwei Klassen einteilen: Zur Klasse 1 gehören Modellkomplexe von Kitajima und Tolman mit spektrochemischen, magnetochemischen sowie strukturellen Beziehungen zu Typ 1-Kupferzentren. Aufgrund des starken Donor-Charakters des anionischen Pyrazolylborat- und β -Diketiminat-Liganden – im Gegensatz zum neutralen N(His)₂S(Met)-Donorsatz in Typ 1-Kupferzentren – sowie der verzerrt tetraedrischen und trigonal-pyramidalen Koordinationsgeometrie wird jedoch die Reduktion zum Cu^I-Zustand begünstigt, und die Komplexe besitzen negative Redoxpotentiale. Zur Klasse 2 gehören Modellkomplexe, die keine wesentlichen spektroskopischen, magnetochemischen sowie – nur bedingt – strukturelle Gemeinsamkeiten mit Typ 1-Kupferzentren aufweisen, sondern nur vergleichbare Cu^{I/II}-Redoxpotentiale. Diese Kupfer-Komplexe besitzen stark verzerrt tetraedrische, oktaedrische, überwiegend jedoch verzerrt quadratisch-planare Koordinationsgeometrien mit reinen Stickstoff/Thioetheroder gemischten Stickstoff/Thioether-Thiolat-Ligandensphären. Diese Faktoren stabilisieren zwar die Cu^{II}-Oxidationsstufe führen jedoch zu deutlichen Differenzen der spektroskopischen und magnetochemischen Eigenschaften im Vergleich mit Typ 1-Kupferzentren. So ist zur Zeit kein Modellsystem bekannt, das alle Merkmale (Spektroskopie, Magnetochemie, Struktur und Redoxchemie) der biologischen Vorbilder vereinigt. Fasst man die oberen Fakten zusammen, so könnte ein Kupfer(II)-Komplex mit einem sterisch anspruchsvollen jedoch neutralen $N_{2/3}S^*$ - sowie zusätzlich terminalen Thiolat-Liganden diese Zielvorgaben erfüllen.

1.6.2 Modellkomlexe für das Cu_A-Zentrum

In der Literatur findet man eine Handvoll thiolatverbückter Cu^ICu^I- sowie Cu^{II}Cu^{II}-Komplexe und nur ein einziges Modellsystem für den biologisch relevanten gemischtvalenten Cu^{1.5}Cu^{1.5}-Zustand. Tolman et al. gelang die Synthese von [Cu^{1.5}₂(L^{iPrdacoS})](OTf) (To3, Abb. 1.8) ausgehend von einem Diazacyclooctan-Thiolat-Liganden (N₂S-Donorsatz) und $Cu^{II}(CF_3SO_3)_2$ im molaren Verhältnis von 3 : 2, wobei der überschüssige Anteil des Thiolat-Liganden das Cu^{II} partiell zu Cu^I reduziert und als Nebenprodukt das Organodisulfid erhalten wird.[47] Die spektroskopischen sowie die magnetochemischen Eigenschaften ($\lambda_{\text{max}}=358, 602, 786, 1466$ nm; vollständige Spin-Delokalisation (Sieben-Linien-ESR-Spektrum)) des $[Cu_2(RS)_2]^+$ -Modellsystems sind im Einklang mit dem biologischen Vorbild. Jedoch lässt sich der gemischtvalente Komplex nur irreversibel in den Cu^ICu^Iüberführen. Die wesentlichen Unterschiede des Systems zum Cu_A-Zentrum folgen aus seinen strukturellen Eigenschaften: der längere Cu-Cu-Abstand (2.9 Å), die trigonal pyramidale Koordinationsumgebung der beiden Kupferatome sowie der leicht abgewandelte N₂S₂-Donorsatz (vgl. Kap. 1.4.2). Weiterführende NMR-, DFT-, MCD-, XAS- und Resonanz-Raman-Studien führten die spektroskopischen Abweichungen und damit die Unterschiede in der elektronischen Struktur des Modellkomplexes im Wesentlichen auf den zu langen Cu-Cu-Abstand (2.9 Å vs. 2.5 Å), dem abgewandelten Donorsatz (Amin vs. Imidazol, kein Thioether) sowie die trigonal-pyramidale Koordinationsgeometrie der Kupferatome zurück. Eine direkte Cu-Cu-Bindung (σ -Bindung) ist damit ausgeschlossen, jedoch liegen im Vergleich zum Cu_A-Zentrum stärkere Cu-S-Wechselwirkungen vor, die für π -Cu-Cu-Bindungsanteile und damit für eine Superaustauschwechselwirkung der beiden Kupferatome verantwortlich sind. Aus der fehlenden σ -Cu-Cu-Bindung folgen jedoch zwei wichtige Konsequenzen: eine Rotverschiebung der Absorptionsbanden – besonders vom $Cu_{(\psi)} \rightarrow Cu_{(\psi^*)}$ -Übergang von 800 zu 1466 nm – sowie eine Destabilisierung des valenzdelokalisierten Zustandes im Vergleich zum Cu_A-Zentrum. [26a]

Tolmans Verbindung ist bis heute der einzige signifikante Syntheseerfolg für die Modellierung des Cu_A -Zentrums mit einem gemischtvalenten Cu^ICu^{II} -System. Daneben sind sieben thiolatverbrückte $Cu^{II}Cu^{II}$ -Komplexe in der Literatur bekannt.[48] Die Komplexe von Rammal et al.[48b], Schröder et al.[48f] sowie zwei von Itoh et al.[48d,e] konnten zwar reduziert werden, spektroskopische und magnetochemische Daten sind jedoch nur von Rammal et al. und teilweise von Schröder et al. vorhanden. In beiden Fällen konnten keine gemischtvalenten Spezies mit kurzen Cu-Cu-Abständen und einer Spindelokalisation beobachtet werden. Daneben sind einige thiolatverbrückte Cu^ICu^I -Komplexe mit Phenanthrolinliganden und Thiophenolatbrücken und tetraedrischer Metallkoordination bekannt, die sich nicht in den gemischtvalenten Zustand oxidieren lassen.[49] Insgesamt fehlen zur Zeit weitere Ergebnisse, die erkennen lassen, warum es bisher selten bzw. gar nicht gelingt, zweikernige thiolatverbrückte Kupfer(I)-Komplexe mit terminalen Stickstoffliganden zu oxidieren bzw. zweikernige thiolatverbrückte Kupfer(II)-Komplexe erfolgreich in den gemischtvalenten Zustand zu reduzieren. Die beschriebenen $Cu^{II}Cu^{II}$ -Komplexe besitzen eine verzerrt quadratisch-pyramidale oder verzerrt quadratisch-planare Koordination, wobei die Cu_2S_2 -Einheit mehr oder weniger stark gefaltet ist (7.1 - 73.1°). Zum Vergleich liegt im gemischtvalenten Modellkomplex von Tolman sowie in den nativen Cu_A -Zentren eine planare $Cu_2^{1.5}S_2$ -Raute vor. Zwar stabilisieren die beschriebenen Koordinationsgeometrien besser die Cu^{II} -Oxidationsstufe, dennoch bleibt unklar, warum die $Cu^{II}Cu^{II}$ -Komplexe in der Regel nicht dazu in der Lage, sind ein Elektron aufzunehmen oder bei einer Reduktion den gemischtvalenten Zustand erfolgreich zu stabilisieren. So ist vermutlich der Übergang von 'gefalteter' zu 'planarer' Cu_2S_2 -Struktur mit einer ungünstigen Reorganisation der Koordinationsgeometrie verbunden, oder die Konstitution und die Donorgruppen der Liganden sind nicht in der Lage, eine gemischtvalente Form ausreichend

zu stabilisieren. Warum gerade Tolmans Chelatligand basierend auf dem Diazacyclooctan-Gerüst die planare gemischtvalente Cu₂S₂-Einheit stabilisiert, bleibt unklar und erfordert

weitergehende Untersuchungen.

1.6.3 Modellkomlexe für die Dopamin- β -Hydroxylase und die Peptidylglycin- α -Monooxygenase

Zur Zeit existieren nur wenige Kupferkomplexe mit schwefelhaltigen Liganden, die Kupfer-Sauerstoff-Intermediate spektroskopisch nachweisbar stabilisieren und damit als Modellsysteme für die Sauerstoffaktivierung des Cu_M -Zentrums der PHM und der D β M angesehen werden können. Auf der Basis eines tripodalen N₃S^{*}-Liganden gelang Kodera et al. die Synthese des Kupferkomplexes $[Cu(T_{py})Cl](ClO_4)$ (Ko1) ($T_{py} = 2$ -bis(6-methyl-2pyridylmethyl)amino-1-(phenylthio)ethan), wobei die S(Met)-Funktion durch eine RSPh-Thioether-Funktion modelliert wird (Abb. 1.9).[50] Die Thioether-Funktion in Ko1 ist mit einer Cu-S-Bindungslänge von 2.60 Å schwach an das Cu^{II}-Zentrum (verzerrt quadratischpyramidal koordiniert) gebunden und damit vergleichbar mit dem oxidierten Zustand der PHM (Cu-S: 2.45/2.80 Å). Die Umsetzung von $[Cu(T_p y)](ClO_4)_2$ mit H_2O/Et_3N führte zu dem Kupfer(II)-Bishydroxo-Komplex [Cu(T_{py})OH]₂(ClO₄)₂, der mit 2.5 äq. H₂O₂ (-40 °C in MeCN) zu der Hydroperoxo-Spezies [Cu(T_{pv})OOH](ClO₄) reagiert und charakteristische Singnaturen im UV/Vis-, ESR- sowie Resonanz-Raman-Spektrum zeigt. Kitagawa et al. gelang ebenfalls die Synthese einer Hydroperoxo-Kupfer(II)-Spezies, jedoch ausgehend von einem Disulfid-Cu^I-Komplex $[Cu_2(Py_2SSPy_2)](ClO4)_2$ (Kt1, Abb. 1.9).[51] Der Cu^I-Komplex reagiert bei der Zugabe von H₂O₂ zu der Hydroperoxo-Spezies unter Erhalt der Disulfid-Brücke. Karlin et al. berichteten über den ersten end-on Peroxo-Biskupfer(II)-Komplex in der Kupfer-Schwefel-Chemie. Hier reagiert der zweikernig aufgebaute Cu^I-Komplex Ka1 (trigonal-pyramidale Koordination der Cu-Atome, Cu-S: 2.2 Å) mit dem tripodalen Liganden 2-Ethylthio-N,N-bis(pyridin-2-yl)methylethanamin (L^{N3S}), der über zwei Pyridin- sowie eine RSEt-Donorgruppe verfügt (Abb. 1.9), mit Sauerstoff bei -125 °C zu der blauen Peroxo-Spezies (vgl. Abb. 1.5), die spektroskopisch charakterisiert wurde. [52a] Beim Erwärmen reagiert die Peroxo-Spezies unter Sulfoxidation des Liganden ab. Der entsprechende Cu^{II}-Komplex zeigt ebenfalls eine Sulfoxidation bei der Umsetzung mit H₂O₂. Kürzlich konnten Karlin et al. auch den ersten μ - η^2 : η^2 -Peroxo-Biskupfer(II)-Komplex mit einem tridentaten N₂S-Liganden stabilisieren. [52b] Daneben existieren weitere Schwefel-Kupfer-Komplexe, die in der Lage sind, den eigenen Liganden zu oxidieren und damit als funktionelle Modellsysteme für die PHM und D β M gelten: Casella et al. [53] zeigten die Möglichkeit einer m-Xylyl-Ligand-Hydroxylierung über Cu^I mit Disauerstoff, Reglier et al.[54] beobachteten eine Sulfoxidation des Liganden bei der Reaktion eines Cu^{II}-Komplexes mit H₂O₂ (der enstprechende Cu^I-Komplex zeigte jedoch keine Reaktion mit Disauerstoff). In der aktuellen Literatur zu dem Thema berichten Karlin et al. über einen Cu^{II}-Komplex mit einem stickstoffhaltigen pentadentaten Liganden, der gleichzeitig

Abb. 1.9: Modellkomplexe für die PHM, $D\beta M$ sowie Thiolat-Disulfid-Austauschreaktionen.

über Substituenten mit Benzyl-H-Atomen verfügt (-N(CH₂Ph)₂), die mögliche Substratmoleküle modellieren sollen. Der Cu^{II} -Komplex reagiert unter Zugabe von H_2O_2/Et_3N zu einer stabilen Kupfer(II)-Hydroperoxo-Spezies. ESI-MS- sowie weiterführende chemische Experimente zeigten, dass die Hydroperoxo-Spezies über eine H-Abstraktion am dafür vorgesehenen Ligandensubstituenten zu der hochvalenten Spezies Cu^{II} -O· (Cu^{III} =O) führt, deren Abbauprodukte (Amin und Aldehyd) eindeutig identifiziert wurden. [39a, b] Daneben untersuchten Karlin et al. die erste aliphatische C-H-Hydroxylierung einer Kupfer(II)-Superoxo-Spezies mit dem Tris-Guanidinliganden TMG₃tren, die ebenfalls auf die Bildung einer {Cu^{III}=O} bzw. {Cu^{II}-O·}-Spezies hindeutet.[39c] Auch Itoh et al. gelang kürzlich der Nachweis einer Kupfer(II)-Superoxo-Spezies. Im Unterschied zu den bereits bekannten Kupfer(II)-Superoxo-Systemen mit tripodalen N₄-Liganden (trigonalbipyramidale Koordinationsgeometrie des Cu-Atoms) wurde hier ein dreizähniger Ligand mit einem diazacyclooctan Gerüst (N₃-Donorsatz, verzerrt-tetraedrische Koordinationsgeometrie des Cu-Atoms) verwendet. [61b] Weitere strukturelle Modelle für die oxidierte Form des Cu_M-Zentrums mit Sauerstoff-Thioether-Bipyridin-Liganden und axialer Cu-Thioether Koordination synthetisierten Nethaji et al. 55a Nicholas et al. nutzten einen neuen Imidazolyl-N₂-Liganden für die Modellierung des Cu_M -Zentrums, der entsprechende Kupferkomplex besitzt jedoch keine Cu^I/O₂-Aktivität.[55b]

Fasst man die bisherigen Ergebnisse zusammen, so ergibt sich folgendes Bild: das ungewöhnliche Vorkommen einer S(Met)-Donorgruppe an einem sauerstoffaktvierenden Zentrum (wie Cu_M) spielt eine entscheidende Rolle in der erfolgreichen und effizienten C-H-Hydroxylierung der PHM und D β H, die noch nicht genau erforscht ist. Es existieren in der Literatur zahlreiche strukturelle Modellkomplexe für das Cu_M -Zentrum. Wie gezeigt wurde, ist eine Sauerstoffaktivierung mit diesen Modellkomplexen möglich, führt jeodch in vielen Fällen zu einer irreversiblen Oxidation der koordinierenden Thioether-Gruppen zu Sulfoxiden. Dennoch konnten Kupfer(II)-Hydroperoxo- sowie end-on Peroxo-Biskupfer(II)-Komplexe erfolgreich stabilisiert und nachgewiesen werden. Besonders die erste Spezies könnte als Ausgangpunkt für die C-H-Abstraktion im Katalysezyklus der PHM und D β H verantwortlich sein. So führt vermutlich die Umlagerung eines Kupfer(II)-Hydroperoxo-Intermediats zu der hochvalenten Spezies Cu^{II} -O·, die den Hydroxylierungsmechanimus einleitet. Welche elektronischen und koordinierenden Einflüsse die S(Met)-Donorgruppe auf die Sauerstoffaktivierung ausübt, bleibt dennoch weiter unklar.

1.6.4 Thiolat-Disulfid-Austauschreaktionen in der Koordinationschemie

Die Bildung und Spaltung von Organodisulfiden (z.B. Cysteindisulfid) spielt eine interessante und wichtige Rolle in vielen biologischen Systemen. So ist eine sowohl in Proals auch in Eukaryonten vorkommende Enzym-Familie, die Protein-Disulfid-Isomerasen (PDI), in der Lage, die post-translationale Umordnung von Disulfid-Brücken in Proteinen zu katalysieren. Die Protein-Disulfid-Isomerasen sind nicht nur für die Verknüpfung und
Vernetzung von Proteinketten verantwortlich, sondern auch für die Stabilisierung der dreidimensionalen Proteinstruktur von essentieller Bedeutung. [56, 57] Die Thioredoxine (TR) sind niedermolekulare Disulfid-Brücken-tragende Proteine mit Redoxaktivität und kommen ubiquitär in allen Lebewesen vor. Sie wirken als Protein-Disulfid-Oxidoreduktasen, indem sie die Thiol-Gruppen zweier Cysteine zu einem Disulfid oxidieren und zwei Protonen und zwei Redoxäquivalente für weitere Prozesse zur Verfügung stellen. [56, 58] Daneben spielt das Glutathion eine wichtige Rolle bei der Entgiftung reaktiver radikalischer Sauerstoff-Spezies. [58, 59] Die für die Funktion des Glutathions (GSH) als Radikalfänger wichtigste Gruppe ist die freie SH-Gruppe des Cysteins, die direkt mit freien Radikalen zu der oxidierten GSSG-Form reagiert (Abb. 1.10). In der oxidierten Form des Glutathions

(Glutathion-Disulfid (GSSG)) sind zwei dieser Tripeptide über eine Disulfid-Brücke verbunden. Die nachfolgende Reduktion des Glutathion-Disulfids durch die Glutathion-Disulfid-Reduktase stellt dann den reduzierten Ausgangszustand (GSH) wieder her. Der genaue Mechanismus dieser Reaktion läuft vermutlich über Thiyl-Radikale. Glutathion wird außerdem für eine Vielzahl weiterer Stoffwechselprozesse benötigt und ist daher mit Konzentrationen von 0.5 - 10 mmol/l in fast allen Körperzellen vorhanden: es ist an der Entgiftung von Fremdstoffen beteiligt, ist Cofaktor für Isomerisierungsreaktionen und dient als Speicher- und Transportform des Cystein. Daneben spielt die gezielte und reversible Oxidation von Thiolen/Thiolaten zu Organodisulfiden bei der Aufrechter-

Glutathion (GHS)

Glutathion-Disulfid (GSSG)

Abb. 1.10: Redoxreaktion von Glutathion zu Glutathion-Disulfid.

haltung des zellulären Redox-Fließgleichgewichts eine entscheidende Rolle und ist an elementaren Regulationsprozessen wie der Signalübertragung und der Enzymaktivität beteiligt.[58]

Thiolat-Disulfid-Umlagerungen unter Beteiligung von Cu^{II}-Ionen sind bereits vor 50 Jahren anhand kinetischer Studien diskutiert und experimentell untersucht worden.[60] Dennoch ist in der Koordinationschemie bis heute nur ein einziges Beispiel für eine reversible metallzentrierte Thiolat-Disulfid-Umlagerung zu finden.[61a] Bei der beschriebenen Reaktion von Itoh et al. induzierten Chlorid-Ionen (0.5 bzw. 1 Äq. Me₄NCl) die Umlagerung eines Bis(μ -thiolato)dikupfer(II)-Komplexes (It1, Abb. 1.9) zu entsprechenden Kupfer(I)-Disulfid-Komplexen (It2, It3 Abb 1.9), wobei die beteiligten Chlorid-Ionen als Co-Ligand in beiden Disulfid-Komplexen eingebunden wurden. Das Ausfällen der Chlorid-Ionen durch die Zugabe von Silber(I)trifluoromethan-Sulfonat in Form von Silberchlorid leitete entsprechend die Rückbildung der Thiolat-Spezies ein (Abb. 1.9). Daneben existieren nur wenige weitere Cu^I- und Cu^{II}-Komplexe mit einer bzw. zwei verbrückenden Disulfid-Gruppen. Die Koordinationsgeometrien variieren von verzerrt oktaedrisch über verzerrt trigonal-bipyramidal bis verzerrt quadratisch-pyramidal für Cu^{II} sowie verzerrt tetraedrisch und trigonal-pyramidal für Cu^I-Komplexe (Kap. 6.5). Komplexe mit weiteren Übergangsmetallen wie z.B. Fe^{II}, Ni^{II} oder Pd^{II} und Organodisulfiden sind ebenfalls bekannt.[62] Die irreversible Spaltung der koordinierten Disulfid-Einheit zum Thiolat bzw. mögliche Gleichgewichte zwischen Metall-Thiolat- und Metall-Disulfid-Spezies werden ebenfalls in einigen Publikationen diskutiert.[63]

Insgesamt ist die Koordinationschemie von Organodisulfiden und ihre Reaktivität z.B. mit externen Substraten oder die Reduktion zu Thiolaten ein weitgehend unerforschtes Gebiet der Bioanorganischen Chemie. Ergebnisse, aus Untersuchungen zur Reaktiviät von Cu^{I/II}-Disulfid-Komplexen sind kaum vorhanden.[64] Das bisher in der Literatur nur ein einziges Beispiel für eine reversible Disulfid-Thiolat-Umlagerungsreaktion beschrieben wird, zeigt, wie schwierig die komplexchemische Regulierung des Thiolat-Disulfid-Gleichgewichts ist. Insgesamt fehlen weitere Untersuchungen, die klar erkennen lassen, welche 'Koordinationsarrangements' die Thiolat- bzw. die Disulfid-Form besser stabilisieren. Als Impulsgeber mit weitreichender Bedeutung könnte sich das Disulfid-Thiolat-Gleichgewicht auch für die Kupfer-Sauerstoff-Chemie erweisen. Denn die Elektronenverschiebung von Cu^I auf das koordinierende Disulfid und die Reduktion zum Thiolat verläuft in Analogie zum Isomerisierungsgleichgewicht zwischen der (μ -Peroxo)dikupfer(II)- und Bis(μ -oxo)dikupfer(III)-Spezies (Abb. 1.11). So gibt es zur Zeit intensive Synthesebemühungen von weiteren Kupfer-Schwefel-Analoga für Sauerstoff-Spezies aus der Kupfer-Sauerstoff-Chemie.

Abb. 1.11: Gleichgewichtsreaktionen in der Schwefel-Kupfer- und Sauerstoff-Kupfer-Chemie.

1.7 Guanidine - Eine neue Klasse von biomimetischen Liganden

Die Synthese von Modellkomplexen stellt eine sehr interessante schwierige Herausforderung für den Koordinationschemiker dar. Die erfolgreiche Synthese dieser niedermolekularen Modellverbindungen mit vergleichbaren spektroskopischen sowie strukturellen Eigenschaften zum modellierten Metalloenzym ist eng an die Wahl des eingesetzten Ligandensystems gebunden. In Metalloenzymen sind die Metallionen in eine große Proteinhülle eingebettet und im aktiven Zentrum an organische Moleküle gebunden, deshalb liegt es nahe, sich bei der Darstellung geeigneter Ligandensysteme an den strukturellen und funktionellen Eigenschaften dieser organischen Moleküle (Liganden) zu orientieren.

Als direkt koordinierende Liganden im aktiven Zentrum dienen eine ganze Reihe von Aminosäure-Resten, die über koordinationsfähige funktionelle Gruppen verfügen und in Polypeptidketten gebunden sind. Dazu gehören: das Histidin mit der δ -(oder ϵ -)Imin-Donorfunktion im Imidazol-Ring, das Cystein und des Methionin mit einer Thiolat- bzw. Thioether-Donorfunktion. Sauerstoff-Donorgruppen findet man in Glutamat und Aspartat (Carboyxl- und Carbonylgruppen), Tyrosin (Phenolatgruppe) sowie z.B. Isoleucin und Histidin (Carbonylgruppe) (vgl. Kap. 1.4).

1.7.1 Komplexchemische Eigenschaften von Guanidinen

Das Ligandensystem besitzt in der modernen Komplexchemie eine wichtige und entscheidende Rolle, denn die chemische Konstitution des Liganden bestimmt maßgeblich die thermodynamische und kinetische Stabilität sowie die Redoxeigenschaften der mit ihnen gebildeten Komplexe. Präparative Aspekte, wie Ladungskontrolle (keine hohe negative Ladung des Liganden, damit keine ungünstigen Gesamtladungen der Komplexe resultieren), Berücksichtigung der Härte oder Weichheit von Donorfunktionen (HSAB-Konzept) sowie die Löslichkeit der resultierenden Komplexe stellen weitere wichtige Kriterien bei der Ligandenauswahl und -synthese dar. In den letzten Jahren wurde auf diesem Gebiet intensiv geforscht und zur Zeit existiert ein breites Spektrum an neuartigen Modell-Stickstoffligandensystemen auf der Basis von Aminen, Pyridinen und Schiff-Basen. Die Stickstoff-Donorfunktionen dieser Liganden sollen in der Regel die Eigenschaften der basischen δ -Imin-Donorfunktion des Histidins nachbilden.[65]

Um dem Ziel einer biologisch relevanten Stickstoffkoordination möglichst nahe zu kommen, wurde in der jüngeren Vergangenheit eine neue Ligandenklasse auf der Basis von Imidoharnstoff (Guanidin) entwickelt. Guanidine sind wegen ihrer den Imidazolgruppen der Biologie vergleichbaren Basizitäten in der Lage, die Koordinationseigenschaften des Vorbilds Histidin in der Polypeptidkette besser zu modellieren als aliphatische Amine, Pyridine oder Schiff-Basen.[66] Guanidine bilden eine der zahlenmäßig größten Gruppen unter den Kohlensäure-Abkömmlingen und sind die stärksten organischen Neutralbasen überhaupt. Einige Guanidinderivate gehören daher zu den sogenannten Protonenschwämmen.[67] Die Basizität ist auf Bildung eines stark resonanzstabilisierten Kations zurückzuführen (Abb. 1.12).

Abbildung 1.12: Resonanzstabilisierung eines Guanidiniumkations.

Noch stärkere Neutralbasen sind die unter den Namen "Schwesinger-Basen" bekannten Systeme mit pK_S-Werten der konjugierten Säure von bis zu 46.9.[68] Wie die Daten in Tabelle 1.1 zeigen, kann die Art und die Anzahl der Substituenten die Basizität der Guanidin-Funktion maßgeblich beeinflussen. Diese Variationsmöglichkeit spielt für die Komplexierungseigenschaften sowie für die Stabilisierung höherer Oxidationsstufen der Metallionen eine wesentliche Rolle (vgl. Tab. 1.1[69], Nr. 1).

Abb. 1.13: Schematische Darstellung der orthogonalen p_z -Orbitale im 'geschlossenen' Guanidinsystem.

Durch Einführung einer Methylgruppe (Nr. 2) sinkt bespielweise die Basizität im Vergleich zur unsubstituierten Stammverbindung Guanidin (Nr. 1) leicht ab, da die Symmetrie der Resonanzstrukturen des konjugierten Guanidinium-Kations aufgehoben wird. Diesen Effekt kann eine Methylgruppe mittels Hyperkonjugation nicht vollständig kompensieren. Bei mehrfacher Methylsubstitution (Nr. 5 + 6) wird dieser Effekt jedoch durch die Donorwirkung der Substituenten zunehmend kompensiert und schließlich sogar übertroffen. In vielen Fällen spielt die Verdrillung der Substituentenebenen eine entscheidende Rolle. Die Vollsubstitution mit sterisch anspruchsvolleren Alkylgruppen (Nr. 7) führt zu einer leichten Senkung der Basizität im Vergleich zum Pentamethylguanidin (Nr. 6). Die Erklärung dafür ist, dass in solchen Fällen wegen der Verdrillung der Substituentenebenen die Effizienz der Konjugation sowie die Wirkung der Hyperkonjugation auf das Kation abnimmt. Werden derartige Verzerrungen durch Einbindung der Guanidingruppe in ein Ringsystem verhindert (Nr. 8) und damit eine effektive Überlappung aller beteiligten N(p_z)-Orbitale ermöglicht (Abb. 1.13), beobachtet man daher eine geringfügige Basizitätssteigerung gegenüber Pentamethylguanidin (Nr. 6). Dagegen führt eine Einführung von Akzeptor- und Arylsubstituenten grundsätzlich zur Abnahme der Basizität von Guanidin-Funktionen (Nr. 3 + 4), die sich auf die sehr guten Elektronendonorqualitäten der Substituenten zurückführen lässt.[70] Neben der Basizität zeigen Guanidine nicht nur starke σ -Donor-Bindungen (sp²-N \rightarrow M), sondern noch weitere wichtige Eigenschaften, die ihre Untersuchung im Vergleich zu gängigen N-Donorgruppen reizvoll macht. Bei der Metall-Guanidin-Bindung könnten neben σ -Donor-Wechselwirkungen auch π -Donor-(vgl. Amidoliganden) und π^* -Akzeptor- (vgl. Schiff-Basen) Wechselwirkungen eine Rolle spielen.[71]

Tabelle 1.1: pK_S-Werte der konjugierten Säuren von Guanidinen in Wasser und MeCN.

Nr.	R_1	R_2	R_3	R_4	R_5	$\mathrm{pK}_S(\mathrm{H}_2\mathrm{O})$	$\mathrm{pK}_S(\mathrm{MeCN})$
1	Н	Н	Н	Н	Н	13.6	
2	Me	Н	Н	Н	Н	13.4	
3	Ph	Н	Н	Н	Н	10.77	
4	Ac	Н	Н	Н	Н	8.20	
5	Н	Me	Me	Me	Me	13.6	23.3
6	Me	Me	Me	Me	Me	15.6	25.0
7	$i \Pr$	13.8					
8	R	R	R	R	Me		25.43

 $R = -(CH_2)_3$ -

1.7.2 Synthese von Guanidinen

Kondensation von Aminen mit Vilsmeier-Salzen

Die Darstellung von Guanidinliganden ist über eine der Vilsmeier-Synthese analogen Reaktion möglich. Klassisch werden mit Hilfe der Vilsmeier-Synthese aktivierte Aromaten wie z.B. Phenole, Phenolether und Dialkylaniline formyliert.[72] Durch Einwirkung eines äquimolaren Gemisches eines N,N-disubstituierten Ameisensäureamids und Phosphoroxychlorids (anstelle von Phosphoroxychlorid kann auch Phosgen verwendet werden) auf einen aktivierten Aromaten und anschließende Hydrolyse erhält man das Formylierungsprodukt in guter Ausbeute. Als sehr reaktive Zwischenstufe entsteht primär aus der Reaktion des Formamids mit dem Phosphoroxychlorid über den Vilsmeier-Komplex ein Chlormethan-Iminiumsalz ('Imidsäurechlorid'), welches den aromatischen Kern elektrophil angreift (Abbildung 1.14). Die starke Aktivierung der Harnstoffe in Form von

Abbildung 1.14: Bildung der reaktiven Iminiumsalz-Spezies in der Vilsmeier-Synthese.

Iminiumsalzen wird bei der Synthese der Guanidine durch die Reaktion mit einem Amin ausgenutzt. Hierzu geht man im ersten Schritt von Dicarbonsäureamiden (Harnstoffderivaten) aus und setzt diese mit Phosgen zum entsprechenden Chlorformamidiniumchlorid bzw. Vilsmeier-Salz um (Schema A, Abb. 1.15). Im zweiten Schritt erfolgt die Umsetzung des Vilsmeier-Salzes mit einem Amin in Anwesenheit einer Hilfsbase wie Triethylamin zum Guanidin. Das im Reaktionsgang entstehende Triethylammoniumhydrochlorid wird mit stöchiometrischen Mengen NaOH deprotoniert. Nach dem Entfernen der Hilfsbase und des Lösungsmittels wird das Guanidiniumchlorid als Feststoff erhalten. Im letzten

Abbildung 1.15: Synthese eines Vilsmeier-Salzes (A) sowie eines Guanidins (B).

Syntheseschritt wird das Guanidiniumchlorid mit wässriger KOH-Lösung (50 %) deprotoniert (Schema **B**, Abb. 1.15). Methodisch umgesetzt wurde diese Synthesestrategie erstmals durch Kantlehner et al., die bei der Synthese stöchiometrisch zum Vilsmeier-Salz je ein Äquivalent Triethylamin als Hilfsbase zufügten. Bei der Anwesenheit einer Base, die ein Äquivalent entstehendes HCl aufnimmt, wird der Fortgang der Reaktion zur Zwischenstufe des Guanidiniumsalzes wesentlich erleichtert (Schema **B**, Abb. 1.15).[73] Auf diesem Weg lassen sich pentasubstituierte Guanidine, Bis- und Trisguanidine sowie weitere Guandinderivate in guten Ausbeuten gewinnen. Eine viel breitere Sythesestrategie von Guanidinchelatliganden, die hier als 'Eintopfreaktion' bezeichnet wird, ermöglicht es aber auch, von sekundären Aminderivaten auszugehen und diese direkt durch die Umsetzung mit zwei Äquivalenten Phosgen über das entsprechende Harnstoff-Intermediat *in situ* in die jeweiligen Vilsmeier-Salze zu überführen. Diese werden anschließend mit einem Amin analog zum Reaktionsschema **B** in Abbildung 1.15 umgesetzt.[66a]

Alkylierung von tetrasubstituierten Guanidinen

Die einfachste Möglichkeit zu Darstellung von chelatisierenden Guanindinsystemen liegt in der Umsetzung von Guanidinderivaten mit Dihalogenalkanen (Abb. 1.16). Diese Methode zeigt jedoch die geringste Flexibilität bezüglich des Einsatzes von unterschiedlich funktionalisierten Guanidinderivaten. Die Synthese gelingt mit ausreichender Ausbeute nur im einfachsten Fall von Bistetrametylguanidinopropan (btmgp), wobei ein großer Überschuss des Guanidins eingesetzt werden muss. Grund dafür ist die Bildung von Nebenprodukten durch Konkurrenzreaktionen wie Mehrfachalkylierungen und Eliminierungen mit Guanidinen als Basen. Ein weiterer Nachteil sind die langen Reaktionszeiten.[74]

Abbildung 1.16: Umsetzung von Guanidinderivaten mit einem Halogenalkan.

Die Bredereck Methode

Bei der von H. und K. Bredereck entwickelten Methode werden verschiedene Pentaalkylund Aryltetraalkylguanidine durch Umsetzung von Harnstoffen mit Phosphoroxychlorid dargestellt. Die Methode beruht auf der Aktivierung der eingesetzten Harnstoffe durch Phosphoroxychlorid für die Reaktion mit einem Amin. Obwohl eine äquimolare Umsetzung von Harnstoff, POCl₃ und Amin möglich ist, scheint bei diesem Verfahren die Verwendung von Überschüssen an Amin und POCl₃ präparativ vorteilhaft. Des Weiteren sind dabei Thioharnstoffe reaktiver als Harnstoffe. Der Grund liegt vermutlich in der größeren

Abbildung 1.17: Guanidinsynthese nach Bredereck.

Nucleophilie des Schwefelatoms, die den primären Angriff von $POCl_3$ erleichtert. Nachteilig sind bei diesem Verfahren jedoch die allgemein relativ langen Reaktionszeiten von teilweise bis zu 8 Stunden.[75]

Reaktion von Isocyaniddichloriden mit sekundären Aminen

Eine weitere Möglichkeit zur Darstellung pentasubstituierter Guanidine und Bisguanidine besteht in der Umsetzung von Isocyaniddichloriden mit sekundären Aminen. Diese Synthesestrategie stellt aufgrund der prinzipiellen Möglichkeit, die als Zwischenstufen erhaltenen Chlorformamidine zu isolieren und diese mit anderen Aminen umzusetzen, eine interessante Syntheseroute für unsymmetrisch substituierte Guanidine dar.[76]

Abbildung 1.18: Umsetzung von Isocyaniddichloriden mit Aminen.

1.7.3 Koordinationschemie von Guanidinliganden - Kenntnisstand

Guanidine als Neutralliganden wurden erstmals 1965 durch Longhi und Drago untersucht, die aufgrund der hohen Basizität von Tetramethylguanidin (TMG) gute Donoreigenschaften vermuteten.[77] Später folgten Snaith, Wade und Wyatt, die 1970 extrem hydrolyseempfindliche Addukte von TMG an Aluminiumalkyle und Aluminiumtrichlorid synthetisierten.[78] Ratilla und Kostic konnten 1988 als erste die N-Koordination von einem neutralen Arginin, welches in Domänen von Cytochrom c-Enzymen an Metallkationen bindet, mit Hilfe von [PtCl(trpy)]⁺ als Marker nachweisen.[79] Die erste Synthese von chelatisierenden Guanidinliganden gelang Leffek und Jarczewski mit einer Pyridinazogruppierung.[80] Fehlhammer und Mitarbeiter erhielten unerwartet Komplexe tetrasubstituierter Guanidine bei der Umsetzung von Diiodobis(N-isocyandialkylamin)platin(II)-Verbindungen mit sekundären Aminen.[81] Komplexe von Triphenylguanidin als monodentaten Neutralliganden mit Cobalt, Silber sowie Mangan synthetisierten die Gruppe von Bailey.[82] Fairlie, Taube und Mitarbeiter erhielten durch Aminierung von koordiniertem Dimethylcyanamid DMG-Komplexe von Osmium, Cobalt und Platin.[83] Die ersten Tetramethylguanidino-Liganden mit aromatischem Grundgerüst stammen aus der Arbeitsgruppe von Pruszynski.[84].

Über die ersten chelatbildenden neutralen Bisguanidine und deren Anwendung in der Koordinationschemie berichteten Kuhn et al. [85], Henkel et al. [66a, c, d, 86] und später Sundermeyer et al. [67, 71a, 87] Dannach folgten Arbeiten auf den Gebiet der tripodalen Guanidinsysteme und die Synthese der entsprechenden Kupfer(I)-Komplexe mit der Fähigkeit zur Sauerstofffaktivierung von Sundermeyer et al. und Schindler et al. [39c, 88] Inzwischen existiert auch eine umfangreiche Liganden-Bibliothek [66a] mit aliphatischen und aromatischen Bisguanidinen sowie entsprechende Komplexe mit einer ganzen Reihe von Nebengruppenelementen (von Mn bis Zn sowie Ag, Pd und Pt).[89] Interessanterweise sind die Guandinliganden in der Lage, die unterschiedlichen Koordinations- und Donorpreferenzen der verschiedenen Metalle zu bedienen. Besonders die Verwendung der Liganden zum Aufbau von Kupferkomplexen mit der Fähigkeit zur Sauerstoffaktivierung wurde bereits intensiv untersucht. [90] Des Weiteren stellten Zink-Guanidin-Komplexe ihre katalytische Fähigkeit in der Lactid-Polymerisation unter Beweis.[91] Himmel et al. berichteten kürzlich über die ersten Pd^{II}- und Pt^{II}-Komplexe mit den Guanidinliganden 1,8-Bis(N,N,N',N'-tetramethylguanidino)naphthalen[92], über Pt^{II}- und Pt^{IV}-Komplexe mit 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzen[93] sowie über den Liganden 1,2,4,5-Tetrakis(tetramethylguanidino)benzen und dessen Cu^{II}-, Zn^{II}- und Pt^{II}-Komplexe.[94] Erste μ - η^2 : η^2 -Disulfidodikupfer(II,II)-Komplexe, die aus der Umsetzung von Kupfer(I)-Komplexen mit Bis(tetramethylguanidin)-Liganden – darunter auch btmgp – mit elementarem Schwefel erhalten wurden, berichteten Houser et al. [95] Daneben konnte kürzlich auch die erste Basenpaarung mit protonierten Guanidinliganden beobachtet werden. [96] Neben neutralen Guanidinen $[(R_2N)_2C=NR]$ bilden auch Guanidinate(1-) $[(RN)_2CNR_2]^$ und Guanidinate(2-) $[(RN)_2C=NR]^{2-}$ Übergangsmetallkomplexe mit zahlreichen Nebengruppenelementen der ersten, zweiten und dritten Übergangsmetallreihe, die interessante und vielseitige chemische und strukturchemische Eigenschaften aufweisen. [97]

Kapitel 2 Zielsetzung und Gliederung

2.1 Zielsetzung

Aktuell steht die Synthese und Charakterisierung von neuartigen Ligandensystemen sowie Schwefel-Kupfer-Modellkomplexen im Fokus vieler Koordinationschemiker sowie angrenzender Wissenschaftszweige. Denn neue wissenschaftliche Ergebnisse zu Struktur und Funktion von Schwefel-Kupfer-Metalloproteinen werfen Fragen auf, die sich mit Untersuchungsergebnissen von bereits bekannten Kupfer-Schwefel-Modellkomplexen nicht eingehend beantworten lassen. So liefern vor allem die Unterschiede in den spektroskopischen und magnetochemischen Eigenschaften der nativen und modellierten aktiven Zentren wichtige Antworten auf Fragen zur Struktur-Wirkungs-Beziehungen, die gerade der Schlüssel zum Verständnis der Wirkungsweise vieler Metalloenzyme sind. Daher ist die Synthese von neuartigen Kupfer-Schwefel-Modellkomplexen mit bisher unbekannten chemischen und physikalischen Eigenschaften von herausragender Bedeutung.

Rein stickstoffhaltige Guanidinliganden stellen eine interessante und neue Ligandenklasse dar, die in den letzten Jahren kontinuierlich und erfolgreich ihren Weg in die Koordinationschemie zahlreicher Nebengruppenelemente wie Kupfer, Mangan und Eisen gefunden hat. Das herausragende biomimetische Merkmal dieser Ligandenklasse wird geprägt durch die einzigartige basische δ -Imin-Donorfunktion im charakteristischen CN₃-Strukturelement der Guanidin-Funktion. Die Kombination der Guanidin-Funktion mit Thioether- bzw. Thiolat-Gruppen zu neuen bis heute unbekannten schwefelhaltigen Gaunidinliganden und die Synthese und Untersuchung der resultierenden Kupferkomplexe könnte wichtige Impulse zu aktuellen Diskussionsthemen in der Kupfer-Schwefel-Chemie geben.

Ausgehend von dem im Kapitel 1 vorgestellten synthetischen und wissenschaftlichen Kenntnisstand bezüglich der bis heute bekannten Guandinliganden sowie Modellkomplexe für das Typ 1-Kupferzentrum, das Cu_A- sowie das Cu_M-Zentrum der Dopamin- β -Hydroxylase und der Peptidylglycin- α -Monooxygenase lassen sich die Ziele der Arbeit wie folgt zusammenfassen:

- Planung und Erarbeitung von gezielten Syntheserouten f
 ür die Darstellung neuartiger schwefelhaltiger Thioether- bzw. Thiolat-Guanidinliganden. Durchf
 ührung der synthetischen Arbeiten sowie die Charakterisierung der geplanten Schwefel-Guanidinliganden. Im Mittelpunkt steht die Synthese verschiedener bi- und polydentater Vertreter dieser neuen Ligandenklasse.
- 2. Generelle Untersuchungen zum Koordinationsverhalten der neuen Schwefel-Guanidinliganden sowie die Synthese und Charakterisierung von neuartigen Kupfer-Schwefel-Guanidinkomplexen mit Modellcharakter für die aktiven Zentren von Kupfer-Schwefel-Metalloproteinen.
- 3. Weitergehende spektroskopische, elektrochemische sowie magnetochemische Untersuchungen an ausgewählten Kupfer-Schwefel-Guanidinkomplexen.

Die Kupfer-Schwefel-Guanidinkomplexe sind – wenn möglich – einkristallin darzustellen, damit eine vollständige röntgenographische Charakterisierung möglich ist. Weiterführende Untersuchungen mit spektroskopischen, magnetochemischen sowie cyclovoltammetrischen Methoden sollen Erkenntnisse über die Eigenschaften, die elektronische Struktur und das redoxchemische Verhalten der synthetisierten Kupfer-Schwefel-Guanidinkomplexe liefern.

2.2 Gliederung der Arbeit

Die vorliegende Arbeit behandelt in Kapitel 1 die Biochemie des Kupfers als Bestandteil aktiver Zentren vieler lebenswichtiger schwefelhaltiger Metalloproteine. Anschließend erfolgt ein Überblick über die Arbeiten zur Synthese und Untersuchung bereits bekannter biomimetischer Kupfer-Schwefel-Komplexe sowie die Chemie der Guanidinliganden.

Kapitel 3 behandelt synthetische Aspekte der Schwefel-Guanidinliganden. Ausgehend vom synthetischen Kenntnisstand bereits bekannter Guanidinliganden erfolgt eine schematische Übersicht über die entwickelten Ligandensynthesen und den Aufbau der Schwefel-Guanidinliganden.

Die Komplexchemie der Schwefel-Guanidinliganden ist Gegenstand der Kapitel 4 bis 6. Untersuchungen zu den Koordinationseigenschaften der Schwefel-Guanidinliganden führten zu einem breiten Spektrum von neuartigen Schwefel-Kupfer-Guanidinkomplexen. Die Umsetzungen der Liganden mit verschiedenen Kupfer(I)- und Kupfer(II)-Salzen induzierte in einigen Fällen die Spaltung bzw. Reduktion von Thioether- und Disulfid-Gruppen zu Kupfer-Thiolat-Guanidinkomplexen. Daneben wurde eine ganze Reihe von Kupferkomplexen mit zwei- bis fünfzähnigen sowie tripodalen Thioether- Guanidinliganden synthetisiert und weitergehend untersucht. Im Kapitel 4 werden Kupferkomplexe mit zwei-, drei-, vier- und fünfzähnigen Thioether-Guanindinliganden sowie ihre spektroskopischen und elektrochemischen Eigenschaften vorgestellt. Kupferkomplexe mit tripodalen Thioether-Guanidinliganden sowie Disulfidund Thiolat-Kupferguanidinkomplexe werden separat in den darauffolgenden Kapiteln 5 bis 6 diskutiert. Jedes Kapitel gibt zunächst eine generelle Übersicht über die Kristallstrukturen bzw. die Strukturtypen der synthetisierten Kupferkomplexe. Anschließend werden strukturelle Aspekte, spezielle synthetische Gesichtspunkte sowie elektrochemische und magnetochemische Eigenschaften der Kupferkomplexe vorgestellt. In Kapitel 7 wird eine neuartige Disulfid-Thiolat-Disulfid-Austauschreaktion beschrieben und koordinationschemische sowie mechanistische Aspekte diskutiert.

Kapitel 3 Schwefel-Guanidinliganden

3.1 Synthetische Aspekte und Motivation

Die Synthese von Guanidinen ist von Kantlehner et al. ausgearbeitet und beschrieben worden (vgl. Kap. 1.7.2). Die Kondensationsreaktion von primären Aminen bzw. Aminderivaten mit Chlorformamidiniumchloriden führt zu den entsprechenden Guanidinverbindungen. Das Verfahren hat sich durch gute Ausbeuten, kurze Reaktionszeiten sowie saubere Produkte bei der Synthese von bereits bekannten Guanidinliganden bewährt.[66a] Daher stand im ersten Schritt der synthetischen Arbeiten zunächst die Synthese der entsprechenden Thio-Aminverbindungen und Chlorformamidiniumchloride als Ausgangskomponenten für die Guanidinsynthese im Vordergrund.

Die Thio-Aminkomponente

Als Ausgangsverbindungen und einfache Grundbausteine für die Synthese der Schwefel-Guanidinliganden wurden gezielt 2-Aminoethanthiol bzw. 2-Aminothiophenol ausgewählt. Beide Mercaptane können über klassische chemische Reaktionen wie z.B. Substitutionsreaktionen am Schwefel unter basischen oder sauren Bedingungen chemisch modifiziert werden und dienten daher als Ausgangskomponenten für die Synthese einer Reihe von Monound Bis-Aminothioethern. Die Synthese der Thioether-Gruppe war in zweierlei Hinsicht ein notwendiger und interessanter Schritt. Die Reaktivität nukleophiler HS-Gruppen gegenüber Chlorformamidiniumchloriden ist hinreichend bekannt und stellte eine Konkurrenzreaktion zur gezielten Guanidinsynthese dar.[98] Eine Alkylierung am Schwefel war daher ein notwendiger Schritt. Gleichzeitig erfüllte der Thioether erste biomimetische Aspekte durch Modellierung des Aminosäure-Liganden Methionin.

Die Schutzgruppenchemie von Mercaptanen ist in der klassischen oranischen Synthese weit verbreitet und es existiert eine große Palette von Thiol-Schutzgruppen.[99] Von besonderem Interesse war die tert-Butyl-((CH₃)₃C-SR)- sowie die Trityl- (Ph₃C-SR)-Schutzgruppe, denn Arbeitsgruppen von Becher et al. und Toftlund et al. beobachteten die Spaltung eines tert-Butyl-Thioethers und die Bildung von Kupfer(II)-Thiolat-Komplexen bei der Reaktion eines mehrzähnigen Liganden mit tert-Butyl-Schutzgruppen und einer Lewis-Säure wie Cu^{II}.[100] Eine analoge Reaktion war damit auch für die Trityl-Schutzgruppe zu erwarten. Vor diesem Hintergrund eröffnete sich eine Möglichkeit für die Synthese biomimetisch relevanter Kupfer(II)-Thiolat-Guanidinkomplexe sowie die Modellierung des Aminosäure-Liganden Cystein.

Neben den Thioethern stand eine weitere Schutzgruppe im Vordergrund. Die Disulfid-Schutzgruppe ist aus der Peptidsynthese bekannt und kann durch Oxidation der entsprechenden Mercaptane mit Wasserstoffperoxid oder Iod gebildet werden. Als redoxaktive Schutzgruppe besteht ausgehend von Disulfid-Guanidinliganden die Möglichkeit, in der Umsetzung mit Cu^I-Salzen Thiolat-Liganden und Cu^{II}-Ionen in einer Zwei-Elektronen-Reduktion zu bilden. Eine gezielte Variation der Stöchiometrie (Überschuss Disulfid-Ligand) könnte ebenfalls eine geeignte Syntheseroute zu gemischtvalenten Cu^{I/II}-Komplexe darstellen. Beschrieben sind ähnliche Reaktionen ausgehend von großen polydentaten N_2S_2 -Disulfid-Liganden und Cu^I-Salzen von Mandal et al.[101] sowie Itoh et al.[61] Ein weiterer Vorteil dieser Ligandengruppe besteht in der Möglichkeit, das Guanidin-Disulfid-Hybrid mit geeigneten Reduktionsmitteln wie Borohydriden zu den entsprechenden Guanidin-Thiolaten zu reduzieren. Der Einsatz dieser Guanidin-Thiolat-Liganden in Metathese-Reaktionen mit Cu^{II}-Salzen in unterschiedlichen Stöchiometrien könnte durch partielle Reduktion von Cu^{II} zu Cu^I unter gleichzeitiger Oxidation des überschüssigen Guanidin-Thiolats zum Disulfid zu gemischtvalenten Cu^{I/II}-Thiolat-Komplexen führen (vgl. Kap. 1.6.2, Thiolat-Route von Tolman[47]).

Des Weiteren bilden 2-Aminoethanthiol und Aminothiophenol gute Ausgangsverbindungen für die Synthese mehrzähniger Guanidinliganden, wenn die Substituenten der gebildeten Thioether-Funkion weitere Aminogruppen bzw. stickstoffhaltige Donorsysteme wie z.B. Pyridine oder Schiffsche-Basen besitzen. Auch die Synthese tripodaler Schwefel-Guandinsysteme mit einem Thioether-Substituenten und zwei Guanidin-Funktionen ist interessant, denn analog aufgebaute Tris-Guanidinsysteme zeigten eine überraschende Fähigkeit zur Sauerstoffaktivierung.[39] Daneben beschreiben Karlin et al.[52] und Kodera et al.[50] die Möglichkeit, mit einem schwefelhaltigen tripodalen Pyridin-System eine Kupfer(II)-Peroxo-Spezies bzw. eine Kupfer(II)-Hydroperoxo-Spezies zu stabilisieren (vgl. Kap. 1.6.3).

Die Chlorformamidiniumchloride

Zur Zeit existiert eine breite Palette an synthetisch zugänglichen Chlorformamidiniumchloriden bzw. Vilsmeier-Salzen. [66a] Um die prinzipiellen Koordinationseigenschaften der Schwefel-Guanidinliganden hinreichend zu untersuchen, wurden die beiden Vilsmeier-Salze Tetramethylchlorfor mamidinium chlorid (V1) und Dimethylethylenchlorformamidiniumchlorid $(\mathbf{V2})$ für die Guanidinsynthese ausgewählt (Abb. 3.1), denn die Unterschiede in der chemischen Konstitution der beiden Vilsmeier-Salze beeinflusst maßgeblich die Donoreigenschaften der koordinierenden δ -Imin-Donorfunktion (vgl. Kap. 1.7.2). Gleichzei-

Abb. 3.1: Die beiden Vilsmeier-Salze und die zugehörigen Guanidinfunktionen.

tig bieten die resultierenden Tetramethylguanidino- (**TMG**) bzw. Dimethylethylenguanidino-Funktionen (**DMEG**) verschiedene räumliche und sterische Ansprüche und könnten durch Packungseffekte die Kristallisationprozesse der entsprechenden Kupfer-Komplexe unterschiedlich beeinflussen. Im Vergleich zu anderen Chlorformamidiniumchloriden sind **V1** und **V2** in guten Ausbeuten aus der Synthese der entsprechenden Harnstoffe und Phosgen zugänglich und können unter inerter Atmosphäre in einer Glovebox mehrere Wochen gelagert werden.

Die Guanidinsynthese

Die Umsetzung der unterschiedlich konstituierten Thioether- und Disulfid-Amin-Ausgangsverbindungen zu Guanidinliganden erfolgte nach dem Syntheseprotokoll von Kantlehner (Abb. 3.2). Dabei wurde das Vilsmeier-Salz und die Hilfsbase Triethylamin stöchiometrisch zu der im Molekül vorhandenen Anzahl an Amino-Gruppen eingesetzt. Das während der Reaktion gebildete HNEt₃Cl wurde mit NaOH in die freie Base überführt. Anschließend wurde das Lösungsmittel sowie das Et_3N unter vermindertem Druck entfernt. Das verbleibende Guanidiniumhydrochlorid wurde mit wässriger KOH-Lösung (50 %) versetzt und das freie Guanidin mit einem organischen Lösungsmittel extrahiert. Die erhaltenen Schwefel-Guanidinliganden wurden als Flüssigkeiten, Öle oder Feststoffe in Ausbeuten zwischen 50-95 % isoliert.

In den nächsten Kapiteln erfolgt eine schematische Übersicht über die synthetisierten Schwefel-Guanidinliganden ausgehend von zweizähnigen über mehrzähnige bis zu disulfidhaltigen und tripodalen Schwefel-Guanidinsystemen.

Abbildung 3.2: Allgemeine Reaktionsgleichung für die Synthese von Guanidinliganden ($R_S = Molekülrest mit Thioether- oder Disulfid-Funktion$).

3.1.1 Zweizähnige Schwefel-Guanidinliganden

Für die Synthese von zweizähnigen Thioether-Guanidinliganden wurden zunächst die beiden Grundbausteine 2-Aminoethanthiol bzw. Aminothiophenol ausgewählt. Der erste Grundbaustein zeichnet sich durch einen aliphatischen und damit flexiblen C2-Spacer aus während Aminothiophenol über einen aromatischen und damit planaren sowie rigiden C2-Spacer verfügt. Außerdem wurde mit 3-(Methylthio)propylamin ebenfalls ein Thioamin mit einem aliphatischen und flexiblen C3-Spacer eingesetzt. Die Synthese der entsprechenden Amin-Thioether Gua-S-R mit z.B. R = Me, Et, ^tBu, Ph, Bz und CPh₃ ließ über den räumlichen und sterischen Anspruch der Substituenten – neben dem Spacer als ersten Freiheitsgrad – den zweiten Freiheitsgrad im schrittweisen Aufbau der Guanidinliganden zu. Den dritten Freiheitsgrad stellte die Wahl des Vilsmeier-Salzes und damit die Synthese der Guanidin-Funktion dar. Über die drei Freiheitsgrade Spacer, Substituent am Schwefel und Guanidinfunktion konnten die sterischen sowie elektronischen Eigenschaften der Schwefel-Guanidinliganden beeinflusst werden. Die Synthese der Amin-Thioether-Vorstufen gelang in der Regel aus der Umsetzung von 2-Aminoethanthiol und

Abbildung 3.3: Modulares Aufbauprinzip von zweizähnigen Thioether-Guanidinliganden der Ligandengruppe LG-1.

Aminothiophenol mit den entsprechenden Mono-Alkyl- bzw. Benzyl-Halogeniden in Gegenwart einer Base wie Ethanolat oder KOH. Eine weitere Synthesemöglichkeit lag in der Umsetzung der Thiole mit den Alkylalkoholen in Gegenwart einer starken Säure wie Triflouressigsäure unter Wasserabspaltung.[99] Abbildung 3.3 skizziert das modulare Aufbauprinzip der Thioether-Guanidinliganden.

3.1.2 Dreizähnige Schwefel-Guanidinliganden

Die Synthese dreizähniger Schwefel-Guanidinliganden wurde durch den Einbau einer weiteren Guanidingruppe oder eines allgemein donorfähigen Substituenten in der Thioether-Funktion erreicht. Abbildung 3.4 links zeigt einen dreizähnigen Schwefel-Bisguanidin-Liganden mit zwei Guanidingruppen sowie einer Sulfid-Gruppe als zentraler Einheit. Anstelle der zweiten Guanidineinheit ist der Einbau sterisch weniger anspruchsvoller Gruppen wie NMe₂ oder Pyridin möglich (Abb. 3.4, rechts). Gleichzeitig bleibt die Variationsmöglichkeit bezüglich der Spacer erhalten. In Frage kommen C2/C3-Spacer mit aromatischem oder aliphatischem Grundgerüst. Abbildung 3.9 zeigt eine Übersicht der synthetisierten dreizähnigen Liganden.

Abbildung 3.4: Modulares Aufbauprinzip von dreizähnigen schwefelhaltigen Mono- und Bisguanidinliganden der Ligandengruppe LG-2.

3.1.3 Vier- und fünfzähnige Schwefel-Guanidinliganden

Im Bereich polydentater schwefelhaltiger Guanidinliganden wurden vier- und fünfzähnige Bisguanidinliganden synthetisiert. Der Aufbau erfolgte durch Umsetzung entsprechender Bis-Alkyl/Benzyl-Halogenide mit zwei Äquivalenten 2-Aminoethanthiol bzw. Aminothiophenol in Gegenwart einer Base wie Ethanolat oder KOH. Auch in diesem Fall ist die Variationsmöglichkeit bezüglich der Spacer sehr umfangreich. So ist die Synthese rein aliphatischer, rein aromatischer oder gemischt aliphatisch-aromatischer Systeme möglich. Gleichzeitig können über den Spacer wie z.B. 2,6-Bis(methyl)pyridin weitere Donorfunktionen eingebaut werden (Abb. 3.5). Abbildung 3.5 zeigt den schematischen Aufbau dieser Ligandengruppe. In Abbildung 3.9 ist eine Übersicht der synthetisierten Guanidinliganden zu finden.

Abbildung 3.5: Modulares Aufbauprinzip von vier- und fünfzähnigen schwefelhatigen Bisguanidinliganden der Ligandengruppe LG-3.

3.1.4 Disulfid-Guanidinliganden

Für die Synthese von Disulfid-Guanidinliganden wurden zunächst die entsprechenden Disulfid-Amine benötigt. Ausgehend von den beiden Grundbausteinen 2-Aminoethanthiol bzw. Aminothiophenol waren die beiden Disulfid-Analoga 2,2'-Dithiodianilin und Cysteamin die naheliegendsten Verbindungen. 2,2'-Dithiodianilin ist durch die Reduktion von Bis(2-nitrophenyl)disulfid mit Hydrazin-Hydrat/Raney Nickel oder durch Oxidation von Aminothiophenol mit Iod oder Fe^{III}-Salzen zugänglich. Cysteamin kann durch Oxidation des entprechenden Thiols mit Iod oder 30 % H₂O₂-Lösung hergestellt werden. Abbildung 3.6 zeigt den Aufbau der Disulfid-Guanidinliganden. In zentraler Position flankiert von zwei Guanidineinheiten ist die Disulfid-Gruppe in der Lage, als neutraler S₂-Donorset

Abbildung 3.6: Schematische Darstellung von Disulfid-Guanidinliganden der Ligandengruppe LG-4.

zu fungieren. Dagegen eröffnet die Reduktion der Disulfid-Gruppe mit geeigneten Reduktionsmitteln wie z.B. Borohydriden oder direkt mit Cu^I-Salzen den Einstieg in die Kupfer-Thiolat-Chemie.

3.1.5 Tripodale Schwefel-Guanidinliganden

Der Aufbau tripodaler Schwefel-Guanidinliganden ist über eine Vier-Stufen-Synthese möglich (Abb. 3.7). Im ersten Schritt wurde die Synthese der tripodalen Thioether-Bisamine als Vorstufen der Guanidinliganden entwickelt und optimiert. Ausgehend vom Diethylentriamin konnte der Aufbau zum tripodalen Grundgerüst am sekundären Amin erfolgen. Hierzu wurden die beiden primären Amine des Triamins als Phthalimid geschützt und die Addition an das sekundäre Amin mit unterschiedlich substituierten Thioether-Benzyl-Halogeniden unter basischen Bedingungen ($K_2CO_3/MeCN$) durchgeführt. Das freie Bis-Amin wurde aus Hydrazin-Hydrat/EtOH erhalten und mit 2 Äquivalenten Vilsmeier-Salz in die Guanidinform überführt. Die Umsetzung des Phthalimids mit Thioether-Alkyl-Halogeniden führte nicht zu den gewünschten Produkten. Die Variation der Reaktionsbedingungen wie Lösungsmittel, Base und Reaktionsdauer ergab keine Substitutionsprodukte wie im Fall der Thioether-Benzyl-Halogenide. Nach Beenden der Reaktion wurde das Phthalimid fast vollständig isoliert. Abbildung 3.8 zeigt rechts das Leitmotiv tripodaler Guanidinliganden, links ist die in dieser Arbeit realisierte Variante zu sehen. In der Literatur sind eine ganze Reihe tripodaler Ligandensysteme bekannt.[65] Der Aufbau

Abbildung 3.7: Synthese eines tripodalen Thioether-Bisguanidinliganden.
i: Phthalanhydrid/AcOH, Rückfluss, 4h; ii: K₂CO₃/MeCN, XCH₂PhSR, Rückfluss, 3h; iii: NH₂NH₂/EtOH, Rückfluss, 8h; iv: Methode Kantlehner.

kann mit diversen aromatischen oder aliphatischen C2/C3-Sapacern sowie mit unterschiedlichen Donorfunktionen wie Thioethern, Pyridinen oder Schiffschen-Basen erfolgen. Bis heute wurde jedoch nur ein einziger tripodaler Tris-Guanidinligand im Arbeitskreis Sundermeyer synthetisiert.[71a] Das System besitzt drei Guanidinfunktionen, die jeweils über einen aliphatischen Etylenspacer mit dem zentralen Stickstoffatom verbunden sind (siehe Abb. 3.8 rechts, R = Guanidin). Abbildung 3.9 zeigt eine Gesamtübersicht der synthetisierten Schwefel-Guanidinliganden, die in sechs Ligandengruppen (LG) unterteilt sind. Die in dieser Arbeit verwendete Nomenklatur der Schwefel-Guanidinliganden ist in Abbildung 3.10 aufgeführt.

Abbildung 3.8: Synthetiserte Bisguanidinliganden (links, Ligandengruppe LG-5) sowie Leitmotiv für den allgemeinen Aufbau eines tripodalen Guanidinliganden (rechts).

Abbildung 3.9: Schematische Übersicht der synthetisierten Schwefel-Guanidinliganden.

LG-1 L1 - L6 L7 - L10 L11	Gua _{ph} SR Gua _{et} SR Gua _p SR	LG-2 L12 L13	Gua _{ph} S _{bzPy} Gua _{ph} S _{et} NMe ₂	LG-3 L14 L15 L16 L17	(Gua _{et})₂S Gua _{ph} S _{et} Gua Gua _{ph} S _p Gua (Gua _{ph})₂S
LG-4		LG-5		LG-6	
L18 L19	(Gua _{et} S) _{2p} (Gua _{ph} S) _{2p}	L22 L23	(Gua _{ph} S) ₂ (Gua _{et} S) ₂	L24 - L27	(Gua _{et}) ₂ N _{bz} SR
L20 L21	(Gua _{et} S) _{2bzPy} (Gua _{ph} S) _{2bzPy}	ph = phenyle _{et} NMe ₂ = Eth	n Spacer, et = ethylen Spac ylen-dimetyhlamino, R = Me,	er, p = propylen Spa Et, ^t Bu, Ph, Bz, CPt	cer, bzPy = Benzyl-Pyridin, n ₃ , Gua = TMG, DMEG

Abbildung 3.10: Nomenklatur der synthetisierten Schwefel-Guanidinliganden.

3.2 Kristallstrukturen ausgewählter Schwefel-Guanidinliganden

3.2.1 Kristallstrukturen von Disulfid-Guanidinliganden

Die Kristallstrukturen der zwei Guanidinliganden $(\text{TMG}_{ph}\text{S})_2$ (**L22-1**) und $(\text{DMEG}_{ph}\text{S})_2$ (**L22-2**)[102] waren in zweierlei Hinsicht interessant: Allen et al. berichteten von Korrelationsanalysen zwischen dem C-S-S-C-Torsionswinkel τ sowie der S-S-Bindungslänge.[103] Demnach findet man für $\tau = 75 - 105^{\circ}$ korrespondierende S-S-Bindungslängen von 2.031 Å. Für $\tau = 0-20^{\circ}$ sind deutlich längere S-S-Bindungslängen mit 2.070 Å zu erwarten. Des Weiteren wurden in einigen aromatischen Disulfid-Systemen p π -d π -Wechselwirkungen zwischen dem π -System der Phenylringe sowie leeren d-Orbitalen der Disulfid-Schwefelatome beobachtet.[104] p π -d π -Wechselwirkungen zwischen Thiolat-Donorgruppen und aromatischen Systemen sind ebenfalls bekannt.[105]

Einkristalle der Liganden L22-1 und L22-2 konnten durch Gasphasendiffusion von Diethylether in eine gesättigte Acetonitril-Lösung von L22-1 und L22-2 erhalten werden.

Abbildung 3.11: Molekülstruktur von $(TMG_{ph}S)_2$ (L22-1, links) und $(DMEG_{ph}S)_2$ (L22-2, rechts) im Festkörper.

L22-1 kristallisiert monoklin in der Raumgruppe P2₁/n mit vier Molekülen in der Elementarzelle. L22-2 kristallisiert ebenfalls monoklin, jedoch in der Raumgruppe Pc mit zwei Molekülen in der Elementarzelle. Die Molekülstrukturen von L22-1 und L22-2 (Abb. 3.11) zeigen für beide Disulfide eine ähnliche Anordnung der Guanidingruppen sowie der gegeneinander verdrehten Phenylringe. Auch die wesentlichen Strukturparameter weisen keine signifikanten Unterschiede auf. So liegen die C-S-S-C-Torsionswinkel τ bei 83.80(9)° in L22-1 und 84.65(10)° in L22-2. Zusammen mit einer durchschnittlichen S-S-Bindungslänge von 2.042 Å passen die Strukturparamter sehr gut in das Koorelationssche ma von Allen et al. Für 2,2-Diaminodi-

phenyldisulfid berichten Lee et al. von $p\pi$ -d π -Wechselwirkungen zwischen den p_z-Orbitalen der beiden C-S-S-C-Kohlenstoffatome als Teil des aromatischen π -Systems sowie leeren d-Orbitalen der Disulfid-Schwefelatome.[104a] In der beschriebenen Kristallstruktur liegen die p_z-Orbitale der beiden C-Kohlenstoffatome in der C-S-S-

Abb. 3.12: Disulfid-Systeme mit (links) und ohne (rechts) $p\pi$ -d π -Wechselwirkungen.

bzw. C-S-S-Ebene, und der Phenylring steht fast senkrecht zu den beiden C-S-S-Ebenen mit einem Torsionswinkel von 83° (links, Abb. 3.12). Im Gegensatz dazu stehen in **L22-1** und **L22-2** die p_z-Orbitale fast senkrecht zu den C-S-S-Ebenen und die Phenylringe liegen mit den C-S-S-Einheiten fast in einer Ebene (C-C-S-S-Torsionswinkel: 12.5° in **L22-1** und 5° in **L22-2** (av)) (rechts, Abb. 3.12). Damit sind p π -d π -Wechselwirkungen ausgeschlossen. Eine Strukturrecherche mit der Cambridge Struktur-Datenbank ergab 31 kristallisierte größtenteils azyklische Disulfid-Verbindungen mit einem Stickstoff-Substituenten in der ortho-Position des Phenylrings. Die Hälfte der Verbindungen besitzt keine p π d π -Wechselwirkungen. Ein Vergleich der Verbindungen untereinander ergab, dass elektronenreiche Subsituenten mit einem +M-Effekt wie z.B. die RNH-, NR₂- oder NH₂-Donorgruppen entscheidend zur Ausbildung von p π -d π -Wechselwirkungen beizutragen. So führt die Substitution der Amino- durch die elektronenziehende Nitrogruppe (-M-Effekt) im Bis(2-nitrophenyl)disulfid zum Verlust von p π -d π -Wechselwirkungen.[106] Mit einer Imin-Funktion in der ortho-Position passen **L22-1** und **L22-2** sehr gut in die Gruppe von Disulfid-Systemen ohne p π -d π -Wechselwirkungen.

Die N_{Amin}-C_{Gua}-Bindungslängen in **L22-1** liegen im Bereich von 1.365(2) bis 1.379(2) Å, und die beiden C=N-Doppelbindungen weisen mit durchschnittlich 1.302 Å fast identische Bindungslängen auf. In **L22-2** liegen vergleichbare struktuerelle Verhältnisse vor (N_{Amin}-C_{Gua}: 1.362(3) - 1.383(3) Å, C=N: 1.298 Å (av)). Die Winkelsummen der zentralen C_{Gua}-Kohlenstoffatome liegen in **L22-1** und **L22-2** bei 360°, wobei die einzelnen N-C-N-Bindungswinkel deutlich vom idealen Wert (120°) einer trigonal-planaren

Umgebung abweichen. In L22-1 findet man Werte von 115.4(2) bis $125.5(2)^{\circ}$, in L22-2 von 108.3(2) bis $131.9(2)^{\circ}$. Die C=N-Doppelbindungen sind damit in L22-1 und L22-2 vollständig lokalisiert. Eine ähnliche Lokalisation findet man in den Guanidinliganden N,N'-Bis(dipiperidin-1-ylmethylen)-propan-1,3-diamin (I) und N,N'-bis-(1,3dimethyl-perhydropyrimidin-2-yliden)propan-1,3-diamin (II).[107] Die Liganden besitzen einen aliphatischen Spacer und weisen kürzere C=N-Doppelbindungen von durchschnittlich 1.276 Å in (I) und 1.284 Å in (II) auf. Die entsprechenden N_{Amin} - C_{Gua} -Bindungslängen liegen im Bereich von 1.392(1) bis 1.404(1) Å in I und 1.375(3) bis 1.407(3) Å in **II**. Auch Bis(tetramethylguanidino)naphthalen zeigt mit einer durchschnittlichen C=N- und N_{Amin}-C_{Gua}-Bindungslänge von 1.282 Å und 1.384 Å ähnliche Werte.[67b] In Bis(tetramethylguanidino)biphenyl – mit einer protonierten C=N-Imingruppe – wird eine Delokalisation der positiven Ladung über alle drei C-N-Bindungen der Guanidinfunktion beobachtet. [84b] Die Bindungslängen liegen hier zwischen 1.31(1) und 1.34(1) Å. Daneben zeigen auch nicht protonierte Guanidine wie 2-Cyanoguanidin mit C-N-Bindungslängen im Bereich von 1.333(1) bis 1.344(1) Å eine Delokalisation der C-N-Bindungen. In diesem Fall sind Resonanzeffekte der Cyano-Gruppe für die beobachtete Delokalisierung verantwortlich.[108]

3.2.2 Struktureller Vergleich protonierter Schwefel-Guandinliganden

Um die strukturellen Eigenschaften der synthetisierten Schwefel-Guanidinliganden näher zu untersuchen, werden drei weitere Kristallstrukturen näher betrachtet: die Kristallstrukturen des aliphatischen zweizähnigen Schwefel-Guanidinliganden $\text{TMG}_{et}\text{SCPh}_3$ (L10-1)[109] und der protonierten Form [H(TMG_{et}SCPh₃)]I (**[HL10-1]I**), sowie die Kristallstruktur des aromatischen Analogons $[H(TMG_{ph}SCPh_3)]Cl$ ([HL6-1]Cl). Die Strukturdaten von [HL6-1 Cl könnten Informationen über den direkten Einfluss des aromatischen Spacers auf die Bindungssituation innerhalb einer protonierten CN₃-Guandinfunction im Vergleich zum aliphatischen Spacer in [HL10-1]I liefern. [HL6-1]Cl kristallisiert in der triklinen Raumgruppe P1 mit zwei symmetrieunabhängigen Molekülen.

Abb. 3.13: Struktur von [HL6-1]⁺ im Festkörper.

Die Molekülstruktur ist in Abbildung 3.13 dargestellt. L10-1 kristallisiert monoklin in der Raumgruppe $P2_1/c$ mit vier Molekülen in der Elementarzelle. Dagegen liegen in der triklinen Elementarzelle von [HL10-1]I (Raumgruppe $P\overline{1}$) nur zwei Moleküle vor (Abb. 3.14).

In L10-1 ist die C=N-Bindungslänge mit 1.281(2) Å – wie erwartet – deutlich kürzer als die beiden N_{Amin} - C_{Gua} -Einfachbindungen mit 1.399(2) und 1.392(2) Å und liegt im Bereich anderer Guanidinliganden. [102, 107, 109] Das zentrale Kohlenstoffatom C_{Gua} ist bei einer Summe der umgebenden Winkel von 360.0° ideal planar koordiniert. Die N-C-N-Bindungswinkel variieren im Bereich von 114.51(13) bis $125.31(14)^{\circ}$. Mit Summen der umgebenden Winkel von 359.9° sind die beiden Stickstoffatome der Dimethylaminogruppen ebenfalls planar koordiniert. Das Imin-Stickstoffatom kann mit einer Summe der umgebenden Winkel von 360° als sp²-hybridisiert betrachtet werden. Die C-N-Bindungen in **[HL10-1]I** weisen mit 1.342(3), 1.338(3) und 1.336(3) Å keine signifikanten Abweichungen auf und das zentrale Kohlenstoffatom C_{Gua} ist mit fast gleichen N-C-N-Bindungswinkeln ideal planar koordiniert. Der S-C-C-N-Torsionswinkel beträgt in L10-1 66.0° und in [HL10-1]I 18.8°. In [HL6-1]Cl liegen ähnliche Strukturverhältnisse vor: die N_{Amin} - C_{Gua} -Bindungslängen liegen im Bereich von 1.323(8) bis 1.354(9) Å. Dagegen ist die N_{Gua} - C_{Arom} -Bindungslänge mit 1.425(8) Å deutlich länger und vergleichbar mit der N_{Gua}-C_{Al}-Bindungslänge von 1.466(3) Å in **[HL10-1]I**. Im Phenylring variieren die Bindungslängen von 1.381(9) bis 1.424(10) Å. Zusammengefasst kann daher eine Beteiligung des aromatischen π -Systems an der Bindungsdelokalisation innerhalb der protonierten Guanidinfuktion ausgeschlossen werden. Viele strukturell bereits charakterisierte Guanidiniumkationen zeigen eine Delokalisierung der C=N-Bindung innerhalb der CN₃-Guanidinfunktion. Vergleicht man die Strukturdaten der Mono- und Bis-Guanidiniumkationen untereinander, so fällt auf, dass die Struktur der Kationen weitgehend unabhängig von der Anwesenheit von Alkyl- und Arylsubstituenten ist. So liegen die drei zentralen C-N-Bindungslängen im Bereich von 1.32 Å in unsubstituierten Guanidiniumkation $[C(NH_2)_3]^+[84b]$ bis ca. 1.39 Å im 1,1,3,3-Tetramethyl-2-phenyl-2-(2,6-diphenyl-4-pyrilio)guanidinium-Kation.[110] Die Verdrillung und Deplanarisierung der NR₂-Substituenten aus der zentralen planaren CN₃-Guanidineinheit ist ein weiteres Strukturmerkmal der Guanidinliganden und ein Hinweis auf die beachtlichen sterischen

Abbildung 3.14: Molekülstruktur von [HL10-1]⁺ (links) und L10-1 (rechts) im Festkörper.

Wechselwirkungen der NR₂-Substituenten innerhalb der Guanidinfunktion. Das Ausmaß der Verdrillung kann durch den Winkel v zwischen der CN_3 -Guanidin- und der C_{Imin} - $N_{Amin}(C_{Alkyl})_2$ -Ebene beschrieben werden. In Tabelle 3.2 sind die mittleren Ebenenwinkel für die diskutierten Molekülstrukturen zusammengestellt. In den Tetramethylguanidino-Liganden L22-1 und L10-1 liegt der Mittelwert von v bei 30.0 (23.2 - 36.1°) und 40.0° (47.1, 35.7°). In den protonierten Verbindungen **[HL10-1]I** liegt der Mittelwert bei 30.1, in **[HL6-1]Cl** fast gleich bei 28.0°. Für das Hexamethylguanidinium-Kation wurden in verschiedenen Strukturen Verdrillungswinkel zwischen 31 und 37° gefunden.[111] In weiteren protonierten Guanidinliganden wurden ähnliche Werte vor. Die Delokalisierung wirkt demnach der sterischen Wechselwirkungen der Substituenten entgegen und nivelliert die einzelnen Verdrillungswinkel. Es gibt jedoch auch Ausnahmen: so findet man im 1,1,3,3-Tetramethyl-2-phenyl-2-(2,6-diphenyl-4-pyrilio)guanidinium-Kation Verdrillungswinkel bis zu 55°. [110] Damit scheint auch die starke propellerartige Beweglichkeit der NR₂-Substituenten keinen Einfluss auf die Delokalsierungsmöglichkeit der positiven Ladung zu besitzen. Für die Dimethylethylenguanidin-Liganden wird die Verdrillungsmöglichkeit durch das geschlossene Guanidinsystem unterbunden. So liegt der durchschnittliche Winkel v in **L22-2** bei 12.9° (Tab. 3.2).

Um die Ladungsdelokalisation innerhalb der Guanidinfunktion zu beschreiben, wurde der Strukturparameter ρ eingeführt.[112] Der Strukturparameter wird aus dem Verhältnis der C=N-Bindunglänge **a** zu der Summe der beiden C_{Gua}-NR₂-Bindungslängen **b** und **c** gebildet: $\rho = 2a/(b+c)$. Tabelle 3.2 zeigt die ρ -Werte der diskutierten Ligand-Strukturen. Die deutlich erhöhten ρ -Werte für die aromatischen Disulfid-Guanidinliganden **L22-1** und **L22-2** gegenüber dem aliphatischem Ligand **L10-1** sprechen für eine Beteiligung des aromatischen Systems an der Delokalisation innerhalb der Guanidinfunktion. So findet man auch für den aromatischen Liganden 2,2-Bis[2N-(1,1,3,3-tetramethyl-guanidin)]diphenylenamin – mit einer zentralen RNHR-Einheit anstelle einer Disulfid-Gruppe – einen erhöhten ρ -Wert von 0.936.[71b] Der ρ -Wert für **L10-1** ist mit 0.918 deutlich kleiner und liegt im Bereich anderer aliphatischer Guanidinliganden.[107] Die protonierten

Tabelle 3.2: Ausgewählte Bindungslängen und Winkel (Mittelwerte in [Å]/[°]) der diskutierten Verbindungen.

Verbindung		$\rm C_{Gua}{=}N_{Gua}$	N_{Amin} - C_{Gua}	ρ	υ
L22-1	$(\mathrm{TMG}_{ph}\mathrm{S})_2$	1.302	1.371	0.949	30.0
L22-2	$(DMEG_{ph}S)_2$	1.298	1.353	0.945	12.9
L10-1	$\mathrm{TMG}_{et}\mathrm{SCPh}_3$	1.281	1.395	0.918	40
[HL10-1]I	$[H(TMG_{et}SCPh_3)]I$	1.342	1.337	1.004	30.1
[HL6-1]Cl	$[H(TMG_{ph}SCPh_3)]Cl$	1.348	1.338	1.001	28.0

Strukuren zeigen mit annähernd identischen C-N-Bindungslängen eine perfekte Delokalisation ($\rho = 1$).

3.3 Redoxeigenschaften ausgewählter Schwefel-Guanidinliganden

Mittels der Cyclovoltammetrie wurden die Redoxeigenschaften ausgewählter Schwefel-Guanidinliganden exemplarisch untersucht. Das Cyclovoltammogrammm der beiden aromatischen Disulfid-Guanidinliganden (TMG_{ph}S)₂ (**L22-1**) und (DMEG_{ph}S)₂ (**L22-2**) (1 mmol/l, $v_s = 100 \text{ mV/s}$, interner Standrard: Fc) in MeCN zeigt jeweils zwei charakteristische Signale: eine irreversible Oxidation bei 0.730 bzw. 0.750 V vs. NHE sowie eine quasi-reversible bis irreversible Reduktion bei -1.445 bzw. -1.410 V vs. NHE. Die quasireversible Reduktion tritt nur bei langsamen Vorschubgeschwindigkeiten ($v_s = 20 \text{ mV/s}$) auf. Cyclovoltammetrische Messungen der beiden aliphatischen Disulfid-Analoga **L22-1** und **L22-2** in DMF zeigen ebenfalls eine irreversible Oxidation bei 1.290 bzw. 1.164 V vs. NHE sowie eine irreversible Reduktion bei -1.3 bzw. -1.160 V vs. NHE ($v_s = 200 \text{ mV/s}$). Damit kann eine Oxidation und Reduktion des aromatischen Systems der beiden Disulfid-Liganden **L22-1** und **L22-2** ausgeschlossen werden.

Die Redoxeigenschaften aliphatischer und aromatischer Sulfide (R-S-R) und Disulfide (R-S-S-R) sowie die Elektron-Transfer-Kinetik wurde bereits an zahlreichen Beispielen untersucht.[113] So zeigt das einfachste aromatische Disulfid, das Diphenyldisulfid, eine Zwei-Elektronen-Reduktion zum Thiolat (PhS⁻) bei -1.6 V vs. SCE (0.1 mol/l, DMF, Au-Elektrode, $v_s = 100 \text{ mV/s}$) und eine Oxidation zum PhS⁻-Radikal bei 0 V vs. SCE, welches sehr schnell zu Ausgangsprodukt dimerisiert (Reaktionsschema **R1** und **R3**, Abb. 3.15). Eine alternative und wahrscheinlichere Interpretation führt in einer ersten langsamen Reaktion zum Radikal-Anion RSSR⁻⁻, gefolgt von einer schnellen Zerfallsreaktion zu RS⁻ und RS⁻. Das RS⁻-Radikal wird über die Aufnahme eines weiteren Elektrons zum Thiolat reduziert (Reaktionsschema **R2**, Abb. 3.15).[114]

Weitere unterschiedlich substituierte ortho- und para-Aryl-Disulfide zeigen Reduktionspotentiale im Bereich von -0.48 bis -1.86 V vs. SCE (0.1 mol/l, $v_s = 200$ mV/s bzw. 10 mV/s).[114c] Die Reduktionspotentiale aliphatischer Disulfide wie z.B. Di-tert-Butyl-Disulfid (-2.71 V vs. SCE) oder Diphenylethandisulfid (-2.42 V vs. SCE) liegen im stärker

RSSR + 2
$$e^- \longrightarrow 2 RS^-$$

RSSR + $e^- \longrightarrow RSSR^{--} \longrightarrow RS^{-} + RS^{-} + e^{-} \longrightarrow 2 RS^{-}$
2 RS⁻ $\longrightarrow 2 RS^{-} + 2 e^{-} \longrightarrow RSSR$
R3

negativen Bereich.[114a] Die Reduktionspotentiale variieren jedoch stark in Abhängigkeit von dem gewählten Elektrodenmaterial (Au, Pt, Glassy Carbon) sowie dem Lösungsmittel. Cyclovoltammetrische Untersuchungen der vier Disulfid-Guanidinliganden unter den verwendeten Messbedingungen (Lösungsmittel: MeOH, MeCN, CH₂Cl₂ oder DMF; Arbeitselektrode: planare Pt-Elektrode (RDE); Potentialbereich von -3 bis +3 V) zeigten jedoch keine Reduktion der Disulfid-Gruppe. Folgende Fakten sprechen dafür: Wird der negative Potentialbereich nicht durchfahren, bleibt der Oxidationspeak bei ca. 0.7 V vs. NHE bestehen. Damit ist der Oxidationspeak kein Folgepeak einer vorangegangenen Reduktion zum Thiolat. Ähnliche Untersuchungen an Diphenyldisulfid zeigten ein genau umgekehrtes Bild.[114a] Die beobachtete irreversible Reduktion und Oxidation ist ebenfalls bei rein stickstoffhaltigen Guandinliganden zu beobachten. Der aromatische Ligand 2,2-Bis[2N-(1,1,3,3-tetramethyl-guanidin)]-diphenylenamin – mit einer zentralen RNHR-Einheit anstelle einer Disulfid-Gruppe zeigt in DMF eine irreversible Reduktion bei -1 V sowie eine irreversible Oxidation bei 1.2 V vs. NHE (0.001 mol/l, $v_s = 200 \text{ mV/s}$).[71b] Für Ph₃-S-Aryl-Systeme ist aufgrund des resonanzstabiliserten Triphenylmethan-Radikals ebenfalls die elektrochemische Bildung einer Thiolat-Spezies über Radikal-Zwischenstufen möglich. [113a] Die Reduktionspotentiale für para-substituierte Ph₃-S-Aryl-Systeme liegen dabei im Bereich von -0.88 bis -2.26 V vs. SCE (0.1 mol/l, DMF, $v_s = 200 \text{ mV/s}$). Die Cyclovoltammogramme von $\text{TMG}_{ph}\text{SCPh}_3$ (L6-1) und $\text{DMEG}_{ph}\text{SCPh}_3$ (L6-2) zeigen analog zu den Disulfid-Systemen einen Oxidations- bzw. - Reduktionspeak bei 0.689 bzw. 0.624 V vs. NHE sowie -1.220 bzw. -1.279 V vs. NHE. Das Cyclovoltammogramm von L6-1 ist in Abb. 3.16 zu sehen. Die Signale im negativen Potentialbereich können jedoch einer Reduktion zum Thiolat nicht zugeordnet werden, denn zweizähnige Methyl- oder

Abbildung 3.16: Cyclovotammogramm von $\text{TMG}_{ph}\text{SCPh}_3$ (L6-1) in CH_2Cl_2 (v_s = 50 mV/s).

Ethyl-Thioether-Guandinliganden wie Gua_{ph} SR, R = Me, Et (**L1**, **L2**) zeigen ebenfalls Reduktionspeaks im gleichen Potentialbereich. Des Weiteren zeichnen rein stickstoffhaltige aromatische zweizähnige Guanidinliganden ebenfalls ein Reduktionspeak im Bereich von -1.0 bis -1.2 V vs. NHE und jeweils ein Oxidationspeak im Bereich von 0.5 bis 1.0 sowie oberhalb 1.0 V vs. NHE aus.[115]

Exemplarische Messungen an weiteren Schwefel-Guanidinliganden zeigen unabhängig von ihrer chemischen Konstitution und der Substitution am Schwefelatom ein qualitativ vergleichbares redoxchemisches Verhalten. Die Lage des Oxidations- und Reduktionspeaks variiert dabei im Bereich um \pm 100 mV. Fasst man die cyclovoltammetrischen Untersuchungen der bisher bekannten Guanidinliganden zusammen, so ergibt sich für die redoxchemischen Eigenschaften das folgende Bild: charakteristisch ist eine irreversible Oxidation bei etwa 1.0 V vs. NHE (\pm 100 mV) und eine irreversible bis quasi-reversible Reduktion bei etwa -1.0 V vs. NHE (\pm 100 mV). Daneben findet man häufig eine zweite irreversible Oxidation oberhalb von 1.0 V vs. NHE. Diese charakteristische elektrochemische Signatur tritt immer auf, unabhängig von der chemischen Konstitution des Guanidinliganden – aliphatischer oder aromatischer Spacer – sowie der Anwesenheit weiterer funktioneller Gruppen wie Thioether oder Ester.[116] Damit können die Oxidations- und Reduktionsübergänge nur der Guanidinfunktion zugeordnet werden.

Kapitel 4 Kupferkomplexe mit Thioether-Guanidinliganden

4.1 Synthetische Aspekte

Die Synthese von Thioether-Kupferguanidinkomplexen gelingt in guten Ausbeuten aus der Umsetzung eines wasserfreien Kupfersalzes mit 1.1 bzw. 2.1 Äqivalenten des entsprechenden Thioether-Guanidinliganden im absolutierten Lösungsmittel wie MeCN oder THF. Neben Kupfersalzen mit koordinierenden Anionen wie Cl⁻, Br⁻ und I⁻ sind auch Kupfersalze mit nicht-koordiniereden Anionen wie PF₆⁻ und OTf⁻ eingesetzt worden (Abb. 4.1). Die Darstellung einkristalliner Produkte konnte im Fall der zwei- bis dreizähnigen Thioether-Guanidinliganden durch langsames Abkühlen einer heiß gesättigten Lösung des Kupferkomplexes oder durch Gasphasendiffusion von Diethylether in die abgekühlte Lösung erhalten werden. Im Fall der vier- und fünfzähnigen Thioether-Guanidinliganden gestalteten sich die Kristallisationsprozesse schwieriger und es konnten nur wenige Komplexe röntgenographisch charakterisiert werden. Nach dem geschilderten Verfahren konnten die nachfolgend beschriebenen Verbindungen dargestellt werden (Kapitel 4.2 - 4.4). Variationen im Verhältnis Kupfersalz zu Ligand sowie die spezifischen Eigenschaften der

n L	+	m CuX	$\frac{\text{MeCN, THF}}{X = \text{CI}^{-}, \text{Br}^{-}, \text{I}^{-}, \text{PF}_{6}^{-}}$	[L _n (CuX) _m] _l
	Einkerni	g g-Bis(cholat)	n = 1, m = 1, l = 1	Kap. 4.2, 4.3
	Zweiker	nig	n = 2, m = 1, l = 1 n = 2, m = 2, l = 1	Kap. 4.2 Kap. 4.2, 4.4
	Zweiker	nig	n = 1, m = 2, l = 1	Kap. 4.4

n = 2, m = 4, l = 1

n = 1, m = 1, l = ∞

 $n = 1, m = 2, l = \infty$

Kap. 4.3

Kap. 4.2

Kap. 4.3

Abb. 4.1: Allgemeine Reaktionsgleichung für die Synthese von Kupferkomplexen mit Thioether-Guanidinliganden.

Vierkernia

Koordinationspolymer

Koordinationspolymer

Schwefel-Guanidinliganden führten zu der Synthese einer breiten Palette von ein- bis vierkernigen sowie polymeren Kupferguanidinkomplexen (Abb. 4.1), auf die in den nachfolgenden Kapiteln detailliert eingegangen wird.

4.2 Kupferkomplexe mit zweizähnigen Thioether-Guanindinliganden

Neutrale zweizähnige Schwefel-Guanidinliganden sind in der Lage an Kupferatome auf sehr unterschiedliche Weise zu koordinieren. Der zweizähnige Ligand kann chelatartig an ein Kupferatom binden oder verbrückend über das Schwefelatom des Thioethers dimere Moleküle oder Koordinationspolymere stabilisieren. Die Koordinationsgeometrie der

Abbildung 4.2: Strukturmotive von Kupferguanidinkomplexen mit zweizähnigen Thioether-Guanidinliganden (R = Alkylrest).

Kupferatome kann dabei von verzerrt trigonal-planar, trigonal-pyramidal und verzerrt tetraedrisch bis verzerrt quadratisch-planar relativ stark variieren. In Abbildung 4.2 sind die unterschiedlichen Strukturtypen (**ST**) der charakterisierten Kupfer(I)- und Kupfer(II)-Guanidinkomplexe zusammengefasst.

4.2.1 Kristallstrukturen einkerniger Kupferguanidinkomplexe

Die Reaktion der aromatischen und aliphatischen zweizähnigen Thioether-Guanidinliganden TMG_{ph}StBu, TMG_{et}StBu und DMEG_{et}SCPh₃ mit CuI führte zu den einkernigen Komplexen [Cu(TMG_{ph}StBu)I] (C1), [Cu(TMG_{et}StBu)I] (C2) und [Cu(DMEG_{et}SCPh₃)I] (C3) des Strukturtyps ST-1. C1 und C2 kristallisieren monoklin in der Raumgruppe P2₁/c. Farblose Kristalle von C3 kristallisieren ebenfalls monoklin, jedoch in der Raumgruppe C2/c.

Strukturtyp ST-1

In allen drei Guanidinkomplexen ist das Kupfer von dem zweizähnigen Guanidin- sowie einem terminalen Iodid-Liganden verzerrt trigonal-planar koordiniert. Die Molekülstrukturen sind in Abbildung 4.3 und 4.4 dargestellt. Die wichtigsten Strukturparameter sind in Tabelle 4.3 zusammengefasst. Auffällig sind die kürzeren Cu-S- sowie die längeren N_{Gua}=C_{Gua}-Bindungen (2.297(9)/ 1.333(4) Å) in C1 im Vergleich zu C2 und C3 (2.374(11)/ 1.319(4) Å; 2.385(1)/ 1.295(5) Å). Die etwas längere N_{Gua}=C_{Gua}-Bindung sowie die kürzeren N_{Amin}-C_{Imin}-Bindungen in C1 führen im Vergleich zu C2 und C3 zu einem größeren ρ -Wert (0.987 vs. 0.967/ 0.943) und damit zu einer erhöhten Ladungsdelokalisation innerhalb der Guanidinfunktion. Alle anderen Bindungslängen weisen keine signifikanten Unterschiede auf. Die N-Cu-S-Bisswinkel sind mit durchschnittlich 88.2° im Unterschied zu den N-Cu-I- und S-Cu-I-Bindungswinkeln fast identisch. Alle drei Cu^I-Atome sind trigonal-planar (Summe der Umgebungswinkel = 360°), aber nicht regelmäßig

Abbildung 4.3: Molekülstruktur von C1 (links) und C2 (rechts) im Festkörper.

Komplex	C1	C2	C3	
Binaungslangen [A] Cu-I	2436(1)	2.461(1)	2425(1)	
Cu-N _{Cup}	1.993(3)	1.982(2)	1.983(4)	
Cu-S	2.297(9)	2.374(1)	2.385(1)	
N _{Gua} =C _{Gua}	1.333(4)	1.319(4)	1.295(5)	
N_{Amin} - C_{Gua}^*	1.352	1.364	1.373	
ρ	0.987	0.967	0.943	
Bindunaswinkel [°]				
N-Cu-S	88.60(8)	88.46(8)	87.4(1)	
N-Cu-I	136.62(8)	148.04(8)	149.7(1)	
S-Cu-I	134.77(3)	123.50(3)	122.54(4)	

Tabelle 4.3: Ausgewählte Strukturdaten von C1, C2 und C3 im Vergleich.

* Mittelwert.

trigonal-planar koordiniert, da durch den Guanidinliganden ein spitzer Bisswinkel vorgegeben wird. In **C1** liegen die N-Cu-I- und S-Cu-I-Bindungswinkel im gleichen Bereich (ca. 135.6°), in **C2** und **C3** weichen sie dagegen deutlich – im Durchschnitt um 25.9° – voneinander ab. Zusammen mit den längeren Cu-S-Bindungen ergibt sich für **C1** und **C2** eine deutlich verzerrt trigonal-planare Koordination am Kupferatom (Abb. 4.3). In **C1** liegen das Kupfer- und die koordinierenden Stickstoff-, Schwefel- und Iod-Atome zu-

Abb. 4.4: Molekülstruktur von C3 im Festkörper.

sammen mit dem planaren aromatischen Ring in einer Ebene. In C2 und C3 weisen die flexiblen aliphatischen Ethylenspacer N-C-C-S-Torsionswinkel von 62.6 und 62.4° auf. Die Umsetzung des rein stickstoffhaltigen Bis-Guanidinliganden DMEG₂e (N¹,N²-Bis(1,3dimethylimidazolidin-2-yliden)-ethan-1,2-diamin)[89a] mit CuI führte ebenfalls zu einem einkernigen Komplexen mit verzerrt trigonal-planar koordinierten Cu^I-Atomen. Größere Unterschiede in wesentlichen Strukturparametern wie den N_{Gua}=C_{Gua}- und Cu-N_{Gua}-Bindungslängen sowie den Bindungswinkeln sind nicht zu verzeichnen. Die ρ -Werte liegen im Durchschnitt bei 0.940 und damit im Bereich von C1 - C3 sowie anderer Kupfer(I)-Guanidinkomplexe. Vergleichbare trigonal-planare Kupfer(I)-Komplexe mit einem zweizähnigen NS-Liganden und terminalen Halogenatomen sind nicht bekannt.

Strukturtyp ST-2

Aus der Umsetzung von DMEG_{et}StBu mit $[Cu(MeCN)_4](PF_6)$ im Verhältnis 2 : 1 erhält man den Bis(chelat)-Komplex $[Cu(DMEG_{et}StBu)_2](PF_6)$ (C4). Farblose monokline Kristalle von C4 mit der Raumgruppe P2₁/n kristallisieren durch Gasphasendiffusion von Diethylether in eine gesättigte THF-Lösung des Kupferkomplexes. Die Molekülstruktur ist in Abbildung 4.5 dargestellt. Das Kupferatom ist von einem N₂S₂-Donorsatz zweier Guanidinliganden verzerrt tetraedrisch koordiniert. Die durchschnittlichen Cu-S- und Cu-N_{Gua}-Bindungen weisen mit 2.322 Å und 2.067 Å ähnliche Werte wie in C1, C2 und C3 auf.

Die beiden N-Cu-S-Bisswinkel in C4 zeigen untereinander sowie im Vergleich mit den einkernigen trigonal-planaren Kupferkomplexen ebenfalls keine signifikanten Unterschiede (Tab. 4.4). Der Diederwinkel (hier Winkel zwischen zwei beliebigen Ebenen) in C4 – definiert durch die beiden N_{Gua} -Cu-S-Ebenen – ist mit 85.9° gegenüber dem idealtypischen Wert eines regulären Tetraeders (90°) leicht erniedrigt. Die N-C-C-S-Torsionswinkel der zwei Guanidinliganden sind mit 52.9 und 47.0° leicht unterschiedlich und deutlich kleiner im Vergleich zu den Torsionswinkeln in C2 (62.6°) und C3 (62.4°) . Mit dem Guanidinliganden TMGqu (1,1,3,3-Tetramethyl-2-(chinolin-8-yl)guanidin) existient eben-

Abb. 4.5: Molekülstruktur von $[Cu(DMEG_{et}StBu)_2]^+$ im Festkörper.

falls ein Kupfer(I)- sowie Kupfer(II)-Bis(chelat)-Komplex.[117] Im Fall der Kupfer(I)-Komplexe koordiniert neben dem N_{Gua} - das N_{qu} -Atom eines Chinolinsystems an das Kupferatom. Die Cu- N_{Gua} - sowie N_{Amin} - C_{Gua} -Bindungslängen zeigen mit durchschnittlich 2.034 und 1.361 Å (**C4**: (2.065(12)/ 1.384(6) Å) keine größeren Unterschiede. Die durchschnittliche N_{Gua} = C_{Gua} -Bindungslänge mit 1.322 Å (**C4**: 1.295(19) Å) zeigt ebenfalls keine signifikanten Abweichungen. Der Diederwinkel – definiert durch die beiden N_{Gua} -Cu- N_{qu} -Ebenen – ist mit 68.0° deutlich kleiner im Vergleich zu **C4**. Hier ist das Koordinationspolyeder des Kupferatomss aufgrund des sperrigen Guanidin- und Chinolin-Restes genau in einem Zustand zwischen verzerrt quadratisch-planarer und verzerrt tetraedrischer Geometrie. Es existieren ebenfalls zahlreiche Kupfer(II)-Bis(chelat)-Komplexe mit den beiden Guanidin-Liganden DMEG₂e (mit Cu^{II} und Fe^{II}[89d] sowie Ni^{II} und Zn^{II}[89a]) und TMGqu (mit Cu^{II}).[117] Die Diederwinkel der N_{Gua}-Cu-N_{Gua}-Ebenen liegen zwischen 42.5° bei $[(TMG_{qu})_2Cu]^{2+}$ und 53.9° bei $[(DMEG_2e)_2Zn]^{2+}$. Eine Vielzahl von N₂S₂-Ligandensystemen ist bereits literaturbekannt, wobei die einzelnen NS-Donorsätze meist über Spacer miteinander verbunden sind. Die Komplexe zeigen in der Regel eine verzerrt tetraedrische bis verzerrt quadratisch-planare Koordinationsgeometrie am Cu^Ioder Cu^{II}-Atom. [40c] Kupfer(I)- oder Kupfer(II)-Bis(chelat)-Komplexe mit zwei einzelnen NS-Liganden sind selten. [118] Kaim et al. synthetisierten ein Kupfer(I)-Bis(chelat) mit den beiden NS-Liganden 1-Methyl-2-(methylthiomethyl)-1H-benzimidazol (mmb) und 8-Methylthiochinolin (MeSQ).[119] Das Cu^I-Atom in [Cu(MeSQ)₂]⁺ ist verzerrt tetraedrisch koordiniert. Die wesentlichen Bindungsparameter sind vergleichbar mit denen in C4 (Cu-S: 2.324(1) Å; Cu-N: 2.016(1) Å). In $[Cu^{I}(mmb)_{2}]^{+}$ ist das Cu^{I} -Atom von den beiden Stickstoff-Donoratomen fast linear koordiniert (N-Cu-N-Bindungswinkel: $169.8(1)^{\circ}$). Im Gegensatz dazu liegen die Schwefel-Thioether auf zwei Positionen eines verzerrt tetraedrischen Koordinationspolyeders (S-Cu-S = $109.33(3)^{\circ}$). Die Cu-S-Bindungslängen sind mit 2.621(1) Å wesentlich länger im Vergleich zu C4 und $[Cu(MeSQ)_2]^+$. Die Cu-N-Bindungslänge ist mit 1.919(1) Å vergleichbar zu C4 und $[Cu(MeSQ)_2]^+$.

Strukturtyp ST-3

Schwarze monokline Kristalle von $[Cu(DMEG_{ph}StBu)Cl_2]$ (C5) kristallisieren in der Raumgruppe P2₁/c. Das Cu^{II}-Atom ist von einem DMEG_{et}S^tBu-Liganden sowie zwei Chlorid-Ionen stark verzerrt quadratisch-planar koordiniert (Abb. 4.6) und gehört zum Strukturtyp **ST-3** (Abb. 4.2). Die S-Cu-N- sowie die Cl-Cu-Cl-Ebene sind aufgrund des sterischen Drucks der Guanidin- und der tert-Butyl-Substituenten um 56.8° gegeneinander verdreht. Damit liegt eine deutliche Abweichung und Verzerrung der quadratisch-planaren Koordinationsgeometrie in Richtung tetraedrisch vor. Aufgrund der höheren Oxidationsstufe ist die Cu-N_{Gua}-Bindung mit 1.948(1) Å etwas kürzer im Vergleich zu den bisher diskutierten Kupfer(I)-Komplexen. Die $N_{Gua}=C_{Gua}$ -Bindung fällt mit 1.350(2) Å im Vergleich zu den Kupfer(I)-Kompelxen etwas länger aus (Cu-N_{Gua}: 2.018(7)/N_{Gua}=C_{Gua}: 1.308(8) Å) (Tab. 4.4). Gleichzeitig ist die N_{Amin}-C_{Gua}-Bindung mit durchschnittlich 1.339 Å kürzer im Vergleich zu C1 - C4 (1.368 Å (av)). Dies führt zu einem ρ -Wert von 1.008 und damit zu einer gleichmäßigen und perfekten Ladungsdelokalisation innerhalb der Guanidinfunction. Bisher ist nur ein einziger Kupfer(II)-Guandinkomplex mit einem ρ -Wert von 1.002 bekannt. Es handelt sich hierbei um den Komplex [Cu(TMG₂PA)I] mit dem anionischen Liganden Bis(2-(bis(dimethylamino)methylenamino)phenyl)amid und einem $(N_{Gua})_2 N_{Amid}$ I-Donorsatz am Cu^{II}-Atom.[71b] Auch hier liegt mit einem Diederwinkel von 41.2° zwischen den N_{Amid}-Cu-N_{Gua}- und I-Cu-N_{Gua}-Ebenen eine stark verzerrt quadratisch-planare Koordinationsgeometrie am Cu^{II} -Atom vor. Die $N_{Gua}=C_{Gua}$ und N_{Amin}-C_{Gua}-Bindungslängen weisen mit durchschnittlich 1.348 und 1.345 Å ebenfalls

Komplex	C4	C5
<i>Dia tura 1</i> "		
Bindungslangen [A] Cu-Cl		2.200(1)/(2.241(1))
Cu-News	2.062(12)/2.069(12)	2.200(1)/2.241(1) 1.948(1)
Cu-S	2.320(4)/2.324(3)	2.315(1)
N _{Gua} =C _{Gua}	1.292(18)/(1.299(19))	1.350(2)
N _{Amin} -C _{Gua} *	1.384	1.339
ρ	0.936	1.008
Bindunaswinkel [°]		
N-Cu-S	89.30(3)/ $88.30(3)$	86.81(4)
$N-Cu-S^a$	$112.70(3)/\ 122.30(4)$	
$N-Cu-N^a$	131.30(5)	
$S-Cu-S^a$	114.9(1)	
Cl-Cu-Cl		101.97(2)

Tabelle 4.4: Ausgewählte Strukturdaten von C4 und C5.

* Mittelwert. ^a zweiter Guanidinligand.

vergleichbare Werte wie in C5 auf. Eine Literaturrecherche ergab keine vergleichbaren Kupfer(II)-Komplexe mit einem zweizähnigen NS-Liganden sowie zwei terminal koordinierten Halogenatomen.

Abbildung 4.6: Molekülstruktur von C5 im Festkörper.
4.2.2 Kristallstrukturen zweikerniger Kupferguanidinkomplexe

Neben einkernigen Kupferkomplexen stabilisieren aromatische zweizähnige Thioether-Guanidinliganden zweikernige Kupfer(I)-Komplexe des Typs $[Cu(Gua_{ph}SR)(\mu-X)]_2$ (**ST-**4, Abb. 4.2). Auch unter den aliphatischen Thioether-Guanidinliganden gibt es drei Vertreter, die Kupfer(I)-Dimere ($[Cu(Gua_{et}SR)(\mu-X)]_2$) des Strukturtyps **ST-4-anti** oder **ST-5** bilden. Tabelle 4.5 zeigt eine Übersicht zweikerniger Kupferkomplexe, die aus der Umsetzung der Thioether-Guanidinliganden mit verschiedenen Kupferhalogeniden (CuI, CuBr, CuCl) erhalten wurden. Bis auf die Komplexe [$Cu(DMEG_{ph}SEt)I]_2$ ·MeCN (**C9**) und [$Cu(DMEG_{ph}SBz)I]_2$ (**C16**) (Strukturtyp **ST-4-syn**) und [$Cu(DMEG_{et}S^tBu)I]_2$ (**C18**, Strukturtyp **ST-5**) kristallisieren die übrigen Kupfer(I)-Dimere in der anti-Konformation des Strukturtyps **ST-4**. Eine Übersicht ausgewählter Bindungslängen und -winkel der Kupferkomplexe ist in den Tabellen 4.6 und 4.7 zusammengestellt.

Die farblosen bis gelben Kristalle der Kupferkomplexe konnten durch Diffusion von Et_2O in gesättigte Acetonitril-Lösungen erhalten werden und kristallisieren in vier unterschiedlichen Raumgruppen (C8, C9, C13, C14 und C15: triklin P $\overline{1}$; C6, C7, C17: monoklin $P2_1/c$; C10, C11: monoklin $P2_1/n$; C16: monoklin C2/n; C12: monoklin P2/n).

$[\mathrm{Cu}(\mathrm{Gua}_{ph}\mathrm{SR})\mathrm{X}]_2$		$[\mathrm{Cu}(\mathrm{Gua}_{et}\mathrm{SR})\mathrm{X}]_2$	
$[Cu(TMG_{ph}SMe)I]_2$	C6	$[\mathrm{Cu}(\mathrm{DMEG}_{et}\mathrm{SEt})\mathrm{I}]_2$	C17
$[Cu(DMEG_{ph}SMe)I]_2$	$\mathbf{C7}$	$[Cu(DMEG_{et}^{t}Bu)I]_{2}$	C18
$[Cu(TMG_{ph}SEt)I]_2$	C8	$[Cu(TMG_{et}CPh_3)I]_2$	C19
$[Cu(DMEG_{ph}SEt)I]_2 \cdot MeCN$	C9		
$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{S}^{t}\mathrm{Bu})\mathrm{I}]_{2}$	C10		
$[Cu(TMG_{ph}SPh)I]_2$	C11		
$[Cu(DMEG_{ph}SPh)I]_2$	C12		
$[Cu(DMEG_{ph}SPh)Cl]_2$	C13		
$[Cu(DMEG_{ph}SPh)Br]_2$	C14		
$[Cu(TMG_{ph}SBz)I]_2$	C15		
$[\mathrm{Cu}(\mathrm{DMEG}_{ph}\mathrm{SBz})\mathrm{I}]_2$	C16		

Tabelle 4.5: Übersicht der synthetisierten Kupferkomplexe $[Cu(Gua_{ph}SR)(\mu-X)]_2$ und $[Cu(Gua_{et}SR)(\mu-X)]_2$.

Komplex	Cu-X	Cu-N	Cu-S	$\mathrm{C}_{\mathrm{Gua}}{=}\mathrm{N}_{\mathrm{Gua}}$	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	ρ
ST-4-anti						
C6	2.603	2.082	2.362	1.396	2.694	0.966
$\mathbf{C7}$	2.619	2.077	2.360	1.317	2.620	0.961
C8	2.620	2.075	2.390	1.316	2.748	0.966
C10	2.610	2.126	2.327	1.324	2.828	0.971
C11	2.595	2.039	2.648	1.321	2.669	0.972
C12	2.611	2.085	2.436	1.300	2.615	0.948
C13	2.409	2.071	2.291	1.315	2.814	0.968
C14	2.452	2.081	2.307	1.315	2.754	0.970
C15	2.627	2.070	2.352	1.320	2.634	0.970
C17	2.644	2.089	2.367	1.297	2.691	0.936
C19	2.637	2.025	2.613	1.307	2.649	0.955
ST-4-syn						
C9	2.603	2.107	2.372	1.308	2.596	0.958
C16	2.635	2.056	2.354	1.320	2.549	0.973
ST-5						
C18	2.521	2.021	2.457	1.310	3.709	0.959

Tabelle 4.6: Ausgewählte Bindungslängen und Atomabstände (Mittelwerte in Å) der Komple-
xe $[Cu(Gua_{ph}SR)(\mu-X)]_2$ und $[Cu(Gua_{et}SR)(\mu-X)]_2$.

Die Strukturtypen ST-4-anti/ST-4-syn

Die Koordinationsgeometrie der Cu¹-Atome im Strukturtyp **ST-4-anti** und **ST-4-syn** mit einem N₂X₂-Donorsatz kann als leicht verzerrt tetraedrisch beschrieben werden. Die Molekülstrukturen von **C6** und **C17** sind als Beispiel in Abbildung 4.7 dargestellt. Die Diederwinkel – definiert durch die N-Cu-S- und X-Cu-X-Ebene – variieren im Bereich von 81.1 in **C10** bis 99.0° in **C15** (87.3° (av)). Eine Abhängigkeit des Diederwinkels von Einflussgrößen wie dem Rest am Schwefelatom, Art des Spacers, der Guanidineinheit sowie des Halogenatoms im Cu₂X₂-Brückenmotiv ist nicht erkennbar. Die Strukturparameter der Kupfer(I)-Dimere vom Strukturtyp **ST-4** mit einer **anti**-Stellung der koordinierenden Donoratome sowie einer planaren Cu₂X₂-Raute weisen untereinander keine wesentlichen Unterschiede auf (Tab. 4.6 und 4.7). Paare aus jeweils zwei gleich langen sich gegenüberliegenden Cu-X-Bindungen können untereinander um bis zu 0.150 Å abweichen. Dies führt zu einer rautenförmigen Verzerrung der Cu₂X₂-Einheiten mit mittleren X-Cu-X- sowie Cu-X-Cu-Bindungswinkeln von 102.2 und 61.0°. Auffällig sind die kleinen N-Cu-S-Bisswinkel in den Kupfer(I)-Dimeren **C11** und **C12** (73.79(4) und 78.20(4)°), die in vergleichbaren

Komplex	N-Cu-S	Cu-X-Cu	X-Cu-X	N-Cu-X	S-Cu-X
ST-4-anti					
C6	82.68(4)	59.69(1)	119.97(1)	108.14(4)	109.35(1)
$\mathbf{C7}$	84.47(7)	62.33(1)	117.66(1)	111.68(7)	114.55(3)
C8	82.83(5)	63.25(1)	116.74(1)	109.18(4)	113.73(2)
C10	85.8(1)	65.57(3)	114.43(3)	112.8(2)	99.19(5)
C11	73.79(4)	61.85(1)	118.14(1)	108.22(5)	103.63(5)
C12	78.20(4)	60.09(8)	119.91(8)	110.60(3)	110.5(1)
C13	86.74(4)	73.70(1)	106.30(1)	118.63(4)	125.01(1)
C14	86.45(6)	68.27(1)	111.72(1)	117.30(6)	123.32(2)
C15	86.42(4)	60.15(1)	119.85(1)	122.60(4)	108.65(1)
C17	88.88(5)	61.11(1)	118.81(1)	116.40(5)	114.24(1)
C19	85.37(7)	60.21(1)	119.78(1)	137.55(7)	108.84(2)
ST-4-syn					
C9	83.64(6)	59.45(4)	117.02(3)	113.94(6)	111.83(4)
C16	86.11(5)	57.82(1)	114.83(1)	109.14(5)	115.36(1)
Komplex	N-Cu-S	Cu-S-Cu	S-Cu-S	N-Cu-X	S-Cu-X
ST-5					
C18	87.40(4)	98.00(17)	82.00(17)	137.90(4)	118.17(15)

Tabelle 4.7: Ausgewählte Bindungswinkel [°] der Komplexe $[Cu(Gua_{ph}SR)(\mu-X)]_2$ und $[Cu(Gua_{et}SR)(\mu-X)]_2$.

Komplexen deutlich größer ausfallen (82.68(4)° in C6 bis 88.88(5)° in C17), sowie die vergleichsweise langen Cu-S-Bindungen in den Komplexen C11 und C19 (2.648(1)/2.613(1) Å). Daneben zeigen die Komplexe C13 und C14 mit einem Chlorid- bzw. Bromid-Atom im Brückenmotiv verkürzte Cu-X-Bindungslängen, aufgeweitete X-Cu-X- sowie kleinere Cu-X-Cu-Bindungswinkel im Vergleich zu entsprechenden Iodid-Analoga (vgl. Tab. 4.6 und 4.7). Zum Strukturtyp ST-4-syn zählen die beiden Komplexe C9 und C16. Beide Kupfer(I)-Dimere weisen eine syn-Stellung der koordinierenden Donoratome sowie eine leicht gefaltene Cu₂I₂-Einheit auf (Abb. 4.8). Wesentliche Unterschiede in den einzelnen Bindungsparametern wie Bindungslängen und -winkel im Vergleich zu Komplexen mit einer planaren Cu₂X₂-Einheit liegen nicht vor. Aufgrund der gefaltenen Struktur sinkt jedoch der Cu-Cu-Abstand auf 2.596(1) Å in C9 sowie 2.549(1) Å in C16. Diese Abstände sind deutlich kürzer als die Summe der Kupfer van der Waals-Radien (2.82 Å[120])

Abbildung 4.7: Molekülstruktur von C6 (links) und C17 (rechts) im Festkörper.

und könnte ein Hinweis auf direkte $Cu^{I}-Cu^{I}-(d^{10}-d^{10})$ -Wechselwirkungen sein. Die Existenz von $Cu^{I}-Cu^{I}$ -Wechselwirkungen wird jedoch seit Jahren kontrovers diskutiert.[121] Im Vergleich dazu liegen die Cu-Cu-Abstände in einer planaren Cu_2X_2 -Einheit im Bereich von 2.615 bis 2.828 Å für X = I. Für X = Cl bzw. Br liegen die Cu-Cu-Abstände bei 2.814(1) Å in C13 und 2.754(1) Å in C14. Als Folge des kleineren Cu-Cu-Abstandes ist der Cu-X-Cu-Bindungswinkel im Vergleich zu Komplexen des Strukturtyps **ST-4-anti** etwas spitzer (58.6 vs. 61.5° (av)).

Abbildung 4.8: Molekülstruktur von C9 (links, ohne MeCN) und C16 (rechts) im Festkörper.

Strukturtyp ST-5

Im Strukturtyp ST-5 sind die Positionen der koordinierenden Schwefel- und Iodatome – ausgehend vom Strukturtyp ST-4 – gegeneinander vertauscht. Das einzige Beispiel für diesen Strukturtyp ist der Komplex C18 (Abb. 4.9). Charakteristische Merkmale der Molekülstruktur sind ein Inversionszentrum, ein μ -S-Atom in der planaren Cu₂(RS)₂-Einheit sowie die terminal koordinierenden Iodatome. Die Koordinationsgeometrie am Cu^I-Atom kann als verzerrt tetraedrisch beschrieben werden. Mit einem Diederwinkel von 78.2° ist die tetraedrische Geometrie deutlich stärker verzerrt im Vergleich zu Komplexen des Struktutyps **ST-4-anti** und **ST-4-syn**. Die Cu-S-Bindungen sind mit durchschnittlich

2.457 Å fast gleich und – wie für ein μ -S-Atom erwartet – etwas länger im Vergleich zu den Cu-S-Bindungslängen mit terminal gebundenen S-Atomen bereits diskutierter Kupfer(I)-Dimere (2.398 Å (av)). Die Cu-I-Bindung ist verkürzt und liegt mit 2.521(3)Å deutlich unter der durchschnittlichen Cu-I-Bindungslänge eines verbrückenden Iod-Atoms (2.616 Å). Die beiden Cu-S-Cu- und S-Cu-S-Bindungswinkel liegen mit 98.0(2) und $82.0(2)^{\circ}$ deutlich näher beieinander als die korrespondierenden Cu-X-Cu- und X-Cu-X-Bindungswinkel der halogenverbrückten Dimere (61.0° vs. 108.2° (av)). Damit ist die planare $Cu_2(RS)_2$ -Einheit weit weniger stark verzerrt und die Cu-Cu- und S-S-Atomabstände liegen mit Abb. 4.9: Molekülstruktur von C18 im Fest-3.224(1) und 3.709(1) Å deutlich näher zu-

körper.

sammen als vergleichbare Cu-Cu- und X-X-Atomabstände der iodverbrückten Dimere (2.663 und 4.390 Å (av)). Eine Erklärung, warum keine weiteren Komplexe diesen Strukurtyp bevorzugen, ist nicht klar erkennbar. Der entsprechende Tetramethylguanidino-Komplex $[Cu(TMG_{et}S^tBu)I]$ (C2) (vgl. Abb. 4.3) ist einkernig mit verzerrt trigonalplanar koordiniertem Cu^{I} -Atom. Die aromatischen Ligand-Analoga $TMG_{ph}S^{t}Bu$ und $DMEG_{ph}S^{t}Bu$ bilden dagegen einkernige (C1) und zweikernige iodverbrückte Kupferkomplexe (C10). Ein flexibler Spacer könnte einen entscheidenen Faktor darstellen. So beträgt Der S-C-C-N-Torsionswinkel in C18 54.2°. Ein rigider aromatischer Spacer kann diesen Ansprüchen nicht gerecht werden. Vermutlich spielen jedoch sterische Effekte der Guanidineinheiten und Thioether-Reste sowie Packungseffekte ebenfalls eine Rolle. Versuche, entsprechende Bromid- bzw. Chlorid-Analoga zu C18 darzustellen, waren nicht erfolgreich.

In der Literatur sind nur wenige Kupfer(I)-Dimere mit halogenverbrückten Cu¹-Atomen sowie neutralen NS-Liganden beschrieben. Von chlorid- und bromidverbrückten Kupfer(I)-Dimeren (Strukturtyp **ST-4-anti**) mit einem tridentaten $(PhS)_2N_{py}$ -Liganden berichteten jedoch Tolhurst et al. [122] Hier sind die Cu^I-Atome von einem (PhS)N_{vv}X₂-Donorsatz ebenfalls verzerrt tetraedrisch koordiniert. Die wesentlichen Strukturparameter wie Cu-X-, Cu-S- und Cu-N-Bindungslängen sowie X-Cu-X- und Cu-X-Cu-Bindungswinkel liegen im Bereich der Bromid- bzw. Chlorid-Kupfer(I)-Dimere C13 und C14. Daneben gibt es ein iodverbrücktes Kupfer(I)-Dimer vom Strukturtyp ST-4-syn von Kennedy et al.[123] mit einem zweizähnigen β -Aminosulfid-Liganden (2-(tert-Butylthio)-N-methyl-1phenylethanamin). Die Strukturparameter sind vergleichbar mit denen von C9 und C16. Einige kettenförmig aufgebaute Komplexe mit zweikernigen halogenverbrückten Cu₂X₂-Einheiten werden ebenfalls in der Literatur beschrieben. [124] Zwei Vertreter mit polydentaten N₂S₂-Ligandensystemen bilden ebenfalls halogenverbrückte Kupferdimere. [105a, 106] Für den Strukturtyp **ST-5** existiert kein literaturbekanntes Beispiel. Dingming et al. berichteten von einer komplizierten Cu^I-Schicht- und Kettenstruktur, in der Tetramethyl-2,4,6,8,9,10-hexathia-adamantan-Moleküle über Sulfidbrücken Kupfer-Chloro-Einheiten

miteinander verknüpfen. Diskrete $Cu_2(SR)_2$ -Einheiten liegen jedoch nicht vor.[126] Von rein stickstoffhaltigen zweizähnigen Bisguanidinliganden sind vergleichbare Strukturmotive nicht bekannt. Hier wird der trigonal-planare Strukturtyp **ST-1** deutlich bevorzugt.[90b]

4.2.3 Kristallstrukturen von Koordinationspolymeren

Koordinationspolymere bilden neben den bisher diskutierten Komplexen eine weitere Verbindungsklasse mit zweizähnigen Thioether-Guanidinliganden. Zum Strukturtyp **ST-6** gehören die Komplexe [Cu(TMG_{et}SMe)I]_n (**C20**), [Cu(DMEG_{et}SMe)I]_n (**C21**) und [Cu(TMG_{et}SEt)I]_n (**C22**). Die Verbindung [Cu₆(DMEG_pSMe)₂(μ -I)₃(μ ₃-I)₃]_n (**C23**) ist der einzige Vertreter des Strukturtyps **ST-7**. Die Komplexe **C20** (P2₁/c), **C21** (P2₁/n) und **C22** (P2₁/n) kristallisieren monoklin, dagegen werden trikline Kristalle von **C23** in der zentrosymmetrischen Raumgruppe PĪ erhalten. Ausschnitte der Kettenstrukturen sowie die wichtigsten Bindungsparameter sind in den Abbildungen 4.10/4.11 und der Tabelle 4.8 zusammengestellt.

Strukturtyp ST-6

Die Strukturtypen **ST-6** (**C20**, **C21**, **C22**), **ST-1** (vgl. Kap. 4.3.1) sowie **ST-5** sind in ihrem Aufbau miteinander verwandt. So könnte ausgehend vom Strukturtyp **ST-5** ein Cu-S-Bindungsbruch innerhalb der Cu₂S₂-Raute (die (NS)CuI-Einheit bleibt dabei erhalten) zum Aufbau von Ringsystemen oder zu einem Koordinationspolymer führen. Ausgehend vom Strukturtyp **ST-1** ist der Aufbau einer Kettenstruktur möglich, indem die koordinierenden Thioether-Schwefelatome verbrückend einzelne Cu^I-Atome miteinander verknüpfen. In **C20**, **C21** und **C22** wird auf diese Art die trigonal-planare Koordination der Cu^I-Atome durch ein μ -Schwelatom eines benachbarten Liganden zu einer verzerrt tetraedrischen Koordinationsgeometrie erweitert (Abb. 4.10). Diederwinkel – definiert durch die N-Cu-S- und I-Cu-(μ -S) -Ebenen – liegen leicht erniedrigt gegenüber dem idalen Wert (90°) bei durchschnittlich 81.1° (**C20**: 79.2, **C21**: 81.4, **C22**: 82.7°). Die Cu-N_{Gua}-, N_{Gua}=C_{Gua}- und N_{Amin}-C_{Gua}-Bindungslängen sowie die N-Cu-S-Bisswinkel weisen untereinander sowie im Vergleich mit den bisher diskutierten Kupfer(I)-Komplexen keine signifikanten Unterschiede auf.

Die einzelnen Cu^I-Atome in C20, C21 und C23 werden mit einer relativ kurzen Cu-(μ -S)-Bindung (2.334 Å (av)) sowie einheitlichen (μ -S)-Cu-(μ -S)-Bindungswinkeln miteinander verknüpft (109.94° (av)). Interessanterweise ist die mittlere Cu-S-Bindungslänge in der trigonal-planaren Koordination der Komplexe vom Strukturtyp ST-1 vergleichbar mit der Länge der Cu-(μ -S)-Bindung der Komplexe C20, C21 und C23 (2.352 Å (av), vgl. Tab. 4.3). Die strukturell analoge Cu-S-Bindung in den Komplexen C20, C21 und C23 ist wesentlich länger und liegt bei durchschnittlich 2.512(1) Å, wobei C20 mit einer Cu-S-sowie Cu-(μ -S)-Bindungslänge von 2.401(1) und 2.432(1) Å vergleichbare Werte aufweist. Dagegen sind die Unterschiede in C21 und C23 deutlich größer (vgl. Tab. 4.10). Auffällig

Komplex	C20	C21	C22	C23
Bindungslängen [Å]				
Cu-I	2.542(1)	2.570(1)	2.596(1)	$2.600/2.563^{a}$
$\mathrm{Cu}\text{-}\mathrm{N}_{\mathrm{Gua}}$	2.037(4)	2.051(1)	2.037(1)	1.877(4)
Cu-S	2.401(1)	2.289(1)	2.311(1)	2.334(1)
$Cu-(\mu-S)$	2.432(1)	2.505(1)	2.537(1)	
$N_{Gua} = C_{Gua}$	1.302(6)	1.299(2)	1.313(3)	1.294(6)
N_{Amin} - C_{Gua} *	1.370	1.376	1.368	1.366
ho	0.950	0.943	0.959	0.947
Bindungswinkel [°]				
N-Cu-S/N'	87.51(6)	85.47(5)	86.57(6)	180.0(2)
N-Cu-(μ -S)	95.5(1)	112.47(5)	117.1(5)	
N-Cu-I	140.3(1)	125.02(5)	127.50(5)	
S-Cu-I	118.11(4)	101.96(1)	100.44(2)	107.13^{*}
S-Cu-(μ -S)	107.11(3)	112.1(1)	109.3(2)	

Tabelle 4.8: Ausgewählte Strukturdaten von C20, C21, C22 und C23.

* Mittelwert. ^{*a*} Mittelwerte der Cu- $(\mu_3$ -S)/ μ -S)-Bindung.

in **C20** ist der wesentlich kleinere N-Cu-(μ -S)- und damit gleichzeitig größere N-Cu-I-Bindungswinkel im Vergleich zu **C21** und **C22**. Paare von Iodatomen und benachbarten S(Alkyl)-Resten sowie die einzelnen Guanidineinheiten ordnen sich alternierend entlang der Kupferkette an und weichen auf diese Weise den gegenseitigen sterischen Druck aus. Dabei liegen immer ein Iodatom und ein benachbarter S(Alkyl)-Rest fast in einer Ebene (I-Cu-S-C_{Alkyl}-Torsionswinkel, **C20**: 6.6; **C21**: 7.9; **C22**: 2.7°) und auf der gleichen Seite der Kupferkette (vgl. Abb. 4.10).

Der beschriebene Strukturtyp **ST-6** wird von zweizähnigen Thioether-Guanidinliganden mit aromatischen Spacern nicht gebildet. Denn die Voraussetzungen für die Ausbildung einer Kettenstruktur scheint neben einem sterisch nicht ausreichend abgeschirmten und damit koordinativ ungesättigten Thioether (R = Me, Et) auch ein flexibler Spacer zu sein. Aliphatische Ethylenspacer sind flexibel genug (S-C-C-N-Torsionswinkel in **C20**, **C21** und **C23**: 69.1° (av)) und ermöglichen einen Wechsel der Koordinationsgeometrie von verzerrt trigonal-planar zu verzerrt tetraedrisch, sofern sterische Gründe dem nicht entgegenstehen. Daneben spielt die Art der Guanidineiheit ebenfalls eine entscheidene Rolle. So führt der Austausch der Tetramethylguanidino- durch die Dimethyl(ethlenguanidino)-Einheit im TMG_{et}SEt-Liganden unter ansonsten gleichen experimentellen Bedingungen zu dem zweikernigen Komplex [Cu(DMEG_{et}SEt)I]₂ (**C17**) (vgl. Kap. 4.3.2). Ein Kettenpolymer wie im Fall [Cu(TMG_{et}SEt)I]_n (**C22**) wurde nicht erhalten. Eine Literaturrecherche ergab keine Komplexe mit einer Kettenstruktur vergleichbar zu den Komplexen **C20** - **C23**.

Abb. 4.10: Ausschnitt aus der Kettenstruktur von C22 (links) und C21 (rechts) im Festkörper.

Strukturtyp ST-7

Der Komplex $[Cu_6(DMEG_pSMe)_2(\mu-I)_3(\mu_3-I)_3]_n$ (C23) mit dem Strukturtyp ST-7 unterscheidet sich grundlegend von den bisher diskutierten Kettenpolymeren. Basis für den Strukturaufbau bildet die anionische Kupfer-Iodid-Einheit $[Cu_5(\mu-I)_3(\mu_3-I)_3]^-$, in der die Cu^{I} -Atome über μ -Iod- und μ_{3} -Iod-Brückenatome zu vier Rauten mit gemeinsamen Kanten verknüpft werden (Abb. 4.11). Die symmetrieäquivalenten Kupferatome Cu2- und Cu2A besitzen einen SI₃-Donorsatz und sind mit einem Diederwinkel von 85.9° und mittleren Cu-I-Bindungen von 2.681 Å leicht verzerrt tetraedrisch koordiniert. Die S-Cu-I-Bindungswinkel liegen im Durchschnitt bei 107.13°. Die Kupferatome C3 und C3A sind symmetrieäquivalent und von drei Iodatomen trigonal-pyramidal koordiniert (Summe der Umgebungswinkel: 329°). Die mittlere Cu-I-Bindungslänge liegt hier bei 2.641 Å, und die I-Cu-I-Bindungswinkel bewegen sich zwischen 106.57(2) und 114.17(2)°. Das Kupferatom Cu4 liegt auf einer speziellen Lage und ist von drei Iodatomen mit einer Summe der Umgebungswinkel von 360° trigonal-planar koordiniert (Cu-I-Bindungslänge: 2.533 Å (av)). Die an Cu2 bzw. Cu2A koordinierenden Thioether sind das Bindeglied zwischen den anionischen Kupfer-Iod-Einheiten und den DMEG_pSMe-Liganden, die untereinander ein linear koordinierendes Cu^I-Atom (Cu1) verbindet (N_{Gua}-Cu1-N_{Gua}-Bindungswinkel: 180.0(2)°; Cu-N-Bindungslänge: 1.877(4) Å (Abb. 4.12)). Dieser Aufbau führt zu einer

Abb. 4.11: Ausschnitt aus der Kettenstruktur von C23 ($[Cu_6(DMEG_pSMe)_2I_6]_n$).

Abb. 4.12: Ausschnitt aus der Kettenstruktur von C23. Dargestellt sind zwei $DMEG_pSMe$ -Liganden mit linear koordiniertem Cu^I-Atom.

zweidimensionalen Schichtstruktur mit wechselnden Lagen von Kupfer-Iod- bzw. Kupfer-Ligand-Einheiten. Interessanterweise ist die Erweiterung des Ethylenspacers um eine CH₂-Einheit ausgehend vom DMEG_{et}SMe-Liganden (in **C21**) zum DMEG_pSMe-Liganden der entscheidene Faktor für die Bildung von **C23**. Der längere und damit flexiblere Propylenspacer sowie das elektronisch ungesättigte Thioether-Schwefelatom ermöglichen den Aufbau von räumlich abgeschirmten linear koordinierten Cu^I-Atomen, die zwei DMEG_{et}SMe-Liganden miteinander verknüpfen. Die in der Ligand-Peripherie verbleibenden Thioether-Reste bilden zusammen mit drei Iodatomen tetraedrisch verzerrte Cu^I-Atome, die als Ausgangspunkte für den Aufbau der komplexen zweidimensionalen Schichtstruktur dienen. Insgesamt zeichnet die Struktur von **C23** vier klassische Cu^I-Koordinationsgeometrien aus: linear, trigonal-planar, trigonal-pyramidal sowie verzerrt tetraedrisch. Eine vergleichbare Kombination ist in der Literatur nicht bekannt.

Eine entfernte strukturelle Verwandtschaft mit **C23** besitzt der Komplex $[Cu_4I_4(L)_2]_n$ (L = 5-Methyl-2-(8-chinolinmethylsulfanyl)-1,3,4-thiadiazol) von Bu et al.[127] Die aus neutralen Cu_4I_4 -Rauteneinheiten geformte Kette besitzt eine regelmäßige Treppen-Struktur mit verzerrt tetraedrisch koordinierten Cu^I -Atomen (I₃N-Donorsatz). Der Thioether des Liganden liegt dabei ungebunden vor.

4.3 Kupferkomplexe mit dreizähnigen Thioether-Guanidinliganden

Neutrale dreizähnige Mono- oder Bisguanidinliganden stabilisieren neben einkernigen und vierkernigen Komplexen auch Kettenpolymere mit iodverbrückten Cu^I-Atomen. Die zentrale Sulfid-Einheit ist in der Lage, als Brückenatom zwei Cu^I-Atome gleichzeitig zu binden (**ST-10**) oder koordiniert an ein Kupferatom (**ST-9**). Die Koordinationsgeometrie der Cu^I-Atome ist dabei immer verzerrt tetraedrisch. Abbildung 4.13 zeigt eine Übersicht der Strukturtypen **ST-8** bis **ST-10**.

Abb. 4.13: Strukturmotive von Kupferguanidinkomplexen mit dreizähnigen Thioether-Guanidinliganden ($D = N_{Py}$ oder N_{Gua}).

4.3.1 Kristallstrukturen einkerniger Kupferguanidinkomplexe

Strukturtyp ST-8

Ausgehend von zweizähnigen Thioether-Guanidinliganden ist das NS-Donorset um eine weitere stickstoffhaltige Donorgruppe (N_{Gua} oder N_{Py}) am Thioether-Rest ergänzt worden. Die Umsetzung der tridentaten Guanidinliganden mit CuI im Verhältnis 1 : 1 führte zu den einkernigen Komplexen C24 und C25 mit Monoguanidinliganden sowie C26, C27 und C28 mit Bisguanidinliganden (Tab. 4.9). Die Komplexe wurden als farblose Kristalle durch Gasphasendiffusion von Diethylether in gesättigte Acetonitril-Lösungen erhalten. In der Abbildung 4.14 sind die Molekülstrukturen der Komplexe C24 und C28 dargestellt. Die Tabellen 4.10 und 4.11 geben eine Übersicht der wichtigsten Strukturparameter der Komplexe C24 bis C28. Die mittleren Diederwinkel der Komplexe C24 - C28 liegen zwischen 79.1 in C25 und 87.1° in C28 und können in den einzelnen

Komplex		Strukturtyp	Kristallsystem, Raumgruppe
$[Cu(TMG_{ph}S_{bzPy})I]$ $[Cu(DMEG_{ph}S_{bzPy})I]$ $[Cu(DMEG_{ph}S_{et}DMEG)I]$ $[Cu((TMG_{ph})_{2}S)I]$ $[Cu((DMEG_{et})_{2}S)I]$	C24	ST-8	monoklin, $P2_1/n$
	C25	ST-8	triklin, $P\overline{1}$
	C26	ST-8	orthorhombisch, $P2_12_12_1$
	C27	ST-8	monoklin, $P2_1/n$
	C28	ST-8	orthorhombisch, Pbca

Tabelle 4.9: Einkernige Kupferkomplexe mit dreizähnigen Thioether-Guanidinliganden.

Komplexen relativ stark variieren (74.3° - 90.0°). Die durchschnittlichen Tetraederwinkel sind gegenüber dem idealtypischen Wert (109.5°) leicht erhöht (**C24**: 113.1, **C25**: 112.6, **C26**: 111.3, **C27**: 112.3, **C28**: 111.0°) und liegen im Mittel bei 111.8°. Die Koordinationsgeometrie kann daher als verzerrt tetraedrisch beschrieben werden. Auffällig ist die starke Faltung der koordinierenden Guanidinliganden an der zentralen Sulfid-Einheit (vgl. Abb. 4.14). Die Stärke der Faltung korreliert mit dem N-Cu-N-Bindungswinkel. Komplexe mit rein aromatischen Liganden (**C24**, **C25**, **C27**) besitzen die größten N-Cu-N-Bindungswinkel (105.27(5)°, 106.9(2)°, 107.36(7)°). Im Fall des semi-aromatischen Liganden (DMEG_{ph}DMEG_{et})S in **C26** ist die Faltung der Ligandenflügel mit einem N-Cu-N-Bindungswinkel von 102.27(9)° stärker ausgeprägt. Mit einem N-Cu-N-Bindungswinkel von 97.73(8)° in **C28** ist der aliphatische Ligand (TMG_{et})₂S am stärksten gefaltet (vgl.

Abb. 4.14). Die C-S-C-Bindungswinkel liegen im Durchschnitt bei 101.63° und zeigen interessanterweise untereinander kaum größere Abweichungen $(100.3(1) - 102.9(1)^{\circ})$. Aufgrund der prinzipiell gleichen Koordinationseigenschaften der Mono- und Bisguanidinliganden, zeigen die Komplexe im Vergleich untereinander keine größeren Abweichungen der einzelnen Bindungslängen. Die Cu-I-Bindungen sind im Durchschnitt mit 2.520 Å etwas

Abbildung 4.14: Molekülstrukturen von C24 (links) und C28 (rechts) im Festkörper.

Komplex	Cu-X	$\rm Cu\text{-}N_{Gua}/\rm Cu\text{-}N_{Py}$	Cu-S	$\mathrm{C}_{\mathrm{Gua}} {=} \mathrm{N}_{\mathrm{Gua}}{}^{*}$	ρ
C24	2.517(1)	2.080(1)/2.071(1)	2.382(1)	1.325	0.975
C25	2.511(1)	$2.096(6)/\ 2.090(6)$	2.378(2)	1.310	0.962
C26	2.516(1)	2.085(2), 2.185(2)	2.345(1)	1.305	0.956
C27	2.528(1)	2.105(1), 2.096(1)	2.371(1)	1.325	0.978
C28	2.531(1)	2.117(1), 2.088(2)	2.394(1)	1.295	0.937

Tabelle 4.10: Ausgewählte Bindungslängen [Å] der Komplexe C24 bis C28.

* Mittelwert

Tabelle 4.11: Ausgewählte Bindungswinkel [°] der Komplexe C24 bis C28.

Komplex	N_{Gua} -Cu-S	N _{Py} -Cu-S	N _{Gua} -Cu-X	N _{Py} -Cu-X	S-Cu-X
C24	84.92(4)	85.25(4)	112.82(4)	128.85(4)	133.29(1)
C25	84.6(2)	84.7(2)	124.1(2)	116.6(2)	130.85(6)
C26	87.89(7)	83.44(6)	134.39(6)	108.88(6)	127.44(2)
C27	84.97(5)	84.91(5)	126.43(5)	117.35(5)	125.26(1)
C28	89.49(6)	87.54(6)	133.45(6)	120.47(6)	115.71(2)

länger im Vergleich zum **ST-1** mit trigonal-planarer Koordinationsgeometrie und terminal gebundenen Iodatomen (Cu-I (av): 2.440 Å). Die Cu-N_{Gua}- und Cu-N_{Py}-Bindungen sind gleich lang und liegen im Durchschnitt bei 2.095 und 2.106 Å.

4.3.2 Kristallstrukturen mehrkerniger Kupferguanidinkomplexe

Aus der Umsetzung des Guanidinliganden DMEG_{ph}S_{bzPy} mit CuI im Verhältnis 2 : 1 wurden die Komplexe [Cu₂(DMEG_{ph}S_{bzPy})(μ -I)(μ ₃-I)]₂ (**C29**) und [Cu(DMEG_{ph}S_{bzPy}I]_n (**C30**) erhalten. Aus einer gesättigten Acetonitril-Lösung kristallisieren nebeneinander im monoklinen System der Raumgruppe Cc rötliche Kristalle von **C29** und blass gelbe Kristalle von **C30** aus. Die Molekülstruktur des vierkernigen Kupfer(I)-Komplexes **C29** ist in Abbildung 4.15 dargestellt. Ein Kettenausschnitt des Koordinationspolymers **C30** ist in Abbildung 4.16 zu sehen. Eine Übersicht der wichtigsten Strukturparameter beider Verbindungen ist in Tabelle 4.12 zusammengestellt.

Strukturtyp ST-9

Den Grundbaustein in der Struktur von $[Cu_2(DMEG_{ph}S_{bzPy})_2I_2]_2$ bildet eine $[Cu_4(\mu I_{2}(\mu_{3}-I_{2})$ -Einheit, die ein Inversionszentrum besitzt und aus drei Cu₂I₂-Rauten aufgebaut ist. Die Rauten besitzen jeweils eine gemeinsame Kante und bilden eine verzerrte Sesselstruktur (Abb. 4.15, eine vergleichbare Kantenverknüpfung von Cu₂I₂-Rauten liegt in C23 vor (Abb. 4.11). Die beiden äußeren Rauten sind gefaltet und besitzen einen Cul-Cu2-Abstand von 2.725(2) Å. Im Vergleich dazu ist die mittlere Raute planar mit einem deutlich längeren Cu-Cu-Abstand (Cu2-Cu2A: 3.174(1) Å). Die I-I-Abstände sind dagegen mit 4.320 (I1-I2) und 4.312 Å (I1-I1A) identisch. Unabhängig vom Verbrückungsgrad der Iodatome sind die mittleren Cu-I-Bindungslängen mit 2.657 (μ) und 2.676 Å (μ_3) fast gleich lang. Die beiden symmetrieäquivalenten Kupferatome Cu1 und Cu1A besitzen ein N_{Gua}SI₂-Donorset und sind verzerrt tetraedrisch koordiniert. Im Fall der beiden symmetrieäquivalenten Kupferatome Cu2 und Cu2A mit einem N_{Py}I₃-Donorset liegt ebenfalls eine verzerrt tetraedrische Koordination vor. Die Diederwinkel sind mit 73.7° am Cul (Cu1A) sowie 80° am Cu2 (Cu2A) deutlich kleiner im Vergleich zum idealtypischen Wert von 90°. Im Vergleich zu Cu1 (Cu1A) liegt die verzerrt tetraedrische Koordinationsumgebung am Cu2 (Cu2A) näher an der idealen Geometrie eines tetraedrischen Koordinationspolyeders. Die DMEG_{ph}S_{bzPy}-Liganden sind an der zentralen Sulfid-Einheit relativ stark gefaltet (C_{ph} -S- C_{bz} : 101.2(6)°, S- C_{bz} - C_{ph} : 114.6(8)°) und binden chelatartig jeweils an zwei Cu^{1} -Atome (Cu1/ Cu2A; Cu2/ Cu1A). Die beiden N₂S-Donorsätze sind hierbei

Abbildung 4.15: Molekülstruktur von C29 im Festkörper.

Komplex	C29	C30
Bindunaslängen [Å]		
Cu-I	$2.657/2.676^a$	2.608^{*}
$Cu-N_{Gua}$	2.086(9)	2.074(3)
Cu-N _{Py}	2.070(10)	2.061(3)
Cu-S	2.307(3)	2.338(1), 2.438(1)
$ m N_{Gua}= m C_{Gua}$	1.314(13)	1.320(5)
$Cu1 \cdots Cu2$	2.725(2)	2.557(1)
ρ	0.978	0.971
Bindungswinkel [°]		
N _{Gua} -Cu-S	86.6(3)	85.29(9)
N _{Py} -Cu-S		82.94(9)
N _{Py} -Cu-I	109.7*	105.19(9), 122.81(9)
I-Cu-I	108.94^{*}	119.37(1), 121.07(2)
Cu-I-Cu	$61.70/71.33^a$	58.90(1), 58.5(1)
Cu-S-Cu		144.04(4)

Tabelle 4.12: Ausgewählte Strukturdaten von C29 und C30.

* Mittelwert; ^{*a*} Mittlere Cu-(μ/μ_3 -I)-Bindungslängen.

in einer syn-Stellung zueinander angeordnet. In der Literatur sind vier weitere Komplexe mit einer [Cu₂I₂L]₂-Sesselstruktur sowie einem NSI₂-Donorsatz beschrieben. Die Liganden 8-((2-Pyridylmethyl)thio)chinolin und 2-[(o-Pyridyl)-sulfanylmethyl]-pyrimidin sind in ihrem Aufbau eng mit dem Liganden $DMEG_{ph}S_{bzPy}$ verwandt. [127, 128] Die beiden Cu^{I} -Atome werden ebenfalls von einem NSI_{2} - bzw. NI_{3} -Donorset verzerrt tetraedrisch koordiniert. Mit dem Liganden Bis(2-pyridylthio)methan und Bipyrimidyldisulfid[129] ist der Aufbau einer Sesselstruktur mit den gleichen Donorsätzen auch möglich. Dagegen stabilisieren die Liganden N-(3-Methyl-2-thienylmethyliden)-2-pyridylamin und N-(5-Bromo-2-thienylmethyliden)-2-pyridylamin die Cu₄I₄-Sesselstruktur mit einem NI₂- bzw. NI₃-Donorsatz.[130] Die Cu1-Cu2-Abstände variieren im Bereich von 2.655(1) bis 2.849(1) Å und stimmen gut mit C29 überein. Die Cu-S-Bindungslängen sind – bis auf eine Ausnahme mit 2.298(2) Å im Fall von $Cu_4I_4L_2$ (L = 8-((2-Pyridylmethyl)thio)chinolin) – mit 2.421(1) bis 2.439(1) Å um ca. 0.1 Å länger. In allen Vergleichskomplexen variieren im Gegensatz zu C29 in Abhängigkeit vom Verbrückungsgrad der Iodatome die Cu-I-Bindungen deutlich stärker (μ -I: 2.507(1) - 2.785(1) Å; μ_3 -I: 2.569(1) - 2.968(2) Å). Daneben existiert ebenfalls ein Literaturbeispiel von Garcia-Martinez et al. mit dem Liganden Bis(2pyridylthio)methan in einer [Cu₂Br₂]L₂-Sesselstruktur.[131] Die Cu-Br-Bindungslängen sind im Vergleich zu den Iod-Analoga mit 2.503(1) (μ_3 -Br) und 2.538(1) Å (μ -Br) deutlich kürzer. Der Cu1-Cu2-Abstand liegt bei 2.855(1) A.

Strukturtyp ST-10

Das Koordinationspolymer C30 ist aus einzelnen Cu_2I_2 -Einheiten aufgebaut, die chelatartig von $DMEG_{ph}S_{bzPy}$ -Liganden zu einer Cu-I-Kette verknüpft werden (Abb. 4.16). Die DMEG_{ph}S_{bzPy}-Liganden sind gefaltet (C_{ph} -S- C_{Bz} : 100.31(18)), und die aromatischen Ebenen schließen einen Winkel von 66.7° ein. Im Gegensatz zu C29 verbrückt hier die zentrale Sulfid-Einheit zwei benachbarte Cu^I-Atome über eine μ -Schwefelbrücke. Damit ist jedes Kupferatom alternierend von einem $N_{Gua}SI_2$ - oder $N_{Pu}SI_2$ -Donorsatz verzerrt tetraedrisch koordiniert. Die Diederwinkel – definiert durch die S-Cu-N- und I-Cu-I-Ebenen – liegen bei 84.2° für Cu1 und 82.8° für Cu2. Die Cu₂I₂-Einheiten sind fast planar mit Cu-I-Bindungslängen von 2.573(1) (Cu2-I1) bis 2.627(1) Å (Cu1-I1). Der relativ kurze Cu1-Cu2-Abstand von nur 2.557(1) Å ist auf sehr spitze Cu-I-Cu-Bindungswinkeln von 58.90(1) und $58.5(1)^{\circ}$ zurückzuführen. Vergleichbare Abstände und Winkel sind in den Kupfer(I)-Dimeren C9 und C16 vom Strukturtyp ST-4-syn zu finden (vgl. Abb. 4.8, Tab. 4.6 und 4.7). Aufgrund des kurzen Cu-Cu-Abstandes können direkte Cu^I-Cu^I-(d¹⁰ d^{10})-Wechselwirkungen nicht ausgeschlossen werden. Die beiden N_{Gua}-Cu-S- und N_{Py}-Cu-S-Bisswinkel und I-Cu-I-Bindungswinkel sind mit 85.29(9) und $82.94(9)^{\circ}$ sowie 119.37(1)und $121.07(2)^{\circ}$ sehr einheitlich. Die Cu-S-Cu-Brücke schließt einen Winkel von $144.04(4)^{\circ}$ ein und ist aufgrund der unterschiedlichen Cu-S-Bindungslängen (Cu1-S1: 2.338(1) Å, Cu2-S2: 2.438(1) Å) unsymmetrisch aufgebaut.

In der Literatur sind analog aufgebaute Koordinationspolymere nicht beschrieben. Jedoch existieren von Hanton et al. strukturell verwandte Komplexe mit unterschiedlich

Abbildung 4.16: Ausschnitt aus der Kettenstruktur von C30.

ortho-substituierten Bis(2-pyridylmethyl)sulfid-Liganden. [124b] Es sind Verbindungen der Zusammensetzung $[Cu_2I_2L]_2$ sowie $[Cu_2I_2L]_n$. Im ersten Fall handelt es sich um zwei Cu₂I₂-Dimere, die chelatisierend von dem Liganden Bis(6-methyl-2-pyridylmethyl)sulfid oder dem Aromaten 2-(6-Methylpyridyl)methyl(2-pyridyl)methylsulfid koordiniert werden. Der erste Ligand stabilisiert die vier Cu^I-Atome in einer verzerrt tetraedrischen Koordinationsumgebung (NSI₂-Donorsatz) mit einer zentralen μ -Sulfid-Einheit. Der unsymmetrisch aufgebaute Ligand bildet trigonal-planare (NI₂-Donorsatz) und verzerrt tetraedrische Cu¹-Atome (NSI₂-Donorsatz) ohne verbrückende Sulfid-Gruppen aus. Die Cu-Cu-Abstände (2.552(1), 2.528(1) Å), Cu-S-Cu-Valenzwinkel und Cu-S-Bindungslängen (2.464(1), 2.418(1)) Å) sind vergleichbar mit denen in C30. Bis(2-pyridylmethyl)sulfid formt dagegen ein Koordinationspolymer, wobei die μ -Sulfid-Einheiten jeweils zwei zueinander parallel laufende Cu-I-Ketten miteinander verbinden. Daneben berichteten Driessen et al. von einem [Cu₂Br₂L]₂ Komplex mit dem Liganden 1,5-Bis(3',5'-dimethylpyrazolyl)-3-thiapentan.[124c] Er ist analog zu den Komplexen von Hanton et al. aufgebaut. Ungewöhnlich ist der große Cu-Br-Cu-Bindungswinkel (160.6°) sowie die deutlich längeren Cu-S-Bindungen (2.684(4) und 2.645(4) Å).

4.4 Kupferkomplexe mit vier- und fünfzähnigen Thioether-Guanindinliganden

Im Bereich der vier- und fünfzähnigen Thioether-Guanidinliganden konnten nur mit den Liganden $(TMG_{ph}S)_{2bzPy}$ (L21-1) und $(DMEG_{ph}S)_{2bzPy}$ (L21-2) Kupfer(I)-Komplexe röntgenographisch charakterisiert werden, die in zwei Strukturtypen unterteilt werden können. Im Strukturtyp **ST-11** liegen zwei verzerrt tetraedrisch koordinierte Cu^I-Atome vor, die über Benzyl-Pyridinspacer zweier Liganden miteinander verknüpft sind. Im Unterschied dazu zeichnet den Strukturtyp **ST-12** eine zweikernige iodverbrückte Cu-I-Cu-Einheit aus, in der die Cu^I-Atome ebenfalls verzerrt tetraedrisch koordiniert sind (Abb. 4.17).

4.4.1 Kristallstrukturen zweikerniger Kupferguanidinkomplexe

Die Umsetzung der Liganden (Gua_{ph}S)_{2bzPy} mit [Cu(MeCN)₄]PF₆ bzw. CuI führte zu den Verbindungen [Cu(TMG_{ph}S)_{2bzPy}]₂(PF₆)₂ (C31), [Cu(DMEG_{ph}S)_{2bzPy}]₂(PF₆)₂·2MeCN (C32) sowie [Cu₂((DMEG_{ph}S)_{2bzPy})₂(μ -I)I]·4MeCN (C33). Die Komplexe wurden als farblose (C31, C32) bzw. gelbe (C33) Kristalle durch Gasphasendiffusion von Diethylether in gesättigte Acetonitril-Lösungen erhalten. C31 und C32 kristallisieren monoklin in den Raumgruppen C2/c und P2₁/n. Vom Komplex C33 wurden nadelförmige trikline Kristalle der Raumgruppe P1 erhalten. In den Abbildungen 4.18 und 4.19 sind die Molekülstrukturen der Komplexe C31 und C33 dargestellt. In der Tabelle 4.13 sind die

Abb. 4.17: Strukturmotive von Kupferguanidinkomplexen mit den Liganden $(TMG_{ph}S)_{2bzPy}$ und $(DMEG_{ph}S)_{2bzPy}$.

wichtigsten Strukturdaten zusammengefasst.

Strukturtyp ST-11

Das Grundgerüst der zweikernigen Bis(chelat)-Komplexe C31 und C32 bilden zwei Cu^I-Atome, die jeweils von zwei NS-Donorsätzen verzerrt tetraedrisch – in Form eines Bis-(chelats) – koordiniert werden (Abb. 4.18). Dieses Strukturmerkmal ist ebenfalls in dem einkernigen Bis(chelat)-Komplex $[Cu(DMEG_{et}StBu)_2](PF_6)$ (C4) vom Strukturtyp ST-2 (vgl. Kap. 4.3.1) zu finden. Im Unterschied zu C4 sind jedoch in C31 und C32 quasi zwei einkernige Bis(chelat)-Einheiten über flexible Benzyl-Pyridinspacer zweier (Gua_{ph}S)_{2bzPy}-Liganden miteinander verbunden (Abb. 4.18). Damit liegen in C31 und C23 zwei räumlich weit voneinander getrennte Cu^I-Zentren vor (Cu1-Cu2, C31: 7.766 Å, C32: 7.821 A). Die Diederwinkel – definiert durch die beiden N-Cu-S-Ebenen – liegen bei 72.9 (C31) und 77.8° (C32) und sind damit gegenüber den idealtypischen Wert (90°) erniedrigt. Im Vergleich zum Diederwinkel in C4 (85.9°) tendiert die Koordinationsgeometrie in C31 und C32 stärker in Richtung quadratisch-planar. Die Tetraederwinkel sind mit durchschnittlich 110.2° in C31 und 110.0° in C32 gegenüber dem idealtypischen Wert von 109.5° nur leicht erhöht. Charakteristische Strukturmerkmale der beiden Komplexe sind neben der Bis(chelat)-Koordination der beiden Cu^I-Atome auch die Position der beiden Pyridinringe, die fast in einer Ebene liegen (Abb. 4.18). Die Komplexe C31 und C32 unterscheiden sich nur in der Guanidineinheit des koordinierenden Liganden (TMG vs. DMEG) und zeigen im Vergleich untereinander keine wesentlichen Abweichungen einzelner Strukturparameter (vgl. Tab. 4.13). Die ρ -Werte sind mit 0.979 und 0.971 fast gleich und – vermutlich aufgrund des aromatischen Spacers – deutlich größer im Vergleich zu C4 (0.936). In der Literatur sind einige zweikernig aufgebaute Kupfer(I)-Komplexe mit makrozyklischen $(S_2N_2)_2$ -Liganden von Comba et al. [132] sowie Turner et al. [133] bekannt, die dem Strukturtyp **ST-11** entsprechen. Die Cu^I-Atome sind ebenfalls von einem N_2S_2 -Donorsatz verzerrt tetraedrisch koordiniert mit Cu-Cu-Abständen von ca. 8 Å. Die Diederwinkel liegen bei 74.6 bis 81.1° und sind vergleichbar mit denen in **C31** (72.9°) und **C32** (77.8°). Die Cu-N-Bindungen zeigen ebenfalls keine signifikaten Unterschiede zu **C31** und **C32**, wohingegen die Cu-S-Bindungen etwas länger ausfallen (Cu-S: 2.333(3) - 2.380(1) Å, Cu-N: 1.962(1) - 2.024(8) Å).

Strukturtyp ST-12

Der einzige Vertreter des Strukturtyps **ST-12** ist der zweikernige Komplex **C33** (Abb. 4.19). Der Strukturtyp **ST-12** ist eine Kombination von Merkmalen aus **ST-8** und **ST-3**. So entspricht die Koordinationsgeometrie der Cu^I-Atome Cu1 und Cu2 den Geometrien der Strukturtypen **ST-3** bzw. **ST-8** (vgl. Kap. 4.3.1, 4.3.3). Das Cu1 ist von einem N₂SI-Donorsatz fast ideal tetraedrisch koordiniert. Der Diederwinkel – definiert durch die I-Cu-N_{Py}- und S-Cu-N_{Gua}-Ebenen – beträgt 88.8° und der durchschnittliche Tetraederwinkel liegt mit 107.2° sehr nahe am idealtypischen Wert von 109.5°. Die Koordinationsgeometrie

Komplex	C31	C32	C33
Bindungslängen [Å]			
Cu-N _{Gua}	2.041(9), 2.057(8)	2.039(3), 2.070(2)	2.172(8), 2.103(8)
Cu-N _{Py}			2.119(9)
Cu-S	2.241(3), 2.279(3)	2.202(1), 2.273(1)	2.310(3), 2.362(3)
$N_{Gua} = C_{Gua}$	1.326(13), 1.327(13)	1.316(4), 1.306(4)	1.348(12), 1.311(12)
$Cu-(\mu-I)$			2.498(1), 2.700(1)
Cu-I			2.517(1)
$Cu1\cdots Cu2$	7.766(1)	7.821(1)	3.452(1)
ρ	0.979	0.971	$0.994, 0.956^*$
Bindungswinkel [°]			
N _{Gua} -Cu-S	87.10(2), 88.7(3)	88.65(7), 86.48(8)	$85.10(2), 79.70(2)^*$
S-Cu-S	137.57(12)	134.66(3)	
N _{Gua} -Cu-N _{Gua}	125.20(3)	121.54(10)	
N _{Py} -Cu-S			88.01(2)
N _{Py} -Cu-I			127.30(2)
I-Cu-I			114.95(6)
Cu-I-Cu			83.11(5)

Tabelle 4.13: Ausgewählte Strukturdaten von C31, C32 und C33.

* Werte für Cu1, Cu2.

Abb. 4.18: Molekülstruktur von $[Cu(DMEG_{ph}S)_{2bzPy}]_2^{2+}$ (aus C31) im Festkörper.

am Cu2 (NSI₂-Donorsatz) entspricht ebenfalls einem tetraedrischen Koordinationspolyeder. Mit einem Diederwinkel von 86.0° sowie einem durchschnittlichen Winkel von 108.5° sind die Abweichungen von den Strukturparametern einer idealtypischen tetraedrischen Koordination nur sehr gering. Die Cu^I-Atome sind 3.452(1) Å voneinander entfernt und schließen mit dem μ -Iodatom einen Cu-I-Cu-Bindungswinkel von 83.11(5)° ein. Die Cu-(μ -I)-Bindungslängen unterscheiden sich deutlich und liegen bei 2.498(1) (Cu1-I1) bzw. 2.700(1) Å (Cu2-I1). Das terminale Iod-Atom koordiniert mit einer Bindungslänge von 2.517(1) Å und einem I1-Cu2-I2-Bindungswinkel von 114.95(6)° an das Cu2. Ein Vergleich der wichtigsten Strukturparameter der einkernigen Komplexe **C24** bis **C28** vom Strukturtyp **ST-8** (Tabl. 4.10, 4.11) mit **C33** zeigt keine größeren Unterschiede. So beträgt deren durchschnittliche C=N-Bindungslänge 1.312 Å (1.295(3) - 1.325(3) Å). Im Vergleich zu den Komplexen **C24**, **C25** und **C27** mit aromatischen Guanidinliganden (ρ -Werte, **C24**: 0.975, **C25**: 0.962, **C27**: 0.978) entspricht der Wert von 0.994 in **C33** einer nahezu gleichmäßigen Ladungsverteilung innerhalb der Guanidinfunktion.

Die Koordinationsgeometrie am Cu2 mit der Oxidationsstufe +1 entspricht dem Strukturtyp **ST-3** und ist deshalb vergleichbar mit der Koordinationsgeometrie am Cu^{II}-Atom in [Cu(DMEG_{ph}StBu)Cl₂] (**C5**). Die Donorsätze der beiden Kupferionen bestehen jeweils aus einem NS-Liganden sowie zwei koordinierenden Halogenatomen (**C5**: Chlorid, **C33**: Iodid). Im Fall von **C5** ist jedoch eine starke Verzerrung der tetraedrischen Koordinationsgeometrie Richtung quadratisch-planar erkennbar (Diederwinkel: 56.8°). Die C=N-Bindungslängen der Guanidinfunktionen sind leicht unterschiedlich (1.350(2) (**C5**) vs. 1.311(12) Å in **C33**), der am größeren ρ -Wert (1.008) erkennbar ist (**C33**: $\rho = 0.956$). Komplexe vom Strukturtyp **ST-12** sind in der Literatur nicht beschrieben.

Insgesamt zeigen die Komplexe C31 - C33, dass die Liganden vom Typ $(Gua_{ph}S)_{2bzPy}$

Abb. 4.19: Molekülstruktur von $[Cu_2((DMEG_{ph}S)_{2bzPy})_2(\mu-I)I]$ (aus C33) im Festkörper.

über eine gute Flexibilität und sehr gute Metallierungseigenschaften verfügen. Die rigiden Phenylringe dieser Liganden begünstigen die Kristallisation der Kupferkomplexe deutlich besser im Unterschied zu den aliphatischen Vertretern dieses Ligandentyps $((Gua_{et}S)_{2bzPy}).$

4.5 Spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen

4.5.1 Spektroskopische Eigenschaften

Für UV/Vis-spektroskopische Messungen wurden verschiedene Kupfer(I)-Komplexe der unterschiedlichen Strukturtypen ausgewählt. Die farblosen bis schwach gelben Acetonitril-Lösungen wurden in einem Konzentrationsbereich von 10^{-4} bis 10^{-5} mol/l vermessen. In Tabelle 4.14 sind die Ergebnisse der Messungen zusammengefasst.

Die gemessenen UV/Vis-Spektren zeichnet eine charakteristische Absorptionsbande bei ca. 240 nm aus, die einem Cu^I \rightarrow N_{Imin} MLCT-Übergang zugeordnet werden kann. Die Absorptionsbanden in den Bereichen von 200 bis 210 nm sowie 270 bis 290 nm können $\pi \rightarrow \pi^*$ - und $n \rightarrow \pi^*$ -Übergängen innerhalb der C=N-Imingruppe der Guanidinliganden zugeordnet werden. Beide Absorptionsbanden besitzen Extinktionskoeffizienten im Bereich von 10⁵ bis 2·10⁶ M⁻¹ cm⁻¹ und konnten durch Vergleich mit den UV/Vis-Spektren der reinen Thioether-Guanidinliganden eindeutig zugeordnet werden. Das UV/Vis-Spektrum von [Cu^{II}(DMEG_{ph}StBu)Cl₂] (C5, ST-3) wurde in den Lösungsmitteln CH₂Cl₂, MeCN, MeOH und DMF aufgenommen. Die Lage der Absorptionsbande bei 574 nm zeigte keine große Lösungsmittelabhängigkeit. Die Bande besitzt sehr kleine Extinktionskoeffizienten $(\epsilon = \text{ca. } 200 - 700 \text{ M}^{-1} \text{ cm}^{-1})$ und kann daher einem Cu^{II} d-d-Übergang zugeordnet werden. Die $S(\sigma) \rightarrow Cu^{II}$ -Übergang liegt in CH_2Cl_2 , MeCN und DMF bei ca 400 nm mit Extinktionskoeffizienten von 1043, 1195 und 1100 M⁻¹ cm⁻¹. In MeOH ist eine $S(\sigma) \rightarrow Cu^{II}$ -Absorptionsbande nicht erkennbar. Eine koordinative Wechselwirkung des Lösungsmittels mit dem Cu^{II}-Atom, welche die Cu-S(Thioether)-Wechselwirkung abschwächt, ist daher wahrscheinlich. Eine intensive $N(\sigma) \rightarrow Cu^{II}$ LMCT-Absorptionsbande bei 284 bzw. 280 nm $(\epsilon = 13232 \text{ (CH}_2\text{Cl}_2), 13926 \text{ (MeCN) } \text{M}^{-1} \text{ cm}^{-1})$ wird in CH₂Cl₂ und MeCN beobachtet. In DMF liegt die Absorptionsbande bei 277 nm ($\epsilon = 15066 \text{ M}^{-1} \text{ cm}^{-1}$) in MeOH bei 275 nm ($\epsilon = 5154 \text{ M}^{-1} \text{ cm}^{-1}$). Das UV/Vis-Spektrum von [Cu^{II}(TMGqu)₂](BF₄)(PF₆) mit dem Guanidin-Liganden 1,1,3,3-Tetramethyl-2-(chinolin-8-yl)guanidin zeigt ebenfalls eine $N(\sigma) \rightarrow Cu^{II}$ LMCT-Absorptionsbande bei 261 nm ($\epsilon = 14000 \text{ M}^{-1} \text{ cm}^{-1}$).[117] Ein S→Cu^{II}-Übergang in diesem Bereich konnte daher ausgeschlossen werden. Das UV/Vis-Spektrum von $\{[Cu^{I}Cu^{II}((Gua_{ph}S)_{2bzPy})_2](PF_6)_2\}^+$ (C31^{ox}, Abb. 4.20) zeigt in diesem Bereich keine Absorptionsbande, jedoch – in Übereinstimmung mit C5 – bei 414 nm einen entsprechenden $S(\sigma) \rightarrow Cu^{II}$ -Übergang. In der Literatur sind strukturell vergleichbare Kupfer(II)-Komplexe mit einem zweizähnigen NS-Liganden sowie zwei terminal koordinierten Halogenatomen nicht bekannt. Es sind jedoch eine Reihe von Komplexen mit dreizähnigen N₂S- bzw. S₂N-Thioether-Liganden und verzerrt trigonal-bipyramidal bzw. verzerrt quadratisch-pyramidal koordinierten Cu^{II}-Atomen spektroskopisch charakterisiert worden. Der $S(\sigma) \rightarrow Cu^{II}$ -Übergang der Komplexe liegt im Bereich von 320 bis 500 nm in guter Übereinstimmung mit C5.[40c, 134]

4.5.2 Magnetochemische und cyclovoltammetrische Untersuchungen

Die Untersuchungen der elektrochemischen Eigenschaften ausgewählter Kupfer(I)-Komplexe erfolgte mittels der Cyclovoltammetrie. Die Messungen wurden bei Raumtemperatur unter einer Argon-Schutzgasatmosphäre in Acetonitril oder Dichlormethan durchgeführt ($c_{Komplex}$: 0.001 mol/l, $c_{Leitsalz}$: 0.2 mol/l; $v_s = 100$ mV/s, interner Standard: Ferrocen). Die Ergebnisse der Messungen sind in Tabelle 4.15 aufgeführt.

Insgesamt zeigen die Cyclovoltammogramme ein sehr einheitliches Bild der redoxchemischen Eigenschaften aller Thioether-Kupfer(I)-Komplexe. Die einzigen Ausnahmen sind die beiden Komplexe $[Cu(Gua_{ph}S)_{2bzPy}]_2[PF_6]_2$ (C31 und C32), auf die im nächsten Abschnitt näher eingegangen wird.

Einkernige und zweikernige verzerrt tetraedrisch bzw. trigonal-planar koordinierte Thioether-Kupfer(I)-Komplexe der Strukturtypen **ST-1**, **ST-4**, **ST-5**, **ST-8** und **ST-12** zeigen unabhängig vom Gegenion (Iodid, Chlorid, Bromid), Lösungsmittel (MeCN, CH₂Cl₂) oder Ligand einen irreversiblen Cu^{I/II}-Übergang im Bereich von ca. -0.2 V bis 0 V vs. NHE (v_s: 100 mV/s). Auch der einkernige Kupfer(II)-Komplex [Cu(DMEG_{et}StBu)₂](PF₆) (C4, ST-2) besitzt einen irreversiblen Oxidationspeak bei -0.150 V vs. NHE. Der Oxidationspeak bleibt auch bei Erhöhung oder Erniedrigung der Scan-Geschwindigkeit und Variation

Komplex	λ [nm]	$\epsilon \ [\mathrm{M}^{-1} \ \mathrm{cm}^{-1}]$
C7	241, 209, 203	14385, 206783, 197368
C8	243, 201	51935, 163349
C10	243, 206(sh)	31368, 112895
C12	243, 207(sh)	56643, 162144
C16	287, 241, 210	41287, 96636, 258891
C19	285, 242, 206(sh)	40607, 49252, 192567
C24	243, 205	20120, 53140
C25	242, 209	23301, 57600
C26	284, 242, 208	13560, 35720, 90805
C27	290, 242, 207	20371, 37743, 84054
C28	246, 209	20922, 51524
C32	271, 212	14337, 41519
C33	281, 243, 209	17021,66802,209603
$C5 (CH_2Cl_2)$	574, 402, 310(sh)	536, 1043, 7744
	284, 232	13232, 12326
C5 (MeCN)	574, 402, 310(sh)	704,1195,7681
	280, 216	13926, 27045
C5 (DMF)	569, 404, 309(sh)	674,1100,7719
	277	14265
C5 (MeOH)	564, 275, 233(sh)	248,5154,15066
	211	30037

Tabelle 4.14: UV/Vis-Daten ausgewählter Thioether-Kupferguanidinkomplexe.

der Lösungsmittel irreversibel. Ein Einfluss der unterschiedlich konstituierten Schwefel-Guanidinliganden auf die Lage des Oxidationspotentials E_{Ox} ist nicht erkennbar. Daneben beobachtet man bei allen Thioether-Kupfer(I)-Komplexen eine irreversible Oxidation (ca. 0.6 V vs. NHE) und Reduktion (-0.5 V vs. NHE) des Thioether-Guanidinliganden (vgl. Kap. 3.2).

Die Interpretation der erhaltenen Daten ist wegen der Unsicherheit über die in Lösung vorliegenden elektroaktiven Spezies nur mit Vorbehalten möglich. Prinzipiell sind für den irreversiblen Charakter des Cu^{I/II}-Übergangs vermutlich eine Kombination aus koordinationsspezifischen und strukturellen Faktoren der Thioether-Kupfer(I)-Komplexe verantwortlich. So könnte die Oxidation der Kupfer(I)-Komplexe mit zwei- bzw dreizähnigen Thioether-Guanidin-Liganden eine Änderung der Koordinationsgeometrie am Kupferzentrum von verzerrt tetraedrisch (durchschnittlicher Diederwinkel der Kupfer(I)-Dimere: 87.3°) bzw. trigonal-planar Richtung verzerrt quadratisch-planar induzieren. Diese Erklärung wird durch den Befund gestützt, dass der Koordinationspolyeder des Cu^{II}-Zentrums

in [Cu(DMEG_{ph}StBu)Cl₂] (C5, ST-3) einen Zustand zwischen einer verzerrt quadratischplanaren und verzerrt tetraedrischen Koordinationsgeometrie beschreibt (Diederwinkel: 56.8°). C5 ist der einzige röntgenographisch charakterisierte Thioether-Cu(II)-Komplex und könnte ein elektrochemisches Oxidationsprodukt der dimeren und monomeren Kupfer(I)-Komplexe darstellen. Trotz der relativ günstigen 'Cu(I/II)-Übergangsgeometrie' zeigt das Cyclovoltammogramm von C5 keinen Cu^{II/I}-Übergang. Damit wird die Cu^{II}-Oxidationsstufe in C5 zu gut stabilisiert. Die Oxidationsprodukte der Thioether-Kupfer(I)-Komplexe könnten vergleichbare strukturelle Eigenschaften wie C5 aufweisen. Eine Reduktion zum Ausgangsprodukt wäre in dem Fall ebenfalls nicht begünstigt. Eine analoge Situation könnte in dem tetraedrisch koordinierten Komplex [Cu(DMEG_{et}StBu)₂](PF₆) (C4) vorliegen (Diederwinkel: 85.9°, Cu-S: 2.320(4), 2.324(3) Å), der ebenfalls eine irreversible Oxidation zeigt.

Ein weiterer kritischer Faktor mit Einfluss auf den Cu^{I/II}-Übergang ist die Cu-S-Bindungslänge (vgl. hierzu Kap. 3). Ein Vergleich der Kupfer-Komplexe zeigt hierbei folgendes Bild: in [Cu(DMEG_{ph}StBu)Cl₂] (**C5**) liegt die Cu-S-Bindungslänge bei 2.315(1) Å und damit im Bereich dieser Bindungslängen im Kupfer(I)-Dimer [Cu(DMEG_{ph}SPh)Cl]₂ (**C13**) mit 2.291(2) Å. Die Cu-S-Bindungslängen der iodverbrückten Dimere sind mit durchschnittlich 2.393 Å deutlich länger. Insgesamt sind jedoch die Cu-S-Bindungslängen wesentlich kürzer im Vergleich zu gefundenen Cu-S(Thioether)-Bindungslängen in Typ-1 Kupferzentren, die im Bereich von 2.45 (Cu^{II}-Form) bis 2.9 Å (Cu^I-Form) liegen (vgl. Kap. 1.4.1) Zwar ist die Cu-S(Thioether)-Bindungslänge mit der Lage des Cu^{I/II}-Potentials korreliert, der ausschlaggebende Punkt für einen reversiblen Cu^{I/II}-Übergang ist jedoch eine flexible und an beide Kupfer-Oxidationsstufen angepasste Koordinationsumgebung.

Komplex (Dimer)		E _{Ox}	Komplex (Monomer)		E _{Ox}
$[Cu(TMG_{ph}SMe)I]_{2}$ $[Cu(TMG_{ph}SEt)I]_{2}$ $[Cu(TMG_{ph}SPh)I]_{2}$ $[Cu(TMG_{ph}SBz)I]_{2}$ $[Cu(DMEG_{ph}SMe)I]_{2}$ $[Cu(DMEG_{ph}SEt)I]_{2}$ $[Cu(DMEG_{ph}SEb)I]_{2}$ $[Cu(DMEG_{ph}SBz)I]_{2}$ $[Cu(DMEG_{ph}SBz)I]_{2}$ $[Cu(DMEG_{ph}SBz)I]_{2}$ $[Cu(DMEG_{ph}SBz)I]_{2}$	C6 C8 C11 C15 C7 C9 C10 C16 C18 C13	-0.096 -0.227 -0.138 -0.222 -0.227 -0.169 -0.122 -0.165 -0.183 0 170	$[Cu(DMEG_{et}SCPh_3)I]$ $[Cu(DMEG_{et}StBu)_2](PF_6)$ $[Cu(TMG_{ph}S_{bzPy})I]$ $[Cu((DMEG_{ph}DMEG_{et})S)I]$ $[Cu((DMEG_{et})_2S)I]$ $[Cu((TMG_{ph})_2S)I]$	C3 C4 C24 C26 C28 C27	-0.124 -0.150 -0.211 -0.142 -0.157 -0.174
$[Cu(DMEG_{ph}SPh)Cl]_2$ $[Cu(DMEG_{ph}SPh)Br]_2$	C13 C14	-0.179			

Tabelle 4.15: Ergebnisse der cyclovoltammetrischen Untersuchungen ausgewählter Thioether-
Kupfer(I)-Komplexe (in MeCN, $v_s = 100 \text{ mV/s}$, Angaben in V vs NHE).

82

Cyclovoltammetrische Studien der Bis(chelat)-Komplexe $[Cu^{I}(L)_{2}](ClO_{4})$ (L = 8-Methylthiochinolin, 8-Etylthiochinolin) und $[Cu^{II}(L)_2(\eta^1 - OClO_3)_2]$ (L = 8-Ethylthiochinolin, E_{1/2}) = -0.28 V vs. Fc/Fc⁺) mit zweizähnigen NS-Chinolinliganden zeigen ähnliche Ergebnisse. Hier besitzen die Kupfer(I)-Bis(chelat)-Komplexe eine verzerrt tetraedrische, der Kupfer(II)-Bis(chelat)-Komplex eine verzerrt oktaedrische Koordinationsgeometrie. Die Komplexe werden zwar in einem Ein-Elektronen-Prozess oxidiert bzw. reduziert, aber der Abstand von Oxidations- und Reduktionswelle $\Delta E = |E_{pa} - E_{pc}|$ beträgt in CH₂Cl₂ 110 mV (380 mV in DMF). Diese Tatsache ist ein deutlicher Hinweis auf eine stark gehemmte Reversibilität und einen sehr langsamen Elektronen-Transfer an der Arbeitselektrode, die einhergehen mit einer größeren strukturellen Änderung in der Koordinationsgeometrie der Cu^{I/II}-Atome (von verzerrt tetraedrisch (Cu^I) Richtung verzerrt oktaedrisch (Cu^{II}) in DMF). Die Cu-S-Bindungen sind mit 2.390(1) (für Cu^{I}) und 2.324(1) Å (für Cu^{II})) im Längenbereich der Guanidin-Thioether-Kupfer(I)-Komplexe und ebenfalls deutlich kürzer im Vergleich zu Cu-S(Thioether)-Bindungen in Typ-1 Kupferzentren.[119] Aus der Reihe der Bis(chelat)-Komplexe zeigt nur $[Cu^{I}(mmb)_{2}](BF_{4})$ (mmb = 1-Methyl-2-(methylthiomethyl)-1H-benzimidazol) einen reversiblen Cu^{I/II}-Elektronenübergang bei $0.31 \text{ V vs. Fc/Fc}^+$ ($\Delta E = 70 \text{ mV}$ (20 mV/s), 113 mV (1 V/s)).[119a] Die Cu-S-Bindungslängen in $[Cu^{I}(mmb)_{2}](BF_{4})$ sind mit 2.621(1) wesentlich länger im Vergleich zu den in dieser Arbeit vorgestellen Kupfer(I)-Thioether-Komplexen. Daneben ist das Cu^I-Atom von den beiden Stickstoff-Donoratomen fast linear koordiniert (N-Cu-N-Bindungswinkel: 169.75(11)°). Im Gegensatz dazu liegen die Schwefel-Donoratome der Thioether auf zwei Positionen eines verzerrt tetraedrischen Koordinationspolyeders (S-Cu-S = $109.33(3)^{\circ}$). Die strukturelle Nähe zu dem entsprechenden Kupfer-Komplex $[Cu^{II}(mmb)_2(\eta^1-OClO_3)]^+$ $(S-Cu-S = 145.18(5)^{\circ}, N-Cu-N: 172.5(1) \text{ Å}, Cu-S: 2.419(1) \text{ Å})$ ermöglicht hier einen reversiblen Cu^{I/II}-Elektronen-Transfer. Cyclovoltammetrische Studien vergleichbarer halogenverbrückter Kupfer(I)-Komplexe mit drei- bzw. zweizähnigen NS-Liganden sind in der Literatur nicht bekannt.

Das Cyclovoltammogramm der Thioether-Komplexe $[Cu^{I}(TMG_{ph}S)_{2bzPy}]_{2}(PF_{6})_{2}$ (C31) und $[Cu^{I}(DMEG_{ph}S)_{2bzPy}]_{2}(PF_{6})_{2}$ ·MeCN (C32) in CH₂Cl₂ zeichnet dagegen ein reversibler Cu^{I/II}-Übergang bei 0.270 und 0.262 V vs. NHE aus ($\Delta E = 0.071$ V, $\Delta E = 0.075$ V, 4.20)). Unter Berücksichtigung des Umstandes, dass die zwei chemisch gleichwertigen Cu^I-Atome in C31 und C32 7.766(1) und 7.821(1) Å (vgl. Abb. 4.18) voneinander entfernt sind, können elektronische Wechselwirkungen zwischen ihnen ausgeschlossen werden. Damit ist eine Oxidation beider Cu^I-Atome bei gleichem Potential denkbar. Spektroelektrochemische sowie coulometrische Messungen von C31 konnten jedoch eine Ein-Elektronen-Oxidation des zweikernigen Cu^ICu^I-Komplexes zu der gemischtvalenten Cu^ICu^{II}-Spezies sowie die entsprechende Ein-Elektronen-Reduktion in den Ausgangszustand bestätigen. Abbildung 4.20 zeigt das Cyclovoltammogramm sowie die spektroskopischen Änderungen

Abb. 4.20. Während der Coulometrie von C31 aufgenommene UV/Vis-Spektren bei -25°C und einem konstanten Potential von 0.270 V vs. NHE.

im Verlauf der elektrochemischen Oxidation von C31. Das Auftreten von isosbestischen Punkten (275, 311 und 362 nm) impliziert eine einheitliche Reaktion, bei der C31 ohne weitere Fragmentierung und Zwischenstufen in das Oxidationsprodukt $C31^{ox}$ umgesetzt wird. Das UV/Vis-Spektrum der gemischtvalenten Cu^ICu^{II}-Spezies (C31^{ox}) zeichnet eine $N(\sigma) \rightarrow Cu^{II}$ LMCT-Absorptionsbande bei 292 nm ($\epsilon = 36900 \text{ M}^{-1} \text{ cm}^{-1}$) aus. Daneben liegt ein $S(\sigma) \rightarrow Cu^{II}$ LMCT-Übergang bei 414 nm ($\epsilon = 3200 \text{ M}^{-1} \text{ cm}^{-1}$), eine Cu^{II} dd-Absorptionsbande bei 594 nm ($\epsilon = 1140 \text{ M}^{-1} \text{ cm}^{-1}$) sowie ein $\pi \rightarrow \pi^*$ -Übergang des Guanidinliganden bei 236 nm ($\epsilon = 55837 \text{ M}^{-1} \text{ cm}^{-1}$) vor. Vergleichbare charakteristische Absorbtionsübergänge zeigt das UV/Vis-Spektrum des verzerrt quadratisch-planaren Kupfer(II)-Komplexes $[Cu(DMEG_{ph}StBu)Cl_2]$ (C5) (vgl. Tab. 4.14). Damit ist eine verzerrt quadratisch-planare Koordinationsgeometrie des Cu^{II}-Atoms in C31^{ox} sehr wahrscheinlich. Das EPR-Spektrum von $C31^{ox}$ (Abb. 4.21) zeigt ein nahezu axialsymmetrisches Signal mit g-Werten von $g_{\perp} = g_x \approx g_y$ (2.046, 2.065) und $g_{\parallel} = g_z$ (2.196) (A_{zz} (A_{\parallel}) = 142 G). Dieses Ergebnis spricht ebenfalls für eine quadratisch-planare Koordinationsgeometrie mit einem $d_{(x^2-y^2)^1}$ -Grundzustand. [135] Ein ähnliches EPR-Spektrum mit vergleichbaren g-Werten (g_{\perp} = 2.055, g_{\parallel} = 2.232, A_{\parallel} = 145 G, MeOH, 110 K) zeigt ebenfalls der Vergleichskomplex $[Cu(DMEG_{ph}StBu)Cl_2]$ (C5). Im Gegensatz dazu besitzen die beiden Cu^I-Atome in C31 mit Diederwinkeln von 72.9° eine verzerrt tetraedrische Koordinationsgeometrie.

Die NS-Koordinationsumgebung der Cu^I-Atome in **C31** und **C32** ermöglicht damit einen reversiblen Cu^{I/II}-Elektronentransfer im Potentialbereich von Typ 1-Kupferzentren (ca. 0.270 V vs. NHE), der mit einem Wechsel der Koordinationsgeometrie von verzerrt tetraedrisch zu verzerrt quadratischplanar einhergeht.

Neben den Liganden $(\text{Gua}_{ph}\text{S})_{2bzPy}$ (L21-1, L21-2) wurden auch die aliphatischen Analoga ($\text{Gua}_{et}\text{S})_{2bzPy}$ synthetisiert (L20-1, L20-2 vgl. Abb. 3.9). Aus der Reaktion der Liganden L21-1 und L21-2 mit [$\text{Cu}(\text{MeCN})_4$]PF₆ konn-

Abb. 4.21: EPR-Spektrum von $C31^{ox}$ in CH_2Cl_2 bei 20 K.

ten jedoch keine einkristallinen Produkte isoliert werden. Cyclovoltammetrische Untersuchen der erhaltenen Feststoffe zeigten darüber hinaus keinen Cu^{I/II}-Übergang vergleichbar zu C31 und C32. Ähnliche strukturelle Eigenschaften wie in C31 und C32 sind damit eher unwahrscheinlich, können jedoch nicht ausgeschlossen werden. Denn eine nahezu ideale tetraedrische Koordinationsumgebung der Cu^I-Atome (Diederwinkel: 90°) könnte den reduzierten Zustand soweit stabilisieren, dass eine Oxidation nicht begünstigt wird. In der Literatur sind bereits eine Reihe zweikerniger Kupfer(I)-Komplexe mit makrozyklischen $(S_2N_2)_2$ -Liganden von Comba et al. [132] sowie Turner et. al. [133] bekannt, die vergleichbar koordinierte Cu^I-Atome mit Cu-Cu-Abständen von ca. 8 Å aufweisen. Die Cu¹-Atome zeigen eine verzerrt tetraedrische Koordinationsgeometrie und ähnliche Cu-N- sowie etwas längere Cu-S-Bindungen (Cu-S: 2.333(3) - 2.380(1) Å, Cu-N: 1.962(1) - 2.024(8) Å). Die Diederwinkel definiert durch die S-Cu-N-Ebenen sind mit 74.6 bis 81.1° vergleichbar mit denen in C31 (72.9°) und C32 (77.8°). Das $Cu^{I/II}$ -Potential der Komplexe liegt zwischen 1.0 - 1.3 V vs. NHE ($\Delta E = 58$ - 110 mV). Coulometrische Messungen wurden nicht durchgeführt, und so bleibt die Frage nach einem Ein- oder Zwei-Elektronen-Oxidation dieser Komplexe ungeklärt. Das wesentlich höhere Cu^{I/II}-Potential ist vermutlich auf die makrozyklischen Liganden zurückzuführen, deren geringe Flexibilität im Vergleich zu den Liganden $(Gua_{ph}S)_{2bzPy}$ einen Übergang in die quadratisch-planare Cu^{II}-Koordinationsgeometrie deutlich erschwert und damit den reduzierten Zustand wesentlich besser stabilisiert.

Zusammengefasst besitzen Kupfer(I)-Komplexe mit zweizähnigen und dreizähnigen NS-Guanidinliganden einen irreversiblen $Cu^{I/II}$ -Übergang. Die Koordinationsumgebung der

Cu^I-Atome besitzt damit nicht die nötige Flexibilität, um einen reversiblen Elektronentransfer zu ermöglichen. Die strukturelle Reorganisation der Koordinationsgeometrien zwischen den tetraedrisch koordinierten Kupfer(I)-Komplexen und den Kupfer(II)-Oxidationsprodukten ist zu groß und wird auch in dem koordinierendem Lösungsmittel MeCN nicht begünstigt. Die Komplexe **C31** und **C32** besitzen einen reversiblen Cu^{I/II}-Übergang (0.270 V und 0.262 V vs. NHE), der im Potentialbereich von Typ 1-Kupferzentren liegt (0.2 - 1 V vs. NHE).[11, 15] Die Koordinationsumgebung der Cu^I-Atome (N₂S₂-Donorset) und die Flexibilität des Liganden bieten hier entsprechende Voraussetzungen für einen reversiblen Elektronen-Transfer. Besonders im Vergleich mit dem Komplex [Cu(DMEG_{et}StBu)₂](PF₆) (**C4**), der ähnliche strukturelle Eigenschaften wie die

Cu^I-Zentren in **C31** und **C32** ((NS)₂-Donorset, Diederwinkel 85.9°, Cu-S: 2.320(4) und 2.324(3) Å) besitzt, jedoch einen irreversiblen Cu^{I/II}-Übergang aufweist, wird der Einfluss der gesamten Ligandkonstitution auf die elektrochemischen Eigenschaften erkennbar. So zeigen vor allem einkernige und zweikernige Komplexe mit chelatisierenden N₂S₂-Liganden, die über flexible Spacer verfügen und zusammen mit einer stickstoff- und schwefelhaltigen Koordinationsumgebung eine insgesamt 'dynamische Metallumgebung' formen, einen reversiblen Cu^{I/II}-Übergang nach dem Vorbild der Typ 1-Kupferzentren.[40c]

Kapitel 5 Kupferkomplexe mit tripodalen Thioether-Guanidinliganden

5.1 Synthetische Aspekte

Um die Koordinationseigenschaften der tripodalen Thioether-Guanidinliganden zu untersuchen, wurden verschiedene Kupfersalze ($[Cu(MeCN)_4](X)_n, X = PF_6^-, ClO_4^- \text{ mit } n = 1,$ $X = OTf^{-}$ mit n = 2; CuX_n , $X = I^{-}$ mit n = 1; $X = Cl^{-}$ mit n = 1, 2) mit den Liganden in aprotischen und protischen Lösungsmitteln umgesetzt. Aus den Ansätzen konnten die mit Diethylether/Pentan (1:3) gefällten Kupferkomplexe als gelbe (Cu^I) bzw. grüne (Cu^{II}) Feststoffe isoliert werden. Einkristalline Kupfer(I)- bzw. Kupfer(II)-Komplexe konnten jedoch nur mit dem Liganden $(TMG_{et})_2N_{bz}SEt$ (L25-1) aus entsprechenden Acetonitrilbzw. THF-Lösungen gemäß dem Reaktionsschema in Abbildung 5.1 erhalten werden. Ansätze mit weiteren tripodalen Guanidinliganden $(Gua_{et})_2 N_{bz} SR$ (R = Me, Bz, ^tBu) unter Variation der Gegenionen (BPh₄⁻, SbF₆⁻), der Lösungsmittel (CH₂Cl₂, MeOH, DMF) sowie der Temperatur (Tieftemperaturkristallisation bis -80°C) führten nicht zu den erwarteten Kristallisationserfolgen. Lösungen der synthetisierten Kupfer(I)-Komplexe zeigten eine hohe Reaktivität gegenüber Sauerstoff. Gelbe bis farblose Kupfer(I)-Komplex-Lösungen wurden bei Luftzutritt oder Begasung mit elementaren Sauerstoff zu den entsprechenden grün gefärbten Kupfer(II)-Komplexen oxidiert. Daher war die Handhabung der Lösungen in einer Glovebox oder unter Schlenkbedingungen unerlässlich.

Abb. 5.1: Allgemeine Reaktionsgleichung für die Synthese von Kupferkomplexen mit dem tripodalen Thioether-Guanidinliganden L25-1.

5.2 Beschreibung der Kristallstrukturen

Die Umsetzung des tripodalen Thioether-Guanidinliganden $(TMG_{et})_2N_{bz}SEt$ (**L25-1**) mit $[Cu(MeCN)_4](ClO_4)$, CuI/NaBPh₄ und CuCl₂ führte zu den einkernigen Cu^I-Komplexen $[Cu(TMG_{et})_2N_{bz}SEt](ClO_4)$ (**C34**), $[Cu(TMG_{et})_2N_{bz}SEt](BPh_4)$ (**C35**) sowie dem Cu^{II}-Komplex $[Cu((TMG_{et})_2N_{bz}SEt)Cl]Cl$ (**C36**). [(Cu(**L25-1** $)Cl)_{0.19}(Cu($ **L25-1** $)I)_{0.81}]I\cdotMeCN$ (**C37**) kristallisierte aus einer Acetonitril-Lösung des Cu^I-Iodid-Komplexes nach der Reaktionen mit Luftsauerstoff in Form brauner Kristalle aus (Tab. 5.16). Dabei lag vermutlich eine Verunreinigung des Ansatzes mit CuCl vor. In Abbildung 5.2 sind als Beispiel die Molekülstrukturen der Komplexkationen von **C34** und **C36** dargestellt.

Tabelle 5.16: Kupfer(I)-Komplexe mit dem tripodalen Thioether-Guanidinliganden
 $(TMG_{et})_2N_{bz}SEt.$

Komplex		Kristallsystem, Raumgruppe
$\begin{split} & [\mathrm{Cu}(\mathrm{TMG}_{et})_2\mathrm{N}_{bz}\mathrm{SEt}](\mathrm{ClO}_4) \\ & [\mathrm{Cu}(\mathrm{TMG}_{et})_2\mathrm{N}_{bz}\mathrm{SEt}](\mathrm{BPh}_4) \\ & [\mathrm{Cu}((\mathrm{TMG}_{et})_2\mathrm{N}_{bz}\mathrm{SEt})\mathrm{Cl}]\mathrm{Cl} \\ & [(\mathrm{Cu}(\mathbf{L25-1})\mathrm{Cl})_{0.19}(\mathrm{Cu}(\mathbf{L25-1I})_{0.81}]\mathrm{I\cdotMeCN} \end{split}$	C34 C35 C36 C37	monoklin, $P2_1/n$ triklin, $P\overline{1}$ triklin, $P\overline{1}$ triklin, $P\overline{1}$

In allen vier Komplexen besetzt das tertiäre Amin-Stickstoffatom (N_{ax}) die apikale und die zwei Guanidin-Donorfunktionen (N_{eq}) sowie das Schwefelatom des Thioethers (S_{eq}) die äquatorialen Positionen um die Kupferatome. Die Kupferkomplexe besitzen damit pseudo trigonal-bipyramidal bzw. verzerrt trigonal-bipyramidal koordinierte Cu^I- bzw. Cu^{II}-Atome. Im Fall der Kupfer(I)-Komplexe **C34** und **C35** mit nicht bzw. schwach koordinierden Gegenionen (ClO_4^- , BPh_4^-) bleibt eine axiale Position der pseudo trigonalbipyramidalen Koordinationsgeometrie unbesetzt (links, Abb. 5.2). Diese Koordinationslücke wird bei den Kupfer(II)-Komplexen **C36** und **C37** durch ein Halogenatom zu einer verzerrt trigonal-bipyramidalen Koordinationsgeometrie komplettiert (rechts, Abb. 5.2). In den Tabellen 5.17 und 5.18 sind wichtigsten Strukturparameter der Komplexe **C34** bis **C36** aufgeführt.

Die Kupfer(I)-Komplexe **C34** und **C35** sind in ihren Strukturparametern fast identisch. Die Summe der Umgebungswinkel am Kupferzentrum beträgt in beiden Fällen 359.0°, wobei einzelne Bindungswinkel der trigonalen N₂S-Ebene von 100.83(4) bis 134.51(4)° variieren können. So weisen nur die beiden N_{Gua}-Cu-N_{Gua}-Bindungswinkel fast idealtypische Werte von 120° auf (122.23(6) (**C34**), 123.19(6)° (**C35**)). Die Cu-N_{Gua}-Bindungslängen sind im Vergleich zu der Cu-N_{ax}-Bindungslänge (im Mittel 2.225 Å) mit durchschnittlich 2.012 Å deutlich kürzer. Die Kupfer(II)-Komplexe zeigen untereinander – bis auf die Cu-X-Bindungslängen – ebenfalls sehr einheitliche Bindungsparameter. Die Summe der

Abb. 5.2: Kristallstrukturen der Komplexkationen $[Cu^{I}(L25-1)]^+$ (links, aus C34) und $[Cu^{II}(L25-1)Cl]^+$ (rechts, aus C36) ohne Wasserstoffatome.

Umgebungswinkel der beiden Kupferatome liegt bei 356.0°. Die einzelnen Bindungswinkel der trigonalen N₂S-Ebene variieren hier von 90.52(4) bis 138.87(12)° und liegen im Durchschnitt bei 119.0°. Die Cu-N_{ax}-Bindungslängen sind um ca. 0.1 Å auf durchschnittlich 2.119 Å gegenüber den Kupfer(I)-Komplexen verkürzt (Mittelwert in C34/C36: 2.225 Å). Insgesamt sind die Cu-N-Bindungslängen in den Kupfer(II)-Komplexen erwartungsgemäß kürzer im Vergleich zu den Kupfer(I)-Komplexen. In allen vier Komplexen ist das Kupferatom leicht axial verzerrt und liegt unterhalb der trigonalen Ebene, die definiert wird durch die Stickstoff-Guanidinatome sowie das Schwefelatom des Thioethers (vgl. Abb. 5.2). Die N_{ax}-Cu-N_{eq}- bzw. N_{ax}-Cu-S-Bindungswinkel sind damit kleiner als 90° und liegen im Durchschnitt bei 86.6° (C34), 86.3° (C35), 83.8° (C36) und 83.5° (C37). Die axiale Verzerrung aus der N₃S-Ebene ist abhängig von dem Ionenradius, der Elektronenkonfiguration und der Koordinationszahl des betrachteten Kupferzentrums. So zeigen fünfach koordinierte Cu^{II} (d¹⁰)-Atome (Ionenradius: 79 pm) eine größere Verzerrung als vierfach koordinierte Cu^I (d¹⁰)-Atome (Ionenradius: 74 pm).[136] Die Cu-S-Bindungslängen in C36 und C37 sind mit 2.766(1) und 2.800(1) Å sehr lang (zum Vergleich: 2.275(1) Å

(C34), 2.262(1) Å (C35)), und deuten nur sehr schwache Cu-S-Wechselwirkungen an. Für die Cu^{II}-Atome kann daher alternativ eine '4 + 1'-Koordinationsgeometrie (verzerrt quadratisch-pyramidal) angenommen werden. In dem Fall sind die Cu^{II}-Atome von einem N₃Cl-Donorset verzerrt quadratisch-planar koordiniert (Abb. 5.2). Die Summe der Umgebungswinkel der Kupferatome beträgt 359°. Die N-Cu-N- bzw. N-Cu-X-Bindungswinkel variieren dabei von 83.31(6) bis 99.80(4)° und liegen mit durchschnittlich 91.3° recht nahe am idealtypischen Wert von 90°. Mit 136.95(6) (C36) und 138.87(12)° (C37) weichen die N_{Gua}-Cu-N_{Gua}-Bindungswinkel stark vom ideale Wert (180°) ab. Dagegen liegen die N_{ax}-Cu-X-Bindungswinkel mit 172.54(4) (C36) und 172.06(8)° (C37) deutlich näher an 180°.

Als Maß für die Abweichung einer trigonal-bipyramidalen Koordinationsumgebung der Kupfer(II)-Komplexe in Richtung quadratisch-planar führten Addison and Reedijk den Parameter $\tau = (\beta - \alpha)/60^{\circ}$ ein.[137] In einem trigonal-bipyramidal koordinierten System sind β und α definiert als die zwei größten D_A-M-D_B-Bindungswinkel (D = Donorfunktion) mit $\beta \geq \alpha$. Für eine ideale C_{4v}-Symmetrie (quadratisch-planar) gilt $\beta = \alpha = 180^{\circ}$ ($\tau = 0$). Für $\beta = 180^{\circ}$ und $\alpha = 120^{\circ}$ ($\tau = 1$) liegt eine ideale trigonal-bipyramidale Koordinationsgeometrie vor. Für die Komplexe **C36** und **C37** liegt τ bei 0.59 und 0.55. Die Koordinationsgeometrie liegt damit zwischen einem trigonal-bipyramidalen und einen quadratisch-planaren Koordinationspolyeder.

Komplex	Cu-X	$\mathrm{Cu}\text{-}\mathrm{N}_{\mathrm{Gua}}^{*}$	Cu-N _{ax}	Cu-S	$C=N^*$	ρ
C34		2.010	2.216(1)	2.275(1)	1.300	1.057
C35 C36 C37	2.274(1) 2.614(1)	2.013 1.996 1.989	$2.235(1) \\2.112(1) \\2.127(3)$	2.262(1) $2.766(1)$ $2.800(1)$	1.303 1.335 1.317	1.032 1.036 1.038

Tabelle 5.17: Ausgewählte Bindungslängen [Å] der Komplexe C34 bis C37.

* Mittelwert

Tabelle 5.18: Ausgewählte Bindungswinkel [°] der Komplexe C34 bis C37.

Komplex	N _{Gua} -Cu-S	N _{Gua} -Cu-N _{Gua}	N _{ax} -Cu-S	S-Cu-X	$\rm N_{Gua}\text{-}Cu\text{-}X^*$
C34	132.30(4)/104.41(5)	122.23(6)	88.92(4)		
C35	134.51(4)/100.83(4)	123.19(6)	89.31(4)		
C36	128.68(5)/90.52(4)	136.95(6)	83.86(4)	89.89(1)	98.66
C37	125.02(9)/91.85(8)	138.9(1)	83.60(8)	90.05(2)	99.96

* Mittelwert

In der Literatur sind zahlreiche Kupfer(I)- und Kupfer(II)-Komplexe mit tripodalen N₃S-Liganden zu finden. Eine Übersicht mit den wichtigsten Strukturparametern ist in Tabelle 5.19 aufgeführt. Insgesamt zeigen fünf Kupfer(II)-Komplexe Cu-S-Bindungslängen von über 2.6 Å. Die Bindungslängen bewegen sich dabei im Bereich von 2.603(1) Å in $[Cu^{II}(T_{py})Cl](ClO_4)$ ($\tau = 0.39$, $T_{py} = 2$ -Bis(6-methyl-2-pyridylmethyl)amino-1-(phenylthio)ethan)[50] bis 2.878(1) Å in $[Cu^{II}(sL1)Cl](ClO_4)$ (sL1 = Glucopyranosid-Derivat)[138]. Die Werte für τ liegen für alle fünf Komplexe unterhalb von 0.4 (0.08 - 0.39). Die Koordinationsgeometrie tendiert damit im Vergleich zu C36 und C37 stärker Richtung quadratisch-planar. Die Cu-N-Bindungslängen weisen keine signifikanten Unterschiede auf. Die übrigen Kupfer(II)-Komplexe zeichnen deutlich kürzere Cu-S-Bindungslängen (2.332(3) bis 2.368(1) Å) sowie τ -Werte von 0.15 bis 0.83 aus. Die beiden Kupfer(I)- $Komplexe [Cu^{I}(iPrSPy_{2})](ClO_{4}) (iPrSPy_{2} = N-(2-Iso-propylthio-2-methyl) propyl-N, N-bis-independent of the second state of the second$ 2-(2-pyridyl)ethylamin)[51] und $[Cu^{I}(L^{N3S}]_{2}[B(C_{6}H_{5})_{4}]_{2}$ ($L^{N3S} = 2$ -Ethylthio-N,N-bis(pyridin-2-yl)methylethanamin)[52] besitzen eine trigonal-pyramidale Koordinationsgeometrie und mit C34 und C35 vergleichbare Cu-N- und Cu-S-Bindungslängen (Tab. 5.19). Neben tripodalen N₃S-Liganden sind auch Kupfer-Komplexe mit tripodalen N₄-Liganden bekannt. Zu dieser Gruppe gehören [Cu^I(TMG₃tren)](ClO₄), [Cu^{II}(TMG₃tren)Cl]Cl und $[Cu^{II}(TMG_3 tren)(NCMe)](ClO_4)_2$ mit dem Liganden 1,1,1-Tris(2- $[N^2-(1,1,3,3-tetramethy)$ guanidino)]ethyl)amin (TMG₃tren).[112, 142] Im Unterschied zu den Schwefel-Guanidinliganden $(Gua_{et})_2 N_{bz}SR$ mit zwei Guanidin- und einer Thioether-Donorfunktion besitzt TMG₃tren drei Guanidinfunktionen, die eine äquatoriale N₃-Ebene um die Kupferatome

bilden. Im Fall der Kupfer(II)-Komplexe sind die Kupferatome nahezu ideal trigonalbipyramidal koordiniert ($\tau = 0.96$ und 0.95), wobei die Kupferatome – vergleichbar mit **C36** und **C37** – etwas unterhalb der N₃-Ebene liegen (Cu-N₃-Abstand: 0.295, 0.245 Å; **C36**: 0.232 Å, **C37**: 0.244 Å). [Cu^I(TMG₃tren)](ClO₄) zeigt eine analoge axiale Verzerrung (Cu-N₃-Abstand: 0.186 Å), die im Fall der Kupfer(I)-Komplexe **C34** und **C35** etwas kleiner ausfällt (0.122 und 0.131 Å). Die Cu-N-Bindungslängen zeigen keine größeren Unterschiede. Insgesamt ist die Koordinationsgeometrie der Kupfer(I)-Komplexe sehr ähnlich und zeigt kaum größere strukturelle Unterschiede. Im Fall der Kupfer(II)-Komplexe tendieren die Schwefel-Analoga deutlich in Richtung einer verzerrt quadratisch-planaren Koordinationsgeometrie. Die rein stickstoffhaltigen Kupfer(II)-Komplexe besitzen dagegen einen trigonalen-bipyramidalen Koordinationspolyeder.

Interessanterweise liegen die ρ -Werte der Komplexe **C34** - **C37** deutlich über 1. Dies entspricht einer perfekten Delokalisation der C=N-Doppelbindung über die gesamte CN₃-Einheit. Für [Cu^I(TMG₃tren)](ClO₄), [Cu^{II}(TMG₃tren)Cl]Cl und [Cu^{II}(TMG₃tren)(Me-CN)](ClO₄)₂ liegen die ρ -Werte bei 0.964, 0.960 und 0.945. In den Komplexen unter Beteiligung der tripodalen Schwefel-Guanidinliganden ist die positive Ladung des Metallzentrums damit gleichmäßiger innerhalb der Guanidinfunktionen verteilt.

Komplex	$\mathrm{Cu}\text{-}\mathrm{N}_{\mathrm{eq}}{}^a$	Cu-N _{ax}	Cu-S	Cu-L _{ax}	$ au^b$	Lit.
$[Cu^{II}(sL1)(Cl)(OClO_3)]$	1.987	2.068(2)	2.878(1)	2.235(1)	с	[138]
$[Cu^{II}(N_3S)Br](ClO_4)$	1.989	2.051(8)	2.762(3)	2.375(2)	0.19	[139]
$[Cu^{II}(pbnpa)NCO](ClO_4)$	2.023	2.040(3)	2.714(3)	1.943(3)	0.08	[140]
$[Cu^{II}(L^{N3S})(L_{1/2})](ClO_4)$	1.982	2.030(1)	2.655(1)	2.000(1)	c	[52]
$[Cu^{II}(pbnpa)Cl](ClO_4)$	2.019	2.043(2)	2.660(5)	2.254(1)	0.25	[140]
$[Cu^{II}(N_3S)N_3](ClO_4)$	1.977	2.075(4)	2.605(2)	2.145(5)	0.26	[139]
$[Cu^{II}(T_{py})Cl](ClO_4)$	2.021	2.083(1)	2.603(1)	2.215(9)	0.39	[50]
$[Cu^{II}(ebnpa)N_3](ClO_4)$	2.121	2.021(1)	2.401(1)	1.965(1)	0.83	[140]
$[Cu^{II}(ebnpa)Cl](ClO_4)$	2.133	2.037(4)	2.368(1)	2.274(1)	0.63	[140]
$[Cu^{II}(MeSPy_2)(L_2)](ClO_4)_2$	2.105	2.052(4)	2.335(1)	1.990(4)	0.15	[54]
[Cu ^{II} (bdma)Cl]Cl	2.083(6)	2.143	2.332(3)	2.266(2)	0.26	[141]
$[Cu^{I}(iPrSPv_{2})](ClO_{4})$	2 008	2.173(9)	2249(3)		d	[51]
$[Cu^{I}(L^{N3S})]_{2}[B(C_{6}H_{5})_{4}]_{2}$	2.039	2.255(1)	2.202(1)		d	[51]
	0.101	0.111/0)		2.005(1)	0.00	[1.40]
$[Cu^{++}(TMG_3 tren)Cl]Cl$	2.101	2.111(3)		2.285(1)	0.96	[142]
$[Cu^{II}(TMG_3 tren)(L_2)](ClO_4)_2$	2.064	2.078(5)		2.002(5)	0.95	[142]
$[Cu^{I}(TMG_{3}tren)](ClO_{4})$	2.046	2.174(3)			e	[142]

Tabelle 5.19: Strukturparamter von Kupferkomplexen mit tripodalen N₃S-Liganden.

^{*a*} Mittelwert. ^{*b*} $\tau = (\beta - \alpha)/60^{\circ}$, ist nur für Komplexe mit fünffach koordinierten Metallatome definiert. ^{*c*} Oktaedrische Koordinationsgeometrie. ^{*d*} Trigonal-pyramidale Koordinationsgeometrie. ^{*e*} Pseudo trigonal-bipyramidale Koordinationsgeometrie. L_{1/2} = MeOH/OClO₃, L₂ = MeCN.

Insgesamt spiegeln die Kupfer(I)- und Kupfer(II)-Komplexe zwei wesentlichen Strukturmerkmale des Cu_M -Zentrums der PHM und D β H wieder: die koordinierenden Methioninsowie zwei Histidin-Donorfunktionen. Mit 2.275(1) und 2.262(1) Å zeigen die Kupfer(I)-Komplexe Cu^I -S-Bindungslängen, die mit EXAFS- und Röntgenstrukturdaten für den reduzierten Zustand der PHM und D β H übereinstimmen (Cu-S_{Met}: 2.2 - 2.3 Å). Im Fall der Kupfer(II)-Komplexe sind die Cu^{II}-S-Bindungslängen mit 2.766(1) und 2.800(1) Å ebenfalls vergleichbar mit Röntgenstrukturanalysen der oxiderten Form der PHM (2.68 Å). Des Weiteren sind die Cu^{II}-S-Bindungslängen mit ca. 2.8 Å nur etwas kürzer im Vergleich zu der Cu-S_{Met}-Bindungslänge im oxiderten und reduziertem Zustand des Azurin (3.13 Å, Typ 1-Kupferzentrum).

5.3 Spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen

Für einzelne spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen wurden die röntgenographisch charakterisierten Komplexe **C34** und **C36** ausgewählt. Um einen Einblick in die Molekülstruktur eines Kupfer(II)-Komplexes mit einem schwach koordinierendem Gegenion zu erhalten – von dem eine Röntgenstruktur nicht erhalten wurde – ist der Komplex $[Cu((TMG_{et})_2N_{bz}SEt)](OTf)_2$ (**C38**) als grüner Feststoff synthetisiert worden.

Spektroskopische Messungen von **C36** und **C38** wurden in CH_2Cl_2 durchgeführt. Grüne Lösungen der zwei Kupfer(II)-Komplexe zeigen eine $S(\sigma) \rightarrow Cu^{II}$ LMCT-Absorptionsbande bei 380(sh) und 370 nm 5.20 mit Extinktionskoeffizienten von 1623 und 2489 M⁻¹ cm⁻¹. Der Kupfer(I)-Komplex **C34** zeigt im Bereich um 370 nm keine Absorptionsbande (vgl. Tab. 5.20). Damit koordiniert ebenfalls in Lösung der S(Thioether) an die Cu^{II}-Atome. Die Messungen bestätigen auch die Ergebnisse der Röntgenstrukturanalyse von **C36** und **C37**, die schwache Cu-S(Thioether)-Wechselwirkungen ergeben hat. Die Cu^{II} d-d-Übergänge liegen bei 686 und 644 nm und besitzen entsprechend kleine Extinktionskoeffizienten (165 und 145 M⁻¹ cm⁻¹).

EPR-Untersuchungen der Kupfer(II)-Komplexe **C36** und **C38** wurden in gefrorenen Lösungen von MeCN, MeOH und EtOH bei 110 K durchgeführt. Die Ergebnisse sind in Tabelle 5.20 aufgeführt. Insgesamt zeigen die Spektren ein axiales Signal in Übereinstimmung mit einer quadratisch-pyramidalen Koordinationsgeometrie eines Cu^{II} (d⁹)-Systems ($g_{\parallel} > g_{\perp} \ge 2.00$) mit einem $d_{(x^2-y^2)^1}$ -Grundzustand. Bei trigonal-bipyramidal koordinierten Cu^{II}-Atomen liegen umgekehrte Verhältnisse für g_{\perp} und g_{\parallel} vor ($g_{\perp} > g_{\parallel}$) sowie ein $d_{(z^2)^1}$ -Grundzustand.[143] Damit besitzen beide Cu^{II}-Komplexe in Lösung eine verzerrt quadratisch-pyramidale Koordinatiosgeometrie. Im Fall von [Cu((TMG_{et})₂N_{bz}SEt)](OTf)₂ (**C38**) koordiniert vermutlich ein Trifluormethansulfonat-Anion (OTf⁻) oder ein Lösungsmittelmolekül an das Cu^{II}-Atom und bildet zusammen mit dem (TMG_{et})₂N_{bz}SEt-Liganden einen verzerrt quadratisch-pyramidalen Koordinationspolyeder vergleichbar mit der Struktur von **C36** und **C37**. Bestätigt wird diese Annahme durch das EPR-Spektrum von **C38** in MeCN, das vergleichbare g-Werte aufweist wie **C36** (vgl. Tab. 5.20).

In der Literatur sind nur wenige einkernige Kupfer(II)-Komplexe mit tripodalen N₃S-Liganden sowie einer quadratisch-pyramidalen Koordinationsgeometrie zusammen mit entsprechenden EPR-Daten veröffentlicht. Ein Vertreter ist der bereits von Kodera et al. erwähnte Komplex [Cu^{II}(T_{py})Cl](ClO₄) mit einem verzerrt quadratisch-pyramidal koordiniertem Cu^{II}-Atom.[50] Die Komplexe [Cu^{II}(L)X](ClO₄) (X = Cl⁻, NCO⁻, L = N-2-(Phenylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amin (pbnpa), N-2-(Ethylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amin (ebnpa)) von Tubbs[140] besitzen ebenfalls quadratisch-pyramidal koordinierte Kupfer(II)-Atome. Die EPR-Spektren dieser Systeme zeigen ein axiales Signal mit ähnlichen g- und A-Werten (vgl. Tab. 5.20). Daneben existiert eine Vielzahl von quadratisch-pyramidal koordinierten Cu^{II}-Komplexen mit tripodalen Stickstoffliganden, die ähnliche g- und A-Werte aufweisen.[143]

Die Untersuchungen der elektrochemischen Eigenschaften erfolgten mit den Komplexen C34, C36 und C38. Cyclovoltammetrische Messungen wurden bei Raumtemperatur unter einer Argon-Schutzgasatmosphäre in Acetonitril und Dichlormethan durchgeführt ($c_{Komplex}$: 0.001 mol/l, $c_{Leitsalz}$: 0.2 mol/l; $v_s = 100$ mV/s, planare Pt-Arbeitselektrode (RDE), interner Standard: Fc). Die Ergebnisse der Messungen sind in Tabelle 5.20 aufgeführt. Das Cyclovoltammogramm von C34 zeigt in Acetonitril einen quasi-reversiblen Cu^{I/II}-Übergang bei $E_{1/2} = 0.091$ V vs. NHE mit einen Abstand der Oxidations- und Reduktionswelle von $\Delta E = 100$ mV ($\Delta E = |E_{pa} - E_{pc}|$). Der entsprechende Kupfer(II)-Komplex C38 wird beim gleichen Potential ($E_{1/2} = 0.095$ V vs. NHE, $\Delta E = 0.105$ V) zum Kupfer(I)-Komplex reduziert. Damit kann ein reversibler Elektronentransfer zwischen den Komplexen C34 und C38 nach Schema 5.3 angenommen werden.

Das Cyclovoltammogrammm von **C36** zeigt dagegen einen $\operatorname{Cu}^{\operatorname{II}/\operatorname{I}}$ -Übergang bei $\operatorname{E}_{1/2} = -0.157$ V vs. NHE ($\Delta E = 0.137$ V). Der entsprechende Komplex [$\operatorname{Cu}^{\operatorname{I}}((\operatorname{TMG}_{et})_2 \operatorname{N}_{bz}\operatorname{SEt})\operatorname{Cl}$] wird beim gleichen Potential oxidiert ($\operatorname{E}_{1/2} = -0.150$ V vs. NHE, $\Delta E = 0.143$ V). Die Molekülstruktur von [$\operatorname{Cu}^{\operatorname{I}}((\operatorname{TMG}_{et})_2 \operatorname{N}_{bz}\operatorname{SEt})\operatorname{Cl}$] ist nicht bekannt. Jedoch ist aufgrund der cyclovoltammetrischen Messungen eher eine verzerrt quadratisch-pyramidale Koordinationsgeometrie gegenüber der trigonal-biypramidalen bzw. pseudo trigonal-biypramidalen Variante (wie in [$\operatorname{Cu}^{\operatorname{I}}((\operatorname{TMG}_{et})_2 \operatorname{N}_{bz}\operatorname{SEt})$](ClO₄) (**C34**)) zu vermuten. In dem Fall wird die Cu^I-Oxidationsstufe deutlich weniger stabilisiert und der Cu^{I/II}-Übergang findet bereits im negativen Potentialbereich statt.

Die Klassifizierung der Elektronenübergänge als quasi-reversibel ($\Delta E = |E_{pa} - E_{pc}| \gg 59$ mV) ist ein Hinweis auf einen langsamen Elektronen-Transfer-Prozess mit entsprechend

Abb. 5.3: Vermuteter Elektronentransfer zwischen den Komlexkationen $[Cu^{I}((TMG_{et})_2N_{bz}SEt)]^+$ (in **C34**) und $[Cu^{II}((TMG_{et})_2N_{bz}SEt)L]^{+/2+}$ (in **C38**, L = MeCN, OTf⁻).
Komplex	$S(\sigma) \rightarrow Cu^{II} \text{ [nm]}$	$g_{\parallel}/g_{\perp}/A_{\parallel}~[G]$	$\mathbf{E}_{1/2} \ [\mathbf{V}]^a$	$\mathrm{E}_{pa}/\mathrm{E}_{pc}~[\mathrm{V}]^a$
C34			0.091^{c}	0.178/0.006 0.513/0.054
C36	380(sh) (1623)	$2.231/2.066/138^c$ $2.232/2.055/145^e$	-0.157	-0.089/-0.226
C38	361 (2489)	$2.232/2.059/140^c$	0.095^{c}	0.184/0.006 0.416/-0.314
$[Cu^{II}(T_{py})Cl](ClO_4)$ $[Cu^{II}(sL1)(Cl)(OClO_3)]$	410 (430)	2.25/2.09/101	0.124^b -0.108	,
$[Cu^{II}(ebnpa)Cl](ClO_4)$ $[Cu^{I}(L^{N3S})](ClO_4)$		2.223/2.032/166	0.150	
$[CuI(TMG_3tren)](SbF_6$)		-0.140	-0.082/-0.246

 Tabelle 5.20:
 Übersicht der spektroskopischen, magnetochemischen und elektrochemischen

 Eigenschaften ausgewählter Kupferkomplexe.

 a vs. NHE. b vs. SCE. c In MeCN. d In CH_2Cl_2. e MeOH.

kleinen Elektronentransferraten $k_{\rm ET}$ (10⁻¹ > $k_{\rm ET}$ > 10⁻⁵ cm·s⁻¹)[144], der einhergeht mit einer strukturellen Änderung in der Koordinationsgeometrie der Kupferatome. Der Prozess kann mit einem klassischen 'square-scheme' Mechanismus (erweiterter ECE-Mechanismus) beschrieben werden, wobei nach einzelnen Elektronentransferschritten koordinative Bindungen gebrochen sowie neu aufgebaut werden, die zu einem instabilen Intermediat führen. Diese Zwischenstufe lagert sehr schnell in den stabilen Endkomplex um und ist daher elektrochemisch nicht detektierbar. [40b] Interessanterweise zeigten cyclovoltammetrische Untersuchungen von C34 und C38 in Dichlormethan höhere Cu^{I/II}-Potentiale. So liegt das $Cu^{I/II}$ -Potential von C34 – verschoben um ca. 400 mV – bei 0.513 V vs. NHE (E^{pc} $= 0.054 \text{ V}, \Delta E = 0.567 \text{ V}$). C38 wird bei einem Potential von 0.416 V vs. NHE oxidiert $(E^{pc} = -0.314 \text{ V}, \Delta E = 0.730 \text{ V})$. Damit begünstigt das Acetonitril durch koordinative Wechselwirkungen mit dem Kupferzentrum oder Solvatisierungseffekte die Bildung der instabilien Zwischenstufe und führt zu einem deutlich kleineren Cu^{I/II}-Potential (für C34) und ΔE -Werten gegenüber der Messungen in CH₂Cl₂. Gleichzeitig sind die abweichenden Cu^{I/II}-Potentiale sowie Δ E-Werte für C34 und C38 ein Hinweis auf unterschiedliche Reaktionsmechanismen bei der Bildung der jeweiligen Oxidations- bzw. Reduktionsprodukte. So ist ein Einfluss der schwach koordinierenden Trifluormethansulfonat-Anionen im Fall von C38 auf dem Reaktionsmechanismus denkbar.

In der Literatur sind wenige Kupferkomplexe mit schwefelhaltigen tripodalen N₃S-Liganden und ihre elektrochemischen Eigenschaften beschrieben (Tab. 5.20). Der bereits von Kodera et al.[50] erwähnte Komplex [Cu^{II}(T_{py})Cl](ClO₄) zeigt einen Cu^{II/I}-Übergang bei 0.126 V vs. SCE. Den Komplex $[Cu^{I}(L^{N3S})](ClO_4)$ von Karlin et al.[52] zeichnet ein quasireversibler $Cu^{I/II}$ -Übergang bei 0.150 V vs. NHE aus. Die Komplexe **C34** und **C35** weisen aufgrund ähnlicher struktureller bzw. magnetochemischer Parameter vergleichbare Potentiale auf. Der oktaedrisch koordinierte Komplex $[Cu^{II}(sL1)(Cl)(OClO_3)][138]$ mit einem terminalen Chlorid-Liganden – vergleichbar zu **C36** – wird bei einem Potential von -0.108 V vs. NHE reduziert ($\Delta E = 0.122$ V).

Insgesamt bestätigen die cyclovoltammetrischen Messungen den Trend, dass eine S(Thioether)-Donorgruppe – aufgrund der guten Polarisierbarkeit des Schwefelatoms – den Cu¹-Oxidationszustand stabilisiert und das Oxidationspotential gegenüber analog aufgebauten Kupfer(I)-Komplexen mit rein stickstoffhaltigen tripodalen Liganden erhöht. So wird zum Beispiel der Komplex $[Cu^{I}(TMG_{3}tren)](SbF_{6})$ mit dem Tris-Guanidinliganden TMG_{3}tren bei $E_{1/2} = -0.140$ V vs. NHE ($\Delta E = 0.164$ V) oxidiert.[88] Weitere Kupfer(I)-Komplexe zeigen ebenfalls eine Verschiebung des Oxidationspeaks in den negativen Potentialbereich um bis zu 0.300 V.[145] Das Cu^{I/II}-Potential von C34 liegt mit ca. 0.090 (in MeCN) und 0.284 V vs. NHE (in CH_2Cl_2) im Bereich von Typ 1-Kupferzentren, die zwischen 0.20 - 1.0 V vs. NHE oxidiert werden. Der reversible Cu^{I/II}-Elektronentransfer im Fall von C34 und C38 kann mit dem Schema in Abbildung 5.3 beschrieben werden. Aus den Molekülstrukturen von C34 und C36 lässt sich für den Transferprozess eine Anderung der Koordinationsgeometrie der Kupferatome von pseudo trigonal-bipyramidal (ptb) zu einer 'Übergangs'-Koordinationsgeometrie zwischen verzerrt quadratisch-pyramidal und trigonal-biyparamidal (qp-tb) ($\tau \sim 0.6$) ableiten. Die ungesättigte Koodinationsumgebung im Fall des Cu^{II}-Komplexes wird ausgehend von der ptb-Koordinationsgeometrie (links, Abb. 5.4) durch die Anbindung des axialen Liganden L komplettiert (rechts, Abb. 5.4). Im Fall von C36 handelt es sich um einen Chlorid-Liganden. Bei nicht koordinierden Gegenionen (wie im Fall von C38) ist die Anbindung eines Lösungsmittelmoleküls (z.B. Acetonitril) oder eines OTf-Anions denkbar. Dieser Zustand ist vergleichbar mit

Abb. 5.4: Koordinationsgeometrien der Cu-Atome in C34 (links) sowie in C36 (L =Cl⁻) und vermutlich in C38 (L = MeCN oder OTf⁻) (rechts).

Bindungslänge/Winkel	C34	C36	C37
Cu1-N7	2.216(1)	2.112(1)	2.107(3)
Cu1-N1	2.024(1)	1.968(1)	1.970(3)
Cu1-N4	1.993(1)	2.023(1)	2.008(3)
Cu1-S1	2.275(1)	2.766(1)	2.800(1)
Cu-X		2.274(1)	2.614(1)
N1-Cu1-N4	122.23(6)	136.95(6)	138.87(12)
N4-Cu1-N7	86.00(6)	83.31(6)	82.99(11)
N1-Cu1-N7	84.91(6)	84.37(6)	83.97(12)
S1-Cu1-N7	88.92(9)	83.86(4)	83.60(8)
S1-Cu1-N4	132.30(4)	128.68(5)	125.02(9)
S1-Cu1-N1	104.41(5)	90.52(4)	91.85(8)
Cl1-Cu1-N7		172.54(4)	172.06(8)

Tabelle 5.21: Ausgewählte Strukturdaten (Winkel [°], Bindungslängen [Å]) von C34, C36und C37.

der Situation in Typ 1-Kupferzentren: hier wird die primäre Koordinationsumgebung des Cu^{II} -Atoms bestehend aus zwei N_{His} - und einer S_{Cys} -Donorfuktion ([$Cu^{II}(His)_2(Cys^-)$]) durch ein schwach gebundenes O_{Glu} - oder S_{Met} -Atom abgesättigt (vgl. Kap. 1.4.1).

Ausgewählte Strukturdaten der ptb- und qp-tb-Koordinationsgeometrie sind in Tabelle 5.21 aufgeführt. Auffällig ist die längere Cu-S-Bindung sowie kleine Änderungen der N_{eq}-Cu1-N_{eq}- und S1-Cu1-N_{eq}-Bindungswinkel beim Übergang in die qp-tb-Koordinationsgeometrie. Die N_{eq}-Cu1-N_{ax}- und S1-Cu1-N_{ax}-Bindungswinkel zeigen – bis auf S1-Cu1-N7 – dagegen keine größeren Abweichungen.

Zusammenfassend besitzt die Koordinationsumgebung der Kupferatome zwei Freiheitsgrade: (i) Die Cu-S-Bindungslänge kann ladungsabhängig variiert werden. (ii) Es liegt eine Koordinationslücke vor für die Bindung eines weiteren Co-Liganden. Beide Freiheitsgrade bieten der Koordinationsumgebung die nötige Flexibilität, um einen reversiblen Elektronentransfer zu ermöglichen. Die strukturelle Reorganisation der Koordinationsgeometrien wird durch die relativ starre Koordinationsumgebung der verbleibenden N-Donorfunktionen des tripodalen Guanidinliganden deutlich begünstigt.

5.4 Sauerstoffaktivierung

Sauerstoffaktivierende Kupferproteine zählen zu den biologisch wichtigsten Metalloenzymen. Zu dieser Proteinfamilie gehören auch die Dopamin β -Hydroxylase (D β H) und die Peptidylglycin α -hydroxylierende Monooxygenase (PHM), die ein Kupferzentrum mit einer schwefelhaltigen Koordinationsumgebung (S(Met)) besitzen (vgl. Kap. 1.5). Die

Sauerstoffaktivierung von Kupfer-Modellkomplexen mit NS-Chelatliganden, ist im Gegensatz zu den Reaktionen der entsprechenden rein stickstoffhaltigen Systeme mit Disauerstoff, kaum erforscht. Zahlreiche Untersuchungen zeigten, dass Kupfer(I)-Komplexe mit unterschiedlich substituierten tripodalen stickstoffhaltigen Liganden in der Lage sind, Sauerstoff-Addukte zu stabilisieren. [29, 30] Aus dem Bereich der Guandinliganden gelang kürzlich Schindler et al. die erste strukturelle Charakterisierung der end-on η^1 -Superoxo-Kupfer(II)-Spezies $[Cu(TMG_3 tren)O_2]^+$ mit dem tripodalen Tris-Guanidinliganden 1,1,1-Tris(2-[N²-(1,1,3,3-tetramethylguanidino)]ethyl)amin (Abb. 1.5).[88] Bekannt sind auch Kupfer(I)-Komplexe mit zweizähnigen Guanidinliganden, die mit Disauerstoff zu einer $Bis(\mu-oxo)dikupfer(III)$ - oder $(\mu-\eta^2:\eta^2-Peroxo)dikupfer(II)$ -Spezies reagieren (vgl. Abb. 1.5).[90] Von ersten Erfolgen bei der Sauerstoffaktivierung mit tripodalen NS-Liganden berichteten kürzlich Karlin et al. [52] So führte die Reaktion von $[Cu^{I}(L^{N3S})](ClO_{4})$ (tripodaler Schwefel-Ligand: $L^{N3S} = 2$ -Ethylthio-N,N-bis(pyridin-2-yl)methylethanamin) mit Disauerstoff zu einer end-on μ -1,2-Peroxodikupfer(II)-Spezies (vgl. Abb. 1.5). Vor diesem Hintergrund sollten auch ausgewählte Kupfer(I)-Komplexe mit den tripodalen Thioether-Guanidinliganden (Gua_{et})₂N_{bz}SR (R = Me, Et, ^tBu, Bz) auf ihre Fähigkeit, Kupfer-Sauerstoff-Addukte zu stabilisieren, untersucht werden.

Die Reaktion der Kupfer(I)-Komplexe mit Disauerstoff wurde in einer Tieftemperatur-Stopped-Flow Anlage bei -75°C in Aceton verfolgt. Als Testsysteme wurden die beiden Komplexe $[Cu^{I}((TMG_{et})_{2}N_{bz}SMe)](SbF_{6})$ ($[Cu^{I}(L25-1)](SbF_{6})$) und $[Cu^{I}((TMG_{et})_{2}N_{bz}S-1)](SbF_{6})$) Bz](SbF₆) ([Cu^I(**L28-1**)](SbF₆)) ausgewählt, die vor der Reaktion mit Disauerstoff 'in situ' hergestellt wurden. Abbildung 5.5 zeigt den spektroskopisch verfolgten Reaktionsverlauf von $[Cu^{I}(L25-1)](SbF_{6})$ und $[Cu^{I}(L28-1)](SbF_{6})$ mit Disauerstoff. In beiden Fällen ist die Ausbildung einer Absorptionsbande bei ca 370 nm zu erkennen, die vermutlich auf eine Bis $(\mu$ -oxo)dikupfer(III)-Spezies hindeutet. Hierbei koordiniert die Thioether-Donorgruppe des tripodalen Liganden vermutlich nicht an die beiden Cu^{III}-Atome (Abb. 5.6). In dem Fall können die tripodalen Thioether-Guanidinliganden als 'tridentate' Ligandensysteme mit einem N_3 -Donosatz betrachtet werden. Diese Interpretation wird durch die Untersuchungen von Ueno et al. [146] sowie Karlin et al. [52a] untermauert. So reagiert der Kupfer(I)-Komplex [Cu^I(^{Phe}L^{Pym2})](ClO₄) (tridentater Stickstoff-Ligand: N,N'-Di(2-pyridylmethyl)-2-phenylethylamin) von Ueno et al. mit Disauerstoff zu einer Bis(μ oxo)dikupfer(III)-Spezies mit einer intensiven Absorptionsbande bei 385 nm. Weitere Kupfer(I)-Komplexe mit tridentaten N-Liganden auf der Basis von unterschiedlich substituierten (2-Pyridyl)alkylaminen bilden bei der Umsetzung mit Disauerstoff neben der $Bis(\mu-oxo)dikupfer(III)$ - auch die $(\mu-\eta^2:\eta^2-Peroxo)dikupfer(II)$ -Spezies.[147] Die Peroxo-Spezies besitzen jedoch charakteristische LMCT-Absorptionsbanden in einem Wellenlängenbereich von 500 bis 600 nm, die hier nicht vorliegen. Die Ausbildung einer Sauerstoff-Spezies und die gleichzeitige Koordination der Thioether-Donorgruppe würde vermutlich

Abb. 5.5: Reaktion von [Cu(L28-1)](SbF₆) (links) und [Cu(L25-1)](SbF₆) (rechts) mit Disauerstoff in Aceton bei -75°C. Abgebildet ist der Reaktionsverlauf der ersten 225 sec.

nicht zu einer Kupfer(III)-Spezies führen, sondern eher die Ausbildung einer Peroxodikupfer(II)-Spezies begünstigen. So beobachten Karlin et al. die Bildung einer end-on μ -1,2-Peroxodikupfer(II)-Spezies mit dem eingangs beschriebenen tripodalen Schwefel-Liganden L^{N3S}.[52] Diese Spezies besitzt ebenfalls charaktertische LMCT-Absorptionsbanden bei 530 und 605 nm, die bei der Reaktion von [Cu(L28-1)](SbF₆) und [CuL25-1)](SbF₆) mit Disauerstoff nicht beobachtet werden. Die Bildung einer end-on η^1 -Superoxo-Kupfer(II)-Spezies – vergleichbar zu [Cu(TMG₃tren)O₂]⁺ (Absorptionsbanden bei 442 und 690 nm) von Schindler et al. – kann aufgrund einer fehlenden LMCT-Absorptionsbande ebenfalls ausgeschlossen werden.

Insgesamt scheint der RSPhCH₂-Substituent der Thioether-Guanidinliganden, der über

Abb. 5.6: Reaktion von $[Cu(L28-1)](SbF_6)$ und $[Cu(L25-1)](SbF_6)$ mit Disauerstoff zu der vermuteten $Bis(\mu-\infty o)dikupfer(III)$ -Spezies.

einen C3-Baustein mit dem restlichen 'tridentaten' $(N_{Gua})_2 N_{Amin}$ -Guanidinsystem verbunden ist, aus sterischen Gründen nicht in der Lage zu sein, an das Cu^{II}-Atom einer Peroxodikupfer(II)-Spezies zu binden. Diese Annahme wird durch die beiden Kupfer(II)-Komplexe C36 und C37 gestützt, die sehr lange Cu-S-Bindungen von 2.766(1) und 2.800(1) Å aufweisen (vgl. Kap. 5.2). Die Substitution der RSPhCH₂-Gruppe durch sterisch weniger anspruchsvolle aliphatische Reste wie z.B. die RS(CH₂)₂- oder RSCH₂-Einheit könnte einen Ansatzpunkt liefern, um die Koordination des Thioethers zu begünstigen.

Kapitel 6 Kupferkomplexe mit Disulfid- und Thiolat-Guanidinliganden

Die Synthese von Disulfid- bzw. Thiolat-Kupferkomplexen erfolgte ausgehend von den Disulfid-Guanidinliganden **L22-1** und **L22-2** ($(Gua_{ph}S)_2$), sowie den zweizähnigen Guanidinliganden **L6-1** und **L6-2** ($Gua_{ph}SCPh_3$). Die Angabe einer allgemeinen Syntheseroute für die Darstellung der Disulfid- bzw. Thiolat-Kupferkomplexe ist wie im Fall der Thioether-Kupferkomplexe (Kap. 4 und 5) nicht möglich. Spezielle synthetische Aspekte einzelner Komplexe werden im jeweiligen Kapitel behandelt. Die Umsetzung der Disulfid-

Abb. 6.1: Mögliche Reaktionswege für die Bildung der charakterisierten Thiolat- und Disulfid-Komplexe in Abbildung 6.2.

und Thioether-Guanidinliganden mit verschiedenen Kupfersalzen führte in einer Reihe unerwarteter Reaktionen zur Bildung von zahlreichen neuartigen Disulfid- bzw. Thiolat-Kupferkomplexen. Die Spaltung der Disulfid-Liganden sowie der Ph₃S-C-Bindung der Trityl-Thioether-Liganden konnte dabei als geeignete Synthesestrategie für Thiolat-Kupferkomplexe etabliert werden. Abbildung 6.1 zeigt in einer allgemeinen schematischen Übersicht die vermuteten Reaktionswege für die Bildung der Thiolat- und Disulfid-Komplexe, die in Abbildung 6.2 aufgeführt sind (siehe auch Kap. 6.6). Dabei zeigten die aromatischen Liganden L22-1, L22-2 sowie L6-1 und L6-2 die Fähigkeit, das 2-(Guanidino)benzolthiolat (Gua_{ph}S⁻) zu bilden. Insgesamt gelang es mit dem neuen Thiolat-Liganden Gua_{ph}S⁻, neben reinen Kupfer(I)-Komplexen auch chemisch und spektroskopisch reizvolle sowie biologisch relevante gemischtvalente Cu^{I/II}-Thiolatkomplexe herzustellen.

Abb. 6.2: Übersicht der charakterisierten Disulfid- und Thiolat-Kupferkomplexe.

6.1 Ein neuartiger Kupfer-Thiolat-Cluster vom Typ [Cu^I₄Cu^{II}₂(Gua_{ph}S)₆]X₂

6.1.1 Synthetische Aspekte

Im Laufe der Untersuchungen zum Reaktionsverhalten der Trityl- und Disulfid-Guanidinliganden gegenüber verschiedenen Kupfersalzen konnten mehrere Wege für die Synthese des gemischtvalenten Kupfer-Thiolat-Clusters $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6]^{2+}$ identifiziert werden. Die Umsetzung der Thioether-Guanidinliganden L6-1 oder L6-2 mit $[Cu(MeCN)_4]PF_6$ (Verhältnis: 1 : 0.5) in Acetonitril führte zu einer schwach rötlichen Lösung, die innerhalb kürzester Zeit die Farbe nach tiefgrün wechselte. Parallel dazu konnte die Bildung eines Niederschlages beobachtet werden. Die Lösung wurde für eine halbe Stunde am Rückfluss erhitzt. Langsames Abkühlen der dunkel grünen bis schwarzen Lösung führte zu Bildung von farblosen Kristallen. Aus der abgekühlten und filtrierten Lösung kristallisierten nach mehrtägiger Diffusion von Diethylether schwarze Kristalle von $[\operatorname{Cu}_{4}^{\mathrm{I}}\operatorname{Cu}_{2}^{\mathrm{II}}(\operatorname{TMG}_{ph}\mathrm{S})_{6}](\mathrm{PF}_{6})_{2}\cdot 2\mathrm{MeCN} \quad (\mathbf{C39}) \quad \mathrm{bzw.} \quad [\operatorname{Cu}_{4}^{\mathrm{I}}\operatorname{Cu}_{2}^{\mathrm{II}}(\mathrm{DMEG}_{ph}\mathrm{S})_{6}](\mathrm{PF}_{6})_{2}\cdot 4\mathrm{MeCN}$ (C40) aus. Mit den Kupfersalzen $[Cu(MeCN)_4]X$ (X = ClO_4^- , OTf^-) wurden vergleichbare Reaktionen beobachtet, die zu den Verbindungen C42 und C43 führten (vgl. Tab. 6.22). Die nach dem Abkühlen erhaltenen farblosen Kristalle konnten ebenso wie der ausgefallene Niederschlag als das Nebenprodukt N-Trityl-2-(tritylthio)anilin identifiziert werden. Auch die Reaktion der Disulfide L22-1 und L22-2 mit CuCl (Verhältnis 1:0.5) in MeCN führte nach dem Erhitzen des Reaktionsgemisches für 6h am Rückfluss zur Bildung von schwarzen Lösungen. Langsames Abkühlen einer heiß gesättigten Reaktionslösung von L22-2 mit CuCl führte zur Bildung von schwarzen Kristallen der gemischtvalenten Verbindung $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6] (CuCl_2)_2 \cdot 2MeCN$ (C44). Die Umsetzung von CuX (X = Br⁻, Cl⁻) mit den Liganden L6-1 oder L6-2 in MeCN ergab blau/grüne Lösungen, aus denen dunkelgrüne Feststoffe isoliert werden konnten. Spektroskopische Untersuchungen der erhaltenen Feststoffe zeigten eindeutig charakteristische Signaturen der gemischtvalenten

Tabelle 6.22: Dargestellte $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6] X_2$ -Komplexe ausgehend von den Liganden L6-
1, L6-2, L22-1 und L22-2.

Komplex		Kristallsystem, Raumgruppe
$\begin{split} & [\mathrm{Cu}^{\mathrm{I}}{}_{4}\mathrm{Cu}^{\mathrm{II}}{}_{2}(\mathrm{TMG}_{ph}\mathrm{S})_{6}](\mathrm{PF}_{6})_{2}\cdot 2\mathrm{MeCN} \\ & [\mathrm{Cu}^{\mathrm{I}}{}_{4}\mathrm{Cu}^{\mathrm{II}}{}_{2}(\mathrm{DMEG}_{ph}\mathrm{S})_{6}](\mathrm{PF}_{6})_{2}\cdot 4\mathrm{MeCN} \\ & [\mathrm{Cu}^{\mathrm{I}}{}_{4}\mathrm{Cu}^{\mathrm{II}}{}_{2}(\mathrm{TMG}_{ph}\mathrm{S})_{6}](\mathrm{OTf})_{2}\cdot 2\mathrm{Me4NOTf} \\ & [\mathrm{Cu}^{\mathrm{I}}{}_{4}\mathrm{Cu}^{\mathrm{II}}{}_{2}(\mathrm{DMEG}_{ph}\mathrm{S})_{6}](\mathrm{OTf})_{2}\cdot 8\mathrm{MeCN} \end{split}$	C39 C40 C41 C42	hexagonal, R3c triklin, P1 triklin, P1 monoklin, C2/c
$[\operatorname{Cu}^{I}_{4}\operatorname{Cu}^{II}_{2}(\operatorname{TMG}_{ph}\operatorname{S})_{6}](\operatorname{ClO}_{4})_{2}\cdot 2\operatorname{MeCN}$ $[\operatorname{Cu}^{I}_{4}\operatorname{Cu}^{II}_{2}(\operatorname{DMEG}_{ph}\operatorname{S})_{6}](\operatorname{CuCl}_{2})_{2}\cdot 2\operatorname{MeCN}$	C43 C44	monoklin, P $2_1/n$ triklin, P $\overline{1}$

Sechskerner $[Cu^{I}_{4}Cu^{II}_{2}(Gua_{ph}S)_{6}]^{2+}$. Als Gegenionen liegen vermutlich $[CuX_{2}]^{-}$ -Anionen vor.

Überlegungen zu möglichen Reaktionsmechanismen, die zu einer partiellen Oxidation der eingesetzen Kupfer(I)-Ionen führen, werden im Kapitel 6.6 vorgestellt.

6.1.2 Beschreibung der Kristallstrukturen

Die Ergebnisse der Röntgenstrukturanalysen ergaben für alle Kupfer-Thiolat-Cluster des Typs $[Cu_4^ICu_2^{II}(Gua_{ph}S)_6]X_2$ (Tab. 6.22) die gleiche Molekülstruktur mit ähnlichen Bindungsparametern sowie einer mittleren Oxidationsstufe der Kupferionen von $+1\frac{1}{3}$. Das Grundgerüst der Moleküle bilden sechs 2-(Guanidino)benzolthiolat-Liganden (Gua_{ph}S⁻) sowie sechs Kupferatome, die den kationischen $[Cu_6(RS)_6]^{2+}$ -Kern bilden. Dabei koordinieren die N_{Gua}-Donorfunktionen jeweils an ein Kupferatom, während die Thiolat-Schwefelatome – unter Ausbildung einer μ_3 -Schwefelbrücke – an drei Kupferatome binden. Abbildung 6.3 zeigt die Molekülstruktur des Komplexkations $[Cu_6(TMG_{ph}S)_6]^{2+}$ der Verbindung C39. In den Tabellen 6.23 und 6.24 sind die wichtigsten Strukturparameter der Komplexe C39 bis C44 zusammengefasst. Das charakteristische Strukturmerkmal der Komplexe – der $[Cu_6(RS_6)]^{2+}$ -Kern – besteht aus sechs thiolat-verbrückten zweikernigen Cu₂S₂-Einheiten. Interessanterweise hat die Cu₆(RS)₆-Einheit seine strukturellen Vorbilder in den Metall-Schwefel-Gerüsten der sechskernigen Sulfid-Komplexe des Eisens mit

Abbildung 6.3: Molekülstruktur des Komplexkations $[Cu_6(TMG_{ph}S)_6]^{2+}$ (aus C39).

Komplex	${ m Cu-S^a/Cu-S^b}$	Cu-N	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	C=N	ρ
C39	$2.310(4)/2.451(5)^c$	$2.001(1)^{c}$	$2.598(1)^c$	1.388(2)	0.953
C40	2.284/2.440	2.023	2.577	1.338	0.974
C41	2.292/2.428	2.008	2.612	1.340	0.993
C42	2.296/2.440	2.008	2.577	1.335	0.993
C43	2.289/2.446	2.001	2.588	1.342	0.991
C44	2.286/2.441	2.011	2.568	1.311	0.971

Tabelle 6.23: Ausgewählte Bindungslängen und Atomabstände (Mittelwerte in [Å]) der Komplexe C39 bis C44.

^{*a*} Mittelwerte der Cu-S-Bindungslängen in den hexagonalen Cu₃S₃-Basisflächen. ^{*b*} Mittelwerte der Cu-S-Bindungslänge zwischen zwei hexagonalen Cu₃S₃-Basisflächen. ^{*c*} Kein Mittelwert.

Komplex	$S-Cu-S^a$	Cu-S-Cu ^a	S-Cu-S	Cu-S-Cu	N-Cu-S ^b
C39	112.63	56.72	$94.70(1)^c$	$109.89(2)^c$	87.73^{c}
C40	113.32	65.88	94.02	108.90	87.27
C41	112.33	67.15	97.40	107.75	88.76
C42	113.46	65.76	94.08	108.71	86.96
C43	113.37	66.20	97.08	108.23	88.08
C44	113.55	65.73	94.32	108.86	87.23

Tabelle 6.24: Ausgewählte Bindungswinkel (Mittelwerte in $[^{\circ}]$) der Komplexe C39 bis C44.

 a Winkel innerhalb einer Cu2S2-Einheit. b N- und S-Donorgruppe befinden sich am gleichen Liganden. c kein Mittelwert.

der Zusammensetzung $[\text{Fe}_6\text{S}_6\text{X}_6]^{3-/2-}$ (X = Cl, Br, I), für die die Bezeichnung Prisman-Cluster geprägt wurde.[148] Der Aufbau der $[\text{Cu}_6(\text{RS})_6]^{2+}$ -Einheiten lässt zwei alternative Strukturbeschreibungen zu. Im ersten Fall betrachtet man die sechs Kupferatome auf den Ecken eines Defektkubans mit zwei unbesetzten gegenüberliegenden Würfelecken (Struktur **A**, Abb. 6.4). Die sechs Würfelflächen werden von den μ_3 -Schwefelatomen überkappt, die die Ecken eines verzerrten Oktaeders besetzen (Struktur **B**, Abb. 6.4). Alternativ kann der Aufbau der $[\text{Cu}_6(\text{RS})_6]^{2+}$ -Einheiten aus einem hexagonalen Prisma abgeleitet werden, in dem die Kupfer- und Schwefelatome alternierend die Ecken der beiden sesselförmigen Cu₃S₃-Basisfächen einnehmen (Struktur **C**, Abb. 6.4). Die Kupferatome der Cu₃S₃-Einheiten bilden dabei ein gleichseitiges Dreieck mit Kupferabständen von 3.757 Å und Cu-Cu-Cu-Winkeln von 60°. Die mittleren Cu-S-Cu- und S-Cu-S-Bindungswinkeln liegen bei 109.0 und 94.0°. Die Koordinationsgeometrie der Kupferatome kann als verzerrt tetraedrisch beschrieben werden (S₃N-Donorsatz). Die mittleren Diederwinkel – definiert durch die N-Cu-S- und S-Cu-S-Ebenen – liegen einheitlich zwischen 77.7° in **C42/C39**

Abb. 6.4. Defekt kubische Anordung der Cu-Atome (A) sowie verzerrt oktaedrische Anordnung der μ_3 -S-Atome (B) der $[Cu_6(RS)_6]^{2+}$ -Einheit. Vom hexagonalen Prisma abgeleiteter Aufbau mit zwei sesselformigen Cu₃S₃-Basisflächen (C) (aus C39).

und 78.5° in C41 (C40: 77.2°, C44: 77.8°) und weichen um ca. 12° von dem idealtypischen Wert (90°) ab. Einzelwerte für die Diederwinkel können dabei zwischen 70.0 und 88.7° variieren. Die durchschnittlichen Tetraederwinkel liegen für alle Komplexe bei 109.6° und damit fast in Übereinstimmung mit dem idealtypischen Wert (109.5°). Die rautenförmigen Cu_2S_2 -Einheiten besitzen zwei längere (2.428(3) - 2.451(5) Å) und zwei kürzere (2.284(2) - 2.310(4) Å) Kanten (Tab. 6.23). Kürzere Cu-S-Bindungen liegen innerhalb der sesselförmigen hexagonalen Cu₃S₃-Basisflächen, während die längeren Cu-S-Bindungen zwei Basisflächen miteinander verbinden (mittlere Bindungslänge 2.441 Å, Struktur C, Abb. 6.4). Die Cu₂S₂-Einheiten sind mit Werten von 7.3° bis 11.4° (C39: 11.1°, C40: 11.1°, C41: 9°, C42: 10.6°, C43: 7.8°, C44: 10.5°(av)) leicht gefaltet und weisen relativ kurze Cu-Cu-Abstände zwischen 2.568(2) (C44) und 2.612(2) Å (C41) auf, die im Vergleich der einzelnen Komplexe untereinander kaum größere Abweichungen aufweisen. Innerhalb der Cu₂S₂-Einheiten sind die S-Cu-S-Bindungswinkel sehr spitz und liegen zwischen 56.72(1) und 65.15(9)°. Die Cu-S-Cu-Bindungswinkel sind entsprechend größer und zeigen im Mittelwerte von 113.11° (Tab. 6.24). Weitere Strukturparameter wie die Cu-Nund Cu=N-Bindungslängen zeigen im Vergleich der Komplexe untereinander keine signifikanten Unterschiede und liegen im Durchschnitt bei 2.008 und 1.342 Å. Die ρ -Werte deuten mit Größen von 0.953 bis 0.993 auf eine sehr gute Ladungsdelokalisation innerhalb der Guanidinfunktion und bestätigen die guten Donoreigenschaften der N_{Gua} -Donorfunktion.

6.1.3 Struktureller Vergleich mit Literaturverbindungen und dem Cu_A-Zentrum

Gemischtvalente zwei- oder mehrkernige Kupferkomplexe mit thiolatverbrückten Cu₂S₂-Einheiten sind in der Literatur kaum bekannt. So sind insgesamt bis heute nur drei gemischtvalente Cu^{I/II}-Thiolat-Komplexe strukturell charakterisiert worden. Dabei handelt es sich um den zweikernigen gemischtvalenten Komplex [Cu₂^{1.5}(L^{iPrdacoS})](OTf) (Kap. 1.6.2, Struktur **To3**, Abb. 1.8) von Tolman et al., der das einzige signifikate synthetische Modellsystem für das Cu_A-Zentrum darstellt.[47] Daneben synthetisierten Kawamoto et al. kürzlich die achtkernigen gemischtvalenten Komplexe [Cu₇^ICu₁^{II}(RS)₈](CuCl₂) (**Kw1**) und [Cu₆^ICu₂^{II}(RS)₈](PF₆)₂ (**Kw2**) mit einer mittleren Oxidationsstufe der Kupferionen von $+1\frac{1}{8}$ und $+1\frac{1}{4}$ (RS = S(C₆H₄)=CH(C₆H₄NMe₂)).[149] Es existieren auch zahlreiche mehrkernige gemischtvalente Cu^{I/II}-Thiolat-Komplexe mit interessanten spektroskopischen Eigenschaften sowie μ -, μ_3 - und μ_4 -Thiolat-Brücken, jedoch ohne diskrete Cu₂S₂-Einheiten.[40c, 150]

In Tabelle 6.25 sind die wichtigsten Strukurparameter der Komplexe To3, Kw1 Kw2 im Vergleich mit den Strukturdaten von Cu_A-Zentren aufgeführt. Der ringförmige Aufbau der $[Cu_8(RS)_8]^{1+/2+}$ -Einheiten in Kw1 und Kw2 kann aus einem oktagonalem Prisma abgeleitet werden. Sie besitzen damit eine weitere Cu_2S_2 -Einheit im Vergleich mit den Komplexen C39 - C44. Einzelne Cu₂S₂-Einheiten sind stärker gefaltet (Kw1: 14.0°, Kw2: 17.1° (av)) im Vergleich zu den sechskernig aufgebauten Komplexen (C39: 11.1°, C40: 11.1°, C41: 9°, C42: 10.6°, C43: 7.8°, C44: 10.5° (av)) und weisen relativ kurze Cu-Cu-Abstände von durchschnittlich 2.615 bzw. 2.582 Å auf. Ein Vergleich der weiteren Bindungsparameter zeigt trotz der Ringerweiterung zum achtkernigen System keine größeren Unterschiede der Cu-S- und Cu-N-Bindungslängen sowie der Cu-S-Cu- und S-Cu-S-Bindungswinkel (vgl. Tab. 6.25). Die Kupferionen sind ebenfalls verzerrt tetraedrisch von drei μ_3 -Schwefelatomen sowie einer N-Donorfunktion koordiniert. In Tolmans Modellkomplex sind die Kupferatome trigonal-pyramidal von einem N₂S₂-Donorsatz koordiniert (Abb. 6.6). Die planare Cu₂S₂-Einheit zeigt Cu-S-Cu- bzw. S-Cu-S-Bindungswinkel von 80.36(3) und $99.64(3)^{\circ}$ sowie einen deutlich längeren Cu-Cu-Abstand von 2.930(1)A. Die Cu-S- und Cu-N-Bindungslängen sind mit 2.250(1)/2.292(1) bzw 2.120(3) A im Bereich von Kw1, Kw2 sowie der Komplexe C39 - C44. Beim Vergleich der synthetischen Modellkomplexe mit dem Cu_A-Zentrum ergibt sich folgendes Bild: (i) das Cu_A-Zentrum besitzt einen gemischtvalenten [Cu^{+1.5}-Cu^{+1.5}]-Zustand mit zwei unsymmetrisch koordinierten Kupferatomen. Ein Kupferatom ist von einem (S_{Cvs})₂N_{His}S_{Met}-Donorsatz verzerrt tetraedrisch koordiniert, während das zweite eine trigonal-planare Koordinations-

$\mathrm{Komplex}/\mathrm{Cu}_{A}$	Cu-S	Cu-N	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	Cu-S-Cu	S-Cu-S
[Cu1.5(I iPrdacoS)]+	2.250(1)/2.202(1)	2120(3)	2.030(1)	80.36(3)	00.64(3)
$[Cu_2^{I}(L)]^{I}$	2.230(1)/2.232(1) $2.238^{b}/2.432^{c}$	2.120(3) 2.057^{a}	2.930(1) 2.615 ^a	66.23 ^a	110.48^{a}
$[Cu_{6}^{I}Cu_{1}^{II}(RS)_{8}]^{2+}$	$2.307^{b}/2.413^{c}$	2.051^{a}	2.582^{a}	66.12^{a}	112.40 112.60^{a}
C39	$2.295^{b}/2.451^{c}$	2.001(1)	2.598(3)	66.56^{a}	112.63^{a}
C44	$2.286^b/2.441^c$	2.011(7)	2.568^{a}	65.73^{a}	113.55^{a}
Cu _A (I+I)					
X-RAY	2.26 - $2.31/2.47^d$	1.98 - 2.07	2.47	65	111-119
EXAFS	2.31-2.38	1.95 - 1.97	2.51 - 2.52	65	115
Cu _A (I+II)					
X-RAY	$2.17\text{-}2.40/2.39\text{-}2.72^d$	1.85-2.11	2.20 - 2.58	65	111-119
EXAFS	2.29-2.33	1.95 - 2.03	2.43 - 2.46	65	115
Cu _A (I+II) X-RAY EXAFS	$2.17-2.40/2.39-2.72^d$ 2.29-2.33	1.85-2.11 1.95-2.03	2.20-2.58 2.43-2.46	65 65	111- 115

Tabelle 6.25: Ausgewählte Abstände und Winkel ([Å] bzw. [°]) in den Komplexen To3, Kw1, Kw2, C39, C44 und in Cu_A-Zentren.[151]

 a Mittelwerte. b Mittelwerte der Cu-S-Bindungslängen in den oktagonalen/hexagonalen Cu₄S₄/Cu₃S₃-Basisflächen. c Mittelwerte der Cu-S-Bindungslänge zwischen zwei oktagonalen/hexagonalen Cu₄S₄/Cu₃S₃-Basisflächen. d Cu-S_{Met}

geometrie besitzt ($(S_{Cys})_2 N_{His}$ -Donorsatz) (Struktur rechts, Abb. 6.5). (ii) Die Cu₂S₂-Einheit ist planar mit spitzen Cu-S-Cu- (ca. 65°) und dementsprechend größeren S-Cu-S-Bindungswinkeln (111 - 119°), die keine signifikanten Veränderungen beim Übergang in den reduzierten [Cu^I-Cu^I]-Zustand zeigen. (iii) Die Cu-Cu-Bindung ist sehr kurz und liegt – je nach Untersuchungsmethode – zwischen 2.2 - 2.6 Å. Tolmans Modellkomplex spiegelt den Oxidationszustand sowie den zweikernigen planaren Aufbau des Cu_A-Zentrums gut wieder. Jedoch zeigen die Abweichungen der Cu-S-Cu- und S-Cu-S-Bindungswinkel, verbunden mit dem deutlich längeren Cu-Cu-Abstand von 2.930(1) Å, sowie die trigonal-pyramidale Koordinationsgeometrie der Kupferatome auch starke Abweichungen von weiteren wichtigen strukturellen Merkmalen des Cu_A-Zentrums. Die schwächer gebundenen R₃N-Donorgruppen des Diazacyclooctan-Liganden stellen eine weitere Diskrepanz zum Cu_A-Zentrum dar, in dem stärker gebundene C=N-Imin-Donorfunktionen der Histidinreste als N-Donorgruppe fungieren. [151] Die Cu_2S_2 -Einheiten der gemischtvalenten Komplexe C39 - C44 mit der verzerrt tetraedrischen Koordinationsgeometrie der beiden Kupferatome (NS₃-Donorsatz), den spitzen Cu-S-Cu- sowie aufgeweiteten S-Cu-S-Bindungswinkeln zeigen dagegen eine sehr gute strukturelle Übereinstimmung mit dem Kernaufbau des Cu_A-Zentrums (Abb. 6.5, Tab. 6.25). So sind vor allem die wesentlich kürzeren Cu-Cu-Abstände (2.568(2) - 2.612(2) Å) – die kürzer ausfallen als die Summe der Kupfer van der Waals-Radien (2.82 Å[120]) – ein deutlicher Hinweis auf mögliche Cu-Cu-Wechselwirkungen, die in Tolmans Modellkomplex nicht vorliegen.

Abb. 6.5. Ausschnitt einer Cu₂S₂-Einheit aus C39 (links). Ausschnitt aus der Molekülstruktur des Cu_A-Zentrums aus Paracoccus denitrificans (rechts) (Bindungslängen in Å).

Auch die Koordinationsumgebung der Kupferionen mit drei Thiolat- sowie einer N=C-Imin-Donorfunktion (NS₃-Donorsatz) zeigt eine größere Nähe zum Cu_A-Zentrum. Leichte Abweichungen der Cu₂S₂-Einheiten von der Planarität, der erniedrigte Oxidationszustand der Kupferionen auf $+1\frac{1}{3}$ sowie der insgesamt mehrkernige Aufbau der gemischtvalenten Cu₆(RS)₆-Komplexe zeigen je-

Abb. 6.6: Ausschnitt aus der Molekülstruktur von To3.

doch auch die Schwächen dieser Modellkomplexe. Die Cu_2S_2 -Einheiten der Komplexe von Kawamoto et al. spiegeln in ihrem Aufbau ebenfalls die strukturellen Merkmale der Cu_A -Zentren wider. Jedoch sind die Einheiten etwas stärker gefaltet und die mittlere Oxidationsstufe der Kupferionen ($+1\frac{1}{4}$ im Fall von **Kw2**) sind weiter von den Zielvorgaben entfernt im Vergleich zu den Komplexen **C39** - **C44**.

In der Literatur existiert neben den strukturverwandten gemischtvalenten Verbindungen von Kawamoto et al. eine Reihe neutraler sechkernig aufgebauter Komplexe der Form $[Cu_3^I(L^{SCN})_3]_2$ mit einer oktaedrischen Anordnung der Cu^I-Atome.[152] Die L^{SCN}-Liganden besitzen ausnahmslos nur ein Kohlenstoff-Atom zwischen der koordinierenden N- und S(Thiolat)-Donorfunktion (S-C-N-Donorsatz). Die Cu₃(μ -S)₃-Sechsringe (Cu-Cu-Abstand: 3.67 - 3.95 Å) besitzen immer eine Sesselform, jeodch existiert zwischen den Cu₃S₃-Ebenen – im Unterschied zu den gemischtvalenten sechskernigen Systemen C39 - C44 – keinerlei Cu-S-Wechselwirkung (Cu-···S-Abstände: 2.84 - 3.3 Å). Dabenen synthetisierten kürzlich Safin et al. die Verbindung [{Cu₆^I(H₂L¹)₆}{Cu₃^I(H₂L¹)₃}·4Me₂CO] mit dem Liganden ${}^{-}S-C(NH_2)=N-P(R)_2=S$ (R = O^{*i*}Pr), der über eine Thiolatund Thiophosphan(P=S)-Donorgruppe verfügt.[153] Die Kupferatome sind tetraedrisch von einem S₄-Donorsatz koordiniert. Interessanterweise kristallisiert der Komplex [Cu^I₃(H₂L¹)₃] neben dem eigenen Dimerisierungsprodukt [Cu^I₃(H₂L¹)₃]₂ aus. Der sechkernige Komplex zeigt einen Aufbau vergleichbar mit den gemischtvalenten Systemen: die sechsgliedrigen Cu₃S₃-Einheiten besitzen eine Sesselstruktur mit mittleren Cu-Cu-Abständen von 3.990 und Cu-S-Bindungslängen von 2.220 Å (Cu-Cu-Cu-Winkel: 60.0° (av)). Die mittlere Cu-S-Bindunglänge zwischen den Cu₃S₃-Ebenen liegt bei 2.494 Å. Die Cu₂S₂-Rauten weisen größere Faltungswinkel (17.1° (av)) auf und besitzen deutlich längere Cu-Cu-Abstände, die im Bereich von 2.789 bis 2.909 Å variieren.

6.1.4 Spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen

Für spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen wurde stellvertretend für alle sechskernigen gemischtvalenten Komplexe die Verbindung C39 ausgewählt. Der Komplex konnte aufgrund der guten Kristallisationseigenschaften mit einem hohen Reinheitsgrad sowie in hervorragenden Ausbeuten (85 %) dargestellt werden. Für weitere Untersuchungen war zunächst von entscheidender Bedeutung, ob das gemischtvalente $[Cu_6(RS)_6]^{2+}$ -Komplexkation auch in Lösung stabil vorliegt. Die Tatsache, dass sich die Komplexe in Acetonitril umkristallisieren ließen, war ein erstes Anzeichen für diese Vermutung. ESI-MS-Messungen untermauerten den Befund. ESI-MS-Spektren von C39 und C43 in Acetonitril zeigen einen Massenpeak bei m/z = 1858.3 (C39) bzw. 1813.1 (C43). Durch Vergleich von experimentellen und berechneten Iosotopenmuster konnten die Spezies { $[Cu_6((TMG_{ph}S)_6-H^+)]X$ } (X = PF₆, ClO₄) identifiziert werden. Aus weiteren ESI-MS/MS-Untersuchungen konnten zahlreiche Fragmente als Zerfallsprodukte der Vorläuferpeaks bei m/z = 1858.3 bzw. 1811.1 identifiziert werden. ¹H-NMR-Messungen von C39 zeigten scharfe Protonensignale, die nur für ein stabiles diamagnetisches $[Cu_6(RS)_6]^{2+}$ -Komplexkation zu erwarten waren. Suszeptibilitätsmessungen (3 -300 K, B = 1.0 T) von C39 und C43 bestätigten ebenfalls das in Lösung beobachtete Verhalten und deuten auf einen diamagnetischen Grundzustand (S = 0) des $[Cu_6(RS)_6]^{2+}$ -Komplexkations. Cyclovoltammetrische Messungen wurden bei Raumtemperatur, coulometrische Untersuchungen bei -25°C unter einer Argon-Schutzgasatmosphäre in Dichlormethan durchgeführt (c_{Komplex}: 0.001 mol/l, c_{Leitsalz}: 0.2 mol/l, interner Standard: Fc). Das Cyclovoltammogramm sowie das Square-Wave-Voltammogramm von C39 zeigen eine reversible $[Cu_6(RS)_6]^{2+} \rightarrow [Cu_6(RS)_6]^{3+}$ -Oxidation bei $E_{1/2}^{ox} = +0.696$ V vs. NHE ($\Delta E = -0.696$ V v 76 mV, $i_{\rm pa}/i_{\rm pc} \sim 1$) so wie eine reversible $[Cu_6(RS)_6]^{2+} \rightarrow [Cu_6(RS)_6]^+$ -Reduktion bei $E_{1/2}^{\rm red}$ = -0.252 V vs. NHE ($\Delta E = 76$ mV, $i_{pa}/i_{pc} \sim 1$) (Abb. 6.7). Coulometrische Untersuchungen konnten Ein-Elektronen-Oxidationen bzw. Ein-Elektronen-Reduktionen zu den Spezies $[Cu_6(RS)_6]^{3+}$ (mittlere Oxidationsstufe $+1\frac{1}{2}$) (C39^{ox}) bzw. $[Cu_6(RS)_6]^+$ (mittlere

Abb. 6.7: Cyclovoltammogramm von C39 in Dichlormethan bei Raumtemperatur (v_s = 100 mV/s).

Oxidationsstufe $+1\frac{1}{6}$ (C39^{red}) eindeutig bestimmen. Die parallel durchgeführte Spektroelektrochemie in einer Ottle-Zelle erlaubte die Aufnahme von UV/Vis/NIR-Spektren von C39^{ox} und C39^{red} (Abb. 6.8). Die gemischtvalente Spezies $[Cu_6(RS)_6]^{2+}$ besitzt eine charakteristische intensive $Cu(\psi) \rightarrow Cu(\psi^*)$ Bande bei 1117 nm ($\epsilon = 80500 \text{ M}^{-1} \text{ cm}^{-1}$) mit einer Schulter bei 916 nm ($\epsilon = 22800 \text{ M}^{-1} \text{ cm}^{-1}$), die vermutlich zu einem separten CT-Übergang gehört. Daneben liegen drei $S(\sigma/\pi) \rightarrow Cu^{II}$ LMCT-Übergänge bei 642, 534 sowie 417 nm vor ($\epsilon = 6900, 5290, 13600 \text{ M}^{-1} \text{ cm}^{-1}$). Die Spezies $[Cu_6(RS)_6]^{3+}$ zeigt einen schwächeren $Cu(\psi) \rightarrow Cu(\psi^*)$ -Übergang bei 1144 nm ($\epsilon = 51400 \text{ M}^{-1} \text{ cm}^{-1}$), ebenfalls eine Schulter bei 916 nm ($\epsilon = 15000 \text{ M}^{-1} \text{ cm}^{-1}$) sowie drei S(σ/π) \rightarrow Cu^{II} LMCT-Übergänge bei 647, 539 sowie 425 nm ($\epsilon = 4600, 4100, 9300 \text{ M}^{-1} \text{ cm}^{-1}$). Im reduziertem Zustand ($[Cu_6(RS)_6]^+$) liegt eine Intervalenzbande (IV(Intervalenz)CT-Bande) bei 1326 nm ($\epsilon = 15100 \text{ M}^{-1} \text{ cm}^{-1}$) mit einer Schulter bei 862 nm ($\epsilon = 2200 \text{ M}^{-1} \text{ cm}^{-1}$) vor. Die metallzentrierte Oxidation und Reduktion von C39 konnte ebenfalls mittels EPR-Messungen an Proben von $C39^{ox}$ und $C39^{red}$ bestätigt werden (Abb. 6.9). Während die diamagnetische Ausgangsverbindung C39 (S = 0) kein EPR-Signal liefert, war von der oxidierten $[Cu_3^I Cu_3^{II}]^{3+}$ - und reduzierten $[Cu_5^I Cu_1^{II}]^+$ -Spezies aufgrund eines ungepaarten Spinzustandes $(S = \frac{1}{2})$ eine EPR-Aktivität zu erwarten. Das EPR-Spektrum von C39^{ox} zeigt ein axiales Signal mit $g_{\perp} = 2.06$ und $g_{\parallel} = 1.98$ ($g_x = g_y > g_z$). Aus dem Verhältnis der g-Werte kommen eine verzerrt quadratisch-planare, verzerrt trigonal-pyramidale oder verzerrt-tetraedrische Koordinationsgeometrie der Kupferionen in Frage.[135] Das isotrope Spektrum von C39^{ox} zeigt einen g_{iso} -Wert von 2.032 ($g_x = g_y = g_z$), der sehr

Abb. 6.8: UV/Vis/NIR-Spektren von C39 (schwarz), C39^{ox} (rot) und C39^{red} (grün) in Dichlormethan bei -25°C.

gut mit einer tetraedrischen Koordinationsgeometrie der Kupferionen vereinbar ist. Eine Hyperfeinaufspaltung ist in beiden Fällen aufgrund der Kopplung der Kupferkerne untereinander nicht erkennbar.

In Tabelle 6.26 sind die Ergebnisse der spektroskopischen, elektrochemischen und magnetochemischen Untersuchungen von C39 mit Daten von To1, Kw1, Kw2 und Cu_A-Zentren im Vergleich aufgeführt. Der Komplex C39 zeigt im Vergleich zu dem Oxidationsprodukt

Abb. 6.9: EPR-Spektren von $C39^{ox}$ (links) und $C39^{red}$ (rechts) in Dichlormethan bei 30 K.

C39^{ox} eine leichte Rotverschiebung aller Absorptionsbanden. Damit ist die elektronische Struktur beider Komplexe miteinander vergleichbar. Das Reduktionsprodukt C39^{red} besitzt keinen Cu(ψ) \rightarrow Cu(ψ^*)-Übergang, jedoch eine IVCT-Bande bei 1326 nm (vgl. Kap. 6.1.6). In guter Übereinstimmung mit einem deutlich erhöhten Kupfer(I)-Charakter werden S(σ/π) \rightarrow Cu^{II} LMCT-Übergänge nicht beobachtet. Im Vergleich zum Modellkomplex von Tolman (To1) zeigen die Absorptionsspektren von C39 und C39^{ox} eine bessere Übereinstimmung mit der spektroskopischen Signatur des Cu_A-Zentrums (Tab. A.28). Die S(σ) \rightarrow Cu^{II}-LMCT-Übergänge sowie der Cu(ψ) \rightarrow Cu(ψ^*)-Übergang in To3 zeichnet – als Folge der strukturellen Abweichungen vom Cu_A-Zentrum (vgl. Kap. 6.2.3) – im Vergleich zu C39 und C39^{ox} eine stärkere Rotverschiebung aus.

Interessanterweise liegen die Oxidationspotentiale E^{ox} von C39 und To3 im stark positiven Bereich (ca. 0.6 V) und relativ eng beieinander, was für eine sehr gute Stabilisierung des valenzdelokalisierten Zustandes in beiden Komplexen spricht. Im Vergleich mit dem Reduktionspotential E^{red} von Cu_A-Zentren zeigen C39 und To3 Abweichungen um ca. +0.400 V. Einzig die Spezies C39^{ox} zeigt mit $E_{1/2}^{red} = +0.696$ ein positives Reduktionspotential und liegt damit näher an den Zielvorgaben von +0.240 in Cu_A. Erhöhte Reduktionspotentiale (ca. +0.400 V vs. NHE) zeigen zahlreiche synthetische Cu_A-Azurin Systeme[157] sowie Cu_A-Zentren, die mit Guanidin/HCl behandelt wurden ('high potential state').[156] Die Komplexe Kw1 und Kw2 zeichnen dagegen negative Oxidations- bzw. Reduktionspotentiale aus. So wird Kw1 bereits bei -0.140 V vs. NHE oxidiert und bei -0.550 V vs. NHE in die neutrale Form [Cu^I₈(RS')₈] (Kw3) (RS' = S(C₆H₄)=CH(C₆H₄N(CF₃)₂) reduziert. Der Komplex Kw3 konnte ebenfalls strukturell charakterisiert werden und besitzt den gleichen Aufbau und vergleichbare Bindungsparameter wie Kw1 und Kw2 (Cu-S: 2.342 bzw. 2.415 Å, Cu-Cu = 2.613 Å, Cu-N: = 2.058 Å (av)).[149, 158]).

Die magnetochemischen Eigenschaften von Cu_A -Zentren aus CcO und N_2OR waren Gegenstand zahlreicher Untersuchungen.[154, 155] Das EPR-Spektrum zeigt generell ein axiales Signal mit g-Werten von $g_{\perp} = 2.010$ und $g_{\parallel} = 2.195$ sowie – im Fall von CcO – eine nicht ganz aufgelöste Hyperfeinstruktur aus sieben Linien im g_{\parallel} -Bereich. Das axiale EPR-Spektrum von **To3** zeigt vergleichbare g-Werte mit etwas größeren Hyperfeinkonstanten. Das EPR-Spektrum von **C39**^{ox} zeichnet ein axiales Signal mit einem vergleichbaren g_{\perp} -Wert von 2.06 aus. Der g_{\parallel} -Wert von 1.98 ist deutlich kleiner im Einklang mit einer starken Elektronen-Spin Kopplung zu einem Grundzustand mit dem Gesamtspin von $S = \frac{1}{2}$.

Insgesamt zeigen die Absorptionsspektren der Komplexe **C39** und **C39**^{ox} eine bessere Übereinstimmung mit den spektroskopischen Daten von Cu_A-Zentren im Vergleich zum Modellkomplex von Tolman. Die Redoxpotentiale liegen nicht genau im Bereich des Cu_A-Zentrums, dennoch weisen **C39** und **C39**^{ox} mit einer mittleren Oxidationsstufe der Kupferionen von $+1\frac{1}{3}$ und $+1\frac{1}{2}$, einem reversiblen Redoxverhalten – irreversibel im Modellkom-

Komplex	$\lambda \; (\epsilon) [\mathrm{nm}] ([\mathrm{M}^{-1} \mathrm{cm}^{-1}])$	a	$\mathrm{E}_{1/2}^{\mathrm{ox/red}}$ [V vs. NHE]	EPR
$\mathbf{C39}^{f}$	$253 \; (\mathrm{sh}, 2 \cdot 10^6)$	А	$E_{1/2}^{ox} = +0.696$	EPR-inaktiv
	417 (13600)	В	${ m E}_{1/2}^{ m red}=-0.252$	
	534 (5290)	В	1/2	
	642 (6900)	В		
	916 (sh, 22800)	С		
	1117 (80500)	С		
$\mathbf{C39}^{oxf}$	425 (9300)	В	${ m E_{1/2}^{red}}=+0.696$	$\mathrm{g_{\perp}}=2.06,\mathrm{g_{\parallel}}=1.98$
	539(4100)	В	${ m E}_{1/2}^{ m red}=-0.252$	
	647 (4600)	В	-/-	
	916 (sh, 15000)	С		
	1144 (51400)	С		
${f C39}^{redf}$	862 (sh, 2200)		${ m E}_{1/2}^{ m ox}=$ -0.252	$ m g_{iso}=2.03$
	$1326\ (15100)$	D	${ m E}_{1/2}^{ m ox}=+0.696$	
To3	358~(2700)	А	${ m E}_{1/2}^{ m ox}=+0.600^b$	$\mathrm{g}_x=2.010$
	602 (800)	В	$\mathrm{E}^{\mathrm{red}}=-0.260^{c}$	${\rm g}_y=2.046,{\rm A}_y=36.3~{\rm G}$
	786 (sh)	В		${\rm g}_z=2.204,{\rm A}_z=39.9~{\rm G}$
	$1466\ (1200)$	С		
Kw1	1770 (25600)	С	$\mathrm{E_{1/2}^{red}}=$ -0.550	$ m g_{iso}=2.05$
			${ m E_{1/2}^{ox}}=$ -0.140	
Kw2	$1220 \ (84500)$	С	$\mathrm{E}^{\mathrm{red}}_{1/2}=$ -0.140	EPR-inaktiv
			${ m E}_{1/2}^{ m red}=$ -0.550	
$\mathbf{Cu}_{\mathbf{A}}$	$[N_2OR][26c]/[CcO][26b]$		[CcO]	$[N_2 OR][154]$
	$350~({ m sh})/363~(1200)$	А	$\mathrm{E}^{\mathrm{red}}_{1/2} = 0.240^d [156]$	${ m g}_x=2.03,{ m g}_y=2.03$
	481~(5200)/480~(3000)	В		${ m g}_{m z}=2.18,{ m A}_{m z}=38.3~{ m G}$
	534~(5300)/~532~(3000)	В		[CcO][154]
	630 (sh)	В		${ m g}_x = 1.99, { m g}_y = 2.00$
	$780\;(2900)/\;808\;(1600)$	С		${ m g}_z=2.17,{ m A}_x=31.0~{ m G}$
				${ m g}_{\perp}=2.010,{ m g}_{\parallel}=2.195[155]$
				$[N_2 OR][25]^e$
				${ m g}_x=2.019,{ m A}_x=27.6{ m G}$
				$\mathrm{g}_y=2.025,\mathrm{A}_y=21.2~\mathrm{G}$
				$g_z = 2.178, A_z = 38.1 G$
				$[CcO][25]^e$
				$g_x = 2.000, A_x = 22.7 G$
				$g_y = 2.030, A_y = 24.5 G$
				$g_z = 2.180, A_z = 38.0 G$

Tabelle 6.26: Gegenüberstellung der physikalischen Eigenschaften der Komplexe C39, C39^{ox}, C39^{red}, To1, Kw1, Kw2 mit Cu_A-Zentren aus der CcC und N₂OR.

^{*a*} **A**: N(σ) \rightarrow Cu-LMCT, **B**: S(σ/π) \rightarrow Cu-LMCT, **C**: Cu(ψ) \rightarrow Cu(ψ^*), **D**: IVCT-Übergang. ^{*b*} Wird nur bei Scangeschwindigkeiten > 1 Vs⁻¹ beobachtet. ^{*c*} Irreversible Reduktion. ^{*d*} Redoxpotential bei pH = 7. ^{*e*} Parameter aus simulierten EPR-Spektren. ^{*f*} UV/Vis/NIR-Daten für **C39** bei Raumtemperatur, für **C39**^{*ox*} und **C39**^{*red*} bei -25°C. plex von Tolman – vergleichbare oxidations
spezifische und elektrochemische Eigenschaften wie das Cu_A-Zentrum auf.

6.1.5 DFT-Berechnungen

Um einen Einblick in die elektronische Struktur des gemischtvalenten Komplexkations $[\mathrm{Cu}_4^\mathrm{I}\mathrm{Cu}_2^\mathrm{II}(\mathrm{Gua}_{ph}\mathrm{S})_6]^{2+}$ zu erhalten, wurde eine DFT-Analyse des Systems durchgeführt. Im Vordergrund der Analyse stand die Fragestellung, ob aufgrund der kurzen Cu-Cu-Abstände (im Mittel 2.590 Å) innerhalb der Cu₂S₂-Einheiten direkte Cu-Cu-Wechselwirkungen vorliegen. Die DFT-Berechnungen wurden mit dem Programmpaket Gaussian 03 durchgeführt. Die Startgeometrie für das Komplexkation $[Cu_6(RS)_6]^{2+}$ wurde aus der Einkristallröntgenstrukturanalyse der Verbindung C44 generiert. Die Geometrie des Komplexkations wurde mit dem B3LYP-Hybridfunktional und dem 6-31g(d)-Basissatz für alle Atome optimiert. In Tabelle 6.27 sind ausgewählte mittlere Bindungslängen und Bindungswinkel der Geometrieoptimierung aufgeführt. Ein Vergleich dieser Daten mit den Werten der Bindungslängen und Bindungswinkel aus der Röntgenstrukturanaylse zeigt eine sehr gute Übereinstimmung. Auffällig ist der kürzere Cu-Cu-Abstand von 2.462 Å (av) in der optimierten Struktur im Vergleich zu der Röntgenstruktur mit durchschnittlich 2.569 A. In Abbildung 6.10 ist ein Ausschnitt aus dem berechneten MO-Schema mit ausgewählten Molekülorbitalen dargestellt. Das HOMO besteht aus den beiden entarteten Molekülorbitalen MO-436 und 437 und zeigt Cu-S-Cu-Dreizentrenbindungen in den Cu₂S₂-Einheiten. Das LUMO (MO-438) besitzt hauptsächlich Kupfer-Schwefel-Charakter mit einem Abstand von 1.63 eV zum HOMO. Weitere Kupfer-Schwefel-Wechselwirkungen (Cu-S-Zweizentrenbindungen) zeigen die entarteten Molekülorbitale MO-435/434, MO-431/432 sowie MO-430/429. Daneben liegen antibindende Cu-S-Wechselwirkungen zwischen den sesselförmigen Cu_3S_3 -Ebenen vor (MO-433). Diese nicht-bindenden Anteile

$[\mathrm{Cu}_6(\mathrm{RS})_6]^{2+}$	X-Ray	DFT
$Cu-S^a$	2.441	2.405
$Cu-S^b$	2.290	2.323
Cu-Cu	2.569	2.462
Cu-N	2.011	2.029
S-Cu-S	113.6	116.9
Cu-S-Cu	65.3	62.5

Tabelle 6.27: Ausgewählte X-Ray- und optimierte DFT-Strukturdaten von $[Cu^{I}_{4}Cu^{II}_{2}(DMEG_{ph}S)_{6}]^{2+}$ der Verbindung C44 (Mittelwerte in [Å/°]).

 a Lange Cu-S-Bindung innerhalb einer Cu₂S₂-Einheit bzw. zwischen zwei Cu₃S₃-Basisflächen. b Kurze Cu-S-Bindung innerhalb der Cu₂S₂-Einheiten bzw. in den Cu₃S₃-Basisflächen.

Abb. 6.10: Darstellung ausgewählter Molekülorbitale aus dem berechneten MO-Schema des Komplexkations $[Cu^{I_4}Cu^{II_2}(DMEG_{ph}S)_6]^{2+}$ der Verbindung **C44**. Gelb: S-Atome, rosa: Cu-Atome.

Abb. 6.11: Darstellung der Molekülorbitale MO-407 und 408 mit Cu-Cu-Wechselwirkungen unter Beteiligung von Cu(d)-Orbitalen.

könnten eine mögliche Erklärung für die längeren Cu-S-Bindungen zwischen den sesselförmigen Cu₃S₃-Basisflächen im Vergleich zu den kurzen Cu-S-Bindungen innerhalb der Cu₃S₃-Basisflächen darstellen (2.290 vs. 2.441 Å). Wechselwirkungen des aromatischen π -Systems über die Guanidinfunktion der Thiolat-Liganden mit Kupfer d-Orbitalen deuten die entarteten Molekülorbitale MO-428/427, MO-424/425 sowie MO-426 an. Die energetisch tieferliegenden entarteten Molekülorbitale MO-407 und 408 zeigen Cu-Cu-Wechselwirkungen (vgl. Abb. 6.11) unter Beteiligung von Cu(d)-Orbitalen. Die Lage und Überlappung der beteiligen d-Orbitale spricht nicht für eine direkte σ -Cu-Cu-Bindung, sondern besitzt eher den Charakter einer π -Bindung. Eine nennenswerte Beteiligung von Schwefel-Orbitalen an den Molekülorbitalen MO-407 und 408 wird nicht beobachtet. Insgesamt bestätigt die DFT-Analyse zwei wesentliche Punkte: (i) Es liegen starke Cu-S-Cu-Dreizentrenbindungen vor, die den wesentlichen Beitrag zu einer elektronischen Kopplung (bzw. Valenzdelokalisierung) über einen Superaustauschmechanimus beitragen. (ii) Eine direkte σ -Cu-Cu-Bindung konnte nicht identifiziert werden. Jedoch liegen Cu-Cu-Wechselwirkungen mit π -Bindungscharakter vor, die ebenfalls einen Beitrag zu der elektronischen Kopplung der Kupferzentren leisten könnten.

6.1.6 $[Cu_6(Gua_{ph}S)_6]^{1+/2+/3+}$: Gemischtvalente Systeme der Class III

Elektronentransferprozesse spielen sowohl in der Chemie als auch in der Biologie eine besondere Rolle. Sie sind an fundamentalen Stoffwechselreaktionen wie zum Beispiel in der Photosynthese oder an Elektronentransferreaktionen (Cu_A-Zentrum) beteiligt. Die Grundlagen des Elektronentransfers sind in der Vergangenheit ausgiebig an anorganischen Intervalenzverbindungen studiert worden. In dieser Verbindungsgruppe liegen (Übergangs)-Metalle in verschiedenen Oxidationsstufen vor. Die Metallzentren sind über Liganden verbrückt, die je nach Beschaffenheit eine unterschiedlich starke elektronische Wechselwirkung vermitteln können. Unter geeigneten Voraussetzungen tritt ein Elektronenübergang zwischen den Metallzentren auf. Wird dieser Übergang optisch durch Licht aus dem sichtbaren- oder dem NIR-Bereich angeregt, wird oft eine charakteristische 'Intervalence Charge Transfer' (IVCT)-Bande beobachtet. Eine Analyse dieser Absorptionsbande erlaubt Aussagen über die energetische Kopplung der Redoxzentren.[159]

Abhängig von der elektronischen Wechselwirkung der Metallzentren werden gemischtvalente Verbindungen/Metallkomplexe nach Robin und Day in drei Klassen unterteilt[159, 160]: (i) Gemischtvalente Metallkomplexe mit unterschiedlich koordinierten Metallzentren, wobei das ungepaarte Elektron lokalisiert an einem Metallzentrum vorliegt. Eine Intervalenzbande wird nicht beobachtet (Class I). (ii) Zur Class II gehören gemischtvalente Metallkomplexe mit fast gleicher Koordinationsgeometrie der Metallionen und einer kleinen Energiebarriere für die Delokalisierung des ungepaarten Elektrons zwischen den Metallzentren (Class II). Der IVCT-Übergang kann thermisch oder optisch erfolgen. Die spektroskopischen Eigenschaften werden von den Einzelionen geprägt, zudem wird eine Intervalenzbande im nahen IR oder sichtbaren Bereich des Spektrums beobachtet. (iii) Gemischtvalente Komplexe mit identischer Koordinationsgeometrie der Metallionen sowie einer Delokalisierung des ungepaarten Elektrons bzw. der Elektronen über alle Metallzentren gehören zur Class III. Im Gegensatz zu Class II Systemen wird keine IVCT-Bande, sondern ein intensiver $\psi \rightarrow \psi^*$ -Übergang ('CT-Bande') innerhalb des valenzdelokaliserten Systems im NIR- oder im sichtbaren Bereich des Spektrums beobachtet. Der Übergang gehört zu einem intramolekularen Elektronentransfer zwischen metallzentrierten symmetrischen und antisymmetrischen Molekülorbitalen des valenzdelokalsierten Systems. Die energetische Aufspaltung (elektronische Kopplung) des $\psi \rightarrow \psi^*$ -Übergangs beträgt 2 H_{AB}. Das Kopplungsmatrixelement H_{AB} beschreibt hierbei die Wechselwirkung zwischen den Metallzentren (Resonanzenergie) und ist damit ein Maß für die Stabilität des Delokalisationszustandes. [161] Nach Markus und Hush entspricht 2 H_{AB} für stark koppelnde Class III Systeme der optischen Anregungsenergie $(\tilde{\nu}_{\max})$ des $\psi \rightarrow \psi^*$ -Übergangs. Für Class II Systeme gilt: 2 H_{AB} $< \tilde{\nu}_{max}$.[161, 162]

Eine erste qualitative Einordung von gemischtvalenten Systemen nach Class II bzw. III

ist aus der Beschaffenheit der NIR-Bande möglich. Class II Systeme zeichnet eine gaussförmige, symmetrische, lösungsmittel- und temperaturabhängige NIR-Absorptionsbande mit geringen Intensitäten aus. Absorptionsbanden im NIR-Bereich von Class III Systemen sind intensiv ($\epsilon > 5000 \text{ M}^{-1} \text{ cm}^{-1}$), schmal ($\Delta \tilde{\nu}_{1/2}^{\exp} < 2000 \text{ cm}^{-1}$), asymmetrisch, und $\tilde{\nu}_{\rm max}$ zeigt keine Lösungsmittel- sowie Temperaturabhängigkeit.[159a] Eine quantitative Analyse der NIR-Absorptionsbanden ist mit nach der Hush-Theorie möglich. [162] Aus den NIR-Absorptionsbanden von C39, C39^{ox} und C39^{red} konnten zunächst die Parameter $\Delta \tilde{\nu}_{1/2}^{exp}$ und $\Delta \tilde{\nu}_{1/2}^{calc}$ ermittelt werden (Tab. 6.28).[161, 163] Bei $\Delta \tilde{\nu}_{1/2}^{exp}$ handelt es sich um die experimentelle Halbwertsbreite der beobachteten NIR-Absorptionsbande. $\Delta \tilde{\nu}_{1/2}^{\text{calc}}$ beschreibt die theoretische Halbwertsbreite einer IVCT-Absorptionsbande für ein Class II System und wird aus der experimentellen Größe $\tilde{\nu}_{max}$ berechnet. Für die Einordung einer gemischtvalenten Verbindung als Class III System gilt $\Delta \tilde{\nu}_{1/2}^{exp} < \Delta \tilde{\nu}_{1/2}^{calc}$: die experimentelle Halbwertsbreite der NIR-Absorptionsbande ist kleiner im Vergleich zur theoretisch berechneten Halbwertsbreite einer gaussförmigen IVCT-Bande eines Class II Systems. [161, 162] C39 und $C39^{ox}$ erfüllen dieses Kriterium, zudem sind die Banden asymmetrisch und sehr schmal ($\Delta \tilde{\nu}_{1/2}^{exp} < 2000 \text{ cm}^{-1}$). Gemessene UV/Vis/NIR-Spektren von C39 in verschiedenen Lösungsmitteln (CH₂Cl₂, MeCN, EtOH und MeOH) zeigten keine Verschiebung von $\tilde{\nu}_{\text{max}}$ sowie der charakteritischen S \rightarrow Cu-LMCT-Übergänge. Eine Temperaturabhängigkeit von $\tilde{\nu}_{\rm max}$ konnte durch Messungen in CH2Cl2 bei +25, -5 und -25°C ebenfalls ausgeschlossen werden. Insgesamt können die Verbindungen C39 und C39 ox als Class III Intervalenzsysteme beschrieben werden. Diese Tatsache entspricht der Vorstellung, dass die positiven Ladungen nicht auf einzelne Kupferionen lokalisiert sind, sondern valenzdelokalisiert über den gesamten $Cu_6(RS)_6$ -Kern verteilt vorliegen. Der beobachtete Übergang im NIR-Bereich entspricht damit keiner IVCT-Bande, sondern gehört zu einem intramolekularen Elektronentransfer ($\psi \rightarrow \psi^*$ -Übergang) zwischen kupferzentrierten symmetrischen und antisymmetrischen Molekülorbitalen des valenzdelokalsierten Systems mit 2 H_{AB} = $\tilde{\nu}_{\text{max}}$. Hierbei deutet das Verhältnis $\Delta \tilde{\nu}_{1/2}^{\text{exp}} / \Delta \tilde{\nu}_{1/2}^{\text{calc}}$ für C39 und C39^{ox} mit einem Wert

Tabelle 6.28: Ausgewählte Parameter aus den Absorptionsspektren der Verbindungen C39,
C39^{ox} und C39^{red} (Lösungsmittel: CH_2Cl_2 , Temperatur: -25°C).

Komplex	λ [nm]	$\tilde{\nu}_{\rm max}$ [cm ⁻¹]	$\epsilon_{\rm max}$ [M ⁻¹ cm ⁻¹]	$\begin{array}{l} \Delta \tilde{\nu}_{1/2}^{\mathrm{exp}} \\ [\mathrm{cm}^{-1}] \end{array}$	$^{a}\Delta \tilde{\nu}_{1/2}^{ ext{calc}}$ $[ext{cm}^{-1}]$	$\frac{\mathrm{H}_{\mathrm{AB}}{}^{b}}{[\mathrm{cm}^{-1}]}$
C39	1117	8950	80500	1400	4130	4480
$\mathbf{C39}^{c}$	1117	8950	69000	1480	4550	4480
$C39^{ox}$	1145	8750	51400	1450	4090	4380
$\mathbf{C39}^{red}$	1330	7500	15100	1810	3790	3750

 ${}^{a} \Delta \tilde{\nu}_{1/2}^{\text{calc}} = [(16 \ln(2) k_B \text{T}) \tilde{\nu}_{\text{max}}]^{1/2}, k_B: \text{Boltzmann-Konstante, T: Temperatur in [K]. }^{b} \text{H}_{\text{AB}} = \frac{1}{2} \tilde{\nu}_{\text{max}} \text{ für Class III Systeme. }^{c} \text{ Werte bei Raumtemperatur (298 K).}$

von 0.32 auf sehr schnelle intramolekulare Elektronentransferraten ($\mathbf{k}_T = 10^{11} - 10^{13} \,\mathrm{s}^{-1}$), deren Größenordnung in der Zeitskala von Lösungsmittelmolekül-Bewegungen liegt.[164] Im Vergleich zu **C39** und **C39**^{ox} zeigt **C39**^{red} eine deutlich breitere ($\Delta \tilde{\nu}_{1/2}^{\exp} \sim 2000 \,\mathrm{cm}^{-1}$) sowie näherungsweise gaussfömrige NIR-Absorptionsbande (Abb. 6.8), wie sie theoretisch und praktisch für eine Class II Verbindung erwartet wird.[162, 163] Dennoch ist $\Delta \tilde{\nu}_{1/2}^{\exp}$ deutlich kleiner als $\Delta \tilde{\nu}_{1/2}^{\mathrm{calc}}$, so dass auch in dem Fall eine Einordung zu Class III erfolgen kann.

Weitere direkte Hinweise für eine Valenzdelokalisierung in gemischtvalenten Verbindungen können aus elektrochemischen Studien erhalten werden. [165, 166] Komplex C39 ist nach coulometrischen und cyclovoltammetrischen Untersuchungen in die Spezies C39^{ox} und C39^{red} überführbar. Weiterhin konnte gezeigt werden, dass die Cyclovoltammogramme von C39^{ox} und C39^{red} – die aus der Stammverbindung C39 coulometrisch erhalten wurden – exakt (Peakhöhe und Lage) mit dem Cyclovoltammogramm von C39 übereinstimmen. Ausgehend von C39^{red} wird C39^{ox} in zwei separaten Ein-Elektronen-Oxidations-Schritten erhalten, wobei C39 als stabiles Intermediat erhalten wird (vgl. Abb. 6.7). Im Fall eines lokalisierten Class I Systems – ohne elektronische Wechselwirkung der Metallzentren – ist eine Oxidation beider Metallzentren bei gleichem Potential zu erwarten. Für ein delokalisiertes System – mit elektronischer Wechselwirkung der Metallzentren – erwartet man hingegen, dass als Folge der ersten Oxidation der zweite Oxidationsschritt bei einem größeren Potential erfolgt. Als Maß für die Stabilität der Verbindung C39 gegnüber C39^{red} und C39^{ox} sowie als Indikator für den Delokalisierungsgrad kann hierbei die Komproportionierungskonstante K_c verwendet werden. Aus dem Redoxsystem

$$\begin{bmatrix} \operatorname{Cu}_{5}^{\mathrm{I}} \operatorname{Cu}_{1}^{\mathrm{II}} \end{bmatrix}^{+} & \stackrel{E_{1}}{\longleftrightarrow} & [\operatorname{Cu}_{4}^{\mathrm{I}} \operatorname{Cu}_{2}^{\mathrm{II}}]^{2+} & \stackrel{E_{2}}{\longleftrightarrow} & [\operatorname{Cu}_{3}^{\mathrm{I}} \operatorname{Cu}_{3}^{\mathrm{II}}]^{3+} \\ \mathbf{C39}^{red} & \mathbf{C39} & \mathbf{C39}^{ox} \\ \end{bmatrix}$$

kann für C39 folgende Komproportionierungsgleichung aufgestellt werden:

$$[Cu_5^ICu_1^{II}]^+ \quad + \quad [Cu_3^ICu_3^{II}]^{3+} \quad = \quad 2 \ [Cu_4^ICu_2^{II}]^{2+}$$

Für die Komproportionierungskonstante K_c bei 248.18 K folgt:

$$\begin{split} \mathrm{K_c} &= \ \frac{2[\mathbf{C39}]}{[\mathbf{C39}^{ox}][\mathbf{C39}^{red}]} \ = 10^{21.3\Delta\mathrm{E}} \\ \Delta\mathrm{E} &= \mathrm{E_2} \text{ - } \mathrm{E_1}; \mathrm{RTlnK_c} = \mathrm{zF}\Delta\mathrm{E} \end{split}$$

Mit $\Delta E = 0.948$ V ($E_2 = 0.696$ V, $E_1 = -0.252$ V) wird K_c zu ca. $10^{19.8}$ bestimmt. Gemischtvalente Verbindungen mit $K_c > 10^6$ fallen in die Gruppe der Class III Systeme.[165] Damit kann auch aus elektrochemischen Studien eine Class III Einordung von C39 erfolgen. Weiterhin wird deutlich, dass die Bildung von C39 gegenüber dem Oxidationsund Reduktionsprodukt deutlich begünstigt ist. So existiert C39^{ox} nur bei Potentialen oberhalb von ca. 0.700 V vs. NHE.

In der Literatur findet man zahlreiche gemischtvalente Cu^ICu^{II}-Komplexe mit (M-L-M) oder ohne (M-M) Brückenliganden. Der weitaus größte Teil dieser Komplexe gehört zu Class I und Class II.[167] Zur Class III gehören allgemein nur einige wenige Vertreter.[168] Für gemischtvalente Class III Komplexe mit einem Cu-S₂-Cu-Brückenmotiv darunter fällt auch der thiolatverbrückte Cu_A-Modellkomplex von Tolman sowie das Cu_A-Zentrum sind in der Literatur kaum Beispiele beschrieben. Thiolatverbrückte Kupfersysteme, die eine reversible Reaktion zwischen zwei valenzdelokaliserten- oder zwischen einem valenzdelokaliserten und valenzdefinierten Zustand aufweisen – wie im Fall des Cu_A-Zentrums – sind in der Literatur extrem selten. So sind neben dem System von Tolman nur die Komplexe Kw1 und Kw2 von Kawamoto et al. (vgl. Kap. 6.2.3) als Beispiele zu nennen. Aus den spektroskopischen und elektrochemischen Literaturdaten von Kw1 und Kw2 konnte das Verhältnis $\Delta \tilde{\nu}_{1/2}^{exp} / \Delta \tilde{\nu}_{1/2}^{calc}$ zu 0.30 und 0.47 bestimmt werden. Eine Einordnung zu Class III ist damit für beide Verbindungen möglich (Kw1: K_c = 10¹⁹ > 10⁶).

Die Kopplungsenergien 2 H_{AB} konnten für das Cu_A-Zentrum sowie für den gemischtvalenten Modellkomplex von Tolman zu 13400 bzw. 5600 $\rm cm^{-1}$ bestimmt werden.[26a] Bei ligandenverbrückten Komplexen (M-L-M) setzt sich 2 H_{AB} aus zwei Beiträgen zusammen: aus der elektronischen Kopplung einer direkten Metall-Metall-Wechselwirkung bzw. Bindung sowie durch Superaustauschwechselwirkungen der Metallzentren über den Brückenliganden L. Im Cu_A-Zentrum liegt eine direkte σ -Cu-Cu-Bindung vor mit einer elektronischen Kopplung von ca. 7400 cm⁻¹. Superaustauschwechselwirkungen über die Thiolat-Brücken erhöhen die elektronische Wechselwirkung der Metallzentren auf den experimentell bestimmten Wert von 13400 $\rm cm^{-1}$.[26a, 168] Im Modellkomplex von Tolman ergaben S-Kanten XAS und DFT-Studien, dass die elektronische Wechselwirkung $(2 H_{AB})$ der Metallzentren – aufgrund des langen Cu-Cu-Abstandes von 2.930(1) Å – ausschließlich über einen Cu-S-Cu-Superaustauschmechanismus erfolgt. [170] Der Delokalisationszustand im Modellkomplex von Tolman ist damit weit weniger stabil im Vergleich zum Cu_A-Zentrum. [26a, 165] Im Cu_A-Zentrum ist die direkte Cu-Cu-Bindung in zweierlei Hinsicht entscheidend: (i) Es stabilisiert den Delokalisationszustand und ermöglicht einen effizienten Elektronentransfer auch in einer Proteinmatrix mit niedriger Symmetrie. (ii) Die vibronische Kopplung verliert deutlich an Bedeutung. Dies ermöglicht ein Absenken der Franck-Condon-Barriere für den Elektronentransfer des Cu_A-Zentrums. [14b, 26a]

Insgesamt konnte aus den UV/Vis/NIR-Spektren der gemischtvaleten Komplexkationen $[Cu_6(Gua_{ph}S)_6]^{1+/2+/3+}$ eine Zuordnung zu Class III gemischtvalenter Systeme erfolgen.

Speziell die Spezies $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6]^{2+} (C39)$ und $[Cu_3^I Cu_3^{II} (Gua_{ph}S)_6]^{3+} (C39^{ox})$ können aufgrund der mittleren Oxidationsstufen der Kupfertome von $+1\frac{1}{3}$ und $+1\frac{1}{2}$ sowie der spektroskopischen Signaturen im UV/Vis/NIR-Spektrum, als Modellkomplexe für das Cu_A-Zentrum angesehen werden. Im Vergleich zum Modellkomplex von Tolman und dem Cu_A-Zentrum liegt der wesentliche strukturelle Unterschied im sechskernigen Aufbau mit den charaktertischen μ_3 -Schwefel-Brücken. Jedoch könnte gerade dieser mehrkernige

mit den charaktertischen μ_3 -Schwefel-Brücken. Jedoch könnte gerade dieser mehrkernige Aufbau die notwendige strukturelle Stabilität bieten um kürze Cu-Cu-Abstände sowie Cu-Cu-Wechselwirkungen zu ermöglichen, die auch als Basis für einen stabilen Delokalisationszustand im Cu_A-Zentrum angesehen werden. Gleichzeitig könnte das sechskernige System beim Wechsel der Oxidationsstufen Reorganisationsenergien effektiver minimieren und Reduktionspotentialänderungen besser entgegenwirken. Es wird vermutet, dass diese Eigenschaften im Cu_A-Zentrum hauptsächlich von der umgebenden Porteinmatrix (Variation und Steuerung der axialen Liganden) induziert werden, die eine Art 'Proteintasche' bildet, in der das Cu_A-Zentrum sitzt. [17c] Vergleichbar zum biologischen Vorbild könnte der mehrkernige Aufbau die stabilisierenden Effekte der Proteinmatrix deutlich besser ersetzen im Vergleich zu einem zweikernig aufgebauten Modellsystem. [17c, 171] Des Weiteren stabilisieren C39 und C39 ox mit einer elektronischen Kopplung von ca. 8950 und 8750 cm⁻¹ den Delokalisationszustand besser im Vergleich zum Modellkomplex von Tolman (5600 cm⁻¹). Dabei deuten erste DFT-Untersuchungen von C39 (vgl. Kap. 6.1.5) auf Cu-Cu-Wechselwirkungen mit π -Bindungsanteilen innerhalb der rautenfömrigen Cu₂S₂-Einheiten. Hierbei handelt es sich nicht um eine direkte σ -Cu-Cu-Bindung (analog zum Cu_A -Zentrum), dennoch könnten die π -Wechselwirkungen einen Beitrag zu der gesamten elektronischen Kopplung leisten. In dem Fall würde der Delokalisationszustand vergleichbare Stabilitätskriterien erfüllen wie im Cu_A-Zentrum.

Damit bleibt festzuhalten, dass die gemischtvalenten sechkernigen Komplexkationen C39 und C39^{ox} mit dem charaktertischen SNCuS₂CuNS-Strukturmotiv dem biologischen Vorbild von allen bisher bekannten Verbindungen noch am ehesten gleichen.

6.2 Zweikernige Thiolat-Komplexe des Typs [Cu₂^{II}(Gua_{ph}S)₂X₂]

6.2.1 Synthetische Aspekte

Die Untersuchungen der Disulfid-Liganden **L22-1** und **L22-2** $(\text{Gua}_{ph}\text{S})_2$ auf ihre Fähigkeit, Kupfer(I)-Ionen unter reduktiver Ausbildung von Thiolat-Funktionen zu oxidieren, standen zunächst im Mittelpunkt der experimentellen Arbeiten.

Die Umsetzungen der aromatischen Disulfid-Liganden L22-1 und L22-2 mit CuX (X =Cl⁻, Br⁻) in Acetonitril im Verhältnis 0.5 : 1 führte zu dunkelblauen bis grünblauen Lösungen. Aus den gefilterten Lösungen der Ansätze L22-1/CuCl und L22-1/CuBr konnten durch Diffusion von Diethylether nach mehreren Tagen dunkelblaue bis schwarze Kristalle isoliert werden. Eine Röntgenstrukturanalyse bestätigte die reduktive Spaltung der Disulfid-Gruppe und die Bildung der Kupfer(II)-Thiolat-Komplexe $[Cu_2^{II}(TMG_{ph}S)_2Cl_2]$ $({\bf C45})$ und $[{\rm Cu}_2^{\rm II}({\rm TMG}_{ph}{\rm S})_2{\rm Br}_2]~({\bf C46})$ mit dem 2-(Guanidino)phenylthiolat-Liganden $\operatorname{Gua}_{ph}S^{-}$. Ansätze der Stöchiometrie 1 : 1 führten ebenfalls zu den beschriebenen Komplexen C45 und C46. Die überschüssigen 0.5 Anteile des eingesetzten Disulfid-Liganden konnten neben den Thiolat-Komplexen isoliert werden. Aus Ansätzen mit den DMEG-Liganden L22-2 konnten keine Einkristalle erhalten werden. Spektroskopische Messungen der ausgefallenen Feststoffe bestätigten jedoch durch Vergleich mit C45 und C46 die Bildung von $[Cu_2^{II}(DMEG_{ph}S)_2Cl_2]$ (C45a) und $[Cu_2^{II}(DMEG_{ph}S)_2Cl_2]$ (C46b). Neben den erhaltenen Kupfer(II)-Thiolat-Komplexen wurde die Bildung von Nebenprodukten nicht beobachtet. Zusammen mit den guten Ausbeuten (> 90 %) ist von einer glatten Reduktion des Disulfid-Liganden sowie einer vollständigen Oxidation der Kupfer(I)-Ionen auszugehen (vgl. Abb. 6.1, Reaktionsweg **R1**). Die dargestellten Komplexe sind in Table 6.29 in einer Ubersicht zusammengestellt.

Komplex		Kristallsystem, Raumgruppe
$[\operatorname{Cu}_{2}^{\mathrm{II}}(\operatorname{TMG}_{ph}\operatorname{S})_{2}\operatorname{Cl}_{2}]$ $[\operatorname{Cu}_{2}^{\mathrm{II}}(\operatorname{TMG}_{ph}\operatorname{S})_{2}\operatorname{Br}_{2}]$ $[\operatorname{Cu}_{2}^{\mathrm{II}}(\operatorname{DMEG}_{ph}\operatorname{S})_{2}\operatorname{Cl}_{2}]$ $[\operatorname{Cu}_{2}^{\mathrm{II}}(\operatorname{DMEG}_{ph}\operatorname{S})_{2}\operatorname{Br}_{2}]$	C45 C46 C45a C46a	monoklin, C2/c triklin, P $\overline{1}$

 Tabelle 6.29: Dargestellte Kupfer-Thiolat-Komplexe ausgehend von den Liganden L22-1 und L22-2.

6.2.2 Beschreibung der Kristallstrukturen

Dunkelblaue bis schwarze Kristalle von $[Cu_2^{II}(TMG_{ph}S)_2Cl_2]$ (C45) kristallisieren in der Raumgruppe C2/c mit vier Molekülen in der Elementarzelle. Dagegen liegen in der triklinen Elemetarzelle von $[Cu_2^{II}(TMG_{ph}S)_2Br_2]$ (C46) zwei neutrale Komplexmoleküle vor.

Abbildung 6.12: Molekülstruktur von $[Cu_2^{II}(Gua_{ph}S)_2Cl_2]$ (C45) im Kristall.

Insgesamt zeigen die Molekülstrukturen von C45 und C46 den gleichen Aufbau: eine stark gefaltete thiolatverbrücke Cu^{II}₂S₂-Einheit wird von zwei 2-(Guanidino)phenylthiolat-Liganden sowie zwei Halogen-Atomen stabilisiert. In Abbildung 6.12 ist als Beispiel die Molekülstruktur von C45 dargestellt. Ausgewählte Bindungsparameter der Komplexe C45 und C46 sind in den Tabellen 6.39 und 6.40 zusammengefasst. Die SCuS- und NCuCl-Ebenen sind in beiden Komplexen um ca. 48° gegeneinander verdreht, und die N-Cu-S- und X-Cu-S-Bindungswinkel liegen im Bereich von 141.69(5) bis $145.39(2)^{\circ}$ (109.4° bzw. 180° in einer idealtypischen tetraedrischen bzw. quadratisch-planaren Geometrie). Der Koordinationspolyeder der Cu^{II}-Atome besitzt damit genau eine Geometrie zwischen verzerrt tetraedrisch und quadratisch-planar. Die Cu^{II}S₂-Einheit ist asymmetrisch aufgebaut und besitzt zwei längere sowie zwei kürzere Cu-S-Bindungen (C45: 2.220 und 2.336Å, C46: 2.223 und 2.325 Å (av)). Die Cu-Cu- und S-S-Abstände sind in beiden Komplexen fast identisch. Das gleiche Bild ergibt sich für die Cu-S-Cu- und S-Cu-S-Bindungswinkel mit ca. 73.4 und 89.0° (Tab. 6.40 und 6.39). Durch die relativ starke Faltung der Cu₂S₂-Einheit entlang der S-S-Achse (C45: 57.8°, C46: 58.3°) entsteht die für den Komplextyp charakteristische 'Butterfly-Struktur' (rechts, Abb. 6.12).

In der Literatur sind bis heute nur sieben zweikernige thiolatverbrückte $Cu_2^{II}S_2$ -Komplexe beschrieben worden.[48] Eine Übersicht ausgewählter Strukturparameter sowie der verwendeten Liganden ist in Tabelle 6.32 und Abbildung 6.13 zu finden. Zwei wichtige Vergleichsparamter der Komplexe, die gleichzeitig den biomimetischen Modellcharakter für das Cu_A -Zentrum prägen (vgl. Kap. 6.2.3), sind dabei der Faltungswinkel der $Cu_2^{II}S_2$ -Einheit sowie der Cu-Cu-Abstand. Der Faltungswinkel variiert von 7.1° im Komplex $[Cu_2(L^1)_2](ClO_4)_2$ von Belle et al.[48b] bis 73.1° im Komplex $[Cu_2(L^7)_2]$ von Wieghardt et al.[48a] Gleichzeitig beobachtet man eine Abnahme des Cu-Cu-Abstandes und des Cu-S-Cu-Bindungswinkels von 3.419(1) auf 2.654(1) Å bzw. von 94.92(4) auf 69.92(4)°. Der

Komplex	Cu-X	Cu-N	Cu-S	C=N	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	$S \cdots S$	ρ
C45	2.219(1)	2.003(2)	2.220(1) 2.336(1)	1.355(2)	2.734(1)	3.194(2)	1.008
C46	$2.351(1) \\ 2.361(1)$	$1.994(5) \\ 1.997(6)$	2.223* 2.325*	$1.354(8) \\ 1.356(8)$	2.712(1)	3.192(2)	0.986

Tabelle 6.30: Ausgewählte Bindungslängen [Å] und Atomabstände [Å] der Komplexe C45und C46.

* Mittelwert

Tabelle 6.31: Ausgewählte Bindungswinkel [°] der Komplexe C45 und C46.

Komplex	Cu-S-Cu	S-Cu-S	S-Cu-N	S-Cu-X	N-Cu-X	β^a
C45	73.69(2)	88.96(3)	88.61(5) 141.69(5)	99.73(2) 145.39(2)	103.71(5)	57.8
C46	73.18(6) 73.14(6)	89.06(7) 89.16(7)	88.69(15) $88.53(15)$ $142.20(16)$ $141.93(16)$	99.72(6) 99.52(6) 144.50(6) 144.71(6)	$103.93(15) \\ 103.92(15)$	58.3

^{*a*} β = Faltungswinkel der Cu₂S₂-Einheit.

S-S-Abstand ändert sich hierbei – bis auf eine Ausnahme im Komplex $[Cu_2^{II}(L^5)_2]$ von Garnovskii et al. [48c] mit 3.379(4) Å – nur geringfügig (3.014(1) - 3.180(1)) Å). Mit 57.8° und 58.3° besitzen die beiden Komplexe C45 und C46 einen realtiv großen Faltungswinkel und liegen hinter dem Komplex $[Cu_2^{II}(L^5)_2]$ von Garnovskii et al. (46.3°) und vor dem Komplex $[Cu_2^{II}(L^6)_2](ClO_4)_2$ von Itoh et al. [48d] (64.3°) (vgl. Tab. 6.32). Die Cu-Cu-Abstände fallen mit 2.734(1) (C45) und 2.712(1) Å (C46) jedoch deutlich kürzer aus im Vergleich zu denen in $[Cu_2^{II}(L^6)_2](ClO_4)_2$ von Itoh mit 2.807(2) Å. Die Cu-Thiolat-Bindungslängen der Literaturkomplexe liegen sehr einheitlich zwischen 2.272(1) und 2.331(1) Å. Im Vergleich dazu zeigen C45 und C46 mit 2.220(1) (bzw. 2.336(1)) und 2.232(2) (bzw. 2.325(2)) Å die kürzesten Cu-S-Bindungslängen. Bei den Cu-N_{Amin}- (2.025(3) - 2.097(9) Å) bzw. Cu- N_{pv} -Bindungen (1.991(6) - 2.108(9) Å) sind keine größeren Unterschiede zu verzeichnen. Betrachtet man den Faltungswinkel und die Ligandenkonstitution, ist folgende Korrelation erkennbar: tripodale Liganden (L¹, L⁴) mit vier Donorfunktionen, der makrocyklische Ligand L^5 mit sechs Donorfunktionen sowie der Ligand L^3 mit dem 1,4,7-Triazonan-Gerüst zeigen Faltungswinkel deutlich unterhalb von 40° (vgl. Tab. 6.32). Dabei stabilisiert L^1 mit einem Verhältnis der S- zu N-Donorfunktionen von 1 : 1 den kleinsten Faltungswinkel (7.1°) im Komplex von Belle et al. [48b] Ein größeres Verhältnis der S- zu N-Donorfunktionen ($L^2 = 2 : 1, L^3$ und $L^4 = 3 : 1$) begünstigt offenbar einen größeren

Komplex	Cu-N	Cu-S	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	$S \cdots S$	Cu-S-Cu	S-Cu-S	β
$[Cu_{2}^{II}(L^{1})_{2}](ClO_{4})_{2}$	$2.077(3)^{a}$	2.318^{c}	3.419(1)	3.130(2)	94.92(4)	84.84(4)	7.1
	$2.025(3)^{b}$	2.554^{d}				85.87(3)	
$[Cu_2^{II}(L^2)NO_3]PF_6$	2.004*	2.299(2)	3.264(2)	3.098(2)	90.48(4)	84.77(6)	32.3
					90.37(4)	84.70(4)	
$[Cu_2^{II}(L^3)_2](ClO_4)_2$	2.142^{*}	2.331^{*}	3.340(3)	3.092(3)	91.52(3)	83.14(3)	33.5
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^4)_2](\mathrm{ClO}_4)_2$	$2.108(9)^{a}$	2.296^{*}	2.960(1)	3.180(1)	80.95(10)	87.80(1)	36.0
	$2.097(9)^{b}$				79.60(1)	87.70(1)	
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^5)_2]$	1.965^{*}	2.278^{*}	2.814(1)	3.379(4)	76.05(3)	95.66(4)	46.3
					76.40(3)	95.80(4)	
C45	2.003(2)	2.220(1)	2.734(1)	3.194(2)	73.69(2)	88.96(3)	57.8
		2.336(1)					
C46	1.994(5)	2.223^{*}	2.712(1)	3.192(2)	73.18(6)	89.06(7)	58.3
	1.997(6)	2.325^{*}			73.14(6)	89.16(7)	
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^6)_2](\mathrm{ClO}_4)_2$	$1.991(6)^{a}$	2.272(2)	2.807(2)	3.130(2)	75.90(2)	86.80(2)	64.3
	$2.034(5)^{b}$	2.284(2)			76.50(2)		
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^7)_2]$	1.925^{*}	2.273^{*}	2.645(1)	3.014(1)	70.80(4)	82.40(4)	73.1
					69.92(4)	81.91(4)	

Tabelle 6.32: Ausgewählte Strukturparameter ([Å]/[°]) literaturbekannter thiolatverbrückter
Cu₂^{II}S₂-Komplexe.

* Mittelwert. ^{*a*} Cu-N_{py}-Bindung. ^{*b*} Cu-N_{Amin}-Bindung. ^{*c*} Mittelwert der Cu-S_{Thiolat}-Bindungen. ^{*d*} Mittelwert der Cu-S_{Thioether}-Bindungen.

Faltungswinkel. Die Koordinationsgeometrie der Cu^{II}-Atome mit den Liganden L¹ - L⁴ kann als verzerrt quadratisch-pyramidal beschrieben werden. Die Reihe der Komplexe mit einem Faltungswinkel größer 40.0° beginnt mit den dreizähnigen Liganden L⁵ und L⁶, die ein Verhältnis der S- zu N-Donorfunktionen von 2 : 1 aufweisen. Der Ligand L⁷ besitzt neben einer S- und N-Donorfunktion (Verhätnis 1 : 1) – analog zum TMG_{ph}S-Liganden – eine weitere Phenolat-Donorfunktion und bildet damit zusammen mit dem zweizähnigen TMG_{ph}S-Liganden, die mit Abstand die kürzesten Cu-Cu-Abstände stabilisieren, eine Sonderstellung. Die Koordinationsgeometrien der entsprechenden Cu^{II}-Metallzentren sind dabei immer verzerrt quadratisch-planar. Ein Einfluss der N- und S-Donorfunktion – aromatisch oder aliphatisch – auf den Faltungswinkel ist nicht erkennbar.

Insgesamt führen vor allem Ligandensysteme mit mehr als drei Donorfunktionen und einem Verhältnis der N- zu S-Donorfunktionen von 1 : 1 und 2 : 1 (L¹ - L²) zu einen kleinen Faltungswinkel der Cu₂^{II}S₂-Einheit. Diese Liganden sind zudem sterisch anspruchsvoller und unterbinden durch ihren räumlichen Bau eine weitere Annäherung der beiden Cu^{II}-Atome. Als Gegentrend zum kleinen Faltungswinkel der Cu₂^{II}S₂-Einheiten ist jedoch ein Anstieg der Cu^{II}-Cu^{II}-Abstände zu verzeichnen (73.1°/ 2.654(1) Å - 7.1°/ 3.419(1) Å). Dieser Trend ist zunächst mit der Struktur des Cu_A-Zentrums (planare gemischtvalente Cu₂S₂-Einheit, Cu^{1.5}-Cu^{1.5}-Abstand ca. 2.5 Å) nicht direkt vereinbar.

Abb. 6.13: Übersicht über literaturbekannte Liganden, die eine $Cu_2^{II}S_2$ -Einheit stabilisieren.

Damit zeigen alle sieben literaturbekannten Komplexe einschließlich **C45** und **C46** strukturell gesehen nur bedingt Modellcharakter für das Cu_A-Zentrum. Nur der Komplex $[Cu_2(L^1)_2](ClO_4)_2$ von Belle verbindet zusammen mit den N_{py}-, N_{Amin}-, S_{Thiolat}- sowie S_{Thioether}-Donorfunktionen eine fast planare Cu₂^{II}S₂-Einheit und besitzt einige strukturelle Merkmale des Cu_A-Zentrums.

Zusammenfassend sind die beiden Komplexe C45 und C46 die ersten Vertreter aus einer Reihe thiolatverbrückter Cu^{II}-Komplexe, die einen zweizähnigen Thiolatliganden (Gua_{ph}S⁻) sowie terminale Halogenid-Liganden besitzen. Damit konnte gezeigt werden, dass auch ein kleiner zweizähniger Ligand ohne große sterische Abschirmung in der Lage ist, ein Koordinationsarrangement zu bilden, das die Oxidation des Thiolats zum Disulfid und die entsprechende Reduktion zu Cu^I unterbindet.

6.2.3 Spektroskopische, magnetochemische und cyclovoltammetrische Untersuchungen

Die magnetochemischen Eigenschaften zweikerniger Cu^{II} -L- Cu^{II} -Komplexe (L = z.B. OH⁻, Cl⁻) sind bereits Gegenstand zahlreicher Untersuchungen gewesen.[172] In der Regel findet man mittel bis schwach antiferromagentisch gekoppelte Cu^{II} -(d⁹)-Systeme mit Kopplungskonstanten in Abhängigkeit vom Cu-L-Cu-Bindungswinkel sowie der koordinierenden Co-Liganden. Magnetochemische Untersuchungen thiolatverbrückter Cu^{II}-Komplexe mit dem Ziel, die Austauscheigenschaften des verbrückenden Schwefel-Atoms näher zu

Abbildung 6.14: SQUID-Messung von C46.

beleuchten, sind in der Literatur kaum vorhanden. Es existieren einige systematische Studien zu Cu^{II}-Komplexen mit Thiocarbamato-Liganden, die eine planare Cu₂S₂-Einheit besitzen. Die Ergebnisse zeigten, dass – analog zu planaren OH[–]-verbrückten Komplexen – die Kopplungskonstante J mit größerem Cu-S-Cu Bindungswinkel ansteigt. [173] Tabelle 6.33 listet die bereits diskutierten thiolatverbrückten Komplexe mit den bekannten magnetochemischen Daten auf. Die meisten Komplexe zeigen eine starke antiferromagentische Kopplung der Cu^{II}-(d⁹)-Ionen über die Thiolat-Brücken. Eine Kopplungskonstante J wird nur für die Verbindung $[Cu_2^{II}(L^7)_2][48a]$ angegeben $(J_{exp} = -545 \text{ cm}^{-1})$, die zwei Cu^{II}-Atome mit einer leicht verzerrt quadratisch-planaren Koordinationsumgebung besitzt. Begleitende DFT-Rechnungen zu dem Komplex zeigten, dass eine Maximierung der Austauschwechselwirkung über die Thiolatbrücken bei einer orthogonalen Anordnung der quadratisch-planaren Koordinationsflächen sowie kleinen Cu₂S₂-Faltungswinkeln erfolgt. Suszeptibilitätsmessungen von C45 und C46 zeigten in beiden Fällen extrem stark antiferromagnetisch gekoppelte Cu^{II} -(d⁹)-Systeme (S = 0). Für das Chlorid-System steigt die Suszeptibilität bei Erhöhung der Temperatur nicht an. Ein Indiz, dass der angeregte Triplettzustand (S = 1) merklich pouliert werden kann, ist nicht erkennbar. Das Bromid-Analogon zeigt einen leichten Anstieg der Suszeptibilität bei Erhöhung der Temperatur (Abbildung 6.14) Mit einem Bleaney-Bowers-Modell[174] konnten die Daten gefittet und die Kopplungskonstante J zu -2210 cm^{-1} bestimmt werden. Interessanterweise zeigen die Komplexe C45 und C46 keine signifikanten strukturellen Unterschiede (vgl. Strukturdiskussion Kap. 6.3.2), die als Grund für das unterschiedliche magnetische Verhalten angeführt werden könnten. So könnten jedoch die unterschiedlichen Donoreigenschaften der Co-Liganden (Chlorid vs. Bromid) die Austauschwechselwirkung zwischen den Cu^{II}-Zentren beeinflussen.

Im Gegensatz zum Komplex von Wieghardt et al. zeigen die beiden Guanidinkomplexe eine wesentlich stärkere Austauschwechselwirkung über die Thiolat-Brückenatome. Ein struktureller Vergleich der Komplexe zeigt, dass neben den unterschiedlichen NS₂O- bzw. NS₂X-Donorsätzen die quadratisch-planare Koordinationsgeometrie der beiden Guanidinkomplexe deutlich stärker verzerrt ist im Vergleich zu $[Cu_2^{II}(L^7)_2]$ (Diederwinkel der LCuN/SCuS-Ebenen (L = O, X): 48° (C45, C46) vs. 19°). Daneben ist der Faltungswinkel der Cu₂S₂-Einheiten in $[Cu_2^{II}(L^7)_2]$ um ca. 20° größer im Vergleich zu C45 und C46. Auch die Komplexe mit den Liganden L³ bis L⁶ (Tab. 6.33) sind diamagnetisch (in Lösung und als Feststoff) und besitzen antiferromagnetisch gekoppelte Cu^{II}-Atome mit mittleren bis großen Faltungswinkeln (33.5, 36.0, 46.3 und 64.3°). Die Komplexe $[Cu_2^{II}(L^1)_2](CIO_4)_2$ von Rammal et al.[48b] und $[Cu_2^{II}(L^2)(NO_3)]PF_6$ von Schröder et al.[48f] haben dagegen kleinere Faltungswinkel sowie längere Cu-Cu-Abstände und fast rechtwinklige Cu-S-Cu-Bindungswinkel und zeigen nur sehr schwache (bei Rammal et al.) bis keine (bei Schröder et al.) antiferromagnetische Wechselwirkungen.

Insgesamt lässt sich aus den strukturellen Merkmalen der Cu₂S₂-Komplexe (Tab. 6.32) ein klarer Trend für einen diamagnetischen Charakter ableiten: große Cu₂S₂-Faltungswinkel, kurze Cu-Cu-Abstände sowie spitze Cu-S-Cu-Bindungswinkel sind deutliche Indizien für eine starke antiferromagnetische Kopplung. Eine Ausnahme zeigt sich im Fall der Komplexkationen $[Cu_6(RS)_6]^{2+}$ (C39, C43), die ebenfalls einen diamagnetischen Charakter ohne merklichen Suszeptibilitätsanstieg bei hohen Temperaturen aufweisen. In dem Fall liegen jedoch die Cu₂S₂-Faltungswinkel bei 11.1 bzw. 7.8°, und die Kupferatome besitzen einen NS₃-Donorsatz sowie eine verzerrt tetraedrische Koordinationsumgebung. So könnten hier die spitzen Cu-S-Cu-Bindungswinkel von 56.72(1) bzw. 65.75(1)° und der realtiv kurze Cu-Cu-Abstand von ca. 2.570 Å (av) die entscheidenden Faktoren darstellen für eine starke Austauschwechselwirkung der Kupferzentren ohne eine beträchtliche Faltung der Cu₂S₂-Einheiten.

UV/Vis-spektroskopische Untersuchungen erfolgten an den Komplexen C45, C45a, C46 und C46a. Die Lösungen der Komplexe z.B in Dichlormethan oder Acetonitril zeigen optisch reizvolle blaue bis grünblaue Farbtöne (Abb. 6.15). Die UV/Vis-Spektren der Thiolat-Komplexe in Dichlormethan oder Acetonitril zeichnen vermutlich zwei $S(\pi) \rightarrow Cu^{II}$ LMCT-Übergänge aus.[150a] Für die TMG-Komplexe C45 und C46 liegen die Übergänge bei ca. 708/734 ($\epsilon = 8350$ bzw. 8540 M⁻¹ cm⁻¹) und 590 nm ($\epsilon = 6460$ bzw. 5690 M⁻¹ cm⁻¹). Die DMEG-Komplexe C45a und C46a zeigen für die entsprechenden Übergänge bei 733/756 nm ($\epsilon = 12040$ bzw. 12000 M⁻¹ cm⁻¹) und 570/600 nm ($\epsilon = 7300$ bzw. 6750 M⁻¹ cm⁻¹) deutlich größere Extinktionskoeffizienten. Absorptionsbanden im kleineren Wellenlängenbereich von 370 bis 420 nm können S(σ) \rightarrow Cu^{II} LMCT-Übergängen zugeordnet werden.[150a] Daneben werden N(σ) \rightarrow Cu^{II} LMCT- sowie $\pi \rightarrow \pi^*$ -Übergänge der C=N-Guanidin-Doppelbindung bei ca. 270 und 240 nm beobachtet (vgl. Tab. 6.34).

Komplex	$\lambda \; (\epsilon) [\mathrm{nm} \; (\mathrm{M}^{-1} \mathrm{cm}^{-1})]$	$E_{1/2}^n$ [V]	EPR/SQUID	KG^{a}
C45	708 (8350), 590 (6460) 419 (4600), 275 (25240)		$\operatorname{EPR-inaktiv}^h$	v-qp
C46	243 (28120) 732 (8540), 590 (sh,5690) 420 (4870), 393 (4770) 276 (22200) 242 (22200)		${ m EPR} ext{-inaktiv}^h$ ${ m J}_{ m exp}=-2210~{ m cm}^{-1}$	v-qp
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^1)_2](\mathrm{ClO}_4)_2$	276 (23300), 242 (29300) 350 (7158) 592 (1204)	$\mathrm{E}^{\mathrm{red}}_{1/2} = 0.24^b$ $\mathrm{F}^{\mathrm{red}} = -0.22$	$\mathrm{EPR} ext{-}\mathrm{aktiv}^c$	v-qpy
$[\mathrm{Cu}_2^{\mathrm{II}}(\mathrm{L}^2)(\mathrm{NO}_3)]\mathrm{PF}_6$	<i>392</i> (1204)	${f E}_{1/2}^{ m red}=-0.22^{ m red} \ {f E}_{1/2}^{ m red}=-0.205^{ m d} \ {f E}_{1/2}^{ m red}=-0.405$	$\mathbf{EPR}\text{-}\mathbf{aktiv}^f$	v-qpy ^g
$[Cu_2^{II}(L^3)_2](ClO_4)_2$	274 (sh,3600) 338 (sh,3100) 382 (3600)	$egin{array}{lll} { m E}_{1/2}^{ m z} = +0.985^e \ { m E}^{ m red} = -0.014^d \ { m E}^{ m red} = -0.486 \end{array}$	$\operatorname{EPR-inaktiv}^h$	v-qpy
$[Cu_2^{II}(L^4)_2](ClO_4)_2$	$ \begin{array}{c} 676 \ (670)^{i} \\ 366 \ (8000) \\ 556 \ (500) \\ 884 \ (1200)^{i} \end{array} $	$egin{array}{lll} { m E}_{1/2}^{ m red}={ m -}0.43^b \ { m E}_{1/2}^{ m red}={ m -}0.70 \end{array}$	$\mathbf{EPR} ext{-inaktiv}^h$	v-qpy
$[Cu_{2}^{II}(L^{5})_{2}]$ $[Cu_{2}^{II}(L^{6})_{2}](ClO_{4})_{2}$	351 (12300) 516 (1200)	$\mathrm{E^{ox}}=+0.48^{d}$	$\operatorname{EPR-inaktiv}^h$ $\operatorname{EPR-inaktiv}^h$	v-qp v-qp
	$813 (2400)^i$	$E^{ox} = +0.23$ $E^{ox} = +0.10$ $E^{red} = -0.10$		
$\left[\mathrm{Cu}_{2}^{\mathrm{II}}(\mathrm{L}^{7})_{2}\right]$	435 (18000), 555 (500) 804 (1200) ⁱ	j	EPR-inaktiv $J_{exp} = -545 \text{ cm}^{-1k}$	v-qp

Tabelle	6.33:	Physikalische	Eigenschaften	von	C45	und	C46	sowie	literatu	rbekann	iter
		$Cu_2^{II}S_2$ -Komp	lexe.								

^{*a*} Koordinationsgeometrie der CuII-Atome. qp: quadratisch-planar, v-qp: verzerrt quadratisch-planar, v-qpy: verzerrt quadratisch-pyramidal. ^{*b*} Alle Werte vs. Ag/AgNO₃. ^{*c*} Es liegen schwach antiferromagnetisch gekoppelte CuII-Zentren vor. g-Werte (X-Band, CH₂Cl₂, 10 K): g_x = 2.030, g_y = 2.032, g_z = 2.128. ^{*d*} Alle Werte vs. NHE. ^{*e*} Quasi-reversible Oxidation der Thiolatfunktion zum Disulfid. ^{*f*} Aufgrund des langen Cu-Cu-Abstandes von 3.264(2) Å liegen keine elektronischen Wechselwirkungen zwischen den Metallatomen vor. g_{av} = 2.07. ^{*g*} Unter Berücksichtigung des schwach koordinierenden Lösungsmittels (MeOH) liegt alternativ eine verzerrt pseudo-oktaedrische Koordinationsgeometrie vor. ^{*h*} Starke antiferromegnetische Kopplung der Metallzentren. ^{*i*} S→Cu^{II}-LMCT-Übergang. ^{*j*} Eine Reduktion – auch bei tiefen Temperaturen – führt zu instabilen Produkten. ^{*k*} Berechnete Kopplungskonstante J_{calc} = -724 cm⁻¹.
Komplex	$\lambda~(\epsilon) [{\rm nm}~({\rm M}^{-1}{\rm cm}^{-1})]$	Komplex	$\lambda~(\epsilon) [{\rm nm}~({\rm M}^{-1}{\rm cm}^{-1})]$	Übergang
C45	708 (8350), 590 (6460)	C45a	733 (12040), 570 (7300)	$S(\pi) \rightarrow Cu^{II} LMCT$
010	419 (4600)	0 104	415 (5300)	$S(\sigma) \rightarrow Cu^{II} LMCT$
	275 (25240)		269 (36600)	$N(\sigma) \rightarrow Cu^{II} LMCT$
	243 (28120)		247 (41660)	$\pi \rightarrow \pi^* C = N_{Gua}$
C46	732 (8540), 590 (sh,5690)	C46a	756 (12000), 600 (6750)	$S(\pi) \rightarrow Cu^{II} LMCT$
	420 (4870), 393 (4770)		418 (5020), 377 (5540)	$S(\sigma) \rightarrow Cu^{II} LMCT$
	276~(23300)		272 (28000)	$N(\sigma) \rightarrow Cu^{II} LMCT$
	242 (29300)		240 (39000)	$\pi{\rightarrow}\pi^*~\mathrm{C=N_{Gua}}$
C39	$642 \ (6900), \ 534 \ (5290)$	To1	786 (sh), 602 (800)	$S(\sigma,\pi) \rightarrow Cu^{II} LMCT$
	417 (13600)		358~(2700)	$S(\sigma) \rightarrow Cu^{II} LMCT$
	296 (117500)			$N(\sigma) \rightarrow Cu^{II} LMCT$
	1117 (80500), 916 (sh,22800))	1466 (1200)	$\mathrm{Cu}(\psi){\rightarrow}\mathrm{Cu}(\psi^*)$

Tabelle 6.34: Spektroskopische Daten der Komplexe C45, C45a, C46a, C39 und To1.

Im Vergleich zum Cu_A-Zentrum zeigen zwar die S \rightarrow Cu^{II} LMCT-Übergänge der Guanidinkomplexe eine Rotverschiebung, jedoch ist die charakteristische asymmetrische 'Doppelbande' – die ebenfalls das UV/Vis-Spektrum von Cu_A-Zentren dominiert (vgl. Abb. 6.17) – deutlich zu erkennen. Dieses charakteristische spektroskopische Merkmal ist bei den bereits bekannten Cu^{II}₂S₂-Komplexen nicht vorhanden.

Ein Vergleich der spektroskopischen Daten der zweikernigen $\operatorname{Cu}_2^{\mathrm{II}}\operatorname{S}_2$ -Guanidinkomplexe mit den gemischtvalenten Komplexen [$\operatorname{Cu}_4^{\mathrm{I}}\operatorname{Cu}_2^{\mathrm{II}}(\operatorname{Gua}_{ph}\operatorname{S})_6$](PF₆)₂ (**C39**), **C39**^{ox} sowie dem zweikernigen Cu_A-Modellkomplex von Tolman (**To1**) (Tab. 6.34) zeigt eine interessante Tatsache: die S→Cu LMCT-Absorptionsbanden der Komplexe **C45** und **C46** sind rotverschoben im Vergleich zu den sechskernigen Thiolat-Komplexen **C39** und **C39**^{ox} vergleichbar mit dem Komplex von Tolman. Die Ursachen der Rotverschiebung sind auf die Unterschiede in der Koordinationsgeometrie (verzerrt quadratisch-planar vs. verzerrt tetraedrisch, Cu₂S₂-Einheit gefaltet vs. planar), der Donorsätze (NS₂X vs. N₂S₂) sowie Oxidationszustände (+2 vs. +1 $\frac{1}{3}$ (**C39**), +1 $\frac{1}{2}$ (**C39**^{ox}) der Komplexe **C45** und **C46** im

Abb. 6.15: Lösungen von C45, C46, C45a und C46b in Dichlormethan ($c \sim 10^4 \text{ mol/l}$).

Abb. 6.16: UV/Vis-Spektren der Komplexe C45, C45a, C46 und C46a im Bereich von 330 bis 1050 nm in CH₂Cl₂ bei Raumtemperatur.

Vergleich zu den sechkernigen Systemen zurückzuführen.

Insgesamt können die zweikernigen Thiolat-Guanidinkomplexe als spektroskopische Modellkomplexe für das Cu_A-Zentrum angesehen werden. Die S→Cu LMCT-Absorptionsbanden zeigen aufgrund struktureller Differenzen zum Cu_A-Zentrum entsprechend eine Rotverschiebung, jedoch ist die 'Doppelbande' als charakteristische Signatur im UV/Vis-Spektrum der Cu_A-Zentren sowie der Thiolat-Guanidinkomplexe zu finden.

Cyclovoltammetrische Messungen erfolgten stellvertretend für alle zweikernigen Thiolat-Guanidinkomplexe mit Komplex C45. Interessanterweise zeigen Komplex-Lösungen von C45 in Dichlormethan bei der Zugabe von $[Bu_4N]PF_6$ (Leitsalz) eine Änderung der optischen Eigenschaften. So wechselte eine blaue Lösung von C45 bei der Zugabe von

Abb. 6.17: UV/Vis-Spektrum vom Cu_A-Zentrum aus Paracoccus denitrificans bei pH = 6.[156b] Angaben in [nm (M⁻¹ cm⁻¹)].

 $[Bu_4N]PF_6$ die Farbe nach gelbbraun. Spektroskopische Messungen dieser Lösung zeigten keine S \rightarrow Cu^{II} LMCT-Übergänge und bestätigten einen möglichen Zerfall bzw. Umbau des Komplexes. Eine Testreihe mit weiteren Verbindungen, die als Leitsalz ($[Bu_4N]ClO_4$, $[Bu_4N]BF_4$, $[Et_4N]PF_6$) eingesetzt wurden, sowie ein Wechsel des Lösungsmittels (Acetonitril) zeigten eine ähnliche Reaktionen. Im Fall von $[Bu_4N]Cl$ zeigte die blaue Lösung eine Farbänderung nach schwach grün bis farblos (vgl. Kap. 6.4). Aus weiteren Untersuchungen folgte, dass die Abkühlung der farblosen Lösung auf unter -40°C die Ausgangsfarbe wiederherstellte. Spektroskopische Messungen bei -40°C bestätigten die Rückbildung der zweikernigen Thiolat-Spezies (vgl. Kap. 7) Cyclovoltammetrische Messungen wurden daher bei Temperaturen unter -40°C in Dichlormethan durchgeführt (Leitsalz: $[Bu_4N]Cl, c =$ 0.2 mol/L). Cyclovoltammogramme von **C45** zeigten keine Reduktion der Cu₂^{II}S₂-Einheit in den gemischtvalenten Zustand. Eine mögliche Oxidation des Thiolat-Liganden wurde ebenfalls nicht beobachtet. Der Komplex **C45** zeigte unter den gegebenen Bedingungen keine Redoxaktivität.

Von den Vertretern der literaturbekannten Cu^{II}S₂-Komplexe gibt es vier, die eine reversible bzw. quasi-reversible Reduktion aufweisen (Tab. 6.33). Bei $[Cu_2^{II}(L^4)_2](ClO_4)_2$ und $[Cu_2^{II}(L^6)_2](ClO_4)_2$ von Itoh et al. [48d, e] liegen jedoch keine spektroskopischen und/oder magnetochemischen Daten der reduzierten Spezies vor, so dass keine Aussagen über die Art und Eigenschaften der erzeugten Spezies getroffen werden können. Rammal et al.[48b] beschreiben das Redox-Verhalten von $[Cu_2^{II}(L^1)_2](ClO_4)_2$ ausführlicher: der Komplex steht in Lösung mit einer Verbindung unbekannten Aufbaus im Gleichgewicht. Elektrochemische Untersuchungen ergaben, dass sich beide Komplexe zu gemischtvalenten Spezies mit der mittleren Metalloxidationsstufe von +1.5 reduzieren lassen. Entsprechende EPR-Messungen sind jedoch auch mit einer mononuklearen Cu^{II}-Spezies vereinbar. UV/Vis/NIR-Spektren der elektrochemisch erzeugten Spezies zeigen keine Intervalenzbande, die auf Cu-Cu-Wechselwirkungen sowie eine Spin-Delokalisation hindeuten würden. Der Komplex $[Cu_2^{II}(L^2)(NO_3)](PF_6)$ von Schröder et al. [48f] lässt sich reversibel in den gemischtvalenten Cu^ICu^{II}- sowie Cu^ICu^I-Zustand reduzieren (Coulometrische Messungen). Jedoch sind durch das starre Ligandengerüst des makrocyklischen Liganden L² die Cu-Cu-Abstände in einem Bereich von ca. 3.3 Å (im Cu^{II}Cu^{II}-Komplex) fixiert und liegen damit außerhalb einer möglichen Wechselwirkung der beiden Kupferatome.

Insgesamt sind wenig Untersuchungen, die einen elektrochemischen Zugang zu thiolatverbrückten gemischtvalenten Cu^ICu^{II}-Komplexen ausgehend von Cu^{II}Cu^{II}-Komplexen beschreiben, vorhanden. Die aufgeführten Beispiele zeigen, dass eine Reduktion durch kleine Cu^{II}₂S₂-Faltungswinkel begünstigt wird (Komplexe von Rammal, Schröder und Itoh; Faltungswinkel der Cu₂S₂-Einheit: 7.1, 32.3 und 36.0°). Als Ausnahme zeigt auch $[Cu^{II}_2(L^6)_2](ClO_4)_2$ mit einem Faltungswinkel von 64.3° eine nicht näher charakterisierte Reduktion. Damit ist das Zusammenspiel von Faltungswinkel, Donorsatz des Liganden und Koordinationsgeometrie entscheidend, ob die Aufnahme eines Elektrons in das LUMO der Cu^{II}Cu^{II}-Komplexe möglich ist. Die zweikernigen Thiolat-Guanidinkomplexe weisen relativ große Faltungswinkel von 57.8 und 58.3° auf und im Gegensatz zu den erwähnten Beispielkomplexen nur einen zweizähnigen chelatisierenden Liganden. Eine mögliche Reduktion zum gemischtvalenten Zustand mit einer mittleren Oxidationsstufe von $+1\frac{1}{2}$ könnte in der Form eines zweikernigen thiolatverbrückten Systems mit dem TMG_{ph}S⁻-Liganden nicht stabil sein. Hinweise hierfür könnten die Komplexe **C39**, **C39**^{ox}, **C39**^{red}

und C48 (Kap. 6.3) liefern, die mittlere Oxidationsstufen von kleiner +2 besitzen $(+1\frac{1}{3}$ (C39), $+1\frac{1}{2}$ (C39^{ox}), $+1\frac{1}{6}$ (C39^{red}, $+1\frac{1}{3}$ (C48)). Diese Komplexe zeigen jedoch einen sechskernigen bzw. dreikernigen Aufbau und untermauern die Vermutung, dass ein zweikerniges System mit einer Oxidationsstufe unterhalb von +2 nicht stabil ist.

6.3 Dreikernige Thiolat-Komplexe des Typs $[Cu_3^{I}(TMG_{ph}S)_3]$ und $[Cu_2^{I}Cu^{II}(TMG_{ph}S)_3I]$

6.3.1 Synthetische Aspekte

Die Synthese dreikerniger thiolatverbrückter Kupferkomplexe gelang ausgehend von den Disulfid-Liganden $(TMG_{ph}S)_2$ (L22-1). Die Umsetzung mit CuI (Verhältnis 1 : 1) in MeCN und anschließendes Erhitzen am Rückfluss für drei Stunden führte zu einer roten Lösung. Aus der abgekühlten und filtrierten Mutterlauge konnten durch Diffusion von Diethylether rote Kristalle der gemischtvalenten Verbindung $[Cu_2^I Cu^{II} (TMG_{ph}S)_3 I] \cdot MeCN$ (C48) erhalten werden. Die partielle reduktive Spaltung des Disulfid-Liganden und die Bildung von C48 scheint aufgrund der kleinen Ausbeute (ca. 10 %) nur ein Nebenprodukt der beschriebenen Reaktion zu sein. Bei dem Hauptprodukt handelt es sich um $[Cu_4^{I}((TMG_{ph}S)_2)_2(\mu-I)_4]$ ·2MeCN (C51) (Kap. 6.5.1). Die Synthese von $[Cu_3^{I}(TMG_{ph}S)_3]$ gelang aus der Umsetzung von L22-1 mit CuSPh. Die Reaktion in Acetonitril führte zu einer violetten Lösung mit weißem Feststoff. Das Reaktionsgemisch wurde für eine Stunde am Rückfluss erhitzt und anschließend filtriert. Diffusion von Diethylether in die violette Mutterlauge führte zur Bildung von farblosen Kristallen der Zusammensetzung $[Cu_3^I(TMG_{ph}S)_3]$ (C47). Auch bei C47 handelt es sich aufgrund der kleinen Ausbeuten (ca. 20 %) vermutlich um ein Nebenprodukt. Dabei wird wahrscheinlich der Thiolat-Ligand $\text{TMG}_{ph}\text{S}^-$ aus der korrespondierenden Reduktion des Thiolphenolats zum Diphenyldisulfid (PhSSPh) gebildet.

Tabelle 6.35: Dreikernige Kupfer-Thiolat-Komplexe ausgehend von den Liganden $(TMG_{ph}S)_2$ (L22-1).

Komplex	Kristallsystem, Raumgruppe	
$\begin{split} & [\mathrm{Cu}_{3}^{\mathrm{I}}(\mathrm{TMG}_{ph}\mathrm{S})_{3}] \\ & [\mathrm{Cu}_{2}^{\mathrm{I}}\mathrm{Cu}^{\mathrm{II}}(\mathrm{TMG}_{ph}\mathrm{S})_{3}\mathrm{I}] \cdot \mathrm{MeCN} \end{split}$	C47 C48	monoklin, $P2_1$ triklin, $P\overline{1}$

6.3.2 Beschreibung der Kristallstrukturen

Der Komplex $[Cu_3^I(TMG_{ph}S)_3]$ (C47) kristallisiert in der Raumgruppe P2₁ mit vier Molekülen in der Elementarzelle. Die trikline Elemetarzelle von $[Cu_2^ICu^{II}(TMG_{ph}S)_3I]$ ·MeCN (C48) enthält zwei Komplexmoleküle. Beide Komplexe besitzen einen vergleichbaren Aufbau: drei Kupferatome bilden näherungsweise ein gleichschenkliges Dreieck, wobei immer zwei Kupferatome von einem μ -Thiolat-Schwefel verbrückt werden (Cu₃(μ -S)₃-Kern). Im Fall von $[Cu_3^I(TMG_{ph}S)_3]$ (C47) liegen alle Kupferatome in der Oxidationsstufe +1 vor.

Abbildung 6.18: Molekülstruktur von $[Cu_3^I(TMG_{ph}S)_3]$ (C47) im Kristall.

Jedes Cu^I-Atom besitzt einen NS₂-Donorsatz sowie eine verzerrt trigonal-planare Koordinationsgeometrie (Abb. 6.18). Die Winkel der trigonal-planaren Ebenen variieren im Bereich von 87.50(5) bis 145.73(13)° mit einer Summe der Umgebungswinkel an Cu1, Cu2 und Cu3 von 359.0°. Ausgehend von der ebnen Cu^I₃-Einheit liegt das Schwefel-Atom S2 in der Kupferebene, S1 oberhalb und S3 darunter (links, Abb. 6.20). Diese Anordnung minimiert sterische Wechselwirkungen der sperrigen Guanidin-Einheiten. Die gemischtvalente Verbindung [Cu^I₂Cu^{II}(TMG_{ph}S)₃I] stellt das Ein-Elektronen-Oxidationsprodukt

Abb. 6.19: Molekülstruktur von $[Cu_2^I Cu^{II} (TMG_{ph}S)_3 I] \cdot MeCN$ (C48) im Kristall (ohne Wasserstoffatome und MeCN).

Abb. 6.20: Ausschnitt aus den Molekülstrukturen von C47 (links) und C48 (rechts). Die Cu-Cu-Abstände sind in Å angegeben.

von $[Cu_3^I(TMG_{ph}S)_3]$ (C47) dar. Formal könnte C47 durch die Oxidation von Cu12 mit einem halben Äquivalent I_2 in C48 überführt werden (Abb. 6.20). Hierbei koordiniert das Iodid an das Cu2-Atom, während die verdrängte N-Donorgruppe (N14) (Abb. 6.20) eine neue Bindung zum benachbarten Cu1 aufbaut. Die beiden Cu¹-Atome besitzen weiterhin eine verzerrt trigonal-planare Koordinationsgeometrie mit einem NS_2 - (Cu3) bzw. IS₂-Donorsatz (Cu2) (Abb. 6.19). Die Summe der Umgebungswinkel liegt an beiden Kupferatomen bei 359.0°, wobei das Cu2-Atom sehr einheitliche Ebenenwinkel auszeichnet (S2-Cu2-S3: 116.27(5), I1-Cu-S2: 118.01(4), I1-Cu-S3: 125.11(4)). Das Cu1-Atom mit der Oxidationsstufe +2 besitzt einen N₂S₂-Donorsatz und einen Koordinationspolyeder zwischen verzerrt quadratisch-planar und verzerrt tetraedrisch. Der Diederwinkel der SCuN/SCuN-Ebenen liegt bei 49.0° mit einem mittleren S-Cu-N-Bindungswinkel von 87.4°. Die N-Cu-N bzw. S-Cu-S-Bindungswinkel betragen 144.7(1) bzw. 148.76(5)° und deuten eine starke Verzerrung der quadratisch-planaren Ebene in Richtung einer verzerrt tetraedrischen Koordinationsumgebung an. Die ebene Cu^I₂Cu^{II}-Einheit zeigt im Vergleich zu der Cu^I₃-Einheit zwei wesentliche Unterschiede: (i) die Cu-Cu-Abstände sind mit 3.227 (Cu1-Cu2), 3.024 (Cu2-Cu3) und 2.941 Å (Cu1-Cu3) deutlich länger. (ii) die Cu-S-Cu-Bindungswinkel sind mit 82.23(4) (Cu1-S1-Cu2), 85.70(4) (Cu1-S3-Cu3) und 90.48(4)° (Cu3-S2-Cu2) ebenfalls größer. Die Cu-Cu-Cu-Winkel zeigen dagegen mit 56.0 (Cu1-Cu2-Cu3), 58.0 (Cu2-Cu3-Cu1) und 65.5° (Cu2-Cu1-Cu3) keine größeren Unterschiede. Die Cu-S-Bindungslänge liegt mit durchschnittlich 2.226 Å (Cu2, Cu3) sowie 2.279 Å für das Cu^{II}-Atom (Cu1) im Bereich der Bindungslängen von C47. Beide Komplexe sind mit dem gemischtvalenten System $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6]^{2+}$ strukturell verwandt (vgl. Kap. 6.1.2). Der Cu₆S₆-Kern besteht aus zwei Cu₃(μ_3 -S)₃-Einheiten, die auch das Grundgerüst von C47 und C48 bilden. Ein Vergleich der Cu₃S₃-Einheiten von C47 und C48 sowie der sechskernig aufgebauten Systeme zeigt jedoch wesentliche Unterschiede. Die Cu₃S₃-Einheiten der sechkernigen Systeme besitzen eine Sesselstruktur (Abb. 6.21) in denen die Kupferatome ein gleichseitiges Dreieck mit Cu-Cu-Abständen von 3.757 Å und Cu-Cu-Cu-Winkeln von 60° bilden. Deutliche Abweichungen liegen auch bei den Cu-S-Cu- und S-Cu-S-Bindungswinkeln mit 109.0 und 94.0° vor. Eine Dimerisierung des kationischen Teils von **C48** ($[Cu_2^ICu^{II}(Gua_{ph}S)_3]^+$) unter Ausbildung von μ_3 -S-Brücken würde direkt zum gemischtvalenten Kation { $[Cu_2^ICu^{II}(Gua_{ph}S)_3]_2$ }²⁺ (äquivalent zu $[Cu_4^ICu_2^{II}(Gua_{ph}S)_6]^{2+}$) führen, der auch experimentell zugänglich ist. Die Iodid-Atome könnten hierbei gleichzeitig als Anionen fungieren. Die Dimerisierung von **C47** würde rein formal die neutrale Verbindung $[Cu_3(TMG_{ph}S)_3]_2$ ergeben. Experimentell wurde jedoch nur die Bildung der dreikernigen Spezies beobachtet.

Vergleichbar mit C47 aufgebaute Kupfer-Komplexe mit einer Thiolat- und Stickstoff-Donorfunktion sind in der Literatur kaum zu finden. Van Koten beschreibt die Komplexe $[Cu_3(SC_6H_4NMe_2)_3]$ (Kt1)[175] und $[Cu_3(S(C_6H_4)C(HCH_3)NMe_2)_3]$ (Kt2)[176] mit den Liganden 2-(Dimethylamino)benzolthiolat und 2-(1-(Dimethylamino)ethyl)benzolthiolat. Beide Komplexe besitzen einen vergleichbaren Aufbau wie $[Cu_3^I(TMG_{ph}S)_3]$ (C47): eine planare Cu_3^I -Einheit mit Thiolatbrücken ($Cu_3(\mu$ -S)₃-Kern) sowie verzerrt trigonalplanar koordinierten Cu^I-Atomen (NS₂-Donorsatz). Die verbrückenden Schwefelatome

Komplex	Cu-N*	$Cu-S^*$	$\mathrm{C}{=}\mathrm{N_{Gua}}^{*}$	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	ρ	
C47	2.057	2.260	1.332	2.616 2.629	0.971	
C48	2.032^a 1.985^b 2.537^c	2.226^a 2.279^b	1.341	2.718 2.941 3.024 3.227	0.993	
Komplex	N-Cu-S	S-Cu-S	Cu-S-Cu	Cu-Cu-Cu	S-Cu-I	N-Cu-N
C47	$126.8(3) \\123.4(3) \\143.8(3) \\88.76^{d}$	$145.5(1) \\ 145.7(1) \\ 126.2(1)$	74.41 70.44 70.89	59.02(5) 62.43(6) 58.55(5)		
C48	$125.58(10) \\89.40(10) \\101.98(10) \\87.46^{d}$	$145.00(5) \\ 148.76(5) \\ 116.27(5)$	82.23 90.48 85.70	65.50(2) 56.0 58.5	$125.11(4) \\ 118.01(4)$	140.65(14)

Tabelle 6.36: Ausgewählte Bindungslängen, Atomabstände [Å] und Bindungswinkel [°] der
Komplexe C47 und C48.

* Mittelwert. a Mittlere Cu^I-N/S-Bindungslänge. b Mittlere Cu^{II}-N/S-Bindungslänge. c Cu^I-I-Bindungslänge. d Mittelwert des N-Cu-S-Bisswinkels.

Abb. 6.21: Darstellung einer Cu_3S_3 -Einheit aus dem kationischen Grundgerüst $[Cu_6(RS)_6]^{2+}$ von C39 (Atomabstände in Å).

liegen nicht in der planaren Kupferebene, sondern gemeinsam unter bzw. oberhalb der Ebene. Die strukturellen Parameter der Cu_3S_3 -Kerne sind vergleichbar mit C47 und C48 (Tab. 6.37). Eine Dimerisierung der dreikernigen Systeme konnten Koten et. al. ebenfalls nicht beobachten. Eine genaue Analyse der $Cu_3(\mu$ -S)₃-Einheiten zeigte, dass die freien Elektronenpaare der μ -Schwefelatome, die eine Wechselwirkung zum Kupferatom der benachbarten $Cu_3(\mu$ -S)₃-Ebene eingehen könnten, nicht in das Zentrum eines möglichen $Cu_6(\mu_3-S)_6$ -Käfigs gerichtet sind. Eine Position außerhalb der $Cu_3(\mu-S)_3$ -Ebenen minimiert abstoßende Wechselwirkungen der freien Elektronenpaare untereinander, unterbindet jedoch gleichzeitig eine Dimerisierung bzw. eine mögliche Cu-S-Wechselwirkung. Diese Erklärung könnte auch für die beobachteten $[Cu_3^I(L^{SN})_3]_2$ -Systeme (vgl. Kap. 6.1.2) gelten, wobei hier die dimere Struktur nur auf die besondere Konstitution der Liganden zurückzuführen ist ohne bindende Wechselwirkungen zwischen den $Cu_3(\mu-S)_3$ -Ebenen. Neben van Koten synthetisierten Kaim et al. die Verbindung $[Cu_3^I(MesS)_3(Me_4phen)_2]$ (Ka1) mit dem Thiolat-Liganden 2,4,6-Trimethylphenylthiolat sowie den Stickstoff-Liganden 3,4,7,8-Tetramethyl-1,10-phenanthrolin, der an zwei Cu^I-Atome koordiniert.[177] Der Aufbau der Cu_3S_3 -Einheit in Ka1 passt besser zu C47 im Vergleich zu Ko1 und Ko2. Hier liegt nämlich ein μ -S-Atom in der Cu₃^I-Ebene, die weiteren zwei μ -S-Atome besetzen Positionen oberhalb bzw. unterhalb der Kupferebene. Die Cu-Cu-Abstände sind insgesamt etwas länger im Vergleich zu C47, jedoch liegen ebenfalls zwei kurze und ein langer Cu-Cu-Abstand vor mit fast gleichen Cu-Cu-Winkeln sowie deutlich kleineren Cu-S-Cu-Bindungswinkeln (Tab. 6.37). Deutliche Abweichungen liegen in der Koordinationsgeometrie der Kupferatome vor. Zwei Cu¹-Atome sind verzerrt tetraedrisch von einen N₂S₂-Donorsatz koordiniert, das Dritte besitzt eine lineare (Cu-S-Cu-Bindungswinkel: $173.97(13)^{\circ}$) Koordinationsumgebung (S₂-Donorsatz). Neben diesen drei Komplexen werden sechs weitere Komplexe mit $Cu_3(\mu$ -S)-Einheiten beschrieben. Hier koordinieren jedoch neben den μ -S-Donorgruppen ein weiterer Thiolat-, [178] Thiophosphan-[153] oder

Komplex	Cu-N	Cu-S	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	N-Cu-S	S-Cu-S	Cu-S-Cu	Cu-Cu-Cu
Kt1	2.170(9)	2.198(1)	2.696(1)	128.59(9)	141.58(4)	75.18(4)	60.0
Kt2	2.077(7)	$2.219(4) \\ 2.231(2)$	2.828(1)	101.6(2)	128.44(8)	79.63(7)	60.0
Ka1	2.129(7)	2.186(2) 2.410(3)	2.715(2)	102.2(2)	114.62(10)	72.67(9)	45.9
		2.401(3) 2.160(3)	3.014(2) 3.733(2)	111.6(2) 136.4(2)	115.23(10) 173.97(13)	82.68(10) 111.94(10)	$52.9 \\ 81.1$
Fe1	2.267^{a}	2.332 ^b	4.197		92.60(7)	91.91(7)	47.8
			3.881 3.286		113.52(7) 115.68(7)	112.48(7) 128.22(8)	$61.1 \\71.1$
Ho1		2.304^{c}	2.749(1)		123.9(1)	74.7(1)	58.8(1)
		2.215^{d}	2.751(1)	3.881	126.3(1)	74.8(1)	58.9(1)
		2.257^{b}	2.846(1)	3.286	126.9(1)	78.4(1)	62.3(1)

Tabelle 6.37: Bindungslängen, Atomabstände [Å] und Bindungswinkel [°] von Kt1, Kt2,Ka1, Fe1 und Ho1.

^{*a*} Mittelwert der Cu-P-Bindungslängen. ^{*b*} Mittelwert der Cu-S-Bindungslängen. ^{*c*} Mittelwert der langen Cu-(μ -S)-Bindungslängen. ^{*d*} Mittelwert der kürzen Cu-(μ -S)-Bindungslängen.

Phosphan-Ligand[179] an die Cu^I-Atome. Als Beispiele sind in Tabelle 6.37 die Verbindungen $[Cu_3^I(S_2C_2H_4)_3][(Me_3NCH_2Ph)_2Na]$ (Ho1) von Holm et al. sowie $[Cu_3^I(S-azo)_3(PPh_3)_4]$ (Fe1, 4-((4-(Diethylamino)phenyl)diazenyl)benzolthiolat) von Fenske et al. mit ausgewählten Strukturparametern aufgeführt.

Insgesamt ist $[Cu_3^I(TMG_{ph}S)_3]$ (C47) ein seltener Vertreter einer kleinen Gruppe von dreikernigen thiolatverbrückten Cu_3^I -Komplexen. Das Ein-Elektronen-Oxidationsprodukt $[Cu_2^ICu^{II}(TMG_{ph}S)_3I]$ ist der erste gemischtvalente thiolatverbrückte $Cu_2^ICu^{II}$ -Komplex. Das aus C48 ableitbare hypothetische Monokation $[Cu_2^ICu^{II}(TMG_{ph}S)_3]^+$ ist formal das Monomer der sechskernigen Komplexkationen $[Cu_2^ICu^{II}(Gua_{ph}S)_3]_2\}^{2+}$. Beide Verbindungen können als Bindeglieder zwischen den zweikernigen Thiolat-Komplexen (C45, C46) sowie den sechskernig aufgebauten Komplexen (C39 - C44) angesehen werden.

6.3.3 Spektroskopische und cyclovoltammetrische Untersuchungen

UV/Vis-Spektren der Komplexe C47 und C48 wurden in Dichlormethan bei unterschiedlichen Konzentrationen (c ~ $10^3 - 10^4 \text{ mol/l}$) aufgenommen. Eine konzentrierte gelbe Lösung von C48 zeigt bei 758 nm ($\epsilon = 924 \text{ M}^{-1} \text{ cm}^{-1}$) einen schwachen Cu^{II} d-d-Übergang. Daneben liegen Absorptionsbanden bei 384 ($\epsilon = 6400 \text{ M}^{-1} \text{ cm}^{-1}$), 286 (sh, $\epsilon = 66460 \text{ M}^{-1} \text{ cm}^{-1}$), und 240 nm ($\epsilon = 2 \cdot 10^6 \text{ M}^{-1} \text{ cm}^{-1}$) vor, die einem S(σ) \rightarrow Cu^{II}-, N(σ) \rightarrow Cu^{II}- (oder $Cu^{I} \rightarrow S$ -) und $\pi \rightarrow \pi^{*}$ -Übergang zugeordnet werden können. Eine Absorptionsbande im nahen IR-Bereich, die auf eine mögliche Valenzdelokalisierung innerhalb des gemischtvalenten $Cu_{2}^{I}Cu^{II}$ -Kerns hindeuten würde, wird nicht beobachtet. Zusammen mit den strukturell klar identifizierten Cu^{I} - bzw. Cu^{II} -Atomen, die eine unterschiedliche Koordinationsgeometrie besitzen, ist eine Einordnung der Verbindung zur Class I gemischtvalenter Systeme möglich (vgl. Kap. 6.1.6). Damit besitzt das Komplexkation $[Cu_{2}^{I}Cu^{II}(TMG_{ph}S)_{3}]^{+}$ nicht nur vollkommen andere strukturelle Merkmale der $Cu_{3}S_{3}$ -Einheit, sondern auch deutlich abweichende spektroskopische und elektronische Eigenschaften im Vergleich zum entsprechenden Dimerisierungsprodukt $[Cu_{4}^{I}Cu_{2}^{II}(Gua_{ph}S)_{6}]^{2+}$.

Die farblose Lösung von C47 zeichnen nur Übergänge im kurzwelligen Bereich bei 235 ($\epsilon = 63000 \text{ M}^{-1} \text{ cm}^{-1}$) und 260 nm (sh, $\epsilon = 53600 \text{ M}^{-1} \text{ cm}^{-1}$) aus. In der Literatur sind die spektroskopischen Eigenschaften von Cu^I-S(Thiolat)-Komplexen kaum beschrieben. So sind bei zwei polynuklearen Cu^I-Thiolat-Komplexen Cu^I \rightarrow S-MLCT-Übergänge bei 253 sowie 273 und 300 nm identifiziert worden.[183] Damit könnte die beobachtete Absorptionsbande bei 260 nm ebenfalls einem Cu^I \rightarrow S-MLCT-Übergang zugeordnet werden. Die Absorptionsbande bei 235 nm ist vermutlich ein ligandenzentrierter $\pi \rightarrow \pi^*$ -Übergang der C=N-Guanidin-Doppelbindung.

Cyclovoltammetrische Messungen wurden von $[Cu_3^I(TMG_{ph}S)_3]$ (C47) in Dichlormethan bei Raumtemperatur durchgeführt ($c_{Komplex}$: 0.001 mol/l, $c_{Leitsalz}$: 0.2 mol/l; interner Standard: Fc). Das Cyclovoltammogramm von C47 ist in Abbildung 6.23 dargestellt. Es zeigt einen quasi-reversiblen Cu^{I/II}-Übergang mit einer Oxidations- und Reduktionswelle bei $E_{ox} = 0.080$ bzw. $E_{red} = -0.240$ V vs. NHE. Die Differenz der Spitzenpotentiale ($\Delta E =$ $|E_{pa} - E_{pc}|$) liegt bei 0.320 V. Messungen bei verschiedenen Scangeschwindigkeit zeigten ebenfalls einen quasi-reversiblen Übergang. Die erhaltenen Ergebnisse können mit dem

Abb. 6.22: UV/Vis-Spektrum von $[Cu_2^I Cu^{II} (TMG_{ph}S)_3 I] \cdot MeCN$ (C48) in CH_2Cl_2 .

Abb. 6.23: Cyclovoltammogramm von $[Cu_3^I(TMG_{ph}S)_3]$ (C47) in CH_2Cl_2 (v_s = 100 mV/s).

Übergang $[Cu_3^I(TMG_{ph}S)_3]$ ↔ $[Cu_2^ICu^{II}(TMG_{ph}S)_3]^+$ (C47^{ox}) interpretiert werden. Das Monokation C47^{ox} könnte hierbei aus der Verbindung $[Cu_2^ICu^{II}(TMG_{ph}S)_3I]$ durch Abspaltung von I⁻ hervorgehen. Die oxidative Umlagerung zwischen den beiden Spezies ist in Abbildung 6.20 dargestellt und wurde bereits diskutiert (Kap. 6.3.2) Untermauert wird diese Interpretation durch den quasi-reversiblen Übergang, der auf einen langsamen Elektronentransferprozess hindeutet und mit einem klassischen 'square-scheme' Mechanismus (erweiterter ECE-Mechanismus) beschrieben werden kann.[40b] Hierbei werden nach einzelnen Elektronentransferschritten koordinative Bindungen gebrochen sowie neu aufgebaut und größere strukturelle Änderungen in der Koordinationsgeometrie der beteiligten Metallzentren sind zu erwarten. Dieser Verlauf ist im Einklang mit der oxidativen Umlagerung zwischen den Komplexen C47 und C47^{ox} bzw. C48.

6.4 Neuartige Disulfidkomplexe des Typs $[Cu_2^{I}((TMG_{ph}S)_2)_2](OTf)_2 \text{ und } [Cu_n^{I}((TMG_{ph}S)_2)_2I_m]$ (n = 4, 8; m = 4, 8)

6.4.1 Synthetische Aspekte

Die Synthese von neuartigen Cu¹-Disulfid-Komplexen gelang ausgehend von den Disulfid-Liganden $(TMG_{ph}S)_2$ (L22-1) sowie den zweizähnigen Liganden $TMG_{ph}SCPh_3$ (L6-1). Die Umsetzung des Disulfid-Liganden mit $[Cu(MeCN)_4]X (X = PF_6^-, OTf^-)$ in Acetonitril führte zu einer dunkelroten Lösung. Aus dem Ansatz $L22-1/[Cu(MeCN)_4]OTf$ wurden nach mehrtägiger Diffusion von Diethylether in die gesättigte Komplexlösung rote Kristalle des Disulfid-Komplexes $[Cu_2^I((TMG_{ph}S)_2)_2](OTf)_2$ (C49) erhalten. Die Reaktion des Disulfid-Liganden mit CuI in Acetonitril führte zu Bildung eines roten Niederschlags. Aus der roten Mutterlauge konnten hellrote Kristalle der Verbindung $[Cu_4^I((TMG_{ph}S)_2)_2(\mu$ -I)₄]·2MeCN (C51) isoliert werden. Die Disulfid-Spezies $[Cu_8^I((TMG_{ph}S)_2)_2(\mu-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_3-I)_4(\mu_4-I)_2(\mu_$ I_{2} (C50) wurde ausgehend von den Liganden TMG_{ph}SCPh₃ und [Cu(MeCN)₄]PF₆ erhalten. Der Ansatz $L6-1/[Cu(MeCN)_4]PF_6$ (Verhältnis 1 : 2) in Acetonitril bei Raumtemperatur ergab eine grüne Lösung, aus der nach Diffusion von Diethylether oder durch langsames Abdampfen des Lösungsmittels rote Kristalle von C50 isoliert wurden. Als Nebenprodukt der Reaktion konnte N-Trityl-2-(tritylthio)anilin identifiziert werden. Das gleiche Nebenprodukt wurde ebenfalls bei der Synthese der sechskernigen Thiolat-Komplexe $[Cu_4^I Cu_2^I (Gua_{ph}S)_6]X_2$ beobachtet (Kap. 6.1.1). Die dargestellten Disulfid-Komplexe sind in Tabelle 6.38 zusammengestellt.

Die aliphatischen Disulfid-Liganden **L24-1** und **L24-2** zeigten ein vollkommen anderes Reaktionsverhalten. Umsetzungen mit CuX (X = Cl⁻, Br⁻) oder [Cu(MeCN)₄]X (X = PF_6^- , OTf⁻) führten zu leicht gelben bis bräunlichen Lösungen. Aus zahlreichen Ansätzen unter Variation der experimentellen Bedingungen (Lösungsmittel, Temperatur, stöchiometrische Verhältnisse) konnten keine einkristallinen Produkte erhalten werden.

Komplex		Kristallsystem, Raumgruppe
$[Cu_{2}^{I}((TMG_{ph}S)_{2})_{2}](OTf)_{2}$	C49	orthorhombisch, Aba2
[Cu_{8}^{I}((TMG_{ph}S)_{2})_{2}(\mu-I)_{2}(\mu_{3}-I)_{4}(\mu_{4}-I)_{2}]	C50	monoklin, C2/c
[Cu_{4}^{I}((TMG_{ph}S)_{2})_{2}(\mu-I)_{4}]\cdot 2MeCN	C51	monoklin, C2/c

6.4.2 Beschreibung der Kristallstrukturen

$[Cu_{2}^{I}((TMG_{ph}S)_{2})_{2}](OTf)_{2}$ (C49)

Der Komplex $[Cu_2^I((TMG_{ph}S)_2)_2](OTf)_2$ (C49) kristallisiert in Form roter Kristalle in der Raumgruppe Aba2 mit acht Moleküleinheiten in der Elementarzelle. Das zweikernige Komplexkation $[Cu_2^{I}((TMG_{ph}S)_2)_2]^{2+}$ besitzt zwei $(TMG_{ph}S)_2$ -Liganden, die chelatartig über die Disulfid-Schwefelatome an beide Cu^I-Atome koordinieren. Dabei formen die Kupferionen sowie die verbrückenden Schwefelatome einen Cu(RSSR)₂-Cu-Sechsring, der in einer 'Twist-Konformation' vorliegt (Abb. 6.24). Die Schwefelumgebung der Cu¹-Ionen wird durch zwei N_{Gua} -Donorfunktionen zu einer verzerrt tetraedrischen Koordinationsgeometrie komplettiert. Die NCuN- und SCuS-Ebenen schließen einen Diederwinkel von 73.0° ein, der deutlich vom idealtypischen Wert (90°) abweicht. Die Koordinationsgeometrie tendiert damit in Richtung quadratisch-planar. Die durchschnittlichen Tetraederwinkel von Cu1 und Cu2 liegen leicht erhöht bei 110.3° und damit nahe am idealtypischen Wert von 109.5°. Die Cu-S-Bindungslängen liegen mit durchschnittlich 2.288 Å im Bereich von beobachteten Cu-Thioether und Cu-Thiolat-Bindungslängen (2.20 - 2.40 Å). Die mittleren Cu-N- und C= N_{Gua} -Bindungslängen zeigen mit 2.022 und 1.349 Å ebenfalls keine signifikanten Unterschiede zu bereits diskutierten Kupfer-Guanidinkomplexen. Im Vergleich zum freien $(TMG_{ph}S)_2$ -Liganden (L22-1) – mit 2.043(1) Å – ist die S-S-Bindung in C49 mit durchschnittlich 2.138 Å etwas länger. Der für organische Disulfid-Verbindungen charakteristische C-S-S-C-Torsionswinkel von $90^{\circ}[103]$ liegt im freien $(TMG_{ph}S)_2$ -Liganden bei 83.8° (vgl. Kap. 3.2.1) und ist in C49 auf durchschnittlich 105.7° aufgeweitet. Der Cu-S-S-Cu-Torsionswinkel ist dagegen deutlich kleiner und liegt im Mittel bei 54.2°.

Abb. 6.24: Molekülstruktur des Komplexkations $[Cu_2^{I}((TMG_{ph}S)_2)_2]^{2+}$ aus **C49** (links, ohne Wasserstoffatome). 'Twist-Konformation' des Cu(RSSR)₂Cu-Sechsrings (rechts).

Komplex	Cu-N	Cu-S	C=N	S-C	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	S-S	ρ
C49	2.022	2.288	1.349	1.778	3.940	2.138	1.000

Tabelle 6.39: Ausgewählte mittlere Bindungslängen und Atomabstände [Å] von C49

Tabelle 6.40: Ausgewählte Bindungswinkel [°] von C49.

Komplex	N-Cu-N	S-Cu-S	S-Cu-N	S-Cu-N	C-S-S-C	$ au^a$
C49	$133.4(2) \\ 131.0(2)$	$124.99(6) \\125.17(6)$	$86.9(1) \\ 86.7(2) \\ 86.2(1) \\ 86.5(1)$	$109.7(1) \\121.3(1) \\116.2(2) \\116.0(1)$	103.2 108.2	51.7 56.7

 a Cu-S-S-Cu-Torsionswinkel

In Kapitel 3.2.1 wurden bereits anhand der Molekülstrukturen der Guanidinliganden L22-1 und L22-2 mögliche p π -d π -Wechselwirkungen der S(d)-Orbitale mit dem π -System der Phenylringe diskutiert. Das Vorkommen von p π -d π -Wechselwirkungen konnte jedoch aufgrund der Tatsache, dass die Phenylringe in den C-S-S-Ebenen liegen, ausgeschlossen werden (Mittelwerte der C-C-S-S-Torsionswinkel: 12.5° in L22-1 und 5.0° in L22-2, vgl. Abb. 3.12 und Abb. 6.25, links). Die räumliche Lage der Phenylringe des koordinierenden Liganden zeigen jedoch ein umgekehrtes Bild (Abb. 6.25). Die Phenylringe stehen fast senkrecht zu den S-C-C-Ebenen (Mittelwerte der C-C-S-S-Torsionswinkel: 93.8° und 90.2°), so dass die Voraussetzung für das Auftreten von p π -d π -Wechselwirkungen (Ligand- π -Rückbindung) erfüllt wird.[104] Die Wechselwirkung zwischen den voll besetzten Kohlenstoff p_z-Orbitalen und leeren S(d)-Orbitalen führt zum Aufbau einer negativen Partialladung an beiden Disulfid-Schwefelatomen. Als Konsequenz wird eine längere

Abb. 6.25. Koordinierender $(TMG_{ph}S)_2$ -Ligand aus der Molekülstruktur von C49 (links, ohne Wasserstoffatome und OTf⁻-Anionen). Molekülstruktur von L22-1 (rechts, ohne Wasserstoffatome).

und damit etwas schwächere S-S-Bindung im Vergleich zum freien Liganden beobachtet (2.044(1) vs. 2.138(2) Å). Daneben führt die Koordination der Disulfid-Gruppe selbst sowie eine mögliche $Cu(d\pi)$ - $S(d\pi)$ -Rückbindung ebenfalls zur Schwächung der S-S-Bindung. Die beschriebenen Effekte (π -Rückbindung: ligandbasiert und koordinativ) könnten die Disulfid-Bindung additiv schwächen und mögliche Redoxprozesse (Disulfid \leftrightarrow Thiolat) oder nucleophile Angriffe erleichtern. [181a] Im Vergleich mit literaturbekannten Disulfid-Komplexen zeigt C49 damit eine etwas längere S-S-Bindung, die ansonsten in einem Längenbereich von 2.040 bis 2.107 Å (vgl. Tab. 6.41) variiert. Dabei handelt es sich – bis auf eine Ausnahme im Fall von $[Cu_2^I(L^{14})](PF_2O_2)_2$ von Long et al.[181b] mit zusätzlichen $p\pi$ -d π -Wechselwirkungen – um Komplexe mit aliphatischen Disulfid-Gruppen, so dass $p\pi$ -d π -Wechselwirkungen ausgeschlossen sind. Insgesamt sind in der Literatur nur wenige Kupfer(I)-Disulfid-Komplexe beschrieben. Neben acht zweikernigen Vertretern[48d, e, 51, 181] (Tab. 6.41 und Abb. 6.26) wurden auch einige kettenförmig aufgebaute Kupfer(I)-Komplexe strukturell charakterisiert. [182] Die zweikernigen Kupfer(I)-Komplexe können je nach Anzahl und Anordnung der koordinierenden Disulfid-Gruppen in fünf Klassen eingeteilt werden. Zweikernige Komplexe sind in die Strukturtypen A, B und C eingeteilt. Die kettenförmig aufgebauten Disulfid-Komplexe sind in den Strukturtypen **D** und E zusammengefasst (vgl. Abb. 6.26). Für die Strukturmotive B, C und E sind Literaturbeispiele sehr selten. Neben dem Komplex $[Cu_2^{I}(L^{10})](ClO_4)_2$ von Itoh et al. [48e, d], der zum Strukturtyp C zählt, existieren für den Typ B - Verbindung C49 – nur drei Beispiele, davon ein Cu^I-Komplex sowie zwei Cu^{II}-Komplexe von Schugar et al. mit makrozyklischen Liganden. [183] Bei den Cu^I-Komplex handelt es sich um $[Cu_2^I(L^{18})_2](BF_4)_2$ $(L^{18} = Bis-[2-(N,N-Dimethylamino)ethyl]disulfid)$ von Seff et al.[181a] Strukturverwandt ist mit C49 der kettenförmig aufgebaute Komplex $[Cu_2(EtSSEt)_2Cl_2]_n$ von Bränden mit dem Liganden 1,2-Diethyldisulfid und einer Cu(RSSR)₂Cu-Einheit.[182d] In beiden Komplexen besitzen die Kupferatome eine verzerrt tetraedrische Koordinationsgeometrie (N₂S₂-Donorsatz bzw. S₂Cl₂-Donorsatz). Kupfer(I)-Komplexe mit aromatischen Disulfid-Liganden (Typ C-2) sind in der Literatur nicht bekannt. Interessanterweise zeigt der Komplex von Seff et al. ähnliche strukturelle Eigenschaften wie C49: eine 'Twist-Konformation' des Cu(RSSR)₂-Cu-Sechsrings, vergleichbare C-S-S-C- bzw. Cu-S-S-Cu-Torsionswinkel (106.3(13)°/ 61.5(4)°) und Cu-S- sowie Cu-N_{Amin}-Bindungslängen und eine stark verzerrt tetraedrische Koordinationsgeometrie mit einer Tendenz in Richtung quadratischplanar (Diederwinkel der SCuS- und NCuN-Ebenen. Cu1: 72.8°, Cu2: 71.9°). Die S-S-Bindungslänge ist dagegen – wie für aliphatische S-S-Bindungen erwartet – kürzer (2.084(9) vs. 2.138(2) Å). Der Cu-Cu-Abstand zeigt mit 4.008 Å keine signifikante Abweichung zu C49. Im Vergleich mit den übrigen Disulfid-Komplexen liegen die Cu-Cu-Abstände bis auf drei Komplexe, die zusätzlich zu einer Disulfid-Brücke eine μ -Chlorid $([Cu_2^I(L^{13})Cl]CuCl_2, [Cu_2^I(L^{15})_2Cl_2]_n)$ bzw. μ -Iodid-Brücke $([Cu_2^I(L^{15})I_2]_n)$ besitzen, zwi-

Abb. 6.26: Übersicht über literaturbekannte Kupfer(I)-Disulfid-Komplexe mit den Strukturmotiven A bis E.

2

Komplex	$\mathrm{Cu}\text{-}\mathrm{N}_\mathrm{py}{}^*$	${\rm Cu}\text{-}{\rm N}_{\rm Amin}{}^*$	Cu-S*	$\mathrm{Cu}{\cdots}\mathrm{Cu}$	S-S	C-S-S-C	au
C49	2.022^{a}		2.288	3.940	2.138(2)	103.2	51.7
						108.2	56.7
$[Cu_{2}^{I}(L^{8})(A)_{2}{}^{b}](PF_{6})$	$_{2}2.029$	2.157	2.283	4.268(1)	2.074(2)	96.79	65.3
					2.068(8)	106.7(13)	59.9(4)
$[Cu_{2}^{I}(L^{9})](ClO_{4})_{2}$	2.001	2.112	2.253	3.910	2.068(2)	82.2	
$[Cu_2^I(L^{10})](ClO_4)_2$	2.021	2.159	2.195		2.081(2)	64.4	
$[Cu_2^I(L^{11})](ClO_4)_2$	2.001	2.177	2.240	4.035(3)	2.088(7)	109.5(10)	46.6(3)
				4.081(3)	2.070(2)	103.0(9)	51.8(3)
$[\mathrm{Cu}_2^\mathrm{I}(\mathrm{L}^{12})\mathrm{Cl}_2](\mathrm{Ac}^b)_2$	2.063	2.243	2.357	4.108(1)	2.070(1)	84.5	80.6
$[Cu_2^I(L^{13})Cl]CuCl_2$	1.999	2.253	2.268	3.503(1)	2.077(1)	112.2	46.5
$[Cu_2^I(L^{14})](PF_2O_2)_2$	2.084^{c}		2.290	3.866	2.107(2)	81.4	47.5
			2.248^{d}				
$[\mathrm{Cu}_2^{\mathrm{I}}(\mathrm{L}^{15})(\mathrm{ClO}_4)_2]_n$	2.039		2.321		2.0807(9)	59.73(13)	92.8(1)
$[\mathrm{Cu}_2^{\mathrm{I}}(\mathrm{L}^{16})_2\mathrm{Cl}_2]_n$	2.320 * e		2.340	3.220	2.040(2)	97.7	
$[\mathrm{Cu}_2^{\mathrm{I}}(\mathrm{L}^{16})\mathrm{I}_2]_n$	2.662^{*f}		2.335	2.756(3)	2.063(5)	95.6(10)	
$[Cu_2^I(L^{18})_2](BF_4)_2$		2.130	2.299	4.008	2.084(9)	105.9(13)	63.1(4)
					2.068(8)	106.7(13)	59.9(4)

Tabelle 6.41: Ausgewählte Strukturparameter ([Å]/[°]) literaturbekannter $[Cu_2^I(RSSR)]^{2+}$ und $[Cu_2^I(RSSR)_2]^{2+}$ Disulfid-Komplexe.

* Mittelwert. ^{*a*} Cu-N_{Gua}-Bindungslänge. ^{*b*} A = MeCN, Ac = Aceton. ^{*c*} Cu-O(PF₂O)-Bindung. ^{*d*} Cu-S^{*t*} Bu-Bindung. ^{*e*} Cu-Cl-Bindungslänge. ^{*f*} Cu-I-Bindungslänge.

schen 3.886 und 4.108(1) Å. Signifikante Abweichungen der Cu-S- und Cu-N-Bindungslängen der Disulfid-Komplexe untereinander sowie im Vergleich mit C49 sind nicht vorhanden.

$[Cu_8^{I}((TMG_{ph}S)_2)_2(\mu-I)_2(\mu_3-I)_4(\mu_4-I)_2] (C50)$ $[Cu_4^{I}((TMG_{ph}S)_2)_2(\mu-I)_4] \cdot 2MeCN (C51)$

Die Komplexe C50 und C51 kristallisieren in Form roter monokliner Kristalle in der Raumgruppe C2/c mit vier Moleküleinheiten in der Elementarzelle. Komplex C50 besitzt einen neutrale Cu₈I₈-Einheit mit acht Cu^I-Atomen, die entweder von einem NSI₂- oder I₄-Donorsatz verzerrt tetraedrisch koordiniert werden. C51 zeichnet eine neutrale Cu₄I₄-Einheit mit vier verzerrt tetraedrisch koordinierten Cu^I-Atomen (NSI₂-Donorsatz) aus. In den Tabellen 6.42 und 6.43 sind wichtige Strukturparameter der Komplexe aufgeführt. Die Diederwinkel der NCuS/ICuI-Ebenen liegen im Komplex C50 bei 83.0° und sind damit gegenüber dem idealtypischen Wert von 90° leicht erniedrigt. Die Cu^I-Metallzentren besitzen einen I₄-Donorsatz und kleinere Diederwinkel, die im Durchschnitt bei 73° liegen.

Komplex	Cu-I	Cu-N*	Cu-S*	$\mathrm{C}{=}\mathrm{N}_{\mathrm{Gua}}^{*}$	S-C	S-S	ρ
C50	2.594^{a} 2.648^{b} 2.695^{c}	2.052	2.351	1.318	1.778(5)	2.110(2)	1.035
C51	2.601	2.103	2.363	1.319	1.778(4)	2.102(1)	0.966

Tabelle 6.42: Ausgewählte Bindungslängen [Å] der Komplexe C50 und C51.

* Mittelwert. ^{*a*} Mittlere Cu-(μ -I)-Bindungslänge. ^{*b*} Mittlere Cu-(μ_3 -I)-Bindungslänge. ^{*c*} Mittlere Cu-(μ_4 -I)-Bindungslänge.

Tabelle 6.43: Ausgewählte Bindungswinkel [°] der Komplexe C50 und C51.

Komplex	N-Cu-S	N-Cu-I	S-Cu-I	Cu-I-Cu	C-S-S-C	$ au^*$
C50	85.89(10)	125.05^a 118.9^b 105.48^c	110.12^{a} 115.86^{b} 113.80^{c}	$ \begin{array}{c} 68.19^{a} \\ 66.24^{b} \\ 105.74^{b} \\ 64.59^{c} \\ 108.67^{c} \end{array} $	72.7	94.1
C51	85.16(9)	114.30(9)	108.36(3)	88.43(3)	72.2	95.4

* Cu-S-S-Cu-Torsionswinkel. ^{*a*} Mittlerer N-Cu-(μ -I)-Bindungswinkel. ^{*b*} Mittlerer

N-Cu-(μ_3 -I)-Bindungswinkel. ^c Mittlerer N-Cu-(μ_4 -I)-Bindungswinkel.

Die durchschnittlichen Tetraederwinkel liegen einheitlich bei 109.1 (Cu1), 109.4 (Cu2), 109.8 (Cu3) und 109.5° (Cu4) und variieren in einem Bereich von 85.9(10) bis $125.05(11)^{\circ}$ (Cu1, Cu2) sowie 96.7(10) bis 129.9(10)° (Cu3, Cu4). Die Molekülstruktur von C50 ist in Abbildung 6.27 dargestellt. Die Cu^I-Atome bilden zusammen mit den Schwefel-Atomen der Disulfid-Einheiten zwei sesselförmig aufgebaute Cu₄S₂-Einheiten (links, Abb. 6.28). Der Cu3-Cu3A-Abstand beträgt dabei 2.617(1) Å und liegt im Bereich von Cu-Cu-Wechselwirkungen. Die weiteren Cu-Cu-Abstände sind mit 2.670(1) (Cu1-Cu3), 2.908(1) (Cu2-Cu4) und 2.909(1) Å (Cu3-Cu4) deutlich länger. Die μ -, μ_3 - und μ_4 -Iodid-Atome verbrücken einzelne Kupferatome miteinander und besetzen dabei die Ecken eines verzerrten Würfels (rechts, Abb. 6.28). In C51 variieren die Tetraederwinkel in einem Bereich von 84.92(9) bis $124.5(8)^{\circ}$, liegen jedoch im Mittel bei 108.8° für Cu1 und 109° für Cu2. Die Diederwinkel der NCuS/ICuI-Ebenen liegen an beiden Kupferatomen bei 80.0° . Die Molekülstruktur von C51 ist in Abbildung 6.29 dargestellt. Die vier Cu^I-Atome werden von je einem S- und N- sowie zwei μ -Iodid-Atomen koordiniert. Die Aufbau der Cu₄I₄(RSSR)₂-Einheit ist mit der Adamantan-Struktur verwandt. Die in der Adamantan-Struktur sesselförmig aufgebauten C₆-Sechsringe werden durch die Disulfid-Einheiten zu einen siebengliedrigen $Cu_3I_2(RSSR)$ -Zyklus aufgeweitet (rechts, Abb 6.29). Die Cu-I-Cu-

Abbildung 6.27: Molekülstruktur von C50 im Kristall (ohne Wasserstoffatome).

sowie Cu-S-S-Bindungswinkel liegen sehr einheitlich im Durchschnitt bei 88.43 bzw. 95.0°. Die N-Cu-I-Bindungswinkel variieren im Bereich von 104.10(8) bis 124.50(8)°. Die Komplex C50 und C51 sind strukturell eng miteinander verwandt. So führt das Entfernen der $[Cu_4(\mu_3-I_{4/4A})_2(\mu_4-I_{1/1A})_2]$ -Einheit aus dem Komplex C50 zu dem vierkernigen Komplex C51 mit verbrückenden μ -Iodid-Atomen. Im Vergleich untereinander sowie mit dem Komplex C49 sind keine signifikanten Abweichungen der der Cu-S-, Cu-N sowie C=N_{Gua}-Bindungslängen zu verzeichnen. Die Faltung der Disulfid-Liganden ist vergleichbar mit C49, ebenso die C-C-S-S-Torsionswinkel (C50: 82.0°, C51: 82.0° (av)), die für $p\pi$ -d π -Wechselwirkungen (Ligand- π -Rückbindung) sprechen. Die S-S-Bindungslänge ist mit 2.110(2) und 2.102(1) Å kaum kürzer im Vergleich mit C49 (2.138(2) Å). Größere Unterschiede liegen bei den C-S-S-C- und Cu-S-S-Cu-Torsionswinkeln. Während sie in C50 und C51 einheitlich im Durchschnitt bei 72 bzw. 94.6° liegen, kehren sich die Größenordnungen in C49 um. Hier ist der Mittelwert der C-S-S-C-Torsionswinkel mit 105.7° deutlich größer im Vergleich zum Cu-S-S-Cu-Torsionswinkel mit durchschnittlich 54.2°. In der Literatur sind vergleichbar aufgebaute Kupfer-Disulfid-Komplexe mit Halogenid-Co-Liganden

Abb. 6.28: Sesselförmige Cu_4S_2 -Einheiten ohne (links) und mit (rechts) verbrückenden Iodid-Atomen in C50.

Abb. 6.29: Molekülstruktur von C51 im Kristall (ohne Wasserstoffatome und MeCN).

nicht bekannt. Die einzigen Vertreter mit Iodid-, Chlorid- und Bromid Co-Liganden besitzen einen kettenförmigen Aufbau (vgl. Abb. 6.26). Die Verbindungen C50 und C51 sind damit die ersten Vertreter aus einer kleinen Gruppe bekannter Disulfid-Komplexe mit mehr als zwei Kupferatomen.

6.4.3 Spektroskopische und cyclovoltammetrische Untersuchungen

Eine verdünnte Lösung von $[Cu_2^{I}((TMG_{ph}S)_2)_2](OTf)_2$ (C49) in Dichlormethan ist intensiv gelb gefärbt (Abb. 6.30). Konzentrierte Lösungen besitzen dagegen eine rote Farbe. Das UV/Vis-Spektrum zeichnet eine charakteristische $Cu^{I} \rightarrow S(\sigma^{*})$ - oder $Cu^{I} \rightarrow S(d\pi)$ MLCT-Absorptionsbande bei 415 nm ($\epsilon = 8000 \text{ M}^{-1} \text{ cm}^{-1}$) aus. Ligandzentrierte Übergänge konnten in diesem Bereich durch Vergleich mit dem UV/Vis-Spektrum des reinen Liganden (276 nm, $\epsilon = 31400 \text{ M}^{-1} \text{ cm}^{-1}$ und 236 nm, $\epsilon = 45300 \text{ M}^{-1} \text{ cm}^{-1}$) ausgeschlossen werden. Die Absorptionsbande bei 286 nm ($\epsilon = 32370 \text{ M}^{-1} \text{ cm}^{-1}$) kann einem n $\rightarrow \pi^*$ -Übergang innerhalb der C=N-Guanidin-Doppelbindung oder der S-S-Bindung des Disulfids zugeordnet werden. Messungen an Kupfer(I)-Komplexen ohne Disulfid-Gruppen (vgl. Kap. 4.7.1) zeigen ebenfalls einen Übergang zwischen 270 - 290 nm. Ein $n \rightarrow \pi^*$ -Übergang innerhalb der S-S-Bindung kann damit eher ausgeschlossen werden. Die C=N-Guanidin-Doppelbindung zeigt einen $\pi \rightarrow \pi^*$ -Übergang bei 235 nm ($\epsilon = 64200 \text{ M}^{-1} \text{ cm}^{-1}$) in Übereinstimmung mit anderen Kupfer(I)-Guanidinkomplexen (Abb. 6.30). Die Komplexe C50 und C51 zeichnen vergleichbare spektroskopische Eigenschaften aus. C50 besitzt eine $Cu^{I} \rightarrow S(\sigma^{*})$ oder Cu^I \rightarrow S(d π)-MLCT-Absorptionsbande bei 400 nm (MeCN, $\epsilon = 4460 \text{ M}^{-1} \text{ cm}^{-1}$). In C51 liegt der Übergang bei 406 nm (CH₂Cl₂, $\epsilon = 5900 \text{ M}^{-1} \text{ cm}^{-1}$). Für die meisten literaturbekannten Disulfid-Komplexe (Tab. 6.41) sind die spektroskopischen Daten nicht angegeben bzw. die Spektren zeigen keine $Cu^I \rightarrow S$ MLCT-Absorptionsbande. Im Fall von

Abbildung 6.30: UV/Vis-Spektrum von C49 in CH₂Cl₂ bei Raumtemperatur.

 $[\operatorname{Cu}_2^{\mathrm{I}}(\mathrm{L}^{11})](\operatorname{ClO}_4)_2$ von Long et al. konnte eine $\operatorname{Cu}^{\mathrm{I}} \rightarrow \mathrm{S}$ MLCT-Absorptionsbande bei 300 nm ($\epsilon = 10900 \text{ M}^{-1} \text{ cm}^{-1}$) identifiziert werden. In den Komplexen $[\operatorname{Cu}_2^{\mathrm{I}}(\mathrm{L}^8)_2](\mathrm{BF}_4)_2$ und $[(\operatorname{Cu}_2^{\mathrm{I}}(\mathrm{L}^{15}))(\mathrm{ClO}_4)_2]_n$ von Seff et al. wird eine MLCT-Übergang bei 296 bzw. 290 nm diskutiert. Im Vergleich dazu zeigt **C49** eine Rotverschiebung der MLCT-Aborptionsbande um ca. 100 nm.

Cyclovoltammetrische Messungen wurden von **C49** in Dichlormethan durchgeführt. Die erhaltenen Cyclovoltammogramme zeigen keine Oxidation der Cu^I-Ionen bzw. eine mögliche Reduktion des koordinierenden Disulfid-Liganden. Die verzerrt tetraedrische Koordinationsgeometrie der Cu^I-Ionen sowie der sterische anspruchsvolle Disulfid-Ligand stabilisieren damit sehr gut die Kupfer(I)-Oxidationsstufe. Elektrochemische Studien literaturbekannter Disulfid-Komplexe sind kaum vorhanden. So berichten Itoh et al. nur am Rande von der Redoxaktivität der Komplexe [Cu^I₂(L⁹)](ClO₄)₂ und [Cu^I₂(L¹⁰)](ClO₄)₂ mit den tripodalen Liganden L⁹ und L¹⁰ (Abb. 6.26). Beide Komplexe besitzen jeweils einen Oxidationspeak bei 0.85 bzw. 0.95 V und einen Reduktionspeak bei 0.29 bzw. 0.12 V vs. Ag/AgNO₃. Eine Diskussion und Zuordnung der Übergänge erfolgte jedoch nicht.

6.5 Synthese von Thiolat- und Disufidkomplexen: Reaktionsmechanismen

Die Synthese der beschriebenen Thiolat- und Disulfid-Komplexe geht von zwei Ligandengruppen aus: den Disulfid-Liganden (Gua_{ph}S)₂ (**L22-1**, **L22-2**) sowie den Trityl-Liganden Gua_{ph}SCPh₃ (**L6-1**, **L6-2**). Die Umsetzung dieser Liganden mit Kupfer(I)-Salzen führte zum 2-(Guanidino)benzolthiolat (Gua_{ph}S⁻), welches als zweizähniger Chelat-Ligand Kupfer-Thiolat-Komplexe stabilisiert (Abb. 6.31). Die Bildung des 2-(Guanidino)ethanthiolats (Gua_{et}S⁻) ausgehend von den aliphatischen Guanidinliganden (Gua_{et}S)₂ (**L23-1**, **L23-2**) und Gua_{et}SCPh₃ (**L10-1**, **L10-2**) wurde nicht beobachtet.

Für die Bildung von $\operatorname{Gua}_{ph}\mathrm{S}^-$ konnten mehrere Wege identifiziert werden, die zu unterschiedlichen Kupfer-Thiolat-Komplexen führten. Der einfachste Fall geht von einer reduktiven Spaltung der Disulfid-Liganden sowie eine Oxidation der eingesetzten Cu^Izu Cu^{II}-Ionen aus. Dieser Mechanismus führt zu einer quantitativen Bildung der zweikernigen thiolatverbrückten Komplexe [Cu^{II}₂(Gua_{ph}S)₂X₂] (C45, C46) mit charakteristischen S \rightarrow Cu^{II} LMCT-Übergängen (Disulfid-Route **A**, Abb. 6.32). Eine vergleichbare Disulfid-Spaltung und die Bildung der entsprechenden Kupfer-Thiolat-Komplexe mit dreizähnigen N₂S-Thiolat-Lignden beobachtete Itoh et al.[48d, e] Die Disulfid-Route **B** führt zum dreikernigen Komplex [Cu^{II}₃(TMG_{ph}S)₃] (C47). Die Umsetzung der Disulfid-Liganden mit Cu^ISPh – wobei das Thiophenolat gleichzeitig als Ligand und Reduktionsmittel fungieren kann – führt vermutlich nur partiell zu einer Thiolat-Disulfid-Austauschreaktion. Als Ergebnis wird Diphenyldisulfid und der Gua_{ph}S⁻-Ligand gebildet, welches mit Cu^I-Ionen zum Komplex **C47** reagiert. Die Bildung des gemischtvalenten Komplexkations [Cu^I₂Cu^{II}(TMG_{ph}S)₃]⁺ (in C48) läuft vermutlich über die Disulfid-Route **C**. Hierbei wird

Abb. 6.31: Schematische Spaltung der Disulfid- sowie Trityl-Liganden zum 2-(Guanidino)benzolthiolat (Gua_{ph}S⁻).

Abb. 6.32: Synthese von Kupfer-Thiolat-Komplexe ausgehend von den Disulfid-Liganden $(Gua_{ph}S)_2$.

die $[Cu_2^{II}(RS^-)_2]^{2+}$ -Spezies (analog zur Disulfid-Route A) nur partiell entstehen, so dass zusammen mit den verbleibenden Cu^I-Ionen das Komplexkation gebildet werden kann. Der Reaktionsweg für die Bildung des Komplexkations $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6]^{2+}$ muss drei Kriterien erfüllen: (i) eine partielle Oxidation von Cu^I zu Cu^{II}, (ii) eine ausreichende Bildung des Thiolat-Liganden ($Gua_{ph}S^{-}$), (iii) eine plausible Erklärung für die Bildung des erhaltenen Nebenproduktes N-Trityl-2-(tritylthio)anilin. Unter Berücksichtigung dieser Kriterien ist ein möglicher Reaktionsmechanismus in Abbildung 6.33 schematisch dargestellt. Hierbei wird der Trityl-Ligand sowohl homolytisch wie auch heterolytisch gespalten. Eine homolytische Spaltung führt über Thiyl-Radikale zum Disulfid $(TMG_{ph}S)_2$, welches partiell das eingesetzte Cu^I zu Cu^{II} oxidiert. Die gebildeten Triphenylmethan-Radikale reagieren vermutlich mit dem überschüssigen Anteil des Trityl-Liganden im Zusammenspiel mit einer radikalischen H-Abstraktion von einer Methyl-Gruppe der Guanidinfunktion zum Nebenpordukt N-Trityl-2-(tritylthio)anilin (Abb. 6.33). Ein weiteres indirektes Nebenprodukt dieser Reaktion konnte mittels NMR nach der Aufarbeitung der Kristallisationsansätze indentifiziert werden. Es handelt sich hierbei um die entsprechenden Harstoffe, die vermutlich aus den Abbauprodukten (AP_{Gua}) der Gaundinfunktion und Feuchtigkeitspuren gebildet wurden (Abb. 6.33).

Erste Hinweise für den postulierten Mechanismus folgten direkt aus dem Syntheseweg der gemischtvalenten sechskernigen Systeme. Die Umsetzung der Trityl-Liganden mit $[Cu_2^I(MeCN)_4]X$ (Verhältnis: 1 : 0.5, $X = PF_6^-$, ClO_4^- , OTf^-) in Acetonitril führten zu schwach rötlichen Lösungen, die sofort die Farbe nach tiefgrün wechselten. Verdünnte Lösungen sowie kleinere Ansätze (Ansatz: 1/10 mmol, Verhältnis L : S = 2 : 1) ergaben ebenfalls rote Lösungen. Diese Umsetzungen wurden spektroskopisch verfolgt und zeigten im Verlauf der Reaktion die Bildung einer intensiven Bande bei 415 nm, in Übereinstimmung mit dem beobachteten Cu^I→S MLCT-Übergang im Disulfid-Komplex $[Cu_2^1((TMG_{ph}S)_2)_2](OTf)_2$ (C49). Die Zugabe von Chlorid-Ionen zu den roten Lösungen führte zu blauen Lösungen der Thiolat-Spezies C46, die ebenfalls spektroskopisch eindeutig charakterisiert wurde. Weitere Hinweise für die Möglichkeit einer Disulfid-Bildung ausgehend von Trityl-Liganden konnten aus der Reaktion von CuI mit TMG_{ph}SCPh₃ erhalten werden. Die Umsetzung führte zum Disulfid-Komplex $[Cu_8^I((TMG_{ph}S)_2)_2I_8]$ (C50) der kristallographisch charakterisiert wurde. Daneben wurde auch bei dieser Reaktion die Bildung des Nebenproduktes N-Trityl-2-(tritylthio)anilin beobachtet, was auf einen vergleichbaren Reaktionsweg zu den Umsetzungen mit $[Cu_2^I(MeCN)_4]X (X = PF_6, ClO_4^-,$ OTf⁻) hindeutet. Eine gemischtvalente sechskernige Spezies konnte aus dieser Reaktion jedoch nicht isoliert werden. Die Umsetzung der Trityl-Liganden mit $[Cu_{2}^{l}(MeCN)_{4}]X$ (Verhältnis: $1: 0.5, X = Cl^{-}, Br^{-}$) in Acetonitril führte sofort zu dunkelgrünen Lösungen, aus denen ebenfalls gemischtvalente Sechskerner erhalten wurden. Der spektroskopisch verfolgte Reaktionsverlauf verdünnter Lösungen (Ansatz: 1/10 mmol, Verhältnis L : S = 2 : 1) lieferte in dem Fall Hinweise auf die Bildung der zweikernigen Thiolat-Spezies C46 und C47. Hier erfolgt vermutlich intermediär ebenfalls die Bildung des Disulfid-Liganden $(TMG_{ph}S)_2$, welcher koordinativ im Komplex C49 vorliegt. Die Anwesenheit der Halogenid-Ionen führt jedoch sofort zur Disulfid-Spaltung und zur Bildung der beobachteten Thiolat-Spezies.

Insgesamt konnte damit die intermediäre Bildung einer Disulfid-Spezies (C49) detektiert

Abb. 6.33: Postulierter Reaktionsmechanismus für die Synthese der sechskernigen gemischtvalenten Komplexkationen $[Cu^{I}_{4}Cu^{II}_{2}(Gua_{ph}S)_{6}]^{2+}$.

werden. Diese Zwischenstufe kann durch einen nucleophilen Angriff eines bereits gebildeten $\text{TMG}_{ph}\text{S}^-$ -Liganden (aus der heterolytischen Spaltung des Trityl-Liganden) oder X⁻-Ionen Cu^{II}-Ionen bilden, die für den Aufbau der gemischtvalenten sechskernigen Systeme benötigt werden.

Der zweite mögliche Reaktionsweg für die Bildung der sechskernigen gemischtvalenten Systeme verläuft vermutlich über eine heterolytische Spaltung des Trityl-Liganden ohne Oxidation von Cu^{I} -Ionen. Hierbei wird das Triphenylmethan-Kation gebildet, welches im Verlauf der Reaktion als XCPh₃ gebunden werden könnte (Abb. 6.33). Dass eine heterolytische Spaltung des Trityl-Liganden möglich ist, zeigten Umsetzungen von TMG_{ph}SCPh₃ mit CuCl₂. Der spektroskopisch untersuchte Reaktionsverlauf zeigte auch in diesem Fall die direkte Bildung der zweikernigen Thiolat-Spezies **C46**, die nur über eine heterolytische Spaltung des Liganden erfolgen kann. So könnten gerade die bei der homolytischen Spaltung gebildeten Cu^{II}-Ionen eine heterolytische Spaltung des übrigen Trityl-Liganden einleiten.

Die Kombination einer homolytischen mit einer heterolytischen Spaltung der Trityl-Liganden stellt damit einen plausiblen Mechanismus zur Bildung der gemischtvalenten sechskernigen Systeme dar. Weitere Zwischenstufen im Aufbau des sechskernigen Systems könnten auch die stabilen Komplexkationen $[Cu_2^ICu^{II}(TMG_{ph}S)_3]^+$ sein, die entweder direkt oder über weitere Zwischenstufen entstehen. Denkbar ist auch ein Aufbaumechanismus über zweikernige Zwischenstufen der Form von $[Cu_2^{II}(Gua_{ph}S)_2X_2]$ oder $[Cu_2^{II}(Gua_{ph}S)_4]$.

In der Literatur wird eine Reaktion, bei der unter Spaltung der C-S-Bindung eines Trityl-Ethers Kupferkomplexe gebildet werden, nicht beschrieben. Bekannt und etabliert ist in der Schutzgruppenchemie jedoch die Möglichkeit, aus der Trityl-Gruppe (R-S-CPh₃) mit unterschiedlichen Lewis-Säuren ($M^{2+/3+}$) das Thiolat freizusetzen.[99]

Zusammenfassend sind für die dargestellten Kupfer-Thiolat-Komplexe plausible Reaktionswege vorgestellt worden. Interessanterweise konnte ausgehend von nur zwei Ligand-Typen (Disulfid- und Trityl-Liganden) aufgrund unterschiedlicher Reaktionsbedingungen und Bildungsmechanismen eine Vielzahl von unterschiedlichen Kupfer-Thiolat-Komplexen synthetisiert werden. Dabei bilden die reduktive Spaltung der Disulfid-Liganden sowie die Möglichkeit, die Trityl-Liganden sowohl homolytisch wie auch heterolytisch zu spalten, effektive Strategien für die Synthese von Kupfer-Thiolat-Komplexen.

Kapitel 7 Eine reversible Disulfid-Thiolat-Disulfid-Austauschreaktion

7.1 Eine halogeninduzierte reversible Disulfid-Spaltung

Erste Hinweise einer Disulfid-Spaltung im Komplex $[Cu_2^I((TMG_{ph}S)_2)_2](OTf)_2$ (C49) zum entsprechenden $Bis(\mu-thiolato)dikupfer(II)-Komplex (C45) konnten durch die stöchio$ metrische Umsetzung von C49 mit Et_4NCl in Dichlormethan (mM Ansatz) beobachtet werden. Die Reaktion führte zu einer tiefblauen Lösung, aus der nach mehreren Tagen blaue Kristalle von $[Cu_2^{II}(TMG_{ph}S)_2Cl_2]$ (C45) erhalten wurden. Die Zugabe von AgBF₄ oder AgOTf zu der blauen Reaktionslösung ergab schlagartig eine trübe rote Lösung, aus der sich nach mehreren Stunden ein weißer Niederschlag von Silberchlorid absetzte. Um die Disulfid-Thiolat-Austauschreaktion eindeutig zu charakterisieren, wurden spektroskopische Titrationen von C49 mit Et_4NCl durchgeführt. Abbildung 7.1 zeigt den Verlauf einer spektroskopischen Titration während der Umsetzung von C49 mit Et_4NCl bei -40°C in Dichlormethan. Die sukzessive Abnahme der Cu^I→S MLCT-Absorptionsbande bei 417 nm geht mit der Ausbildung der beiden charakteristischen S ${\rightarrow}\mathrm{Cu}^{\mathrm{II}}$ LMCT-Übergänge (419, 708 und 590 nm) der Thiolat-Spezies C45 einher. Die Rücktitration mit $AgBF_4$ zeigte die umgekehrten spektroskopischen Verhältnisse. Das Auftreten eines isosbestischen Punkts bei 522 nm impliziert eine einheitliche Reaktion, bei der C49 ohne weitere Fragmentierung und Zwischenstufen in die Thiolat-Spezies C45 umgesetzt wird. Gleiche Ergebnisse wurden erhalten ausgehend von der Thiolat-Spezies C45, die zunächst mit AgBF₄ titriert wurde. Hierbei konnte die Bildung der Disulfid-Spezies jedoch nur beobachtet werden, wenn der Reaktion zusätzlich ein Äquivalent Disulfid-Ligand zur Verfügung gestellt wurde (vgl. Schema in Abb. 7.2). Nach der Ausbildung der Disulfid-Spezies erfolgte auch hier die Rückreaktion zum Ausgangskomplex mit Et₄NCl. Spektroskopische Titrationen mit unterschiedlichen Chlorid- (Me₄NCl, Bu₄NCl) bzw. Silber-Salzen (AgBF₄, AgOTf) zeigten gleiche Reaktionen. Die reversible Disulfid-Thiolat-Austauschreaktion ist in Abbildung 7.2 schematisch dargestellt. Spektroskopische Titrationen bei verschiedenen

Abb. 7.1. Spektrum A: Spektroskopische Titration von C49 (rot) mit einem Äquivalent Et₄NCl zum Thiolat-Komplex C45 (blau). Spektrum B: Rücktitration zum Disulfid-Komplex mit einem Äquivalent AgBF₄. Lösungsmittel: CH₂Cl₂, Temperatur: -40°C.

Temperaturen zeigten eine weitere Besonderheit der beschriebenen Austauschreaktionen. Erste Titrationen von **C49** mit Et₄NCl bei Raumtemperatur führten nicht zur vollständigen Ausbildung der Thiolat-Spezies. Ab einem Umsatz von ca. 60 % führte die Zugabe vom restlichen Et₄NCl (bis zu einem Äquivalent) zum Abbau der Thiolat-Spezies, der deutlich an der Abnahme der S \rightarrow Cu^{II} LMCT-Übergänge zu erkennen war. Nach der Zugabe eines weiteren Äquivalents Et₄NCl war die Thiolat-Spezies vollständig abgebaut. Die erhaltene schwach grün bis farblose Lösung zeigte keine Übergänge im sichtbaren

Abb. 7.2. Schematische Darstellung der beobachteten Disulfid-Thiolat-Austauschreaktion.

Abb. 7.3. Spektrum A: Spektroskopische Titration von C45 (blau) mit einem Äquivalent Et₄NCl zur Spezies S1 (grün). Spektrum B: Rücktitration zum Thiolat-Komplex mit einem Äquivalent AgBF₄. Lösungsmittel: CH₂Cl₂, Temperatur: RT.

Wellenlängenbereich. Das gleiche Verhalten – ebenfalls bei Raumtemperatur – zeigten Titrationen von C45 mit nur einem Aquivalent Et_4NCl . Die Rücktitration mit einem bzw. zwei Aquivalenten AgBF₄ oder AgOTf führte zur Rückbildung von C45 bzw. C49 mit den dazugehörigen charakteristischen LMCT- bzw. MLCT-Absorptionsbanden. Die Reaktion von C45 mit einem Äquivalent $Et_4NCl/AgBF_4$ ist in Abbildung 7.3 dargestellt. Durch eine Abkühlung der Reaktionslösung auf -40°C konnte die beschriebene reversible Reaktion zu Spezies S1 vollständig unterbunden werden, so dass eine vollständige Ausbildung der Thiolat-Spezies beobachtet wurde (100 % Umsatz bei der Reaktion von C49 mit einem Äquivalent X⁻-Ionen, Abb. 7.1). Gleichzeitig führte die Abkühlung der erhaltenen schwach grünen bis farblosen Titrationslösung von Raumtemperatur unter -40°C zur Ausbildung der blauen Thiolat-Spezies. Die Rückreaktionen wurde durch einfaches Erwärmen der Lösung auf Raumtemperatur eingeleitet. Damit steht die Thiolat-Spezies C45 nach der Zugabe von einem Äquivalent Cl⁻ in einem temperaturabhängigen reversiblen Gleichgewicht mit der Spezies S1 (Abb. 7.4). Auch die Titration mit dem System $Et_4NBr/$ AgBF₄ zeigte qualitativ das gleiche Verhalten, wie die entsprechenden Chlorid-Salze und führte zur Bildung von C46. Interessanterweise konnte hier bereits bei einer Temperatur von 0°C ein 100% iger Umsatz der Thiolat-Spezies C46 beobachtet werden. Bei Raumtemperatur wird – analog zu C45 – ein Abbau der Thiolat-Spezies nach der Zugabe von ca. 70% Et_4NBr beobachtet. Die beschriebene reversible Reaktion zur Spezies S1 nach der Zugabe von zwei Äquivalenten Et_4NBr (ausgehend von C49) bzw. einem Äquivalent (ausgehend von C46) konnte auch hier festgestellt werden. Die Zugabe von Ag⁺-Ionen oder die Abkühlung der Lösung auf 0°C führte zu Rückbildung der Thiolat-Spezies C46.

 Abb. 7.4. Schematische Darstellung der beobachteten Thiolat-Disulfid-Austauschreaktion zwischen den Thiolat-Komplexen C45 und C46 und der grünen Spezies S1. trans-S1 und cis-S1 sind Strukturvorschläge.

Eine möglichst genaue Charakterisierung der Spezies S1 stand nun im Vordergrund der weiteren Untersuchungen. Versuche, aus den schwach grünen bis farblosen Titrationslösungen Einkristalle zu erhalten, verliefen erfolglos. In Einzelfällen kristallisierte Et_4NCl aus. Auch aus konzentrierteren Lösungen konnten keine geeigneten Einkristalle der Spezies S1 für eine strukturelle Charakterisierung erhalten werden. Weitere Untersuchungsmethoden lieferten folgendes Gesamtbild: (i) Das UV/Vis-Spektrum zeigt nach der Zugabe von einem Äquivalent X⁻-Ionen noch sehr schwache $S \rightarrow Cu^{II} LMCT$ -Übergänge bei 419, 708 und 590 nm. Bei der Zugabe von 1.5 Äquivalenten X⁻-Ionen werden die Absorptionsbanden vollständig abgebaut (vgl. Abb. 7.5). Der gleiche Effekt wird ebenfalls beobachtet, wenn nach der Zugabe von einem Äquivalent X⁻-Ionen die Lösung leicht erwärmt wird (temperaturabhängige Gleichgewichtsreaktion). Andere charakteristische Absorptionsbanden (Cu^{II}-d-d-Übergänge, S→Cu^{II} LMCT-, N→Cu^{II} LMCT- oder Cu^I→S MLCT-Übergänge) werden nicht beobachtet. Zwei Absorptionsbanden bei 274 und 234 nm können durch eine Vergleichsmessung dem reinen Liganden ((Gua_{ph}S)₂) zugeordnet werden (UV/Vis-Spektrum von $(TMG_{ph}S)_2$ (CH_2Cl_2, RT) : 276 nm, $\epsilon = 31400 \text{ M}^{-1} \text{ cm}^{-1} \text{ und } 237 \text{ nm}, \epsilon =$ 45300 M⁻¹ cm⁻¹). (ii) Das ¹H-NMR-Spektrum (CD₂Cl₂, RT) zeigt scharfe Protonensignale des Disulfid-Liganden. Indizien für einen möglichen Paramagnetismus der Probe wurden nicht festgestellt. (iii) Das IR-Spektrum (Pressling, KBr) von S1 zeigt eine charakteristische C=N-Schwingungsbande der Guanidinfunktion bei 1552 cm⁻¹. Der reine $(Gua_{ph}S)_2$ -Ligand zeigt zwei Banden bei 1517 und 1550 cm^{-1} . Die Fingerprintbereiche besitzen zwei vollkommen unterschiedliche Signaturen (weitere IR-Daten (KBr, $(\tilde{\nu}(C=N))$ [cm⁻¹]: 1560, 1523 (C49); 1558, 1511 (C45)). (iv) Cyclovoltammertische Messungen (c_{Leitsalz}: 0.2 mol/l (Bu₄NCl), unter Argon, RT) zeigen keine Oxidations- bzw. Reduktionsübergänge in einem Bereich von -2 bis +2 V. (v) Eine Analyse der Cu-K-Kanten von EXAFS-Messungen der schwach grünen bis farblosen Titrationslösungen (1 bzw. 1.5 Äquivalente Et₄NCl) deuten auf eine Kupfer(I)-Spezies (als Referenz wurde eine Lösung von C45 verwendet).

Aus der Summe der Ergebnisse kann eine Cu^{II}-Spezies ausgeschlossen werden. Wahrscheinlicher ist eine zweikernig aufgebaute Cu^I-Spezies mit einer chelatisierenden Disulfid-Einheit und koordinierenden C=N-Donorgruppen der Guanidineinheiten. Die Disulfid-Einheit kann hierbei eine trans- oder cis-Konfiguration einnehmen (**trans-S1** und **cis-S1**, Abb. 7.4). Die verzerrt tetraedrische Koordinationsgeometrien würden jeweils zwei Halogenid-Liganden pro Cu^I-Zentrum komplettieren (Abb. 7.4). Vergleichbar aufgebaute Disulfid-Spezies ebenfalls ohne charakteristische Absorptionsbanden (z.B. Cu^I \rightarrow S MLCT-Übergänge) werden auch von Itoh et al. beschrieben (Abb. 6.26, Kap. 6.5.3). Die vorgeschlagenen Strukturen sind auch mit den cyclovoltammetrischen Messungen vereinbar, die keine Oxidationsübergänge aufweisen. Die verzerrt tetraedrische Koordinationsgeometrie könnte den reduzierten Cu^I-Zustand sehr gut stabilisieren (vergleichbar mit C49). Neben **trans-S1** und **cis-S1** würden auch rein formal die Spezies [XCu^I(μ -X)₂Cu^IX]²⁻ mit zwei verbrückenden und zwei terminalen Halogenid-Atomen oder das entsprechende linear aufgebaute [CuX₂]⁻-Anion – ohne koordinierenden Disulfid-Liganden – in Frage

Abb. 7.5. UV/Vis-Spektren von C49 (rot), C45 (blau), S1 (grün, 1 Äq. Et₄NCl) und S1 (grün gestrichelt, 1.5 Äq. Et₄NCl) im Bereich von 350 bis 850 nm (CH₂Cl₂, RT).

kommen. Jedoch deutet die rasche reversible Bildung der Thiolat-Spezies auf eine Koordination des Disulfid-Liganden. Nur in dem Fall ist ein schneller reversibler Cu^I-Disulfidbzw. Thiolat-Cu^{II}-Elektronentransfer möglich.

Insgesamt können die beschriebenen Reaktionen zu einer halogeninduzierten reversiblen 'Disulfid-Thiolat-Disulfid-Austauschreaktion' zusammengefasst werden. Die Oxidationsstufe der koordinierenden Kupferionen wechselt hierbei von +1 (Disulfid-Komplex, C49) zu + 2 (Thiolat-Komplexe, C45 und C46) und zurück zu + 1 (Disulfid-Komplex, S1). Eine strukturelle Charakterisierung der Spezies S1 ist nicht gelungen, dennoch deuten zahlreiche Untersuchungen auf einen Kupfer(I)-Disulfid-Komplex (siehe Strukturvorschläge, Abb. 7.4). Die Abkühlung der schwach grünen bis farblosen Titrationslösung von S1 leitet eine schnelle Rückbildung der Thiolat-Spezies ein. Dieser Temperatureffekt könnte auf eine größere Stabilität der Thiolat-Komplexe gegenüber der Disulfid-Spezies $\mathbf{S1}$ bei tieferen Temperaturen hindeuten sowie gleichzeitig ein Hinweis auf eine schwache S-S-Bindung in S1 sein. Im Fall von trans-S1 ist eine rasche Umlagerung zum Thiolat-Komplex ohne größere strukturelle Reorganisation des Disulfid-Liganden denkbar. Eine weitere mögliche Erklärung würde innerhalb der Cu-S-Bindung der Thiolat-Komplexe eine starken Thiyl-Radikal-Charakter favorisieren ($Cu^{II}-S^- \leftrightarrow Cu^{I}-S^{\cdot}$). Eine Temperaturerhöhung würde die Bildung der Disulfid-Spezies im Sinne einer Dimerisierung der beiden Thiyl-Radikale einleiten. Eine Temperaturerniedrigung würde die entsprechende Rückreaktion begünstigen. Die Bildung der Thiolat-Spezies im Fall von C46 erfolgt bereits bei 0°C. Bei C47 wird die Rückbildung erst bei ca. -40°C beobachtet. Die Koordination des stärker polarisierbaren Bromid-Anions im Fall von C46 würde damit die Thiolat-Spezies bzw. den Radikal-Charakter besser stabilisieren im Vergleich zu C47 mit einem Chlorid-Co-Liganden. Vergleichbare Beobachtungen sind in der Literatur nicht beschrieben. Die umgekehrte Re-

aktion jedoch wurde von Schröder et al. beobachtet.[184] So zeigen die Oxidationsprodukte zweier neutraler einkerniger Nickel-Thiolat-Komplexe des Typs $[Ni^{II}(N_2S_2)]$ mit leicht unterschiedlichen makrozyklischen N_2S_2 -Liganden sowie verzerrt quadratisch-planarer Koordination der Nickel-Zentren eine temperaturabhängige Disulfid-Thiolat-Austauschreaktion. Durch elektrochemische Oxidation oder die Reaktion von $[Ni^{II}(N_2S_2)]$ mit HClO₄ sind die Spezies $[Ni^{III}(N_2S_2)]^+$ zugänglich. Bei Temperaturen unter 298 K dimerisieren zwei Ni^{III}-Komplexe zu der Disulfid-Spezies $[(N_2S)Ni^{II}(RSSR)Ni^{II}(N_2S)](ClO_4)_2$, die ebenfalls strukturell charakterisiert wurde.

7.2 Koordinationschemische Aspekte

Die Bildung von stabilen Cu^{II}-Thiolat-Komplexen sowie die entsprechende Umlagerung zu Cu^I-Disulfid-Komplexen ist nur mit einem reversiblen Wechsel zwischen geeigneten Koordinationarrangements der beteiligten Spezies möglich. Ein Erklärungsmodell für die beobachtete Disulfid-Thiolat-Austauschreaktion geht daher primär von koordinationschemischen Gesichtspunkten aus.

Der Disulfid-Komplex C49 besitzt eine verzerrt tetraedrische Koordinationsgeomtrie der Kupferatome mit einer Tendenz deutlich Richtung quadratisch-planar. Die Diederwinkel der SCuS/NCuN-Ebenen liegen an beiden Cu^I-Atomen bei ca. 73.0° (Abb. 7.6). Eine weitere 'Abflachung' der Koordinationsgeometrie in Richtung quadratisch planar würde mit einer energetisch bzw. sterisch ungünstigen Wechselwirkung der Schwefelatome bzw. der Guanidineinheiten einhergehen, die in der 'Twist-Konformation' des $Cu_2(RSSR)_2$ -Sechsrings minimiert werden. Im Fall der Reduktion eines (Gua_{ph}S)₂-Liganden zu formal zwei $Gua_{ph}S^-$ -Liganden steht den gebildeten Cu^{II} -Ionen jeweils nur ein NS_2 -Donorset in einer thiolatverbrückten Cu₂S₂-Einheit zu Verfügung. Ein Zustand, der mit einer bevorzugten quadratisch-planaren Koordinationsgeometrie von Cu^{II} -Ionen nicht vereinbar ist. Die Anwesenheit eines Co-Liganden oder einer weiteren N-Donorgruppe am Liganden könnte die Koordinationslücke der pseudo-quadratisch-planaren Koordinationsgeometrie schließen. Dieser Fall tritt bei der Zugabe von X⁻-Ionen ein: die X⁻-Ionen verdrängen vermutlich einen (Gua_{ph}S)₂-Liganden (Nukleophiler Angriff auf die Cu^I-Zentren) aus der Cu(RSSR)₂Cu-Koordinationsumgebung und bilden eine instabile Zwischenstufe **Z1** mit einer trans-Stellung des Disulfid-Liganden sowie instabilen Koordinationsverhältnissen der Cu^I-Zentren (Schema A, Abb. 7.7). Als Folge setzt ein Elektronentransfer (ET) von den Cu^I-Zentren auf den zweiten Disulfid-Liganden ein, der zur Ausbildung der $Bis(\mu$ -thiolato)dikupfer(II)-Spezies führt. Die Thiolat-Spezies besitzt eine – im Gegensatz zu der Zwischenstufe Z1 – energetisch günstigere Koordinationsumgebung, die stärker Richtung quadratisch-planar tendiert (links, Abb. 7.6). Die Diederwinkel zwischen den SCuS/NCuCl-Ebenen der Cu^{II}-Zentren liegen hier bei ca. 48.0°. Der Koordinationspolyeder besitzt damit eine Übergangsgeometrie zwischen quadratisch-planar und tetraedrisch. Disulfid-Komplexe mit einer trans-Stellung der Disulfid-Einheit (vergleichbar mit dem Intermediat Z1) sind in der Literatur bekannt (vgl. $[Cu_2^{I}(L^{10})](ClO_4)_2$ bzw.

Abb. 7.6: Ausschnitt aus den Molekülstrukturen von C45 (links) und C49 (rechts).

 $[Cu_2^I(L^{12})Cl_2](Ac)_2$, Abb. 6.26 und Tab. 6.41). Die Komplexe besitzen jedoch entweder einen vierzähnigen tripodalen (L¹⁰) oder einen chelatisierenden dreizähnigen Liganden (L¹²) und sind daher in der Lage, die Cu^I-Zentren in einer verzerrt tetraedrischen Koordinationsumgebung zu stabilisieren.

Die Umsetzung der Bis(μ -thiolato)dikupfer(II)-Spezies mit einem Äquivalent X⁻-Ionen leitet vermutlich eine Umlagerung der Übergangsgeometrie in Richtung stärker tetraedrisch über die instabile Zwischenstufe **Z2** ein (Schema **B**, Abb. 7.7). Die gefaltene Struktur der Bis(μ -thiolato)dikupfer(II)-Komplexe (siehe Abb. 6.12) bietet den X⁻-Ionen eine gute Möglichkeit für einen nukleophilen Angriff auf die beiden Cu^{II}-Zentern. Die Thiolat-Liganden werden aus der stabilen verbrückenden Position durch die X⁻-Ionen verdrängt und leiten die Elektronentransferreaktion zu Cu^I und Disulfid ein.

Inwiefern die beobachteten p π -d π -Wechselwirkungen (Ligand- π -Rückbindung) sowie die Cu(d π)-S(d π)-Rückbindung (vgl. Kap. 6.5.2), die zur Schwächung der S-S-Bindung im Disulfid-Komplex **C49** beitragen, eine Rolle bei der Disulfid-Spaltung spielen, bleibt unklar. So zeigen die zwei Disulfid-Komplexe von Itoh ebenfalls eine Disulfid-Spaltung (vgl. Kap. 7.1.2) mit deutlich kürzeren S-S-Bindungslängen (2.070(1) Å in [Cu^I₂(L¹²)Cl₂](Ac)₂ (**It3**) bzw. 2.077(1) Å in [Cu^I₂(L¹³)Cl]CuCl₂ (**It2**), Abb. 7.8, vs. 2.138(2) in **C49**). Die Triebkraft der beobachteten reversiblen Disulfid-Thiolat-Disulfid-Austauschreaktion liegt

Abb. 7.7: Möglicher Mechnismus der beobachteten Disulfid-Thiolat-Disulfid-Austauschreaktion.

damit hauptsächlich im Wechsel der Koordinationsgeometrien, die durch äußere Bedingungen (Zugabe/Fällung von X⁻-Ionen oder Temperaturerniedrigung) eingeleitet wird. Insbesondere die Koordinationsgeometrie der Thiolat-Komplexe **C45** und **C46** – die zwischen quadratisch-planar und tetraedrisch einzuordnen ist – besitzt die notwendige Flexibilität, um auf Änderungen der äußeren Randbedingungen entsprechend zu reagieren. Diese Ergebnisse zeigen deutlich, dass kleine Änderungen in der Koordinationsumgebung der Kupferzentren drastische Auswirkungen auf den Oxidationszustand und die Struktur der beteiligten Metallzentren und Schwefel-Liganden haben kann.

7.3 Thiolat-Disulfid-Austauschreaktionen in der Literatur

Reversible Thiolat-Disulfid-Austauschreaktionen stellen in der synthetischen Bioanorganischen Chemie einen sehr seltenen Reaktionstyp dar. Kürzlich präsentierte Itoh das erste synthetische Modell für eine reversible kupferzentrierte Thiolat-Disulfid-Austauschreaktion.[61a] Bei der beschriebenen Reaktion induzierten Chlorid-Ionen die Umlagerung eines Bis(μ -thiolato)dikupfer(II)-Komplexes (It1) zu entsprechenden Kupfer(I)-Disulfid-Komplexen (It2, It3) mit den beteiligten Chlorid-Ionen als Co-Liganden. Das Ausfällen der Chlorid-Ionen durch die Zugabe von AgOTf in Form von Silberchlorid leitete entsprechend die Rückbildung der Thiolat-Spezies ein (Abb. 7.8). Der Kupfer(II)-Komplex It1 ist aus einer zweikernigen thiolatverbrückten Cu₂^{II}S₂-Einheit aufgebaut, wobei an jedem Cu^{II}-Atom eine Schwefel-Donorfunktion in Form einer Thiolatgruppe sowie zwei Stickstoff-Donorfunktionen in Form einer Amin- und einer Pyridingruppe koordinieren (Abb. 7.8. Strukturdaten von [Cu₂^{II}(L⁶)₂](ClO₄)₂ (It1) siehe Tab. 6.32). Die Koordinationsgeometrie der Cu^{II} kann als regulär quadratisch-planar bezeichnet werden mit Diederwinkeln der SCuS/NCuN-Ebenen von 5.0°. Der Komplex wird aus der Redoxreaktion von [Cu^I(MeCN)₄]PF₆ mit der entsprechenden Disulfid-Verbindung des koordinierenden

Abb. 7.8: Chloridinduzierte reversible Thiolat-Disulfid-Austauschreaktion von Itoh.[61a]

Thiolat-Liganden erhalten. Die Zugabe von Chlorid-Ionen in eine Lösung von It1 leitet die Reduktion von Cu^{II} zu Cu^I sowie die Oxidation der koordinierenden Thiolatgruppen zum Disulfid ein. So konnte aus der Lösung (Verhältnis Cu : Cl = 1 : 1) der Komplex It3 isoliert und die Kristallstruktur bestimmt werden (Abb. 7.8, Strukturdaten von $[Cu_2^{I}(L^{12})Cl_2](Ac^b)_2$ (It3) siehe Tab. 6.41). Die ergab eine verzert tetraedrische Koordination der beiden Cu^I-Zentren (N₂SCl-Donorset), wobei die Disulfid-Gruppe in trans-Stellung verbrückend zwischen den beiden Cu^I-Atomen angeordnet ist. Werden die Chlorid-Ionen mit AgBF₄ gebunden und als Silberchlorid gefällt, ist die Rückbildung zu der zweikernigen Cu^{II}-Thiolatspezies möglich. Spektroskopische Studien ergaben, dass bereits nach Zugabe der halben Menge Chlorid-Ionen (Verhältnis Cu : Cl = 1 : 0.5) die Bildung einer Disulfid-Spezies erfolgt. Eine Röntgenstruktur dieser Kupfer-Spezies mit einem leicht abgewandeltem Liganden wurde ebenfalls bestimmt und zeigt eine stark verzerrt tetraedrische Koordination der beiden Cu^I-Atome (N₂SCl-Donorset, Diederwinkel der SCuCl/NCuN-Ebenen liegen bei 66°.), wobei die Disulfid-Gruppe (cis-Stellung) und ein μ -Chlorid-Ion die beiden Cu¹-Atome miteinander verbrückt (Abb. 7.8, Strukturdaten von $[Cu_2^I(L^{13})Cl](CuCl_2)$ (It2) siehe Tab. 6.41).

Ein Vergleich der beobachteten Thiolat-Disulfid-Austauschreaktion sowie der beteiligten Komplexe von Itoh et al. mit der in dieser Arbeit beschriebenen Reaktion zeigt folgende Unterschiede bzw. Gemeinsamkeiten: (i) Die Umsetzung des Disulfid-Liganden $(Gua_{ph}S)_2$ mit einem halogenfreien Cu^I-Salz führt nicht zur Spaltung der Disulfid-Einheit (vgl. Kap. 7.1.1). Die analoge Reaktion mit dem Disulfid-Liganden von Itoh führt zu Spaltung der Disulfid-Einheit und zur Bildung der Thiolat-Verbindung It1. Die zusätzliche N-Donorgruppe des dreizähnigen Thiolat-Liganden ermöglicht hier die Stabilisierung der Cu^{II} -Zentren in einer quadratisch-planaren Koordination mit einem N_2S_2 -Donorset. (ii) Die beobachtete Thiolat-Disulfid-Austauschreaktionen der Thiolat-Komplexe C45 und C46 sowie It1 besitzen gleiche Merkmale. Die halogeninduzierte Oxidation der Thiolat-Liganden zum Disulfid (nach der Zugabe von einem Äquivalent Cl⁻-Ionen) geht mit einer Anderung der Koordinationsgeometrie der Kupferzentren einher. Die 'Übergangsgeometrie' der Komplexe C45 und C46 bzw. die quadratisch-planare Koordinationsgeometrie in It1 wechselt zu verzerrt tetraedrisch in den Disulfid-Komplexen (It3 bzw. S1). (iii) Die beobachtete Bildung der Cu^I-Spezies It2 nach der Zugabe von 0.5 Äquivalenten Cl⁻-Ionen (Abb. 7.8) wird bei der Reaktion der Thiolat-Komplexe C45 und C46 nicht beobachtet. Die Koordinationsgeometrie der Thiolat-Komplexe C45 und C46 tendiert sehr viel stärker Richtung verzerrt tetraedrisch im Vergleich zu It1 (Diederwinkel: $48.0 \text{ vs. } 5.0^{\circ}$). Das Vorkommen einer geometrischen 'Zwischenstufe' auf dem Weg zu einer tetraedrischen Koordinationsgeometrie (Diederwinkel: 90°) ist daher unwahrscheinlich. Die Diederwinkel im Fall von It2 sind mit durchschnittlich 66.0° erwartungsgemäß größer im Vergleich zum Thiolat-Komplex It1 mit einem Diederwinkel von 5.0°. (iv) Die Thiolat-Komplexe C45 und C46 besitzen mit den Halogenid-Co-Liganden einen zusätzlichen 'Freiheitsgrad', der

Abb. 7.9. Schema A: Halogenidinduzierte Disulfid-Thiolat-Disulfid-Austauschreaktion. Schema B: Chloridinduzierte Disulfid-Thiolat-Austauschreaktion von Itoh.[61a]

als unabhängig vom restlichen Thiolat-Liganden angesehen werden kann. Die Zugabe von Ag⁺-Ionen führt zum Ausfällen von AgCl und leitet die Umlagerung zu der Disulfid-Spezies **C49** ein. Im Fall von **It1** ist Koordinationsgeometrie mit einem chelatisiereden dreizähnigen Thiolat-Liganden abgesättigt.

Zusammenfassend ist für die Unterschiede der beiden Reaktionstypen die Konstitution der Disulfid-Liganden bzw. der resultierenden Thiolat-Liganden, (zweizähnig vs. dreizähnig) und ihre Fähigkeit verschiedene Koordinationsgeomtrien zu stabilisieren, verantwortlich. Der ausschlaggebende Punkt und zugleich wichtigste Unterschied zum System von Itoh ist die Fähigkeit des Disulfid-Liganden ($Gua_{ph}S$)₂, eine zweikernige Cu^I-Disulfid-Spezies (**C49**) ohne zusätzliche Halogenid Co-Liganden zu stabilisieren sowie die Umlagerung dieser Spezies zu einem Thiolat-Komplex mit einer 'Übergangsgeometrie' zwischen quadratisch-planar und tetraedrisch.

Itoh hat mit den Komplexen It1 bis It3 die erste reversible Thiolat-Disulfid-Austauschreaktion beschrieben (Schema B, Abb. 7.9). Die in Kapitel 7.1 vorgestellten Austauschreaktionen erweitern diesen Reaktionstyp zu einer bisher noch unbekannten reversiblen Disulfid-Thiolat-Disulfid-Austauschreaktion (Schema A, Abb. 7.9).

Die erhaltenen Ergebnisse zeigen, dass neben äußeren Einwirkungen auf die Koordinationsumgebung der Kupferzentren (Zugabe/Fällung von X⁻-Ionen, Temperatur) auch die Ligandkonstitution und Donorsatz entscheidend zur Stabilität beobachteter Oxidationsstufen und Komplexgeometrien beiträgt.

Kapitel 8 Zusammenfassung

Im ersten Teil der vorliegenden Arbeit stand zunächst die Entwicklung und Optimierung von Synthesestrategien zur Darstellung neuartiger Schwefel-Guanidine im Vordergrund. Als Ausgangsverbindungen und einfache Grundbausteine für die Synthese von zwei- und mehrzähnigen Thioether-Guanidine wurde zunächst 2-Aminoethanthiol bzw. 2-Aminothiophenol ausgewählt. Beide Thiole wurden über klassische chemische Substitutionsreaktionen unter basischen oder sauren Bedingungen chemisch modifiziert und führten zu einem breiten Spektrum an zwei- oder mehrzähnigen Thioether-Aminen, die zu entsprechenden Thioether-Guanidinen umgesetzt wurden (L1 - L21, Abb. 8.1). Die Oxidation der Thiol-Funktion führte zu den entsprechenden Disulfid-Aminen 2,2'-Dithioanilin und Cystamin, die über eine redoxaktive Disulfid-Schutzgruppe verfügen und als Ausgangsverbindungen für die Synthese von Disulfid-Guanidinen genutzt wurden (L22, L23). Daneben konnten in einer Vier-Stufen-Synthese ausgehend von Diethylentriamin neuartige tripodale Thioether-Guanidine dargestellt werden (L24 - L27). Insgesamt wurden 41 neue Thioether-Guandine synthetisiert und charakterisiert. Aufgrund ihrer Konstitution wurden sie in sechs Ligandengruppen (LG) unterteilt (Abb. 8.1). Im zweiten Teil der vorliegenden Arbeit stand die Synthese und Charakterisierung von Kupferkomplexen mit den neuen Schwefel-Guanidinen im Vordergrund. Hierzu wurden die Schwefel-Guanidine mit verschiedenen Kupfersalzen umgesetzt und die erhaltenen Komplexe größtenteils röntgenographisch, cyclovoltammetrisch und spektroskopisch charakterisiert. Ausgehend von zwei-, drei- und fünfzähnigen Thioether-Guanidinen (L1 - L21) wurde eine breite Palette von Kupfer(I)-Komplexen erschlossen, die aufgrund ihrer strukturellen Merkmale in zwölf Strukturtypen (ST-1 bis ST-12) unterteilt wurden (Abb. 8.2). Die strukturelle Vielfalt der Kupfer(I)-Komplexe erstreckt sich über einkernige, zweikernige, vierkernige sowie kettenförmig aufgebaute Systeme. Die Cu^I-Atome sind verzerrt trigonal-planar (ST-1) bzw. verzerrt-tetraedrisch (ST-2 bis ST-12) koordiniert. Dabei bindet die Thioether-Funktion terminal an ein Kupferatom oder koordiniert verbrückend an zwei Kupferatome. Zahlreiche Kupfer(I)-Komplexe besitzen neuartige Strukturmotive, die in der Literatur bis heute nicht beschrieben wurden. Cyclovoltammetrische Studien an ausgewählten

LG-1 Bidentat-C2

LG-1 Bidentat-C3

LG-2 Tridentat-Monoguanidin

R₃

R₁

Ň

R₃́N

Ra

L13-1, L13-2

R

R₄

R1

R₃

R₂

 R_2

Me

Et

^tBu

R =

-R

L7-1, L7-2

L8-1, L8-2

L9-1, L9-2

CPh₃ L10-1, L10-2

L15-1, L15-2

R₄

 R_4

L12-1, L12-2

L17-1, L17-2

R4^{- N}

R₃

LG-4 Tetra-/Pentadentat-Bisguanidin

LG-5 Disulfid-Bisguanidin

Abbildung 8.1: Schematische Übersicht der synthetisierten Schwefel-Guanidine.

Thioether-Kupfer(I)-Komplexen zeigten – bis auf zwei Ausnahmen – einen irreversiblen $Cu^{I/II}$ -Übergang im negativen Potentialbereich (-0.100 bis -0.200 V vs. NHE). Bei den Ausnahmen handelt es sich um die zweikernigen Komplexe $[Cu^{I}(Gua_{ph}S)_{2bzPy}]_{2}(PF_{6})_{2}$ (C31 (TMG), C32 (DMEG)) mit verzerrt koordinierten Cu^{I} -Atomen (N₂S₂-Donorset), die über zwei (Gua_{ph}S)_{2bzPy}-Liganden miteinander verknüpft werden (mittlerer Cu-Cu-Abstand: 7.793 Å). Beide Komplexe zeigen einen reversiblen Ein-Elektronen-Übergang bei ca. 0.270 V vs. NHE, der im Bereich von Typ 1-Kupferzentren liegt (0.240 bis 1 V vs. NHE). Aus spektroelektrochemischen sowie magnetochemischen Untersuchungen der oxidierten Spezies von C31 konnte eine verzerrt quadratisch-planare Koordinationsgeometrie für das Cu^{II}-Atom abgeleitet werden.

Im Bereich der tripodalen Systeme konnten die Kupfer(I)-Komplexe C34 und C35 sowie die Kupfer(II)-Komplexe C36 und C37 synthetisiert werden (Abb. 8.2), welche die zwei wesentlichen Strukturmerkmale des Cu_M -Zentrums der PHM und D β H wiedergeben: die koordinierenden Methionin- sowie zwei Histidin-Donorfunktionen. Mit 2.275(1) und 2.262(1) Å zeigen die Kupfer(I)-Komplexe Cu¹-S-Bindungslängen, die mit EXAFS- und Röntgenstrukturdaten für den reduzierten Zustand der PHM und $D\beta H$ übereinstimmen (Cu-S_{Met}: 2.20 - 2.30 Å). Im Fall der Kupfer(II)-Komplexe sind die Cu^{II}-S-Bindungslängen mit 2.766(1) und 2.800(1) Å ebenfalls vergleichbar mit Werten aus Röntgenstrukturanalysen der oxidierten Form der PHM (2.68 Å). Des Weiteren sind die Cu^{II}-S-Bindungslängen mit ca. 2.8 Å nur etwas kürzer im Vergleich zu der Cu-S_{Met}-Bindungslänge im oxidierten und reduzierten Zustand des Azurin (3.13 Å, Typ 1-Kupferzentrum). Cyclovoltammetrische Untersuchungen von C34 zeigten einen quasi-reversiblen $Cu^{I/II}$ -Übergang (Ein-Elektronen-Oxidation) im Bereich von Typ 1-Kupferzentren ($E_{1/2}^{ox} = 0.284$ V vs. NHE). Ausgehend von den Trityl-Guanidinen $\operatorname{Gua}_{ph}\operatorname{SCPh}_3(\mathbf{L6-1}, \mathbf{L6-2})$ und den Disulfiden $(\text{Gua}_{ph}\text{S})_2$ (L22-1, L22-2) konnten Synthesestrategien zur Darstellung von Kupfer(II)bzw. gemischtvalenten Kupfer(I/II)-Thiolat-Komplexen entwickelt werden. Die Umsetzung der von $\operatorname{Gua}_{ph}\operatorname{SCPh}_3$ mit verschiedenen Kupfer(I)-Salzen führte vermutlich über eine sowohl homolytisch als auch heterolyisch verlaufende S-C-Bindungsspaltung zu den neuartigen gemischtvalenten Thiolat-Komplexen des Typs $[Cu_4^I Cu_2^{II} (Gua_{ph}S)_6]X_2$ (C39 - C44) mit dem 2-(Guanidino)benzolthiolat-Liganden Gua_{ph}S⁻. Die Struktur der $[Cu_6(RS)_6]^{2+}$ -Einheiten kann von einem hexagonalen Prisma abgeleitet werden. Sie besitzen verzerrt tetraedrisch koordinierte Kupferatome (NS_3 -Donorsatz) und fast planare Cu_2S_2 -Rauten mit kurzen Cu-Cu-Abständen von durchschnittlich 2.590 A. DFT-Studien bestätigten aufgrund des kurzen Cu-Cu-Abstandes direkte π -Cu-Cu-Wechselwirkungen neben starken Superaustauschwechselwirkungen über die Thiolatbrücken. Spektroelektrochemische sowie magnetochemische Messungen ergaben, dass das diamagnetische Komplexkation $[Cu_4^I Cu_2^{II} (RS)_6]^{2+}$ reversibel in einen oxidierten $([Cu_3^I Cu_3^{II} (RS)_6]^{3+})$ und reduzierten Zustand ($[Cu_5^I Cu_1^{II}(RS)_6]^+$) überführt werden kann ($E_{1/2}^{ox} = 0.696$ V bzw. $E_{1/2}^{red} = -0.252$ V vs. NHE) mit NIR-Absorptionsbanden der erhaltenen Spezies bei 1140 und 1330 nm. Die

Abbildung 8.2: Schematische Übersicht der synthetisierten Kupfer-Guanidinkomplexe

Ausgangsverbindung selbst zeigt eine intensive NIR-Absorptionsbande bei 1117 nm. Mit Hilfe der Hush-Theorie konnte eine Einordnung der Komplexkationen $[Cu_6(RS)_6]^{1+/2+/3+}$ zu Class III valenzdelokalisierter Systeme (nach Robin und Day) erfolgen mit Kopplungsenergien (2 H_{AB} = $\tilde{\nu}_{max}$) von ca. 8950, 8750 sowie 7500 cm⁻¹. Die beobachteten NIR-Absorptionsbanden gehören damit zu einen Cu(ψ) \rightarrow Cu(ψ^*)-Übergang innerhalb des valenzdelokalisierten Systems. Aus der DFT-Analyse des Komplexkations $[Cu_6(RS)_6]^{2+}$ konnten eine direkte σ -Cu-Cu-Bindung ähnlich wie im Cu_A-Zentrum konnte nicht identifiziert werden. Jedoch könnten die π -Bindungsanteile einen Beitrag zu der elektronischen Wechselwirkung der Kupferatome und damit zur Stabilisierung des Delokalisationszustandes – vergleichbar zur σ -Bindung im Cu_A-Zentrum – leisten.

Eine weitere Möglichkeit zur Synthese von Thiolat-Komplexen führte über die reduktive Spaltung der Disulfid-Guanidine (Gua_{ph}S)₂ (**L22-1**, **L22-2**). Die Umsetzung der Disulfid-Verbindungen mit CuCl bzw. CuBr führte zu den thiolatverbrückten zweikernigen Komplexen [Cu₂^{II}(Gua_{ph}S)₂X₂] (**C45**, **C46**) mit dem 2-(Guanidino)benzolthiolat-Liganden Gua_{ph}S⁻ und stark antiferromagnetisch gekoppelten Cu^{II}-Atomen. Hierbei besitzen die Cu^{II}-Atome der gefaltenen Cu₂S₂-Einheit (mittlerer Faltungswinkel: 58.0°, Cu-Cu-Abstand: 2.723 Å) eine 'Übergangsgeometrie' zwischen verzerrt tetraedrisch und quadratisch-planar und können elektrochemisch nicht reduziert werden. Die UV/Vis-Spektren der Thiolat-Komplexe besitzen S(π/σ) \rightarrow Cu^{II} LMCT-Übergänge mit einer auffälligen 'Doppelbande', die in literaturbekannten Cu₂^{II}S₂-Komplexen nicht beobachtet wurde. Diese 'Doppelbande' ist ebenfalls charakteristisch für die spektroskopische Signatur von Cu_A-Zentren, die jedoch im Vergleich zu den Thiolat-Guanidinkomplexen eine Blauverschiebung aufweist.

Neben den zweikernigen thiolatverbrückten Kupfer(II)-Komplexen konnten aus der Umsetzung von $(TMG_{ph}S)_2$ (**L22-1**) mit CuSPh bzw. CuI, auch die dreikernigen Thiolat-Komplexe $[Cu_3^I(TMG_{ph}S)_3]$ (**C47**) und $[Cu_2^ICu^{II}(TMG_{ph}S)_3I]$ (**C48**) erhalten werden. Beide Komplexe zeigen annähernd den gleichen Aufbau, dem ein fast gleichseitiges Cu₃-Dreieck mit verbrückenden Thiolat-Brücken zu Grunde liegt (Abb. 8.2). In beiden Verbindungen besitzen die Cu^I-Atome eine trigonal-planare Koordinationsgeometrie (NS₂-Donosatz), während das Cu^{II}-Atom in **C48** eine 'Übergangsgeometrie' zwischen verzerrt tetraedrisch und quadratisch-planar aufweist (N₂S₂-Donorset). Elektrochemische Untersuchungen zeigten, dass **C47** bei einem Potential von 0.080 V vs. NHE (quasi-reversibler Übergang) vermutlich nach einem klassischen 'square-scheme' Mechanismus (erweiterter ECE-Mechanismus) in das Monokation $[Cu_2^ICu^{II}(TMG_{ph}S)_3]^+$ überführt werden kann. Diese Spezies liegt auch in **C48** vor und stellt das hypothetische Monokation der sechskernigen Komplexkationen $[Cu_2^ICu^{II}(Gua_{ph}S)_3]_2^{2+}$ dar.

Die Umsetzung von $(TMG_{ph}S)_2$ mit $[Cu(MeCN)_4]OTf$ führte dagegen zu dem zweikernigen Komplex $[Cu_2^I((TMG_{ph}S)_2)_2](OTf)_2$ (C49) mit einem Cu(RSSR)_2Cu-Sechsring in einer 'Twist-Konformation' sowie verzerrt tetraedrisch koordinierten Cu^I-Atomen. Die Zugabe von Chalogenid- oder Bromid-Ionen (1 Äq. Et₄NX) zu einer Komplexlösung von C49 führte unter einer reduktiven Spaltung des Disulfid-Liganden zu den Thiolat-Komplexen $[Cu_2^{II}(Gua_{ph}S)_2X_2]$ (C45, C46). Die Rückreaktion konnte durch Ausfällen der Halogenid-Ionen mit AgBF₄ eingeleitet werden. Hin- und Rückreaktion sowie die beteiligten Spezies konnten durch spektroskopische Titrationen eindeutig charakterisiert werden. Die Zugabe von zwei Äquivalenten Chalogenid- oder Bromid-Ionen führte über die zweikernigen Thiolat-Spezies C45 und C46 zu einer weiteren Disulfid-Spezies (S1), die strukturell nicht charakterisiert werden konnte. Weitergehende Untersuchungen legten die Vermutung nahe, dass analog zu C49 in S1 ebenfalls verzerrt tetraedrisch koordinierte disulfid-verbrückte Cu^I-Atome vorliegen. Eine koordinationschemische Analyse zeigte, dass insbesondere die 'Übergangsgeometrie' (genau zwischen verzerrt tetraedrisch und quadratisch-planar) der zweikernigen Thiolat-Komplexe die notwendige Flexibilität besitzt um auf Änderungen der äußeren Randbedingungen (Zugabe oder Ausfällen von Halogenid-Ionen) mit einer Umlagerung zu den beobachteten Disulfid-Spezies entsprechend zu reagieren. Insgesamt konnte eine bisher noch unbekannte reversible Disulfid-Thiolat-Disulfid-Austauschreaktion identifiziert und weitergehend charakterisiert werden.

Zusammenfassend wurden in der vorliegenden Arbeit 51 neue Kupferkomplexe synthetisiert und größtenteils röntgenographisch, spektroskopisch und elektrochemisch charakterisiert. Aus dem Pool der synthetisierten und untersuchten Verbindungen konnten zahlreiche Komplexe als strukturelle und/oder funktionelle Modellsysteme für Schwefel-Kupfer-Metalloproteine identifiziert werden.

Kapitel 9 Experimenteller Teil

9.1 Allgemeine Bemerkungen zum experimentellen Teil

Die Präparation und Handhabung der synthetisierten Verbindungen erfolgte, wenn nicht anders vermerkt, unter streng anaeroben und wasserfreien Bedingungen mittels Schlenkund Hochvakuum-Techniken oder unter Verwendung von Inertgas-Handschuhboxen. Die handelsüblichen Lösungsmittel wurden nach Literaturangaben getrocknet, unter Argonatmosphäre destilliert und entgast.[185] Für alle durchgeführten Synthesen wurden, sofern nicht anders angegeben, käufliche Chemikalien der Firmen Fluka, Sigma-Aldrich, AlfaAesar und Acros ohne weitere Reinigung eingesetzt.

9.2 Analytische und spektroskopische Methoden

NMR-Spektroskopie: Die ¹H-NMR- und ¹³C-NMR-Spektren wurden mit dem Kernresonanzspektrometer Avance (500 bzw. 125 MHz) der Firma Bruker aufgenommen. Die Kalibrierung der Spektren erfolgte über die Signale des deuterierten Lösungsmittels. Die verwendeten Lösungsmittel sind explizit bei der jeweiligen Verbindung angegeben. Die aufgeführten chemischen Verschiebungen beziehen sich auf die δ -Skala und sind in ppm angegeben. Im Falle der ¹H-NMR-Spektren erfolgte die Kalibrierung anhand der Signale des nicht deuterierten Anteils des Lösungsmittels.

IR-Spektroskopie: Die Infrarotspektren wurden mit dem FT-IR-Spektrometer P510 der Firma Nicolet aufgenommen. Die Feststoffe wurden als KBr-Presslinge vermessen. Flüssigkeiten und Öle wurden als Film zwischen zwei NaCl-Platten vermessen.

UV/Vis-Spektroskopie: Die UV/Vis-Spektren wurden mit dem Spektrometer Lambda 45 der Firma Perkin-Elmer aufgenommen. Raumtemperaturmessungen erfolgten in Zweistrahltechnik. Die verwendeten Lösungsmittel sind explizit bei der jeweiligen Verbindung angegeben. Spektrochemische Titrationen wurden mittels einer faseroptischen Tauchsonde der Firma Hellma durchgeführt.

Einkristall-Röntgenstrukturanalysen: Die Intensitätsdaten für die Einkristall-Röntgenstrukturanalysen wurden mit einem Diffraktometer des Typs Bruker AXS SMART APEX bei -153°C gesammelt (MoK α -Strahlung = 0.71073 Å und Graphit-Monochromator). Datenreduktion und Absorptionskorrektur wurden mit SAINT und SADABS[186] durchgeführt. Die Strukturen wurden mit direkten und konventionellen Fouriermethoden gelöst und alle nicht-H-Atome anisotrop gegen F² verfeinert (SHELXTL[186]). Wasserstoffatome wurden i. R. aus Differenzfouriersynthesen ermittelt und auf idealisierten Lagen isotrop mit Reiter-Modell verfeinert (U_{iso}H = 1.2U_{eq}(C, N) oder 1.5_{eq}(C_{Methyl}, OH). In den Verbindungen C41, C42, und C49 bzw. C33, C44 und [HL6-1]Cl sind die Acetonitril-Moleküle bzw. die OTf-Anionen so stark fehlgeordnet, dass eine sinnvolle Verfeinerung nicht möglich war. Behandlung der Daten mit dem SQUEEZE-Programm aus PLATON[187, 188] führte jeweils zu problemloser Verfeinerung für den geordneten Strukturbereich.

Magnetochemische Messungen: Die ESR- bzw. SQUID-Messungen wurden am Max-Planck-Institut für Bioanorganische Chemie in Mülheim durchgeführt. SQUID-Suszeptometer: MPMS-7, Quantum Design mit einem Feld von 1.0 T, Messbereich 2 bis 300 K. EPR-Spektrometer: Bruker ELEXSYS E500 ausgestattet mit einem Helium-Kryostat (Oxford Instruments ESR 910) und einem Frequenzähler (Hewlett-Packard F HP5253B). Einzelne SQUID-Messungen erfolgten ebenfalls am Max-Plack-Institut für Festkörperforschung in Stuttgart.

Elementaranalysen: Die Elementaranalysen wurden mit einem Analysator Modell 240 der Firma Perkin-Elmer sowie dem vario MICRO Cube der Firma Elementar an der Universität Paderborn durchgeführt. Externe Messungen wurden durch die Laboratorien Ilse Beetz und Beller in Kronach bzw. Göttingen durchgeführt.

Massenspektroskopie: Die Aufnahmen der EI-Massenspektren erfolgte mit dem Massenspektrometer Finnigan MAT 40 über Elektronenstoßionisation bei 70 eV und einer Quellentemperatrur von 200°C. Die Aufnahmen der CI-Massenspektren erfolgte ebenfalls mit dem Massenspektrometer Finnigan MAT 40 mit Isobutan als Reaktantgas und einer Quellentemperatur von 130°C. Die ESI- und MS/MS-Massenspektren wurden an der Universität Bielefeld mit dem Massenspektrometer Bruker Esquire 3000 aufgenommen. Die verwendeten Lösungsmittel sind explizit bei der jeweiligen Verbindung angegeben.

Cyclovoltammetrie: Die CV-Messungen wurden im Messzellenstand Metrohm 757 VA Computrace mit dem Programm Computrace Version 2.0 durchgeführt. Die Dreielektrodenanordnung wurde durch eine planare Platinelektrode als Arbeitselektrode (RDE), eine Glassy Carbon Gegenelektrode und eine Ag/AgCl-Elektrode mit gesättigter LiCl-Ethanollösung als Referenzelektrode verwirklicht. Alle Lösungen wurden in einer Inertgasbox abgefüllt. Als Leitelektrolyt wurde $|NBu_4|PF_6$ (c = 0.2 mol/l) verwendet. Die verwendeten Scangeschwindigkeiten, Lösungsmittel sowie Konzentrationen sind explizit bei der jeweiligen Verbindung angegeben. Ausgewählte CV-Messungen (bei RT) und coulometrische Messungen (bei -25°C) wurden am Max-Planck-Insitut für Bioanorganische Chemie in Mülheim aufgenommen. Hierfür wurde folgender Meßzellstand verwendet: EG&G Princeton Applied Research Potentiostat/Galvanostat Model 273A mit einer Ag/0.01 M $AgNO_3$ -Referenzelektrode, einer Glassy Carbon Arbeitselektrode (d = 2mm) sowie einer Platin-Gegenelektrode. Die Auswertung erfolgte mit der Software Model 270/250 Research Electrochemistry 4.23. Als Leitelektrolyt wurde $[NBu_4]PF_6$ (c = 0.2 mol/L) verwendet. Die Messungen wurden unter Argon in abs. Dichlormethan mit einer Komplexkonzentration von 0.001 mol/l durchgeführt. Die UV-Vis/NIR-Spektren während der coulometrischen Messungen wurden mit dem Perkin Elmer Spektrometer Lambda 19 aufgenommen (Ottle Zelle, d = 0.5 cm). Die formalen Redoxpotentiale E ergaben sich aus $E = (E_{ox} + E_{red})/2$ und wurden anhand des Bezugssystems $E_{Fe/Fe^+} = 400 \text{ mV}$ vs. NHE auf das Potential vs. NHE bzw. Fc/Fc⁺ umgerechnet. Die Auswertung der Cyclovoltammogramme erfolgte mit Hilfe der diagnostischen Kriterien nach Nicholson und Shain. [189]

DFT-Rechungen: Die DFT-Berechnungen wurden mit dem Programmpaket Gaussian 03 durchgeführt.[190] Die Geometrien der Komplexe wurden mit dem B3LYP-Hybridfunktional und dem 6-31g(d)-Basissatz für alle Atome optimiert.[191] Enge Konvergenzkriterien wurden angewendet. Die Startgeometrien für den 6-Kerner wurden aus ihren Einkristallröntgenstrukturanalysen generiert. Frequenzrechnungen bestätigten die gefundenen stationären Punkte als Minima auf der Potentialhyperfläche.

9.3 Synthese und Charakterisierung der Guanidinliganden

9.3.1 Synthese der Vilsmeier-Salze

Synthese von N,N,N',N'-Tetrametyhlchlorformamidinium-Chlorid (V1):

In einem Dreihalsschlenkolben, ausgestattet mit einem auf -30 °C gekühlten Rückflusskühler, wird Phosgen in eine Lösung aus Tetramethylharnstoff (430 mmol, 50 g) in abs. Toulol (200 mL) bei 0°C für ca. 15 min. eingeleitet. Nach der Zugabe des Phosgens wird die Reaktionslösung für 2 h bei RT gerührt, anschließend für 24 h bei 40°C. Nach dem Abkühlen bis auf RT

wird die überstehende Lösung abdekantiert und das erhaltene weiße Salz an der Vakuumpumpe getrocknet, Ausbeute: ca. 95 %.[66a]

Synthese von N,N,N',N'-Dimethylethylenchlorformamidinium-Chlorid (V2):

In einen Dreihalsschlenkkolben, ausgestattet mit einem auf -30°C gekühlten Rückflusskühler, wird Phosgen in eine Lösung aus 1,3-Dimethyl-2-imidazolidinon (300 mmol, 34.2 g) in abs. Toulol (200 mL) bei 0°C für 15 min. eingeleitet. Nach 30 min. wird die Lösung auf RT erwärmt und anschließend bei 40°C für 50 h gerührt. Nachdem die Lösung bis auf RT abgekühlt

wurde, wird das Lösungsmittel im Vakuum entfernt. Man erhält das Vilsmeier-Salz als weißes Salz. Ausbeute ca. 90%.[66a]

9.3.2 AAV für die Synthese von Schwefel-Guanidinliganden

Eine Lösung des entsprechenden Vilsmeier-Salzes **V1** oder **V2** in abs. MeCN (60 mL) wird unter Rühren zu einer eisgekühlten Lösung des Mono- oder Bis-Aminothioethers und Triethylamin in abs. MeCN (50 mL) getropft. Dabei wird pro Amino-Gruppe ein Äquivalent Vilsmeier-Salz und Triethylamin eingesetzt. Die Lösung wird 3 h unter Rückfluss erhitzt und nach dem Abkühlen auf Raumtemperatur mit einer NaOH-Lösung (5 ml) versetzt, deren Stoffmenge stöchiometrisch zum eingesetzen Triethylamin gewählt wird. Anschließend wird das Triethylamin und das Lösungsmittel im Vakuum entfernt. Zum Deprotonieren des gebildeten Mono- oder Bis-Guanidinium-Hydrochlorids wird eine wässrige 50 % KOH-Lösung (4-facher Überschuss zum eingesetzten Triethylamin) hinzugegeben und das Produkt – falls nicht anders vermerkt – mit MeCN (3 x 50 mL) extrahiert. Die gesammelten organischen Phasen werden mit Na₂SO₄ getrocknet. Die Lösung wird anschließend filtriert und das Lösungsmittel im Vakuum entfernt.

9.3.3 Zweizähnige Schwefel-Guanidinliganden

Die Synthese der folgenden Thioamine ist in der entsprechenden Literatur beschrieben: 2-(Methylthio)benzenamin[192], 2-(Ethylthio)benzenamin[193], 2-(Tert-butylthio)benzenamin[194], 2-(Benzylthio)benzenamin[192], 2-(Tritylthio)benzamin[195], 2-(Methylthio)ethanamin[196], 2-(Tert-butylthio)ethanamin[197], 2-(Tritylthio)ethanamin.[198]

1,1,3,3-Tetramethyl-2-(2-(methylthio)phenyl)guanidin (L1-1):

Weißer Feststoff, Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.34 (s, 3H, CH₃), 2.66 (s, 12H, CH₃), 6.47 (m, 1H, CH), 6.82 (m, 1H, CH), 6.95 (m, 1H, CH), 7.02 (m, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.8 (CH₃), 39.5 (CH₃), 120.5 (CH), 120.9 (CH), 124.3 (CH), 124.8 (CH), 130.4 (C_{guat}),

149.2 (C_{quat}), 160.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3043w, 2978w, 2918m, 2881m, 2804w, 1593s

 $(\tilde{\nu}(C=N))$, 1568*s*, 1508*m* ($\tilde{\nu}(C=N)$), 1464*m*, 1435*m*, 1400*w*, 1379*s*, 1282*w*, 1234*w*, 1205*w*, 1144*m*, 1122*w*, 1065*w*, 1038*w*, 1020*m*, 951*w*, 916*w*, 847*w*, 783*m*, 737*m*, 706*w*, 673*w*, 619*w*, 540*w*. EI-MS (m/z (%.)): 235.2 (54) [M⁺], 219.1 (6), 202.0 (30), 188.2 (100) [M⁺-SCH₃], 186.1 (16), 153.1 (99), 138.1 (50), 120.1 (16), 109.1 (32), 94.1 (68), 77.1 (30), 69.1 (47), 57.1 (53).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(methylthio)anilin (L1-2):

Gelber Feststoff, Ausbeute: 71 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.38 (s, 3H, CH₃), 2.62 (s, 6H, CH₃), 3.26 (s, 4H, CH₂), 6.77 (m, 1H, CH), 6.86 (m, 1H, CH), 6.96 (m, 1H, CH), 7.01 (m, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.6 (CH₃), 34.8 (CH₃), 48.5 (CH₂), 121 (CH), 121.8 (CH), 123.8

(CH), 124.5 (CH), 133.7 (C_{quat}), 147.2 (C_{quat}), 155.3 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3043w, 2911m, 2848m, 1618s ($\tilde{\nu}$ (C=N)), 1568s ($\tilde{\nu}$ (C=N)), 1500m ($\tilde{\nu}$ (C=N)), 1437m, 1388m, 1313w, 1284m, 1257w, 1234w, 1201w, 1122w, 1068w, 1034m, 970m, 949w, 864w, 847w, 771m, 739m, 702m, 650w, 588w, 540w, 480w, 447w. EI-MS (m/z (%.)): 235.2 (54) [M⁺], 219.1 (6), 202 (30), 188.2 (100) [M⁺-SCH₃], 186.1 (16), 153.1 (99), 138.1 (50), 120.1 (16), 109.1 (32), 94.1 (68), 77.1 (30), 69.1 (47), 57.1 (53).

2-(2-(Ethylthio)phenyl)-1,1,3,3-tetramethylguanidin (L2-1):

Gelbes Öl, Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.25 (t, 3H, CH₃), 2.62 (s, 12H, CH₃), 2.81 (m, 2H, CH₂), 6.47 (d, 1H, CH), 6.74 (t, 1H, CH), 6.96 (t, 1H, CH), 7.06 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.0 (CH₃), 25.9 (CH₂), 39.4 (CH₃), 120.3 (CH), 121.6 (CH), 125.1 (CH), 126.4

(CH), 128.7 (C_{quat}), 150.2 (C_{quat}), 159.8 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2925m, 2870w, 1597s ($\tilde{\nu}$ (C=N)), 1570s ($\tilde{\nu}$ (C=N)), 1502m ($\tilde{\nu}$ (C=N)), 1458m, 1379m, 1281w, 1205w, 1142m, 1068w, 1018m, 968m, 920w, 850w, 777w, 739m, 712w, 540w. EI-MS (m/z (%.)): 251.1 (18) [M⁺], 236.1 (4) [M⁺-CH₃], 216.1 (4), 190.1 (9) [M⁺-SCH₂CH₃], 181.1 (26), 153.0 (94), 136.0 (25), 124.0 (100), 93.0 (26), 80.0 (66), 65.1 (19).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(ethylthio)anilin (L2-2):

Gelbes Öl, Ausbeute: 90 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.28 (t, 3H, CH₃), 2.57 (s, 6H, CH₃), 2.84 (m, 2H, CH₂), 3.20 (s, 4H, CH₂), 6.76 (m, 2H, CH), 6.93 (m, 1H, CH), 7.05 (m, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.1 (CH₃), 25.4 (CH₂), 34.8 (CH₃), 48.4 (CH₂), 117.6 (CH), 120.7 (CH), 122.1

(CH), 125.0 (CH), 126.0 (C_{quat}), 148.4 (C_{quat}), 155.1 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2925m, 2854m, 1649vs ($\tilde{\nu}$ (C=N)), 1574m ($\tilde{\nu}$ (C=N)), 1437m, 1394w, 1281m, 1122w, 1070w, 1032m, 968w, 868w, 769w, 710w, 646w. EI-MS (m/z (%.)): 249.1 (7) [M⁺], 216.1 (7), 188.1 (6) [M⁺-SCH₂CH₃], 153.0 (91), 138.0 (6), 124.0 (100), 98.1 (18), 93.0 (21), 80.0 (70), 65.0 (17).

2-(2-(Tert-butylthio)phenyl)-1,1,3,3-tetramethylguanidin (L3-1):

Gelbes Öl, Ausbeute: 65 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.19 (s, 9H, CH₃), 2.58 (s, 12H, CH₃), 6.71 (m, 2H, CH), 7.08 (m, 1H, CH), 7.09 (t, 1H, CH), 7.37 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 31.3 (CH₃), 39.3 (CH₃), 119.3 (CH), 123.4 (CH), 124.0 (C_{quat}), 129.2 (CH), 138.3 (CH), 156.1

(C_{quat}), 160.1 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3047*w*, 2956*m*, 2856*m*, 1658*s*, 1577*s* ($\tilde{\nu}$ (C=N)), 1522*w* ($\tilde{\nu}$ (C=N)), 1487*m*, 1454*m*, 1413*w*, 1392*m*, 1361*w*, 1281*m*, 1242*m*, 1151*w*, 1030*w*. EI-MS (m/z (%.)): 279.3 (36) [M⁺], 222.2 (16) [M⁺-tBu], 190.1 (14) [M⁺-StBu], 179.1 (100) [M⁺-C(N(CH₃)₂)₂], 136.1 (19), 100.1 (10) [C[N(CH₃)₂]²⁺].

2-(Tert-butylthio)-N-(1,3-dimethylimidazolidin-2-yliden)anilin (L3-2):

Gelbes Öl, Ausbeute: 55 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.23 (s, 9H, CH₃), 2.50 (s, 6H, CH₃), 3.18 (s, 4H, CH₂), 6.72 (d, 1H, CH), 6.87 (t, 1H, CH), 7.09 (t, 1H, CH), 7.39 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 31.4 (CH₃), 34.7 (CH₃), 45.0 (C_{quat}), 48.3 (CH₂), 119.7 (CH), 123.2 (CH), 124.5

 (C_{quat}) , 129.1 (CH), 138.6 (CH), 150.4 (C_{quat}), 154.7 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3047*w*, 2920*m*, 2804*w*, 1603*s* ($\tilde{\nu}$ (C=N)), 1574*s* ($\tilde{\nu}$ (C=N)), 1504*m* ($\tilde{\nu}$ (C=N)), 1454*s*, 1427*m*, 1377*s*, 1279*w*, 1234*w*, 1203*w*, 1140*s*, 1016*w*. EI-MS (m/z (%.)): 277.2 (57) [M⁺], 220.1 (18) [M⁺-tBu], 188.2 (22.1) [M⁺-StBu], 178.1 (20), 125.1 (100), 98.1 (26), 57.1 (12) [tBu⁺].

1,1,3,3-Tetramethyl-2-(2-(phenylthio)phenyl)guanidin (L4-1):

Gelbes Öl, Ausbeute: 84 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.59 (s, 12H, CH₃), 6.66 (m, 2H, CH), 7.01 (m, 2H, CH), 7.09 (m, 1H, CH), 7.17 (m, 2H, CH), 7.25 (m, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 39.4 (CH₃), 120.5 (CH), 122.5 (CH), 126.4 (CH), 126.9 (C_{quat}), 127.6 (CH), 128.9 (CH), 129.6

(CH), 131.1 (CH), 134.5 (CH), 136.3 (C_{quat}), 151.6 (C_{quat}), 159.8 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3053*m*, 3001*m*, 2926*s*, 2885*m*, 2792*w*, 1599*s* ($\tilde{\nu}$ (C=N)), 1568*vs* ($\tilde{\nu}$ (C=N)), 1504*m* ($\tilde{\nu}$ (C=N)), 1475*m*, 1455*m*, 1439*w*, 1381*s*, 1282*w*, 1238*w*, 1205*w*, 1142*m*, 1059*w*, 1018*w*. EI-MS (m/z (%.)): 299.1 (22) [M⁺], 267.1 (1), 255.1 (11) [M⁺-C₂H₆N], 228.1 (13), 212.0 (10), 201.1 (65) [M⁺-C(N(CH₃)₂)₂], 179.1 (17), 167.1 (14), 149.0 (6), 116.1 (34), 100.1 (8) [C(N(CH₃)₂)₂²⁺], 72.0 (100), 44.1 (27).

N-(1,3-Dimethylimidazolidin-2-yliden-2-(phenylthio)anilin (L4-2):

Gelbes Öl, Ausbeute: 72 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.54 (s, 6H, CH₃), 3.15 (s, 4H, CH₂), 6.72 (m, 1H, CH), 6.87 (m, 1H, CH), 7.03 (m, 3H, CH), 7.16 (m, 2H, CH), 7.39 (m, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.7 (CH₃), 48.4 (CH₂), 120.7 (CH), 122.8 (CH), 126.5 (CH), 127.0 (CH), 128.4

(C_{quat}), 129.0 (CH), 129.9 (CH), 131.2 (CH), 132.1 (CH), 137.3 (C_{quat}), 149.3 (C_{quat}), 155.0 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2964w, 2925m, 2854m, 1649s ($\tilde{\nu}$ (C=N)), 1574m ($\tilde{\nu}$ (C=N)), 1483m, 1437m, 1414w, 1394w, 1281m, 1252w, 1198vw, 1157vw, 1122w, 1070w, 1032m, 991vw, 968m, 868w, 769w, 737m, 710w, 646w, 586vw, 540vw. EI-MS (m/z (%.)): 297.1 (5) [M⁺], 264.1 (1), 201.1 (100) [M⁺-C(N(CH₃)₂)₂], 186.0 (14), 167.1 (18), 139.1 (3), 114.1 (13), 96.0 (5), 80.1 (14), 65.0 (9).

2-(2-(Benzylthio)phenyl)-1,1,3,3-tetramethylguanidin (L5-1):

Gelber Feststoff, Ausbeute: 69 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.68 (s, 12H, CH₃), 4.10 (s, 2H, CH₂), 6.59 (d, 1H, CH), 6.80 (t, 1H, CH), 7.03 (t, 1H, CH), 7.15 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.36 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 37.3 (CH₂), 39.5 (CH₃), 120.5 (CH),

121.7 (CH), 126.1 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.4 (CH), 128.7 (C_{quat}), 129.1 (CH), 136.6 (C_{quat}), 137.8 (C_{quat}), 160.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3053w, 3030w, 3003w, 2918m, 2848m, 2790w, 1589m ($\tilde{\nu}$ (C=N)), 1558s ($\tilde{\nu}$ (C=N)), 1500m ($\tilde{\nu}$ (C=N)), 1460m, 1425m, 1377s, 1279w, 1232w, 1207w, 1144m, 1066m, 1038m, 1020s, 914w, 850w, 806vw, 777m, 715s, 696m, 682w, 621w, 571w, 545w, 498vw, 484w, 461w, 445w. EI-MS (m/z (%.)): 313.0 (100) [M⁺], 280.0 (31), 269.1 (8) [M⁺-N(CH₃)₂], 242.0 (5), 237.0 (10) [M⁺-Ph], 222.0 (14) [M⁺-CH₂Ph], 215.0 (20), 190.0 (12) [M⁺-SCH₂Ph], 179.0 (76), 148.9 (28), 135.9 (20), 124.0 (9) [SCH₂Ph⁺], 91.0 (76), 72.0 (20).

2-(Benzylthio)-N-(1,3-dimethylimidazolidin-2-yliden)anilin (L5-2):

Weißer Feststoff, Ausbeute: 60 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.63 (s, 6H, CH₃), 3.25 (s, 4H, CH₂), 4.11 (s, 2H, CH₂), 6.80 (m, 2H, CH), 7.01 (t, 1H, CH), 7.14 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.38 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.8 (CH₃), 36.6 (CH₂), 48.5 (CH₂),

120.8 (CH), 122.3 (CH), 125.7 (CH), 126.8 (CH), 127.2 (CH), 128.3 (CH), 129.1 (CH), (CH), 129.3 (C_{quat}), 137.9 (C_{quat}), 148.6 (C_{quat}), 155.2 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3053w, 3030w, 3003vw, 2933m, 2920m, 2868m, 2839m, 1954vw, 1973vw, 1635vs ($\tilde{\nu}$ (C=N)), 1572s ($\tilde{\nu}$ (C=N)), 1493m, 1469m, 1437s, 1410m, 1394m, 1309w, 1281m, 1236m, 1192m, 1155vw, 1140w, 1126m, 1070m, 1032s, 1003w, 991w, 970m, 920w, 858w, 845w, 816vw, 783m, 764m, 735s, 717s, 698m,

648m, 596w, 586w, 571w, 545w. EI-MS (m/z (%.)): $311.2 (100) [M^+]$, 278.2 (89), $220.2 (62) [M^+-CH_2Ph]$, 202.2 (43), 187.2 (96), 177.2 (40), 165.1 (83), 150.1 (29), 136.0 (52), 126.2 (47), 109.1 (33), $91.1 (55) [CH_2Ph^+]$, 70.1 (28), 56.1 (95).

1,1,3,3-Tetramethyl-2-(2-(tritylthio)phenyl)guanidin (L6-1):

Das Rohprodukt wurde mit CH₂Cl₂ extrahiert. Nach dem Einengen auf ca. 20 ml kristallisiert das Produkt bei -25°C als weißer Feststoff aus. Ausbeute: 83 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.69 (s, 12H, CH₃), 6.37 (d, 1H, CH), 6.58 (t, 1H, CH), 6.9 (t, 1H, CH), 7.1 (d, 1H, CH), 7.25 (m, 9H, Try-CH.), 7.43 (m, 6H, Try-CH).

¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 39.3 (CH₃), 70.9 (C_{quat}), 119.2 (CH), 122.1 (CH), 126.6 (CH), 127.5 (CH), 130.0 (CH), 130.5 (CH), 131.7 (CH), 137.8 (CH), 144.5 (C_{quat}), 145.0 (C_{quat}), 152.1 (C_{quat}), 160.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3055w, 3927w, 2872w, 1629s ($\tilde{\nu}$ (C=N)), 1573s ($\tilde{\nu}$ (C=N)), 1486m, 1440m, 1396m, 1282m, 1033w, 966m, 740m, 700s, 622w. EI-MS (m/z (%.)): 465.2 (30) [M⁺], 243.0 (100) [CPh₃⁺], 223.0 (35) [M⁺-CPh₃], 179.0 (80), 149.0 (32), 136.0 (21), 44.0 (18).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(tritylthio)anilin (L6-2):

Das Rohprodukt wurde mit CH₂Cl₂ extrahiert. Nach dem Einengen auf ca. 20 ml kristallisiert das Produkt bei -25°C als weißer Feststoff aus. Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.69 (s, 6H, CH₃), 3.27 (s, 4H, CH₂), 6.33 (t, 1H, CH), 6.45 (d, 1H, CH), 6.73 (d, 1H, CH), 6.84 (t, 1H, CH), 7.20 (m, 9H, Try-CH.),

7.46 (m, 6H, Try-CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.8 (CH₃), 58.5 (CH₂), 69.7 (C_{quat}), 119.7 (CH), 122.2 (CH), 126.5 (CH), 127.5 (CH), 127.29 (CH), 130.0 (CH), 130.5 (CH), 131.2 (CH), 137.8 (CH), 144.4 (C_{quat}), 144.8 (C_{quat}), 149.6 (C_{quat}), 155.7 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3054w, 3933w, 2854w, 1635vs ($\tilde{\nu}$ (C=N)), 1573s ($\tilde{\nu}$ (C=N)), 1488s, 1440s, 1392m, 1278m, 1031w, 968m, 740w, 698s, 624w. EI-MS (m/z (%.)): 463.3 (10) [M⁺], 243.2 (30) [CPh₃⁺], 220.1 (100) [M⁺-CPh₃], 191.1 (27), 165.0 (80), 136.0 (21), 109.0 (10), 56.0 (9).

1,1,3,3-Tetramethyl-2-(2-(methylthio)ethyl)guanidin (L7-1):

Hellgrüne Flüssigkeit, Ausbeute: 64 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.81 (s, 3H, CH₃), 2.37 (t, 2H, CH₂), 2.38 (s, 6H, CH₃), 2.47 (s, 6H, CH₃), 3.05 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.6 (CH₃), 37.1 (CH₂), 38.6 (CH₃), 39.4 (CH₃), 49.4 (CH₂), 160.4 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2993*m*,

2912s, 2871s, 2800m, 1616s ($\tilde{\nu}$ (C=N)), 1496m, 1450m, 1404vw, 1367s, 1313w, 1284w, 1234m, 1132s, 1109w, 1063w. EI-MS (m/z (%.)): 189.1 (14) [M⁺], 142.1 (15) [M⁺-SCH₃], 128.1 (37) [M⁺-CH₂SCH₃], 97.1 (8), 85.1 (100), 75.1 (26) [CH₂CH₂SCH₃⁺], 69.0 (19), 61.0 (9) [CH₂SCH₃⁺].

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(methylthio)ethanamin (L7-2):

Gelbe Flüssigkeit, Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.02 (s, 3H, CH₃), 2.52 (t, 2H, CH₂), 2.64 (s, 6H, CH₃), 3.02 (d, 4H, CH₂), 3.45 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 16.0 (CH₃), 30.2 (CH₃), 31.4 (CH₃), 36.1 (CH₂), 37.4 (CH₂), 48.0 (CH₂), 49.4 (CH₂), 157.4 (C_{qua}). IR (NaCl,

 $\tilde{\nu}$ [cm⁻¹]): 2914*m*, 2833*s*, 1662*s* ($\tilde{\nu}$ (C=N)), 1481*m*, 1437*m*, 1412*w*, 1383*m*, 1350*w*, 1265*m*, 1219*w*, 1198*vw*. EI-MS (m/z (%.)): 187.1 (13) [M⁺], 140.1 (10) [M⁺-CH₃S], 126.1 (100) [M⁺-CH₂SCH₃], 114.1 (23), 98.1 (5), 85.1 (17), 69.0 (16), 56.1 (32).

2-(2-(Ethylthio)ethyl)-1,1,3,3-tetramethylguanidin (L8-1): Gelbes Öl, Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.04 (t, 3H, CH₃), 2.36 (q, 2H, CH₂), 2.45 (s, 6H, CH₃), 2.48 (t, 2H, CH₂), 2.54 (s, 6H, CH₃), 3.12 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.9 (CH₃), 26.0 (CH₂), 34.5 (CH₂), 38.6 (CH₃), 39.4 (CH₃), 50.0 (CH₂), 160.4 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2916s, 2870s, 2800w, 1620s ($\tilde{\nu}$ (C=N)), 1496s,

1452*s*, 1404*w*, 1367*s*, 1313*w*, 1236*m*, 1132*s*, 1063*m*, 1001*m*, 980*w*, 912*m*, 785*w*, 746*m*, 706*w*, 656*w*, 580*m*, 538*w*. EI-MS (m/z (%.)): 203.1 (5) [M⁺], 174.1 (2) [M⁺-CH₂CH₃], 143.1 (19), 128.1 (23) [M⁺-CH₂SCH₂CH₃], 115.0 (2), 97.0 (7), 89.1 (22) [CH₂CH₂SCH₂CH₃⁺], 85.0 (100), 71.0 (16), 61.0 (10) [SCH₂CH₃⁺].

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(ethylthio)ethanamin (L8-2):

Gelbes Öl, Ausbeute: 90 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.11 (t, 3H, CH₃), 2.45 (q, 2H, CH₂), 2.54 (t, 2H, CH₂), 2.65 (s, 6H, CH₃), 3.02 (s, 4H, CH₂), 3.44 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.0 (CH₃), 26.2 (CH₂), 34.8 (CH₂), 36.2 (CH₃), 48.5 (CH₂), 49.3 (CH₂), 157.3 (C_{qua}). IR (NaCl,

 $\tilde{\nu}$ [cm⁻¹]): 2924*s*, 2833*s*, 1662*s* ($\tilde{\nu}$ (C=N)), 1481*m*, 1437*m*, 1414*m*, 1383*s*, 1350*m*, 1265*s*, 1217*m*, 1198*w*, 1119*w*, 1066*w*, 1018*w*. EI-MS (m/z (%.)): 201.1 (6) [M⁺], 172.1 (3) [M⁺-CH₂CH₃], 149.1 (3), 141.2 (26), 126.1 (100) [M⁺-CH₂SCH₂CH₃], 112.1 (5) [M⁺-CH₂CH₂SCH₂CH₃] 89.1 (5) [CH₂CH₂SCH₂CH₃⁺], 85.1 (6), 69.1 (11).

2-(2-(Tert-butylthio)ethyl)-1,1,3,3-tetramethylguanidin (L9-1):

Gelbes Öl, Ausbeute: 78 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.18 (s, 9H, CH₃), 2.50 (s, 6H, CH₃), 2.54 (t, 2H, CH₂), 2.59 (s, 6H, CH₃), 3.12 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 31.0 (CH₃), 31.4 (CH₂), 38.7 (CH₃), 39.5 (CH₃), 41.5 (C_{quat}), 50.2 (CH₂), 160.3 (C_{qua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2956m,

2924*m*, 2895*m*, 2800*w*, 1618*m* ($\tilde{\nu}$ (C=N)), 1496*w*, 1456*w*, 1404*vw*, 1363*m*, 1313*w*, 1130*w*. EI-MS

 $(m/z (\%.)): 232.3 (100) [M^+], 187.2 (4), 174.1 (1) [M^+-tBu], 128.2 (8) [M^+-CH_2StBu], 85.1 (10), 57.1 (58) [^tBu^+].$

2-(Tert-butylthio)-N-(1,3-dimethylimidazolidin-2-yliden)ethanamin (L9-2):

Gelbes Öl, Ausbeute: 66 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.18 (s, 9H, CH₃), 2.52 (t, 2H, CH₂), 2.69 (s, 6H, CH₃), 3.01 (s, 4H, CH₂), 3.40 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 28.7 (CH₃), 30.3 (CH₃), 31.1 (CH₃), 31.8 (CH₂), 35.8 (CH₂), 41.6 (C_{quat}), 48.4 (CH₂), 49.5 (CH₂), 157.2 (C_{gua}). IR

(NaCl, $\tilde{\nu}$ [cm⁻¹]): 3305*m*, 2958*s*, 2859*s*, 1662v*s* ($\tilde{\nu}$ (C=N)), 1481*m*, 1458*m*, 1439*m*, 1414*m*, 1383*s*, 1363*m*, 1348*w*, 1265*s*, 1213*w*, 1163*m*, 1140*vw*, 1119*w*, 1018*w*. EI-MS (m/z (%.)): 230.2 (77) [M⁺], 204.2 (2), 126.2 (8) [M⁺-CH₂StBu], 115.3 (8), 57.1 (100) [^tBu⁺].

1,1,3,3-Tetramethyl-2-(2-(tritylthio)ethyl)guanidin (L10-1):

Das Rohprodukt wurde mit THF extrahiert. Umkristallisiert aus MeCN, weißer Feststoff. Ausbeute: 77 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.36 (t, 2H, CH₂), 2.65 (s, 12H, CH₃), 3.09 (t, 2H, CH₂), 7.15 (t, 3H, CH), 7.28 (t, 6H, CH), 7.45 (d, 6H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 35.3 (CH₂), 38.9

(CH₃), 39.5 (CH₃), 48.6 (CH₂), 66.2 (C_{quat}), 126.4 (CH), 127.7 (CH), 129.7 (CH), 145.4 (C_{quat}), 160.7 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3045*w*, 3014*w*, 2993*w*, 2949*w*, 2925*m*, 2871*m*, 2829*m*, 2794*m*, 1691*m* ($\tilde{\nu}$ (C=N)), 1614*vs* ($\tilde{\nu}$ (C=N)), 1492*m*, 1446*m*, 1400*w*, 1363*s*, 1311*w*, 1286*w*, 1236*w*, 1201*w*, 1180*w*, 1132*m*, 1078*w*, 1061*w*, 1026m, 993*w*, 978*w*, 906*w*, 850*w*, 771*m*, 756*m*, 742*s*, 698*s*, 678*w*, 623*m*, 578*w*, 525*w*. CI-MS (m/z (%.)): 418.3 (18) [M⁺+H], 373.2 (10) [M⁺-N(CH₃)₂], 349.3 (73), 342.3 (7), 282.2 (28), 257.3 (8), 243.1 (14) [CPh₃⁺], 231.3 (16), 176.1 (44), 142.2 (69) [M⁺-SCPh₃], 116.1 (100), 72.1 (10).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(tritylthio)ethanamin (L10-2):

Das Rohprodukt wurde mit THF extrahiert. Umkristallisiert aus MeCN, weißer Feststoff. Ausbeute: 80 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.42 (t, 2H, CH₂), 2.71 (s, 6H, CH₃), 3.12 (s, 4H, CH₂), 3.38 (t, 2H, CH₂), 7.18 (t, 3H, CH), 7.27 (t, 6H, CH), 7.46 (t, 6H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 35.6

(CH₂), 36.2 (CH₃), 46.6 (CH₂), 49.4 (CH₂), 66.2 (C_{quat}), 126.4 (CH), 127.8 (CH), 129.7 (CH), 145.3 (C_{quat}), 157.6 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3055w, 3026w, 2964w, 2927m, 2864m, 2816m, 1653s ($\tilde{\nu}$ (C=N)), 1493m, 1441m, 1419w, 1387m, 1352w, 1317w, 1269m, 1200w, 1178m, 1078w, 1024m, 964m, 930w, 893w, 847w, 742m, 700s, 640w, 621m, 584w, 523w, 507w, 499m. EI-MS (m/z (%.)): 416.2 (8) [M⁺+H], 393.3 (6), 340.2 (23), 306.2 (13), 287.2 (36), 243.1 (9) [CPh₃⁺], 227.2 (68), 174.1 (100) [M⁺-CPh₃], 114.1 (61).

1,1,3,3-Tetramethyl-2-(3-(methylthio)propyl)guanidin (L11-1):

Das Rohprodukt wurde mit THF extrahiert. Destillation (Sdp. $95^{\circ}C/0.04$ mbar), farbloses Öl. Ausbeute: 72 %. ¹H-NMR (500 MHz, CDCl₃, 25^{\circ}C, δ [ppm]): 1.59 (m, 2H, CH₂), 1.86 (s, 3H, CH₃), 2.34 (t, 2H, CH₂), 2.43 (s, 6H, CH₃), 2.53 (s, 6H, CH₃), 2.98 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25^{\circ}C, δ [ppm]): 15.4 (CH₃),

32.2 (CH₂), 32.6 (CH₂), 39.4 (CH₃), 48.2 (CH₂), 160.1 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2915*m*, 2850*m*, 1741*m*, 1650*vs* ($\tilde{\nu}$ (C=N)), 1481*w*, 1442*w*, 1382*m*, 1259*m*, 1155*m*. EI-MS (m/z (%.)): 203.1 (5) [M⁺], 188.1 (57) [M⁺-CH₃], 156.1 (19) [M⁺-SCH₃], 142.2 (48) [M⁺-CH₂SCH₃], 128.1 (45) [M⁺-(CH₂)₂SCH₃], 104.0 (29), 89.1 (88) [M⁺-NC(N(CH₃)₂)₂], 71.1 (45), 57.1 (77), 30.0 (74).

N-(1,3-Dimethylimidazolidin-2-yliden)-3-(methylthio)propan-1-amin (L11-2):

Das Rohprodukt wurde mit THF extrahiert. Destillation (Sdp. 120°C/0.04 mbar), farbloses Öl. Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.64 (q, 2H, CH₂), 1.92 (s, 6H, CH₃), 2.43 (t, 2H, CH₂), 2.60 (s, 3H, CH₃), 2.97 (s, 4H, CH₂), 3.27 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.5 (CH₃),

32.0 (CH₂), 32.6 (CH₂), 39.2 (CH₃), 46.2 (CH₂), 49.4 (CH₂), 157.4 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2915*m*, 2836*m*, 1660*vs* ($\tilde{\nu}$ (C=N)), 1482*w*, 1438*w*, 1378*m*, 1267*m*, 1195*m*. EI-MS (m/z (%.)): 201.1 (6) [M⁺], 186.1 (29) [M⁺-CH₃], 154.1 (5) [M⁺-SCH₃], 140.1 (12) [M⁺-CH₂SCH₃], 126.1 (95) [M⁺-(CH₂)₂SCH₃], 98.1 (5), 56 (9), 42 (5).

9.3.4 Dreizähnige Schwefel-Guanidinliganden

Die Synthese der folgenden Thioamine ist in der entsprechenden Literatur beschrieben: 2-(Pyridin-2-ylmethylthio)anilin[192], 2-(2-Aminoethylthio)-N,N-dimethylethanamin[199], 2,2-Thiodiethanamin.[200]

1,1,3,3-Tetramethyl-2-(2-(pyridin-2-ylmethylthio)phenyl)guanidin (L12-1):

Hellbraunes Öl, Ausbeute: 72 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.66 (s, 12H, CH₃), 4.22 (s, 2H, CH₂), 6.54 (d, 1H, CH), 6.73 (t, 1H, CH), 6.99 (t, 1H, CH), 7.08 (t, 1H, CH), 7.13 (d, 1H, CH), 7.32 (d, 1H, CH), 7.52 (t, 1H, CH), 8.50 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 38.9 (CH₂), 39.5 (CH₃),

120.5 (CH), 121.5 (CH), 121.8 (CH), 123.1 (CH), 126.2 (CH), 127.8 (CH), 127.9 (CH), 136.4 (CH), 149.1 (C_{quat}), 150.4 (C_{quat}), 158.4 (C_{quat}), 160.0 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3045*w*, 3006*w*, 2931*m*, 2881*m*, 2796*w*, 1589*vs* ($\tilde{\nu}$ (C=N)), 1558*vs* ($\tilde{\nu}$ (C=N)), 1509*m*, 1463*m*, 1434*m*, 1376*s*, 1284*w*, 1232*w*, 1205*w*, 1139*s*, 1016*m*. EI-MS (m/z (%.)): 314.1 (6) [M⁺], 269.0 (8), 216.0 (10), 183.0 (25), 178.1 (64), 167 (36), 149.0 (84), 135.0 (28), 116.0 (36), 93.0 (55) [SCH₂C₅H₄N⁺], 72.0 (100), 12.1 (5), 44.0 (35) [N(CH₃)₂⁺].

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(pyridin-2-ylmethylthio)anilin (L12-2):

Hellbraunes Öl, Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.55 (s, 6H, CH₃), 3.21 (s, 4H, CH₂), 4.20 (s, 2H, CH₂), 6.70 (t, 1H, CH), 6.75 (d, 1H, CH), 6.93 (t, 1H, CH), 7.07 (d, 2H, CH), 7.34 (d, 1H, CH), 7.50 (t, 2H, CH), 8.45 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.8 (CH₃), 38.2 (CH₂),

48.4 (CH₂), 120.7 (CH), 121.7 (CH), 122.2 (CH), 123.0 (CH), 125.8 (CH), 127.4 (CH), 128.4 (CH), 130.5 (C_{quat}), 148.7 (C_{quat}), 155.5 (C_{quat}), 158.7 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2928w, 2851m, 1649vs ($\tilde{\nu}$ (C=N)), 1573vs ($\tilde{\nu}$ (C=N)), 1474m, 1428m, 1390s, 1276s, 1238w, 1033m. EI-MS (m/z (%.)): 312.1 (100) [M⁺], 279.0 (64), 220.0 (10), 202.0 (16), 188.3 (32) [M⁺-SCH₂C₅H₄N], 165.0 (24), 135.0 (16), 114.0 (66), 93.0 (55) [SCH₂C₅H₄N⁺], 65.0 (16), 56.0 (28).

2-(2-(2-(Dimethylamino)ethylthio)ethyl)-1,1,3,3-tetramethylguanidin (L13-1):

Gelbes Öl, Ausbeute: 61 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.13 (s, 6H, CH₃), 2.39 (t, 2H, CH₂), 2.55 (s, 6H, CH₃), 2.54 (m, 2H, CH₂), 2.57 (m, 2H, CH₂), 2.63 (s, 6H, CH₃), 3.22 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 30.1 (CH₂), 35.2 (CH₂), 38.7 (CH₃), 39.5 (CH₃), 45.3 (CH₃), 50.1 (CH₂), 59.6

(CH₂), 160.5 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2935*m*, 2775*m*, 1619*vs* ($\tilde{\nu}$ (C=N)), 1497*w*, 1451*m*, 1376*m*, 1231*w*, 1125*m*, 1063*w*, 1003*w*, 911*w*, 850*w*. EI-MS (m/z (%.)): 246.0 (3) [M⁺], 202.1 (18) [M⁺-N(CH₃)₂], 175 (84) [M⁺-CH₂N(CH₃)₂], 142.2 (90) [M⁺-CH₂CH₂N(CH₃)₂], 128.0 (70) [M⁺-S(CH₂)₂N(CH₃)₂], 100.1 (75) [M⁺-(CH₂)₂S(CH₂)₂N(CH₃)₂], 85.0 (95), 70.0 (90), 58.0 (100), 44.0 (64). CI-MS (m/z (%.)): 247.2 (65) [M⁺+H⁺], 149.2 (25), 57.1 (100), 44.0 (32).

2-(2-(1,3-Dimethylimidazolidin-2-ylidenamino)ethylthio)-N,N-dimethylethanamin (L13-2):

Gelbes Öl, Ausbeute: 82 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.09 (s, 6H, CH₃), 2.36 (t, 2H, CH₂), 2.55 (t, 2H, CH₂), 2.62 (t, 2H, CH₂), 2.75 (s, 6H, CH₃), 3.16 (s, 4H, CH₂), 3.45 (t, 2H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 29.7 (CH₂), 34.5 (CH₂), 36.1 (CH₃), 45.3 (CH₃), 47.2 (CH₂), 49.3 (CH₂), 59.4

(CH₂), 158.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2942*m*, 2829*m*, 2775*m*, 1657*vs* ($\tilde{\nu}$ (C=N)), 1451*m*, 1390*m*, 1269*m*, 1125*w*, 1041*m*, 949*m*, 850*w*. EI-MS (m/z (%.)): 244.0 (5) [M⁺], 200.1 (10) [M⁺-N(CH₃)₂], 175.0 (75) [M⁺-CH₂N(CH₃)₂], 140.2 (80) [M⁺-CH₂CH₂N(CH₃)₂], 126.0 (88) [M⁺-S(CH₂)₂N(CH₃)₂], 98.0 (55) [M⁺-(CH₂)₂S(CH₂)₂N(CH₃)₂], 83.0 (28), 71.1 (82), 58.1 (100), 42.0 (74), 30.0 (56). CI-MS (m/z (%.)): 245.2 (65) [M⁺+H⁺], 149.1 (55), 115.1 (32), 57.1 (100), 42.0 (32).

2,2-(2,2-Thiobis(ethan-2,1-diyl))bis(1,1,3,3-tetramethyl-guanidin) (L14-1):

Orangenes Öl, Ausbeute: 76 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.42 (s, 12H, CH₃), 2.46 (t, 2H, CH₂, ³J = 7.41 Hz), 2.51 (s, 12H, CH₃), 3.09 (t, 2H, CH₂, ³J = 7.31 Hz). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.7 (CH₂), 38.6 (CH₃), 39.4 (CH₃), 48.8 (CH₂), 160.3 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2996m,

2882*m*, 2798*w*, 1611*vs* ($\tilde{\nu}$ (C=N)), 1497*m*, 1444*w*, 1368*s*, 1246*w*, 1132*m*, 1055*w*, 1003*w*, 904*w*. EI-MS (m/z (%.)): 317.3 (3) [M⁺+H⁺], 272 (5) [M⁺-N(CH₃)₂], 202.1 (5) [M⁺-NC((NCH₃)₂)₂], 175.1 (80) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 142.2 (84) [M⁺-S(CH₂)₂NC(N(CH₃)₂)₂)], 128 (44) [M⁺-CH₂S(CH₂)₂NC(N(CH₃)₂)₂], 97.1 (10), 85.0 (100), 71.0 (44), 44.0 (13). CI-MS (m/z (%.)): 317.3 (3) [M⁺+H⁺], 228.3 (10), 142.2 (5), 121.1 (23), 57.1 (100), 43.1 (34).

2,2-Thiobis(N-(1,3-dimethylimidazolidin-2-yliden)ethanamin) (L14-2):

Orangenes Öl, Ausbeute: 78 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.47 (m, 4H, CH₂), 2.54 (s, 12H, CH₃), 2.91 (s, 8H, CH₂), 3.34 (m, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 35.4 (CH₂), 35.8 (CH₃), 38.6 (CH₂), 49.2 (CH₂), 157.2 (C_{qua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2920*m*, 2836*m*, 1665*vs* ($\tilde{\nu}$ (C=N)),

1489*m*, 1436*w*, 1383*m*, 1262*s*, 1079*w*, 1017*w*, 949*w*, 728*w*. EI-MS (m/z (%.)): 313 (3) [M⁺+H⁺], 200.1 (5) [M⁺-NC(NCH₃)₂)(CH₂)₂], 173.1 (80) [M⁺-(CH₂)₂NC(NCH₃)₂)(CH₂)₂], 140.1 (58) [M⁺-S(CH₂)₂NC(NCH₃)₂)(CH₂)₂], 126.0 (11) [M⁺-(CH₂)₂S(CH₂)₂NC(NCH₃)₂)(CH₂)₂], 124.1 (10), 113.1 (5), 69.1 (16), 56.0 (40), 42.0 (24). CI-MS (m/z (%.)): 313.3 (3) [M⁺+H⁺], 224.2 (5), 217.2 (40), 140.2 (14), 121.0 (10), 57.1 (100), 43.1 (36).

2-(2-Aminoethylthio)anilin $(S_{Amin}-1)$:

Zu einer Ethanolat-Lösung aus Natrium (1.4 g, 61 mmol) in 500 ml abs. Ethanol wird 2-Aminothiophenol (30 mmol, 3.75 g) gelöst in 20 ml abs. Ethanol bei 0°C in 1 - 2 ml Schritten hinzugegeben. Zu der erhaltenen Suspension wird 2-Bromoethanamin-Hydrobromid (30 mmol, 6.1 g) portionsweise zugegeben und anschließend für weitere 30 min. gerührt. Im Anschluss wird die Reaktionsmischung für 6 h

am Rückfluss erhitzt. Nach dem Abkühlen der Reaktionsmischung wird das Lösungsmittel im Vakuum entfernt. Der Rückstand wird mit 200 ml Wasser vesetzt und mit Et₂O (3 x 60 ml) ausgeschüttelt. Die gesammelten organischen Phasen werden über Natriumsulfat getrocknet und anschließend eingeengt. Durch fraktionierte Destillation bei 125°C (0.04 mbar) wird das Produkt in Form eines hellgelben Öls erhalten. Ausbeute: 2.3 g (45 %.). ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.28 (s, 2H, NH₂), 2.81 (m, 4H, CH₂), 3.67 (s, 2H, NH₂), 6.65 (m, 2H, CH), 7.08 (t, 1H, CH), 7.35 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 38.8 (CH₂), 41.6 (CH₂), 115.0 (CH), 117.0 (C_{quat}), 118.4 (CH), 129.8 (CH), 136.0 (CH), 148.5 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3431m ($\tilde{\nu}$ (N-H)), 3347m ($\tilde{\nu}$ (N-H)), 3172m, 3057w, 2928w, 2859w, 1604s, 1482s, 1444m,

1307*m*. EI-MS (m/z (%.)): 168.1 (25) [M⁺], 149.0 (18), 139.0 (44) [M⁺-CH₂NH₂], 125.0 (100) [M⁺-(CH₂)₂NH₂], 93.1 (16) [M⁺-S(CH₂)₂NH₂], 80 (25), 65.0 (8), 44 (16), 30 (36).

Bis (1,1,3,3-tetramethylguanidin)-2-(2-(1,3-dimethylimida-zolidin-2-ylidenamino)ethylthio)anilin (L15-1):

Braunes Öl, Ausbeute: 87 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.58 (s, 12H, CH₃), 2.59 (s, 12H, CH₃), 2.94 (2H, CH₂), 3.29 (2H, CH₂), 6.43 (1H, CH), 6.69 (1H, CH), 6.86 (1H, CH), 7.09 (1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.5 (CH₂), 38.8 (CH₃), 39.4 (CH₃), 48.7 (CH₂), 120.2 (CH), 121.4 (CH), 125.1

(CH), 126.4 (CH), 128.8 (C_{quat}), 153.2 (C_{quat}), 160.6 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 3997w, 2922m, 2879w, 2792w, 1601s ($\tilde{\nu}$ (C=N)), 1563s ($\tilde{\nu}$ (C=N)), 1506m, 1445m, 1421m, 1373s, 1284w, 1232w, 1137s. EI-MS (m/z (%.)): 364.2 (2) [M⁺], 320.2 (2) [M⁺-N(CH₃)₂], 305.0 (12) [M⁺-N(CH₃)₂,-CH₃], 249.1 (4) [M⁺-NC(N(CH₃)₂)₂], 223.1 (40) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 179.1 (76), 149.0 (30), 142.0 (64), 85.0 (100), 71.0 (16), 44.0 (16).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(2-(1,3-dimethylimidazolidin-2-ylidenamino)ethylthio)anilin (L15-2):

Braunes Öl, Ausbeute: 83 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.55 (s, 6H, CH₃), 2.60 (s, 6H, CH₃), 3.00 (t, 2H, CH₂), 3.07 (s, 2H, CH₂), 3.19 (s, 2H, CH₂), 3.59 (t, 2H, CH₂), 6.69 (d, 1H, CH), 6.75 (t, 1H, CH), 6.89 (t, 1H, CH), 7.13 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.4 (CH₂), 34.7 (CH₃),

45.0 (CH₂), 47.35 (CH₂), 48.4 (CH₂), 120.5 (CH), 122.0 (CH), 124.7 (CH), 125.7 (CH), 129.8 (C_{quat}), 155.2 (C_{quat}), 167.5 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 3028m, 2841m, 1648s ($\tilde{\nu}$ (C=N)), 1573s ($\tilde{\nu}$ (C=N)), 1487m, 1435m, 1416m, 1388m, 1345w, 1274s, 1227m. EI-MS (m/z (%.)): 360.2 (2) [M⁺], 248 (4) [M⁺-NC(NCH₃)₂(CH₂)₂], 221.1 (30) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 188.1 (10) [M⁺-S(CH₂)₂NC(NCH₃)₂(CH₂)₂], 178.1 (48), 166.0 (44), 149.0 (70), 140.1 (72), 126.1 (100), 109.0 (10), 98.0 (14), 44.0 (45).

$2-(3-Aminopropylthio)anilin (S_{Amin}-2):$

Die Synthese erfolgte analog zu S_{Amin}-1 aus 2-Aminothiophenol und 3-Bromopropanamin-Hydrobromid. Hellgelbes Öl (Sdp. 155°C/0.04 mbar), Ausbeute: 3.8 g (70 %.).

¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.08 (s, 2H, NH₂), 1.63 (m, 2H, CH₂), 2.71 (m, 4H, CH₂), 4.37 (s, 2H, NH₂), 6.64 (2H, CH), 7.04 (1H, CH), 7.31 (1H, CH). ¹³C-NMR (125 MHz, CDCl₃,

25°C, δ [ppm]): 32.1 (CH₂), 33.4 (CH₂), 40.9 (CH₂), 118.0 (C_{quat}), 118.4 (CH), 129.5 (CH), 135.6 (CH), 148.3 (CH), 148.8 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3438*m* ($\tilde{\nu}$ (N-H)), 3354*m* ($\tilde{\nu}$ (N-H)), 3172*m*, 3065*m*, 2928*s*, 2859*m*, 1611*s*, 1474*s*, 1444*s*, 1300*m*, 1239*w*, 1163*w*. EI-MS (m/z (%.)): 182.1 (100) [M⁺], 165.0 (18) [M⁺-NH₂], 149.0 (10) [M⁺-CH₂NH₂], 136.0 (20) [M⁺-(CH₂)₂NH₂], 125.0 (60) [M⁺-(CH₂)₃NH₂], 93.0 (18) [M⁺-S(CH₂)₃NH₂], 80.0 (26), 58.0 (18), 44.0 (40).

Bis(1,1,3,3-tetramethylguanidin)-2-(3-(1,3-dimethylimidazolidin-2-ylidenamino)propylthio)anilin (L16-1):

Braunes Öl, Ausbeute: 78 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.85 (m, 2H, CH₂), 2.57 (s, 12H, CH₃), 2.65 (s, 12H, CH₃), 2.83 (t, 2H, CH₂), 3.15 (t, 2H, CH₂), 6.42 (d, 1H, CH), 6.68 (t, 1H, CH), 6.88 (t, 1H, CH), 7.04 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 29.6 (CH₂), 30.9 (CH₂), 39.3 (CH₃), 39.4

(CH₃), 47.2 (CH₂), 120.3 (CH), 121.4 (CH), 125.2 (CH), 126.3 (CH), 128.7 (C_{quat}), 159.9 (C_{quat}), 160.6 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2996w, 2920m, 2874m, 2798w, 1611s ($\tilde{\nu}$ (C=N)), 1573s ($\tilde{\nu}$ (C=N)), 1505m, 1459m, 1376m, 1231w, 1132m. EI-MS (m/z (%.)): 378.3 (10) [M⁺], 318 (3), 280 (5), 250 (5), 222.1 (40) [M⁺-(CH₂)₃NC(N(CH₃)₂)₂], 205.2 (65), 178.1 (72), 163 (70), 149 (75), 116 (75), 89 (40), 72 (90), 42 (100), 28 (52).

N-(1,3-Dimethylimidazolidin-2-yliden)-2-(3-(1,3-di-methylimidazolidin-2-ylidenamino)propylthio)anilin (L16-2): Braunes Öl, Ausbeute: 70 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.85 (m, 2H, CH₂), 2.56 (s, 6H, CH₃), 2.72 (s, 6H, CH₃), 2.94 (t, 2H, CH₂), 3.07 (s, 4H, CH₂), 3.19 (s, 4H, CH₂), 3.42 (t, 2H, CH₂), 6.71 (d, 1H, CH), 6.75 (t, 1H, CH), 6.88 (t, 1H, CH), 7.12 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]):

29.0 (CH₂), 32.5 (CH₂), 34.8 (CH₃), 46.6 (CH₂), 48.4 (CH₂), 49.4 (CH₂), 120.7 (CH), 122.0 (CH), 124.5 (CH), 125.4 (CH), 130.2 (C_{quat}), 155.5 (C_{quat}), 157.3 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2928m, 2844m, 1649s ($\tilde{\nu}$ (C=N)), 1573s ($\tilde{\nu}$ (C=N)), 1489m, 1383m, 1276m. EI-MS (m/z (%.)): 374.2 (10) [M⁺], 278.2 (20), 262 (3) [M⁺-NC(NCH₃)₂(CH₂)₂], 248.1 (10), 220.0 (68) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 205.2 (70), 177.1 (40), 162.0 (33), 149.1 (62), 114.1 (79), 98.1 (33), 72.0 (70), 57.1 (98), 42.0 (100), 28.0 (75).

2,2-(2,2-Thio-bis(2,1-phenylen))bis(1,1,3,3-tetramethylguanidin) (L17-1):

Weißer Feststoff, Ausbeute: 76 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.63 (s, 24H, CH₃), 6.70 (m, 4H, CH), 7.02 (m, 4H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 39.5 (CH₃), 120.5 (CH), 122.5 (CH), 127.0 (CH), 127.04 (C_{quat}), 131.7 (CH), 151.5 (C_{quat}), 159.5 (C_{qua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3042w, 2995w,

2928*m*, 2875*m*, 2791*w*, 1566*vs* ($\tilde{\nu}$ (C=N)), 1505*s* ($\tilde{\nu}$ (C=N)), 1452*s*, 1384*s*, 1284*m*, 1231*m*, 1201*m*, 1147**s**, 1011*m*, 850*m*. EI-MS (m/z (%.)): 412.2 (100) [M⁺], 368.2 (95) [M⁺-N(CH₃)₂], 323.1 (20) [M⁺-2 N(CH₃)₂], 314.0 (50), 298.1 (20) [M⁺-NC(N(CH₃)₂)₂], 280.0 (38), 237.0 (48), 225.0 (44), 190.0 (58), 179.0 (90), 162.0 (80), 149.0 (63), 100.0 (44), 85.0 (100).

2,2-Thio-bis(N-(1,3-dimethylimidazolidin-2-yliden)anilin) (L17-2):

Weißer Feststoff, Ausbeute: 73 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.62 (s, 12H, CH₃), 3.42 (s, 8H, CH₂), 6.91 (t, 2H, CH), 7.08 (d, 2H, CH), 7.19 (t, 2H, CH), 7.17 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.6 (CH₃), 48.4 (CH₂), 123.8 (CH), 125.6 (CH), 127.7 (C_{quat}), 128.0 (CH), 131.8 (CH),

143.6 (C_{quat}), 156.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2935w, 2852m, 2700m, 1642vs ($\tilde{\nu}$ (C=N)), 1604vs ($\tilde{\nu}$ (C=N)), 1467m, 1428m, 1390m, 1269m, 1025m, 980w, 767m, 736m, 698w. EI-MS (m/z (%.)): 408.2 (100) [M⁺], 350.1 (8), 309.1 (19) [M⁺-C(NCH₃)₂(CH₂)₂], 220.0 (16) [M⁺-C₆H₄NC(NCH₃)₂(CH₂)₂], 199.0 (19), 188.1 (56) [M⁺-SC₆H₄NC(NCH₃)₂(CH₂)₂], 149.1 (14), 114.1 (18), 86.1 (60), 58.0 (24).

9.3.5 Vier- und fünfzähnige Schwefel-Guanidinliganden

Die Synthese der folgenden Thioamine kann der entsprechenden Literatur entnommen werden: 1,9-Diamino-3,7-dithiodecan[200], 1,3-Bis((2-aminophenylthio)propan.[201]

2,2-(2,2-(Propan-1,3-diylbis(sulfandiyl))bis(ethan-2,1-diyl))bis(1,1,3,3-tetramethylguanidin) (L18-1):

Braunes Öl, Ausbeute: 52 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.73 (m, 2H, CH₂), 2.51 (m, 8H, CH₂), 2.53 (s, 12H, CH₃), 2.61 (s, 12H, CH₃), 3.17 (t, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 29.8 (CH₂), 31.1 (CH₂), 34.9 (CH₂), 38.7 (CH₃), 39.5 (CH₃), 49.8 (CH₂), 160.7 (C_{qua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]):

2996*w*, 2912*s*, 2798*m*, 1611*vs* ($\tilde{\nu}$ (C=N)), 1489*m*, 1459*m*, 1376*s*, 1306*w*, 1238*m*, 1139**s**. EI-MS (m/z (%.)): 391.2 (8) [M⁺], 346.2 (8) [M⁺-N(CH₃)₂], 249.1 (16) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 202.1 (6) [M⁺-CH₂S(CH₂)₂NC(N(CH₃)₂)₂], 143.1 (95) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (52) [CH₂NC(N(CH₃)₂)₂⁺], 100.0 (28), 85.0 (100), 72.0 (28), 58.0 (6).

2,2-(Propan-1,3-diyl-bis(sulfanediyl))bis(N-(1,3-dimethylimidazolidin-2-yliden)ethanamin) (L18-2):

Braunes Öl, Ausbeute: 79 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.71 (m, 2H, CH₂), 2.49 (m, 8H, CH₂), 2.64 (s, 12H, CH₃), 3.02 (s, 4H, CH₂), 3.03 (s, 4H, CH₂), 3.39 (t, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 29.8 (CH₂), 31.2 (CH₂), 34.9 (CH₂), 36.2 (CH₃), 38.1 (CH₂), 49.3 (CH₂), 157.7 (C_{qua}). IR

(NaCl, $\tilde{\nu}$ [cm⁻¹]): 2920*m*, 2844*s*, 1649*vs* ($\tilde{\nu}$ (C=N)), 1482*m*, 1444*m*, 1390*m*, 1344*w*, 1269*s*, 1216**w**. EI-MS (m/z (%.)): 387.1 (5) [M⁺], 290 (7), 247.2 (12) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 205.2 (18), 172.1 (27) [S(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 141.1 (60) [(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 126.1 (100) [CH₂NC(NCH₃)₂(CH₂)₂⁺], 113.0 (38) [NC(NCH₃)₂(CH₂)₂⁺], 88.1 (15), 56.0 (45), 44.1 (55), 30.0 (50).

2,2-(2,2-(Propan-1,3-diyl-bis(sulfandiyl))bis(2,1-phenylen))bis(1,1,3,3-tetramethylguanidin) (L19-1):

Braunes Öl, Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.91 (m, 2H, CH₂), 2.58 (s, 24H, CH₃), 2.19 (t, 4H, CH₂), 6.44 (d, 2H, CH), 6.67 (t, 2H, CH), 6.89 (t, 2H, CH), 7.02 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 28.1 (CH₂), 31.1 (CH₂), 39.4 (CH₃), 120.4 (CH), 121.5 (CH), 125.6 (CH), 126.7

(CH), 128.1 (C_{quat}), 150.3 (C_{quat}), 159.8 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3049w, 3004w, 2928m, 2794w, 1596vs ($\tilde{\nu}$ (C=N)), 1558vs ($\tilde{\nu}$ (C=N)), 1498s, 1452s, 1368s, 1284w, 1239w, 1201s, 1130s, 1071m, 1018s. EI-MS (m/z (%.)): 486.2 (10) [M⁺], 442.1 (5) [M⁺-N(CH₃)₂], 388.1 (7), 296.0 (3) [M⁺-C₆H₄NC(N(CH₃)₂)₂], 264.1 (100), 250.1 (50), 179 (58), 149 (28), 136 (20), 100 (10), 85 (12), 44 (10).

2,2-(Propan-1,3-diyl-bis(sulfandiyl))bis(N-(1,3-dimethylimidazolidin-2-yliden)anilin) (L19-2):

Braunes Öl, Ausbeute: 83 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.00 (m, 2H, CH₂), 2.64 (s, 12H, CH₃), 3.05 (t, 4H, CH₂), 3.28 (s, 8H, CH₂), 6.83 (m, 4H, CH), 7.00 (t, 2H, CH), 7.13 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 28.2 (CH₂), 30.8 (CH₂), 34.8 (CH₃), 48.5 (CH₂), 120.9 (CH), 122.4 (CH), 125.3 (CH),

126.7 (CH), 129.0 (C_{quat}), 148.4 (C_{quat}), 155.2 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3042w, 2921m, 2854m, 1619vs ($\tilde{\nu}$ (C=N)), 1566vs ($\tilde{\nu}$ (C=N)), 1505m, 1428m, 1452s, 1384m, 1277m, 1231w, 1117w, 1018m, 957w. EI-MS (m/z (%.)): 482.2 (16) [M⁺], 386.1 (16), 344.1 (10), 307.2 (18), 262.1 (90), 248.1 (95), 220.1 (36), 202.1 (20) [CH₂C₆H₄NC(NCH₃)₂(CH₂)₂⁺], 188.1 (44) [C₆H₄NC(NCH₃)₂(CH₂)₂⁺], 165.1 (50), 150 (48), 135 (42), 124 (84), 80 (36), 44 (28).

2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)diethanamin $(S_{Amin}-3)$:

Die Synthese erfolgte analog zu S_{Amin}-1 aus 2-Aminoethanthiol und 2,6-Bis(bromomethyl)pyridin[202] im Verhältnis 2 : 1. Nach dem Einengen wurde das Produkt mit CH₂Cl₂ extrahiert. Gelbes Öl, Ausbeute: 7.1 g (93 %.). ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.43 (s, 4H, NH₂), 2.44 (t, 4H, CH₂), 2.67 (t, 4H, CH₂),

3.65 (s, 4H, CH₂), 7.08 (t, 2H, CH), 7.47 (q, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 35.7 (CH₂), 37.6 (CH₂), 40.9 (CH₂), 121.2 (CH), 137.3 (CH), 158.3 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3347s ($\tilde{\nu}$ (N-H)), 3270s ($\tilde{\nu}$ (N-H)), 2913s, 2859s, 1627m, 1436m, 1307m, 1246m. EI-MS (m/z (%.)): 257.1 (10) [M⁺], 228.0 (8) [M⁺-CH₂NH₂], 214.0 (25) [M⁺-(CH₂)₂NH₂], 181.0 (98) [M⁺-S(CH₂)₂NH₂], 171.0 (98), 168.0 (30) [M⁺-CH₂S(CH₂)₂NH₂], 153.0 (20), 137.0 (99), 93.0 (17), 77.0 (20) [S(CH₂)₂NH₂⁺], 65.0 (12), 44.0 (10).

2,2-(2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)bis(ethan-2,1-diyl))bis(1,1,3,3-tetramethylguanidin) (L20-1):

Hellbraunes Öl, Ausbeute: 70 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.81 (t, 4H, CH₂), 2.88 (s, 24H, CH₃), 3.35 (t, 4H, CH₂), 3.80 (s, 4H, CH₂), 7.22 (d, 2H, CH), 7.47 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 30.1 (CH₂), 35.0 (CH₃), 38.9

(CH₂), 45.6 (CH₂), 120.5 (CH), 137.1 (CH), 159.9 (C_{quat}), 162.1 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 3004w, 2921m, 2859m, 2783w, 1591vs ($\tilde{\nu}$ (C=N)), 1551vs ($\tilde{\nu}$ (C=N)), 1505m, 1460s, 1422s, 1384s, 1284w, 1239w, 1155s, 1063w, 1018s, 912w, 850w, 767m, 736s, 569w. EI-MS (m/z (%.)): 453.1 (9) [M⁺], 409 (20) [M⁺-N(CH₃)₂], 325.1 (24) [M⁺-CH₂NC(N(CH₃)₂)₂], 279.1 (43) [M⁺-S(CH₂)₂NC(N(CH₃)₂)₂], 142.1 (77) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (61) [CH₂NC(N(CH₃)₂)₂⁺], 101.1 (36), 84.1 (44), 44.0 (13).

2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)bis-(N-(1,3-dimethylimidazolidin-2-yliden)ethanamin) (L20-2):

Hellbraunes Öl, Ausbeute: 68 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.75 (t, 4H, CH₂), 2.88 (s, 12H, CH₃), 3.32 (s, 8H, CH₂), 3.54 (t, 4H, CH₂), 3.83 (s, 4H, CH₂), 7.25 (d, 2H, CH), 7.58 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]):

31.5 (CH₂), 36.1 (CH₃), 38.1 (CH₂), 46.3 (CH₂), 49.5 (CH₂), 121.2 (CH), 137.4 (CH), 159.2 (C_{quat}), 161.9 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3069w, 2992m, 2866w, 1640vs ($\tilde{\nu}$ (C=N)), 1588s ($\tilde{\nu}$ (C=N)), 1489w, 1455m, 1413w, 1384w, 1351w, 1261m, 1223w. EI-MS (m/z (%.)): 449.1 (3) [M⁺], 310.1 (44) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 277.1 (3) [M⁺-S(CH₂)₂NC(NCH₃)₂(CH₂)₂], 172.1 (17) [S(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 140.1 (70) [(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 126.1 (100) [CH₂NC(NCH₃)₂(CH₂)₂⁺], 113.1 (19), 56.0 (17).

2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)dianilin $(S_{Amin}-4)$:

Die Synthese erfolgte analog zu S_{Amin}-1 aus 2-Aminothiophenol und 2,6-Bis(bromomethyl)pyridin[x] im Verhältnis 2 : 1. Das Produkt wird mit CH₂Cl₂ extrahiert. Weißer Feststoff, Ausbeute: 10 g (94 %.). ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 4.04 (s, 4H, CH₂), 4.33 (s, 4H, NH₂), 6.63 (t, 2H, CH), 6.07 (d, 2H, CH), 6.85 (d, 2H,

CH), 7.12 (t, 2H, CH), 7.25 (d, 2H, CH), 7.38 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 41.2 (CH₂), 114.9 (CH), 116.9 (C_{quat}), 118.2 (CH), 121.5 (CH), 130.2 (CH), 136.5 (CH), 136.8 (CH), 148.8 (C_{quat}), 157.8 (C_{quat}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3435*m* ($\tilde{\nu}$ (N-H)), 3320*m* ($\tilde{\nu}$ (N-H)), 3098*w*, 3063*m*, 2945*m*, 2862*m*, 1601*s*, 1473*m*, 1434*m*, 1301*w*, 1145*m*, 1031*w*, 989*w*, 850*w*. EI-MS (m/z (%.)): 353.1 (100) [M⁺], 320.1 (10), 286.1 (4), 274.1 (8), 248.1 (40), 229.1 (25), 195.1 (64), 124.0 (90) [SC₆H₄NH₂⁺], 106.1 (30), 80.1 (49).

2,2-(2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)bis(2,1-phenylen))bis(1,1,3,3-tetramethylguanidin) (L21-1):

Braunes zähflüssiges Öl, Ausbeute: 81 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.71 (s, 24H, CH₃), 4.20 (s, 4H, CH₂), 6.70 (d, 2H, CH), 6.79 (t, 2H, CH), 7.03 (t, 2H, CH), 7.14 (d, 2H, CH), 7.18 (d, 2H, CH), 7.44 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃,

25°C, δ [ppm]): 39.2 (CH₂), 39.9 (CH₃), 121.2 (CH), 121.3 (CH), 122.1 (CH), 126.4 (CH), 128.2 (CH), 128.3 (C_{quat}), 137.1 (CH), 147.5 (C_{quat}), 157.5 (C_{quat}), 160.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3048w, 2927w, 2850w, 1635s ($\tilde{\nu}$ (C=N)), 1571s ($\tilde{\nu}$ (C=N)), 1488w, 1452m, 1434m, 1394w, 1280m, 1228w, 1122w, 1066w, 1031m, 970w, 865w, 765w, 736m, 697w. EI-MS (m/z (%.)): 549.0 (100) [M⁺], 505.0 (7) [M⁺-N(CH₃)₂], 444.0 (6), 372.0 (7), 359.0 (2) [M⁺-C₆H₄N(CH₃)₂], 327.0 (28) [M⁺-SC₆H₄N(CH₃)₂], 282.0 (10), 250.0 (10), 222.0 (19) [SC₆H₄N(CH₃)₂⁺], 179.0 (100), 165.0 (18), 149.0 (54), 136.0 (24), 85.0 (12), 44.0 (28).

2,2-(Pyridin-2,6-diyl-bis(methylen))bis(sulfandiyl)bis-(N-(1,3-dimethylimidazolidin-2-yliden)anilin) (L21-2):

Braunes zähflüssiges Öl, Ausbeute: 88 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.64 (s, 12H, CH₃), 3.29 (s, 8H, CH₂), 4.25 (s 4H, CH₂), 6.77 (d, 2H, CH), 6.84 (t, 2H, CH), 7.00 (t, 2H, CH), 7.14 (d, 2H, CH), 7.25 (d, 2H, CH), 7.45 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.8 (CH₃), 38.2 (CH₂), 48.5 (CH₂),

121.2 (CH), 122.4 (CH), 125.7 (CH), 125.8 (CH), 127.4 (CH), 128.9 (C_{quat}), 137.0 (CH), 148.0 (C_{quat}), 155.3 (C_{quat}), 157.5 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3048w, 2927w, 2850w, 1635s ($\tilde{\nu}$ (C=N)), 1571s ($\tilde{\nu}$ (C=N)), 1488w, 1452m, 1434m, 1394w, 1280m, 1228w, 1122w, 1066w, 1031m, 970w, 865w, 765w, 736m, 697w. EI-MS (m/z (%.)): 545.1 (10) [M⁺], 440.0 (8), 370.0 (90), 338.0 (55), 326.1 (8) [M⁺-SC₆H₄NC(NCH₃)₂(CH₂)₂], 291.1 (30), 221.0 (70) [SC₆H₄NC(NCH₃)₂(CH₂)₂⁺], 188.0 (50), [C₆H₄NC(NCH₃)₂(CH₂)₂⁺], 178.0 (83), 165.0 (95), 149.0 (100), 126.0 (81), 109.0 (35), 68.0 (48), 44.0 (100).

9.3.6 Disulfid-Guanidinliganden

2,2-(2,2-Disulfandiylbis(2,1-phenylen))bis(1,1,3,3-trame-thylguanidin) (L22-1):

Das Rohprodukt wird mit CH₂Cl₂ extrahiert und aus THF umkristallisiert, weißer Feststoff. Ausbeute: 72 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.72 (s, 24H, CH₃), 6.53 (d, 2H, CH), 6.75 (t, 2H, CH), 6.99 (t, 2H, CH), 7.44 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 39.5 (CH₃), 120.6 (CH), 121.2

(CH), 125.7 (CH), 126.2 (CH), 128.4 (C_{quat}), 149.4 (C_{quat}), 160.0 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3057w, 2997w, 2935m, 2883m, 2791w, 1589s ($\tilde{\nu}$ (C=N)), 1551vs ($\tilde{\nu}$ (C=N)), 1517s, 1460m, 1422m, 1384s, 1277m, 1155s, 1025s, 927w, 843w, 782m, 744s, 668w. EI-MS (m/z (%.)): 442.2 (75) [M⁺],

400.2 (6) $[M^+-N(CH_3)_2]$, 355.1 (3) $[M^+-2 N(CH_3)_2]$, 223.1 $[M^+-SC_6H_4NC(N(CH_3)_2)_2]$, 191.1 (7) $[C_6H_4NC(N(CH_3)_2)_2^+]$, 178.1 (100), 149.0 (78), 136 (58), 109 (28), 44.1 (62), 28 (30).

2,2-Disulfandiyl-bis(N-(1,3-dimethylimidazolidin-2-yliden)anilin) (L22-2):

Das Rohprodukt wird mit CH₂Cl₂ extrahiert und aus THF umkristallisiert, weißer Feststoff. Ausbeute: 83 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.66 (s, 12H, CH₃), 3.29 (s, 8H, CH₂), 6.77 (m, 4H, CH), 6.97 (t, 2H, CH), 7.42 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 34.9 (CH₃), 48.5 (CH₂), 121.2 (CH),

122.0 (CH), 125.3 (CH), 125.9 (CH), 129.0 (C_{quat}), 147.2 (C_{quat}), 155.5 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2935w, 2852w, 1635vs ($\tilde{\nu}$ (C=N)), 1611s ($\tilde{\nu}$ (C=N)), 1573vs ($\tilde{\nu}$ (C=N)), 1498m, 1444s, 1384m, 1277s, 1223w, 1041s, 965w, 858w, 752m. EI-MS (m/z (%.)): 440.2 (35) [M⁺], 344.1 (74) [M⁺-C(NCH₃)₂(CH₂)₂], 248.0 (84), 220 (93) [M⁺-SC₆H₄C(NCH₃)₂(CH₂)₂], 188 (65) [C₆H₄C(NCH₃)₂(CH₂)₂⁺], 165.1 (89), 124 (100), 80.1 (75), 56 (78), 44 (80).

2,2-(2,2-Disulfandiyl-bis(ethan-2,1-diyl))bis(1,1,3,3-tetramethylguanidin) (L23-1):

Gelbes Öl, Ausbeute: 80 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.53 (s, 12H, CH₃), 2.61 (s, 12H, CH₃), 2.61 (t, 4H, CH₂), 3.27 (t, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 38.7 (CH₃), 39.5 (CH₃), 42.3 (CH₂), 48.8 (CH₂), 165.6 (C_{gua}). IR (NaCl, $\tilde{\nu}$

[cm⁻¹]): 2921*m*, 2873*m*, 1657*vs* ($\tilde{\nu}$ (C=N)), 1482*m*, 1444*m*, 1390*m*, 1345*w*, 1262*s*, 1216*s*. EI-MS (m/z (%.)): 449.3 (4) [MH⁺], 251.1 (4), 207.1 (86) [MH⁺-(CH₂)₂NC(N(CH₃)₂)₂], 174.1 [MH⁺-S(CH₂)₂NC(N(CH₃)₂)₂], 142.1 (90) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (98) [CH₂NC(N(CH₃)₂)₂⁺], 108.0 (68), 98.0 (73), 85.0 (100), 71.1 (88), 44.0 (68).

2,2-Disulfandiyl-bis(N-(1,3-dimethylimidazolidin-2-yliden)ethanamin) (L23-2):

Gelbes Öl, Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.53 (s, 12H, CH₃), 2.60 (t, 4H, CH₂), 2.89 (s, 8H, CH₂), 3.41 (t, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 36.2 (CH₃), 42.3 (CH₂), 47.2 (CH₂), 49.2 (CH₂), 161.8 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 2989w, 2983s, 2799m, 1604vs ($\tilde{\nu}$ (C=N)), 1505s

 $(\tilde{\nu}(C=N))$, 1444*m*, 1368*s*, 1307*w*, 1231*m*, 1139*s*, 1063*m*. EI-MS (m/z (%.)): 344.2 (3) [M⁺], 244.1 (3), 205.1 (86) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 172.1 (81) [M⁺S(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 140 (88) [(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 126.1 (100) [CH₂NC(NCH₃)₂(CH₂)₂⁺], 106.0 (38), 85.0 (23), 69.0 (56), 56.1 (85), 44.0 (78), 28.0 (28).

9.3.7 Tripodale Schwefel-Guanidinliganden

Die Darstellung von N,N-Bis(phthalimido)diethylentriamin $((N(Phimid)_{et})_2NH)$ erfolgte wie in Literatur[203] beschrieben. Die Darstellung der Verbindungen 2-Methylthiobenzylbromid, 2-Etylthiobenzyl-chlorid, 2-tert-Butylthiobenzyl-bromid[205], o-Benzylthiobenzylbromid erfolgte aus der Kombination der beschriebenen Synthesen in der Literatur [204] und [205].

AAV für die Addition von Thioether-Benzyl-Halogeniden an N,N-Imminodiethylen-bis(phthalimid)

Zu einer Suspension aus N,N-Bis(phthalimido)diethylentriamin (40 mmol, 14.52 g), KI (2 mmol, 332 mg) und K₂CO₃ (45 mmol, 6.21 g) in 500 ml abs. MeCN wird das Thioether-Benzyl-Halogenid (40 mmol, gelöst in 100 ml abs. MeCN) bei 60°C zugetropft. Anschliekend wird das Reaktionsgemisch für 8 h am Rückfluss erhitzt. Nach dem Abkühlen wird das Lösungsmittel im Vakuum entfernt und der verbleibende feste Rückstand mit 200 ml Wasser versetzt und mehrmals kräftig geschüttelt. Die wässrige Phase wird mit CH₂Cl₂ (3 x 70 ml) extrahiert. Die gesammelten organischen Phasen werden mit Na₂SO₄ getrocknet anschließend wird das Lösungsmittel im Vakuum entfernt. Man erhält ein organgefarbenes bis braunes zähes Öl, das mit Et₂O (250 ml) versetzt wird. Nach Zugabe des Ethers fallen die Thio-Phthalimide (N(Phimid)_{et})₂N_{bz}S_R (R = Me, Et, ^tBu, Bz) als weißer bis cremefarbener Niederschlag aus. Der Niederschlag wird filtriert und im Hochvakuum getrocknet.

$3-(2-Methylthio-benzyl)-1,5-diphthalimido-3-azapentan ((N(Phimid)_{et})_2N_{bz}SMe):$

Weißer Feststoff, Ausbeute: 68 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.93 (s, 3H, CH₃), 2.86 (t, 4H, CH₂), 3.71 (s, 2H, CH₂), 3.79 (t, 4H, CH₂), 6.75 (m, 2H, CH), 7.04 (m, 2H, CH), 7.67 (m, 4H, CH), 7.73 (m, 4H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.5 (CH₃), 35.5 (CH₂), 50.7 (CH₂), 56.7 (CH₂),

123.0 (CH), 124.3 (CH), 125.2 (CH), 127.5 (CH), 129.8 (CH), 132.5 (C_{quat}), 133.5 (CH), 136.6 (C_{quat}), 138.6 (C_{quat}), 168.1 (C_{quat}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3058w, 2827w, 1771m, 1704vs, 1465m, 1394s, 1083w, 1023m, 869w, 717s. EI-MS (m/z (%.)): 499.1 (2) [M⁺], 451.1 (2) [M⁺-SCH₃], 339.1 (98) [M⁺-CH₂N(CO)₂)C₆H₄], 149.0 (6), 137.0 (85) [C₆H₄SCH₃⁺], 91.0 (5).

3-(2-Ethylthio-benzyl)-1,5-diphthalimido-3-azapentan((N(Phimid)_{et})₂N_{bz}SEt):

Weißer Feststoff, Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.15 (t, 3H, CH₃), 2.59 (q, 2H, CH₂), 2.87 (t, 4H, CH₂), 3.73 (s, 2H, CH₂), 3.80 (t, 4H, CH₂), 6.73 (t, 1H, CH), 6.93 (d, 1H, CH), 7.00 (t, 1H, CH), 7.07 (d, 1H, CH), 7.69 (m, 4H, CH), 7.75 (m, 4H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]):

14.0 (CH₃), 27.1 (CH₂), 35.5 (CH₂), 50.9 (CH₂), 56.4 (CH₂), 123.0 (CH), 125.0 (CH), 127.3 (CH), 127.7 (CH), 129.9 (CH), 132.5 (C_{quat}), 133.5 (CH), 136.9 (C_{quat}), 138.1 (C_{quat}), 168.1 (C_{quat}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3057w, 2943w, 2829w, 1771m, 1706vs, 1436m, 1394s, 1330w, 1083w, 1023w, 874w, 717s, 530w. EI-MS (m/z (%.)): 514.1 (3) [M⁺], 465.1 (3) [M⁺-CH₃], 339.2 (3) [M⁺-CH₂N(CO)₂)C₆H₄], 203.1 (96) [M⁺-N(CH₂)₂N(CO)₂)C₆H₄], 174.0 (50) [CH₂N(CO)₂C₆H₄k], 111.1 (10), 97.1 (19), 71.1 (17), 57.1 (28).

$\begin{array}{l} \textbf{3-(2-tert-Butylthio-benzyl)-1,5-diphthalimido-3-azapentan} \\ ((N(Phimid)_{et})_2N_{bz}S^tBu): \end{array}$

Weißer Feststoff, Ausbeute: 65 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.20 (s, 9H, CH₃), 2.81 (t, 4H, CH₂), 3.76 (t, 4H, CH₂), 3.98 (s, 2H, CH₂), 6.68 (t, 1H, CH), 6.69 (t, 1H, CH), 7.16 (d, 1H, CH), 7.32 (d, 1H, CH), 7.67 (m, 4H, CH), 7.70 (m, 4H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]):

31.1 (CH₃), 35.7 (CH₂), 47.2 (C_{quat}), 51.6 (CH₂), 56.1 (CH₂), 123.0 (CH), 124.4 (CH), 128.5 (CH), 129.6 (CH), 132.4 (C_{quat}), 133.5 (CH), 138.5 (C_{quat}), 144.2 (C_{quat}), 168.1 (C_{quat}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3060w, 2954w, 2825w, 1771m, 1712vs, 1428m, 1394s, 1322m, 1187w, 1083w, 1041w, 871w, 719s, 530w. EI-MS (m/z (%.)): 541.2 (8) [M⁺], 484.1 (16) [M⁺-C(CH₃)₃], 381.1 (100) [M⁺-CH₂N(CO)₂)C₆H₄], 325.0 (95), 203.1 (81) [(CH₂)₂N(CH₂)₂N(CO)₂C₆H₄⁺], 174.0 (70) [N(CH₂)₂N(CH₂)₂N(CO)₂C₆H₄⁺], 123.1 (81), 57.1 (56), 44.0 (41).

$3-(2-Benzylthiobenzyl)-1,5-diphthalimido-3-azapentan ((N(Phimid)_{et})_2N_{bz}SBz):$

Das Rohprodukt wird aus THF umkristallisiert, weißer Feststoff. Ausbeute: 68 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.82 (t, 4H, CH₂), 3.75 (t, 4H, CH₂), 4.08 (s, 2H, CH₂), 5.16 (s, 2H, CH₂), 6.73 (t, 1H, CH), 6.99 (m, 2H, CH), 7.07 (d, 1H, CH), 7.27 (m, 3H, CH), 7.36 (m, 2H, CH). 7.66 (m, 4H, CH), 7.73 (m, 4H,

CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 35.5 (CH₂), 39.7 (CH₂), 51.0 (CH₂), 56.2 (CH₂), 123.0 (CH), 126.0 (CH), 127.0 (CH), 127.3 (CH), 128.5 (CH), 129.7 (CH), 132.4 (C_{quat}), 133.5 (CH), 135.7 (C_{quat}), 137.4 (C_{quat}), 139.1 (C_{quat}), 168.1 (C_{quat}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3056w, 2938w, 2832w, 1763m, 1708vs, 1430m, 1396s, 1330w, 1187w, 1085w, 1033w, 869w, 717s, 530w. EI-MS (m/z (%.)): 575.1 (13) [M⁺], 484.1 (5) [M⁺-CH₂C₆H₅], 453.2 (3) [M⁺-SCH₂C₆H₅], 415.1 (98) [M⁺-CH₂N(CO)₂)C₆H₄], 353.1 (33), 323.0 (26), 293.1 (27), 213.1 (74) [CH₂C₆H₄SCH₂C₆H₅⁺], 174.1 (48) [(CH₂)₂N(CO)₂C₆H₄⁺], 145.1 (29) [N(CO)₂C₆H₄⁺], 91.0 (100) [CH₂C₆H₅⁺], 42.0 (9).

AAV für das Entschützen der Phthalimidgruppe zum Amin

24 mmol des geschützen Amins (N(Phimid)_{et})₂N_{bz}S_R (R = Me, Et, ^tBu, Bz) werden in 850 ml abs. EtOH mit Hydrazin-Monohydrat (480 mmol, 24 g) für 36 h am Rückfluss erhitzt. Nach dem Abkühlen des Reaktionsgemisches wird das entstandene Phthalhydrazid abgenutscht und mit EtOH (2 x 150 ml) gewaschen. Anschließend wird das Ethanol im Vakuum entfernt. Der verbleibende Rückstand wird in 300 ml CHCl₃ aufgenommen und 4 h gerührt. Das ausgefallene Phthalhydrazid wird erneut abgenutscht und das Lösungsmittel im Vakuum entfernt. Dieses Verfahren wird so oft wiederholt (2 bis 3 mal) bis kein Phthalhydrazid mehr ausfällt. Die Bis-Amine (H₂N_{et})₂N_{bz}SR werden nach dem Entfernen des Lösungsmittels als gelbe bis orangefarbene Öle erhalten.

(2-Methylthio-benzyl)-bis(2-amino-ethyl)amin ($(H_2N_{et})_2N_{bz}SMe$):

Orangenes Öl, Ausbeute: 84 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.68 (s, 4H, NH₂), 2.20 (s, 3H, CH₃), 2.27 (t, 4H, CH₂), 2.45 (t, 4H, CH₂), 3.42 (s, 2H, CH₂), 6.86 (t, 1H, CH), 7.00 (m, 2H, CH), 7.04 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.7 (CH₃), 39.5 (CH₂), 57.2 (CH₂), 58.2 (CH₂), 124.2

(CH), 125.1 (CH), 127.7 (CH), 130.0 (CH), 136.9 (C_{quat}), 138.5 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3354*m* ($\tilde{\nu}$ (N-H)), 3278*m* ($\tilde{\nu}$ (N-H)), 3057*m*, 2935*s*, 2814*s*, 1649*m*, 1589*m*, 1467*s*, 1436*s*, 1360*w*, 1307*w*, 1269*w*, 1234*w*. EI-MS (m/z (%.)): 240.0 (4) [M+H⁺], 222.1 (8) [M+H⁺-NH₂], 209.1 (95) [M⁺-CH₂NH₂], 192.1 (3) [M⁺-SCH₃], 180.1 (12), 137.0 (100) [CH₂C₆H₄SCH₃⁺], 121.0 (23), 91.0 (40) [CH₂C₆H₅⁺], 77.0 (9), 45.0 (44).

(2-Ethylthio-benzyl)-bis(2-amino-ethyl)amin((H₂N_{et})₂N_{bz}SEt):

Gelbes Öl, Ausbeute: 93 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.16 (t, 3H, CH₃), 1.17 (s, 4H, NH₂), 2.33 (t, 4H, CH₂), 2.56 (t, 4H, CH₂), 2.75 (q, 2H, CH₂), 3.50 (s, 2H, CH₂), 6.94 (t, 1H, CH), 7.03 (t, 1H, CH), 7.13 (m, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.0 (CH₃), 27.0 (CH₂), 39.8 (CH₂), 57.6

(CH₂), 58.0 (CH₂), 124.9 (CH), 127.3 (CH), 127.5 (CH), 130.1 (CH), 136.9 (C_{quat}), 138.2 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3339*m* ($\tilde{\nu}$ (N-H)), 3210*m* ($\tilde{\nu}$ (N-H)), 2928*s*, 2869*s*, 2791*s*, 1614*vs*, 1505*s*, 1454*s*, 1365*s*, 1231*m*, 1133*s*, 1056*m*, 987*w*, 912*w*, 744*s*. EI-MS (m/z (%.)): 253.0 (4) [M⁺], 251.1 (20), 223.1 (64) [M⁺-CH₂NH₂], 162.0 (8), 151.0 (94) [CH₂C₆H₄SCH₃⁺], 123.0 (9), 91.0 (100) [CH₂C₆H₅⁺]. CI-MS (m/z (%.)): 254.1 (20) [MH⁺], 57.1 (100).

$\begin{array}{l} (\texttt{2-tert-Butylthio-benzyl)-bis(2-amino-ethyl)amin} \\ ((\texttt{H}_2\texttt{N}_{et})_2\texttt{N}_{bz}\texttt{S}^t\texttt{Bu}) \text{:} \end{array}$

Orangefarbenes Öl, Ausbeute: 81 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.17 (s, 9H, CH₃), 1.44 (s, 4H, NH₂), 2.39 (t, 4H, CH₂), 2.62 (t, 4H, CH₂), 3.75 (s, 2H, CH₂), 7.08 (t, 1H, CH), 7.20 (t, 1H, CH), 7.42 (m, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 31.1 (CH₃), 39.8 (CH₂), 47.1 (C_{quat}), 57.4 (CH₂), 57.5

(CH₂), 126.7 (CH), 128.7 (CH), 130.1 (CH), 132.6 (C_{quat}), 138.5 (CH), 144.5 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3354w ($\tilde{\nu}$ (N-H)), 3278w ($\tilde{\nu}$ (N-H)), 3050w, 2958m, 2859m, 1601vs 1581m, 1452s, 1353m, 1170m, 1033w, 861w, 760s. EI-MS (m/z (%.)): 282.3 (4) [M+H⁺], 251.2 (100) [M⁺-CH₂NH₂], 195.1 (3) [MH⁺-S(CH₃)₃], 178.1 (41) [CH₂C₆H₄S(CH₃)₃⁺], 123.1 (93), 73.0 (66), 57.1 (71), 44.1 (43).

(2-Benzylthio-benzyl)-bis(2-amino-ethyl)amin ($(H_2N_{et})_2N_{bz}SBz$):

Gelbes Öl, Ausbeute: 79 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.34 (t, 4H, CH₂), 2.57 (t, 4H, CH₂), 2.75 (s, 4H, NH₂), 3.97 (s, 2H, CH₂), 4.57 (s, 2H, CH₂), 7.06 (m, 2H, CH), 7.17 (m, 4H, CH), 7.25 (m, 2H, CH), 7.39 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 38.7 (CH₂), 39.4 (CH₂), 57.0 (CH₂), 58.0

(CH₂), 125.8 (CH), 127.2 (CH), 127.6 (CH), 128.5 (CH), 128.8 (CH), 130.3 (CH), 134.0 (CH), 136.6 (C_{quat}), 137.4 (C_{quat}), 142.1 (C_{quat}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3056w, 2938w, 2832w, 1763m, 1708vs, 1430m, 1396s, 1330w, 1187w, 1085w, 1033w, 869w, 717s, 530w. EI-MS (m/z (%.)): 316.2 (13) [M+H⁺], 285.2 (100) [M⁺-CH₂NH₂], 213.1 (65) [CH₂C₆H₄CH₂SC₆H₅⁺], 179.1 (28), 139.0 (54), 91.0 (100) [CH₂C₆H₅⁺], 65.0 (20).

(2-Methylthio-benzyl)-bis(2-ethyl-bis(1,1,3,3-tetramethylguanidin))amin (L24-1):

Braunes Öl, Ausbeute: 78 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.19 (s, 3H, CH₃), 2.42 (s, 12H, CH₃), 2.48 (s, 12H, CH₃), 2.52 (t, 4H, CH₂), 3.06 (t, 4H, CH₂), 3.55 (s, 2H, CH₂), 6.87 (m, 1H, CH), 6.95 (d, 2H, CH), 7.30 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 15.8 (CH₃), 38.8 (CH₃), 39.6

(CH₃), 47.7 (CH₂), 57.1 (CH₂), 57.4 (CH₂), 124.3 (CH), 125.1 (CH), 126.7 (CH), 129.0 (CH), 137.4 (C_{quat}), 138.7 (C_{quat}), 160.1 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2997m, 2875s, 2791s, 1611vs ($\tilde{\nu}$ (C=N)), 1498s, 1452m, 1360s, 1307w, 1231m, 1133s, 1063m, 993m, 738w. EI-MS (m/z (%.)): 435.2 (4) [M⁺], 391.2 (3) [M⁺-N(CH₃)₂], 320.1 (77) [M⁺-NC(N(CH₃)₂)₂], 307.2 (100) [M⁺-CH₂NC(N(CH₃)₂)₂], 293.1 (7) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 142.1 (75) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (63) [CH₂NC(N(CH₃)₂)₂⁺], 85.1 (96), 58.0 (33).

(2-Ethylthio-benzyl)-bis(2-ethyl-bis(1,1,3,3-tetramethylguanidin))amin (L25-1):

Rötlich braunes Öl, Ausbeute: 67 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.14 (s, 3H, CH₃), 2.45 (s, 12H, CH₃), 2.52 (s, 12H, CH₃), 2.56 (t, 4H, CH₂), 2.71 (q, 2H, CH₂), 3.10 (t, 4H, CH₂), 3.64 (s, 2H, CH₂), 6.65 (m, 2H, CH), 7.09 (d, 1H, CH), 7.40 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 14.1 (CH₃),

27.3 (CH₂), 38.7 (CH₃), 39.5 (CH₃), 48.0 (CH₂), 57.2 (CH₂), 57.6 (CH₂), 125.2 (CH), 126.5 (CH), 127.9 (CH), 129.3 (CH), 135.6 (C_{quat}), 140.4 (C_{quat}), 160.2 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3057w, 2928m, 2829m, 1619vs ($\tilde{\nu}$ (C=N)), 1452s, 1360s, 1307w, 1239m, 1133s, 1063m, 987w, 912w, 752m. EI-MS (m/z (%.)): 449.3 (2) [M⁺], 405.2 (2) [M⁺-N(CH₃)₂], 371.1 (15), 321.2 (100) [M⁺-CH₂NC(N(CH₃)₂)₂], 307.2 (6) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 142.1 (25) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (16) [CH₂NC(N(CH₃)₂)₂⁺], 85.1 (20), 58.0 (16).

(2-Ethylthio-benzyl)-bis(2-ethyl-bis(N-(1,3-Dimethylimidazolidin-2-yliden))amin (L25-2):

Rötlich braunes Öl, Ausbeute: 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.03 (t, 3H, CH₃), 2.51 (s, 12H, CH₃), 2.51 (t, 4H, CH₂), 2.64 (q, 2H, CH₂), 2.92 (s, 8H, CH₂), 3.26 (t, 4H, CH₂), 3.57 (s, 2H, CH₂), 6.86 (t, 1H, CH), 6.09 (t, 1H, CH), 7.01 (d, 1H, CH), 7.27 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ

[ppm]): 14.0 (CH₃), 27.2 (CH₂), 36.0 (CH₃), 45.7 (CH₂), 49.3 (CH₂), 57.4 (CH₂), 57.7 (CH₂), 125.0 (CH), 126.8 (CH), 127.8 (CH), 129.5 (CH), 136.0 (C_{quat}), 139.8 (C_{quat}), 157.4 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3057w, 2928m, 2837m, 1657s ($\tilde{\nu}$ (C=N)), 1444m, 1384m, 1262m, 1139w, 1025w, 957w, 752w. EI-MS (m/z (%.)): 445.3 (5) [M⁺], 333.1 (65) [M⁺-NC(NCH₃)₂(CH₂)₂], 319.2 (83) [M⁺-CH₂NC(NCH₃)₂(CH₂)₂], 305.1 (10) [M⁺-(CH₂)₂NC(NCH₃)₂(CH₂)₂], 151.1 (8), 140.1 (100) [(CH₂)₂NC(NCH₃)₂(CH₂)₂⁺], 126.1 (100) [CH₂NC(NCH₃)₂(CH₂)₂⁺], 56.0 (13).

(2-tert-Butylthio-benzyl)-bis(2-ethyl-bis(1,1,3,3-tetrame-thylguanidin))amin (L26-1):

Rötlich braunes Öl, Ausbeute: 85 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.06 (s, 9H, CH₃), 2.33 (s, 12H, CH₃), 2.40 (s, 12H, CH₃), 2.44 (t, 4H, CH₂), 2.97 (t, 4H, CH₂), 3.71 (s, 2H, CH₂), 6.82 (t, 1H, CH), 7.00 (t, 1H, CH), 7.17 (d, 1H, CH), 7.45 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 31.0 (CH₃), 38.6

(CH₃), 39.3 (CH₃), 46.6 (CH₂), 57.5 (CH₂), 57.7 (CH₂), 125.6 (CH), 128.5 (CH), 129.5 (CH), 131.3 (C_{quat}), 138.1 (CH), 146.2 (C_{quat}), 160.0 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2875s, 2799s, 1611vs ($\tilde{\nu}$ (C=N)), 1498s, 1444m, 1368s, 1300w, 1231m, 1133s, 1056m, 987w, 919w, 760m. EI-MS (m/z (%.)): 477.4 (8) [M⁺], 432.1 (2) [M⁺-N(CH₃)₂], 362.2 (57) [M⁺-NC(N(CH₃)₂)₂], 349.3 (70) [M⁺-CH₂NC(N(CH₃)₂)₂], 251.2 (46), 184.2 (72), 171.2 (90), 142.1 (61) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (85) [CH₂NC(N(CH₃)₂)₂⁺], 98.1 (38), 85.1 (100), 58.0 (28).

(2-Benzylthio-benzyl)-bis(2-amino-ethyl-bis(1,1,3,3-tetramethylguanidin))amin (L27-1):

Rötlich braunes Öl, Ausbeute: 83 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.43 (s, 12H, CH₃), 2.46 (s, 12H, CH₃), 2.52 (t, 4H, CH₂), 3.08 (t, 2H, CH₂), 3.58 (s, 2H, CH₂), 3.86 (s, 2H, CH₂), 6.91 (m, 2H, CH), 7.00 (m, 1H, CH), 7.04 (m, 2H, CH), 7.07 (m, 3H, CH), 7.33 (t, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]):

38.7 (CH₃), 39.0 (CH₂), 39.4 (CH₃), 48.0 (CH₂), 57.4 (CH₂), 57.5 (CH₂), 125.7 (CH), 126.7 (CH), 126.8 (CH), 128.2 (CH), 128.8 (CH), 129.3 (CH), 129.5 (CH), 135.7 (C_{quat}), 137.4 (C_{quat}), 140.8 (C_{quat}), 160.4 (C_{gua}). IR (NaCl, $\tilde{\nu}$ [cm⁻¹]): 3065*w*, 2997*m*, 2883*s*, 2796*m*, 1619*vs* ($\tilde{\nu}$ (C=N)), 1498*m*, 1444*m*, 1368*s*, 1239*m*, 1125*s*, 1063*m*, 995*w*, 891*w*, 744*m*, 698*w*. EI-MS (m/z (%.)): 511.4 (10) [M⁺], 467.3 (4) [M⁺-N(CH₃)₂], 420.4 (4) [M⁺-CH₂C₆H₅], 397.0 (44) [M⁺-NC(N(CH₃)₂)₂], 383.3 (100) [M⁺-CH₂NC(N(CH₃)₂)₂], 369.3 (8) [M⁺-(CH₂)₂NC(N(CH₃)₂)₂], 319.3 (18), 274.3 (48), 261.2 (66), 142.1 (61) [(CH₂)₂NC(N(CH₃)₂)₂⁺], 128.1 (56) [CH₂NC(N(CH₃)₂)₂⁺], 92.1 (58), 85.1 (98), 58.0 (29).

9.4 Synthese und Charakterisierung der Kupferkomplexe

Die Synthese der Kupfersalze [Cu(MeCN)₄]X (X = PF₆⁻[206], ClO₄⁻[207], OTf⁻[208]) sowie [Cu(MeCN)₄](OTf)₂[209]) kann der Literatur entnommen werden. Die Verbindungen [H(TMG_{et}SCPh₃)]I (**[HL10-1]I**) und [H(TMG_{ph}SCPh₃)]Cl·0.5MeCN (**[HL6-1]Cl**) wurden bei der Umsetzung der Liganden **L10-1** und **L6-1** mit wasserhaltigem NiI₂ bzw. FeCl₂ in Acetonitril erhalten. Die stöchiometrische Reaktion der Metallsalze mit den Liganden führte zu trüben Lösungen, die für 30 min. bei RT gerührt wurden. Durch Diffusion von Diethylether in die filtrierten Lösungen kristallisierten farblose Kristalle der protonierten Guanidinliganden aus.

9.4.1 Kupferkomlexe mit Thioether-Guanidinliganden

[Cu(TMG_{ph}S^tBu)I] (C1): Zu einer Suspension von CuI (1 mmol, 190 mg) in MeCN (10 ml) wird der Ligand TMG_{ph}S^tBu (1.1 mmol, 307 mg) tropfenweise zugegeben. Die klare gelbe Lösung wird ca. 30 min. gerührt bis ein weißer Niederschlag ausfällt. Das Reaktionsgemisch wird am Rückfluss erhitzt, wobei der Niederschlag vollständig gelöst wird. Langsames Abkühlen der heiß gesättigten Komplexlösung führt zur Bildung von farblosen Kristallen. Ausbeute: 0.24 g

= 52. %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.49 (s, 9H, CH₃), 2.89 (s, 12H, CH₃), 6.65 (d, 1H, CH), 6.90 (t, 1H, CH), 7.32 (t, 1H, CH), 7.57 (d, 1H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 30.4 (CH₃), 39.7 (CH₃), 52.7 (C_{quat}), 119.5 (CH), 119.8 (CH), 121.6 (C_{quat}), 130.8 (CH), 136.6 (CH), 153.0 (C_{quat}), 165.1 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2958 m, 2924m, 2885m, 2860w, 2787w, 1549s ($\tilde{\nu}$ (C=N)), 1517vs ($\tilde{\nu}$ (C=N)), 1464s, 1431w, 1417m, 1404s, 1394m, 1358 w, 1334m, 1284w, 1255w, 1230w, 1201w, 1155s, 1103w, 1059w, 1028 m, 920w, 854m, 808m, 756s, 731m, 714w, 681w, 623w, 563 w, 544w, 488w, 453w.

[Cu(TMG_{et}S^tBu)I] (**C2**): Die Umsetzung von CuI (3 mmol, 570 mg) mit TMG_{et}S^tBu (3.1 mmol, 762 mg) in 3 ml MeCN führt zu einem weißen Niederschlag. Der Niederschlag wird in der Hitze gelöst. Langsames Abkühlen führt zu Bildung von farblosen Kristallen. Ausbeute: 1 g = 80 %.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2997*w*, 2964*m*, 2933*m*, 2839*m*, 2794*w*, 1566*vs* ($\tilde{\nu}$ (C=N)), 1527*s* ($\tilde{\nu}$ (C=N)), 1479**w**, 1458*m*, 1439*w*, 1421*s*, 1410*w*,

1392 s, 1365m, 1344m, 1284w, 1238m, 1165m, 1153m, 1144m, 1111w, 1070 m, 1041m, 1022m, 978m, 906m, 850w, 766m, 721w, 580w, 480 w. Elementaranalyse ber. für C₁₁H₂₅CuIN₃S: C 31.32, H 5.97, N 9.96; gefunden: C 31.47, H 5.78, N 10.05.

[Cu(TMG_{ph}S^tBu)I] (**C3**): Zu einer Suspension von CuI (1 mmol, 190 mg) in MeCN (5 ml) wird der Ligand DMEG_{et}S^tBu (1.1 mmol, 457 mg) portionsweise zugegeben. Die erhaltene Lösung mit gelben Niederschlag wird ca. 30 min. am Rückfluss erhitzt. Die abgekühlte Lösung wird filtriert. Diffusion von Diethylether in das Filtrat führt zu Bildung von blass gelben Kristallen. Ausbeute: 0.28 g = 45 %.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2927*m*, 2852*m*, 1593*s* ($\tilde{\nu}$ (C=N)), 1491*m*, 1444*m*, 1417*m*, 1396*m*, 1350*m*, 1290*m*, 1217*w*, 1188*w*, 1155*w*, 1080*w*, 1036*m*, 968*m*, 889*w*, 852*w*, 766*m*, 744*m*, 700*s*, 675*w*, 623*w*, 596 textitw, 509*w*. Elementaranalyse ber. für C₂₆H₂₉CuIN₃S: C 51.53, H 4.82, N 6.93; gefunden: C 51.82, H 5.02, N 6.89.

 $[Cu(DMEG_{et}S^tBu)_2](PF_6)$ (C4): Zu einer Lösung von DMEG_{et}S^tBu (1 mmol, 229 mg) in THF wird $[Cu(MeCN)_4](PF_6)$ (0.5 mmol, 187 mg) zugegeben. Das gelbe leicht trübe Reaktionsgemisch wird nun eine halbe Stunde gerührt und anschließend 30 min. am Rückfluss erhitzt, wobei portionsweise 4 - 5 ml THF zugegeben werden. Diffusion von Diethylether in die abgekühlte und filtrierte Lösung führt zur Bildung von farblosen Kristallen. Ausbeute: 0.31 g = 46 %.

¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 1.39 (s, 18H, CH₃), 2.78 (t, 4H, CH₂), 2.91 (s, 12H, CH₃), 3.34 (s, 8H, CH₂), 3.51 (t, 4H, CH₂). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 30.1 (CH₃), 32.7 (CH₂), 36.2 (CH₃), 44.2 (C_{quat}), 48.8 (CH₂), 49.2 (CH₂), 163.8 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2960*m*, 2897*m*, 1635*s* ($\tilde{\nu}$ (C=N)), 1488*m*, 1460*m*, 1421*m*, 1365*m*, 1348*w*, 1298*m*, 1213*w*, 1167*m*, 1119*w*, 1076*w*, 1026*w*, 968*w*, 843*s*, 739*s*, 648*w*, 592*w*, 559*m*, 482*s*.

 $[Cu(DMEG_{et}S^tBu)Cl_2](C5)$: Zu einer Suspension von CuCl₂ (1 mmol, 135 mg) in 3 ml MeCN wird DMEG_{et}S^tBu (1 mmol, 229 mg gelöst in 3 ml MeCN) langsam zugetropft. Das schwarze Reaktionsgemisch wird 30 min. bei Raumtemperatur gerührt und anschliekend unter Zugabe von 3 ml MeCN für ca. 30 min. am Rückfluss erhitzt. Aus der heiß filtrierten Lösung wird nach dem Abkühlen ein schwarzer Feststoff erhalten der in möglichst wenig MeCN ge-

löst wird. Diffusion von Diethyle
ther in die schwarze Lösung führt zur Bildung von schwarzen Kristallen. Ausbeute: 0.21 g
 = 52 %.

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 574 (536), 402 (1043), 310(sh, 7744), 284 (13232), 232 (12326). UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 574 (704), 402 (1195), 310(sh, 7681), 280 (13926), 216 (27045). UV/Vis (DMF, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 569 (674), 404 (1100), 309(sh, 7719), 277 (14265). UV/Vis (MeOH, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 564 (248), 275 (5154), 233(sh, 15066), 211 (30037). EPR (MeOH, 110 K): $g_{\perp} = 2.055$, $g_{\parallel} = 2.232$, $A_{\parallel} = 145$ G. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2962w, 2922w, 2881w, 1569s ($\tilde{\nu}$ (C=N)), 1545s ($\tilde{\nu}$ (C=N)), 1468m, 1437w, 1417m, 1382s, 1294m, 1240w, 1155m, 1059w, 1034w, 976w, 877w, 829w, 754m, 729w, 669w, 648w, 560w, 536 w, 490w, 455w.

Die Synthese der zweikernigen Komplexe C6 - C19 erfolgte nach folgendem Schema: Zu einer Suspension von CuX (1 mmol, X = Cl, Br, I) in 5 ml MeCN wird unter Rühren eine Lösung des Thioether-Guanidinliganden (1.1 mmol, gelöst in 3 ml MeCN) zugetropft. Anschließend wird die Lösung mindestens 30 min. gerührt. Dabei fällt der Kupferkomplex in der Regel als weißer bis gelber Feststoff aus. In dem Fall wird die Suspension am Rückfluss erhitzt bis sich der

Niederschlag vollständig gelöst hat. Gegebenenfalls werden weitere 5 ml MeCN dazugegeben. Anschließend wird die erhaltene Lösung heiß filtriert und möglichst langsam abgekühlt. Werden nach diesem Verfahren keine kristallinen Produkte erhalten, wird in die abgekühlte und filtrierte Mutterlauge über mehrere Tage Diethylether eindiffundiert. Bleibt der Kupferkomplex bei der Zugabe des Thioether-Guanidinliganden vollständig in Lösung wird direkt Diethylether eindiffundiert.

 $[Cu(TMG_{ph}SMe)I]_2$ (C6): blassgelbe bis farblose Kristalle, Ausbeute: 0.52 g = 61 %. IR (KBr, $\tilde{\nu} \text{ [cm}^{-1}]$): 2916w, 2870w, 2790w, 1535s ($\tilde{\nu}$ (C=N)), 1464s, 1417m, 1388m, 1334w, 1313w, 1282w, 1232w, 1201w, 1153m, 1126m, 1161w, 1026m, 970w, 922w, 852w, 800w, 750m, 725w, 673w, 625w, 538w, 457w.

[Cu(DMEG_{ph}SMe)I]₂ (C7): blassgelbe Kristalle, Ausbeute: 0.52 g = 57. %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 241 (14385), 209 (206783), 203 (197368). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2920m, 2862m, 1593s ($\tilde{\nu}$ (C=N)), 1568s ($\tilde{\nu}$ (C=N)), 1456s, 1414s, 1290s, 1254w, 1159w, 1124w, 1036m, 976m, 870m, 800m, 752m, 714m, 648w, 588w, 546w, 469m, 451w. Elementaranalyse ber. für C₂₄H₃₄Cu₂I₂N₆S₂: C 33.85, H 4.02, N 9.87, S 7.53; gefunden: C 33.77, H 4.02, N 9.85, S 7.43.

[Cu(TMG_{ph}SEt)I]₂ (**C8**): farblose Kristalle, Ausbeute: 0.56 g = 67. %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 243 (51935), 201 (163349). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3045w, 2924m, 2866m, 1533s ($\tilde{\nu}$ (C=N)), 1464s, 1415s, 1388s, 1334w, 1288w, 1252w, 1205w, 1153m, 1132m, 1061w, 1028m, 876w, 922w, 856w, 800w, 748m, 714w, 679w, 544w, 501w, 471w.

 $[Cu(DMEG_{ph}SEt)I]_2 \cdot CH_3CN$ (**C9**): farblose Kristalle, Ausbeute: 0.54 g = 65. %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2920*m*, 2862*m*, 1593*s* $\tilde{\nu}$ (C=N)), 1568*s* $\tilde{\nu}$ (C=N)), 1456*s*, 1414*s*, 1290*s*, 1254*w*, 1159*w*, 1124*w*, 1036*m*, 976*m*, 870*m*, 800*m*, 752*m*, 714*m*, 648*w*, 588*w*, 546*w*, 469*m*, 451*w*.

[Cu(DMEG_{ph}S^tBu)I]₂ (C10): farblose Kristalle, Ausbeute: 0.73 g = 78. %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 243 (31368), 206 (sh, 112895). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3047w, 2970m, 2952w, 2939m, 2918w, 2862m, 1589m ($\tilde{\nu}$ (C=N)), 1564vs ($\tilde{\nu}$ (C=N)), 1543vs ($\tilde{\nu}$ (C=N)), 1516w, 1464m, 1431w, 1410s, 1385m, 1361w, 1292m, 1257w, 1236w, 1221w, 1120w, 1157m, 1124w, 1082w, 1057, 1036m, 980m, 935m, 870m, 746s, 729w, 713m, 681w, 650w, 590w, 544w, 494w, 480w, 449w, 428w. Elementaranalyse ber. für C₃₀H₄₆Cu₂I₂N₆S₂: C 38.51, H 4.95, N 8.98, S 6.85; gefunden: C 38.51, H 4.94, N 9.01, S 6.90.

[Cu(TMG_{ph}SPh)I]₂ (C11): farblose Kristalle, Ausbeute: 0.79 g = 81 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.72 (s, 12H, CH₃), 6.65 (d, 1H, CH), 6.93 (t, 1H, CH), 7.33 (m, 7H, CH). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3051w, 3001w, 2922w, 2868w, 2794w, 1537s ($\tilde{\nu}$ (C=N)), 1461m, 1435w,
$1421m,\ 1403w,\ 1390m,\ 1338m,\ 1287w,\ 1275w,\ 1232w,\ 1203w,\ 1151m,\ 1063w,\ 1026m,\ 926w,\ 852w,\ 802w,\ 754m,\ 692w,\ 544w,\ 515w,\ 445w,\ 424w.$

[Cu(DMEG_{ph}SPh)I]₂ (C12): blassgelbe Kristalle, Ausbeute: 0.49 g = 50 %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 243 (56643), 207 (sh, 162144). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3045w, 2935w, 2883w, 1591s ($\tilde{\nu}$ (C=N)), 1554s ($\tilde{\nu}$ (C=N)), 1418s, 1456s, 1417s, 1288s, 1155w, 1126m, 1082m, 1057w, 1034s, 976m, 900w, 865m, 798m, 742s, 692s, 652w, 586w, 540w, 505m, 461m, 428w, 407w. Elementaranalyse ber. für C₃₄H₃₈Cu₂I₂N₆S₂: C 41.85, H 3.93, N 8.61, S 6.57; gefunden: C 41.74, H 3.90, N 8.63, S 6.47.

[Cu(DMEG_{ph}SPh)Cl]₂ (C13): farblose Kristalle, Ausbeute: 0.59 g = 75 %. ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.57 (s, 6H, CH₃), 3.30 (s, 2H, CH₂), 3.42 (s, 2H, CH₂), 6.88 (t, 1H, CH), 6.94 (d, 1H, CH), 7.16 (d, 2H, CH), 7.27 (m, 2H, CH), 7.35 (m, 3H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [ppm]): 38.9 (CH₃), 48.0 (CH₂), 121.3 (CH), 122.0 (CH), 128.9 (CH), 129.9 (CH), 130.4 (CH), 131.8 (C_{quat}), 135.2 (C_{quat}), 151.0 (C_{quat}), 165.3 (C_{gua}). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2935w, 2873w, 1593s ($\tilde{\nu}$ (C=N)), 1568s ($\tilde{\nu}$ (C=N)), 1516w, 1458m, 1415m, 1402m, 1385w, 1290m, 1232w, 1157w, 1124w, 1074w, 1034m, 876w, 868w, 798w, 748m, 715w, 694w, 650w, 496w.

 $[Cu(DMEG_{ph}SPh)Br]_2$ (C14): farblose Kristalle, Ausbeute: 0.47 g = 53 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3049w, 2931w, 2871w, 1593s ($\tilde{\nu}$ (C=N)), 1568vs ($\tilde{\nu}$ (C=N)), 1554s ($\tilde{\nu}$ (C=N)), 1516m, 1475m, 1458m, 1446m, 1439m, 1414s, 1402m, 1383w, 1288s, 1250w, 1232w, 1157w, 1124w, 1074w, 1057w, 1034m, 976w, 941w, 901w, 868w, 796w, 754m, 746s, 715w, 685w, 650w, 588w, 494w, 459w, 445w.

 $[Cu(TMG_{ph}SBz)I]_2$ (C15): gelbe Kristalle, Ausbeute: 0.61 g = 61 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3057w, 3026w, 3001m, 2929m, 2879m, 2792m, 1529s ($\tilde{\nu}$ (C=N)), 1464s, 1417s, 1390s, 1336m, 1286w, 1236w, 1205w, 1153m, 1064w, 1028m, 924w, 856w, 800w, 752m, 696m, 621w, 567w, 546w, 478w.

[Cu(DMEG_{ph}SBz)I]₂ (C16): farblose Kristalle Ausbeute: 0.78 g = 78 %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 287 (41287), 241 (96636), 210 (258891). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2868*m*, 1597*s* ($\tilde{\nu}$ (C=N)), 1571*s* ($\tilde{\nu}$ (C=N)), 1549*s* ($\tilde{\nu}$ (C=N)), 1516*m*, 1493*w*, 1481*w*, 1468*s*, 1429*w*, 1406*s*, 1381*w*, 1292*s*, 1234*w*, 1198*w*, 1155*w*, 1126*w*, 1172*w*, 1034*m*, 978*w*, 941*w*, 920*w*, 870*w*, 804*w*, 752*m*, 729*w*, 704*m*, 652*w*, 598*w*, 567*w*, 542*w*. Elementaranalyse ber. für C₃₆H₄₂Cu₂I₂N₆S₂: C 43.08, H 4.22, N 8.37, S 6.39; gefunden: C 42.98, H 4.23, N 8.35, S 6.38.

[Cu(DMEG_{et}SEt)I]₂ (C17): farblose Kristalle, Ausbeute: 0.6 g = 75 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2962m, 2904m, 2850m, 1610vs ($\tilde{\nu}$ (C=N)), 1560w ($\tilde{\nu}$ (C=N)), 1541w, 1508w, 1481m, 1458w, 1442w, 1419m, 1406w, 1388m, 1358m, 1294w, 1279w, 1261s, 1221w, 1192w, 1174w, 1080w, 1066w, 1039m, 970m, 860w, 802m, 781w, 756w, 721m, 669w, 640w, 590w, 443w, 420w.

[Cu(DMEG_{et}^tBu)I]₂ (C18): farblose Kristalle, Ausbeute 0.45 g = 53 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2945m, 2859m, 1606s ($\tilde{\nu}$ (C=N)), 1491m, 1456m, 1419m, 1398m, 1363m, 1342m, 1284m, 1265m, 1211w, 1155w, 1076w, 1045w, 995w, 966w, 850w, 750w, 715w, 644w, 596w, 540w, 478w, 422w.

[Cu(TMG_{et}CPh₃)I]₂ (**C19**): farblose Kristalle, Ausbeute: 0.51 g = 42 %. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 285 (40607), 242 (49252), 206 (sh, 192567). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2922*m*, 2889*m*, 1570*s*, 1522*m*, 1423*m*, 1406*w*, 1390*m*, 1350*w*, 1238*w*, 1151*m*, 1113*w*, 1071*w*, 1036*m*, 995*w*,

904w, 766w, 579w.

Die Synthese der Komplexe **C20** - **C22** erfolgte nach folgendem Schema: Zu einer Suspension von CuI (1 mmol, 280 mg) in 5 ml MeCN wird unter Rühren eine Lösung des Thioether-Guanidinliganden (1.1 mmol, gelöst in 3 ml MeCN) zugetropft. Dannach wird die Lösung mindestens 30 min. gerührt und anschließend filtriert. Diffusion von Diethylether in die Lösung führt zur Bildung von farblosen Kristallen.

 $[Cu(TMG_{et}SMe)I]_n$ (**C20**): farblose Kristalle. Ausbeute: 0.68 g = 45 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2913w, 2844w, 1562s ($\tilde{\nu}$ (C=N)), 1519m, 1477w, 1450w, 1423m, 1388s, 1356m, 1277w, 1236w, 1140w, 1063w, 1039w, 1009w, 962w, 906w, 858w, 766w, 579w. Elementaranalyse ber. für C₃₂H₇₆Cu₄I₄N₁₂S₄: C 25.30, H 5.04, N 11.06, S 8.44; gefunden: C 25.26, H 5.05, N 10.91, S 8.48.

 $[Cu(DMEG_{et}SMe)I]_n$ (C21): farblose Kristalle, Ausbeute: 0.36 g = 48 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2913*m*, 2850*m*, 1604*s* ($\tilde{\nu}$ (C=N)), 1487*m*, 1450*m*, 1417*m*, 1390*m*, 1354*m*, 1288*m*, 1266*w*, 1134*w*, 1082*w*, 1045*m*, 1020*w*, 972*m*, 876*w*, 769*m*, 727*m*, 646*m*, 586*m*, 525*w*, 472*w*.

 $[Cu(TMG_{et}SEt)I]_n$ (**C22**): farblose Krsitalle, Ausbeute 0.23 g = 61 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2999w, 2954w, 2908m, 2846m, 2798w, 1612w ($\tilde{\nu}$ (C=N)), 1560s ($\tilde{\nu}$ (C=N)), 1522s, 1475w, 1450w, 1439w, 1423m, 1410w, 1390s, 1354m, 1288w, 1261m, 1234m, 1142m, 1099w, 1061m, 1047w, 1032m, 974w, 908m, 858w, 800m, 783w, 766m, 685w, 577w, 469w.

 $[Cu_6(DMEG_pSMe)_2(\mu_2-I)_3(\mu_3-I)_3]$ (**C23**): Zu einer Suspension von CuI (2 mmol, 280 mg) in 5 ml MeCN wird unter Rühren eine Lösung des Thioether-Guanidinliganden DMEG_pSMe (1 mmol, 201 mg) zugetropft. Dannach wird die Lösung mindestens 30 min. gerührt und anschließend filtriert. Diffusion von Diethylether in die Lösung führt zur Bildung von farblosen Kristallen.

 $\begin{array}{c} \hline \\ R = DMEG \end{array} \text{ IR (KBr, } \tilde{\nu} \text{ [cm^{-1}]}): 2902w, 2852w, 1592s \; (\tilde{\nu}(\text{C}=\text{N})), 1508m, 1450m, 1413m, 1294m, 1265m, 1078w, 966w, 806w, 719w, 603w, 493w. \end{array}$

 $[Cu(TMG_{ph}S_{bzPy})I]$ (**C24**): Die Umsetzung von CuI (1 mmol, 190 mg) mit TMG_{ph}S_{bzPy} (1.1 mmol, 345 mg) in 10 ml MeCN führt zu einer gelben Lösung mit gelben Niederschlag. Das Reaktionsgemisch wird am Rückfluss erhitzt, wobei der Niederschlag vollständig gelöst wird. Langsames Abkühlen der heiß gesättigten Komplexlösung führt zur Bildung von plattenförmigen gelben Kristallen. Ausbeute: 0.45 g = 90 %.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3060w, 2925w, 2869w, 1546s ($\tilde{\nu}$ (C=N)), 1523vs ($\tilde{\nu}$ (C=N)), 1461s, 1409s, 1388s, 1340m, 1153m, 1027m, 860w, 744m, 701w, 543w, 458w. Elementaranalyse ber. für C₁₇H₂₂CuIN₄S: C 40.44, H 4.39, N 11.10, S 6.35; gefunden: C 39.96, H 4.14, N 10.87, S 5.95.

 $[Cu(DMEG_{ph}S_{bzPy})I]$ (**C25**): Die Umsetzung von CuI (1 mmol, 190 mg) mit DMEG_{ph}S_{bzPy} (1.1 mmol, 343 mg) in 10 ml MeCN führt zu einer dunkelgelben Lösung mit gelben Niederschlag. Das Reaktionsgemisch wird am Rückfluss erhitzt, wobei der Niederschlag vollständig gelöst wird. Langsames Abkühlen der heiß gesättigten Komplexlösung führt zur Bildung von nadelförmigen gelben Kristallen. Ausbeute: 0.35 g = 70 %.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3048*w*, 2927*w*, 2856*w*, 1592*s* ($\tilde{\nu}$ (C=N)), 1548*s* ($\tilde{\nu}$ (C=N)), 1467*m*, 1396*m*, 1288*m*, 1238*w*, 1132*w*, 1033*m*, 871*w*, 740*m*, 468*w*. Elementaranalyse ber. für C₁₇H₂₀CuIN₄S: C 40.60, H 4.01, N 11.14, S 6.38; gefunden: C 40.45, H 3.98, N 11.12, S 6.43.

[Cu((DMEG_{ph}DMEG_{et})S)I] (C26): Die Umsetzung von CuI (1 mmol, 190 mg) mit (DMEG_{ph}DMEG_{et})S (1.1 mmol, 396 mg) in 8 ml MeCN führt zu einer dunkelgelben Lösung mit Niederschlag. Das Reaktionsgemisch wird am Rückfluss erhitzt und anschließend heiß filtriert. Diffusion von Diethylether in die abgekülte Mutterlauge führt zur Bildung von farblosen Kristallen, die für die Rötgenstrukturanalyse geeignet sind.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3052*w*, 2936*w*, 2822*w*, 1585*vs* ($\tilde{\nu}$ (C=N)), 1533*s* ($\tilde{\nu}$ (C=N)), 1477*m*, 1386*s*, 1261*m*, 1240*m*, 1131*w*, 1033*w*, 988*m*, 871*w*, 740*m*, 641*w*. Elementaranalyse ber. für C₁₈H₂₈CuIN₆S: C 39.24, H 5.12, N 15.52, S 5.82; gefunden: C 39.26, H 5.11, N 15.25, S 5.99.

 $[Cu((TMG_{ph})_2S)I]$ (C27): Die Umsetzung von CuI (1 mmol, 190 mg) mit (TMG_{ph})_2S (1.1 mmol, 453 mg) in 8 ml MeCN führt zu einer farblosen Lösung mit weißem Niederschlag. Das Reaktionsgemisch wird am Rückfluss erhitzt und anschließend heiß filtriert. Langsames Abkühlen der heiß gestättigten Komplexlösung oder Diffusion von Diethylether in die abgekülte Mutterlauge führt zur Bildung von farblosen Kristallen, die für die Rötgenstruktur-

analyse geeignet sind. Ausbeute: 0.3 g = 50 %. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3056w, 2998w, 2929m, 2869m, 2796w, 1540vs ($\tilde{\nu}$ (C=N)), 1463s, 1421s, 1392s, 1340m, 1284w, 1155m, 1029m, 856w, 800w, 746m, 674w, 507w. Elementaranalyse ber. für C₂₂H₃₂CuIN₆S: C 43.82, H 5.35, N 13.94, S 5.32; gefunden: C 43.55, H 5.26, N 13.84, S 5.31.

 $[Cu((DMEG_{et})_2S)I]$ (**C28**): Die Umsetzung von CuI (1 mmol, 190 mg) mit (DMEG_{et})₂S (1.1 mmol, 343 mg) in 8 ml MeCN führt zu einer violetten Lösung. Das Reaktionsgemisch wird ca. 30 min. gerührt wobei die Frabe nach gelb wechselt. Anschließend wird das Reaktionsgemisch für ca. 30 min. am Rückfluss erhitzt und heiß filtriert. Diffusion von Diethylether in das abgekühlte Filtrat führt zur Bildung von wenigen farblosen Kristallen, die für die Rötgen-

strukturanalyse ge
eignet sind. IR (KBr, $\tilde{\nu}$ [cm^{-1}]): 3911m, 2865m, 2842m, 1619
vs ($\tilde{\nu}({\rm C=N})$), 1484m, 1415m, 1342m, 1292m,

1261*m*, 1201*w*, 1120*w*, 1078*w*, 1035*m*, 960*m*, 862*w*, 721*m*, 642*w*, 586*w*, 541*w*. Elementaranalyse ber. für $C_{14}H_{28}CuIN_6S$: C 33.43, H 5.61, N 16.71, S 6.38; gefunden: C 33.13, H 5.51, N 16.43, S 6.36.

Die Umsetzung von CuI (1 mmol, 190 mg) mit $\text{DMEG}_{ph} S_{bzPy}$ (2.1 mmol, 686 mg) in 10 ml MeCN führt zu einer dunkelgelben bis braunen Lösung. Das Reaktionsgemisch wird ca. 30 min. gerührt, für 30 min. am Rückfluss erhitzt und anschließend heiß filtriert. Diffusion von Diethylether in das abgekühlte Filtrat führt zur Bildung von blassroten Kristallen der Verbindung $[Cu_2(\text{DMEG}_{ph}S_{bzPy})(\mu_2\text{-I})(\mu_3\text{-I})]_2$ (C29) sowie farblosen Kristallen von $[Cu(\text{DMEG}_{ph}S_{bzPy}I]_n$ (C30).

(C29) IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2938m, 2867w, 1589s ($\tilde{\nu}$ (C=N)), 1546vs ($\tilde{\nu}$ (C=N)), 1465s, 1411s, 129m, 1157w, 1031w, 973w, 867w, 781w, 750m, 709w, 592w, 470w.

(C30) IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3045w, 2917m, 2845m, 1565vs ($\tilde{\nu}$ (C=N)), 1514s ($\tilde{\nu}$ (C=N)), 1423m, 1390m, 1238m, 1143m, 1066w, 1035w, 993w, 902w, 854w, 763w, 576w.

Die Reaktion der pentadentaten Guanidinliganden $(\text{TMG}_{ph}\text{S})_{2bzPy}$ und $(\text{DMEG}_{ph}\text{S})_{2bzPy}$ (1.1 mmol) mit $[\text{Cu}(\text{MeCN})_4]\text{PF}_6$ (1 mmol, 374 mg) in 8 ml MeCN führt zu klaren farblosen Lösungen, die ca. 30 min. bei Raumtemperatur gerührt werden. Diffusion von Diethylether in die Komplexlösungen führt zur Bildung von farblosen Kristallen, die für die Rötgenstrukturanalyse geeignet sind. Ausbeute $[\text{Cu}(\text{TMG}_{ph}\text{S})_{2bzPy}]_2(\text{PF}_6)_2$ (**C31**): 1 g = 75 %.

 $[Cu(DMEG_{ph}S)_{2bzPy}]_2(PF_6)_2 \cdot 2CH_3CN (C32): 1.2 g = 80 \%.$

(C31) UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 271 (14337), 212 (41519). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3098w, 2938m, 2869m, 1538vs ($\tilde{\nu}$ (C=N)), 1442s, 1407s, 1386s, 1288s, 1240m, 1166m, 1062m, 960m, 830vs, 555s, 382w.

(C32) UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 281 (17021), 243 (66802), 209 (209603). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3056w, 3006w, 2933m, 2883m, 1529vs ($\tilde{\nu}$ (C=N)), 1465s, 1421s, 1396s, 1332w, 1157m, 1029m, 840vs, 754m, 557m, 476w.

 $[Cu_2((DMEG_{ph}S)_{2bzPy})_2(\mu_2-I)I]\cdot 4CH_3CN$ (C33): Die Umsetzung von CuI (1 mmol, 190 mg) mit (DMEG_{ph}S)_{2bzPy} (1.1 mmol, 600 mg) in 8 ml MeCN führt zu einer dunklen gelbbraunen Lösung. Das Reaktionsgemisch wird ca. 30 min. gerührt und anschließend für ca. 30 min. am Rückfluss erhitzt. Langsames Abkühlen der heiß gesättigten Komplexlösung oder Diffusion von Diethylether in das abgekühlte Filtrat führt zur Bildung von gelben nadelfömrigen Kris-

tallen, die für die Rötgenstrukturanalyse geeignet sind. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 3000w, 2927m, 2867m, 1623s, ($\tilde{\nu}$ (C=N)), 1529vs ($\tilde{\nu}$ (C=N)), 1463s, 1342*s*, 1157*m*, 1062*m*, 1027*m*, 912*w*, 854*w*, 752*w*, 619*w*, 470*w*. Elementaranalyse ber. für $C_{29}H_{35}Cu_2I_2N_7S_2$: C 37.59, H 3.81, N 10.58, S 6.92; gefunden: C 37.84, H 3.92, N 10.72, S 6.96.

9.4.2 Kupferkomlexe mit tripodalen Thioether-Guanidinliganden

 $[Cu(TMG_{et})_2N_{bz}SEt](ClO_4)$ (**C34**): Die Reaktion von $(TMG_{et})_2$ -N_{bz}SEt (1.1 mmol, 493 mg) mit $[Cu(MeCN)_4]ClO_4$ (1 mmol, 327 mg) in 5 ml MeCN führt zu einer klaren gelben Lösung. Die Lösung wird ca. 30 min. gerührt und anschließend filtriert. Diffusion von Diethylether in das abgekühlte Filtrat führt zur Bildung von blassgelben Kristallen. Ausbeute: 0.30 g = 50. %.

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 227 (63370), 250 (sh, 38900), 315 (8248). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3046w, 2921m, 2844m, 1587vs ($\tilde{\nu}$ (C=N)), 1509s, 1455s, 1388vs, 1342m, 1236m, 1155s, 1089vs, 977m, 883m, 763s, 622s, 584m. Elementaranalyse ber. für C₂₃H₄₃ClCuN₇O₄S: C 45.09, H 7.07, N 16.00, S 5.23; gefunden: C 44.90, H 7.4, N 16.23, S 5.00.

 $[Cu(TMG_{et})_2N_{bz}SEt](BPh_4)$ (C35): Die Umsetzung von CuCl (1 mmol, 99 mg) mit $(TMG_{et})_2N_{bz}SEt$ (1.1 mmol, 493 mg) in einem Lösungsmittelgemisch aus 3 ml MeCN und 3 ml THF führt zu einer klaren gelben Lösung. Die Lösung wird ca. 30 min. gerührt. Anschließend wird NaBPh₄ (1.1 mmol, 376 mg) zu der Lösung hinzugegeben und für weitere 24 h bei Raumtemperatur gerührt, wobei die Lösung eine orangefarbene Farbe annimmt. Diffusion von Die-

thyle
ther in das Filtrat der Komplexlösung führt zur Bildung von gelben bis or
angefarbenen Kristallen. Ausbeute: $0.35~{\rm g}=42~\%.$

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3054*w*, 2906*m*, 2840*m*, 1579*s* ($\tilde{\nu}$ (C=N)), 1508*m*, 1427*m*, 1388*m*, 1342*w*, 1267*w*, 1153*m*, 1066*w*, 1031*w*, 975*w*, 840*w*, 732*m*, 705*s*, 611*m*, 466*w*. Elementaranalyse ber. für C₂₃H₄₃ClCuN₇O₄S: C 67.81, H 7.63, N 11.78, S 3.85; gefunden: C 67.72, H 7.45, N 11.12, S 3.64.

[Cu((TMG_{et})₂N_{bz}SEt)Cl]Cl (**C36**): Die Umsetzung von CuCl₂ (1 mmol, 134 mg) mit (TMG_{et})₂N_{bz}SEt (1.1 mmol, 493 mg) in in 8 ml MeCN zu dunkelgrünen Lösung. Die Lösung wird ca. 30 min. gerührt. Diffusion von Diethylether in das Filtrat der Komplexlösung führt zur Bildung von grünen Kristallen. Ausbeute: 0.40 g = 68 %.

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 226 (31450), 256

(14370), 380 (sh, 1623), 686 (165). EPR (MeOH, 110 K): $g_{\perp} = 2.055$, g_{\parallel}) = 2.232, A_{\parallel}) = 145 G. EPR (MeCN, 110 K): $g_{\perp} = 2.066$, g_{\parallel}) = 2.231, A_{\parallel}) = 135 G. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2991*w*, 2937*m*, 2888*m*, 1552*s* ($\tilde{\nu}$ (C=N)), 1467*m*, 1423*m*, 1388*m*, 1340*w*, 1234*w*, 1159*m*, 1074*w*, 1012*w*, 916*w*, 767*m*, 629*w*, 453*w*. Elementaranalyse ber. für C₂₃H₄₃Cl₂CuN₇S: C 47.29, H 7.42, N 16.78, S 5.49; gefunden: C 47.53, H 7.67, N 16.91, S 5.55.

 $[(Cu(L25-1)Cl)_{0.19}(Cu(L25-1I)_{0.81}]I\cdot CH_3CN (C37):$ Die Umsetzung von CuI (1 mmol, 190 mg) mit $(TMG_{et})_2N_{bz}SEt$ (1.1 mmol, 493 mg) in 15 ml MeCN führt zu einer klaren gelben Lösung, die ca. 30 min. gerührt wird. Die Reaktion der Komplexlösung mit Luftsauerstoff führt zu einer dunkelbraunen Lösung aus der nach ca. einer Woche braune Kristalle isoliert werden. Die Verfeinerung der erhalteten Röntgenstrukturdaten ergab eine Unterbesetzung des ko-

ordinierenden Iod-Atoms mit Chlor. Damit lag vermutlich eine Verunreinigung des Ansatzes mit CuCl vor.

IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3056*m*, 2965*m*, 2921*m*, 1610*s* ($\tilde{\nu}$ (C=N)), 1550*m*, 1442*m*, 1396*w*, 1162*m*, 1033*w*, 911*w*, 761*m*, 608*s*, 617*w*, 511*w*, 450*w*.

 $[Cu((TMG_{et})_2N_{bz}SEt)](OTf)_2$ (C38): Die Umsetzung von $Cu(OTf)_2$ (1 mmol, 362 mg) mit $(TMG_{et})_2N_{bz}SEt$ (1.1 mmol, 493 mg) in 5 ml THF führt zu einer dunkelgrünen Lösung, die ca. 30 min. gerührt wird. Der erhaltene Komplex wird mit 100 ml Diethylether und 50 ml Pentan gefällt. Der grüne Niederschlag wird gesammelt und im Hochvakuum getrocknet. Ausbeute: 0.70 g = 86 %.

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 237 (25500), 252 (19500), 370 (2489), 644 (145). EPR (MeCN, 110 K): $g_{\perp} = 2.059$, $g_{\parallel} = 2.232$. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 2935*m*, 1621*s* ($\tilde{\nu}$ (C=N)), 1589*s* ($\tilde{\nu}$ (C=N)), 1469*s*, 1403*m*, 1259*vs*, 1154*s*, 1089*s*, 898*w*, 754*m*, 638*s*, 572*w*, 518*m*.

9.4.3 Kupferkomplexe mit Thiolat- und Disulfid-Guanidinliganden

Die Verbindungen **C39** ([Cu₆(TMG_{ph}S)₆](PF₆)₂·2CH₃CN), **C40** ([Cu₆(DMEG_{ph}S)₆](PF₆)₂·4CH₃CN), **C42** ([Cu₆(DMEG_{ph}S)₆] (OTf)₂·8CH₃CN) und **C43** ([Cu₆(TMG_{ph}S)₆](ClO₄)₂·2CH₃CN) wurden nach folgendem Schema synthetisiert: Eine Lösung von Gua_{ph}SCPh₃ (1.1 mmol) in 10 ml Acetonitril wird mit 1 mmol [Cu(MeCN)₄]X (X = PF₆⁻, ClO₄⁻, OTf⁻) versetzt und 30 min. gerührt. Anschließend wird die dunkelgrüne bis schwarze Lösung

für 1 h am Rückfluss erhitzt. Aus der abgekühlten Lösung fällt über Nacht ein Teil des Nebenproduktes N-Trityl-2-(tritylthio)anilin als weißer Feststoff aus. Das Reaktionsgemisch wird zur Abtrennung des Nebenproduktes filtriert. Diffusion von Diethylether in das Filtrat führt nach 4 - 8 Tagen zur Bildung von schwarzen Kristallen der gemischtvalenten Komplexe. Parallel zu den Komplexen kristallisiert häufig auch das N-Trityl-2-(tritylthio)anilin in Form farbloser Kristalle aus. Ausbeute C39: 250 mg (85 % bezogen auf Cu). Die Synthese von C41 ([Cu₆(TMG_{ph}S)₆](OTf)₂·2Me₄NOTf) erfolgte ausgehend von dem Disulfid-Liganden (TMG_{ph}S)₂: Die Umsetzung von (TMG_{ph}S)₂ (1.1 mmol, 484 mg) mit [Cu(MeCN)₄]OTf (1 mmol, 376 mg) führt zu einer roten Lösung die 30 min. bei RT gerührt wird. Anschließend wird Me₄NOTf (1 mmol, 392 mg) zugegeben und weitere 30 min. gerührt. Aus der entstandenen schwarzen Lösung kristallisieren nach der Diffusion von Diethylether schwarze Kristalle von C41 ([Cu₆(DMEG_{ph}S)₆](CuCl₂)₂·2CH₃CN) erfolgte ausgehend von dem Disulfid-Liganden von dem Disulfid-Liganden (DMEG_{ph}S)₂: Die Umsetzung von (DMEG_{ph}S)₆](CuCl₂)₂·2CH₃CN) erfolgte ausgehend von dem

(0.5 mmol, 50 mg) führt zu einer schwarzen Lösung die für 1 h Stude am Rückfluss ehitzt wird. Diffusion von Diethylether in die abgekühlte und filtrierte Komplexlösung führt zu Bildung von schwarzen Kristallen.

 $[CuI_4CuII_2(TMG_{ph}S)_6](PF_6)_2 \cdot 2CH_3CN (C39): UV/Vis/NIR (CH_2Cl_2, RT, \lambda_{max} [nm], \epsilon [M^{-1}]) + (M^{-1}) + (M$ cm⁻¹]): 231 (148000), 253 (sh, 117500), 417 (12500), 534 (5000), 642 (6310), 916 (sh, 21000), 1117 (70100). UV/Vis/NIR (CH₂Cl₂, -5°C, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 231 (148000), 253 (sh, 122300), 417 (13130), 534 (5150), 642 (6400), 916 (sh, 22100), 1117 (76800). UV/Vis/NIR (CH₂Cl₂, -25°C, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 231 (148000), 253 (sh, 124700),417 (13600), 534 (5290), 642 (6900), 916 (sh, 22800), 1117 (80500). UV/Vis/NIR (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 412 (2800), 530 (1180), 643 (1500), 912 (sh, 4900), 1110 (15500). UV/Vis/NIR (MeOH, gesättigte Lösung, λ_{max} [nm]): 415, 527, 638, 912 sh, 1110. UV/Vis/NIR (EtOH, gesättigte Lösung, λ_{max} [nm]): 415, 533, 639, 912 sh, 1110. ¹H-NMR (500 MHz, CD₂Cl₂, 25°C, δ [ppm]): 2.18 (s, 6H, CH₃), 2.72 (s, 6H, CH₃), 6.25 (d, 1H, CH), 7.89 (t, 1H, CH), 7.18 (t, 1H, CH), 7.75 (d, 1H, CH). ¹³C-NMR (125 MHz, CD₂Cl₂, 25°C, δ [ppm]): 15.0 (CH₃), 119.9 (CH), 121.1 (CH), 128.6 (CH), 131.9 (C_{quat}), 134.4 (CH), 150.4 (C_{quat}), 162.8 (C_{gua}). ESI-MS (CH₂Cl₂, m/z): 1858.3 [((M-H⁺)- $PF_{6}^{-})^{+}$, 1494.1, 1207.8, 920.1, 857.2, 635.1, 570.2. IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3041w, 2929m, 2867m, 2788w, 1629w, 1558m, 1511s, 1465m, 1396s, 1332m, 1268w, 1160m, 1031m, 840s, 809w, 754m,732w, 557m. Elementaranalyse ber. für $C_{66}H_{96}Cu_6F_{12}N_{18}P_2S_6$: C 39.53, H 4.83, N 12.57 S 9.59; gefunden: C 39.45, H 5.01, N 11.95, S 9.21.

N-Trityl-2-(tritylthio)anilin: ¹H-NMR (500 MHz, CD₂Cl₂, 25°C, δ [ppm]): 1.50 (s, 1H, NH), 5.94 (d, 1H, CH), 6.20 (t, 1H, CH), 6.65 (t, 1H, CH), 6.88 (d, 1H, CH), 7.10 (m, 6H, CH), 7.20 (m, 18H, CH), 7.32 (m, 6H, CH). ¹³C-NMR (125 MHz, CD₂Cl₂, 25°C, δ [ppm]): 71.3 (C_{quat}), 115.5 (CH), 116.4 (CH), 117.8 (C_{quat}), 126.6 (CH), 127.0 (CH), 127.3 (CH) 127.5 (CH), 127.7 (CH), 129.4 (CH), 130.5 (CH), 137.7 (CH), 144.6 (C_{quat}), 145.24 (C_{quat}), 149.4.0 (C_{quat}).

EI-MS (m/z (%.)): 609.25 (5) [M+], 508 (10), 243 (80) [CPh₃+], 165.0 (80), 149.0 (53), 71.0 (37), 47.0 (41), 41.0 (100). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3357*m*, 3054*m*, 3024*m*, 1587*s*, 1488*s*, 1444*m*, 1313*m*, 1276*m*, 1178*w*, 1035*w*, 896*w*, 842*w*, 754*s*, 698*s*, 615*m*, 491*w*. Elementaranalyse ber. für C₄₄H₃₅NS: C 86.66, H 5.78, N 2.30; gefunden: C 86.20, H 5.65, N 2.37.

Die Synthese der zweikernigen Komplexe C45, C45a, C46 und C46a ($[Cu_2^{II}(Gua_{ph}S)_2X_2]$, X = Cl⁻, Br⁻) erfolgte nach folgendem Schema: Die Umsetzung von (TMG_{ph}S)₂ oder (DMEG_{ph}S)₂ (0.55 mmol) mit CuX (1 mmol, X = Cl⁻, Br⁻) in 10 ml MeCN führt zu einer blauen Lösung mit blauen Feststoff. Das Reaktionsgemisch wird ca. 30 min. gerührt. Anschließend wird der Komplex wird mit ca. 70 ml Diethylether gefällt. Der erhaltene dunkelblaue Feststoff

wird mit 20 ml Diethylether gewaschen und im Hochvakuum getrocknet. Die Ausbeuten liegen bei ca. 90 %. Einkristalle der Komplexe **C45** und **C46** werden durch lansgsames Abkühlen einer heiß gesättigten Acetonitril-Lösung erhalten oder Diffusion von Diethylether in die abgekühlte

und filtrierte Mutterlauge.

[Cu₂^{II}(TMG_{ph}S)₂Cl₂] (C45): UV/Vis(CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 708 (8350), 590 (6460), 419 (4600), 275 (25240), 243 (28120). ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [ppm]): 2.79 (s, 12H, CH₃), 6.48 (d, 1H, CH), 6.81 (t, 1H, CH), 7.06 (t, 1H, CH), 7.43 (d, 1H, CH). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2195m, 2861m, 2784w, 1585s ($\tilde{\nu}$ (C=N)), 1509vs, 1442s, 1394vs, 1321s, 1290m, 1228m, 1164m, 1033m, 860m, 808m, 742m, 686w, 449m. Elementaranalyse ber. für C₂₂H₃₂Cu₂Cl₂N₆S₂: C 41.12, H 5.02, N 13.08, S 9.98; gefunden: C 40.91, H 5.06, N 13.13, S 9.90.

[Cu₂^{II}(DMEG_{ph}S)₂Cl₂] (C45a): UV/Vis(CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 733 (12040), 570 (7300), 415 (5300), 269 (36600), 247 (41660). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3043m, 2919w, 2817w, 1529vs ($\tilde{\nu}$ (C=N)), 1440m, 1411m, 1374vs, 1288m, 1153w, 1049m, 975w, 873w, 821m, 809w, 754m, 725m, 651w, 539w, 443w. Elementaranalyse ber. für C₂₂H₂₈Cu₂Cl₂N₆S₂: C 41.38, H 4.42, N 13.16, S 10.04; gefunden: C 40.38, H 4.44, N 12.91, S 9.75.

[Cu₂^{II}(TMG_{ph}S)₂Br₂] (C46): UV/Vis(CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 732 (8540), 590 (sh, 5690), 420 (4870), 393 (4770), 276 (23300), 242 (29300). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3046w, 2915m, 2861m, 2784m, 1529vs ($\tilde{\nu}$ (C=N)), 1440m, 1411m, 1374vs, 1288m, 1153w, 1049m, 975w, 873w, 821m, 754m, 725m, 651w, 539w, 443w. Elementaranalyse ber. für C₂₂H₃₂Cu₂Br₂N₆S₂: C 36.12, H 4.41, N 11.49, S 8.77; gefunden: C 36.48, H 4.47, N 11.67, S 8.77.

[Cu₂^{II}(DMEG_{ph}S)₂Br₂] (C46b): UV/Vis(CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 756 (12000), 600 (6750), 418 (5020), 377 (5540), 272 (28000), 240 (39000). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3041*w*, 2917*w*, 2871*w*, 1527*vs* ($\tilde{\nu}$ (C=N)), 1440*m*, 1411*s*, 1376*vs*, 1286*s*, 1232*m*, 1155*m*, 1051*m*, 973*w*, 875*w*, 821*m*, 755*m*, 725*m*, 646*w*, 539*w*, 465*w*. Elementaranalyse ber. für C₂₂H₂₈Cu₂Br₂N₆S₂: C 36.32, H 3.88, N 11.55, S 8.81; gefunden: C 36.75, H 4.09, N 11.79, S 8.89.

 $[Cu_3^{I}(TMG_{ph}S)_3]$ (C47): Die Umsetzung von CuSPh (2 mmol, 345 mg) mit $(TMG_{ph}S)_2$ (1 mmol, 444 mg) in 10 ml MeCN führt zu einer violetten Lösung, die 3 h bei Raumtemperatur gerührt wird. Anschließend wird die Lösung filtriert. Diffusion von Diethylether in das Filtrat führt zur Bildung von farblosen Kristallen. Ausbeute ca. 20 %. (bezogen auf Cu).

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 235 (63000), 260 nm (53600). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3050w, 2994w, 2929m, 2869m, 1525vs ($\tilde{\nu}$ (C=N)), 1455s, 1419s, 1340s, 1330w, 1274w, 1153m, 1024m, 919w, 852w, 800w, 746m, 673w, 547w. Elementaranalyse ber. für C₃₃H₄₈Cu₃N₉S₃: C 46.22, H 5.64, N 14.70, S 11.22; gefunden: C 45.96, H 5.50, N 14.27, S 11.45.

 $[Cu_3^I(TMG_{ph}S)_3I]$ ·CH₃CN (C48): Die Umsetzung von CuI (1 mmol, 190 mg) mit $(TMG_{ph}S)_2$ (1.1 mmol, 488 mg) in 10 ml MeCN führt zu einer dunkelroten Lösung mit Feststoff, die 5 h am Rückfluss erhitzt wird. Anschließend wird die abgekühlte Lösung filtriert. Diffusion von Diethylether in das Filtrat führt zur Bildung von roten Kristallen.

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 240 (2 · 10⁶), 286 nm (sh, 66460), 384 (6400), 758 (924). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3052w, 2998w, 2925m, 2883m, 1548vs $(\tilde{\nu}(C=N)), 1517s \ (\tilde{\nu}(C=N)), 1457s, 1423s, 1384s, 1282w, 1233w, 1149m, 1018m, 842w, 781w, 1018m, 101$ 740m, 539w.

 $[Cu_2^I((TMG_{ph}S)_2)_2](OTf)_2$ (C49): Die Umsetzung von $(TMG_{ph}S)_2$ $(1.1 \text{ mmol}, 488 \text{ mg}) \text{ mit } [Cu(MeCN)_4]OTf (1 \text{ mmol}, 376 \text{ mg}) \text{ in } 10$ ml MeCN führt zu einer dunkelroten Lösung, die 1 h bei Raumtemperatur gerührt wird. Anschließend wird der Komplex mit ca. 70 ml Diethylether gefällt. Der erhaltene dunkelrote Feststoff wird mit 20 ml Diethylether gewaschen und im Hochvakuum getrocknet. Ausbeute: 1.1 g = 85 %. Rote Einkristalle wurden durch die Diffu-

UV/Vis (CH₂Cl₂, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 415 (8000), 286 nm (32370), 235 nm (64200). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3056w, 2927w, 2879w, 2800w, 1560m ($\tilde{\nu}$ (C=N)), 1525vs ($\tilde{\nu}$ (C=N)), 1457s, 1396s, 1268s, 1155m, 1029s, 856w, 808w, 754w, 636s, 518w. Elementaranalyse ber. für $C_{46}H_{64}Cu_2F_6N_{12}O_6S_6$: C 42.03, H 4.91, N 12.79, S 14.64; gefunden: C 41.67, H 4.91, N 12.68; S 14.76.

 $[Cu_8^I((TMG_{ph}S)_2)_2I_8]$ (C50): Die Umsetzung von CuI (1 mmol, 190) mg) mit $\text{TMG}_{ph}\text{SCPh}_3$ (1.1 mmol, 511 mg) in 10 ml MeCN führt zu einer grünen Lösung, die ca. 30 min. bei Raumtemperatur gerührt wird. Anschließend wird das Reaktionsgemisch filtriert. Diffusion von Diethylether in das Filtrat führt zur Bildung von roten Kristallen.

UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 228 (47400), 291 (20360), 400 (4460). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3052w, 3002w, 2929w, 2863w, 1521vs ($\tilde{\nu}$ (C=N)), 1455s, 1396s, 1394s, 1324m, 1228w, 1157m, 1064w, 1027m, 858w, 804w, 752m, 470w. Elementar analyse ber. für C₄₄H₆₄Cu₈I₈N₁₂S₄: C 21.90, H 2.67, N 6.97; S 5.32; gefunden: C 22.24, H 3.01, N 6.97; S 5.08.

 $[Cu_4^{I}((TMG_{ph}S)_2)_2I_4]\cdot 2MeCN$ (C51): Die Umsetzung von CuI (1 mmol, 190 mg) mit $(TMG_{ph}S)_2$ (1.1 mmol, 488 mg) in 10 ml MeCN führt zu einer dunkelroten Lösung mit Feststoff, die ca. 30 min. bei Raumtemperatur gerührt wird. Anschließend wird der Komplex mit ca. 70 ml Diethylether gefällt. Der erhaltene dunkelrote Feststoff wird mit 20 ml Diethylether gewaschen und im Hochvakuum getrocknet. Ausbeute: 1.1 g = 85 %. Rote Einkristalle wurden durch

die Diffusion von Diethylether in die filtrierte Mutterlauge erhalten. UV/Vis (MeCN, λ_{max} [nm], ϵ [M⁻¹ cm⁻¹]): 208 (181200), 243 (112600), 285 (sh, 40900), 406 (5900). IR (KBr, $\tilde{\nu}$ [cm⁻¹]): 3046w, 3004w, 2935m, 2871m, 1521vs ($\tilde{\nu}$ (C=N)), 1459s, 1411s, 1338m, 1270w, 1153m, 1064w, 1054w, 1027m, 858w, 804w, 746w, 539w, 449w. Elementaranalyse ber. für C₄₄H₆₄Cu₄I₄N₁₂S₄: C 32.01, H 3.91, N 10.18; S 7.77; gefunden: C 32.18, H 4.13, N 10.29; S 7.79.

Literaturverzeichnis

- [1] A. Hartwig, Chem. Unserer Zeit 2000, 4, 224.
- [2] (a) E.I. Ochiai, General Principles of Biochemistry of the Elements, Plenum Press, New York, 1987. (b) J.J.R. Frausto da Silva, R.J.P. Williams, The Inorganic Chemistry of Life, Clarendon Press, Oxford, 1991.
- [3] (a) S.J. Lippard, Bioanorganische Chemie, Spektrum Akademischer Verlag, Heidelberg, 1995.
 (b) W. Kaim, B. Schwederski, Bioanorganische Chemie, B.G. Teubner, Stuttgart, 2004. (c) I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine, Bioinorganic Chemistry, University Science Books, 1994. (d) J.A. Cowan, Inorganic Biochemistry. An Introduction, 2nd ed. Wiley-VCH, 1997.
- [4] (a) J.P. Collmann, R. Boulatov, C.J. Sunderland, L. Fu, *Chem. Rev.* 2004, 104, 561. (b) J.P.
 Collmann, T.R. Halpern, K.S. Suslick. 1980, in T.G. Spiro, Hrsg., *Wiley-Interscience*, New York, 1-72. (c) M. Pascaly, I. Jolk, B. Krebs, *Chem. Unserer Zeit* 1999, 33, 334. (d) O. Ei, *J. Chem. Educ.* 1986, 63, 942.
- [5] (a) P.H. Backx, D.T. Yue, J.H. Lawrence, E. Marban, G.H. Tomaselli, *Science* 1992, 257, 248.
 (b) J.C. Skou, J.G. Norby (Hrsg.), Na⁺-K⁺ ATPhase: Structure and Kinetics, Academic Press, New York, 1979.
- [6] (a) D. Rhodes, A. Klug, *Zinkfinger*, Spektrum Akademischer Verlag, Heidelberg **1993**. (b) J.M. Berg, *J. Biol. Chem.* **1990**, *265*, 6513. (c) K. Struhl, *Trends Biochem. Sci.* **1989**, *14*, 137. (d) E. Wingender, K.H. Seifart, *Angew. Chem.* **1987**, *99*, 206. (e) A. Klug, D. Rhodes, *Trends Biochem. Sci.***1987**, *12*, 464.
- [7] (a) L. Que Jr., W.B. Tolman, Nature 2008, 445, 333. (b) Z. Guo, P. J. Sadler, Medicinal Inorganic Chemistry, in: Advances in Inorganic Chemistry (Hrsg.: A. G. Sykes), Academic Press 2000, 49, 183. (c) C. Guo, P.J. Sadler, Angew. Chem. 1999, 111, 1610. (d) H.A. Bruck, J.J. Evans, M.L. Peterson, Exp. Mech. 2002, 42, 361. (e) E. Dujardin, S. Mann, Adv. Mater. 2002, 14, 775.
- [8] A.F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, 1995.
- (a) W. Kaim, J. Rall, Angew. Chem. 1996, 108, 47. (b) C. Vogler, H.-D. Hausen, W. Kaim, S. Kohlmann, H.E.A. Kramer, J. Rieker, Angew. Chem. 1989, 101, 1734.
- [10] (a) N. Kitajima, Y. Moro-oka, Chem. Rev., 1994, 94, 737. (b) E. Spodine, J. Manzur, Coord. Chem. Rev. 1992, 119, 171.
- [11] A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt, *Handbook of Metalloproteins*, Volume 2, 2004.
- [12] (a) J.M. Guss, H.C. Fremann, J. Mol. Biol. 1983, 169, 521. (b) A.G. Sykes, Chem. Soc. Rev. 1985, 14, 282. (c) G.E. Norris, B.F. Anderson, E.N. Baker, J. Am. Chem. Soc. 1986, 108, 2784.

- [13] (a) Laccase: V. Ducros, A.M. Brzozowski, K.S. Wilson, S.H. Brown, O. Ostergaard, P. Schneider, D.S. Yaver, A.H. Pedersen, G.J. Davies, *Nature Struct. Biol.* 1998, *5*, 310. (b) Ceruloplasmin: I. Zaitseva, V. Zaitsev, G. Card, K. Moshkov, B. Bax, A. Ralph, P.J. Lindley, *J. Biol. Inorg. Chem.* 1996, *1*, 15. (c) T.E. Machonkin, H.H. Zhang, B. Hedman, K. O. Hodgson, E.I. Solomon, *Biochemistry* 1998, *37*, 9570. (d) Azurin-Mutanten: B.G. Karlsson, M. Nordling, T. Pascher, L.-C. Tsai, L. Sjolin, L.G. Lundberg, *Protein Eng.* 1991, *4*, 343.
- [14] (a) E.I. Solomon, R.K. Szilagyi, S. DeBeer George, L. Basumallick, *Chem. Rev.* 2004, 104, 419. (b) E.I. Solomon, A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy, Wiley, Volume II, 1999.
- [15] H. Li, S.P. Webb, J. Ivanic, J.H. Jensen, J. Am. Chem. Soc. 2004, 126, 8010.
- [16] (a) P.M.H. Kroneck, J. Riester, W.G. Zumft, W. E. Antholine, *Biol. Met.* 1990, *3*, 103. (b)
 W.G. Zumft, P.M.H. Kroneck, *Adv. Inorg. Biochem.* 1996, *11*, 193.
- [17] (a) D.K. Garner, M.D. Vaughan, H.J. Hwang, M.G. Savelieff, S.M. Berry, J.F. Honek, Y. Lu. J. Am. Chem. Soc. 2006, 128, 15608. (b) S.M. Berry, M. Ralle, D.W. Low, N.J. Blackburn, Y. Lu, J. Am. Chem. Soc. 2003, 125, 8760. (c) Y. Lu, Angew. Chem. 2006, 118, 5714.
- [18] J.A. Guckert, M.D. Lowery, E.I. Solomon, J. Am. Chem. Soc. 1995, 117, 2817.
- [19] M.H.M. Olsson, U. Ryde, J. Biol. Inorg. Chem. 1999, 4, 654.
- [20] M.D. Lowery, E.I. Solomon, *Inorg. Chim. Acta.* **1992**, *198-200*, 233.
- [21] S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, *Nature* **1995**, *376*, 660.
- [22] T. Soulimane, G. Buse, G.P. Bourenkov, H.D. Bartunik, R. Huber, M.E. Than, *EMBO J.* 2000, 19, 1766.
- [23] T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069.
- [24] G. Henkel, A. Müller, S. Weisgräber, G. Buse, T. Soulimanse, G.C.M. Steffens, H.-F. Nolting, Angew. Chem. 1995, 107, 1651.
- [25] W. Antholine, D.H.W. Kastrau, G.C.M. Steffens, G. Buse, W.G. Zumft, P.M.H. Kroneck, Eur. J. Biochem. 1992, 209, 875.
- [26] (a) E.I. Solomon, X. Xie, A. Dey, *Chem. Soc. Rev.* 2008, *37*, 623. (b) P. Lappalainen, R. Aasa, B.G. Malmström, M.J. Saraste, *J. Biol. Chem.* 1993, *268*, 26416. (c) C.L. Hulse, B.A. Averill, *Biochem. Biophys. Res. Commun.* 1990, *166*, 729.
- [27] H.J. Hwang, S.M. Berry, M.J. Nilges, Y. Lu, J. Am. Chem. Soc. 2005, 127, 7274.
- [28] O. Farver, Y. Lu, M. C. Ang, I. Pecht, Proc. Natl. Acad. Sci. USA 1999, 96, 899.
- [29] (a) E.I. Solomon, U.M. Sundaram, T.E. Machonkin, *Chem. Rev.* 1996, 96, 2563. (b) J.P. Klinman, *Chem. Rev.* 1996, 96, 2541. (c) M. Fontecave, J.-L. Pierre, *Coord. Chem. Rev.* 1998, 170, 125.
- [30] (a) L.M. Mirica, X. Ottenwaelder, T.D.P. Stack, *Chem. Rev.* 2004, *104*, 1013. (b) L. Que, Jr.,
 W. B. Tolmann, *Angew. Chem.* 2002, 114, 1160. (c) E. I. Solomon, P. Chen, M. Metz, S.-K.
 Lee, A. E. Palmer, *Angew. Chem.* 2001, 113, 4702.
- [31] J.P. Evans, K. Ahn, J.P. Klinman, J. Biol. Chem. 2004, 279, 5048. (b) L.C. Stewart, J.P. Klinman, Annu. Rev. Biochem. 1988, 57, 551.
- [32] (a) W.A. Francisco, N.J. Blackburn, J.P. Klinman, *Biochemistry* 2003, 42, 1813. (b) S.T.
 Prigge, R.E. Mains, B.A. Eipper, L M. Amzel, *Cell. Mol. Life Sci.* 2000, 57, 1236. (c) B.A.
 Eipper, P.A. Stoffers, R.E. Mains, *Annu. Rev. Neurosci.* 1992, 15, 57.
- [33] (a) S.T. Prigge, R.E. Mains, B.A. Eipper, L.M. Amzel, Cell. Mol. Life Sci. 2000, 57, 1236. (b)
 J.P. Klinman, Chem. Rev. 1996, 96, 2541.
- [34] S.T. Prigge, A.S. Kolhekar, B.A. Eipper, R.E. Mains, L.M. Amzel, *Science* **1997**, *278*, 1300.

- [35] S.T. Prigge, A.S. Kolhekar, B.A. Eipper, R.E. Mains, L M. Amzel, Nat. Struct. Biol. 1997, 6, 976.
- [36] (a) B.A. Eipper, A.S.W. Quon, R.E. Mains, J.S. Boswell, N.J. Blackburn, *Biochemistry* 1995, 34, 2857. (b) C. Southan, L.I. Kruse, *FEBS Lett.* 1989, 255, 116. (c) A. Lamoroux, A. Vigny, V. Faucon Biguet, M.C. Darmon, R. Frank, J.P. Henry, J. Mallet, *EMBO J.* 1987, 6, 3931.
- [37] (a) M. Rolff, F. Tuczek, Angew. Chem. 2008, 120, 2378 (b) J.P. Klinman, J. Biol. Chem. 2006, 281, 3013.
- [38] S.T. Prigge, B.A. Eipper, R.E. Mains, L.M. Amzel, *Science* **2004**, *304*, 864.
- [39] (a) D. Maiti, H.R. Lucas, A.A. Narducci Sarjeant, K.D. Karlin, J. Am. Chem. Soc. 2007, 129, 6998. (b) D. Maiti, A.A. Narducci Sarjeant, K.D. Karlin, Inorg. Chem. 2008, 47, 8736. (c) D. Maiti, D.-H. Lee, K. Gaoutchenova, C. Würtele, M.C. Holthausen, A.A. Narducci Sarjeant, J. Sundermeyer, S. Schindler, K.D. Karlin, Angew. Chem. 2008, 120, 88.
- [40] (a) D.B. Rorabacher, Chem. Rev. 2004, 651. 104. (b) C. Belle, W. Rammal, J.-L. Pierre, J. Inorg. Biochem. 2005, 99, 1929. (c) S. Mandal, G. Das, R. Singh, R. Shukla, P.K. Bharadwaj, Coord. Chem. Rev. 1997, 160, 191. (d) N. Kitajima, Adv. Inorg. Chem. 1992, 39, 1. (e) E. Bouwman, W.L. Driessen, J. Reedijk, Coord. Chem. Rev. 1990, 104, 143.
- [41] (a) N. Kitajima, K. Fujisawa, M. Tanaka, Y. Moro-oka, J. Am. Chem. Soc. 1992, 114, 9232.
 (b) N. Kitajima, K. Fujisawa, Y. Moro-oka, J. Am. Chem. Soc. 1990, 112, 3210.
- [42] P.L. Holland, W.B. Tolman, J. Am. Chem. Soc. 1999, 121, 7270.
- [43] P.L. Holland, W.B. Tolman, J. Am. Chem. Soc. 2000, 122, 6331.
- [44] W.B. Tolman, J. Biol. Inorg. Chem. 2006, 11, 261.
- [45] (a) D.W. Randall, D.R. Gamelin, L.B. LaCroix, E.I. Solomon, J. Biol. Inorg. Chem. 2000, 5, 16. (b) A. Romero, C.W. Hoitink, H. Nar, R. Huber, A. Messerschmidt, G.W. Canters, J. Mol. Biol. 1993, 229, 1007. (b) B.G. Karlsson, L.-C. Tsai, H. Nar, J. Sanders-Loehr, N. Bonander, V. Langer, L. Sjölin, Biochemistry 1997, 36, 4089. (c) A. Messerschmidt, L. Prade, S.J. Kroes, J. Sanders-Loehr, R. Huber, G.W. Canters, Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3443.
- [46] S. Torelli, C. Belle, C. Philouze, J.L. Pierre, W. Rammal, E. Saint Aman, *Eur. J. Inorg. Chem.* 2003, 2452.
- [47] R.P. Houser, V.G. Young Jr., W.B. Tolman, J. Am. Chem. Soc. 1996, 118, 2101.
- [48] (a) N. Roy, S. Sproules, E. Bothe, T. Weyhermüller, K. Wieghardt, Eur. J. Inorg. Chem. 2009, 2655. (b) W. Rammal C. Belle, C. Beguin, C. Duboc, C. Philouze, J.-L. Pierre, L. Le Pape, S. Bertaina, E. Saint-Aman, S. Torelli, Inorg. Chem. 2006, 45, 10355. (c) A. I. Uraev, I.S. Vasilchenko, V.N. Ikorskii, T.A. Shestakova, A.S. Burlov, K.A. Lyssenko, V.G. Vlasenko, T.A. Kuznmenko, L.N. Divaeva, I.V. Pirog, G.S. Borodkin, I.E. Uflyand, M.Y. Antipin, V.I. Ovcharenko, A.D. Garnovskii, V.I. Minkin, Mandeleev. Commun. 2005, 133. (d) Y. Ueno, Y. Tachi, S. Itoh, J. Am. Chem. Soc. 2002, 124, 12428. (e) S. Itoh, M. Nagagawa, S. Fukuzumi, J. Am. Chem. Soc. 2001, 123, 4087. (f) N.D.J. Branscombe, A.J. Blake, A. Marin-Becerra, W.-S. Li, S. Parsons, L. Ruiz-Ramirez, M.Schröder, J. Chem. Soc., Chem. Commun. 1996, 2573. (g) R.P. Houser, J.A. Halfen, V.G. Young, Jr., N.J. Blackbum, W.B. Tolman, J. Am. Chem. Soc. 1995, 117, 10745.
- [49] (a) A.F. Stange, E. Waldhör, M. Moscherosch, W. Kaim, Z. Naturforsch. 1995, 50b, 115. (b)
 R.K. Chadha, R. Kumar, D.G. Tuck, Can. J. Chem. 1987, 65, 1336.
- [50] M. Kodera, T. Kita, I. Miura, N. Nakayama, T. Kawata, K. Kano, S. Hirota, J. Am. Chem. Soc. 2001, 123, 7715.
- [51] T. Ohta, T. Tachiyama, K. Yoshizawa, T. Yamabe, T. Uchida, T. Kitagawa, *Inorg. Chem.* 2000, 39, 4358.

- [52] (a) D.-H. Lee, L.Q. Hatcher, M.A. Vance, R. Sarangi, A.E. Milligan, A.A. Narducci Sarjeant,
 C.D. Incarvito, A.L. Rheingold, K.O. Hodgson, B. Hedman, E.I. Solomon, K.D. Karlin, *Inorg. Chem.* 2007, 46, 6056. (b) G.Y. Park, Y. Lee, D.-H. Lee, J.S. Woertink, A.M. Narducci Sarjeant,
 E.I. Solomon, K.D. Karlin, J. Chem. Soc., Chem. Commun. 2010, 46, 91.
- [53] (a) L. Casella, M. Gullotti, M. Bartosek, G. Pallanza, E.J. Laurenti, J. Chem. Soc., Chem. Commun. 1991, 1235. (b) G. Alzuet, L. Casella, M.L. Villa, O. Carugo, M.J. Gullotti, J. Chem. Soc., Dalton Trans. 1997, 4789.
- [54] F. Champloy, N. Benali-Cherif, P. Bruno, I. Blain, M. Pierrot, M. Rglier, A. Michalowicz, *Inorg. Chem.* 1998, 37, 3910.
- [55] (a) B.K. Santra, P.A. Reddy, M. Nethaji, A.R. Chakravarty, *Inorg. Chem.* 2002, 41, 1328. (b)
 L. Zhou, D. Powell, K.M. Nicholas, *Inorg. Chem.* 2006, 45, 3840.
- [56] (a) W.J. Lees, G.M. Whitesides, J. Org. Chem. 1993, 58, 642. (b) T.P. Akerboom, M. Bilzer,
 H. Sies, J. Biol. Chem. 1982, 257, 4248. (c) R.C. Fahey, Adv. Exp. Med. Biol. 1977, 86A, 1.
- [57] (a) N.M. Giles, G.I. Giles, C. Jacob, *Biochem. Biophys. Res. Commun.* 2003, 300, 1. (b) Jacob, C. *Nat. Prod. Rep.* 2006, 23, 851. (c) C.E. Hand, J.F.J. Honek, *Nat. Prod.* 2005, 68, 293. (d) S. Biswas, A.S. Chida, I. Rahman, *Biochem. Pharmacol.* 2006, 71, 551. (e) S. Raina, D. Missiakas, *Annu. ReV. Microbiol.* 1997, 51, 179.
- [58] C. Jacob, G.I. Giles, N.M. Giles, H. Sies, Angew. Chem. 2003, 115, 4890.
- [59] (a) H. Sies, Free Radical Biol. Med. 1999, 27, 916. (b) F.Q. Schäfer, G.R. Buettner, Free Radical Biol. Med. 2001, 30, 1191.
- [60] A.G. Lappin, A. McAuley, J. Chem. Soc., Dalton Trans. 1978, 1606.
- [61] (a) Y. Ueno, Y. Tachi, S. Itoh, J. Am. Chem. Soc. 2002, 124, 12428. (b) A. Kunishita, M. Kubo, H. Sugimoto, T. Ogura, K. Sato, T. Takui, S. Itoh, J. Am. Chem. Soc. 2009, 131, 2788.
- [62] (a) D. Carrillo, Coord. Chem. Rev. 1992, 119, 137. (b) D.L. Nosco, R.C. Elder, E. Deutsch, Inorg. Chem. 1980, 19, 2545.
- [63] (a) P. M. Boorman, C.L. Merrit, W.A. Shantha Nandana, J.F Richardson, J. Chem. Soc., Dalton Trans. 1986, 1251. (b) P.M. Treichel, L.D. Rosenhein, Inorg. Chem. 1984, 23, 4018. (c)
 J.M. Berg, D.J. Spira, K.O. Hodgson, A.E. Bruce, K.F. Miler, J.L. Corbin, E.I. Stiefel, Inorg. Chem. 1984, 23, 3412. (d) T. Boschi, B. Crociani, L. Toniolo, U. Belluco, Inorg. Chem. 1970, 9, 532.
- [64] T. Osako, Y. Ueno, Y. Tachi, S. Itoh, *Inorg. Chem.* **2004**, *43*, 6516.
- [65] A.L. Gavrilova, B. Bosnich, *Chem. Rev.* **2004**, *124*, 349.
- [66] (a) S. Herres-Pawlis, A. Neuba, O. Seewald, T. Seshadri, H. Egold, U. Flörke, G. Henkel, *Eur. J. Org. Chem.* 2005, 4879. (b) S. Herres-Pawlis, *Nachr. aus der Chemie* 2009, 57, 20. (c) S. Pohl, M. Harmjanz, J. Schneider, W. Saak, G. Henkel, *J. Chem. Soc., Dalton Trans.* 2000, 3473. (d) S. Pohl, M. Harmjanz, J. Schneider, W. Saak, G. Henkel, *Inorg. Chim. Acta* 2000, 311, 106.
- [67] (a) V. Raab, E. Gauchenova, A. Merkoulov, K. Harms, J. Sundermeyer, B. Kovacevic, Z. B. Maksic, J. Am. Chem. Soc. 2005, 127, 15738. (b) V. Raab, J. Kipke, R. M. Gschwind, J. Sundermeyer, Chem. Eur. J. 2002, 8, 1682. (c) V. Raab, K. Harms, J. Sundermeyer, B Kovacevic, Z. B. Maksic, J. Org. Chem. 2003, 68, 8790.
- [68] (a) G. Wieland, G. Simchen, *Liebigs Ann. Chem.* 1985, 2178. (b) D. H. R. Barton, J. D. Elliot,
 S. D. Gero, *J. Chem. Soc.*, *Perkin Trans.* 1982, 1, 2085. (c) R. Schwesinger, *Nachr. Chem. Tech. Lab.* 1990, 38, 1214.
- [69] H. Wittmann, *Dissertation*, Marburg, **1999**.
- [70] (a) R. Schwesinger, Chimia 1985, 39, 269. (b) A.V. Santoro, G. Mickevicius, J. Org. Chem.
 1979, 44, 117. (c) P. Pruszynski, Can. J. Chem. 1986, 65, 626. (d) K.T. Leffek, P. Pruszynski,

K. Thanapaalasingham, Can. J. Chem. 1989, 67, 590. (e) P. Pruszynski, K.T. Leffek, Can. J. Chem. 1991, 69, 205.

- [71] (a) H. Wittmann, V. Raab, A. Schrom, J. Plackmeyer, J. Sundermeyer, *Eur. J. Inorg. Chem.* **2001**, 8, 1937. (b) S. Herres-Pawlis, *Dissertation*, Paderborn, **2005**.
- [72] (a) H. Beyer, W. Walter, Lehrbuch der organischen Chemie, Hirzel Verlag, Stuttgart, 1998. (b)
 P. Sykes, Reaktionsmechanismen der Organischen Chemie, Wiley-VCH, Weinheim, 1988.
- [73] W. Kantlehner, E. Haug, W.W. Mergen, P. Speh, T. Maier, J.J. Kapassakalidis, H.-J. Bräuner,
 H. Hagen, *Liebigs Ann. Chem.* 1984, 108.
- [74] (a) A. V. Santoro, G. Mickevicius, J. Org. Chem. 1979, 44, 117. (b) H. Kessler, D. Leibfritz, Tetrahedron 1970, 26, 1805.
- [75] (a) P. Pruszynski, Can. J. Chem. 1986, 65, 626. (b) H. Bredereck, K. Bredereck, Chem. Ber. 1961, 94, 2278. (c) D.H.R. Barton, J.D. Elliott, S.D. Gero, J. Chem. Soc., Chem. Commun. 1981, 1136.
- [76] (a) G. Wieland, G. Simchen, *Liebigs Ann. Chem.* 1985, 2178. (b) D.H. R.Barton, J.D. Elliot,
 S.D. Gero, *J. Chem. Soc.*, *Perkin Trans.* 1982, *1*, 2085.
- [77] R. Longhi, R. S. Drago, *Inorg. Chem.* **1965**, *4*, 11.
- [78] R. Snaith, K. Wade, B.K. Wyatt, J. Chem. Soc. A 1970, 380.
- [79] (a) E.M.A. Ratilla, B.K. Scott, M.S. Moxness, N.M. Kostic, *Inorg. Chem.* 1990, 29, 918. (b)
 E.M.A. Ratilla, N. M. Kostic, J. Am. Chem. Soc. 1988, 110, 4427.
- [80] K.T. Leffek, A. Jarczewski, Can. J. Chem. 1991, 69, 1238.
- [81] W.P. Fehlhammer, R. Metzner, W. Sperber, Chem. Ber. 1994, 127, 829.
- [82] P.J. Bailey, S.F. Bone, L.A. Mitchell, S. Parsons, K.J. Taylor, L.J. Yellowlees, *Inorg. Chem.* 1997, 36, 867.
- [83] D.P. Fairlie, W.G. Jackson, B.W. Skelton, H. Wen, A.H. White, W.A. Wickramasinghe, T.C. Woon, H. Taube, *Inorg. Chem.* 1997, 36, 1020.
- [84] (a) P. Pruszynski, Can. J. Chem. 1986, 65, 626. (b) P. Pruszynski, K.T. Leffek, B. Borecka, T.S. Cameron, Acta Cryst. 1992, C48, 1638.
- [85] N. Kuhn, M. Grathwohl, M. Steinmann, G. Henkel, Z. Naturforsch. 1998, 53b, 997.
- [86] (c) S. Herres, A. J. Heuwing, J. Schneider, U. Flörke, G. Henkel, *Inorg. Chim. Acta* 2005, 358, 1089. (d) T. Seshadri, U. Flörke, G. Henkel, *Acta Cryst.* 2004, *E60*, o401.
- [87] (a) V. Raab, M. Merz, J. Sundermeyer, J. Mol. Catal. A. Chem. 2001, 175, 51. (b) H. Wittmann, A. Schorm, J. Sundermeyer, Z. Anorg. Allg. Chem. 2000, 626, 1583.
- [88] C. Würtele, E. Gaoutchenova, K. Harms, M. C. Holthausen, J. Sundermeyer, S. Schindler, Angew. Chem. 2006, 118, 3951.
- [89] (a) A. Neuba, R. Haase, M. Bernard, U. Flörke, S.Herres-Pawlis, Z. Anorg. Allg. Chem. 2008, 634, 2511. (b) A. Neuba, S. Herres-Pawlis, U. Flörke, G. Henkel, Z. Anorg. Allg. Chem. 2008, 634, 771. (c) A. Neuba, O. Seewald, U. Flörke G. Henkel, Acta Cryst. 2007, E63, m2099. (d) S. Herres-Pawlis, R. Haase, E. Akin, U. Flörke, G. Henkel, Z. Anorg. Allg. Chem. 2008, 634, 295. (e) A. Heuwing, Dissertation, Paderborn, 2004. (f) S. Schneider, Dissertation, Duisburg, 2000. (g) S.H. Oakley, M.P. Coles, P.B. Hitchcock, Inorg. Chem. 2003, 42, 3154. (h) S.H. Oakley, D.B. Soria, M.P. Coles, P.B. Hitchcock, J. Chem. Soc., Dalton Trans. 2004, 537. (i) P.J. Bailey, K.J. Grant, S. Pace, S. Parsons, L. J. Stewart, J. Chem. Soc., Dalton Trans. 1997, 4263.
- [90] (a) S. Herres-Pawlis, P. Verma, R. Haase, P. Kang, C.T. Lyons, E.C. Wasinger, U. Flörke, G. Henkel, T.D.P. Stack, J. Am. Chem. Soc. 2009, 131, 1154. (b) S. Herres-Pawlis, U. Flörke, G. Henkel, Eur. J. Inorg. Chem. 2005, 3815.

- [91] (a) J. Börner, S. Herres-Pawlis, U. Flörke, K. Huber, Eur. J. Inorg. Chem. 2007, 5645. (b) J. Börner, U. Flörke, K. Huber, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2009, 15, 2362.
- [92] U. Wild, O. Hübner, A. Maronna, M. Enders, E. Kaifer, H. Wadepohl, H.-J. Himmel, Eur. J. Inorg. Chem. 2008, 28, 4440.
- [93] A. Peters, U. Wild, O. Hübner, E. Kaifer, H.-J. Himmel, Chem. Eur. J. 2008, 14, 7813.
- [94] A. Peters, C. Trumm, M. Reinmuth, D. Emeljanenko, E. Kaifer, H.-J. Himmel, Eur. J. Inorg. Chem. 2009, 25, 3791.
- [95] U.P. Chaudhuri, D.R. Powell, R.P. Houser, Inorg. Chim. Acta 2009, 362, 2371.
- (a) A. Neuba, E. Akin, S. Herres-Pawlis, U. Flörke, G. Henkel, Acta Cryst. 2008, C64, m194.
 (b) J.L. Sessler, C.M. Lawrence, J. Jayawickramarajah, Chem. Soc. Rev. 2007, 36, 314.
- [97] M.P. Coles, J. Chem. Soc., Dalton. Trans. 2006, 985.
- [98] (a) H. Kessler, *Liebigs Ann. Chem.* 1969, 727, 228. (b) J.R. Gauvreau, G.J. Martin, T. Malfroot,
 J.P. Senet, *J. Chem. Soc., Perkin. Trans. 2* 1984, 1971. (c) P. Garner, O. Sesenoglu, H.U.
 Kaniskan, *Tetrahedron Lett.* 2006, 4, 483.
- [99] T.W. Greene, P.G.M. Wuts, *Protective groups in organic synthesis*, Wiley, New York, **1999**.
- [100] (a) J. Becher, H. Toftlund and P.H. Olesen, J. Chem. Soc., Chem. Comm. 1983, 740. (b)
 H. Toftlund, J. Becher, P.H. Olesen and J.Z. Pedersen, Isr. J. Chem. 1985, 25, 56. (c) O.P. Anderson, J. Becher, H. Frydendahl, L.F. Taylor and H. Toftlund, J. Chem. Soc., Chem. Comm. 1986, 699.
- [101] S. Mandal, P.K. Bharadwaj, Proc. Ind. Acad. Sci. (Chem. Sci.) 1995, 107, 247.
- [102] (a) A. Neuba, U. Flörke, G. Henkel, Acta Cryst. 2007, E63, o4661. (b) A. Neuba, U. Flörke,
 G. Henkel, Acta Cryst. 2007, E63, o3476.
- [103] (a) F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1. (b) A. Hordvik, Acta Chem. Stand. 1966, 20, 1885.
- [104] (a) J.D. Lee, M.W.R. Bryant, Acta Cryst. 1970, B26, 1729. (b) D.W.J. Cruickshank, J. Chem. Soc. 1961, 5486.
- [105] (c) R. Bhattacharyya, D.Pal, P. Chakrabarti, Protein Engineering, Design and Selection 2004, 17, 795. (d) J. Lewiski, W. Bury, I. Justyniak, Eur. J. Inorg. Chem. 2005, 4490. (e) J. Pranata, Bioorg. Chem. 1997, 25, 213.
- [106] (a) J.S. Ricci, I. Bernal, J. Chem. Soc. (B), 1970, 806. (b) C. Glidewell, J.N. Low, J.L. Wardell, Acta Cryst. 2000, B56, 893. (c) J.G. Garcia, S.N. Haydar, A.P. Krapcho, Acta Cryst. 1995, C51, 2333.
- [107] S. Herres, U. Flörke, G. Henkel, *Acta Cryst.* **2004**, *C60*, o358.
- [108] F.L. Hirshfeld, H. Hope, Acta Cryst. 1980, B36, 406.
- [109] A. Neuba, U. Flörke, G. Henkel, Acta Cryst. 2007, E63, o4683.
- [110] W. Galezowski, P. K. Bakshi, K. T. Leffek, T. S. Cameron, Can. J. Chem. 1994, 72, 352.
- [111] (a) R. Boese, D. Bläser, W. Petz, Z. Naturforsch. B 1988, 43, 945. (b) W. Petz, F. Weller, Z. Naturforsch. B 1991, 46, 297. (c) F. Weller, W. Petz, Z. Anorg. Allg. Chem. 1994, 620, 343.
- [112] V. Raab, *Dissertation*, Marburg, **2001**.
- (a) A.B. Meneses, S. Antonello, M.C. Arevalo, C.C. Gonzalez, J. Sharma, A.N. Wallette, M.S. Workentin, F. Maran, *Chem. Eur. J.* 2007, *13*, 7983. (b) S. Antonello, K. Daasbjerg, H. Jensen, F. Taddei, F. Maran, *J. Am. Chem. Soc.* 2003, *125*, 14905.
- [114] (a) T.B. Christensen, K. Daasbjerg, Acta. Chem. Scand. 1997, 51, 307. (b) F. Magna, G. Bontempelli, G. Pilloni, J. Electroanal. Chem. 1971, 30, 375. (c) J. Simonet, M. Carriou, H. Lund, Liebigs Ann. Chem. 1981, 1665.
- [115] J. Börner, *Masterarbeit*, Paderborn, **2005**.

- [116] E. Akin, *Dissertation*, Paderborn, **2010**.
- [117] R. Haase, *Dissertation*, Paderborn, **2010**.
- [118] (a) D. B. Grotjahna, S. Vana, D. Combsa, W.S. Kasselb, A.L. Rheingold, J. Inorg. Biochem.
 2001, 85, 61. (b) J. Christoffers, A. Mann, J. Pickardt, Tetrahedron 1999, 55, 5377.
- [119] (a) M. Albrecht, K. Hübler, S. Zalis, W. Kaim, *Inorg. Chem.* 2000, *39*, 4731. (b) M. Albrecht, K. Hübler, T. Scheiring, W. Kaim, *Inorg. Chim. Acta* 1999, *287*, 204. (c) C.-Y. Su, S. Liao, M. Wanner, J. Fiedler, C. Zhang, B.-S. Kang, W. Kaim, *J. Chem. Soc., Dalton. Trans.* 2003, 189.
- [120] A. Bondi, J. Phys. Chem. **1964**, 68, 441.
- [121] (a) H. Schmidbaur, Chem. Soc. Rev. 1995, 24, 391. (b) P.D. Harvey, Coord. Chem. Rev. 1996, 153, 175. (c) J.M. Poblet, M. Benard, J. Chem. Soc., Chem. Commun. 1998, 11, 1179. (d) S.-L. Zheng, M. Messerschmidt, P. Coppens, Angew. Chem. 2005, 117, 4690.
- [122] R.J. Ball, A.R.J. Genge, A.L. Radford, B.W. Skelton, V.-A. Tolhurst, A.H. White, J. Chem. Soc., Dalton Trans. 2001, 2807.
- [123] G.A. Cran, C.L. Gibson, S. Handa, A.R. Kennedy, Tetrahedron: Asymmetry 1996, 7, 2511.
- [124] (a) P.L. Caradoc-Davies, L.R. Hanton, J. Chem. Soc., Dalton. Trans. 2003, 1754. (b) P.L. Caradoc-Davies, L.R. Hanton, J.M. Hodgkiss, M.D. Spicer, J. Chem. Soc., Dalton Trans. 2002, 1581. (c) A.L.E. Stoffels, W.G. Haanstra, W.L. Driessen, J. Reedijk, Angew. Chem. 1990, 102, 1454.
- [125] (a) L.R. Hanton, K. Lee, J. Chem. Soc., Dalton Trans. 2000, 1161. (b) C.-Y. Su, B.-S. Kang, J. Sun, Y.-X. Tonga, Z.-N. Chena, J. Chem. Research (S), 1997, 454.
- [126] Z.Honghui, W. Dingming, H. Jianquan, H. Jinling, Acta Phys.-Chim. Sin. 1996, 12, 761.
- [127] R.-F. Song, Y.-B. Xie, J.-R. Li, X.-H. Bu, Cryst. Eng. Comm. 2005, 7, 249.
- [128] Y.-B. Xiea, Z.-C. Mab, D. Wang, J. Mol. Struc. 2006, 784, 93.
- [129] C.R. Samanamu, P.M. Lococo, W.D. Woodul, A.F. Richards, Polyhedron 2008, 27, 1463.
- [130] C.-S. Lee, C.-Y. Wu, W.-S. Hwang, J. Dinda, Polyhedron 2006, 25, 1791.
- [131] A. Amoedo-Portelaa, R. Carballoa, J.S. Casas, E. Garcia-Martinez, C. Gomez-Alonsoa, A. Sanchez-Gonzalez, J. Sordo, E.M. Vazquez-Lopeza, Z. Anorg. Allg. Chem. 2002, 628, 939.
- [132] (a) P. Comba, A. Fath, T.W. Hambley, A. Vielfort, J. Chem. Soc., Dalton Trans. 1997, 1691.
 (b) P. Comba, A. Fath, T.W. Hambley, A. Kühner, D.T. Richens, A. Vielfort, Inorg. Chem. 1998, 37, 4389. (c) P. Comba, A. Fath, T.W. Hambley, D.T. Richens, Angew. Chem. 1995, 107, 2047. (d) P. Comba, A. Fath, G. Huttner, L. Zsolnai, J. Chem. Soc., Chem. Commun. 1996 1885.
- [133] G. Wei, G.A. Lawrance, D.T. Richens, T.W. Hambley, P. Turner, J. Chem. Soc., Dalton Trans. 1998, 623.
- [134] (a) V.M. Miskowski, J.A. Thich, R. Solomon, H.J. Schugar, J. Am. Chem. Soc. 1976, 98, 8344. (b) F. Teixidor, G. Sanchez-Castello, N. Lucena, L. Escriche, R. Kivekas, M. Sundberg, J. Casabo, Inorg. Chem. 1991, 30, 4931. (c) B. Turner, S. Swavey, Inorg. J. Chem. Soc., Chem. Commun. 2007, 10, 209. (d) D.A. Nation, J.H. Reibenspies, M.R. Taylor, K.P. Wainwright, Inorg. Chim. Acta 1997, 258, 161.
- [135] F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, London, 1992.
- [136] J.E. Huheey, E.A. Keiter, R.L. Keiter, *Inorganic Chemistry*, 4th ed., Harper Collins, New York, 1993.
- [137] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C.J. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
- [138] Y. Sugai, S. Fujii, T. Fujimoto, S. Yano, Y. Mikata, J. Chem. Soc., Dalton Trans. 2007, 3705.
- [139] Y. Nishida, K. Takahashi, Inorg. Chem. 1988, 27, 1406.

- [140] K.J. Tubbs, A.L. Fuller, B. Bennett, A.M. Arif, M.M. Makowska-Grzyska, L.M. Berreau, J. Chem. Soc., Dalton Trans. 2003, 3111.
- [141] M. Di Vaira, F. Mani, J. Chem. Soc., Dalton Trans. 1985, 2327.
- [142] V. Raab, J. Kipke, O. Burghaus, J. Sundermeyer, *Inorg. Chem.* 2001, 40, 6964.
- [143] (a) B. J. Hathaway, D.E. Billing, Coord. Chem. Rev. 1970, 5, 143. (b) Y. Sugiura, Inorg. Chem. 1978, 17, 2176. (c) M. Duggan, N. Ray, B. Hathaway, G. Tomlinson, P. Brint, K.J. Plein, J. Chem. Soc., Dalton Trans. 1980, 1342. (d) K.D. Karlin, J.C. Hayes, S. Juen, J.P. Hutchinson, J. Zubieta, Inorg. Chem. 1982, 21, 4108. (e) M. M. Massacesi, G. Ponticelli, J. Mol. Struc. 1980, 69, 165. (f) R. Barbuccu, M.J.M. Campbell, Inorg. Chim. Acta 1975, 15, L15.
- [144] J. Heinze, Angew. Chem. 1984, 96, 823.
- [145] H. Nagao, N. Komeda, M. Mukaida, M. Suzuki, K. Tanaka, Inorg. Chem. 1996, 35, 6809.
- [146] T. Osako, Y. Ueno, Y. Tachi, S. Itoh, *Inorg. Chem.* 2003, 42, 8087.
- [147] (a) M.J. Henson, M.A. Vance, C.-X. Zhang, H.-C. Liang, K.D. Karlin, E.I. Solomon, J. Am. Chem. Soc. 2003, 125, 5186. (b) S. Itoh, H. Nakao, L.M. Berreau, T. Kondo, M. Komatsu, S. Fukuzumi, J. Am. Chem. Soc. 1998, 120, 2890.
- [148] (a) M.G. Kanatzidis, W.R. Hagen, W.R. Dunham, R.K. Lester, D. Coucouvanis, J. Am. Chem. Soc. 1985, 107, 953. (b) I. Dance, K. Fisher, Prog. Inorg. Chem. 1994, 41, 637.
- [149] T. Kawamoto, M. Nishiwaki, M. Nishijima, K. Nozaki, A. Igashira-Kamiyama, T. Konno, *Chem. Eur. J.* 2008, 14, 9842.
- [150] Ausgewählte Beispiele: (a) R.T. Stibrany, R. Fikar, M. Brader, M.N. Potenza, J.A. Potenza, H.J. Schugar, Inorg. Chem. 2002, 41, 5203 (und Referenzen darin). (b) C.A. Dodds, M. Garner, J. Reglinski, M.D. Spicer, Inorg. Chem. 2006, 45, 2733. (c) H.J. Schugar, C.-C. Ou, J.A. Thigh, J.A. Potenza, T.R. Felthouse, M.S. Haddad, D.N. Hendrickson, W. Furey, JR., R.A. Lalancette, Inorg. Chem. 1980, 19, 543. (d) P.K. Bharadwaj, E. John, C.-L. Xie, D. Zhang, D.N. Hendrickson, J.A. Potenza, H.J. Schugar, Inorg. Chem. 1986, 25, 4541. (e) P.J.M.W.L. Birker, Inorg. Chem. 1979, 18, 3502. (f) M.L. Miller, S.A. Ibrahim, M.L. Golden, M.Y. Darensbourg, Inorg. Chem. 2003, 42, 2999. (g) S. Sukala, J.E Bradshaw, J. Hea, G.P.A. Yap, A.L. Rheingold, H.F. Kung, L.C. Francesconi, Polyhedron 1999, 18, 7. (h) Y. Agnus, R. Louis, R. Weiss, J. Chem. Soc., Chem. Commun. 1980, 867.
- [151] M.H.M. Olsson, U. Ryde, J. Am. Chem. Soc. 2001, 123, 7866.
- [152] Ausgewählte Beispiele: (a) M. Du, R.-Q. Zou, R.-Q. Zhong, X.-U. Qiang, Inorg. Chem. Commun. 2007, 10, 1437. (b) E. Lopez-Torres, M.A. Mendiola, C.J. Pastor, Inorg. Chem. 2006, 45, 3103. (c) Y. Bai, G.-J. He, Y.-G. Zhao, C.-Y. Duan, D.-B. Dang, Q.-J. Meng, J. Chem. Soc., Chem. Commun. 2006, 1530. (d) L.J. Ashfield, A.R. Cowley, J.R. Dilworth, P.S. Donnelly, Inorg. Chem. 2004, 43, 4121. (e) J.A. Garcia-Vazquez, J. Romero, A. Sousa-Pedrares, M.L. Louro, A. Sousa, J. Zubieta, J. Chem. Soc., Dalton Trans. 2000, 559. (f) C. Wycliff, A.G. Samuelson, M. Nethaji, Inorg. Chem. 1996, 35, 5427. (g) C. Wycliff, D.S. Bharathi, A.G. Samuelson, M. Nethaji, Polyhedron 1998, 18, 949. (h) S. Kitagawa, M. Munakata, H. Shimono, S. Matsuyama, J. Chem. Soc., Dalton Trans. 1990, 2105.
- [153] R.C. Luckay, X. Sheng, C.E. Strasser, H.G. Raubenheimer, D.A. Safin, M.G. Babashkina, A. Klein, J. Chem. Soc., Dalton Trans. 2009, 4646.
- [154] C.E. Slutter, I. Gromov, H. Richards, I. Pecht, D. Goldfarb, J. Am. Chem. Soc. 1999, 121, 5077.
- [155] G.N. Ledesma, D.H. Murgida, H.K. Ly, H. Wackerbarth, J. Ulstrup, A.J. Costa-Filho, A.J. Vila, J. Am. Chem. Soc. 2007, 129, 11884.
- [156] (a) P. Wittung-Stafshede, E. Gomez, A. Ohman, R.M. Villahermosa, J. Leckner, B.G. Karlsson,
 D. Sanders, J.A. Fee, J.R. Winkler, B.G. Malmström, H.B. Gray, M.G. Hill, *Biochim. Biophys.*

Acta 1998, 1388, 437. (b) P. Lappalainen, R. Aasa, B.G. Malmström, M. Saraste, J. Biol. Chem. 1993, 268, 26416.

- [157] D. Sun, X. Wang, V.L. Davidson, Arch. Biochem. Biophy. 2002, 404, 158.
- [158] T. Kawamoto, N. Ohkoshi, I. Nagasawa, H. Kuma, Y. Kushi, Chem. Lett. 1997, 553.
- [159] (a) J.R. Gispert, Coordination Chemistry, Wiley, Weinheim, 2008. (b) H. Taube, Science 1984, 226, 1028. (c) D.M. Brown, Mixed Valence Compounds, Springer, Niederlande, 1980.
- [160] M.B. Robin, P. Day, AdV. Inorg. Chem. Radiochem. 1967, 10, 247.
- [161] C. Creutz, Prog. Inorg. Chem. 1983, 30, 1.
- [162] (a) N.S. Hush, Prog. Inorg. Chem. 1967, 8, 391. (b) N.S. Hush, Electrochim. Acta 1968, 13, 1005. (c) N.S. Hush, Coord Chem. Rev. 1985, 64, 135.(d) N.S. Hush, Chem. Phys. 1989, 134, 323.(e) J.R. Reimers, N.S. Hush, Chem. Phys. 1989, 134, 323. (f) S.F. Nelsen, M D. Newton, J. Phys. Chem. A 2000, 104, 10023. (g) M.V. Basilevsky, I.V. Rostov. M.D. Newton, J. Electroanal. Chem. 1999, 465, 240. (h) M.D. Newton, R.J. Cave, Mol. Electron. 1997, 73.
- [163] (a) D.M. D'Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424. (b) B.S. Brunschwig,
 C. Creutz, N. Sutin Chem. Soc. Rev. 2002, 31, 168. (c) K.D. Demadis, C.M. Hartshorn, T.J.
 Meyer, Chem. Rev. 2001, 101, 2655. (d) S.F. Nelsen, Chem. Eur. J. 2000, 6, 581.
- [164] R.C. Rocha, F.N. Rein, H. Jude, A.P. Shreve, J.J. Concepcion, T.J. Meyer, Angew. Chem. 2008, 120, 513.
- [165] W. Kaim, G.K. Lahiri, Angew. Chem. 2007, 119, 1808.
- [166] A.W. Bott, Current Separations 1997, 16, 61. (c) P. Zanello, Inorganic electrochemistry: theory, practice and applications, Royal Society of Chemistry, 2002.
- [167] Ausgewählte Beispiele: (a) M. Dunaj-Jurco, G. Ondrejovic, M. Melnik, Coord. Chem. Rev. 1988, 83, 1. (b) R.C. Long, D.N.J. Hendrickson, J. Am. Chem. Soc. 1983, 105, 1513. (c) R.R. Gagne, C.A. Koval, T.J. Smith, M.C. Cimolino, J. Am. Chem. Soc. 1979, 101, 4571. (d) T.D. Westmoreland, D.E. Wilcox, M.J. Baldwin, W.B. Mims, E.I. Solomon, J. Am. Chem. Soc. 1989, 111, 6106. (e) R. Aasa, J. Deinum, K. Lerch, B. Reinhammar, Biochim. Biophys. Acta 1978, 535, 287. (f) R.P. Houser, W.B. Tolman, Inorg. Chem. 1995, 34, 1632. (g) Y.-H. Sun, J.-H. Yu X.-J. Jin, J.-F. Song, J.-Q. Xu, L. Ye, Inorg. Chem. Commun. 2006, 9, 1087. (h) R. Kawajiri, T. Okubo, T. Mitani, Polyhedron 2006, 25, 2650.
- [168] Ausgewählte Beispiele: (a) L. Yang, D.R. Powell, E.L. Klein, A. Grohmann, R.P. Houser, Inorg. Chem. 2007, 46, 6831 (und Referenzen darin).(b) S.B. Harkins, J.C. Peters, J. Am. Chem. Soc. 2004, 126, 2885. He, S.J. Lippard, J. Am. Chem. Soc. 2000, 122, 184. (c) R.L. Lieberman, K.C. Kondapalli, D.B. Shrestha, A.S. Hakemian, S.M. Smith, J. Telser, J. Kuzelka, R. Gupta, A.S. Borovik, S.J. Lippard, B.M. Hoffman, A.C. Rosenzweig, T.L. Stemmler, Inorg. Chem. 2006, 45, 8372. (d) D.D. LeCloux, R. Davydov, S.J. Lippard, J. Am. Chem. Soc. 1998, 120, 6810 (und Referenzen darin). (e) D.D. LeCloux, R. Davydov, S.J. Lippard, J. Am. Chem. Soc. 1998, 37, 6814. (f) C. Harding, V. McKee, J. Nelson, J. Am. Chem. Soc. 1991, 113, 9584. (g) M.E. Barr, P.H. Smith, W. Antholine, B. Spencer, J. Chem. Soc., Chem. Commun. 1993, 1649. (h) C. Harding, J. Nelson, M.C. Symons, J. Wyatt, J. Chem. Soc., Chem. Commun. 1994, 2499.
- [169] (a) E.I. Solomon, D.W. Randall, T. Glaser, *Coord. Chem. Rev.* 2002, 200-202, 595. (b) X. Xie,
 S.I. Gorelsky, R. Sarangi, D.K. Garner, H.J. Hwang, K.O. Hodgson, B. Hedman, Y. Lu, E.I.
 Solomon, J. Am. Chem. Soc. 2008, 130, 5194.
- (a) K.R. Williams, D.R. Gamelin, L.B. LaCroix, R.P. Houser, W.B. Tolman, T.C. Mulder, S. de Vries, B. Hedman, K.O. Hodgson, E.I. Solomon, J. Am. Chem. Soc. 1997, 119, 613.
- [171] A. Sujak, N.J.M. Sanghamitra, O. Maneg, B. Ludwig, S. Mazumdar, *Biophys J.* 2007, 93, 2845.
- [172] (a) S.-L. Ma, X.-X. Sun, S. Gao, C.-M. Qi, H.-B. Huang, W.-X. Zhu, *Eur. J. Inorg. Chem.* **2007**, 846 (und Referenzen darin). (b) J. Mrozinski, *Coord. Chem. Rev.* **2005**, 249, 2534.

- [173] (a) W.E. Hatfield, H.W. Richardson, J.R. Wasson, Inorg. Nucl. Chem. Lett. 1977, 13, 137. (b)
 Van H. Crawford, H.W. Richardson, J.R. Wasson, D.J. Hodgson, W.E. Hatfield, Inorg. Chem. 1976, 15, 2107. (c) P. Gomez-Saiz, J. Garcia-Tojal, V. Diez-Gomez, R. Gil-Garcia, J.L. Pizarro, M.I. Arriortua, T. Rojo, Inorg. Chem. Commun. 2005, 8, 259. (d) P. Gomez-Saiz, J. Garcia-Tojal, M. A. Maestro, J. Mahia, F.J. Arnaiz, L. Lezama, T. Rojo, Eur. J. Inorg. Chem. 2003, 2639. W.E. Hatfield, R.R. Weller, J.W. Hall, Inorg. Chem. 1980, 19, 3825.
- [174] (a) B. Bleaney, K.D. Bowers, Proc. Roy. Soc. London, Ser A 1952, 214, 451. (b) H. Lueken, Magnetochemie, Teubener Studienbücher, Stuttgart, 1999.
- [175] M.D. Janssen, J.G. Donkervoort, S.B. van Berlekom, A.L. Spek, D.M. Grove, G. van Koten, *Inorg. Chem.* 1996, 35, 4752.
- [176] D.M. Knotter, H.L. van Maanen, D.M. Grove, A.L. Spek, G. van Koten, *Inorg. Chem.* 1991, 30, 3309.
- [177] A.F. Stange, A. Klein, K.-W. Klinkhammer, W. Kaim, Inorg. Chim. Acta 2001, 324, 336.
- [178] (a) B.K. Maiti, K. Pal, S. Sarkar, J. Chem. Soc., Dalton Trans. 2008, 1003. (b) C.P. Rao, J.R. Dorfman, R.H. Holm, Inorg. Chem. 1986, 25, 428.
- [179] (a) F.D. Sokolov, M.G. Babashkina, D.A. Safin, A.I. Rakhmatullin, F. Fayon, N.G. Zabirov, M. Bolte, V.V. Brusko, J. Galezowskad, H. Kozlowskid, J. Chem. Soc., Dalton Trans. 2007, 4693.
 (b) I.G. Dance, L.J. Fitzpatrick, M.L. Scudder, J. Chem. Soc., Chem. Commun. 1983, 564.
- [180] (a) K. Fujisawa, S. Imai, N. Kitajima, Y. Moro-oka, *Inorg. Chem.* 1998, 37, 168. (b) M.J. Heeg,
 R.C. Elder, E. Deutsch, *Inorg. Chem.* 1979, 18, 2036. (c) R.H. Lane, N.S. Pantaleo, J.K. Farr,
 W.M. Coney, M.G. Newton, *J. Am. Chem. Soc.* 1978, 100, 1610.
- (a) T. Ottersen, L.G. Warner, K. Seff, *Inorg. Chem.* 1974, 13, 1904 (und Referenzen darin).
 (b) C.K.A. Gregson, N.J. Long, A.J.P. White, D.J. Williams, *Organometallics* 2004, 23, 3674.
- [182] (a) L.G. Warner, T. Ottersen, K. Seff, *Inorg. Chem.* 1974, 13, 2819. (b) P.M. Boorman, K.A. Kerr, R.A. Kydd, K.J. Moynihan, K.A. Valentine, J. Chem. Soc., Dalton Trans. 1982, 1401.
 (c) L.I. Kursheva, O.N. Kataeva, D.B. Krivolapov, E.S. Batyeva, O.G. Sinyashin, Heteroatom Chemistry 2006, 17, 542. (d) C.I. Bränden, Acta. Chem. Scand. 1967, 21, 1000.
- [183] S. Fox, R.T. Stibrany, J.A. Potenza, S. Knapp, H.J. Schugar, *Inorg. Chem.* 2000, 39, 4950.
- P.A. Stenson, A. Board, A. Marin-Becerra, A.J. Blake, E.S. Davies, C. Wilson, J. McMaster, M. Schröder, Chem. Eur. J. 2008, 14, 2564.
- [185] J. Leonard, B. Lygo, G. Procter, *Praxis der Organischen Chemie*, Wiley-VCH, Weinheim, **1996**.
- [186] Bruker, SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, 2002.
- [187] A.L. Spek, J. Appl. Cryst. 2003, 36, 7.
- [188] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Universität Utrecht, Niederlande, 2005.
- [189] (a) R.S. Nicholson, I. Shain, Anal. Chem. 1964, 36, 706. (b) R.S. Nicholson, Anal. Chem. 1966, 38, 1406.
- [190] Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
 J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
 Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
 H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
 Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. P. Hratchian, J.B. Cross, C.
 Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
 Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg,
 V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck,
 K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski,

B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, **2004**.

- [191] (a) A.D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 1988, 37, 785. (c) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
- [192] L. F. Lindoy, S. E. Livingstone, *Inorg. Chem.* **1968**, *7*, 1149.
- [193] H. Shimizu, K. Matsuo, T Kataoka, Chem. Pharm. Bull. 1984, 32, 4360.
- [194] A. Coutin, H.-R. von Tobel, G. Auerbach, Hel. Chim. Acta. 1980, 63, 1412.
- [195] J.C. Noveron, M.M. Olmstead, P.K. Mascharak, J. Am. Chem. Soc. 2001, 123, 3247.
- [196] (a) S. Hinterberger, O. Hofer, H. Greger, *Tetrahedron* 1994, 50, 6297. (b) D.R. Burfield, S.-N. Gan, R.H. Smithers, *J. Chem. Soc.*, *Perkin Trans.* 1977, 666.
- [197] (a) M. Fujita, M. Otsuka, Y. Suigura, J. Med. Chem. 1996, 39, 503. (b) R. Breitschuh, D. Seebach, Synthesis 1992, 1-2, 83.
- [198] W. Guo, J.J. Li, Y.A. Wang, X. Peng, J. Am. Chem. Soc. 2003, 125, 3901.
- [199] R.O. Clinton, U.J. Salvador, S.C. Laskowski, C.M. Suter, J. Am. Chem. Soc. 1948, 70, 950.
- [200] A.R. Amundsen, J. Whelan, B. Bosnich, J. Am. Chem. Soc. **1977**, 99, 6730.
- [201] B.S. Chhikara, A.K. Mishra, V.T. *Heterocycles* **2004**, *63*, 1057.
- [202] M.A. Reppy, M.E. Cooper, J.L. Smithers, D.L. Gin, J. Org. Chem. 1999, 64, 4191.
- [203] M. Formica, L. Giorgi, V. Fusi, M. Micheloni, R. Pontellini, *Polyhedron* 2002, 21, 1351.
- [204] G.W. Stacy, F.W. Villaescusa, T.E. Wollner, J. Org. Chem. 1965, 30, 4074.
- [205] T. Fritz, G. Steinfeld, B. Kersting, Z. Naturforsch. B 2007, 62, 508.
- [206] J. Kubas, *Inorganic Syntheses* **1990**, *28*, 68.
- [207] P. Hemmerich, C. Sigwart, *Experientia* **1963**, *19*, 488.
- [208] G.J. Kubas, B. Monzyk, A.L. Crumbliss, Inorg. Synth. 1979, 19, 90.
- [209] D. Coucouvanis, *Inorg. Synth.* **2002**, *33*, 75.

Anhang

	C1	C2
Strukturkennzeichen	n1489	n1612
Summenformel	$C_{15}H_{25}CuIN_3S$	$C_{11}H_{25}CuIN_3S$
Molmasse	$469.88 \mathrm{~g/mol}$	421.84 g/mol
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$
Gitterkonstanten $[Å]/[^{\circ}]$	a = 10.3659(4)	a = 11.300(3)
	$\mathrm{b} = 14.6557(6), eta = 99.909(1)$	$\mathrm{b} = 10.478(3), eta = 109.901(5)$
	c = 12.6983(5)	c = 15.146(4)
Volumen	1900.34(13) Å ³	$1686.1(8) \text{ Å}^3$
Z	4	4
Dichte (berechnet)	$1.642~\mathrm{Mg/m^3}$	$1.662~{ m Mg/m^3}$
Absorptionskoeffizient	2.881 mm^{-1}	3.236 mm^{-1}
F(000)	936	840
Kristallgröße	$0.42 \ge 0.34 \ge 0.25 \text{ mm}^3$	$0.38 \ge 0.37 \ge 0.24 \text{ mm}^3$
θ -Bereich	1.99 bis 27.88°	$1.92 \text{ bis } 27.88^{\circ}$
Indexbereich	$-13 \le h \le 13, -17 \le k \le 19, -17 \le l \le 18$	$-14 \le h \le 14, -13 \le k \le 13, -19 \le l \le 19$
Zahl der gemessenen Reflexe	17771	14422
Zahl der unabhängigen Reflexe	$4546 \; [{ m R(int)} = 0.0482]$	$4022 \; [{ m R(int)} = 0.1163]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.5328/0.3774	0.5105/0.3727
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$4546 \ / \ 0 \ / \ 190$	$4022 \ / \ 0 \ / \ 158$
Goodness-of-fit für F^2	1.056	0.991
R [I $>2\sigma(I)$]	0.0368	0.0389
wR2 (sämtl. Daten)	0.0933	0.0917
$Restelektronendichte \; (Max./Min.)$	$1.402/-0.908 \text{ e.Å}^{-3}$	$1.329/\text{-}1.342~ ext{e.} ext{Å}^{-3}$

Tabelle A.1: Kristalldaten und Strukturverfeinerung der Verbindungen C1 und C2.

	C3	C4
Strukturkennzeichen	n1433	b1774
Summenformel	$C_{26.67}H_{30.01}CuIN_{3.34}S$	$\mathrm{C}_{22}\mathrm{H}_{46}\mathrm{CuF}_{6}\mathrm{N}_{6}\mathrm{PS}_{2}$
Molmasse	$619.88 \mathrm{~g/mol}$	$667.28 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	P2/c	$P2_1/n$
Gitterkonstanten [Å]/[°]	a = 19.8882(14)	a = 12.800(2)
	$b = 16.7857(11) \ , \ \beta = 116.167(2)$	$b = 18.449(3), \beta = 96.154(4)$
	c = 17.1899(11)	c = 13.472(2)
Volumen	$5150.5(6) \text{ Å}^3$	3162.9(9) Å ³
Z	8	4
Dichte (berechnet)	$1.599~{ m Mg/m^3}$	$1.401~{ m Mg/m^3}$
Absorptionskoeffizient	2.149 mm^{-1}	0.931 mm^{-1}
F(000)	2491	1400
Kristallgröße	$0.32 \ge 0.08 \ge 0.08 \text{ mm}^3$	$0.41 \ge 0.29 \ge 0.10 \text{ mm}^3$
θ -Bereich	$1.67 \text{ bis } 28.08^{\circ}$	$1.88 \text{ bis } 27.88^{\circ}$
Indexbereich	$-26 \le h \le 26, -22 \le k \le 22, -21 \le l \le 22$	$-16 \le h \le 16, -23 \le k \le 24, -17 \le l \le 17$
Zahl der gemessenen Reflexe	25859	27842
Zahl der unabhängigen Reflexe	$6269 \; [{ m R(int)} = 0.1169]$	$7545 \; [{ m R(int)} = 0.0754]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8469/0.5464	0.9126/0.7014
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
-	für F^2	für F^2
Reflexe/Restraints/Variable	$6269 \;/\; 0 \;/\; 308$	$7545 \;/\; 120 \;/\; 347$
Goodness-of-fit für F^2	0.997	1.066
R $[I > 2\sigma(I)]$	0.0489	0.0668
wR2 (sämtl. Daten)	0.0720	0.1966
Restelektronendichte (Max./Min.)	$0.705/-0.718~{\rm e.\AA^{-3}}$	$1.028/-0.818 \; e.{ m \AA}^{-3}$

Tabelle A.2: Kristalldaten und Strukturverfeinerung der Verbindungen C3 und C4.

	C5	C6
Strukturkennzeichen	b1781	n1391
Summenformel	$C_{15}H_{23}Cl_2CuN_3S$	$\mathrm{C}_{24}\mathrm{H}_{38}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	411.86 g/mol	$855.60 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Triklin
Raumgruppe	$P2_1/c$	ΡĪ
Gitterkonstanten $[Å]/[^{\circ}]$	a = 13.4855(19)	$\mathrm{a}=8.0031(4), lpha=93.564(1)$
	$\mathrm{b}=8.5936(12),eta=90.303(3)$	$b = 9.7538(5), \beta = 110.014(5)$
	c = 16.202(2)	$\mathrm{c} = 11.3330(6), \gamma = 108.456(1)$
Volumen	1900.34(13) Å ³	$773.92(7) \text{ Å}^3$
Z	4	1
Dichte (berechnet)	$1.457 \mathrm{~Mg/m^3}$	$1.836~{ m Mg/m^3}$
Absorptionskoeffizient	1.558 mm^{-1}	3.528 mm^{-1}
F(000)	852	420
Kristallgröße	$0.30 \ge 0.22 \ge 0.16 \text{ mm}^3$	$0.38 \ge 0.35 \ge 0.28 \text{ mm}^3$
θ -Bereich	$1.51 \text{ bis } 27.88^{\circ}$	$1.95 \text{ bis } 28.08^{\circ}$
Indexbereich	$-17 \le h \le 17, -11 \le k \le 11, -21 \le l \le 19$	$-10 \le h \le 10, -12 \le k \le 12, -14 \le l \le 14$
Zahl der gemessenen Reflexe	16109	7582
Zahl der unabhängigen Reflexe	$4460 \; [{ m R(int)} = 0.0217]$	$3686 \; [{ m R(int)} = 0.0128]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.7886/0.6522	0.4383/0.3475
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
-	für F^2	für F^2
Reflexe/Restraints/Variable	4460 / 0 / 201	$3686 \;/\; 0 \;/\; 168$
Goodness-of-fit für F^2	1.032	1.062
R $[I > 2\sigma(I)]$	0.0246	0.0176
wR2 (sämtl. Daten)	0.0668	0.0441
$Restelektronendichte \; (Max./Min.)$	$0.380/\text{-}0.202~\text{e}.\text{\AA}^{-3}$	$0.488/\text{-}0.303~\text{e}.\text{\AA}^{-3}$

Tabelle A.3: Kristalldaten und Strukturverfeinerung der Verbindungen C5 und C6.

	C7	C8
Strukturkennzeichen	n1389	n1567
Summenformel	$\mathrm{C}_{24}\mathrm{H}_{34}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$	$\mathrm{C}_{26}\mathrm{H}_{42}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$851.58 \mathrm{g/mol}$	$883.66~{\rm g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Triklin
Raumgruppe	$P2_1/c$	ΡĪ
Gitterkonstanten $[Å]/[^{\circ}]$	a = 9.9462(6)	$\mathrm{a}=8.2979(10), lpha=105.348(2)$
	$\mathrm{b}=8.5936(12),eta=109.085(1)$	$b = 10.0774(12), \beta = 102.983(2)$
	c = 16.202(2)	$c = 10.7387(12), \gamma = 101.378(2)$
Volumen	1900.34(13) Å ³	811.71(16) Å ³
Z	2	1
Dichte (berechnet)	$1.912 \mathrm{~Mg/m^3}$	$1.808~{ m Mg/m^3}$
Absorptionskoeffizient	3.691 mm^{-1}	3.367 mm^{-1}
F(000)	852	420
Kristallgröße	$0.22 \ge 0.18 \ge 0.04 \text{ mm}^3$	$0.47 \ge 0.33 \ge 0.28 \text{ mm}^3$
θ -Bereich	2.03 bis 28.08°	$2.06 \text{ bis } 27.48^{\circ}$
Indexbereich	$-13 \le h \le 12, -26 \le k \le 26, -10 \le l \le 10$	$-10 \le h \le 10, -13 \le k \le 13, -13 \le l \le 13$
Zahl der gemessenen Reflexe	14776	6743
Zahl der unabhängigen Reflexe	$3588 \; [{ m R(int)} = 0.0424]$	$3682 \; [{ m R(int)} = 0.0177]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8664/0.4937	0.4524/0.3006
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F ²
Reflexe/Restraints/Variable	$3588 \;/\; 0 \;/\; 163$	$3682 \ / \ 0 \ / \ 177$
Goodness-of-fit für F^2	1.050	1.065
R $[I > 2\sigma(I)]$	0.0312	0.0234
wR2 (sämtl. Daten)	0.0693	0.0609
Restelektronendichte~(Max./Min.)	$0.788/\text{-}0.527~\text{e}.\text{\AA}^{-3}$	$1.099/\text{-}0.763 \text{ e.}\text{\AA}^{-3}$

Tabelle A.4: Kristalldaten und Strukturverfeinerung der Verbindungen C7 und C8.

	C9	C10
Strukturkennzeichen	n1566	n1485
Summenformel	$\mathrm{C}_{28}\mathrm{H}_{41}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{7}\mathrm{S}_{2}$	$\mathrm{C}_{30}\mathrm{H}_{46}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$920.68 \mathrm{~g/mol}$	$935.73~\mathrm{g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	$P2_1/n$
Gitterkonstanten [Å]/[°]	$\mathrm{a}=9.924(8), lpha=98.573(14)$	a = 9.554(1)
	$\mathrm{b} = 13.348(10), eta = 90.109(14)$	$b = 14.4611(15), \beta = 103.658(2)$
	$\mathrm{c} = 13.484(1), \gamma = 100.499(14)$	c = 13.4457(14)
Volumen	$1736(2) \text{ Å}^3$	$1805.1(3) \text{ Å}^3$
Z	2	2
Dichte (berechnet)	$1.761~{ m Mg/m^3}$	$1.783~{ m Mg/m^3}$
Absorptionskoeffizient	3.153 mm^{-1}	3.017 mm^{-1}
F(000)	908	960
Kristallgröße	$0.27 \ge 0.26 \ge 0.22 \text{ mm}^3$	$0.49 \ge 0.40 \ge 0.36 \text{ mm}^3$
θ -Bereich	$1.53 \text{ bis } 27.48^{\circ}$	2.22 bis 27.88°
Indexbereich	$-12 \le h \le 12, -17 \le k \le 16, -17 \le l \le 17$	$-11 \le h \le 12, -24 \le k \le 24, -14 \le l \le 14$
Zahl der gemessenen Reflexe	14861	15704
Zahl der unabhängigen Reflexe	$7908 \; [{ m R(int)} = 0.0169]$	$4331 \; [{ m R(int)} = 0.1748]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.5438/0.4831	0.4097/0.3195
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$7908 \; / \; 0 \; / \; 375$	4331 / 0 / 210
Goodness-of-fit für F^2	1.096	1.256
R $[I > 2\sigma(I)]$	0.0222	0.1186
wR2 (sämtl. Daten)	0.0620	0.2758
Restelektronendichte (Max./Min.)	$0.451/\text{-}0.533 \text{ e.}\mathrm{\AA}^{-3}$	$2.770/\text{-}3.277~\text{e}.\text{\AA}^{-3}$

Tabelle A.5: Kristalldaten und Strukturverfeinerung der Verbindungen C9 und C10.

	C11	C12
Strukturkennzeichen	n1677	n1681
Summenformel	$\mathrm{C}_{34}\mathrm{H}_{42}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$	$\mathrm{C}_{34}\mathrm{H}_{38}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$979.74 \mathrm{~g/mol}$	$975.70 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$P2_1/n$	P2/n
Gitterkonstanten [Å]/[°]	a = 10.6839(19)	a = 9.321(8)
	$\mathrm{b} = 16.008(3), eta = 99.642(4)$	$b = 18.379(15), \beta = 98.671(17)$
	c = 11.008(2)	c = 13.4457(14)
Volumen	$1856.0(6) \text{ Å}^3$	$1817(3) \text{ Å}^3$
Z	2	2
Dichte (berechnet)	$1.753~\mathrm{Mg/m^3}$	$1.783~{ m Mg/m^3}$
Absorptionskoeffizient	2.955 mm^{-1}	3.017 mm^{-1}
F(000)	968	960
Kristallgröße	$0.50 \ge 0.20 \ge 0.16 \text{ mm}^3$	$0.49 \ge 0.40 \ge 0.36 \text{ mm}^3$
θ -Bereich	2.27 bis 27.88°	$2.22 \text{ bis } 27.88^{\circ}$
Indexbereich	$-13 \le h \le 14, -21 \le k \le 21, -14 \le l \le 14$	$-11 \le h \le 12, -24 \le k \le 24, -14 \le l \le 14$
Zahl der gemessenen Reflexe	15873	15704
Zahl der unabhängigen Reflexe	$4420 \; [{ m R(int)} = 0.0223]$	$4331 [{ m R(int)} = 0.1748]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.6493/0.3197	0.4097/0.3195
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
-	für F^2	für F^2
Reflexe/Restraints/Variable	$4420 \ / \ 0 \ / \ 209$	4331 / 0 / 210
Goodness-of-fit für F^2	1.048	1.256
R $[I > 2\sigma(I)]$	0.0201	0.1186
wR2 (sämtl. Daten)	0.0497	0.2758
Restelektronendichte~(Max./Min.)	$0.578/\text{-}0.397 \text{ e.}\text{\AA}^{-3}$	$2.770/\text{-}3.277 \text{ e.}\text{\AA}^{-3}$

Tabelle A.6: Kristalldaten und Strukturverfeinerung der Verbindungen C11 und C12.

	C13	C14
Strukturkennzeichen	b1566	n1768
Summenformel	$\mathrm{C}_{34}\mathrm{H}_{38}\mathrm{Cu}_{2}\mathrm{Cl}_{2}\mathrm{N}_{7}\mathrm{S}_{2}$	$\mathrm{C}_{34}\mathrm{H}_{38}\mathrm{Br}_{2}\mathrm{Cu}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$792.80 \mathrm{~g/mol}$	881.72 g/mol
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Triklin
Raumgruppe	ΡĪ	ΡĪ
Gitterkonstanten [Å]/[°]	$\mathrm{a}=9.3819(13), lpha=88.839(3)$	$\mathrm{a}=9.5070(15),lpha=82.434(5)$
	$\mathrm{b} = 10.0749(14), eta = 63.636(2)$	$\mathrm{b} = 10.1607(16), eta = 62.609(3)$
	$\mathrm{c} = 10.1358(14), \gamma = 80.259(3)$	$\mathrm{c} = 10.310(2), \gamma = 78.735(3)$
Volumen	844.4(2) Å ³	$866.2(3) \text{ Å}^3$
Z	1	1
Dichte (berechnet)	$1.559~{ m Mg/m^3}$	$1.690~{ m Mg/m^3}$
Absorptionskoeffizient	1.577 mm^{-1}	3.689 mm^{-1}
F(000)	408	444
Kristallgröße	$0.48 \ge 0.22 \ge 0.21 \text{ mm}^3$	$0.37 \ge 0.18 \ge 0.13 \text{ mm}^3$
θ -Bereich	$2.05 \text{ bis } 27.10^{\circ}$	$2.05 \text{ bis } 27.88^{\circ}$
Indexbereich	$-12 \le h \le 11, -12 \le k \le 12, -12 \le l \le 12$	$-12 \le h \le 12, -13 \le k \le 13, -13 \le l \le 13$
Zahl der gemessenen Reflexe	6993	7670
Zahl der unabhängigen Reflexe	$3676 \; [{ m R(int)} = 0.0153]$	$4100 \; [{ m R(int)} = 0.0237]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.7331/0.5813	0.6456/0.3422
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$3676 \ / \ 0 \ / \ 210$	4100 / 0 / 210
Goodness-of-fit für ${\rm F}^2$	1.047	1.007
R [I $\!>\!\!2\sigma(\mathrm{I})]$	0.0251	0.0303
wR2 (sämtl. Daten)	0.0693	0.0844
$Restelektronendichte \; (Max./Min.)$	0.373/-0.221 e.Å ⁻³	$0.535/\text{-}0.363~\mathrm{e}.\mathrm{\AA}^{-3}$

Tabelle A.7: Kristalldaten und Strukturverfeinerung der Verbindungen C13 und C14.

	C15	C16
Strukturkennzeichen	n1421	n1388
Summenformel	$C_{36}H_{46}Cu_2I_2N_6S_2$	$\mathrm{C}_{36}\mathrm{H}_{42}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$1007.79 \mathrm{~g/mol}$	$1003.76 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	m C2/c
Gitterkonstanten $[Å]/[\circ]$	$\mathrm{a}=8.5832(4), lpha=84.189(1)$	a = 22.4182(9)
	$b = 10.6939(6), \beta = 73.728(1)$	$b = 13.4900(6), \beta = 119.728(1)$
	$\mathrm{c} = 11.3763(6), \gamma = 80.304(1)$	c = 14.7004(6)
Volumen	986.45(9) Å ³	$3860.6(3) \text{ Å}^3$
Z	1	4
Dichte (berechnet)	$1.559~{ m Mg/m^3}$	$1.727~\mathrm{Mg/m^3}$
Absorptionskoeffizient	1.696 mm^{-1}	2.854 mm^{-1}
F(000)	500	1984
Kristallgröße	$0.47 \ge 0.45 \ge 0.28 \text{ mm}^3$	$0.40 \ge 0.28 \ge 0.20 \text{ mm}^3$
θ -Bereich	$1.87 \text{ bis } 27.68^{\circ}$	$1.84 \text{ bis } 28.08^{\circ}$
Indexbereich	$-10 \le h \le 11, -13 \le k \le 13, -12 \le l \le 14$	$-17 \le h \le 29, -17 \le k \le 17, -19 \le l \le 19$
Zahl der gemessenen Reflexe	8646	19084
Zahl der unabhängigen Reflexe	$4554 \; [{ m R(int)} = 0.0145]$	$4667 \; [{ m R(int)} = 0.0244]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.5097/0.3547	0.6000/0.3957
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$4554 \;/\; 0 \;/\; 217$	$4667 \;/\; 0 \;/\; 217$
Goodness-of-fit für F^2	1.088	1.034
R $[I > 2\sigma(I)]$	0.0188	0.0227
wR2 (sämtl. Daten)	0.0494	0.0569
Restelektronendichte~(Max./Min.)	$0.638/\text{-}0.523 \text{ e.}\mathrm{\AA}^{-3}$	$0.708/\text{-}0.272 \; \text{e.}\text{\AA}^{-3}$

Tabelle A.8: Kristalldaten und Strukturverfeinerung der Verbindungen C15 und C16.

	C17	C18
Strukturkennzeichen	n1569	n1451
Summenformel	$\mathrm{C_{18}H_{38}Cu_2I_2N_6S_2}$	$\mathrm{C}_{34}\mathrm{H}_{38}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$783.54 \mathrm{~g/mol}$	$975.70~\mathrm{g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Triklin
Raumgruppe	$P2_1/c$	ΡĪ
Gitterkonstanten [Å]/[°]	a = 18.6523(12)	$a = 8.417(2), \alpha = 114.406(4)$
	$\mathrm{b}=17.749(2),eta=100.425(3)$	$\mathrm{b}=9.665(2),eta=91.769(5)$
	${ m c}=8.9930(12)$	$\mathrm{c} = 10.958(3), \gamma = 105.675(5)$
Volumen	$1358.3(3) \text{ Å}^3$	771.2(3) Å ³
Z	2	1
Dichte (berechnet)	$1.916 \mathrm{~Mg/m^3}$	$1.808~{ m Mg/m^3}$
Absorptionskoeffizient	4.010 mm^{-1}	3.538 mm^{-1}
F(000)	768	416
Kristallgröße	$0.43 \ge 0.37 \ge 0.35 \text{ mm}^3$	$0.33 \ge 0.18 \ge 0.03 \text{ mm}^3$
θ -Bereich	2.29 bis 27.87°	$2.07 \text{ bis } 27.48^{\circ}$
Indexbereich	$-11 \le h \le 10, -23 \le k \le 23, -11 \le l \le 11$	$-10 \le h \le 9, -12 \le k \le 12, -14 \le l \le 14$
Zahl der gemessenen Reflexe	10781	6935
Zahl der unabhängigen Reflexe	$3234 \; [{ m R(int)} = 0.0224]$	$3485 \; [{ m R(int)} = 0.0714]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.3343/0.2775	0.9013/0.3881
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$3234\ /\ 0\ /\ 138$	$3485 \;/\; 0 \;/\; 154$
Goodness-of-fit für F^2	1.112	0.920
R [I $>2\sigma(I)$]	0.0199	0.1004
wR2 (sämtl. Daten)	0.0471	0.3301
Restelektronendichte~(Max./Min.)	$0.538/\text{-}0.346~\mathrm{e.\AA^{-3}}$	$6.215/-2.478 \text{ e.}\text{\AA}^{-3}$

Tabelle A.9: Kristalldaten und Strukturverfeinerung der Verbindungen C17 und C18.

	C19	C20
Strukturkennzeichen	n1516	n1416
Summenformel	$\mathrm{C}_{52}\mathrm{H}_{62}\mathrm{Cu}_{2}\mathrm{I}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$	$C_{32}H_{76}Cu_4I_4N_{12}S_4$
Molmasse	$1216.08 \mathrm{~g/mol}$	$1519.05 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	$P2_1/c$
Gitterkonstanten $[Å]/[^{\circ}]$	$\mathrm{a}=9.6247(12), lpha=93.202(3)$	a = 21.9905(15)
	$b = 10.6946(13), \beta = 108.506(2)$	$b = 7.2798(5), \beta = 109.099(1)$
	$\mathrm{c} = 13.0014(16), \gamma = 93.695(2)$	c = 17.6868(12)
Volumen	$1262.3(3) Å^3$	2675.6(3) Å ³
Z	1	2
Dichte (berechnet)	$1.600 \mathrm{~Mg/m^3}$	$1.886 \ \mathrm{Mg/m^3}$
Absorptionskoeffizient	2.190 mm^{-1}	4.068 mm^{-1}
F(000)	612	1488
Kristallgröße	$0.46 \ge 0.40 \ge 0.20 \text{ mm}^3$	$0.34 \ge 0.03 \ge 0.02 \text{ mm}^3$
θ -Bereich	$1.66 \text{ bis } 23.26^{\circ}$	$2.31 \text{ bis } 28.08^{\circ}$
Indexbereich	$-10 \le h \le 10, -11 \le k \le 11, -14 \le l \le 14$	$-29 \le h \le 28, -9 \le k \le 9, -23 \le l \le 21$
Zahl der gemessenen Reflexe	7593	25956
Zahl der unabhängigen Reflexe	$3607 \; [{ m R(int)} = 0.0166]$	$6492 \; [{ m R(int)} = 0.0726]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.6686/0.4324	0.9231/0.3384
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
-	für F^2	für F^2
Reflexe/Restraints/Variable	$3607 \ / \ 0 \ / \ 289$	$6492 \;/\; 0 \;/\; 253$
Goodness-of-fit für F^2	1.160	1.044
R [I $>2\sigma(I)$]	0.0193	0.0446
wR2 (sämtl. Daten)	0.0656	0.0824
Restelektronendichte (Max./Min.)	$0.274/\text{-}0.324~\text{e}.\text{\AA}^{-3}$	$0.914/-0.866~{ m e.\AA^{-3}}$

 $\label{eq:tabelle} \textbf{Tabelle A.10: Kristalldaten und Strukturverfeinerung der Verbindungen C19 und C20.$

	C21	C22
Strukturkennzeichen	n1412	n1570
Summenformel	$\mathrm{C_{16}H_{34}Cu_2I_2N_6S_2}$	$C_9H_{21}CuIN_3S$
Molmasse	$755.49 \mathrm{~g/mol}$	$393.79~\mathrm{g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$P2_1/n$	$P2_1/n$
Gitterkonstanten [Å]/[°]	a = 12.8738(6)	a = 13.149(4)
	$\mathrm{b}=7.1809(4),eta=98.657(1)$	${ m b}=7.199(2),eta=93.728(5)$
	m c = 14.0659(7)	c = 14.988(4)
Volumen	$1285.51(11) \text{ Å}^3$	$1415.7(7) \text{ Å}^3$
Z	2	4
Dichte (berechnet)	$1.952~{ m Mg/m^3}$	$1.848~{ m Mg/m^3}$
Absorptionskoeffizient	4.233 mm^{-1}	3.848 mm^{-1}
F(000)	736	776
Kristallgröße	$0.40 \ge 0.39 \ge 0.36 \text{ mm}^3$	$0.48 \ge 0.08 \ge 0.07 \text{ mm}^3$
θ -Bereich	$2.00 \text{ bis } 28.08^{\circ}$	$2.00 \text{ bis } 27.88^{\circ}$
Indexbereich	$-17 \le h \le 17, -9 \le k \le 9, -18 \le l \le 18$	$-16 \le h \le 17, -9 \le k \le 9, -19 \le l \le 19$
Zahl der gemessenen Reflexe	12284	11881
Zahl der unabhängigen Reflexe	$3107 \; [{ m R(int)} = 0.0227]$	$3375 \; [{ m R(int)} = 0.0329]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.3110/0.2823	0.7745/0.2596
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$3107 \;/\; 0 \;/\; 128$	$3375 \;/\; 0 \;/\; 141$
Goodness-of-fit für F^2	1.108	1.084
R [I $>2\sigma(I)$]	0.0199	0.0229
wR2 (sämtl. Daten)	0.0500	0.0555
Restelektronendichte~(Max./Min.)	$0.566/-0.642~{ m e.\AA^{-3}}$	$0.598/\text{-}0.560~\text{e}.\text{\AA}^{-3}$

 $\label{eq:tabelle} \textbf{Tabelle A.11:} \ \text{Kristalldaten und Strukturverfeinerung der Verbindungen C21 und C22}.$

	C23	C24
Strukturkennzeichen	n1428	n1372
Summenformel	$\mathrm{C_{18}H_{38}Cu_6I_6N_6S_2}$	$C_{17}H_{22}CuIN_4S$
Molmasse	$1545.30~\mathrm{g/mol}$	$504.89 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	$P2_1/n$
Gitterkonstanten [Å]/[°]	$\mathrm{a}=7.4671(4), lpha=88.260(1)$	a = 15.6696(8)
	$\mathrm{b} = 10.8704(6), eta = 86.739(1)$	$\mathrm{b}=7.7449(4),eta=106.857(1)$
	$\mathrm{c} = 11.3583(7), \gamma = 79.951(1)$	c = 16.2910(9)
Volumen	906.15(9) Å ³	1892.12(17) Å ³
Z	1	4
Dichte (berechnet)	$2.832~\mathrm{Mg/m^3}$	$1.772~{ m Mg/m^3}$
Absorptionskoeffizient	8.704 mm^{-1}	2.902 mm^{-1}
F(000)	712	1000
Kristallgröße	$0.40 \ge 0.32 \ge 0.23 \text{ mm}^3$	$0.42 \ge 0.40 \ge 0.40 \text{ mm}^3$
θ -Bereich	$1.80 \text{ bis } 28.08^{\circ}$	$1.59 \text{ bis } 28.08^{\circ}$
Indexbereich	$-9 \le h \le 9, -14 \le k \le 13, -15 \le l \le 14$	$-20 \le h \le 20, -10 \le k \le 10, -21 \le l \le 21$
Zahl der gemessenen	8235	17512
Zahl der unabhängigen Reflexe	$4330 \; [{ m R(int)} = 0.0182]$	$4595 \; [{ m R(int)} = 0.0212]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.2394/0.1284	0.3898/0.3753
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	4330 / 0 / 178	$4595 \;/\; 0 \;/\; 218$
Goodness-of-fit für ${\rm F}^2$	1.011	1.058
R $[I > 2\sigma(I)]$	0.0236	0.0192
wR2 (sämtl. Daten)	0.0865	0.0476
$Restelektronendichte \; (Max./Min.)$	$0.935/\text{-}0.947 \text{ e.}\mathrm{\AA^{-3}}$	$0.511/\text{-}0.529 \text{ e.}\text{\AA}^{-3}$

 $\label{eq:tabelle} \textbf{Tabelle A.12:} \ \text{Kristalldaten und Strukturverfeinerung der Verbindungen C23 und C24}.$

	C25	C26
Strukturkennzeichen	n1381	n1396
Summenformel	$C_{17}H_{20}CuIN_4S$	$C_{18}H_{28}CuIN_6S$
Molmasse	$502.87 \mathrm{~g/mol}$	$550.96 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Orthorhombisch
Raumgruppe	ΡĪ	$P2_{1}2_{1}2_{1}$
Gitterkonstanten [Å]/[°]	$\mathrm{a}=7.960(2), lpha=98.959(6)$	a = 8.0905(4)
	$\mathrm{b}=9.391(3),eta=93.375(6)$	b = 9.3901(5)
	$\mathrm{c} = 13.012(4), \gamma = 107.674(6)$	c = 28.9632(14)
Volumen	909.5(5) Å ³	2200.35(19) Å ³
Z	2	4
Dichte (berechnet)	$1.836 \mathrm{~Mg/m^3}$	$1.663~{ m Mg/m^3}$
Absorptionskoeffizient	3.019 mm^{-1}	2.506 mm^{-1}
F(000)	496	1104
Kristallgröße	$0.48 \ge 0.06 \ge 0.04 \text{ mm}^3$	$0.41 \ge 0.39 \ge 0.34 \text{ mm}^3$
θ -Bereich	$1.59 \text{ bis } 27.10^{\circ}$	$2.28 \text{ bis } 28.08^{\circ}$
Indexbereich	$-10 \le h \le 10, -11 \le k \le 12, -16 \le l \le 16$	$-10 \le h \le 10, -12 \le k \le 12, -35 \le l \le 38$
Zahl der gemessenen	6566	22150
Zahl der unabhängigen Reflexe	$3818 \; [{ m R(int)} = 0.0657]$	$5351 \; [{ m R(int)} = 0.0361]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8888/0.3252	0.4829/0.4265
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate für F^2	Volle Matrix, kleinste Quadrate für F^2
Reflexe/Restraints/Variable	3818 / 0 / 217	5351 / 0 / 244
$Goodness-of-fit für F^2$	1.092	1.060
$B \left[I > 2\sigma(I)\right]$	0.0588	0.0268
wR2 (sämtl. Daten)	0.1506	0.0598
Restelektronendichte (Max./Min.)	$1.099/-0.929 \text{ e.Å}^{-3}$	$0.953/-0.330 \text{ e.}\text{\AA}^{-3}$

 $\label{eq:tabelle} \textbf{Tabelle A.13:} \ \text{Kristalldaten und Strukturverfeinerung der Verbindungen C25 und C26}.$

	C27	C28
Strukturkennzeichen	n1536	n1523
Summenformel	$C_{22}H_{32}CuIN_6S$	$C_{14}H_{28}CuIN_6S$
Molmasse	603.04 g/mol	$502.92 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Orthorhombisch
Raumgruppe	$P2_1/n$	Pbca
Gitterkonstanten [Å]/[°]	a = 10.6959(13)	a = 15.5003(17)
	$\mathrm{b}=18.917(2),eta=109.824(3)$	b = 15.5789(17)
	c = 13.1979(18)	c = 15.8290(18)
Volumen	2512.2(6) Å ³	3822.3(7) Å ³
Z	4	8
Dichte (berechnet)	$1.594 \mathrm{~Mg/m^3}$	$1.745~\mathrm{Mg/m^3}$
Absorptionskoeffizient	2.202 mm^{-1}	2.875 mm^{-1}
F(000)	1216	2016
Kristallgröße	$0.47 \ge 0.23 \ge 0.16 \text{ mm}^3$	$0.35 \ge 0.30 \ge 0.23 \text{ mm}^3$
θ -Bereich	1.96 bis 27.88°	2.26 bis 23.29°
Indexbereich	$-14 \le h \le 13, -24 \le k \le 24, -15 \le l \le 17$	$-16 \le h \le 17, -17 \le k \le 12, -17 \le l \le 17$
Zahl der gemessenen	20575	20219
Zahl der unabhängigen Reflexe	$5978 \; [{ m R(int)} = 0.0295]$	$2763 \; [{ m R(int)} = 0.0248]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.7195/0.4242	0.5576/0.4327
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate für F^2	Volle Matrix, kleinste Quadrate für F^2
Reflexe/Restraints/Variable	5978 / 0 / 288	2763 / 0 / 212
$Goodness-of-fit für F^2$	1 054	1 044
$B \left[I > 2\sigma(I)\right]$	0.0295	0.0188
wR2 (sämtl. Daten)	0.0696	0.0478
Restelektronendichte (Max./Min.)	$0.997/-0.480 \text{ e.}\text{\AA}^{-3}$	$0.344/-0.280 \text{ e.}\text{\AA}^{-3}$

Tabelle A.14: Kristalldaten und Strukturverfeinerung der Verbindungen C27 und C28.

	C29	C30
Strukturkennzeichen	n1379	n1375
Summenformel	$\mathrm{C}_{34}\mathrm{H}_{40}\mathrm{Cu}_{4}\mathrm{I}_{4}\mathrm{N}_{8}\mathrm{S}_{2}$	$\mathrm{C_{17}H_{20}Cu_2I_2N_4S}$
Molmasse	$1386.62 \mathrm{~g/mol}$	$693.31 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	Cc	Pbca
Gitterkonstanten [Å]/[°]	${ m a}=24.740(3)$	${ m a}=14.6811(9)$
	$\mathrm{b}=9.3959(10),eta=94.900(3)$	$\mathrm{b} = 13.5626(8), eta = 108.416(1)$
	c = 17.877(2)	c = 11.1700(7)
Volumen	$4140.4(8) \text{ Å}^3$	$2110.2(2) \text{ Å}^3$
Z	4	4
Dichte (berechnet)	$2.224~\mathrm{Mg/m^3}$	$2.182~\mathrm{Mg/m^3}$
Absorptionskoeffizient	5.147 mm^{-1}	5.049 mm^{-1}
F(000)	2640	1320
Kristallgröße	$0.13 \ge 0.02 \ge 0.02 \text{ mm}^3$	$0.25 \ge 0.20 \ge 0.18 \text{ mm}^3$
θ -Bereich	$1.65 \text{ bis } 28.08^{\circ}$	$2.92 \text{ bis } 28.08^{\circ}$
Indexbereich	$-32 \le h \le 32, -12 \le k \le 12, -22 \le l \le 23$	$-19 \le h \le 19, -17 \le k \le 17, -14 \le l \le 14$
Zahl der gemessenen	20603	10343
Zahl der unabhängigen Reflexe	$5050 \; [{ m R(int)} = 0.1484]$	$5007 \; [{ m R(int)} = 0.0244]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.9041/0.5543	0.4634/0.3650
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate für F^2	Volle Matrix, kleinste Quadrate für F^2
Reflexe/Restraints/Variable	5050 / 0 / 236	5007 / 2 / 237
$Coodness-of-fit für F^2$	1 007	1 044
$B \left[I > 2\sigma(I)\right]$	0.0774	0.0233
wB2 (sämt] Daten)	0.1611	0.0524
Restelektronendichte (Max./Min.)	$0.971/-0.968 \text{ e.}\text{\AA}^{-3}$	$0.944/-0.397 \text{ e.}\mathrm{\AA}^{-3}$

Tabelle A.15: Kristalldaten und Strukturverfeinerung der Verbindungen C29 und C30.
	C31	C32
Strukturkennzeichen	n1337	n1309
Summenformel	$C_{58}H_{78}Cu_2F_{12}N_{14}P_2S_4$	$\rm C_{62}H_{76}Cu_2F_{12}N_{16}P_2S_4$
Molmasse	$1516.60 \mathrm{~g/mol}$	$1590.65~\mathrm{g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$\mathrm{C2/c}$	Pbca
Gitterkonstanten [Å]/[°]	${ m a}=24.6696(10)$	a = 13.833(2)
	$\mathrm{b} = 10.8327(5), eta = 109.520(1)$	${ m b}=15.334(2),eta=99.888(3)$
	${ m c}=27.3336(11)$	c = 16.462(3)
Volumen	$6884.8(5) \text{ Å}^3$	$3440.1(9) \text{ Å}^3$
Z	4	2
Dichte (berechnet)	$1.463~{ m Mg/m^3}$	$1.536~{ m Mg/m^3}$
Absorptionskoeffizient	0.867 mm^{-1}	0.872 mm^{-1}
F(000)	3136	1640
Kristallgröße	$0.22 \ge 0.20 \ge 0.19 \text{ mm}^3$	$0.48 \ge 0.45 \ge 0.40 \text{ mm}^3$
θ -Bereich	$1.58 \text{ bis } 28.08^{\circ}$	$1.78 \text{ bis } 27.88^{\circ}$
Indexbereich	$-32 \le h \le 29, -14 \le k \le 14, -36 \le l \le 36$	$-18 \le h \le 18, -20 \le k \le 20, -21 \le l \le 21$
Zahl der gemessenen	34761	33652
Zahl der unabhängigen Reflexe	$8369 \; [{ m R(int)} = 0.0810]$	$8207 \; [{ m R(int)} = 0.0685]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8526/0.8322	0.7217/0.6796
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	8369 / 120 / 423	$8207 \;/\; 0 \;/\; 445$
Goodness-of-fit für F^2	1.007	1.044
R $[I > 2\sigma(I)]$	0.0584	0.0557
wR2 (sämtl. Daten)	0.1306	0.1311
$Restelektronendichte \; (Max./Min.)$	$0.984/-0.755~e.{ m \AA}^{-3}$	$0.877/\text{-}0.517~\text{e}.\text{\AA}^{-3}$

Tabelle A.16: Kristalldaten und Strukturverfeinerung der Verbindungen C31 und C32.

	C33	C34
Strukturkennzeichen	n1386	n1721
Summenformel	$C_{37}H_{47}Cu_2I_2N_{11}S_2$	$C_{23}H_{43}ClCuN_7PO_4S$
Molmasse	$1090.87 \mathrm{~g/mol}$	612.69 g/mol
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Triklin
Raumgruppe	ΡĪ	ΡĪ
Gitterkonstanten $[Å]/[^{\circ}]$	$\mathrm{a}=7.8765(19), lpha=114.423(4)$	$\mathrm{a}=11.133(2), lpha=109.198(3)$
	$\mathrm{b}=13.825(3),eta=91.334(4)$	$\mathrm{b} = 11.410(2), eta = 96.684(3)$
	$\mathrm{c} = 16.671(4), \gamma = 97.718(4)$	$\mathrm{c} = 12.469(2), \gamma = 98.433(3)$
Volumen	$1631.6(7) \text{ Å}^3$	$1456.4(4) \text{ Å}^3$
Z	2	2
Dichte (berechnet)	$1.886 \mathrm{Mg/m^3}$	$1.397~\mathrm{Mg/m^3}$
Absorptionskoeffizient	3.356 mm^{-1}	0.954 mm^{-1}
F(000)	908	648
Kristallgröße	$0.20 \ge 0.04 \ge 0.03 \text{ mm}^3$	$0.33 \ge 0.30 \ge 0.29 \text{ mm}^3$
θ -Bereich	$1.64 \text{ bis } 28.08^{\circ}$	$1.76 \text{ bis } 27.88^{\circ}$
Indexbereich	$-10 \le h \le 10, -18 \le k \le 18, -20 \le l \le 22$	$-14 \le h \le 14, -15 \le k \le 14, -15 \le l \le 16$
Zahl der gemessenen	14013	12779
Zahl der unabhängigen Reflexe	$7876 \; [{ m R(int)} = 0.1380]$	$6884 \; [{ m R(int)} = 0.0216]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.9060/0.5534	0.7694/0.7436
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	7876 / 331 / 383	$86884 \;/\; 0 \;/\; 342$
Goodness-of-fit für F^2	0.733	1.051
R [I $>2\sigma(I)$]	0.0654	0.0344
wR2 (sämtl. Daten)	0.1148	0.0962
Restelektronendichte~(Max./Min.)	$0.876/-0.950 \ e.{ m \AA}^{-3}$	$0.632/\text{-}0.296 \text{ e.} \text{\AA}^{-3}$

Tabelle A.17: Kristalldaten und Strukturverfeinerung der Verbindungen C33 und C34.

	C35	C36
Strukturkennzeichen	n1717	n1716
Summenformel	$C_{47}H_{63}BCuN_7S$	$C_{25}H_{46}Cl_2CuN_8S$
Molmasse	832.45 g/mol	$625.20 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Triklin
Raumgruppe	$P2_1/n$	ΡĪ
Gitterkonstanten [Å]/[°]	a = 11.4705(14)	$\mathrm{a}=9.2418(12), lpha=97.289(2)$
	$\mathrm{b}=11.3974(13),eta=91.493(3)$	$b = 11.6863(14), \beta = 104.818(2)$
	c = 34.471(4)	$\mathrm{c} = 15.1344(19), \gamma = 100.585(3)$
Volumen	$4504.9(9) \text{ Å}^3$	$1527.1(3) \text{ Å}^3$
Z	4	2
Dichte (berechnet)	$1.227 \mathrm{~Mg/m^3}$	$1.360~\mathrm{Mg/m^3}$
Absorptionskoeffizient	0.571 mm^{-1}	0.988 mm^{-1}
F(000)	1776	662
Kristallgröße	$0.42 \ge 0.37 \ge 0.33 \text{ mm}^3$	$0.48 \ge 0.45 \ge 0.20 \text{ mm}^3$
θ -Bereich	$1.86 \text{ bis } 27.88^{\circ}$	$1.42 \text{ bis } 27.88^{\circ}$
Indexbereich	$-15 \le h \le 15, -14 \le k \le 14, -45 \le l \le 44$	$-12 \le h \le 12, -15 \le k \le 15, -19 \le l \le 19$
Zahl der gemessenen	39028	13554
Zahl der unabhängigen Reflexe	$10731 \; [{ m R(int)} = 0.0514]$	$7222 \; [{ m R(int)} = 0.0205]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8338/0.7953	0.8269/0.6486
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$10731 \;/\; 0 \;/\; 522$	$7222\ /\ 0\ /\ 344$
Goodness-of-fit für ${\rm F}^2$	1.021	1.071
R [I $>2\sigma(I)$]	0.0420	0.0339
wR2 (sämtl. Daten)	0.1031	0.0998
Restelektronendichte~(Max./Min.)	$0.478/-0.384 \; e.{ m \AA}^{-3}$	$0.841/\text{-}0.243 \text{ e.}\text{\AA}^{-3}$

Tabelle A.18: Kristalldaten und Strukturverfeinerung der Verbindungen C35 und C36.

	C37	C39
Strukturkennzeichen	n1720	n1560
Summenformel	$C_{15}H_{25}CuI_{1.81}Cl_{0.19}N_3S$	$C_{70}H_{102}Cu_6F_{12}N_{20}P_2S_6$
Molmasse	$790.33 \mathrm{~g/mol}$	$2087.31 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Hexagonal
Raumgruppe	PĪ	Rāc
Gitterkonstanten $[Å]/[^{\circ}]$	$\mathrm{a}=9.4185(14), lpha=98.059(3)$	a = 27.5065(18)
	$\mathrm{b} = 11.8690(18), eta = 104.354(3)$	b = 27.5065(18)
	$\mathrm{c} = 15.673(2), \gamma = 101.659(3)$	c = 20.664(3)
Volumen	$1628.6(4) \text{ Å}^3$	13540(2) Å ³
Z	2	6
Dichte (berechnet)	$1.612 \mathrm{~Mg/m^3}$	$1.608~{ m Mg/m^3}$
Absorptionskoeffizient	2.525 mm^{-1}	1.668 mm^{-1}
F(000)	791	6420
Kristallgröße	$0.30 \ge 0.19 \ge 0.09 \text{ mm}^3$	$0.49 \ge 0.30 \ge 0.29 \text{ mm}^3$
θ -Bereich	1.79 bis 27.88°	$1.48 \text{ bis } 28.29^{\circ}$
Indexbereich	$-12 \le h \le 12, -15 \le k \le 15, -20 \le l \le 18$	$-36 \le h \le 36, -36 \le k \le 36, -27 \le l \le 27$
Zahl der gemessenen Reflexe	14537	39696
Zahl der unabhängigen Reflexe	$7691 \; [{ m R(int)} = 0.0533]$	$3740 \; [{ m R(int)} = 0.0331]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8046/0.5179	0.6433/0.4953
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$7691\ /\ 0\ /\ 344$	$3740 \; / \; 0 \; / \; 212$
Goodness-of-fit für F^2	0.929	1.053
R $[I > 2\sigma(I)]$	0.0397	0.0398
wR2 (sämtl. Daten)	0.0807	0.1297
Restelektronendichte (Max./Min.)	$0.966/\text{-}0.872~\text{e}.\text{\AA}^{-3}$	$0.793/\text{-}0.600 \; \text{e.}\text{\AA}^{-3}$

Tabelle A.19: Kristalldaten und Strukturverfeinerung der Verbindungen C37 und C39.

	C40	C41
Strukturkennzeichen	n1698	n1682
Summenformel	$C_{74}H_{96}Cu_6F_{12}N_{22}P_2S_6$	$C_{78}H_{120}Cu_6F_{12}N_{20}O_{12}S_{10}$
Molmasse	$2157.27~{\rm g/mol}$	$2459.78~{\rm g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Triklin
Raumgruppe	ΡĪ	ΡĪ
Gitterkonstanten $[Å]/[^{\circ}]$	$\mathrm{a} = 12.556(3), lpha = 91.688(5)$	$a = 14.1978(19), \alpha = 115.670(4)$
	$\mathrm{b}=13.677(3),eta=109.712(5)$	$\mathrm{b} = 14.796(2), eta = 93.503(4)$
	$\mathrm{c} = 14.744(3), \gamma = 112.062(6)$	$\mathrm{c} = 15.409(2), \gamma = 111.491(3)$
Volumen	2173.4(9) Å ³	2619.7(6) Å ³
Z	1	2
Dichte (berechnet)	$1.648~{ m Mg/m^3}$	$1.559~{ m Mg/m^3}$
Absorptionskoeffizient	1.705 mm^{-1}	1.480 mm^{-1}
F(000)	1102	1266
Kristallgröße	$0.34 \ge 0.31 \ge 0.24 \text{ mm}^3$	$0.20 \ge 0.18 \ge 0.01 \text{ mm}^3$
θ -Bereich	1.49 bis 27.88°	$1.52 \text{ bis } 27.88^{\circ}$
Indexbereich	$-16 \le h \le 15, -17 \le k \le 17, -19 \le l \le 19$	$-17 \le h \le 18, -19 \le k \le 19, -20 \le l \le 20$
Zahl der gemessenen	19495	23422
Zahl der unabhängigen Reflexe	$10302 \; [{ m R(int)} = 0.1267]$	$712422 \; [{ m R(int)} = 0.1114]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.6851/0.5949	0.9854/0.7562
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F ²
Reflexe/Restraints/Variable	$10302 \;/\; 12 \;/\; 552$	$12422 \ / \ 10 \ / \ 562$
Goodness-of-fit für F^2	0.774	0.844
R $[I > 2\sigma(I)]$	0.0650	0.0983
wR2 (sämtl. Daten)	0.1842	0.2102
Restelektronendichte~(Max./Min.)	$0.964/\text{-}0.952 \text{ e.}\mathrm{\AA^{-3}}$	$0.783/\text{-}0.598~\text{e.}\text{\AA}^{-3}$

Tabelle A.20:Kristalldaten und Strukturverfeinerung der Verbindungen C40 und C41.

	C42	C43
Strukturkennzeichen	n1650	n1678
Summenformel	$C_{84}H_{92}Cu_6F_6N_{26}O_6S_8$	$C_{70}H_{102}Cl_2Cu_6N_{20}O_8S_6$
Molmasse	$2313.56~{\rm g/mol}$	$1996.22 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$\mathrm{C2/c}$	$P2_1/n$
Gitterkonstanten [Å]/[°]	${ m a}=22.525(4)$	a = 14.5387(14)
	$\mathrm{b}=16.024(3),eta=105.705(4)$	$\mathrm{b}=20.680(2),eta=109.080(3)$
	c = 28.820(4)	c = 15.0774(16)
Volumen	$10014(3) \text{ Å}^3$	$4284.2(8) \text{ Å}^3$
Z	4	2
Dichte (berechnet)	$1.535~{ m Mg/m^3}$	$1.547~\rm Mg/m^3$
Absorptionskoeffizient	1.493 mm^{-1}	1.734 mm^{-1}
F(000)	4728	2060
Kristallgröße	$0.39 \ge 0.38 \ge 0.09 \text{ mm}^3$	$0.20 \ge 0.08 \ge 0.02 \text{ mm}^3$
θ -Bereich	$1.47 \text{ bis } 27.88^{\circ}$	$1.69 \text{ bis } 27.88^{\circ}$
Indexbereich	$-29 \le h \le 29, -21 \le k \le 21, -37 \le l \le 37$	$-17 \le h \le 19, -27 \le k \le 27, -19 \le l \le 19$
Zahl der gemessenen	43733	38170
Zahl der unabhängigen Reflexe	$11918 \; [{ m R(int)} = 0.1427]$	$10223 \; [{ m R(int)} = 0.1266]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission~(Max./Min.)	0.8774/0.5936	0.9661/0.7230
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$11918 \ / \ 12 \ / \ 551$	$10223 \ / \ 0 \ / \ 518$
Goodness-of-fit für ${\rm F}^2$	1.068	0.729
R [I $\!>\!\!2\sigma(\mathrm{I})]$	0.1114	0.0502
wR2 (sämtl. Daten)	0.2504	0.0757
Restelektronendichte~(Max./Min.)	$0.997/\text{-}1.006 \text{ e.}\text{\AA}^{-3}$	$0.535/\text{-}0.644~\mathrm{e.\AA^{-3}}$

Tabelle A.21: Kristalldaten und Strukturverfeinerung der Verbindungen C42 und C43.

	C44	C45
Strukturkennzeichen	n1599	n1540
Summenformel	$\mathrm{C}_{70}\mathrm{H}_{78}\mathrm{Cl}_{4}\mathrm{Cu}_{8}\mathrm{N}_{20}\mathrm{O}_{6}\mathrm{S}_{6}$	$\mathrm{C}_{22}\mathrm{H}_{32}\mathrm{Cl}_{2}\mathrm{Cu}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$2042.00 \mathrm{~g/mol}$	642.64 g/mol
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	m C2/c
Gitterkonstanten [Å]/[°]	$\mathrm{a} = 12.873(4), lpha = 108.194(7)$	a = 21.456(3)
	$\mathrm{b} = 13.554(4), eta = 97.602(8)$	$\mathrm{b}=6.9394(9),eta=117.037(2)$
	$\mathrm{c} = 13.828(4), \gamma = 102.511(8)$	c = 20.219(3)
Volumen	2185.1(12) Å ³	$2681.5(6) \text{ Å}^3$
Z	1	2
Dichte (berechnet)	$1.552~{ m Mg/m^3}$	$1.592~{ m Mg/m^3}$
Absorptionskoeffizient	2.224 mm^{-1}	1.965 mm^{-1}
F(000)	1034	1320
Kristallgröße	$0.22 \ge 0.20 \ge 0.07 \text{ mm}^3$	$0.44 \ge 0.22 \ge 0.21 \text{ mm}^3$
θ -Bereich	1.59 bis 27.88°	$2.13 \text{ bis } 27.86^{\circ}$
Indexbereich	$-16 \le h \le 15, -17 \le k \le 17, -18 \le l \le 18$	$-28 \le h \le 28, -8 \le k \le 9, -26 \le l \le 26$
Zahl der gemessenen	18936	11398
Zahl der unabhängigen Reflexe	$10294 \; [{ m R(int)} = 0.0943]$	$3190 \; [{ m R(int)} = 0.0489]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.8599/0.6404	0.6831/0.4785
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$10294 \;/\; 0 \;/\; 493$	$3190 \;/\; 0 \;/\; 154$
Goodness-of-fit für F^2	0.957	1.011
$\mathrm{R} \left[\mathrm{I}{>}2\sigma(\mathrm{I}) ight]$	0.0981	0.0342
wR2 (sämtl. Daten)	0.2478	0.0819
$Restelektronendichte \; (Max./Min.)$	$0.982/\text{-}0.920~\text{e.}\text{\AA}^{-3}$	$0.884/\text{-}0.371~\text{e.}\text{\AA}^{-3}$

Tabelle A.22: Kristalldaten und Strukturverfeinerung der Verbindungen C44 und C45.

	C46	C47
Strukturkennzeichen	n1641	n1554
Summenformel	$\mathrm{C}_{22}\mathrm{H}_{32}\mathrm{Br}_{2}\mathrm{Cu}_{2}\mathrm{N}_{6}\mathrm{S}_{2}$	$\mathrm{C}_{33}\mathrm{H}_{48}\mathrm{Cu}_{3}\mathrm{N}_{9}\mathrm{S}_{3}$
Molmasse	$731.56 \mathrm{~g/mol}$	$857.60 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Monoklin
Raumgruppe	ΡĪ	$P2_1$
Gitterkonstanten [Å]/[°]	$\mathrm{a}=7.0776(19), lpha=81.356(6)$	a = 15.103(5)
	$b = 11.198(3), \beta = 79.252(6)$	$\mathrm{b} = 14.823(5), eta = 97.992(9)$
	$\mathrm{c} = 18.608(5), \gamma = 73.166(6)$	c = 17.267(6)
Volumen	$1379.5(6) \text{ Å}^3$	$3828(2) \text{ Å}^3$
Z	2	4
Dichte (berechnet)	$1.761~{ m Mg/m^3}$	$1.488~{ m Mg/m^3}$
Absorptionskoeffizient	4.612 mm^{-1}	1.852 mm^{-1}
F(000)	732	1776
Kristallgröße	$0.37 \ge 0.22 \ge 0.15 \text{ mm}^3$	$0.20 \ge 0.16 \ge 0.06 \text{ mm}^3$
θ -Bereich	$1.91 \text{ bis } 26.37^{\circ}$	$1.36 \text{ bis } 27.48^{\circ}$
Indexbereich	$-8 \le h \le 8, -13 \le k \le 9, -23 \le l \le 23$	$-19 \le h \le 19, -19 \le k \le 19, -22 \le l \le 22$
Zahl der gemessenen	9721	33427
Zahl der unabhängigen Reflexe	$5544 \; [{ m R(int)} = 0.0750]$	$17134 \; [{ m R(int)} = 0.1821]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.5446/0.2802	0.8970/0.7084
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$5544 \;/\; 0 \;/\; 315$	$17134\ /\ 1\ /\ 890$
Goodness-of-fit für F^2	1.031	0.854
R [I $>2\sigma(I)$]	0.0599	0.0807
wR2 (sämtl. Daten)	0.1734	0.2016
Restelektronendichte~(Max./Min.)	$1.400/\text{-}0.977 \; \text{e.} \text{\AA}^{-3}$	$0.975/\text{-}0.614 \text{ e.}\text{\AA}^{-3}$

Tabelle A.23: Kristalldaten und Strukturverfeinerung der Verbindungen C46 und C47.

	C48	C49
Strukturkennzeichen	n1535	n1541
Summenformel	$C_{35}H_{51}Cu_3IN_{10}S_3$	$C_{46}H_{64}Cu_2F_6N_{12}O_6S_6$
Molmasse	$1025.56 \mathrm{~g/mol}$	$1314.53 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Triklin	Orthorhombisch
Raumgruppe	ΡĪ	Aba2
Gitterkonstanten [Å]/[°]	$\mathrm{a} = 10.8425(11), lpha = 73.107(2)$	a = 37.270(4)
	$\mathrm{b}=12.4833(12), eta=74.855(2)$	b = 28.138(3)
	$\mathrm{c} = 17.1401(16), \gamma = 87.645(3)$	c = 11.7614(14)
Volumen	2141.2(4) Å ³	$12334(2) \text{ Å}^3$
Z	2	8
Dichte (berechnet)	$1.591~{ m Mg/m^3}$	$1.416 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	2.382 mm^{-1}	0.964 mm^{-1}
F(000)	1038	5440
Kristallgröße	$0.43 \ge 0.21 \ge 0.02 \text{ mm}^3$	$0.43 \ge 0.22 \ge 0.04 \text{ mm}^3$
θ -Bereich	$1.91 \text{ bis } 27.88^{\circ}$	$1.09 \text{ bis } 27.88^{\circ}$
Indexbereich	$-13 \le h \le 14, -16 \le k \le 16, -16 \le l \le 22$	$-40 \le h \le 48, -36 \le k \le 36, -15 \le l \le 15$
Zahl der gemessenen	17672	48739
Zahl der unabhängigen Reflexe	$10127 \; [{ m R(int)} = 0.0703]$	$14645 [{ m R(int)} = 0.0996]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.9539/0.4274	0.9625/0.6820
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$10127 \ / \ 0 \ / \ 481$	$14645\ /\ 1\ /\ 647$
Goodness-of-fit für F^2	0.862	1.009
R [I $\!>\!\!2\sigma(I)$]	0.0485	0.0733
wR2 (sämtl. Daten)	0.0831	0.1447
Restelektronendichte~(Max./Min.)	$0.992/-0.706 \ e.{ m \AA}^{-3}$	$0.808/\text{-}0.734~\text{e}.\text{\AA}^{-3}$

 ${\bf Tabelle \ A.24: \ Kristalldaten \ und \ Strukturverfeinerung \ der \ Verbindungen \ C48 \ und \ C49.}$

	C50	C51
Strukturkennzeichen	n1501	n1718
Summenformel	$\mathrm{C}_{44}\mathrm{H}_{64}\mathrm{Cu}_8\mathrm{I}_8\mathrm{N}_{12}\mathrm{S}_4$	$C_{48}H_{70}Cu_4I_4N_{14}S_4$
Molmasse	$2412.83~\mathrm{g/mol}$	$1733.18 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$\mathrm{C2/c}$	$\mathrm{C2/c}$
Gitterkonstanten [Å]/[°]	a = 24.3100(9)	a = 24.793(4)
	$b = 14.0671(6), \beta = 101.285(1)$	$\mathrm{b} = 14.622(2) \;, eta = 119.032(3)$
	c = 22.6822(9)	c = 19.651(3)
Volumen	7606.7(5) Å ³	6229.0(15) Å ³
Z	4	8
Dichte (berechnet)	$2.107 \mathrm{~Mg/m^3}$	$1.848~{ m Mg/m^3}$
Absorptionskoeffizient	5.584 mm^{-1}	3.509 mm^{-1}
F(000)	4528	3392
Kristallgröße	$0.37 \ge 0.22 \ge 0.07 \text{ mm}^3$	$0.31 \ge 0.20 \ge 0.19 \text{ mm}^3$
θ -Bereich	$1.68 \text{ bis } 27.88^{\circ}$	$1.68 \text{ bis } 27.87^{\circ}$
Indexbereich	$-30 \le h \le 31, -18 \le k \le 18, -29 \le l \le 29$	$-32 \le h \le 32, -19 \le k \le 19, -25 \le l \le 25$
Zahl der gemessenen	33366	30837
Zahl der unabhängigen Reflexe	$9070 \; [{ m R(int)} = 0.0620]$	$7419 \; [{ m R(int)} = 0.0821]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.6959/0.4274	0.5553/0.4093
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate für ${\rm F}^2$	Volle Matrix, kleinste Quadrate für ${\rm F}^2$
Reflexe/Restraints/Variable	9070 / 0 / 343	7419 [R(int) = 0.0821]
Goodness-of-fit für F^2	0.919	0.797
R $[I > 2\sigma(I)]$	0.0344	0.0360
wR2 (sämtl. Daten)	0.0728	0.0556
Restelektronendichte (Max./Min.)	$1.072/\text{-}1.089 \text{ e.}\text{\AA}^{-3}$	$0.718/\text{-}0.747~\text{e}.\text{\AA}^{-3}$

Tabelle A.25: Kristalldaten und Strukturverfeinerung der Verbindungen C50 und C51.

	L22-1	L22-2
Strukturkennzeichen	n1553	n1621
Summenformel	$C_{22}H_{32}N_6S_2$	$\mathrm{C}_{22}\mathrm{H}_{28}\mathrm{N}_{6}\mathrm{S}_{2}$
Molmasse	$444.66 \mathrm{~g/mol}$	$440.62 \mathrm{~g/mol}$
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$P2_1/n$	Pc
Gitterkonstanten $[Å]/[^{\circ}]$	a = 10.5736(12)	a = 8.2794(12)
	$\mathrm{b}=20.291(2),eta=115.589(2)$	$b = 10.1065(14), \beta = 104.333(3)$
	c = 12.1153(14)	c = 13.7018(19)
Volumen	2344.3(5) Å ³	$1110.8(3) \text{ Å}^3$
Z	4	8
Dichte (berechnet)	$1.260~{ m Mg/m^3}$	$1.317~\mathrm{Mg/m^3}$
Absorptionskoeffizient	0.248 mm^{-1}	0.261 mm^{-1}
F(000)	952	468
Kristallgröße	$0.43 \ge 0.40 \ge 0.37 \text{ mm}^3$	$0.42 \ge 0.39 \ge 0.36 \text{ mm}^3$
θ -Bereich	$2.01 \text{ bis } 23.28^{\circ}$	$2.02 \text{ bis } 27.87^{\circ}$
Indexbereich	$-11 \le h \le 11, -22 \le k \le 22, -13 \le l \le 13$	$-10 \le h \le 9, -13 \le k \le 13, -15 \le l \le 15$
Zahl der gemessenen	15697	8801
Zahl der unabhängigen Reflexe	$3379 \; [{ m R(int)} = 0.0316]$	4209 [R(int) = 0.0329]
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.9138/0.9008	0.9118/0.8981
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$3379 \;/\; 0 \;/\; 271$	$4209 \ / \ 2 \ / \ 276$
Goodness-of-fit für F^2	1.036	1.059
R [I $>2\sigma(I)$]	0.0325	0.0347
wR2 (sämtl. Daten)	0.0794	0.0883
Restelektronendichte (Max./Min.)	$0.242/\text{-}0.199 \; \text{e.}\text{\AA}^{-3}$	$0.353/\text{-}0.227 \text{ e.}\text{\AA}^{-3}$

Tabelle A.26: Kristalldaten und Strukturverfeinerung der Verbindungen $(TMG_{ph}S)_2$ (L22-1)und $(DMEG_{ph}S)_2$ (L22-2).

	L10-1	[HL10-1]I
Strukturkennzeichen	n1510	n1537
Summenformel	$C_{26}H_{31}N_3S$	$C_{26}H_{32}IN_3S$
Molmasse	$417.60 \mathrm{~g/mol}$	545.51 g/mol
Meßtemperatur	120(2) K	120(2) K
Wellenlänge	0.71073 Å	0.71073 Å
Kristallsystem	Monoklin	Triklin
Raumgruppe	$P2_1/c$	ΡĪ
Gitterkonstanten $[Å]/[^{\circ}]$	a = 11.7059(6)	$\mathrm{a}=8.8909(11), lpha=100.898(2)$
	$\mathrm{b} = 13.8102(7), eta = 101.063(1)$	$\mathrm{b}=8.9911(11), eta=95.155(2)$
	c = 14.2886(7)	$\mathrm{c} = 17.206(2), \gamma = 109.566(2)$
Volumen	2267.0(2) Å ³	$1255.1(3) \text{ Å}^3$
Z	4	2
Dichte (berechnet)	$1.224 \mathrm{\ Mg/m^3}$	$1.443~\mathrm{Mg/m^3}$
Absorptionskoeffizient	0.160 mm^{-1}	1.377 mm^{-1}
F(000)	896	556
Kristallgröße	$0.43 \ge 0.40 \ge 0.32 \text{ mm}^3$	$0.35 \ge 0.34 \ge 0.22 \text{ mm}^3$
θ -Bereich	$1.77 \text{ bis } 27.88^{\circ}$	$2.44 \text{ bis } 27.88^{\circ}$
Indexbereich	$-15 \le h \le 12, -18 \le k \le 18, -18 \le l \le 18$	$\text{-}11 {\leq} h {\leq} 11, \text{-}11 {\leq} k {\leq} 11, \text{-}22 {\leq} l {\leq} 22$
Zahl der gemessenen	19345	11229
Zahl der unabhängigen Reflexe	$5380 \; [{ m R(int)} = 0.0609]$	$5950 \; [R(int) = 0.0366]$
Absorptionskorrektur	Semiempirisch über	Semiempirisch über
	Symmetrieäquivalente	Symmetrieäquivalente
Transmission (Max./Min.)	0.9505/0.9342	0.7516/0.6444
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate	Volle Matrix, kleinste Quadrate
	für F^2	für F^2
Reflexe/Restraints/Variable	$5380 \ / \ 0 \ / \ 271$	5950 / 0 / 280
Goodness-of-fit für F^2	1.038	1.053
R [I $>2\sigma(I)$]	0.0486	0.0337
wR2 (sämtl. Daten)	0.1419	0.0875
Restelektronendichte~(Max./Min.)	$0.430/\text{-}0.353 \text{ e.Å}^{-3}$	$0.822/\text{-}0.600 \text{ e.}\text{\AA}^{-3}$

Tabelle A.27: Kristalldaten und Strukturverfeinerung der Verbindungen TMG_{et} SCPh3 (L10-1) und [HL10-1]I.

Strukturkennzeichen	n1844
Summenformel	$C_{31}H_{33.50}ClN_{3.50}S$
Molmasse	$522.62~{ m g/mol}$
Meßtemperatur	120(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Triklin
Raumgruppe	ΡĪ
Gitterkonstanten [Å]/[°]	${ m a}=9.816(4),lpha=76.109(10)$
	$\mathrm{b} = 15.946(7), eta = 82.555(6)$
	$\mathrm{c} = 18.093(9), \gamma = 89.876(10)$
Volumen	2725(2) Å ³
Z	4
Dichte (berechnet)	$1.274~{ m Mg/m^3}$
Absorptionskoeffizient	0.243 mm^{-1}
F(000)	1108
Kristallgröße	$0.47 \ge 0.35 \ge 0.22 \text{ mm}^3$
θ -Bereich	$1.77 \text{ bis } 27.88^{\circ}$
Indexbereich	$-12 \le h \le 12, -19 \le k \le 20, -23 \le l \le 23$
Zahl der gemessenen	24283
Zahl der unabhängigen Reflexe	$12897 \; [{ m R(int)} = 0.0677]$
Absorptionskorrektur	Semiempirisch über Symmetrieäquivalente
Transmission (Max./Min.)	0.9485/0.8943
Verfeinerungsmethode	Volle Matrix, kleinste Quadrate für ${\rm F}^2$
Reflexe/Restraints/Variable	$12897 \ / \ 0 \ / \ 639$
Goodness-of-fit für F^2	1.350
${ m R}\left[{ m I}{>}2\sigma({ m I}) ight]$	0.1597
wR2 (sämtl. Daten)	0.4215
Restelektronendichte (Max./Min.)	$4.499/-0.544~{ m e.\AA^{-3}}$

Tabelle A.28: Kristalldaten und Strukturverfeinerung der Verbindung [HL6-1]Cl.

Publikationsliste

A. Neuba, R. Haase, M. Bernard, U. Flörke, S. Herres-Pawlis; Systematische Studie zu den Koordinationseigenschaften des Guanidin-Liganden N¹,N²-Bis(1,3-dimethylimidazolidin-2-yliden)-ethan-1,2-diamin mit den Metallen Mn, Co, Ni, Ag und Cu, Z. Allg. Anorg. Chem. **2008**, 634, 2511-2517.

A. Neuba, E. Akin, S. Herres-Pawlis, U. Flörke, G. Henkel; $C_{15}H_{24}ClN_7O_4$ and $C_{30}H_{48}Cl_6Fe_2N_{14}O$: rare examples of base pairing with protonated pyridine N atom, *Acta Cryst.* **2008**, *C64*, m194-m197.

A. Neuba, S. Herres-Pawlis, U. Flörke, G. Henkel; Synthese und Strukturen der ersten mehrkernigen Mangan-Guanidin-Komplexe und der ersten Mangan-Komplexe mit monoprotonierten Bis-Guanidinliganden, Z. Allg. Anorg. Chem. **2007**, 634, 771-777.

A. Neuba, U. Flörke, G. Henkel; 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)ethyl]guanidine, *Acta Cryst.* **2007**, *E63*, o4683.

A. Neuba, U. Flörke, G. Henkel; 2',2'-(2,2'-Dithiodiphenylene)bis(1,1,3,3-tetramethylguanidine), *Acta Cryst.* **2007**, *E63*, o4661.

A. Neuba, U. Flörke, G. Henkel; N,N'-Bis(1,3-dimethylimidazolidin-2-ylidene)-2,2'-dithiodianiline, *Acta Cryst.* **2007**, *E63*, o3476-o3477.

A. Neuba, O. Seewald, U. Flörke, G. Henkel; Di- μ -oxido-bis{[1,3-bis(tetramethylguanidino)propane- κ^2 N,N']bromidomanganese(III)}, Acta Cryst. **2007**, E63, m2099-m2100.

U. Flörke, S. Herres-Pawlis, A. Heuwing, A. Neuba, O. Seewald und G. Henkel; The diprotonated 2,2-(propane-1,3-diyl)bis(1,1,3,3,tetramethylguanidinium) cation: packing and conformational changes, *Acta Cryst.* **2006**, *C62*, m234-m237.

S. Herres-Pawlis, A. Neuba, O. Seewald, T. Seshadri, H. Egold, U. Flörke, G. Henkel; A Library of Peralkylated Bis-Guanidine Ligands for Use in Biomimetic Coordination Chemistry, *Eur. J. Org. Chem.* **2005**, 4979-4890.