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1 Introduction

One of the most important problems in the efficient use of high-performance parallel
systems is to distribute workload among servers. In general this problem requires to
determine where a job shall be executed, but also when execution takes place — a
scheduling problem has to be solved. Scheduling is a very general problem and hard to
solve, therefore it is natural to make some simplifying assumptions if it is important to
obtain solutions very fast.

If one relaxes the relations between the jobs and assumes that the execution time of a
job is the same on all servers, a scheduling problem becomes an easier Load-Balancing
Problem. In particular precedence relations between jobs are neglected here, thus a
solution of a Load-Balancing Problem mainly specifies where to execute a job. Load-
Balancing Problems are further divided into static problems where jobs allocated to a
server do not move to another server during execution and dynamic problems where such
movements are allowed. In this thesis we consider static allocations of independent jobs.
Independent jobs are jobs with no or negligible dependencies: they may be executed in
any order and they do not communicate with each other. However they may interfere
with each other in the struggle for access to the limited resources of the servers. The
allocation problem models some central aspects of the more general Load-Balancing
Problem and offers an access for theoretical investigations of them. On the other hand
the problem of allocating independent jobs itself is of practical and theoretical interest
as it has a lot of applications in theory and use of parallel systems.

Even though the concept of independent jobs seems to be very restrictive, it has
many applications in the use of parallel systems of many kinds. The most obvious
application is to place jobs issued from client workstations for execution on compute
servers. In this case a possible objective in assigning the jobs to the servers is to assign
approximately the same number of jobs to every server.

Another application arises in the design of so called Video on Demand (VoD) Servers:
a set of disks storing MPEG coded movies has to fulfill requests issued from user ports
for small parts of the stored movies under real time restrictions. The requests have to
be allocated to the disks in a manner that the data can be delivered by the disks in
time. Moreover the allocation has to obey that a request can only be allocated to a
disk which stores the desired data. Here the objective is to upper bound the maximum
time used by the disks to answer the requests.

One can also model some routing problems by using independent jobs. This holds
in particular for circuit switching. In a circuit-switched network messages arrive, each
requesting a path from its source to its destination. To fulfill the request a path con-
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necting source and destination has to be chosen. As the capacity of links in a network
is bounded it is important that the number of paths using a certain link, i.e. the con-
gestion, is not too large.

The allocation problem further arises in the theory of parallel systems, as it has
a natural relation to Hashing where data items are stored in buckets and — in order
to keep the load of the buckets small — the load has to be spread evenly among the
buckets. A kind of hashing has been used by Karp et al. [KLM92] to simulate a PRAM
on a Distributed Memory Machine (DMM). The main problem of the simulation is the
distribution of the PRAM memory cells to the memory modules of the DMM in a way
that allows fast access to the contents of the PRAM memory cells during the simulation.
In a step of the simulation the N processors of the DMM simulating the N processors
of the PRAM request access to N memory cells. Each request has to be answered by a
memory module storing a copy of the requested cell. The number of answers made by
a memory module is obviously a lower bound for the time required to simulate a step
of the PRAM. The tight relation between Hashing and the allocation problem further
shows that allocation problems also arise in sequential contexts.

The Video on Demand and the PRAM simulation example differ in an important
aspect from the other mentioned examples. The Video on Demand and the PRAM
simulation deal with data distribution and they require that a request can only be
fulfilled by a subset of the servers. Each server in the subset has to store a copy
of the data-item. As in both cases the storage overhead is a critical measure, the
subset of servers capable to execute a job is quite small, typically it contains only a
constant number of servers. The servers capable to execute a particular job are called
the possible servers of the job. The choice of possible servers has great impact on the
result an allocation algorithm can achieve. For sake of theoretical analysis, there are
three natural scenarios for the choice of the possible servers.

Worst case (adversarial) possible servers
It is easy to see that the distribution of jobs may become poor, if the possible
servers of all jobs are in the same small set of servers. This restricts the
possibilities of classical worst case analysis. A more fruitful approach uses
competitive analysis to compare the performance of an allocation algorithm
with the optimal result (see for example [ST85, BE98|). We give a short
discussion of related results in Section 1.3.4.

All servers are possible servers
This scenario corresponds to the workload distribution examples presented
above. No exterior restrictions apply to the allocation algorithm.

Random possible servers
This model being somewhere between the other two models is investigated
in this thesis. It assumes that the possible servers of a job are chosen at
random according to some distribution functions. The distribution functions
are assumed to be the same for all jobs.
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As we will see, the random possible servers scenario allows to obtain near optimal alloca-
tions using very simple algorithms. We therefore suggest to use random possible servers
also in the second scenario, where actually all servers are possible. The restriction of
the third scenario is then used as a paradigm in addressing the second one. The use
of randomly chosen possible servers has inspired many people to model the allocation
of independent jobs as a Balls-into-Bins game: each ball (representing a job) has to be
allocated to one out of d randomly chosen bins (representing the possible servers). The
objective in allocating balls is to minimize the number of balls allocated to the fullest
bin. The case d = 1 has gained much attendance due to its importance for many hash-
ing techniques and it is well-known that the fullest bin contains ©(log N/loglog N)!
balls, with high probability, if there are N balls and the bins are chosen independently
and uniform at random. More accurately Gonnet shows in [Gon81] that the number of
balls in the fullest bin is I™*(N) — 2 + o(1) %, with high probability. While the d = 1
case is well studied, the problem becomes more interesting if d > 2 is considered. Using
d > 2 requires an algorithm to choose a server for each job, and — as we will see —
allows to obtain much better allocations.

One of our applications differs in an important way from the others. The routing
example requires that a whole set of links is used to serve a request, this is in contrast to
all other examples where single servers suffice. While, as we will see, all other examples
are tightly related, the routing example needs a completely different treatment. We
therefore divide the remainder of this thesis into two parts. One part is formed by the
remainder of this chapter and the subsequent chapters up to Chapter 5. Chapter 6 forms
the, less extensive, second part. It contains all material for the routing application of
the balls-into-bins paradigm including the introduction.

(The title of this thesis stresses the term “Balls-into-Bins”. In this thesis, however,
we speak about “jobs” and “servers” instead. The reason for this is quite simple:
“Balls” and “Bins” have the same first letter while “job” and “server” have not. This
simplifies to find suggestive variable names for the latter. 3)

1.1 The Allocation Problem

In most applications jobs are not all the same. They differ especially in the amount
of resources they need. We therefore associate a weight with each job. This weight
may correspond to the time it takes to perform a job on a parallel computer or to the
amount of data needed to fulfill a request. These quantities are typically not all the
same. There are, however, examples where the utilization of resources is the same for
each job (consider for instance the PRAM application). We therefore consider the case

! Here and throughout this thesis we assume log = log,.

>Here T(z) = [, e 't*"'dt,z > 0 denotes the Gamma Function. For any z € N the Gamma
Function fulfills T'(z + 1) = z!.

3 The author has also noticed that speaking about jobs and servers helps to convince people about
the Balls-into-Bins game having applications.
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where all weights are the same, too. As this case is much simpler to deal with than the
general case, it allows to obtain more exact results.

We further distinguish between finite and infinite allocation problems, depending on
whether the number of jobs to be allocated is finite or not. Many real world examples
are better modeled using an infinite number of jobs. The disks in the Video on Demand
example, for instance, are typically confronted with a very long stream of requests for
movies data blocks. Fulfilled requests do not contribute to the load of the servers any
more. Therefore we associate an entry time and a deletion time with each job.

Definition 1.1.1:

Allocation Problem
Let d € N be the number of copies. Let & be a finite set of servers and let
J be a countable set of jobs. For each job J € J let 0 < W(J) < 1 be the
weight of J. For each i = 1,...,d let Z(¢) be a probability distribution on S.
The distribution Z(z) is called the i-th copy distribution.

Then the sets S and J, the weights W (J) for J € J, and the i-th copy
distributions Z(7) for 7 € {1,...,d} define a weighted allocation problem. An
allocation problem is called an ordinary allocation problem if all jobs have
weight 1.

An allocation problem is called finite, if 7 is finite, and infinite otherwise.
The number of servers |S| of the allocation problem in consideration is always
denoted by N. The number of jobs |J| (if applicable) is denoted by M.

Allocation
For each J € J let S®(J) be a random variable distributed according to
Z(i). The server SO (J) is called the i-th possible server of job .J. The servers
SMW(),..., S (J) are called the possible servers of job J.

An allocation is a mapping S : J — S with S(J) € {SY(J),...,SD(J)}
for each job J € J. We say that J is allocated to S if S = S(J).

Load of an Allocation
For each job J € J let §(J) > 0 be the entry time of J and let A(J) > §(J) be
the deletion time of J. We allow A(J) = oo to denote that J is never deleted.
A is called the deletion scheme. The set J>* = {J € J|6(J) <7 < A(J)}
contains the jobs being in the system at time 7. (Note that neither § nor A
are part of the allocation problem. The reason for this is that we allow A to
depend on the possible servers and on the allocation.)

We compare allocations with respect to the load they obtain. The load of
a server S € § at time 7 is defined as

load,(S) = Y W(J)

Jegdh
S(J)=S
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and the load of an allocation at time 7 is defined as

load, = rgggc(]oadT(S)).

If the set of jobs is finite, we assume that 6(J) = 1 and A(J) = oo for each job
J € J. In the sequel we assume that there is an ordering ‘<’ on § and J.

We will further always assume that ) ;. , W (J) = O(N-log N). Otherwise a simple
application of a Chernoff Bound as found in Lemma 2.2.2 shows that allocating each
job to a server chosen randomly from the possible servers yields a near optimal result.

1.2 Ciriteria for the Evaluation of Allocation Algorithms

An allocation algorithm is an algorithm allocating each job to one of its possible servers.
We assume that each sensible allocation algorithm works distributed; each job and each
server is assumed to have an agent performing the respective part of the algorithm. The
decision where to allocate a job is made by the jobs agent. Each job agent can only
communicate with the agents of the possible servers of its job. The server agents are
restricted to answer to messages from job agents, they cannot initiate communication
with a job which never sent them a message before. Further we assume that commu-
nication is organized in rounds. In a round each job agent can send a message to each
of the jobs possible servers, and each server agent can reply to each job it received a
message from.

The most important distinction we make is between sequential and parallel algo-
rithms. A sequential allocation algorithm deals with the jobs one by one. This corre-
sponds to an allocation problem in the so-called sequential setting. In the sequential
setting in each round 7 < |J| there is exactly one job with entry time 7. This job has
to be allocated by the allocation algorithm in an On-Line fashion. In round 7 the job J
with entry time 7 has to be allocated without any information on the possible locations
or the size of any job entering the system after round 7. The server job .J is allocated to
cannot be changed in future rounds. The only important criterion for the evaluation of
a sequential allocation algorithm is therefore the load it obtains. In the parallel setting
there may be several jobs with the same entry time. We use M to upper bound the
weight of the jobs entering the system in a round.

Different from the sequential case, a parallel allocation algorithm is allowed to defer
the allocation of a job to future rounds. Besides the obtained load, the number of
rounds used to allocate a job has a severe impact on the quality of the algorithm. If
the allocation problem is infinite, another important measure in the maximum value of
M for which the performance of the system can be guaranteed.

1.3 Previous Results and Related Work

The balls-into-bins paradigm is simple, quite general, and has a lot of applications. It is
therefore hard to tell the very first origin of the idea. Up to our knowledge the first use of
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the balls-into-bins paradigm and the first analytical demonstration of its power is due to
Karp et al. [KLM92|. Karp et al. deal with PRAM simulations on Distributed Memory
Machines (DMMs). Their results on PRAM simulations are of particular impact on
solutions for the allocation problem in the parallel setting. Most results from PRAM
simulations use i-th copy distributions derived from hash-functions chosen at random
from suitable classes. Thus the possible servers of a job are not chosen independently
as we required in Definition 1.1.1. The results are not affected, if we assume that the
servers chosen by the jobs are chosen independently. Moreover the PRAM simulations
frequently require a job to be allocated to several servers. It should be clear that an
allocation in our meaning is easy to obtain from such allocations. The sequential setting
of the allocation problem was considered by Azar et al. in [ABKU94]. This paper is,
up to our knowledge, the first paper which considers the allocation problem on its own.

Most research on the allocation problem concentrated on relatively few algorithms.
We therefore organize our discussion of previous results with respect to the different
settings and within the settings according to the similarity of the considered algorithms.
Throughout this section the allocation problem in consideration is assumed to have N
servers, d > 2 copies, and uniform i-th copy distributions, if not stated otherwise. If
the considered allocation problem is finite, we denote the number of jobs by M.

1.3.1 The sequential setting

The sequential setting is ruled by the greedy algorithm described in Section 1.7.2. It is
introduced by Azar et al. in [ABKU94]. (In fact a similar algorithm has been proposed
much earlier by Eager et al. [ELZ86] for load balancing purposes. Eager et al. how-
ever are not interested in the asymptotic performance of the algorithms they consider.
They note that in their setting the greedy algorithm performed slightly worse than a
Threshold algorithm similar to the one considered in [ACMRO95].) Azar et al. examine
the greedy algorithm in the finite and in the infinite setting. In the finite setting they
show that the greedy algorithm obtains load Inln N/(((1 4+ o(1)) Ind) + ©(M/N), with
high probability. In the infinite setting they assume that the servers initially contain
N jobs allocated to arbitrary locations. For each new job entering the system, a job
is chosen independently uniform at random (i.u.r.) and deleted from the system. Us-
ing this deletion scheme they show that at the end of an arbitrary round 7 > N3 the
load is at most Inln N/Ind + O(1), with high probability. The greedy algorithm is the
most natural allocation algorithm in the sequential setting — and for uniform ¢-th copy
distributions it is also the algorithm which performs best. Surprisingly enough this is
not true, if non-uniform i-th copy distributions are used. As shown in [V6c¢99al, it is
possible to obtain load Inln N/(d - In ¢4) + O(1). The numbers ¢q, ¢3,... correspond
to generalized Fibonacci sequences; in particular ¢, ~ 1.6180... which is known as
the golden ratio, and ¢, > 2% Vocking shows that, up to an additive constant, no
algorithm and no choice of i-th copy distributions allows to obtain better load. This
also holds, if the choice of the j-th server S¢)(.J) of a job J may depend on the choices
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for SM(.J),...,8U=I(J). The difference between the greedy algorithm and Vockings
Always-go-Left algorithm is, however, quite small: in case of a tie, when the greedy
algorithm makes an arbitrary choice, the Always-go-Left algorithm chooses the server
with the smallest index. Vocking also analyzes the performance of the Always-go-Left
algorithm in the infinite setting. If the system contains at most M jobs at any point
of time, he shows that the load is at most Inln N/(d - ¢4) + O(M/N), with high proba-
bility, in an arbitrary round 7. The analysis is able to deal with any oblivious deletion
scheme, i.e. the sequence of insertions and deletions of jobs is arbitrary, but has to be
independent of the possible servers of a job. His analysis allows to transfer the result of
Azar et al. on the performance of the greedy algorithm in finite settings to infinite set-
tings with arbitrary oblivious deletion schemes. Vockings analysis applies the so-called
witness tree argument, introduced by Meyer auf der Heide, Scheideler and Stemann in
[MSS95]. Compared to the method of Layered Induction applied by Azar et al. both
techniques achieve good constants, but the witness tree analysis allows to deduce more
general results.

In [CS97] Czumaj and Stemann address several questions related to the allocation
problem in the sequential setting and the greedy algorithm. One point they are inter-
ested in, is the allocation time of the algorithms, which is defined to be the number of
servers examined by a job before it is allocated. In an allocation problem with number
of copies d, the maximum allocation time is d. To minimize the average allocation time,
they assume that the requests sent by a job are made and answered sequentially. If a
job agent receives a message from a server with load at most c, the job is allocated to
that server and no further requests are made by that job. The load obtained by this
algorithm is at most Inln N/Ind + O(c), with high probability. For any constant £ > 0
there is a ¢ such that their allocation algorithm has average allocation time at most
1+ . Czumaj and Stemann also consider the rate of convergence of the greedy algo-
rithm (see also [Czu97]). They show that if N jobs are initially allocated to arbitrary
servers, (1+0(1))- N -In N rounds suffice to assure that the load is Inln N/Ind + O(1),
with high probability. Finally they generalize the lower bound on the load of [ABKU94]
to algorithms which are allowed to reallocate the jobs currently allocated to the possible
servers of a job J among those servers when allocating job J. For the sake of reallo-
cation the algorithms can make use of complete information about the distribution of
the current load of all servers in the system. Even such algorithms cannot obtain load
better than Q(lnln N/Ind + M/N), with high probability. If M = N the load is at
least Inln NV + (1), with high probability, thus the possibility of reallocations does not
improve the possible performance by more than an additive constant.

A completely different analysis is used by Mitzenmacher for his supermarket model
([Mit96a, Mit96b, Mit97]) which is an allocation problem in the infinite setting. In
the supermarket model new jobs arrive as a Poisson stream of rate A - NV, upon arrival
they are allocated to a server using the greedy algorithm. If allocated to a server
the job joins a FIFO-queue attached to this server. Each server serves the jobs in its
queue with exponentially distributed service time with mean 1, served jobs are deleted.
Mitzenmachers particular interest is the expected time a customer spends in the system,
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if the system is in equilibrium. Using a powerful result from [Kur81] he shows that in
the equilibrium state of a corresponding system with an infinite number of servers, the
service time decreases doubly exponentially. Moreover he shows that for a polynomial
time interval the latter system is a good approximation for the real supermarket model.
This allows him to show that for a polynomial time interval the length of the longest
queue in an initially empty supermarket model is IO%OI%N + O(1), with probability at
least 1 — O(1/N). In [Mit97] the results for the corresponding infinite systems are
shown to hold for systems with various other service times, too. The technique of
Mitzenmacher allows to obtain very sharp results on the load. Its major drawback is
that it only allows to obtain results on the expected load of a corresponding infinite
system. Independently a technique similar to the one used by Mitzenmacher has been
developed by Vvedenskaya et al with a stronger mathematical background. In [VDK96]
Vvedenskaya et al. apply their technique to analyze the performance of the greedy
algorithm in a queuing system which is essentially the supermarket model.

1.3.2 The parallel setting

As stated above, the allocation problem in the parallel finite setting is closely related
to PRAM simulations on DMMs. For reasons arising from the different DMM models,
the results from the PRAM simulation area mainly concentrate on two algorithms: the
c-arbitrary algorithm — which is up to our knowledge introduced in [KLM92] — and
the c-collision algorithm — which up to our knowledge appeared first as Process_3 in
[DM93]. The c-collision algorithm is described in Figure 1.1 on Page 22, the c-arbitrary
algorithm is given as a special case of the c-priority algorithm in Figure 5.1, Page 79.

The c-priority algorithm In [KLM92] Karp et al. consider the idea of using several
hash functions in randomized PRAM simulations. Their approach requires to solve
an allocation problem with M = N in the parallel finite setting. The 1-arbitrary
algorithm (in the separated version as described on Page 79), called Process_3, is shown
to obtain load at most O(loglog N) and to require at most O(loglog N) rounds, with
high probability. To prove this result they make use of a graph whose edges represent
jobs and whose nodes represent servers. An edge is incident to a node if the server
represented by the node is one of the possible servers of the job represented by the
edge. This graph, called access graph, is shown to have some properties which then
imply the result.

Another version of the c-priority algorithm is considered by Adler et al. in
[ACMRO5]. We present their MPgreedy algorithm in our formulation in Figure 5.1
on Page 79. As a priority rule (cf. to Step (3) in Figure 5.1) the MPgreedy algorithm
uses the ordering ‘<’ on J. The analysis relates the allocation obtained by MPgreedy
to the allocation obtained by a version of the greedy algorithm, where in case of a
tie in Step (1) (see Fig. 1.2) the job is allocated to each server with minimum load.
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If N jobs are to be allocated to N servers, the MPgreedy algorithm finishes within
loglog N + O(1) rounds, with high probability. Adler et al. also consider an algorithm
they call Threshold(c) Algorithm which looks like a version of the c-arbitrary algorithm
at a first glance. But the Threshold(c) algorithm chooses a new server each time a
job fails to be allocated, thus the number of copies is unbounded. Unfortunately the
analysis for the Threshold(c) algorithm heavily depends on this fact.

The c-collision algorithm The separated version of the c-collision algorithm as given
in Section 5.2.2 is found in [DM93]. Similar to the c-arbitrary algorithm it is motivated
by an access conflict rule used to resolve concurrent accesses to a memory module.
Dietzfelbinger and Meyer auf der Heide show that the c-collision algorithm allocates
M = Q(N) jobs to N servers using 3 copies with uniform i-th copy distributions in
the parallel finite setting. The c-collision algorithm obtains load O(1) and requires
at most O(loglog N) rounds. The analysis utilizes 3-uniform hyper-graphs similar to
the graph used in [KLM92]. In [MSS95, MSS96] Meyer auf der Heide, Scheideler and
Stemann anticipate the results of [KLM92, DM93]. Besides several improvements of
the PRAM simulations, they generalize the Access Schedule 2 to a more general version
of the c-collision algorithm, the so-called (N,¢,a,b, c)-process. The analysis of the
performance of the (N, €, a, b, c)-process makes use of an argument, called the witness
tree, which is also the core of our proof (cf. to Chapter 3). As a result of the new
approach Meyer auf der Heide et al. are able to obtain much more general results for
the performance of the c-collision algorithm than the ones obtained in [DM93]. The
latter result is restricted to 3 copies, ¢ > 3 and M < 3/(2e) - N, while the result from
[MSS95] allows any 0 < € < 1,2 < d < /logN, M < ¢- N, and ¢ large enough to
ensure that (¢ (d —1))/(c+1) > 1 and e (1/c)% ! < 1. MacKenzie, Plaxton, and
Rajaraman achieve similar results in [MPR94| using a different approach. In particular
they show that the 1-collision algorithm terminates within ©(loglog N) rounds, with
high probability, if N jobs are allocated to N servers using d = 3 copies and uniform
i-th copy distributions. This results holds for each ¢ > 2 and d > 2. Moreover they
show that the 1-collision algorithm takes ©(log V) rounds,with high probability, if only
2 copies are used.

The relation between PRAM simulations on DMMs and the balls-into-bins paradigm
was deployed by Stemann in [Ste96]. Stemann applies the c-collision algorithm to the
allocation problem with 2 copies and shows that an allocation with load 32 can be
obtained in 0.17 - loglog N rounds of the c-collision algorithm, with high probability.
He also presents an asynchronous version of the c-collision algorithm, compare Sec-
tion 5.2.2.1, which achieves similar performance.

1.3.3 Lower bounds for the parallel setting

In the past a bunch of lower bounds has been shown for the allocation problem in the
parallel setting, compare [MSS95, Ste95, Mit96b, BMS97, BMS99]. They all assume
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that the ¢-th copy distributions are uniform, and in principle their underlying concept is
always the same. The lower bounds vary in the class of allocation algorithms and range
of parameters for which the lower bound holds. We give a short sketch of the underlying
ideas, and define some concepts, which will help us to discuss the lower bounds.

For node v (an edge e) of a graph G = (V, E) let the T-neighborhood of v (of €) be
the subgraph of G induced by the nodes v' € V with dist(v,v’") < T (dist(v',e) < T).
Consider the access graph G = (V, E). We consider allocation algorithms using at
most 7' rounds of communication. Thus a job agent represented by an edge e can only
communicate with jobs represented by edges in the T-neighborhood of e in G. The
idea of the lower bounds mentioned above is to assume that a job J cannot do better
than selecting a server from S (J), ..., S@(J) at random, if the neighborhood of each
node incident to the edge representing J looks the same. We call those jobs (and edges
representing such jobs) clueless. It suffices now to find a node v with ¢ incident clueless
edges. The jobs represented by these edges are each allocated to v with probability
%, thus the expected load of the server represented by v is ¢/d. The main differences
between the different lower bounds lie in the different meanings of “looks the same”
and thus the implied different definitions of clueless.

Adler et al. consider lower bounds for constant numbers of rounds 7" and d = 2
in [ACMRO95]. In their lower bound an edge is clueless if the neighborhood of each
incident node is a complete d-uniform tree Gryee of height 7" whose inner nodes have

degree ¢ = Q({/ lolgoi zgv w)- They show that with constant probability the access graph

contains a connected component being such a complete d-uniform tree of height 7"+ 1.
In this tree each child edge of the root is a clueless node, thus with constant probability

Q({/ ﬁojgv—]v) jobs are allocated to the server represented by the root. Adler et al. also

present an allocation algorithm whose performance matches the lower bound up to a
constant factor, if T' = 2. The major drawback of their lower bound is of course the
restriction to constant values of 7. The authors mention that their analysis allows 7'
to grow slightly with N, but the bound cannot capture the parameters of, for instance,
the c-collision algorithm. Mitzenmacher gives a more general version of this result in
his PhD thesis [Mit96b]. He extends the bound to arbitrary constant d and notes

that the load is at least Q(&%), with probability at least O(1/log® N), if at most

( loglog N

osig g ) TOUNds are used.

In [BMS97, BMS99] Berenbrink et al. use a result from Stemann [Ste95] to extend the
lower bound to larger values of 7. Assuming d = 2, Stemann shows that with constant
probability an access graph for N servers and at least N/loglog N jobs contains any
tree G = (V, E) with |[V| < % as a subgraph. In particular this ensures that the
access graph contains a complete tree of height 7'+ 1 whose inner nodes have degree
c= %. Berenbrink et al. assume that an edge is clueless if the T-neighborhood
of each incident node contains a complete tree of height 7" whose inner nodes have degree

¢ (in contrast to the bound of Adler et al. who assumed that the T-neighborhood is
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such a tree). Consequently the root of the tree has load Q( sfgggljgg ) with constant
probability. The major drawback of this lower bound is that tile crlterlon for a job being

clueless seems to be unfounded. The neighborhood of one node incident to a clueless
edge can contain much more edges than the neighborhood of the other nodes and
nevertheless the job represented by that edge is assumed to commit a random decision.
Berenbrink et al. base their definition of “clueless” on the following assumptions:

1. The allocation algorithm is a direct algorithm.

2. The decisions of the allocation algorithm depend only on the topological structure
of the access graph. In particular no whatsoever label of a server or a job is
regarded.

3. If the neighborhoods of the nodes incident to an edge are isomorphic, the job
represented by that edge commits a random decision.

4. If an arbitrary subset of the jobs is deleted, the load of the allocation obtained
by the allocation algorithm is not increased. The choice of the jobs being deleted
may depend on the random variables S®(J), i € {1,...,d}, J € J.

The properties (1) to (3) are also required by the lower bound of Adler et al. Property
(4) allows to ensure that Property (3) is fulfilled if the requirements of the bound
of Berenbrink et al. for an edge being clueless are fulfilled. To make the different
neighborhoods isomorphic, simply delete the edges which do not belong to the tree.
The intuition behind Property (4) is that solving smaller problems should not be harder
than solving a larger one. On the other hand deleting edges also reduces an algorithms
possibilities for communication. Up to our knowledge there is no lower bound for
allocation algorithms which gets by without similar assumptions. Property (2) is a
severe restriction, too. For instance the MPgreedy algorithm does not fulfill Property
(2), as it makes use of the jobs ID numbers. For the class of algorithms which fulfill
the requirements, the lower bound of Berenbrink et al. matches the upper bound by
Scheideler et al. up to a constant factor.

As mentioned by Berenbrink et al. their lower bound can be used to show that the
performance of the c-load collision algorithm as presented in Section 4.1 of this thesis is
optimal up to a constant factor among all algorithms fulfilling the above conditions, as
far as only the number of jobs and their average weight are considered. This becomes
obvious for the following set of weighted jobs with average weight p: o - M jobs get
weight 1 and (1 — p) jobs get weight 0. Under the assumption that adding balls with
weights equal to zero does not change the complexity of an allocation problem, we
may conclude that the performance of the c-load collision algorithm is optimal up to
a constant factor. It is, however, possible to improve the upper bound for particular
choices of the jobs weights.
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1.3.4 Related work

In the area of PRAM simulations on DMMs it is reasonable to consider algorithms which
are not direct (see eg. [MSS95, CMS95b] or [Ste95]). The key point in these non-direct
algorithms is that an edge can explore more than its T-neighborhood in 7" rounds. This
allows to compute allocations with constant load using O(log* N - logloglog N) rounds
— an almost exponential improvement in performance. The algorithms, however, make
use of sophisticated log*-techniques and might perform badly in practice. Even better
performance bounds are possible if one considers quite exotic kinds of reconfigurable
architectures (cf. to [LS91]) which are able to do leader finding in constant time. Here
algorithms achieving log* N load using log® N rounds, with high probability, are possible
(cf. to [CMS95a, CMS95¢c, CMS97]).

A variant of the c-collision algorithm is used in [BFM98] for load balancing in a
model where load in generated and consumed by the servers, rather than coming from
outside as in our model. The results are improved in [BFS99]. In particular it is shown
that the the c-collision algorithm can help to distribute load in a system with random
load generation. The maximum load is shown to be at most O(loglog N) in a system
with N servers and expected load O(N). Similar results are shown to hold for an
adversarial model of load generation.

One can behold Competitive on-line Load Balancing of permanent tasks as an alloca-
tion problem in the sequential setting, where the random variables St (.J), ..., S@(.J),
i € {1,...,d}, J € J are not random variables but chosen arbitrarily by an ad-
versary. To evaluate algorithms in such settings the load obtained by the allocation
algorithm is compared to the load of an optimal allocation; the ratio of these two values
is called competitive ratio. A survey on competitive on-line Load Balancing is found
in [Aza98]. According to Azars definition, the allocation problem applies to the re-
stricted assignment case of competitive on-line Load Balancing. As shown by Azar et
al. in [ANR92, ANR95], the greedy algorithm as presented in Section 1.7.2 achieves a
competitive ratio of [log N| + 1. Further they show that no deterministic algorithm
can achieve a competitive ration better than [log(N 4 1)], even in the case where each
job has weight 1. The lower bound does not improve much, if randomized allocation
algorithms are considered: no algorithm can obtain a competitive ratio better than
In N. In [KVV90] Karp, Vazirani, and Vazirani show that the greedy algorithm with
a random tie breaking mechanism obtains a competitive ratio of In V + 1, if jobs with
weight 1 are considered and the optimal load is 1. In [BFL*95] Broder et al. consider
a slight modification of the above problem: they assume that the possible destinations
of a job are chosen by an adversary which has to ensure that the optimal load is 1,
but the jobs are presented in random order. They show that the greedy algorithm
obtains expected load O(log N/loglog N), and there are inputs causing expected load
Q(log N/loglog N). For a comprehensive overview on the area of competitive on-line
Load Balancing we refer to the survey by Azar [Aza98] mentioned above. In [Reh99]
the allocation problem with adversarial possible servers is considered in the parallel
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setting. It is shown that the c-collision algorithm is able to obtain competitive ratio 2
using at most Q(log N) rounds.

1.4 The Aim of this Thesis

As seen in the previous section, a lot of research has been conducted on the allocation
problem in many settings using a bunch of different methods. Most results are, however,
restricted to certain distributions, certain deletion schemes, or severe restrictions on the
number of jobs. Moreover most results are restricted to the ordinary allocation problem
and do not allow statements about the more important weighted case. Our first aim
is to overcome these restrictions. We provide results on a wide scope of algorithms
in various settings. This requires to use a general approach. As an approach we use
the witness tree argument introduced in [MSS95], showing that this argument is able
to provide sharp results for all allocation algorithms mentioned above. As we will see,
there is a certain structure — a representation on a witness forest — occuring whenever
an allocation algorithm performs bad. Showing that this structure does not occur, with
high probability, we give performance bounds for the various algorithms.

As seen in the previous subsection the previous results on the performance of allo-
cation algorithms typically involve terms like loglog N/something + Q(optimum). For
real world applications loglog(-) is a function increasing incredibly slow. We therefore
emphasize the importance of (at least) reasonable constants in the obtained results.
Typically this requirement gets in conflict with the aim for a general result. In our
analysis we try to obey the following priorities (given in declining importance)

e minimum number of copies required by algorithm/analysis being as small as pos-
sible,

e generality of analysis,

e quite sharp result on obtained load /number of rounds used to compute allocation,
e ability to state a single lemma encapsulating the main part of the analysis,

e reasonable additive constants in bounds on running time/obtained load,

e probability for performance bound being fulfilled (choice of a in “with high prob-
ability”),

e simplicity of analysis,
e ability to deal with for weighted allocation problems,
e minimum number of servers and jobs required for the analysis to work.

Besides the exact results we further wish to demonstrate that the power of the witness
tree analysis is superior to the possibilities of other techniques used in this area.
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1.5 New Results

All results on the allocation problem mentioned in Section “Previous Results and Re-
lated Work” deal with particular algorithms suited for particular allocation problems.
This thesis provides a single approach to results for various algorithms working on vari-
ous allocation problems. Our approach is based on the fact that there is a combinatorial
structure which occurs whenever the performance of an allocation algorithm is poor.
It therefore suffices to upper bound the probability for this structure to exist, in order
to upper bound the probability for poor performance of any allocation algorithm. Our
technique improves and extends previous versions of the witness tree argument intro-
duced in [MSS95, MSS96]. Extending the possibilities of the witness tree technique

e We refine the witness tree argument such that we can deal with

— any sensible i-th copy distribution,
— large numbers M of jobs, and

— infinite settings with various deletion schemes.

e We present a single general technical lemma that encapsulates the heavy combi-
natorics of the genuine witness tree argument.

e We devise a technique that allows to obtain results for weighted allocation prob-
lems.

Arbitrary i-th copy distributions FEach previous results is restricted to a single set of
i-th copy distributions. In each case these distributions are either uniform distributions
or they are uniform on a subset of the servers and zero outside this subset. Our technique
allows to consider any sensible i-th copy distribution. To describe the impact of the i-th
copy distributions onto the performance bounds, we introduce a measure, the stupidity
oz of the i-th copy distributions. If the expected number of jobs having server S as a
possible server is denoted by o=(S), then oz = ﬁ - maxges 0=(S). Roughly spoken
the stupidity exploits how well the i-th copy distributions allow to use the whole set of
servers. All i-th copy distributions considered in previous results have optimal stupidity

0521.

Large numbers of jobs Many previous results are restricted to the case where the
number of jobs does not exceed the number of servers. This holds in particular for pre-
vious results using the witness tree technique. Our argument overcomes this restriction.

Infinite settings and various deletion schemes Our technique easily extends re-
sults for the finite setting to results in infinite settings using so-called oblivious dele-
tion schemes. A deletion scheme is called oblivious if the insertion scheme ¢ and the
deletion scheme A do not depend on the possible servers nor on the decisions of the
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allocation algorithm. With a little bit more effort we are also able to handle an impor-
tant non-oblivious deletion scheme, the so-called server-oriented deletion scheme, which
overcomes an unnatural phenomenon associated with oblivious deletion schemes. In an
oblivious deletion scheme the expected number of jobs deleted from a server increases
with the load of the server. This assumption is fairly unrealistic for many applications.
The server oriented deletion scheme avoids the problem as it assumes that in each time
unit each server is able to delete up to c jobs allocated to it. We investigate the impact
of this deletion scheme on the performance of the c-priority algorithm in Section 5.2.1.3.
A discussion of the result is given below.

Weighted allocation problems All allocation algorithms have a natural weighted
counterpart. Actually all these algorithms are easily described for the weighed case
such that they act on ordinary allocation problem in the same way as their ordinary
counterpart. Our technique for weighted allocation problems shows that it does not
matter whether an allocation problem requires to allocate M jobs or an arbitrary set
of jobs with sum of weights M. The performance bound for the algorithm on ordinary
allocation problems also holds on weighted problems — up to a small constant factor.

1.56.1 Example: the greedy algorithm using general i-th copy
distributions

It is beyond the scope of this introduction to expose the implications of our techniques
on every algorithm in every setting. We therefore restrict ourselves to three examples
here. A comprehensive overview on the application of our techniques is subject of
Chapter 5. For the sequential setting and in order to demonstrate the impact of i-th
copy distributions with non-optimal stupidity we consider the greedy algorithm on an
ordinary allocation problem in the infinite setting using oblivious deletion schemes. In
this situation our upper bound on the load mainly depends on three parameters:

e the number N of servers,
e an upper bound M on the number of jobs in the system, and
e the stupidity o= of the i-th copy distributions.

In Section 5.1.1 we show the following theorem.

(Theorem 5.1.4:) Consider an ordinary allocation problem in the finite
setting with M jobs or an allocation problem in the sequential setting using
an oblivious deletion scheme which ensures that there are at most M jobs in
the system. Let oz be the stupidity of the i-th copy distributions. Then any
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version of the greedy algorithm which never allocates a job to more than
one server assures that less than m servers obtain load larger than

2|

- N
T = log,log,, - + (min{5.275 + %,d} + 0(1)) - — - 0= + kg + 2 + o(1),

aS%[l—i—kGr-(d—l)], and

% large enough.

As we see, infinite settings with oblivious deletion schemes and the finite setting are
tightly related. The reason for this relation is that one can consider the finite setting
as a special instance of the infinite setting by putting A(J) = oo for each job J with
§(J) < M = M and A(J) = 6(J) for the remaining jobs.

The load of an optimal allocation has a trivial lower bound of % The full strength of

our theorem is deployed if we assume that % is a constant. Then Theorem 5.1.4 shows
that the load obtained by the greedy algorithm deviates at most log,log, N + O(o=)
from the optimum. The number of servers with load exceeding optimal load by more
than ¢, decreases doubly exponentially with ¢, it is upper bounded by

N
egdt—oa)) :

The impact of the stupidity of the i-th copy distributions is similar to the impact
of choosing a larger value for % The intuitive reason for this is that the stupidity
corresponds to the utilization of the servers allowed by the i-th copy distributions.
Poor i-th copy distributions have the same effect as a smaller number of servers. In fact
a set of i-th copy distributions leaving all but % servers untouched has stupidity a.

1.5.2 Example: the c-priority algorithm and a realistic deletion
scheme

Considering oblivious deletion schemes is relatively straightforward, it requires few more
than a close look to the computations applied to the finite case. This is entirely different
for non-oblivious deletion schemes. Non-oblivious deletion schemes possibly depend on
the possible servers of a job and the decisions of the allocation algorithm in consider-
ation. As a consequence the random variable S (.J) fixing the i-th possible server of
job J stochastically depends on whether J is in the system or not. Another problem is
that the number of jobs in the system is unbounded. In Section 5.2.1.3 we demonstrate
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that it is possible to overcome these problems. We consider the c-priority algorithm as
given in Figure 5.1 on Page 79 working on an allocation problem. In the considered
infinite parallel setting in each round up to M jobs enter the system. The c-priority
algorithm has to allocate each job to a server, but in contrast to the sequential setting
we allow that the algorithm defers the decision where to allocate a job. The number of
rounds a job has to wait before it is allocated is an important quality measure in this
setting.

In each round the c-priority algorithm allocates up to c jobs to a server. As a deletion
scheme we consider the so-called server oriented deletion scheme. In each round this
deletion scheme allows each server to delete up to ¢ of the jobs allocated to it. Thus
we can assume that a job is deleted from the system right after it is allocated. The
c-priority algorithm makes use of a priority rule determining which jobs are allocated
to a server in each round. Our result requires that this priority rule is time preserving,
this simply means that a new job is never preferred over an old one for being allocated.
This assumption is quite natural as it also prevents starvation.

(Theorem 5.2.7:) Let 7 be a round. Let e, = (¢!)c - 3!, and let 0 < a <
+-(kpr-c[d—1]+1). Further let n > 1. Consider the c-priority algorithm with
time preserving priority rules working on an ordinary allocation problem in
the infinite setting using the server oriented deletion scheme. Then at the
end of round 7 there is no job waiting more than

n- (logc[d—l]—i—l log, N + kpr)

rounds for being allocated to a server, with probability at least 1 — N—e+o(1),
if

M <min{(3-va+1)"",1—1 —o(1)} - [(d+0(1))-os] " - ¢ N.

A similar result holds for the c-priority algorithm in the weighted setting. The per-
formance bounds for the ordinary and the weighted setting show the expected behavior:
no job has to wait more than O(loglog N) rounds for being served. In the ordinary case
our upper bound generalizes the preliminary result found in [ABS98]. The new bound
applies to arbitrary values of ¢ and arbitrary i-th copy distributions. If uniform i-th
copy distributions are used, as in [ABS98], it is possible to compare both results. The
new result shows a tradeoff between the number of rounds a job has to wait for being
allocated and the allowed throughput. The higher the throughput the higher is the

bound on the waiting time. Our result from [ABS98] requires that M < 2—1:1;, while the

new one allows any M < (1 —¢) - ¢l (for any ¢ > 0). The maximum value of M
is of particular importance as it determines the utilization of the system. At the first
glance, a system with N servers performing c jobs per round should be able to deal
with M < (1—¢)-c- N jobs per round, for any € > 0. The reason for our results being
a factor of d away from this obvious upper bound is that we cannot prevent a job from
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being accepted by up to d servers. If a job is accepted by several servers, none of these
servers will perform another job in that round, we therefore can assume that a job is
performed on each server accepting it. Our upper bound implicitly assumes that this
worst case becomes true. If each job is performed on d servers, the natural upper bound
on M is (1—¢)- %, which matches our upper bound on M. Our new technique also
allows us to derive a result for the performance of the weighted version of the c-priority
algorithm. So far, no bound is known for this scenario.

1.5.3 An overview on the results

As noted, there are three major algorithms for the allocation problem: the greedy algo-
rithm, the c-priority algorithm, and the c-collision algorithm. Each of these algorithms
is investigated in each applicable setting. The greedy algorithm deals with the allocation
problem in sequential settings, we investigate its performance for finite settings and for
infinite settings using oblivious deletion schemes. As we will see, infinite settings with
oblivious deletion schemes and finite settings are closely related. In either setting we
allow any sensible ¢-th copy distributions and consider the ordinary case as well as the
weighted one. To demonstrate the power of our Main Lemma we further apply it to
Vockings Always-go-Left version of the greedy algorithm.

The c-priority algorithm may be considered as a kind of parallelized version of the
greedy algorithm. We state results on the performance of the c-priority algorithm for
finite and for infinite settings and weighted or ordinary allocation problems. For infinite
settings we go beyond the possibilities of oblivious deletion schemes and consider the
non-oblivious server oriented deletion scheme. Again we allow almost arbitrary i-th
copy distributions.

The other algorithm for the parallel setting the c-collision algorithm has no sensible
application in infinite settings. We give performance bounds for it in the finite setting
for weighted and ordinary allocation problems. As every time any sensible i-th copy
distributions are allowed.

Beyond the allocation problem we apply the balls-into-bins paradigm to circuit
switching in butterfly type networks. In particular we consider circuit switching in the
two-fold butterfly BBy, compare Figure 6.1 in Chapter 6. The two-fold butterfly is
a multistage network formed by two copies of a butterfly network placed one after
the other, such that the input nodes of the second butterfly are identified with the
corresponding output nodes of the first one. Applying the balls-into-bins paradigm we
randomly select two paths for each message. Then an algorithm selects one of the paths
for each message. Like in the allocation problem where our aim is to minimize load, our
aim is to minimize the maximum number of paths using a link in the network. As we
see in Chapter 6 this approach allows to obtain good solutions using fast algorithms.

Some of the results of this thesis have already been published in a similar form.
In any case the previous publication is bound to particular i-th copy distributions.
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In [BMS97] the performance of the c-collision algorithm is considered for weighted
allocation problems with three possible servers for each job in the finite setting. The
analysis employed in [BMS97] is similar to a technique employed in [MPR94|. The core
of the technique used in Chapter 4 is published in [BMS99], this version of the result
is however bound to constant d > 2. A result on the c-priority algorithm in infinite
settings using the server oriented deletion scheme has been published in [ABS98]. The
proof given in this thesis differs from the one given there. The proof given here allows
a better throughput, but yields a slightly worse bound on the waiting time of the jobs.
The contents of Chapter 6 are part of [CMM™98|.

1.6 Outline of this Thesis

The remainder of this thesis is organized as follows. In the remaining parts of the
Introduction we present the greedy algorithm and the c-collision algorithm. These al-
gorithms will serve as an example to demonstrate the use of the concepts and the results
introduced in Chapter 3. Chapter 3 contains the core of our combinatorial argument
and the definitions required to set it up. The results of Chapter 3 are subsumed in
the Main Lemma (Lemma 3.2.6). In Chapter 4 we generalize the Main Lemma to
weighted allocation problems. The “Main Lemma for Weighted Jobs” is presented as
Lemma 4.3.3 in that chapter. The possibilities of both lemmas are applied to the var-
ious algorithms and settings in Chapter 5. Results which are not discussed here are
discussed there. Chapter 6 deals with an application of the balls-into-bins paradigm to
a routing problem. This chapter does not refer to the Main Lemma. It is a part of this
thesis on its own and contains its own introduction in Section 6.1. Our results on the
routing problem are discussed there.

1.7 The Example Algorithms

1.7.1 The c-collision algorithm

The c-collision algorithm is motivated by a conflict resolution rule used to resolve access
conflicts in Distributed Memory Machines, called c-collision rule or — referring the whole
DMM - the c-collision DMM . The c-collision rule is very simple: If at most ¢ requests
are sent to a memory module, the memory module accepts these requests; if the module
receives more than c requests it accepts none of them. The c-collision algorithm mimics
the behavior of the DMM modules in accepting jobs. A pseudo-code description of the c-
collision algorithm in terms of the allocation problem is given in Figure 1.1. If in step (4)
of the c-collision algorithm a job agent receives acknowledgments from more than one
server, we do not care to which server the job is actually allocated. In the analysis we
assume that job J is allocated to each server whose agent sends an acknowledgment
to J. The c-collision algorithm defined in Figure 1.1 differs in several points from the
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For all J € J do in parallel
agent(J) becomes active.
T:=0

While there is at least one active job agent do (1)
T =7+1
(This run trough the Loop (1) is called round 7.)
For all J € J do in parallel
For j € {1,2,...,d} do (2)
If agent(J) is active,
agent(J) sends a (.J, 5, T)-request to server agent agent(S)),

For all § € S do in parallel
If agent(S) receives at most ¢ (-, -, 7)-requests, agent(S) sends (3)
a (S)-acknowledgment to each job agent which sent a
(+,-,7)-request to S.
(In this case agent(.S) is said to accept its requests.)

For all J € J do in parallel
If for some S € S the agent(J) receives a (S)-acknowledgment, (4)
agent(.J) becomes inactive,
agent(J) allocates J to server S.

Fig. 1.1: The c-collision algorithm

version given in [DM93, MSS95, Ste96]. A version of the c-collision algorithm which is
more akin to the Access Schedule 2 is presented in Figure 5.5.

In prior work the performance of the c-collision algorithm has always been analyzed
for particular choices of the i-th copy distributions. Considering the c-collision algorithm
as an example application we assume that the i-th copy distributions are uniform on
S. Results for different i-th copy distributions are presented in Section 5.2.2.3.

Observation 1.7.1: If the agent of a server S accepts its requests in some round ¢, it
sends an acknowledgment to all job agents sending a request to S. Thus, all these job
agents become inactive in round ¢. As a consequence there is no job agent sending a
request to S in any round ¢’ > ¢, and hence, the load of S is at most c.

According to Observation 1.7.1, the load of the allocation produced by the c-collision
algorithm is at most c. It is therefore sufficient to determine the running time of the
algorithm.

1.7.2 The greedy algorithm in an infinite setting

The greedy algorithm which will serve as our second example is taken from [ABKU94].
It is perhaps the most simple and natural allocation algorithm for sequential settings.
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The greedy algorithm is described in Figure 1.2. If a tie occurs in step (1), we apply
a so-called tie breaking mechanism to chose one or several possible servers to allocate
the job. Considering the greedy algorithm as an example algorithm we assume that in
case of a tie, one arbitrary server is chosen from those with minimum load to allocate
the job.

7T:=0
While true do
T =7+1
agent(.J;) sends a request to the servers S (.J;), ..., S@(.J).

If server S receives a request, agent(S) replies with a message
containing load, (S).

agent(J;) allocates .J; to a server with minimum load (1)
among SW(J;),...,S@(J;).

Fig. 1.2: The greedy algorithm

As we consider the greedy algorithm in an infinite setting, a deletion scheme has to be
specified. For some M, we assume that A(J) = §(.J)+ M. This ensures that the system
contains at most M jobs. Different deletion schemes are considered in Section 5.1.1.
Treating the greedy algorithm as an example algorithm we restrict ourselves to uniform
1-th copy distributions. More general distributions are subject of Section 5.1.1, too.

1.7.3 Comparing the c-collision and the greedy algorithm

The c-collision algorithm and the greedy algorithm have been chosen as examples for
two reasons: their simplicity, their importance, and their variety. The c-collision algo-
rithm achieves optimal performance up to a constant factor in the parallel setting; its
relation to the parallel setting is quite close as its usage in a sequential setting is absurd.
(Compare, however, [Kri99]). The greedy algorithm is optimal in sequential settings;
its relation to this setting is very close, too. Moreover the greedy algorithm is able to
deal with infinite settings — while the c-collision algorithm depends on the number of
jobs being finite. The two algorithms also differ in the performance measure. While the
c-collision algorithm always obtains load at most ¢ and the key point of the analysis is
to bound the running time, the key point in the analysis of the greedy algorithm is to
determine the obtained load, the running time is not important at all.
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2 Preliminary Section

This section contains some definitions and some useful Lemmas used in the remainder
of this thesis.

2.1 Hypergraphs

Our work will heavily depend on structures described by hypergraphs.

Definition 2.1.1: Let V' be a finite set, the set of nodes. Further let £ C Ui>2 Vi be
a finite subset of the set of tuples over V. The set E is called the set of edges. An
element e = (v1,...,v;) € E is said to be self-loop-free if v; # vy for all 1 <i <" < j.
If all elements of E are self-loop-free, the pair G = (V, E) is called a hypergraph. A
hypergraph G = (V, E) is d-uniform if E C V% An edge e € E has size d if e € V.
Let e = (v1,...,v;) € E be an edge of a hypergraph G and let v € V be a node of
G. The node v is said to be incident to e if there is an 1 <7 < j with v; = v. An edge
e is incident to a node v if v is incident to e. If a node v is incident to 7 edges, the node
v has degree i (deg(v) = i). If v # v' are nodes incident to the same edge e € E, the

nodes v and v’ are said to be adjacent. For j > 1, a sequence of nodes vy, . .., v; is called
a path connecting vi and v; if v; is adjacent to v;4; for each 1 < ¢ < j—1. The length of
a path vy,...,v; is j—1. Two nodes v and w are said to have distance i (dist(v, w) = %)

if the shortest path connecting v and w has length 7. If W C V is a subset of the nodes,
the distance between a node v € V and W is defined by minew dist(v, w). Two paths
Vi, ..., v and wy, ..., w; are distinct if {vy,...,v;} N {wy,...,w;} = 0.

Remark 2.1.2: Sometimes we will treat an edge of a hypergraph like a set writing v € e,
if v is incident to e and e C V if all nodes incident to e are in V. In the sequel we also
assume that there is an arbitrary ordering, called lexicographic ordering, on the nodes
V and edges E of a hypergraph G = (V, E). Such an ordering exists on V' and E as
both sets are finite.

Definition 2.1.3: A hypergraph G = (V, E) is circle-free if for each pair v,w € V there
are no two distinct paths connecting v and w. The connected component of a node
v € V is the set of all nodes w connected to v by a path. A graph is connected if
all nodes are in the same connected component. A connected, circle-free hypergraph
G = (V, E) with a root (root(G) € V) is called a tree.

Consider a tree G = (V, E) and a node v € V. A node w € V, is called a successor
of v if w # v and the path between root(G) and w does contain v. If w is a successor of
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v, then v is a predecessor of w. A successor w of v is called a child of v if dist(v, w) = 1.
If w is a child of v, then v is called the parent of w. If an edge e is incident to a node
v and its child w, then e is called a child edge of v and a parent edge of w. If e is the
child edge of a node v, then v is the top node of e (top(e)). If e is the parent edge of
a node w, then w is a bottom node of e. Note that each edge has a unique top node
as a tree is circle-free. Each node has a unique parent edge for the same reason. To
simplify our future discussions, we assume that for an edge e = (eq, ..., eq) of a tree it
holds top(e) =e; and e; < e3 < -+ - < eqg.

The height of a tree G = (V, E) is defined as the maximum distance of any node
to the root (max,cy dist(v, root(G)). If G is a tree of height T € N, the level of a
node v € V is defined as level(v) = T = dist(root(G),v). The level of an edge is the
maximum of the levels of the incident nodes.

A tree is called a c-ary tree if the root of the tree has degree either 0 or ¢, and each
node but the root has either degree 1 or degree ¢+ 1. A tree is called a (¢ + 1,c¢)-ary
tree if the root has either degree 0 or degree ¢+ 1 and each node but the root has either
degree 1 or degree c+ 1. A tree is called a complete tree if for each two nodes v, w € V
with dist(v, root(V') = dist(w, root(v)) it holds deg(v) > 1 < deg(w) > 1. In a tree a
node v # root(G) with degree at least 2 is called an inner node of the tree. A node
v # root(G) with degree at most 1 is called a leaf of the tree.

A graph is called a forest if each connected component is a tree.

2.2 Deviation Bounds

The following version of the popular Chernoff Bound is found in [HR90], Equation (6)
and (7).

Lemma 2.2.1: Let 1 € N and let 0 < py,...,p; < 1. Let X;,...,X; be independent
0-1 random variables with

Prob[X; =1]=p, forj=1,...,1.

Further let X = Z;Zl X, be the sum of the defined random variables. Then

Prob[X > (1+¢)-E[X]] <e™ =

Prob[X < (1—¢)-E[X]] <e 2
for each 0 < e < 1.
We also make use of the following generalized version of the Chernoff Bound.

Lemma 2.2.2: Let : € N, let 0 < py,...,p; < 1, and let 0 < zy,...,2; < 1. Let
X1,..., X, be independent random variables with

Prob[X,; = z;| = p; and Prob[X; =0l =1—p; for j =1,...,1.
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Further let X = 23:1 X, be the sum of the defined random variables. Then

2E(X)

Prob(X > (1+¢)-E(X)) <e =

foreach 0 <e <1.

Proof: ~ Our proof follows the one given in [MR95] for the ordinary Chernoff Bound.
But before proving the bound itself, we prove a useful inequality.

For each 0 < z <1 it holds

as 0 <z <1 thisis

For any ¢ € (0,1],
PI‘Ob[X > (1 + 6) . E[X]] = Prob[etX > et(H‘f)E[X}]'
Applying the Markov Inequality to the right side yields

E[etX]

Prob[X > (1+ ) - E[X]] < <z

(2.1)

We bound the right-hand side by observing that

Ele™"] = Ble"Zi= %] = B[] [ e].
7j=1
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Since the X are independent, the random variables e**/ are independent, too. It follows
that E[[];_, ¢"%] = [,_, E[¢"*s]. Using these facts in Equation 2.1 gives

Prob[X > (1+¢) - E[X]] <

[Tj— Ele™]

et(1+€)E[X]

(2.2)

The random variable e*Xi assumes the value €'® with probability p;, and the value 1
with probability 1 — p;. Computing E[e’*/] from these observations, we have that

Prob[X > (1 +¢) - E[X]] <

[T (pje™ +1—py)

ot(1+O)E[X]

[T, (1 +pi(e™ = 1))

ol(1+OE[X]

according to the inequality established at the beginning of the proof

< 1= (1 + pjz;(et — 1))

= et(1+6)E[X]

Now we use the inequality 1+ z < e* with z = p;z;(e’ — 1) = E[X}](e" — 1) and obtain

Hi E[X;](e'~1)

i=1°
Prob[X > (1+4¢) - E[X]] < et(1+e)E[X]

eXior BIX )t 1)

ot (1+OE[X]

olet—1) B[X]

et(I+e)B[X]

Choosing t = In(1 4 ¢€) and observing € — (1 + €)In(1 +¢) < —

result.

1
3

€2 yields the desired
m of Lemma 2.2.2

The following upper bound is not a deviation bound, but it is not worth an own

section, so we include it here.

Lemma 2.2.3: For any positive a,z € R
(57 < e,
x
Proof: The derivative with respect to x of the left side is

(=) (m(=9) -1).

X

The derivative is zero if and only if £ = a and it is decreasing in x at a, thus the left

side is maximal for z = a which yields the claim.

m of Lemma 2.2.3
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Our aim is to provide a general proof for different bounds on the performance of several
allocation algorithms. The price to be paid for this generality is a quite complex system
of notions (compare [Luh84]). The proof concept is called witness tree analysis for
historical reasons only. We make use of forests rather than trees, as they allow to
obtain more general results.

The intrinsic concept of the witness tree analysis is the indirect proof. But instead
of proving that the converse of the proposition is wrong, the converse of the proposition
is shown to be very unlikely in the witness tree analysis. As we are interested in the
performance of the algorithm we thus show that bad performance does not occur, with
high probability. To prove that, we show that a certain structure — a witness forest
with a representation — occurs whenever an allocation algorithm performs bad. After
that we show that there is no witness forest with a representation, with high probability.

Together with Chapter 4 this chapter contains the most technical part of this thesis.
We like to emphasize that among all concepts introduced in this chapter only a few
are important outside this chapter. The notions “witness forest”, “complete explaining
representation”, and “vivid system” are the only ones being of further importance.
Using these concepts we summarize the contribution of the chapter in the Main Lemma
(Lemma 3.2.6). Before stating the Main Lemma we show how to use our notions for the
example algorithms in an informal way. After that, in Section 3.2, we state our Main
Lemma, preceded by the notions needed to state it. Then we apply the Main Lemma
to our example algorithms. The remainder of the chapter then contains the proof of
the Main Lemma.

3.1 Witness Forests for the Example Algorithms

3.1.1 A witness forest for the c-collision algorithm

As a first step, we define a structure which occurs if a server is active at the end of
a round 7" € N. To describe the structure we use a complete d-uniform (¢ + 1, ¢)-ary
tree Gvee = (Vivee, Errvee) Of height T'. In Grpyee each inner node has degree ¢ + 1. The
tree Gyee serves as a framework for the representation. The representation associates
a server server(v) € S with each node v of G and a job job(e) € J with each
edge of Gree- A node v € Vi (an edge e € Emyee) is said to represent server(v)
(job(e)). The key point of the representation is that a server represented by a node v
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receives requests from the jobs represented by the edges incident to v. Conversely a
job represented by an edge e sends requests to the d servers represented by the d nodes
incident to e. To tell apart which request is sent to which server we define a mapping
label, : {v1,...,vq} = {1,...,d} for each edge e = (vy, ..., vy), such that for each v € e
we have server(v) = S{bek(®)) (job(e)).

Before we actually define the representation, we give some technical definitions using
the notions introduced in Section 2.1. Let ‘<’ be an ordering J x {1,...,d} with
(J,5) < (J'yg")if J < JorJ=J and j < j'. Further, for an edge e = (vy,...,v4) let
labelY : {v1,...,va} = {1,...,d} be a mapping with

J if v = vy = top(e)
labelP(v) = i—1 ifv=wvand 2<i<j, for each v € e. (3.1)
7 ifv=v;,and i > j

To relate the representation to the behavior of the c-collision algorithm, fix the
possible servers of the jobs and assume that a server S is active at the end of round
T. Assume that the root root(Gryee) represents S. As S is active at the end of round
T, it receives (c + 1) requests (Ji,J1),- .-, (Jet1; Jetr1) in round 7. Thus to obtain a
representation as described above, let e; < -+ < e.;1 be the child edges of r00t(Gyee)-
For each 1 < i < ¢+ 1 let job(e;) = J;, and label,, = ]abelgi). Further for each edge
e € {er,...,eci1}, e = (v1,...,v4) let server(v;) = SUabele(®))(job(e)), for 2 < i < d.
The job job(e) sends a request to server S in round 7', thus it is active at the end of
round 7" — 1. Thus the servers represented by the bottom nodes of e are active at the
end of round 7" — 1.

Now let v’ be a bottom node of e. As the server S’ represented by v’ is active at
the end of round T — 1, it receives some requests (J7,j]) < --- < (J., j.) besides the
request (job(e), label(v")). As done above for the root of Gyee, let €] < ..., €. be the

child edges of v and for each 1 < < clet job(e;) = J; and label,, = label¥). For each

¢
bottom node v" of e} let server(v”) = S(Iabeleé(v”))(job(e;)). server(v") is active at the

end of round 7" — 2, thus we can continue this construction recursively to the leaves of
G'tree Which represent servers active at the end of round 0.

If m servers S; < --- < S, are active at the end of round 7T, we can define a
representation on a forest G of m trees which are isomorphic to Gwe. To do so

we simply start the construction above by choosing S; to be represented by the root of
the i-th tree, for 1 <i < m.

3.1.2 A witness forest for the greedy algorithm

The structure occuring when a server has load at least 77 € N at a time step 7 € N
of the greedy algorithm is described using a different tree. Let Grvee = (Virvees FrTree)
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be a complete 2-ary tree of height 7" where each inner node v has two child edges: one
edge of size 2 — called the irreqular child edge of v — and one edge of size d — called
the regular child edge of v. For each v € Viyee the irreqular component of v contains
all nodes v’ connected to v by a path of irregular edges. We define a representation on
Gree- Each node v € Viye represents a server server(v) € S and each regular edge e
represents a job job(e) € J. The irregular edges do not represent anything. We also
define a mapping label, for each regular edge e, such that if v is incident to e, then
server(v) = S{abel(¥)) (job(e)) as in Section 3.1.1. If a node v’ is the bottom node of the
irregular child edge of a node v, then server(v') = server(v), thus the mapping server
is a constant on an irregular component. In defining the representation each node is
assigned a time marker. The key observation in defining the representation is that each
node v of level [ has load, (server(v)) if its time marker is 7.

To define the representation fix the possible servers of the jobs and assume that
there is a server S with load,(S) > T at the beginning of time step 7 of the greedy
algorithm. Let the root v of Gy represent server S, and let the time marker of v be
7. Consider a node v with time marker 7 and server(v) = S. We show how to choose
job, server, label, and a time marker for the child edges and the children of v. Let
J be the last job allocated to S before or in step 7. Assume that S received request
(J,4). Then let the regular child edge e of v represent J and let label,(v) = i. For the
bottom nodes vy, . ..,v4 of e let server(v;) = SU2b¢(i)(J) and let their time marker
be 0(J) — 1. Further let the time marker of the bottom node of v’s irregular child be
d(J) — 1, too. Now each level 1 node v with time marker 7’ represents a server S” with
load,(S") > T—1. Continuing the construction recursively, we define the representation
on the whole tree Gyee.

The tree Gmyee = (V, E) in not the tree we are really interested in. To get the correct
tree, for some kg, € N, identify the kg, upmost nodes in the irregular component of
the root of G'ryee, in the modified tree remove all nodes and edges of level greater than
T — kar, and call the resulting tree GGL,. The root of GSr,, has kg, regular child edges,
each level 1 node of G$L, is the root of a complete 2-ary tree of height T — kg, — 1
whose inner nodes have d children. And as the representation is constant on an irregular
component, the representation R, is well defined on G$E,..

We consider the greedy algorithm in an infinite setting, thus it may seem that the
number of jobs possibly represented by an edge of GSE, is unbounded. But it is easy
to see that the choices for the jobs are quite restricted. As the server S represented by
the root of G$X, has load, (S) > T" at the end of round 7 the jobs represented by the
child edges of the root are in the system at the end of time step 7. Similar observations
hold for each node v': if its time marker is 7' then the job represented by the regular
child edge of v’ is in Jf,’A.

As in the section above we can define a representation on a forest Grorest = (Vorest,
E¥orest) of m trees isomorphic to G%{ee, if m servers have load at least 7" at the beginning

of time step 7.
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3.2 The Main Lemma

In Section 3.1 two kinds of trees are presented on which a structure called ‘representa-
tion’ exists, if the performance of the c-collision algorithm or the greedy algorithm is
bad. Both the witness trees and the representation are vital for the understanding of
the Main Lemma which states that such a representation does not exist on a witness
tree, with high probability. In this section we give a formal definition of the structures
considered above, i.e. a formal definition of witness forests and a formal definition of a
representation. We further define the term “vivid system” to encapsulate relevant prop-
erties of the ¢-th copy distributions and the allocation problem. The formal definitions
allow to upper bound the probability that there is a representation on a witness forest,
without referring to a particular algorithm or allocation problem.

Definition 3.2.1: Let ¢,d € N. We define a (c, d) witness tree recursively.

e A d-uniform tree G = (V, E) where each inner node has ¢ child edges is a (c, d)
witness tree. The edges in E are called the reqular edges of the witness tree GG
and the nodes in V' are called regular nodes.

o If G=(V,E)and G' = (V', E') are (c, d) witness trees and v € V has no irreqular
child edge, then

G" = (V uvV', EUE" U{(v, root(G'))})

is also a (c,d) witness tree. The root of G” is defined to be root(G). The edge
(v, root(G")) is called an irreqular edge or the irreqular child edge of v. The node
root(G') is called the appendant child of v and v is called the appendant parent
of root(G") and the graph G’ is called the appendant of v.

A path vy,...,v; in Grorest 18 irregular if for each 1 <7 < j — 1 the edge incident to v;
and v;,1 is an irregular edge. The irregular component of a node v (irr(v)) is the set of
all nodes w connected to v by an irregular path. For a level 1 node v of a (¢, d) witness
tree G = (V, E) let the level 1 subtree of v sub(v) be the subgraph of G induced by
the successors of v. Let egp(v) denote the number of regular edges of sub(v). A (¢, d)
witness tree G = (V, E) is a (b, esup, ¢, d) witness tree, if the root of G has b children
and egyp(v) > egyp for each level 1 node v € V. This ends Definition 3.2.1.

In a witness tree each node has at most one appendant child. Typically witness
trees are not d-uniform as the edges connecting a node with its appendant child have
size 2, only.
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Definition 3.2.2: Let m, b, egup, ¢, d € N, and let Gy = (V1, E4), ..., Gy = (Vin, Er) be
(b, esub, ¢, d) witness trees. Let

Viorest = U Vi

=1

Erorest = U E;

=1

and let

GForest = (VForesta EForest)a

then Groress 1S called an (m, b, esup, ¢, d) witness forest. Let

m

root(Grorest) = U root(G})

=1

be the set of the roots of the witness trees in Gryrest- If not stated otherwise, the witness
forest in consideration is always denoted as G'roress = (Viorest, Frorest) in the sequel. The
set of regular nodes of Grorest is denoted by Egeg.

Remark 3.2.3: An example for a witness forest is the forest G considered for the
c-collision algorithm in Section 3.1.1. It is a witness forest as its components are d-
uniform trees. The forest G§* ., defined in Section 3.1.2 is a witness forest, too. To

obtain a tree G~ of Ghar . start with a d-uniform tree of height T'— kg, whose root has
kar child edges and each node of level I, 1 <1 < T — kg, — 1, has one child edge. After
that we recursively add a complete c-ary d-uniform tree of height 7" — kg, — level(v) to
each node v with 1 < level(v) < T — kg, — 1, and connect it using an irregular edge.
This construction is applied recursively to all nodes, not only to the ones in the tree we

started with.

The witness forest as defined above is just the skeleton of the structure occuring
when an algorithm performs bad. To put it to live, we have to relate this structure to
the outcomes of the random choices of the possible servers of the jobs. This is done
by a representation. We define representations not only for witness forests, but also for
the weighted witness forests we define in Definition 4.3.1 of Section 4.3. For the sake
of this chapter the definition can be considered as being restricted to ordinary witness
forests.

Definition 3.2.4: Let Grorest be a (weighted) witness forest. Let Vserver C Vioress be a
subset of the nodes of Grorest, and Ejop, € Ereg be a subset of the regular edges. For

each e = (vy,...,v4) € Ejop let label, = label? for some j € {1,...,d} called the apez
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of e. Let Label = {labelle € Ejo} be the set of the mappings label, of all edges.
Further let

server : Vserver — S
be a mapping fulfilling server(v) = server(v') if v is the appendant parent of v'. Let
job: Eyop, = J

be an arbitrary mapping. The tuple R = (Label, server, Vserver, job, Ejop) is called a
representation on the (weighted) witness forest Grorest. A representation R is called
explaining on V. C Viores; if for each v,v' € V and each e, e’ € E = {e € Freglée CV'}
the following Property 1 is fulfilled.

1. (a) If v € Vierer is incident to e, and if e € Ejgp, then SUabel()(job(e)) =
server(v).

(b) If e € Ej, is incident to v and €' € Ejq, is incident to o', v' € irr(v),
Job(e) = Job(€'), and label,(v) = label.(v), then e = €'.

(c) If v,v" € root(Grorest) and v < v', then server(v) < server(v').

(d) If e, e’ € Ejop have the same top node and e < €', then job(e) < job(e') or
job(e) = job(e') and label,(top(e)) < label.(top(e’)).

A representation is called complete explaining if it is explaining on V' = Vierver = Vorest
and the set Ej,, contains all regular edges in Froest- (These conditions are fulfilled by
the representations defined in Sections 3.1.1 and 3.1.2, if we assume that Vserver = Viree
and FEj,p, is the set of regular edges in Grorest-)

The final definition we need to state our Main Lemma, defines what we call a
vivid system for an allocation problem. Its main task is to cover the properties of the
1-th copy distributions of an allocation problem. It is independent of the algorithm in
consideration. The proof of our Main Lemma is based upon enumeration of all possible
representations. For each root v of a witness forest we therefore have to know how many
servers can be represented by v. Throughout this thesis, this value is almost every time
N, the number of servers. For each child edge e of v, we need to know how many jobs
can be represented by that edge, and we need to know how many ways there are to
choose a mapping label,. It is, for instance, possible that only one possible server of
a job J can be equal to a server S with non-zero probability. Then if server(v) and
job(e) = J, there is only one choice for label,. Once label, is fixed, this restricts the
choices for the servers being represented by the bottom nodes of e, and so on. This is
how the vivid system depends on the distributions (not the outcomes) of the possible
servers of the jobs.

Another restriction on the possible representation can often be derived from the
deletion scheme. As an example consider the representation defined for the greedy
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algorithm in the previous section. If an edge e represents job J then each bottom node
v of e had time marker 7 = §(J). This restricted the choice for the jobs represented by
the child edges of v.

Let Ji,...,Jx € T, S1,...,Sk € S and let iy,...,3; € {1,...,d}. Then the event
E = ((S(il)(Jl):Sl)/\.../\(S(Zk (Ji) = Sk))

is called a simple event, if Prob[€] > 0. The event & is said to be about (J,3), J € J,
ied{l,...,d},if (J,3) € {(J1,41),-.., (Jk,ik)}. The most trivial example for a simple
event is ‘S@(J) = S.

Definition 3.2.5: Consider an allocation problem with N servers. Let N',M,d',e N
and 0 < p,u < 1. Let Grorest = (Viorest> Frorest) be a witness forest. Let R be a
representation on Groress-

e For each root v and each S € S let vividrj(S,v) C J, such that |vividrj(S,v)| <
M.

e Foreach J € J,1 € {1,...,d} let vivids(J,i1) C S, such that |vivids(J,i)| < N',
and

e for each S € vivids(J, 1) let vividj(.J, S) C J, such that |vividj(J,S)| < M.
e Assume further that for each simple event £ (£') which is not about (J,7) ((J',1))

Prob[S®(J) = S| S € vivids(J) A €] < p and

3.2
Prob[S®)( J' = S| S € vivids(J) A J' € vividj(J,S) AE'] < p, (3:2)

e Let d' < d such that for each S € S and for each J € J we have

[{i e {1,...,d}|Prob[S¥(J) = S] > 0}| < d'.

e For each node v € Vggyer which is not bottom node of an irregular edge let
vivider (v) be an event. Let £ denote the event

/\ vivider (w)

wWEVserver
server(w)#server(v)

Then vivider(v) has to fulfill
Prob[vivideg (v)

“R is explaining” A E] < p
(Note that vividegr depends on the representation R.)

V = (vividrj, vivids, vividj, vivide) is called a (N, N',p, M, d', p)-vivid system. The map-
pings vividrj and vividj are called vivid sets of the edges, vivids is called vivid set of the
nodes, and vivideg is called the set of vivid events.
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The representation R is said to use the vivid system V, if for each root w of Grorest and
each regular child edge e,, of w

e job(ey) € vividrj(server(w),w).
and for each e € Eyyes; and each bottom node v of e
e server(v) € vivids(job(e), label.(v)),
e if v has a child edge €', then job(e') € vividj(job(e), server(v)), and
e vivideg(v) is true.

If we do not care about the values N, N', p, M, d', i1, then we simply call V a vivid system.
Frequently we just do not care about vivide, then we say that (vividrj, vivids, vivid))
is a (N,N',p, M,d',1)-vivid system. We further allow that the mappings vividrj and
vividj take a third parameter from Vpgges;. If this parameter is not mentioned, we
assume that the mappings are constant with respect to their third parameter. This
ends Definition 3.2.5.

An example for a vivid system is the trivial vivid system with vividrj(S,v) = J
for each root v of Groress and each server S € S, vivids(J,i) = S for each J,i, and
vividj(J, S) = J for each J and S. If the i-th copy distributions are uniform, the trivial
vivid system is a (N, N,N~', M,d,1)-vivid system. Another example is the natural
vivid system for step T. It is defined by vividrj(S,v) = J%* for each 100t of Grorest

and each server S € S, vivids(J,i) = S for each J,i, and vividj(J, S) = j;(’JA) for each

J and S. If the deletion scheme ensures that the system never contains more than M
jobs and if the i-th copy distributions are uniform, the natural vivid system for step 7,
called V,, is a (N, N, N~ M,d, 1)-vivid system for any 7.

Similar to the definition for the various kinds of representations, the definition above
may seem quite complicated. Its task is however quite simple: the vivid system describes
the range of possible decisions in building up a representation. This range depends on
the properties of the allocation problem, mainly its ¢-th copy distributions, and the
deletion scheme. In a (N, N’,p, M,d', 1)-vivid system N denotes the number of ways
to choose a server for the root of a witness tree, in any case we consider in the sequel
it is equal to the number of servers. M shows how many servers can be represented
by an edge. If J is represented by an edge e and a bottom node v € e represents
S, then vividj(J,S) contains all jobs allowed for the child edges of v. vividrj and
vividj play an important role in the infinite setting, as our Main Lemma is based upon
enumeration. Therefore it is vital for us to avoid infinite sets. The parameters N', p,
and d' are much less spectacular, they simply help us evading direct consideration of
the allocation problems ¢-th copy distributions. The events vividegz will contain events
which are hard to represented by a witness tree. The simple events £ and £ used in
Equation 3.2 shelter us from possible dependencies.

The following Main Lemma is the main technical result of this thesis.
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Lemma 3.2.6 (Main Lemma): Let m' = [;Z| and

1
_1 o N b
Coun = 108, (4”6 e (m’ 'eg) ) |

Let Groress be a (m, b, €sup, ¢, d) witness forest. Then the probability of Gryresy having a
complete explaining representation using a (N, N',p, M, d', u)-vivid system is at most

!

m
(ﬁ) . e3m’ . egésub'm"b S N*a

ml
for

c! 1 In(Z - e3) - m/

(€)= (M -d'-p-Ad-1)e >1, as5-b

A= (N'-pu- N Z T
(N"-p-p), <3 oV :

and N/m' is large enough (cf. Equations 3.20 and 3.21 in the proof of Lemma 3.4.4).

Proof: The proof of this Lemma is subject of Section 3.4. n

Remark 3.2.7: Frequently we consider a logarithm of ég,, assuming o < % -b. For

each a > 2 we have
N ;
()
ml

1
<log, log,, <4m}b . (_/ . e3)
m

1 N
<log, (5 (@ +1) -log, (E) + log,, (4 e3))

log, ésup = log, log, (4ﬁ - Nwis -

N
< log, log,, (E) +o(1).

The parameter ‘A’ of the Main Lemma may seem a little bit awkward. But it has
a quite natural interpretation: if an edge e represents some job .J, then A denotes the
expected number of servers which can be represented by one of the bottom nodes of e.
A4~! thus denotes the expected number of ways to choose servers for being represented
by all bottom nodes. If one fixes the server being represented by the top node of e,
M -d'-p- A% is the expected number of ways to choose a representation for an edge and
its bottom nodes. This also leads to an interpretation for (e.)¢. (&)~ is the expected
number of representations for the child edges and children of an inner node of Grorest-
Then eg,;, has to be large enough to ensure that the expected number of representations
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for Gporess gets small enough. The proof for Lemma 3.4.4 would be quite easy, if the
expansion nodes and edges won’t come in. They are, however, necessary to deal with
possible stochastic dependencies of considered events.

The condition €. > 1 can be satisfied in several ways. In [MSS95], where the witness
tree is used for the first time, M < e- N is used for some constant € < 1 small enough.
Another natural way is to use a large c¢. In this thesis we frequently assume that A < 1.

Remark 3.2.8: For the c-collision algorithm and the greedy algorithm representations
on some forests are defined in Sections 3.1.1 and 3.1.2. It remains to clarify that in
both cases the definitions coincide with the formal definitions made above.

If m servers are active at the end of round T of the c-collision algorithm the forest
Gl contains m connected components. Each connected component is isomorphic to
a complete d-uniform (c+ 1, ¢)-ary tree Gryee Of height 7. The level 1 subtrees of Gryee
each contain egyp, = ¢- Y1 '[e(d—1)]" edges, thus G, is a (m, (c+1)(d—1), esub, ¢, d)

Forest
witness forest.

The representation R...on = (Label, server, Viorest, job, Erorest) using the mappings
server and job is a complete explaining representation on GEL . It uses the trivial
vivid system.

For the greedy algorithm the forest GS .., defined in Section 3.1.2 is a witness forest

according to Remark 3.2.3. Each root of G has kg, regular child edges and one
irregular child edge. Each level 1 subtree of Gryee contains eqp = Y vy [(d — 1) + 1]
edges, as each inner node has one regular child edge with d — 1 bottom nodes and
one irregular child edge with one bottom node. Thus the forest GS. ., defined in

Forest
Section 3.1.2 is a (m, kgr - (d — 1) + 1, esup, 1, d) witness forest.

Let Ereg be the set of regular edges of Gir..,. Then the representation Rg, =

(Label, server, Viorest, job, Ereg) using the mappings server and job defined in Sec-
tion 3.1.2 is a complete explaining representation on GSr .. If the time marker of

the roots of GSL, is 7, i.e. if the construction started with the assumption that there

are m servers with load, > T’, then the natural vivid system Vg, = V; is used by Rq;.

3.3 Consequences for the Example Algorithms

3.3.1 Consequences for the c-collision algorithm

Using Lemma 3.2.6 we bound the probability for bad performance of the c-collision
algorithm. Consider the witness forest GEL defined in Section 3.1.1 for the c-collision
algorithm. According to Remark 3.2.8 there is a complete explaining representa-
tion on the (m, (c + 1)(d — 1),¢ - Yorg[e(d — 1)]%, ¢, d) witness forest GEL using a

(N,N,N~' M, d,1)-vivid system, if there are m servers active at the end of round 7.
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Corollary 3.3.1: Consider an allocation problem with |S| = N, |J| = M, number of
copies d, and uniform i-th copy distributions. Let ¢ € N, such that

! 1
b=(c+1)(d—1)>3, (&)= >1, and a < —-b.
(- dy 12

Let further m € N and
T>1 1 MY £ 24 001)
0 0 o(1).
= gc(d—l) 8e. m

Then if N/m is large enough, there are less than m servers whose agents are active at
the end of round T of the c-collision algorithm, with probability at least 1 — N=¢. In
particular no server agent is active after

log,(4-1) log,, (N) + 2+ o(1)
rounds, with high probability, if V is large enough.

Proof: According to Remark 3.2.8 there is a representation on the witness forest
Gl using a (N, N, N~ M,d,1)-vivid system if there are m servers active at the
end of round 7T of the c-collision algorithm. We can therefore use the Main Lemma
(Lemma 3.2.6) to upper bound the probability for that event.

To provide the preconditions of the Main Lemma it suffices to establish that the
forest GOl is a (m, (c4-1)(d—1), Esup, ¢, d) witness forest, i.e. to show that ¢-Y 1 [e(d—

D) > c-[e(d—1)]""2 > égup- According to Remark 3.2.7 this is ensured by our choice
of T. And as

In(% - e3) - m/

>1
In N -
we have
1
1 In(Z - e?) - m/
< Z.p.m )
-2 b In N (3.4)
Thus the preconditions of Lemma 3.2.6 are met. m of Corollary 3.3.1

We discuss this result in Section 5.2.2.

3.3.2 Consequences for the greedy algorithm

Deriving a result on the performance of the greedy algorithm is also simple. Fix some
time step 7. According to Remark 3.2.8 there is a complete explaining representation
using a (N, N, N~%, M, d, 1)-vivid system on the (m, ka:(d—1)+1, 3 o [(d—1)+1]%, 1, d)
witness forest GS*. . defined in Section 3.1.2, if m bins have load at least 7' at the

Forest
beginning of round 7. The root of GST . has kg, - (d — 1) + 1 children.

Forest
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Corollary 3.3.2: Let M € N. And let d > 2. Consider an infinite allocation problem
with |S| = N, number of copies d, and uniform i-th copy distributions. For the deletion
scheme assume that job J__jz; is deleted right after job J; enters the system. Let

1 1
b=kg-(d—1)+1, ¢ = -d’)>1’ andagﬁ-b.

=[x

Let further m € N and let
N
T > log,log,. (—) + kar +2+0(1).
m

Then there are less than m servers with load at least T' at the beginning of time step 7
of the greedy algorithm, with probability at least 1 — N~* if N/m is large enough. In
particular no server has load greater than

log,log, (N) + kar +2 +o(1)
rounds, with high probability, if N is large enough.

Proof: Similar to the proof above, we use N' = N, p = N~!, u = 1, and check
the preconditions of Lemma 3.2.6. As each inner node of G§ .., has d child edges, it is
easy to check that the choice of T ensures that each level 1 subtree of GST.... has e
inner nodes, each with one regular child edge (cf. to Remark 3.2.7). As shown above
(in Equation 3.3), choosing o < % - b suffices to fulfill the appropriate precondition of

Lemma 3.2.6. m of Corollary 3.3.2

The result obtained in Corollary 3.3.2 is not the best possible result for the greedy
algorithm. The condition that —— > 1 does not allow to choose M > N. We

M e
overcome this restriction in Secti(ojl\g 53.1.1. Applying the witness tree argument to the
greedy algorithm is quite simple and straightforward. We include the example above
as it shows the necessity of the appendant graphs in the witness forest: without the
appendant graphs and for d = 2, the level 1 subtrees of the witness forest for the greedy
algorithm would degenerate to a linear array of size T'— kg,. This would lead to choosing
T = Q(log(N/m)).

3.4 The Proof of the Main Lemma

The aim of this Section is to show that there is no complete explaining representation
using (N, N',p, M, d', u)-vivid systems for a (m, b, esyp, ¢, d) witness forest, with high
probability, — for suitable values of p, u, m, b, esup, ¢, d, and d’. Refining the formal
definition of witness forests and representations given in the previous section, we do not
need to refer to any particular algorithm or allocation problem.
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The section is organized as follows. We start with refining the definition of a rep-
resentation given in the previous section. In particular we define a root-expansion-free
valid representation and show that each complete explaining representation can be
converted to a root-expansion-free valid representation. The second part of this section
which is formed by Lemma 3.4.4 contains the genuine combinatorial argument.

In the sequel we need an ordering < on the nodes and the edges of Ggopes;- The
ordering ‘<’ we define below arranges the nodes and the regular edges of the witness
forest level by level from roots to leaves and from left to right. (We write v < w if
v <wand v #w.) Let v € Virest (W € Viorest) and let v' (w') be the parent of v (w) if
it has a parent. We write v < w, if either

o level(v) < level(w),

o level(v) = level(w) = 0 and v < w,

e level(v) = level(w) > 1 and v' < «/,

e level(v) = level(w) > 1, v' = w’, and v is the appendant child of v'.

e level(v) = levellw) > 1, v = w', and the parent edge of v is lexicographically
smaller than the parent edge of w, or

e level(v) = level(w) > 1, the parent edge e = (vq,...,v4) of v and w is the same,
and v =v;, w=wv; for 1 <i < j<d.

If v < wand v # w, then v < w. If v € Viorest has children v; < --- < v, then the
node vy is called the leftmost child of v.

For the regular edges we define a similar ordering. For e, e’ € Ege, let e < € if
e top(e) < top(e') or

e top(e) =top(e') and e < ¢€'.

If e < ¢ and e # €' then let e < €’. The definition of this ordering insures that for
two child edges e, e’ of a node v it holds ¢’ < e if ¢’ < e. Using this ordering we refine
our terminology on representations.

Definition 3.4.1: A representation R explaining on some set V' C Vigresy (thus fulfilling
Property 1 of Definition 3.2.4) is called walid on V, if there are sets Vixp, C Vierver and
Egxp C Ejop such that for each v,v" € V and each e,€’ € E = {€ € Ergrest| € C V} the
following Properties 2, 3, and 4 are fulfilled. The nodes in Vg, and the edges in Epy,
are called expansion nodes and expansion edges, respectively.
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(a) If v € Vierver has a regular parent edge, then its parent edge is in Ejop, \ Egxp-

(b) If v € Vgerver has an appendant parent, then its appendant parent is in
VServer \ VExp-

(¢) If e € Ejop, then the top node of e is in Vserver \ Vixp-

(d) If v € Vaerver \ Vixp has regular child edges, then all regular child edges of v
are in Ejqp.

(e) If v € Vserver \ Vixp has an appendant child, then the appendant child of v is
in ‘/Server-

(f) If e € Ejop \ Egxp, then all bottom nodes of e are in Vsepver-

(Property 2 deals with the properties of the sets Vservers Vixp, Eiob, and Fpyp.
The sets Viyxp, and Fgyp, are the border of the sets Vgerver and Ejop: all nodes and
edges above the expansion nodes and edges are in Vgepver and Ejqp, and the nodes
and edges below them are not in Vgerver and Ejqp.)

(a) If v € Vserver \ Vixp, 0 is the leftmost child of v, w € Vgerver such that w < 7,
w ¢ irr(v), then server(v) # server(w).

(b) If e € Ejop \ Erxp and €' € Ejqp, such that e’ < e, then job(e) # job(e').

(Property 3 clarifies the characteristic of the sets Vserver \ Vixp and Ejqp \ Prxp. No
server is represented by two elements of Vgerver \ Vixp and no job by two elements

Of EJob \ EEXp-)

(a) If v € Vixp, U is the leftmost child of v, then there is a w € Vserver, w < 7,
w ¢ irr(v) fulfilling server(v) = server(w).

(b) If e € Egyp, then thereis an € € Ejqp \ Eryp, € < e such that job(e) = job(é).

(The elements of the expansion sets Viy, and Egyp, have to show up the opposite
property than the one required in Property 3: expansion nodes and edges represent
something appearing before in the (weighted) witness forest.)

A representation is called valid if it is valid on Vggpesi. It is called root-expansion-free if
no root of the witness forest is an expansion node. This ends Definition 3.4.1.

Due to Property 2 of Definition 3.4.1 the sets Vgx, and Egy, are unique for a given

valid representation. In the sequel Vg, and Egy, denote the sets of expansion nodes
and edges of the representation in consideration, if not stated otherwise.

Our next step is now to show that existence of a complete explaining representation

implies the existence of a root-expansion-free valid representation. First we show how
to convert a complete explaining representation to a valid representation. After that
valid representations are made root-expansion-free.
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Lemma 3.4.2: Let R’ = (Label’, server’, V¢ ,...,job’, E.,) be a complete explaining
representation using a (N, N, p, M, d', u)-vivid system on a witness forest Gryrest- Then
there is a valid representation using the same (N, N, p, M, d', u)-vivid system on Grorest-

Proof:  To construct a valid representation on Grorest, We define sets Vserver, Vixp: Eob,
and Egy, using the mappings server’ and job'. The new mappings will be a restriction
of the old ones to these sets. Let k = |Viorest|, let v1 < - -+ < vy be the nodes of Grorest,
and for each i = 1,...,k let ©; be the leftmost child of v;. (Recall further, that irr(v;)
is the irregular component of v;.)

Let Vi) = Viorest and V) — . For 2 <i <k let

Server — Exp
V:S(:ri;elr) if v, ¢ VvS:rzvelr ’
Vs(:;v)er = if server’ (w) # servez’ (7;7) for all w < 77, w ¢ irr(v;)
V=1 suce(v;)  otherwise
(3.5)
and
VE(:Z;I) if v; é:;vei , Or
VE(Z;) = if server’ (w) # server (v;) for all w < 7;, w ¢ irr(v;) .
VE(:Z”;I) U{v;} otherwise
(3.6)
Finally, let Vierver = Vackihr, Vixp = Viot), and
EEXp {6 € EReg| top E Vserver \ VEXp AN3Te € FEForest : ( )
3.7
(job'(¢') = job'(e) N €' < e)}
EJob = {6 € EReg| e C VServer} U EExp . (38)

Let server = server and job = job We claim that ({label|e € Eju},

Vserver EJob
server, Vserver, JOb, Ejop) is a valid representation on Grres;- 10 prove this claim, let

v E VForest and ec EForest-

Property 1
According to the precondition of the lemma.

Property 2 (a)
If v € Vserver, then the parent v’ of v is in Vserver, t00. As one child of
V" € Vserver 18 I Vserver, all children of v’ are in Vserver, hence all nodes incident
to a regular parent edge e of v are in Vierver, and € € Ejqp \ Erxp-
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Property 2 (b)
If a node v € Vgerver has an appendant parent v’, then v’ € Vgeryer, according
to Equation 3.5, and v ¢ Viy,, according to Equation 3.6.

Property 2 (c)
If e € Ejop \ Egxp, then all incident nodes are in Vgeer according to Equa-
tion 3.8. If e € Egyp, then top(e) € Vserver according to Equation 3.7.

Property 2 (d)
If v € Vserver \ Vixp, then Equation 3.5 ensures that all children of v are in
Vserver- Thus for each regular child edge e of v all incident nodes are in Vsepyer,
hence e € Ejop, \ Egyp, according to Equation 3.8.

Property 2 (e)
If v € Vserver \ ViExp, then all children of v are in Vgeryer-

Property 2 (f)
Confer to Equation 3.8.

Property 3 (a)
If for a node v € Vgeryer With leftmost child ¢ there were a node w < 7,
w ¢ irr(v) fulfilling server(v) = server(w), then v € Vi, according to Equa-
tion 3.6.

Property 3 (b)
If for an e € Ej,p, there were an €’ < e with job(e') = job(e), then Equation 3.7
would ensure e € Egyp.

Property 4
According to Equation 3.5 and Equation 3.6.

m of Lemma 3.4.2

Our next step is to show that there is a root-expansion-free valid representation if there
is a valid representation on a witness forest. We first observe that no two roots of a
witness forest can represent the same server, according to Property 1 (d). Thus a root
v of Gporess Can be an expansion node only if there is a node w preceding the leftmost
child v' of v with server(v) = server(w).

We call a node v € Vgeyer Of a valid representation on a witness forest a blameless
node if for the leftmost child o of v there is a node w € Vieryer \ irr(v), v < w < @
with server(w) = server(v) but no w' € Vierver \ irr(v) with w’ < v and server(w') =
server(v). The set of blameless nodes is denoted as Vi ess- If a node v is a blameless
node and @ is its leftmost child, then there is a node w with v < w < 0, w ¢ irr(v)
and server(w) = server(v). In this case node w is said to blame w. As the considered
representation is valid, a blameless node is always an expansion node.
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Lemma 3.4.3: Consider a (m, b, ey, ¢, d) witness forest Grorest = (VForests EForest)-
Assume further that there is a complete explaining representation using a (N, N’
p, M, d', p)-vivid system on Groress- Then there is a ([;25], €sub, ¢, d) witness forest
which is a subforest of Gryress and has a root-expansion-free complete explaining repre-
sentation using a (N, N',p, M, d', u)-vivid system.

Proof: If a root of Ggorest 18 @ blameless node, there are nodes blaming it. Let G =
(V, E) be a directed graph with m vertices associated to the m connected components
of Groest- For each x € V' let tree(z) be the connected component associated to z. For
any x the component tree(z) is a witness tree. Consider two nodes z,y € V, and let v
be the root of tree(z) and @ its leftmost child. The nodes x,y of G are connected by
an edge (z,y) if and only if tree(y) contains a node w fulfilling

level(w) <1,
w < 7, and (3.9)

server(w) = server(v) .

Thus a 2-tuple (z,y) is in F, if and only if the root v of tree(x) is a blameless node and
tree(y) contains a node w blaming ». In this case x is said to be connected to y due to
w. As a consequence of the construction the root of tree(z) is a blameless node if and
only if the out-degree of x is non-zero. Further G fulfills the following properties.

The in-degree of the nodes of GG is bounded by b.
Consider a node y € V. As the representation on Gryres; fulfills Property 1(c)
of Definition 3.2.4, the roots of the witness trees represent different servers.
Hence no x € V is connected to y due to root(tree(y)). If x,2' € V, x # 2', x
is connected to y due to w, and 2’ is connected to y due to w', then w' # w as
server(root(tree(z))) # server(root(tree(y))). Since tree(y) contains b nodes
of level 1, the in-degree of y is at most b.

G is circle-free.
Let (z,y) € E and let = be connected to y due to w. As w is not the root of
tree(y), w is a node of level 1. If ¥ is the leftmost child of the root of tree(z),
then w < 7, thus root(tree(y)) < root(tree(x)) and G has a topological order.

G is b+ 1 colorable.
Let z1,..., 2, be the nodes of G in a topological order, thus if (z;,z;) € E,
then i < j. Let color(z,,) = 0. For each 1 <i<m —1 let

color(x;) = min ({0, 0\ {7 |Fy €V : color(y) = j A (y,z;) € E}) :
Note that |{j € {0,...,b}‘§|y € V : color(y) = j A (y,2;) € E}‘ < b as

the in-degree of G is bounded, thus the mapping color: V — {1,...,b+ 1}
is well-defined.



46 3 The Witness Tree Analysis

Consider a subset V' of V' containing nodes of only one color, let z,y € V' and let v be
the root of tree(z). Then tree(y) does not contain a node w fulfilling the properties of
Equation 3.9. Thus, the representation on the (|V'|, T, ¢, d) witness forest containing the
witness trees associated to the nodes of V' does not contain a root which is an expansion
node. At least one of the sets {x € V' | color(x) = 1},...,{zx € V| color(x) = b} contains

at least [;%%] nodes of G. m of Lemma 3.4.3

As a consequence of Lemma 3.4.2 and Lemma 3.4.3 there is a root-expansion-free valid
representation on a ([b%] , b, esub, ¢, d) witness forest, provided that there is a complete
explaining representation on a (m, b, egyp, ¢, d) witness forest. To upper bound the prob-
ability for existence of a complete explaining representation it therefore suffices to upper
bound the probability that there is a root-expansion-free valid representation. This is
subject of Lemma 3.4.4.

The following statements and definitions are used in the proof of Lemma 3.4.4. An
edge e € Ejqp, \ Frxp is called a conflict edge to an edge €' (or simply a conflict edge) if
e < €' and job(e) = job(e'). The set of conflict edges is denoted by Fcona. Let € € Econs
be a conflict edge to €' € Egyp, and consider the top node top(e’) of €. According to
Property 1(a), there is a node v incident to e such that server(v) € server(top(e')). If
the top nodes of e and ¢’ were in different irregular components, top(e’) would be an
expansion node as v precedes the leftmost child of top(e’). Thus the top nodes of e and
e/ are in the same irregular component. Thus Property 1(b) of Definition 3.2.4 ensures
label,(v) # label.(v'). Let w be the node incident to €' with label.(w) = label.(v).
According to Property 1(a), server(w) = server(top(e)) = server(top(e')), thus w is an
expansion node. The node w is called the apex-mirror node of e or simply an apez-mirror
node. The set of apex-mirror nodes is denoted by V... Note, that each apex-mirror
node is apex-mirror node of at most one expansion edge, thus |Visirr| = | Erxp|-

Let Vreg € Vioress denote the set nodes whose parent is not an appendant parent,
i.e. the set of nodes being either a root of Gyt Or bottom node of a regular edge.
The elements of Vge, are called the regular nodes of Grorest- A node is called irregular
if it is not regular. Note that an irregular node v is an expansion node only if it is a
blameless node, too. If there were a node w < v with server(w) = server(v), then the
appendant parent v’ of v would be an expansion node, as w precedes its leftmost child.

Lemma 3.4.4: Let Groest be a (m/, b, égup, ¢, d) witness forest with b > 3. The probabil-
ity of Grorest having a root-expansion-free valid representation on a (N, N',p, M, d', j1)-
vivid system is at most

N\™
—e B ,. —
< ,) _€3m_€cesubmb<N a’
m

for

! 1 In(Z - e?) - m/
(e.)¢ = T C =y >1, a< _,b,w
. “p- c

A:(Nllj,p),

and N/m' large enough (cf. Equations 3.20 and 3.21).
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Proof:

Assume that the size of | Egyp| and |Vixp \ (VB-1essU Vairr) | 1s fixed. Then the

expected number E of root-expansion-free valid representations for the (m’, b, ésu, ¢, d)
witness forest is upper bounded by (using R = root(Grorest))

E < N‘R| . N/|[VServer\(VEprR)UVB—less]nVREg|

7

-~

(1)

[Ejobl
L (M d’)|EJob\EExp| ( 1 ) ¢
mll A -~ o C‘
v~ (3) ‘\f_J

@ (4)

EForest‘) . ‘EJ b|) | Egxp|
o

|EEXP| (3.10)

-~

(5) (6)

|VForest \ Verr‘ [VExp\(VB-1essUVMirr) |
|VServer‘ P
R |VExp \ VB less ) Verr)|

(7)
—d-|Ezob\EExp| . L

-

®)

| [(Vserver\VExp)UVB—leSS] r_]VReg ‘

v

(s

-~

(9)

(1) and (3)

()

(4)

The representation for Grorest i chosen level by level starting at the roots.
We use the fact that the representation has to use a (N, N, p, M, d', u)-vivid
system. Further we assume that the expansion nodes and edges are fixed, see
(5) and (7).

There are N possibilities to choose a server for a root, and M possi-
ble jobs for each level 1 edge. If for an edge e, job(e) and server(top(e))
are fixed, there are at most d’' possibilities to choose label,. For each node
v with level(v) > 1, assume that job(e) and label, are fixed for the top
edge e of v. Then server(v) € vivids(J, label,(v)), thus there are N’ pos-
sibilities to choose a server for v. The server for a child edge ¢’ is chosen
from vividj(job(e), server(v)) which allows M possibilities. We do not fix the
choices for expansion edges, here. Edges in Fg,, are subject of (6). Similar,
expansion nodes which are not blameless are considered in (8) if they are
not apex-mirror nodes. Apex-mirror nodes are implicitly treated in (6), see
there. Any non-regular node represents the same node as its parent node,
thus there is no need to consider them.

As servers represented by roots of Gryrest are distinct and appear sorted in a
valid representation (Property 1(c) of Definition 3.2.4), superfluous permu-
tations created by Term (1) are eliminated.

According to Property 1(d) of Definition 3.2.4, the regular child edges of each
node appear sorted. There are |Ejop|/c nodes having child edges, for each of
them Term (3) creates c! superfluous permutations.
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(5)
(6)

(7)

(8)

(9)

Denotes the number of possibilities to choose expansion edges from Eggpest.

Each expansion edge e represents a job appearing in an edge ¢’ < e (Prop-
erty 4 (c) of Definition 3.4.1). There are at most |Ej,p| possibilities to choose
e'. Further there are at most d possibilities to choose label,. Choosing label,
fixes also the apex-mirror node of e. The apex-mirror node represents the
same server as the top node of its parent edge.

Denotes the number of possibilities to choose expansion nodes which are nei-
ther blameless nodes nor apex-mirror nodes. Blameless nodes are considered
in (8), apex-mirror nodes are considered in (6).

Each expansion node represents a server appearing in a node of (Vserver \
Vixp) UVBo1ess € Vserver- (cf. Property 4 (a) and definition of Vi jess.) Choosing
the servers represented by nodes in Vixp \ (Vitess U Vairr) fixes the positions
of the blameless nodes, too. Apex-mirror nodes are considered in (6).

The product of the terms (1) to (8) upper bounds the number of represen-
tations which use a particular (N, N',p, M, d’, u)-vivid system and fulfill all
conditions of a root-expansion-free valid representation, but not necessarily
fulfill Property 1(a) and the simple events defined by vivideg.

Consider an edge e € Ejqp, \ Erxp and a node v incident to e. Let € be
the event that Property 1(a) is fulfilled for each edge €' € Ejqp,, € < e and
each node v' € Vgerver, v' < v. Then € is a simple event, and as e ¢ Egy, the
event £ is not about (job(e), ), for any . Thus according to Equation 3.2
from the definition of vivid systems

Prob[SUabele®)( ) = server(v) |J € J\(,f\),id NS € S\(,”iz,id NEl<p

This holds for each of d - |Ejo, \ Erxp| pairs of edges in Ejop \ Egrxp On one
side and nodes incident to them on the other.

Using the representation R defined by Terms (1)-(8) we evaluate the prob-
ability that the vivid events defined by vivider are true. For nodes v, w in
[(Vserver \ Vexp) U Va.1ess] we have server(v) # server(w). Thus the probability
that vivideg (v) is true for each v € [(Vserver \ Vixp) U V-less] N Vieg 1s at most

u| [(VServer\VExp)UVB-less] | .

The rough idea of the remaining part of the proof is to treat the terms of Equa-
tion 3.10 in three groups: one group dealing with the nodes in Vgerver \ Viexp, One group
for the nodes in Viyp \ Vanrr and one group for the edges in Egy, (which are closely
related to the nodes in Vi ). This rough idea cannot be used directly as some terms of
Equation 3.10 are associated with several groups and a part of the second and the third
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group has to be treated in the first one. We thus separate the proof into three parts:
In the first part Terms (1), (3), (4), and (9) of Equation 3.10 are bounded. This part is
finished by Equation 3.12 on Page 50 where the three groups are separated. After that
the terms of Equation 3.12 are bounded separately, which leads to Equation 3.16 on
Page 52. Here a term of the second and the third group is moved to the first one. After
that the three groups are considered separately again until the desired proposition is
set up on Page 55.

As each edge in Ejqp, \ Erxp is a regular edge containing d — 1 regular bottom nodes
and each node in (Vserver N Vieg) \ R is @ bottom node of one edge in Ejqp \ Epxp,

‘VServer\ (VReg N R)| = (d - 1) : |EJob \ EEXp| (3-11)

The set Vserver contains the set of expansion nodes Vgy, as a subset. As stated in the
definitions of blameless and apex-mirror nodes, blameless and apex-mirror nodes are
always expansion nodes. Further, no apex-mirror node is a blameless node, as the server
represented by an apex-mirror node is also represented by the parent of the apex-mirror
node. Thus

VServer 2 VExp ) VB—less N Vatier = @ ’
VExp :_> VB—less; and VExp 2 VMirr .

Further

[(‘/éerver \ (VExp U R)) U VB-less] N VReg
= [(‘/Server \ R N VReg) \ (VEXp N VReg)] U (VB-less N VReg)
= (VServer \ RN VReg) \ [(VEXP \ VB-IGSS) N VR,eg:|

as each irregular expansion node is a blameless node this is

= (VServer \ RN VReg) \ (VEXp \ VB-less)-

As a consequence of this the product of Terms (1) and (9) of Equation 3.10 is

(N . /’L)|R| . (N’ . Iu)|[(VServer\(VEprR))UVB-less]mVReg| . pd"EJob\EExp|

— (N . /'L)|R| . (N’ . u)|VServer\RnVReg| . (N’ . M)_‘VExp\VB-less‘ .pd'|EJob\EEXp|’

using Equation 3.11 and A = (N’ - p - p) this is

!

— (N . /’l’)m . (p . Ad_l)‘EJob\EExp| . (N’ . M)‘VExp\VB-less‘
— (N ) M)m ] (p ] Ad—l)\EJob\EExp| ] (N’ . u)\VExp\(VB.less\VMirrﬂ ] (N’ ] u)\VMirr\_



50 3 The Witness Tree Analysis

To bound the product of Terms (3) and (4), substitute c! = (e.)¢- (M - d' - A%°1)¢

EJob xp

|E30b\EExp| 1Y\ -« 1 Esob\Exp| 1 =
AN EIob\EExp| . [ - Y
(M -d) (C’) = <€c-p-/\d‘1> (C!)

Thus the product of Terms (1), (9), (3), and (4) is upper bounded by

E Exp

, 1 |EJob\EExp| 1 c
(N . ,u)m . (_) . ( ) . (N/ . u)—IVExp\(VB-lessUVMirr)| . (N’ . M)—|VMirr\_

€ c!

Using Equation 3.10 and |Viir| = |Egxp|, E is upper bounded by

o1
E S (N . ,U,)m . m -60_|EJ0b\EExp|
—_—— ——
(2

1)

Vi T 1% irr ; _ .
O S A T —
Xp -less irr

- vl
-~

®3)

| EExpl

. (l) T (‘EFOFQ“‘> (d - By ]) P (N )1l (3.12)

R c! | Etxp|

vl

-~

(4)

We bound the terms of Equation 3.12.

Term (1) Tt holds 1/m/! < (e/m/)™, thus Term (1) is upper bounded by

v s (B

m'l — m!

Term (2) If v is a level 1 node of Grorest, its subtree sub(v) is called defect if either

e sub(v) contains an expansion node,

e sub(v) contains an expansion edge, or

e the parent edge of v is an expansion edge.
An expansion edge affects at most one level 1 subtree by being contained
in, and it affects at most d — 1 level 1 subtrees by being the parent edge of

their root. An expansion node affects at most one level 1 subtree. Hence the
number of defect subtrees in Grorest 1S upper bounded by

(d—=1) - |Egxp| + [Vexp| = d - [Erxp| + [Vixp \ Vatire] -
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The witness forest Grores; contains at least m’ - b level 1 nodes, thus at least
m' b—d- |EExp| - |VExp \ VMirr|

level 1 subtrees are not defect. If a level 1 subtree is not defect, all its edges
are in Ejop \ Erxp, thus

|EJob \ EEXp‘ Z [m, -b—d- |EExp| - |VEXp \ VMirr‘ ] ) e_sub -

Hence
€C_|EJob\EExp| < ( Ec_ésub )m"b—d'\EExp|—|VExp\VMirr\ (3.13)
~——
DPTree
_ m"b_d'|EExp‘_|VExp\VMirr|
- pTree .

Term (3) Bounding the binomial coefficient in Term (3) we obtain

7

|VForest \ VMiI‘I‘| . |Vserver| s} |VExp\(VB—1essUVMirr)‘
<N’ /R ‘VExp \ (VB-less U VMirr)|)

as |VServer| S |VF0rest| and |VForest \ VMirr| S |VF0rest| thiS is

|VF0rest|2 .e |VExp\(VB—lessUVMirr)‘
(NI M |VExp \ (VB—less U VMirr)|)
( e- [ml . |VTree|]2 )|VExp\(VB—lessUVMirr)

N'- M- |VExp \ (VB—less U VMirr)|
> ‘VEXP\(VB—lessUVMirr”

< ( e-m'
- |VExp \ (VB-less ) VMirr)‘

m’ ) |VTree|2 ‘VExp\(VB—leSSUVMirr” (314)
ZV "o+ Vaxp \ (VBitess U Vairr) ’

~

-

pVEXp

using Lemma 2.2.3

< em’ . ‘VExp\(VB—lessUVMirrﬂ
- VExp .

Term (4) We use Lemma 2.2.3 to get Term (4) upper bounded by

Enxpl
(E)'EEW' . (M) i d - |EJ0bH\EExp\ (N - ) 1Bl

c |EEXP|
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as |Ejob| < |Erorest|

_ <62 -d - |E1F0rest|2 ) el
¢ |Brxp| - N'- 1

¢ d - m? | B2\
()

Fexp
3 m e | Egxp| e-d -m- |E’I‘ree‘2 e (3 15)
~ |EEXP| N C- N’ . l’l’ Y .

-’

~”

PEEXP

using Lemma 2.2.3,

< m/ ‘EExp‘

e ‘ pEExp .

Rewriting Equation 3.12 yields

’

N m
E<< i ) . 3 m'-b—d-| Epxp|—|VExp\ VMirr |

m * Dvee
. |VExp\(VB—lessUVMirr)
VExp
. | EExpl
EExp
m/
< N - H . eSm L amb
> m! Pree
A - -
TV
(1)
|VExp\(VB—1essUVMirr) _‘VExp\VMirr‘
: pVExp : pTree (316)
N ~ -
(2
. | Erxp . —d-| Epxp|
p EExp Tree -
N ~~ -
(3)

Using Equation 3.13, 1 < 1, and the definition of ég,,, Term (1) is obviously bounded
by

1
~.N7~,
4

In our next step we show that Term (2) and (3) are bounded by (£ )/Vex»\(Vb-tess Vi)
and ()=, respectively. In both cases we need an upper bound on pj., computed
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next. According to Equation 3.13, the inverse of the probability prye. is

1
1 N-63 b
b -
] )
m

p’f‘rée = (4 Na)m

as b>3
N (X b (N b
1 3 m’-ln(W-e ) 3
" in( o3
Asagll—Q-b mlhgg’{,'e),andbz3
NS
sz (o) (317)
Term (2) of Equation 3.16
We claim that
|VExp\(VB—1eSSUVMil‘I‘)‘ _‘VExp\VMirr‘ < 1 ‘VExp\(VB-lessUVMirrﬂ
Vexp " PTree = 5

For each blameless node v there has to be at least one node v’ blaming v. As
the node v’ represents the same server as v and v < v’, the node v' is not a
blameless node itself. Moreover v’ is not blaming any other node w # v, and
v’ is not an apex-mirror node. Thus at most half the expansion nodes not
being an apex-mirror node are blameless nodes, hence

Vesp \ (Vitess U Viier) | > % [ Vixp \ Vel »
hence
2+ [V \ (Vaess U Vaier) | > [Visp \ Vaier| -
As pﬂée >1
Vo Vo V)| |, VWil VgVt o], =2Vt Vo)

Thus to prove our claim it suffices to establish

m' - |VTree|2 —2

1
: <=
LN 1+ Vi \ Va0 = 2

(3.18)
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Putting
|VT‘ree| NI
dp="= 3.19
/6 €sub mer N ( )
we get
m' . |VT‘ree|2 —9 < 52 ) loggc (pT;elze) -2 ml

.p < .p .—’
%'NI'M"VEXP\VMirr| e %'M'P"VEXP\VMirf| N

using the bound on pilee from Equation 3.17 this is upper bounded by

N\ =
(4-pt et B2 pt - log? (prl)) - <_> < (3.20)

ml

N | —

if % large enough.

Term (3) of Equation 3.16
We bound |Emyee| using the definition for § from Equation 3.19.

|V’I‘ree| S ﬁ ) logec (pTTrée) .

As each edge contains d nodes, we get

|ETree| S d- B : logec (p'ITrée) .

Thus using the definition of pg,  from Equation 3.15,

e-d-m'-d?- 2. logfc(PTrée)> .1

-1
DEgy;, * PTyee < ( c-N' - Tree ?

and the bound on prye from Equation 3.17,

Bler

3=

d2
§2-u‘1-e3-d'-? B% - p7 1082 (Piyee) - ( )

) (3.21)

)

m'
N

d3
<2epteetd = B logy (Pr) (

=3

for 2% large enough (using 8 and p from Equation 3.19).
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We may now write Equation 3.16 as

m’ ‘V X \(V - essUV irr‘) ‘E X ‘
E S EI . e3m . EgéSUb'ml'b . 1 i > N . 1 o .
m 2 2

Recall that the E denotes the expected number of root-expansion-free valid repre-
sentations with fixed size of |Vixp \ (VBotess U Vivrier) |, and | E'gyp|- To bound the expected

number of root-expansion-free valid representations E, we take the sum over all possible
values of [Vixp \ (VB-tess U Vitier)| and Epgp.

- 500: fo: N ™ 3m  _—&sup-m/-b 1 i 1 !
1=0 j=0

!

m
= 4 . ﬁ . €3m . 6_éSUb'ml'b
m/ ¢

using Equation 3.13 and the definition of égy,,
< N«
m of Lemma 3.4.4

This allows to prove the Main Lemma (Lemma 3.2.6).

Proof: If there is a complete explaining representation using a (N, N',p, M, d’, p1)-
vivid system on Gporest, Lemma 3.4.2 ensures that there is a valid representation
on Greres;- Then Lemma 3.4.3 provides a root-expansion-free representation us-
ing a (N, N',p, M,d, p)-vivid system on a (m',b,€suw,c,d) witness forest. Applying
Lemma 3.4.4 yields the desired result. m of Lemma 3.2.6






4 The Argument for Weighted Jobs

The aim of this chapter is to obtain results for weighted allocation problems. Our results
are similar to the results for ordinary allocation problems in the previous chapter. Again
we seek for a general proof which is able to deal with various allocation problems. As
we will see, weighted allocation problems are closely related to ordinary ones. The
close relation is the basis of the analysis given in the sequel. The rough concept is to
relate representations for weighted allocation problems to representations for ordinary
allocation problems. After that we make use of the Main Lemma (Lemma 3.2.6).

As done in Chapter 3 we use an example algorithm to illustrate our technique. As
an example algorithm we introduce a weighted version of the c-collision algorithm the
so-called load collision algorithm. For the load collision algorithm we show how to define
a representation on a witness forest if the performance of the algorithm is bad. After
that we state the Main Lemma for Weighted Jobs and show how to apply it to the
example algorithm. The proof of the Main Lemma for Weighted Jobs is contained in
the last section of the chapter.

4.1 The load collision algorithm

The load collision algorithm or, more precisely, the c,-load collision algorithm is shown
in Figure 4.1. The main difference between the c-collision algorithm and the load
collision algorithm occurs in step (2), where the load collision algorithm deals with the
sum of the jobs weights while the c-collision algorithm deals with the number of jobs. In
fact the cy-load collision algorithm is just a generalization of the c-collision algorithm: if
¢w = c then the behavior of the c-collision algorithm and the c,-load collision algorithm
is the same, if they both deal with the same ordinary allocation problem and the same
random choices for the servers.

As we do for the c-collision algorithm, we call each run through the while loop (1) a
round of the algorithm. If in Step (3) a job agent receives acknowledgments from more
than one server, we do not care which server is actually chosen.

4.2 A Representation for the Load Collision Algorithm

As stated above, the main difference between the c-collision algorithm and the cy-load
collision algorithm is that the latter deals with a sum of weights in step (2) while
the c-collision algorithm uses the number of requests. This difference is also the main



58 4 The Argument for Weighted Jobs

For all J € J do in parallel
agent(.J) becomes active.

While there is at least one active job agent do (1)
For all J € J do in parallel
For j € {1,2,...,d} do
If agent(J) is active,
agent(J) sends a (J, 7, W (J))-request to agent(S(.J)).

For all S € S do in parallel
If the sum of the weights of all jobs sending a request to S (2)
does not exceed c,,
agent(S) sends a (S)-acknowledgment to each job agent which
sent a request to S.
(In this case agent(S) is said to accept its requests.)

For all J € J do in parallel
If for some S € S the agent(.J) receives a (S)-acknowledgment, (3)
agent(J) becomes inactive,
agent(J) allocates J to server S

Fig. 4.1: The c,-load collision algorithm

difference in the construction of the representation. In the representation for the c-
collision algorithm, each inner node v represents a server getting ¢ + 1 requests from
the ¢ + 1 jobs represented by the ¢ + 1 edges incident to v. In the representation for
the cy-load collision algorithm each inner node v represents a server receiving requests
with weight larger than ¢, from the jobs represented by the edges incident to v. As the
weights of the jobs may differ, the number of jobs sending a request to server(v) differs,
too. For this reason the degree of the inner nodes will differ in the witness forest for
the cy-load collision algorithm. It is, however, possible to give a lower bound on the
degree of the inner nodes. As the weight of a job is at most 1, at least ¢y, + 1 requests
are required to obtain weight more than c.

Let Grree = (Vivees Erree) be a tree specified in the sequel. Fix the random possible
servers of the jobs and assume that there is a server S whose agent is active at the end
of some round 7" of the cy-load collision algorithm. We define mappings server, job,
and label, for each edge e € Eryee, as in Section 3.1.1.

Assume that at the end of round 7 of the ¢,-load collision algorithm there is a server
S, whose server agent is still active. Let the root of Gy represent server S. As S is
active at the end of round 7', it receives some requests (Ji, j1) < --- < (J, ji) in round
T. Let the root of Gy have k child edges e; < --- < e, and let edge job(e;) = J; and
Iabel,, = Iabeld") for 1 <i < k.

Consider a child edge e = (v1,...,vq4) of root(Gree) and let server(v;) =
Slabele(vi)) (job(e)), for 2 < i < d. The job agent of job(e) sends a request to S in
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round 7. Thus job(e) is active at the end of round 7" — 1 and sends a request to the
servers represented by the bottom nodes of e in round 7' — 1 and this request is not
accepted. Hence server(vs), ..., server(vy) are active at the end of round 7' — 1.

Now let ' be a bottom node of e. As job(v') is active at the end of round 7" — 1 it
receives some requests (J],71) < --- < (Jjs, jis) besides the request (job(e), label(v")).
Let ¢’ have k' child edges e} < --- < €}, and for 1 < ¢ < k' let job(e]) = J; and
label,, = Iabelgé). For each bottom node v” of €} let server(v") = S(labele'i(v”))(job(e;-)).
This server is active at the end of round 7—2. Tt is possible to continue the construction
recursively to the level T nodes of G which represent servers active at the end of
round 0. The tree Gy defined in the recursion is a d-uniform tree whose inner nodes
have at least ¢, child edges. All leaves of Gy are level T nodes.

If m servers are active at the end of round 7' it is possible to define a representation
Rioad 0on a forest GEoad of m d-uniform trees whose inner nodes have at least c,, child
edges and whose leaves are level T' nodes. The forest G122, is a witness forest. It also
fulfills a stronger condition defined next.

4.3 The Main Lemma for Weighted Jobs

Definition 4.3.1: Let m,egp,c,d € N Let b = ¢(d — 1). Let Gyrorest =
(ViwForests ErwForest) be a d-uniform forest with m connected components. Then Gyrorest
is called a weighted (m, b, esy, ¢, d) witness forest if for each set E C Eyporest it holds

Let GForest = (VForesta EForest) be the SUbgraph of GWForest induced by E. If
each node v € Gyrorest has exactly c child edges which are in E, then Grorest
is a (m, b, esup, ¢, d) witness forest, called the witness forest induced by E in
the weighted witness forest Guyporest-

A weighted (1, b, esup, ¢, d) witness forest is called a weighted (b, esup, ¢, d) witness tree.

The definition for weighted witness forests may seem a little bit strange, but it fills
exactly our needs. In the sequel we choose a witness forest as a subforest of a weighted
witness forest, and the above definition allows this to be done in a greedy fashion. An
example for a weighted (c(d — 1), egyp, ¢, d) witness tree is a complete c-ary, d-uniform
tree of height T (using eqp, = ¢+ Y1 c(d — 1)]*). For each ¢ > ¢ a complete ¢-ary,
d-uniform tree of height 7" is a weighted (c, esup, ¢, d) witness tree. An example for a
tree which is not a weighted (¢, esup, ¢, d) witness tree is a complete c-ary, d-uniform tree
of height T where the root has one extra child edge whose bottom nodes are leaves. (If
the extra edge is in F but another child edge of the root is not, the induced graph is
not connected.)

An explaining representation for a witness forest assures that ¢ + 1 jobs are repre-
sented by the edges incident to an inner node. In an ordinary allocation problem these
jobs have weight ¢ + 1. We need a similar property for weighted allocation problems
and weighted witness forests.
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Definition 4.3.2: Let ¢, € N. Consider a weighted witness forest Gyporest and a repre-
sentation Ry. Then R, is called a cy-fat representation or fat representation for short,
if for each inner node v of Gpyrest

If v has ¢ incident edges and Ji,...,J; are the jobs represented by these
edges, then

j=1

A set J' C J of jobs has weight M, if

Y W) =M.

JeJ’
A vivid system has weight M if each vivid set of an edge has weight M.

The representation Riyg.q defined in Section 4.2 is a cy-fat representation. The
corresponding vivid system has weight M as J has weight M.

Lemma 4.3.3 (Main Lemma for Weighted Jobs): Let m/, ¢, ¢y, d, esup < N, A = (V-

wep), m = [b+J. Let

1

25 _1
b>3,¢cy, >5-c+1, andcwz_g‘ln(l—éc“)—kl.

Further let

c!
() = (L++3)-M-d-p-Ad-1)e

o N
Esub = log,, <4m}b Nwb - (_, ,63)

> 1,

=

) , such that eg, > b+ 1,
m

and let Gyporess = (ViyForest; PwForest) be a weighted (m, b, esup, ¢, d) witness forest.
Then the probability that there is a cy-fat complete explaining representation using
a (N,N' p,oo,d, u)-vivid system of weight M on Gyporest 1S at most

1

N-ib

if N/m' (cf. to Lemma 3.2.6) and M (cf. to Equation 4.1) are large enough.
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4.4 Consequences for the Load Collision Algorithm

Suppose that there are m server agents active at the end of round 7" of the cy-load
collision algorithm. Then there is a complete explaining representation on the weighted
(m, b, esub, ¢, d) witness forest Gk . The representation is also c,-fat. Let each vivid
set of an edge be J and each vivid set of a node be S. Then for N = |S| and
M = 3", ;W(J) the representation uses a (N, N', N™!, 00, d, p)-vivid system of weight
M.

Corollary 4.4.1: Consider an allocation problem with |S| = N, Y, . W(J) = M,
number of copies d, and uniform ¢-th copy distributions. Let ¢ € N, such that

b=c(d-1)>3

and

|
(€)= c > 1.

((+V3)- % -ar

Then for each m < N, ¢ < N,

1

25 _1
Cw>5H-c+1, suchthatNZcWZ_§.1H(1_6611)+1’

and
T>1 1 N 4 (1 (a+1)>+2+w(1)
2 108;(a—1) 108, 08c(d—1) b

there are less than m servers whose agents are active at the end of round 7' of the
cw-load collision algorithm, with high probability, if N/m is large enough. In particular
no server agent is active after

log.(4_1)log,, (N) + 2+ w(1)
rounds, with high probability, if NV is large enough.
Proof: It is easily checked that the preconditions of Lemma 4.3.3 are met. =

We discuss this result in Section 5.2.2.

4.5 The Proof for the Weighted Case

In order to prove the Main Lemma for Weighted Jobs (Lemma 4.3.3) it may seem
tempting, to apply Lemma 3.2.6 in order to get a bound on the performance of weighted
allocation problems. But the crucial thing about weighted allocation problems is that
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the proximate vivid system leads to a poor result in the Main Lemma. For a weighted
allocation problem the vivid set of the edges can be very large compared to the weights
of the jobs. For instance consider an allocation problem with set of servers S, |S| = N,
set of jobs J, |J| = 2V + 1, number of copies d, and uniform i-th copy distributions.
Assume further that W(Jma) = 1 and W(J) = &t for each J € J \ {Jmax}, thus
Y sesW(J) = N. Such an allocation problem would give raise to a representation
using a (N, N, N1, 2V +1,d, 1)-vivid system. For such a vivid system the Main Lemma
cannot guarantee more than a O(2"/N) upper bound on the load, while in fact the load
can be shown to be constant. To overcome this problem we relate a weighted allocation
problem with » ;- W(J) = M to an allocation problem with O(M) jobs. The relation
is established using the vivid system.

To relate a weighted allocation problem to an ordinary one, we deploy a process
called the flipping. Consider a weighted witness forest Gyporest, @ representation Ry
on it, and a vivid system Vy, = (vividrjy, vivids, vividj, vivider) used by R,. We
assume that the mapping vividj takes a third parameter from Vigrest- Let v € Vigrorest,
JeJ,ie{l,...,d}, and S € vivids(J, 7). Then for each J' € vividj,(J, S,v) we flip
a coin: with probability W (J') the job J' survives the flipping and with probability
1 — W(J) it vanishes. Let the set vividj(J,S,v) contain all jobs from vividj,(J, S,v)
which survive the flipping. Similar flip a coin for each S € S, v € root(Gyrorest),
J' € vividrj,(S,v) and let vividrj(S,v) contain the surviving jobs from vividrjy (S, v).
We call V = (vividrj, vivids, vividj, vivideg) the new wvivid system. V,, is called the old
vivid system.

Our next step is to establish two facts about the new vivid system. At first we
would like to show that the new vivid system is a (N, N',p, O(M), d’, p)-vivid system
given that the old one is a (N, N', p, 0o, d’, p)-vivid system of weight M. Next we would
like to show that the representation R, uses the new vivid system. Neither of these
statements is really true, but in each case we are able to show a sufficiently strong
similar statement.

Let m' = L}%] Assume that there is a c,-fat complete explaining representa-
tion Ry, = (vividrj, vivids, vividj, vivideg) on a weighted (m, b, esup, ¢, d) witness forest
GyForest = (ViyForest; PrwForest) Using the old vivid system. Assume that the vivid sets of
the edges have weight at most M, each. Consider an edge e representing job J = job(e).
With probability W (J) the job J survives the flipping, in this case we say that edge e
survives the flipping. A node v does c-survive the flipping if at least ¢ child edges of v
survive the flipping.

Constructing a complete explaining representation Assume that each inner node of
G yrorest does c-survive the flipping. Then there is a set E' C Eporest cOntaining ezactly
¢ surviving child edges for each inner node. Let G . be the (m,b, esu, ¢, d) witness

forest induced by E from G’ Then the restriction R’ of R, to the nodes and edges

wEorest *
of Gy pest 15 @ complete explaining representation on G - According to Lemma 3.4.3
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there is a (m, b, esup, ¢, d) witness forest Grorest being a subforest of GY . such that
the restriction R of R’ to Grorest is root-expansion-free. As the jobs represented by the
edges of Gyporest SUrvive the flipping, R uses the new vivid system.

The assumption that each inner node of G'yprores; does c-survive the flipping is actually
stronger than necessary. Considering Ggorest as a subgraph of Gyporest, it suffices if only
the inner nodes of Ggyrest and the roots of Gyporess do c-survive the flipping. In the next
paragraph we bound the probability that this condition is fulfilled.

Bounding the probability Suppose that ¢ < CW5—_1 Consider a node v € Vigrest- After
the flipping, some of the child edges of v in G'yrorest are vanished, others survive. As the
representation is cy-fat, the expected number of surviving child edges is at least ¢, — 1.
Using a Chernoff Bound from Lemma 2.2.1, the probability that v does not c-survive
the flipping is upper bounded by

i) (ew1)

e 2

Consequently, v does c-survive the flipping with probability at least

(1-557)% (ew—1)
l—e > 1 —e o (D)

For the roots of G, and the other inner node v of Grorest let X, be a 0,1 random
variable which is 1 if v does c-survive and 0 otherwise. Then the random variables X,
are independent random variables as the flipping is performed independently for each
inner node v of Gypores;- The forest Groress has m' - b - “ inner nodes which are not
roots of Gyrorest- Gwrorest has m < (b+ 1) - m/ roots. Thus the probability that there is
a complete explaining representation on Gpyest using the new vivid system is at least

/.(p-Ssub 4 pyq
(1_e%-<cw1>>m< ey
if there is a cy-fat complete explaining representation on a weighted (m,b, esu, ¢, d)
witness forest using the old vivid system.

The size of the new vivid sets If the vivid sets of the edges of the old vivid system
have weight at most M, each, the expected size of the corresponding new vivid sets is
at most M. Thus using a Chernoff Bound from Lemma 2.2.1 the probability that a new
vivid set for an edge contains more than (1 ++/3) - M jobs is at most e™™. But even
this small probability does not allow to show that all vivid sets of the edges have size
at most (1 + 1/3) - M. The reason for this is that the number of jobs in the weighted
allocation problem is unbounded and so is the number of old vivid sets of the edges in
the old vivid system. On the other hand it suffices to bound the size of those sets which
are important for us. For instance consider a level 1 edge e. If a job J is not contained
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in vividrj(S, top(e)) for any S € S, then we can put vivids(J, S,v) = @ for each S and
each bottom node v of e. To apply this modification to sets for edges of level larger
than 2, let

Fvivia(v) = U vividrj(S, v)
Ses
for each root v of Gporest. For each node v with level(v) > 2 with parent v’ let
Feba= U vividi(J, S, ).
JE€Tvivia(v')
i€{1,yd}

Sevivids(J,i)

Thus Jvivia(v) contains all jobs possibly represented by the regular child edges of v.
We therefore put vividf(J, S,v) = () for each node v with parent v' and each S € S,
if J ¢ JFvivia(v'). The vivid system V' = (vividrj, vivids, vividj, vivider) is called the
cleaned vivid system. Any representation using the new vivid system uses the cleaned
vivid system, too.

With probability at least p; = e™ the set Jyvivia(v) has size at most 7y = N - (1 +
V/3) - M. Consider a level | edge e with top node v whose parent is v’. Assume that
with probability p;_; it holds

| Fvivia (V)] < 721

The probability that |vividj(J, S,v)| < (1 4+ v/3) - M for each J € Fyiia(v'), S €
vivids(J, i) for some i is at least

1— [Tl,l “N'-d-e M4 (1 —pl,l)] =p.

Thus with probability at least p;

| Fvivia@)| <mi=r - N'-d'- (1+ V3)- M.
Thus

rp=01)"N-(N-d) ' M
and
p=[0Q)" N (N'"-d-M)' e+ (1 —p1)]
>1—[01)-N-(N'"-d- M) e ]

As the witness forest Gryres; has height at most logo(l) N and at most N inner nodes,
each vivid set of an edge in Grores; cOntains at most (1+ \/3) - M jobs, with probability
at least

1—0(1)- (M -d - N')oe*VN . o=M < (4.1)

N | —
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if M = w(log® N), for some w = O(1). Thus with probability at least one half the
cleaned vivid system is a (N, N',p, (1 + v/3) - M,d’, p)-vivid system. This allows to
prove the Main Lemma for Weighted Jobs.

Proof: Let py denote the probability that there is a c-fat, complete explain-
ing representation using a (N, N',p, 00, d', u)-vivid system of weight M on Grorest-
Given such a representation, the probability that there is a root-expansion-free com-
plete explaining representation using a (N, N',p, (14 +/3) - M, d', p1)-vivid system on a
(m, b, esup, ¢, d) witness forest is at least

1 (1 B e_%.(cw_1)>m"(”'es7“b+”+1) S 1 (b )
2 =92 ¢
as equp > b+1

1 2.6 ..t
11 "Esub M

> — €

The Main Lemma (Lemma 3.2.6) upper bounds the probability that there is such a
representation by

m/
(l) . eBm’ . e—esub-m’-b
! c :
m

On account of the above remarks

N\™ b (1— 2
Pw <2 (_/) cedm e =)
m

m' .
< 2. <E '€3> .47%'"’)” .Nf%'a. (ﬁ.e:s) N
- m’ m'

using the definition of o and b > 3

N e3y.m!
ln(m, e’)-m

< NT.(,
< Nt

=l
Bleo
Wl
+
=l
wlo
—

m of Lemma 4.3.3






5 Applications of the Main Lemma

5.1 The Sequential Setting

5.1.1 The greedy algorithm

The greedy algorithm is the most important algorithm in the sequential setting. It is
presented in Figure 1.2 on Page 23. So far (compare Section 3.1.2, Corollary 3.3.2)
we have considered the greedy algorithm as an example to demonstrate our technique,
only. We have investigated the performance of the greedy algorithm assuming M < N/d
and considering a particular tie breaking mechanism for step (1). In this Section we
generalize the result on the greedy algorithm to higher values of M and various i-th
copy distributions.

Other deletion schemes and the finite setting The deletion scheme defined in Sec-
tion 1.7.2 assumes that job J is deleted in round A(J) = §(J) + M. In this section we
generalize this result to a large class of deletion schemes including all schemes where
the sequence of insertions and deletions is independent of the possible servers and the
allocation. These deletion schemes are called oblivious deletion schemes. Important
oblivious deletion schemes are the random deletion scheme — where in each round a
job is chosen independently and uniformly at random to be deleted from the system
— and the finite deletion scheme. In the finite deletion scheme we have A(J) = oo, if
§(J) < M and A(J) = §(J), otherwise. This way the finite deletion scheme mimics the
behavior of the finite setting with M jobs.

Our results are not restricted to oblivious deletion schemes, they hold for any dele-
tion scheme ensuring

Prob[S¥(J) = S| J € J*] = Prob[S?(J) = 5].
foreach J € J, S€S,i€{l1,...,d}, and §(J) <7 < A(J); and
max|jf’A| < M.

Actually these two assumptions suffice to ensure that the vivid system Vg, as defined
in Remark 3.2.8 uses vivid sets for the edges with size at most M. Thus Corollary 3.3.2
holds for any deletion scheme fulfilling the conditions above.
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Other i-th copy distributions Considering the greedy algorithm as an example for
our analysis, we have restricted ourselves to uniform i-th copy distributions. In this
paragraph we generalize our argument to arbitrary i-th copy distributions. The con-
struction used in this paragraph is not restricted to the analysis for the greedy algorithm.
It applies to any use of non-uniform i-th copy distributions.

Consider a representation R on a witness forest Grorest using a natural vivid sys-
tem V = (vividrj, vivids, vividj). We show how to modify V such that the modified
vivid system has better parameters. For sake of that we remove all elements from the
vivid sets of the edges and the vivid sets of the nodes, which cannot appear in an ex-
plaining representation. For instance, if node v represents server S, then a job J with
Prob[S®(.J)] = 0 for any i cannot be represented by a child edge of v.

For round 7 let V, = (vividrj, vivids, vividj) be the natural vivid system for round
7. For each S € S and each root v of Gryrest let

vividej'(S,v) = {J € vividrj(S,v)|3j € {1,...,d} : Prob[SY(J) = S] > 0}.
Foreach J € J,i € {1,...,d} let
vivids'(J, 1) = {S € vivids(J, i) |Prob[S?)(J) = S] > 0}.
Similar let for each J € J,i € {1,...,d}, S € vividj(J, 1)
vividj'(J, S) = {J € vividj(J, S)| 3j € {1,...,d} : Prob[SY)(J) = S] > 0}.
Then the vivid system V. = (vividrj’, vivids', vividj', vivideg) is called the Z-vivid
system of round 7. If the meaning is clear, we drop the “7” from our notation. As each

representation uses the natural vivid system, it also uses the =Z-vivid system.
For

NL = max ‘VjVidSI(J, Z) ,
= Jeg
i€{1,...,d}

M:: { R Y .. . }
= =max | max ‘V1V1d] (J,S)‘, max vividrj (S,v)|

i€{1,...,d} v€root(GFrorest)
Sevivids' (J;i)

- = Prob[S?(J) = S

pe = max Prob[S¥(J) = 5],

ie{l,...d}
Ses

. = max ‘{j € {1,...,d}| Prob[sO)(J) = §] > 0}‘
SeS

the Z-vivid system V' is a (IV, NL, p=, Mz, d;, 1)-vivid system. The parameters N, NZ,
p=, Mz, and d are called the parameters of the E-vivid system. p= is called the mazimum
probability of =, and dt is called the mizing of Z. In any case Mz is the maximum size
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of a set J2, as the i-th copy distributions are the same for each job. This implies
M = Mz. Tt would be possible to define something like a =-vivid system for dependent
i-th copy distributions, where the i-th possible server of a job depends stochastically
on other possible servers of that job. This would only affect the definition of pz. As
the vivid system completely encapsulates the properties of the i-th copy distributions, a
generalized definition would allow us to deal with dependent i-th copy distributions. We
did not use this possibility, as we wanted to avoid an even more complicated definition
of the vivid system.

For the greedy algorithm there is one set of non-uniform i-th copy distributions
which is of particular importance (compare [V6c99a]). To define these distributions let
E/(7) be a distribution on § = {5, ..., Sy} which distributes the i-th possible servers
uniformly on {S(i_l)_%ﬂ, . .,SZ-%} (for convenience we assume that N is a multiple
of d). We call the distribution functions ='(i), 1 < i < d, the separated i-th copy
distributions on S. The separated i-th copy distributions have mixing 1.

Lemma 5.1.1: Let 7 € N be a round, and assume that there are m servers with load
T’ + 1 at the beginning of round 7 of the greedy algorithm working on an allocation
problem with separated i-th copy distributions. Then there is a complete explaining

representation on the witness forest Gir ., using a (N, &, (5)™, M, 1,1)-vivid system.

Proof: The vivid system is just the Z-vivid system of the natural vivid system. m

A drawback of our construction is revealed, if the considered distributions are non-
uniform but Prob[S®(J) = S] > 0 for each i and each S. In this case our analysis
is not sharp. The reason for this is that we do not distinguish between two different
tasks of ‘p=’. On one hand p=- N denotes the expected number of servers suitable to be
represented by a node, if the representation for its parent edge is fixed. This requires
p= to be an upper bound for

pA = Max max ! Z (PTOb[S(i)(J) = SD ’

JeJ ic{l,...d NH
1 } = sES

as the worst case for the representation on the edge has to be covered. On the other
hand ps - dt - M= denotes the expected number of ways to choose a representation for
an edge, given a server represented by its top node. This requires p= being at least

Pedge = maX d, M” Z Z PI'Ob[S ) S]) .

S JeTiefl,...d}

In the non uniform case the second value is typically larger than N !, while the first
one typically equals N~1. Choosing pz > pa yields an unnecessarily large value for ¢,
(compare the discussion after Lemma 3.2.6). But even if we would use py where its
appropriate, the performance for non-uniform distributions would suffer from peqge >
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N1, which indicates that non-uniform distributions may lead to poorer performance.
On the other hand the (non-uniform) separated i-th copy distributions yield the same
performance as uniform i-th copy distributions. Thus only particular, stupid i-th copy
distributions impair performance. Our analysis overestimates this effect a little bit, but
a sharp result would require more subtle analysis of the representation of the witness
forest. Anyhow only the additive constants of our performance bounds are affected, as
we see in the next paragraph.

Larger values of M The result on the greedy algorithm presented in Corollary 3.3.2
on Page 40 is restricted to M < N. To obtain results for larger values M, we use a
property of the representation Rq, noted in Section 3.1.2: if there are m servers with
load 7" at some round 7 and the witness forest GS*_. has height T, then each node v

G Forest
T : : !
of GRles; With time marker 7' has

load, (server(v)) > T' — T — kg, + 1.
If 7" is the time marker of a child edge of v, then
load,»_y(server(v)) >T' —T —ka:—1=g.

This observation is useful for g > 0. It allows us to define vivid events for the represen-
tation Ra;.

Lemma 5.1.2: Consider the greedy algorithm working on an ordinary or weighted al-
location problem. For the tie breaking mechanism, allow any mechanism which never
allocates a job to more than one server. Let oz = N - p= - % be the stupidity of the i-th
copy distributions. Let

g= (min{5.275 + é, d} + 0(1)) )
“E:(?"(N'pE)'(M'pg-d'g))_l,

- 0z, and

=S

Assume that there is a representation R on a witness forest Grores; using the =-vivid
system V), such that each node v € Vseryer has

load, (server(v)) > g, for 1= main{é(job(e))} -1

Then there is a mapping vivider such that

e The vivid system V' = (vividrj, vivids, vividj, vivider) is a (N, Nz, p=, M, dL, u=)-
vivid system (a (N, NL, ps, 0o, dL, pz)-vivid system of weight M), and

e R uses V.
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Proof:

Fix a representation R. We define a vivid event for each node v € Vseryer \ Vixp-

Among all edges incident to nodes representing server(v), let e be the one rep-
resenting the oldest job. Let this job be J.. Then let vividegz(v) be the event
“load,_1(server(v)) > ¢g”. It remains to show that for

it holds

E= /\ vivideg (w)

wEVserver
server(w)#server(v)

Prob[ViVideR(v)| “R is explaining” A €] < p=.

For each job J represented by an edge of Grorest, Vivider(v) is not about J, as either
§(J) < 7 or SO(J) # server(v) for all i € {1,...,d}, thus

Prob|vivider (v)| “R is explaining” A £] < Probl[vivideg (v)| £].

The event vivideg (v) is not independent from £ as requests sent to a server S cannot be
sent to another server S’ # S. But for the same reason this dependency only decreases
the probability that vivideg(v) is fulfilled, thus Prob[vivideg| £] < Prob|vivideg].

Casel: d>5

Let 7 be a round, let S be a server. Consider the set J° of jobs being in
the system at the beginning of round 7. If S reaches load,(S) = g, there has
to be a round 7' such that the weight of jobs from J%% being allocated to S
before 7' is

If a job J with 6(J) = 7 is allocated to S after round 7', each possible server
S’ of J has to have load at least k at the beginning of round 7. As the system
contains jobs with weight at most M, there are at most (e- (2-e)i-0z) 1N
such servers. Hence the probability that a particular job is allocated to S
after round 7’ is at most

ds-p=- ((e (%'e)%'ﬁs)l N)*hpt
(R .
<d-ps ((%,e) T 1)
i1 d \d-1
<p=-(5) o (5=9)
1
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as d > 5. The expected weight of the jobs J € J%* allocated to S after .J.
is at most M - p= - ‘fi—g = % -0z - %. Using the generalized Chernoff Bound
from Lemma 2.2.2, the probability that this weight exceeds

M 1 M 1 M , , M 1 M
WO'EE-Fs WUEEIH(3ﬁd0’E)—W O'E'E-FO(W O'E)
is at most
— -1
M — _
(3-W-d2-0§> §(3-N'E-p5-M-p5-d'E)1. (5.1)
Case 2: The probability that S receives requests with load exceeding M - p= - d + 3 -

/M -pz-de-In(2-N-pzs-M-pz-de) =2 .0=-d+0o(X .0z - d) from jobs
in 7% is at most

e 1n(3'N'pE'M'pE'd’E) S (3 . Né - p= - M - p= - d,E) -1 ,
according to the generalized Chernoff Bound from Lemma 2.2.2.

m of Lemma 5.1.2

Remark 5.1.3: The restriction that the tie breaking mechanism never allocates a job
to more than one server, is only required for Case 1 of the proof. Thus if g = (d+0(1))-

M
N

- 0=, the proposition of Lemma 5.1.2 holds for arbitrary tie breaking mechanisms.

Theorem 5.1.4: Consider an ordinary allocation problem in the finite setting with M
jobs or an allocation problem in the sequential setting using an oblivious deletion scheme
which ensures that there are at most M jobs in the system. Let o= = N - p= - % be the
stupidity of the i-th copy distributions. Then any version of the greedy algorithm which
never allocates a job to more than one server assures that less than m servers obtain

load larger than

— N
T =log,log, — + (min{5.275 + 1 d} + o(1)) -
m

=S

'O'E—I—]f(;r—{—Q—f—O(l),

with probability at least 1 — N, for

€ =341

ker- (d—1) > 2,
a< %[l-f-k(;r-(d—l)], and
% large enough.
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Proof: =~ The Theorem is an immediate consequence of the discussion above, the Main
Lemma (Lemma 3.2.6), and Remark 3.2.7. m of Theorem 5.1.4

As a consequence of Remark 5.1.3 the proposition of Theorem 5.1.4 is also true for
arbitrary tie breaking mechanisms if

oz + kar + 2+ o(1).

2|E|

N
T, = log,log,, — + (d+o(1)) -

Remark 5.1.5: Theorem 5.1.4 does not contain an explicit restriction on the i-th copy
distributions. Implicitly such a restriction applies as the requirement that ¥ has to be
large enough (cf. Equations 3.20 and 3.21 in the proof of Lemma 3.4.4) depends on the
parameters of the vivid system which depends on the i-th copy distributions. There are
i-th copy distributions that do not allow to fulfill Equations 3.20 and 3.21. As long as
N' = w(N'®) and p= = O(o(log N) - &), the mentioned equations are easily fulfilled.
The same restrictions hold for any theorem presented in this chapter. Violating these
conditions would yield poor performance, anyway.

Our bound shows that the greedy algorithm obtains load at most log,log, N +
O(%) =, with high probability. This matches the best previously known results
for unlform distributions (compare [ABKU94, ACMRO95, Viéc99a]). It is of particular
interest to compare the load obtained here to the load obtained if only one possible server

per job is used (d = 1). If in the latter case a uniform i-th copy distribution is used,

the load of the allocation is & + ©(y/4 - In N) ([V6c99b]). Compared to this bound,

the greedy algorithm — being the most proximate algorithm at all in the sequential
setting — shows that using d > 2 allows to obtain an exponential improvement in the
obtained load. In contrast to previous results our analysis applies to arbitrary ¢-th copy
distributions, showing that stupid choice of the i-th copy distributions affects only the
additive constant of the performance bound. The only result getting ahead of ours is
the result on the Always-go-Left version of the greedy algorithm from [V6c99al. We
treat this version of the greedy algorithm in the next section.

The result of Azar et al. considers a slightly different situation than ours. At first
their analysis is restricted to the random deletion scheme. Despite of that they assume
that the first M jobs are allocated to arbitrary servers and only subsequent jobs are
placed to randomly chosen possible servers according to the greedy algorithm. In this
situation no sensible bound on the load can be given for round 7 = M and the same
holds for the next rounds. It is therefore a natural question to ask when the load bound
applies for the first time. Azar et al. show that after N3 rounds the load in the system
is log,In N, with high probability. This result is improved by Czumaj in [Czu97] who
shows that (1 + o(1)) - N - In N rounds are sufficient to obtain this bound, with high
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probability. He uses Markov Chains and coupling (see e.g. [Lin92]) to obtain this result.
A slightly weaker result is easily shown using our approach.

To obtain the result we just have to ensure that the vivid system used by the
representation does not involve any of the first M jobs, as only those jobs do not use
random possible servers. In each round the probability for a job to be deleted is %
Thus the probability that a job J is not deleted during o+ N - In N rounds is at most

(1 _ L)a-N-lnN < efoe-lnN

N
< N~

Thus after round o- N -In N + N — 1+ M no arbitrarily placed job is in the system. Let
the jobs J with 6(J) < M be called the 0-dirty jobs. Further we call a job J i-dirty,
if the system contains an (¢ — 1)-dirty job in round §(J). As shown above, the system
contains no 0-dirty job after round - N -In N + N — 1 + M, with probability at least
1 — N~ After round 2- (o« N -InN + N — 1) + M, there is no 1-dirty job in the
system with probability at least 1 — 2 - N=®. After T - (o - N - In N + N) rounds no
job in the system is a (7" — 1)-dirty job, with probability at least 1 — 7 - N~®. Thus
if 7> M +T" - (a-N-InN + N) the representation used in Theorem 5.1.4 does not
contain any O-dirty job. We therefore can remove the 0-dirty jobs from the vivid sets
of the edges and the analysis succeeds. (Note that the random events considered here
are events of the deletion scheme, not of the possible servers of the jobs.) Compared
to the result of Czumaj we just loose a factor of 7" = O(log,log N) and some minor
constant factors. Thus in combination with the witness tree technique and the vivid

systems notation our quite coarse argument suffices to almost match the best known
bound.

5.1.2 The greedy algorithm on weighted allocation problems

The greedy algorithm can be applied to weighted allocation problems without any
change. To analyze the performance of the greedy algorithm on weighted allocation
problems we use the Main Lemma for Weighted Jobs (Lemma 4.3.3 from Chapter 4).
We consider the greedy algorithm working on a weighted allocation problem in the
infinite setting, using some oblivious deletion scheme A.

We first show how to obtain a witness forest and a representation. Fix a round
7, fix the possible servers of the jobs and assume that there is a server S € § with
load-(S) > T' - (cw + 1) for some ¢, € R Let G be a d-uniform tree of height
T < T' specified in the sequel. We show how to obtain a c,-fat complete explaining
representation on Grye. Let the root of Grye represent server S and let its time marker
be 7. Consider a node v of Gy Of level [ and assume that the server S represented
by v has load at least (T’ — ) - (cy + 1) at the end of the round indicated by the
time marker 7' of v. Let J; € Jf,’A be the last job allocated to S before round 7/, let
Jo € jf,’A, Jo < Ji be the last job allocated to S before 6(.J;), and so on, such that
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Ji,Jo, ... J; € jf,’A are the last 7 jobs allocated to S before round 7/. We choose an
te,, € N, such that

e <Y W) < e+ 1.

=1

Then let v have i, child edges, and for each i € {1,...,4.,} let the i-th child edge of
v represent job J;. For each child edge e let label, ensure that S2P¢e(®)(job(e)) = S.
Further let each bottom node v’ of e represent server SUab¢k()(job(e)) and let its
time marker be 6(.J) — 1. Each child of v now represents a server S with load at least
(T'—(I+1))- (cy+1) at the round indicated by its time marker. Note further that v has
at least c,, children. Applying this construction recursively to each inner node of Gryee
yields a c,-fat complete explaining representation Rygr 0n Gryee. The tree Grpee is a
weighted (c¢(d — 1), equp, ¢, d) witness tree for any ¢ < ¢y and egp < ¢- Y1 [e(d — 1))

If there are m servers with load at least T’ - (¢, + 1) there is a representation on a
weighted (m, c(d — 1), esup, ¢, d) witness forest GEor .. If there are m servers with load
at least T' > T - (¢ + 1) + g, then each server appearing in the representation has load
at least g at the round indicated by its time marker. This allows to apply Lemma 5.1.2.

If Vyqr is the Z-vivid system V., then Ryqr uses Vyar. If the deletion scheme ensures
that 3° ;. ;ea W(J) < M for any 7', then Vg, has weight M.

Theorem 5.1.6: Consider a weighted allocation problem in the finite setting with jobs
of weight M or an allocation problem in the sequential setting using an oblivious deletion
scheme ensuring that the weight of the jobs in the system does not exceed M. Then
any version of the greedy algorithm which never allocates a job to more than one server
assures that less than m servers obtain load larger than

_ N M

T = O(logd log,, E> + (min{5.275 + %, d} + o(1)) - s
with high probability, for

3d—1
€ = >1
14++/3
and % large enough.
Proof: Let ¢ > 3, b =c(d—1), m' = [}], ¢y > 5-c+ 1, such that ¢, >

_1
—2.In(1—€ )+ 1. For

T = (CW -+ 1) . logc(dfl) e_sub

N
= O(logd log,, —)
m
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the witness forest GRST . is a weighted (m,c(d — 1), esup, ¢, d) witness forest. If there

are m servers with load higher than T’ there is a representation Rygr being a cy-
fat complete explaining representation on GEGE .. The representation uses the Z-vivid
system. As each server appearing in the representation has load at least T' — T =
(min{5.275 + 3,d} + o(1)) - 2 - 0=, Lemma 5.1.2 allows to conclude that Ryq: uses a
(N, N, p=, 00, d-, pu=)-vivid system of weight M. The Main Lemma for Weighted Jobs
(Lemma 4.3.3) ensures that such a representation does not exist with probability at

least 1 — N~ 1. m of Theorem 5.1.6

Remark 5.1.7: As a consequence of Remark 5.1.3 the proposition of Theorem 5.1.6 is
also true for arbitrary tie breaking mechanisms if

= g

_ N
T = O(logd log,, E) + (d+o(1)) -

The performance in the weighted case is almost the same as the performance in the
ordinary case. Only in the O(log,log, N) term we lost some constant factor compared
to the result for ordinary allocation problems. Our analysis allows to state that this is
typical when weighted results are compared to ordinary results.

5.1.3 The Always-go-Left version of the greedy algorithm

As noted by Azar et al. no allocation algorithm for a sequential allocation problem
using uniform i-th copy distributions can do better (up to an additive constant) than
the greedy algorithm, no matter which tie breaking mechanism is used. Surprisingly
this is not true for the separated i-th copy distributions defined in Section 5.1.1. In this
case the so-called Always-go-left tie breaking mechanism achieves better performance
than other tie breaking mechanisms for the greedy algorithm. The Always-go-left tie
breaking mechanism is quite simple: in case of a tie, the smallest server (with respect
to ‘<’) is chosen. This allows to obtain an upper bound of

0 (ln lo;g;c N)
instead of
(%) =0 ( log, log eCN)

as achieved by other versions. For large d the difference between the Always-go-left
version and other tie-breaking mechanisms is substantial. This fact was noticed by
Vocking, [V6c99a]. He proves it using a witness tree argument. We state a proof for
his result using our Main Lemma.



5.1 The Sequential Setting 7

To give the witness forest and the representation we recursively define a (7,1, d)-
Fibonacci tree. For T = 0 and any i € {1,...,d}, the (7,4, d)-Fibonacci tree consists
out of a single node. For T' > 0 the root of the (T,i,d)-Fibonacci tree has two child
edges, one edge of size d — called regular child edge — and one edge of size 2 — called
wrreqular child edge. The bottom node of the roots irregular child edge is root of a
(T — 1,4, d)-Fibonacci tree. The j-th bottom node of the regular child edge of v is the
root of a (7, j, d)-Fibonacci tree if j < 7, and it is the root of a (T'—1, j+ 1, d)-Fibonacci
tree otherwise.

A server S € S is said to be in the i-th group, if S € {S(i—l)-%-i—l’ .. .,Si_%}. If a
server is in the i-th group, then only an i-th copy of a job can be S. We claim that
there is a complete explaining representation on a (T + kg, d, d)-Fibonacci tree, if there
is a server S in the d-th group having load T’ > T + kg, at the end of some round 7.

Let v be the root of a (7),14,d)-Fibonacci tree, let the time marker of v be 7, and
assume that S = server(v) is in the i-th group and has load, (server(v)) > T. Let the
bottom node v' of the irregular child edge of v have time marker 7 and let it represent
server S. The node v’ is the root of a (T — 1,4, d)-Fibonacci tree, and it represents a
server of the i-th group with load at least 7' — 1 at the end of the round indicated by
its time marker. Let J € J%* be the last job allocated to S = server(v) before or in
round 7. Then let the regular child edge e of v represent job J, and let label.(v) = i.
Let the j-th bottom node v; of e represent server SUabele(i))((J), If j < i then v; is the
root of a (T, j, d)-Fibonacci tree and the load of server(v;) at the end of round 6(J) — 1
is at least 7. If j > 4, the load of server(v;) is at least T'— 1 and v; is the root of a
(T'—1,j+1,d)-Fibonacci tree. Applying this construction recursively yields a complete
explaining representation on Gryee.

We identify the upmost kg, nodes in the irregular component of the root of Gryee
and call the resulting tree G%;f;e The representation defined above is called Ryeg- Riett
is a complete explaining representation on G, Tt uses a (N, %, (%)_1, M, 1,1)-vivid
system. Let g be defined as in Theorem 5.1.4. If there is a server S in the d-th group
with load T’ > T + kg, + 1 + g, each node of G5 fulfills

load, (server(v)) > g, for 7 = min{d(job(e))} — 1.

esv

Thus according to Lemma 5.1.2 there is a (N, %, (%)’1, M, 1, u=)-vivid system used

by Rierr- To apply the Main Lemma, it remains to determine the size of the level 1
subtrees of GEft.

If 54(T - d + i) denotes the number of nodes in a (7,4, d)-Fibonacci tree, we have
s(j) = 1, for any j € {1,...,d}. For j > d, a (|%],(j mod d),d)-Fibonacci tree
contains

sa(j) = sa(l)

I=j—d
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nodes. The sequence (s9)y is the well-known sequence of Fibonacci numbers. As in
[V6c99a] let ¢g = limg_y ¥/s4(k). Then ¢, is the inverse value of the golden ratio, see
e.g. [Knu98]. According to [V6c99a] we further have ¢4 > 2(4=1/4 hence d - In ¢g >
(d—1)-In2.

The size of a (T, i, d)-Fibonacci tree is at least (e5-¢q)” @™ for any €, < 1 and T-d+1
large enough. The smallest level 1 subtree of G a (T — kg, — 1,1, d)-Fibonacci tree,
has

(6¢ . ¢d)(T—kGr—1)-d+1

nodes. Thus G is a (1,kar - (d — 1) + 1, (€4 - ¢q) T For=Dd+ ¢ d) witness forest.
Summarizing we have

Theorem 5.1.8: Consider an allocation problem using separated i-th copy distribu-
tions. Assume that the preconditions of Theorem 5.1.4 are fulfilled, let €4 < 1, let N
be large enough and let

_ 1 M
T"> —————-Inlog_ N in{5.275+ 1,d D) —+ka+2+o0(1
> Tntes ) nlog, N + (min{ +2,d} +0(1)) T Rar+ +0o(1)
Then for any round 7 the Always-go-left version of the greedy algorithm ensures that
the system has load at most 7" at the end of round 7, with probability at least 1 — N ~¢.

Theorem 5.1.8 almost coincides with Theorem 3 in [V6c99a).

5.2 The Parallel Setting

The parallel setting is more complicated than the sequential setting. Not only that
we have to consider two different allocation algorithms, comparing performance also
involves a new parameter, the number of rounds used to allocate the jobs. In the parallel
setting a job agent can benefit from using multiple communication rounds, as they may
help to determine the possible servers of other jobs. Using multiple communication
rounds allows jobs to coordinate their decisions, which is impossible in the sequential
setting. Besides the load of an allocation, the number of rounds used to determine the
allocation is therefore an important measure in comparing the performance of parallel
allocation algorithms. Our results show up a tradeoff between load and time: allowing
more communication rounds allows better load.

5.2.1 The c-priority algorithm

The c-priority algorithm is introduced in [KLM92], it is the first algorithm presented
in the literature for the parallel setting. We present it in Figure 5.1. The c-priority
algorithm is outperformed by the c-collision algorithm, which achieves better load than
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For all J € J do in parallel
agent(.J) becomes active.
T7:=0

While there is at least one active job agent do (1)
T =741
(This run trough the Loop (1) is called round 7.)

For all J € J do in parallel
For j € {1,2,...,d} do (2)
If agent(J) is active,
agent(J) sends a (J, j,7)-request to server agent agent(SU)(J)).

For all S € S do in parallel
The agent(S) chooses the ¢ (-, -, 7)-requests with highest (3)
priority and sends an (S)-acknowledgment to each of them
(Theses requests are said to be chosen for acceptance.
The other requests are said to be rejected.)

For all J € J do in parallel
If for some S € S the agent(.J) receives an (S)-acknowledgment,  (4)
agent(J) becomes inactive,
agent(J) allocates J to server S

Fig. 5.1: The c-priority Algorithm

the c-priority algorithm using approximately the same running time. But in contrast
to the c-collision algorithm the c-priority algorithm also suits for infinite settings.

We distinguish different versions of the c-priority algorithm by different priority
rules used in step (3). Priority rules are given by orderings kg, on J x {1,...,d}. In
round 7 server S prefers Request (J, j) to request (J', ') if (J,7) Fsr (J',5'). A special
instance of the c-priority algorithm is the c-arbitrary algorithm which uses no specific
priority rule at all. In the c-arbitrary algorithm the ¢ requests chosen for acceptance
in Round (3) are chosen arbitrarily by an adversary. Thus no priority rule for the c-
priority algorithm performs worse than the c-arbitrary algorithm. If in step (4) of the
c-collision algorithm a job agent receives acknowledgments from more than one server,
a tie breaking mechanism is employed — just like for the greedy algorithm. As for the
c-collision algorithm there are versions of the c-priority algorithm and the c-arbitrary
algorithm which assume that the Loop (2) is the outmost loop (cf. to Figures 5.5 and
1.1). We call these versions separated versions of the c-priority algorithm or c-arbitrary
algorithm.

The weighted counterpart of the c-priority algorithm is defined by choosing a slightly
different description for step (3). In the weighted version step (3) is replaced by

The agent(S) selects requests of the highest priority until their total weight is
cw at least, and sends a (S)-acknowledgment to each selected job.
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Note that the weighted version of the c-priority algorithm is just a generalization of the
ordinary one. If the weighted version acts on an allocation problem with unit weight
jobs, it acts exactly like its ordinary counterpart.

In the case ¢ = 1 the ordinary c-priority algorithm is akin to the greedy algorithm.
For particular priority rules both algorithms even yield the same allocation, if a job
is allocated to both servers in case of tie. For that assume that the priority rule is
given by a single ordering = for each server S and each round 7. Then the allocation
obtained by the 1-priority algorithm is the same as the one obtained by the greedy
algorithm if 6(J) < 6(J') < J + J'. For general priority rules and for larger values of ¢,
however, there is no such tight relation between the greedy algorithm and the c-priority
algorithm. We analyze the c-priority algorithm using the witness tree technique. When
we establish the existence of the representation on the witness tree, we consider the
weighted version of the greedy algorithm. The ordinary version is then just a special
case of the weighted one.

5.2.1.1 The representation for the c-priority algorithm

Consider the weighted version of the c-priority algorithm working on an allocation
problem. Assume that each priority rule g, ensures that (J,7) ks, (J',5') whenever
d(J) < 6(J"), thus new jobs are never preferred to old ones. We call such a priority
rule time preserving. Fix a round 7 and fix the possible servers of the jobs. A server
is said to be 7'-active in round T, if in round 7 it rejects requests issued by jobs with
entry time 7' or earlier. Let T’ € N. Assume that in round 7 there is a (7 — T')-active
server S. Let Gy, be a tree of height T < T'. Let each inner node of G%;, have one
child edge of size 2 — called wrreqular child edge — and at least c, child edges of size d
— called regular child edges. We show how to obtain a cy-fat complete explaining
representation on G%... Let the root v of G%, represent server S and let the time
marker of v be 7. As S is (7 — T')-active, in round 7 server S rejects a job J with
§(JJ)< 7T

Next consider an inner node v of G}, and assume that v has time marker 7 and
represents some server S. Assume further that server S is (7 — T")-active in round 7.
We show how to define a representation for the regular child edges and the children
of v. Server S accepts some requests (Ji,71) < -+ < (Jg,jx) in round 7. The total
weight of jobs Ji,...,Jy € J>* is at least c,, thus k > ¢,. Let v have k regular child
edges e, ..., e, let edge e; represent job J;, and let label,, (v) = j;, for each i. For each
bottom node v’ of each regular child edge e of v let server(v') = S2bele(*) (job(e)) and
let the time marker of v’ be 7 — 1. For the bottom node v” of the irregular child of v let
server(v"”) = S and let its time marker be 7 — 1. Now each child of v represents a server
being (7 — T')-active in round 7. Applying the construction recursively yields a cy-
fat complete explaining representation on @%ee. The leaves of @?ﬁee represent servers
being (7 — T')-active in round 7 — T. If the considered allocation problem is ordinary,
the inner nodes of G, have exactly c, regular child edges, each. The constructed
representation uses the natural vivid system for round 7.
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Lemma 5.2.1: Let ¢ < ¢,. Let 7 be a round, let 7 < 7", and let el = c- Z *le(d —
1)]*. Consider the c-priority algorithm using time preserving priority rules Worklng on
a weighted allocation problem. If at the end of round 7 the system contains m servers
being (7 — T")-active, then there is a c,-fat complete explaining representation using
the natural vivid system for round 7 on a weighted (m, c(d—1), el , ¢, d) witness forest.
In round 7 — T each server in the representation accepts a job generated in round 7 — T

or earlier.

Proof:  Let Gh . have height T. According to the discussion above, there is a cy-fat
complete explaining representation on the tree G%Qe if there is a (7 — T)-active server
in round 7. However G, is not a weighted witness tree as it is not d-uniform. Let
G2 be the subtree of GY, induced by the nodes of G¥,, which are neither a bottom
node of an irregular edge nor are successors of such a bottom node. As the irregular
edges do not represent jobs, the representation is still c,-fat and complete explaining
on Gin.. m of Lemma 5.2.1

Lemma 5.2. 2' Let k,, € N and ¢ = cy. Let 7 be a round, T <T — kpe, and let

e =c-Y7 *le(d— 1)+ 1]. Consider the c-priority algorithm using time preserving
priority rules worklng on an ordinary allocation problem. If at the end of round 7 there
are m (7 — T')-active servers, then there is a complete explaining representation using
the natural vivid system for round 7 on a (m, kyr - ¢(d — 1)+ 1, €l ¢, d) witness forest.
In round 7 — (T+kpr) each server in the representation accepts a job generated in round
7 —T' or earlier.

Proof: Let é%ee have height T + ky,. We identify the upmost k,, nodes in the
irregular component of the root of GTree and call the resulting tree Gryee- The root of
Gree has ky, regular child edges, thus Gryee is a (kp - ¢(d — 1) + 1, €l , ¢, d)-witness
tree. If the considered allocation problem is ordinary each inner node of CjIT’;ee has
exactly ¢ = ¢y regular child edges, thus G%, ., is uniquely determined by its height.
m of Lemma 5.2.2

5.2.1.2 The finite setting

In the finite setting we have §(J) = 1 for all jobs J € J. This implies that any priority
rule is time preserving.

Theorem 5.2.3: Let ¢, = (c!)¢ - 3%1. Consider the c-priority algorithm working on an
ordinary allocation problem in the finite setting with M € N jobs. Assume that the
1-th copy distributions of the allocation problem have stupidity o=. Then after

_ N 1 M
T" = logje(q1)+1) log, ™ + o (d+0(1)) - — -0z + kpr +3+0(1)

N

rounds there are less than m 1-active servers, with probability at least 1 — N~%, for
<35 (kpr-o(d—1) +1), kyr - c(d—1) > 2, and ¥ large enough.
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Proof: ~ The theorem is an immediate consequence of a more general lemma.

Lemma 5.2.4: Let 7 be around. Consider the c-priority algorithm with time preserving
priority rules working on an ordinary allocation problem in the infinite setting. Then
for T = 10g,py 17,1 l0g., X +2+0(1), any Ty, > Ts > T + ke + (d+0(1)) - é‘/[—A', co=z+0(1)
and M' = (Ty, — Ts) - M it holds

Assume that at the end of round 7 — 75 the system does not contain any
job J with §(J) < 7 — T1,. Then at the end of round 7 there are less than
m servers being (7 — Ts)-active.

with probability at least 1 — N, for v < &5 - (kpr - ¢(d — 1) + 1)

Proof: According to Lemma 5.2.2 there is a complete explaining representation R,
on Ghy s if there are m servers being (7 — Ts)-active at the end of some round 7. The
representation uses the natural vivid system for round 7.

The assumption that the system contains no job J with §(J) < 7 — 7, in round
T — T, ensures that all jobs appearing in the representation R, are generated between
round 7 — 71, and round 7 — Ts. We call such jobs well-timed. There are at most
(T, —Ts) - M well-timed jobs, thus the vivid sets of the edges can be reduced to size at
most M’ = (T, — Ts) - M. Using this bound on the size of the vivid sets of the edges,

we apply a similar argument as the one applied in Lemma 5.1.2.

For 1 = (3-(N-p=)-(M'-p=-dL)) we show how to obtain a (N, NL, p=, M, d, p)-vivid
system used by R,.. According to Lemma 5.2.2 in round 7 — (T + k,,) each server S
occuring in the representation accepts a job J. Job J waits for Ts — (T + k) rounds to
be accepted by S, thus S accepts ¢« (Ts — (T + kyr)) jobs before J is accepted. All these
requests are accepted before round Ts — (T + ky,r), thus S gets at least ¢+ (Ts — (T + kpr))
requests besides the ones occuring in the representation. For each node v let vividep,(v)
be the event “server(v) receives at least c- (Ts — (T + kyr)) requests issued by well-timed
jobs not appearing in R,”. This definition assures that the vivid event for a node does

not depend stochastically on the fact that R, is explaining.
We have Ts — (T + kpr) = (d + o(1)) - 2& - 0=. Consider a node v. The probability
that server S = server(v) receives more than

M,'pE'dlE+3",MI'pE'dlE'ln(3'N'pE'M,'pE'd,E)

requests from well-timed jobs not occuring in the representation is at most

e~ M@ Np=-M'p=dy) _ 3. . pe- M pz-dz=p,

Q
1

according to a Chernoff Bound from Lemma 2.2.1. Thus Prob[vivide, (v)] < p. As
a request sent to a server S’ # S cannot be sent to S, the event vivide(v) is not
stochastically independent from

E= /\ vividep (w).

wWE Vserver
server(w)#server(v)
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But for the same reason, this dependency only decreases the probability for vivide(v)
being fulfilled, thus

Prob[vivide,, (v)] > Prob[vivide,(v) ‘8 |
= Prob[vivide,(v) | “Ror is explaining 7 A £].

The trees in the witness forest have height T = logj,4_1)41) 108, & +2+0(1). Thus
the preconditions on the Main Lemma (Lemma 3.2.6) are met, which yields the desired
result.

The event “at the end of round 7 — T5 the system does not contain any job J with
d(J) < 7 =Ty is stochastically independent of the possible servers of any job with
entry time later than 7 — 7T’, and vice versa, as the priority rule is time preserving.

m of Lemma 5.2.4

Theorem 5.2.3 is an immediate consequence of the lemma for 7 =T, Ts = 7 — 1, and
T, =r. m of Theorem 5.2.3

Theorem 5.2.3 only considers the number of rounds used to compute an allocation.
The load of the allocation is not considered. The c-priority algorithm shows however
a tight relation between the number of rounds used to compute an allocation and its
load. As in each round at most ¢ jobs are allocated to a particular server, the load of
an allocation is at most ¢ times the number of rounds used to compute it. Thus under
the preconditions of Theorem 5.2.3, the load is at most

_ M
T = ln(C(dfl)+1) -Inlog,, N + (d + o(1)) - AR + ¢ (kpr + 3+ 0(1)).

It is easy to see, that while the number of rounds used to compute an allocation decreases
with increasing c, the load increases. Very large values of ¢ allow to obtain an allocation

very fast. If M = N and o= = 1, choosing ¢ = 7/ —%X_ vields an allocation in T+0(1)

loglog N
rounds, with high probability. The allocation has load ("4 O(1)) - {/ log’lgog ~- For

constant values of 7', this behavior matches the lower bounds for the parallel setting of
the allocation problem. It would be easy to convert the result for the finite setting to
infinite settings using oblivious deletion schemes as in Section 5.1.

Compared with the previously known results found in [KLM92] and [ACMR95],
our result is much broader. The result on the c-priority algorithm from [ACMR95]
is restricted to uniform i-th copy distributions and M = N, but does not gain more
accuracy from this restriction. In this special case covered by the result from [ACMR95],
our result almost differs only in the additive part. The c-priority algorithm considered
by Karp et al. is the separated c-priority algorithm mentioned on Page 5.2.1. It assumes
that in each round 7 each server agent accepts up to ¢ (-, j,7)-requests, for each j €
{1,...,d}. Hence up to d- c requests are accepted by a particular server in each round.
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We call this version of the c-priority algorithm the separated version of the c-priority
algorithm. To compare our result with theirs, consider the c-arbitrary algorithm working
on an allocation problem with d- N servers using the separated i-th copy distributions. If
after the allocation algorithm terminated the servers S; with ¢ mod N = k are identified
for each k, the resulting allocation is at most worse than the one obtained by applying
the separated version of the c-priority algorithm to the corresponding allocation problem
on N servers.

Theorem 5.2.5: Let ¢, = (¢!)z - 3971+ (1 ++/3)~, assume that ¢, fulfills ¢y > 5-c+1,

and ¢, 2—% ‘In(1 — € ﬁ) + 1. Consider the c,-priority algorithm with time preserving
priority rules working on a weighted allocation problem in the finite setting with jobs
of weight M. Assume that the i-th copy distributions of the allocation problem have
stupidity o=. Then after

= N 1 M
T, =1 1 J— — - (d 1)) — - o= 3 1
08lo(a—1)) 108, — + — - (d+0(1)) - -0z +3+0(1)
rounds all but less than m jobs are allocated to a server, with probability at least
1— N for
1
<—e(d—-1
@< 135 c¢(d—1) and
c(d—1) > 3.

Proof: ~ The proof for the weighted case is almost the same as the one for the ordinary
case. We use a weighted version of Lemma 5.2.4 presented in Lemma 5.2.6. The lemma
is proven using the generalized Chernoff Bound from Lemma 2.2.2 and the Main Lemma
for weighted jobs (Lemma 4.3.3). m of Theorem 5.2.5

Lemma 5.2.6: Let 7 be around. Consider the c-priority algorithm with time preserving
priority rules working on a weighted allocation problem in the infinite setting. Then
using, €, from the theorem above, for ' = log,4_y;log,, N +2 +o(1), any 71, > Ts >

T+ kpe + (d+0(1)) - ™' . 6= and M’ = (Ty, — Ts) - M it holds
Assume that at the end of round 7 — Ts the system does not contain any
job J with §(J) < 7 — T1,. Then at the end of round 7 there are less than

m servers being (7 — Ts)-active.

with probability at least 1 — N~ ¢, for a < %2 cc(d—1).

Theorem 5.2.5 is the first result for the performance of the weighted version of the
c-priority algorithm in the finite setting. Most things mentioned in appreciation of
the result for the ordinary case also hold for the weighted setting. In particular the
correlation between the amount of communication and the obtained load is — up to a
constant factor — the same. Compared with its ordinary counterpart Theorem 5.2.5
looses up to a factor of %, corresponding to reduction of the degree of the
witness trees inner nodes, which drops from at least ¢, + 1 to ¢ + 1 when the weighted
witness forest is converted to an ordinary one.
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5.2.1.3 The infinite setting

The c-priority algorithm in the finite setting gained much attraction from PRAM-
Simulations. Other applications, such as the VoD example are better modeled using an
infinite setting. The oblivious deletion schemes as considered in Section 5.1 do, however,
not cover real world situations very well. Oblivious deletion schemes would correspond
to situations where server speed increases with the load of a server — a fairly unrealistic
assumption. A better model should assume that server speed is independent from the
number of jobs allocated to a server. This requires to consider a non-oblivious deletion
scheme.

We assume that in each round M jobs enter the system, and each server can delete
up to ¢ jobs allocated to it. We call this deletion scheme the server oriented deletion
scheme. Using this deletion scheme the number of jobs in the system is not bounded,
the same holds for the number of rounds a job stays in the system. On the other hand
this deletion scheme is more realistic than the oblivious deletion schemes considered in
the sequential setting. The server oriented deletion scheme assumes that each server is
able to perform c tasks per round — a far more realistic scenario than any oblivious
deletion scheme. Moreover oblivious deletion schemes do not make any sense at all if
the decision where to allocate a job can be deferred. In this case a job may be deleted
from the system before it is allocated to a server.

In [ABS98| we present a modified witness tree argument to deal with the possibly
unbounded number of jobs in the system. In this thesis we present a new approach which
allows to employ our Main Lemma (Lemma 3.2.6) and further allows a generalization
to the weighted setting. Our aim is to prove the following result.

Theorem 5.2.7: Let 7 be a round. Let ¢, = (c!)¢ - 3¢, and let 0 < o < = (kpe -
c[d — 1]+ 1). Further let > 1. Consider the c-priority algorithm with time preserving
priority rules working on an ordinary allocation problem in the infinite setting using
the server oriented deletion scheme. Then at the end of round 7 there is no job waiting
more than

n- (logc[d—1]+1 log, N + kpr)
rounds for being allocated to a server, with probability at least 1 — N—Fto() if
M < min {3-Va+1)1- % —o(1)}-[(d+o0(1))-0=] " -c- N.

Proof: =~ We prove Theorem 5.2.7 by induction using Lemma 5.2.4. To avoid repetition
we state the weighted version of the theorem without proof afterwards. The proof for
the weighted case is almost the same as the one for the ordinary case.

Let T and M' be defined as in Lemma 5.2.4. Further let
T() = 0
T1 =n- (T+kpr)
Tiv1=T;+1 fori > 1.
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Now assume that for some 7 > 0 at the end of round 7 — Z;j)

with 6(J) < 7 — 32070 T;. Then for

T; there are no jobs J

M<ec-N-[(d+0(1)-0z] "

Lemma 5.2.4 assures that there are no (7 — Z?LBTJ-)—active jobs at the end of round
_ i
T = ijo T;.

To check the preconditions of Lemma 5.2.4, let

i
T=T-— E T;
4=0

Ts =Tin
T =T+ Tt

It remains to check that

_ M’
Ts > (T + kyr) + (d + (1) - = - 0=+ O(1),
The right side is equal to
_ M
= (T +kpr) + (d+0(1)) - —% - (Tt = Ts) - 0= + O(),
as 1y —Ts=Ts+1
_ M
= (T +kpr) + (d+0(1) » — 0= (Ts +1) + O(1)
(T + kpr) + O(1) M
=Ts+1)- d 1)) - - 0=
(Ts+1) - g + @+ 0(1) 5 - o2
Thus the condition is fulfilled, if
Ts M

=1-0(1) > (n+o(1)) + (d+0(1)) - 0=

TS —+ 1 C- N
The latter condition is fulfilled according to the condition on M. Thus the preconditions
of Lemma 5.2.4 are fulfilled.

To obtain the theorem it remains to show that there is an ¢ such that the precondi-
tions of Lemma 5.2.4 are fulfilled, i.e. to show that there is an ¢ such that at the end

of round 7 — 3“1 T’ there is no job with entry time 3“2 T} or earlier.
j=0"7J 7j=0"J
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Lemma 5.2.8: Assume that @ > 1. Let M < ¥ .(3-y/a+1+4o0(1))~'. Consider the c-
priority algorithm working on a weighted allocation problem in the infinite setting. Let
7 be a round. At the end of round 7 the system contains no job J with 6(J) < 7—In N,

with probability at least 1 — N~¢.

Proof: =~ We say that a round 7' is S-good, if in round 7' server S accepts all requests
it receives that round. To prove the proposition of the lemma, we show that for each
server S, there is an S-good round after round 7 — In N and before round 7, with
probability at least 1 — N~.

Let S be a server and assume that our assertion is wrong, i.e. assume that 75 <
7 — In N is the last S-good round before round 7. Between rounds 75 and round 7
server S receives requests with weight at least ¢ - (7 — 79). The expected weight of
requests received by S is at most (1 —79) - M - p= - de = (1t — 7o) - (Va+ 1+ o(1)) .
Thus using the generalized Chernoff Bound from Lemma 2.2.2 the probability that S
receives requests with weight at least ¢ - (7 — 79) is at most

e—(a—l—o(l))-(r—m) < e—(a—l—o(l))-lnN) . e—(T—T()—lIlN)
e—1 | N—oe—o(l) . e—(T—T()*lIlN)‘

IN

Summing up over all possible values of 7y shows that the probability that S has no
S-good round between 7 —In N and 7 is at most

el N7 ) e < N7
=0
m of Lemma 5.2.8

The proof of Lemma 5.2.8 makes use of the possible servers of jobs with entry time
after 7 — In N. The real event “at the end of round 7 the system contains no job
with entry time before 7 — In N” does not depend on the possible servers of jobs with
entry time later than 7 — In N. This is due to the fact that the priority rules are time
preserving. The assertion of Lemma 5.2.8 is therefore stochastically independent of the
possible servers of jobs entering the system after round 7 —In N. m of Theorem 5.2.7

Theorem 5.2.9: Let c(d — 1) > 3. Let e, = (c)e -3¢ - (14+v3)™", cp > 5-c+1,
1

e >—2-In(1—¢"),n>1,and let 0 < a < 5 - (c[d — 1]). Consider the weighted
version of the c-priority algorithm with time preserving priority rules working on a
weighted allocation problem in the infinite setting using the server oriented deletion
scheme and time preserving priority rules. Then at the end of round 7 there is no job
waiting more than

n- (logc[dfl] logec N)
rounds for being allocated to a server, with probability at least 1 — N—ato(l)if

M <min{(3-va+1)"", 1= —o(1)}-[(d+0(1)-0z] " ¢y - N.
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For all J € J do in parallel
agent(J) becomes active.
For j € {1,2,...,d} do
agent(JJ) sends a (.J, 5, W(.J))-request to server agent agent(S\7)(.])).

— Ensure that each request has been received —

For all S € S do in parallel (1)
Let #(S) be the weight of the requests received by S

While #(S) > 0 do
If #(5) < e,
then agent(S) sends a (S)-acknowledgment to each
active job agent which sent a request to S.

For each W (.J)-delete received by S let #(S) := #(S) — W(J).

For all J € J do in parallel (2)
While agent(J) is active do
If for some S € S the agent(J) receives a (S)-acknowledgment,
For j € {1,2,...,d} do
Send a W (J)-delete to agent(SY)(J))

Fig. 5.2: The asynchronous version of the c-collision algorithm

5.2.2 The c-collision algorithm revisited

The c-collision algorithm, introduced in [DM93], offers the best performance of all
known allocation algorithms in the finite parallel setting. It allows to obtain almost
optimal load using O(loglog N) rounds. The c-collision algorithm is presented in Fig-
ure 1.1 on Page 22. The major drawback of the c-collision algorithm is that it does not
suit for infinite settings. Actually an infinite version of the c-collision algorithm would
not gain any further improvement over the c-priority algorithm. The key point in the
infinite parallel setting is the number of rounds used to compute an allocation. Accord-
ing to this measure the c-priority algorithm even outperforms the c-collision algorithm
a little bit.

The performance of the c-collision algorithm in the ordinary and the weighted setting
is bounded in Section 3.3.1 and in Section 4.4. These bounds are, however, restricted
to uniform ¢-th copy distributions. We give a generalization to non-uniform ¢-th copy
distributions in the present section. Moreover we consider two alternative formulations
of the c-collision algorithm overcoming some drawbacks of the original.

5.2.2.1 The asynchronous version of the c-collision algorithm

It is easy to see that the respective runs through the “while” loop (1) of the c-collision
algorithm as depicted in Figure 1.1 on Page 22 have to proceed in a strictly synchronous
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manner. The analysis of the c-collision algorithm assumes that all requests of all jobs
are received before step (3) is performed. Otherwise a server agent may wrongly accept
the received requests.

This very strong assumption on the execution of the algorithm is avoided by the
asynchronous version of the c-collision algorithm as presented in Figure 5.2. A first
asynchronous version of the c-collision algorithm was presented by Stemann in [Ste96].
The version presented here is a generalization of his algorithm to the weighted case. If
one assumes that Loops (1) and (2) are performed synchronous, the allocation obtained
by the asynchronous version of the c-collision algorithm is the same as the one obtained
by the basic c-collision algorithm. A special discussion of the asynchronous versions
performance is therefore superfluous.

5.2.2.2 The adaptive collision algorithm

To motivate the adaptive collision algorithm consider the c-collision algorithm allocating
M jobs with unit weights to N servers. Let ¢ = (1 + ¢) - d% for some £ > 0. In the
c-collision algorithm in each round each job sends a request to its possible servers, and
a server S accepts the request of a job if and only if S gets at most ¢ requests. A job
which is not accepted keeps sending requests until it is accepted. Obviously, ¢ has to be
chosen properly in order to make the algorithm work, and proper choice of ¢ requires
knowledge about the number M of jobs. In many applications this number is unknown.
To avoid this problem, assume that the algorithm is executed for all possible values of
¢ simultaneously, i.e. in each round every job sends a request including the values of ¢
for which it is already accepted and each server answers a request with the values of
¢ for which it accepts its requests. This allows to obtain a good allocation by simply
choosing the allocation corresponding to the smallest value of ¢ for which the algorithm
succeeds.

But as there are infinitely many possible values of ¢, this approach would require
an infinite amount of communication. To avoid this, our algorithm operates slightly
different. Each job J keeps track of the smallest value of ¢ for which it has been accepted
in the last round. We call this value ¢(J). At the beginning of each round each job J
sends a request including ¢(J) and its own weight W (J) to each of its possible servers.
Next every server S computes the value ¢(S) as the minimum possible value such that
every job sending a request to S is accepted at S or by another server. For sake of that
S assumes that every other server S’ chooses the same value ¢(S’) (while other servers
may choose and assume different values). Afterwards S answers each request with ¢(.5)
if S assumes the job to be accepted at S. The other requests do not get a reply. A
formal definition of the algorithm is given in Figure 5.2. It remains to state how a
server S computes the value ¢(S) in Step (2) of some round 7. Let Jy, ..., Ji be the jobs
sending a request to S, in an order such that the sequence ¢(.J;), ..., c(J2) is decreasing.
In case of a tie assume that jobs with S, (J) = S are preferred. All remaining ties are
broken with respect to the ordering < on J. We say that job J has rank i at S in
step 7 if J = J;. Now let ¢(S) = S2'_, W (J;) where [ is the smallest number such that
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| W(J) | ¢(J) | rank | accepted | reply = ¢(9) |

2 10 1 yes 7
2 9 2 yes 7
1 7| 3 yes 7
2 6| 4 no no reply
1 2| 5 no no reply

Fig. 5.3: The server chooses ¢(S) = 6. The last column contains the values replied to the
jobs. (For simplicity we use weights from N rather than real values from [0, 1] as
assumed in the definition of the allocation problem).

Zizo W(J;) > e(Jiz1). The jobs Ji,...,J; are accepted by S. Figure 5.3 contains an
example.

We call the adaptive collision algorithm a version of the c-collision algorithm as both
algorithms are tightly related. If the c-collision algorithm and the adaptive collision
algorithm work on the same allocation problem with the same possible servers for
the jobs and the c-collision algorithm is terminated after 7 rounds, then the adaptive
collision algorithm obtains load at most c¢. The two different algorithms address the
tradeoff between the number of rounds used and the load of the obtained allocation
from two different sides: the c-collision algorithm targets a fixed load and uses as many
rounds as it takes to obtain that load, while the adaptive collision algorithm targets a
fixed number of rounds accepting whatever load it achieves.

Lemma 5.2.10: Assume that the adaptive collision algorithm and the c-collision algo-
rithm work on the same allocation problem with the same possible servers for the jobs.
Assume further that all jobs are inactive after 7 rounds of the c-collision algorithm.
Then the load obtained by the adaptive collision algorithm with 7 = 7 rounds is at
most c.

Proof: =~ We first prove the following claim.

In each round each job gets at least one reply.

We show by induction that in round 7 each job J receives a reply from server
S;—1(J) and that the value ¢(J) does not increase during round 7. In the
first round each server S accepts all jobs sending a request to S. For the
induction step assume that the proposition is true for all rounds 1 < 7/ < 7
and all jobs. Let S = S;_1(J). Then J receives a reply from S in round
7 — 1. The rank of J at S in step 7 is not smaller than the rank of J at S
in step 7 — 1 as the value ¢(J') does not increase for any job J' during round
7 —1. Thus if S accepts J in round 7 — 1, it also accepts J in round 7. This
also assures that the value ¢(J) does not increase during round 7.
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For all J € J do in parallel
So(J) := SM(J)
c(J) =00
agent(.J) becomes active.

For 7 from 1 to 7 do (1)
For all J € J do in parallel
For all j € {1,...,d} do
send a (J, 7, W(J),c(J), S;(J))-request to S (.J)
For all S € S do in parallel
compute ¢(S5) (2)
send a (¢(S), 7)-reply to each accepted job
Forall J € J do
Let ¢(.J) be the minimum value, such that J received a (¢(J), 7)-reply
Let S;(J) be a server sending a (¢(J), T)-reply

For all J € J do
Allocate job J to server S:(J)

Fig. 5.4: The adaptive collision algorithm

The weight of the jobs receiving a reply from S is at most ¢(S). If ¢/(S) is the value of
c(S) at the end of round 7, then load(S) < ¢(S).

It now remains to prove that at the end of round 7 each job has ¢(J) < ¢, if the
preconditions of the Lemma are fulfilled. The proof is done by induction on the number
of rounds. We show that a job J being inactive at the end of round 7 of the c-collision
algorithm has ¢(J) < ¢ after round 7 of the adaptive collision algorithm.

7 =1: No job is inactive at the beginning of round 1 of the c-collision algorithm.

T—1—> 71!
Consider a job J being inactive at the beginning of round 1 of the c-collision
algorithm. If the job becomes inactive in round 7" < 7 — 1, then ¢(J) < c at
the end of round 7' according to the induction hypothesis and ¢(J) < ¢ at
the beginning of round 7 as the ¢(J) do not increase.

Thus, assume that J becomes inactive in round ¢t —1. W.l.o.g. we assume
that J gets an accept message from S = S (J) in the c-collision algorithm.
Then S accepts all its requests in round 7 — 1. Thus, the weight of the
requests sent to S during round 7 — 1 of the c-collision algorithm is at most
c. Due to the induction hypothesis the weight of jobs J sending a request
with ¢(J) > ¢ is at most ¢. Thus ¢(J) < ¢(S) < ¢ at the end of round 7.

m of Lemma 5.2.10
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5.2.2.3 The c-collision algorithm and its variants on arbitrary :-th copy
distributions

For all previous algorithms, we have considered their performance on allocation prob-
lems with arbitrary i-th copy distributions. In each case we have seen that choice of
the i-th copy distributions only affects the additive constant of the performance bound.
This is different for the c-collision algorithm. The choice of the i-th copy distributions
can directly affect the possibilities for distribution of the jobs. For instance consider
i-th copy distributions which distribute all copies uniformly on % servers. These i-th
copy distributions have stupidity a and a lower bound for the load of any allocation is
a - % Thus the choice of the i-th copy distributions affects the possibilities to choose
the parameter ¢, which strongly affects the performance of the c-collision algorithm.
Our upper bound suffers a little bit more than necessary from poor choice of the i-th
copy distributions, as it involves an extra factor (NL - p=z)¢ L. This factor is only due to
simplifications made in Lemma 3.4.4.

Theorem 5.2.11: Consider an ordinary allocation problem using ¢-th copy distributions
with stupidity o=. Let ¢ € N, such that

. c! 1
b=l D@=1) 23, ()= g ey T b ades< b

SIS

Let further m € N and
T > 1o lo + 2+ 0o(1)
= 108,(4—1) 108, m :

Then if N/m is large enough, there are less than m servers whose agent is active at
the end of round 7' of the c-collision algorithm, with probability at least 1 — N~¢. In
particular no server agent is active after

log(4-1ylog,, (N) + 2+ o(1)
rounds, with high probability, if N is large enough.

Proof: As the representation constructed in Section 3.1.1 uses the natural vivid
system, it also uses the =-vivid system. The theorem is then a simple consequence of
the Main Lemma (Lemma 3.2.6). m of Theorem 5.2.11

To demonstrate the accuracy of our results it is worth to compare the minimum
number of copies d and the minimum value of ¢ required for the analysis to work. The
strongest result with respect to this measure is the result from [MSS95, MSS96]. Un-
fortunately this result deals with a slightly different version of the c-collision algorithm.
They deal with the separated version of the c-collision algorithm given in Figure 5.5.
The main difference between the c-collision algorithm and its separated version is that
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For all J € J do in parallel
agent(.J) becomes active.

T7:=0

While there is at least one active job agent do (1)
Ti=7+4+1
For j € {1,2,...,d} do (2)

For all J € J do in parallel
If agent(J) is active,
agent(.J) sends a (., 7, 7)-request to server agent agent(SU)(.J)).

For all S € S do in parallel
If agent(S) receives at most ¢ (-, j, 7)-requests, (3)
agent(S) sends a (.S)-acknowledgment to each job agent
which sent a (-, j, 7)-request to S.
(In this case agent(.S) is said to accept its j-requests.)

For all J € J do in parallel
If for some S € S the agent(J) receives a (S)-acknowledgment, (4)
agent(J) becomes inactive,
agent(J) allocates J to server S.

Fig. 5.5: The separated version of the c-collision Algorithm

the Loop (2) becomes the outmost loop of a round. As a consequence, a (-, 7, -)-request
cannot get in conflict with a (-, j',)-request, if j # j'. For each j € {1,...,d} a
server can j-accept its requests, thus the load of the separated version of the c-collision
algorithm is at most ¢ - d. The result from [MSS95, MSS96] considers the separated
c-collision algorithm on an allocation problem with N -d servers and separated ¢-th copy
distributions.

A performance bound for the separated version of the c-collision algorithm is easily
obtained using our techniques. The only thing to do is to set up a representation on the
witness forest G&L . For sake of this discussion we simply note that the performance
bound from Corollary 3.3.1 also holds for the separated c-collision algorithm. The result
from [MSS95, MSS96| deals with an allocation problem using N - d servers and uniform
i-th copy distributions.

The first difference between the result from [MSS96] and ours is that our conditions
on ¢ and d are weaker than theirs. While for ¢ = 1 it suffices to choose d = 3 in our case,
their result requires d = 4. For larger values of ¢ choosing d > 2 suffices in both cases.
To compare the bounds on the minimum possible value of ¢, consider an allocation
problem with NN - d servers. Our bound allows to choose ¢ = 1 as long as & < (1 —¢)
for an arbitrary £ > 0. The bound from [MSS95, MSS96] requires % < % in the same
setting. Moreover their result is restricted to % <1.






6 An Application of the Balls-Into-Bins
Paradigm to Routing

This chapter goes beyond the capabilities of the Main Lemma. It deals with an ap-
plication of the balls-into-bins paradigm to circuit switching on multistage networks
related to the popular butterfly network. We devise algorithms that route messages by
constructing circuits (or paths) for the messages with small congestion, dilation, and
setup time.

6.1 Introduction

Underlying every parallel computer is a network that delivers messages between pro-
cessors or between processors and memory modules. Similar networks are found in the
switches that route telephone calls and internet traffic. Typically, a message is sent
from its input node (source) to its output node (destination) via a path in the network.
Methods for routing messages include circuit-switching, store-and-forward routing, and
wormhole routing. With circuit switching, each message must first lock down (i.e.,
reserve) a path (i.e., circuit) in the network from its input node to its output node.
The path is then used to transmit the message through the network. This differs from
store-and-forward routing and worm-hole routing where paths are not reserved before
transmission.

Circuit-switching has enjoyed widespread popularity since its early use in telephony
and subsequently in the design of parallel computers. Recent trends in network design
emphasize the need for providing quality of service (QoS) guarantees for communication.
To provide guarantees as opposed to just best-effort service, network resources must
be reserved before communication begins. Consequently, several modern high-speed
multimedia switches and ATMs reserve a (virtual) circuit through the network for each
communication request [RCM94, TY97].

6.1.1 Circuit routing algorithms and their performance

In a circuit-switched network, a message arrives requesting a path from its source to
its destination. A routing algorithm determines which of many possible paths is locked
down for each message. We measure the performance of a routing algorithm in terms
of three parameters: congestion, dilation, and setup time.
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Congestion and dilation are properties of the paths locked down for the messages by
the routing algorithm. The congestion of a set of paths is defined to be the maximum
number of paths that pass through any link in the network. Congestion is a measure
of the maximum number of paths that must be simultaneously supported by a link
of the network, and hence determines the bandwidth that a link should possess. The
dilation of a set of paths is defined to be the maximum length of a path in the set.
Dilation is a measure of maximum distance (in links) that a message must travel to
reach its destination. Finally, the setup time is the time taken by the routing algorithm
to allocate paths through the network. This is the time overhead involved in path
selection before the actual message transmissions begin. The goal of this section is to
devise routing algorithms with small congestion, dilation, and setup time.

6.1.2 Network and problem definitions

The results in this section apply to variants of a popular type of multi-stage inter-
connection network called the butterfly network. Butterfly networks and its variants
have been widely used for packet routing in a number of commercial and experimental
networks [Got87, Nak91, PBG'87]. More recently, several proposed designs for the
switching fabric of scalable high-speed ATM networks use the butterfly and its variants
for routing virtual circuits [RCM94, TY97].

We define an N-input butterfly network By as follows. An N-input butterfly has
N(log N + 1) nodes arranged in log N + 1 levels of N nodes each.! An example of an
N-input butterfly (N = 8) with depth log N (log N = 3) is shown in Figure 6.1. Each
node has a distinct label (w,7) where i is the level of the node (0 < ¢ < log N) and
W = WiWy . .. Wieg n 15 a log N-bit binary number that denotes the row of the node. All
nodes of the form (w, i), 0 < i < log N, are said to belong to row w. Two nodes (w, 7)
and (w',4) are linked by an edge if i' = ¢ + 1 and either w and w' are identical or w
and w' differ only in the bit in position . (The bit positions are numbered 1 through
log N.) We call the first type of edge a straight edge and the second a cross edge. The
nodes on level 0 are called the inputs of the network, and the nodes on level log N are
called the outputs. Sometimes the level 0 node in each row is identified with the level
log N node in the same row. In this case, the butterfly By is said to wrap around.

We define a randomly-wired butterfly RBy as follows. Network RBy has the same
set of nodes and edges as By, except that the cross edges incident on the input nodes of
RBy are permuted randomly according to the following rule. Let D = log N Each node
(wy ... wp,0) of RBy is connected by a cross edge to node {(w] ... w', 1) if and only if
wy # wi and oy, (we ... wp) = wh ... wh, where oy and oy are random permutations of
the set of (log N — 1)-bit numbers.

We define a two-fold butterfly BBy as follows. Network BBy consists of two copies
of By placed one after the other such that each output node in the first copy is identified
with the corresponding input node of the second copy with the same row number. Note

! Throughout this section we use log N to denote log, N.
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Fig. 6.1: An 8-input butterfly network.

that BBy is a multistage network with N rows and 2log N + 1 levels. The nodes in
level 0 are called the inputs of BBy and the nodes in level 2log N are called the outputs
of BBy. Also, observe that a routing algorithm on BBy can be simulated by making
two passes through a butterfly By that wraps around.

It is important to contrast the BBy network with another common variant of the
butterfly, the Benes network. An N-node Benes network consists of two copies of By
placed “back-to-back” such that each output node of the first copy is identified with
the corresponding output node of the second copy.

In this section, we study a canonical circuit routing problem that is known as the
permutation routing problem. In a permutation routing problem at most one message
originates at each input of the network and at most one message is destined for each
output of the network.

We distinguish two kinds of permutation routing problems: static and dynamic. In
a static problem, all the messages that constitute a permutation routing problem are
present at time 0, before the routing begins. The routing algorithm constructs paths for
all the messages in a “batch” mode. All the messages are delivered to their respective
destinations before the routing of the next batch of messages begins. In contrast, in a
dynamic problem, messages are injected or deleted one by one. The routing algorithm
routes a path for each injected message in an on-line fashion with no knowledge of
future message arrivals. We assume that at any time, the messages being routed form
a partial permutation; that is, each input and output node correspond to at most one
routed message.

6.1.3 Previous work

There are several different sub-areas of research that relate to our work. We provide a
summary of the most relevant.
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Routing in Butterfly Networks. There is a vast literature on routing in butterfly
networks [Lei92, Lei92b]. Much of the early work focuses on store-and-forward routing
[LMRRY4, Pip84, Ran91, Val82, Val81].

More recently, there has been progress in analyzing wormhole routing algorithms
[CMS96, CMSV96, FRU92, RSW94]. Since we present no new results in these two
routing methods, we focus only on the butterfly circuit-switching literature.

In two early papers, Beizer [Bei62] and Benes [Ben64] showed that any static per-
mutation routing problem can be routed with congestion 1 and dilation 2log N on
an N-input Bene§ network. Subsequently, Waksman [Wak68] provided an elegant al-
gorithm that takes O(Nlog N) time to determine all the paths, but requires global
knowledge of the source and destination of all the messages. Later, Nassimi and Sahni
[NS82] showed how to implement Waksman’s algorithm in parallel on the Benes and re-
lated networks in time O(log4 N). However, their algorithm is complex and requires the
Benes network to emulate a complete network by executing a series of sorting routines.

Although the Benes network and the BBy are closely related in structure, it is a
long-standing open problem whether or not it is possible to route an arbitrary permu-
tation routing problem in an offline fashion with congestion 1 on the BBy.

In this section, we devise routing algorithms that minimize congestion. A comple-
mentary approach aims to maximize throughput. Previous work has studied the model
where each link can support at most ¢ paths, and the goal is to maximize the number
of messages that lock down paths. Kruskal and Snir [KS83| showed that if each input
in a butterfly network By sends a message to a randomly chosen output, and at most
one message can use any edge of the network (i.e., ¢ = 1), then the expected number
of messages that succeed in locking down paths to their destinations is ©(N/log N).
Koch [Koc88] generalized the result of Kruskal and Snir by showing that if each edge
can support ¢ messages, ¢ > 1, then the expected fraction of messages that succeed in
locking down paths is ©(N/log"/? N). Maggs and Sitaraman [MS92] generalized the
previous two results by showing that, by making two passes through a butterfly, it is
possible to route an Q(N/log!/? N) fraction of any permutation (rather than only a
random permutation), with high probability.

Use of Randomness. An early example of the use of randomization for circuit-
switching in butterfly networks is the work of Valiant [Val82, Val81]. Valiant showed
that any permutation routing problem can be transformed into two random problems
by first routing a path for each message to a random intermediate destination, and
then on to its true destination. This implies that we can route paths for a (static or
dynamic) permutation routing problem on a two-fold butterfly BBy with congestion
O(log N/loglog N), and dilation 2log N. Note that the paths for each message can be
set up independently without complete knowledge of the permutation in O(log N) time.
We show how to use randomization to route permutations with substantially smaller
congestion and the same dilation.
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Ranade [Ran87] observed that a smaller amount of randomness is sufficient to im-
plement Valiant’s algorithm. Note that each switch has two input links and two output
links. Ranade noted that it is sufficient that each switch in the first log N levels of
BBy shunts a message from each input link to a random (and distinct) outgoing link.
Thus, messages are sent to random but not independent destinations using one random
bit per switch. The first log IV levels of such a BBy constitute a flip network. A flip
network was subsequently used in [MS92] in the context of circuit routing. We use flip
networks in our routing algorithms in Section 6.2.

Randomness can be used in constructing the network itself. The use of randomness
to design multistage networks dates back to Bassalygo and Pinsker [Bas74]|. Networks
such as the randomly-wired multibutterfly are known to have good routing and fault
tolerance properties [Upf92, LM92]. In [MSS98] a balls-into-bins approach is used to
devise a multistage network of optical crossbars. The construction allows networks
of constant depth on which the time to route a permutation is O(loglog N). Recent
results provide algorithms for routing circuits for any permutation routing problem with
congestion 1 in multibutterfly and multi-Benes networks with set-up time O(log N)
[ALMO96, Pip96]. Unlike these networks, our results in Section 6.2 apply to commonly-
used networks like By and BBy that require neither random wiring nor expanders.

Circuit routing in general topology networks. Dynamic circuit-switching has been
extensively studied in an on-line competitive framework for arbitrary network topolo-
gies. (See [Plo95] for a survey). Results are known for minimizing congestion [AAF94]
and for the maximizing throughput [GG92]. This framework can incorporate more gen-
eral parameters such as the circuit bandwidth and circuit holding time. However, these
results do not yield routing algorithms with congestion smaller than ©(log N) for the
regularly-structured muti-stage networks that are the focus of this chapter.

6.1.4 Our results

We introduce two new algorithms for circuit-routing: the network c-collision algorithm
and the network greedy algorithm. Both algorithms are simple adaptions of their coun-
terparts for allocation problems as presented in Figure 1.1 and Figure 1.2. While the
network c-collision algorithm allocates a job to a server S if the number of unallocated
jobs sending requests to S is at most ¢, the network c-collision algorithm chooses a path
if the congestion along this path is at most c. The network greedy algorithm allocates a
request to the path with the smaller congestion just like the greedy algorithm allocates
a job to the server with smaller load.

Static Permutation Routing. In Section 6.2.1, we show the network c-collision
algorithm routes any permutation on the two-fold butterfly BBy with congestion
O(loglog N/ logloglog N), with high probability, and dilation 2log N. The setup time is
O(log N loglog N/logloglog N). Our routing algorithm achieves a substantially smaller
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congestion bound than Valiant’s algorithm. Comparing our result with Waksman’s al-
gorithm, which achieves congestion 1 on a Bene§ network, we require substantially
smaller setup time. Further, we do not require complete knowledge about the per-
mutation being routed and our routing algorithm can be implemented on the network
itself. Comparing our result to the algorithm of Nassimi and Sahni [NS82] for the Benes
network, our algorithm is much simpler and faster, although their algorithm achieves
smaller congestion.

Dynamic Permutation Routing. In Section 6.2.2, we analyze the minimum algorithm
for routing any dynamic permutation routing problem on network BBpy. The congestion
is O(loglog N) with high probability, the dilation is 2log N, and the setup time for
each new message is O(log N). Prior to this work, every known algorithm for the
dynamic permutation routing problem on the butterfly and related networks required
Q(log N/loglog N) congestion. Our algorithm is optimal in that any routing algorithm
on BBy that considers only a constant number of alternate paths per message must
incur Q(loglog N) congestion [ABKU94].

6.2 Routing in the Two-Fold Butterfly

6.2.1 Routing in BBy in a finite parallel setting

We describe a simple, efficient off-line algorithm for routing permutations on the two-
fold butterfly BBy. Recall that the two-fold butterfly BBy has N inputs at level 0
and N outputs at level 2D, where D = log N. Given a permutation 7, our routing
algorithm connects each input node i to the corresponding output node = (7); each pair
(¢, 7(7)) of input and output nodes is called a request. Our randomized algorithm routes
paths such that the maximum congestion on an edge is ©(loglog N/ logloglog N), with
high probability. Further, the time required by the algorithm to set up all the paths is
at most ©(log N loglog N/logloglog N), with high probability.

The network c-collision algorithm. We utilize the network c-collision algorithm de-
scribed below to perform the routing. The network c-collision algorithm initially chooses
at random two possible paths for each request. These possible paths correspond to the
possible servers of a job in the network c-collision algorithm on an allocation problem
with number of copies d = 2.

The possible paths for each request are chosen as follows. The switches on the node
levels 0,...,D/2—1and D+ D/2+1,...,2D are flipped randomly. In particular, each
input and output node maps the first possible path P of a request to its straight edge
and its second possible path P’ to its cross edge with probability %,and with probability
% the order is reversed. Similarly, each switch on the node levels 1,...,D/2 — 1 and
D+D/2+41,...,2D—1 with probability % connects its input straight edge with its output
straight edge and its input cross edge with its output cross edge, and with probability %
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the connections are reversed. Note that the random choices for the switches completely
determine the possible paths P and P’ of each request, because there is exactly one
path connecting a node on level D/2 with a node on level D+ D/2 in a BBy network.
For a path P, the other path P’ connecting the same input and output nodes is called
the buddy of P. The random switching ensures that any edge on the levels 1,... ,D/2
and D+ D/2+1,...,2D is traversed by at most one of the randomly generated paths.
However, each edge on the interior levels, i.e., on the levels D/2+1,... ,D + D/2, is
potentially traversed by several of these paths. We call these edges collision edges, and
we say that two paths that cross the same collision edge collide.

The network c-collision algorithm proceeds in rounds to select a path for each request
as follows. Initially all paths are active and not selected. A path P is selected if for each
edge e € P the number of active paths traversing e is at most ¢. If P and its buddy P’
are both eligible to be selected, one is chosen arbitrarily. A path P ceases to be active
in a round if P is selected or the buddy of P is selected in that round. The algorithm
terminates when there are no more active paths.

Each round of the network c-collision algorithm can be implemented using a store-
and-forward algorithm as a subroutine: in a first pass, for each active path, a packet
is sent along the path from level 0 to level 2D. During this pass, for each edge, the
number of packets traversing the edge is counted. Then, in a second pass, all packets
are routed backward along their respective paths from level 2D to level 0. During this
pass the congestion for each active path is computed. Note that, in this model, when
computing the setup time the packets and edges of the network can act in parallel, and
hence a round may complete in o(/N) time.

The network c-collision algorithm selects a path P in a round only if P collides with
no more than ¢ — 1 other active paths on any of the edges in P. This implies that any
edge that is included in at least one selected path is included in at most ¢ — 1 other
selected or active paths. As a consequence, the congestion of all selected paths is at
most c. Note that the algorithm as described is not guaranteed to terminate. However,
in Theorem 6.2.1, we show that if ¢ is sufficiently large, the algorithm will terminate
on its own with maximum congestion at most ¢ after a small number of rounds with
high probability. In practice, we may terminate the algorithm after some fixed number
of rounds; all requests that still have two active paths at the termination point may
choose one randomly.

Theorem 6.2.1: For any constant ¢ > 0 and ¢ such that ¢! = (1 + ¢) - logN,
the probability that the network c-collision algorithm on BBy takes more than
t = O(loglog N/logloglog N) rounds to select a path for every request is at most
N—¢/4+1+o() " Further, each round can be computed in time O(log V), with high prob-

ability.

Proof: First, we show that if the algorithm does not terminate after ¢ rounds,
there exists a “delay tree”. This delay tree corresponds to what we called “a witness
tree with an explaining representation” when considering allocation problems. Next,
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we show how the delay tree can be pruned to avoid stochastic dependencies. This
pruning corresponds to the conversion of a complete explaining representation into a
valid representation as conducted in Lemma 3.4.2. Finally, we show by enumeration
that the probability of occurrence of a pruned delay tree is at most N~¢/4+1+e(1)  This
step corresponds to Lemma 3.4.4.

Constructing a delay tree. Fix a permutation 7 to be routed, and fix the settings of
the randomly flipped switches on the levels 0,...,D/2 -1 and D+ D/2+1,...,2D.
This determines the two paths chosen for each request. Assume that there is a request
with possible paths P and P’, and neither path has been selected by round ¢, where
the proper value of ¢ is to be determined later. Then P collides with at least ¢ paths of
other requests in round ¢ at some edge e. Let Py, ... , P, denote the c paths that collide
with P in round ¢ at e. The root of the delay tree is the request corresponding to P
and the requests corresponding to P, ... , P. are its children. Now P, ... , P. and their
buddies PJ, ..., P! were not selected by round ¢ —1. Applying the argument recursively
to P{,..., P! we can construct a complete c-ary tree of height t. This tree is called the
delay tree.

Each node v in the delay tree corresponds to a request corresponding to two paths,
one of which collides with the siblings and the parent of v (unless v is the root), and
the other of which collides with the children of v (unless v is a leaf). We call the first
path the up path of v and the other path the down path of v. The up path of the root
and the down paths of the leaves are defined to be empty paths. Note that by the term
“collision represented by node v” we mean the collision of the down path of v with
the up paths of the children of v in the delay tree. Finally, to give each tree a unique
representation, we assume that the IDs of the input nodes of the requests associated to
the children of a node are increasing from left to right.

The requests corresponding to the nodes of a delay tree are not necessarily pairwise
distinct. Further, the up and down paths of distinct requests may overlap in the ran-
domly flipped levels, so that a randomly flipped switch can be included in more than
one of these paths. Hence, the collision events represented by a delay tree are not nec-
essarily stochastically independent. Note that, if they were stochastically independent,
it would be relatively straightforward to argue the theorem.

Pruning the delay tree. The intuitive reason why the dependencies do not affect
the final conclusion is that there are only O(log V) nodes in the delay tree, hence the
dependencies are “rare”. In order to handle dependencies, we prune nodes from the
delay tree as necessary. This pruning is done by a traversal through the tree visiting
the internal nodes in breath-first-search order starting at the root. When a node v is
visited during this traversal, the dependencies between the collision represented by v
and the collisions represented by nodes visited before v are checked. If the dependencies
significantly affect our calculations, the subtree rooted at v is pruned, and these pruned
nodes are excluded from the subsequent traversal.
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The detailed pruning rules follow. For a node v visited during the traversal, let
B(v) denote the set of nodes visited before v. Further, let 3(v) denote the set of nodes
that are children of the nodes in B(v), that are not pruned before v is visited, and that
are not in B(v) themselves. For the root root of the delay tree, B(root) and X(root)
are empty since our traversal starts at root. The following pruning rule ensures that,
for every node v visited after the root root, the subgraph induced by B(v) U X(v) is
connected; that is, B(v) U X(v) induces a subtree of the full delay tree with root r.
When a node v is visited, up to 2c subtrees of maximum height ¢ — 2 could be pruned
from the tree. These subtrees do not include any node from B(v) U X(v). Hence, the
subtree induced by this set is non-decreasing during the traversal. We distinguish two
pruning rules:

1. If a path associated with one of v’s non-pruned children traverses a randomly
flipped switch that is also traversed by a path associated with a node u from X(v)
then the c¢ subtrees rooted at the children of v are removed from the tree, and
the ¢ subtrees rooted at the children of u are also removed from the tree. The
node v is called a pruning node. The node u that caused the pruning is called the
conflicting node of v.

2. If a path associated with one of v’s non-pruned children traverses a randomly
flipped switch that is also traversed by a path associated with a node u from B(v)
then the c subtrees rooted at the children of v are removed from the tree. The
nodes v and v are again called pruning and conflicting nodes respectively.

When there is more than one choice for a conflicting node for a certain pruning node we
make the choice arbitrarily, so that each pruning node can be associated with exactly one
conflicting node. Further, the second pruning rule is considered only if the conditions
for the first pruning rule are not met. We continue the pruning process till either there
are no more nodes to visit or there are k = [¢/2]| pruning nodes. In the latter case,
we apply a final pruning. If v is the xth pruning node, we remove from the tree all
nodes not included in B(v) U X(v). This effectively stops the pruning process at the
kth pruning node.

The delay tree pruned in this fashion is called the pruned delay tree. Let m denote
the number of internal nodes in this tree, and m' < k denote the number of pruning
nodes. Let vy, ..., v, denote the internal nodes and wy, ... ,w,,y the pruning nodes in
order of visitation, respectively. Further, let u; denote the conflicting node of w;, for
1 <i<m'. The pruned tree possesses the following properties.

1) Any internal node v represents a collision of the down path of v and the ¢ up
paths of the children of v.

2) For any internal node v, the pruning ensures that the up paths of the children
of v do not share a randomly flipped switch with a path associated to a node in
B(v) U X(v) except for the down path of v. (As a consequence, all nodes of the
tree correspond to distinct requests.)



104 6 An Application of the Balls-Into-Bins Paradigm to Routing

3) The down path of a pruning node v either collides with a path P that is associated
to the conflicting node u, or it collides with a path P such that P or its buddy
shares a random switch with a path associated to u. This path P is denoted the
conflicting path of v.

4) The down path of a pruning node w; is not the conflicting path of a pruning node
wg with & < 4. (This can be proved as follows. For contradiction, assume the
opposite. Then w; = uy and w; € 3(wy). Hence, the subtree below w; is removed
when wy, is visited. This means that w; has no non-pruned children when w; is
visited and consequently, w; is not a pruning node.)

5) For each pruning node w;, the down path P of w; shares at most 5¢ randomly
flipped switches with up and down paths associated with any other node and
conflicting paths associated with the pruning nodes wy, ... ,w;. (This is because,
according to Properties 2 and 4, the down path of w; is not equivalent to any such
up, down, or conflicting path. Further, according to Property 2, the down path of
w; does not share a random switch with any other up or down path, except for the
up and down paths of the siblings of w;, and the up path of w;. With each of these
2c¢ — 1 paths, the down paths overlaps at most twice in the randomization levels,
once in each of the butterflies in BBy. The same holds for the ¢ conflicting paths
associated with wy, ... ,w;. Thus, there are at most 4c— 2+ 2x < 5¢ overlappings
with these paths in the randomization levels.)

Bounding the probability of occurrence of a pruned delay tree. We bound the
probability of occurrence of a pruned delay tree via enumeration. Define the tree shape
to be a description of the topology of a delay tree including the pruning and the con-
flicting nodes. Define an admissible delay tree configuration to be a tree shape with
associated requests, up and down paths, and conflicting paths which eventually, i.e., for
some setting of the random switching, matches to a pruned delay tree. In particular,
any admissible delay tree configuration has to fulfill the 5 properties above.

Let Q denote the set of tree shapes corresponding to at least one admissible delay
tree configuration, and let g denote the set of all admissible delay tree configurations
with tree shape € Q. An admissible configuration K is said to be active if the
outcome of the random switching corresponds to all paths of the configuration. Hence,
each admissible configuration K has a probability to become active, which is just 2#(K)
with p(K) denoting the total number of randomly flipped switches covered by all paths
of K. As a consequence, the probability that the network c-collision algorithm takes
more than ¢ rounds can be bounded by

Z Z 9—p(K)

QeQ KeKg
———

—: E(Q).
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We aim to give an upper bound on E(Q), for a fixed tree shape @ € Q. E(Q) is equal to
the expected number of active delay tree configurations with tree shape (). Note that the
tree shape () only restricts the number of admissible configurations, that is, it defines
the set K¢, but does not influence the probability for a given configuration K € K¢ to
become active. This probability depends only on p(K) and hence on the overlapping of
the paths in the randomization levels.

In the following, we utilize Properties 2 and 5 that govern how paths may overlap
to compute E(Q). Instead of summing over all admissible configurations in g and
multiplying each individual configuration with its probability, we consider the nodes of
the delay tree one by one and calculate an upper bound on the expected number of
configurations for each individual node. In particular, we consider first all the internal
tree nodes and then all the collision nodes; both sets of nodes are considered in the
order of visitation.

Define the configuration of an internal node v; to consist of the down path of v; and
the up paths of the children of v;, for 1 < ¢ < m. Further, define the configuration
of a pruning node w; to be the down path of w; and the two paths belonging to the
colliding request of w;, for 1 < i < m'. A collection of node configurations is said to be
admissible, if they are a subset of an admissible tree configuration. Note that a collection
of admissible configurations for all internal and all pruning nodes (in conjunction with
the tree shape) completely defines the configuration of the delay tree.

For an internal node v; and a collection K of configurations for the nodes vy, ... ,v;_1,
let Econ(vi, K) denote the expected number of active configurations for v; under the
assumption that the configurations in K are active. Note that K already specifies the
request associated to v;. (For the root v we assume that K specifies only this request.)
Let Econ(v;) be the maximum over all configurations K of Ecop(v;, K).

Lemma 6.2.2: E.;(v;) < log N/c!.

Proof: =~ We bound the expected number of active configurations for v; by choosing the
down path P of v; arbitrarily and then deriving an upper bound on the expected number
of choices of active up paths Py, ..., P. of the children of v; that fulfill Properties 1 and
2.

The expected number of active down paths P is at most one. This is because, there
are several different paths in BBy that connect the two input and output nodes which
are given by the configuration K. However, at most two of them are active, and the
configuration K determines which of them is the up path and which is the down path
of V;.

Given path P, there are D = log N possible choices for the collision edge at which
the down path collides with P, ..., P,. Let e denote this edge and ¢ the level of this
edge. W.l.o.g., we assume that D/24+1< /¢ < D.

We calculate an upper bound on the expected number of active up paths P, ..., P,
traversing e and fulfilling Property 2. This Property ensures that P,... , P. use only
unrevealed random switches. Therefore, we assume for the following that all switches are
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unrevealed. Note that this does not decrease the number of admissible configurations,
and, hence, not decrease the expected number of active configurations for P,... , P,.
The main problem in calculating the number of active configurations for P;,... P, is
to handle overlappings among these paths and overlapping between these paths and the
down path P in the randomization levels.

The number of nodes on level 0 from which e can be reached is 27!. We select
an input node for each of the P;’s from these nodes. The number of possible ways to
choose these ¢ nodes is (21;1) because the requests associated to the children of a node
are ordered according to the ID’s of the input nodes. Let sq,...,s. denote the source
nodes of the paths P;,... , P.onlevel 0 and Dy = 7(s1), ..., D, = 7(s.) the destination
nodes of these paths on level 2D.

Next we choose an intermediate destination Dj for each path P, on node level D + /.
For every P;, there are (eventually) several possibilities to choose these intermediate
destination. However, independent from the other paths of the configuration of v;, the
number of active destinations is at most one. Hence, the expected number of active
intermediate destinations is at most one.

Now assume the intermediate destinations are fixed. Note that this also fixes the
path from level D + ¢ to level 2D. It remains to consider the number of active config-
urations of ¢ paths Pj,..., P such that P/ connects s; and D] and traverses e. Paths
P/,..., P/ and P do not overlap in the randomization levels. This can be shown as
follows. If two paths share a random switch s then these paths arrive and leave s on
different edges. Further, these paths do not overlap at any other switch with distance
less than D + 1 from s. Hence, two paths that traverse edge e cannot have used a
random switch with distance less than D + 1 from the two switches incident to e, and
consequently, they cannot meet on a random switch on the levels 0,... ,D/2—1 or the
levels D+ D/2+1,...,D+¢.

The number of different paths connecting s; with D} and traversing e is one. Thus,
the number of admissible configuration for the P/’s is at most one. All paths in the
admissible configuration do not share a randomly flipped switch with another path from
the configuration of v;. Hence, the number of unrevealed random switches traversed
by each of these paths is D/2 4+ (D + {¢) — (D 4+ D/2) = ¢. Except for the switch on
level 0, all of these switches must correspond to the course of the respective path. The
probability for this event is 27¢~1). As a consequence, the probability that all £ paths
are active is at most 27¢(¢=1),

Putting it all together, the expected number of active configurations for v; is

—1
p. (¥ ). geen D
c el

m of Lemma 6.2.2

Now we give an upper bound on the expected number of the active configurations
for the pruning nodes. For a pruning node w; and a collection K of configurations
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for all internal nodes and the pruning nodes wy,... ,w;_1, let Ejne(w;, K) denote
the expected number of active configurations for w; under the assumption that all
configurations in K are active. Let Epryne(w;) be the maximum over all configurations
K of Epryne(wi, K).

Lemma 6.2.3: E, 0 (w;) < 2573 - (log N +1)/V/N .

Proof: The conflicting path P of pruning node wj; is either associated with the
conflicting node u; or P or its buddy shares a randomly flipped switch with a path
associated to u;. The tree shape specifies u;, and the configuration K fixes the request
associated to u;. For any consistent setting of the random switches, the number of
paths sharing a randomly flipped switch with the two paths belonging to this request
is at most 2 - (log N + 1) (inclusive the two paths themselves). Consequently, for any
setting of the switches, the number of candidates for the collision request is at most
2 - (log N + 1), and hence the number of candidates for the collision path is at most
4-(logN +1).

Now suppose the collision path is fixed. The down path of w; collides with this path.
First, we assume that the collision is in level £, with D/2+ 1 < £ < D. Let e denote
the respective collision edge. There is at most one admissible course for the down path
of w; from its source node on level 0, which is determined by K, to the collision edge e.

The course of the down path from level 0 to level ¢ is determined by the randomly
flipped switches. Property 5 ensures that at most 5¢ of the switches traversed by the
down path are shared with other paths in K. Hence, at least £ — 5¢ of the randomly
flipped switches determining the course of the path from level 0 to level ¢ are indepen-
dent of K, and consequently, the probability that the down path of w; is equivalent to
the only admissible path in these levels is 27¢%¢. Summing over all collision levels £, with
D/2+1 < ¢ < D, yields an upper bound on the probability that the switches along the
collision path are set appropriately of 2~ 2/2+5¢_ Since the same bound holds also for col-
lisions when D+ 1 < ¢ < 3D/2, the probability that the down path is equivalent to the
only admissible path is at most 2-P/2t5¢+1  As a consequence, the expected number of
active configurations for w; is at most 2=P/2t5¢+1.4. (log N41) = 2°¢t3.(log N41)/+/N.

m of Lemma 6.2.3

The bound for E.(v;) on the expected number of active configurations for an
internal node v; is independent of the configurations of the internal nodes vy, ... ,v;_;.
Further, the bound for E,yne(w;) on the expected number of active configurations for
a pruning node w; is independent of the configurations on all internal nodes and the
pruning nodes wy, ... w;_;. Consequently, these bounds are independent estimations of
expected values and can be multiplied in order to get an upper bound on the expected
number of all configurations. Since the number of choices for the initial configuration
K in E(vy, K) specifying the request associated with the root is NV, we get the following
upper bound on the expected number of active delay tree configurations.
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ZE(Q) < ZN HEcoll V4 H prune(wj)
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for kK = [¢/2] = © (loglog N/logloglog N) and a suitably large
= O (loglog N/logloglog N) .
Equation 1
is an immediate consequence of Lemma 6.2.2 and Lemma 6.2.3.

Equation 2
is based on the relationship between m and m': The full delay tree includes
¢ disjoint subtrees of height ¢ — 1. For each of the m' pruning nodes, some
nodes from at most two of these subtrees are removed. Consequently, at least

c—2m' of the subtrees remain untouched. Since each of them include at least

¢'~? internal nodes, we get

m>(c—2m') -2 >k-m) -2 .

Applying this equation and substituting ¢! = (1 + ¢€) - log N yields

log N\"™ N

c!
(256-1—3 . (IOgN + 1))K—m'
VN ’

for t > log,log,, . N + 2 = O(loglog N/logloglog N).

Equation 3
results from a bound on the number of different tree shapes. In particular,

there are at most
Y (/L) PP

J=0 J
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possible choices for the at most x pruning nodes among the (¢ — 1)/(c — 1)
internal nodes of the delay tree, and at most

c—1 -

possibilities to choose the m’ conflicting nodes among the (¢! —1)/(c+1) <
¢t nodes of the full delay tree. Since specifying these nodes completely
determines the shape of the tree, the total number of different tree shapes is
at most c*t + cn(t-}-l) < e

We have already shown that ZQEQ E(Q®) is an upper bound on the probability that
the network c-collision algorithm takes more than ¢ rounds. Hence, this probability is
at most N~¢/4+t1+e(1) Tt remains to show that determining which paths become inactive
each round can be done in time O(log N), with high probability. Recall that, in our
model, this computation is accomplished by sending a packet back and forth along each
active path through the network using a store-and-forward algorithm. According to
[LMRRY4], such a computation can be done in time O(congestion +dilation), with high
probability, using only constant size buffers at each edge. Note here that the congestion
we wish to bound is the congestion caused using this store-and-forward scheme, not the
congestion under the network c-collision algorithm. However, this congestion is easily
bounded. Let C denote the congestion of all 2n paths.

Lemma 6.2.4: C < o -log N/loglog N , with probability N—2+0(1)

Proof: The congestion in the randomization levels is 1. Therfore, we only have
to consider the collision levels. The probability that a fixed collision edge is traversed
by at least C' paths is at most 1/C!. This bound follows analogously to the proof of
Lemma 6.2.2. Hence, the probability that one of the 2 - N - log NV collision edges has
congestion C' is at most

2-N-logN -1/C! < N @t00)
for C > a-log N/loglog N. m of Lemma 6.2.4

Applying Lemma 6.2.4 yields that each round can be computed in time O(log N), with
high probability. This completes the proof of Theorem 6.2.1. m of Theorem 6.2.1

6.2.2 Routing in BBy in an infinite sequential setting

We now describe a simple algorithm that routes paths dynamically in network BBy. As
before, a request is an input-output pair. These requests are inserted and deleted similar
as specified by an oblivious deletion scheme (cf. to the beginning of Section 5.1.1). An
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oblivious adversary specifies an infinite sequence oy, 09,... of requests. The request
o; must be handled at time i, where time flows in the natural manner. If at time
1 neither the input nor the output of o; is already locked, then the algorithm must
establish and lock a path in the network between the input and output of ¢;. This is an
arrival. If there is already a locked path between the input-output pair, then the path
is released. This is a departure. In all other cases the request may be ignored. That
is, the algorithm only connects an input-output pair if neither is already involved in a
connection. Without loss of generality we may assume that the sequence of requests
includes only valid arrival and departure events. An input-output pair is said to ewist
at each time £ between its arrival and departure.

The network greedy algorithm To solve the dynamic routing problem on the two-
fold butterfly BBy, we initialize BBy as in Section 6.2.1. Let s; denote an arrival
event. A path for the corresponding request r; is chosen as follows. For an edge e in
the collision levels, define c¢(e) to be the number of paths that traverse e at time 7. The
algorithm examines the two paths P and P’ that connect the input to the output of r;.
The congestion ¢(P) of a path P is defined to be maxecp(c(e)). If ¢(P) < ¢(P’), path
P is chosen for request r;; Otherwise, path P’ is chosen.

Theorem 6.2.5: At any time ¢, the probability that the congestion is greater than
O(loglog N) is at most N ~©Uoglog V),

Proof: The proof is similar to that of Theorem 6.2.1.

Constructing a delay tree. First, we fix the settings of the randomly flipped switches.
This determines two allowable paths for each request. Assume that there is an edge e
with congestion larger than 4c at some time ¢, where ¢ = [loglog N|. Let P denote
the last path mapped to edge e on or before time {. When P was mapped to e there
were already 4c other paths present at this edge. Let Py, ..., Py denote these paths
such that P; was mapped to e at time step t; with ¢; < ¢;;;. The root of the tree is
the request corresponding to P and the requests corresponding to Pi,... , P, are its
children. Now we consider the buddies Pj,. .., P;, of these paths. Path P/ traverses an
edge with congestion at least 7 — 1 at time step t;, because the congestion of P; is not
larger than the congestion of P/ at time i, and when P, was mapped to e there were
already 7 — 1 other paths present at this edge. As a consequence, we can construct a
tree by applying the argument above recursively to Py, ..., P;,.

The tree constructed above is irregular in that nodes have varying degrees. However,
it contains a c-ary tree of height ¢, which we call the delay tree, with the following
properties.

e The node on level 0, i.e., the root, has c children that are internal nodes.
e Each internal node on levels 1,... ,¢ — 2 has 2 children that are internal nodes

and ¢ — 2 children that are leaves, and each internal node on level ¢ — 1 has ¢
children that are leaves.
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Pruning the delay tree. The pruning is done by a breadth-first traversal of the tree.
We use the same definitions for B(v) and ¥(v) as in Section 6.2.1. However, the pruning
rules are slightly different. When a node v is visited, the following rules are applied.

1. If a path associated with one of v’s non-pruned children traverses a randomly
flipped switch that is also traversed by a path associated with a node u from
B(v) UX(v) then all nodes below v are pruned. Node u is denoted the conflicting
node of v. Note that the down path of v either shares a collision edge with a path
P that is associated to u, or it shares a collision edge with a path P such that P
or its buddy shares a random switch with a path associated with u. This path P
is denoted the conflicting path of v.

2. Depending on the conflicting path P we apply a further pruning. For each node
u € 3(v) such that either the input or output node of u coincides with the input
or output node of path P, we prune all the nodes below u. The first pruning
rule ensures that there is at most one request in B(v) U X(v) incident on each
input and output of the network, even though the requests in B(v) U X(v) exist
at possibly non-overlapping times. Thus, at most two nodes, call them u and /,
get pruned due to an application of this rule. Nodes u and u' are defined to be
the conflicting nodes of v. (For simplicity, we pretend that each pruning node v
has two conflicting nodes v and u'; if this is not the case we simply set u and v’
to be the same node.) The second pruning rule ensures that Properties 4 and 5
as stated in Section 6.2.1 hold for the pruned delay tree — specifically, the down
path of a pruning node cannot share more than two randomly-flipped switches
with a given conflicting path.

We continue the pruning process till either there are no more nodes to visit or there
are k£ = [¢/3] pruning nodes. In the latter case, we apply a final pruning. If v is the
kth pruning node, we remove from the tree all nodes not included in B(v) UX(v). The
remaining tree is called the pruned delay tree.

Bounding the probability of occurrence of a pruned delay tree. The terms {ree
shape, admissible configuration, and active configuration are defined as in Section 6.2.1.
Let Q denote the set of all tree shapes, and, for @ € Q, let E(Q) denote the expected
number of active delay tree configurations with tree shape ). Let vy,..., v, be the
m internal nodes of (). Further, for a collection K of configurations for the nodes
V1, .-, Vi1, let Eeon(vi, K) denote the expected number of active configurations for v;
under the assumption that K is active, and let Eco;(v;) denote the maximum over all
configurations K of Eqop(vs, K).

Lemma 6.2.6: E.;(v;) < log N/c!.
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Proof: The proof is identical to that of Lemma 6.2.2, since the pruned delay
constructed here fulfills Properties 1 and 2 as stated in Section 6.2.1. m of Lemma 6.2.6

Let wy,...,wy denote the m’' pruning nodes of @), and let u; and u, denote the
conflicting nodes associated with w;. For a collection K of configurations for the nodes
Viy.o. Uy and wy, ... ,wi_1, let Epune(w;, K) denote the expected number of active
configurations for w; under the assumption that K is active. Further, let Eco(w;)
denote the maximum over all configurations K of Eoy(v;, K).

Lemma 6.2.7: Ejpyne(w;) < 2573 - (log N +1)/V/N .

Proof: The pruned delay tree described above fulfills Properties 3, 4 and 5 stated
in Section 6.2.1. Hence, the proof of Lemma 6.2.3, which is based only on these three
properties, holds also for this lemma. m of Lemma 6.2.7

The probability that the congestion exceeds 4c is at most the probability that a
pruned delay tree exists. The latter probability is at most

!

ZE(Q) S Z N - HEcoll Vi HEprune ’LU]
j=1

QeQ QeQ i=1
m 5¢+3 | m

<Ny <log'N) _ <2 (10gN+1)>

5% c! VN
(1) 25¢t3 . (log N + 1)\ "
< N Z ( (log N + ))

4eo VN
(2) 5¢+3 K
S N_65n_23cn_ (2 (10gN+1))

VN

S N—C/6+1+0(1)

bl

where £ = [£] = O (loglog NV).

Equation 1
follows from the relationship between m and m': Each of the ¢ children of the
root of the full delay tree is a root of a subtree with 27! — 1 internal nodes.
For each of the m’ pruning nodes, nodes from at most 3 of these subtrees
are removed. Thus, at least ¢ — 3m/ of the subtrees remain untouched. As a
consequence,

m>(c—3m) -2 -1)> (k—m')- (2" =1).

Applying this equation and substituting ¢ = [loglog N| yields

m 5¢+3 | K—m/
IOgN < 27(20—171)_('67771’/) < 2 (lOgN + 1) ’
c! - VN

for sufficiently large N.
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Equation 2
results from a bound on the number of different tree shapes. In particular,
there are at most

k . 9c—1
Z(C ; ) <2l
=0~ 7

possible ways of chooosing the at most x pruning nodes from the at most
¢- 27! internal nodes of the delay tree. Further, there are at most

(02 . 2071)2"1’ < e gle)2n

possibilities to choose the 2m' conflicting nodes from the at most ¢ - 27!
nodes of the full delay tree. Multiplying the bounds yields that the total
number of different tree shapes is at most ¢®® - 23¢.

m of Theorem 6.2.5






7 Conclusions

In this thesis we examined the allocation problem as a very pure problem that has many
applications in various fields and therefore gained quite much attention. Our interest
in the problem was threefold.

At first our interest was to give new results on the performance of allocation algo-
rithms, specifically we were interested in settings of the allocation problem motivated
by properties of applications. In particular we considered a new deletion scheme: the
server oriented deletion scheme. Oblivious deletion schemes which are closely related
to finite settings have the disadvantage to assume that server speed increases with load.
This is avoided by the server oriented deletion scheme we presented and analyzed here.
Moreover we considered weighted allocation problems overcoming the assumption that
the amount of consumed resources is the same for each job.

Our second interest was to systematize the allocation problem and the allocation
algorithms and to fill holes between known results. The variety of different settings and
the different algorithms with their variants showed the need for a general approach.
We found this approach in the witness tree technique. Extending the possibilities of
the technique we devised a general lemma that allows to obtain results for any known
algorithm in any setting. Albeit of its generality our technique allows to devise quite
exact results. In most cases our performance bounds match previous results. Frequently
our results are applicable to a wider scope of parameters, and in any case we are able
to deal with any sensible i-th copy distributions. Despite of that we considered several
settings of the allocation problem that have not been considered before. In particular
this holds for weighted allocation problems.

At third we showed how to apply the balls-into-bins paradigm beyond the scope of
the allocation problem. Presenting an algorithm for circuit-switching in a butterfly-type
network, we showed that picking-one-out-of-several-random-possibilities applies also for
much more complicated problems of allocation. Our application again demonstrated the
power of the witness tree technique, which allows to deal with stochastic dependencies
in the random variables used.

In setting up our Main Lemma and the notions needed for it, we had to compro-
mise. In several cases this implied that possible generalizations have not been included.
Extending the Main Lemma to possibly dependent i-th copy distributions as considered
by Vécking in [V6c99a] would just require to change the definition of the vivid system
and its parameters a little bit. We excluded this case as we believe that the definition
is already quite complicated.
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Another interesting generalization would be to consider allocation problems where
each job has to be allocated to 2 < f < d servers. This generalized allocation problem
has been considered in the PRAM Simulations mentioned in the introduction. Another
important application of this generalized allocation problem addresses the storage over-
head in data-server (VoD) applications. In such applications the jobs model requests for
reading a block of data containing F' bits. Using the allocation problem each block has
to be stored on d disks, which requires d - F' bits of memory. If the allocation allows to
access f = d — 1 servers for each job, it is possible to reduce this overhead significantly
using a simple error correcting code. Divide the data block into f sub-blocks of size
F/f. Let the first f servers store one sub-block each, and let the d-th possible server
store a sub-block containing the bit-wise XOR over the i-th bit of each of the first d —1
sub-blocks in its i-th bit. Then access to an arbitrary subset of size f =d — 1 of the d
possible servers allows to reconstruct the entire block. This technique allows to reduce
storage overhead from d to d/(d — 1). A generalized Main Lemma would just have to
allow generalized mappings label, in the representation, and some minor changes in the
definition of the vivid system.

As noted several time this version of the witness tree argument is not the only one.
Our main interest was generality not simplicity. Witness tree arguments set up for
single problems can be much simpler than the one considered here.

The allocation problem in the sequential setting is well understood. The upper and
lower bounds in [V6c99a] match up to an additive constant, and the lower bound applies
to arbitrary allocation algorithms and arbitrary i-th copy distributions. The situation
is worse for the parallel setting. Although the c-collision algorithm matches the existing
lower bounds up to a constant factor. As described in the introduction of this thesis,
the lower bounds for the parallel setting are each restricted to some class of allocation
algorithms. We believe that devising general lower bounds that match the existing (or
improved) upper bounds up to an additive constant is a very challenging task. Devising
a general lower bound that matches up to a constant factor should be much easier — as
long as the considered allocation algorithms are direct. As also mentioned in [Mit96b]
there are simple arguments that indicate that allowing labels for jobs and servers is
quite simple.
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