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In dieser Arbeit wird der Wachstumsprozess von freien Silizium Clustern und von
Leerstellen-Clustern in kristallinem Silizium untersucht. Das Ziel ist u.a. den Uber-
gang vom Cluster iiber Nanostrukturen bis zum Festkorper zu beschreiben und zu
verstehen. Im Bereich zwischen Clustern und Festkorpern treten Silizium Struk-
turen mit neuen interessanten physikalischen Eigenschaften auf. Die Identifikation
der Struktur und Funktion von Silizium Clustern ist nur durch eine Kombination
von Theorie und Experiment moéglich. Mittels verschiedener Optimierungsstrategien
und einer auf Dichtefunktional-Theorie basierten “Tight-Binding” Methode wer-
den Cluster-Strukturen mit besonders niedriger Bindungsenergie bestimmt. Fiir
die stabilsten kleineren Cluster werden die Infrarot- und Raman-Spektren, sowie
deren Polarisierbarkeiten im Rahmen selbst-konsistenter Dichtefunktional-Theorie
berechnet. Fiir Cluster mit 25 bis 35 Atomen wird die Form der Cluster und deren
Beweglichkeit in He-Gas analysiert. Die bei niedrigen Temperaturen im Experiment
beobachteten Cluster werden anschlieBend anhand der Ubereinstimmung von berech-
neten Eigenschaften mit den experimentellen Daten identifiziert. Silizium Cluster
mit 10 bis 15 Atomen haben ein dreifach-gekapptes trigonales Prisma als gemeinsame
Untereinheit. Bis zu Clustern mit etwa 25 Atomen geht der Wachstumsprozef iber
prolate Strukturen. Im Bereich von 24- bis 30-atomigen Clustern verandert sich die
Geometrie hin zu kompakten sphérischen Strukturen. Niedrig-energetische Cluster
bestehend aus bis zu 240 Atomen weisen ein Bindungsmuster auf, das sehr stark von
dem des Festkorpers abweicht. Dadurch weichen auch die elektrischen und optischen
Eigenschaften der Strukturen mit Abmessungen im Angstrém Bereich von denen
im Festkorper ab. Die Berechnung der Stabilitidt verschiedener Leerstellen-Cluster
in kristallinem Silizium und der zugehorigen Positronen-Lebensdauern weisen da-
rauf hin, daf die in bestrahltem Silizium gemessenen Positronen-Lebensdauern von
ca. 435 ps zu Clustern bestehend aus 9 oder 10 Leerstellen gehéren. Die Leerstellen
in diesen Clustern bilden benachbarte Sechser-Ringe und weisen somit eine minimale
Anzahl hangender Bindungen auf.

Schlagworter

Silizium Cluster, Leerstellen-Cluster, Dichtefunktional-Theorie, Tight-Binding,
Infrarot-Spektrum, Raman-Spektrum, Beweglichkeiten, Positronen-Lebensdauern



Abstract

In this thesis the growth-pattern of free silicon clusters and vacancy clusters in
bulk silicon is investigated. The aim is to describe and to better understand the
cluster to bulk transition. Silicon structures in between clusters and solids feature
new interesting physical properties. The structure and physical properties of silicon
clusters can be revealed by a combination of theory and experiment, only. Low-
energy clusters are determined with different optimization techniques and a density-
functional based tight-binding method. Additionally, infrared and Raman spectra,
and polarizabilities calculated within self-consistent field density-functional theory
are provided for the smaller clusters. For clusters with 25 to 35 atoms an analysis of
the shape of the clusters and the related mobilities in a buffer gas is given. Finally,
the clusters observed in low-temperature experiments are identified via the best
match between calculated properties and experimental data. Silicon clusters with
10 to 15 atoms have a tricapped trigonal prism as a common subunit. Clusters
with up to about 25 atoms follow a prolate growth-path. In the range from 24
to 30 atoms the geometry of the clusters undergoes a transition towards compact
spherical structures. Low-energy clusters with up to 240 atoms feature a bonding
pattern strikingly different from the tetrahedral bonding in the solid. It follows that
structures with dimensions of several Angstrém have electrical and optical properties
different from the solid. The calculated stabilities and positron-lifetimes of vacancy
clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in
irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in
these clusters form neighboring hexa-rings and, therefore, minimize the number of
dangling bonds.

Keywords

silicon clusters, vacancy clusters, density-functional theory, tight-binding, infrared-
spectrum, Raman-spectrum, mobilities, positron-lifetimes
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Chapter 1

Introduction and Motivation

1.1 Silicon structures with new physical properties

Silicon (Si) is by far the most important material in the semiconductor industry.
Every microprocessor and memory chip in use today is built from silicon. Crystal-
line and amorphous silicon are widely used in the production of solar-cells. Silicon
is semiconducting with an indirect band gap of 1.1eV and its conductivity can be
widely varied by doping. The most common acceptor type is Boron and the most
common donator types are Phosphorus and Arsenic. Homo-nuclear silicon systems
are much easier to handle than hetero-nuclear compound materials, like Gallium-
Arsenide (GaAs) or Gallium-Nitride (GaN). Hence, they are more cost efficient.
Silicon can be grown in single crystals more than 1 meter long and 30 cm across,
weighting approximately 200kg. The purity of the crystal and the number of elec-
trically active defects are well under control. Silicon makes up 25.7% of the earths
crust by weight, and is the second most abundant element, exceeded only by oxygen.
It is found largely as silicon oxides such as sand (silica), quartz and rock crystal.
There is normally no need to make silicon in the laboratory as it is readily available
commercially. Silicon can be isolated through the treatment of silica, SiOq, with
coke in an electric furnace:

5102 + 2C — Si+ 2CO.

Single silicon crystals are grown as floating-zone crystals or in a Czochralsky process
and clusters can be created by laser-vaporization from the solid.

In recent years the number of device components on a single chip has been increased
from several hundred in 1970 by a factor of 64,000 to a fully integrated 64 mega-
bit memory chip with more than one hundred million electronic components today
(2000). The progress up to now is well described by “Moore’s law”. Gordon Moore
predicted in 1965 that for each new generation of memory chip and microprocessor
unit on the market, the device size would reduce by 33%, the chip size would increase
by 50%, and the number of components of a chip would quadruple every three years.
So far this trend has shown no sign of stopping. The critical device size is predicted
to decrease from 200 nm in 1998 to 50 nm in 2012 [1]. A layer 50 nm thick corresponds

11



12 CHAPTER 1. INTRODUCTION AND MOTIVATION

to roughly 200 monolayers of silicon atoms. It is important to know which influence
this down scaling has on the physical properties of the devices. To achieve this one
needs to understand the physics on an atomic scale. The solid state structure of
silicon is that of the diamond crystal. Every silicon atom is tetrahedrally bonded
to four nearest neighbors. The nearest neighbor distance is 2.35 A = 2.35- 1071 m.
The smallest silicon clusters (with less than 10 atoms) are known to have bonding
patterns much different from the diamond structure. To identify the size regime
in which the structure becomes different from the ideal crystal either one can in-
vestigate nanostructures of decreasing size or the growth pattern of smaller silicon
clusters. Until recently, only the geometries of the smallest silicon clusters with up
to eight atoms could be determined. The geometrical arrangement of, e.g., 20 silicon
atoms at low temperatures was unknown. Still one does not know if a nanoparticle,
consisting of several hundred to several thousand silicon atoms, is more closely re-
lated to disordered systems, to the (unstable) metallic phases of bulk-silicon, or to
the diamond structure. The metallic phases (such as the simple-cubic structure)
feature high coordination numbers, whereas the diamond structure and amorphous
silicon feature sp>-hybridized atoms. The geometry of the clusters determines the
electronic structure and whether the gap between occupied and non-occupied states
resembles that of a metall or that of a semiconductor (see Figure 1.1).

= | N -

E— jr—
—=— Ef_:_

— —

= =
E— —
— B

| E— ——— .
—— E—
Si71a Sirip

Figure 1.1: Two possible structures for Siz;. Sizia (left) resembles the
diamond structure, whereas Siz;p (right) is compact and disordered. The
two geometries feature different electronic structures, and hence different
optical properties.

In addition to understanding the cluster — bulk transition, the study of atomic
clusters is of great interest for several other reasons. Clusters play a crucial role in
a number of industrial applications such as catalysis or in the development of new
semiconducting/magnetic devices. The experimental techniques for production and
analysis of clusters have improved strongly in recent years, providing new and more
accurate data about their electronic, chemical, and structural properties.

Looking at Fullerenes (especially stable cage-like structures of carbon), the question
arises if similar “magic number” clusters do exist for silicon. Like carbon, silicon has
four valence electrons, but because of the larger covalent radius, silicon in general
does not form strong m-bonds. The strong w-bonds between carbon atoms in a



1.1. SILICON STRUCTURES WITH NEW PHYSICAL PROPERTIES 13

graphite-plane are responsible for the high stability of graphite. Graphite is slightly
more stable than diamond. For silicon, the graphite structure and fullerenes, having
bonding patterns similar to a plane in graphite, are not stable. However, other
more compact stable clusters are conceivable for silicon. Once remarkably stable
silicon clusters, retaining under certain conditions their identity in a solid, are found,
one could think of building cluster assembled materials with new unique physical
properties. One of the top research goals in semiconductor physics is to find silicon
based materials with a large direct band gap. This would allow for the combination
of optical and electrical devices on a single chip without significantly changing the
manufacturing process. Silicon nanocrystallites have been found to have gap-widths
corresponding to absorption and emission lines in the optical spectrum. The gap-
width varies with particle size and hence can be tuned to a desired color [2].

To determine the structure and physical properties of clusters a combined approach
of theoretical and experimental methods has to be undertaken. The energies of
many different structures are calculated to find stable clusters with a low energy.
Then suitable physical properties also accessible by experiment are calculated for
the lowest-energy clusters and are compared to the experimental data. The ground-
state structures can be identified by the best match between theory and experiment.
The geometry of a cluster is not directly accessible by experiment, but measured
photoelectron, infrared (IR) or Raman spectra provide useful information about
the physical properties and, indirectly, about the bonding pattern. The methods of
quantum chemistry, developed during the last decades, make it possible to accurately
calculate the geometries and energies of small atomic systems. For large systems
first principles methods become very time consuming even on high performance par-
allel computers. Additionally, the number of locally stable isomers increases at least
exponentially with cluster size. This requires fast approximate methods and statist-
ical optimizing techniques, like “Simulated Annealing” or “Genetic Algorithms” to
determine the lowest-energy isomers for a given cluster size. It turns out that the
differences in energy between some low-energy isomers are very small and challenge
even the most accurate methods. Therefore, the calculation of additional properties,
accessible by experiment, is required. The method of choice depends on the system
of interest. For small silicon clusters, photoelectron, IR, and Raman spectra are best
suited. For larger clusters with more than 20 atoms the small abundance of clusters
makes it difficult to obtain reliable IR and Raman spectra. Today only photoelec-
tron spectra, chemical reactivities, and mobilities in a buffer gas have been measured
for larger silicon clusters with up to 50 atoms. Little is known about even larger
clusters. The measured mobilities yield information about the rotational-averaged
geometrical cross-sections of the clusters. The detailed geometry of the clusters can
be revealed by comparing the shape of the calculated low-energy strutures to the
cross-sections from experiment.

Besides clusters, defects in crystalline silicon are very important in todays semicon-
ductor research. Although the defect concentration in a silicon crystal is very small
in modern production processes, the influence of defects becomes more severe with
decreasing device size. Few defects, caused by electron irradiation or thermal treat-
ment in the manufacturing process, may significantly change the physical properties
of a device consisting only of several hundred atoms. Mono- and di-vacancies in sil-
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Figure 1.2: Positron annihilation spectroscopy in bulk-silicon indicates the
existence of vacancy clusters for different temperature ranges (left). Theory
can link the measured positron lifetimes 7 to different vacancy structures,
such as a zig-zag chain or a “hexagonal-ring” (right, white spheres represent
vacancy sites).

icon are well characterized, even if their exact geometry is still debated. Much less
is known about the structure of vacancy clusters. Vacancy clusters are assumed to
serve as impurity-traps for oxygen or hydrogen. The presence of vacancy clusters is
indicated by electron paramagnetic resonance (EPR) or positron annihilation spec-
troscopy (PAS). The advantage of PAS is that it provides information about the
size of a defect. The positron lifetime depends on the electronic charge density at
the defect and is longest for very large vacancy clusters. Positron annihilation spec-
troscopy is sensitive only to neutral or negatively charged defects. In a typical PAS
experiment the samples are annealed before measuring the positron lifetimes. The
annealing temperatures 7' give information about the stability of a defect related to
a certain positron lifetime. This is schematically depicted in Figure 1.2.

The development of efficient and accurate approximate quantum mechanically meth-
ods allows to compute the stability of large silicon clusters and extended vacancy
clusters in bulk silicon and to calculate additional physical properties for compar-
ison with experimental data. Understanding the relationship between structure and
physical properties is the key to developing new materials and devices.

1.2 Outline

In this thesis different silicon systems are investigated with the computational meth-
ods of quantum chemistry. Stable structures of silicon clusters and defects in bulk
silicon are identified by comparing the cohesive energies of different geometrical ar-
rangements. To allow for a comparison with experimental data various additional
physical properties, infrared (IR) and Raman spectra or mobilities in a buffer gas
for clusters and positron lifetimes for vacancy clusters in the bulk, are determ-
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ined. All the calculations are based on Density Functional Theory (DFT), which
is described in Chapter 2. To introduce the basic concepts of the theoretical treat-
ment of many-electron systems along with the nomenclature also used in DF T, first
the basic method of quantum chemistry, namely the Hartree-Fock (HF) method,
is described. To treat large systems, as it is necessary for extended defects, or to
perform Molecular Dynamics (MD) on clusters, an approximate density functional
based Tight-Binding (DFTB) method is introduced at the end of Chapter 2.

IR and Raman spectroscopy are especially well suited to obtain information about
the structure of smaller clusters. To extend density-functional theory to the calcula-
tion of IR and Raman spectra an external electric field has to be taken into account.
The basic theory how to calculate vibrational frequencies along with IR and Raman
spectra is outlined in Chapter 3.

The physical properties of smaller silicon clusters with less than 15 atoms are de-
scribed in Chapter 4. Up to Sig, different computational approaches and experiments
yield a unique picture on the ground-state structures. For Sig to Siy4 likely candid-
ates for the ground-state are introduced along with their calculated IR and Raman
spectra. All energies and intensities are calculated within self-consistent-field DFT.
To find low energy structures for silicon clusters with more than 20 atoms a statist-
ical search on many different geometries is necessary. One approach, known to work
efficiently and reliable, is Simulated Annealing. This optimization technique and
the specific parameters used are described in Chapter 5. The Simulated Annealing
implemented with DFTB is applied to silicon clusters with 25, 29, and 35 atoms
to investigate the experimentally indicated shape transition in this size regime in
Chapter 6. The shapes of the lowest energy structures are analyzed and related to
the measurements. A brief outlook on larger cluster sizes, namely Siy; and Siogg, and
their bonding schemes compared to the tetrahedral bonding in the ideal diamond
structure is presented at the end of this Chapter.

In Chapter 7 the DF'TB method is used to compute the stability of vacancy clusters
in bulk silicon. The formation and dissociation energies for several clusters con-
sisting of up to 17 vacancies are determined. A simple model which explains the
basic features of stable vacancy clusters is developed, as well. To allow for a com-
parison with experimental data the lifetimes of a positron trapped in a vacancy
cluster are calculated. The calculated dissociation energies are related to the meas-
ured annealing-temperatures via transition-state theory. The computed energies and
positron lifetimes combined with the measured annealing temperatures and lifetimes
yield a consistent picture on the growth-process of vacancy clusters.

Appendix A contains a detailed description of the adoption of the DFTB method
to silicon systems including results about energies, geometries and the electronic
structure of some of the most important silicon structures. A brief summary of
Group-Theory and its application to vibrational spectra is provided in Appendix B.
Finally, model annealing curves obtained from transition-state theory are given in
Appendix C.
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Chapter 2

Theoretical treatment of many
electron systems

Atomic systems with typical distances of several Angstrom (1 A = 10~1%m) have to
be described by quantum theory. The fundamental equation of quantum theory is
the Schriodinger equation, which describes a quantum mechanically system by a par-
tial differential-equation of second order with respect to the electronic positions and
of first order in time. The state of the system is represented by a time-dependent
wavefunction, which also depends on the positions of the nuclei and of the electrons.
For systems with more than two electrons no exact solution to the Schrodinger equa-
tion is known, but several sophisticated algorithms have been developed to obtain
numerical solutions. The basic methods in Quantum Chemistry are the Hartree-Fock
(HF) method and its extensions. After the introduction of Hartree Fock theory an
alternative, but similar, method the Density Functional Theory (DFT) has been
developed. In this theory an atomic system is described by its electronic density, in
contrast to HF theory where the focus is on the wavefunction. Since both methods,
Hartree-Fock and density functional theory, are computationally very demanding
even for small systems, approximate methods have been developed to treat larger
systems or to perform molecular dynamics. In this Chapter a brief introduction
to the Hartree-Fock and density functional theories is provided and an approxim-
ate tight-binding method based on DFT is introduced. A detailed description of
Hartree-Fock based methods along with useful hints for implementing them on a
computer can be found in [3]. An overview of density-functional theory and its
applications is given, for instance, in [4].

2.1 Hartree-Fock Theory

An atomic system with no explicit time-dependence consisting of M nuclei and N
electrons is determined by the nonrelativistic! time-independent Schrédinger equa-
tion:

H|T) = E|T). (2.1)

!Relativistic corrections become necessary for heavier atom types.

17



18 CHAPTER 2. THEORY OF MANY ELECTRON SYSTEMS

Here, H is the Hamilton operator of the atomic system and |¥) is the wave-function,
which defines the state of the nuclei and electrons.

In atomic units, where lengths are given in Bohr (ap) and energies in Hartree (H)
with

4 2
lag = 27O _ 5201810 m
mee?

2 2
1H = me [ — — 4.3598 - 10718 ]
47T80h

= 27.2114 eV = 627.090 kcal/mol,

the Hamilton operator H reads:

~ 1 9 N M ZN N N 1
O EARP TP ony SRR
M M M
me 2 Z'uZU
— - (2.2)
Lo, L L

In the above equation 7; and Ru denote the position vectors of the i-th electron and
of the p-th nucleus, respectively. Furthermore, me is the mass of an electron, M, is
the mass of the p-th nucleus and Z,, its atomic number. The Laplacian operators V%
and VZ involve differentiation with respect to the coordinates of the i-th electron and
the p-th nucleus. The first term in equation 2.2 is the operator for the kinetic energy
of the electrons; the second term represents the coulomb attraction between electrons
and nuclei; the third term represents the coulomb repulsion between electrons; the
fourth and fifth terms are the operators for the kinetic energy of the nuclei and the
coulomb repulsion between nuclei, respectively.

The wavefunction |¥) is a function of the electronic and of the atomic positions.
Because of the large ratio of the nuclear mass to the electronic mass, it is a reasonable
approximation to separate the electronic and nuclear degrees of freedom with the
ansatz:

|O(7, ..., 7", Ri,-o s Ru)) = o7, ... 7)) |®(R, - .., Bu))-

There are three contributions to the kinetic energy: the motion of the nuclei, the
motion of the electrons relative to the nuclei and the motion of the electrons to-
gether with the nuclei. The latter contribution enters the total kinetic energy with
a pre-factor of me/M, < 1073. The separated treatment of the electronic and
the nuclear system, known as Born-Oppenheimer approximation, corresponds to
the neglection of this contribution. There exist some individual cases to which the
Born-Oppenheimer approximation is not applicable.

In the Born-Oppenheimer approximation one first solves the electronic equation:

Hellp) = Eol9), (2.3)
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which describes the motion of N electrons in the field of M fized nuclei. The elec-
tronic wavefunction |¢) explicitly depends on the electronic positions, but depends
parametrically on the nuclear positions, as does the electronic energy FE,. The
electronic Hamiltonian reads:

ey sy L

zlul =1 j>1

2.4
|7i — 7"J| (24)

Subsequently it is possible to solve for the motion of the nuclei, which is described
by:

I:Inuc@) = Exot|®), (2.5)
with
A M —_
Hpue = — + Z Z Eel({Ru})- (2'6)
pu=1 p= 1V>u u u|

The Schrodinger equation for the electronic system is a 3N-dimensional coupled
differential-equation of second order. For any extended system consisting of numer-
ous atoms this equation can be solved approximately, only. The level of approxim-
ation in the numerical treatment depends on the desired accuracy, the system size,
and the available computer power to solve the problem numerically in a reasonable
amount of time.

A widely used approximation is to apply a product-ansatz for the electronic wave-
function to obtain equations for a single independent electron in the averaged field
of all other electrons:

¢(F175FN) :(P(_'l)(P(FN) (27)

If the electronic Hamiltonian (2.4) can be written as a sum of terms depending solely
on the position vector of one single electron, the electronic Schrodinger equation
would decouple into N 3-dimensional differential equations. This being not the
case, nevertheless one can try to find the best possible solution represented by a
product ansatz of the form (2.7). The variational principle to find the minimum
energy within this product ansatz leads to the Hartree equations:

Y V() + Vi ()| () = exion(7), (2.8)

with the external potential V) resulting from the M nuclear charges
Vo(7) = Z -
|T - u‘
and the Hartree potential
1
2/d3r](10] SD](TJ)l—»'_,r|
i#] !

Since the Hartree potential itself depends on the wavefunctions g, the Hartree
equations 2.8 have to be solved iteratively until the input wavefunctions are equal
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(consistent) to the output wavefunctions. This is called a self-consistent-field (scf)
algorithm.

Physically one cannot distinguish between different electrons. This leads to the
additional requirement that the total wavefunction ®(7,...,7y) be antisymmetric
with respect to interchange of any two electrons, so that

Do Ty ) = =B Ty Ty ).

This requirement can be fulfilled by replacing the simple product ansatz (2.7) by a,
so called, Slater determinant:

Application of the variational principle to find the minimum energy for a single
Slater determinant leads to the Hartree-Fock equations:

N -I
Y+ VHm] 0u7) = Y @) [ o LT
=1

containing an additional nonlocal term and adding the exchange energy

15 [dn [ e o)

Z;ﬁj 175 — 7

= 8k¢k(7:')a (29)

! Femee @ @10)

to the total electronic energy.

The solution of the Hartree-Fock equations (2.9) yields a set {¢x} of orthonormal
Hartree-Fock orbitals with orbital energies {ex}. The Slater determinant formed
from the N orbitals with the lowest energies is the Hartree-Fock ground-state ¢p. In
practice one expands the Hartree-Fock orbitals into a finite basis set which replaces
the differential equations by algebraic equations. The larger and more complete the
set of basis functions the lower will be the expectation value Eg = (¢o|Hp|¢o). The
limit for larger and larger basis sets is called the Hartree-Fock limit. The Hartree-
Fock limit is not the correct energy of the many electron system, because the many
electron wavefunction cannot be represented by a single Slater determinant. To
obtain the correct energy one has to expand the many electron wavefunction into
an infinite basis set. An arbitrary antisymmetric function of N variables can be
expanded in terms of all unique determinants formed from a complete set of one-
variable functions, e.g., the set of Hartree-Fock orbitals {¢y }. The difference between
the correct energy &£ and the Hartree-Fock limit Ey is called the correlation energy

Ecorr = 50 - EO,

since the motion of electrons with opposite spins is not correlated within the Hartree-
Fock approximation.
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One extension to the Hartree-Fock approximation taking correlation into account is
called Hartree-Fock with configuration interaction (HF-CI) (see, e.g., [3]).

The physical significance of the orbital energies ¢, i.e., the eigenvalues of the
Hartree-Fock equations, is that they provide an approximation to the ionization
potential and the electron affinity, as stated in Koopmans’ Theorem: “The energy
€q belonging to an occupied orbital corresponds to the negative of the energy needed
to produce an (N — 1)-electron single Slater determinant with identical orbitals,
obtained by removing an electron from orbital p,. The energy e, belonging to a
non-occupied orbital corresponds to the energy gained to produce an (N + 1)-electron
single Slater determinant with identical orbitals obtained by adding an electron to
orbital ,.” This “frozen orbital” approximation neglects relaxation of the orbitals
caused by increasing or decreasing the number of electrons by one. The usage of a
single determinant within HF theory, i.e., the neglection of correlation effects, leads
to additional errors in the ionization potentials and electron affinities. In general,
Koopmans ionization potentials are reasonable first approximations to experimental
ionization potentials, whereas Koopmans electron affinities are often inaccurate.

The orbital energy ¢, includes coulomb and exchange interactions between an elec-
tron in ¢, and electrons in all other occupied orbitals (in particular ;). Since g
includes interactions between the electron in ¢, and ¢,, as well, the sum over all
energy levels ), ¢; belonging to occupied orbitals contains the interaction between
all electron pairs twice. Thus, the total energy of the electronic system equals the
sum over all ¢; corresponding to occupied orbitals ¢; minus the double counted
contribution.

B — imm B ZZ/d37‘9/d3 @ (7) i () eF (73) i (75) (2.11)

1=1 j#i |T] o 7'1|

1 LY o7 (73)05 (7)) i (7)) p; ()
§Z§/d3rj /d3

|75 — 73

1 1
:E & — = F —-F
imZ€Z 2 H+2 XC»

where m; denotes the occupation number for orbital ;.

2.2 Density-functional Theory

The calculation of the exchange energy (2.10) is quite time-consuming, because it
involves the evaluation of four-center integrals. Therefore, after the development of
Hartree-Fock theory different attempts to approximate it by the simple form

By = / &Pr ex(n()

occured, where ex(n) is the exchange energy density for a uniform electron gas of
density n. This is given (see, for example, [5]) b

3 3 1/3
ex(n) = —162 (;) ni/3.
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Then the variational principle leads to just the Hartree equations 2.8 with an addi-
tional exchange potential

Vie(7) = —¢? (§>1/3 ntl3 (7).

™

A similar approach was given by the X,-method of Slater [6]. The same theory had
been developed as an extension of Thomas-Fermi theory.

Instead of expressing only the exchange energy in terms of the electron density one
can try to express the total energy in terms of it. The mathematical foundation to
this attempt is given by the theorem of Hohenberg and Kohn [7]:

The energy E4 of an electronic system in its nondegenerate ground-state is a unique
functional of the ground-state electronic density n: Eq, = E[n]. For a nondegenerate
ground-state the energy functional under variation of n is minimal at the ground-
state electronic density.

While the Hohenberg-Kohn theorem is not directly useful, because it does not in-
dicate how to obtain n nor how to calculate the total energy from a given n, Kohn
and Sham [8] suggested a feasible algorithm to obtain an approximate solution:

The energy functional can be written as:
E[n] = T()[TL] + Eext[n] + EH[TL] + EXC[TL], (2.12)

where Eqyt is the contribution due to the external potential, e.g., the coulomb
potential due to the nuclei:

Bextln] = [ d*r (i) Vit (7)

and E¥yg is the electronic coulomb or Hartree contribution:

,,:'I

Egq[n] = /d3rn (MVp(r) = /d?’rn F)/d?’ '|ZL =
The term T corresponds to the kinetic energy of a non-interacting inhomogeneous
electron gas with density n. The last term Exc in (2.12) is defined by the three
other terms, i.e., it contains all other contributions to the total ground-state energy,
namely the exchange and correlation energies and the corrections to the kinetic
energy caused by the electronic interaction. The exact functional dependence on n
is not known and has to be approximated.

Kohn and Sham suggested to represent the density n in terms of normalized single
electron orbitals ¢; with occupation numbers m;:

M M
=Y milpi()°, with Y m;=N
i i
The total energy expressed in terms of the single electron orbitals reads:

B=Y mi [ drei (—% + Vet () + %vﬂ[nm]) oi(7) + Bxcln].  (2.13)
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Because of the Hohenberg-Kohn theorem the variation of the energy with respect to
the density must vanish at the ground-state density:

5 * l 3,0, k(A —
5‘10*(F) [E[{(p]}] _jjzkkj,k/d r (pj(T )(pk(T )] =0,

2

where the Lagrange multipliers \;; take into account the normalization of the ¢;.
This leads to the Kohn-Sham equations:

@i(7) = eipi(7). (2.14)

[_% + Vext (F) + Vig[n(7)] + Vxe[n(7)]

The exchange-correlation potential Vi is defined as the functional derivative of the
exchange-correlation energy:
_ (SEX(; [n]

ch [n] = 5n .

The operator acting on the orbitals ¢; in the above Kohn-Sham equations depends on
the density n and thus on the orbitals themselves. Hence, the Kohn-Sham equations
have to be solved iteratively. One starts with a reasonable density to obtain the
orbitals which determine a new density. This new density is substituted into the
operator until the differences between successive densities can be neglected. Like in
Hartree-Fock theory this algorithm is called self-consistent-field (scf) algorithm.

The total energy in density-functional theory can be written as a sum over the
eigenvalues belonging to occupied orbitals plus a correction for the double counted
electron-electron interaction (similar to Hartree-Fock theory).

M
Bln] = 3 maei — Fygln] - / &1 (7 Ve (7] + Bxeln]. (2.15)

An alternative expression can be obtained by substitution of the sum over the ei-
genvalues after multiplying the Kohn-Sham equations from the left with ¢} and
summing over all occupied states. This yields:

M
Bl = =3 Y [ @roi()eie) + [ Vst (7) + Baln] + Bxcll.(2.16)

For spin-polarized systems the total electron density has to be divided into a spin-up
and a spin-down density. For each of both densities separate Kohn-Sham equations
must be solved. The Kohn-Sham operator in both equations is dependent on both,
the spin-up and the spin-down density.

The eigenvalues in the Kohn-sham equation correspond to the first-order change of
the total energy with respect to changes of the occupation numbers m;:

Ol _ [rgt) (—% + Vet (7) + Viln(7)] + vxc[nw) wi(7) = e

8mi
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This equation is known as Janaks Theorem. In the exact density-functional form-
alism the highest eigenvalue gives the ionization energy for a molecule or the work
function for a metal (see [4]). For most approximate functionals, however, this is
not valid and even in the exact DF formalism it is valid only for the eigenvalue of
the highest occupied state. The cooresponding theorem to Koopmans Theorem is,
in general, not applicable in DFT.

2.2.1 Approximations for the Exchange-Correlation Energy

The exact functional form of the exchange-correlation energy Exc in (2.12) is not
known and has to be approximated. The simplest approximation is the Local-
Density-Approzimation (LDA). Here, one replaces the exchange-correlation energy
of a small volume element dV at location 7 by the corresponding exchange-correlation
energy of the homogenous electron gas of density n(7). The exchange contribution to
the exchange-correlation energy per electron for the homogenous electron gas with
given density n can be calculated exactly within Hartree-Fock theory:

1/3
ex(n) = _Z (ﬁ) /3

™

The correlation energy as a function of the electron density can be obtained as the
difference between the total energy calculated with an accurate numerical method
including correlation effects and the Hartree-Fock energy. This was done by Ceperley
and Alder [9]. The exchange-correlation energy per electron exc is just the sum of
the exchange and the correlation energy per electron:

exc(n) = ex(n) + ec(n).

It follows that the exchange-correlation energy of an electronic system with inhomo-
geneous density n within the Local-Density-Approximation is given by:

BEPA] = [ rn@exc(n() (27)
and the corresponding exchange-correlation potential reads:

LDA _ SELPA[)

The Local-Density-Approximation gives quite satisfactory results for the density,
energy and other derived physical properties of many molecular and crystalline sys-
tems. This is despite the fact that these systems exhibit a strongly varying density,
very different from the density of a homogenous electron gas. One deficiency of the
LDA is the tendency to overestimate the total energy of a stable system in compar-
ison to its separated atomic parts. Partly, this is due to too high an energy in the
single atom calculations. For some metastable transition states with a large number
of bonds, this overestimation is especially large. Therefore, cohesive energies for
stable configurations are often too negative, whereas reaction barriers are often too
small. This systematic error is known as LDA over-binding.

dexc(n)

- ‘n:nmn(F). (2.18)

= exc(n(r)) +
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One way to improve this and some other shortcomings of the Local-Density-Approx-
imation is to take into account the dependency of the exchange-correlation energy
on the density-gradient in addition to just on the density:

ESCGA[, v = / Pr n(fexc(n(), Vn().

This Generalized-Gradient-Approzimation (GGA) makes the method more flexible,
but also introduces more parameters to be determined. In general the GGA improves
cohesive energies, transition state barriers, and, in some cases, infrared absorption
intensities.

There exist several parametrizations of the exchange-correlation potential within the
LDA and the GGA. In general deviations in the results obtained with two different
parametrizations are small. Two common parametrizations implemented in the
computer codes used for this thesis are from Perdew-Wang '91 (PW-91) [10] and
from Perdew-Burke-Ernzerhof (PBE) [11].

2.2.2 Basis Set Expansion of the Kohn-Sham orbitals

In order to solve the Kohn-Sham equation in practice one needs a suitable repres-
entation for the Kohn-Sham orbitals. They can be represented directly on a fine
real-space grid and the Kohn-Sham equation can be solved by direct numerical in-
tegration. More common is the expansion of the Kohn-Sham orbitals into a finite
basis-set which transforms the integro-differential equation into an algebraic equa-
tion. The basis-set expansion of the Kohn-Sham orbitals ¢;:

Ny
pi(7) = Z Cui Xu (T) (2.19)
pu=1

is determined by the fixed basis functions x,. The expansion coefficients c,; have
to be determined. The electronic energy can be expressed in terms of the basis
functions x, as follows:

Ny Ny V2 1
B(fx)) = 33 B [ (9 [—7 Vet (7) 4 2 Vi (7] X () + B (),
=1lv=1
g (2.20)
with Ny N, u
n@) =33 Puxa @), Puw =Y miccu (221)
n=1lv=1 1=1

The P,,,, are the elements of the density matriz P and N, is the number of basis
functions.

The requirement on the expansion coefficients c,; to minimize the energy leads via
the variational principle:

o M Ny N
N [E[{Xu}] - D mje; (Z Zc;jcyj/d%xj;(mm(f’) - 1)] =0 (2.22)
wr j=1

pu=1lv=1
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to an algebraic generalized eigenvalue problem:

Ny

z (Huu - 5iS/uj) ci=0, pi=1,...,Np. (223)
v=1

The Hamiltonian matrix elements are defined by

Hu = [ @) [ Y Vet )+ +Vaaln(@)] + Vaeln@)| 0 (®) (224)
and the overlap matrix elements are defined by
Sw = [ ). (225)

Solving the generalized eigenvalue problem (2.23) yields the coefficients c,;, which
together with the basis functions x, determine the ground-state density n according
to equation (2.21). To optimize the geometry or to perform molecular dynamics one
needs to calculate the nuclear forces, i.e., the derivatives of the total energy with
respect to the nuclear coordinates Ry. The nuclear forces depend on the external
potential Veyt, the basis set (if atom centered localized basis functions are used), and
the total electronic energy, which depends parametrically on the nuclear coordinates:

. 9 Z Mo N 8
Fy, = —_,/d37" kan {Zmzzz Cpi m/d3 X;;(:) (2.26)

ORy, ‘T‘— pu=1v=1

V2 Nat Z v
—— =) == )] + Vxe[n(P)] — & | xo(7) 7 -
( T L gy I Vel )x m}

The first term in the equation above is due to the explicit dependence of the external
potential on the nuclear coordinates and is called Hellmann-Feynman force. The
second term is the Pulay correction resulting from the explicit dependence on the
(atom centered) basis functions [12].

2.3 Density-functional based Tight-Binding method

The self-consistent solution of the full-potential Kohn-Sham equation with a con-
verged basis set requires a vast number of mathematical operations. Today a generic
workstation with about one billion floating point operations per second (1 GFLOP)
needs 10 to 100 hours to find the equilibrium geometry of a system with about 10
atoms (100 electrons). To treat larger systems with hundreds of atoms or to perform
molecular dynamics even on small systems one has to use approximate methods,
which try to decrease the computational expense without loosing too much accur-
acy. The required accuracy depends on the problem to solve. E.g., to determine
the lowest energy structure from several given isomers the error in cohesive energy
must be smaller than the energy differences, but not necessarily much smaller. Fur-
thermore, often relative energies are more important than absolute ones, again the
determination of low energy structures provides a good example.
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There are several possibilities to approximate the full solution of the Kohn-Sham
equation (or of Hartree-Fock based equations):

e Small basis set: For many physical properties like geometries and relative
energies numerical complete basis sets and fully converged energies are not
necessary.

e Replacement of core electrons by pseudo-potentials or frozen cores: Chemical
bonding and many physical properties are mainly determined by the valence
electrons.

e Neglection of multi-center integrals: Depending on the representation of the
potential and the density the contribution to the total energy of some of these
integrals can be neglected.

e Approximation to the full potential: An expansion of the potential into atom
centered radial functions and spherical harmonics up to low angular mo-
mentums takes into account the most important contributions.

e Anticipation of self-consistent iteration: A superposition of atomic densities
leads to changes in the density during the scf iteration which are similar for
many different systems. These general changes (e.g. contraction of the atomic
densities) can be anticipated in the start density to accelerate or omit the
scf-iteration.

The approximate density-functional based tight-binding (DFTB) method used in
this work is based on the work of Seifert, Eschrig and Bieger [13]. In contrast to
empirical tight-binding methods the Hamilton and overlap matrix elements between
atoms at two different center are calculated within scf-DFT from approximate two-
center potentials and modified atomic wave-functions.

The tight-binding method can be viewed as an approximation to the energy expres-
sion in density-functional theory. If the ground-state electron-density n is known,
the Kohn-Sham orbitals ¢; and eigenvalues ¢; along with the corresponding total
energy can be determined in one step from the Kohn-Sham equation (2.14) and the
DFT energy expression (2.12). Since the ground-state energy is variational with
respect to variation of n, the error in the total energy E[ng] introduced by making a
clever guess ng to the correct density n (the one resulting from a sophisticated full
scf iteration), is of second order in dn := n — ng. The error in the energy is small, if
dn(7) is small for all 7 [14, 15]:

Bl = Bl + 5 [ [ i hodn(@6n() + 06) (227)
ol?) o)

—ZW@Z =
——/d3 /d3 r mo()mo(7) + Exc[no] —/d3rno(f')ch[no(F')]

=T

A
——+wmm+/£' + Viee[no]
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1 , 1 82Vxeln] o
+§/d3r/d3r <\F—F’| + 5n(F’)5n(F’)‘no) on(ron () + O(3).

By expanding the many-atom potential based on the self-consistent ground-state
electronic density into atom-centered local potentials, one notices that the many-
atom potential can be approximated better if the atomic potentials are based on
contracted atomic densities rather than free atomic densities [16]. The contracted
atomic densities can be obtained by solving the Kohn-Sham equation for a free single
atom with the additional potential
n
Vg (/) = (ﬂ) . =2 (2.28)
|70l

This potential forces the electrons to avoid regions far from the center and con-
sequently increases the density in the region where |7] is small. The self-consistent
solution of the single atom Kohn-Sham equation with the additional potential yields
contracted atomic densities npgat, so called pseudo-atomic densities. The super-
position of these pseudo-atomic densities yields in general a good approximation to
the electronic density for systems consisting of several atoms. Since the contrac-
tion parameter r( is fixed, not all conceivable atomic arrangements are properly
described. The contraction parameter is chosen such that systems with a generic
bonding pattern (generic number of bonds and generic bond-lengths) are accurately
described. The method might fail to accurately describe extraordinary systems like
dissociated or highly coordinated systems.

Within standard DFTB the electronic density n of the many atom system is ap-
proximated by the superposition ngy of the pseudo-atomic densities and the energy
expression (2.27) is expanded to first order with respect to dn. The DFTB method
has also been extended to calculate the charge transfer between atoms with different
net-charges in a self-consistent way [15]. This corresponds to an approximation of
the second order term in (2.27) and is referred to as self-consistent-charge (SCC)-
DFTB.

Within standard DFTB the term for total energy (2.27) of an system consisting of
many atoms is represented as

oce M N .
Epprg = Y_ci+ . Viep(|Re — Ril). (2.29)
G k,I2k

The eigenvalues ¢; are obtained from the solution of the generalized eigenvalue equa-
tion (2.23). The second term approximates the double counting and coulomb terms
defined in (2.15) by a summation over short-ranged pairwise potentials.

The energy expression within SCC-DFTB additionally contains the approximation
to the second order term in (2.27):

sce occ 1 M M .
Epprg =D&+ 3 2. TubaAgq+ > Viep(|Bi — Ri)). (2.30)
i k,l#k kl#k
The functional vx; denotes the approximation to the integral in the second order
term in (2.27) and Ay denotes the charge fluctuation on site k (see Ref. [15]).
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Equivalent to full DFT, the Kohn-Sham orbitals ¢; are represented as a Linear Com-
bination of Atomic Orbitals (LCAO) centered at the atomic positions Ry to trans-
form the Kohn-Sham equation into an algebraic eigenvalue equation (cf. Eq. 2.23):

The eigenfunctions of a free atom have quite long tails and, therefore, do not provide
optimal basis functions for solid systems. More suitable basis functions can be ob-
tained by solving the single atom Kohn-Sham equation with the additional contract-
ing potential (2.28)

[ vate) + (2 = @

To allow for an efficient implementation only one- and two-center integrals are con-
sidered in the setup of the Hamiltonian matrix. This approximation is supported by
the usage of contracted atomic densities, because the contraction causes the small
three-center contributions to become further reduced.

The following contributions to the Hamilton matrix (2.24) are neglected:

XalVEIxo) =0, p#vvp=v (2.31)
XGIVCxE) =0, C#ANC#B. (2.32)
Here Xﬁl denotes the basis function of type u = 1s, 2s, 2p,, ... centered at atom

A and V4 denotes the atomic potential of atom A. In general, only the valence
orbitals are taken into account and the frozen core approximation is applied, i.e.,
core orthogonalization effects are not explicitly considered. The first of the equations
above corresponds to the neglection of the so called crystal field integrals, the second
equation corresponds to the neglection of three-center integrals. Furthermore, the
diagonal elements are replaced by the eigenvalues of the free atom (instead of using
the eigenvalues of the pseudo-atom):

(Xﬁﬁ” + VA|Xﬁ) = eﬁ, (free atom). (2.33)
Because of the two-center approach, the Hamilton and overlap integrals need to
be calculated only once for each pair of atom types and a given set of two-center
distances R = |[R4 — RB|.

VAB

The potential of a system of two atoms A and B with pseudo-atomic densities

ngsat and ngsat at center R4 and RB is given by
VAB(#) = 2y [ipsat (F — BY)] (2.34)
B |7 — R’A| Hl"psat .
ZB

|7 B

+Vxe [”Ssat(F_ RY) + ”gsat (7 — RB)] .
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For the calculation of the exchange-correlation potential V¢ the density of the two
center is superposed first and then the nonlinear V¢ is calculated for the combined
density. This approach is different from earlier works with DFTB, where the many
atom potential was represented as a linear superposition of spherical single atom
potentials [17].

The solution of the generalized eigenvalue equation (2.23) with the approximated
Hamiltonian yields the eigenvalues e; and wavefunction coefficients c,;. From the
eigenvalues one obtains the DFTB band-structure energy Egg = >.9“¢;. To ob-
tain the total energy one needs to determine the repulsive potential Viep for any
combination of atom types as a function of internuclear distance. The repulsive en-
ergy is obtained from the difference between the total energy EES£ calculated within

scf-DFT and the DFTB band-structure energy Epg:
Frep = B{S — Epg (2.35)

for an appropriate reference structure. This structure must have only one unique
bond type. E.g., the diamond structure, the dimer or Si5(T4) are suitable structures
for silicon. Vrep in equation (2.29) equals Erep per bond, because it is added for
each nonequivalent atom-pair.

The DFTB method has already been applied to a variety of systems [18] containing
several atomic types, such as silicon (Chapters 4 and 7) [19, 20, 21], carbon [22, 23],
silicon-carbide [24, 25, 26, 27|, gallium-arsenide [28], and gallium-nitride [29].

The explicit calculation of the Hamilton- and overlap-matrix elements and of the
repulsive potential for silicon is described in more detail in Appendix A.



Chapter 3

Vibrational spectroscopy

It is very difficult to determine the geometry of a cluster or molecule directly by
experiment. Therefore, it is not possible to compare a theoretically determined
structure to experiment, if only the bond lengths and angles have been calculated.
Instead the calculation of additional measurable properties is necessary. Infrared
(IR) and Raman spectroscopy belong to the most commonly applied methods for
the classification of clusters and molecules. The vibrational frequencies provide an
unique fingerprint for different structures. Since the selection rules for IR absorption
and Raman scattering are different, both methods complement each other. Infrared
spectroscopy is based on the absorption of a photon to excite a vibrational mode,
whereas in non-resonant Raman spectroscopy a photon the frequency of which is
higher than that of the vibrational modes is inelastically scattered. Other useful
methods to link theory to experiment are ultraviolet photo-electron spectroscopy
(UPS), UV spectroscopy which detects excited electronic states, or Nuclear Magnetic
Resonance (NMR) spectroscopy, which measures the interaction of the nuclear spin
with the electronic charge. A somewhat different method is the determination of
cluster mobilities, which is described in Chapter 6.

3.1 Vibrational frequencies and normal modes

The equilibrium geometry of a cluster at zero temperature corresponds to the global
minimum of the energy surface spanning the 3M-dimensional space of the nuclear
coordinates. The atoms perform a zero point vibration around the equilibrium pos-
ition. This is equivalent to the quantum mechanical harmonic oscillator, where the
lowest state corresponds to an oscillation and not to a fixed position, in agreement
with Heisenbergs uncertainty law. Adding energy to the system by increasing the
temperature or supplying light of appropriate wavelength can induce transitions to
higher vibrational states. The vibrational frequencies depend on the curvature of
the potential surface at the equilibrium position, i.e., on how much the potential
changes during small displacements of the atoms.

A system consisting of M atoms has 3M degrees of freedom. Since 3 degrees describe
translation and another 3 degrees describe rotation of the whole system, there are

31
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3M — 6 internal degrees of freedom corresponding to vibrations of the atoms around
their equilibrium positions. Linear molecules have only two rotational degrees of
freedom and, therefore, have 3M — 5 internal degrees of freedom.

In classical terms, the energy of an atomic system with respect to the nuclear co-
ordinates R reads:

- M e 2 .
v(Ri,. .., 27 V(Ri,...,Ru), (3.1)

where V represents the total energy of the electronic system in its ground state plus
the coulomb potential of the nuclei. A dot denotes the derivative with respect to
time.

Denoting the set of nuclear coordinates (R, ..., Ry) as
R = (R17 R23 R3a .. 7R3M—2; R3M—1; R3M)

to simplify notation, the potential in the vicinity of the equilibrium point RO can be
expanded in a Taylor series:

V(R) = V(R +Z (R; — RY)
3M 3M
,(Ri — R))(R; — RY) + O(3)
3M 3M
= V(R ZFO (R; — RY) + ZZHO (Ri — R))(R; — R)) + O(3).
j=1 i=1j=1

Here, F0 and H, Oj denote the components of the forces and the so called Hessian
matri, respectlvely The matrix HO is real and symmetric and, therefore, has only
real eigenvalues and can always be transformed into diagonal form. The forces FO
vanish at the equilibrium point RO and the 3rd and higher order terms are small in
the vicinity of R°. In the harmonic approximation, where one neglects these higher
order terms, the energy expression (3.1) reads:

M 2
- - my > -
Ey(Ry,...,Ry) = ) 7R + V(R (3.2)
k=1
1 3M 3M
+3 H)(R; — R))(R; — R)).
i=1j=1

The classical equation of motion for the moving nuclei is

M &R,
Z&U 3 +Z Rj=0, i=1,2,...,3M. (3.3)

Within the Cartesian coordinates R; the 3M degrees of freedom are coupled. To
decouple the system, one has to find the eigenvectors X; of the Hessian matrix by
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solving the symmetric eigenvalue equation:

3M
> Hj Xy = wimiXji 5 4,5 =1,...,3M. (3.4)
k=1

3M — 6 of the 3M eigenvectors, also denoted as normal mode vectors, describe the
directions in which the atoms move during the i-th normal mode vibration. For the
6 normal mode vectors®, which describe translation and rotation the corresponding
eigenvalues, denoted as w?, are zero. If imaginary eigenmodes with w? < 0 occur,
the structure is not in a local minimum, but in a metastable transition state, e.g., a

saddle-point.

The set of cartesian coordinates R can be transformed into a set of normal coordin-

ates Q = (Qla"' 7Q3M) via

3M

Qj =Y Xij(Ri — R)).

=1

With respect to the normal coordinates the system of equations 3.3 decouples into
a set of independent equations:

d?Q;
dt?

+ w?2Q; = 0. (3.5)
Each of these equations has the solution:
Q; = A; cos(wit + 6;),

where A; and §; denote the amplitude and phase of the harmonic oscillation.

In quantum mechanics the motion of the nuclei is described by the Hamilton oper-
ator (2.6). With respect to the normal mode coordinates @; and in the harmonic
approximation the nuclear Hamiltonian Hiue decouples into a sum over independent
terms, which solely depend on one normal coordinate:

3M
Hyye =V° + e Z _h2a—2 +wiQ7 .
251 e T

By using the product-Ansatz

3M
\IJ(Qla RN Q3M) = H wnl(Qz)

=1

and setting V0 to zero one obtains 3M independent equations which correspond to
the Schrodinger equation of the one-dimensional harmonic oscillator:

1 o2

15 for linear structures
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The solutions? are of the form:

2

«/)m(@i)ziﬂn(@')e_%(%) Q=2 (3.7)

where H,, is the n-th Hermite polynomial with

The eigenvalues F,,, of the one-dimensional harmonic oscillator are given by

1
E,; = hw; (TLZ + 5) .

The energy of the atomic system described by 3M — 6 harmonic oscillators in the
state (n1,...,n3a) equals

3M
= 1
E(ny,...,n3p) = V(RO) —l—ﬁZwi (nZ + 5) .

=1
The energy spectrum is discrete and in the vibrational ground state, (n1,...,n3x) =
(0,...,0), the vibrational energy is greater than zero, this is referred to as zero-point

energy.

3.2 Infrared absorption and Raman scattering spectra

A cluster or molecule may exchange energy with a photon by changing its vibrational
(or rotational) state. The corresponding frequencies typically lie in the IR region
and, hence, the absorption of a photon is called infrared (IR) absorption.

In a semi-classical picture a photon with a frequency higher than any of the normal
mode vibrations can be scattered at an atomic structure. The elastic process, where
the photon does not change its energy, is called Rayleigh scattering. Inelastic scat-
tering, where the photon interacts with one of the vibrational modes and changes
its energy by AE = +hy;, is called Raman scattering. In this Section only the basic
theory of IR and Raman spectroscopy is introduced. A detailed description along
with a derivation of the equations presented can be found, e.g., in [30].

In the harmonic approximation, neglecting overtones due to nonlinear terms, only
transitions with An; = +£1 are allowed. Only photons the frequency v, = E,/h
of which matches any of the vibrational frequencies can directly interact with the
cluster or molecule. The frequencies in the IR absorption and Raman scattering spec-
tra are defined by the curvature of the atomic potential at the equilibrium geometry,
or equivalent, the eigenvalues of the Hessian matrix. In contrast the probability for
the absorption process depends on the change of the electric dipole moment p of

2A derivation can be found in almost any introductory textbook on Quantum Mechanics
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the atomic structure during the corresponding vibration. The dipole moment § is
defined as the distance between the center of the negative and of the positive charge
times the charge ¢: p := ¢ - (R+ — R_) If the cluster or molecule has a center of
symmetry, these two center coincide and the dipole moment vanishes. In a classical
picture the normal mode vibrations accompanied by an oscillating dipole moment
introduce an oscillating electric field. Contrariwise an external oscillating electric
field may excite such a vibrational mode, if it oscillates with the same frequency.
However, for a quantitative description of the absorption process a fully quantum
mechanically treatment is more appropriate. For this, both the atomic system and
the electromagnetic field have to be described by quantum theory. In the formalism
of “second quantization” the electric field operator G is written as:

= Z th (A)\b)\ +A)\b+) with A’)\ _ L_3/2é')\eik>\'7?_

Here by and ?)j" describe the annihilation (absorption) and creation (emission) of a
photon with wavelength A, respectively. The vector € denotes the polarization and
I_c',\ the corresponding wave-vector. The factor L—3/2 normalizes the electromagnetic
field, which is assumed to be in a periodic bounding cube of size L.

Two approximations based on the time and space scale on which the electromag-
netic field varies significantly simplify the computation of the spectral intensities:
Typical vibrational frequencies of clusters and molecules range from 3 - 10'2/s to
1.5-10'* /s (corresponding to wave numbers of 5000 cm~! to 100 cm~!). The shortest
wavelength of a photon with a frequency equivalent to that of a vibrational mode is
about 10~%m, that is 3 orders of magnitude larger than the dimensions of a small
molecule. Therefore, at any fixed time the electromagnetic field of the photon can
be considered constant over the whole molecule. The time scale for electronic relax-
ations (= 10717s) is about 2 orders of magnitude lower than the period of a nuclear
vibration. It follows that the electromagnetic field varies slowly compared to the
electronic time scale and can be considered constant in time.

Compared to the nuclear potential the influence of the electromagnetic field is as-
sumed to be rather weak. In this case, it is possible to expand the Hamiltonian of
the atomic system into a Taylor series up to 2nd order with respect to G:

. OH 3 S\ 0% Hygy 4,
Hyy = Ho + Z LG ZZ g iGj (3.10)
G =1j=
= Hy—pG — EG&G (3.11)
ZﬁM+ﬁF+W1+W2. (3.12)

Here, Hy = Hy + Hp is the Hamiltonian of the atomic system and the independent
electromagnetic field and the two operators W1 and W2 describe the interaction in
first and second order, respectively. Due to this interaction transitions between an
initial state |¥) of the atomic system (described as a set of harmonic oscillators) and
of the electromagnetic field (described as another set of harmonic oscillators) and
a final state |¥,) can be introduced. Application of time-dependent perturbation
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theory yields as approximation for the transition-probability Ps, Fermi’s “Golden
Rule”:

27 4 . 2
P, = + (Us|Wh + Wo|T,)| §(E. — Es).
Here, |0) is the product of |®,,), which describes the state of the i-th atomic har-
monic oscillator, and of |...,ny,...), which describes the state of the photons. The

effect of Wi on the electromagnetic field described by the “Golden Rule” is given
by:
(0| WA W) o (W5 Y (Erba + E3BY ) [e)-
A

The interaction with the atomic system may cause the annihilation (absorption)
or the creation (emission) of a photon. This corresponds to infrared absorption or
emission.

The effect of the second order operator W, given by

(W WalWe) o (0] DS (Enba + 5By ) & (Euby + ;) W),
A B

describes four different processes: i) (l; )\I;u) absorption of two photons with wavelengths
p and A, ii) (IA)j\'IA)I‘f) emission of two photons, iii) (IA))\IA);:) successive emission and ab-
sorption and iv) (ZA);IA)N) successive absorption of a photon with wavelength p and
emission of a photon with wavelength A. The last term describes inelastic scattering
of photons and corresponds to Raman scattering. The case p < A (the energy of
the absorbed photon is higher than that of the emitted photon) is denoted Stokes-
component, whereas the case y > A is denoted Anti-Stokes-component.

For comparisons with experimental IR spectra one has to calculate the IR absorp-
tion intensity IiIR for all modes 7. In the double harmonic approximation, where a
harmonic nuclear potential is assumed and the expansion of the dipole moment with
respect to the normal mode coordinates (); is cut off after the linear term, Fermi’s
Golden Rule yields for the first-order IR absorption intensity of the i-th normal
mode vibration:

R _| 07|

R _ | 22

' Qi

The atomic unit for the IR absorption intensity is

7= (PF)

with

1A =1-10"""m
1Debye = 3.33564 - 10 2 Cm
lamu = 1.66057 - 1072 kg.

The Raman spectra are determined by the differential Raman cross section. Within
the double-harmonic approximation the differential cross section of the i-th mode
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for non-resonant Raman scattering is given, according to Fermi’s Golden Rule, by

doi ho! g+ 1 IRAM (3.13)
dQY  2(4mepc?)? w; 45 '
4 -1
with 7; = [exp (Z?) - 1] , (3.14)
where the Raman activity IR2™ is defined as
[Ram o6 |2
= e e (3.15)
2
9a\2 (9B’
= 45 <8Q~> +7<6Q,> —: 450" + 767 (3.16)
] 2

The atomic units for the polarizability and for the Raman activity are

o] = A®
[IiRam] = Alamu .

The derivatives of the mean polarizability, o', and of the anisotropy, ', are defined
by
3 = (o, +), +0,) and
/2 ! Iyy 2 ! ! 2 ! ! 2 2 12 2 (317)
2/8 = (a;c;c_ ayy) + (aww_ azz) + (ayy_ azz) +6 (awy + Az + ayz)’
where o, (i,j = 7,9, 2) are the elements of & and a prime (’) denotes the derivative
with respect to the normal mode coordinate ;.

The ratio of the scattered intensities perpendicular and parallel to the incident po-
larization is called de-polarization ratio p; and provides a measure for the anisotropy
of the vibration,

3 /6/2

P oty ag (3.18)

The IR- and Raman intensities are calculated numerically as the derivatives of the
forces with respect to a small external electric-field component. The derivatives with
respect to a normal mode coordinate ; can be transformed via the normal mode
eigenvectors X} into derivatives with respect to the cartesian coordinates Ry.

8pl apl 82E aFk
0Q;  OR, M 0G0R, " T aG," M (3:19)
Otmn PE 9%Fy
—_— Xy = X 3.20
9Q; OGmOGOR: ¥ ™ 0G,0G, ™ (3.20)

Here, F and Fj denote the total energy and one force component, respectively.
G, denotes one component of the small external electric-field. The derivatives are
computed numerically via forward and backward finite differences. This avoids errors
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E* _A_ -— - -— = -
NS N
El

1 1~ v
EO

absorption emission Stokes Anti-Stokes

Figure 3.1: Tllustration of IR absorption and emission (left) and Stokes and Anti-
Stokes Raman scattering (right).

scaling proportional to the small electric-field component G,,. The implementation
of IR- and Raman intensities into the scf DF'T code NRLMOL is described in more
detail in [16].

Finally, the processes responsible for infrared absorption and Raman scattering are
illustrated in Figure 3.1. Here Ey and E; denote the energies of the vibrational
ground-state and of one fundamental vibrational mode, respectively. E* denotes
the energy of an intermediate virtual vibrational state.

The symmetry of a given cluster or molecule determines, if the dipole moment
or polarizability varies during the i-th normal mode vibration. With the aid of
Group Theory selection rules for IR and Raman transitions can be derived. A
short introduction to the application of group theory to vibrational spectra and the
labeling of vibrational modes is presented in Appendix B.



Chapter 4

Structure and properties of
small silicon clusters

As of this writing only the structures of silicon clusters with less than eight atoms are
well established. This could be achieved by a combination of theory and experiment,
only. There is no direct experimental access to the geometry of a cluster. Even for
small silicon clusters with 5 atoms (70 electrons) accurate ab initio calculations are
computationally highly demanding and it is difficult to reliably predict the ener-
getic order between several low-energy isomers. The measurements of vibrational
frequencies via IR- or Raman spectroscopy and of photoelectron spectra combined
with the corresponding results from calculations yield a consistent picture for the
smallest clusters [31]. The properties of the smallest silicon clusters are summarized
in the first Section of this Chapter. Many calculations and experiments have been
performed on the larger clusters, but the interpretation of the results is still in pro-
gress. Theoretical results, including data accessible by experiments, on clusters with
9 to 14 atoms are presented in the second Section. The subsequent Chapters deal
with the shape transition, indicated by mobility measurements, in the range from
Sigg to Sigp and the bonding pattern as compared to bulk-like bonding for special
larger cluster sizes.

4.1 Identified ground-state structures for Si; to Sig

Calculated geometries, energies and vibrational frequencies obtained with the very
same method and level of accuracy for several isomers of Sio up to Sig are available
for a Hartree-Fock (HF) based code [32], a density-functional theory (DFT) based
code [33] and the two density-functional theory based methods described in this
work, namely the all-electron full potential scf code (NRLMOL) and the approximate
tight-binding method (DFTB). By comparison to ultraviolet photoelectron spectra
for Siz to Sij, [34], to vibrationally resolved photoelectron spectra [35] for Siz and
Si, , to infrared spectra [36] and to Raman spectra [31, 37] for Sis, Sig and Si; the
following ground-state structures could be identified.

39
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Sig: The silicon dimer exhibits two almost isoenergetic local minima at bonding
distances of 2.2 and 2.3 A. This is caused by a level-crossing between the HOMO
and the LUMO at about the minimum distance. The DFT-LDA binding energy of
—3.56eV (ro = 2.2 A) is 0.35 eV lower than the experimental value of —3.21eV [38].
This is due to the overbinding common in the LDA. Comparison to the DFT-LDA
cohesive energy for the silicon bulk of —5.2eV /atom and the experimental value of
—4.6eV /atom [39], which correspond to —2.6eV/bond and —2.3eV/bond, shows
that the bond in the dimer is 37 % (DFT-LDA) or 53 % (exp.) stronger than in
the crystal, indicating the existence of m-bonds in the dimer. The electronic ground
state is a triplet state.

Sig: The isosceles triangle is the most stable isomer of Siz. Since the DFT-LDA
binding energy of the equilateral triangle lies less than 0.1 eV higher, it is difficult
to determine the most stable isomer by theory alone. The binding energy of Sis is
known experimentally to be —7.6 + 0.2eV [40] compared to —8.9eV within DFT-
LDA.

Sis: The planar rhombus is the lowest energy configuration of Siy. The length of the
shortest diagonal is 2.4 A only. Two atoms are threefold and the other two atoms
are twofold coordinated. Within DFT-LDA the rhombus is 2.5eV more stable than
the tetrahedron [33]. The rhombus can be found as a subunit in many of the larger
clusters.

Sis: Sis is a trigonal bipyramid with D3, symmetry. Only the six bonds from the
two apex atoms to the atoms in the triangle are strong with a length of 2.3 A. In
DFT-LDA the distance of 3.0 A between the apex atoms is about the same as the
side length of the triangle.

Sig: The exact structure of the six atom cluster is a challenge even to very accurate
ab initio methods. The principal structure is a tetragonal bipyramid with Dy
symmetry, but there exist two slightly distorted forms of it that have binding energies
within 0.02 eV of each other. A vibrational analysis indicates a flat potential in the
direction of the distortion. The experimental Raman spectra matches best the Dy,
symmetric structure [31, 37].

Si7: A pentagonal bipyramid is the lowest energy isomer for Si;. Within the
pentagon the atomic distance is 2.48 A, about 0.1 A larger than the bulk Si-Si bond
length of 2.35 A. Each of the apex atoms has five equivalent bonds of lengths 2.46 A
to the atoms in the pentagon and a weak bond of length 2.51 A to the other apex
atom. The two apex atoms along with any two adjacent atoms in the pentagon
form a near tetrahedral geometry, therefore, this cluster is best considered as five
tetrahedra sharing a common edge (the fivefold rotation axis).

Sig: A Jahn-Teller distorted bicapped octahedron with Cyj, symmetry is known from
HF- and DFT-LDA calculations to be the ground-state of Sig. Here, two opposite
faces of the octahedron are capped, which is favorable compared to capping adjacent
faces. Four other possible candidates for Sig have one or more imaginary eigenmodes.
They represent transition states and no local minima [33].

The identification of the ground-state structures of Siy, Sig and Siy by comparison
of calculated and measured Raman spectra as presented by Honea et al. [37] is illus-
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Figure 4.1: Measured spectra, calculated spectra and predicted
structures of Si4, Sis, and Siz. This Figure is taken from Ref. [37].

trated in Fig. 4.1. The spectra of the size-selected, matrix-isolated silicon clusters
have been measureded with the surface-plasmon-polariton enhanced Raman spec-
troscopy, which yields well-resolved vibrations in agreement with predictions based
on the Hartree-Fock method with quadratic configuration interaction (HF-QCISD).
Among all the Raman active modes predicted for Siq, Sig and Si7, only the relat-
ively weak b3y mode of Sis has not been observed. All the other experimentally seen
modes show a mean absolute deviation of only 7cm ! between theory and exper-
iment. The authors in [37] mention that consideration of other possible structural
isomers yields qualitative and quantitative results which are completely inconsistent
with the experimental spectra. They also report that “numerous attempts to meas-
ure the Raman signature of Sis and Sty were unsuccessful, presumably because of
low Raman cross sections and a limited signal-to-noise ratio.”

‘ Cluster (sym.) ‘ Erp ‘ By ‘ Gapra ‘ Gapg.f ‘
Si2 (Doop) | -1.94 [ -1.78 2.50 2.75
Si3 (Cay) | -2.98 | -2.97 1.87 1.01
Si4 (Dgp) | -3.49 | -3.54 1.45 1.08
Sib (Dsp) | -3.77 | -3.83 1.70 1.98
Si6 (Cy) | -3.93 | -4.04 1.34 2.11
Si7 (Dsp,) | -4.06 | -4.19 1.51 2.10
Si8 (Cop) | -4.07 | -4.12 1.16 1.42

Table 4.1: Binding energies with respect to spin polarized
atoms in eV /atom and HOMO-LUMO gaps in eV for small
silicon clusters as calculated within DFTB and scf-DFT-
LDA.

For larger clusters the ab initio calculations become very time consuming. To scan
an area as large as possible of the Born-Oppenheimer surface for such clusters the
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usage of an efficient approximate approach, like the density-functional based tight-
binding (DFTB) method, is required. To ensure accurate results for the geometry
and energy of the larger clusters the reproduction of the corresponding scf-DFT-
LDA variables for the smaller clusters is a minimum requirement. For small silicon
clusters, up to Sig, one obtains within the DFTB method the same equilibrium
structures as Fournier et al. [33] and Pederson et al. [41]. The maximum deviations
in bond lengths and angles are smaller than 10%. Table 4.1 compares the cohesive
energies and gaps between the Highest Occupied Molecular Orbital (HOMO) and the
Lowest Unoccupied Molecular Orbital (LUMO) from the DFTB calculations with the
corresponding values from scf-DFT-LDA calculations. The agreement for the cohes-
ive energies with a maximum error of 0.16 eV /atom for Siy is very good. However,
the HOMO-LUMO gaps are only in qualitative agreement, but these deviations
decrease for the larger clusters (see below).

Cluster | ZPE/eV | E/eV | Ezp/eV |

Siza 029 |-22.34] -22.05
Siz 0.30 | -21.61| -21.31
Size 0.28 | -20.55 | -20.28
Sigq 0.29 | -24.05| -23.76
Sigp 0.33 | -24.65 | -24.32
Sig. 0.33 | -24.39 | -24.07
Sigg 033 | -24.12 | -23.78
Sige 0.32 | -24.02 | -23.69
Si104 0.46 | -32.15| -31.69
Si1oc 0.43 | -33.19 | -32.76

Table 4.2: Zero-point energies (ZPE) as calcu-
lated within HF/6-31G*, binding energies (E)
and zero-point corrected binding energies (Ezp)
as calculated within HF-MP4/6-31G* for vari-
ous isomers of Si; to Sijg. All results and the
labeling of the clusters are taken from Ref. [32].

The total energies E‘got (and also the cohesive energies) of the equilibrium struc-
tures have to be corrected by the zero-point energy. Every vibrational mode with
frequency w; contributes the energy E; = 1/2hw; to the zero-point corrected total
energy EtZOPt):
7P _ o, 1RS
EtOt = EtOt + 5 Zl hwi.
i=

In general the differences in the zero-point corrections of different isomers are much
smaller than the differences in the total energies and the energetic order with and
without zero-point correction is the same. For several isomers of Si; to Sig this is
proved in Table 4.2. The binding energies calculated by Raghavachari et al. with
the Hartree-Fock method under inclusion of correlation effects by Moeller-Plesset
perturbation theory (HF-MP4) with a 6-31G* basis set are compared to the corres-
ponding zero-point corrected binding energies [32]. The vibrational frequencies and
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zero-point energies were calculated on the HF level (without correlation). In none
of the cases the zero-point correction changes the energetic order of the isomers.
Therefore, the energies without zero-point corrections are reported in the following.

4.2 Structure and energies of Sig to Siyy

None of the Si, structures for n > 7 has been verified experimentally to date. Ex-
perimental data for size-selected clusters in the gas-phase larger than Si; have been
provided for photoelectron spectra of anions [34, 42, 43, 44], for fragmentation path-
ways and dissociation energies of cations [45, 46, 47, 48], for chemical reactivities
[49], and for ionization potentials of the neutrals [50, 51, 52]. The observed frag-
mentation patterns of both cations and anions are quite complex. First, all species
with 8 < n < 70 (at least) undergo fission rather than evaporation. That is, both
primary dissociation products contain a relatively large number of atoms, one of
them always 6 to 11 atoms. Second, the preferred fragments are specific to the size
and the charge state (41 or -1) of the original ion. The products of collision-induced
dissociation of the cations Si} contain mainly Sig, Si; or Sijg fragments, either in
neutral or positive charge state [47, 48]. This is in agreement with the calculated
cohesive energies for Sis to Sij4 which indicate that Sig, Siy and Sijg are quite stable
(see Fig. 4.2).

‘ Cluster (sym.) ‘ Erp ‘ Egef ‘ Gaprg ‘ Gapscs ‘
Si9a Cop) | -4.176 | -4.234 | 1.904 | 1.988
Si9b Coy) | -4.126 | -4.183 | 1.846 | 1.551
Si9c Dsy) | -4.031 | -4.097 | 0.173 | 0.397
Sil0a C3y) | -4.242 | -4.357 | 1.706 | 2.125
Si10b T;) | -4.129 | -4.286 | 3.405 | 2.136
Silla ) | -4.203 | -4.274 | 1214 | 1.041

(
(
(
(
(
E
Sillb  (E) | -4.210 | -4.262 | 1.009 | 0.922
Sille  (Cs) | -4.205 | -4.259 | 1.330 | 1.073
(
(
(
(
(
(
(
(

Sil2a  (C,) |-4.228 | -4.274 | 0.925 | 0.593
Sil2b  (E) -4.250 | -4.267 | 0.862 | 0.940
Sil3a  (C3,) | -4.204 | -4.305 | 1.451 | 1.606

Sil3b Cay) | -4.277 | -4.291 1.332 0.787
Silda Cs) -4.328 | -4.372 1.531 1.774
Sil4b Cs) -4.300 | -4.332 1.029 1.323
Sildc

Dap,) | -4.283 | -4.253 | 1.095 | 0.896
C3y) |-4179 | —— | 0.000 —

Sil4d

Table 4.3: Binding energies with respect to spin polarized
atoms in eV /atom and HOMO-LUMO gaps in eV for several
isomers from Sig to Siy4 as calculated within DFTB and scf-
LDA.

Considering larger clusters with 9 to 14 atoms, an extensive search for the equi-
librium structures with different seed clusters obtained by edge or face capping
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Figure 4.2: HOMO-LUMO gaps in eV (top) and cohesive energies in
eV/atom (bottom) as calculated within DF'TB and SCF-LDA as a func-
tion of cluster size.

of smaller stable clusters or with clusters taken from the literature has been per-
formed. The geometries of these structures have been optimized with the DFTB
method by applying either a stochastic molecular-dynamic quenching or conjugate
gradient relaxation until the maximum force on every atom dropped below 10~
Hartree/Bohr. At least the two most stable! structures within DFTB were then re-
laxed with the sct-LDA NRLMOL code using a 6s5p3d basis set (i.e. 6 s-like, 5 p-like
and 3 d-like contracted Gaussian) and the Perdew-Wang ’91 exchange-correlation
functional. The minimum allowed force during these conjugate gradient procedures
was 1073 Hartree/Bohr.

Within scf-LDA the cohesive energies were calculated with respect to spin polar-
ized isolated atoms. Since the DFTB method does not take spin into account,
the DFTB energies were shifted by the LDA spin-polarization energy of 0.66 eV.
The cohesive energies and highest occupied to lowest unoccupied molecular orbital
(HOMO-LUMO) gaps for the lowest energy clusters are summarized in Table 4.3.
The variation of both quantities with cluster size is depicted in Figure 4.2. Si7, Sijg,
and Sij4 are more stable than their neighbors. The order of the DF'TB cohesive

Imost stable in the sense of lowest-energy and not lowest reactivity
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energies of the lowest energy isomers for a given cluster size agrees with the scf-LDA
results for all smaller clusters and Sig, Si;g and Si;4 but is reversed for Sig, Siq1, Sito
and Sij3. However, for the three latter clusters the differences in the scf cohesive
energies are smaller than 0.02 eV /atom, and, therefore, challenge the accuracy of
the DFTB approach. The variation of the HOMO-LUMO gap as calculated within
DFTB with increasing cluster size, n, is in good agreement with the scf-LDA calcu-
lations for n > 7. The quantitative differences for Sig to Sij4 are at maximum 20%,
and the deviations are smaller for the larger clusters. An accurate description of the
eigenvalues of unoccupied orbitals often fails with a minimum basis set.

In the following discussion of the results for each cluster size the self-consistent
calculated cohesive energies and HOMO-LUMO gaps, obtained with NRLMOL, are
considered. The geometries of the silicon clusters are depicted in Fig. 4.3.

Sig: Two stacked distorted rhombi with an additional atom capped on top form the
lowest-energy cluster (Sig,, see Fig. 4.3a). This structure has Cy, symmetry and
is 0.05 eV /atom more stable than the distorted tri-capped trigonal prism Sigy, first
proposed by Ordejon et al. [53] as the most stable structure of Sig. Raghavachari
and Rohlfing [32] calculated by using a HF-MP4(SDQ)/6-31G* algorithm nearly
identical energies for a tri-capped trigonal prism Sig.(Ds3p), a tri-capped octahedron
(Csy), and a distorted tri-capped octahedron (C). They found the latter cluster
to be only 0.014 eV /atom more stable than the first one and only 0.011 eV /atom
more stable than the second. Ordejon et al. found by using a non-scf multi-center
TB-approach [54] an energy difference of 0.10 eV/atom between the distorted tri-
capped octahedron (C;) and the distorted tri-capped trigonal prism Sigy(Co,). The
difference in energy between the triplet state of the tri-capped trigonal prism (Dsp,)
(which is nearly isoenergetic to the distorted tri-capped octahedron (Cy)) and Sig
as calculated with NRLMOL is 0.09 eV /atom. This is in agreement with the energy
difference between the three structures considered by Raghavachari and Rohlfing
and the structure proposed by Ordejon. However, none of these authors considered
the candidate Sigq (C2y). It is possible that a similar structure has been described in
earlier works of Ballone et al. [55], Wales [56] and Vasiliev et al. [57], but no detailed
information about geometrical parameters is given in those works. Sig, has a large
gap of 2.0 eV within the scf-LDA formalism.

Si11: A structure proposed by Lee et al. [58] using a TB-method, Siji,, can be
confirmed with DFTB and NRLMOL to be the most stable Si;; cluster. Lee et
al. describe the geometry as a distorted tri-capped tetragonal anti-prism, but it may
also be seen as a distorted penta-capped trigonal prism (see Fig. 4.3f). The three
rectangular faces of the prism, one edge and one triangular face are capped, which
results in C; symmetry. The relaxation out of different starting structures for Siy;
with the DFTB method has also spawned another cluster, Sii1p, having no symmetry
at all. This cluster is within scf-LDA only 0.01 eV /atom less stable than Sij1,. It isa
distorted 4-5 prism, with two atoms capping the fivefold ring (see Fig. 4.3g). Struc-
ture Sij1, is more stable by 0.02 eV /atom than the distorted tetragonal anti-prism
Si11.(Cs) with both tops and one roof-face capped found by Rohlfing and Ragha-
vachari [59]. However, Liu et al. [60] find by using the DFT-GGA the Cy, geometry
in [59] and an isoenergetic C isomer not previously described lower in energy than
Si114 by 0.25eV. Grossman and Mitas [61] considered three stacked triangles with
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capped tops (Dsp,) for Siy;. Within DFTB this cluster is metastable with a binding-
energy 0.03 eV/atom higher than that of Sijj,. After small displacements in the
direction of the occuring imaginary eigenmodes this structure converges to Sijq.

Si12: Ramakrishna et al. presented results of their extensive search for the ground
state of Sijo [62]. They report on six isomers, which differ by only 0.02 eV /atom
in cohesive energies, as calculated within the DFT-LDA. These isomers can all be
described either as hexa-capped trigonal prisms or anti-prisms with different faces or
edges capped. Additionally, they report on seven other structures with the highest
energy cluster being 0.11 eV /atom less stable than the lowest-energy one. For their
isomer 2 (Sijg,), a hexa-capped distorted trigonal prism with (Cs) symmetry (see
Fig. 4.3i), a cohesive energy of -4.27 eV /atom is obtained with the all-electron full po-
tential scf DFT-LDA code NRLMOL. The search with DFTB revealed also another,
non-symmetric, structure Sijop (see Fig. 4.3j) being only 0.01 eV /atom less stable
than their isomer 2. This structure, a stacking sequence of a distorted rhombus, a
fourfold ring, a triangle and a single atom, does not match any of their isomers.

Si13: The most stable structure of Sij3 consists of four stacked triangles with a cap on
top. QMC [63] and DFT-LDA [41, 64] calculations found this structure Siy3, to be
favoured against the icosahedral form of Sij3. From the MD search with DF'TB the
cohesive energy of another structure can be predicted to be very close to that of the
lowest energy cluster. This structure, Si;3p, has Cy, symmetry and can be described
as a distorted tri-capped trigonal prism with an additional rhombus capped on one
edge of the prism (see Fig.4.31). The energy difference between these two structures
within the DFT-LDA is only 0.01 eV /atom, whereas Grossman and Mitas found an
energy difference of 0.3 eV/atom between the icosahedral cluster and Sij3, [63]. The
HOMO-LUMO gap of structure Siysp is only half as large as that of the most stable
cluster Sijz,.

Si14: Only a few structures for Sij4 have been presented in the literature. Here,
a stacking sequence of two distorted rhombi, one fivefold ring and an atom on top
(Si14q) is suggested as a candidate for the groundstate structure. In this cluster the
longer axes of the two stacked rhombi are perpendicular, as can be seen in Figure
4.3m. There exists also a locally stable cluster, Sij4, with similar geometry but
parallel longer axes, which is only 0.04 eV /atom higher in energy. Another local
stable isomer is the octa-capped trigonal prism with Ds;, symmetry (Sijs.). The
rectangular faces of the prism are capped by a six-fold ring and both triangular faces
are capped by one atom each (see Fig.4.30). This geometry is 0.12 eV /atom less
stable than the lowest energy candidate. One interesting feature of this structure are
the six fivefold rings, which also occur as part of the sixfold rings in the tetrahedral
bulk structure. Sij4. has 30 bonding-angles very close to the tetrahedral bond angle
of 109°. For the three structures Sii4q, Si14p, and Sijg. the HOMO-LUMO gaps are
1.77, 1.32, and 0.90 €V respectively. Within the DF'TB method the lowest energy
cluster is more stable by 0.15 eV /atom than the four stacked triangles with capped
tops (Sii4q) investigated by Grossman et al. [61]. Structure Sij4, has been confirmed
to be the most stable isomer of Sij4 by DFT-GGA calculations [60].
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Figure 4.3: Low-energy isomers of Sig to Siyy.
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Ho and coworkers have presented candidates for the ground state isomer of silicon
clusters from Sij; to Siyy using a Genetic Algorithm and a tight-binding potential
[65]. Similar to the approach described here, they further relaxed their new candid-
ates within the scf-LDA. Their most stable structures for Sijo and Sii4 are identical
to the clusters presented above, but for Sij3 Ho et al. calculated the cluster Siygp to
be more stable than cluster Sijz, by 0.02 eV/atom. The small deviations in binding
energies and HOMO-LUMO gaps between both LDA approaches are probably due
to the use of different basis sets and different functionals for the exchange and correl-
ation potential. In this work the Perdew-Wang '91 exchange-correlation functional
was used, whereas in [65] they used the Vosko-Wilk-Nusair functional.

All lowest-energy structures considered here, with the exception of Sig,, have a
tri-capped trigonal prism as the common subunit. This building block can also be
described as a stacking sequence of a rhombus, a rectangle and a single atom capped
on top. In the most stable 9 atom cluster Sig, the rectangle is replaced by a rhombus.
The tetra-capped trigonal prism Sijg, (C3y) can be obtained by capping one top of
the tri-capped trigonal prism. Further capping of one edge of the prism leads to
the Sij1, cluster. Capping of the second triangle followed by a displacement of the
edge capping atom of Sijj, to one side of the trigonal prism results in structure
Sijoq. In Sijgp a rhombus is attached to four atoms of the tri-capped trigonal prism.
Sit3, can be obtained by adding a further triangle to the three stacked triangles and
capping the top. Sii4, is very similar to Sijgp, the rectangle in the building block
is expanded to a fivefold ring in Sii4,. Sii4c can be built by replacing the capping
atoms of the tri-capped trigonal prism with three dimers and capping each of the
two triangular faces with one atom. The dimers lie in the mirror plane perpendicular
to the principal axis. All low-energy structures with 11 to 14 atoms considered here
have various five- and even sixfold coordinated atoms. The overall bonding scheme
is quite different from the bulk tetrahedral symmetry. However, each structure has
numerous bond angles close to 109°.

4.3 Vibrational signatures and polarizabilities of Sig to
Siyy

Due to the small differences in cohesive energies for the low-energy clusters, addi-
tional theoretical data for the identification of the ground-state geometry of a cluster
are highly useful. Calculation of the vibrational spectra not only confirms the stable
stationary points on the Born-Oppenheimer surface, but along with the Raman
activities and IR absorption intensities also provides unique spectral information on
chemical bonding, which can be used for comparisons with experiment. This ap-
proach has already been successfully applied to identify smaller clusters [31, 37, 36].

To determine the vibrational modes of the clusters the method discussed in Chapter 3
and in Refs.[41, 66, 67, 68] has been applied to Sig and Si;; to Sij4. For the numerical
computation of the vibrational frequencies with NRLMOL displacements of 0.05 ap
and for the computation of the dynamical response to an external electric field small
electric field components of AG = 0.005 a.u. were used (see Chapter 3). As described
in [66], the sct-DFT method yields reliable results for vibrational frequencies, IR
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intensities and Raman activities of small silicon clusters with a (6s5p3d) basis set
and within the LDA. Since the IR and Raman activities depend on second and third
order total energy derivatives with respect to the normal mode coordinates and
external electric field components, extremely well converged energies and electronic
densities are required. Hence, for the calculation of the vibrational frequencies,
the total energy was converged during the scf iteration to 10~® Hartree and for
the calculation of the intensities and activities to 108 Hartree with respect to the
electronic degrees of freedom.

‘ Cluster (sym.) ‘ Frequencies/(cm™!) ‘
Siga (CQU) 56(b2), 109(b1), 120(&2), 164(0,1), 219(&1),
225(b2), 256(b1), 262(b2), 284((11), 285(&2),
290(b1), 292(0,1), 322(&1), 332(0,1), 335(b1),
373(&2), 397(b1), 405(&1), 437(b2), 468(b2),
486(&1)

Sit1a (Cy) |62, 111, 115, 129, 149, 197, 208, 223, 232,
251, 253, 261, 268, 278, 281, 298, 304, 306,
350, 354, 358, 366, 397, 411, 413, 439, 493
Siia  (Cs) | 46, 110, 139, 163, 166, 178, 196, 197, 213,
228, 234, 238, 243, 255, 264, 266, 288, 291,
313, 322, 336, 342, 345, 390, 407, 425, 471,

488, 506
Sil3b (Cgv) 45(b2), 58(b1), 100(a2), 136(b1), 145((1,1),

158(&2), 168(b2), 176(b1), 189(&1), 199([)2),
204(a1),229(az), 230(az), 230(b; ), 233(a1 ),
255(a1), 257(bs), 259(b2), 279(as), 289(a;),
302(b2), 311(b1), 330(a1 ), 349(b1), 351 (a1 ),
353(as), 356(b2), 360(as), 373(a1), 394(a1),
405(by), 408(b1 ), 446 (b1 ), 454 (a1 )

Siie  (Cs) | 54, 99, 103, 115, 142, 154, 180, 188, 193,

196, 213, 222, 223, 230, 240, 259, 269, 273,
283, 286, 290, 298, 306, 315, 339, 356, 356,
365, 367, 370, 401, 410, 428, 447, 463, 480

Table 4.4: Vibrational frequencies of lowest-energy silicon clusters
as calculated within DFT-LDA.

In the following paragraph the IR and Raman spectra of the candidates for the
ground state structures of Sig, Siy1, Siig, Siyg, and for the second stable structure
of Siyg will be discussed. The corresponding spectra for the most stable isomer
Si3, have already been presented in Ref. [41]. Table 4.4 contains the vibrational
frequencies of these clusters labeled by the symbol of the irreducible representations
(see the Appendix) for clusters with more than two symmetry elements. In the
figures with the vibrational spectra the lower panel shows the Gaussian-broadened
vibrational density of states (VDOS), obtained by centering a Gaussian-function
with a FWHM of 6 cm ! on each of the normal mode frequencies. In the other panels
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the VDOS is weighted by the IR intensity and Raman activity of the various modes.
For the Raman spectra the activities for parallel and perpendicular polarization are
plotted.

Sige: This cluster has Cy, symmetry and therefore has no degenerate eigenmodes.
All modes are Raman active, but only the modes which transform as the irreducible
representations ai, b1, and by are IR active. Therefore, one expects a maximum
number of 21 Raman active modes and a maximum number of 18 IR active modes.
On the left hand side of Figure 4.4 the predicted IR and Raman spectra for Sig, are
presented.

The IR spectrum has its strongest peak at 486 cm™! and six other strong peaks are
located in the range from 109 to 468 cm . The strongest IR mode corresponds
to an anti-phase vibration of the atom on top relative to the left and right atom
of the upper rhombus (see Fig. 4.3a) and of the left and right atoms in the upper
rhombus relative to the left and right atoms in the lower rhombus. The maximum IR
intensity of 0.16 (D/ A)2/ amu is small compared to some spectra of other structures
like Siy [1.34 (D/A)?/amu] or Sijo(TCO) [1.5(D/A)?/amu] in Ref. [41]. In the
experimental spectra of Ref. [36] only the modes corresponding to calculated IR
intensities greater than approximately 0.15 (D/A)?/amu (within DFT-LDA) could
be identified.

Sig, has a fully polarized strongest Raman peak at 405 cm~! and one strong peak
at 56 cm™!, which is nearly non-polarized (The scaling is different in the Raman
perpendicular and Raman parallel DOS). Mainly the atoms in the upper rhombus
and the atom on top (see Fig. 4.3a) contribute to the low-frequency non-polarized
Raman mode. The atom on top moves horizontally in the opposite direction than
the two atoms (in front and in the back) of the upper rhombus. The high-frequency
polarized Raman mode corresponds to a breathing mode in which all atoms parti-
cipate.

Sig, provides a good example to illustrate that the selection rules derived from Group
Theory (see the Appendix) only give a necessary, but not a sufficient, criterion for a
vibrational mode to appear in the measured IR or Raman spectra. Only seven out of
the 18 allowed IR active modes have an IR intensity greater than 0.04 (D/ A)2/ amu.
The intensities of all other modes are far too weak to be detected by experiment.
Only in some cases one can distinguish between two different isomers with the aid
of the selection rules alone. In many cases the explicit calculation of the spectra is
essential.
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Si114:  This structure has only one reflection plane, hence, all 27 modes are nonde-
generate and are both Raman and IR active. As can be seen on the right hand side
of Figure 4.4, Sij1, has two nearly equally strong IR active modes at high energies
(411 and 493 cm™!) and only one partly polarized strong Raman peak at 354 cm™!.
All Raman peaks observed in the direction perpendicular to the polarization plane
have very low intensities. Since the only difference between Sii1, and Sijg, (TTP) is
the additional atom capped on one edge of the trigonal prism, it is interesting to see
the influence of the additional atom on the IR and Raman spectra. The spectra for
Siqgq is given on the left hand side of Fig. 4.5. Both structures have one highly active
and strongly polarized Raman mode at about 380 cm™~! (Siyo,) and at 354 cm !
(Siy14). For Sijj, this Raman mode corresponds to a breathing mode in which all
atoms participate. The Raman-perpendicular spectra is very weak for both clusters.
The IR spectra of both structures are weak, too, but the highest energy IR active
modes occur at higher energies for Siy1,.

Si194: Like Sijiq this cluster has only nondegenerate vibrational modes, which are
all Raman and IR active. The IR and Raman spectra of Si;9, are depicted on the left
hand side of Figure 4.6. The IR spectrum is rather weak and may be hard to detect
experimentally. The strongest, polarized, Raman peak for Sijoq is at 336 cm™! and
corresponds roughly to a breathing mode. Two other strong Raman peaks appear
at 196 and 342 cm™!, the latter is obscured by the 336 cm™! peak in the diagram.

Si13p:  The second most stable configuration of Sijg has Co, symmetry and, there-
fore, has a maximum number of 33 Raman and 27 IR active modes. The IR absorp-
tion intensities are rather weak and may be difficult to observe in experiment. The
most striking feature in the Raman spectra is a strong peak with low energy (45
cm™!). Sij3, has another strong, polarized, peak at 373 cm™! (see the right hand
side of Figure 4.6). The high-frequency polarized Raman mode can be described as
two independent breathing modes. The atoms in the rhombus on the bottom and
the seven upper atoms (see Fig. 4.31) perform a breathing-mode-like vibration.

A comparison of the spectra for Siyg, with the spectra of the proposed ground state
structure Sij3, in Ref. [41] is helpful in the identification of the ground-state. The
IR-spectra of both Si3 isomers are very weak and an experimental identification by
IR measurements will be difficult. In contrast to the IR spectra, the Raman spectra
are strikingly different and should be well suited for an experimental determination
of the ground state structure of Siy3. Sii3, has strong Raman modes at 100, 220, and
337 cm™!, the strongest mode at 337 cm™! being fully polarized. Considering that
the Sijg, structure is only 0.01 eV /atom more stable than the Sijg; structure within
DFT-LDA, it would be very useful to determine the experimental Raman-spectra of
Siiz clusters.
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Si144: Since the ground-state candidate for Sij4 has C; symmetry, all of its 36
vibrational modes are both IR and Raman active. The Raman spectra, which are
depicted in Figure 4.7 along with the IR-spectrum, show one highly active mode at
339 cm !, which is strongly polarized, and five less active peaks located in the range
from 196 to 365 cm~'. In contrast to the structures discussed above this strong
polarized Raman peak at about 330 to 370 cm ! does not correspond to a breathing
mode, but exhibits a more complicated vibration pattern. The most active IR
modes have frequencies larger than 200 cm~!. The strongest peak has an intensity
of ~ 0.14 (D/ A)?/ amu only, which is close to the experimentally detectable limit.
Although structure Sij4, is similar to Sijg (the rectangle in Sijg is replaced by a
fivefold ring), both the IR intensities and the Raman activities are quite different.

As noted in the previous section the most stable structures of Si;g to Sij4 have a
tri-capped trigonal prism as the common subunit. However, there is no strong IR
or Raman peak specific to this subunit. The only common (detectable) vibrational
feature of Sigq, Siige, Sii1a, Sii2q, and Siigp is the strongly polarized Raman peak at
about 330 to 370 cm ! corresponding to a breathing mode. The different capping of
the common subunit influences the bond-strength and the frequency of these modes.
This Raman peak has the highest frequency for Siyg, indicating stiff bonds.
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Besides IR and Raman spectra the polarizabilities of clusters can be determined
by experiment. In Table 4.5 the static electric dipole moments for the investigated
clusters are presented and the calculated static polarizabilities are compared to the
experimental measurements of Schifer et al. [69]. The polarizability « is defined as
the averaged sum over the eigenvalues «; of the polarizability tensor: @ = (aq +aa+
a3)/3. The calculations of the polarizabilities show smaller variations with cluster
size than has been observed in experiment. The measured polarizabilities range
from 1.8 to 5.5 A3/atom, whereas the calculated polarizabilities are all greater
than 4.34 A/atom and less than 5.21 A/atom. This deviation between theory
and experiment has previously been mentioned in Ref. [41] for Sijg, Siy3, Sigg, and
Sig;. One could argue that the theoretically determined isomers may not be the
ground-state structures seen in experiment. However, due to the small differences
in calculated polarizabilities for Siys, (4.40 A% /atom) and Siys, (4.51 A®/atom) and
for both Sijg isomers (TTP and TCO) it is unlikely that the consideration of other
isomers will resolve the discrepancy between theory and experiment.

lerpal | lpLpall57) | arpa arLpald7] | Cexpt

Cluster | Debye | Debye A /atom A /atom A /atom
Siy 0 0 5.88 6.12 5.4
Sis 0.32 0.33 5.21 5.22

Sig 0 0 5.07 5.07

Sis 0 0 4.82 4.81

Sig 0.21 0.19 4.51 4.46

Siz 0 0 4.41 4.37

Sigg 0 0 4.54 4.52

Sigq 0.28 0.36 4.43 4.38 2.9
Siiog 0.72 0.69 4.34 4.31 5.5
Sit1a 0.76 4.38 2.8
Sii2q 0.94 4.50 2.3
Siizg 0.12 4.40 1.8
Siizp 0.30 4.51 1.8
Sii4q 1.12 4.47 2.7
Sigg 0.02 4.83 3.6
Sigg 0.79 4.58 3.1

Table 4.5: Dipole moments and polarizabilities as calculated within
DFT-LDA and a finite-difference pseudo-potential method [57]. Ex-
perimental polarizabilities for clusters are taken from Ref. [69] and
results for Siy, Sijga, Si13q, Sizg, and Sig; are taken from Ref. [41]



Chapter 5

Finding low-energy structures
with Simulated Annealing

The number of possible geometries for a given set of atoms increases exponentially
with the number of atoms. For structures with more than 10 atoms it is not feasible
to scan a fine grid in configuration space. Also, there exists no simple unique bonding
pattern for silicon clusters and it is not possible to predict the geometries of larger
clusters from the geometries of the smaller clusters. Therefore, statistical methods
to find the global-energy minimum, or at least a local minimum close to the global
minimum, must be applied. The principle idea of Simulated Annealing when applied
to atomic systems and using molecular dynamics (MD) is to supply the system
with additional kinetic energy to overcome barriers around local minima and to
find lower lying minima. During the simulation the kinetic energy, or equivalently
the temperature, is decreased. This makes it more unlikely to escape from a local
minimum towards the end of the simulation.

5.1 Simulated Annealing

Finding the geometry with the lowest energy for a given atomic system can be seen as
a special case of a general optimization problem. In a general optimization problem
one searches for the global minimum of a cost-function dependent on very many
independent variables. It is not feasible to evaluate the cost-function at any point
in the (discretized) state-space. Simulated Annealing [70, 71, 72, 73] presents an
optimization technique that statistically guarantees finding the global minimum of
the cost-function. The technique is based on the simulation of annealing a physical
system from a high energy liquid phase to a lowest-energy frozen state. The general
method of Simulated Annealing consists of three functional relationships:

1. Selection of points in state-space, in general via a probability density of state-
space.

2. Probalbility h for acceptance of a new point determined by the difference AE
between the cost-functions at the new and at the present point.

o7
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3. Schedule of “annealing” the “temperature” T' in annealing-time steps t.

The probability & to accept a new point with an increase of the cost-function by
AFE compared to the present point is chosen as a Boltzmann distribution:

hAE,T) = e 2FIT,

In the case of Boltzmann-type SA it has been proven that it suffices to obtain a
global minimum of the cost-function E if T is chosen to decrease not faster than [74]

T(tr) = To/ In(ty),

with 7 “large enough”.

To statistically guarantee finding the global minimum the concept of “ergodicity”
is important. The term “ergodic” means that all states of the system are actually
to be visited. However, for very large systems ergodicity is not an entirely rigorous
concept when faced with the real task of its computation. The long time of execution
of standard Boltzmann-type SA has driven the application of a faster temperature
schedule violating the conditions required to establish a true ergodic search. The
application of a too high cooling rate transforms the SA algorithm into an algorithm
better described as Simulated Quenching (SQ). The 1/Int annealing schedule en-
sures to find an optimal solution for any arbitrary cost-function possessing quite
arbitrary degrees of nonlinearities, discontinuties, stochasticity, and boundary con-
ditions. However, in many cases one knows quite a bit about the cost-function, and
perhaps some less stringent necessary conditions may be developed for some special
type of cost-functions. The convenience of the SA algorithm, together with the need
for some global search over local optima, makes a strong practical case for the use

of SQ.

In the case of atomic systems the cost-fuction is identical to the total energy of the
system and the state-space is identical to the 3N — 6 dimensional space of internal
atomic coordinates. The energy is a continuous function of the coordinates and
the possible energy range from compact dense systems to optimal bound configur-
ations can be roughly estimated. For atomic systems the SA/SQ algorithm can be
implemented either stochasically or deterministically. In the first case the points
in state-space are randomly selected from a given probability-distribution. In the
second case of deterministic SA/SQ the points in state-space are determined by mo-
lecular dynamics (MD). For a given number of atoms an initial set of coordinates
(determining a point in state-phase) and randomly distributed velocities are chosen.
The velocities are scaled such that the kinetic energy equals N,13/2 kT for a given
start temperature T' = Ty, where kg = 8.617-107° eV /K is the Boltzmann constant.
The next set of coordinates is selected by performing an MD step and propagating
the system with respect to the forces on each atom and the present velocities. The
forces point in the direction of a lower energy while the nonzero kinetic energy allows
to move up-hill and to overcome barriers around local minima.

As one will see in the next Section and the following Chapter, in practice the Sim-
ulated Annealing ensures an unbiased global search, if the starting temperature is
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high enough for a sufficiently long time. The result of the Simulated Annealing
depends on the number of start structures, on the cooling-rate and the step width
in the molecular dynamics. The choices for these parameters are discussed in the
next Section.

Other algorithms competitive with SA or SQ are Genetic Algorithms (GA). A Ge-
netic Algorithm is based on the biological evolution process. The cost-function is
evaluated for a given set of states (the parents) and the parents with a low cost-
function are combined to form offspring. If offspring with a lower cost-function
than that of a parent has been created it replaces the parents with the highest
cost-function (energy). This process is continued until no offspring with a lower
cost-function is created for a certain time. Additionally, “mutations” can be intro-
duced by randomly changing some properties of the population members. In the
case of molecules and clusters the offspring is formed by combining fragments of
the low-energy parent clusters. Before the energy of the offspring clusters is evalu-
ated the clusters are relaxed to a near minimum via steepest descent or conjugate
gradient algorithms. The result of the Genetic Algorithm depends on how large the
population is and on how many cycles (generations) are performed. Since GA does
not possess any claim to ergodicity, it is important to avoid a restriction to only a
subclass of all possible structures. The operations to form new structures must be
chosen carefully. E.g., if one starts with spherical structures, cuts the spheres into
two parts of equal size and randomly puts the parts together at the cutting-faces,
one limits the search to spherical structures. The total number of energy and force
calculations in a Genetic Algorithm equals the number of structures in the ensemble
times the number of iterations (generations) times the number of steps needed for
the relaxation (e.g., the conjugate gradient algorithm). A Genetic Algorithm [37, 65]
and a modified single parent Genetic Algorithm [75] have already been applied to
search for low-energy silicon clusters.

5.2 Parameters used for Simulated Annealing

The appropriate time step-width for molecular dynamics is related to the shortest
time period of the vibrational modes. For silicon clusters the vibrational wave-
numbers range from 50 to 600 cm!. A wavenumber of 1/X = 600 cm ! corresponds
to a time-period of Tgpo = 5.55 - 107145 = 2297 - Aty, where Aty = 2.419 - 1077 s
denotes the atomic time-unit. Using a step width of 100 - Aty corresponds roughly
to T00/23. For each temperature 100 MD steps are performed, which corresponds
to about 5 - Tgq-

The start temperature for the Simulated Annealing should be sufficiently high to
overcome high energy-barriers during the initial phase. On the other hand one must
avoid dissociation of the structure or apply additional boundary conditions and
confine the atoms in a box to ensure that the atoms interact with each other. The
start temperature is chosen to lie slightly below the dissociation temperature. For
silicon clusters Tmax = 2500 K results in a high variation of the geometry during
the MD, but the clusters do not dissociate. To scan a large area in configuration
space the temperature should be high for a relatively large time. Instead of a linear
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Figure 5.1: Temperature as a function of time during Simulated Annealing.

temperature decrease, a temperature-time dependency of the form:
T(t) = Tiax[2 — ¢*’]

is chosen. The parameters Tmax = 2500K and a = 1.25 - 104 /fs2 result in a
temperature-time dependency as shown in Fig. 5.1. The temperature is above 1500 K
for two-thirds of the total time. This annealing schedule is much faster than the
1/ Int annealing schedule required to ensure finding the global minimum of arbitrary
cost-functions. However, for many tests on smaller silicon clusters this fast annealing
schedule suffices to find the global energy minimum (see below). The total time
interval is divided into 300 subintervals. In each subinterval 100 MD steps with a
step width of 100 Aty are performed at constant temperature. The total interval
corresponds to 73 - 1072 s and 30 000 energy and force calculations are performed.

To find low-energy structures for a given cluster size, the Simulated Annealing is
applied to several (randomly) created seed clusters. After the Simulated Annealing
run the structures are fully relaxed with the conjugate gradient method until the
maximum force on the nuclei drops below 10~4H/ a.

It is difficult to compare the efficiency of Simulated Annealing to that of a Genetic
Algorithm, because, besides the statistical nature of both algorithms, the number of
calculations necessary for a conjugate gradient relaxation depends on the cluster size
and the given potential around the local minimum. For a Sigs cluster the relaxation
to a maximum force of 1073 H/ ap requires about 30 to 80 conjugate gradient steps
dependent on the initial step-width. Assuming an average of 50 steps, it follows that
with the 30000 energy and force calculations performed in the Simulated Annealing
one could evaluate 600 structures with an Genetic Algorithm, e.g., 30 generations of
an ensemble of 20 structures. As outlined in the next paragraph, the SA parameters
chosen yield the global minimum of Siz; for almost any reasonable initial structure
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Figure 5.2: All initial configurations (framed boxes) of 7 silicon atoms result in the
global minimum geometry Siz(Dsp,) depicted in the center after Simulated Annealing.

and probably a higher cooling rate with fewer temperature steps would give the
same result!. However, the complexity of the energy-surface in configuration space
dramatically increases with the cluster size and for larger clusters the high number
of MD steps is required to yield clusters with a low energy.

For smaller silicon clusters the Simulated Annealing of different random structures
with the parameters given above results in the global minimum (the lowest-energy
structure known so far) in most cases. For Si; this is illustrated in Figure 5.2. All
eight initial configurations including seven configurations with randomly distributed
atoms in a finite sphere and one linear chain configuration result after Simulated
Annealing in the global minimum geometry with Ds;-symmetry. For Si; there exist
several local minima. Raghavachari et al.report on five low-energy isomers of Sir,
three of them are proven to represent local minima by calculating the harmonic

!For a few cases this has been verified
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vibrational frequencies [32]. In none of the performed runs the SA algorithm is
trapped into these local minima, and one can expect to find structures with an
energy close to the one of the global minimum also for larger clusters.

(a) E = —3.98¢eV /atom, p = 0.50 (b) E = —4.00eV /atom, p = —0.04

Figure 5.3: (a) Cluster after Simulated Annealing with high angular momentum,
(b) cluster after Simulated Annealing with zero angular momentum. p is a measure
for the prolateness of the structure defined via the moments of inertia. For spherical
clusters it is p = 0.

To find structures as they are present in low-temperature experiments, it is import-
ant to avoid a high total angular momentum of the cluster during the Simulated
Annealing. To calculate new atomic positions from the old positions, the velocities
and the forces, a three-step Verlet algorithm is used in the MD implementation of
DFTB and the first set of coordinates is created randomly. In general this intro-
duces a nonzero total momentum and a nonzero total angular momentum. A high
angular momentum introduces large additional centrifugal forces which results in a
bias towards prolate structures for the annealed clusters. Figure 5.3 shows the final
structures after two different Simulated Annealing runs. The same structure, an
almost spherical cluster with 35 randomly distributed silicon atoms, was annealed
with a high angular momentum (about 107'2kgm?/s on average) in one case and
with zero angular momentum in the other case. The angular momentum was set
to zero by using an appropriate velocity distribution. The high angular momentum
distorts the cluster into a clearly prolate structure.



Chapter 6

Shape transition at cluster sizes
of 20 to 30 atoms

Raman and infrared experiments on silicon clusters have not yet been able to provide
ground-state vibrational frequencies for clusters with more than seven atoms. This
is due to the difficulty of producing sufficient numbers of larger clusters, which are
necessary to obtain an observable signal. On the other hand, ion mobility meas-
urements have been proven to provide useful information about the structures of
silicon clusters containing over a dozen atoms. While vibrational spectra give de-
tailed information about the different bonds present in a given cluster, the mobility
depends mainly on the rotational-averaged collision cross-section corresponding to
the shape of the cluster. The mobility experiments indicate a shape transition in the
size range from 24 to 34 atoms. This Chapter briefly describes the mobility experi-
ments and gives a detailed description of the calculated energies and geometries of
stable clusters obtained from the Simulated Annealing of 100 isomers of Siss, Sigg,
and Sigs. The structures of the most stable clusters are analyzed and compared to
the measured mobilities to gain an understanding of what causes the transition.

6.1 Experimental indications of a shape transition
from Si20 to Si30

In the mobility experiments done by Jarrold et al. [76, 77| ionized silicon clusters
were mass-selected, accelerated into a buffer gas by an electric-field, and the drift-
time in the buffer gas was measured. To obtain results independent of the buffer
gas different kinds of gas were used. First, the experiments were performed with
positive ions at room temperature. Later the mobility experiments additionally were
performed at 78 K [65]. Recently the ion mobility measurements have been repeated
with a higher resolution for silicon cluster anions and cations [78].

The drift-time, is proportional to the inverse mobility and, considering only elastic
collisions, to the rotational-averaged cross section of the cluster. Prolate structures
have a longer drift-time than spherical structures of the same cluster size. For a
fixed shape the drift-time increases with increasing cluster size.

63
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Plots of the measured inverse reduced mobilities versus the cluster size are shown
in Figure 6.1 for the cations (top) and the anions (bottom). This Figure clearly
reveals the existence of two distinct growth-paths and the switch from one path to
the other at about Sigy to Sisg.

For the cations one observes a shift from a low mobility component to a high mobility
component between Sij; and Sijy. This indicates a transition from prolate to more
spherical geometries. For the anions a similar structural transformation occurs at
slightly larger cluster sizes between Siyg and Siz,. The transition does not appear to
be a sharp transformation from a prolate shape to a more spherical shape, for many
cluster sizes more than two isomers are clearly resolved. For the cations several
isomers are detected mainly between Sij; and Sijs. It should be noted that this
is true for, e.g., Sif; or Sifj, too. For the anions this occurs for the cluster sizes
between Siy, and Siz, as well as for, e.g., Siz3 or Siy;. The low mobility component
survives with a detectable abundance up to around Si3, for cations and up to around
Sizg for anions. The existence of several isomers in this size regime is also indicated
by previous chemical reactivity experiments [79, 80, 81] and simultaneous mobility
and chemical reactivity measurements [76).

The measured mobilities show that the charge state affects the relative stability
of the isomers even for quite large clusters. The transition between prolate and
more spherical geometries occurs at smaller cluster sizes for cations than it does
for anions. The prolate geometries persist for larger cluster sizes for anions than
for cations. Apparently, the two extra electrons in the anions stabilize the prolate
isomers relative to the more spherical ones. Structural changes caused by charging
neutral silicon clusters have previously been examined in other theoretical studies
[60, 82]. The geometries for the cations Si with n < 7 [83, 84] and with n < 20 [60]
have been theoretically determined. Except for n = 6,8, 12, and 13 the ground-state
structures remain identical to those of the neutrals. Removing an electron from
a neutral cluster does not influence the stability significantly. On the other hand,
the lowest unoccupied molecular orbital (LUMO) of a neutral cluster most likely
corresponds to a non-bonding state. After adding an electron to a neutral cluster,
the cluster will rearrange its geometry in order to lower the energy.

The drift-time measurements indicate that the low mobility (long drift-time) clusters
all have a similar shape and undergo a special growth pattern and that the high
mobility clusters all have a shape different from the low mobility clusters and undergo
a different growth path. The authors in [76] suggest a prolate growth sequence for
the component with the smaller mobility. Starting with Sifo, which is assumed to
be almost spherical in agreement with predictions from theory, the clusters grow as
prolate spheroids with almost constant diameter and increasing length. Assuming
that the prolate spheroids can be represented by a cylinder with diameter d and
length [ the measured mobilities indicate an increasing aspect ratio (defined as [/d)
which reaches about 3 by Si;o. For the component with the larger mobility, observed
for n > 24, they suggest an oblate growth sequence with almost constant [ and
increasing d. However, this assignment is not unique. The authors mention that the
low mobility component could, in principle, also be fit by a model where the clusters
follow an oblate growth sequence and get flatter (I gets smaller) with increasing
cluster size.
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Ref. [78].
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6.2 Stability of differently shaped clusters

A systematic theoretical search for low-energy structures has been undertaken only
for smaller silicon clusters to date, because the number of possible configurations
increases exponentially with the number of atoms in the cluster. Recently, Ho et. al
searched for low-energy clusters with 12 to 20 silicon atoms using a Tight-Binding
approach and a Genetic Algorithm [65]. They compared the mobilities obtained
by trajectory calculations of their low-energy structures with the measured values
and found good agreement with the lower-mobility component from experiment
for clusters with up to 18 atoms. However, the mobilities for their lowest-energy
structures of Sijg and Siyp match the higher-mobility component from experiment
better. In agreement with the assumptions about the relationship between drift-time
and shape mentioned above their low-energy clusters with less than 19 atoms have
prolate shapes and the low-energy clusters for Sijg and Siyg, which match better
the short drift-time component, are more spherical. These calculations predict the
transition from prolate to oblate or spherical clusters to occur for smaller cluster
sizes than found experimentally, where the transition starts for cluster sizes greater
than 23 atoms. The authors state this could be due to an entropic effect similar
to that found for carbon clusters. For carbon the fullerene is predicted to be the
most stable geometry for a cluster as small as C3;. The smallest fullerene observed
experimentally is C;’O though. This occurs since at the high temperature required to
induce isomerization, the fullerene is not a low-free-energy structure for the smaller
clusters [85, 86]. However, the energy differences between the spherical and prolate
isomers of Sijg and Sigg, reported in [65], are only about 0.02eV/atom. Recently
some prolate isomers with even lower energies have been reported [75].

To investigate the structural transition for larger clusters extensive Simulated An-
nealing optimizations with DFTB were performed for silicon clusters with 25, 29 and
35 atoms. To allow for an unbiased search 200 to 300 (900 for Sizs) initial structures
with very different geometries were created for each cluster size. Prolate structures
were formed by stacking triangles, rhombi, and pentagons in different combinations.
Spherical structures were obtained by randomly filling a sphere under the constraint
not to fall below a minimum bond-length and to result in an atomic-density similar
to that of the diamond or simple cubic phase. Moreover, fragments of the silicon
diamond phase were included in the group of initial clusters. First, all structures
were relaxed with the conjugate gradient method to nearby local minima. For each
cluster size the one hundred structures with the lowest energy were chosen for the
time-consuming Simulated Annealing. Since the Simulated Annealing started with a
high temperature of 2500 K, where the atoms almost dissociate, the geometry of the
clusters varied in a wide range at the beginning of the simulation. Even if one starts
with a linear chain of atoms the final structure is compact, which shows that during
the Simulated Annealing geometries much different from the initial geometry can
occur and the search is not restricted to the configuration space close to the initial
geometry. During the simulation the rotation of the clusters was prohibited to avoid
the preferred generation of prolate structures (see Chapter 5). After decreasing the
temperature to 300 K the clusters were further relaxed with the conjugate gradient
method to minimize the forces on the atoms.
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Already for the smaller silicon clusters one notices that the number of low-energy
structures increases with cluster size. There exist several local minima on the en-
ergy hyper-surface with energies close to the energy of the global minimum and the
energy-differences between some of these local minima are smaller than 0.01 eV /atom
and challenge the accuracy of DFTB as well as of self-consistent-field density-
functional or Hartree-Fock based methods. This is particularly true for clusters
with more than 20 atoms considered here. Within DFTB the cohesive energies of
the ten most stable clusters range from -3.99 eV /atom to -3.97 eV /atom for Siss,
from -4.00 eV/atom to -3.99 eV /atom for Sizg, and from -4.04 eV /atom to -4.02
eV/atom for Sizs. Note that the energy per atom is given, the corresponding dif-
ferences for the whole cluster are about 0.5 eV. The energy differences between the
lowest-energy and the highest-energy isomer of the 100 annealed isomers are 0.08
eV/atom (2.1 eV), 0.08 eV/atom (2.4 eV), and 0.08 eV /atom (2.7 eV) for Sigs, Sigg
and Siss, respectively. Because of the very small differences in energy, the exact en-
ergetic order of some isomers might be slightly different within other methodologies.
E.g., the DFTB-energies for the ten most stable Siss isomers are compared to the
energies obtained within all-electron scf-GGA (NRLMOL) using the Perdew-Burke-
Ernzerhof exchange-correlation functional in Table 6.1.

cluster | E. 1 (DFTB) | E.}, (scf-GGA) | p (DFTB) | p (scf-GGA)
eV/atom eV /atom
Sios(a) 73.99 “3.89 0.23 0.20
Sigs(b) -3.98 -3.88 0.28 0.25
Sigs(c) -3.98 -3.92 0.63 0.61
Sigs(d) -3.97 -3.88 0.15 0.14
Sigs (e) -3.97 -3.90 0.64 0.63
Sigs (£) -3.97 -3.88 0.29 0.28
Sios (g) -3.97 -3.89 0.19 0.17
Sigs (h) -3.97 -3.88 0.49 0.48
Sios (i) -3.97 -3.90 0.45 0.44

Table 6.1: Cohesive energies and prolateness p for the, within DFTB, nine
most stable isomers of Sigs within DFTB and sct-DFT-GGA.

For all silicon clusters the DFTB energies reported in this Chapter have been calcu-
lated with the DFTB parametrization as described in the Appendix. With this para-
metrization the diamond structure of silicon has a cohesive energy of —4.80eV /atom.
The DFTB energies reported in the previous Chapters for silicon clusters up to Siig
have been calculated with an older DFTB parametrization adjusted to scf-DFT-
LDA. Therefore, the older parametrization showed an overbinding typical for LDA.
Compared to the new parametrization described in the Appendix the older DFTB
energies per atom are shifted by about —0.45eV. For both parametrizations the co-
hesive energies for the ground-state clusters of Siy to Sig are given in the Appendix.
The self-consistent-charge (SCC) extension has been used throughout this Chapter
to accurately treat the charge transfer between silicon atoms with different coordin-
ation numbers. However, it turned out that for the homo-nuclear silicon systems
the energies with and without the SCC extension are identical within 0.01 eV /atom
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(see the Appendix).

The inverse reduced mobilities are proportional to the collision cross section and
depend on the shape of the cluster. Instead of explicitly calculating the collision
cross section it is more convenient to define a scalar variable, which describes the
shape of a cluster via the moments of inertia. For a spherical structure all moments
of inertia are equal, a prolate structure has two large and one small moments of
inertia and an oblate structure has two small and one large moments of inertia. The
prolateness p defined by the moments of inertia I; as

I1 I3 L +13

3
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has the following values dependent on the shape of the structures:

<0 : L=, <I3 : oblate
p<¢=0 : I1=1I,=13 : spherical
>0 : L1 <Iy=13 : prolate
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Figure 6.2: Prolateness defined via moments of inertia vs. cohesive en-
ergy for the 30 most stable isomers of Sios, Sizg, and Siss.

The prolateness plotted versus the cohesive energy is displayed in Figure 6.2 for
the 30 most stable isomers of Sigs, Sizg and Siszs. This figure shows that the 30
most stable isomers of Sios exhibit prolate shapes as well as more spherical shapes.
The shape distribution is not much different for the ten most stable (ten most left
triangles in Fig. 6.2) compared to the 30 most stable isomers. The shape distribution
is similar for the most stable isomers of Sigg but shifted to more spherical structures,
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and all of the 10 (within DFTB) most stable isomers are spherical (—0.1 < p < 0.1).
All of the 30 most stable isomers of Sigs exhibit a prolateness below 0.3 and above

—0.1.
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Figure 6.3: Measured drift-time distribution of cations Si; (left) and anions
Siz (right) [78]. (a) Siag to Siss, (b) Sizs to Siss. The drift times in (a) range
from 50 to 90 ms and in (b) from 70 to 100 ms.
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Figure 6.4: Distribution of shapes for all 100 isomers before (dotted line)
and after (solid line) the Simulated Annealing and for the 30 most stable
isomers (bars) of Sigs, Sizg, and Sizs. A prolateness of 0.0 corresponds to
spherical shapes and a prolateness > 0.0 to prolate shapes.
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The distribution of shapes (defined via the prolateness) is displayed in Figure 6.4 for
all 100 isomers before and after the Simulated Annealing and, additionally, for the
30 most stable isomers of Siss, Sisg, and Sizs. This figure clearly shows the change
in shape, when the cluster size increases from Siss to Sigs. The prolateness of the
30 most stable isomers of Sigs ranges from 0.09 (spherical) to 0.64 (prolate). This
range equals [—0.10 : 0.43] for the 30 most stable isomers of Siyg and is reduced
to [—0.09 : 0.26] for the 30 most stable isomers of Sigs. Considering all hundred
isomers treated with Simulated Annealing the range of the prolateness is slightly
larger: [—0.12 : 0.65] (Sizs), [—0.15 : 0.55] (Sizg) and [—0.11 : 0.44] (Siss). For Sios
spherical structures disappear among the 30 most stable isomers compared to all
100 Sigs clusters. Clearly it can be seen that the result of the Simulated Annealing
is not biased by the initial shape distribution. Most of the start structures for Sigs
had a prolateness larger than 0.8 while none of the structures after the Simulated
Annealing has such a high prolateness. Similarly, 36 out of the 100 initial structures
for Sizs had a prolateness larger than 0.3, while only three out of all 100 structures,
and none of the 30 most stable isomers has a prolateness larger than 0.3 after the
Simulated Annealing.

A link to experimental data can be provided by comparing the distribution of shapes
(see Fig. 6.4) obtained within DFTB to the measured drift time distributions (DTDs)
displayed in Figure 6.3. It is important to notice that the DFTB calculations were
performed on the neutral clusters, while the measurements were performed on the
anions and cations. In the DTD’s the measured intensity is plotted versus the drift
time in the buffer gas. Since the averaged rotational cross section is larger for a
prolate structure compared to a spherical structure of the same size, the drift time
increases with increasing prolateness. Therefore, the distribution of clusters as a
function of prolateness is directly related to the distribution as a function of drift
time.

The calculated shape distribution of the 30 most stable Sig; isomers (top of Fig. 6.4)
features a large group of clusters with a prolateness p between 0.1 and 0.3, the
remaining stable isomers all have a prolateness larger than 0.35. The measured
DTD of Sij; (upper left in Fig. 6.3) shows two dominant peaks, one short and
one long drift-time component, and in between additional isomers with a smaller
abundance. The DTD of Siy; features one dominant peak at a long drift-time and
additionally some other weak components very close to the dominant peak. The
MD simulation and scf DFT calculations show that there exist both, prolate and
spherical low-energy isomers of Sigs. The mobility measurements indicate that for
Sijs one prolate cation (or few isomers with about the same shape) and one more
spherical cation are especially stable. For the anion Siy; the measurements indicate a
prolate isomer to be much more stable than the more spherical ones. The existence
of both prolate and spherical low-energy isomers of neutral Sigs is also found by
very accurate DFT-GGA calculations [87]. The reported energy difference between
a compact spherical structure similar to Fig. 6.5 (a) and a prolate structure similar
to Fig. 6.5 (b) is only 0.15€eV in favour of the compact spherical isomer. Despite
the fact that there exist some prolate and spherical isomers of Sigs with a very
low energy it may be more likely for the prolate structures to form. The prolate
structures can easily be built from smaller stable isomers as Sig and Si1g, whereas the
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compact structures have to be formed by successively adding single silicon atoms or
by complex rearrangements. This could explain the absence of the short drift-time
component in the DTD for Sig;.

The calculated shape distribution for the 30 most stable isomers of Siyg shows that
most of the isomers exhibit a spherical shape (p = 0). The remaining low-energy
isomers are either slightly prolate (0.1 < p < 0.3) or prolate (p ~ 0.4). This
theoretical result matches the measured DTDs for the cations and anions of Sigg.
In the experiment the abundance of prolate geometries is larger for Sisg than for
Sijo. For both charge states the short drift-time component, i.e., the more spherical
geometry, is dominant. For Sigs the DFTB calculations find solely nearly spherical
or slightly prolate structures (p < 0.3) with a low energy. This is in agreement
with the measured DTDs of Sij; and Sizs. The DTD for Sig; exhibits one dominant
short drift-time component, only. The DTD for Siz; exhibits two peaks at short
drift-times and a very weak intensity at longer drift-times.

The structural variety of the most stable isomers of Sios, Sigg, and Sigs is illustrated in
Fig. 6.5. Here, the most oblate (smallest p) and most prolate (largest p) isomers are
shown for each cluster size. The almost spherical clusters feature two or three highly
coordinated atoms inside the cluster and three- or fourfold coordinated atoms on the
surface. Many of the prolate isomers of Sio5 can be described as two smaller clusters
(with about 10 atoms each) connected by an intermediate ringlike fragment. The
prolate Sios cluster, displayed in the upper right of Fig. 6.5, provides one example.
A Sig cluster is connected via a sixfold ring to a Sijg cluster. The Sig fragment does
not have the same geometry as the most stable Sig cluster. It more resembles the tri-
capped trigonal prism isomer of Sig, which has an energy close to the ground-state
of Sig (see Chapter 4 and [20]). Interestingly, all of the three most stable isomers
within sct-DFT-GGA (see Tab. 6.1) match this bonding pattern, i.e., a formation of
Sig + Sig + Siyg. Also, three of the 30 most stable isomers of Sizg obey this pattern,
but none of the 100 Sizs isomers. The slightly prolate isomers (with p ~ 0.3) of Siss
are rather compact.
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8125

Sigg

(b) E = —3.98eV /atom, p = 0.43

(a) E = —4.02eV /atom, p = —0.09 (b) E = —4.02eV /atom, p = 0.26

Figure 6.5: Most oblate structure (a) and most prolate structure (b) from
the 30 most stable isomers of Sigs, Sisg, and Sizs.
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The results of the MD search with DFTB show that there exist many low-energy
isomers with almost equal energies for Sigs, Sisg, and Sigs. The dominant shapes
for each cluster size undergo a transition with increasing cluster size. For Sios both
spherical and prolate shapes occur. For Sisg and Siss mainly spherical shapes are
found for the 30 most stable isomers. The calculations indicate that the peaks found
in the measured DTDs may not be due to only one special isomer, but to several
isomers with a very similar shape and mobility. E.g., within DFTB there are 11
isomers of Sipg with a prolateness between -0.05 and +0.05 and cohesive energies
between —4.00eV /atom and —3.98 eV /atom. Very likely these clusters cannot be
resolved in mobility experiments and additional signatures, like vibrational spectra,
are needed to identify the exact geometry of the most stable structures.

(a) E = —3.96eV/atom, (b) E = -3.96eV/atom,
gap = 1.3eV, p = 0.52 gap = 1.0eV, p =0.39

(c) E = -3.96eV/atom, (d) E = -3.97eV/atom,
gap =1.1eV, p=0.15 gap = 1.0eV, p = 0.49

Figure 6.6: Low-energy isomers of Sigs with a large HOMO-LUMO gap.

Besides a low cohesive energy a large HOMO-LUMO gap for homo-nuclear systems
is an indication that the electrons occupy states similar to covalent bonding states.
The HOMO-LUMO gap as a function of prolateness is shown in Fig. 6.7. There is
no direct correlation between the prolateness and the HOMO-LUMO gap for any of
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Figure 6.7 HOMO-LUMO gap vs. prolateness for the 30 most stable iso-
mers of Sigs, Siag, and Sigs. Gaps larger than 0.8eV only occur for Siss
clusters.

the investigated cluster sizes. However, one striking feature in Fig. 6.7 is that some
of the Sios isomers have a quite large gap within SCC-DFTB, larger than 0.8eV.
Some of these isomers are depicted in Fig. 6.6. Three of the structures shown can be
described as two smaller clusters connected by an intermediate fragment. The other
structure (Fig. 6.6 (c)) is rather compact and has three highly coordinated atoms,
which usually are related to metallic bonding.

The charge transfer, determined by a Mulliken-analysis, between silicon atoms of
different coordination numbers does not exceed 0.2 e. For the compact spherical
cluster Sigs4 displayed top-left in Fig. 6.5 and on top in Fig. 6.8 the most negatively
charged atoms are the three-fold coordinated atoms 11, 17 and 23 on the surface
(see Tab. 6.2 and Fig. 6.8). The charge transfer is smaller in the prolate cluster
Siosp displayed top-right in Fig. 6.5 and at the bottom in Fig. 6.8. The contribution
of the localized atomic orbitals to the different eigenstates for both isomers Sigs4
and Sigsp are depicted in Fig.6.9 and in Fig.6.10, respectively. The LUMO of Sig54
is localized at atom 5, a fourfold coordinated atom on the surface. The HOMO is
localized at atom 3, also a fourfold coordinated atom on the surface. Both atoms, 3
and 5, are bonded to the 6-fold coordinated atom 12, which neither contributes to
the LUMO nor to the HOMO. The LUMO of Siosp is mainly localized at two fourfold
coordinated atoms (2 and 11) in the Sig-fragment. The HOMO is mainly localized
at the two widely separated atoms 7 and 23. These two atoms represent fivefold
coordinated caps at the Sijo- and at the Sig-fragment, respectively. Sigs4 features a
narrow HOMO-LUMO gap, whereas Sigsp features a wide gap of about 1.2eV (see
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SigsA Sigsp
No. | Charge/e | Coord. || Charge/e | Coord.
0 3.94 4 3.92 6
1 3.89 4 4.02 5
2 4.06 4 4.00 4
3 4.03 4 4.01 )
4 3.90 4 3.93 6
5 3.99 4 4.00 4
6 4.06 4 3.89 5
7 3.96 4 4.06 5
8 4.03 4 3.98 5
9 3.98 4 4.09 3
10 3.98 4 3.98 5
11 4.17 3 4.01 4
12 3.93 6 4.01 5
13 3.89 7 3.92 6
14 4.09 3 4.02 5
15 3.87 4 4.01 5
16 4.05 4 4.08 3
17 4.12 3 4.01 4
18 3.97 4 3.89 5
19 3.98 7 4.01 4
20 3.95 4 4.09 3
21 4.04 4 3.93 6
22 4.02 4 4.01 4
23 4.15 3 4.11 5
24 3.93 4 4.00 4

Table 6.2: Atomic charges determined by a Mulliken ana-
lysis and coordination numbers for Siss 4 and Sigsp. Si—Si
distances shorter than 2.82 A are counted as bonds. The
atom numbers refer to Fig. 6.8.

Fig. 6.11). The electronic density of states (DOS) just below the HOMO-level is
higher for Sigsp than for Sigs 4.

Since the differences in the cohesive energies are very small between the lowest-energy
isomers (about 0.5eV and 0.02eV per atom), it is difficult to predict the ground-
state structures for Sios, Sizg, and Sigz from the SCC-DFTB calculations. This
may be true for more sophisticated and more accurate methods like sc-DFT-GGA
or Quantum Monte Carlo (QMC), too. Mitas et al. have calculated the cohesive
energies of five low-energy isomers of Siyy with different first principles methods and
find some subtle deviations in the energetic order between DFT-LDA, DFT-GGA
with different exchange-correlation functionals, and QMC [87].
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Figure 6.8: Atom numbering for the compact and nearly spherical
cluster Sigs4 (top) and for the prolate cluster Sigsp (bottom). Note
that the numbers start with 0.
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Figure 6.9: Contribution of the localized atomic orbitals to the different
eigenstates of Sigs4. The levels from just above the LUMO (level 52) down
to level 33 are shown. The atom numbers refer to Fig. 6.8.
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Figure 6.10: Contribution of the orbitals localized at one atom to the dif-
ferent eigenstates of Sigsp. The levels from just above the LUMO (level 52)
down to level 33 are shown. The atom numbers refer to Fig. 6.8.

79



energy/eV

CHAPTER 6. SHAPE TRANSITION FOR MEDIUM-SIZED CLUSTERS

.10 F .

12 -

.16 F .
L L

Sigs A Siosp

Figure 6.11: Eigenvalues of all occupied and the lowest non-
occupied eigenstates for Sigs4 (left) and Sigsp (right). The Fermi-
levels are indicated by the two dashed lines.
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6.3 Larger clusters with a bulk-like core

Regarding silicon clusters with more than 50 atoms no thorough investigations have
been undertaken so far. Since the diamond structure is the most stable structure
for bulk silicon, one expects very large silicon clusters to consist of a diamond-like
(or mainly sp®-hybridized amorphous) core with a relaxed surface.

(a) E=-396eV/atom, (b) E = —4.11eV/atom, (¢) E = —4.11eV/atom,
gap = 0.1eV, p=0.0 gap = 0.3eV, p=0.14 gap = 0.3eV, p = 0.09

Figure 6.12: Three isomers of Si71: (a) diamond sphere relaxed with conjugate gradi-
ent, (b) diamond sphere optimized with Simulated Annealing and (c) randomized
sphere optimized with Simulated Annealing.
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Figure 6.13: Kohn-Sham eigenvalues ¢; for the three structures of Sir;
displayed in Fig. 6.12. Only the part of the electronic-spectrum with
—8eV < g < —4eV is shown. The Fermi-levels E; are indicated by the
dashed lines.

To determine the stability of a diamond-like core compared to other bonding-schemes
a sphere with 71 atoms was cut from the diamond structure and its structure was
optimized in two ways. In one case the diamond sphere was relaxed with the conjug-
ate gradient method to the next local minimum to obtain a reconstructed surface. In
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the other case the diamond sphere was treated with Simulated Annealing to check if
there exist different isomers with lower energies. Additionally, Simulated Annealing
has been applied to a spherical and a prolate structure with 71 randomly distributed
atoms and to a diamond sphere with 239 atoms.

The annealed diamond sphere has (within SCC-DFTB) a cohesive energy of —291.8 eV
(—4.11eV /atom). The two annealed randomized structure have a cohesive energy
of —292.0eV (—4.11eV /atom) and —291.3eV (—4.10eV /atom). All three annealed
structures have a cohesive energy about 10eV lower than the cohesive energy of
—281.0eV (—3.96eV /atom) of the relaxed diamond sphere. The cohesive energy of
Si7p is still significantly higher than the —4.8eV of the silicon diamond structure.
The three annealed structures are quite similar, but are very different from the re-
laxed diamond sphere (see Fig. 6.12). They are compact and almost spherical (the
annealed prolate structure as well), but their are some highly coordinated atoms
and fewer ideal tetrahedral bonds. Some parts of the surfaces are concave, in this
way some of the surface atoms can be fourfold coordinated with bond angles closer
to 109° than possible on a convex surface. The annealed diamond sphere features 39
sp3-like atoms, whereas the relaxed diamond sphere features 43 sp3-like atoms. It
follows that for this cluster size the ratio of surface to core atoms is still quite large.
Therefore, a structure different from the diamond sphere with a reconstructed sur-
face is favoured. The relaxed diamond sphere has a narrow HOMO-LUMO gap of
about 0.1 eV within SCC-DFTB (see Fig. 6.13). The HOMO-LUMO gaps are wider
(about 0.3eV) for the annealed structures. The quite narrow HOMO-LUMO gaps
are mainly due to surface-states close to the Fermi-level. Fragments from the ideal
diamond structure with hydrogen-saturated surface atoms feature a wide HOMO-
LUMO gap which is comparable to the gap of 1.1eV in silicon diamond. The largest
cluster treated with DFTB and Simulated Annealing is Sizsg. The relaxed diamond
sphere of this size has a cohesive energy of —4.19 eV /atom. After Simulated Anneal-
ing this sphere distorts into a compact disordered structure (see Fig. 6.14 (bottom))
similar to the annealed Siz; clusters. The annealed Sisgg cluster has 42 threefold
coordinated atoms, 39 fivefold coordinated atoms, 7 sixfold coordinated atoms, and
1 sevenfold coordinated atom. The cohesive energy is lowered to —4.24 eV /atom,
this corresponds to 88% of the bulk cohesive energy. The HOMO-LUMO gap has a
width of only 0.05eV compared to 0.3eV for the annealed Si7; structures.

From the theoretical and experimental investigations done so far, the following
growth pattern for silicon clusters evolves:

e Silicon clusters with less than 10 atoms usually have a high symmetry and are
compact.

e Silicon clusters with 10 to 20 atoms can be described as a tri-capped trigonal
prism capped by several atoms or small fragments. For Siig to Sigs some of the
most stable clusters consist of two low-energy isomers of Sig to Sij3 connected
to form a single prolate structure.

e Between Siyy and Sizg a shape transition from prolate to compact and nearly
spherical geometries occurs. Clusters with about 25 atoms have several low-
energy isomers. Some of them can be described as two smaller clusters with
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about 10 atoms connected by a small intermediate fragment, whereas others
are compact and nearly spherical. The compact clusters have several five- or
sixfold coordinated inner atoms.

e For clusters with more than 30 atoms the geometries evolve towards compact
amorphous structures. For Sigs and also for Siz; the most stable isomers
have a core quite different from the diamond structure with several highly
coordinated atoms. For very large clusters with several thousand atoms one
expects groundstate structures with sp3-hybridized atoms in the core similar to
crystalline or amorphous silicon. However, the lowest energy is not a sufficient
criterion for the formation of structures during annealing in experiment.

The suggested growth pattern for silicon clusters is illustrated in Fig. 6.14. The
occurrence of some highly coordinated atoms prevalent in the compact structures
investigated could serve two purposes: (i) to saturate the dangling bonds of the
surface atoms (which would otherwise be mostly threefold coordinated) and (ii) to
act as “catalytic” centers and to enable the compact structures to relax through a
sequence of rebonding and restructuring steps supported by their high coordination
and their multiple weak bonds (previously this has also been pointed out in Ref. [87]).
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Figure 6.14: Possible growth pattern for silicon clusters.



Chapter 7

Vacancy clusters in silicon

Vacancy clusters in bulk silicon are detected by electron paramagnetic resonance
(EPR), positron annihilation spectroscopy (PAS), and other methods not only after
damage (electron [88, 89, 90, 91] and neutron irradiation [92, 93, 94] or plastic
deformation [95]), but also in as-grown samples [96]. Due to a lack of computational
data on structure and stability of vacancy clusters detected in silicon in the 70th and
80th their size has been under discussion since. Based on a simple theoretical model,
namely the counting of dangling bonds, it has been proposed [97] that closed ring
structures of vacancies, such as for Vg and Vg, should be particularly stable. Still,
explicit and accurate calculations on the stability and structure of larger vacancy
clusters in silicon and a reasonable comparison to experimental results are rare.
Until recently, accurate ab initio calculations have been performed only for very
small structures (mono- and divacancies) due to the limited size of the super-cell (64
atoms) used [98]. Using a small super-cell with 38 atoms the Hartree-Fock method
has been applied to clusters with up to 8 vacancies [99]. Massive parallel computing
has made it possible to treat larger super-cells, which seem to be necessary to obtain
converged results even for mono- and di-vacancies [100, 101]. As of this writing, there
exists only one approximative treatment based on quantum mechanics for clusters
with more than 8 vacancies [102].

The self-consistent charge density-functional based tight-binding (SCC-DFTB) method
described in Chapter 2 and References [15, 103] offers the unique possibility to treat
larger structures nearly as accurate as with ab initio methods. For clusters con-
sisting of more than 10 vacancies one has to consider large super-cells of about 500
atoms to avoid interactions between the extended defects and their periodic replica
and to allow for an unbiased relaxation.

In contrast to metals, it seems to be impossible to determine the mono-vacancy
formation enthalpy for silicon or other semiconductors in thermodynamic equilib-
rium by standard techniques (differential dilatometry or positron annihilation). Due
to their relatively high formation enthalpy, no measurable amount of vacancies is
created below the melting temperature in silicon. Therefore, it is not possible to
directly compare calculated formation energies for defects in silicon to experimental
data. Besides EPR, infrared absorption, deep level transient spectroscopy (DLTS),
and other measurements, experimentally determined positron lifetimes along with
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a comparison to calculated lifetimes for different vacancy structures provide a link
between theory and experiment.

7.1 Measurement and calculation of positron lifetimes

Positron annihilation (PA) spectroscopy is primarily sensitive to open volume de-
fects such as vacancies or vacancy clusters, and dislocations in the bulk of crystals.
The positron lifetime gives information about local electron densities around defects
and can be correlated to the size of the open volume, i.e., the number of vacancies
involved. The sensitivity of the positron trapping is dependent on the net charge
of the trapping center. In the case of negatively charged defects the positron trap-
ping rate shows a strong increase at low temperatures (7' < 100K), while neutral
defects cause no comparable temperature-dependent trapping effect. Positrons are
not sensitive to positively charged defects due to coulomb repulsion.

Using a weak radioactive 22NaCl positron source the positron lifetime spectrum is
monitored by measuring the time difference between the creation of the positron
indicated by a 1.28 MeV v quantum, and the annihilation « rays of 0.51 MeV. The
positron lifetime spectrum is considered as a sum of exponential decay terms. The
relation between the lifetime spectrum and the positron lifetime components is mod-
elled with the trapping model [95, 104, 105]. In the ideal crystal without defects only
one component which is determined by the electron density in the ideal structure
is present. If there is only one dominant defect type the positron lifetime spectrum
consists of two components with intensities I; and lifetimes 7;, (: = 1,2). The first
component is related to the ideal crystal and the second component is determined
by the electron density at the defect. Its intensity reflects the defect concentration.
In case of transition-limited trapping the trapping rate k4 is proportional to the
defect concentration Ny,

kd = pdNg-

The so-called specific trapping rate ug is a constant for a given material, defect
type, and temperature. For extended positron traps such as voids the trapping is no
longer transition limited but becomes diffusion limited. Then, the trapping rate is
proportional to the product of the defect density Nz and the radius r of the defect
(assuming the defect is spherical). The trapping rate for such an extended positron
trap is calculated by

kg = 4 DirNy,

where D is the positron diffusion constant.

In the simple trapping model one assumes that there is only one defect type which
does not interact with other defects and that a trapped positron does not escape.
Then, the lifetimes 71, 7o of the two components and the corresponding intensities
I; are given by

T = 17— Il =1- -[27 (71)
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T2 = Td, I2:1 1

where 7, and 74 are the positron lifetime in the bulk and that related to the defect,
respectively. The trapping rate kg can be calculated from the decomposition of
the lifetime spectra according to (7.1). It is possible to check whether the simple
trapping model (one dominant defect, two components) is reasonable. The lifetime
71 calculated with (7.1) should coincide with the measured lifetime 7| exp. If this is
not the case, one has to consider a multi-component model which takes into account
more than one dominant defect. The lifetimes and the intensities are different,
dependent on whether the defects are independent of each other (capture model 1)
or not (capture model 2). In the case of two independent dominant positron traps d;
and dy (three lifetime components) the lifetime components 7; and their intensities
I; (1 =1,2,3) are given by

1
T = 4, To=Tq, T3=Tgy, (7.2)
T + Kdy + Kdy

Il =1 (IQ +I3),
I2 _ Kdy - I3 _ Kdy

1 1
T—b+l<éd1+l<éd2—a E—i—lidl-l-/ﬁ:dz—

le

In general, it is difficult to resolve more than three lifetime components from meas-
ured spectra. However, if more than two dominant defects are present, they will
introduce an error in the lifetimes derived from a model based only on two domin-
ant defects.

7.2 Computation of positron lifetimes

Positron lifetimes for the perfect lattice and for different vacancy cluster configur-
ations have been calculated using the superimposed-free-atom model by Puska and
Nieminen [106] in the semiconductor approach [107]. The superimposed electron
densities of free atoms form the background potential for which the Schrodinger
equation for a positron is solved. This leads to the positron wave function ¥,. The
enhancement of the electron density at the positron due to the electron-positron cor-
relation is taken care of by the Boronski-Nieminen enhancement factor [108]. The
annihilation rate A is calculated as the overlap of the electron density n~ and the
positron density |¥ (r)|? increased by the enhancement factor T':

A / T(n )n~ (2)| U (r)|2dr . (7.3)

To obtain accurate positron lifetimes, the super-cell has to be large enough to avoid
interactions between positrons localized at adjacent vacancies of the super-lattice.
An overlap of the positron wave function with regions of higher electron density in
between the defects is known to lead to artificially small lifetimes.
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While one finds large inward relaxations for silicon mono- and divacancies (if no
positron is present), it is assumed that outward lattice relaxations under the influ-
ence of the trapped positron cancel out or even over-compensate the electronically
induced inward relaxations [109]. Because the positron lifetime calculations do not
take into account the influence of the trapped positron, the positron lifetimes calcu-
lated with respect to the unrelaxed geometries are compared to experimental data.

7.3 Experimental data on silicon vacancy clusters

Electron irradiation at low temperatures creates a high density of Frenkel pairs
(mono-vacancies and interstitial atoms) far from thermodynamical equilibrium. The
mono-vacancies lead to an experimentally detected positron lifetime around 275 ps
and become mobile at about 150K [110]. During this annealing stage the formation
of di-vacancies is observed by a change in the defect-related positron lifetime to
the range from 290 to 320 ps. Di-vacancies have been found to be stable up to a
temperature of 550 K. At this temperature the di-vacancies dissociate and anneal,
if the sample was irradiated with a low dose. However, they may form vacancy
clusters, if the sample was treated with a higher irradiation dose and had initially a
higher defect density.

Recent results on positron annihilation in neutron irradiated silicon [94, 111] and
on high-dose electron irradiated silicon [88, 112] give a quite consistent picture on
stable vacancy clusters formed during annealing by mobile primary defects: After
neutron irradiation, larger vacancy clusters are formed during annealing around
870K with defect-related positron lifetimes of 74 = 420 £ 20 ps [94] (430 + 30 ps
[111]). After high-dose electron irradiation, vacancy clusters are found in the same
temperature range (around 870 K) with positron lifetimes of 7g¢f = 415 + 20 ps [112]
(420 £ 30 ps [88]). In all these cases, annealing of the vacancy clusters takes place
at about 1000 K. The errors given are estimated according to statistical errors,
background and positron source corrections, and difficulties in decomposing the
spectra [113, 114].

Considering the experimental results on deformed silicon, the picture emerging from
experiments is somewhat different: While EPR indicates the presence of the Si-P1
paramagnetic center, significantly higher defect-related positron lifetimes than in
irradiated material are found after a similar thermal treatment [95, 115, 116, 117].
High strain rates and low deformation temperatures (about 800K) seem to favor
much larger vacancy clusters: 590+ 90 ps [95] (600 £ 50 ps [117]). This long lifetimes
indicate trapping at positron states at the inner surfaces of large vacancy clusters.
Lower deformation rates and/or higher deformation temperatures (about 1000 K)
lead to significantly smaller defect-related positron lifetimes: 435...480ps [118] or
485 + 30 ps [117]. All defects, including vacancy clusters and dislocations, are found
to anneal out around 1100 K [95, 117].

Experimentally detected defect-related positron lifetimes and, thereby, informa-
tion on their size, have errors of typically 30ps for larger vacancy clusters (7 =
400 — 500 ps). It turns out that these errors are in the same range as the calculated
lifetime differences between, e.g., Vip and Vi4. Hence, the measured defect-related
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lifetimes cannot uniquely be related to a certain vacancy cluster size by just com-
paring experiments to positron lifetime calculations.

7.4 Calculated stability and positron lifetimes

Since the assignment of defect-related positron lifetimes to certain sizes of vacancy
clusters is still under discussion, it is highly desirable to combine information on the
stability of vacancy clusters and their respective annihilation parameters. Hence,
the geometries and formation energies of various vacancy clusters in bulk silicon
consisting of up to n = 17 vacancies in a 512—n super-cell have been determined
[119]. The investigated structures include vacancy clusters where the atoms have
been removed from a hexagonal ring-network, chains along (121) and along (110)
with 3 to 6 vacancies and some compact vacancy clusters. Chains of vacancies seem
to play an important role during the creation of multi-vacancy clusters by plastic
deformation. Additionally, the corresponding defect-related positron lifetimes have
been calculated and compared to experimental data.

Figure 7.1: Atoms were successively removed from
this hexagonal ring network starting with atom 1.

The structures have been relaxed with the self-consistent-charge density-functional
based tight-binding (SCC-DFTB) method described in Chapter 2 and in References
[15, 103] using a minimum basis-set and the I'-point approximation. The efficiency
of the SCC-DFTB method implemented on a parallel computer allows for the use
of large super-cells with 512-n atoms [120]. Super-cells of at least 216 atoms are
expected to be necessary to obtain converged results for the mono-vacancy [100].
For extended vacancy clusters even larger super-cells are needed. This is quite
obvious if one compares the size of a 4 X 4 x 4 super-cell with 8 atoms per unit-cell
(side length 21.7 A) with the diameter of, e.g., V14, which is about 12 A. The Si-Si
interaction within DFTB is negligible for distances greater than 10 A, therefore, the
4 x 4 x 4 super-cell should be just large enough for neutral vacancy clusters as large
as Vi4. All structures have been relaxed until the maximum force on each atom
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dropped below 0.001 H/ag.

For clusters with more than six vacancies many different configurations are conceiv-
able. To limit the computational effort the focus has been put on candidates, which
are likely to have low formation energies because of a small number of dangling
bonds. As proposed before [97], vacancy structures where the removed atoms be-
longed to closed rings resulting in a minimum number of dangling bonds should be
especially stable. For the hexa-vacancy cluster Vg it has been found by Hartree Fock
calculations [99] that the hexagonal ring is the most stable structure of all possible
structures. Hence, the atoms have been removed in different ways from the 14 atom
cage-like network displayed in Figure 7.1, to find the most stable vacancy clusters
with up to n = 14 vacancies. Additionally, chain-like vacancies in the (121) dir-
ection (direction of jog-dragging in deformation experiments) and zigzag-chains in
the (110)-direction with up to six vacancies have been considered to provide a com-
parison to more open vacancy clusters. For Vi3 and V17 the formation energies of
compact vacancy clusters, where the nearest and some of the next-nearest neighbor
atoms of a vacancy have been removed, have also been checked. For all relaxations
a super-cell of N —n (N=512) atoms and the lattice constant for the ideal crystal in
DFTB of 5.43 A have been used. The atoms around the vacancy have been randomly
displaced by a small amount to allow for a symmetry unrestricted relaxation.

Bond counting models Quantum mechanical methods

simple  extended | TB [102] DFTB HF [99] TB [102]
n np Non EgR [eV] Eg [eV] Eg [eV] EgR [eV] EY [eV] Ef [eV] ER [eV] Eq [eV]
1 4 2 5.6 3.4 3.4 3.8 -1.8 0.0 0.0 0.0
2 7 4 8.4 3.9 5.2 5.8 0.2 1.8 1.7 1.6
3 10 5 11.2 5.6 7.1 8.0 -0.8 1.6 2.1 1.5
4 13 6 14.0 7.3 9.4 9.4 -0.6 2.4 1.9 1.2
5 16 7 16.8 9.0 10.7 10.1 -0.4 3.1 3.1 2.1
6 18 6 16.8 10.0 11.4 10.5 2.1 3.5 3.8 2.7
7 21 6 19.6 12.9 13.7 12.9 -0.8 1.4 1.3 1.1
8 24 7 22.4 14.6 14.1 14.5 -1.3 2.2 — 3.0
9 26 7 22.4 14.6 14.7 14.8 0.1 3.5 — 2.8
10 28 6 22.4 15.7 15.6 15.2 2.5 3.4 — 2.6
11 31 6 25.2 18.5 17.8 18.2 -1.7 0.8 — 1.2
12 34 7 28.0 20.2 18.3 19.5 -0.3 2.5 — 3.0
13 36 7 28.0 20.2 18.9 20.5 -0.3 2.8 — 2.8
14 38 6 28.0 21.3 19.6 21.2 0.9 3.1 — 2.7
15 41 6 30.8 24.1 22.0 22.8 -0.5 2.2 — 1.0
16 44 7 33.6 25.8 22.4 24.0 0.0 2.6 — 3.0
17 46 7 33.6 25.8 23.0 25.1 -0.7 2.7 — 2.8
18 48 6 33.6 26.9 23.8 25.6 — 3.3 — 2.7

Table 7.1: Formation energies ET of different n-vacancy clusters as calculated within
DFTB and empirical TB and dissociation energies Efy within DFTB, HF and em-
pirical TB. Columns 2 — 5 correspond to the simple and extended bond counting
models. The number of broken and new bonds are given by ny, and n,,, respectively.

To determine the relative stability of different n-vacancy cluster geometries, their
formation energies

N —n
Eg = E\?ac - TEgyst ’ (74)

are calculated, where E7 . is the total energy of the super-cell containing an n-

vacancy cluster and N —n atoms. Egyst is the total energy of the defect-free super-

cell of the same size. From this the dissociation energy EJ for the dissociation
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V., — V,_1 + V1 is derived:
Bfy = (Bp~' + Ey) — BR (7.5)

and the exchange energy EY for the exchange reaction 2V, — V, 11 + V,_1:

EY = (Ept' + ER7) — 2 ER. (7.6)
Vacancy Cluster remark Atoms removed Ef[eV] EpP[eV] (ext. model)
V4 (110)—chain 9.2 7.3
Vs (110)—chain 11.5 9.0
Ve (110)—chain 13.0 10.6
V4 (121)—chain 11.5 7.8
Vs (121)—chain 15.0 11.2
Vs (121)—chain 17.0 15.6
Vs Lee/Corbett[93] [2-4,12,13] 11.5
Vg single-ring [1,2,4-6,8-10] 14.5 13.4
Vs hexa-ring + 2 [1-6,10,14] 15.4 *
Vo [1-6,9,10,14] 16.7 *
Vo [1-6,7,9,10] 15.6 *
Vio [1-6,9-11,14] 19.6 *
Vio compact 18.0 *
Via [1-6,8-12,14] 20.0 *
Vi [1-10,11,13] 20.4 *
Vi [1-11,13,14] 21.5 *
Vir compact 24.8 *

Table 7.2: Formation energies obtained with SCC-DFTB for vacancy clusters not
following the straightforward construction scheme of the hexagonal ring network.
The atom numbers in the third column refer to Figure 7.1. The vacancy clusters
denoted compact consist of one vacancy plus four nearest neighbor vacancies and 5
next-nearest neighbor vacancies (Vo) and of one vacancy plus four nearest neighbor
vacancies and 12 next-nearest neighbor vacancies (Vi7).

For each vacancy cluster size n up to n = 14 those structures where one removes
the atoms 1 to n from the 14 atom hexagonal ring-network displayed in Figure 7.1
have the lowest formation energies. The formation and dissociation energies of these
structures calculated within SCC-DFTB are summarized in Table 7.1 and Figure
7.2. For comparison the same energies as calculated with an empirical tight-binding
method [102] are given in Tab. 7.1, as well. Furthermore, for vacancy sizes up to V7
the dissociation energies E7} obtained for the same configurations with a Hartree-
Fock method are included [99].

Comparing the formation energies between SCC-DFTB and the empirical TB method
one notices that the overall trend with increasing cluster size is similar. However,
there are important deviations in the differences of the formation energies of one va-
cancy cluster size compared to the next larger size. This results in a different order in
the dissociation energies. SCC-DFTB predicts Vg, Vig, and V14 to have high disso-
ciation energies, whereas the empirical TB predicts maximum dissociation energies
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for Vg, Vg, V1o, and Vig. The SCC-DFTB dissociation energies agree much better
with the corresponding HF energies. Only for V3 the deviation of the SCC-DFTB
value compared to the HF value is as large as within the empirical TB. Despite the
fact that the Hartree-Fock method does not take into account correlation effects,
the better agreement of the SCC-DFTB dissociation energies with the HF values
is an indication for the SCC-DFTB to be more accurate than the empirical TB.
Also the maxima in the SCC-DFTB dissociation energies for Vg, Vi and V4 are
in agreement with the dangling-bond counting model [97].

Additionally, configurations of vacancy clusters, where arbitrary atoms (not the se-
quence of atoms 1 to n) have been removed from the 14 atom hexagonal ring-network
displayed in Figure 7.1 have been considered and one finds the formation energies of
them to be higher in energy (see Table 7.2). One exception being Vg, where atoms
1,2,4-6 and 8-10 in Fig. 7.1 have been removed. This single-ring structure also ex-
hibits a low number of dangling bonds and, therefore, has about the same energy
as Vg with atoms 1 to 8 in Figure 7.1 removed. It is interesting to note that Vig
(atoms 1-6,8-12,14 removed) is just the double hexa-vacancy ring which is a very
stable vacancy clusters in GaAs [28].

Within SCC-DFTB, the chain-like vacancies in the (121)-direction have significantly
higher formation energies than the vacancy clusters of the same size taken from the
hexagonal ring. Since the even-numbered types of these chain-like vacancies consist
of “isolated” nearest-neighbor vacancy-pairs, their formation energies are roughly
multiples of the formation energy of the di-vacancy (5.8eV). The formation energies
for the “zigzag” chains along (110) for V4 to Vg are higher compared to the vacancy
clusters of the same size taken from the hexagonal ring, as well. Additionally, the
energies of two compact vacancy clusters, namely, a compact Vip, where one atom
along with its four nearest neighbors plus five of the next-nearest neighbors had been
removed, and a compact V17, where one atom along with its four nearest neighbors
and all its 12 next-nearest neighbors had been removed, have been calculated. The
formation energy of the compact Vi structure is higher by 2.8eV compared to
the adamantane cage Vig. But, the compact V17 structure exhibits a significantly
lower formation energy than the V7 structure, where one removes all 14 atoms
displayed in Fig. 7.1 along with three atoms from an adjacent hexagonal ring. All
the formation energies of the vacancy clusters different from the structures where
one removes atoms 1 to n in Fig. 7.1 are summarized in Tab. 7.2. The tight-binding
calculations suggest that for all sizes up to Vi4 vacancy clusters built from the set
of atoms indicated in Fig 7.1 are the most stable. For vacancy clusters larger than
V16, the more compact structures become competitive in energy due to a higher
flexibility in the relaxation pattern compared to the ring structures. The transition
from the construction model for hexagonal rings to the compact spherical growth
pattern is predicted by SCC-DFTB for a smaller vacancy cluster size than by the
empirical TB method in [102]. There, the compact spherical shaped Vg4 was found
to be the smallest vacancy cluster having a formation energy below the hexagonal
ring cluster of the same size.
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Figure 7.2: (Top) Formation energies in eV as a function of the
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Energies in eV for the exchange reaction 2V, — V.11 + V1
within DF'TB and the extended bond-counting model.
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For smaller vacancy defects the tight-binding results can be compared to results
obtained from sophisticated ab initio methods:

In silicon, the mono-vacancy with Ty-symmetry is Jahn-Teller instable and distorts
into Dayg-symmetry. The SCC-DFTB method yields for the latter symmetry a form-
ation energy of EL = 3.8eV, which is in reasonable agreement with other first
principles calculations (3.27eV [100], 3.49eV [121] and 3.29 eV [98]). The symmetry-
breaking results in two different nearest neighbor distances between the four atoms
surrounding the vacancy. The relaxation with the SCC-DFTB method yields dis-
tances of 2.8 A and 3.0 A, while Antonelli et al.[121] find two slightly distinct dis-
tortions with identical formation energies. They have calculated the distances to
be 3.0A and 3.5 A for their structure A and 3.4 A and 3.5A for their structure B.
Puska et al.find with a 216 atoms super-cell using the I'-point and a pseudo-potential
plane-wave code 2.9 A and 3.4 A [100]. The calculations indicate a very flat poten-
tial in the direction of the distortion, which makes it difficult to determine the exact
equilibrium distances. The nearest neighbor distance in bulk silicon is 2.35 A.

Taking two nearest neighbor atoms away from the ideal crystal yields a Jahn-Teller
instable D34 configuration for Vg, which distorts within DF'TB into Cyp symmetry,
corresponding to the resonant-bond configuration in [101]. The three nearest neigh-
bors of each of the two removed atoms built an isosceles triangle with two edges
of 2.8 A and one edge of 3.4 A. In the undistorted crystal these three atoms built
an equilateral triangle with an edge length of 3.8 A, the second neighbor distance.
During the relaxation, the two triangles shorten their distance by about 0.3 A. That
means, there is an inward relaxation and the volume of the di-vacancy is reduced.
A recent result with a plane-wave pseudo potential approach and a 216 atom super-
cell gives E2 = 4.94eV and a binding energy of E2 = 1.6eV [122, 123], close to the
DFTB result of 1.8eV. A formation energy of E2 = 5.8¢eV for the di-vacancy is
obtained with SCC-DFTB. This value is very close to the 5.7eV found by Song et
al.with a TB approach [124], but deviates by more than 1eV from the 4.3 eV calcu-
lated by Seong et al.[98] with a first principles DFT-LDA plane-wave code. However,
the authors stated that their results were neither fully converged with respect to the
basis set nor to the size of the super-cell.

Comparing the stability between vacancy clusters of different sizes, one finds Vg
and Vo having “surfaces” consisting of adjacent closed vacancy hexagonal rings
(see Figure 7.3 and Figure 7.4) to be especially stable. Both vacancy clusters have
low relative formation energies (compared to the next larger vacancy cluster as
shown in Figure 7.2) and a high stability against dissociation into V,_1+ V; and
the exchange reaction 2V, — V, 11 + V1 (see Figure 7.2). For Vi this is in
agreement with more qualitative predictions [97] and for Vg additionally with other
calculations [99]. With respect to Ep also Vg, Vi3 and V14 are especially stable.

In the super-cell with the hexagonal ring vacancy cluster Vg both of the two atoms
positioned next to a vacancy site shorten their distance during relaxation from 3.8 A,
the next-nearest neighbor distance in the ideal crystal, to 2.7 A. Assuming distances
less than 2.8 A as bonds, all atoms in this relaxed vacancy cluster are fourfold co-
ordinated (cf. Figure 7.3 (b)). The bond angles ranging from 98 to 145°, however,
deviate substantially from the tetrahedral bond angle of 109°. In total, 6 new bonds
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Figure 7.3: Bulk-fragment around Vg. Black atoms and bonds represent the
removed atoms forming a hexagonal ring of Vg in the ideal crystal (a). In (b)
the relaxed atoms around Vg are shown. White spheres represent the positions
of the removed atoms. The six new bonds formed in the relaxed structure are
drawn in black. No three-fold coordinated atoms are found in this structure.

for the hexa-vacancy cluster are formed (see Figure 7.3).

The nearest neighbor arrangement is different in the V1o vacancy cluster, the adam-
antane cage (see Figure 7.4). Here, four atoms have, in addition to one neighbor-
ing vacancy site, three empty next-nearest neighbor sites and, therefore, remain
threefold coordinated after the relaxation (see Figure 7.4 (b)). Similar to the case
of the hexagonal ring vacancy cluster, the other atoms around the vacancy cluster
build new bonds (2.65 A long) to a next-nearest neighbor (cf. Figure 7.4). For Vi
the total number of new bonds formed is 6 the same as for Vi. The formation of
one of these six new bonds in Vg is illustrated in Figure 7.5. The electronic density
between the two atoms is significantly increased compared to the density between
two next-nearest neighbors in the ideal crystal, but not as high as between two
nearest neighbors in the ideal crystal. The unrelaxed V19 vacancy cluster has full
Ty4-symmetry resulting in a three-fold degenerate highest occupied molecular orbital
(HOMO) which is occupied by 2 electrons. The symmetry unrestricted relaxation
changes the three-fold degenerate HOMO into one two-fold (the new HOMO) and
one non-degenerate state. The energy difference between these two states is only
0.005eV. The Jahn-Teller distortion in Vi is much weaker than in the mono-
vacancy, because the overlap between the interacting orbitals is much smaller.

In the cage-like V14 vacancy cluster there are eight vacancy sites with three nearest
neighbor vacancy sites and, therefore, this vacancy cluster has eight only three-fold
coordinated atoms (cf. Figure 7.6 (b)). Again the total number of new bonds formed
is 6, and, hence, is the same as for Vg and V.
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Figure 7.4: Bulk-fragment around Vjp. Black atoms and bonds represent the
removed atoms forming a cage of Vg in the ideal crystal (a). In (b) the relaxed
atoms around Vig are shown. White spheres represent the positions of the
removed atoms. The six new bonds formed in the relaxed structure are drawn
in black. Four three-fold coordinated atoms found in this structure are displayed
darker than the others.

Summarizing the results about the stability of the different configurations, the
hexagonal ring Vg and Viy as well as V4 vacancy clusters — build from adja-
cent hexagonal rings — have minimum numbers of dangling bonds in the relaxed
structure. All atoms surrounding the Vg vacancy cluster are fourfold coordinated,
while in the Vg adamantane cage structure 4 atoms remain threefold coordinated
and V14 has 8 only threefold coordinated atoms. Nevertheless, V1o is as stable as
Vg, because the energy increase by the three-fold coordinated atoms is compensated
by the new bonds formed being closer to the ideal lattice bond length. On the other
hand, this effect is less pronounced in larger vacancy clusters (n > 15), where the
relative stability is expected to be weakened according to the large number of three-
fold coordinated atoms introducing additional dangling bonds. The lower formation
energy of the compact Vi7 compared to the vacancy hexagonal ring structure V7
indicates that for the larger vacancy clusters hexagonal ring structures are not the
most stable ones.

Results from quantum-theory based calculations for covalently bonded systems in
some cases can be interpreted within a simple bond-counting model. Here, the co-
hesive energy of the system is approximated by the number of bonds times Ej, the
energy per bond in the ideal crystal, and relaxation is neglected. This corresponds
to the dangling-bond-counting model applied in [97], where it is suggested that the
closed hexagonal ring networks (Vs, V19, and V14) should be especially stable due to
their relatively low number of dangling bonds. Based upon the SCC-DFTB results
for the relaxed structures it is necessary to extend this simple model by taking into
account the energy gained by the formation of new bonds. In this extended bond-
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Figure 7.5: Electron density along the bond axis. A—-A denotes
two nearest neighbor atoms (distance 2.35 A) and B-B denotes two
next-nearest neighbor atoms (distance 3.8 A) in the ideal crystal.
C—C denotes two atoms in Vg, which were next-nearest neighbor
in the ideal crystal, but shortened their distance to 2.65A during
relaxation. The positions of the atoms A, B and C are indicated on
the lower border. Only the central density in between two nodes is
shown. The density localized at the nuclei is not shown.

counting model the cohesive energy compared to the simple bond-counting model is
lower by the number of new bonds times the average energy per new bond. Gen-
erally, for those vacancy positions where prior to removal the removed atom had at
least two bonds to the surrounding crystal (and not to another vacancy site) a new
bond is formed between two atoms in the surrounding crystal. In contrast, for those
vacancy positions where the removed atom had only one bond to the surrounding
crystal (and three to other vacancy sites) a dangling bond is created. The number
of broken bonds ny, and new bonds n, and the formation energies estimated within
the simple and extended bond-counting models for the cases where the atoms have
been successively removed from the hexagonal ring network with 14 vacancies (Fig-
ure 7.1) are given in Table 7.1. Here, Ey, = 2.8 eV per bond, the binding energy per
bond in the ideal crystal within SCC-DFTB, is used. The newly formed bonds are
weaker than the bonds in the ideal crystal and their formation is accompanied by
the weakening of some of the ideal tetrahedral bonds. The average energy for a new
bond is set to 0.4 Ey,. This value yields formation energies close to those calculated
within SCC-DFTB. The details of the simple and of the extended bond-counting
models can be found in the last Section of this Chapter.

By comparing the formation and dissociation energies as a function of n as calcu-
lated within DF'TB to those estimated from the extended bond-counting model (Fig-
ure 7.2), one notices that the extended bond-counting model reproduces the form-
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(a) (b)

Figure 7.6: Bulk-fragment around V4. Black atoms and bonds represent the
removed atoms forming a cage of V4 in the ideal crystal (a). In (b) the relaxed
atoms around Vi4 are shown. White spheres represent the positions of the
removed atoms. The six new bonds formed in the relaxed structure are drawn
in black. The eight three-fold coordinated atoms found in this structure are
displayed darker than the others.

ation energy of DFTB as a function of vacancy size n very accurately in the range
6 < n < 14. Furthermore, this model yields local maxima in Efj at n = 2,6,9,13,
and local maxima in £} at n = 2,6, and 10, in agreement with the tight-binding
calculations. However, the simple and the extended bond counting model are less
predictive for very small and for larger vacancy clusters, where the bonding scheme
is more complex. The energy differences for different vacancy structures of the same
size predicted by the extended bond-counting model deviate from the calculated
energy differences in some cases. Within this model, the formation energies for the
“zigzag” chain-like vacancies along (110) V4 and V5 are the same as for the vacancy
clusters of the same size defined by Figure 7.1, whereas the SCC-DFTB calcula-
tions yield significantly lower energies for the latter structures. Also, the single-ring
vacancy structure Vg (atoms 1,2,4-6,8-10 in Fig. 7.1 removed) is favored by the ex-
tended bond-counting model, whereas the SCC-DFTB-calculations yield the same
formation energies for this structure and Vg where atoms 1 to 8 in Figure 7.1 have
been removed.

When discussing irradiation experiments low formation and high dissociation ener-
gies of certain cluster sizes are not the only criteria for their formation and stability.
The kinetics of the primary defects which become mobile during annealing of the
irradiated samples has to be taken into account, too. The most important point
is the relation between the primary defect density and the density of sinks for mo-
bile defects (mainly mono-vacancies). Typical sinks in irradiated Czochralski-grown
silicon are oxygen-related micro-defects. As a result there is always competition
between annealing and agglomeration.
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Positron Lifetime
not relaxed relaxed relaxed [109] experiment [91]

n__ 7[ps] 7 [ps] 7 [ps] 7 [ps]
bulk 218 215 218
1 253 218 279 282
2 303 240 309 310
3 329 278 320
4 343 291 337
5 353 301 345
6 375 317 348
7 383 330
8 389 364
9 398 368
10 420 385
11 422 392
12 425 402
13 427 406
14 435 414

Table 7.3: The defect related positron lifetimes have been calcu-
lated for the unrelaxed and the relaxed structures. For comparison
the known experimental values [91] and those calculated within
two-component density-functional theory [109] are provided for the
smaller vacancy clusters.

To allow for a direct comparison to experimental data the defect-related positron
lifetimes — given in Table 7.3 and Figure 7.7 — have been calculated. Besides the
positron lifetimes calculated with respect to the unrelaxed atomic positions the life-
times calculated with respect to the coordinates after relaxation by the SCC-DFTB
method are included for comparison. As outlined above, the calculated lifetimes ob-
tained from the unrelaxed geometries should better match the measured lifetimes.

The positron lifetimes in Figure 7.7 have been calculated using the unrelaxed co-
ordinates. The lifetimes increase with increasing cluster size, since the electron dens-
ity decreases at the location of the vacancy cluster where the positron is trapped. For
larger vacancy agglomerations the influence of the trapped positron on the atomic
positions should decrease. Additionally, as shown in Table 7.3 the influence of the
inward lattice relaxation without a positron decreases. Since the potential around
the equilibrium geometry is in general very flat for silicon, one expects even for
large clusters like Vi4 or Vi7 an influence of the trapped positron pushing the
atoms slightly outward and, therefore, a better agreement with experimental data
for the lifetimes obtained from the unrelaxed structures. For the most stable va-
cancy clusters the positron lifetimes 7y, = 375ps, Ty;, = 420ps, and 7y, = 435 ps
are obtained (see Figure 7.7 and Table 7.3). The positron lifetime for vacancy chains
is very close to the value obtained for di-vacancies even for longer chains (cf. Fig-
ure 7.7).
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Figure 7.7: Energy gained by adding a mono-vacancy to a cluster
of (N — 1) vacancies in silicon (upper part) and the correspond-
ing positron lifetimes (lower part) for unrelaxed vacancy clusters.
Positron lifetimes for the particularly stable vacancy clusters Vg,
V10, and V14 are highlighted.

7.5 Linking theory and experiment

A recent work about the defect-related positron lifetime in mono-vacancies reports
Ty, = (282 + 5)ps and that mono-vacancies become mobile at 170K [91]. The
temperature range for the dissociation of di-vacancies has been determined to be
around 550 K. This corresponds to the SCC-DFTB result of a di-vacancy dissoci-
ation energy of 1.8eV. The activation energy for the migration of mono-vacancies
according to an empirical TB result is estimated to be 1.54eV [102]. A relationship
between the annealing temperature and the activation energy can be established
by transition-state-theory (see Appendix C). The following assumptions are made
to compare experimentally determined annealing temperatures of defects and the
corresponding calculated dissociation energies for different clusters: (i) The barrier
height for the diffusion of vacancies away from a cluster is always the same, (ii)
the entropy pre-factors in the Arrhenius term are almost equal, (iii) the number of
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jumps to the nearest sink is comparable. The calculated dissociation energies are
scaled to that of the di-vacancy (1.8eV) which is experimentally well characterized
and anneals at 550 K.

During annealing of irradiated samples between 550 and 1000 K, the formation of
vacancy clusters larger than V5 is observed by EPR and PAS. Di-vacancies appear
to dissociate and to migrate to form larger vacancy clusters: V4 is detected by EPR
in the temperature range 573 ... 623 K, while the Si-P1 EPR center — associated in
[93] to the non-planar penta-vacancy Vs — is detected for T = 620... 720 K [92, 93].
In the same temperature range, the defect related positron lifetime is rising from
Tdef = 310 ps to values 74ef = 330...350ps [89, 111, 112]. This would correspond to
V4 or V5 defects.

When the Si-P1 EPR center is not detectable anymore (7' > 720 K), PAS detects a
value of 74er & 360ps [111, 112]. This signal could be due to the Vg vacancy ring,
which may be invisible by EPR, because it has most likely a neutral charge state (see
also [99, 125]). For a sufficiently high defect density, 74¢f keeps on rising with tem-
perature until a saturation value of 74er =~ 420...430 is reached at about 7" = 870 K
[111, 112]. Recent first-principles calculations of defect-related positron lifetimes for
several sizes of vacancy clusters in silicon [109, 126, 127] give positron lifetimes not
larger than 360 ps which are related to positron trapping into vacancy clusters with
five or less vacancies. The calculated positron lifetimes for the unrelaxed structures
are 375 ps for Vg, 420 ps for Vg, and 435 ps for Vi4. Combining this information
with results on the stability of the vacancy clusters (this work and others [97, 99])
suggests that the larger stable clusters are good candidates for the defects related
to a positron lifetime of about 430 ps measured in irradiated silicon annealed up to
T = 870K. While Vip may be formed by successively capturing a mono-vacancy, it
is more unlikely for V14, due to the small dissociation energy Vi; — V19 + V1.

Under the assumptions (i) — (iii) made above, the dissociation energies for Vg, Vo,
and V19 would correspond to annealing at about 1000 K — indeed very close to
the experimentally detected annealing temperatures of larger vacancy clusters with
lifetimes of 420 to 430 ps) [89, 111, 112].

It is interesting to note that for medium dose electron irradiation (1 x 10 cm~?2 at
6 MeV) the experimentally found defect related positron lifetime is ~ 350 ps [89],
and, hence, is close to the lifetime calculated for Vg.

Comparing the dominating vacancy related defects after high-dose irradiation treat-
ment and annealing up to 870 K with the calculated positron lifetimes one can most
likely rule out Vg. The calculated positron lifetimes for the most stable structures
are: Vg (375ps), Vg (398 ps), Vip (420 ps), and V4 (435ps). The experimentally
observed defect-related positron lifetimes range from 415 to 430 ps and have errors
of roughly 30 ps. Only moderate dose electron irradiation followed by annealing up
to 650K could lead to V.

In conclusion, the dominating defects determined experimentally in the temperat-
ure range T =~ 870...1000 K are most likely the vacancy clusters Vg and Vig. It
becomes increasingly difficult to form even larger vacancy clusters like V4, because
the probability of agglomeration decreases with the size of the cluster and V;; can
easily dissociate into Vi¢ and a mono-vacancy.
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7.6 The simple and the extended bond-counting model

In this Section the details of the simple and the extended bond-counting model
are outlined by discussing the change of the bond pattern during the creation of
vacancies. In the simple bond-counting model, where relaxation is not taken into
account, the cohesive energy of the system corresponds to the number of bonds times
the energy per bond Ej,. The ideal crystal with N atoms in the super-cell has an
energy of Eé\r]yst = 2N Ey,. Whereas a n-vacancy cluster with ny, broken bonds has
an energy of E7, . = (2 N —ny) Ey. Therefore, one obtains for the formation energy
EF =E", — %Eﬁm = (2n —np) By . (7.7)
For the mono-vacancy the number of broken bonds ny, equals four. In the simple
di-vacancy this number equals seven. Removing further atoms on a nearest neighbor
site breaks three additional bonds each time as long as the “vacancy-chain” remains
open. The number ny, increases less rapidly if the removal of a further atom leads
to a “vacancy-ring”. The smallest possible ring consists of six vacancies. Closing
the ring changes ny, from 16 for V5 to 18 for Vi (see Fig 7.3 (a)). Adding a vacancy
close to the ring breaks three additional bonds until a second ring is closed. Looking
at Figure 7.1 one notices that for Vg, where the atoms 1 to 9 are removed, a second
vacancy-ring is closed. A third vacancy-ring is closed for Vg created from Vg by
removing atom number 10. The number of broken bonds increases only by two, if
one goes from Vg to Vg and from Vg to Vg (see Tab 7.1).

A straight forward extension of this simple model includes the energy gained by the
formation of ny, newly formed bonds. As described above, the four atoms surround-
ing the mono-vacancy approach each other during the relaxation such that two short
distances of 2.8 A and four slightly larger distances of 3.0 A occur between the four
atoms. Only the short bonds (less or equal 2.8 A) are counted as bonds. Therefore,
for Vi it is ny = 2 in this extended bond-counting model. The simple di-vacancy
is characterized by the formation of two bonds in each of the two isosceles triangles
described above. A total of four new bonds is formed. The di-vacancy can be con-
sidered as a chain of two vacancies, it follows that at each end of a vacancy-chain
two new bonds are built. The vacancy sites which are not at the end of the chain
have at two of the four nearest neighbor sites another vacancy and at the other
two sites there are two atoms from the surrounding crystal. These latter two atoms
built one new bond per vacancy. The tri-vacancy exhibits 5 new bonds and an open
non-branching chain of n vacancies exhibits 2 + n new bonds. As in the simple
bond-counting model this dependency changes if the vacancies form a closed ring.
All vacancy sites in a single closed ring have a neighborhood identical to the sites
in the center of a vacancy-chain. Hence, a single ring of n vacancies exhibits n new
bonds. Examples of a single ring are the hexagonal ring Vg (atoms 1-6 in Fig. 7.1
removed) (Figure 7.3 and Table 7.1) and Vg (atoms 1,2,4-6,8-10 in Fig. 7.1 removed)
(Table 7.2).

If the vacancies form a network of sixfold rings which share some vacancy sites such as
the vacancy structures Vi displayed in Fig 7.4 (a) or V14 displayed in Fig 7.6 (a), the
number of new bonds is fixed at n, = 6. This is because these structures introduce
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vacancy sites, which have at three of their nearest neighbor sites vacancies, and the
atoms in the surrounding crystal sitting on the fourth nearest neighbor site cannot
form a new bond to a next-nearest neighbor. The ring-vacancy Vg has four of such
vacancy sites with three nearest neighbor vacancy sites and the ring-vacancy Vig
has eight of them. Adding a vacancy next to Vg, Vig, or Vi4 (as defined by Figure
7.1) breaks one of the formerly formed bonds and creates one new bond. Therefore,
the number of new bonds equals six for Vg, V7, Vig, V11, V14, and V5.
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Chapter 8

Conclusion

8.1 Summary

In this thesis the growth pattern of silicon clusters and of vacancy clusters in bulk
silicon has been investigated. The stability of the silicon structures of interest has
been determined by calculating their cohesive and/or formation energies. To allow
for a comparison with experimental data physical properties accessible by experi-
ment have additionally been calculated. Many physical properties, such as IR and
Raman spectra, polarizabilities, “mobilities”, and HOMO-LUMO gaps for clusters
and positron lifetimes for vacancy clusters, and their variation with system size
have been derived from the ground-state geometries. The combined information
from theory and experiment yields valuable insights to the structures and bonding
patterns of these systems.

The density-functional based tight-binding (DFTB) method has been adopted to
silicon systems. Geometries, energies, and vibrational frequencies of various silicon
systems from clusters to solids can be calculated within DFTB nearly as accurate
as with other sophisticated more time-consuming methods. The efficiency of DFTB
makes it possible to perform molecular dynamics with clusters and to treat extended
vacancy clusters embedded in large super-cells.

New candidates for the ground-state structure of Sig, Siy3, and Si;4 have been iden-
tified. The tri-capped trigonal prism forms a basic building block for the low-energy
clusters with 10 to 14 atoms. The vibrational density of states (VDOS) for the
groundstate geometries, along with infrared and Raman spectra, have been calcu-
lated within the scf-DFT-LDA. The calculations predict low IR intensities for Sig,
Siy9, Siys, and Siy4. This raises questions whether it is possible to detect the IR spec-
tra by experiment. The calculations indicate instead that Raman measurements are
more suitable to identify the ground-state geometries for these cluster sizes. In
contrast, theory suggests that IR measurements are most appropriate to determine
whether the TTP or TCO configuration of Sijg corresponds to the groundstate. This
is due to the similarity of the Raman spectra for both isomers and to a strong IR
peak of the TCO configuration absent in the TTP configuration.

A discrepancy remains between polarizabilities determined by theory and experi-
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ment. The variation of the polarizability as a function of cluster size is much stronger
for measured than for theoretical data. Additional measurements are required to
resolve this issue.

A shape transition at cluster sizes around Sigs, previously indicated by mobility
measurements on silicon cluster anions and cations, has been confirmed theoretically
for neutral clusters. The Simulated Annealing optimization technique has been
proven to be a reliable and efficient tool to find low-energy structures. The technique
has been successfully applied in cases where the energy-potential exhibits a vast
number of local minima. For neutral Sios clusters almost spherical and prolate
structures coexist. For Sisg most of the low-energy isomers have a more spherical
shape and for Sigs the low-energy isomers are solely compact and spherical. For
silicon clusters with about 20 to 25 atoms it is energetically more favorable to bind
two stable smaller isomers with about 10 atoms either directly or via an intermediate
small fragment. For larger clusters (with more than 25 atoms) compact spherical
structures with some five- or sixfold coordinated atoms are lower in energy compared
to clusters built from smaller fragments. The electronic structure close to the Fermi
level is different for prolate and spherical compact clusters. Hence, stable isomers
of, e.g., Sigs with different chemical reactivities and optical properties exist.

All silicon clusters with up to 35 atoms exhibit a bonding pattern strikingly different
from the tetrahedral bonding pattern in the diamond structure. For these cluster
sizes almost all atoms are close to the surface. For larger clusters such as Siy; and
Siogg the Simulated Annealing reveals compact structures with a bonding pattern
which still is quite different from tetrahedral bonding. Most likely a diamond-like
core with mainly sp3-hybridized atoms foremost becomes energetically competitive
to a disordered core with various coordination numbers for nanoparticles with several
hundred to several thousand atoms.

Within SCC-DFTB the cohesive energy of the clusters increases from —3.82 eV /atom
for Sijg to —4.24 eV /atom for Siggg. Clusters as large as Sigzg have only 88% of the
cohesive energy of bulk silicon (—4.80eV /atom). Compared to the carbon fullerene
Cego, where the cohesive energy corresponds to about 95% of the cohesive energy of
diamond, it appears to be less likely that stable cluster assembled materials can be
built from pure silicon clusters. However, it has been shown that the stability of
cage-like silicon structures can be increased by substitution of some silicon atoms by
nitrogen [128] or by addition of endohedral atoms such as zirconium [129]. It follows
that silicon based cluster assembled materials are conceivable with a certain amount
of impurities which act as either charge donator or acceptors and locally change the
electron occupation.

For vacancy clusters in bulk silicon especially stable structures with a “magic num-
ber” of vacancies have been determined. The SCC-DFTB calculations find vacancy
clusters with 6, 9, and 10 vacancies (Vg, Vg, and Vi) where the vacancies form
closed hexagonal rings to be particularly stable systems. The high stability is ob-
viously due to the minimum number of dangling bonds in these structures. The
SCC-DFTB results are consistent with results from other calculations based on al-
ternative methods. The agreement of the calculated positron lifetimes for Vg and Vi
with the results from positron annihilation spectroscopy indicate that Vg and Vyg
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are present in neutron or electron irradiated silicon. The annealing-temperatures at
which the measured lifetime components vanish are in agreement with the calculated
dissociation energies of the corresponding vacancy clusters. For clusters with up to
14 vacancies the most stable configurations of each cluster size correspond to frag-
ments from a hexagonal ring-network. The extended bond-counting model correctly
describes the variation of the formation energies with cluster size for these vacancy
configurations. For an accurate description of the energy differences between vacancy
clusters of equal size and of larger vacancy agglomerations explicit calculations with
quantum mechanical methods are indispensable. The SCC-DFTB calculations in-
dicate compact vacancy clusters, different from the hexagonal ring structures, to be
more stable for larger vacancy agglomerations.

8.2 Outlook

Many important insights in the growth-process of silicon clusters and of vacancy
clusters in bulk silicon could be gained. Based on these insights new questions for
future research projects arise. The SCC-DFTB method is focused on the determ-
ination of ground-state geometries, cohesive energies and molecular dynamics. The
optical properties and chemical reactivities of the established ground-state struc-
tures need to be further characterized. Since many measurements are performed on
charged clusters, it is desirable to apply SCC-DFTB to silicon cluster anions and
cations, as well. Impurities like oxygen, nitrogen, or hydrogen are often present
during cluster-growth and it will be very useful to investigate the influence on the
stability and physical properties of such impurities. Germanium is another import-
ant material in the semiconductor industry. In many aspects germanium is similar
to silicon. How much the larger covalent radius and the presence of occupied d-
states change the results found for silicon systems has only partly been adressed,
so far. The increasing performance of parallel computers will make it possible to
study nanoparticles with several hundred atoms, e.g, nanowires, which are part of
nanoscale devices. Also, molecular dynamics with large silicon clusters, with some
hundreds of atoms in a heat bath should be possible.

The charge-state plays an important role for defects, as well. However, taking into
account local charges in periodic systems and spinpolarization in the tight-binding
framework, still has to be implemented. The trapping of impurities into vacancy
clusters is important for the conduction process in semiconductors. For vacancy
clusters, especially in silicon, a large number of experimental data is available from
electron paramagnetic resonance experiments. Some of the paramagnetic centers,
like the P1l-center [92], have not yet been identified. The DFTB calculations rule
out the negatively charged penta-vacancy geometry suggested in [92]. The calcu-
lated charge distribution of the highest occupied molecular orbital (HOMO) for this
geometry deviates substantially from the charge distribution assumed in reference
[92]. Additional DFTB calculations pointed towards an accurate description of the
electronic structure can aid in the identification of the defect responsible for the
P1-center.
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Appendix A

Calculation of the overlap- and
Hamilton-matrix elements

A.1 Contraction of the density and the wave-functions

Within DFTB the two-center overlap- and Hamilton integrals are calculated from a
two-center potential and from basis-functions derived from a single atom calculation
with the additional radial-symmetric potential (see Chapter 2 and [13, 16, 130])

() = (1)n n=2.

70
This avoids the drawback of long-ranged basis-functions in solid systems and takes

into account that for many systems the density can be better approximated by a
superposition of contracted single atom densities.

The optimum values for ry can be different for the calculation of the density, used
to form the two atom potential, and for the calculation of the basis functions. In
the first case 7o is denoted rq (for 73e,g) and in the second case rq is denoted ry,

(for rwave)-

To find the best contraction radii r4 and r,, the variational principle could be applied
to a given system, but this appears to result in different values for solids and mo-
lecular systems. A semi-empirical adjustment of the contraction radii until physical
properties like geometries or energies agree within DFTB and scf-DFT is impeded
by the fact that in most systems such physical properties depend on the repulsive
potential, which in turn depends on the contracted density. Since the repulsive po-
tential is cut-off at a finite distance, the energy of a system with bond-lengths longer
than this cut-off are determined solely by the band-structure energy Egg = 3.9 ¢;.
The band-structure energy depends only on the Hamilton- and overlap-matrix and,
therefore, on the parameters r4, 7, and the power n. The latter has been fixed
to n = 2 according to previous studies [16]. Various comparisons between scf-DFT
calculations and approximative calculations with contracted basis functions show
that the optimum contraction radius r,, is in the range from 1.5 to 2.5 times the
covalent radius of the considered atom type. The relevant values for silicon are:
1.6 A(3.0ag) < rw < 2.8A(5.2ap).
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In this work the contraction radius ry for the atomic density and the contraction
radius r,, for the atomic-wavefunctions have been determined via a variational prin-
ciple from the band-structure energies of the diamond and of the simple cubic (sc)
phase. In the diamond structure the silicon atoms are fourfold coordinated with a
nearest neighbor distance of 2.35 A and a bond angle of 109°. The atoms in the
simple cubic structure are sixfold coordinated with a nearest neighbor distance of
2.54 A and a bond angle of 90°. It is assumed that describing these two different
phases accurately results in a transferable tight-binding parametrization for systems
with coordination numbers not greater than six.
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Figure A.1: Band-structure energy of several bulk phases for two
different wavefunction parameters r,/ap. The parameter for the
density is rq = 6.7 ap. The cohesive energies as calculated with scf-
LDA for the diamond and simple cubic phase and the experimental
value for the diamond phase are given for comparison.

Figure A.1 shows the DFTB band-structure energy Epg for the diamond, simple
cubic (sc), and the body centered cubic (bcc) phase for two differently contracted
wavefunctions. The experimental cohesive energy of —4.63eV [131] for diamond is
marked for comparison and the cohesive energy curves for the diamond and sc phase
as calculated within all-electron scf-LDA (NRLMOL) are shown, too. Compared to
the experimental value the scf-LDA calculation shows an over-binding of 0.6 eV. The
DFTB band-structure energies obtained with the stronger contraction (r,, = 3.0ap)
are lower than with a weaker contraction (r, = 3.3ap) for all phases. Figure A.2
shows the DFTB band-structure energies for the same phases for two differently
contracted densities. Here, the effect of the contraction is the opposite: The DFTB
band-structure energies obtained with the weaker contraction (rq = 7.7apg) are
lower.

For the silicon-silicon parametrization finally the parameter combination r4 = 6.7ap
and r, = 3.30 ap has been found to be most appropriate. With these two parameters
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Figure A.2: Band-structure energy of several bulk phases for two
different density parameters r4/ap. The parameter for the wave-
functions is 7, = 3.30ap. The scf-LDA and experimental data are
given for comparison.

the minimum of the band-structure energy of the diamond phase lies in between the
experimental value and the scf-LDA value. The difference in the band-structure
energies (i.e., without the repulsive potential) between the diamond and the simple
cubic phase is about 0.4eV close to the difference in the total cohesive energy as
calculated within scf-LDA (0.35eV in Ref. [131] and 0.39eV with NRLMOL).

If one compares the DFTB band-structure energy of diamond obtained with the
parameters rqg = 6.7ap and r, = 3.3ap with the cohesive energy as parameterized
by the Murnaghan equation of state

BoV [(Vo/V)Bo
By | Bh—1

Eint(V) = + 1] + const,

one notices that the dependence upon V for both methods is almost identical for
nearest neighbor distances larger than the equilibrium distance (see Fig. A.3). Here,
the bulk modulus By and its pressure derivative B{ at the equilibrium volume Vj
have been set to the experimental values reported in [131]. A repulsive potential
with a cut-off radius of 2.54 A has been chosen for the calculation of total energies.

Fitting the energy difference Eg]S3 - E(S:(C){l per bond to the polynomial

7
Vir)= Zai(rc —r)t, r.=4.8 ag,
=3

yields in atomic units (Hartree and Bohr) the coefficients

a3 = 0.0155855, a4 = —0.0128669, a5 = 0.0254527,
ag = —0.0146618, a7 = 0.00263252.
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Figure A.3: DFTB band-structure energy with ry = 6.7ap and 7, =
3.30ap and cohesive energy parameterized by the Murnaghan equation
with parameters By = —4.82eV, ag = 5.42A, By = 0.99 Mbar and
Bj =4.2.

Figure A.4 shows this polynomial along with the energy difference Viep = (ETp —

E(S:gfl) per bond for two different systems, the diamond phase (Eg(c){l obtained with
the Murnaghan equation of state) and the Sis cluster with T;-symmetry. For Sis[Ty]
Vrep is shifted to be zero at r = 2.5 A. The slope of Vrep is slightly different for
the two systems. This is due to the fact that the double-counting and coulomb
terms forming Viep cannot exactly be represented by a simple two-pair interaction.
However, the polynomial given above is a reasonable approximation to Viep for

interatomic distances larger than 2.2 A and, therefore, for most silicon systems.

The cohesive energies for several silicon bulk phases obtained with the matrix-
elements and the repulsive potential calculated in the way represented above are
displayed in Fig. A.5. The corresponding (minimum) cohesive energies as obtained
with a plane-wave pseudopotential code [131] are —4.84eV (diam), —4.49eV (sc),
—4.57eV (f-tin), —4.31eV (bcc) and —4.27eV (fcc). The cohesive energies ob-
tained with the all-electron scf DFT-LDA code NRLMOL are —5.24eV (diam) and
—4.85€V (sc).

The bulk-modul and other second order elastic constants for the diamond phase are
compared between DFTB and experimental data in Table A.1. The deviations are
less than 7% which is a good agreement for second order derivatives.

The two-center overlap and Hamilton matrix elements depend only on the inter-
nuclear distance. For a given system the matrix elements have to be transformed
with respect to the orientation of the atom-pairs. The transformation has been
described by Slater and Koster [133] and the matrix-elements are refered to as
Slater-Koster parameters. The two-center overlap and Hamilton matrix elements
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Figure A.4: Polynomial used for the repulsive potential. Additionally
the energy difference between the cohesive energy and the TB band-
structure energy is given for the diamond bulk (Murnaghan equation)
and Sis [Tq4] (sct-GGA).

Method BO C11 C12 C14
DFTB 92 | 1561 | 63 | 74
Experiment | 99 | 166 | 64 | 80

Table A.1: Bulk-modul and second order elastic moduli (in GPa) for
silicon as calculated within DFTB and obtained from experiment
[132].

as a function of the inter-nuclear distance are depicted in Fig. A.6. At a distance of
4 A the Hamilton matrix elements are dropped below 5.5% of their maximum values,
i.e., the DFTB interaction becomes negligibly small for Si-Si distances longer than
4 A. In the silicon diamond phase this corresponds to an interaction up to second
nearest neighbors.

The DFTB parametrization described in this Section has been applied to the larger
silicon clusters with more than 20 atoms described in Chapter 6 and to the vacancy
clusters described in Chapter 7. The SCC extension to DFTB has been used for
calculating the cohesive energies of these systems. For the smaller silicon clusters
described in Chapter 4 an older parametrization similar to the one described in
[19] has been used with standard DFTB!. The old parametrization was based on
DFT-LDA and shows an overbinding typical for LDA. The repulsive potential of
the old parametrization described in [19] has been improved to yield more accurate
higher frequency vibrational modes. The adjusted coefficients for Viep in the old

1The SCC extension to DFTB has not been develloped at the time of the calculations.
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Figure A.5: Cohesive energy of several bulk phases as calculated with

DFTB.

parametrization are:

az = 0.0641068, a4 = —0.0777954, as5= 0.0443406,
ag = —0.00767154, ar= 0.0, 7r.=05.2.

All coefficients are in atomic units (Hartree and Bohr).

To allow for a comparison between the energies of the larger and the smaller clusters
the cohesive energies for the smaller clusters obtained with both parametrizations
are given in Table A.2. The main difference between the two parametrizations is a
shift of the cohesive energies by —0.45eV /atom on average.

cluster | E..}, (old DFTB) | E.g} (new SCC-DFTB) AE
eV/atom eV/atom eV /atom
Sia -1.94 -1.49 -0.46
Sisz -2.98 -2.48 -0.50
Siy -3.49 -3.01 -0.48
Sis -3.77 -3.33 -0.44
Sig -3.93 -3.53 -0.40
Siz -4.06 -3.65 -0.41
Sig -4.07 -3.63 -0.44

Table A.2: Cohesive energies for the most stable isomers of Siy to
Sig obtained with the old DFTB parametrization based on LDA

and the new parametrization described in this Section and using
SCC-DFTB.
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Figure A.6: Overlap and Hamilton matrix-elements as a function of internuclear
distance r obtained with DFTB parameters rq4 = 6.7ag and r, = 3.3 ap.

The differences between the first order DFTB method without consideration of the
charge transfer and the SCC-DFTB method with a self-consistent charge transfer are
small for homo-nuclear silicon systems. The main influence of the SCC extension in
these systems is the reduction of the charge transfer between differently coordinated
silicon atoms. Table A.3 shows the cohesive energies and the net-charge on the most
negative atom for Sijo(TCO) and Sijo(TTP) obtained with DFTB and with SCC-
DFTB. The atomic charges have been determined with the Mulliken analysis used
within the SCC-scheme. Of course the SCC-DFTB and standard DFTB methods
are identical when applied to homo-nuclear bulk phases where all atoms have zero
net-charge due to the symmetry of the system.
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cluster E.,, (DFTB) | E,,, (SCC-DFTB) | Ap (DFTB) | Ap (SCC-DFTB)
eV /atom eV/atom e e

Si1o(TCO) -3.713 -3.709 0.09 0.05

Si1o(TTP) -3.831 -3.825 0.10 0.05

Table A.3: Cohesive energies and net-charges Ap on the most-negative atom for the
two most stable isomers of Sijg obtained with DFTB and with SCC-DFTB using
the parametrization described in this Section.

A.2 TImproving the description of the electronic struc-
ture

The DFTB parametrization described in the previous section yields a good descrip-
tion of cohesive energies, forces, and geometries for the diamond, beta-tin, and simple
cubic phases and for silicon clusters. These structures typically contain silicon atoms
with a coordination number less than or equal to 6. The electronic band-structure
for periodic systems and the eigenvalues of the single electron states in finite sys-
tems are in good agreement with scf-GGA as well. However, the description of the
electronic structure can be improved by optimizing the contraction radii r4 and ry,
by solely focusing on the Kohn-Sham eigenvalues. Unfortunately the resulting pair
of parameters is not appropriate for calculating accurate cohesive energies.

energy / eV

14 p scf-GGA-PW91 ——— | 7 T scf-GGA-PW9L —— |
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Figure A.7: Eigenvalues ¢; of Si5[T,] as a function of nearest neighbor distance
7. Solid lines correspond to scf-GGA and dashed lines to DFTB. (Left) DFTB
parameters ry = 6.7ap and r,, = 3.30ap. (Right) DFTB parameters ry = 0o
and r,, = 4.50 ap. All eigenvalues up to the lowest unoccupied molecular orbital
(LUMO) are shown along with their degeneracy.

Figure A.7 shows the variation of the eigenvalues up to the lowest unoccupied mo-
lecular orbital (LUMO) level as a function of interatomic distance for the Sis cluster
with Ty-symmetry (1 silicon atom in the center and 4 silicon atoms in the opposite
corners of a cube). With the DFTB parameters rq = 6.7ag and r, = 3.3ap the
lowest eigenvalue of the valence states lies about 1eV above the corresponding scf
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Figure A.8: Eigenvalues ¢; of Si;[Op] as a function of nearest neighbor distance
r. (Left) DFTB parameters rq = 6.7ap and r, = 3.30ap. (Right) DFTB
parameters r4 = co and r, = 4.50ap.

DFT-GGA value obtained with NRLMOL at the equilibrium distance r = 2.2 A.
The deviation of the eigenvalues of the other occupied states are smaller than 0.5eV
at this distance. If one sets the parameters to r4 = 0o (no contraction for calculating
the two-center potential) and r,, = 4.5ap the agreement with the scf DFT-GGA
eigenvalues is almost perfect in the range 2.2 A < r < 3.0 A. Only the eigenvalues of
the HOMO and LUMO are slightly too high within SCC-DFTB. The same settings
also improve the SCC-DFTB eigenvalues for the Siz[Op] cluster (one silicon atom
in the center and six silicon atoms on the Cartesian axes in opposite directions) as
can be seen in Fig. A.8. For the electronic structure this indicates the transferabil-
ity of these DF'TB parameters between quite different bonding schemes. However,
the parameters rq = oco and 7, = 4.5ap shift the bandstructure energies of the
diamond and sc phases towards more negative energies compared to the energies
obtained with the parameters rq = 6.7 ag and r, = 3.3 ap (see Fig. A.9). To obtain
total energies in agreement with experiment or DFT-GGA calculations a quite long-
ranged repulsive potential would be required. This would result in too high energies
for the higher coordinated bulk phases. Therefore, the parameters ry = 6.7apg and
Tw = 3.3ap have been chosen as the best compromise between accurate cohesive
energies and a good description of the electronic structure.

The measured k-dependent band-structure of the silicon diamond crystal features a
maximum bandwidth at T' of about 12.5eV [134], an indirect gap from T to 0.85X
of 1.17eV [135], and a direct gap at I' of about 2.7eV [136]. Since the density-
functional formalism is a single-particle theory which focuses on ground-state proper-
ties, the calculated eigenvalues do not correspond directly to elementary excitations
(see Chapter 2). To obtain eigenvalues directly comparable to experimental excita-
tion spectra density-functional theory can be extended, e.g., to take self-interaction
corrections (SIC) into account. In general, within standard scf DF'T the gaps of insu-
lators and semiconductors are underestimated. Because of the usage of a minimum
basis set, this can be different in tight-binding methods. Within SCC-DFTB with a
minimum basis set (s- and p-atomic-orbitals) the gap in the silicon diamond crystal
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Figure A.9: Band-structure energies of the diamond and simple
cubic phases for the two different parameter pairs (rg = 6.7ap,
rw = 3.3ag) and (rq = 00, 1y = 4.5ap).

is direct and the lower conduction band at 0.85X lies much too high. However, the
agreement of the lower conduction bands with scf DFT-GGA calculations can be
improved by the usage of an extended basis set.

With the DFTB parameters ry = 6.7ap and r,, = 3.3 ap the overall variation of the
valence bands with the momentum £ is described correctly. The valence band widths
of 10.5eV is too small compared to experiment and scf DFT-GGA and the two lowest
valence bands slightly deviate at the L-point of the Brilouin-zone (BZ) compared
to scf DFT-GGA (see Fig. A.10). The electronic density of states obtained with
rq = 6.7ap and r, = 3.3ap is given in Fig. A.13. The peaks relative to the valence
band maximum agree quite well with the positions in measured angle-integrated
photo-emission spectra [134].

As expected from the improvement of the eigenvalues for the clusters Sis[T;] and
Si7[Op] mentioned above the valence bands for the silicon diamond crystal are also
improved by using the DFTB parameters r4 = oo and r,, = 4.5ap (see Fig. A.11).
The DFTB eigenvalues match almost exactly the points obtained with an scf pseudo-
potential plane-wave code [131] at the high-symmetry k-points L, T (G) and X of
the BZ. Figure A.12 illustrates that a correct electronic band-structure including the
lower conduction band and featuring an indirect gap can be obtained with an exten-
ded basis set. This basis set consists of one 3s, three orthogonal 3p, five orthogonal
3d, and one 4s basis functions.
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Figure A.10: Silicon band-structure (diamond phase) as calculated with
DFTB parameters ry = 6.7ag and r,, = 3.30ap. The dots denote spe-
cial levels calculated with a scf pseudopotential plane-wave code based

on LDA [131].
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Figure A.11: Silicon band-structure (diamond phase) as calculated with
DFTB parameters ry = oo and r,, = 4.50 ag. The dots denote special
levels calculated with a scf pseudopotential plane-wave code based on

LDA [131].
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Figure A.12: Silicon band-structure (diamond phase) as calculated with
an extended (3s3p3d4s) DFTB basis set. Parameters ry = 5.4ap, 1y =
5.4 ap, and n = 4. On-site energies of non-occupied atomic levels E45 =
0.18H, E3; = 0.2H. The dots denote special levels calculated with a
scf pseudopotential plane-wave code based on LDA [131].
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Figure A.13: Density of states for the silicon diamond phase as calcu-
lated with minimum basis set and DFTB parameters rq = 6.7ap and
Ty = 3.3aRp.



Appendix B

Short Summary of Group
Theory

Some important features of the electronic and vibrational states of a molecule or
cluster can be reclusively predicted by its symmetry. With the aid of group theory
the number of electronic states and of vibrational frequencies along with the corres-
ponding degree of degeneracy can be determined. Furthermore, the selection rules
for transitions between different states, e.g., if a certain vibrational mode is IR or
Raman active, directly follow from the symmetry of the structure. In this Appendix
the nomenclature of group theory is introduced and the application of the selection
rules for IR and Raman transitions is described. A more detailed description of
group theory and its applications can be found, e.g., in [137].

B.1 Basic Group Theory

The symmetry of a structure is defined by all the geometrical operations, which
transform the structure to a new, physically non distinguishable, structure. For
finite structures these operations must keep at least one point, the center of mass,
fixed. The possible symmetry operations can be divided into five classes: identity
(E), rotation (C), reflection (o), rotation-reflection (S), and inversion (7). For finite
systems all possible symmetry operations of a given symmetry form a point group.
The number of these operations determines the order of the group and is denoted by
g. A group is defined as a set of abstract elements on which a combining operation
(product) is defined for which the following four rules must be fulfilled:

1. The “product” or combination of any two elements of the group must be also
a member of the group.

2. The group must contain the identity element denoted by E. The identity
element is defined by ER = RE = R for all elements R.

3. The combining operation must be associative, i.e. R(ST) = (RS)T for all
elements R, S, T of the group.

121
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4. Every element R must have an inverse element R~!, which must also be an
element of the group. The inverse element is defined by RR™! = R"!R = E.

For all geometrical symmetry operations the combining operation simply means the
successive application of two transformations.

There exist two widely used but different systems of notation for point groups: the
international system and the Schonflies system. The Schonflies notation for the most
common point groups for clusters are defined in Table B.1.

E Identity

C, | Rotation through 27/n

Crv | Cp plus reflection in a plane containing the axis of highest symmetry
Cun | Cp plus reflection in a plane perpendicular to the axis of highest symmetry
D, | C, plus n twofold axes perpendicular to the axis of highest symmetry
(in the case of Dy, there are three twofold axes)

D, | D, plus a horizontal reflection plane

T 12 proper rotations which carry a regular tetrahedron into itself

Ty 24 symmetry operations of the regular tetrahedron,

including improper rotations

0 24 proper rotations which carry a cube into itself

Op, | 48 (proper and improper) rotations which carry a cube into itself

Table B.1: Schonflies notation for the most common point groups.

E o o o" C3 C2
E|E o o o C3 C%
o | ol E C3 C%? ol o

" " 2 nt !
oy, | o, C3 E C3 o, o,

"t n 2 !/ "
o, |o, C3 C; E o, o,

v
C3|Cy o o o C? E
c:lc2 o o' o E Cs

Table B.2: Group table for the C3, point group

For example, a tripod formed by the three corners of an equilateral triangle and
an arbitrary point above the center of the triangle is physically unchanged by the
identity operation (E) , a rotation at 120° about the rotation-axis (C3), a rotation
at 240° about the rotation-axis (C3) and reflections on one of the three reflection-
planes (o,). The rotation-axis goes through the center of the equilateral triangle
and is perpendicular to the triangle. The three reflection-planes are determined
by the rotation-axis and one of the corners of the equilateral triangle. These six
operations form a point group denoted by Cj, of order g = 6. In Table B.2 all
possible combinations of two operations are summarized. The column determines
the operation carried out first. The group table shows that the first rule for a group
is obeyed, every combination yields an element of the group.
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The second rule is obeyed because the “do nothing” operation FE is included. The
third rule can be checked with the aid of the group table, e.g., it is

(C30,)C% = 0,/ C% = 0y, = Cs0y = C3(0,,C5).

Finally every operation has one inverse operation within the group, because each
row or column of the table contains exactly one times the identity operation E.

The abstract elements of a group can have many possible representations. For
example for a given symmetry both the geometric transformations itself and the
matrices describing the transformations are representations for the symmetry group.
The corresponding matrices, which describe the transformation of a point (z,y, 2)
in Cartesian coordinates to a new point (z’,y’, '), for the example given above, are:

100
M(E)=|010 (B.1)
001
—1/2 V/3/20
M(C3) = | —V/3/2 —1/2 0 (B.2)
0 0 1
—1/2 —/3/2 0
M(C3) = | V3/2 —-1/2 0 (B.3)
0 0 1
-100
M@)=1 010 (B.4)
001
1/2 —/3/20
M@o)) = -V3/2 —1/2 0 (B.5)
0 0 1
1/2 V3/20
M(oy) = | —V3/2 =1/20 |. (B.6)
0 0 1

These six matrices fulfill all the four requirements to form a group. Here it is as-
sumed that the 3—fold rotation axis coincides with the z-direction and that the o,
reflection plane is the y,z-plane. Obviously one obtains a different set of matrices, if
a different orientation is chosen and this set is said to be equivalent to the other one.
Stated differently, two representations are called equivalent if all the corresponding
matrices of one representation are related to the matrices of the other representation
by a similarity transformation. Additionally, a set of higher dimensional matrices,
which may describe the transformation behavior of five d-type orbitals placed at an
arbitrary point (z,y, z), can be used as a valid representation. From all the possible
representations only the non-equivalent irreducible representations are important
to describe all the features of a given symmetry. A representation is said to be
irreducible, if their corresponding matrices cannot be simultaneously broken down
(reduced) by a similarity transformation into block form, i.e. into matrices which
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consist of square matrices on their diagonal and have zero elements elsewhere. The
matrices (B.1) - (B.6) are in block-form, this representation can be reduced into one
two-dimensional irreducible representation I'' and into one one-dimensional irredu-
cible representation I'2. The one-dimensional representation consists of six identical
one-dimensional matrices equal to 1, whereas the two-dimensional representation is
obtained by removing the last row and last column from the matrices (B.1) - (B.6).

From the matrices M(R) of a given representation one needs to know only the
traces x(R) = Y_; M;i(R), the so-called characters, to determine, e.g., the selection
rules for transitions between different states. In the example the characters for the
two-dimensional irreducible representation I'" are given by

xr1(B) =2, xr1(C3) = =1, xm1(C3) = —1, xp1(0}) =0, xr1(0y) =0, xr1(oy) =0

and for the one-dimensional irreducible representation I'? by
xr2(E) =1, xr2(C3) =1, XF2(C§) =1, Xr2(02) =1, XFZ(UZ) =1, XI‘Q(O';;”) =1

It is not accidental, that the characters for C3 and C? and the characters for o/, o/
and o)/ are equal for a given representation. This is because the operations C3 and
C? and the operations o!,, o/ and ¢! are conjugate to each other, respectively. Two
operations R and S of a point group are conjugate to each other, if they are linked

by a third operation X of the point group by the relation

R = X"'8X or equivalent § = XRX L.

Two conjugate operations have the same character for any representation. All op-
erations of a given symmetry group, which are conjugate to each other are said to
belong to one class. The (3, group can be divided into three classes, one containing
the operations C3 and C%, one containing o/, o and ¢/, and the third containing
only E. One important result from group theory is that for a given point group the
number of classes equals the number of non-equivalent irreducible representations. If
g denotes the order of the group, i.e., the total number of operations, & the number
of classes, g; the number of operations in the i-th class and n, the dimension of the

irreducible representation I';,, the following equations hold true:
k k
g= Zgi = Z ni (B.7)
=1 pu=1

The dimensions n,, determine the degeneracies present in the system.

The characters of all the irreducible representations for all classes of symmetry op-
erations are summarized in character tables. The character table for the C3, point
group is displayed in Table B.3. Since the identity operation is always represented
by the identity matrix, the characters in the corresponding column (usually the first)
equal the dimensions of the irreducible representation. Every point group contains
the so-called total symmetric irreducible representation. Its basis functions do not
change under all the symmetry operations. All characters of the total symmetric
irreducible representation are equal to 1 (see the first row of Table B.3).
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‘ E 2C3 30, ‘ basis
A |1 1 1]z z? + y?%; 22
Ay | 1 1 -1 | R,
E |2 -1 0](zy); BBy (@°-y°2y); (22,92)

Table B.3: Character table for the C3, point group, along with possible basis func-
tions (R, denotes an axial vector in z-direction).

The notation for the irreducible representations is based on R. S. Mulliken [138].
One dimensional irreducible representations are labeled either A or B according to
whether the character of a rotation about the rotation axis of highest order is +1
or —1, respectively. Two-dimensional irreducible representations are labeled E, and
three-dimensional representations can be labeled T or F. The former is more com-
mon in electronic problems and the latter in vibrational problems. If a point group
contains the operation of inversion (i), a subscript g or u is added according to
whether the character of ¢ is positive or negative, respectively. If irreducible repres-
entations of the same type occur more than once, they are numbered in increasing
order.

The importance of group theory for quantum mechanical systems is based in the
fact that both, the electronic and the nuclear Hamiltonian, commute with the sym-
metry operators. Therefore, each of the eigenfunctions corresponds to one of the
irreducible representations and the character table shows which symmetry types
and degeneracies in principle exist. Furthermore, with the aid of the character table
it is possible to determine whether certain integrals which involve eigenfunctions of
the Hamiltonian do vanish or not.

The vibrational frequencies and modes of a molecule are determined by the de-
pendency of the total energy from the mass weighted orthogonal displacements g;
from the equilibrium positions of the molecule. The matrices D°(R) which describe
the transformation of the displacements ¢; into ¢} under the symmetry operation R
built a representation I'° for the point group to which the molecule belongs. These
matrices can be determined by

3N
g = ZD%(R)‘H’ i=1,2,...,3N.
j=1

If one chooses normal mode coordinates @);, the corresponding transformation matrices
D™(R) are in block diagonal form

3N
Q=3 DI(R)Q;, i=12,...,3N
j=1

and each block corresponds to one of the irreducible representations of the point
group of the molecule.

The reduction of

0 = g0 4+ aol2 4 ... + aka _ Pvib + ptrans + prot
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contains irreducible representations corresponding to the vibrational normal coordin-
ates and to the translational and rotational normal coordinates, which have been
summarized to T'VIP, [t1ans 4,4 P10t respectively. The a, determine how often an
irreducible representation T'* occurs in I'Y. They can be obtained from the decom-

position rule:
1 k
aw = 3 g (O (C)'s =1,k (B8
i=1

Since the characters x°(C;) can be obtained from the summation over the diagonal
elements of either the transformation matrices D°(C;) or D™(C;), only the atoms
which stay fixed during the symmetry operation contribute to the character. How
much a fixed atom contributes depends on the symmetry operation. The contribu-
tions per unmoved atom for the identity operation FE, a rotation C(f) about the
angle 0, a reflection o, a rotation-reflection S(0) about the angle # and the inversion
operation % are given in Table B.4 [137].

Ci |E c(9) o S(0) i
X(Ci)‘?’ 14+2cos® 1 —1+2cosf -3

Table B.4: Contributions of symmetry operations to group
characters.

The irreducible representations corresponding to the translational and rotational
degrees of freedom can be determined by looking at the behavior of a single vector
indicating the translation and of a single axial vector (or pseudo-vector) indicating
the rotation. The characters x*T315(C;) for the translational representation I'tFans
are the same as given above for the position vectors of the unmoved nuclei. The
characters of TV are related to those of Ttrans hy

Xrot{E} _ Xtrans{E}
XOHC(O)) = XT{00)}
th{a} _ _Xtrans{a}
XOHSO)) = XS (0))
th{i} _ _Xtrans{i}

For instance, a homo-nuclear cluster containing three atoms at the corners of an
equilateral triangle and one atom above the center of the triangle has C'3,, symmetry.
During one of the two rotation operations C3 or C3 the atom above the center of the
triangle is unmoved and the three other atoms change their positions. During one
of the reflection operations the atom above the center and one atom at the triangles
corner, which lies in the reflection plane, are unmoved. Of course the identity
operation keeps all four atoms at their positions. With § = 27/3 and therefore
x(C(0)) = 0 one obtains the following characters for the different representations:
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C; E C; o,
x%(Ci) 12 0 2
XtranS(Ci) 3 0 1
() 0 -1
x"P(C;) 0 2

and from the decomposition rule (B.8) the reductions

I = 304 4+ 742 447"
Ftrans — ]_'\Al + ]_'\E'
FI‘Ot — I‘\AQ +FE
TVib — ordi 4 orP,

Consequently, there will be two non-degenerate modes, labeled A; and As, and two
two-fold degenerated modes, labeled E. Four different vibrational frequencies can
occur at maximum in the spectrum.

B.2 Selection rules in IR- and Raman-spectroscopy

For a quantum mechanical system the probability for a transition from an initial
state described by the wave-function ¥¢ to a final state described by \I/;’c is (under
certain conditions) proportional to integrals of the form:

Iy = / dr¥g (r)* FA(r) U (r), (B.9)

here the function F* depends on the physical operator which induces the transition,
e.g., the electric dipole moment. Since the wavefunctions ¥¢ and \Ilfc are eigenfunc-
tions of the (nuclear or electronic) Hamiltonian, they form a basis for the irreducible
representations ' and I'?. If the function F* belongs to a function space, which
generates the irreducible representation T'* the integrand,

T (r)* FA(r) U4 (r),
is a basis function for the direct product representation I'**  '*@I?. The reduction
of this direct product representation
T* QT Q@T” = agI'® + agl’ + ... + a,T¥ (B.10)

shows which of the irreducible representations do occur (those with a; # 0). The
integrand can be expressed in terms of the basis functions f; which generate the
irreducible representations I'®, T8 .., T¥:

\IJf(r)*F)‘(r)\Iljpc(r) = cof%(r) + Cﬁfﬁ(r) + ...+ fYr). (B.11)
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It can be shown, that the integral (B.9) vanishes until the reduction of the integrand
contains the totally symmetric irreducible representation I'" (for which all characters
xri (R) are equal to 1 for all operations R). This is a sufficient, but not a necessary
condition. For two irreducible representations I'° and I'* the totally symmetric
representation I'' appears in I'7* ® T'* only if 0 = p, i.e. if the two irreducible
representations are the same. This means also that the direct product of three
irreducible representations I'* ® I'* ® I'? does not contain I'!, if the representation
I'? does not occur in the reduction of the direct product T'* ® I'?, and then the
integral (B.9) will vanish. From this the selection rules for IR and Raman spectra
follow.

In the harmonic approximation the vibrational wavefunctions of a molecule with M
atoms can be separated into:

3M
\Ijnl,...,nsM (Qb IRRN Q3M) = H 'Lpnz (Qz)a (B12)

=1

where the 1),,, are the solutions for the one-dimensional harmonic oscillator given in
(3.7). From the special form of the eigenfunctions of the harmonic oscillator and the
related Hermite polynomials (3.9) it follows that the wavefunction corresponding
to the vibrational ground state (where ny = no = ... = n3y—¢ = 0) transforms
like the totally symmetric representation I'' and that the fundamental vibrational
wavefunctions (where all quantum numbers n; are zero except one) transform like the
corresponding normal mode coordinate. Therefore, the probability for a transition
from the vibrational ground-state ¥} to a fundamental vibrational state U7, which
is proportional to the integral

[wr@w),

vanishes until the fundamental vibrational wavefunction belongs to the same irre-
ducible representation as the function F, i.e. until I'* = T'\.

Considering infrared spectroscopy, the transition is induced by the electric dipole-
moment 7 and it is FA(Q) = #. The electric dipole moment transforms exactly like
a translational vector. From this it follows the selection rule for IR spectroscopy:

Only the vibrational modes which normal mode coordinates belong to the same irre-
ducible group TIrans g the translation coordinates can be IR active.

For Raman spectroscopy the transition is induced by the polarizability tensor (F*(Q) =
«) defined by the six different components a;z, 0y, 07y gy, g, and oy,. These
components transform like the functions zzx, yy, zz, zy, zz and yz. The selection
rule for Raman spectroscopy reads:

Only the vibrational modes which normal mode coordinates belong to the same irre-
ducible group T'* as the functions zx, yy, zz, Yy, xz and yz can be Raman active.

Usually the irreducible representations, which are generated by the translational
coordinates z, y and z along with the irreducible representations generated by zz,
yy, 2z, vy, vz and yz are especially labeled in the corresponding character table
(see, e.g., Table B.3).
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| E Cy oy(z2) o0y(yz) | basis
Ay |1 1 1 1]z x2;y?; 22
Ay | 1 1 -1 -1 | R, Ty
Bi| 1 -1 1 -1 |z Ry w2
By| 1 -1 -1 1| y;Ry yz

Table B.5: Character table for the Cs, point group, along
with possible basis functions. The rotation axis is assumed
to point in the z-direction (R, denotes an axial vector in
z-direction).

In a molecule or cluster with a center of inversion the characters of the irreducible
representations corresponding to ¢ in rtrans yre -1 (are of u-type) and the ones con-
tained in I'* are +1 (are of g-type). Since the representation I'” of the fundamental
vibrational wavefunction can be only either of u-type or of g-type, no fundamental
frequency for this cluster or molecule can be both, IR and Raman active.

How to identify the irreducible representation of a given mode and how to determine
if the mode is IR or Raman active is illustrated for Siz in the following Section.

B.3 Si3 as an example

a by a

Figure B.1: Normal mode vectors X; for an isosceles triangle (Ca,-symmetry). The
paper-plane is identical to the y, z-plane.

The ground-state of Siz has C,-symmetry. The three vibrational modes of the iso-
sceles triangle Siz are displayed in Fig. B.1. To identify the irreducible representation
of the three vibrational modes one has to determine how the depicted eigenvectors
transform under the operations of the symmetry group Co,. The resulting characters
have to be compared to the character table of the Cs, group in Tab. B.5.

The three operations of the C5, point group, besides the identity operation E, are:
(i) 180°-rotation about the z-axis, (ii) reflection at the z, z-plane and (iii) reflection
at the y, z-plane. There is only one operation per class. The eigenvectors of the
first normal mode (left picture in Fig. B.1) and of the third normal mode (right
picture in Fig. B.1) do not change by performing any of the operations. Therefore,
for each operation the corresponding character equals 1 and these two normal modes
belong to the total symmetric irreducible representation A1. The eigenvectors of the
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second normal mode do invert their direction by rotation about the z-axis and by
reflection at the z, z-plane (perpendicular to the paper-plane). The eigenvectors do
not change by reflection at the y, z-plane (identical to the paper-plane). It follows
that the second normal mode yields the characters -1,-1 and 1 with respect to the
operations Cq, 0,(zz) and o,(yz) and belongs to the irreducible representation Bs.

Only the modes which belong to the same irreducible representation as the three
(Cartesian) translation vectors &, 7 and Z can be IR active. Since the z-axis is chosen
as rotation-axis, the vector Z belongs to the totally symmetric irreducible represent-
ation A;. The vector £ belongs to B; and the vector ¢ belongs to Bs. Therefore, all
vibrational normal modes are IR-active. Since A; is an irreducible representation for
the functions z2,y?and z? and By is an irreducible representation for the function
yz (see Tab. B.5), all the vibrational normal modes are Raman-active, as well.



Appendix C

Model annealing curves

C.1 Transition state theory

The relationship between defect activation-energies and annealing-temperatures is
established via the transition state theory. The probability that a system makes a
transition from a state A to a state B separated by the energy difference AE = Ep—
E is proportional to the Boltzmann factor exp(—AE/(kT)). k = 8.617-107%eV/K
is the Boltzmann constant. The annealing-rate u is defined as the fraction of trans-
itions AN/N during the time At:

AN

H=NAt

At a given finite temperature T a typical vibrational mode of state A with frequency
vg is excited. The number of trials per time unit to make a transition to state B
equals vg. If the transition from state A to state B requires N; jumps, the annealing
rate is reduced by a factor 1/N;. Therefore, the annealing rate is given by
§= &eAS/kefAE/(kT)’ (C.1)
J
where exp(AS/k) is the entropy-factor.
It is assumed that for the dissociation of a mono-vacancy from a vavancy cluster
only 1 jump is required. A typical frequency for silicon systems is vy = 6 - 1012/s
which corresponds to about 1/X¢g = 200 cm™!.
With the parameters
vy = 6-10'2/s, typical frequency
AS =5-107*eV/K, entropy
N; =1, number of jumps
At = 30 min, annealing time
the fraction of transitions after annealing with constant temperature 7' for 30 min
is given by
AN
—~ = 18005 6- 1012/ 28022 =AB/(KT) — 3 575 . 10'8 ¢~ AF/(T) (C.2)
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APPENDIX C. MODEL ANNEALING CURVES
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Figure C.1: Fraction of non-annealed defects after annealing with

temperature T for 30 min. Plots are shown for different defect-
energies from 0.5 eV to 3.0 eV.

This fraction as a function of temperature T is plotted for different energy differences
AFE and the parameters given above in Figure C.1.

The annealing temperature Ty, is defined by AN/N = 1/2. For several combinations
of AE and fractions vy/N; the corresponding annealing-temperatures are given in
Table C.1. If, e.g., the typical frequency is 10 times lower and 10 times more jumps
are required (v = 6 - 101!, N; = 10 instead of vp = 6 - 10'2, N; = 1) the annealing-
temperatures are shifted by about 30K/ eV.

05eV [1.0eV|15eV |[20eV |25eV |3.0eV
6-1012 | 133 K | 267K | 400K | 534 K | 667 K | 801 K
6-1010 | 150 K| 299K | 449K | 598 K | 748 K | 897 K

Table C.1: Annealing temperatures Ty for different combinations
of AE (columns) and fractions v9/N; (rows).
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