Polymer-dispersed liquid crystals (PDLCs) are polymer composites containing a dispersion of liquid crystal droplets in polymer networks. PDLCs have attracted much attention due to their unique properties and potential usage. The properties of PDLCs depend on the degree of phase separation and the size of liquid crystal droplets. To investigate the structure will help us to better understand and optimize PDLCs.The main aim of this PhD thesis was to investigate PDLCs by NMR techniques. Diffusion constants and spin-lattice relaxation times in the laboratory (T1) and rotating frame (T1) were measured for PDLCs as well as precursor mixtuures based on the trifunctional monomer trimethylolpropane triacrylate (TMPTA) and the commercial nematic mixture E7.The variation of the main dipolar splitting of 1H spectra with increasing temperature was analyzed to obtain the nematic-to-isotropic phase transition temperature and the nematic order parameter of E7 and, for comparison, the nematic liquid crystal 5CB.Diffusion constants in TMPTA/E7 mixtures, measured by pulsed-field gradient NMR, increase for both E7 and TMPTA as the mass fraction of E7 increases, due to the lower viscosity of E7. E7 in the PDLC diffuses more slowly than in the bulk because of the hindrance by the polymer matrix.T1 and T1 relaxation times in the liquid or liquid-crystalline phases of TMPTA and bulk E7 are higher than in the PDLC and the pure polymer, due to the lower mobility in the polymer samples. T1 in the PDLC is even shorter than in the pure polymer, indicating an anti-softening effect caused by E7 molecules. In bulk E7, the well-ordered rod-like molecules exhibit a unique H-C dipolar coupling, which leads to oscillations in the cross-polarization curve. However, in the PDLC, the anchoring effect at the boundary between the polymer and LC droplets disturbs the molecular order resulting in a smooth cross polarization curve. |