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Introduction

Classical lattice spin systems have their origin in the description of the ferromagnetism of a solid. Em-
pirical observations show that an electron is a spin- 1

2 particle and that in a magnetic field its direction
is quantised so that it orients either parallel or antiparallel to the field. One observes two phenomena:
The interaction energy of parallel spins is smaller than the interaction energy of antiparallel ones.
This makes the system tend towards a uniform parallel configuration. As temperature increases, the
system tends to disorder. One observes a phase transition from ferromagnetism to paramagnetism:
At low temperature the spins are parallel, at high temperature one has thermal noise. It was observed
by E. Ising in his 1924 doctoral thesis [Is25] that a one-dimensional Ising chain with nearest neighbour
interaction has no phase transition. Since that time this model attracts attention due to its applicabil-
ity in many branches of science. It can be used to explain phenomena where individual elements (e.g.,
atoms, animals, protein folds, biological membrane, social behaviour, etc.) modify their behaviour so
as to conform to the behaviour of other individuals in their vicinity. Abstractly speaking, a (classical)
lattice spin system consists of a discrete space, the position space, where on each point a classical spin
variable is attached. The spin variable can have very different interpretations, say as the charge of a
particle, say as the number of particles present at the point, the species of particles, or as a classical
spin variable with possible values “spin up” and “spin down”. The position space may be interpreted
as the locations of the atoms of a solid, with or even without a regular alignment structure. This
setting allows to treat spin systems, lattice gas models, and alloy models from the same mathemat-
ical point of view. The particles interact with each other via a symmetric pair potential which is
isotropic, i. e. it only depends on the distance of the particles, not on their absolute positions. If
only the members of the same species interact, we have a Potts model [Po52]. A generalisation of
the Ising model is the class of M -vector models which was introduced by H. E. Stanley in [St68a]. It
allows to model one-component fluids, binary alloys, mixture processes, λ-transition in a Bose fluid,
as well as ferromagnetism. An important parameter of an interaction is its range. While interactions
with finite range are well-understood, even in one dimensional systems there are still open problems
concerning long-range interactions. Roughly speaking, the faster the interaction decays, the easier is
its mathematical treatment. However, many physically interesting interactions do not decay fast, for
instance, the van der Waals potential or the Coulomb potential decay like the inverse of a polynomial.
Exponentially decaying interactions are studied since M. Kac’s 1966 paper [Ka66].
We interpret the sum of all interactions energies between a finite number of particles as the energy
of a subconfiguration. After averaging over all possible configurations with the Boltzmann factor
as weight we obtain the main object of statistical mechanics, the partition function. The partition
function is an interesting object since many properties of the system, such as the total energy, free
energy, entropy, and pressure, can be expressed in terms of the partition function and its derivatives.
We are interested in the thermodynamic limit, i. e., we let tend the number of particles to infinity,
and study the properties of the sequence of partition functions.
One method to investigate the physical system is the use of so called transfer operators. The transfer
operator method consists in finding a linear operator, called the transfer operator, such that certain
asymptotic properties of the partition functions can be expressed in terms of the spectrum of the
operator. For interactions with finite range this method has been invented by H. Kramers and G.
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Figure 1: Phase transition: Disordered configuration (high temperature), ordered configuration (low
temperature)
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Wannier [KrWa41], E. Montroll [M41], and E. Ising [Is25], the operator is called a transfer matrix. For
long range interactions D. Ruelle [Ru68], H. Araki [A69], G. Gallavotti and S. Miracle-Sole [GaMS70]
introduced the transfer operator approach. The Ruelle-Perron-Frobenius theorem states that the
Ruelle transfer operator has a positive leading eigenvalue, a corresponding positive eigenfunction, and
a positive eigenmeasure. The leading eigenvalue has a physical interpretation, since its logarithm is
closely related to the free energy. The leading eigenfunction of the Ruelle transfer operator together
with the eigenmeasure determine the equilibrium state of the system.
In works of D. Mayer, K. Viswanathan, B. Moritz, and J. Hilgert [May76], [Vi76], [MayVi77],
[ViMay77], [May80a], [Mo89], [HiMay02], [HiMay04], there are several examples of interactions known
for which a so called dynamical trace formula holds, i. e., there exists a trace class operator, nowadays
called the Ruelle-Mayer transfer operator, such that the partition functions can be expressed in terms
of the traces of the powers of the transfer operator. As soon as an operator is found satisfying such a
dynamical trace formula, the problem of computing the partition function is shifted to the functional
analytic problem consisting in the determination of the spectrum.
The properties of the partition function are also studied by using a method from number theory.
Putting the partition function as coefficients of a generating function one obtains a formal power
series which converges under weak assumptions in a neighbourhood of zero. This function is called
the dynamical zeta function and has been introduced by D. Ruelle [Ru76]. As in number theory one
studies the analytic properties of zeta which imply, using Wiener-Tauber type arguments, conclusions
on the mean behaviour of the coefficients. For this reasoning one needs the existence of a meromorphic
continuation of zeta beyond the first pole. With methods similar to proof of the classical prime number
theorem, W. Parry and M. Pollicott obtained prime orbit theorems on the distribution of prime orbits,
see [PaPo90]. If there exists a transfer operator which satisfies a dynamical trace formula, then this
leads to a representation of Ruelle’s zeta as a quotient of Fredholm determinants of the transfer
operator and hence to a meromorphic continuation of zeta to the entire complex plane. From this
spectral interpretation of zeta J. Hilgert and D. Mayer obtained in [HiMay02] and [HiMay04] the
existence of infinitely many equally spaced (“trivial”) and infinitely many non-trivial zeros and poles
along lines in the complex plane, which is a phenomenon also known from number theoretical zeta
functions.
Spin chains, i. e., one-dimensional spin systems, with exponentially decaying Ising interaction have
been firstly studied in [Ka66] by M. Kac via the transfer operator method. He, and in similar form
also M. Gutzwiller [Gu82], introduced integral operators acting on the space of square-integrable
functions on the real line. This Kac-Gutzwiller transfer operator satisfies a dynamical trace formula.
D. Mayer derived in [May80a] his transfer operator for the same interaction. His transfer operator acts
on a Banach space of holomorphic functions and also satisfies a (similar) dynamical trace formula.
In [Mo89] it was shown that the spectra of both operators (almost) coincide. In [HiMay02] and
[HiMay04] there was found a way how one explicitly relates the two operators. This construction uses
essentially the Bargmann transform which provides a unitary isomorphism between the both spaces.
Motivated by these results we ask which is the class of interactions for which a dynamical trace formula
holds. We analyse the known examples of Ruelle-Mayer transfer operators and determine what they
have in common. We introduce a family of Ising type interactions which contains all the known
Ising interactions with finite-range, superexponentially, exponentially, or polynomial-exponentially
decaying distance function. We give some new examples, for instance Ruelle-Mayer transfer operators
for M -vector models and Potts models, and new distance functions. We can formulate a general frame
work for the construction of the Ruelle-Mayer transfer operator associated to interactions belonging
to this class and prove a dynamical trace formula. For this class of interactions we investigate the
dynamical zeta function and show its meromorphic continuation to the entire complex plane. Using the
Bargmann transform we compute the Kac-Gutzwiller transfer operator for polynomial-exponentially
decaying interactions and also for finite range interactions explicitly and study its properties.
The main contributions of this dissertation are

(i) A unification of all known examples of Ising interactions admitting a Ruelle-Mayer transfer
operator which satisfies a dynamical trace formula,

(ii) Generalisations in view of the interaction: Ising type interactions, the possible spin values, and
a (slightly) weaker decay of the distance function,

(iii) A concise treatment of the dynamical zeta function, in particular in the presence of a dynamical
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trace formula, including a proof of an Euler product expansion and meromorphic extension to
the entire complex plane, and

(iv) A direct construction of the Kac-Gutzwiller transfer operator associated to a Ruelle-Mayer
transfer operator, both for full shifts and matrix subshifts.

Our treatment is based on Hilbert space techniques and Schatten class operators, instead of Banach
space techniques and nuclear operators used for instance in the work of D. Mayer. The Hilbert space
techniques simplify many arguments concerning values of traces or determinants.
We will now explain our main results in detail and give an outline of this dissertation afterwards.

Theorem 2.13.8. Let F ⊂ C be a bounded set, interpreted as spin values, and (FN,N0, τ) a one-
sided one-dimensional full shift. Let φ be a two-body Ising type interaction with potential q ∈ Cb(F )

and distance function d ∈ D(p)
1 for some p < ∞, say d(k) = 〈Bk−1v|w〉`2N, and interaction matrix

r ∈ Cb(F ×F ) with r(x, y) =
∑M

i=1 si(x) ti(y) with si, tj ∈ Cb(F ). Let A(φ) be the standard observable.
Then there exists an index n0 ∈ N depending on B such that for all n ≥ n0 the Ruelle-Mayer transfer
operator Mβ : F((`2N)M ) → F((`2N)M ) acting via

(Mβf)(z1, . . . , zM ) :=

∫

F

exp
(
βq(σ) + β

M∑

l=1

sl(σ) 〈zl|w〉
)
f
(
t1(σ)v + Bz1, . . . , tM (σ)v + BzM

)
dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn)M trace (Mβ)
n.

Before giving an outline of the proof we will explain this result and the notations. We begin with the
prerequisites of the theorem, define the left hand side of the dynamical trace formula, i.e., the (dynam-

ical) partition function Zb
N0 ,φ

{1,...,n}(β) (Z̃b
N0

n (βA(φ)), respectively), and show afterwards a generalisation

of this result.
A one-sided one-dimensional shift is one of the most studied examples of lattice spin systems. It is
defined as follows: Let F be a Hausdorff space F equipped with a finite Borel measure. We interpret
F as the space of possible spin values. We consider as underlying position space the positive integers
N. Let τ : FN → FN, (τξ)i := ξi+1 be the left shift on the space of F -valued sequences. Then
N0 × FN → FN, n · ξ := τnξ defines a semigroup action, i. e., a time-discrete dynamical system. If
Ω ⊂ FN is a closed non-empty τ -invariant subspace, then Ω carries also an N0-action via this formula
and is called a subshift of FN. We will first consider the full shift FN. Later we generalise our result
to a family of subshifts, the matrix subshift, and prove a similar theorem for it.
The particles interact with each other via a two-body interaction φ = (φΛ), indexed by all finite
subsets Λ ⊂ N, of the form

(1) φΛ : FΛ → C, ξΛ 7→ φΛ(ξΛ) :=






−q(ξi) , if Λ = {i}, ξΛ = (ξi),
−d(|i− j|) r(ξi, ξj) , if Λ = {i, j}, ξΛ = (ξi, ξj), (i 6= j),
0 , otherwise,

where r : F × F → C is a continuous bounded symmetric function, called the interaction matrix,
q ∈ Cb(F ) is a potential, and the distance function d : N → C belongs to (a subspace of) `1N.
A detailed analysis of the examples given in [May76], [Vi76], [MayVi77], [ViMay77], [May80a], [Mo89],
[HiMay02], [HiMay04], i. e., all examples where a dynamical trace formula has been known before,
yields that the distance function d can be written as

d(k) =
〈
Bk−1v w

〉
H0

for vectors v, w in a (separable) Hilbert space (H0,
〈
· ·
〉
) and a trace class operator B : H0 → H0

with operator norm ‖B‖ < 1. This leads to our class of distance functions.

Definition 2.7.1. We define the subspaces D(p)
1 ⊂ `1N (for p ∈ [1,∞[) as follows: d ∈ D(p)

1 if and
only if there exist a bounded linear operator B : H0 → H0 on a Hilbert space H0 belonging to the
Schatten class Sp(H0) with spectral radius ρspec(B) less than one and vectors v, w ∈ H0 such that

d : N → C, k 7→ d(k) := 〈Bk−1v|w〉H0 .

We call (B, v, w) a generating triple for d and B a generator.
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Our class includes the following subclasses of examples:

Example 2.7.7. (i) Finite range (Section 2.5): There exists ρ0 ∈ N, the range of d, such that

d(k) = 0 for all k > ρ0.

(ii) Superexponential (Section 2.9): Let γ > 0, δ > 1 and

d : N → C, k 7→ a(k) exp(−γ kδ),

where a : N → C is of lower order1 in the sense that lim
k→∞

a(k) exp(−ε1 kε2) = 0 for all ε1, ε2 > 0.

(iii) Polynomial-exponential (Section 2.11):

d : N → C, k 7→ λk p(k),

where p ∈ C[z] is a polynomial and λ ∈ C with 0 < |λ| < 1 is the decay rate.

(iv) Suitable infinite superpositions of exponentially decaying terms D(p),∆
1 ⊂ D(p)

1 (Section 2.10):

d(k) =

∞∑

i=1

ci λ
k
i ,

where λ ∈ `pN and c : N → C such that cλ : N → C, n 7→ cn λn belongs to `1N.

We will see that (i) and (iii) correspond to generators B which are finite-rank operators, (i) and (ii)

have nilpotent generators, and that the generators corresponding to (iii) are invertible. Since D(p)
1

is a complex vector space, every linear combination belongs again to D(p)
1 . Every generator can be

decomposed into the direct sum of its Jordan blocks. Since we require a generator to belong to the
Schatten class Sp(H0), the occurring blocks belong either to (i), (ii), or to (iii). In the newly defined
classes of part (iv) we collect the distance functions with an invertible semi-simple generator.

We show that if a distance function belongs to D(p)
1 , then it has at least exponential decay at infinity,

i.e. lim supk→∞
k
√
|d(k)| < 1, which for instance excludes the distance functions d(k) = k−α (for some

α > 0), e. g. the Coulomb and the van der Waals potential.
We say that a symmetric function r ∈ Cb(F × F ) is of Ising type if it admits a decomposition

r(x, y) =

M∑

i=1

si(x) ti(y)

for some continuous bounded functions si, ti : F → C. In particular, we are interested in the case of
F being a bounded subset of the complex numbers C and r of the form r(x, y) = xy which is usually
called the Ising model. Stanley’s M -vector model [St68a] also belongs to this class of interaction
matrices. If the space F of spin values is compact, one has an approximation property: The space of
Ising type interaction matrices is dense. If F is a finite set, which is the most studied case, then every
interaction matrix is of Ising type. Hence the famous M -states Potts model can be studied from the
same mathematical point of view as the Ising model.
Next we explain the left hand side of the dynamical trace formula, the (dynamical) partition function,

Zb
N0 ,φ

{1,...,n}(β) and Z̃b
N0

n (βA(φ)) respectively. We first introduce the dynamical partition function, which

is of natural interest from the mathematical point of view. For any continuous bounded function
A : FN → C we define the dynamical partition function via

Z̃b
N0

n (A) :=

∫

Fn

exp
( n−1∑

k=0

A(τk(x1 . . . xn))
)
dν(x1) . . . dν(xn).

Notice that the argument
∑n−1
k=0 A(τk(x1 . . . xn)) of the exponential in the integrand is (n-times) the

average of the observable A along the closed τ -orbit through x1 . . . xn := (x1, . . . , xn, x1, . . . , xn, . . .).

1The decay estimate can be weakend, cp. Corollary 2.9.3.
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In terms of statistical physics this sum is interpreted as the interaction energy of x1, . . . , xn and the

dynamical partition function Z̃b
N0

n (A) is the normalisation factor of the Gibbs-Boltzmann distribu-

tion exp
(∑n−1

k=0 A(τk(x1 . . . xn))
)
dν(x1) . . . dν(xn). Of particular interest is the so called standard

observable

(2) A(φ) : Ω → C, ξ 7→ q(ξ1) +
∞∑

i=2

r(ξ1, ξi) d(i− 1),

where r : F × F → C is the interaction matrix, q ∈ Cb(F ) is the potential, and d : N → C is the
distance function of a two-body interaction φ (1). The observable A(φ) is interpreted as the sum of
two-body interactions of the particle at position one and the particles sitting at the rest of the half
lattice. There is a second interpretation of the argument of the exponential in the integrand of the

dynamical partition function Z̃b
N0

n (A(φ)): Think of n particles aligned on a circle and count the sum
of all possible interactions. Take this sum as the energy of the n-particle configuration. In analogy
to Boltzmann’s distribution we include a parameter β = 1/kT , the so called inverse temperature, by

replacing A(φ) by β A(φ). In (1.7.1) we define the (usual) physical partition function Zb
N0 ,φ

{1,...,n}(β) with

periodic boundary condition and two-body interaction φ = (φΛ) (1) to be the normalisation factor of
the corresponding Boltzmann distribution. In Corollary 1.11.3 we show that for one-dimensional spin

systems the both notions of partition function coincide, Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β), which gives an

interpretation from dynamical systems to the partition function and substantiates our interest in the
observable A(φ).
For every irreducible aperiodic measurable function A : F × F → {0, 1}, which we call the transition
matrix, the set ΩA := {ξ ∈ FN |A(ξi, ξi+1) = 1 ∀i ∈ N} is a closed shift-invariant subset of FN, we
call a matrix subshift of FN. In the case of a finite alphabet, then A can be viewed as a matrix and
ΩA is often called a subshift of finite type. One considers matrix subshifts if certain configurations
are not permitted by nearest neighbour exclusion rules like “Particles of type X don’t like to sit close
to particles of type Y” or “Particles of type Z only occur separately”. Matrix subshifts are used in
coding: Suppose we are given a trajectory on some space which is partitioned into a family of pieces,
each labelled by a different symbol. Following the orbit of a point one obtains a symbolic coding by
writing down the symbols of the pieces the orbit meets. This process is meant to be some kind of
data reduction. Then the following questions arise: Can one recover the original trajectories from the
symbolic coding? Is there a description of the space of symbolic trajectories? For the last purpose one
may use matrix subshifts. Note that a finer partitioning tends to result in less reduction of data and
more information on the system, but needs more symbols which may cause mathematical problems.
We obtain from Theorem 2.13.8 together with a certain tensoring trick the following dynamical trace
formula.

Theorem 3.2.6. Let (ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift. Let φ be a

two-body Ising type interaction with potential q ∈ Cb(F ) and distance function d ∈ D(p)
1 for some finite

p, say d(k) = 〈Bk−1v|w〉`2N, and interaction matrix r ∈ Cb(F ×F ) with r(x, y) =
∑M
i=1 si(x) ti(y) with

si, tj ∈ Cb(F ). Let A(φ) be the standard observable (2). Then there exists an index n0 ∈ N depending

on B such that for all n ≥ n0 the iterates Mn
β ∈ End(L2(F, ν)⊗̂F((`2N)M )) of the Ruelle-Mayer

transfer operator

(Mβf)(x; z1, .., zM ) =

∫

F

Aσ,x exp
(
βq(σ)+β

M∑

l=1

sl(σ)〈zl|w〉
)
f(σ; t1(σ)v+Bz1, .., tM (σ)v+BzM ) dν(σ)

satisfy the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn)M trace (Mβ)
n.

A consequence of the above Theorems 2.13.8 and 3.2.6 is the result 4.4.4 on the associated dynamical
zeta function which we will explain after sketching their proofs.

The proof of Theorems 2.13.8 and 3.2.6 is done in steps: First we have to show that a certain power
of the Ruelle-Mayer transfer operator is trace class, then we have to find an expression for the traces.
Finally we compare both sides of the dynamical trace formula and show that they are equal.
For the first step we decompose the Ruelle-Mayer transfer operator as an integral of operators and
show that each of them is trace class. Then we use the following folklore theorem for which we give
a proof in Appendix A.
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Theorem A.7.6. Let (My)y∈Y be a measurable family of trace class operators on a separable Hilbert
space H such that

∫
Y
‖My‖S1(H) dy <∞. Then the linear operator M : H → H, Mf :=

∫
Y
Myf dy

is a trace class operator with

trace M =

∫

Y

trace My dy

Each summand in the decomposition of the Ruelle-Mayer transfer operator is a (generalised) compo-
sition operator, by which we mean an operator acting on a space of functions via

(Tf)(z) = φ(z) (f ◦ ψ)(z),

where φ is a scalar-valued map and ψ is a self-map of the domain where the functions are defined
on. Composition operators and their spectral properties are well-studied in the literature, see for
instance [Sh93]. A classical result is the Atiyah-Bott fixed point formula (see [AtBo67], [May80a])
which can be stated as follows:

Theorem 2.4.2. Let U ⊂ Ck be an open bounded complex domain. Let φ : U → C and ψ : U → U
be holomorphic functions with continuous extensions to the closure U of U and, moreover, ψ(U) ⊂ U .
Then ψ has a unique fixed point z∗ ∈ U and the generalised composition operator

T : A∞(U) → A∞(U), (Tf)(z) = φ(z) (f ◦ ψ)(z)

is nuclear of order zero with trace given by the Atiyah-Bott type fixed point formula

trace A∞(U) T =
φ(z∗)

det(1 − ψ′(z∗))
.

Here, A∞(U) denotes the space of holomorphic functions on U which are continuous on U , which
is a Banach space with respect to the supremum norm. Mainly for two arguments we need to work
with Hilbert space techniques and the Schatten ideals Sp(H0) instead of Banach spaces and nuclear
operators. The first one is Theorem A.7.6 above which is not known to us in a Banach space setting.
The other occurs in our treatment of dynamical zeta functions in Chapter 4.
For these reasons the Atiyah-Bott theorem has to be transfered to a Hilbert space setting. This will
be done in Appendix B. It turns out that the Fock space F(Cd) is suitable for our purposes. The
Fock space is defined as the space of entire functions on Cd which are square-integrable with respect
to a normalised Gaussian measure. We prove the following result which considers the special case of
composing with an affine map.

Theorem B.3.4. Let b ∈ Cd, B ∈ Gl(d; C) with operator norm ‖B‖ < 1, and φ : Cd → C an entire
function which can be estimated by |φ(z)| ≤ c exp(a ‖z‖) for all z. Let T be the composition operator
acting via

(Tf)(z) = φ(z) f(Bz + b)

both on the Fock space F(Cd) and the spaces A∞(B(0; r)) for all balls B(0; r) := {z ∈ Cd | ‖z‖ < r}
with sufficiently large radius r > ‖b‖

1−q . Then T : F(Cd) → F(Cd) is a trace class operator with the
Atiyah-Bott trace formula

trace A∞(B(0;r))T = trace F(Cd)T =
φ((1 − B)−1b)

det(1 − B)
.

The previous result can be interpreted in such a way that all eigenfunctions of T : A∞(B(0; r)) →
A∞(B(0; r)) corresponding to non-zero eigenvalues belong to the smaller space F(Cd), in particular
the eigenfunctions extend to the entire space and fulfill a growth condition. This idea can be expanded
to a proof of B.3.4.
In our case concerning the Ruelle-Mayer transfer operator the multiplication part of the composition
operator is given by the function φ : `2N → C, z 7→ exp(βσ〈z|w〉). For this particular choice the
previous theorem also holds true on the Fock space F(`2N) in infinitely many variables. This space
can be characterised equivalently (Thm. A.4.8) either as the unique Hilbert space with reproducing
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kernel k(z, w) = exp(π〈z|w〉) or as the projective limit of the Hilbert spaces F(Cd). It seems this
equivalence has not been noticed before and will be proved in Appendix A which also contains a little
introduction to reproducing kernel Hilbert spaces.
In Theorem 2.7.6 we consider the one-sided one-dimensional full shift with the pure two-body Ising

interaction with the distance function d ∈ D(p)
1 for some p <∞ (2.7.1) given as d(k) = 〈Bk−1v|w〉`2N.

We will show that the Ruelle-Mayer transfer operator

Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
βσ〈z|w〉

)
f(σ v + B z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = det(1 − Bn) trace (Mβ)
n. Then the case of a

general Ising type interaction is obtained by a superposition principle. By tensoring with L2(F, dν)
our Theorem 2.13.8 will be extended to matrix subshifts.
To prove the fact that the trace of the Ruelle-Mayer transfer operator equals the partition function
we use a general principle due to D. Mayer for which we give a representation theoretic interpretation.
Let B be a Banach space and B′ its dual, v ∈ B, w′ ∈ B′, and B : B → B a bounded linear operator
with spectral radius ρspec(B) < 1. Define a distance function via d(k) := 〈Bk−1v, w′〉B,B′ for all k ∈ N.
Then d belongs to `1N and

πB,v : `∞N → B, ξ 7→
∞∑

k=1

ξkB
k−1v

defines a bounded linear operator which satisfies πB,v(σ ∨ ξ) = σv + BπB,v(ξ) for all σ ∈ C, ξ ∈ `∞N.
Here (σ∨ ξ) denotes the sequence (σ, ξ1, ξ2, . . .). In representation theoretic terms the linear mapping
πB,v : `∞N → B intertwines the N0-representations

α1 : N0 × `∞N → `∞N, α1(n, ξ) := (τ ′)n(ξ)

and
α2 : N0 × B → B, α2(n, z) := Bnz,

where τ ′ : `∞N → `∞N, ξ 7→ (0∨ ξ) is the dual operator of the left shift τ : `1N → `1N, (τξ)i := ξi+1.
Note that B generates the semigroup (Bn)n∈N0 which explains our notion “generating triple” in the
context of our class of distance functions. Moreover, if the alphabet F is a bounded subset of C, then
the configuration space FN is a bounded subset of `∞N and the standard observable A(φ) (2) can be
expressed as

A(φ)(σ ∨ ξ) = q(σ) + σ〈πB,v(ξ), w
′〉B,B′ .

We can show that under certain assumptions every distance function allowing this approach belongs

to one of our classes D(p)
1 . Let

LβA(φ)
: Cb(FN) → Cb(FN), (LβA(φ)

f)(ξ) =

∫

F

exp
(
βA(φ)(σ ∨ ξ)

)
f(σ ∨ ξ) dν(σ)

be the Ruelle transfer operator associated to the standard observable βA(φ) and CπB,v
: Cb(B) →

Cb(FN), f 7→ f ◦ πB,v the composition operator associated to πB,v. Then the previous considerations
imply that (formally)

LβA(φ)
◦ CπB,v

= CπB,v
◦Mβ.

This shows the relation between the Ruelle-Mayer transfer operator Mβ and the Ruelle operator.

The second main result of this dissertation concerns Ruelle’s dynamical zeta function. It is defined as
the formal power series in z ∈ C

ζR(z, β) := exp

( ∞∑

n=1

Zb
N0 ,φ

{1,...,n}(β)
zn

n

)

where β ∈ C is a parameter, i. e., zeta is the generating function of the partition functions. One easily
shows that under weak assumptions zeta defines a holomorphic function in a neighbourhood of zero.
A natural question concerns the existence of a meromorphic continuation discussed for instance in
[MayVi77], [May80a]. We show the following result:
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Corollary 4.4.4. Let F ⊂ C be a bounded set and (ΩA, F,N,N0, τ) be a one-sided one-dimensional

matrix subshift. Let φ be a two-body Ising interaction with distance function d ∈ D(1)
1 (2.7.1) of the

form d(k) = 〈Bk−1v|w〉`2N, and potential q ∈ Cb(F ). Let Mβ : L2(F, ν)⊗̂F(`2N) → L2(F, ν)⊗̂F(`2N),

(Mβf)(x, z) =

∫

F

Aσ,x exp
(
βq(σ) + βσ〈z|w〉

)
f(σ, σ v + B z) dν(σ)

be the Ruelle-Mayer transfer operator defined in Theorem 3.2.6. Then there exists n0 ∈ N depending
on B such that the dynamical zeta function satisfies

ζR(z, β) = exp
( n0−1∑

n=1

zn

n
Z̃b

N0

n (βA(φ))
)

lim
M→∞

∏

α∈{0,1}M

detn0(1 − zλαMβ)
(−1)|α|+1

,

where (λj)j∈N are the eigenvalues of B and λα :=
∏M
i=1 λ

αi

i . The right hand side has an Euler product
expansion and a meromorphic continuation to C.

Here, detn0(1 −Mβ) denotes the regularised determinant of order n0, which exists, since by Theo-
rem 3.2.6 the operator (Mβ)

n is trace class for all n ≥ n0. Using the theory of regularised determi-
nants, which we briefly recall in Section A.1, we can locate the poles and zeros of the dynamical zeta
function.
Analogously, the same result holds for Ising type interactions (with rank M) when replacing the
sequence λ = (λj)j∈N of eigenvalues of B : `2N → `2N by the sequence λM of eigenvalues of the
M -fold direct sum BM : (`2N)M → (`2N)M of B. Obviously, BM has the same eigenvalues as B, but
with the M -fold multiplicity.
Concerning the proof of Corollary 4.4.4: Under our assumptions a dynamical trace formula holds.
Hence we have to study generating functions of a special kind. For u ∈ N, z ∈ C, and G belonging to
the Schatten class Su(H) let

gu(z, a,G) := exp
( ∞∑

n=u

zn

n
an trace Gn

)

be the generating function associated to the sequence a = (an)n∈N ∈ CN. It is apparent, Prop. 4.2.1,
that gu( · , a,G) defines a holomorphic function in a neighbourhood of zero provided limn→∞ n

√
|an|

is finite.
For the special choice an = 1 − λn with 0 < |λ| < 1 occurring for exponentially decaying interaction
it was shown by Moritz [Mo89] that g1( · , a,G) and hence zeta can be represented as a quotient of
Fredholm determinants. This results easily extends to the case where an = det(1 − Λn) for a finite
rank operator Λ. To handle the case that the dynamical trace formula only holds for almost all n ∈ N

we have to use the theory of regularised determinants. We obtain the following generalisation of the
result of Moritz:

Theorem 4.3.4. Let Λ ∈ S1(H0) be a trace class operator2 with ρspec(Λ) < 1 and an := det(1−Λn).
Let (λj)j∈N be the eigenvalues of Λ. Then for any G ∈ Su(H)

gu(z, a,G) = lim
M→∞

∏

α∈{0,1}M

detu(1 − zλαG)(−1)|α|+1

=
limM→∞

∏
α∈{0,1}M :|α|≡1(2) detu(1 − zλαG)

limM→∞
∏
α∈{0,1}M :|α|≡0(2) detu(1 − zλαG)

.

In particular, the generating function gu( · , a,G) extends to a meromorphic function on the entire
C-plane and has an Euler product expansion.

As an immediate consequence we obtain the meromorphic continuation of the dynamical zeta function
to the entire z-plane:

Corollary 4.4.2. Suppose there is a transfer operatorG ∈ Sn0(H) which satisfies the dynamical trace

formula Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace Gn for all n ≥ n0, where Λ ∈ S1(H0) is a trace class operator

with ρspec(Λ) < 1. Set an := det(1 − Λn) and a = (an)n∈N. Then

ζR(z) = exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
gn0(z, a,G)

2Later, I realised that there is no assumption needed about the spectral radius.



Introduction 13

gives the meromorphic continuation to all of C.

As an immediate consequence of Theorem 4.3.4 and Corollary 4.4.2 we obtain Corollary 4.4.4.

The third main part of this dissertation concerns so called Kac-Gutzwiller transfer operators. Due
to the correspondence between the Ruelle-Mayer transfer operator [May80a] and the Kac-Gutzwiller
transfer operator [Gu82] for the one-dimensional Ising model with exponentially decaying interaction
established in [HiMay02] and [HiMay04] we investigate the conjugates of Ruelle-Mayer transfer op-
erators under the Bargmann transform B : L2(Rn) → F(Cn) which provides a unitary isomorphism
between the space L2(Rn) of square-integrable functions and the Fock space F(Cn). Given a Ruelle-
Mayer transfer operator Mβ : F(Cn) → F(Cn) we call the conjugated integral operator B−1 ◦Mβ ◦B
on L2(Rn) a Kac-Gutzwiller transfer operator. The Kac-Gutzwiller transfer operator for exponentially
decaying Ising interactions has been constructed by M. Gutzwiller using ad hoc methods which have
failed to work for other than this specific interaction. Our approach is applicable for all Ising type
interactions with a finite-rank generator and works both for full and for matrix subshifts. We will
compute the Kac-Gutzwiller transfer operator for polynomial-exponentially decaying interactions and
also for finite range interactions explicitly and study its properties. As a case in point for Ising type
interactions we consider the Potts model. We hope that our approach leads to better understanding
of this kind of transfer operators.
In order to compute the Kac-Gutzwiller operator we use again the decomposition of the Ruelle-
Araki-Mayer transfer operator into an integral over a family of generalised composition operators of
the following type: For any a, b ∈ Cn, Λ ∈ Mat(n, n; C) with operator norm ‖Λ‖ < 1 we define a
composition operator La,b,Λ : F(Cn) → F(Cn) acting via

(La,b,Λf)(z) = e(z|a) f(Λz + b).

It turns out that the composition operators of this kind belong to the extended Fock oscillator semi-
group EΩn,F(Cn) which is well-understood due to its representation theoretic use. Via the Bargmann
transform B : L2(Rn) → F(Cn) the extended Fock oscillator semigroup is conjugate to the extended
oscillator semigroup EΩn which consists of integral operators on L2(Rn) with (not necessarily cen-
tered) Gaussians as kernel. Since every operator of type La,b,Λ can be written as a product of a
composition operator (CΛf)(z) = f(Λz), a translation (τsf)(z) = f(z−s), and a multiplication by an
exponential (mexps

f)(z) = e(z|s) f(z), we study the conjugates of each constituent. [HiMay02] gives
the conjugates of translations and of multiplication operators B ◦ τr ◦ B−1, B ◦ mexps

◦ B−1 both
acting on F(Cn). We also ask for the operators B−1 ◦mexpa

◦B, B−1 ◦ τ−b ◦B both acting on L2(Rn)
and obtain a similar result in Proposition 5.3.6. These two results will lead to an explicit description
of the extended Fock oscillator semigroup. This will be used to compute the Bargmann conjugate
B−1 ◦ La,b,Λ ◦ B of La,b,Λ (Prop. 5.3.5). Then by general arguments we obtain the Kac-Gutzwiller
transfer operator, first for Ising interactions, then for Ising type and, using results from Chapter 3,
for matrix subshifts.

The outline of this dissertation is as follows:
In Chapter 1 we will provide some background material on the so called thermodynamical formalism for
lattice spin systems. In particular we turn our attention to lattice spin systems with periodic boundary
condition. For this we give a new definition which is independent of the particular semigroup which
acts. The main object of interest is the partition function and its thermodynamic limit, i. e., as the
number of particles tends to infinity. We will exploit all kinds of symmetries in order to simplify the
computation of the partititon function. For one-dimensional lattice spin systems such considerations
have led both to the invention of the Ruelle, the Ruelle-Mayer, and the Kac-Gutzwiller transfer
operator. Besides establishing the connection between the dynamical and the (physical) partition
function which is essentially needed for the construction of the Ruelle and the Ruelle-Mayer transfer
operator our results are meant as a preparation for other types of future transfer operators.
In Chapter 2 we review the concept of a transfer operator. We introduce Ruelle’s transfer operator
and state some of its properties, for instance, the Ruelle-Perron-Frobenius theorem which relates the
leading eigenvalue, the corresponding positive eigenfunction, and the positive eigenmeasure to physisal
quantities. The Ruelle transfer operator is in general far from being a trace class operator. Since we
are interested in dynamical trace formulas, we focus on the so called Ruelle-Mayer transfer operator.
It occurs by restricting the Ruelle operator to a suitable invariant subspace of Cb(Ω). We briefly recall
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Ruelle’s concept of counting traces which suggests that a larger part of the spectrum of the Ruelle
transfer operator should be investigated than just its leading eigenvalue. We introduce the abstract
Ruelle-Mayer transfer operator and prove its trace formula. Then we turn our attention to Ising
two-body interactions and reformulate the known examples of Ruelle-Mayer transfer operators which
satisfy a dynamical trace formula in our setting. The remaining part of this chapter is devoted to the
proof of our main result Theorem 2.13.8.
In Chapter 3 we define the Ruelle-Mayer transfer operator for matrix subshifts. The operator was
known in the case of a finite alphabet F . We eliminate this requirement and prove our second main
result Theorem 3.2.6. For this purpose we investigate the behaviour of the trace formula and the
spectral properties of the Ruelle-Mayer operator under a certain tensoring with the transition matrix
which is needed for the dynamical trace formula for matrix subshifts.
The main concern of Chapter 4 is the study of the dynamical zeta function in the presence of a
dynamical trace formula. We use the theory of regularised determinants for the study of the generating
functions of type gu(z, a,G) introduced above and finally prove the main result on the meromorphic
continuation of Ruelle’s zeta (Corollary 4.4.4).
In Chapter 5 we give, based on [Fo89], an introduction to the extended oscillator semigroup and its
Bargmann conjugate, the extended Fock oscillator semigroup. Given a Ruelle-Mayer transfer operator
the Bargmann transform leads to a corresponding Kac-Gutzwiller operator. We make use of the fact
that a Ruelle-Mayer transfer operator can be decomposed into an integral over a family of composition
operators each of them of type La,b,Λ as above which are contained as a small subsemigroup in the
extended Fock oscillator semigroup. We apply the conjugation formulas known in the literature to this
type of composition operators and obtain the corresponding Kac-Gutzwiller operator. By choosing
special generating triples for the distance function this integral operator on L2(Rn) has a (relatively)
simple integral kernel which can be used to investigate the spectrum of the transfer operator in detail.
Appendix A contains background material from functional analysis. The first three sections recall the
definition of traces and (regularised) determinants based on [GoGoKr00]. First we give an introduction
to the axiomatic approach, then we study the Hilbert space setting, i. e., the trace class and the
Schatten classes as an example of embedded subalgebras. In Section A.2 we provide the (Hilbert space)
theory of regularised determinants as needed for the investigation of the dynamical zeta function. In
Section A.3 we briefly comment on the Banach space setting and mention exemplarily nuclear operators
and the Grothendieck 2/3-theorem.
For the investigation of the Ruelle-Mayer transfer operator we use the fact that the Fock space is a
reproducing kernel Hilbert space. In Section A.4 we give an introduction to reproducing kernel Hilbert
spaces, discuss the main examples, and focus then on the classification of Fock spaces. We end this
chapter with a proof of the folklore theorem A.7.6.
The main issue of Appendix B is the investigation of composition operators and their spectral proper-
ties. In particular we are interested in those cases in which the Atiyah-Bott fixed point formula 2.4.2
holds. This question is investigated both for finite-dimensional and infinite-dimensional complex do-
mains. Thus both appendices provide essential tools for the proof of the dynamical trace formula and
are of independent interest, too.

Future prospects:
In Chapter 1 we introduce lattice spin systems over (possibly) high dimensional lattices. However, the
rest of this dissertation only concerns lattice dimension equal to one due to the fact that no reasonable
candidate generalising the Ruelle transfer operator is known. In order to pave the way towards higher
dimensional transfer operators we rewrite the partition function by emploiting symmetries which
might be useful for the direct construction of future Kac-Gutzwiller type transfer operators. Another
approach might be the investigation of the dynamical partition function which could be a suitable
replacement for the partition function in higher dimensions.
In Chapters 2 and 3 we study Ruelle-Mayer transfer operators for classes of interactions which have
a fast decay at infinity. It would be interesting to find other approaches which allow to treat slower
decaying interactions (or to show that those are not accessible via the transfer operator method). We
construct the Ruelle-Mayer transfer operator as an integral over a family of composition operators of a
special type. As long as distance functions with finite rank generator are concerned, these composition
operators La,b,Λ form a small subsemigroup inside the extended Fock oscillator semigroup which
likewise consists of trace class operators. This motivates the hope that future transfer operators may
be built up from (a larger part of) the extended (Fock) oscillator semigroup.
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In Chapter 4 we prove the Euler product of the dynamical zeta function in the presence of a dynamical
trace formula and hence obtain a spectral interpretation of zeta’s zeros and poles. Using the Kac-
Gutzwiller transfer operator this offers the possibility to study zero statistics of the dynamical zeta
function as done for instance in [HiMay02], i. e., statistics like the average number of zeros in a certain
interval or the average spacing of two consecutive zeros.
The methods of Chapter 5 are restricted to distance functions with finite rank generator. Using
methods from probability theory one might be able to treat also arbitrary generators.
In Appendix B we enter the world of generalised composition operators and their spectral properties.
For the purposes of this dissertation and in particular of the construction of the Ruelle-Mayer transfer
operator it is sufficient to prove the trace formula (and the trace norm formula) for composition
operators of type La,b,Λ (Thm. B.4.3). The natural question concerns the general setting for this
theorem.
Some results of this dissertation will appear in a joint article with J. Hilgert under the title

”
Mero-

morphic continuation of dynamical zeta functions via transfer operators“.
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1 Thermodynamic formalism for lattice spin systems

The purpose of the thermodynamic formalism or statistical mechanics is the understanding of a dy-
namical system which consists of a huge number of similar subsystems (“particles”). The microscopic
properties of the subsystems and their interactions determine the macroscopic properties of the system.
Think for instance of a solid consisting of a huge number of atoms. Magnetism is a property which
depends on the average properties of the magnetic momenta (“spins”) of the particles. One observes
a macroscopic ferromagnetism if the elementary (microscopic) magnetic momenta are aligned in such
a way that they do not cancel each other. Physical observations show a phase transition from ferro-
magnetism to paramagnetism: At low temperature the spins are parallel leading to a ferromagnetic
behaviour of the solid, at high temperature one has thermal noise, i.e., a disordered spin configuration
and thus a paramagnetic behaviour. E. Ising proposed a model for describing ferromagnetism of a
solid, where the spins of the electrons can only take values in a set with two elements, “spin up” or
“spin down”. The interaction energy of a pair of parallel spins is smaller than that of a pair of an-
tiparallel ones. This makes the system tend towards a uniform parallel configuration. As temperature
increases the system tends to disorder. Ising’s original model considers nearest-neighbour interactions
of particles aligned on a one-dimensional lattice. Although Ising’s one-dimensional model does not
exhibit a phase transition, his model and its generalisations (higher dimensional lattices, other types
of imposed interaction) have been applied successfully in many branches of science to explain phe-
nomena where individual elements (e.g., atoms, animals, protein folds, biological membrane, social
behaviour, etc.) modify their behaviour so as to conform to the behaviour of other individuals in their
vicinity. For some biological applications we refer to [Th72, Ch. 7]. More than 12 000 papers have
been published between 1969 and 1997 using the Ising model.
We will now give an outline of this chapter. Roughly, a (classical)3 lattice spin system consists of a
configuration space equipped with the structure of a dynamical system. After introducing the notion
of interaction and energy we will define the partition function which is the central object of this
chapter.
In Section 1.1 we define the configuration space. Given a Hausdorff space F equipped with a finite
Borel measure, the full configuration space is the space FL of F -valued functions which assign to each
lattice point i ∈ L in a fixed discrete space L a so called spin value ξ(i) ∈ F . The position space
L is often interpreted as a crystal. Depending on the modelled physical situation the set F can be
interpreted as charge, as classical spin values F = {±1} (“spin up”, “spin down”), as occupation
numbers F = {0, 1, . . . , n}, or as species of particles present at a lattice point. Thus we can treat
spin systems, lattice gas models, and alloy models from the same mathematical point of view. In the
literature only the case of compact F or even finite is covered which for instance excludes to model
a system where a particle can have arbitrarily large charge. A non-empty closed subspace Ω ⊂ FL

is called a (restricted) configuration space. In Section 1.2 we provide the configuration space with
the structure of a dynamical system. Given a left semigroup action Γ × L → L, (γ, i) 7→ γ · i on the
position space we define a right semigroup action on the full configuration space in the natural way,
i. e.,

τ : Γ × FL → FL, τ(γ, ξ)(i) := ξ(γ · i)
for all i ∈ L. The triple (FL,Γ, τ) is called a shift system. Now, a lattice spin system is a 5-tuple

3“Classical” in contrast to “quantum”. We only consider classical systems without mentioning it in the future.
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Figure 2: A two-dimensional lattice with attached spins.
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(Ω, F,L,Γ, τ), where (FL,Γ, τ) is a shift system and Ω ⊂ FL is a closed τ -invariant subspace. An
important and widely studied class of examples is the D-dimensional matrix subshift, see Def. 1.2.8.
For every subset Λ ⊂ L one defines a restriction map ρΛ : FL → FΛ, ξ = (ξi)i∈L 7→ ξ|Λ = (ξi)i∈Λ

and ΩΛ := ρΛ(Ω). The elements of ΩΛ are called subconfigurations. An observable is a bounded
continuous complex-valued map defined on the configuration space Ω. We call f ∈ Cb(Ω) localised
in the (finite) region Λ ⊂ L if f = fΛ ◦ ρΛ for some fΛ ∈ Cb(ΩΛ). In Section 1.4 we use the Stone-
Weierstrass theorem to prove that the space of localised observables is dense provided the space F of
spin values is compact. Many interesting observables, as for instance the energy, are built up from so
called interactions. An interaction is a family of localised observables which we define in Section 1.5.
An important role play interactions of the following type: Define φ = (φΛ) via

φΛ(ξΛ) =





−q(ξi) , if Λ = {i}, ξΛ = (ξi),

−d̃(i, j) r(ξi, ξj) , if Λ = {i, j}, ξΛ = (ξi, ξj), (i 6= j),
0 , otherwise,

where r : F×F → C and d̃ : L×L → C are symmetric functions, q : F → C, and ξi, ξj ∈ F , Λ ⊂ L. An
interaction of this form is called a two-body interaction with interaction matrix r, anisotropy matrix
d̃ and potential q. From Section 1.8 on we will restrict our considerations to the case of two-body
interactions. Two-body interactions are both simple to handle and still interesting for applications.
Depending on the interaction matrix one has an Ising model, a Potts model, or one of Stanley’s
M -vector models.
Our approach to lattice spin systems is affected by the tradition of thermodynamics, i. e., we look
at volume elements which contain a finite number of particles, investigate the localised observables,
and then study the asymptotic behaviour of the localised observables as the volume tends to infinity.
Average properties of certain observables can be encoded in the partition function which is of particular
interest in thermodynamics. Its definition depends on a couple of things we will introduce first.
The way how a subconfiguration gets embedded into the configuration space is described by the so
called boundary condition. Such an embedding should be a (partial) right inverse of the restriction
map ρΛ : Ω → ΩΛ and will be defined at least for certain subsets Λ of the position space L. In
Section 1.3 we introduce two types of such boundary conditions, the zero boundary condition as a
particular example of an external field boundary condition, and for a particular class of semigroup
actions the so called periodic boundary condition. In order to do this we use the orbit relation with
respect to a semigroup action. The periodic boundary condition has been studied in the context of
ZD-actions, whereas our generalisation will be applicable also in other situations, such as actions of
an arbitrary abelian semigroup. We examplarily study the one-dimensional matrix subshift and give
sufficient conditions on the transition matrix such that the associated matrix subshift allows a periodic
boundary condition.
In Section 1.6 we define the energy of a subconfiguration ξΛ ∈ ΩΛ if an interaction is fixed. The total
energy U b,φΛ consists of two parts. The inner energy comes from all interactions of subconfigurations
inside this configuration and can be defined for any region Λ ⊂ L provided that the interaction
satisfies a certain summability condition which we call compatibility. Given a boundary condition
b = (bΛ : FΛ → FL)Λ, a subconfiguration determines a configuration on the whole position space via
the boundary condition. The outer part of the energy counts the interactions between the inside and
its extension. We will give a sufficient growth condition imposed on the interaction which ensures the
convergence of the possibly infinite sums. In the special case of zero boundary conditions the total
energy is just the inner energy and the condition ensuring the absolute convergence can be weakened.
For the periodic boundary condition we will find a weaker condition in Proposition 1.9.3.
Section 1.7 introduces the main object of this chapter, the so called partition function. The partition
function depends on the (scaled inverse) temperature β ∈ C, the volume element Λ ⊂ L, and via

the energy U b,φΛ (ξΛ) on the microstates ξΛ ∈ (bΛ)−1(Ω) of a finite number |Λ| < ∞ of particles. The
partition function is defined as follows: Let Λ ⊂ L be a finite subset of the position space, F a
Hausdorff space with a finite Borel measure ν and let νΛ be the product measure on FΛ. Given a
configuration space Ω ⊂ FL, an interaction φ which is compatible with the boundary condition b we
define the partition function with boundary condition b as

Zb,φΛ (β) :=

∫

b−1
Λ (Ω)

exp
(
− β U b,φΛ (ξΛ)

)
dνΛ(ξΛ).
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The average properties of the microstates determine the partition function. Many of the thermody-
namic variables of the system, such as the total energy, free energy, entropy, and pressure, can be
expressed in terms of the partition function, its derivatives, and their asymptotic behaviour.
In Section 1.9 we restrict to the study of two-body interactions, see Def. 1.8.1. We determine the class
of interactions which are compatible in the sense of Def. 1.6.4 with a periodic boundary condition. In
Proposition 1.9.3 we formulate a sufficient condition ensuring compatibility which is easy to check, in
particular if the two-body interaction is given via a distance function, an interaction matrix, and a
potential. Afterwards we discuss some examples of such distance functions.
We would like to stress that the number of particles is typically thought as being huge (number of
atoms in a piece of matter.) Hence all our efforts serve to simplify the computation of the partititon
function. In this chapter we will see different approaches. They all consist in exploiting symmetries:
Two-body interactions given via a distance function, an interaction matrix, and a potential have
special properties which allow to simplify the integrand of the partition function further. In the case
of an Ising spin system, see Ex. 1.8.3, with vanishing potential we obtain the representation

Zb
Γ,φ

Λ (β) =

∫

(bΓΛ)−1(Ω)

exp
(
β
∑

i,l∈Λ

t̂Γα

i,l ξi ξl

)
dνΛ(ξΛ)

of the partition function with periodic boundary condition bΓ = (bΓΛ)Λ, where (t̂Γα

i,l )i,l∈Λ is a symmetric
quadratic matrix and hence the integrand should be viewed as the exponential of a quadratic form in
the variables ξi ∈ F ⊂ C (i ∈ Λ). This is a generalisation of the situation [HiMay02, p. 26] in the
construction of the Kac-Gutzwiller integral operator. This representation only depends on the fact
that we have a periodic boundary condition defined via an orbit relation. Specific information about
the semigroup is not needed.
In the last two sections we specialise to one-sided ZD-subshifts. We use the specific semigroup structure
of ND

0 as a subsemigroup of ZD and prove explicit formulas for the energy and the partition function.
The considerations of Section 1.11 lead to the dynamical interpretation of the partition function in
Corollary 1.11.3 which we explained in the introduction. We introduce the so called standard observ-
able A(φ) and show that for one-dimensional systems the energy with periodic boundary condition
can be expressed in terms of A(φ) and the N0-action. This is an essential idea in the construction both
of the Ruelle transfer operator (2.1.3) and the Ruelle-Mayer transfer operator (2.3.7).
In the way of presentation we are inspired by the books [Ru78] and [May80a] which mainly deal
with the lattice L ⊆ ZD and ZD-actions on it. We generalise in the following respects: We allow as
position space a countable set equipped with a semigroup action. The spin variable can take values in
a Hausdorff space with finite measure, the hitherto existing setting was a compact Hausdorff space.
We decided to place more emphasis on the dynamical system and to give a mathematically satisfactory
definition of a periodic boundary condition.

1.1 Lattice systems

A lattice spin system consists of an underlying fixed discrete space, the lattice L, where on each lattice
point i ∈ L a classical spin variable ξ(i) ∈ F is attached. The set F can be interpreted as spin values
for instance if F = {±1} has two states which are usually called “spin up” and “spin down”. If one
models a lattice gas the set F = {0, 1, . . . , n} is interpreted as the number of particles present at a
lattice point, so called occupation numbers. The alloy model thinks of ξ(i) ∈ F as the species of
the particle present at the lattice point i ∈ L. We introduce the full and the restricted configuration
space, define the restriction operation and with its help the notion of a subconfiguration.

Definition 1.1.1. (Configuration space)

(i) Let L be a countable set, called the position space, and F a Hausdorff space, called the alphabet.
In many situations we will assume that F carries a finite Borel measure ν, called the a priori
measure.

(ii) Let FL :=
∏
i∈L

F = {f : L → F} be equipped with the product topology. An element ξ ∈ FL

is a mapping which assigns to each lattice point i ∈ L a spin value ξi = ξ(i) ∈ F . We call FL

the (full) configuration space and its elements configurations. Let f0 ∈ F be a special element
to denote an empty lattice point, i. e., ξ(i) = f0 means that there is no spin attached to the
point i ∈ L.
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(iii) Let ∅ 6= Ω ⊂ FL be closed. We call Ω a (restricted) configuration space of the spin system. The
elements of Ω are called allowed configurations.

Think of F as the set of possible values of a classical spin variable and of L as the position space of
a particle or as a crystal lattice. Important examples are the cases where F is compact, in particular
if F is a finite set equipped with the discrete topology. In some examples the countable set L has
a group structure which explains the notion “lattice”. Think of the (restricted) configuration space
Ω as defined by some constraints, e. g. if two spin values are not allowed at lattice points which are
“close” to each other. In (1.2.8) we will introduce a class of non-trivial configuration spaces.
On the configuration space we have the restriction operation which we will define next. The purpose
of these restriction mappings is that we want to define the total energy of a configuration as the sum
of the energies coming from the interactions of all subconfigurations.

Definition 1.1.2. Let FL be a full configuration space (1.1.1). For Λ ⊂M ⊂ L we define restriction
maps

ρΛ : FL → FΛ :=
∏

i∈Λ

F, ξ = (ξi)i∈L 7→ ξ|Λ = (ξi)i∈Λ

and ρΛ,M := ρΛ|FM : FM → FΛ.

The image of a configuration under the restriction map ρΛ we call a subconfiguration.

Remark 1.1.3. (Subconfigurations) Let Ω ⊂ FL be a configuration space (1.1.1), Λ ∈ Pf (L), where
Pf(L) := {Λ ⊂ L; 0 < |Λ| < ∞} is the set of non-empty finite subsets of L, and ρΛ the restriction
map (1.1.2).

(i) Let ΩΛ := ρΛ(Ω) for Λ ∈ Pf (L). We will call the elements ξΛ of ΩΛ subconfigurations. Note
that every subconfiguration ξΛ ∈ ΩΛ can be extended to an allowed configuration: This means
there exists a ξ ∈ Ω with ρΛ(ξ) = ξΛ.

(ii) The mappings ρΛ, ρΛ,M are continuous and surjective and hence so are their restrictions ρΛ|Ω,
ρΛ,M |ΩM .

(iii) For Λ ⊂M ⊂ L we clearly have ρΛ = ρΛ,M ◦ ρM .

We conclude this section with a little topological remark.

Remark 1.1.4. Let Ω ⊂ FL be a configuration space (1.1.1), Λ ⊂ L.

(i) We have equipped FL with the product topology. A basis of the topology are the so called
cylinder sets. The topology is metrisable, see for instance [Ki98, p. 2, p. 226].

(ii) If F is compact, also the space FL (by Tychonoff’s theorem) and its images FΛ = ρΛ(FL) and
their closed subspaces ΩΛ are compact.

1.2 Shift operators

A dynamical system is a semigroup action τ : G ×M → M where the semigroup G is interpreted as
time. Thus typical examples are semigroup actions of the integers Z, the non-negative integers N0,
the real numbers R, or the positive real numbers R≥. Given a semigroup left action on the position
space, this induces a right action on the configuration space, which equips the configuration space
with the structure of a dynamical system. Such a dynamical system we call a shift system. We will
discuss the question when the dynamical system leaves the restricted configuration space invariant
and thus induces a dynamical system there. As an important class of examples we introduce the D-
dimensional shift. A large family of non-trivial ZD-subshifts, the so called matrix subshifts, is given
via a transition matrix A : F × F → {0, 1}. We start with the definition of a semigroup action and a
dynamical system.

Definition 1.2.1. A 3-tuple (M,G, τ) is called a dynamical system, if τ : G ×M → M is a right
semigroup action of the semigroup G on the set M , i. e., if

(i) τ(e,m) = m for all m ∈M , if G contains a neutral element e ∈ G, and
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(ii) τ(h, τ(g,m)) = τ(gh,m) for all m ∈M, g, h ∈ G.

If τ(h, τ(g,m)) = τ(hg,m) for all m ∈ M, g, h ∈ G, then τ : G ×M → M is a left semigroup action.

In the following remark we give some examples of dynamical systems.

Remark 1.2.2. Let (M,G, τ) be a dynamical system (1.2.1).

(i) If G are the real numbers or the integers, then τ can be interpreted as the time evolution rule
of M : Think of τ(g,m) being the actual state of m ∈M after “time g ∈ G”.

(ii) As an example, let T : M → M be a map, denote by T n = T ◦ . . . ◦ T︸ ︷︷ ︸
n−times

the n-th iterate of T .

Then

(3) τ : N0 ×M →M, (n,m) 7→ τ(n,m) := T n(m)

defines a N0-action and (M,N0, τ) is a dynamical system. If T is invertible, then

(4) τ : Z ×M →M, (n,m) 7→ τ(n,m) := T n(m)

defines a Z-action. (M,N0, τ) and (M,Z, τ) respectively, are called time-discrete dynamical
systems induced by T , see Figure 3.

(iii) Every set M can be seen as a dynamical system: Take G to be the trivial group {e} consisting
of the neutral element. Then τ(e,m) := m for all m ∈M defines a G-action.

We specialise to the case where M is a space of functions. In Remark 1.11.5 we will see that in turn
every dynamical system induced by a map T : M → M can be written as an action on a space of
functions.

Definition 1.2.3. (Shift) Let FL be a full configuration space (1.1.1), Γ a semigroup, and τ : Γ×L →
L a left action of Γ on L (1.2.1).

(i) We have an induced right action on the space of F -valued functions on L, also denoted by τ ,

τ : Γ × FL → FL, τ(γ, ξ)(i) := ξ(γ · i)

for i ∈ L, ξ ∈ FL, γ ∈ Γ, called the shift action. Hence (FL,Γ, τ) is a special dynamical system,
called a shift system.

(ii) For fixed γ ∈ Γ we have a continuous4 map

τγ : FL → FL, τγ(ξ) = τ(γ, ξ),

called the shift operator associated with γ.

4The cylinder sets are a basis of the topology, hence the continuity of τγ is easy to see, see [Kea91].

M

q

x

q

Tx
q T 2x

q T 3x

Figure 3: A time-discrete dynamical system generated by a self-map T : M → M .
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(iii) For fixed γ ∈ Γ and Λ ⊂ L we have an induced operator τγ;γ·Λ : F γ·Λ → FΛ, such that the
diagram

(5) FL
τγ //

ργ·Λ

��

FL

ρΛ

��
F γ·Λ

τγ;γ·Λ // FΛ

commutes: For all ξ ∈ FL with ξγ·Λ = ργ·Λ(ξ) let

τγ;γ·Λξγ·Λ := (ρΛ ◦ τγ)(ξ).
This is well-defined: Given ξγ·Λ ∈ F γ·Λ and two ργ·Λ-preimages ξ, η ∈ FL, i. e., ξγ·Λ = ργ·Λ(ξ) =
ργ·Λ(η), we have (ρΛ ◦ τγ)(ξ) = (ξ(γ · i))i∈Λ = (ρΛ ◦ τγ)(η).

If Γ is a group and τ is a group action, then the corresponding dynamical system (FL,Γ, τ) is invertible
and hence in a certain sense deterministic. Nevertheless it can have non-invertible subsystems, a
phenomenon which we will explain next.

Example 1.2.4. Let τ : Γ × L → L be a group action, H ≤ Γ a subsemigroup, and Λ ⊂ L. Then
L1 := H · Λ is H-invariant and τ : H × L1 → L1 is a semigroup action. We give some examples of
semigroups, which are not groups.

(i) Let γ ∈ Γ be an element of infinite order and H = {γn; n ∈ N0}.
(ii) Slightly more generally, take a finite number of commuting elements γ1, . . . , γn ∈ Γ of infinite

order and let H = {γα1
1 . . . γαn

n |α1, . . . , αn ∈ N0}.

(iii) As a concrete example let Γ =
∏D
i=1(niZ), where ni ≥ 0, which acts on L = ZD via left

translation as usual. The semigroup H =
∏D
i=1(niN0) generated by the multiples ni ei of the

standard basis elements ei ∈ ZD, has orbits of the form k+H , k ∈ ZD, and leaves invariant any
set of the form L1 = k + ND, k ∈ ZD, i. e., a translate of the positive quadrant in ZD.

An important class of lattice systems are the so called matrix subshifts. At first we will introduce the
two- and the one-sided full shift and then their subshifts.

Example 1.2.5. (Full shift) Let D ∈ N. The group L = ZD, and hence all subsemigroups Γ ≤ ZD,
act on L by (left) translations

(6) τ : Γ × ZD → ZD, τ(k,m) = k +m.

The induced action on the space of F -valued functions is the regular representation

(7) τ : Γ × FZ
D → FZ

D

, τ(k, ξ)(m) = ξ(k +m)

for all k,m ∈ ZD. The dynamical system (FZ
D

,ZD, τ) is called the D-dimensional full shift.

An example for a non-invertible subsystem is the following, which has been mentioned already in
Example 1.2.4 (iii).

Example 1.2.6. (One-sided shift) The restriction of the ZD-action (6) to the semigroup ND0 ≤ ZD

leaves invariant any set of the form L1 = k + ND, k ∈ ZD, hence we have an induced action on ND0
via

(8) τ> : ND0 × ND → ND, τ(k,m) = k +m

and also on the space of functions

(9) τ> : ND0 × FN
D → FN

D

, τ(k, ξ)(m) = ξ(k +m).

The dynamical system (FN
D

,ND0 , τ
>) is called the one-sided D-dimensional full shift, in contrast to

the two-sided full shift (FZ
D

,ZD, τ). By abuse of notation we will sometimes write τ instead of τ>,
if the acting semigroup is clear from the context. Figure 4 illustrates the surjective, non-injective
mapping τ(1,1) : FN

2 → FN
2

, which moves the configuration one step down and one step to the left.
Look for instance at the motion of the block of spins inside the dotted frame.
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In (1.1.1) we defined full and restricted configuration spaces. In (1.2.3) we have equipped the full
configuration space with the structure of a dynamical system. In order to get a dynamical system on
a restricted configuration space we have to assume that it is invariant under the semigroup action.

Definition 1.2.7. Let (FL,Γ, τ) be a shift system (1.2.3). A subset Ω ⊂ FL is called τ-invariant, if
Ω is τγ-invariant for all γ ∈ Γ. If Ω ⊂ FL is τ -invariant and closed, then the restriction of τ to Ω

τ : Γ × Ω → Ω

defines a dynamical system (Ω,Γ, τ), called a subshift of (FL,Γ, τ). A lattice spin system is a 5-tuple
(Ω, F,L,Γ, τ), where (FL,Γ, τ) is a shift system (1.2.3) and Ω ⊂ FL is a closed τ -invariant subspace.

As an example we will now define a family of non-trivial subshifts of the shift systems (FN
D

,ND0 , τ
>)

and (FZ
D

,ZD, τ) introduced in Example 1.2.6. We only use the property of ZD that every point
i ∈ ZD has a finite number of direct neighbours, hence this definition can be extended to more general
lattices. Given a function A : F × F → {0, 1} which assigns to a pair of spin values a “allowed” or a
“not allowed”, a configuration is allowed if all pairs of spins at adjacent positions are allowed. Think
of A as a nearest-neighbour exclusion rule in the sense explained in the introduction.
Such so called matrix subshifts arise for instance when a dynamical system where not all transitions
are allowed is encoded into a symbolic dynamical system. In Section 3.4 we will introduce a new
modelling of the so called hard rods model as a matrix subshift. For other examples we refer to [Ki98,
1.2].

Definition 1.2.8. (Matrix subshift) In continuation of Example 1.2.5:

(i) A map A : F × F → {0, 1} is called a transition matrix or transition rule.

(ii) A configuration ξ ∈ F (ZD) is called allowed if

A(ξi, ξi+e) = 1

for all i ∈ ZD, e ∈ {u ∈ ND; ‖u‖ = 1}, where ‖ · ‖ is the standard euclidean norm on RD. We
denote the set of allowed configurations by ΩA.

(iii) Clearly, ΩA is τ -invariant and closed in FZ
D

. The dynamical system (ΩA,Z
D, τ) is called the

two-sided D-dimensional matrix subshift. The set F is called the alphabet of the shift.

(iv) Similarly, let τ> be as in (8) of (1.2.6). Then the restriction Ω>
A

:= ρND(ΩA) is τ>-invariant and

closed in FN
D

, and (Ω>
A
,ND0 , τ

>) is called the one-sided D-dimensional matrix subshift.

The following remark gives a visualisation of the set of allowed configurations of a matrix subshift as
paths in a directed graph. This graph theoretic interpretation is helpful for many ergodic problems
related to matrix subshifts.
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Figure 4: The one-sided two-dimensional shift (See 1.2.6).
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Remark 1.2.9. (Matrix subshift) A path in a directed graph is a sequence of vertices which are
linked by edges of the graph. The length `(γ) of a path γ is the number of its edges. One can visualise
the configuration space ΩA of the one-dimensional matrix subshift (ΩA,Z, τ) (1.2.8) as the set of
(two-sided infinite) paths in the directed graph with vertices F and edges from x to y iff A(x, y) = 1.
Similarly, Ω>

A
consists of the one-sided infinite paths in this graph. Consider for instance the following

one-dimensional two-sided matrix subshift defined by the data F = {1, 2, 3} and the transition matrix

A =
(

A(i, j)
)

i,j=1,2,3
=
(

0 1 1
0 0 1
1 1 1

)
corresponding to

(10) '&%$ !"#3
��

'&%$ !"#1 //��

@@�������� '&%$ !"#2
��

^^>>>>>>>>

We will assume that the graph is strongly connected, which means by definition that for each pair of
vertices one can find a path connecting them. In this case the transition matrix A is called irreducible.
For each vertex x ∈ F we define its period to be the greatest common divisor (gcd) of the length of
closed paths through x:

period(x) := gcd {`(γ) | γ connects x with itself}.

A vertex x ∈ F is called aperiodic if period(x) = 1. A graph is called aperiodic if all its vertices are
aperiodic. The example (10) shows an aperiodic graph. A transition matrix A is called aperiodic if
its associated graph is aperiodic.

Whereas for our main example, the matrix subshift, the shift invariance is obvious, the general sit-
uation is much more difficult. Let (FL,Γ, τ) be a shift system (1.2.3). We would like to determine
which subspaces Ω ⊂ FL are τ -invariant. The τ -invariance of Ω clearly imposes some constraints on
the “local” objects ΩΛ = ρΛ(Ω) (Λ ⊂ L), where (ρΛ)Λ⊂L

is the family of restriction maps (1.1.2). For
every Λ ⊂ L we have a diagram which is analogous to (5) in Definition 1.2.3

(11) Ω
� � //

ργ·Λ

��

FL
τγ //

ργ·Λ

��

FL

ρΛ

��

Ω? _oo

ρΛ

��
Ωγ·Λ

� � // F γ·Λ
τγ;γ·Λ // FΛ ΩΛ

? _oo

where the middle square is commutative by the definition of τγ;γ·Λ, see Def. 1.2.3 (iii). As a necessary
condition for the τ -invariance of Ω one has the commutativity of the diagram (11):

Proposition 1.2.10. Let (FL,Γ, τ) be a shift system (1.2.3), γ ∈ Γ, τγ : FL → FL and τγ;γ·Λ :
F γ·Λ → FΛ be as in Definition 1.2.3. Let Ω ⊂ FL be a non-empty subset. Then:

(i) If Ω ⊂ FL is τγ-invariant, i. e., τγ(Ω) ⊂ Ω, then τγ;γ·Λ(Ωγ·Λ) ⊂ ΩΛ for all Λ ⊂ L.

M

A B

CD

q x

q

Tx
q

T 2x

q T 3x

Figure 5: Coding a dynamical system: Given a map T : M → M , and a partioning of M = A ∪B ∪
C ∪D, then for example the sequence x, Tx, T 2x, T 3x gets encoded by AABC.
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(ii) Let τγ(Ω) ⊂ Ω. The map τγ |Ω : Ω → Ω is surjective if and only if τγ;γ·Λ(Ωγ·Λ) = ΩΛ for all
Λ ⊂ L.

Proof. If Ω ⊂ FL is τγ-invariant, then by the definition of Ωγ·Λ = ργ·Λ(Ω) in (1.1.3) and of τγ;γ·Λ
in (1.2.3) we have

τγ;γ·Λ(Ωγ·Λ) = (τγ;γ·Λ ◦ ργ·Λ)(Ω) = (ρΛ ◦ τγ)(Ω) ⊆ ρΛ(Ω) = ΩΛ.

The equality τγ;γ·Λ(Ωγ·Λ) = ΩΛ holds if τγ |Ω : Ω → Ω is surjective. For the converse let Λ = L.

Now we consider the converse of Proposition 1.2.10, i. e., the problem whether the τ -invariance of
Ω can be guaranteed by local constraints on the ΩΛ ⊂ FΛ. Let VΛ ⊂ FΛ be any family of closed
subspaces parametrised by Λ ∈ Pf (L). We define

(12) Ω̃((VΛ)Λ) := {ξ ∈ FL | ρΛ(ξ) ∈ VΛ ∀Λ ∈ Pf(L)}.

Under some constraints on the “local” objects VΛ, Λ ⊂ L, the resulting Ω̃((VΛ)Λ) ⊂ FL is τ -invariant:

Proposition 1.2.11. Let (FL,Γ, τ) be a shift system (1.2.3), γ ∈ Γ and Ω ⊂ FL be a non-empty
subset.

(i) If Ω ⊂ FL is τ-invariant and ΩΛ := ρΛ(Ω) for all finite Λ ⊂ L, then Ω ⊂ Ω̃((ΩΛ)Λ), the latter
defined in (12).

(ii) Let (VΛ)Λ∈Pf (L) be any family of closed subspaces VΛ ⊂ FΛ such that τγ;γ·Λ(Vγ·Λ) ⊂ VΛ for all

finite Λ ⊂ L, then τγ leaves Ω̃((VΛ)Λ) invariant.

(iii) In particular, if in addition Ω = Ω̃((VΛ)Λ), then τγ |Ω : Ω → Ω leaves Ω invariant.

Proof. Let ξ ∈ Ω̃((VΛ)Λ). Then

ρΛ(τγ(ξ)) = τγ;γ·Λ(ργ·Λ(ξ)) ∈ τγ;γ·Λ(Vγ·Λ) ⊂ VΛ

for all finite Λ ⊂ L, hence τγ(ξ) ∈ Ω̃((VΛ)Λ).

The situation of Proposition 1.2.11 (ii) gives the commutativity of the following diagram

FL

ργ·Λ

''

τγ

��

Ω̃? _oo

τγ |Ω̃
��

ργ·Λ // Vγ·Λ

τγ;γ·Λ|Ωγ·Λ

���
�

�

� � // F γ·Λ

τγ;γ·Λ

��

FL

ρΛ

88Ω̃? _oo ρΛ // VΛ
� � // FΛ

As remarked in [Ru78, p. 68], the hardest problem is indeed to show that Ω̃((VΛ)Λ) defined in (12) is
non-empty. This can be undecidable in the sense of logic.

1.3 Boundary conditions

In thermodynamics one often studies a lattice spin system by looking at volume elements which
contain a finite number of particles, investigating the localised observables, and then studying the
asymptotic behaviour of the localised observables as the volume tends to infinity. Subconfigurations
can be embedded into the configuration space in different ways. This process is described by the so
called boundary condition. Since ΩΛ was defined in (1.1.3) to be the image ρΛ(Ω) of the restriction
map ρΛ : Ω → ΩΛ (1.1.2), every ξΛ ∈ ΩΛ has a preimage in Ω. We would like to have at least for
certain finite Λ ⊂ L a (partial) right inverse of the restriction map. These admissible sets will be
collected in the subset P of Pf (L) = {Λ ⊂ L; 0 < |Λ| < ∞}. We will introduce two types of such
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inverse maps which we call boundary conditions, the zero boundary condition as a particular example
of an external field boundary condition, and for a particular class of semigroup actions the so called
periodic boundary condition. The periodic boundary condition has been studied in the context of
ZD-actions, whereas our generalisation will be applicable also in other situations, such as actions of
an arbitrary abelian semigroup. We will give sufficient conditions on the transition matrix such that
the associated one-dimensional matrix subshift allows a periodic boundary condition.

Definition 1.3.1. Let Ω ⊂ FL be a configuration space (1.1.1) and (ρΛ : FL → FΛ)Λ⊂L the family of
restriction mappings from (1.1.2). A boundary extension is a family (bΛ)Λ∈P of maps bΛ : FΛ → FL

parametrised by some non-empty subset P ⊂ Pf (L) such that ρΛ ◦ bΛ = idFΛ for all Λ ∈ P . The
subsets of the position space belonging to P are called admissible for the boundary extension.

It is appearent that bΛ : FΛ → FL is a right inverse of ρΛ : FL → FΛ. We will now consider the
restricted configuration space.

Remark 1.3.2. Let Ω ⊂ FL be a configuration space (1.1.1), (bΛ : FΛ → FL)Λ∈P a boundary
extension (1.3.1), and (ρΛ : FL → FΛ)Λ⊂L the family of restriction mappings from (1.1.2). For Λ ∈ P
let

Ω′
Λ := (bΛ)−1(Ω) = {ξΛ ∈ FΛ | bΛ(ξΛ) ∈ Ω},

which is a subset of ΩΛ, since for all ξΛ ∈ Ω′
Λ we have by definition of the boundary extension (1.3.1)

ξΛ = ρΛ(bΛ(ξΛ)) ∈ ρΛ(Ω) = ΩΛ,

where the latter identity holds by (1.1.3). Hence the restriction of bΛ to Ω′
Λ defines a map bΛ|Ω′

Λ
: Ω′

Λ →
Ω, which is a partial right inverse of ρΛ : Ω → ΩΛ. By quite the same argument the following map
is well-defined: ρL\Λ ◦ bΛ|Ω′

Λ
: Ω′

Λ → ΩL\Λ, since for all ξΛ ∈ Ω′
Λ we have ρL\Λ(bΛ(ξΛ)) ∈ ρL\Λ(Ω) =

ΩL\Λ.

Definition 1.3.3. Let Ω ⊂ FL be a configuration space and (bΛ : FΛ → FL)Λ∈P a boundary
extension (1.3.1) parametrised by P ⊂ Pf (L). If Ω′

Λ := (bΛ)−1(Ω) 6= ∅ for all Λ ∈ P , the family
(bΛ : Ω′

Λ → Ω)Λ∈P is called a boundary condition. If (bΛ)−1(Ω) = ΩΛ for all Λ ∈ Pf (L), then we say
that b is globally defined.

By Remark 1.3.2 the map bΛ : Ω′
Λ → Ω is well-defined. We review what we have achieved so far. On

the full configuration space FL the map bΛ : FΛ → FL is a right inverse of ρΛ : FL → FΛ, whereas
on the restricted configuration space the picture is different: The map bΛ : Ω′

Λ → Ω is only a partial
right inverse of ρΛ : Ω → ΩΛ on a (possibly strict) subset Ω′

Λ of ΩΛ, as shown in Remark 1.3.2.
There are many ways to define extension maps. The simplest way is to choose the boundary exten-
sion (1.3.1) to be constant “outside” Λ. This leads to the so called external field extensions. In order
to glue together both parts we use the following concatenation operator.

Definition 1.3.4. Let FL be a full configuration space (1.1.1) and M, N ⊂ L non-empty disjoint
sets. We define a concatenation operator ⊕ : FM × FN → FM∪N , (ξM , ηN ) 7→ ξM ⊕ ηN via

(ξM ⊕ ηN )(i) :=

{
ξM (i) , i ∈M,
ηN (i) , i ∈ N.
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Figure 6: Zero boundary condition, periodic boundary condition.
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Example 1.3.5. (External field extension) Let Ω ⊂ FL be a configuration space and η ∈ FL a fixed
configuration, the “external field”. The admissible family Pη for the external field extension consists
of all finite subsets of L, i. e., Pη = Pf (L). The external field extension is the family

bηΛ : FΛ → FL, ξΛ 7→ ξΛ ⊕ ρL\Λ(η)

for Λ ∈ Pη. If Ω′
Λ := (bηΛ)−1(Ω) 6= ∅ for all Λ ∈ Pη, the family (bηΛ : Ω′

Λ → Ω)Λ∈Pη is called the
external field condition. - If η0(i) = f0 for all i ∈ L, where f0 ∈ F is the empty spin defined in (1.1.1),
then the boundary extension is denoted by b0Λ and is called the zero boundary extension, respectively
(b0Λ : Ω′

Λ → Ω)Λ∈Pf (L) is called the zero boundary condition if it exists.

In Remark 1.3.13 we will discuss a concrete example of a configuration space and a necessary and
sufficient condition for the existence of the zero boundary condition.
Next we will define the periodic boundary extension. The idea is that certain subsets Λ ⊂ L give rise
to a tiling of L such that the periodic boundary extension bΛ(ξΛ) restricted to a tile coincides with
ξΛ. First we need some preparation concerning semigroup orbits.

Definition 1.3.6. Let τ : Γ × L → L be a semigroup action (1.2.1). We define the orbit relation
∼Γ ⊂ L × L via

i ∼Γ j iff there exist g, h ∈ Γ such that τ(g, i) = τ(h, j).

Clearly the orbit relation with respect to a semigroup action is symmetric and reflexive. But, unlike
group actions the orbit relation is (in general) not transitive, hence not an equivalence relation. A
condition ensuring the transitivity is “commutator-free” which for instance holds if the semigroup is
abelian.

Proposition 1.3.7. Let τ : Γ × L → L be a semigroup action of a semigroup Γ. The action is said
to be commutator-free if τ(gh, ·) = τ(hg, ·) for all g, h ∈ Γ. If τ is commutator-free, then the orbit
relation ∼Γ ⊂ L × L (1.3.6) with respect to Γ is an equivalence relation.

Proof. We have to show that the relation ∼Γ ⊂ L × L is transitive: Let a ∼Γ b, b ∼Γ c. Then there
exist f, g, h, i ∈ Γ such that τ(f, a) = τ(g, b) and τ(h, b) = τ(i, c). Hence τ(hf, a) = τ(hg, b) =
τ(gh, b) = τ(gi, c), which by definition means that a ∼Γ c.

In our applications the acting semigroups are abelian, but one could ask for other criteria forcing the
orbit relation to be an equivalence relation.

Remark 1.3.8. Let Γ × L → L be a semigroup action such that the orbit relation ∼Γ ⊂ L × L

from (1.3.6) is an equivalence relation.

(i) The position space L decomposes into a disjoint union of equivalence classes with respect to
the orbit relation. The equivalence classes are called (generalised) Γ-orbits. We will write
L
/
Γ := L

/
∼Γ

for the quotient space with respect to the orbit relation and call it the (generalised)

Γ-orbit space. We call a set ΛΓ ⊂ L of representatives of L
/
Γ a fundamental domain for the

Γ-action.5

(ii) A fundamental domain Λ ⊂ L for the Γ-action is said to satisfy the tiling condition, if

Γ · Λ :=
{
γ · i | i ∈ Λ, γ ∈ Γ

}
= L.

(iii) If τ : Γ × L → L is a group action, then our definition of the orbit relation coincides with the
usual one

a ∼Γ b :⇔ (∃γ ∈ Γ) τ(γ, a) = b

and defines an equivalence relation. Every fundamental domain satisfies the tiling condition.

5Note that L is assumed to be countable.
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(iv) As an example take the integers L := Z, n ∈ N, and the usual translation action (6) of nN0

on Z. Then the generalised orbits are of the form i+ nZ (i = 1, . . . , n), which differs from the
pointwise orbit

τ(nN, i) :=
{
τ(nm, i) = nm+ i ∈ Z |m ∈ N0

}
= i+ nN0

of i ∈ Z . The (standard) fundamental domain for this action is the set {1, 2, . . . , n}. Note that
also the nZ-action on Z has this fundamental domain.

Given a semigroup action Γ × L → L, (γ, g) 7→ γ · g (1.2.1) and a family (Γα)α∈A of subsemigroups
Γα ≤ Γ, we are now prepared to define a periodic boundary extension. Such a periodic boundary
extension assigns to every function defined on a fundamental domain of Γα the periodic continuation
with respect to the Γα-orbits.

Example 1.3.9. (Periodic boundary extension) Let Γ be a semigroup and τ : Γ×L → L, τ(γ, g) = γ·g
a semigroup action (1.2.1). Let Γα ≤ Γ be a family of subsemigroups of Γ (indexed by α ∈ A) such
that

(i) The orbit relation ∼α := ∼Γα
with respect to Γα is an equivalence relation for all α ∈ A,

(ii) L
/
Γα is finite for all α ∈ A, and

(iii) There is no pair of distinct semigroups having the same set of representatives: For all α 6= β ∈ A,
for all sets Λα of representatives of L

/
Γα and Λβ of L

/
Γβ we have Λα 6= Λβ .

We say that such a family (Γα)α∈A defines a periodic boundary extension. Let Ω ⊂ FL be a configu-
ration space. We define the admissible sets for the periodic boundary extension to be the family P(Γ•)

of sets of representatives of Γα-equivalence classes, i. e.,

(13) P(Γ•) := P(Γα)α∈A
:=
{
Λα ⊂ L | Λα is a set of representatives of L

/
Γα, α ∈ A

}
.

Let Λα ∈ P(Γ•) be a set of representatives of L
/
Γα. We define the Γα-periodic continuation of

ξΛα ∈ FΛα to be
rΓα(ξΛα) : L → F, rΓα(ξΛα)(i) := ξΛα(j)

where i ∈ L and j is the unique element j ∈ Λα with i ∼α j. This defines a map

(14) rΓα : FΛα → FL, ξΛα 7→ rΓα(ξΛα ).

The periodic boundary extension associated to (Γα)α∈A is the family

(15) bΓΛα
:= rΓα : FΛα → FL

for all Λα ∈ P(Γ•). If Ω′
Λ := (bΓΛ)−1(Ω) 6= ∅ for all Λ ∈ P(Γ•), then the family (bΓΛ : Ω′

Λ → Ω)Λ∈P(Γ•)
is

called the periodic boundary condition associated to the family (Γα)α∈A .

Let Ω ⊂ FL be a configuration space. In order to investigate the question whether the periodic bound-
ary extension gives rise to a periodic boundary condition, we have to determine Ω′

Λα
:= (bΓΛα

)−1(Ω) ⊂
ΩΛα . It turns out, see Proposition 1.3.14, that Ω′

Λα
is just the ρΛα -restriction of the Γα-periodic

configurations.

Remark 1.3.10. Let τ : Γ × L → L be a semigroup action of an abelian semigroup Γ. Then
all subsemigroups Γα ≤ Γ are abelian and hence define equivalence relations ∼α by (1.3.7). Hence
condition (i) in Example 1.3.9 is automatically satisfied.
It remains an open problem to decide under which assumptions the following holds: “Let τ : Γ×L → L

be a semigroup action, such that the orbit relation is an equivalence relation. Then the orbit relation
with respect to a subsemigroup H ≤ Γ is an equivalence relation.”

The periodic boundary condition seems at first to be quite artificial. Apart from the fact that it allows
a beautiful mathematical treatment as we will see, the derived physically interesting functions do not
depend on the boundary condition at least in the thermodynamic limit which we define next.
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Definition 1.3.11. (i) The name of a thermodynamic limit is given to a limit process in position
space L, when a sequence/a net of subsets Λ ⊂ L “tends to infinity”, i. e., to L. We write
Λn → L if (Λn)n∈N is a sequence of subsets Λn ⊂ L such that for all finite M ⊂ L there exists
an index nM ∈ N such that M ⊂ Λn for all n ≥ nM .

(ii) We say that a periodic boundary extension (bΓΛ)Λ∈P(Γ•)
allows a thermodynamic limit, if there

exists a sequence (Λn)n∈N of subsets Λn ∈ P(Γ•) with Λn → L.

We will now give some examples for orbit relations. Part (i) corresponds to two-sided shifts, whereas
(ii) corresponds to one-sided shifts.

Example 1.3.12. (i) We return to the situation of Example 1.2.5, where we let Γ = ZD act on
itself by left translations (6) via τ : Γ × ZD → ZD, τ(k,m) = k + m. The standard family

of subgroups of Γ is given as the family of all Γn =
∏D
i=1(niZ), where n = (n1, . . . , nD) runs

through ND. The group Γ is abelian and the family of admissible sets consists of the translates
of the standard fundamental domains

P(Γ•) := P(Γn)n∈ND
=
{
k +

D∏

i=1

{1, . . . , ni} | k ∈ ZD, n ∈ ND
}
.

A second family of semigroups is Hn =
∏D
i=1(niN0), (n ∈ ND), with the same family of ad-

missible sets P(H•) = P(Γ•). The advantage of (Γn) is that every Λ ∈ P(Γ•) satisfies the tiling
condition (1.3.8) with respect to the associated semigroup having Λ as fundamental domain,
whereas no Λ ∈ P(H•) satisfies a tiling condition with respect to (Hn).

(ii) The restriction of the ZD-action (6) to the semigroup ND0 ≤ ZD leaves ND invariant, hence we
have an induced action τ : ND0 ×ND → ND, τ(k,m) = k+m. The standard family of semigroups

consists of Hn =
∏D
i=1(niN0) parametrised by n ∈ ND and

P(H•) =
{
k +

D∏

i=1

{1, . . . , ni} | k, n ∈ ND
}

is the corresponding family of admissible sets. The elements Λ ∈ P(H•) satisfying the tiling
condition are precisely the sets

Ptile
(H•) =

{ D∏

i=1

{1, . . . , ni} |n ∈ ND
}
.

Note that in both cases our choice of the families of subsemigroups makes the fundamental domains
finite and allows a thermodynamic limit. An example of a family (Γn)n∈N of subsemigroups of N2

which does not allow a thermodynamic limit is the family Γn := N× (nN) parametrised by n ∈ N.

In the following Remark 1.3.13 we will discuss a concrete example of a configuration space and different
boundary extensions and conditions on it. In particular, we will see an example where b−1

Λ (Ω) ( ΩΛ.
We study the one-dimensional matrix subshift (1.2.8) and use the visualisation technique from (1.2.9).

Remark 1.3.13. (Boundary conditions for the one-dimensional matrix subshift) Let A be an irre-
ducible transition matrix (1.2.9) and (ΩA,Z, τ) be the associated one-dimensional matrix subshift as
defined in Example 1.2.8. For all Λ ⊂ L let ΩA,Λ := ρΛ(ΩA) be the image under the restriction map
(1.1.2).

(i) If A has all entries equal to 1 so that ΩA = FZ, then clearly all boundary extensions are boundary
conditions and every subset Λ ⊂ Z is admissible for any boundary condition.

(ii) Let f0 ∈ F be the empty spin. The zero boundary extension (b0Λ)Λ∈Pf (L) (1.3.5) is globally

defined in the sense of Def. 1.3.4, if and only if

A(x, f0) = 1 = A(f0, x)
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for all x ∈ F . In fact: Suppose (b0Λ)Λ∈Pf (L) is globally defined. Let Λ = {i} ⊂ L, then ΩA,Λ =

F {i} ∼= F since the graph is connected. By the definition of the zero boundary extension (1.3.5)
the sequence b0Λ(ξΛ) ∈ FZ has the entries

b0Λ(ξΛ)(j) =

{
ξΛ(i) , if j = i,
f0 , otherwise.

Hence b0Λ(ξΛ) ∈ ΩA iff A(ξΛ(i), f0) = 1 = A(f0, ξΛ(i)) and A(f0, f0) = 1. Vary over all ξΛ ∈ ΩA,Λ,
i. e., over all x ∈ F , to get the assertion.

Conversely: If A(x, f0) = 1 = A(f0, x) for all x ∈ F , let ξΛ ∈ ΩA,Λ and η := b0Λ(ξΛ) ∈ FL. For
i, i + 1 ∈ Λ we have A(η(i), η(i + 1)) = 1 by definition of ΩA,Λ. If i ∈ Λ, i + 1 ∈ L \ Λ then
A(η(i), η(i+ 1)) = A(η(i), f0) = 1 by assumption, similarly the case i ∈ Λ, i− 1 ∈ L \Λ. Hence
η ∈ ΩA and the zero boundary extension is a (globally defined) boundary condition.

(iii) We consider the following one-dimensional two-sided matrix subshift defined by the data F =

{1, 2, 3} and the transition matrix A =
(

A(i, j)
)

i,j=1,2,3
=
(

0 1 1
0 0 1
1 1 1

)
for which we have drawn in

(10) of (1.2.9) the corresponding directed graph. We choose the standard family of subgroups
of Z consisting of (nZ)n∈N. We observe that the three-periodic sequence 1 2 3 belongs to ΩA,
hence (1, 2) ∈ ΩA,{1,2} := ρ{1,2}(ΩA), but its 2Z-periodic extension b2Z

{1,2}(1, 2) = 1 2 /∈ ΩA.

(iv) In example (iii) we can easily read off the fixed point set

⋂

γ∈2Z

Fix(τγ : ΩA → ΩA) =
{
3 = 3 3, 1 3, 2 3

}
,

hence for all Λ = {i, i+ 1} one has

Ω′
Λ := (bΓΛ)−1(Ω) = ρΛ(

⋂

γ∈2Z

Fix(τγ : ΩA → ΩA)) = {(3, 3), (3, 1), (3, 2), (1, 3), (2, 3)} ( ΩΛ

and the periodic boundary extension (1.3.9) induces a boundary condition bΓΛ : Ω′
Λ → Ω on a

strict subset Ω′
Λ of ΩΛ.

(v) We consider the following one-dimensional two-sided matrix subshift defined by the data F =

{1, 2, 3} and the transition matrix A′ =
(

A′(i, j)
)

i,j=1,2,3
=
(

0 1 0
0 0 1
1 0 0

)
corresponding to

'&%$ !"#3

'&%$ !"#1 //��

�������� '&%$ !"#2

^>̂>>>>>>>

which is A from (iii) with some arrows removed. We choose the standard family of subgroups
of Z consisting of (nZ)n∈N. We have

⋂

γ∈nZ

Fix(τγ : ΩA′ → ΩA′) = {1 2 3}

for all n congruent 0 modulo 3 and the empty set otherwise.

We will now determine the domain (bΓΛ)−1(Ω) ⊂ ΩΛ of the periodic boundary condition. As suggested
by Remark 1.3.13 (iv) the set Ω′

Λ := (bΓΛ)−1(Ω) can be expressed in terms of joint fixed points.

Proposition 1.3.14. Let (Ω, F,L,Γ, τ) be a lattice spin system (1.2.7), (Γα)α∈A a family of subsemi-
groups of Γ which defines a periodic boundary extension (bΓΛ)Λ∈P(Γ•)

(1.3.9). Let Nα ∈ P(Γ•) be a set

of representatives of L
/
Γα, then

ρNα :
⋂

γ∈Γα

Fix(τγ : Ω → Ω) → (bΓNα
)−1(Ω)

is a bijection with inverse bΓNα
, where Fix(τγ : Ω → Ω) is the set of fixed points of the map τγ : Ω → Ω.
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Proof. Set N := Nα as an abbreviation. First observe that for all ξ ∈ ⋂γ∈Γα
Fix(τγ) ⊂ Ω we have

(bΓN ◦ ρN )(ξ) = ξ by the definition of the periodic boundary extension (1.3.9), hence

ρN :
⋂

γ∈Γ

Fix(τγ) → (bΓN )−1(Ω)

is well-defined. If one has ξ, η ∈ ⋂γ∈Γα
Fix(τγ) with ρN (ξ) = ρN (η), then ξ(i) = η(i) for all i ∈ N .

Let j ∈ L, then there exists a Γα-equivalent point jα ∈ N , i. e., j ∼α jα. Hence there exist g, h ∈ Γα
such that g · j = h · jα. Since ξ is Γα-periodic, we have

ξ(j) = ξ(g · j) = ξ(h · jα) = ξ(jα).

Similarly for η. By assumption ξ(jα) = η(jα), hence ξ(j) = η(j) for all j ∈ L, hence ξ = η, and ρN is
injective. Let ξN ∈ Ω′

N := (bΓN )−1(Ω), then by definition of the periodic boundary extension (15) the
element η = bΓN (ξN ) ∈ Ω is fixed by all maps τγ : Ω → Ω for all γ ∈ Γα:

τγ(η)(i) = η(γ · i) = η(i)

for all i ∈ L, γ ∈ Γα. Here we used the fact that γ · i ∼Γ i, which follows from γ · (γ · i) = (γ2) · i.
Hence bΓN (Ω′

N ) ⊂ ⋂γ∈Γα
Fix(τγ), and hence the definition of a boundary extension gives

Ω′
N = (ρN ◦ bΓN )(Ω′

N ) ⊂ ρN (
⋂

γ∈Γα

Fix(τγ))

and thus the surjectivity of ρN :
⋂
γ∈Γ Fix(τγ) → (bΓN )−1(Ω).

We will use Proposition 1.3.14 to prove the following fact: If A is aperiodic (1.2.9), then the periodic
boundary extension with respect to the family (nZ)n∈N gives rise to a periodic boundary condition.
By the previous proposition it suffices to show that

⋂
γ∈nZ

Fix(τγ : ΩA → ΩA) 6= ∅ for almost all
n ∈ N. For this we need a number theoretic lemma:

Lemma 1.3.15. Let λ1, . . . , λn ∈ N with gcd (λ1, . . . , λn) = 1. Then there exists N ∈ N such that

{
k ∈ N | k ≥ N

}
⊂
{ n∑

j=1

λj nj |nj ∈ N
}
.

Proof. Euclid’s algorithm provides us with the existence of m̃j ∈ Z such that 1 =
∑n
j=1 λj m̃j . By

relabelling the λj ’s we can assume that there exists 1 ≤ k ≤ n and positive integers m1, . . . ,mn such

that 1 =
∑k

j=1 λj mj −
∑n

j=k+1 λj mj. Set M :=
∑n

j=k+1 λjmj . Write k ∈ N as k = k1 + k2M with
1 ≤ k1 ≤M − 1. Then

k = k1 ·1+k2M = k1

k∑

j=1

λjmj−k1

n∑

j=k+1

λjmj+k2

n∑

j=k+1

λj mj =

k∑

j=1

λj k1mj+

n∑

j=k+1

λjmj (k2−k1).

Hence if k ≥ 1 + (M − 1)M , then k1 ≤ k2 and k ∈
{∑n

j=1 λj nj |nj ∈ N
}
.

Corollary 1.3.16. Let (ΩA,Z, τ) be a one-dimensional matrix subshift (1.2.8). If the transition
matrix A : F × F → {0, 1} is aperiodic (1.2.9), then there exists NA ∈ N such that

⋂
γ∈nZ

Fix(τγ :
ΩA → ΩA) 6= ∅ for all n ≥ NA. In other words, there exists NA ∈ N such that the periodic boundary
extension with respect to the family (nZ)n∈N,n≥NA

gives rise to a periodic boundary condition.

Proof. Recall the graph theoretic interpretation of ΩA from Remark 1.2.9. If A is aperiodic, then for
each vertex x ∈ F there exist a finite number of paths γ1, . . . , γm through x, whose lengths don’t have
a common divisor. Hence by Lemma 1.3.15 for all n ∈ N sufficiently large there exists a concatenation
h := γ1◦. . .◦γ1◦. . .◦γm◦. . .◦γm such that the closed path h has length `(h) = n. Since every closed path
in the graph gives rise to a periodic configuration, this shows that

⋂
γ∈nZ

Fix(τγ : ΩA → ΩA) 6= ∅.

In the following remark we will consider the one-sided one-dimensional matrix subshift and show the
analogon of Corollary 1.3.16.
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Remark 1.3.17. (i) Let D ≥ 1 and (Ω, F,ZD,Γ = ZD, τ) be a lattice spin system (1.2.7). Via
restriction to the positive quadrant ND0 we obtain the (so called one-sided) lattice spin system

(Ω> = ρND(Ω), F,ND , H = ND0 , τ
>). For n = (n1, . . . , nD) ∈ ND let Γn =

∏D
i=1 niZ and

Hn =
∏D
i=1 niN0 be the families as defined in Example 1.3.12 for a periodic boundary extension.

Then
ρND :

⋂

γ∈Γn

Fix(τγ : Ω → Ω) →
⋂

γ∈Hn

Fix(τ>γ : Ω> → Ω>), ξ 7→ ρND(ξ)

is a bijection with inverse rΓN ◦ ρΛn
, where Λn =

∏D
i=1{1, . . . , ni} and rΓn are defined in (14).

This is an immediate consequence of Proposition 1.3.14. We obtain, using rΓN = bΓN ,

(bΓN )−1(Ω) = (bHN )−1(Ω) = ρN(
⋂

γ∈Hn

Fix(τ>γ : Ω> → Ω>)) = ρN(
⋂

γ∈Γn

Fix(τγ : Ω → Ω)).

Hence by Proposition 1.3.14 the periodic boundary extension associated to the family (Γn)n∈ND

gives rise to a periodic boundary condition if the same holds true for the one-sided system and
the associated family (Hn)n∈ND .

(ii) Let (Ω>
A
, F,N0, τ

>) be a one-sided one-dimensional matrix subshift (1.2.8) and x1, . . . , xn ∈ F .
Note that the sequence

(16) x1 . . . xn := (ρN ◦ bnZ

N )(x1, . . . , xn) = rnN0(x1, . . . , xn) ∈ FN

belongs to the fixed point set Fix(τ>n : Ω>
A

→ Ω>
A

) of the shift operator on the restricted
configuration space if and only if Ax1,x2 · . . . · Axn−1,xn · Axn,x1 = 1. Hence by part (i) and
Proposition 1.3.14 we have

(17) (bN0

N )−1(Ω) =
{
x = (x1, . . . , xn) ∈ Fn |Ax1,x2 · . . . · Axn−1,xn · Axn,x1 = 1

}
.

(iii) Let (Ω>
A
,N0, τ) be a one-dimensional one-sided matrix subshift as defined in Example 1.2.8 with

an aperiodic transition matrix A : F ×F → {0, 1} (1.2.9) and (ΩA,N0, τ) the corresponding two-
sided matrix subshift. By Corollary 1.3.16 there exists NA ∈ N such that

⋂
γ∈nZ

Fix(τγ : ΩA →
ΩA) 6= ∅ for all n ≥ NA. Its ρN-projection is non-empty and by part (1) precisely (bN0

nN0
)−1(Ω>

A
),

hence the periodic boundary extension with respect to the family (nN0)n∈N,n≥NA
gives rise to a

periodic boundary condition, i. e., the analogous result to Corollary 1.3.16.

1.4 Observables

We introduce observables in the sense of classical mechanics as continuous functions on the config-
uration space. An observable is a quantity to be measured. Examples of such observables are the
energy of a (sub-)configuration or the sum of interactions between two subconfigurations, which will
be introduced in the next sections.

Definition 1.4.1. Let Ω ⊂ FL be a configuration space (1.1.1). A bounded continuous complex valued
function f : Ω → C is called an observable6 . The space Cb(Ω) := {f : Ω → C | f continuous, bounded}
of observables on Ω is a Banach space with respect to the supremum norm. If F is compact, then
clearly Cb(Ω) = C(Ω).

Remark 1.4.2. Let Ω ⊂ FL be a configuration space (1.1.1) and Λ ⊂ L. Since the restriction map
ρΛ : Ω → ΩΛ = ρΛ(Ω) from (1.1.2) is by definition surjective, the map

ρ?Λ : Cb(ΩΛ) → Cb(Ω), fΛ 7→ fΛ ◦ ρΛ

is an isometric linear mapping. In fact, ‖ρ?Λ(fΛ)‖C(Ω) = supξ∈Ω |(fΛ) ◦ ρΛ(ξ)| = supξ∈Ω |fΛ(ξ|Λ)| =
‖fΛ‖Cb(ΩΛ). In particular, ρ?Λ is injective with ‖ρ?Λ‖ = 1. Hence, we can regard Cb(ΩΛ) as a subspace
of Cb(Ω).

6The usual notion from classical physics of an observable is a continuous real valued function on a compact space.
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The image ρ?Λ(Cb(ΩΛ)) =
{
f ∈ Cb(Ω) | f constant along ρΛ-fibers

}
⊂ Cb(Ω) is interpreted as the set

of those physical quantities which are localised in the region Λ inside the position space L. If F is
compact, by the (complex) Stone-Weierstrass theorem the union of these images is dense in C(Ω):

Proposition 1.4.3. Let F be compact and Ω ⊂ FL be a configuration space, then

A :=
{
fΛ ◦ ρΛ : Ω → C | fΛ ∈ C(ΩΛ), Λ ∈ Pf (L)

}

is dense in C(Ω).

Proof. Recall the (complex) Stone-Weierstrass theorem, which can be stated as follows: Suppose K is
a compact Hausdorff space and A is a subset of C(K) which separates points. Then the unital ∗-algebra
generated by A is dense in C(K). We show that A := {fΛ ◦ ρΛ : Ω → C | fΛ ∈ C(ΩΛ), Λ ∈ Pf (L)} is
indeed a unital ∗-algebra: Let f , g ∈ A. Then there exist finite subsets Λ, M of L such that f = fΛ◦ρΛ

and g = gM ◦ ρM . Let N = Λ ∪M , then using Remark 1.1.3 we have the following representations
f = (fΛ ◦ρΛ,N)◦ρN , g = (gM ◦ρM,N)◦ρN where the functions fΛ ◦ρΛ,N , gM ◦ρM,N belong to C(ΩN ).
For � ∈ {+, ·} we have

f � g = (fΛ ◦ ρΛ,N � gM ◦ ρM,N) ◦ ρN ∈ A.

The algebra A is closed under taking complex conjugates

f = fΛ ◦ ρΛ = fΛ ◦ ρΛ ∈ A

and contains the constant function 1 ∈ C(Ω), since 1 = 1Λ ◦ ρΛ ∈ A for all Λ ⊂ L. Hence A is a unital
∗-subalgebra of C(Ω). Let x 6= y ∈ Ω, then there exists a finite subset Λ ⊂ L such that xΛ := ρΛ(x) 6=
ρΛ(y) =: yΛ ∈ ΩΛ. Since the Banach space C(ΩΛ) separates the points of ΩΛ, there exists a function
fΛ ∈ C(ΩΛ) with fΛ(xΛ) 6= fΛ(yΛ). Then fΛ ◦ ρΛ ∈ A and (fΛ ◦ ρΛ)(x) 6= (fΛ ◦ ρΛ)(y).

1.5 Interactions

Most of the observables (energy, partition function) we are going to investigate later will be functions
which depend on a given interaction. An interaction assigns to every subconfiguration (over a finite
position region Λ ∈ Pf (L)) a (complex or real) number, i. e., an interaction is a family of localised
observables. In the physical interpretation this accounts to look at a finite number of particles and
quantify their interactions.

Definition 1.5.1. Let Ω ⊂ FL be a configuration space (1.1.1).

(i) An interaction is a family (φΛ)Λ∈Pf (L), indexed by all finite subsets Λ ⊂ L, of continuous

bounded mappings φΛ : ΩΛ → C with the property that φΛ(ξΛ) = 0 if the empty spin f0 ∈ F
from (1.1.1) belongs to the image of ξΛ.

(ii) Let (Ω, F,L,Γ, τ) be a lattice spin system (1.2.7). An interaction φ = (φΛ)Λ∈Pf (L) is called

Γ-translation invariant, if for all γ ∈ Γ and all Λ ∈ Pf (L)

φγ·Λ = φΛ ◦ τγ;γ·Λ

as functions Ωγ·Λ → C, i. e. if the following diagram

ΩΛ

φΛ

!!B
BB

BB
BB

B

Ωγ·Λ

τγ;Λ

OO

φγ·Λ

// C

commutes, where τγ;γ·Λ is defined in (1.2.3).

(iii) An interaction (φΛ)Λ∈Pf (L) is called an n-body interaction, if n is the minimal integer such that

φΛ = 0 for all Λ ∈ Pf(L) with |Λ| > n.
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In Section 1.8 we will give some examples of two-body interactions. Interactions will occur as the
“building blocks” of many interesting observables, e. g. the energy of a subconfiguration ξΛ over a
finite region Λ ⊂ L is defined as the sum of all interactions of its subconfigurations ρN,Λ(ξΛ) where
N ⊂ Λ. When the physical observations of a given system suggest that the energy does not depend
on the position of the region inside L, but only on its volume, then one should choose a model with a
Γ-translation invariant interaction, where Γ is a semigroup of translations on L.

Remark 1.5.2. Interactions form a C-vector space with respect to pointwise operations, which by
definition means, given a complex number c ∈ C and two interactions (φΛ)Λ∈Pf (L) and (ψΛ)Λ∈Pf (L),

we define
(φΛ)Λ∈Pf (L) + c (φΛ)Λ∈Pf (L) := (φΛ + c ψΛ)Λ∈Pf (L).

This leads to the interpretation that interactions form a subvector space of
∏

Λ∈Pf (L) Cb(ΩΛ) defined
via a certain vanishing condition.

1.6 Energies

Given an interaction as introduced in Section 1.5, we define the energy of a subconfiguration. The
total energy consists of two parts, the inner and the outer part. The inner energy comes from all
interactions of subconfigurations inside this configuration - see Proposition 1.6.1. If we have fixed a
boundary condition, observe that a subconfiguration determines a configuration on the whole position
space via the boundary condition. The outer part of the energy counts the interactions between the
inside and its extension, see Proposition 1.6.5. In order to make the infinite sums, which appear
when one sums up all interactions, convergent, we have to introduce classes of interactions of certain
suitable decay. We begin with the inner energy.

Proposition 1.6.1. (Inner energy) Let Ω ⊂ FL be a configuration space (1.1.1) and φ = (φΛ)Λ∈Pf (L)

an interaction (1.5.1) such that

(18) |φ|i :=
∑

Λ∈Pf (L); Λ3i

1

|Λ| sup
ξΛ∈ΩΛ

|φΛ(ξΛ)| <∞

for all i ∈ L. Then for all Λ ∈ Pf (L) the so called inner energy

(19) ŨφΛ : ΩΛ → C, ξΛ 7→
∑

∅6=M⊂Λ

φM (ρM,Λ(ξΛ))

is well-defined, depends linearly on the interaction, and ‖ŨφΛ‖Cb(ΩΛ) = supξΛ∈ΩΛ
|ŨφΛ(ξΛ)| ≤∑i∈Λ |φ|i.

Proof. For any Λ ∈ Pf(L) and any sequence (aM )M⊂Λ we have

∑

∅6=M⊂Λ

aM =
∑

i∈Λ

∑

M⊂Λ;M3i

aM
|M | ,

since every aM is precisely counted |M |-times on the right hand side. Using this identity we get

sup
ξΛ∈ΩΛ

|ŨφΛ(ξΛ)| = sup
ξΛ∈ΩΛ

∣∣∣
∑

i∈Λ

∑

M⊂Λ;M3i

1

|M |φM (ρM,Λ(ξΛ))
∣∣∣

≤
∑

i∈Λ

( ∑

M⊂Λ;M3i

1

|M | sup
ξM∈ΩM

|φM (ξM )|
)
≤
∑

i∈Λ

|φ|i <∞.

The linearity then is obvious. In the following remark we comment on this peculiar upper bound.

Remark 1.6.2. Let Ω ⊂ FL be a configuration space and φ = (φΛ)Λ∈Pf (L) an interaction (1.5.1).

Then the obvious bound ensuring the absolute convergence of the inner energy ŨφΛ : ΩΛ → C (19) is
the following:

sup
ξΛ∈ΩΛ

|ŨφΛ(ξΛ)| ≤
∑

M⊂Λ

sup
ξM∈ΩM

|φM (ξM )| ≤ 2|Λ| max
M⊂Λ

sup
ξM∈ΩM

|φM (ξM )|,
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since
∑

M⊂Λ 1 = |P(Λ)| = 2|Λ|. As far as the limit |Λ| → ∞ is concerned, this bound seems to be
worse than that from Proposition 1.6.1, which grows linearly, but the complexity is hidden in the
computation of the seminorms |φ|i.

Given two finite disjoint subsets Λ, M ⊂ L of the position space and an interaction φ, one can compare
the inner energies ŨφΛ∪M , Ũ

φ
Λ + ŨφM inside the regions Λ, M and Λ∪M . The difference between these

two terms was introduced by D. Ruelle [Ru78, 1.2].

Remark 1.6.3. Let Ω ⊂ FL be a configuration space, Λ, M ⊂ L, Λ ∩M = ∅, and Λ finite. Let
φ = (φΛ)Λ∈Pf (L) be an interaction (1.5.1) such that

(20) WΛ,M : ΩΛ∪M → C, ξ 7→
∑

N∈Pf (Λ∪M):N∩Λ6=∅6=N∩M
φN (ρN,Λ∪M (ξ))

converges absolutely. Note that WΛ,M : ΩΛ∪M → C is well-defined, since by the definition of
subconfigurations (1.1.2) and the restriction maps (1.1.3) we have the identity ρN,Λ∪M (ΩΛ∪M ) =
(ρN,Λ∪M ◦ ρΛ∪M )(Ω) = ρN (Ω) = ΩN . If the seminorms

(21) ‖φ‖i :=
∑

Λ∈Pf (L); Λ3i
sup
ξΛ∈ΩΛ

|φΛ(ξΛ)|

are finite for all i ∈ L, then

|WΛ,M (ξ)| ≤
∑

N∈Pf (L):N∩Λ6=∅
sup

ξN∈ΩN

|φN (ξN )| ≤
∑

i∈Λ

∑

N∈Pf (L):N3i
sup

ξN∈ΩN

|φN (ξN )| =
∑

i∈Λ

‖φ‖i.

If Λ, M ⊂ L are both finite, then one has

ŨφΛ∪M (ξΛ∪M ) = ŨφΛ(ρΛ,Λ∪M (ξΛ∪M )) + ŨφM (ρM,Λ∪M (ξΛ∪M )) +WΛ,M (ξΛ∪M ).

The function WΛ,M will play a role in Remark 2.2.11 in the context of the leading eigenfunction of
the Ruelle transfer operator. Given a boundary condition (bΛ)Λ∈P we will now define the total energy
as the sum of the inner energy (19) and a term which depends on the boundary condition and the
function WΛ,M .

Definition 1.6.4. Given a configuration space Ω ⊂ FL (1.1.1), a boundary condition (bΛ : Ω′
Λ →

Ω)Λ∈P (1.3.3), and an interaction φ = (φΛ)Λ∈Pf (L) (1.5.1) we define for Λ ∈ P

(22) U b,φΛ : b−1
Λ (Ω) → C, U b,φΛ (ξΛ) := ŨφΛ(ξΛ) +WΛ,L\Λ(bΛ(ξΛ))

and call U b,φΛ (ξΛ) the total energy of a subconfiguration ξΛ ∈ b−1
Λ (Ω), provided the defining series

converges. We say that an interaction φ is compatible with a boundary condition (bΛ)Λ∈P if U b,φΛ (ξΛ)

converges absolutely for all ξΛ ∈ b−1
Λ (Ω) and Λ ∈ P .

�������������r r r

+

�������������r r r r r r r

Figure 7: Total energy = inner energy (from interactions inside framed box, dots denote particles, arcs
denote interacting pairs) + outer part (interactions between box and its outside, interaction strength
decays with increasing distance).



36

The total energy is the sum of all interactions of spins over Λ with all other spins determined by
the bΛ-extension of ξΛ. By Remark 1.6.3 an interaction with the property that the seminorms ‖φ‖i
(21) are finite for all i ∈ L, is compatible with any boundary condition. For both types of boundary
conditions introduced in (1.3.5) and (1.3.9), we will enlarge the class of compatible interactions, see
Propositions 1.6.6 and 1.9.3.

Proposition 1.6.5. Let Ω ⊂ FL be a configuration space, (bΛ : Ω′
Λ → Ω)Λ∈P a boundary condi-

tion (1.3.3), and (φΛ)Λ∈Pf (L) an interaction such that the seminorms ‖φ‖i (21) are finite for all
i ∈ L. Then

(23) U b,φΛ : b−1
Λ (Ω) → C, U b,φΛ (ξΛ) =

∑

M∈Pf (L),M∩Λ6=∅
φM (ρM ◦ bΛ(ξΛ))

Proof. At first note that for all ξΛ ∈ b−1
Λ (Ω) we have (ρM ◦ bΛ)(ξΛ) ∈ ρM (Ω) = ΩM , hence the

interaction φM (ρM ◦ bΛ(ξΛ)) is defined. Consider the summands in (23) with M ⊂ Λ. Note that bΛ
is a (partial) right inverse of ρΛ, i. e., (ρΛ ◦ bΛ)(ξΛ) = ξΛ for all ξΛ ∈ b−1

Λ (Ω). The sum of those terms

gives exactly ŨφΛ . The condition ‖φ‖i <∞ ensures the absolute convergence, hence we can rearrange

terms to get U b,φΛ = ŨφΛ +WΛ,L\Λ ◦ bΛ.

In the special case of a zero boundary condition (1.3.5) the total energy (22) is just the inner energy
(19) and the condition ensuring the absolute convergence of its defining sum can be weakened.

Proposition 1.6.6. (Inner energy) Let Ω ⊂ FL be a configuration space admitting the zero boundary
condition (b0Λ)Λ∈Pf (L) (1.3.5) and (φΛ)Λ∈Pf (L) an interaction such that the seminorms |φ|i (18) are
finite for all i ∈ L. Then for all Λ ∈ Pf (L) the inner energy coincides with the total enery for the

zero boundary condition, i. e., U b
0,φ

Λ = ŨφΛ as functions on (b0Λ)−1(Ω).

Proof. We use the definition (1.3.5) of the zero boundary condition and the fact that an interaction
vanishes by definition on subconfigurations which contain the empty spin f0 ∈ F , hence the difference
term vanishes, (WΛ,L\Λ ◦ b0Λ)(ξΛ) = 0 for all ξΛ ∈ (b0Λ)−1(Ω).

Remark 1.6.7. (i) Let {‖ · ‖i; i ∈ L}, {| · |i; i ∈ L} be the families of seminorms introduced in
(18) and (21), respectively. Set

A :=
{
φ ∈

∏

Λ∈Pf (L)

Cb(ΩΛ); ∀i ∈ L : ‖φ‖i <∞
}

and A0 :=
{
φ ∈

∏

Λ∈Pf (L)

Cb(ΩΛ); ∀i ∈ L : |φ|i <∞
}
.

(ii) By Propositions 1.6.1 and 1.6.5 the total energy for a general boundary condition is well-defined
and bounded if the interaction belongs to A; for the zero boundary condition A0 suffices.

(iii) If φ is a Γ-translation invariant interaction, then the seminorms ‖ · ‖i and ‖ · ‖γ·i are equivalent
for an arbitrary point i ∈ L and γ ∈ Γ, similarly | · |i and | · |γ·i.

From Section 1.8 on we will focus mainly on two-body interactions. In Section 1.9 we will give (neces-
sary and sufficient) conditions on two-body interaction such that the total energy converges absolutely.
This will be applied in Example 1.9.7 where we give some examples of interactions belonging to the
class A defined in (1.6.7).

1.7 Partition functions

We will now introduce the main object of this chapter, the so called partition function, which encodes
many statistical properties of a system. The partition function depends on the temperature, the
volume, and the microstates of a finite number of particles. Many of the thermodynamic variables of
the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of
the partition function, its derivatives, and their asymptotic behaviour.

Definition 1.7.1. Let F be a Hausdorff space with a finite Borel measure ν, called the a priori
measure. For Λ ∈ Pf (L) let νΛ be the product measure on FΛ. Given a configuration space Ω ⊂ FL

(1.1.1), an interaction φ which is compatible with the boundary condition b = (bΛ)Λ∈P (1.6.4) such
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that the total energy U b,φΛ belongs to L∞(b−1
Λ (Ω), νΛ) for all Λ ∈ P , we define the partition function

with boundary condition b as

Zb,φΛ (β) :=

∫

b−1
Λ (Ω)

exp
(
− β U b,φΛ (ξΛ)

)
dνΛ(ξΛ),

where β ∈ C is a parameter, called the (scaled) inverse temperature.

In this picture the microstates are just the subconfigurations ξΛ ∈ (bΛ)−1(Ω). Every microstate has
a certain energy from which by integration the partition function is obtained. The partition function
in turn allows to determine other statistical properties of the system.

Remark 1.7.2. Since we suppose in Def. 1.7.1 the total energy to be bounded, the partition function
Zb,φΛ exists as an integral over a νΛ-almost everywhere bounded function with respect to a finite
measure. In particular, for interactions belonging to the classes A and A0 as defined in (1.6.7) the

energy functions U b,φΛ are continuous and (everywhere) bounded as we have seen in Remark 1.6.7. Note

that for the parameter β equal to zero, the partition function is nothing but the volume Zb,φΛ (0) =
νΛ(b−1

Λ (Ω)).

Our definition 1.7.1 of the partition function is motivated by the so called canonical ensemble. In
statistical thermodynamics an ensemble is the collection of all configurations of a fixed system, e. g.
the canonical ensemble is the collection of all configurations with constant number of particles, constant
volume and constant temperature. If there is a unique probability measure on the ensemble, this is
often called ensemble also.

Example 1.7.3. (Gibbs measure) Let F be a Hausdorff space with a finite Borel measure ν. Let
Ω ⊂ FL be a configuration space and φ an interaction which is compatible (1.6.4) with the zero
boundary condition b0 = (b0Λ)Λ∈Pf (L) (1.3.5). For fixed positive real β the Gibbs measure or canonical
ensemble for a finite region Λ ⊂ L is the probability measure on (b0Λ)−1(Ω) which has the density

µΛ(ξΛ) := (Zb
0,φ

Λ )−1 exp
(
− β U b

0,φ
Λ (ξΛ)

)

with respect to νΛ. The parameter β = 1/kT is interpreted as Boltzmann’s factor, k the Boltzmann
constant, and T the absolute temperature. This explains the notion of (scaled) inverse temperature for
β. The physical model behind it is the following: Given a system with possible states ξΛ ∈ (b0Λ)−1(Ω)

such that a microstate ξΛ has the energy U b
0,φ

Λ (ξΛ) and an exterior large source of heat which is at
temperature T , then it is a physical fact, see [Bo75, p. 4], that µΛ(ξΛ) is the probability to find the
system in the state ξΛ (after long time).

Since we know the domain of integration in the case of the periodic boundary condition by Proposi-
tion 1.3.14, we can rewrite the partition function as follows.

Corollary 1.7.4. Let F be a Hausdorff space with a finite Borel measure ν, (Ω, F,L,Γ, τ) a lattice
spin system (1.2.7), let bΓ = (bΓΛ)Λ∈P(Γ•)

be the periodic boundary condition (1.3.9) associated with

the family (Γα)α∈A of subsemigroups of Γ, and φ a compatible interaction (1.6.4) such that U b,φΛ ∈
L∞(b−1

Λ (Ω), νΛ). Let Nα ∈ P(Γ•) be a fundamental domain of Γα, then

(24) Zb
Γ,φ
Nα

(β) =

∫

ρNα (
T

γ∈Γα
Fix(τγ))

exp
(
− β U b

Γ,φ
Nα

(ξNα)
)
dνNα(ξNα).

In particular, if F is finite and ν is the counting measure, then

(25) Zb
Γ,φ
Nα

(β) =
∑

ξ∈T

γ∈Γα
Fix(τγ)

exp
(
− β U b

Γ,φ
Nα

(ρNα(ξ))
)
.

Proof. Combine the definition of the partition function (1.7.1) with Proposition 1.3.14.

Proposition 1.3.14 and its Corollary 1.7.4 show that partition functions can be expressed as sums
over fixed points. This leads to a dynamical interpretation of the partition function and will be used
together with Section 1.11 in the construction of the Ruelle type transfer operator in Chapter 2.
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1.8 Two-body interactions

In the following we will restrict our considerations to the case of two-body interactions and give some
examples. Recall from (1.5.1) that an interaction φ = (φΛ)Λ∈Pf (L) is called two-body if φΛ = 0 for all
finite subsets Λ ⊂ L with cardinality |Λ| > 2. Two-body interactions occur where interaction forces
superpose without further interference, i. e., the energy of a three particle configuration is the sum of
the interactions of all possible pairs and singletons. Of particular interest are those interactions which
are given via an interaction matrix, an anisotropy matrix (respectively, a distance function), and a
potential. Among them are the following physical models: Ising model, Potts model, and Stanley’s
M -vector model. We introduce the new class of Ising type interactions which contains both Ising
model and Stanley’s M -vector model. We will show later that for the special case of a finite alphabet
F every interaction matrix is of Ising type.
We start with the normal form of a two-body interaction and define a special type of two-body
interactions, which will be of interest later on.

Definition 1.8.1. Let Ω ⊂ FL be a configuration space (1.1.1) and φ = (φΛ)Λ∈Pf (L) be a two-body
interaction (1.5.1). We can always write φΛ as

(26) φΛ : ΩΛ → C, ξΛ 7→ φΛ(ξΛ) :=






−ϕ1(i; ξi) , if Λ = {i}, ξΛ = (ξi),
−ϕ2(i, j; ξi, ξj) , if Λ = {i, j}, ξΛ = (ξi, ξj), (i 6= j),
0 , otherwise,

where ξi, ξj ∈ F , Λ ∈ Pf (L) and ϕ1 : L × F → C, ϕ2 : L2 × F 2 → C are some functions7.

(i) If ϕ2(i, j;x, y) = ϕ2(j, i; y, x) ∀i, j ∈ L, x, y ∈ F , then φ is called symmetric.

(ii) φ is called a pure two-body interaction if ϕ1 = 0.

(iii) If φ is of the form

φΛ(ξΛ) =






−q(ξi) , if Λ = {i}, ξΛ = (ξi),

−d̃(i, j) r(ξi, ξj) , if Λ = {i, j}, ξΛ = (ξi, ξj), (i 6= j),
0 , otherwise,

where r : F × F → C and d̃ : L × L → C are symmetric functions8, q : F → C, and ξi, ξj ∈ F ,

Λ ⊂ L, then φ is called a two-body interaction with interaction matrix r, anisotropy matrix d̃
and potential q. Denote by φr

d̃,q
the two-body interaction with anisotropy matrix d̃, potential q,

and interaction matrix r. Such interactions are automatically symmetric.

In (3.4.4) we will introduce another type of two-body interactions, the so called hard rods interaction.
The restriction to two-body interactions simplifies many arguments, for instance, the energy can
be calculated quite explicitly. Before doing this we give examples how an anisotropy matrix or an
interaction matrix can look like, see Remark 1.8.2 and Example 1.8.3.

Remark 1.8.2. Let Ω ⊂ FL be a configuration space (1.1.1).

(i) Let φ be a two-body interaction on Ω of the form (26). Then φ is Γ-translation invariant (1.5.1)
iff ϕ1 and ϕ2 are Γ-invariant in the following sense: ϕ1(γ ·i;x) = ϕ1(i;x) and ϕ2(γ ·i, γ ·j;x, y) =
ϕ2(i, j;x, y) for all i, j ∈ L, γ ∈ Γ, x, y ∈ F. In fact: Let Λ = {i} ⊂ L, ξΛ : i 7→ x ∈ F , γ ∈ Γ,
then −φγ·Λ(ξΛ) = ϕ1(γ · i;x) = ϕ1(i;x) = −φΛ ◦ τγ;γ·Λ(ξΛ). Similarly, let Λ = {i, j} ⊂ L,
ξΛ = (ξi, ξj), γ ∈ Γ, then −φγ·Λ(ξΛ) = ϕ2(γ · i, γ · j; ξi, ξj) = ϕ2(i, j; ξi, ξj) = −φΛ ◦ τγ;γ·Λ(ξΛ).

(ii) If L is a group and d : L → C is a function satisfying the symmetry condition d(i) = d(i−1),
then

d̃ : L × L → C, d̃(i, j) := d(i−1j)

defines an anisotropy matrix, i. e., d̃(i, j) = d̃(j, i). Such a function d : L → C is called a distance
function.

7ϕ2(i, i;x, x) can be chosen arbitrarily.
8A function f : X × X → Y is symmetric if f(x1, x2) = f(x2, x1) for all x1, x2 ∈ X. We denote the space of

symmetric functions by {f : X × X → Y }Z2 .
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(iii) If L is a group, Γ ≤ L a subgroup of L, which acts by left translation on L, i. e., Γ × L →
L, (γ, g) 7→ γ · g := γg, and d̃ is defined as in part (ii) via a distance function, then every two-
body interaction with anisotropy matrix d̃, potential q, and interaction matrix r is Γ-invariant,
since (γi)−1(γj) = i−1γ−1γj = i−1j.

(iv) As a partial converse of part (iii): Let Γ = Z act on L = Z by left translation, then

d̃ 7→
(
n 7→ d(n) := d̃(0, n)

)

defines a C-linear isomorphism between the space of Z-invariant anisotropy matrices and the
even functions d : Z → C. In fact: Using the invariance and the symmetry of d we obtain

d(−n) = d̃(0,−n) = d̃(n, n− n) = d̃(n, 0) = d̃(0, n) = d(n),

hence the map is well-defined. Its linearity and injectivity are obvious, it is surjective by (iii).

The next examples introduce the widely studied physical models, namely the Ising model, the Potts
model, and Stanley’s M -vector model.

Example 1.8.3. (Physical models)

(i) Ising model: Let F ⊂ C be a bounded set and r(x, y) = xy. In Ising’s original model he took
F = {±1}, the so called spin- 1

2 model, in order to describe ferromagnetism of a solid, where the
spins of the electrons can only take values in a set with two elements, “spin up” or “spin down”.

(ii) Potts model: Let F be any set and r(x, y) = δ(x, y), where δ : F × F → C is Kronecker’s delta
on F . This model is due to R. Potts [Po52] and describes the situation where only electrons
having the same spin (members of the same species) interact.

(iii) An interaction matrix r is called of Ising type if

r(x, y) =
l∑

k=1

ai(x) bi(y)

for some functions ai, bi : F → C. The minimal number l is called the rank of r.

Let Ω ⊂ FL be a configuration space , d̃ an anisotropy matrix d̃, and q be a potential q. We call Ω
when equipped with the two-body interaction φr

d̃,q
(1.8.1) an Ising model, Potts model, or Ising type

model, if the interaction matrix r is of the form (i), (ii), or (iii) respectively.

With respect to the construction of transfer operators, Ising type interactions can be treated by a
superposition principle which we will describe in Section 2.13. This has been observed for instance in
[May80a, p. 98]. Note: If F is finite, then every interaction matrix is of Ising type as we will explain in
Section 2.13. The prototype of an Ising type model is Stanley’s M -vector model (see [St68a], [St74]),
which we discuss next.

Example 1.8.4. Let s > 0, M ∈ N, L a countable set, and d̃ : L × L → C be a symmetric function.
The (generalised9) Stanley M -vector model is defined by the following data: The spins take values in
the (M − 1)-sphere with radius s, i. e.,

F := SM−1(s) :=
{
σ = (σ(1), . . . , σ(M)) ∈ RM :

M∑

i=1

|σ(i)|2 = s2
}
,

equipped with the (normalised) surface measure ν on F , and the configuration space is Ω := FL.
The interaction is the two-body interaction with anisotropy matrix d̃ and interaction matrix r(x, y) =(
x y

)
:=
∑M

i=1 xi yi, i. e.,

φΛ(ξΛ) =






−q(ξi) , if Λ = {i}, ξΛ = (ξi),

−J
2 d̃(i, j)

(
ξi ξj

)
, if Λ = {i, j}, ξΛ = (ξi, ξj),

0 , otherwise,

9Stanley has considered these models only for finite range interactions.
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where J ∈ C is the energy of a pair of parallel spins and q : F → C is a potential. Note that r has
rank M (1.8.3).
The following table gives a list of physical models which can be seen as applications of Stanley’s
M -vector model. Depending on the parameter M these models have special names.

Rank Special name System

1 Ising model one-component fluid, binary alloy, mixture
2 Planar model/Vaks-Larkin model λ-transition in a Bose fluid
3 Heisenberg model (anti-)ferromagnetism

M > 3 general M -vector model no physical system discovered yet
∞ Stanley spherical model no physical system discovered yet

This table has appeared in [St74, p. 488] with lots of references therein to the physical models. Note
that the rank 1 case gives F = S0(1) = {±1} and hence the spin- 1

2 Ising model, see (1.8.3). The rank
∞ case is treated in [St68b].

Another non-trivial example is the following: Let F ⊆ Mat(D,D; C) be a bounded set, for example
a compact matrix group, and the interaction matrix r be defined by r(x, y) := trace (xy). Then r is
symmetric and of Ising type, since it can be written as

r(x, y) = trace (xy) =

D∑

i=1

(xy)i,i =

D∑

i,j=1

xi,j yj,i,

for x = (xi,j)i,j=1,...,D and y = (yi,j)i,j=1,...,D. As a generalisation of this example any R-bilinear
symmetric form on a finite-dimensional normed vector space V in which F is contained as a bounded
set defines an Ising type interaction matrix.

1.9 Energy and partition function in the case of two-body interactions

We will now determine the class of two-body interactions (1.8.1) which are compatible in the sense
of (1.6.4) with a periodic boundary condition. For this purpose we decompose the total energy into a
pure one-body term and a pure two-body interaction term and discuss the necessary decay conditions.
Let Γ be a semigroup acting on the position space L and (Γα)α∈A a family of subsemigroups of Γ. A key
step is Proposition 1.9.3 which states that a symmetric two-body interaction φ is compatible (1.6.4)
with the periodic boundary condition (bΓΛ)Λ∈P(Γ•)

associated to (Γα)α∈A iff
∑

γ∈Γα
ϕ2(i, γ · l;x, y)

converges absolutely for all i, l ∈ Λ, x, y ∈ F , α ∈ A. This condition can be checked in particular easily
if the two-body interaction is given via a distance function, an interaction matrix, and a potential. We
discuss some examples of such distance functions in Example 1.9.7. Then we compute the partition
function in the case of a two-body interaction and discuss special situations where the integrand can
be simplified further. In the case of an Ising spin system (1.8.3) with vanishing potential we finally
obtain a representation

Zb
Γ,φ

Λ (β) =

∫

(bΓΛ)−1(Ω)

exp
(
β
∑

i,l∈Λ

t̂Γα

i,l ξi ξl

)
dνΛ(ξΛ),

where (t̂Γα

i,l )i,l is a symmetric quadratic matrix and hence the integrand should be viewed as the
exponential of a quadratic form in (ξ1, . . . , ξn) ∈ Fn. This is a generalisation of the situation [HiMay02,
p. 26] in the construction of the Kac-Gutzwiller integral operator. We would like to stress that this
representation only depends on the fact that we have a periodic boundary condition defined via an
orbit relation. We start with the decomposition of the energy U b,φΛ (1.6.4) into a potential term and
a pure two-body interaction term.

Proposition 1.9.1. Let Ω ⊂ FL be a configuration space (1.1.1), φ be a symmetric two-body inter-
action (1.8.1) compatible with the boundary condition b = (bΛ)Λ∈P (1.6.4), and Λ ∈ P. Then

U b,φΛ = U b,φΛ,1 + U b,φΛ,2,
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where
U b,φΛ,1 : b−1

Λ (Ω) → C, ξΛ 7→ −
∑

i∈Λ

ϕ1(i; ξΛ(i))

is the so called magnetic potential term and U b,φΛ,2 : b−1
Λ (Ω) → C defined via

U b,φΛ,2(ξΛ) = −1

2

∑

i∈Λ

∑

k∈Λ\{i}
ϕ2

(
i, k; bΛ(ξΛ)(i), bΛ(ξΛ)(k)

)
−
∑

i∈Λ

∑

k∈L\Λ
ϕ2

(
i, k; bΛ(ξΛ)(i), bΛ(ξΛ)(k)

)

is the so called pure two-body interaction term.

Proof. Let ξΛ ∈ b−1
Λ (Ω). By our assumptions the series defining U b,φΛ (ξΛ) is absolutely convergent. We

use the explicit form of the total energy given in Proposition 1.6.5 and change the order of summation.
We collect the first summands whereM ∈ Pf(L) withM∩Λ 6= ∅ is a singleton, and then the summands
where M consists of two points. We distinguish further whether both points belong to Λ or not.

U b,φΛ (ξΛ) =
∑

M∈Pf (L),M∩Λ6=∅
φM (ρM ◦ bΛ(ξΛ))

=
∑

M∈Pf (L),M∩Λ6=∅,|M|=1

φM (ρM ◦ bΛ(ξΛ)) +
∑

M∈Pf (L),M∩Λ6=∅,|M|=2

φM (ρM ◦ bΛ(ξΛ))(27)

= −
∑

i∈Λ

ϕ1(i; ξΛ(i)) − 1

2

∑

i∈Λ

∑

k∈Λ\{i}
ϕ2

(
i, k; bΛ(ξΛ)(i), bΛ(ξΛ)(k)

)

−
∑

i∈Λ

∑

k∈L\Λ
ϕ2

(
i, k; bΛ(ξΛ)(i), bΛ(ξΛ)(k)

)
(28)

= UφΛ,1(ξΛ) + U b,φΛ,2(ξΛ),

since bΛ(ξΛ)(k) = ξΛ(k) for all k ∈ Λ by definition of the boundary extension (1.3.1).

The only influence of the boundary condition on the magnetic potential term is the domain b−1
Λ (Ω)

where it is defined on. In any case, its defining sum is a finite sum since P ⊂ Pf (L) and hence does
not influence the convergence of the total energy. If b is the zero boundary condition, then all sums
in Proposition 1.9.1 have only finitely many non-zero summands and thus there is no convergence
problem. Another set of examples are the so called finite-range interactions:

Example 1.9.2. (Finite range interaction) Let (L, ρ) be a countable metric space and Ω ⊂ FL a
configuration space. A two-body interaction φ has so called finite range ρ0 if and only if

ϕ2(i, j;x, y) = 0

for all x, y ∈ F whenever ρ(i, j) > ρ0 and ρ0 is minimal with this property. For any boundary condition
(bN )N∈P and N ∈ P one has the representation

U b,φN,2(ξN ) =
∑

i∈N

∑

k∈L:0<ρ(i,k)≤ρ0
ϕ2

(
i, k; bN(ξN )(i), bN (ξN )(k)

)

of the pure two-body interaction term (1.9.1) which is a finite sum.

Proposition 1.9.3. Let (Ω, F,L,Γ, τ) be a lattice spin system (1.2.7) and (bΓΛ)Λ∈P(Γ•)
a periodic

boundary condition associated to the family (Γα)α∈A of subsemigroups of Γ such that every Λα ∈ P(Γ•)

satisfies the tiling condition (1.3.8). Then a symmetric two-body interaction φ is compatible (1.6.4)
with the boundary condition iff

∑
γ∈Γα

ϕ2(i, γ · l;x, y) converges absolutely for all i, l ∈ Λ, x, y ∈ F ,
α ∈ A.

-r r r r r r r

Figure 8: A (pure) two-body interaction with range two: Arcs denote interacting particles.
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Proof. Let Λ := Λα ∈ P(Γ•) be a fundamental domain of the subsemigroup Γα ≤ Γ and let ξΛ ∈ Ω′
Λ :=

(bΓΛ)−1(Ω). The absolute convergence of the total energy U b
Γ,φ

Λ (ξΛ) is equivalent to the absolute
convergence of

∑
i∈Λ

∑
k∈L

ϕ2

(
i, k; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(k)

)
, since we can disregard a finite number of

summands (for instance the magnetic potential term and the first term of the pure two-body interaction
term (1.9.1) in equation (28)). Since Λ ⊂ L is finite, this (double-) series converges absolutely, if and
only if the inner series

∑
k∈L

ϕ2

(
i, k; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(k)

)
converges absolutely for all i ∈ Λ. We now

use the definition of the periodic boundary extension (1.3.9) and the tiling condition Γα · Λ = L. If
the convergence is absolute, we can rearrange terms in the following way

∑

k∈L

ϕ2

(
i, k; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(k)

)
=

∑

k∈Γα·Λ
ϕ2

(
i, k; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(k)

)

=
∑

l∈Λ

∑

γ∈Γα

ϕ2

(
i, γ · l; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(γ · l)

)

=
∑

l∈Λ

∑

γ∈Γα

ϕ2

(
i, γ · l; bΓΛ(ξΛ)(i), bΓΛ(ξΛ)(l)

)

=
∑

l∈Λ

∑

γ∈Γα

ϕ2

(
i, γ · l; ξΛ(i), ξΛ(l)

)
(29)

since bΓΛ(ξΛ)(k) = ξΛ(k) for all k ∈ Λ by definition of the boundary extension. Hence the absolute

convergence of U b
Γ,φ

Λ (ξΛ) is equivalent to the absolute convergence of
∑
γ∈Γα

ϕ2(i, γ · l;x, y) for all
i, l ∈ Λ, x, y ∈ F .

Remark 1.9.4. In the case of a two-body interaction with interaction matrix r and anisotropy matrix
d̃ expression (29) reduces to

∑
k∈Λ r

(
ξΛ(i), ξΛ(k)

)∑
γ∈Γα

d̃(i, γ · k). Hence the absolute convergence

of the total energy is equivalent to the absolute convergence of
∑

γ∈Γα
d̃(i, γ · l) for all i, l ∈ Λ. Since

Γα ⊂ Γ, this can be bounded by
∑

γ∈Γ |ϕ2(i, γ · l;x, y)|, respectively by
∑
γ∈Γ |d̃(i, γ · l)|.

Corollary 1.9.5. Let (Ω, F,L,Γ, τ) be a lattice spin system (1.2.7). Let bΓ = (bΓΛ)Λ∈P(Γ•)
be a periodic

boundary condition associated to the family (Γα)α∈A of subsemigroups of Γ such that every Λα ∈ P(Γ•)

satisfies the tiling condition (1.3.8). Let φr
d̃,q

be the two-body interaction (1.8.1) with anisotropy matrix

d̃, potential q, and interaction matrix r ∈ Cb(F × F )Z2 . Then φr
d̃,q

is compatible with the boundary

condition bΓ in the sense of (1.6.4) if
∑

γ∈Γ |d̃(i, γ · l)| <∞ for all i, l ∈ Λ. In this case the map

Cb(F × F )Z2 → Cb((bΓΛ)−1(Ω)), r 7→ U
bΓ,φr

d̃,q

Λ,2

is linear and continuous.

Proof. The compatibility of the interaction was shown in Remark 1.9.4. The linearity of the mapping

Cb(F × F )Z2 → Cb(Ω′
Λ), r 7→ U

bΓ,φr
d̃,q

Λ,2 is obvious by the definition of the pure two-body interaction
term in (1.8.1) and (1.9.1). Concerning the continuity observe that

∑

i∈Λ

∑

k∈L

|d̃(k, i)| ≤
∑

i∈Λ

∑

k∈Λ

∑

γ∈Γ

|d̃(γ · k, i)| ≤ |Λ|2 sup
k,i∈Λ

∑

γ∈Γ

|d̃(γ · k, i)|,

hence, setting ‖r‖Cb(F×F ) := supx,y∈F |r(x, y)|, we obtain

(30) sup
ξΛ∈Ω′

Λ

|U b
Γ,φr

d̃,q

Λ,2 (ξΛ)| ≤
∑

i∈Λ

∑

k∈L

|d̃(k, i)| ‖r‖Cb(F×F ) ≤ |Λ|2 ‖r‖Cb(F×F ) sup
k,i∈Λ

∑

γ∈Γ

|d̃(γ · k, i)|.

Proposition 1.9.6. Let Γ be a subsemigroup of Z acting by translation on L = Z and (Ω, F,L,Γ, τ)
a lattice spin system (1.2.7). Let φ = (φΛ)Λ∈Pf (Z) be a pure two-body interaction of the type

φΛ(ξΛ) = −d(i− j) r(ξi, ξj), if Λ = {i, j}, ξΛ = (ξi, ξj),

where d : Z → C is an even function with
∑∞

n=0 |d(n)| <∞ and r ∈ Cb(F×F )Z2 . Then the interaction
φ belongs to the class A as defined in (1.6.7).
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Proof. The interaction φ is translation invariant by Remark 1.8.2 (i), hence by Remark 1.6.7 it suffices
to show ‖φ‖i < ∞ for an arbitrary point i ∈ L = Z. The subsets of L, which contribute to the
seminorm ‖φ‖i (21), are of the form {i, j} with j ∈ L \ {i}. Then we have

‖φ‖i =
∑

Λ∈Pf (L); Λ3i
sup
ξΛ∈ΩΛ

|φΛ(ξΛ)| =
∑

j∈L,j 6=i
sup

ξ{i,j}∈Ω{i,j}

|ϕ2(ξ{i,j})| ≤ sup
x,y∈F

|r(x, y)|
∑

j∈Z

|d(i− j)| <∞,

since
∑

j∈Z
|d(i− j)| =

∑
γ∈Z

|d(γ)| < 2
∑∞
n=0 |d(n)| <∞.

Example 1.9.7. The following distance functions satisfy the condition
∑∞
n=0 |d(n)| < ∞ in Propo-

sition 1.9.6

(i) Exponentially decaying interactions d(k) = λ|k| for 0 < |λ| < 1,

(ii) Polynomially decaying interactions d(k) = |k|−s for Re(s) > 1,

(iii) Logarithmic interaction d(k) = log(1 − cλ|k|) for 0 < |c|, |λ| < 1,

(iv) Plummer potential: d(k) = (ε+ |k|2)−α/2 for ε > 0, α > 1, and

(v) Finite range interactions d(k) = 0 for all |k| > r0 for some r0 ∈ N.

For the proof of (i) use the geometric series and for (ii) Riemann’s zeta function. Concerning (iii) we
use | log(1 − z)| ≤ − log(1 − |z|) for |z| < 1 and conclude from that

∞∑

k=0

| log(1 − cλk)| ≤ −
∞∑

k=0

log(1 − |c| |λ|k) = − log(

∞∏

k=0

(1 − |c| |λ|k)),

which converges since
∑∞
k=0 |λ|k <∞ by the standard criterion for the convergence of infinite products.

For case (iv) we observe that (ε + k2)−α/2 ≤ k−α since ε + k2 ≥ k2. Hence
∑∞

k=0(ε + k2)−α/2 ≤
ε−α/2 +

∑∞
k=1 k

−α. The case (v) is trivial.

We will focus on long range interactions, which by definition means a nowhere vanishing anisotropy
matrix (respectively, non-vanishing distance function). The associated models are sometimes called
Kac model, whereas in other references this name is reserved to the special case of exponentially
decaying interactions from Example 1.9.7 (i) after M. Kac’s article [Ka66].

In Proposition 1.9.1 we have seen that the total energy U b,φΛα
of a finite region Λ ⊂ L amounts to

evaluating the interaction at an infinite number of pairs of points. This shows that the computation
of the partition function (1.7.1) via its definition as the integral of exp(−β U b,φΛα

) is ineffective. In the
case of a periodic boundary condition the spin values over the complement of a fundamental domain
Λα are determined by the spin values of their Γα-equivalent points. Using this idea we can transport
back all computations on Λα by integrating a new function depending on the interaction and the
semigroup Γα.

Theorem 1.9.8. Let (Ω, F,L,Γ, τ) be a lattice spin system (1.2.7), (Γα)α∈A a family of subsemigroups
of Γ defining a periodic boundary condition (bΓΛ)Λ∈P(Γ•)

and φ a symmetric compatible two-body inter-

action (1.6.4) such that the Γα-averaged interaction function

(31) t̂Γα(i, l;x, y) := −1

2
ϕ2(i, l;x, y) +

1

2

∑

γ∈Γα

(
ϕ2(i, γ · l;x, y) + ϕ2(l, γ · i; y, x)

)

converges absolutely for all i, l ∈ L, x, y ∈ F , α ∈ A and supx,y∈F |t̂Γα(i, l;x, y)| < ∞ for all i, l ∈ L,
α ∈ A. Suppose that Λα ∈ P(Γ•) satisfies the tiling condition L = Γα · Λα (1.3.8). Then the partition
function defined in (1.7.1) can be expressed as

Zb
Γ,φ

Λα
(β) =

∫

(bΓΛα
)−1(Ω)

exp
(
β
∑

i,l∈Λα

t̂Γα(i, l; ξi, ξl) + β
∑

i∈Λα

ϕ1(i; ξi) −
β

2

∑

i∈Λα

ϕ2(i, i; ξi, ξi)
)
dνΛα(ξΛα).

In particular, denote by φr
d̃,q

the two-body interaction (1.8.1) with anisotropy matrix d̃, potential q,

and interaction matrix r, then the map Cb(F × F )Z2 → C, r 7→ Z
bΓ,φr

d̃,q

Λ (β) is continuous.
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Proof. Set

(32) tΓα(i, l;x, y) :=
1

2

∑

γ∈Γα

(
ϕ2(i, γ · l;x, y) + ϕ2(l, γ · i; y, x)

)

for i, l ∈ Λα, x, y ∈ F , α ∈ A. Obviously, the function tΓ has the following symmetry: tΓ(i, l;x, y) =
tΓ(l, i; y, x). Set η := (yi)i∈L

= bΓΛα
(ξΛα) ∈ ⋂γ∈Γα

Fix(τγ). By Proposition 1.9.1 we know that

U b
Γ,φ

Λα
(ξΛα) = −

∑

i∈Λα

ϕ1(i; ξΛα(i)) − 1

2

∑

i∈Λα

∑

k∈Λα\{i}
ϕ2(i, k; yi, yk) −

∑

i∈Λα

∑

k∈L\Λα

ϕ2(i, k; yi, yk).

By the tiling condition L = Γα · Λα we have

∑

i∈Λα

∑

k∈L

ϕ2(i, k; yi, yk) =
∑

i∈Λα

∑

k∈Γα·Λα

ϕ2(i, k; yi, yk)

=
∑

i∈Λα

∑

l∈Λα

∑

γ∈Γα

ϕ2(i, γ · l; yi, yl)(33)

=
∑

i∈Λα

∑

l∈Λα

tΓα(i, l; yi, yl),

since by assumption the last sum converges absolutely and, by relabelling,

∑

i∈Λα

∑

l∈Λα

ϕ2(i, γ · l; yi, yl) =
∑

i∈Λα

∑

l∈Λα

ϕ2(l, γ · i; yl, yi).

Therefore

−U b
Γ,φ

Λα
(ξΛα) =

∑

i∈Λα

ϕ1(i; ξΛα(i)) +
1

2

( ∑

i,k∈Λα

ϕ2(i, k; yi, yk) −
∑

i∈Λα

ϕ2(i, i; yi, yi)
)

+
( ∑

i∈Λα

∑

k∈L

ϕ2(i, k; yi, yk) −
∑

i,k∈Λα

ϕ2(i, k; yi, yk)
)

(34)

=
∑

i∈Λα

ϕ1(i; yi) +
∑

i,l∈Λα

tΓα(l, i; yl, yi) −
1

2

∑

i,l∈Λα

ϕ2(i, l; yi, yl) −
1

2

∑

i∈Λα

ϕ2(i, i; yi, yi).

By our assumptions this is a finite sum of bounded functions, hence integrable with respect to the
finite measure νΛ on (bΓΛ)−1(Ω) ⊂ ΩΛ. This proves the first claim. Note that for any pair of measurable
functions f, g we have

∣∣∣
∫
ef − eg

∣∣∣ =
∣∣∣
∫
ef(1 − eg−f )

∣∣∣ ≤ ‖1 − eg−f‖∞
∫

|ef | ≤ (e‖g−f‖∞ − 1)

∫
|ef |.

Recalling the notation φr
d̃,q

from (1.8.1) and the definition (1.9.1) of the pure two-body interaction

term, we get for any pair of continuous bounded symmetric functions r, s : F 2 → C the identity

U
bΓ,φr

d̃,q

Λ − U
bΓ,φs

d̃,q

Λ = U
bΓ,φr

d̃,q

Λ,2 − U
bΓ,φs

d̃,q

Λ,2 .

Hence, by the proof of Corollary 1.9.5 (30)

∣∣∣Z
bΓ,φr

d̃,q

Λ (β) − Z
bΓ,φs

d̃,q

Λ (β)
∣∣∣ =

∣∣∣
∫

ΩΛ

exp
(
− βU

bΓ,φr
d̃,q

Λ (ξΛ)
)
− exp

(
− βU

bΓ,φs
d̃,q

Λ (ξΛ)
)
dνΛ(ξΛ)

∣∣∣

≤ (exp
(
|β|‖U b

Γ,φr
d̃,q

Λ,2 − U
bΓ,φs

d̃,q

Λ,2 ‖Cb(ΩΛ

)
− 1)

∫

ΩΛ

∣∣ exp
(
− βU

bΓ,φr
d̃,q

Λ (ξΛ)
)∣∣ dνΛ(ξΛ)

≤ (exp
(
|β| |Λ|2 c(d̃) ‖r − s‖Cb(F 2)

)
− 1)

∫

ΩΛ

∣∣ exp
(
− βU

bΓ,φr
d̃,q

Λ (ξΛ)
)∣∣ dνΛ(ξΛ)

for some constant c(d̃) > 0 depending on the anisotropy matrix d̃. Since the integral is finite, the

difference
∣∣∣Z

bΓ,φr
d̃,q

Λ (β) − Z
bΓ,φs

d̃,q

Λ (β)
∣∣∣ tends to zero as ‖r − s‖Cb(F 2) tends to zero.
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The function tΓα : L × L × F × F → C, (i, l, x, y) 7→ tΓα(i, l;x, y) as defined in (32) in the proof of
Theorem 1.9.8 has an additional symmetry if τ : Γ × L → L is a group action:

Proposition 1.9.9. Let τ : Γ×L → L be a group action and f : L2 ×F 2 → C a Γ-invariant function
with the symmetry condition f(i, j;x, y) = f(j, i; y, x), then

1

2

∑

γ∈Γ

(
f(i, γ · l;x, y) + f(l, γ · i; y, x)

)
=
∑

γ∈Γ

f(i, γ · l;x, y)

for all i, l ∈ L, x, y ∈ F .

Proof. Use the symmetry, the Γ-invariance, and summation over a group to calculate

∑

γ∈Γ

f(l, γ · i; y, x) =
∑

γ∈Γ

f(γ · i, l;x, y) =
∑

γ∈Γ

f(γ−1 · (γ · i), γ−1 · l;x, y) =
∑

γ∈Γ

f(i, γ · l;x, y).

We end this section by a further specialisation. Let L be a group, e its identity element. Set d̃(i, j) :=
d(i−1j), where d : L → C is a distance function (1.8.2), i. e., a function with the symmetry condition
d(i) = d(i−1). Then the map Λ → C, i 7→ d̃(i, i) = d(i−1i) = d(e) is constant and every two-body
interaction φr

d̃,q
with this anisotropy matrix d̃ has the properties that the maps Λ → C, i 7→ ϕ1(i;x) =

q(x) and i 7→ ϕ2(i, i;x, x) = r(x, x) d(e) are constant. This motivates the assumptions of the following
corollary:

Corollary 1.9.10. Suppose in addition to the hypotheses of Theorem 1.9.8 that the maps Λ → C, i 7→
ϕ1(i;x) and i 7→ ϕ2(i, i;x, x) are constant for all x ∈ F . Set p : F → C, p(x) := ϕ1(i;x)− 1

2ϕ2(i, i;x, x)

and let t̂Γ be as in (31). Then the partition function defined in (1.7.1) can be expressed as

Zb
Γ,φ

Λ (β) =

∫

(bΓΛ)−1(Ω)

exp
(
β
∑

i,l∈Λ

t̂Γ(i, l; ξi, ξl) + β
∑

i∈Λ

p(ξi)
)
dνΛ(ξΛ).

Corollary 1.9.10 implies that the integrand of the partition function for an Ising interaction can be
written as the exponential of a symmetric quadratic form as we will show next.

Remark 1.9.11. Suppose the same hypotheses as in Corollary 1.9.10. For any subsemigroup Γα
of Γ with fundamental domain Λα ⊂ L we define two symmetric matrices T̂Γα =

(
t̂Γα

i,l

)
i,l∈Λα

and

TΓα =
(
tΓα

i,l

)
i,l∈Λα

via tΓα

i,l :=
∑

γ∈Γα

d̃(i, γ · l), t̂Γα

i,l := −1

2
d̃(i, l) +

∑

γ∈Γα

d̃(i, γ · l) for all i, l ∈ Λα. Then

the averaged interaction functions defined (31) and (32) can be simplified to

t̂Γα(i, l;x, y) = −1

2
d̃(i, l) r(x, y) + tΓα

i,l r(x, y), tΓα(i, l;x, y) = tΓα

i,l r(x, y).

We combine these considerations with Corollary 1.9.10 and obtain

Zb
Γ,φ

Λ (β) =

∫

(bΓΛ)−1(Ω)

exp
(
β
∑

i,l∈Λ

t̂Γα

i,l r(ξi, ξl) + β
∑

i∈Λ

p(ξi)
)
dνΛ(ξΛ).

In particular, in the case of an Ising spin system (1.8.3) with vanishing potential we have

Zb
Γ,φ

Λ (β) =

∫

(bΓΛ)−1(Ω)

exp
(
β
∑

i,l∈Λ

t̂Γα

i,l ξi ξl

)
dνΛ(ξΛ),

where the sum in the exponential should be viewed as a quadratic form in (ξ1, . . . , ξn) ∈ Fn ⊂ Cn.

Note that for δ � 0 the matrices T̂Γ + δ, TΓ + δ in Remark 1.9.11 are positive definite such that one
may try to use the Kac-Gutzwiller trick for the evaluation of the partition function. This trick is due
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to M. Kac [Ka66] and has been adopted by M. Gutzwiller [Gu82] to periodic boundary conditions.
This trick uses the well-known identity on Gaussian integrals

eπ(z|αz) = (detα)−
1
2

∫

Rn

e−π(x|α−1x)−2π(z|x) dx

for α ∈ Mat(n, n; C) with α = α> and Re(α) positive definite and any z ∈ Cn. For one-dimensional
one-sided shifts with exponentially decaying interaction this idea was an essential step in the construc-
tion of the Kac-Gutzwiller transfer operator. For details we refer to [Gu82], [Hel02], [HiMay02, p.
26], or [Ri03]. In Chapter 5 we will construct Kac-Gutzwiller transfer operators also for polynomial-
exponential and finite-range interactions using a different approach.

1.10 One-sided ZD-subshifts: explicit formulas

By the results of Section 1.9 the partition function with periodic boundary condition both for the
one-sided and two-sided shift, as defined in Example 1.2.6, can be expressed as an integral over a
“semigroup averaged interaction”. If this average is taken over a group (as for instance for the two-
sided shift), this yields additional symmetry properties of the averaged interaction. In the special
situation of one-dimensional systems one can easily relate the pure two-body interaction terms (1.9.1)
for the one- and the two-sided system, Prop. 1.10.1, since ND0 sits inside ZD in a special way. This
result will be generalised to higher dimensions and will be used to prove Theorem 1.10.3, which is
quite similar to Theorem 1.9.8.

Proposition 1.10.1. Let (Ω, F,Z,Z, τ) be a one-dimensional two-sided subshift (1.2.5) and denote
by bZ = (bZ

Λ)Λ∈P(nZ)
the periodic boundary condition on Ω associated to the family (nZ)n∈N (1.3.9).

Let Ω> = ρN(Ω) (1.1.2) and (Ω>, F,N,N0, τ) be its one-sided subshift (1.2.6) and bN0 = (bN0

Λ )Λ∈P(nN)

be the periodic boundary condition on Ω> associated to the family (nN0)n∈N, and φ a Z-invariant
compatible (1.6.4) symmetric two-body interaction on Ω (and hence on Ω>). Let Λ = {1, . . . , n}.
Then on ρN

(⋂
γ∈nZ

Fix(τγ : Ω → Ω)
)

one has

U b
Z,φ

Λ,2 (ξΛ) = 2U b
N0 ,φ

Λ,2 (ξΛ) +
1

2

∑

i,l∈Λ

ϕ2(i, l; ξΛ(i), ξΛ(l)) − 1

2

∑

i∈Λ

ϕ2(i, i; ξΛ(i), ξΛ(i)).

Proof. Let ξΛ ∈ ρΛ(
⋂
γ∈nZ

Fix(τγ : Ω → Ω)) and (yi)i∈Z
:= bZ

Λ(ξΛ). Using the tiling property (1.3.8)
nN0 · Λ = N and the nZ-periodicity of the sequence (yi)i∈Z

we have

∑

i∈Λ

∑

k∈N\Λ
ϕ2(i, k; yi, yk) =

∑

i∈Λ

∑

k∈Λ

∑

γ∈nN

ϕ2(i, γ · k; yi, yγ·k) =
∑

i∈Λ

∑

k∈Λ

∑

γ∈nN

ϕ2(i, γ · k; yi, yk).

Because of the Z-invariance and the symmetry one has

∑

i∈Λ

∑

k∈Λ

∑

γ∈nN

ϕ2(i, γ · k; yi, yk) =
∑

i∈Λ

∑

k∈Λ

∑

γ∈nN

ϕ2(γ
−1 · i, k; yi, yk)

=
∑

i∈Λ

∑

k∈Λ

∑

γ∈−nN

ϕ2(γ · i, k; yγ·i, yk)

=
∑

i∈Λ

∑

k∈−N0

ϕ2(k, i; yk, yi)

=
∑

i∈Λ

∑

k∈−N0

ϕ2(i, k; yi, yk).

We will use this relation in (?). Starting with the representation (1.9.1) of U b
N0 ,φ

Λ,2 we calculate using
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the relations found during the proof of (1.9.8)

−2U b
N0 ,φ

Λ,2 (ξΛ) +
∑

i∈Λ

ϕ2(i, i; yi, yi) = 2 · 1

2

∑

i∈Λ

∑

k∈Λ\{i}
ϕ2(i, k; yi, yk) + 2

∑

i∈Λ

∑

k∈N\Λ
ϕ2(i, k; yi, yk)

+
∑

i∈Λ

ϕ2(i, i; yi, yi)

(?)
=

∑

i∈Λ

( ∑

k∈N\Λ
+
∑

k∈Λ

+
∑

k∈−N0

)
ϕ2(i, k; yi, yk)

=
∑

i∈Λ

∑

k∈Z

ϕ2(i, k; yi, yk)
(33)
=

n∑

i,l=1

tnZ(i, l; yi, yl)

(34)
= −U b

N

0,φ
Λ,2 (ξΛ) +

1

2

∑

i,l∈Λ

ϕ2(i, l; yi, yl) +
1

2

∑

i∈Λ

ϕ2(i, i; yi, yi),

where the function tnZ : L2 × F 2 → C, (i, l, x, y) 7→ tnZ(i, l;x, y) was defined in (32) in the proof of
Theorem 1.9.8.

The proof essentially is based on summation techniques used in [Gu82] and [HiMay02]. We will now
generalise Proposition 1.10.1 to higher dimensional systems. This makes the resulting expression for

the pure two-body interaction term U b
N

D
0 ,φ

Λn,2
much more complicated. We will use Proposition 1.10.2

for the proof of Theorem 1.10.3.

Proposition 1.10.2. Let (Ω, F,ZD,ZD, τ) be a D-dimensional two-sided subshift (1.2.5) and bZ
D

=

(bZ
D

Λ )Λ∈P(Γ•)
the periodic boundary condition on Ω associated to the family (Γn :=

∏D
i=1 niZ)n∈ND . Let

(Ω> = ρND(Ω), F,ND ,ND0 , τ) be its one-sided subshift (1.2.6) and bN
D
0 = (b

N
D
0

Λ )Λ∈P(H•)
be the periodic

boundary condition (1.3.9) on Ω> associated to the family (Hn :=
∏D
i=1 niN0)n∈ND . Let φ be a ZD-

invariant10 symmetric two-body interaction such that tΓn(i, l;x, y) =
∑

γ∈Γn
ϕ2(γ · i, l;x, y) converges

absolutely for all i, l ∈ ZD, x, y ∈ F , n ∈ ND0 . For k ∈ N let A(k, εi) :=

{
{1, . . . , k} , εi = 1
Z , εi = −1

and

for ε = (ε1, . . . , εD) ∈ {±1}D, n ∈ ND let An(ε) :=
∏D
i=1A(ni, εi). Then for Λn :=

∏D
i=1{1, . . . , ni}

and for all ξΛ ∈ ρΛ(
⋂
γ∈Γn

Fix(τγ : Ω → Ω))

U b
N

D
0 ,φ

Λn,2
(ξΛn) = −2−D

∑

j∈Λn

∑

ε∈{±1}D

∑

i∈A(n,ε)

ϕ2(i, j; ξΛn(i), ξΛn(j))

+
1

2

∑

i,j∈Λn

ϕ2(i, j; ξΛn(i), ξΛn(j)) − 1

2

∑

i∈Λn

ϕ2(i, i; ξΛn(i), ξΛn(i)).

Proof. Let Λ := Λn, ξΛ ∈ ρΛ(
⋂
γ∈Γn

Fix(τγ : Ω → Ω)) and y := bZ
D

Λ (ξΛ). Let

ΦΛ : (bZ
D

Λ )−1(Ω) → C, ΦΛ(ξΛ) :=
∑

i∈Λ

∑

j∈ND

ϕ2(i, j; yi, yj)

be the sum of interactions between Λ and the positive quadrant. Using the definition of U b
N

D
0 ,φ

Λ,2 in
Proposition 1.9.1 one easily confirms that

−U b
N

D
0 ,φ

Λ,2 (ξΛ) = ΦΛ(ξΛ) − 1

2

∑

i,j∈Λ

ϕ2(i, j; yi, yj) −
1

2

∑

i∈Λ

ϕ2(i, i; yi, yi).

We show by induction (over the dimension D) that

(35) 2D ΦΛ(ξΛ) =
∑

j∈Λ

∑

ε∈{±1}D

∑

i∈An(ε)

ϕ2(i, j; yi, yj)

10We can apply Prop. 1.9.9, hence the definition of tΓn (i, l;x, y) confirms well with (32) in the proof of Theorem 1.9.8
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which gives the assertion. This identity has a geometric interpretation, namely it yields a repre-
sentation of the positive quadrant as a signed sum of boxes whose sides are either finite or all of
Z.
Let D = 1 : By equation (?) in the proof of Proposition 1.10.1 we have

∑

i∈Λ

∑

j∈Z

ϕ2(i, j; yi, yj) =
∑

i∈Λ

( ∑

j∈N\Λ
+
∑

j∈Λ

+
∑

j∈−N0

)
ϕ2(i, j; yi, yj)

= 2
∑

i∈Λ

∑

j∈N\Λ
ϕ2(i, j; yi, yj) +

∑

i∈Λ

∑

j∈Λ

ϕ2(i, j; yi, yj).

Hence
∑

i∈Λ

∑

j∈Z

ϕ2(i, j; yi, yj) +
∑

i∈Λ

∑

j∈Λ

ϕ2(i, j; yi, yj) = 2
∑

i∈Λ

∑

j∈N\Λ
ϕ2(i, j; yi, yj) + 2

∑

i∈Λ

∑

j∈Λ

ϕ2(i, j; yi, yj)

= 2
∑

i∈Λ

∑

j∈N

ϕ2(i, j; yi, yj) = 2ΦΛ(ξΛ)

The induction step is a straight forward calculation: Let i′, j′, ε′ ∈ ZD−1,Λ′ =
∏D−1
l=1 {1, . . . , nl},

ΛD = {1, . . . , nD}, i = (i′, iD), j = (j′, jD),Λ = Λ′ × ΛD. Then

RHS of (35) =
∑

i′∈Λ′

∑

iD∈ΛD

∑

ε′∈{±1}D−1

∑

εD=±1

∑

j′∈An′(ε′)

∑

jD∈A(nD,εD)

ϕ2(i, j; yi, yj)

=
∑

iD∈ΛD

∑

εD=±1

∑

jD∈A(nD,εD)

∑

i′∈Λ′

∑

ε′∈{±1}D−1

∑

j′∈An′(ε′)

ϕ2(i, j; yi, yj)

ind.
=

∑

iD∈ΛD

∑

εD=±1

∑

jD∈A(nD,εD)

2D−1
∑

i′∈Λ′

∑

j′∈ND−1

ϕ2(i, j; yi, yj)

= 2D−1
∑

i′∈Λ′

∑

j′∈ND−1

( ∑

iD∈ΛD

∑

jD∈ΛD

ϕ2(i, j; yi, yj) +
∑

iD∈ΛD

∑

jD∈Z

ϕ2(i, j; yi, yj)
)

= 2D−1
∑

i′∈Λ′

∑

j′∈ND−1

(
2
∑

iD∈ΛD

∑

jD∈N

ϕ2(i, j; yi, yj)
)

= LHS of (35)

An immediate consequence of Proposition 1.10.2 is the following analogue of Theorem 1.9.8.

Theorem 1.10.3. Let (Ω, F,ND,ND0 , τ) be a one-sided subshift (1.2.6), let bN
D
0 = (b

N
D
0

Λ )Λ∈P(H•)
be

the periodic boundary condition (1.3.9) on Ω associated to the family (Hn :=
∏D
i=1 niN0)n∈ND , and

φ a compatible ZD-invariant two-body interaction (1.8.1) with interaction matrix 0 6= r ∈ Cb(F × F ),

potential q ∈ Cb(F ), and anisotropy matrix d̃ of the form d̃(i, j) =
∏D
l=1 d̃

(l)(il, jl). For i, j ∈ Z set

t
nlZ,(l)
i,j :=

∑

k∈Z

d̃(l)(i, j + knlel),

where el ∈ ZD denotes the l-th standard unit vector. Set q′ : ND × F → C, (i, x) 7→ q(x) −
1
2 d̃(i, i) r(x, x). Then for Λn :=

∏D
i=1{1, . . . , ni} the partition function (1.7.1) is given as

Zb
N

D
0 ,φ

Λn
(β) =

∫

Ω′
Λn

exp
( β

2D

∑

i,j∈Λn

∑

ε∈{±1}D

(
∏

l:εl=1

d̃(l)(il, jl)
∏

l:εl=−1

t
nlZ,(l)
il,jl

) r(ξΛn (i), ξΛn(j))
)

exp
(
− β

2

∑

i,j∈Λn

d̃(i, j) r(ξΛn (i), ξΛn(j)) + β
∑

i∈Λn

q′(i, ξΛn(i))
)
dνΛn(ξΛn),

where Ω′
Λn

:= (b
N

D
0

Λn
)−1(Ω); in particular for D = 1, Λn = {1, . . . , n}

Zb
N0 ,φ

Λn
(β) =

∫

(bnZ

Λn
)−1(Ω)

exp
(β

2

n∑

i,l=1

tnZ

i,l r(xi, xl)+β

n∑

i=1

q(xi)−
β

2

n∑

i=1

d̃(i, i) r(xi, xi)
)
dνΛn(x1, . . . , xn).
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Proof. By the compatibility assumption (1.6.4) the defining series for t
nlZ,(l)
i,j converges absolutely

(1.9.3). Then apply Proposition 1.10.2 and write the energy as

U b
N

D
0 ,φ

Λn,2
(ξΛn) = −2−D

∑

i,j∈Λn

∑

ε∈{±1}D

∏

l:εl=1

d̃
(l)
il,jl

∏

l:εl=−1

t
nlZ,(l)
il,jl

r(ξΛn (i), ξΛn(j))

+
1

2

∑

i,j∈Λn

d̃(i, j) r(ξΛn (i), ξΛn(j)) − 1

2

∑

i∈Λn

d̃(i, i) r(ξΛn (i), ξΛn(i)).

By the compatibility assumption (1.6.4) and the boundedness of the interaction matrix r and the
potential q, the integrand is a bounded function. Hence the integral converges.

Theorems 1.9.8 and its Corollary 1.9.10 as well as Theorem 1.10.3 show that partition functions
can be expressed as integrals over exponentials of symmetric quadratic forms. These results are
generalisations of ideas appearing in [Gu82], [HiMay02, p. 26], or [Ri03]. We hope that this idea can
be applied in a direct construction of future Kac-Gutzwiller type transfer operators.

1.11 One-sided Z-subshift

In this section we restrict our considerations to the case of one-sided one-dimensional subshifts. We
will introduce the so called standard observable A(φ). It depends on the sum of interactions between
the spin at position 1 and the rest of the half line. Given a one-dimensional system with periodic
boundary condition, the energy can be expressed in terms of A(φ) and the N0-action

τ : N0 × FN → FN, (n, ξ) 7→ τn(ξ)(m) = ξ(n+m).

This leads to a dynamical interpretation of the partition function in Corollary 1.11.3 and allows a
higher dimensional generalisation which we call the dynamical partition function. The dynamical
interpretation will be important for the construction of the Ruelle transfer operator in (2.1.3) in
the next chapter and is also the link between the thermodynamic formalism for lattice systems and
the thermodynamic formalism for expanding maps. Whereas the Ruelle transfer operator (which
we will define in the next chapter) was invented in order to describe the partition function for one-
dimensional lattice spin systems, for higher dimensional systems there is up to now no reasonable
transfer operator available. We think that it might be easier to find a generalisation of Ruelle’s
transfer operator which describes the dynamical partition function (also in higher dimension) than
one for the ordinary partition function, since a fixed point interpretation is built in by definition.

Definition 1.11.1. Let (Ω, F,ND,ND0 , τ) be a D-dimensional one-sided subshift (1.2.6), and φ a two-
body interaction (1.8.1) on Ω such that

∑
i∈ND ϕ2(1, i;x, ξi) is absolutely convergent for all ξ ∈ Ω, x ∈

F , where 1 = (1, . . . , 1) ∈ ND. Set

A(φ) : Ω → C, A(φ)(ξ) := ϕ1(1; ξ1) +
∑

i∈ND\{1}
ϕ2(1, i; ξ1, ξi).

We call the function A(φ) the standard observable. It expresses the energy coming from all interactions
between the spin at position 1 and all the spins over the rest of the positive quadrant ND, in fact:

A(φ)(ξ) = Ũφ{1}(ξ1) +W{1},ND\{1}(ξ),

where ŨφΛ : ΩΛ → C is the inner energy (1.6.1) and W{1},ND\{1} : Ω → C is Ruelle’s difference term
from (1.6.3).

-r b b b b b b

Figure 9: The standard observable counts the pair interactions between the first particle and the
halfline.
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The standard observable A(φ) is an interesting object since for one-dimensional systems it has a special
property (Prop. 1.11.2), which will play an essential role in the construction of the Ruelle transfer
operator for lattice spin systems and which is due to Ruelle [Ru78].

Proposition 1.11.2. Let (Ω, F,N,N0, τ) be a one-sided one-dim. subshift (1.2.6), (bN

N )N∈P(nN0)
the

periodic boundary condition (1.3.9) associated to the family (nN0)n∈N of subsemigroups of N0, and
φ a compatible two-body interaction (1.6.4). Let N = {1, . . . , n}. Then for all ξN = (x1, . . . , xn) ∈
ρN(Fix(τn : Ω → Ω)) one has

U b
N0 ,φ
N (ξN ) =

n−1∑

k=0

A(φ)(τk(x1 . . . xn)),

where x1 . . . xn = (ρN ◦ rnZ)(x1, . . . , xn) is the periodic extension of the subconfiguration (x1, . . . , xn)
to the half lattice N.

Proof. By the compatibility assumption we can rearrange terms. Using the representation of the
energy U b,φN given in the proof of Proposition 1.9.1 (27) we obtain

−U b
N0 ,φ
N (ξN ) =

n∑

i=1

ϕ1(i;xi) +
n∑

i=1

∑

j>i

ϕ2(i, j;xi, xj)

=

n−1∑

k=0

ϕ1(1 + k;x1+k) +

n−1∑

k=0

∞∑

l=1

ϕ2(1 + k, 1 + k + l;x1+k, x1+k+l)

=

n−1∑

k=0

A(φ)(τk(x1 . . . xn))

by definition of A(φ) (1.11.1).

We would like to underline that the expression on the right hand side of Proposition 1.11.2 can be
seen as n-times the orbit mean of the observable A(φ) along the closed nN0-orbit through x1 . . . xn.
We will return to this point of view in Remark 1.11.5. We add the remark that Proposition 1.11.2 (i.e.

expressing the total energy U b
N0 ,φ
N (ξN ) with periodic boundary condition as the sum of the values of

one fixed function evaluated at translates of ξN where the translations are parametrised by N) seems
to be limited to one-dimensional systems. All our attempts to find a higher dimensional analogue
failed.
In the following we will assume that ν is a finite Borel measure on F and that the transition matrix
A : F × F → {0, 1} is a ν ⊗ ν-measurable function and irreducible aperiodic (1.2.9). The latter
assumption guarantees by (1.3.16) that the matrix subshift ΩA (1.2.8) admits a periodic boundary
condition with respect to the standard family of subsemigroups of Z.

Corollary 1.11.3. Let (Ω>
A
, F,N,N0, τ) be a one-sided one-dimensional matrix subshift as defined in

(1.2.8). Let (bN

N)N∈P(nN0)
be the periodic boundary condition (1.3.9) associated to the family (nN0)n∈N

of subsemigroups of N0, and φ a compatible two-body interaction (1.6.4). Then for all n ∈ N the
partition function (1.7.1) can be expressed as

Zb
N0 ,φ

{1,...,n}(β) =

∫

Fn

n∏

i=1

Axi,xi+1 exp
(
β

n−1∑

k=0

A(φ)(τk(x1 . . . xn))
)
dνn(x1, . . . , xn),

where x1 . . . xn = (ρN ◦ rnZ)(x1, . . . , xn) and xn+1 = x1.

Proof. Remark 1.3.17 gives a characterisation of the periodic sequences belonging to the configuration
space Ω>

A
, hence a reformulation of the domain of integration. Then use Proposition 1.11.2 to see that

the integrand has the stated form.

One can interpret the above formula as the average of the observable exp(β A) over (a parametrisation
of) the joined fixed point set of the shift operators τm : Ω>

A
→ Ω>

A
(m ∈ nN0). This suggests the

following generalisation, the dynamical partition function, where we replace the standard observable
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A(φ) (1.11.1) by arbitrary observables A ∈ Cb(Ω). Dynamical partition functions have been introduced
by Ruelle, [Ru78, 3.3], in a similar form without using this name.
In Chapters 2 and 3 we will construct (for certain interactions φ) a so called transfer operator such
that the trace of its iterates allows to express the partition function. Therefore the interpretation of

the above formula for Zb
N0 ,φ

{1,...,n}(β) as a fixed point formula will be used.

Definition 1.11.4. Let F be a Hausdorff space with a finite Borel measure ν, (Ω, F,ND,ND0 , τ)

a one-sided D-dimensional subshift (1.2.6). For n ∈ ND let H := ND0 , Hn :=
∏D
i=1(niN0)n∈ND ,

Nn =
∏D
i=1{1, . . . , ni} ⊂ ND, and Mn :=

∏D
i=1{0, . . . , ni − 1} ⊂ ND0 . Let bN

D
0 = (bHN)N∈P(hn)

be the
periodic boundary condition (1.3.9) associated to the family (Hn)n∈ND . Let A ∈ Cb(Ω). We define
the dynamical partition function to be

Z̃b
N

D
0

n (A) :=

∫

ρNn (
T

γ∈Hn
Fix(τγ :Ω→Ω))

exp
( ∑

m∈Mn

A(τmb
H
Nn
ξNn)

)
dνNn(ξNn).

We note that we will always consider the dynamical partition function coming from the periodic

boundary condition bN
D
0 = (bHN )N∈P(hn)

associated to the family (Hn)n∈ND .
We will now give examples for the application of the dynamical partition function which show the
connection between the thermodynamic formalism for lattice spin systems (which is the main topic of
this dissertation) and the thermodynamic formalism for expanding maps (see [Ru78, 7.26 ff.], [May91,
7.3]) which we only touch occasionally.

Remark 1.11.5. Typical choices of A ∈ Cb(Ω) are the following:

(i) Let D = 1 and A(φ) be the standard observable (1.11.1), then by Corollary 1.11.3

Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β),

since Remark 1.3.17 provides an alternative characterisation of the domain of integration, i.e., of
the joint fixed points of τγ (γ ∈ Hn = nN0), in terms of the transition matrix and the integrands
of both partition functions coincide. We raise the question whether the thermodynamic limit
of the dynamical partition function behaves like the limit of the (ordinary) partition function
which seems to be likely in view of [Ru78, 3.3].

(ii) (In the notation of 1.11.4) The trivial choice A = 0 leads to a measurement of the number of

the joint fixed points of τn (n ∈ Hn) in Ω, since Z̃b
H

n (0) = νNn(ρNn(
⋂
γ∈Hn

Fix(τγ : Ω → Ω))).

(iii) Let X be a set and T : X → X a map such that for all n ∈ N the n-th iterate T n : X → X of
T has only finitely many fixed points11. Define an N0-action (1.2.2) via

N0 ×X → X, (k, x) 7→ T k(x).

Define ΩT := {ξ ∈ XN |T (ξi) = ξi+1}, which is invariant under the shift action

τ : N0 × ΩT → ΩT , τ(n, ξ)i = ξi+n.

The elements of ΩT are (in bijection to) T -orbits: Let ξ = (ξi)i∈N ∈ ΩT , then ξn+1 = Tξn =
. . . = T nξ1. Hence the map T is encoded in the sequence space ΩT and we can apply our technics
for lattice spin systems. Let X be equipped with the counting measure and A : X → C be an
observable. Then we obtain the following expression for the dynamical partition function (1.11.4)

Z̃b
N0

n (A) =
∑

x∈Fix(Tn:X→X)

exp
( n−1∑

k=0

A(T kx)
)
.

Note that the term in the exponential is the orbit mean of A along the closed T -orbit of x.

11Provided a summability/integrability condition this assumption can be weakened.
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(iv) The trivial choice A = 0 of the observable in (iii) leads to Zb
N0

n (0) = |Fix(T n : X → X)|, which
is the number of the fixed points of T n in X .

(v) Let X = I be a bounded domain in Rn or Cn and T : I → I a piecewiece continuously
differentiable map such that T n : I → I has only finitely many fixed points for all n ∈ N. For
the particular choice of the almost everywhere defined function A(x) = − log | det(T ′(x))| in (iii)
one obtains

Z̃b
N0

n

(
− β log | det(T ′(x))|

)
=

∑

x∈Fix(Tn:I→I)

n−1∏

k=0

1

| det(T ′(T kx))|β ,

which is the standard notion of the partition function in the context of expanding maps.
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2 Transfer operators for the full shift

The Ruelle transfer operator is an important tool for the investigation of dynamical systems, statistical
mechanics, quantum chaos, and fractals. The idea is to encode the dynamical information into an
operator, study its spectral properties, and to deduce back from these some dynamical properties.
The transfer operator is defined as follows: Given a fixed self map T : I → I of a set I, this gives rise
to an N0-action, i. e., a time-discrete dynamical system, by Remark 1.2.2. If every point x ∈ I has
only finitely many T -preimages, the formula

(LAf)(x) =
∑

y∈T−1(x)

exp(A(y)) f(y)

defines the Ruelle transfer operator acting on complex-valued functions f : I → C. Here the function
exp ◦A : I → C is the weight corresponding to the observable A. The Ruelle transfer operator is a
(sum of) composition operator(s) acting on a huge function space. Nevertheless, one can show that
(in many situations) this operator has a spectral gap, i. e., there exists a leading eigenvalue λ1 and the
rest of the spectrum is contained in a disk with radius strictly smaller than |λ1|. The Ruelle-Perron-
Frobenius Theorem 2.1.4 uses these analytic properties and concludes from them certain dynamical
properties, such as the existence of an equilibrium state. One technique for the investigation of
the spectrum is the restriction of the transfer operator to an invariant subspace which is easier to
analyse. For instance, if one can transport the (restriction of the) transfer operator to one of the
commonly used function spaces from functional analysis, then many results on composition operators
are available. The smaller the subspace, the more “improve” the spectral properties of the (restricted)
operator (for instance the operator becomes bounded, compact, Schatten class). But of course in this
process information about the physical properties is lost. The choice of a suitable subspace or a direct
construction of a good transfer operator is a hard problem and in many cases depends on a skilled
view.
In this chapter we consider the one-dimensional one-sided (full) shift endowed with a Ising two-body
interaction φ (1.8.3) given via a distance function d ∈ `1N and spin values in a bounded subset F ⊂ C.
In this case the self map T from above is the shift operator acting on the configuration space Ω ⊂ FN

and the observable A is the standard observable A(φ) from (1.11.1) corresponding to the interaction φ.
In several papers ([May76], [Vi76], [MayVi77], [ViMay77], [May80a], [Mo89], [HiMay02], [HiMay04])
examples of interactions have been found for which one could identify a certain subspace which is
invariant under the Ruelle transfer operator yielding the so called Ruelle-Mayer transfer operator
which - via a so called dynamical trace formula - gives a complete description of the physical system,
i. e., the sequence of partition functions can be expressed in terms of the spectrum of the transfer
operator. The thermodynamic formalism shows that many properties of the dynamical system depend
as functions on the partition function. Motivated by these examples we ask for the class of interactions
for which the dynamical system can be completely described by a transfer operator. We can find a
class of interactions in which all the above examples are contained and give some new examples. The
main Theorems 2.7.6 and 2.13.8 of this chapter will be explained during the following outline of the
chapter.
In Section 2.1 we introduce the Ruelle transfer operator L and formulate the Ruelle-Perron-Frobenius
Theorem 2.1.4. We introduce the dual shift τ ′ and show that the leading eigenfunction of the Ruelle
transfer operator factors through a family of continuous linear functionals. This observation is the
key idea in finding the suitable L-invariant subspace in Section 2.6. In Section 2.2 we discuss some
ways to find a natural Hilbert space H which contains a preimage of the leading eigenvector of the
Ruelle transfer operator. For our constructions we will need a certain suitable stronger decay of the
distance function d and hence define subspaces of `1N. By Cauchy’s root test the space `1N of distance
functions splits into three parts, namely d ∈ `1N either satisfies

lim sup
k→∞

k
√
|d(k)| =






0, (d has faster than exponential decay),
q with 0 < q < 1, (d has exponential decay at infinity), or
1, (d has subexponential decay).

Our methods are limited to cover (parts of) the first two cases as we will see in Remark 2.6.8. In
Section 2.3 we give another motivation for the study of the Ruelle transfer operator. We recall the
definition of the so called counting trace of a composition operator. We show that the counting trace
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of the iterates of the Ruelle transfer operator is precisely the dynamical partition function (1.11.4).
By virtue of Ansatz 2.3.3 we can transport the dynamical system on Ω to a dynamical system on
another topological space E, such that the Ruelle transfer operator induces a composition operator,
the Ruelle-Mayer (RM) operator Mβ : Cb(E) → Cb(E). For a certain class of examples this operator
looks like

(Mβf)(z) =

∫

F

exp (βx〈z|v〉) f(xw + Bz) dν(x),

where v, w ∈ E := `2N, B is a trace class operator on `2N, and f : `2N → C. It is an interesting
observation that the dynamical partition function can be expressed as the counting trace of this
induced operator.
In Section 2.4 we will assume that the Ruelle-Mayer transfer Mβ operator is trace class. We calculate
the spectral traces of its iterates and relate this to the dynamical partition function (1.11.4). We show
that

Z̃b
N0

n (βA(φ)) = det(1 − Bn) trace (Mβ)
n

which we call a dynamical trace formula. In Section 2.5 we investigate arbitrary finite range interac-
tions, construct the Ruelle-Mayer transfer operator, and prove its trace formula with the methods of
Section 2.4. For the rest of this chapter we will restrict to Ising (type) interactions. In Section 2.6
we will introduce a general method how one can choose a projection map in order to construct a
Ruelle-Mayer transfer operator which works for a large class of (longe range) distance functions. The
main idea is to find a family of linear continuous maps from `∞N (which contains our configuration
space Ω) into C, which translates the shift action on `∞N into affine maps on some complex vector
space. In Section 2.6 we investigate the Banach space situation, whereas in Section 2.7 the Hilbert
space case is concerned. Our approach is new compared to the existing literature and allows to treat
the following classes of distance functions from a unified point of view: finite range interactions in
Section 2.8, superexponentially decaying interactions in Sections 2.9, polynomial-exponential decaying
interactions in 2.11, and their superpositions. These distance functions have in common that they can
be written as

d : N → C, k 7→ d(k) := 〈Bk−1v|w〉H
where B : H → H is a bounded linear operator on a Hilbert space (H, 〈 · | · 〉H) with spectral radius
ρspec(B) < 1, and two fixed vectors v, w ∈ H. Abstractly speaking, the restriction of the shift
operator τ to the subspace of `1N generated by the functions τkd (k ∈ N0) is contractive. This point
of view allows a classification of this type of distance functions and implies that the above list is almost
complete.

In (2.7.1) we define the classes of distance functions D(p)
1 ⊂ `1N (for p < ∞) via d ∈ D(p)

1 iff d has a
generating triple (B, v, w), i. e., admits a representation d(k) = 〈Bk−1v|w〉`2N, where B belongs to the
Schatten class Sp(`2N) and ρspec(B) < 1. The following main theorem of this chapter states that for

all Ising interactions with distance function d ∈ D(p)
1 for some p <∞ a dynamical trace formula holds

at least for almost all n ∈ N:

Theorem 2.7.6. Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full
shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance

function d ∈ D(p)
1 for some p < ∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N. Then there exists an index

n0 ∈ N depending on B such that for all n ≥ n0 the Ruelle-Mayer transfer operator

Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|w〉

)
f(σ v + B z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn) trace (Mβ)
n.

In Section 2.12 we will make some comments on the classification of this class of distance functions.
In the following sections we will construct Ruelle-Mayer transfer operators for finite range interac-
tions (Subs. 2.8), superexponentially decaying Ising interactions (Subs. 2.9), polynomial-exponentially

decaying Ising interactions (Subs. 2.11), and D(p),∆
1 Ising interactions (Subs. 2.10). The latter are dis-

tance functions which are suitable infinite superpositions of exponentially decaying interactions and
have not been studied before.
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We end this chapter by transferring the result 2.7.6 to Ising type interactions. Recall that an interac-
tion matrix is called of Ising type if it can be written as a finite sum of Ising interactions. A typical
example of an Ising type interaction is Stanley’s M -vector model [St68a]. If the alphabet F is a finite
set, which is often the case, then every interaction matrix is of Ising type. This allows to study the
M -states Potts model from the same mathematical point of view as for instance the Ising model. Our
Theorem 2.13.8 will be obtained by taking the Ruelle-Mayer transfer operator for each summand and
form (mainly) their tensor power.
In Chapter 3 we will generalise the results of this chapter to one-dimensional one-sided matrix subshifts
and obtain a similar dynamical trace formula.

2.1 Ruelle transfer operator

In this section we will explain the concept of a transfer operator. We start with the original definition
by D. Ruelle and discuss some of its properties. The Ruelle transfer operator is a composition operator
acting on the space of continuous bounded functions on the configuration space. Under additional
assumptions one can show that this operator has a spectral gap, i. e., there exists a leading eigenvalue
λ1 and the rest of the spectrum is contained in a disk with radius strictly smaller than |λ1|. The
Ruelle-Perron-Frobenius Theorem 2.1.4 exploits this fact, deduces further properties of the Ruelle
transfer operator, and relates these analytic facts to certain properties of the dynamical system.

Remark 2.1.1. We return to the situation of Remark 1.11.5 (v): Let I be a bounded domain in Rn

or Cn and T : I → I a continuous map, such that every point x ∈ I has only finitely many preimages.
Let A ∈ Cb(I) and define the Ruelle transfer operator

(36) LA : Cb(I) → Cb(I), (LAf)(x) =
∑

y∈T−1(x)

exp
(
A(y)

)
f(y).

There is a closely related operator: The Perron-Frobenius operator L is defined on L1(I) via

∫

I

(Lf)(x) g(x) dx =

∫

I

f(x) (g ◦ T )(x) dx

for all f ∈ L1(I), g ∈ L∞(I). If T is piecewiece continuously differentiable, then the function
A(x) = − log | det(T ′(x))| is almost everywhere defined and the Ruelle operator associated with this
observable coincides with the restriction of the Perron-Frobenius operator to the space Cb(I) of con-
tinuous bounded functions on I.

In the following we will only deal with the one-dimensional matrix subshift for which we can determine
the preimages explicitly:

Example 2.1.2. Let (FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6). The shift operator
is the surjective, non-injective map

τ := τ1 : FN → FN, (τξ)(i) = ξ(i+ 1).

We give a description of the preimages of a configuration ξ ∈ FN under the shift operator: Recall
the bijective right shift τ−1;N : FN → FN≥2 defined in (1.2.3). For any σ ∈ F the element (σ ∨ ξ) =

(σ, ξ1, ξ2, . . .) = (σ ⊕ τ−1;N(ξ)) ∈ FN defined via

(σ ∨ ξ)i :=

{
σ , i = 1,
ξi−1 , i ≥ 2

is a preimage of ξ. For n ∈ N, σ1, . . . , σn ∈ F , ξ ∈ Fn we define

(37) σn ∨ . . . ∨ σ2 ∨ σ1 ∨ ξ := σn ∨ (σn−1 . . . ∨ (σ2 ∨ (σ1 ∨ ξ)) . . .).

Let (ΩA,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8) of (FN,N0, τ). The preimages
of ξ ∈ ΩA are precisely those configurations (σ ∨ ξ) ∈ FN with Aσ,ξ1 = 1.

This leads to the following definition:



56

Definition 2.1.3. Let F be a Hausdorff space equipped with a finite Borel measure ν, (Ω = FN,N0, τ)
a one-sided one-dimensional full shift (1.2.6), and A ∈ Cb(Ω) an observable, then the associated Ruelle
transfer operator LA : Cb(Ω) → Cb(Ω) is defined as

(LAf)(ξ) :=

∫

F

exp
(
A(σ ∨ ξ)

)
f(σ ∨ ξ) dν(σ).

As one easily checks, the Ruelle transfer operator is a bounded linear operator on Cb(Ω). Moreover
cp. [May91, p. 181], [Ru78], if F is compact and A is real-valued, the operator LA : C(Ω) → C(Ω) is a
positive operator and hence has a positive, separated leading eigenvalue, which implies the following
theorem:

Theorem 2.1.4. (Ruelle-Perron-Frobenius Theorem12) Let F be compact, (Ω, F,N,N0, τ) a lattice
spin system (1.2.7), and A : Ω → R a Hölder continuous function. Then:

(i) There exists h1 ∈ C(Ω), h1 > 0, λ1 > 0 such that LAh1 = λ1h1.

(ii) There exists a probability measure ν1 ∈ C(Ω)′, ν1 ≥ 0, ν1(h1) = 1 and (LA)′ν1 = λ1ν1.

(iii) For any f ∈ C(Ω)
lim
n→∞

‖λ−n1 (LA)nf − ν1(f)h1‖C(Ω) = 0.

(iv) The following formula holds for the topological pressure13

(38) P (A) := lim
n→∞

1

n
log Z̃b

N0

n (A) = logλ1.

(v) The probability measure µ1 := h1 ν1 is shift invariant and is a Gibbs state14.

The spectral properties of the transfer operator (quasi-compact, compact, Schatten class) determine
the limit behaviour of the dynamical system, see for instance the book [Ba00]. For this purpose it
is helpful to study the Ruelle transfer operator on subspaces of Cb(Ω) which are easier to treat. To
preserve the main (spectral) information about the original operator, such a subspace should contain
the constant function 1 ∈ Cb(Ω) and its image under the iterates of L, i. e., the space V defined as

(39) V := span{Ln1 |n ∈ N0}
Cb(Ω)

,

since by the Ruelle-Perron-Frobenius Theorem 2.1.4 the eigenvector h1 of L corresponding to the
leading eigenvalue λ1 can be approximated by the normalised LA-iterates of the constant function 1
due to the fact that

lim
n→∞

‖λ−n1 Ln1 − h1‖C(Ω) = 0.

In this dissertation we restrict our attention to Ising type interactions which contain many physically
interesting systems. For the mathematical treatment it is often expedient to consider first the Ising
model and the transfer operator LA(φ)

, see Example 1.8.3, with spin values in a bounded subset
F ⊂ C, and then to generalise to Ising type models. If F ⊂ C is bounded, then the configuration
space Ω = FN is a bounded subset of `∞N.
The previous considerations motivate the investigation of the image of the constant function 1 under
the iterates of L in order to obtain an explicit description of the space V (39). It turns out, see
Proposition 2.1.8, that the functions (LA(φ)

)n1 depend on a family of functionals which are defined
via the distance function and the shift. These functionals will be introduced in Remark 2.1.6.

12see for instance [Bo75] or [PaPo90].
13The topological pressure can equivalently be characterised by a variational principle, which can be stated as:

P (A) = sup{hµ(τ) +
R

Ω A dµ |µ τ -invariant probability measure on Ω}, where hµ(τ) is the entropy of τ with respect to
µ.

14Gibbs states can be equivalently characterised as solutions of the Dobrushin-Lanford-Ruelle equations and also by
certain conditional probabilities, see [Ru78].



Transfer operators for the full shift 57

Remark 2.1.5. The (left) shift operator τ : CN → CN, (τξ)i = ξi+1 leaves invariant all the spaces
`pN for 1 ≤ p ≤ ∞ and defines continuous linear operators on these spaces:

‖τ(ξ)‖`p(N) ≤ ‖ξ‖`pN.

With respect to the usual bilinear pairing 〈ξ, η〉`pN,`qN =
∑∞

i=1 ξi ηi (where p, q are dual exponents,
i. e., 1

p + 1
q = 1), the dual operator of τ : `pN → `pN is τ ′ : `qN → `qN acting via τ ′(ξ) = 0 ∨ ξ (2.1.2)

defined via

τ ′ : CN → CN, (τ ′ξ)i =

{
0, i = 1,
ξi−1, i ≥ 2.

In particular, (ττ ′)(ξ) = τ(0 ∨ ξ) = ξ and (τ ′τ)(σ ∨ ξ) = τ ′(ξ) = 0 ∨ ξ.

Remark 2.1.6. Let τ : `1N → `1N be the shift operator (2.1.5). With respect to the usual bilinear
pairing 〈 · , · 〉`pN,`qN a sequence d ∈ `1N gives rise to a family of continuous linear functionals πdk ∈
(`∞N)′ (indexed by k ∈ N) defined via

(40) πdk : `∞(N) → C, ξ 7→ 〈ξ, τk−1d〉`∞N,`1N =
∞∑

i=1

ξi d(k + i− 1).

Obviously,
|πdk(ξ)| ≤ sup

i∈N

|ξi| ‖τk−1d‖`1N ≤ ‖ξ‖`∞N ‖d‖`1N.

For any finite set J ⊂ N set πdJ := (πdj )j∈J : `∞(N) → C|J|. Then πdJ is a continuous linear operator.

The functionals πdk ∈ `∞(N)′ are interesting objects due to their relation to the standard observable
(1.11.1) and the following proposition.

Remark 2.1.7. Let F ⊂ C be a bounded set and (Ω, F,N,N0, τ) be a lattice spin system (1.2.7), then
Ω ⊂ FN ⊂ `∞(N) is a bounded set and the observable A(φ) (1.11.1) associated to the Ising interaction
(1.8.3) with distance function d ∈ `1N and potential q ∈ Cb(F ) is given as

(41) A(φ) : Ω → C, A(φ)(σ ∨ ξ) = q(σ) + σ πd1(ξ).

In this situation, we call A(φ) the standard Ising observable. By Remark 2.1.6 we have A(φ) ∈ Cb(Ω).
If q extends to a continuous map C → C, then also A(φ) extends to a continuous map via

A(φ) : `∞N → C, A(φ)(σ ∨ ξ) = q(σ) + σ πd1 (ξ).

In fact: Let η = σ ∨ ξ ∈ Ω, then using (1.8.1), (1.8.2), and (1.11.1)

A(φ)(η) = ϕ1(1; η1)+
∑

i>1

ϕ2(1, i; η1, ηi) = q(η1)+
∑

i>1

d(i−1) η1 ηi = q(σ)+σ

∞∑

i=1

d(i) ξi = q(σ)+σ πd1(ξ),

which proves (41). By the continuity of πd1 (2.1.6) and q also A(φ) is continuous:

|A(φ)(σ ∨ ξ) −A(φ)(σ
′ ∨ ξ′)| ≤ |q(σ) − q(σ′)| + |σ πd1(ξ) − σ′ πd1(ξ′)|

≤ |q(σ) − q(σ′)| + |σ| ‖d‖`1N ‖ξ − ξ′‖`∞N + |σ − σ′| ‖d‖`1N ‖ξ′‖`∞N.

In Proposition 2.6.6 we will return to the idea that the standard Ising observable can be expressed
with a certain linear functional. The next proposition says that the spectral information about the
leading eigenvalue of the Ruelle transfer operator is concentrated on a subspace of Cb(Ω) which is
characterised by the functionals πdk ∈ `∞(N)′ from Remark 2.1.6. This observation will be essential
for the construction of the Ruelle-Mayer transfer operator.
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Proposition 2.1.8. Let F ⊂ C be a bounded set, (FN,N0, τ) a one-sided full shift (1.2.6), φ a two-body
Ising interaction (1.8.3) with distance function d ∈ `1N, A(φ) the standard Ising observable (2.1.7),
and LA(φ)

be the associated Ruelle transfer operator (2.1.3), then ((LA(φ)
)n1)(ξ) depends on ξ via the

functions πdk|Ω (40) for k = 1, . . . , n:

(LβA(φ)
1)(ξ) =

∫

F

exp
(
βq(σ) + βσπd1 (ξ)

)
dν(σ),

((LβA(φ)
)n1)(ξ) =

∫

Fn

exp
(
β

n∑

k=1

q(σk) + β
n∑

k=1

σk

k−1∑

i=1

σi d(k − i) + β
n∑

k=2

σkπ
d
k(ξ)

)
dν(σn) . . . dν(σ1).

Proof. Let A ∈ Cb(Ω) and LA be the associated Ruelle transfer operator (2.1.3). We write this operator
as an integral over a family of composition operators as

(LAf)(ξ) =

∫

F

exp
(
Aσ(ξ)

)
(f ◦ ψσ)(ξ) dν(σ) =

∫

F

Lx dν(x),

where for any σ ∈ F we set ψσ : FN → FN, ξ 7→ σ ∨ ξ (2.1.2), Aσ : FN → C, ξ 7→ A(σ ∨ ξ), and Lσ :
Cb(Ω) → Cb(Ω), (Lσf)(ξ) = exp

(
Aσ(ξ)

)
(f ◦ψσ)(ξ). We compute the n-th iterate of LA =

∫
F Lx dν(x)

with Corollaries A.7.7 and B.1.3 which yields for n ≥ 2

(LnAf)(ξ) =

∫

Fn

(Lxn ◦ . . . ◦ Lx1f)(ξ) dν(x1) . . . dν(xn)

=

∫

Fn

exp
( n∑

k=1

A(xk ∨ . . . ∨ xn ∨ ξ)
)
f(x1 ∨ . . . ∨ xn ∨ ξ) dν(x1) . . . dν(xn)(42)

using the definition of ∨ (37) given in (2.1.2) For the particular choices A = βA(φ) (1.11.1) and f
being the constant function 1 we obtain (for n ≥ 2)

((LβA(φ)
)n1)(ξ) =

∫

Fn

exp
(
β

n∑

k=1

A(φ)(xk ∨ . . . ∨ xn ∨ ξ)
)
dν(x1) . . . dν(xn)

=

∫

Fn

exp
(
β

n∑

k=1

A(φ)(xk ∨ . . . ∨ x1 ∨ ξ)
)
dν(x1) . . . dν(xn)

=

∫

Fn

exp

(
β

n∑

k=1

ϕ1(k, σk) + β

n∑

k=1

( k∑

i=2

ϕ2(1, i;σk, σk+1−i) +

∞∑

i=1

ϕ2(k + i, 1; ξi, σk)
))

dνn(σ1, .., σn)

which gives in the case φ being an Ising two-body interaction (1.8.3)

((LβA(φ)
)n1)(ξ)=

∫

Fn

exp

(
β

n∑

k=1

q(σk) + β

n∑

k=1

σk

( k−1∑

i=1

σi d(k − i) +

∞∑

i=1

ξi d(k + i− 1)
))
dνn(σ1, .., σn).

We will make a first attempt in finding a subspace of Cb(Ω) which is invariant under the Ruelle
transfer operator LA(φ)

, contains the leading eigenfunction, and can be described without knowing
the eigenfunctions of LA(φ)

.

Remark 2.1.9. Let F ⊂ C be a bounded set, (Ω = FN,N0, τ) a one-sided full shift (1.2.6), φ a
two-body Ising interaction (1.8.3) with distance function d ∈ `1N, A(φ) the standard Ising observ-
able (2.1.7), and LA(φ)

be the associated Ruelle transfer operator (2.1.3), then in view of Proposi-
tion 2.1.8 a reasonable candidate for the investigation of spectral properties of LA(φ)

is

W := span{f ∈ Cb(Ω) | ∃J ⊂ N0 finite, g ∈ Cb(UJ) : f = g ◦ πdJ}
Cb(Ω)

,

where UJ ⊂ CJ is some (connected) neighbourhood of the image πdJ (Ω) ⊂ CJ of πdJ defined in (2.1.6).
The space V from (39) is contained in W . A priori it is not clear whether V and W are non-trivial
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subspaces of Cb(Ω), whether V = W , and whether W is LA(φ)
-invariant. Concerning the latter: Let

gJ ∈ Cb(UJ), f = gJ ◦ πdJ ∈W , then

(LA(φ)
f)(ξ) =

∫

F

exp
(
βσπd1 (ξ)

)
(gJ ◦ πdJ )(σ ∨ ξ) dν(σ) =

∫

F

exp
(
βσπ1(ξ)

)
gJ(σdJ + πdJ+1(ξ)) dν(σ),

where dJ :=
(
d(j)

)
j∈J ∈ CJ and J + 1 := {j+ 1; j ∈ J}. Hence the image depends on the functionals

πdk (2.1.6) for k ∈ {1} ∪ J + 1.

2.2 The leading eigenfunction of the Ruelle transfer operator

Let φ be a pure Ising two-body interaction (1.8.3) with distance function d ∈ `1N and spin values in a
bounded subset F ⊂ C. We look for a small subspace of Cb(Ω) on which the spectral information of the
Ruelle transfer operator is concentrated. In Proposition 2.1.8 we have seen that the leading eigenvector
of the Ruelle transfer operator LA(φ)

(2.1.3) depends on all the functionals πdk : `∞N → C (k ∈ N)

as defined in equation (40) of Remark 2.1.6. This observation suggests to consider πd =“limJ→N π
d”

of πdJ and to consider the action of the Ruelle transfer operator on functions f = g ◦ πd. Hence one
has to estimate the size of πdJ (ξ). First we will use the `2N-norm, which leads to the class D2 of
distance functions such that πd is continuous. Later, we will investigate distance functions belonging
to subspaces of D2 characterised by a stronger decay condition. The potential q does not play a role
for these considerations and will be included only later.

Definition 2.2.1. Let D2 be the subspace of `1N consisting of all sequences d : N → C such that

‖d‖2
D2

:=

∞∑

j=1

( ∞∑

k=1

|d(k + j − 1)|
)2

=

∞∑

j=1

( ∞∑

k=j

|d(k)|
)2

<∞.

The requirement that a distance function d belongs to D2 is the natural condition which guarantees
the continuity of the linear map πd : `∞N → `2N defined next.

Proposition 2.2.2. Let d ∈ D2 (2.2.1). Then

(43) πd : `∞N → `2N, πd(ξ)j := πdj (ξ) = 〈ξ, τ j−1d〉`∞N,`1N =

∞∑

k=1

ξk d(k + j − 1)

is a continuous linear map with ‖πd‖ ≤ ‖d‖D2 and

(44) πd(σ ∨ ξ) = σ d+ τπd(ξ)

for all σ ∈ C, ξ ∈ `∞N, where τ : `2N → `2N, τ(ξ)i := ξi+1 is the shift defined in Remark 2.1.5.

Proof. Let ξ ∈ `∞N. Then by Remark 2.1.6

‖πd(ξ)‖2 =

∞∑

j=1

|πdj (ξ)|2 ≤ ‖ξ‖2
`∞N

∞∑

j=1

‖τ j−1d‖2
`1N

= ‖ξ‖2
`∞N

∞∑

j=1

( ∞∑

k=1

|d(k + j − 1)|
)2

.

Let j ∈ N, σ ∈ F , ξ ∈ `∞N, then

πd(σ ∨ ξ)j = πdj (σ ∨ ξ) = 〈σ ∨ ξ, τ j−1d〉`∞N,`1N = σ d(j) +

∞∑

k=1

ξk d(k + j) = σ d(j) + πj+1(ξ).

Example 2.2.3. Let d ∈ D2 (2.2.1). Cauchy-Schwarz’s inequality yields a majorant for ‖d‖2
D2

via

(45) ‖d‖2
D2

=

∞∑

j=1

( ∞∑

k=1

|d(k + j − 1)|
)2

≤ ‖d‖`∞N

∞∑

j=1

∞∑

k=1

|d(k + j − 1)| = ‖d‖`∞N

∞∑

j=1

j|d(j)|,

where the last equality can be shown by counting the number of equal terms in the double series.
This upper bound will reappear in Definition 2.2.4. Examples of distance functions belonging to D2

will be given in (2.2.5).
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In the following we will require a suitable stronger decay of the distance function d such that the image
of `∞N under πd (43) lies in `1N. This is also the natural condition for the absolute convergence of
the function WZ≤,Z> from Remark 1.6.3. The interest in the function WZ≤,Z> is its close relation to
the leading eigenfunction of the Ruelle transfer operator. This we will show in Remark 2.2.11. We
will prove a useful representation of WZ≤,Z> with the help of a continuous trilinear mapping W , as
we will see in Remark 2.2.10. This will allow us to investigate whether the leading eigenvector h1 of
the Ruelle operator LA(φ)

(2.1.3) has a preimage h1 = h̃1 ◦ πd under composition with πd.

Definition 2.2.4. Let D1 be the subspace of `1N consisting of all sequences d : N → C with

‖d‖D1 :=

∞∑

i=1

∞∑

j=1

|d(i+ j − 1)| =

∞∑

i=1

i |d(i)| <∞.

By Example 2.2.3 we have D1 ⊂ D2, and obviously ‖d‖`1N ≤ ‖d‖D1 holds. We give some examples of
physically relevant distance functions belonging to this class.

Example 2.2.5. (i) Let α > 1 and d : N → C, k 7→ k−α. It belongs to D1 (2.2.4), iff α > 2, since

∞∑

ν=1

ν |d(ν)| =

∞∑

ν=1

ν−1−α = ζ(α + 1),

where ζ denotes the Riemann zeta function. This class of distance functions contains the van
der Waals potential (α = 6) of particle physics, but not the Coulomb potential (α = 2) of
electrostatics.

(ii) Plummer potential: Let ε > 0, α > 1 and d : N → C, k 7→ (ε + |k|2)−α/2, which is an approxi-
mation of d′(k) = k−α. In fact: One can choose cε > 0 such that cε k

−α ≤ d(k) ≤ k−α. Hence
it belongs to D1, iff α > 2.

(iii) Let γ, δ > 0, n ∈ N0, and d : N → C, k 7→ kn exp(−γkδ), which appears for instance in [May80a,
p. 100] in the case n = 0. It belongs to D1 by Proposition 2.2.6.

(iv) Let α, γ > 0 and d : N → C, k 7→
∫ 1

0
tα exp(−γtk) dt which for large k behaves like k−α+1.

This distance appears in [May80a, p. 109]. It belongs to D1 for all γ > 0, α > 2: Note
that the function [0,∞[→ R, t 7→ tα exp(−γt) attains its maximum at γ/α, hence d(k) ≤
(α/γ)α k−α exp(−α) and

∑∞
ν=1 ν |d(ν)| ≤ (α/γ)α exp(−α)

∑∞
k=1 k

1−α, which converges for α >
2.

The following auxiliary proposition is left from Example 2.2.5.

Proposition 2.2.6. Let ε1, ε2 > 0, n ∈ N0, then
∑∞
k=1 k

n exp(−ε1 kε2) <∞.

Proof. The series converges if and only if the condensed series

∞∑

k=1

2k (2k)n exp(−ε1 2kε2) =
∞∑

k=1

(2n+1)k exp(−ε1 2kε2)

converges. By the root test this holds true, since

lim
k→∞

k

√
(2n+1)k exp(−ε1 2kε2) = 2n+1 lim

k→∞
exp
(
− ε1
k

2kε2
)

= 0.

Remark 2.2.7. Let d ∈ `1N be a given distance function. Cauchy’s root test implies that there are
only three possible cases

lim sup
k→∞

k
√
|d(k)| =





0, d has faster than exponential decay;
1, d has subexponential decay;
q with 0 < q < 1, d has exponential decay at infinity.
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In Example 2.6.9 we will investigate this limit behaviour measured by 2.2.7 for the distance functions
introduced in Example 2.2.5. We will now show that the distance function with at least exponential
decay at infinity belong to the class D1.

Proposition 2.2.8. Let d : N → C be a function with lim supk→∞
k
√
|d(k)| < 1, then d ∈ D1 (2.2.4)

.

Proof. The root test implies that ‖d‖D1 =
∑∞

k=1 k |d(k)| is finite.

The converse of Proposition 2.2.8 is not true: Consider for instance d(k) = k−3 (2.2.5) (i).
We will construct trace class Ruelle-Mayer (RM) transfer operators for some classes of interactions
which decay fast enough. It is an open problem to find trace class RM transfer operators for interac-
tions with slower than exponential decay, or to prove that those cannot exist.
The requirement d ∈ D1 is the natural assumption which guarantees the continuity of the map W ,
which we define next.

Proposition 2.2.9. For d ∈ D1 (2.2.4) let πd : `∞N → `2N be the linear map defined in (2.2.2). Then
the image of `∞N under πd is contained in `1N and the linear map πd : `∞N → `1N is continuous
with ‖πd(x)‖`1N ≤ ‖d‖D1 ‖x‖`∞N. Set

W : `∞N × `∞N ×D1 → C, (x, y, d) 7→W (x, y; d) := −
∞∑

i=1

∞∑

j=1

xi yj d(i+ j − 1).

Then W is a continuous trilinear map, |W (x, y; d)| ≤ ‖d‖D1 ‖x‖`∞N ‖y‖`∞(N), with

(46) W (x, y; d) = W (y, x; d) = −〈x, πd(y)〉`∞N,`1N = −〈πd(x), y〉`1N,`∞N.

Proof. To prove the continuity of πd we calculate for x, y ∈ `∞N, d ∈ D1

‖πd(x)‖`1N =

∞∑

j=1

|πdj (x)| =

∞∑

j=1

∣∣
∞∑

k=1

xk d(j + k − 1)
∣∣ ≤ ‖x‖`∞N

∞∑

j=1

∞∑

k=1

|d(j + k − 1)|,

which is finite by definition of D1 (2.2.4). Rearranging terms gives

−W (x, y; d) =

∞∑

i=1

∞∑

j=1

xi yj d(i+ j − 1) =

∞∑

i=1

xi

∞∑

j=1

yj d(i+ j − 1) =

∞∑

i=1

xi π
d
i (y) = 〈x, πd(y)〉`∞N,`1N,

which is linear and continuous in x, y ∈ `∞N, d ∈ D1. The symmetry in the first two arguments of
W concludes the proof.

The interest in the function W from Proposition 2.2.9 is the following connection with the function
WZ≤,Z> from Remark 1.6.3 and a theorem of D. Ruelle which we recall in Remark 2.2.11.

Remark 2.2.10. Let F ⊂ C be a bounded set and (FZ,Z, τ) a one-dimensional two-sided full shift
(1.2.5). Let φ be a pure two-body Ising interaction (1.8.3) with distance function d ∈ D1 (2.2.4). Set
Z≤ := −N0 and Z> := N. Then the function

WZ≤,Z> : F−N0 × FN → C, (η, ξ) 7→WZ≤,Z>(η ⊕ ξ) = −
∞∑

i=0

∞∑

j=1

ϕ2(−i, j; η−i, ξj)

from Remark 1.6.3 can be written as

(47) WZ≤,Z>(η ⊕ ξ) = W (S(
�

η), ξ; d).

where W is the continuous trilinear map from Proposition 2.2.9, S : CN0 → CN, (Sx)i = xi−1 is the

bijective right shift15,
�

is the inversion map
�

: C−N → CN,
�

ηi:= η−i, and ⊕ is the concatenation
operator (Def. 1.3.4). WZ≤,Z> extends to a bilinear continuous map

WZ≤,Z> : `∞(Z≤) × `∞(Z>) → C, (η, ξ) 7→WZ≤,Z>(η ⊕ ξ) = W (S(
�

η), ξ; d).

15S was denoted by S = τ−1;N0
in the notation of Definition 1.2.3.
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In fact: Let η ∈ `∞(Z≤), ξ ∈ `∞(Z>), then

WZ≤,Z>(η ⊕ ξ) = −
∞∑

i=0

∞∑

j=1

η−i ξj d(i+ j) = −
∞∑

i=1

∞∑

j=1

η1−i ξj d(i+ j − 1) = W (S(
�

η), ξ; d).

We are now prepared to formulate a result due to D. Ruelle which gives an explicit description of the
leading eigenfunction of the Ruelle transfer operator.

Remark 2.2.11. Let F ⊂ R be a bounded set, (FZ,Z, τ) a one-dimensional two-sided full shift (1.2.5),
and (FZ≤ ,N0, τ) be the one-sided subshift on the negative half axis Z≤ endowed with the semigroup
action τ : N0 ×FZ≤ → FZ≤ , τ (n, ξ)(i) := ξ(i−n). Let φ be a two-body Ising interaction (1.8.3) with
real-valued distance function d ∈ D1 (2.2.4) and potential q ∈ Cb(F ). Furthermore, let A(φ) ∈ Cb(FN)
be the standard Ising observable (2.1.7). Let WZ≤,Z> be as in Remark 1.6.3 and β > 0 the thermody-
namic constant from (1.7.1). D. Ruelle [Ru78, 5.12] has shown that the eigenspace corresponding to
the leading eigenvalue of the Ruelle transfer operator LβA(φ)

: Cb(FN) → Cb(FN) (2.1.3) is spanned by

(48) h1 : FN → C, ξ 7→
∫

F
Z≤

exp(−βWZ≤,Z>(η ⊕ ξ)) dµ≤(η).

Here µ≤ denotes the (unique) Gibbs measure on FZ≤ for the interaction φ. The existence and
uniqueness is of this finite measure is shown in [Ru78, 5.9]. Usually, one is interested in the unique
positive, normalised eigenfunction 1

K h1 > 0, where K :=
∫
FN h1(ξ) dµ≤(ξ) is a known constant [Ru78,

5.9, 5.12], which is of independent interest. Note that h1 is independent of the potential q ∈ Cb(F ).

We look for a (small) Hilbert subspace H of Cb(FN) which is invariant under the Ruelle transfer
operator and still contains the main spectral information. In view of the Ruelle-Perron-Frobenius
theorem we require that this subspace contains a preimage of the leading eigenvector of the Ruelle
transfer operator. A starting point for the idenfication of a suitable Hilbert space H is obtained as a
combination of Remarks 2.2.10 and 2.2.11. More precisely, we look for a Hilbert space such that the
composition operator

Cπd : H → Cb(FN), f 7→ f ◦ πd

is continuous and Cπd(H) contains the spectral information of the Ruelle transfer operator LA(φ)
.

Remark 2.2.12. Let F ⊂ C be a bounded set and (Ω = FZ,Z, τ) a one-dimensional two-sided full
shift (1.2.5), Ω≤ = ρ−N0(Ω), and Ω> = ρN(Ω). Let φ be a two-body Ising interaction (1.8.3) with

distance function d ∈ D1 (2.2.4). Let πd : `∞N → `1N be defined by formula (43),
�

: C−N → CN the
inversion map, and S = τ−1;N0 : CN0 → CN the bijective right shift. Then by Proposition 2.2.9 and
Remark 2.2.10 we have

WZ≤,Z>(η ⊕ ξ) = W (S(
�

η), ξ; d) = −〈S(
�

η), πd(ξ)〉`∞N,`1N.

Hence by Remark 2.2.11 the leading eigenvector of the Ruelle transfer operator LβA(φ)
(2.1.3) is given

as

h1(ξ) =

∫

Ω≤

exp(β 〈S(
�

η), πd(ξ)〉`∞N,`1N) dµ≤(η).

This, together with Proposition 2.1.8, suggests to look for a Hilbert space H, which can be embedded
into C(Ω>) via the composition operator Cπd : H → C(Ω>), f 7→ f ◦ πd. If

h̃1 : `1N → C, z 7→
∫

Ω≤

exp
(
β 〈S(

�

η), z〉`∞N,`1N

)
dµ≤(η)

belongs to H, then h1 = h̃1 ◦ πd ∈ Cπd(H) ⊂ C(Ω>). We were not able to implement this idea, maybe
because we tried to find a reproducing kernel Hilbert space16. It remains an open problem to find a
(reproducing kernel) Hilbert space H ⊂ C(`1N) such that H contains the vector h̃1: As a first step

16Reproducing kernel Hilbert spaces (rkhs) are introduced in Appendix A.4.
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one could look for a rkhs such that for any z0 ∈ `∞N the map gz0 : `1N → C, z 7→ exp(〈z0, z〉`∞N,`1N)

belongs to that rkhs and in a second step show that the Ω≤-averaged function h̃1 belongs to it.

Note that in general z0 does not belong to the subspace `2N of `∞N, hence gz0 and h̃1 are undefined
on `2N, in particular they do not belong to the Fock space F(`2N) defined in (A.4.6). The reproducing
kernel k of F(`2N) and its restriction to `1N × `1N are functions of positive type, hence there exists
an rkhs H(`1N, k|`1N×`1N). By [Ar50, I.5.1] this space is given as

H(`1N, k|`1N×`1N) = {f : `1N → C | ∃F ∈ F(`2N) : F |`1N = f}.

If z0 ∈ `∞N \ `2N, then in view of Theorem A.4.8 it is impossible to find F ∈ F(`2N) such that
F |`1N = gz0 .

In Section 2.7 we introduce a class of examples of distance functions for which we are able to find a
reproducing kernel Hilbert space which contains a preimage of the leading eigenvector h1 of the Ruelle

operator LA(φ)
: Cb(Ω) → Cb(Ω) and investigate the associated transfer operators. Our class D(∞)

1

of distance functions is a proper subclass of D1 (Def. 2.2.4) and contains a large family of distance
functions which are characterised by a certain exponential decay at infinity. Among them are the
known examples of finite range interactions, polynomial-exponentially decaying interactions, and a
class of superexponentially decaying interactions. Moreover, for this class of interactions we will find
a subspace of Cb(Ω) which is invariant under the Ruelle operator and induces the so called Ruelle-
Mayer transfer operator. A positive answer to the question raised in the previous Remark 2.2.12 might
lead to a larger class of distance functions, which can be treated with our method.

2.3 The counting trace

Besides the Ruelle-Perron-Frobenius Theorem 2.1.4 which relates the leading eigenvalue of the Ruelle
transfer operator (2.1.3) to physical quantities, we will give a second motivation for the study of this
operator: The counting trace of its iterates is precisely the dynamical partition function (1.11.4).
By virtue of Ansatz 2.3.3 we can translate the dynamical system on Ω to a dynamical system on
another topological space E, such that the Ruelle transfer operator induces a composition operator,
the Ruelle-Mayer operator, acting on Cb(E) and the dynamical partition function can be expressed
as the counting trace of this induced operator. Remark 1.11.5 will lead us to a representation of the
partition function with periodic boundary condition. At several points in this section we will assume
the set F of spin values to be finite (and still write an integral sign). We think that the results still
hold true for general F , but this would complicate the arguments. Our main intention in this section
is to give a motivation for the Ruelle-Mayer transfer operator.

Definition 2.3.1. Let E be a topological space. Let Tracec be the so called counting trace defined
as the linear extension of

Tracec T =
∑

ψx=x

φ(x)

to the algebra of composition operators generated by simple composition operators

T : Cb(E) → Cb(E), (Tf)(z) = φ(z) (f ◦ ψ)(z)

where φ : E → C and ψ : E → E are continuous functions and ψ has only finitely many fixed
points.

The counting trace was first introduced by D. Ruelle, see [Ru02], since the counting trace of the
Ruelle transfer operator gives the dynamical partition function: Let F be a finite set, (Ω = FN,N0, τ)
a one-sided one-dimensional full shift (1.2.6), A ∈ Cb(Ω) an observable, and

(49) LA : Cb(Ω) → Cb(Ω), (LAf)(ξ) =

∫

F

exp
(
A(x ∨ ξ)

)
f(x ∨ ξ) dν(x)

be the corresponding Ruelle transfer operator (2.1.3). For every x ∈ F the map ξ 7→ x ∨ ξ has the
unique fixed point x = (x, x, . . .) and hence

Tracec LA =

∫

F

exp
(
A(x)

)
dν(x) = Z̃b

N0

1 (A).
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The following proposition shows that this equality also holds for the higher iterates of LA. This sug-
gests that not only the first eigenvalue of the Ruelle transfer operator is interesting, see Theorem 2.1.4,
but also certain tracial functionals evaluated on its powers.

Proposition 2.3.2. Let F be a finite set, (Ω = FN,N0, τ) a one-sided one-dim. full shift (1.2.6), and

A ∈ Cb(Ω). Then the dynamical partition function Z̃b
N0

n (A) (1.11.4) is given as

Z̃b
N0

n (A) = Tracec (LA)n,

where LA : Cb(Ω) → Cb(Ω) is the Ruelle transfer operator (49).

Proof. For fixed n ∈ N, x1, . . . , xn ∈ F the map Ω → Ω, ξ 7→ x1 . . . xn∨ξ = (x1, . . . , xn, ξ1, . . .) defined
via (37) has the unique fixed point x1 . . . xn ∈ Ω. For k ∈ N0 let τk : FN → FN, τk(ξ)(n) = ξ(k + n)
be the k-th iterate of the shift (1.2.3). For all n ∈ N, 0 ≤ k < n, x1, . . . , xn ∈ F , ξ ∈ FN one has

(50) τk(x1 ∨ . . . ∨ xn ∨ ξ) = xk+1 ∨ . . . ∨ xn ∨ ξ.

In fact: Let n = 1, hence k = 0 and τ0(x ∨ ξ) = x ∨ ξ. Induction step n → n + 1 : Again k = 0 is
trivial.

τk+1(x1 ∨ . . . ∨ xn+1 ∨ ξ) = τk(x2 ∨ . . . ∨ xn+1 ∨ ξ) = xk+1 ∨ . . . ∨ xn+1 ∨ ξ.
Then for ξ = x1 . . . xn = x1 ∨ . . . ∨ xn ∨ x1 . . . xn we have

τk−1(x1 . . . xn) = τk−1(x1 ∨ . . . ∨ xn ∨ x1 . . . xn)
(50)
= xk ∨ . . . ∨ xn ∨ x1 . . . xn.

Let f ∈ Cb(Ω). An explicit formula for (LA)n is given in formula (42) in the proof of Proposition 2.1.8:

((LA)nf)(ξ) =

∫

Fn

exp
( n∑

k=1

A(xk ∨ . . . ∨ xn ∨ ξ)
)
f(x1 ∨ . . . ∨ xn ∨ ξ) dν(x1) . . . dν(xn).

Hence the counting trace of (LA)n coincides with the dynamical partition function (1.11.4).

We will now assume that the observable A factors through a so called projection map. Together with
a second assumption on the projection map, this will allow us to transfer the dynamical system on Ω
to another dynamical system on a topological space E. Via this transfer we obtain the Ruelle-Mayer
transfer operator associated to a Ruelle transfer operator. We remark that a similar set of axioms has
been proposed by D. Mayer in [May91, p. 192].

Ansatz 2.3.3. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6), A ∈ Cb(Ω), and
π : Ω → E a continuous map into a topological space E. Consider the following properties.

(S1) There exist continuous maps ψσ : E → E, such that for all σ ∈ F, ξ ∈ Ω

(ψσ ◦ π)(ξ) = π(σ ∨ ξ).

(S2) There exist continuous bounded functions Aσ : E → C such that for all σ ∈ F, ξ ∈ Ω

A(σ ∨ ξ) = (Aσ ◦ π)(ξ).

(S3) The families (ψx)x∈F and (Ax)x∈F are measurable with respect to the parameter x ∈ F and the
a priori measure ν on F .

We call the map π a projection map and ψσ a linking map.

If the projection map π is the identity on Ω, then trivially every observable A possesses properties
(S1) - (S3) by setting Ax(ξ) := A(x ∨ ξ) and ψx(ξ) = x ∨ ξ. We look for projection maps with values
in a space E with nicer properties such that additional structures can be used for the investigation
and description of the dynamical system.
The main example we have in mind for the projection map π is the linear map πd : FN ⊂ `∞N → `2N

from Proposition 2.2.2, hence the image is a subset of a Hilbert space.
Assuming conditions (S1) - (S3) we will rewrite our partition function in Proposition 2.3.5. We begin
with an induction argument.
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Proposition 2.3.4. Let (FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6) and π : FN → E
a continuous map into a topological space E with property (S1). Then for all n ∈ N, x1, . . . , xn ∈ F ,
ξ ∈ FN

(51) (ψx1 ◦ . . . ◦ ψxn)(π(ξ)) = π(x1 ∨ . . . ∨ xn ∨ ξ).

Proof. By induction: ψx1(π(ξ)) = π(x1 ∨ ξ). Let x1, . . . , xn+1 ∈ F , ξ ∈ FN. Then

(ψx1 ◦ . . .◦ψxn)(π(ξ)) = ψx1(ψx2 ◦ . . .◦ψxn)(π(ξ)) = ψx1(π(x2 ∨ . . .∨xn ∨ ξ)) = π(x1 ∨x2 ∨ . . . xn∨ ξ).

Proposition 2.3.5. Let (FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6), A ∈ Cb(FN)
and π : FN → E a continuous map into a topological space E with properties (S1) - (S3) (2.3.3). Let
(ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8). Then the dynamical partition

function Z̃b
N0

n (A) (1.11.4) is given as

Z̃b
N0

n (A) =

∫

Fn

Ax1,x2 ·. . .·Axn−1,xn ·Axn,x1 exp
( n∑

k=1

(Axk
◦ψxk+1

◦. . .◦ψxn)(z?x1,...,xn
)
)
dν(x1) . . . dν(xn),

where z?x1,...,xn
:= π(x1 . . . xn) ∈ E.

Proof. By Corollary 1.11.3 it suffices to show that for all ξ = x1 . . . xn ∈ Fix(τn) and k = 0, . . . , n− 1

A(τkξ) = (Axk+1
◦ ψxk+2

◦ . . . ◦ ψxn)(z?x1,...,xn
).

This follows from properties (S1), (S2), and Proposition 2.3.4:

A(τkξ)
(50)
= A(xk+1 ∨ . . .∨xn ∨ ξ) = (Axk+1

◦π)(xk+2 ∨ . . .∨xn ∨ ξ)
(51)
= (Axk+1

◦ψxk+2
◦ . . . ψxn ◦π)(ξ).

The assumptions (S1) - (S3) from (2.3.3) lead to a factorisation of the Ruelle transfer operator. The
resulting operator is the so called Ruelle-Mayer transfer operator:

Remark 2.3.6. Let F be a finite set, (Ω = FN,N0, τ) a one-sided one-dimensional full shift (1.2.6),
A ∈ Cb(Ω) an observable, and π : Ω → E a continuous map into a topological space E with properties
(S1) - (S3) (2.3.3). Let Cπ : Cb(E) → Cb(Ω), f 7→ f ◦ π be the associated composition operator and
LA : Cb(Ω) → Cb(Ω) the Ruelle operator (2.1.3). Let f ∈ Cb(E) and g = Cπ(f) = f ◦ π ∈ Cb(Ω), then

(LAg)(ξ) =
∑

σ∈F
exp
(
A(σ ∨ ξ)

)
(f ◦ π)(σ ∨ ξ) =

∑

σ∈F
exp
(
Aσ ◦ π(ξ)

)
(f ◦ ψσ ◦ π)(ξ),

i. e. LA leaves the image Cπ(Cb(E)) of Cπ invariant. Thus the operator

M : Cb(E) → Cb(E), (Mf(z) =
∑

x∈F
exp
(
Ax(z)

)
f(ψx(z))

makes the following diagram commutative:

Cb(E)
Cπ //

M
��

Cπ(Cb(E))
� � //

LA

��

Cb(Ω)

LA

��
Cb(E)

Cπ // Cπ(Cb(E))
� � // Cb(Ω)

Remark 2.3.6 motivates the following definition:
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Definition 2.3.7. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6), A ∈ Cb(Ω)
an observable, and π : Ω → E a continuous map into a topological space E with properties (S1) -
(S3) (2.3.3). The (possibly unbounded) operator

M : Cb(E) → Cb(E), (Mf)(z) =

∫

F

exp(Ax(z)) f(ψx(z)) dν(x)

is called the (formal) Ruelle-Mayer (RM) transfer operator.

If the projection map π is the identity on Ω, then trivially the Ruelle-Mayer operator is just the Ruelle
operator and we do not gain any new insights. Both the Ruelle and the Ruelle-Mayer operator are
generalised composition operators17. If for instance the projection map π takes values in a bounded
complex domain, then more techniques are available to determine the spectral properties of M,
since the Ruelle-Mayer transfer operator looks like the Ruelle transfer operator for an expanding
map. In this interpretation, the properties (S1) - (S3) provide a link between the two types of
operators. Depending on the functions ψx and Ax, the Ruelle-Mayer operator preserves smoothness
and integrability on bounded sets. It turns out that under additional assumptions this operator is
trace class with a nice trace formula directly linked to the partition function. Before proving this
result, known as the transfer operator method, we will compute the counting trace of its iterates. For
the one-dimensional one-sided full shift we have an analogous result to Proposition 2.3.2. It uses the
general idea that the counting trace remains unchanged under every factorisation which preserves
fixed points.

Proposition 2.3.8. Let F be a finite set, (Ω = FN,N0, τ) a one-sided one-dim. full shift (1.2.6),
A ∈ Cb(Ω) an observable, and π : Ω → E a continuous map into a topological space E with properties
(S1) - (S3) 2.3.3. Suppose that for all x1, . . . , xn ∈ F the map ψx1 ◦ . . . ◦ ψxn : E → E has a unique
fixed point. Then the Ruelle-Mayer transfer operator

M : Cb(E) → Cb(E), (Mf(z) =

∫

F

exp
(
Ax(z)

)
f(ψx(z)) dν(x)

satisfies the (pre-) trace formula Z̃b
N0

n (A) = TracecMn.

Proof. By Propositions 2.3.2 and 2.3.5 it suffices to show that z?x1,...,xn
:= π(x1 . . . xn) is a fixed point

of the map ψx1 ◦ . . . ◦ ψxn : E → E. Apply (51) from Proposition 2.3.4 for ξ = x1 . . . xn

(ψx1 ◦ . . . ◦ ψxn)(π(x1 . . . xn))
(51)
= π(x1 ∨ x2 ∨ . . . xn ∨ x1 . . . xn) = π(x1 . . . xn).

We end this section with a superposition principle: Given a finite number of observables A(α) ∈ Cb(Ω)

(α = 1, . . . , l) with properties (S1) - (S3), then also the observable A :=
∑l
α=1 A

(α) : Ω → C admits a
factorisation with these properties.

Proposition 2.3.9. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6). For α =
1, . . . , l let A(α) ∈ Cb(Ω) be observables, and π(α) : Ω → E(α) continuous maps into topological spaces

E(α) with properties (S1) - (S3) (2.3.3). Set E :=
∏l
α=1 E

(α). For all σ ∈ F we define the maps

ψσ := (ψ
(1)
σ , . . . , ψ

(l)
σ ) : E → E and Aσ :=

∑l
α=1A

(α)
σ : E → C. Then π := (π(1), . . . , π(l)) : Ω → E

satisfies π(σ ∨ ξ) = (ψσ ◦ π)(ξ) and A(σ ∨ ξ) = (Aσ ◦ π)(ξ) for all σ ∈ F and ξ ∈ FN.

Proof. For all σ ∈ F and ξ ∈ FN we have

π(σ ∨ ξ) =
(
π(α)(σ ∨ ξ)

)

α=1,...,l
=
(
(ψ(α)
σ ◦ π(α))(ξ)

)

α=1,...,l
= (ψσ ◦ π)(ξ)

and

A(σ ∨ ξ) =

l∑

α=1

A(α)(σ ∨ ξ) =

l∑

α=1

(A(α)
σ ◦ π(α))(ξ) = (Aσ ◦ π)(ξ).

17The reader finds an introduction to composition operators in Appendix B.
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Moreover, for any x ∈ F the fixed points of ψx are precisely the products of the fixed points of the

ψ
(α)
x , since

(ψξ1 ◦ . . . ◦ ψξn)(z) =
(
ψ

(α)
ξ1

◦ . . . ◦ ψ(α)
ξn

)(z(α))
)

α=1,...,l
.

Proposition 2.3.9 can be used to construct a (family of) Ruelle-Mayer transfer operator(s) correspond-
ing to the observable A in the case that Ruelle-Mayer transfer operators are known for each of the
observables A(α). This idea will be used for the construction of Ruelle-Mayer transfer operators for
Ising type interactions in Section 2.13.

2.4 The Ruelle-Mayer transfer operator and the dynamical trace formula

In (2.3.7) we have given the general definition of a Ruelle-Mayer (RM) transfer operator. We will now
assume that we are in a situation where the RM transfer operator is trace class. This depends on the
data Ax, ψx, and the space on which the operator acts via this formula. We adress this question in
the subsequent sections. In this section we show, based on results of D. Mayer, that the Ruelle-Mayer
transfer satisfies a dynamical trace formula, i. e., the (spectral) traces of its iterates determine the
(dynamical) partition functions.
In order to prove the dynamical trace formula we proceed in steps. We suppose that the base space
E is a topological vector space and that the Ruelle-Mayer transfer operator leaves a Hilbert subspace
H ⊂ C(E) invariant. We write the Ruelle-Mayer transfer operator (2.3.7) as an integral (Mg)(z) :=∫
F (Mxg)(z) dν(x) over a family of composition operators

Mx : H → H, (Mxf)(z) = exp(Ax(z)) (f ◦ ψx)(z).

For each of them we will apply a generalisation of the so called Atiyah-Bott formula, which expresses
the trace of a composition operator as a fixed point formula. Then we will compare the traces of the
iterates of the Ruelle-Mayer transfer operator with the dynamical trace formula. The next lemma,
which we will prove in Appendix A.7.7, provides an abstract trace formula for operators of the type
M =

∫
F Mx dν(x).

Lemma 2.4.1. Let ν be a Borel measure on F and (Tx)x∈F a measurable family of trace class18

operators on a Hilbert space H with
∫
F
‖Tx‖S1(H) dν(x) < ∞. Then T : H → H, T g :=

∫
F
Txg dν(x)

is a trace class operator with

T nf =

∫

Fn

Txn ◦ . . . ◦ Tx1f dν(x1) . . . dν(xn)

and

trace T n =

∫

Fn

trace (Txn ◦ . . . ◦ Tx1) dν(x1) . . . dν(xn).

We add the remark that in case the set F is finite, then Lemma 2.4.1 simply states the linearity of
the trace functional.
For each of the composition operators Mx we would like to apply an Atiyah-Bott type fixed point
formula. The classical formulation of this theorem, which we sketch in B.2.4, is the following: Let
U ⊂ Ck be an open bounded complex domain. We denote by A∞(U) the space of holomorphic
functions on U , which are continuous up to the closure U of U . The space A∞(U) is a Banach space
with respect to the supremum norm.

Theorem 2.4.2. (Atiyah-Bott type fixed point formula) Let U ⊂ Ck be an open bounded complex
domain. Let φ ∈ A∞(U) and ψ : U → U be a holomorphic function with continuous extension to
U and ψ(U) ⊂ U , i. e., ψ is strictly contractive. Then ψ has a unique fixed point z∗ ∈ U and the
generalised composition operator

T : A∞(U) → A∞(U), (Tf)(z) = φ(z) (f ◦ ψ)(z)

18‖ · ‖S1(H) denotes the trace norm as defined in (A.2.2).
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is nuclear of order zero19 with trace given by

(52) trace A∞(U) T =
φ(z∗)

det(1 − ψ′(z∗))
.

In Appendix B we will discuss the question whether the trace formula (52) holds on other function
spaces and also over infinite-dimensional domains. In the following we will take this trace formula for
granted and investigate how the trace of the iterates of the Ruelle-Mayer transfer operator and the
partition function are related.

Proposition 2.4.3. Let E be a topological vector space. For σ ∈ F let ψσ : E → E and Aσ :
E → C be continuous maps with the following property: Suppose that for all σ1, . . . , σn ∈ F the
map ψσ1 ◦ . . . ◦ ψσn : E → E has a unique fixed point, denoted by z?σ1,...,σn

, and that the linear
map ψ′

σ(z
∗
σ) ∈ End(E) admits a Fredholm determinant. Suppose that the algebra generated by the

composition operators

Mσ : H → H, (Mσf)(z) = exp
(
Aσ(z)

)
(f ◦ ψσ)(z)

consists of trace class operators on a Hilbert space H ⊂ C(E) and satisfies the trace formula

(53) trace Mσ =
exp(Aσ(z

∗
σ))

det(1 − ψ′
σ(z

∗
σ))

.

Let ν be a Borel measure on F such that
∫
F ‖Mσ‖S1(H) dν(σ) < ∞. Then the operator M : H →

H, (Mg)(z) :=
∫
F
(Mσg)(z) dν(σ) is trace class with

trace Mn =

∫

Fn

exp
(∑n

k=1(Aσk
◦ ψσk+1

◦ . . . ◦ ψσn)(z?σ1,...,σn
)
)

det(1 − (ψσ1 ◦ . . . ◦ ψσn)′(z?σ1,...,σn
))

dν(σ1) . . . dν(σn).

Proof. By Corollary B.1.3 we have

(Mxn ◦ . . . ◦Mx1f)(z) = exp
( n∑

k=1

(Axk
◦ ψxk+1

◦ . . . ◦ ψxn)(z)
)

(f ◦ ψx1 ◦ . . . ◦ ψxn)(z).

We apply the trace formula to Mxn ◦ . . . ◦Mx1 and use Lemma 2.4.1.

We comment on the determinant condition in (A.1.1) and Appendix A.2: It is satisfied for instance
for trace class maps on a Hilbert space and for the Grothendieck class of maps on a Banach space
which are nuclear of order 2/3 (A.3.1). Proposition 2.4.3 can also be stated if E is a finite dimensional
manifold. In this case ψ′

σ(z
∗
σ) ∈ End(Tz∗σE) ∼= End(CdimE) is automatically trace class and hence

admits a Fredholm determinant. Comparing the trace of the iterates of M and the partition function
given in (2.3.5) leads to the following theorem in the finite dimensional setting which is due to D.
Mayer [May91].

Theorem 2.4.4. Let F be a finite set, (Ω = FN,N0, τ) be a one-sided one-dim. full shift (1.2.6),
A ∈ Cb(Ω) an observable, and π : Ω → U ⊂ Ck a continuous map into a bounded complex domain
with properties (S1) - (S3) (2.3.3). Suppose that the maps ψx : U → U are holomorphic and strictly
contractive, i. e., ψx(U) ⊂ U , and Ax : U → C is holomorphic. Then the dynamical partition
function (1.11.4) can be expressed as

Z̃b
N0

n (A) =

k∑

r=0

(−1)r trace (M(r))n

for all n ∈ N, where for r = 0, . . . , k the operator M(r) is defined on
∧r

A∞(U) via

(M(r)wr)(z) =

∫

F

exp(Ax(z)) ∧rDψx(z)(wr)(ψx(z)) dν(x),

if w(z) =
∑

1≤i1<...<ir≤k wi1,...,ir(z) dzi1 ∧ . . . ∧ dzir with wi1,...,ir ∈ A∞(U).

19For a definition of a nuclear operator see for instance (A.3.1) or [May80a, Appendix A].
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Proof. The trace of M(r) is given by the formula

trace M(r) =

∫

F

exp(Ax(z
∗
x))

∧rDψx(z∗x)
det(1 − ∧rDψx(z∗x))

dν(x)

for all r = 0, . . . , k. Use the following Lemma 2.4.5 and compare with the expressions for the dynamical

partition function Z̃b
N0

n (A) given in Propositions 2.3.5 and 2.3.8.

We note that this theorem works for more general linking maps ψx, but requires F to be finite. We
pose the question in which setting this theorem is true for an arbitrary alphabet F . For the proof one
either requires a Banach space version of Lemma 2.4.1 or an identification of suitable Hilbert spaces
replacing

∧r
A∞(U).

The following identity (2.4.5) from (advanced) multilinear algebra (see for instance [Si77]) concludes
the proof of Theorem 2.4.4.

Lemma 2.4.5. Let A : H → H be a trace class operator on a Hilbert space H. Then

det(1 −A) =

dimH∑

r=0

(−1)r trace ∧rA,

where ∧rA : ∧rH → ∧rH, ∧rA(e1∧ . . .∧er) := Ae1∧ . . .∧Aer is the r-fold exterior product of A.

An important special case of Theorem 2.4.4 is the following, where the linking maps are affine. This
happens for all known examples of Ruelle-Mayer transfer operators for one-dimensional spin systems.
In Section 2.7 we will explain how the affine linking maps arise in our context.

Theorem 2.4.6. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6), A ∈ Cb(Ω) an
observable, and π : Ω → E a continuous map into a Banach space E with properties (S1) - (S3) (2.3.3).
Assume that the maps ψx : E → E are affine and of the form ψx : E → E, z 7→ ψx(z) := ax + Bz for
some fixed map B ∈ End(E) which admits a Fredholm determinant and has operator norm ‖B‖op < 1.
Suppose that the algebra generated by the composition operators

Mx : H → H, (Mxf)(z) = exp(Ax(z)) (f ◦ ψx)(z)

consists of trace class operators on a Hilbert space H ⊂ C(E) and satisfies the trace formula (53). Let
ν be a Borel measure on F such that

∫
F ‖Mx‖S1(H) dν(x) <∞. Then for all n ∈ N the Ruelle-Mayer

transfer operator

M : H → H, (Mf)(z) =

∫

F

exp(Ax(z)) (f ◦ ψx)(z) dν(x)

satisfies Z̃b
N0

n (A) = det(1 − Bn) trace Mn.

Proof. Using von Neumann’s series the operator 1 − B is invertible and hence ψx has precisely one
fixed point in E. Compare the expression for the trace of Mn given in Proposition 2.4.3 with Proposi-
tions 2.3.5 and 2.3.8. By our assumption on the special form of the linking maps ψx, the determinant
is independent of the integration variable, hence it can be pulled out.

We call a formula of the type Z̃b
N0

n (A) = det(1 − Bn) trace Mn a dynamical trace formula. We have
shown in the abstract setting of Theorem 2.4.6 that the Ruelle-Mayer transfer operator satisfies a
dynamical trace formula. In the rest of this chapter we investigate classes of observables and - by

Zb
N0 ,φ

{1,...,m}(β) = Z̃b
N0

m (βA(φ)) (1.11.5) - of interactions for which the hypotheses of the previous theorems

are fulfilled. This means one has to identify the projection map and to solve several analytic problems,
for instance find the suitable Hilbert spaces.

2.5 Transfer operators for finite range spin systems

In this section we review the transfer operator method as developed in [May80a, II.2.] for finite range
interactions. Recall: Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6), then a two-
body translation invariant interaction φ (1.8.1) has finite range ρ0, if ϕ2(i, j;x, y) = 0 for all x, y ∈ F
whenever |i− j| > ρ0 (1.9.2). We denote by q ∈ Cb(F ) the potential term of φ. We will construct the
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Ruelle-Mayer transfer operator and prove its trace formula using the methods of Section 2.4. Finite
range interactions are the simplest case where the dynamical trace formula (2.4.4) is valid, since the
higher iterates of the Ruelle-Mayer operator are superpositions of degenerate composition operators
(B.1.4). We will point out the connection between the Ruelle transfer operator, the Ruelle-Mayer
transfer operator, and the Kramers-Wannier transfer matrix.
For a finite range interaction φ the standard observable A(φ) ∈ Cb(Ω) (1.11.1) reduces to a finite sum,

A(φ)(σ ∨ ξ) = q(σ) +

ρ0∑

k=1

ϕ2(k + 1, 1; ξk, σ).

Let LA(φ)
be the corresponding Ruelle transfer operator (2.1.3). The observation that A(φ)(σ ∨ ξ)

depends on ξ only via the first ρ0 entries ξ1, . . . , ξρ0 leads to an LA(φ)
-invariant subspace of Cb(Ω): For

σ ∈ F set

Aσ : F ρ0 → C, z = (z1, . . . , zρ0) 7→ q(σ) +

ρ0∑

k=1

ϕ2(k + 1, 1; zk, σ)

and ψσ : F ρ0 → F ρ0 , z = (z1, . . . , zρ0) 7→ (σ, z1, . . . , zρ0−1). Let pr : Ω → F ρ0 , ξ 7→ (ξ1, . . . , ξρ0 )
be the projection onto the first ρ0 components. We will show that the choice of the maps π = pr,
ψσ, and Aσ satisfies properties (S1) - (S3) as defined in (2.3.3): For all ξ ∈ Ω, σ ∈ F we have
A(φ)(σ ∨ ξ) = (Aσ ◦ pr)(ξ) and pr(σ ∨ ξ) = (σ, ξ1, . . . , ξρ0−1) = (ψσ ◦ pr)(ξ), i. e., (S1) and (S2)
from (2.3.3). Thus by Definition 2.3.7 we have a Ruelle-Mayer transfer operator.

Proposition 2.5.1. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6). Let φ be a
two-body translation invariant interaction with finite range ρ0 and potential q ∈ Cb(F ). Then for all
m ≥ ρ0 the Ruelle-Mayer transfer operator Mβ : Cb(F ρ0) → Cb(F ρ0)

(Mβf)(z1, . . . , zρ0) =

∫

F

exp
(
βq(σ) + β

ρ0∑

k=1

ϕ2(k + 1, 1; zk, σ)
)
f(σ, z1, . . . , zρ0−1) dν(σ).

satisfies the dynamical trace formula Z̃b
N0

m (βA(φ)) = Zb
N0 ,φ

{1,...,m}(β) = trace (Mβ)
m.

Proof. For m ≥ ρ0 and any choice of σ1, . . . , σm ∈ F the maps ψσ1 ◦ . . . ◦ ψσm : F ρ0 → F ρ0 , z 7→
(σ1, . . . , σρ0) are constant. By Corollary B.1.5 the higher mixed iterates Sx1 ◦ . . . ◦ Sxm of the compo-
sition operators Sσ : Cb(F ρ0 ) → Cb(F ρ0), (Sσf)(z) = exp(βAσ(z)) (f ◦ ψσ)(z) are (for m ≥ ρ0) rank
one operators and hence their nuclear norm ‖ · ‖L1(Cb(Fρ0 )) (see Def. A.3.1) can be bounded by

‖Sx1 ◦ . . . ◦ Sxm‖L1(Cb(Fρ0)) ≤
(

sup
σ∈F

‖ exp(βAσ( · ))‖Cb(Fρ0 )

)m
≤ exp(m|β| ‖A‖Cb(Ω)),

hence Mm
β is a trace class operator. By Corollary B.1.5 the operators Sx1 ◦ . . . ◦ Sxm satisfy the fixed

point trace formula (53) provided m ≥ ρ0, hence Theorem 2.4.4 gives the assertion.

Let pr : Ω → F ρ0 , ξ 7→ (ξ1, . . . , ξρ0) be the projection and Cpr : Cb(F ρ0) → Cb(Ω), f 7→ f ◦ pr the
associated composition operator. It was the observation that

Cpr ◦Mβ = LβA(φ)
◦ Cpr

which was historically the starting point for the theory of the (nowadays called) Ruelle-Mayer transfer
operators in [May80a].

Remark 2.5.2. Let Mβ : Cb(F ρ0 ) → Cb(F ρ0) be the Ruelle-Mayer transfer operator for finite range
interactions, which we introduced in Proposition 2.5.1 as an integral over a family of generalised
composition operators. We get from Corollary B.1.3 for m ≥ ρ0

(Mm
β f)(z1, . . . , zρ0) =

∫

Fm

exp
(
β

m∑

k=1

(Axk
◦ ψxk+1

◦ . . . ◦ ψxm)(z)
)

(f ◦ ψx1 ◦ . . . ◦ ψxm)(z) dνρ0 (x)

=

∫

Fm

exp
(
β

m∑

k=1

Axk
(xk+1, . . . , xm, z1, . . . , zρ0−m+k)

)
f(x1, . . . , xρ0 ) dν(x1) . . . dν(xm),

which opens an alternative view on Mm
β , namely views it as an integral operator on Cb(F ρ0).
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Our Proposition 2.5.1 is a minor extension of known results:

Remark 2.5.3. Let F be a finite set, (Ω = FN,N0, τ) a one-sided one-dimensional full shift (1.2.6),
and φ a pure two-body translation invariant interaction with finite range ρ0. Let pr : Ω → F ρ0 , ξ 7→
(ξ1, . . . , ξρ0) be the projection and Cpr : Cb(F ρ0) → Cb(Ω) the associated composition operator. The
image Cpr(Cb(F ρ0)) ⊂ Cb(Ω) of Cpr is a finite (in fact |F |ρ0 -) dimensional complex vector space, hence
every linear operator is trace class and Mβ can be written as

(Mβf)(ξ1, . . . , ξρ0) =
∑

σ∈Fρ0

Mσ,(ξ1,...,ξρ0 ) f(σ),

where

M(σ1,...,σρ0 ),(ξ1,...,ξρ0 ) = exp
(
βq(σ1) + β

ρ0∑

k=1

ϕ2(k + 1, 1; ξk, σ1)
) ρ0∏

k=2

δξk−1,σk

=

{
exp
(
β(A(φ) ◦ pr)(σ1, ξ1, . . . , ξρ0−1)

)
, if (σ2, . . . , σρ0) = (ξ1, . . . , ξρ0−1),

0, otherwise,

By direct computation(see [May80a, II.2.1]) D. Mayer was able to show that Mρ0 is exactly the transfer
matrix K used by H. Kramers and G. Wannier in [KrWa41], hence

Z̃b
N0

nρ0(βA(φ)) = Zb
N0 ,φ

{1,...,nρ0}(β) = trace Kn = trace Mnρ0 = trace (Mβ)
nρ0

for all n ∈ N. Later we will extend this idea to handle the case where (ΩA, F,N,N0, τ) is a matrix sub-
shift (1.2.8), simply by replacing the matrix M by MA

(σ1,...,σρ0 ),(ξ1,...,ξρ0 ) := Aσ,ξ1 M(σ1,...,σρ0 ),(ξ1,...,ξρ0 )

2.6 Linear models and N0-representations

In Section 2.5 we have seen an example how one can choose a projection map in order to construct
a Ruelle-Mayer transfer operator. We will now specialise to Ising interactions and show that there
is a general method how to choose the projection map which works for a large class of longe range
interactions. This method explains the results [May76], [Vi76], [MayVi77], [ViMay77], [May80a],
[Mo89], [HiMay02], [HiMay04] from the same point of view and also allows to handle new distance
functions. In particular our method will be applied for the following classes of distance functions: For
finite range interactions in Section 2.8, for superexponentially decaying interactions in Sections 2.9
and for polynomial-exponential decaying interactions in 2.11.
We have the following setting: Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-
dimensional full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with distance function
d : N → C and potential q ∈ Cb(F ). The boundedness of F ⊂ C implies that the configuration space
Ω is a bounded subset of `∞N.
The main idea is to find a family of linear continuous maps from `∞N (which contains our configuration
space Ω) into C, which translates the shift action on `∞N into affine maps on some vector space. In
this section we investigate the Banach space situation and explain the main ideas, whereas in the
next Section 2.7 the Hilbert space case is treated and the trace formula is proven using the additional
Hilbert space structure.
Recall the Definition 2.3.3 of the properties (S1) - (S3). We will restrict to the case where the projection
map π extends to a continuous linear map `∞N → B, where B is a complex Banach space. Recall
that the family of linking maps is defined as a family ψσ : B → B indexed by σ ∈ F with the property
that ψσ(π(ξ)) = π(σ ∨ ξ). Under this assumption the linking maps are affine and their linear part has
special properties:

Proposition 2.6.1. Let π : `∞N → B be a continuous linear map, which is the projection map of a
(S1) - (S3) Ansatz (2.3.3). Then for any σ ∈ F the linking map ψσ : B → B is affine and continuous
on π(`∞N). Moreover, there exists a continuous linear map B : B → B such that ψσ(z) = σ π(e1)+Bz
on π(`∞N) ⊂ B. Let τ ′ : `∞N → `∞N, τ ′(ξ) := 0 ∨ ξ be the dual shift (2.1.5), then for all ξ ∈ `∞N

(54) (π ◦ τ ′)(ξ) = (B ◦ π)(ξ).

where e1 = (1, 0, . . .) ∈ `∞N is the first standard basis vector.



72

Proof. Let σ ∈ F . At first we determine the constant part of ψσ, which is

ψσ(0) = (ψσ ◦ π)(0) = π(σ ∨ 0) = σ π(e1).

The norm of the constant part of ψσ can be estimated by ‖σ π(e1)‖B ≤ |σ| ‖π‖ ‖e1‖`∞N = |σ| ‖π‖.
Using property (S1), the linearity of π, and the definition of τ ′ we obtain

ψσ(π(ξ)) = π(σ ∨ ξ) = σ π(e1) + π(0 ∨ ξ) = σ π(e1) + (π ◦ τ ′)(ξ).

Observe that by Remark 2.1.5 the map τ ′ : `∞N → `∞N is linear and continuous, hence the linking
map ψσ is affine and continuous on the closed span B̃ := spanπ(`∞N) ⊂ B of the image of π. Without
loss of generality we can assume that B̃ = B. Note that we have not yet identified the linear part, but
the previous argument also shows that the linear part of ψσ is independent of σ and will be denoted
by B : B → B. By property (S1) it has to satisfy equation (54).

In order to get a trace formula for the transfer operator we will have to assume that the linear
part of this affine map is contractive in a strong sense which will be specified later, see (2.7.1).
Proposition 2.6.1 has a representation theoretic interpretation:

Remark 2.6.2. (i) Rephrasing equation (54) in other words, the projection map π is an intertwin-
ing map for the following representations a1 and a2 of the semigroup N0 defined by

a1 : N0 × `∞N → `∞N, (n, ξ) 7→ a1(n, ξ) := (τ ′)n(ξ)

and
a2 : N0 × B → B, (n, z) 7→ a2(n, z) := Bnz.

Intertwining means that π(a1(n, ξ)) = a2(n, π(ξ)) for all ξ ∈ `∞N and n ∈ N0.

(ii) The representation a1 and the representation

a3 : N0 × `1N → `1N, (n, d) 7→ a3(n, d) := τnd,

defined by a3(n, d)(k) := (τnd)(k) = d(n + k) are dual to each other in the following way:
a1 = a′3, i. e., a1(n, ·) = a3(n, ·)′ for all n ∈ N0, and a′1

∣∣
N0×`1N

= a3. This is due to the facts that

(`1N)′ = `∞N,

〈a1(n, ξ), d〉`∞N,`1N = 〈(τ ′)n(ξ), d〉`∞N,`1N = 〈ξ, τnd〉`∞N,`1N = 〈ξ, a3(n, d)〉`∞N,`1N,

but `1N ( (`∞N)′. To see that a′1
∣∣
N0×`1N

= a3, let d ∈ `1N and calculate as follows

a′1(n, d)(k) = 〈ek, a′1(n, d)〉 = 〈a1(n, ek), d〉 = 〈ek+n, d〉 = d(k + n).

(iii) The dual representation of a2 is given on the strong dual B′ of B as

a′2 : N0 × B′ → B′, (n, z′) 7→ a′2(n, z
′) := (B′)nz′

where B′ : B′ → B′ is the dual map of B : B → B. With the identification τ ′′ = τ and
(π ◦ τ ′)′ = τ ′′ ◦ π′ = τ ◦ π′ equation (54) transforms into

(55) (τ ◦ π′)(d) = (π ◦ τ ′)′(d) = (B ◦ π)′(d) = (π′ ◦ B′)(d)

for all d ∈ (`∞N)′, which implies that π′ intertwines a′1 and a′2, i. e., π′(a′2(n, z
′)) = a′1(n, π

′z′)
for all n ∈ N0, z

′ ∈ B′, since for all z′ ∈ B′, ξ ∈ `∞N we have

〈ξ, π′(a′2(n, z
′))〉B,B′ = 〈ξ, π′((B′)nz′)〉B,B′ = 〈Bnπ(ξ), z′〉B,B′

= 〈π(τ ′)n(ξ), z′〉B,B′ = 〈ξ, τnπ′z′〉B,B′

= a′1(n, π
′z′)(ξ).
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Proposition 2.6.1 and Remark 2.6.2 say that in order to fulfill the condition (S1) one has to look for
intertwining maps for certain representations of the semigroup N0. We will assume in addition to the
hypotheses of (2.6.1) that there is a connection between the intertwining map of the N0-representations
a1 and a2 from (2.6.2) and the standard Ising observable A(φ) (2.1.7). Then the distance function is

of the form d(k) = 〈Bk−1v, w′〉B,B′ for some linear operator B : B → B and v ∈ B, w′ ∈ B′:

Proposition 2.6.3. Let B : B → B be a bounded linear operator and α : `∞N → B be a continuous
linear map such that α(0∨ ξ) = Bα(ξ) for all ξ ∈ `∞N, i. e., α ◦ τ ′ = B ◦α, hence α is an intertwiner
of a1 and a2 from (2.6.2). Let d ∈ `1N. Suppose there exists α′ ∈ B′ such that

(56) 〈α(ξ), α′〉B,B′ =
∞∑

k=1

ξk d(k)

for all ξ ∈ `∞N. Then d(k) = 〈Bk−1α(e1), α
′〉B,B′ for all k ∈ N.

Proof. We set β : `∞N → C, β(ξ) :=
∑∞

k=1 ξk d(k) and evaluate β at the standard basis elements
ej := (δj,k)k∈N ∈ `∞N. This gives β(ej) =

∑∞
k=1 δj,k d(k) = d(j). We show by induction that

α(ek) = Bk−1α(e1). The case k = 1 is trivial. Since 0 ∨ ek = ek+1, we have

α(ek+1) = α(0 ∨ ek) = Bα(ek)
(I)
= BBk−1α(e1) = Bkα(e1)

using at (I) the induction hypothesis. Hence d(k) = β(ek)
(56)
= 〈α(ek), α

′〉B,B′ = 〈Bk−1α(e1), α
′〉B,B′ .

Proposition 2.6.3 shows that a distance function d ∈ `1N with the property (56) is necessarily of
the form d(k) = 〈Bk−1α(e1), α

′〉B,B′ , hence
∑∞

k=1 |〈Bk−1α(e1), α
′〉B,B′ | has to be finite. Whereas the

upper bound |〈Bk−1α(e1), α
′〉B,B′ | ≤ ‖Bk−1α(e1)‖B ‖α′‖B′ is straight forward, a sharp lower bound

is missing. A natural sufficient condition20 which ensures the convergence of
∑∞
k=1 ‖Bk−1α(e1)‖B is

that the spectral radius of B is less than one. We briefly remind the reader of the notion of the
spectral radius of a linear operator acting on a Banach space and recall some of its properties. In
Proposition 2.6.5 we will show that each bounded linear operator with spectral radius less than one
gives rise to a distance function which decays exponentially and has the desired intertwining properties.

Remark 2.6.4. Recall (for instance [We00, p. 231]) the definition of the spectral radius of a bounded
linear operator B : B → B on a Banach space B as

ρspec(B) := sup
{
|z| ∈ R | z ∈ spec(B)

}
.

(i) The spectral radius can be characterised via

ρspec(B) = max
{
|z| ∈ R | z ∈ spec(B)

}
= lim

k→∞
k

√
‖Bk‖ = inf

k→∞
k

√
‖Bk‖.

From this formula it is obvious, that ρspec(B) ≤ ‖B‖.

(ii) Let B : B → B be a linear operator with ‖Bk0‖ < 1 for some k0 ∈ N. Then ρspec(B) < 1, since

ρspec(B) = lim
k→∞

k

√
‖Bk‖ = lim

n→∞
nk0

√
‖Bnk0‖ ≤ lim

n→∞
nk0

√
‖Bk0‖n = k0

√
‖Bk0‖ < 1.

(iii) Let B : B → B be a linear operator with ρspec(B) < 1, then there exists k0 ∈ N such that
‖Bk‖ < 1 for all k ≥ k0. In fact: For all ε > 0 there exists k0 ∈ N such that for all k ≥ k0 one
has |ρspec(B) − ‖Bk‖1/k| < ε. Hence ‖Bk‖1/k ≤ ρspec(B) + ε, which gives the assertion if we let
ε < 1 − ρspec(B).

Proposition 2.6.5. Let B : B → B be a bounded linear operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′.
Set d : N → C, k 7→ d(k) := 〈Bk−1v, w′〉B,B′ . Then d belongs to the space D1 of distance functions

defined in (2.2.4) and lim supk→∞
k
√
|d(k)| ≤ ρspec(B) < 1, which by definition means that d is (at

least) exponentially decreasing at infinity.

20It would be sufficient that the restriction of B to the subspace span{Bkα(e1) ∈ B | k ∈ N0} ⊂ B generated by B and
α(e1) has spectral radius less than one, so one might assume that α(e1) is a cyclic vector.
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Proof. We have the trivial estimate |d(k)| = |〈Bk−1v, w′〉| ≤ ‖Bk−1‖‖v‖ ‖w′‖ and hence

lim sup
k→∞

k
√
|d(k)| ≤ lim

k→∞
k

√
‖Bk−1‖‖v‖ ‖w′‖ = lim

k→∞
k

√
‖Bk−1‖ (∗)

= lim
k→∞

k

√
‖Bk‖ = ρspec(B) < 1.

Hence by Proposition 2.2.8 the distance function d belongs to D1 (2.2.4). It remains to show the
stated equality (∗): We use that ρspec(B) = limk→∞ ‖Bk‖1/k. Hence for all ε > 0 there exists k0 ∈ N

such that for all k ≥ k0 one has the estimate |ρspec(B) − ‖Bk‖1/k| < ε. Hence

(ρspec(B) + ε)−1/(k+1) ≤ (‖Bk‖1/k)−1/(k+1) ≤ (ρspec(B) − ε)−1/(k+1),

thus limk→∞(‖Bk‖1/k)−1/(k+1) = 1 and

lim
k→∞

k+1

√
‖Bk‖ = lim

k→∞
‖Bk‖1/k ‖Bk‖−1/k(k+1) = lim

k→∞
‖Bk‖1/k lim

k→∞
‖Bk‖−1/k(k+1) = lim

k→∞
‖Bk‖1/k.

In the remark following Proposition 2.6.3 we asked the following question: Given d : N → C, k 7→
〈Bk−1v, w′〉B,B′ , find a lower asymptotic bound for k

√
|d(k)| = k

√
|〈Bk−1v, w′〉B,B′ | depending on the

spectral properties of B. This seems to be a harder problem than the upper bound. In particular
this limit behaviour will (in general) also depend on the data v ∈ B, w′ ∈ B′. Note that from
lim supk→∞

k
√
|〈Bk−1v, w′〉B,B′ | ≤ 1 one cannot conclude that the spectral radius of B is less than one.

As an example take B = ( 0 0
0 2 ) which has ρspec(B) = 2, but d(k) = 〈Bk−1e1|e1〉 is a non-zero finite

range interaction: d(1) = 1 and d(k) = 0 for all k ≥ 2. In order to tackle the above problem it might
be a good idea to consider the restriction B

∣∣
B̃ of B to the subspace B̃ := span{Bkv | k ∈ N0} ⊂ B. In

the above example one has B̃ = Ce1 and ρspec(B
∣∣
B̃) = 0.

With the preparation of Remark 2.6.4 and Proposition 2.6.5 we can now give a construction scheme
for linear maps which intertwine the N0-representations a1 and a2 from Remark 2.6.2 if the distance
function d : N → C is given as d(k) = 〈Bk−1v, w′〉B,B′ .

Proposition 2.6.6. Let B : B → B be a bounded linear operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′.

(i) Set πB,v : `∞N → B, πB,v(ξ) :=
∑∞

k=1 ξk Bk−1v. Then πB,v is linear, continuous, and satisfies
πB,v(e1) = v and πB,v(0 ∨ ξ) = BπB,v(ξ).

(ii) Let B′ : B′ → B′ be the dual map of B on the (strong) dual B′ of B. Set πB′,w′ : `∞N → B′,
πB′,w′(ξ) :=

∑∞
k=1 ξk (B′)k−1w′. Then πB′,w′ is linear, continuous, and satisfies πB′,w′(e1) = w′

and πB′,w′(0 ∨ ξ) = B′ πB′,w′(ξ).

(iii) Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional full shift (1.2.6).
Let φ be a two-body Ising interaction (1.8.3) with potential q and distance function d : N →
C, k 7→ d(k) := 〈Bk−1v, w′〉B,B′ . Then for all σ ∨ ξ ∈ Ω we can express the standard Ising
observable (2.1.7) as

A(φ)(σ ∨ ξ) = q(σ) + σ〈πB,v(ξ), w
′〉B,B′ = q(σ) + σ〈v, πB′,w′(ξ)〉B,B′ .

Proof. Let ξ ∈ `∞N, then

‖πB,v(ξ)‖ ≤
∞∑

k=1

|ξk| ‖Bk−1v‖ ≤ ‖ξ‖`∞N

∞∑

k=1

‖Bk−1v‖ ≤ ‖ξ‖`∞N ‖v‖
∞∑

k=1

‖Bk−1‖.

The latter series converges by the root test and our assumptions on the spectral radius of B. This
shows the boundedness of πB,v and ‖πB,v‖ ≤∑∞

k=1 ‖Bk−1v‖. Recall from Example 2.1.2 that 0 ∨ ξ =
(0, ξ1, ξ2, . . .) is the insertion of 0 at the first position and a simultaneous right shift, hence

πB,v(0 ∨ ξ) =

∞∑

k=1

(0 ∨ ξ)k Bk−1v =

∞∑

k=1

ξk Bkv = BπB,v(ξ).

Similarly one proceeds for πB′,w′ noting that ‖B‖ = ‖B′‖. The standard Ising observable is given as
A(φ)(σ ∨ ξ) = q(σ) + σ

∑∞
k=1 ξk d(k) for all σ ∨ ξ ∈ Ω. Concerning the second term we note that

∞∑

k=1

ξk d(k) =

∞∑

k=1

ξk 〈Bk−1v, w′〉B,B′ = 〈
∞∑

k=1

ξk Bk−1v, w′〉B,B′ = 〈πB,v(ξ), w
′〉B,B′ .
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The first part of Proposition 2.6.6 states that the map πB,v intertwines the representations a1 and a2.
Part (iii) shows that the standard observable admits an (S1) - (S3) Ansatz (2.3.3).
Next, we recall that every distance function d ∈ `1N has a representation d(k) = 〈Bk−1v, w′〉B,B′ for
some v ∈ B, w′ ∈ B′,B ∈ End(B) using the shift (2.1.5). We determine its spectral properties which -
unfortunately - will not be sufficient for our purposes.

Remark 2.6.7. Let τ : CN → CN, (τξ)n := ξn+1 be the shift from Remark 2.1.5. Note that

(57) d(k) = 〈τk−1d, e1〉`1N,`∞N

for all d ∈ `1N and k ∈ N where e1 = (1, 0, . . .) ∈ `∞N. We call (57) the trivial representation of
d, since τ and e1 do not depend on d. All powers τm (m ∈ N) have operator norm equal to one
on all the sequence spaces `pN (1 ≤ p ≤ ∞), hence ρspec(τ) = 1. Similarly to Remark 2.1.5 we get
τm(τ ′)m = id, hence no power of τ is trace class.

We want to understand which distance functions d can be represented as d(k) = 〈Bk−1v, w′〉B,B′ with
ρspec(B) < 1. Such a representation can be viewed as a subrepresentation of a3 : N0 × `1N → `1N

defined by a3(n, d)(k) := (τnd)(k) = d(n + k) in (2.6.2). In Example 2.7.7 we will give a couple of
examples of distance functions which have such a representation and give a (partial) classification in
(2.12.3). In particular, we show that there are two types of finite dimensional representations, which
either come from finite range or from polynomial-exponential distance functions (See Sections 2.8
and 2.11, respectively).
The following remark is just the contraposition of one of the statements from Proposition 2.6.5, but
it provides a test which is both simple to handle and applicable in important situations.

Remark 2.6.8. Let d ∈ `1N. If limk→∞ k
√
|d(k)| = 1, then by Proposition 2.6.5 there is no represen-

tation d(k) = 〈Bk−1v, w′〉B,B′ for a linear operator B : B → B with ρspec(B) < 1, v ∈ B, w′ ∈ B′.

Remark 2.6.8 will imply that, unfortunately, some physically relevant distance functions, which we
introduced in Example 2.2.5, cannot be treated with our method.

Example 2.6.9. We recall that the distance functions introduced in (2.2.5) (i) - (iv) belong to D1

(2.2.4). By Remark 2.6.8 the Examples (i) and (ii) do not have a representation d(k) = 〈Bk−1v, w′〉B,B′ ,
where B : B → B is a bounded linear operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′.

(i) Let α > 1 and d(k) := k−α. Then limk→∞ k
√
|d(k)| = (limk→∞

k
√
k)−α = 1.

(ii) Plummer potential: Let ε > 0, α > 1 and d(k) := (ε+ |k|2)−α/2. The Plummer potential satifies
cε k

−α ≤ d(k) ≤ k−α for some cε > 0 as stated in 2.2.5 (ii), hence we have limk→∞ k
√
|d(k)| =

(limk→∞
k
√
k)−α = 1.

(iii) Let γ, δ > 0, and d(k) := exp(−γkδ). Then

lim
k→∞

k
√
|d(k)| = lim

k→∞
exp(−γkδ−1) =





0, if δ > 1,
1, if δ < 1,
exp(−γ), if δ = 1.

The exponential case δ = 1 can be treated with our method, see Example 2.10.6, the subex-
ponential case δ < 1 cannot be treated by Remark 2.6.8. The case δ > 1 of superexponential
decay was first solved by D. Mayer via a similar approach for an arbitrary interaction matrix,
but finite alphabet F . We will study this in Section 2.9.

(iv) Let α, γ > 0 and d(k) :=
∫ 1

0
tα exp(−γtk) dt. The estimate given in Example 2.2.5 implies that

limk→∞ k
√
|d(k)| ≤ 1; a lower asymptotic bound remains open.

We will now review some results from Section 2.2 and explain them with the methods from this
section. As shown in Remark 2.6.7, the shift τ : CN → CN, (τξ)n := ξn+1 (2.1.5) yields the trivial
representation d(k) = 〈τk−1d, e1〉`1N,`∞N for all d ∈ `1N and k ∈ N. Besides the projection map

πτ,d : `∞N → `1N, ξ 7→
∞∑

j=1

ξj τ
j−1d
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associated to the trivial representation via Proposition 2.6.6, we have the projection map πd defined
in Remark 2.2.2. By looking at their components 〈πτ,d(ξ), ei〉`1N,`∞N =

∑∞
j=1 ξj d(j + i− 1) = πd(ξ)i

we see that they coincide. The projection map πd appeared in the continuous bilinear extension of
the map WZ≤,Z> : Ω≤ × Ω> → C (1.6.3) to `∞(Z≤) × `∞(N) → C via

WZ≤,Z>(η ⊕ ξ) = −〈πd(ξ), S(
�

η)〉`1N,`∞N = −〈πd(ξ), S(
�

η)〉`1N,`∞N,

which is a pairing between `1N and `∞N. We will now give a generalisation of this pairing situation
and use its connection with Ruelle’s representation of the leading eigenfunction of the Ruelle transfer

operator. We recall the definition of the inversion map
�

: C−N → CN,
�

ηi= η−i and the bijective right
shift S = τ−1;N0 : CN0 → CN, (Sx)i = xi−1.

Proposition 2.6.10. Let F ⊂ C be a bounded set and (Ω = FZ,Z, τ) a two-sided one-dimensional
full shift (1.2.5), Ω≤ = ρ−N0(Ω), and Ω> = ρN(Ω). Let φ be a two-body Ising interaction (1.8.3) with
distance function d : N → C, k 7→ d(k) := 〈Bk−1v, w′〉B,B′ where B : B → B is a bounded linear
operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′. Let πB,v : `∞N → B and πB′,w′ : `∞N → B′ be defined
as in Prop. 2.6.6. Then the map WZ≤,Z> : Ω< × Ω≥ → C (1.6.3) has a continuous bilinear extension
WZ≤,Z> : `∞(Z≤) × `∞(Z>) → C via

WZ≤,Z>(η ⊕ ξ) = −〈πB,v(ξ), (πB′,w′ ◦ S)(
�

η)〉B,B′ = −〈(πB,v ◦ S)(
�

η), πB′,w′(ξ)〉B,B′ .

Let h1 be the leading eigenfunction of the Ruelle transfer operator LβA(φ)
: C(Ω>) → C(Ω>) (2.1.3)

and

h̃1 : B → C, z 7→
∫

Ω≤

exp
(
β 〈z, (πB′,w′ ◦ S)(

�

η)〉B,B′

)
dµ≤(η),

then h̃1 belongs to C(B) with h1 = h̃1 ◦ πB,v.

Proof. Let ξ ∈ `∞N, η ∈ `∞(Z≤). By Proposition 2.6.5 the distance function d belongs to D1, hence
by Remark 2.2.10 the series defining WZ≤,Z>(η ⊕ ξ) converges absolutely and is bounded by

|WZ≤,Z>(η ⊕ ξ)| ≤ ‖d‖D1 ‖η‖`∞(Z≤) ‖ξ‖`∞N.

For this reason the following sums can be interchanged

−WZ≤,Z>(η ⊕ ξ) =

∞∑

k=0

∞∑

j=1

η−k ξj d(k + j)

=

∞∑

k=1

∞∑

j=1

η1−k ξj 〈Bk+j−2v, w′〉B,B′

=

∞∑

k=1

∞∑

j=1

η1−k ξj 〈Bj−1v, (B′)k−1w′〉B,B′

= 〈
∞∑

j=1

ξjB
j−1v,

∞∑

k=1

η1−k(B
′)k−1w′〉B,B′ = 〈πB,v(ξ), (πB′,w′ ◦ S)(

�

η)〉B,B′

Proposition 2.6.6 shows that the latter expression is well-defined. Similarly one obtains

−WZ≤,Z>(η ⊕ ξ) = 〈(πB,v ◦ S)(
�

η), πB′,w′(ξ)〉B,B′ .

The continuity of h̃1 is straight forward, the representation h1(ξ) = h̃1(πB,v(ξ)) follows from Ruelle’s
result (48) in Remark 2.2.11.

In the special case that B = `2N we will show that the leading eigenfunction of the Ruelle transfer
operator has a preimage in the Fock space F(`2N) under the composition operator CπB,v

: F(`2N) →
Cb(Ω). This answers a question raised in Remark 2.2.12.
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Corollary 2.6.11. Let F ⊂ C be a bounded set and (Ω = FZ,Z, τ) a two-sided one-dimensional full
shift (1.2.5), Ω≤ = ρ−N0(Ω) and Ω> = ρN(Ω). Let φ be a two-body Ising interaction (1.8.3) with
distance function d : N → C, k 7→ d(k) :=

(
Bk−1v w

)
`2N

where v, w ∈ `2N and B : `2N → `2N is a

bounded linear operator with ρspec(B) < 1. Let B⊥ = B′ : `2N → `2N be its dual. Let πB,v : `∞N → `2N

and πB>,w : `∞N → `2N be the linear maps defined in (2.6.6). Let h1 be the leading eigenfunction of
the Ruelle transfer operator LβA(φ)

: C(Ω>) → C(Ω>) (2.1.3) and

h̃1 : `2N → C, z 7→
∫

Ω≤

exp
(
β (z | (πB>,w ◦ S)(

�

η))
)
dµ≤(η).

Then h̃1 belongs to F(`2N) with h1 = h̃1 ◦ πB,v, where
�

: C−N → CN is the inversion map and
S = τ−1;N0 : CN0 → CN the bijective right shift.

Proof. For all η ∈ Ω≤ the vector (πB>,w ◦ S)(
�

η) belongs to `2N. By Proposition A.4.9 we have

h̃1 ∈ F(`2N). Hence the assertion follows from Proposition 2.6.10.

Our next goal is the construction of a Ruelle-Mayer transfer operator M such that for all k ≥ k0 the
operator Mk is trace class and a dynamical trace formula holds. By Proposition 2.6.6 the standard
Ising observable admits an (S1) - (S3) Ansatz (2.3.3) using the linear map πB,v : `∞N → B from
Proposition 2.6.6 as a projection map. Definition 2.3.7 directly yields the corresponding (formal)
Ruelle-Mayer operator

(58) Mβ : Cb(B) → Cb(B) (Mβf)(z) :=

∫

F

exp
(
βq(σ) + βσ〈z, w′〉B,B′

)
f(σ v + B z) dν(σ),

which formally satisfies LβA(φ)
◦CπB,v

= CπB,v
◦Mβ , where CπB,v

: Cb(B) → Cb(Ω), g 7→ g ◦ πB,v is the
composition operator associated to πB,v. In order to obtain a bounded Ruelle-Mayer transfer operator
one has to identify a suitable small space of functions which is invariant under the operator. The
Ruelle-Mayer transfer operator is a superposition of the generalised composition operators21

Mβ,σ : Cb(B) → Cb(B) (Mβ,σf)(z) := exp
(
βq(σ) + βσ〈z, w′〉B,B′

)
f(σ v + B z).

The spectral properties of the operators Mβ,σ and hence of Mβ depend on the space on which the
operator acts. Appendix B addresses this problem. The next Remark 2.6.13 investigates the structure
of the algebra generated by the composition operators M(σ) from which the operator M is built up.
We will need a preparatory proposition on the compositions of a special type of affine maps which
arise as linking maps as we have seen in Proposition 2.6.1.

Proposition 2.6.12. Let V be a complex vector space, B : V → V a linear operator, and a ∈ V . For
x ∈ C put ψx : V → V, z 7→ xa+ Bz. Then for all k ∈ N, x1, . . . , xk ∈ C, z ∈ V one has

(ψx1 ◦ . . . ◦ ψxk
)(z) = Bkz +

k−1∑

j=0

xj+1Bja.

Proof. By induction: Let x1, . . . , xk+1 ∈ F , then ψx1(z) = x1B0a+ B1z and

(ψx1 ◦ . . . ◦ ψxk+1
)(z) = Bkψxk+1

(z) +
k−1∑

j=0

xj+1Bja = Bk+1z + xk+1Bka+
k−1∑

j=0

xj+1Bja.

Remark 2.6.13. Let B : B → B be a bounded operator, v ∈ B, w′ ∈ B′, F ⊂ C, and q ∈ C(F ). For
all σ ∈ F we define an unbounded operator

M(σ) : Cb(B) → Cb(B), (M(σ)g)(z) = exp
(
q(σ) + σ〈z, w′〉B,B′

)
g(σ v + Bz).

Then for all g ∈ Cb(B), n ∈ N and all choices σ1, . . . , σn ∈ F one has by Corollary B.1.3 and
Proposition 2.6.12

(M(σ1)◦. . .◦M(σn)g)(z) = exp
( n∑

k=1

q(σk)+

n∑

k=1

σk〈Bn−kz+
n−k∑

j=1

σk+jB
j−1v, w′〉

)
g(Bnz+

n∑

k=1

σkB
k−1v).

21(Generalised) composition operators, their spectral properties and trace formulas will be discussed in Appendix B.
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In addition to the hypotheses of Remark 2.6.13 we will now assume that the linear operator B : B → B
is contractive: If the operator norm of B is strictly less than one, then Proposition 2.6.14 shows
that any affine map of the form B → B, z 7→ Bz + b is strictly contractive on suitable large balls
B(0; ρ)B := {z ∈ B; ‖z‖B < ρ}. More generally, if the spectral radius of B is strictly less than one,
then at least certain (mixed) iterates of affine maps are contractive:

Proposition 2.6.14. Let F ⊂ C be a bounded set, B : B → B be a linear operator with ρspec(B) < 1,
and v ∈ B. For x ∈ F let ψx : B → B, z 7→ xv + Bz. Then there exists ρ > 0 and k0 ∈ N such that
for all k ≥ k0, x1, . . . , xk ∈ F

(ψx1 ◦ . . . ◦ ψxk
)(B(0; ρ)B) ⊂ B(0; ρ)B.

If ‖B‖ < 1, then this holds for all k ∈ N.

Proof. We start with the special case ‖B‖ < 1. Put cF := supx∈F |x| and let ρ > cF ‖v‖
1−‖B‖ . Then for all

z ∈ B with ‖z‖ ≤ ρ we have

‖ψx(z)‖ ≤ ‖xv‖ + ‖B‖ ‖z‖ ≤ cF ‖v‖ + ‖B‖ ρ < ρ.

Concerning the general case: By Remark 2.6.4 (iii) there exists k0 ∈ N such that for all k ≥ k0 we have

‖Bk‖ < 1. Let ck :=
∑k
j=1 ‖Bj−1v‖ and ρk >

cF ck

1−‖Bk‖ for all k ∈ N. Then for all k ≥ k0, z ∈ B(0; ρk)B,

and x1, . . . , xk ∈ F we have by the previous Proposition 2.6.12

‖(ψx1 ◦ . . . ◦ ψxk
)(z)‖ ≤ ‖

k−1∑

j=0

xj+1Bjv‖ + ‖Bk‖ ‖z‖ ≤ cF ck + ‖Bk‖ ρk < ρk.

By induction (ψx1 ◦ . . . ◦ ψxnk0
)(B(0; ρk0)B) ⊂ B(0; ρk0)B for all n ∈ N. Then the assertion follows

with ρ := maxj=k0,...,2k0−1 ρj .

Using the previous propositions we can identify a domain on which the formal Ruelle-Mayer transfer
operator (58) is bounded.

Corollary 2.6.15. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional
full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q and distance function
d : N → C given as d : N → C, k 7→ d(k) := 〈Bk−1v, w′〉B,B′ , where B : B → B is a linear operator with
ρspec(B) < 1, v ∈ B, w′ ∈ B′. Then there are ρ > 0 and k0 ∈ N such that for all k ≥ k0 the higher
iterates (Mβ)

k : Cb(B(0; ρ)B) → Cb(B(0; ρ)B) of the Ruelle-Mayer transfer operator Mβ defined by

(Mβf)(z) :=

∫

F

exp
(
βq(σ) + βσ〈z, w′〉B,B′

)
f(σ v + B z) dν(σ)

are bounded operators with (LβA(φ)
)k ◦ CπB,v

= CπB,v
◦ (Mβ)

k.

Proof. By Proposition 2.6.6 the image πB,v(Ω) is a bounded subset of B. In fact, it is contained in
the ball B(0; ρd)B with radius ρd := ‖πB,v‖ supx∈F |x|. By Proposition 2.6.14 we can find an index
k0 ∈ N and a radius ρ > 0 such that for all k ≥ k0 the operator (Mβ)

k leaves Cb(B(0; ρ)B) invariant,
since

sup
z∈B(0;ρ)B

∣∣((Mβ)
kf)(z)

∣∣ = sup
z∈B(0;ρ)B

∣∣
∫

Fn

(M(σ1) ◦ . . . ◦M(σn)f)(z)
∣∣ dνn(σ1, . . . , σn)

∣∣∣

≤
∫

Fn

sup
z∈B(0;ρ)B

∣∣∣ exp
( n∑

k=1

q(σk) +

n∑

k=1

σk〈Bn−kz +

n−k∑

j=1

σk+jB
j−1v, w′〉B,B′

)∣∣∣

sup
z∈B(0;ρ)B

∣∣∣f(Bnz +

n∑

k=1

σkB
k−1v)

∣∣∣ dνn(σ1, . . . , σn)

≤
∫

F

exp
(∣∣∣

n∑

k=1

q(σk)
∣∣∣+

n∑

k=1

|σk|
(
‖Bn−k‖ρ+

n−k∑

j=1

‖σk+jBj−1v‖ ‖w′‖
)
dνn(σ1, . . . , σn) ‖f‖Cb(B(0;ρ)B).

The property (LβA(φ)
)k ◦CπB,v

= CπB,v
◦ (Mβ)

k is now an immediate consequence of Proposition 2.6.6
and an adapted version of Remark 2.3.6.
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One could now proceed as in [May80a] and study the spectral properties of the Ruelle-Mayer operator
on certain invariant subspaces consisting of analytic functions on (bounded) domains in the complex
Banach space B. For our purpose it is sufficient to study the Hilbert space setting where we can find
an invariant Hilbert space of holomorphic functions on which the Ruelle-Mayer operator is trace class.
All examples of Ising interactions for which a Ruelle-Mayer transfer operator is known can also be
treated within such a setting.

2.7 Linear models: The Hilbert space setting

In Section 2.6 we have seen a general method how to choose the projection map for Ising interactions
with a special type of distance function. We will now assume that the distance function is of the form

d : N → C, k 7→ d(k) := 〈Bk−1v |w〉H

where B : H → H is a bounded linear operator on a (separable) Hilbert space (H, 〈 · | · 〉H) with
spectral radius ρspec(B) < 1, and v, w ∈ H. Hence the projection map πB,v : `∞N → H (Prop. 2.6.6)
takes values in a Hilbert space. The corresponding Ruelle-Mayer transfer operator (58) is given as

(59) (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|w〉

)
f(σ v + B z) dν(σ).

In this section (Theorem 2.7.6) we will show that for a large class of distance functions a dynamical
trace formula holds. The Ruelle-Mayer transfer operator Mβ (59) viewed as operator acting on the
Fock space F(`2N) satisfies the trace formula

Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn) trace (Mβ)
n

for almost all n ∈ N. This is one of the main results of this dissertation and shows that the spectrum of
the Ruelle-Mayer transfer operator gives a complete description of the sequence of partition functions
and thus of many properties of the dynamical system. In Chapter 4 we will use this result to show
that the associated dynamical zeta function has a meromorphic continuation to the entire complex
plane and an Euler product.
We will now aim for conditions on the distance function ensuring that at least a certain power of the
Ruelle-Mayer transfer operator is trace class. We introduce the following classes of distance functions.

Definition 2.7.1. Given a bounded linear operator B : H → H on a (separable) Hilbert space H,
v, w ∈ H, we define a function d : N → C, k 7→ d(k) := 〈Bk−1v |w〉H. We define the subspaces

D(p)
1 ⊂ `1N (for p ∈ [1,∞]) via

(i) d ∈ D(p)
1 for p <∞ iff ρspec(B) < 1 and B belongs to the Schatten22 class Sp(H),

(ii) d ∈ D(∞)
1 iff ρspec(B) < 1.

We call (B, v, w) a generating triple for d and B a generator.

In Example 2.7.7 we will give a list of examples of distance functions belonging to these spaces. These
will be investigated in forthcoming sections.

We would like to point out that D(p)
1 (for each p ≤ ∞) is a complex vector space: Let (Bi, vi, wi)

be generating triples for di ∈ D(p)
1 (i = 1, 2), then for any c ∈ C the distance function d1 + c d2

has a representation in the Hilbert space H := H1 ⊕ H2 via d1(k) + c d2(k) = 〈Bk−1v |w〉H with
B :=

(
B1

B2

)
, v := ( v1cv2 ) , and w := (w1

w2 ). By Proposition 2.3.9 it suffices to construct Ruelle-Mayer
transfer operators for each distance function di, then by tensorising we obtain a Ruelle-Mayer operator
for d1 + c d2.
The spaces D(p)

1 for p < ∞ will lead to Schatten class Ruelle-Mayer transfer operators, whereas this

fails for D(∞)
1 . This is caused by the qualitative difference of the corresponding operators: Note that

an operator B corresponding to a distance function d ∈ D(∞)
1 need not be compact. In Example 2.10.4

we show that there are compact operators such that no power is trace class. On the other hand, let

22For the definition of the Schatten classes see Appendix A.2.
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B be an operator with ρspec(B) < 1 and B ∈ Sp(H). By the theory of Schatten classes the operator
Bn belongs to Smax(1,p/n)(H) and by Remark 2.6.4 (iii) we find an index n0 depending on B with
the property that Bn is trace class and has operator norm strictly smaller than one for all n ≥ n0.
This last property is essential for the proof of the dynamical trace formula. For other goals a detailed

investigation of (subspaces of) D(∞)
1 might be advisable.

Proposition 2.7.2. For all 1 ≤ p ≤ q ≤ ∞ we have D(p)
1 ⊂ D(q)

1 ⊂ D1, the latter defined in (2.2.4).

Moreover, for all d ∈ D(∞)
1 we have lim supk→∞

k
√
|d(k)| < 1.

Proof. Proposition 2.6.5 implies that lim supk→∞
k
√

|d(k)| < 1 for all d ∈ D(∞)
1 , the rest is obvious.

Remark 2.7.3. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional full

shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with distance function d ∈ D(∞)
1 (2.7.1).

Since we always assume a Hilbert space to be separable, we can assume that H = `2N or at least
H ⊆ `2N. Let πB,v : `∞N → H be as in Proposition 2.6.6. Hence by Corollary 2.6.11 the Fock space
F(`2N) contains a preimage under the composition operator CπB,v

: F(`2N) → C(Ω), f 7→ f ◦ πB,v of
the leading eigenvector of the Ruelle transfer operator LA(φ)

: C(Ω) → C(Ω) defined in (2.1.3). This
observation motivates the study of the Ruelle-Mayer transfer operator as an operator acting on the
Fock space.

We will now prove the dynamical trace formula for the Ruelle-Mayer transfer operator M (59).
Remark 2.6.13 gives an explicit formula for the mixed iterates M(σ1) ◦ . . . ◦M(σn) from which (Mβ)

n

is built up. It implies that it suffices to prove an analogue of the Atiyah-Bott fixed point formula only
for the case that the linear map B : `2N → `2N is a trace class operator with ‖B‖ < 1. This will be
done in (2.7.4).
The following theorem, which we prove in Appendix B.4.3, will imply that certain powers of the
Ruelle-Mayer operator M : F(`2N) → F(`2N) (59) are trace class and satisfy a dynamical trace
formula.

Theorem 2.7.4. Let a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1. Let

T : F(`2N) → F(`2N), (Tf)(z) = eπ〈z|a〉 f(Bz + b)

be the corresponding composition operator. Then the trace norm (A.2.2) of T is equal to

‖T ‖S1(F(`2N)) =
exp
(
π
2 ‖a‖2 + π

2 ‖(1 − BB?)−1/2(Ba+ b)‖2
)

det(1 − |B|)

and T is trace class with the Atiyah-Bott fixed point formula

trace T =
exp
(
π〈(1 − B)−1b|a〉

)

det(1 − B)
.

This theorem together with Remark 2.6.4 enables us to weaken the spectral conditions on the linear

map B such that for all d ∈ D(p)
1 with p <∞ we will get a Ruelle-Mayer operator for which a dynamical

trace formula holds at least for almost all powers.

Lemma 2.7.5. Let F ⊂ C be a bounded set with a finite Borel measure ν, q ∈ Cb(F ), B ∈ Sp(`2N)
for some 1 ≤ p <∞ and ρspec(B) < 1, and v, w ∈ `2N. Let

Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|w〉

)
f(σ v + B z) dν(σ)

be the Ruelle-Mayer operator (59). Then there exists n ∈ N such that the operator (Mβ)
n is trace

class.
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Proof. For all σ ∈ F we set

Mβ,σ : F(`2N) → F(`2N), (Mβ,σg)(z) := exp
(
βq(σ) + βσ〈z|w〉

)
g(σ v + Bz).

For a moment we assume that B ∈ S1(`
2N) with ‖B‖ < 1. Then, by Theorem 2.7.4 the composition

operator Mβ,σ is trace class with trace norm given as

(60) ‖Mβ,σ‖S1(F(`2N)) =
exp
(
Re(βq(σ)) + π

2 ‖
σβ
π w‖2 + π

2 ‖(1 − BB?)−1/2(σβπ Bw + σv)‖2
)

det(1 − |B|)

and satisfies the Atiyah-Bott fixed point formula (53). The function F → R, σ 7→ ‖Mβ,σ‖S1(F(`2N)) is
a bounded function, hence integrable with respect to a finite measure. By Theorem A.7.6 the operator
Mβ : F(`2N) → F(`2N) is trace class. Now we return to the general case: By Remark 2.6.4 there exists
k0 ∈ N such that ‖Bk‖ < 1 for all k ≥ k0. For all k ≥ p we have Bk ∈ Smax(1,p/k)(`

2N) = S1(`
2N).

We let n = max(dpe, k0). Then for all choices of σ1, . . . , σn ∈ F the operator Mβ,σ1 ◦ . . . ◦Mβ,σn ∈
End(F(`2N)) acts by Remark 2.6.13 via

(Mβ,σ1◦..◦Mβ,σng)(z) = exp
(
β

n∑

k=1

q(σk)+β

n∑

k=1

σk〈Bn−kz+
n−k∑

j=1

σk+jB
j−1v|w〉

)
g(Bnz+

n∑

k=1

σkB
k−1v).

The above argument shows that Mβ,σ1 ◦ . . . ◦Mβ,σn : F(`2N) → F(`2N) is trace class and hence by
Theorem A.7.6 the operator (Mβ)

n is trace class.

Since S1(F(`2N)) ⊂ End(F(`2N)) is an operator ideal, all higher iterates (Mβ)
m for m ≥ n are trace

class.
The exact formula (60) for the trace norm of the operators Mβ,σ allows to weaken the condition on
the measure ν and on the boundedness of F ⊂ C. This will be used in Proposition 2.10.7.
We now can easily prove our main theorem of this section which states that for all Ising interactions

with distance function d ∈ D(p)
1 for some p < ∞ a dynamical trace formula holds at least for almost

all n ∈ N. In the following sections we will apply this theorem for instance to finite range interactions,
superexponentially decaying interactions, and polynomial-exponentially decaying interactions.

Theorem 2.7.6. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional full
shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance

function d ∈ D(p)
1 for some p < ∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N. Then there exists an index

n0 ∈ N depending on B such that for all n ≥ n0 the Ruelle-Mayer transfer operator

Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|w〉

)
f(σ v + B z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn) trace (Mβ)
n.

Proof. Set πB,v : Ω → `2N (Prop. 2.6.6), Aσ : `2N → C, z 7→ β q(σ) + σ β〈z|w〉 and ψσ : `2N →
`2N, z 7→ σ v + Bz. This gives an (S1) - (S3) Ansatz (2.3.3) by Proposition 2.6.6. By Lemma 2.7.5
there exists n0 ∈ N such that (Mβ)

n is trace class for all n ≥ n0. The operator (Mβ)
n is an n-

fold integral over the family of composition operators Mβ,σ1 ◦ . . . ◦Mβ,σn : F(`2N) → F(`2N). By
Remark 2.6.13 and Theorem 2.7.4 they satisfy the Atiyah-Bott fixed point formula (53). The trace
formula for (Mβ)

n now follows from Theorem 2.4.6 and Remark 1.11.5.

In particular, given a generating triple (B, v, w), Theorem 2.7.6 directly constructs the corresponding
Ruelle-Mayer transfer operator. In the next section we will discuss how transfer operators corre-
sponding to different generating triples are related. The following example gives a list of the types of
distance functions which can be treated with our method. By the remark following Definition 2.7.1 all
finite superpositions of distance functions from these classes lead to Ruelle-Mayer transfer operators
with dynamical trace formula.
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Example 2.7.7. (i) Finite range (Section 2.8): Let d : N → C be a distance function with finite
range ρ0, i. e. d(k) = 0 for all k > ρ0. Then23

d(k) =
〈
(Sρ0 )

k−1vd e1
〉
,

where Sρ0 :=

( 0 1

. ..
. ..
0 1

0

)
∈ Mat(ρ0, ρ0; Z) is the standard ρ0-step nilpotent matrix and vd =

(d(1), . . . , d(ρ0))
> ∈ Cρ0 .

(ii) Superexponential (Section 2.9): Let d : N → C, k 7→ a(k) exp(−γ kδ), where γ > 0, δ > 1
and a : N → C is a lower order term24 in the sense that limk→∞ a(k) exp(−ε1 kε2) = 0 for all
ε1, ε2 > 0. Then

d(k) =
〈
Sk−1ṽd e1

〉
,

where S : `2N → `2N, (Sz)k := exp(γ(k−1)δ)
exp(γ kδ)

zk+1, and ṽd : N → C, ṽdk := exp(γ(k−1)δ)
exp(γ kδ)

a(k).

(iii) The classes D(p),∆
1 ⊂ D(p)

1 (Section 2.10): Let λ ∈ `pN for some 1 ≤ p < ∞ with ‖λ‖`∞N < 1
and c : N → C such that

√
cλ : N → C, n 7→ (cn λn)1/2 belongs to `2N. Set

d(k) =
∞∑

i=1

ci λ
k
i =

〈
diag(λ)k−1

√
cλ |

√
cλ
〉
..

(iv) Polynomial-exponential (Section 2.11): Let c = (c0, . . . , cp) ∈ Cp+1, 0 < |λ| < 1 and d : N →
C, k 7→ λk

∑p
i=0 ci k

i. Then
d(k) =

〈
λ(λB(p+1))k−11 c

〉
,

where the matrix B(p+1) ∈ Gl(p+ 1; C) is given in Remark 2.11.1 and 1 : {0, . . . , p} → C is the
constant function one.

Given a generating triple (B, v, w), Proposition 2.6.6 shows that πB,v : `∞N → `2N, ξ 7→∑∞
j=1 ξjB

j−1v
is a suitable projection map for a (S1) - (S3) Ansatz (2.3.3). For the sake of completeness and in
order to simplify a comparison with the literature we list the corresponding projection maps for the
known examples and and compute their coefficients explicitly. Hence the reader who is familiar with
the literature can find a new interpretation of the old results.

Corollary 2.7.8. Let d : N → C be a finite range distance function, say d(k) = 0 for all k > ρ0, and
vd := (d(1), . . . , d(ρ0))

> ∈ Cρ0 . Let Sρ0 ∈ Mat(ρ0, ρ0; Z) be the standard ρ0-step nilpotent matrix from
Example 2.7.7 (i). Then

πSρ0 ,v
d : `∞N → Cρ0 , ξ 7→

∞∑

j=1

ξj Sj−1
ρ0 vd =




〈ξ, τ0d〉
...

〈ξ, τρ0−1d〉


 .

Proof. For all 1 ≤ k < ρ0 we have (Sρ0 )
>ek = ek+1 and hence, by iteration, ek = (S>

ρ0 )
k−1e1 =

(Sk−1
ρ0 )>e1. We compute the coefficients of the projection map πSρ0 ,v

d(ξ) =
∑∞

j=1 ξj Sj−1
ρ0 vd as

〈πSρ0 ,v
d(ξ)|ek〉 =

∞∑

j=1

ξj 〈Sj−1
ρ0 vd | ek〉 =

∞∑

j=1

ξj 〈Sj−1
ρ0 vd | (Sk−1

ρ0 )>e1〉 =

∞∑

j=1

ξj 〈Sj+k−2
ρ0 vd | ek〉

=

∞∑

j=1

ξj d(k + j − 1),

which coincides with 〈πτ,d(ξ) | ek〉 = 〈πd(ξ) | ek〉 = πdk(ξ) from Remark 2.1.6.

23In Section 2.8 we will find a better representation of finite-range distance functions which uses a generator of smaller
operator norm.

24The assumptions on the lower order term can be weakened.
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The following result is an immediate consequence of the definitions.

Proposition 2.7.9. Let d ∈ D(∞),∆
1 (2.10.1), say d(j) =

∑∞
i=1 ci λ

j
i for all j ∈ N. Then

πdiag(λ),
√
cλ : `∞N → `2N, ξ 7→

∞∑

j=1

diag(λ)j−1
√
cλ

is a continuous linear map with components 〈πdiag(λ),
√
cλ(ξ) | ei〉 = c

1/2
i

∑∞
j=1 ξj λ

j−1/2
i .

For the superexponentially decaying interactions we have to cite some results from Section 2.9.

Proposition 2.7.10. Let d : N → C, ṽd : N → C, and S : `2N → `2N be as in Example 2.9.4. Then

πS,ṽd : `∞N → `2N, ξ 7→
∞∑

k=1

ξk Sk−1ṽd

has the components 〈πS,ṽd(ξ) | ek〉 = exp(γ(k − 1)δ)
∑∞

j=1 ξj a(j + k − 1) exp(−γ(j + k − 1)δ).

Proof. By Proposition 2.9.2 we can compute the coefficients of πS,ṽd explicitly as

〈πS,ṽd(ξ) | ej〉 =

∞∑

k=1

ξk 〈Sk−1ṽd | ej〉 =

∞∑

k=1

ξk
exp(γ(j − 1)δ)

exp(γ (j + k − 1)δ)
a(j + k − 1).

In the following we will construct trace class Ruelle-Mayer transfer operators for finite range inter-

actions (2.8) and superexponentially decaying Ising interactions (2.9), D(p),∆
1 Ising interactions 2.10,

and polynomial-exponentially decaying Ising interactions 2.11. In view of Theorem 2.7.6 it suffices to
find a representation via a generating triple (B, v, w), i. e., to prove Example 2.7.7. In doing so we will
investigate the limitations of the methods used for each type of distance function.

2.8 Ruelle-Mayer transfer operators for finite range Ising interactions

In this section we return to finite range interactions, for which we gave in Section 2.5 a full description.
We will now specialise to the case of Ising interactions, which can also be treated with the methods
from Section 2.7. Let (Ω = FN,N0, τ) be a one-sided one-dimensional full shift (1.2.6). Let φ be a
two-body Ising interaction (1.8.3) with a finite range distance function d : N → C, say d(k) = 0 for all
k > ρ0, and potential q ∈ Cb(F ). We will construct a trace class Ruelle-Mayer transfer operator such
that the dynamical trace formula holds for all n ∈ N.
We state some obvious facts as a proposition without proof.

Proposition 2.8.1. For ρ0 ∈ N>1 let

(61) Sρ0 :=




0 1
. . .

. . .

0 1
0


 ∈ Mat(ρ0, ρ0; Z).

(i) Then Sρ0 is a ρ0-step nilpotent matrix, i. e., (Sρ0 )
ρ0−1 6= 0 and (Sρ0 )

ρ0 = 0. In particular, the
continuous linear map Sρ0 : Cρ0 → Cρ0 has spectral radius ρspec(Sρ0 ) = 0.

(ii) Let d : N → C be a finite range distance function, say d(k) = 0 for all k > ρ0, and vd :=
(d(1), . . . , d(ρ0))

> ∈ Cρ0 . Then d(k) =
〈
(Sρ0)

k−1vd e1
〉

for all k ∈ N.

We will call Sρ0 the standard ρ0-step nilpotent matrix. The disadvantage of the matrix Sρ0 is that the
matrices (Sρ0 )

k (for k = 0, . . . , ρ0 − 1) have operator norm equal to one. Hence the dynamical trace
formula for the Ruelle-Mayer transfer operator built from Sρ0

(62) Mβ : Cb(Cρ0) → Cb(Cρ0), (Mβf)(z) =

∫

F

exp
(
βq(x) + β z1

)
f(x vd + Sρ0z) dν(x)

only holds for all n ≥ ρ0. In this finite-dimensional setting we can avoid this by the following trick.
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Proposition 2.8.2. Let 0 < λ < 1 and Sρ0 be the standard ρ0-step nilpotent matrix from (61). Let
d : N → C be a finite range distance function, say d(k) = 0 for all k > ρ0, and wd ∈ Cρ0 with entries
wd(k) = λ1−k d(k). Then d(k) =

〈
(λSρ0 )

k−1wd e1
〉

for all k ∈ N.

An immediate consequence of Proposition 2.8.2 and Theorem 2.7.6 is the following trace formula:

Corollary 2.8.3. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional
full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with finite range distance function
d : N → C, say d(k) = 0 for all k > ρ0, and potential q ∈ Cb(F ). Let 0 < λ < 1, wd ∈ Cρ0 with entries
wd(k) = λ1−k d(k), and Sρ0 ∈ Mat(ρ0, ρ0; Z) be as in (61). Then for all m ∈ N the Ruelle-Mayer
transfer operator

Mβ : F(Cρ0) → F(Cρ0), (Mβf)(z) =

∫

F

exp
(
βq(x) + β z1

)
f(xwd + λSρ0z) dν(x)

satisfies the dynamical trace formula Z̃b
N0

m (βA(φ)) = Zb
N0 ,φ

{1,...,m}(β) = trace (Mβ)
m.

Proof. By Proposition 2.8.1 we can write d(k) =
〈
(λSρ0)

k−1wd e1
〉

for all k ∈ N. The linear map
λSρ0 defined on the finite dimensional space Cρ0 is automatically trace class and has operator norm
equal to λ. Hence the assertion follows from Theorem 2.7.6. The determinant factor in the dynamical
trace formula obviously vanishes.

The naive generalisation of this result to the case of long range interactions fails, since the shift matrix
Sρ0 is trace class precisely if the interaction range ρ0 is finite. The infinite analogue of Sρ0 is the shift
map τ : `2N → `2N, (τξ)n := ξn+1 from Remark 2.1.5, which has operator norm equal to one and is
not trace class. In the next section we will replace the shift by a so called weighted shift which allows
us to treat a certain class of long range interactions, namely the superexponentially decaying ones.

2.9 Ruelle-Mayer transfer operators for superexponentially decaying Ising
interactions

In this section we will study long range Ising two-body interactions with superexponentially decaying
distance function of a special type. Our class contains in particular distance functions of the following
form:

d : N → C, k 7→ a(k) exp(−γ kδ),
where γ > 0, δ > 1 and a : N → C is a lower order term, in the sense that limk→∞ a(k) exp(−ε1 kε2) =
0 for all ε1, ε2 > 0. This interaction has been investigated by D. Mayer in [May80a, p. 100]. He worked
with Banach space techniques and nuclear operators, whereas we will use the methods from Section 2.7
and Hilbert space techniques. The essential step in our approach is the finding of a suitable generating
triple for a given distance function. Then by Theorem 2.7.6, a possibly large power (which depends
on the spectral properties of the generator) of the Ruelle-Mayer transfer operator is trace class and
satisfies the dynamical trace formula. We will examine the generating triple in detail which leads to
a slightly larger class of distance functions which can be represented via a so called weighted shift. In
particular for distance functions of the Mayer type introduced above, our transfer operator is trace
class. In this section we restrict to Ising interactions, but allow spin values in a bounded subset F ⊂ C.
By Section 2.13 our results will extend to the case of arbitrary Ising type interactions. If the alphabet
F is finite, then every interaction matrix is of Ising type, and hence we can reproduce D. Mayer’s
result who worked with a finite alphabet.
The operator S introduced next will serve as a generator for superexponentially decaying distance
functions d. In Proposition 2.9.2 we show a representation d(k) =

〈
Sk−1v|w

〉
. Using the methods of

Section 2.7 we obtain the dynamical trace formula in Corollary 2.9.3.

Proposition 2.9.1. Let g : N → C\{0} with
∑∞

k=1

∣∣ g(k)
g(k+1)

∣∣p <∞. We define S : `2N → `2N, (Sz)k :=
g(k)
g(k+1) zk+1 and call it the weighted shift operator. Then:

(i) S leaves invariant the spaces `qN for 1 ≤ q < ∞ and defines continuous operators on these

spaces with ‖S‖`qN→`qN ≤ supk∈N

∣∣ g(k)
g(k+1)

∣∣ for all 1 ≤ q ≤ ∞,
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(ii) For all z ∈ `pN, n ∈ N0, k ∈ N, we have (Snz)k = g(k)
g(k+n) zk+n,

(iii) S : `2N → `2N belongs to the Schatten class Sp(`2N), is not normal, and ρspec(S) < 1.

Proof. Let 1 ≤ q <∞ and z ∈ `qN, then

‖Sz‖q`qN
=

∞∑

k=1

∣∣∣
g(k)

g(k + 1)
zk+1

∣∣∣
q

≤ sup
k∈N

∣∣∣
g(k)

g(k + 1)

∣∣∣
q

‖z‖q`qN
.

We show assertion (ii) by induction. The case n = 0 is trivial. For the induction step observe that

(Sn+1z)k =
g(k)

g(k + 1)
(Snz)k+1 =

g(k)

g(k + 1)

g(k + 1)

g(k + n+ 1)
zk+n+1 =

g(k)

g(k + n+ 1)
zk+n+1.

From
〈
Sz w

〉
=

∞∑

k=1

g(k)

g(k + 1)
zk+1 wk = z1 · 0 +

∞∑

k=1

zk
g(k − 1)

g(k)
wk−1 =

〈
z S∗w

〉

one obtains the `2N-adjoint S∗ of S as

S∗ : `2N → `2N, (S∗ξ)i =

{
0, i = 1,
g(i−1)
g(i) ξi−1, i ≥ 2.

In particular, ((SS∗)(ξ))k =
∣∣ g(k)
g(k+1)

∣∣2 ξk, which shows that SS∗ is diagonal with respect to the standard

basis. We can read off the singular numbers of S being the square roots of the diagonal entries. By
assumption they belong to `pN. On the other hand

((S∗S)(ξ))k =

{
0, i = 1,∣∣∣ g(i−1)
g(i)

∣∣∣
2

ξi, i ≥ 2.

The operator norm of Sn is bounded by supk∈N

∣∣ g(k)
g(k+n)

∣∣. The sequence k 7→
∣∣ g(k)
g(k+1)

∣∣ tends to zero,

hence one can find k0 ∈ N such that
∣∣ g(k)
g(k+1)

∣∣ < 1
2 for all k ≥ k0. Let C = maxk=1,...,k0

∣∣ g(k)
g(k+1)

∣∣. Then

for all k ∈ N one has

∣∣∣
g(k)

g(k + n)

∣∣∣ =
∣∣∣

g(k)

g(k + 1)

g(k + 1)

g(k + 2)
. . .

g(k0)

g(k0 + 1)

g(k0 + 1)

g(k0 + 2)
. . .

g(k + n− 1)

g(k + n)

∣∣∣ ≤
(1

2

)n−k0+k
Ck0−1,

which tends to zero as n → ∞. Hence we can find n ∈ N such that ‖Sn‖ < 1 and hence the spectral
radius ρspec(S) of S is less than one.

For any non-vanishing sequence s ∈ `pN one gets by setting g : N → C, g(k) :=
(∏k−1

l=1 s(l)
)−1

a

function g as required in Proposition 2.9.1. In particular, s(k) = g(k)
g(k+1) and |s| : N → C, n 7→ |s(n)|

is the sequence of singular numbers of the corresponding weighted shift operator. A typical function

g : N → C satisfying the summability condition
∑∞

k=1

∣∣ g(k)
g(k+1)

∣∣p <∞ is, for instance, g(k) = exp(γkδ)

with γ > 0, δ > 1. In Remark 2.9.5 we will explain the notion of a weighted shift operator.
The interest in the map S is that it allows to express the superexponentially decreasing distance
function d in such a way that we can apply the general theory from Section 2.7.

Proposition 2.9.2. Let g : N → C \ {0} and S : `2N → `2N be as in Proposition 2.9.1 and d : N → C

such that ṽd : N → C, ṽdk := g(k) d(k) belongs to `2N. Then

d(k) =
1

g(1)

〈
Sk−1ṽd e1

〉
`2N

.

Proof. As a consequence of Proposition 2.9.1 (ii) we have

(Snṽd)l =
g(k)

g(l + n)
ṽdl+n =

g(l)

g(l + n)
g(l + n) d(l + n)

for all n ∈ N0, l ∈ N, which immediately implies that
〈
Sk−1ṽd e1

〉
= (Sk−1ṽd)1 = g(1) d(k).



86

From the above propositions and Theorem 2.7.6 we obtain the dynamical trace formula for the Ruelle-
Mayer transfer operator.

Corollary 2.9.3. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional
full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance

function d : N → C given as follows: There exists g : N → C \ {0} with
∑∞

k=1

∣∣ g(k)
g(k+1)

∣∣p < ∞ and

g(1) = 1 such that ṽd : N → C, ṽdk := g(k) d(k) belongs to `2N. Let S : `2N → `2N, (Sz)k :=
g(k)
g(k+1) zk+1. Then there exists an index n0 ∈ N such that for all n ≥ n0 the Ruelle-Mayer transfer
operator

(63) Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
β q(σ) + β σ z1

)
f(σ ṽd + Sz) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = trace (Mβ)
n.

Proof. By Proposition 2.9.2 we can write d(k) =
〈
Sk−1ṽd e1

〉
for all k ∈ N, where S ∈ Sp(`2N) with

ρspec(S) < 1 by Proposition 2.9.1. With respect to the standard basis of `2N the operator S is an
upper triangular matrix with zeros along the diagonal, hence det(1 − Sn) = 1 for all n ≥ n0. The
assertion follows from Theorem 2.7.6.

This result is similar to Corollary 2.8.3 for a finite range interaction, since there is no determinant
factor in the trace formula, which appears for instance in Corollary 2.10.5 for exponentially decaying
interactions. At this point our Hilbert space approach seems to be more effective than the Banach
space approach of D. Mayer [May80a, p. 106], since we can easily see that the determinant factor
is equal to one. This will lead in Section 4.2 to a simpler form of the corresponding dynamical zeta
function.
We will now investigate which distance functions d : N → C satisfy the assumptions of Corollary 2.9.3
and give an example first which is due to D. Mayer [May80a, p. 100].

Example 2.9.4. Consider the distance function d given as d : N → C, k 7→ a(k) exp(−γ kδ), where
γ > 0, δ > 1 and a : N → C is a lower order term, in the sense that limk→∞ a(k) exp(−ε1 kε2) = 0
for all ε1, ε2 > 0. We show that d has a representation as required in Corollary 2.9.3. Let g : N →
C, k 7→ exp(γ(k − 1)δ). Then g(1) = 1 and g satisfies the summability condition: For δ > 1, j, k ≥ 1
we have (j + k)δ − kδ = (j + k) (j + k)δ−1 − k kδ−1 ≥ (j + k − k) kδ−1 = j kδ−1. Hence

(64)

∞∑

k=1

∣∣∣
exp(γ(k − 1)δ)

exp(γ kδ)

∣∣∣
p

=

∞∑

k=1

exp(−γ p (kδ − (k − 1)δ)) ≤
∞∑

k=0

exp(−γ p kδ−1),

which is finite by Proposition 2.2.6 for all p > 0. Hence the corresponding weighted shift operator
S : `2N → `2N is trace class. Moreover, S has operator norm bounded by exp(−γ) < 1, hence by
Theorem 2.7.4 the Ruelle-Mayer transfer operator is trace class. It remains to show that ṽd ∈ `2N.
We proceed similar to the previous estimate (64). For 0 < ε1 < γ, 0 < ε2 ≤ δ− 1, by our assumptions
on the lower order term a we can find a constant C > 0 such that

‖ṽd‖`1N =

∞∑

k=1

exp(−γ(kδ−(k−1)δ)) |a(k)| ≤ C

∞∑

k=1

exp(−γkδ−1 +ε1k
ε2) ≤ C

∞∑

k=1

exp(−(γ−ε1)kδ−1),

which is finite by Proposition 2.2.6. Hence ṽd ∈ `1N ⊂ `2N. In order to apply the methods of
Section 2.7 it would be sufficient that ṽd ∈ `2N and (64) for some p < ∞. These observations allow
to weaken the conditions on the lower order term. For instance the sequence a might grow like
k 7→ exp(γ kδ−1−ε) for all ε > 0.

Next we explain the notion of a weighted shift operator and discuss the possible weights g (and the
possible distance functions d) for which the Ruelle-Mayer transfer operator satisfies a dynamical trace
formula. It turns out that this approach is limited to superexponentially decaying interactions.

Remark 2.9.5. Let g : N → C \ {0} and S : `2N → `2N, (Sz)k := g(k)
g(k+1) zk+1. The operator S is a

weighted shift operator, in the sense that it acts as a left shift composed with a diagonal operator.
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Formal conjugation by the (possibly unbounded) operator diag(g) : `2N → `2N, (diag(g)z)k := g(k) zk
gives

(diag(g)−1 S diag(g)z)k = g(k)−1 g(k)

g(k + 1)
g(k + 1) zk+1 = zk+1.

Hence the weighted shift S is conjugate to the (unweighted) shift τ : `2N → `2N, (τz)k := zk+1 from
Remark 2.1.5. We recall from Remark 2.6.7 the trivial representation d(k) = 〈τk−1d, e1〉`1N,`∞N =
〈τk−1d|e1〉`2N. By formal calculation we obtain

d(k) =
〈
τk−1d e1

〉
`2N

=
〈
diag(g)−1 Sk−1 diag(g)d e1

〉
`2N

=
〈
Sk−1 diag(g)d diag(g)−1e1

〉
.

In order to fulfill the premisses of Theorem 2.7.6 we have to investigate the spectral properties of S

depending on g: By Proposition 2.9.1 the operator S belongs to the Schatten class Sp(`2N) iff

(65)

∞∑

k=1

∣∣∣
g(k)

g(k + 1)

∣∣∣
p

<∞.

In this case the spectral radius of S is automatically less than one. In order to satisfy (65) the sequence
g must increase more than exponentially fast. It remains to investigate for which growth rates of d
and g the vector ṽd := diag(g)d : N → C, ṽdk := g(k) d(k) defines an `2N-sequence. Thus, given d
with superexponential decay, g must not increase too much in comparison to d. A candidate for the
auxiliary sequence g is the following: Set d(0) = 1 and g : N → C with g(k) ≈ 1

d(k−1) . The problem

with this point of view are the possible zeros of d. Vice versa, given a weight g, the distance function
d must decay more than exponentially. We can use (65) in two different ways. First, we write

‖ṽd‖2
`2N

=

∞∑

k=1

|g(k)|2 |d(k)|2 =

∞∑

k=1

∣∣∣
g(k)

g(k + 1)

∣∣∣
p

|g(k)2−p g(k + 1)p d(k)2|.

For ṽd ∈ `2N it suffices by Cauchy-Schwarz inequality and (65) that the sequence

N → C, k 7→ g(k)2−p g(k + 1)p d(k)2

is bounded. This happens for instance if d can be written as d(k) = b1(k)√
|g(k)2−p g(k+1)p|

with b1 ∈ `∞N.

The second approach, which coincides with the first for p = 1, is to write

‖ṽd‖2
`2N

=

∞∑

k=1

|g(k)|2 |d(k)|2 =

∞∑

k=1

|g(k)|
|g(k + 1)| |g(k) g(k + 1) d(k)2|.

By Cauchy-Schwarz inequality and (65) we need for ṽd ∈ `2N that
∑∞

k=1 |g(k) g(k + 1) d(k)2|q < ∞
for q ≤ p

1−p . This happens for instance if d can be written as d(k) = b2(k)√
|g(k) g(k+1)|

with b2 ∈ `qN.

2.10 Ruelle-Mayer transfer operators for a special class of Ising interac-
tions

We will now investigate a new class of distance functions consisting of suitable superpositions of
infinitely many exponentially decaying Ising interactions d : N → C, d(j) :=

∑∞
i=1 ci λ

j
i for which we

can apply the methods from Section 2.7. Besides finite superpositions of exponentially decaying Ising
interactions as studied in [May80a], [HiMay02], [HiMay04], this class contains for instance the following

distance functions: Let 0 < |λ| < 1 and d(k) := λk

1−λk , the logarithmic interaction d(k) := − log(1−λk)
from Example 1.9.7, d(k) := λk

(1−λk)2 , and d(k) := e(λ
k)−1. Due to the special form the limit behaviour

of these distance functions can be analysed in detail. It turns out that these distance functions are
characterised by an exponential decay at infinity.
We define the following operations on sequences: For any two sequences a, b : N → C we define their
pointwise product ab : N → C, (ab)i := aibi.
We fix the branch of the complex square root which is positive on the positive real line. For any
complex sequence a : N → C we define its pointwise square root

√
a : N → C, (

√
a)i :=

√
ai.
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Definition 2.10.1. Given λ : N → D := B(0; 1)C := {z ∈ C | |z| < 1} and c : N → C such that
√
cλ ∈ `2N, we define a distance function d : N → C, d(j) :=

∞∑

i=1

ci λ
j
i =

〈
diag(λ)j−1

√
cλ |

√
cλ
〉
`2N

for all j ∈ N. We define the subspaces D(p),∆
1 ⊂ `1N (for p ∈ [1,∞]) via

(i) d ∈ D(p),∆
1 for p <∞ iff ‖λ‖`pN <∞,

(ii) d ∈ D(∞),∆
1 iff ‖λ‖`∞N < 1.

In Example 2.10.10 we will show that there are many distance functions belonging to D(∞),∆
1 (2.10.1)

and its subspaces. The following Proposition 2.10.2 explains the notation ∆ in the definition of the

spaces D(p),∆
1 (2.10.1) as those distance functions coming from diagonal matrices.

Proposition 2.10.2. A distance function d : N → C belongs to D(p),∆
1 (2.10.1) for p <∞ if and only

if there exists a generating triple (B, v, w) where ∈ `2N, B ∈ Sp(`2N) with B = B> and ρspec(B) < 1,
such that d(k) =

〈
Bk−1v w

〉
.

Proof. Let U : `2N → `2N be a unitary operator such that UBU? = ∆ = diag(λ) is diagonal with
respect to the standard basis of `2N. Set v′ = Uv and w′ = Uw which both belong to `2N. Then

d(k) =
〈
Bk−1v w

〉
=
〈
U?∆k−1Uv w

〉
=
〈
diag(λ)k−1v′ w′〉 =

∞∑

i=1

λk−1
i v′iw

′
i =

〈
diag(λ)k−1p p

〉
,

where p :=
√
v′w′ ∈ `2N, since ‖p‖2

`2N
=
∑∞

i=1 |pi|2 =
∑∞

i=1 |v′iw′
i| ≤ ‖v′‖`2N ‖w′‖`2N = ‖v‖`2N ‖w‖`2N.

The spectral radius of a diagonal operator is its operator norm which is the supremum norm of the
diagonal entries. The converse is obvious.

We will now investigate the inclusion relations of the classes D(q),∆
1 . In particular, we will see that the

distance functions belonging to D(q),∆
1 decay exponentially at infinity. The second part states that a

generator B of d ∈ D(p),∆
1 has necessarily operator norm strictly less than one, hence D(p),∆

1 ⊂ D(∞),∆
1 .

Proposition 2.10.3. (i) For all 1 ≤ p ≤ q ≤ ∞ we have D(p),∆
1 ( D(q),∆

1 ⊂ D(q)
1 , the latter defined

in (2.7.1). In particular, lim supk→∞
k
√
|d(k)| < 1 for all d ∈ D(∞),∆

1 .

(ii) Let p <∞ and d ∈ D(p),∆
1 , say d(j) =

∑∞
i=1 ci λ

j
i . Then ‖λ‖`∞N = maxi∈N |λi| < 1.

Proof. We begin with the second assertion: Let d(j) =
∑∞

i=1 ci λ
j
i for all j ∈ N. If p < ∞ and

d ∈ D(p),∆
1 with λ ∈ `pN, then the sequence λi tends to zero as i→ ∞, hence the maximum maxi∈N |λi|

exists and is strictly less than one. Concerning part (i) observe that ‖λ‖`∞N = ‖diag(λ)‖`2N→`2N < 1

and use Propositions 2.7.2 and 2.10.2. It remains to show that for p < q < ∞ the inclusion D(p),∆
1 (

D(q),∆
1 is strict. For instance consider the sequence λ : N → C, k 7→ k−1/p belonging to `qN \ `pN.

In (2.10.4) we give an example of a sequence which vanishes at infinity, but does not belong to any
`pN for p <∞.

We will now give an example of a sequence which converges to zero, but does not belong to any
sequence space `pN for a finite p. This will complete the proof of the preceding proposition.

Example 2.10.4. We show that ⋃

p<∞
`pN ( c0,

where c0 as usually denotes the space of complex-valued sequences (xn)n∈N with limn→∞ xn = 0. The
stated inclusion is obvious. We have to show that it is strict. The idea is to define a sequence which
looks like a flight of stairs where the length of the stairs increases faster than their height decays.
Let (yn)n∈N be a monotonically decreasing sequence of non-negative real numbers (the height of the
stairs), which will be specified later. We define (xn)n∈N depending on (yn)n∈N via

x2n! = . . . = x2(n+1)!−1 = yn
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for all n ∈ N. Let p ≥ 1. Then counting the number of equal terms yields

∑

x

xpn =
∑

n

(2(n+1)! − 2n!) ypn =
∑

n

2n! (2n+1 − 1) ypn.

We set zn := 2n! (2n+1−1) ypn. Let (yn)n∈N be a sequence tending to zero with limn→∞ n
√
yn = 1, take

for instance yn = 1/n. Then the root test applied to the zn implies that (xn)n∈N /∈ `pN, since

n
√
zn = 2(n−1)! n

√
2n+1 − 1 ( n

√
yn)

p ' 2(n−1)! · 2 · 1

as n→ ∞, independently of p.

Viewing a sequence as an diagonal operator on `2N, the last example states that there are compact
symmetric operators such that no power is trace class.
We will now apply Theorem 2.7.6 from Section 2.7 to the Ruelle-Mayer transfer operator for the
one-dimensional one-sided full shift (1.2.6) with Ising spin interactions (1.8.3) and distance function

d ∈ D(p),∆
1 . By Proposition 2.10.3 (ii) there is nothing to prove.

Corollary 2.10.5. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional full

shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with distance function d ∈ D(p),∆
1 (2.10.1),

say d(j) =
∑∞

i=1 ci λ
j
i , and potential q. Let A(φ) be the standard Ising observable (2.1.7). Then for all

n ≥ dpe the Ruelle-Mayer transfer operator

(66) Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
βq(σ)+βσ

〈
z|
√
cλ
〉)
f
(
σ
√
cλ+diag(λ)z

)
dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1−diag(λ)n) trace (Mβ)
n.

In particular Corollary 2.10.5 includes Ising interactions whose distance function is a superposition of
finitely many exponentially decaying terms, which is a setting which has been investigated for instance
by D. Mayer and J. Hilgert in [May80a], [HiMay02], and [HiMay04].

Example 2.10.6. (Finite superpositions) Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided
one-dimensional full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F )
and distance function d being a superposition of finitely many exponentially decaying interactions,

say d(k) =
∑n
i=1 ci λ

k
i with 0 < |λi| < 1. The distance function d belongs to D(1),∆

1 (2.10.1) and the
corresponding Ruelle-Mayer transfer operator is given as

Mβ : F(Cn) → F(Cn), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ

〈
z|
√
cλ
〉)
f
(
σ
√
cλ+ diag(λ)z

)
dν(σ).

Its conjugate Lβ := C−1

diag(
√
λ/c)

◦Mβ ◦ C
diag(

√
λ/c)

: F(Cn) → F(Cn) acts via

(Lβf)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|c〉

)
f(σ λ+ diag(λ)z) dν(σ),

which is precisely the operator discussed25 in [HiMay02]. By Corollary 2.10.5 it satisfies the trace
formula

Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − diag(λ)n) trace (Lβ)n.

We write the Ruelle-Mayer transfer operator Mβ : F(`2N) → F(`2N) defined in (66) as an integral
over a family of Schatten class operators. Then the explicit trace norm formula (60) of Lemma 2.7.5
allows to weaken the condition on the measure ν and on the boundedness of F ⊂ C imposed in
Corollary 2.10.5.

25There only the finite alphabet F = {±1} has been considered.
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Proposition 2.10.7. Let F ⊂ R be a ν-measurable set and (FN,N0, τ) a one-sided one-dimensional
full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with real-valued distance function

d ∈ D(1),∆
1 (2.10.1), say d(j) =

∑∞
i=1 ci λ

j
i , and potential q. Let m := maxi∈N: ciλi 6=0 |λi| < 1. If the

map

F → C, σ 7→ exp
(
Re(βq(σ)) +

π

2

(β2

π2
+

4

1 −m2

(β
π

+ 1
)2)

σ2 ‖
√
cλ‖2

`2N

)

is ν-integrable, then the Ruelle-Mayer operator Mβ : F(`2N) → F(`2N) defined in (66) is trace class
for β ∈ R.

Proof. We write the Ruelle-Mayer transfer operator Mβ : F(`2N) → F(`2N) (66) as an integral over
a family of trace class operators

Mβ,σ : F(`2N) → F(`2N), (Mβ,σf)(z) := exp
(
βq(σ) + βσ〈z|w〉

)
f(σ v + Bz)

with v = w =
√
cλ ∈ `2N and B := diag(λ). Then the trace norm formula (60) gives

‖Mβ,σ‖S1(F(`2N)) =
exp
(
Re(βq(σ)) + πσ2

2
β2

π2 ‖
√
cλ‖2 + πσ2

2

(
β
π + 1

)2‖(1 − BB?)−1/2(1 + B)
√
cλ‖2

)

det(1 − |B|) .

Suppose that ‖(1 − BB?)−1/2(1 + B)
√
cλ‖2

`2N
≤ 4

1 −m2
‖
√
cλ‖2

`2N
. Then the integrability assumption

shows that
∫
F
‖Mβ,σ‖S1(F(`2N)) dν(σ) < ∞ and hence by Theorem A.7.6 the Ruelle-Mayer operator

is trace class. Concerning the needed estimate we observe that

(1 − BB?)−1/2 = (1 − diag(λ)diag(λ))−1/2 = diag(λ̂),

where λ̂i := (1 − |λi|2)−1/2. Then |1 + λi| < 2 for |λi| < 1 gives the stated bound:

‖(1 − BB?)−1/2(1 + B)
√
cλ‖2

`2N
= ‖diag(λ̂)diag(1 + λ)

√
cλ‖2

`2N

=

∞∑

k=1

∣∣(1 − |λi|2)−1/2(1 + λi)(ci λi)
1/2
∣∣2

=

∞∑

k=1

|1 + λi|2|ci λi|
1 − |λi|2

≤ 4

1 −m2

∞∑

k=1

|ci λi| =
4

1 −m2
‖
√
cλ‖2

`2N

where m := maxi∈N: ciλi 6=0 |λi| < 1 which exists by Proposition 2.10.3.

We will now give criteria ensuring that a distance function belongs to D(1),∆
1 defined in (2.10.1) and

give some examples. Let d(k) =
∑∞

i=1 ci λ
k
i . First, Prop. 2.10.8, we choose the sequence λ : N → C to

be an exponentially decaying sequence times a lower order term. Then we specialise further and look
in Corollary 2.10.9 at purely exponentially decreasing sequences λ.

Proposition 2.10.8. Let c, g : N → C be complex-valued sequences with rc := lim supν→∞
ν
√
|cν | <∞

and rg := lim supν→∞
ν
√
|gν | < ∞. For any λ ∈ C with 0 < |λ| < min( 1

rc rg
, 1
rg

) the distance function

d : N → C, k 7→∑∞
i=1 ci g

k
i λ

ik belongs to D(1),∆
1 (2.10.1).

Proof. At first observe that limk→∞ λk gk = 0, since the series
∑∞

k=1 |λk gk| converges by the root
test:

lim sup
k→∞

k

√
|λk gk| = |λ| rg < 1.

Set λ̃ : N → C, λ̃i := λi gi for all i ∈ N, then for l = 0, 1 we have

lim sup
i→∞

i

√
|cli λ̃i| ≤ |λ| lim sup

i→∞
i

√
|ci|l lim sup

i→∞
i
√
|gi| ≤ |λ| rlc rg.

Our assumptions on the range of λ imply that |λ| rlc rg < 1. Now the root test implies that λ̃ ∈ `1N

(for l = 0) and
√
cλ̃ ∈ `2N (for l = 1).



Transfer operators for the full shift 91

Another subclass of the space D(1),∆
1 (2.10.1) consists of those distance functions which come from

evaluating analytic functions in a neighbourhood of a zero point. Without loss of generality let f be an
analytic function in a neighbourhood of zero with f(0) = 0 and λ small enough. Then d(k) := f(λk)

belongs to D(1),∆
1 as we will show next. For this phenomenon we will give some examples in (2.10.10).

Corollary 2.10.9. Let f be an analytic function, whose Taylor expansion at zero has the radius
of convergence 0 < rf ≤ ∞, and f(0) = 0. Then for every 0 < |λ| < 1 the distance function

d : N → C, d(k) := f(λk) belongs to D(1),∆
1 (2.10.1), as long as |λ| < min(1, rf ).

Proof. Let f be given as f(z) =
∑∞
i=1 ci z

i. Recall that the radius of convergence of the analytic

function f satisfies 1
rf

= lim supi→∞
i
√
|ci| = rc in the notation of Proposition 2.10.8. Set g ≡ 1 and

apply (2.10.8).

We denote the space of holomorphic functions on the unit disk D := B(0; 1)C by O(D). A whole zoo
of distance functions of the type described in Corollary 2.10.9 can be obtained by evaluating suitable
analytic functions at points λk. We will now give some examples.

Example 2.10.10. Some examples for distance functions obtained via Corollary 2.10.9 are for in-
stance the following (we retain the wording from there):

(i) Let f ∈ O(D) be defined by f(z) := z
1−z =

∑∞
i=1 z

i. We have ci ≡ 1 and rf = 1. Hence

d(k) := f(λk) = λk

1−λk belongs to D(1),∆
1 (2.10.1) for all λ ∈ D by Corollary 2.10.9.

(ii) Let f ∈ O(D) be defined by f(z) := log(1 − z) =
∑∞

i=1
zi

i . We have ci = 1
i and rf = 1. Hence

d(k) := f(λk) = − log(1 − λk) belongs to D(1),∆
1 for all λ ∈ D. This logarithmic interaction was

introduced in Example 1.9.7.

(iii) Let f ∈ O(D) be defined by f(z) := z
(1−z)2 =

∑∞
i=1 i z

i. We have ci = i and rf = 1. Hence

d(k) := f(λk) = λk

(1−λk)2 belongs to D(1),∆
1 for all λ ∈ D.

(iv) Let f ∈ O(C) be defined by f(z) := ez − 1 =
∑∞
i=1

zi

i! . We have ci = 1
i! and rf = ∞. Hence

d(k) := f(λk) = e(λ
k) − 1 =

∑∞
i=1

λik

i! belongs to D(1),∆
1 for all λ ∈ D.

Remark 2.10.11. Given a given distance function d ∈ D1 (Def. 2.2.4), we would like to know if d
can be constructed via Corollary 2.10.9. In order to decide this one has to identify the corresponding

holomorphic map f such that d(k) = f(λk). Since k = log λk

log λ , the naive approach is to set f(z) =

d
(

log z
log λ

)
, which satisfies f(λk) = d

(
log λk

log λ

)
= d(k). Then one has to investigate whether this defines

a holomorphic function f in a neighbourhood of zero (possibly there are restrictions on the choice of
λ). For any λ ∈ C with 0 < |λ| < 1 the set {λk ∈ C | k ∈ N} has the accumulation point zero. Hence
(for every fixed λ) a holomorphic function f , which is defined in a neighbourhood of zero and satisfies
f(λk) = d(k) for all k ∈ N, is uniquely determined. Since limk→∞ d(k) = 0, the function f necessarily
belongs to the ideal of holomorphic functions vanishing at zero.

In the rest of this section we will derive necessary conditions on distance functions belonging to the

spaces D(p),∆
1 (Def. 2.10.1). By Proposition 2.10.3 (ii) we know that every distance function d ∈ D(p),∆

1

has at least exponential decay at infinity, i. e., lim supk→∞
k
√
|d(k)| < 1. We will show that the non-

trivial distance functions belonging to D(p),∆
1 have precisely exponential decay at infinity which is

surprising, since D(p),∆
1 is defined by inequalities. The following proposition is of preparatory nature.

Proposition 2.10.12. Let λ : N → C be bounded and c : N → C such that
∑∞

i=1 ci λ
k
i converges

absolutely for all k ∈ N. Then

lim
k→∞

k

√√√√
∞∑

i=1

|ci λki | = sup
i∈N: ci 6=0

|λi|.
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Proof. We set λ := supi∈N: ci 6=0 |λi|. By our assumptions the series
∑∞
i=1 |ci λi| converges. Hence for

all k ∈ N we have

k

√√√√∣∣
∞∑

i=1

ci λki
∣∣ ≤ k

√√√√λk
∞∑

i=1

|ci|
∣∣∣
λi
λ

∣∣∣
k

≤ k

√√√√λk
∞∑

i=1

|ci|
∣∣∣
λi
λ

∣∣∣ = λ k

√√√√
∞∑

i=1

|ci|
∣∣∣
λi
λ

∣∣∣,

which tends to λ as k → ∞. For all ε ∈]0, λ[ there exists n ∈ N such that cn 6= 0 and |λn| > λ − ε.
Hence

k

√√√√
∞∑

i=1

|ci λki | ≥ k

√
|cn| |λn|k ≥ k

√
|cn| (λ− ε)k = k

√
|cn| (λ− ε),

which tends to λ− ε as k → ∞. Since ε > 0 was arbitrary, we have limk→∞
k

√∑∞
i=1 |ci λki | = λ.

If the supremum supi∈N: ci 6=0 |λi| in Proposition 2.10.12 is indeed a maximum, then we can determine

the limit limk→∞ k

√∣∣∑∞
i=1 ci λ

k
i

∣∣ which we interpret as limk→∞ k
√
|d(k)| for a distance function d ∈

D(p),∆
1 . The maximum is attained for instance if the sequence λ = (λi)i∈N converges to zero, which is

equivalent to say that diag(λ) : `2N → `2N is a compact operator.

Proposition 2.10.13. Let λ : N → C be bounded and c : N → C such that maxi∈N: ci 6=0 |λi| exists
and

∑∞
i=1 ci λ

k
i converges absolutely for all k ∈ N. Then

lim
k→∞

k

√√√√∣∣
∞∑

i=1

ci λki
∣∣ = max

i∈N: ci 6=0
|λi|.

Proof. We set λ := maxi∈N: ci 6=0 |λi|. By relabelling we can assume that the sequence (|λn|)n∈N attains
its maximum only once (change the coefficients (cn)n∈N otherwise), without loss of generality |λ1| = λ.
Let ε > 0. Since

√
cλ belongs to `2N, there exists an index n0 ∈ N such that

∑∞
i=n+1 |ci λi| < ελ for

all n ≥ n0. Since λ > |λi| for all i ≥ 2, there exists an index k0 ∈ N such that
∣∣∑n

i=2 ci
(
λi

λ

)k∣∣ < ε for
all k ≥ k0. Then

(67)
∣∣∣

∞∑

i=2

ci

(λi
λ

)k∣∣∣ ≤
∣∣∣
n∑

i=2

ci

(λi
λ

)k∣∣∣+
∞∑

i=n+1

|ci|
∣∣∣
λi
λ

∣∣∣
k

≤
∣∣∣
n∑

i=2

ci

(λi
λ

)k∣∣∣+
∞∑

i=n+1

∣∣∣ci
λi
λ

∣∣∣ < 2ε.

Hence for ε < |c1|/2 we have, using |λ1| = λ,

∣∣∣
∞∑

i=1

ci λ
k
i

∣∣∣ ≥
∣∣∣|c1|λk − |

∞∑

i=2

ci λ
k
i |
∣∣∣ = |c1|λk

(
1 −

∣∣∣
∞∑

i=2

ci
|c1|

(λi
λ

)k∣∣∣
)
≥ |c1|λk

(
1 − 2

|c1|
ε

)
.

This implies that

k

√√√√∣∣
∞∑

i=1

ci λki
∣∣ ≥ k

√

|c1|λk
(

1 − 2

|c1|
ε

)
,

which tends to λ as k → ∞. The obvious upper bound k

√
|∑∞

i=1 ci λ
k
i | ≤ k

√∑∞
i=1 |ci λki | also tends

to |λ1| as k → ∞ by the preceding Proposition 2.10.12. Hence the limit exists and has the stated
value.

Of course, we would like to prove26

Conjecture 2.10.14. Let λ : N → C be bounded and c : N → C such that
∑∞
i=1 ci λ

k
i converges

absolutely for all k ∈ N. Then limk→∞
k

√
|∑∞

i=1 ci λ
k
i | = supi∈N: ci 6=0 |λi|.

26By Propositions 2.10.12 and 2.10.13 it remains to show the lower bound limk→∞
k
q

|
P∞

i=1 ci λk
i | ≤ supi∈N: ci 6=0 |λi|

in the case the maximum maxi∈N: ci 6=0 |λi| is not attained.
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We summarise the previous results and obtain the following description of the spaces D(p),∆
1 (2.10.1).

It states that the non-trivial elements of D(p),∆
1 have precisely exponential decay at infinity.

Proposition 2.10.15. Let d ∈ D1 (Def. 2.2.4) be a distance function.

(i) If d ∈ D(p),∆
1 \ {0} for some p <∞ (2.10.1), then 0 < limk→∞ k

√
|d(k)| < 1.

(ii) If d ∈ D(p),∆
1 for some p <∞ and limk→∞ k

√
|d(k)| = 0, then d = 0.

Proof. Let d ∈ D(p),∆
1 for some p < ∞, say d(k) =

∑∞
=1 ci λ

k
i . Since D(p),∆

1 ⊂ D(p)
1 , we know by

Proposition 2.7.2 that limk→∞ k
√
|d(k)| < 1. By Proposition 2.10.3 the sequence (|λi|)i∈N attains its

maximum maxi∈N: ci 6=0 |λi| < 1. On the other hand, the first assertion of Proposition 2.10.13 shows

that limk→∞ k
√
|d(k)| = maxi∈N: ci 6=0 |λi|. Hence, if limk→∞ k

√
|d(k)| = 0, then maxi∈N: ci 6=0 |λi| = 0

and the distance function is the constant function zero.

The converse of Proposition 2.10.15 (i) is not true in general, as we will see next.

Remark 2.10.16. Let d ∈ D1 (Def. 2.2.4) be a distance function with 0 < limk→∞ k
√
|d(k)| < 1. Then

d does not necessarily belong to some D(p),∆
1 with p ≤ ∞. One is tempted to think that there should

be a development of d as a sum of exponentially decaying functions by an iterative process. This
however fails: Think of d(k) := λk+exp(−γkδ) with 1 > λ > 0, γ > 0, δ > 1. Then λk ≤ d(k) ≤ C λk

for some constant C > 0 and hence limk→∞ k
√
|d(k)| = λ, but the next order term exp(−γkδ) has no

such expansion since limk→∞
k
√
| exp(−γkδ)| = limk→∞ exp(−γkδ−1) = 0.

In this section we introduced a scale of new classes of distance functions which consist of suitable
infinite superpositions of exponentially decaying terms. Due to the special shape of these distance
functions their asymptotic behaviour can be well analysed. We showed that the (non-zero) distance
functions belonging to these classes have exponential decay at infinity.

2.11 Ruelle-Mayer transfer operators for polynomial-exponential decaying
interactions

In this section we construct the Ruelle-Mayer transfer operator for the one-sided one-dimensional full
shift with polynomial-exponentially decaying Ising interaction, i.e., we consider the distance functions
of the form d : N → C, k 7→ λk

∑p
i=0 ci k

i, where λ ∈ C with 0 < |λ| < 1, ci ∈ C. We determine
a Ruelle-Mayer transfer operator and prove a dynamical trace formula. In view of Theorem 2.7.6
it remains to determine a generating triple for d. This directly reproduces the results of D. Mayer
and J. Hilgert [May80a], [HiMay02], [HiMay04] on exponentially decaying distance functions and K.
Viswanathan’s result [Vi76] on polynomial-exponentially decaying interactions.

Remark 2.11.1. Let λ ∈ C×, x ≥ 0, and p ∈ N0. A standard basis for the (p+1)-dimensional vector
space spanned by τ -images of the distance function d : N → C, k 7→ (k + x)pλk are the functions
ẽl : N → C, ẽi(k) := (k + x)iλk for i = 0, . . . , p. Because of the binomial formula they satisfy




λk+1

(k + 1 + x)λk+1

...
(k + 1 + x)p−1λk+1

(k + 1 + x)pλk+1




= λB(p+1)




λk

(k + x)λk

...
(k + x)p−1λk

(k + x)pλk




for all k ∈ N, where B(p+1) ∈ Mat(p + 1, p + 1; R) is the unipotent (lower) triangular matrix with
entries

(B(p+1))i,j =






(
i
j

)
, j ≤ i,

0 , otherwise.
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Obviously, det B(p+1) = 1. Let x = 0, then ve := (ẽ0(1), . . . , ẽp(1))> = (λ, . . . , λ) = λ1 ∈ Cp+1. By
induction we obtain 



λk

kλk

...
kpλk


 = λk(B(p+1))k−11

and hence we have found a generating triple for

d(k) := λk
p∑

i=0

ci k
i =

〈
λk(B(p+1))k−11 c

〉

for all c = (c0, . . . , cp) ∈ Cp+1.

As an immediate consequence of Remark 2.11.1 and Theorem 2.7.6 we obtain the dynamical trace
formula for polynomial-exponentially decaying Ising interactions, a result which has been observed by
K. Viswanathan [Vi76] in the case of a finite alphabet.

Corollary 2.11.2. Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full
shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance
function d : N → C, k 7→ λk

∑p
i=0 ci k

i, where λ ∈ C with 0 < |λ| < 1, ci ∈ C. Let B(p+1) ∈
Gl(p+ 1; C) be the matrix given in Remark 2.11.1 and 1 : {0, . . . , p} → C the constant function one.
Then the Ruelle-Mayer transfer operator

Mβ : F(Cp+1) → F(Cp+1), (Mβf)(z) =

∫

F

exp
(
βq(x) + β x 〈z|c〉

)
f
(
λx 1 + λB(p+1)z

)
dν(x)

satisfies the dynamical trace formula Zb
N0 ,φ

{1,...,n}(β) = Z̃b
N0

n (βA(φ)) = (1 − λn)p+1 trace (Mβ)
n.

2.12 Classification

Given a distance function d ∈ D(∞)
1 (2.7.1), then there are many triples (B, v, w) which generate d.

For instance, say d(k) = 〈Bk−1v|w〉H, then d can also be represented as d(k) = 〈v|(B∗)k−1w〉H =
〈(B>)k−1w|v〉H. Secondly, we can change v into v + v′ with v′ ∈ ker B and, similarly, w into w + w′

with w′ ∈ ker B∗ = BH. Thirdly, for every S ∈ Gl(H) one has

d(k) = 〈Bk−1v|w〉H = 〈S−1(SBS−1)k−1Sv|w〉H = 〈(SBS−1)k−1Sv|S−?w〉H.

Given two different representations d(k) = 〈(Bi)k−1vi|wi〉 for i = 1, 2, then the corresponding Ruelle-
Mayer transfer operators

Mβ,(i) : F(Hi) → F(Hi), (Mβ,(i)f)(z) =

∫

F

exp
(
βq(σ) + βσ〈z|wi〉

)
f(σ vi + Biz) dν(σ)

are not conjugate in general, even if H1
∼= H2 because of possibly occurring kernels of Bi and of B?i .

In this section we ask for normal forms. First we will deal with those generators which cannot be
decomposed.

Definition 2.12.1. Let H be a Hilbert space. We call a linear map B : H → H irreducible if there is
no closed subspace V of H different from {0} and H such that both V and V ⊥ are B-invariant.

Remark 2.12.2. Let d ∈ D(∞)
1 (2.7.1), say d(k) = 〈Bk−1v|w〉H, such that B : H → H is compact.

This, for instance, happens if d ∈ D(p)
1 (2.7.1) for some p <∞. Hence both the sequence of eigenvalues

and the sequence of singular numbers of B converge to zero. Moreover, for all λ 6= 0 the generalised
eigenspaces Eλ := {v ∈ H | (∃n ∈ N) (B − λ)nv = 0} are finite dimensional. For λ ∈ C, j ∈ N we call

(68) J(λ,j) :=




λ 1
. . .

. . .

λ 1
λ


 ∈ Mat(j, j; C)
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the standard Jordan block of size j and eigenvalue λ. A Jordan block is irreducible (in the sense of
Def. 2.12.1) and by the Jordan decomposition theorem the Jordan blocks are (up to conjugation) the
only irreducible maps on a finite dimensional complex vector space. Hence the only other irreducible
maps are congruent to “infinite Jordan blocks” with eigenvalue zero.

The operators B = diag(λ) : `2N → `2N, (Bx)(i) = λi xi corresponding to distance functions belonging

to the class D(p),∆
1 (see Example 2.7.7 (iii) and Section 2.10), are examples of highly non irreducible

maps. - We make some attempts to give a classification of those generators which can be treated with
our method.

Remark 2.12.3. Given d ∈ D(∞)
1 (2.7.1), say d(k) = 〈Bk−1v|w〉H, with B : H → H compact and

irreducible (2.12.1). Using Remark 2.12.2 one obtains the following classification:

1. H finite dimensional: H ∼= Cj . The irreducible maps are the Jordan blocks J(λ,j) (2.12.2).

1.a Let J(λ,j) ∈ Mat(j, j; C) be the standard Jordan block with λ = 0, i. e., J(λ,j) = Sj is the

standard j-step nilpotent matrix. Hence d(k) = 〈(J(0,j))
k−1v|w〉 is a finite-range distance

function with finite range j. See Section 2.8.

1.b Let J(λ,j) ∈ Mat(j, j; C) be the standard Jordan block with λ 6= 0. The matrix J(λ,j)

is invertible and d is a polynomial-exponential distance function d(k) = pj(k)λ
k with a

polynomial pj in the variable k of degree deg pj = j − 1. See Section 2.11.

2. H infinite dimensional: H ∼= `2N. Necessarily spectrum of the irreducible maps consists of {0}.
Up to now we know only one example, namely the superexponential distance functions, see
Section 2.9.

Since the generators from (1.a) and (1.b) act on finite dimensional spaces, they are trace class and

hence the corresponding distance functions belong to D(1)
1 (2.7.1).

A possible normal form of a generating triple (B, v, w) consists of an operator B written as the direct
sum of its Jordan blocks.
In the following we will give a characterisation of the generators acting on finite dimensional spaces
via the study of shift invariant subspaces of distance functions.

Definition 2.12.4. Let B : B → B be a bounded operator on a Banach space B. A vector v ∈ B is
called B-cyclic if the space spanned by the B-iterates Bkv (k ∈ N0) is dense in B.

Proposition 2.12.5. Let d : N → C. The following are equivalent:

(i) There is a linear map B satisfying

(69) B




d(k)
...

d(k + n− 1)


 =



d(k + 1)

...
d(k + n)




for all k ∈ N and n is minimal with this property.

(ii) The shift operator τ : CN → CN, (τf)(k) = f(k + 1) (2.1.5) applied to d generates an n-
dimensional complex vector space.

(iii) The functions τ ld : N → C (l = 1, . . . , n) are a basis of span{τ ld | l ∈ N0}.

(iv) d solves an n-th order homogeneous linear difference equation with constant coefficients.

(v) There exists B ∈ Mat(n, n; C) and a cyclic vector v ∈ Cn such that d(k) =
〈
Bk−1v e1

〉
for all

k ∈ N.

Proof. Let B = (Bi,j)i,j=1,...,n.
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(ii⇒ iii) Look at the chain of vector spaces27

0 → span{d} τ→ span{d, τd} τ→ . . .
τ→ span{d, . . . , τk−1d} τ→ span{d, . . . , τkd} τ→ . . . .

By assumption this chain is eventually constant. If τ(span{d, . . . , τk−1d}) ⊂ span{d, . . . , τkd}
for some k ∈ N, then all higher iterates τ ld also belong to this space, hence span{τ ld | l ∈ N0} =
span{d, . . . , τk−1d} and k = n. The argument moreover shows that dim span{d, . . . , τ ld} = l+1
for all 0 ≤ l ≤ k − 1, hence d, τd, . . . , τn−1d are a basis in span{τ ld | l ∈ N0}.

(iii⇒ ii) Obvious.

(iii⇒ iv) Since d, . . . , τn−1d form a basis in span{d, τd, . . . , τn−1d}, there are coefficients such that

τnd =
∑n−1

l=0 Bn,l+1 τ
ld, i.e., (τnd)(k) = d(n+k) =

∑n−1
l=0 Bn,l+1 (τ ld)(k) =

∑n
l=1 Bn,l d(k+l−1)

for all k ∈ N. Due to the special structure of the basis one has

(70)




(τd)(k)
...
...

(τnd)(k)




=




d(k + 1)
...
...

d(k + n)




=




0 1
. . .

. . .

0 1
Bn,1 . . . . . . Bn,n







d(k)
...
...

d(k + n− 1)



.

By looking on the structure of the equations it suffices to solve the last one, i. e.,

d(j + n) =

n∑

k=1

Bn,k d(j + k − 1)

for all j ∈ N. Introducing ck := −Bn,k+1 (k = 0, . . . , n− 1), the last equation can be rewritten
as

(71) d(j + n) +

n−1∑

k=0

ck d(j + k) = 0

for all j ∈ N, being the standard form of a homogeneous linear difference equation of n-th order
with constant coefficients.

(iv⇒ i) Write (71) as (70).

(i⇒ v) By induction we obtain the representation



d(k + 1)

...
d(k + n)


 = Bk−1



d(1)

...
d(n)




for all k ∈ N. This implies that (τ i−1d)(k) =
〈
Bk−1vd ei

〉
for all k ∈ N, i = 1, . . . , n, where

vd =
(
d(1), . . . , d(n)

)>
and ei ∈ Cn is the i-th standard unit vector. If vd is not cyclic, then

there is a non-zero vector w = (w1, . . . , wn) ∈ Cn such that
∑n
i=1 wi τ

i−1d = 0, i. e.,

0 =
n∑

i=1

wi (τ
i−1d)(k) =

n∑

i=1

wi
〈
Bk−1vd ei

〉
=
〈
Bk−1vd w

〉

for all k ∈ N. Hence the vectors d, . . . , τn−1d are linearly dependent contradicting (iii).

(v⇒ iii) Conversely, if there exists a vector w = (w1, . . . , wn) ∈ Cn such that
∑n
i=1 wi τ

i−1d = 0, then〈
Bkv w

〉
for all k ∈ N. Hence w is orthogonal to the span of the Bkv, which by assumption

is the whole space Cn, hence w = 0 and the d, . . . , τn−1d are linearly independent. Obviously,
they are spanning.

27The existence of such a “cyclic” basis does not depend on the specific choice of the shift operator.
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Using the notation of the proof one calls

p(X) = Xn +

n−1∑

k=0

ckX
k = Xn −

n−1∑

k=0

Bn,k+1X
k

the characteristic polynomial of the difference equation. By induction one can show that p(X) =
det(B −X) is the characteristic polynomial of B. Obviously, the matrix B is invertible if and only if
c0 = −Bn,1 6= 0 if and only if p(0) 6= 0. The latter we call non-degenerate.
Next we show that non-degenerate difference equations are in correspondence with polynomial- ex-
ponential functions, i. e., pointwise products of a polynomial and an exponential function, and that
degenerate difference equations correspond to finite range distance functions.

Proposition 2.12.6. Let d : N → C. The following are equivalent:

(i) There is a linear isomorphism B satisfying (69) for all k ∈ N and n is minimal with this property.

(ii) Md := span{τkd : N → C | k ∈ N0} is a τ-invariant complex vector space and the restriction
τ |Md

: Md →Md of the shift is a linear isomorphism.

(iii) There exists B ∈ Gl(n; C) and a cyclic vector v ∈ Cn such that d(k) =
〈
Bkv e1

〉
for all k ∈ N0.

(iv) d solves a non-degenerate n-th order homogeneous linear difference equation with constant coef-
ficients.

(v) There exist λi ∈ C \ {0} (i = 1, . . . , l) and multiplicities h1, . . . , hl ∈ N with
∑l

i=1 hi = n and
coefficients ci,m ∈ C (i = 1, . . . , l; m = 0, . . . , hi − 1) such that for all k ∈ N

d(k) =

l∑

i=1

hi−1∑

m=0

ci,m k
m λki .

Proof. By Proposition 2.12.5 the equivalences between (i), (iii), (iv) are obvious.

(i⇔ ii) Note that B is the representing matrix of τ |Md
: Md →Md with respect to a special basis.

(iv⇔ v) Let λi be the roots of the characteristic polynomial p(X) = det(B−X) with multiplicity hi,
i = 1, . . . , l, then by the non-degeneracy the λi are non-zero complex numbers and the theory
of difference equations [Mi90, p. 127] yields that

fi,m(k) = kmλki (m = 0, . . . , hi − 1, i = 1, . . . , l)

is a fundamental system of solutions, i. e., the n functions fi,m (m = 0, . . . , hi − 1; i = 1, . . . , l)
are linearly independent and their span is τ -invariant.

The following corollary considers the irreducible finite dimensional shift invariant subspaces and shows
that they correspond to polynomial-exponential functions.

Corollary 2.12.7. Let d : N → C. The following are equivalent:

(i) There exist λ ∈ C \ {0} and coefficients ci ∈ C (i = 0, . . . , n− 1) such that for all k ∈ N

d(k) = λk
n−1∑

i=0

ci k
i.

(ii) Md := span{τkd : N → C | k ∈ N0} is an n-dimensional τ-invariant complex vector space and the
restriction τ |Md

: Md →Md, (τg)(k) = g(k+ 1) of the shift is a linear, bijective and irreducible
map (in the sense of Def. 2.12.1).

(iii) There is an irreducible linear isomorphism B ∈ Gl(n; C) satisfying (69).
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Proof. If B is an irreducible isomorphism, then it is conjugate to a Jordan block J(λ,n) ∈ Mat(n, n; C)
with λ 6= 0. Hence the roots of the characteristic polynomial are all equal to λ and hence d has the
stated form by Proposition 2.12.6. If d is of this form, then λB(n) is a representing matrix of the
shift operator restricted to Md as shown in Example 2.11.1. The matrices λB(n) and J(λ,n) are both
irreducible and have the same eigenvalues, hence are conjugate showing the equivalence of (i) and
(iii). The implication (ii⇒ iii) follows from looking at a representing matrix of τ |Md

: Md → Md.
It remains to show that given a polynomial f ∈ C[X ] and λ ∈ C×, the distance function d : N →
C, d(n) := λn f(n) satisfies (ii). First consider the case λ = 1, i. e., f = d. For any monomial
mk(X) := Xk ∈ C[X ] we have

(τmk)(X) = mk(X + 1) = (X + 1)k =

k∑

l=0

(
k

l

)
X l ∈ span{m0, . . .mk},

hence Mf is contained in the finite dimensional τ -invariant space span{m0, . . .m1+deg f}. The restric-
tion of the shift τ |Mf

: Mf → Mf is linear and injective, since h ∈Mf satisfies (τh)(X) = h(X+1) = 0
for all X ∈ N if and only if h = 0. Hence τ |Mf

: Mf →Mf is bijective. The space Mf is τ -irreducible,
since for every h ∈Mf of degree deg h the span of the iterates of h

Mh = span{τkh : N → C | k ∈ N0} = span{m0, . . .mdegh}

is invariant, but the complement Mf \Mh is not invariant.
For arbitrary λ ∈ C× set Cλ : CN → CN, (Cλh)(n) := λn h(n). Then Cλ is a bijective linear map
which almost (up to a constant scalar) commutes with the shift τ , since

(τCλh)(n) = λn+1 h(n+ 1) = λ (Cλτh)(n)

for any h ∈ CN and n ∈ N. Hence the claim follows from the first case.

In other words, Remark 2.11.1 computes the representing matrix of the restriction τ |Md
: Md → Md

of the shift operator with respect to a suitable basis where d(k) = kp λk.
In the same spirit of Proposition 2.12.6 one easily shows its analogon for finite range distance functions.

Proposition 2.12.8. Let d : N → C. The following are equivalent:

(i) There is a nilpotent linear map B satisfying (69) for all k ∈ N and n is minimal with this
property.

(ii) Md := span{τkd : N → C | k ∈ N0} is a τ-invariant complex vector space and the restriction
τ |Md

: Md →Md of the shift is nilpotent.

(iii) There exists a nilpotent B ∈ Mat(n, n; C) and a cyclic vector v ∈ Cn such that d(k) =
〈
Bkv e1

〉

for all k ∈ N0.

(iv) d solves a degenerate n-th order homogeneous linear difference equation with constant coefficients.

(v) d is a distance function with finite range n.

2.13 Ising type interaction

In Sections 2.7, 2.8 - 2.11, we have investigated lattice spin systems with Ising interaction and have
constructed transfer operators for them. We will now use these results to find Ruelle-Mayer type
transfer operators for one-sided one-dimensional full shifts with Ising type interaction. In our next
main Theorem 2.13.8 we will prove the dynamical trace formula which generalises Theorem 2.7.6 to
Ising type interactions. Recall from Remark 1.8.3 that an interaction matrix r : F × F → C is called
of Ising type if

r(x, y) =

l∑

k=1

ai(x) bi(y)

for some functions ai, bi : F → C. As mentioned in Example 1.8.4 many physically relevant interaction
matrices belong to this class, for instance Stanley’s vector models and the finite state Potts model.
We start with some observations on the algebraic and analytic properties of the set of Ising type
interaction matrices.
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Remark 2.13.1. Let V be a subvector space of FC = {g : F → C}. A function f : F × F → C is
called decomposable in V , if there exist functions si, tj ∈ V such that for all x, y ∈ F

(72) f(x, y) =

M∑

i=1

si(x) ti(y), ,

where s(M) := (s1, . . . , sM ), t(M) := (t1, . . . , tM ) : F → CM . The minimal number M ∈ N is called
the rank of f . If the rank is one, i. e., f(x, y) = s(x) t(y), we call f simple.

(i) The space of decomposable functions is a subvector space of all functions F × F → C.

(ii) If F is finite, then every function f : F × F → C is decomposable: Using Kronecker’s delta
function δ, we have the so called trivial decomposition

f(x, y) =
∑

z∈F
fz(x) δz(y),

where fz(x) := f(x, z) and δz(y) = δz,y for all x, y, z ∈ F .

(iii) Let F be compact. Note that C(F )×C(F ) is a total subset in C(F×F ), hence every r ∈ C(F×F )
can be approximated by a sequence (r(M))M∈N

in C(F ×F ) such that each r(M) is decomposable
with rank M .

(iv) Let F be a Hausdorff space. It is known that Cb(F ) × Cb(F ) is in general not a total subset in
Cb(F × F ).

Remark 2.13.2. (i) The space of Ising type interaction matrices is a subvector space of all sym-
metric functions F × F → C.

(ii) Let F be compact. Note that (C(F ) × C(F ))Z2 is a total subset in C(F × F )Z2 . In fact, let
r ∈ C(F×F )Z2 and (r(M))M∈N

be an approximating sequence in C(F×F ). Set r̃(M) : F×F → C,

r̃(M)(x, y) := 1
2

(
r(M)(x, y) + r(M)(y, x)

)
which is symmetric. Then r̃(M) → r in C(F ×F ), since

sup
x,y∈F

|r(x, y) − r̃(M)(x, y)| ≤
1

2
sup
x,y∈F

|r(x, y) − r(M)(x, y)| +
1

2
sup
x,y∈F

|r(y, x) − r(M)(y, x)|

which tends to zero as M → ∞.

Example 2.13.3. Let F be a finite set. The Potts model (see Example 1.8.3) with alphabet F has
the interaction matrix rPotts(x, y) = δx,y =

∑
z∈F δx,z δz,y, where δ is the Kronecker delta function

on F × F . The Potts model interaction matrix has rank equal to |F |. In this example the trivial
decomposition is also symmetric.

If F is finite, then every interaction matrix has symmetric decompositions:

Proposition 2.13.4. Let R ∈ Mat(N,N ; R) be symmetric and 0 ≤ rank(R) ≤ N the rank of the
associated bilinear form

βR : RN × RN → R, (x, y) 7→ 〈x|Ry〉.
(i) For each M ≥ rank(R) one has factorisations R = AMA

>
M with AM ∈ Mat(N,M ; C).

(ii) There exists AN = A>
N ∈ Mat(N ;N ; C) with R = A2

N .

Proof. The matrices AM ∈ Mat(N,M ; C) will be constructed using the matrices ιM ∈ Mat(N,M ; C)
which we define first. For M ≤ N set

ιM :=

(
idM

ON−M,M

)
∈ Mat(N,M ; C)

and for M ≥ N
ιM :=

(
idN ON,M−N

)
∈ Mat(N,M ; C).

where Ok,l is the zero matrix in Mat(k, l; C). Depending on whether M or N is the larger number,

we determine ιM ι
>
M . For M ≤ N we have ιM ι

>
M =

(
idM OM,N−M

ON−M,M ON−M,N−M

)
∈ Mat(N,N ; C) and for

M ≥ N we have ιM ι
>
M = idN .
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(i) Denote by ρ = rank(R) the rank of R. There exists T ∈ O(N) such that R = TDT> where
D = diag(d1, . . . , dρ, 0, . . . , 0) ∈ Mat(N,N ; R). Let

√
be the square root which is positive on

the positive real line. For M ≥ rank(R) set

EM :=
√
D ιM =

(√
diag(d) Oρ,M−ρ
ON−ρ,ρ ON−ρ,M−ρ

)
∈ Mat(N,M ; C),

where
√

diag(d) = diag(
√
d1, . . . ,

√
dρ) ∈ Mat(ρ, ρ; C). By the previous considerations we have

EME
>
M =

√
D ιM ι

>
M

√
D = D. Set AM := TEM ∈ Mat(N,M ; C), then

AMA
>
M = TEME

>
MT

> = TDT> = R.

(ii) Set AN = T
√
DT>, then A>

N = AN and A2
N = TDT> = R.

The following proposition will be the first step towards Ising type interactions. According to the
decomposition of an Ising type interaction matrix one obtains a decomposition of the corresponding
standard observable. Each summand in this decomposition can almost be represented as in Re-
mark 2.1.7, but decorated with a homomorphism which we will introduce in Remark 2.13.5. In the
second step, Prop. 2.13.7, this will lead to an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions
provided the distance function is of a special shape.

Remark 2.13.5. For any function f : F → C we set f : FN → CN, f(ξ)i := f(ξi). The map f is not

linear, but a homomorphism in the following way: For all σ ∈ F, ξ ∈ FN we have

f(σ ∨ ξ) = f(σ) ∨ f(ξ) = f(σ)e1 +
(
0 ∨ f(ξ)

)
,

where e1 = (1, 0, . . .) ∈ CN is the first standard unit vector.

Proposition 2.13.6. Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional
full shift (1.2.6). Let φ be a two-body Ising type interaction (1.8.3) with potential q, distance function

d ∈ `1N, and interaction matrix r ∈ Cb(F ×F ) given as r(x, y) =
∑M
i=1 si(x) ti(y) with si, tj ∈ Cb(F ).

Then for all σ ∨ ξ ∈ Ω we can express the standard observable (1.11.1) by dint of the linear map
πd1 : `∞N → C, πd1(ξ) =

∑∞
k=1 ξk d(k) from Remark 2.1.6 as

A(φ)(σ ∨ ξ) = q(σ) +

M∑

l=1

sl(σ)πd1 (tl(ξ)).

Proof. For all σ ∈ F, ξ ∈ FN we have

∞∑

k=1

r(σ, ξk) d(k) =

∞∑

k=1

M∑

l=1

sl(σ) tl(ξk) d(k) =

M∑

l=1

sl(σ)

∞∑

k=1

tl(ξk) d(k) =

M∑

l=1

sl(σ)πd1 (tl(ξ)).

We specialise to Ising type interactions with distance function of the type investigated in Section 2.6

and obtain the following result which is analogous to Proposition 2.6.6, i. e., the map π
(t)
B,v is the

projection map of an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions.

Proposition 2.13.7. Let B : B → B be a bounded linear operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′.

(i) Let t = (t1, . . . , tM ) : C → CM be bounded and πB,v : `∞N → B, πB,v(ξ) :=
∑∞

k=1 ξk Bk−1v as in
Proposition 2.6.6. Set

π
(t)
B,v : CN → BM , ξ 7→ π

(t)
B,v(ξ) :=

(
πB,v(t1(ξ)), . . . , πB,v(tM (ξ))

)

and B : BM → BM , B(z1, . . . , zM ) := (Bz1, . . . ,BzM ). Then for all σ ∨ ξ ∈ CN

π
(t)
B,v(σ ∨ ξ) =

(
t1(σ)v, . . . , tM (σ)v

)
+ Bπ

(t)
B,v(ξ).
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(ii) Let F ⊂ C be a bounded set and (Ω = FN,N0, τ) a one-sided one-dimensional full shift (1.2.6).
Let φ be a two-body Ising type interaction (1.8.3) with potential q, distance function d : N →
C, k 7→ d(k) := 〈Bk−1v, w′〉B,B′ , and interaction matrix r(x, y) =

∑M
i=1 si(x) ti(y) with si, tj ∈

Cb(F ). Then for all σ ∨ ξ ∈ Ω we can express the standard observable (1.11.1) as

A(φ)(σ∨ ξ) = q(σ)+

M∑

l=1

sl(σ) 〈πB,v(tl(ξ)), w
′〉B,B′ = q(σ)+ 〈π(t)

B,v(ξ),
(
s1(σ)w′, . . . , sM (σ)w′)〉BM ,(B′)M .

Proof. The first assertion follows from Propositions 2.6.6 (ii) and 2.13.6. Using the linearity of πB,v

and the properties πB,v(e1) = v and πB,v(0∨ξ) = BπB,v(ξ) as shown in Proposition 2.6.6 (i), we obtain

π
(t)
B,v(σ ∨ ξ) =

(
πB,v(t1(σ ∨ ξ)), . . . , πB,v(tM (σ ∨ ξ))

)

=
(
πB,v(t1(σ) + 0 ∨ t1(ξ)), . . . , πB,v(tM (σ) + 0 ∨ tM (ξ))

)

=
(
t1(σ)v + BπB,v(t1(ξ)), . . . , tM (σ)v + BπB,v(tM (ξ))

)
.

Since π
(t)
B,v is a projection map of an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions, Defini-

tion 2.3.7 directly yields the (formal) Ruelle-Mayer transfer operator Mβ : Cb(BM ) → Cb(BM ),

(Mβf)(z1, . . . , zM ) :=

∫

F

exp
(
βq(σ) + β

M∑

l=1

sl(σ) 〈zl, w′〉B,B′

)
f
(
(t1(σ)v, . . . , tM (σ)v) + Bz

)
dν(σ).

Now we specialise to the Hilbert space setting introduced in Section 2.7 and prove the generalisation of
Theorem 2.7.6 to Ising type interactions: For any Ising type two-body interaction with distance func-

tion belonging to D(p)
1 (2.7.1) we define a Ruelle-Mayer transfer operator which satisfies a dynamical

trace formula.

Theorem 2.13.8. Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full
shift (1.2.6). Let φ be a two-body Ising type interaction (1.8.3) with potential q ∈ Cb(F ), interaction

matrix r ∈ Cb(F ×F ) given as r(x, y) =
∑M

i=1 si(x) ti(y) with si, tj ∈ Cb(F ), and distance function d ∈
D(p)

1 for some p <∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N. Let A(φ) be the standard observable (1.11.1).
Then there exists an index n0 ∈ N depending on B such that for all n ≥ n0 the Ruelle-Mayer transfer

operator M(M)
β : F((`2N)M ) → F((`2N)M ),

(73) (M(M)
β f)(z1, . . . , zM ) :=

∫

F

exp
(
βq(σ)+β

M∑

l=1

sl(σ) 〈zl|w〉
)
f
(

(t1(σ)v, . . . , tM (σ)v)+Bz
)
dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn)M trace (M(M)
β )n.

Proof. We use the map π
(t)
B,v : Ω := FN → `2N from Proposition 2.13.7 as a projection map of an (S1)

- (S3) Ansatz (2.3.3). For all σ ∈ F we define Aσ : (`2N)M → C, z 7→ β q(σ) + β
∑M

l=1 sl(σ) 〈zl|w〉
and the linking maps ψσ : (`2N)M → (`2N)M , (t1(σ)v, . . . , tM (σ)v) + Bz. By Proposition 2.13.7 this
gives an (S1) - (S3) Ansatz. The linking maps ψσ are affine and have the linear part B : (`2N)M →
(`2N)M , (z1, . . . , zM ) 7→ (Bz1, . . . ,BzM ) in common. Note that det(1 − Bn) = det(1 − Bn)M . Apply

Corollary B.4.5 for Bi = B, ai(σ) = β
π si(σ)w, and bi(σ) = ti(σ) v, which shows that

‖Mβ,σ‖S1(F(`2NM )) =
exp
(
Re(βq(σ)) + π

2

∑M
i=1(‖ai‖2 + ‖(1 − BiB

?
i )

−1/2(Biai + bi)‖2)
)

∏M
i=1 det(1 − |Bi|)

=
exp
(
Re(βq(σ)) + |β|2

2π ‖w‖2
∑M

i=1 |si(σ)|2 + π
2

∑M
i=1 ‖(1 − BB?)−1/2(βπ si(σ)Bw + ti(σ)v)‖2

)

det(1 − |B|)M(74)

which is by our assumptions a bounded function in σ ∈ F . Then the assertion follows from Proposi-
tion 2.3.9 and Theorems 2.4.4, 2.4.6, and 2.7.6.
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In the following remark we explain which parameters of the interaction effect the Ruelle-Mayer op-
erator and its spectral properties. Furthermore we comment on the approximation of interaction
matrices.

Remark 2.13.9. (i) Let φ be a two-body Ising type interaction (1.8.3) with potential q ∈ Cb(F )

and distance function d ∈ D(p)
1 for some p <∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N, and interaction

matrix r ∈ Cb(F × F ) given as r(x, y) =
∑M

i=1 si(x) ti(y) with si, tj ∈ Cb(F ). The generator

B ∈ Sp(H0) of the distance function d ∈ D(p)
1 determines the space on which the Ruelle-Mayer

transfer operator acts, namely on F(H0)
⊗M ∼= F(HM

0 ), where M is the rank of the interaction
matrix r. The spectral properties of the generator deeply influence the spectral properties of
the RM operator in contrast to the vectors v, w ∈ H0. The potential q appears as the ν-
density exp(β q). Together with the functions si, tj ∈ Cb(F ) its growth effects the finiteness

of
∫
F ‖M(M)

β,σ ‖S1(HM
0 ) dν(σ) and hence the question whether the Ruelle-Mayer operator is trace

class.

(ii) Formula (74) moreover shows that given an arbitrary interaction matrix r ∈ Cb(F × F ) which
can be approximated by a sequence r(M) of interaction matrices of rank M , the sequence of

the corresponding Ruelle-Mayer transfer operators M(M)
β : F((`2N)M ) → F((`2N)M ) (73) is

a Cauchy sequence with respect to the trace norm if and only if the Fredholm determinant of
the generator is equal to one, i. e., for finite range and superexponentially decaying distance
functions. This is due to the fact that a well approximating sequence of interaction matrices
makes the argument of the exponential in (74) converge, but gives no control on the determinant
factor, unless the latter vanishes.

We end this chapter by returning to the main examples and commenting on the literature.

Example 2.13.10. Let d ∈ D(p)
1 for some p < ∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N, be the distance

function for the following one-sided one-dimensional full shifts (1.2.6).

(i) The Ising model (see Example 1.8.3) has the interaction matrix rIsing(x, y) = xy. It has rank

equal to one. The corresponding Ruelle-Mayer transfer operator Mβ : F(`2N) → F(`2N) is

(Mβ,[Ising]f)(z) =

∫

F

exp
(
βq(x) + βx 〈z|w〉

)
f
(
xv + Bz

)
dν(x).

(ii) Let F = {1, . . . , N} be finite and the measure ν on F be identified with its distribution vector.
The Potts model (see Example 1.8.3) has the interaction matrix rPotts : F×F → {0, 1}, (x, y) 7→
δx,y =

∑
z∈F δx,z δz,y, where δ is Kronecker’s delta on F × F . It has rank equal to |F | = N .

The corresponding Ruelle-Mayer transfer operator Mβ : F((`2N)N ) → F((`2N)N ) is

(Mβ,[Potts]f)(z1, . . . , zN ) =
N∑

i=1

νi exp
(
βqi + β 〈zi|w〉

)
f
(
(δi,mv + Bzm)m=1,...,N

)
.

Remark 2.13.11. In the literature ([Vi76], [May76], [May80a],[HiMay02],[HiMay04]) mostly the
Ising model (rank one case) for finite F is considered. [May76] shows the generalisation to arbitrary
interaction matrices over a finite alphabet F . The approach to consider decomposable interaction
matrices in the case of compact F was proposed in [May80a].
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3 Transfer operators for the matrix subshift

Up to now we have constructed and investigated transfer operators for the one-sided one-dimensional
full shift only. However, for applications this is an inadequate restriction, since the configuration
space is often a strict subset of the full configuration space as we explained in the introduction. In
the following we will treat the case of a one-dimensional matrix subshift as defined in (1.2.8). As
in Section 1.11 we assume the space F of spin values to be a Hausdorff space endowed with a finite
Borel measure ν and the transition matrix A : F × F → {0, 1} to be aperiodic (1.2.9) and ν ⊗ ν-
measurable. First we will define the Ruelle transfer operator and then the Ruelle-Mayer transfer
operator. The main idea is to view the transition matrix as a Hilbert-Schmidt operator on L2(F, dν)
and to investigate its tensor product with the Ruelle-Mayer operator for the full shift on the tensor
product of L2(F, dν) with the Hilbert space on which the RM operator acts. In Section 3.3 we will
provide the background on the spectral properties of a special kind of operators acting on tensor
products of Hilbert spaces. In Theorem 3.2.6 we show that given a Ruelle-Mayer transfer operator for
a full shift which satisfies a dynamical trace formula we can find a new transfer operator for the matrix
subshift which satisfies a similar dynamical trace formula. In particular we obtain a generalisation of
our main Theorem 2.4.6 on Ruelle-Mayer transfer operators for Ising type interactions with distance

function belonging to D(p)
1 for some p <∞ (2.7.1). As a second application we consider the hard rod

model which we model as a matrix subshift. We will apply our techniques from Theorem 3.2.5 and
construct a Schatten class Ruelle-Mayer transfer operator for polynomial-exponential interactions and
prove a dynamical trace formula for it.

3.1 Ruelle transfer operator

In this section we will define Ruelle transfer operators for one-dimensional matrix subshifts (1.2.8).
In the first step we assume that the alphabet F is finite.

Remark 3.1.1. Let F be a finite alphabet, (ΩA, F,N,N0, τ) a one-sided one-dimensional matrix
subshift (1.2.8), and A ∈ C(ΩA) an observable. By Example 2.1.2 the preimage of ξ ∈ ΩA under the
shift τ : ΩA → ΩA consists precisely of those sequences (σ ∨ ξ) ∈ FN which fulfill Aσ,ξ1 = 1. Then
Remark 2.1.1 leads to a provisional definition of the Ruelle transfer operator LA : C(ΩA) → C(ΩA)
associated with A via

(LAf)(ξ) =
∑

η∈(τγ)−1(ξ)

exp(A(η)) f(η) =
∑

σ∈F
Aσ,ξ1 exp(A(σ ∨ ξ)) f(σ ∨ ξ),

hence LAf is a function which depends on ξ and in a special way on its first entry ξ1.

In [May91] D. Mayer considers the Ruelle (and the Ruelle-Mayer) transfer operator as operators acting
on a direct sum of vector spaces which is indexed by the alphabet. This introductory section shall
give a motivation for the right generalisation of the Ruelle and the Ruelle-Mayer transfer operator to
matrix subshifts, also in the general case. We suggest to replace this direct sum by tensor products.
We assume A : F ×F → {0, 1} to be ν⊗ ν-measurable and put the following definition which shall be
compared to Definition 2.1.3 for the full shift. Our proof of the continuity requires that C(F )×C(FN)
is total in C(FN), which for instance happens if F is compact. Nevertheless, this Ruelle operator will
lead to the right Ruelle-Mayer transfer operator in the next section.

Proposition 3.1.2. Consider a Hausdorff space F equipped with a finite Borel measure ν and
(ΩA, F,N,N0, τ) a one-dimensional one-dimensional matrix subshift (1.2.8). The Ruelle transfer op-
erator

L̃A : Lp(F, ν)⊗̂π Cb(ΩA) → Lp(F, dν)⊗̂π Cb(ΩA), (L̃Af)(x, ξ) =

∫

F

Aσ,x exp(A(σ ∨ ξ)) f(σ, σ∨ξ) dν(σ)

associated to the observable A ∈ Cb(F ) is a bounded linear operator, 1 ≤ p ≤ ∞.

Proof. We use the fact, see for instance [Scha50], that the projective tensor product can be charac-
terised by the property that every bilinear, continuous map T : X × Y → Z can be uniquely and
continuously extended to a linear mapping T : X⊗̂π Y → Z with ‖T ‖ = ‖T‖. Our operator L̃A can
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be written as L̃A = T1 ◦ T2 ◦ T3 with Ti : L1(F, ν)⊗̂π Cb(ΩA) → L1(F, dν)⊗̂π Cb(ΩA) uniquely defined
on elementary tensors as

(T1(f1 ⊗ f2))(x, ξ) =

∫

F

Aσ,x f1(σ) dν(σ) f2(ξ),

(T2(f1 ⊗ f2))(x, ξ) = f1(x) f2(x ∨ ξ),
(T3(f1 ⊗ f2))(x, ξ) = exp(A(ξ)) f1(x) f2(ξ).

We will show that ‖T1‖ ≤ ν(F ), ‖T2‖ ≤ 1, and ‖T3‖ ≤ exp(‖A‖Cb(ΩA)). We denote the dual exponent

of p by q, defined by 1
p + 1

q = 1. First note that T1 = T1,1 ⊗ id with

‖T1,1f1‖p =

∫

F

∣∣∣
∫

F

Aσ,x f1(σ) dν(σ)
∣∣∣
p

dν(x)

≤
∫

F

( ∫

F

1 dν(σ)
)p/q ∫

F

|f1(σ)|p dν(σ) dν(x) = ν(F )p ‖f1‖p.

For the norm estimate of T2 we use that every f2 ∈ Cb(ΩA) can be approximated by a series
∑

k g
(k)
1 ⊗

g
(k)
2 with g

(k)
1 ∈ C(F ), g

(k)
2 ∈ C(FN). On elementary tensors f2 = g1 ⊗ g2 with g1 ∈ C(F ), g2 ∈ C(FN)

we have

‖T2(f1 ⊗ g1 ⊗ g2)‖ =
(∫

F

|f1(σ) g1(σ)|p dν(σ)
)1/p

sup
ξ∈FN

|g2(ξ)|

≤
(∫

F

|f1(σ)|p dν(σ)
)1/p

sup
ξ∈FN

|g1(ξ)| sup
ξ∈FN

|g2(ξ)|

= ‖f1‖Lp(F,ν) ‖g1‖C(FN) ‖g2‖C(FN).

Let T3,2 : Cb(ΩA) → Cb(ΩA) be the multiplication operator (T3,2f)(ξ) := exp(A(ξ)) f(ξ) which obvi-
ously satisfies ‖T3,2‖ ≤ exp(‖A‖Cb(ΩA)). Since T3 = id⊗T3,2, this concludes the proof.

3.2 The Ruelle-Mayer transfer operator

Given an observable A which has properties (S1) - (S3) as defined in (2.3.3), we will define the
(formal) Ruelle-Mayer transfer operator in a way which is similar to (2.3.7). We will transfer the
ideas of Section 2.4 to the matrix subshift case such that for each transfer operator for a full shift
we obtain a transfer operator for the matrix subshift with (quite) the same analytic properties. In
particular we obtain the generalisation of Theorems 2.7.6 and 2.13.8 to matrix subshifts: For all

Ising type interactions with distance function d ∈ D(p)
1 for some p < ∞ a dynamical trace formula

holds at least for almost all n ∈ N. This will be mainly accomplished by tensorising in a clever way
with the space L2(F, dν) of square-integrable functions on the space F of spin values. Note that
we always assume that the set F has finite measure with respect to the (a priori) Borel measure
ν, hence by Cauchy-Schwarz’s inequality a square-integrable function is absolutely integrable, i. e.,
L2(F, dν) ⊂ L1(F, dν).

Remark 3.2.1. Let F be a Hausdorff space carrying a finite Borel measure ν and (ΩA, F,N,N0, τ) a
one-dimensional matrix subshift (1.2.8). Let

L̃A : Lp(F, ν)⊗̂π Cb(ΩA) → Lp(F, dν)⊗̂π Cb(ΩA), (L̃Af)(x, ξ) =

∫

F

Aσ,x exp
(
A(σ ∨ ξ)

)
f(σ, σ ∨ ξ) dν(σ)

be the Ruelle operator (3.1.2) associated to an observable A ∈ Cb(ΩA) which has properties (S1) -
(S3) as defined in (2.3.3). Let π : ΩA → E be the corresponding projection map28 into a topological
space E, ψσ : E → E the linking maps (σ ∈ F ), and Aσ : E → C be the family of new observables.
Set id⊗ π : F × ΩA → F × E, (x, ξ) 7→ (x, π(ξ)) and id⊗Cπ : Cb(E) → L1(F, dν)⊗̂π Cb(E) →
Lp(F, dν)⊗̂π Cb(ΩA), f1 ⊗ f1 7→ f1 ⊗ f2 ◦ π the corresponding composition operator. As in the
construction (2.3.6) of the Ruelle-Mayer operator for the full shift, we assume for a moment F to

28The projective = topological π-tensor product X⊗̂π Y has nothing to do with this map π.
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be finite and apply the Ruelle transfer operator to g := f ◦ (id⊗ π) ∈ Lp(F, dν)⊗̂π Cb(ΩA) with
f ∈ Lp(F, dν)⊗̂π Cb(E).

(L̃Ag)(x, ξ) =
∑

σ∈F
Aσ,x exp

(
A(σ ∨ ξ)

)
(f ◦ (id⊗ π))(σ, σ ∨ ξ)

=
∑

σ∈F
Aσ,x exp

(
Aσ ◦ π(ξ)

)
f(σ, ψσ(π(ξ))),

i. e. the image of id⊗Cπ is L̃A-invariant and L̃A ◦ (id⊗Cπ) = (id⊗Cπ) ◦ M̃, where we define the
(formal) Ruelle-Mayer operator M̃ : L1(F, dν)⊗̂π Cb(E) → L1(F, dν)⊗̂π Cb(E) via

(M̃f)(x, z) :=
∑

σ∈F
Aσ,x exp

(
Aσ(z)

)
f(σ, ψσ(z)).

Returning to the general case of an arbitrary alphabet F the previous considerations motivate the
following definition which is related to Definition 2.3.7.

Definition 3.2.2. Let F be a Hausdorff space carrying a finite Borel measure ν, (ΩA, F,N,N0, τ) a
one-dimensional matrix subshift (1.2.8), A ∈ Cb(ΩA) an observable, and π : ΩA → E a continuous
map into a topological space E with properties (S1) - (S3) (2.3.3). The operator

M̃ : L1(F, dν)⊗̂π Cb(E) → L1(F, dν)⊗̂π Cb(E), (M̃f)(x, z) :=

∫

F

Aσ,x exp
(
Aσ(z)

)
f(σ, ψσ(z)) dν(σ)

is called the (formal) Ruelle-Mayer (RM) transfer operator for the matrix subshift.

Hence given a Ruelle-Mayer transfer operator for the full shift, we obtain by Definition 3.2.2 an
associated RM operator for a matrix subshift. For example, if A is the standard observable of an Ising

spin system with distance function d ∈ D(∞)
1 (2.7.1), we will find such an operator, see Example 3.2.3.

Another example will be discussed in Section 3.5 in which the hard rod model is concerned.

Example 3.2.3. (Cp. Remark 2.6.15) Let F ⊂ C be a bounded set equipped with a finite Borel
measure ν and (ΩA, F,N,N0, τ) a one-dimensional matrix subshift (1.2.8). Let φ be a two-body Ising
interaction (1.8.3) with potential q and distance function d : N → C given as d : N → C, k 7→ d(k) :=
〈Bk−1v, w′〉B,B′ , where B : B → B is a linear operator with ρspec(B) < 1, v ∈ B, w′ ∈ B′. Then by
Proposition 2.6.6 the map πB,v : `∞N → B, πB,v(ξ) :=

∑∞
k=1 ξk Bk−1v is a projection map of a (S1) -

(S3) Ansatz (2.3.3). Let Mβ : Lp(F, dν)⊗̂π Cb(B) → Lp(F, dν)⊗̂π Cb(B) be the Ruelle-Mayer transfer
operator defined via

(Mβf)(x, z) :=

∫

F

Aσ,x exp
(
βq(σ) + βσ〈z, w′〉B,B′

)
f(σ, σ v + B z) dν(σ)

and L̃A(φ)
: Lp(F, ν)⊗̂π Cb(ΩA) → Lp(F, dν)⊗̂π Cb(ΩA) be the Ruelle operator (3.1.2) associated to the

standard Ising observable A(φ) ∈ Cb(ΩA), then L̃βA(φ)
◦ (id⊗CπB,v

) = (id⊗CπB,v
) ◦Mβ.

Also in this context our intention to work with Hilbert spaces simplifies the arguments. Having
identified a suitable Hilbert space H where the Ruelle-Mayer operator for the full shift acts, the
corresponding RM for the matrix subshift acts on L2(F, dν)⊗̂H. Using the canonical isomorphisms

L2(F, dν)⊗̂H ∼= L2(F, ν;H) ∼=
∫ ⊕
F H dν the reader can choose its preferred way of thinking.

We remark that in the widely considered case of a finite alphabet F we have L2(F, dν) ∼= C|F |

canonically, hence L2(F, dν)⊗̂H ∼= L2(F, ν;H) ∼=
∫ ⊕
F H dν ∼= H|F |.

Our next aim is to investigate the spectral properties of the Ruelle-Mayer transfer operator for the
matrix subshift and to prove a dynamical trace formula for it. For this we need the following lemma
which is an immediate consequence of Lemma 3.3.1 proved in the following Section 3.3.

Lemma 3.2.4. Let ν be a finite measure on F and A : F ×F → {0, 1} a ν ⊗ ν-measurable transition
matrix. Assume that (Sx)x∈F is a measurable family of Hilbert-Schmidt operators on a Hilbert space
H with

∫
F
‖Sx‖2

S2(H) dν(x) <∞. Then

(T̃ (f1 ⊗ f2))(σ) :=

∫

F

Ax,σ f1(x)Sxf2 dν(x)
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defines a Hilbert-Schmidt operator on L2(F, dν)⊗̂H with

(T̃ n(f1 ⊗ f2))(σ) =

∫

Fn

Ax1,x2 . . .Axn−1,xnAxn,σ (Sxn ◦ . . . ◦ Sx1f2) f1(x1) dν(x1) . . . dν(xn)

and (for n ≥ 2)

trace T̃ n =

∫

Fn

Ax1,x2 . . .Axn−1,xnAxn,x1 trace (Sxn ◦ . . . ◦ Sx1) dν(x1) . . . dν(xn).

A tensorised version of Lemma 3.2.4 in a Banach space setting besides the case of a finite alphabet F
is not known to us. Such a result could be used to obtain an analogon of Theorem 2.4.4 in the matrix
subshift setting. For our purpose it is sufficient to transfer Theorem 2.4.6 to matrix subshifts.

Theorem 3.2.5. Let (ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8), A ∈
Cb(ΩA) an observable, and π : ΩA → E a continuous map into a Banach space E with properties (S1)
- (S3) (2.3.3). Assume that the maps ψx : E → E are affine and of the form ψx : E → E, z 7→
ψx(z) := ax + Bz for some fixed map B ∈ End(E) which admits a Fredholm determinant and has
operator norm ‖B‖op < 1. Suppose that the algebra generated by the composition operators

Mx : H → H, (Mxf)(z) = exp
(
Ax(z)

)
(f ◦ ψx)(z)

consists of Hilbert-Schmidt operators on a Hilbert space H ⊂ C(E) and satisfies the trace formula
(53). Let ν be a finite Borel measure on F such that

∫
F ‖Mx‖2

S2(H) dν(x) < ∞. Then the dynamical

partition function (1.11.4) can be expressed as

Z̃b
N0

n (A) = det(1 − Bn) trace M̃n

for all n ∈ N≥2, where M̃ is the Ruelle-Mayer transfer operator

M̃ : L2(F, dν)⊗̂H → L2(F, dν)⊗̂H, (M̃f)(σ, z) =

∫

F

Ax,σ exp
(
Ax(z)

)
f(x, ψx(z)) dν(x).

Proof. By Corollary B.1.3 and by the assumed trace formula we have

trace (Mxn ◦ . . . ◦Mx1) = exp
( n∑

k=1

(Axk
◦ ψxk+1

◦ . . . ◦ ψxn)(z?x1,...,xn
)
)

for all x1, . . . , xn ∈ F . Hence the assertion follows from comparing the trace given by Lemma 3.2.4

trace M̃n =

∫

Fn

Ax1,x2 · . . . · Axn−1,xn · Axn,x1 trace (Mxn ◦ . . . ◦Mx1) dν(x1) . . . dν(xn)

with the expression for the partition function for the one-sided one-dimensional matrix subshift

Z̃b
N0

n (A) =

∫

Fn

Ax1,x2 ·. . .·Axn−1,xn ·Axn,x1 exp
( n∑

k=1

(Axk
◦ψxk+1

◦. . .◦ψxn)(z?x1,...,xn
)
)
dν(x1) . . . dν(xn).

given in Proposition 2.3.5.

An immediate consequence of Theorem 3.2.5 is our following result which generalises both Theo-
rems 2.7.6 and 2.13.8 to matrix subshifts: For all Ising type interactions with distance function

d ∈ D(p)
1 for some p <∞ a dynamical trace formula holds at least for almost all n ∈ N.

Theorem 3.2.6. Let (ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8). Let φ

be a two-body Ising type interaction (1.8.3) with potential q ∈ Cb(F ) and distance function d ∈ D(p)
1

for some p < ∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N, and interaction matrix r ∈ Cb(F × F ) with

r(x, y) =
∑M

i=1 si(x) ti(y) with si, tj ∈ Cb(F ). Let A(φ) be the standard observable (1.11.1). Then
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there exists an index n0 ∈ N depending on B such that for all n ≥ n0 the Ruelle-Mayer transfer
operator Mβ : L2(F, dν)⊗̂F((`2N)M ) → L2(F, dν)⊗̂F((`2N)M ),

(Mβf)(x; z1, .., zM ) =

∫

F

Aσ,x exp
(
βq(σ)+β

M∑

l=1

sl(σ)〈zl|w〉
)
f(σ; t1(σ)v+Bz1, .., tM (σ)v+BzM ) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn)M trace (Mβ)
n.

In particular, if φ is a two-body Ising interaction (1.8.3), then for all n ≥ n′
0 the Ruelle-Mayer transfer

operator Mβ : L2(F, dν)⊗̂ F(`2N) → L2(F, dν)⊗̂F(`2N),

(Mβf)(x, z) =

∫

F

Aσ,x exp
(
βq(σ) + βσ〈z|w〉

)
f(σ, σ v + B z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Bn) trace (Mβ)
n.

Proof. By the superposition principle it suffices to prove the Ising case. In order to apply Theo-
rem 3.2.5 we have to show that

∫
F ‖Mβ,(x))‖2

S2(H) dν(x) < ∞, where Mβ,(x) := eβq(x) Kβ
π xw,xv,B

in

the notation of Corollary B.4.4. We have

‖Lβ
π xw,xv,B

‖2
S2(F(`2N)) =

exp
(
2Re(βq(x)) + π‖βπxw‖2 + π〈(1 − BB∗)−1(Bβ

πxw + xv)|Bβ
πxw + xv〉

)

det(1 − BB∗)
.

Since F ⊂ C is bounded by assumption, the function F → R, x 7→ ‖Kβ
π xw,xv,B

‖2
S2(F(`2N)) is bounded,

hence ν-integrable.

To emphasise the importance of the previous theorem we refer to Example 2.7.7 which gives a list

of the classes of distance functions belonging to D(p)
1 defined in (2.7.1). The class of Ising type

interactions, introduced in (1.8.3) and discussed in Section 2.13, contains many physically relevant
interaction matrices such as Stanley’s vector models (see Example 1.8.4) and the finite state Potts
model.
The following corollary concerns the non-interacting case β = 0. The transfer operator is given as
(the transpose of) the transition matrix interpreted as an integral operator on L2(F, dν). This was
known for the special case of a finite alphabet F .

Corollary 3.2.7. Let (ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8) and ν
a finite measure on F . Then for n ≥ 2 the integral operator

GA : L2(F, dν) → L2(F, dν), (GAf)(x) =

∫

F

Aσ,x f(σ) dν(σ)

associated to the transition matrix A satisfies the dynamical trace formula

Z̃b
N0

n (0) = Zb
N0 ,0

{1,...,n} = νn(ρ{1,...,n}(Fix(τn : ΩA → ΩA))) = trace (GA)n.

Proof. The operator GA is obviously Hilbert-Schmidt and can be seen as T̃ in Lemma 3.3.1 where all
the operators Sx = id : C → C are trivial. The trace of its iterates is given by Lemma 3.3.1 and 3.3.3
and coincides with the (dynamical) partition function given in Proposition 1.11.3. Setting β = 0 in
Remark 1.7.2 which together with Proposition 1.3.14 concludes the proof.

We end this section with the Ruelle-Mayer transfer operator for the special case of a finite alphabet.

Remark 3.2.8. Let F = {1, . . . ,K} be a finite alphabet and (ΩA, F,N,N0, τ) be a one-sided one-
dimensional matrix subshift (1.2.8). Let φ be a two-body Ising type interaction (1.8.3) with potential

q : F → C and distance function d ∈ D(p)
1 for some p < ∞ (2.7.1), say d(k) = 〈Bk−1v|w〉`2N, and

interaction matrix r ∈ CF×F with r(x, y) =
∑M
i=1 si(x) ti(y) with si, tj : F → C. Then the Hilbert
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space L2(F, dν)⊗̂F((`2N)M ) on which the Ruelle-Mayer transfer operator acts can be identified with
F((`2N)M )K and the operator can be written in compenents (l = 1, . . . ,K)

(Mβ(f1, . . . , fK)(z1, . . . , zM ))l

=

K∑

k=1

Ak,l exp
(
β q(k) + β

M∑

j=1

sj(k) 〈zj |w〉
)
fk(t1(k)v + Bz1, . . . , tM (k)v + BzM ).

We introduce the projections prl : F((`2N)M )K → F((`2N)M ) onto the l-th component. Hence in
short notation the transfer operator is characterised by

prl ◦Mβ =

K∑

k=1

Ak,l e
β qk

M⊗

j=1

Lβsj(k)w,tj(k)v,B ◦ prk,

where for any a, b ∈ `2N and B : `2N → `2N the composition operator La,b,B : F(`2N) → F(`2N) acts
via (La,b,Bf)(z) = e(z|a) f(b+ Bz).

3.3 Tensor products

In this section we give a proof of Lemma 3.3.1 which we used in the previous section to prove the
dynamical trace formula for the Ruelle-Mayer transfer operator associated to a matrix subshift. For
this we need a small excursus on a special type of operators defined on tensor products of Hilbert
spaces and their trace formulas. Namely, given a family (Sx)x∈F of operators on a Hilbert space H
and a measurable function g : F × F → C, we define

(T̃ (f1 ⊗ f2))(σ) :=

∫

F

g(x, σ) f1(x)Sxf2 dν(x)

on L2(F, dν)⊗̂H. For the dynamical trace formula one puts g(x, y) = Ax,y, where A is the transition
matrix. In our result 3.3.1 we give an explicit formula for the Hilbert-Schmidt norm of the operator
T̃ . We did not succeed to show that it is trace class which seems to be quite likely. We comment
briefly on the occurring problems and cite some known results. We also investigate the behaviour of
this kind of operators under unitary isomorphisms in the H-variable which we will later apply in order
to compute the Bargmann conjugate of the Ruelle-Mayer transfer operator.
First we give a formula for the iterates of T̃ . A simple induction argument shows that

(T̃ n(f1 ⊗ f2))(σ) =

∫

Fn

g(x1, x2) . . . g(xn−1, xn) g(xn, σ) f1(x1)Sxn ◦ . . . ◦ Sx1f2 dν(x1) . . . dν(xn).

In fact,

T̃ (T̃ n(f1 ⊗ f2))(σ) =

∫

F

g(x, σ)Sx

(
(T̃ n(f1 ⊗ f2))(x)

)
dν(x)

=

∫

F

g(x, σ)Sx

∫

Fn

g(x1, x2) . . . g(xn−1, xn) g(xn, x) (Sxn ◦ . . . ◦ Sx1f2) f1(x1) dν
n(x1, . . . , xn) dν(x)

=

∫

Fn+1

g(x1, x2) . . . g(xn−1, xn) g(xn, x) g(x, σ)Sx(Sxn ◦ . . . ◦ Sx1f2) f1(x1) dν(x1) . . . dν(xn) dν(x).

If T̃ is trace class, then one is tempted to think that

(75) trace T̃ n =

∫

Fn

g(x1, x2) . . . g(xn−1, xn) g(xn, x1) trace (Sxn ◦ . . . ◦ Sx1) dν(x1) . . . dν(xn)

for all n ∈ N. This formula holds trivially if F is a finite set by the linearity of the trace, an idea which
has been used for instance in [May91]. We will now extend this idea to arbitrary F . We can prove
the following slightly weaker result which shows that the desired trace formula holds one step later. If
one applies this lemma in the transfer operator setting in order to prove the meromorphic extension
of the zeta function, then this result is sufficient. We add a comment to the trace class situation after
the proof.
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We note that our strategy is quite different from the proof of Theorem A.7.6 which we used for
the dynamical trace formula for the full shift. There we have written the Ruelle-Mayer operator as
an integral over a family of trace class operators, Tf =

∫
F
Sxf dν(x) and showed that trace T =∫

F trace Sx dν(x). In the matrix subshift setting one should think of the operators Sx as integral
operators on some L2(Z), say (Sxf)(z) =

∫
Z
sx(z, w) f(w) dw. Then write

(T̃ f)(σ, z) =

∫

F

g(x, σ) (Sxf(x, ·))(z) dν(x) =

∫

F

∫

Z

g(x, σ) sx(z, w) f(x,w) dw dν(x)

and investigate the integral kernel t̃(σ, z;x,w) = g(x, σ) sx(z, w) of T̃ . This idea yields:

Lemma 3.3.1. Let (F, ν) be a measure space, g : F × F → C a measurable function, and (Sx)x∈F a
measurable family of operators on a separable Hilbert space H. The formula

(76) (T (f1 ⊗ f2))(σ) :=

∫

F

g(x, σ) f1(x)Sxf2 dν(x)

defines a Hilbert-Schmidt operator T : L2(F, dν)⊗̂H → L2(F, dν)⊗̂H if and only if

(77)

∫

F

∫

F

|g(x, σ)|2 dν(σ) ‖Sx‖2
S2(H) dν(x) <∞.

In this case T satisfies

‖T ‖2
S2(L2(F,dν)⊗̂H)

=

∫

F

∫

F

|g(x, σ)|2 dν(σ) ‖Sx‖2
S2(H) dν(x)

and

trace T n =

∫

Fn

( n−1∏

j=1

g(xj , xj+1)
)
g(xn, x1) trace (Sxn ◦ . . . ◦ Sx1) dν

n(x1, . . . , xn)

for all n ≥ 2. Moreover, for these n we have

‖T n‖2
S2(L2(F,dν)⊗̂H)

=

∫

F

∫

Fn

∣∣
( n−1∏

j=1

g(xj , xj+1)
)
g(xn, σ)

∣∣2 ‖Sxn◦. . .◦Sx1‖2
S2(H) dν

n(x1, . . . , xn) dν(σ).

Proof. Suppose first that (76) defines a Hilbert-Schmidt operator. Fix orthonormal bases (ei)i∈N,
(fj)j∈N for L2(F, dν) and H, respectively. Then, by Parseval’s identity, one has

‖T ‖2
S2(L2(F,dν)⊗̂H)

=

∞∑

i,j=1

‖T (ei ⊗ fj)‖2

=

∞∑

i,j,k,l=1

∣∣∣
〈
T (ei ⊗ fj) ek ⊗ fl

〉 ∣∣∣
2

=
∞∑

i,j,k,l=1

∣∣∣
∫

F

∫

F

g(x, σ) ei(x)
〈
Sxfj fl

〉
dν(x) ek(σ) dν(σ)

∣∣∣
2

=

∞∑

j,l=1

∫

F

∫

F

∣∣∣g(x, σ)
〈
Sxfj fl

〉 ∣∣∣
2

dν(x) dν(σ)

=

∫

F

∫

F

|g(x, σ)|2
∞∑

j,l=1

∣∣∣
〈
Sxfj fl

〉 ∣∣∣
2

dν(x) dν(σ)

=

∫

F

∫

F

|g(x, σ)|2 dν(σ) ‖Sx‖2
S2(H) dν(x).

Conversely, if (77) holds, we reverse this calculation and conclude that not only the integral (76)
converges for almost all σ, but also that it defines a Hilbert-Schmidt operator on L2(F, dν)⊗̂H.
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Now assume that T is Hilbert-Schmidt. Then for n ≥ 2 the operator T n is trace class. By the first
part of the proof the Sxj are Hilbert-Schmidt (for almost all xj), hence the compositions Sxn ◦ . . .◦Sx1

are trace class. Now the trace of T n can be calculated as follows

trace T n =
∞∑

i,j=1

〈
T n(ei ⊗ fj) ei ⊗ fj

〉

=
∞∑

i,j=1

∫

F

∫

Fn

g(x1, x2) · · · g(xn−1, xn) g(xn, σ) ×

×
〈
Sxn ◦ . . . ◦ Sx1fj fj

〉
ei(x1) dν

n(x1, . . . , xn) ei(σ) dν(σ)

=

∞∑

i=1

∫

F

∫

Fn

g(x1, x2) · · · g(xn−1, xn) g(xn, σ) ×

× trace (Sxn ◦ . . . ◦ Sx1) ei(x1) dν
n(x1, . . . , xn) ei(σ) dν(σ).

We claim that trace T n can be rewritten as
∑∞

i=1

〈
Gnei ei

〉
= trace Gn with

(Gnf)(σ) :=

∫

Fn

( n−1∏

j=1

g(xj , xj+1)
)
g(xn, σ) trace (Sxn ◦ . . . ◦ Sx1) f(x1) dν

n(x1, . . . , xn).

Note that (by Fourier expansion and induction)

trace (Sn ◦ . . . ◦ S1) =

∞∑

i1,...,in=1

( n−1∏

j=1

〈
Sjhij hij+1

〉 ) 〈
Snhin hi1

〉

for any orthonormal basis (hi)i∈N for H and Hilbert-Schmidt operators Si on H. Setting

(Gi,jf)(σ) :=

∫

F

g(x, σ)
〈
Sxhi hj

〉
f(x) dν(x)

for i, j ∈ N, we can rewrite Gn as

(Gnf)(σ) =

∫

Fn

( n−1∏

j=1

g(xj , xj+1)
)
g(xn, σ) ×

×
∞∑

i1,...,in=1

n∏

j=1

〈
Sxihij hij+1

〉
f(x1) dν

n(x1, . . . , xn)

=

∞∑

i1,...,in=1

(Gin,i1 ◦ Gin−1,in ◦ . . . ◦ Gi1,i2f)(σ).

The identity

∞∑

i,i=1

‖Gi,j‖2
S2(L2(F,dν)) =

∞∑

i,j=1

∫

F 2

|g(x, y)|2 |
〈
Sxhi hj

〉
|2 dν(x) dν(y)(78)

=

∫

F 2

|g(x, y)|2
∞∑

i,j=1

|
〈
Sxhi hj

〉
|2 dν(x) dν(y)

=

∫

F 2

|g(x, y)|2 ‖Sx‖2
S2(H) dν(x) dν(y)

implies that the Gi,j are Hilbert-Schmidt operators on L2(F, dν). Therefore, for each (i1, . . . , in) ∈ Nn

the integral operator Gin,i1 ◦ Gin−1,in ◦ . . . ◦ Gi1,i2 is trace class and by [Ka66, Ex. X. 1.18] its trace
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can be obtained by integrating the integral kernel along the diagonal. If Gn is trace class, we have

trace Gn =

∞∑

i1,...,in=1

trace (Gin,i1 ◦ Gin−1,in ◦ . . . ◦ Gi1,i2)

=

∫

Fn

( n−1∏

j=1

g(xj , xj+1)
)
g(xn, x1) trace (Sxn ◦ . . . ◦ Sx1) dν

n(x1, . . . , xn)

= trace T n.

Thus, to prove the claim it suffices to show that
∑∞

i1,...,in=1 Gin,i1◦. . .◦Gi1,i2 converges in S1

(
L2(F, dν)

)
.

Using the technical Lemma 3.3.2 below, we obtain the estimate

‖Gn‖S1

(
L2(F,dν)

) ≤
∞∑

i1,...,in=1

n∏

j=1

‖Gij ,ij+1‖S2

(
L2(F,dν)

)

≤
( ∞∑

i,j=1

‖Gij ,ij+1‖2

S2

(
L2(F,dν)

)
)n/2

(78)
=

(∫

F

∫

F

|g(x, y)|2 ‖Sx‖2
S2(H) dν(x) dν(y)

)n/2
,

which proves the claim. To conclude the proof of the lemma one verifies the formula for Hilbert-
Schmidt norm of T n for n ≥ 2, which can be done similarly as in the case n = 1.

If ν is a finite measure on F , g : F 2 → C is bounded, and
∫
F ‖Sx‖2

S2(H) dν(x) is finite, Lemma 3.3.1
shows that the associated operator T is Hilbert-Schmidt.

Lemma 3.3.2. Let n ≥ 2 and suppose that the functions ak : N×N → C satisfy
∑∞
i,j=1 |ak(i, j)|2 <∞

for k = 1, . . . , n. Then

∣∣∣
∞∑

i1,...,in=1

n∏

k=1

ak(ik, ik+1)
∣∣∣ ≤

n∏

k=1

( ∞∑

i,j=1

|ak(i, j)|2
)1/2

using the convention that in+1 = i1.

Proof. We proceed by induction. The case n = 2 follows from the estimate

∣∣∣
∞∑

i1,i2=1

a1(i1, i2) a2(i2, i1)
∣∣∣ ≤

∞∑

i1=1

( ∞∑

i2=1

|a1(i1, i2)|2
)1/2 ( ∞∑

i2=1

|a2(i2, i1)|2
)1/2

≤
2∏

k=1

( ∞∑

i,j=1

|ak(i, j)|2
)1/2

.

To do the induction step consider ãn(i, j) :=
∑∞

m=1 |an(i,m) an+1(m, j)|. Then

∞∑

i,j=1

|ãn(i, j)|2 =

∞∑

i,j=1

( ∞∑

m=1

|an(i,m) an+1(m, j)|
)2

≤
( ∞∑

i,m=1

|an(i,m)|2
)( ∞∑

m,j=1

|an+1(m, j)|2
)
,

and induction yields

∣∣∣
∞∑

i1,...,in+1=1

n+1∏

k=1

ak(ik, ik+1)
∣∣∣ ≤

∞∑

i1,...,in=1

∣∣∣
n−1∏

k=1

ak(ik, ik+1)
∣∣∣ ãn(in, i1)

≤
n−1∏

k=1

( ∞∑

i,j=1

|ak(i, j)|2
)1/2 ( ∞∑

i,j=1

|ãn(i, j)|2
)1/2

≤
n+1∏

k=1

( ∞∑

i,j=1

|ak(i, j)|2
)1/2

.
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The following remark concerns the question whether the last lemma can be adapted to a trace class
setting and discusses trace formulas for integral operators.

Remark 3.3.3. Let ν be a finite measure on F and g : F × F → C a bounded measurable function.
Assume that (Sx)x∈F is a measurable family of trace class operators on H with

∫
F
‖Sx‖S1(H) dν(x) <

∞. One expects that the operator T̃ (76) is trace class and satisfies the trace formula. But one
encounters the following problem which arises from taking the trace on L2(F, dν): Recall, that if
K : L2(F, dν) → K : L2(F, dν), (Kf)(x) =

∫
F
k(x, y) f(y) dν(y) is a trace class integral operator,

then the manifest trace formula

(79) trace K =

∫

F

k(x, x) dν(x),

only holds under additional assumptions, say continuity of the kernel [GoGoKr00, Thm. 8.1]. The
reason for this is that the diagonal in F ×F is a set of measure zero, hence the kernel can be changed
arbitrarily without influence onK, but with influence on the value of the trace integral. A limitation to
continuous transition functions is not appropriate, since continuity forces the function to be constant
on connected components. Formula (79) holds if one finds a (regularised) representant of the kernel.
We present some ideas in this direction: In [K66, Ex. X. 1.18] appears the following: Since every
trace class operator K ∈ S1(H) has a representation as a product K = AB of two Hilbert-Schmidt
operators A, B ∈ S2(H), the formula

trace K =
〈
A B∗〉 =

∞∑

n=1

〈
Aen B∗en

〉

for an arbitrary Hilbert basis (en)n∈N is an equivalent definition for the trace of K. If K, A, B
happen to be integral operators with integrals denoted by k, a, and b ∈ L2(F 2, dν2) respectively, then
by polarising the well-known formula (see for instance [We00])

‖K‖2
S2(L2(F,dν)) = ‖k‖2

L2(F 2,dν2) =

∫

F

∫

F

|k(x, y)|2 dν(x) dν(y)

one obtains

trace K =

∫

F

∫

F

a(x, z) b(z, x) dν(z) dν(x).

In other words,

k(x, y) =

∫

F

a(x, z) b(z, y) dν(z)

defines a representant of k which fulfills formula (79). Another technique is Stekov’s smoothing
operator Sh, see for instance [GoGoKr00, p. 75]. One has also to mention the works of C. Brislawn
[Br91] using the Hardy-Littlewood maximal operator. A more subtle problem is to find conditions
on the integral kernel which guarantee that the corresponding integral operator is trace class. We
mention that there is a well-developed theory for non-negative Hermitian operators. For instance, if
ν is a finite measure on F and K : L2(F, dν) → K : L2(F, dν), (Kf)(x) =

∫
F k(x, y) f(y) dν(y) is an

integral operator with a non-negative Hermitian bounded kernel, then K is trace class, [GoGoKr00,
Cor. IV. 8.5].

The following proposition will be used for the computation of the Bargmann conjugate of the Ruelle-
Mayer transfer operator in Chapter 5. Concerning the vector-valued integration we refer to Ap-
pendix A.7.

Proposition 3.3.4. Let (Ly)y∈Y be an integrable family of bounded operators on a separable Hilbert
space H1, i. e.,

∫
Y ‖Ly‖ dy < ∞. Let Lf =

∫
Y Lyf dy : H1 → H1 be the bounded operator defined by

Prop. A.7.3. Let A ∈ L2(F 2, dν2). Let B : H2 → H1 be an isomorphism of Hilbert spaces and denote

by Tx := B−1 ◦ Lx ◦B : H2 → H2. We define the operators L̃ : L2(F, dν)⊗̂H1 → L2(F, dν)⊗̂H1 via

(L̃(f1 ⊗ f2))(y) :=

∫

F

Ax,y f1(x)Lxf2 dν(x)
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and B̃ : L2(F, dν)⊗̂H2 → L2(F, dν)⊗̂H1 via B̃(f1⊗f2) := f1⊗(Bf2). Then B−1◦L◦B =
∫
F Tx dν(x)

and T̃ := B̃−1 ◦ L̃ ◦ B̃ : L2(F, dν)⊗̂H2 → L2(F, dν)⊗̂H2 acts via

(T̃ g)(y) =

∫

F

Ax,y Txg(x) dν(x).

Proof. For all f, g ∈ H1 one has

〈
Lf g

〉
H1

=

∫

Y

〈
Lxf g

〉
H1
dx =

∫

Y

〈
TxB

−1f B−1g
〉
H2
dx =

〈
TB−1f B−1g

〉
H2
,

hence B−1 ◦ L ◦B =
∫
F Tx dν(x). For all f1, g1 ∈ H1 f2, g2 ∈ H2

〈
L̃(f1 ⊗ f2) g1 ⊗ g2

〉
L2(F,dν)⊗̂H1

=

∫

Y

∫

Y

Ax,y f1(x)
〈
Lxf2 g2

〉
H1
dx g1(y) dy

=

∫

Y

∫

Y

Ax,y f1(x)
〈
TxB

−1f2 B−1g2
〉
H1
dx g1(y) dy

=
〈
T̃ B̃−1(f1 ⊗ f2) B̃−1(g1 ⊗ g2)

〉
L2(F,dν)⊗̂H2

,

which shows the second assertion.

Remark 3.3.5. One way of thinking of L2(F, dν)⊗̂H is the so called constant field
∫ ⊕
F H dν(σ) over F

which is a very special direct integral of Hilbert spaces. See for instance [Ne00, A.II] for the definition

and basic properties of the direct integral
∫ ⊕
F Hx dν(σ) of Hilbert spaces Hx. In our case the fibers

Hx are constant, but for future transfer operators a non-constant direct integral could be useful. In
particular we have in mind the formal Ruelle-Mayer transfer operator from Def. 3.2.2

(M̃f)(x, z) :=

∫

F

Aσ,x exp(Aσ(z)) f(σ, ψσ(z)) dν(σ)

which has been defined formally on L1(F, dν)⊗̂ Cb(E). If the nature of Aσ and ψσ depends on the
parameter σ ∈ F drastically, then a direct integral might be an appropriate choice when looking for
a Hilbert space where the operator M̃ acts on.

3.4 Hard rods model

In this section we introduce a new approach to the so called hard rod model. This will enable us to
use the methods from the previous sections of this chapter to find a Ruelle-Mayer transfer operator
which satisfies a dynamical trace formula as we will show in Section 3.5.
The lattice spin systems as introduced in (1.2.7) consists of a fixed discrete lattice L, where on each
lattice point i ∈ L a spin value ξ(i) ∈ F is attached. We have a semigroup action on the lattice
inducing an action on the configuration space, see (1.2.3). This allows the spins to “move” on the
(discrete) lattice.
Continuous models allow the spins to move in a non-discrete set. An important example of a continuous
model is the one-dimensional hard rod model which models the situation of one-dimensional particles
(the rods) with a finite positive length moving on the real line. The rods are solid (hard), i. e., they
cannot intersect each other. This model has been firstly investigated by M. Kac, G. E. Uhlenbeck,
and P. C. Hemmer in their series of joint papers from 1963, [KaUhHe63].
Our general notion of spin values (1.1.1) allows us to mimic this continuous model by a one-dimensional
lattice spin system. Think of an “initial configuration” or “zero temperature configuration” in which
the (left edge of the) i-th rod is at position i ∈ L (with L = N or Z), i. e., a uniform configuration.
As the temperature increases, the particles start to move a little bit around their initial positions.
Having this in mind we give the set F ⊂ R of spin values the interpretation as the set of possible
movements. Mathematically, we will introduce a map which assigns to the spin value ξi of the i-th
particle the real number pi = i+ ξi interpreted as the position of the i-th particle. Since the particles
shall not intersect each other, not all configurations are allowed. We use a matrix subshift to exclude
intersections.
In this section we will describe the hard rod model, in the next section we will construct a Ruelle-Mayer
type transfer operator for a specific choice of an interaction and prove that it satisfies a dynamical
trace formula.
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Example 3.4.1. (Hard rods model)

(i) Let a > 0 be a constant which will be interpreted as the length of the hard rods. Let F ⊂ R be
an interval containing zero and L = Z. The hard rod model or hard rod subshift is defined as the
two-sided one-dimensional matrix subshift (ΩAa , F,Z,Z, τ) (1.2.8), with the transition matrix

Aa : F × F → {0, 1}, (x, y) 7→ Aa(x, y) =

{
1, if y + 1 − x ≥ a,
0, otherwise

and the usual shift action τ : Z × ΩAa → ΩAa (1.2.5). Similarly, one defines the one-sided hard
rod model (Ω>

Aa
, F,N,N0, τ

>) to be the one-sided matrix subshift (1.2.8) with this transition
matrix.

(ii) With a configuration (ξi)i∈Z ∈ FZ we associate via the injective map

(80) p : FZ → RZ, (ξi)i∈Z 7→ (λi)i∈Z := (i+ ξi)i∈Z

the (which we call) absolute position vector (λi)i∈Z ∈ RZ. The configuration η0 ∈ FZ defined
via η0(i) = 0 for all i ∈ Z corresponds to an “initial configuration” in which the (left edge of
the) i-th rod is at position i. Interprete ξi as the motion of the i-th rod relative to its base point
i, such that λi = ξi + i is the absolute position of the (left edge of the) i-th rod.

(iii) The classical hard rod model allows the particles to move freely, which corresponds in our mod-
elling to the choice F = R. Hence we have translated a continuous spin into a discrete model at
the (mathematical) “cost” of an unbounded set of spin values.

(iv) Let L = Z, δ1 < 0 < δ2, F := [δ1, δ2] and 0 < a < 1 be the length of the hard rods. We call
the lattice spin system (ΩAa , F,Z,Z, τ) with this data a mock hard rod model. We will take F
quite large to imitate the classical hard rod situation. This allows the i-th rod to move in the
compact set F + i so that the methods for discrete lattice systems with values in a compact set
can be applied.

Proposition 3.4.2 and the following remark will deepen the understanding of the absolute position
map p : FZ → RZ, (ξi)i∈Z 7→ (λi)i∈Z := (i+ ξi)i∈Z, which we introduced in 3.4.1 (ii).

Proposition 3.4.2. Let (ΩAa , F,Z,Z, τ) be a hard rod subshift (3.4.1) with hard rod length a > 0 and
position map p : FZ → RZ (80). Then:

(i) Let ξ ∈ FZ, then ξ belongs to ΩAa iff p(ξ) ∈ PA′
a
, where PA′

a
⊂ RZ is configuration space of the

matrix subshift with alphabet F ′ = R and transition matrix

A′
a : F ′ × F ′ → {0, 1}, (x, y) 7→ A′

a(x, y) =

{
1, if y − x ≥ a
0, otherwise.

(ii) Let ξ ∈ ΩAa and i ∈ N, then ξi ≥ ξ1 + (i− 1)(a− 1).

(iii) If a > 1 and F is bounded from above, then ΩAa = ∅.

A configuration
r r r r- � � �

is interpreted as pertubing the initial position

1 2 3 4

into the absolute position

1 2 3 4

Figure 10: The hard rod model: Configurations and absolute positions.
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Proof. For the first assertion observe that ξ ∈ ΩAa by definition iff Aa(ξi+1, ξi) = 1 ∀i, i. e., iff

ξi+1 − ξi + 1 = i+ 1 + ξi+1 − i− ξi = (i+ 1 + ξi+1) − (i+ ξi) ≥ a,

i. e. iff p(ξ) ∈ PA′
a
. The second assertion is easily done by induction: Let ξ ∈ ΩAa , then ξ1 ≥ ξ1 and

ξi+1 ≥ (a− 1) + ξi ≥ (a− 1)+ ξ1 + (i− 1(a− 1))ξ1 + i(a− 1). The third is an immediate consequence
of the second.

The first assertion of Proposition 3.4.2 can be interpreted in such a way that the (i+1)-th rod and the
i-th rod do not intersect: Let ξ ∈ ΩAa , then p(ξ) ∈ PA′

a
, and hence by definition p(ξ)i+1 − p(ξ)i ≥ a.

The i-th rod has its left edge at p(ξ)i, its right edge at p(ξ)i + a which is a position left to the left
edge of the (i+ 1)-th rod at position p(ξ)i+1. In our model the rods are not allowed to change their
ordering. If one wants to allow this, one would have to take in account some combinatorics.
The action τ : Z × Z → Z as defined in Example 1.2.5 (6) induces via formula (7) Z-actions not only
on the configuration space FZ, but also on RZ. Hence we can compare the actions on the configuration
spaces. It turns out that they almost commute.

Proposition 3.4.3. Let (ΩAa , F,Z,Z, τ) be a hard rod subshift (3.4.1) with hard rod length 0 < a < 1.
Let τ(1) be the shift on the configuration space FZ, τ(2) the shift on RZ via formula (7), and p : FZ → RZ

be the position map as in (80). Then one has on FZ (and hence on ΩAa)

τ(2) ◦ p = p ◦ τ(1) + 1.

Proof.
((τ(2) ◦ p)(ξ))i = (p(ξ))i+1 = ξi+1 + i+ 1 = ((p ◦ τ(1))(ξ))i + 1,

since ((p ◦ τ(1))(ξ))i = i+ (τ(1)(ξ))i = i+ ξi+1.

We will now define a family of two-body interactions for the hard rod model. Having the inter-
pretation via the absolute position map p (80) in mind, we will define the hard rod interaction of
a subconfiguration (ξi, ξj) ∈ F {i,j} as a function which depends on the difference of the absolute
positions.

Definition 3.4.4. (Hard rods interaction) Let Γ be a subsemigroup of Z which acts by translation
on itself, F ⊂ R an interval containing zero, and (Ω, F,Z,Γ, τ) a lattice spin system (1.2.7). We will
study pure two-body interactions of the type

φΛ(ξΛ) = ϕ2(i, j; ξi, ξj) = −∆(i+ ξi − j − ξj)

where Λ = {i, j} with i 6= j, ξΛ = (ξi, ξj), and ∆ : R → R is some even function with a certain decay
at infinity which we will specify later. Such an interaction we call a hard rod two-body interaction with
distance function ∆. According to Remark 1.8.2 a hard rod interaction is translation invariant with
respect to the shift action.

We mention that one might consider the line Z as Z × {0} ⊂ Rn and spin values F ⊂ Rn. Then
one can model a system where particles are allowed to move in a tubular neighbourhood of the line
Z × {0} ⊂ Rn. Then define a hard rod interaction via ϕ2(i, j; ξi, ξj) = −∆(‖i+ ξi − j − ξj‖) for an
appropriate norm ‖ · ‖ : Rn → R on Rn and a function ∆ : R → R with certain decay.
We will now determine the hard rod interactions which are compatible with the periodic boundary
condition. The analogue of Proposition 1.9.6 for the hard rod interactions is the following:

Proposition 3.4.5. Let Z act by translation on itself, F ⊂ R be an interval containing zero, and
(Ω, F,Z,Z, τ) a lattice spin system (1.2.7). Let bZ = (bZ

Λ)Λ∈P(nZ)
be the periodic boundary condi-

tion (1.3.9) associated to the family (nZ)n∈N of subsemigroups of Z. Let φ be a hard rod two-body
interaction

ϕ2(i, j; ξi, ξj) = −∆(i+ ξi − j − ξj),

where ∆ : R → R is even with supz∈[0, 12 ]

∑
γ∈Z

|∆(γ + z)| < ∞. Then the total energy U b
Z,φ

Λ defined

in (1.6.4) converges absolutely, i. e., the boundary condition and the interaction are compatible.
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Proof. By Proposition 1.9.3 it is sufficient to show (the last inequality of)

∑

γ∈Z

|ϕ2(i, γ · l;x, y)| =
∑

γ∈Z

|∆(i+ x− γ − l − y)| =
∑

γ∈Z

|∆(γ + x− y)| ≤ sup
z∈[0, 12 ]

∑

γ∈Z

|∆(γ + z)| <∞.

Here we made substitutions γ′ = γ + l − i, γ′ = γ + dx − ye, and possibly γ′ = −γ to ensure that z
can be chosen in the interval [0, 1

2 ].

Remark 3.4.6. The term supz∈[0, 12 ]

∑
γ∈Z

|∆(γ + z)| in our sufficient condition in Proposition 3.4.5
can be bounded from above by

sup
z∈[0,1]

∑

γ∈Z

|∆(γ + z)| = sup
z∈[0,1]

∞∑

γ=0

(
|∆(γ + z)| + |∆(γ + 1 − z)|

)
≤ 2 sup

z∈[0,1]

∞∑

k=0

|∆(γ + z)|,

which is twice the bound for the corresponding one-sided system.

Similarly to Example 1.9.7 we get the following examples of hard rod interactions which satisfy the
summability condition from Proposition 3.4.5 and hence are compatible with the periodic boundary
condition.

Example 3.4.7. The following distance functions ∆ : R → R satisfy the summability condition from
Proposition 3.4.5, i. e., supz∈[0, 12 ]

∑
γ∈Z

|∆(γ + z)| <∞.

(i) Exponentially decaying interactions ∆(z) = λ|z| for 0 < |λ| < 1.

(ii) Mock polynomially decaying interactions ∆(z) = (ε+ |z|)−s for Re(s) > 1, ε > 0.

(iii) Logarithmic interaction ∆(z) = log(1 − cλ|z|) for 0 < |c|, |λ| < 1.

In fact:

(i) For z ∈ [0, 1] we have
∑∞

k=0 |λ||k+z| = |λ|z∑∞
k=0 |λ|k = |λ|z

1−|λ| ≤ 1
1−|λ| <∞.

(ii) For z ∈ [0, 1] we have

∞∑

k=0

|(ε+ |k + z|)−s| = (ε+ z)−Re(s) +
∞∑

k=1

(ε+ z + k)−Re(s) ≤ ε−Re(s) +
∞∑

k=1

k−Re(s) <∞.

(iii) Using | log(1 − z)| ≤ − log(1 − |z|) for |z| < 1 we get

∞∑

k=0

| log(1 − cλk+z)| ≤ −
∞∑

k=0

log(1 − |c| |λ|k+z) = − log
( ∞∏

k=0

(1 − |c| |λ|k+z)
)
,

which converges since
∑∞

k=0 |λ|k+z <∞.

3.5 Transfer operators for the hard rod model

In this section we derive the Ruelle-Mayer transfer operator for the one-sided one-dimensional hard
rod model. By the previous Section 3.4 we have a representation of the hard rod model as a matrix
subshift which makes the methods from Section 3.3 available. We will exemplarily deal with the
polynomial-exponentially decaying hard rod interaction for which we can find a Ruelle-Mayer transfer
operator. This RM operator satisfies a dynamical trace formula as we will prove in Corollary 3.5.2.
Whereas for a mock hard rod model, i. e. the set F of spin values is a bounded subset of R, the only
condition on the a priori measure ν on F is its finiteness, for unbounded F we have to require a strong
decay at infinity. We mention that in [MayVi77] there has been found a Ruelle-Mayer type transfer
operator for exponentially decaying interactions starting from a different approach. The proof of the
dynamical trace formula presented there is a long and technical computation, whereas our approach
will directly yield the desired formula.
Let a > 0 be a positive number interpreted as the length of the hard rods, F ⊂ R an interval
containing zero equipped with a finite Borel measure ν, and (ΩAa , F,N,N0, τ) a one-sided hard rod
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subshift (3.4.1). Let φ be a pure two-body hard rod interaction (3.4.4) with distance function ∆, i. e.,
φ is of the form

φΛ(ξΛ) = −∆(i+ ξi − j − ξj), if Λ = {i, j}, ξΛ = (ξi, ξj),

where ∆ : R → R is an even function. The standard hard rod observable is given as

(81) A(φ) : ΩAa → R, ξ 7→
∞∑

i=2

∆(ξi − ξ1 + i− 1).

In order to make this well-defined, one needs certain decay estimates for the distance function ∆, see
for instance Proposition 3.4.6. Exemplarily we discuss the case of polynomial-exponentially decaying
interactions, i. e., ∆ : R → C, x 7→ λ|x|

∑m−1
i=0 ci |x|i, where 0 < λ < 1, and ci ∈ C (i = 0, . . . ,m− 1).

In Proposition 3.4.2 (ii) we showed that for all ξ ∈ ΩAa and i ∈ N the estimate ξi ≥ ξ1 + (i− 1)(a− 1)
holds true. Hence

ξi + i− ξ1 − 1 ≥ (i− 1)(a− 1) + i− 1 = (i− 1)a ≥ 0.

For all 0 < ε < 1 − λ one can find c > 0 such that
∣∣λ|x|

∑m−1
i=0 ci |x|i

∣∣ ≤ c (λ + ε)x for all x ∈ R. This
implies

|A(∆)(ξ)| ≤ c

∞∑

i=2

(λ + ε)|ξi−ξ1+i−1| ≤ c

∞∑

i=2

(λ+ ε)(i−1)a <∞,

i. e., A(φ) : ΩAa → C is bounded by a constant which does not depend on F .

According to Proposition 3.1.2 we define the Ruelle transfer operator L̃A(φ)
∈ End

(
L2(F, ν)⊗̂π Cb(Ω)

)

associated to the observable A(φ) ∈ Cb(F ) via

(L̃A(φ)
f)(x, ξ) =

∫

F

Aσ,x exp
(
A(φ)(σ ∨ ξ)

)
f(σ, σ ∨ ξ) dν(σ).

The following proposition is the key step for the construction of the Ruelle-Mayer transfer operator. It
states that π is a projection map leading to an (S1) - (S3) Ansatz 2.3.3 and thus provide a factorisation
of the Ruelle transfer operator which we need in order to construct the Ruelle-Mayer transfer operator.

Proposition 3.5.1. Let a > 0 be the length of the hard rods, F ⊂ R an interval containing zero
equipped with a finite Borel measure ν, and (ΩAa , F,N,N0, τ) a one-sided hard rod subshift (3.4.1). Let

φ be a two-body hard rod interaction (3.4.4) with distance function ∆ : R → C, x 7→ λ|x|
∑m−1

i=0 ci |x|i,
where 0 < λ < 1 and ci ∈ C (i = 0, . . . ,m− 1). Let

π = (π0, . . . , πm−1) : Ω → Rm, ξ 7→
( ∞∑

j=1

(ξj + j)k λξj+j
)

k=0,...,m−1

and D
(m)
x ∈ Mat(m,m; R) be the lower triangular matrix defined via

(D(m)
x )i,j :=

{
xi−j

(
i
j

)
, j ≤ i,

0 , otherwise,

for x ∈ R and i, j = 0, . . . ,m − 1. Then π(σ ∨ ξ) =
(
(σ + 1)kλσ+1

)

k=0,...,m−1
+ λD

(m)
0 π(ξ) and the

standard observable A(φ) : Ω → R (81) can be expressed as29

A(φ)(σ ∨ ξ) = λ−σ
(

D
(m)
−σ π(ξ) | c

)
.

Proof. Note that D
(m)
0 = B(m) ∈ Mat(m,m; R) as defined in Remark 2.11.1. For all k = 0, . . . ,m− 1

and σ ∨ ξ ∈ ΩAa we compute

πk(σ ∨ ξ) = (σ + 1)kλσ+1 +

∞∑

j=1

(ξj + j + 1)kλξj+j+1

= (σ + 1)kλσ+1 + λ
k∑

l=0

(
k

l

) ∞∑

j=1

(ξj + j)lλξj+j

= (σ + 1)kλσ+1 + λ

k∑

l=0

(
k

l

)
πl(ξ),

29
`

· ·
´

denotes the C-bilinear extension of the euclidean scalar product, i. e.,
`

x y
´

=
P

i xi yi.
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which shows the first assertion. Concerning the second we note that

A(φ)(σ ∨ ξ) =

∞∑

j=1

m−1∑

i=0

ci(ξj + j − σ)iλξj+j−σ

=

m−1∑

i=0

ci

∞∑

j=1

(ξj + j − σ)iλξj+j−σ

= λ−σ
m−1∑

i=0

ci

∞∑

j=1

i∑

k=0

(
i

k

)
(−σ)i−k(ξj + j)kλξj+j

= λ−σ
m−1∑

i=0

ci

i∑

k=0

(
i

k

)
(−σ)i−kπk(ξ) = λ−σ

(
D

(m)
−σ π(ξ) | c

)
.

According to Definition 3.2.2 we obtain the Ruelle-Mayer transfer operator M̃ acting as a formal
operator on L2(F, dν)⊗̂π Cb(Cm) via

(M̃f)(x, z) :=

∫

F

Aa(σ, x) exp
((
z | λ−σ(D(m)

−σ )>c
))

f
(
σ,
(
(σ + 1)kλσ+1

)
k=0,...,m−1

+ λB(m)z
)
dν(σ)

where D
(m)
x ∈ Mat(m,m; R) as defined in Proposition 3.5.1. Motivated by the results for Ising type

interactions we will study the spectral properties of the operator acting via this formula on the Hilbert
space L2(F, dν)⊗̂ F(Cm). We will show that this operator fulfills a dynamical trace formula provided
some conditions on the measure ν on F which we explain first.

As an abbreviation we set aσ := βλ−σ(D(m)
−σ )>c and bσ :=

(
(σ + 1)kλσ+1

)
k=0,...,m−1

, which are

continuous functions with respect to the parameter σ ∈ R. We set

(82) (Mσf)(z) := exp(〈z|aσ〉) f(bσ + λB(m)z).

By Remark 2.6.4 the spectral radius ρspec(B
(m)) of B(m) is equal to max{|z| ∈ spec(B(m))} = 1.

We have ‖(λB(m))n‖ < 1 for sufficiently large powers n and B(m) ∈ S1(C
m) trivially, hence by

Lemma B.3.10 the composition operator Mσ : F(Cp+1) → F(Cm) belongs to the Schatten class
Sn(F(Cm)). We assume for a moment that ‖λB(m)‖ < 1, hence Mσ is trace class (the general case
goes analogous to the proof of Theorem 2.7.6). By Corollary B.4.4 the Hilbert-Schmidt norm (A.2.2)
of Mσ : F(Cm) → F(Cm) is equal to

(83) ‖Mσ‖2
S2(F(Cm)) =

exp
(
π‖π−1aσ‖2 + π‖(1 − λ2B(m)(B(m))?)−1/2(π−1B(m)aσ + bσ)‖2

)

det(1 − λ2B(m)(B(m))?)
.

By investigating the coefficients of aσ and bσ, one confirms that ‖bσ‖ is bounded as σ → ∞ and of
order λ−σ as σ → −∞. Similarly, ‖aσ‖ is bounded as σ → −∞ and of order λσ as σ → ∞. In other
word, the sum ‖aσ‖ + |bσ‖ is of order exp(|σ logλ|) as |σ| → ∞, and the Hilbert-Schmidt norm of
Mσ : F(Cm) → F(Cm) growths double-exponentially as |σ| → ∞.

Corollary 3.5.2. Let a > 0 be the length of the hard rods, F ⊂ R an interval containing zero
equipped with a finite Borel measure ν, and (ΩAa , F,N,N0, τ) be a one-sided hard rod subshift (3.4.1).
Suppose that

∫
F ‖Mσ‖2

S2(F(Cp+1)) dν(σ) given by (83) above is finite. Let φ be a two-body hard rod

interaction (3.4.4) with distance function ∆ : R → C, x 7→ λ|x|
∑m−1
i=0 ci |x|i, where 0 < λ < 1 and

ci ∈ C (i = 0, . . . ,m − 1). Let A(φ) be the standard observable (81) and D
(m)
x ∈ Mat(m,m; R) as

defined in Proposition 3.5.1. Then there exists an index n0 ∈ N depending on m and λ such that for
all n ≥ n0 the Ruelle-Mayer transfer operator M̃β : L2(F, dν)⊗̂ F(Cm) → L2(F, dν)⊗̂ F(Cm) acting
via

(M̃βf)(x, z) :=

∫

F

Aa(σ, x) exp
(
β
(
z |λ−σ(D(m)

−σ )>c
))

f
(
σ,
(
(σ + 1)kλσ+1

)
k=0,...,m−1

+λD
(m)
0 z

)
dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − λn)m trace (M̃β)
n.
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Proof. Each of the operators Mσ : F(Cm) → F(Cm) introduced in (82) satisfies the Atiyah-Bott trace

formula (53). Then the assertion follows from Theorem 3.2.5 and the fact that det
(
1 − λ(D

(m)
0 )n

)
=

det(1 − (λB(m))n) = (1 − λn)m.

We will now deal with a special case, namely with exponentially decaying hard rod interactions. Let
φ be a two-body hard rod interaction (3.4.4) with distance function ∆ : R → R, x 7→ λ|x|, where
0 < λ < 1. In this situation our condition

∫
F ‖Mσ‖2

S2(F(C)) dν(σ) <∞ on the a priori measure ν can

be well analysed. The matrix D
(1)
x = B(1) = 1 ∈ Mat(1, 1; R) has operator norm equal to one and the

auxiliary operators Mσ : F(C) → F(C) simplify to

(Mσf)(z) = exp
(
βλ−σz

)
f(λ(λσ + z)).

By Corollary B.4.4 we can explicitly determine the Hilbert-Schmidt norm

‖Mσ‖2
S2(F(C)) =

exp
(
π|π−1βλ−σ |2 + π|(1 − λ2)−1/2(π−1βλ−σ + λ1+σ)|2

)

1 − λ2

=
exp(π

(
|β/π|2λ−2σ + (1 − λ2)−1|βπ−1λ−σ + λ1+σ|2

)
)

1 − λ2
,

which allows to determine the admissible sets F ⊂ C and Borel measures νF on F such that the
Ruelle-Mayer transfer operator M̃β : L2(F, dν)⊗̂ F(C) → L2(F, dν)⊗̂ F(C),

(M̃βf)(x, z) :=

∫

F

Aa(σ, x) exp
(
βλ−σz

)
f(σ, λ(λσ + z)) dν(σ)

belongs to the Hilbert-Schmidt class. Corollary 3.5.2 immediately implies the following:

Corollary 3.5.3. Let a > 0 be the length of the hard rods, F ⊂ R an interval containing zero equipped
with a finite Borel measure ν, and (ΩAa , F,N,N0, τ) a one-sided hard rod subshift (3.4.1). Let φ be a
two-body hard rod interaction (3.4.4) with distance function ∆ : R → R, x 7→ λ|x|, where 0 < λ < 1.
Let A(φ) be the standard observable (81). If

∫
F ‖Mσ‖2

S2(F(C)) dν(σ) is finite, then for all n ∈ N>1 the

Ruelle-Mayer transfer operator M̃β : L2(F, dν)⊗̂ F(C) → L2(F, dν)⊗̂ F(C),

(M̃βf)(x, z) :=

∫

F

Aa(σ, x) exp
(
βλ−σz

)
f(σ, λ(λσ + z)) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − λn) trace (M̃β)
n.
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4 The Dynamical Zeta Function

In this chapter we study the properties of the partition function by using a method from number
theory. The dynamical zeta function ζR has been introduced by Ruelle in [Ru76], [Ru76a], [Ru94],
[Ru02] and is defined as the generating function of the partition functions

ζR(z, β) := exp

( ∞∑

n=1

Zb
N0 ,φ

{1,...,n}(β)
zn

n

)
.

From its definition and a standard estimate on the partition functions it is appearend that ζR is
a holomorphic function in a neighbourhood of zero with finite radius of convergence. Methods from
analytic number theory allow to relate analytic properties of zeta to average properties of the partition
function and hence yield information about the dynamical system. For this reasoning one needs the
existence of a meromorphic continuation of zeta beyond the first pole.
If the partition functions can be expressed via a dynamical trace formula of a transfer operator, then
we will show that ζR has an Euler product and a meromorphic continuation to the entire complex
plane. This will be done using a representation of Ruelle’s zeta as a quotient of (regularised) Fredholm
determinants. Hence the zeros and poles of ζR have a spectral interpretation, i. e., can be given in
terms of the eigenvalues of the transfer operator. We refer to Appendix A.1 and A.2 for the definition
and properties of regularised determinants.
In section 4.1 we define the dynamical zeta function and prove its meromorphic continuation in
the easiest case. Section 4.2 investigates a special class of generating functions, which contains the
dynamical zeta function in the case when a dynamical trace formula holds. To prove the meromorphic
continuation in the general case we will also need certain limits of sequences of generating functions.
This will be done in Section 4.3. These results will be applied in Section 4.4, where we show the
following result: Suppose the spin systems satisfies a dynamical trace formula of the form

Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace Gn

for all n ≥ n0, where G is a transfer operator of class Sn0(H) and Λ ∈ S1(H0) with ρspec(Λ) < 1.
Then the dynamical zeta function has a meromorphic continuation to the entire plane and an Euler
product.

4.1 Basic properties

In this section we define the dynamical zeta function and discuss some of its basic properties. Then
we show that the dynamical zeta function can be represented in special cases via regularised Fredholm
determinants which have an Euler product and thus a meromorphic continuation to the entire complex
plane. This applies for the non-interacting case β = 0, finite range interactions, and superexponentially
decreasing Ising type interactions due to the dynamical trace formulae proved in Corollary 2.8.3 and
Proposition 2.9.3, respectively.

Definition 4.1.1. Given the sequence
(
Zb

N0 ,φ
{1,...,n}

)
n∈N

of partition functions (1.7.1) associated to a

one-sided one-dimensional shift, the dynamical zeta function or Ruelle zeta function is defined as
their generating function, i. e.

ζR(z, β) := exp

( ∞∑

n=1

Zb
N0 ,φ

{1,...,n}(β)
zn

n

)

where β ∈ C is the complexification of the inverse temperature. For fixed β Ruelle’s zeta defines a
holomorphic function in a neighbourhood of z = 0 ∈ C (see Remark 4.1.2).

A similar definition can be made by replacing the sequence of partition functions by the sequence

of dynamical partition functions Z̃b
N0

n (A) (1.11.4) for an observable A. For the standard observable

βA(φ) (1.11.1) these two definitions coincide since Zb
N0 ,φ

{1,...,n}(β) = Z̃b
N0

n (βA(φ)) as we have shown in

Remark 1.11.5. We will drop the parameter β occasionally and write then ζR(z).
In the following Remark 4.1.2 we show that zeta has a finite non-zero radius of convergence, give then
a physical interpretation of the first pole of zeta, and compute the zeta function in a trivial case.
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Remark 4.1.2. (Properties of ζR)

(i) Let β ∈ C. We use the representation of the partition function provided by Corollary 1.11.3

Zb
N0 ,φ

{1,...,n}(β) = Z̃b
N0

n (βA(φ)) =

∫

Fn

n∏

i=1

Axi,xi+1 exp
(
β

n−1∑

k=0

A(φ)(τk(x1 . . . xn))
)
dνn(x1, . . . , xn),

from which it is apparent that
∣∣Zb

N0 ,φ
{1,...,n}(β)

∣∣ ≤
(
exp(‖β A(φ)‖Cb(Ω)) ν(F )

)n
. Hence the radius of

convergence ρ(β) of zeta is non-zero, but finite. It is given by

(84) ρ(β) := lim
n→∞

∣∣Zb
N0 ,φ

{1,...,n}(β)
∣∣−1/n

.

(ii) Suppose the sequence of partition functions consists of positive numbers. This happens for
instance if the interaction and the parameter β are real. By a result of Pringsheim30 a power
series whose coefficients are positive has its first pole at the intersection of the positive real line
and the boundary of the disk of convergence, i.e., precisely at ρ(β) (84). This quantity is related

to the free energy f := − 1
β limn→∞

1
n logZb

N0 ,φ
{1,...,n}(β) of the system via ρ(β) = exp(β f). Recall

from Theorem 2.1.4 the definition and characterisation of the topological pressure P (A) of a
real-valued observable A as

P (A) = lim
n→∞

1

n
log Z̃b

N0

n (A).

Hence using Definition 1.11.4 of the dynamical partition function Z̃b
N0

n (A), the topological pres-
sure of the standard observable A(φ) satisfies ρ(β) = exp(−P (βA(φ))) = exp(βf).

(iii) In Remark 1.7.2 and Corollary 3.2.7 we have seen that for the non-interacting case β = 0 we

have Z̃b
N0

n (0) = Zb
N0 ,0

{1,...,n} = νn(ρ{1,...,n}(Fix(τn : ΩA → ΩA))), which measures the number of

closed orbits of with period length n with respect to the a priori measure ν. In particular,
this quantity is independent of the specific interaction. The topological pressure of the zero
observable, h := P (0) = − log ρ(0), is called the entropy.

(iv) In particular, if the spin system is a one-sided one-dim. full shift (1.2.6), then Zb
N0 ,φ

{1,...,n}(0) =

ν(F )n. The entropy h is thus h = log ν(F ). Using the definition of the dynamical zeta function
(4.1.1) and the power series representation of − log(1 − x), we obtain

ζR(z, 0) = exp
( ∞∑

n=1

ν(F )n
zn

n

)
= exp(− log(1 − ν(F )z) =

1

1 − ν(F )z
.

Hence, in this very simple case, the zeta function is rational. We will consider the zeta function
for the general non-interacting case in Remark 4.1.6.

Unlike other kinds of zeta functions, as for instance Riemann’s, Selberg’s, or Artin’s zeta, our dynam-
ical zeta function is an exponential of a power series, hence itself a power series as the next remark
shows. By considering s 7→ ζR(e−s, β) one obtains a function which is holomorphic in the right half
plane Re(s) > − log ρ(β).

Remark 4.1.3. Lemma A.1.3 leads to an explicit power series expansion of zeta as ζR(z) =

∞∑

n=0

an
n!
zn

with coefficients a0 = 1 and for n ≥ 1

an = det




Z1 n−1 0 ... 0 0
−Z2 Z1 n−2 ... 0 0

Z3

. . .
. . .

. . .
...

...
...

...
...

. . .
. ..

...
(−1)nZn−1 (−1)n−1Zn−2 (−1)n−2Zn−3 ... Z1 1

(−1)n+1Zn (−1)nZn−1 (−1)n−1Zn−2 ... −Z2 Z1



,

where Zn := Zb
N0 ,φ

{1,...,n}(β) for abbreviation.

30as cited in [May80a, p. 116], there reference to [La29].
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A natural question is to ask whether ζR has a meromorphic continuation to a larger disk or even to
the entire complex plane. The following remark gives a partial answer. Since we know the first pole
of zeta implicitely, it can be separated. The remainder can again be written a generating function of
almost the same type.

Remark 4.1.4. We combine the previous considerations of Remark 4.1.2 with an argument appearing
in [PaPo90, p. 81] and obtain that for ρ(β) as defined in (84) we have

ζR(z, β) = exp
( ∞∑

n=1

(z/ρ(β))n

n

)
exp
( ∞∑

n=1

(
Zb

N0 ,φ
{1,...,n}(β) − ρ(β)−n

) zn
n

)
=

η(z, β)

1 − z/ρ(β)
,

where η( · , β) is holomorphic in a neighbourhood of ρ(β).

This splitting idea from Remark 4.1.4 now can be iterated, if the poles do not accumulate. For a

special class of sequences (Zb
N0 ,φ

{1,...,n})n∈N
, namely those for which a dynamical trace formula holds, we

will obtain a complete factorisation of the dynamical zeta function in terms of (regularised31) Fredholm
determinants. The following lemma is the key idea towards proving the meromorphic continuation of
the dynamical zeta functions for systems with exponentially decaying interactions. The case n0 = 1
(i. e. G trace class) was observed by Moritz in [Mo89].

Lemma 4.1.5. Suppose there exists a transfer operator G ∈ Sn0(H) which satisfies the dynamical

trace formula Zb
N0 ,φ

{1,...,n} = trace Gn for all n ≥ n0. Then

ζR(z) = exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
detn0(1 − zG)−1

gives the meromorphic continuation of Ruelle’s zeta to the entire C − plane.

Proof. We write the dynamical zeta function as

ζR(z) = exp
( ∞∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
= exp

( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)(
exp
(
−

∞∑

n=n0

zn

n
trace Gn

))−1

.

Obviously the first factor is an entire function, so we have to analyse the second. For small |z| it is
given as the n0-regularised determinant by Lemma A.1.2 which has a meromorphic continuation to
the entire C-plane.

When combining Lemmas A.1.4 and 4.1.5 we obtain an Euler product expansion of ζR. Our first
application of the previous lemma is the general non-interacting case, i. e., β = 0.

Remark 4.1.6. Let (ΩA, F,N,N0, τ) be a one-sided one-dimensional matrix subshift (1.2.8) and ν a
finite measure on F . Then by Corollary 3.2.7 the transfer operator

GA : L2(F, dν) → L2(F, dν), (GAf)(x) =

∫

F

Aσ,x f(σ) dν(σ)

satisfies the dynamical trace formula Zb
N0 ,0

{1,...,n}(0) = νn(ρ{1,...,n}(Fix(τn : ΩA → ΩA))) = trace (GA)n

for n ≥ 2. Hence by Lemma 4.1.5

ζR(z, 0) = exp
(
z Zb

N0 ,0
{1}

)
exp
( ∞∑

n=2

zn

n
trace GnA

)
=

exp
(
z Zb

N0 ,0
{1}

)

det2(1 − zGA)
.

As a consequence of Lemma 4.1.5 and Corollary 2.8.3 for finite range interactions and Proposition 2.9.3
for superexponentially decreasing distance functions we obtain the following result.

31In Appendix A.1 and A.2 we give an introduction to regularised determinants and their properties.
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Corollary 4.1.7. Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full shift
(1.2.6). Let φ be a two-body Ising interaction (1.8.3) with distance function d and potential q ∈ Cb(F ).

(i) If d has finite range ρ0, then the transfer operator

Mβ : F(Cρ0) → F(Cρ0), (Mβf)(z) =

∫

F

exp
(
βq(x) + β z1

)
f(xwd + λSρ0z) dν(x)

defined in Corollary 2.8.3 satisfies ζR(z, β) = det(1 − zMβ)
−1.

(ii) If there exists γ > 0, δ > 1 and a : N → C such that limk→∞ a(k) exp(−ε1 kε2) = 0 for all
ε1, ε2 > 0 and the distance function d : N → C is given as d(k) := a(k) exp(−γ kδ), then the
transfer operator

Mβ : F(`2N) → F(`2N), (Mβf)(z) =

∫

F

exp
(
β q(σ) + β σ z1

)
f(σ ṽd + Sz) dν(σ)

defined in Corollary 2.9.3 satisfies ζR(z, β) = det(1 − zMβ)
−1.

As a side remark: The provisional Ruelle-Mayer transfer operator

Mβ : F(Cρ0) → F(Cρ0), (Mβf)(z) =

∫

F

exp
(
βq(x) + β z1

)
f(x vd + Sρ0z) dν(x)

for a finite-range interaction defined in (62) of Subs. 2.8 satisfies

ζR(z, β) = exp
( ρ0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}(β)

)
detρ0(1 − zMβ)

−1.

With the motivation of Lemma 4.1.5 we can now formulate the program of this chapter:

Remark 4.1.8. We suppose that there exists a transfer operator G such that for all n ≥ n0 we have
the dynamical trace formula

Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace G.

In Chapter 2 we made a lot of effort to obtain such a situation. We will now benefit from this as
follows: We proceed as in the proof of Lemma 4.1.5 and write

ζR(z) = exp
( ∞∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
= exp

( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
exp
( ∞∑

n=n0

zn

n
det(1 − Λn) trace Gn

)
.

The first factor on the right hand side is an entire function, so we are left with second one. In the
following we will investigate under which conditions ζR has a meromorphic continuation. The answer
needs some preparation which will be done in the following Section 4.2. Finally the result be proved
in Corollary 4.4.2. We would like to point out that this method only depends on the fact that a
dynamical trace formula holds. Hence this result can also be applied for the dynamical zeta function
associated to a sequence of dynamical partition functions.

4.2 Generating functions

In order to implement the program formulated in Remark 4.1.8 we will investigate generating functions
of a special kind. In this section we will provide some first tools which will be further developed in
Section 4.3. In Proposition 4.2.4 we will prove that the dynamical zeta function has an Euler product
and a meromorphic continuation to the entire complex plane if the dynamical trace formula

Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace Gn

holds for all n ≥ n0, where G ∈ Sn0(H) and Λ is a matrix. A typical example for this situation is
the case of Ising type systems with polynomial-exponentially decaying distance function for which we
showed this trace formula in Corollary 2.11.2.
We will now introduce this class of generating functions and discuss some basic properties.
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Proposition 4.2.1. Let a = (an)n∈N be a sequence of complex numbers with r(a) := 1

limn→∞
n
√

|an|
6=

0. For u ∈ N, G ∈ Su(H), z ∈ C let

(85) gu(z, a,G) := exp
( ∞∑

n=u

zn

n
an trace Gn

)

be the generating function associated to a. Then gu( · , a,G) defines a holomorphic function on the ball
B(0; r(a)/‖G‖Su(H))C = {z ∈ C; |z| < r(a)/‖G‖Su(H)} with the properties: Let a, b ∈ CN, then

(i) gu(z, c a,G) = gu(z, a;G)c on B(0; r(a)/‖G‖Su(H)) for all c ∈ C,

(ii) gu(z, a+ b,G) = gu(z, a,G) gu(z, b,G) on B(0; r(a)/‖G‖Su(H)) ∩B(0; r(b)/‖G‖Su(H)), and

(iii) gu(cz, a,G) = gu(z, b,G) on B(0; r(a)/(c‖G‖Su(H))), where bn := cn an, c ∈ C×.

Proof. We recall that ‖A‖Sp(H) ≤ ‖A‖Sq(H) for all A ∈ Sq(H) and p ≥ q. Then by standard estimates

|gu(z, a,G)| ≤ exp
∣∣∣

∞∑

n=u

zn

n
an trace Gn

∣∣∣ ≤ exp
( ∞∑

n=u

|z|n
n

|an| ‖G‖nSn(H)

)
≤ exp

( ∞∑

n=1

|an|
n

‖zG‖nSu(H)

)
,

hence gu(z, a,G) converges in a neighbourhood of zero with the claimed radius of convergence. Prop-
erties (i) - (iii) now follow from standard arguments:

gu(z, c a,G) = exp
( ∞∑

n=u

zn

n
c an trace Gn

)
= exp

(
c

∞∑

n=u

zn

n
an trace Gn

)
= exp

( ∞∑

n=u

zn

n
an trace Gn

)c
,

hence gu(z, c a,G) = gu(z, a,G)c. Let a = (an)n∈N, b = (bn)n∈N, and |z| be small, then

gu(z, a+ b,G) = exp
( ∞∑

n=u

zn

n
(an + bn) trace Gn

)
= exp

( ∞∑

n=u

zn

n
an trace Gn +

∞∑

n=u

zn

n
bn trace Gn

)

= exp
( ∞∑

n=u

zn

n
an trace Gn

)
exp
( ∞∑

n=u

zn

n
bn trace Gn

)
= gu(z, a,G) gu(z, b,G),

and finally

gu(z, b,G) = exp
( ∞∑

n=u

zn

n
cn an trace Gn

)
= exp

(
c

∞∑

n=u

(cz)n

n
an trace Gn

)
= gu(cz, a,G).

The following proposition considers how the difference of two generating functions depends on their
coefficients. This will be used for the approximation of generating functions in Section 4.3.

Proposition 4.2.2. Let q > 1 and p be the dual exponent of q defined by 1
p + 1

q = 1. Let a, b ∈ `qN,

u ∈ N, and G ∈ Su(H). Then for all |z| < min
(
r(a)/‖G‖Su(H), r(b)/‖G‖Su(H), 1

)
one has the following

estimate for the difference of two generating functions (85)

|gu(z, a,G) − gu(z, b,G)|
≤ ‖a− b‖`qN | log(1 − ‖zG‖pSu(H))|1/p exp

(∣∣ log(1 − ‖zG‖pSu(H))
∣∣1/p (‖a‖`qN + ‖a− b‖`qN)

)
.

Proof. Using ex − 1 ≤ x ex for x ≥ 0, one gets

|ex − ey| = |ey| |ex−y − 1| ≤ |ey| (e|x−y| − 1) ≤ |x− y| e|y|+|x−y|.

With this preparation we conclude that

|gu(z, a,G) − gu(z, b,G)| =
∣∣∣ exp

( ∞∑

k=m

ak
k
zk trace Gk

)
− exp

( ∞∑

k=m

bk
k
zk trace Gk

)∣∣∣

≤
∣∣∣

∞∑

k=m

ak − bk
k

zk trace Gk
∣∣∣ exp

(∣∣∣
∞∑

k=m

ak
k
zk trace Gk

∣∣∣
)

exp
(∣∣∣

∞∑

k=m

ak − bk
k

zk trace Gk
∣∣∣
)

≤
∞∑

k=1

( |ak − bk|
k

‖zG‖kSu(H)

)
exp
( ∞∑

k=1

|ak|
k

‖zG‖kSu(H)

)
exp
( ∞∑

k=1

|ak − bk|
k

‖zG‖kSu(H)

)
.(86)
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Hence an estimate for the inner series is needed. For any small c > 0 and (dk)k∈N ∈ `qN one has by
Hölder’s inequality ( 1

p + 1
q = 1, hence p <∞)

∞∑

k=1

ck

k
|dk| ≤

( ∞∑

k=1

(ck
k

)p)1/p( ∞∑

k=1

|dk|q
)1/q

≤
( ∞∑

k=1

cpk

k

)1/p

‖d‖`qN = | log(1 − cp)|1/p ‖d‖`qN.

This estimate together with (86) gives the assertion.

In the applications we have in mind, the coefficients (an)n∈N of the generating function g( · , a,G)
(85) have a special form. In this section we assume them to be special values of a fixed polynomial.
For those coefficients the generating function gu( · , a,G) (85) can be represented as a quotient of
u-regularised determinants.

Proposition 4.2.3. Let N ∈ N, b1, . . . , bN , c ∈ C and a(N) = (a
(N)
n )n∈N be defined via a

(N)
n :=∑N

k=0 bk c
nk. Then for any u ∈ N and G ∈ Su(H) the generating function gu( · , a(N), G) (85) can be

written as

gu(z, a
(N), G) =

N∏

k=1

detu(1 − zckG)−bk .

Interpretation: Let f(z) =
∑N

k=0 bk z
k ∈ C[z], then a

(N)
n = f(cn).

Proof. This follows for small |z| from Proposition 4.2.1 and the calculation

gu(z, a
(N), G) = gu

(
z,
( N∑

k=0

bkc
nk
)
n∈N

, G
)

=

N∏

k=0

gu
(
z,
(
bkc

nk
)
n∈N

, G
)

=

N∏

k=0

gu(c
kz, 1, G)bk .

Then Lemma 4.1.5 concludes the proof.

We are now ready to compute the generating function gu( · , a,G) whose coefficients a = (an)∈N are
given as an = det(1−Λn), where Λ is a fixed matrix. This follows immediately from Proposition 4.2.3
for an appropriate polynomial function.

Proposition 4.2.4. Let Λ ∈ Mat(M,M ; C) be a matrix with eigenvalues λ1, . . . , λM ∈ C. Define
a : N → C, n 7→ an := det(1 − Λn), then for any u ∈ N and G ∈ Su(H)

gu(z, a,G) =
∏

α∈{0,1}M

detu
(
1 − z

M∏

ν=1

λαν
ν G

)(−1)|α|+1

.

Proof. We expand the determinant in terms of the eigenvalues of Λ and apply Proposition 4.2.3 to

an = det(1 − Λn) =

M∏

j=1

(1 − λnj ) =
∑

α∈{0,1}M

(−1)|α|
( M∏

ν=1

λαν
ν

)n
.

Proposition 4.2.4 performs the task of Remark 4.1.8 in the case where Λ is a matrix. We add a
corollary for a specific form of coefficients which arise for polynomial-exponentially decaying Ising or
Ising type interactions. In the first case the occurring M is linked to the degree of the polynomial, in
the second case M is the rank of the interaction matrix.

Corollary 4.2.5. Let u ∈ N, G ∈ Su(H), λ ∈ C, M ∈ N, and a
(M)
n := (1−λn)M for all n ∈ N. Then

gu(z, a
(M), G) =

∏

α∈{0,1}M

detu(1 − zλ|α|G)(−1)|α|+1

=
M∏

k=0

detu(1 − zλkG)(−1)k+1(M
k ).

In particular, gu(z, a
(0), G) =

1

detu(1 − zG(0))
, gu(z, a

(1), G) =
detu(1 − zλG)

detu(1 − zG)
.
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Proof. This is a direct consequence of the binomial formula a
(M)
n = (1 − λn)M =

∑M
k=0

(
M
k

)
(−1)kλkn

and Proposition 4.2.3.

As an immediate consequence of Corollary 4.2.5 and Example 2.11.2 we obtain a representation of the
dynamical zeta function for polynomial-exponentially decaying Ising interactions.

Corollary 4.2.6. Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full shift
(1.2.6). Let φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance function
of the form d : N → C, d(k) := λk

∑p
i=0 ci k

i for some 0 < |λ| < 1, ci ∈ C. Let Mβ : F(Cp+1) →
F(Cp+1),

(Mβf)(z) =

∫

F

exp
(
βq(x) + β x 〈z|c〉

)
f(λx 1 + λB(p+1)z) dν(x)

be the Ruelle-Mayer transfer operator from Example 2.11.2. Then

ζR(z, β) =

p+1∏

k=0

det(1 − zλkMβ)
(−1)k+1(p+1

k )

gives a meromorphic continuation to the entire complex plane.

Propositions 4.2.3 and 4.2.4 and Corollary 4.2.5 show that for special coefficients a = (an)n∈N the
generating function gu( · , a,G) (85) can be represented as a quotient of u-regularised determinants.
This motivates the following definition.

Remark 4.2.7. Let G ∈ Su(H). We say that the generating function gu( · , a,G) (85) associated to
a is of rational type p, q if there exists polynomials p, q ∈ C[z] with p(0) = q(0) = 1 such that

gu(z, a,G) =
detu p(zG)

detu q(zG)
.

If u = 1, then the Fredholm determinant is multiplicative: det((1+A)(1+B)) = det(1+A) det(1+B)
for all A, B ∈ S1(H). Hence

det p(zG)

det q(zG)
= det

p

q
(zG).

This is wrong if u > 1.

(i) Let a
(M)
n := (1 − λn)M , then by Corollary 4.2.5 the generating function gu(·, a(M), G) is of

rational type pM , qM where

(87) pM (z) :=

dM
2 e−1∏

k=0

(1 − zλ2k+1)

“

M
2k+1

”

, qM (z) :=

bM
2 c∏

k=0

(1 − zλ2k)

“

M
2k

”

,

since

M∏

k=0

detu(1 − zλkG)
(−1)k+1

“

M
k

”

=

∏M
k=0;k≡1 (2) detu(1 − zλkG)

“

M
k

”

∏M
k=0;k≡0 (2) detu(1 − zλkG)

“

M
k

”

=

∏dM
2 e−1

k=0 detu(1 − zλ2k+1G)

“

M
2k+1

”

∏bM
2 c

k=0 detu(1 − zλ2kG)

“

M
2k

” .

Examples: M = 0: p0(z) = 1, q0(z) = 1 − z; M = 1 : p1(z) = 1 − λz, q1(z) = 1 − z;
M = 2 : p2(z) = (1 − λz)2, q2(z) = (1 − z)(1 − λ2z).

(ii) Euler product: For every polynomial p and compact operator G with eigenvalues (µn)n∈N, the
operator p(G) has eigenvalues (p(µn))n∈N. Let G ∈ Su(H) and gu( · , a,G) be a generating
function of rational type p, q. Then by Lemma A.1.4 we have

gu(z, a,G) =
detu p(zG)

detu q(zG)
=

∞∏

n=1

p(zµn) exp
(∑u−1

k=1
(−1)k

k (p(zµn) − 1)k
)

q(zµn) exp
(∑u−1

k=1
(−1)k

k (q(zµn) − 1)k
) .
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Hence gu( · , a,G) extends to a meromorphic function with poles of finite order. If one writes the

polynomial q as q(z) =
∏M
i=1(1−qiz), then the poles of gu are contained (not necessarily all such

points are poles because of possible cancellations) in the set {(µnqj)−1|n ∈ N, j = 1, . . . , q}.

(iii) In particular, if G is a trace class operator on H, then for every g1( · , a,G) of rational type p, q,
we have

g1(z, a,G) = det
p

q
(zG) =

∏N
i=1 det(1 − λizG)

∏M
j=1 det(1 − qjzG)

=

∞∏

n=1

p

q
(zµn).

(iv) Let

g̃(z, b) = exp
( ∞∑

n=u

bn
n
zn
)
, f(z) =

∞∑

n=u

bn
n
zn.

Suppose g̃(z, b) = p
q (z) for some polynomials p and q. Then for every G ∈ Su(H) the operator

f(zG) =
∑∞

n=u
bn

n znGn belongs to S1(H) and the generating function g( · , b, G) satisfies

g(z, b,G) = exp
( ∞∑

n=u

bn
n
zn trace Gn

)
= exp trace

( ∞∑

n=u

bn
n

(zG)n
)

(102)
= det exp f(zG) = det

p

q
(zG)

and hence is of rational type.

We have seen a class of examples leading to generating functions of rational type 4.2.7. One may ask
which sequences a = (an)n∈N lead to generating functions g( · , b, G) of rational type. A desired result
would be a result similar to [BoLa70, Lemmas 3, 4] which concerns the power series expansion of a
rational function. However, we did not succeed in that direction.

4.3 Limits of zeta functions

In the last section we have studied generating functions gu( · , a,G) (85) whose coefficients a are special
values of a fixed polynomial. For applications this is a very restrictive requirement. Recall for instance
Theorem 2.4.6 and its application in Corollary 2.10.5 to Ising interactions with distance function of

class D(1),∆
1 (2.10.1). There we showed that the partition functions can be expressed via a dynamical

trace formula of the form

Zb
N0 ,φ

{1,...,n}(β) = det(1 − diag(λ)n) trace (Mβ)
n,

where Mβ is the Ruelle-Mayer transfer operator defined in (66) and diag(λ) : `2N → `2N is a trace
class operator. This motivates the investigation of the following situation: Let Λ be a fixed trace
class operator on a Hilbert space H0 with spectral radius ρspec(Λ) < 1 (2.6.4) and let the coefficients
of the generating function be given as an = det(1 − Λn). In Theorem 4.3.4 we will show that under
these assumptions the generating function gu( · , a,G) has a meromorphic continuation to the entire
complex plane and can be represented as an Euler product.
Before proving the meromorphic continuation we make sure that the generating function gu( · , a,G)
(85) is at least holomorphic in a neighbourhood of zero. In view of Proposition 4.2.2 we need the
following estimates on the coefficients (an)n∈N.

Lemma 4.3.1. Let Λ ∈ Sp(H0) with ρspec(Λ) < 1 and G ∈ Su(H). Let n0 ∈ N be such that
Gn ∈ S1(H), Λn ∈ S1(H0) and ‖Λn‖ < 1 for all n ≥ n0. Set an := det(1 − Λn) for all n ≥ n0. Then
gm(z, a,G) (85) converges for any m ≥ n0 at least for |z| < ‖G‖−1

Sm(H).

Proof. By Proposition 4.2.1 we have to investigate the limit behaviour of |an|−1/n = | det(1−Λn)|−1/n

as n→ ∞. We expand the determinants in terms of the eigenvalues and split the infinite product into
two parts which will be considered separately. Observe that all eigenvalues of Λ have modulus strictly
less than one by Remark 2.6.4. Choose k0 ∈ N such that

∑∞
k=k0

|λk|n0 < 1. Then using standard
arguments from the subject of infinite products one obtains for n ≥ n0

k0−1∏

k=1

|1 − λnk |1/n ≤
k0−1∏

k=1

(1 + |λk|n)1/n ≤
(

exp

k0−1∑

k=1

|λk|n
)1/n

≤ exp
( 1

n

k0−1∑

k=1

|λk|n0

)
≤ exp

(k0

n

)
,
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which tends to one as n→ ∞. The tail product can be estimated by

∞∏

k=k0

|1 − λnk |1/n ≤
∞∏

k=k0

(1 + |λk|n)1/n ≤
(

exp
∞∑

k=k0

|λk|n
)1/n

≤ exp
( 1

n

∞∑

k=k0

|λk|n0

)
,

which also tends to one as n→ ∞. Hence

lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

k0−1∏

k=1

|1 − λnk |1/n lim sup
n→∞

∞∏

k=k0

|1 − λnk |1/n ≤ 1

and the generating function gm( · , a,G) converges at least inside the stated disk.

We want to investigate the generating function gu( · , a,G) whose coefficients a = (an)n∈N are given as
the Fredholm determinants an := det(1−Λn) of a trace class operator Λ ∈ S1(H0) with ρspec(Λ) < 1
and where G ∈ Su(H). We will approximate the generating function gu( · , a,G) via approximating its

coefficients a
(N)
n = det(1 − ΛnN ), where ΛN is an approximating finite rank operator. We will choose

ΛN := prN ◦Λ◦prN where prN ∈ End(H0) is the orthogonal projection onto the space spanned by the

first N generalised eigenvectors of Λ. Hence a
(N)
n = det(1 − ΛnN ) =

∏N
j=1(1 − λnj ). We now estimate

the differences an − a
(N)
n of the coefficients. In the forthcoming step, Lemma 4.3.3, we will consider

the associated generating functions and estimate their differences.

Lemma 4.3.2. Let Λ ∈ Sp(H0) with ρspec(Λ) < 1 and eigenvalues (λj)j∈N. Let n0 ∈ N be such
that Λn ∈ S1(H0) and ‖Λn‖ < 1 for all n ≥ n0. Let prN ∈ End(H0) be the orthogonal projection
onto the space spanned by the first N (generalised) eigenvectors and ΛN := prN ◦ Λ ◦ prN . Let

a, a(N) : N≥n0 → C be defined via an = det(1 − Λn) and a
(N)
n = det(1 − ΛnN). Then

(i) a and a(N) belong to `∞N and ‖a−a(N)‖`∞N ≤ exp(2‖Λn0‖S1(H0))
∞∑

j=N+1

|λj |n0 −→N→∞ 0, and

(ii) For N sufficiently large one has (a(N) − a) ∈ `1N and ‖a(N) − a‖`1N −→N→∞ 0.

Proof. Let (λi)i∈N be the eigenvalues of Λ. By assumption they all are in modulus smaller than one.
Hence for n ≥ n0 and all N ∈ N we have the estimate

|a(N)
n | =

N∏

j=1

|1 − λnj | ≤
N∏

j=1

(1 + |λj |n) ≤
N∏

j=1

(1 + |λj |n0) ≤ exp
( N∑

j=1

|λj |n0
)
≤ exp(‖Λn0‖S1(H0))

by arguments similar to the proof of Lemma 4.3.1. Thus a(N) and a belong to `∞N. We expand the
determinants in terms of the eigenvalues and obtain the following identity

an − a(N)
n =

∞∏

j=1

(1 − λnj ) −
N∏

j=1

(1 − λnj ) =
( ∞∏

j=N+1

(1 − λnj ) − 1
) N∏

j=1

(1 − λnj ).

Hence for all n ≥ n0, N ∈ N we can estimate the difference |an − a
(N)
n | by

|an − a(N)
n | =

∣∣∣
∞∏

j=N+1

(1 − λnj ) − 1
∣∣∣

N∏

j=1

|1 − λnj |

≤
(

exp
( ∞∑

j=N+1

|λj |n
)
− 1
)

exp
( N∑

j=1

|λj |n
)

≤
∞∑

j=N+1

|λj |n exp
( ∞∑

j=N+1

|λj |n
)

exp
( ∞∑

j=1

|λj |n
)

≤
∞∑

j=N+1

|λj |n exp
(
2

∞∑

j=1

|λj |n
)
,
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which converges to zero as N → ∞, showing part (i). Since by assumption Λn0 ∈ S1(H0) we can
choose a (sufficiently large) N such that

∑∞
j=N+1 |λj |n0 < 1. Summing up the previous estimates we

obtain - using the definition of the spectral radius (2.6.4) in the last step -

∞∑

n=n0

|an − a(N)
n | ≤

∞∑

n=n0

∞∑

j=N+1

|λj |n exp(2‖Λn‖S1(H0))

≤ exp(2‖Λn0‖S1(H0))
∞∑

j=N+1

∞∑

n=n0

|λj |n

= exp(2‖Λn0‖S1(H0))
∞∑

j=N+1

|λj |n0

1 − |λj |

≤ exp(2‖Λn0‖S1(H0))

1 − ρspec(Λ)

∞∑

j=N+1

|λj |n0 ,

which tends to zero as N tends to infinity.

The previous result will now imply that in a neighbourhood of zero the generating function gm( · , a,G)
can be approximated by the sequence of generating functions gm( · , a(M), G) under quite general
conditions. In particular, gm( · , a,G) is a holomorphic function near zero.

Lemma 4.3.3. Let Λ ∈ Sp(H0) with ρspec(Λ) < 1 and G ∈ Su(H). Let n0 ≥ u be such that
Λn ∈ S1(H0) and ‖Λn‖ < 1 for all n ≥ n0. Let prN ∈ End(H0) be the orthogonal projection
onto the space spanned by the first N (generalised) eigenvectors and ΛN := prN ◦ Λ ◦ prN . Let

a, a(N) : N≥n0 → C be defined via an = det(1 − Λn) and a
(N)
n = det(1 − ΛnN ). Then the generating

functions defined in (85) converge

lim
N→∞

gm(z, a(N), G) = gm(z, a,G)

for any m ≥ n0 at least for |z| < ‖G‖−1
Sm(H).

Proof. By Proposition 4.2.2 for ‖zG‖Sm(H) ≤ r < 1 the difference of the generating functions can be
estimated by

|gm(z, a,G) − gm(z, a(N), G)|
≤ ‖a− a(N)‖`∞N | log(1 − ‖zG‖Sm(H))| exp

(
| log(1 − ‖zG‖Sm(H))| (‖a‖`∞N + ‖a− a(N)‖`∞N)

)

≤ ‖a− a(N)‖`∞N | log(1 − r)| exp
(
| log(1 − r)| (‖a‖`∞N + ‖a− a(N)‖`∞N)

)
.

The latter tends to zero by Lemma 4.3.2. Hence gm(z, a(N), G) converges to gm(z, a,G) asN → ∞.

Now we are prepared to prove our main result of this section: The generating function is holomorphic
in a neighbourhood of zero by Lemma 4.3.3 and can be approximated by a sequence of generating
functions with polynomial coefficients. These have meromorphic continuations, and the sequence of
the meromorphic continuations converges locally uniformly in the entire C-plane.

Theorem 4.3.4. Let Λ ∈ S1(H0) be a trace class operator with ρspec(Λ) < 1 and an := det(1 −Λn).
Let (λi)i∈N be the eigenvalues of Λ. Then for any G ∈ Su(H)

gu(z, a,G) = lim
M→∞

∏

α∈{0,1}M

detu(1 − zλαG)(−1)|α|+1

=
limM→∞

∏
α∈{0,1}M :|α|≡1 (2) detu(1 − zλαG)

limM→∞
∏
α∈{0,1}M :|α|≡0 (2) detu(1 − zλαG)

,

where we set λα :=
∏M
ν=1 λ

αν
ν for α ∈ {0, 1}M . In particular, the generating function gu( · , a,G)

extends to a meromorphic function on the entire C-plane.
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Proof. By Lemma 4.3.3 the generating function gu( · , a,G) (85) can be approximated by the sequence(
gu( · , a(N), G)

)
N∈N

in a neighbourhood of zero. For eachN ∈ N the generating function gu(z, a
(N), G)

has an Euler product. We now show that the limit gu(z, a,G) can be represented in the stated form.
Hence one has to show that the infinite product converges. For any q ∈ C with |q| ≤ 1 one has the
estimate

| detu(1−zqG)−1|
(109)

≤ ‖zq G‖Su(H) exp(cu (1+‖zqG‖Su(H))
u) ≤ ‖zqG‖Su(H) exp(cu (1+‖zG‖Su(H))

u).

Let M ∈ N. Since |λi| ≤ ρspec(Λ) < 1, we can apply the previous estimate for each qα =
∏M
ν=1 λ

αν
ν

and then sum up over all α ∈ {0, 1}M :

∑

α∈{0,1}M

∣∣∣ detu
(
1 − z

M∏

ν=1

λαν
ν G

)
− 1
∣∣∣ ≤ exp(cu (1 + ‖zG‖Su(H))

u) ‖zG‖Su(H)

∑

α∈{0,1}M

M∏

ν=1

|λν |αν

= exp(cu (1 + ‖zG‖Su(H))
u) ‖zG‖Su(H)

M∏

ν=1

(1 + |λν |).(88)

The last expression is bounded as M → ∞, since

M∏

ν=1

(1 + |λν |) ≤
∞∏

ν=1

(1 + |λν |) ≤ exp
( ∞∑

ν=1

|λν |
)
≤ exp(‖Λ‖S1(H0)) <∞

due to the assumption that Λ is trace class. The boundedness ensures the existence of the following
infinite products

gu(z, a,G) = lim
M→∞

gu(z, a
(M), G)

= lim
M→∞

∏

α∈{0,1}M

detu
(
1 − z

M∏

ν=1

λαν
ν G

)(−1)|α|+1

= lim
M→∞

∏
α∈{0,1}M :|α|≡1 (2) detu(1 − z

∏M
ν=1 λ

αν
ν G)

∏
α∈{0,1}M :|α|≡0 (2) detu(1 − z

∏M
ν=1 λ

αν
ν G)

=
limM→∞

∏
α∈{0,1}M :|α|≡1 (2) detu(1 − z

∏M
ν=1 λ

αν
ν G)

limM→∞
∏
α∈{0,1}M :|α|≡0 (2) detu(1 − z

∏M
ν=1 λ

αν
ν G)

.

Moreover, this limit exists locally uniformly in z ∈ C. Hence gu( · , a,G) is the locally uniform limit
of meromorphic functions and thus itself meromorphic.

We note that our proof essentially depends on the fact that Λ is trace class. We did not succeed to
weaken that condition as we were able to do in the previous lemmas. For instance, look at the trivial
example G = γ ∈ C. Then the estimate (88) becomes | det(1 − zq G) − 1| = |(1 − zqγ) − 1| = |zqγ|
and

∑

α∈{0,1}M

| det(1 − z

M∏

ν=1

λαν
ν G) − 1| = |zγ|

∑

α∈{0,1}M

M∏

ν=1

|λν |αν = |zγ|
M∏

ν=1

(1 + |λν |)

is bounded in the limit M → ∞ if and only if Λ is trace class. We think that our estimates are
optimal also in the general case. - As an immediate consequence of Lemma A.1.4 and Theorem 4.3.4
we obtain the location of the poles and zeros of the generating function gu( · , a,G):

Corollary 4.3.5. Let Λ ∈ S1(H0) be a trace class operator with ρspec(Λ) < 1 with eigenvalues (λi)i∈N

and an := det(1−Λn). Then for any G ∈ Su(H) with eigenvalues (µi)i∈N, the poles of the generating
function gu( · , a,G) (85) are contained in the set

Pg :=
⋃

M∈N

{(λαµj)−1 |α ∈ {0, 1}M , |α| ≡ 0 (2), j ∈ N}
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where λα :=
∏M
ν=1 λ

αν
ν for α ∈ {0, 1}M ; its zeros are contained in the set

Ng :=
⋃

M∈N

{(λαµj)−1 |α ∈ {0, 1}M , |α| ≡ 1 (2), j ∈ N}.

Note: Because of possible cancellations we cannot show that all elements of Pg, Ng are poles or zeros
respectively. In a remark following Corollary 4.4.3 we will give an example.

4.4 Transfer operator method

With the preparation of the two previous sections we can now answer the question raised in Re-
mark 4.1.8, namely the properties of the dynamical zeta function ζR as introduced in (4.1.1) in the
presence of a dynamical trace formula. In Section 2.4 we have found two types of dynamical trace
formulas. In the first case, Theorem 2.4.4, the partition function can be expressed via a family of
transfer operators. This will result in a product representation of Ruelle’s zeta, one factor for each
transfer operator. In the second case, Theorem 2.4.6, one has a dynamical trace formula of the type

Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace Gn. We show that in both cases the dynamical zeta function has a

meromorphic continuation to the entire complex plane and a representation as an Euler product. The
zeros and poles of zeta have a spectral interpretation. This result is one of the main applications of
the transfer operator method.
The following result was observed by D. Mayer in the case n0 = 1, n1 < ∞. It is designed for spin
systems for which one has a family of transfer operators as for instance in Theorem 2.4.4.

Corollary 4.4.1. Suppose there exists a family of transfer operators G(ν) ∈ Sn0(H(ν)) (ν = 1, . . . , n1

with possibly n1 = ∞) such that for all n ≥ n0 we have the dynamical trace formula

Zb
N0 ,φ

{1,...,n} =

n1∑

ν=0

(−1)ν trace (G(ν))n

and
∑n1

ν=0 ‖G(ν)‖n0

Sn0(H(ν))
<∞. Then

ζR(z) = exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

) ∞∏

ν=0

(
detn0(1 − zG(ν))

)(−1)ν+1

gives the meromorphic continuation of Ruelle’s zeta ζR (4.1.1) to the entire C-plane.

Proof. First we assume n1 < ∞. In this case the condition
∑n1

ν=0 ‖G(ν)‖n0

Sn0(H(ν))
< ∞ is void. For

small z, i. e., for |z| < min{‖G(ν)‖−1
Sn0(H(ν))

| ν = 0, . . . , n1}, one calculates similarly to Lemma 4.1.5

ζR(z) = exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
exp
( ∞∑

n=n0

n1∑

ν=0

(−1)ν
zn

n
trace (G(ν))n

)

= exp
( n0−1∑

n=n0

zn

n
Zb

N0 ,φ
{1,...,n}

)
exp
( n1∑

ν=0

(−1)ν
∞∑

n=n0

zn

n
trace (G(ν))n

)

= exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

) n1∏

ν=0

exp
( ∞∑

n=n0

zn

n
trace (G(ν))n

)(−1)ν

= exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

) n1∏

ν=0

(
detn0(1 − zG(ν))

)(−1)ν+1

By Lemma A.1.2 this is a finite product of meromorphic functions. We now turn the case n1 = ∞.
Let n ∈ N. For each factor in the following product we apply the estimate (108) from A.2.6, hence

n∏

ν=0

| detn0(1 − zG(ν))| ≤
n∏

ν=0

exp
(
cn0‖zG(ν)‖n0

Sn0(H(ν))

)
= exp

(
cn0 |z|n0

n∑

ν=0

‖G(ν)‖n0

Sn0(H(ν))

)
,
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which is bounded by assumption as n→ ∞. Hence the infinite product

∞∏

ν=0

(
detn0(1 − zG(ν))

)(−1)ν+1

converges absolutely and locally uniformly. The sequence ‖G(ν)‖Sn0(H(ν)) tends to zero as ν → ∞,

hence the minimum min{‖G(ν)‖−1
Sm(H(ν))

| ν ∈ N0} > 0 exists, and thus zeta is holomorphic in a

neighbourhood of zero.

Using Lemma A.1.4 the previous corollary gives an Euler product expansion of ζR.
Our following corollary is an important result for systems for which Theorem 2.4.6 holds.

Corollary 4.4.2. Suppose there is a transfer operator G ∈ Sn0(H) which satisfies the dynamical trace
formula

Zb
N0 ,φ

{1,...,n} = det(1 − Λn) trace Gn

for all n ≥ n0, where Λ ∈ S1(H0) is a trace class operator with ρspec(Λ) < 1. Set an := det(1 − Λn)
and a = (an)n∈N. Then

ζR(z) = exp
( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
gn0(z, a,G)

gives the meromorphic continuation of zeta (4.1.1) to the entire complex plane.

Proof. We write the dynamical zeta function as

ζR(z) = exp
( ∞∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
= exp

( n0−1∑

n=1

zn

n
Zb

N0 ,φ
{1,...,n}

)
exp
( ∞∑

n=n0

zn

n
det(1 − Λn) trace Gn

)
.

Obviously the first factor on the right hand side is an entire function. The second one has a mero-
morphic continuation by Theorem 4.3.4 via an Euler product.

As a direct consequence of Corollaries 4.3.5 and 4.4.2 we can locate the poles and zeros of the dynamical
zeta function. Recall, for (λi)i∈N ∈ CN and α ∈ {0, 1}M we set λα :=

∏M
ν=1 λ

αν
ν .

Corollary 4.4.3. Let Λ ∈ S1(H0) be a trace class operator with ρspec(Λ) < 1 and eigenvalues (λi)i∈N.
Suppose there exists a transfer operator G ∈ Sn0(H) with eigenvalues (µi)i∈N such that for all n ≥ n0

we have the dynamical trace formula Zb
N0 ,φ

{1,...,n} = det(1−Λn) trace Gn. Then the poles of Ruelle’s zeta

function (4.1.1) are contained in the set Pζ :=
⋃
M∈N

{(λαµj)−1 |α ∈ {0, 1}M , |α| ≡ 0 (2) j ∈ N}, its
zeros are contained in the set Nζ :=

⋃
M∈N

{(λαµj)−1 |α ∈ {0, 1}M , |α| ≡ 1 (2) j ∈ N}.
As above, Cor. 4.3.5, we cannot prove that each point in the sets Pζ , Nζ is indeed a pole (a zero,
respectively) because of possible cancellations. For example consider the situation of Remark 4.1.2:
If β = 0, then we know that ζR(z, 0) = (1 − ν(F )z)−1 and hence almost all poles and zeros of the
dynamical zeta function cancel.
As an immediate consequence of Theorem 3.2.6, Corollary 2.10.5, Theorem 4.3.4, and Corollary 4.4.2
we obtain the following main result of this chapter. It contains the Corollaries 4.1.7 and 4.2.6 as
special cases.

Corollary 4.4.4. Let F ⊂ C be a bounded set and (ΩA, F,N,N0, τ) be a one-sided one-dimensional

matrix subshift (1.2.8). Let φ be a two-body Ising interaction (1.8.3) with distance function d ∈ D(1)
1

(2.7.1), say d(k) = 〈Bk−1v|w〉`2N, and potential q ∈ Cb(F ). Denote by (λi)i∈N the eigenvalues of B.
Let Mβ : L2(F, ν)⊗̂F(`2N) → L2(F, ν)⊗̂F(`2N),

(Mβf)(x, z) =

∫

F

Aσ,x exp
(
βq(σ) + βσ〈z|w〉

)
f(σ, σ v + B z) dν(σ)

be the Ruelle-Mayer transfer operator defined in Theorem 3.2.6. Then there exists n0 ∈ N depending
on B such that the dynamical zeta function satisfies

ζR(z, β) = exp
( n0−1∑

n=1

zn

n
Z̃b

N0

n (βA(φ))
)

lim
M→∞

∏

α∈{0,1}M

detn0(1 − zλαMβ)
(−1)|α|+1

,

and the right hand side has an Euler product and a meromorphic continuation to C.
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Analogously, by Theorem 3.2.6 the same result holds for Ising type interactions (say of rank M) when
replacing the sequence λ := (λi)i∈N of eigenvalues of B : `2N → `2N by the sequence λM of eigenvalues
of the M -fold direct sum BM : (`2N)M → (`2N)M of B. Obviously, BM has the same eigenvalues as
B, but with the M -fold multiplicity. Note that if F is finite, then every interaction matrix has finite
rank.
Corollaries 4.4.3 and 4.4.4 show that in order to understand the zeros and poles of Ruelle’s zeta one
has to investigate the spectrum of the Ruelle-Mayer transfer operator in detail. Whereas the spectrum
of a generalised composition operator is well-understood, the spectrum of the Ruelle-Mayer operator
is more difficult, since the operator is a sum (an integral) of composition operator which in general do
not commute. For a certain class of interactions we will do a step of preparation in the next chapter.
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5 The Extended Fock Oscillator semigroup and Kac-Gutzwiller
transfer operators

In Chapters 2 and 3 we have shown the following result: Let F ⊂ C be a bounded set and (Ω =
FN,N0, τ) a one-sided one-dimensional full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3)
with potential q ∈ Cb(F ) and distance function given as d(k) = (Λk−1v|w) for some Λ ∈ Mat(n, n; C)

with ‖Λ‖ < 1, v, w ∈ Cn. Such a distance function belongs to the class D(1)
1 (2.7.1). There are

two types of such distance functions (and the superposition of the two): Either d has finite range
(Subs. 2.8) or it is polynomial-exponentially decaying. By the latter we mean a distance function

d : N → C given as d(k) := λk
∑n−1

i=0 ci k
i for some fixed n ∈ N, ci, λ ∈ C with 0 < |λ| < 1. By

Theorem 2.7.6 the Ruelle-Mayer transfer operator

Mβ : F(Cn) → F(Cn), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ(z|w)

)
f(σ v + Λ z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Λn) trace (Mβ)
n for all

n ∈ N and Theorem 3.2.6 gives the analogue result for matrix subshifts.
There is a completely different type of transfer operators for Ising spin systems with exponentially
decaying distance function, which is due to M. Gutzwiller [Gu82] building upon results of M. Kac
[Ka66]. This integral operator satisfies the same dynamical trace formula as the Ruelle-Mayer operator
for the same system. In [HiMay02] and [HiMay04] it was shown a correspondence which implies that
the spectra of the both operators coincide, without proving that the operators are conjugate. The
argument of J. Hilgert and D. Mayer uses the fact that there is a unitary isomorphism B : L2(Rn) →
F(Cn), called the Bargmann transform. By conjugating the Ruelle-Mayer operator with the Bargmann
transform they obtained an operator which is closely related to the original Kac-Gutzwiller operator.
In this chapter we want to understand this correspondence better in the hope that this may lead to
new classes of transfer operators for spin systems. Another application of this chapter arises from
the fact that the spectral properties of the Ruelle-Mayer transfer operator can better be analysed via
the corresponding Kac-Gutzwiller transfer operator and hence opens up the possibility to study zero
statistics of the dynamical zeta function.
We use our results of the preceding chapters and define a Kac-Gutzwiller transfer operator to be a
Bargmann conjugate of a Ruelle-Mayer transfer operator, i.e., B−1◦Mβ ◦B acting on L2(Rn). In this
chapter we will compute the Kac-Gutzwiller transfer operator explicitly and study its properties. We
consider both full and matrix subshifts with Ising type interaction, both with polynomial-exponential
and finite-range distance function. In particular, we will compute the Kac-Gutzwiller transfer operator
for the Potts model.
For this purpose we write the Ruelle-Mayer transfer operator as an integral over a family of generalised
composition operators of the following type: For any a, b ∈ Cn, Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1 we
define a generalised composition operator La,b,Λ := mexpa

◦ CΛ ◦ τ−b acting via

(La,b,Λf)(z) = e(z|a) f(Λz + b)

on the Fock space F(Cn) as a trace class operator. Thereby is τb : F(Cn) → F(Cn), (τbf)(z) :=
f(z − b) the translation operator, mexpa

: F(Cn) → F(Cn), (mexpa
f)(z) := e(z|a) f(z) the multi-

plication operator, and CΛ : F(Cn) → F(Cn), (CΛf)(z) = f(Λz) the composition operator. Our
strategy is to show that La,b,Λ belongs to the so called extended Fock oscillator semigroup. Via
the Bargmann transform the Fock oscillator semigroup is conjugate to the oscillator semigroup and
explicit conjugation formulas are known in the literature.
In Section 5.1 we compute the conjugate of the composition operator CΛ under the Bargmann trans-
form. It turns out that for Λ belonging to the unit disk {X ∈ Mat(n, n; C) | ‖X‖ < 1} the operator
CΛ is an element of the Fock oscillator semigroup Ωn,F(Cn) which is well-understood. In Section 5.2
we introduce the oscillator semigroup Ωn. It consists of trace class integral operators with Gaussian
kernels. The Fock oscillator semigroup and the oscillator semigroup are conjugate via the Bargmann
transform, Ωn,F(Cn) = {B ◦ T ◦ B−1 |T ∈ Ωn}. The precise relation between the integral kernels of
T ∈ Ωn and B◦T ◦B−1 ∈ Ωn,F(Cn) is given by the Cayley transform. This general result directly yields
the Bargmann conjugate B−1 ◦ CΛ ◦ B of the composition operator CΛ. Exemplarily, we compute
the conjugate integral operators corresponding to Λ = J(λ,n) being a Jordan block with eigenvalue
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0 < |λ| < 1 and, secondly, Λ = sJ(0,n) for some small scalar multiple of a Jordan block with eigen-
value zero. The first matrix corresponds to Ruelle-Mayer transfer operators for the one-dimensional
Ising model with polynomial-exponentially decaying interaction. The second example corresponds to
Ruelle-Mayer transfer operators for the one-dimensional Ising model with finite-range interaction.
In Section 5.3 we define the extended oscillator semigroup EΩn consisting of integral operators with
(general) Gaussians as integral kernel. We introduce the extended Fock oscillator semigroup to be the
image EΩn,F(Cn) := {B ◦ T ◦ B−1 |T ∈ EΩn} under the conjugation with the Bargmann transform.
During this section we will compute the conjugates of translations and of multiplication operators
B ◦ τr ◦B−1, B ◦mexps

◦B−1 both acting on F(Cn) and B−1 ◦mexpa
◦B, B−1 ◦ τ−b ◦B both acting

on L2(Rn), which will lead to an explicit description of the extended Fock oscillator semigroup. These
results show that La,b,Λ ∈ EΩn,F(Cn) and lead to an explicit formula (Prop. 5.3.5) for its Bargmann
conjugate B−1 ◦ La,b,Λ ◦B ∈ EΩn.
In Section 5.4 we will finally compute the Kac-Gutzwiller transfer operator for two-body Ising inter-

action with distance function d ∈ D(1)
1 given as d(k) = (Λk−1v|w) for some Λ ∈ Mat(n, n; C) with

‖Λ‖ < 1, v, w ∈ Cn. We apply this to the two main cases of such distance functions, namely the
polynomial-exponentially decaying interactions and the finite-range interactions. The action of the
general linear group Gl(n; C) on Mat(n, n; C) by conjugation leads to the fact that for each distance
function d(k) = (Λk−1v|w) there is a family of generating triples parametrised by Gl(n; C). We show
that for certain generating triples (a, b,Λ) the corresponding integral operator B−1 ◦Lπa,b,Λ ◦B has a
special form. This will lead to Kac-Gutzwiller transfer operators whose integral kernels are of a simple
form. This fact can be used to investigate the spectral properties of the Kac-Gutzwiller operator and
hence of the Ruelle-Mayer transfer operator. This allows to determine the spectrum of an integral (or
a weighted sum) of composition operators, for which we do not know another method. We end this
chapter by giving examples of Kac-Gutzwiller transfer operators for the Potts model.

5.1 Composition operators on the Fock space

We briefly recall the definition of the Bargmann-Fock space as introduced in A.4.5. It consists of

F(Cn) := HL2(Cn) :=
{
f ∈ O(Cn) | ‖f‖2

F(Cn) :=

∫

Cn

|f(z)|2 exp(−π‖z‖2) dz <∞
}

where dz denotes Lebesgue measure on Cn. The inner product is given by

〈
f g

〉
F(Cn)

:=

∫

Cn

f(z) g(z) exp(−π‖z‖2) dz.

The Bargmann-Fock space is a reproducing kernel Hilbert space with kernel k(z, w) = exp(π
〈
z w

〉
).

We will now introduce an operator semigroup acting on the Fock space.

Definition 5.1.1. (i) We equip Mat(n, n; C) with the operator norm. The symmetric unit ball
∆n := B(0; 1)Sym(n;C) = {W ∈ Mat(n, n; C) |W = W>, 1 −W ?W > 0} ⊂ B(0; 1)Mat(n,n;C) is
called the Siegel disk. Here 1−W ?W > 0 means that 〈(1−W ?W )x|x〉 > 0 for all x ∈ Cn \ {0}.

(ii) For any D ∈ ∆2n the integral operator SD acting on F(Cn) is defined via its integral kernel32

ΓD(z, w) = exp
(π

2

((
z
w

)
D

(
z
w

)))
.

(iii) The Fock oscillator semigroup is defined as the space Ωn,F(Cn) := {c SD |D ∈ ∆2n, c ∈ C×} of
integral operators with ΓD-kernels.

We will now show that the composition operator CΛ : F(Cn) → F(Cn), (CΛf)(z) = f(Λz) belongs
to the Fock oscillator semigroup Ωn,F(Cn) (5.1.1) if Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1. Therefor we need
an embedding of the unit ball {Λ ∈ Mat(n, n; C) | ‖Λ‖ < 1} into the Siegel disk ∆2n (5.1.1).

32The Hermitian inner product on Cn is denoted by 〈 · | · 〉, the Euclidean inner product on Rn and its C-bilinear
extension are denoted by ( · | · ), for z ∈ Cn we set z2 := (z|z) as an abbreviation.
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Remark 5.1.2. The map

(89) X : Mat(n, n; C) → Sym(2n; C) := {Y ∈ Mat(2n, 2n; C) |Y > = Y }, Λ 7→ XΛ :=

(
0 Λ>

Λ 0

)

is injective and linear, it defines an embedding of the unit ball {Λ ∈ Mat(n, n; C) | ‖Λ‖ < 1} into the
Siegel disk ∆2n (5.1.1)

X : B(0; 1)Mat(n,n;C) → Sym(2n; C) ∩B(0; 1)Mat(2n,2n;C) ⊂ ∆2n, Λ 7→ XΛ

with (using [Fo89, A. Lemma 4]) detXΛ = det(0 − ΛΛ>) = (detΛ)2.

Remark 5.1.3. Let Λ ∈ B(0; 1)Mat(n,n;C). Using Remark A.6.1 the composition operator

CΛ : F(Cn) → F(Cn), (CΛF )(z) := F (Λz)

can be written as an integral operator with kernel

exp(π〈Λz|w〉) = exp(π(Λz|w)) = exp
(π

2

((
z
w

) (
0 Λ>

Λ 0

)(
z
w

)))
.

This shows CΛ = SXΛ using the shortly introduced notations and hence this composition operator
belongs to the Fock oscillator semigroup Ωn,F(Cn) (5.1.1).

5.2 The oscillator semigroup

In this section we introduce the oscillator semigroup Ωn. It consists of trace class integral operators
with Gaussian kernel. The Fock oscillator semigroup and the oscillator semigroup are conjugate via
the Bargmann transform B : L2(Rn) → F(Cn) as follows

Ωn,F(Cn) = {B ◦ T ◦B−1 |T ∈ Ωn}.

Usually the Fock oscillator semigroup is defined to be the image under the conjugation with the
Bargmann transform, but we preferred to define both semigroups separately. The precise relation
between the integral kernels of TA ∈ Ωn and B ◦TA ◦B−1 ∈ Ωn,F(Cn) is given by the Cayley transform
which is a conformal map between the Siegel upper half plane S and the Siegel disk ∆2n (5.1.1). We
end this section by computing the Bargmann conjugate B−1 ◦ CΛ ◦ B of the composition operator
(CΛf)(z) = f(Λz) (5.1.3) which is our main motivation for introducing the oscillator semigroup.
For two types of examples we compute the corresponding integral kernels in detail. The first example
concerns Λ = J(λ,n) being a Jordan block with non-vanishing eigenvalue 0 < |λ| < 1 which corresponds
to Ruelle-Mayer transfer operators for the one-dimensional Ising model with polynomial-exponentially
decaying interaction. The second type of examples concerns finite-range Ising interactions. By the
generating triple found in Proposition 2.8.2 we have to study Λ = sJ(0,n) for some small parameter
0 < s < 1.

Definition 5.2.1. (i) Let Sn := {α ∈ Mat(n, n; C) |α = α>, Im(α) positive definite} ⊂ Gl(n; C)
be the Siegel upper half plane.

(ii) We introduce the unnormalised Gaussian33

g : Cn × Sn → C, (z,A) 7→ g(z,A) := gA(z) := exp(−π
(
z Az

)
).

(iii) For A ∈ S2n we define TA to be the integral operator acting on L2(Rn) with kernel

gA(x, y) = exp
(
πi

((
x
y

)
A
(
x
y

)))
.

(iv) The oscillator semigroup is defined as the space Ωn := {c TA | A ∈ S2n, c ∈ C×} of integral
operators with Gaussian kernels.

33In [Fo89] this function is denoted by γA.
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Remark 5.2.2. For A = A> ∈ Mat(n, n; C) one has the equivalent characterisations

A ∈ Sn ⇐⇒ gA ∈ L2(Rn) ⇐⇒ gA ∈ S(Rn),

where we denote by S(Rn) the Schwartz space of rapidly decaying smooth functions f : Rn → R. By
the second characterisation Ωn consists of Hilbert-Schmidt operators, whereas the last characterisation
implies (see for instance [CoGr90, A.3.9]) that Ωn consists of trace class operators.

We will now show the relation between the oscillator semigroup Ωn (Def. 5.2.1) and the Fock oscil-
lator semigroup Ωn,F(Cn) (Def. 5.1.1) which is given via the Bargmann transform. The Bargmann
transform34 Bn : L2(Rn) → F(Cn),

(90) (Bnf)(z) =

∫

Rn

exp
(
2π
(
z x

)
− π

(
x x

)
− π

2

(
z z

))
f(x) dx

is a unitary ismorphism, see for instance [Fo89, ch. 1.6].
The Siegel upper half plane Sn (5.2.1) is the higher dimensional analogon of the upper half plane
S1 = {z ∈ C | Im(z) > 0}. As in the case n = 1 there is a conformal map between the upper half
plane Sn and the unit disk ∆n (5.1.1), which is called the Cayley transform.35

Proposition 5.2.3. ([Fo89, 4.67]) The Cayley transform

cn : Sn → ∆n, cn(Z) := (1 + iZ)(1 − iZ)−1 = (1 − iZ)−1(1 + iZ)

is conformal. Its inverse acts via c−1
n (W ) = i(1 −W )(1 +W )−1.

Proposition 5.2.4. ([Fo89, 4.70]) For all A ∈ S2n (5.2.1) one has

Bn ◦ TA ◦ (Bn)
−1 = 2n/2 det(1 − iA)−1/2 Sc2n(A),

Because of this proposition the Fock oscillator semigroup Ωn,F(Cn) (Def. 5.1.1) is often defined as the
image under the conjugation

Ωn,F(Cn) = {Bn ◦ T ◦ (Bn)
−1 |T ∈ Ωn}

of the oscillator semigroup Ωn. In Section 5.1 we have seen that for Λ ∈ B(0; 1)Mat(n,n;C) the com-
position operator CΛ : F(Cn) → F(Cn), (CΛf)(z) = f(Λz) (5.1.3) belongs to the Fock oscillator
semigroup Ωn,F(Cn). We will now use the previous Proposition 5.2.4 to compute its Bargmann conju-
gate acting on L2(Rn).

Proposition 5.2.5. Let Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1 and CΛ : F(Cn) → F(Cn) (CΛF )(z) =
F (Λz) be the associated composition operator (5.1.3). Then its Bargmann conjugate on L2(Rn) is the
operator

B−1 ◦ CΛ ◦B = 2n/2 det(1 − ΛΛ>)−1/2 T
c
−1
2n (XΛ),

which has the integral kernel

kΛ(x, y) =
2n/2

det(1 − ΛΛ>)1/2
g
c
−1
2n (XΛ)(x, y)

=
2n/2

det(1 − ΛΛ>)1/2
exp
(
− π

((
x
y

) (
(1 + Λ>Λ)(1 − Λ>Λ)−1 −2Λ>(1 − ΛΛ>)−1

−2Λ(1 − Λ>Λ)−1 (1 + ΛΛ>)(1 − ΛΛ>)−1

)(
x
y

)))
.

Proof. Using Remark 5.1.2 one has CΛ = SXΛ . Solve c2n(A) = XΛ, i. e., A = c−1
2n (XΛ), and use

Proposition 5.2.4 on the relation between the oscillator semigroup and the Fock oscillator semigroup.
In order to avoid long computations we have to make a little excursus using the notation of [Fo89,
ch. 4.5]. For A = (A B

C D ) ∈ Sp(n; R) ⊂ Gl(2n; R), Z ∈ {W ∈ Mat(n, n; C) |CW +D ∈ Gl(n; C)} set

m(A, Z) := det(CZ+D)−
1
2 . Then for Cn := 1√

2

(
i 1
−i 1

)
∈ Gl(2n; R) being the so called Cayley element,

34We will omit the index n for the dimension most of the time.
35Folland writes αn(Cn), where we write cn.
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one obtains m(Cn, Z) = 2n/4 det(1− iZ)−
1
2 The inverse of the Cayley element is C−1

n = 1√
2

(−i i
1 1

)
and

its multiplier acts via m(C−1
n , Z) = 2n/4 det(1 + Z)−

1
2 . The determinant factor in Proposition 5.2.4

is thus m(C2n,A) = 2n/2 det(1 − iA)−1/2. The multiplier satisfies a cocycle identity which implies
formula [Fo89, 4.63] which we use at (?)

2n/4 det(1 − ic−1
n (Z))−1/2 = m(Cn, c−1

n (Z))
(?)
= m(C−1

n , Z)−1 = 2−n/4 det(1 + Z)1/2.

Hence for A as chosen above one has

(91) m(C2n,A) = m(C2n, XΛ)−1 = 2−n/2 det(XΛ + 1)
1
2 = 2−n/2 det(1 − ΛΛ>)

1
2 .

Concerning the explicit formula for c−1
2n (XΛ):

c−1
2n (XΛ) = i(1 −XΛ)(1 +XΛ)−1 = i

(
1 −Λ>

−Λ 1

)(
1 Λ>

Λ 1

)−1

= i

(
1 −Λ>

−Λ 1

)(
(1 − Λ>Λ)−1 −Λ>(1 − ΛΛ>)−1

−Λ(1 − Λ>Λ)−1 (1 − ΛΛ>)−1

)

= i

(
(1 + Λ>Λ)(1 − Λ>Λ)−1 −2Λ>(1 − ΛΛ>)−1

−2Λ(1 − Λ>Λ)−1 (1 + ΛΛ>)(1 − ΛΛ>)−1

)
(92)

We end this section by studying two types of examples of composition operators CΛ (5.1.3). The first
example concerns Λ = J(λ,n) being a Jordan block (68) with eigenvalue 0 < |λ| < 1. It corresponds to
Ruelle-Mayer transfer operators for the one-dimensional Ising model with polynomial-exponentially
decaying interaction (see 2.11). The second type of examples concerns Λ = sJ(0,n) for some small
parameter 0 < s < 1. It corresponds to Ruelle-Mayer transfer operators for the one-dimensional Ising
model with finite-range interaction (see 2.8).
The following proposition is of preparatory nature.

Proposition 5.2.6. Let J(λ,n) be a standard Jordan block of size n as defined in (68). Then

J(λ,n)J
>
(λ,n) =




1 + λ2 λ

λ 1 + λ2 . . .

. . .
. . . λ
λ 1 + λ2 λ

λ λ2



,

J>
(λ,n)J(λ,n) =




λ2 λ

λ 1 + λ2 . . .

. . .
. . . λ
λ 1 + λ2 λ

λ 1 + λ2



.

Proof. The Jordan block J := J(λ,n) has the entries Ji,j = λ δi,j + δi+1,j . Hence

(JJ>)i,j =

n∑

k=1

Ji,k Jj,k

=
n∑

k=1

(λ δi,k + δi+1,k)(λ δj,k + δj+1,k)

=

n∑

k=1

(
λ2 δi,k δj,k + λ δj,k δi+1,k + λ δi,k δj+1,k + δj+1,k δi+1,k

)

= λ2 δj,i + λ δi+1,j + λ δj+1,i + (1 − δi,n) δi,j
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Let Φ ∈ Gl(n; Z) be the flip matrix with ones along the main antidiagonal and zeros otherwise, i. e.,
Φi,j = δi+j,n+1. Then one confirms that (ΦBΦ)i,l = Bn+1−i,n+1−j for all B = (Bi,j) ∈ Mat(n, n; C).
Hence Φ2 = 1, ΦJ(λ,n)Φ = J>

(λ,n) and thus J>J = ΦJΦJ = Φ(JΦJΦ)Φ = Φ(JJ>)Φ, which together

with the first part gives the stated form of J>J .

Let d : N → C be a polynomial-exponential decaying distance function, say d(k) = λk p(k), where
λ ∈ C with |λ| < 1 and p ∈ C[X ] is a polynomial of degree n − 1. Then by Section 2.11 d has
a representation d(k) = 〈(J(λ,n))

k−1v|w〉 for some v, w ∈ Cn, where J(λ,n) is the standard Jordan
block (68) of dimension n with eigenvalue λ. The corresponding Ruelle-Mayer transfer operator
is an integral over a family of generalised composition operators with composition part CJ(λ,n)

:

F(Cn) → F(Cn). By Proposition 5.2.5 its conjugate on L2(Rn) is the operator B−1 ◦ CJ(λ,n)
◦ B =

2n/2 det(1 − J(λ,n)J
>
(λ,n))

−1/2 T
c
−1
2n (XJ(λ,n)

), which has the integral kernel

kJ(λ,n)
(x, y) =

2n/2

det(1 − J(λ,n)J
>
(λ,n))

1/2
g
c
−1
2n (XJ(λ,n))

(x, y).

The computations become much more complicated as the dimension n increases. Thus we exemplarily
treat the cases n = 1 and n = 2. The following one-dimensional example has been studied in [Gu82]
and [HiMay04].

Example 5.2.7. Let λ be a complex number with 0 < |λ| < 1. Then by Proposition 5.2.5 the integral
kernel of H := B−1 ◦ CΛ ◦B : L2(R) → L2(R) is given explicitly as

h(x, y) =
2

1
2

(1 − λ2)
1
2

exp
(
− π(1 + λ2)

1 − λ2
(x2 + y2) +

4πλ

1 − λ2
xy
)
.

For c ∈ R+ let Rc : L
2(R) → L2(R), (Rcf)(x) :=

√
c f(cx) be the scaling operator. Then for the

special choice c = (4π)−1/2 we obtain from Lemma A.6.3 the integral kernel of the scaled operator
Hc := Rc ◦H ◦ R−1

c as hc(x, y) = c h(cx, cy). Similarly to [HiMay04] we write λ = e−γ and conclude
that

h(4π)−1/2(x, y) =
(2/π)−1/2

(1 − λ2)
1
2

exp
(
− 1

4

1 + λ2

1 − λ2
(x2 + y2) +

λ

1 − λ2
xy
)

=
eγ/2√

4π sinhγ
exp
( 1

2 sinhγ
(−1

2
(coshγ (x2 + y2) + xy)

)

=
eγ/2√

4π sinhγ
exp
(
− 1

4
(tanh

γ

2
(x2 + y2) +

(x − y)2

sinh γ
)
)
,

which both can be interpreted as variants of Mehler’s s formula, cp. [Fo89, 1.87].

In Example 5.2.7 we have discussed the case n = 1. We will now compute the integral kernel
kJ(λ,n)

(x, y) for the next easiest case n = 2. This will take much more computational effort.

Example 5.2.8. Let λ ∈ C and Λ := J(λ,n) be a Jordan block (68). The inverse Cayley transform of
XΛ is given explicitly by (92)

c−1
2n (XΛ) = i

(
(1 + Λ>Λ)(1 − Λ>Λ)−1 −2Λ>(1 − ΛΛ>)−1

−2Λ(1 − Λ>Λ)−1 (1 + ΛΛ>)(1 − ΛΛ>)−1

)
.

Thus we have to compute its (block) entries. Let Φ ∈ Gl(n; Z) be the flip as introduced in the proof of

Proposition 5.2.6. This proof also implies that (1−ΛΛ>)−1 =
(
Φ(1 −Λ>Λ)Φ

)−1
= Φ(1 −Λ>Λ)−1Φ,

where Φ is the flip. Thus the lower right entry of c−1
2n (XΛ) is

i(1 + ΛΛ>)(1 − ΛΛ>)−1 = iΦ(1 + Λ>Λ)(1 − Λ>Λ)−1Φ

a flip-conjugate of the upper left entry of c−1
2n (XΛ). The remaining off-diagonal entries are also flip-

conjugate and their mutual transposes, since

(
Λ>(1 − ΛΛ>)−1

)>
= (1 − Λ>Λ)−1Λ = Λ(1 − Λ>Λ)−1 = ΦΛ>(1 − ΛΛ>)−1Φ.
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Thus only two blocks are unknown. We will now study the smallest non-trivial example Λ := J(λ,2).

By Proposition 5.2.6 we obtain Λ>Λ, hence 1 − Λ>Λ =
(

1−λ2 −λ
−λ −λ2

)
, whose inverse is given as (1 −

Λ>Λ)−1 = 1
λ2(λ2−2)

(
−λ2 λ
λ 1−λ2

)
. Thus the upper left entry of c−1

2n (XΛ) is

i(1 + Λ>Λ)(1 − Λ>Λ)−1 =
i

λ2(λ2 − 2)

(
1 + λ2 λ
λ 2 + λ2

)(
−λ2 λ
λ 1 − λ2

)

=
i

λ2(λ2 − 2)

(
−λ4 2λ
2λ 2 − λ4

)
.

For the off-diagonal entries observe that

Λ>(1 − ΛΛ>)−1 =
1

λ2(λ2 − 2)

(
λ 0
1 λ

)(
1 − λ2 λ
λ −λ2

)
=

1

λ2(λ2 − 2)

(
λ(1 − λ2) λ2

1 λ(1 − λ2)

)
.

Thus finally

ic−1
2n (XΛ)

(92)
=

1

λ2(λ2 − 2)




λ4 −2λ 2λ(1 − λ2) 2
−2λ λ4 − 2 2λ2 2λ(1 − λ2)

2λ(1 − λ2) 2λ2 λ4 − 2 −2λ
2 2λ(1 − λ2) −2λ λ4




and the integral kernel of B−1 ◦ CJ(λ,2)
◦B = 2 det(1 − J(λ,2)J

>
(λ,2))

−1/2 T
c
−1
2 (XJ(λ,2)

) is

kJ(λ,2)
(x1, x2, y1, y2) =

2

det(1 − ΛΛ>)1/2
g
c
−1
2n (XΛ)(x1, x2, y1, y2)

=
2

(λ2 (λ2 − 2))1/2
g
c
−1
2n (XΛ)(x1, x2, y1, y2)

=
2

λ (λ2 − 2)1/2
exp
( −π
λ2(λ2 − 2)

(
− x1λ

(
λ3x1 − 2x2 − 2y1λ

2 + 2y1 + 2y2λ
)

+x2

(
2λx1 + 2x2 − x2λ

4 − 2y1 + 2y2λ
3 − 2y2λ

)
+ y1

(
2λ3x1 − 2λx1 − 2x2 + 2y1 − y1λ

4 + 2y2λ
)

−y2λ
(
2λx1 − 2x2λ

2 + 2x2 − 2y1 + y2λ
3
) ))

.

This long expression may be the reason that - unlike the case of a (pure) exponential distance function
(5.2.7) - no (neither direct nor indirect) construction of this integral kernel was known before.

Let d : N → C be a distance function with finite range n for some fixed n ∈ N. For all 0 < s < 1 the
distance function d has a representation d(k) = 〈(sJ(0,n))

k−1v|w〉 for some v, w ∈ Cn, where J(0,n)

is the standard Jordan block (68) of dimension n with eigenvalue zero. In the next example we will
compute the integral kernel of B−1 ◦ CsJ(0,n)

◦B = 2n/2 det(1 − s2J(0,n)J
>
(0,n))

−1/2 T
c
−1
2n (XsJ(0,n)

) .

Example 5.2.9. Let 0 < s < 1 and n ∈ N. The Bargmann conjugate B−1 ◦ CsJ(0,n)
◦B : L2(Rn) →

L2(Rn) of the composition operator CsJ(0,n)
has the integral kernel

(93) ksJ(0,n)
(x, y) =

2n/2

(1 − s2)(n−1)/2
exp
( −π

1 − s2
(
(1+s2)(‖x‖2+‖y‖2)−2s2(x2

1+y
2
n)−4s

n−1∑

i=1

xi yi+1

))
.

In fact: The integral kernel of B−1◦CsJ(0,n)
◦B is ksJ(0,n)

(x, y) = 2n/2 det(1−ΛΛ>)−1/2 g
c
−1
2n (XΛ)(x, y).

We set Λ := s J(0,n) ∈ Mat(n, n; R) and show that

ic−1
2n (XΛ)

(92)
= −

(
(1 + Λ>Λ)(1 − Λ>Λ)−1 −2Λ>(1 − ΛΛ>)−1

−2Λ(1 − Λ>Λ)−1 (1 + ΛΛ>)(1 − ΛΛ>)−1

)

= −
(

diag(1, 1+s2

1−s2 , . . . ,
1+s2

1−s2 ) − 2s
1−s2 J(0,n)

− 2s
1−s2 J

>
(0,n) diag(1+s2

1−s2 , . . . ,
1+s2

1−s2 , 1)

)

= − 1

1 − s2

(
diag(1 − s2, 1 + s2, . . . , 1 + s2) −2s J(0,n)

−2s J>
(0,n) diag(1 + s2, . . . , 1 + s2, 1 − s2)

)
.
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By Proposition 5.2.6 we have J>
(0,n)J(0,n) = diag(0, 1, . . . , 1). One easily confirms that (1 ± Λ>Λ) =

1 ± s2 J>
(0,n)J(0,n) = diag(1, 1 ± s2, . . . , 1 ± s2) which we use for the upper left entry of c−1

2n (XΛ). The

lower right entry is the flip conjugate of the upper left entry, hence 1±ΛΛ> = diag(1±s2, . . . , 1±s2, 1).
Hence the determinant is equal to det(1 − ΛΛ>) = det diag(1 − s2, . . . , 1 − s2, 1) = (1 − s2)n−1. For
the off-diagonal blocks we note that Λ>(1 − ΛΛ>)−1 = s

1−s2 J
>
(0,n)diag(1, . . . , 1, 1 − s2) = s

1−s2 J
>
(0,n).

By the symmetry of c−1
2n (XΛ) this implies that Λ(1 − Λ>Λ)−1 = (Λ>(1 − ΛΛ>)−1)> = s

1−s2 J(0,n).

The sparse shape of the matrix c−1
2n (XΛ) reduces the number of terms in the quadratic form

i

((
x
y

)
c−1
2n (XΛ)

(
x
y

))

=
−1

1 − s2

(
(x|diag(1 − s2, 1 + s2, .., 1 + s2)x) − 4s(x|J(0,n)y) + (y|diag(1 + s2, , .., 1 + s2, 1 − s2)y)

)

=
−1

1 − s2

(
(1 + s2)(‖x‖2 + ‖y‖2) − 2s2(x2

1 + y2
n) − 4s

n−1∑

i=1

xi yi+1

)
.

5.3 Extended oscillator semigroup

In the previous two Sections 5.1 and 5.2 we have investigated the composition operator (CΛf)(z) =
f(Λz) (5.1.3) acting on the Fock space and its Bargmann conjugate. As explained in the introduction
of this chapter our motivation for this is the study of the generalised composition operator

La,b,Λ : F(Cn) → F(Cn), (La,b,Λf)(z) = e(z|a) f(Λz + b)

(for some fixed a, b ∈ Cn, Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1) from which the Ruelle-Mayer transfer
operator is built up. It turns out that La,b,Λ belongs to the so called extended Fock oscillator semi-
group. We will first define the extended oscillator semigroup EΩn consisting of integral operators
with (general) Gaussians as integral kernel. We introduce the extended Fock oscillator semigroup to
be the image

EΩn,F(Cn) := {B ◦ T ◦B−1 |T ∈ EΩn}
under the conjugation with the Bargmann transform. The task of this section is give an explicit
description of this space of operators and to compute the Bargmann conjugate of La,b,Λ. For this
purpose we will compute the conjugates of translations and of multiplication operatorsB◦τr◦B−1, B◦
mexps

◦B−1 both acting on F(Cn) and obtain as a consequence an explicit formula for the operators
B−1 ◦mexpa

◦B, B−1 ◦ τ−b ◦B both acting on L2(Rn).

Definition 5.3.1. (i) For s ∈ Cn (resp. s ∈ Rn) let τs be the translation (τsf)(z) = f(z − s) on
F(Cn), respectively on L2(Rn).

(ii) For any s ∈ Cn one defines the (unbounded) multiplication operator mexps
via (mexps

f)(z) =

e(z|s) f(z) which acts both on L2(Rn) and on F(Cn) via this formula.

(iii) For p, q ∈ Cn, A ∈ S2n we set T p,qA := mexp2πip
◦ TA ◦mexp2πiq

.

(iv) The extended oscillator semigroup is defined as the space of integral operators with (general)
Gaussians as integral kernel, EΩn := {c T p,qA | A ∈ S2n, c ∈ C×, p, q ∈ Cn}. Similarly to Re-
mark 5.2.2 one shows that the extended oscillator semigroup consists of trace class operators.

(v) Via the Bargmann transform B : L2(Rn) → F(Cn) from (90) one defines the extended Fock
oscillator semigroup as EΩn,F(Cn) := {B ◦ T ◦B−1 |T ∈ EΩn}.

Occasionally, we will use the abbreviation mcoshs
:= 1

2 (mexps
+mexp−s

).
Our next aim is to give, similar to Proposition 5.2.4, an explicit description of the extended Fock oscil-
lator semigroup EΩn,F(Cn) (5.3.1), i. e., one has to compute the image of EΩn under the conjugation
by the Bargmann transform. This will be achieved in Corollary 5.3.4. We start with some commu-
tation relations of compositions, translations, and multiplication operators, the latter ones defined in
(5.3.1).
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Proposition 5.3.2. For Λ ∈ Mat(n, n; C) let CΛ : F(Cn) → F(Cn), (CΛf)(z) = f(Λz) be the
associated composition operator (5.1.3). For s ∈ Cn (resp. s ∈ Rn) let τs be the translation (τsf)(z) =
f(z − s) and (mexps

f)(z) = e(s|z)f(z) be the multiplication operator. Then

(i) τr ◦ CΛ = CΛ ◦ τΛr,
(ii) CΛ ◦mexps

= mexp
Λ>s

◦ CΛ,

(iii) τr ◦mexps
= e−(r|s)mexps

◦ τr.
Proof. This follows from the following straight forward calculations:

(τr ◦ CΛf)(z) = f(Λ(z − r)) = f(Λz − Λr) = (CΛ ◦ τΛrf)(z),

(mexp
Λ>s

◦ CΛf)(z) = e(Λ
>s|z)f(Λz) = e(s|Λz)f(Λz) = (CΛ ◦mexps

f)(z),

(τr ◦mexps
f)(z) = e(s|z−r)f(z − r) = e−(r|s)e(s|z)f(z − r) = e−(r|s) (mexps

◦ τrf)(z).

We will use the following lemma from [HiMay02]. It states that the Bargmann conjugates both of
a translation τr : L2(Rn) → L2(Rn), (τrf)(z) = f(z − r) and a multiplication operator mexps

:

L2(Rn) → L2(Rn), (mexps
f)(z) = e(z|s) f(z) are combinations of a translation and multiplication by

an exponential.

Lemma 5.3.3. ([HiMay02, (5.5),(5.6)]) Let r, s ∈ Cn. Then on F(Cn)

(i) B ◦ τr ◦B−1 = exp
(
− π

2

(
r r

) )
mexpπr

◦ τr,

(ii) B ◦mexps
◦B−1 = exp

( 1

8π

(
s s

) )
mexps/2

◦ τ−s/(2π).

As a combination of Proposition 5.2.4 and Lemma 5.3.3 (ii) we obtain a full description of the extended
Fock oscillator semigroup EΩn,F(Cn) (5.3.1):

Corollary 5.3.4. Let p, q ∈ Cn, A ∈ S2n. Then the Bargmann conjugate of T p,qA ∈ EΩn (5.3.1) on
F(Cn) is given as

B ◦T p,qA ◦B−1 = 2n/2 det(1− iA)−1/2 exp
(
− π

2
[
(
p p

)
+
(
q q

)
]
)
mexpπip

◦τ−ip ◦Sc2n(A) ◦mexpπiq
◦τ−iq.

As an immediate consequence we obtain the Bargmann conjugate of the generalised composition
operator

(94) La,b,Λ := mexpa
◦ CΛ ◦ τ−b : F(Cn) → F(Cn), (La,b,ΛF )(z) = e(z|a) f(Λz + b),

where a, b ∈ Cn, and Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1 are fixed.

Proposition 5.3.5. Let a, b ∈ Cn, Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1. Then the Bargmann conjugate of
the composition operator La,b,Λ : F(Cn) → F(Cn) from (94) is given as

B−1 ◦ Lπa,b,Λ ◦B =
2n/2

det(1 − ΛΛ>)1/2
exp
(
− πi

2

((
a
b

)
ΨΛ

(
a
b

)))
T

ΨΛ(a,b)

c
−1
2n (XΛ)

,

where ΨΛ := −i(1 +XΛ)−1.

Proof. Let A := c−1
2n (XΛ) and m(C2n,A) = 2n/2 det(1 − iA)−1/2 be as in Proposition 5.2.5. Then by

Corollary 5.3.4 and Proposition 5.3.2

B ◦ T p,qA ◦B−1 = exp
(
− π

2
[
(
p p

)
+
(
q q

)
]
)
m(C2n,A)mexpπip

◦ τ−ip ◦ CΛ ◦mexpπiq
◦ τ−iq

= exp
(
− π

2
[
(
p p

)
+
(
q q

)
]
)
m(C2n,A)mexpπip

◦ τ−ip ◦mexp
πiΛ>q

◦ CΛ ◦ τ−iq

= exp
(
− π

2
[
(
p p

)
+
(
q q

)
+ 2

(
p Λ>q

)
]
)
m(C2n,A)mexp

πi(p+Λ>q)
◦ CΛ ◦ τ−i(Λp+q)

= exp
(
− π

2

((
p
q

) (
1 Λ>

Λ 1

)(
p
q

)))
m(C2n,A)mexp

πi(p+Λ>q)
◦ CΛ ◦ τ−i(Λp+q).
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Observe that (
p
q

)
7→ i

(
p+ Λ>q
Λp+ q

)
= i

(
1 Λ>

Λ 1

)(
p
q

)
= i(1 +XΛ)

(
p
q

)

defines a linear isomorphism C2n → C2n, since the estimate ‖Λ>Λ‖ ≤ ‖Λ‖2 < 1 makes its determinant
det(i(1 +XΛ)) = i2n det(1 − ΛΛ>) non-vanishing. Let ΨΛ : C2n → C2n be its inverse

ΨΛ := (i(1 +XΛ))−1 = −i
(

1 Λ>

Λ 1

)−1

= −i
(

(1 − Λ>Λ)−1 −Λ>(1 − ΛΛ>)−1

−Λ(1 − Λ>Λ)−1 (1 − ΛΛ>)−1

)
.

ΨΛ is symmetric, hence Ψ>
Λ(1 +XΛ)ΨΛ = −(1 +XΛ)−1 = −iΨΛ and

B−1 ◦ Lπa,b,Λ ◦B = m(C2n,A)−1 exp
(π

2

((
a
b

)
Ψ>

Λ

(
1 Λ>

Λ 1

)
ΨΛ

(
a
b

)))
T

ΨΛ(a,b)
A

= m(C2n,A)−1 exp
(
− πi

2

((
a
b

)
ΨΛ

(
a
b

)))
T

ΨΛ(a,b)
A ,

which together with Proposition 5.2.5 and formula (91) gives the claim.

In particular, Proposition 5.3.5 shows that La,b,Λ belongs to the extended Fock oscillator semigroup
EΩn,F(Cn). - Lemma 5.3.3 has the following converse statement, which seems to be new in the
literature: The (inverse) Bargmann conjugates both of a translation and a multiplication operator
by an exponential function on F(Cn) are combinations of a translation and multiplication by an
exponential on L2(Rn). The proof is based on our observation that the correspondence between the
coefficients in Lemma 5.3.3 is linear and bijective.

Proposition 5.3.6. Let a, b ∈ Cn. Then on L2(Rn)

(i) B−1 ◦mexpa
◦B = exp

(
− 1

4π

(
a a

))
mexpa

◦ τa/(2π),

(ii) B−1 ◦ τ−b ◦B = exp
(π

4

(
b b
))
mexpπb

◦ τ−b/2.

Proof. We multiply the equations of Lemma 5.3.3 and use Proposition 5.3.2 (i) on the commutation
relations of the multiplication and the translation operator. This yields

B ◦mexpπs
◦ τ−r ◦B−1 = exp

(π
8

(
s s

)
− π

2

(
r r

) )
mexpπs/2

◦ τ−s/2 ◦mexp−πr
◦ τ−r

= exp
(π

8

(
s s

)
− π

2

(
r r

)
− π

2
(r|s)

)
mexpπs/2−πr

◦ τ−s/2−r.

Set Va,b := mexpπa
◦ τ−b for all a, b ∈ Cn, then the last equation reads as follows

(95) B ◦ Va,b ◦B−1 = exp
(
− π

4

((
a
b

) (
−1/2 1

1 2

)(
a
b

)))
VE(a,b),

where E(a, b) :=

(
1/2 −1
1/2 1

)(
a
b

)
defines a linear isomorphism C2n → C2n with inverse

E−1(a, b) =

(
1/2 −1
1/2 1

)−1(
a
b

)
=

(
1 1

−1/2 1/2

)(
a
b

)
.

Hence we can invert (95) to get

B−1 ◦ Va,b ◦B = exp
(

+
π

4

(
E−1(a, b)

(
−1/2 1

1 2

)
E−1(a, b)

))
VE−1(a,b)

= exp
(
− π

4

((
a
b

) (
1 1
1 −1

)(
a
b

)))
VE−1(a,b),(96)

since

E−>
(
−1/2 1

1 2

)
E−1 =

(
1 −1/2
1 1/2

)(
−1/2 1

1 2

)(
1 1

−1/2 1/2

)
=

(
−1 −1
−1 1

)
.
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Proposition 5.3.5 gives an explicit description of the image

{B−1 ◦ La,b,Λ ◦B | a, b ∈ Cn, Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1} ⊂ EΩn

of the set of composition operators La,b,Λ (94) under the conjugation. In particular, this image is small
inside the extended oscillator semigroup, compare for instance the dimensions of the corresponding
parameter spaces. This in turn lights our hope that also other types of operators from the extended
(Fock) oscillator semigroup may serve as builing blocks for future transfer operators.
In the following we will discuss special cases of pairs (a, b) ∈ Cn × Cn (depending on a given matrix
Λ) such that the integral operator B−1 ◦ La,b,Λ ◦B has special properties. Namely, we will determine
the pairs (a, b) ∈ Cn × Cn such that

(
p
q

)
:= ΨΛ

(
a
b

)
= −i(1 +XΛ)−1

(
a
b

)

satisfies that either 1.) q = 0, 2.) p = 0, or 3.) p = q. These pairs (p, q) ∈ Cn × Cn correspond to
integral operators T p,qA (5.3.1) where either one of the multiplication operators vanishes 1.), 2.), or the
multiplication operators are equal 3.). The corresponding integral kernels are of a simple form: 1.)
gA(x, y) exp(2πi

(
x p

)
), 2.) gA(x, y) exp(2πi

(
y p

)
), or , 3.) gA(x, y) exp(2πi

(
x+ y p

)
). Since the

correspondence C2 → C2, ( ab ) 7→ ( pq ) := ΨΛ ( ab ) is bijective, there is a unique solution in each of the
three cases.

Corollary 5.3.7. Let a, b ∈ Cn, Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1 and La,b,Λ : F(Cn) → F(Cn) be the
corresponding composition operator (94). Then

(i) B−1 ◦ Lπa,Λa,Λ ◦B =
2n/2 exp

(
− π

2

(
a a

) )

det(1 − ΛΛ>)1/2
T−ia,0
c
−1
2n (XΛ)

,

(ii) B−1 ◦ LπΛ>b,b,Λ ◦B =
2n/2 exp

(
− π

2

(
b b
) )

det(1 − ΛΛ>)1/2
T 0,−ib
c
−1
2n (XΛ)

,

(iii) B−1 ◦ Lπ(1+Λ>)(1+Λ)−1b,b,Λ ◦B =
2n/2 exp

(
− π

2

(
b (1 + Λ)−1b

))

det(1 − ΛΛ>)1/2
T

−i(1+Λ)−1b,−i(1+Λ)−1b

c
−1
2n (XΛ)

.

Proof. By the Proposition 5.3.5 we have

B−1 ◦ Lπa,b,Λ ◦B =
2n/2

det(1 − ΛΛ>)1/2
exp
(
− πi

2

((
a
b

)
ΨΛ

(
a
b

)))
T

ΨΛ(a,b)

c
−1
2n (XΛ)

,

where ΨΛ = −i(1 + XΛ)−1. Hence it remains to check that ΨΛ(a, b) has the stated form for the
special choices of (a, b) and to compute the inner product

(
( ab ) ΨΛ ( ab )

)
. Concerning the first case we

note that ( a
Λa ) = i(1 +XΛ)

(−ia
0

)
, hence ΨΛ ( a

Λa ) =
(−ia

0

)
and

(
( a

Λa ) ΨΛ ( a
Λa )
)

=
(
( a

Λa )
(−ia

0

))
=

−i
(
a a

)
. Similarly,

(
Λ>b
b

)
= i(1 +XΛ)

(
0

−ib
)
, hence ΨΛ

(
Λ>b
b

)
=
(

0
−ib
)

and

((
Λ>b
b

)
ΨΛ

(
Λ>b
b

))
=

((
Λ>b
b

) (
0

−ib

))
= −i

(
b b
)
.

For the third case we observe that
(

(1+Λ>)(1+Λ)−1b
b

)
= i(1 +XΛ)

(
−i(1+Λ)−1b

−i(1+Λ)−1b

)
, which implies that

ΨΛ

(
(1+Λ>)(1+Λ)−1b

b

)
=
(

−i(1+Λ)−1b

−i(1+Λ)−1b

)
and hence

((
(1 + Λ>)(1 + Λ)−1b

b

)
ΨΛ

(
−i(1 + Λ)−1b
−i(1 + Λ)−1b

))
=

((
(1 + Λ>)(1 + Λ)−1b

b

) (
−i(1 + Λ)−1b
−i(1 + Λ)−1b

))

= −2i
(
b (1 + Λ)−1b

)
.

Corollary 5.3.7 will imply in the next section that certain generating triples (a, b,Λ) lead to Kac-
Gutzwiller transfer operators of a simple form.
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5.4 Kac-Gutzwiller transfer operators for the Ising model

Let F ⊂ C be a bounded set and (FN,N0, τ) a one-sided one-dimensional full shift (1.2.6). Let
φ be a two-body Ising interaction (1.8.3) with potential q ∈ Cb(F ) and distance function given as
d(k) = (Λk−1v|w) for some Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1, v, w ∈ Cn. Then by Theorem 2.7.6 the
Ruelle-Mayer transfer operator

Mβ : F(Cn) → F(Cn), (Mβf)(z) =

∫

F

exp
(
βq(σ) + βσ(z|w)

)
f(σ v + Λ z) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Λn) trace (Mβ)
n for all

n ∈ N. The conjugate integral operator B−1 ◦Mβ ◦B on L2(Rn) is called a Kac-Gutzwiller transfer
operator. In this section we will use the results 5.3.5 and 5.3.7 from the previous section for the
computation of the Kac-Gutzwiller transfer operator. We apply this to the two main cases of distance
functions which have a finite-dimensional representation d(k) = 〈Bk−1v|w〉, namely the polynomial-
exponentially decaying interactions and the finite-range interactions. These results will be generalised
in the next section to matrix subshifts with Ising type interactions. In particular, the finite state Potts
model will be considered.
Using Propositions 3.3.4 and 5.3.5 we compute the corresponding Kac-Gutzwiller transfer operator

B−1 ◦Mβ ◦B =

∫

F

eβq(σ)B−1 ◦ Lβσw,σv,Λ ◦B dν(σ)

=
2n/2

det(1 − ΛΛ>)1/2

∫

F

eβq(σ) exp
(
− πiσ2

2

((
β
π w
v

)
ΨΛ

(
β
π w
v

)))
T
σΨΛ( β

π w,v)

c
−1
2n (XΛ)

dν(σ),

where ΨΛ = −i(1+XΛ)−1. We will now emploit the ambiguity of the generating triples. Namely, once
one has one representation of a distance function, one obtains by conjugation a family of generating
triples: Let v, w ∈ Cn and Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1. For all S ∈ Gl(n; C) one has

d(k) =
(
Λk−1v w

)
=
(
(S−1ΛS)k−1S−1v S>w

)
=
(
Λk−1
S vS wS

)

with wS := S>w, vS := S−1v and ΛS := S−1ΛS. For each S ∈ Gl(n; C) one has a Ruelle-Mayer

transfer operator Mβ;S =

∫

F

eβq(σ) LβσwS ,σvS ,ΛS dν(σ) : F(Cn) → F(Cn) acting via

(Mβ;Sf)(z) =

∫

F

exp
(
βq(σ) + βσ(z|wS)

)
f(σ vS + ΛS z) dν(σ).

Let CS : F(Cn) → F(Cn), (CSf)(z) = f(Sz) be the (unbounded) composition operator associated
to S ∈ Gl(n; C), then Mβ;S = CS ◦Mβ ◦ C−1

S formally. We mention that between suitably weighted
Fock spaces CS becomes a bounded operator.36

Theorem 5.4.1. In the above setting set Gβ;S := B−1 ◦Mβ;S ◦B : L2(Rn) → L2(Rn).

(i) If v ∈ ΛCn, then there exists S ∈ Gl(n; C) such that v =
β

π
ΛSS>w and

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − β2σ2

2π

(
wS wS

))
mexp2βσwS

dν(σ) ◦ T
c
−1
2n (XΛS

)

with integral kernel 2n/2
g
c
−1
2n (XΛS

)(x, y)

det(1 − ΛSΛ>
S )1/2

∫

F

exp
(
βq(σ)−β

2σ2

2π

(
wS wS

)
+2βσ

(
x wS

))
dν(σ).

(ii) If w ∈ Λ>Cn, then there exists S ∈ Gl(n; C) such that
β

π
w = Λ>(SS>)−1v and

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2 T

c
−1
2n (XΛS

) ◦
∫

F

exp
(
βq(σ) − πσ2

2

(
vS vS

))
mexp2πσvS

dν(σ)

with integral kernel 2n/2
g
c
−1
2n (XΛS

)(x, y)

det(1 − ΛSΛ>
S )1/2

∫

F

exp
(
βq(σ)− πσ2

2

(
vS vS

)
+2πσ

(
y vS

))
dν(σ).

36Set for instance F(Cn, µSS∗) :=
˘

f ∈ O(Cn) | ‖f‖2
F(Cn,µSS∗ )

:=
R

|f(z)|2 |det(S)|2 exp(−π〈z|SS∗z〉) dz < ∞
¯

.

Then CS : F(Cn, µ1) = F(Cn) → F(Cn, µSS∗) is unitary because of the substitution rule.
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(iii) For all v, w there exists S ∈ Gl(n; C) such that (1 + Λ>)(SS>)−1(1 + Λ)−1v = β
πw. Set

ṽ := S−1(1 + Λ)−1v. Then

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − πσ2

2

(
vS (1 + ΛS)−1vS

))
T−iσṽ,−iσṽ
c
−1
2n (XΛS

)
dν(σ)

with integral kernel

2n/2g
c
−1
2n (XΛS

)(x, y)

det(1 − ΛSΛ>
S )1/2

∫

F

exp
(
βq(σ)− πσ2

2

(
vS (1 + ΛS)−1vS

)
+2πσ

(
x+ y (1 + ΛS)−1vS

))
dν(σ).

Proof. For the proof we will assume that S solves the linear equation. The next lemma shows that
one can always find such a matrix S. - If v = β

πΛSS>w, then vS = S−1v = β
πS

−1ΛSS>w = β
πΛSwS .

Proposition 3.3.4 and Corollary 5.3.7 (i) applied for a := σ βπwS yield

Gβ;S = B−1 ◦Mβ ◦B =

∫

F

eβq(σ)B−1 ◦ LβσwS ,σvS ,ΛS ◦B dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − π

2
(a|a)

)
T−ia,0
c
−1
2n (XΛS

)
dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − β2σ2

2π
(wS |wS)

)
T

−iβσ
π wS ,0

c
−1
2n (XΛS

)
dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − β2σ2

2π

(
wS wS

))
mexp2βσwS

dν(σ) ◦ T
c
−1
2n (XΛS

).

If β
πw = Λ>S−>S−1v, then β

πwS = β
πS

>w = S>Λ>S−>S−1v = Λ>
S vS and hence by Corollary 5.3.7

(ii) with b := σvS one obtains

Gβ;S =

∫

F

eβq(σ) B−1 ◦ LβσwS ,σvS ,ΛS ◦B dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − π

2
(b|b)

)
T 0,−ib
c
−1
2n (XΛS

)
dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − πσ2

2

(
vS vS

))
T 0,−iσvS

c
−1
2n (XΛS

)
dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2 T

c
−1
2n (XΛS

) ◦
∫

F

exp
(
βq(σ) − πσ2

2

(
vS vS

))
mexp2πσvS

dν(σ).

If β
πwS = (1 + Λ>

S )(1 + ΛS)−1vS , then (1 + ΛS)−1vS =
(
S(1 + Λ)S−1

)−1
S−1v = S−1(1 + Λ)−1v = ṽ

and hence (1 + Λ>
S )(1 + ΛS)−1vS = S>(1 + Λ>)(SS>)−1(1 + Λ)−1v = β

πwS and Corollary 5.3.7 (iii)
applied for b := σvS yields

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − π

2
(b|(1 + ΛS)−1b)

)
T

−i(1+ΛS)−1b,−i(1+ΛS)−1b

c
−1
2n (XΛS

)
dν(σ)

= 2n/2 det(1 − ΛSΛ>
S )−1/2

∫

F

exp
(
βq(σ) − πσ2

2

(
vS (1 + ΛS)−1vS

))
T−iσṽ,−iσṽ
c
−1
2n (XΛS

)
dν(σ).

In order to complete the proof of Theorem 5.4.1 we have to investigate if the occurring linear equations
for the matrix S can be solved. We answer this question with the help of the following lemma.

Lemma 5.4.2. Let a, b ∈ Cn. Then there exists a symmetric matrix Σ ∈ Gl(n; C) such that Σa = b.

Proof. Let V be the (at most) two-dimensional space spanned by a and b. We define Σ on V ⊥

to be the identity. By change of basis in V ∼= C2 (the case dimV = 1 is trivial) we can assume
that a = ( a1

a2
) , b =

(
b1
b2

)
. We make the Ansatz Σ = ( x yy z ) and obtain a system of linear equations

( x yy z ) ( a1
a2

) =
(
b1
b2

)
in the unknowns x, y and z. This can be rewritten as

(
a1 a2 0
0 a1 a2

)

x
y
z


 =

(
b1
b2

)
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from which it is appearent that it is solvable. Except for z = y2

x the matrix Σ is invertible.

Since every symmetric invertible matrix Σ can be written as Σ = SS>, we obtain as an immediate
consequence of the previous lemma that the equations for S in parts (i) and (ii) of Theorem 5.4.1 can
be fulfilled provided v belongs to the image of Λ (i) and w belongs to the image of Λ> (ii), respectively.
Since ‖Λ‖ = ‖Λ>‖ < 1, both (1+Λ>) and (1+Λ) are bijective. Hence the equation for S in part (iii)
can always be solved. This concludes the proof of Theorem 5.4.1.
In particular, if one considers a two-state Ising model with spin values in F = {±1} equipped with the
uniform distribution on F , then the integrals in Theorem 5.4.1 simplify and one obtains the following
expressions.

Corollary 5.4.3. Let F = {±1} be equipped with the uniform distribution and (FN,N0, τ) a one-
sided one-dimensional full shift (1.2.6). Let φ be a two-body Ising interaction (1.8.3) with vanishing
potential and distance function given as d(k) = (Λk−1v|w) for some Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1,
v, w ∈ Cn. For all S ∈ Gl(n; C) set wS := S>w, vS := S−1v and ΛS = S−1ΛS. Let

Mβ;S : F(Cn) → F(Cn), (Mβ;Sf)(z) =

∫

F

exp
(
βq(σ) + βσ(z|wS)

)
f(σ vS + ΛS z) dν(σ)

be the corresponding Ruelle-Mayer transfer operator and Gβ;S := B−1 ◦Mβ;S ◦B : L2(Rn) → L2(Rn)
the Kac-Gutzwiller transfer operator.

(i) If v ∈ ΛCn, then there exists S ∈ Gl(n; C) such that v =
β

π
ΛSS>w and

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2 exp

(
− β2

2π

(
wS wS

))
mcosh2βwS

◦ T
c
−1
2n (XΛS

)

with integral kernel 2n/2 det(1−ΛSΛ>
S )−1/2 exp

(
− β2

2π (wS |wS)
)

cosh
(
2β(x|wS)

)
g
c
−1
2n (XΛS

)(x, y).

(ii) If w ∈ Λ>Cn, then there exists S ∈ Gl(n; C) such that
β

π
w = Λ>(SS>)−1v and

Gβ;S = 2n/2 det(1 − ΛSΛ>
S )−1/2 exp

(
− π

2

(
vS vS

))
T
c
−1
2n (XΛS

) ◦mcosh2πvS

with integral kernel 2n/2 det(1−ΛSΛ>
S )−1/2 exp

(
− π

2

(
vS vS

))
g
c
−1
2n (XΛS

)(x, y) cosh
(
2π
(
y vS

))
.

(iii) For all v, w there exist S ∈ Gl(n; C) such that (1 + Λ>)(SS>)−1(1 + Λ)−1v = β
πw. Then

Gβ;S =
exp
(
− π

2

(
vS (1 + ΛS)−1vS

) )

21−n/2 det(1 − ΛSΛ>
S )1/2

(
T
i(1+ΛS)−1vS , i(1+ΛS)−1vS

c
−1
2n (XΛS

)
+T

−i(1+ΛS)−1vS ,−i(1+ΛS)−1vS

c
−1
2n (XΛS

)

)

with integral kernel

exp
(
− π

2

(
vS (1 + ΛS)−1vS

) )

2−n/2 det(1 − ΛSΛ>
S )1/2

g
c
−1
2n (XΛS

)(x, y) cosh
(
2π
(
x+ y (1 + ΛS)−1vS

))
.

As shown in Remark 2.12.3 there are only two types of distance functions which have an irreducible
representation d(k) =

(
Bk−1v w

)
on a finite dimensional space, namely the polynomial-exponentially

decaying and the finite-range distance functions. First we consider polynomial-exponentially decaying
distance functions: Let λ ∈ C with 0 < |λ| < 1, ci ∈ C and d : N → C, k 7→ λk

∑n−1
i=0 ci k

i,
then by Remark 2.11.1 d can be represented with the help of the matrix B(n) ∈ Gl(n; C) (2.11.1)
as d(k) = λ

(
(λB(n))k−11 | c

)
, where 1 : {0, . . . , n − 1} → C is the constant function one and c =

(c0, . . . , cn−1) ∈ Cn. Since B(n) ∈ Gl(n; C) is invertible, we can find generating triples by conjugation
such that each of the three cases of Theorem 5.4.1 can be applied in order to obtain a Kac-Gutzwiller
transfer operator with a simple integral kernel.
We specialise to two-state Ising interactions with exponential decaying distance function d(k) = Jλk,
which is the model firstly studied by M. Kac and later (for periodic boundary condition) by M.
Gutzwiller, D. Mayer, and J. Hilgert in [Gu82] and [HiMay04]. In the context of the dynamical zeta
function the question arised whether the Ruelle-Mayer transfer operator has real spectrum. We will
now give a direct answer to that question.
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Example 5.4.4. (Two-state Ising model with pure exponential interaction) Let F = {±1} and
ν be the uniform distribution on F . For every s ∈ C× we have a representation d(k) = Jλk =

λk−1 λ
sJs and a corresponding Ruelle-Mayer transfer operator (Mβ;sf)(z) = eβJsz f

(
λ

s
+ λz

)
+

e−βJsz f

(−λ
s

+ λz

)
for the two-state Ising spin model.

(i) Let s1 =
√

π
βJ , then Gβ;s1 := B−1 ◦Mβ;s1 ◦B has the integral kernel

21/2

(1 − λ2)1/2
exp
(
− β2s21J

2

2π

)
gA(x, y) cosh(2βs1Jx) =

21/2e−Jβ/2

(1 − λ2)1/2
gA(x, y) cosh(2

√
πβJ x).

(ii) Let s2 =
√

πλ2

βJ , then Gβ;s2 := B−1 ◦Mβ;s2 ◦B has the integral kernel

21/2

(1 − λ2)1/2
exp
(
− πλ

2s22

)
gA(x, y) cosh

(2πλy

s2

)
=

21/2e−Jβ/2

(1 − λ2)1/2
gA(x, y) cosh(2

√
πβJ y).

(iii) Let s0 =
√

πλ
βJ , then Gβ;s0 := B−1 ◦Mβ;s0 ◦B has the integral kernel

gβ;s0(x, y) =
21/2

(1 − λ2)1/2
exp
(
− πλ2

2s20(1 + λ)

)
gA(x, y) cosh!

( 2πλ

s0(1 + λ)
(x+ y)

)

=
21/2

(1 − λ2)1/2
exp
(
− βJλ

2(1 + λ)

)
gA(x, y) cosh(2

√
πβJλ (x + y)),

which is symmetric. Hence for βJ ∈ R+, λ ∈]− 1, 1[ the corresponding Kac-Gutzwiller transfer
operator Gβ;s0 is symmetric and hence has real spectrum.

As in Example 5.2.7 we prefer to write λ = e−γ for some complex number γ which will lead to a
Mehler type kernel. In combination with scaling by c = (4π)−1/2 one obtains the kernels the scaled
integral operators Rc ◦ Gβ;s ◦R−1

c corresponding to (i) - (iii) as

(i’)
eγ/2√

4π sinhγ
exp
(
− 1

4
(tanh

γ

2
(x2 + y2) +

(x− y)2

sinh γ
)
)

cosh(
√
βJ x),

which is one of the asymmetric Kac-Gutzwiller type operators occurring in [HiMay04].

(ii’)
eγ/2√

4π sinhγ
exp
(
− 1

4
(tanh

γ

2
(x2 + y2) +

(x− y)2

sinh γ
)
)

cosh(
√
βJ y),

(iii’)
eγ/2√

4π sinhγ
exp
(
− 1

4
(tanh

γ

2
(x2 + y2) +

(x− y)2

sinh γ
)
)

cosh
(√βJλ

1 + λ
(x+ y)

)
,

i. e. one has a natural symmetric Kac-Gutzwiller operator which was not known before.

Remark 5.4.5. It is quite easy to see, cf. [HiMay04], that the operators Gβ;si : L2(R) → L2(R) from
the preceding Remark 5.4.4 have the same spectrum as the original Kac-Gutzwiller operator given in
[Gu82], which is the symmetric integral operator G : L2(R) → L2(R) given via its integral kernel

eγ/2√
4π sinh γ

exp
(
− 1

4
(tanh

γ

2
(x2 + y2) +

(x − y)2

sinh γ
)
)√

cosh
(√

βJx
)√

cosh
(√

βJy
)
.

We will now use our machinery developed in this chapter to compute the Kac-Gutzwiller transfer
operator for finite range Ising interactions.
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Example 5.4.6. Let d : N → C be a finite range distance function, say d(k) = 0 for all k > n.
Let J(0,n) = Sn be the standard n-step nilpotent matrix from (61) and 0 < λ < ‖J(0,n)‖−1. Define

wd ∈ Cn with entries wd(k) = λ1−k d(k). Then by Proposition 2.8.2 d(k) = 〈(λSn)k−1wd|e1〉 for all
k ∈ N. The integral kernel of the corresponding Kac-Gutzwiller transfer operator Gβ = B−1 ◦Mβ ◦B
is given as

2n/2

(1 − λ2)n/2
exp
( −π

1 − λ2

(
(1 + λ2)(‖x‖2 + ‖y‖2) − 2λ2(x2

1 + y2
n) − 4λ

n−1∑

i=1

xi yi+1

))

∫

F

exp
(
βq(σ) − πσ2

2

(β2

π2
+ cλ,d

))
exp
( 2πσ

1 − λ2

((
x
y

) (
β(1−λ2)

π e1 − λJ(0,n)w
d

wd − λ2wd(n)en

)))
dν(σ),

where cλ,d := (1 − λ2)−1
( (
wd wd

)
− λ2(wd(n))2

)
. In fact: By Proposition 5.3.5 the Kac-Gutzwiller

operator is given as

B−1 ◦Mβ ◦B =

∫

F

eβq(σ) B−1 ◦ Lβσe1,σwd,λJ(0,n)
◦B dν(σ)

=
2n/2

(1 − λ2)n/2

∫

F

eβq(σ) exp
(
− πiσ2

2

((
β
π e1
wd

)
ΨλJ(0,n)

(
β
π e1
wd

)))
T
σΨλJ(0,n)

( β
π e1,w

d)

c
−1
2n (XλJ(0,n)

)
dν(σ),

where ΨλJ(0,n)
= −i(1 +XλJ(0,n)

)−1.
Applying some ideas of the proofs of Proposition 5.2.5 and of Example 5.2.9 we obtain

(1 +XΛ)−1 =

(
1 Λ>

Λ 1

)−1

=

(
(1 − Λ>Λ)−1 −Λ>(1 − ΛΛ>)−1

−Λ(1 − Λ>Λ)−1 (1 − ΛΛ>)−1

)

=

(
diag(1, 1 − λ2, . . . , 1 − λ2)−1 − λ

1−λ2 J(0,n)

− λ
1−λ2 J

>
(0,n) diag(1 − λ2, . . . , 1 − λ2, 1)−1

)

=
1

1 − λ2

(
diag(1 − λ2, 1, . . . , 1) −λJ(0,n)

−λJ>
(0,n) diag(1, . . . , 1, 1 − λ2)

)
.

From this expression we deduce that

(
diag(1 − λ2, 1, . . . , 1) −λJ(0,n)

−λJ>
(0,n) diag(1, . . . , 1, 1 − λ2)

)(
β
π e1
wd

)
=

(
β
π (1 − λ2) e1 − λJ(0,n)w

d

0 + diag(1, . . . , 1, 1 − λ2)wd

)
,

hence
((

β
π e1
wd

)
ΨΛ

(
β
π e1
wd

))
=

−i
1 − λ2

((
β
π e1
wd

) (
β
π (1 − λ2) e1 − λJ(0,n)w

d

diag(1, . . . , 1, 1 − λ2)wd

))

=
−i

1 − λ2

(
(1 − λ2)

β2

π2
+
(
wd diag(1, . . . , 1, 1 − λ2)wd

)
− 2βλ

π

(
wd J>

(0,n)e1
))

= −i
(β2

π2
+

(
wd wd

)

1 − λ2
− λ2

1 − λ2
(wd(n))2 + 0

)
= −iβ

2

π2
− icλ,d

and the integral kernel of the Kac-Gutzwiller transfer operator Gβ = B−1 ◦Mβ ◦B is

2n/2

(1 − λ2)n/2
exp
( −π

1 − λ2

(
(1 + λ2)‖x‖2 − 2λ2(x2

1 + y2
n) + (1 + λ2)‖y‖2 − 4λ

n−1∑

i=1

xi yi+1

))

∫

F

exp
(
βq(σ) − πσ2

2

(β2

π2
+ cλ,d

))
exp
(
2πiσ

((
x
y

)
ΨΛ

(
β
π e1
wd

)))
dν(σ)

=
2n/2

(1 − λ2)n/2
exp
( −π

1 − λ2

(
(1 + λ2)‖x‖2 − 2λ2(x2

1 + y2
n) + (1 + λ2)‖y‖2 − 4λ

n−1∑

i=1

xi yi+1

))

∫

F

exp
(
βq(σ) − πσ2

2

(β2

π2
+ cλ,d

))
exp
( 2πσ

1 − λ2

((
x
y

) (
β(1−λ2)

π e1 − λJ(0,n)w
d

diag(1, . . . , 1, 1 − λ2)wd

))
)
dν(σ).
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In order to apply Theorem 5.4.1 (i) and (ii) we have to investigate the range of J(0,n) and of its

transpose, part (iii) is always applicable. Clearly, J(0,n)C
n = Cn−1×{0} and (J(0,n))

>Cn = {0}×Cn−1,

but wd(n) 6= 0 and e1 /∈ {0}×Cn−1. Hence we cannot apply the first two cases of Thm. 5.4.1 without
any adaptations. However, we observe that d(k) = 〈(λJ(0,n))

k−1wd|e1〉Cn = 〈(λJ(0,n+1))
k−1w̃d|e1〉Cn+1

gives a representation suitable for case (i), where w̃d ∈ Cn+1 is the vector with entries w̃d(k) = wd(k) =
λ1−k d(k) for k ≤ n and zero otherwise. - Using Example 5.2.9 the corresponding Kac-Gutzwiller
transfer operator can be written out explicitely, but the formulas become quite long.

5.5 Kac-Gutzwiller transfer operators for Ising type interactions

In this section we generalise the results of the previous section to matrix subshifts with Ising type
interactions. Recall Theorem 3.2.6 which provides us with a Ruelle-Mayer transfer operator for the
one-sided one-dimensional matrix subshift (1.2.8) with two-body Ising type interaction (1.8.3) if the

distance function d belongs to D(p)
1 (2.7.1) for some p < ∞. In this section we suppose that d is

given as d(k) =
(
Λk−1v w

)
where Λ ∈ Mat(n, n; C) with ‖Λ‖ < 1 and that the interaction matrix

r ∈ Cb(F × F ) has a decomposition r(x, y) =
∑M

j=1 sj(x) tj(y) with sj , tj ∈ Cb(F ). By Theorem 3.2.6

the Ruelle-Mayer transfer operator M̃β : L2(F, ν)⊗̂F((Cn)M ) → L2(F, ν)⊗̂F((Cn)M ),

(M̃βf)(x; z1, .., zM ) =

∫

F

Aσ,x exp
(
βq(σ)+β

M∑

j=1

sj(σ)(zj |w)
)
f(σ; t1(σ)v+Λz1, .., tM (σ)v+ΛzM ) dν(σ)

satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Λ)M trace (M̃β)
n. In this

section we compute the corresponding Kac-Gutzwiller transfer operator by which we mean the partial
Bargmann37 conjugate of the Ruelle-Mayer operator M̃β with respect to the z-variable, i. e., the

operator G̃β := (id⊗BnM )−1 ◦ M̃β ◦ (id⊗BnM ) : L2(F, ν)⊗̂L2((Rn)M ) → L2(F, ν)⊗̂L2((Rn)M ).
First we will consider the transfer operators for the full shift. The Ruelle-Mayer transfer operator
Mβ : F((Cn)M ) → F((Cn)M ) is given by Theorem 2.13.8 as

(Mβf)(z1, . . . , zM ) =

∫

F

exp
(
βq(σ) + β

M∑

l=1

sl(σ) 〈zl|w〉
)
f
(

(t1(σ)v, . . . , tM (σ)v) + Bz
)
dν(σ).

We recall Definition (94) of the generalised composition operator La,b,Λ : F(Cn) → F(Cn), (Lf)(z) =
e(z|a) f(b+ Λz) where a, b ∈ Cn and λ ∈ Mat(n, n; C) with ‖Λ‖ < 1. We rewrite Mβ as

Mβ =

∫

F

eβq(σ)
M⊗

j=1

Lβsj(σ)w,tj(σ)v,B dν(σ).

This expression allows us to apply Propositions 3.3.4 and 5.3.5 and to compute the corresponding
Kac-Gutzwiller transfer operator Gβ = (BnM )−1 ◦Mβ ◦BnM ∈ End(L2((Rn)M )) for the full shift

Gβ =

∫

F

eβq(σ)
M⊗

j=1

(
(Bn)

−1 ◦ Lβsj(σ)w,tj(σ)v,B ◦Bn
)
dν(σ)

= 2nM/2 det(1 − ΛΛ>)−M/2 ×(97)
∫

F

exp
(
βq(σ) − πi

2

M∑

j=1

((
β
π sj(σ)w

tj(σ)v

)
ΨΛ

(
β
π sj(σ)w

tj(σ)v

))) M⊗

j=1

T
ΨΛ( β

π sj(σ)w,tj(σ)v)

c
−1
2n (XΛ)

dν(σ),

where ΨΛ = −i(1 + XΛ)−1. We now consider the transfer operators for the matrix subshift. The

Ruelle-Mayer transfer operator is prxM̃β =
∫
F Aσ,x e

βq(σ)
(⊗M

j=1 Lβsj(σ)w,tj(σ)v,B

)
◦ prσ dν(σ). By

Proposition 3.3.4 we have the following characterisation of the corresponding Kac-Gutzwiller transfer

37In order to clarify the arguments we will use a lower index to indicate the dimension of the base space on which
the Bargmann transform acts, e. g. Bn : L2(Rn) → F(Cn).
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operator G̃β : L2(F, ν)⊗̂L2((Rn)M ) → L2(F, ν)⊗̂L2((Rn)M ) via

prxG̃β = prx
(
(BnM )−1 ◦ M̃β ◦BnM

)

= 2nM/2 det(1 − ΛΛ>)−M/2 ×(98)
∫

F

Aσ,x exp
(
βq(σ) − πi

2

M∑

j=1

((
β
π sj(σ)w

tj(σ)v

)
ΨΛ

(
β
π sj(σ)w

tj(σ)v

)))( M⊗

j=1

T
ΨΛ( β

π sj(σ)w,tj(σ)v)

c
−1
2n (XΛ)

)
◦ prσ dν(σ).

Since the Kac-Gutzwiller transfer operator is by definition conjugate to the Ruelle-Mayer transfer

operator, it satisfies the dynamical trace formula Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1−Λ)M trace (G̃β)n

for the matrix subshift, Z̃b
N0

n (βA(φ)) = Zb
N0 ,φ

{1,...,n}(β) = det(1 − Λ)M trace (Gβ)n for the full shift,

respectively. The integral kernel of Gβ is a Schwartz function, hence the trace of (Gβ)n can be
evaluated by integrating the integral kernel over the diagonal, see Remark 3.3.3 or [CoGr90, A.3.9].
We ask whether one can find a direct way to show that the occurring integrals express the partition
function. This could be used to construct new types of transfer operators.
We recall a couple of techniques introduced and used throughout this dissertation and compute the
transfer operators for the M -state Potts model.

(i) The decomposition of an operator as an integral over a family of basic operators, Theorem A.7.6,

(ii) The superposition principle: The integral over the tensor product of the basic operators for the
treatment of Ising type interactions, Proposition 2.3.9 and Subsection2.13,

(iii) The tensor product with the transition matrix for the treatment of matrix subshifts, Lemma 3.3.1,

(iv) The choice of a suitable generating triple leading to a transfer operator with nicer properties,
Theorem 5.4.1, and

(v) The scaling of an integral operator, Lemma A.6.3 applied in Example 5.2.7.

Example 5.5.1. (Potts model) Let F = {1, . . . ,M} be finite and ν the a priori measure ν identified
with its distribution vector. Let φ be a two-body Potts interaction with potential q ∈ Cb(F ) and
distance function d(k) =

(
Bk−1v w

)
where B ∈ Mat(n, n; C) with ‖B‖ < 1.

(i) Example 2.13.10 yields the Ruelle-Mayer transfer operator Mβ : F((Cn)M ) → F((Cn)M ),

(Mβf)(z1, . . . , zM ) =

M∑

j=1

νj exp
(
βqj + β

(
zj w

) )
f
(
(δj,mw + Λzm)m=1,...,M

)

for the full shift Potts model. Introducing the notation
⊗j

A := A ⊗ . . . ⊗ A (j-times) for the

j-fold tensor product of an operator A, we can write Mβ =
∑M

j=1 νj e
βqj

⊗j−1
CΛ ⊗Lβw,v,Λ ⊗

⊗M−j
CΛ. By the above formula (97) we get the Bargmann conjugate of Mβ as

(BnM )−1 ◦ Mβ ◦BnM =
2nM/2

det(1 − ΛΛ>)M/2
exp
(
− πi

2

((
β
πw
v

)
ΨΛ

(
β
πw
v

)))
×

M∑

j=1

νj e
βqj

j−1⊗
T
c
−1
2n (XΛ) ⊗ T

ΨΛ( β
πw,v)

c
−1
2n (XΛ)

⊗
M−j⊗

T
c
−1
2n (XΛ).

(ii) We now generalise (i) to matrix subshifts. Since the alphabet F is finite, the Hilbert space on
which the Ruelle-Mayer transfer operator acts is F((Cn)M )|F | ∼= L2(F, ν)⊗̂F((Cn)M ) as pointed
out in Remark 3.2.8. By Remark 3.2.8 the components of the Ruelle-Mayer transfer operator
M̃β : F((Cn)M )M → F((Cn)M )M for the matrix subshift Potts spin model are

(M̃β(f1, . . . , fM )(z1, . . . , zM ))l =

M∑

k=1

Ak,l νk exp
(
βqk + β (zk|w)

)
fk

(
(δk,mv + Λzm)m=1,...,M

)
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for l = 1, . . . ,M . By formula (98) we get the corresponding Kac-Gutzwiller transfer operator
G̃β = (id⊗BnM )−1 ◦M̃β ◦ (id⊗BnM ) : L2((Rn)M )M → L2((Rn)M )M , in components written as

prl ◦ G̃β =
2nM/2

det(1 − ΛΛ>)M/2
exp
(
− πi

2

((
β
πw
v

)
ΨΛ

(
β
πw
v

)))
×

M∑

k=1

Ak,l νk e
βqk

( k−1⊗
T
c
−1
2n (XΛ) ⊗ T

ΨΛ( β
πw,v)

c
−1
2n (XΛ)

⊗
M−k⊗

T
c
−1
2n (XΛ)

)
◦ prk.

(iii) Now we specialise (i) to Potts interactions with distance function d(k) = Jλk where 0 < |λ| < 1.
In order to reduce the notational effort we restrict to the one-sided one-dimensional full shift.
As in Example 5.4.4 we consider the scaled Kac-Gutwiller operator Rc ◦Gβ;s ◦R−1

c = Rc ◦B−1 ◦
Mβ;s ◦B ◦R−1

c where Mβ;s : F(CM ) → F(CM ) is the Ruelle-Mayer transfer operator

(Mβ;sf)(z) =

M∑

k=1

νk exp(βqk + βJs〈z|ek〉) f
(λ
s
ek + λz

)
.

Let γ be a complex number with λ = e−γ and c := (4π)−1/2.

(a) Let s1 =
√

π
βJ , then Rc ◦ Gβ;s1 ◦R−1

c has the integral kernel

eMγ/2

(4π sinhγ)M/2
exp
(
− 1

4

M∑

k=1

(tanh
γ

2
(x2
k + y2

k) +
(xk − yk)

2

sinh γ
)
) M∑

j=1

νj e
βqj exp(

√
βJ xj).

(b) Let s2 =
√

πλ2

βJ , then Rc ◦ Gβ;s2 ◦R−1
c has the integral kernel

eMγ/2

(4π sinhγ)M/2
exp
(
− 1

4

M∑

k=1

(tanh
γ

2
(x2
k + y2

k) +
(xk − yk)

2

sinh γ
)
) M∑

j=1

νi e
βqj exp(

√
βJ yj).

(c) Let s0 =
√

πλ
βJ , then Rc ◦ Gβ;s0 ◦R−1

c has the integral kernel

eMγ/2

(4π sinhγ)M/2
exp
(
− 1

4

M∑

k=1

(tanh
γ

2
(x2
k+y

2
k)+

(xk − yk)
2

sinh γ
)
) M∑

j=1

νi e
βqj exp

(√βJλ
1 + λ

(xj+yj)
)
.
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A Miscellaneous topics from functional analysis

In this chapter we collect several ingredients from functional analysis we used in this dissertation.
The first three sections deal with classes of operators which admit a spectral trace and a determinant.
First we recall the axiomatic approach of embedded subalgebras with the approximation property. In
Section A.2 we recall the normal form of a compact operator on a Hilbert space and define in this way
the singular numbers and the Schatten classes, in particular the trace class and the Hilbert-Schmidt
class. We state the Lidskii trace theorem as an example of a spectral trace, i. e., the trace is given
as the (absolutely convergent) sum over all eigenvalues. In Section A.3 we comment on the situation
in Banach spaces and briefly recall the concept of nuclear operators and Grothendieck’s 2/3-trace
theorem.
In Section A.4 we introduce reproducing kernel Hilbert spaces and discuss some important properties.
We give a couple of examples and then focus on the classification of Fock spaces. The use of the Fock
space the context of Ruelle-Mayer transfer operators has been proposed in [HiMay02] and [HiMay04].
In section B.3 we will essentially emploit the properties of a reproducing kernel Hilbert space for the
determination of the trace norm of certain composition operators acting on the Fock space.
The short fifth section provides some identities on Gaussian integrals which we need at several points
in this dissertation.
Section A.6 collects some tools dealing with integral operators. Integral operators arise in this dis-
sertation, since every bounded linear operator on a reproducing kernel Hilbert space can be written
as an integral operator and, secondly, by the study of the Kac-Gutzwiller transfer operator and the
extended oscillator semigroup.
In the last section we give a proof for a folklore theorem which states that an operator defined as an
integral over an integrable family of trace class operators is trace class and its trace can be computed
by integrating the family of traces, i. e.,

trace

∫

Y

Ly dy =

∫

Y

trace Ly dy.

A.1 (Regularised) determinants

We briefly recall the definition and properties of regularised determinants of higher order. Our repre-
sentation is based on [GoGoKr00, Ch. XI]. We will use the theory of regularised determinants in cases
where the dynamical trace formula (only) holds for sufficiently large powers of the transfer operator,
a phenomenon which appears for instance for all transfer operators for matrix subshifts.
Let B be a Banach space and B′ its dual. An operator F : B → B of the form F =

∑n
i=1 φ

′
k ⊗ fk

with fk ∈ B, φ′k ∈ B′ is called a finite rank operator. Denote by λj(F ) its eigenvalues (counted with
multiplicity). Let trace F =

∑n
i=1〈φk, fk〉B′,B =

∑
j λj be its trace38.

For any finite rank operator F acting on a Banach space B and any u ∈ N one defines the u-regularised
determinant

(99) detu(1 − F ) := det(1 − F ) exp
(
−
u−1∑

k=1

1

k
trace F k

)
.

A natural question concerns the (continuous) extension of the trace and the u-regularised determinant
to wider algebras of linear operators. For this continuity we need other norms than the operator norm
for which neither trace nor determinant are continuous on the finite rank operators acting in infinite
dimensional spaces. The right setting is the following:

Definition A.1.1. Let B be a Banach space. We denote by End(B) the algebra of bounded linear
operators on B and by Endf (B) the subalgebra of finite rank operators. We say that a subalgebra
E ⊂ End(B) is an embedded subalgebra, if E carries a norm ‖ · ‖E such that

‖A‖End(B) ≤ cE ‖A‖E , ‖AB‖E ≤ ‖A‖E ‖B‖E

for all A, B ∈ E . If, in addition, the set E ∩ Endf (B) is dense in E with respect to the norm ‖ · ‖E ,
we say that E has the approximation property.

38The second equality is [GoGoKr00, Thm. I.3.1].
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[GoGoKr00, Thm. 1.1, Ch. XI] gives a characterisation when the u-regularised determinant detu(1+·)
from (99) admits a continuous extension to an embedded subalgebra E ⊂ End(B). In this case also
the functions E ∩ Endf (B) → C, F 7→ trace F k admit continuous extensions to E for all k ≥ u.

Lemma A.1.2. Let E ⊂ End(B) be an embedded subalgebra with the approximation property. Suppose
the function detu(1 + ·) from (99) admits a continuous extension to E. Then the function z 7→
detu(1 + zA) is entire for every fixed A ∈ E and has the following representations:

detu(1 + zA) = 1 +

∞∑

k=u

ck(A)

k!
zk,

where the coefficients ck(A) are defined by

cn(A) := det




b1 n−1 0 ... 0 0
b2 b1 n−2 ... 0 0

b3
...

...
...

...
...

...
...

...
...

...
...

bn−1 bn−2 bn−3 ... b1 1
bn bn−1 bn−2 ... b2 b1




and

bk :=

{
trace Ak, if k ≥ u,
0, otherwise.

For |z| sufficiently small one has

(100) detu(1 − zA) = exp
(
−

∞∑

k=u

zk

k
trace Ak

)
.

Proof. [GoGoKr00, Theorem XI.2.1].

The proof of Lemma A.1.2 uses the following analytic lemma.

Lemma A.1.3. Let g(z) =
∞∑

n=0

an
n!
zn, f(z) =

∞∑

n=1

(−1)n+1bn
n

zn be analytic functions in a neigh-

bourhood of zero with g(z) = exp f(z). Then a0 = 1 and for n ≥ 1

an =

n∑

k=1

(−1)k+1 bk an−k
(n− 1)!

(n− k)!
= det




b1 n−1 0 ... 0 0
b2 b1 n−2 ... 0 0

b3
...

...
.. .

...
...

...
...

...
.. .

...
...

bn−1 bn−2 bn−3 ... b1 1
bn bn−1 bn−2 ... b2 b1



.

Proof. [GoGoKr00, Lemma I.7.1 and its proof].

One has the following generalisation of the theorem of Lidskii (Prop. A.2.4), which is contained as the
special case u = 1. In particular the zeros of z 7→ detu(1 + zA) are in one-to-one correspondence with
the eigenvalues of A.

Lemma A.1.4. Let E ⊂ End(B) be an embedded subalgebra with the approximation property. Suppose
the function detu(1 + ·) admits a continuous extension to E. Then detu(1 + ·) has the Euler product

detu(1 +A) =
∏

j

(
(1 + λj) exp

( u−1∑

k=1

(−1)k

k
λkj
))
,

where λj are the eigenvalues of A ∈ E.

This representation of the regularised determinant is true on the level of finite rank operators and
hence by continuation on an embedded subalgebra with the approximation property.
In the following two sections we will introduce two families of examples of embedded subalgebra with
the approximation property and their (regularised) determinants. We consider the Schatten classes
Sp(H) ⊂ End(H), which we use for throughout this dissertation. We also comment on the space of
nuclear operators, which has been used by D. Mayer in his basal work on this subject.
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A.2 Schatten classes

As we pointed out in the introduction chapter we prefer to use Hilbert space techniques in this
dissertation. Of particular interest are the Schatten classes Sp(H) ⊂ End(H) which are embedded
subalgebras with the approximation property. For the definition of the Schatten classes we recall (see
for instance [We00, p. 245]) the normal form of a compact operator on a Hilbert space.

Proposition A.2.1. (Schmidt expansion) Let K : H → H be a compact operator on a Hilbert space
H. Let (sn(K))n∈N be the sequence of singular numbers of K, i. e., the eigenvalues of |K| =

√
K?K,

(en)n∈N the orthonormal system consisting of eigenvectors of K?K, and (fn)n∈N the orthonormal
system consisting of eigenvectors of KK?. Then the expansion

(101) K =
∑

n

sn(K)
〈
· en

〉
fn

converges to K in operator norm.

The singular numbers can be characterised by an approximation problem, too, cf. Lemma A.7.4
and [GoGoKr00, IV.2, IV.3]. If K happens to be an integral operator, the Schmidt expansion leads
to an expansion of the integral kernel which is often called Mercer expansion.
The sequence of singular numbers of a compact operator tends to zero. If one moreover requires a
certain summability, this leads to definition of the so called Schatten classes, named after R. Schatten.

Definition A.2.2. For 1 ≤ p < ∞ the Schatten ideal Sp(H) is defined as the space of all operators
K such that

‖K‖Sp(H) := ‖(sn(K))n∈N‖`p(N) <∞.

The elements of S1(H) are called trace class operators, the elements of S2(H) are called Hilbert-Schmidt
operators. For K ∈ Si(H) (i = 1, 2) the Schmidt expansion converges in Si(H) to K. Given a trace
class operator in Schmidt expansion, K =

∑
n sn(K)

〈
· en

〉
fn, one defines its trace via

trace K =
∑

n

sn(K)
〈
fn en

〉
.

Remark A.2.3. Let K be a compact operator on a Hilbert space H. Computing the adjoint of
K via (101) gives K? =

∑
n sn(K)

〈
· fn

〉
en, hence the operators K?K and KK? have the same

non-zero spectrum (counted with multiplicities).

Let H be a Hilbert space. As shown in a side remark following [GoGoKr00, Theorem XI.2.1] the
Schatten classes Sp(H) ⊂ End(H) for 1 ≤ p < ∞ are embedded subalgebras and have the approxi-
mation property. Hence we can apply Lemma A.1.2 to the operator algebra Sp(H). In particular for
p = 1 one obtains

Proposition A.2.4. (Lidskii trace theorem) Let T ∈ S1(H) be a trace class operator and (λk(T ))k∈N

the sequence of eigenvalues of T counted with multiplicities, then

trace T =
∑

k

λk(T ) =
∑

k

〈
Tek ek

〉

for any orthonormal basis (ek) ⊂ H.

Lidskii’s trace theorem roughly states that the trace of a trace class operator behaves like the trace
of a square-matrix. In particular the trace is independent of the choice of the representation or of the
chosen orthonormal basis. A direct proof is given for instance in [GoGoKr00, IV.6]. We say that a
trace class operator admits a spectral trace, i. e., the trace is given as the sum over the eigenvalues.
One has the following estimates for the trace and the determinant function.
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Remark A.2.5. Recall (see for instance [GoGoKr00]) that for matrices and hence for trace class
operators A, B ∈ S1(H) the following relations hold:

exp trace A = det expA(102)

trace log(1 +A) = log det(1 +A)(103)

| det(1 + A) − det(1 +B)| ≤ ‖A−B‖S1(H) exp
(
1 + ‖A‖S1(H) + ‖B‖S1(H)

)
,(104)

| det(1 +A)| ≤ exp(‖A‖S1(H)),(105)

| det(1 +A) − 1| ≤ exp(‖A‖S1(H)) − 1 ≤ ‖A‖S1(H) exp(‖A‖S1(H)).(106)

Let (λj)j∈N be the sequence of eigenvalues of A and (sj)j∈N be the sequence of singular numbers of
A. Observe that ex − 1 ≤ xex for x ≥ 0, then the last estimate (106) comes from

| det(1 +A) − 1| = |
∏

j

(1 + λj) − 1| ≤ exp(
∑

j

|λj |) − 1 ≤ exp(
∑

j

|sj |) − 1 = exp(‖A‖S1(H)) − 1.

We end this section with the regularised determinant of order 1 ≤ p <∞. Notice that the case bpc = 1
is the theory of trace class operators and their Fredholm determinants.

Remark A.2.6. Let H be a Hilbert space and 1 ≤ p < 1. Let dpe := min{n ∈ N |n ≥ p} denote the
minimal integer greater or equal to p, then the regularised determinant detdpe(1+·) admits a continuous

extension to Sp(H). For all A ∈ Sp(H) the operator Rdpe(A) := (1 +A) exp
(∑dpe−1

j=1
(−1)j

j Aj
)
− 1 is

trace class and
detdpe(1 +A) = det(1 +Rdpe(A)).

The following estimates ([GoGoKr00]) hold for all A, A1, . . . , Adpe, B ∈ Sp(H)

|trace (A1 . . . Adpe)| ≤
dpe∏

j=1

‖Aj‖Sdpe(H),(107)

| detdpe(1 +A)| ≤ exp
(
cdpe‖A‖dpeSdpe(H)

)
,(108)

| detdpe(1 +A) − detdpe(1 +B)| ≤ ‖A−B‖Sdpe(H) exp
(
cdpe(1 + ‖A‖Sdpe(H) + ‖B‖Sdpe(H))

dpe
)
.(109)

A more refined analysis yields

| detu(1 +A)| ≤ exp
(
cu‖Au‖S1(H)

)
≤ exp

(
cu‖A‖uSu(H)

)
,(110)

A.3 Nuclear operators

In Banach spaces it is a more difficult task to find the appropriate spaces of operators for which one
can find a meaningfull determinant or trace. We briefly recall some aspects of nuclear operators. An
excellent reference on this topic is the book [GoGoKr00] or [May80a, Appendix A].

Definition A.3.1. Let B be a Banach space. Suppose that the bounded linear operator T ∈ End(B)
admits a representation T =

∑∞
k=1 φ

′
k ⊗ fk, where fk ∈ B, φ′k ∈ B′ and

(111)

∞∑

k=1

‖fk‖r‖φk‖r <∞

for some 0 < r ≤ 1. Then T is called a (r-summable) nuclear operator. We define

‖T ‖L(r)(B) := inf

∞∑

k=1

‖fk‖r‖φk‖r,

where the infimum is taken over all representations T =
∑∞

k=1 fk ⊗ φk. The infimum over the r
satisfying (111) is called the order of T .
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The algebra of 1-summable nuclear operators endowed with the norm ‖ · ‖L(1)(B) is an embedded
subalgebra of End(B) with the approximation property, see [GoGoKr00, Thm.V.1.1]. The setting

trace T :=

∞∑

k=1

〈φ′k, fk〉B′,B

defines a continuous extension of the trace functional and the value trace T does not depend on the
chosen representation.
Whereas in a Hilbert space the `1N-convergence of the sequence of singular numbers guarantees
a spectral trace, we need in the Banach space setting a stronger decay. The result is known as
Grothendieck’s 2/3-trace theorem which we state next.

Theorem A.3.2. (Grothendieck’s 2/3-trace theorem) Let B be a Banach space and T ∈ End(B)
be a 2/3-summable nuclear operator (A.3.1). Then

∑∞
k=1 |λk(T )| < ∞ and for all 2/3-summable

representations T =
∑∞

k=1 fk ⊗ φk one has

trace T =

∞∑

k=1

〈φ′k, fk〉B′,B =

∞∑

k=1

λk(T ),

where (λk(T ))k∈N is the sequence of eigenvalues of T counted with multiplicities.

Proof. Firstly appeared in [Gro55, II.1. No. 4, Cor. 4]. A nicely written proof is given in [GoGoKr00,
V.Thm.3.1].

[GoGoKr00, Thm. V 4.2] states the following generalisation of Grothendieck’s 2/3-trace theorem to
the analogue of Schatten class Sp-operators.

Theorem A.3.3. Let T ∈ End(B) be a r-summable nuclear operator for some 0 < r ≤ 1 (A.3.1).
Then the sequence (λk(T ))k∈N of eigenvalues of T counted with multiplicities belongs to `pN for 1

p =
1
r − 1

2 .

In Appendix B we will encounter composition operators which are nuclear of order zero. Their
eigenvalues have a rapide decay, as the following corollary states.

Corollary A.3.4. Let B be a Banach space and T ∈ End(B) a nuclear operator of order zero. Then
the sequence (λk(T ))k∈N of eigenvalues of T satisfies

∑∞
k=1 |λk(T )|p <∞ for all p > 0.

A.4 Reproducing kernel Hilbert spaces

We change the topic and give a short introduction to reproducing kernel Hilbert spaces, which are
Hilbert spaces of functions such that the point evaluation is given by an inner product. The subject was
originally and simultaneously developed by N. Aronszajn and S. Bergman in 1950. We discuss some
elementary properties and give some examples in A.4.5 and A.4.6, which are for instance the Hardy
space, the (weighted) Bergman spaces, and Fock spaces. We will mainly focus on the family of Fock
spaces, which turn out to be useful in connection with Ruelle-Mayer transfer operators. Combining
results known in the literature we obtain the classification A.4.8 of all Fock spaces over separable
Hilbert spaces. We start with the basic definitions and discuss in the following Remark A.4.2 their
relations.

Definition A.4.1. Let H ⊂ CE be a Hilbert space consisting of complex valued functions on a set
E.

(i) The space H is called a functional Hilbert space, if for each x ∈ E the evaluation functional

evx : H → C, f 7→ f(x)

is continuous.

(ii) A function k : E × E → C is called a reproducing kernel of H, if for all y ∈ E the function
ky := k( · , y) : E → C belongs to H and if for all f ∈ H, y ∈ E:

〈
f ky

〉
H = f(y).
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(iii) A function p : E×E → C is of positive type on E, if for all n ∈ N, aj ∈ C, xj ∈ E (j = 1, . . . , n)

n∑

k,l=1

ak al p(xk, xl) ≥ 0.

We will use the standard abbreviation rkhs for reproducing kernel Hilbert space occasionally.

Remark A.4.2. By the Riesz representation theorem the evaluation functional evx ∈ H′ (A.4.1)
is given via evx =

〈
· kx

〉
H for some kx ∈ H, hence H is a functional Hilbert space iff it has a

reproducing kernel. A reproducing kernel Hilbert space is uniquely determined by its kernel.
A reproducing kernel is a function of positive type on E and each function of positive type induces
uniquely a functional Hilbert space [Ar50, I.2.4].

The kernel of a reproducing kernel Hilbert space has the following important properties.

Proposition A.4.3. Let k : E × E → C be a reproducing kernel. Then for all x, y ∈ E

(i) k(x, y) = k(y, x),

(ii) ‖ky‖2 = k(y, y) ≥ 0,

(iii) |k(x, y)|2 ≤ k(x, x) k(y, y).

Proof. Note that k(x, y) = ky(x) =
〈
ky kx

〉
. Hence the properties of the inner product

〈
· ·
〉
H yield

(i) k(x, y) =
〈
ky kx

〉
=
〈
kx ky

〉
= k(y, x),

(ii) k(y, y) =
〈
ky ky

〉
= ‖ky‖2 ≥ 0, and

(iii) |k(x, y)|2 = |
〈
ky ky

〉
|2 ≤ ‖kx‖2 ‖ky‖2.

On a reproducing kernel Hilbert space one has the following standard estimate:

Corollary A.4.4. Let H ⊂ C(E) be an rkhs with reproducing kernel k : E × E → C. Then for all
f ∈ H, x ∈ E one has

|f(x)| ≤ ‖f‖
√
k(x, x).

Proof. By the reproducing kernel property (A.4.1), Cauchy-Schwarz inequality, and the previous
Proposition A.4.3 we get

|f(x)| =
〈
f kx

〉
| ≤ ‖f‖ ‖kx‖ = ‖f‖

√
k(x, x).

Many of the examples of reproducing kernel Hilbert spaces are spaces of analytic functions. We
introduce two types, the Fock space, and the Bergmann space. Another example is the Hardy space
H2(D) on the disk, other examples of rkhs are given in [Ma88].

Example A.4.5. (i) The Bargmann-Fock space F(Cm) is defined as the space of entire functions
F : Cm → C with

‖F‖2
F(Cm) :=

∫

Cm

|F (z)|2 exp(−π‖z‖2) dz <∞.

The Fock space is a Hilbert space with respect to the (weighted) L2 inner product

〈F |G〉F(Cm) :=

∫

Cm

F (z)G(z) exp(−π‖z‖2) dz,

where dz denotes Lebesgue measure on Cm. The Fock space is an rkhs with reproducing kernel
k(z, w) = exp

(
π(z|w)

)
= exp

(
π〈z|w〉

)
. The Fock space F(Cm) has the standard orthonormal

basis (ONB) consisting of the monomials ζα(z) =
√

πα

α! z
α, where we use the standard multiindex

notations: For z ∈ Cm, α ∈ Nm0 we define the factorial α! :=
∏m
i=1 αi!, the length |α| :=

∑m
i=1 αi,

and the power zα :=
∏m
i=1 z

αi

i .
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(ii) Let D be the open unit disk in C and A2(D) = O(D) ∩ L2(D) be the Bergman space consisting
of holomorphic functions on D with are square-integrable with respect to Lebesgue measure on

D. The function k(z, w) =
1

π

1

(1 − zw)2
is the reproducing kernel of A2(D).

The examples from the previous Example A.4.5 are prototypes of certain types of rkhs and chave the
following generalisations:

Remark A.4.6. (i) Fock space: For each base Hilbert space H0 the function k : H0 × H0 →
C, (z, w) 7→ exp(π〈z|w〉H0 ) is a function of positive type, hence is a reproducing kernel of
some rkhs. One defines the Fock space to be the unique reproducing kernel Hilbert space
F(H0) := Hk ⊂ CH0 with reproducing kernel k(z, w) = exp(π〈z|w〉H0 ). A priori it is not clear
that Hk has a realisation as a space of holomorphic functions as we have for the special choice
H0 = Cm (A.4.5). This we will show in Theorem A.4.8. In [Fo89, p. 48] the connection between
our Fock space and the physicists’ (bosonic) Fock space is explained.

(ii) Bergman space: Let U ⊂ Cm be a (finite-dimensional) domain and w : U → [0,∞[ be a regular
weight, by which we mean a measurable function which is locally bounded from below by some
positive constant w ≥ c > 0. Let du denote the Lebesgue measure on U . Then the weighted
Bergman space A2

w(U) := O(U)∩L2(U,w du) is an rkhs, see [Ne00, Appendix.III.12]. Note that
depending on the weight and on the domain A2

w(U) might be the zero space. We give some
examples of Bergman spaces:

(a) If U is bounded and the weight is constant, one obtains the unweighted Bergman space
A2(U) := O(U) ∩ L2(U, du).

(b) If U has infinite volume, then A2(U) = {0}.
(c) Another example is the Bargman-Fock space from Example A.4.5 (i).

Since the point evaluations are continuous, we know that a (non-trivial) Bergman space possesses a re-
producing kernel, but in general it is not known explicitly. The following lemma(see for instance [He78,
Ch. VIII. 3.3.]) gives an abstract way how to find the reproducing kernel for a class of reproducing
kernel Hilbert spaces.

Lemma A.4.7. Let D ⊂ Cm be a domain, H ⊂ O(D) be an rkhs with reproducing kernel k : D×D →
C. Let (hk)k be an orthonormal basis in H. Then

k(z, w) =
∑

k

hk(z)hk(w),

where the convergence is absolute and uniform on compact subsets.

In example A.4.5 (i) we have seen the analytic realisation of the Fock space for all finite-dimensional
Hilbert spaces: Choose a unitary isomorphism from a given m-dimensional Hilbert space to Cm

and apply the Bargmann-Fock realisation A.4.5 (i). We will now give the analogue for all infinite-
dimensional ones. Since we always assume that a Hilbert space is separable, the reference Hilbert
space is in this case `2N.

Theorem A.4.8. (Ri)39 Let ιm : Cm → `2N, (z1, . . . , zm) 7→ (z1, . . . , zm, 0, . . .). A function f belongs
to the Fock space F(`2N), defined as the rkhs with reproducing kernel k(z, w) = exp(π〈z|w〉), if and
only if the following three conditions hold:

(i) f : `2N → C is continuous,

(ii) For all m ∈ N f ◦ ιm : Cm → C, (z1, . . . , zm) 7→ f(z1, . . . , zm, 0, . . .) is analytic, and

(iii) sup
m∈N

∫

Cm

|f ◦ ιm(z1, . . . , zm)|2 exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm <∞.

In this case, ‖f‖2
F(`2N) = lim

m∈N

∫

Cm

|f ◦ ιm(z1, . . . , zm)|2 exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm.

39The equivalence seems to be not have been noticed before.
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Proof. Since the reproducing kernel k : `2N × `2N → C, (z, w) 7→ exp(π〈z|w〉`2N) is continuous,
holomorphic in the first, anti-holomorphic in the second variable, we have by [Ne00, Proposition
A.3.10] that F(`2N) ⊂ O(`2N), hence (i) and (ii). By [Ma88, Corollary II,3.10] one gets

‖f‖2
F(`2N) = lim

m∈N

∫

Cm

|f ◦ ιm(z1, . . . , zm)|2 exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm.

Concerning the converse: By [Ma88, Corollary II,3.11] we get f ∈ F(`2N) and

‖f‖2
F(`2N) = sup

m∈N

∫

Cm

|f ◦ ιm(z1, . . . , zm)|2 exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm.

It remains to show that the sequence

cm(f) :=

∫

Cm

|f ◦ ιm(z1, . . . , zm)|2 exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm

indexed by m ∈ N is monotonically increasing: For all f ∈ F(`2N), m ∈ N, and zm ∈ Cm let f (zm) be

the function f (zm) : C → C, z 7→ f(zm, z, 0, . . .). Obviously, f (zm) ∈ O(C).

cm+1(f) =

∫

Cm+1

|f(zm+1)|2 e−π‖zm+1‖2

dzm+1 =

∫

Cm

∫

C

|f(zm, u)|2 e−π‖u‖
2

du e−π‖zm‖2

dzm <∞,

hence by Fubini’s theorem ∫

C

|f(zm, z, 0, . . .)|2 e−π‖z‖
2

dz <∞

for almost every zm. In other words: For almost all zm ∈ Cm the function f (zm) belongs to F(C).
Hence for such zm we use the standard rkhs estimate A.4.4 to obtain

|f(zm, 0)|2 = |f (zm)(0)|2 ≤ ‖f (zm)‖2
F(C) e

0 =

∫

C

|f(zm, u)|2 e−π‖u‖
2

du.

Integrating this estimate concludes the proof

cm(f) =

∫

Cm

|f(zm, 0)|2 e−π‖zm‖2

dzm ≤
∫

Cm

∫

C

|f(zm, u)|2 e−π‖u‖
2

du e−π‖zm‖2

dzm = cm+1(f).

The Fock space F(`2N) is a Hilbert space with inner product explicitly given by

〈
f g

〉
F(`2N)

= lim
m→∞

〈
Cιmf Cιmg

〉
F(Cm)

= lim
m→∞

∫

Cm

f(zm, 0) g(zm, 0) exp(−π‖zm‖2) dzm,

where Cιm : F(`2N) → F(Cm), f 7→ f ◦ ιm and ιm : Cm → `2N, (z1, . . . , zm) 7→ (z1, . . . , zm, 0, . . .).
The characterisation of the Fock space F(`2N) by the previous Theorem A.4.8 will now be applied to
prove an auxiliary result which is invoked by the integral representation of the leading eigenfunction
of the Ruelle transfer operator in Corollary 2.6.11. Another main application of Theorem A.4.8 is the
trace and trace norm formula B.4.3 for a certain class of composition operators acting on F(`2N).

Proposition A.4.9. Let Y be a topological space with a finite measure µ, c ∈ Cb(Y ) and z : Y → `2N

a bounded function. Then

Θz : Cb(Y ) → F(`2N), (Tzc)(w) :=

∫

Y

c(y) e2π〈w,z(y)〉 dµ(y)

is a bounded operator.

Proof. We have to check that f : `2N → C, f(w) :=

∫

Y

c(y) e2π〈w|z(y)〉 dµ(y) belongs to F(`2N), then

the linearity of Θz is obvious. Using Theorem A.4.8 we investigate whether

(i) f : `2N → C is continuous,
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(ii) For all m ∈ N f ◦ ιm : Cm → C, (z1, . . . , zm) 7→ f(z1, . . . , zm, 0, . . .) is analytic, and

(iii) sup
m∈N

∫

Cm

∣∣∣f ◦ ιm(z1, . . . , zm)
∣∣∣
2

exp(−π‖(z1, . . . , zm)‖2) dz1 . . . dzm <∞.

Since the integral converges locally uniformly in w ∈ Y and the estimate

|f(w)| ≤ µ(Y ) ‖c‖Cb(Y ) exp(2π‖w‖ sup
y∈Y

‖z(y)‖),

the first two conditions are satisfied. Let fm := f ◦ ιm for all m and ym := ρ{1,...,m}(z(y)) :
{1, . . . ,m} → C be the ρ-restriction of z(y) to the index set {1, . . . ,m} as defined in Remark 1.1.3,
then by Hölder’s inequality (for 1

p + 1
q = 1)

∫

Cm

|fm(w)|p e−π‖w‖2

dw =

∫

Cm

∣∣∣
∫

Y

c(y) exp(2π〈w|ym〉) dµ(y)
∣∣∣
p

e−π‖w‖2

dw

≤ ‖c‖pCb(Y )

∫

Cm

µ(Y )p/q
∫

Y

| exp(2π〈w|ym〉)|p dµ(y) e−π‖w‖2

dw

= ‖c‖pCb(Y ) µ(K)p/q
∫

Y

∫

Cm

| exp(2π〈w|ym〉)|p e−π‖w‖2

dw dµ(y)

A.5.1
= ‖c‖pCb(Y ) µ(Y )p/q

∫

Y

ep
2π‖ym‖2

dµ(y)

≤ ‖c‖pCb(Y ) µ(Y )p sup
y∈Y

ep
2π‖ym‖2

≤ ‖c‖pCb(Y ) µ(Y )p exp(p2π sup
y∈Y

‖z(y)‖2).

In particular, for p = 2 one has ‖Θzc‖F(`2N) ≤ ‖c‖Cb(Y ) µ(Y ) exp(2π supy∈Y ‖z(y)‖2).

A.5 Gaussians

In this section we collect some elementary properties of Gaussian integrals. For instance we give a
proof of an identity used in the previous proposition. Let ( · | · ) be the usual scalar product on Rn,
respectively its C-bilinear extension to Cn. We denote by dw both Lebesgue measure on Cn and on
Rn.

Proposition A.5.1. Let α ∈ −iSn (5.2.1), i. e., α ∈ Sym(n; C) with positive definite real part,
B ∈ Mat(n, n; C) with ‖B‖ < 1, 0 ≤ p <∞, and z0, w0 ∈ Cn. Then

(i)

∫

Rn

e−π(x|αx)−2πi(z0|x) dx = (detα)−
1
2 e−π(z0|α−1z0).

(ii)

∫

Cn

∣∣e2π〈w|z0〉∣∣p e−π‖w‖2

dw =

∫

Cn

∣∣e2π(w|z0)∣∣p e−π‖w‖2

dw = eπp
2‖z0‖2

.

(iii)

∫

Cn

∣∣eπ〈w|z0〉∣∣p eπ‖w0+Bw‖2−π‖w‖2

dw =
exp
(
π‖w0‖2 + π‖(1 − B?B)−1/2(p2z0 + B?w0)‖2

)

det(1 − B?B)
.

Proof. The first assertion is proved for instance in [Fo89, Appendix A]. - Note that k(z, w) = eπ〈z|w〉

is the reproducing kernel of the Fock space F(Cn), hence by Proposition A.4.3

∫

Cn

∣∣eπ 2
p 〈w|z0〉∣∣p e−π‖w‖2

dw =

∫

Cn

eπ〈w|z0〉eπ〈z0|w〉 e−π‖w‖2

dw = eπ〈z0|z0〉.
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We transform the third assertion in such a way that we can apply the second one:

∫

Cn

∣∣eπ〈w|z0〉∣∣p eπ‖w0+Bw‖2−π‖w‖2

dw = eπ‖w0‖2

∫

Cn

exp
(
πRe(〈w|pz0 + 2B?w0〉) + π‖Bw‖2 − π‖w‖2

)
dw

= eπ‖w0‖2

∫

Cn

∣∣ exp
(
π〈w|p

2
z0 + B?w0〉

)∣∣2 exp(−π〈w|(1 − B?B)w〉)dw

u=
√

1−B?Bw
= eπ‖w0‖2

∫

Cn

∣∣ exp
(
π〈(1 − B?B)−1/2u|p

2
z0 + B?w0〉

)∣∣2 exp(−π‖u‖2) det(1 − B?B)−1du

= det(1 − B?B)−1eπ‖w0‖2

∫

Cn

| exp
(
π〈u|(1 − B?B)−1/2(

p

2
z0 + B?w0)〉

)
|2 exp(−π‖u‖2)du

A.5.1(ii)
= det(1 − B?B)−1eπ‖w0‖2

exp
(
π‖(1 − B?B)−1/2(

p

2
z0 + B?w0)‖2

)

A.6 Integral Operators

In Section A.4 we have introduced reproducing kernel Hilbert spaces. We will now use the additional
structure provided by the reproducing kernel to investigate operators acting on an rkhs. The main
idea is that every bounded linear operator on an rkhs can be written as an integral operator which can
be nicely analysed via the properties of its kernel. Then we study scaling, ie. the unitary isomorphism
induced by change of coordinates. - The following remark is based on [Fo89, p. 42 f.] where only the
Fock space is concerned. The arguments of the proof do not rely on the specific rkhs.

Remark A.6.1. Let T be a bounded linear operator on a reproducing kernel Hilbert space of holo-
morphic functions. Let k(x, y) = ky(x) be its reproducing kernel. Then T acts via

(Tf)(x) = 〈Tf |kx〉 = 〈f |T ∗kx〉.

If H ⊂ L2(M,dm) is a Hilbert space with reproducing kernel, then T is an integral operator with
kernel

kT (x, y) = (T ∗kx)(y) = 〈T ∗kx|ky〉 = 〈ky|T ∗kx〉 = (Tky)(x).

If H ⊂ L2(M,dm) ∩ O(M) is an rkhs consisting of holomorphic functions, then T is uniquely deter-
mined by the values kT (x, x) of its integral kernel along the diagonal. Since

kT?(x, y) = (T ?ky)(x) = 〈T ?ky|kx〉 = 〈ky|Tkx〉 = kT (y, x),

the operator T is selfadjoint if and only if the kernel kT (x, x) is real-valued on the diagonal.

Given a composition operator T (B.1.1), then it is in general quite difficult to determine TT ∗, T ∗T ,
and its positive part |T | :=

√
T ∗T . In particular the trace of |T | is of interest, since it coincides with

the trace norm (A.2.2) of T . In a reproducing kernel Hilbert space (A.4.1), however, the computations
can be carried out quite easily just by using the reproducing kernel property. The following formulas
will be used in Proposition B.3.10 and finally in Theorem B.4.3 for a special class of composition
operators acting on the Fock space.

Proposition A.6.2. Let H ⊂ L2(M,dm) be an rkhs with reproducing kernel k : M×M → C (A.4.1).
Let ψ : M → M and φ : M → C be fixed functions such that the composition operator T ∈ End(H)
defined via (Tf)(z) := φ(z) f(ψ(z)) is bounded. Let T ? ∈ End(H) be the Hilbert space adjoint of T .
Then the integral kernels of T, T ∗, TT ?, and T ?T are

(i) kT (v, w) = φ(v) k(ψ(v), w),

(ii) kT?(v, w) = φ(w) k(v, ψ(w)),

(iii) kTT?(v, w) = φ(v)φ(w) k(ψ(v), ψ(w)), and

(iv) kT?T (v, w) =

∫

M

|φ(u)|2 k(v, ψ(u)) k(ψ(u), w) dm(u).
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Proof. By Remark A.6.1 the operator T has the integral kernel kT (v, w) = (Tkw)(v) = φ(v) k(ψ(v), w).
Hence the adjoint T ? : H → H of T has the integral kernel

kT?(v, w) = kT (w, v) = φ(w) k(v, ψ(w)) = φ(w) kψ(w)(v).

Using the properties of a reproducing kernel, see Proposition A.4.3, we compute the integral kernel of
TT ? : H → H as

kTT?(v, w) =

∫

M

kT (v, u) kT?(u,w) dm(u)

=

∫

M

φ(v) k(ψ(v), u)φ(w) k(u, ψ(w)) dm(u)

= φ(v)φ(w)

∫

M

kψ(v)(u) kψ(w)(u) dm(u)

= φ(v)φ(w) 〈kψ(w)|kψ(v)〉H
= φ(v)φ(w) k(ψ(v), ψ(w)).

The operator T ?T : H → H has the integral kernel

kT?T (v, w) =

∫

M

kT?(v, u) kT (u,w) dm(u)

=

∫

M

φ(u) k(v, ψ(u))φ(u) k(ψ(u), w) dm(u)

=

∫

M

|φ(u)|2 k(v, ψ(u)) k(ψ(u), w) dm(u),

which in general cannot be simplified further.

In Chapter 5 we use the notion of scaling. By this we mean the unitary transform which is induced
by a linear change of coordinates.

Lemma A.6.3. Let c ∈ Gl(n; R). Then

(i) Rc : L
2(Rn) → L2(Rn), (Rcf)(x) :=

√
| det c| f(cx) defines a unitary isomorphism.

(ii) Let K : L2(Rn) → L2(Rn), (Kf)(ξ) =
∫

Rn K(ξ, η) f(η) dη be an integral operator, then the
induced operator Kc := Rc ◦K ◦R−1

c on L2(Rn, dx) is given by the kernel

Kc(x, y) = | det(c)|K(cx, cy).

Proof. The first part is a reformulation of the change of variables. The second part follows from the
calculation

(
(Rc ◦K ◦R−1

c (f)
)
(x) =

√
| det c|

(
K(R−1

c f)
)
(cx)

=
√
| det c|

∫

Rn

K(cx, η)(R−1
c f)(η) dη

=
√
| det c|

∫

Rn

K(cx, η)
1√

| det c|
f(c−1η) dη

η=cy
=

∫

Rn

K(cx, cy)f(y) | det c| dy.

A.7 A trace formula

In this section we will give a proof the following folklore result which we use as an essential tool for
our proof of the dynamical trace formula (Theorems 2.7.6 and 2.13.8): Let (Ly)y∈Y be a measurable
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family of trace class operators on a separable Hilbert space H with the property that
∫
Y ‖Ly‖S1(H) dy

is finite, i e. that ‖Ly‖S1(H) is integrable over Y . Let L be the linear operator on H defined as

Lf =

∫

Y

Lyf dy.

Then Theorem A.7.6 states that L : H → H is a trace class operator with

trace L =

∫

Y

trace Ly dy.

This theorem is useful to a great extent: It both provides a criterion if a given operator is trace class
and a recipe to compute its trace. In Section 3.3 we formulate and prove a similar looking theorem
for operators acting on tensor products (by using quite different techniques).
If Y is a finite set, then the assertion is nothing but the linearity of the trace. In general, the
problem is more subtle, since there are many different notions of measurability. The stated theorem
is a direct consequence of Bochner integration theory, if we require measurability of the function
Y → R, y 7→ ‖Ly‖S1(H). Fortunately, many notions of measurability coincide, see [DeFl93, B11]. We
will give a direct proof. Our strategy to show the announced theorem is to

(i) prove a similar trace formula for operators of finite rank,

(ii) show the traceability of L, and

(iii) compute the trace by a limit of traces of operators of finite rank.

One of the tools will be Lebegue’s theorem on the dominated convergence, which can be stated as
follows.

Theorem A.7.1. (Dominated convergence theorem) Let be (Y,Y, dy) be a measure space. Let fn :
Y → C be a sequence of integrable functions which is dominated by an integrable function g, i. e.,
|fn| ≤ g almost everywhere. Suppose that fn → f almost everywhere, then fn → f in norm and∫
fn →

∫
f .

We will need a vector-valued version of Lebegue’s theorem. Let be (Y,Y, dy) be a measure space and
H be a separable Hilbert space. A function f : Y → H is called integrable if the scalar-valued function
y 7→

〈
f(y) h

〉
is integrable for all h ∈ H. Then we define

∫
Y
f(y) dy ∈ H to be the unique vector

which satisfies

(112)
〈∫
Y
f(y) dy h

〉
=

∫

Y

〈
f(y) h

〉
dy

for all h ∈ H.

Theorem A.7.2. (Dominated convergence theorem) Let be (Y,Y, dy) be a measure space and H be
a separable Hilbert space. Let fn : Y → H a sequence of integrable functions which is dominated by
an integrable function g : y → C, i. e., ‖fn‖ ≤ g almost everywhere. Suppose that fn → f almost
everywhere, then fn → f in norm and

∫
fn →

∫
f .

Proof. Using Theorem A.7.1 one easily shows that

lim
n→∞

∫

Y

〈
fn(y) h

〉
dy =

∫

Y

〈
f(y) h

〉
dy

for all h ∈ H. The Riesz representation theorem implies that limn→∞
∫
fn =

∫
f .

A family (Ly)y∈Y of bounded operators on a separable Hilbert space H is called measurable if for all
f, g ∈ H the function Y → C, y 7→

〈
Lyf g

〉
is measurable.

Proposition A.7.3. Let (Ly)y∈Y be a measurable family of bounded operators on a separable Hilbert
space H with the property that

∫
Y ‖Ly‖ dy <∞.
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(i) Then there is a unique bounded operator on H denoted by L =
∫
Y Ly dy which satisfies

〈
Lf g

〉
:=

∫

Y

〈
Lyf g

〉
dy

for all f, g ∈ H.

(ii) Let (hn)n∈N
be a Hilbert basis of H. For n ∈ N define Pn =

∑n
i=1〈 · |hi〉hi : H → H to be the

orthogonal projection onto the n-dimensional subspace span{h1, . . . , hn} ⊂ H. Then

L(n) :=

∫

Y

PnLyPn dy = PnLPn

and

trace L(n) =

∫

Y

trace L(n)
y dy

Proof. The first part will be a consequence of the Lax-Milgram lemma. For this we have to confirm
that

B : H×H → C, B(f, g) :=

∫

Y

〈
Lyf g

〉
dy

defines a continuous sesquilinear form. This is obvious. Let f, g ∈ H, then

〈
PnLPnf g

〉
=
〈
LPnf P ∗

ng
〉

=

∫

Y

〈
LyPnf P ∗

ng
〉
dy =

∫

Y

〈
L(n)
y f g

〉
dy

hence PnLPn =
∫
Y
L(n)
y dy, which is a finite rank operator. We easily compute the trace by using the

orthonormal basis (hn)n∈N
observing that all sums are indeed finite sums:

trace L(n) =
∞∑

m=1

〈
L(n)hm hm

〉

=

n∑

m=1

∫

Y

〈
Lyhm hm

〉
dy

=

∫

Y

n∑

m=1

〈
Lyhm hm

〉
dy =

∫

Y

trace L(n)
y dy.

The last assertion of Proposition A.7.3 states that the desired trace formula holds for the finite rank
approximations L(n) of L. We now will show that L =

∫
Y Ly dy is a trace class operator under

additional assumptions on the coefficients (Ly)y∈Y . This will be done using the following result of K.
Fan.

Lemma A.7.4. Let A be a compact operator on a Hilbert space H. The sequence (si(A))i∈N of
singular numbers of A can be characterised as follows: For any n = 1, 2, . . . (≤ dimH) one has

max
∣∣∣
n∑

i=1

〈
UAφi φi

〉 ∣∣∣ =
n∑

i=1

si(A),

where the maximum is taken over all unitary operators U and orthonormal systems φ1, . . . , φn.

Proof. See for instance [GoGoKr00, Thm. IV 3.5].

Proposition A.7.5. Let (Ly)y∈Y be a family of trace class operators on a separable Hilbert space H
such that

∫
Y ‖Ly‖S1(H) dy <∞. Then the linear operator L : H → H, Lf =

∫
Y Lyf dy is a trace class

operator with

‖L‖S1(H) ≤
∫

Y

‖Ly‖S1(H) dy.
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Proof. For all f, g ∈ H and an arbitrary unitary operator U on H one has

〈
ULf g

〉
=
〈
Lf U?g

〉
=

∫

Y

〈
Lyf U?g

〉
dy =

∫

Y

〈
ULyf g

〉
dy.

Let (vj)j be a Hilbert basis in H and U : H → H be unitary. Then standard estimates yield

∣∣∣
n∑

j=1

〈
ULvj vj

〉 ∣∣∣ =
∣∣∣
n∑

j=1

∫

Y

〈
ULyvj vj

〉
dy
∣∣∣

≤
∫

Y

n∑

j=1

∣∣ 〈ULyvj vj
〉 ∣∣ dy

≤
∫

Y

n∑

j=1

sj(Ly) dy

≤
∫

Y

‖Ly‖S1(H) dy <∞.

Hence we have shown that for all n ∈ N

n∑

j=1

sj(L) = max
∣∣∣
n∑

j=1

〈
ULvj vj

〉 ∣∣∣ ≤
∫

Y

‖Ly‖S1(H) dy <∞

and thus ‖L‖S1(H) =
∑∞
j=1 sj(L) ≤

∫
Y ‖Ly‖S1(H) dy <∞ and L is a trace class operator.

Let Lf =
∫
Y
Lyf dy be an operator satisfying the hypotheses of Proposition A.7.5. Let Pn : H → H

be the sequence of orthogonal projections from Proposition A.7.3 (ii). Obviously, Pn tends to the
identity on H as n tends to infinity, hence

L = lim
n→∞

PnLPn = lim
n→∞

L(n)

pointwisely. Since L is trace class, [GoGoKr00, Thm. IV 5.5] shows that the pointwise convergence
is indeed in trace norm which gives a recipe to compute the trace of Λ, namely

trace L = lim
n→∞

trace L(n) = lim
n→∞

trace PnLPn.

Similarly one proceeds for Ly. By Proposition A.7.3 (ii) the trace formula holds for the finite rank ap-
proximations PnLP . Hence the following theorem will be a consequence of the dominated convergence
theorem A.7.1.

Theorem A.7.6. Let (Ly)y∈Y be a family of trace class operators on a separable Hilbert space H
such that

∫
Y
‖Ly‖S1(H) dy <∞. Then the linear operator L : H → H, Lf =

∫
Y
Lyf dy is a trace class

operator with

trace L =

∫

Y

trace Ly dy.

Proof. By the previous considerations one has

trace L = lim
n→∞

trace L(n) A.7.3= lim
n→∞

∫

Y

trace L(n)
y dy

and ∫

Y

trace Ly dy =

∫

Y

trace lim
n→∞

L(n)
y dy =

∫

Y

lim
n→∞

trace L(n)
y dy.

We will use the dominated convergence theorem A.7.1 in order to show that both expressions are
equal.

The operators L(n)
y converge to Ly in trace class norm, hence the integrands converge pointwisely.

The standard estimate |trace L(n)
y | ≤ ‖Ly‖S1(H) gives by assumption an integrable majorant, thus the

assertion follows from A.7.1.
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We use Theorem A.7.6 to give a proof of Lemma 2.4.1 which we used for the proof of the abstract
dynamical trace formulas formulated in Theorems 2.4.4 and 2.4.6.

Corollary A.7.7. Let ν be a Borel measure on F and (Tx)x∈F a measurable family of trace class
operators on a Hilbert space H with

∫
F
‖Tx‖S1(H) dν(x) < ∞. Then T : H → H, T g :=

∫
F
Txg dν(x)

is a trace class operator with

T nf =

∫

Fn

Txn ◦ . . . ◦ Tx1f dν(x1) . . . dν(xn)

and

trace T n =

∫

Fn

trace (Txn ◦ . . . ◦ Tx1) dν(x1) . . . dν(xn).

Proof. It remains to prove the formula for T n. The basis of the induction (n = 1) is trivial. The
induction step is a consequence of the vector-valued integration, see Prop. A.7.3 (i),

T n+1f =

∫

F

Tx(T
nf) dν(x) =

∫

F

∫

Fn

Tx ◦ Txn ◦ . . . ◦ Tx1f dν(x1) . . . dν(xn) dν(x)

By Theorem A.7.6 the second assertion is an immediate consequence.
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B Composition operators

In many branches of mathematics one encounters (generalised) composition operators. These are
linear operators defined on function spaces which act by composing with a fixed self-map ψ of the
base space and multiplying the result by another complex-valued fixed function φ, i. e.,

(Tf)(z) = φ(z) (f ◦ ψ)(z).

Our interest is founded in the Ruelle transfer operator (2.1.3) and the Ruelle-Mayer transfer operator
(2.3.7, 2.6.15) which are integrals over families of composition operators.
Composition operators are widely studied in the literature. One is interested in understanding the
spectrum of the operator depending on the geometric properties of the self-map ψ and the function
space on which the operator acts. In this chapter we will concentrate on trace class composition
operators and the question on which function spaces the Atiyah-Bott fixed point formula

trace T =
φ(z∗)

det(1 − ψ′(z∗))

holds. In Section B.1 we will deal with algebraic properties of composition operators and prove a trace
formula for a class of degenerate composition operators. Section B.2 recalls the classical formulation
of the Atiyah-Bott fixed point formula.
As we have explained in the introduction chapter, our strategy of proving the dynamical trace formula
(Theorem 2.13.8) requires a Hilbert space which is invariant under the composition operator and has
the property that the operator is trace class on it and satisfies the Atiyah-Bott formula. It turns out
that such a Hilbert space possesses a reproducing kernel. In the following we will first investigate
analogues of the Atiyah-Bott fixed point formula on function spaces over finite-dimensional domains,
and then discuss the infinite-dimensional case in Section B.4. In particular we prove that the special
class of composition operators acting on the Fock space F(`2N) via

(Tf)(z) = e〈z|a〉 f(Bz + b)

for some fixed a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1, is trace class and satisfies the Atiyah-Bott

fixed point formula which is a key ingredient of our proof of dynamical trace formula Theorem 2.7.6.

B.1 Definition and elementary properties

In this section we recall the definition of a (generalised) composition operator. We show that com-
posing two generalised composition operators gives again a composition operator, we compute the
n-th (mixed) iterate of a composition operator, and prove a trace formula for a class of degenerate
composition operators.

Definition B.1.1. Let E be a set and V a space of complex valued functions on E. A (generalised)
(or weighted) composition operator is an operator T : V → V of the form

(Tf)(z) = φ(z) (f ◦ ψ)(z),

where φ : E → C, ψ : E → E are fixed functions. If the multiplication part is trivial, i. e., φ ≡ 1, then
T is called a (classical) composition operator.

Given a family of generalised composition operators acting on the same space one can form their
product. It turns out that it is again a composition operator.

Lemma B.1.2. Let E, F be non-empty sets. Let φx : E → C, ψx : E → E for each x ∈ F . Let
Tx : CE → CE be defined via (Txf)(z) = φx(z) (f ◦ ψx)(z). Then

(Txn ◦ . . . ◦ Tx1f)(z) =

n∏

k=1

(φxk
◦ ψxk+1

◦ . . . ◦ ψxn)(z) (f ◦ ψx1 ◦ . . . ◦ ψxn)(z).

Proof. Induction: n = 1 X; n→ n+ 1:

Tx(Txn ◦ . . . ◦ Tx1f)(z) = φx(z) (Txn ◦ . . . ◦ Tx1f)(ψxz)

= φx(z)φxn(ψxz) (φxn−1 ◦ ψxn)(ψxz) . . . (φx1 ◦ ψx2 ◦ . . . ◦ ψxn)(ψxz) (f ◦ ψx1 ◦ . . . ◦ ψxn)(ψxz).
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We call an expression of the form Txn ◦ . . . ◦ Tx1 which appeared in the previous lemma an n-th
mixed iterate. We frequently use Lemma B.1.2 for Ruelle and Ruelle-Mayer transfer operators where
φx = exp(Ax). Then

Corollary B.1.3. Let E, F be non-empty sets. Let Ax : E → C, ψx : E → E for each x ∈ F . Let
Tx : CE → CE be defined via (Txf)(z) = exp(Ax(z)) (f ◦ ψx)(z). Then

(Txn ◦ . . . ◦ Tx1f)(z) = exp
( n∑

k=1

(Axk
◦ ψxk+1

◦ . . . ◦ ψxn)(z)
)

(f ◦ ψx1 ◦ . . . ◦ ψxn)(z).

A rather degenerate case of a composition operator is the following, where the composition part is
constant. Such a (generalised) composition operator is nuclear and satisfies a simple version of the
Atiyah-Bott fixed point formula. In this dissertation one encounters these degenerate composition
operators in Sections 2.5 and 2.8: The high powers of the Ruelle-Mayer transfer operator for finite
range interactions are integrals over families of degenerate composition operators.

Corollary B.1.4. Let E be a topological space and V ⊂ C(E) a Banach space of continuous complex
valued functions on E. Let φ ∈ V and z0 ∈ E be fixed, and T : V → V be the composition operator
(Tf)(z) = φ(z) f(z0). Then T is nuclear of order zero (A.3.1) with trace T = φ(z0).

Proof. The range of T is the span of the vector φ, hence T is a finite rank operator and thus nuclear
(of any order). From Tφ = φ(z0)φ we can read off the only eigenvalue φ(z0) and thus the trace. The
nuclear norm of T is (at most) the norm of φ.

Combining the previous Lemma B.1.2 and Corollary B.1.4 we obtain the following simple trace for-
mula.

Corollary B.1.5. Let E be a topological space and V ⊂ C(E) a Banach space of continuous complex
valued functions on E. Let F be a non-empty set. Let φx : E → C, ψx : E → E for each x ∈ F . Let
Tx : V → V defined via (Txf)(z) = φx(z) (f ◦ ψx)(z). Suppose there exists n ∈ N such that for all
choices x1, . . . , xn ∈ F the map ψx1 ◦ . . . ◦ ψxn : E → E is constant. Then Txn ◦ . . . ◦ Tx1 is a nuclear
operator with

trace Txn ◦ . . . ◦ Tx1 = Φx1,...,xn(zx1,...,xn),

where

Φx1,...,xn : E → C, z 7→
n∏

k=1

(φxk
◦ ψxk+1

◦ . . . ◦ ψxn)(z)

with ‖Φx1,...,xn‖ ≤ (supx∈F ‖φx‖)n and where zx1,...,xn is the (constant) value of ψx1 ◦ . . . ◦ ψxn.

B.2 The Atiyah-Bott type fixed point formula

The following sections are devoted to various versions of the following Atiyah-Bott type trace formula:
Given a contraction ψ : U → U (we will specify the contraction later), a fixed function φ : U → C, let

(Tf)(z) := φ(z) (f ◦ ψ)(z)

be the generalised composition operator (B.1.1) associated with ψ and φ. We will investigate under
which circumstances (smoothness of the maps φ and ψ, contraction property of ψ, suitable function
space) the operator T is a trace class operator (nuclear operator (A.3.1), respectively) such that the
following trace formula holds

(113) trace T =
φ(z∗)

det(1 − ψ′(z∗))
,

where z∗ ∈ U is the unique fixed point of ψ. Note that even the trivial examples of Corollary B.1.4
and B.1.5 fit into this scheme. More precisely the above formula is the holomorphic version of the
fixed point formula of Atiyah and Bott. We will state it as Theorem B.2.4. We use the following
notion of holomorphicity.
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Definition B.2.1. Let U ⊂ X be an open domain in some (possibly infinite dimensional) Banach
space X . A function f : U → C is called holomorphic if f ∈ C(U) and for each finite-dimensional
affine subspace A ⊂ X the function f |A∩U is holomorphic. The space of all holomorphic functions
with compact open topology is denoted by O(U).

We are interested in working with composition operators on Banach or, even better, Hilbert spaces.
Hence we recall the definitions of the following spaces consisting of holomorphic functions.

Remark B.2.2. Let U ⊂ X be a bounded open domain in a complex Banach space X .

(i) Ob(U) := Cb(U) ∩O(U) is a Banach space40 (w. r. t. the supremum norm).

In fact: Let fn ∈ Ob(U) a sequence converging uniformly to some f . Since Cb(U) is complete,
the limit function f belongs to Cb(U). For any finite-dimensional affine subspace A ⊂ X the
restrictions fn|A∩U converge uniformly to f |A∩U , hence f |A∩U is holomorphic, hence f ∈ O(U).

(ii) A∞(U) := C(U) ∩ O(U) is (in general) not a Banach space.

(iii) A∞(U) is a Banach space if X is finite dimensional, since U is compact.

(iv) Let X ⊃ U1 ⊃ U2 ⊃ U3 be bounded open domains, then the inclusion maps A∞(U1) ↪→ Ob(U2),
Ob(U2) ↪→ A∞(U3) are obviously continuous.

An important step in proving Theorem B.2.4 is the following theorem (see [EH70] or [May80b, Thm.
1]) which states that a strictly contractive map has a unique fixed point.

Theorem B.2.3. (Earle-Hamilton fixed point theorem) Let U ⊂ X be an open bounded domain in
the complex Banach space X. Let ψ : U → U be a holomorphic mapping which is strictly contractive,
i. e. dist(ψ(U), X \ U) ≥ ε > 0. Then ψ has a unique fixed point z∗ ∈ U and the eigenvalues of the
derivative ψ′(z∗) are all strictly smaller than one in absolute value.

The following theorem is the classical formulation of the Atiyah-Bott fixed point formula. It is
often attributed to D. Ruelle [Ru76], although it is quite similar to results in [AtBo67]. It has
been generalised by D. Mayer [May80a, Appendix B], [May80b] whose results we will mention in
Section B.4.

Theorem B.2.4. Let U ⊂ Ck be an open bounded complex domain. Let φ ∈ A∞(U) and ψ : U → U
be holomorphic and strictly contractive, i. e., ψ(U) ⊂ U . Then ψ has a unique fixed point z∗ ∈ U and
the generalised composition operator (B.1.1)

T : A∞(U) → A∞(U), (Tf)(z) := φ(z) (f ◦ ψ)(z)

is nuclear of order zero (A.3.1) with trace given by the Atiyah-Bott fixed point formula

(114) trace T =
φ(z∗)

det(1 − ψ′(z∗))
.

40This space was denoted by A∞(U) in [May80a] and [May80b].

U

ψ(U)

U

ε

ψ-

Figure 11: A strictly contractive map
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Proof. (Idea): The easiest proof uses the nuclearity of the space O(U) and the boundedness of all
maps in the following diagram (ι denotes the embedding)

A∞(U)
ι
↪→ O(U)

f 7→f◦ψ−−−−−−→A∞(U)
f 7→φ·f−−−−−−→A∞(U).

Hence A is nuclear. Using an explicit nuclear representation one shows that L is nuclear of order
zero, hence we can apply Grothendieck’s 2/3-trace theorem A.3.2: trace L =

∑
i λi(L), where λi(L)

are the eigenvalues of L. Differentiation of an eigenfunction at the fixed point z∗ of ψ determines the
possible eigenvalues of L: spec(L) ⊆ Λ := {0} ∪ {φ(z∗)µi1 · . . . · µik | k ∈ N, µj ∈ spec(ψ′(z∗)}. To
show spec(L) ⊇ Λ it suffices to find for each λ ∈ Λ a function g which is not in the image of L − λ.
In the case of A∞(U) and λ = φ(z∗)µi1 · . . . · µik , one chooses g ∈ A∞(U) such that

Drg(z∗) = 0 for r = 0, . . . , k − 1 and Dkg(z∗)(ei1 , . . . , eik) 6= 0,

where ei is the eigenvector of ψ′(z∗) corresponding to the eigenvalue µi. By the Earle-Hamilton fixed
point theorem B.2.3 the eigenvalues of ψ′(z∗) are all strictly smaller than one in absolute value, which
makes a geometric series convergent and thus the trace formula.

Remark B.2.5. Note that the space O(U) with its usual compact open topology is nuclear if and
only if the dimension of U is finite, [Sch75]. Hence the proof of Theorem B.2.4 does not work in
infinite dimensions. - The above proof fails even in the finite-dimensional case, when one tries to
replace A∞(U) by Ob(U).

B.3 The trace formula on the Fock space

In this section we prove a trace formula for a certain class of composition operators where the com-
posing part is a global contraction. Provided that the coefficients φ and ψ are entire functions we
show that the eigenfunctions of the composition operator extend to entire functions and satisfy certain
growth conditions. This permits to show that the Atiyah-Bott fixed point formula also holds on a
much smaller space of functions. A typical application are composition operators of the type

T : F(Cm) → F(Cm), (Tf)(z) = eπ〈z|a〉f(Bz + b)

for some fixed a, b ∈ Cm, B ∈ Mat(m,m; C). These operators appeared in Theorem 2.7.6 and will
be investigated in the second part of this section. Using reproducing kernel techniques (see A.4) we
will determine a formula for the trace norm for these composition operators. We start with a little
proposition on the invariant sets of a contraction. It states that sufficiently large balls are invariant
and each point is attracted by a neighbourhood of the fixed point in a finite number of steps because
of a Banach fixed point argument.

Proposition B.3.1. Let 0 < q < 1 and ψ : X → X be a function on a normed spaces (X, ‖ · ‖) with

‖ψ(z) − ψ(w)‖ ≤ q ‖z − w‖
for all z, w ∈ X. Then ψ is called a (global) contraction. Set

(115) r0 :=
‖ψ(0)‖
1 − q

.

Then for all r ≥ r0 the closed ball Kr := {z ∈ X ; ‖z‖ ≤ r} is ψ-invariant, moreover ψ(Kr) ⊂
Kqr+‖ψ(0)‖ ⊂ Kr. For all r > r0 and all z ∈ X there is an index n0 ∈ N such that

(∀m ≥ n0) ψ(m)(z) ∈ Kr,

where ψ(m) := ψ ◦ . . . ◦ ψ (m-times) is the m-th iterate of ψ.

Proof. Let r > r0 and |z| ≤ r. Then

‖ψ(z)‖ ≤ ‖ψ(z)− ψ(0)‖ + ‖ψ(0)‖ ≤ q ‖z‖ + ‖ψ(0)‖ < r

shows that ψ(z) ∈ Kr for all z ∈ Kr. Let r > r0. Since 0 ∈ Kr0 , hence also ψ(m)(0) ∈ Kr0 by the

first assertion. For any z ∈ X , m ≥ n0 ≥ ln(
r−r0
‖z‖

)

ln q we have

‖ψ(m)(z)‖ ≤ ‖ψ(m)(z) − ψ(m)(0)‖ + ‖ψ(m)(0)‖ ≤ qm ‖z‖ + r0 ≤ r.
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We will now study composition operators (Tf)(z) = φ(z) (f ◦ ψ)(z) whose composition part ψ is a
globally contracting map. We will apply these results for the Ruelle-Mayer transfer operator which is
an integral over a family of composition operators, each of them with an affine globally contracting
map ψ.

Proposition B.3.2. Let (X, ‖ · ‖) be a normed space and Kr := {z ∈ X ; ‖z‖ ≤ r}. Let ψ : X → X
be a contraction in the sense of Proposition B.3.1, and φ : X → C a continuous function. Let r > r0
with r0 as in (115), and T be the generalised composition operator

T : C(Kr) → C(Kr), (Tf)(z) = φ(z) (f ◦ ψ)(z).

(i) Let g ∈ C(Kr), then Tg belongs to C(Kδr) with δ > 1.

(ii) Every eigenfunction of T for a non-zero eigenvalue belongs to C(X).

Proof. If z ∈ Kδr, then

|ψ(z)| ≤ q rδ + ‖ψ(0)‖ !
< r,

if δ < r−‖ψ(0)‖
rq . Since r−‖ψ(0)‖

rq > 1, one can choose δ > 1. Let f ∈ C(Kr) be an eigenfunction of T

for a non-zero eigenvalue ρ. Hence by iterating relation (i) n-times we get f = ρ−nT nf ∈ C(Kδnr) for
some δ > 1. Hence f ∈ C(X).

Given a composition operator which satisfies a trace formula on a certain function space one is often
interested in finding a smaller space which contains the eigenfunctions to non-zero eigenvalues. We
will assume that the composing part is a contraction in the sense of Proposition B.3.1. By the previous
Proposition B.3.2 the eigenfunctions extend to the whole base space. If the coefficients φ and ψ are
smooth, then also the eigenfunctions will be smooth as well. Moreover, they satisfy certain growth
estimates. This growth estimate can be used to form a weighted L2-space on which the operator acts.

Lemma B.3.3. Let ψ : Cm → Cm and φ : Cm → C be entire functions, and ψ a contraction in the
sense of Proposition B.3.1. Let T be the composition operator acting via

(Tf)(z) = φ(z) (f ◦ ψ)(z).

Let r > r0 with r0 as in (115) and f an eigenfunction of T : A∞(B(0; r)) → A∞(B(0; r)) for a
non-zero eigenvalue ρ. Then f is entire and there exist c1, c2 > 0 such that for all z ∈ Cm

|f(z)| ≤ ‖z‖−c1 ln ρ sup
|w|≤r

|f(w)| max
t∈[0,2π]

|φ(eitz))|c2 ln ‖z‖.

Moreover, if A2(U) := O(U) ∩ L2(U, dz) denotes the Bergmann space, then

trace A∞(U)T = trace A2(U)T

for all ψ-invariant bounded domains U ⊂ Cm.

Proof. The operator T leaves the Banach space A∞(B(0; r)) invariant. Let f be an eigenfunction of
T : A∞(B(0; r)) → A∞(B(0; r)) for a non-zero eigenvalue ρ. For n ∈ N we have f = ρ−n T nf which
by (B.1.2) is given as

f(z) = ρ−n
n−1∏

k=0

(φ ◦ ψ(k))(z) (f ◦ ψ(n))(z),

where ψ(k) is the k-th iterate of ψ. As in Remark B.3.2 (ii) one shows that f is entire, thus belongs
to A2(U) for all bounded domains U ⊂ Cm. Hence every eigenvalue of T |A∞(U) belongs to the

spectrum of T |A2(U), thus by Lidskii’s Trace Theorem the traces coincide. Let r > r0 = ‖ψ(0)‖
1−q and

z ∈ Cd with ‖z‖ > r0. Choose n(z) :=
⌈

ln(
r−r0
‖z‖

)

ln q

⌉
. One can find constants c1, c2 > 0 such that
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c1 ln ‖z‖ ≤ n(z) ≤ c2 ln ‖z‖ for all ‖z‖ > r0. Remark B.3.1 implies that ‖ψ(n(z))(z)‖ ≤ r, and hence

|f(z)| = |ρ|−n(z)
∣∣∣
n(z)−1∏

k=0

(φ ◦ ψ(k))(z)
∣∣∣
∣∣(f ◦ ψ(n(z))(z)

∣∣

≤ |ρ|−n(z) sup
|w|≤r

|f(w)| sup
‖w‖≤‖z‖

∣∣∣
n(z)−1∏

k=0

(φ ◦ ψ(k))(w)
∣∣∣

≤ |ρ|−n(z) sup
|w|≤r

|f(w)| sup
‖w‖≤‖z‖

|φ(w)|n(z)

≤ |ρ|−c1 ln ‖z‖ sup
|w|≤r

|f(w)| sup
‖w‖≤‖z‖

|φ(w)|c2 ln ‖z‖.

By the maximum principle of complex variables we know that the supremum sup‖w‖≤‖z‖ |φ(w)| is
attained for some w with ‖w‖ = ‖z‖.

We now apply Lemma B.3.3 to a certain class of composition operators acting on the Fock space
F(Cm) in finitely many variables as defined in Example A.4.5 (i).

Theorem B.3.4. Let b ∈ Cm, A ∈ Gl(m; C) with ‖A‖ < 1, and φ : Cm → C an entire function
which can be estimated by |φ(z)| ≤ c exp(a ‖z‖) for some constants a, c > 0. Let T be the composition
operator given by

(Tf)(z) = φ(z) f(Az + b).

Then T : F(Cm) → F(Cm) is a trace class operator with

trace F(Cm)T = trace A∞(B(0;r))T =
φ((1 − A)−1b)

det(1 − A)

for all B(0; r) :=
{
z ∈ Cm

∣∣ ‖z‖ < r} with r > ‖b‖
1−‖A‖ .

Proof. The affine map ψ(z) = Az + b is a contraction with q = ‖A‖ < 1 and r0 = ‖b‖
1−‖A‖ . We claim

that the Fock space F(Cm) is a T -invariant Hilbert subspace of A∞(B(0; r)) for any r > r0 = ‖b‖
1−‖A‖ .

In fact, for f ∈ F(Cm) the standard estimate (A.4.4) yields

‖Tf‖2 =

∫

Cm

∣∣∣φ(z) f(Az + b)
∣∣∣
2

e−π‖z‖
2

dz

≤ c2
∫

Cm

e2a‖z‖ |f(Az + b)|2 e−π‖z‖2

dz

≤ c2 ‖f‖2

∫

Cm

e2a‖z‖ eπ‖Az+b‖2

e−π‖z‖
2

dz

≤ ‖f‖2
(
C +

∫

Cm\B(0;r)

e2a‖z‖ e−π(1−‖A‖2)‖z‖2

dz
)
<∞.

Thus T |F(Cm) is a nuclear map on a Hilbert space, and hence of trace class. Let f ∈ A∞(B(0; r)) be
an eigenfunction of T corresponding to a non-zero eigenvalue ρ. By Lemma B.3.3 the eigenfunction f
satisfies the estimate

|f(z)|2 exp(−π‖z‖2) ≤ ‖z‖−c1 ln ρ exp
(
(a ‖z‖ + ln c)c2 ln ‖z‖

)
exp(−π‖z‖2).

This upper bound is Lebesgue-integrable on Cm, and thus f belongs to F(Cm). This shows that
every non-zero eigenvalue of T |A∞(B(0;r)) is an eigenvalue of T |F(Cm), hence the traces coincide and
by Theorem B.2.4 they have the stated value.

The assumptions made in Theorem B.3.4 on the multiplication part φ : Cm → C imply that φ belongs
to the Fock space. We disbelieve that the assertion is true for all φ ∈ F(Cm). A typical application of
Theorem B.3.4 is the case where the multiplication part φ : Cm → C is given as φ(z) = p(z) exp(〈z|a〉)
for some polynomial p ∈ C[z1, . . . , zm] and a ∈ Cm.
We add a remark concerning the proof of the previous theorem.
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Remark B.3.5. Let b ∈ Cm, B ∈ Gl(m; C) with ‖B‖ < 1, and φ : Cm → C an entire function
which can be estimated by |φ(z)| ≤ c exp(a ‖z‖) for all z. Let T : F(Cm) → F(Cm), (Tf)(z) =
φ(z) f(Bz + b). By Theorem B.3.4 the composition operator T is trace class and satisfies the Atiyah-
Bott trace formula. Of course one would like to have a direct proof for the trace formula. There are
two other ways to compute the trace:

(i) Choose an orthonormal basis (eα)α in F(Cm) and determine

trace T =
∑

α

〈Teα|eα〉.

(ii) T is a bounded operator on F(Cm) and hence, by the reproducing kernel property A.6.1, can
be written as an integral operator with integral kernel kT (z, w) = φ(z) exp(π〈Bz + b|w〉). If φ
can be estimated by |φ(z)|c exp(a‖z‖), then the kernel is rapidely decaying. Hence by [CoGr90,
A.3.9] the trace is given as the integral over the diagonal

trace T =

∫

Cm

kT (z, z) exp(−π‖z|2) dz =

∫

Cm

φ(z) exp(π〈Bz + b|z〉) exp(−π‖z|2) dz.

In principle both ways described in Remark B.3.5 can be used to obtain a direct proof of Theo-
rem B.3.4, but we can carry out these ideas only for a special class of linear maps B : Cm → Cm,
namely if B is normal (semisimple), see Propositions B.3.6 and B.3.9.

Proposition B.3.6. Let ψ : Cm → Cm, ψ(z) = Bz + b such that the linear part B is normal and
‖B‖ < 1, and φ ∈ F(Cm) such that p φ ∈ F(Cm) for all polynomials p ∈ C[z]. Then one has the fixed
point formula

(116) trace T =

∫

Cm

φ(z) eπ〈Bz+b|z〉 e−π‖z‖
2

dz =
φ(z∗)

det(1 − ψ′(z∗))
=
φ((1 − B)−1b)

det(1 − B)
,

where z∗ = (1 − B)−1b is the unique fixed point of ψ and T : F(Cm) → F(Cm) is the composition
operator acting via (Tf)(z) := φ(z) (f ◦ ψ)(z).

Proof. We compute the trace via Remark B.3.5 (ii). By change of variables we can assume that
B = diag(λi) with respect to the standard basis. We use the standard basis (ζα)α∈Nm

0
of the Fock

space given in Example A.4.5. Observe that

(ζα ◦ ψ)(z) =

√
πα

α!
(Bz + b)α =

√
πα

α!

m∏

i=1

(λizi + bi)
αi =

√
πα

α!

m∏

i=1

αi∑

k=0

(
αi
k

)
(λizi)

kbαi−k
i .

Let φ(z) =
∑

α∈Nm
0
φα z

α be the Taylor series expansion of φ. Hence by formal calculation we obtain

〈Teα|eα〉 =

∫

Cm

φ(z) (ζα ◦ ψ)(z) ζα(z) e−π‖z‖
2

dz

=
∑

β∈Nm
0

φβ
πα

α!

∫

Cm

m∏

i=1

αi∑

k=0

(
αi
k

)
(λizi)

k bαi−k
i zβi

i zi
αi e−π‖z‖

2

dz

=
∑

β∈Nm
0

φβ

m∏

i=1

αi∑

k=0

(
αi
k

)
λki b

αi−k
i

παi

αi!

∫

C

zk+βi

i zi
αi e−π|zi|2 dzi

=
∑

β∈Nm
0

φβ

m∏

i=1

αi∑

k=0

(
αi
k

)
λki b

αi−k
i δk+βi,αi .

The latter step follows from the orthonormality of the basis ζα. The formal calculation holds, since for
every f ∈ F(Cm) its Taylor series converges to f in F(Cm)-norm and we assumed that ζα φ ∈ F(Cm).
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The series in the following are absolutely convergent, since |λi| < 1, hence we can interchange the
summation order to get

∑

α∈Nm
0

〈Teα|eα〉 =
∑

α∈Nm
0

∑

β∈Nm
0

φβ

m∏

i=1

αi∑

k=0

(
αi
k

)
λki b

αi−k
i δk+βi,αi

=
∑

α∈Nm
0

∑

β∈Nm
0

φβ
∑

k∈Nm
0

m∏

i=1

(
αi
ki

)
λki

i bαi−ki

i δki+βi,αi

=
∑

β∈Nm
0

φβ
∑

k∈Nm
0

m∏

i=1

(
ki + βi
ki

)
λki

i bβi

i

=
∑

β∈Nm
0

φβ

m∏

i=1

∑

k∈N0

(
k + βi
k

)
λki b

βi

i

=
∑

β∈Nm
0

φβ

m∏

i=1

(1 − λi)
−βi−1 bβi

i ,

where we finally used the series representation

(1 − q)−m−1 =
∞∑

n=0

(
m

n

)
qn

for |q| < 1 and the convention
(
m
n

)
= 0, whenever n > m. Using the explicit form of the fixed point

z∗ = (1−B)−1b, which is the vector with entries (1−λi)
−1bi, one can write down the right hand side

of equation (116) as

φ(z∗)

det(1 − B)
= det(1 − B)−1

∑

β∈Nm
0

φβ ((1 − B)−1b)β

=

m∏

i=1

(1 − λi)
−1

∑

β∈Nm
0

φβ

m∏

i=1

((1 − λi)
−1bi)

βi

=
∑

β∈Nm
0

φβ

m∏

i=1

(1 − λi)
−βi−1bβi

i .

Remark B.3.7. Let ψ : Cm → Cm, ψ(z) = Bz + b such that the linear part B ∈ Mat(m,m; C)
satisfies ‖B‖ < 1, and φ ∈ F(Cm). Then our direct approach of Proposition B.3.6 fails to prove the
desired fixed point formula (116) caused by the dramatically increasing complexity. We suggest the
following idea: Find an interpretation of (116) via theory of complex variables, or Gauss-Green-Stokes
theorem to prove the conjectural formula

∫

Cm

φ(z) eπ〈Bz+b|z〉 e−π‖z‖
2

dz =
φ((1 − B)−1b)

det(1 − B)

without nasty computation.

We will now specialise to a certain class of composition operators, namely those acting via

(117) Ka,b,Λ : F(Cm) → F(Cm), (Ka,b,Λf)(z) = eπ〈z|a〉 f(Λz + b)

for some fixed a, b ∈ Cm, Λ ∈ Mat(m,m; C) with ‖Λ‖ < 1. They arise as (parts of) Ruelle-Mayer
transfer operators which we intensively studied in Section 2.7. There we needed precise information
about the spectrum of Ka,b,Λ and in particular a formula for its trace norm which we will derive
in the sequel. In the notation of Chapter 5 (94) we have Ka,b,Λ = Lπa,b,Λ. In this chapter the
usage of the hermitian inner product

〈
· ·
〉

and hence of Ka,b,Λ seems to be preferable. First we will
investigate the composition law for such operators. Then we use the reproducing kernel techniques
from Proposition A.6.2 and compute the Hilbert space adjoint (Ka,b,Λ)? of Ka,b,Λ. This allows to
determine the selfadjoint and the positive operators belonging to that class.
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Proposition B.3.8. For a, b ∈ Cm, Λ ∈ Mat(m,m; C) with ‖Λ‖ < 1, let Ka,b,Λ : F(Cm) → F(Cm)
(117) be the corresponding composition operator. Then (Ka,b,Λ)? = Kb,a,Λ? and

Ka1,b1,Λ1Ka2,b2,Λ2 = eπ〈b1|a2〉 Ka1+Λ?
1a2,Λ2b1+b2,Λ2Λ1

for all ai, bi ∈ Cm, Λi ∈ Mat(m,m; C) with ‖Λi‖ < 1 (i = 1, 2). Ka,b,Λ is selfadjoint if and only
if Λ is selfadjoint and a = b. If Λ is positive and a = b, then Ka,b,Λ belongs to the cone of positive
composition operators.

Proof. For all f ∈ F(Cm) one has

(Ka1,b1,Λ1Ka2,b2,Λ2f)(z) = eπ〈z|a1〉 (Ka2,b2,Λ2f)(b1 + Λ1z)

= eπ〈z|a1〉 eπ〈b1+Λ1z|a2〉 f(Λ2(Λ1z + b1) + b2)

= eπ〈b1|a2〉 eπ〈z|a1+Λ?
1a2〉 f(Λ2Λ1z + Λ2b1 + b2)

Using the reproducing kernel property A.6.1, the operator K := Ka,b,Λ is uniquely determined by its
integral kernel

kK(z, w) = eπ〈z|a〉 eπ〈Λz+b|w〉 = exp
(
π(〈z|a〉 + 〈b|w〉 + 〈Λz|w〉)

)
,

from which one easily gets the integral kernel

kK?(z, w) = kK(w, z) = exp
(
π
(
〈z|b〉 + 〈a|w〉 + 〈Λ?z|w〉

))
= exp

(
π〈z|b〉

)
exp
(
π〈a+ Λ?z|w〉

)

of its adjoint K?. In particular, (using the properties of the reproducing kernel k(x, y) = exp(π〈x|y〉)
of the Fock space) the operator K? acts via

(K?f)(z) =

∫

Cm

eπ〈z|b〉 eπ〈a+Λ?z|w〉 f(w) e−π‖w‖2

dw = eπ〈z|b〉 f(a+ Λ?z),

i. e. (Ka,b,Λ)? = Kb,a,Λ? . Hence K is selfadjoint iff Λ is selfadjoint and a = b. A compact selfadjoint
operator is positive iff all its eigenvalues are positive. By the proof of Theorem B.2.4 we know that
the spectrum of Kb,b,Λ is contained in {0} ∪

{
φ(z∗)µi1 · . . . · µik | k ∈ N0, µj ∈ spec(ψ′(z∗))

}
where

φ(z) := eπ〈z|b〉, ψ(z) := Λz + b, z∗ = (1 − Λ)−1b. Thus

spec(Kb,b,Λ) ⊆ {0} ∪
{
eπ〈(1−Λ)−1b|a〉 µi1 · . . . · µik | k ∈ N0, µj ∈ spec(Λ)

}
.

If Λ is positive, then (1−Λ)−1 is positive and thus all eigenvalues of Kb,b,Λ are necessarily positive.

Proposition B.3.9. Let Λ ∈ Mat(m,m; C) with ‖Λ‖ < 1 be positive, Λ = Λ? > 0, and β ∈ Cm, then
the corresponding composition operator Kβ,β,Λ : F(Cm) → F(Cm) (117) is positive and trace class
with

trace Kβ,β,Λ = ‖Kβ,β,Λ‖S1(F(Cm)) =
exp
(
π‖(1 − Λ)−1/2β‖2

)

det(1 − Λ)
.

Proof. The operator Kβ,β,Λ is positive by Proposition B.3.8. Hence the trace norm of Kβ,β,Λ is equal
to the trace, which is given by the Atiyah-Bott fixed point formula. We give an alternative proof
which uses the fact that Λ > 0, hence we can apply Proposition A.5.1:

trace Kβ,β,Λ =

∫

Cm

eπ〈z|β〉 eπ〈Λz+β|z〉e−π‖z‖
2

dz

=

∫

Cm

∣∣eπ〈z|β〉
∣∣2 eπ‖

√
Λz‖2

e−π‖z‖
2

dz dz

A.5.1
= det(1 − Λ)−1 exp

(
π‖(1 − Λ)−1/2β‖2

)

= det(1 − Λ)−1 exp
(
π〈(1 − Λ)−1β|β〉

)
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We now use the previous lemmas to to determine a formula for the trace norm of the composition
operator Ka,b,Λ introduced in (117). Given such a composition operator K = Ka,b,Λ we will determine

its positive part |K| =
√
K?K which happens to be composition operator of the same type as K. Hence

we can compute the trace of |K| via the Atiyah-Bott fixed point formula.

Lemma B.3.10. Let B ∈ Mat(m,m; C) with ‖B‖ < 1, a, b ∈ Cm. Set

Λ1 = |B| =
√

B?B, β1 = (1 + |B|)−1(B?b+ a), γ1 = exp
(π

2
(‖b‖2 − ‖β1‖2)

)

and
Λ2 =

√
BB?, β2 = (1 +

√
BB?)−1(Ba+ b), γ2 = exp

(π
2

(‖a‖2 − ‖β2‖2)
)
.

Let K := Ka,b,B and Ki := γiKβi,βi,Λi : F(Cm) → F(Cm) (i = 1, 2) be the corresponding composition

operators (117). Then K1 =
√
KK?, K2 = |K| =

√
K?K, and

‖K‖S1(F(Cm)) =
exp
(
π
2 ‖a‖2 + π

2 ‖(1 − BB?)−1/2(Ba+ b)‖2
)

det(1 − |B|) =
γi

det(1 − Λi)
exp
(
π‖(1 − Λi)

−1/2βi‖2
)

for i = 1, 2.

Proof. The composition operators Ki : F(Cm) → F(Cm) (i = 1, 2) are positive by Proposition B.3.9.
We will compare the squares (Ki)

2 with KK? and K?K given by Proposition B.3.8. For all f ∈ F(Cm)
one has

(K2
i f)(z) = γ2

i e
π‖βi‖2

eπ〈z|(1+Λ?
i )βi〉 f(Λ2

i z + (1 + Λi)βi),

(KK?f)(z) = eπ‖b‖
2

eπ〈z|B
?b+a〉 f(B?Bz + B?b+ a),

(K?Kf)(z) = eπ‖a‖
2

eπ〈z|Ba+b〉 f(BB?z + Ba+ b).

For Λ1, β1, γ1 chosen as above we get (K1)
2 = KK?, hence K1 =

√
KK?, which concludes the first part

of the proof. Similarly, for Λ2, β2, γ2 chosen as above we get (K2)
2 = K?K, i. e., K2 = |K| =

√
K?K.

By Remark A.2.3 the trace norm of K is equal to the trace of Ki, which is given by Proposition B.3.9.

For a better understanding of γ2 exp
(
π‖(1 − Λ2)

−1/2β2‖2
)
, we compute

2‖(1 − Λ2)
−1/2β2‖2 − ‖β2‖2

= 2‖(1 −
√

BB?)−1/2(1 +
√

BB?)−1(Ba+ b)‖2 − ‖(1 +
√

BB?)−1(Ba+ b)‖2

= 〈(2(1 −
√

BB?)−1 − 1)(1 +
√

BB?)−1(Ba+ b)|(1 +
√

BB?)−1(Ba+ b)〉
= 〈(1 +

√
BB?)(1 −

√
BB?)−1(1 +

√
BB?)−1(Ba+ b)|(1 +

√
BB?)−1(Ba+ b)〉

= 〈(1 −
√

BB?)−1(1 +
√

BB?)−1(Ba+ b)|Ba+ b〉
= 〈(1 − BB?)−1(Ba+ b)|Ba+ b〉
= ‖(1 − BB?)−1/2(Ba+ b)‖2.

Hence γ2 exp
(
π‖(1 − Λ2)

−1/2β2‖2
)

= exp
(π

2
‖a‖2 +

π

2
‖(1 − BB?)−1/2(Ba+ b)‖2

)
.

With some approximation arguments the result of Proposition B.3.10 can be extended to the infinite
dimensional setting, which we will present in Theorem B.4.3.

B.4 Spectral properties of composition operators: infinite-dim. case

In this section we will deal with composition operators acting on function spaces over infinite-
dimensional domains. In 1980 D. Mayer published his results [May80a] and [May80b] on composition
operators acting on Ob(U) where U ⊂ B is a bounded open domain in a complex Banach space B. We
will specialise to a special class of composition operators acting on the Fock space F(`2N) in infinitely
many variables via

Ka,b,B : F(`2N) → F(`2N), (Ka,b,Bf)(z) = eπ〈z|a〉 f(Bz + b)



Appendix B 179

for some fixed a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1. In Theorem B.4.3 we prove the analogue

of Lemma B.3.10 in the case of F(`2N) and thus determine the trace and the trace norm of such
operators Ka,b,B.
Our strategy for proving the Atiyah-Bott type fixed point formula (Theorem B.4.3) is to show that a
given composition operator K on F(`2N) can be approximated by a sequence of composition operators
Km which act on F(Cm). The following lemma provides the tools how to embed F(Cm) into F(`2N)
and how to project down from F(`2N) to F(Cm). The proof uses the characterisation of the Fock
space F(`2N) given in Theorem A.4.8.

Lemma B.4.1. (i) Let ιn : Cn → `2N, (z1, . . . , zn) 7→ (z1, . . . , zn, 0, . . .) be the embedding of Cn

into `2N. Then the orthogonal projection Cιn : F(`2N) → F(Cn) ⊂ F(`2N), f 7→ f ◦ ιn is linear
and continuous.

(ii) Let prn : `2N → Cn, z = (zk)k 7→ (z1, . . . , zn) be the projection onto the first n components.
Then the embedding Cprn

: F(Cn) → F(`2N), f 7→ f ◦prn is linear, continuous, and the adjoint
of Cprn

.

(iii) The sequence Cιn converges pointwise to the identity id on F(`2N) as n→ ∞.

Proof. Cιn : F(`2N) → F(Cn) ⊂ F(`2N), f 7→ f ◦ ιn is linear and continuous, since

‖Cιnf‖F(Cn) = ‖f ◦ ιn‖F(Cn) ≤ sup
m

‖f ◦ ιm‖F(Cm) = ‖f‖F(`2N)

by Theorem A.4.8. For all f ∈ F(Cn) one has

(CιmCprn
f)(zm) = (f ◦ prn)(zm, 0) =

{
f(zn), if n ≤ m,
f(zm, 0), otherwise.

Hence for all g ∈ F(Cn)

‖Cprn
g‖F(`2N) = lim

m
‖g ◦ prn ◦ ιm‖F(Cm) = ‖g‖F(Cn

and thus ‖Cprn
‖ = 1. For all f ∈ F(Cn) and g ∈ F(`2N) one has

〈
Cprn

f g
〉
F(`2N)

= lim
m

〈
CιmCprn

f Cιmg
〉
F(Cm)

= lim
m≥n

∫

Cm

f(zn) g(zm, 0) eπ‖zm‖2

dzm

= lim
m≥n

∫

Cn

f(zn)

∫

Cm−n

g(zn, z′, 0) eπ‖z
′‖2

dz′ eπ‖zn‖2

dzn

= lim
m≥n

∫

Cn

f(zn)

∫

Cm−n

g(zn, z′, 0) eπ〈0|z′〉 eπ‖z′‖2 dz′ eπ‖zn‖2

dzn

= lim
m≥n

∫

Cn

f(zn) g(zn, 0, 0) eπ‖zn‖2

dzn

=

∫

Cn

f(zn) g(zn, 0) eπ‖zn‖2

dzn

=

∫

Cn

f(zn) (g ◦ ιn)(zn) eπ‖zn‖2

dzn

=
〈
f g ◦ ιn

〉
F(Cn)

=
〈
f Cιng

〉
F(Cn)

,

which shows that Cprn
and Cιn are adjoints of each other and ‖Cιn‖ = 1. Hence Cιn is an orthogonal

projection. Let f ∈ F(`2N). Given ε > 0, we can find a polynomial g such that ‖f − g‖F(`2N) < ε.
Then

‖Cιnf − f‖F(`2N) ≤ ‖Cιn(f − g)‖F(`2N) + ‖Cιng − g‖F(`2N) + ‖f − g‖F(`2N) ≤ 2ε+ ‖Cιng − g‖F(`2N).

We have to show that ‖Cιng − g‖F(`2N) → 0 as n→ ∞ for all polynomials g. Observe that for m ≥ n
one has

(ιn ◦ prn ◦ ιm)(zm) = (zn, 0) = ιn(zn) ∈ `2N.
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Hence, for all m greater than the number dg of variables of g, one has g ◦ ιm = g. Thus

‖Cιng − g‖F(`2N) = lim
m

‖CιmCprn
Cιng − Cιmg‖F(Cm)

= lim
m≥max(dg,n)

‖g ◦ ιn ◦ prn ◦ ιm − g ◦ ιm‖F(Cm)

= ‖g ◦ ιn − g‖F(Cm)

tends to zero as n goes to infinity.

Using the operators Cιm and Cprm
we can “sandwich” a given operator K on F(`2N) to obtain an

operator Km := Cιm ◦K◦Cprm
on F(Cm). The following proposition gives an explict formula for Km.

Proposition B.4.2. Let a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1. Let

K : F(`2N) → F(`2N), (Kf)(z) = eπ〈z|a〉 f(Bz + b)

be the corresponding composition operator. For all m ∈ N let Bm := prmBιm ∈ Mat(m,m; C),
am := prma, and bm := prmb ∈ Cm. Then Km := Cιm ◦ K ◦ Cprm

= Cιm ◦ K ◦ C∗
ιm acts via

(Kmf)(zm) = eπ〈zm|am〉 f(Bmzm + bm),

i. e. Km = Kam,bm,Bm . If K is positive, then Km is positive.

Proof. Let f ∈ F(Cm), then

(Kmf)(zm) = (φ ◦ ιm)(zm) (f ◦ prm ◦ ψ ◦ ιm)(zm) = eπ〈ιmzm|a〉 (f ◦ prm)(Bιmzm + b)

together with (ιm)∗ = prm shows the stated formula. Since C∗
ιm = Cprm

by Lemma B.4.1, with K is
also Km positive.

We are now prepared to prove the main theorem of this appendix which is one of the key ingredients in
our construction of trace class Ruelle-Mayer transfer operators satisfying a dynamical trace formula
(Theorem 2.7.6). It yields the Atiyah-Bott fixed point formula for a special type of composition
operators and a formula for their trace norm, which in general is difficult to determine.

Theorem B.4.3. Let a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1. Let

K : F(`2N) → F(`2N), (Kf)(z) = eπ〈z|a〉 f(Bz + b)

be the corresponding composition operator. Set

Λ =
√

BB?, β = (1 +
√

BB?)−1(Ba+ b), γ = exp
(π

2
(‖a‖2 − ‖β‖2)

)

and K : F(`2N) → F(`2N), (Kf)(z) := γ eπ〈z|β〉 f(Λz + β). Then K = |K| =
√
K?K,

‖K‖S1(F(`2N)) =
exp
(
π
2 ‖a‖2 + π

2 ‖(1 − BB?)−1/2(Ba+ b)‖2
)

det(1 − |B|) =
γ

det(1 − Λ)
exp
(
π‖(1 − Λ)−1/2β‖2

)
,

and K is trace class with

trace K =
exp
(
π〈(1 − B)−1b|a〉

)

det(1 − B)
.

Proof. As in Lemma B.3.10 one gets K = |K| =
√
K?K. It remains to show that the trace norm of

K, i. e., the trace of K is finite. By change of variables we can assume that the positive operator

Λ : `2N → `2N is indeed diagonal with respect to the standard basis. Let ζα(z) =
√

π|α|

α! z
α be the

orthonormal basis (α ∈ ⋃m∈N
Nm0 ) of the Fock space F(`2N). For all m ∈ N the set {ζα |α ∈ Nm0 } is

an orthonormal basis of F(Cm). Hence, using the orthogonality of Cιm (Lemma B.4.1), we get

〈
Kζα ζα

〉
F(`2N)

=
〈
CιmKζα Cιmζα

〉
F(Cm)

=
〈
CιmKCprm

ζα Cιmζα
〉
F(Cm)

=
〈
Kmζα ζα

〉
F(Cm)

,
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where Km : F(Cm) → F(Cm) is given by Proposition B.4.2 as (Kmf)(zm) = γ eπ〈zm|βm〉 f(Λmzm +
βm) with Λm := prmΛιm ∈ Mat(m,m; C) and βm := prmβ ∈ Cm. Hence

∑

α∈Nm
0

〈
Kζα ζα

〉
=
∑

α∈Nm
0

〈
Kmζα ζα

〉
F(Cm)

= trace Km
(∗)
= γ

exp
(
π‖(1 − Λm)−1/2βm‖2

)

det(1 − Λm)
,

where we have applied the Atiyah-Bott formula from Proposition B.3.9 at (∗). As m goes to infinity
we obtain the trace of K:

trace K = lim
m→∞

∑

α∈Nm
0

〈
Kζα ζα

〉

= γ lim
m→∞

exp
(
π‖(1 − Λm)−1/2βm‖2

)

det(1 − Λm)

(†)
= γ

exp
(
π‖(1 − Λ)−1/2β‖2

)

det(1 − Λ)

=
exp
(
π
2 ‖a‖2 + π

2 ‖(1 − BB?)−1/2(Ba+ b)‖2
)

det(1 − |B|) <∞.

For (†) we used Lemma B.4.1 together with [GoGoKr00, Thm. IV 5.5] showing that the pointwise
convergence Λm → Λ is in trace norm such that the limit exists. Thus K and K are trace class.
By Lemma B.4.1 the sequence of trace class operators Km := Cιm ◦ K ◦ Cprm

converges to K. By
[GoGoKr00, Thm. IV 5.5] this convergence is in trace norm, hence

trace K = lim
m→∞

trace Km
(∗)
= lim

m→∞
exp
(
π
〈
(1 − Bm)−1bm am

〉 )

det(1 − Bm)

=
exp
(
π
〈
(1 − B)−1b a

〉 )

det(1 − B)
,

where (∗) is the Atiyah-Bott fixed point theorem for each m combined with Proposition B.4.2.

As a corollary we obtain an exact formula for the Hilbert-Schmidt norm of a generalised composition
operator of the form Ka,b,Λ. We will use this result in our proof of the dynamical trace for the matrix
subshift (Theorem 3.2.6).

Corollary B.4.4. Let a, b ∈ `2N and B ∈ S1(`
2N) with ‖B‖ < 1. Let

K : F(`2N) → F(`2N), (Kf)(z) = eπ〈z|a〉 f(Bz + b)

be the corresponding composition operator. Then

‖K‖2
S2(F(`2N)) =

exp
(
π‖a‖2 + π‖(1 − BB∗)−1/2(Ba+ b)‖2

)

det(1 − BB∗)
.

Proof. We will use that ‖K‖2
S2(F(`2N)) = trace KK∗ together with Theorem B.4.3. By the arguments

as in the proof of Lemma B.3.8 one has

(K?Kf)(z) = eπ‖a‖
2

eπ〈z|Ba+b〉 f(BB?z + Ba+ b).

Hence the assertion follows from the Atiyah-Bott fixed point formula from Theorem B.4.3.

We remark that for the above Corollary B.4.4 the preassumption |B| ∈ S2(`
2N) would be sufficient,

since in this case |B|2 = B?B ∈ S1(`
2N).

As an immediate consequence of the preceding Theorem B.4.3, the canonical isomorphismF((`2N)n) ∼=
F(`2N)⊗̂n, and the properties of the tensor product of operators we obtain the trace and the trace
norm of certain tensor products of composition operators. These are used as building blocks of Ruelle-
Mayer transfer operators for Ising type interactions. The stated trace norm formula is the reason that
we cannot deal with interaction matrices which are not of Ising type as we point out in Remark 2.13.9.



182

Corollary B.4.5. Let ai, bi ∈ `2N and Bi ∈ S1(`
2N) with ‖Bi‖ < 1 for i = 1, . . . , n. Let

Ki : F(`2N) → F(`2N), (Kif)(z) = eπ〈z|ai〉 f(Biz + bi)

be the corresponding composition operators. Let Kn := K1 ⊗ . . .⊗Kn : F((`2)Nn) → F((`2N)n),

(Knf)(z1, . . . , zn) = exp
(
π

n∑

i=1

〈zi|ai〉
)
f(B1z1 + b1, . . . ,Bnzn + bn)

be the tensor product of the Ki. Then

‖Kn‖S1(F((`2N)n)) =
exp
(
π
2

∑n
i=1(‖ai‖2 + ‖(1 − BiB

?
i )

−1/2(Biai + bi)‖2)
)

∏n
i=1 det(1 − |Bi|)

and Kn is trace class with

trace Kn =
exp
(
π
∑n
i=1〈(1 − Bi)

−1bi|ai〉
)

∏n
i=1 det(1 − Bi)

.
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