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Abstract

In this work we investigate rare earth doped GaN, by means of theoretical simulations. The optical
emission from rare earth ions (RE) consists of very sharp lines (ranging from the UV to IR), whose
wave length is determined by the energy of the corresponding transition within the 4f -shell. Rare
earth doped GaN has been used as phosphors in the realisation of GaN-based flat panel displays,
even if the RE luminescence could not be related up to date to a singular or to a group of lanthanide
defects and few is known about the mechanisms leading to the emission.
The huge unit cells necessary to model the experimental system, where dilute amount of rare earth
ions are used, are handled with the charge self consistent density-functional based-tight binding
(SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and sim-
plified self interaction corrected (SIC)-like potentials for the simulation of systems with localised
and strongly correlated electrons. This approach attempts to combine the efficiency of the tight-
binding with the accuracy of more sophisticated ab initio methods allowing the treatment of highly
correlated electrons also for very large systems.
A set of tight-binding parameters has been created to model the interaction of GaN with some
dopants, including a selection of lanthanide ions interesting due to their optical or magnetic prop-
erties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. The validity
of the parameters was thoroughly tested against experimental data, in particular bulk ErN in the
rock-salt phase is investigated in detail and found to be a half-metal in the ferromagnetic phase.
In addition, the TB approach opens the possibility to overcome one of the most relevant problems
of the density-functional theory (DFT) calculations in the local density approximation (LDA), the
considerable underestimation of the band gap. A qualitatively correct description of the band gap
is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the
implanted samples depends on the size of the host band gap and because the rare earths could
introduce charge transition levels near the conduction band. In this work these levels are calculated
with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the
charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. Unfortunately, the
usual LDA and its gradient extensions fail in describing the Kohn-Sham eigenvalues of the lan-
thanides sufficiently well. We show (analytically and by means of representative examples) that the
SJ-transition state becomes a powerful tool if applied self-consistently within a LDA+U extension
of DFT. The simulations confirmed that the lanthanide ions prefer the Ga lattice site. Isolated
substitutionals REGa are very stable defects, present in the C3v symmetry. REGa are found to
introduce only a small distortion in the host lattice and in the charge distribution of the ligands
and are therefore easily incorporated in the GaN host. Rare earth interstitials are found not to
be stable against the kick-out of a neighbouring Ga which is replaced by the rare earth. Com-
plexes formed by lanthanide substitutionals and N-interstitials or anti-sites (IN and GaN or NGa)
are characterised by high formation and low binding energies and are unlikely to be formed under
equilibrium conditions. Among the defects which can be related with the luminescence we have
found the close pairs formed by REGa substitutionals and vacancies or ON substitutionals. These
complexes are stable (bound) at typical annealing temperatures and introduce localised levels in
the GaN band gap. On the basis of these results we conclude our work with a possible model for
the mechanisms leading to the luminescence, where the nitrogen vacancies in REGa VN pairs act
as assistant for the energy transfer to the f -shell of the lanthanides.

Keywords

density functional theory, DFT, tight-binding, LDA+U , strongly correlated electrons, point defects,
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iii



Simone Sanna, Seltene Erde Punktdefekte in GaN.
Dissertation (in englischer Sprache), Department Physik, Fakultät für Naturwissenschaften, Uni-
versität Paderborn (2007). 157 Seiten, 64 Abbildungen, 30 Tabellen.

Kurzfassung

In dieser Arbeit wird seltene Erde dotiertes GaN mit Hilfe von Computersimulationen untersucht.
Die Emissionsspektren der seltenen Erde Ionen (SE) sind von scharfen Linien gekennzeichnet, die
dem zugehörigen Übergang in der f -Schale entsprechen. SE-dotiertes GaN wurde erfolgreich für
die Herstellung von flachen Displays benutzt, auch wenn die SE-Lumineszenz bis zum heutigen Tag
keinem bestimmten Defektzustand zugeordnet werden konnte.
Die sehr großen Einheitszellen, die erforderlich sind, um die experimentellen Konzentrationen zu
reproduzieren, werden mit dem Ladung-selbstkonsistenten dichtefunktionalbasierten Tight-Binding
Verfahren (SCC-DFTB) untersucht. Die Methode wurde auf orbitalabhängigen Potentiale erweit-
ert, die für die Simulation von Systemen mit stark korrelierten Elektronen notwendig sind, nämlich
LDA+U und Self-Interaction Correction (pSIC) Methode. Das Verfahren kombiniert die Effizienz
der Tight-Binding Methode mit der Genauigkeit von anspruchsvolleren ab initio Verfahren und
ermöglicht so die Untersuchung von stark lokalisierten Elektronen auch in größeren Systemen.
Ein Satz von Tight-Binding Parameter wurde erzeugt, um die Wechselwirkung von GaN mit einer
Auswahl von SE-Dotiersubstanzen zu modellieren, welche wegen ihrer optischen oder magnetischen
Eigenschaften von Interesse sind (Pr, Eu, Gd, Er, Tm). Dabei wurden die f -Elektronen als Valen-
zelektronen behandelt. Die Tauglichkeit der Parameter wurde anhand von experimentell bekannten
Testsystemen überprüft. Insbesondere, ErN in der Kochsalz Struktur ist ausführlich untersucht
worden und ist in der DFTB-Darstellung ein Halbmetall in der ferromagnetischen Phase.
DFTB bietet die Möglichkeit eines der größten Probleme der dichtefunktionaltheoretischen Rech-
nungen (DFT) in der Lokaldichte-Näherung (LDA) zu umgehen, nämlich die Unterschätzung der
elektronischen Bandlücke. Eine qualitativ korrekte Beschreibung der Bandlücke ist dabei eine
Grundvoraussetzung für die Simulation von SE-dotierten Halbleitern, weil die Lumineszenzinten-
sität der dotierten Probe von der Größe der Bandlücke abhängt und weil die Störatome Umladung-
niveaus in der Nähe der Leitungsbandkante einfügen. Diese Umladungen wurden in dieser Arbeit
mit dem Slater-Janak (SJ) Modell berechnet, das eine annähernde Berechnung von elektronischen
Umladungen durch die Analyse der Kohn-Sham DFT Eigenwerte ermöglicht.
Die Simulationen haben bestätigt, dass SE den Ga-Platz bevorzugen. Isolierte SEGa sind sehr sta-
bile Defekte mit C3v Symmetrie. SEGa verursachen eine relativ kleine Gitterverzerrung in GaN,
ändern nur geringfügig die Ladungsverteilung der N-Liganden und werden daher leicht in dem GaN-
Host aufgenommen. Seltene Erde in Zwischengitterstellen (ISE) sind nicht stabil und gehen in die
energetisch günstigere SEGa IGa Konfiguration über.
Die von einem SEGa und einem N-Zwischengitteratom oder Antisite gebildeten Defektkomplexe (IN
und GaN oder NGa) sind von großer Formationsenergie und niedriger Bindungsenergie gekennze-
ichnet, so dass sie mit großer Wahrscheinlichkeit bei Gleichgewichtbedingungen nicht vorkommen
und, falls nach Implantation vorhanden, die Probenausheilung nicht überstehen würden. Unter
den Defekten, die mit der Lumineszenz in Verbindung gebracht werden können, sind die von SEGa

und benachbarten Leerstellen oder ON Substitutionellen gebildeten Paare besonders wichtig. Diese
Konfigurationen sind auch bei typischen Ausheilungtemperaturen stabil und induzieren zusätzliche
lokalisierte Zustände in die Bandlücke. Anhand dieser Ergebnisse wird ein Modell für die Emissions-
mechanismen vorgeschlagen, in dem die Energie der Ladungsträger über diese zusätzlich eingefügten
Assistenz-Niveaus übermittelt wird.

Schlagwörter

DFT, Dichtefunktionaltheorie, Tight-Binding, LDA+U , Punktdefekte, seltene Erde, Lanthanide,
GaN, Galliumnitrid
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Introduction

Starting from the work of Ennen et al. in 1983 [1] the study of the optical properties of rare
earth (RE) doped III-V semiconductors has attracted more and more the attention of the scientific
community. The emission spectrum of the RE ions is characterised by very sharp optical emissions
ranging from the ultraviolet (UV) to the infrared (IR), which are related to intra-f electronic
transitions. The RE ions have a strongly localised and partially filled 4f -shell which is screened by
the outer 5s and 5p orbitals. Due to the screening effects the wavelengths of these emissions are only
determined by the energy of the transition between the 4f -states and are quite independent from
the host material. The latter only influences the radiative transition probability, i.e. the emission
intensity. Most of the standard semiconductors (Si, Ga, etc.) are affected by severe quenching
of the luminescence at room temperature. It was shown by Favennec et al. [2] that the thermal
quenching of erbium doped semiconductors decreases with increasing bandgap and that wide gap
semiconductors are ideal hosts for the lanthanide ions. Among the wide gap semiconductors, GaN
has turned out to be an ideal host candidate because of its high field transport characteristics,
because it is chemically and thermally rugged and because it incorporates very well the RE ions.
The emission from RE doped GaN is strong enough to be observable to the naked eye at room
temperature.

Technological importance

The photoemission from RE in GaN covers the entire visible spectrum. In particular the light
emission in the red (from Eu ions, 621 nm), green (Er, 537/558 nm) and blue (Tm, 477 nm) is
very pure and matches quite well the CIE coordinates adopted by the National Television System
Committee (NTSC) in the USA and by the European Broadcasting Union (EBU) in the European
community. The success in doping GaN samples with RE ions (during growth or by implantation)
has been exploited for the creation of novel multi colour and full colour (white) displays [3, 4].
Besides the primary colours obtained by GaN doped with Eu, Er and Tm, mixed colours and hues
can be obtained using different RE. The combined emission is in fact perceived by the human eye as
a single colour depending on the relative intensity of the RGB components. Fig. 1 represents a CIE
x-y chromaticity diagram: all the colours within the triangle defined by the primary colours can
be in principle obtained. This is a big advantage with respect to other commercial displays, where
the phosphors for different colours have to be generated from different materials. RE doped GaN
samples have been in fact successfully exploited for the realisation of flat panel displays (FLD),
high contrast thick dielectric electroluminescent (TDEL) and thin film electroluminescent (TFEL)
display devices. The displays can be developed with either multiple RE doping in a single layer
or with more phosphor layers each doped with a different lanthanide. Construction schemes of
the standard devices (both dc- and ac-biased) and their development, as well as the construction
methods used to optimize and enhance their performances are reported in a review article of Steckl
et al. [4]. Todays devices are characterised by high brightness and contrast (contrast ratio >40:1),
outstanding durability (5% loss in brightness after 1000 hours in an environment with 40% humidity)
and extremely long lifetime (<50.000 hours, i.e. an order of magnitude more than other commercial
displays) due to the chemical stability of the phosphors. These performance are expected to be
further improved in the next decade [5–7], where GaN:RE based devices will be the standard for
flat-TVs and portable displays. Furthermore, the absence of polymeric materials, vacuum or gases
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Figure 1: CIE chromaticity x-y diagram showing the location of the red, green and blue emission from rare
earth doped. All the mixed colours within the marked triangle defined by the three primary colours as well
as white light can be obtained mixing the RE.

in the device structure allows the usage of the displays in harsh environments like airplanes, hospitals
and factories.
Rare earth doped GaN has other important applications in the field of telecommunications, espe-
cially in the area of optical fibers. This is a field in constant and explosive growth and evolution,
driven mainly by the widespreading popularity of large bandwidth home networks. The standard
wavelength of the signals traveling in optical fibers is 1.5 µm (and more rarely 1.3 µm), because at
this IR wavelength the dispersion and the loss are minimal. For this reason fiber optic sources and
amplifiers have been developed doping different hosts with Er3+ and Pr3+. The big advantage of
GaN with respect to other hosts is again the absence of thermal quenching at room temperature.
In other semiconductors like Si the emission is completely quenched already at 200 K. A consistent
co-doping with oxygen improves the thermal properties of Si but at expense of a more complicated
process and degraded electrical properties [8].

Experimental knowledge of rare earth doped GaN

Rare Earth compounds have been a long time puzzle. They show extremely interesting properties
but are quite difficult to investigate both experimentally and from the theoretical point of view.
Researchers realized that even a small amount of impurities or crystal disorder could dramatically
affect the properties of relatively simple systems like RE monopnictides [9]. This was combined with
the well known problems of chemically separating different rare earths. Nevertheless in the last five
years the understanding of the microstructure of RE-doped III-nitrides has improved substantially,
in part due to the intensive work of the Steckl group in Cincinnati [10] and of the RENiBEl (Rare
Earth doped Nitrides for high Brightness Electroluminescent emitters) consortium, a network of
university laboratories (including the Universität Paderborn) funded by the European Commission
in a Fifth Framework Research Training Network [11, 12]. Implanted or in situ doped samples have
been extensively investigated with different spectroscopic techniques in order to win informations
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CHAPTER 0. INTRODUCTION

about the excitation paths, the lattice locations of the active sites and the sample preparation
conditions which maximise the emission. Important informations about the RE preferred lattice
site (90% of the RE are found to reside on Ga sites) and its geometry (C3v) could be be gained but
some questions still remain open. The transfer of excitation from the band states of a semiconductor
host to the inner electronic shell of RE ions, perhaps involving the mediation of host intrinsic
defects and the migration and localisation of excitons, is itself not a well-understood process: this
process may well favour the excitation of particular sites through some as yet undiscovered physical
mechanisms. Besides, despite many efforts any luminescence band in RE doped nitrides could
be definitively assigned to a particular lattice site. Another important issue in the process of
maximising the emission is the idea of enhancing the luminescence efficiency by the addition of
co-dopants (O, F and C), which may either act either locally, to influence the defect symmetry or
non locally, as ”sensitiers” of the luminescence. Till now there have been contradicting reports,
among other Torvik et al. reported that co-doping with O led to a 20 times increase in the Er3+

related luminescence in GaN:Er [13] while Citrin et al. found no correlation between the Er3+

related luminescence in the same host and the presence of O [14]. The question of co-doping seems
not to be settled. A last question of big importance regards the clustering of the lanthanide ions
in the GaN host. Recently Katchkanov et al. [15] have shown by means of EXAFS analysis the
tendency of the RE ion in implanted GaN to cluster. Does it negatively influence the RE emission
or is this possibly causing the emission? Further details about the experimental knowledge of RE
doped nitrides are reviewed in the first chapter.

Theory

The role of the theory is the development of models to help to reproduce and understand the
results of experiments and predict the behaviour of the investigated systems. The study of strongly
correlated systems like RE is in this sense a big challenge for theorists as it requires different
techniques than the usual methods for the simulation of solid state systems. Many properties of the
lanthanide elements depend on the strongly correlated behavior of their f -electrons. Unfortunately
methods based on a standard mean-field DFT-LDA approach give qualitatively incorrect description
of systems containing strongly localised orbitals [16], allowing far too much hybridisation with the
environment. The study of such systems requires a more sophisticated theory than simple mean-
field methods. Large scale configuration interaction based simulations instead are prohibitively
demanding for the case of lanthanide ions in GaN, where dilute amount of dopants are used and huge
cells are needed to represent the experimental system. Furthermore RE ions have atomic numbers
of between 57 and 70, hence relativistic effects become important and have to be considered. Up to
date there have been three major attempts to investigate the behaviour of lanthanides in III-V hosts.
The Jones group in Exeter used the DFT approach to calculate energetic and electrical properties
of Eu, Er and Tm in different hosts. The 4f -shell was treated as core state of pseudopotentials,
which were generated assuming the trivalent configuration of the ions [17]. Svane et al. [18] used a
DFT-based method including a correction for the self-interaction (SIC) error to investigate isolated
REGa in GaAs and GaN. More detailed reports of the results of the above cited investigations
will be given in the following. Finally the Frauenheim group in Paderborn used LDA+U [16] and
pseudo-SIC techniques implemented in the spin-polarised density-functional based tight-binding
(DFTB) to investigate RE point defects in GaN. This investigation is the subject of this work.

Objectives of this work

The main goal of the current research on lanthanide doped nitrides is, for both experimentalist and
theoreticians, to optimise the emission from the RE. Given a multiplicity of sites, it may be possible
to engineer the occupation statistic in order to maximise the rare earth emission intensity. The
main question of the defect engineering approach is if the lanthanide emission is principally due to
a majority site with a low oscillator strength or rather to a minority site of exceptionally high lumi-
nescence efficiency (called ”magic site”). The main goal of this work is to identify and characterise
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Figure 2: Single colour red, green, and blue GaN:RE TDEL devices obtained using Eu, Er and Tm as
phospors. The picture is taken from Ref. [3].

particular sites that could act as luminescence centers (they are called lumophores). This will be
done with a systematic investigation of RE point defects, including isolated impurities and defect
pairs. On the basis of the physical characteristics of the single sites (geometric characteristics like
symmetry, lattice distortion etc. as well as electronic characteristics, like formation energy, intro-
duction of localised states in the host etc.) we will be able to identify or exclude particular defect
sites as responsible candidate for the observed emission. We will also address the problem of the
co-doping, investigating which effect oxygen ions (representative for the whole class of donors) have
on RE-doped GaN samples. The rare earth clustering in the GaN samples is not investigated in this
work. The spectrum of theoretical methods for the investigation of atomic structures ranges from
computationally very demanding high-accuracy techniques based on configuration interactions over
post-Hartree Fock and density functional theory based methods to the computationally cheaper
(semi-)empirical techniques. Each class of methods is best suited for certain types of application,
defined by the number of atoms that can be handled at a desired level of accuracy. The den-
sity functional based tight-binding (DFTB) approach used in this work can be located among the
medium-accuracy tools and is characterised by a favourable ratio between accuracy and efficiency.
To pursue our goals we followed a plan made of four main steps. Firstly the formalism needed to
conjugate the orbital dependent potentials in the framework of the tight-binding was developed and
implemented in the so called DFTB+ software [19]. In a second phase the DFTB parameters for
a selection of lanthanides, the host GaN and some common dopants (O, C) have been created and
validated. The third step consisted in the simulation of different GaN intrinsic defects: this had
the double purpose of testing the DFTB representation of the host and gain information about the
nature of the defects itself, needed successively to understand the characteristic of those complexes
formed by an intrinsic GaN defect and a RE impurities. Finally, the systematic simulation of the
rare earth point defects was carried out, paying attention to the issue of co-doping. Bulk sys-
tems and point defects are todays usually investigated with DFT-based calculation schemes, which
guarantee an high accuracy at an affordable computational cost. The investigation of RE systems
however goes far beyond a classical study of point defects because of the nature of the RE itself.
DFTB offers a lot of advantages which make it one of the most suitable simulation packages for
the simulation of RE systems. First of all, despite its simplicity (a two center only non-orthogonal
Hamiltonian is used) the density functional based tight-binding (DFTB) method scheme has been
proven to be accurate when applied to solid state [20], molecular or biological systems [21]. Mate-
rials like silicon [22], SiC [23], diamond [24], boron and boron nitride [25] and III-V semiconductors
like GaN [26] and GaAs [27] have successfully been studied within the DFTB approach. Second,
with a classic ab initio package it would be impossible to carry out an extensive sampling of RE
defects in GaN1. A thorough study of those systems in fact includes the investigation of an huge
number of possible defect configurations which have to be considered in different charge states and
spin configurations. Another problem related to the ab initio codes would be the generation of
reliable pseudopotentials for RE ions, while in DFTB it is easier to create suitable parameters for
the code. It is interesting to notice that also semiempirical methods have strong deficiencies in the

1We use nonetheless different ab initio packages throughout this work to check the precision of DFTB on key
systems and test systems.
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CHAPTER 0. INTRODUCTION

simulation of RE systems and most of the commercial packages completely miss a set of parameter
for the simulation of RE ions, due to the lack of known systems to use as fit system. This, again, is
due to the nature of the ions we want to investigate. RE ions have atomic numbers between 57 and
70, hence relativistic effects begin to become important. Additionally, many properties of RE ions
depend on the behavior of their 4f -electrons, which are strongly correlated. To study such cases
requires a more sophisticated theory than simple LDA-like mean-field methods. To address this
additional complexity in treating lanthanides, the DFTB method has been substantially extended.
To treat strongly correlated systems, an LDA+U like approach [28] and a SIC-like approach have
been adopted. We would like to remark that (to our knowledge) DFTB contains the only TB im-
plementation of an LDA+U or SIC-like method. Combining DFTB methods and LDA+U should
allow handling highly correlated electrons for very large systems with a calculation quality close to
the one of the ab initio methods. This is particularly interesting for the case of RE in GaN where
dilute amount of RE are used. DFTB can easily handle the huge unit cell size that is necessary to
represent the experimental system and properly reproduce the effect of the stress induced by RE
doping in particular on the electronic structure. Finally, as we will show in the following chapter,
the correct simulation of the band gap of the semiconductor host is a fundamental point in modeling
RE defects. While ab initio simulations are affected from a known gap problem, DFTB is not2 and
is from this point of view well suited to simulate the behaviour of RE ions in GaN.

Outline

The first chapter is dedicated to the lanthanides, their emission spectra and the general problem
related to the so called 4f -systems. We review the actual state of the research from a theoretical
and from an experimental point of view, we show why rare earth systems are interesting from a
scientific and from commercial point of view and why they are so difficult to simulate. Subject
of the second chapter are the methods underlying our simulations. We show how we can extend
the DFTB approach with orbital dependent potentials and tackle in this way the problem related
to the 4f -systems. Some general aspects of point defects and their simulation are discussed there.
In the third chapter we deal with the process of generation and test of the parameters needed by
DFTB to model the host GaN and the RE ions. The generation process as well as various test
calculations are reported. The fourth chapter deals with the host, GaN in its polytypes Zinc-blend
and Wurtzite as well as with GaN intrinsic defects. It is in fact essential to know the behaviour
of the intrinsic defects, if we want to investigate how do they couple with RE defects. The actual
result of our simulations are then presented and discussed in chapter five to seven, while in the
eighth and last chapter we summarise the main results of this work.

2This is due to the minimal basis set, which in many cases is a limitation to the accuracy of the methods but in
this case reveals to be an advantage.
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Chapter 1

The Rare Earths

In this chapter the general properties of the lanthanides and the problems related to the 4f -electrons
are reviewed. In the second part of the chapter the actual knowledge about RE ions in GaN is
reported, from the experimental as well as from the theoretical point of view.

1.1 General properties of the RE

The rare earth (RE) ions are the 14 lanthanide elements in group III-A of the periodic table, from
cerium (Ce) to lutetium (Lu) and are characterised by the presence of the 4f -shell. The interesting
and unusual physics of the lanthanides is due to their f -shell, pictured in Fig. 1.1. Despite their
name, the RE elements are not especially rare. Each of them is more common than silver, gold or
platinum. The name is rather due to difficult extraction of the elements and their late discovery.
The elements were in fact discovered only in the 19th and 20th century and are available only
recently in pure form. The properties of the lanthanides vary only slightly with the atomic number
because the outer shells do not change within the group and this makes them difficult to distinguish
from each other. RE metals have a high electrical conductivity, high melting and boiling points
and share many common properties. With increasing atomic number the effective nuclear charge
experienced by each 4f electron increases, causing a shrinking of the RE radii from Ce to Yb known
as lanthanide contraction. Rare earths in general have the electronic configuration [Xe]4fn5d06s2

with n varying from 1 (Ce) to 14 (Lu). In solids however they lose the three outer electrons (the two
6s electrons and one f or d electron) remaining with the configuration (5s25p6)4f . For this reason
they are also named 4f -ions. All RE exist as trivalent cations (RE3+). Cerium (Ce), praseodymium
(Pr) and terbium (Tb) also exhibit +4, while samarium (Sm), europium (Eu), thulium (Tm) and
ytterbium (Yb) can form compounds with a valence +2. Due to the weak coupling of the 4fn

electrons with the host lattice RE ions behave like free ions. Many lanthanides play an important
role in various optoelectronic and photonic applications, ranging from emitting elements in solid-
state lasers (using Nd) and phosphors for colour lamps and displays (for example Eu or Tb) to
optical fiber telecommunications (using Er or Pr).

+_+_m=0 m=   2 m=   3m=   1+_

Figure 1.1: The 4f orbitals of the rare earths. The interesting and unusual physics of the lanthanides is
due to the peculiar nature their f-shell.
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1.2. THE F -ELECTRONS: SCREENING FROM THE OUTER SHELLS

Table 1.1: Fundamental atomic properties of the selected lanthanides. Rad. indicates the covalent radius

and is expressed in Å, El. is the electronegativity after Pauling, 4f and 6s are the valence shell orbital radii
and are expressed in Å. Data from www.webelements.com

RE At. N. Rad. El. Conf. At. Mass El. Str. 4f 6s
Pr 59 1.65 4f35d06s26p0 140.91 1.13 HCP 0.361 2.247
Eu 63 1.85 4f75d06s26p0 151.96 1.18 BCC 0.310 2.140
Gd 64 1.61 4f75d16s26p0 157.25 1.20 HCP 0.297 2.012
Er 68 1.58 4f125d06s26p0 167.26 1.24 HCP 0.268 2.031
Tm 69 1.56 4f135d06s26p0 168.93 1.25 HCP 0.261 2.011

On the other side the technological relevance of the RE is not limited to advanced photoelectronic
devices. Just to cite some application, Pr can be found in the pyrophoric stones of cigarette lighters,
La in camera lenses, Sm in ceramics and with Nd the strongest known magnets can be created. In
this work we will consider only a selection of lanthanides, namely Pr, Eu, Gd, Er and Tm. The
simulation of each rare earth would be not only extremely time consuming, but probably also not
necessary. All lanthanides behave in fact similarly and a few ions are enough to individuate trends
along the RE series. Some of the properties which we will use in the following are listed in Tab. 1.1.

1.2 The f-electrons: screening from the outer shells

Fig. 1.2 shows the partially filled 4f -orbitals of the RE, located relatively close to the nucleus and
shielded very efficiently by the outer 5s, 5p and 6s electrons. The valence shell radii of the 4f and
6s-orbitals are reported in Tab. 1.1. This shielding has different effects: from one side it makes
it impossible for the f -electrons to largely hybridise with other states and makes the shell nearly
inert. Due to this shielding, the intra 4fn shell transitions result in very sharp optical emissions
at wavelengths from the ultraviolet (UV) to the infrared (IR). The wavelengths of these emissions
are determined by the energy of the transition between the 4f states of the RE and are relatively
independent of the host material. On the other side this screening is not complete and much of
the interesting and unusual physics of rare earth systems, such as heavy-fermion behavior, mixed
valency, and Kondo screening, is due to the fn shell not being completely inert. For a completely
inert fn shell, the occupation number fluctuation on that particular site vanishes leading to a
reduction of Coulomb energy. The contraction of the 4f -shell determines also the conduction
properties of the RE systems, as explained in the following section.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
r (a.u)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
2 (r

)

4f

5p

5s

Figure 1.2: Screening of the 4f electrons by outer 5s and 5p shells for erbium ions. The 6s orbital, not
reported here, is even more extended. Here the Er orbitals used in the DFTB calculations are plotted.
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CHAPTER 1. THE RARE EARTHS

Figure 1.3: The one dimensional system we choose to illustrate the effect of the strong correlated electrons
on the conduction properties of the solids

1.3 Conduction properties of RE-systems

Many lanthanide compounds might be expected to be metallic, as they have partially filled d or f -
bands. Experimentally they are instead known to be insulators or semiconductors. This apparently
strange behaviour is due to the electron-electron repulsion, which localises electrons that should
be available for the conduction on single atoms, strongly reducing or compromising the electrical
conductivity of the material. This happens when the overlap between atomic orbitals is small and
consequently the width of the resulting energy band is small. We can understand it with a simple
model. A full treatment of the electron-electron repulsion in solids is extremely complicated, for this
reason we use the approximation done in the Hubbard theory, that is, the only important electron-
electron repulsion happens between electrons on the same atom. We consider a one dimensional
line of atoms, which, for simplicity is assumed to have only a s-orbital and one electron per orbital.
In this model, the s-band will be half full and the material a metal. If the orbital overlap between
neighbouring atoms is very small however, it will be energetically favourable to localise the electrons
in their valence shell (as in Fig. 1.3) in order to reduce the Coulomb repulsion which arises when
two electrons are forced to pair on the same atom, as happens when an electron moves through
the solid via the s-band. In this case the solid, which we thought to be metallic, will instead be
insulating. The half-filled band ends up being divided into two sub-bands (empty upper Hubbard
band and occupied lower Hubbard band) separated by an energetic gap, as shown in Fig. 1.4. With
this simple model, we can also predict if a solid will be insulating or a metal. The energy needed to
subtract an electron from an atom is the ionisation energy I. The energy win we have when we put
an isolated electron in an atom with an half filled orbital is the electron affinity (Ae) of this atom.
So the energy needed to move the electron from an atom to another one (called Mott-Hubbard
splitting or Hubbard U) is:

U = I −Ae

and can be interpreted as the repulsion energy between two electrons in the same atom. As discussed
above, metallic conductivity only occurs, when the atomic overlap is big enough, so that the widthW
of the resulting energy band is bigger then the value of U . If instead U > W the electronic repulsion
prevails and the solid is insulating. The 4f -orbitals of the lanthanides are extremely contracted and
interact to a very small extent with the surrounding ligands in lanthanide compounds. A further
consequence of this contraction is that the overlap of the 4f orbitals in lanthanides compounds
(for example RE-nitrides or elemental RE solids) is very small and the 4f band widths are very
small (typically about 0.1 eV). In the solid state elemental rare earths are nonetheless metals, but
only because of the 5d and 6s orbitals, which overlap to a greater extent. Tab. 1.2 shows that the
conductivity of the elemental RE solids cannot be due to the 4f -electrons.
The extreme high values for Eu and Gd are easily explained. Let us remain in the case of the
elemental RE solids: each ion contributes with three electrons to the band structure and this leads
Gd to have the configuration [Xe]f7 which is particularly stable because of the half filled f -shell
(which means filled f sub-shell). This stability is lost when an electron is added to make the [Xe]f8

configuration, hence U is very high. The [Xe]f7 configuration is so favourable that is adopted
also from Eu, which then contributes to the metallic bonding and band structure with only two
electrons. This fact is reflected in the bigger atomic volume for Eu than for the other RE (except
Yb, which is similar to Eu)
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1.4. EMISSION FROM RARE EARTH IONS

Table 1.2: Data experimentally determined [29] using solid state X-ray photoelectron spectroscopy (XPS)
and bremsstrahlung isochromat spectroscopy (BIS). For each rare earth ion the value of U is much greater
than 0.1 eV. All the values are expressed in eV, the error is ±0.3 eV

RE Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm
U 5.39 5.47 6.37 5.53 10.14 11.48 4.99 5.68 6.82 6.86 5.67

1.4 Emission from Rare Earth ions

The Russell Saunders coupling scheme

The atomic states of the lanthanides are generally labeled with symbols following the Russel-
Saunders (RS) coupling scheme. Each electron in an orbital is, as generally known, characterised
by four quantum numbers: the principal quantum number n, the orbital quantum number l, the
magnetic quantum number ml and the spin quantum number ms. There are many different ways in
which the angular momenta associated with the orbital and spin motions in many-electron-atoms
can be combined together. The RS scheme is only one possible coupling scheme, based on the
concepts of atomic spin S, atomic angular momentum L, atomic total angular momentum J .

• S is the resultant spin quantum number for a system of electrons. The overall spin S arises
from adding the individual ms together.

• L, the total orbital angular momentum quantum number defines the energy state for a system
of electrons. These states or term letters are represented as follows: S=0, P=1, D=2, F=3,
H=4, I=5 and so on.

• Coupling occurs between the resultant spin and orbital momenta of an electron which gives
rise to J , the total angular momentum quantum number. J is the sum of L and S and
permissible values of J fall between |L+ S| and |L− S|.

The Russell Saunders term symbol that results from these considerations is

2S+1LJ

with term multiplicity 2S+1 and total angular momentum J . For example a f2 state S=(1/2+1/2)=1
and 2s+1=5, L=5=H and the Russel-Saunders term symbol is 5H. Each term symbol labels a de-
generate group (multiplet) of 2J + 1 states, which may be split by an external field (e.g. crystal
field splitting of the Russel-Saunders terms).
The correct ordering of the energy levels is provided (in most cases) by the Hund’s rules:

Figure 1.4: One half filled shell appears in a mean field theory as DFT-LDA like an half-filled band, which
could take part to the conduction process. Because of the localised nature of the shell it is however better
represented by two sub-bands (an empty one and an occupied one) separated by an energetic gap.
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CHAPTER 1. THE RARE EARTHS

• The ground term will have the maximum multiplicity

• If there is more than one term with maximum multiplicity, then the ground term will have
the largest value of L.

Since the 4f shell is strongly localised and distinct from the states of the surrounding crystal it is
customary to label the states considering only multiplets of the 4f manifold.

Selection Rules

A selection rule is a condition constraining the physical properties of the initial system and the final
system that is necessary for a process, in our case the photon emission, to occur with a nonzero
probability. In the process of emission the emitted particle (photon) carries away an angular
momentum from the system. Considering that the total angular momentum and the parity have to
be conserved during the transition leads to two rules for allowed transitions:

• S = 0 (Spin rule)
This rule says that allowed transitions involve the promotion of electrons without a change in
their spin.

• l = ±1 (Orbital or Laporte rule)
This rule says that transitions within a given set of orbitals (i.e. those which only involve a
redistribution of electrons within a given sub-shell) are forbidden if the molecule has a centre
of symmetry.

The expression forbidden transitions is often used even if this does not mean that these transitions
cannot occur but rather that they are electric-dipole forbidden. These transitions are perfectly
possible, but occur at a lower rate. For example an allowed transition will have as rule of thumb
an intensity 104 greater than a transition spin and Laporte forbidden. J. H. van Vleck pointed out
as first that in the free ions the 4f 7−→ 4f transitions are forbidden, as the RE luminescence comes
from dipole transitions and the operator for these is of odd parity, i. e. they violate the Laporte
selection rule [30]. Relaxation of the selection rules can anyway occur because of different factors
like vibronic coupling, symmetry breaking and orbital mixing in molecules and solids (so transitions
are no longer purely 4f 7−→ 4f). Ofelt [31] proposed that for RE in a host the crystal field could
produce mixed states containing contributions from more configurations of electrons (generally 4fn

mixing with 4fn−15d), if the ion’s environment lacks inversion symmetry. The REGa substitutional
site in GaN has C3v symmetry, which is not centrosymmetric and the Laporte rule is so relaxed
that a photon emission can happen with a finite probability. This consideration also invalidates
the practice of labeling the 4f -states of the lanthanide in a host like GaN with the free atom
term symbols. Different symbolisms exists, which also keep in account the crystal- and ligand-field
interactions (Stark splitting, which depend on the local symmetry of the RE surroundings) to label
the resulting states. Many of these notations are quite usual (Racah irreducible representation
and Mulliken point group symbols), other are, though precise, arcane and complicated. In any
case, lacking informations about the RE site-symmetry or being the main goal the comparison
of different sites, the inaccurate but familiar term symbols give labels that are at least a first
approximation of the states involved. The RE 4f states and their transitions in different hosts have
been investigated theoretically and experimentally in the 1950s and 60s, culminating with the work
of Dieke [32], who gave a consistent picture of energy levels for trivalent lanthanides. The resulting
set of levels (known as Dieke’s diagram) is till today useful, as the energies of RE multiplets vary
only fractionally between different hosts. The electronic transitions of interest for this work are
schematically reported in Fig. 1.5.

Light emission mechanisms

The light emission from RE doped GaN samples has been observed by photoluminescence (PL),
cathodoluminescence (CL) and electroluminescence (EL). The main mechanisms underlying the
emission are reported in Fig. 1.7. In PL the electron-hole pairs are generated by above band-gap
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Figure 1.5: Simplified energy diagram of the 4f levels of Pr, Eu, Er and Tm in GaN as reported in [3].
Only transitions which have been exploited for the creation of displays are coloured. For further details and
a discussion of the single transitions see the reference.
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Figure 1.6: Emission spectra of Pr (dark red), Eu (red), Er (green) and Tm (blue) doped GaN films from
UV to IR [4]. Spectra are normalised to their highest value and therefore not directly comparable.

photon absorption, in CL the charge carrier generation is provided by high energy electron beams
and finally in EL the carrier injection occurs by applying a bias to the electrical contacts on the
GaN layer. In any case the charge carrier is transferred to the RE ion by impact excitation of hot
carriers or as consequence of a nearby hole-electron recombination. The RE may then relax with
a non-radiative process (multi-phonon emission or Auger electron excitation) or with a radiative
process, which is the desired one, as it results in in the photoemission exploited in electroluminescent
displays. The relative strength of the radiative relaxation (i.e. the emission intensity) is a complex
function of the host crystalline quality and RE concentration. A crystal of good quality reduces the
probability of a non-radiative process, but at the same time a good crystallinity is achieved under
conditions which are not compatible with the optimum incorporation of RE. For a review of the
parameters used to maximise the emission see [4].

1.5 RE in GaN: Experiment

We review here briefly the experimental knowledge of RE doped GaN, especially the results of recent
experiments. The experimental techniques used to investigate rare earth doped GaN samples are
not described in detail. For such a description we remand the reader to the references.

1.5.1 The samples

There are principally two ways of doping GaN with RE, in situ i.e. by doping during MBE growth
or ex situ, by ion implantation into previously grown materials. The advantages of the first method
is the possibility to obtain thicker and more heavily doped samples, while the second method is
useful for certain purposes. Implanted samples are doped only on a thin layer (typically about 100
nm) where the crystal lattice is in part disrupted and annealing is required after the implantation
to repair lattice damage. In RE implanted GaN samples luminescence is activated only after
annealing. This has two kinds of consequences. The first is that only these defect complexes which
are stable enough to endure the annealing process1 can be addressed as possible candidate for
the luminescence. The second is that something during the annealing leads to the luminescence.
Two processes which may enhance the RE emission are the removal of non-radiative recombination
centers and the formation of specifically efficient RE-containing lumophores. Additionally, if a
specific lattice location for the RE ions is required to produce efficient luminescence, annealing
may allow diffusion of the ions to occur. Doping GaN during the growth is possible to avoid the
lattice damage induced by ion implantation and most of all it is possible to carefully control the
concentration of dopants. Surprisingly it has be found that structurally good samples show rather

1Using AlN caps GaN samples can be annealed after implantation at temperatures which exceed the template
growth temperature, as reported in [36–38].
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Figure 1.7: Energy transfer mechanisms in RE doped GaN: the RE dopant excitation and consequent
relaxation in the GaN host. In the diagram red circles are electrons and white circles holes. Conduction and
valence band edges are called CB and VB, while excited and ground states for RE transitions are called ES
and GS respectively. The box on the right (relaxation) represent the radiative emission (photon in yellow)
and the non-radiative Auger de-excitation. The non-radiative process of phonon emission is not represented
here.

poor luminescence [33, 34]. It was demonstrated that best luminescence results are not correlated
with the crystalline quality of the sample: this has lead to the conclusion that some unidentified
effects are involved in the energy transfer from the host matrix (GaN) to the RE-ions [35]. Details
about the preparation of lanthanide doped crystals can be found in the references [39–41].

1.5.2 Electron emission channeling (EC)

While conventional channeling techniques based on the use of probe ion beams like the Rutherford
Backscattering Spectroscopy/Channeling (RBS/C) or the Particle-Induced X-ray Emission (PIXE)
require the presence of a large amount of impurities in the material, the Electron-emission Channel-
ing (EC) can be used to investigate low concentrations of isolated impurities. As a large impurity
concentration normally also introduces unwanted effects like impurity clustering or crystal damage
(if implantation is used to introduce foreign elements), good samples are normally those with low
impurity concentration. The goal of EC investigations is to determine the sites occupied by im-
planted radioactive ions measuring the angular distribution (with respect to major crystal axes) of
β- or conversion-electrons that are emitted by the implanted nuclei during their radioactive decay.
The majority (50-95%) of Pr, Nd, Eu, Gd and Er ions implanted in GaN occupies lattice sites that
appear to be slightly displaced from the ideal substitutional REGa, with a nearly isotropic root
mean square (rms) displacement of the order of 0.10-0.25 Å. The displacement is however too large
to be explained in terms of lattice vibrations. The rest of the implanted ions reside in on low-
symmetry sites or lattice sites with more disordered surroundings [42, 43]. After high-temperature
annealing the substitutional fraction stays nearly constant while the rms displacement decreases,
indicating that the displacement are mostly likely related to the presence of randomly distributed
defect complexes introduced during the implantation. The fact that the displacements are observed
for all investigated RE, and that none of them shows perfect incorporation in the host until anneal-
ing at 1200 oC indicates that the formation of lanthanide defect complexes is an universal process
in GaN and the corresponding binding energies must be fairly large. This explains two issues, the
lattice site multiplicity observed in luminescence experiments (see following) and the high annealing
temperature needed to activate implanted dopants, even if the majority of them are already on-site
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CHAPTER 1. THE RARE EARTHS

in the as implanted samples. The natural candidates for the enhancing defects are the N vacancies
in the nearest neighbour shell of the substitutional RE, Ga vacancies in the second neighbour shell
or Ga interstitial between first and third neighbour shells.

1.5.3 X-ray absorption fine structure (XAFS)

XAFS spectroscopy is used to determine the lattice sites occupied by dopants or native defects
in crystalline solids [44]. A Fourier Transform of the so called XAFS yelds the radial distribution
function (RDF) of the ions neighbouring a particular target atom. XAFS studies clearly reveal
impurity aggregation effects as one would expect in heavily doped samples [45] as well as for rather
low levels of doping. Let us keep Tm here as example: Tm atoms are found only in substitutional
Ga sites for very low concentration samples (≤ 0.5 at %). Increasing the Tm concentration to
1-2 at % Tm is found again at the Ga place surrounded by four nitrogen atoms, but the presence
of a substantial number of Tm ions in the second coordination sphere indicates the beginning
of dopant clustering. In more heavily doped samples a phase decomposition can be observed: a
sizeable portion of the Tm ions find themselves in a TmN environment. The formation of pure
TmN clusters was found in an in situ doped sample with a dopant concentration as low as 3.4%.
In contrast to EC, XAFS is not sensitive to a random displacement of a target atom form its
ideal lattice position, so that it cannot be easily determined if RE ions remain on-site or not. A
good review of XAFS results obtained to date can be found in [46, 47] and can be summarised as
follows: all RE atoms have been found to reside on Ga substitutional sites, independently of the
doping method. RE in GaN have (in contrast to In) a strong tendency to agglomerate. When the
RE concentration increases over a certain threshold clusters with high RE content are observed.
The lowest concentration at which RE clustering was observed is 0.17% and 1.2% for Er and Tm
respectively, at higher concentration pure REN phases are observed.

1.5.4 Optical studies (PL, PLE, CL)

The most common techniques used to obtain spectroscopic signatures of of particular RE ions are
photoluminescence (PL) and cathodoluminescence (CL). While the former is spectrally selective,
depending on the photon energy of excitation, the latter tends to ”excite everything” that the high-
energy electron beam encounters, even if the penetration of the electron beam can be restricted
by limiting its energy. Photoluminescence excitation (PLE) spectroscopy monitors a single PL
emission feature, as the exciting light is swept through a range of higher photon energy. Both PL
and CL can be performed in time-resolved (TR) mode: when the sample excitation is removed,
the luminescence signal decreases towards zero as the excited state population return to its equi-
librium value. Luminescence spectroscopy of RE-doped group III-N samples offers clear evidence
for the coexistence of different sites with distinctive excitation and emission signature. In a re-
cent work [48] combined excitation emission spectra (CEES) spectroscopy was used to study Er
MBE-doped samples: two ”majority” and up to four different signatures were found, in agreement
with previous works [49, 50]. These observations concern internal RE transitions below the host
band-gap in terms of photon energy, even if at the same time the sites are observed to interact
differently with the host. Similarly Eu implanted GaN samples [7] where recently investigated by
PL and PLE spectroscopy, revealing the existence of at least four luminescent sites [12, 51–53].
Finally there is experimental (PL and PLE studies) evidence that in Er doped samples different
types of defects can be excited [54]. Some sites can be excited selectively by carefully choosing the
excitation wavelength below band-gap.

1.5.5 Other techniques

A number of other investigation techniques has been used for the characterisation of RE doped
samples and from each of them a lot of information can be gained. The surface morphology
of the samples is investigated using scanning electron microscopy (SEM) or by high resolution
transmission electron microscopy (HRTEM) [55]. The implantation damage and its recovery is
monitored by Raman spectroscopy, while the doping concentrations are accurately measured using
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Wavelength Dispersive X-Ray (WDX) and Rutherford back-scattering (RBS) spectroscopy. Deep
level transient spectroscopy (DLTS) of implanted and annealed GaN samples shows a level at EC-
0.2 eV, independent from the implanted impurity. Other levels were observed in the band gap at
0.19, 0.22, 0.26 and 0.65 eV below the conduction band. The last two levels are found essentially
in all of the investigated samples, suggesting that they are host-related, while the first two appear
exclusively in the random implanted and channeled implanted samples respectively, suggesting a
relation with the implantation geometry [56].

1.6 RE in GaN: Earlier theoretical works

Because of the difficulties represented by the simulation of systems containing rare earths (which
we will explain in some detail in the next chapter), our theoretical knowledge of the behaviour of
RE ions in GaN is behind the experimental one. The first attempt to study RE ions in GaN from
the theoretical point of view is due to the Jones’ group in Exeter [17, 57]. They used the density
functional theory to investigate the stable Er, Eu and Tm defects and their electronic properties in
hexagonal GaN. In their approach the f -electrons have been treated like core states, assuming the
trivalent configuration. REGa substitutionals were found to be electrically and optically inert, while
substitutional-vacancy defects are found to have a bound energy of 1.0, 0.8 and 0.7 eV for Eu, Er
and Tm respectively and to introduce localised levels in the GaN band gap. Interstitials-complexes
and RE-O complexes were also investigated, with the conclusion that they probably do not play
any role in high energy fluorescent transitions. Successively the Svane’s and Temmerman’s groups
in Aahraus and Daresbury investigated the electronic structure of substitutional RE impurities
in cubic GaN by means of the self interaction corrected local spin density approximation (SIC-
LSDA) [18]. For an analytical description of the SIC method see the following chapter. They
investigated different configurations of the 4f -shells for the substitutionals of the whole RE series
to reveal trends in the magnetic and electronic properties. An acceptor level ε(0/−) was found
within the GaN band gap for different RE including the EuGa substitutional. Finally we mention a
work of Dorembos and van der Kolk [58], who used the knowledge from lanthanide spectroscopy to
understand and predict optical and electronic properties of the lanthanides in GaN. They proposed
a scheme for the localisation of the 4f -states with respect to the conduction and valence bands of
GaN and demonstrate that the luminescence efficiency of Pr3+, Eu3+, Tb3+ and Yb3+ depends on
the location on the lanthanide levels.

1.7 Summary

In this chapter we introduced the rare earth ions, reviewing their peculiar behaviour, which can be
attributed to the particular nature of the f -orbitals. The unique conduction and emission properties
of RE ions, could also be related and interpreted in term of non-classical behaviour of the localised
f -electrons. At the end of the chapter the experimental and theoretical work done up to date to
investigate RE ions in GaN was briefly summarised. From experimental studies we know that Er
ions in GaN prefer the Ga position [42], occur in 3+ valence state [13] and posses C3v symmetry [59]
with relatively short distances to the surrounding N-ligands [46]. Clustering of RE is observed and
REN phase segregation is observed when the RE concentration increases over a certain threshold,
estimated in 0.17% and 1.2% for Er and Tm respectively [47]. The question of co-doping of RE
in order to improve and enhance the luminescence seems not to be settled, as different opinions
(see for example [13] and [14] in the case of Er) can be found in the literature. Concerning the
association of the luminescence with a particular defect or complex it is know that (at least in the
case of Eu and Er) a multiplicity of sites can be excited [12], but the luminescence could not be
definitively assigned to a particular lattice site. Theoretical investigations seems to agree that REGa

substitutionals are favoured with respect to REN substitutionals, happen in the 3+ charge state
and do not cause an important lattice distortion [18, 57]. No agreement could be found instead
about the optical and electrical activity of the REGa substitutionals.
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Chapter 2

Methods

This chapter is divided in two parts, the first dealing with the Density Functional Theory (DFT)
and its extensions concerning the Janak formalism and the orbital dependent potentials, and the
second with its approximation used throughout this work, the Density Functional based Tight
Binding (DFTB). While in the first part the DFT is only briefly reviewed (to the extent needed
to understand and derive the DFTB formalism), in the second part the theory underlying the
DFTB formalism is discussed in some detail and a rigorous mathematical formulation is given.
This chapter is structured in order to highlight the aspects which are peculiar to this work, which
are the LDA+U approach and its connections with the Janak formalism, while the DFTB method,
which has been discussed and in other works, is presented at the end of the chapter.

2.1 The Density Functional Theory

2.1.1 The many body problem

The Schrödinger equation describing the stationary state of a system of M ions in the coordinate
space has the form:

Ĥtot ({RI}, {ri})Ψtot ({RI}, {ri}) = E′Ψtot ({RI}, {ri}) (2.1)

where Ĥtot is the Hamilton operator of the whole system (electrons + nuclei), Ψtot is the wave
function and E0 the energy eigenvalue. The position of the nuclei and of the electrons are given
through the position vectors {RI} and {ri} respectively.
In the Born-Oppenheimer approximation [60] the fast motion of the electrons is separated from the
relatively ”slow” motion of the nuclei, allowing the separate solution of one Schrödinger equation
for the electrons and one for the nuclei. The wave function Ψtot ({RI}, {ri}) of the system is then
represented by the product of two terms, the first being related to the electrons and the second to
the nuclei (Product-Ansatz). The nuclear coordinates appear as parameter in the electron wave
functions. This parametric dependence will not be explicitly indicated in the following, i.e.

Ψ ({ri}) = Ψel. ({ri}, {RI})
The Hamilton operator of the whole system can be separated into an electronic and one nuclear
part, just like the wave function:

Ĥtot ({RI}, {ri}) = T̂nucl. + v̂nucl.︸ ︷︷ ︸
Ĥnucl.({RI})

+ T̂el. + v̂el. + v̂el.−nucl.︸ ︷︷ ︸
Ĥel.({ri})

(2.2)

where T̂ and v̂ are the operators for the kinetic and potential energy. The coupling between electrons
and nuclei is included in v̂el.−nucl.. The electronic Hamilton operator Ĥel. ({ri}) contains again
implicitly the nuclear coordinates as parameter: these will appear again in the coupling potential
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Table 2.1: The atomic units used throughout this work

Length Bohr h2/me2 0.529177 · 10−10 m
Energy Hartree me4/h̄ 27.2114 eV
Mass El. rest mass me 9.10 · 10−31 Kg
Charge El. charge e 1.6022 · 10−19 coul.

v̂el.−nucl.. Applying the Product-Ansatz for the wave functions and separating the operator as in
Eq. 2.2 one gets from the Eq. 2.1 two separate Schrödinger equations for the electrons

Ĥel.Ψ({ri}) = Eel.Ψ ({ri}) (2.3)

and for the nuclei:

Ĥnucl.Ψnucl. =
(
T̂nucl. + V̂nucl. + Eel.

)
Ψnucl. = E′Ψnucl. (2.4)

In this work we will consider the nuclei as classical particles, coupled with the electrons only by
Coulomb interactions. The electrons will then move in the potential generated by the nuclei. In
this way the original quantum mechanical problem is reduced to the solution of the electronic
Schrödinger equation.

ĤΨ ({ri}) = EΨ({ri}) (2.5)

Here we drop all the labels referring to the electrons as no more confusion is possible. The wave
function Ψ, which is the eigenfunction of the Hamilton operator Ĥ to the eigenvalue E, has to be
normalised to the unity. The Hamilton operator in the equation above is still the one of the many
body problem. All electrons are coupled through the Coulomb interaction and an exact, analytic
solution is no more possible. Many different approximated methods have been developed to solve
this problem, the most famous being the Hartree-Fock method [61] and a lot of its derivations,
called post Hartree-Fock [61] methods. Among them the by far most successful and widespread is
the Density Functional Theory or DFT, which is the starting point of the methods used throughout
this work.

2.1.2 Theoretical foundations of the DFT

Most scientists see the principle of the DFT already in the Thomas-Fermi theory [62, 63], which
is an attempt to describe atoms in a statistic way. In its today’s form the DFT is however quite
different: fundamental deficits of the Thomas-Fermi theory were removed and the theory itself
was further improved. The common point of the two theories is, that the role of the fundamental
quantity is not played by the many body wave functions like in HF and its derivations but by the
electronic density. In the following the basics of the DFT are reviewed. Throughout this chapter
we will use atomic units, which are listed in Tab. 2.1.

2.1.3 The theorems of Hohenberg and Kohn

We consider a Hamilton operator of the form:

Ĥ = T̂ + v̂ + v̂ext. (2.6)

where
v̂ =

1
|r − r′|

is the operator for the Coulomb interaction between electrons in atomic units (see Tab. 2.1), T̂ is the
operator for the kinetic energy and v̂ext. an external potential like for example the electron-nuclei
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interaction. This operator will be the basis for the derivation of the following theory. The external
potential and the total number N of electrons in the system univocally determine the Hamilton
operator and, with it, the wave functions Ψ solution of the Schrödinger Equation. The electronic
density n(r) is given from the diagonal elements

n(r) = γ(r, r)

of the one-particle density matrix:

γ (r, r′) = N

∫
. . .

∫
Ψ(r, r2, . . . rN )Ψ∗ (r′, r2, . . . rN ) dr2 . . . drN (2.7)

and as the wave functions Ψ are normalised, from the electronic density one can derive back the
total number of electrons:

N =
∫
n(r)dr

The DFT is based on the theorems of Hohenberg and Kohn [64], which we cite here without
demonstration. The first theorem legitimates the choice of the charge density as central quantity
of the theory:

Theorem 1

The external potential vext. is a definite functional of the ground state charge density
n0

In this way the charge density, together with the number of electrons N , suffices to determine the
wave functions Ψ univocally. For the total energy expressed as functional of the charge density we
have:

E [n(r)] = T [n(r)] + V [n(r)] + Vext. [n(r)]
= T [n(r)] +

∫
vext.n(r)dr

where T [n] is the functional of the kinetic energy, V [n] is the electronic potential energy and
Vext. [n(r)] is the potential energy part due to the external potential. The Hohenberg-Kohn density
functional is defined [62] as:

FHK [n] = E[n]−
∫
vext.n(r)dr. (2.8)

The second theorem of Hohenberg Kohn assures the following variational principle

Theorem 2

The density functional

E[n] = FHK[n] +
∫
vextn(r)dr

has a minimum for the ground state charge density n0.

Changing from the wave functions Ψ(ri) (which depend from 3N electronic coordinates) to the
electronic density n(r) (which depends on only three coordinates) the complexity of the equations
to solve is strongly reduced. This is one central point of the DFT: the reduction of the degrees of
freedom makes the treatment of big systems possible. Both theorems can be demonstrated for non
degenerate as well as for degenerate ground states [62]. An extension to the excited states is also
possible, if one considers only one possible electronic geometry [65]. If the theorems are extended
to the excited states the electronic density has to satisfy more requests which can be derived from
the definition of the density functional itself. A thorough discussion about this theme can be found
for example in [62, 63].

13
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2.1.4 The Kohn-Sham equations

The functional of the electronic density FHK[n] we introduced in the previous section is unfortunately
unknown. Specifically, the functional T [n] of the kinetic energy is a complex term which cannot
be easily approximated or handled with classical physics. We have therefore to introduce some
sophisticated approximations: this was firstly done in a work of Kohn and Sham [66], which was
the key to the analytic formulation of the density functional theory and led to the Kohn-Sham
equations. At first we consider a system of N non interacting electrons. The wave function Ψ(ri) of
such a system is as usual represented by a determinant of one-particle orbitals ψi(r) with occupations
ni. The electronic density is then given through:

n(r) =
N∑

i

ni|ψi(r)|2 (2.9)

In the case of non interacting particles the expression for the kinetic energy as function of the
orbitals ψi(r) is known:

t =
N∑

i

ni〈ψi|t̂|ψi〉 =
N∑

i

ni〈ψi| − 1
2
∆|ψi〉 (2.10)

and, following the definition, the functional FHK[n] takes the form (see Eq. 2.8):

FHK = t =
N∑

i

ni〈ψi| − 1
2
∆|ψi〉 (2.11)

For an interacting electron system this situation is not true any more, in particular the representa-
tion of the total wave function Ψ through a determinant is in general no more possible. Kohn and
Sham suggested to consider a reference system of not interacting electrons, with exactly the same
charge density of the system of interacting electrons. Using the variational principle one can then
get a one-particle Schrödinger equation for the one-particle orbitals ψi:

ĥψi =
(
t̂+ Veff.

)
ψi = εiψi (2.12)

The wave function of the ground state of the non interacting electrons reference system is given as
the determinant of the energy lowest lying orbitals ψi. They are eigenfunctions of the Hamilton
operator to the eigenvalues εi. The eigenvalues are used as Lagrange multipliers: in their physical
interpretation they do not correspond to the one-particle energies. The effective potential vee(r)
contains the classic electron-electron Coulomb interaction:

vee(r) =
∫

n(r′)
|r− r′|dr

′

as well as the external potential vext. and a new potential, called exchange-correlation potential vxc.

veff. = vee + vext. + vxc (2.13)

which is connected with the so called exchange-correlation energy functional Exc[n] through:

vxc(r) =
δExc [n(r)]
δn(r)

which is on turn connected with the Hohenberg-Kohn density functional FHK[n] through:

Exc[n] = FHK[n]− t[n]− Vee[ee] = T [n] + V [n]− t[n]− Vee[n] (2.14)

here is

Vee[n] =
∫
vee(r)n(r)dr

14
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the electronic Coulomb energy. The exchange-correlation energy Exc introduced from Kohn and
Sham contains on one side the corrections to the kinetic energy of the considered reference system
of non interacting electrons and on the other side the non classic parts of the electron-electron
interaction (both merged in the concept of electronic correlation) and the exchange interaction. In
the Kohn-Sham formalism of the DFT the Coulomb and kinetic part of the energy of a system of
non interacting electrons can now be calculated. Being FHK[n] is unknown, also Exc[n] is unknown.
For the latter however different approximations and some properties the exact functional has to
satisfy are known. In [67] an overview about these issues can be found. As approximation of the
exchange-correlation potential can be used, in the simplest case (in analogy with the Coulomb
interaction potential vee):

vχα = −3
2
α

(
3
π
n(r)

) 1
3

. (2.15)

This is the so called χα−approximation, where a considerable part of the correlation effects is
neglected. Normally α is considered as parameter which can range between 2/3 and 1. Starting
from the homogeneous electron gas one gets the expression for the Local Density Approximation
(LDA) which uses the exchange-correlation energy of this model-system and explicitly contains the
correlations effects. Beyond LDA are different approximation which contain gradient corrections
to the homogeneous case, like the Generalised Gradient Approximation (GGA). These functionals
reach a very good precision if compared for example with the χα−approximation or with simple
Hartree-Fock [63, 68], even if the analytic expressions become more and more complex. The effective
potential in the Kohn-Sham equation (Eq. 2.12) depends on the electronic density of the ground
state which has to be calculated. The equation has then to be solved self-consistently: starting from
a ”good guess” for the start potential the equation is solved, a new charge density can be calculated
with the solution, which is on turn used to generate a new effective potential. This iterative process
is repeated as long as the potential (or the charge density) does not change considerably anymore
from an iteration to the successive. The electronic total energy EKS is calculated after a self
consistent solution of the Kohn-Sham equations as:

EKS
tot =

occ.∑

i=1

〈ψi| − 1
2
∆|ψi〉+

1
2

∫∫
n(r)n(r′)
|r− r′| drdr

′ +
∫
vext(r)n(r)dr + Exc[n]. (2.16)

Allowed charge densities in the Kohn-Sham DFT are the densities allowed in the Hohenberg-Kohn
theorems.

2.1.5 Spin Density Functional Theory

The derivation of the theory done in the previous section can be generalised for external potentials
that are not scalar, like the nuclear potential, but vectorial, like for example the interaction with
an external magnetic field [62]. In particular this has been done for spin dependent potentials [69],
leading to the so called spin-DFT, in which for example the interaction with intrinsic magnetic
fields can be described (ferromagnets or radical molecules are examples). While in the previously
presented theory the main variable was the electronic density n(r), in the easiest form of the spin-
DFT1 the densities of electrons with spin up n↑(r), and spin down n↓(r) are considered. In this
case the quantisation direction is the direction of the external magnetic field. Alternatively one can
choose as variables the total electronic density:

n(r) = n↑(r) + n↓(r) (2.17)

together with the magnetisation density:

m(r) = n↑(r)− n↓(r) (2.18)

1This is the collinear version of the spin-DFT, which means the electronic spin are either considered parallel or
antiparallel to the quantisation direction. Non colinear spin versions of the theory can be found for example in [240].
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2.2. CALCULATION OF THE CHARGE TRANSITION LEVELS

because they are a linear combination of the spin up and spin down magnetisation densities. The
Kohn-Sham equations are then generalised as:

(
1
2
∆ + vee + vext. + v↑xc

)
ψi↑ = εi↑ψi↑

(
1
2
∆ + vee + vext. + v↓xc

)
ψi↓ = εi↓ψi↓

(2.19)

where (from now on we use the notation σ =↑ or ↓) vσ
xc is the spin dependent exchange correlation

potential:

vσ
xc(r) =

δExc[n↑(r), n↓(r)]
δnσ(r)

(2.20)

which in turn derives from Exc (see for example [62, 63]). The Kohn-Sham spin-orbitals ψiσ to the
eigenvalues εiσ are correlated in the traditional way to the spin densities.

nσ =
N∑

i

niσ|ψiσ|2 (2.21)

The spatial distribution and with them the spatial behaviour of the ψiσ can be different for spin up
and spin down electrons. Also in the spin polarised case one can derive a spin dependent version
of the Janak’s theorem [70]:

εiσ =
∂Etot

KS

∂niσ
. (2.22)

With this connection the Kohn-Sham eigenvalues are related to the first derivatives of the total
energy with respect to the occupation numbers niσ. The Janak theorem is the starting point for
the calculation of charge state transitions by means of the Janak-formalism, which is illustrated in
the next section.

2.2 Calculation of the charge transition levels

Point defects and impurities usually introduce localised levels within the band gap of the host.
These levels can be experimentally detected and can be therefore used to identify the defect or
impurities present in the sample. For this reason it is of great importance to have a model which
allows the calculation of these levels, even if the calculation itself presents some difficulty. The levels
that can be determined experimentally involve transitions between the charge states of the defect
or impurity. The one-particle levels deriving from a band structure calculation of the system have a
position depending from the charge state (i.e. from their occupation) and cannot be identified with
any levels which are experimentally relevant. We define therefore the thermodynamic transition
ε(q1/q2) as the position of the Fermi-level at which the charge state q2 becomes favoured over q1.
This kind of levels can be observed with deep-level transient spectroscopy (DLTS) or derived from an
analysis of the temperature-dependent Hall data2. Charge transition levels should not be confused
with optical levels, which can be detected for example with photoluminescence experiments.

2.2.1 Total energy differences

A first method to calculate the position of the transition level ET between the two charge states q1
and q2 of a center X is to apply the definition of charge transition: when the Fermi energy EF is
equal to ET , none of the two charge states is favoured with respect to the other, i.e. they have the
same formation energy3:

2In the case of shallow centers in fact the level corresponds to the thermal ionisation energy.
3Formation energies and their calculations are discussed in the Appendix A
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Figure 2.1: Configuration coordinate diagram illustrating the difference between charge transition and
optical levels. For a discussion of this diagram see the text.

Ef
X [q2](Ef = ET ) = Ef

X [q1]

and from the definition of formation energy, neglecting the corrections needed to align the reference
potential in the defect supercell with that of the bulk:

ET = Ef
X [q2](Ef = 0)− Ef

X [q1] = Etot[q2]− Etot[q1]

where in each charge state the atomic structure is relaxed to its equilibrium configuration. The
equilibrium structures of the same defect center may considerably differ for two charge states: this is
the difference between thermodynamic charge transition levels and optical levels. Optical levels are
defined like the charge transitions but the energy of the defect in the charge state q2 is calculated
with the geometry of the charge state q1. Indeed optical levels are revealed by techniques like
photoluminescence (PL), where the center in the final charge state cannot relax to its equilibrium
configuration. We illustrate this concept with an example. Let us suppose that the charge state q2
and q1 are the negative and neutral charge states of the defect center X respectively. The exciting
light in a PL experiment will create electron-hole pairs. The negatively charged X− centers can
trap holes, becoming X0 centers. If e is an electron at the bottom of the conduction band, the
equilibrium configuration of the X0+e state is Eg−ET higher than the equilibrium configuration of
X−, where Eg is the energy of the band gap. Electrons in the conduction band can now recombine
with the trapped hole, leaving the defect center in the negative charge state but with the structure
of the neutral charge state. The recombination leads to the emission of a photon with energy
EPL. The difference between this configuration and that of the equilibrium configuration X− is the
relaxation energy Erel, also called Franck-Condon shift.

2.2.2 Janak’s theory

Another way to calculate the charge transition levels is given by the Janak transition state formalism,
which is an extension of the density functional theory which holds for the DFT as well as for the
DFTB calculation scheme we are going to introduce. According the Janak theorem the Kohn-Sham
eigenvalues of the density functional theory can be calculated as the derivative of the total energy
with respect to the occupation number of the related Kohn-Sham orbital [70]

∂E[N ]
∂ηi

= εi. (2.23)

Here E is the DFT total energy, εi the Kohn-Sham eigenvalue of the ith orbital and ηi its occupation
number (0 < ηi < 1), so that the total number of electrons becomes N =

∑
i ηi. By integrating

Eq. 2.23 it becomes possible to calculate the change in the total energy when we introduce one
electron in the lowest unoccupied level of a system with N electrons, that of course for the system
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2.2. CALCULATION OF THE CHARGE TRANSITION LEVELS

with N + η electrons becomes the highest occupied orbital:

EN+1 − EN =
∫ 1

0

εH(η)dη. (2.24)

If the Kohn-Sham eigenvalue εH is at least a linear function of the occupation number (which is
often assumed in practical applications), we obtain

(N/N + 1) = EN+1 − EN = εH(1/2) (2.25)

which defines the Slater-Janak (SL) transition state. If we want the SL transition state to be
rigorously taken into account εH(1/2) has to be calculated in a self-consistent calculation with a
1/2 occupation of the highest occupied orbital that is affected by the charge transition.
However, making again use of an assumed linearity of εH one can also write

εH(1/2) ≈ 1
2

[
εN+1
H (0) + εN+1

H (1)
]

=
1
2

[
εNL (0) + εN+1

H (1)
]

(2.26)

In other words, a good estimate for εH(1/2) is obtained by averaging the eigenvalues of the lowest
unoccupied orbital in the N -electron system and the highest occupied orbital in the system con-
taining N +1 electrons. In the work of Göransson et al. [71] a thorough investigation of the validity
of this approach using LDA for selected examples can be found. It gives a very good estimate of
the position of the transition level as long as the Franck-Condon shift, which is due to the lattice
relaxation as consequence of the charge change of the defect, is negligible. However, a remaining
problem of the approach remains in the correct description of εi for the general case. It is well
known, that in LDA the HOMO-LUMO gap between occupied and unoccupied orbitals is not well
described, inducing in critical cases also some uncertainties into the energetic position of the KS
levels. In addition, the assumption of the linearity of the εi is not ensured for strongly localised
electrons. In the following we show that both problems can be coped with the use of orbital de-
pendent functionals beyond LDA, e.g. by a LDA+U approach. This approach will be presented in
detail in the following sections, we anticipate here the main idea of the method to discuss how it
improves, in connection with the Janak formalism, the description of the charge transition states.
The exact total energy E[N ] is a piecewise linear function of the total number of the electrons. As
stated by Eschrig [72] and Cococcioni [73] this linearity is never provided in actual realisations of
the theory (DFT-LDA or DFT-GGA). In LDA or GGA the incorrect treatment of the partially
occupied Kohn-Sham orbitals gives a non linear contribution to the total energy, resulting in an
unphysical curvature of E[N ], as reported in Fig. 2.2. The linearity is hardly verified for strongly
correlated electrons like the ones in the strongly localised d- or f -shells of transition metals and rare
earths. Here, the application of the +U potentials largely recovers the piecewise linear behaviour
of the exact ground state energy as function of the occupations [73]. In the LDA+U approach
also the slope of the KS eigenvalues can be improved considerably. This guarantees that the
assumption behind the Janak transition state model, i.e. that the eigenvalues are linear functions
of the occupation number, is automatically verified, even in the case of solids, where fractional
occupations of the orbitals could occur as consequence of the hybridisation between atomic-like
orbitals and environment. If the total energy functional E[N ] is, as it should, a linear function of
the total number of electrons N , then the one-particle energies are not only linear in the occupation
numbers ηi but also piecewise constant (with jumps at integer values N):

εi =
∂E[N ]
∂ηi

=
∂N

∂ηi
· ∂E[N ]
∂N

=
∂E[N ]
∂N

= const. (2.27)

In other words, if we would have an ideal U , i.e. a value which perfectly recovers the piecewise
linearity of E[N ] then the Kohn-Sham levels, defined as the first derivative of this functional with
respect to the occupation numbers, would be piecewise constant and independent from the occupa-
tion numbers itself. The independence of the KS-orbitals from their occupation numbers is for sure
verified (also in DFT-LDA) in the case of extended orbitals, corresponding to the vanishing U for
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Figure 2.2: Lower part: The exact total energy profile of a system of N electrons as a piecewise linear
curve, never provided in actual DFT implementations like LDA/GGA, where a spurious curvature is a
consequence of the incorrect treatment of the self interaction. The bottom curve is the difference between the
other two. Upper part: The LDA/GGA eigenvalue depend roughly linearly from the occupation numbers.
The LDA+U corrections (red) are also a linear function of the occupation number. The resulting LDA+U
eigenvalues are in the best case constant (for the ideal U value).
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2.3. ORBITAL DEPENDENT POTENTIALS

delocalised electrons (e.g. the band structure of an ideal solid does in fact not change adding or sub-
tracting electrons). In the case of localised states the situation is of course different: an additional
charge in the orbital will cause a change in the form (wavefunction) of the orbital, but in the ideal
case not in its energy. The total energy of a system of N electrons is corrected in LDA+U adding
an Hubbard-like term which properly takes in account the coulomb energy of the NM correlated
electrons to the LDA total-energy functional and subtracting the coulomb interaction as given by
LDA for the same electrons:

E = ELDA −
∑

M


1

2
UMNM(NM − 1)− 1

2

∑

i 6=j∈M
Uij ηiηj




with Uij = 〈i, j |Vee| i, j〉 (2.28)

UM =
1
N2
M

∑

i,j∈M
Uij =

1
(2l + 1)2

∑

i,j∈M
Uij = F 0 (2.29)

whereby the Uij vanish if i and j are belonging to different localised manifolds M, containing
NM = 2l + 1 strongly interacting electronic orbitals. As a consequence, each Kohn-Sham level is
corrected by an amount:

εi =
∂ELDA+U

∂ηi
= εiLDA + Uii

(
1
2
− ηi

)
(2.30)

i.e. an orbital-dependent linear correction Uii

(
1
2 − ηi

)
is provided that is able to recover the constant

one-particle levels from the linear dependent regime in the case of LDA as sketched in the upper
part of Fig. 2.2. In summary we have shown analytically, that the LDA+U formalism the perfect
recover of the constance of the one-particle levels is provided by a set of perfect U -values. This
holds also in the case of strongly correlated electrons, as we will show numerically in the chapter 5.
The description of the LDA+U approach is the topic of the next section while its implementation
in the DFTB calculation scheme will be the topic of the following one.

2.3 Orbital dependent potentials

In the density functional theory (DFT) the exchange-correlation potential is often approximated by
using the exchange-correlation present in a homogeneous electron gas (LDA), which has been proven
to be very successful for solids even if not all systems are equally well described. Materials with
strongly correlated electrons however are examples where this mean field approach most strikingly
fails. LDA is in fact an one-electron method with an orbitally independent potential and applying it
to a system containing transition metals (TM) or rare earths (RE) with partially filled d- or f -shells
gives results consistent with a metallic electronic structure and itinerant d- or f -electrons, which
is definitely wrong for most RE compounds and several examples of TM systems (NiO being the
classic example). Other choices for the exchange correlation such as generalised gradient (GGA)
can also be applied, but as with LDA this is a mean-field correction for the non-interacting system,
so suffers from the same pathology. In the strongly correlated systems the d- or f -electrons are
often strongly localised and there is a noticeable energy difference between occupied and unoccupied
states with strong d or f character, which are called lower and upper Hubbard bands, in analogy
with the Hubbard Hamiltonian approach. There have been a number of attempts to go beyond
the LDA and make it possible to account for strong electron-electron correlation in such systems.
The full self interaction corrected (SIC) approach [74] can reproduce the the localised nature of
d and f electrons in TM and RE compounds as well as the total energy of these systems but
is not intended to reproduce the one-electron energies, additionally SIC is known to over-correct
many properties [75]. As discussed in section 2.5.9 there have also been several recent attempts to
approximate the effects of the SIC method with (semi-)local corrections. An alternative correction,
the LDA+U approach, is conceptually similar to the Hubbard Hamiltonian approach: the non-
local and energy dependent self energy is approximated by a frequency independent but non-local
screened Coulomb potential.
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2.3.1 LDA+U

As discussed by Anisimov et al. [16], it is natural to separate electrons into localised d- or f -
electrons and delocalised s- and p-electrons. While for the latter an orbitally independent one-
electron potential (as in LDA) will suffice, a Hartree-Fock like interaction better describes the local
interactions of the strongly localised d- or f -electrons. This is of the form 1

2

∑
i 6=j ninj , where ni

are the occupancies of the localised shells. If we assume that the Coulomb energy of the electron-
electron interaction as a function of the total number of electrons N =

∑
ni is well represented by

LDA (even if it gives wrong single-particle energies), then LDA already contains part of this energy.
This must be subtracted from the total energy and instead replaced with a Hubbard model-like
term. As a result we get the functional [76, 77]:

E = ELDA − 1
2
UN(N − 1) +

U

2

∑

i 6=j

ninj = ELDA + ∆ELDA+U (2.31)

Strictly speaking, the process of subtracting the double-counting of the electron-electron interac-
tion of strongly correlated electrons from the LDA total energy and substituting it with a Hubbard
Hamiltonian-like term is not without ambiguity. The electron-electron interactions have already
been taken into account in a mean field way with LDA, while the Hubbard Hamiltonian also incor-
porates a large part of the total Coulomb energy of the system. One can try to identify those parts
of the DFT total energy corresponding to the interactions included with the Hubbard Hamiltonian
in order to subtract them. This is not trivial, because while the Kohn-Sham Hamiltonian is written
in terms of the total density, the Hubbard Hamiltonian is written in terms of orbital occupation
numbers, and a direct link between the two is not straightforward. Secondly, even if it were possi-
ble to exactly remove the on-site Coulombic contribution in the LDA and Hartree contributions, it
would be undesirable, as the spatial variation of the Coulomb and exchange-correlation potential
is important and better described in DFT than in the Hubbard approach. It is instead better to
try and identify a mean-field part of the Hubbard Hamiltonian and subtract that, leaving only a
correction to the LDA solution. In the limit of uniform occupancy (all occupations equal to the
average value in that shell) the corrections for total energy and potential can be written in terms
of on-site occupation matrices (n) as [78]:

∆EAMF = −1
2

∑
a

∑

l∈a

(U − J)l

∑
σ

∑
µν

(δnσ
µν · δnσ

νµ)νµ∈l (2.32)

∆V σ
µν = −(U − J)δnσ

νµ∈l (2.33)

where U is the spherically averaged Hubbard repulsion and J is the intra-atomic exchange. δn, the
orbital occupation matrix, is given by

δnσ
µν = nσ

µν − nσ
µνδµν

Here, δµν “masks out” elements off the diagonal of the average occupation matrix nσ
µν , the effect

being to return a matrix shifted by the average occupation. In the “around mean field” (AMF)
limit the LDA+U correction to the electronic potential averaged over all occupied states is in a
given shell is zero, this is a possible way to define a mean field. For strongly correlated systems
(or in the presence of a crystal/ligand field) the limit of uniform occupancy is not correct and the
AFM functional leads to rather unrealistic results for strongly localised electrons. This has led to
the suggestion of another correction which produces the correct behavior in the fully localised limit
(FLL) where the eigenvalues of nσ

µν are either 0 or 1.

∆EFLL = −1
2
(U − J)

∑
σ

∑

A

∑
µν

(
(nσ

µν)2 − nσ
µµ

)
µν∈l∈A

(2.34)

∆V σ
µν = −(U − J)

(
nσ

µν −
1
2
δµν

)

µν∈l∈A

(2.35)
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Figure 2.3: Pseudo atomic potentials and pseudo wave functions for Erbium. Each column represent a
shell, up are reported the all electron (black) and pseudo (red) wave functions and down the atomic potential
Z/r (black) and the pseudo potential (red). All quantities are expressed in atomic units. 5s and 5p electrons
(reported here) are considered semi-core electrons, while 4f , 5d, 6s and 6p are proper valence electrons.

AMF and FLL correct the mean field double-counting if the occupation numbers are respectively all
equal or only 0 or 1. Most of the modern LDA+U calculations rely on one of these two functionals,
although in real materials the occupation numbers should lie between these two limits, hence neither
AMF nor FLL are strictly speaking correct for real systems, one should therefore use an interpolation
between the two limits [78]. However, AMF and FLL will bracket the correct values.

2.4 ab initio methods

2.4.1 The pseudopotential approach

Even if the main tool for the investigation of the RE-defects in this work is DFTB, a number of
calculation was done with other ab initio programs, used as reference and validation. For this
reason in this session the pseudopotential approach is introduced briefly. In this short introduction
we do not discuss any of the arising problems like singularities in potentials, ghost states [79, 80],
relativistic effects for heavier atoms and the transferability of pseudopotentials. Further details
about this topics and about the different possibilities one has for the practical realisation of the
pseudopotential can be found in more specific literature [81–83]. In the practical realisation of
the DFT methods the orbitals ψ(r) in Eq. 2.16 are normally expanded in a superposition of plane
waves (PW), Gaussian orbitals or other functions. Inside the atomic core the electronic wave
functions oscillate quite strongly and a huge number of PW is required for a correct description of
the wave function itself. As result, full-potential all-electrons calculations are computationally very
demanding and not feasible for most systems of interest.
A way out from this problem is found introducing some considerations which reduce the compu-
tational complexity of our problem: firstly, the bonding between atoms in solids is predominantly
governed by their valence electrons. The core electrons of the closed inner shells basically behave
like in an isolated atom and create a screening effective potential. The idea is then to only consider
the valence electrons when self-consistently calculating the electron density. The remaining core
electrons as well as the electrostatic potential of the nuclei are included in a new effective potential,
the so called pseudopotential vps(r), which basically represents the potential created by all ions.
The number of electrons, and with this the number of orthogonal wavefunctions to be included
explicitly in the self-consistent calculation of the total energy is then reduced dramatically. Re-
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ducing the number of electrons in the system also reduces the error of the calculation. Comparing
all-electron energies of similar systems might in fact lead to relatively large errors, since two large
numbers are subtracted. This error is of course smaller if only the valence electrons contribute to the
difference in energy. The pseudopotential reproduces the correct eigenenergies and eigenfunctions
for the valence electrons outside the core region. Inside the core the valence pseudo-wavefunctions
are smooth and nodeless but reproduce the correct electron density inside the core. The overall
effective potential in the Schrödinger equation becomes:

veff [nV (r)] = vps(r) +
∫

nV (r′)
|r− r′|dr

′ + vxc[nV (r)] (2.36)

where nV (r) is the valence electron density. The pseudopotential vps(r) is given as the superposition
of all single ionic pseudopotentials:

vps(r) =
M∑

j=1

vps
j (r−Rj)

where Rj are the nuclear coordinates. To obtain the ionic pseudopotential vps
j (r) one starts with

the effective all-electron potential of a neutral atom veff
j (r). Stripping off the valence electron

contribution yields:

vps
j (r) = veff

j (r)−
∫

nV
j (r′)
|r− r′|dr

′ − vxc[nV
j (r)] (2.37)

There are several recipes how to construct pseudopotentials in detail. In this work we only use
pseudopotentials generated with the scheme of Hartwigsen-Goedecker-Hütter described in [84]. We
don’t go through the exact construction of these particular pseudopotentials in this section, for a
detailed review see the given reference.

Non linear core correction

We have seen that the ionic pseudopotentials are determined subtracting from the effective ionic
potential the Hartree and exchange-correlation contributions due to the valence electrons. The term
vxc[nV

j (r)] in Eq. 2.37 refers to the the exchange-correlation interaction between the valence electrons
themselves. The exchange-correlation interaction between the valence and the core electrons is
included in the pseudopotential, as a term that depends linearly on the valence charge density
nV (r). Although Exc is a non linear functional of the total electron density n(r), the linearity
is often assumed and used within LDA and GGA. However in some case the explicit account of
the non-linearity is required to have good description of the system. This is done by restoring
the non-linear dependence of Exc[n] on the total electron density. In practice, it suffices to add a
partial core density ncore(r), as suggested by Louie et al. [85]. The form of this charge will not be
discussed here. The resulting nonlinear core-valence exchange-correlation scheme uses the redefined
ionic pseudopotentials

vps
j (r) = veff

j (r)− vH
j [nV

j (r)]− vxc[nV
j (r) + ncore

j (r)] (2.38)

The non-linear exchange-correlation is normally important for the description of alkali metals and
with increasing atomic numbers, i.e. the farther the upper core orbitals extend into the tails of the
valence density, as in the case of the lanthanides.

2.5 Density Functional based Tight Binding

The Kohn-Sham equations (Eq. 2.16) has to be solved self-consistently. In particular in each
step new potentials have to be calculated from the electronic density, which is a very demanding
task because of the integrals one has to solve. To avoid this effort and nonetheless get results
with a quality and precision similar to the ones of a fully self consistent DFT calculation the
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Density Functional-based Tight Binding method (DFTB) was developed [86]. The method was then
extended [87] to include charge self consistency (SCC), to handle spin polarised systems [88, 89]
and finally to handle the so called strongly correlated systems [28]. In this section the DFTB
formulation appears as found in [90] and implemented in the DFTB+ code [19]. For an alternative
formulation and a historical review of the method see [19]. The already derived expression for the
total energy of a system of M atoms with nuclear charge Z in the Kohn-Sham formulation of the
spin DFT is:

EKS
tot =

∑

σ=↓,↑

occ.∑

i

niσ

{
〈ψiσ| − ∆

2
+ vext +

1
2

∫
n(r′)
|r− r′| |ψiσ〉

}

+Exc [n(r),m(r)] +
1
2

M∑

IJ

ZIZJ

|RI −RJ|
︸ ︷︷ ︸

ENN

(2.39)

where ZI represents the atomic number of each of the M ions of the system. The summation over
the KS spin-orbital ψiσ runs over the occupied orbitals. The electronic coordinates are indicated
with the vector r and the nuclear coordinates with R, n(r) is the charge density of the electron with
coordinates r. The basic DFTB approximation4 is to expand the charge density around a reference
charge density of n0(r):

n(r) =
∑

σ=↑,↓

N∑

i

ni,σ|ψi,σ|2 = n0(r) + δn(r) (2.40)

with δn(r) being the difference between the reference charge density used in parameterisation and
the actual ground state of the system. The system magnetisation is also expanded, but the reference
chosen is the spin unpolarised atom case, which has (per definition) a magnetisation density of zero5:

m(r) = m0(r) + δm(r), with m0 = 0 (2.41)

Now, introducing the abbreviations n, n0, δn and δm for n(r), n0(r), δn(r) and δm(r), as well as
n′, n′0, δn

′ and δm′ for n(r′), n0(r′), δn(r′) and δm(r′) and with a little algebra the expression for
the total energy of the system (Eq. 2.39) can be written as:

Etot =
∑

σ=↓,↑

occ.∑

i

niσ〈ψiσ| − ∆
2

+ vext +
∫

n′0
|r− r′|dr

′ + vxc [n0,m0] |ψiσ〉

−1
2

∫∫
n′0(n0 + δn)
|r− r′| drdr′ −

∫
vxc[n0,m0](n0 + δn)dr

+
1
2

∫∫
δn′(n0 + δn)
|r− r′| drdr′ + Exc[n0 + δn,m0 + δm] + ENN (2.42)

where we just added zeros and grouped together the terms depending n0 and those depending on
δn. Following the same principle the exchange-correlation term, too, is expanded in a Taylor-series
to the second order in δn and δm.

4This is the so called Foulkes-Haydock Ansatz [91]. In the work of Foulkes and Haydock is shown that the resulting
expression for the energy is not variational but stationary for changes in the charge fluctuation. For a more specific
discussion on this theme see [92].

5As seen in the section dedicated to the spin-DFT, it would be possible to choose n↑ and n↓ instead of n and m
as main quantities for the development of the theory, though one would not come to expressions which correspond
to the ones in the spin unpolarised DFTB method. In particular the first derivatives would not vanish.
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Exc[n,m] = Exc[n0, 0] +
∫

δExc

δn

∣∣∣∣
n0,0

δndr +
∫
δExc

δm

∣∣∣∣
n0,0

δmdr +

+
∫∫

δ2Exc

δn(r)δm(r′)

∣∣∣∣
n0,0

δn(r)δm(r′)drdr′ +

+
1
2

∫∫
δ2Exc

δn(r)δn(r′)

∣∣∣∣
n0,0

δn(r)δn(r′)drdr′ +

+
1
2

∫∫
δ2Exc

δm(r)δm(r′)

∣∣∣∣
n0,0

δm(r)δm(r′)drdr′ (2.43)

For exchange-correlation functionals that do not contain any spin-orbit coupling Exc[n,m] =
Exc[n,−m] holds. For this reason the third and fourth term at the right side in Eq. 2.43 must
vanish, as the first derivative in m = 0 vanishes too. Furthermore, considering that any non local
(i.e. depending at the same time from both r and from r′ ) density functional is known, the sixth
term in Eq. 2.43 can be simplified to:

1
2

∫∫
δ2Exc

δm(r)δm(r′)

∣∣∣∣
n0,0

δm(r)δm(r′)drdr′ =
1
2

∫∫
δ2Exc

δm(r)2

∣∣∣∣
n0,0

δm(r)2dr

Inserting the Eq. 2.43 in Eq. 2.42 results in the following approximated expression for the total
energy:

Etot =
∑

σ=↓,↑

occ.∑

i

niσ〈ψiσ| −∆
2

+ vext +
∫

n′0
|r− r′|d

3r′ + vxc [n0, 0]
︸ ︷︷ ︸

Ĥ0[n0,0]

|ψiσ〉 (2.44)

+ENN + Exc [n0, 0]−
∫
vxc [n0, 0]n0d

3r − 1
2

∫∫
n0n

′
0

|r− r′|d
3rd3r′

︸ ︷︷ ︸
Erep

+
1
2

∫∫ (
1

|r− r′| +
δExc

δnδn′

∣∣∣∣
n0,0

)
δnδn′d3rd3r′

︸ ︷︷ ︸
Eδn

+
1
2

∫
δ2Exc

δm2

∣∣∣∣
n0,0

δm2d3r

︸ ︷︷ ︸
Eδm

This equation only contains two types of terms, the first only depending on the reference density
(Ĥ0[n0, 0], and Erep), and the second including fluctuations of the charge and magnetisation den-
sities compared to the reference (Eδn and Eδm). In the following will be shown how each of these
terms can be inserted in the framework of an efficient Tight-Binding calculation scheme.

2.5.1 The zeroth-order Hamiltonian

We now discuss the zeroth-order Hamiltonian contribution to this expression (Ĥ0[n0, 0]). Before we
start to calculate the elements of the Hamiltonian matrix we need a basis for the representation of
the one-particle wave functions ψiσ.

Basis functions

We expand the spin orbitals as a linear combination of Slater type orbitals (LCSTO):

|ψiσ〉 =
∑

ν

cνiσ |ϕν(r−RA)〉 , A = A(ν). (2.45)
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The basis function ϕν(r−RA) is centered on the atomic nucleus A, with position RA. The spin is
included in the coefficients cνiσ of the expansion. The basis functions φν(r) are themselves a linear
combination of single Slater orbitals:

ϕν(r) =


∑

j=1

(∑
n=0

ajnrlν+n

)
e−αjr


Ylνmν

(2.46)

The angular and magnetic quantum numbers are indicated with lν and mν . Ylνmν is the corre-
sponding real spherical harmonic. For the choice of the exponents αj and of the optimal number of
terms in the expansion see the work of Eschrig et al. [93]. The coefficients ajn are determined with
fully self consistent DFT calculations on neutral, not spin polarised and spherically symmetric so
called pseudo atoms. The KS equation for the determination of the aij and with them ϕν(r) is:

(t̂+ vpsat)|ϕν(r)〉 = εν |ϕν(r)〉 (2.47)

vpsat = vee + vext + vxc + vadd(r) (2.48)

An additional harmonic confining potential is applied to the pseudo-atom, of the form:

vadd =
(
r

r0

)m

(2.49)

to localise the orbitals for a more crystal/molecule like environment. This potential forces the wave
functions to avoid areas far from the nucleus, resulting in an electron density that is compressed in
comparison to the free atoms and is then suitable for modeling condensed systems [93, 94]. Adding
a confining potential can also be interpreted as the attempt to include part of the effects of a fully
self-consistent DFT treatment. This is reasonable, bearing in mind that in the calculation of the
zeroth-oder matrix elements Ĥ0 no self consistency is considered. In all recent DFTB works and in
this work, too, a quadratic potential (m = 2) is used. The parameter r0 in Eq. 2.49 is usually set
to r0 = 1.85 · rcov, where rcov is the covalent radius of the considered atom. r0 can be considered
as a parameter which can be tuned for an optimal representation of the system. A more detailed
discussion can be found in the chapter dedicated to the parameter generation. Electrons in heavy
ions move with a speed which is not negligible if compared to the light speed and relativistic effects
become important, causing for example the contraction of the atomic orbitals and lowering the
energy of the outer electrons. It is then essential to consider somehow the relativistic effects in the
simulation of heavy ions. As the DFTB method itself is a non relativistic method, the relativistic
effects have to be included at the moment of generating the wave functions of the pseudo atoms.
This can be done substituting the Schrödinger equation for the description of an electron in the
pseudo-atom with its relativistic counterpart, the Dirac equation:

ĤD|ϕ(r)〉 =
(
E +

1
2
c2

)
|ϕ(r)〉 (2.50)

where c is the light speed (in atomic units c = 264.08) and the Dirac Hamiltonian can be expressed
as a matrix operator:

ĤD = c2β + cτσp̂+ V (r) (2.51)

where τ , σ and β are Pauli spin matrices and V (r) is a potential containing the usual Hartree and
exchange-correlation contributions in local form. For a thorough discussion see the work of Heera
et al. [95].
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Reference densities and matrix elements

Solving the Dirac equation one obtains the basis functions and the atomic electronic charges nA
0 for

each atom type. Inserting Eq. 2.45 into Eq. 2.44 we have:

〈ψiσ|Ĥ0[n0, 0]|ψiσ〉 =
∑
µ,ν

c∗µiσcνiσ〈ϕµ|Ĥ0
µν [n0, 0]|ϕν〉 =

∑
µ,ν

c∗µiσcνiσĤ
0
µν [n0, 0] (2.52)

In the spirit of the two center approximation the matrix elements are calculated neglecting all the
terms which do not come from the atoms ϕµ and ϕν are centered at. If ϕµ and ϕν are centered
at the same atom one gets the eigenvalues εν of the Dirac equation of the pseudo atom. In praxis
though the eigenvalues εfree atom

ν of a free atom (without contracting potential) are used to recover
the right dissociation limit. Neglecting all the contributions which were not explicitly considered
before:

H0
µν =





εfree atom
µ if µ = ν and A = B
〈φA

µ |T + V 0
A + V 0

B |φB
ν 〉 if A 6= B

0 r > rcutoff

(2.53)

where VA,B is the effective Kohn-Sham potential (Coulomb plus exchange-correlation) for atoms
A and B. These matrix elements are calculated without further self consistent cycles from the
basis functions and the atomic charge densities. In the DFTB approximation two contributions to
the potential, which normally are included in fully self consistent calculations, are neglected: the
crystal field and the three center terms. The former is given when two basis functions centered on
the same atom interact with the potential coming from another atom, the latter is given when two
basis functions centered on different atoms interact with the potential coming from a third atom.
All the electronic states can be simulated with this calculation scheme. However, increasing the
total number of electrons in the system results in an even faster increasing of the basis functions
ϕν . For this reason the so called core-electrons, which do not really contribute to the bond, are
neglected, similarly to a pseudopotential scheme [88, 94]. The choice of the electrons we consider
as valence or core is a matter discussed in the section dedicated to the parameter creation. The
Hamiltonian matrix elements are then calculated only for the valence electrons, which are the only
ones which explicitly appear in the calculation. Because of the neglecting of the crystal-field and
three-center terms the wave function ψiσ of the valence electrons do not have to be othogonalised
against the wave functions of the core electrons [94]. For the explained calculation a basis function
ϕν is assigned to each combination (l,m) present in the valence shell. This is known as minimal
basis. The Hamiltonian Ĥ0

µν and overlap matrix elements (Sµν = 〈φµ|φν〉) are calculated only
once and tabulated as function of the interatomic distance between A and B. Since the basis
functions decay in space, above a certain distance (rcutoff) they give rise to matrix elements smaller
than a reasonable tolerance, which are then discarded. Note that the potential in Eq. 2.53 is
a superposition of the atomic potentials. Another possibility is to express it as the potential
generated by the superposition of the charge densities of A and B, as is used instead in some DFTB
parameterisations [21]. Then by following the method of Slater and Koster [96] and its extension to
the f -shell [97, 98] this potential is used to generate the two-centre H0. The values of the matrix
elements in each particular calculation are computed by interpolating the tabulated data, this is one
of the DFTB features which make the computational scheme particularly efficient. Unlike empirical
tight-binding however, since an explicit basis set is used in the generation of parameters, it is for
example possible to plot spacial dependence of the resulting single-particle wavefunctions in a real
calculation.

2.5.2 Fluctuation dependent contributions to the energy

The terms grouped in the last line of Eq. 2.44 depend on the charge density fluctuation δn and on
the magnetisation density fluctuation δm. Let us firstly discuss the part depending from δn.
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Charge density fluctuations

The charge density fluctuation in the term

Eδn =
1
2

∫∫ (
1

|r− r′| +
δ2Exc

δnδn′

∣∣∣∣
n0,0

)
δnδn′drdr′ (2.54)

of the total energy can be written in analogy to the reference charge density as sum of atomic
contributions, even if we have now to consider the angular momentum (l) dependence.

δn =
M∑

A

∑

l∈A

δnAl (2.55)

These atomic contribution can be on turn expressed in terms of spheric functions YLM with coeffi-
cients cL,M :

δnAl =
∑

L,M

cAl
L,MFAl

L,M (|r−RA|)YL,M (2.56)

where the radial parts are given in terms of the unknown functions FL,M . We define the normali-
sation factor Y00 = 1/

√
4p. In the spirit of a monopole approximation we neglect now all the terms

with L > 0 in the sum. The monopole approximation is legitimate from the consideration that one
electronic shell of an atom in a context with fully spheric symmetry like the pseudo-atom we are
considering will give rise to a spheric charge distribution. The coefficients cAl

L,M can be identified
with the so called Mulliken charges qAl [99]. These are given subtracting for each orbital the number
of valence electrons qAl

0

qAl =


 ∑

σ=↑,↓
pAlσ


− qAl

0 (2.57)

from the spin-dependent Mulliken populations:

pAlσ =
1
2

occ.∑

i=1

niσ

∑

µ∈A,l

∑
ν

(
c∗µiσcνiσSµν + c∗νiσcµiσSνµ

)
(2.58)

of the same orbital. The sum over µ comprehends all the basis function centered on atom A needed
for the description of the orbital l. The sum over ν is extended to all the basis functions. Inserting
the expression derived for the charge density fluctuation into Eq. 2.54 leads to the expression:

Eδn =
1
2

M∑

A

M∑

B

∑

l∈A

∑

l′∈B

∫∫ (
1

|r− r′| +
δ2Exc

δnδn′

∣∣∣∣
n0,0

)
×

×F
Al
00 (|r−RA|)FBl′

00 (|r−RB |)
4π

qAlqBldrdr′ (2.59)

The integral consists of two parts, the first (proportional to 1/|r − RA|) being long ranged, the
second being more complex. For the exchange-correlation part we have to distinguish two cases.
The radial functions FAl

00 and FBl′
00 drop off with the charge density of the atom they belong.

• If they are centered on different atoms (A 6= B) their overlap is small. The derivative of
the exchange-correlation functional is always evaluated in (n0, 0) and brings always the same
contribution.

• If they are centered on the same atom (A = B) the overlap is maximal and the so the exchange-
correlation contributions to the total energy. The latter are called on-site contributions in
this case.
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To calculate the double integral in Eq. 2.59 we neglect at first the exchange correlation contribution
and evaluate the long ranging part (proportional to 1/|r−RA|):

γAl,Bl′ =
∫∫

1
|r− r′|

FAl
00 (|r−RA|)FBl

00 (|r−RB |)
4π

drdr′ (2.60)

For the radial function we use the ansatz:

FAl
00 (|r−RA|) =

τ3
Al

4
√
π
e−τAl|r−RA| (2.61)

where τAl is a parameter we still have to determine. The exponential term drops off like a Slater-type
basis function. Calculating the integral for R = |RA −RB | 6= 0 then gives6 [100]:

γAl,Bl′ =





1
R
− e−τAlRΓ(τAl, τBl′ , R)− e−τBl′RΓ(τBl′ , (τAl, R) if τAl 6= τBl′

1
R
− e−τAlR

(
1
R

+
11τAl

16
+

3τ2
AlR

16
+
τ3
AlR

2

48

)
if τAl = τBl′

(2.62)

Here we used the abbreviation:

Γ(a, b, R) =
(

b4a

2(a2 − b2)2
− b6 − 3b4a2

(a2 − b2)3R

)

We can again distinguish two cases:

R→∞ In the case of very big atomic distances (R→∞) the expression 2.62 drops off like 1/R. For
this reason this part can be interpreted (neglecting the exchange correlation part of Eq. 2.54)
as Coulomb interaction between the Mulliken charges qAl of the atomic shells.

R→ 0 In the limit case of R→ 0 on the other side is given [99] by:

γAl,Bl′ =
τAlτBl′

2(τAl + τBl′)3
((τAl + τBl′)2 + τAlτBl′) +O(R) (2.63)

And in particular for the atomic case A = B we have:

γAl,Al′ =
τAlτAl′

2(τAl + τAl′)

(
1 +

τAlτAl′

(τAl + τAl′)2

)
(2.64)

as well as we have for the same atomic shell l = l′:

γAl,Al =
5
16
τAl (2.65)

here is γAl,Al proportional to the parameter τAl. This is a constant specific for the electron
of angular momentum l of each atomic type. We will show in one of the following sections
that in the DFTB approximation the parameter τAl is identified with (and replaced by)
the Hubbard U of the free atom, which also contains exchange-correlation contributions.
Considering the exchange-correlation part of the integral 2.54 as not long-ranging, one only
has in first approximation to consider the Hubbard U .

6In the reference the calculation is shown for a model in which all the atomic quantities do not depend on the
angular moment l but only on the atom A. This does not affect the evaluation of the integral, which being a
mathematical operation can be obtained adding the opportune labels indicating each atomic shell. Dropping the
angular momentum index the integral evaluation perfectly mirrors the one of the reference. This model was used in
the earliest DFTB implementations then abandoned and finally re-adopted for the latter day DFTB implementations.
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The coupling between shells with different angular momentum of the same atom is given by Eq. 2.64,
depends also on the τAl of the single shells. The second term in the bracket can be in a rough
approximation considered being unitary.

γAl,Al′ ≈ 1
4

(
2τAlτAl′

(τAl + τAl′)

)
(2.66)

The term in the bracket has the form of an harmonic medium between the τAl. Summarising,
the term Eδn depending from the charge fluctuation in Eq. 2.44) can be approximated with the
expression:

Eδn =
1
2

M∑

A

M∑

B

∑

l∈A

∑

l′∈B

qAlqBl′γAl,Bl′ (2.67)

where γAl,Bl′ is an analytical [21] function of the interatomic distance and of the Mulliken charges
(which depends in turn on the tabulated elements of the overlap matrix and on the wave function
coefficients) which approximates the Hartree and (spin unpolarised) exchange correlation contribu-
tions from the charge fluctuations. In this expression no integration appears anymore.

Magnetisation density fluctuations

The part of the total energy depending from the magnetisation density fluctuations differs from
its charge density fluctuation dependent counterpart (Eq. 2.54) because it only contains exchange-
correlation contributions.

Eδm =
1
2

∫
δ2Exc

δm2

∣∣∣∣
n0,0

δm2dr (2.68)

In the evaluation of the latter we considered the exchange-correlation parts of it short ranged and
therefore neglected it at first, even if at least part of the exchange and correlation is considered in
the formalism through the atomic constants τAl. We have also seen (Eq. 2.62 to 2.66) that they are
only important, when the charge density fluctuation in the integral 2.59 belong to the same atom.
The exchange-correlation contributions in the charge density fluctuation dependent part of the total
energy have also on-site character, even if they formally depend on two coordinates, r and r′. On
the basis of similar considerations we assume that also the exchange-correlation contribution in the
magnetisation density fluctuation dependent part of the total energy has a local character, i.e. it
only depends on one position coordinate. In the framework of the on-site picture it is then correct
to consider two spin densities of two different atoms not to be coupled through the integral 2.68.
Following the schema of the previous section, we expand the magnetisation density fluctuations δm
in the monopole approximation into a sum of atomic contributions:

δm(r) =
M∑

A

∑

l∈A

pAlfAl(|r−RA|) (2.69)

Unlike the FAl
00 the radial functions fAl are considered to be not overlapping. The coefficients pAl

are again labeled with the atomic index A and the angular momentum index l, which of course
runs over all the angular momenta of the atom A. Proceeding in analogy with the previous section,
the coefficients pAl are identified with the differences between spin up and spin down Mulliken
populations (see Eq. 2.58)

pAl = qAl↑ − qAl↓ (2.70)

Unfortunately, for the radial functions fAl an ansatz similar to the one done for the FAl
00 (which were

approximated by the expression 2.61) is not possible, because the magnetisation density can change
its sign. Anyway, considering that the radial function do not overlap, inserting expression 2.69 in
Eq. 2.68 leads to the expression:
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Eδm =
1
2

M∑

A

∑

l∈A

∑

l′∈A

pAlpAl′

∫
fAl

δ2Exc

δm2

∣∣∣∣
n0,0

fAl′dr. (2.71)

As in this expression all the quantities are centered on the atom A, it arises the chance to identify
the integral with an atomic constant WAll′ , which will be thoroughly discussed later in this chapter.
Finally, we can express the magnetisation density fluctuation dependent contributions of the total
energy as:

Eδm =
1
2

∑

A

∑

l∈A

∑

l′∈A

pAlpAl′WAll′ (2.72)

In the spirit of the one-centre approximation in this expression are coupled the spin population on
one atom A. Also in this expression do not appear any integrals.

2.5.3 The repulsive contribution

With the transformations and approximations introduced in the previous sections the total energy
in the spin polarised DFTB method can be expressed as:

Etot =
∑

σ=↑,↓
〈ψiσ|Ĥ0[n0, 0]|ψiσ〉+ Eδn + Eδm

︸ ︷︷ ︸
EDFTB

el.

+ (2.73)

ENN + Exc[n0, 0]−
∫
vxc[n0, 0]n0dr− 1

2

∫∫
n0n

′
0

|r− r′| (2.74)

We still have to evaluate the terms in the second row, which are the ionic repulsion and other
contributions depending only from the reference charge density. These terms, collected together as
Erep are not calculated separately, although this would be possible knowing the reference charge
density, but merged into one repulsive pair potential Urep(|RA − RB|), like in empirical tight-
binding [88, 101]. This potential only depends on atomic separation and species, and is evaluated
as the difference between the Kohn-Sham DFT total energy and the electronic part of the DFTB
energy. For each chemical combination of atom pairs in our system of M atoms we have:

Urep(|RA −RB|) = EKS
tot (|RA −RB|)− EDFTB

el. (|RA −RB|) (2.75)

and the sum over all the atom pairs in the system gives the repulsive part of the energy:

Erep ({RI}) =
M∑

A,B

Urep(|RA −RB|) (2.76)

For each combination of atomic species the pair repulsive potential Urep(|RA −RB|) is calculated
(as Erep = Etot − EDFTB

el. ) for a fit system in a chosen interval of interatomic separations and
tabulated. Thereby Etot is identified with the DFT EKS

tot or alternatively calculated with a state
equation for the system of interest if experimental parameters are available. A discussion about
the features of the repulsive potential and the choice of the fit system can be found in the chapter
dedicated to the parameter generation.

2.5.4 Total energy and potential

Now that we have described all of the parts of the Eq. 2.44, we can write the expression for the
total energy within the spin polarised DFTB approximation as sum of four contributions:
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Etot =
∑

σ=↓,↑

occ.∑

i

niσ〈ψiσ|Ĥ0[n0, 0]|ψiσ〉+ Eδn + Eδm + Erep =

∑

σ=↑,↓
〈ψiσ|Ĥ0[n0, 0]|ψiσ〉+

1
2

M∑

A

M∑

B

∑

l∈A

∑

l′∈B

qAlqBl′γAlγBl′ +

+
1
2

∑

A

∑

l∈A

∑

l′∈A

pAlpAl′WAll′ + Erep (2.77)

Practically we have replaced the charge density fluctuations with the Mulliken charges and the
magnetisation density charges with the difference of the Mulliken spin populations. They are easily
determined, as the overlap matrix elements are tabulated. The zeroth-order Hamilton operator
depends now only from the reference charge density, the Mulliken charges qAl enter in the second
term while the third term gives the energy dependence from the spin polarisation through the
Mulliken spin-populations. The fourth term, the repulsive potential, only depends on the ionic co-
ordinates. Neglecting both fluctuation dependent terms one gets an expression which only depends
on the reference charge density and which corresponds to the traditional tight binding calculation
schemes. However, it fails in the correct description of systems with important charge transfer and
the possibility of considering spin-polarisation effects is lost.

2.5.5 Determination of the constants τAl and WAll′

In the expression 2.77 for the total energy the constants τAl which appear in the algebraic functions
γAl,Bl′ and the spin WAll′ constants for the the calculation of the spin polarisation energy have not
been determined yet. This can be done starting from the atomic case, for which the total energy is:

Etot =
∑

σ=↓,↑

occ.∑

i

niσ〈ψiσ|Ĥ0[n0, 0]|ψiσ〉+
1
2

∑

l∈A

∑

l′∈A

qAlqAl′γAlγAl′ +

+
1
2

∑

l∈A

∑

l′∈A

pAlpAl′WAll′ (2.78)

The constants τAl of the charge density fluctuation

From Eq. 2.64 and Eq. 2.65 follows that the constants τAl have to be determinate for every shell with
different angular momentum of each different atom type, to generate the functions γAl,Bl′ . At first
though we will address some particular issues about the Mulliken charges qAl and the Mulliken spin
populations pAl in the atomic case. A differentiation with respect to the variables qAl can be replaced
by a differentiation with respect to the total Mulliken population (pAl↑+pAl↓): they will only differ
by an additive constant (see Eq. 2.57). The overlap matrix Sµν is a diagonal matrix, whose entries
are given through the Kronecker-Symbol δµν . The basis functions are determined as eigenvectors
of the pseudo-atomic problem (see Eq. 2.47) and the eigenvalues to the angular momentum l are
(2l+ 1) time degenerated. The degeneration does not matter here and in the following, because in
the calculation of the Mulliken population the sum runs over all degenerate orbitals. Therefore we
can substitute the index i with the angular momentum label l in the eigenvalues of the Eq. 2.47.
With this consideration the whole Mulliken spin population is then equal to the corresponding
occupation number:

pAlσ = niσ and pAl↑ + pAl↓ = ni↑ + ni↓ = ni (2.79)

The spin polarisation will not matter in the following, as our starting point are not spin polarised
pseudo atoms. The niσ are then all the same and their sum can be replaced by an occupation
number ni. Differentiating twice the Eq. 2.78 respect to qAl and considering the Eq. 2.65:
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∂EA
tot

∂q2Al

=
∂EA

tot

∂n2
i

= γAl,Al =
5
16
τAl (2.80)

On the other hand, Janak’s theorem [70] says that differentiating the DFT Etot
KS with respect to the

occupation numbers gives:

∂EKS,A
tot

∂n2
i

=
∂εi

∂ni
(2.81)

If we now consider7 the highest occupied molecular orbital (HOMO), we have:

∂εHOMO

∂nHOMO
≈ UA = IA −AA (2.82)

which is the so called Hubbard-U of the atom. This is also the chemical hardness of the atom,
defined as the difference between ionisation potential I and electronic affinity A [63]. It can be also
be interpreted as the energy used to extract an electron from the atom (and put it elsewhere). The
concept of Hubbard U should be now generalised for the shells of each angular momentum:

UAl =
∂εl

∂nl
(2.83)

As before, it was considered that the index i of the eigenvalues can be substituted by the angular
momentum label l if the degeneration of the magnetic quantum number does not play any role.
Inserting Eq. 2.80 in Eq. 2.81

γAl,Al =
5
16
τAl =

∂εl

∂nl
= UAl (2.84)

As we used the atomic KS DFT total energy for the determination of the τAl, atomic exchange-
correlation contributions are kept in account. For this reason neglecting the exchange-correlation
contributions in Eq. 2.59 only has a relative meaning.

The constants WAll′ of the magnetisation density fluctuation

Also the spin constants WAll′ can be determined differentiating the atomic DFT total energy and
using the expression 2.78. However it is convenient to operate a variable change, from the set of
independent variables charge density and magnetisation density {n(r),m(r)} to the set of inde-
pendent variables spin up and spin down electronic densities {n↑(r), n↓(r)}. Keeping in mind the
considerations of the previous section about the atomic case, this variable change means a change
in the occupation numbers from {(ni↑ + ni↓), (ni↑ − ni↓)} to {ni↑, ni↓}. Furthermore we have to
consider that all the elements and not only the ones of the shell of some angular momentum have
to be determined. Differentiation leads to:

∂2EA
tot

∂pAl∂pAl′
=

1
4

(
∂2

∂nl↑∂nl′↑

∂2

∂nl↓∂nl′↓

∂2

∂nl↑∂nl′↓

∂2

∂nl↓∂nl′↑

)
EA

tot = WAll′ (2.85)

And using the spin-polarised version of the Janak’s theorem, differentiating the KS DFT atomic
total energy leads to:

1
4

(
∂2

∂nl↑∂nl′↑

∂2

∂nl↓∂nl′↓

∂2

∂nl↑∂nl′↓

∂2

∂nl↓∂nl′↑

)
EKS,A

tot =

1
4

(
∂εl↑
∂εl′↑

+
∂εl↓
∂εl′↓

− ∂εl↓
∂εl′↑

− ∂εl↑
∂εl′↓

)
=

1
2

(
∂εl↑
∂εl′↑

− ∂εl↑
∂εl′↓

) (2.86)

7We are of course considering atoms and not molecules. For the sake of simplicity we use in this work the
denomination of HOMO for the highest occupied atomic orbital, as today is usual in the literature.
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Where the last transformation is based on the symmetry of both spin states at the moment of the
choice of the not spin polarised System as reference. Inserting Eq. 2.85 in Eq. 2.86 leads to the
expression for the determination of the Wll′ :

Wll′ =
1
2

(
∂εl↑
∂εl′↑

− ∂εl↑
∂εl′↓

)
(2.87)

A further discussion about the determination of the UAl and Wll′ can be found in the chapter
dedicated to the parameter generation.

2.5.6 Hamilton operator and self consistency

Applying the variational principle, the total energy expression 2.77 is differentiated with respect
to the wave function coefficients c∗µiσ [24, 87]) The particle-conservation is kept in account by the
Lagrange multipliers εiσ:

δ

δc∗µiσ


Etot − εiσ


Nσ −

occ.∑

i

1
2
niσ

∑

ζ

∑
η

(c∗ζiσcηiσSζη + cζiσc
∗
ηiσSηζ)





 = 0 (2.88)

where Nσ is the number of electrons with spin σ. We get a secular equation for the coefficients cνiσ

of the wave functions:

∑
ν

cνiσ

(
Ĥµνσ − εiσSµν

)
= 0 (2.89)

with Hamiltonian matrix elements:

Ĥµνσ = Ĥ0
µν +

1
2
Sµν

M∑

C

∑

l′′∈C

(
γA(µ)l(µ),Cl′′ + γB(ν)l(ν),Cl′′

)
qcl′′ +

+ δσ
1
2
Sµν


 ∑

l′∈B(µ)

WB(µ)l(µ)l′pB(µ)l′ +
∑

l′∈B(ν)

WB(ν)l(ν)l′pB(ν)l′


 (2.90)

and overlap matrix elements:

Sµν = 〈ϕµ|ϕν〉 (2.91)

We have used the symbol δσ = ±1. The sign + has to be used for spin up electrons and the sign −
for spin down electrons. The Hamiltonian matrix consists like the total energy of three parts:

• The matrix elements of the 0th-order Hamilton operator Ĥ0[n0, 0] are stored in dedicated
tables.

• With the second term on the right side of the 2.90 the effects of the charge density fluctuation
are considered: the intra-atomic as well as the inter-atomic matrix elements are influenced.
All the Coulomb interactions are considered through the sum over all the atoms (C) of the
system with A(µ) and B(ν), weighted with the overlap matrix Sµν and added as correction
to the zeroth-order matrix elements.

• The spin polarisation part of Eq. 2.90 couples magnetisation densities of different atoms
together. Unlike the correction due to the charge density fluctuations here only the terms
on both atoms A(µ) and B(ν) are considered. The corrections to the zeroth-order matrix
elements are likewise weighted with the overlap matrix. The magnetisation density fluctuation
corrections differ from the charge density fluctuation corrections because one atom each time
is considered and not all together (in the second term of the right side of 2.90 there is a
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double sum which runs over all atoms while in the third term there is a single sum). This has
a damping effect on the interactions in comparison to the charge density case8.

Note that this expression, which is the one used throughout this work, slightly differs from the
one reported in the work of Frauenheim et al. [88], as the one center spin approximation in the
potential has been dropped. In that work applying the one-center approximation at 2.90 the
Hamilton operator:

Ĥµν = Ĥ0
µν +

1
2
Sµν

M∑

C

∑

l′′∈C

(
γA(µ)l(µ),Cl′′ + γB(ν)l(ν),Cl′′

)
qcl′′ +

+ δσδµν

∑

l′′∈A(µ)

WA(µ)l(µ)l′′pAl′′ (2.92)

was proposed. This operator was also derived starting from the Eq. 2.59 and considering spin
densities of different atoms not overlapping and therefore non interacting. This operator has the
advantage to be (especially in the case of periodic boundary conditions) easy to implement, as
the spin-depending correction do affect only diagonal matrix elements (because of the Kronecker
delta δµν). The Hamiltonian matrix elements in the Eq. 2.90 depends through the Mulliken spin
population on the wave function coefficients cνiσ, which have to be determinate with Eq. 2.89.
Therefore the problem must be solved self consistently: starting from a ”good guess” the secular
equation is solved, new Mulliken populations are calculated and with them a new Hamiltonian
matrix constructed. The latter is introduced in turn on the secular equation and the process is
repeated as long as the solution does not change considerably anymore, i.e. self consistency is
reached. Like in the spin-DFT two sets of secular equations have to be solved, one for the spin
up and one for the spin down electrons, which lead to different coefficients for spin up and spin
down wave functions. This has the consequence that the spin up and spin down could be spatially
different. This increases the number of freedom degrees and lowers the total energy. Similarly there
will be a different potential for spin up and spin down electrons, which leads to the splitting of the
one particle levels for spin up and spin down electrons.

2.5.7 Calculation of the forces

It is possible to calculate the force FC acting on the atom C analytically. To derive the analytical
expression of the force it is necessary to differentiate the expression 2.77 for the total energy with
respect to the ionic coordinates RC . As not only Hamilton and overlap matrix elements depend
on the ionic coordinates, but also the wave function coefficients, it is necessary to impose the
charge conservation as auxiliary constraint. This is done like in Eq. 2.88 introducing the Lagrange
multipliers9εiσ:

FC = − ∂

∂RC


Etot −

∑

σ=↓,↑

occ.∑

i

1
2
niσεiσ

(∑
µ

∑
ν

(c∗µiσcνiσSµν + cµiσc
∗
νiσSµν)− 1

)
 (2.93)

And with a little algebra:

8In the case of transition metals for example the overlap matrix elements of the d-electrons (which bear the atomic
spin moment) at equilibrium distance of the order of magnitude of 10−2. This is an order of magnitude smaller than
for s-electrons. Furthermore the constants WAll′ are an order of magnitude smaller than the τAl.

9Considering the secular equation 2.89 the wave function coefficients will vanish. This can be interpreted as
consequence of the fact that Eq. 2.88 guarantees the presence of an extremum. Any dependence of the occupation
number from the atomic coordinates is neglected, which is correct for systems with a non-zero band gap and without
extreme Fermi-smearing of the occupation numbers when coupled with an external thermic bath.
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FC = −
∑

σ=↓,↑

occ.∑

i

niσniσ

∑
µν

(
∂H0

µν

∂RC
+

1
2
∂Sµν

∂RC

∑

B

∑

l′∈B

(
γA(µ)l(µ),Bl′ + γA(ν)l(ν),Bl′

)
qBl′ +

+
1
2
δσ
∂Sµν

∂RC


 ∑

l∈A(µ)

WA(µ)ll′(µ)pA(µ)l +
∑

l∈A(ν)

WA(ν)ll′(ν)pA(ν)l


− εiσ

∂Sµν

∂RC


 +

−
∑

l∈C

qCl

∑

B

∑

l′
qBl′ − ∂γCl,Bl′

∂RC
− ∂Erep

∂RC
(2.94)

2.5.8 An LDA+U-like approach in DFTB

While it has previously been suggested that for empirical tight-binding the effects of on-site corre-
lation can be mimicked by an empirical adjustment of symmetry resolved on-site energies [102], this
is problematic for example for low symmetry d electron systems, or for f manifolds. In the RE ions
of interest here, the so-called fully localised limit should be achieved (i.e. the orbital occupations of
states localised within the 4f manifold should be either be 0 or 1 [76, 77]). However we also wish
to test the AFM-like limit as well. In the simplest rotationally invariant form of LDA+U [103] the
correction to the LDA potential is of the form:

∆V σ
µν = −(U − J)l

(
nσ

µν −DC[nσ
µν ]

)
µν∈l

(2.95)

Where nσ is the local spin occupation matrix within a given atomic manifold, and (U -J) is the
screened and spherically averaged electron-electron interaction. DC[n] is the double counting term,
and the two limiting cases FLL and AMF are

DCσ
µν [n]FLL =

1
2
δµν

DCσ
µν [n]AMF =

Tr(nµν)
2l + 1

δµν

Where l is the angular quantum number. (U -J) is usually taken to be either an adjustable parameter
or from a constrained DFT calculation. We instead present a prescription for choosing U and J from
atomic calculations. Since the DFTB energy aims to be a reasonable approximation to the LDA
energy it seems sensible to adopt the form of the LDA+U energy correction unchanged for DFTB.
There is then the issue of how to choose the on-site occupation matrix [104] for a non-orthogonal
basis. In the on-site case the modification to the total energy and the DFTB Hamiltonian can be
written in terms of atomic sub-blocks of the single-particle density matrix (ρµν∈l∈A), while for the
dual basis case, the occupation matrix takes the form of a generalisation of Mulliken charges:

nσ
µ∈l∈A,ν∈l∈A =

1
2

∑

B

∑

τ∈B

(Sµτρτν + ρµτSτν) (2.96)

where the diagonal of the resulting occupation matrices are then basis-function resolved Mulliken
charges.

2.5.9 A pSIC-like approach in DFTB

Full self-interaction corrected (SIC) LDA is relatively expensive, hence several cheaper approxima-
tions have appeared. In DFTB we adopt an approximation of the full SIC based on the method
proposed by Vogl [105] and its recent refinements [106, 107], which is referred to as pseudo-SIC (or
pSIC) as it only includes contributions near to atoms. Since the majority of the self-interaction
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error, in the case of interest, is local in character this hopefully captures the majority of the error.
To ensure that for single electrons the Coulomb and exchange-correlation terms are canceled out
exactly, the exchange-correlation potential is modified by subtracting off the local self-interaction
in this basis:

∆V σ
µ,pSIC = −αV σ

µ,H+XC[nµ(r),mµ(r)] (2.97)

To make calculations of the potential tractable VH+XC is approximated as that for a single, fully
occupied and completely spin-polarised state V σ

H+XC[n(r),m(r)] = V σ
H+XC[1, 1]. The pre-factor α

allows an additional scaling of the potential for example to account for electronic relaxation on
electron removal (α = 1

2 in the work of Filippetti and Spaldin, however this is incorrect for a
system with a single electron [107]). As yet, no energy expression related by variational principle
to the potential is available [106, 107], hence no expression for inter-atomic forces has been derived.
In the following we will derive such an expression from similarities between the LDA+U and pSIC
formalism. Eq. 2.97 is not invariant to unitary transforms, however, similar to the original LDA+U
formalism [108], this can be achieved by using the density matrix formulation.

∆V σ
pSICµν

= −αV σ
H+XC[1, 1]nσ

µν (2.98)

Due to the similarity in the functional of the potential to LDA+U , we can write an energy expression
in matrix form (which is directly connected to the potential) as:

∆EpSIC = −α
∑

σ

V σ
H+XC[1, 1]Tr(nσ · nσ) (2.99)

In these approximations, pSIC is written as a type of non-double counted LDA+U (i.e. DC[n] is
absent from Eq. 2.95), without ambiguity in the choice of (U -J) since the pre-factor comes from
the exchange-correlation potential. Additionally, atomic forces can be derived [104]. This has some
similarity to the Atomic Self Interaction Correction (ASIC) form of Pemmaraju et al. [107], however
they do not provide a variationally connected energy.

2.5.10 Connection between LDA+U and pSIC

In the following we will discuss a connection between LDA+U in its FLL-version and pSIC that
allows a further simplification of the latter approach in a tight-binding scheme. The starting point
of this discussion is Eq. 44 of Anisimov et al. [16] relating the atomic Slater integral F 0 and the
exchange J , to the LDA potential for an atomic state as:

V σ
H+XC = F 0N − 1

2
(
F 0 − J

)− JNσ. (2.100)

Thus for the orbital occupation choices for which VH+XC is needed in pSIC (VH+XC [1, 1], i.e.,
N = Nσ = 1) the spherically symmetric part of the exchange-correlation potential is given by:

V σ
H+XC [1, 1] =

F 0 − J

2
.

In DFTB, we use U in the SCC-DFTB correction (section 2.5.2) that is related to the screened F 0

Slater integral [16]. If we moreover assume in the zeroth limit that screening in the isolated atom,
for which U is calculated, is small, F 0 can be substituted by U . Similarly the diagonal part of the
spin coupling matrix, Wll′δll′ , given in section 2.5.2, is equivalent to Jl. We thus obtain for the
basis that is used to expand the local states in pSIC:

V σ
H+XC [1, 1] ≈ (U − J)atomic

2
. (2.101)

In this approximation, pSIC then gives a contribution to the potential of:

(pSIC) ∆V σ
µν = −α (U − J)atomic

2
nσ

µν . (2.102)
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Er

Figure 2.4: Simulating a defect (the erbium atom in green) within a cluster of the host material whose
surfaces (in the picture only top and bottom) are passivated with pseudo-hydrogens.

For a system with a Hubbard gap, the relaxation corrected form of pSIC (α = 1
2 ) would apply the

same potential to the lower Hubbard band as obtained by a FLL-LDA+U contribution of:

(FLL) ∆V σ
µν = − (U − J)atomic

2
(nσ − 1

2
), (2.103)

since the eigenvalues of the nσ matrix are either 0 or 1, so the occupied states in the local manifold
experience a net downward shift of:

− (U − J)atomic

4
.

This suggests, in comparison with Eq. 2.35, that the LDA+U and relaxation-corrected pSIC have
the same effect on the occupied band-structure, and that

(U − J) =
(U − J)atomic

2

is a sensible first choice for the parameters in LDA+U . This agrees with the (empirical) choice of
≈ 0.5×(U − J)atomic being suitable for many LDA+U applications [16, 78]. Since there are different
potentials for unoccupied states in pSIC and FLL-LDA+U these methods give different gaps [107]
and different total energy corrections (compare Eq. 2.34 and 2.99). All of the above corrections share
the feature that they are semi-local (decaying on the length scale of the overlap matrix in the dual
basis form), hence they can not fully address non-local effects such as the derivative discontinuity
in Kohn-Sham theory [109, 110].

2.6 Modeling defects

Goal of the defect physics is to simulate how the presence of a defect influences the physical proper-
ties of the host. The system to study is then a single defect embedded in the host, an ideal crystal,
which is an ordered array of atoms periodically repeated in the space. Now, the number of atoms
in a real crystal is far too big to be simulated with usual atomistic simulation, which can only deal
with a certain number of atoms, this number depending from the available calculation power and
calculation schemes. Only a limited region around the defect can be described, and this is done
mainly with two different strategies.
The first way is to use a cluster consisting of a part of the lattice containing the defect whose
surfaces are passivated by pseudo-hydrogen atoms (see Fig. 2.4). The passivation is necessary to
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Er

Figure 2.5: Simulating a defect (the erbium atom in green) with the supercell method, results in a super-
lattice of defects, which can interact if the supercell is not chosen big enough.

avoid the dangling bonds in the surface atoms. Position and charge of the pseudo-hydrogens are
chosen in order to reproduce the same environment that the outer atoms of the cluster would
have in the bulk. The used cluster should be quite big and possibly have spherical form in order to
minimise the ratio of volume-surface and the surface effects. Nonetheless the result of the simulation
depends on the position of the defect within the cluster and on the symmetry of the cluster itself.
Changes of the cluster form and in the distance of the defect from the passivated surface, which
can happen during the relaxation, are often important sources of error. Increasing the dimensions
of the cluster reduces these geometrical effects but increases the calculation time and the surface
effects. The second method arises from the consideration that for the description of an isolated
defect the simulation of an infinitely extended crystal would come closer to real conditions. Infinite
perfect crystals can be simulated with periodic boundaries. This is achieved by the use of supercells,
a finite array of atoms repeated in the space. Practically it is assumed that the margin atoms of
the supercell are neigbours of the margin atoms on the opposite side of the supercell and can
interact with them. When we now put a defect in the supercell we can simulate it without fearing
artificial interactions with surfaces. The problem is that in this way we are no longer simulating
an isolated defect, because when the supercell is repeated in the space the defect and its images in
neighbouring cells form a super-lattice of defects, with a geometry and a ”lattice constant” given
from the supercell vectors. If the cell is not big enough spurious interaction of the defect with
its periodic image may arise, whose effect and correction is still argument of debate. In small
cells also the form of the cell may influence the result. Increasing the dimension of the supercell
makes the error induced from this effects negligible, but as increasing the number of atoms in the
system increases the computational power required, one has to find a good compromise between
time invested and precision. One big advantage of the DFTB approach is that it allows the handling
of very big cells and makes the spurious interactions of one charged defect with its periodic images
really negligible. In this work we will use mainly 512 and 256-atoms supercells, where the defects in
two neighbouring cells are separated by 17.5 Å and their interactions can be considered negligible.

2.7 Summary and conclusions

We presented an efficient calculation scheme in framework of the SCC-DFTB for the simulation
of strongly correlated electrons and discussed its new extensions to include orbital dependent po-
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tentials. The implementation of LDA+U and pSIC methods in the DFTB code is certainly an
important advance for many problems where DFT-like methods fail to reproduce the experimental
observations. This implementation is essential for problems involving some transition metal oxides
or rare earths. Combining DFTB methods and LDA+U allows handling highly correlated electrons
for very large systems with a calculation quality close to the one of DFT. This is particularly inter-
esting for the case of lanthanides in GaN where dilute amount of RE are used. DFTB can easily
handle the huge unit cell sise that is necessary to represent the experimental system and properly
reproduce the effect of the stress induced by rare earth doping in particular on the electronic struc-
ture. Concluding, the capability of the method to carry out spin polarised calculations as well as its
capability to treat strong correlated systems in a proper way with an LDA+U like approach make
DFTB a powerful tool for the systematic study of the RE defects and defect complexes in GaN.
In the last part of this chapter reviewed the Janak transition state formalism for the calculation of
charge transition states on the basis of the one particle levels. The formalism has been proven to
work within the DFTB framework and in particular in connection with LDA+U , which guarantees
that the requirements for the applicability of the formalism are satisfied.
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Chapter 3

Parameterization

In the previous chapter the LDA+U and pSIC approaches have been adapted to the tight-binding
formalism and implemented in the simulation package DFTB. The next step of our study on rare
earth impurities in GaN is the creation of the DFTB parameters for the RE ions and for the host.
The issue of the parameter generation is a central point in the DFTB approach, because in this
phase the precision of the method is determined. It can be affirmed indeed, that the method is
as good as the parameters are. The process of parameterisation can be in principle lead back
to the classic problem of minimizing the value of a function in a multi-parameter space. In the
actual realisation of a parameter set many complications may occur which introduce errors and
uncertainty. We try in this phase to eliminate or minimise every source of error. The latter is
mainly due to three factors:

• approximation in the methods

• bad reference data

• incomplete optimization

The first type of error is an intrinsic error which cannot be eliminated but can be minimised. For
example, choosing as fit system for a particular interaction a system which is known to be a pitfall
for DFTB (e.g. high coordinated bulks) will negatively affect the quality of the created parameter.
The second typology of error is due to uncertainties in the data used to fit the parameters: it can
be an error in the measurement of some physical characteristic of a reference system as well as an
error due to bad pseudopotentials in the ab initio calculations we take as reference. The third factor
of error is present when too few fit systems are considered, or if the optimisation is only done with
respect to one particular parameter only. This source of error can be completely removed in the
parameterisation process. Apart from these three factors, there is no room for other error sources.
Coming to the particular case of the RE, the main problem is the lack of reliable reference data.
For this reason different semi-empiric methods (e.g. MOPAC) cannot be used for the simulation
of RE compounds: the parameter for these ions have never been created. The advantage of DFTB
is that only few, possibly well chosen systems are needed to create the parameters. In DFTB fit
systems can also be purely ideal systems, if they are chemically acceptable and can be described
with an ab initio approach. What we would like to have are parameters which allow the correct
description of as many systems as possible, i.e. we would like to have portable parameters. Good
parameters have to work without restrictions. This is unluckily not always possible. If a parameter
is created using a fit system of a certain type, it would be hardly correctly describe systems which
are very different from the fit system. In our work we paid particular attention in the generation
of parameters which are reliable in the description of solid state systems and for defect physics. In
this chapter we show the process of generation of a set of DFTB parameters for the modeling of
RE in GaN. After showing how this has been done we propose a validation of the parameters, i.e.
we report the results of the reliability tests that created parameters have to pass.
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Table 3.1: Orbitals treated as valence orbitals in the parameterisation of the studied elements. Including
more orbitals in the valence makes each calculation more accurate but more computationally demanding.
Covalent radii are listed here in Å and used as reference for the following discussions.

Ion Cov. radius (Å) El. configuration Basis
H 0.37 1s1 1s
C 0.77 [He]2s22p2 2s 2p
N 0.75 [He]2s22p3 2s 2p
O 0.73 [He]2s22p4 2s 2p
Ga 1.26 [Ar]3d104s24p1 4s 4p (3d)
Pr 1.65 [Xe]4f36s2 6s 6p 5d 4f
Eu 1.85 [Xe]4f76s2 6s 6p 5d 4f
Gd 1.61 [Xe]4f75d16s2 6s 6p 5d 4f
Er 1.57 [Xe]4f126s2 6s 6p 5d 4f
Tm 1.56 [Xe]4f136s2 6s 6p 5d 4f

3.1 Generation of the parameters

In this work we elaborate a set of DFTB parameters for the modeling of RE in GaN. It includes
the interactions needed for the simulation of GaN and its ”classical” dopants (C and O) as well as
those lanthanides which are known for their peculiar emission spectra (Pr, Eu, Er, Tm) or which
have been exploited for the realisation of spintronic devices (Eu, Gd) because of their magnetic
properties.

3.1.1 The electronic part

The DFTB parameters are divided in three sections: a header, containing atomic informations
like on-site energies, Hubbard-U and valence charge, a body, containing the proper SK-tables (20
columns for the Hamiltonian and 20 columns for the overlap matrix elements) and a spline for
the storage of the repulsive potential. The first two parts contain informations needed for the
calculation of the DFTB electronic energy (also called band-structure energy), while the third part
is needed for the calculation of the repulsive energy (Eq. 2.76). We firstly report information about
the creation of the electronic part of the parameters.

Electronic configuration

Before we start the generation of the Slater-Koster tables necessary to the DFTB method, we
have to make some basic decision, the first of them being the electronic configuration of the chosen
elements. More precisely we have to decide which orbitals we consider as core and which are instead
valence, i.e. we determine the orbital basis (see Eq. 2.47 and 2.50) used in all the future calculations.
The choice of the electrons we treat as valence states influences the accuracy of the method but
also the speed of the calculation. Even if it is possible to create parameter for ions in different
electronic configurations, we choose to parameterise all the elements, including the lanthanides, in
their atomic ground state. This choice is consistent with the experimental evidence that RE ions
behave in GaN host as isolated ions. The f -shell has been treated as a valence shell and can be
therefore depleted (if f -electrons are promoted to other states) or occupied with extra electrons.
The orbitals treated as valence for each atomic species are listed in Tab. 3.1.
In the case of gallium ions it arises the issue whether the 3d electrons have to be included in
the valence or not. From one side it has been shown at the beginning of the last decade that
the Ga-3d electrons despite of their localisation do not behave as proper core electrons and even
undergo a hybridisation with the N-2s orbitals in the LDA representation [111]. Later on it was
shown that this hybridisation is an artificial feature of the LDA functional and is not observed
experimentally [105]. Whether the ab initio description of Ga and Ga-compounds is qualitatively
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Table 3.2: Compression radii (in atomic units) for the confining potential used for each atomic type
considered in this work. The criterion for the choice of the following values is the consistency with previous
DFTB works (H, C, N, O and Ga) or the band structure (reported in Fig. 3.1) of the bulk-phase (RE).

Ion s-orbital p-orbital d-orbital f-orbital
H 1.30 − − −
C 2.78 2.78 − −
N 2.71 2.71 − −
O 2.60 2.60 − −
Ga 4.55 4.55 4.55 −
Pr 5.00 5.00 6.00 6.00
Eu 5.00 5.00 6.00 6.00
Gd 5.00 5.00 6.00 6.00
Er 5.00 5.00 6.00 6.00
Tm 5.00 5.00 6.00 6.00

improved by considering the 3d orbitals valence orbitals is still argument of debate. Many scientists
believe that not including this shell in the valence will not change the physics of the Ga-compounds,
as the Ga-3d on-site energy is about 10 eV lower than the Ga p-shell. Other scientists argument
instead that the lattice parameters and the electronic structure of Ga-compounds calculated treating
the 3d-electrons as valence are closer to the experimental values. Sure is the fact, that including
these orbitals in the valence implies we have to include ten additional electrons for Ga atom in
the calculation, which, in a supercell of 512 atoms means more than 2500 additional electrons. We
created a parameter set with the 3d electrons explicitly included in the valence and one with the
Ga 3d orbitals treated as core. The decision about which one we will use in this work for the
investigation of GaN defects is postponed to the next chapter, where we discuss the influence of
the particular treatment of the d-shell in the description of GaN and the extent of an eventual
interaction with the RE f -shells.

Atomic reference calculation

Once the electronic configuration has been chosen, it is important to perform reference atomic
calculations, to check the atomic energy and the on-site energy of the valence orbitals. This energy
gives in fact the DFTB atomic energy in the case of isolated atoms (see Eq. 2.53). Values calculated
with RLCAO have been compared with the atomic reference calculations published by the American
National Institute of Standards and Technology (NIST Database) [112], finding an overall good
agreement.

Choice of the compression radii

The second decision we have to make is the value of the compression radius (see Eq. 2.49) for each
valence orbital of each ion. If we use the superposition of atomic potentials as parameterisation
method we only have to choose a value for the compression of the wave functions, while if we use
the superposition of atomic charges we have to choose a compression for the charge densities and
another compression for the wave functions [90]. We parameterise all the ions with the potential
superposition method and only need a value for the compression of the wave functions. The usual
choice for the compression radius is

rc ≈ 2rcov

where rcov is the covalent radius of the parameterised atom [93]. For elements of the second row
like N, C and O it is usual to use a single value for the compression f -shells with different angular
momentum. Because of the very different localisation of the s, p and d, f orbitals, we use angular
momentum dependent compression radii. The value of rc = 2rcov is only a starting point and can
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Table 3.3: Atomic parameters: the Hubbard Us calculated for the studied elements. We note that for the
first row elements (C, N and O) the Hubbard Us relative to s- and p-shells are very similar, while for the
rare earths the Hubbard U values of the f-shells are quite different from the values of the other shells. The
same happens to the d-shells of the transition metals like Ni. That is due to the strong localisation of the f
(or d) shells of such so called strong correlated systems. All the given values are in atomic units.

H C N O Ga Pr Eu Gd Er Tm
Us 0.41 0.39 0.49 0.49 0.38 0.21 0.21 0.29 0.21 0.22
Up − 0.36 0.49 0.52 0.35 0.18 0.19 0.27 0.23 0.24
Ud − − − − 0.63 0.26 0.26 0.26 0.26 0.27
Uf − − − − − 0.45 0.54 0.56 0.51 0.57

be changed in order to improve the description of particular aspects. We choose, starting from
this first guess, the value of the compression using the band structure of the elements in their solid
state as criterion. The band structures of the elemental RE calculated with the chosen compression
radius using the experimental values of the lattice parameters are reported in Fig. 3.1 (left side).
At this stage, in absence of a repulsive potential, bulk calculations can only be performed using
the experimental lattice parameters. The DFTB band structure of the elemental RE has been
compared with the band structure calculated with the ab initio all electron program Wien2K [113],
which we also report in Fig. 3.1 (right side). Goal of this comparison is not to have the correct
simulation of the experimental band structure itself, but to have a good agreement between the
DFTB and DFT. For this reason we do not compare the bands calculated with orbital dependent
potentials, but the bands calculated with the LDA approach. We found that the DFTB band
structure are in good agreement with the Wien2K ones for values of the compression radii between
5.0 and 6.0 atomic units. Even if the band structures are not extremely sensible to the choice of the
compression, outside this range DFTB and Wien2K calculations do not show a good agreement.
The compression used in this work are consistent with the values that can be found in the literature
concerning previous DFTB publications [90, 99, 100], yet only for the elements N,C,O and Ga. RE
ions have been parameterised for the first time in this work and we do not have further terms of
comparison. The compression radii used for the atomic species parameterised in this work are given
in Tab. 3.2.
Changing the compression radius of the wave function also influence the form of the DFTB electronic
energy curve and the cohesive energy of bulk systems. These can also be used as criterion for the
choice of the compression. This is not the case of this work, where the band structures were the
only criterion. A discussion about the effects of different compressions on the bulk properties is
beyond the goal of this section, which is to present the parameter set we created. For further
details about this issue see for example Ref. [93, 114]. Like almost all recent DFTB works we use
a quadratic potential (m = 2) for the confining potential (Eq. 2.49). In connection with peculiar
systems, like those containing for example 3d-transition metals or noble metals also other values
have been chosen. A different choice for the exponent of the potential has been used for example
in Ref. [90].

3.1.2 The atomic constants Ul and Wll′

Apart from the on-site energy, the atomic mass and the valence charges, two other atomic constants
must be included in the parameters needed by DFTB: the Ul, which can be considered to be
a generalisation of the Hubbard-Us for each shell and the spin constants Wll′ . Both have been
defined in the previous chapter with the Eq. 2.83 and Eq. 2.87 respectively. The values used in
this work for each atom type and are reported in the Tab. 3.1.1 and Tab. 3.1.2. To calculate
the Ul-constants the program RLCAO has been used. This is the program we used to calculate
the integral tables and which is able to perform relativistic atomic calculations. The values are
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Figure 3.1: LDA band structure of the elemental rare earths calculated with DFTB (left column) and
Wien2K (right column): in each case the the Fermi level was chosen as zero of the energy scale. The
k-points are labeled after the bulk structure they refer to, that is BCC for Eu and HCP for all the other
elements.
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Table 3.4: Atomic parameters: the spin coupling constants WAll′ calculated for each of the studied elements.
All the values in atomic units. The spin coupling constants are expected to be symmetric against index
exchange: Wll′ = Wl′l. This is verified in our calculations to the given precision.

H C N O Ga Pr Eu Gd Er Tm
Wss -0.0640 -0.0279 -0.0303 -0.0323 -0.0174 -0.0078 -0.0084 -0.0083 -0.0089 -0.0089

Wsp − -0.0240 -0.0262 -0.0282 -0.0129 -0.0061 -0.0063 -0.0064 -0.0066 -0.0066

Wsd − − − − -0.0030 -0.0053 -0.0058 -0.0052 -0.0065 -0.0058

Wsf − − − − − -0.0007 -0.0005 -0.0004 -0.0004 -0.0004

Wps − -0.0240 -0.0262 -0.0282 -0.0129 -0.0061 -0.0064 -0.0064 -0.0066 -0.0067

Wpp − -0.0238 -0.0248 -0.0271 -0.0134 -0.0067 -0.0070 -0.0072 -0.0074 -0.0075

Wpd − − − − -0.0011 -0.0029 -0.0032 -0.0027 -0.0037 -0.0031

Wpf − − − − − -0.0003 -0.0002 -0.0002 -0.0002 -0.0002

Wds − − − − -0.0030 -0.0053 -0.0058 -0.0052 -0.0065 -0.0058

Wdp − − − − -0.0011 -0.0029 -0.0032 -0.0027 -0.0037 -0.0030

Wdd − − − − -0.0213 -0.0077 -0.0078 -0.0083 -0.0077 -0.0085

Wdf − − − − − -0.0021 -0.0016 -0.0017 -0.0011 -0.0014

Wfs − − − − − -0.0007 -0.0005 -0.0004 -0.0004 -0.0004

Wfp − − − − − -0.0003 -0.0002 -0.0002 -0.0002 -0.0002

Wfd − − − − − -0.0021 -0.0016 -0.0017 -0.0011 -0.0014

Wff − − − − − -0.0115 -0.0128 -0.0141 -0.0139 -0.0150

calculated as numeric derivative of the atomic eigenvalues with respect to the occupation number1.
All the calculations were executed with spin-unpolarised pseudo-atoms and the electrically neutral
spin-unpolarised pseudo-atom was the reference. One common approximation in the DFTB spirit
is to use the same value of the Hubbard-Us for all the shells of a given atom. This approximation
does not introduce any noticeable errors in calculations involving element of the second row (H,C,N
and O), for which the Hubbard-U of the 2s-shell is not really different from the value of the 2p-
shell. In the case of transition metals (like Ga) or lanthanides however the difference between
delocalised s- and p-shells and strongly localised d- and f -shells is noticeable, so that we chose to
use the calculated value of the Hubbard-U for each shell. To calculate the Wll′-constants instead the
software SCFATOM has been used, which is the atomic part of TWOCENT, another code used to
calculate the DFTB integral tables. This code is not able to perform relativistic atomic calculations
and this may introduce some error in the calculation of the parameters of heavy elements like the
rare earths. We think however that this is only a minor error: DFTB itself is not a relativistic
method and the relativistic effects are kept in account only through the calculation (relativistic)
of the SK tables. For this reason a possible inaccurateness in the estimation of the Wll′ would
be in any case overwhelmed by other error sources. From symmetry considerations the coupling
constants Wll′ are expected to be symmetric for an index exchange: this has been verified within
the numerical precision of the code. SCFATOM offers the possibility to calculate the spin constants
both with the LDA and GGA functional and this has also be done. The values calculated with the
two different exchange-correlation functionals do not differ noticeably (≈ 1% of the value itself):
we used in this work LDA values.

Calculation of the SK tables

Once all the possible decisions have been made, the Slater-Koster tables of Hamiltonian H0
µν and

overlap Sµν elements can be calculated in the spirit of the two centers approximation (Eq. 2.53).
These integrals are indeed calculated immediately following the pseudo-atom calculations and are
tabulated as a function of the distance between the two atoms involved.
Hamiltonian and overlap matrix elements have been calculated with a step of 0.04 atomic units for
distances between 0 and ≈15 a.u. Due to symmetry reasons, only 20 integrals between basis func-
tions remain nonzero. Their sequence as tabulated in the parameter files is, in standard molecular
orbital notation:

1For the numeric derivative a step of 0.01 electrons was used. In case of fully occupied or completely empty shells
single-edge differences were used.
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Figure 3.2: Overlap integrals of the f- (in green) and d-orbitals (in black) for the parameterised ions. The
localisation of the RE 4f-electrons and Ga 3d-electrons is evident. The overlap of s- and p-orbitals begins
even before the overlap of the d-orbitals.
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Figure 3.3: The α-Ga structure. On the right hand side the bond factor in the graphic representation
has been lowered to evidence the the first neighbours and the molecular nature of the crystal, which can be
thought as constituted of Ga2 dimers.
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In Fig. 3.2 the overlap elements Sµν of the f - and d-orbitals are plotted for the RE-ions and Ga.
It can be observed that the overlap and consequently the interaction between 4f -orbitals begins at
atomic distances for which the 5d-shells already have an important overlap. 6s- and 6p-orbitals (not
reported here) are even more extended and begin to interact even earlier. From the overlap table
we can obtain informations about the localised nature of the f -electrons which has as consequence
the previously discussed screening effects.

3.1.3 The repulsive part

The second step of the parameter generation procedure is the fitting of the repulsive potentials
introduced with the Eq. 2.76, calculated as energy difference between the total energy of a reference
(fit) system and the DFTB band-structure energy (Eq. 2.75). The determination of the repulsive
pair potential is the most time consuming step of the whole parameterisation, because of the DFT
calculations which have to be executed for all pairs of atom type. The choice of the fit system
is essentially free and determines the portability of the parameter set. A good description of the
fitting process can be found in Ref. [114]. We have to create repulsive potentials for the interaction
of each used element with itself and with all other. Let us start with the homonuclear lanthanide
parameters. The choice of the fit system influences the description of the the systems to simulate
and the portability of the parameters. In general one has a good description of systems whose bond
nature is similar to the one of the fit system, while normally the description of systems which are
chemically very different from the fit-system is not optimal. Of course important exceptions to this
general trend exist and are known. We think that a reasonable reference for the RE-RE interaction
in the study of RE defects in GaN is given by the metallic bulk phase of the single lanthanides.
For organic molecules it is an established procedure to use different fit systems, mainly dimers, for
different regions of the atomic distances, in order to correctly reproduce the bond nature in these
regions2. In the case of metals like the elemental RE this is not possible, from one side because
dimers are systems which are very different from bulk RE from the other because complexes of RE
and H would be created which would change the nature of the RE-RE bond [115–117]. This kind
of processes have been illustrated and discussed in other DFTB studies [90]. Apart from this, it
does not make sense to speak about single and double bonds if our goal is to correctly reproduce
the metallic bond of the bulk-RE.
We have to choose a system where all the bonds have the same nature and the position of the
second neighbours is not close to the first neighbours. Otherwise the bonds which we are going

2This can be easily done for example using dimers of an atomic specie decorated with a different number of
hydrogen atoms. The hydrogen atoms saturate the dimer’s electrons and can be used to control the bond type
(simple, double or triple) between the atoms of the dimer.
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to parameterise would not be well defined and the fit system cannot be considered a good fit
system. One possibility is to use the so called platonic geometries (Tetraheder, Cube, Octaheder,
Icosaheder) where all bond lengths are the same. The problem of this structures is that the smaller
they are the bigger difference from the bulk system they show. On the other side the use of very big
clusters as fit systems makes the process of fitting very time consuming, as the total energy for each
bond length has to be calculated in some way. Different clusters are of course characterised by a
different coordination number. Another possibility is to use the RE bulk-phases as fit system. Apart
from Europium, all selected RE crystallise in the hexagonal close packed (HCP) crystal structure,
which is not an ideal fit system, as each atom has two types of inequivalent neighbours. These
neighbours are at distances which differ by 0.04% and can be thus considered, in first approximation,
equivalent. The advantage of using bulk systems is that any total energy calculation has to be done3,
as the total energy can be easily derived by means of a state equation, like the Birch-Murnaghan
equation [118, 119], if the experimental values of the bulk modulus B and its first pressure derivative
B′ are known.

E(V ) =
V0B0

B′0

[
1

B′0 − 1
+

(
V0

V

)B′0−1

+
V

V0

]
+ E(V0) (3.1)

The values of B and B′ for bulk Pr, Eu, Gd, Er and Tm can be found in the literature [120] and have
been used for the estimation of the total energy of the RE bulk via Murnaghan equation. Fitting
the repulsive potential on bulk systems simplifies the choice of the range of the potential itself. It
is sufficient to fit the repulsive curve for a range of ±10% of the equilibrium bond length. It is
important that the repulsive potential begins at a distance shorter than the first neighbour distance
and ends at a distance shorter than the second neighbour distance. In this way the tight-binding
approach is supposed to work properly. Coming to the other homo-atomic interaction (Ga-Ga,
C-C, N-N and O-O), we adapted the repulsive potentials used in previous DFTB works [20] to
our electronic part. The interaction RE-N and RE-O were parameterised by means of the RE
nitrides and oxides, RE-C with a dimer and RE-Ga with an hypothetical ideal crystal with HCP
structure. In all these cases the total energies have been estimated with spin unpolarised DFT-LDA
calculations [121]. We do not report here the details of each single calculation and limit us to say
that the calculations were carried on on primitive cells with k-point mesh and plane waves cutoff
energy chosen after thorough convergence tests. The question how good the parameters we created
actually are is answered in the next section.

3.2 Validation of the parameters

Before we start the investigation of RE defects in GaN with the parameter we created, we have to
check thoroughly the parameters itself. This process, called validation of the parameters consists in a
series of tests which will give an idea of the accuracy of the combination of the DFTB method and the
created parameters. We test out the DFTB representation against experimental results and against
other theoretical investigations, namely DFT-LDA or DFT-GGA works. Our validation is strongly
oriented on the solid state physics, i.e. we test the parameters mainly on bulk system and check
the aspects of relevance in this field, i.e. lattice parameters, elasticity properties, cohesive energy
and electronic structure. We do not carry out studies on molecules or small clusters containing
lanthanide ions. This section is organised as follows: at first the bulk phases of Ga (α-Ga and FCC-
Ga), N (HCP), C (diamond) and of the metallic RE are investigated. Then we briefly analyse the
gas phases of N and O and finally the RE-nitrides. The interaction between Ga and N, governing
the behaviour of the host, GaN, is of particular importance and deserves a chapter on its own. The
DFTB representation of the semiconductor GaN will be the subject of the next chapter.

3This is a double advantage: on one side a lot of time is saved, on the other side problems due to the DFT-LDA
simulation of strongly correlated systems are avoided.
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Table 3.5: Structural and electronic properties of α-Ga. All the distances are expressed in Å, the energies
in eV and bulk moduli in Kbar. Elasticity properties are calculated in this work by means of the Murnaghan
equation.

Reference Method Basis a b/a c/a B B′ Ecoh

This work DFTB s, p 4.803 0.962 1.839 707 3.89 -3.574
This work DFTB s, p, d 4.742 0.987 1.795 767 4.01 -3.674
[122] DFT-LDA s, p 4.389 1.001 1.695 669 4.93
[123] DFT-LDA s, p 4.44 0.997 1.691 -3.46
[123] DFT-GGA s, p 4.51 0.997 1.691 -2.60
[124] DFT-LDA s, p, d 4.437 0.999 1.687 -3.484
[124] DFT-GGA s, p, d 4.596 0.992 1.696 -2.796
[125, 126] Exp. 4.511 1.001 1.695 613 -2.81

3.2.1 Ga-bulk

Gallium is a trivalent metal with a quite complicated phase diagram with a lot of stable and
metastable crystalline phases very close in energy. The stable phase at low pressure is an unusual
orthorhombic structure called α-Ga, while two other phases called Ga-II and Ga-III are stable
at higher pressures. A lot of metastable phases, called β-Ga, γ-Ga, δ-Ga, ε-Ga as well as the
FCC phase have been identified at atmospheric pressure [122]. In this work we check the DFTB
description of the α-Ga and FCC phases. The first one is the crystal which would grow at the MBE
conditions used to grow RE-doped samples object of this work and is therefore of interest here.

α-Ga

The α-Ga structure, with space group Cmca and crystal number 64 is described by a four atom
base-centered orthorhombic cell with the following primitive vectors:

Primitive vectors:





t1 = 1
2a,

1
2b, 0

t2 = − 1
2a,

1
2b, 0

t3 = 0, 0, c

and basis:

Basis vectors:





d1 = 0, bu, cv (Ga)
d2 = 0, −bu, −cv (Ga)
d3 = 0,

(
1
2 + u

)
b,

(
1
2 − v

)
c (Ga)

d4 = 0,
(

1
2 − u

)
b,

(
1
2 + v

)
c (Ga)

Note that this cell is different from the one used in the works [122–124, 127] we use later on
as reference. There an eight-atom orthorhombic supercell oriented in another direction but still
consistent with the Cmca space group is used. Our smaller cell is, of course, more efficient for
electronic structure calculations. The α-Ga structure is depicted in Fig. 3.3. A peculiar feature
of this structure is that each atom has only one first neighbour (at 2.44 Å, which is a fairly short
distance for a normal metallic bond) and two second, third and fourth neighbours 0.27, 0.30 and
0.39 Å further apart. The crystal can also be viewed as molecular crystal of Ga2 dimers, an unique
case among metals. This structure is characteristic for the non metallic Cl2, Br2 and I2 and is very
different from that of Ga-isoelectronic elements like Al. This is probably due to the incomplete
screening of the nucleus by the shallow 3d core states which yelds an anomalous spatial contraction
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Figure 3.4: Electronic band structure of FCC-Ga. The high-symmetry point within the Brillouin zone are
labeled after Papaconstantopulos. EF indicate the position of the Fermi level. The free electron like band
structure reveals the metallic nature of FCC-Ga.

of the valence charge. On turn this favours covalency over metalicity in Ga as though it were a much
lighter element. In other words, among group-III elements Ga is closer to B than to Al. A thorough
discussion about the double nature (metallic-covalent) of the Ga-bond in solid Ga can be found
in [122]. In the Tab. 3.5 are shown calculated and experimental properties of the material. DFTB
calculations are executed with a primitive cell of α-Ga and a 12×12×12 MP k−point mesh [128]. We
observe that lattice parameters as well as the cohesive energy of the solid are slightly overestimated
in DFTB. This could be due to two effects: firstly, for the sake of the computational effort the
internal parameter are fixed to the experimental values [122] of u = 0.1525 and v = 0.0785 and
not relaxed, and second, the inclusion of the Ga-3d electrons in the valence band leads to a more
accurate description of the bonds and consequently of the properties of the solid (second row of
Tab. 3.5). The DFTB description of the α-Ga phase can be anyway considered satisfactory for our
purposes.

FCC Ga

A phase transition from the Ga-II structure to the Ga-FCC phase at the pressure of 145 Kbar has
been predicted by Bernasconi et al. [122]. This region of the Ga phase diagram has not been yet
explored experimentally, so that we only have other theoretical result to test our parameters. As
predicted in the mentioned work FCC-Ga is a proper metal: in the Fig. 3.4 we report the band-
structure of the FCC phase of Ga calculated with DFTB including the 3d in the valence. It can
be compared for example with the band structure reported in Ref. [122, 129]. We observe that the
agreement between the electronic bands calculated in this work and the bands calculated in the
given references is very good. The free-electron like band structure reveals the metallic nature of
FCC-Ga, the 3d-related bands are on the bottom of the picture. Other structural and electronic
properties of solid Ga in the FCC phase are reported in Tab. 3.6. All the calculations have been
carried on with the FCC-Ga primitive cell and a 12×12×12 MP k−point mesh. The agreement
between DFTB and DFT can still be considered satisfactory, apart from the surprisingly high value
of the DFTB bulk modulus calculated including the Ga-3d electrons in the valence shell.
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Table 3.6: Structural and electronic properties of FCC-Ga. All the distances are expressed in Å, the
energies in eV and bulk moduli in Kbar. Elasticity properties are calculated in this work by means of the
Murnaghan equation.

Reference Method Basis a B B′ Ecoh

This work DFTB s, p 4.380 756 3.145 Ecoh(α-Ga)+0.081
This work DFTB s, p, d 4.261 1070 3.751 Ecoh(α-Ga)+0.038
[122] DFT-LDA s, p 4.015 676 4.633 Ecoh(α-Ga)+0.073
[129] TB s, p, d 4.143

3.2.2 Diamond

Carbon is of interest in this work because of the role it can play in co-doped GaN samples. Carbon is
one of the most versatile chemical element. Its ability to form single, double and triple bonds leads
to several crystal structures with completely different properties. For the same reason, carbon is
also the basis of organic compounds. The two most important pure forms of carbon are graphite and
diamond, both of which have been known for at least two thousand years. We analyse here quickly
only the DFTB representation of bulk carbon in the diamond structure. The crystal structure of
diamond is the prototype-lattice for many tetravalent semiconductors. It is a face centered cubic
lattice with a two-atoms basis: each carbon atom is surrounded tetrahedrally by four neighbours.
Electronic and structural properties of diamond calculated with DFTB are reported in Tab. 3.7.
Lattice parameters reproduce the experimental data within an error of 0.3% and the cohesive (or
binding) energy per atom is less overestimated than in other theoretical works [130]. We notice that
also the bulk modulus is reproduced with a almost negligible deviation from the experiment [131,
132].

3.2.3 Elemental RE

We report here for the sake of completeness and because of their importance in commercially
important applications4 the structural and electronic properties of the elemental rare earths in
their metallic phase calculated with DFTB. We advise the reader that the investigation of the
stablest structure in each case is not a significative test for our approach nor has been done with
validation intent. The bulk of the stablest phases of the RE themselves were indeed used as fit
system for the generation of the repulsive potentials and are certainly well reproduced in DFTB.
However the other metallic phases (like the FCC phase) are interesting benchmarks. Rare earth
metals represent a family of solids with very similar chemical and physical properties. This family is
often divided in two sub-groups, the light rare earths and the heavy rare earths, depending from the
occupancy of the f -shell (1 to 7 for the light RE and 8 to 14 for the heavy RE). Each sub-group has
elements which show anomalies in some property with respect to the other elements (namely Ce, Pr
and Eu, Yb) because of particular f -shell occupations (completely empty, half filled and completely
filled) or proper peculiarities. Most of the trivalent RE metals undergo a dramatic transformation
of their physical properties under pressure. The most known of these changes is the so called volume
collapse [133], which can cause a volume reduction up to 15% and is probably due to a change in the
correlation of the 4f -electrons. More precisely the f -electrons seem not to take part to the crystal
bonding at larger volumes (high-correlation regime) while they do participate to the bond in the
compressed crystal (weakly correlated regime). The nature of the f -electrons in these regimes is
commonly defined as localised and itinerant. For increasing pressure the RE metals undergo many

4Metallic RE were once scientific curiosities and object of studies from a purely academic point of view. As the
RE have very similar chemical and physical properties it was in the past almost impossible (and is difficult still
today!) to separate the single RE from a raw crystal. With the modern techniques of separation RE metals have
been investigated and have found a lot of commercial applications. They are used among others in the automobile
industry, in electronic devices, in light bulbs, in the glass and ceramic industry, in optoelectronic devices and as
permanent magnets.
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Table 3.7: Structural and electronic properties of diamond. All the distances are expressed in Å, the
energies in eV and bulk moduli in GPa. Elasticity properties are calculated in this work by means of the
Murnaghan equation.

Reference Method a B B′ Ecoh

This work DFTB 3.575 440 3.98 8.986
[114] DFTB 3.562 541 9.278
[130] DFT-LDA 3.527 461 3.67 9.032
[131, 132] Exp. 3.567 442 ≈ 4

structural phase transitions, involving in general the structures hexagonal close packed (HCP),
double hexagonal close packed (D-HCP), face centered cubic (FCC) and distorted face centered
cubic (DFCC), which can be all considered polytypes of the close packed structure. The mentioned
structures are represented in Fig. 3.5. In this work we simulate many different structures for each
lanthanide, including the FCC phase, which is the simplest close packed structure that approximates
the real structure, and the stable structure at standard pressure and temperature, which is the
hexagonal close packed except for Eu, which crystallises in the BCC structure. Another peculiar
aspect of metallic Eu is its valency: Eu is (with Yb) the only RE metal to be divalent, while the
other RE metals are all trivalent, i.e. a 4f electron is promoted to the conduction band. Even if
there have been some attempts to investigate metallic RE within the DFT-LDA approach [134],
this theory does not take properly in account the limited spatial extent of the f -orbitals and leads
to a too large energy dispersion when the 4f -electrons are treated as band-like valence states. On
the other hand treating the 4f orbitals as core states results in a very poor approximation as much
of the interesting and unusual physics of the RE systems is due to the fact that the 4f -shell is
not completely inert. A satisfactory description of the ground state properties of the elemental RE
can only be achieved with calculation schemes involving orbital dependent potentials (see chapter
1). In the following we investigate RE-metals in their ferromagnetic phase with the LDA, LSDA
and LSDA+U (FLL) approach as implemented in DFTB. In this way the differences between the
different approaches can be remarked.

Computational details

All the results reported in the following were obtained from calculations on primitive cells (see
Fig. 3.5) with a Monkhorst-Pack 12×12×12 k-point mesh [128]. In the case of LSDA and LDA+U
(FLL) calculations the spin configuration was determined by total energy comparisons. For the
FLL calculations the value of the U -J parameter was chosen to be 0.23 H for Pr, 0.27 H for Eu,
0.32 H for Gd and 0.28 H for Er and Tm. This choice is thoroughly discussed and justified in the
following chapters and will not be discussed here. The DFTB representation of band structures of
the stablest phase of each lanthanide has been shown previously and compared with other DFT
calculations (Fig. 3.1) and will not be discussed again. Concerning the structural and energetic
properties, the calculated values are reported in Tab. 3.8, together with experimental values and
other theoretical data for comparison.

Discussion

The lattice parameters of all the lanthanides are in qualitative agreement with experimental data
and other simulations for all the investigated crystalline phases. We observe that in general the
DFTB-LDA approach suffices for a satisfactory description of lattice parameters and that the
DFTB-FLL approach leads to a substantial improvement of the simulation, i.e. the lattice parame-
ters as well as the cohesive energies are closer to the measured values than within the DFTB-LDA
or DFTB-LSDA approach. Summarising, DFTB-FLL gives in general a satisfactory description of
the geometries and of the cohesive energies of each investigated structure. Averaging over all the
investigated rare earths the DFTB-FLL mean deviation from the experiment is of 2.7% in the lattice
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Figure 3.5: Most rare earths (including Gd, Er and Tm) cristallyse at standard temperature and pressure
in the HCP structure, a few (including Pr) in the D-HCP structure, Eu in the BCC and Yb in the CCP
structure. Among the metastable phases are the FCC structure, the Sm-structure and the distorted phases
of all the mentioned structures.
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Table 3.8: Structural and electronic properties of elemental RE. All the distances are expressed in Å, the
energies in eV and bulk moduli in GPa. Elasticity properties are calculated in this work by means of the
Murnaghan equation. Calculations of Ref. [134] refer to the paramagnetic phase of metallic RE and were
done treating the f-shells as core state. Related data is derived from the pictures. For details about the
experimental techniques or the computational approach see the single references.

Reference Method a c B B′ Ecoh
Pr (HCP) This work DFTB-LDA 3.570 5.760 61 3.3 5.65

(HCP) This work DFTB-LSDA 3.727 6.013 46 4.0 4.49
(HCP) This work DFTB-FLL 3.962 6.393 44 3.2 3.72
(HCP) [120, 126, 135] Exp. 3.669 5.920 28 2.9 3.7
(FCC) This work DFTB-LDA 5.273 - 59 3.4 5.10
(FCC) This work DFTB-LSDA 5.488 - 47 2.8 4.12
(FCC) This work DFTB-FLL 5.327 - 64 3.0 3.09
(FCC) [134] DFT-LDA - - 45 - 3.5

(D-HCP) This work DFTB-LDA 3.567 11.493 61 4.0 5.67
(D-HCP) This work DFTB-LSDA 3.731 12.022 48 8.6 4.50
(D-HCP) This work DFTB-FLL 3.671 11.829 - - 4.13
(D-HCP) [136] DFT-SIC 3.672 11.832 29 2.0 -
(D-HCP) [137] Exp. 3.673 11.835 - - -

Eu (BCC) This work DFTB-LDA 4.315 - 138 6.2 4.59
(BCC) This work DFTB-LSDA 4.462 - 91 8.1 3.24
(BCC) This work DFTB-FLL 4.494 - 91 6.7 3.09
(BCC) [134] DFT-LDA - - 20 - 2.50
(BCC) [120, 126, 135] Exp. 4.581 - 17 2.9 -
(BCC) [137] Exp. 4.606 - - - -

Gd (HCP) This work DFTB-LDA 3.722 5.953 52 9.9 3.59
(HCP) This work DFTB-LSDA 3.745 5.990 66 3.5 3.82
(HCP) This work DFTB-FLL 3.690 5.902 79 9.9 2.79
(HCP) [120, 126, 135] Exp. 3.636 5.783 35 2.9 4.14
(HCP) [137] Exp. 3.636 5.723 - - -
(FCC) This work DFTB-LDA 5.398 - 56 4.5 3.32
(FCC) This work DFTB-LSDA 5.401 - 64 4.3 3.51
(FCC) This work DFTB-FLL 5.340 - 81 6.6 2.09
(FCC) [134] DFT-LDA - - 50 - 4.0
(FCC) [138] Exp. 5.40 - - -

Er (HCP) This work DFTB-LDA 3.559 5.587 76 3.9 4.02
(HCP) This work DFTB-LSDA 3.556 5.582 82 4.3 4.05
(HCP) This work DFTB-FLL 3.672 5.764 71 3.6 3.47
(HCP) [120, 126, 135] Exp. 3.559 5.587 44 2.9 3.29
(HCP) [137] Exp. 3.559 5.587 - - -
(FCC) This work DFTB-LDA 5.084 - 87 5.0 3.83
(FCC) This work DFTB-LSDA 5.075 - 90 4.2 3.85
(FCC) This work DFTB-FLL 5.199 - 78 4.8 3.34
(FCC) [134] DFT-LDA - - 60 - 1.5
(FCC) [138] Exp. 5.09 - - - -

Tm (HCP) This work DFTB-LDA 3.596 5.646 43 5.2 2.95
(HCP) This work DFTB-LSDA 3.596 5.646 47 2.4 2.97
(HCP) This work DFTB-FLL 3.702 5.812 27 1.4 2.18
(HCP) [120, 126, 135] Exp. 3.538 5.555 46 2.9 -
(HCP) [137] Exp. 3.538 5.555 - - -
(FCC) This work DFTB-LDA 5.185 - 52 2.6 2.75
(FCC) This work DFTB-LSDA 5.182 - 54 3.2 2.76
(FCC) This work DFTB-FLL 5.180 - 56 4.4 2.70
(FCC) [134] DFT-LDA - - 55 - 1.0
(FCC) [138] Exp. 5.06 - - - -
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Bond (z) Axis

Figure 3.6: Charge density difference between two N atoms and the N2 dimer. Electronic charge is taken
from the region around the atoms and accumulated between the atoms, as expected for a covalent bond.

parameters, the cohesive energies are generally overestimated by some tenth of eV and the bulk
moduli are generally overestimated by 10-50 GPa, depending from the lanthanide. These errors
are of the typical order of magnitude for a DFTB calculation. The value of the bulk moduli and
their first pressure derivative, which are delicate parameters for the tight-binding approach, can be
considered a satisfactory approximation of the DFT values. We notice that the parameters have a
problem in the simulation of the Eu bulk-modulus. This will not affect our future investigation, as
we will only simulate a single Eu atom in our supercells. The correctness of the DFTB bulk modulus
is particularly important for the investigation of the clustering properties of lanthanide dopants in
GaN, which is not the object of this work. Comparing the cohesive energies of the different phases
it can be observed that the most stable phase in our calculations is also the most stable phase as
revealed by experiments [126]. This is in particular interesting for metallic Pr, which crystallises
in two similar structures D-HCP and HCP very close in energy (with the first slightly favoured)
besides the FCC. In each of the used approaches LDA, LSDA and FLL-LDA+U as implemented
in DFTB the favoured phase is the D-HCP, followed by HCP and FCC, in agreement with the
experimental knowledge of this material.

3.2.4 The O2 and N2 molecules

In this paragraph we test the DFTB parameters on dimers of oxygen and nitrogen, underlining their
differences. At standard temperature and pressure oxygen and nitrogen exist as diatomic molecules,
characterised by a covalent bond. The bond distance is almost perfectly the sum of the covalent radii
of the atoms (0.60 Å and 1.207 Å for oxygen and 0.65 Å and 1.10 Å for nitrogen). In Fig. 3.6 the
charge density difference between two N atoms and the N2 dimer calculated with DFTB is reported.
Electronic charge is taken from the region around the atoms (in red) and accumulated between the
two atoms, as expected for a covalent bond. In Fig. 3.7 the energy levels of the atomic and molecular
orbitals and their occupation are plotted. The order of these levels is the same predicted by the
molecular orbital theory. Combining two 2s and 2p (black levels on the side) results in four σ and
four π orbitals (central red levels), which are then filled following the Aufbau-rules. The form of the
molecular orbitals calculated with DFTB for the N2 dimer is plotted in Fig. 3.8. We notice tat first
that the two πp bonding and antibonding orbitals are degenerate. The corresponding wave functions
are identic in the form and differ only in the orientation. In the case of very light atoms (n < 5) the
energy difference between the 2s and 2p atomic orbitals is small enough to allow a certain interaction
between the molecular σ∗s and σp(z) orbitals, which have the same symmetry with respect to the
bond axis. As a consequence the energy of the molecular σp(z) orbital is raised above the πp(x,y)

energy level. The order of the energetic levels σp(z) and πp(x,y) is the first difference between O2

and N2 dimers. The second is the big difference in the binding energy. While in N2 only σp and πp

binding orbitals are occupied, in O2 the σ∗p(z) antibonding orbital is doubly occupied, which lowers
the binding energy. The molecule is paramagnetic, i.e. its measured magnetic moment is related to
the presence of two unpaired electrons. This is in agreement with the molecular orbital theory and
with the DFTB calculation, in which the configuration with two unpaired electrons is favoured by
0.74 eV with respect to the configuration with no unpaired electron.
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Figure 3.7: Energy levels and occupation of the atomic and molecular orbitals for the N2 (left hand side)
and O2 (right hand side) dimers in their ground state. The atomic orbitals are black and the molecular red.
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Figure 3.8: The wave function of the bonding and antibonding molecular orbitals of the N2 dimer. In
blue the regions where the wave function is positive and in red the regions where it is negative. Considering
the z-axis as the bond axis, the atomic 2s and 2pz orbitals give rise to molecular orbitals with cylindric
symmetry, which are called, in analogy with the atomic s-orbitals, σ-orbitals. The other atomic 2p orbitals
give rise to molecular orbitals without charge density along the bond axis and with antisymmetric wave
function. For this reason they are called, in analogy with the atomic p-orbitals, π-orbitals.
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Table 3.9: Structural and electronic properties of the N2 and O2 molecules. All the distances are expressed

in Å, the energies in eV and the vibration frequencies in cm−1. The zero point vibration energy of the
molecule has been considered only in the references [123, 127].

Reference Method d Eb ω
N2 This work DFTB 1.121 -10.236 -

[127] DFT-LDA 1.09 -11.71 2363
[127] DFT-GGA 1.09 -10.66 2331
[123] DFT-LDA 1.08 -11.75 2385
[123] DFT-GGA 1.09 -10.69 2325
[124] DFT-LDA 1.107 -11.332 1549
[124] DFT-GGA 1.113 -10.558 1477
[139] Exp. 1.10 -9.82 2360
[140] Exp. 1.10 -9.9 1484

O2 This work DFTB 1.208 -7.341 -
This work B3LYP 6-31G? 1.216 -9.323 -
[139] Exp. 1.207 -5.166 -

The calculated bond energy together with other properties of these molecules is shown in Tab. 3.9.
The binding energy is calculated as the energy difference between the dimer and the single atoms.
In the case of N2, for example:

Ebind. = EN2−molecule
tot. − 2EN−atom

tot.

The vibration frequency is calculated assuming the harmonic approximation. We observe that
DFTB slightly overestimates the bond length of the dimer, and that in general DFTB results are
less affected by over-binding problems than DFT-LDA.

3.2.5 RE Nitrides

We conclude the validation of the DFTB parameters with the simulation of the RE nitrides.
Despite their simple rock-salt structures RE-nitrides have very different electronic and magnetic
properties. We summarise here briefly terms and definitions used in the following:

PM Paramagnetic (PM) materials show permanent magnetic moments (dipoles) even in absence of
an external field. This is normally due to the presence of unpaired electrons in the compound.
As these dipoles are randomly oriented (because of the thermal agitation) and do not interact
with each other there is no net magnetisation in absence of an external field. When an external
field is applied, it aligns the magnetic dipoles resulting in a net magnetic moment in the field
direction. To explain the origin of this alignment it is necessary to introduce the quantum
mechanical properties of spin and angular momentum5. Macroscopically paramagnets are
attracted to external fields but do no retain permanent magnetisation (like ferromagnets
would). Paramagnetic behaviour is observed also in ferromagnets above the Curie temperature
and in anti-ferromagnets above the Néel temperature.

FM Ferromagnetic materials (FM) show spontaneous magnetisation and a net magnetic moment
in absence of an external field, in particular all magnetic ions add a positive contribution
to the net magnetisation6. The origin of ferromagnetism can only be explained with the
quantum-mechanic concepts of spin and Pauli exclusion principle. Ferromagnetism occurs

5If there is enough energy exchange between neighbouring dipoles, these will interact and spontaneously align
(ferromagnetism) or anti-align (antiferromagnetism).

6If they are partially anti-aligned the compound is called ferrimagnetic and if they are completely anti-aligned,
so that there is zero magnetisation despite the magnetic ordering, the material is called antiferromagnetic.
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Table 3.10: Structural and electronic properties of selected RE nitrides in the rock-salt structure. All the

distances are expressed in Å, the energies in eV and bulk moduli in GPa. Elasticity properties are calculated
in this work fitting the Murnaghan equation.

Nitride Method a B B′ Ecoh Reference
PrN DFTB LDA 5.034 139 3.7 9.417 This work

DFTB LSDA 5.102 130 3.5 7.218 This work
DFTB FLL 5.211 134 2.2 6.535 This work
DFT LDA+U 5.29 140 - - [141]
Exp. 5.155 - - - [135]

EuN DFTB LDA 5.269 268 3.9 8.496 This work
DFTB LSDA 5.356 214 6.5 5.674 This work
DFTB FLL 5.478 144 7.4 5.045 This work
DFT LDA 4.91 179 - - Priv. Comm.
DFT LDA+U 4.940 130 - - [142]
DFT LDA+U 5.14 110 - - [141]
Exp. 5.020 - - - [135]

GdN DFTB LDA 5.066 261 4.4 7.623 This work
DFTB LSDA 5.100 269 4.3 6.486 This work
DFTB FLL 5.101 281 2.8 6.111 This work
DFT LDA 4.977 188.47 4.4 5.956 [150]
DFT LDA+U 5.08 150 - - [141]
Exp. 4.999 - - - [135]
Exp. 4.983 192±35 4 - [143]

ErN DFTB LDA 4.894 272 3.5 8.536 This work
DFTB LSDA 4.915 271 3.7 7.071 This work
DFTB FLL 4.942 274 3.9 6.712 This work
DFT LDA 4.74 195 - - Priv. Comm.
DFT LDA 4.789 220 4.3 4.452 [150]
DFT LDA+U 5.00 160 - - [141]
Exp. 4.839 - - - [135]

TmN DFTB LDA 4.811 245 2.2 7.966 This work
DFTB LSDA 4.828 224 3.2 6.440 This work
DFTB FLL 4.862 244 3.8 6.038 This work
DFT LDA 4.70 201 - - Priv. Comm.
DFT LDA+U 4.90 190 - - [141]
Exp. 4.809 - - - [135]
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Figure 3.9: LDA band structure of the rare earth nitrides calculated with DFTB (left column) and Wien2K
(right column): in each case the the Fermi level was chosen as zero of the energy scale. The k-points are
labeled after the bulk structure they refer to, that is rock-salt for all the elements.
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Table 3.11: Lattice constants and elastic parameters calculated with the different approaches implemented
in DFTB for the FM phase of ErN. Dev. labels the deviation of the calculated values from the experimental
ones.

Method Lattice const. Å Dev. B(GPa) B′

Exp. 4.839 [135] 220.25 [150] 4.3
DFTB 4.895 1.1 % 272.14 3.5
DFTB+U FLL 4.969 2.7 % 231.40 4.7
DFTB+U AMF 4.919 1.7 % 224.02 6.7
DFTB pSIC 4.892 1.1 % 264.20 3.0

in system with a lot of unpaired electrons (as in partially filled shells). Alignment effects
occur only below a critical temperature, called Curie temperature. After this temperature
the thermal agitation is too big and the system cannot maintain self-magnetisation anymore,
even if it would paramagnetically respond to an external field. Ferromagnets are strongly
attracted from magnetic fields.

AFM Antiferromagnets (AFM) are relatively uncommon materials in which the spins of the elec-
trons align in a regular pattern with neighbouring spins pointing in opposite directions. Above
a certain temperature, called Néel temperature, antiferromagnetic materials become param-
agnetic. Below this temperature antiferromagnetic behaviour can result in diamagnetic or
(more rarely) ferrimagnetic properties.

FiM In ferrimagnetic materials (FiM) spin moments on the atoms in different sublattices are anti-
aligned as in antiferromagnets, however the opposing magnetic moments are not equal and
a spontaneous magnetisation remains. Like ferromagnets, ferrimagnets show a spontaneous
magnetisation below the Curie temperature and are paramagnets above7.

DM Diamagnets (DM) are materials which are repelled from an external magnetic field, as spin
dipoles in it tend to align against the external field. Each material is diamagnetic, but the
diamagnetic effects are normally overwhelmed by other forms of magnetism (ferromagnetism
or antiferromagnetism) for most material, so that diamagnets are normally (but incorrectly)
considered all the non magnetic materials like organic compounds and water.

RE-alloys cannot be classified on the basis of their conduction properties simply as metals, semi-
conductors and insulators, one needs to introduce the more sophisticated concepts of semi-metals
and half-metals:

• Semimetals are materials with a negative, indirect band gap. This means that valence and
conduction bands have a (mostly small) overlap, though the bottom of the conduction band
and the top of the valence band are situated in different part of the momentum space. Unlike
regular metals, semimetals have charge carriers of both types (holes and electrons), mostly in
smaller amounts than in metals. Semimetals are normally metalloids or alloys.

• Half-Metals are ferromagnets whose density of state at the Fermi level is different from zero
for only one spin channel. These materials are therefore metals for one spin and insulators for
the other. Half metals are always compounds of more than one element and mostly oxides or
Heusler alloys (ferromagnetic alloys whose constituents are not themselves ferromagnets).

Despite their simple rock-salt structure (common to all the RE nitrides), the RE-N compounds
show interesting electric and magnetic properties [150], among others ferromagnetic behaviour,
extremely low Curie and Néel temperature and an unusual 〈111〉 spin orientation. Apart from
their properties, the fact that they can be grown epitaxially on semiconductor has made them

7Sometimes there is a temperature below the Curie temperature where the two sublattices have equal magnetic
moments and the resulting magnetisation is zero. This is called compensation point.
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Table 3.12: The heat of formation ∆H0
f for compounds of interest in this work as calculated in DFTB and

measured. As noticed in Ref. [145] there are no accessible data about measured values of ∆H0
f for the rare

earth nitrides.

System Structure DFTB (eV) DFT [124] Experiment
GaN Zinc-blende -2.084 -1.689 -1.145
GaN Wurtzite -2.084 -1.685 -1.08
PrN Rock-salt -4.976 -
EuN Rock-salt -3.135 - -2.25 ± 0.26 [146]
GdN Rock-salt -4.182 -
ErN Rock-salt -5.113 -
TmN Rock-salt -4.942 -

interesting materials for the realisation of electronic devices. Despite this interest there have been
only a few attempts to study such systems [144]. All the RE nitrides are experimentally found
to be metals, half-metals or semi-metals [144, 150] characterised by a ionic bonding. Firstly we
simulate the properties of all the RE nitrides in their stable rock-salt phase in general and in the
DFTB representation, then we concentrate on a particular nitride, ErN, which we consider to be
representative, and investigate it thoroughly with all of the approaches implemented in DFTB and
in different structures. As term of comparison for the DFTB results we use experimental data and
Wien2K [113] calculations. For simplicity we simulate all the rare earth nitrides in the ferromagnetic
phase. As usual, primitive cells and a Monkhorst-Pack 12×12×12 k-point mesh [128] are used. The
DFTB-LDA band structures for the rare earth nitrides are reported in Fig. 3.9 and compared with
the band structures calculated with LDA approach and the simulation package Wien2k. The LDA
approach is not accurate enough to give a correct representation of the band structures and our
goal is here only to verify the agreement between the two simulation packages. A qualitative and
quantitative agreement is found. While in LDA the RE nitrides have a band gap, it is experimentally
known that they are metals, semi-metals or half metals. The metallic or semi-metallic nature of
RE nitrides causes them to be non-emitting systems. In overdoped GaN samples in fact (i.e where
we try to increase the RE-dopants concentration in GaN above a specific value of the order of
magnitude of 1-2%), we observe a RE-N phase segregation and the quenching of the emission. In
order to study correctly the optical properties of RE-doped GaN it is therefore essential to simulate
correctly the RE nitrides band structure. A proper investigation of the ErN band structure can
be found in the following section. The results of our simulation of the geometric and energetic
properties of the RE-nitrides are reported in Tab. 3.10. Similarly to the other investigated systems
the error affecting the lattice parameters is of the order of magnitude of some percent and the
cohesive energy is slightly overestimated, anyway the related error is still the typical precision of a
DFTB calculation. Formation enthalpies of the RE nitrides are calculated and reported in Tab. 3.12:
unfortunately there is no accessible experimental data concerning the formation enthalpies so that
we do not have experimental data as terms of comparison.

ErN

ErN is a good test system for our methods because it is a standard representative of a class of ma-
terials (the RE-monopnictides) which have recently attracted much attention due to their peculiar
characteristics. Unfortunately ErN has not been as extensively investigate as other Er pnictides
(like ErAs) or other RE nitrides (like GdN), but there is a substantial set of experimental data
in the literature (see [147, 148] and references there in) as well as several theoretical investiga-
tions [9, 144, 149–151] of this material. It is only recently [9, 144] that a consensus has been
reached about its half-metallic character, i.e. ErN shows a finite density of states at the Fermi-level
for one spin channel and a zero density of states for the other. In some earlier works [149] ErN was
described as a metal while in others [150] it was found to be a semiconductor in both ferromag-

62



CHAPTER 3. PARAMETERIZATION

Figure 3.10: Volume slice of the magnetization density in the (100) plane of rock-salt ErN in the ferro-

magnetic phase. The axis labels are expressed in Å and the hue (in arbitrary units) represents the electronic
density. The unpaired electrons are localized on the Er atoms.

netic and paramagnetic (PM) phases. Unlike the other Er-pnictides, in the ground state ErN is a
ferromagnet with a magnetic transition at 3.4-6K [152, 153]. We investigated the FM and the PM
magnetic phases. While it is clear that using a primitive ErN cell a spin-polarized calculation will
be a sensible representation of the FM pase (or the saturation limit of the PM phase in a magnetic
field), to simulate the PM phase we adopt a crude virtual crystal approximation. Following the
considerations of Pethukov [150] we consider a non spin polarized calculation as representative of
the paramagnetic phase. This is a very drastic approximation, a proper treatment of the PM phase
would require the consideration of thermal fluctuation effects and knowledge of the magnetic phase
diagram. However, this approximation will suffice for the goals of this work, which is to test our
methods. We find the difference in the cohesive energy (defined as energy difference of free Er and N
atoms in their spin polarized state) of the PM and FM phases to be, independently of the particular
calculation approach, about 0.5 eV per atom, which is somewhat higher than the difference reported
by Pethukov [150]. Like other RE nitrides ErN is [144, 150] characterized by ionic bonding, however
the equilibrium distance (2.432 Å) [135] of Er and N in the compound is only 0.1 Å longer than the
sum of the covalent radii of Er (1.57 Å) and N (0.75 Å). The Er ions in ErN are trivalent (existing
in the +3 oxidation state), corresponding to an outer electronic configuration for the Er ions of
[Xe] 4f11, with a full f -semi-shell containing seven spin up electrons and an half filled f -semi-shell
containing four spin down electrons. This was verified with all spin resolved approaches imple-
mented in DFTB. The fact that 11 of 12 f -electrons remain strongly localised while the remaining
one is lost is in agreement with the results of Temmerman et al. [154] who predict the existence
of two kinds of f -electrons, localised and delocalised, whose relative numbers change depending on
the RE. All ErN calculations in this work were performed using the rock-salt primitive cell and
a 12×12×12 Monkhorst-Pack k-point mesh [128]. The U -value in the LDA+U approach is not
considered as a free parameter. As discussed in the previous chapter we use half of the value of the
atomic U and J values of the Er 4f shell, which was calculated for the atom using Janak’s theorem,
namely 7.6 eV. This value is consistent with that used in similar simulations [155] and will be used
throughout this work for the Er f -electrons.. The +U potentials are applied only to the f -shells.
We start our ErN characterization with the determination of the lattice parameter. It is interesting
to see how this is influenced by different methods. LDA is known to underestimate the band gap (if
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Figure 3.11: Spin resolved band structure of rock-salt ErN calculated with the DFTB-LSDA (first row),
DFTB-FLL and DFTB-AMF (second and third row) approach.
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present) and the inter-atomic distances of systems with strongly correlated electrons. The LDA+U
approach should improve the description of both. As the LDA-like approach in DFTB already gives
relatively accurate results for ErN, one expects LDA+U to overestimate the ErN lattice constant.
This is verified, even if the difference between LDA and LDA+U is only a few percent of the lattice
constant (see Tab. 3.11). In the same table the values of the bulk moduli and their first derivative
(with respect to the pressure) calculated with different approaches are reported. The values we
have calculated are on average slightly larger than that calculated by Pethukov et al. [150] but
still within the typical error of the DFTB method. We observe that the application of the AMF
and FLL approaches leads to a great improvement in the description of the bulk modulus (and a
small worsening in the description of the lattice constant) while the pSIC approach improves the
description of the bulk modulus without lost of precision in the description of the lattice constant.
The calculated values of the first derivative of the bulk modulus, which is a delicate parameter as
well for the theoretical simulation as for the experiment, are around the experimental value for all
the approaches. While the calculated values of the bulk modulus come closer to the experiment
with the application of orbital dependent potentials, it does not seem to lead to major advantages
in the description of B′. As already mentioned ErN is ferromagnetic in the ground state, and the
results reported here are for this magnetic phase. The L(S)DA-like picture is not adequate for the
simulation of ErN as it shows the narrow bands deriving from the f -states pinned at the Fermi
level, which is incorrect for this material. Orbital dependent approaches like DFTB+U (both in
the AMF and FLL limits) instead find ErN in the FM phase to be a half metal, in agreement with
Aerts et al. [144] and Duan et al. [151] (see Fig. 3.11). As in the previously mentioned works, the
paramagnetic phase has been simulated by the spin unresolved LDA+U approach: in this case in
both the AMF and FLL limits, ErN is then a narrow-gap semiconductor. We do not report band
structures calculated with pSIC here, as this approach is not expected to produce the correct band
structure.

3.3 Summary and conclusions

In this chapter a parameterisation for the simulation of RE doping in GaN in the framework of
the SCC-DFTB method was presented. The parameter set includes the atomic species necessary
for the simulation of the host (Ga, N), of its classical acceptor and donor dopants (C, O) and of a
selection of rare earths (Pr, Eu, Gd, Er and Tm) which have been exploited for the realisation of
color displays or magnetic devices. In the first part of this chapter the parameterisation procedure
is described and the decisions we come to, concerning electrons we consider as valence, compression
radii etc., are justified and discussed. The proposed parameterisation was then tested on different
systems including the metallic phase of gallium and of the rare earths in many different polytypes,
the diamond structure of carbon, the gas phases of oxygen and nitrogen and finally the RE nitrides.
Further data about GaN in the different crystalline phases can be found in the dedicated chapter,
as well as simulations and discussions concerning the intrinsic defects and the “classical” GaN
dopants. Properties like geometries, band structures and elasticity properties were tested against
experimental measurements and DFT calculations showing a remarkable transferability and an
overall good agreement between our simulations and existing data. We observe that in general
DFTB results show a larger (some %) deviation from the experiment than DFT-LDA calculations in
the geometric properties of the investigated systems but are less affected by overbinding problems.
It can be concluded that the properties of the investigated systems show the same qualitative
behaviour, but larger errors than those obtained with full ab initio methods. The accuracy of the
parameters8 and the efficiency of the method allow the investigation of extended systems and the
systematic sampling of many configurations for defect physics and chemistry.

8preliminary results obtained with our parameters have been also presented in Ref. [28].
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Chapter 4

The host: GaN

If we want to understand the mechanisms underlying the RE-related emission from GaN samples,
we need first of all a comprehensive knowledge of GaN itself. In this chapter we therefore review
this semiconductor before we start the investigation of RE point defects in the next one. Firstly
bulk properties such as lattice parameters and cohesive energies are calculated and compared to
experimental values. Then intrinsic lattice defects are investigated. As the luminescence center in
GaN could be related to complexes formed by RE impurities and GaN-defects, it is important to
understand the physics of the latter. This chapter has two main goals, on one side it aims to give a
review of the known properties of GaN (both from the experimental and from the theoretical point
of view) and on the other side it wants to show that the investigated properties are well reproduced
within the DFTB framework.

4.1 The group III-Nitrides

III-V semiconductors and in particular group III-Nitrides (AlN, GaN and InN) have been success-
fully employed for the realisation of devices already in the seventies [156] and are today still basic
materials for optoelectronic devices. The reason for this big interest is due mainly to three factors:

• Group III-nitrides have direct bandgaps ranging from the 0.7 eV [157] for InN (this value is
still argument of debate) to the 6.2 eV for AlN, thus covering part of the UV region, the
whole visible spectrum and the IR region if alloyed (see Fig. 4.1). Together with their bond
strength this property makes group III-nitrides suitable for devices such as full color displays,
data storage devices and color printers.

• Due to their thermal stability group III-nitrides based devices can work properly at room
temperature (in contrast with Si- or SiC-based devices), allowing the realisation of high-
temperature transistors.

• Different group III-nitrides can be alloyed or epitaxially grown in layers as well as on common
substrates, thus allowing band engineering. The direct band-gap of group III-nitrides increases
the optical transition probability and therfore the adsorption or emission rate of photons by
one order of magnitude compared with indirect band-gap semiconductors like SiC.

At standard temperature and pressure group III-Nitrides exist in two polytypes, the hexagonal
α-phase (wurtzite structure) and the metastable cubic β-phase (zinc-blende structure). Nitrides in
the β-phase have physical properties which are even more favourable with respect to the α-phase for
some optoelectronic device applications such as higher electron mobility, easier cleavage and doping
than the hexagonal phase [158]. Thus, cubic group III-Nitrides can be assumed as a promising
material-system for future optoelectronic applications. Cubic materials can be realised by epitaxial
growth on cubic substrates such as GaAs or SiC [159], In recent years, the use of nearly lattice
matched, free standing high quality 3C-SiC (001) substrates has led to substantial improvements
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Figure 4.1: Room temperature bandgap energy versus lattice constants of common semiconductors. Trian-
gles represent semiconductors with hexagonal structure, squares semiconductors with cubic structure. C, Si
and Ge are the only materials in this picture with indirect band-gap, all other materials have direct band-gap.

of the crystal quality of cubic group-III nitrides [160]. For this reason both the α- and β-phases of
GaN will be investigated in this work.

4.2 Brief history of GaN

GaN is by far the most extensively studied semiconductor of all the group III-nitrides, due to its
very important technological applications. Because of the direct and large band-gap and its thermal
and chemical stability already in the year 1970 GaN was considered a very promising material for
the realisation of optoelectronic devices [156], nonetheless it took almost 25 years before scientists
were able to produce the first commercial devices, green- and blue-light emitting diode created in
the Nichia Labs. by the Nakamura group [161]. This delay was due in part to the difficulty to
create good quality crystals and in part to the difficulty to grow p-type doped samples. Lasers
and emitting diodes based on pn-junctions need in fact p-type as well as n-type materials. While
it has never been a problem to produce n-type GaN (as-grown GaN is already n-type), in the ’70
it was not known how to produce the p-type. The first problem was due to the lack of matched
substrates: the widely used sapphire has a lattice constant 15% smaller than GaN and the lattice
matched SiC was too expensive for the commercial production. Today it is possible to produce
in a relatively convenient way hexagonal GaN, using developments of the two-steps process firstly
proposed by Yoshida [162–164]. The problem of p-type doping was instead solved by Akasaki in
the ’80 [165] using Mg as dopant. The mechanisms underlying the p-type doping were successively
explained by Neugebauer and Van de Walle [166], who showed how the hole concentration can
be increased by co-doping with an acceptor (Mg) and a donor (H). During the following years,
luminescent efficiencies improved drastically, which opened new markets for light-emitting devices,
such as vehicle break lights, highway status signs and traffic control signs: this on turn pushed
the research even further. Nowadays blue and ultraviolet (UV) laser emitting diodes (LEDs) have
already been realised and commercialised. Other examples of modern GaN-based applications are
UV detectors and microwave power and ultra-high power switches. Next-generation DVD players
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a
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c

Figure 4.2: Conventional cells of β-GaN (zinc-blende structure) and α-GaN (wurtzite structure). a and c
are the lattice parameters and u is the internal lattice parameter. In the pictures the Ga atoms are white
and N atoms black.

and recorders as well as optical data-storage systems for computers will be GaN-based devices too.
The change from currently available red or infrared (680-780 nm) laser diodes to the GaN-based
lasers with a wavelength of 380-450 nm will significantly increase the optical-storage density up
to six times the present capacity. Recently the rare earth ions became attractive candidates for
optical GaN-based devices in the visible region, since these elements exhibit sharp optical emission
lines (which are however almost independently from the host material). Moreover, due to the wide
bandgap of GaN, luminescence is not quenched at room temperature as it happens for example
in silicon. From the 1993, year of the first announcement of a GaN based LED, there has been a
rapid increase in the Research and Development (R&D) field. In the 1999 the GaN-market had
been grown from zero to $ 400 million, by the year 2003 they were already $ 1.35 billion and it is
expected a further increase of $ 400 billion to this year (2007) [167].

4.3 Properties of GaN

GaN is a semiconductor which crystallises in the wurtzite structure at ambient conditions. It
is a tetrahedrally coordinated III-V compound characterised by a chemical bond which can be
regarded as partially covalent and partially ionic. GaN possesses two unique properties: a large
saturated electron drift velocity and a large direct band gap. In this section a brief overview of the
most relevant structural, thermal, electrical and optical properties of GaN can be found. A more
extended discussion can be found in the Ref. [161, 168].

4.3.1 Structural properties

As previously mentioned, the GaN stablest phase under ambient conditions is the hexagonal wurtzite
structure, called α-GaN, space group C4

6v. The GaN cubic phase, called β-GaN has the zinc-blende
structure with space group T 2

d and is only slightly higher in energy [169, 170]. Both structures
are represented in Fig. 4.2, the actual values of the lattice parameter can be found in the Tab. 4.1
and 4.2. Under high pressure conditions (50-70 GPa) GaN undergoes a structural phase transition
to the rock-salt structure, which is favoured because of its high ionicity. No transition to the zinc-
blend phase has been observed to date. In this work only the structures for which RE-related
luminescence has been reported, i.e. the α- and β-phases are investigated. Wurtzite GaN is more
common than the zinc-blende GaN as it is slightly more stable and easier to grow, but the latter
has recently attracted a lot of attention due to its advantages with respect to hexagonal GaN,
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namely a somewhat lower value of the bandgap and an even higher saturated electron drift velocity.
Wurtzite GaN is anyway an excellent host for impurities: a defect density of 1010 cm−2 can be
reached, which is extremely high if compared to other semiconductors like Si (102 cm−2) or GaAs
(104 cm−2). At the same time the lattice location of the defects in wurtzite structure is quite
complicate to investigate: this is due to the high number of possible interstitial site with different
characteristics typic for the hexagonal environment. Some possible sites in β-GaN that should be
considered in a simulation are indicated in Fig.4.3.

The wurtzite structure

The wurtzite structure (crystal number 168) is typical for GaN and many other semiconductors
characterised by the sp3-hybridisation (III-V and II-VI). This structure can be thought as two
interpenetrating hexagonal close packed (HCP) sub-lattices, each with one type of atoms (Ga or
N), offset along the c-axis by 3/8 of the cell height. The axis perpendicular to the basal planes is
usually labeled as the c-axis (see Fig. 4.2). In each unit cell there are two atoms of each type: one
possible description of the wurtzite structure is given through the lattice vectors:

Primitive vectors:


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The parameter a and c are the lattice constants, while u is a dimensionless internal lattice parameter.
The basis vector d1 and d2 are occupied by an atom type while d3 and d4 by the other. Each
atom is surrounded by an almost regular tetrahedron of atoms of the other type. This tetrahedron

is regular if c
a =

√
8
3 = 1.633 and u = 3

8 = 0.375. For β-GaN we have c/a=1.625 and u = 0.375.

The zinc-blende structure

The cubic counterpart of the wurtzite structure is the zinc-blende structure (space group F43m,
crystal number 216), which is also typical for III-V and II-VI semiconductors with sp3-hybridisation.
The zinc-blende structure can be thought as two interpenetrating FCC-lattices and is mathemati-
cally described as a cubic face centered lattice with a basis of two atoms:

Primitive vectors:
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)
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Basis vectors:
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

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0, 0, 0

)
(Ga)
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,

a

4
,

a

4

)
(N)

The lattice positions d1 and d2 are of course occupied by atoms of different type. The coordination
number of the atoms in the zinc-blende structure is four, i.e. each atom is surrounded by four atoms
of the other type in a tetrahedric configuration with the first neighbours at a distance of a

√
3

4 . Note
that if the basis is occupied by atoms of the same type one has the diamond structure examined in
the previous chapter. The equilibrium structure of both wurtzite and zinc-blende GaN are obtained
in this work by minimising the total energy with respect to the primitive cell volume V . As can
be seen in the Tab. 4.1 and Tab. 4.2 the lattice parameters calculated in this work are in very
good agreement with the measured ones (the deviation from the experiment is of 1.2% up to 2%
depending on the basis set used) and are almost as precise as the DFT-LDA values (reported in
the same tables).

4.3.2 Thermal and thermodynamic properties

The thermal properties of GaN (like thermal expansion) have not been investigated in this work and
we limit ourself to report data from the literature. Moreover, thermodynamic properties like bulk
modulus and cohesive energy have been calculated and are reported in the following. The thermal
expansion of wurtzite GaN has been studied in the temperature range of 300-900 K by Maruska and
Tietjen [171]. They reported a linear change with temperature for lattice constant a, with a mean
coefficient of thermal expansion of ∆a/a = 5.59 · 10−6 K−1 across the entire temperature range.
Meanwhile, the expansion of the lattice constant c shows a super-linear dependence on temperature.
The mean coefficient of thermal expansion parallel to the c−axis is ∆c/c = 3.17 · 10−6 K−1 and
∆c/c = 7.75 · 10−6 K−1 for the temperature ranges 300-700 K and 700-900 K respectively. The
Debye temperature (θD) of wurtzite GaN was calculated to be θD À 600 K [172]. The bulk modulus
is defined as:

B(T, P ) = −V
(
∂P

∂V

)

T

(4.1)

and its first derivative with respect to the pressure is defined as:

B′ = − ∂

∂p

(
V

∂

∂V
P (T, V )

)

T,P=0

(4.2)

In this work they have been calculated for both GaN phases by fitting the energy-volume curves
to the Murnaghan equation of state (Eq. 3.1). Calculated and measured values are reported in
Tab. 4.1 and Tab. 4.2. The agreement of experimental and calculated data is surprisingly good,
clearly beyond the standard DFTB accuracy in the calculation of elasticity properties [114]. The
DFTB description of the GaN bulk modulus in both phases is as accurate as the DFT-LDA. The
cohesive energy is by definition the energy necessary to separate the crystal in its constituent parts.
This energy depends on what the constituent parts are considered to be. They are generally (and
also in this work) taken to be the individual atoms of the chemical elements out of which the solid
is composed:

EGaN
coh. = EGaN−Bulk

tot. − EGa−atom
tot. − EN−atom

tot. (4.3)

where EGaN−Bulk
tot. , EGa−atom

tot. and EN−atom
tot. are the total energies of GaN-bulk and of the Ga and N

free atoms. The atomic spin-polarisation was explicitly included in the calculation of the cohesive
energy: we used the values from Zoroddu [124], -2.89 eV for N and -0.134 eV for Ga. We observe that
DFTB results are affected by over-binding problems like DFT-LDA (Tab. 4.1 and Tab. 4.2), almost
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Figure 4.3: The most important high symmetry interstitial sites in α-GaN. Nitrogen atoms in the perfect
crystal are represented by blue circles while gallium atoms are white (left hand side) or black (right hand
side. Interstitial sites (white circles, right hand side), are labeled with their conventional names: BC-c and
BC-o for bond center within and off the c-axis, AG-o, AG-c AN-o and AN-c are the Ga and N anti-bonding
sites, HG and HN are the hexagonal sites, O stands for octahedral and T for tetrahedral. HG, HN and O
sites are centered in the hexagon spanned by the Ga and N c-axis rows and posses trigonal symmetry (C3v).

independently from the used basis. Experimentally the GaN hexagonal phase is found to be the
most stable, while DFT-LDA calculations [173] reveal that the difference in energy between the two
phases is less than 20 meV. This very small difference is within the intrinsic DFTB error, so that
the two phases have to be considered energetically degenerate within the DFTB representation.
We do not think that this negatively influences our simulation of RE point defects in GaN (see
discussion at the end of this chapter).
When the constituent parts in Eq. 4.3 are considered the solid phases of Ga and N we have the
formation enthalpy of the solid at T=0 K, defined as:

∆HT=0
f (GaN) = EGaN−Bulk

tot. − EGa−bulk
tot. − EN−bulk

tot. (4.4)

where EGaN−bulk
tot. , EGa−bulk

tot. and EN−bulk
tot. are the total energies of the bulk phases of GaN, Ga and

N respectively. Calculated and experimental values can be found as usual in Tab. 4.1 and Tab. 4.2:
even in this case DFTB turns out to be almost as precise as DFT-LDA calculations.

4.3.3 Electrical properties

The control of the electrical properties has been and remains the main obstacle for device fabrication.
As-grown GaN samples have been observed to be n-type semiconductors with a relatively high
electron concentration, even for the best samples without intentional doping. The big differences in
the electrical characteristics of GaN reported in the literature reflect probably the crystal quality
and purity of the materials used [174]. The high carrier concentration however implies the presence
of donors even in as-grown samples. Since no impurities have been present in sufficient amounts to
account for the carriers, this high concentration is generally believed to be caused by native defects
and more specifically by nitrogen vacancies. Recently it was shown that N vacancies have large
formation energies in n-type material [175]. This makes it of course unlikely that N vacancies are
formed in the large quantities necessary to explain the observed carrier concentration. This issue
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Table 4.1: Structural and electronic properties of β-GaN (zinc-blende). All the distances are expressed in

Å, the energies in eV and bulk moduli in Mbar. Elasticity properties are calculated in this work fitting the
Murnaghan equation.

Reference Method Valence a Bandgap B B′ Ecoh ∆HT=0
f

This work DFTB s, p 4.43 4.21 1.73 4.8 -10.82 -2.06
This work DFTB s, p, d 4.55 4.06 1.71 3.7 -10.90 -
[176] DFT-LDA s, p, d 4.46 2.15 2.02 4.3 - -
[170] DFT-LDA s, p 4.42 1.48 1.73 3.6 - -
[124] DFT-LDA s, p, d 4.45 - - -10.98 -1.69
[124] DFT-GGA s, p, d 4.54 - - -9.25 -1.10
[169] DFT-LDA s, p - 2.1 - - - -
[169] DFT-GW - 3.1 - - - -
[127] DFT-LDA s, p 4.38 2.35 1.97 4.5 -11.01 -0.50
[127] DFT-LDA s, p, d 4.52 1.76 1.88 4.4 -10.38 -1.22
[127] DFT-GGA s, p 4.43 2.01 2.13 4.4 -9.93 -1.28
[127] DFT-GGA s, p, d 4.60 1.39 1.66 4.1 -8.52 -0.62
[174] Exp. 4.52 3.41 1.73 3.7 -8.96 -1.20

is shortly investigated in the following. Currently it is assumed that the carriers are provided by
impurities like O or Si which contaminate the samples during the growth.

Electrical doping

The goal of electrical doping is to modify the conductivity of the semiconductor, by dopant im-
plantation or implantation isolation. With the dopant implantation electrically active n- or p-type
dopants are introduced to increase the free carrier concentration, while with the implantation isola-
tion highly resistive layers are produced by implantation of various elements, which create mid-gap
levels that trap electrons and holes. As seen in the introduction the production of n- or p-type
GaN is necessary to produce pn-junctions. As grown GaN is typically n-type material with an high
free carrier concentration, which makes the production of p-type GaN difficult. Different donor and
acceptor dopants have been already used to achieve respectively n-type or p-type doping. Exam-
ples of donor impurities are Si [177] and O [178], while C [179], Mg [177], Be [180], Zn [180] and
Ca [178, 180] are used as acceptor dopants.

4.3.4 Optical properties

Optical properties are probably the most investigated properties of GaN, because GaN shows its
great potential specially as light emitter. The large direct bandgap allows efficient light emission
and in the literature can be found many reports about luminescence from GaN-based samples.
Maruska [171] was the first to accurately measure the bandgap energy at room temperature for the
wurtzite structure. This transition is measured between the uppermost valence band states and
the lowest conduction band minimum. The band gap of GaN in the native DFTB approximation is
almost twice the experimental band gap, due to the minimal basis used in this approach. Of course,
as one of our main goals is the description of the localised defect-related levels in the band gap we
cannot find such a description of the band gap satisfactory. It is important to note here that also
DFT-LDA calculations with a more expanded basis set suffer from a gap error, underestimating
the band gap of semiconductors considerably (in the case of GaN a value typically around 2.2 eV
is found instead of the experimental value of 3.5 eV). However, the at first view disadvantageous
parameterisation needed in the DFTB approach allows here to correct the LDA gap error before the
defect calculation: in this work we adjust the band gap to a value close to the experimental value by
slightly modifying the on-site energy of the s-shells of nitrogen. This does not affect the description
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Figure 4.4: First Brillouin zones with the highest symmetry lines of (a) face-centered cubic (zinc-blende
structure) and (b) hexagonal lattice.

of the other properties of GaN, as we show in the following. This correction is important, because
the value of the band gap is crucial for correct description of the optical properties. The calculated
band structure of wurtzite and zinc-blende GaN are shown in Fig. 4.5. Both phases have a direct
band gap, with valence band maximum and conduction band minimum located at the Γ point of
the Brillouin zone. The Brillouin zones for face-centered cubic (FCC) lattice and hexagonal lattice
are shown in Fig. 4.4. The theoretical band gap is calculated using the energy difference between
the highest occupied eigenvalue and the lowest unoccupied eigenvalue. In β-GaN there is a single
conduction band with Γ7 symmetry and three valence bands which are non-degenerate. The top
of the valence band is split by the crystal field and by the spin-orbit coupling into three bands,
two with Γ7 symmetry (called light-hole and spin-orbit splitting band) and one with Γ8 symmetry
(called heavy-hole). In this calculation, we do not include spin-orbit coupling, therefore the spin-
orbit splitting is not seen in the band structure. However, the splitting due to the crystal-field is
found to be of few meV (this can be hardly distinguished in the picture). The experimental values
lie in the range of 10-25 meV [174]. With a bandgap of about 3.5 eV, both wurtzite and zinc-blende
GaN are situated in the UV region as can be observed from Fig. 4.1: on the left hand side of the
same picture, can be found the more common semiconductors like Si, Ge and GaAs with a much
lower bandgap energy.

Yellow luminescence

The general term ”yellow luminescence” in GaN refers to a broad luminescence band centered
around 2.2 eV. This band is a universal feature of GaN, as it has been observed as well from bulk
GaN as from GaN-layers grown with different techniques. The intensity of the yellow luminescence
varies from sample to sample and almost vanishes in samples with very good crystal quality. In order
to explain the observed PL Ogino and Aoki [181] proposed a model in which the luminescence is due
to a transition between a shallow donor and a deep acceptor level: this model has been confirmed
by different experiments but is not clear which defects, impurities or complexes play the role of the
shallow and deep levels. The origin of the yellow luminescence is still argument of debate, even if
today gallium vacancies appear to be the most likely source, either in isolated form or in a complex
with an impurity [182]. This issue is addressed later on in the section regarding Ga vacancies.

Red luminescence

Besides the yellow luminescence also red luminescence (a band centered at 1.8 eV) has been observed
from C-doped (cubic) GaN [183] and Mg-doped GaN [184]. The red luminescence has been related
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Table 4.2: Structural and electronic properties of α-GaN (wurtzite). All the distances are expressed in Å,
the energies in eV and bulk moduli in Mbar. Lattice parameters and elasticity properties are calculated in
this work fitting energy-volume curves to the Murnaghan equation of state.

Reference Method Valence a c Bandgap B B′ Ecoh ∆HT=0
f

This work DFTB s, p 3.142 5.105 4.27 1.71 5.1 -10.825 -2.06
This work DFTB s, p, d 3.226 5.242 4.16 1.69 3.6 -10.894 -
[169] DFT-LDA s, p - - 2.3 - - - -
[169] DFT-GW - - 3.5 - - - -
[170] DFT-LDA s, p 3.126 5.119 1.63 1.90 2.9 - -
[124] DFT-LDA s, p, d 3.131 5.104 - - - -11.00 -1.69
[124] DFT-GGA s, p, d 3.199 5.227 - - - -9.27 -1.12
[127] DFT-LDA s, p 3.133 5.179 2.20 2.17 5.9 -11.03 -1.80
[127] DFT-LDA s, p, d 3.196 5.213 1.60 1.87 5.4 -10.40 -1.25
[127] DFT-GGA s, p 3.191 5.211 1.90 1.84 4.8 -9.31 -1.15
[127] DFT-GGA s, p, d 3.252 5.298 1.27 1.62 4.1 -8.54 -0.64
[135] Exp. 3.180 5.185 - - - - -
[174] Exp. 3.189 5.179 3.45 1.88 4.3 -9.06 -1.15

to recombination processes involving the gallium vacancies and the (intentional or unintentional)
doping with C or Mg.

Optical doping by RE-ion implantation

GaN is an ideal candidate as host for optical dopants because of its thermal stability and especially
because of its large and direct bandgap. Pankove and co-workers [185] studied already in the 70s
luminescence from 35 different species implanted in GaN, accurately reporting luminescence lines
where present. They remarked that the implantation induced damage plays a crucial role, since
it is detrimental for the luminescence. Numerous studies [186] have already been performed to
investigate the influence of implantation damage from various elements on the luminescence of
GaN. The group of elements which has recently caught the attention of many researchers are the
rare earths, the main subject of this work. As seen in the first chapter, they are characterised
by very sharp optical transitions in the visible and infrared regions, almost independent from the
host material. This makes them extremely suitable for optoelectronic devices. Literature reports
of the implantation of Ce [187], Pr [187–191], Nd [192, 193], Sm [194, 195], Eu [188, 196], Gd [197],
Tb [198, 199], Dy [187, 200], Ho [194], Er [201–205], Tm [196, 200, 206], Lu [187] and Yb [207].

4.4 The simulation of GaN

The simulation of GaN is a challenge for theorists. The application of established calculations
schemes like the local or gradient corrected density approximation (LDA/GGA) of the density
functional theory to defects may be problematic. As discussed in Ref. [175], there are certain
shortcomings which could become critical if describing intrinsic defects in GaN: DFT calculations
suffer from an underestimation of the fundamental band gap. This leads to large uncertainties when
interpreting the Kohn-Sham eigenvalues in the band gap as actual defect levels. Due to the drastic
band gap error of more than one eV, the situation is specially critical in case of GaN. The Ga 3d
electrons are an additional complication. It has been argued that the explicit treatment of these
states in the valence is necessary for taking their hybridisation into account [111, 173]. On the other
hand including the 3d in the valence means to consider ten more electrons per Ga-atom, which makes
the calculations with supercells containing hundreds of Ga atoms much more demanding. Besides,
LDA places the d states too high in energy (degenerate with the 2s band of the nitrogen atoms in
contrast to their actual positions as determined by X-ray measurements [208]. This results in an
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Figure 4.5: Left: calculated band structure of hexagonal GaN. Right: Calculated band structure of cubic
GaN. The band structure of the wurtzite GaN shows its typic features: starting from the top of the figure
can be recognised the conduction band deriving from Ga p- and N s-electrons, the valence band with Ga s-
and N p−character and, at the bottom, a band originating from the N 2s-states. The band structures were
calculated at optimised geometries for both structures. For a comparison see [169].

artificial hybridisation and pushes up the valence band maximum, further decreasing the already
underestimated band gap. This effect can be clearly observed in the values reported in Tab. 4.1 and
Tab. 4.2. It is thus of essential importance to consider the effect of band gap errors on the calculated
GaN defect properties. This problem can be tackled in semi-empirical approaches adjusting the
band gap to the experimental value like we did in this work (see Sec. 4.3.4). To decide whether
the Ga-3d shells have to be treated as core or valence states, we calculated structural and cohesive
properties of bulk GaN using parameters treating Ga 3d as core and as valence states. We found
that including the d-electrons in the atomic core does not substantially affect the DFTB description
of GaN and therefore decided to treat only s and p orbitals as valence states. The band gap error
is only one short-coming of DFT in the local density approximation and its gradient extensions.
Another problem concerns the spurious self-interaction that becomes more critical with increasing
electron localisation. This artificial self-interaction occurs partially also in hybrid functionals, due to
the remaining local contribution to the exchange and correlation functional that amounts typically
to about 75% [209]. Therefore, electrons in defect states may delocalise over too many atoms, in
order to reduce the artificial Coulomb repulsion. In some cases this may lead to wrong structures
with artificially enlarged symmetry.

4.5 Defects

Reference [175] provides a recent and comprehensive review of the state-of-the-art in first princi-
ples calculations of intrinsic and dopant defects in GaN. Several defects in GaN show properties
which are strikingly different from more classic semiconductors like Si and GaAs. These properties
can be explained with the big mismatch in the covalent radii of Ga and N. Among GaN intrinsic
defects the vacancies are relatively known systems and are likely to be formed due to their sta-
bility (low formation energy) [210]. Self-interstitials and anti-sites are instead high-energy defects
and thus, judging from pure formation energies, unlikely to occur during growth conditions near
thermal equilibrium. However, they can be formed under non-equilibrium conditions, for instance
by ion-implantation or electron irradiation. To check the DFTB representation of point defects
in GaN we investigate in this section known systems like the isolated Ga and N vacancies in α-
and β-GaN, which we consider representative for the class of intrinsic defects in GaN and C and
O substitutionals, which we consider to be representative for the class of standard acceptor and
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donor dopants respectively. All the results shown here were calculated with spin-polarized DFTB
calculations. The spin configuration which minimizes the total energy was determined and used in
each case. 512(256)-atom supercells of hexagonal GaN containing only one defect or impurity1 were
relaxed within the Γ-approximation till the residual forces were lower than 10−4 eV/Atom. At this
distance defects in neighboring cells can be considered not interacting. The charge transition levels
are calculated with the Janak-formalism described in the second chapter. For each investigated
system the position of the highest occupied orbital was calculated for occupation numbers going
from 0 to 1 with a step of 0.1, i.e. in 11 different points. The position of the transition levels is
given with respect to the valence band maximum. Since the VB edge in a supercell approach is not
easy to determine, an error bar of about 0.05 to 0.1 eV is induced. To analyse the linearity of the
Kohn-Sham levels the norm of the residuals (or mean square deviation) between a linear fit and
the calculated values is used:

∆ =
1
n

√√√√
n∑

i=0

{ε(xi)interpol. − ε(xi)calc.}2

where xi = (0.0, 0.1, . . . , 1.0), εcalc. and εinterpol. are the calculated and interpolated positions of the
one-particle levels. Since the mean square deviation depends on the magnitude of the eigenvalues,
the ∆ corresponding to different states are not readily comparable. We therefore introduce the
deviation D

D =
∆
α

(4.5)

as measure of the linearity, where the norm of the residuals is divided by the slope α of the
corresponding state.

4.5.1 Nitrogen vacancies

Nitrogen vacancies are a system which is still under debate at the time this work is being written.
The electronic structure of such defects calculated by Jenkins et al. [211, 212] at the end of the 80s
with a tight-binding approach has been widely used to interpret the experimentally observed defect
levels. Successively, in the middle of the 90s, Neugebauer et al. stated that in n-type GaN the VGa

dominate and the isolated VN have such an high formation energy (4 eV) that cannot be formed
in concentrations high enough to be responsible for the n-type doping (DFT-LDA) [182]. Recently
Nieminen and co-workers found with a similar ab initio calculation scheme that N vacancies should
be the dominant defect in GaN independently from the position of the Fermi energy within the
band-gap [210]. In the following we give the DFTB representation of the isolated VN both in
hexagonal and cubic GaN.
Removing one N-atom from the lattice results in three electrons which are no more involved in
the Ga-N bond and are distributed in a doubly occupied a1 state and a t2 state (a1 + e) hosting
one electron. Theoretically the VN can be formed in all charge states between +3 and -5: the
first case would happen when the three electrons are removed and the second when the t2 state is
completely filled with extra electrons. Practically not all of these states are allowed, because not
all the created localised states lie in the band-gap of the ideal crystal. The nitrogen vacancy in
GaN is discussed frequently in the literature as giving rise to negative-U transitions. Van de Walle
et al. [175, 182] calculated a (3+/+) transition to take place around 0.5 eV, a value that based on
increased supercell sizes was later corrected by the same authors to a value somewhat closer to the
VB maximum (around 0.3 eV). Only recently, Nieminen and coworkers [210] claim the existence of
transitions into negatively charged states. Accordingly, a (+/-) negative-U transition takes place
2.46 eV above the valence band edge. We simulate here all charge states between -5 and +3, both
in wurtzite and zinc-blende GaN. The one-particle levels within the band gap are plotted at the
Γ-point for all the charge states between +3 and -3 in Fig 4.6.

1This corresponds to an impurity concentration of ≈0.4% (0.8% for 256-atom supercells) or to a distance between
defects in neighbouring cells of 17.5 Å.
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Figure 4.6: Upper part: possible charge states for the isolated VN in hexagonal GaN, schematic represen-
tation of the one-particle levels in the band gap. Filled circles identify occupied states while unfilled circles
identify empty states. Up and down arrows identify spin up and spin down electrons. Lower part: highest
occupied one particle level as function of its occupation for the different charge states of the isolated VN in
hexagonal GaN. The lines are linear interpolations of the calculated points. Even if the charge transition
ε(-2/-3) is in the band gap, when the vacancy is in the charge state -2 the highest occupied one particle level
is in the conduction band, i.e. delocalised. For this reason we limit us to report the other charge transitions
in this picture.
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Table 4.3: Position of the charge transition and slopes of the function ε(η) = αη +β for different systems.
All the transition are in eV above the valence band. The slope α (in eV) and the deviation D (defined by
Eq. 4.5) have been calculated for the hexagonal phase.

Syst. Method Trans. ε(0.5)(hex) ε(0.5)(cub) Slope Deviation D
ON LSDA (+/0) 3.35 3.35 -1.219 0.006
CN LSDA (0/-) 0.32 0.34 0.103 0.009
VN LSDA (0/-) 2.31 2.35 -0.194 0.005
VN LSDA (+/0) 2.89 3.26 -0.077 0.017
VN LSDA (2+/+) 0.18 0.07 0.039 0.009
VN LSDA (3+/2+) 0.15 0.09 0.014 0.008

Let us start with the neutral charge state (Fig. 4.6 (d)): we have the fully occupied a1-state in the
valence band and the t2 state which is split in an half-occupied a1-state in the band gap and an
e-state in the conduction band. The description of this charge states already presents difficulties
within the DFT-LDA approach, because the localised gap-states reported in the picture are in the
DFT-LDA representation already in the conduction band.
Adding an electron to the system the a1-level in the gap is filled, which lowers its energy (charge
state -1, Fig. 4.6 (c)). This effect is not what one would expect from Coulombic considerations and
is due to the relaxation effects. The relaxation energy of the system has a huge jump from 0.59 eV
for the neutral charge state to 2.59 eV for the negative charge state. Such a important relaxation
is normally associated with the so called negative-U effect, in which one charge state is bypassed.
Adding a second electron to the system (charge state -2, Fig. 4.6 (b)), it will occupy the empty
e-state, which is split in two states that slide into the band gap. Consequently the a1-state which
already was in the gap increases its energy (Coulombic effect). A third electron will finally fill the
a1-state just below the conduction band edge (charge state -3, Fig. 4.6 (a)). It is not possible to
further charge the vacancy, as the additional electrons would occupy the delocalised conduction
band levels and won’t stay localised on the vacancy.
Subtracting an electron from the neutral charge vacancy will result in an empty a1 level in the band
gap (charge state +1, Fig. 4.6 (e)). If we subtract further electrons from the system the occupied
a1-state which was located in the valence band rises into the band gap (Fig. 4.6 (f) and (g)).
Let us now concentrate on the empty a1 state in the band gap in Fig. 4.6 (e): adding an electron
does not change its energy a lot (Fig. 4.6 (d)), while adding a second (Fig. 4.6 (c)) lowers its energy
considerably. It is then energetically more favourable to charge this state directly with two electrons
than with one. For this reason the neutral charge state, corresponding to the a1 state occupied
with only one electron is skipped. It is interesting to note that in this case the slope of the one
particle level as function of its occupation becomes negative, as typical for negative-U transitions.
The corresponding (+/-) transition can be easily calculated as the average of the charge transitions
(+/0) and (0/-) resulting in a value of (2.89+2.32)/2=2.61 eV, in reasonable agreement with the
value of 2.46 eV calculated by Nieminen. The remaining discrepancy may be due to the fact that
our approach provides an empirically corrected gap, thus, leaving the one-particle level in question
deep in the gap, whereas in the ab-initio calculation this level is found artificially close to the too
low lying LDA conduction bands. A similar situation happens for the charge state -2 and the
possible charge states for the nitrogen vacancy are, in the DFTB representation, +3, +2, +1, -1
and +3. The transition levels between these states are calculated at 0.015 eV (ε(3+/2+)), 0.018
eV, (ε(2+/+)) 2.61 eV (ε(+/-)), 3.20 eV (ε(-1/-3)). The charge states +3, +2 and +1 almost give
rise to a negative-U system, as the vacancy in the charge state +2 only can be formed if the Fermi
levels lies in an interval which is only 0.003 eV wide. We notice that if the vacancy is in the charge
state -2 the highest occupied one particle level lays in the conduction band, i.e. it is delocalised.
Even if the charge transition ε(-2/-3) is in the GaN bandgap, the electron which has to be added
to change from the charge state -1 to -2 is actually a conduction electron. For this reason we limit
us to report the other charge transitions in the lower part of Fig. 4.6.
The structure of the nitrogen vacancy changes a lot with the charge states: while in the charge
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Figure 4.7: Left hand side: Possible charge states for the isolated VGa in hexagonal GaN: schematic
representation of the defect levels in the band gap. Filled circles identify occupied states while unfilled
circles identify empty states. Up arrows identify spin up electrons and down arrows identify spin down
electrons, the spin separation is proportional to the unpaired electrons and is exaggerated in the picture for
the sake of clearness. Right: Schematic illustration of the local environment of an oxygen impurity in the
N-substitutional site and its migration (dotted line) to the DX-center.

state +1 the structure shows a (small) outward relaxation and the C3v symmetry, in the charge
states -1 and -3 the relaxation is inward (the effect is more pronounced for the -3 charge state) and
the symmetry is D2d, indicating a Jahn-Teller distortion. The distance between the Ga nearest
neighbours is for the negative states very similar to the equilibrium Ga-Ga distance in bulk α-Ga
and metallic-like Ga-Ga bonds have to be expected. The relaxation pattern calculated here is in
perfect agreement with the one given in Ref. [210]. The relaxation energies calculated for the single
charge states are: 3.11 eV (V3−

N ), 2.41 eV (V2−
N ), 2.48 eV (V−N), 0.59 eV (V0

N), 0.21 eV (V+
N), 0.20

eV (V2+
N ) and 2.2 eV (V3+

N ). Notice the two jumps for the charge states -3 and -1, corresponding
to the negative-U transitions. The situation in zinc-blende GaN is similar and do not deserve a
separate discussion here. The position of the charge transition and other informations concerning
the Janak formalism are reported in Tab. 4.3.

4.5.2 Gallium vacancies

Removing a Ga atom from the ideal GaN lattice results in the lack of three electrons. The five N
electrons which would form a bond with them (dangling bonds around the vacancy) are distributed
in an a1 state (originating from the s-states), filled and in the valence band, and a t2 (originating
from the p-states and divided in a1 + e by the hexagonal field) state with three electrons in the
band gap. This state can host three further electrons and the VGa acts as a threefold acceptor.
Charging the t2 state increases the Coulombic repulsion and heightens the position of this level in
the band gap. The transition states between these charge states calculated at 0.41 eV ε(0/-), 0.47
eV ε(-/2-) and 1.17 eV ε(2-/3-). The jump between ε(-/2-) and ε(2-/3-) can be explained with the
fact that when the defect is triply charged, the a1 state rises in the band gap, increasing the energy
(see Fig. 4.7).
Allowing the VGa in the neutral charge state to relax from the ideal positions results in an outward
relaxation of the structure, i.e. the N atoms get more distant from the position of the missing Ga
than they would be in the ideal crystal. Charging the defect results in an inward relaxation (See
Tab. 4.4). As revealed by the relatively low relaxation energies (0.66, 0.74, 1.04 and 1.58 eV for
the charge state from 0 to -3) the relaxation effects are not particularly important and the vacancy
does not induce a large amount of distortion in the lattice. The jump in the relaxation energy can
again be explained with the presence of the a1 state in the band-gap. In each charge state the
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Table 4.4: Geometry of the isolated Ga vacancies in GaN for different charge states. Units are given in
% with respect to the unrelaxed defect. r‖ is the distance from the vacancy center to the three equivalent
neighbours, r⊥ the distance from the remaining neighbour.

Reference Method Valence -3 -2 -1 0 1 2 3
r⊥ This work DFTB s, p 3.5 2.3 6.3 11.1 9.4 11.9 11.2

[182] DFT-LDA s, p 10 8.3 6.3 3.7 4.1 5.9 7.1
r‖ This work DFTB s, p 2.6 4.1 8.5 9.3 9.7 9.8 10.2

[182] DFT-LDA s, p 4.7 5.2 5.0 3.5 4.1 6.1 7.3

vacancy has the symmetry C3v, i.e. three equivalent nitrogen neighbours have the same distance
from the vacancy center and the remaining is somehow further, directed along the crystal c-axis.
It is interesting to notice that Neugebauer et al. [182] predict a different relaxation path when
the defect is charged, namely an outward relaxation, independently from the sign of the charge.
They explain this fact in terms of electrostatic effects: to reduce the electrostatic interaction the
charged dangling-bonds within the vacancy will move outwards, in order to increase the distance
between them. The dominance of electrostatic effects is consistent with the fact that the outward
relaxation is independent from the sign of the charge: charging the VGa in either directions will
result in an outward relaxation of the neighbouring atoms. Apart from the relaxation path, the
DFT [175, 182, 210] and DFTB calculations are in agreement about the electronic configuration
and the extent of the relaxation. In cubic GaN, Ga vacancies behave in a very similar way, the main
difference is the symmetry of the defect, which remains Td, consistent with the lattice symmetry.
Similarly to VGa in hexagonal GaN the Ga vacancy is characterised by an outward relaxation, which
is partially removed when the defect is negatively charged. The distance of the N-ligands from the
vacancy center is for the charge state from 0 to -3 respectively 8.5%, 6.6%, 4.3% and 1.9% bigger
than the equilibrium Ga-N distance. This corresponds to a relaxation energy of 0.55 eV, 0.64 eV,
0.98 eV and 1.64 eV respectively. The transition levels between the different charge states are again
very similar to the ones found for hexagonal GaN and have been calculated at 0.67 eV ε(0/-), 0.95
eV ε(-/2-) and 1.20 eV ε(2-/3-). Concluding, there are only minor differences in the electronic and
structural properties of the Ga vacancies in hexagonal and cubic GaN and they can be related to
the different symmetry of the two crystal phases.
The charge transition ε(2-/3-) takes place at 1.17 eV (β-GaN) or 1.20 eV (α-GaN) above the valence
band maximum. Optic transitions between this level and the conduction band or shallow levels
would result in an emission at around 2.3 eV. For this reason the gallium vacancy has been indicated
as responsible for the yellow luminescence from GaN. This issue is discussed in the following section.

VGa and yellow luminescence

Gallium vacancies have been related to the yellow luminescence in GaN as they could play the role
of the deep acceptor (as isolated VGa [213] or as complex with O [214] or C [181] impurities) in
the Aoki-model discussed in sec. 4.3.4. In the Ref [175] can be found a thorough discussion, which
we summarise in the following, about the role of the VGa in the origin of the yellow luminescence.
Different experimental and theoretical arguments are given to indicate VGa (either isolated or
complexed) as the responsible for the yellow luminescence:

• It is known that VGa can form complexes with donor impurities (Si, O): while the VGa SiGa

pair has a small binding energy, the VGa ON pair has a fairly large formation energy (1.8 eV
[214]) and can enhance the concentration of Ga vacancies. The electronic structure of this
complex is similar to that of isolated VGa i.e. with a deep level at ECB +1.1 eV that could play
the role of the deep acceptor in the Ogino/Aoki-model. The fact that presence of oxygen can
enhance the concentration of Ga vacancies and therefore the yellow luminescence would be in
agreement with the experimental observation luminescence increases in the neighbourhood of
the sapphire substrate, where the oxygen concentration is higher [215].
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ON

Figure 4.8: Geometry of the substitutional ON in hexagonal GaN. The oxygen atom (in red) lays off-center.

• The presence of both isolated VGa and VGa ON pairs would cause a small shift in the transition
energy and would explain the broadening of the luminescence line. Other factors which
contribute to the width of the line could be strain, close extended defects and Coulomb effects
in the recombination donor-acceptor pairs with varying separations.

• The most evident argument in the association of the VGa to the yellow luminescence is emerged
from positron annihilation measurements [216], which can reveal the presence of Ga vacancies
in the sample. It was found a direct relation between vacancies concentration and lumi-
nescence, providing direct evidence for the involvement of the VGa acceptor levels in the
luminescence.

• Gallium vacancies are more likely to be formed in n-type than in p-type Ga (see the pre-
vious section). It was experimentally observed that the yellow luminescence is suppressed
in p-type Ga [215], while an increase in n-type doping increases the intensity of the yellow
luminescence [217]. These facts are in agreement with the VGa model.

• In Ga rich materials the concentration of Ga vacancies is of course very low. The fact that
the yellow luminescence is suppressed in MOCVD-samples grown under high gallium flow
rate [215] is another evidence of the fact that VGa are directly involved in the luminescence.

It is interesting to observe that the divacancy VN+VGa has attracted a lot of attention because of
its high binding energy (≈ 2.34 eV) [210]. It is still under debate though, if this complex occurs
in appreciable concentrations. While Mattila and Nieminen [210] find the formation energy of this
complex to be lower than the one of isolated VGa independently from the position of the Fermi
energy within the band gap, Van de Walle and Neugebauer [175] do not identify any condition
where both VN and VGa were favourable enough for the formation of the divacancy. This complex,
though interesting, is not investigated here.

4.5.3 Donors in GaN: the substitutional ON

We choose oxygen to be representative for the class of donor impurities in GaN for different reasons.
Oxygen forms simple N substitutionals in GaN, where it acts as a single donor. Oxygen ions are not
extremely different from the N ions they take the place of (rOcov. = 0.73 Å, rNcov. = 0.75 Å) and do
not introduce a lot of distortion in the host lattice. However, according to the DFTB calculations,
in the neutral charge state the oxygen ion does not lay on-site, but occupies an off-center position
(see Fig. 4.8). More precisely it is displaced along the crystal c-axis by 0.59 Å in the direction of the
three equivalent Ga-ligands. This configuration is 0.11 eV more favourable than the configuration
with the oxygen laying on-site. In the positively charged state the oxygen impurity lays on-site
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Figure 4.9: Schematic representation of the defect levels introduced in the GaN band gap by the substitu-
tionals ON, CGa, and CN. Filled circles identify occupied states while unfilled circles identify empty states.
Up and down arrows identify spin up spin down electrons.

instead. Oxygen has one electron more than the nitrogen it substitutes in GaN and form thus
a shallow donor state in the band gap. Besides of its intrinsic simplicity, which makes of it an
easy system to simulate, O in GaN has also real applications in the growth of n-type samples.
Oxygen is indeed, together with Si, an ideal donor in GaN. It has a relatively low formation energy
in n-type GaN (around 2 eV in our calculation) and can be therefore readily incorporated in the
host, as suggested by Neugebauer and Van de Walle [175]. Oxygen is also often present in GaN
samples as unintentional impurity so that the n-type conductivity of bulk GaN has been attributed
to unintentional oxygen incorporation.

In the Fig. 4.9 the possible charge states for the substitutional ON are plotted. In Fig. 4.9 (c)
we see that in the neutral charge state an half occupied localised state is introduced in the band
gap (2.78 eV above the valence band), while in the ionised state (Fig. 4.9 (d)) this level is in the
conduction band and the band gap is free from localised levels. This means that charging the level
it lowers its energy, as characteristic for negative-U systems. Consequently the slope of the curve
describing the position of this level depending from its occupation is negative. This is the classic
behaviour of shallow donors. Summarising, as expected from a group VI element on a group V site
it acts as a single donor. The transition ε(+/0) is calculated at 3.35 eV above the GaN valence
band (see Tab. 4.3) so that the substitutional ON is practically always positively charged. This
is in agreement with all previous investigations. The ionised state does not introduce any major
change in comparison with the isoelectronic substituted atom (see Fig. 4.9). For this reason O
can be considered close to an ideal dopant. In Fig. 4.10 the linearity of the one particle-level with
respect to the occupation is verified. As argued from the small difference of the covalent radii
between substituted specie and dopant, O introduces only a small elastic strain around the defect.
The calculated Ga-O bond distance is 1.94 Å both for the ionised charge state, which is only 1.8 %
bigger than the equilibrium Ga-N bond distance. The Mulliken charges analysis reveals that the
charge residing on the O-impurity is the same for the system in neutral and in the positive charge
state, being the difference of 1.53·10−3 eV. This is a confirmation of the fact that the extra electron
is not bound, is not localised, does not take part to the bond and is a proper free carrier. The small
relaxation energies (0.25 eV for O0

N and 0.26 eV for O+
N) is an evidence for the easy incorporation

of O in GaN. There is almost no difference between ON substitutionals in wurtzite and zinc-blende
GaN, as the magnitude of the relaxation and relaxation energy as well as the electronic structure are
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Figure 4.10: Highest occupied one particle level as function of its occupation for the ON (left hand side)
and CN (right hand side) substitutionals in hexagonal GaN. The dotted lines are linear interpolations of the
calculated points.

the same in both cases. These results are in agreement with previous theoretical studies [175, 218]
and confirm the reliability of the DFTB approach in the simulation of point defects.

DX-center

Under high pressure the oxygen impurities leave the substitutional site and migrate to the off-center
site (see Fig. 4.7, right side), called DX-center [219]. This has as consequence a large outward
relaxation which induces a deep level in the band gap. The oxygen becomes negatively charged
and acts as an acceptor. Once oxygen undergoes the DX transition it behaves as a deep acceptor,
compensating the electrical activity of other donors in the sample and causing the so called freeze-
out of the carriers in the samples under high-pressure. The DX-center though interesting, is not
investigated here.

4.5.4 Acceptors in GaN: the substitutional CN

Due to its small ionic radius (rCcov. = 0.77 Å, rNcov. = 0.75 Å), carbon fits quite well in the nitrogen
site in GaN, where it forms a stable substitutional defect. Previous theoretical predictions found
that in GaN the incorporation of C on a N site is preferred [218]. It has been suggested that doping
with C ions could be a convenient way to increase the hole concentration in GaN [220]. Recent
experimental studies suggested C in the nitrogen site (CN) as an alternative way to Mg in cubic
GaN [221], while its use would be discouraged in wurtzite GaN because of compensation effects
caused by defect complexes such as carbon pairs [222]. From the theoretical point of view there are
different investigations of C in GaN: with tight-binding simulations Jenkins [211, 212] found very
shallow states or even levels resonant with the valence band. Neugebauer and Van de Walle [218]
discussed carbon as the origin of the yellow luminescence from as-grown GaN, Boguslawski [223] and
co-workers performed quantum molecular dynamics to determine the doping properties of carbon
in hexagonal GaN and Gorczyca [224] and co-workers investigated the properties of the neutral
carbon impurity in cubic GaN using LMTO-ASA Green function methods. Finally Ramos and
co-workers [225] investigated carbon related shallow and deep levels in group III nitrides in huge
supercells by means of DFT and particular ultrasoft pseudopotentials. All these studies agree that
the substitutional CN gives rise to a shallow acceptor levels, which we now investigate with the
DFTB approach.
In Fig. 4.9 (right) the possible charge states for the substitutional CN are reported: carbon is found
as expected to be a single acceptor in GaN. The transition ε(0/−) is calculated at 0.32 eV (0.34 in
cubic GaN), meaning that the impurity is practically for each position of the Fermi level within the
band gap in the ionised state. In Fig. 4.10 the linearity of the one particle-level with respect to its
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Figure 4.11: Formation energy of native point defects (VN and VGa) and donor impurities (ON and
CGa) in GaN for different values of the Fermi energy. The conduction band maximum was chosen as zero
of the energy scale. The slope of the curves indicates the charge state, while kink in the curves indicate
transitions between different charge states. Nitrogen rich conditions and equilibrium with CN and NO gases
are assumed.

occupation is verified: the small slope of the one particle level reveals its crystal-orbital nature. The
strain introduced by the CN substitutional in GaN is marginal: a small inward breathing relaxation
is observed with the Ga-C bond only 0.58% smaller than the Ga-N bond distance in bulk GaN.
The relaxation is the same for the neutral and for the negative charge state, evidence that the
introduced hole is not localised on the C impurity. Relaxation energies are 0.14 eV and 0.17 eV
for the two investigated charge states. The formation energy of the CN substitutional in hexagonal
GaN in N-rich conditions has been calculated to be 2.07 eV. This value is low compared to the
formation energies of the other investigated defects and means that, if carbon is present during the
crystal growth, it will be easily incorporated in the host. Once again no major difference is found
between zinc-blende and wurtzite GaN. The results presented here are in overall good agreement
with the values reported in the literature [218, 223, 224].
Carbon could in principle also act as a donor in GaN if incorporated at the Ga site. The formation
energy for this configuration is anyway much higher than the formation energy of a nitrogen sub-
stitutional, where it acts as an acceptor and the Ga substitutional is very unlikely to happen: for
a review about this defect see Ref. [218]. The donor behaviour of C in GaN is shortly investigated
here (Fig. 4.9) the transition ε(+/0) is calculated at 2.21 eV.

4.6 GaN as host for the rare earths

The intra-f atomic transitions from the RE should be parity forbidden by the Laporte selection
rule. It is empirically known that if the RE ions are incorporated in a (partially) ionic solid they
prefer to occupy the cation site: if this cation site provides an uneven ligand field the selection
rules are relaxed and the 4f −→ 4f transition probability is different from zero. For this reason RE
doped systems excited state lifetimes between 1 µs and 1 ms are observable. In the specific case
of wurtzite GaN, which has an important ionic bonding component, the big majority RE occupy
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a Ga3+ cation site [42] where the lack of inversion symmetry produces strong ligand fields further
increasing the 4f −→ 4f transition probability. This is only one of the advantages of GaN as host
for the rare earths. Even if the host material does not directly influence the wavelength of the
4f transitions, it does have a very strong influence on the radiative transition probability, i.e. the
photoemission intensity. Conventional semiconductors like Si or GaAs doped with rare earth ions
exhibit limited photoemission at room temperature due to low RE solubility and severe quenching
of the luminescence at room temperature. As shown by Favennec et al. [2] comparing different
host materials implanted with Er, the thermal quenching decreases with the bandgap energy of the
semiconductor. Therefore, wide-bandgap semiconductors, such as GaN, are ideal candidates as host
material for the rare earths. The intense light emission from RE doped GaN is at least partially
a consequence of the GaN capability to incorporate a big number of (optically active) lanthanide
ions, in contrast with other semiconductors like Si or GaAs, where high RE concentrations result
in RE precipitation and consequent emission quenching. This capability is somehow surprising,
because the size mismatch between RE and substituted cations (Ga3+) is bigger in GaN than in
other hosts, especially than in II-VI hosts like ZnO or ZnS. Despite this mismatch the RE-N bond
in GaN is very strong: the very short bond length measured e.g. for GaN:Er (Er-N = 2.17Å [14])
is an evidence of the bond strength. In any other known solid the Er-N bond is so short. GaN
can incorporate lanthanide ions without violating charge neutrality: doping with RE3+ in II-VI
hosts like ZnS:Tb requires co-doping with O or F to satisfy charge neutrality and to achieve the
luminescence. Concluding GaN can easily incorporate RE dopants, as attested by the dopant
concentrations of 0.1-1% of the brightest ELDs. As all the lanthanides share the same outer shell
(5p66s2) and therefore the RE-bonding in GaN is very similar. This enables the multicolor capability
devices by simple co-doping with different RE and makes the GaN:RE technology so interesting.
Considering that GaN has also excellent high field transport characteristics and is chemically and
thermally rugged, it is evident that this host is an ideal candidate for the realisation of the displays
cited in the introduction of this work. We do not repeat the effect of RE-dopants in GaN in this
section: for this topic we invite the reader to have a look at the first chapter. The main difference
between hexagonal and cubic GaN as host is the number of possible lattice site. In the hexagonal
lattice there are, besides the substitutionals, various interstitial sites with different symmetry, while
in cubic crystal the site multiplicity is not so pronounced.

4.7 Summary and discussion

In this chapter we reviewed the main properties of GaN both in the β- (zinc-blende) and in the α-
phase (wurtzite), reporting data from the literature and performing calculations in the framework of
the DFTB calculation scheme both for the bulk phases and for point defects. After having examined
the structural, elastic, cohesive and energetic properties of bulk GaN (α- and β-phases) we can
conclude that DFTB with carefully fitted parameters correctly describes these properties. Structural
and elastic properties like lattice parameters and bulk modulus are reproduced in DFTB almost
with the same accuracy of the more sophisticated DFT calculation scheme. In particular we found
that including the Ga 3d electrons in the atomic core does not significantly affect the description
of the material but decreases clearly the computational cost of each calculation. We therefore
decided to treat the electrons in this shell as core electrons, without loss of accuracy. Cohesive
energy and formation enthalpy in the DFTB representation are affected by the same problems
which affect DFT-LDA calculations, namely we found the binding energy to be overestimated by
≈1 eV per atomic formula. One of the shortcomings of the DFTB representation of GaN is that
the wurtzite and the zinc-blende phases appear to be degenerate in energy, because the energetic
difference of the two phases is within the DFTB intrinsic error. This could be a problem if we
would simulate reconstructions or extended defects but we do not think that it influences the
description of RE point defects. Finally we investigated different point defects types, namely Ga
and N vacancies as well as C and O substitutionals both in cubic and hexagonal GaN within the
DFTB approach, and compared the results with recent theoretical simulations and experimental
data finding an overall good agreement. Fig. 4.11 summarises the results of our investigation of
native defects and impurities in GaN. In the picture the formation energy of the selected point
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defects as a function of the Fermi level is shown. The conduction band maximum was chosen
as zero of the energy scale. The slope of the curves indicates the charge state, while kink in the
curves indicate transitions between different charge states. Nitrogen rich conditions and equilibrium
with the two gases nitrogen monoxide (NO) and carbon monoxide (CN, also known as exhaust
gas) are assumed. Throughout this work the formation energies are always estimated in N-rich
conditions, because this is the growth condition which maximises the luminescence from RE-doped
GaN samples. The picture can be compared with the values reported in the review article of
C. Van de Walle and J. Neugebauer about point defects in GaN [175] or in the work of Nieminen
and coworkers [210]. No major difference was found in the structural and electronic properties
of the investigated defects and impurities between the wurtzite and zinc-blende structure. DFTB
offers a satisfactory representation of bulk GaN in the α- and β-polytypes as well as of the intrinsic
and impurities defects. This is the basic requisite for a correct simulation of RE dopants in GaN.
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Chapter 5

Rare earth point defects in GaN

The main goal of this work is a systematic analysis of the rare earth defects in GaN. To understand
which kind of defects may occur in the luminescent GaN samples we have to know how the rare
earth impurities are introduced into the samples. There are mainly two ways to dope solids: in
situ doping, where impurities are added during the crystal growth, and ex situ doping, where the
impurities are introduced in the undoped samples after their growth. The advantages of the in situ
doping are the possibility to control accurately the impurity concentration and the crystal quality
of the doped samples in each phase of the crystal growth. Ex situ doping on the other hand offers
other advantages, like the possibility to avoid surface segregation and residual contaminants as well
as the possibility to introduce an impurity fluence which is higher than the solubility limit. In the
process of ion implantation, the impinging ions will transfer kinetic energy to the host atoms in
several collisions, resulting in the displacement of these atoms from their lattice site if sufficient
energy is transferred. The recoiling atoms may displace other atoms, hence creating a cascade of
atomic collisions. The most common defects caused by the impinging ions are vacancies, inter-
stitials and extended defects such as dislocations or stacking faults. The damage concentration
depends on the implantation temperature, on the structure of the host material but principally on
the implanted ion mass and energy and is therefore supposed to be quite high in the case of the
lanthanide implantation. We have therefore to investigate many different configurations involving
RE impurities, even those which would not occur at equilibrium conditions. Rutherford backscat-
tering and channeling spectrometry (RBS/C), transmission electron microscopy (TEM) and X-ray
diffraction (XRD) are often used to investigate the crystalline quality, the defect formation and
the lattice strain. These techniques revealed, as discussed in the first chapter, that the lanthanides
prefer the Ga lattice site and that a number of different centers is responsible for the luminescence.
Because of the cumbersome number of different defect structures which have to be investigated, we
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Figure 5.1: The REGa substitutionals in hexagonal GaN. As usual Ga atoms are white, nitrogen atoms

black, and Eu, Er and Tm are red, green and blue respectively. The numbers show the bond lengths in Å.
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Table 5.1: Bond lengths in Å and local strain, around the C3v REGa substitutionals in GaN calculated with
DFTB-FLL. The values in the bracket are DFTB-LSDA calculations. The local strain is the ratio between
the length of the three equivalent RE-N and the corresponding bulk GaN bonds.

RE-N1 RE-N2 RE-Ga1 RE-Ga2 Strain
(3 Bonds) (1 Bond) (9 Bonds) (3 Bonds)

Pr 2.18(2.20) 2.17(2.18) 3.39(3.41) 3.26(3.35) 12.6%
Eu 2.27(2.29) 2.24(2.28) 3.45(3.39) 3.30(3.34) 16.2%
Gd 2.25(2.25) 2.24(2.23) 3.34(3.33) 3.28(3.28) 16.2%
Er 2.22(2.17) 2.19(2.16) 3.40(3.33) 3.31(3.30) 12.6%
Tm 2.18(2.15) 2.15(2.14) 3.37(3.33) 3.28(3.28) 10.6%

divide our study in three parts, reported here and in the next two chapters: these parts deal with
RE defects involving only the RE impurity, complexes formed by the RE impurity and host-related
intrinsic defects and finally complexes formed by the RE with other impurities. In this chapter
we report the results of the investigation of the simplest rare earth defects, the substitutionals
and the interstitials. Differences between defects in hexagonal and cubic GaN are examined and
the role of the f -electrons in the structural and electronic properties of the system is discussed.
For each substitutional and interstitial of each rare earth many different physical quantities are
calculated and taken in account in order to get a well defined picture of the defect characteristics.
Different charge states and spin configurations have been investigated: here we report only the
characteristics of the favoured spin configuration for each charge state. The analysis of each defect
is divided in two parts: one concerning its structure, i.e. its geometry, where symmetries and bond
lengths in the neighbourhood of the RE are examined, and one concerning its energetic, where a
collection of physical quantities like the band structure (BS), density of states (DOS), electronic
configuration, formation energy, binding energy (of the RE with other defects), charge distribution
and charge transition levels are examined. The calculated values are reported in tables where they
are divided after RE. This allows a direct comparison of the different lanthanides and underlines
their similarities and differences. The results obtained with our calculations are compared with
experimental measurements and other ab initio calculations we carried out in order to check the
validity and portability of our calculation scheme. At the end of each section the specific features
of each defect or complex are examined and discussed, as well as the differences between the LDA,
LSDA and LSDA+U description of the defects. The easiest RE defects we can think about are the
one involving the isolated RE, e.g. with the RE taking the place of an atom of the host (Ga or N)
or placing itself between the atoms of the host, in a so called interstitial position.

5.1 Substitutionals

5.1.1 The substitutional REGa

REGa substitutionals are the simplest stable lanthanide defects in GaN and have been investigated
experimentally and, in some extent, also theoretically [18, 57]. Because of its application in optical
fiber communications the most studied rare earth is Erbium. Er:GaN based displays [13] have
stimulated many experimental attempts to understand [14] the mechanisms underlying the emission
from Er doped samples and to exploit [226–228] and improve [229, 230] the emission itself. From
experimental studies we know that Er ions in GaN, prefer the Ga position [42], occur in 3+ valence
state [13] and posses C3v symmetry [59] with relatively short distances to the surrounding N-
ligands [46]. The most interesting and puzzling rare earth is Europium. In the literature can be
found contradicting reports about its valence state (even if Eu ions in GaN are mostly found to be
trivalent like other RE (Eu3+), in some work Eu is found to have charge state 2+), and its lattice
position (Eu is indicated by RBS data [188] to be displaced from the ideal Ga lattice site).
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CHAPTER 5. RARE EARTH POINT DEFECTS IN GaN

Table 5.2: Bond lengths in Å and local strain around the C3v Eu3+
Ga and Er3+Ga substitutionals in hexagonal

GaN. The local strain is defined as the ratio between the Er-N2 bonds and the corresponding Ga-N bulk bonds.
The DFTB-pSIC geometries are obtained minimising the total energy and not the forces. For further details
see text and the individual references.

Er-N1 Er-N2 Er-Ga1 Er-Ga2 Strain
DFT-AIMPRO [57] 2.14 2.11 - - -
DFT-ABINIT 2.39 2.31 3.23 3.31 -
Exp. [14] 2.17 2.17 3.26 3.26 -
DFTB 2.17 2.16 3.35 3.32 12.1%
DFTB+U FLL 2.23 2.19 3.31 3.40 12.6%
DFTB+U AMF 2.19 2.17 3.29 3.37 12.3%
pSIC DFTB 2.18 2.17 3.29 3.36 12.6%

Eu-N1 Eu-N2 Eu-Ga1 Eu-Ga2 Strain
DFT-AIMPRO [57] 2.21 2.18 - - -
DFT-ABINIT 2.26 2.26 3.01 3.52 -
Exp. [231] 2.5 2.3 3.3 3.3 -
DFTB 2.29 2.28 3.34 3.39 18.3%
DFTB+U FLL 2.27 2.24 3.30 3.45 16.2%
DFTB+U AMF 2.29 2.27 3.32 3.40 17.4%
pSIC DFTB 2.29 2.25 3.32 3.40 17.4%

Geometry

We first discuss the geometry of the defect. Two DFTB-parameter sets have been created for the
simulation of RE in GaN, in one the Ga-3d orbitals are treated as valence and in the other as core.
We report her results obtained including the Ga-3d in the atomic core. Results obtained including
the Ga-3d orbitals do not differ substantially and have been reported in a previous publication [232].
Supercells containing 256 atoms and a 4 × 4 × 4 Monkhorst-Pack k-point sampling were used to
calculate the data reported in the following. The supercells have been relaxed in different spin
configurations to find out the one that minimises the total energy. In hexagonal GaN the charge
neutral substitutional REGa is found to have the C3v symmetry. The rare earth is surrounded by
four N atoms, the one along the crystal c-axis (identified by the label Er-N1 in the Tab. 5.1) being
slightly more distant from the rare earth than the other three (labeled by Er-N2 in the Tab. 5.1).
In agreement with the C3v symmetry the RE second neighbours can be similarly divided into two
groups (called Er-Ga1 and Er-Ga2 in Tab. 5.1). The symmetry is a particularly important parameter
in the investigation of the RE defects, both because it can be measured experimentally and because
it is known that the intensities of intra-f transitions are enhanced by lowering the symmetry. For
example the symmetry difference between Eu and Tb substitutionals in wurtzite GaN is believed to
be the cause of the higher relative luminescence intensity of Eu-doped GaN, as suggested by Bang
et al. [233]. Charging the system with one additional electron introduces minor differences between
the three equivalent RE-N bonds. All the studied RE substitutionals after geometry optimisation
are on-site, even in the case of Eu, which was found, by RBS measurements to be displaced from
the Ga site of 0.2 Å [188]. Our results agree with the suggestion of Filhol et al. [57], that the
experimental data in case of Eu originate from some other defect complex. The calculated geometry
(DFTB-FLL calculations) in the neighbourhood of the substitutional is reported in Tab. 5.1 together
with experimental measurements and other theoretical results. The calculated values are in good
agreement with the experimental measurements and the lattice distortion has values very close to
previous pseudo-potential LDA calculations [57]. It is interesting to observe that in all the cases the
RE-N bond is shortened, in average by 15-20%, compared to the corresponding RE-nitride. This is
the shortest known RE-N bond length. The distortion of the host lattice can be simply explained
with the size of the host atoms. All the RE ions are bigger (both in the neutral and in the +3 charge
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Table 5.3: Reference bond lengths in Å and local strain (defined as before) around the C3v REGa sub-
stitutionals in hexagonal GaN. Experimental data from EXAFS measurements, for more details see the
individual references. The measured distances refer to RE concentration similar to the one simulated with
our calculations. To our knowledge no experiments have been performed to measure the bond distances in
Pr-doped GaN.

Method RE-N1 RE-N2 RE-Ga1 RE-Ga2

Pr [234] DFT 2.30 2.20 3.12 3.39
Eu [57] DFT 2.21 2.18 - -
Eu [231] Exp. 2.3 2.5 3.3 3.3
Eu [234] DFT 2.26 2.26 3.01 3.52
Gd [235] Exp. 2.23 2.23 3.31 3.31
Er [234] DFT 2.39 2.31 3.23 3.31
Er [57] DFT 2.14 2.11 - -
Er [14] Exp. 2.17 2.17 3.26 3.26
Tm [234] DFT 2.51 2.39 3.25 3.36
Tm [15] Exp. 2.19 2.19 3.29 3.29
Tm [57] DFT 2.15 2.12 - -

state) than the Ga ion they take the place of and the proportion of the distortion caused by the
substitutionals reflects the dimension of the dopants. Apart from the relatively small compressive
stress in the neighborhood of the defect (for example Er is a bigger ion than Ga with covalent (3+
ionic) radii of 1.57 (1.03) and 1.26 (0.62) Å respectively) no other effect on the host geometry are
observed. The compressive stress, estimated by the ratio between the RE-N bonds and the Ga-N
bonds in the bulk, is reported in the last column of Tab. 5.1. We notice that in the case of Gd
the DFTB-LSDA and DFTB-FLL geometries do not differ. Gd is in fact the lanthanide for which
the LSDA description is less wrong. Investigating the Eu and Er substitutionals with different
orbital-dependent calculation schemes we can affirm that these do not really influence the system
geometry (see Tab. 5.2). Already the classic LDA formulation of the DFTB approach provides
RE-N bond lengths in good agreement with experimental data. The LDA+U like pSIC (data are
reported here for Eu and Er) implementations lead to small changes only. In other words, relaxing
the structure with or without the contributions of the orbital dependent potentials anyway does
not substantially change the geometry of the system and influences only slightly the bond lengths:
bond lengths calculated with and without the orbital dependent potentials differ at most by 0.05 Å
(in the case of Erbium), corresponding to the 2% of the bond length (see Tab. 5.2). This effect is
in general smaller than the effect due to the size of the supercells: RE-N bond lengths on 72-atoms
supercells are found to be 1% to 2% smaller than in 256-atoms supercells, depending on the RE
(data not reported here). Bond lengths calculated with bigger 512-atoms supercells were instead
the same obtained with 256-atoms supercells. We notice that both implementation of the LDA+U
approach in DFTB+, AMF and FLL substantially lead to the same structure and differ in all the
bond lengths by less than half percent. The pSIC structure was relaxed minimising the total energy
and not the forces by means of the conjugate gradient algorithm, so that the error of the calculation
is higher. Assuming the C3v symmetry of the system the lengths of the three equivalent and of the
not equivalent RE-N bonds were stretched by steps of 0.01 Å, calculating in each step the total
energy. The minimum of the total energy, i.e. the relaxed structure is found by interpolation, as
shown in Fig. 5.4. The formation energy of the REGa substitutionals in the neutral charge state in
N-rich1 conditions has been calculated. Tm substitutionals have the lowest formation energy (4.71
eV), followed in order by Er (6.59 eV) and Eu (8.74 eV). This values and the order agree with the
values reported by Svane et al. [18]. DFTB-LSDA and DFTB-FLL calculated value do not differ
substantially.

1In this work formation energies are always calculated in N-rich conditions. In slight N-rich conditions maximal
luminescence intensity is achieved.
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Table 5.4: f-shell occupation for the REGa substitutional in the neutral charge state in GaN. The occupa-
tions are given in electronic units and are calculated with DFTB-FLL.

Spin Pr Eu Gd Er Tm
Wurtzite Up 2.12 6.01 6.99 6.99 6.98

Down 0.11 0.04 0.06 4.01 5.02
Zinc-blende Up 2.11 5.99 6.99 6.98 6.98

Down 0.11 0.06 0.06 4.01 5.02

Electronic band structure, charge states

In this section we report and discuss the results concerning electronic properties of the REGa

substitutionals. All the REGa are found (both within the DFTB-LDA and the DFTB-LDA+U
approaches) to be trivalent, corresponding to an outer electronic configuration of [Xe] 4fn−1, if n is
the number of f -electrons in the atomic configuration. This means that in neutral super-cells there
is an effective 3+ charge on the RE ion. Generally (exception Gd) the 6s2 electrons and one of the
4f are promoted to the GaN lattice when the substitutional is formed. In the special case of Gd,
which has a very stable half filled 4f shell, the 6s2 and one 5d1 electrons are promoted, i.e. the
total number of f -electrons does not change.
Turning to the band structure of supercells containing a REGa substitutional, we observe that the
f -states at the Γ-point appear in DFTB-LDA like a bunch of narrow localised states within the
GaN band gap and are situated close to the Fermi level, as plotted in Fig. 5.4. This is definitively
a wrong description of the system, as many experiments reveal their localised nature as atomic
multiplet over a broad range of energies [236]. The states in the picture are one-particle levels and
should be not confused with the charge transition levels.
To show how LDA+U influences the description of the system we examine the particular case of
the ErGa substitutional. Concerning the DFTB-LDA+U approach, from now on we report only
results obtained with the DFTB-FLL implementation, as DFTB-AMF results are similar. The
substitutional ErGa is a representative example, because all of the mid-series RE substitutionals
behave in a similar way.
Band structure reference calculations were executed with the ab initio all electron code Wien2k [113].
In Fig. 5.2 the band structures of the substitutional ErGa calculated with DFTB-LSDA and DFTB-
FLL (first row) and LDA/LDA+U using Wien2k (second row) are reported. In LSDA (columns a
and b) the size of the GaN original band gap (3.44 eV for DFTB-LSDA and 2.2 eV for Wien2K)
is not modified by the presence of the substitutional, while in the middle of the gap appear very
localised f -related levels in the spin-down channel (column b). An LSDA analysis reveals how the
f -levels are occupied: 7 up electrons and 4 down in the Er case (2 and 0 for Pr, 6-0 for Eu, 7-0 for
Gd and 7-5 for Tm. The occupations are reported in Tab. 5.4). No difference between the cubic
and the hexagonal phase of GaN is observed.
Turning on the +U potentials (Fig. 5.2, columns c and d), the occupied f -states are pushed in the
valence band and the empty ones in the conduction band, so that no localised levels are left in the
gap. We notice that the agreement between DFTB-FLL and Wien2k-LDA+U is very good. The
Er oxidation state (+3, corresponding to an outer electronic configuration of [Xe] 4f11, with a full
f -semi-shell containing 7 spin up and a half filled f -semi-shell containing 4 spin down electrons)
was verified with all spin resolved approaches implemented in DFTB. The fact that 11 of the 12
f -electrons remain strongly localised while the remaining one is delocalised, is in agreement with
the results of Temmerman et al. [154] who predict the existence of two kinds of f -electrons, localised
and delocalised, whose relative numbers change depending on the RE. The density of state (DOS)
of the same system is reported in Fig. 5.5, where the DFTB calculations appear on the upper
part while the Wien2K reference calculations are reported for comparison in the lower part. Data
reported in Fig. 5.2 and Fig. 5.5 were calculated using smaller 72-atoms supercells.
The changes in the DOS due to the application of the +U potentials are consistent with what is
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Figure 5.2: DFTB (first row) and Wien2K (second row, same computational parameters) simulations of
the band structure of the substitutional ErGa in wurtzite GaN. Spin resolved (spin up (a) and (c), spin down
in (b) and (d)) energy band structure are calculated with LSDA (a) and (b), and LSDA+U (c) and (d). For
the LSDA+U calculations a value of 0.28 H for U-J is used.

observed for the band structure: the f -related peak in the band gap is split in two parts which
are pushed in the valence and conduction band, leaving the GaN band gap free again. A detailed
discussion about the interpretation of this clear gap can be found in Ref. [12] and references there
in. As reported in Fig. 5.5 the DOS calculated with Wien2K and with DFTB are in very good
agreement. In the neutral charge state a simple LDA-like approach where the f -electrons are
treated as core like electrons produces the same results of a more sophisticated approach with a
physical handling of the f -states. In Fig. 5.5 also the DOS calculated with the pSIC approach as
implemented in DFTB is plotted. The pSIC potentials shift occupied states downwards but do not
act on the empty ones. If we apply the pSIC potentials only on the f -shells (similarly to the usual
LDA+U treatment), the shift of the occupied f -states is the same as in FLL (as already expected
by Eq. 2.102 and Eq. 2.103), whereas the position of the unoccupied states remain unchanged.
However, SIC is usually applied to all occupied orbitals, as shown in the second box in Fig. 5.5.
In this case, due to the interactions of all the SIC-corrected states, the splitting between occupied
and unoccupied f -levels is reduced. Furthermore the unoccupied f -states are slightly shifted to
higher energies. REGa substitutionals are found not to influence the size of the GaN band gap,
as expected from isoelectronic impurities. REGa substitutionals do not introduce major changes
in the charge distribution around the substituted atom. The Mulliken charges located on the four
N-ligands are more or less the same observed in undoped GaN. The three equivalent ligands and
the one inequivalent ligands show slightly smaller charge differences with respect to the bulk than
the inequivalent ligand along the wurtzite c-axis. The differences, in electronic units, have been
calculated to be 0.055 (0.065) for Pr, 0.076 (0.086) for Eu, 0.075 (0.080) for Er and 0.039 (0.041)
for Tm. The charge differences are equally divided between the 2s-and 2p-orbitals of N and depend
on the distance to the lanthanide. In the case where the difference with the bulk is more evident
(inequivalent bond Eu-N) the charge difference with respect to the bulk represents only less than
1.5% of the total charge residing on the nitrogen atom. It can be concluded that the Mulliken
charges on the ligands are not heavily affected by the presence of the lanthanide substitutionals.
In Fig. 5.3 the the difference between the total charge of the relaxed supercell containing a ErGa
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Figure 5.3: The ErGa substitutional. Both plots represent the difference between the total charge of the
relaxed supercell and the overlap of single atomic charges. Blue isosurfaces represent regions where the
electronic charges is accumulated while red ones the regions where the charge is taken from. In the left
picture the charge isosurfaces are made transparent to show the atomic positions. As usual N atoms are in
black, Ga in white and Er in green. The red, green and blue sides of the bounding box represent the direction
of the t1, t2 and t3 wurtzite axes.

substitutional and the overlap of single atomic charges is plotted. This picture gives an idea of how
the atomic charge is redistributed when the system is formed. The red isosurfaces, representing
regions where charge is taken from, are localised on the Ga atoms, while blue regions, representing a
charge accumulation are localised on the N atoms in a sp-3 configuration. It can be seen that a small
amount of charge is localised between the atoms, as expected for a covalent solid with pronounced
ionic fractions. A small charge accumulation along the Er-N bonds which is not present in the Ga-N
bonds can be observed. This would indicate that the Er-N bonds have a more pronounced covalent
nature than the Ga-N bonds and would also explain the shortness of the Er-N bonds in GaN:Er
with respect to other solids like ErN. The sum of the covalent radii 0.56 Å for N and 1.57 Å for
Er3+ matches quite well the Er-N bond distance in GaN:Er, suggesting the covalent nature of the
Er-N bond in GaN. A thorough discussion about the nature of the Er-N bonds in GaN:Er and in
other solids can be found in [14].

5.1.2 Charge state and transition levels

The luminescence from rare earth ions is well interpreted in terms of intra-f optic transitions
(i.e. fn −→ fn) in ionic models perturbed by the crystal field of the host. On the other side the
charge transitions fn −→ fn+1 are difficult to calculate because of the screening processes involved
and cannot be simulated by simple LDA, except than in the case of Gd, where because of the half
filled f -shell and the large exchange splitting already the LSDA provides a realistic description of
the system. For this reason no agreement about the electric nature of the REGa substitutionals
in GaN could be achieved till now: in the simulations done by the group around Jones in Exeter
these defects appear to be electrically inert [17], while in the works of Svane and Temmerman [18]
an acceptor level was found for some lanthanide. In this paragraph we calculate the position of
the divalent acceptor ε(0/−), corresponding to the addition of one electron to the f -shell, with
DFTB-FLL by means of the Janak transition state explained in chap. 2.
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Figure 5.4: Left hand side: Band structure at the Γ point for the investigated REGa substitutionals in
wurtzite GaN, calculated with DFTB-LDA. The f-states appear in LDA like a bunch of narrow localised
states within the GaN band gap and are situated close to the Fermi level. This is definitively a wrong
description, as many experiments reveal their localised nature as atomic multiplet over a broad range of
energies [236]. The states in the picture are one-particle levels and should be not confused with the charge
transition levels. Right hand side: 3D-representation of the total energy (absolute value) calculated with
DFTB-pSIC of a 256-atoms supercell containing one EuGa substitutional as function of the Eu-N bond
lengths. On the x-axis the length of the three equivalent Eu-N bond, in the y-axis the length of the Eu-N
along the wurtzite c-axis. The × indicates the position of the minimum.

We try at first to reproduce the results of the previous theoretical studies calculating the different
charge states as described in each work. Jones [17] relaxed 72-atoms supercells within the LSDA
approach including one lanthanide impurity in the hexagonal GaN lattice. The f -electrons were
treated as core states for the generation of the pseudopotentials, assuming the valence state +3 and
that the occupancy of the f -shell is not affected by the lattice site or by the chemical doping. To
reproduce these results we generate a set of parameters for Eu and Er in which the f -orbitals are
treated like core states, assuming the valence state +3. Using 72-atoms hexagonal cells we have
investigated different charge states finding no localised states within the GaN band gap, indepen-
dently from the lanthanide. DFTB, DFTB-FLL and DFTB-AMF do not lead to any difference.
Treating the f -orbitals like core states leads to a description of the system where no localised states
are introduced in the host gap by the substitutional REGa, which can therefore only exist in the
neutral charge state. We could reproduce the results of Ref. [17, 57] concerning the REGa substi-
tutionals in hexagonal GaN, i.e. that they are electrically inert. However we do not think that this
is a satisfactory description of the system.
Svane et. al. [18] used cells of different sizes including one RE impurity in the cubic GaN lattice.
The calculation scheme used (SIC) is more sophisticated than simple LSDA but the lattice positions
were not allowed to relax. Using ideal 256 atoms supercells of cubic GaN containing one rare earth
impurity, we calculated with DFTB-FLL the position of the acceptor level for Pr, Eu, Er and Tm,
without relaxing the atomic positions. An acceptor like charge transition (0/-) was only found for
Eu at 2.53 eV above the valence band and for Er on just below the conduction band edge (i.e. 3.3
eV above the valence band). No charge transition (0/-) was observed for Pr and Tm. This is in
agreement with Svane who found a transition (0/-) only for Eu substitutionals at 2.44 eV above
the valence band, even if no charge transition for Er was found. We additionally found a donor
like charge transition (+/0) at 0.71 eV above the valence band for Pr substitutionals. Donor like
charge transitions were not investigated by Svane.
As further (and last) test we calculate the position of the (0/-) transition in the case of EuGa

and ErGa substitutionals with the LDA+U implementation of the LMTO-ASA simulation software
described previously [237, 238] (and the same value of (U -J) used for the DFTB-FLL calculation)
finding it to be located at 2.69 and 3.00 eV above the valence band. The error in the LMTO-ASA
calculations can be estimated in ±0.3 eV while the error affecting the DFTB-FLL calculations is
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Figure 5.5: ErGa in the neutral charge state in wurtzite GaN. Spin resolved DOS calculated with the
different approaches implemented in DFTB (upper box) and with LDA and LSDA+U as implemented in
Wien2K (lower box). The arrows show the position of the f-related peaks. We only show the spin down
electrons, as the spin up are occupied and included in the valence band. In the LDA+U and pSIC calculations
the f-related peak visible in the band gap is split in two parts, the rest of the structure remains almost
untouched. The valence band maximum was chosen in each case as zero of the energy scale.
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Figure 5.6: Location of the lowest 4fn states of divalent and trivalent lanthanides in GaN proposed in
Ref. [58]. The top of the valence band is chosen as zero of the energy scale. The GaN exciton state is at
3.48 eV and the conduction band bottom is estimated at 3.7 eV.

discussed later.
This picture changes anyway taking into account the geometry relaxation. While still no transition
is observed for PrGa substitutionals, Eu, Er and Tm have shown a (0/-) charge transition at 1.53,
2.01 and 2.10 eV respectively above the valence band. The (+/0) transition of Pr substitutionals
too is shifted downwards by the relaxation and is calculated at 0.29 eV. Summarising, the effect
of the geometry optimisation on the charge transition states cannot be neglected, as the position
of the ε(0/−) level is shifted downwards by some tenth of eV. In the case of hexagonal GaN we
find a very similar behaviour: (0/-) transition levels for the unrelaxed structure were found only
for Eu, Er and Tm (at 2.40, 3.11 and 3.20 eV above the valence band respectively) and a (+/0)
transition for Pr by 0.67 eV. Relaxing the structures Pr does again only show the (+/0) charge
transition (at 0.27 eV) and Eu, Er and Tm the (0/-) transition levels at 1.28, 2.35 and 2.48 eV above
the valence band respectively. We tested on the EuGa substitutionals that the particular LDA+U
implementation used (FLL or AMF) does not change the results substantially. Our findings are
in good agreement (i.e. within the error of the methods) with a simple scheme used to predict the
position of the f -bands in lanthanide-doped wide-gap semiconductors. A few years ago Dorembos
proposed an approximated way to predict the location of the 4fn ground state energy of each diva-
lent and trivalent lanthanide ion relative to the valence and conduction bands in GaN on the basis
of lanthanide spectroscopic knowledge in wide gap inorganic compounds. The binding energy of the
lowest 4fn state in a Lnq+ ion, where n denotes the number of f electrons and q the ionic charge,
has always a characteristic pattern. In Fig. 5.6 this pattern is shown for lanthanide in GaN (red
and blue curve). The energy difference between the two curves depends on the host and in GaN is
such that the Eu2+ and Eu3+ states are separated by 5.7 ± 0.3 eV. To place the GaN valence and
conduction bands in this picture, the excitation spectrum of 622 nm red emission 5D0 −→ 7F2 of
Eu3+ in GaN is used. In this spectrum appears a broad (40 nm) but distinct excitation band at
388 nm. This band is due to the host to Eu3+ electron transfer. The charge transfer energy (called
ECT ) is known to be 3.2 ± 0.3 eV, and measures the energy difference between the top of the
valence band and the ground state of Eu3+ [239]. Using the knowledge of the exciton level in GaN
(3.48 eV) the GaN conduction band can be placed and a scheme for the location of the f -bands
in RE-doped GaN is complete (see Fig. 5.6). This scheme is affected by an error of approximately
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ErGa

Figure 5.7: The substitutional ErGa in cubic GaN in the neutral charge state. Left hand side: wave function
associated with one 4f-state: it is strongly localised and resembles atomic orbitals (LDA calculation, 72 atom
cell, one single state is plotted). Right hand side: wave function associated with the extended conduction
bands (on the plot the highest conduction band, LDA calculation). In the red parts wave functions are
negative, in the blue ones positive.

0.5 eV and can be used to conclude that Eu3+ and Yb3+ can trap a free electron to form a stable
divalent lanthanide. Ce3+, Pr3+ and Tb3+ instead have their ground state in the forbidden region
and can trap holes from the valence band to form tetravalent lanthanides. This is in agreement
with our results concerning Pr and Eu and, considering the uncertainty of this scheme and of the
DFTB methods, also in the cases of Er and Tm. We can conclude that the REGa substitutionals
are by no mean all electrical inert, confirming the results of Svane et. al. [18] and Dorembos et.
al. [58]. The factors which affect the position of the calculated level are not the cell size nor the
particular orbital-dependent potential used: only the geometry optimisation is found, despite of its
small magnitude, to have an important influence on the position of the charge transfer level. The
error affecting our results is discussed in the paragraph 5.1.4. The presence of a charge transition
however is probably not related to the emission observed in photoluminescence experiments. The
excitation mechanism is not straightforward and not all the rare earth impurities can be excited. A
peculiarity of the photoluminescence effects in lanthanide doped GaN is that the created electron
in the conduction band could recombine with the holes in the valence band without exciting the
f -states. The process of charge carrier energy transfer can be in fact frustrated by the strong local-
isation of the f -shells or in the case in which the charge transition levels are deep in the gap. In this
case an electron in the conduction band cannot occupy them directly because of the high energy
mismatch. The energy transfer to the f -shell can be helped by a so called assistant level, a shallow
transition-level introduced normally by another nearby defect. An electron from the conduction
band can then in a first step occupy the assistant level and from this transfer its energy to the
lanthanide f -states. For this reason we investigate complexes formed by lanthanide impurities and
GaN native defects.

5.1.3 Hybridisation of the f-orbitals

The f -orbitals of the lanthanides have been described in this work as strongly localised. This does
not mean that they are completely inert and not interacting with the host, but rather that their
interaction with the host is very small. However much of the interesting physics of the rare earths
is due to the f -electrons not being completely inert. For this reason the f -electrons can be divided
in two groups, interacting and not interacting electrons. How can we demonstrate that the states
which we consider non interacting are really not interacting? There are four main observations
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Figure 5.8: The substitutional EuGa in cubic GaN. Position of the highest occupied state within the band
gap for different occupations and different values of the U-J parameter. On the left hand side the structure
is not relaxed while in the right hand side it is.

which let us deduct that such electrons are not interacting. At first we observe that the geometry
of the studied defects does not really depend on the particular approach (LDA, LDA+U or pSIC)
we use to treat the f -electrons, from which we could guess that the f -electrons do not play a major
role in the bond. This is also verified by the second observation: including all the f -states in the
core does not substantially change the geometry of the defect. This is another evidence of the fact
that these states do not enter the bond. Our third observation is that looking at the wave functions
related to the f -states we observe not only a strong localisation but also that that they keep their
atomic-like form. In Fig. 5.7 the wave function associated with one f -state of an Er-ion in a GaN
host are compared with a diffused conduction band. The form of the f -states is almost perfectly
atomic-like, as can be seen in in Fig. 1.1. The last observation we make is that varying the value of
the U -J parameter in the LDA+U calculations the position of the f -states changes almost linearly,
not only within the band gap but also in the valence and conduction bands, as shown in Fig. 5.9.
This is another indicator that the f -states do not undergo any major hybridisation with the host
levels.

5.1.4 Error of the calculation

In this paragraph we try to estimate the error affecting our calculations. Apart from the intrinsic
DFTB error in fact there are three further possible error sources. These are the uncertainty in the
choice of the U -J parameter for the LDA+U calculations, the neglect of the spin-orbit coupling
effects (which could be important for heavy ions like the rare earths) and of the Ga-3d electrons.
Let us examine these factors individually.

Dependence of the electronic transitions from the value of U-J

The position of the RE-related localised f -states is strongly dependent from the value of the U -J
parameter. In contrast with this, neither the geometry nor the position of the charge transition
levels are strongly dependent from this parameter. While the first is a consequence of the fact that
the localised states are not largely involved in the bond and therefore do not deeply influence the
geometry, the latter could be puzzling at first sight. However it must be considered that the +U
corrections are maximal for empty states (which are pushed upwards) or occupied sates (which
are pushed downwards) but are almost vanishing for half occupied states. As we use the Janak
formalism involving half occupied states for the calculation of the charge transition levels, they are
not really affected from the actual value of the LDA+U correction. In principle the position of the
highest occupied one-particle level with occupation 0.5 is not dependent from the value of U -J , but
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Figure 5.9: The substitutional ErGa in the neutral charge state in wurtzite GaN. Effect of the +U potential
on the induced gap levels at the Γ point, shown for different values of the parameter (U-J) from 0.00 H
to 0.34 H (9.25 eV). The fact that the position of the f-related levels grows almost linearly with the +U
potential even within the valence and conduction bands suggests that the f-orbitals do not hybridise with the
host orbitals.

small differences between different U -J values could arise due to the self-consistency. This can be
observed in Fig. 5.8, where the dependence of the highest occupied one-particle levels is reported as
function of its occupation and of the U -J value. The position of the half-occupied states varies by
only some tenth of eV for a variation of of 0.2 H (5.5 eV) of the U -J parameter. The uncertainty
in the determination of the U -J parameter is then neither a big source of error in the calculation
of the defect geometry nor in the evaluation of the charge transition levels. As explained in the
section 2.2.2 the results reported in Fig. 5.8 can be used to determine the value of U -J for which
the piecewise linearity of the total energy functional is recovered.

Spin orbit coupling

In the above discussion as well as the following the effects of spin-orbit coupling are neglected. To
estimate the error due to this neglect we have also carried on provisional calculations in the case of
Er using the methodology outlined in Ref. [240] in addition to the LDA+U -like treatment for DFTB.
Using a 4f spin orbit constant of 2234 cm−1, with the Er magnetic moment in the a plane [241],
we find that the 7-fold degenerate localised gap levels shown in Fig. 5.9 in the gap are split into 4
filled and 3 empty non-degenerate levels which remain in the gap spanning a range of ∼ 700 meV.
Applying the FLL-LDA+U approach again ejects these states from the gap, demonstrating that
in this case correlation has a larger effect than spin-orbit coupling. While the spin-orbit coupling
does not considerably influence the description of the geometry of the system and the position of
the charge transition states, it is the dominant factor concerning the optic effects. Neglecting it,
we cannot calculate the optical properties of the investigated systems, but it will not influence the
investigation of the microscopic characteristic of the defect centers, which is the goal of this work.

The role of the Ga 3d electrons

It has been argued in the previous chapter whether the Ga 3d orbitals are important for a correct
description of GaN (and its interaction with the impurities) or not. We have verified that these
orbitals are not indispensable for a qualitatively good simulation of the host, furthermore, being
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the DFTB parameters the result of a fit with experimental data, eventual deficits in the simulation
of the geometry caused by the absence of the d-shell are compensated in the fitting procedure.
Concerning a possible interaction between RE f -states and Ga d-states, we could exclude it, having
done a row of tests with parameters including and not including the Ga 3d-shell.
Furthermore we do not consider spurious interactions of charged defects in neighbouring supercells
as an important source of errors, because the size of the used cells (256 or 512 atoms) should ensure
that the Coulombic interaction caused by the finite size of the supercell is small. Summarizing,
all the sources of errors in our calculation will affect our results with an error of some tenth of
eV in the estimation of charge transitions levels but will not significatively affect the geometric
description of the system. We can conclude that the uncertainty in our calculations is surely bigger
than usual for standard ab initio calculations of ”well behaved” system, nonetheless DFTB with
its implementation (DFTB+U and DFTB-pSIC) will give a qualitatively correct description of the
investigated systems.

5.1.5 The substitutional REN

Our theoretical investigation confirms the experimental evidence of the fact that the rare earth ions
prefer the Ga lattice site. REN substitutionals are a very instable configuration indeed, because
the lanthanide tends to leave the N place, causing a serious lattice distortion in the host. This is
probably due to the striking differences (in size and electronegativity first of all) between nitrogen
and the rare earths. We have investigated the EuN, ErN and TmN substitutionals, finding that in
any case the RE does not stay on site. For each of the examined lanthanides the formation energy
that the REN substitutional would lie at least 20 eV above the formation energy of the related REGa,
indicating that this kind of defect will not happen in significative concentrations, independently from
its charge state. There is in fact no report in the literature (neither experimental nor theoretical
study) regarding the existence REN substitutionals, which is in agreement with our findings. In
the neutral charge state the lanthanides in the REN configuration are found not to lose any of
their f -electrons and are therefore in the valence state +2, which was not observed experimentally.
This is another hint about the evidence that REN substitutionals are not formed in significant
concentrations and are most probably not related with the luminescence. For this reasons we do
not further investigate this kind of defects, omitting the study of their band structure, density of
state etc., and proceed with the inspection of another family of defects, the interstitials.

5.2 Interstitials

Another “simple” defect that could be created introducing rare earth ions in the GaN host is the
RE-interstitial. In this configuration the impurity ions do not take the place of any host atoms,
but rather occupy a lattice region between the host atoms (see Fig. 5.10, left hand side). Of course
because of the different symmetry of hexagonal and cubic GaN some differences in the behaviour
of RE interstitial in wurtzite and in zinc-blende GaN are expected. In particular in hexagonal GaN
there is a multiplicity of interstitial sites with different symmetry, as discussed in the GaN-dedicated
chapter (see Fig. 4.3). While there is no experimental evidence of the presence of interstitial RE
ions in doped hexagonal GaN samples, the RE interstitial in cubic GaN has been proposed to be
a stable defect. Glukhanyuk et al. [59] on the basis of a Stark-splitting analysis proposed a model
in which the RE occupies an interstitial site with four Ga first neighbours and six octahedrally
coordinated next neighbours N ions 15% further away.

5.2.1 IRE in hexagonal GaN

We start our investigation with the lanthanide interstitials in wurtzite GaN. We only investigated
the behaviour of the rare earths exploited for the fabrication of color displays, i.e. Eu, Er and Tm.
Interstitials of these three ions in hexagonal GaN are found not to be stable defects: a configuration
with the RE ion at the Ga place and the substituted Ga atom occupying an interstitial site is found
to be energetically favoured for all the investigated rare earths (see Fig. 5.10, right hand side). In
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Er
3+ Ga

Figure 5.10: The RE interstitials in hexagonal GaN. Rare earth ions will not stay in the interstitial
configuration (left hand side) but will rather take the place of a neighbouring Ga atom, which is shifted in
the interstitial site (right hand side). As usual N atoms are black, Ga white and Er green.

other words interstitial RE defects are not stable against the formation of RE substitutionals and
Ga interstitials:

IRE −→ REGa + IGa

The kick out process is favoured for all the investigated by more than 0.5 eV, with Eu showing the
biggest differences. This is in agreement with the ab initio investigation of Filhol et al. [57].
This particular behaviour could be explained with the big size of the impurity ions. While very
small impurity atoms like hydrogen in III-V semiconductors prefer the interstitial site [242, 243],
big ions like the lanthanides do not fit in the space between the lattice sites and prefer lattice sites.
This explains also why for bigger RE like Gd and Eu the kick out process is even more favourable
than for Er and Tm. In general the intrinsic defects (substitutionals, vacancies, interstitials etc.)
in GaN and in other hosts like GaAs or ZnO differ substantially, because the difference in size and
electronegativity between the constituents (Ga and N) is much bigger than in other semiconduc-
tors [182]. RE interstitials do not seem to be an exception, as they have been observed in other
RE-doped semiconductors like GaAs and Si [17] but not in GaN. Our results agree with these find-
ings and cannot confirm the suggestion of Pellé et al. [50], who proposed to identify some emitting
center in Er doped GaN with Er3+ ions in interstitial positions near defects created introducing
the dopants into the lattice as observed for GaAs:Er3+. In the final configuration the RE has not
the C3v of the single substitutionals with one long and three short RE-N bonds, because the neigh-
bouring Ga interstitial shortens one of the short bonds. The RE is displaced by 0.09 (Eu and Er)
and 0.08 Å (Tm) in the direction of the Ga interstitial from the ideal lattice site of the substituted
Ga. The substituted Ga atom occupies an interstitial site almost at the center of the hexagonal
channel. This site has though a slightly different symmetry from the octahedral symmetry which
would have a single IGa in hexagonal GaN [175]. This is due to the additional distortion introduced
by the RE. The kick out of the Ga atom and relative substitution with the RE is a feature common
to all the investigated RE (Eu, Gd, Er, Tm). Even if a Ga interstitial is more favorable than a
RE interstitial it will nonetheless introduce a fairly large lattice relaxation. This is reflected in
the large formation energies (26.24, 20.93 and 19.06 eV for Eu, Er and Tm in the neutral charge
state). These formation energies however cannot be directly compared with the formation energies
of the simple substitutionals. An important parameter in the study of of isolated impurities and
point defects is their binding energy (Eb), a parameter which measures the tendance of defects and
impurities to agglomerate and form complexes. It is defined in terms of formation energies as :

Eb = Ef (REGa) + Ef (IGa)− Ef (REGa IGa)

103



5.2. INTERSTITIALS

N
N

Figure 5.11: Complexes formed by RE substitutionals and N interstitials in hexagonal GaN will result in
the so called N split interstitial configuration. In the picture in blue the Tm impurity occupying the Ga
place. The arrows indicate the two N-atoms sharing a lattice site.

so that a positive binding energy corresponds to a stable bound complex2. In the case of the RE
substitutionals the calculated binding energy of 1.00 eV (Eu), 0.57 eV (Er) and 0.44 eV (Tm) is
somehow higher (specially for Eu) than the values reported by Filhol et al [57] but anyway lower
than the binding energy of other RE-defect complexes (REGa VN or REGa ON), as we will show in
the following chapters. In further agreement with the cited work we find the REGa IGa complex to
posses deep gap levels. Unlike in the case of the simple REGa substitutionals, where an electron
from the f -shell is promoted to the lattice, the rare earths in the interstitial configuration do keep
all their f -electrons like in the atomic configuration and can be thought in the neutral charge
state as RE2+ ions. The fact that the there is experimental signature of RE only in the trivalent
state indicates that these complexes are not likely to occur in high concentrations. Because of its
high formation energy the complex REGa IGa will hardly be formed under equilibrium conditions
indeed. However it can be formed by non equilibrium processes like the ion implantation. In this
investigation RE interstitials in zinc-blende GaN were not kept in account.

5.2.2 REGa IN in hexagonal GaN

We only investigate complexes formed with Eu, Er and Tm lanthanides in hexagonal GaN in this
paragraph. REGa IN defect complexes present characteristics similar to the REGa IGa interstitials.
The lanthanide ion is slightly displaced from the Ga site it occupies (by 0.15, 0.12 and 0.11 Å for
Eu, Er and Tm respectively) and the IN assumes the so called split interstitial configuration. It
means that the interstitial nitrogen forms a N-N bond with one of the host nitrogen atoms with
whom it shares the lattice site (see Fig. 5.11). In the neutral charge state the N-N distances are
1.551, 1.570 and 1.567 Å for Eu, Er and Tm respectively. This is well beyond the N-N distance
in N2 molecules (1.121 Å in DFTB) but shorter than the N-N distance in solid N (HCP structure,
N-N distance 3.861 Å). The formation energy of these complexes (13.34, 11.54 and 9.95 eV for Eu,
Er and Tm respectively, in the neutral charge state, LSDA calculation) is lower than the formation
energy of the REGa IGa pairs. The calculated binding energy (1.33, 0.94 and 0.92 eV for Eu, Er
and Tm respectively) is comparable with the binding energy of the REGa IGa complexes and again
somehow higher than the values calculated by Filhol et al. [57]. Just like the REGa IGa complexes
all investigated REGa IN complexes can happen in different charge states and possess deep gap
levels. The RE has valence +2 and does not lend any f -electron to the lattice, exactly like in the
case of the related REGa IGa complexes, which probably excludes a role in high energy fluorescent
transitions.

2A positive binding energy does not always imply that the complex will form, as the thermodynamics of the
complex is ruled by the binding energy as well as by the configurational entropy [175].
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5.3 Summary and conclusions

In this chapter we used the tight-binding simulation tool DFTB+ and different DFT simulation
packages like Wien2k and ABINIT for the simulation of substitutionals and interstitials defects of
rare earth ions in the GaN host. Both the hexagonal and cubic GaN phase have been examined.
The DFTB+ tool showed, besides an outstanding efficiency also a noticeable reliability and is found
to be in qualitative agreement with the other calculation schemes. Because of the efficiency of the
code, a number of different geometric, spin and charge configurations could be investigated in big
supercells and a self-consistent determination of the U -J value could be achieved. A qualitative
agreement of our results is also found with existing experimental data and theoretical investigations.
Summarising what we found about the RE substitutionals, we can affirm that they prefer the Ga
lattice site and are always trivalent in their neutral charge state (RE3+). This means they behave
almost isoelectronically with Ga3+ in GaN. The presence of the RE3+

Ga substitutional does not
noticeably influence the charge distribution around the substituted ion. The charge residing on
the N-ligands differ at most by only 0.086 eV (in the case of Eu3+) representing less than 1.5%
of the charge localised on the atom. The RE3+

Ga substitutionals created by different lanthanides
are characterised by the same properties and show only minor differences in the geometry. The
latter are determined merely by the differences in the ionic radii of the investigated species. Bond
lengths and band structures have been calculated with different approaches: the classical LDA and
the more sophisticated LDA+U approach predict the same structure, that is with the RE placed
at the Ga site and tetrahedrally coordinated with C3v symmetry, but qualitative different band
structures. An acceptor like transition ε(0/-) is found at 1.28, 2.35 and 2.48 eV above the valence
band (1.53, 2.01 2.10 eV in cubic GaN) for Eu, Er and Tm and a donor-like transition ε(+/0) is
found at 0.27 eV above the valence band (0.29 eV in cubic GaN) for Pr. These transitions are
probably not related with the lanthanide luminescence, as we discuss in the last chapter of this
work. The 4f states of the rare earths are as expected strongly localised and play only a minor
role in bonding. A consequence of this fact is that LDA+U primary influences the energetics of the
investigated systems and not the geometry. The REGa substitutionals in both cubic and hexagonal
GaN only induce a small lattice distortion, which we quantified with a parameter, called strain
or stress, given by the ratio of the RE-N bond lengths and the corresponding Ga-N bond length
in bulk GaN. Because of the small value of this parameter and because of the small changes in
the charge distribution (with respect to undoped GaN) of the neighbouring N-atoms we can affirm
that lanthanide impurities are easily incorporated at the Ga place in the GaN host. The small
lattice distortion introduced by the substitutional rare earths is of importance for the realisation of
luminescent devices. On the other hand lanthanide interstitials do introduce a fairly large lattice
relaxation and are characterised by a high relaxation energy. RE interstitials do not take place, as
the configuration with a REGa substitutional and a IGa interstitial is energetically favoured. In the
simple REGa substitutionals the RE remains on site, while in interstitials it is slightly displaced from
the ideal lattice site. The defect symmetry is C1h, lower than the C3v of the simple substitutionals.
The lanthanides in the interstitial configuration can be considered RE+2 ions. Complexes formed
with a REGa substitutional and IN interstitial share many similar characteristic with the REGa IGa

complexes but are characterised by a slightly lower formation energy and binding energy. Because of
their high formation energy and small binding energy all RE interstitials (or, more precisely, REGa

IGa and REGa IN complexes) are unlikely to be formed under equilibrium conditions, furthermore
the presence of deep gap levels probably excludes a role in high energy fluorescent transitions.
Instead the possibility that the simple REGa play a role in the luminescence is discussed in the final
chapter of this work.
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Chapter 6

Rare earth defect complexes in
GaN

The study of isolated rare earth ions is not enough to give a complete picture of lanthanide-doped
sample. If implanted, the big and heavy impinging lanthanides produce a lot of damage in their
path through the sample, which remains, almost partially, even after annealing. Instead, when a
GaN sample is doped with lanthanides during the growth, intrinsic defects are likely to be formed
and the rare earth ions can be bound by these defects. On the other side, in grown samples,
voluntary or involuntary co-doping with non lanthanide impurities is often present and should
be taken in account in the investigation of rare earth point defects. The complexes involving
lanthanides and GaN intrinsic defects may have, of course, completely different physical properties
than the RE simple substitutionals and should also be investigated in our simulations, in order to
realise an exhaustive representation of the lanthanide-doping in GaN. Object of this chapter is the
investigation of complexes formed by a rare earth impurity and intrinsic defects like vacancies or
antisites, while the issue of co-doping is discussed in the next one. On the basis of the geometric,
energetic and electronic characteristics of each investigated defect, its role in the mechanisms leading
to the luminescence is discussed. Even if interesting on its own and in relation with the rare earth
emission mechanisms, the issue of native defect-clustering is not tackled in this work. On the
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Figure 6.1: Defect pairs formed by REGa substitutionals and VN in hexagonal GaN. Because of the in-
equivalent N sites in hexagonal GaN (the Er-N bond along the c-axis is longer than the other three) the
complexes can be formed in two configurations. The basal configuration (left hand side) has C1h symmetry
whereas the ideal axial configuration (right hand side) has the C3v symmetry, or the C1h if a Jahn-Teller
distortion occurs.
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Table 6.1: Geometry and binding energy of the REGa VN complex in hexagonal GaN in the neutral and

positively charged state. The bond distances are expressed in Å and the energies in eV. The data are
calculated with DFTB-FLL (DFTB-LSDA data in parenthesis).

Symm. RE-VN Displacement Ebind.

Charge 0 + 0 + 0 +
Eu basal C1h 2×2.34 (2.32) 2×2.25 (2.31) 0.10 (0.10) 0.14 (0.18) 1.62 (1.67) 0.97 (1.00)

1×2.30 (2.29) 1×2.29 (2.28)

axial C3v 3×2.33 (2.30) 3×2.26 (2.28) 0.10 (0.09) 0.12 (0.13) 1.66 (1.69) 0.97 (0.93)

Er basal C1h 2×2.26 (2.20) 2×2.16 (2.16) 0.07 (0.05) 0.11 (0.08) 1.35 (1.04) 0.44 (0.27)

1×2.21 (2.17) 1×2.23 (2.15)

axial C1h 2×2.25 (2.18) 2×2.19 (2.15) 0.01 (0.05) 0.07 (0.06) 1.42 (1.10) 0.53 (0.41)

(C3v) 1×2.20 (2.18) 1×2.08 (2.15)

Tm basal C1h 2×2.23 (2.17) 2× 2.12 (2.14) 0.11 (0.06) 0.10 (0.08) 1.14 (0.93) 0.33 (0.14)

1×2.19 (2.14) 1× 2.15 (2.12)

axial C1h 2×2.19 (2.16) 2×2.13 (2.12) 0.04 (0.06) 0.04 (0.06) 1.15 (0.97) 0.33 (0.26)

(C3v) 1×2.24 (2.16) 1×2.21 (2.12)

same way we do not investigate these complexes with the rare earth neighbouring a native defect
pair, like for example the VGa VN divacancies, which have been found to be very stable defects
in GaN [210]. Unlike in the investigation of rare earth substitutionals we do not simulate all the
possible configuration formed by Pr, Eu, Gd, Er and Tm in hexagonal and cubic GaN, but limit
ourself to the investigation of complexes involving Eu, Er and Tm in hexagonal GaN. The choice
of the host is motivated by the fact that wurtzite is the phase used in the vast majority of the
experiments. The selection of the rare earths is due to their application in the realisation of colour
displays.

6.1 Complexes with vacancies

Among all the rare earth point defects in GaN, particularly important are complexes formed by a
rare earth substitutional and a vacancy. Gallium and nitrogen vacancies are in fact the dominating
intrinsic point defects in GaN [210] and are likely to be present also in rare earth doped samples.
If we imagine that during the growth of a RE-doped GaN sample a lanthanide takes the place
of a Ga ion to form a REGa substitutional, it will introduce some lattice strain. More precisely,
as the RE occupies more space than the Ga would, it can be imagined that to recover the GaN-
lattice constant, one of the neighbouring N or a Ga in the second neighbours shell ions could be let
out. Furthermore Uedono et. al [244] put the luminescence from Eu samples in relation with the
presence of Eu-VGa pairs or Eu ions complexed with vacancy clusters. In this section complexes
formed by lanthanide and neighbouring vacancies in hexagonal GaN are investigated. As usual,
we carry out our investigation by means of the LDA+U (FLL) implementation of DFTB, using
256-atoms supercells and a 4×4×4 MP k-point mesh. The value of the U -J parameter is for each
rare earth the same used and discussed in the previous chapters.

6.1.1 REGa VN

Because of the hexagonal symmetry of the host, the four lattice sites of the first neighbours of a RE
substitutional are not equivalent. Around each RE ion there are three bonds of the same length
and one, slightly longer, parallel to the crystal c-axis. When we create a RE substitutional plus a
nitrogen vacancy, we can remove either an atom from one of the three equivalent positions or the
one along the crystal c-axis. In the first case the REGa VN complex is called basal pair and will have
the C1h symmetry, in the second case the complex is an axial pair and can have the higher “axial”
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Figure 6.2: Formation and binding energy of the REGa VN pair as function of the Fermi energy in
hexagonal GaN. Dotted lines are the formation energies of the isolated ErGa and VN , the blue line is their
sum, the red line is the formation energy of the ErGa VN pair and the black line its binding energy, given
as difference of the latter two curves.

C3v symmetry or the C1h symmetry if Jahn-Teller distortion occurs. We found the axial pairs to be
energetically slightly favoured upon the basal pairs, with a formation energy in the neutral charge
state lower by 0.04, 0.07 and 0.01 eV for Eu, Er and Tm respectively.

Geometry

In Tab. 6.1 we report the geometry and the binding energy of axial and basal pairs both in the
neutral and in the positive charge state. Data refer to the stablest configuration (both axial and
basal configurations have different minima). The differences are of the same order of magnitude of
the method precision. Both in the case of the axial and basal pairs we observe that the relaxation
of the structures is quite pronounced. The lanthanide is slightly displaced from the crystal c-
axis. In the case of the axial pairs it means that the initial C3v symmetry is distorted. The
issue of the determination of the symmetry may be problematic both for the theoreticians and
for the experimentalists. It is in fact not easy to find out how far rare earth atoms would have
to be displaced off the c-axis in order to reveal a symmetry lower than the C3v in luminescence
experiments1. Our DFTB-FLL calculations show that the axial configuration is slightly favoured
with respect to the basal configuration for all investigated lanthanides in the investigated charge
states. The displacement of the lanthanide from the Ga-site towards the vacancy in the neutral
charge state is 0.10, 0.07 and 0.11 Å for Eu, Er and Tm basal pairs and 0.10, 0.01 and 0.04 Å for
Eu, Er and Tm axial pairs. The displacement is more pronounced for Eu than for Er and Tm (see
Tab. 6.1). The somewhat larger displacement of Eu was also found with the DFT-LDA calculations
reported in Ref. [57], where the displacement is quantified in 0.23, 0.21 and 0.20 Å for Eu, Er and
Tm for REGa VN pairs which we assume to be in the axial configuration (see footnote 3). Assuming
RE VN pairs as defect model, this could explain why previously Eu has been indicated to be the

1Photoluminescence (PL) and cathodoluminescence (CL) are the most common techniques used to perform optical
studies of particular rare earth ions. While PL is spectrally selective (the photon energy of the excitation can be
tuned), CL tends to excite many different centers that the high energy electron beam encounters. A problem related
to the CL optical studies that the experimentalists have to face assigning symmetry properties to the rare earth
defect is therefore the following: while theoretical predictions from lattice sum calculations refer to single defect-
centers, the informations in the CL spectra are due to the superimposition of different centers. Unfortunately EPR
measurements, able to unambiguously distinguish between the symmetries are so far not available. Luminescence
techniques are not sufficient to completely characterise the defect centers.
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Missing
  atom

Figure 6.3: Total charge difference between the positive and neutral charge states of the ErGa VN axial
pair. The electron is removed mainly from the neighbourhood of the Er-atom (blue region), while around
the ligands polarisation effects can be observed. The changes in the charge distribution do not interest the
vacancy region.

only rare earth to lay off-site [188, 233]. This structure was also related to the particularly strong
intensity of the luminescence from Eu-doped GaN samples, which, on turn, was explained with the
lower symmetry of the complex. As further test we carried out ABINIT [121, 234] calculations of
the ErGa VN axial pair in the C3v symmetry and in the neutral charge state. This are DFT-LDA
calculations, which should give at least a satisfactory description of the system geometry. The
4f -electrons were treated as core state. After relaxation the C3v symmetry is not lowered, the
N-ligands are 2.38 Å apart from the Er-ion, which is displaced by 0.18 Å towards the nitrogen
vacancy. This is in qualitative agreement with the analogue DFT-LDA calculations of Ref. [57].

Energetics, Charge states

Besides the geometry, in Tab. 6.1 the binding energy of the pairs (calculated as difference of the
formation energy of the defect pair and of the isolated constituents for a given charge state) is
reported. We observe that Eu complexes have the highest binding energy (1.66 eV in the neutral
charge state). This can be explained with the dimension of the ion and the stress introduced in the
structure. Eu is bigger than Er or Tm and it is even more energetically favourable to introduce
a vacancy near the substitutional to recover some lattice distortion. In general nitrogen vacancies
in the neutral charge state are more bound than positively charged vacancies. The number of
vacancies which are effectively bound after annealing can be estimated with a simple model. If we
assume that the lanthanide concentration cRE is much bigger than the vacancy concentration cVN ,
the equilibrium concentration of the RE-VN pairs is given by:

cRE−vN =
cRE

cRE +Ne−
Eb

kT

(6.1)

where, N is the density of Ga lattice sites, T is the temperature and k the Boltzmann constant.
Considering cRE to be like in our simulation and similarly to the real sample to be 0.78%, we find
at 1000 K 80-99.% of the nitrogen vacancies to be bound with the rare earth. Eu complexes, which
have the highest binding energy lead to the biggest concentration of such defects but also in the
case of Er and Tm it can be affirmed that the vast majority of the vacancies are bound.
Strictly speaking the binding energy of the ErGa VN pair is a function of the position of the Fermi
energy. In Fig. 6.2 we report the value of the binding energy for values of the Fermi energy within
the GaN band gap. The pair is bound for moderately n-type doped GaN.
The formation energies of the REGa VN complexes in the neutral charge state are 10.77, 10.51 and
9.127 eV for Eu, Er and Tm2. The formation energy as function of the Fermi energy is reported

2The formation energy of these pairs cannot be directly compared with the formation energy of isolated defects
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Figure 6.4: REGa VGa defect pairs in hexagonal GaN. Because of the inequivalent Ga sites in hexagonal
GaN the complexes can have different symmetry. The configuration on the left hand side has the C1h

symmetry while the configuration on the right hand side the C1.

in Fig. 6.2. A charge transition ε(0/-) close to the valence band was found for all the investigated
rare earths by means of the Janak Transition state. The transition takes place at 3.14, 3.14 and
3.15 eV above the valence band for Eu, Er and Tm respectively. Another charge transition ε(+/0)
was calculated at 0.27, 1.43 and 1.59 eV above the valence band for Eu, Er and Tm respectively.
In not strongly n-type GaN the REGa VN pairs are therefore neutral or positively charged. In the
positive charge state the lanthanide ion behaves iso-electronically with the substituted Ga, i.e. can
be considered in the valence state +3. Like in the case of the single REGa substitutionals two 6s an
one 4f electron are promoted to the host. In the neutral charge state the lanthanide in the REGa

VN pair does not behave iso-electronically with the substituted Ga and has the valence state +2.
The difference between the two charge states can be seen in the right hand side of Fig. 6.3. It is
clear that in the positive charge state one electron is subtracted from the lanthanide (Er, in the
picture) which becomes isovalent with Ga. Our result seems to be in qualitative agreement with
Filhol et al., which found a charge transition for Eu, Er and Tm for the REGa VN complex within
the C1h symmetry 0.2 eV below the conduction band and suggested that the charge transitions of
the complex can be considered as the perturbed transition of the isolated VN vacancy3.

6.1.2 REGa+VGa

Uedono et al. [244] have recently investigated Eu and Tb doped GaN samples by means of positron
annihilation, showing the presence of Ga vacancies defect, which may take part to the luminescence.
They suggested that vacancy-clusters consisting of two or more vacancies are the dominant defect
in Eu-implanted GaN samples. In this section we investigate defect pairs formed by Eu, Er and
Tm substitutionals and VGa vacancies in hexagonal GaN. Vacancy-clusters on the contrary are not
object of this work and remain for future investigations. A single REGa substitutional in hexagonal
GaN is surrounded by a first shell of four nitrogen neighbours, which have, on turn, each three
gallium neighbours. Each REGa substitutional has 12 second neighbours, placed at a distance of
3.0 to 3.5 Å, depending on the rare earth. Removing one of these second neighbours originates a
REGa+VGa complex, as reported in Fig. 6.4. Not all of these vacancies are equivalent, because of
the presence of inequivalent sites in GaN. If the vacancy lies in the plane defined by the position of
the lanthanide, the ligand along the c-axis and another ligand, the pair has symmetry C1h (like in
the right hand side of Fig. 6.4) otherwise it has symmetry C1. According to the DFTB calculations
however, these configurations differ by an energy (0.003 eV) which is lower than the intrinsic error

but only with the formation energy of other pairs. Another parameter which we use to quantify the stability of the
pair is the binding energy.

3In this work however no distinction between axial and basal pairs is made and the authors only refer to pairs
with C1h or with C3v symmetry.
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Table 6.2: Characteristics of the REGa+VGa complex in hexagonal GaN (DFTB-LSDA calculations). Dis-
placement labels the displacement of the lanthanide from the Ga-site, RE-VGa the distance of the lanthanide
from the gallium vacancy, RE-N in RE-VGa the mean distance of the ligands from the lanthanide in RE-
vacancy pairs and finally RE-N in REGa the mean distance of the ligands from the lanthanide in isolated
REGa substitutionals. All the lengths in Å.

Complex Displacement RE-VGa RE-N in RE-VGa RE-N in REGa

Eu-VGa 0.51 2.59 2.29 2.28
Er-VGa 0.29 2.85 2.14 2.16
Tm-VGa 0.25 2.89 2.12 2.14

of the method and can be considered energetically degenerate. We will present therefore only the
results of one configuration, i.e. of that where the missing Ga atom is the RE second neighbour
along the [0110] axis4. The presence of the vacancy causes a sizable relaxation of the neighbourhood
of the complex: the N-ligand close to the vacancy moves towards the missing atom and the rare
earth moves along the symmetry plane5 in almost the same direction, maintaining a similar distance
from all N-ligands. The displacement of the RE atoms from the Ga-site is of 0.51, 0.29 and 0.25
Å for Eu, Er and Tm respectively. This effect is more pronounced for bigger rare earths, as
reported in Tab. 6.2. As reported in Tab. 6.2 the distance of the rare earth from the vacancy
center is only 20-30% bigger than the distance of the rare earths from VN vacancies. The geometry
optimisation is accompanied by a huge relaxation energy of as high as 6-10 eV, depending on the
lanthanide. The third column of the table reports the mean distance of the nitrogen ligands to the
rare earth in the REGa+VGa complexes. This is a parameter which has been considered important
in the luminescence process [244]. It is well established that the intra-f transitions originating the
luminescence are intrinsically forbidden and are enhanced by lowering the coordination symmetry.
Uedono et al. [244] suggested that in the case of Eu doped GaN the presence of Eu-VGa complexes
would stretch the lengths of Eu-N bonds and therefore enhance the transition rate of its 4f -electrons.
Our calculations reveal that even if the lanthanide is displaced from the Ga-lattice site and its
environment undergoes a heavy relaxation, the mean RE-N bond length is substantially not different
from that of the single REGa substitutionals, as reported in Tab. 6.2.
The lanthanide near the Ga-vacancies have, independently from charge state, the valence state +3,
which is the valence state of the lanthanide participating to the luminescence. This means that, like
in the case of the REGa substitutional the number of f -electrons of Eu, Er and Tm is 6, 11 and 12
respectively. In chapter 4 it has been shown that isolated VGa in GaN behave as triple acceptors,
with the acceptor levels localised around 1 eV above the valence band. Because of the presence of
these levels makes the participation of these defects in the 3 eV (412 nm) Er-related fluorescence
very improbable [57]. In the DFTB-FLL approach also ErGa+VGa pairs behave as triple acceptors,
with charge transitions ε(0/−), ε(−/2−) and ε(2−/3−) at 0.45, 0.64 and 1.15 eV above the valence
band in the case of erbium. We observe that these charge transition are very close to the charge
transitions of the isolated VGa in hexagonal GaN. Being the components of the ErGa+VGa pair
an acceptor and a triple acceptor we investigate the possibility of a further charge transition to
the charge state -4 for the pair. We found however this transition at 3.67 eV above the valence
band, i.e. outside the band gap (see Fig. 6.5). In the neutral charge state the formation energy
is slightly higher than the formation energy of REGa VN. The DFTB-LSDA calculated formation
energies for Eu, Er and Tm complexes in N-rich conditions and in the neutral charge state are
13.23, 11.44 and 10.09 eV. However, unlike REGa VN pairs, rare earths and and gallium vacancies
are bound for every position of the Fermi energy within the band gap (see Fig. 6.5). Unlike the
defects investigated till now, REGa+VGa vacancies do not involve directly neighbouring lattice sites
but rather a lattice site and its second neighbours. This does not mean however, that the complex
is not bound, or that the binding energy is particularly low. This is due to the strong coupling

4This is the axis forming an angle of 28.0 with the [0001] (or c) axis (see Fig. 6.4).
5For this reason the symmetry of the pair remains C1h.
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Figure 6.5: Formation and binding energy of the REGa+VGa pair as function of the Fermi energy in
hexagonal GaN. Dotted lines are the formation energies of the isolated ErGa and VGa , the violet line is
their sum, the red line is the formation energy of the ErGa+VN pair and the black line its binding energy,
given as difference of the latter two curves.

between ErGa and VGa, mediated by the displaced N-ligand. Their binding energy makes of these
pairs one of the dominant defects pairs in GaN.

6.1.3 REN+vacancies

In chapter 5 we have calculated that isolated REN substitutionals are defect states which are unlikely
to be formed. They are characterised by a very high formation energy and large lattice distortion.
In other words the lanthanide tends to avoid the nitrogen site. In the DFTB-LSDA approach we
found REN substitutionals by far more unlikely to be formed in appreciable concentrations (high
formation energy) and to be considered relevant for the luminescence (see sec. 5.1.5).

REN+VN

We restrict therefore the investigation of the REN+VN pairs on the DFTB-LSDA calculations and
we only calculate ErN VN pairs with C1h symmetry6. The structure is characterised by a large
lattice relaxation. The lanthanide ions is strongly displaced from the on-site position (0.28, 0.41
and 0.98 Å for Eu, Er and Tm respectively) and the region around the lanthanide strongly distorted.
In particular the Ga-ligand closest to the VN vacancy is pushed away from the lanthanide in the
direction of the vacancy. The formation energy of the pairs in the neutral charge state is more than
10 eV higher than the formation energy of any other investigated pair for all the investigated rare
earths. We can therefore conclude that REN+VN pairs are not expected to be formed in appreciable
concentrations or to play an important role in the observed luminescence.

REN VGa

Like in the case of the REN+VN pairs, we restrict the investigation of the REN VGa pairs to
DFTB-LSDA approach. Because of the inequivalent lattice sites in hexagonal GaN, these pairs
should occur in the axial or basal configuration (see for example the analogue REGa VN pairs in
Fig. 6.4). However, independently on the starting configuration (axial or basal), we observe that
these pairs are not formed at all. The rare earth in fact leaves the N-site moving into the VGa

6Like REGa+VGa distant pairs, also the REN+VN pairs can occur with the C1h or C1 symmetry (see Fig. 6.4).
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Figure 6.6: The lanthanide in REGa Vn defect pairs in hexagonal GaN leaves the N-site to occupy the Ga
site.

without any barrier inbetween the migration path. This process (illustrated in Fig. 6.6 can be
defined as:

REN VGa −→ REGa VN

This is a further strong evidence of the fact that lanthanides occupy the Ga site in GaN, either as
isolated substitutionals or forming pairs with native defects. Concluding REN VGa pairs cannot be
related with the rare earth luminescence.

6.2 Antisites

As a last family of complexes formed by lanthanide impurities and GaN native defects we investigate
pairs of lanthanide substitutionals and an antisites. As we have seen in sec. 5.1.5 REN substitutionals
are not likely to be formed because of their high formation energy which is, for Eu, Er and Tm in
the neutral charge state, at least 20 eV higher than the formation energy of the corresponding REGa

substitutional. For this reason we simulate here only REGa GaN impurity-antisite pairs depicted in
Fig. 6.7.

6.2.1 REGa GaN

Like all the close pair defects in hexagonal GaN also impurity-antisite pairs can have the C3v or
the C1h symmetry. We start the investigation with the defect in the C3v symmetry and relax the
atomic positions within the LSDA approach. We observe a pronounced lattice relaxation, with
the Ga-ligand displaced from its original position along the wurtzite c-axis towards an interstitial
position. The RE-Ga bonds are 3.16, 3.07 and 3.02 Å long for Eu, Er and Tm respectively. The
rare earths remain substantially on-site, even if it results displaced by 0.07, 0.11 and 0.10 Å for
Eu, Er and Tm respectively. The lattice distortion is reflected in the high formation energy of
these complexes, calculated in 13.8, 14.7 and 14.7 eV for Eu, Er and Tm in the neutral charge
state and N-rich conditions. This formation energy is about 5 eV higher than the formation energy
of the other defect pairs like REGa-vacancies complexes. In other words, complexes involving a
RE substitutional and an antisite have a very high formation energy and are unlikely to occur
both in N-rich and in Ga-rich conditions. For this reason we do not investigate these complexes
in more detail: we do not relax the atomic positions within the DFTB-FLL approach or in other
geometric configurations (i.e. C1h), we do not calculate their binding energy or examine their
electronic structure7 but rather try to understand why they are energetically so costly. Actually

7We assume however that like all the native GaN defects complexed with a lanthanide impurity they will present
the perturbed electronic structure of the isolated native defects. The isolated gallium antisite GaN has a singlet and
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Figure 6.7: Right hand side: REN+VN pairs can have different symmetry depending on the lattice site
occupied by the vacancy. The defect here has C1h symmetry. Left hand side: complexes formed by REGa

substitutionals and the antisite GaN in hexagonal GaN. Also in this case the defect can have different
symmetries. The defect here has C1h symmetry.

the high formation energy is not unexpected, as isolated antisites in GaN too have a very high
formation energy. This is not surprising, as antisites in GaN are in general clearly less favorable
than other defects, in contrast to other semiconductors like GaAs or ZnS, where they play an
important role [182]. The high formation energy of the complex REGa GaN can again be explained
in terms of large lattice mismatch in the covalent radii of gallium (rGa

c = 1.26 Å) and nitrogen (rGa
c

= 0.75 Å). As seen in Sec. 5.1.1 the not complexed substitutional REGa induces a compressive stress
in the host lattice. Replacing one of the neighbouring N atoms with a gallium atom, three Ga-N
bonds are replaced by Ga-Ga atoms. Now, while in wurtzite GaN the Ga-N bond is ≈ 1.95 Å (and
in zinc-blende GaN 1.91 Å), the Ga-Ga distance in α-Ga is 2.79 Å, which is more than 30% bigger.
Relaxing the structure results in an outward movement of the Ga atom to reduce the huge stress
introduced increasing the Ga-Ga bonds lengths. We calculated for this configuration a relaxation
energy of more then 10 eV for all the rare earths in the wurtzite phase and a Ga-Ga bond length
up to ≈ 2.23 Å (for Er complexes). This is still 14% bigger than the bulk Ga-N bond length, but
only 75% of the Ga-Ga bond length in α-GaN, i.e. some strain in the GaN lattice is still present
in the structure. Intuitively it is easy to imagine that a group of neighbouring big ions like RE
and Ga will build an unfavourable configuration. In fact, while a Ga atom is surrounded by four
N atoms in undoped GaN, in the examined case it is surrounded by three other Ga atoms and one
lanthanide. Concluding, the Ga antisite introduces such a strain in the GaN lattice that cannot
be completely compensated by the atomic relaxation and the complex REGa GaN is energetically
unfavorable.

6.3 Summary and conclusions

In this chapter the defect complexes formed by an intrinsic defect and a lanthanide impurity in
hexagonal GaN were investigated with the DFTB-FLL and DFTB-LSDA approach. All of the next
neighbour pairs occur in the axial or basal configuration because of the inequivalent lattice sites in
hexagonal GaN. Many general trends could be found, in particular it could be asserted that also
complexed rare earth impurities prefer the Ga-site and that the presence of these defects causes a
noticeable lattice distortion in the GaN host. The presence of the rare earth furthermore affect the
charge transition levels of the native defects of the host. In the case of REGa VN pairs a noticeable
displacement of the lanthanide from the Ga-site (up to 0.1 Å) was observed. In the positive charge
state this defect behaves isoelectronically with the isolated REGa substitutional, i.e. the lanthanides

a doublet in the band gap [182].
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are in the 3+ valence state. The binding energy of these defects is a function of the position of
the Fermi energy within the GaN band gap. In moderately n-type material the high value of the
binding energy (1.4 eV in the case of ErGa VN axial pairs) would suggest that most of the nitrogen
vacancies are bound to the rare earth after annealing. These pairs are furthermore characterised by
two charge transitions ε(+/0) and ε(0/−). The presence of the latter close to the conduction band
suggests that REGa VN pairs could be important luminescent centers. Similarly, complexes formed
by REGa+VGa pairs, where the vacancy is not directly neighbouring the rare earth are characterised
by a relative big relaxation of the lanthanide environment. The formation energy is slightly higher
than the formation energy of REGa VN. Rare earths and and gallium vacancies are bound for every
position of the Fermi energy within the band gap. This is due to the strong coupling between
ErGa and VGa mediated by the displaced N-ligand. The binding energy makes of these pairs one
of the dominant defects in GaN. These pairs behave as triple acceptors, with charge transitions
ε(0/−), ε(−/2−) and ε(2−/3−) at 0.45, 0.64 and 1.15 eV above the valence band in the case of
ErGa+VGa pairs. REGa substitutionals and vacancies are bound for almost each position of the
Fermi energy within the band gap of the host and in particular in moderately n-type material they
are strongly bound. This is probably due to the fact that the big sized lanthanide ions fit better
in the neighbourhood of an intrinsic defect which leaved additional place for them. On the other
hand defect pairs formed by REN substitutionals and nitrogen vacancy pairs have a much higher
(almost 10 eV) formation energy and are not bound. For this reason these pairs are not likely to
be formed in appreciable concentrations. REN VGa pairs are not formed, as the lanthanide moves
without a barrier within the migration path in the neighbouring vacancy forming a REGa VN pair.
Finally REGa substitutionals and antisite complexes are characterised by a high formation energy,
which could be related to the residual lattice stress due principally to the presence of the antisite.
Summarising, the lanthanide-vacancy pairs seem to be able to play a role in the mechanisms that
lead to the observed luminescence. The particular role of each single defect is discussed in the last
chapter, where a possible model of the processes that lead to the luminescence is proposed.
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Chapter 7

Co-doping with oxygen

Even if it has been demonstrated that in semiconductors like Si and GaAs the co-implantation
of rare earths with light elements like O is beneficial for the luminescence [17], the issue of co-
doping in GaN is still unsettled. In Si and GaAs the co-doping has the dual purpose to increase the
luminescence intensity and to reduce the temperature quenching of the emission. This is achieved by
the formation of particular RE-O complexes, whose existence in GaN is at least uncertain. Three
main opinions are reported in the literature about the effect of oxygen co-doping in RE-doped
GaN samples, namely that co-doping with oxygen, carbon or fluorine leads to an improvement of
the luminescence [13], that it causes a degradation of the luminescence [245] and finally that it
does not influence at all the luminescence [14]. In some case the effect of the co-doping on the
luminescence has been found to be depending on the particular GaN sample and even to have a
completely opposite behaviour, being beneficial for certain samples and having negative effects for
other samples [245]. Summarising, much work on this field has still to be done. In this chapter
we want to investigate microscopically the effect of dopants like oxygen and carbon (representative
for the class of acceptor and donor dopants in GaN) on RE doped GaN. Our goal is to determine
which complexes involving RE and impurities can be created and investigate their stability. From
the analysis of characteristics like defect symmetry and binding energy we can then try to identify
single defects as compatible with the emission or not. In this chapter we will not investigate all the
selected rare earths but will concentrate mainly on Er, which is the experimentally most investigated
rare earth and which should be representative for the whole family of lanthanides.
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Figure 7.1: ErGa ON defect centers in hexagonal GaN can assume two kind of configurations, basal (left
hand side with symmetry C1h) and axial (right hand side with symmetry C3v or C1h if a Jahn-Teller
distortion occurs) because of the inequivalent N lattice locations in hexagonal GaN. In fact the Er-N bond
along the c-axis is longer than the other three.
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Figure 7.2: The influence of the atomic rows and planes on the trajectories of energetic particles within
the crystal is known as channeling.

7.0.1 Geometry

By means of EC studies (see chapter 1) it was found that co-implanting erbium together with oxygen
or carbon does not result in the occupation of fundamentally different lattice sites of Er [246, 247].
Differences between the co-implanted and the Er-implanted samples are within the error bars,
which means that any difference in luminescence caused by co-implantation of Er with O or C into
GaN cannot be attributed to a change in the lattice site of Er, in contrast to the case of Er in
silicon [17]1. On the other side, it is also known from previous studies (see chapter 5) that oxygen
in GaN forms predominantly ON substitutionals. We simulate therefore structures with the rare
earth atom laying on a Ga site and the oxygen substituting one of the neighbouring N ligands. In
the process of ion implantation in GaN samples, the dopants are not shot randomly in the host,
but mostly along one of the major lattice directions. In this way the dopants can find an open
channel between the rows of atoms and penetrate deeply in the sample without creating a lot of
lattice damage2. In the case of RE-implanted GaN samples most of the literature refers to samples
implanted with the impinging ions along the wurtzite c-axis, as reported in Fig. 7.2. This has an
influence on the defect types which are created, especially in the case of co-implanted samples. In
lanthanide doped hexagonal GaN there are two inequivalent places for the nitrogen site around the
REGa substitutional. Indeed the rare earth impurities form with the N-neighbours three equivalent
bonds and one somewhat longer along the wurtzite c-axis. This means that the RE-O complexes
can occur in hexagonal GaN in two different configurations, depending on the substituted nitrogen
atoms. If the substituted atom is one of the three equivalent nitrogens the defect will only have a
symmetry plane (through the position of the O atom, of the RE atom and of the inequivalent N) and
therefore the C1h symmetry (basal configuration). If the substituted nitrogen is the one along the
crystal c-axis (axial configuration) the defect complex can have the C3v or the C1h symmetry. Both
configurations are represented in Fig. 7.1. It is known that co-implanting oxygen and lanthanide
impurities along the crystal c-axis favours the formation of complexes either in the basal or in the
axial configuration, even if it has not be settled under which conditions the one are favoured upon
the other [43]. In this work we limit us to the detailed investigation of the axial pairs.

1Er in oxygen co-doped Si is know to form Er interstitials and other defect centers involving one or more oxygen.
2The influence of the crystal lattice on the trajectories of the incident particles during the implantation is known

as channeling.
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Table 7.1: Geometry of the stablest configuration of the basal and axial Er-O pairs in hexagonal GaN.
Er-N1 and Er-N2 label inequivalent Er-N bonds. On the left hand side the neutral charge state and on the
right hand side the positive charge state.

Conf. Symm. Bond Number DFTB-LDA DFTB-FLL DFTB-LDA DFTB-FLL
Basal C1h Er-N1 2 2.21 2.24 2.16 2.18

Er-N2 1 2.22 2.27 2.17 2.21
Er-O 1 2.04 2.09 2.03 2.03

Axial C3v Er-N 3 2.20 2.25 2.16 2.22
Er-O 1 2.05 2.09 2.03 2.04

As usual we perform our calculations using 256-atoms supercells and a 4 × 4 × 4 Monkhorst-Pack
k-point mesh. For the DFTB-FLL calculations we used the usual value of U -J = 0.27, 0.28 and
0.27 H for Eu, Er and Tm as we used throughout this work. With these values the piecewise
linearity of the total energy is possibly not completely recovered, nonetheless they will suffice to
describe the geometry, the band structure and the charge transitions of the system. The defect
complexes in the axial configuration can have three different minima, one with the symmetry C3v,
where the lanthanide N-ligands and the oxygen Ga-ligands are equivalent, and two minima with
the C1h symmetry, where the ligands are inequivalent (two long bonds and one short or two short
bonds and a long one). Whether all these minima are formed or not and their energetic stability
depends on the occupation of the gap states. We illustrate in some detail the case of erbium-oxygen
complexes.
The major difference with the isolated ON substitutionals is given by the position of the oxygen,
which lays in all cases on site and not off-center. The (small) displacement reported in the table is
due to the size of the lanthanide ion which introduce some strain in the first neighbour shell.
We notice that the energy difference between the different geometries is very small (15 meV) and
of the order of magnitude of the precision of the DFTB-method. We believe though, that the
difference is significative, at least qualitatively, because it has been calculated for the same system
and with the same supercell, taking advantage of the error cancellation.
Further characteristics of the system, like charge distributions, charge state transition, formation
and binding energy are calculated for the axial configuration in its stablest symmetry, i.e. C3v.
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Figure 7.3: The three minima of the ErGaON axial pairs in hexagonal GaN in the neutral charge state:
the first one has the C3v symmetry, while the other two the C1h. As usual green circles represent erbium,
red ones oxygen, black nitrogen and white gallium atoms. All the distances are given in Å.
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energy of the ErGa ON pair and the black line its binding energy, given as difference of the latter two curves.

7.0.2 Energetics

If from the structural point of view the presence of oxygen does not drastically affect the Er
and O co-doped samples, it remains to investigate how it affects the electronic properties of the
system. Oxygen is an element which is invisible to some experimental technique3 and oft present
as involuntary codopant in grown materials. Oxygen is the principal dopant used to dope n-type
GaN. As seen in the 4th chapter it introduces a donor level close to the conduction band edge. The
formation energy of the axial pair in the neutral charge state:

Ef = Etot.(ErGa On)−
∑

i=Ga,N,Er,O

µini

= Etot.(ErGa On)− 127µGa − 127µN − µEr − µO

= Etot.(ErGa On)− Etot.
bulk(GaN) + µN + µGa − µEr − µO

and in the C3v symmetry has been calculated to be 4.52 eV (4.66 eV for the basal pairs). DFTB-FLL
and DFTB-LDA values are almost identic. As the complex is in the neutral charge state only for
values of the Fermi energy close to the conduction band (see following section), and the formation
energy of the complex in the positive charge state will be smaller. This is in agreement with the fact
that ON substitutionals in GaN have in general a low formation energy. A low formation energy
does not automatically mean that the defect complex will be present in the co-doped samples from
which light emission has been observed, as luminescence has only been observed from annealed
samples. Only these defect complexes which are stable enough to endure the annealing process can
be in fact addressed as possible candidate for the luminescence. Considering a Boltzmann constant
of 8.617385·10−5 eV/K, defect complexes whose binding energy is higher than ca. 0.1 eV should
remain bound even after annealing at 1000-1200K. The binding energy of Er and O impurities in

3For example in EPR the oxygen ions are invisible, as the only oxygen isotope with non-zero nuclear spin (O17)
has a natural abundance of 0.038%. In PL experiments only these ions can be detected, which either are directly
excitable or introduce such a distortion of the crystal field to influence the emission spectra of luminescent impurities.
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Figure 7.5: Left hand side: Fraction of bound oxygens depending on the annealing temperature, assuming
a Er-O binding energy of 1.00 eV.

hexagonal GaN in the dominating positive charge state has been calculated to be 1.86 eV, which is
more or less the binding energy of Er and O in Si. This value is considerably higher than the value
390 meV calculated by Filhol et al. [57] with a DFT-LDA approach but in agreement with the value
of 1.69 eV calculated with a LMTO-ASA approach [237, 238]. The value is almost constant for
each position of the Fermi level within the GaN band gap and higher than the binding energy the
of all other defect complexes involving Er. This large binding energy means that a big fraction of
the oxygen impurities will be bound to the lanthanide after annealing. Similarly to the discussion
reported in sec. 6.1.1 if we assume that in Er and O co-doped GaN samples the erbium concentration
cEr is much bigger than the oxygen concentration cO, the equilibrium concentration of the Er-O
pairs is given by:

cEr−O =
cEr

cEr +Ne−
Eb
kT

(7.1)

where, like in Eq. 6.1 N is the density of Ga lattice sites, T is the temperature and k the Boltzmann
constant. Considering cEr to be 0.078%4, we find at 1000 K 85-95.% of the O atoms to be bound
with the Er. The ideal run of the curve representing the fraction of bound oxygens depending on
the annealing temperature, assuming a binding energy of 1.00 eV, is plotted in Fig. 7.5.
Strictly speaking the binding energy of the ErGa ON pair is a function of the position of the Fermi
energy.

4This value corresponds to the typic erbium concentration in real samples and is also the erbium concentration
we used in our simulations.
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Figure 7.6: Cohesive energy per bond of the Er-Ox complexes. The cohesive energy per bond decreases
almost linearly with the number of oxygen atoms, indicating that the most favourable configuration is the
Er-O pair.

In Fig. 7.4 we report the value of the binding energy for values of the Fermi energy within the
GaN band gap. To gain more informations about the nature of the Er-O bond, Er-Ox complexes in
hexagonal GaN were investigated within the DFTB-LSDA approach. In Er-O co-doped Si in fact
defect complexes involving different oxygen ions are expected [17]. The cohesive energy per bond
has been calculated for complexes including one to four oxygens neighbouring with Er in the neutral
charge state. The cohesive energy per bond decreases almost linearly with the number of oxygen
atoms, so that once the Er-impurity has bound one oxygen, it will be energetically less favourable
to bind a second one. Considering the cohesive energy of a Er-O complex to be the zero of our scale,
the cohesive energy per bond of complexes with two, three and four oxygens around the Er-atom
will be 0.32, 0.70 and 0.88 eV lower. This is graphically visualised in Fig. 7.6. We observe that the
complexes in which the Erbium is surrounded by four oxygen first neighbours are characterised by
a pronounced lattice distortion, probably due to the fact that Er and O try to reach a geometric
configuration similar to the Er2O3 phase. To understand the differences introduced by the oxygen
co-doping the difference between the total charge density of the simple substitutionals ErGa and
the total charge density of the complex ErGa ON was plotted and reported in Fig. 7.7. It can be
observed at first that the differences are limited at the region around the Er and O ions, confirming
that the presence of oxygen does not introduce any major difference with respect to the Er doping.
The oxygen ion results positively charged, because it is isoelectronic with N, while around the Er
ion some charge redistribution is observed. It is interesting to notice that no charge is taken from
or accumulated along the Er-O+ bond. It means that the Er-N and Er-O+ bonds are similar.

7.0.3 Charge states

The ErGa ON pairs are characterised by a donator ε(+/0) transition close to the ε(0/-) transition of
the isolated ErGa substitutionals. We calculated this transition at 2.30 eV above the valence band.
To confirm this result the same charge transition was calculated with the already mentioned LDA+U
capable LMTO-ASA approach [237, 238] and found by 2.9 eV above the valence band, which is in
qualitative agreement with the DFTB-FLL result. In previous DFT-LDA investigations [57], the
ε(+/0) transition of the pair was found to be resonant with the conduction band.
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Figure 7.7: Plot of the charge difference of a wurtzite GaN supercell containing an isolated ErGa sub-

stitutional and the same cell containing the isoelectronic impurity-pair ErGa O+
N. Blue regions indicate

accumulation of negative charge and red regions positive charge. The oxygen atom results positively charged
(it substitutes a N atom), while a charge redistribution is observed around the Er atom.

The defect pair cannot be negatively charged, as the position of the ε(0/-) charge transition has
been calculated at 3.8 eV above the valence band, i.e. in the conduction band (see the right hand
side of Fig. 7.4).
As the complex exists in the neutral and positive charge state, properties like binding energy or the
geometry have been investigated in both the neutral and positive charge state. An analysis of the
Mulliken charges localised on the atoms around the Er substitutional reveals that the presence of
the oxygen does not influence the charge distribution on the Er-atom and the other N-ligands. The
Mulliken charges calculated with DFTB-FLL for ErGa substitutionals and ErGa ON complexes in
the positive charge state are reported on Tab. 7.2: the charges on the Er and N atoms are in the
two systems almost identic.
In the neutral charge state there is a further electron which is mostly localised on the Er-atom.
This can be observed plotting the charge state difference between the system in the neutral charge
state and positively charged, as reported in Fig. 7.8. The difference in the charge density between
the two charge states is strongly localised on the Er ion. It means that adding an electron it would
not be delocalised but will reside mainly on the lanthanide. The ligands only show on the other side
polarisation effects due to the charge accumulation on the Er atom. The O ligand behaves exactly
like the N-ligands. It is not surprising that the presence of oxygen in Er-doped GaN-samples does
not modify considerably the charge distribution and the geometry of the system, because oxygen

Table 7.2: Mulliken charges localised on the atoms around the ErGa (left hand side) and ErGa ON (right
hand side) complexes with C3v symmetry in the positive charge state.

N1 5.5151 N1 5.5122
N2 5.5153 N2 5.5133
N3 5.5184 N3 5.5186
N4 5.5227 O 6.3972
Er 13.2227 Er 13.2168
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Figure 7.8: Plot of the total charge difference between a wurtzite GaN supercell containing a ErGa ON pair
in the neutral and positively charged state (the integral of the charge would also be unitary). Blue regions
indicate accumulation of negative charge and red regions positive charge. The missing charge is mainly
localised on the Er atoms, while in the neighbouring atoms only polarisation effects can be observed.

and nitrogen have similar dimensions and electronegativity. Oxygen can be in fact considered
close to an ideal (effective mass) donor in GaN, as it becomes isoelectronic with the substituted N
promoting one of its electrons to the conduction band without introducing major changes in the
host.

7.1 Summary and conclusions

In this chapter the effect of the co-doping of GaN with erbium and oxygen was investigated. Even
if from our investigation cannot be finally settled if the oxygen ions are beneficial for the lanthanide
related luminescence, many important informations about the nature of the Er-O complexes could
be achieved. The presence of oxygen was found not to alter the structure and the charge distribution
around Er centers. Two types of Er-O complexes called axial and basal pairs (with C3v or C1h

symmetry) can be formed in hexagonal GaN, depending on the position of the substituted N-ligand
with respect to the lanthanide. These configurations are characterised by a very similar energy (the
difference is 0.06 eV in the neutral charge state) and similar band structure. The low formation
energy of those defects and in particular the relatively high binding energy suggest that Er-O will
be formed and remain bound even after annealing. An investigation of the cohesive energy per
bond indicates that ErOX complexes are not likely to be formed (differently from Er-O co-doped
Si) but rather, as long as the oxygen fluence does not overtake the Er fluence, different oxygens
will be bound to different Er-centers. The high value of the cohesive energy is somehow surprising
and has the consequence that almost all present oxygens results bound to the erbium. This high
binding energy could be explained by the concurrence of three main factors. The fist factor is the
already mentioned similarity between oxygen and the substituted nitrogen, which leads to the easy
incorporation of oxygen in GaN and to the creation of very stable bonds. The second one is the
Coulomb interaction between the substitutionals ErGa and ON, which is typical for donor-acceptor
pairs and which has been also observed for REGa VN complexes. Separating the complex into the
constituents we would have Er−Ga and O+

N pairs, as can be also deduced from Fig. 7.7. The third
factor which could contribute to the high binding energy is a resonance between some state of
Er and O. Looking at the energy of the outer states of these atoms it can be observed that the
energy of the Er 5p-states (and in general of the 5p-states of al the lanthanides) is quite close to
the energy of the oxygen 2s-states and a particularly strong resonance could be created. Unluckily
it is not possible within the DFTB approach to proof this idea projecting the atomic states on
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Figure 7.9: Atomic levels of atomic species which are commonly used as dopants for GaN. The levels are
calculated with the scalar relativistic atomic program RLCAO. In blue f-orbitals, in black the energy of
s-orbitals, in green the d-states and in red the energy of p-orbitals.

the crystal orbitals and its investigation is remanded to future studies. The ErGa ON complexes
introduce charge transition levels close to the charge transition introduced by the isolated ErGa

substitutionals (i.e. 2.30 eV above the valence band). This means that the pair can be in the
neutral or in the positive charge state. In this charge state the oxygen atoms are isoelectronic
with the substituted N and the Er atom are in the 3+ valence state. Because of their symmetry
and valence states, REGa ON pairs could play a role in the luminescence observed from co-doped
samples, however the excitation process (i.e. in PL experiments) would be difficult because the
introduced charge state transition does not lay close to the conduction band. The role which Er-O
pairs could play in the luminescence process is further discussed in the next and final chapter of
this work.
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Chapter 8

Summary and discussion

In this work we investigated the properties of rare earth impurities in GaN by means of self inter-
action corrected and LDA+U calculations. The goal of this investigation was to examine from the
microscopic point of view single rare earth related impurities, in order to find out whether they can
play a role in the RE-related emission or not. In this way we hope to help the general understanding
of the emission mechanisms and thus the optimisation of the RE-doped GaN-based devices.
The GaN samples for luminescent devices are today grown, doped and annealed in conditions which
empirically have been found to maximise the luminescence but despite many efforts any lumines-
cence band could be definitively assigned to a particular lattice site or defect state.
We start our work reviewing the general properties of the rare earth ions as well as the experimen-
tal knowledge of lanthanide-doped GaN samples. We summarise the properties which characterise
the luminescent sites (symmetry, valence etc.), which are compared later with the results of our
simulation. In the first part of the work we also illustrate the problematic related with the strongly
correlated electrons in general and with the lanthanide f -electrons in particular. These systems
cannot be modeled with the standard calculation schemes of density functional theory (DFT) in
the framework of the local density approximation (LDA). This approach would in fact, due to its
approximation and limitations, give a qualitatively wrong description of the strongly correlated
electrons, like in the case of the rare earth nitrides or transition metal oxides (e.g. NiO), which
are experimentally known to be insulators or semiconductors but appear to be metals in the LDA
approximation. As a first step of our investigation we have adapted the existing calculation schemes
deriving a formalism (and implementing it in a simulation package), in order to properly handle
the strongly correlated electrons. The LDA+U and pseudo self interaction corrected (pSIC) ap-
proaches were adapted to the tight binding formalism and implemented in the density-functional
based tight-binding (DFTB) simulation software. This approach is very efficient and allows to cir-
cumvent the known gap problem affecting the LDA calculations, even if it does not reach in all cases
the precision of the DFT approaches. DFTB needs tight-binding parameters for each atom pair
type involved in the calculation. The generation of these parameters was the second step of our path
towards the simulation of the rare earths in GaN. Parameters for the simulation of the host (Ga,
N) and some of its common dopants (H, C, O) were created and thoroughly evaluated, together of
course with the parameters for a selection of lanthanides (Pr, Eu, Gd, Er, Tm) which we thought
to be representative and interesting because of their applications and because of the experimental
knowledge of their properties which is now available. The DFTB parameters determine in great
extent the accuracy of the method and its portability so that great attention has to be paid in their
generation and testing. The parameters we created could reproduce the geometry of all the test
systems with an accuracy of 1-2% with respect to the experimental values and lead to a qualitative
correct description of the band structure of the solid state system investigated. Other physical
quantities we simulated like elasticity properties, cohesive energy and formation enthalpies were
found to be in reasonable agreement with ab initio simulations, of which DFTB can be considered
therefore a good approximation.
Armed with a simulation software able to treat strongly correlated electrons in a proper way and
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Table 8.1: Charge transition states of some native defect in GaN and of erbium-impurity native-center
pairs. Reported are only the charge transitions closest to the conduction band. The values are given in eV
above the valence band.

Center Transition Position Center Transition Position
− − − ErGa ε(0/−) 2.35
VN ε(−/3−) 3.20 ErGaVN ε(0/−) 3.14
ON ε(+/0) 3.35 ErGaON ε(+/0) 2.30

with reliable parameters we were able to start the actual simulation of the RE-related defects in
GaN. We started our investigation paradoxically with the simulation of those GaN defects not in-
volving the lanthanides. This has the double goal to give us an even more detailed picture of the
DFTB accuracy in the simulation of known GaN native and impurity defects and to determine
their properties in both GaN polytypes, wurtzite and zinc-blende. Their understanding and knowl-
edge is in fact fundamental if we want to understand the behaviour of complexes formed by rare
earth impurities and native defects. The final part of this work was dedicated to the simulation
of the rare earth impurities in the host, both in its hexagonal and cubic polytypes. The effect of
oxygen co-doping in lanthanide implanted wurtzite GaN was also investigated. Isolated lanthanide
substitutionals, substitutionals complexed with GaN native defects like nitrogen and gallium va-
cancies, antisites and interstitials and with oxygen impurities were simulated in different charge
states, geometric and spin configurations. For key and benchmark systems accurate electronic
structure calculations were also performed with different ab initio approaches (Wien2k, ABINIT,
LMTO-ASA). The results of our investigation are summarised in the following discussion, which is
concluded with a possible model for the mechanism leading to the light emission.

Main results

The main goal of our investigation of the rare earth point defect was to find which defect centers
are dominant in GaN and to give an overview of their properties and characteristics. Some of these
centers in fact could be the luminescent sites which we want to create to optimise the emission
from the sample. The luminescent centers have to satisfy determined requirements to be present
in the sample (they should have a low formation energy and an high binding energy to be bound
after annealing) and have to posses some characteristics known from experimental investigations
(e.g. symmetry and valence).

Differences between the rare earths

Many of the chemical and physical characteristics of different elements are mainly due to their outer
shell. Most of the lanthanides share the same outer shell and therefore many of their properties. At
a first sight the lanthanides impurities in GaN behave similarly. They give rise to similar complexes
with the same geometry and minor differences in the bond length due to differences in the ion
size. However, from the electronic point of view there are important differences, which can be lead
back to different occupations of the f -shell. Completely empty, completely filled and half filled
f -shells are particularly favourable configurations which the system tends to reach. For this reason
for example EuGa substitutionals (6 f -electrons) have an acceptor state ε(0/−) deep in the middle
of the GaN gap which many other lanthanides do not have. In the negatively charged state Eu
completes the 4f -semishell reaching a very stable configuration. For the same reason Gd, which
already has an half-filled 4f -shell do not change the occupation of the f -shell.
Rare earth luminescence was observed for GaN samples doped with almost all lanthanide, but not
Gd. This is quite surprising, but can probably be explained with the peculiar electronic configura-
tion of this atom. Unlike other lanthanides the Gd-valence shell includes one 5d1 electron, which
plays a particular role in the Gd-N bond and in the charge transitions. While most of the lanthanide
promote the two outer 6s2 and one 4f electron to reach the trivalent configuration in GaN, in the
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CHAPTER 8. SUMMARY AND DISCUSSION

case of Gd the promoted electrons are two outer 6s2 and the 5d1. The half filled f -shell remains
also in the (very stable) atomic configuration. Charging the system with an additional electron will
result in the occupation of the 5d shell and not of the 4f shell. This probably means that it is
difficult to bring Gd f -electrons into the excited state from which they can return into the ground
state with a radiative process.

The two polytypes

No major differences between lanthanide defects in hexagonal GaN and cubic GaN have been found
for the investigated defect centers. This is not surprising, as also native defect and largely used
impurities like O and C in wurtzite and zinc-blende GaN do not show qualitative differences. The
lower symmetry of hexagonal GaN influences in particular interstitial defects (see section 4.3.1),
which however are not likely to be formed in the case of lanthanide doping. The similarity between
impurity defect formed in hexagonal and cubic GaN was furthermore observed in the case of the
3d transition metals [248]. Instead, major differences have been found between the lanthanide
defects in GaN and in other semiconductors like Si, GaAs and ZnO. The literature reports the
presence of stable defects in this hosts, like rare earth interstitials or complexes involving rare
earths and interstitial oxygen which have not been observed in GaN. It is therefore in most cases
misleading to try to interprete the mechanisms underlying the RE-emission from RE-doped GaN
with models which have been successfully exploited to explain the RE-emission in the other hosts.
Differences between the defects in GaN and other hosts are not peculiar for the lanthanide doping
but have been observed for native defects too. The differences can be lead back to the size and
electronegativity differences between the constituents (Ga and N), which are far more marked than
in other semiconductors like GaAs or SiC.

Lattice site

The first question we try to answer concerns the lattice site of the lanthanide. Rare earth ions in
GaN may occupy the Ga-site, the N-site or an interstitial position. Interstitial rare earths ions have
been found not to be stable with respect to the configuration:

IRE −→ REGa IGa

and are not going to be formed in appreciable concentrations in equilibrium growth conditions.
REN substitutionals, isolated or complexed with vacancies, introduce a serious lattice distortion in
the host and are characterised by a huge formation energy. In particular the REN VGa pair is found
not to be stable with respect to the configuration:

REN VGa −→ REGa VN

confirming the tendency of the rare earth ions to avoid the N-site. Instead lanthanide ions form
very stable REGa substitutionals1 which do not introduce major lattice distortion. A parameter
was introduced to quantify the stress caused in the host geometry, which was found to be relatively
small for all the investigated rare earths. Rare earth ions are readily incorporated in GaN as
Ga-substitutionals which are probably the majority centers revealed by EXAFS investigations.
Our calculations are in agreement with the experimental evidence of the fact that the lumophore,
independently from its particular structure and neighbourhood must be built in such a way that the
lanthanide occupies the Ga-site [41]. Consequently the lanthanides in interstitial position and the
REN substitutionals (isolated or complexed with vacancies, antisites or oxygen impurities) cannot be
considered candidates as luminescent center. The strongest luminescence has been detected from
samples showing high fractions of rare earth on substitutional Ga places. During the annealing
needed to activate the luminescence the lanthanide which were slightly displaced from the ideal
lattice site come closer to the Ga-position while the other defect (implantation damage) are reduced.
This makes very tempting to assign a relation between the isolated REGa substitutionals and the

1The rare earth ion stays on site in the case of isolated substitutionals and is slightly displaced from the Ga-lattice
site in lanthanide-native defect pairs.
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luminescence. These defects have been found to be compatible with the luminescence in our work
and additionally, no other specific lattice sites have been found to be occupied by RE ions by any
technique. However different issues have to be considered, in particular the fact that most of the rare
earth ions in the sample do not act as lumophores and that different defect states are responsible for
the luminescence. The photoluminescence from RE-doped samples can be investigated as function
of the wavelength of the exciting light, a technique called (site-)selective excitation. Different
spectra from different wavelengths are an indicator of the presence of different centers actively
contributing to the luminescence. Two ”majority” and up to four different signatures were found
for Er MBE-doped samples [48] and at least four luminescent centers were found in Eu implanted
GaN samples [12]. This means that our research cannot be considered concluded even if we identify
one class of defect as candidate lumophore because of its characteristics. It was measured that
50-95% of Pr, Nd, Eu, Gd and Er ions implanted in GaN occupies lattice sites that appear to be
slightly displaced from the ideal substitutional REGa, with a nearly isotropic root mean square
(rms). This displacement (of the order of 0.10-0.25 Å) is too large to be explained in terms of
lattice vibrations and is an evidence of the fact that if the REGa substitutionals participate to the
emission process, they probably cannot be considered the only lumophores (but can form defect
pair and complexes with GaN intrinsic defects).

Defect states

Apart from the isolated REGa substitutionals the further candidates as luminescent centers investi-
gated in this work are the pairs formed with oxygen, antisites (GaN) and Ga or N vacancies. While
the REGa GaN antisites (which are characterised by a high formation energy and a residual lattice
stress) are formed only in very low concentrations, the other point defects have lower formation
energies (which are relatively similar for all the complexes in the neutral charge state) and the in
the case of the of REGa VN, REGa VGa and REGa ON the complexes results bound after annealing.
The similar formation energies of the different centers would signify that different defect centers
can be created at the same time in the same sample under certain growth conditions. This would
agree with the experimental observation that many different centers contribute to the luminescence.
Which of this pairs can be related with the luminescence though?
The RE luminescent transitions have been compared to theoretical models in order to assess def-
inite symmetry properties to the centers. In the cases of Pr, Eu, Er and Tm it was mentioned
that the emission spectra are compatible with the C3v symmetry. In any case extracting symmetry
informations for RE-centers from emission spectra is difficult, because the observed spectra are the
superposition of different centers together with vibronic and satellite lines. Experimental investiga-
tions which could unambiguously reveal the symmetry of the defect centers are as far not available,
as discussed in Sec. 6.1.1. Furthermore it is unknown how far the rare earth has to be displaced from
the wurtzite c-axis in order to reveal a symmetry lower than the C3v in luminescence experiments.
We cannot therefore exclude one particular defect center based only on symmetry arguments, rather
we think is safe to label a defect as non-luminescent if different parameters are not in agreement
with the experimental evidence. The defects complexes investigated in this work which can be
formed in the C3v symmetry are the isolated REGa substitutionals, the REGa VN vacancies, the
REGa ON and the REGa GaN pairs.
In relation with the experimental evidence of the presence of different luminescent centers, the
RE-luminescence has to be related with different defect configurations, some with the RE exactly
lying at the Ga lattice site and some with the RE slightly displaced from this position. Among
all the investigated configurations the only defects in which the RE lies on-site and which are
compatible with the luminescence (because of their symmetry, valence state of the RE, stability
against annealing etc.) are the isolated REGa substitutionals and the pairs formed by co-doping
REGa ON (both in the C1h and in the C3v symmetry), while the only defects compatible with
the luminescence in which the lanthanide is slightly displaced from the Ga-site are the complexes
formed by a lanthanide substitutional and a neighbouring vacancy (REGa VN or REGa+VGa).
Unfortunately luminescence experiments cannot quantify the number of different defects related to
a particular signal. It is therefore not possible to establish if the luminescence is due to a relatively
small amount of the implanted ions or by the majority RE ions sitting approximately on the Ga-site
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Figure 8.1: Possible excitation mechanism of the ErGa VN pairs in GaN. The energy of the charge carriers
generated by photoluminescence is transferred to the f-shell through a two step or assisted process in which
the PL-generated electron is transferred from the conduction band into an assistant level, from which it can
transfer its energy to excite the f-states of the rare earth.

and surrounded by four nitrogen atoms.
The valency of the lanthanide in isolated REGa substitutionals in the neutral charge state and in
most of the charge states of the defect pairs where the RE occupies the Ga-site is 3+, which is
the valency of the Ga atom the lanthanide replaces and is in accord with the interpretation of
photoluminescence experiments [4]. In particular Eu substitutionals in the neutral charge state
have been found to be trivalent, despite of the tendency of Eu to be divalent in some compound
(elemental metallic phase). Luminescence experiments show that Eu in GaN is trivalent [7, 36] even
if there have been reports about divalent Eu in the surface region of Eu-doped GaN [249]. The
energy difference between the isolated lanthanide substitutionals in the divalent and trivalent state
has been calculate2 to be 1.8, 2.3 and 3.0 eV for Eu, Er and Tm substitutionals. This values are in
good agreement with the results in Ref. [18].

A model for the excitation mechanisms

Once the different defects created with lanthanide doping in GaN have been examined, a model
involving these defects which leads to the luminescence can be suggested. The model resembles the
one proposed by Gerstmann et al. to explain the Er-related luminescence in SiC [250].
Light emission from lanthanide doped GaN has been observed in photoluminescence (PL), cathodo-
luminescence (CL) and electroluminescence (EL) experiments. Independently from the excitation
mechanism3, the charge carrier energy is transferred to the rare earth impurity (by electron-hole
recombination or by impact excitation of hot carriers), which can then relax with a radiative or
non-radiative process. Of course in our case only the radiative processes are important.

2The values are the results of LSDA calculation in not relaxed GaN cells. This approach, which is not the approach
used throughout this work, has been chosen in oder to compare directly the results with the values in [18].

3In PL electron-hole pairs are generated by above band gap excitation, in CL charge carrier are generated by a
high-energy electron beam and finally, in EL, charge carriers are injected in the GaN sample applying a bias to the
electrical contacts on the layer.

131



The excitation mechanism however is not straightforward and not all the rare earth related defect
states can be excited. Let us see this with an example, e.g. in the case of photoluminescence
experiments. In overband excitation a photon with an energy greater than the energetic band gap
is absorbed from the material creating an electron-hole pair, i.e. a hole in the valence band and
an electron in the conduction band. Electrons can be trapped by donor levels while holes can be
trapped by acceptor levels, which results electrically charged. When the trapped electrons and holes
recombine, an electron of the f -shell can be brought into an excited state, from which it relaxes with
a radiative transition (i.e. photon emission). Normally these transitions (called optical transitions)
differ from the electronic transitions because during the recombination the acceptor or donor defects
do not relax their atomic structure (as they would do in an electronic transition) so that they posses
an energy surplus due to the relaxation energy (Franck-Condon shift). Instead in the case of the
lanthanides the environment of the lanthanide ions is not a primary aspect, as the f -shell is screened
from the outer atomic shells. Another peculiarity of the photoluminescence effects in lanthanide
doped GaN is that the created electron in the conduction band could recombine with the holes in the
valence band without exciting the f -states. The process of charge carrier energy transfer can be in
fact frustrated by the strong localisation of the f -shells or in the case in which the charge transition
levels are deep in the gap and an electron in the conduction band cannot occupy them directly
because of the high energy mismatch. This would be the case of the isolated REGa substitutionals.
In this case the energy transfer to the f -shell can be helped by a so called assistant level (e.g a level
of an isolated donor), a shallow transition-level introduced normally by another nearby defect. An
electron from the conduction band can then in a first step occupy the assistant level and from this
transfer its energy to the lanthanide f -states. In this model, illustrated in Fig. 8.1, VN as close
pair with REGa can play a self-assistant role, as they introduce transition levels in the band gap
much closer to the conduction band than the levels introduced by the isolated REGa substitutionals
(see also Tab. 8.1). The major role of lanthanide-vacancy pairs in the luminescence would be in
agreement with the fact that the highest luminescence was measured from sample with rather poor
crystalline quality and rich of defects [42].

A look ahead

Understanding the mechanisms leading to the rare earth luminescence is a fundamental step for
the realisation of efficient and cost-effective devices. However this step is as difficult as important,
due to the nature of the lanthanide and to the multiplicity of configurations at microscopical level
caused by the rare earth doping that have to be investigated. In this work we only concentrated
on a ”small” part of microscopic structures, the isolated point defects. Important issues like the
interactions between point and extended defects or the dopant clustering were not examined. The
interaction of the rare earth ions with aggregates of several vacancies and acceptors remain for future
investigations. The actual luminescence mechanisms could be only addressed indirectly in this work.
Nonetheless we were able to describe the physical and chemical characteristics of many rare earth
related defect states. On the basis of these results we elaborate a model which would explain
why it is difficult to excite a big fraction of the lanthanide dopants and how the presence of GaN
native defects would improve the luminescence. In order to identify the defect states responsible
for the luminescence, based on the results presented in this work, more future investigations, both
theoretical and experimental (e.g. EPR measurements) are required.
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Appendix A

Formation Energies

To compare the relative stability of a structural defects in an otherwise ideal crystal the formation
energy is used. The formation energy is the energy needed to create the defect and is not constant:
it depends from the growth conditions of the crystal, i.e. from the relative abundances of its con-
stituents in the growth phase. These abundances are thermodynamically described by the chemical
potentials of the elements involved, which define on turn the reservoir where atoms are taken from
or brought to in order to create the defect. The formation energy of charged defects depends also
from the position of the Fermi level, which describes the energy position where the electrons are
taken from or brought to in order to charge the defect. Summarising, the formation energy of a
defect in the charge state q will be:

Eform = Etot(q)−
∑

A

nAµA − qEFermi (A.1)

where Etot(q) is the total energy of the crystal in the charge state q. The index A runs over all
the atomic species present in the system. µ is the chemical potential and n the number of atoms
of type A. In this work only the formation energy of defects in GaN is calculated, end the Eq. A.1
takes the form:

Eform = Etot − nGaµGa − nNµN −
∑

i

niµi (A.2)

where, nGa and nN denote the concentrations of Gallium and nitrogen atoms and ni the concen-
trations of all impurities i in the crystal. With µGa, µN and µi, the chemical potentials of gallium,
nitrogen and the impurities are taken into account. Let us calculate here the formation energy of
an Erbium substitutional in GaN as example. The chemical potentials of Ga, N and Er are not
independent variables, as they have to in equilibrium with GaN and ErN.

{
µGa + µN = µbulk

GaN

µEr + µN = µbulk
ErN

(A.3)

In both cases only one chemical potential can be chosen freely. We choose µN as independent
variable in order to have the same independent variable for both relations. The choice of the nitrogen
chemical potential is not completely free as µN has to stay within certain boundary conditions. The
chemical potential of any element has to be less than the chemical potential of the corresponding bulk
(or molecular) phase, otherwise the element would form during the crystal growth its energetically
favorable bulk or molecular structure. The upper limit for µN is therefore given if GaN is in
thermodynamic equilibrium with molecular N2. This case is called N-rich limit. The lower limit
for µN is instead given when GaN and ErN are in thermodynamic equilibrium with Ga and Er
respectively. This case is therefore called Ga- (or Er-) rich limit.

(Ga rich limit) µmolec.
N + ∆HGaN ≤ µN ≤ µmolec

N (N rich limit)
(Er rich limit) µmolec.

N + ∆HErN ≤ µN ≤ µmolec
N (N rich limit) (A.4)
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Table A.1: The chemical potential of elements of interest for this work calculated with DFTB.

System Structure DFTB (eV) System Structure DFTB (eV)
N2 Dimer -71.639 PrN Rock-salt -94.933
O2 Dimer -88.602 EuN Rock-salt -102.464
Gabulk α-Ga -71.639 GdN Rock-salt -165.531
GaNbulk Wurtzite -101.424 ErN Rock-salt -129.503
GaNbulk Zinc-blende -101.424 TmN Rock-salt -132.699

where ∆H is the heat of formation, defined as
{

∆H0
f (GaN) = µbulk

GaN − µbulk
Ga − µmolec.

N

∆H0
f (ErN) = µbulk

ErN − µbulk
Er − µmolec.

N
(A.5)

If the heat of formation is negative the reaction is exothermic. The chemical potentials are defined
as

µ =
(
∂F

∂N

)

T,V

(A.6)

Where N is the number crystal units, F is the Helmholtz free energy (F = E − TS) and T is the
temperature, which in our calculations is chosen to be zero. In this case we have

µ =
EN

0

N
(A.7)

The chemical potential of the molecular and bulk phases have been calculated using the lattice
parameters which minimise the DFTB total energy in each case.
Let us come back now to our example, the calculation of the formation energy of the substitutional
ErGa in GaN in the neutral charge state. Eq. A.1 becomes:

E0
form(ErGa) = E0

tot(ErGa)− nGaµGa − nNµN − nErµEr (A.8)

which on turn, because of the relations connecting the chemical potentials becomes:

E0
form(ErGa) = E0

tot(ErGa)− nGaµGaN − nErµErN (A.9)

This relation, deriving from a couple of algebraic steps, is very informative as it can be interpreted
as follows: to obtain the formation energy of the substitutional ErGa in GaN one has to subtract
from the total energy the chemical potential of all the atomic pairs GaN and of the single couple
ErN. Another practical way to calculate the same formation energy, derived with a simple algebraic
step is:

E0
form = E0

tot(ErGa)− E0
tot(GaN) + µGaN − µErN (A.10)
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Effect of annealing temperature on luminescence in Eu implanted GaN
Opt. Mat. 28, 780 (2006).

[54] A. Braud, J. L. Doualan, R. Moncorge, B. Pipeleers and A. Vantomme
Er-defect complexes and isolated Er center spectroscopy in Er-implanted GaN
Mat. Sci. Eng. B 105, 101-105 (2003).

[55] T, Wojtowicz, P. Ruterana, K. Lorenz, U. Wahl, E. Alves, S. Ruffenach, G. Halambalakis and
O. Briot
The atomic structure of defects formed during doping of GaN with rare earth ions
Phys. Stat. Sol. C 2, 1081 (2005).

[56] M. Mamor, V. Matias, A. Vantomme, A. Colder, P. Marie and P. Ruterana
Defects induced in GaN by europium implantation
App. Phys. Lett. 85, 2244-2246 (2004).

[57] J. S. Filhol, R. Jones, M. J. Shaw and P. R. Briddon
Structure and electrical activity of rare-earth dopants in GaN
Appl. Phys. Lett. 84, 2841 (2004).

[58] P. Dorembos and E. van der Kolk
Location of lanthanide impurity levels in the III-V semiconductor GaN
Appl. Phys. Lett. 89, 061122 (2006).

138



BIBLIOGRAPHY

[59] V. Glukhanyuk, H. Przybylińska, A. Kozanecki and W. Lantsch
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Colophon

This work was entirely written with LATEX2e. To maintain a consistent style the number of ap-
plications was reduced to the minimum: data plots were prepared with XMGrace (5.1.19), atomic
structures were rendered with RasMol (2.7.3.1) and wave functions and charge distribution with
VMD (1.8.6) and XFarbe (2.6c). Modifications were then executed with the graphics program XFig
(3.2.4). The results of the DFTB+ calculation can be reproduced with the parameters I created for
this work, characterised identified by the md5sum reported in Tab. A.2. Parameters are available
for everyone who wants to reproduce these results and further simulate rare earth compounds.

Table A.2: md5sum of the parameter files used in this work.

C-C 93c4f9fd766d4ad952e549888cbeea8a C-Er 519a0e1497ea2cb8be41e8c47360e3f4
C-Ga f60ac30d62e35e5467980f7593505cfd
C-N 85f202e74756b5e37c89f89b022496a3 C-O 621a08974637b6750cbf6ae6b74e36db
Er-C d7bce814a65c1471e2d62537bfd99437 Er-Er bf0896976cf3a6a367509436dc5e6358
Er-Ga b261dc0d10f50f9d6d426596c34419a4 Er-N 701d968b7c341eb241709f6370a1c582
Eu-O 9c8de0306d6f875fab1e8fafbc8ba89f Eu-Eu 2421bc072f2f586634b6d58b8afbeb06
Eu-Ga c504ec5a9c48e9d746dd51f38c344c13 Eu-N ec5e92c903930b67a8eeebbe3c01e586
Ga-C 620ef4ccd685c23853c46f236ca21957 Ga-Er f15fd7c39e9a3551bdacd25ff3264b3f
Ga-Eu af8b3d2b540f1dd79bcde124083e6de9 Ga-Ga 7fb60ea19e4f651f192cf0c317915747
Ga-Gd f9bc79532fb317f984857d1f70c8c66f Ga-N 2d4d3470588a34a74a5e1b9ba1590797
Ga-O 3abc46f77baee69ade8bfefc289048e2 Gd-Ga aba371872ddf7bc95e308141c511724b
Gd-Gd ff57c8a3c440a8bcf8b41840db7879ed Gd-N 0e5a4c6c03fce4fc9f4d24b13e867bf3
N-Er 6a766c2fdbd5f283994ca5f1ef98ede9 N-C 126acc90c38a53a1358566aed885ccc1
N-Ga 39507bafb0d5ab97025f3772e2da0c2f N-Eu 6c8af51589c4da154ce53fe4b9536094
N-N 270b9e66bb19be0d2de61ca7cfe7e93c N-Gd 8c0e3e1aca5dc3e3bee91fcf0220fdba
O-C ba395bd0c3aad2142db1099873567068 N-O 359369e1d64d059c1e0e477a3371e4d2
O-Eu 34b4e17173dd43307133bed77183ad96 O-Tm 5f3bb29f7eb3fe1d82211778c2a1f73a
O-N d794fac915ac6db39c86dda8b1563d7a O-Ga 78b202198b7aed305b9e6070ee79559a
Pr-Pr b4e94fe5f5f9a9dc336057e7d29402be O-O dfe1ad51b6eb83c69bb8211722c0d2aa
Tm-O 88352cd5e66a4bf1085318e7ead576d8 Tm-Tm 60b2e45414cf3705ee36bcfa9021bc8b
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