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Abstract

The entire field of molecular electronics relies on a very simple concept: a single organic molecule,
or a thin layer of organic molecules, are used as a bridge between two metallic contacts. The
bias applied induces a current from one contact to the other. The basic idea is that the current is
dominated by the chemical properties of the molecule between the contacts and that this electric
characteristic can be easily tuned by an external perturbation in order to get a switch. However, de-
spite the intense investigation many issues are still waiting to be fully addressed. One of them is the
dissipation induced in the molecule by the coupling between the vibrational modes and the charge
carriers. Due to the size of the device this interaction must be described quantum mechanically via
an electron-phonon scattering process. The quantitative evaluation of dissipation in molecular elec-
tronics is fundamental for the entire field, especially for future introduction of such kind of devices
in the electronic industry.

The author of this work and Dr. Alessandro Pecchia of the University of Rome “Tor Vergata”
have implemented a code based on non-equilibrium Green’s functions formalism to investigate
electron-phonon scattering in molecular devices. The first application presented is the evaluation
of the dissipation in octanedithiols sandwiched between two gold contacts showing which are the
most relevant modes in scattering electrons. The electron-phonon scattering is much more than the
study of the “quantum resistance”. The inelastically scattered electrons in fact can be directly used
as probes to investigate the geometry and the electronic structure of the device. This spectroscopy
technique is called inelastic electron tunneling spectroscopy (IETS). Despite the IETS is an old
spectroscopy technique, its application in the molecular electronic field is recent and many features
need to be fully understood.

The electron-phonon code has been used to investigate the properties of IETS, first simulating
directly IETS in octane-thiol systems, later on addressing the problem of selection rules in this
spectroscopy technique. It is well known in fact that the selectivity of IETS is rather different from
the one of other more conventional techniques, like infrared or Raman. However the lack of a
precise knowledge of selection rules in IETS renders a clear assignment of IET spectra difficult.

The definition of selection rules requires two steps. First, the definition of the point group of
the system. It is obvious that, also if the molecule in the gas phase shows high symmetry, this
will be reduced by the presence of the electrodes and the distortions of the structure. Despite that,
the molecule remains the dominant feature of IETS measurements. We can univocally identify the
point group of the device just taking the point group of the unperturbed molecule and reducing it to
a subgroup due to the effects of the electrodes. The second issue is to define a basis set to which the
point group is applied to. It is well known that canonical molecular orbitals are not the best choice
due to the strong interference effects between them during transport. However, the current can
be decomposed in a sum of independent “channels” obtained diagonalizing directly the operator
involved in the transmission and not the Hamiltonian. The choice of this set of channels is not
unique, but all of them permit to avoid interference.

These tools have been applied to investigate IETS in a benzenedithiols molecule between model
gold contacts. The interpretation of the current in terms of independent channels provides not only
information about selection rules, but also in which region electrons are scattered, leading to a deep
comprehension of where the dissipation occurs and which chemical substitutions in the device can
improve its performances.
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Kurzfassung
Das Gebiet der Molekularelektronik beruht auf einem einfachen Konzept: Ein einzelnes oder eine dünne
Schicht organischer Moleküle verbindet zwei metallische Kontakte. Das Anlegen einer Spannung induziert
einen Strom von einem Kontakt zum anderen. Die Grundidee ist, dass der Strom wesentlich von den chemis-
chen Eigenschaften des Moleküls zwischen den Kontakten abhängt und dass diese elektronische Charakter-
istik leicht mit Hilfe einer äußeren Störung gestimmt werden kann, um einen Schalter zu realisieren. Trotz
intensiver Untersuchungen warten jedoch viele Aspekte noch immer auf ihre eingehende Behandlung. Einer
davon ist die Dissipation, welche im Molekül durch die Kopplung zwischen den vibronischen Moden und
den Ladungsträgern verursacht wird. Durch die Größe des Bauteils muss diese Wechselwirkung quanten-
mechanisch durch einen Elektron–Photon Streuprozess beschrieben werden. Die quantitative Auswertung
der Dissipation ist fundamental für das gesamte Feld der Molekularelektronik, insbesondere in Hinblick auf
die industrielle Anwendungen.

Der Author dieser Arbeit und Dr. Alessandro Pecchia von der Universität von Rom “Tor Vergata” haben
einen Code implementiert, der auf dem Nichtgleichgewichts–Green–Funktionen–Formalismus basiert, um
Elektron–Phonon Streuung in molekularen Bauteilen zu untersuchen. Die erste Anwendung ist die Berech-
nung der Dissipation in Oktanthiolat eingebettet zwischen zwei Goldkontakten, die zeigt, welches die rele-
vantesten Moden bei der Elektronenstreuung sind, eine fundamentale Frage für die Stabilität des Bauteils.
Die inelastische Streuung umfasst jedoch weitaus mehr als eine Untersuchung des “Quantenwiderstands” des
Bauteils. Die inelastisch gestreuten Elektronen können direkt als Sensor für die Geometrie und Elektronen-
struktur des Bauteils verwendet werden. Diese spektroskopische Technik wird als Inelastische Elektronen–
Tunnel–Spektroskopie (IETS) bezeichnet. Obwohl bereits recht alt, ist die IETS auf dem Gebiet der Moleku-
larelektronik neu, und viele Eigenschaften müssen erst noch verstanden werden.

Der Elektron–Photon Code wurde verwendet, um die Eigenschaften der IETS zu untersuchen, zunächst
durch direkte Simulation des IETS in Oktandithiol–Systemen, später, um das Problem der Auswahlregeln
anzugehen. Tatsächlich ist es bekannt, dass die Selektivität der IETS sehr verschieden von der anderer,
konventionellerer Techniken wie Infrarot oder Raman ist. Das Fehlen einer genauen Kenntnis über die
Auswahlregeln in der IETS gestaltet eine klare Zuordnung der Spektren schwierig. Die Definition von
Auswahlregeln erfordert zwei Schritte. Zuerst muss die Punktgruppe des Systems festgelegt werden. Auch
wenn das Molekül in der Gasphase hochsymmetrisch ist, ist es offensichtlich, dass die Symmetrie durch
Anwesenheit der Elektroden und strukturelle Verzerrungen verringert wird. Dennoch bleibt das Molekül das
wesentliche Merkmal der IETS Messungen. Unter Berücksichtigung des wesentlichen Effekts der Elektro-
den, können wir die Punktgruppe des Systems eindeutig definieren als diejenige des ungestörten Moleküls,
abzüglich aller End–End–Symmetrieoperationen. Das zweite Problem besteht darin, einen geeigneten Basis-
satz zu finden. Es ist wohl bekannt, dass kanonische Molekülorbitale nicht die beste Wahl sind, wegen der
starken Interferenzeffekte zwischen ihnen während des Transports. Der Strom kann jedoch in eine Summe
voneinander unabhängiger “Kanäle” zerlegt werden, die man durch Diagonalisierung der Matrix des Trans-
missionsoperators (nicht des Hamiltonians) erhält. Die Wahl dieser Menge von Kanälen ist nicht eindeutig,
jede Wahl ermöglicht es jedoch, Interferenz zu vermeiden. Die Interpretation des Stromes mit Hilfe un-
abhängiger Kanäle liefert auch Informationen darüber, wo die Elektronen gestreut werden, was zu einem
tiefer gehenden Verständnis führt, wo die Dissipation stattfindet und welche chemischen Substitutionen am
Bauteil die Leistungsfähigkeit des Bauteils erhöhen können.
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8.2.1 Büttiker channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.2 Γ -channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 Propensity Rules in IETS 109
9.1 Theoretical formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 From Γ -channels to A-channels . . . . . . . . . . . . . . . . . . . . . . . 111
9.3 Propensity rules in IETS . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



CONTENTS vii

Conclusion 123

A Atomic Units 127

B Surface Green’s Function: Decimation Technique 129

Bibliography 133
Own Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Personal Contributions 147

Acknowledgments 148





Introduction

[...] I don’t know how to miniaturize a computer on a small scale in a practice
way, but I do now that computing machines are very large; they fill rooms.
Why can’t we make them very small, make them of little wires, little elements
and by little, I mean little. [...]

[...] But there is plenty of room to make them smaller. There is nothing that I
can see in the physical laws that says the computer elements cannot be made
enormously smaller than they are now [...]

[...] It is not an attempt to violate any laws; it is something, in principle, that
can be done; but, in practice, it has not been done because we are too big [...]

Richard P. Feynman There is a plenty of room at the bottom, 1959.

The idea of engineering at molecular scale has always been a dream of scientists. In his
speech quoted at the beginning of this introduction, Feynman, more than fifty years ago,
remarked that “there is a plenty of room at the bottom” to miniaturize our devices up to a
very microscopic scale.

In the last 30 years, the silicon metal oxide semiconductor (MOS) field-effect transistor
(FET) has been the foundation of integrated circuits [1]. In the 70s, integrated circuits con-
tained thousands of MOSFETs, each having dimensions of tens of micrometres. Today’s
chips contain almost one billion MOSFETs, each having physical dimensions of tens of
nanometres. The exponential increase of device density (Moore’s Law [2]) and scaling of
device dimension into the nanotechnology regime (see Fig. (1)) have resulted in the vast
improvements observed in numerous electronic devices, from PCs to control systems found
in airplanes.

Although substantial innovation was required to realize this rate of dimensional scaling,
until recently very little has changed in the materials and design of the basic MOSFET. In
the future, a variety of new materials and device structures will be required to continue
MOSFET scaling [3, 4, 5, 6]. Furthermore, as silicon MOSFET technology approaches
its limits [7], entirely new device structures and computational paradigms will be required
to replace and improve traditional MOSFETs. These possible emerging technologies span
from transistors made of silicon nanowires to devices made of nanoscale molecules.

1



2 Introduction

Figure 1: The Moore’s Law in a diagram: the exponential growth of the number of transistors on
a single chip in the last thirty years.

Independently the future of electronics will be based on nanoscale planar silicon MOS-
FETs or an emerging technology which totally replaces the MOSFET, the electronic prop-
erties of all of these nanodevices are extremely susceptible to small perturbations in proper-
ties such as dimension, structure, roughness and defects, which means there is a significant
need for precise metrology. Furthermore, the insertion of a variety of new materials into
the conventional MOSFET and radically new materials and devices for potential emerg-
ing replacement technologies (for example, molecular and spin electronics) present further
challenges for metrology. Although the devices and materials being considered for future
MOS technologies and beyond are broad, the overarching challenges to metrology remain.
The ability to measure the physical, chemical and electronic properties that control final
device electrical characteristics will be crucial to the research and development of future
electronic devices.

In this rush to get smaller and faster devices, molecular electronic represents the ulti-
mate frontier. The potential for molecular electronics originates from its nanoscale dimen-
sion, the possibility of synthesizing very specific electronic properties, and the promise
of fabrication through self-assembly. Although numerous molecular devices have been
demonstrated, there is still significant controversy concerning the repeatability of measure-
ments and the understanding of charge transport [8, 9, 10]. Many problems are related
to the difficulties to investigate the geometry and the electronic structure of the molecule
connected to the metal electrodes. The final device structure dramatically changes the
intended electronic properties of the material of interest. The interaction between the elec-
trodes and molecules is critical to understand the transport properties of the final device.
Forming ohmic but non-interacting metallic contacts to molecules is a specific problem. A
new set of experimental techniques, such as inelastic tunneling spectroscopy, which probes
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vibrational modes of the molecules through measurement of the device current-voltage be-
havior, have been developed to determine which molecular species and bonds are present
in the final device structure [10]. New effects can arise creating a completely new kind
of electronics, such as Kondo effect [11], negative differential resistance [12] or Coulomb
blockade [11]. All these new problems, techniques and effects represent a continuous chal-
lenge for researchers.

The silicon electronics has been a technological and economic engine for over thirty
years. Metrology has been an important infrastructure enabling the exponential increase
of device density and exponential decrease of device dimension. New nanoscale materials
and devices will be required to sustain this technological revolution but the extreme sen-
sitivity of the electronic properties of these devices to their nanoscale physical properties
and the insertion of radically new materials present significant challenges for their devel-
opment. The ability to measure the physical, chemical and electronic properties of these
new materials and devices will become even more critical in continuing the advance of the
MOS and finding technologies to extend or replace it.

Concluding, “there is a plenty of space at the bottom” and we are just scratching the
surface.





Chapter 1
Molecular Electronics: a Brief Overview

In this Chapter is given a brief introduction to some of the most important experimental
techniques which are gaining popularity in the molecular electronic field. The techniques
presented are not the only in existence and also for the techniques enlisted here are many
variants not mentioned. However, a very detailed discussion of all methods to create molec-
ular devices is beyond the scope of this work. The techniques described have been selected
not only for their importance, but also for the relevance they have in the present work.

The setup of molecular electronic devices, despite the wide spectrum of variation that
have been developed in the recent years, can be summarized in few words: an organic or
inorganic molecule, or a thin layer of molecules, bridging two contacts. The geometry
can be very different from one device to the other as much as the molecules used and the
materials of the electrodes. Moreover a gate can or cannot be present. This has produced
a wide range of possibilities for this kind of devices, nevertheless the main characteristic
of the device remains the molecule (or molecules) used to create the bridge. In fact the
very basic idea of molecular electronics is that the electronic properties of the bridging
molecules can be used directly to create a switch, and in electronics a switch is the first
step to define a logic circuit.

The first experiments for molecular electronics concerned mainly measurements of
conductivity, because this is the first, the easiest and, in many respects, the most impor-
tant quantity we want to know about an hypothetic molecular device. Nevertheless, in the
following years, other aspects have become more and more important. The discovery of
very peculiar effects related to the strong confinement of the electrons in the molecular
device region, important spin-spin correlation processes and many other properties related
to the quantum nature of the physics at molecular scale have started to be investigated
experimentally and theoretically. Moreover another important issue has become very pop-
ular: the dissipation in these devices. It is obvious that if a current is flowing in this tiny
molecular bridge a certain degradation of the flux of current must be expected.

However, the magnitude and the quality of this degradation, that we can address as
a sort of “quantum resistance”, are still under investigation. Even more, the dissipation
is certainly a fundamental ingredient to address the stability of electronic devices, in fact

5



6 Chapter 1. Molecular Electronics: a Brief Overview

only a complete understanding of the exchange of energy between the environment and
the molecule can give an insight into the mechanisms which underlie the conduction in
the device. Finally, the electrons inelastically scattered can be directly used as probes to
investigate the device itself as in the Inelastic Electron Tunneling Spectroscopy (IETS). The
last part of this Chapter is devoted to describe the IETS due to the relevance this technique
has in the present work.

Of all the experimental setups described in this Chapter Nanopores and Molecular
Break-Junction are certainly the most important for the present work. Finally a remark:
every technique is offering particular advantages and drawbacks, but, so far, none of them
can be viewed as a “standard model” for experimental setup and all of them are far away
from being implemented on an industrial scale to yield commercial devices. Contacting
and manipulating few molecules between bulk contacts on the nanometer scale in a reli-
able and reproducible fashion still constitutes a scientific and engineering challenge.

1.1 Molecular electronics experimental techniques

1.1.1 Break junction experiments

The use of Mechanically Controlled Break-Junctions (MCBJ) [14, 15] for contacting single
molecules is a further development of single-atom contact conductance experiments [16,
17]. The gap to introduce the molecules which will form the bridge is created by elongating
a metal wire by a mechanical stress. Shortly before breaking, the contact between the
two halves reduces to one single atom. Further elongation yields an atomic chain of gold
atoms until the wire finally breaks. The design principal of MCBJ device is simple: a thin
gold film is structured, using e-beam lithography, on an elastic substrate. The gold film is
designed to have a constriction. By underetching this constriction, a freestanding bridge is
created. The sample is placed in a bending mechanism as depicted in Fig. (1.1).

The very precise control of the bending is allowed by a three point geometry. To avoid
contaminations, the bending mechanism is placed in a vacuum chamber. The pushing rod
(a piezoelectric element) is moved upward until the bridge breaks. The upward movement
is converted, by the bending of the substrate, in a variation of the distance between the two
halves of the metallic sample. The control of this movement is extremely precise, up to 0.1
Å. Now, the contacts are opened and closed repeatedly until quantized conductance values
are observed, corresponding to the formation of a sharp atomic point contacts.

Then the chamber is filled with an inert gas (like argon) and a solution of the molecule
(with terminal protective groups attached to the thiol groups) to be measured is applied
on the opened contacts. The terminal group prevents the molecules from forming clusters
and only attach in contacts with the gold forming a stable covalent bond between sulfur
and the gold. The thiol group is the most popular choice because the strong covalent bond
it forms with the gold atoms. After a while the solvent will evaporate and some of the
molecules will loose their protection terminal group and the sulfur will chemically bind to
one electrode.
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Figure 1.1: 1) Schematic of the measurement process. (A) The gold wire of the break junction
before breaking and tip formation. (B) After addition of the molecule (in this case benzene-1,4-
dithiol in a tetrahydrofuran (THF) solution), layers form on the gold wire surfaces. (C) Mechanical
breakage of the wire in solution produces two opposing gold contacts that are covered by a layer
of molecule each. (D) After the solvent is evaporated, the gold contacts are slowly moved together
until the onset of conductance is achieved. 2) A schematic of the experimental setup with (a) the
bending beam, (b) the counter support, (c) the notched gold wire, (d) the glue contacts, (e) the
piezo element, (f) the glass tube containing the solution. 3) A schematic of a benzene-1,4-dithiolate
layer of molecule between proximal gold electrodes formed in a MBJE. The thiolate is normally H
terminated after deposition; end groups denoted as X can be either H or Au, with the Au potentially
arising from a previous contacts/retraction event. These molecules remain nearly perpendicular to
the Au surface, making other molecular orientations unlikely (from [13]).

To remove molecules that are not chemically bound to the gold, the junction is rinsed
with a solvent. After evacuation, the bridge is slowly closed with bias voltage applied.
Due to the small distance between the two electrodes, a high electric field is present, in
which the molecules orient themselves toward the opposite electrode. At one point, the
first molecules will reach the second electrode and chemically bind to it. This situation can
be recognized by a plateau in the current. Now, current-voltage curves can be recorded.
Break-junction offer the best control for single-molecules experiments [13, 18, 19, 20, 21],
nevertheless the main drawback of the technique is the impossibility to introduce a gate in
the device due to the large diameter of the breaking gold wire. Every gate electric field is
in fact completely screened by the metal.
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Figure 1.2: A) Langmuir-Blodgett (LB) films: a layer of molecules with an hydrophilic group is
laying on the surface of water. The solid substrate is merged in the water (a). When the layer is
compressed the molecules start to climb to the solid substrate (b). The step can be repeated to
get multi-layers systems (c). B) A self-assembled monolayer structure (SAM) formed by molecules
with a thiol group in solution with a metallic substrate. The molecules, after a while, bind to the
substrate.

1.1.2 Molecular monolayer devices

The main difference between this approach and the former is that more than one molecule
is used to make the device. The principal advantage relates to the simplicity to produce well
structured layers. The substrate of the layer act as one of the electrode while the second is
then evaporated on top, yielding a film device, or it is a Scanning Tunneling Microscope
(STM) tip. The main difficulty in film devices is the deposition of the second electrode
that can easily damage the monolayer. Although working devices are achieved in most
cases, the actual microscopic structure of the measured device (structural integrity of the
monolayer, defects) is still not clear [22]. Several devices based on sandwiching molecular
films between two electrodes have been reported [23, 24, 25]. Different techniques can be
applied to produce a molecular monolayer: Langmuir-Blodgett films and Self-Assembled
Monolayers. Due to the simplicity of their formation these devices are very promising
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possibilities for the future of molecular electronics, especially for hybrid devices which
combine with more standard electronics.

Langmuir-Blodgett films (LB): Langmuir-Blodgett films consist of mono-molecular
layers stacked sequentially onto a solid substrate. A solid substrate, covered by a hy-
drophilic material, is lowered into the water, breaking through the LB film which stays
on the surface of the liquid. The molecules of the LB must contain a hydrophilic group,
e.g. acid or alcohol group, and a hydrophobic group, usually an aliphatic chain, to allow
film formation on the surface of the water. In water, all the molecules will then align in
the same direction with the hydrophilic end at the water side. A continuous monolayer,
which can later be transferred on the substrate, is formed by compression of the film using
a moveable barrier. The substrate is slowly removed from the bath while at the same time
the barrier is shifted to keep the monolayer intact. This way, a well-ordered monolayer of
the organic molecule is formed on the surface of the substrate (see Fig. (1.2, a)). The big
disadvantage of this method is that the molecules are not chemically bound to the substrate,
as a hydrophilic group is required on the substrate side of the molecule.

Self-Assembled Monolayers (SAMs): Molecular self-assembly is a very well known
strategy for nano-fabrication that involves designing molecules and supramolecular enti-
ties so that shape-complementarity causes them to aggregate into desired structures. Self-
assembly has a number of advantages as a strategy: first, it carries out many of the most dif-
ficult steps in nano-fabrication, those involving atomic-level modification of structure, us-
ing the very highly developed techniques of synthetic chemistry. Second, it draws from the
enormous wealth of examples in biology for inspiration: self-assembly is one of the most
important strategies used in biology for the development of complex, functional structures.
Third, it can incorporate biological structures directly as components in the final systems.
Fourth, because it requires that the target structures be the thermodynamically most stable
ones open to the system, it tends to produce structures that are relatively defect-free and
self-healing.

Although there are countless examples of self-assembly all around us the basic rules
that govern these assemblies are not understood in useful detail, and self-assembling pro-
cesses cannot, in general, be designed and carried out “to order”. Many of the ideas that are
crucial to the development of this area: “molecular shape”, the interplay between enthalpy
and entropy, the nature of non-covalent forces that connect the particles in self-assembled
molecular aggregates, are simply not yet under the control of investigators. In the typi-
cal SAM setup for molecular electronics the monolayer forms from molecules in solution
on the substrate itself, due to the properties of the molecules [23]. These systems – self-
assembled monolayers (SAMs) – are reasonably well understood, and increasingly useful
technologically. The crucial dimension in SAMs is the thickness perpendicular to the plane
of the monolayer: this dimension, and the composition along this axis, can be controlled
very simply at the scale of 0.1 nm by controlling the structures of the molecules making
up the monolayer. After a layer has formed, the substrate is removed from the solution
(see Fig. (1.2, b)). The second electrode can then be evaporated on top of the molecular
layer. Many measurements using SAM devices have been reported [24, 26]. For SAMs



10 Chapter 1. Molecular Electronics: a Brief Overview

the technique is simpler than LB and chemical bonds to the substrate can and have to be
achieved.

1.1.3 Nanopores

Figure 1.3: Fabrication of the heterostructure. (a) Cross section of a silicon wafer showing the
bowl-shaped pore etched in suspended SiN membrane with a diameter about 300 Å. (b) Au-Ti
top electrode/self-assembled monolayer/Au bottom electrode sandwich structure in the nanopore
(see [27]).

The idea of nanopore links directly to the one of SAM. The idea is to have a small hole
in which deposit a smaller number of molecules than in SAMs and LBs techniques. The
self-assembling properties of the molecules and the confinement of the hole lead the system
to form a well structured layer. The first measurement of conduction with nanopores was
presented by Zhou and Reed [27] at the same time of their publication of break-junction
experiment. The hole is etched into a freestanding silicon nitride layer by reactive ion
etching. After the etching, gold is evaporated onto the hole from underneath. Then a SAM
is allowed to form on the evaporated gold. Finally, titanium and gold are evaporated from
above to yield the molecular device (Fig. (1.3)). The main advantage of this structure is its
stability and the reduction of size if compared to more traditional monolayers devices. The
big disadvantage is the deposition of the second electrode, the effects of that are still not
clear as for SAMs, moreover it is not clear which is the interaction between the titanium
and the molecules.
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Figure 1.4: Kondo effect in a single molecule device. Experiment by J. Park et al. [11] using
electromigration contacts. Left: molecules investigated, consisting of a Co ion trapped in a cage of
benzene rings. Right: observed Kondo peak in the shorter molecule. Displayed is the differential
conductance over bias voltage in V. Different traces correspond to different temperatures. The inset
shows the decrease of the peak height with temperature.

1.1.4 Electromigration experiments

Devices fabricated by electromigration offer the possibility to study the influence of a gate
electrode. Usually, a 10 to 15 nm wide wire is fabricated on a SiO2 insulating layer using
e-beam lithography [28]. A doped Si substrate underneath the SiO2 can be used as a gate
electrode. After adding a solution of the molecules to be investigated onto the wire, the
single-molecule contact is then created by breaking the wire through electromigration: at
low temperature the applied bias voltage is increased to large values until the wire breaks.
This produces a gap of about 1 to 2 nanometers, across which in about 10% of the samples
a molecule is found, so that the current-voltage characteristic can be recorded. Using the
electromigration technique, J. Park et al. [11] managed to observe the Kondo effect (see
Fig. (1.4)) and the Coulomb blockade effect in single molecules consisting of a cobalt ion
trapped in a polypyridyl cage. For the longer, less conducting molecule, a conductance gap
for small bias voltage was observed. In dependence of the gate voltage different threshold
bias values were necessary until the current increased, corresponding to Coulomb blockade
behavior. 2D plots of conductance in dependence of applied bias and gate voltage yielded
Coulomb diamonds. For the shorter molecule, where the cobalt-ion acted as an “impurity
spin” a Kondo resonance was reported: at zero bias, a peak in the difference conductance
has been reported, that has a logarithmic temperature dependence with temperature be-
tween 3 K and 20 K.

As a second test, a magnetic field was applied which resulted in a split of the peak,
as would be expected from Kondo physics. A second group, H. Park et al. [29], also
observed a Kondo resonance in single molecules using electromigration techniques to con-
tact the molecules. There are many other experiments that make use of the electromigration
technique to contact single molecules [29, 30, 31].
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1.1.5 Scanning tunneling microscope experiments

Figure 1.5: (A) Conductance of a gold contact formed between a gold STM tip and a gold sub-
strate decreases in quantum steps near multiples of G0 = (2e2/h) as the tip is pulled away from
the substrate. (B) A corresponding conductance histogram constructed from 1000 conductance
curves as shown in (A) shows well-defined peaks near 1 G0, 2 G0, and 3 G0 due to conductance
quantization. (C) When the contact shown in (A) is completely broken, corresponding to the col-
lapse of the last quantum step, a new series of conductance steps appears if molecules such as 4,4’
bipyridine are present in the solution. These steps are due to the formation of the stable molecular
junction between the tip and the substrate electrodes. (D) A conductance histogram obtained from
100 measurements as shown in (C) shows peaks near 1 ×, 2 ×, and 3 × 0.01 G0 that are ascribed
to one, two, and three molecules, respectively. (E and F) In the absence of molecules, no such steps
or peaks are observed within the same conductance range, see [32].

Using monolayer film devices, it is also possible to conduct measurements on single
molecules. A Scanning Tunneling Microscope (STM) tip is used as second electrode.
Often films consisting of a matrix of spacer molecules plus the molecules to be measured
are used. By using these smaller, insulating molecules (usually based on alkyl chains) as
spacers, the molecules of interested are separated spatially from each other enhancing the
probability to contact a single molecule with the STM tip. As di-thiol SAMs (with sulfur
groups on both ends) are difficult to produce, the molecules can usually only be chemically
bound to the substrate, the second contact then is a tunneling contact. In consequence,
STM based single-molecule measurements always have strongly asymmetric coupling to
the electrodes, which makes interpretation of the experimental data more complicated.

The first demonstration of a single-molecule measurement based on STM techniques
was done by Bumm and Tour [33]. Here, longer molecules consisting of several benzene
rings in a SAM with shorter, insulating molecules as spacers, were contacted using the
STM tip. The molecules were covalently bound to the substrate via thiol groups, whereas
the contact to the STM tip was a tunneling contact. Since then, many other STM based
conductance measurements have been reported [23, 32, 34]. In 2003, Tao and coworkers
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developed a method that allows the repeated formation of molecular junctions using a gold
STM tip in fast succession [32]. The STM tip is moved into and out of contact with a
gold substrate in a solution containing the sample molecules. When the tip is pulled out
of contact, a stepwise decrease in the conduction is observed, (Fig. (1.5)). These steps are
the usual conduction steps observed in metallic point contacts. When the tip is pulled out
further, additional plateaus appear, corresponding to a resistance two orders of magnitude
higher. By statistical analysis it was possible to attribute these steps to the measurement of
a distinct number of molecules between the contacts.

1.2 Inelastic electron tunneling spectroscopy
IETS is an all electronic spectroscopy that has been extensively reviewed [35, 36]. By mea-
suring currents and voltages across a metal-adsorbate-metal (M-A-M’) device in a special
way, one is able to extract vibrational and electronic spectroscopic information about the
metals (magnons and phonons), the insulator, and the adsorbate. It has been successfully
applied to problems in surface chemistry and catalysis, adhesion and corrosion, molecular
vibrational and electronic spectroscopy. The motivation for tunneling studies is based on
several unusual properties of the electron-molecule scattering process. Despite the com-
plexity of the experimental setup, the molecule must be connected to two electrodes, there
are some remarkable advantages (see [35]):

• Optically forbidden (IR and/or Raman) fundamental transitions may be observed. In
addition, spin and dipole forbidden electronic transitions are also allowed .

• Overtone and combination bands are very weak or absent. Thus, virtually every band
is due to a fundamental transition.

• Very small amounts of compound can provide a complete spectrum.

• IETS offers the opportunity of studying molecules in buried interfaces thereby pro-
viding unique insights into the effects on molecular states produced by intimate con-
tact with metallic and insulating layers.

• IETS provides a high sensitivity method for studying chemisorption and catalysis.

• It is an all solid-state spectroscopy. In principle the sample and spectrometer could
be built on a single chip. When this feature is combined with the further development
of porous electrodes, IETS becomes uniquely situated for sensor applications.

The IETS is based on electron tunneling. By electron tunneling I mean the motion
of electrons from one classically allowed region to another through a region where the
electron is classically forbidden to exist (see Fig. (1.6)). The barrier region is one in which
the potential energy, U , is greater than the total classical energy, E. If the particle moves
from one allowed region to another, it must tunnel through the potential barrier. Of course,
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there is no such prohibition in quantum mechanics. An electron of energy E impinging on
the potential barrier from the left in Fig. (1.6) has an exponentially damped probability of
penetrating the barrier a distance z. If U and E are both large (several electron volts) and
d is very small (of the order of 1 nm), there is a finite probability of the incident electron
emerging into the classically allowed region III.

Figure 1.6: Schematic representation of the elastic tunneling process.

The tunneling can be divided as the sum of two fluxes: the first related to elastic tun-
neling when the electron flows from one contact to the other without any interaction with
the barrier, the second is the inelastic tunneling when the electron undergoes an interaction
with the degrees of freedom inside the barrier (like the modes of vibrations of the molecular
region).

A schematic view of what happen for IETS is shown in Fig. (1.7, a). In the crude model,
the free electron theory is used to represent the metals and the insulator plus adsorbate is
treated as a vacuum space. The electron states are filled up to the Fermi energy, EF , and the
work function of the metal is given by φ . It is assumed that we are at very low temperature
so that the occupation in the contacts follow a real step-like function. The hatched regions
in Fig. (1.7, a) represents completely filled metal orbitals. The HOMO and LUMO of the
molecular region are also shown in Fig. (1.7, a), as are a few schematic ground vibrational
levels. The interaction between the top metal and the molecule can produce a shift in
molecular energy levels and its level spacing as well as the vibrational spectrum. As the
two metals and insulator are brought together, electrons flow via tunneling until the Fermi
surfaces are matched. If the left-hand metal electrode is taken as the reference, the right-
hand electrode develops a net charge, of sign and magnitude determined by the difference
in work functions. Once the Fermi energies are matched, no net current flows and the
approximate barrier height is φ ∼ (φM +φM′)/2. In the case of metals with widely different
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work functions there is an internal potential generated that can amount to millions of volts
per centimeter.

Figure 1.7: Energy diagram for an Al-Al2O3-anthracene-Pb tunnel diode showing elastic and
inelastic tunneling processes. (a) The hatched regions represent the filled states of the top and
bottom metal electrodes. The area in the center represents the anthracene coated alumina. The
HOMO (π) and LUMO (π∗) orbital energies and a few vibrational levels are indicated. The case
shown is where the bias energy (eV) is just sufficient to allow inelastic tunneling with excitation of
the first vibrational level, eV = hν . Energy loss (equilibration) for the tunneling electron occurs
through a cascade process in the M’ electrode. (b) The I-V curve, conductance-V curve, and the
IETS spectrum that would result from both elastic processes and the first inelastic channel as shown
in the barrier diagram.

When a small bias is applied a tunneling current starts to flow. At low temperature
the absorption of phonons is much smaller than the emission from the electrons which is
the dominating process. Until the bias is smaller than the smallest vibrational frequency
no scattering is allowed because after the emission of a phonon the electron will end up
below the Fermi energy of the second electrode. This means that only the elastic current
can pass. This elastic tunneling current is the ever-present source of the background signal
with which all tunneling spectroscopists must deal. Since IETS depends on derivatives of
I with respect to V (see Fig. (1.7, b)) it would first appear that the elastic current would
have little effect on the IETS. Unfortunately, the number of electrons tunneling elastically
is usually orders of magnitude larger than the number utilizing inelastic channels. Thus,
relatively small deviations of the elastic current produce large background changes. This
background is depicted as linear in Fig. (1.7, b), but can become nonlinear and even non-
monotonic.
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When the bias is large enough, in addition to elastic tunneling, there are other tunneling
mechanisms which may contribute to the current: the inelastic current as shown in Fig. (1.7,
b). The moving electronic charge interacts with the time-varying molecular vibrations to
induce excitation of the molecule in the barrier with concomitant loss of energy by the
electron. From an energetically point of view the applied voltage is less than hν/e, the
inelastic channel is closed because the final states are already filled (Pauli principle). At
V = hν/e the inelastic channel opens. Further increases in V result in additional possible
final states with an associated increase in current due to this channel. As is depicted in
Fig. (1.7, b), there is a change in the slope in the I-V curve at V = hν/e. If one measures
the conductance, dI/dV , the opening of the inelastic channel is signaled by a step. Plotting
d2I/dV 2 versus V produces a peak at V = hν/e. Both vibrational and electronic transitions
may be observed as peaks in the d2I/dV 2 versus V plots.

The width of the peaks in IETS depends upon the sharpness of the onset of the inelastic
process, which in turn depends upon the thermal distribution of electron energies about EF .
Thus, the IETS line width depends on temperature and is about 3.5 cm−1 K−1. Because of
this, vibrational IETS is most often performed below 5 K. Electronic transitions are usually
much broader than vibrational transitions. In its simplest form, an IET spectrum is a plot
of d2I/dV 2 versus V . It turns out that using (d2I/dV 2)/(dI/dV ) as the y-axis provides
spectra having flatter baselines and is most appropriate for high bias work [37].

There are very few hard selection rules in IETS. Instead, there are some selection pref-
erences (referred in literature as propensity rules [38]). In IETS we see some bands that
appear in IR or Raman spectra and others that are optically forbidden. Thus, IETS is an ex-
cellent complementary vibrational spectroscopy for high symmetry molecules where many
of the modes are optically forbidden.

In principle, the spectrum in IETS is usually assigned by comparison with IR, Raman,
and HREELS results for monolayers of the molecule in question. However, the absence of
simple selection rules means that IETS may exhibit markedly different spectra with charac-
teristics that are difficult to predict. There have been several theoretical approaches devel-
oped to simulate IETS [39, 40, 41, 42, 43, 44, 45, 46], approaches with varying strengths
and weaknesses. The theoretically most advanced ones have been applied to model sys-
tems [43] while many of the earlier ones made significant approximations in order to treat
real molecules with ease.



Chapter 2
Modeling Molecular Electronic Devices

The main aim of every theoretical transport model is of course the description of the flow
of current in the device region, in our case focusing on the dissipation induced by electron-
phonon interaction (vibronic coupling). In Chapter 1 some of the most popular experi-
mental setups for molecular electronic devices were presented. The reason for that brief
introduction was to show the kind of systems that must be simulated. Following those
setups, in this second Chapter, a theoretical approach to model the device is discussed.

In the first part of this Chapter is shown how the device is partitioned in different re-
gions. This partitioning is related to the way the bias drops through the entire device. First
we have the proper molecular bridge connected to two leads, the leads are the interface
between the molecular bridge and the bulk contacts. The contacts are bulk regions which
act as two semi-infinite reservoirs of charges. The current flowing in the molecular bridge
is a flux of charges going from one contact to the other. This flux is influenced by many as-
pects of the system under investigation. First of all, the electronic structure of the molecule
and of the two leads, which is related to the geometry of the system and the material used
to make the device. The interface between molecule and contacts should also define the
charge transfer that occurs between the two also at zero bias and, eventually, the relax-
ation of the molecule when sandwiched between the two electrodes. Two other important
aspects influence the total current: the bias applied, and the electron-phonon interaction
which changes the distribution of electrons in the molecule and determine the power dissi-
pated in the bridge.

In the second part of this Chapter is presented the Meir-Wingreen equation [47], for
the calculation of the steady-state current including the effect of inelastic scattering. This
general equation can be simplified to a complete elastic transport equation, the Landauer-
Büttiker equation [48, 49], if the inelastic scattering interaction is neglected.

During this Chapter extensive use of the formalism called second quantization is made.
It is a particular convenient formalism for transport problems. For the non expert reader I
suggest, from the literature, a brief list of excellent sources about the topic [50, 51, 52].

17
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2.1 The general problem of molecular conduction
All the experimental setups show very similar features: the presence of two contacts and
a molecule, or a layer of molecules, which bridges them, sometimes also a gate is present.
In Fig. (2.1) a schematic view of a typical molecular electronic device is shown.

Figure 2.1: A schematic view of a typical molecular electronic device. In the picture different
regions can be recognized: the molecular (M) and the surfaces or leads regions (L) which together
form the device region (D). The two semi-infinite contacts (CL and CR) act as charge reservoirs.

To better simulate such devices, the entire system is usually split in different parts. For
the simplest geometry, we need at least two electrodes, (CL and CR, but the formalism and
the experiments can be generalized to a larger number of electrodes) and a device region
(D). The contacts (CL and CR) represent two semi-infinite reservoirs of charge carriers.
Electrons within the contacts are assumed to be in thermodynamic equilibrium and their
electron distributions can be correctly described by means of two Fermi functions with a
definite chemical potential (µL and µR), see Fig. (2.2). If no bias is applied the two chemi-
cal potentials are the same. The contacts are assumed to be perfect, defect-free crystalline
structures, in the sense that they can always be constructed starting from a defined unit
cell. Apart from this assumption, no constraint is imposed on the dimensionality, trans-
verse size and transverse shape of them. They can be one-dimensional atomic chains,
two-dimensional planar atomic strips or three-dimensional wires of arbitrary cross-section.

The device region (D) is obviously the most important part of the system. It is the
region in which the main processes happen. It can be formed by every collection of atoms
between the contacts. When a bias is applied the reservoirs are assumed to remain locally
in thermodynamic equilibrium. This means that the only effect of the bias is to change the
two chemical potentials that now have different values. All the voltage drop is instead in
the device region, which is in non-equilibrium condition (see Fig. (2.2)). The main con-
sequence of this is that both contacts try to shift the chemical potential of the device to its
own level. The contact with the higher chemical potential tries to charge the device while
the other contact tries to discharge it. The final effect is a net rate of electrons (or holes)
flowing through the device from one contact to the other, that means a current. Due to the
fact that the device region must include all the part of the system where there is a significant
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Figure 2.2: The voltage drop in the different regions when an external bias is applied. µL and µR

are the two chemical potentials of the left and the right contact respectively. The drop of the bias
occurs practically entirely in the molecular region and to a small extent in the lead regions also.

voltage drop it cannot reduce, usually, to only the molecular part. Some layers of the con-
tacts must be included in the device, they are called leads. The system represented by the
molecule plus the leads is often called extended molecule in the literature. The size of the
leads depends mostly on the screening of the bias induced by the material of the contacts,
so that different materials can result in different leads. The partitioning between device and
contacts is an important issue, however, for many qualitative simulations we can effectively
restrict the device region to the molecular bridge only, without large consequences.

The switching of the bias induces a current. After a first transient regime, where the
current shows a clear time dependence, it reaches rapidly a steady-state. Despite the impor-
tance of the transient regime for the stability and the switching properties of an electronic
device, the steady state regime is the only one investigated in the present work, also because
is the one which is usually measured in experiments.

Theoretically the first challenge is to map the open boundary conditions represented
by the contacts into the finite size device region. The problem is solved defining two po-
tentials, called self-energies, which describe the incoming and outgoing of charges to and
from the device. This simplification allows to reduce the dimensionality of our system.
Instead of including the entire semi-infinite contacts in the simulated model I need just the
device region and some chunks of the two contacts. From these chunks the self-energies
can be computed (see Chapter 5 and Appendix B for a complete description of the evalua-
tion of the self-energies). They are non local, non hermitian, energy dependent potentials.
The non hermitianity is the fundamental property of these potentials. Including them in the
Schrödinger equation we define for the device region a new set of eigenvalues and eigen-
states. The eigenvalues are complex numbers, where the real part is the energy of the level
while the imaginary part is the inverse of a lifetime. The lifetime takes into account the
time spent by the charge in the device, before it is absorbed by the contacts.

The eigenstates represent a set of transmission states, connected through the self-energies
to the external environment; they are called scattering states. Each of these scattering states
is carrying a finite amount of current due to its occupancy. In case of molecular devices
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these scattering states give a simple explanation of the strong non-linearity which is nor-
mally observed in current-voltage characteristics. When in fact one of these states enters in
the energy window between the two chemical potentials of the contacts another channel for
the current is switched on and more current can flow. The knowledge of scattering states
completely covers the problem of describing quantum conductance in the case of elastic
transport, that means when inelastic scattering processes are not relevant.

In case scattering processes (e.g. electron-phonon) are present the problem is compli-
cated by the fact that emission or absorption of phonons can change the channel in which
one charge propagates and scatters it into another channel. The calculation of scattering
states can be achieved by several techniques, such as transfer matrix (TM) and Green’s
function (GF) approaches [53, 54]. Although the computational cost of the TM method is
generally smaller with respect to the GF technique, the latter approach is more powerful. In
fact it can be extended and generalized to a statistical Non-Equilibrium Green’s Function
(NEGF) theory [50, 55] accounting for the correct population of the states with the inclu-
sion of scattering mechanisms (electron-electron, electron-phonon, etc). A more detailed
treatment of the NEGF method is presented in Chapter 3.

2.2 The Hamiltonian of the system

The general Hamiltonian for the entire system must consider the presence of the device and
the contacts regions and, also, of the phonons in the molecule which are connected to an
external bath in thermodynamic equilibrium. The external bath of phonons represents the
thermal vibrations of the contacts. With this in mind it is possible to write the Hamiltonian
of the entire system, using second quantization formalism:

Ĥ = ĤD +V̂DC + ĤC (2.1)

where:
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α âα + ∑
i, j;α

Mα
i j Q̂

a
α d̂†

i d̂ j (2.2)
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†
k d̂i +V ∗

kid̂
†
i ĉk
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Eqn. (2.1) is the sum of three terms: the contributions to the Hamiltonian of the device,
ĤD, of the contacts, ĤC, and the coupling between the two, V̂DC. In Eqn. (2.2), Eqn. (2.3)
and Eqn. (2.4), â (â†) and b̂ (b̂†) are annihilation (creation) operators for the phonons in the
device and in the external bath respectively. The d̂ (d̂†) and ĉ (ĉ†) are similar operators for
electrons in the device and in the contacts. The creation and annihilation operators satisfy
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the usual commutation rules:

[âi, â
†
j ] = δi j (2.5)

[ĉi, ĉ
†
j ]+ = δi j (2.6)

where the first relation is for boson operators and the second, the anticommutation, is for
fermion operators. Finally, Qa

α and Qb
β are vibration coordinate operators:

Q̂a
α = âα + â†

α (2.7)

Q̂b
β = b̂β + b̂†

β (2.8)

In the equation εi is the energy state of the device central region, ωα (ωβ ) are the energies
of phonons in (and out) of the device, Mα

i j is the electron-phonon coupling for the α th

mode of vibration, εk is the energy of one electron in the contacts, Vki is the contact-device
coupling and finally Uαβ is the phonon-phonon coupling between phonon in the device and
in the external bath. Eqn. (2.2) is the sum of three terms related to the electronic structure,
the phonon population and the interaction between phonon and electrons in the device.
Eqn. (2.3) is the same for the two contacts, but because the contacts are in equilibrium, there
is no electron-phonon term here. Finally, the last equation, (2.4), describes the coupling
between contacts and device (first term) and the coupling between phonons in the bath and
in the device (second term).

The model is characterized by other parameters which are fundamental for the evalua-
tion of the current. These quantities are:

ΓL,R
i = 2π ∑

i j;k∈L,R
|Vik|2δ (εi− εk) (2.9)

it represents the molecule-contact coupling by its effect on the lifetime broadening on a
molecular level i and,

γL,R
α = ∑

α;β∈L,R
|Uαβ |2δ (ωα −ωβ ) (2.10)

is similarly the lifetime broadening induced by the relaxation of phonons of the device in
the external bath. The central quantity in the electron-phonon interaction is obviously the
vibronic coupling Mα

i j .
In the formulation implemented in my code the last term of Eqn. (2.4) is neglected.

The phonon population is assumed to be in perfect equilibrium with the environment. This
means that all the Uαβ coefficients are zero and that there is no relaxation of the phonons
from the device region into the contacts. This approximation reduces the applicability of
the code to low temperature simulations only, because relaxation processes are particularly
important at higher temperature. Nevertheless many experiments in molecular electronics
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are performed at liquid helium temperature (4.2 K); however, an extension of the formalism
including electron-phonon relaxation has been implemented recently, see [56].

2.3 From the Hamiltonian to the current: Meir-Wingreen

equation

Following the approach of Caroli et al. [57] it is possible to relate the Hamiltonian of
Eqn. (2.1) to the current. From the continuity equation it is possible to define the current
flowing through the left electrode:

IL =−e〈ṄL〉=− ie
h̄
〈[Ĥ, N̂L]〉 (2.11)

where Ĥ is the Hamiltonian of the system and N̂L is the number operator for the device
which couples with the left electrode only. It is defined as,

N̂L = ∑
k

d̂†
k d̂k (2.12)

The only term in the Hamiltonian which does not commute with the number operator is
the interaction term between the device and the left contact (first term in Eqn. (2.4)). After
solving Eqn. (2.11) we get

IL =
2ie
h̄ ∑

i;k∈L

(
Vki〈ĉ†

k d̂i〉−V ∗
ki〈d̂†

i ĉk〉
)

(2.13)

where the factor 2 comes from the spin degeneracy. If we analyze in more details Eqn. (2.13)
we find that the total current through the left interface is the difference between two fluxes:
the outgoing, 〈ĉ†

k d̂i〉, and the incoming, 〈d̂†
i ĉk〉, electrons. The direction of the flux of

charges can be easily checked considering the kind of operators involved, i.e., for the in-
coming flux 〈d̂†

i ĉk〉 we have that one electron is annihilated in the left contact, ĉk, and one
is created in the device, d̂†

i . We can reformulate Eqn. 2.13 and terms like 〈d̂†
i ĉk〉 by intro-

ducing the so called lesser Green’s function, which is a time dependent quantity, G<
ik(t, t

′)
defined as

G<
ik(t, t

′) = i〈ĉ†
k d̂i〉e−i E

h̄ (t−t ′) (2.14)

The G<
ik depends only on the difference of t and t ′ because we are computing the steady-

state current. We can define t− t ′ = τ and Fourier transform the function G<
ik:
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G<
ik(τ) =

∫ +∞

−∞

dE
2π

G<
ik(E)ei Eτ

h̄

G<
ik(E) =

∫ +∞

−∞
dτG<

ik(τ)e−i Eτ
h̄ (2.15)

(2.16)

The G<
ik , apart from a phase factor, represents the correlation, in energy or in time, between

one electron in the state i of the device and another one in the state k of the left contact.
The two fluxes of the current are related to these correlation functions as follows:

〈ĉ†
k d̂i〉 = −iG<

ik(0) =−i
∫ +∞

−∞

dE
2π

G<
ik(E) (2.17)

〈d̂†
i ĉk〉 = −iG<

ki(0) =−i
∫ +∞

−∞

dE
2π

G<
ki(E). (2.18)

Substituting the latter relations in Eqn. (2.13) for the current we get,

IL =
2e
h̄ ∑

i;k∈L

∫ ∞

−∞

dE
2π

[
VkiG<

ik(E)−V ∗
kiG

<
ki(E)

]
(2.19)

The latter formula permits to introduce the Green’s function formalism in the transport
calculations. The main drawback of Eqn. (2.19) is that the quantities G<

ik and G<
ki depend

on operators which apply both to the device region, d̂†
i and d̂i, and the left contact, ĉk and

ĉ†
k . What would be more desirable for the calculation is the possibility to decompose the

G< functions in combination of terms which depend on operators in only one part of the
system. This can be done using the so called Dyson’s equation. A rigorous derivation
of the Dyson’s equation is not given here, but in Chapter 3. In order to apply the Dyson’s
equation we must first define two new propagators, the retarded and advanced propagators,
Gr and Ga:

Gr
im(τ) = −iθ(τ)〈[d̂i, d̂†

m]+〉e−i E
h̄ τ (2.20)

Ga
im(τ) = iθ(−τ)〈[d̂i, d̂†

m]+〉ei E
h̄ τ (2.21)

The retarded function represents a dynamic propagators of one particle from state i to state
m, while the advanced propagator describes the propagation of a charge vacancy, or a hole,
from state i to state m. The retarded, advanced and lesser Green’s functions are related by
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the following equations, see [57, 47]:

G<
ik(E) = ∑

m
V ∗

km[Gr
im(E)g<

kk(E)+G<
im(E)ga

kk(E)] (2.22)

G<
ki(E) = ∑

m
Vkm[gr

kk(E)G<
mi(E)+g<

kk(E)Ga
mi(E)]. (2.23)

where capital letters were used for propagators which operate on the device region only
and small letters for propagators which operate on the left contact. In these last relations
we can see that, apart for the Vkm coefficient which couples both device and contact, all the
propagators depend on only one part of the system. Inserting Eqs. (2.22) and (2.23) in the
current expression and interchanging the indices m and i in the last term we obtain

IL =
2e
h̄ ∑

i,m;k∈L

∫ ∞

−∞

dE
2π

VkiV ∗
km[g<

kk{Gr
im−Ga

im}+G<
im{gr

kk−ga
kk}]. (2.24)

Because the contacts are free of any interaction their Green’s functions assume a very
simple form:

g<
kk = 2πinLδ (E− εk) (2.25)

where nL is the Fermi distribution function of the left contact, and

ga
kk−gr

kk = 2πiδ (E− εk). (2.26)

It is possible to use a generalization of ΓL
i (Eqn. (2.9)) to put all the reference about the

contact-device interface in one function,

ΓL
mi = 2π ∑

k∈L
VkiV ∗

kmδ (E− εk) (2.27)

Substituting Eqn. (2.25), Eqn. (2.26) and Eqn. (2.27) in the current formula we get,

IL =
2ie
h

∫ +∞

−∞
dE ∑

i,m
ΓL

mi[nL(Gr
im−Ga

im)+G<
im] (2.28)

which in matrix notation becomes

IL =
2ie
h

∫ +∞

−∞
Tr[ΓLnL(Gr−Ga)+ΓLG<]dE. (2.29)

The total current is the difference between the charges entering through the left contact and
leaving through the right one

I =
1
2
(IL− IR) (2.30)
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so we get finally for the current between the left and right junctions

I =
ie
h

∫ +∞

−∞
Tr[(nLΓL−nRΓR)(Gr−Ga)+(ΓL−ΓR)G<]dE. (2.31)

In a steady state the flux between the left junction must be equal in magnitude and just
opposite in sign: IL =−IR. This means that the total current is just equal to the left current.
Moreover, we can define two new quantities which represents the injection (extraction) of
charges through the left contact

Σ<
L = inLΓL (2.32)

Σ>
L =−i(1−nL)ΓL (2.33)

Substituting the former in the current equation and using the identity (see Chapter 3) G>−
G< = Gr−Ga, we get, after some manipulations, the Meir-Wingreen equation

I =
2e
h

∫ +∞

−∞
Tr[Σ<

L G>−Σ>
L G<]dE. (2.34)

Further simplifications can be done to the Meir-Wingreen equation if there is no scattering
in the device region, in that case the formula of the current reduces to the famous Landauer-
Büttiker equation. First of all, without scattering, we have the following, see [53],

G< = inLGrΓLGa + inRGrΓRGa (2.35)

Gr−Ga =−iGr(ΓL +ΓR)Ga (2.36)

and substituting them in the Meir-Wingreen equation,

I =
2e
h

∫ +∞

−∞
Tr[ΓLGrΓRGa](nL−nR)dE. (2.37)

In the Landauer-Büttiker equation the current is split in two parts: a transmission factor
which depends on the coupling with the contacts and the propagators and an occupation
factor which depends on the distribution of electrons in the contacts only. In other words,
in elastic transport the occupation is dominated by the contacts and the dynamics mostly
by the device. In the inelastic case, described by Meir-Wingreen, the current is just the
difference between two fluxes (in and out of the device region), where the occupation
information and the dynamics information are strongly correlated due to the scattering.
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2.4 Lifetimes of interest

The equation displayed in (2.34) is the basis of the non-equilibrium evaluation of the cur-
rent. However, despite the Meir-Wingreen evaluates a steady state current, time has still a
central role.

The Hamiltonian and the Meir-Wingreen formulas are in fact related to many pa-
rameters which are connected to the lifetime of all the processes involved in transport
through scattering and some energy parameters. These lifetimes are usually very different
in timescale and so the effect of one process on the full transport can change dramatically
depending on the system under investigation. The final result is that the effect of electron-
phonon interaction in molecular conduction can produce a large set of different behaviors
observed experimentally.

The first important energy parameter is ∆E, the energy difference between the Fermi
energy of the electrode and the closest molecular orbital (the highest occupied molecular
orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO)). The second pa-
rameter is Γ , the broadening of molecular orbital levels induced by the coupling with the
contacts. If the device behaves like a molecular chain, there is another important value, the
bandwidth VB of the “conduction band” of the chain. Finally, the energy value kBT (where
kB is the Boltzman constant and T is the absolute temperature) is quite important giving
the thermal effects to the electronic and phonon populations.

All these energy parameters are related to some time constants which are fundamental
for the transport. First of all there is the transmission time (h̄/Γk) which is the time an
electron in the state k spends in the device. Second, we have the relaxation time for phonons
(h̄/γα ) which is the time needed by a phonon in the device to relax in the thermal bath into
the contacts. This contribution is neglected due to the fact that the system is constrained
to be always in thermal equilibrium with the bath. Finally h̄/VB is the lifetime spent by an
electron in one molecular site if the device behaves like a wire.

Another important time scale, and that is less obvious, is the so called dephasing time
(τ) which describes the time needed by the modes of vibration to destroy completely the
phase coherence of the electron. When τ ¿ h̄/Γk then the transport reduces to a collection
of hopping from one site of the device to the other. On the other hand if the dephasing
does not occur, the transport can be treated using elastic transport and adding the electron-
phonon contribution as a perturbation.

The relation between all these energy parameters and time scales defines which model
is more appropriate for the system under investigation. The comparison between dephasing
time and transmission time decides if the transport is fundamentally an elastic coherent
tunneling or it is more a collection of jumps. When either ∆E or Γk are much larger
compared to the electron-phonon interaction the transport becomes fundamentally elastic
(especially if ∆E ≈ 0, that means at resonance). In an intermediate case we can use a
perturbation correction to introduce the inelastic part of the current induced by the device
vibrations. If instead Γk is small (weak coupling regime) the device behaves fundamentally
as a dot and also if the electron-phonon coupling is small there is time for the formation
of polaron-like states inside the device. The transmission is basically a hopping between
the device and the two contacts assisted by vibrations. These different cases can be easily
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tested by a comparison between the different quantities,
∣∣∣∣∣

Mα
√

(∆E)2 +(Γk/2)2

∣∣∣∣∣ = ∆. (2.38)

The two limits (∆¿ 1 and ∆À 1) are called strong and weak electron-molecule coupling
regime respectively. In the present work we investigate the first case only.

The discussion of course is not confined to only these parameters, that anyway remain
the most important. Other aspects can play a fundamental role. One for all is the possibility
that strong many body effects can change the picture. When in fact a charge enters the
device there is a distortion. If the transmission time is long enough and the distortion is
localized, this creates a quasi-particle state, a polaron, which propagates in the system. The
different nature of the polaron, basically an electron dressed by a collection of phonons,
can change dramatically the conduction. Moreover, the change induced in the device can
change the time and energy scale previously described changing eventually the type of
conduction.





Chapter 3
Non-Equilibrium Green’s Functions

The main result of Chapter 2 is the Meir-Wingreen equation (Eqn. (2.34)), which gen-
eralizes the Landauer-Büttiker equation for elastic transport. The Landauer formula is
in fact contained in the Meir-Wingreen as a special case, when scattering processes are
neglected. We can expect that Landauer is a good approximation of transport for short
devices, strongly bound to the contacts, at low temperature. In these conditions, in fact, the
probability that scattering processes occur is reduced. However, also in that case, inelastic
scattering can play an important role. In Chapter 2, for the evaluation of the current, a
collection of propagators were introduced, related by a set of so called Dyson’s equations.
These propagators are related to the statistical population of electrons in the system like the
lesser (G<(E)) Green’s functions or to their dynamics like retarded (Gr(E)) and advanced
(Ga(E)) propagators.

Their evaluation requires the Non Equilibrium Green’s Function (NEGF) formalism.
NEGF methods represent the state of the art for molecular electronics transport calcula-
tions. This is based on two facts: first, the open boundary conditions of the problem (the
connection between the device and the semi-infinite contacts) can be easily handled in the
calculations. Second, scattering processes can be included in the formalism following a
general and systematic way based on a perturbation expansion of the Green’s functions.
The NEGF formalism relies on the works of Kadanoff, Baym and Keldysh [55, 58] mainly.

Many body calculations with NEGF are often done for simulating the behavior of sys-
tems at zero temperature. Of course, real experiments are never performed at zero tem-
perature, although, in molecular electronics, many of them are often at low temperature.
However, many quantities are not very sensitive to temperature and the effect of the latter
can be included as a perturbation to a full zero temperature approach. Furthermore, the
zero temperature property of a system is an important conceptual quantity, the ground state
of an interacting system. A system is often described as its ground state plus its excitations,
and the ground state may be deduced from a zero temperature calculation.

The starting point of every Green’s function calculation is the Hamiltonian of the prob-
lem Ĥ. It is presumed that one is trying to solve a Hamiltonian which cannot be solved

29
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exactly. The usual approach is to set

Ĥ = Ĥ0 +V̂ (3.1)

where Ĥ0 is a Hamiltonian which may be solved exactly. In our approach the Ĥ0 can be
split in the sum of three contributions:

Ĥ0 = Ĥ ′
0 + Σ̂L + Σ̂R (3.2)

Where the first term is a single particle Hamiltonian for the device region represented by
a Density Functional Theory (DFT) Hamiltonian, the description of the particular DFT
method applied in our case is the topic of Chapter 4. The other two terms (Σ̂L,R) are the
contributions from the open boundary conditions (the way of computing them is described
in Chapter 5 and Appendix B). The last term V̂ represents all the remaining parts of Ĥ, in
our case the effects of the electron-phonon interaction.

3.1 Three representations
In this brief paragraph the three most common representations for operators and wave
functions are presented. They are the Schrödinger, the Heisenberg and the interaction
representation. The paragraph is just a short refresh, for more details the reader is referred
to other books which fully treat the topic [52, 51]. All the operators are marked by a hat
symbol (Schrödinger and Heisenberg representations), except interaction representation
for which a tilde is used. From now and through all this work, apart from a few sections,
atomic units will be used for which h̄ = me = e = 1 (see Appendix A).

3.1.1 Schrödinger representation
Elementary quantum mechanics is usually presented in Schrödinger representation, which
is based on the formula (in atomic units):

i
∂ψ(t)

∂ t
= Ĥψ(t) (3.3)

which has the formal operator solution:

ψ(t) = e−iĤtψ(0) (3.4)

The use of this formula requires two assumptions:

1. The wave functions ψ(t) are time dependent, even if this time dependence is a simple
factor of exp(−iEt).

2. Operators, such as the Hamiltonian Ĥ, are independent of time.
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3.1.2 Heisenberg representation
It is possible to solve quantum mechanical problems in another way which gives exactly
the same answers. The Heisenberg representation has the following properties:

1. The wave functions are independent of time.

2. The operators are time dependent, and this dependence is given by,

Ô(t) = eiĤtÔ(0)e−iĤt (3.5)

or, equivalently, one is trying to solve the equation of motion which is derived from
a time derivative:

i
∂ Ô(t)

∂ t
= [Ô(t), Ĥ]. (3.6)

3.1.3 Interaction representation
The interaction representation is the third way of recasting all quantum mechanics. Here
both the wave functions and the operators are time dependent. The Hamiltonian is sepa-
rated in two parts,

Ĥ = Ĥ0 +V̂ (3.7)

where Ĥ0 is the unperturbed (easy) part, while the V̂ contains the interactions. In interaction
representation,

1. Operators have a time dependence

Õ(t) = eiĤ0tÔe−iĤ0t . (3.8)

2. Wave functions, ψ̃ have a time dependence

ψ̃(t) = eiĤ0te−iĤtψ(0) = e−iV̂ tψ(0) = Û(t)ψ(0). (3.9)

It is assumed that [Ĥ0,V̂ ] 6= 0. The main result of this division is that the time dependence
of the wave functions is related to the Ṽ only, the complicate part, while all the operators
depend on the unperturbed Ĥ0. It is important to note that Ĥ0 is the same in Schrödinger
and interaction representations.

The operator Û(t), in Eqn. (3.9), reduces to unity for t = 0. It can be represented as
a series expanding the exponential operators. We define first an operator T̂ called time-
ordering operator particular useful in this case:

T̂ [Ã(t1)B̃(t2)] = θ(t1− t2)Ã(t1)B̃(t2)±θ(t2− t1)B̃(t2)Ã(t1) (3.10)
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where θ is the usual step function and the upper (lower) sign is for Boson (Fermion) oper-
ators. The function of T̂ is to time order the operators following their statistic (symmetric
or antisymmetric). The operator Û can be expanded as

Û(t) = 1+
∞

∑
n=1

(−i)n

n!

∫ t

0
dt1

∫ t

0
dt2...

∫ t

0
dtnT̂ [Ṽ (t1)Ṽ (t2)...Ṽ (tn)] (3.11)

Û(t) = T̂ exp
[
−i

∫ t

0
dt1Ṽ (t1)

]
(3.12)

where the last form is a short way to represent the infinite series.

3.2 S-Matrix
We define a new operator called S-Matrix, Ŝ(t, t ′), which propagates the wave function
ψ̃(t ′) in time:

ψ̃(t) = Ŝ(t, t ′)ψ̃(t ′) = Ŝ(t, t ′)Û(t ′)ψ̃(0). (3.13)

This leads to the conclusion that the operator Ŝ(t, t ′) has the following formula:

Ŝ(t, t ′) = Û(t)Û†(t ′) (3.14)

From the previous section and Eqn. (3.14) we can define a list of properties for the Ŝ
operator:

1. Ŝ(t, t) = 1

2. Ŝ†(t, t ′) = Ŝ(t ′, t)

3. Ŝ(t, t ′)Ŝ(t ′, t ′′) = Ŝ(t, t ′′)

Furthermore, from the properties of the Û(t) operator it is possible to define a simple
exponential form for the Ŝ operator, similar to the expansion for Û(t):

Ŝ(t, t ′) = T̂ exp
[
−i

∫ t

t ′
dt1Ṽ (t1)

]
(3.15)

The wave function ψ̃(0)≡ ψ(0) is equivalent in both interaction and Heisenberg form and
it represents the ground state at time zero. The main problem of this formulation is that we
do not know this function because we cannot solve the exact Hamiltonian Ĥ, even for its
lowest eigenvalue and eigenvector. In order to overcome this problem we can try to connect
the exact ground state of Ĥ with the ground state of Ĥ0, φ0. The relationship between the
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two ground states ψ̃(0) and φ0 at zero temperature was established by Gell-Mann and Low
[59]:

ψ̃(0) = Ŝ(0,−∞)φ0 (3.16)

Thus we are really asserting that ψ̃(t) is equal to φ0 for (t →−∞). The traditional argument
is that one starts in the dim past with a wave function φ0 which does not contain the effects
of the interaction Ṽ . The operator Ŝ brings this wave function adiabatically up to the present
t = 0. The wave function ψ̃(t) for (t → +∞) is related to the non interacting ground state
by just an arbitrary phase factor exp(iL):

ψ̃(∞) = Ŝ(∞,−∞)φ0 = eiLφ0. (3.17)

3.3 Equilibrium Green’s functions
In this work we are interested in the propagation of two particles only: electrons and
phonons. So we will focus our attention to the Green’s functions for them. They rep-
resent the two typical cases (Fermionic and Bosonic particles) of propagators because the
basic method used for computing them can be applied, more or less, for all other particles
or excitations. At zero temperature and for steady state (important for the time dependence)
the electron Green’s function is defined as follows:

G(λ , t− t ′) =−i〈|T̂ [ĉλ (t)ĉ†
λ (t ′)]|〉 (3.18)

where λ is the set of quantum numbers for the problem of interest. The ĉ (ĉ†) are the usual
annihilation (creation) operators.

At zero temperature the state |〉 must be the ground state. If we have chosen the Hamil-
tonian of the problem to be Ĥ, then |〉 is the ground state of Ĥ. The problem arises because
the exact ground state of Ĥ is not known. The ground state |〉 is independent of time and
the creation and annihilation operators are in Heisenberg representation.

For t > t ′ we have, using the T̂ operator:

G(λ , t > t ′) =−i〈|ĉλ (t)ĉ†
λ (t ′)|〉 (3.19)

Here one takes the real ground state, and at a time t ′ one creates an excitation λ . At a later
time t one destroys the same excitation. If λ is an eigenstate of Ĥ then this state would
propagate with a simple exponential time dependence:

G(λ , t > t ′) =−ie−i(t−t ′)(ελ−ε0) (3.20)

For the other time arrangement, t < t ′, we have that, on the contrary, a particle is removed
from the system. So the Green’s function describes the propagation of a hole:

G(λ , t < t ′) = i〈|ĉ†
λ (t)ĉλ (t ′)|〉 (3.21)
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So for t > t ′ the Green’s function is related to the retarded Green’s function and for t < t ′
to the advanced propagator.

The problem in evaluating the Green’s function arises because both the ground state
and the operators depend on the full Hamiltonian. The idea is to isolate the effect of the V̂
operator, so to say of the interaction part. This can be done switching into the interaction
representation. Substituting Eqn. (3.16) in the Green’s function equation and after some
manipulation, we get the following:

G(λ , t− t ′) =
−i〈φ0|T̂ [c̃λ (t)c̃†

λ (t ′)Ŝ(∞,−∞)]|φ0〉
〈φ0|Ŝ(∞,−∞)|φ0〉

(3.22)

The advantage of this representation is that now all the information about the interaction
is in the Ŝ operator. On the other hand the creation and annihilation operators and the
ground state are the not-interacting ones and do not contain any information about Ṽ . The
T̂ operator automatically handle the right sorting of all the operators between the square
brackets splitting the S-matrix in the proper way, following the properties of the Ŝ operator
enlisted in the previous section.

A Green’s function can also be defined for the special case where the interactions Ṽ = 0
and hence the Ŝ-matrix is unity. This Green’s function plays a special role in the formalism,
and we designate it by G0:

G0(λ , t− t ′) =−i〈φ0|T̂ [c̃λ (t)c̃†
λ (t ′)]|φ0〉 (3.23)

G0 is often called the unperturbed Green’s function.

3.4 Wick’s theorem

The Green’s function is evaluated by expanding the S-matrix in a series (Eqn. 3.15) such
as:

G(λ , t− t ′) =
∞

∑
n=0

(−i)n+1

n!

∫ +∞

−∞
dt1...

∫ +∞

−∞
dtn
〈φ0|T̂ [c̃λ (t)Ṽ (t1)Ṽ (t2)...Ṽ (tn)c̃†

λ (t ′)]|φ0〉
〈φ0|Ŝ(∞,−∞)|φ0〉

(3.24)
Let us, for the moment, ignore the denominator. We are more interested how evaluate
time-ordered brackets like:

〈φ0|T̂ [c̃λ (t)Ṽ (t1)Ṽ (t2)...Ṽ (tn)c̃†
λ (t ′)]|φ0〉 (3.25)

Our interaction is represented by the electron-phonon operator like the last term in Eqn. (2.2)
in Chapter 2. This means that our brackets contain simultaneously operators for phonons
(Q̃α ) and for electrons (c̃λ , c̃†

λ ). This is not a problem, it is possible to separate them
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because they commute. Taking, for example, a term like the following,

〈φ0|T̂ [c̃λ (t)c̃†
λ1

(t1)Q̃α(t1)c̃λ2(t2)c̃
†
λ3

(t3)Q̃β (t2)]|φ0〉 (3.26)

It can be separated as a product of terms which contain only operators of one type:

〈φ0|T̂ [c̃λ (t)c̃†
λ1

(t1)c̃λ2(t2)c̃
†
λ3

(t3)]|φ0〉〈φ0|T̂ [Q̃α(t1)Q̃β (t2)]|φ0〉 (3.27)

In the rest of the paragraph the terms for electron operators are the only ones considered
due to the fact that the brackets with phonon operators behave exactly in the same manner
except for the effect of the T̂ operator (see Eqn. (3.10)).

In the electron factor of the time ordered bracket there are two creation and two an-
nihilation operators. It is rather complicate to evaluate this bracket. In order to solve the
problem we can notice at first that all brackets like Eqn. (3.27) always contain the same
number of creation and annihilation operators. Thus one is always trying to evaluate the
product of n creation operators and n annihilation operators averaged by the non interact-
ing ground state |φ0〉. The effect of a creation operator c†

λp
(t) is to put an electron into the

state λp. In order to bring back the system into the non interacting ground state one of the
annihilation operators cλp(t) must destroy the state λp before the bra 〈φ0|. For example,
the four operator term discussed before equals zero unless λ = λ1 and λ2 = λ3 or unless
λ = λ3 and λ1 = λ2. Another important help comes from Wick’s theorem. It states that a
time-ordered product of operators can be split in a sum of products of brackets which con-
tain only a pair of operators (pairing). Of all the possible arrangements in pairings only few
are not zero. Applying the theorem to the bracket in Eqn. (3.27) we obtain the following,

〈φ0|T̂ [c̃λ (t)c̃†
λ1

(t1)Q̃α(t1)c̃λ2(t2)c̃
†
λ3

(t3)Q̃β (t2)]|φ0〉=

= δλλ1δλ2λ3δαβ 〈φ0|T̂ [c̃λ (t)c̃†
λ1

(t1)]|φ0〉〈φ0|T̂ [c̃λ2(t2)c̃
†
λ3

(t3)]|φ0〉×
× 〈φ0|T̂ [Q̃α(t1)Q̃β (t2)]|φ0〉−δλλ3δλ2λ1δαβ 〈φ0|T̂ [c̃λ (t)c̃†

λ3
(t3)]|φ0〉×

× 〈φ0|T̂ [c̃λ2(t2)c̃
†
λ1

(t1)]|φ0〉〈φ0|T̂ [Q̃α(t1)Q̃β (t2)]|φ0〉 (3.28)

Note that there is a time-ordering operator T̂ in each pairing bracket. For 3 creation and
annihilation operators there are six possible pairings; for n operators there are n! possible
pairings.

A few simple rules should be kept in mind when making these pairings. The first
is that a sign change occurs (only for Fermion operators) each time the position of two
neighboring operators are interchanged.

The second rule is a method of treating the “time ordering” of two operators which
occur at the same time, such as

〈φ0|T̂ [c̃†
λ (t)c̃λ1(t)]|φ0〉 (3.29)
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In these cases the annihilation operator always goes to the right,

= δλλ1〈φ0|c̃†
λ (t)c̃λ1(t)|φ0〉= δλλ1nF (3.30)

where nF is just the average occupation probability for electrons the λ state and it is inde-
pendent of time. When two electron operators have different time arguments in a pairing,
we put the creation operator to the right:

〈φ0|T̂ [c̃†
λ (t)c̃λ1(t1)]|φ0〉= δλλ1〈φ0|T̂ [c̃λ (t)c̃†

λ1
(t1)]|φ0〉 (3.31)

This term can be immediately identified as the unperturbed Green’s function iG0(λ , t− t1).
Our previous examples (Eqn. (3.27)) can also be written in terms of Green’s functions:

〈φ0|T̂ [c̃λ (t)c̃†
λ1

(t1)Q̃α(t1)c̃λ2(t2)c̃
†
λ3

(t3)Q̃β (t2)]|φ0〉
= δλλ1δλ2λ3δαβ iG0(λ , t− t1)iG0(λ2, t2− t3)Dα

0 (t1− t2)+
− δλλ3δλ2λ1δαβ iG0(λ , t− t3)iG0(λ2, t2− t1)Dα

0 (t1− t2) (3.32)

where D0 is the analogous of the unperturbed propagator for phonons. In summary, Wick’s
theorem tells us that a time-ordering bracket may be evaluated by expanding it into all
possible pairings and that each of these pairings will be an unperturbed propagators or a
number operator nF . In this way we can rewrite all the terms in the perturbation expan-
sion of G as terms which depend only on the unperturbed propagators and equilibrium
occupation probabilities.

3.5 Feynman’s diagrams
Feynman introduced the idea of representing the kind of terms in Eqn. (3.32) by diagrams.
These diagrams, are extremely useful for providing an insight into the physical process
which these terms represent. They can be drawn both for the Green’s function depending
on time G(λ , t) as well as for functions which are Fourier-transformed and depend on
energy G(λ ,E).

The diagrams in the time space are drawn by representing the electron Green’s function
G0 by a solid line which goes from t ′ to t, as shown in Fig. (3.1). An arrow is often in-
cluded to represent the time direction. The phonon Green’s function Dα

0 is represented by a
wiggly line. Usually double lines are used to represent the full propagators and single lines
for unperturbed propagators. The phonon propagator have not a directional arrow because
the Q̃α operator for phonons is a linear combination of both annihilation and creation oper-
ators. This mean that a phonon propagator represents simultaneously an emission (forward
arrow) and an absorption (backward arrow). The factor nF is represented as a closed loop
in time.

By using these pictorial elements, we can construct the diagrams for all the terms like
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Figure 3.1: Diagrams for the three basic quantities: the unperturbed propagator for electrons
(solid line) and for phonons (wiggly line) and the closed loop for the electron distribution nF (Fermi
function).

Eqn. (3.32) in our expansion of the full propagators (Eqn. (3.24)). For example, for the
second order term, expanded with Wick’s theorem, we get six contributions. These six
terms are shown in Fig. (3.2) in their diagram representations.

In Fig. (3.2) diagrams like (c), (d), and (e) are usually zero. In fact in solid state
of physics, for periodic systems, such kind of contributions represent a translation of the
crystal or a permanent strain, and neither of these is meant to be in Hamiltonian. Despite
that for molecular electronics, for which the region with electron-phonon interaction is
only the device region and the system is not invariant after a translation, terms like those
give a non vanishing contribution (see [60]). However, the two terms of primary interest
remain (a) and (b). They look alike except for the labeling of the integration variables so
they give the same contribution.

Finally the terms (d) and ( f ) show an interesting characteristic: the diagrams are
formed by two distinct parts, they are disconnected diagrams. There is a relevant theo-
rem, called Linked Cluster Theorem, which states that the denominator of the formula of
the Green’s function, in Eqn. (3.22), 〈φ0|S(t, t ′)|φ0〉, cancels with all the disconnected con-
tribution in the numerator. This means that of all the diagrams we must take care of only
those terms which produce connected diagrams. This is an important simplification of the
Green’s function expansion: not only it reduces the number of terms we must evaluate for
every order, but also delete some of the most problematic terms from the series, in fact the
disconnected diagrams are often affected by upsetting divergencies.

The evaluation of diagrams is really useful and very simple, much simpler than taking
care of the analytic counterpart. Moreover there is a dual relationship between all the non
zero pairings of terms in the series of the full propagator and the diagrams set. In principle
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Figure 3.2: The six non null contributions for the second order expansion of the full propagator, in
diagram form.

to evaluate the Green’s function one should expand the S-matrix, decide which terms are
connected and which are zero, and finally obtain the steady state Green’s function by a
Fourier transform of the sum of the relevant diagrams. But this laborious procedure can be
avoided because the diagrams can be written down directly by following few simple rules.
These rules are enlisted here for a n order diagram:

1. Draw n wiggly parallel lines and two external dots;

2. Join all wiggly lines and external dots with solid lines and define on these solid lines
a direction with an arrow. Join them in all linked distinct topological way;

3. For every wiggly line: from each vertex point one solid line must enter and one must
leave;

4. The external dots are connected to only one solid line; for one of the dot it must be
an entering line and for the other a leaving line.

Once we have all the distinct linked diagrams they can be translated in analytic form with
another simple set of rules:

1. If there are many modes of vibration the diagram must be preceded by a sum over
all the modes for every wiggly line;

2. For each solid line, introduce an electron free propagator, G0;

3. For each wiggly line insert a free phonon propagator, Dα
0 and multiply for the proper

electron-phonon coupling Mα
λλ1

for every vertex of the wiggly line;
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4. Conserve energy and quantum numbers at each vertex. Thus both electron lines and
phonon lines have their variables labeled to conform with this rule.

5. Sum (or integrate) over internal degrees of freedom: quantum number, energy, and
so on. All labels are internal except the two connected to the fixed external dots;

6. Finally, multiply the result by the factor:

P =
(i)m

(2π)4m (−1)F(2S +1)F (3.33)

where F is the number of closed fermion loops and S is the spin index (usually for
electrons (2S +1) = 2). The index m is chosen as follows:

• For electron diagrams, m is the number of internal phonon wiggly lines.

• For phonon diagrams, m is one-half the number of vertices.

3.6 Dyson’s equation
Up to now the formalism shows how to describe the full many-body Green’s function in
a series of terms (via the Wick’s theorem) which depend on unperturbed propagators only.
The zero order Green’s functions are supposed to be known exactly because they depend
on the Ĥ0 part of the Hamiltonian.

Moreover the technique of diagrams, introduced in the previous section, permits to
simplify dramatically the evaluation of the series. The diagrams in fact can be drawn
following very simple rules and represent a straightforward picture to understand the kind
of contribution that every term gives to the final sum in a physical sense. On top of that
from the connectivity of the diagrams we can see immediately which diagrams give a final
contribution to the sum and which instead cancel with the denominator (Linked Cluster
Theorem). It is possible now to reformulate the entire many body Green’s function in a
very nice formula called Dyson’s equation. The presentation of the Dyson’s equation and
of the so called self-energy in the present work is not rigorous and I refer the interested
reader to other books [50, 51, 52, 53].

First of all, from the drawing rules for diagrams, we know that every diagram has a
pair of external propagators which connect the wiggly lines with the external dots. Let’s
consider two external electron propagators the variables of which are not summed and
integrated. These two propagators are linked by a complicate series of other electron and
phonon propagators. This means that we can rewrite the series for the full propagator
(Eqn. (3.24)) as shown in Fig. (3.3, a). The labels are in energy after a Fourier transform.

The new formulation shows that the perturbation theory for the Green’s function can
be written as:

G(λ ,E) = G0(λ ,E)+G0(λ ,E)Σ̃ph(E)G0(λ ,E) (3.34)
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Figure 3.3: The diagrammatic representations of Eqn. (3.34) and Eqn. (3.35).

where Σ̃ph represents all the contributions between square brackets in Fig. (3.3, a). Σ̃ph
can be rearranged in a nicer way. First of all we can define two classes of diagrams:
the first class is represented by the so called reducible diagrams. A reducible diagram
is a diagram that can be split in other two more elementary diagrams just removing one
electron propagator (a solid line). An example of a reducible contribution is represented by
the third diagram inside the bracket in Fig. (3.3, a). All diagrams which are not reducible
are called irreducible (see for example the first two diagrams in the same figure). The sum
over square brackets for Σ̃ph can be rearranged tacking only the irreducible diagrams into
account. If we do so the Fourier transform for the full Green’s function becomes:

G(λ ,E) = G0(λ ,E)+G0(λ ,E)Σph(E)G(λ ,E) (3.35)

The difference between Eqn. (3.34) and Eqn. (3.35) is that now Σph contains only the
irreducible diagrams. This equation is called Dyson’s equation. In diagram form it looks
like in Fig. (3.3, b). Eqn. (3.35) can be rearranged as follows

G(λ ,E) = (G−1
0 (λ ,E)−Σph(E))−1. (3.36)

The Dyson’s equation is the fundamental equation for the solution of the propagator as
much as the Meir-Wingreen equation is for the current. It states that the exact Green’s
function is obtained from Eqn. (3.35) by just calculating the self-energy Σph. The self-
energy is a summation of an infinite number of distinct diagrams. This method is only
useful if we can approximate Σph by the lowest few irreducible terms. Σph(E) is a sort of
potential that includes all the effects of the phonons over the propagation of the electrons.
Except in a few rare cases, it is impossible to get Σph exactly, and one must be content with
an approximate result.

If the approximate result is not a very good approximation, one should not try to solve
the problem in this fashion, in fact the evaluation cost for the irreducible diagrams in-
creases very quickly. Basically one should realize that Dyson’s equation is useful only in
weak coupling theory, where the perturbation is sufficiently weak that an adequate approx-
imation is obtained with a few terms in Σph(E). An important issue is the convergence of
Eqn. (3.36) which depends fundamentally on the shape of the self-energy. The presence of
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poles in the Green’s function tell us that this argument is a very delicate one and that the
behavior of the Green’s function obtained via perturbation expansion is not easy. A way to
avoid bad divergences relies on the so called renormalization technique which is beyond
the scope of this work (see [51]).

One aspect of this result deserves a special mention. The self-energy has real and
imaginary parts which switches sign depending on whether E > µ or E < µ where µ is the
chemical potential of the system. The same happens if we compute a self-energy for the
phonon propagators:

Im(Σph(E)) < 0 E > µ
Im(Σph(E)) > 0 E < µ (3.37)

For the phonon propagator we can find another Dyson’s equation with a different self-
energy, Π(E), which is sometimes called polarization operator. This name is quite de-
scriptive, since the self-energy effects arise from the phonons causing polarization in the
medium. In our methodology the self-energy of the phonon is neglected.

The real and imaginary parts of the self-energies Σph(E) and Π(E) each have inter-
pretations. The imaginary part Im(Σph(E)) and Im(Π(E)) are interpreted as causing the
damping of the particle motion. They are related to the finite mean free path of the excita-
tion or to the energy uncertainty. The real parts are actual energy shifts of the excitation,
which may also change its dynamical motion. The excitation may alter its effective mass
or group velocity because of the self-energy contributions.

3.7 Time-loop S-matrix: NEGF
The formulation of the previous section has been done for the Equilibrium Green’s function
in which the system is supposed to remain in the equilibrium ground state at the beginning
and at the end of the process (that means, the system starts in the ground state for t =−∞
and returns in the same state for t = +∞).

Under this assumption, all the interaction processes included in the self-energy cannot
represent real transition of the system because it is forced to go back to the ground state,
they are usually called virtual processes. This formalism is all we need to compute the
Landauer-Büttiker equation for transport. In the other cases we must move into the Non-
equilibrium formalism. Fortunately for us the machinery developed for the equilibrium
case remains practically intact. This means that the Green’s function machinery can be ap-
plied, after some generalizations, also for transport problems in which scattering processes
are present.

The S-matrix we have defined in Eqn. (3.15) depends on real time taken over the in-
terval (−∞,+∞). Now, assuming that also for a real interacting system we can assume the
adiabatic switching on of the interaction part of the Hamiltonian V̂ , the system is in its
ground state for t →−∞. The problem is that this is not true for t →+∞ and the state for
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that must be defined carefully.
Schwinger suggested another method of handling the asymptotic limit t → +∞. He

proposed that the time integral in the S-matrix should have two pieces: one going from
(−∞,τ) while the second going from (τ,−∞). Finally, we take the limit τ → +∞. The
integration is a time loop which starts and ends at t = −∞. The new Green’s function
for non equilibrium system is defined over this new loop time variable and retains all the
properties and satisfies all the theorems of the equilibrium propagators discussed before
(see Fig. (3.4)).

Now we can define four different Green’s functions over the time loop axis, depending
on which branch the annihilation and creation operators are defined. If we manage also
the phonon operators we have then to handle about eight different Green’s functions. For-
tunately, there are some relations between these different propagators so that we need to
compute only two of them for the electrons and two for the phonons. In the case of equi-
librium Green’s function a further relation reduces the number of independent propagators
to one for the electrons and one for the phonons (see [61]).

Limiting to the case of electrons, the reason why there are four different propagators is
related to the S-matrix in the contour time:

Ŝ(−∞,−∞) = T̂Ct exp
[
−i

∫

Ct

dt1Ṽ (t1)
]

(3.38)

The integration path is the time-loop shown in Fig. (3.4). The variable t1 goes (−∞,τ)
and then (τ,−∞). The operator T̂Ct orders along the entire loop, with earliest values t1 in
C+

t occurring first. In expanding the S-matrix, we will encounter Green’s functions of the
form:

G(λ , t1− t2) =−i〈|T̂Ct [c̃λ (t1)c̃
†
λ (t2)]|〉 (3.39)

Figure 3.4: The complex time contour for the NEGF formalism. The upper (time ordered) and
lower (anti-time ordered) branches are denoted with C+

t and C−t respectively.

Depending where the two operators are positioned over the contour we can define the
four possibilities

1. Both on the upper branch C+
t : time ordered Green’s function Gt .

2. Both on the lower branch C−t : anti-time ordered Green’s function Gt̄ .

3. The annihilation operator on the upper branch and the the creation operator on the
lower branch: greater Green’s function G>.
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4. The annihilation operator on the lower branch and the the creation operator on the
upper branch: lesser Green’s function G<.

The analytic formulation of these four propagators is the following:

G>(t1, t2) = −i〈|c̃λ (t1)c̃
†
λ (t2)|〉 (3.40)

G<(t1, t2) = i〈|c̃λ (t2)c̃
†
λ (t1)|〉 (3.41)

Gt(t1, t2) = θ(t1− t2)G> +θ(t2− t1)G< (3.42)
Gt̄(t1, t2) = θ(t2− t1)G> +θ(t1− t2)G< (3.43)
Gr(t1, t2) = Gt −G< = G>−Gt̄ (3.44)
Ga(t1, t2) = Gt −G> = G<−Gt̄ (3.45)

where we have added two more propagators, the retarded (Gr) and advanced (Ga), obtained
as a linear combination of the previous four. They are particular important for their ana-
lytical properties, the retarded propagator has poles only in the lower half of the complex
plane, whilst the advanced in the upper part. Moreover, it can be easily demonstrate two
fundamental identities between the lesser, greater, retarded and advanced propagators:

G>(E)−G<(E) = Gr(E)−Ga(E) (3.46)
Ga(E) = (Gr(E))†. (3.47)

Just to give an example we write the unperturbed propagators for a free electron in time
domain and, after a Fourier transform, in energy domain:

G>
0 (λ ; t,0) = −i(1−nF)e−iελ t →−2πi(1−nF)δ (E− ελ ) (3.48)

G<
0 (λ ; t,0) = inFe−iελ t → 2πinFδ (E− ελ ) (3.49)

Gt
0(λ ; t,0) = −i[θ(t)−nF ]e−iελ t → 1

E− ελ + iδλ
(3.50)

Gt̄
f (λ ; t,0) = −i[θ(−t)−nF ]e−iελ t → −1

E− ελ − iδλ
(3.51)

Gr
0(λ ; t,0) = −iθ(t)e−iελ t → 1

E− ελ + iδ
(3.52)

Ga
0(λ ; t,0) = iθ(−t)e−iελ t → 1

E− ελ − iδ
(3.53)

where δ and δλ are infinitesimal quantity, δ is always positive while δλ is negative for
occupied states and positive for unoccupied states.

The same rules apply for phonon propagators:
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D>
α (t1, t2) = −i〈|Q̃α(t1)Q̃α(t2)|〉 (3.54)

D<
α (t1, t2) = −i〈|Q̃α(t2)Q̃α(t1)|〉 (3.55)

Dt
α(t1, t2) = θ(t1− t2)D>

α +θ(t2− t1)D<
α (3.56)

Dt̄
α(t1, t2) = θ(t2− t1)D>

α +θ(t1− t2)D<
α (3.57)

Dr
α(t1, t2) = Dt

α −D<
α = θ(t1− t2)[D>

α −D<
α ] (3.58)

Da
α(t1, t2) = Dt

α −D>
α =−θ(t2− t1)[D>

α −D<
α ] (3.59)

For the free phonon propagators we get,

D>
0 (α; t,0) = −i[(Nα +1)e−iωα t +Nαeiωα t ]

→ −2πi[(Nα +1)δ (E−ωα)+Nαδ (E +ωα)] (3.60)
D<

0 (α; t,0) = −i[(Nα +1)eiωα t +Nαe−iωα t ]
→ −2πi[(Nα +1)δ (E +ωα)+Nαδ (E−ωα)] (3.61)

Dr
0(α; t,0) = −2θ(t)sin(ωαt)→ 2ωα

E2−ω2
α + iδ

(3.62)

Da
0(α; t,0) = −2θ(−t)sin(ωαt)→ 2ωα

E2−ω2
α − iδ

(3.63)

The phonon Green’s functions in equilibrium are expressed in terms of the phonon occu-
pation number Nα , which equals to a Bose-Einstein distribution in thermal equilibrium at
finite temperature.

3.7.1 Dyson’s equations for NEGF

Keldysh was the first to reformulate the NEGF formalism in a matrix notation which pre-
serves the intuitive picture of the loop time contour, but, at the some time, results to be a
better tool to handle the many propagators. The advantage of the matrix notation is that we
can reformulate all the propagators in one matrix 2×2 and we can extract all the properties
of the different propagators just by the usual matrix algebra:

G =
(

Gt −G<

G> −Gt̄

)
(3.64)

where G satisfies the Dyson’s equation

G = G0 +G0ΣphG. (3.65)
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This matrix notation, as already suggested by Eqn. (3.65), can be extended to all the other
quantities, like self-energies and so on. Applying a rotation in the Keldysh space, it is
possible to get another particularly useful matrix representation in which, instead of the
time ordered and anti-time ordered propagators, the retarded and advanced propagators
appear:

G′ =
(

Gr G> +G<

0 Ga

)
. (3.66)

Using the Dyson’s equation in Eqn. (3.65) we get the Dyson’s equations for the retarded,
advanced and lesser and greater quantities:

Gr,a = Gr,a
0 +Gr,a

0 Σr,aGr,a (3.67)

G<,> = [1+GrΣr]G<,>
0 [1+GaΣa]+Gr

0Σ<,>
ph Ga (3.68)

Iterating the matrix representation we can obtain the formula for operators X which de-
pends on two or more operators (X = AB or X = ABC). A summary of the results, using
the so called Langreth rules [61], is presented in Table (3.1).

Contour time Real time
X =

∫
Ct

AB X< =
∫

t [A
rB< +A<Ba]

X r =
∫

t ArBr

Y =
∫

Ct
ABC Y < =

∫
t [A

rBrC< +ArB<Ca +A<BaCa]
Y r =

∫
t [A

rBrCr]
X(t, t ′) = A(t, t ′)B(t, t ′) X<(t, t ′) = A<(t, t ′)B<(t, t ′)

X r(t, t ′) = A<(t, t ′)Br(t, t ′)+Ar(t, t ′)B<(t, t ′)+Ar(t, t ′)Br(t, t ′)
Y (t, t ′) = A(t, t ′)B(t ′, t) Y <(t, t ′) = A<(t, t ′)B>(t ′, t)

Y r(t, t ′) = A<(t, t ′)Ba(t, t ′)+Ar(t, t ′)B<(t ′, t)

Table 3.1: Langreth rules for analytical continuation of propagators and self-energies from the
contour time back to real time. The rules for advanced and greater quantities can be obtained
starting from the one for retarded and lesser, just exchanging all Fr with Fa and all F< with F>

and viceversa.





Chapter 4
Density Functional Based Tight-Binding

In Chapter 3 was shown that a full Non-Equilibrium Green’s Function (NEGF) formalism
can be developed via a perturbation approach starting from zero order building blocks. The
zero order Green’s functions, both for phonons and electrons, are supposed to be exactly
solvable. This assumption comes from the fact that the Hamiltonian Ĥ can be partitioned
into two parts, Ĥ0 and V̂ . Ĥ0 is a reasonable approximation of the full Hamiltonian that
can be solved exactly and that contain both a single particle Hamiltonian Ĥ ′

0 and two other
terms for the open boundary conditions.

In many NEGF calculations for molecular transport simulations the starting point is
a Density Functional Theory (DFT) calculation. In fact, despite some important draw-
backs of the method, DFT is still the best compromise between complexity and accuracy
for molecular electronic simulations. The main advantage of DFT compared to other ab-
initio methods, is the possibility to include a large number of atoms from the contacts for
the extended molecule regions and to handle the open boundary conditions. Moreover,
the electron-electron correlation can be included immediately via an exchange-correlation
functional without any other effort at the Green’s function level. However, it is well known
that the correlation included in DFT, especially at the lowest level of approximation, the so
called Local Density Approximation (LDA), gives a poor description of the electronic mu-
tual interaction. This leads, in many cases of interest, to a weak evaluation of the electronic
spectrum of the molecule and to quantitative and sometimes qualitative errors in the current
calculated, compared to experiments. One dramatic example is represented by the under-
estimation of the energy gap between the Highest Occupied Molecular Orbital (HOMO)
and the Lowest Unoccupied Molecular Orbital (LUMO) which produces an overestimation
of the magnitude of the current (sometimes of a couple of orders of magnitude). At the end
of the present Chapter these problems will be addressed in a more specific way.

The present work is based on a code the development of which started in the early
1990, a DFT based Tight-Binding called DFTB. Recently, a new version of the code used
in this work, not specifically for transport, has been released under the name DFTB+ (see at
the website http://www.dftb-plus.info). However, several other implementations of DFTB
exist. The description of DFTB is briefly treated in this Chapter, nevertheless, we refer the
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interested reader to the wide literature about the method of DFTB [62, 63, 64] and more in
general DFT [65, 66] for a more comprehensive documentation.

4.1 DFT and Kohn-Sham formulation
Compared to other methods, DFT recasts the problem of calculating the electronic structure
of a system in terms of the electronic density. The spin-free density in terms of the wave
function can be formally defined as follows:

n(r) = N
∫

Ψ∗(r,r2, ...,rN)Ψ(r,r2, ...,rN)dr2...drN (4.1)

where Ψ({ri}) is the multi-particle wave function. The concept of employing the electron
density in an energy functional dates back to Thomas-Fermi theory [67, 68]. The very
foundation of DFT are two rigorous statements. The first is a lemma linking the density
and the potential of a Hamiltonian. The second is a theorem about the existence of a uni-
versal functional of the electron density, universal in the sense that does not depend on
the external potential. This functional can be minimized, with a contribution which comes
from the external potential, in a variational sense. The minimum is achieved for the ground
states density and gives the ground state energy.

Lemma (Basic Lemma of Hohenberg-Kohn) The ground state density n(r) of a bound
system of a fixed number of interacting electrons in an external potential Vext(r) determines
this potential uniquely (to within an additive constant).

The very first step for the study of molecules and solids is the calculation of the total
energy of a given arrangement of atoms; eventually, we want to find, within suitable bound-
ary conditions, the atomic arrangement that is lowest in total energy and hence the most
stable. Besides contributions from the internuclear interactions, this task requires knowl-
edge of the energy of the electronic system. The energy of the system is related to the wave
function and so to the Schrödinger equation. The lowest eigenvalue represents the ground
state of the system. For a physical system the problem can be rearranged starting from the
density of electrons. From the Lemma we know that the density fixes the external potential
and, therefore, the Hamiltonian. On the other hand the Hamiltonian defines completely
the spectrum of wave functions. This means that there is a fundamental connection be-
tween the electron density and the ground state of the system, Ψ0({ri}). Hence, the latter
is strictly a functional of n(r), albeit not a trivial one. This means that the energy of the
system can be expressed as a pure functional of the density:

E[n] =
∫

Vext(r)n(r)dr+F [n] (4.2)

The functional is split in two parts: the first term depends only on the external potential and
the density, the second contains all the information about the kinetic and Coulomb inter-
action between the electrons. The functional F [n] is universal in the sense that it does not
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refer to an external potential. A minimization step, in the space of all densities for which
the functional F [n] is defined, is required to find the density nGS of the system and so the
ground state energy. This variational principle is supported by the following theorem.

Theorem (Hohenberg-Kohn variational principle) For all densities the functional E[n]
has a minimum, which it assumes at the ground state density nGS.

min(E[n]) = E[nGS] (4.3)

The electronic ground state energy of a system of interacting electrons is thus expressed
in terms of their spatial charge density instead of the many-particle wave function. The
main problem of DFT is to find the shape of the universal functional F [n]. The statements
on which DFT is based demonstrate only the existence of this functional, but they do not
suggest how we can build it.

4.1.1 The Kohn-Sham equations
In 1965 Kohn and Sham [69] proposed a new reformulation of the energy functional,
Eqn. (4.2), in order to find an analytical solution for it. The functional F [n] is split into
parts:

F [n] = T0[n]+EH [n]+Exc[n] (4.4)

There are three components. The first term, T0[n], is the kinetic energy functional for
a fictitious system of non-interacting electrons producing the same density as n(r). The
second term, EH [n], is the so called Hartree energy, arising classically from the mutual
Coulomb repulsion of all electrons:

EH [n] =
1
2

∫ ∫ n(r)n(r′)
|r− r′| drdr′ (4.5)

The last term, Exc[n], called the exchange-correlation functional, is a correction term, which
accounts for all many-body effects in F [n]. The treatment of this term decides upon the vi-
ability of any DFT implementation. All terms but the last of Eqn. (4.4) are known analyt-
ically. The functional form of the correction term Exc[n] is unknown and must be approx-
imated. Practical applications of the DFT are classified according to the approximations
taken for the exchange-correlation functional Exc[n].

The first attempt to give a shape to the exchange-correlation functional has been the
LDA,

Exc[n] =
∫

εxc[n(r)]n(r)dr (4.6)

where εxc[n] is the exchange-correlation energy per electron in a uniform electron gas of
density n(r) = const. The energy εxc[n] is a function of only the local density value, and
no longer a functional of the global density distribution and its form is well known.
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The T0[n] term can be described defining a set of single particles orbitals which are
orthogonal and normalized and that are related to the real density of the system as follows:

n(r) =
∞

∑
i=1

ni|Φi(r)|2 (4.7)

〈Φi|Φi〉=
∫
|Φi(r)|2dr = 1 (4.8)

where ni are the occupation numbers of these orbitals. The occupation numbers are con-
strained to be a certain set of values: integer numbers (0 and 1 for spin-unrestricted solution
and 0,1 and 2 for spin-restricted solutions) or real numbers following a Fermi-Dirac distri-
bution in case of small thermal excitation. The kinetic term becomes:

T0[{Φi(r)}] =
∞

∑
i=1

ni

∫
Φ∗

i (r)
(
−4

2

)
Φi(r)dr (4.9)

The entire functional, E[n], can be expressed as a functional of the new orbitals. The
minimum of the energy functional with respect to the density becomes a variation respect
the orbitals, with the constraint that the orbitals must remain orthogonal and normalized:

δ
δΦ∗

i (r)

{
E[n(r)]+

∞

∑
i=1

εi

[
1−

∫
|Φi(r)|2dr

]}
= 0 (4.10)

where the εi are the Lagrange parameters. Solving Eqn. 4.10 we get at the end a Schrödinger-
like equation,

[
−4

2
+Vext(r)+VH([n(r)],r)+Vxc([n(r)],r)

]
Φi(r) = εiΦi(r), (4.11)

this equation plus Eqn. (4.7) are called the Kohn-Sham equations. The three terms Vext , VH
and Vxc are the variational counterpart of the energy functional. Their sum is a potentials
which describe the external field, the classical electron-electron repulsion and the many-
body effects (exchange due to Pauli exclusion principle and correlation) respectively. The
picture of Kohn-Sham equations is a set of N not interacting particles merged in a effec-
tive external potential which is the sum of these three terms. We can be tempted to give a
physical interpretation to the eigenvalues (Lagrange parameters) of Eqn. (4.11) εi. Janak
has demonstrated [70] that, in fact, the eigenvalue of the highest occupied orbital is fun-
damentally the first ionization energy changed in sign. The interpretation of the others
eigenvalues is more controversial.

An analytic solution of the Kohn-Sham equations is rather difficult. Instead, the un-
known functions Φi(r) are sought numerically employing tools from mathematical physics.
Two classes of approaches will yield a solution: real-space grid methods and basis func-
tion expansions. Either approach will transform the differential equation for the unknown
functions into a set of algebraic ones for unknown expansion coefficients of a reference
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basis of functions. The general expansion of the one-electron wave functions reads:

Φi(r) =
N

∑
ν=1

Ciνφν(r) (4.12)

Once the basis is chosen, depending to the kind of problem, the coefficients Ciν are obtained
solving a general secular equation:

N

∑
ν=1

Ciν
(
hµν − εiSµν

)
= 0 (4.13)

where

hµν = 〈φµ |Ĥ ′
0|φν〉=

∫
φ ∗µ

[
−4

2
+VH +Vxc([n(r)],r)

]
φνdr (4.14)

Sµν = 〈φµ |φν〉=
∫

φ∗µφνdr (4.15)

Since the orbital solution depends on the density, and in turn, by Eqn. (4.12), on the orbitals
themselves, Eqn. (4.14) needs to be solved self-consistently starting from a guess density,
n0(r).

4.2 DFTB: method and approximations
The Kohn-Sham equation are implemented in the DFTB method with some approxima-
tions. These mostly take the form of separations of global quantities like potentials and
wave functions into atomic contributions. This separation principle allows the effective
treatment of compound atomic systems by building as much as possible upon preparatory
work, which is performed beforehand on isolated subsystems of atoms and atom pairs.
This previous work is used to evaluate the computational expensive reference Hamiltonian
and other contributions, like the nuclei repulsion, into simple tables.

The total-energy expression of the DFTB approach follows the one that can be derived
from full Kohn-Sham equations,

Etot [n0 +∆n] =
occ

∑
i=1

ni〈Φi|ĥ0|Φi〉+Erep[n0]+E2[n0,∆n]

= EBS +Erep +E2 (4.16)

where EBS is the trace of the eigenstates of the system over a Hamiltonian ĥ0 which depends
on the guess density n0 only:

ĥ0 =−4
2

+Ve f f [n0,r]. (4.17)
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The second term, Erep constitutes a repulsion energy similar to standard tight-binding the-
ory, which subsumes the double counting terms of the reference Hamiltonian, as well as
the nuclear repulsion. Finally, the last term, E2, describes atomic charge fluctuations and
is subject to a self-consistent treatment.

The main approximations to obtain the DFTB method from the stationary principle of
DFT are in turn:

• superposition of pseudo-atomic densities as starting density;

• usually a minimal-basis, valence-only Linear Combination of Molecular Orbital
(LCAO) wave functions, is used;

• two-centre Hamiltonian (neglect of crystal-field and three-centre terms);

• repulsive pair potential for the double-counting and inter-nuclear energies;

• for the second-order correction:

1. monopole approximation and extrapolation of δVxc[n]/δn;
2. Mulliken charges;
3. Integral approximations for the γ matrix;

4.2.1 Pseudo-atomic starting density
In DFTB, the starting density is chosen as superposition of slightly compressed densities
of neutral atoms,

n0(r) = ∑
a

na
0(ra); ra = r−Ra (4.18)

The densities of free atoms are too diffuse to be a good initial guess in compound systems.
The densities are the result of a self-consistent LDA or General Gradient Approximation
(GGA) calculation of pseudo-atoms, i.e., atoms placed within a weak parabolic constriction
potential as expressed in a modified Kohn-Sham equation:

[
−4

2
+V at

e f f [n
a
0]+

(
r
r0

)m]
ψ psat

ν (r) = ε psat
ν ψ psat

ν (r) (4.19)

The constriction potential is characterized by its exponent m and range r0. The exponent
was shown to have rather small influence on the final results, so that m = 2 is usually
used. For the range parameter, a number of calculations has lead to results with optimal
transferability in covalent systems (barring 3d transition metals) using r0 ≈ 1.85rcov, where
rcov is the covalent radius of the given element. The pseudo atomic wavefunctions are used
for the LCAO basis. These wavefunctions are represented by Slater-type orbitals (STO)
characterized by coefficients ai j and exponents αi:

ψν(r)≡ ψlmn(r) = ∑
i=1

∑
j=0

ai jrl+ je−αirYlm

(r
r

)
. (4.20)
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4.2.2 Tight-binding integrals and the two-centre approximation

The pseudo-atomic are used as basis set for the expansion of the eigenfunctions

Φi(r) = ∑
a

∑
ν [a]

Ciνψν(ra). (4.21)

The reference Hamiltonian can be represented on this basis, giving matrix elements de-
noted h0

µν and non-orthogonal overlap elements Sµν ,

h0
µν = 〈ψµ |ĥ0|ψν〉 (4.22)

Sµν = 〈ψµ |ψν〉=
∫

ψ∗
µψνdr. (4.23)

These integrals are calculated immediately and are tabulated as function of distance be-
tween the two centres. The integrals at general difference vectors as needed in the system,
∆Rab = Ra−Rb, are transformed using projection relations [71]. Due to symmetry, only
few integrals between basis functions remain nonzero for angular momenta up to l = 2.

In order to achieve the two-centre representation for the Hamiltonian matrix elements,
the effective Kohn-Sham potential is formally decomposed into atomic-like contributions.
Due to the non-linearity of the exchange-correlation potential, there are two ways to do this
in practice, either to sum atomic potentials or atomic densities:

Ve f f [n0,r]≈
{

∑cV 0
c [n0

c ,rc] potential superposition
Ve f f [∑c n0

c ] density superposition
(4.24)

Depending on the centres involved for the basis functions and the potential, the Hamilto-
nian matrix elements fall into a number of categories, which are summarized in Table (9.1).

Type Classification Centres Status
(A) onsite-terms a = b = c retained
(B) crystal-field terms a = b 6= c neglected
(C) two-centre terms a 6= b,c = a or c = b retained
(D) three-centre terms a 6= b 6= c and b 6= c neglected

Table 4.1: Integral types in the DFTB Hamiltonian h0
µν . Centres a and b denote orbital centres,

with basis functions µ ∈ a, ν ∈ b and c is the potential centre.

The neglect of three-centre terms provides the largest practical simplification because
on the one hand the handling for three centres is more involved than for two centres and
on the other hand there are many more combinations. On the other hand, the crystal-
field integrals are relatively simple. However, the integral neglections work only in concert
because there is error-cancelation of a considerable degree. The justification of this process
is complex and was discussed originally by Seifert et al. [72] and later reviewed in ref. [63].
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Moreover, using a valence-only basis assures the core-valence orthogonalisation between
different centres.

Among the retained integrals, type (A) represents on-site energies εν of single atoms,

h0
νν = εν (4.25)

which are obtained in the first step of the atom calculation. In the other remaining integral
type (C), the potentials and densities of two distinct atoms are to be combined:

h0
µν = 〈ψµ |− 42 +

{
V 0

a [ra]+V 0
b [rb]

Ve f f [n0
a +n0

b]

}
|ψν〉; a[µ ],b[ν ]. (4.26)

4.2.3 Repulsive potential
The next term that must be evaluated is the so called repulsive term which includes the
double-counting terms between EBS, evaluated at the input density, and E2, the self-con-
sistent correction, in the energy functional. Moreover, it includes also the inter-nuclear
repulsion

Enuc =
1
2

Nat

∑
a,b6=a

ZaZb

|Ra−Rb|
. (4.27)

The DFTB Method sum of short-ranged repulsive pair potentials:

Erep[n0,{Ra}]≈ 1
2 ∑

a
∑
a 6=b

V ab
rep(|Ra−Rb|). (4.28)

This approximation is justified by two observations:

• With n0 represented by neutral atomic fragments, there are no long-range Coulomb
interactions in the combined electrostatic Hartree and nuclear contributions to the
double counting energy, EH [∑a na

0] + Enuc(Ra), due to mutual screening. Further-
more, since the atomic starting densities are spherically symmetric, the Hartree inte-
grals for atom pairs (4.5) depend on internuclear distance only. The same is trivially
the case for the nuclear repulsion. Therefore, these contributions together are repre-
sentable by short-range pair potentials without loss of accuracy.

• Contributions due to exchange and correlation are not separable into pair potential
form per se because of the non-linearity of the xc-functional. However, a cluster ex-
pansion [63] allows to extract two-body components. Its higher order terms involve
the overlap of the densities of three centres, which is negligible for the compressed
starting densities used here. The remaining two-body terms may again be represented
by pair-potentials.

All monomer contributions are contained within the atomic orbital energies εν to ensure
that the repulsive potential actually goes to zero in the dissociation limit. The repulsive
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potential is obtained from self-contained ab initio calculations of the energy of a set of
reference molecules for a range of a typical bond length. This is the most delicate term in
the DFTB method, because still there is not a systematic way to get a set of molecules and
compounds that can assure the transferability of the values obtained. Most conveniently,
the reference molecules are dimers, but also methane-like structures. For solid state calcu-
lations, as in gold crystals which are widely used in this work, crystal reference structures
may be used. For each reference structure j, the energy difference,

Ẽ j
rep(r) = E j

sc f (r)−E j
BS(r) (4.29)

is calculated as function of distance r. As a consequence of the concepts and approxima-
tions taken thus far, the set of repulsive energies has the following important properties:

• Usually Ẽrep > 0. For small distances, i.e., close atoms, Erep has a steep repulsive
slope indicative of strong Pauli repulsion of the electron shells and the ion-ion repul-
sion.

• It decays rapidly to zero between typical first- and second-neighbor distances. This is
another indication that the pair-potential representation of the double-counting terms
embodied within Erep, is valid.

• Most importantly, Ẽ j
rep for different molecules are close to each other. This property

is indicative of the degree of transferability of the method, i.e., its applicability to a
wide range of atomic structures.

It was found that Ẽrep(r) for high-coordinated crystal phases such as fcc and bcc often does
not coincide with the curve of other structures. Such phases cannot be treated with the
present method. All the crystalline gold electrodes used in the simulations in the last four
Chapters (6- 9) were in fact not allowed to relax using DFTB. For practical calculations,
the set of repulsive energies are represented numerically by splines for each atom type
combination.

4.2.4 Second-order correction

The last term in the DFTB total-energy expression to discuss is the second-order correc-
tion E2[n0,∆n]. This term becomes important in the simulation of heteroatomic molecules
and polar semiconductors where chemical bonding is influenced considerably by charge
transfer effects and long-range Coulomb interactions.

In line with previous procedures, the charge fluctuations ∆n are decomposed into atomic
contributions which are expected to decay rapidly with increasing distance from their cen-
tre. The second-order term then reads,

E2[n0,∆n] =
1
2 ∑

a,b

∫ ∫ [
1

|r− r′| +
δVxc([n(r),r])

δn(r′)

]

n0

∆na∆nbdrdr′ (4.30)
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The term is expected to give a small contribution of the total energy, so that integrations
can be approximated. First, one expresses ∆na as a mere monopole contribution:

∆na(r) = ∑
lm

ca
lmFa

lm(ra)Ylm

(
ra

ra

)
≈ ∆qaFa

00(ra)Y00; ra = r−Ra. (4.31)

Thus, Eqn. (4.30) takes a simple matrix form:

E2[n0,∆n]≈ 1
2

M

∑
a,b

γab∆qa∆qb (4.32)

where γ matrix is:

γab =
1

4π

∫ ∫ [
1

|r− r′| +
δVxc[n]
δn(r′)

]

n0

Fa
00(ra)Fb

00(r
′
b)drdr′. (4.33)

The γ matrix contains the dependency of E2 on ionic positions. This matrix, except for
the Vxc part, is well known from the CNDO-formalism by Pople, Santry and Segal [73].
The F i

00 term is the normalized radial dependence of the density fluctuation on atom i. If
the latter are assumed to have a fixed form, spherically symmetric, to be weighted by ∆qa,
the only geometry parameter in γab will be the interatomic distance R = |Ra−Rb|. The
limit R→ 0 means coinciding atomic centres a and b. In this case, γaa equals a Hubbard-
like parameter Ua for the atom. The Hubbard parameter is related to the chemical hard-
ness η ≈Ua/2, which is a measure of the ionization potential and electron affinity of the
atom. Neglecting the influence of the environment and employing Janak’s theorem [70],
Ua is obtained non-empirically at the DFT level during the pseudo-atom calculation as the
derivative of the HOMO of the free atom with respect to its occupation number:

γaa = Ua =
∂ 2Eat

∂q2
at

∣∣∣∣
q=q0

=
∂εa

HOMO
∂nHOMO

(4.34)

In the limit of large interatomic distances, γab reduces to a 1/R dependency, since Vxc
interactions vanish in this case. To obtain a continuous transition between the limits of
small and large interatomic distances an interpolation formula is used [74]. Assuming a
normalized Slater-type function with a range parameter τa,

Fa
00(r) =

τ3
a

8π
e−τa|r−Ra| (4.35)

the Coulomb integral of two such charge densities reads, after some manipulations (for
integrals of this type, see Pople and Beveridge [75]):

γab(τa,τb,R) =
1
R
−S(τa,τb,R) (4.36)

where
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S(τa,τb,R) = e−τaR

(
τ4

b τa

2(τ2
b − τ2

a )2 −
τ6

b −3τ4
b τa

R(τ2
b − τ2

a )3

)
+

+ e−τbR
(

τ4
a τb

2(τ2
a − τ2

b )2 −
τ6

a −3τ4
a τb

R(τ2
a − τ2

b )3

)
; τa 6= τb (4.37)

S(τ,R) = e−τR
(

48+33τR+9τR2 + τR3

48R

)
; τa = τb = τ (4.38)

In the limit of short distances γab should equal the Hubbard parameter for an isolated atom.
This being a known quantity, one obtains a one-to-one relation between the hitherto un-
specified charge fluctuation range τa of an atom and its Hubbard parameter:

γaa = Ua =
5

16
τa (4.39)

Since Eqn. (4.36) was derived from pure Coulomb interactions, yet the Hubbard param-
eter incorporates xc contributions, this step may seem inconsistent. To reconcile the ap-
proaches, the following should be considered: appreciable deviations from the point charge
behavior of 1/R occur only close to atoms, namely, within radii of typical bond lengths.
Adjusting the inner limit to include xc interactions by way of equating it to the ab-initio
DFT value, one corrects mainly the on-site terms of γab.

To finally evaluate the second-order energy contributions, one needs the atomic charge
deviations ∆qa. These are obtained from Mulliken charges. Given real-valued eigenvectors
Ciµ in an atomic basis with overlap matrix S, the Mulliken charges qa and charge deviations
∆qa on atoms are:

qa =
occ

∑
i=1

niqi
a =

occ

∑
i=1

ni ∑
µ[a]

∑
ν

CiµCiνsµν = ∑
µ[a]

∑
ν

qµν

∆qa = qa−q0
a (4.40)

where q0
a are the charges of the respective neutral atoms.

4.2.5 DFTB secular equation

With the approximations discussed above the DFTB total-energy reads:

Etot =
occ

∑
i=1

ni ∑
µ

∑
ν

CiµCiνh0
µν +

1
2

Nat

∑
ab

γab∆qa∆qb +Erep[Ra] (4.41)
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Given a set of atomic coordinates {Ra} and the resulting matrices h0, S and γ, the LCAO
coefficients which minimize the DFTB total energy (4.41) are found by the variation prin-
ciple subject to orbital normalization:

∂
∂Ciµ

[
Etot +

occ

∑
i=1

niε̃i

(
1−∑

µ
∑
ν

CiµCiνSµν

)]
= 0 (4.42)

The procedure is quite similar to the standard tight binding case. The resulting secular
equation reads:

N

∑
ν=1

Ciν(hµν − ε̃iSµν) = 0 (4.43)

where, as a consequence of the minimization of E2 alongside EBS the original Hamiltonian
matrix elements are augmented as follows:

hµν = h0
µν +

1
2

Sµν
M

∑
c

(γac + γbc)(qc−q0
c) µ ∈ a;ν ∈ b; (4.44)

As for the generic Kohn-Sham system, Eqn. (4.43) is a generalized eigenvalue problem
which is solved using standard libraries. Since the charges in the augmented Hamiltonian
depend upon the coefficients of the solution, the equation has to be solved self-consistently.
The iteration is driven by some mixing algorithm for the charges {qa}.

Forces on atoms can be obtained analytically without resorting to repeated energy cal-
culations for finite displacements. The essential result of the DFTB calculation is available
in form of the total energy and the electronic eigenvectors. Other physical observables
like charge distributions or vibrational properties may be extracted, the latter not without
considerable numerical effort.

4.3 Disadvantages of DFT in transport simulations

There is a number of significant limitations known to be associated with modern density
functionals. These include [76]: poor treatment of dispersive forces, poor treatment of
covalent bond breakage, poor treatment of systems involving partial electron removal, and
poor treatment of conjugated π systems.

Firstly, dispersive forces are very important for the determination of the geometrical
structure of interfaces, being the primary contributor to physisorptive processes including
the strong π-stacking interactions that can occur between gold and aromatic molecules, the
interactions of nitrogen bases with gold, and contributions along with covalent bonding to
thiol-gold interactions. While these forces are treated sporadically by DFT, they are also
excluded from the basic DFTB hamiltonian. However, DFTB+ now includes provision for
the inclusion of these forces.

Secondly, in general, covalent bond breakage is treated poorly by modern DFT func-
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tionals, with their poor description of long-range electron correlation leading to contami-
nation of supposedly radical-like reaction products with ionic-like structures [77, 78]. This
failure has immediate consequences for the determination of realistic strained electrode-
molecule junction structures as dynamic bond breaking and forming processes are likely
to be important. However, it has more profound effects owing to the way in which Green’s
function-based methods perceive the current carrying process [79]. Effectively, they per-
ceive conduction as occurring between the two macroscopic contacts through tunneling.
All that is important is the tunneling probability, effectively obtained from the calculated
energy gap between the electrode-localized tunneling orbitals. The process by which this
energy gap arises is irrelevant: it could be via direct through-space interactions of the elec-
trodes or via superexchange [80] through molecule-assisted pathways. Viewed in this way,
through-molecule conduction is analogous to through-space conduction between two elec-
trodes with broken inter-electrode covalent bonds, allowing errors associated with covalent
bond breakage to enter calculations in a profound way. Covalent bond breakage is an open-
shell problem for which valid solutions may be obtained using spin-unrestricted means if
just one bond is involved [81], a situation not typical in molecular electronics applications.

Inappropriate application of the Kohn-Sham theorem leads to error up to 20% in the
underestimation of the magnitude of excited state energies, energies interpreted by Green’s
function codes as depicting the strength of tunneling, leading to large overestimation of
the conductivity. Also, as the LDA functional in DFT provides realistic treatments of the
metal electrodes but gives a poor description of the molecular component. Only hybrid
functionals, however, include the long-range exchange interactions that are often critical
in electron transfer problems. Hence the development of improved density functionals is a
priority.

The third limitation of DFT is related to the so called self-interaction energy error.
This error arises from the approximated form of the exchange potential in DFT. In exact
exchange potential a charge in a certain state cannot interact with itself because the term
of self-interaction in the Hartree energy cancels exactly with the same term in exchange
potential. In the case of DFT this cancelation is not exact and this means that a certain self-
interaction survives. This is particularly problematic for localized states [66]. Practically,
this results in low energies for charge transfer states, a type of state that can contribute to
through-molecule conductivity, and an incorrectly positioned molecular highest-occupied
molecular energy (HOMO) level that is typically too high in energy by 3-4 eV. In molec-
ular electronics applications, this leads to errors in the line-up of the orbital bands of the
electrodes and the molecule [82].

Lastly, we consider limitations of standard DFT in treating conjugated π systems.
Many molecules used in molecular electronics applications, especially the highly conduc-
tive ones, such as 1,4-benzenedithiol, are of this type. Molecular conduction involves
partial oxidation or reduction processes of the molecule, processes whose energies are
identified in single-particle implementations of Green’s function kinetics theories with
molecular-orbital energy differences. While such an identification follows naturally from
Hartree-Fock based approaches through application of Koopmans’theorem, in DFT the
calculated orbital-energy differences actually reflect the much smaller energies associated
with optical transitions [82]. Also DFTB is subject to errors of this type [83]. For standard
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DFT, the interplay between the self-interaction correction (HOMO error) and the unde-
sired physical interpretation of the band gap is complex. Fortunately, the two errors cancel
to some extent for the band line-up of the molecular lowest-energy unoccupied molecular
orbital (LUMO).

However, as the self-interaction error also results in significant underestimation of the
actual excited-state optical transition energies, both effects reinforce each other in making
molecules appear metal-like. Polyacetylene, for example, is predicted by modern density
functionals to have a ground state of at least triplet spin multiplicity rather than being a
wide band-gap semiconductor [84], with associated errors in calculated polarizabilities for
the actual closed-shell ground state [85]. Porphyrin and chlorophyll molecules, ubiquitous
for their roles in naturally occurring systems involving through-molecule conduction, are
also poorly described [84].



Chapter 5
The Electron-Phonon Code

The present Chapter is focused on the implementation of the Green’s function code for the
electron-phonon interaction based on DFTB. The code was implemented by the author of
the present work and Dr. Alessandro Pecchia, of the Univesrity of Rome “Tor Vergata”.
It belongs to the so called gDFTB family, see [86], a set of transport codes applying equi-
librium and non equilibrium Green’s function formalism and based on DFTB. The codes
already developed, beside the electron-phonon, are a gDFTB version for Landauer-Büttiker
evaluation of the elastic current and another for a full treatment of the bias in the device
with the solution of the Poisson equation in NEGF. The first code is already contained in
both the electron-phonon and bias codes as a special case when the interaction, in one case,
or the Poisson solving, in the other case, are neglected. A further step will be the merging
of the bias and electron-phonon codes in a final program. The aim of this final gDFTB
code is to be merged in a full multiscale approach to transport called Tibercad. This final
package will contain modules to simulate transport in electronic devices at different scales,
from micrometers down to nanoscale, and interlace them. The gDFTB is the atomistic part.

The implementation of an electron-phonon calculation requires a certain number of
steps. First of all the definition of the system simulated, that is the definition of the par-
titioning in device and contact regions. The second step is the relaxation of the geometry
between the two electrodes and the calculation of the zero order DFTB Hamiltonian Ĥ ′

0.
The third step is the calculation of the normal mode of vibrations and the evaluation of
the electron-phonon coupling matrices elements Mα

µν , where the index α runs over all the
normal modes and the indices µ and ν over the local basis set. This last step is very deli-
cate because the electron-phonon interaction depends strongly on the couplings. To obtain
a good set of couplings we need a fully relaxed geometry, the relaxation of the structure
must in fact reach a global minimum in order to really catch a good description of the
vibrational spectrum.

Finally the calculation of the current can be performed. The zero order Hamiltonian
is used to compute the retarded self-energies needed by the code, for the open boundary
conditions (Σr

L and Σr
R) and for the electron-phonon interaction (Σr

ph). Indeed, in the NEGF,
we need to compute also the equivalent quantities for the lesser and greater quantities. All
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the matrices can be later on used to compute the current, via the Meir-Wingreen equation,
and the power dissipated in the device.

The Chapter is organized as follows: first, a brief description of the main approxi-
mations used in the code is given. Then, the treatment of the open boundary conditions
follows. The next sections are devoted to describe in more details the calculation of the
electron-phonon self-energies and the vibronic couplings. Finally, the last part of the Chap-
ter describes in details the flowchart of the code.

5.1 Approximations in the electron-phonon code
This short paragraph is focused on the approximations implemented in the electron-phonon
code. A full description of the code and its potentiality cannot dispense to address also
the main simplifications introduced in the calculations of the quantities needed for the
evaluation of the current.

The set of approximations related to the DFTB Hamiltonian have been already de-
scribed in Chapter 4 and they will be not repeated here. Further approximations appear at
the NEGF level. First of all the calculation of the electron-phonon self-energy is performed
at the first level of perturbation, called Born approximation (BA). The diagrammatic rep-
resentation of that term is shown in Fig. (5.2, a).

A better description of interaction can be performed allowing a self-consistent Born ap-
proximation (SCBA) in which the propagators of the self-energy is renormalized Fig. (5.2,
b). In this way we are including other diagrams in the self-energy. However, the difference
in the results between SCBA and BA is usually pretty small, within few percentage. The
real advantage of SCBA is that it assures the conservation of the charges in the current.
This conservation is in fact slightly broken in the mere BA and this can become a problem
in case of high current amount, when for example one of the states of the device is in reso-
nance. However, also an SCBA is not able to describe scattering processes if we are in the
strong electron-phonon couple regime. The entire perturbation approach to the self-energy,
in fact, fails badly in the latter case.

Problems can arise also in the weak coupling regime if the device region is weakly
bounded to the contacts (weak contact couplings). In that case it is possible that the electron
lifetime in the device is long enough for the formation of complex deformations of the
device itself, like polaron states. Also in that case the perturbation approach is not able
to recover the correct quantities. Fortunately, in many molecular electronics experimental
setups, like in break-junction experiments, the molecule is strongly bounded to the contacts
via thiolate groups and the lifetime of the electrons is small enough and we can assume that
we are in the weak electron-phonon coupling regime.

The phonon Green’s functions are the free phonon propagators enlisted in Eqs. (3.59).
The latter approximation means that the phonon population is regarded as a simple set of
Einstein oscillators with infinite lifetime. Moreover, we consider them in thermodynamic
equilibrium. The two main consequences are that the phonon population for every mode,
Nα , is described by a simple Bose-Einstein distribution and, second, that the relaxation of
the phonons in the contacts is neglected.
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Another approximation is related to the real part of the electron-phonon self-energy. As
explained the self-energy contains a real and an imaginary part where the former represents
a shift of the energy levels and the latter a lifetime of the particle induced by the electron-
phonon interaction. The real and imaginary parts for the retarded Green’s function are
correlated by the Kramers-Kronig relations which states the following:

Re(Σr
ph) =

1
π

P
∫ +∞

−∞
dE ′

Im(Σr
ph)

E ′−E
. (5.1)

In the calculations, this real part is neglected because the effects of the shift in energy
induced by the contacts is much larger than the one induced by the electron-phonon inter-
action.

The evaluation of the normal modes, vibrational vectors and frequencies, is performed
getting the relaxed geometry after a relaxation of the system. Later on the equilibrium po-
tential for the distribution of atoms is perturbed up to the second order defining a parabolic
approximation for the potential in the limit of small vibrations, the so called harmonic ap-
proximation. In the evaluation of the spectrum is fundamental to define which atoms are
allowed to vibrate. It is obvious that, until we do not allow the relaxation of the phonons
from the device to the contacts, the knowledge of the phonon dispersion function for the
bulks of the contacts is not required. What is more critic is the decision of which part of
the device can vibrate, that means if also some of the leads atoms, the one closest to the
interface between the molecule and the leads, should vibrate. In fact the vibrations of the
surface and the molecule together can have important effects on the total conduction, like
conduction modulation, where the charging and discharging of the molecule induced by
vibrations can change dramatically the conduction [87]. In all the calculations presented
in Chapters 6-9 only the molecules were allowed to vibrate. This approximation can be
particularly questionable when the atoms in the leads have more or less the same mass of
the atoms in the molecular region (sulphur, carbon mainly). In that case it is obvious that
a vibration of the molecule can easily stimulate a vibration of the contacts. However, in
many experimental setups of interest, the contacts are made of gold that means that the
ratio between the masses of gold atoms and the sulphur junction atoms of the thiol group is
very large. It is possible to assume that the atoms in the gold are frozen in their equilibrium
positions.

Finally some words must be spent about the modeling of the external bias. The effect
of the voltage is equivalent to the one of an external electric field. The bias drops linearly in
the device regions, the effect of polarization induced by charge arrangements is neglected.
This effect, that in return changes the bias drop profile, can be included only by a full
treatment of the Poisson equation.
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5.2 The scheme of the device and the open boundary con-

ditions

The real system which is simulated in the code looks like the one depicted in Fig. (5.1).
The device region is formed by the molecule (M) plus the two leads (L). For metal con-
tacts, due to the good charge screening, the leads reduce to a couple of layers of atoms.
Periodic boundary conditions must be used to ensure that the principal layers (PL) of the
electrodes behave like in a bulk. The periodic boundary conditions in the direction of the
current produce problems when a real bias is applied between the two contacts. So, the pe-
riodicity in that direction must be used only for the evaluation of the contacts self-energy
and discarded after for the calculation with the bias applied.

Figure 5.1: A view of a typical molecular electronic device. In the picture different regions can be
recognized, the molecular (M) and the surfaces or leads regions (L) which together form the device
region (D). The two semi-infinite contacts (CL and CR), the charge reservoirs, are represented by
two chunks of the real electrodes. This chunks are formed by two principal layers (PL) each. The
PLs are the basis to evaluate the self-energies for the open boundary conditions.

The partitioning of the system as shown in the figure is reflected in the total DFTB
Hamiltonian matrix as:

H′
0 =




HD JDL JDR

J†
DL HL 0

J†
DR 0 HR


 (5.2)

where the three diagonal blocks are the Hamiltonian parts for the device, left contact and
right contact respectively and the off-diagonal terms are the coupling between the three.
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Clearly, there is no coupling between the two contacts directly, this ensures that the self-
energies for the contacts are two independent contributions.

The task to evaluate the self-energies is fundamental in transport calculations. The two
self-energies represent a sort of equivalent potential, principally located in the junctions
between the device and the contacts, which record all the perturbation effects induced
by the semi-infinite contacts. To evaluate the self-energies we can expand the Dyson’s
equation for the zeroth order retarded propagator in matrix form

(εS−H)Gr
0 = 1 (5.3)

where ε = (E + iη) and η is an infinitesimal positive quantity. We can expand the latter
equation




εSD−HD εSDL−JDL εSDR−JDR

εS†
DL−J†

DL εSL−HL 0
εS†

DR−J†
DR 0 εSR−HR


˙




Gr
D,0 Gr

DL,0 Gr
DR,0

Gr
LD,0 Gr

L,0 Gr
LR,0

Gr
RD,0 Gr

RL,0 Gr
R,0


 = 1 (5.4)

where we have emphasized the block structure of the total Green’s function matrix for the
entire system. However, we are interested in the device block Gr

D,0 only. To get that part
we can start from the propagators of the isolated contacts and device, assuming that we can
ideally split the system in three non interacting parts:

gr
L = (εSL−HL)−1 (5.5)

gr
R = (εSR−HR)−1 (5.6)

gr
D = (εSD−HD)−1 (5.7)

The computation of the two free propagators for the semi-infinite electrodes is explained in
more details in Appendix B. Expanding Eqn. (5.4) for the device block and manipulating
them we get the three equations:

Gr
LD,0 =−gr

L(εS†
DL−J†

DL)G
r
D,0 (5.8)

Gr
RD,0 =−gr

R(εS†
DR−J†

DR)Gr
D,0 (5.9)

(εSD−HD)Gr
D,0 +(εSDL−JDL)Gr

LD,0 +(εSDR−JDR)Gr
RD,0 = 1 (5.10)
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Substituting Eqn. (5.8) and Eqn. (5.9) in Eqn. (5.10) we get at the end the following:

Gr
D,0 = [ESD−HD− (εSDL−JDL)gr

L(εS†
DL−J†

DL)− (εSDR−JDR)gr
R(εS†

DR−J†
DR)]−1

= [ESD−HD−Σr
L(E)−Σr

R(E)]−1. (5.11)

The latter is the zero order Green’s function with the self-energy for the open boundary
conditions: Σr

L(R). The self-energies depend on the coupling between the device region
and the contacts and on the free propagators of the contacts. The advantage of using a
linear combination of atomic orbitals basis set is particular evident here where we need
that the coupling blocks do not extend too much, but are quite localized in the interface
between contacts and device.

The two PLs in Fig. (5.1) are used to evaluate the free propagators of the contacts
for the evaluation of the self-energies and after are not take into account anymore in the
proceeding of the calculations. The self-energies in fact map the semi-infinite contacts on
the device region. So fort all the matrices implemented for the calculation of the current
have the dimension of the device region only.

5.3 The electron-phonon self-energies

For the electron-phonon interaction we can use the perturbation expansion starting from
the zeroth order propagators including only the open boundary conditions. The approxi-
mation implemented here is the BA, in its consistent or not consistent form. The diagram
representations are shown in Fig. (5.2, a), BA, and Fig. (5.2, b), SCBA.

Figure 5.2: The diagrammatic representations of the self-energy for electron-phonon in Born ap-
proximation (a) or in self-consistent Born approximation (b).

In analytic form the lesser and greater self-energies are the following

Σ<,>
ph (E) = ∑

α

i
2π

∫ ∞

−∞
MαG<,>

0 (E−E ′)MαD<,>
α ,0 (E ′)dE ′ (5.12)
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for BA and

Σ<,>
ph (E) = ∑

α

i
2π

∫ ∞

−∞
MαG<,>(E−E ′)MαD<,>

α ,0 (E ′)dE ′ (5.13)

for SCBA. The only difference in the two self-energies is that in one case we use the zeroth
order propagators, and in the second case the full renormalized G<(>) defined as

G<,> = Gr[Σ<,>
L +Σ<,>

R +Σ<,>
ph ]Ga. (5.14)

The evaluation of the integration in Eqn. (5.12) and Eqn. (5.13) is quite expensive compu-
tationally. However, following the approximation that our phonon population is described
by a collection of free oscillators, we obtain a simple formula for the phonon lesser and
greater propagators,

D>
α,0 =−2πi[(Nα +1)δ (E−ωα)+Nαδ (E +ωα)] (5.15)

D<
α,0 = [(Nα +1)δ (E +ωα)+Nαδ (E−ωα)]. (5.16)

Under those approximations Eqn. (5.12) reduces to,

Σ>
ph = ∑

α
(Nα +1)MαG>(E−ωα)Mα +NαMαG>(E +ωα)Mα (5.17)

Σ<
ph = ∑

α
(Nα +1)MαG<(E +ωα)Mα +NαMαG<(E−ωα)Mα . (5.18)

The retarded and advanced propagators should be also renormalized taking into account
that, until the matrices are symmetric, it is possible to use the identity

i(Σ>
ph−Σ<

ph) = i(Σr
ph−Σa

ph) =−2Im(ΣR
ph) (5.19)

the symmetry of the matrices in fact ensures that (Σr
ph)

† = (Σr
ph)

∗ = Σa
ph. The iden-

tity (5.19) can be used to compute the imaginary part of the retarded self-energy for the
electron-phonon interaction. The real part is neglected. Neglecting the real part we are
neglecting all the polaronic effects induced by the interaction between the charge and its
environment. The shift in the device spectrum is in fact zero, and the only effect of the
vibration is a correction to the electron lifetime.

The lesser and greater self-energies for electron-phonon interaction represent, as for the
equivalent quantities of the contacts, a flux of injecting and outjecting of charges, respec-
tively. In fact the scattering processes can be seen as a third virtual contact, see Fig. (5.3),
connected to the external phonon bath, with which it exchanges electrons. For charge
conservation the total current through this third contact must be zero for every mode,

Iα =
2e
h

∫ +∞

−∞
dETr[Σ<

α G>−Σ>
α G<] =

∫ +∞

−∞
Jα(E)dE = 0. (5.20)
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where Jα(E) is a density of current for energy unit.

Figure 5.3: The schematic representation of the device connected to the two real electrodes and
the third virtual contact which connects the device to the external bath.

In few words, this means that for every charge that enter in the virtual contact, another
one must come out. However, the energy of the two charges is not the same, but differs
of the value ±ωα depending if it is describing an absorption or an emission process. This
means that also if the current Iα is null, the power dissipated is not:

Pα =
1
e

∫ +∞

−∞
E Jα(E)dE 6= 0. (5.21)

To evaluate the power dissipated by every mode of vibration the Meir-Wingreen equation
is invoked,

Pα =
2
h

∫ +∞

−∞
dE E

(
Tr[Σ<

α G>−Σ>
α G<]

)
(5.22)

where Σ<,>
ph = ∑α Σ<,>

α .

5.4 Computation of the electron-phonon couplings

As in most studies of vibronic coupling effects in molecular electronic, the small amplitude
of vibrational motion is usually invoked to approximate the electron-phonon couplings, see
[88]. In this case we can reduce the vibronic coupling to the expansion up to the first order
of the Hamiltonian of the device respect the displacements of the ions along every normal
mode of vibration α :

Mα
i j = ∑

N
∑
β

√
h̄

2mNωα
〈i| ∂ ĤD

∂Rβ ,N
| j〉eα

β ,N (5.23)
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where N runs over all the nuclei, β over the three cartesian coordinates, mN is the mass
of the Nth nuclei, ωα the frequency and eα

β ,N the proper mode eigenvector element. The
expansion of the Hamiltonian can be further developed:

〈i| ∂ ĤD

∂Rβ ,N
| j〉=

∂ 〈i|ĤD| j〉
∂Rβ ,N

−〈i′|ĤD| j〉−〈i|ĤD| j′〉 (5.24)

where 〈i′| ≡ ∂ 〈i|/∂Rβ ,N represents the change in basis orbitals with displacements, and
using the identity

1 = ∑
i j
|i〉(S−1)i j〈 j| (5.25)

where S is the overlap matrix, we get

〈i| ∂ ĤD

∂Rβ ,N
| j〉=

∂ 〈i|ĤD| j〉
∂Rβ ,N

−∑
nl
〈i′|n〉(S−1)nl〈l|ĤD| j〉−∑

nl
〈i|ĤD|n〉(S−1)nl〈l| j′〉 (5.26)

The terms 〈i′|n〉 can be evaluated numerically computing the first derivative of the overlap
matrix elements ∂Sin/∂Rβ ,N using the unperturbed and deformed geometries. Substitut-
ing Eqn. 5.26 in Eqn. 5.23 we get the final form of the electron-phonon coupling matrix
elements:

Mα
i j = ∑

N
∑
β

√
h̄

2mNωα

(
∂HD

i j

∂Rβ ,N
−∑

nl

∂Sin

∂Rβ ,N
(S−1)nlHD

l j −∑
nl

HD
in(S−1)nl

∂Sl j

∂Rβ ,N

)
eα

β ,N

(5.27)
The importance to retain all the matrix elements is related to the fact that the inelastic
current can be strongly affected by motion that changes the overlap between different sites.
For example when two neighbor atoms in a molecular structure are oriented so that they
lie along the tunneling direction, a modulation of their distance can dramatically affect the
inelastic current.

5.5 The flowchart of the code

The final implementation of the code is shown in the flowchart in Fig. (5.4). After the
relaxation of the geometry, the DFTB code is used to compute the Hamiltonian H′

0 for
bare electrons in the whole system without phonons, the modes of vibration of the device
(frequencies and eigenvectors) and the overlap matrix S. Before starting the evaluation
of the current a calculation at zero bias is done to evaluate the electron-phonon coupling
matrices Mα . The matrices are stored to be used later.
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Figure 5.4: Flowchart of the code.

Now, it is possible to start the real calculation for the current. The very first step is
the definition of a set of parameters, that means the chemical potential of the two contacts
µL and µR, related to the Fermi energy of the contacts at equilibrium EF . Other important
parameters are the applied bias V and the temperature of the charge carriers Te and the
temperature of the device Td . The former affects the electron distribution in the contacts,
which in return changes the injection of charges in the device. The latter fixes the phonon
population.
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Concerning the numerical calculation there are two important parameters to set. One
is the energy grid of linearly spaced points ∆E used for the numerical sampling. It should
span a sufficiently large energy range while at the same time resolve the variations of all
Green’s functions, self-energies, etc. The second is a parameter ∆ which sets a convergence
criterium for the iteration procedure toward self-consistency. Finally, only in case the full
I-V characteristic is computed, there is the voltage step ∆V . Every calculation computes a
single current-voltage point and the power dissipation at that voltage. Using a script it is
possible to repeat the calculation for many points and get the full I-V curve.

The self-energies for the contacts and the bias are further used to compute the zero
order retarded Green’s function,

[ES−H′
0−Σr

L(E)−Σr
R(E)]Gr

0 = 1. (5.28)

Using the identity Ga = (Gr)†, the zeroth order of the lesser (greater) Green’s function can
be computed:

G<,>
0 = Gr

0[Σ
<,>
L +Σ<,>

R ]Ga
0 (5.29)

where

Σ<
L(R) = i(nL(R))ΓL(R) = i(nL(R))(−2)Im(Σr

L(R)) (5.30)

Σ>
L(R) =−i(1−nL(R))ΓL(R) (5.31)

and nL(R) is the Fermi function for the left (right) contact.
The zeroth order Green’s functions are used to compute the self-energies for the electron-

phonon interaction. At this stage lies the difference between BA and SCBA. If we are in
BA the electron-phonon self-energies are used to renormalize the propagators, Gr

0, G<
0 and

G>
0 and the Meir-Wingreen equation is evaluated for that voltage point. In case we are in

the SCBA, the new propagators are used to recompute the electron-phonon self-energies
and the scheme is iterated until convergence is reached. Finally, the current, the power
dissipation and the density of states are evaluated,

I(V ) =
2e
h

N

∑
i=1

Tr[Σ<
L (Ei)G>(Ei)−Σ>

L (Ei)G<(Ei)]∆E (5.32)

Pα(V ) =
2
h

N

∑
i=1

Ei

(
Tr[Σ<

ph,α(Ei)G>(Ei)−Σ>
ph,α(Ei)G<(Ei)]

)
∆E (5.33)

ρ(E,V ) = Tr[i(Gr−Ga)] = Tr[A(E,V )]. (5.34)

In case the number of modes included in the calculation is set to zero, the code reduces to
evaluate the elastic current via a Landauer-Büttiker equation.





Chapter 6
Power Dissipation at Low Temperature

in Molecular Electronic Devices

The first application of the electron-phonon code is the evaluation of the power dissipated
in molecular devices. Due to the approximations enlisted previously the simulations can
evaluate dissipation at low temperature only.

The dissipation in molecular electronic devices is certainly a very important issue for
the future of the field. In order to generalize the method it is fundamental to extend the
technique of the gDFTB code also for higher temperatures. It is in fact clear that these
kind of simulations will become fundamental in the future to test the stability of molecular
junctions at work temperatures inside real electronic circuits. Recently an extension of the
method, to take care of real non equilibrium population of phonons in the molecular region
due to the coupling with the contacts, has been developed by Pecchia et al. [56].

Intuitively we can think that electron-phonon interaction is one of the main inelastic
mechanism responsible for thermal relaxations of electrons in molecular junctions, its un-
derstanding is important for controlling not only the stability of the device, but also for
other fundamental aspects. In fact, knowing were the dissipation is the highest in the
molecule can suggest how to improve, with molecular substituents, the performance of the
device.

In this Chapter is investigated the dissipation in octanedithiol molecules sandwiched
between two gold electrodes.

73
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6.1 Dissipation in alkanethiols

6.1.1 Geometry and vibrational modes

Although a simple and clear understanding of transport mechanisms has not been reached
yet for most of the molecular compounds, transport in alkanethiols is essentially at a ma-
ture stage of experimental development. Such type of molecules align on Au surfaces via
covalent S-Au bonds to form regular and stable self-assembled monolayers (SAMs). They
are characterized by a large optical band gap ( > 5 eV), making them very stable to pho-
todegradation. The same large gap is responsible for a very low conduction via tunneling
in Au-thiol-Au structures, giving good electrical stability. For the reasons above, it is not
surprising that experiments of conduction through these compounds have been reproduced
by many research groups [89, 90]. This paragraph is focused on octanedithiol between two
(111) gold surfaces.

The gold atoms, composing the two contacts, are kept at fixed positions, corresponding
to an ideal fcc crystal with Au-Au separation of 2.884 Å. First the octanedithiol saturated
with a hydrogen termination was relaxed on top of one gold surface comprising six atomic
layers. After this first step, the hydrogen was removed and the second Au surface was
put, taking care that the Au-S distance obtained at the first interface was reproduced at the
second interface. Then this system was relaxed again. Periodic boundary conditions were
used in all these calculations. The final relaxed structure is shown in Fig. (6.1). Although
the global minimum of the isolated octanedithiol is the one with the highest symmetry
configuration, this symmetry is broken in the relaxed structure of the molecule attached to
Au electrodes.

Figure 6.1: Diagram representing the relaxed atomic coordinates of the octanedithiol between Au
contacts.

The vibrational frequencies are slightly affected by this, since many degeneracies are
lifted. However, the differences in the whole spectrum of vibrations between the molecule
in gas phase and relaxed on gold are within 20%, which is inconsequential for the present
analysis. The S atom is found to form a bond with an energy minimum at the hollow
site of the Au(111) crystal. Actually, the exact minimal configuration is not completely
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understood, it is found with the sulfur atom slightly shifted from the hollow position, as
reported in other ab-initio DFT calculations [91, 92]. The sulfur atom is found at 2.76 Å
from the Au plane. After the relaxation of the molecular coordinates, obtained by imposing
the atomic forces to be smaller than 10−4 a.u., the computation of the vibrational modes
and frequencies was done.

6.1.2 Power dissipation in the molecule
While crossing the system, the electrons interact with the molecular ionic vibrations from
which they can be inelastically scattered. In the present context the assumption was made
that the metal ions do not move; henceforth, the electron-phonon scattering within the leads
is neglected. This is a reasonable approximation given the very large difference in atomic
masses between the Au atoms and the organic elements. It is clear that this assumption
must be relaxed if we handle different kind of contacts, like silicon contacts.

Figure 6.2: (left) Tunneling probability as a function of injection energy across a molecule of
octanethiol. The Fermi energy corresponds to the Au contacts. (right) The computed I-V character-
istics of the system (solid line) compared to experimental results (see [90]).

The separation between the molecular and the contact regions is obtained by two leads
composed by three layers of gold atoms representing the metal surfaces that have been
treated as to be part of the molecular region. Because of the short range of the atomic
orbital interactions and since the Au atoms do not move, such three layers ensure that the
contact and electron-phonon self-energies act on orthogonal subspaces of the Hamiltonian
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matrix. In this calculation the Born approximation (BA) was applied for the calculation
of the phonon self-energies. After that a self-consistent solution (SCBA) was done for
comparison.

Figure 6.3: Calculated (a) Scattering rate and (b) power dissipated for each vibrational mode.

Since I am mainly interested on inelastic phonon emission, the approximation of the
phonon self-energy to be purely imaginary, neglecting the shift of the van-Hoove singulari-
ties (i.e., essentially neglecting energy shifts due to polaron-like states), is reasonable. This
assumption is valid since the molecular levels are far from the relevant range of injection
energies and therefore the small shift will not modify appreciably the tunneling current.
In any case, the BA is valid in the small electron-phonon interaction limit and far from
resonant situations where polaron effects should be taken into account. Using the mathe-
matical machinery of the NEGF, the tunneling current through an alkylthiolate molecule,
Au-S(CH2)8S-Au, has been computed. Applying the Meir-Wingreen equation to get the
current we obtain the curve shown in Fig. (6.2). The current computed is compared to
experimental data obtained by measuring the current through a SAM assembled within a
nanopore [90].

The simulation has been performed on a single molecule connecting the two con-
tacts, assuming that the SAM assembled in a lattice (

√
3×√3)R30◦, from the measured
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nanopore diameter of 45 nm, it is possible to estimate that approximately 10,000 molecules
are sampled in parallel. Accordingly, the experimental measurements are scaled by a factor
10−4 in order to compare with the calculations. The order of magnitude of the tunneling
current is predicted very well. This is important, particularly in relation to the absolute
magnitude of the power dissipated in such system, as discussed later.

For each of the 78 modes, the contribution to the inelastic current at T = 0 K and for
an applied bias of 2 Volts has been computed . At T = 0, the inelastic part of the tunneling
probability is related to the net phonon emission rate by τ−1

α = Iα
inel/e, where the α index

stands for the vibrational mode. This quantity is used as a measure of the electron-phonon
strength and is used to compare the different modes. A summary of such computations is
reported in Table (6.1) and in Fig. (6.3, a). The lowest vibrational modes correspond to
oscillations of the carbon atoms in the backbone plane, resembling the first harmonics of a
string, and rigid twist around the C-C bonds of large subunits involving two or more CH2
groups.

ω τ−1
α description ω exp.

34.8 0.608 (CH2)2 twist
106.9 0.127 (CH2)2 twist
109.3 0.189 (CH2)2 twist
178.8 0.157 (CH2)2 twist
217.0 0.314 Au-S stretch 2251-
320.6 0.470 Au-S stretch -2551

687.5 0.383 S-C stretch 650-7062

693.6 0.462 S-C stretch
848.1 0.444 CH2 rock 715-9251,3

1076.8 0.848 C-C stretch 10501

1136.2 0.871 C-C stretch 11202

1222.8 0.097 CH2 wag 13303

1259.9 0.626 CH2 twist 12651

1479.2 0.147 CH2 twist
1518.2 0.082 CH2 scissor 14551

1881.0 0.243 C-C + H swing
2976.5 0.002 C-H stretch 28601

3421.4 0.200 H-Au stretch

Table 6.1: Summary of the most important calculated frequencies (cm−1) of the octanedithiol,
phonon emission rate (ps−1), followed by a brief description of the mode and the typical experi-
mental value, obtained by (1) HREELS [93], (2) Raman [94]or (3) IR [95].

The two sulfur atoms remain practically fixed or slide slightly over the gold surface.
The frequencies of such modes are affected by large relative errors because they are sensi-
tive to small differences in the atomic pair potentials and to the relaxed geometry. Further-
more, these modes are not easily accessible experimentally. We find that modes associated
to internal twists of the C-C backbone involving the motion of (CH2)2 subunits are more
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effective in scattering electrons. As expected, the Au-S stretching modes, which are found
in the range between 250 cm−1 to 320 cm−1, in agreement with experiments [90], give a
large contribution to the electron-phonon scattering. Similarly, a large contribution is given
by the C-S stretch modes, found around 690 cm−1. The band of modes found between 1000
and 1100 cm−1 corresponds to C-C stretch modes. These give the largest contribution to
the inelastic current. A large contribution comes also from the modes related to motions of
the CH2 modes, particularly rocking and twisting. Wagging and scissoring modes, instead,
give a smaller contribution.

In the simulation there is also a non negligible signal from some vibrational modes
that have not been discussed in experimental papers, since they are special to the Au-
octanedithiol-Au system and are not seen in isolated molecules. In particular, two modes
around 1900 cm−1 (0.23 eV) are associated with a slight rotation of the C-S bond, a stretch
of the C-C bonds involving the motion of the C at position close to sulfur, and a pronounced
swing of the H atom closest to the gold surface. Another mode affecting the inelastic
current is related to the oscillation of the hydrogens closest to the Au surfaces. Such modes
could be seen as a Au-H stretch and are found at a frequency of 3400 cm−1 (0.42 eV).

Figure 6.4: (left) Tunneling probability as a function of injection energy across a molecule of
octanedithiol. The contribution of the inelastic (dashed) and elastic (solid) tunneling current are
shown. The black curves are the first-order BA, the red ones are the SCBA. (right) The SCBA I-V
characteristics of the system. The continuous line is the total current, the broken line is the elastic
component and the dotted line the inelastic component.

The 34 modes giving an inelastic rate greater than 108 ps−1 have been included for the
calculation of the inelastic current. Figure (6.4) shows the elastic and inelastic contributions
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to the total tunneling current resolved in energy for the bias of 2.0 V and the calculated
I-V characteristics of the system. The peaks in the transmission function correspond to
features of the surface density of states of gold. In Fig. (6.4) the first-order BA has been
compared with the SCBA. It is important to remark that for this system the first-order
Born approximation gives already an acceptable result and the self-consistent loop does not
introduce substantial changes in the transmission probability in the relevant energy range.
Differences are appreciably deep in the energy gap, where the transmission probability is
already small and the total contribution to the current is negligible.

At this point it is possible to compute the amount of power dissipated in the molecule
due to inelastic phonon emission. This calculation can be obtained by considering the
virtual contact current. The power dissipated can be easily calculated by Eqn. (5.21). This
quantity is the virtual contact current, simply representing the total current scattered from
its original energy to a new one after phonon emission (or absorption). The calculation
shows that the power dissipated in the octanedithiol is W = 0.16 nWatt (1 eV/ns) at 2 Volt of
applied bias. It is interesting, however, to analyze the power dissipated in each vibrational
mode, as shown in Fig. (6.3, b). This is not directly proportional to the emission rate, since
the power dissipated depends on the phonon energy as well. As expected, the low frequency
modes contribute little to the dissipation, despite the relatively large scattering rates. The
modes giving the largest contribution are found in the band of C-C stretch modes, the C-S
stretch, and the CH2 rocking modes. Considerable power is also absorbed by the modes at
1900 and 3400 cm−1, involving essentially movements of the hydrogens close to the Au
surfaces.





Chapter 7
Simulation of IETS in Alkanethiols

In this Chapter an application of the electron-phonon code to simulate Inelastic Electron
Tunneling Spectroscopy (IETS) measurements is presented. The systems under investi-
gation are self-assembled monolayers of alkanethiols between two gold electrodes [90].
At least three papers have investigated the IETS of alkanethiols on gold. First, a sophisti-
cated theoretical method [96] was applied to varying length alkanethiols [42] to give results
which reproduced experimentally observed odd-even effects with varying chain lengths.
Second, by making use of a model based on perturbation theory [45] it was shown that it is
possible to get informative predictions of IETS showing good agreement with experiment
[97]. Third, a number of different geometries for alkanethiol binding were considered with
an examination of the impact of this binding on the IETS [46]. Here, I continue from this
work and look further at the dependence on molecular structure and how this relates to the
understanding of IETS.

The Chapter is organized as follows: after an introduction about the calculation of the
geometry and of the vibrational frequencies, the IETS spectrum is discussed. The analysis
section is divided in four parts. First, it is shown the general features of the spectrum.
Second, it is looked at the unambiguous assignment of this spectrum that is achievable
through simulations. Third, it is examined the nature of the low-voltage conduction channel
and its control of the IETS signal. Finally it is shown the nature of the vibrational modes
that produce the IETS.

7.1 IETS approximation

IETS is defined as d2I/dV 2. To obtain d2I/dV 2 we should take, from the Meir-Wingreen,

I(V ) =
∫ +∞

−∞
J(E,V )dE (7.1)
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and derive two times respect the bias. However, in IETS the bias applied is very small, so
that we can consider that the density of current is independent from the bias: J(E,V ) ≈
J(E). Moreover, for small electron-phonon coupling the integration limits reduce to the
chemical potentials of the two contacts. Considering one of the contact as the reference
one, we get:

I(V )≈
∫ EF+eV

EF

J(E)dE =
∫ EF/e+V

EF/e
eJ(eξ )dξ (7.2)

where it has been made a simple variable substitution in the last equation:eξ = E, with e
the electron charge. The first derivative of the current respect to the bias becomes:

dI(V )
dV

≈ eJ(eV ) (7.3)

Iterating the latter for the second derivative and with a further variable substitution E = eV ,
it is obtained

dI2(V )
dV 2 ≈ e2 dJ

dE
. (7.4)

This final relation has been used to generate the IETS. This approximation neglects the
voltage dependence of the electronic structure, a property considered to be minimal at the
low voltages considered.

7.2 The choice of binding site
The binding geometry of alkylthiol molecules chemisorbed (with terminal proton loss from
sulfur during the adsorption process) on gold surfaces has received considerable attention
in the literature [98, 99, 100, 101] without any clear conclusion. Calculations performed
on flat Au(111) surfaces [102, 103] suggest different geometries from those resulting from
thiol-induced surface reconstructions [82]. In this section I present results for a represen-
tative geometry which is consistent with recent experimental results [104].

In Chapter 6 was already discussed a geometry for octanethiol between two gold con-
tacts. However, for the IETS simulation a new geometry has been computed. A different
relaxation scheme was adopted to preserve the symmetry in the junction between molecule
and gold at the two surfaces.

The geometry of the molecule in the junction is determined in two steps. First, an
optimized geometry is obtained for chemisorbed octanethiol or in the case of the other
chain lengths the monothiol of that alkane chemisorbed through the terminal sulfur to a top
site on a single Au(111) surface; while experimentally it is likely that sulfur does indeed
sit vertically above a gold atom, it is probable that it is some reconstructed surface instead
of a pure (111) surface. Periodic boundary conditions are used, with the chemisorbed
molecules sufficiently far apart to be considered isolated [a p(5×5) unit cell].

The geometry for the full electrode-molecule-electrode system was then generated by
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symmetrizing about a point of inversion between the central bond of the alkane chain to
give a chemisorbed alkanedithiol bound to two cofacial Au(111) surfaces. Optimized ge-
ometries for octanedithiol in two slightly different local minima are shown in Fig. (7.1).
The lowest-energy structure has the octane backbone at a tilt angle of 28◦ (from the Au
surface normal), reducing to 18◦ for the other. These values differ significantly from what
has been reported experimentally [105, 106, 107] for condensed monolyers, supporting the
proposal that this property is controlled by interchain and solvent interactions. Detailed
structures for molecules sandwiched between two electrodes remain unknown.

Figure 7.1: Two optimized geometries of octanedithiol between the two electrodes. The top geom-
etry is the lower-energy minima of the two.

7.2.1 Atomic partitioning of the system

In the case of highly conducting conjugated molecules it is necessary to include a number
of gold atoms in the extended molecule in order to accurately calculate the conductance
of these systems. If no gold atoms are included in the extended molecule the self-energies
do not shift and broaden the molecular states sufficiently to accurately model the coherent
conduction channels that link the interface regions of the real semi-infinite systems. While
the inclusion of a large number of gold atoms in the junction region significantly enhances
the calculation of coherent transport, it does so by introducing a discrete approximation to
the notionally continuous distribution of the low-voltage interface to interface conduction
channels.
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While the effects of excluding the interface region may be more important for con-
duction through conjugated molecules, much smaller effects are expected for alkanethiols.
The smaller band gap HOMO-LUMO in conjugated systems means that the conductance
varies significantly depending upon how the system is partitioned as even a slight shift in
the molecular energy levels is important for the conductance at low voltage.

For alkanethiols, however, the significantly larger band gap means that the exact char-
acter of the molecular energy levels at low voltage is not as important. Further, the IETS
is, as would be expected, very sensitive to changes in the number of conducting channels
available. In the low-voltage regime considered here ( < 0.4 V) the density of coherent
conduction channels should be voltage independent, as it only depends upon the gold den-
sity of states; it is the change in the number of accessible incoherent channels as the voltage
increases that gives the IETS signal. This will produce a large and broad feature underlying
the fine structure of the IETS signal. For this reason we do not include any gold atom in
the extended molecule.

7.2.2 Correction of the DFTB vibrational frequencies

The DFTB method is known to overestimate harmonic frequencies [62] as do other theo-
retical methods. In order to have sufficient accuracy in the calculated spectra to confirm
experimental assignments for observed peaks, it is necessary to correct the DFTB frequen-
cies with a scale factor λ . This factor is generated for a gas-phase octanedithiol molecule
by the procedure described by Scott and Radom [108] as

λ =
∑all

i ω theor
i νexp

i

∑all
i (ω theor

i )2
(7.5)

where ω theor
i and νexp

i are theoretical harmonic and experimental frequencies, respectively.
In this case, however, due to the lack of experimentally assigned gas-phase frequencies
for the octanedithiol, the experimental frequencies were substituted with B3LYP6-31g(d)
frequencies calculated using GAUSSIAN 03 which had first been corrected with the rele-
vant scale factor. This gave a scale factor of 0.913 for the DFTB frequencies. Implicit in
this procedure is the assumption that the majority of the error in the calculated frequencies
arises due to intrinsic limitations in the electronic-structure methodology rather than with
the specific treatment of the interaction of the molecule with the gold surfaces. All fre-
quencies presented in this IETS spectrum, as well as all figures, have been corrected with
this scale factor.

7.3 Discussion of the IETS simulations
The observed and calculated IETS of chemisorbed octanedithiol are shown in Fig. (7.2)
as a function of the applied voltage, 0.1 V corresponds to 806.5 cm−1 vibrational wave
number. The calculated spectrum is obtained from the low-energy structure shown in
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Fig. (7.1). Both spectra depict a variety of well-resolved peaks covering the vibrational
energy range, but they differ in terms of the spectral base line and the band shapes.

Figure 7.2: The calculated IETS for octaneditiol between two gold electrodes with the experimental
results from ref. [90] shown in the inset. Numbered peaks are assigned in Table (7.1).

A close inspection of the figure shows that the observed and calculated peaks occur
at similar voltages, and, while significant differences between the observed and calculated
intensities are apparent, the number of resolved bands is approximately the same. This
facilitates the assignment of the observed spectra, as discussed in detail later. The accuracy
of the calculated band positions and intensities depends most significantly on the accuracy
of the DFTB method used to calculate the electronic and nuclear structure. While in gen-
eral density-functional tight-binding calculations such as these perform very well for the
calculation of geometries and vibrational frequencies, latter improved by the use of the
scale factor, errors in calculated energy levels do arise. As the intensities of calculated
IETS bands depend significantly on the values for the energy levels, lower accuracy is, in
general, expected for this property.

Previously [90], the IET spectrum of octanedithiol has been assigned by comparison
of the observed bands with vibration frequencies obtained by IR spectroscopy, Raman
spectroscopy, and HREELS. This assignment is not a straightforward process as the other
techniques have specific selection rules, unlike IETS. It has been observed previously that
in IET spectra both IR-active modes and Raman-active modes can be seen as well as addi-
tional modes, although not all IR-active or Raman-active modes may be seen. The experi-
mental assignment is indicated in the inset of Fig. (7.2) and comprises eight firmly assigned
molecular vibrations as well as seven tentative assignments, marked “ ∗ ”, to vibrations in
the surrounding Si3N4 matrix. For the calculated spectrum shown in Fig. (7.2), simple
assignments arise for all bands except for that labeled 1, and these are given in Table (7.1)
where they are compared to the experimental assignments.
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Calculated spectrum Experimental spectrum
Peak Volt. (V) ω (cm−1) Assignment† Volt. (V) ω (cm−1) Assignment

1 0.007 61 Many modes
2 0.018 151 C-C-C scissor 0.015 121 *
3 0.025 204 Au-S stretch 0.033 266 Au-S stretch
4 0.036 302 S-C-C scissor
5 0.051 424 C-C-C scissor 0.058 468 *
6 0.080 648 C-S stretch 0.080 645 C-S stretch
7 0.091 737 CH2 2 in-plane rock
8 0.102 825 CH2 in-plane rock (all) 0.107 863 in-plane rock
9 0.120 972 CH2 in-plane rock (all)

10 0.142 1149 C-C stretch (cent.) 0.133 1073 C-C stretch
11 0.150 1208 C-C stretch (ext.)
12 0.161 1296 CH2 twist (ext.) 0.158 1274 CH2 wag
13 0.179 1444 CH2 scissor (ext.)
14 0.189 1525 CH2 scissor (cent.)
15 0.321 2593 C-H stretch sym. (ext.)
16 0.333 2688 C-H stretch asym. (cent.)
17 0.343 2769 C-H stretch sym. (ext.)
18 0.348 2806 C-H stretch asym. (cent.) 0.357 2879 C-H str. asym.

Table 7.1: The assignment of the peaks observed in the calculated IET spectra shown in Fig. (7.2).
†: the labels (ext.), (cent.) and (all) stand for “extremities”, “central” and “all the molecule”
respectively and are related to the localization of the mode of vibration.

Of the seven bands originally tentatively assigned to the Si3N4 matrix, five occur above
0.25 eV (2000 cm−1) in a region in which the molecule does not have vibrational fun-
damentals. Any molecular band in this region would thus have to be a combination or
overtone band. As such bands have never been observed to produce a strong signal in IET
spectra [109], they are explicitly excluded from the electron-phonon coupling and hence
the calculations provide no new information concerning the nature of these five observed
modes. However, a variety of molecular peaks are predicted in regions (0.01 and 0.07 V)
of the other two peaks that were not originally authoritatively assigned. The calculations
thus suggest new assignments of these peaks.

Of the eight bands positively identified experimentally, seven correspond to calculated
bands of the same nature, as indicated in Table (7.1); however, the calculations enhance
these assignments by providing more specific information. For example, the most intense
band in the observed and calculated spectra was originally assigned as a C-C stretch but the
calculations indicate that the various C-C stretches within octanedithiol should have differ-
ent frequencies and very different intensities, allowing the observed band to be assigned to
C-C stretch modes at the extremities of the alkane chain. Similarly, the calculations reveal
that the observed CH2 stretch and rock modes are localized on the extremities. These con-
clusions are obtained following the examination of the IETS spectrum shown in Fig. (7.3)
calculated at much higher resolution than the experimental spectrum.

Due to the effect of modulation broadening, high-resolution experimental spectra with
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36 clearly identifiable modes will be difficult to obtain and hence calculations offer a long-
term solution to the assignment problem of IETS. While the calculations indicate that the
vibrational modes at the center and extremities of the molecule are distinguishable, they
also indicate that most of the major peaks shown in low resolution in Fig. (7.2) actually
arise from multiple modes as indicated in Fig. (7.3).

Figure 7.3: The calculated IET spectrum at high resolution showing the contribution of individual
modes to the broad peaks observed experimentally.

For all bands other than peak 1, all contributing modes are modes of the same type so
it is possible to assign the peaks. For peak 1, the contributions are from different types of
modes associated with translation of the carbon chain in the two directions parallel to the
gold surface, the rotation of the molecule about the chain direction, and some asymmetric
combinations of these modes about the center of the molecule.

The only region of the spectrum where the calculated assignment is not fully consistent
with the experimental assignment is part of the fingerprint region (1200-1500 cm−1) in
which a variety of different types of modes occur such as CH2 wags and CH2 twists that
often mix strongly with each other. The most prominent disparity is the assignment of
peak 12 as a CH2 twist in the calculated spectrum compared with the CH2 wag assigned at
1274 cm−1 in the experimental spectrum. Throughout this region DFTB predicts a strong
Duschinsky rotation between the modes, and in addition DFTB and B3LYP calculations
differ significantly in their perception of the mixing for gas-phase octanedithiol.

While all calculations predict the IETS signal for the twist to be stronger than that for
the wag, I find that the calculated twist frequency is very sensitive to interface geometry,
leading to the possibility that structural irregularities wash out the signal from the twist.
Computationally, this makes a definitive assignment impossible without detailed knowl-
edge of the experimental structure, independent of the reliability of the method. Also,
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the arguments used to make the original experimental assignments of the IR and Raman
spectra may need to be reexamined.

7.3.1 Nature of the orbitals controlling conduction and IETS
IETS is controlled by the electron-phonon couplings Mα

µν between atomic orbitals µ and
ν in mode α as well as the Green’s function matrices lesser and greater that also act to
determine the coherent electron transport. Shown in Fig. (7.4, a) is the coherent transmis-
sion T (E) calculated using the Landauer formalism as in Eqn. (2.37) where the contact
self-energies are related to the ΓL(R) matrices.

Figure 7.4: The transmission (a) and IETS (b) for the normal system and the system where the
sulfur lone-pair and d orbitals have been shifted to very high energy, showing that these are the
dominant conduction channels at low voltage.

The peaks in this function correspond to conduction channels embodied within G<(>)
0 ;

the general nature of such channels is quite complex and their effects on IETS will be de-
scribed in detail in Chapter 8. Here, I show that broad features can be identified with con-
duction involving the sulfur lone-pair and valence d orbitals by taking the DFTB-calculated
Hamiltonian matrix in the Löwdin orthogonalized atomic-orbital basis and artificially shift-
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ing these orbitals to remote energies. The modified coherent transmission is also shown in
Fig. (7.4, a) and it is evident that there is a dramatic lowering of the transmission near
-4 eV, attributable to the lone-pair orbitals, and 0 eV, attributable to the d orbitals. It is
hence clear that at the Fermi energy of the electrodes these orbitals constitute the primary
conduction channel(s).

As alkanethiols have very large band gaps (HOMO-LUMO gap) these primary conduc-
tion channels at low voltage are not resonant channels with a large amount of molecular
character, as they are for, say, 1,4-benzenedithiol, but rather are states that are primarily
localized on the electrodes with a small amount of molecular character. This is effectively
a conduction through the wings of the probability distribution functions representing the
molecular orbitals; these functions show significant broadening owing to their coupling
with the electrodes. Figure (7.4, b) shows the calculated IETS for both the original and
modified Hamiltonians, and it is evident that the majority of the IETS signal disappears
when the sulfur lone pair and d orbitals are shifted to very high energy.

Interestingly, the peak in the IETS resulting from the C-S stretch mode does not de-
crease proportionately with the rest of the spectrum when the orbitals are removed. The
reason for this is that this mode couples strongly with the high-energy transmission channel
at ca. -8 eV associated with the C-S σ bond, the channel that produces the weak remnant
transmission at the Fermi energy depicted in Fig. (7.4, a) after the removal of the other
sulfur orbitals. Hence it is clear that the conduction channels that control the low voltage
coherent transport also control IETS. The signal obtained in IETS thus arises as a result
of energy loss from electrons in the low-voltage conduction channels as they excite the
vibrational modes of the molecule.

7.3.2 Nature of the vibrations that produce IETS
As the low-voltage conduction channel dominates IETS, the peaks of highest intensity will
be those associated with the vibrational modes that provide the greatest perturbation in
the region where this channel has electron density. As the main conduction channels for
octanedithiol have been determined to involve sulfur lone-pair and d orbitals as well as
some contribution for the C-S sigma system, vibrations localized on the S and terminal C
atoms are expected to be the most significant. It is this physical principle that underpins
the previously mentioned assignment of the dominant IETS modes as modes involving the
extremities of the bridging molecule.

This physical picture leads to the prediction that the IET spectra of alkanethiols will be
very sensitive to changes in the binding geometry and less so to changes in the backbone
of the chain. To test this hypothesis numerically, I calculate the IETS for alkanethiols of
modified chain length and different binding site. Figure (7.5) shows the calculated current-
voltage characteristics (left) and the corresponding IET spectra (right) for C4, C8, C12, and
C16 alkanethiols.

The geometry optimizations for these molecules were performed so as to achieve sim-
ilar binding configurations, and this is reflected in the similarity of the IETS features. The
current decreases approximately exponentially with increasing length as is expected and
as a result so does the magnitude of the IETS base line. Beyond the change in base line,
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Figure 7.5: The simulated current vs voltage and IETS for C4, C8, C12, and C16 length chains.

however, the differences are slight and simply reflect the subtle variation in the calculated
molecular binding geometry (for example, the slight rotation of the terminal CH2 group).
This result shows that the vibrational modes in the central region of the molecule do not
contribute significantly to the IETS signal, as hypothesized.

This result is consistent with that found previously by Chen et al. [42] for the effect
of chain length on IETS characteristics. In that work the low-energy modes (below 50
meV) were predicted to be very much smaller in magnitude than the other features, in
contrast with the present results, however, the predicted length dependencies were similar.
As the treatment of the interface region in this previous work was quite different in that the
electrodes were treated with a jellium model, it can be concluded that the major conclusion
concerning the significance of the terminal vibrations is found to be robustly obtained.

As there are many minima on the potential-energy surface for binding octanedithiol
on gold it is possible to investigate two similar binding sites that feature the sulfur atoms
bound directly above an Au site. The first geometry is the low-energy structure that has
been used up to this point and the second is a higher-energy optimized geometry shown in
Fig. (7.1). In this second structure the tilt angle to the Au surface normal is now 18◦; and
there is a greater twist in the alkane chain; both geometries are shown together in Fig. (7.1)
for comparison.

Figure (7.6) shows the calculated IETS spectra for these two geometries, and these dis-
play qualitative differences that reflect the changes in the binding site in addition to the
changes found in the magnitude of the observed current (evidenced in the IETS by the
changes in the base line). The most significant change observed is the modulation of the
intensities of the C-S and C-H stretches and CH2 in-plane rock modes between the two ge-
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Figure 7.6: The calculated IETS for the two different binding sites corresponding to the two differ-
ent geometries shown in Fig. (7.1) The modulation of the C-S stretch and C-H stretch modes reflects
the changes in the geometry of the terminal CH2 group with respect to the gold surface.

ometries. In the low-energy geometry we have the large C-S stretch peak corresponding to
sensitivity to this vibrational mode as the molecular component of the conduction channel
is predominantly sulfur density. Conversely, in the high-energy geometry with the greater
twist angle in the alkane chain a hydrogen atom of the first CH2 group is now in close prox-
imity to the surface. This results in the molecular component of the conduction channel
having significant density on this hydrogen atom in addition to the sulfur, and in turn the
IETS signal shows sensitivity to the CH2 in-plane rock and C-H stretch of the extremities.

7.4 Conclusions

The IETS of chemisorbed octanedithiol between two gold contacts shows to reproduce key
features of the experimental spectrum for this molecule, including the verification of the
major molecular vibrational modes involved. However, the calculations are shown to lead
to increased specificity in the assignments and to new assignments. The previous experi-
mental assignments were obtained by the comparison of the IETS results with those from
other spectroscopies, but the different selection rules and chemical environments make this
a difficult process. The calculations suggest that a number of the modes that were attributed
to possibly coming from the Si3N4 matrix [90] may in fact have molecular character.

Further, the evidence of a mixing of modes with different symmetry in the fingerprint
region suggests that the detailed assignment of this region may prove illusory without de-
tailed knowledge of experimental structure. They show that for chemisorbed alkanethiols,
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IETS is dominated by vibrational modes localized at the ends of the molecule, providing
additional assignment information that is critical to the understanding of the nature of the
process. It may be possible to verify these features of the assignment if higher-resolution
spectra can be obtained, beyond the modulation-broadening limit, as such spectra are pre-
dicted to be able to discriminate in both frequency and intensity between central and ter-
minal vibrational modes.

The calculations indicate that there is a strong correlation between the conduction chan-
nels that dominate the low voltage coherent conductance of alkanethiols and those that
dominate IETS. These channels are shown to be dominated by the sulfur lone-pair and
other orbitals, leading to the result that IETS is most sensitive to vibrations localized at the
ends of the molecule. For conduction through conjugated molecules, the lower molecular
band gap results in greater participation of the center region of the molecule in the conduc-
tion channel, and so the dominance of terminal modes is not expected to be as pronounced.
For alkanethiols, however, the deduced sensitivity to the metal-molecule interface region
indicates that IETS spectra should show considerable variation with subtle changes in bind-
ing site and small variations with increasing chain length, and these predictions are verified
by the simulations.

Other calculations [46] of the IETS of octanedithiol have predicted significant differ-
ences in the relative intensities of the C-C and C-S modes to those shown in Fig. (7.2), most
likely as the result of the different interface geometries and treatments used. While opti-
mized structures were used in the calculations, many binding sites are possible on smooth
gold surfaces ([82]), and many irregular binding sites are likely to occur in real metal-
molecule junctions. Experimental spectra obtained in, say, nanopores involving thousands
of molecules are likely to depict an ensemble of possibly very different junctions, making
detailed interpretation difficult. The calculations are also approximate in that they do not
allow the gold surface atoms to relax, nor do they include gold surface vibrational modes.
Consequently, the predicted properties for terminal vibrational modes are not expected to
be as accurate as those for the central modes. Hence, while IETS are predicted to show
details revealing critical but largely unknown aspects of the alkanethiol-metal interface,
the design of computations that can authoritatively unravel these features poses a major
challenge.

The most striking feature of IETS results remains; this is the first technique to provide
conclusive evidence that current flows through a molecule, as opposed to a metal filament.



Chapter 8
The Role of Symmetry and Channels in

Conduction

The analysis of IETS in Chapter 7 arises many questions. First, it was shown the diffi-
culty of a clear assignment of the peaks in the IET spectrum. This is related to two facts:
the uncertainty in the definition of the geometry of the molecule and the metallic surfaces
from experiments data and the different selection rules shown by IETS. Second, from the
analysis of the conduction in the octanedithiol molecule was clearly shown that only few
“channels” conduce all the current which is inelastically scattered by the most relevant
vibrational modes, and those channel can be partially related to some canonical molecu-
lar orbitals of the molecule. However, the canonical molecular orbitals are usually not a
suitable set of channels for transport problems, due to the presence of the open boundary
conditions, that means the coupling of the molecule with the contacts.

The present Chapter is focused on answering these two points. The Chapter is artic-
ulated as follows: in the first part it is shown how define a point group for the molecule
between the electrodes. It is clear that starting from the molecule in gas phase, the effects
of the contacts is to reduce the symmetry of the system in a subgroup of the original sym-
metry point group. The second part of the Chapter is devoted in the definition of channels
for transport. These channels decompose the total current in a sum of non interfering con-
tributions. Every channel can be labeled according to its irreducible representation from
the reduced point group.

During this Chapter it is made use of the Landauer-Büttiker formalism, that means I
am considering elastic current only. In Chapter 9 the formalism will be generalized to
include also scattering processes in the full Meir-Wingreen equation. This will lead to un
investigation of selection rules in IETS.

93
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8.1 The definition of the symmetry of conduction

It is well known that one of the most powerful concepts to aid in understanding molecular
properties is symmetry. As researchers today expend more effort to utilize molecular prop-
erties in single molecule electronic devices, it is important to understand how symmetry
operates within these regimes.

Understanding the symmetry of a molecule carrying current is an important step in
molecular electronics for resolution of issues such as whether there can be symmetry se-
lection rules in IETS, or the means by which molecular orbitals influence conduction char-
acteristics. These issues in turn feed back to experimental design, providing guidance for
device characterization and synthetic targets. This section will show how symmetry oper-
ates within the standard conduction formalism of molecular electronics and from this illus-
trate the additional information that symmetry assignment provides concerning molecular
conduction.

In order to describe the symmetry of molecular conductance, it is necessary to under-
stand the relationship between the symmetry of each of the quantities within the Meir-
Wingreen equation in terms of the geometric point group of the entire system. Assuming
for simplicity the absence of an applied bias (V = 0), the first important consideration is that
the self-energies Σr

L(R) arising from the electrode-molecule interactions do not commute
with all of the symmetry operators that define the point group of the bridging molecule.
Moreover, the application of an electric field only increases the symmetry breaking.

First, a single electrode will couple strongly to one end of the molecule and weakly to
the other. This results in the individual Σr

L and Σr
R matrices not having an end-to-end sym-

metry even if such symmetry is present in the geometric point group of the full electrode-
molecule-electrode system. With end-to-end symmetry I mean that the symmetry of the
self-energies cannot contain all the symmetry operations of the device point group which
relate one end of the device to the other. Second, as Σr

L(R) embody the interactions between
the molecule and the left (right) electrode, the symmetry of these matrices embodies only
the symmetry elements that are common to both the molecule and the electrode junction.

These two levels of symmetry breaking provide a natural framework to define the sym-
metry of conductance. The symmetry of the transmission through the full system can be
defined exactly as the conductance point group; the symmetry operators that define this
point group will commute with all quantities appearing in the NEGF formalism. Hence
the conductance point group contains the common elements of the symmetries of Σr

L and
Σr

R , called the junction-conductance point groups, as well as those of the geometric point
group of the isolated molecule. Put another way, the conductance point group contains all
the symmetry of the two electrodes and the molecule and also all the symmetry breaking
interactions between the three.

While the conductance point group and the individual junction-conductance point groups
are important as they describe molecular conductance within the NEGF formalism exactly,
in practical applications the required precise junction geometries and electrode symmetries
are likely to be unknown and/or uncontrollable [110]. However, the dominant symmetry
breaking contribution in molecular conductance comes not from the details of the elec-
trode geometry but from the loss of end-to-end symmetry which is a universal feature of
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all Σr
L(R) matrices. Consequently, I introduce a molecular-conductance point group com-

prising only the symmetry operators of the geometric point group of the molecule that do
not interchange its two ends.

This is of practical utility as it allows the dominant symmetry contributions to the trans-
mission through a molecule to be determined from knowledge of just the molecular geom-
etry alone without need for knowledge of the details of the electrode binding. The disad-
vantage is that the molecular-conductance point group may not be an exact descriptor of
the symmetry of transmission as it neglects the possible symmetry breaking contributions
arising from the internal electrode geometries. However, I will show later that in the case
of sulfur-gold binding this symmetry reduction either does not occur or is inconsequential
from a practical standpoint.

8.1.1 Application to molecular system

The approach makes it possible to separate the different symmetry contributions to the
conductance for a molecular system. To demonstrate this, calculations are performed for
conduction through a 1,4-benzenedithiol molecule chemisorbed on two gold electrodes.
Two binding configurations are considered: the bridge binding site where the sulfur atom
sits above two gold atoms and the hollow binding site where the sulfur sits above three
gold atoms. The molecule is defined as being the central C6H4S2 moiety whose geometric
point group is D2h. The important difference between the two binding geometries is that
the differing symmetry in the binding gold atoms makes the conductance point group Cs in
the case of the hollow binding site, whereas the bridge binding site leads to a conductance
point group of C2v. Different interface geometries thus result in different conductance point
groups. However, when the molecule is considered alone, the molecular-conductance point
group is insensitive to the interface structure: it is C2v independent of binding site and hence
unambiguously determinable.

Figure (8.1) shows how the molecular-conductance point group is determined through
examination of the symmetry operators of the D2h point group of the C6H4S2 fragment.
Those operators shown in red-the center of inversion, the σxy plane, and the C2x and C2y
axes are not part of the molecular-conductance point group of C2v as only the σxz and σyz
planes and the C2z axis may possibly commute with Σr

L(R).
It has been discussed previously that the impact of the electrodes on the molecular

electronic structure is treated more precisely, with consequent improvements in numerical
accuracy, when a number of electrode atoms are included with the molecule to form an
“extended molecule”. This inclusion has ramifications on the molecular-conductance point
group of the system, as now electrode atoms are included in the geometric point group
under consideration. If the shape of the unit cell is chosen with care, a bridge binding site
geometry will still have a molecular-conductance point group of C2v; however, a hollow
binding site geometry can only have Cs symmetry.

For the bridge binding site, the zero-voltage transmission can thus be separated into the
four different symmetry components, A1, A2, B1, and B2 consisting of two σ and two π
representations, as shown in Fig. (8.2) for the molecule alone (black curve) and an extended
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Figure 8.1: The symmetry operators that define the geometric point group of D2h, those shown
in green, are the operators present in the molecular-conductance point group of C2v, while those
shown in red reflect end-to-end symmetry and do not commute with Σr

L(R).

molecule with 25 gold atoms included on each side (red curve). This immediately yields
an intuitive picture of conduction in this system that is not otherwise demonstrable. At
very low energies (below -9 eV), conduction is dominated by transmission through the σ
system with A1 symmetry; however, in the range from -9 to 4 eV that includes all accessible
energies, the dominant transmission is through the π system with B1 symmetry. There is
nothing surprising in this result; it just provides a formal basis for the general assumptions
about the nature of the conductivity in conjugated systems of this kind. An interesting
feature to note is that while the region of high transmission through the σ system does not
lie in an energy range that is accessible using gold electrodes whereas that for the π system
does, the transmission coefficients become large in both cases. This result accords with
what is known from intramolecular electron transfer experiments [111] where it was seen
that when systems are designed to make the σ system energetically accessible then high
rates of electron transfer can be achieved over large distances.

Additionally, it is evident that the inclusion of electrode atoms in an extended molecule
simply acts as a perturbation on the symmetry separated transmissions without changing
their character. Hence including only the isolated molecule in the molecular component is
a reasonable approximation for revealing the character of symmetry separated components
of the transmission. This approximation facilitates the definition of a single conductance
symmetry for a particular molecule, irrespective of the binding site.

The bridge binding site considered above is a special case in which inclusion of the gold
atoms at the binding site does not lower the symmetry of the system. This results in the
molecular-conductance point group being the same as the conductance point group. Gener-
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Figure 8.2: Symmetry separated components of the transmission through chemisorbed 1,4-
benzenedithiol bound to the bridge site with two gold contacts. In each case the black curve is
the transmission calculated without any gold atoms included in the extended molecule and the red
curve results from 25 gold atoms being included on each side.

ally, however, this is not the case. The simplest illustration of this is again the chemisorbed
1,4-benzenedithiol bound this time to the hollow site. In this case the symmetry of the full
system is now C2v, and although the geometric point group of the central C6H4S2 moiety
is still D2h, the conductance point group (defined by the common elements of the junction-
conductance point group and the geometric point group) is no longer C2v but Cs as the C2
axis of the full system is not the electrode-molecule-electrode axis.

Figure (8.3) provides a comparison of the two ways of treating the symmetry of the
system where no gold atoms are included in the extended molecule. First are the two
symmetry components of the transmission through the molecule alone that arise, without
approximation, as the system can be described using its Cs conductance point group (black
curve). These results are compared with those obtained approximately by neglecting the
terms in Σr

L(R) that break C2v symmetry (green curve). While this approximation allows
the conductance to be classified in terms of the A1, A2, B1, and B2 representations of the
C2v point group, the A1 and B1 as well as the A2 and B2 components may be summed and
compared to the true A

′
and A

′′
components, respectively.

Figure (8.3) shows that the results obtained using the molecular-conductance point
group are indistinguishable from the exact transmission at most energies. The important
practical result is that the symmetry reduction in systems bound through a terminal sul-
fur can be considered, to a very good approximation, to only be the loss of end-to-end
symmetry irrespective of the symmetry of the electrode-molecule junction.

Also shown in Fig. (8.3) are the results obtained using the Cs point group with the
inclusion of 25 gold atoms per contact in the extended molecule. It is again evident that
the inclusion of gold atoms in the extended molecule perturbs the symmetry separated
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Figure 8.3: Symmetry separated components of the transmission through chemisorbed 1,4-
benzenedithiol bound to the hollow site with two gold contacts. In each case the green curve is
the sum of the symmetry components when the conductance point group is approximated to be C2v,
while the black curve is the transmission when the system is treated without approximation as hav-
ing a conductance point group of Cs. Also shown in red is the transmission when 25 gold atoms are
included on each side to form an extended molecule.

components of the transmission without changing their character. The difference in this
instance is that with an extended molecule it is not possible to examine the hollow binding
site transmission in C2v symmetry. Consequently, the level of detail that can be obtained in
symmetry analysis is reduced. The effect of any modification of the molecule which does
not affect all symmetry components equally, for example, chemical substitution, will be
most clearly seen in a higher symmetry representation.

The separation of transmission into symmetry components as shown in Figs. (8.2)
and (8.3) indicates that at no energy is the transmission purely through channels of just one
symmetry. There are energies at which the transmission is dominated by a single symmetry
component but other symmetry components are always present, albeit that their contribu-
tions are orders of magnitude less. This fact may be vital to interpretation of spectroscopic
properties associated with electron transmission, because channels that make small con-
tributions to the total current can, in principle, dominate effects such as IETS. Further,
a relationship between the peaks in each symmetry component of the transmission and
molecular orbitals of known symmetry can be identified leading to a useful chemical pic-
ture of molecular conductance that can aid synthetic design.

An alternative perspective on the significance of the conductance point group can be
gained by considering the nature of the wave vectors transmitted through the entire molecu-
lar component, whether this constitutes the real molecule or some extended one. In the bulk
electrode on either side, the wave vectors of the transmitted and reflected electrons can be
defined. From this point of view the molecule can be considered as a momentum filter only
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allowing certain wave vectors to be transmitted [112]. It is the conductance point group that
determines those linear combinations of wave vectors that will be allowed to pass through
the molecule from the set of all wave vectors incident on the electrode-molecule interface.

While all of the discussion so far has been concerned with systems where the scattering
processes are neglected, Σ<,>

ph = 0, or when Σ<,>
ph commutes with all symmetry operators

that define the geometric point group of the molecular system, the applicability of symme-
try characterization is not limited to such situations. These conditions on Σ<,>

ph result in
it not modifying the conductance point group of the system from what would be expected
through analysis of Σr

L(R) alone. In the case where Σ<,>
ph is not equal to zero and does

not have the symmetry of the geometric point group of the system, it may act to further
reduce the conductance point group. If Σ<,>

ph has the same symmetry as Σr
L(R), this will

not be the case as no further symmetry breaking will be introduced. However, if Σ<,>
ph has

lower symmetry than Σr
L(R), it will become the dominant component in the symmetry re-

duction of the conduction process and the conductance point group will be determined also
by the symmetry of Σ<,>

ph . A symmetry breaking component arising from Σ<,>
ph may be

large, depending upon the effect being included, in which case analysis using molecular-
conductance point group may be a poor approximation to the transmission obtained using
the conductance point group.

8.2 The definition of channels in elastic transport

The idea of conduction channels is connected to the real promise of molecular electronics
which is not just in the small size of molecular components but also in tunable electrical
characteristics. If molecular properties can control conduction characteristics, then these
could be as varied as the immense range of chemical substitution allows. In the devices
developed today it is not always clear that it is the molecular characteristics, as opposed
to properties of the junction, that dominate the transmission [110, 22]. However, increas-
ingly sophisticated experimental techniques are allowing more information to be obtained
about the conducting entity than just simple current-voltage characteristics. Recently, shot-
noise measurements on a single molecule were reported [113], which made it possible to
distinguish between proposed binding geometries because of the differing numbers of con-
duction channels that were active in each case. The conduction channels observed in shot-
noise measurements must have a molecular origin; however, it has not been clear how to
describe them in terms of the properties of the molecule.

Qualitatively, it is clear that resonant transport occurs at energies close to that of the
molecular orbitals of the molecular component of the system [114]. However, molecular
conduction has, so far, eluded quantitative description in chemical terms. It was shown
by Büttiker that it is possible to separate transmission into components from individual
channels [115] whose transmission coefficient lies between zero and one. This has been
applied to molecular systems [116] and necked metallic wires [112], but it is not clear
how they may be quantitatively described in terms of molecular properties, for example
the molecular orbitals, of the system. In the case of single-atom metallic wires, it has been
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shown both experimentally [17] and theoretically [117] that the number of channels relates
to the valence of the atom; however, this needs to be extended to describe how conduction
channels operate in molecular systems.

Here it will be shown how conduction channels can be linked to molecular properties.
First, it is shown that only a small number of conduction channels are expected because of
the nature of chemical binding of molecules to electrodes. Second, it is shown alternatively
how conduction channels can be understood in terms of the connections that they provide
between incoming and outgoing junction states.

8.2.1 Büttiker channels

Using the ubiquitous Landauer-Büttiker equation, the current (I) through a molecule can
be expressed as a function of bias (V ) as

I(V ) =
2e
h

∫ +∞

−∞
g(E,V )(nL−nR)dE (8.1)

The quantum conductance, g(E,V ) (the sum of the transmission probabilities through all
available channels) is defined as usual:

g(E,V ) = Tr[ΓL(E,V )Gr(E,V )ΓR(E,V )Ga(E,V )]. (8.2)

The one-electron Hamiltonians, HD, HL, and HR, as well as the electrode-molecule
coupling matrices, JDL and JDR, are partitioned from the Hamiltonian of the full electrode-
molecule-electrode system H′

0, Eqn. (5.2). As shown by Büttiker, the contributions from in-
dividual eigenchannels can be determined by diagonalizing T =ΓLGrΓRGa from Eqn. (8.2)
to yield [115]:

g(E,V ) = ∑
i

Ti(E,V ) (8.3)

where Ti are the resulting eigenvalues and 0 ≤ Ti ≤ 1. In order to label the eigenvalues Ti
with an irreducible representation of the molecular-conductance point group of the system,
before diagonalizing T(E,V ) we perform a transformation of the matrix in the symmetry
adapted basis. The matrix results block-diagonalized and every block refers to a single
irreducible representation of the point group:

T =




IR1 0 0
0 IR2 0

0 0 . . .


 (8.4)

where IRi stands for the ith irreducible representation of the symmetry group.
Performing this analysis for a 1,4-benzenedithiol illuminates a number of interesting

features. The molecule is chemisorbed at the bridge site of two gold electrodes as shown
in Fig. (8.1), with partitioning of H′

0 into its HD, HL, and HR components occurring across
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the gold-sulfur bonds. The first feature of this system is that there are very few eigen-
channels with relevant (above 10−14) transmission. Figure (8.4) shows the eigenchannel
transmissions for this system separated into the symmetry components of the molecular-
conductance point group.

Figure 8.4: Contributions to the transmission from individual conduction channels separated by
symmetry group for clarity. In each symmetry group, the primary conduction channel (dominant
transmission at the Fermi energy) is shown in red, the secondary channel is shown in blue, and only
in the A1 case is a third channel visible in green.

The number of eigenchannels is formally related to the dimension of the molecule (for
the minimal basis set used in the system here we have 46 channels); however, the vast
majority of these channels do not contribute to the total transmission. The small number
of nonzero eigenchannel transmissions can be understood by considering the nature of the
chemical binding to the electrodes and the impact this has on the matrices that generate
the transmission. The main feature of the ΓL(R)(E,V ) matrices is that they contain the
information about the bottleneck of the junction between the sulfur atoms and the contacts.
So, if the electrode only couples with a small number of molecular states then there will
be many near zero elements in JDL and JDR. As a result, rows and columns of near-
zero elements appear in ΓL(R)(E,V ), which in turn leads to eigenchannels with negligible
transmission. This is an intuitive picture of transmission; the number of open eigenchannels
will not be greater than those supported by the smallest bottleneck in the system. It has long
been recognized to apply to necked junctions in atomic wires [117] but here it is shown to
be generally relevant to bridged-conductor conductivity.

Mathematically, this process is readily identified when the bottleneck occurs at the
sites at which HD, HL, and HR are partitioned, as described above. If the situation is
examined numerically, including 25 gold atoms on each side in the extended molecule.
This results in a modified transmission curve as the influence of the electrodes is treated
more precisely through the inclusion of explicit gold atoms in the molecular part compared
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to when the effect of the electrodes is limited to the self energies, Σr
L(E,V ) and Σr

R(E,V ).
However, the number of eigenchannels found with transmission above 10−10 is invariant
to this enhancement. The internal coupling elements between the gold and sulfur atoms
within HD are the dominant factor controlling the number of open channels by effectively
reducing the rank of the product of g(E,V). This is an important result: it is the physical
and chemical nature of the system, not the choice of partitioning in the calculation, that
determines the number of conduction channels with significant transmission. The number
of channels with significant transmission is determined by the size of the bottleneck that
the connection through the sulfur allows and is not determined by the size of the matrix
HD, which determines the theoretical limit for the number of perceived eigenchannels.
However, through judicious choice of the partitioning, the nature of the conductivity may
be described using simple models [118, 119] or molecular symmetry.

The number of eigenchannels with nonzero transmission, as well as the total transmis-
sion, is dependent on the size of the basis set used for the atoms at the bottleneck. In the
above calculations, the basis set used for the sulfur atom has s, p, and d functions. If the
d functions are removed, then the A2 channel shown in Fig. (8.4) disappears completely
in addition to the changes in shape that come from the total transmission being modified.
A result similar to this was obtained in the work of Cuevas et al. [117] for tunneling
through atomic wires. Significantly, in that application the electronic coupling elements
were assumed to connect only nearest-neighbor atoms, resulting in the size of the bottle-
neck being exactly the dimension of the number of basis functions on a single metal atom.
For molecules in comprehensive treatments, it is not always reasonable to assume that only
nearest-neighbor coupling elements are nonzero. At the molecule-electrode junction, for
example, the accuracy of such an assumption will be dependent on the nature of the bind-
ing group. In the case of chemisorbed 1,4-benzenedithiol, direct Au-S and S-C couplings
are the dominant terms but an extensive calculation will also give small but nonzero Au-H
and Au-C couplings. This means that the number of open conduction channels will not be
precisely determined by the Au-S interaction.

Beyond the technicalities of the calculations, the significance of this result is that the
number of open conduction channels arises from a chemical property of the system. The
smallest bottleneck in the system can be controlled by chemical substitution, be it by multi-
ple binding groups between the molecule and the electrode or by different backbone struc-
tures for molecular wires. This understanding allows for appropriate synthetic targets to be
envisaged without any unforseen constraints in conductivity dominating the conductance
characteristics. Additionally, when the bottleneck occurs at the binding site, as was the case
for the example system above, the size of this bottleneck, that is, the number of observable
conduction channels, will change with changes in the binding geometry. For example, if
the molecule was tilted on the surface direct Au-H and Au-C coupling would be more sig-
nificant and may increase the number of conduction channels observed. Conversely, if the
terminal sulfur atom sat directly above a super-surface gold atom or at the apex of a single
atom on a gold tip, then this effect may reduce the coupling with the sulfur orbitals of π
symmetry and thereby reduce the number of channels observed. This means that molecules
such as chemisorbed 1,4-benzenedithiol can be used as probes for the nature of thiol bind-
ing on gold surfaces as the number of channels observed in shot-noise measurements will
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be sensitive to the geometry of the junction region.
Understanding the cause of the small number of open eigenchannels does not, how-

ever, provide any further illumination of the relationship between conduction channels and
molecular orbitals. Indeed, a striking feature of Fig. (8.4) is that each conduction channel
spans a range that encompasses many molecular orbitals further complicating any quanti-
tative description of conduction through a single orbital. As has been reported elsewhere
[118], when the eigenvectors are computed in the atomic orbital basis they are difficult
to interpret. In fact, the details of the unusual character of the eigenvectors of g(E,V) are
important. The eigenvectors at all transmission energies E are dominated by coefficients
on the sulfur atom at the charge-injecting electrode. The charge injecting electrode (L in
the notation used herein) is distinguished by the asymmetry in g(E,V), which allows the
total transmission to be calculated through the knowledge of the transmission across the
interface between the charge injecting electrode and the molecule. Where two channels
cross (akin to avoided crossings between molecular potential energy surfaces) the identity
of each channel can, in principle, be determined from the eigenvectors. However, there
are energies at which two channels meet but do not cross, a situation that cannot occur
for Hermitian operators, and the eigenvectors are not continuous over this region with the
meeting point coinciding with the discontinuity. Also, the eigenvectors are not guaranteed
to be orthogonal (zero overlap) and this point actually coincides with the maximum in the
overlap between the two eigenvectors. An example of where this unusual behavior occurs
is the meeting of two channels around -13 eV in the A1 symmetry transmission. This re-
gion is shown in high resolution in Fig. (8.5) with the coefficients on the sulfur atom at the
charge-injecting electrode as a function of energy shown below for the primary and sec-
ondary conduction channels shown above, the discontinuity being readily apparent around
-13.15 eV, whereas the overlap peaks at 0.8, indicating nearly parallel eigenvectors. In
fact, the determinant of the eigenvector matrix, which is 1 for an orthogonal transforma-
tion, takes a maximum value as a function of energy of just 10−32, indicating a high degree
of eigenvector linear dependency.

8.2.2 Γ -channels
As mentioned previously, the eigenvectors of the Büttiker channels reflect only the site of
charge injection and do not capture the full symmetry of through-molecule conductivity.
A means by which this symmetry can be perceived is through pre-diagonalization of the
two sets of molecule-electrode interactions ΓL(R)(E,V ) as suggested by Troisi and Ratner
[38]. I ignore the orbital overlap during this process, introducing the (real diagonal) eigen-
value and (real orthogonal) eigenvector matrices ΓL(R)(E,V ) and DL(R)(E,V ), respectively,
through

Γ̂L(R)(E,V ) = D†
L(R)(E,V )ΓL(R)(E,V )DL(R)(E,V ) (8.5)

In order to assign symmetry to the eigenvalues a transformation of the two matrices in
the symmetry adapted basis must be performed before the diagonalization. If the two
junctions are symmetrically related, then Γ̂L(E,V ) = Γ̂R(E,V ) = Γ̂ (E,V ) so the current
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Figure 8.5: Unusual properties of the eigenvectors associated with the primary and secondary
channel of A1 symmetry at the point where they meet but do not cross. The maximum in the over-
lap and the discontinuities in the coefficients on the sulfur at the charge injecting electrode atom
illustrate the unusual characteristics of the eigenvectors associated with conduction channels.

from Eqn. (8.2) can be written without approximation as

g(E,V ) = Tr[Γ̂ (E,V )Ĝr(E,V )Γ̂ (E,V )Ĝa(E,V )]

= ∑
i j

Γ̂λ
ii (E,V )Γ̂λ

j j(E,V )|Ĝr
i j(E,V )|2 (8.6)

where

Ĝr(E,V ) = D−1
L (E,V )Gr(E,V )DR(E,V ) (8.7)

and λ is the label for the irreducible representation to which belongs a certain eigenvalue.
This expression for the transmission suggests that the tunneling current can be viewed as
entering one electrode through the input junction channel i, being transferred through the
molecule with probability |Ĝr

i j(E,V )|2 and then leaving through the exit junction j. In this
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way, the total current can be considered to be decomposed into the sum of n2 independent
channels, where n is the number of atomic orbitals of the molecule. This interpretation is
formally applicable whenever the eigenvalues Γ̂λ

ii (E,V ) are guaranteed to be all positive, as
is the case when the basis functions do not overlap. In general, the arguments used earlier
to interpret the Büttiker conduction channels may again be applied, however, concluding
that most of the eigenvalues should be zero with just a few large and positive contribu-
tions facilitating current flow. Hence this interpretation, though only formally exact for
a restricted problem, is expected to be rather useful in characterizing through-molecule
conductivity.

For the case of 1,4-benzenedithiol symmetrically chemisorbed between two gold con-
tacts as studied earlier using full treatment of orbital overlap, numerical calculations reveal
only 15 junction eigenvalues Γ̂λ

ii that are nonzero (i.e., Γ̂λ
ii > 10−16 within numerical pre-

cision); these are listed in Table (8.1). Of them, only one is negative corresponding to a
junction path of A1 symmetry with Γ̂λ

ii =−1.1×10−12. Hence, the interference contribu-
tions to Eqn. (8.6) are at least 12 orders of magnitude weaker than the direct contributions
and so the current may indeed be perceived in terms of simple contributions from each
junction linked through the molecule.

Figure 8.6: First three conduction channels obtained through the Troisi-Ratner method for each
system. In each case the primary channel is shown in green, the secondary channel is shown in
blue, and the tertiary channel is shown in yellow. Where visible, the red curve represents the total
transmission for each symmetry.

From Table (8.1), it can be seen that a significant number of the junction eigenval-
ues fall within 3 orders of magnitude of the most prolific junction channel. On the basis
of the very small number of Büttiker channels depicted in Fig. (8.4) smaller number of
significant junction channels could be expected. The change is due to the neglect of the
orbital overlap in Eqn. (8.7), a feature required in order to obtain the desired |Ĝr(E,V )|2
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label A1 A2 B1 B2
1 1.9462 × 10−1 1.2691 × 10−3 3.4940 × 10−2 8.1665 × 10−3

2 1.0196 × 10−2 4.4071 × 10−3 3.5221 × 10−4

3 1.5149 × 10−3 8.7315 × 10−8 4.7558 × 10−10

4 7.6416 × 10−5 9.4243 × 10−14

5 4.9025 × 10−8

6 3.6017 × 10−9

7 -1.1494 × 10−12

Table 8.1: Nonzero Eigenvalues of Γ̂λ
ii at -5.0 eV Separated into Symmetry-Block contributions.

dependence of the molecular contribution in Eqn. (8.6). The contributions of the dominant
terms from the individual Γ̂λ

ii (E,V )Γ̂λ
j j(E,V )|Ĝr

i j(E,V )|2 terms in Eqn. (8.6) are shown in
Fig. (8.6). For each symmetry the contribution from the Γ̂λ

11(E,V )Γ̂λ
11(E,V )|Ĝr

11(E,V )|2
term is in general the most important one. The energy dependence of these probabilities re-
flects largely the nature of the conducting molecule and is independent of the path that the
tunneling electrons takes through the entry and exit channels. The Büttiker channels focus
on the conductivity bottlenecks and associated shot noise, whereas the Troisi-Ratner chan-
nels focus on the nature of both junctions and the net way in which the molecule passes
the current, but neither of these illuminates the means by which the molecule facilitates
conductivity.

8.3 Conclusions

The symmetry of molecular conductance is not simply that of the geometric point group of
the conducting molecule but instead can be described in terms of a molecular-conductance
point group and/or a full conductance point group. While the molecular-conductance point
group can always readily be determined from the geometric point group as is illustrated for
some molecules commonly used for molecular electronics applications in Fig. (8.7), the
conductance point group requires detailed knowledge of the possible symmetry breaking
contributions from the electrodes as well as any other effect included through additional
self-energies.

In the case of molecules bound to gold through a terminal sulfur, in the absence of
symmetry breaking terms in Σ<,>

ph , if the molecular-conductance point group is different
from the full conductance point group then the simpler description is shown to still provide
a good approximation to the transmission. It is thus possible to determine the symmetry
of conduction channels (and thereby understand the contribution that molecular symmetry
makes to conductance) and also understand how the selection rules of spectroscopies ap-
plied to molecules in this conducting state operate. Of course it is not always clear that
molecular properties will dominate single-molecule conduction; indeed, there is consider-
able evidence that the contacts may in some cases dominate the conduction characteristics.
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Figure 8.7: The symmetry reduction between the geometric point group and the molecular-
conductance point group for some common molecules used in molecular electronics research. (*)
Precisely, the geometric point group is either C2v or C2h depending upon the PR3 rotation: The
C2h case results in a molecular-conductance point group of Cs, whereas the C2v case retains this
symmetry for the molecular-conductance point group.

Moreover, by separating molecular transmission in a variety of ways into non-interacting
components it is possible to isolate the roles of the junction region and the bridging molecule
in determining conductivity properties. First, the small number of rigorously defined eigen-
channels with nonzero transmission can be understood to arise from the size of the smallest
bottleneck in the system. This, in turn arises, from the chemical structure of the molecule or
the interaction of the binding group with the electrodes and consequently can be controlled
by synthetic modifications.

Further, it means that, with careful selection of target molecules, shot-noise measure-
ments can be used to probe the details of molecular binding geometry. Second, by pre-
diagonalizing Γ , conduction can be described in terms of molecular conductivity chan-
nels linking well defined junction states. Although this process is only approximate, the
interference terms found manifest in our model calculations of conductivity through 1,4-
benzenedithiol were 12 orders of magnitude smaller than the primary contributions, making
this an excellent practical method for understanding the role of the junction in the process.
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Together these features make it possible to quantitatively describe molecular conduction in
terms of atomistic descriptors of the conducting system.



Chapter 9
Propensity Rules in Inelastic Electron

Tunneling Spectroscopy

This Chapter is devoted to the application of the theoretical machinery developed in Chap-
ter 8, molecular-conductance point group and channels, to investigate IETS. Already two
groups Troisi et al. [38, 120] and Lorente et al. [39, 40], have developed some intuitive
propensity rules that capture many of the features that lead to vibrational-mode selectivity
in IETS. The main aim of the present Chapter is to present a general approach to the inter-
pretation of IETS measurements, starting with fundamental principles implemented using
a generally applicable a priori computational scheme. Further it will be derived and justi-
fied a simplified form of the inelastic current. Finally, it will be shown how not only the
propensity rules Troisi and Ratner may be rigorously derived but also how these rules can
be extended. This can provide a thorough, yet easily, understood description of the general
phenomenon of IETS that may be readily applied in diverse practical applications.

9.1 Theoretical formalism

Starting from the ubiquitous Meir-Wingreen equation for the current:

I =
2e
h

∫ +∞

−∞
Tr[Σ<

L (E)G>(E)−Σ>
L (E)G<(E)]dE (9.1)

and remembering that at Born Aprroximation (BA) level the electron-phonon self-energies
are

Σ<,>
ph (E) = ∑

α

i
2π

∫ ∞

−∞
MαG<,>

0 (E−E ′)MαD<,>
α ,0 (E ′)dE ′ (9.2)

109
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with Mα

Mα =
∂HD

∂Qα
− ∂S

∂Qα
S−1HD−HDS−1 ∂S

∂Qα
(9.3)

for vibrational mode α with normal mode Qα . As IETS measurements are performed at
very low temperature (usually 4 K), we can simplify Eqn. (9.2) assuming temperature T
= 0. We also approximate the phonon population as a collection of Einstein oscillators in
thermodynamic equilibrium with the environment. Under this approximation, at T = 0, the
population of phonon Nα is set to zero and Eqn. (9.2) becomes

Σ<,>
ph (E) = MαG<,>

0 (E±ωα)Mα (9.4)

where the upper (lower) sign is for the lesser (greater) self-energy and G<,>
0 are the ze-

roth order lesser or greater Green’s functions obtained in the absence of electron-phonon
coupling. The current from Eqn. (9.1) thus becomes, expanding up to the second order in
Mα :

I =
2e
h

∫ µL

µR

(
Tr[ΓLGr

0ΓRGa
0]+∑

α
Tr[ΓLGr

0Σ
r
phGr

0ΓRGa
0]+Tr[ΓLGr

0ΓRGa
0Σ

a
phGa

0]dE
)

+ ∑
α

Θ(µL−µR−ωα)
2e
h

∫ µL

µR+ωα
Tr[ΓLGr

0MαG̃r
0Γ̃RG̃a

0MαGa
0]dE

= Iel +∑
α

Θ(µL−µR−ωα)Iα
inel (9.5)

where the three terms in parenthesis are part of the coherent current including part of the
virtual electron-phonon scattering terms, whilst the latter term is the real inelastic current.
The inelastic current shows in fact a change in the limits of integrations due to the real
emission of a phonon.

Iα
inel is defined as

Iα
inel =

2e
h

∫ µL

µR+ωα
gαdE (9.6)

with

gα = Tr[ΓLGr
0MαG̃r

0Γ̃RG̃a
0MαGa

0]. (9.7)

The use of the zeroth order Green’s functions in Eqs. (9.5) and (9.6) is a valid approx-
imation, because the electron-phonon interaction is small in the system considered here.
Numerical calculations, including the renormalization of the propagators lead to essen-
tially the same incoherent current, to within few percent of errors.

The first three terms in Eqn. (9.5) give a coherent contribution, describing the elastic
part of the current, while the last term is the inelastic component expressed as the sum of
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independent contributions, Iα
inel , from all of the vibrational modes of the molecule. In order

for phonon emission to take place, the applied bias must obey the condition µL−µR > ωα ,
which is emphasized by the Heaviside function in front of the inelastic component.

In the inelastic term the matrices with a tilde are computed at an energy shifted by the
energy of a phonon: E ′ = E−ωα . The shift comes from the conservation of energy and in
fact describes the lowering of the energy of the electron after the excitation of a phonon. We
hence see that the inelastic current depends on five basic quantities: the propagators Gr,a

0 ,
the vibronic coupling matrix Mα , the vibrational frequency ωα , the couplings between
the contacts and the molecule ΓL(R) , and the Fermi energy EF . The main question is, of
course: what are the relationships between these quantities and how we can simplify the
picture in order to have a better insight into the physics involved ?

The application of the formalism developed in Chapter 8 must certainly be applied. The
definition of the molecular conductance point group permits to assign univocally the sym-
metry to the molecule connected to the contacts and so the entire device part. This define to
which symmetry group belongs the device under investigation. After the assignment of the
molecular conductance point group is always possible to rotate all the matrices involved in
the inelastic transmission, which is the one relevant for the IETS, in the symmetry adapted
basis for the symmetry point group. This means that all the matrices are block diagonal-
ized and every block represents one irreducible representation of the molecular conduc-
tance point group. Diagonalizing the matrix we get that all the eigenvalues spectrum can
finally be assigned to a certain irreducible representation as the corresponding eigenvector.
Particular important is the transformation into the symmetry adapted basis of the electron-
phonon coupling matrices Mα that, depending on the symmetry of the vibrational mode
they describe, can result in a block diagonal matrix in case of a totally symmetric mode or
in a matrix with off diagonal blocks which describe the mixing between channels which
belong to different irreducible representations induced by the vibrational mode. Since now
it is assumed that all the matrices are already rotated in the symmetry adapted basis corre-
sponding to the molecular conductance point group so that it is always possible to assign an
irreducible representation label to all the modes and the channels involved in the analysis
of the inelastic current at the base of the IETS signal.

9.2 From Γ -channels to A-channels
The specific system investigated in this study is the 1,4-benzenedithiol molecule chemi-
sorbed between two gold contacts already used in the previous Chapter, though the ap-
plications of the method presented are quite general. As already demonstrated, the sym-
metry properties of coherent transport through gold-thiol junctions are dominated by the
molecular symmetry and that low-dimensional models of the electrode capture most of the
essential features of observed IETS. So only two atoms are used to represent each lead, as
shown in Fig. (9.1).

The low-temperature IETS spectrum calculated using only the Born approximation
is shown and assigned in Fig. (9.2). We seek a basic understanding of how this spec-
trum arises and the relative propensities calculated for the modes. The chemisorbed 1,4-
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Figure 9.1: A chemisorbed 1,4-benzenedithiol molecule connected to two gold atoms on each side.

benzenedithiol molecule has d2h symmetry, and the IETS-active modes are categorized in
Fig. (9.2) accordingly: the most prominent modes are in-plane totally symmetric ag modes
while the out-of-plane antisymmetric b2g and b3u modes are also significant. However,
the conduction process depicted by Eqn. (9.6) does not display d2h symmetry as the ΓL(R)
matrices have only the symmetry of the Left and Right junctions, not the full molecular
or device symmetry, see Chapter 8. Analysis of Eqn. (9.6) thus must commence with this
reduced symmetry, the molecular conductance point group symmetry which, in this case,
is C2v; note that lower-case symbols are used throughout for the description of molecular
symmetry while upper-case symbols are used for the description of molecular-conductance
symmetry. We must demonstrate how IETS appears to take on the molecular symmetry
properties in spite of this limitation.
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Figure 9.2: The IET spectrum of our system. The broadening of the peaks has been introduced
empirically considering a phonon lifetime of 6.6 × 10−13 s, corresponding to a broadening of 2 ×
10−3 eV.

The approach is based on the idea that both the elastic and inelastic current can be
expressed as the sum of a small number of essentially non interacting paths or channels
through the device. Using the same machinery used for elastic transport through the intro-
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duction of the transformation

Γ̂L(R) = D†
L(R)ΓL(R)DL(R), (9.8)

which reduces the electrode-molecule coupling matrices to diagonal form, a transformation
that captures the essence of the physical insight used previously by Troisi et al. [38, 120]
in their proposed IETS propensity rules. After this transformation is applied we get the
following formula for the inelastic current of every mode:

Iα
inel =

2e
h

∫ µL

µR+ωα

(
∑
i j

Γ̂L,λ
ii Γ̂R,β

j j (E−ωα)|Λ̂i j|2
)

dE, (9.9)

where Λ̂ = Ĝr
0M̂αĜr

0(E−ωα) and λ and β are the irreducible representation labels of the
left and right channels respectively.

The above junction channels will provide a good simple description of the (elastic or in-
elastic) conduction process whenever the bottleneck between the molecule and its contacts
is the most important physical element. In this depiction, |Λ̂i j|2 determines the probability
that an electron or hole that enters the molecule from Left lead through channel i, with
symmetry λ , is scattered inelastically out the Right lead through channel j, with symmetry
β . In Fig. (9.3), upper section, it is plotted the amplitude Γ̂L,λ

ii for an electron entering the
molecule in a window of energy of 5 eV encompassing the Fermi energy. The eigenvalues
show a very low dependence on energy as the s-band density of states of the gold con-
tacts is nearly energy independent. The graph shows also that effectively only one junction
channel, of symmetry A1 in the molecular-conductance point group, dominates the process,
with the next most significant channel being of B1 symmetry but an order of magnitude less
transmissive. This result suggests that the most intense IETS process is likely to involve
electrons or holes entering and exiting through the dominant A1 Left and Right junction
channels, respectively; a process that is only possible when vibrations of A1 symmetry
are involved. While this argument correctly predicts the propensity for ag modes apparent
in Fig. (9.2), the dominant process is actually found to involve the less transmissive B1
channels of the Left and Right junctions. This shows that the Λ̂ matrix, which contains
information about the chemical properties of the molecule, also plays an important role
in selecting which channel is the most important for the current, a role that arises as the
conduction in the molecule near the Fermi energy of chemisorbed 1,4-benzenedithiol is
dominated by the electronic π-system that embodies B1 but not A1 symmetry.

The promise of this approach points to the possibility that a new set of channels might
preserve all the nice characteristics of the previous ones, but allow for better insight into
the role of the molecular properties. My proposal lies in a second transformation based on
diagonalization of the matrices AR = Gr

0ΓRGa
0 and (AL)∗ = Ga

0ΓLGr
0

AR = C†
RARCR,

AL = C†
L(A

L)∗CL. (9.10)
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Figure 9.3: The energy dependence around the Fermi energy EF for the eigenvalues Γ̂L,λ
ii of ΓL

(top) and AL,λ
ii of AL

(bottom) partitioned into symmetry components.

The conjugation of AL arises because the Hamiltonian is a real matrix and therefore (Gr
0)

† =
(Gr

0)
∗ = Ga

0. Moreover, due to the fact that AL is a Hermitian positive definite matrix, the
conjugation does not change its positive and real eigenvalues.

Although in this derivation I have used the unrenormalized propagators, the approach
is quite general since Eqn. (9.6) is valid also in the so called self-consistent Born approx-
imation (SCBA), provided all Gr,a

0 are substituted by renormalized propagators Gr,a. The
electron-phonon self-energy, Σr,a

ph , do not reduce further the symmetry of (AL)∗ and AR.
These matrices depict the coupling-weighted molecular density of states [53] and con-

tain information about not only the junctions but also the chemical properties of the molecule
as well. In Fig. (9.3), bottom section, there are plotted the eigenvalues AL,λ

ii to be compared
to those previously discussed for Γ̂L,λ

ii . The first thing we can observe is that a strong en-

ergy dependence appears with the AL,λ
ii eigenvalues showing peaks close to the energies

of the molecular orbitals. The dominant eigenvalues at the Fermi energy are listed in Ta-
ble (9.1) and, as expected, by far the largest eigenvalue is found to be of B1 symmetry,
named 1B1. Hence this new transformation provides improved insight into the physical
problem of IETS scattering. The inelastic conductances are then given by

gα = ∑
i j

AL,λ
ii AR,β

j j (E−ωα)Mα
i jM

α
ji, (9.11)

where
Mα = C†

LMαCR and M
α

= C†
RMαCL. (9.12)
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Differently from the Γ-transformation the A matrices are positive definite and so their
rotation should preserve this property. A subtlety, however, is that due to the differing
energy dependencies of ΓL and ΓR apparent in Eqn. (9.5), the eigenvectors CL and CR are
not simply related to each other so that Mα

i j and M
α
ji become unrelated complex quantities

and hence the i j contributions in Eqn. (9.11) cannot strictly be interpreted as independent
channels.

Nevertheless, in Table (9.2) the major contributions to gα evaluated at the Fermi energy
from the double sum of Eqn. 9.11 are listed and at most two contributions account for at
least 95% of the IETS signal. Single significant contributions are found only for the case
of totally symmetric vibrations (ag symmetry in the full molecular point group), these
involving an electron entering through the 1B1 channel of the Left lead, scattering off an ag
vibration and exiting through the 1B1 channel of the Right lead. Otherwise, closely related
pairs of contributions are involved, with for example the intense b2g mode ν29 activated by
a 50% contribution from an electron that enters the 1A1 channel and exits the 1B1 channel
combined with a 45% contribution from an electron that enters the 1B1 channel and exits
the 1A1 channel.

label AL,λ
ii (EF)

1A1 3.44
2A1 0.144
3A1 0.0128
1A2 0.0107
1B1 27.4
2B1 0.0705
1B2 2.26

Table 9.1: All significantly large eigenvalues in atomic units of the electrode-coupling weighted
density of states, AL,λ

ii at the Fermi energy EF from Fig. (9.3).

The analysis presented in Table (9.2) presumes that the total IETS signal Iα
inel from

Eqn. (9.5) can be approximated from the inelastic scattering conductance gα evaluated
only at the Fermi energy EF . To test this hypothesis, the relative values of the total inelas-
tic currents calculated using Eqn. (9.5) and its approximation are given in the table where
they are seen to be in very good agreement. The lack of symmetry in the leading terms
shown in the table arise due to the shift ωα that must be applied to the outgoing chan-
nel energies. Owing to the large values of the active frequencies compared to the energy
dependencies depicted in Fig. (9.4), such differences appear profound and indeed result
in factors of two differences between the displayed eigenvalues AL(EF) and the analogous
values of AR(EF−ωα). However, Troisi [38, 120] has argued that such changes should not
qualitatively affect IETS propensity rules and hence in Table (9.2) an approximate analysis
of gα based on this further approximation is presented. Indeed, the relative propensities
evaluated using this crude approximation differ by at most 20% from the exact intensities
Iα
inel , indicating its usefulness. Further, this approximation leads to the re-expression of
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Eqn. (9.11) in terms of true channels as

gα = ∑
i j

AL,λ
ii AR,β

j j |Mα
i j|2 (9.13)

and the dominant terms in these sums, now symmetrically disposed towards both leads, are
also shown in Table (9.2). Further, this approximation facilitates the rewriting of Eqn. (9.6)
in the simple form

Tr[ΓLGr
0MαGr

0ΓRGa
0MαGa

0] = Tr[ΓL
∂Gr

0
∂Q

ΓR
∂Ga

0
∂Q

] (9.14)

using Gr,a
0 MαGr,a

0 = ∂ Gr,a
0

∂Q . This result is precisely that obtained by Troisi [38, 120] using
a perturbation expansion of the elastic component of the current. Equation (9.14) puts this
very useful expression in the context of a general theory for the non-equilibrium transport
process and a hierarchy of numerical methods for obtaining the exact and approximate
IETS intensities.
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9.3 Propensity rules in IETS

Based on this simple formalism, the factors that lead to the propensity of different modes in
IETS are depicted graphically in Figure (9.4). The top part is a schematic plot of six charac-
teristic normal modes and their frequencies. The second and third rows show the modulus
of the eigenvectors of (AL)∗ and AR associated with the dominant channels through the
coupling-weighted molecular density that indicate how transported charges enter and leave
the molecular region. These Left and Right pairs of channels are coupled by a molecular
vibronic coupling term |Mα

i j|2 whose origin in terms of interfering atomic contributions and
bond contributions is shown in the lower part of the figure.

Figure 9.4: Diagrammatic description of the origin of the IETS intensity for six characteristic vi-
brational modes. First row: depictions of the normal modes, including either arrows for in-plane
modes or open and closed circles for out-of-plane modes, along with the mode frequency in cm−1

and molecular symmetry. Second and third rows: circles indicating the absolute values of the
atomic contributions to the dominant eigenvectors CL

i of AL and CR
j of AR along with the associated

eigenvalues AL,λ
ii and AR,β

j j , in a.u., from Table (9.1). Fourth row: origin of the vibronic term Mα
i j

that couples these channels expressed in terms of atomic contributions (circles) and bond contribu-
tions (lines) colored blue and red to indicate constructively and destructively interfering processes,
respectively; also indicated is the total inelastic conductance at EF of the mode and the percentage
contribution arising from the indicated coupled channels (doubled for non-totally-symmetric modes
to account also for its symmetry-related counterpart), and the destructive interference indicator χ .

To do this we can expand

|Mα
i j|= Re(∑

E
∑
F

β i j
EFe−iφ ), (9.15)
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where E and F refer to different atoms, φ is the phase of the complex number Mα
i j, and the

atomic (diagonal) and bond (off-diagonal) contributions β are defined using:

β i j
EF = ∑

m∈E
∑
n∈F

(CL
im)∗Mα

mnCR
n j, (9.16)

where CL(R)
i j are the elements of the eigenvectors and Mα

mn are the vibronic coupling matrix
elements in the atomic-orbital basis. The off-diagonal elements of this coupling matrix
represent scattering from the bonds of the molecule while the diagonal elements represent
scattering off the atoms. Through chemical or other external modifications to the molecule,
Fig. (9.4) indicates how the IETS propensities of different modes can be manipulated.

To show how the lower frames of Fig. (9.4) depict the molecular properties, the dom-
inant contributions β i j

EF evaluated for the most intense IETS mode, ν15, are given in Ta-
ble (9.3). The largest contribution (40 % of the total) arises from each of the two C-S
bonds. The upper frames in Fig. (9.4) indicate why a large contribution arises from the C-S
bonds: both the L and R channel eigenvectors contain components on these atoms, and the
vibrational mode acts to change the C-S bond length. In the lower frame of Fig. (9.4), the
thick and dark blue lines over the C-S bonds indicate this contribution graphically. From
Table (9.3), the next most important contribution is 19 % and arises from each of the C-Co
bonds, where Co is the carbon ortho to the linked carbon. In Fig. (9.4), the total intensity
of blue color for the C-S and C-Co bonds indicates their relative importance. Blue coloring
is used to indicate that the contributions from the C-S and C-Co bonds add constructively
to enhance the inelastic current, their net effect being to generate 2×40 % + 4×19 % =
158 % of the current. This exceeds 100 % as the remaining minor contributions to the cur-
rent, dominated as indicated in Table (9.3) by the atomic S (-8 % each) and C (-4 % each)
contributions, act destructively to reduce the current. Contributions that act destructively
are indicated in red in Fig. (9.4). The total color density shown in circles for the atomic
contributions is scaled to that of the bond vectors.

S C Co Co′

S -0.08
C 0.40 -0.03
Co -0.01 0.19 -004
Co′ -0.01 0.02 -0.02 -0.04

Table 9.3: Normalized atomic (β i j
EE/ΣEF |β i j

EF |) and bond ( (β i j
EF +β i j

FE)/ΣEF |β i j
EF |) contributions

to the molecular vibrational couplings between input and output electron scattering channels, |Mα
i j|

from Eqn. (9.15), as visualized in Fig. (9.4); contributions are shown for the sulfur (S), connected
carbon (C), its ortho carbon (Co), and its symmetry-related neighbor (Co′).

For each mode depicted in Fig. (9.4), the impact of destructive interference between
electron-scattering pathways is quantified using the indicator

χ = 1− |∑EF β i j
EF |

∑EF |β i j
EF |

, (9.17)
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which takes on the value of χ = 0 to indicate only constructive interference to χ ≈ 1, in-
dicating strong destructive interference. Modes dominated by destructive interference are
likely to be highly sensitive to external modifications through modulation of the interfer-
ence. For the example of ν15 considered previously, bond scattering is opposed by atomic
scattering so that χ is quite large at 0.56. Of all of the vibrational modes, this mode, the
most intense mode, has one of the lowest values of χ , however, indicating that interference
effects will in general limit the development of simple chemical models for IETS intensity.

From the analysis of the channels propensity rules can also be defined. The most active
modes are the ag modes. Based on the notion that the most intense modes will be those that
access the dominant 1B1 paths through each of the junction-weighted densities of states,
the most active modes are expected to be of A1 symmetry in the C2v conductance point
group. Such modes will have either ag or b1u symmetry in the full molecular point group,
d2h. Indeed, ag modes are found to be the most active ones, but b1u modes are found to be
very weak. To understand this differentiation, we note that the transmission eigenvectors
CL,R

1B1
associated with the Left and Right 1B1 channels can be represented as a sum of terms

each with either ag or b1u symmetry:

CL,R
1B1

=
1√
2
(ψag ±ψb1u) (9.18)

where the upper (lower) sign is for the left (right) eigenvector. Substituting Eqn. (9.18) into
Eqn. (9.12) splits the sum into four terms:

Mα
i j =

1
2
(ψag)

†Mαψag −
1
2
(ψb1u)

†Mαψb1u + (9.19)

1
2
(ψag)

†Mαψb1u −
1
2
(ψb1u)

†Mαψag.

The product of the three elements in Eqn. (9.19) must be totally symmetric so only the
first two terms may be non zero for ag modes while only the last two terms are permissible
for b1u modes. For ag modes, the two allowed terms differ fundamentally in nature from
each other facilitating an allowed net contribution. However, for the b1u modes, the two
non-zero contributions exactly cancel each other, preventing inelastic scattering involving
the same input and output channels. Hence the inelastic scattering for the b1u mode ν13
shown in Fig. (9.4) involves two different B1 channels, 1B1 and 2B1, so that the b1u modes
thus behave in the same fashion as do all other non-totally-symmetric vibrations. Concep-
tual approaches that exploit the sparceness properties of ΓL and ΓR alone do lead to the
primary propensity rule favoring totally symmetric IETS excitations.

The propensity rules derived by transforming the Γ s parallel these propensity rules
and can be thought of as arising through similar arguments and serve to identify the most
active modes in IETS. However, through the complete description of the junction-weighted
densities of states, it is possible to derive also propensity rules for the next most active
vibrations: these will be the ones associated with both the largest and the second largest
eigenvalues AL,λ

ii , in this case the 1B1 and 1A1 channels, respectively, which are coupled by
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modes of b3u and b2g symmetry. Indeed, modes of both of these symmetries are identified
as being quite prolific in Fig. (9.2) and in Table (9.2). Of note is the fact that these modes
are out-of-plane modes that do not have a components in the direction of the charge flow;
rather, they scatter electrons and holes between σ and π channels.

Within each particular symmetry class, the most active modes are seen from Fig. (9.4)
to be those that involve atomic motion on atoms that have large amplitudes in the coupling-
weighted Left and Right channels. As a result, a wide variety of scattering paths through the
molecule can be invoked. As described earlier, the most intense ag mode ν15 from Fig. (9.4)
is an in-plane ring deformation mode that embodies some C-S stretching character, and all
parts of the molecule contribute to the scattering. Also shown in Fig. (9.4) is the nature and
scattering origin for the next most prolific mode, the ag C-H bending mode ν8. This mode
is coupled to some Co-Co′ stretching character, and it is this that facilitates the inelastic
scattering from the input 1B1 channel to the output 1B1 channel.

For the intense non-totally symmetric modes that scatter charges between σ and π
channels, the most active modes are found to be those with significant C and S involvement.
The scattering is not generated symmetrically from each end of the molecule, as scattering
between input and output channels of the same type is constrained to be, but instead is
typically dominated by a single C-S bond. Typifying this behavior is ν30, the b3u mode
that couples the two most conductive junction channels 1A1 and 1B1 (see Table (9.1)).
Figure (9.4) shows that the input and output channels both have amplitude on the one C-S
bond while the out-of-plane vibration also has C-S amplitude, allowing the σ - π mixing to
occur. This mode is indeed the third most active mode calculated for IETS (see Table (9.2)),
but, as the bottom frame of Fig. (9.4) indicates, the dominant scattering from the C-S bond
is strongly opposed by scattering from the individual C and S atoms. Were it not for this
interference, this vibrations would be even more prolific in the calculated IETS. The largest
destructive interference found was for the related b3u mode ν24 for which χ = 0.91.

Finally, I consider the C-H out-of-plane modes ν19 (b1g) and ν25 (au) that have the
same form except for opposite end-to-end symmetry. These modes coupe the most prolific
and third-most prolific molecule-weighted junction channels 1B1 and 1B2, but as can be
seen from the forms of the channels shown in Fig. (9.4), very few atoms are active in
both channels. Hence the scattering is intrinsically weak and contains contributions from
non intuitive non bonded 1,3- and 1,4- intermolecular interactions. While these modes
are predominantly C-H in character, they do provide scattering through their weak C-C
contamination.

9.4 Conclusions
In conclusion, two approaches has been investigated to analyze the IETS signal in a 1,4-
benzenedithiol molecule chemisorbed between two gold leads in the context of a full gen-
eral formalism for non-equilibrium elastic and inelastic conduction processes. In both ap-
proaches, the inelastic current is split into a small number of non interfering contributions
or channels. The first approach, based on the insight provided by Troisi et al. [38, 120]
that only a few paths through the junctions are accessible, involves transformation of the
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molecule-electrode couplings ΓL(R) and reduces dramatically the complexity of the prob-
lem. However, detailed insight into the influence of the molecule on these paths is required
before the method can be put to practical use in the determination of propensity rules.
The second approach provides this insight automatically through the transformation of the
(AL)∗ and AR matrices that depicts the density of states of the molecule coupled to the
contacts.

The A-channel transformation allows the dominant channels for electron or hole con-
duction through the junctions, channels of different symmetries, to be identified, leading to
propensity rules based on the affect of the normal modes of vibration in scattering charges
between these channels. As for molecules such as 1,4-benzenedithiol with dominant π-
conduction character, the molecule-weighted junction channel 1B1 is very much more
prolific than in any other channel. This leads to the first propensity rule that the totally
symmetric modes (ag) dominate IETS as only these can couple 1B1 from the Left lead to
1B1 in the Right lead. A similar propensity rule is expected for all molecules chemisorbed
to gold through sulfur links, independent of the actual identity of the dominant channel.
Weaker contributions to IETS are then identified from the nature of the next-most signif-
icant molecule-weighted junction channel eigenvalue(s), which for 1,4-benzenedithiol are
found to be 1A1 and 1B2, leading to a propensity for b2g and b3u modes and b1g and au
modes, respectively, in its IETS.

Once these dominant channels are identified for modes of a particular symmetry type,
the most active modes can be determined by examination of how the normal mode affects
the atoms accessed by the appropriate molecule-weighted junction channels and the na-
ture of the junction channels: the same atoms must be involved in each channel, and the
vibration must perturb these atoms. For coupling between the 1B1 and 1B2 channels, few
atoms are involved in both channels and so the IETS is weak, but the overlap between the
1B1 and 1A1 channels is large and hence the IETS is strong. These intense IETS modes
involve the mixing of molecular σ and π character through out-of-plane C-S distortions.
However, a more subtle feature acts to determine the final IETS intensities: the scattering
amplitude can be decomposed in terms of interfering contributions associated with scat-
tering from each atomic centre and from each bond in the molecule, and this interference
is in general large. A practical consequence of this is that chemical and other variations
are likely to modulate the IETS intensity associated with particular modes of vibration.
The analysis presented thus provides simple and effective a priori means by which a very
complex process involving no formal selection rules can be controlled and manipulated to
achieve desired outcomes.



Conclusion

My work was focused in the investigation of some of the effects induced by the vibrations
of the molecule to the conductivity in molecular electronic devices. As already mentioned,
this work is particular important in order to investigate the stability of molecular devices,
evaluating the dissipated power, and to simulate new techniques to probe the molecule, like
IETS.

I applied the NEGF machinery up to the first perturbation term to get a consistent
set of equations and evaluate the current including the vibrational effects. The code was
successful in handling systems at low temperature strongly bounded to the contacts. This is
the typical setup of many experiments using molecule on gold surfaces covalently bonded
via thiol groups, as in break-junction or self-assembled monolayer experiments.

The application of the code to alkanethiols, Chapter 6, has shown how the vibrational
degrees of freedom can play an important role in the final dissipation of the molecule. In
particular it has shown the importance in electron scattering of vibrational modes which
are localized in the junction region between the molecule and the contacts. This means
that to catch the real dissipation effects a good characterization of the surface cannot be
neglected. This demonstrate that if the molecule is characterizing the shape of the current-
voltage characteristic, the surface is fundamental to get the right magnitude of the current
and of the power dissipated, see also Di Ventra et. al. [121].

The same results were obtained in the IETS in alkanethiols, were the effect of sulphur-
gold interaction was the origin of one of the most intense peak in the spectrum. The IETS
has provided to be one of the most interesting topic for the application of the electron-
phonon code. In fact, it is a very flexible technique to investigate many aspects of molec-
ular devices which normally are beyond the possibility of more conventional spectroscopy
techniques in molecular electronics. In particular I used the simulation of IETS to in-
vestigate how the geometry configuration of the molecule between the metallic electrodes
and how the junction affects the spectrum. Particular important is this sensitivity to the
metal-molecule interface if molecular electronics shall move in the direction of high repro-
duceable devices for industry.

Moreover, from my simulation it is evident that the scattering of electrons in the molecule
is a complex interplay between the density of electrons, the external bias applied and the
localization of the most relevant vibrational modes. This suggests the possibility to decom-
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pose the current into independent channels. Those channels can be labeled following the
reduced symmetry point group of the molecule between the electrodes. In case the junc-
tion reduces to a simple thiol group which bonds the molecule to the metal, the number of
dominant channels reduces drastically. The irreducible representations of those channels,
coupled with the symmetry of the modes, has permitted to cast a light to the complicate
propensity rules of IETS. Rules which depend on both the molecule and the interfaces with
the contacts.

The computational efficiency of DFTB and the flexibility of the code have permitted
to implement new features very easily during the proceeding of the PhD. In particular the
introduction of symmetry was fundamental to the investigation of selection rules in IETS.
This represents probably the largest strength of the method. However, other issues need to
be investigated:

• The strength of DFTB relies on the possibility to use a systematic method of parametriza-
tion for the zero order Hamiltonian. However apart for organic compounds still a re-
liable parametrization for organic elements is missing with metal, in particular with
gold.

• The inclusion of the charge polarization induced by the bias is fundamental for higher
voltages. The merging of the electron-phonon code with the Poisson solving gDFTB
is thus a mandatory future step.

• The correlation between electrons must be improved beyond the mean field approx-
imation implemented in DFTB. Many studies [122] show that the charge correlation
plays an important role in the alignment of the HOMO-LUMO gap and the Fermi
energy of the contacts, fundamental aspect for every quantitative evaluation of the
current. At the moment a scheme to include a quasiparticle correction, at the so
called GW level, is under development [123, 124].

Concluding, this work was motivated by the large impact that molecular electronics has
mostly in the scientific community. Despite many years of research, the field has still
not reached a degree of maturity that permits the transition from the laboratories to the
industry. However, the idea of using a single molecule to characterize the entire device
is revolutionary for the impact it can have to the concept of electronics and in the entire
engineering field. It is certainly a step to get closer to the workings of nature, considering
that all the lifeforms on this planet are nothing else that extremely complex self-assembled
systems made of molecules.

The possibilities are very large, but the theoretical, as the experimental, work is ex-
tremely challenging. Already the definition of the system is rather complicate considering
that in the same system we have to face and describe at the same level of accuracy a bulk
region (the contacts), a surface (the leads) and a molecular region. This puts immediately
some constrains to the kind of theoretical methods that can be used, considering that ab-
initio quantum chemistry methods are at the moment unable to handle such large systems.

Since the first seminal paper about molecular electronics [125], many issues have been
addressed from the theoretical point of view, but many others need to be fully investigated.
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Main fundamental points are still under debate: is a molecule mostly a wire or more a quan-
tum dot? Which is the effect of the contacts and especially the surface on the conductivity?
Which role do static and dynamic correlation play in conduction when considering also
effects such as Coulomb blockade? How can the spin-spin interaction change the entire
picture?

It is clear that only a full description of all these issues together can really address and
solve the problem of theoretical description of molecular electronic conductivity.

At the moment, the best compromise between all these issues remains the Green’s
function approach using DFT as starting point. However, it is now clear that the method
is unable to completely handle many fundamental characteristics of the molecular conduc-
tivity. There are basically two ways to go beyond a DFT description: changing directly the
DFT method as starting point for the Hamiltonian or refining the calculation with correc-
tions at the Green’s function level. This second approach has been followed in our group
in the gDFTB codes as, i. e., by the electron-electron correlation correction with GW .

However, the author suggests that in the future a more radical change in the approach
will be needed to really overcome the problems that cannot be fully described at the
DFT level of theory, many candidates for hybrid methodologies already exist, like time-
dependent DFT (TDDFT).





Appendix A
Atomic Units

The atomic units (a.u.) are a set of units specifically designed to fulfil two specific purposes:
first, present the results from atomistic calculations in digestible numbers and, second,
decouple the numerical calculations from specific values of fundamental constants. To see
how these units arise naturally let us consider the Schrödinger equation for the hydrogen
atom. In SI (Systeme International d’Unites) units, we have

[
− h̄2

2me
∇− e2

4πε0r

]
φ = εφ (A.1)

where h̄ is the Plank’s constant divided by 2π , me is the mass of the electron. To cast this
equation into dimensionless form we let x, y and z→ λx′, λy′ and λ z′ and obtain

[
− h̄2

2meλ 2 ∇′− e2

4πε0λ r′

]
φ ′ = εφ ′ (A.2)

The constant in front of the kinetic and potential energy operators can then be factored,
provided we choose λ such that

h̄2

meλ 2 =
e2

4πε0λ
= εa (A.3)

where εa is the atomic unit energy called Hartree. Solving Eqn. (A.2) for λ we find

λ =
4πε0h̄2

mee2 = a0 (A.4)

Thus λ is just the Bohr radius a0 which is the atomic unit of length called a Bohr. Finally,
since

εa

[
−1

2
∇′− 1

r′

]
φ ′ = εφ ′ (A.5)
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if we let ε ′ = ε/εa, we obtain the dimensionless equation
[
−1

2
∇′− 1

r′

]
φ ′ = ε ′φ ′ (A.6)

which is the Schrödinger equation in atomic units.

Physical quantity Conversion factor X Value of X (SI)
Length a0 5.2918 × 10−11 m−1

Mass me 9.1095 × 10−31 Kg
Charge e 1.6022 × 10−19 C
Energy εa 4.3598 × 10−18 J
Action h̄ 1.0546 × 10−34 Js

Table A.1: Conversion of atomic units to SI units.

The solution of this equation for the ground state of the hydrogen atom yields an energy
ε ′ equal to -0.5 atomic units. Table (A.1) gives the conversion factor X between atomic
units and SI units, such that the SI value of any quantity Q is related to its value in atomic
units Q′ by

Q = XQ′. (A.7)

Conversion factors for a few other units, which are not related to SI but which are necessary
to read the existing literature, are so follows. One atomic unit of length equals 0.52918
Angströms (Å) and one atomic unit of energy equals 27.211 electron volts (eV) or 627.51
kcal/mole.



Appendix B
Surface Green’s Function: Decimation

Technique

In this appendix the algorithm to evaluate the contacts self-energies is discussed. The
evaluation of the self-energies, from Eqn. (5.11) Chapter 5, is related to the computation of
the so called surface Green’s functions gr

L and gr
R of the contacts. These Green’s functions

are the propagators of the two contacts assuming that they are disconnected from the bridge.
To evaluate them it is generally used a decimation algorithm, following the Guinea et al.
[126] scheme.

Figure B.1: The contact can be seen as a semi-infinite repetition of a fundamental supercell called
principal layer (PL). The size of the principal layer is chosen large enough in the way that only
adjacent PLs interact via the τ blocks.
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In Fig. (B.1) it is shown schematically the shape of one contact. We can define them
as the repetition of an infinite number of connected subsystem called principal layers (PL).
The PLs are defined in such a way that only nearest neighbor interact. The Dyson’s equa-
tion for the infinite system can be written in terms of block matrices as




εS00−H00 εS01−τ01 0 0 · · ·
εS10−τ10 εS11−H11 εS12−τ12 0

0 εS21−τ21 εS22−H22 εS23−τ23
0 0 εS32−τ32 εS33−H33
... . . .



·

·




gr
00 gr

01 gr
02 gr

02 · · ·
gr

10 gr
11 gr

12 gr
13

gr
20 gr

21 gr
22 gr

23
gr

30 gr
31 gr

32 gr
33

... . . .




= 1 (B.1)

where ε = (E + iη) with η a positive infinitesimal quantity (in the calculations was used
10−6). The subindexes label the different PLs and the block gmn is the propagator connect-
ing the mth and nth layer. For an ideal system we can assume that the blocks of the PLs are
all equal (H00 = · · ·= Hmm = HPL) as the coupling terms (τ10 = · · ·= τnm = τ ). Moreover
the coupling terms are related by the following relation: τmn = τ †

nm. The same relations
are for the overlap matrix S. We can separate the Dyson’s equations connecting the surface
layer, or 0th layer, with the rest, obtaining a set of linear equations

(εSPL−HPL)gr
00− (εSτ −τ )gr

10 = 1
(εSPL−HPL)gr

10− (εSτ −τ )gr
20− (εS†

τ −τ †)gr
00 = 0

(εSPL−HPL)gr
20− (εSτ −τ )gr

30− (εS†
τ −τ †)gr

10 = 0
· · ·

(εSPL−HPL)gr
m0− (εSτ −τ )gr

m+1,0− (εS†
τ −τ †)gr

m−1,0 = 0
· · · (B.2)

In the latter set of equations we can express all the blocks gr
m0, with m odd, as the following:

gr
m0 = (εSPL−HPL)−1[(εSτ −τ )gr

m+1,0 +(εS†
τ −τ †)gr

m−1,0] (B.3)

The new expression for every odd blocks of the Green’s function can be substituted in the
neighbor equations, getting the following
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W1
s gr

00 +τ 1
1 gr

20 = 1
W1

bgr
20 +τ 1

1 gr
40 +τ 1

2 gr
00 = 0

W1
bgr

60 +τ 1
1 gr

20 +τ 1
2 gr

20 = 0
W1

bgr
80 +τ 1

1 gr
20 +τ 1

2 gr
40 = 0
· · ·

W1
s gr

m0 +τ 1
1 gr

m+2,0 +τ 1
2 gr

m−2,0 = 0
· · · (B.4)

where

W1
s = (εSPL−HPL)− (εSτ −τ )(εSPL−HPL)−1(εS†

PL−τ †)

W1
b = (εSPL−HPL)− (εSPL−τ )(εSPL−HPL)−1(εS†

τ −τ †)+

− (εS†
PL−τ †)(εSPL−HPL)−1(εSτ −τ )

τ 1
1 = −(εSτ −τ )(εSPL−HPL)−1(εSτ −τ )

τ 1
2 = −(εS†

τ −τ †)(εSPL−HPL)−1(εS†
τ −τ †) (B.5)

We have actually recovered Eqn. (B.2) with new renormalized parameters. The first equa-
tion in Eqn. (B.4) connects now the renormalized 0th and 2nd layers and τ1 and τ2 are giving
the effective interaction between them, while Ws is the effective matrix of (εSPL−He f f )
for layer “0”, that means the layer in contact with the device.

We proceed in successive steps by eliminating the Green’s functions of the next alter-
nating layers, which will now be gr

2n,0 for odd n. This procedure can be iterated, obtaining
at each step the corresponding renormalized Wb, Ws, τ1 and τ2 matrices relating to those
of the previous step in the following way:

Wi
s = Wi−1

s −τi−1(Wi−1
b )−1τ i−1

2

Wi
s = Wi−1

b −τi−1(Wi−1
b )−1τ i−1

2 −τ i−1
2 (Wi−1

b )−1τ i−1
1

τ i
1 = −τ i−1

1 (Wi−1
b )−1τ i−1

1

τ i
1 = −τ i−1

2 (Wi−1
b )−1τ i−1

2 . (B.6)

After the ith step τ i
1 and τ i

2 give the effective interaction between layers “0” and 2i having
renormalized out those in between. We can thus expect both τ1 and τ2 to decrease for
any energy value with increasing number of steps, becoming quickly negligible as the
layers they effectively connect are just too far apart. The surface and bulk layers are then
practically decoupled, and we are left with the equations:
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WN
s gr

00 = 1
WN

b gr
2Nn,0 = 0 (B.7)

where N is the number of steps necessary to achieve convergence in the iteration process.
Convergence is achieved when τ N

1 and τ N
2 < δ where δ is a defined small threshold. The

Green’s function for the surface is therefore well described by

gr
00 =

(
WN

s
)−1

(B.8)

In this example we have assumed that the chain of PLs grows in the right direction, which
is the case of the right contact. The same algorithm can be applied for the left contact,
where the PLs grows in the left direction, just exchanging τ1 with τ2 in the equations. In
order to run this algorithm we need only the Hamiltonian of two PLs and their coupling for
both the contacts.
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