
Insider-Resistant
Distributed Storage Systems

Dissertation

In partial fulfillment of the requirements for the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

Faculty of Computer Science,
Electrical Engineering and Mathematics
Department of Computer Science
Research Group Theory of Distributed Systems

Martina Eikel

Reviewers: Prof. Dr. Christian Scheideler, University of Paderborn
Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

Contact: Martina Eikel (martina@eikel.org)

mailto:Martina Eikel <martina@eikel.org>

Acknowledgments

First and foremost, I thank my supervisor Christian Scheideler for his continu-
ous support and many fruitful discussions. Without his help this thesis would
not exist in this form.

I thank Alexander Setzer for the joint work in the field of insider-resistant
distributed storage systems resulting in many productive, helpful and last but
not least enjoyable discussions.

I thank my “roommates” Tobias Tscheuschner and Robert Gmyr for sharing
an office with me. The many interesting technical and especially non-technical
conversations with you always made working hours very pleasant. Addi-
tionally, I thank Robert for very patiently enduring my continuous finger
drumming.

Thanks to Marion Bewermeyer for her recommendations on exciting books
and interesting conversations about almost everything.

I also thank Rainer Feldmann for introducing me to the research of theo-
retical computer science by supervising my student job in that field and also
supervising my Bachelor’s and Master’s thesis.

Furthermore, I thank our whole research group for the enjoyable lunch
breaks with a wide variety of discussion topics and in general making my time
in this group so pleasant.

For financially supporting my work, I thank the Collaborative Research
Center 901 “On-The-Fly Computing”.

I thank my family and friends for their moral support and improving my
overall well-being. Especially, I thank my parents for paving the way for my
education and always providing me a safe home.

Special thanks go to my beloved husband Benjamin for always being there
for me.

Paderborn, November 2015 Martina Eikel

iii

Abstract

In this work we present distributed information and storage systems that are
provably robust against attacks by an insider adversary, i.e., an adversary with
complete knowledge of the system. Our systems break the barrier between
allowing significantly more than a polylogarithmic number of servers to be
attacked by an insider adversary on the one hand, but still adhering to polylog-
arithmic efficiency bounds (in the number of servers) and at most logarithmic
redundancy on the other hand. First, we present Basic IRIS, a distributed infor-
mation system that works provably correctly despite the existence of an insider
adversary that may use his knowledge about the system in order to crash up to
O(n1/ log log n) servers (with n being the number of servers in the system). To
be more precise, Basic IRIS provably correctly serves any set of lookup requests
(with at most O(1) requests per server not crashed) with polylogarithmic time
and work (in the number of servers) and a constant redundancy. By extending
Basic IRIS, we end up with Enhanced IRIS, a distributed information system
that tolerates even up to a constant fraction of all servers to be crashed by an in-
sider adversary. At the same time, Enhanced IRIS asymptotically achieves the
same efficiency bounds except for the redundancy which increases to O(logn).
While both Basic IRIS and Enhanced IRIS are restricted to the handling of
lookup requests, with RoBuSt we introduce a distributed storage system with
similar efficiency bounds. That is, despite the existence of an insider adversary
that crashes up to O(n1/ log log n) servers, RoBuSt provably correctly answers
any set of lookup and write requests (with at most O(1) requests per server
not crashed) with polylogarithmic time and work. Due to outdated data items
that may remain in the system after performing updates on existing data items,
the redundancy of RoBuSt increases to O(logn). Finally, we strengthened the
adversary that we considered even further by allowing it to not only crash
servers, but to corrupt their storage. By this, we end up with a somehow “semi-
Byzantine” insider adversary. That is, in this setting the insider adversary is
allowed to corrupt the permanent storage of the servers, but it is not allowed
to corrupt the servers’ main memory or the protocol itself. With OSIRIS we
present a distributed storage system that provably correctly serves any set
of lookup and write requests (with at most O(1) requests per server) despite
the existence of an insider adversary that may corrupt the permanent storage
of at most O(n1/ log log n) servers while asymptotically adhering to the same
efficiency and redundancy bounds as RoBuSt.

v

Zusammenfassung

In dieser Arbeit stellen wir verteilte Informations- und Speichersysteme vor, die
gegen Angriffe eines Insiders beweisbar robust sind. Ein Insider ist in diesem
Zusammenhang ein Gegner, der Wissen über das gesamte System hat. Unsere
Systeme erlauben dabei signifikant mehr als polylogarithmisch viele durch
einen Insider angegriffene Server und garantieren gleichzeitig polylogarithmi-
sche Schranken für die Effizienz und eine höchstens logarithmische Redundanz.
Zuerst stellen wir Basic IRIS vor, ein verteiltes Informationssystem, das trotz
der Existenz eines Insiders, der sein internes Wissen über das System nutzen
kann, um bis zu O(n1/ log log n) Server abstürzen zu lassen, beweisbar korrekt
arbeitet (wobei n die Anzahl der Server im System bezeichnet). Genauer ge-
sagt beantwortet Basic IRIS jede Menge von Suchanfragen (mit höchstens O(1)
Anfragen pro nicht abgestürzten Server) in polylogarithmischer Zeit und mit
polylogarithmischem Aufwand pro Server bei lediglich konstanter Redundanz.
Durch Erweiterung von Basic IRIS erhalten wir Enhanced IRIS, ein verteiltes
Informationssystem, welches gegen einen Insider robust ist, der bis zu einem
konstanten Anteil aller Server zum Absturz bringen kann. Gleichzeitig erfüllt
Enhanced IRIS asymptotisch die gleichen Effizienzschranken wie Basic IRIS,
abgesehen von der Redundanz, welche auf O(logn) ansteigt. Während Basic
IRIS und Enhanced IRIS auf die Beantwortung von Suchanfragen beschränkt
sind, stellen wir mit RoBuSt ein verteiltes Speichersystem mit ähnlichen Effizi-
enzschranken vor. Trotz der Existenz eines Insiders, der bis zu O(n1/ log log n)
Server zum Absturz bringen kann, beantwortet RoBuSt jede Menge von Such-
und Schreibanfragen (mit höchstensO(1) Anfragen pro nicht abgestürzten Ser-
ver) in polylogarithmischer Zeit und Arbeit beweisbar korrekt. Aufgrund von
veralteten Daten, die nach Aktualisierungen im System zurückbleiben können,
steigt die Redundanz von RoBuSt auf O(logn) an. Abschließend verstärken
wir den betrachteten Gegner noch weiter, indem wir diesem das Korrumpieren
des Speichers der Server erlauben. Hierdurch erhalten wir einen sogenannten

”
semi-Byzantinischen“ Insider. Das heißt, wir erlauben es dem Gegner den

permanenten Speicher der Server zu korrumpieren, das Korrumpieren des
Arbeitsspeichers der Server und des Protokolls ist hingegen nicht erlaubt. Mit
OSIRIS stellen wir schließlich ein verteiltes Speichersystem vor, das jede Men-
ge von Such- und Schreibanfragen (mit höchstens O(1) Anfragen pro Server)
trotz der Präsenz eines Insiders, der den permanenten Speicher von bis zu
O(n1/ log log n) Servern korrumpieren darf, beweisbar korrekt beantwortet.

vi

Contents

1 Introduction 1
1.1 Thesis Overview . 3
1.2 Related work . 5

1.2.1 Distributed Hash Tables 5
1.2.2 Erasure Codes & Byzantine Fault-Tolerant Storage Systems 7
1.2.3 Authenticated Data Structures 9

2 Model and Preliminaries 11
2.1 Model . 11
2.2 Preliminaries . 14

3 Basic IRIS 19
3.1 Butterfly Coding Strategy . 20
3.2 Storage Strategy . 22

3.2.1 Internal Distributed Error Correcting Code 23
3.2.2 Redundancy Analysis 24

3.3 Lookup Protocol . 25
3.3.1 Preprocessing Stage . 26
3.3.2 Probing Stage . 36
3.3.3 Decoding Stage . 40
3.3.4 Differences and Similarities to Previous Works 46

3.4 Correctness Analysis of the Lookup Protocol 50
3.4.1 Robust Hash Functions 50
3.4.2 Analysis of the Probing Stage 52
3.4.3 Analysis of the Decoding Stage 57

vii

Contents

4 Enhanced IRIS 59
4.1 Preliminaries . 59
4.2 Storage Strategy . 62
4.3 Lookup Protocol . 67

4.3.1 Preprocessing Stage . 67
4.3.2 Probing Stage . 68
4.3.3 Decoding Stage . 69

5 RoBuSt 71
5.1 Preliminaries . 72
5.2 Storage Strategy . 73
5.3 Write Protocol . 76

5.3.1 Preprocessing Stage . 76
5.3.2 Outline of the Writing Stage 76
5.3.3 Details on the Decoding of a Bucket (Step 1) 78
5.3.4 Details on the Encoding of a Bucket (Step 2, Step 3b) . 80
5.3.5 Details on Counting and Selecting (Step 3, Step 3a) . . 81

5.4 Lookup Protocol . 84
5.4.1 Preprocessing Stage . 85
5.4.2 Zone Examination Stage 85

5.5 Correctness Analysis of the Lookup Protocol 90
5.5.1 Analysis of the Probing Stage 92
5.5.2 Analysis of the Decoding Stage 94

6 OSIRIS 99
6.1 Preliminaries . 101
6.2 Storage Strategy . 104

6.2.1 Internal Distributed Error Detecting and Correcting Code104
6.2.2 Storage Strategy of a Single Bucket 107

6.3 Lookup Protocol . 109
6.3.1 Outline of the Lookup Protocol 110
6.3.2 Probing Stage . 111
6.3.3 Recovery Stage . 116

6.4 Write Protocol . 121
6.5 Correctness Analysis of the Lookup Protocol 122

6.5.1 Analysis of the Probing Stage 122
6.5.2 Analysis of the Recovery Stage 126

7 Conclusion and Outlook 131
7.1 Conclusion . 131
7.2 Outlook . 133

viii

Chapter

1
Introduction

In recent years, the usage of online services has increased significantly. For in-
stance, communicating with friends via Facebook, sharing videos via YouTube,
or shopping online via Amazon. This induces the necessity to store large
amounts of data online in such a way that they can be managed and accessed
efficiently. Distributed storage systems constitute one of the most natural ap-
proaches for the implementation of such a storage. Popular examples include
storage solutions offered by Google, Apple, and Amazon [Goo; App; Ama]. In
this work a distributed storage system is defined as a network consisting of
several servers that provide a lookup protocol and a write protocol. Via these
protocols users can pose requests for adding data items to the system or for
finding data items stored at the servers. If solely a lookup protocol and no write
protocol is provided we call the system a distributed information system. Since
availability and retrievability of the stored data is a key aspect of distributed
storage systems, these systems should have various mechanisms in place to
protect them against adversarial attacks. One of the biggest threats distributed
storage systems are exposed to are crash failures. A server that experiences a
crash failure is not available anymore, meaning that it neither responds to any
request nor performs any further operations. Crash failures can be temporary
or permanent and can have many causes, such as maintenance work, hardware
or software failures, or denial-of-service (DoS) attacks. The basic goal of a DoS
attack against a server is to make that server unavailable. There are various
ways of achieving that, such as causing computationally expensive operations,
exploiting protocol bugs, or overloading the intended server with junk traffic.
Especially crash failures caused by DoS attacks can pose a serious threat, since

1

Chapter 1 Introduction

they usually are unpredictable, hard to prevent, and can cause the unavailabil-
ity of a server for some time. As a report about network security [Net15] has
revealed, distributed DoS attacks still are the number one operational threat
to service providers. With the growth of bandwidth available, the size of the
DoS attacks likewise significantly increases. In particular, the largest reported
DoS attack in 2014 reached 400 Gbps of network junk traffic [Net15].

Besides crash failures, storage failures also constitute a big threat to dis-
tributed storage systems. A server that experiences a storage failure may hold
arbitrarily corrupted data in its storage without being aware of that. While
a crash failure can easily be detected using crash failure detectors, this does
not hold for massive storage failures. Instead, the distributed storage system
needs to implement techniques and methods in order to work correctly despite
the existence of servers with storage failures. Storage failures may not only be
caused by malicious adversaries, they may also occur due to technical errors,
such as disk faults or physical interconnect failures. For instance, in 2008 Ama-
zon’s S3 storage service experienced a multi-hour downtime due to a single bit
corruption resulting in monetary loss for Amazon and unavailability of data
stored at the S3 storage service [Ama08].

The predominant approach in distributed storage systems to deal with the
threat of failures is to use redundancy and information hiding: The idea behind
this is that information which is not only stored at a single server, but also
replicated on multiple servers, is more likely to remain accessible during an
attack, in particular if the adversary does not know the storage locations of the
redundant data items. For example, if a logarithmic number of copies of each
data item is distributed among the servers in the system, and the adversary is
not aware of these locations, then it is easy to see that with high probability a
copy of each data item is still accessible if the adversary crashes less than half
of the servers. However, the situation is completely different when considering
an insider adversary, i.e., someone who has complete knowledge of the system
and may use this knowledge to crash a large fraction of the servers. Since
information cannot be hidden anymore in this case, it seems unavoidable to
replicate each data item across more than t servers in order to remain accessible
if the system is under an attack that crashes t servers. Unfortunately, in this
case the storage overhead becomes very large when considering adversaries
that may crash a large fraction of the servers. However, it turns out that this
dilemma can be circumvented when using coding, which is one of the key
ideas we use in the development of the systems presented in this work.

There are various reasons for an attacker to have access to insider knowledge
about a system. For instance, the attacker can be a (former) administrator of
the system or someone who illegally obtained access to secure information
about the system. As a recent study [IBM15] has shown, attacks performed
by an insider pose a big threat to current systems. This result was gained

2

1.1 Thesis Overview

in the context of the IBM Cyber Security Intelligence Index, which offers an
overview of the major threats to business systems worldwide over the past
year. For that purpose, IBM continuously monitors billions of security events
for clients all over the world. This study showed that more than half of the
attacks monitored in 2014 were carried out by insiders.

The goal of this work is the development of distributed information and
storage systems that provide efficient lookup and write protocols that work
provably correctly despite the existence of an insider adversary that may attack
a large fraction of the servers by causing crash failures or a special type of
storage failure. In this context, by efficient we mean at most polylogarithmic in
the number of servers, and with a large fraction of attacked servers we mean
asymptotically much larger than polylogarithmic, in particular O(n1/ log log n),
with n being the number of servers, or even up to a constant fraction of all
servers. At the same time, we ensure the additional amount of storage required
by each server to be limited by at most a logarithmic factor. Note that the
systems presented in this work constitute a proof of concept of distributed
information and storage systems with the desired properties. In particular, we
prove the correctness and efficiency of these systems, but we do not provide a
practical implementation.

1.1 Thesis Overview
Before we present the distributed information and storage systems we develop,
we first introduce previous works that are related to the content of this work
(Section 1.2). Afterwards, in Chapter 2, we describe the model specifications
considered for this work and introduce some required preliminaries.

In the following main chapters of this work we present in total four dis-
tributed information and storage systems that are provably robust against
insider attacks. The first two systems we present, Basic IRIS (Chapter 3) and
Enhanced IRIS (Chapter 4), are based on the following journal article:

2015 (with C. Scheideler). “IRIS: A Robust Information System
Against Insider DoS-Attacks”. In: ACM Transactions on Parallel
Computing, pp. 18:1–18:33, cf. [ES15].

Furthermore, an extended abstract about these two systems has been published
in the proceedings of the 25th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA) [ES13].

Basic IRIS is a distributed information system that is provably robust against
an insider adversary that crashes up to O(n1/ log log n) servers while requiring
only a constant storage redundancy. The main innovation in this system is the
development of a technique for the efficient encoding of the data items stored in

3

Chapter 1 Introduction

the system with each other using a hierarchical coding strategy that is based on
the structure of a k-ary butterfly (k = Θ(logn)) and a simple parity-based code.
This technique allows to specify a lookup protocol that guarantees to correctly
serve each lookup request for any data item with polylogarithmic work at
each server and polylogarithmic time, although the adversary may crash up
to O(n1/ log log n) servers. This coding strategy is also used as a building block
in the further distributed information and storage systems presented in this
work.

Enhanced IRIS is an extension of Basic IRIS that is able to tolerate even up to a
constant fraction of all servers to be crashed. Except for the storage redundancy,
which increases to a logarithmic factor, Enhanced IRIS still guarantees the same
properties as Basic IRIS. The main idea behind this extension of Basic IRIS is
to not only use a k-ary butterfly as the underlying topology for the encoding,
but to additionally make use of permutations that fulfill certain expansion
properties in order to spread the encoding information even further among
the servers.

While Basic IRIS and Enhanced IRIS are distributed information systems
that provide only a lookup functionality, in Chapter 5 we present RoBuSt, a
distributed storage system, i.e., a system that besides the lookup functionality
also provides a write functionality. This system is based on the following
publication:

2013 (with C. Scheideler and A. Setzer). “RoBuSt: A Crash-Failure-
Resistant Distributed Storage System”. In: Proceedings of the 18th In-
ternational Conference on the Principles of Distributed Systems (OPODIS),
pp. 107–122, cf. [ESS14].

More precisely, RoBuSt is a distributed storage system that correctly handles
lookup and write requests in polylogarithmic time and with polylogarith-
mic work despite the existence of an insider adversary that crashes up to
O(n1/ log log n) servers. Thereby, RoBuSt requires only a logarithmic storage
redundancy. RoBuSt reuses the k-ary butterfly encoding approach introduced
with Basic IRIS with the additional ingredient of a clever arrangement of the
data items stored in the systems into so-called buckets and an appropriate
strategy for traversing the buckets efficiently.

In Chapter 6 we strengthen the adversary considered in such a way that it
now may not only crash servers, but instead even corrupt the storage of up to
O(n1/ log log n) servers. Here, we confine ourselves to the corruption of the data
stored at the servers while assuming the protocols and main memory of the
servers to be reliable. As we will discuss later, this kind of attack can also be
interpreted as a DNS spoofing attack. The main challenge in this setting is that
in contrast to crashed servers there is no way to efficiently detect corrupted

4

1.2 Related work

servers. Hence, we need to add techniques for verifying the validity of data.
By appropriately interweaving techniques from the field of authenticated
data structures, namely Merkle trees, with techniques developed for IRIS and
RoBuSt, we develop OSIRIS, a distributed storage system that is provably
robust against an insider adversary that may corrupt the storage of up to
O(n1/ log log n) servers. At the same time, OSIRIS correctly answers any set of
lookup and write requests in polylogarithmic time and with polylogarithmic
work per server while requiring a logarithmic redundancy only.

We conclude this work in Chapter 7 with a summary and discussion on
interesting open problems in this field.

1.2 Related work
Throughout this work we make use of techniques from several fields of re-
search. Most suitably this work can be classified into the field of distributed
hash tables. Therefore, in Section 1.2.1 we provide an overview of the results
important to us in that context. Besides this basic concept, this work also
makes use of techniques from the field of (erasure) coding, network coding,
and authenticated data structures. A short overview on results from these
fields important for this work is given in Sections 1.2.2 and 1.2.3.

1.2.1 Distributed Hash Tables
The most prominent approach for the implementation of a distributed storage
system is to build on a distributed hash table (DHT), i.e., a distributed system
that provides a write and lookup functionality in order to add data to the
system or to retrieve data from the system. In order to assign data items to
store in the DHT to the servers, most distributed hash tables make use of the
approach of consistent hashing [Kar+97]. In this approach, both data items
and servers are mapped to the [0, 1) interval. By this, each data item is assigned
to the nearest server (to its right) in the [0, 1) interval. Together with the use
of Cuckoo hashing [PR04], one can additionally easily achieve an even load
balancing among the servers.

While in early DHTs [Kar+97] each server used to maintain a list of all other
servers in the network, this is too expensive when considering networks of
millions of servers. Thus, the focus moved to scalable DHTs, i.e., DHTs that
efficiently provide their basic functionalities (e.g., lookup/write operations, or
join/leave operations) even for a very large number of servers in the system.
For this purpose, in many scalable information and storage systems each server
does not store a list of all servers in the network, but only of a subset of these.
For instance in the Chord system [Sto+01] each server stores only a reference
toO(logn) servers (where n is the total number of servers in the system) while

5

Chapter 1 Introduction

still being able to handle join and leave operations and to answer all lookup
requests using O(logn) hops in the network. The Koorde system [KK03] is
based on Chord but only requires 2 neighbors for each node while still requiring
only O(logn) hops for a lookup. When allowing O(logn) neighbors per node,
Koorde even requires only O(logn/ log logn) hops for a lookup. SkipNet
[Har+02], which is a distributed generalization of Skip Lists [Pug90], achieves
the same efficiency results as Chord. But in contrast to Chord, SkipNet enables
the possibility of explicitly controlling the location of the data placement.
Examples for further scalable information systems with similar results are
Pastry [RD01], CAN [Rat+01], P-Grid [Abe01], Viceroy [MNR02], and Tapestry
[ZKJ01].

When using a pure DHT design as in the previously mentioned systems,
bottlenecks may occur at some servers in the case of flash-crowd attacks. In a
flash-crowd attack the affected servers experience a sudden and large increase
in their traffic. This could, for instance, be due to too many requests for the
same file at a single server. However, there are strategies that are robust against
flash-crowd attacks: e.g., in CoopNet [PS02] the problem of web flash crowds
is circumvented via the use of cooperation among the servers. Backslash
[SMB02] builds on a DHT together with the use of caches. In PROOFS [SRS02]
the connectivity in the overlay is randomized to make the system more robust.
Naor and Wieder [NW03] provide a DHT which by using dynamic caching
techniques maintains low load and storage at each server even under the
occurrence of flash crowds.

A disadvantage of the previously mentioned systems is the missing robust-
ness against adaptive lookup attacks, i.e., attacks that crash a server not by
flooding the system with a request for the same data item, but by requesting
too many (possibly distinct) data items that are located at the same server. In
this case, standard combining and caching techniques do not work any more.
Strategies that are robust against adaptive lookup attacks date back to the time
of deterministic simulation of CRCW PRAMS on complex networks [MV84].
The first usage of these strategies in P2P networks is due to Awerbuch and Schei-
deler [AS06]. Awerbuch and Scheideler present the first scalable and robust
DHT that is provably robust against adaptive adversarial join/leave attacks
and lookup/insert attacks [AS06]. In a follow-up work [Awe07] Awerbuch
and Scheideler design oblivious join and leave operations that are provably
robust against any combination of outsider and insider attacks. Here, outsider
attacks are brute-force DoS attacks that may be performed against any server
in the network. An insider attack inserts adversarial servers into the system
via join/leave attacks.

Unfortunately, these strategies are not robust against an adversary that at-
tacks the existing servers, e.g., via massive DoS attacks. For instance, the system
proposed in [AS06] makes use of quorums of servers such that the number

6

1.2 Related work

of attacked and non-attacked servers in each quorum is balanced. However,
an adversary that is able to attack existing servers could easily unbalance
these quorums and cause the system to not work correctly anymore. How-
ever, there exist systems whose functionality and efficiency has been shown
experimentally, which are robust against DoS attacks such as SOS [KMR02],
WebSoS [Sta+05], Mayday [And03], StopIt [LYL08], TVA [YWA05], and Net-
Fence [LYX10]. A disadvantage of theses systems is that they are not provably
robust against insider DoS attacks, i.e., against adversaries who know every-
thing about the system and who may use this knowledge to attack the servers.
By these means, attacks of an insider constitute worst-case attacks. Prior to
this work, Awerbuch and Scheideler [AS07] and Awerbuch et al. [BSS09] were
the first to present distributed information/storage systems that are provably
robust against DoS attacks by past insider adversaries. A past insider is an
attacker who has knowledge about the complete system up to some point in
time t0. The systems by Awerbuch et al. [AS07; BSS09] guarantee that any
lookup or write request for a data item that was inserted or updated after t0
can be answered correctly in polylogarithmic time (in the number of servers)
and with a constant redundancy only.

Worst-case failures are also studied by Kuhn et al. [KSW10] and Augustine
et al. [Aug+13]. Kuhn et al. [KSW10] propose a system that is based on a
hypercube which tolerates Θ(logn) worst-case joins and/or crashes per con-
stant time interval while still being as efficient as previous systems, i.e., having
O(logn) neighbors per server and guaranteeing a lookup time of O(logn)
rounds. Augustine et al. [Aug+13] present a system that despite a high node
churn rate of O(n/ log1+δ n) (for δ ą 0 constant) per round guarantees that a
large number of nodes in the system can store, retrieve, and maintain a large
number of data items.

When not restricting to crash failures but instead considering Byzantine
servers, the previously mentioned protocols are not guaranteed to work cor-
rectly any further. Fiat et al. [FSY05] propose a variant of Chord which is robust
against an adversary who chooses up to a constant fraction of the servers to be
Byzantine. However, their system is not able to handle Byzantine servers that
were chosen and are controlled by an insider adversary. More information on
related work in the field of Byzantine fault-tolerant storage systems is given in
Section 1.2.2.

1.2.2 Erasure Codes & Byzantine Fault-Tolerant Storage Systems
The systems proposed in this work make use of techniques from the field of
coding in multiple ways: First, we apply erasure codes instead of simple data
replication in order to decrease the redundancy required. Next, we introduce
a very simple error correcting code that helps us to recover data in case of a

7

Chapter 1 Introduction

single failure. Finally, we introduce a distributed error detecting and correcting
code in order to detect and correct single failures which are due to storage
failures.

An erasure code is a forward error correction code that, given a message
of k symbols, outputs a code word of n ą k symbols such that the original
message can be recovered from a subset of the n symbols of the code word.
If the erasure code guarantees the recovery of the original message from any
k symbols of the code word, then it is called optimal. Examples of optimal
erasure codes include Reed-Solomon codes, EVENODD, Star-Code, X-Code,
B-Code, and Zigzag-Codes [RS60; Bla+95; HX05; XB99; Xu+06; TWB13].

In our work we not only apply erasure codes for error correction, but we
also use them instead of data replication in order to decrease the redundancy
required.

Weatherspoon and Kubiatowicz showed in a quantitative comparison [WK02]
that a self-repairing distributed storage system based on erasure codes out-
performs a self-repairing distributed storage system based on replication in
many aspects, e.g., due to huge storage and bandwidth savings. However, as
Rodrigues and Liskov [RL05] have shown, the benefits of erasure coding are
often rather limited, such that the disadvantages and additional complexity of
erasure codes can outweigh their benefits.

In the distributed storage system we present in Chapter 6 we do not solely
focus on crash failures but instead consider a special type of storage failures:
i.e., the storage of some servers (excluding the main memory and the part of
storage that holds the protocol definition) may be arbitrarily corrupted. A
protocol that can tolerate arbitrary faulty behavior by the servers is said to be
Byzantine fault-tolerant [LSP82]. Besides data replication [MAD02; CDV13;
MR97] erasure codes are an important ingredient for the construction of dis-
tributed storage systems that tolerate Byzantine failures. Works from this field
usually differentiated between (storage) servers and clients where the clients
may access the servers for reading and writing data [Goo+04; CT05b; And+14].

By using erasure codes and cryptographic hashes, Goodson et al. [Goo+04]
present a protocol that tolerates Byzantine failures of storage servers and clients.
In order to tolerate f faults, their protocol requires 4f + 1 servers. Cachin and
Tessaro [CT05b] improve the result of Goodson et al. [Goo+04] (in terms of
resilience and storage complexity) by presenting the first distributed erasure-
coded storage system that provides atomic semantics and optimal resilience.
In particular, their protocol requires only 3f + 1 servers to tolerate f faults.
Their approach is based on AVID, a verifiable information dispersal protocol
[CT05a] and erasure coding. Hendricks et al. [HGR07] in turn modify the
AVID protocol to utilize homomorphic fingerprinting in order to make it more
bandwidth-efficient.

Androulaki et al. [And+14] noticed that much of the overhead of the proto-

8

1.2 Related work

cols presented in [CT05b; HGR07] is due to the ability of the protocols to even
handle Byzantine clients and servers, instead of only Byzantine servers. For
the setting in which only the storage servers may be Byzantine and the clients
may crash only, Androulaki et al. [And+14] present an asynchronous Byzan-
tine fault-tolerant erasure-coded storage protocol with optimal resilience. The
resilience is reached by separating metadata from erasure-coded fragments.

1.2.3 Authenticated Data Structures
A fundamental problem that arises with the presence of servers whose storage
is corrupted, or even Byzantine servers, is the potential corruption of any data
item received from a server. Without additional mechanisms it is not possible
to guarantee the correctness of data stored in the system. One way to overcome
this problem is the usage of authenticated data structures. An authenticated
data structure typically involves a structured collection S of objects (e.g., a
set of data items to store in the data structure) and three parties: the source,
the responder, and the user [Tam03]. The source usually is assumed to be
a trusted party that holds the original versions of objects from S. Addition-
ally, it holds authentication information for each object from S (e.g., hashes
of the objects) which is supposed to prove the objects’ validity. Whenever
an operation is performed on any object in S, the source also updates the
corresponding authentication information. The responder maintains a copy
of S and interacts with the source by receiving updates performed at the set
S and their authentication information. Furthermore, the responder answers
the user’s queries to the set S by providing both the requested object and the
authentication information of that object. The user poses requests for an object
in S only to the responder, not to the source itself. Since the user does not trust
the responder, but the source, it uses the received authentication information
to verify the correctness of the received object.

Merkle trees [Mer79] constitute a predominant approach for the efficient im-
plementation of authenticated dictionaries, i.e., authenticated data structures
that support the lookup and write functionality on a static set of objects. In
Merkle trees (also called hash trees) cryptographic hashes are used as authen-
tication information for the objects in the dictionary. Applications of Merkle
trees can, for instance, be found in the IPFS and ZFS file system [Int; Bon+03],
BitTorrent [Bit], Git [Tor], and Bitcoin [Nak09]. There are also dynamic authen-
ticated dictionaries, e.g., based on hash trees [NN98], based on skip lists [GT01],
or based on RSA one-way accumulators [GTH02]. A survey on authenticated
data structures was written by Tamassia and Roberto [Tam03].

The first to study authenticated distributed hash tables are Tamassia and
Triandopoulos [TT05; TT07]. Previous DHTs that supported authentication
used signatures and cryptographic hash functions applied to each single object.

9

Chapter 1 Introduction

The authenticated DHT in [TT05; TT07] is based on the design of an efficient
distributed Merkle tree, it uses O(logn) storage per node, and a lookup oper-
ation requires O(logn) network hops. Note that the distributed Merkle tree
[TT05; TT07] still requires the existence of a trusted source which is not given
in the settings we consider. Papamanthou et al. [PTT09] present a distributed
implementation of a Merkle tree with nearby optimal search performance and
that, in contrast to [TT05; TT07], also preserves load balancing but also requires
the existence of a public key infrastructure.

10

Chapter

2
Model and Preliminaries

In this chapter we specify the model that we assume for all information/storage
systems presented in this work (Section 2.1) and introduce some preliminary
tools that we make use of throughout this work (Section 2.2). Since some model
details (e.g., the specific type of adversary) differ for the systems presented
here, in this chapter we provide a general model specification which holds
for all presented systems. Additionally, when presenting a specific informa-
tion/storage system in the further chapters, we first introduce the necessary
model assumptions that are required additionally to the ones provided in this
chapter.

2.1 Model
In this work we consider distributed storage systems that consist of a static
set S = ts0, . . . , sn´1u of n reliable servers of identical type. The servers
are responsible for storing the data as well as handling user requests. For
all information and storage systems, except for the one that we present in
Chapter 6, we assume that the servers form a clique. For the system presented
in Chapter 6 we weaken this assumption and only require the servers to be
connected via a so-called logn-ary butterfly, which we will define in Section 2.2.
In this structure each server is not connected to all other servers anymore but
only to Θ(log2 n/ log logn) many other server but can communicate with any
other server in O(logn/ log logn) rounds. Note that we do not require the
servers to maintain an open connection to each of the servers it is connected to
in the overlay. Instead, we only expect the servers to hold the IP addresses of
these servers. Besides this, we assume all links between servers to be reliable.

11

Chapter 2 Model and Preliminaries

We use the standard synchronous message passing model for the commu-
nication between the servers. That is, time proceeds in synchronized commu-
nication rounds, or simply rounds, and in each round each server first receives
all messages sent to it in the previous round, processes all of them, and then
sends out all messages that it wants to send in this round. We assume that the
time needed for internal computations is negligible, which is reasonable as
the operations in the protocols we describe are simple enough to satisfy this
property.

The storage systems we consider are supposed to hold data items, where
each data item d is uniquely identified by a key key(d). The universe of all
possible keys is called U , and m := |U | is assumed to be polynomial in n. For
simplicity, we assume all data items to be of the same size, which is assumed to
be at most polylogarithmic in n. Besides, bigger data items can still be handled
by our system, but in this case the maximum message size is proportional to the
size of the biggest data item in the system. Alternatively, huge data items can
be split into several chunks such that each of them is at most polylogarithmic
in n.

In this work we consider two types of user requests: lookup(k) for k P U ,
and write(k, d) for k P U and a data item d. The user can issue a request by
sending it to one of the servers in S. Given a lookup(k) request, the system is
supposed to either return the data item d with key(d) = k, or to return NULL
if no such data item exists. Given a write(k, d) request, the system is supposed
to store data item d with key k such that subsequent lookup(k) requests can be
answered correctly. Note that via a write(¨) request the user may also update
or remove data.

Throughout the whole work we assume the existence of an insider adversary.
An insider adversary is an adversary that has complete knowledge of the system
and can use this knowledge to attack arbitrarily chosen servers. In this work
two kinds of adaptive failures caused by the insider adversary at the servers
are considered: crash failures and storage failures.

If a server experiences a crash failure, it becomes unavailable to the other
servers: i.e., it does not issue or respond to requests any more. In this case
we call the attacked server crashed. However, we assume the servers to have
a crash failure detector that allows them to determine whether a server is
crashed such that statements like “if server s is crashed, then. . .” are possible.
Denial-of-service (DoS) attacks constitute a common example for crash failures.
DoS attacks overwhelm servers with hacker-generated traffic and make them
unavailable for legitimate communications such that to the other servers in the
system the overwhelmed servers appear to be crashed. There are various ways
of achieving that, like causing computationally expensive operations [Kan+05],
downloading large files, exploiting protocol bugs, or just overloading servers
with junk requests.

12

2.1 Model

In case of storage failures the affected servers may hold arbitrarily corrupted
data without being aware of that. In this case we call the attacked server
corrupted. In contrast to crash failures, there is no storage failure detector.
That is, we cannot rely on any data returned by a server and need to incorporate
other mechanisms in order to verify the correctness of data. A server that is
not attacked by the adversary is called intact.

Throughout this work we assume the adversary to be batch-based. For
this purpose, rounds are divided into periods such that within each single
period a set of requests can be answered. At the beginning of each period,
the adversary chooses an arbitrary set of servers it attacks. The number of
servers to be attacked and the type of the attack (crash failure or storage failure)
depends on the storage/information system and will be specified separately in
the corresponding chapters. Besides the set of attacked servers, the adversary
may also choose any set of requests to be stated at the servers with at mostO(1)
requests per server. The keys selected for the requests by the adversary may or
may not be associated with data items stored in the system, and the attacker
is also allowed to issue multiple lookup requests for the same key. That is,
besides worst-case failures, we also consider worst-case requests. Furthermore,
we assume the adversary not to be able to predict (future) random choices
of the system. However, except for the constructions of OSIRIS in Chapter 6,
the adversary considered in this work is not restricted to be polynomially
bounded.

In order to measure the quality of the information system, we introduce the
following notation. A storage strategy is said to have a redundancy of r if r
times more storage (including any control storage) is used for the data than
storing the plain data. Instead of “polynomially logarithmic in n” we also use
the short form polylog(n). A server s is said to have a congestion of r in some
round t if s receives and sends at most r messages of size at most polylog(n)
in round t. In this context we assume that if a server receives more than a
polylogarithmic number of messages in a round t, then it does not reply to any
of these messages. That is, such a server is considered as crashed in round t.

We call an information/storage system

• scalable if its redundancy is at most polylog(n),

• efficient if any collection of lookup or write requests (depending on the
system) specified by the attacker can be processed correctly in at most
polylog(n) many communication rounds in which every server sends
and receives at most polylog(n) many messages of at most polylog(n)
size, and

• robust if any collection of lookup or write requests specified by the
attacker (with at mostO(1) requests per server) can be processed correctly

13

Chapter 2 Model and Preliminaries

even if up to an ε-fraction of the servers is attacked by an insider, where
the type of the attack and the value for ε depend on the system.

Note that we could also allow the adversary to pose more thanO(1) requests
per server, but the system’s efficiency scales linearly with the number or re-
quests per client. In particular, if there is a client with ω(polylog(n)) requests,
naturally no distributed information/storage system with at most polyloga-
rithmic redundancy can answer all these requests in polylogarithmic time and
work in worst case.

In this work we present information/storage systems that are scalable, effi-
cient, and robust for the case of crash failures (Basic IRIS, see Chapter 3, En-
hanced IRIS, see Chapter 4 and RoBuSt, see Chapter 5) or storage failures
(OSIRIS, see Chapter 6).

2.2 Preliminaries
In this work we frequently make use of the well-known Chernoff bounds
[Che52]:

Lemma 2.1 ([Che52]). Let X1, . . . , Xn be independent binary random variables.
Consider X =

řn
i=1Xi and let µ = E[X]. Then, for all δ ě 0 it holds:

Pr[X ě (1 + δ)µ] ď

(
eδ

(1 + δ)1+δ

)µ
ď e

´
δ2µ

2(1+δ/3) (2.1)

Furthermore, for all 0 ď δ ď 1 it holds:

Pr[X ď (1 ´ δ)µ] ď

(
e´δ

(1 ´ δ)1´δ

)µ
ď e´δ2µ/2 (2.2)

Inequality (2.1) also holds for any µ ě E[X], and Inequality (2.2) also holds for any
µ ď E[X].

The following lemma represents a standard example on the application of
the Chernoff bounds and is also used at several places throughout this work.
In this lemma and throughout this work we make use of the notion “with high
probability”, or short, “w.h.p.” in order to refer to a probability of at least
1 ´ 1/nc where the constant c can be made arbitrarily large.

Lemma 2.2. Consider n servers s0, . . . , sn´1, where εn, for ε ă 1/2, of these servers
are attacked. When choosing 2 logn servers uniformly at random, then at least logn
of these servers are intact, w.h.p.

14

2.2 Preliminaries

Proof. We introduce a binary random variable Xi for each server si,
i P t0, . . . , n ´ 1u, with Xi = 1 if and only if server si is intact. Let δ :=
1 ´ ε ą 1/2 be the fraction of intact servers among all servers s0, . . . , sn´1.
Let si1 , . . . , si2 log n

be the servers chosen uniformly at random. Define X :=
Xi1 + . . .+Xi2 log n

. Then, E[X] ą logn. Inequality (2.2) implies:

Pr[X ď (1 ´ δ) logn] ď e´δ2 log n/2

Hence, half of the chosen servers are intact, w.h.p.

Although we assume the servers in the systems presented in Chapters 3–5
to initially form a clique we only require such a strong connectivity at the
beginning of the periods, as specified later. After a preprocessing stage, we
only require the servers to be connected via a so-called d-dimensional k-ary
butterfly, as defined below.

In the following we use the notation [k] = t0, . . . , k ´ 1u for k P N.

Definition 2.3. For any d, k P N, the d-dimensional k-ary butterfly BF (k, d) is
a graph G = (Vk, E) with node set Vk = [d+ 1] ˆ [k]d and edge set E with

E = tt(i, x), (i+ 1, (x1, . . . , xi, b, xi+2, . . . , xd))u

| x = (x1, . . . , xd) P [k]d, i P [d], and b P [k]u.

A node u of the form (`, x) is said to be on butterfly level ` ofG. Furthermore, LT (u)
is the unique k-ary tree of nodes reached from u when going downwards the butterfly
(i.e., to nodes on butterfly levels `1 ą `) and UT (u) is the unique k-ary tree of nodes
reached from u when going upwards the butterfly. Moreover, for a node u at level `, let
BF (u) be the unique k-ary `-dimensional subbutterfly ranging from butterfly level 0
to ` in BF (k, d) that contains u. Finally, we name the unique k-ary subbutterfly of
dimension 1 ranging from level ` to `+ 1 in BF (k, d) the k-block at level `.

A visualization of a k-ary butterfly is given in Figure 2.1. Note that each
k-block at level ` P t0, . . . , logk n´ 1u is a complete bipartite graph consisting
of k nodes on level ` and k nodes on level ` + 1. Hence, in each level ` P

t0, . . . , logk n ´ 1u there are n/k disjoint k-blocks. Furthermore, note that in
this and all following figures we depict level 0 as the uppermost and level
logk n as the lowermost level. Thus, for a level ` P t0, . . . , logk nu we call all
levels `1 ă ` higher levels and all levels `1 ą ` lower levels.

Let BF (k, d) be a k-ary butterfly with k = logn and n = kd nodes, i.e.,
d = logk n. Define si, i P t0, . . . , n ´ 1u, as the server responsible for the
d+1 butterfly nodes in the i-th column ofBF (k, d), i.e., (0, i), . . . , (d, i). In the
following a server responsible for a butterfly node emulates that node. That
is, whenever a butterfly node (0, i), . . . , (d, i) is supposed to perform an action

15

Chapter 2 Model and Preliminaries

Level 0

Level 1

Level 2

Level 3

000
001

002
010

011
012

020
021

022
100

101
102

110
111

112
120

121
122

200
201

202
210

211
212

220
221

222

Figure 2.1: Visualization of a k-ary butterfly BF (k, d) for k = d = 3. For
better readability most of the edges between level one and two and
between level two and three are omitted. The dashed box denotes
the subbutterfly BF ((2, 111)). The thick solid lines in the dashed
box denote the edges of UT ((2, 111)). The thick dotted lines denote
the edges ofLT ((2, 121)). The edges between level 0 and 1 visualize
nine k-blocks at level 0.

(i.e., sending a message or storing data), this action is performed by server si.
We say a server s is connected via the k-ary butterfly to another server s1 if
there is an edge (u, v) in the butterfly such that u is emulated by s and v is
emulated by s1. In order to avoid confusion, only butterfly nodes are called
nodes. That is, in particular we never call a server a node. Hence, nodes are
artificial entities of the systems we present, while servers are the real entities
of the systems that eventually perform the actions.

Even if a server would not be connected to all servers, but only to (k´1) logk n
other servers (as we assume in Chapter 6), each server can communicate with all
other servers within logk n communication rounds using the butterfly routing
strategy. For this purpose, note that for each butterfly node u on level logk n
and each butterfly node v on level 0 there exists a unique path from u to v
of length logk n that only uses butterfly edges. Whenever a server s aims at
sending a message to a server s1 it is not connected to via the k-ary butterfly,
it instead routes that message from the butterfly node on level logk n which
server s emulates along the unique path to the butterfly node on level 0 that is
emulated by server s1.

Note that by using this routing approach each butterfly node u at level
` P t0, . . . , logk nu is able to communicate with each other butterfly node
v = (x, `1) at level `1 P t0, . . . , logk nu with x P t0, . . . , n ´ 1u in ` rounds by
simply routing the desired message along the unique path in the k-ary butterfly

16

2.2 Preliminaries

from u to the node v1 = (x, 0) at level 0. Since v and v1 are emulated by the
same server, once the message arrives at v1 node v also knows the message.

In the following, we also call the routing of a message from a butterfly
node u at level ` P t0, . . . , logk nu to a butterfly node v at a lower level `1 P

t0, . . . , logk nu, i.e., `1 ă `, bottom-up routing. Analogously, if v is at a higher
level than u, i.e., `1 ą `, we call the routing of a message from u to v top-down
routing.

A key aspect of the storage systems presented in this work is the usage of
coding. For that purpose, we will introduce some novel distributed coding
techniques (Sections 3.1, 3.2.1, and 6.2.1). However, in order to further decrease
redundancy, the storage systems presented in this work will also make use of
the well-known Reed-Solomon codes [RS60]. Since the focus of this work is
not on coding theory, we use the Reed-Solomon codes as a black box only by
making use of the following lemma.

Lemma 2.4. Let d be a data item of length z P N and let c P N, q P Q. Using
Reed-Solomon codes we can encode d into a data item d1 of length γz, for some constant
γ ě 1, such that for any partition of d1 into c pieces any q-fraction of these pieces
suffices to recover d.

Proof. Using Reed-Solomon codes we can append 2t parity bits to d such that
t P N errors in the resulting code word d1 can successfully be corrected [RS60].
Since we require a redundancy of γ, for γ ě 1 constant, t and γ have to be
chosen such that it holds: z + 2t = γz. Furthermore, we require t = (1 ´ q)c.
Hence, for γ it holds: γ = 1+2(1´q)/z, which is upper bounded by a constant
and therefore proofs the lemma.

17

Chapter

3
Basic IRIS

In this chapter we present Basic IRIS, an information system, i.e., a system that
provides a lookup functionality, but does not provide a write functionality.
Hence, we assume that at the beginning the data items are already stored in
the system by following the storage strategy we present in Section 3.2.

Basic IRIS is based on two articles by Eikel and Scheideler: One article is
published in the the proceedings of the 25th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) [ES13]. The other one is an article in
the Journal of ACM Transactions on Parallel Computing [ES15].

As already specified in Chapter 2, time is divided into periods, where each
period consists of a polylogarithmic number of rounds. More specifically
in this chapter we require a period to consist of O(log2 n) rounds such that
within a single period a set of lookup requests can be answered correctly.
In this chapter we assume the existence of an insider adversary that may, at
the beginning of each period, select at most γn1/ log log n servers, with γ =
1/9, for being crashed during the period. Besides the crashed servers, the
adversary additionally chooses an arbitrary set of lookup requests (with at
most O(polylog(n)) requests per non-crashed server) sent to the non-crashed
servers.

Basic IRIS is scalable, efficient and robust despite the existence of an insider
adversary that crashes up to γn1/ log log n servers. More specifically, we show
the following theorem.

Theorem 3.1 (Basic IRIS Main Theorem). Assume an insider adversary crashes
at most γn1/ log log n servers with γ = 1/9. Then, using only a constant redundancy,
Basic IRIS correctly serves any set of lookup requests (at most O(1) per intact server)

19

Chapter 3 Basic IRIS

after at mostO(log2 n) communication rounds with a congestion of at mostO(log3 n)
at every server in each round, w.h.p.

Note that we present a modification of Basic IRIS in Chapter 4 with different
bounds for the maximum number of crashed servers tolerated and on the
redundancy needed. This system will be called Enhanced IRIS. However, we
sometimes omit the term “Basic” in Basic IRIS and in that case refer to Basic
IRIS, not to Enhanced IRIS.

In order to achieve a constant, redundancy we require the data items to be
of size Ω(logn), as we explain later.

The remainder of this chapter is organized as follows: First, we introduce
the distributed coding strategy, called Butterfly Coding Strategy, whose frame-
work is reused in each information/storage system presented in this work
(Section 3.1). The Butterfly Coding Strategy internally requires a distributed
error correcting code, which we present in Section 3.2. Furthermore, in Sec-
tion 3.2 we present the overall storage strategy of Basic IRIS. In Section 3.3
we present the rather complex lookup protocol of Basic IRIS. While the run-
ning time and congestion analysis of the lookup protocol immediately follow
from the protocol, the correctness analysis is fairly involved and presented in
Section 3.4.

Table 3.1 provides an overview of variables and their bounds that are com-
monly used in this chapter.

Term Bound Description
γ = 1/9 Constant in fraction of crashed servers from

n1/ log log n servers
ε ă γn1/ log log n´1 Fraction of crashed servers

α
ą 2(1 ´ ε)/γ,
e.g., ě 9

Constant in congestion bound in Probing Stage

β ą 3/2 Constant in congestion bound in Decoding Stage
c ě 8 logm Number of pieces created for each data item
m ě n Size of the universe

Table 3.1: Variables commonly used in the presentation of IRIS.

3.1 Butterfly Coding Strategy
In the following we present the Butterfly Coding Strategy which is used by
all information and storage systems presented in this work. This strategy
describes how to encode n data blocks with each other that have already been
assigned to n servers. Internally, a distributed code is used which can be

20

3.1 Butterfly Coding Strategy

exchanged by another distributed code in order to achieve different properties
for the overall Butterfly Coding Strategy. However, Basic IRIS requires the
use of a distributed code that guarantees the correction of a single data block
if the faulty data block is known in advance. This distributed code appends
some parity bits to the input data blocks only in order to build the result.
Section 3.2.1 provides a description of this code. For the rest of this section we
use the internal code as a black box.

The Butterfly Coding Strategy is a block-based distributed coding strategy
that hierarchically encodes sets of k P N data blocks with each other. Here, the
topology of the k-ary butterfly will define how to choose these sets.

In the following let BF (k, d) be a k-ary butterfly with n = kd nodes, i.e.,
d = logk n and k = logn. Recall that in Section 2.2 we defined the server si,
i P t0, . . . , n ´ 1u as the server responsible for the d + 1 butterfly nodes in
the i-th column of BF (k, d), i.e., (0, i), . . . , (d, i). Furthermore, server si was
defined to emulate the nodes it is responsible for, i.e., whenever a butterfly
node (0, i), . . . , (d, i) is supposed to perform an action (i.e., sending a message
or storing data), this action is performed by server si.

In the following let tb0, . . . , bn´1u be a set of data blocks that are supposed
to be encoded with each other. We assume there exists a mapping that assigns
each data block bi to a server si. In Section 3.2 we describe how to implement
this mapping from the data blocks to the servers. In order to encode the data
blocks b0, . . . , bn´1 assigned to the servers s0, . . . , sn´1 with each other, initially,
bi is assigned to butterfly node (0, i) for each i P t0, . . . , n´ 1u. For a butterfly
node u let d(u) denote the data that is assigned to node u.

Assume we already assigned data blocks d(ui) to the butterfly nodes ui :=
(`, i), i P t0, . . . , n ´ 1u, at level `. For each k-block at level ` with nodes
(`, i1), . . . , (`, ik), i1, . . . , ik P t0, . . . , n ´ 1u at level `, encode the data blocks
d((`, i1)), . . . , d((`, ik)) with each other using the internal distributed code.
By this, for each server sij , j P t1, . . . , ku a parity bit string pij is computed
which will be appended to d((`, ij)). Thus, the resulting k data blocks are
d((`, i1))˝pi1 , . . . , d((`, ik))˝pik . Finally, assign d((`, i1))˝pi1 , . . . , d((`, ik))˝pik
to the nodes (`+ 1, i1), . . . , (`+ 1, ik) by setting d((`+ 1, ij)) = d((`, ij)) ˝ pij
for j P t1, . . . , ku.

At the end, server si, i P t0, . . . , n´ 1u, holds the data block bi and all parity
information that has been assigned to a butterfly node (`, i), ` P t0, . . . , logk nu.

In a distributed fashion the encoding of the given n data blocks can simply
be computed by a top-down approach. That is, first, for each k-block B at level
0, the nodes from B at level 0 send the data blocks assigned to them to the
nodes at level 1 from B such that each node (1, i), i P t0, . . . , n ´ 1u, at level
1 can compute d((1, i)) = d((0, i)) ˝ pi. Next and analogously to level 0, the
nodes from level 1 send their data to the according nodes from their k-block
at level 2 such that all level 2 nodes can compute the data they are supposed

21

Chapter 3 Basic IRIS

to store. This approach proceeds level by level until all nodes at the last level,
level logk n, have computed the data they are supposed to hold.

Note that by this approach, at the end of the encoding process at least some
parity information of each data block is stored at any server.

3.2 Storage Strategy
Let K Ď U be the set of all keys that have a data item in the system and define
c = 8 logm. The idea of storing the |K| data items in IRIS is to divide these
data items into several n-tuples that are separately encoded with each other
using the Butterfly Coding Strategy presented in Section 3.1. For this purpose
we require the use of several hash functions: First, we require a hash function
L : U Ñ t0, . . . , ρ ¨ |K|/nu for some constant γ which we call the layer hash
function. Second, we require c further hash functions h1, . . . , hc : U Ñ S
chosen uniformly at random.

In detail, storing a set of |K| data items in IRIS works as follows:

Step 1 (Reed-Solomon Coding): Use Reed-Solomon codes [RS60] to parti-
tion each data item d into c = Θ(logm) pieces d1, . . . , dc such that any
c/4 of these pieces of d suffices to recover d.

Step 2 (Mapping to Servers): Use the layer hash function L : U Ñ t1, . . . , ρ ¨

|K|/nu in order to assign each data item to a layer. Afterwards, for each
data item d, assign each piece di, i P t1, . . . , cu, of d to a server using hash
function hi : U Ñ S . We denote the concatenation of data pieces that are
assigned to server sj and layer α as bj(α). If it is clear from the context
we omit the α and write bj instead.

Step 3 (Encoding Layers): For each layer j P t1, . . . , ρ ¨ |K|/nu encode the
data blocks b0(j), . . . , bn´1(j) with each other using the Butterfly Cod-
ing Strategy presented in Section 3.1. Recall that the Butterfly Coding
Strategy requires an additional internal code which was used as a black
box in Section 3.1. In Section 3.2.1 we present an according code used in
Basic IRIS.

For simplicity, we assume that the data blocks b0(j), . . . , bn´1(j) are of the
same size z. If this is not the case, we could simply append dummy bits to the
data blocks such that all data blocks are finally of the same size.

The layer hash function L has to be implemented in such a way that Θ(n)
data items are mapped to each of the ρ ¨ |K|/n layers. For the hash functions
h1, . . . , hc we require that for each layer Θ(c) data pieces are mapped to each
server. The simplest way of realizing L and h1, . . . , hc with these requirements
is to use cuckoo hashing [PR04] where ρ = 2 suffices: i.e., each data item has

22

3.2 Storage Strategy

two optional layers where it is supposed to be stored and the data items are
distributed among these positions such that each of the ρ ¨ |K|/n layers holds
Θ(n) data items in total. Analogously, each data piece has two optional servers
that are supposed to hold it and the data pieces are distributed among the
servers such that each server holds Θ(c) data pieces in total. Of course, in this
case a lookup request for some data item d would involve looking at the two
optional layers and for each piece of d at the two optional servers. However,
this would just double the work spent for the lookup operation described
in Section 3.3, so in the following we just assume that L and h1, . . . , hc are
injective hash functions that can be directly evaluated in order to determine
the unique layer and server for a data piece.

3.2.1 Internal Distributed Error Correcting Code
In the following we present a simple error correcting code that is able to recover
one out of k P N data blocks by only using some simple parity computations
and appending the resulting parity bits to the original data blocks. In other
words, assume k servers holding one data block each while exactly one of these
servers is crashed. Then, the code we present guarantees that the data block
held by the crashed server can be recovered using only the information of the
remaining k ´ 1 servers. In detail, the encoding of k data blocks b1, . . . , bk
works as follows:

1. Compute P = b1‘b2‘ . . .‘bk where “‘” is the bit-wise parity operation.

2. Cut P into k ´ 1 pieces p1, . . . , pk´1 of equal size (up to an additive 1).

3. Set b1
i = bi ˝ pi, i P t1, . . . , ku, where “˝” is the concatenation operator.

4. Set b1
k = bk ˝ pk with pk = p1 ‘ p2 ‘ ¨ ¨ ¨ ‘ pk´1.

See Figure 3.1 for a visualization of the encoding of k data blocks.
For this code the following lemma can be shown.

Lemma 3.2. Let the data blocks b1, . . . , bk be encoded with each other using the
previously described coding strategy resulting in b1

1, . . . , b
1
k. Then, if one b1

j , j P

t1, . . . , ku, is inaccessible (e.g., the server holding it is crashed), the information in
b1
1, . . . , b

1
j´1, b

1
j+1, . . . , b

1
k suffices to recover b1

j .

Proof. Suppose data block b1
j is inaccessible. By definition of the error correcting

coding strategy we can compute pj =
À

i ­=j pi. This allows us to recover P
by computing P = p1 ˝ . . . ˝ pk´1. With this we can recover bj by computing
bj = P ‘ (

À

i ­=j bi).

23

Chapter 3 Basic IRIS

b1

b2

bk

...
+ . . .

p1

p2

pk−1

pk

+

+

+

...

b1 p1b′1 :=

b2 p2b′2 :=

bk pkb′k :=

bk−1 pk−1b′k−1 :=

Figure 3.1: Visualization of the encoding of k data blocks b1, . . . , bk.

3.2.2 Redundancy Analysis
In this section we analyze the redundancy required by the storage strategy of
Basic IRIS. For a data block b let |b| denote the size of the data block b, i.e., the
number of bits in the binary representation of b. For a node v in BF (k, d), let
|d(v)| denote the size of the data stored in node v. Since to each node (`+1, xi)
a bit string of size |d(`, xi)|/(k´1)˘1 is appended, the following lemma holds.

Lemma 3.3. For any k-blockB with nodes (`, x1), . . . , (`, xk) and (`+1, x1), . . . , (`+
1, xk), it holds |d(`+ 1, xi)| ď (1 + 1/(k ´ 1))|d(`, xi)| up to an additive 1.

For simplicity, in the following we ignore the additive 1 due to the fact that
|d(`, xi)| may not be perfectly divisible by k´1. This will only cause a constant
factor deviation from the bounds below as long as the original data items have
a size of z with z ě k.

In the following we examine the redundancy caused by the storage strategy
described in Section 3.2. For this purpose we first consider the redundancy
that occurs if at most n data items are stored in the system.

With d(si) = di ˝ p1(i) ˝ . . . ˝ plogk n
(i) we get the following lemma.

Lemma 3.4. For any k ą d and |di| ě k it holds that |d(si)| ď (1 + e)|di| for every
server si.

Proof. Notice that for the `-th parity bit string p`(i) appended to di it holds:
|p`(i)| ď (1 + 1/(k ´ 1))`´1|di|/(k ´ 1) for all ` P t1, . . . , logk nu, which can be
shown by induction on `.

By definition of d(si) for each server si it holds:

|d(si)| = |di| +
d

ÿ

j=1

|pj(i)| ď |di| +
d

ÿ

`=1

(
1 +

1

k ´ 1

)`´1

¨
|di|

k ´ 1

24

3.3 Lookup Protocol

With (1 + x) ď ex for all x ě 0 we get:

|d(si)| ď |di| +
d

ÿ

`=1

e(`´1)/(k´1) ¨
|di|

k ´ 1
ď |di|

(
1 +

d ¨ e(d´1)/(k´1)

k ´ 1

)

Since k ą d = logk n this term is upper bounded by (1 + e)|di|, which proves
the lemma.

Notice that d = logk n = logn/ log logn. Hence, in order to ensure k ą d,
it must hold k ą logn/ log logn. For n ą 4 it holds logn ą logn/ log logn.
Thus, with k = logn and data items of a size of at least k, we achieve a storage
strategy with a constant redundancy only.

Since we assume the size of the universe U to be polynomial in the number of
servers, the number of layers required is constant. Furthermore by Lemma 2.4,
the redundancy required for partitioning a data item d into c pieces via Reed-
Solomon codes such that any c/4 pieces suffice to recover d is also constant.

Hence, in order to store O(n) data items each of size z into a layer, we first
create for each of these data item c = Θ(m) pieces, that are distributed among
the servers such that at the end each server holds c pieces, i.e., a data block of
size Θ(z). Then, the n-tuple of these data blocks is encoded with each other
resulting in Θ(n) data blocks each of size Θ(z) if z ą logn (Lemma 3.4).

Hence, for the redundancy of Basic IRIS it follows:

Corollary 3.5. Storing poly(n) data items, each of size Ω(logn), in Basic IRIS
requires a constant redundancy.

3.3 Lookup Protocol
The lookup protocol describes which actions the intact servers perform in
order to serve the lookup requests they received. Recall that, due to the Reed-
Solomon coding, for each intact server with a request for some data item d it
suffices to retrieve c/4 pieces of d in order to recover d and thereby correctly
answer the request.

The naïve approach in which each server with a request for a data item d
simply asks the servers s1, . . . , sc that hold the c pieces of d does not work for
the following reasons: First of all, all the servers s1, . . . , sc could be crashed,
which disables them from answering any requests. In another scenario the
adversary could have sent a lookup request for the same data item d to all
intact servers. In this case each intact server would contact the same servers
s1, . . . , sc, causing these servers to become congested, i.e., receiving more than
polylog(n) many messages.

25

Chapter 3 Basic IRIS

Hence, we need a cleverer strategy to serve the lookup requests. For that
purpose, we divide the lookup protocol into three stages: a Preprocessing
Stage, a Probing Stage, and a Decoding Stage. In the Preprocessing Stage,
the intact servers determine a unique representative for each crashed server
so that we can route in the k-ary butterfly as if all servers are still intact (but,
of course, the data in the crashed servers is unavailable). Also, information is
collected that allows us to bound the work of decoding specific pieces of data
items. In the Probing Stage, we issue lookup requests for the c pieces of each
requested data item d. If we retrieve sufficiently many of these pieces without
causing an excessive congestion at any node we can answer the request for d.
Otherwise, the request for d will further be handled in the Decoding Stage in
which sufficiently many pieces of d will be recovered in order to finally recover
d itself.

Note that stages similar to the Probing Stage and to the Decoding Stage are
also used in the Lookup Protocol of the storage and information systems by
Scheideler et al. [AS07; BSS09]. However, the determination of the representa-
tives and the decoding depth computation in the Preprocessing Stage cannot
be found in [AS07; BSS09]. At the end of the presentation of the Lookup Proto-
col, in Section 3.3.4, we point out the differences and similarities between the
Probing Stage and the Decoding Stage of this work and the according stages
in [AS07; BSS09].

Since the correctness analysis of the Probing Stage and the Decoding Stage
is rather involved and we want to keep the description of the lookup protocol
as clear as possible, we postpone this analysis to Section 3.4.

3.3.1 Preprocessing Stage
The Preprocessing Stage is divided into two further substages: the Butterfly
Completion Stage and the Decoding Depth Computation Stage.

3.3.1.1 Butterfly Completion Stage

The goal of the Butterfly Completion Stage is to determine for each crashed
server a unique representative chosen from the intact servers. The task of
the representatives is to take over the role of the crashed servers, e.g., by
forwarding messages or performing computations that were initially supposed
to be sent or performed by the according crashed servers. That is, via the
representatives the servers can route messages through the k-ary butterfly as
if no server was crashed. Note that a representative can only act as the crashed
server it represents, but it does not have access to the crashed server’s data.
Once an intact server s1 becomes the representative of a crashed server s, it has
still to be ensured that each other intact server that is connected to s via the

26

3.3 Lookup Protocol

underlying k-ary butterfly knows the representative s1 of s. In the rest of the
lookup protocol, whenever a server s is supposed to contact a crashed server
s1, s contacts the representative of s1 instead. Once, the representatives have
been determined and each server is aware of the representative of any crashed
server it is connected to via the k-ary butterfly, we do not require the servers to
form a clique any more. Instead, the connections formed for the k-ary butterfly
suffice for the rest of the protocol.

In short, the Butterfly Completion Stage consists of the following phases:

Step 1: Build a tree T of depth O(logn/ log logn) over all intact servers.

Step 2: Transform the constructed tree T into a doubly-linked list L consisting
of n intact servers in which each intact server is contained either once
or twice.

Step 3: Rearrange the created list L such that each intact server with identifier
i is at position i in L and for each crashed server with identifier j there
is an intact server at position j in L that is declared the representative
of the crashed server.

Step 4: Transform the resulting list into an auxiliary k-ary butterfly that only
consists of intact servers and where each intact server s that is con-
nected to a crashed server s1 in the k-ary butterfly consisting of all
servers is in the auxiliary butterfly connected to the representative of
s1.

We now give a detailed description of the previously mentioned phases.

Phase 1: Build a tree over the intact servers In order to build a tree
of depth O(logn/ log logn), we first build a graph of degree O(logn) and
diameterO(logn/ log logn), w.h.p., consisting of all intact servers. Afterwards,
this graph is transformed into a tree of depth O(logn/ log logn) using the
technique of a breadth-first search. Recall that c = O(logm) and m ě n.

The graph is constructed as follows: First, each intact server s chooses Θ(c)
other servers uniformly at random. By Lemma 2.2, each server s chooses c
intact servers s1, . . . , sc, w.h.p. Afterwards, s creates an edge to each server
s1, . . . , sc and additionally informs each of those servers about that, implying
the servers s1, . . . , sc to also create an edge to s.

Note that the process of randomly choosingΘ(c) servers for each intact server
is the only process in the Lookup Protocol in which we require the servers to
initially form a clique. If we would not require the servers to initially form
build a clique but only to be connected via a k-ary butterfly, it may happen that
an intact server s is only connected to crashed servers via the k-ary butterfly.

27

Chapter 3 Basic IRIS

But i n that case server s can not participate in the construction of the initial
tree over the intact servers.

Lemma 3.6. After O(1) rounds the intact servers have built a graph with degree
O(logn) and diameter O(logn/ log logn), w.h.p.

Proof. Let G be the graph created by the intact servers via the described proce-
dure. From Lemma 2.2 it follows that G has a degree of Θ(logn).

In order to show that the maximum distance between any two nodes is at
most O(logn/ log logn), we first show that each set U of at most n/(2d) nodes
from G (with d = Θ(logn) being the degree of U) has a good expansion. To
be more precise, we show that for all sets U of at most n/(2d) nodes from G
for the set of neighboring nodes Γ(U) of U it holds:

|Γ(U)| ě δ ¨ d ¨ |U | (3.1)

with 0 ă δ ď 1/2 constant. In order to prove this, we first show that the
probability that a given set U of k nodes does not have a good expansion is
small. That is, we need to show that the probability that less than a δ-fraction
of all edges of the nodes from U are incident to a node that is not in U is small.
This probability again equals the probability that at least a (1 ´ δ)-fraction of
all edges from U are incident to a node from U , which is

kd
ÿ

i=(1´δ)kd

(
kd

i

)(
k

n

)i
ď kd ¨

(
kd

(1 ´ δ)kd

)(
k

n

)(1´δ)kd

= kd ¨ 2kd ¨

(
k

n

)(1´δ)kd

Hence, the probability that there exists any set U of at most n/(2d) nodes from
G that does not fulfill equation (3.1) is upper bounded by

n/(2d)
ÿ

k=1

(
n

k

)
¨ kd ¨ 2kd ¨

(
k

n

)(1´δ)kd

ď

n/(2d)
ÿ

k=1

kd ¨

(
en

k
¨ 2d ¨

(
k

n

)(1´δ)d
)k

Using 1 ď k ď n/(2d) we can upper bound this term by

n2

4d
¨

(
en ¨ 2d ¨

(
1

2d

)(1´δ)d
)n/(2d)

Since d = Θ(logn), for n sufficiently large this term is upper bounded by

n2

4 logn ¨

(
en2 ¨

(
1

2nlog log n+1

)1´δ
)n/(2d)

(3.2)

28

3.3 Lookup Protocol

For any constant x ą 0 and n sufficiently large equation (3.2) is upper bounded
by Θ(1/nx) implying equation (3.1).

Hence, as long asU consists of at most n/(2d) nodes, its neighborhood grows
by a factor of at least δd. In particular, for n sufficiently large, n/(2d) distinct
nodes can be reached from a node u in at most h hops with h satisfying

(δ logn)h = n/(2 logn)

ô h = logδ log n(n/(2 logn)) = logn´ log logn´ log 2

log δ + log logn

Thus, for n sufficiently large, from any node uwe can reach n/(2d) many nodes
in Θ(logn/ log logn) hops. Since for any set of nodes U with |U | = n/(2d) it
holds Γ(U) = (δ/2)n, we get that Θ(n) nodes are at distance Θ(logn/ log logn)
from any node u.

It remains to show that |Γ(U)| = n for any set U of δ1n nodes from G with
0 ă δ1 ď 1 and degree d = Θ(logn), w.h.p. Since the nodes from U are
incident to at most dδ1n edges in total, the probability that none of these edges
is incident to one fixed node fromG is upper bounded by (1´ 1/n)dδ

1n. Hence,
the probability that there exists a node that is neither in U nor it is adjacent to
a node from U , is upper bounded by

n ¨

(
1 ´

1

n

)δdn
ď n ¨

1

eδd
ď

1

nδx´1

where we used d = x logn for x ą 2 constant, n sufficiently large and (1 ´

1/n)n ď 1/e. Hence, for any set U of Θ(n) nodes from G the neighborhood of
U consists of all nodes from G, w.h.p.

In order to transform the constructed graph G consisting only of intact
servers into a tree of depth O(logn/ log logn), each intact server initiates a
breadth-first search (BFS). The idea is to let the servers create a tree that is
rooted at the intact server with minimum ID among all intact servers. Since the
intact servers cannot determine this ID in advance in at most polylogarithmic
time, each intact server initiates a BFS. In the following each intact server
s holds three variables minDist(s), minDistSource(s), and parent(s) that are
initialized with 0, id(s) and NIL, respectively. minDistSource(s) will hold the
minimum server ID from which s has received a message so far. minDist(s)
will hold the minimum distance to minDistSource(s) that server s has stored
so far. parent(s) will hold the server ID from which it has received the last
message that initiated an update of minDistSource(s). In the first round, each
intact server s sends the message (id(s),minDist(s),minDistSource(s)) to each

29

Chapter 3 Basic IRIS

of its neighbors in G. Algorithm 1 describes the actions performed by each
intact server s in each of the following rounds as soon as s has received all
messages from its neighbors.

Algorithm 1 GraphToTree performed by intact server s
1: for all messages (id,minDist,minDistSource) received at the beginning of

this round do
2: if minDistSource ă minDistSource(s)

ë or minDistSource = minDistSource(s)
ë and minDist ă minDist(s) then
Ź update internal variables

3: minDistSource(s) Ð minDistSource
4: minDist(s) Ð minDist + 1
5: parent(s) Ð id
6: for all neighbors s1 of s in G do
7: Send message (id(s),minDistSource(s),minDist(s)) to s1.

Together with Lemma 3.6 and for ε ă γn1/ log log n´1 ă 1/2 it follows:

Lemma 3.7. After O(logn/ log logn) rounds it holds, w.h.p.:

1. The parent(s)-values induce a tree T of depth O(logn/ log logn) over all
(1 ´ ε)n intact servers rooted at the intact server with minimum identifier.

2. The degree of each node in T is at most O(logn).

Phase 2: Transform list to tree Next we show how to transform T into a
doubly-linked listL ofn intact servers in which each intact server is contained at
most twice. First, using a bottom-up approach, each intact server s determines
for each of its children s1 in T the size size(s1) of the subtree of T rooted at s1 and
the identifier of the rightmost server rightmost(s1) in this subtree and reports
it to its parent server. Obviously, this is possible in O(depth(T)) rounds. Using
this information, in a top-down approach, each intact server then determines
its position and its neighbors in a doubly-linked list of n intact servers as
follows: First, the root r of T (i.e., the server r with p(r) = NULL) initiates
a pre-order walk of T by performing Algorithm 2 with parameters 1, NULL.
Whenever a server receives a message, it also performs Algorithm 2. Clearly,
after at most depth(T) rounds each intact server knows its position and its
left neighbor in L (see Figure 3.2 for a visualization). In order to transform L
into a doubly-linked list, each intact server s sends its ID to its left neighbor
and sets right(s) to the ID it receives, or to NULL if it does not receive a
message. In parallel to the transformation of T into a doubly-linked list of

30

3.3 Lookup Protocol

1

2

3 4

5

6

7 8 9

10

1 2 3 4 5 6 7 8 9 10 1 2 3 4

(1− ε)n εn

Figure 3.2: Transformation of T into a sorted list of n intact servers. The num-
bers next to the tree nodes denote the order of their appearance in
the tree traversal.

the (1 ´ ε)n intact servers, s initiates an additional pre-order traversal of T by
additionally performing Algorithm 2 with parameters (1´ε)n+1, rightmost(r).
In case ε is not known to the servers, r can simply determine it by computing
ε = n´

řp
i=1 size(childi(r)), where child1(r), . . . , childp(r) denote the children

of r in T . In contrast to the first traversal of T , the values left(s) and pos(s) in
Algorithm 2 are now substituted by left2(s) and pos2(s). Additionally, we use
the modification that as soon as an intact server sets its pos2 value to n, the
algorithm terminates. Then, analogously to the right values, each server sets its
right2 value. By this additional tree traversal the first εn servers of the traversal
are appended to L. Notice that this pre-order traversal of T guarantees that
the first εn servers visited form a connected subtree of T .

Algorithm 2 BuildListFromTree(x, l) performed by intact server s
1: left(s) Ð l, pos(s) Ð x
2: for all children childi(s) of s, i P t1, . . . , pu do
3: if i = 1 then
4: left Ð childi(s) Ź childi(s) is the leftmost child of s
5: else
6: left Ð rightmost(childi´1(s))

7: pos Ð pos(s) + 1 +
ři´1
j=1 size(childj(s))

8: Send message (pos, left) to childi(s).

With ε denoting the maximum fraction of crashed servers allowed, the
following lemma holds.

31

Chapter 3 Basic IRIS

Lemma 3.8. After 2 ¨ depth(T) rounds, T is transformed into a doubly-linked list L
of size n over the (1 ´ ε)n intact servers such that each intact server is contained at
most twice in L.

Phase 3: Rearrange list The goal of this phase is to rearrange L into a
doubly-linked list with the properties specified in Lemma 3.9.

Lemma 3.9. After O(1) rounds it holds:

1. Each intact server si is at position i in L.

2. For each crashed server sj , the server s1 with pos(s1) = j or pos2(s1) = j is
the unique representative of sj .

Initially, the owner of a position j in L is the server s1 with pos(s1) = j or
pos2(s1) = j.

First, each intact server s1 at position j contacts server sj . If sj is not crashed,
then s1 considers sj as the new owner of j. s1 then asks its direct neighbors in
L for the owners of the positions j´ 1 and j+1 and forwards that information
to sj so that sj can take over the position j in L. If sj is crashed, s1 remains to
be the owner of j and therefore becomes the representative of sj .

Phase 4: Build extended k-ary butterfly In this phase L is transformed
into a k-ary butterfly using an extended k-ary butterfly.

Definition 3.10 (Extended k-ary Butterfly). For any d, k P N, the d-dimensional
extended k-ary butterfly EBF (k, d) is a graph (V,E) with V =

Ťd
`=0 V` and

E =
Ťd
`=1E` where

V` = t(`, i) | i P t0, . . . , n´ 1uu and
E` = tt(`´ 1, i), (`, j)u P V`´1 ˆ V` | Dx P t0, . . . , k ´ 1u : |i´ j| = x ¨ k`´1u.

Furthermore, we define G(`) = (V`´1 Y V`, E`), ` P t1, . . . , du, and call each node
(`, i) a level ` node.

See Figure 3.3 for a (partial) visualization of an extended k-ary butterfly.
Recall that in the standard k-ary butterfly (see Definition 2.3) the nodes from

level `´1 and `, ` P t1, . . . , logk nu, form only n/k disjoint complete k-bipartite
subgraphs which are also contained in EBF (k, d). To be more precise, each
block of k consecutive nodes between level 0 and level 1 (k nodes on each level)
forms a complete k-bipartite subgraph. Each block of k nodes between level
`´ 1 and ` with a distance of k`´1 between each two nodes forms a complete
k-bipartite graph.

32

3.3 Lookup Protocol

Level 0

Level 1

Level 2

Level 3

000
001

002
010

011
012

020
021

022
100

101
102

110
111

112
120

121
122

200
201

202
210

211
212

220
221

222

Figure 3.3: Visualization of EBF (k, d) for k = 3 and d = 2. The thin edges
denote edges that are contained in both the standard k-ary butterfly
and the extended k-ary butterfly. The solid edges denote edges that
are exclusively contained in the extended k-ary butterfly. In order
to keep the visualization clear, most of the edges from the standard
and extended k-ary butterfly are omitted.

The idea of this phase is to add for each server at position i in L exactly
logk n + 1 virtual nodes (0, i), . . . , (logk n, i) and to successively build the
graphs G(`), ` = 1, . . . , logk n, beginning with G(1).

In G(1) each node from level 0 needs to connect to all nodes on level 1 that
are at distance at most k ´ 1. For this, in the first round, each intact server s
asks its two direct neighbors in L for their neighbors in L which introduces
s to its neighbors at distance 2 in L. In round r P t2, . . . , rlog(k ´ 1)su each
intact server s asks its two neighbors at distance 2r´1 for their neighbors (at
distances 1, 2, . . . , 2r´1) in L. This introduces s to all servers at a distance of
at most 2 ¨ 2r´1 = 2r in L. Hence, after rlog(k ´ 1)s rounds, each intact server
knows all servers at a distance of at most 2rlog(k´1)s = k ´ 1 in L.

The construction of G(`), ` = 2, . . . , logk n, proceeds in rlog(k ´ 1)s + 1
rounds and assumesG(`´ 1) has already been built. That is, each intact server
knows all servers at distance x ¨ k`´2, x P t1, . . . , k ´ 1u. In order to build G(`),
each intact server needs to be introduced to all servers at distance x ¨ k`´1,
x P t1, . . . , k ´ 1u. In the first round each intact server s asks its neighbors
at distance (k ´ 1)k`´2 (i.e., the servers farthest away in G(` ´ 1)) for their
closest neighbors in G(`´ 1) (i.e., their neighbors at distance k`´2). By this, s
is introduced to the servers at distance (k ´ 1)k`´2 + k`´2 = k`´1. In round
r P t2, . . . , rlog(k ´ 1)s + 1u each intact server s already knows all servers
at distance x ¨ k`´1, x P t1, . . . , 2r´2u and asks its neighbors at maximum
distance (i.e., at distance 2r´2 ¨ k`´1) for their neighbors at distance x ¨ k`´1,

33

Chapter 3 Basic IRIS

x P t1, . . . , 2r´2u. This introduces s to all servers at the following distances:

2r´2 ¨ k`´1 + k`´1 = (2r´2 + 1) ¨ k`´1

2r´2 ¨ k`´1 + 2k`´1 = (2r´2 + 2) ¨ k`´1

2r´2 ¨ k`´1 + 3k`´1 = (2r´2 + 3) ¨ k`´1

...
2r´2 ¨ k`´1 + 2r´2 ¨ k`´1 = (2r´2 + 2r´2) ¨ k`´1 = 2r´1 ¨ k`´1

Hence, after round r, s knows all neighbors at distance x ¨ k`´1 for all x P

t1, . . . , 2r´1u. See Figure 3.4 for a visualization. Thus, after rlog(k ´ 1)s + 1
rounds, each intact server knows all servers at distance x ¨ k`´1 for all x P

t1, . . . , (k ´ 1)u.

Lemma 3.11. In the fourth phase of the Butterfly Completion Stage, a sorted list
of n intact servers is correctly transformed into an extended k-ary butterfly in time
(2 + o(1)) logn and at any time the congestion at every intact server is at most
O(logn).

Proof. By induction on ` it is easy to show that G(`), ` P t1, . . . , logk nu, is built
correctly. Since the construction of each G(`) takes 2(rlog ks + 1) rounds (each
round described above actually consists of two rounds) the extended k-ary
butterfly is built after 2(rlog ks + 1) logk n rounds. By Lemma 3.8, each intact
server is contained at most twice in L, implying that in each round each intact
server contacts (and is contacted by) at most four intact servers and asks for
their neighbors in G(` ´ 1) and G(`), respectively. Since each intact server
has at most O(k) neighbors in G(`´ 1) and G(`), the congestion of each intact
server is at most O(k) in each round.

Since the d-dimensional k-ary butterfly is a subgraph of the d-dimensional
extended k-ary butterfly, Lemma 3.12 follows.

Lemma 3.12. The Butterfly Completion Stage of the Lookup Protocol of Basic IRIS
guarantees that after (2+o(1)) logn rounds and with a congestion of at mostO(logn)
at each intact server it holds:

• For each crashed server a unique intact server as its representative is determined.

• Each server that is connected to a crashed server s via the standard k-ary butterfly
knows the representative of s.

• Each intact server is the representative of at most one crashed server.

Note that the additional edges of the extended k-ary butterfly are used only
for the construction of the standard k-ary butterfly. Hence, once the standard

34

3.3 Lookup Protocol

. .
s s′

k`−1
2k`−1

2r−2k`−1

k`−1
2k`−1

2r−2k`−1

2r−1k`−1

Figure 3.4: Visualization of the construction of G(`) in round r in which the
intact server s asks the server s1 at distance 2r´2k` for its neighbors.
The dashed edge denotes a connection with a maximum distance
that s builds in round r.

k-ary butterfly has been established, the servers may omit the connections to
the servers they are connected to in the extended k-ary butterfly but not in the
standard k-ary butterfly.

3.3.1.2 Decoding Depth Computation

Once the k-ary butterfly has been re-established over intact servers, we can go
ahead with collecting additional information. In particular, we are interested
in the decoding work for specific data items. This is determined with the help
of the following recursively defined function:

Definition 3.13 (Decoding Depth). For a nodeu = (`, x) ofBF (k, d) the decoding
depth dd(u) is defined as:

dd(u) =

$

’

’

&

’

’

%

0 if u is not crashed
8 if ` = d and u is crashed
max
vPC(u)

tdd(v)u + 1 if ` ă d and u is crashed

where C(u) denotes the set of children of u in LT (u), excluding one child with a
greatest decoding depth among these children. The decoding depth of a server si is
defined as dd(si) = dd((0, i)), and the decoding depth of a subbutterfly BF (u) is
defined as dd(BF (u)) = max

(0,x)PBF (u)
dd((0, x)).

See Figure 3.5 for a visualization.
Note that dd(u) P t0, . . . , logk n,8u. The decoding depth dd(u) of a butterfly

node u immediately implies an asymptotical upper bound on the time needed
for restoring the data of a crashed server. In this context note that the data

35

Chapter 3 Basic IRIS

3

2

∞ 1 1

2

∞ 1 1

1

0 ∞ 0

Figure 3.5: Visualization of decoding depth computation with some nodes and
edges of the k-ary butterfly omitted. Black/white colored nodes
represent crashed/intact nodes. The labels next to the nodes denote
their decoding depth at the corresponding level.

stored at any butterfly node u at level ` with dd(u) ď logk n´ ` can simply be
recovered via a bottom-up information forwarding through the k-ary butterfly.

Lemma 3.14. If dd(si) = ` P t0, . . . , logk nu for a crashed server si, then any
data item that has been assigned to si can be recovered in time O(`) by the nodes in
BF ((`, i)).

In particular, Lemma 3.14 implies that the data stored at any server s with
dd(s) ă 8 can be recovered in time O(logk n).

In a distributed fashion the decoding depth is computed as follows: Starting
from level logk n, the servers compute the dd(u)-values of the butterfly nodes
level by level and disseminate them among their neighbors in the next lower
level until the dd(¨)-values of all nodes have been computed. This can certainly
be done in O(logk n) communication rounds with congestion O(k) in each
round. At the end every server si knows dd(si). Then, the servers compute
the dd(BF (¨))-values level by level in a way that, starting in level 0, each
node u sends its dd(BF (u))-value to all of its neighbors v in the next higher
level, which will then be able to determine their dd(BF (v))-value by taking
the maximum of the received values. Hence, at the end every node u (resp.
the server emulating u) knows dd(BF (u)). This process also takes O(logk n)
communication rounds with congestion O(k) in each round.

With Lemma 3.12 it follows:

Lemma 3.15. The Preprocessing Stage takes at most (2+ o(1)) logn communication
rounds with at most O(log2 n) congestion at every intact server at each round.

3.3.2 Probing Stage
With the Probing Stage, the actual lookup for the requested data items begins.
Before we go into the details of the Probing Stage we provide a short overview

36

3.3 Lookup Protocol

of the actions to be performed. In order to provide a precise overview of
the protocol for the Probing Stage, we additionally present the algorithms in
pseudocode.

Overview The idea of the Probing Stage is to forward a lookup request for
each data piece di of a requested data item d along c paths from level logk n
to level 0 in the k-ary butterfly. The goal of this probing is to determine up
to which level the c requests (also called probes) can be routed without a
node on the paths becoming congested and without exceeding the decoding
depth of one of the nodes on these paths. If enough probes reach level 0, the
corresponding nodes can return the requested pieces to the server that issued
the requests. This server can in turn recover the requested data item using the
returned pieces. Otherwise, i.e., in case not enough probes reached level 0,
the request for d will be assigned to a level ` P t1, . . . , logk nu at which not too
many probes failed. Such a request will be further handled in the Decoding
Stage.

For the routing of messages through the k-ary butterfly, we use the technique
of splitting and combining. That is, whenever multiple messages with the
same destination are supposed to be forwarded by a node v, then v combines
all these messages into one message, memorizes the senders of the messages
as the origins of it, and forwards that message towards its destination. As soon
as the node v receives an answer to the previously sent message, it “splits” the
answer by forwarding it to all of the origins of that message. See Figure 3.6 for
a visualization of the technique of combining and splitting.

Details At the beginning of the Probing Stage, each intact server s that re-
ceived a lookup request for some data item d chooses c intact servers
s1(d), . . . , sc(d) P V uniformly and independently at random (Algorithm 3,
line 1). This can simply be realized by selecting c random servers in each
round until c intact servers have been found (which takesO(1) communication
rounds, w.h.p., see Lemma 2.2). Based on these servers we define the following
special paths through the k-ary butterfly.

Definition 3.16 (Probing Path). Consider a request for a data item d received by
server s. The unique path from the butterfly node on level logk n emulated by si(d) to
the butterfly node on level 0 emulated by the server that holds di is called the probing
path of di (with origin si(d)).

See Figure 3.7 for a visualization of Definition 3.16.
The actual probing takes place in synchronized rounds. The first logk n+ 1

rounds work as follows. In round 0, all probe messages are active, and their
origin is declared to be the server s that initiates that probe by sending a

37

Chapter 3 Basic IRIS

v0v0 : v1, v2

v1v0 : v3, v4 v2 v0 : v5, v6

v3 v4 v5 v6

v0 v0

v0 v0

v0 v0

Figure 3.6: Visualization of combining and splitting of messages. The labels at
the edges denote messages with destination v0. The labels next to
the nodes denote the combining of a message and the accordingly
stored origins: e.g., node v1 combined the messages from v3 and v4
to a single message and stored v3 and v4 as its origins.

. . .
h1(d)

. . .
hi(d)

. . .
hc(d)

. . .

u
(`)
s,i(d)

.
s1(d) si(d) sc(d)

s

Level
0

`

logk n

...

...

Figure 3.7: Visualization of the Probing Stage. The curved lines denote the
paths along which the probe messages are sent.

38

3.3 Lookup Protocol

probe(d, i) message to each server si(d), i P t1, . . . , cu (Algorithm 3, lines 3–5).
The servers si(d) are supposed to initiate the forwarding of these probes along
the according probing paths (Algorithm 4). In round r P t1, . . . , logk nu, all
probe messages that remain to be active are currently in a butterfly node v
at level logk n ´ r. Node v checks the following conditions (Algorithm 5,
lines 5–9):

• If the number of probe(d, i) messages received at the beginning of round
r with different (d, i) pairs is more than αc (for a constant α ą 2(1´ ε)/γ,
for instance α = 9), then v is called congested.

• If dd(BF (v)) ą logk n´ r, then v is called crashed.

If v is congested or crashed, then v deactivates all probes it received in round
r and informs their origins about the level in which that happened, i.e., the
level of node v, by routing this information downwards the probing path.
Otherwise, v distinguishes between the following two cases:

• If logk n ´ r ą 0, i.e., v is not at level 0, then v first combines, for those
pairs (d, i) with multiple probes, all of these probes into a single probe
and declares itself as the new origin of that probe (Algorithm 5, lines 1–4).
Then, v forwards all combined probes to the next node of their probing
paths on level logk n´ r ´ 1 (Algorithm 5, lines 10–13).

• If logk n´ r = 0, i.e., the probes have reached their destination at level 0
in the butterfly, then v delivers the requested data pieces of its probes
to their origins (by using splitting if needed) which then can decode
the data item using Reed-Solomon coding. These probes are successful
(Algorithm 5, lines 14–19).

The splitting of the messages works as follows: Let u be a node that is the
origin of a probe (d, i), but not the initial origin of that probe. Whenever u
receives a message concerning the probe (d, i), u forwards the message to all
nodes it has previously (during the splitting process) stored as former origins
of probe (d, i). By this, within O(logk n) communication rounds all servers get
informed about which of their c probes were successful or got deactivated at a
level.

If a server s that is responsible for a lookup request for d receives at least c/4
requested data pieces, it can recover d from these pieces (Algorithm 3, lines 6–7).
If s receives a dataNotFound(d, i) message, s answers with NULL and is done
(Algorithm 3, lines 8–9). Note that for the decision a single dataNotFound(d, i)
message suffices since this type of message is only sent if a request for a piece
of a requested data item reaches an intact node u at level 0 that does not hold
the requested piece (but would have to hold it if d would exist in the system).

39

Chapter 3 Basic IRIS

In both of these cases the request for d does not need to be handled in the
Decoding Stage any more.

Otherwise, s declares the request for d to belong to level ` (Algorithm 3,
lines 10–12), which is defined as follows.

Definition 3.17 (Belong to). A request for a data item d is said to belong to level
` P t1, . . . , logk nu if ` is the smallest level that contains at least c/2 active (d, i)
probes, i.e., (d, i) probes that were not deactivated at level `1 ě `.

Note that if a request for d belongs to level ` P t1, . . . , logk nu, then more
than c/2 probes were deactivated at levels `1 ě `´ 1.

Regarding the congestion, notice that each node always processes at most
kαcmessages. This is due to the fact that each node uses an internal congestion
bound of αc and therefore never forwards more than αc messages upwards
the butterfly and, hence, each node never receives more than kαc messages.
Since the Probing Stage basically consists of a message forwarding bottom-up
and top-down the k-ary butterfly, the following lemma follows.

Lemma 3.18. The Probing Stage of Basic IRIS takes at most O(logk n) communica-
tion rounds with at most O(log2 n) congestion at every server in each round.

Algorithms In the following we provide algorithms in pseudocode that de-
scribe the lookup protocol. For that purpose, we divide the view onto the algo-
rithms into three classes of servers depending on the role that the server/node
performing the algorithm has: the servers that receive a lookup request and
initiate all further actions (Algorithm 3); the servers that initially receive probes
and are supposed to forward those through the k-ary butterfly (Algorithm 4);
and, finally, the servers that are in their emulation role of a butterfly node v
(Algorithm 5).

In Algorithms 3, 4, and 5 we use the notation myVarname(probe(d, i)) in or-
der to describe variables stored at specific nodes and we use probe(d, i).varname
in order to describe tags assigned to and stored in a probe.

3.3.3 Decoding Stage
In the Probing Stage, each request has either been served or it has been declared
to belong to a level ` P t1, . . . , logk nu. In the Decoding Stage, the latter requests
will be served by encoding appropriate subbutterflies. Again, we start with
a short overview of this stage followed by a detailed description and the
algorithms in pseudocode.

40

3.3 Lookup Protocol

Algorithm 3 BasicIRISProbing(s) On arrival of lookup request for data item d
or answer at s
On arrival of lookup request for data item d:
1: Choose c intact servers s1(d), . . . , sc(d) P V uniformly and independently

ë at random.
2: for all i P t1, . . . , cu do
3: probe(d, i).state Ð activated
4: probe(d, i).origin Ð tsu
5: Send probe(d, i) message to si(d).

On arrival of answers from all s1(d), . . . , sc(d):
6: if received at least c/4 data pieces from s1(d), . . . , sc(d) then
7: Recover d using received pieces and answer request.
8: else if received dataNotFound(d, i) message then
9: return NULL

10: else
11: ` Ð arg mint` P t1, . . . , logk nu |ě c/2 probes were active at level `u
12: Declare the request for d to belong to level `.

Algorithm 4 BasicIRISProbing(si(d)) On arrival of probes or answers at si(d)
On arrival of probe(d, i) message from server s:
1: Ź Initiate forwarding through k-ary butterfly from level logk n up to level 0
2: u Ð butterfly node on level logk n emulated by si(d)
3: w Ð butterfly node on level 0 emulated by the server that is supposed

ë to hold di
4: probe(d, i).origin Ð u
5: Send probe(d, i) message to the node on level logk n´ 1 on the

ë path from u to w in the k-ary butterfly.

On arrival of any answer:
6: Forward answer to server s.

41

Chapter 3 Basic IRIS

Algorithm 5 BasicIRISProbing(u = (x, `)) On arrival of probes at u stored in
Q

Ź Combine probes
1: Q1 Ð H

2: for all probe(d1, i1), . . . , probe(dx, ix) P Q, s.t. d1 = . . . = dx, i1 = . . . = ix
do

3: Q1 := Q1 Y tprobe(d1, i1)u
4: myOrig(probe(d1, i1)) Ð tprobe(d1, i1).origin, . . . , probe(dx, ix).originu

Ź Check whether to deactivate probes and, if necessary, do so
5: if |Q1| ą αc (u congested) or dd(BF (u)) ą ` (u crashed) then
6: for all probe(d, i) P Q1 do
7: probe(d, i).state := deactivated
8: for all v P myOrig(probe(d, i)) do
9: Route deac(d, i, `) through butterfly towards v.

Ź Forward probes
10: if ` ą 0 then
11: for all probe(d, i) P Q1 do
12: probe(d, i).origin Ð u
13: Forward probe(d, i) message to the next node on level `´ 1 on

ë the path to their destination on level 0.

Ź Probe reached destination at level 0
14: if ` = 0 then
15: for all probe(d, i) P Q1 do
16: if data piece di exists at the server that emulates node u then
17: Forward probeSuccessful(di) to all v P myOrig(probe(d, i)).
18: else
19: Forward dataNotFound(d, i) to all v P myOrig(probe(d, i)).

42

3.3 Lookup Protocol

Overview The Decoding Stage proceeds in logk n phases. Each phase ` P

t1, . . . , logk nu is dedicated to the handling of all requests belonging to level
`. That is, for each request for a data item d belonging to level ` we first
determine whether enough subbutterflies, which contain those di’s that have
not been deactivated at a level `1 ě `, can be decoded without causing a too
high congestion at any node. This is done by a broadcast in the according
subbutterflies. If this is possible, these subbutterflies will be decoded such that
the server responsible for the request for d receives sufficiently many pieces of
d and it can recover d using Reed-Solomon codes. Otherwise, the request for
d is said to belong to level `+ 1, implying that it will be handled in the next
phase of the Decoding Stage.

Details Each single phase ` P t1, . . . , logk nu, beginning with ` = 1, is dedi-
cated to the decoding of the requests belonging to level ` and is divided into
O(logk n) rounds. In the first round of phase ` each server s that is responsible
for a lookup request for some data item d that belongs to level ` chooses a
set A(d) Ď t1, . . . , cu of c/2 indices of probes that were active at level ` in
the Probing Stage (Algorithm 6, lines 1–2). Each such server s then sends
for each i P A(d) a decode(start, d, i) message to si(d) (Algorithm 6, line 4).
This causes each such si(d) to initiate the forwarding of a decode(fwd, d, i)
message from the node on level logk n of the probing path of di to the node
on level ` of the probing path of di (Algorithm 7, lines 1–3). Note that by
forwarding the message to that node on level logk n of the probing path of
di, si(d) initially forwards the message to itself, but this does not cause any
problems. For this purpose each node on level `1 ą ` on the probing path of
di that received a decode(fwd, d, i) message simply forwards this message to
the next node on the probing path on level `1 ´ 1 (Algorithm 8, lines 2–4). As
soon as a decode(fwd, d, i) message reaches the node at level ` of the probing
path of di, i.e., node u(`)s,i (d), it initiates the broadcast of that message in the
butterfly UT (u(`)s,i (d)) (Algorithm 8, lines 5–7). See Figure 3.8 for a visualization
of that broadcast. The goal of the broadcast in UT (u) is to determine whether
the subbutterfly BF (u) is congested or not, where a congested subbutterfly is
defined as follows:

Definition 3.19 (Congested Subbutterfly). A subbutterfly BF (v) of a node v is
called congested if at least one node fromBF (v) receives more than βck decode(¨, ¨, ¨)
messages for different (d, i) pairs for a constant β ą 3/2.

In order to determine whether any BF (u) is congested, each node u that
received a decode(fwd, ¨, ¨) message during the broadcast is declared as con-
gested if any of the following conditions is satisfied (Algorithm 8, lines 8–12)

43

Chapter 3 Basic IRIS

1. u received more than βck decode(¨, ¨, ¨) messages for different (d, i) pairs
for an arbitrary but fixed constant β ą 3/2.

2. u received at the beginning of this round a decode(cong, ¨, ¨) message.

As long as the broadcast has not reached a node at level 0, each node u
that received a decode(¨, d, i) message simply forwards a decode(fwd, d, i)
message, in case it is not congested or forwards a decode(cong, d, i) message
otherwise (Algorithm 8, lines 14–15). Once the broadcast reaches a node
at level 0 (Algorithm 8, lines 16–19), each node that received at least one
decode(cong, d, i) message routes a decodeFinish(cong, d, i) message to the
origins of the (d, i) pair downwards the butterfly. All nodes u at level 0 that
did not receive a decode(cong, ¨, ¨) message, but instead received at least one
decode(fwd, d, i) message, broadcast the information to start the decoding of
BF (u

(`)
s,i (d)) to its children in UT (u), i.e., downwards the butterfly by sending

a decodeFinish(startDec, d, i) message to its children (Algorithm 8, line 19).
Recall that BF (u(`)s,i (d)) denotes the unique `-dimensional subbutterfly that
contains the node u(`)s,i (d), which is the node at level ` on the probing path
of di with origin si(d). At the end of the decoding of BF (u(`)s,i (d)) all origins
u at level ` of BF (u(`)s,i (d)) received a message decodeFinish(data, d, i) for all
pairs (d, i) for which they previously received a decodeFinish(startDec, d, i)
message. If the data piece di exists in the system it holds data = di. Otherwise
it holds data = NULL (Algorithm 9, line 5). As soon as the nodes at level ` have
received the answer from the decoding or a decodeFinish(xtypey, ¨, ¨) message
with type P tcong, fwdu instead, the nodes forward this answer back to the
origins of the (d, i) pairs (Algorithm 9, lines 6–9). Finally, after in totalO(logn)
rounds, these answers have reached their destinations s1(d), . . . , si(d) and each
si(d) now forwards its answer back to the origin s of the request (Algorithm 9,
line 11). If s received a decode(NULL, d, i) message, the requested data item
d does not exist in the system and s returns NULL (Algorithm 6, lines 5–6).
In case s receives at least c/4 data pieces of the requested data item d, it can
recover d using Reed-Solomon codes. Otherwise, s declares the request for d
to belong to level `+1 (Algorithm 6, lines 8–9) implying that it will be handled
again in the next phase of the Decoding Stage.

Using the symmetry of the k-ary butterfly and the way messages are for-
warded, one can show the following lemma.

Lemma 3.20. Let u be a butterfly node at level ` that received a decode(fwd, ¨, ¨)
message in phase `. IfBF (u) is congested, then each node on level 0 ofBF (u) receives
a decode(cong, ¨, ¨) message after ` rounds.

Proof. Let u be a butterfly node at level ` that received a decode request in
phase ` and letBF (u) be congested. By Definition 3.19, this implies that a node

44

3.3 Lookup Protocol

Level di
.

.

u
(`)
s,i(d)

u
(`′)
s,i

(d)

0

`′

`

logk n
si(d)

UT (u
(`)
s,i

(d))

Figure 3.8: Visualization of the broadcast in phase ` of the Decoding Stage.

v from BF (u) at level `1 ă ` receives more than βck decode(¨, ¨, ¨) messages
for different (d, i) pairs. Notice that v cannot be at level ` since otherwise the
subbutterfly BF (u) would not have been chosen to be decoded.

First, assume v is contained in the upper tree UT (u) of u. Since v is in the
same k-block with the other nodes on level `1 in UT (u), these nodes receive
the same messages that v receives. Hence, all nodes on level `1 are congested
and forward this information to all nodes on a level `2 ă `1 in UT (u), implying
that all nodes on level 0 of UT (u) receive a decode(cong, ¨, ¨) message after `
rounds in total.

Next, assume v is not contained in the upper tree UT (u) of u. Then, there
exists a node w on level `, such that v is contained in UT (w). From v P BF (u)
and the definition of k-ary butterflies we can deduce BF (u) = BF (w). Anal-
ogously to the previous case, we have that all nodes on level `1 of UT (w) are
congested and a decode(cong, ¨, ¨) message is forwarded to all nodes on level
0 of BF (w) = BF (u).

Regarding the efficiency we get the following lemma.

Lemma 3.21. The Decoding Stage of the Lookup Protocol of Basic IRIS takes at most
O(log2

k n) communication rounds with at most O(log3 n) congestion at every server
in each round.

Proof. Each phase of the Decoding Stage consists of a bottom-up traversal
through the butterfly, followed by congestion checks and possibly decoding
and returning of the answers to the servers si(d). Each of these procedures
requiresO(logk n) communication rounds. Since there are logk n phases in the
Decoding Stage, O(log2

k n) communication rounds are required. Analogously
to the Probing Stage, the nodes use an internal congestion bound of βck and

45

Chapter 3 Basic IRIS

receive in each round messages from at most k butterfly nodes. Hence, each
server has a congestion of O(log3 n) in each round.

Algorithms Analogously to the Probing Stage, in the following we provide
algorithms in pseudocode that describe the Decoding Stage of the Lookup
Protocol.

Algorithm 6 BasicIRISDecoding(s) First and last round of phase `, performed
by server s with a request for d belonging to level `
At the beginning of phase ` of the Decoding Stage:
1: A(d) Ð ti P t1, . . . , cu | probe(d, i) was active at level ` in the Probing St.u

2: If necessary, reduce A(d) to c/2 elements by removing arbitrary indices
ë from it.

3: for all i P A(d) do
4: Send decode(start, d, i) message to si(d).

On arrival of decodeFinish(¨, d, ¨) messages (saved in Q) from all s1(d), . . . , sc(d):
5: if decodeFinish(NULL, d, i) P Q then
6: return NULL
7: S(d) Ð tdi | D decodeFinish(di, d, i) P Q with di ‰ NULLu

8: if |S(d)| ě c/4 then
9: Recover d using pieces in S(d) and Reed-Solomon codes.

10: else
11: Declare the request for d to belong to level `+ 1.

3.3.4 Differences and Similarities to Previous Works
The structure of the Probing Stage and the Decoding Stage of Basic IRIS resem-
ble the one of the Contraction Stage and the Expansion Stage of the lookup
protocol in [AS07; BSS09]. In order to make differences and similarities clear,
we first need to shortly summarize some properties of the storage strategy in
[AS07; BSS09]. Just as in Basic IRIS in [AS07; BSS09] a level based approach is
used: i.e., for each server logk n+1 virtual nodes are introduced and arranged
into levels such that at each level from level 0 to level logk n each server emu-
lates exactly one virtual node. In order to store a data item d into the system
presented in [AS07; BSS09], first, as in Basic IRIS, c = Θ(logm) pieces of d are
created via Reed-Solomon codes which are mapped to the nodes at level 0
using c hash functions h1, . . . , hc. Then, roughly speaking, for each piece di of
d a specific randomly chosen path through the virtual nodes from level logk n

46

3.3 Lookup Protocol

Algorithm 7 BasicIRISDecoding(si(d)) performed by server si(d) in phase `
On arrival of decode(start, ¨, ¨) message from server s at the beginning of round 2
ë of phase `:
1: for all decode(start, d, i) messages received from a server s do
2: myOrig(d, i) Ð myOrig(d, i) Y tsu Ź myOrig(d, i) initially empty
3: Forward decode(fwd, d, i) message to node u on level logk n

ë of the probing path of di.

On arrival of decodeFinish(¨, ¨, ¨) messages saved in Q:
4: for all decodeFinish(xtypey, d, i) P Q1: do
5: for all servers s P myOrig(d, i) do
6: Forward decodeFinish(xtypey, d, i) to s.

to the node responsible for hi(d) at level 0 is chosen and at each node of that
path a copy of di is stored. Note that in contrast to the storage strategy in [AS07;
BSS09], in Basic IRIS the virtual nodes need to be connected with each other in
order to form appropriate complete k-bipartite subgraphs. Furthermore, in
Basic IRIS, the data pieces are not solely stored at the different levels. Instead
they are only stored at level 0 and then they completely encoded with each
other, such that the encoding information is spread over all levels and servers.

The basic idea of the Contraction Stage of the lookup protocol in [AS07;
BSS09] is similar to the Probing Stage of Basic IRIS. In the Contraction Stage
in [AS07; BSS09], requests for the c pieces of d are forwarded along O(logn)
randomly chosen paths through the logk n+ 1 levels, beginning at level logk n
and ending at the nodes at level 0 that are responsible for h1(d), . . . , hc(d).
Similarly to Basic IRIS, in [AS07; BSS09] at each level each node performs a
congestion check and an “attacked” check. For this purpose in [AS07; BSS09]
each node v at each level contactsO(logn) nodes in its “surrounding” in order
to determine their current congestion and whether they are attacked. If too
many nodes are congested or attacked, the request for the considered piece
is deactivated. In contrast to this in Basic IRIS a node at level ` determines
whether it is congested based on the messages it has previously received from
nodes at level `+ 1. The “attacked” check in Basic IRIS is more involved than
the one in [AS07; BSS09]. That is, in Basic IRIS we not only determine the
number of attacked servers in the current surrounding, but information about
that in the complete `-dimensional subbutterfly BF (v). This is done via the
decoding depth we already computed in the Preprocessing Stage for each
subbutterfly BF (v).

The structure of the Decoding Stage of Basic IRIS resembles the one of the
Expansion Stage of the lookup protocol in [AS07; BSS09], in terms that in

47

Chapter 3 Basic IRIS

Algorithm 8 BasicIRISDecoding(u = (`1, x)) performed by node u at level `1

in round ě 3 of phase ` on arrival of decode(¨, ¨, ¨) messages saved in Q
1: Combine messages in Q to set Q1 and set myOrig and origins of messages

ë in Q1 just as in lines 1–4 of Algorithm 5.

Ź Consider nodes at level ` ď `1

2: if ` ă `1 then Ź Level ` not reached ñ route mess. upwards the probing path
3: Forw. decode(fwd, d, i) to node on level `1 ´ 1 of probing path of di.
4: return
5: else if ` = `1 then Ź Level ` reached ñ initiate broadcast in UT (vi(`))
6: Broadcast decode(fwd, d, i) message to children of u in UT (u).
7: return

Ź Determine whether u is congested
8: if |Q1| ą βck or decode(cong, ¨, ¨) P Q1 then
9: u.state Ð congested

10: msgType Ð cong
11: else
12: msgType Ð fwd

Ź Forward received messages
13: for all decode(¨, d, i) P Q1 do
14: if `1 ą 0 then

Ź Cong. check of sub-BF not finished ñ forward mess. upwards the BF
15: Broadcast decode(msgType, d, i) to children of u in UT (u).
16: else if msgType = cong then

Ź Cong. check of sub-BF finished ñ forward results downwards the BF
17: Route decodeFinish(cong, d, i) to origins of (d, i) pair.
18: else if msgType = fwd then Ź Destination reached

Ź Broadcast info to start decoding BF (u(`)s,i (d)) downwards the BF
19: Broadcast decodeFinish(startDec, d, i) to children of u in LT (u)

ë (thereby combine multiple messages for the same (d, i) pair
ë to one message).

48

3.3 Lookup Protocol

Algorithm 9 BasicIRISDecoding(u = (`1, x)) performed by node u at level `1

in round ě 3 of phase ` on arrival of decodeFinish(¨, ¨, ¨) messages saved in Q
On arrival of decodeFinish(startDec, ¨, ¨) messages saved in Q:
1: if `1 ă ` then
2: Broadcast decodeFinish(startDec, d, i) to all children of u in LT (u).
3: else if `1 = ` then
4: Start decoding of BF (u) via bottom-up approach.
5: At the end of the decoding all origins at level ` of BF (u) receive

ë message decodeFinish(data, d, i) for all pairs (d, i) at node u, with
ë data = di if di exists in the system and data = NULL otherwise.

On arrival of first decodeFinish(data, d, i) messages:
6: Q1: combined set of all decodeFinish(¨, ¨, ¨) messages received in phase `
7: for all decodeFinish(xtypey, d, i) P Q1 do
8: if `1 ă logk n then Ź Downwards forw. along probing paths not finished
9: Forward decodeFinish(xtypey, d, i) to all v P myOrig(d, i).

10: else Ź Messages arrived at level logk n and u is emulated by a server si(d)
11: Forward messages to origins s

each phase ` P t1, . . . , logk nu the requests that have been assigned to level
` are handled. However, the single phases of the Decoding Stage in Basic
IRIS are more involved. In phase ` of the Expansion Stage in [AS07; BSS09]
each node at level ` with a request for a data piece di broadcasts that requests
in its current “surrounding” in order to retrieve a copy of di. In contrast to
this, in phase ` of the Decoding Stage of Basic IRIS, each node v at level `
with a request for a data piece di initiates the decoding of the complete `-
dimensional subbutterfly BF (v). For that purpose, it additionally previously
needs to determine whetherBF (v) can be decoded without any node becoming
congested which is done via a broadcast in BF (v).

49

Chapter 3 Basic IRIS

3.4 Correctness Analysis of the Lookup Protocol
In this section we show that at the end of the lookup protocol each lookup
request has been served correctly. The analysis of that is divided into two
parts: The analysis of the Probing Stage (Section 3.4.2) and the analysis of the
Decoding Stage (Section 3.4.3). Similar to the analysis of the lookup protocol
in [AS07; BSS09] we show that for both of these stages the number of requests
belonging to a level exponentially decreases from level 1 to level logk n.

For this purpose, we make use of hash functions with certain expansion
properties, similar to [AS07; BSS09], which we present in Section 3.4.1. Prior
to the work of [AS07; BSS09], these expansion properties have already been
introduced and used in [AS06].

3.4.1 Robust Hash Functions
Recall that U is the key universe and m = |U |. For any subbutterfly B let
V (B) be the set of servers emulating the nodes of B. Let H be the collection of
hash functions h1, . . . , hc. With this, a bundle and an expander are defined as
follows:

Definition 3.22 (Bundle). LetS Ă U be a set of keys and k P N, b P Q. A set of tuples
F Ď S ˆ t1, . . . , cu is called a b-bundle of S, if every d P S has exactly b many pairs
(d, i) inF . Givenh1, . . . , hc and a level ` P t0, . . . , logk nu, letΓF,`(S) be the union of
the servers involved in these pairs at level `, i.e., ΓF,`(S) =

Ť

(d,i)PF V (BF (u
(`)
s,i (d))).

Definition 3.23 (Expander). Given a 0 ă σ ă 1, we call H a (b, σ)-expander if
for any ` ď logk n, any S Ď U with |S| ď σn/k`, and any b-bundle F of S, it holds
that |ΓF,`(S)| ě k`|S|.

Later on in the analysis we use b-bundles in order to indicate for a set of
data items S with a certain property (e. g., belonging to a crashed or congested
request) a set of b ¨ |S| `-dimensional subbutterflies BF (u(`)s,i (d)) that witness
that property. Hence, in our analysis ΓF,`(S) is defined as the set of servers
that emulate a node in any of these b ¨ |S| witnessing butterflies.

In contrast to the consideration of these `-dimensional subbutterflies
BF (u

(`)
s,i (d)), in the analysis of [AS07; BSS09] sets of points from the [0, 1)

interval are considered that are at distance ` from hi(d) for an appropriately
chosen distance measure.

The following lemma is a slightly generalized version of Lemma 1 in [AS07]
and Claim 2.13 in [BSS09].

Lemma 3.24. Let ρ, σ ą 0 with 0 ă σ ă 1, ρσ ď 1/2 and c ě 2ρ logm. If the hash
functions H = th1, . . . , hcu are chosen uniformly and independently at random, then
H is a (c/ρ, σ)-expander, w.h.p.

50

3.4 Correctness Analysis of the Lookup Protocol

Although Scheideler et al. proved a similar version of Lemma 3.24 in [AS07;
BSS09], for the sake of completeness we present an adapted proof here.

Proof. Suppose that for randomly chosen hash functions h1, . . . , hc, H is not
a (c/ρ, σ)-expander. Then, there exists an i ď logk n, a set S Ď U with |S| ď

σn/ki, and a c/ρ-bundle F of S with |ΓF,i(S)| ă ki|S|. The probability ps,i that
such a set S of size s exists is at most(

m

s

)(
cs

cs/ρ

)(
n/ki

s

)(
s

n/ki

)cs/ρ
for the following reasons: There are

(
m
s

)
ways of choosing a subset S Ă U .

Furthermore, there are
(
cs
cs/ρ

)
ways of choosing cs/ρ pairs (d, j) for F and at

most
(
n/ki

s

)
ways of choosing a set W of s butterflies of dimension i witnessing

a bad expansion of the pairs in F . The fraction of collections H for which the
selected pairs (d, j) indeed have the property that BF (u(i)s,j(d)) P W is equal to
(s
n/ki

)cs/ρ, because the hash functions h1, . . . , hc are chosen independently and
uniformly at random. Next, we show ps,i ă 1/ms, implying that by summing
over all possible values of s and i we obtain a probability of having a “bad”
c/ρ-bundle of less than 1 for m sufficiently large, which proves the lemma.

Since for all a, b P N with b ă a it holds
(
a
b

)
ď ((ea)/b)b, using the conditions

on c, ρ and σ in the lemma and m sufficiently large it holds:

ps,i ď

(em
s

)s
(ρe)cs/ρ

(en
ski

)s(ski
n

)cs/ρ
=
(em
s

)s
(ρe)cs/ρes

(
ski

n

)´s(
ski

n

)cs/ρ
=

em
s

¨

(
ρe1+ρ/c ¨

(
ski

n

)1´ρ/c
)c/ρs

(˚)
ď

[
m ¨

(
ρe1+ρ/c ¨ σ1´ρ/c

)c/ρ]s
=
[
m ¨ (ρσe)c/ρ

]s
(˚˚)
ď

[
m ¨

(
1

2

)c/ρ]s (˚˚˚)
ď

1

ms

In (˚) we used s ě e and σ ě ski/n, in (˚˚) we used ρσ ď 1/2, in (˚ ˚ ˚) we
used c ě 2ρ logm.

We remark that the hash functions have to form a (c/4, σ)-expander for some
constant σ for our lookup protocol to work, but they do not have to be chosen

51

Chapter 3 Basic IRIS

at random. The proof above just illustrates that if they are chosen at random,
they will form a (c/4, σ)-expander, w.h.p.

In our analysis we will use the before mentioned expansion properties in
the following form, which is an implication of Lemma 3.24.

Corollary 3.25. Let S be a set of data items and let F be a (c/ρ)-bundle of S with
ρ ą 0. Then, for any ` P t0, . . . , logk n ´ 1u and 0 ă σ ă 10 with ρσ ď 1/2 it
holds: If |ΓF,`(S)| ă σn, then it holds |S| ă σn/k`.

Proof. From Lemma 3.24 we can conclude that for any (c/ρ)-bundle F 1 of a
set of data items S1 and any ` P t0, . . . , logk n´ 1u with |S1| ď σn/k` it holds
|ΓF 1,`(S

1)| ě k`|S1|. By the prerequisite we know |ΓF,`(S)| ă σn. For the sake
of contradiction assume |S| ě σn/k`. If S = σn/k`, then by Lemma 3.24,
we get |ΓF,`(S ě k`|S| which contradicts the preliminary |ΓF,`(S)| ă k`|S|.
Now assume S ą σn/k`. We know that for a set S1 with maximum value
|S1| = σn/k`, it holds |ΓF,`(S

1)| ě k`|S1| = σn/k`. Furthermore, for |S| ą |S1|

with S1 Ă S it holds |ΓF,`(S)| ě |ΓF,`(S
1)|. Hence, when defining S1 Ă S to be

any subset of S that consists of σn/k` elements, we get |ΓF,`(S)| ě |ΓF,`(S
1)| ě

k`|S| which again contradicts the preliminary |ΓF,`(S)| ă k`|S|.

3.4.2 Analysis of the Probing Stage
In the following we show that in the Probing Stage not “too many” requests
are declared to belong to the same level. To be more precise, we show that
if the adversary can crash at most γn1/ log log n servers, then the number of
requests belonging to a level exponentially decreases such that there is at
most a logarithmic number of requests belonging to the last level, level logk n.
Lemma 3.26 formalizes this.

Lemma 3.26. Assume an insider adversary crashes at most γn1/ log log n servers with
γ = 1/9. Then, at the end of the Probing Stage of the Lookup Protocol of Basic IRIS,
the number of requests belonging to level ` P t1, . . . , logk nu is at most 2γn/k`´1.

Lemma 3.26 can be shown by adapting the analysis in [AS07] (see Lemmas
4 and 5). Before we give a proof, we point out the main differences to the
analysis in [AS07] and introduce some required definitions and claims.

An important new ingredient in the analysis of Lemma 3.26 compared to
[AS07] is the concept of witness trees which are defined as follows.

Definition 3.27 (Witness Tree). A witness tree of a butterfly node u at level ` P

t0, . . . , logk nu is defined to be a complete binary subtree of the lower tree LT (u) of
depth logk n´ ` that only consists of nodes emulated by crashed servers.

As the following lemma states, there is a direct relation between the decoding
depth and witness trees.

52

3.4 Correctness Analysis of the Lookup Protocol

Lemma 3.28. Let u be a butterfly node at level ` P t0, . . . , logk nu. The lower tree
LT (u) contains a witness tree if and only if dd(u) ą logk n´ `.

Proof. Let u be a butterfly node at level ` P t0, . . . , logk nu. First, assume
dd(u) ą logk n ´ `. By induction on ` = logk n, . . . , 0 we show that LT (u)
contains a witness tree.

For the induction base let ` = logk n. Hence, u is at the last level of the k-ary
butterfly and it holds dd(u) ą 0. By Definition 3.13, we know that u is crashed,
which implies the claim.

Now, let ` ă logk n ´ 1 and assume the claim holds for all `1 ą `. Since
dd(u) ą logk n ´ ` ą 1, by Definition 3.13 there exist two nodes v, w at level
`+1 in LT (u) with dd(v) ą logk n´ `´ 1 and dd(w) ą logk n´ `´ 1. By the
induction hypothesis there exist witness trees Tv and Tw for v and w. Since Tv
and Tw are subtrees of LT (u), the tree T induced by connecting u to the roots
of Tv and Tw is a complete binary subtree of LT (u) of depth logk n´ `, i.e., T
is a witness tree of u.

Next, assume LT (u) contains a witness tree. Analogously to the first part,
by induction on ` = logk n, . . . , 0 we show dd(u) ą logk n ´ `. Note that for
the depth depth(LT (u)) it holds depth(LT (u)) = logk n´ `.

For the induction base let ` = logk n. In this case depth(LT (u)) = 0, i.e.,
LT (u) consists of the single node u at level logk n which is crashed. With
Definition 3.13 we get dd(u) = 1 ą logk n´ ` = 0.

Now, let ` ă logk n and assume the claim holds for all `1 ą `. Let Tu be a
witness tree of LT (u). Since depth(LT (u)) = depth(Tu) ą logk n´ ` ą 0, node
u has two children v, w at level `+ 1 in Tu. Since Tu is a witness tree, the trees
Tv and Tw rooted at v, w that are subtrees of Tu are witness trees of v and w.
By the induction hypothesis this implies dd(v) ą logk n´ (`´ 1) and dd(v) ą

logk n´ (`´1). With Definition 3.13 we get dd(u) ě maxtdd(v),dd(u)u+1 ą

logk n´ `.

Recall that by Lemma 3.32 the data stored at any node uwith dd(u) ď logk n
can be recovered correctly. Together with Lemma 3.28 this implies that the
data stored at any node u that does not have a witness tree can be recovered
correctly. Hence, if there does not exist any witness tree at a butterfly node at
level 0, then the complete data stored in the k-ary butterfly can be recovered.

Notice that due to the structure of theBF (k, d), the leaves in any witness tree
are distinct. Since a complete binary tree of depth logk n has 2logk n leaves, the
k-ary butterfly cannot contain a witness tree of depth logk n if the adversary
crashes less than 2logk n = n1/ log log n servers. In particular, if the adversary
crashes less than n1/ log log n servers, then the complete k-ary butterfly can be
recovered.

53

Chapter 3 Basic IRIS

Next, we introduce the definition of crashed and congested butterflies and
requests. Note that in Definition 3.19 we already provided a definition of a
congested subbutterfly with a different bound than the one used in the follow-
ing definition. In the following of this section we will refer to Definition 3.29
whenever we denote a subbutterfly or a request to be congested.

Definition 3.29 (Crashed/Congested Subbutterfly/Request). Let v be a node at
level ` of the k-ary butterfly. Then, the `-dimensional k-ary subbutterfly BF (v) is
called

• crashed if at least 2` servers from BF (v) are crashed,

• congested (w.r.t. the probing) if the servers from BF (v) receive in total more
than k`αc/2 probes for different (d, i) pairs in round `.

A request for a data item d is called

• crashed at level ` if there are r = c/4 crashed subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě ` and i1, . . . , ir being pairwise
different,

• congested (w.r.t. the probing) at level ` if there are r = c/4 congested sub-
butterflies BF (u(`1)s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě ` and i1, . . . , ir being
pairwise different.

We can now give an overview of the proof of Lemma 3.26. The idea of this
proof is as follows: First, we show that whenever a (d, i) probe is deactivated by
a node v on a level `, then BF (v) is crashed or congested, w.h.p. (Lemma 3.30).
Moreover, if a request for a data item d is declared to belong to level `, then at
least c/2 of its (d, i) probes have either been deactivated because of crashed
subbutterflies or because of congested subbutterflies at level `´ 1 or higher.
Therefore, many requests belonging to level ` imply many crashed or congested
subbutterflies at level `´ 1. But since only a limited fraction of them can be
crashed or congested, only a limited fraction of the requests can belong to level
`.

Lemma 3.30. Whenever a (d, i) pair is deactivated on a level ` ě 0 by a node v, then
BF (v) is crashed or congested, w.h.p.

Proof. If (d, i) was deactivated due to dd(BF (v)) ą ` with v = u
(`)
s,i (d), then by

Lemma 3.28, BF (v) contains at least 2` crashed servers, i.e., by Definition 3.29
BF (v) is crashed.
Now assume (d, i) was deactivated due to a too high congestion at v. Then,
according to the protocol, v received in round ` probe messages for more than

54

3.4 Correctness Analysis of the Lookup Protocol

αc different (d, i) pairs. Since the starting points for the lookup requests are
chosen uniformly at random, it holds E [|M`(w)|] = E [|M`(w

1)|] for all w,w1

at level ` inBF (v) with M`(w) being the set of (d, i) pairs with probes received
by node w. Thus, Chernoff bounds (Lemma 2.1) can be applied, implying

Pr [|M`(w)| ě (1 + δ)E [|M`(w)|]] ď e´ mintδ,δ2uE[|M`(w)|]/3

for all δ ě 0 and all w P BF (v). Setting δ = 1/2 gives E [|M`(w)|] ě 2αc/3 for
all w P BF (v), w.h.p. Hence, the expected number of (d, i) pairs for which a
probe has been sent to BF (v) is at least 2αk`c/3, w.h.p. Furthermore, with
M being the number of (d, i) pairs for which a probe has been sent to BF (v),
Chernoff bounds (Lemma 2.1) imply

Pr

[
M ď

2(1 ´ δ)

3
αck`

]
ď e´δ2αck`/3 for all δ P [0, 1].

With δ = 1/4 we get that there are more than αck`/2 (d, i) pairs for which a
probe has been sent to BF (v), w.h.p., i.e., BF (v) is congested.

Note that a similar version of Lemma 3.30 can also be found in [AS07; BSS09]
(Claim 2 in [AS07], Claim 2.14 in [BSS09]).

Lemma 3.30 implies the following corollary that allows us to prove Lemma 3.26
by upper bounding the number of requests that are crashed or congested at
level `´ 1.

Corollary 3.31. If a request belongs to a level ` P t1, . . . , logk nu, then this request
is crashed or congested at level `´ 1.

Proof. If a request for d belongs to level `, then by Definition 3.17, we know that
more than c/2 probes for (d, i) pairs have been deactivated at a level `1 ě `´ 1.
Lemma 3.30 implies that more than c/2 subbutterflies are congested or crashed
at level `1 ě `´ 1. For the sake of contradiction assume that the request for d is
neither crashed nor congested at level `´ 1. By Definition 3.29, this means that
there are only less than c/4 subbutterflies at level `1 ě `´ 1 that are congested
and only less than c/4 subbutterflies at level `1 ě `´ 1 that are crashed. All in
all, this gives that there are less than c/2 subbutterflies at level `1 ě `´ 1 that
are congested or crashed, which yields a contradiction.

With these tools we are now ready to prove Lemma 3.26.

Proof of Lemma 3.26: First notice that by Lemma 3.30 it holds that if a request
belongs to level `, then more than c/2 nodes that received a probe for this
lookup request are congested or crashed at level ` ´ 1. This, together with
Lemma 3.30 implies that if a lookup request for some data item d belongs to

55

Chapter 3 Basic IRIS

level `, then d must be crashed or congested at level `´ 1. For the proof of this
lemma we upper bound the number of crashed requests at level `´ 1 and the
number of congested requests at level ` ´ 1 by γn/k`´1 each. Corollary 3.31
then yields the claim. With Definition 3.29 this means that in total less than
2cγn/(4k`) = cγn/(2k`) subbutterflies at a level `1 ě ` are congested or crashed.
Furthermore, for a request to belong to level ` at least c/2 probes have to be
deactivated at a level `1 ě `. With Lemma 3.30 this implies that at least c/2
subbutterflies are congested or crashed at a level `1 ě `. Hence, the number of
requests belonging to level ` is upper bounded by (cγn/(2k`))/(c/2) = γn/k`.

Upper bound on the number of crashed data items. Let S be a maximum set of
data items for which there are requests that are crashed at level `´ 1. Our goal
is to show that |S| ă γn/k`´1. By Definition 3.29, for each d P S there exist r =
c/4 subbutterflies BF (u(`1)s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `1, . . . , `r ě ` ´ 1 and
i1, . . . , ir being pairwise different. Hence, the set F := S ˆ ti1, . . . , iru is a c/4-
bundle F of S. By Lemma 3.28, each crashed subbutterfly at a level `1 contains
at least 2`1 crashed servers. On the other hand we know that the adversary
crashes at most εn servers with ε ă γ ¨ 2logk n/n. Since each subbutterfly at a
level `1 ě `´ 1 contains k`1 servers, in total we get that the number of servers
covered by all BF (u(`1)s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) is upper bounded by

εn ¨ k`
1

2`1 =
εn

2`1/k`1 ă
γn ¨ 2logk n/n

2logk n/n
= γn.

Since this set of servers is exactly the set ΓF,`´1(S), we get |ΓF,`(S)| ă γn.
Thus, since 4 ¨ γ ď 1/2 Corollary 3.25 can be applied which implies |S| ă

γn/k`´1.
Upper bound on the number of congested data items. Let S be a maximum set

of data items for which there is a request that is congested at level ` ´ 1.
Analogously to the case of crashed requests, we can construct a (c/4)-bundle
F of S. First, we show that for a sufficiently large α there exist less than a
γ-fraction of congested subbutterflies on level `´ 1 for all ` P t1, . . . , logk nu.
By Definition 3.29, a subbutterfly on level `´ 1 is congested, if it receives more
than αck`´1/2 probes for different (d, i) pairs. Since there are at most (1 ´ ε)n
lookup requests in total, at most c(1 ´ ε)n probes arrive at level `´ 1. Thus, at
most c(1´ε)n/(αck`´1/2) = 2(1´ε)n/(αk`´1) subbutterflies can be congested
at level ` ´ 1. Since there are exactly n/k`´1 disjoint subbutterflies at level
`´1, the fraction of congested subbutterflies at level `´1 is upper bounded by
2(1´ε)n/(αk`´1)

n/k`´1 = 2(1 ´ ε)/α. Hence, for α ą 2(1 ´ ε)/γ, at most a γ-fraction of
the subbutterflies on level `´ 1 is congested for all ` P t1 . . . , logk nu. That is,
all of the congested subbutterflies BF (s(li)i (d)) with (d, i) P F together contain

56

3.4 Correctness Analysis of the Lookup Protocol

at most a γ-fraction of the servers on level ` ´ 1. Again, with Corollary 3.25
we can deduce |S| ă γn/k`´1 for γ = 1/9.

3.4.3 Analysis of the Decoding Stage
Analogously to Lemma 3.26, for the Decoding Stage the following lemma
holds:

Lemma 3.32. Assume an insider adversary crashes at most γn1/ log log n servers with
γ = 1/9. Then, at the beginning of each subphase ` P t1, . . . , logk nu of the Decoding
Stage of the Lookup Protocol of Basic IRIS, the number of requests belonging to level `
is at most ϕn/k` with ϕ ď 3γk.

Proof. Analogously to the proof of Lemma 8 in [AS07], we can show the claim
by induction on `. By Lemma 3.26, at most 2γn requests belong to level 1 at
the beginning of phase 1, which is upper bounded by ϕn/k for ϕ ď 3γk. For
the induction step, let ` P t1, . . . , logk n ´ 1u and assume that the induction
hypothesis holds for level `. We show that the number of requests that will
be propagated to level `+ 1 during phase ` is upper bounded by γn/k`. Since
by Lemma 3.26 at most 2γn/k` requests belong to level ` + 1, we get that in
total at most 2γn/k` + γn/k` requests belong to level `+ 1, which is equal to
ϕn/k`+1 for ϕ ď 3γk.

The proof of the induction step is similar to the proof of Lemma 3.26. That
is, we upper bound the number of data items with requests belonging to level
` by constructing an appropriate bundle and applying expansion properties.
With this and Lemma 3.26, we can then derive the claim. In order to determine
the number of data items with requests belonging to level `, we first determine
the number of congested subbutterflies of dimension `. Note that throughout
this proof we use the notion of congested subbutterfly as specified in Defi-
nition 3.19. That is, if the subbutterfly BF (u) of a node u is congested, then
by Definition 3.19 there exists a node in BF (u) that receives more than βck
decode messages for different (d, i) pairs. It holds

βck ą 3/2 ¨ ck =
3γkc

2γ
ě ϕc/(2γ).

Hence, a congested subbutterfly BF (u) of a node u receives more than
ϕc/(2γ) decode messages for different (d, i) pairs. By the induction hypothesis
there are at most ϕn/k` requests belonging to level `. For each of these requests,
the forwarding of c/2 decode messages is initiated at the beginning of phase
`. Hence, in total at most c/2 ¨ ϕn/k` messages arrive at level `, implying
that the number of congested subbutterflies of dimension ` is less than (c/2) ¨

(ϕn/k`)/(ϕc/2γ) = γn/k`.

57

Chapter 3 Basic IRIS

Let S be a maximum set of data items with congested requests at level `.
Similarly to the proof of Lemma 3.26, there exists a c/4-bundle F for S. Since
there are less than γn/k` congested subbutterflies of dimension ` and since each
subbutterfly of dimension ` contains k` nodes, less than γn servers simulate
a node of a congested subbutterfly of dimension `, i.e., |ΓF,`(S)| ă γn. With
Corollary 3.25 it follows |S| ď γn/k`.

Hence, less than Θ(k) data items with lookup requests participate in the last
phase, phase logk n, of the Decoding Stage and therefore each node receives
in this phase decoding requests for less than Θ(k) different data items. Thus,
there cannot be a congested subbutterfly any more. This, together with the
fact that the decoding depth of BF (k, d) is less than logk n when crashing at
most γ ¨ 2logk n = γn1/ log log n nodes with γ ă 1/9, implies that all remaining
data items can be decoded at the end.

58

Chapter

4
Enhanced IRIS

In the following we extend the previously presented system, Basic IRIS, to
Enhanced IRIS which can handle up to a constant fraction of the servers to be
crashed with a redundancy of O(logn).

Just as Basic IRIS, Enhanced IRIS is based on two articles by Eikel and
Scheideler [ES13; ES15]: While the presentation of Enhanced IRIS in [ES13] is
rather limited to

While the article in the proceedings of the 25th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA) [ES13] presents the main
ideas of the construction of the storage strategy of Enhanced IRIS, the article
in the Journal of ACM Transactions on Parallel Computing [ES15] additionally
provides a more detailed description of the lookup protocol of Enhanced IRIS.

Theorem 4.1 summarizes the main properties of Enhanced IRIS.
Theorem 4.1 (Enhanced IRIS Main Theorem). Assume an insider adversary
crashes less than εn many servers, with ε being a sufficiently small constant. Then,
using only a logarithmic redundancy, Enhanced IRIS correctly serves any set of lookup
requests (O(1) per intact server) after at most O(log3 n) communication rounds with
a congestion of at most O(log3 n) at every server in each round, w.h.p.

Before we describe the encoding strategy of Enhanced IRIS (Section 4.2) and
the lookup protocol (Section 4.3) we need to introduce some further prelimi-
naries (Section 4.1).

4.1 Preliminaries
Instead of using a simple parity coding strategy to recover the data of any
crashed server within a k-block, we need a more complex coding strategy

59

Chapter 4 Enhanced IRIS

that can recover from any two crashed servers within a k-block. Here, we use
the EVENODD scheme [Bla+95]. EVENODD is a 2-erasure correcting code
that uses only exclusive OR operations and is optimal in terms of redundancy.
When using this scheme, we obtain the following results.

Lemma 4.2. For any k-block B with node sets (`, x1), . . . , (`, xk) and
(`+1, x1), . . . , (`+1, xk) in which at most two (`+1, xj) are crashed, the information
in the remaining nodes (`+ 1, xi) suffices to recover d(`, x1), . . . , d(`, xk).

In order to encode k data items with each other, each of size z, EVENODD
adds in total two further data blocks, each of length z. When cutting these
blocks into k pieces of equal size (up to an additive 1), we need to append 2z/k
parity bits (up to an additive 1) to each data block. Hence, for the redundancy
achieved via EVENODD, the following Lemma holds.

Lemma 4.3. For any k-block B with node sets (`, x1), . . . , (`, xk) and
(` + 1, x1), . . . , (` + 1, xk) it holds: |d(` + 1, xi)| ď (1 + 2/k)|d(`, xi)| up to an
additive 1.

Another aspect in which Enhanced IRIS deviates from Basic IRIS is that
the k-blocks are no longer solely organized in a k-ary butterfly. Instead, we
additionally make use of permutations with certain expansion properties.

Definition 4.4 (Expansion). Let U be a set ofN nodes that are organized intoN/K
groups of K consecutive nodes each. Let π : U Ñ U be a permutation of U and let
the set of nodes π(U) also be organized into N/K groups of K consecutive nodes
each. The permutation π is said to have an expansion γ, if for any set S of at most
N/(12K5) groups and any set W Ď U that contains at least three nodes from each
group of S, it holds that the set of nodes π(W) contains nodes from at least γ|S| many
groups from π(U).

Later, for the storage strategy we use permutations in order to describe
how to group nodes into blocks of size k. For that purpose, we make use of
permutations with a sufficiently high expansion in order to guarantee that the
servers are spread “well” across the k-blocks.

See Figure 4.1 for a visualization.
One can show that for sufficiently large N there always exists a permutation

on U with an expansion of at least 5/4.

Lemma 4.5. Let N,K P N and N ě 12K5. Let U be a set of N nodes that are orga-
nized into N/K groups of K consecutive nodes each. Then there exists a permutation
on U with an expansion of at least (1 + δ) for a constant δ ě 1/4.

Proof. Let the permutation π be chosen uniformly at random from all permu-
tations on U . Let p(s) be the probability that there exists a set S of groups with

60

4.1 Preliminaries

.

.

U

π(U)

Figure 4.1: Visualization of a permutation π with an expansion of 2/4. The
upper nodes denote the order of the nodes in U , the lower nodes
denote the order of the nodes in π(U). The rounded rectangles
around the nodes denote the groups. The thick rounded rectangles
around the upper nodes denote the groups in S, The gray nodes
denote the setW . The thick the ones around the lower nodes denote
the groups in π(U) that contain nodes from π(W).

|S| =: s ď N/(12K5) and a set of triples W from these groups such that π(W)
contains at most (1 + δ)s many groups. In the following, let γ ď 1/(12K4)
such that s = γN/K. We will show that p(s) ă 1, which proves the lemma.
p(s) can be upper bounded by:

p(s) ď

(
N/K

s

)(
K

3

)s(N/K

(1 + δ)s

)(
(1 + δ)s

N/K

)3s

(4.1)

where
(
N/K
s

)
is the number of possibilities for choosing s groups,

(
K
3

)s the
number of possibilities of choosing a triple in each of the selected groups,(N/K
(1+δ)s

)
the number of possibilities for choosing (1+ δ)s groups that the triples

have to map to, and
(
(1+δ)s
N/K

)3s
an upper bound on the probability that all of

the triples are indeed mapped to the (1 + δ)s groups. Equation (4.1) is upper
bounded by(

e(N/K)

s

)s(eK
3

)3s(e(N/K)

(1 + δ)s

)(1+δ)s((1 + δ)sK

N

)3s

ď

(
3

γ

)s(e3K3

3

)s(
e

(1 + δ)γ

)(1+δ)s

((1 + δ)γ)3s

ď

(
e

γ

)s(K3

6

)s(
e

(1 + δ)γ

)(1+δ)s

((1 + δ)γ)3s

=

(
e2+δ(1 + δ)2´δ

6

)s
(K4γ)(1´δ)s

For δ = 1/4 the first term is at most 4(1´δ)s and the second term is at most
(1/12)(1´δ)s, so altogether, p(s) ď (1/3)(1´δ)s. When summing up over all
1 ď s ď N/(12K5), with the geometric sum we get an overall probability of

61

Chapter 4 Enhanced IRIS

BF (k, `− 1)

...

Level

0

`− 1

`

logk n

G(`)

k`

G(`)

k`

G(`)

k`

G(`)

k`

n

G(logk n)

. . .

. . .

...

. . .

. . .

...

. . .

. . .

...

Figure 4.2: Visualization of the underlying topology used in Enhanced IRIS
where ` denotes the first level with k` ě 12(log k)5.

less than 0.8 for the expansion of π to be at most (1 + δ), which completes the
proof.

4.2 Storage Strategy
Similarly to the encoding in Basic IRIS, we introduce an underlying topology
that consists of logk n main levels where the levels ` with k` ě 12(log k)5 are
divided into further sublevels, as described in the following. In general, the
description of this topology is divided into three parts depending on `.

Part 1 k` ă 12(log k)5

Part 2 k` ě 12(log k)5 and ` ă 6

Part 3 k` ě 12(log k)5 and ` ě 6

Figure 4.2 provides a high-level overview of the encoding of the different levels.

Part 1 For the encoding of the data for all levels ` with k` ă 12(log k)5, we
reuse the encoding via the k-ary `-dimensional subbutterfly as presented in
Basic IRIS (Section 3.1). Since k` asymptotically grows slower than 12(log k)5,
the inequality k` ą 12(log k)5 can only hold for k` constant. Hence, the levels
` with k` ă 12(log k)5 can tolerate a constant fraction of crashed nodes in each
subbutterfly while still being able to decode all data.

62

4.2 Storage Strategy

In case of k` ě (12 log k)5 (Part 2 and Part 3) we introduce n/k` graphs
for each level `, called G(`), which are divided into further sublevels, each
consisting of k` nodes. We encode the data items within each G(`) by using
edge sets between the sublevels with certain expansion properties (defined
later). In particular, for each level ` we do not proceed with the encoding of
the resulting data items from the last (sub)level of the graphs from level `´ 1
but restart the encoding in level ` with the original data items.

This level-based encoding approach allows us to define the decoding depth
of Enhanced IRIS analogously to the decoding depth of Basic IRIS.

Definition 4.6 (Decoding Depth). For a graph G(`) let L denote the number of
levels in G(`). The decoding depth of a node u at a sublevel i P t0, . . . , L´ 1u of
G(`) is now defined as follows:

dd(u) =

$

’

’

&

’

’

%

0 if u is not crashed
8 if i = L´ 1 and u is crashed
max
vPC(u)

tdd(v)u + 1 if i ă L´ 1 and u is crashed

where C(u) denotes the neighbors of the k-block of u in level i+ 1 excluding any two
nodes of biggest decoding depth among these neighbors. Analogously to Basic IRIS,
the decoding depth of a server sj is defined as dd(sj) = dd((0, j)).

Note that if the decoding depth of a node u at sublevel i inG(`) is more than
d with i+ d ď L, then it must be possible to embed a complete ternary tree of
crashed nodes with root u and depth d in G(`).

Part 2 Now, suppose that ` satisfies k` ě 12(log k)5 and ` ă 6. In order to
describe the encoding of the data items on such a level `, for each block of
k` consecutive nodes on level ` we introduce a graph G(`) that consists of
L1 = 20 log k sublevels, each consisting of k` nodes. In order to construct G(`),
we choose a permutation π(1)` that has an expansion of at least 5/4 for N = k`

nodes and a group size ofK = K1 = log k. In the following let (i, x) denote the
virtual node from sublevel i and column x in G(`). Partition the nodes of each
sublevel ofG(`) into groups ofK1 consecutive nodes. Each node (i, x) in some
group B in sublevel i of G(`) is connected to all nodes (i + 1, π

(1)
` `(y)) with

(i, y) P B. This establishes complete bipartite graphs of K1 nodes on sublevel
i and i + 1, called K1-blocks (see Figure 4.3). G(`) is simulated by N servers
with server si simulating the L1 nodes (0, i), (1, π(1)` (i)), (1, π(1)` (π

(1)
` (i))), and

so on.
We are now ready to describe the encoding of a set of K1 data blocks

d0, . . . , dK1´1. Initially, dj is placed in node (0, j) ofG(`), for all j P t0, . . . ,K1´

63

Chapter 4 Enhanced IRIS

.

.

.

.

.

K1 K1 K1

. . .

. . .

. . .

. . .

.

.

.

K2 K2 K2

. . .

. . .

. . .

.

.

. . .

. . .

Kψ︷︸︸︷

Level

0

1

...

i

i+ 1

...

L1 − 1

0

1

...

L2 − 1

...
...

0

...

Lψ − 1

π
(1)
`

π
(2)
`

π
(ψ)
`

Figure 4.3: Visualization of G(`) and its Ki-blocks with ψ ď log˚ k.

64

4.2 Storage Strategy

1u. Given that in sublevel i, i P t0, . . . , L1 ´ 1u, we have already assigned data
blocks d(i, j) to the nodes (i, j), j P t0, . . . ,K1 ´ 1u, for each K1-block B of
sublevel i, we compute the data blocks for sublevel i+ 1 using the EVENODD
coding strategy and assign them to the nodes of thatK1-block in sublevel i+1.

In the following our goal is to extend G(`) by adding more sublevels to it
such that whenever a data block encoded in G(`) cannot be recovered, at least
a constant fraction of the servers emulating G(`) must be crashed.

Suppose the data of a node (0, x) in G(`) cannot be recovered: i.e., the
decoding depth of (0, x) is larger then L1. Hence, G(`) contains a ternary tree
with root (0, x) and depthL1 that consists only of crashed nodes. Unfortunately,
the leaves of this tree are not guaranteed to be distinct anymore like for the
binary witness trees in the k-ary butterfly. But, due to the expansion property
of π(1)` , we know that this ternary tree must cover at least 3(5/4)L1´1 crashed
servers at its leaves. Since by Definition 4.4 the number of groups considered
for the computation of the expansion is upper bounded by N/(12(K1)

5) we
get that at least mint3(5/4)L1´1, N/(12K5

1)u crashed servers are covered by
the nodes at sublevel L1 in G(`). Furthermore, it holds

3(5/4)L1´1
(˚)
ě 3(5/4)4` log k´1

(˚˚)
ě (12/5)k`

(˚˚˚)
ě N/(12 log5 k)

where in (˚) we used L1 = 20 log k ě 4` log k, in (˚˚) we used (5/4)4` log k ě

k`, and (˚ ˚ ˚) holds due to N = k` and 12 log5 k ě 5/12. Thus, at least a
1/(12K5

1)-fraction of the N servers simulating G(`) is crashed. Now, consider
the following two cases:

Case 1 K`
1 ď 12(logK1)

5. In this caseK1 is a constant and therefore a constant
fraction of the servers simulating G(`) is crashed.

Case 2 K`
1 ą 12(logK1)

5. Define K2 = logK1 = log log k, L2 = 20 logK1

and add L2 further additional sublevels to G(`) such that G(`) now
consists of L1 + L2 sublevels in total. Using a permutation π(2)` with an
expansion of 5/4 for N = k` nodes and group size K = K2, we connect
the nodes between level i and i + 1 of G(`) for i P tL1, L1 + 1 . . . , L1 +
L2 ´ 2u to complete bipartite graphs just as for the first L1 levels of G(`).
The encoding in the next L2 sublevels now works as follows: First, assign
the data blocks d(L1 ´ 1, j), j P t0, . . . , n ´ 1u, that have already been
assigned to level L1 ´ 1 of G(`) to the nodes (L1, j). Next, for each K2-
block at sublevel i P tL1, . . . , L1 + L2 ´ 2u we compute the data blocks
for sublevel i+ 1 using the EVENODD coding strategy and assign them
to the nodes of that K2-block in sublevel i+ 1.
With the same arguments from above, the number of crashed servers
that are now covered by the nodes at sublevel L1 + L2 in G(`) increases

65

Chapter 4 Enhanced IRIS

to at least N/(12K5
2). Again we need to consider two cases: If K`

2 ď

12(logK2)
5, then, analogously to case 1, K2 is a constant, implying that

a constant fraction of the servers emulating G(`) is crashed.
If (K2)

` ą 12(logK2)
5 we continue with the extension of G(`) as for

K1 and K2: i.e., define K3 = logK2, L3 = 20 logK2 and add L3 further
additional sublevels toG(`). Just as for the case ofK1 andK2 interconnect
the K3-blocks of the sublevels with each other using a permutation π(3)`

with an expansion of 5/4 for N nodes and group size K = K3.
We continue with the process of extending G(`) after until after at most
ψ := log˚ k extensions1 Ki is a constant, implying that a constant fraction
of the servers emulatingG(`) is crashed whenever the data of some node
(0, x) in G(`) cannot be recovered.

Part 3 It remains to describe the encoding of the data blocks on level ` with
k` ě 12(log k)5 and ` ě 6. Similarly to the construction in Part 2 we first
construct a graph G(`) using a permutation π(1)` with N = k` nodes, group
sizeK = K1 = k, and L1 = 4 logN levels to get the number of crashed servers
in G(`) up to N/(12K5

1). Then we continue with the log˚-construction as in
part 2 (starting with K1 = log k and L1 = 20 log k), until we get the number of
crashed servers up to a constant fraction before the decoding of a data block
can fail.

Note that in Basic IRIS we encode in each level ` P t2, . . . , logk n´ 1u those
data blocks with each other that are the result of the encoding of the previous
level ` ´ 1. That is, we also re-encode the previously computed parity bits
in the k-blocks. In contrast to this, in Enhanced IRIS for each graph G(`) the
encoding of the data blocks is initiated with the original data blocks that are
supposed to be encoded in this layer instead.

By this, we achieve a logarithmic redundancy for Enhanced IRIS.

Lemma 4.7. Enhanced IRIS has an overall redundancy of O(logn).

Proof. In the following let z denote the maximum size of the input data blocks
that are supposed to be encoded with each other. First, we upper bound the
amount of information a server s stores for the encoding of a single graph
G(`). Let S1(i), i P t0, . . . , L1 ´ 1u, denote the amount of information server
s stores for the encoding of the first i + 1 sublevels of G(`). By Lemma 4.3,
it holds: S1(i) ď (1 + 2/k)S1(i ´ 1) for all i P t1, . . . , L1u. Since S1(0) = z,
we get S1(i) ď (1 + 2/k)iz. Hence, the amount of data S1(L1) that server s
stores after the encoding of the first L1 + 1 sublevels of G(`) is upper bounded
by (1 + 2/k)L1z ď e2L1/kz = e40 log k/kz = O(z). By the same arguments the

1log˚ n is the number of times the logarithm has to be applied to n until the result is at most 2.

66

4.3 Lookup Protocol

amount of data that server s stores after the encoding of the first
řψ
i=1(Li + 1)

sublevels of G(`) is upper bounded by Πψi=1(1 + 2/k)Liz. Since there are at
most log˚ k level extensions in G(`), the overall amount of data that server s
stores after the encoding of one complete G(`) graph is upper bounded by
Π

log˚ k
i=1 (1 + 2/k)Liz = z ¨ 2O(log˚ k). Hence, for all O(logk n) graphs G(`) the

overall amount of data stored at s after the complete encoding of the underlying
topology used in Enhanced IRIS is upper bounded by z logk n ¨ 2O(log˚ k) =
O(z logn), which proves the claim.

4.3 Lookup Protocol
Recall that the lookup protocol of Basic IRIS consists of three stages: the Pre-
processing Stage, the Probing Stage, and the Decoding Stage. In the following
we describe how to adapt these stages in order to work for Enhanced IRIS.

4.3.1 Preprocessing Stage
Analogously to Basic IRIS, the Preprocessing Stage consists of two substages:
the Recovery Stage and the Decoding Depth Computation Stage. In the Recov-
ery Stage we first determine a unique representative for each crashed server,
such that at the end each intact server knows the representative of each crashed
server it is connected to in the k-ary butterfly. This can be done in the same
manner as in Basic IRIS. Afterwards the G(`) graphs are recovered. That is,
each intact server is introduced to the representative of each crashed server it is
connected to in anyKi-block of anyG(`) graph. Since there is no deterministic
computation rule for theKi-blocks in theG(`) graphs, each server additionally
needs to store to which server it is connected in the underlying topology of
the storage strategy created by the G(`) graphs. For that purpose, note that for
each graphG(`) in each group of Li levels, i P t1, . . . , ϕu with ϕ ď log˚ k, each
server is connected to (Li ´ 1) ¨ Ki other servers. Since K1 = L1 = Θ(log k)
and K1 = maxtK2, . . . ,Kϕu, L1 = maxtL2, . . . , Lϕu, we get that each server
is connected to O(log˚ k log2 k) other servers in G(`). Hence, in in total each
server needs to store O(logk n log˚ k log2 k) connections. But this does not
cause a problem, since in any case each server additionally stores information
about each other server in the system (e.g., addresses of the servers). In order to
recover theG(`) graphs, each intact server s sends a message to each server s1 it
is connected to in any of the G(`) graphs by routing the message (id(s), id(s1))
along the unique path in the k-ary butterfly from s to s1. Since the k-ary butter-
fly has already been recovered correctly, eventually this message reaches the
server s1 in case s1 is not crashed and otherwise the representative rep(s1) of s1.
This initiates s1 (or rep(s1)) to forward the message (id(s’), ID) back to s along

67

Chapter 4 Enhanced IRIS

the unique path from s1 to s in the k-ary butterfly, where ID = id(s1) in case s1

is not crashed and ID = id(rep(s1)) otherwise. Since all intact servers forward
their messages in the k-ary butterfly, by the Borodin Hopcraft bound [BH82]
a congestion of Ω(

?
n/k) may occur at any intact server. Using the analysis

of Valiant’s trick [Val82] one can show that there exist permutations with the
desired expansion properties (as defined above) that additionally guarantee
a congestion of at most O(logn) at each node in each round of the routing
strategy described above.

Once the underlying topology has been recovered, the decoding depth of the
nodes inG(`), as defined in Definition 4.6, can be computed analogously to the
decoding depth in Basic IRIS. Besides the decoding depth of a node at the levels
in G(`), each node from each G(`) also needs to compute the decoding depth
of G(`), which is analogously defined to the decoding depth of a subbutterfly
in Basic IRIS. That is, dd(G(`)) = maxtdd(u) | u is a node on level 0 in G(`)u.
Since the computation of dd(G(`)) for a single graph G(`) takes depth(G(`))
rounds after in total logk n log˚ k log k rounds each server that emulates a node
from G(`) is aware of dd(G(`)).

The following lemma is easy to check.

Lemma 4.8. The Preprocessing Stage takes at mostO(logk n log˚ k log k) communi-
cation rounds with at most O(log2 n) congestion at every intact server at each round.
Furthermore, at the end of the Preprocessing Stage it holds:

1. Each intact server knows the representatives of all crashed servers it is connected
to in the k-ary butterfly and the ones it is connected to in any of theG(`) graphs.

2. Each intact server that emulates a node from any G(`) knows dd(G(`)).

4.3.2 Probing Stage
The purpose of the Probing Stage is to determine for each lookup request
the level ` P t0, . . . , logk nu it belongs to (as defined later). Analogously to
Basic IRIS, the Probing Stage consists of logk n rounds. First, each intact server
that received a lookup request for some data item d chooses c intact servers
s1(d), . . . , sc(d) uniformly at random. The following rounds are dedicated to
the forwarding of a (d, i) probe, for each i P t1, . . . , cu, along the unique path
in the k-ary butterfly from the node on level logk n that is emulated by si(d)
to the node on level 0 that is emulated by the server responsible for hi(d).
As in Basic IRIS, we call this path the probing path of di. Additionally, also
just as in Basic IRIS, during the forwarding of the probes the technique of
combining and splitting is used. In each round r P t0, . . . , logk nu each node u
that received a probe message determines whether it is congested or crashed
at level r. A node u that received probe messages is called congested if it

68

4.3 Lookup Protocol

receives more than α logn probes for different (d, i) pairs (for a sufficiently
large constant α) in the current round. Different from Basic IRIS, in Enhanced
IRIS we say a node u is crashed at level r if dd(G(u)) = 8, whereG(u) denotes
the graph G(logk n´ r) that is (besides other servers) emulated by the server
that emulates u. If u is congested or crashed, u deactivates all (d, i)-probes
it received in the current round by sending the message (fail, d, i, logk n ´ r)
to all roots of these probes (by using the technique of splitting if necessary).
Otherwise, u forwards each probe to the next nodes of the according paths on
level logk n´ r ´ 1 (by using the technique of combining if necessary). After
at most O(logk n) rounds, each server s that received a lookup request for
some data item d has received a fail-message for all of its probes that have been
deactivated. Using this information, s defines its lookup request to belong to
the minimum level such that less than c/2 of its probes have been deactivated
at that level or higher. Hence, at the end of the Probing Stage, each lookup
request belongs to a level ` P t0, 1, . . . , logk nu. All lookup requests that belong
to level 0 can immediately be answered, while all lookup requests belonging
to a level ` ą 0 will be handled in phase ` of the Decoding Stage.

It is easy to see that the Probing Stage of Enhanced IRIS satisfies the following
property.

Lemma 4.9. The Probing Stage of the Lookup Protocol of Enhanced IRIS takes at
most O(logk n) communication rounds with at most O(log2 n) congestion at every
server in each round.

The following lemma can be shown analogously to Basic IRIS (Lemma 3.26).

Lemma 4.10. Assume an insider adversary crashes at most εn servers, for a suffi-
ciently small constant ε ą 0. Then, at the end of the Probing Stage of the Lookup Pro-
tocol of Enhanced IRIS, the number of requests belonging to level ` P t1, . . . , logk nu

is at most γn/k`´1, for a sufficiently small constant γ.

4.3.3 Decoding Stage
Analogously to Basic IRIS, the Decoding Stage is divided into logk n phases
where phase ` P t0, . . . , logk nu is dedicated to the decoding of the data items
with lookup requests that belong to level `. In phase ` P t0, . . . , logk nu each
server s that received a lookup request for some data item d that belongs to
level ` performs or initiates the following tasks:

1. Choose c/2 pairs (d, i) that have not been deactivated in the Probing
Stage until level `. For i P t1, . . . , cu let Gi(`) denote the graph from level
` that is (besides other servers) emulated by the server responsible for
hi(d).

69

Chapter 4 Enhanced IRIS

2. For each of the c/2 previously chosen (d, i) pairs, determine whether
Gi(`) could be decoded without nodes from Gi(`) becoming congested,
i.e., receiving more than O(ck) decode requests for different (d, i) pairs.
If any node from Gi(`) would become congested when decoding Gi(`),
we call Gi(`) congested. For a graph Gi(`) let BF (Gi(`)) denote the k-ary
butterfly that consists of the same servers asGi(`). Determining whether
Gi(`) is congested can be done just like determining whether the k-ary
subbutterfly BF (Gi(`)) is congested, as already described in Basic IRIS
by performing a broadcast in BF (Gi(`)).

3. If less than c/4 of theGi(`) graphs are congested, initiate the decoding of
c/4 of the non-congested Gi(`) graphs. Since the decoding depth of each
Gi(`) graph considered in level ` of the Decoding Stage is not exceeded,
it is possible to completely decode Gi(`) and retrieve the requested data
pieces.

If at the end of phase ` server s receives at least c/4 decoded pieces, then s can
recover the requested data item. Otherwise, s denotes the request to belong to
level `+ 1 and handles it again in the next phase, phase `+ 1.

It is easy to see that the Probing Stage of Enhanced IRIS satisfies the following
property.

Lemma 4.11. The Decoding Stage of the Lookup Protocol of Enhanced IRIS takes at
most O(log3

k n) communication rounds with at most O(log3 n) congestion at every
server in each round.

Analogously to Basic IRIS (Lemma 4.12), one can show the following lemma.

Lemma 4.12. Assume an insider adversary crashes at most εn servers, for a suffi-
ciently small constant ε ą 0. Then, at the beginning of each subphase
` P t1, . . . , logk nu of the Decoding Stage of the Lookup Protocol of Enhanced IRIS,
the number of requests belonging to level ` is at most ϕn/k` with ϕ = Θ(k).

Lemma 4.12 implies that all remaining data items can be decoded at the end
without causing excessive congestion at any node.

All in all, Lemmas 4.8, 4.9, 4.11, and 4.12 now imply the main theorem,
Theorem 4.1.

70

Chapter

5
RoBuSt

In this chapter we present RoBuSt, a crash-failure-resistant distributed storage
system. Just as Basic IRIS, RoBuSt tolerates an insider adversary that knows
everything about the system and can use this knowledge in order to crash a
huge fraction of all servers. While Basic IRIS and Enhanced IRIS are restricted to
the serving of lookup requests, RoBuSt can additionally handle write requests
correctly. RoBuSt is based on an article by Eikel et al. that has been published
in the proceedings of the 18th International Conference on the Principles of
Distributed Systems (OPODIS) [ESS14].

Recall that Basic IRIS partitions the set of data items that are supposed to be
stored in the system into sets of n data items each. These sets are separately
encoded with each other into so-called layers (cf. Section 3.2). In order to
answer lookup requests for a set of data items, Basic IRIS first tries to answer
these requests by forwarding the request for the c pieces of each requested data
item through the k-ary butterfly towards the storage location (cf. Section 3.3.2).
The requests that could not be answered during this approach are further
handled by trying to recover according parts of the layers (cf. Section 3.3.3).
We were able to show that by this approach each request is answered within a
polylogarithmic number of rounds with only a polylogarithmic work for each
server in each round (cf. Section 3.4).

Unfortunately, the situation is different when considering write requests.
This is due to the fact that whenever a data item is added or changed, the
complete corresponding layer has to be re-encoded. This becomes problematic
in case the handling of a set of write requests requires more than a polyloga-
rithmic number of layers to be re-encoded. In particular, when handling a set
of O(n) write requests it may happen that Θ(n) layers have to be re-encoded,

71

Chapter 5 RoBuSt

which is too expensive for our purposes. In order to circumvent this problem,
RoBuSt stores its data items into so-called buckets that hold O(n) data items
each and that are arranged in a tree structure. Furthermore, for each data item
d there is not only a single bucket in which to store that data item, but a loga-
rithmic number of buckets that are a potential storage location. The internal
storage strategy of a single bucket is very similar to the storage strategy of a
single layer: i.e., we reuse the Butterfly Coding Strategy here. The main new
idea of RoBuSt is the arrangement of the buckets and the way of traversing the
constructed bucket tree and extracting and inserting data items into it for the
handling of write requests.

All in all, in this chapter we show the following theorem.

Theorem 5.1 (RoBuSt Main Theorem). Assume an insider adversary crashes at
most γn1/ log log n servers with γ = 1/24. Then, using only a logarithmic redundancy,
RoBuSt correctly serves any set of lookup and write requests (at most O(1) per intact
server) after at most O(log3 n) communication rounds with a congestion of at most
O(log3 n) at every server in each round, w.h.p.

The further structure of this chapter is as follows: In Section 5.1 we recap
the model properties that were assumed in Basic IRIS and that also hold for
RoBuSt, and we emphasize differences in the model. Afterwards, in Section 5.2
we present the storage strategy which is used by RoBuSt. Section 5.3 provides
a description of the Write Protocol, followed by a description of the Lookup
Protocol in Section 5.4. Since the correctness analysis of the Lookup Protocol
is rather involved we postponed it to a separate section (Section 5.5).

5.1 Preliminaries
Just as in Basic IRIS, we assume that time is divided into periods, where one
period is sufficiently long in order to serve a set of lookup and write requests.
We consider a batch-based insider adversary, which may at the beginning of
each period select up to γn1/ log log n servers to be crashed during that period
with γ = 1/24. Besides lookup requests of the form lookup(k) for k P U , we
also allow write requests which are of the form write(k, d) for k P U and a data
item d. Note that via write requests users can also modify or remove data
from the system. We assume the size of the universe to be polynomial in n,
i.e., m := |U | = np, for a constant p. That is, Λ := p logn bits are required
for addressing the keys. For a data item d, we define the address of d by
key(d) = dΛ´1 . . . d1d0 P t0, 1uΛ and let biti(d) := di. Analogously to Basic
IRIS, in order to achieve a logarithmic storage redundancy we require the size
of data items to be at least Ω(logn).

An additional challenge we have to deal with when considering write re-
quests is the existence of so-called outdated servers. We denote a server s to

72

5.2 Storage Strategy

be outdated, if s holds data items or information that is not up-to-date. Such a
situation may occur when data is written into the system while the server s is
crashed. In this case, once s is not crashed anymore, s would not be aware of
data that has been added to the system or just modified during the periods
in which s was crashed. In order to deal with outdated servers, we will make
use of timestamps whenever data is written in the system. For this purpose,
we assume the existence of an internal clock at each server in order to store
timestamps whenever data is (re-)written. Here, we only require the internal
clocks to run at the same frequency such that the servers have a common un-
derstanding of the beginning and end of the rounds. In particular, we do not
require the internal clocks to be synchronized. However, as we will describe
later, it is still possible for the servers to detect whether they are outdated. As
we will see later, for our purposes it also suffices to simply store a hash value
whenever data is (re-)written instead of storing a timestamp. In this context,
we only require the hash function for creating these hash values to be collision
free.

Table 5.1 provides an overview of variables and their bounds that are com-
monly used in this chapter.

Term Bound Description
p Exponent in np which denotes the address length
Λ = p logn Number of zones/depth of bucket tree/address

length
γ = 1/24 Constant in fraction of crashed servers from

n1/ log log n servers
ε ă γn1/ log log n´1 Fraction of crashed servers

α
ą (1 ´ ε)/γ,
e.g., ě 12

Constant in congestion bound in Probing Stage

β ą 1/10 Constant in congestion bound in Decoding Stage
c ě 12 logm Number of pieces created for each data item

D(B) Set of data items stored in bucket B

Table 5.1: Variables commonly used in the presentation of RoBuSt.

5.2 Storage Strategy
Our data structure is based on a binary tree with Λ+1 levels, also called zones.
We call the nodes of each zone buckets where each bucket will hold a set
of data items. Before we describe the internal storage strategy of the single
buckets, we present the underlying structure of the data structure formed

73

Chapter 5 RoBuSt

by the buckets, called the bucket tree (see Figure 5.1). Zone 0 consists of a
single bucket, bucket Bε. Each bucket B that is not in zone Λ has two children,
denoted by 0-child(B) and 1-child(B). For each data item d there is not only a
single possible bucket in which to store d, but Λ + 1 possible buckets, one in
each zone. Bucket Bε may hold any data item. Bucket 0-child(Bε) from zone
1 may hold all data items d with bit0(d) = 0, bucket 1-child(Bε) may hold all
data items d with bit0(d) = 1. In general, for a bucket B in zone z, the bucket
0-child(B) in zone z + 1 may hold all data items d that may be held by B with
bitz(d) = 0; the bucket 1-child(B) in zone z + 1 may hold all data items d that
may be held by B with bitz(d) = 1.

Bε

. . .

. . .
1-child

. . .

. . .
1-child

B
. . .

. . .

0-chil
d

0-ch
ild

1-child

. . .

. . .

0-c
hil
d

Figure 5.1: Visualization of the bucket tree. Here, B may hold all data items d
whose three least significant bits are 001.

In the following, letB be the set of all buckets and let bucket(z, d) : t0, . . . ,Λuˆ

U Ñ B be a function that returns the unique possible bucket of a data item d at
zone z. Initially, each bucket does not contain any data. During the runtime of
the system the following invariant is satisfied: Each bucket, excluding bucket
Bε, stores either 0 or between n and 2n data items. Bucket Bε stores at most
2n data items.

In the following, we present the internal storage strategy of the single buckets.
The idea of storing a set D of data items into a bucket B is to reuse the basic
concepts of the storage strategy for individual layers from IRIS. In contrast to
IRIS, we additionally store a timestamp t(B) for bucket B, which is used for
the handling of outdated information a server might hold if it was crashed
in a previous period in which write requests were served. While in IRIS we

74

5.2 Storage Strategy

used c fixed hash functions in order to map the data pieces to the servers, in
RoBuSt each bucket holds its c own hash functions and whenever a bucket
is (re-)written, we choose c new hash functions uniformly at random for that
bucket.

In short, whenever a setD of data items is supposed to be stored into a single
bucket B, from a central point of view the following steps are performed by
the servers:

Step 1: Create c ě 18 logm pieces d1, . . . , dc for each data item d P D using
Reed-Solomon codes.

Step 2: Choose c hash functions h1, . . . , hc : U Ñ S uniformly and indepen-
dently at random and map the pieces of each data item d P D to the
servers using these hash functions.

Step 3: Encode the data pieces created in Step 1 with each other using the
k-ary Butterfly Coding Strategy (see Section 3.1).

Step 4: The servers agree on a common timestamp t for bucket B. Each server
then defines its timestamp ts(B) for bucket B as ts(B) = t.

Since the hash functions in Step 2 are chosen uniformly at random every
time data is written into a bucket, with Chernoff bounds (Lemma 2.1) it follows
that at the end of Step 2 each server holds Θ(c) data pieces, w.h.p.

Recall that the k-ary Butterfly Coding Strategy required an internal error
correcting code for the encoding of a single k-block. In RoBuSt we reuse the
internal error correcting code that was also used in Basic IRIS (Section 3.2.1).
At the end of Step 4, several data pieces and parity information have been
mapped to each server si for bucket B. In the following bi(B) denotes the
concatenation of these data pieces and parity information to a single data block.
If it is clear from the context, we may also omit the B and just write bi.

In the following, just as in IRIS, let BF (k, d) be a k-ary butterfly with n = kd

and with server si, i P t0, . . . , n´1u, emulating the butterfly nodes (0, i), . . . , (d, i).
By Lemma 3.4 of IRIS, the storage amount of each server si, i P t0, . . . , n´ 1u,
required for the encoding of a single layer is upper bounded by (1 + e)z,
where z denotes the maximum size of the data blocks stored at any server sj ,
j P t0, . . . , n´ 1u. Since in RoBuSt we additionally only hold c hash functions
and a timestamp for each bucket, we get that the storage amount of each server
of a single bucket in RoBuSt is also upper bounded by (1+e)z. Since there may
exist outdated data items in the system, but for each zone of the bucket tree at
most one, there are at most Λ+ 1 = O(logn) many copies of each data item in
the system, as described further later, which implies the following lemma.

Lemma 5.2. RoBuSt has an overall redundancy of O(logn).

75

Chapter 5 RoBuSt

5.3 Write Protocol
In the following let D be the set of data items for which intact servers received
write requests where each intact server receives O(1) write requests. For a
data item d that is stored in the system, denote the c pieces that have been
created from d using Reed-Solomon coding as d1, . . . , dc. Furthermore, denote
the server that is holding d1 (after the pieces have been distributed among the
n servers) as the server maintaining d.

The write protocol is divided into two stages: The Preprocessing Stage and
the Writing Stage. The goal of the Preprocessing Stage is to determine for each
crashed server a unique representative from the set of intact servers just as
it is done in the Butterfly Completion Stage of Basic IRIS (Section 3.3.1). In
contrast to IRIS, we do not need to compute the decoding depth here that
gives information about the minimum level of the butterfly that the decoding
must be initiated from. Instead, we perform a similar check online during the
Writing Stage. In the Writing Stage we mainly actually write the data items
into the buckets by a top-down traversal through the bucket tree.

5.3.1 Preprocessing Stage
In this stage, for each crashed server s, a unique intact server is determined,
called the representative of s, such that at the end of this stage each intact server
is the representative of at most two servers. The idea of the representatives
is to let them take over the role of the according crashed servers in actions
(e.g., routing, computations) that the crashed servers are supposed to perform.
For this, we additionally need to ensure that each intact server knows the
representatives of all crashed servers it is connected to in the underlying k-ary
butterfly.

The determination of the representatives and the introduction of the repre-
sentatives to the appropriate servers can be done in the same manner as in the
Butterfly Completion Stage of IRIS (Section 3.3.1). By Lemma 3.12 of IRIS, this
takes at most (2 + o(1)) logn rounds with a congestion of at most O(logn) at
each server in each round.

In order to keep the presentation of RoBuSt as clear as possible, in the
following with si we refer to the server si itself if si is intact and we refer to
the representative of si if si is crashed.

5.3.2 Outline of the Writing Stage
In the following, for a bucket B the set D(B) denotes the set of data items that
are stored in bucket B. The idea of inserting a set D of data items into the
systems is as follows: First, we try to insert the data items in bucket Bε. For
this purpose we check whether Bε does not contain “too many” data items.

76

5.3 Write Protocol

If this is not the case, we insert all data items from D into Bε. Otherwise, we
choose a new set of n data items D1 from D(Bε) YD with the property that
these data items belong to the same bucket B1 in zone 1. We remove the data
items in D1 from Bε and add all data items from DzD1 to Bε. By this, no data
item from D or Bε is discarded. Next, we proceed with D1 and B1 just as we
did with D and Bε. That is, if B1 does not contain “too many” data items, we
insert all data items from D1 into B1. Otherwise, we select an appropriate
set D2 of data items from D(B1) YD1 to be handled for a bucket B2 in zone
2. This traversal through the bucket tree along a single path proceeds until a
bucket has been found that does not contain “too many” data items. As we
will discuss later, this approach actually terminates at the latest at the last zone
of the bucket tree.

In order to keep the specification of our system simple, we first give a high-
level overview of how to process a set of write requests before describing the
details of the steps necessary in the following subsections. The Writing Stage
consists of up to Λ + 1 phases. Each phase z P t0, . . . ,Λu deals with a single
bucket Bz from zone z only and receives a set of data items Dz to be inserted
into Bz . At the beginning, D0 := D is the set of all data items for which there
are write requests. Phase z P t0, . . . ,Λu consists of the following steps:

Step 1: Completely decode Bz and send all decoded pieces of a data item
d P D(Bz) to the server maintaining d (see Section 5.3.3).

Step 2: If |D(Bz) Y Dz| ď 2n: Add the data items from Dz to D(Bz), choose
c new hash functions h1, . . . , hc : U Ñ S uniformly at random for Bz ,
and re-encode Bz (see Section 5.3.4).

Step 3: Else (|D(Bz) YDz| ą 2n):

a) The intact servers agree on a subset Dz+1 Ď D(Bz) YD of size n
with the property that for all d, d1 P Dz+1, bitz(d) = bitz(d1) = b P

t0, 1u (see Section 5.3.5).
b) Re-encode the data items in (Dz Y D(B))zDz+1 in bucket Bz and

choose c new hash functions h1, . . . , hc : U Ñ S uniformly at
random for Bz (see Section 5.3.3).

c) Set Bz+1 :=0-child(Bz+1) if b = 0 and Bz+1 :=1-child(Bz+1) if
b = 1 and propagate the data items in Dz+1 to the next phase.

Note that within a single period only a few of all buckets are (re-)written.
Hence, in particular, a server can be outdated w.r.t. a specific bucket, while
not being outdated for other buckets. In order to illustrate this, consider the
following scenario: Assume a server s holds a piece of a data item d in bucket
B and d is supposed to be modified in a period p in which s is crashed. Then

77

Chapter 5 RoBuSt

in period p, s cannot update its version of its piece of d as it is supposed to.
Afterwards, in any period p1 ą p in which s is not crashed any more the
information and data s stores for bucket B is outdated, but its information
and data stored for a different bucket that has not been written while s was
crashed is still up-to-date. In this case we call s outdated w.r.t. bucket B.

5.3.3 Details on the Decoding of a Bucket (Step 1)
At the beginning of each phase of the Writing Stage (see Step 1 in Section 5.3.2),
for each data item d belonging to the current bucket B, all pieces of d are
decoded and sent to the server maintaining d. In particular, the data pieces
stored at crashed servers are recovered and stored by the representatives of
the crashed servers.

In order to exclude outdated data from the computations, the outdated
servers need to be determined before the actual decoding is performed. For
this purpose, each server s chooses Θ(logn) servers uniformly at random and
asks these servers for their timestamp. As already mentioned in Step 4 of
the storage strategy (Section 5.2), whenever data is (re-)written in a bucket,
the intact servers agree on a common timestamp t for that bucket which each
intact server s1 stores in ts1(B). Hence, all servers that were intact during the
last writing of bucket B hold the same timestamp for that bucket. Since the
adversary crashes only at most γn1/ log log n servers, only the same number of
servers can be outdated w.r.t. bucket B. With Chernoff bounds (Lemma 2.1) it
follows that more than half of the servers chosen by s are not outdated w.r.t.
bucket B. Hence, if the timestamp ts(B) that server s holds for bucket B is
not equal to the timestamp it received most often from the chosen servers, s
sets ts(B) = ´8 which marks s as outdated w.r.t. bucket B. In the following
decoding process of bucket B, whenever a server s transmits data to another
server, it additionally transmits its timestamp ts(B) it holds for bucket B. By
this, the servers can easily detect outdated servers and exclude their data from
the computations.

The actual decoding is done by a bottom-up approach that proceeds in
logk n + 1 rounds. Algorithm 10 describes the actions each node u at level
logk n´ r performs in round r P t0, . . . , logk nu for the decoding of bucket B.
Whenever a node u receives data during the decoding process, it first excludes
all data received from a crashed or outdated node. If u receives at least k ´ 1
data blocks from intact servers, it recovers the data it is supposed to hold and
also updates its timestamp tu(B). Finally, u forwards the possibly recovered
data with a correct timestamp, or it forwards incorrect data which is identified
by a timestamp of ´8.

Just as in Basic IRIS, one can show via a witness tree argument that after the
decoding process of a bucket B, each server successfully recovered the data

78

5.3 Write Protocol

Algorithm 10 RoBuStBucketDecoding called in round r by node u at level
logk n´ r

1: if u crashed then
2: tu(B) = ´8, b = NULL
3: else
4: b Ð data that u stores for bucket B
5: if u not at level logk n then

Ź Reduce set of received messages to set of messages with maximum timestamp
6: Q Ð set of messages u received from its children in LT (u)
7: Q Ð t(b, time) P Q | time ą ´8u Ź exclude outdated data

Ź Recover data, if possible
8: if |Q| ě k ´ 1 then

Ź Recover data stored in u for bucket B using received data
9: b Ð recovered data

Ź Note: t = t1 for all (b, t), (b1, t1) P Q
10: tu(B) = timestamp in any message from Q

11: if u not at level 0 then
12: Forward message (b, tu(B)) to u’s children in UT (u).

it stored for bucket B. Analogously to Basic IRIS (Definition 3.27), a witness
tree of an `-dimensional k-ary butterfly is defined to be a complete binary tree
of depth ` that is rooted at a butterfly node at level 0 and consists of crashed
and outdated servers only.

The following lemma can be proven analogously to Lemma 3.14 and Defini-
tion 3.27.

Lemma 5.3. Let u be a butterfly node at level ` P t0, . . . , logk nu. The subbutterfly
BF (u) can correctly be recovered if and only if BF (u) does not contain a witness tree.

Since the adversary may crash only at most γ2logk n´1 = (γ/2) ¨ n1/ log log n

servers, in total only less than 2logk n servers can be crashed or outdated w.r.t.
bucket B. Hence, there cannot exist a witness tree for bucket B, implying
bucket B can correctly be recovered, which is possible via a bottom-up infor-
mation transfer as described by Algorithm 10.

Note that the c hash functions for the pieces of a data items were chosen
uniformly and independently at random when B was encoded, and after the
adversary had chosen the set of crashed servers. Thus, each server holds
O(logn) data pieces for bucket B, w.h.p. Furthermore, each server maintains
at most one data item, w.h.p. This implies that the decoding of a bucket causes
a congestion of at most O(logn) at each server in each round, w.h.p. All in all,
we get:

79

Chapter 5 RoBuSt

Lemma 5.4. After logk n+ 1 rounds with a congestion of O(logn) at each server in
each round, each server maintaining a data item d in the current bucket B completely
knows d, w.h.p.

5.3.4 Details on the Encoding of a Bucket (Step 2, Step 3b)
In the following we describe how a set of data items is re-encoded into a bucket,
as required in Step 2 and Step 3b. Note that the reencoding of a bucket not
only consists of simply encoding the data items belonging to that bucket but
also of some additional steps described in the following.

First, in contrast to Basic IRIS, server s0 chooses c hash functions h1, . . . , hc :
U Ñ S uniformly at random that will be used to map data pieces of this
bucket to servers. While in Basic IRIS the hash functions that map data pieces
to servers are never changed, we need to choose new hash functions for a
bucket B whenever B is (re-)encoded. The reason for this is that otherwise
the adversary would be able to generate write requests that overload certain
servers when distributing data pieces while (re-)writing a bucket. Note that
the hash functions need to satisfy certain expansion properties just as in IRIS,
but if c is chosen sufficiently large (c ě 12 logm) they do so, w.h.p. (more
information is provided in Section 5.5). After that, s0 distributes the c hash
functions as well as its current timestamp to all other intact servers si. This
distribution can be realized by simply broadcasting the hash functions in the
k-ary butterfly from the node on level logk n that is emulated by s0 to all nodes
on level 0. Each intact server then stores the c hash functions and sets ts(B) to
the timestamp it received from s0. By this, whenever a bucket is (re-)written,
all intact servers hold the same timestamp for that bucket. Note that server
s0 could have also simply created a hash value for the current bucket using a
collision-free hash function instead of using the current timestamp from its
internal clock.

Each server si now creates for each data item that it maintains, or for which
it has received write requests and that are not propagated to the next phase,
the c pieces d1, . . . , dc of d using Reed-Solomon coding. Here, the c pieces
of d are created in such a way that any c/3 pieces of them suffice to recover
d. Afterwards, the data piece dj , j P t1, . . . , cu, is sent to the server si that is
responsible for hj(d). Unfortunately, a server si does not necessarily know the
representative of the server s1 if that server is crashed. Thus, instead of sending
the data pieces directly, the servers forward the data pieces to the according
servers by initiating a bottom-up routing in the underlying k-ary butterfly
such that at the end each server s1 responsible for any hj(d), 1 ď j ď c, or
its representative in case s1 is crashed, has received the according data piece
dj . Since the hash functions h1, . . . , hc are chosen uniformly at random, with
Valiant’s trick [Val82] it follows that this process causes a congestion of at most

80

5.3 Write Protocol

O(c logn).
After the pieces of data items have been distributed, the servers encode

the data items in (D(Bz) YDz)zDz+1 with each other via the k-ary Butterfly
Coding Strategy as described in Section 3.1. Note that the set of data blocks
a server si may already have stored for bucket Bz before the (re-)encoding
process is completely overwritten in this process. All in all we get the following
lemma.

Lemma 5.5. The encoding of a bucket takes O(logn) communication rounds with a
congestion of at most O(log2 n) at each server in each round.

5.3.5 Details on Counting and Selecting (Step 3, Step 3a)
In the following we present the process of determining the number of data
items inD(Bz)YDz and the elements of the setDz+1 (if necessary) for a phase z
in a distributed fashion. Note that in a previous step all data items from D(Bz)
have successfully been decoded: i.e., the data items stored at both crashed and
intact servers are correctly recovered, whereas the data items of the crashed
servers are known to their representatives.

This process is divided into two parts: First, each server si determines for
j P t0, 1u the number of data items d from D(Bz) YDz with bitz(d) = j, which
we define as numj(i). Note that |D(Bz) Y Dz| = num0(i) + num1(i). Second,
if num0(i) + num1(i) ą 2n, we determine the set of data items Dz+1 that will
be handled in the next phase of the Writing Stage. Recall that the set Dz+1 is
defined to be a set of n data items from the set D(Bz) YDz whose z-th bit of
their addresses equal, i.e., bitz(d) = bitz(d1) = b P t0, 1u for all d, d1 P Dz+1.

In the following letBz,i Ď D(Bz) denote the set of data items from bucketBz
that server si maintains. Furthermore, for the setDz of data items to be inserted
into Bz, we define Dz,i Ď Dz as the set of data items with a write request at
server si. We will also use the notion of server si maintaining data item d P Dz

if there is a write request for d at server si. Note thatDz+1 Ď
Ťn´1
i=0 (Dz,iYBz,i).

Computation of num0(i)+num1(i): First of all, each server si, i P t0, . . . , n´1u

initializes a tuple (num0,num1) where numj , j P t0, 1u, is the number of data
items d P Bz,i Y Dz,i with bitz+1(d) = j. These tuples are now forwarded
bottom-up in the underlying k-ary butterfly, where each intermediate node
sums up all tuples it received and forwards the result to the next higher level.
More precisely, each server si first sends its tuple (num0,num1) to each of the
k neighbors of the butterfly node (logk n, i) in the underlying k-ary butterfly.
Any intermediate node v on level `, 0 ă ` ă logk n, sets numj , j P t0, 1u, as the
sum of all k received numj-values and sends the tuple (num0,num1) to its k
neighbors on level `´ 1 in the underlying k-ary butterfly. Finally, each server

81

Chapter 5 RoBuSt

si on level 0 sums up all tuples received from neighbors on level 1 and stores
the result in (num0(i),num1(i)). All in all it follows:

Lemma 5.6. After logk n rounds, each server si knows the number of data items
d P D(Bz) Y Dz with bitz+1(d) = j for j P t0, 1u. Additionally, in every round,
each server sends and receives at most 2k messages.

Each server si now computes size(Bz) = num0(i) + num1(i) and checks
whether size(Bz) ą 2n. In case size(Bz) ď 2n, the data items from D(Bz) and
Dz are re-encoded in bucket Bz (see Section 5.3.4) and the Writing Stage is
finished. Otherwise, the servers need to agree on the bucket Bz+1 and a set
Dz+1 of n data items from D(Bz) Y Dz with bitz(d) = bitz(d1) = b P t0, 1u for
all d, d1 P Dz+1 that will be handled in the next phase of the Writing Stage.
That is, if num0(i) ą n, we set Bz+1 =0-child(Bz) and b = 0. If num1(i) ą n
we set Bz+1 =1-child(Bz) and b = 1.

Determination of Dz+1: In the following define D as the set of data items d
from D(Bz) Y Dz with bitz+1(d) = b: i.e., D is the set of potential data items
for the set Dz+1. The determination of Dz+1 is done by a top-down approach
in the tree LT ((0, 0)) of the k-ary butterfly. In the following, we assume that
each node v inLT ((0, 0)) stored the tuples (t1,0, t1,1), (t2,0, t2,1), . . . , (tk,0, tk,1) it
received from its children v1, . . . , vk in LT ((0, 0)) during the previous process
(the bottom-up counting of |Dz+1|): i.e., ti,b is the number of data items d P D
that are maintained by a node from LT (vi).

During the process for determining Dz+1 the nodes send two types of mes-
sages: full and partly(x), x P N. If a node v receives a full, this is supposed
to indicate that all data items d which a node from LT (v) maintains with
bitz(d) = b will belong to the set Dz+1. A message partly(x) at a node v indi-
cates that x data items still need to be chosen for the set Dz+1.

At the beginning, the butterfly node (0, 0) issues the message partly(n) on
itself. Depending on the message a node v receives, it performs the actions
described in the following and visualized in Figure 5.2.

partly(x): If v is not on level logk n, let v1, . . . , vk denote the children of v in
LT ((0, 0)). Determine the greatest index p P t1, . . . , ku such that y ď x
with y :=

řp
i=1 ti,b. Send full to v1, . . . , vp. If x´ y ą 0, send partly(x´ y)

to vp+1. That is, all data items d P D that are maintained by a node in
any of the lower trees LT (v1), . . . , LT (vb) will be added to Dz+1. The
remaining data items that will be chosen for Dz+1 are maintained by
nodes from LT (vp+1).
If v is on level logk n, the server si emulating v randomly chooses x data
items d P Bz,i YDz,i with bitz+1(d) = b to belong to Dz+1.

82

5.3 Write Protocol

.

.

.

Figure 5.2: Visualization of the computation of the set Dz+1. Each gray node
received a full message, i.e., it is emulated by a server si and adds
all data items d P Dz,i Y Bz,i with bitz+1(d) = b it stores to Dz+1.
Each black node received a full message, i.e., it is emulated by a
server si and adds only a part of its data items d P Dz,i YBz,i with
bitz+1(d) = b it stores to Dz+1.

full: If v is not on level logk n, v sends a full-message to each of its children in
LT ((0, 0)). If v is on level logk n, the server si emulating v chooses all
data items d P Bz,i YDz,i with bitz+1(d) = b to belong to Dz+1.

Each server si that has chosen a data item d P Bz,i YDz,i to belong to Dz+1

during the previously described process, handles this data item in the next
phase of the Writing Stage just as if si has received a write request d.

The following lemma is easy to check.

Lemma 5.7. If the servers have already determined the number of data items d P

D(Bz) YDz with bitz+1(d) = j for j P t0, 1u, then after logk n additional rounds of
the previously described selection process it holds:

1. Each server si knows which of the data items in Bz,i YDz,i are supposed to be
(re-)encoded in bucket Bz and which of them are propagated to the next phase of
the Writing Stage.

2. In every round of the selection process, each server s sends and receives at most
2k messages.

3. The number of data items that are decided to belong to bucket Bz (and thus will
be encoded in this bucket) is at most 2n.

It remains to distribute for each data item from Dz+1 a write request among
the n servers such that each server si is responsible for a constant number
of these write requests, w.h.p. For this purpose we make use of a technique
presented by Dietzfelbinger and Meyer auf der Heide [DM93]. This technique

83

Chapter 5 RoBuSt

makes use of the γ-collision rule, γ ě 2 constant, and is based on the following
idea: First, using three randomly chosen hash functions h1, h2, h3, for each
data item three potential target servers are determined. Each round consists
of three phases. In phase r P t1, 2, 3u each server to which at most γ data
items have been mapped via hr accept these data items. All remaining servers
reject the data items mapped to them for this round. These three phases
are executed sequentially while only considering the data items that have
not been accepted yet as long as each data item has been accepted by a server.
Dietzfelbinger and Meyer auf der Heide showed that afterO(log logn) of these
rounds all data items have been assigned to a server and each server received
O(1) data items, w.h.p. Since in our setting the servers cannot necessarily
communicate directly with each other but need to route messages through
the k-ary butterfly the communication between any two servers takes at most
O(logk n) = O(logn/ log logn) rounds, implying an overall runtime of the
above procedure of O(logn).

All in all, regarding the efficiency of the Write Protocol we get the following
lemma.

Lemma 5.8. The Write Protocol of RoBuSt takes at most O(log2 n) many commu-
nication rounds with at most O(log2 n) congestion at every server in each round,
w.h.p.

5.4 Lookup Protocol
In order to keep the specification of our system simple, we provide the de-
scription of the Lookup Protocol as a separate protocol that is executed after
the execution of the Write Protocol. The Lookup Protocol is divided into two
stages: the Preprocessing Stage (Section 5.4.1) and the Zone Examination Stage
(Section 5.4.2). The former is similar to the Preprocessing Stage of the Write
Protocol (Section 5.3.1). The latter is performed for each zone individually and
is split into two further stages: the Probing Stage and the Decoding Stage. The
basic idea of the Probing Stage is to answer a request by directly collecting
a sufficient number of data pieces. If this is not possible, either because too
many of the servers holding a piece are crashed or due to excessive congestion,
in the Decoding Stage the data item is tried to be recovered by utilizing the
distributed coding described in Section 5.2.

Note that both a Probing Stage as well as a Decoding Stage can be found in
Basic IRIS (Section 3.3.2 and Section 3.3.3), too. While they match in their gen-
eral structure, there are important differences that are caused by the differences
in the underlying structure and the implications of the write functionality. For
example, in RoBuSt it may happen that servers store obsolete data items (e.g.,
data items that are not up-to-date).

84

5.4 Lookup Protocol

5.4.1 Preprocessing Stage
The Preprocessing Stage is exactly the same as the Preprocessing Stage of the
Write Protocol, described in Section 5.3.1. If at least one write request has been
handled in the current period, we can thus skip this part and re-use the already
established k-ary butterfly and the unique representatives.

5.4.2 Zone Examination Stage
In the following let D be the set of data items for which a lookup request
arrived at an intact server. The idea of this stage is to successively perform
a lookup for each d P D in each zone until an up-to-date copy of d has been
found and returned to the appropriate server. The Zone Examination Stage
consists of at most Λ + 1 phases, one phase for each zone.

In each phase z P t0, . . . ,Λu, beginning with z = 0, each server with an
unserved lookup request for some data item d initiates a lookup request for
d in bucket bucket(z, d), i.e., in the bucket the data item d belongs to in zone
z. Any server that receives a copy of the data item it has requested during
the lookup in zone z, as described in the following, returns that copy and is
finished. All remaining lookup requests are handled in the next phase, phase
z := z + 1. This procedure is repeated until each lookup request is served.

Handling a set of lookup requests in one phase z is done by performing the
Probing Stage and the Decoding Stage which are similar to the Probing and
Decoding Stage of Basic IRIS. Therefore, in the following we only recap the
actions to be performed in those stages and highlight the differences between
these stages in Basic IRIS and RoBuSt.

5.4.2.1 Probing Stage

In the following let s be a server that holds an unserved lookup request for
a data item d at the beginning of phase z. The idea of the Probing Stage is to
either achieve c/3 up-to-date pieces such that d can be recovered, or to assign
the request for d to a level ` P t1, . . . , logk nu (as defined later) in order to
further handle the request in the next stage, the Decoding Stage.

On a high-level view, in phase z, server swith a lookup request for data item
d performs the following steps.

Step 1: Acquire the current hash functions and the timestamp ts(B) for bucket
B := bucket(z, d).

Step 2: Choose c intact servers s(d1), . . . , s(dc) uniformly and independently
at random.

85

Chapter 5 RoBuSt

Step 3: For each i P t1, . . . , cu forward a probe(d, i, ts(B)) message along the
probing path of di beginning at the node at level logk n emulated by
si(d) and ending at the node at level 0 that is emulated by the server
responsible for hi(d).

Note that the first step, acquiring the hash functions, is not part of the Probing
Stage in Basic IRIS. In RoBuSt this step is required since smay have been crashed
in the last period in which a write occurred in bucket bucket(z, d) and therefore
new hash functions have been chosen for that bucket. In this case s would
hold an outdated timestamp ts(B) for bucket B. Acquiring the current hash
functions and the current timestamp for bucket B works as follows: First, s
chooses Θ(logn) servers uniformly at random and from these servers s selects
the intact ones. With Chernoff bounds (Lemma 2.1) and as already explained
in Section 5.3.3 it also follows that more than half of the chosen servers are
neither crashed nor outdated w.r.t. bucket B. Server s then asks one of these
intact servers for the timestamp t they hold for bucket B. In case s already
holds an up-to-date timestamp for bucket B, s is finished with the first step.
Otherwise, s updates its timestamp ts(B) to the timestamp t and asks one of
the previously chosen intact servers for the current hash functions h1, . . . , hc
for bucket B. Note that throughout this process each server only receives
O(logn) requests.

Once s knows the correct hash functions, its goal is to retrieve at least c/3
pieces of d which is done in the same manner as in Basic IRIS: i.e., s forwards c
probes for the c data pieces of d bottom-up through the k-ary butterfly (Steps 2
and 3). Algorithm 11 recaps the actions of a node u at level ` P t0, . . . , logk nu

during this forwarding process. In order to decrease the congestion, just as in
IRIS, in this process the nodes use the technique of splitting and combining
while forwarding messages.

In this probing process the differences to the Probing of Basic IRIS are:

• In the congestion bound we use a different constant α. Here we require
α ě 12 (Algorithm 11, line 1).

• In RoBuSt we do not perform a decoding depth check. The consequences
of this will be argued in the Decoding Stage (Section 5.4.2.2).

• Before a node u processes a probe (d, i) it needs to check whether it is
outdated w.r.t. the considered bucket B = bucket(z, d). In case u is
outdated w.r.t. bucket B, u returns a fail(0) message to the origins of
probe (d, i) (Algorithm 11, lines 6–8).

Just as in the Probing Stage of Basic IRIS, as soon as a butterfly node on level
logk n, which is emulated by a previously chosen server s(di), i P t1, . . . , cu, re-
ceives an answer for the request for di (i.e., a fail(`)/dataNotFound(d) message,

86

5.4 Lookup Protocol

Algorithm 11 RoBuStProbing(u = (x, `), z) performed by node u on level ` in
zone z

Ź Determine whether u not at level 0 and congested
1: if ` ą 0 and u received ą αc probe(¨) messages for different probes then
2: Send fail(`) message to the origins of the probes received.
3: else if ` ‰ 0 then Ź u not congested
4: Forward all probes received to the according butterfly nodes

ë on level `´ 1 of the according probing paths.
5: else Ź u is at level 0, i.e., probes reached their destination
6: for all probes for a (d, i) pair node u received do

Ź If u is crashed, we assume tu(B) to be ´8

7: if tu(B) ă tmax then Ź u’s version of bucket(z, d) is not up-to-date
8: Send a fail(0) message to the origins of the probe for (d, i).
9: else Ź u’s version of bucket(z, d) is up-to-date

10: if u holds piece di of d then
11: Send di to the origins of the probe for (d, i).
12: else
13: Send dataNotFound(d) message to origins of probe for (d, i).

or the piece di) it forwards this answer to the server that initiated the request
for di. These answers ensure that after O(logk n) rounds the server s with a
lookup request for a data item d receives for all initially sent probe(¨) messages
a piece of d, or a dataNotFound(d) message, or the level at which the probing
failed.

Analogously to Basic IRIS, we define a request to belong to a specific level
as follows.

Definition 5.9 (Belong to). A request for a data item d is said to belong to level
` P t1, . . . , logk nu if ` is the smallest level that contains at least (5/6)c active (d, i)
probes, i.e., (d, i) probes that were not deactivated at level `1 ě `.

The only difference in this definition for Basic IRIS and RoBuSt is that in
Basic IRIS only at least c/2 active probes at a level ` for a data item d were
needed in order to belong to level `. Note that if a data item belongs to a level `,
then at least (5/6)c of its probes successfully passed level ` and got deactivated
later in the probing (i.e., in a level `1 ă `).

Depending on which kinds of answers a server s with a lookup request for d
has received, it reacts just as in Basic IRIS with the only differences being that
in RoBuSt c/3 pieces are required to recover a data item and the definition of
“belong to”. More precisely:

• If s receives at least c/3 up-to-date pieces of d, s recovers d using Reed-
Solomon coding and answers the request.

87

Chapter 5 RoBuSt

• Else if s receives a dataNotFound(d) message, s returns NULL.

• Else if s receives more than (2/3)c fail(¨) messages, s declares the request
for d to belong to level ` with ` as defined in Definition 5.9.

At the end of the Probing Stage, each request for a data item d has either
been served correctly (this is the case if the requests for (5/6)c ą c/3 pieces of
d pass level 0) or the request belongs to a level 1 ď ` ď logk n.

Analogously to IRIS, for the runtime and the congestion the following lemma
holds.

Lemma 5.10. The Probing Stage of the Lookup Protocol of RoBuSt takes at most
O(logk n) communication rounds with at most O(log2 n) congestion at every server
in each round.

5.4.2.2 Decoding Stage

The Decoding Stage in RoBuSt works analogously to the Decoding Stage in
Basic IRIS with the following main differences: First, we need to consider that
servers may be outdated. Second, it may be necessary to abort the decoding of
a subbutterfly due to too many crashed or outdated servers. In Basic IRIS this
was not necessary due to the decoding depth check performed in the Probing
Stage.

For the sake of completeness we recap the adapted Decoding Stage here.
The Decoding Stage is divided into logk n subphases, where in subphase
` P t1, . . . , logk nu all requests that have been defined to belong to level `
are handled. On a high-level view, in subphase ` of the Decoding Stage, for
each data item d with a lookup request at a server s that belongs to level ` the
following steps are performed.

Step 1: Server s randomly chooses (5/6)c requests for data pieces of d that
were not deactivated at level ` or earlier in the Probing Stage.

Step 2: For each of the chosen requests for a data piece di it is determined
whetherBF (u(`)s,i (d)) can be decoded without any node receiving more
than βck messages for different pieces di with β ą 1/10. Such a node
will be called congested. (Note that in contrast to this in Definition 3.19

of Basic IRIS we require β ą 3/2.) Here, u(`)s,i (d) denotes the butterfly
node on level ` of the probing path of di with origin si(d). Whether
a node BF (u(`)s,i (d)) is congested is determined via a broadcast of a
message for (d, i) in BF (u(`)s,i (d)) just as it is in done in the Decoding
Stage of Basic IRIS.

88

5.4 Lookup Protocol

Step 3: If it is detected that for at least c/3 pairs (d, i) no node of the subbut-
terflies BF (u(`)s,i (d)) is congested, s initiates for c/3 of these pairs the
decoding of the according subbutterflies. Although no congestion can
occur during the decoding, in contrast to Basic IRIS the decoding of
the subbutterflies can fail due to too many outdated servers and due
to too many crashed servers (as described below).

Step 4: If one of the following cases occurs in the previous step, the server s
changes the request for d to belong to level ` + 1 such that it will be
processed again in the next subphase of the Decoding Stage.

(i) It is not possible to decode c/3 subbutterfliesBF (u(`)s,i (d)) without
causing excessive congestion at a node in BF (u(`)s,i (d)).

(ii) During the decoding of any BF (u(`)s,i (d)), it is detected that too
many nodes from BF (u

(`)
s,i (d)) are outdated or congested (as de-

scribed below).

Step 5: If data item d exists in the system and if c/3 pieces of d have been
recovered successfully, these pieces are returned to the server s such
that s can recover d via Reed-Solomon coding and answer the request.
Otherwise, s answers that d does not exist in the system.

In Step 2 the handling of outdated and crashed servers during the decoding
works as follows: For each subbutterfly BF (u(`)s,i (d)) that is supposed to be
decoded, the servers that emulate a node at level ` of BF (u(`)s,i (d)) first acquire
the current timestamp tz(B) for bucket B := bucket(z, d), just as in Step 1 of
the Probing Stage. At the end of this process, each of these servers knows
whether it is outdated with respect to the bucket B. Whenever during the
bottom-up decoding of the c/3 subbutterflies BF (u(`)s,i (d)) more than one node
in any k-block is emulated by an outdated or crashed server, the decoding
of the according subbutterfly BF (u(`)s,i (d)) is aborted and the server si(d) is
informed about that. This additional check replaces the decoding depth check
that was performed in the Probing Stage in Basic IRIS. That is, during the
decoding of a subbutterfly, outdated servers are treated as crashed servers.
Since the error correcting code we used in the k-ary Butterfly Coding Strategy
guarantees the correction of a single error, the previously described approach
guarantees that whenever a data piece di is recovered, the most recent version
of that data piece is recovered.

Analogously to Basic IRIS, the following Lemma holds.

89

Chapter 5 RoBuSt

Lemma 5.11. The Decoding Stage of the Lookup Protocol of RoBuSt takes at most
O(logn) communication rounds per subphase with at most O(log3 n) congestion at
each server in each round.

Since the Lookup Protocol may require a traversal through all zones of the
bucket tree with Lemma 5.10 and Lemma 5.11 the following lemma is implied.

Lemma 5.12. The Lookup Protocol of RoBuSt takes at mostO(log2 n) communication
rounds with at most O(log3 n) congestion at every server in each round.

5.5 Correctness Analysis of the Lookup Protocol
Since the Lookup Protocol of RoBuSt resembles the Lookup Protocol of IRIS,
their analyses are also similar. The main differences we need to cope with are
the existence of outdated data items in the system which may cause a probe to
fail in the Probing Stage and the missing precomputed decoding depth which
may cause a request to be aborted in the Decoding Stage due to too many
outdated or crashed servers.

For the analysis we need the term of a crashed subbutterfly which is defined
as follows.

Definition 5.13 (Crashed Subbutterfly). Let v be a butterfly node at level ` P

t0, . . . , logk nu. The subbutterfly BF (v) is called crashed at level ` if at least r2`´1s

servers from BF (v) are crashed.

Note that we need the ceiling function in Definition 5.13 only for the special
case of ` = 0.

Regarding outdated servers, one can show that whenever a data item is
(re-)written in a bucket, not too many pieces of that data item are mapped to
subbutterflies that contain too many crashed servers. Hence, for each data
item not too many of its data pieces were supposed to be stored at crashed
servers. The following lemma formalizes this.

Lemma 5.14. Assume the adversary crashes at most γn1/ log log n servers with γ =
1/24. Then, for any data item d that is (re-)written in a bucket, and any level ` P

t0, . . . , logk nu, at most c/6 pieces of d that are mapped to subbutterflies BF (v) (for
some node v at level `) that contain at least r2`´1s crashed servers, w.h.p.

For a visualization of Lemma 5.14 see Figure 5.3.

Proof. Let d be a data item, and let ` P t0, . . . , logk nu be a fixed level in the
underlying k-ary butterfly. First of all, we show that the fraction of crashed
subbutterflies at level ` is at most 2γ. Recall that each subbutterfly at level
` contains exactly k` servers. Obviously, for ` = 0, the fraction of crashed

90

5.5 Correctness Analysis of the Lookup Protocol

. . .

crashed
BF

crashed
BF

crashed
BF

. . .

Level `

Level 0

Level logk n

Figure 5.3: Visualization of Lemma 5.14. The lower circles denote the data
pieces of a data item that is (re-)written in the bucket. The arrows
point to the subbutterflies of level ` that the according data piece is
mapped to. The gray rectangles denote the subbutterflies at level `
that contain at least r2`´1s crashed servers.

butterflies at level ` is at most 2γ. Thus, in the following, we assume 1 ď ` ď

logk n. Since in total there at most γ ¨n1/ log log n crashed servers and a butterfly
at level ` ě 1 is crashed if it contains at least 2`´1 crashed servers, we get that
only at most (γ ¨ n1/ log log n)/2`´1 butterflies at level ` can be crashed. Since
the number of butterflies at level ` is n/k`, we get that the fraction of crashed
butterflies at level ` is upper bounded by

γ ¨
n1/ log log n

2`´1 ¨ n/k`
= γ ¨

2logk n

2`´1 ¨ klogk n´`
ď 2γ

Next, we introduce a binary random variable Xi which is 1 if and only if
data piece di is mapped to a subbutterfly that is crashed at level `. That is,
Pr[Xi = 1] ď 2γ. Hence, with X :=

řc
i=1Xi we get µ := E[X] ď 2γc. With

Chernoff bounds (Lemma 2.1) it follows that for all δ ě 0 it holds:

Pr[X ě (1 + δ)µ] ď e´δ2µ/2(1+δ/3)

In particular, for δ = 5 we get

Pr[X ě c/6] ď e´δ2¨2γc/2(1+δ/3) = e´75γc/8

Hence, at most c/6 pieces of d are mapped to subbutterflies that are crashed at
level `, w.h.p.

While in IRIS we required the hash functions h1, . . . , hc to form a (c/4, 1/9)-

91

Chapter 5 RoBuSt

expander, in RoBuSt we require them to form a (c/6, 2γ)-expander. By
Lemma 3.24 it holds that if h1, . . . , hc are chosen uniformly and indepen-
dently at random with c ě 12 logm, then the hash functions form a (c/6, 2γ)-
expander.

5.5.1 Analysis of the Probing Stage
Analogously to Basic IRIS for the Probing Stage of the Lookup Protocol of
RoBuSt it can be shown that the number of requests belonging to a level
exponentially decreases.

Lemma 5.15. Assume an insider adversary crashes at most γn1/ log log n servers with
γ = 1/24. Then, at the end of the Probing Stage of the Lookup Protocol of RoBuSt, the
number of requests belonging to level ` P t1, . . . , logk nu is at most 2γn/k`´1.

The proof of Lemma 5.15 is similar to the proof of Lemma 3.26 in IRIS, but
here we need to take the following differences into account:

• Recall that in IRIS we precompute a decoding depth for each node such
that in the Probing Stage of IRIS a request can be aborted at any level
if the decoding depth of a node is exceeded. In contrast to this, in the
Probing Stage of RoBuSt the only level at which requests are aborted due
to crashed nodes is level 0. This is detected by comparing the timestamps
with each other (Algorithm 11, lines 6–8).

• In contrast to IRIS, we also have to take into account that nodes may store
outdated information because they were crashed in a period in which
new data was written.

• A minor further difference are the constants in the definition of a node
belonging to a level ` P t1, . . . , logk nu and in the congestion bound.
While in IRIS we only require c/2 active probes to belong to level `, in
RoBuSt we require (5/6)c probes to belong to level `.

Analogously to the proof of Lemma 3.26, in the proof of Lemma 5.15 we use
the terms of congested subbutterflies and congested/crashed request which,
as a small reminder, are defined as follows:

Definition 5.16 (Congested/Crashed Subbutterfly/Request). Let v be a node at
level ` in the butterfly. The subbutterfly BF (v) is called

• congested at level ` of the Probing Stage if the servers in BF (v) receive more
than k`αc/2 messages for different di pieces in total when the requests are
processed at level `.

A request for a data item d is called

92

5.5 Correctness Analysis of the Lookup Protocol

• congested at level ` of the Probing Stage if there are at least r = c/6 congested
subbutterflies BF (u(`1)s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with li ě `´ 1, r = c/6, and
i1, . . . , ir being pairwise different.

• crashed at level ` if there are at least r = c/6 crashed subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě ` and i1, . . . , ir being pairwise
different.

Proof of Lemma 5.15: In the following we say a request for a data piece di of a
data item d is aborted at level ` if the probing for di did not successfully pass
level `: i.e., a fail(`) message was sent to the origins of the (d, i) pair. Depending
on the level `, a request for a data item d can be aborted at a node u for the
following reasons:

• At level ` ą 0: The request for d can be aborted only if u is congested.

• At level ` = 0: The request for d can be aborted if u is outdated or crashed.

In contrast to Basic IRIS, for upper bounding the number of requests belonging
level ` P t1, . . . , logk nu, we distinguish between level 1 and all other levels
` ą 1.

Upper bound on number of requests belonging to level 1: By the definition of
“belong to”, it holds that for each request for a data item d that belongs to level
1, at least (5/6)c probes for dwere active at level 1. Furthermore, only less than
c/3 pieces have passed level 0, since if at least c/3 requests for pieces of dwould
have passed level 0, the request for d could have been answered. Hence, more
than (5/6)c ´ c/3 = c/2 requests for pieces of d must have been aborted at
level 0, which by the previous observation can only be due to outdated and/or
crashed nodes at level 0. By Lemma 5.14, we know that at most c/6 pieces of d
have been aborted at level 0 due to outdated nodes. Thus, for any data item
d belonging to level 1, more than (2/6)c ą c/6 requests for pieces of d must
have been aborted due to crashed nodes. Analogously to Corollary 3.31, one
can show that whenever a request belongs to level 1, the request is crashed at
level 0. Hence, by upper bounding the number of crashed requests at level 0
we also get an upper bound on the number of requests belonging to level 1.

Let S be a maximum set of data items with crashed requests belonging to
level 1. We will show: |S| ă 2γn. First, construct a set F in the following way:
for each d P S, we choose c/6 indices i with the property that the request for
di is aborted at level 0 due to crashed nodes and add these (d, i) to F . Note
that F is a c/6-bundle F of S. Since the adversary can crash only at most
2γn1/ log log n ă 2γn servers, the number of servers covered by all BF (s(0)i (d))
with (d, i) P F is at most 2γn. Since ΓF,0(S) is exactly the set of these servers, it

93

Chapter 5 RoBuSt

holds: |ΓF,0(S)| ă 2γn. Just as in the proof of Lemma 3.26 with Corollary 3.25
we can deduce |S| ă 2γn for γ = 1/24.

Upper bound on number of requests belonging to level ` ą 1: Next, for any level
` ą 1, we bound the number of requests belonging to level `. Recall that the
only reason for a piece of a data item to be aborted on a level ` ą 0 is due
to excessive congestion at a node at level `. Similarly to Corollary 3.31, one
can show that whenever a request belongs to a level ` ą 1, this request is
congested at level `´ 1. Thus, if many data items belong to level `, then many
subbutterflies must be congested at level `´1. However, as we will prove, only
a constant fraction of the subbutterflies at level `´ 1 can be congested, which
implies that only a constant fraction of all data items can belong to level `.

Fix 1 ă ` ď logk n. In order to upper bound the number of requests that are
congested at level `´1, let S be a maximum set of data items that with a request
congested at level `´1. We will show: |S| ă 2γn/k`´1. In the same way as in the
proof of Lemma 3.26 we construct a c/6-bundle F of S (adding, for each d P S,
c/6 indices i to F with the property that BF (u(`i)s,i (d)) is congested). We first
show that for α sufficiently large, specifically for α ą 1/γ, less than a fraction
of 2γ of all butterflies at level `´ 1 can be congested. Recall that a subbutterfly
on level `´ 1 is congested if it receives more than αck`´1/2 probes for different
(d, i) pairs. Let ε be the maximum fraction of servers, the adversary may crash.
Since there are at most (1´ε)n lookup requests in total, at most c(1´ε)n probes
arrive at level `´ 1. Thus, at most c(1 ´ ε)n/(αck`´1/2) = 2(1 ´ ε)n/(αk`´1)
subbutterflies can be congested at level ` ´ 1. Since there are exactly n/k`´1

disjoint subbutterflies at level `´ 1, the fraction of congested subbutterflies at
level `´ 1 is upper bounded by 2(1 ´ ε)nk`´1/(αk`´1n) = 2(1 ´ ε)/α. Hence,
for α ą (1 ´ ε)/γ, less than a fraction of 2γ of the subbutterflies on level `´ 1

can be congested. That is, all of the congested subbutterflies BF (u(`)s,i (d)) with
(d, i) P F together contain less than a 2γ-fraction of the subbutterflies on level
`´ 1. This implies |ΓF,`´1(S)| ă 2γn. Just as in the proof of Lemma 3.26 with
Corollary 3.25 we can deduce |S| ă 2γn/k`´1 for γ = 1/24.

5.5.2 Analysis of the Decoding Stage
Analogously to Basic IRIS, for the Decoding Stage of the Lookup Protocol of
RoBuSt, the number of requests belonging to a level exponentially decreases
such that in the last phase of the Decoding Stage at most O(k) requests have
to be handled while all other requests have already been answered in the
previous phases.

Lemma 5.17. Assume an insider adversary crashes at most γn1/ log log n servers
with γ = 1/24. Then, at the beginning of each subphase ` P t1, . . . , logk nu of the

94

5.5 Correctness Analysis of the Lookup Protocol

Decoding Stage of the Lookup Protocol of RoBuSt, the number of requests belonging to
level ` is at most ϕn/k` with ϕ ď 6γk.

For the proof of Lemma 5.17 we also use the terms of congested subbutter-
flies and congested requests which are defined just as in the Probing Stage
(Definition 5.16, Definition 5.16). Recall that in Basic IRIS we used a decoding
depth check in the Probing Stage, such that in the Decoding Stage no decod-
ing of a subbutterfly could fail due to too many crashed servers. Since we
do not use this decoding depth check in RoBuSt and since servers may be
outdated, in the Decoding Stage of RoBuSt we additionally need to handle
crashed subbutterflies and crashed requests (see Definitions 5.13 and 5.16).

Note that during the congestion check in the first part of the Decoding
Stage of each phase, the handling of requests may also be aborted due to
congested nodes. Hence, in the analysis we also need to consider congested
subbutterflies, which in the Decoding Stage are defined as follows (analogously
to Definition 3.19 of Basic IRIS).

Definition 5.18 (Congested Subbutterfly). Let v be a butterfly node at level ` P

t1, . . . , logk nu. We call the subbutterfly BF (v) congested if at least one node from
BF (v) receives messages for more than βck different (d, i) pairs with β ą 5/2.

Furthermore, due to possibly outdated servers, we require the following
lemma.

Lemma 5.19. For any request for a data item d that is neither crashed nor congested,
at most c/6 pieces of d can fail due to outdated servers.

Proof. Let d be a data item with a request that is neither crashed nor congested:
i.e., there are less than c/6 crashed subbutterflies, which means that for less
than c/6 data pieces the corresponding `-dimensional subbutterflies contain
more than 2`´1 crashed servers. By Lemma 5.14, at most c/6 data pieces of
the remaining pieces are mapped to subbutterflies that contain at least 2`´1

outdated servers. In the following we argue that all remaining data pieces can
correctly be recovered, implying the lemma. Hence, the subbutterflies of the
data pieces that have neither been mapped to a crashed subbutterfly nor to
a subbutterfly that contains at least 2`´1 outdated servers contain less than
2`´1+2`´1 = 2` crashed or outdated servers. In particular, these subbutterflies
do not contain a witness tree. By Lemma 5.3, these subbutterflies can correctly
be recovered.

Analogously to Corollary 3.31 of the analysis of the Lookup Protocol of Basic
IRIS, one can show the following lemma.

Lemma 5.20. Consider a request for a data item d that belongs to level
` P t1, . . . , logk nu. It holds:

95

Chapter 5 RoBuSt

(i) If at least c/6 requests for data pieces of d are aborted during the butterfly decoding
in subphase ` due to too many crashed nodes, then the request for d is crashed at
level `.

(ii) If at least c/6 requests for data pieces of d are aborted during the butterfly decoding
in subphase ` due to a congested node, then the request for d is congested at level
`.

Proof. We start with proving (i). By Lemma 5.3, we know that any `-dimensional
subbutterfly BF (u) can be decoded correctly if and only if BF (u) does not
contain a witness tree. Hence, if c/6 requests for data pieces are aborted due
to too many crashed nodes, then there exist c/6 subbutterflies that contain at
least 2`´1 crashed nodes.

Part (ii) immediately follows from Definition 5.18.

Now, we are ready to prove Lemma 5.17.

Proof of Lemma 5.17: We prove the lemma by induction on `. The basis (` = 1)
holds by Lemma 5.15. For the induction step, let ` P t1, . . . , logk n ´ 1u and
assume that the induction hypothesis holds for level `. We show that the
number of requests that will be propagated to level `+ 1 during subphase ` is
at most 4γn/k`. Together with Lemma 5.15, this means that at the beginning of
subphase `+ 1, at most 4γn/k` + 2γn/k` requests belong to level `+ 1, which
is upper bounded by ϕn/k`+1 and thus proves the induction step.

First, we show that each request for a data item that is neither crashed nor
congested can be answered correctly at the end of subphase `: i.e., the only
requests that can be propagated to level ` are the ones that are crashed or
congested at level `. Hence, it then remains to upper bound the number of
requests that are crashed and the number of requests that are congested at
level `.

Note that any request for a piece di of a data item d in subphase ` of the
Decoding Stage can be aborted for only one of the following three reasons:
First, too many servers storing information about di are crashed in the current
period. Second, too many servers storing information about di are outdated
(i.e., they were crashed when the bucket storing d was last updated). Third, a
node from the subbutterfly BF (u(`i)s,i (d)) is congested during the congestion
check. By Lemma 5.20, for each request for a data item d belonging to level
` that is neither crashed nor congested, less than c/6 + c/6 requests for data
pieces for d are aborted during the butterfly decoding in subphase ` due to
too many crashed or congested nodes. Since in total there are at least (5/6)c
requests for data pieces of d in subphase `with Lemma 5.19 we get that at least
(5/6)c ´ (2/6)c ´ c/6 = c/3 data pieces can be recovered correctly, implying
that the request for d is correctly served at the end of subphase `.

96

5.5 Correctness Analysis of the Lookup Protocol

In the following, we show that at most 2γn/k` requests are crashed at level `
and at most 2γn/k` requests are congested at level `, which with our previous
observations proves the lemma.

Upper bound on the number of crashed requests: Let S be a maximum set of
data items with requests that are crashed at level `. We show: |S| ă 2γn/k`.
Recall that a data item d is crashed at level ` if there exist at least r = c/6

pairwise different subbutterflies BF (u(`1)s,i1
(d)), . . . , BF (u

(`r)
s,ir

(d)) with `i ě `

that are crashed, i.e., each of them contains at least 2`i´1 crashed servers. For
each d P S, let di1 , . . . , dir be c/6 such data pieces of d fulfilling this property.
Further, define F := t(d, i1), . . . , (d, ir) | d P Su. Then, F is a c/6-bundle of
S. Since a subbutterfly of level `1 contains k`1 servers in total, and since a
crashed subbutterfly of level `1 contains at least 2`1´1 crashed nodes, a 2`

1´1/k`
1

fraction of the servers of a crashed subbutterfly on level `1 are crashed, which
is at least 2logk n´1/n for any 1 ď `1 ď logk n. Since in total only at most
γn1/ log log n = γ ¨ 2logk n servers are crashed, the number of servers covered
by all BF (u(`i)s,i (d)) with (d, i) P F is less than 2γn. Since ΓF,`(S) is exactly
the set of these servers, it holds: |ΓF,`(S)| ă 2γn. With Corollary 3.25 we get
|S| ă 2γn/k`.

Upper bound on the number of congested requests: For the upper bound on the
number of congested requests, recall that we call a subbutterfly BF (v) of a
node v congested if the servers in BF (v) receive more than βck messages for
different (d, i) pairs. Since β ą 5/2, it holds that βck ą 5ϕc/(6 ¨ 2γ), which
implies that a congested subbutterfly BF (v) of a node v receives more than
5ϕc/(6 ¨ 2γ) decode(d, i, t) messages for different (d, i) pairs. By the induction
hypothesis and due to the fact that we send 5c/6 decode(¨) messages per data
item in the Decoding Stage, there are at most 5c/6 ¨ ϕn/k` decode(¨) messages
in total, which means that there are less than 5c/6¨ϕn/k` ¨6¨2γ/(5cϕ) = 2γn/k`

congested subbutterflies of dimension `.
Let S be a set of data items with requests congested at level `. Similar to the

previous part about crashed data items, we can construct a c/6-bundle F for
S. Since there are less than 2γn/k` congested subbutterflies of dimension `
and since each subbutterfly of dimension ` contains k` nodes, |ΓF,`(S)| ă 2γn.
Again, with Corollary 3.25we get |S| ă 2γn/k`, which completes the proof.

97

Chapter

6
OSIRIS

In the previous chapters we considered an insider adversary that was allowed
to crash a huge fraction of the servers. As a consequence, data stored at the
servers may be outdated (when the servers become available again) or even
completely inaccessible. Nevertheless, the servers still were able to detect
crashed servers by using a crash detector and they were even able to detect
outdated data by using timestamps whenever data is written into the sys-
tem. However, the problem becomes even more challenging when considering
servers whose storage may be corrupted arbitrarily. Note that we do not con-
sider Byzantine servers here. Instead we assume an insider adversary that
may arbitrarily corrupt the storage of the servers but it may not corrupt the
main memory (holding the values and data computed during the execution of
the protocol) and the protocol description. While crash failures at the servers
or clients imply the absence of data items and therefore can be handled by
applying techniques presented in the previous chapters, it is much more chal-
lenging to detect and handle corrupted data items. Standard error detecting or
correcting codes do not scale in our case since the number of attacked servers
we allow is asymptotically orders of magnitude larger than polylog(n), which
normally requires a storage redundancy of the same magnitude.

An application of this kind of storage failures can be found in the context
of DNS spoofing attacks. For that purpose, consider a setting where the n
servers are split up into two entities each, a client ci and a storage server si.
The clients are reliable and do not contain any additionally storage except for
the main memory. However, each client ci is able to store data at storage server
si. For this purpose, client ci knows the domain name of storage server si.
As is customary, the domain names of the storage servers are managed by

99

Chapter 6 OSIRIS

cl0 cl1 cli cln−1

.

DNS server(s)

s0 s1 si sn−1

.

Figure 6.1: Model visualization. The upper entities denote the storage servers,
the lower entities denote the clients. The dashed lines pointing to
the gray servers denote a redirection of the domain names of storage
server s1 and si to a storage server maintained by an adversary
containing arbitrary data.

domain name system (DNS) servers that translate the domains into numerical
IP addresses. Using the approach of consistent hashing, it is easy to design
a distributed storage system in which the clients act as worker nodes that
receive and answer requests for data held at the storage servers. However,
many difficulties and challenges arise when considering the existence of an
insider adversary that knows everything about the system and has the ability
to use this knowledge in order to run a DNS spoofing attack on several DNS
servers which causes the DNS servers to return incorrect (arbitrarily chosen)
IP addresses. By these means, the adversary may falsify the IP addresses
of storage servers such that the returned addresses point to storage servers
maintained by the adversary itself. This enables the adversary to arbitrarily
corrupt the data returned to the clients (see Figure 6.1).

In order to increase the readability and to not blow up the construction and
hide the main innovations behind our system, in the following we assume
the first mentioned view onto the system where we solely are given n servers
whose storage may be arbitrarily corrupted except for their main memory and
their protocol description. However, all protocols and proofs given equally
apply to the model with separated clients and storage servers.

In the following of this chapter we present OSIRIS, a scalable distributed
storage system that is provably robust against an insider adversary who can
corrupt the storage of a large fraction of servers. At the same time, OSIRIS

100

6.1 Preliminaries

only needs a logarithmic storage redundancy. Despite this powerful attack,
our system is able to correctly serve any set of lookup and write requests with
O(1) requests per server in at most polylog(n) time and work per server.

Theorem 6.1 (OSIRIS Main Theorem). Assume an insider adversary arbitrarily
corrupts at most γn1/ log log n servers with γ = 1/64. Then, using only a logarithmic
redundancy, OSIRIS correctly serves any set of lookup and write requests (at most
O(1) per server) after at most O(log2 n) communication rounds with a congestion of
at most O(log3 n) at every server in each round, w.h.p.

In the following we recap the main model specifications and introduce
further preliminaries (Section 6.1). Afterwards, we present the storage strategy
used in OSIRIS (Section 6.2). In Sections 6.3 and 6.4 we describe a lookup and
write protocol. Since the correctness analysis of the lookup protocol is rather
involved, we shifted it into a separate Section (Section 6.5).

6.1 Preliminaries
Just as in Chapter 5, we propose protocols for two types of requests: lookup
requests and write requests. As well as in all previous chapters, we assume
a synchronous time model, where time proceeds in rounds that are divided
into periods. We assume a batch-based adaptive insider adversary: i.e., the
adversary has complete knowledge of the system and can use this knowledge
to arbitrarily corrupt the storage of up to γn1/ log log n servers (excluding their
main memory and their protocol description) at the beginning of each period
with γ = 1/64. We call this kind of failures caused by the adversary storage
failures. Furthermore, we denote a server to be corrupted if the adversary
corrupted the storage of that server. Note that a corrupted server is not aware
of being corrupted. A server that is not corrupted is called intact. In addition
to causing storage failures, the adversary also specifies the set of requests
sent to the servers. That is, we consider worst-case storage corruptions and
worst-case requests.

Since on the one side we assume the adversary to be adaptive (i.e., it may
choose a new set of servers to be corrupted at the beginning of each period)
and on the other side we assume the number of attacked servers to be upper
bounded by γn1/ log log n, we additionally make the following assumption on
the storage state of the attacked servers: Whenever a server s is attacked in
period p and it is “released” again in period p1 ą p (i.e., it is not attacked any
more), then at the beginning of period p1 the storage state of server s is reset to
its storage state at the end of period p´ 1. The assumption of automatically
resetting the states of previously corrupted servers can in the context of DNS
spoofing attacks be motivated as follows: Whenever the adversary decides

101

Chapter 6 OSIRIS

to reset the falsification of an IP address of a server s in order to falsify the
IP address of another server, the IP address for server s returned by the DNS
system points to server s again. However, server s is not aware of the changes
made during the time its IP address was falsified. In particular, the storage of
server s is the same as it was just before the IP address of s was falsified.

Note that by this reset mechanism, a server s that was corrupted during a
period p in which data has been written into the system is not aware of that
change once it is not corrupted anymore. Similarly to RoBuSt, we call such a
server outdated.

While in the previous chapters (Chapters 3–5) we assumed the servers to
initially build a clique, we can weaken this requirement in this chapter and
instead only require the servers to be connected with each other via a logn-
ary butterfly (see Section 2.2). Hence, each server is not required to have a
quadratic degree anymore but a degree of O(log2 n/ log logn) suffices. We
are able to weaken our requirements in that way since the protocols of the
previously presented systems required the determination of representatives of
the crashed servers in a preprocessing stage which again required the servers
to form a clique. However, in the setting considered in this chapter we are not
able to determine intact representatives for the corrupted servers, since we
cannot differentiate between corrupted and intact servers. Instead, we will
come up with other techniques in order to deal with the existence of corrupted
servers.

Since the storage strategy of OSIRIS will make use of authentication tech-
niques, we require the existence of one-way hash functions g : t0, 1u˚ Ñ

t0, 1ulog2 n that cannot be inverted by a polynomially bounded adversary with a
reasonable amount of work with high probability if n is sufficiently large. Since
the adversary must not be able find collisions in the one-way hash functions
we use, we additionally require the adversary to be polynomially bounded.

In order to guarantee a logarithmic storage redundancy, we assume the size
of data items to be at least Ω(log4 n) and at most polylog(n). However, bigger
data items could still be handled by our system, but in this case the maximum
message size is proportional to the size of the biggest data item in the system.
Alternatively, huge data items can be split into several chunks such that each
of them is of size at most polylogarithmic in n.

In order to authenticate data blocks, the storage strategy of OSIRIS makes
use of the well-known Merkle trees [Mer79].

Definition 6.2 (Merkle tree). Let b1, . . . , bN ,N P N, be a set of data blocks and let g
be a one-way hash function. A tree T is called a Merkle tree of b1, . . . , bN if it holds:
b1, . . . , bN are stored at the leaves of T , every leaf is assigned the hash value of the data
item it stores, and every inner node is assigned the hash value of the concatenation of

102

6.1 Preliminaries

the child nodes’ assignments.

See Figure 6.2 for a visualization of a Merkle tree.

a

b c

d e
g(a) g(d) g(e)

g(b) g(c)

H2︷ ︸︸ ︷
g(g(a) ◦H1)

H1︷ ︸︸ ︷
g(g(b) ◦ g(c))

H3︷ ︸︸ ︷
h(g(d) ◦ g(e))

h(H2 ◦H3)

Figure 6.2: Example of a Merkle tree. The variables below the child nodes
denote the data stored at those nodes; the remaining values denote
the hash values assigned to the particular nodes.

Given a tree T with data blocks assigned to its leaves, we use the notion
compute the Merkle tree of T for the procedure of computing the hash values
of all nodes of T beginning with the hash values of the data blocks assigned to
the leaves of T and assigning the computed hash values to the nodes. In the
following let g be a one-way hash function with |g(x)| = O(log2 n) for all x.
For a data block b, we use the notion g(b) to denote the hash value of b; whereas
for a node u in a Merkle tree, we use the notion g(u) to denote the Merkle hash
value that is assigned to u.

Table 6.1 provides an overview of variables and their bounds that are com-
monly used in this chapter.

Term Bound Description
γ = 1/64 Constant in fraction of corrupted servers from

n1/ log log n servers
ε ă γn1/ log log n Fraction of corrupted servers

α
ą 2(1 ´ ε)/γ,
e.g., ě 32

Constant in congestion bound in Probing Stage

β ą 5/2 Constant in congestion bound in Decoding Stage
c ě 16 logm Number of pieces created for each data item

Table 6.1: Variables commonly used in the presentation of OSIRIS.

103

Chapter 6 OSIRIS

6.2 Storage Strategy
In OSIRIS we reuse the concepts of the underlying data structure already used
in RoBuSt. That is, data items are stored into buckets that are arranged in a
tree structure (see Section 5.2). In order to be able to handle storage failures,
instead of solely crash failures as RoBuSt does, we need to revise the internal
storage strategy of a single bucket, which is described in the following.

Let b1, . . . , bn be n data blocks that have already been assigned to the servers
and that are supposed to be stored into a single bucket. This storing procedure
not only consists of simply storing the plain data at the servers, but also of
encoding the data blocks with each other and of computing authentication
information for the data blocks which again will also be encoded with each
other. For the encoding we build upon the framework of the k-ary Butterfly
Coding Strategy, as already introduced in IRIS and RoBuSt and develop a
novel code for use in this framework that suits our needs. This distributed code
is presented in Section 6.2.1, followed by a descriptions of the steps necessary
to perform in order to store the data blocks b1, . . . , bn in a single bucket in
Section 6.2.2.

6.2.1 Internal Distributed Error Detecting and Correcting Code
One of the main ingredients of the Butterfly Coding Strategy (Section 3.2) is a
distributed code that guarantees the correction of a single block if the faulty
block is known and that appends only some parity bits to the input data blocks
in the result. In OSIRIS we replace this code with a new code that not only
guarantees the correction of a single data block but is additionally able to
detect a single faulty data block (if it is the only one) in a given set of data
blocks that are encoded with each other using this strategy. This code builds
on Hamming codes and in its result only some parity bits are appended to
the input data blocks. Furthermore, the concepts of this code can be used to
transform any centralized single-error detecting and correcting coding strategy
that appends bits to the original message only into a distributed single-error
detecting and correcting coding strategy.

Before we provide a detailed description of the code, we introduce some ba-
sic notions. For a bit string x of length z let HammingCode(x) = (x, p1 . . . pr(z))
denote the computation of the Hamming code [Ham50] on input x with re-
sult (x, p1 . . . pr(z)), where the pi denote the parity bits generated during the
computation of the Hamming code of x and r(z) denotes the number of those
parity bits for x. Note that we do not use standard Hamming codes, but a
slightly modified version of Hamming codes, with the only difference being
that the parity bits are not distributed between the single bits of the input
strings, but they are appended to the end of the input string. Obviously, this

104

6.2 Storage Strategy

modification harms neither the correctness nor the efficiency of Hamming
codes. Furthermore, for j P t1, . . . , zu, x(j) denotes the j-th bit of x. The
concatenation of two bit strings x and y is denoted by x ˝ y.

The encoding of k data blocks b1, . . . , bk P t0, 1uz (visualized in Figure 6.3)
resulting in k encoded data blocks b1

1, . . . , b
1
k works as follows:

1. For j P t1, . . . , zu define Wj := b1(j) ˝ . . . ˝ bk(j) as the bit string con-
sisting of the j-th bit of b1, . . . , bk. Apply HammingCode(Wj) for all
j P t1, . . . , zu, resulting in (Wj , Tj) with |Tj | = r(k).

2. Define T := T1 ˝ T2 . . . ˝ Tz and cut T into k pieces of equal size denoted
by L1, . . . , Lk.

3. Set b1
i = bi ˝ Li ˝ Lprev(i) ˝ Lnext(i), i P t1, . . . , ku, where next(i) = i

mod k + 1 and prev(i) = (i´ 2) mod k + 1.

b1

b2

bi−1

bi
bi+1

...

...
bk

zW1W2W3 Wz−1Wz

T1 T2 T3 Tz−1 Tz

. . .

L1

L2

Li−1

Li

Li+1

Lk

Lk

L1

Li−2

Li−1

Li

Lk−1

...

...

L2

L3

Li

Li+1

Li+2

L1

r(k)

. . .T1 T2 T3 TzT :=

L1 L2 Lk

Figure 6.3: Visualization of the error detecting and correcting coding strategy.

As the following lemma formalizes, the presented code ensures that in an
encoded block of k data blocks, a single erroneous data block can be detected
and corrected.

Lemma 6.3. Let the data blocks b1, . . . , bk be encoded with each other using the
previously described distributed coding strategy resulting in b1

1, . . . , b
1
k. If a single

105

Chapter 6 OSIRIS

data block from b1
1, . . . , b

1
k is corrupt, then the information in the remaining b1

i suffices
to detect and correct the erroneous data block.

Proof. W.l.o.g. we may assume that server si holds data block bi, i P t1, . . . , ku.
For server si, i P t1, . . . , ku, let b̃1

i := b̃i ˝ L̃i ˝ L̃prev(i) ˝ L̃next(i) denote the data
block si stores for the currently considered bucket. That is, if b̃1

i is not corrupt,
b̃1
i = b1

i; otherwise b̃1
i differs in at least one bit from b1

i.
In the following let b̃1

c be the only corrupted data block in b̃1
1, . . . , b̃

1
k. That is,

at least one of the following cases holds: b̃c ‰ bc, L̃prev(c) ‰ Lprev(c), L̃next(c) ‰

Lnext(c), or L̃c ‰ Lc.
Via the following procedure the servers can detect b̃1

c to be corrupted and
repair it:

1. Correction of L̃c:
• Each server si sends L̃prev(i) to server sprev(i) and L̃next(i) to server
snext(i).

• For server si let L̃i,1 and L̃i,2 be the two data blocks si received
from sprev(i) and snext(i). Note that in case none of the blocks
b̃1
i, b̃

1
prev(i), b̃

1
next(i) is corrupted it holds: L̃i = L̃i,1 = L̃i,2 = Li.

• Since we assume only a single data block to be corrupted, for at
most one data block L̃ P tL̃i, L̃i,1, L̃i,2u it holds L̃ ‰ L, while for the
remaining two data blocks p̃1, p̃2 P tL̃i, L̃i,1, L̃i,2u it holds p̃1 = p̃2 =
Li.

• If a server si detects that exactly one of the received data blocks L̃i,1
or L̃i,2 is not equal to L̃i, then the server that sent the data block
that did not equal L̃i is the corrupted server and L̃i = Li, i.e., ci
does not hold corrupted data.

• If a server si detects L̃i ‰ L̃i,1 and L̃i ‰ L̃i,2, then si is the corrupted
server (since only a single server was assumed to be corrupted) and
updates L̃c = L̃c,1.

• If L̃i = L̃i,1 = L̃i,2, neither si, nor sprev(i), nor snext(i) is corrupted
and it holds L̃i = Li.

2. Correction of b̃c: Each server si sends bi to all k ´ 1 other servers such
that each server can compute Tj for all j P t1, . . . , zu. Since sc is the only
corrupted server, each server si can detect (and possibly correct) each
corrupted bit bc(j), j P t1, . . . , zu such that at the end for each server si it
holds b̃i = bi.

At the end of this procedure for each server si it holds: b̃1
i = b1

i.

106

6.2 Storage Strategy

6.2.2 Storage Strategy of a Single Bucket
In the following we present the steps required for storing n data items in a
bucket B of OSIRIS. In order to keep the description as clear as possible, some
of these steps are presented as a centralized algorithm, but their transformation
into a distributed one is straightforward.

Step 1: Use Reed-Solomon codes in order to create c = 8 logm pieces of each
of the n data items d such that each set of tc/4u of these pieces suffices
to recover d. For each data item d map the previously created c pieces
d1, . . . , dc of d to the servers using c hash functions h(1,B), . . . , h(c,B) :
U Ñ [0, 1) chosen uniformly at random. Since the hash functions are
chosen uniformly at random, by the Chernoff bounds (Lemma 2.1),
each server will hold c data pieces, w.h.p. We call the concatenation of
the data pieces mapped to a server ci data block bi. We also use the
notion of bi being assigned to server ci in bucket B.

Step 2: Encode b1, . . . , bn with each other using the Butterfly Coding Strategy
(see Section 3.2 while using the code presented in Section 6.2.1 as the
internal error detecting and correcting code). Let Data-BF(B) denote
the k-ary butterfly consisting of the virtual nodes that store the data
pieces and the parity information computed during this encoding
process.

Step 3: For each butterfly node ui = (logk n, i), i P t1, . . . , nu, at level logk n
of the k-ary butterfly compute the Merkle tree of the complete k-ary
upper tree UT (ui) rooted at ui. Since the hash value g(u) of a butterfly
node u is in general different for different buckets, we call g(u,B1) the
hash value of u in bucket B1. The Merkle tree of UT (ui) is determined
in a top-down fashion (i.e., from level 0 to level logk n) by computing
the hash values of all nodes in UT (ui) for bucket B. Here, the leaves
are labeled with g(b1, B), . . . , g(bn, B) and each inner node v is labeled
with g(g(v1, B)˝ . . .˝g(vk, B), B), where v1, . . . , vk denote the children
of v in UT (ui). With MTB1(ui) we refer to the computed Merkle tree
rooted at ui for a bucket B1. Moreover, at each butterfly node v with
children v1, . . . , vk in UT (ui) we not only store the hash value g(v,B),
but additionally store the hash values g(v1, B), . . . , g(vk, B): i.e., each
butterfly node v stores GB(v) := g(v,B) ˝ g(v1, B) ˝ . . . ˝ g(vk, B) for
bucket B.

Step 4: At each server s we store all strings GB(u) of the nodes u that server s
emulates in bucket B. Let GB(s) denote the concatenation of all these
GB(u). Encode the data blocks GB(s0), . . . , GB(sn´1) with each other
using the Butterfly Coding Strategy (see Section 3.2 again while using

107

Chapter 6 OSIRIS

the code presented in Section 6.2.1 as the internal error detecting and
correcting code). Let Merkle-BF(B) denote the k-ary butterfly con-
sisting of the virtual nodes that store the strings GB(s0), . . . , GB(sn´1)
and the according parity information computed during this encoding
process.

Note that by this procedure we create two virtual k-ary butterflies:
Data-BF(B), which holds the encoded data items, and Merkle-BF(B), which
holds the encoded Merkle values of the Merkle trees.

One can show that this storage strategy requires only a constant redundancy
for each server and each bucket (Lemma 6.4).

Lemma 6.4. For a server s let d(s) denote the concatenation of data and additional
information computed during the previously described encoding process for storing
a set of n data items, each of length z, into a bucket B. It holds: |d(s)| ď λ ¨ z for a
sufficiently large constant λ ą 0.

Proof. First, we analyze the storage S(z) required for each server when en-
coding n data blocks, each of length z, with each other using the Butterfly
Coding Strategy. With r(k) denoting the number of parity bits appended to a
string of length k when encoding that string with Hamming codes, it holds:

S(z) :=
řlogk n

`=1 z ¨

(
1 + 3r(k)

k

)`
. Using (1 + x) ď ex for x ě 1 this term can

be upper bounded by logk n ¨ z ¨ e
3 logk n¨r(k)

k . Since r(k) ď log k + 1 [Ham50],
the exponent in this term is upper bounded by 3 log n¨(log k+1)

log k¨k , which can be
upper bounded by a constant such that all in all we get S(z) ď ρ logk n ¨ z for a
sufficiently large constant ρ ą 0.

Now we analyze the storage required for each server in each of the above
steps:

Step 1: Using Reed-Solomon codes instead of storing the plain data item the
storage overhead needed for storing c pieces of a data item dj with
length z increases only by a constant factor [RS60]. This implies that
after the mapping of c pieces to each server, each server stores data
blocks of length z1 P O(z).

Step 2: With the above consideration, the encoding of the n data blocks
b1, . . . , bn with each other increases the storage overhead at any server
by a factor of ρ logk n for a sufficiently large constant ρ ą 1.

Step 3: After the computation of all Merkle trees, by Lemma 6.7, each butterfly
node u on level `, 1 ď ` ď logk n, additionally stores k + 1 hash values
(its own hash value g(u,B) and the hash values of its k children in
UT (u)), each of length O(log2 n). The butterfly nodes on level 0 only

108

6.3 Lookup Protocol

need to store their own hash value. Hence, for the storage amount
of a single butterfly node for a single bucket B it holds: |GB(u)| =
O(k ¨ log2 n).

Step 4: Since server si, i P t1, . . . , nu, emulates all butterfly nodes in column
i, si stores O(k logk n) hash values in total. Since each hash value has
a length of O(log2 n), server si needs to store a data block of length
O(k logk n log2 n). The final encoding of all these data blocks using
the Butterfly Coding Strategy increases the storage amount only by a
constant factor of ρ1 logk n for ρ1 ą 1 constant.

All in all, for data blocks of length z P Ω(log2
k n log2 n), as assumed in

Section 6.1, for the required storage amount d(s) at a server s it holds: |d(s)| ď

λz, for a sufficiently large constant λ ą 0.

As already argued in Section 5.2, when data items are updated or deleted it
may happen that old versions of the modified data item remain in the storage
system, but only at most one data item for each zone of the bucket tree. Since
there are at most Λ + 1 = O(logn) zones in total, Lemma 6.4 implies that
OSIRIS requires an overall redundancy of O(logn).

Lemma 6.5. OSIRIS has an overall redundancy of O(logn).

6.3 Lookup Protocol
Recall that the data items stored in OSIRIS are not stored in a single bucket,
but they are stored in several buckets that are arranged in a tree-like structure,
the bucket tree. For each data item there are Θ(logn) possible buckets where
to store that data item. These buckets form a path from the root of the bucket
tree to one of its leaves. Hence, in order to serve a lookup request for some
data item d, we traverse this path, beginning at the root and at each bucket we
try to serve the lookup request for d by performing the protocol described in
the following. In order to handle a set of up to n lookup requests, we traverse
the bucket tree beginning at the root and consider at each level several buckets
that are potential storage locations for the requested data items in parallel.

Note that a server does not only store a single data piece or data item for
a bucket. Instead it stores a data block that contains several data pieces and
coding information. Hence, when searching for a specific data piece located at
a server s in a bucket B, we do not just recover that single data piece, but we
recover the complete data block stored at server s for bucket B.

Before we provide a detailed description of the Lookup Protocol, we give an
overview of the stages and their results.

109

Chapter 6 OSIRIS

6.3.1 Outline of the Lookup Protocol
The Lookup Protocol consists of two main stages executed sequentially: The
Probing Stage and the Recovery Stage.

The Probing Stage (see Section 6.3.2) consists of O(logk n) phases with the
following result: For each request for a data item d, either the request is correctly
answered or the request is assigned to a level ` P t1, . . . , logk nu. In the latter
case, for sufficiently many data pieces di of d the first logk n ´ ` entries of
the hash chain of di are correctly stored in the according butterfly nodes of
Merkle-BF(B), where B denotes the currently considered bucket for d.

The Recovery Stage (see Section 6.3.3) handles the requests that have not been
served in the Probing Stage and consists of two further sequentially performed
substages, both consisting of O(logk n) subphases: The Hash Chain Recovery
Stage (see Section 6.3.3.1) and the Data Recovery Stage (see Section 6.3.3.2),
which, in short, work as follows:

1. Hash Chain Recovery Stage: In subphase ` P t1, . . . , logk nu, the requests
that have been assigned to level ` before are handled. That is, the re-
maining ` entries of the hash chains of sufficiently many pieces of the
considered data items are tried to be recovered. This process may fail
due to excessive congestion at a node which causes the request for the
according data item to be (re-)assigned to level `+ 1. At the end of this
stage it holds: For sufficiently many data pieces of any requested data
item (whose request has not been served in the Probing Stage) the re-
maining entries of sufficiently many of the data piece’s hash chains are
correctly recovered.

2. Data Recovery Stage: In subphase ` P t1, . . . , logk nu, the requests that
have been assigned to level ` before are handled. At the end of phase
` P t1, . . . , logk nu of this stage it holds: Sufficiently many data pieces
of each requested data item (whose request has not been served in the
Probing Stage) are recovered (using the Butterfly Coding Strategy) and
verified using the hash chain. If the verification of too many data pieces
fails, the request is reassigned to level `+ 1 and further handled in the
next phase of the Data Recovery Stage. Otherwise, the requested data
item can be recovered using RS-codes. At the end of the overall stage
each previously unserved lookup request will be served correctly.

Recall that at the beginning of the Lookup Protocol of IRIS and RoBuSt a
Preprocessing Stage is performed in which for each attacked server a unique
intact server as its representative is determined. Since in the setting considered
for OSIRIS we are not able to detect whether a server is attacked (i.e., corrupted)
or not, we cannot determine representatives for these servers. Consequently,
we do not need to perform a Preprocessing Stage here.

110

6.3 Lookup Protocol

6.3.2 Probing Stage
In the Probing Stage, each server s with a request for a data item d tries to
retrieve and verify at least c/4 pieces of d.

High-Level overview: First, each server s with a request for a data item d
chooses c servers s1(d), . . . , sc(d) uniformly at random and asks each server
si(d) to retrieve and verify piece i of d: i.e., di. If at least c/4 of these servers
answer with verified pieces, s recovers d using these pieces and Reed-Solomon
codes and serves the request. Otherwise, the request for d cannot be served
in the Probing Stage, but will instead be handled again in the Recovery Stage
(see Section 6.3.3).

Details on the Probing Stage: In the following, in order to reduce the num-
ber of messages sent, we use the technique of Splitting and Combining for
sending messages along the probing path just as in IRIS and RoBuSt. This tech-
nique at each intermediate node simply combines all requests with the same
target and takes care of splitting the corresponding subsequently received
answers again.

Each server s with a request for a data item d first chooses c servers
s1(d), . . . , sc(d) uniformly at random and also informs these servers about
being chosen such that these servers can initiate the retrieval and verification
of data piece di belonging to bucket B. The retrieval and verification of a data
piece di belonging to a bucket B and initiated by a server si(d) consists of the
following procedures:

Step 1: Initialization: si(d) initiates sending the request for di bottom-up along
the probing path of di in the Merkle butterfly Merkle-BF(B) from level
logk n to level 0. In the following let the hash chain of di be the list con-
sisting of logk n entries, where each entry represents the hash values
a butterfly node on the probing path of di holds in MTB(u) . That is, the
j-th entry of the hash chain of di is of the form
(g(uj , B), g(u

(1)
j , B), . . . , g(u

(k)
j , B)), where uj denotes the j-th node

on the probing path of di and u(1)j , . . . , u
(k)
j denote the children of uj

in UT (uj).

Step 2: Congestion check and acquisition of the correct hash values: Each node v
on a level ` ą 0 on the probing path of di that receives requests for
data pieces first performs a simple congestion check (note that v may
lie on several probing paths and that if v is on level ` then all nodes
that receive requests in the current round are on level `): If the number
of messages received in the current round is greater than α ¨ c (for an
arbitrary fixed constant α ě 32), it stops the forwarding of all requests
received in the current round and informs all origins si(d) of these

111

Chapter 6 OSIRIS

requests about that (via top-down routing along the corresponding
probing paths). If the number of messages received in the current
round is at most α ¨ c, node v tries to obtain the correct hash values
for itself and its children in UT (v) (details on this are provided in
Section 6.3.2.1). If this is not successful, v stops the forwarding of the
request for di and informs its origin si(d) about that (via top-down
routing along the corresponding probing paths).

Step 3: Destination reached: When a request initiated from a node u at level
logk n has reached its destination node w on level 0, w checks whether
g(bi, B) matches the Merkle hash value that w’s parent in UT (u) stores
for it, where bi is the data block stored at w containing di. By the above
process, w.h.p. this is true if and only if bi is correct. In that case,w tries
to extract di from bi. Depending on whether this fails (which means
that d does not exist) or is successful, w then sends a dataNotFound(d)
message or the data piece di, respectively, back along the probing path
to node u. In the other case in which the Merkle hash values do not
match, w informs (via top-down routing along the probing path of di)
node u about the fact that the request failed because di could not be
verified.

Step 4: Answering: If the probing was successful, i.e., the block bi to which
di belongs was verified correctly, si(d) forwards the data piece di or a
dataNotFound(d) message to server s that received the lookup request
for d. If the probing failed, i.e., the request for di was aborted at a level
`1 P t0, . . . , logk nu (which may happen either due to the congestion
check in Step 2, or because the data item is corrupt, as determined
in Step 3), si(d) notifies server s about the level `1 at which the fail
occurred.

As mentioned before, requests that could not be answered in the Probing
Stage will be handled again in the Recovery Stage. For this we need the
following notion.

Definition 6.6 (Belong to). We say a request for a data piece di failed at level ` if
the forwarding of that request stops at a node at level ` in the Merkle Hash Butterfly (for
any of the reasons mentioned in Steps 2 – 4). A request d that could not be answered
in the Probing Stage is said to belong to level ` P t1, . . . , logk nu, where ` is the
smallest level such that at least (5/8)c pieces of d have not failed at level ` or greater.

6.3.2.1 Details on Obtaining the Correct Hash Values

In the following we describe how the nodes can make sure that they store the
correct hash values for themselves and their children as required in Step 2

112

6.3 Lookup Protocol

of the probing. For this purpose, we make use of the following lemma that
follows from the symmetry of the k-ary butterfly.

Lemma 6.7. Let u and v be two butterfly nodes on level ` P t1, . . . , logk nu with
BF (u) = BF (v). Then, for any bucketB that stores data it holds: g(u,B) = g(v,B).

Note that a direct implication of Lemma 6.7 is that all nodes at level logk n
in the Merkle Hash Butterfly store the same Merkle Hash value.

As we will see, obtaining the correct hash values of the children and itself
for a node u on the probing path is done by exploiting Lemma 6.7 and using
that inductively the parent of u on the probing path has correctly recovered
the hash value of its children before. Since the first node on the probing path
(the node emulated by si(d) on level logk n) does not have any parent and the
last node of the probing path (the node emulated by si(d) on level 0) does not
have any children, the recovery of the hash values for these nodes work in a
different way than for the nodes at a level ` P t1, . . . , logk n´1u on the probing
path. In the following let u be a node on the probing path of a piece di of a
data item d that is supposed to recover its hash values in Step 2 of the Probing
Stage.

Case 1: u is at level logk n.
1. u sends the hash value g(u,B) and the hash values
g(u(1), B), . . . , g(u(k), B) it stores for its children u(1), . . . , u(k) in
UT (u) to the server s that initiated the probing for data item d.

2. The server s receives the hash values sent from all c servers
s1(d), . . . , sc(d) it contacted at the beginning of the Probing Stage
and selects the tuple T it received most often.

3. s sends the tuple T to all c servers s1(d), . . . , sc(d) which causes
each server si(d) that emulates node u at level logk n to replace its
values g(u,B) and g(u(1), B), . . . , g(u(k), B) with the received hash
values.

Case 2: u is at level ` ă logk n.
1. Node u chooses Θ(logn) nodes on level ` from BF (u) uniformly at

random and asks them for their hash values (see Figure 6.4). Since
the server emulating u is not necessarily directly connected to the
servers emulating the chosen nodes, u informs the chosen nodes
about being chosen via a bottom-up routing in the k-ary butterfly
(see Section 2.2). Since the target nodes are chosen uniformly at
random, by Valiant’s trick [Val82] this does not yield more than a
congestion of O(log2 n) at any intermediate node.

113

Chapter 6 OSIRIS

2. For each of the Θ(logn) hash value tuples
(g̃(x), g̃(x(1), B), . . . , g̃(x(k), B)) received by a node x chosen uni-
formly at random before, u performs the following tests:

a) Feasibility test: Check whether the tuple is feasible: i.e., whether
g(g̃(x(1), B) ˝ ¨ ¨ ¨ ˝ g̃(x(k), B), B) = g̃(x,B).

b) Parent test: If the tuple is feasible, ask u’s parent node (on the
probing path for the currently considered data piece di) for the
hash value it stores for u and check whether this equals g̃(x,B).

3. If for one of the values received from a node x both tests are suc-
cessful, u uses the hash values obtained from x from now on, which
also finishes the procedure of obtaining the current hash values for
node u.

4. If for all hash values received from any node both tests fail, the
probing for the current piece di of d is aborted (cf. Step 2 of the
Probing Stage).

Case 3: u is at level 0. In this case u simply asks its parent node on level 1 on
the probing path for di for its hash value and updates its own hash value
to the value received.

BF (u)

.

.

si(d)s1(d) sc(d)

u

logk n

`

0

Level

Figure 6.4: Visualization of the Probing Stage for the case that node u is not at
the lowest level. The gray colored nodes denote the Θ(logn) nodes
u chooses uniformly at random.

As one can show, at the end of this procedure u stores the correct hash values
for g(u,B), g(u(1), B), . . . , g(u(k), B) (Lemma 6.8) as long as only less than half
of the servers in BF (u) are corrupted or outdated.

114

6.3 Lookup Protocol

Lemma 6.8. Let u be a node at level ` P t1, . . . , logk nu of the k-ary butterfly that is
reached during the probing for a data piece di. If only less than half of the servers in
BF (u) are corrupted or outdated, then at the end of the previously described procedure
for obtaining the current hash values, all nodes on the probing path of di from level
logk n up to level ` store the correct hash values, w.h.p.

In order to prove this lemma, we first need to show the following lemma:

Lemma 6.9. If the probing for a data piece di reaches a node u at level
` P t0, . . . , logk n ´ 1u, then the hash chain from level logk n up to level ` + 1
is correctly stored in the corresponding nodes of the probing path of di.

Proof. We show the claim by induction of `. The inductions base is for ` =
logk n´1. In the previous phase of the Probing Stage the node u at level logk n
of the probing path for di received the hash value tuple it is supposed to hold
from the server s that initially received the lookup request for d. Since the
servers s1(d), . . . , sc(d) were chosen uniformly at random by s, with Chernoff
bounds (Lemma 2.1) we can conclude that only less than half of the servers
from s1(d), . . . , sc(d) are corrupted or outdated, w.h.p. Hence, more than half
of the servers hold the correct hash values, w.h.p., implying that the tuple
(g(u,B), g(u(1), B), . . . , g(u(k), B)) that server s received most often from the
servers s1(d), . . . , sc(d) is the one with the correct hash values and this is also
the tuple it forwards to to all servers s1(d), . . . , sc(d) such that finally node u
also holds the correct hash values.

Next, let ` P t0, . . . , logk n ´ 2u and assume the claim holds for all `1 ą `.
Let u be the node reached at level `. By the induction hypothesis we know
that the hash chain from level logk n up to level ` + 2 is correctly stored at
the corresponding nodes of the probing path for di. Furthermore, since the
probing reached node u, the parent node of u on level `+ 1 passed both, the
feasibility test and the parent test for a hash value tuple it received from one
of the nodes from BF (u) it has chosen before. Since the hash function used in
the computation of the Merkle trees is a one-way hash function both tests can
only be passed if the considered hash value tuple is correct which implies the
claim.

Now, we are ready to prove Lemma 6.8.

Proof of Lemma 6.8: Let u be a node at level ` P t0, . . . , logk nu reached during
the probing for a data piece di.

First, consider the case ` = logk n. For the same reasons as in induction base
in the proof of Lemma 6.9 u will hold the correct hash values after performing
the procedure described above.

115

Chapter 6 OSIRIS

Next, assume ` = 0. By Lemma 6.9, we know that the parent node of u on
the probing path for di holds the correct hash values and therefor sends u’s
correct hash value to u.

In the following, let ` P t0, . . . , logk n´ 1u. Note that any hash value tuple
sent by a node w to node u that is neither corrupted nor outdated passes the
two tests performed by node u. Since only less than half of the nodes in BF (u)
are corrupted or outdated, with Chernoff bounds (Lemma 2.1) it follows that at
least one node w chosen by u is neither corrupted nor outdated, w.h.p. Hence,
the hash value tuple (g̃(w), g̃(w(1), B), . . . , g̃(w(k), B)) node u receives from w
passes both tests. Since we assume the Merkle Hash function g(¨, B) to be a
one-way hash function, it follows that g̃(w(1), B), . . . , g̃(w(k), B) are also correct.
By Lemma 6.9, the hash chain from level logk n up to level ` + 1 is correctly
stored in the according nodes which implies the claim.

All in all, we get that at the end of the Probing Stage the following lemma
holds.

Lemma 6.10. For each request for a data item d that belongs to a level
` P t1, . . . , logk nu it holds: For at least (5/8)c data pieces di of d the first logk n´`+1
entries of the hash chain of di are correctly stored in the according butterfly nodes of
Merkle-BF(B).

6.3.3 Recovery Stage
The Recovery Stage is dedicated to the further handling of the lookup requests
that could not be served in the Probing Stage. In the Recovery Stage, corrupt,
missing or outdated hash values and pieces of data items are recovered by
exploiting the Butterfly Coding Strategy. Recall that each request that could not
be served in the Probing Stage is defined to belong to a level ` P t1, . . . , logk nu.
The Recovery Stage is divided into logk n phases, where in phase ` all requests
belonging to level ` are handled, starting with ` = 1. For this purpose phase `
is divided into two further substages: the Hash Chain Recovery Stage and the
Data Recovery Stage.

Before we provide a detailed description of these two substages, we present
the actions to perform in these substages on a high-level view. In the Hash
Chain Recovery Stage, for each piece di of a data item d belonging to level `
the system tries to recover the remaining ` entries of the hash chain of di, such
that at the end of this process with Lemma 6.10 for sufficiently many pieces di
the complete hash chain of di is recovered. If the recovery of the remaining
` entries of the hash chain does not succeed for at least c/4 pieces of d, the
request for d is said to belong to level `+ 1 and is further handled in the next
phase of the Recovery Stage. Otherwise, the request for d is further handled
in the Data Recovery Stage. In the Data Recovery Stage, the system tries to

116

6.3 Lookup Protocol

recover sufficiently many pieces of data items for which the complete hash
chain has been recovered successfully in the previous Hash Chain Recovery
Stage. If at least c/4 pieces of a data item d are successfully recovered, these
pieces are used to recover the complete data item d using Reed-Solomon codes,
which afterwards is verified using the stored values of the hash chain. If the
verification succeeds, the request can be answered. If the verification fails or if
only less than c/4 pieces of d were successfully recovered, the request is said
to belong to level `+ 1 and further handled in the next phase of the Recovery
Stage.

6.3.3.1 Hash Chain Recovery Stage

At the beginning of the Hash Chain Recovery Stage, we need to perform some
preprocessing operations. For this purpose, recall that for each request for a
data item d that belongs to level ` by Definition 6.6 there are (5/8)c pieces of
d with requests that were active at level ` of the Probing Stage. That is, these
requests did not fail at level ` or any level `1 ą `. Let I(d, `) be an arbitrary set
of indices of (5/8)c of these pieces. Next, for all data items d with a request at
a server s and all indices of active pieces of d, i.e., for all i P I(d, `), server s
forwards a notification to the node on level ` of the probing path of data piece
di. Each node u that receives such a notification is supposed to initiate the
recovery of the remaining ` elements of the according hash chain. Recall that
all information necessary for this recovery is held by the nodes in UT (u). See
Figure 6.5 for a visualization. On a high-level view, the recovery of the hash
values of a data piece di consists of the following steps (details on these steps
can be found below):

Step 1: The servers investigate whether it is possible to decode the hash values
of di in parallel with the decoding of the other pieces of data blocks
to be recovered without a node becoming congested. Here, we call a
node congested if it receives more than βck messages for different data
pieces for an arbitrary fixed constant β ą 5/2. If this is not possible
without a node becoming congested, this information is returned to
server si(d) (via forwarding top-down along the probing path) and
the recovery process for di is aborted for this phase. Otherwise, the
servers proceeds with the next step.

Step 2: The servers decode the remaining ` entries of the hash chain of di using
the Butterfly Coding Strategy.

Step 3: The hash values along the probing path of di are verified. This is
necessary because the decoding may restore false hash values. Just
as in Step 1 in case the verification fails, this information is returned

117

Chapter 6 OSIRIS

to si(d) (via forwarding top-down the probing path). Otherwise, the
requested data piece (or the information that the data piece does not
exist in the system, respectively) is returned to si(d), which forwards
this information to the server s that initially received the request for d.

.

. . .

.

si(d)s1(d) sc(d)

u

h1(d) hi(d) hc(d)

UT (u)

logk n

`

0

Level

Figure 6.5: Visualization of the initial state in the Hash Chain Recovery Stage
in phase ` with the curved paths denoting the probing paths of the
data pieces d1, . . . , dc.

At the end of this process each server s with a request for a data item d that
belongs to level ` receives an answer for each of the (5/8)c considered data
pieces. If s discovers that more than (3/4)c pieces of d cannot be recovered in
the current stage, s classifies d to belong to level `+ 1 and d will be considered
in the next phase of the Recovery Stage again. Otherwise, s removes from
I(d, `) all indices i for which di was deactivated during phase ` and proceeds
to handle the request for d in the Data Recovery Stage.

At the end of phase ` of the hash chain recovery phase, for each request
for a data item d that still belongs to level `, it holds: |I(d, `)| ě c/4, and the
complete hash chain for each di with i P I(d, `) has been recovered correctly.

Note that each request for a piece of a data item that has successfully passed
the Hash Chain Recovery Stage once in some phase ` can skip the Hash Chain
Recovery Stage in all further phases `1 ą ` and directly enter the Data Recovery
Stage every time.

Details on Step 1: Analogously to the congestion check in the Decoding
Stage of IRIS and RoBuSt, Step 1 can simply be implemented by performing
a broadcast in BF (u) and letting the butterfly nodes thereby monitor their
congestion and report it via a broadcast to the remaining nodes in case they
get congested. Details on this can be found in Section 3.3.3. By the symmetry

118

6.3 Lookup Protocol

of the k-ary butterfly the following lemma holds.

Lemma 6.11. At the end of the congestion check in phase ` all nodes on level 0 in
BF (u) know whether BF (u) contains a congested butterfly node or not.

Details on Step 2: Let u be a node at level ` of the probing path of a data
piece di with i P I(d, `) for a data item d with a request belonging to level `. In
this step, the subbutterfly BF (u) of Merkle-BF(B) is decoded.

During the decoding of every k-block, whenever hash values in more than
one node would need to be changed, we simply ignore the change and proceed
in the next level without any changes performed. The reason for this is that
if more than one of the nodes in a k-block would need to change its hash
value due to a decoding step then there must be at least two nodes with false
information participating in the current decoding step, in which case we want
to abort the decoding process anyway.

Note that during the decoding, not only nodes emulated by corrupted servers
may store false information: If there are more than two corrupted nodes in a
k-block, their encoded values may be corrupted in such a way that the result
of the decoding causes an intact node to change its (correct) values to wrong
values. We call those servers falsified. Note that, since a falsification of intact
nodes is possible, all nodes participating in the decoding of a subbutterfly in a
phase ` must retain their previously stored values and restore their values at
the beginning of phase `+ 1. The decoding of a phase ` is finished after the
last k-block at level 0 has been successfully decoded. Note that the decoded
hash values may be incorrect (due to the influence of corrupted nodes in the
decoding). Thus, the hash values still need to be verified, as is done in the next
step.

Details on Step 3. The verification of the hash values of each piece di of
a data item d is performed similarly to the verification in the Probing Stage.
Recall that by Lemma 6.10 the hash chain of di from level 0 up to level ` has
already been correctly recovered in the Probing Stage. Starting with node u at
level `, each node v on the probing path of di upwards to level 0 performs the
following tests:

1. Feasibility test: v checks whether for the restored hash values of the chil-
dren of v, i.e., for g(v(1), B), . . . , g(v(k), B), it holds:
g(g(v(1), B), . . . , g(v(k), B)) = g(v,B).

2. Parent test: v checks whether its hash value g(v,B) matches the one that
its parent stores for v.

If any of the tests was not successful, the verification of all hash values of
pieces of data items stored in BF (v) is aborted (to achieve this, v broadcasts

119

Chapter 6 OSIRIS

this information in UT (v)). Furthermore, for each such piece di for which
the verification at any level failed, the according server removes i from I(d, `).
Finally, all requests for data items d belonging to level ` with |I(d, `)| ă c/4
are declared to belong to level `+1. The requests for the remaining data items
d with |I(d, `)| ě c/4 are handled immediately in the Data Recovery Stage.

6.3.3.2 Data Recovery Stage

The Data Recovery Stage is executed immediately after the Hash Chain Re-
covery Stage for each phase ` P t1, . . . , logk nu. In phase ` P t1, . . . , logk nu

all requests for data items that still belong to level ` are further handled.
That is, all data pieces di, i P |I(d, `)|, of a data item d that has a request
belonging to level ` are tried to be recovered and verified. Recall that due
to the congestion check in the Hash Chain Recovery Stage for each request
belonging to level ` it holds: For all data pieces di of d with i P |I(d, `)| the
`-dimensional subbutterfly Merkle-BF(u(`)s,i(d)) can be completely decoded
without causing any node to become congested. Just as in the previous chap-
ters, u(`)s,i(d) denotes the `-th butterfly node on the probing path of di. Since
Merkle-BF(u(`)s,i(d)) and Data-BF(u(`)s,i(d)) have the same structure, this implies
that also Data-BF(u(`)s,i(d)) can be completely decoded without causing any
node to become congested. Hence, in phase ` P t1, . . . , logk nu for each request
for a data item d that belongs to level ` we decode all `-dimensional subbutter-
flies Data-BF(u(`)s,i(d)) for each data piece di, i P |I(d, `)|. This process works
analogously to the decoding process in the Hash Chain Recovery Stage.

After this decoding process, for all i P |I(d, `)| the server that is supposed
to hold di, verifies di by comparing g(di, B) with the hash value assigned to
butterfly node u(0)s,i (d). In case these values equal, the data piece di is correct and
will be forwarded to all servers that requested di by again using the technique
of splitting and combining and routing through the k-ary butterfly. Otherwise,
the data piece di is not correct and this information will also be forwarded in
the same way to all servers that requested di. Each server si(d) that received
one of these answers sends this answer directly to the server s that initially
received the request for data item d. If s receives at least c/4 pieces of d it uses
Reed-Solomon codes in order to recover d and correctly answers the request.
Otherwise, s denotes the request for d to belong to level `+ 1, such that the
request will again be handled in the next phase of the Data Recovery Stage.

As the following lemma states, the lookup protocol of OSIRIS requires only
polylogarithmic congestion at each server and polylogarithmic time.

Lemma 6.12. The Lookup Protocol of OSIRIS takes at mostO(log2
k n) communication

rounds with at most O(log3 n) congestion at every server in each round.

120

6.4 Write Protocol

Proof. First, consider the Probing Stage. The Probing Stage basically consists
of a bottom-up followed by a top-down traversal of the k-ary butterfly. For the
verification of the hash values at each node u during the bottom-up traversal,
node u needed to contact O(logn) nodes from the last level of BF (u). For this
purpose an additional bottom-up traversal of the butterfly is required, which
is why the Probing Stage in total requires O(log2

k n) rounds. Recall that for the
congestion check an upper bound of αc with α ě 32 constant is used. Hence,
each node receives and sends at most O(kc) = O(log2 n) messages in each
round.

Next, consider the Recovery Stage which consists of O(logk n) phases. For
each phase the Hash Chain Recovery Stage and the Data Recovery Stage are
executed subsequentially. The congestion check in the Hash Chain Recov-
ery via a broadcast bottom-up through the k-ary butterfly requires O(logk n)
rounds. A possible decoding of the considered subbutterflies in the Hash
Chain Recovery Stage and the Data Recovery Stage require further O(logk n)
rounds. Hence, in total the Recovery Stage consists of O(log2

k n) rounds. Since
in the congestion check an upper bound of βck is used with β ą 5/2 constant,
no node sends or receives more than O(ck2) = O(log3 n) messages.

6.4 Write Protocol
The write protocol of OSIRIS is responsible for processing the write requests.
In principle, all data items are tried to be stored in the root bucket. Storing a
set of data items in a single bucket works exactly as described in Section 5.3.
Only if this would cause the root bucket to be overfull, i.e., to contain more
than 2n data items, the system has to determine a set of data items that are
going to be stored in a bucket in the next lower zone of the bucket tree. If this
causes that bucket to be overfull, too, another bucket in the next zone has to
be determined, and so on. For the sub-problem of determining suitable items
and choosing the next bucket that is considered, we can use exactly the same
process that is also used in RoBuSt (Section 5.3).

Recall that in each considered zone, at the beginning the considered bucket
is completely decoded. While in RoBuSt we only needed to handle crashed
servers, i.e., servers with failures we could simply detect, in OSIRIS we consider
corrupted servers, i.e., servers with failures we cannot detect. Hence, instead of
just recovering all data items stored in a bucket we additionally need to verify
the recovered data items. For this purpose we make use of the previously
described lookup protocol (Section 6.3). To be more precise, in order to recover
all single data pieces stored in a bucket B, each server that is supposed to
hold data piece d1 of a data item d initiates a lookup request for d in bucket B.
Since each bucket holds at most 2n data items which are distributed evenly

121

Chapter 6 OSIRIS

among the servers, w.h.p., we can process the initiated lookup requests using
the lookup protocol described in Section 6.3. By this procedure, after at most
a polylogarithmic number of rounds all data items stored in bucket B are
correctly decoded and verified and the write protocol can proceed as described
in Section 5.3.

Analogously to RoBuSt, we achieve a polylogarithmic upper bound on the
number of communication rounds and the congestion at each server in each
round.

Lemma 6.13. The Write Protocol of OSIRIS takes at most O(log2
k n logn) many

communication rounds with at most O(log3 n) congestion at every server in each
round.

6.5 Correctness Analysis of the Lookup Protocol
Just as in RoBuSt, we have to deal with outdated servers where a server s
may become outdated whenever data is written in the system in a period t
in which s was corrupted. In that case in any period t1 ą t in which d has
not been re-written, server s holds information about d that is not up-to-date
without being aware of that. However, analogously to Lemma 5.14, one can
show that whenever a data item is (re-)written in a bucket, not too many pieces
of that data item are mapped to subbutterflies that contain too many corrupted
servers.

Lemma 6.14. Assume the adversary corrupts at most γ ¨ n1/ log log n servers with
γ = 1/64. Then, for any data item d that is (re-)written in a bucket, and any level
` P t0, . . . , logk nu, at most c/8 pieces of d are mapped to subbutterflies BF (v) (for
some node v at level `) that contain at least r2`´2s corrupted servers, w.h.p.

While in IRIS we required the hash functions h1, . . . , hc to form a (c/4, 1/9)-
expander, in OSIRIS we require them to form a (c/8, 1/64)-expander. By
Lemma 3.24, this requirement is satisfied if the hash functions h1, . . . , hc are
chosen uniformly and independently at random with c ě 8 logm.

Just as in the analysis of the Lookup Protocol of IRIS and RoBuSt, we divide
the correctness analysis of the Lookup Protocol into two parts: the analysis
of the Probing Stage (Section 6.5.1) and the analysis of the Recovery Stage
(Section 6.5.2).

6.5.1 Analysis of the Probing Stage
Analogously to IRIS and RoBuSt, for the Probing Stage of the Lookup Protocol
of OSIRIS it can be shown that the number of requests belonging to a level
exponentially decreases.

122

6.5 Correctness Analysis of the Lookup Protocol

Lemma 6.15. Assume an insider adversary crashes at most γn1/ log log n servers with
γ = 1/64. Then, at the end of the Probing Stage of the Lookup Protocol of OSIRIS,
the number of requests belonging to level ` P t1, . . . , logk nu is at most 2γn/k`´1.

The proof of Lemma 6.15 is similar to the proof of Lemma 5.15 in RoBuSt,
although we need to be careful with the different conditions for a request
to be aborted at a level. That is, while in RoBuSt a request for a data piece
can only be aborted at level 0 by a node u if u was corrupted or outdated, in
OSIRIS a request for a data piece di can only be aborted at level 0 if di cannot
be verified. At levels ` ą 0 in RoBuSt a node can only abort a request if that
node is congested. In OSIRIS a node can only abort a request at a level ` ą 0 if
it is congested or if it cannot obtain the correct current hash value.

As for the proof of Lemma 5.15, we introduce the following notions.

Definition 6.16 (Congested/Unreliable/Outdated Subbutterfly). Let u be a
butterfly node at level ` P t1, . . . , logk nu. The subbutterfly BF (u) is said to be

• congested at level ` if the servers inBF (u) receive more than αck`´1/2 probes
for different data pieces in total when the requests are processed at level ` for an
arbitrary but fixed constant α ě 32.

• unreliable at level ` if at least a quarter of the servers in BF (u) are corrupted.

• outdated w.r.t. a bucket B if at least a quarter of the servers in BF (u) do not
store the latest version of bucket B.

Definition 6.17 (Congested/Unreliable/Outdated Request). A request for a data
item d is said to be

• congested at level ` if there exist pairwise different congested subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě `´ 1, r = c/8.

• unreliable at level ` if there exist pairwise different unreliable subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě `´ 1, r = c/8.

• outdated at level ` if there exist pairwise different subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with `i ě ` ´ 1, r = c/8 that are outdated
w.r.t. d.

With these notions we are ready to prove Lemma 6.15.

Proof of Lemma 6.15: Analogous to the proof of Lemma 5.15 we call a request
for a data piece di of a data item d aborted at level ` P t0, . . . , logk nu if the
probing for di did not successfully pass level `. Depending on the level ` a
request for a data piece di can be aborted at a node u for the following reasons:

123

Chapter 6 OSIRIS

• At level ` = 0: The data piece di cannot be verified correctly.

• At level ` ą 0: Node u is congested or u could not obtain the correct
current hash value.

By Definition 6.6, a request for a data item d belongs to level `, if ` is the smallest
level such that at least (5/8)c requests for pieces of d have not been aborted at
level ` or earlier. That is, a request for a data item d belongs to level ` if only
less than (3/8)c requests for pieces of d have been aborted at level ` or earlier
and more than (5/8)c requests for pieces of d have been aborted at any level
`1 ă `.

In the following we upper bound the number of requests belonging to level
` by distinguishing between level 1 and all other levels ` ą 1.

Upper bound on the number of requests belonging to level ` = 1: If a request for
d belongs to level 1, then more than (5/8)c requests for pieces of d have been
aborted at level 0 and at least (5/8)c requests for pieces of d have successfully
passed level 1. Since a request for a data piece di can only be aborted at level 0
if di cannot be verified correctly, we have that for more than (5/8)c data pieces
di of d a nodes u at level 0 could not verify di.

For the following reasons the verification of a requested piece di may fail at
a node u at level 0: (1) u does not hold the correct hash value for di, (2) u is
corrupted, or (3) u is outdated w.r.t. bucket B.

Since any node at level 0 only asks its parent node on the probing path of the
requested piece di for its hash value, with Lemma 6.9 it follows that whenever
a node at level 0 is reached in the Probing Stage, then this node holds a correct
hash value for di. Thus, the verification of a requested piece can only fail at
node u at level 0, if u is corrupted or outdated w.r.t. bucket B.

Recall that if a request for a data item d belongs to level 1, then at least
(5/8)c requests for pieces of d have successfully passed level 1. Since c/4
verified pieces would have been sufficient to recover d, we know that more
than (5/8)c´ (1/4)c = (3/8)c requests for pieces of d must have failed at level
0.

By Lemma 6.14, at most c/8 pieces of any data item are mapped to servers
of a butterfly of dimension 1 that contains at least r2`´2s = 1 outdated server,
w.h.p. In other words, at most c/8 data pieces are mapped to an outdated
server, w.h.p. Hence, for each request belonging to level 1 the verification of at
most c/8 pieces can fail due to corrupted servers, w.h.p.

Altogether, we get that for any request for a data item d belonging to level 1
the verification for more than (3/8)c´ (c/8) ą c/8 pieces of d must have failed
at level 0 due to corrupted nodes, w.h.p. Hence, in order to upper bound the
number of requests belonging to level 1, we need to upper bound the number

124

6.5 Correctness Analysis of the Lookup Protocol

of requests for a data item d for which more than c/8 requests for pieces of d
have failed at level 0 due to a corrupted node.

Let S be a maximum set of data items with requests that belong to level 1.
We will show: |S| ă γn. We now construct a set F in the following way: For
each d P S, we choose c/8 indices i with the property that di is aborted at level
0 due to corrupted nodes and add these (d, i) to F . Note that F is a c/8-bundle
of S. Since the adversary can corrupt at most γn1/ log log n ă γn servers, the
number of servers covered by all BF (u(0)s,i (d)) with (d, i) P F is less than γn.
Since ΓF,0(S) is exactly the set of these servers, it holds: |ΓF,0(S)| ă γn. By
Corollary 3.25, we get |S| ă γn, which completes the proof for level 1.

Upper bound on number of requests belonging to level ` ą 1:
Note that there are two reasons for why a piece of a data item can fail at a

node u at level ` ą 0: Either because of congestion at u, or because u could not
obtain the correct current hash values (both cases happen in Step 2). Analogous
to Lemma 3.30 it can be shown that if a request for a piece di of a data item
d fails at level ` ě 1 due to congestion, then BF (u(`)s,i(d)) is congested at level
`, w.h.p. Moreover, if a request for a piece di of a data item d fails at level
` ě 1 at a node u because u could not obtain the current hash values, then
by Lemma 6.8 one of the following holds: At least a quarter of the servers in
BF (u) are corrupt, i.e., BF (u) is unreliable, or at least a quarter of the servers
in BF (u) are outdated regarding the bucket d is in, i.e., BF (u) is outdated
w.r.t. d.

Furthermore, note that for a request for data item d that belongs to level a
` ą 1, by definition at least (5/8)c pieces of d successfully passed level `, but
less than (5/8)c requests for pieces of d passed level ` ´ 1. Thus, we know
that at least (3/8)c requests for pieces of d have failed at level `´ 1 or greater,
implying that the request is congested, unreliable and/or outdated at level
`´ 1.

Thus, in order to prove the claim, we first show for each level `, 1 ă ` ď logk n,
that the number of requests that are congested at level `´ 1 is upper bounded
by γn/k`´1. Second, we prove that for each level 1 ă ` ď logk n the number of
requests that are unreliable at level `´ 1 is upper bounded by γn/k`´1. Third,
we show that there can be no outdated data items at any level. All in all, this
yields that at most 2γn/k`´1 requests can belong to any level ` ą 1.

For the congested requests, fix `, 1 ă ` ď logk n. Let S be a maximum set
of requests congested at level `´ 1. We will show: |S| ă γn/k`´1. As before,
we construct a (c/8)-bundle F of S (adding, for each d P S, c/8 indices i to
F with the property that BF (u(`i)s,i (d)) is congested). We first show that for α
sufficiently large, less than a γ-fraction of all subbutterflies at level `´ 1 can be
congested. Recall that a subbutterfly on level `´ 1 is congested if it receives

125

Chapter 6 OSIRIS

more than αck`´1/2 probes for different (d, i) pairs. Let ε be the maximum
fraction of servers that the adversary may block. Since there are at most n
lookup requests in total, at most cn probes arrive at level `´ 1. Thus, at most
cn/(αck`´1/2) = 2n/(αk`´1) subbutterflies can be congested at level ` ´ 1.
Since there are exactly n/k`´1 disjoint subbutterflies at level `´ 1, the fraction
of congested subbutterflies at level ` ´ 1 is upper bounded by 2/α. Hence,
for α ą 2/γ, less than a γ-fraction of the subbutterflies on level ` ´ 1 can
be congested. That is, all of the congested subbutterflies BF (u(`i)s,i (d)) with
(d, i) P F together contain less than a γ-fraction of the nodes on level ` ´ 1.
This implies |ΓF,`´1(S)| ă γn. By Corollary 3.25, this implies |S| ă γn/k`´1.

For the unreliable requests, fix `, 1 ă ` ď logk n. Let S be a maximum set
of requests unreliable at level `´ 1. We will show: |S| ă γn/k`´1. Again, we
construct a (c/8)-bundle F of S (by adding for each d P S, c/8 indices i to
F with the property that BF (u(`i)s,i (d)) is unreliable). By definition, at least a
quarter of the servers in any unreliable subbutterfly are corrupted. Therefore,
if the adversary can corrupt only at most γn1/ log log n servers, then the number
of servers covered by all BF (u(`i)s,i (d)) with (d, i) P F must be less than γn for
n sufficiently large. Since ΓF,`´1(S) is exactly the set of these servers, it holds:
|ΓF,`´1(S)| ă γn. By Corollary 3.25, this implies |S| ă γn/k`´1.

For the outdated requests, by Lemma 6.14, only less than c/8 requests for
pieces of each data item d can belong to outdated subbutterflies. Thus, no
request can be outdated at any level by definition. This completes the proof.

6.5.2 Analysis of the Recovery Stage
Analogously to IRIS and RoBuSt, for the Recovery Stage of the Lookup Protocol
of OSIRIS, the number of requests belonging to a level exponentially decreases
such that in the last phase of the Recovery Stage at most O(k) requests have to
be handled while all remaining requests have already been answered in the
previous phases.

Lemma 6.18. Assume an insider adversary crashes at most γn1/ log log n servers with
γ = 1/64. Then, at the beginning of each subphase ` P t1, . . . , logk nu of the Recovery
Stage of the Lookup Protocol of OSIRIS, the number of requests belonging to level ` is
at most ϕn/k` with ϕ ď 7γk.

Again, before we prove Lemma 6.18, we introduce some notions. Note that
here we use similar notation as for the proof of Lemma 6.15, but the meaning
is slightly different.

Definition 6.19 (Congested/Unreliable Subbutterfly). Let u be a butterfly node
at level ` P t1, . . . , logk nu. Node u is called congested, if it receives more than βck`
messages for different data pieces. The subbutterfly BF (u) is called

126

6.5 Correctness Analysis of the Lookup Protocol

• congested at level ` if the congestion check in phase ` of the Hash Chain Recovery
Stage determines that there is a congested butterfly node in BF (u).

• unreliable at level ` if at least 2`´2 servers from BF (u) are corrupted.

Definition 6.20 (Congested/Unreliable Request). A request for a data item d is
called

• congested at level ` if there exist pairwise different congested subbutterflies
BF (u

(`1)
s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with r = c/8 and `j ě `.

• unreliable at level ` P t1, . . . , logk nu if there exist pairwise different unreliable
subbutterflies BF (u(`1)s,i1

(d)), . . . , BF (u
(`r)
s,ir

(d)) with r = c/8 and `j ě `.

In the proof of Lemma 6.18 we will use the fact that if not too many nodes
in a subbutterfly BF (u) are congested, corrupted, or outdated, then all data
blocks stored in BF (u) can be recovered.

Lemma 6.21. For any phase ` of the Recovery Stage, any butterfly node u at level `
and any bucket B, if BF (u) is not congested and if less than 2`´1 servers in BF (u)
are corrupted or outdated, then all data blocks from B stored at nodes at level 0 in
BF (u) can be recovered correctly.

Proof. In the following, fix a phase ` of the Recovery Stage and a node u at
level ` of the butterfly and assume that BF (u) is not congested.

Recall that the decoding of a single k-block may falsify intact servers, which
can happen only if at least two of the servers in the according k-block are
corrupted or outdated and these servers then cause an intact server to overwrite
correct data. In the following we call a node corrupted/outdated/falsified if
that node is emulated by a corrupted/outdated/falsified server.

Furthermore, recall that the decoding of a subbutterfly BF (u) in phase ` of
the Recovery Stage is initiated from level `, meaning that there cannot be any
falsified nodes at level `. For a node v at level ` ´ r of the butterfly, we say
T (v) is a witness tree of v if T is a complete binary subtree of LT (v) of depth
r consisting of corrupted, outdated or falsified nodes only.

The first step of our proof is to show: If v stores incorrect data and v’s data
cannot be restored during the recovery at level `, then there exists a witness tree
T (v) of v. We show this claim by induction on `´ r P t0, . . . , `´ 1u beginning
with `´ 1. For the base case, let v be a node at level `´ 1 in the butterfly that
is corrupted, outdated, or falsified. Then, by Lemma 6.3, v has at least two
children w1, w2 in LT (v) that store incorrect data. Then, the tree induced by v,
w1 and w2 makes up a complete binary subtree of depth 1 that consists only of
corrupted/outdated/falsified nodes.

127

Chapter 6 OSIRIS

For the induction step, let v be a node at level ` ´ r, r ą 1 in the butterfly
that is corrupted, outdated, or falsified. Then, again by Lemma 6.3, at least
two children w1, w2 of v in LT (v) must be corrupted, outdated, or falsified. By
the induction hypothesis, there exist witness tress T (w1) and T (w2) of depth
r´ 1 of w1 and w2. The tree induced by connecting v to the roots of T (w1) and
T (w2) makes up a witness tree for v.

Next, assume for contradiction that for an arbitrary node u at level ` of the
butterfly and an arbitrary bucket B that BF (u) cannot be recovered correctly
regarding B. That is, there is a node u at level 0 with a data block that cannot
be recovered during the decoding. Thus, if BF (u) cannot be recovered, then
with our previous considerations there exists a witness tree T (v) of a node v at
level 0 ofBF (u). That is, T (v) is a complete binary tree of depth ` that consists
of corrupted, outdated and falsified nodes only. Since a complete binary tree
of depth ` has 2` leaves, at least 2` of the nodes in T (v) must be corrupted,
falsified, or outdated. Since at most half of these nodes may have been falsified,
we know that T (v) must consist of at least 2`´1 corrupted or outdated nodes.
Hence, according to the assumption there cannot exist a witness tree for a node
at level 0 of BF (u), implying that BF (u) can be recovered.

We are now ready to prove Lemma 6.18.

Proof of Lemma 6.18: We prove the lemma by induction on `. The basis ` = 1
holds by Lemma 6.15. For the induction step, let ` P t1, . . . , logk n ´ 1u and
assume that the induction hypothesis holds for level `. We show that the
number of data items that cannot be recovered in phase ` (and will thus be
propagated to level `+ 1) is at most 5γn/k`. Together with Lemma 6.15, this
means that at the beginning of phase `+1, at most 2γn/k`+5γn/k` data items
belong to level `+1, which equals ϕn/k`+1 and thus proves the induction step.

First, note that a request for data item d cannot be answered after phase
` if and only if less than c/4 pieces of d could be recovered. Since for each
data item d with a request belonging to level `, requests for (5/8)c pieces of
d are initiated, we know that d cannot be recovered if and only if more than
(5/8)c´ (1/4)c = (3/8)c requests for pieces of d failed.

Next, recall why a request for a piece of d can fail. For that purpose, let u be
the node at level ` on the probing path of a data piece di. The request for di
can fail due to one (or both) of the following reasons:

1. Data piece di cannot be decoded without causing excessive congestion.
In this case, BF (u) is congested according to Definition 6.19.

2. A verification failed which is due to exactly one of the following reasons:

128

6.5 Correctness Analysis of the Lookup Protocol

a) A hash value along the hash chain of di could not be verified in the
Hash Chain Recovery Stage.

b) The verification of di in the Data Recovery Stage failed.

If the first case does not hold, i.e., if BF (u) is not congested, then in this case
by Lemma 6.21 there are at least 2`´1 corrupted or outdated servers in BF (u)
(regarding the bucket that d belongs to).

In the following we show that the requests that are neither congested nor
unreliable can be answered correctly in phase `, implying that these requests
will not be propagated to phase `+1. Afterwards, we show that the number of
congested requests is upper bounded by γn/k` and the number of unreliable
requests is upper bounded by 4γn/k`. Altogether this implies that in total at
most 5γn/k` requests belong to level `+ 1.

First, consider a request for a data item d that is neither congested nor
unreliable. For this request only less than c/8 subbutterflies are congested
at level ` and only less than c/8 subbutterflies are unreliable at level `, i.e.,
only less than c/8 subbutterflies contain at least 2`´2 corrupted servers. By
Lemma 6.14, we know that at most c/8 pieces of each data item are mapped
to a subbutterfly that contains at least 2`´2 servers, i.e., at most c/8 pieces of
each data item are mapped to an unreliable subbutterfly. This implies that
all remaining pieces of d (which are at least (5/8)c ´ 3 ¨ (c/8) = c/4 many)
have less than 2`´2 corrupted servers in their subbutterflies at level ` and less
than 2`´2 outdated servers in their subbutterflies at level `, i.e., less than 2`´1

corrupted or outdated servers, and these subbutterflies are not congested.
Thus, by Lemma 6.21, these at least c/4 pieces can be recovered. Since these
c/4 pieces are sufficient for the recovery of the data item d using Reed-Solomon
codes, these kind of requests, i.e., the requests that are neither congested nor
unreliable, can correctly be served.

Next, we upper bound the number of congested and unreliable requests.

Upper bound on the number of congested requests: For the upper bound on the
number of congested requests, recall that we call a subbutterfly BF (v) of a
node v congested if there is a server in BF (v) that would have to handle more
than βck requests for different pieces of data items. For β ą 5/2, it holds that
βck ą 5ϕc/(8γ), which implies that a congested subbutterfly BF (v) of a node
v receives more than 5ϕc/(8γ) requests for different pieces of data items. By
the induction hypothesis and due to the fact that we send (5/8)c requests per
data item, there are at most (5/8)c ¨ ϕn/k` requests in total, which means that
there are less than ϕn/k` ¨ (5/8)c ¨ 8γ/(5cϕ) = γn/k` congested subbutterflies
of dimension `. Let S be a set of data items with a request congested at level
`. Recall that a request for a data item d is congested at level ` if there exist at
least r = c/8 subbutterfliesBF (u(`)s,i1(d)), . . . , BF (u

(`)
s,ir

(d)) with i1, . . . , ir being

129

Chapter 6 OSIRIS

pairwise different that are congested. For each d P S, let di1 , . . . , dir be c/8
such indices fulfilling this property and define F = t(d, i1), . . . , (d, ir) | d P Su.
Then, F is a c/8-bundle of S. Since, as we have shown, there are less than
γn/k` congested subbutterflies of dimension ` and since each subbutterfly of
dimension ` contains k` nodes, |ΓF,`(S)| ă γn. By Corollary 3.25, this implies
|S| ă γn/k`.

Upper bound on the number of unreliable requests: In the following define σ = 4γ.
Let S be a maximum set of requests for a data item that are unreliable at level
`. We will show: |S| ă σn/k`. Recall that a data item d is unreliable at level
` if there exist at least r = c/8 subbutterflies BF (u(`)s,i1(d)), . . . , BF (u

(`)
s,ir

(d))
with i1, . . . , ir being pairwise different that are unreliable, i.e., each of them
contains at least 2`i´2 corrupted servers. For each d P S, let di1 , . . . , dir be c/8
such indices fulfilling this property and define F = t(d, i1), . . . , (d, ir) | d P Su.
Then, F is a c/8-bundle of S. Since a subbutterfly of level `1 contains k`1 servers
in total, and since an unreliable subbutterfly of level `1 contains at least 2`1´2

corrupted nodes, a 2`1´2/k`
1 fraction of the servers of an unreliable subbutterfly

of level `1 are corrupt, which is at least 2logk n´2/n for any `1, 1 ď `1 ď logk n.
Therefore, if the adversary can corrupt at most γ ¨ n1/ log log n = σ ¨ 2logk n´2

servers, then the number of servers covered by all BF (u(`)s,i(d)) with (d, i) P F
must be less than σn. Since ΓF,`(S) is exactly the set of these servers, it holds:
|ΓF,`(S)| ă σn. Since σ ¨ 8 = 4γ ¨ 8 = 1/2, Corollary 3.25 can be applied, which
implies |S| ă σn/k` = 4γn/k`.

Note that by the bounds specified in Lemma 6.18, during the recovery in the
last phase, i.e., phase logk n, no request can fail due to congestion. By the same
arguments as used in the proof of Lemma 6.18, all data items can be recovered
in the decoding. Thus, the proof of Lemma 6.18 also finishes the proof of the
correctness of the lookup protocol.

130

Chapter

7
Conclusion and Outlook

We conclude this work by recapping the properties of the systems presented
in the previous chapters and thereby highlighting the main ideas of their
construction (Section 7.1). Finally, in Section 7.2, we discuss some remaining
open questions in this field.

7.1 Conclusion
We presented the first distributed information and storage systems that are
provably correct against insider adversaries, i.e., adversaries that know ev-
erything about the system and may use this knowledge in order to attack a
large fraction of the servers. We began this sequel of distributed information
and storage systems with the development of a distributed information sys-
tem called Basic IRIS, which is provably correct against insider adversaries
(c.f. Chapter 3). In particular, Basic IRIS correctly serves any set of lookup
requests (with at most O(1) requests per intact server) with polylogarithmic
work and time despite the existence of an insider adversary that may crash
up to O(n1/ log log n) servers. Nevertheless, Basic IRIS requires only a constant
storage redundancy. The main new idea of Basic IRIS was the development of a
distributed coding strategy, called k-ary butterfly coding, which hierarchically
interweaves and encodes data blocks with each other such that for each data
block stored in the system each server holds the data block itself or at least
holds some coding information related to that block. This technique allowed
us to tolerate an insider adversary that crashes asymptotically significantly
more than a polylogarithmic number of servers while still only requiring at
most a constant redundancy and polylogarithmic time and work for serving

131

Chapter 7 Conclusion and Outlook

lookup requests. The k-ary butterfly coding strategy was used as a building
block in all systems presented in this work.

In Chapter 4 we presented Enhanced IRIS, which is a distributed information
system that enhanced Basic IRIS in such a way that it tolerates an insider
adversary that even crashes up to a constant fraction of all servers while
asymptotically still achieving the same efficiency results regarding time and
work needed for correctly serving lookup requests. This enhancement happens
at the expense of the redundancy which increased by a logarithmic factor
to O(logn). The main idea behind the enhancement was a restructuring of
the underlying topology used for the hierarchical coding strategy via using
permutations that fulfill certain expansion properties.

Building on the k-ary coding strategy and the lookup protocol developed
for IRIS we developed a distributed storage system called RoBuSt with similar
properties as Basic IRIS (c.f. Chapter 5). That is, RoBuSt provably correctly
serves any set of lookup and write requests (with at most O(1) requests per
server) with polylogarithmic time and work despite the existence of an insider
adversary that crashes up to O(n1/ log log n) servers. Thereby, RoBuSt requires
only a logarithmic redundancy. For this purpose, we needed to develop a
more advanced storage strategy than the one used in IRIS. In IRIS the data
items stored in the system were partitioned into sets of size Θ(n) and each
of these sets was separately encoded with each other via the k-ary butterfly
coding strategy. When trying to serve Θ(n) write requests without changing
the underlying storage strategy, it may happen that the data items to write
are encoded with each other in O(n) different sets. But this would cause all
these O(n) sets to be completely re-encoded which is too expensive. Hence,
we needed to come up with a new and more involved strategy for partitioning
the data items to store in the system into sets of size Θ(n), which we called
buckets. This strategy also prescribes how to arrange these buckets efficiently
such that at no time more than a polylogarithmic number of buckets is accessed
for writing.

Finally, we strengthened the adversary considered even further (c.f. Chap-
ter 6). While for the previous systems we restricted the adversary to crash
servers, he may now corrupt the servers’ storage. To be more precise, we
assumed an insider adversary that may corrupt the storage of a large fraction
of the servers, but he may neither corrupt the main memory of the servers
nor their protocols. While the detection of crashed servers can easily be imple-
mented, this is not so easy possible for corrupted servers, in particular this is
hardly possible for adversarial corruptions. Instead, we needed to find a way
how to cope with the existence of corrupted data items and still guarantee to
correctly serve all lookup and write requests. For this purpose, we interweaved
techniques from the field of authenticated data structures, namely Merkle hash
trees, with the techniques we developed for IRIS and RoBuSt. By this, the

132

7.2 Outlook

lookup protocol became significantly more complicated, since the servers al-
ways additionally need to reconstruct hash chains for the data pieces they are
supposed to find. All in all, we developed OSIRIS, a distributed storage system
that provably correctly serves any set of lookup and write requests (with at
most O(1) requests per server) despite the existence of an insider adversary
that may corrupt the storage of up to O(n1/ log log n) server. Thereby, serving
O(n) lookup and write requests requires polylogarithmic time and work, while
at the same time we only require a logarithmic redundancy.

7.2 Outlook
In the setting considered for the construction of OSIRIS, we restricted ourselves
to somehow “semi-Byzantine” adversaries. That is, the adversary was allowed
to corrupt data stored at the servers, but it was not allowed to corrupt the
main memory or even the protocols of the servers. In contrast, a Byzantine
adversary is allowed to completely take over the attacked servers and mimic
an arbitrary behavior. A common approach to deal with Byzantine adversaries
in distributed storage systems is the usage of so-called quorums [Kin+11]. A
quorum is an accumulation of several servers such that the majority of the
servers in each quorum are not Byzantine. Hence, by majority decision each
quorum can agree on a common value. By this, if for each server in the system
a quorum can be built, the quorum can take over the decisions of the server. In
order for this approach to work, while still adhering to our desired efficiency
bounds, we require a protocol that solves the Byzantine agreement problem
with polylogarithmic time and work despite the existence of O(n1/ log log n)
Byzantine servers. However, existing protocols for Byzantine agreement and
building balanced quorums (i.e., quorums of size O(logn), where each server
is contained in at most O(logn) quorums) in at most polylogarithmic time
require O(

?
n) bits of communication that each server sends and processes

[KS11; Kin+11], which is significantly more than we allow.
Even if we were able to build balanced quorums with polylogarithmic time

and work only, in order to tolerate an adaptive adversary that takes over a
large fraction of the servers, it still remains to figure out how to reset a server
to its last state before he was attacked, once the adversary decides to “release”
the server in order to take over another server. Recall that in Chapter 6 we
assumed that a server who was attacked by the adversary for some period
of time rejoins the system with the state it had before the attack. That is, a
previously attacked server is out of date with respect to the buckets that were
written during the time it was attacked. In the context of DNS spoofing attacks
this is a reasonable assumption, because in that case the storage of the attacked
server actually is not modified, but instead its IP entry in the DNS system has

133

Chapter 7 Conclusion and Outlook

been modified such that it might refer to another storage server that may hold
arbitrary data. But if we leave this scenario and instead consider the problem
of Byzantine servers, i.e., servers that may be taken over and also be released
again by a malicious insider adversary, we need to provide a mechanism on
how to reset a released server to the last state it had before it was attacked.
However, when assuming an adversary that may completely take over a large
fraction of the servers, there are several problems with the implementation
of such a rollback mechanism. First, neither the non-attacked servers know
which servers are Byzantine, nor can the servers that have been attacked and
are released again can efficiently detect and repair that. That is, an attacked
server does not notice when it is released again and therefore it does not know
when to perform a rollback. The second problem is that even if a server knew
when to perform a rollback, it is not aware of the point in time it became
attacked and therefore it does not know up to which point it needs to perform
a rollback. One possible way to provide such a rollback mechanism would
be to implement some kind of version control system that uses hashes for the
various states in order to detect corruptions. Via a binary search over the chain
of states’ hashes, the servers could then determine to which state to revert to.
However, a problem of this approach is that the time needed for finding the
state to revert to is only guaranteed to be logarithmic in the overall running
time of the system, but not necessarily logarithmic in the number of servers.
Even if all these problems regarding a rollback mechanism would have been
solved, we still require the existence a secure storage location in order to store
previous states or the history of changes with their corresponding hash values
which we actually wanted to get rid of.

One restriction of our systems regarding its practical usage is the assumption
of a batch based adversary. That is, time was divided into periods (each
consisting of sufficiently many rounds) and the adversary had to choose the set
of the attacked servers at the beginning of each period. In case of crash failures,
as considered for Basic IRIS, Enhanced IRIS and RoBuSt, this requirement was
necessary in order be able to determine representatives for the crashed servers.
In the case of corrupted servers, as considered for OSIRIS, the restriction of the
adversary to be batch based could be relieved and instead we could allow the
adversary to also corrupt the permanent storage of servers during the periods
as long as the maximum number of corrupted servers allowed is not exceeded.
However, “released” servers still need to be detected and their storage state
still needs to be reverted to the last point in time before they were corrupted.
Additionally, after releasing a server the adversary must not corrupt another
server instead until the rollback of the storage state of the released server has
completely been finished.

A further interesting question is the realizability of our systems in an asyn-
chronous setting. In any case, a straightforward transferability is not possible

134

7.2 Outlook

due to several problems that may arise. One of the biggest difficulties in this
context is that in a synchronous setting, we could always exploit the prop-
erty that all servers have a common understanding of the current “state” of
the protocol. In particular, at any time all servers performed computations
associated with the same stage. This assumption does not hold anymore in
an asynchronous setting. Especially in the preprocessing stage during the
determination of representatives, this may cause problems as in this phase
the servers still need to rebuild a new k-ary butterfly consisting only of intact
servers. In order to ensure a correct proceeding of the further protocols, it is
of great importance that all intact servers achieved a common understanding
of the representatives. One way to avoid these problems is the usage of local
synchronizers together with a timeout even though in that case slow servers
may erroneously be assumed as crashed servers.

As already mentioned in Chapter 1, this work constitutes a proof of concept
of distributed information and storage systems with the desired properties. In
particular, a practical implementation of the developed systems is out of the
scope of this work. However, it is an exciting question in how far our systems
can be realized in practice and how they perform. It is not straightforward to
actually implement our storage strategies and protocols which is, for instance,
due to the difficulties regarding the synchronicity. However, instead, in a
student work, a simulator of Basic IRIS working in a synchronous setting
has been implemented with the goal of measuring the efficiency of Basic
IRIS. The most noticeable observations in the measurements of the simulation
was the effort (regarding the number of messages sent) spent in the different
stages. The effort spent for the Decoding Stage significantly exceeded the one
of the Preprocessing and Probing Stage. This can be explained by the very
expensive broadcasts that have to be executed in each phase of the Decoding
Stage. Furthermore, we examined in how far the functionality of Basic IRIS
is still guaranteed when increasing the number of allowed crashed servers
significantly more than tolerated by our analysis. For that purpose, we chose
the servers to be crashed and the data items to be requested randomly. It
turned out that even when considering an order of magnitude of more crashed
servers as specified by our upper bounds, Basic IRIS still correctly answers
almost all requests. This is not that surprising, since in the analysis of this work
we always assumed an insider adversary, implying worst-case failures of the
servers instead of random failures as considered in the simulations. However,
the congestion caused in the Decoding Stage turned out to be the limiting
factor of the system. All in all, one of the most challenging questions that
need to be answered in order to implement our systems for practical usage, is
whether and how the communication effort required in the lookup protocols
(in particular in the Decoding Stage) can be reduced.

135

Bibliography

[Abe01] Karl Aberer. “P-Grid: A Self-Organizing Access Structure for P2P
Information Systems”. In: Proceedings of the 9th International Confer-
ence on Cooperative Information Systems. London, UK, UK: Springer
Berlin Heidelberg, 2001, pp. 179–194. url: http://dl.acm.org/
citation.cfm?id=646747.701489.

[Ama] Amazon. AWS. url: https://aws.amazon.com/ (visited on
11/24/2015).

[Ama08] Amazon. Amazon S3 Availability Event. 2008-07-20. url: http://
status.aws.amazon.com/s3-20080720.html (visited on
11/24/2015).

[And+14] Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukolic.
“Erasure-Coded Byzantine Storage with Separate Metadata”. In:
CoRR abs/1402.4958 (2014). doi: 10.1007/978-3-319-14472-
6_6.

[And03] David G. Andersen. “Mayday: Distributed Filtering for Internet
Services”. In: Proceedings of the 4th Conference on USENIX Symposium
on Internet Technologies and Systems. Vol. 4. Seattle, WA: USENIX As-
sociation, 2003, pp. 3–3. url: http://dl.acm.org/citation.
cfm?id=1251460.1251463.

[App] Apple, Inc. iCloud. url: http://www.apple.com/icloud/
(visited on 11/24/2015).

137

http://dl.acm.org/citation.cfm?id=646747.701489
http://dl.acm.org/citation.cfm?id=646747.701489
https://aws.amazon.com/
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://dx.doi.org/10.1007/978-3-319-14472-6_6
http://dx.doi.org/10.1007/978-3-319-14472-6_6
http://dl.acm.org/citation.cfm?id=1251460.1251463
http://dl.acm.org/citation.cfm?id=1251460.1251463
http://www.apple.com/icloud/

Bibliography

[AS06] Baruch Awerbuch and Christian Scheideler. “Towards a Scalable
and Robust DHT”. In: Proceedings of the 18th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA). Cam-
bridge, Massachusetts, USA: ACM, 2006, pp. 318–327. doi: 10.
1145/1148109.1148163.

[AS07] Baruch Awerbuch and Christian Scheideler. “A Denial-of-Service
Resistant DHT”. In: Proceedings of the 21st International Symposium
on Distributed Computing (DISC). Ed. by Andrzej Pelc. Vol. 4731.
Springer Berlin Heidelberg, 2007, pp. 33–47. doi: 10.1007/978-
3-540-75142-7_6.

[Aug+13] John Augustine, Anisur Rahaman Molla, Ehab Morsy, Gopal Pan-
durangan, Peter Robinson, and Eli Upfal. “Storage and Search in
Dynamic Peer-to-peer Networks”. In: Proceedings of the 25th An-
nual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). New York, NY, USA: ACM, 2013, pp. 53–62. doi: 10.1145/
2486159.2486170.

[Awe07] Baruch Awerbuch. “Towards Scalable and Robust Overlay Net-
works”. In: International Workshop on Peer-to-Peer Systems (IPTPS).
2007-02.

[BH82] Allan Borodin and John E. Hopcroft. “Routing, Merging and Sort-
ing on Parallel Models of Computation”. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC). New
York, NY, USA: ACM, 1982, pp. 338–344. doi: 10.1145/800070.
802209.

[Bit] BitTorrent, Inc. BitTorrent. url: http://www.bittorrent.com
(visited on 11/24/2015).

[Bla+95] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. “EVEN-
ODD: An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures”. In: IEEE Transactions on Computers 44.2
(1995-02), pp. 192–202. doi: 10.1109/12.364531.

[Bon+03] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark
Shellenbaum. The Zettabyte File System. Tech. rep. 2003.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. “A
DoS-resilient Information System for Dynamic Data Management”.
In: Proceedings of the 21st ACM Symposium on Parallelism in Algo-
rithms and Architecture (SPAA). Calgary, AB, Canada: ACM, 2009,
pp. 300–309. doi: 10.1145/1583991.1584064.

138

http://dx.doi.org/10.1145/1148109.1148163
http://dx.doi.org/10.1145/1148109.1148163
http://dx.doi.org/10.1007/978-3-540-75142-7_6
http://dx.doi.org/10.1007/978-3-540-75142-7_6
http://dx.doi.org/10.1145/2486159.2486170
http://dx.doi.org/10.1145/2486159.2486170
http://dx.doi.org/10.1145/800070.802209
http://dx.doi.org/10.1145/800070.802209
http://www.bittorrent.com
http://dx.doi.org/10.1109/12.364531
http://dx.doi.org/10.1145/1583991.1584064

Bibliography

[CDV13] Christian Cachin, Dan Dobre, and Marko Vukolic. “BFT Storage
with 2t+1 Data Replicas”. In: CoRR abs/1305.4868 (2013). url:
http://arxiv.org/abs/1305.4868.

[Che52] Herman Chernoff. “A measure of asymptotic efficiency for tests
of a hypothesis based on the sums of observations”. In: Annals
of Mathematical Statistics 23 (1952), pp. 493–507. doi: 10.1214/
aoms/1177729330.

[CT05a] Christian Cachin and Stefano Tessaro. “Asynchronous Verifiable
Information Dispersal”. English. In: Distributed Computing. Ed. by
Pierre Fraigniaud. Vol. 3724. Springer Berlin Heidelberg, 2005,
pp. 503–504. doi: 10.1007/11561927_42.

[CT05b] Christian Cachin and Stefano Tessaro. “Optimal Resilience for
Erasure-Coded Byzantine Distributed Storage”. English. In: Dis-
tributed Computing. Ed. by Pierre Fraigniaud. Vol. 3724. Springer
Berlin Heidelberg, 2005, pp. 497–498. doi: 10.1007/11561927_
39.

[DM93] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “Sim-
ple, Efficient Shared Memory Simulations”. In: Proceedings of the
5th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA). 1993-07, pp. 110–119. doi: 10.1145/165231.165246.

[ES13] Martina Eikel and Christian Scheideler. “IRIS: A Robust Infor-
mation System Against Insider DoS-Attacks”. In: Proceedings of
the 25th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). ACM, 2013, pp. 119–129. doi: 10.1145/2486159.
2486186.

[ES15] Martina Eikel and Christian Scheideler. “IRIS: A Robust Informa-
tion System Against Insider DoS Attacks”. In: ACM Transactions
on Parallel Computing 2.3 (2015-11), 18:1–18:33. doi: 10.1145/
2809806.

[ESS14] Martina Eikel, Christian Scheideler, and Alexander Setzer. “Ro-
BuSt: A Crash-Failure-Resistant Distributed Storage System”. In:
Proceedings of the 18th International Conference on the Principles of Dis-
tributed Systems (OPODIS). Vol. 8878. Springer Berlin Heidelberg,
2014, pp. 107–122. doi: 10.1007/978-3-319-14472-6_8.

[FSY05] Amos Fiat, Jared Saia, and Maxwell Young. “Making chord robust
to byzantine attacks”. In: Proceedings of the 11th European Symposium
on Algorithms (ESA). Springer Berlin Heidelberg, 2005, pp. 803–814.
doi: 10.1007/11561071_71.

139

http://arxiv.org/abs/1305.4868
http://dx.doi.org/10.1214/aoms/1177729330
http://dx.doi.org/10.1214/aoms/1177729330
http://dx.doi.org/10.1007/11561927_42
http://dx.doi.org/10.1007/11561927_39
http://dx.doi.org/10.1007/11561927_39
http://dx.doi.org/10.1145/165231.165246
http://dx.doi.org/10.1145/2486159.2486186
http://dx.doi.org/10.1145/2486159.2486186
http://dx.doi.org/10.1145/2809806
http://dx.doi.org/10.1145/2809806
http://dx.doi.org/10.1007/978-3-319-14472-6_8
http://dx.doi.org/10.1007/11561071_71

Bibliography

[Goo] Google. Google Cloud Platform. url: https://cloud.google.
com/storage/ (visited on 11/24/2015).

[Goo+04] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael
K. Reiter. “Efficient Byzantine-tolerant erasure-coded storage”. In:
International Conference on Dependable Systems and Networks. 2004-06,
pp. 135–144. doi: 10.1109/DSN.2004.1311884.

[GT01] Michael T. Goodrich and Roberto Tamassia. Efficient Authenticated
Dictionaries with Skip Lists and Commutative Hashing. Tech. rep. Tech-
nical report, Johns Hopkins Information Security Institute, 2001.

[GTH02] MichaelT. Goodrich, Roberto Tamassia, and Jasminka Hasić. “An
Efficient Dynamic and Distributed Cryptographic Accumulator*”.
English. In: Information Security. Ed. by AgnesHui Chan and Virgil
Gligor. Vol. 2433. Springer Berlin Heidelberg, 2002, pp. 372–388.
doi: 10.1007/3-540-45811-5_29.

[Ham50] Richard W. Hamming. “Error Detecting and Error Correcting
Codes”. In: Bell System Technical Journal 26.2 (1950), pp. 147–160.
doi: 10.1002/j.1538-7305.1950.tb00463.x.

[Har+02] Nicholas J.A. Harvey, John Dunagan, Michael B. Jones, Stefan
Saroiu, Marvin Theimer, and Alec Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. Tech. rep. MSR-
TR-2002-92. Note: The technical report previously numbered MSR-
TR-2002-92, ”A Polynomial-time Rescaling Algorithm for Solving
Linear Programs,” is now numbered MSR-TR-2003-09. Microsoft
Research, 2002-12, p. 38. url: http://research.microsoft.
com/apps/pubs/default.aspx?id=69993.

[HGR07] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. “Low-
overhead Byzantine Fault-tolerant Storage”. In: Proceedings of 21st

ACM SIGOPS Symposium on Operating Systems Principles. Stevenson,
Washington, USA: ACM, 2007, pp. 73–86. doi: 10.1145/1294261.
1294269.

[HX05] Cheng Huang and Lihao Xu. “STAR: An Efficient Coding Scheme
for Correcting Triple Storage Node Failures”. In: Proceedings of the
4th Conference on USENIX Conference on File and Storage Technologies.
Vol. 4. San Francisco, CA: USENIX Association, 2005, pp. 15–15.
doi: 10.1109/TC.2007.70830.

[IBM15] IBM Security Intelligence Staff. IBM 2015 Cyber Security Intelli-
gence Index. Tech. rep. IBM Security, 2015-06. url: http://www-
03 . ibm . com / security / data - breach / 2015 - cyber -
security-index.html.

140

https://cloud.google.com/storage/
https://cloud.google.com/storage/
http://dx.doi.org/10.1109/DSN.2004.1311884
http://dx.doi.org/10.1007/3-540-45811-5_29
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://research.microsoft.com/apps/pubs/default.aspx?id=69993
http://research.microsoft.com/apps/pubs/default.aspx?id=69993
http://dx.doi.org/10.1145/1294261.1294269
http://dx.doi.org/10.1145/1294261.1294269
http://dx.doi.org/10.1109/TC.2007.70830
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html

Bibliography

[Int] Interplanetary Networks. InterPlanetary File System (IPFS). url:
https://ipfs.io/ (visited on 11/24/2015).

[Kan+05] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger.
“Botz-4-sale: Surviving Organized DDoS Attacks That Mimic Flash
Crowds”. In: Proceedings of the 2nd Conference on Symposium on Net-
worked Systems Design and Implementation (NSDI). Berkeley, CA,
USA: USENIX Association, 2005, pp. 287–300. url: http://dl.
acm.org/citation.cfm?id=1251203.1251224.

[Kar+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. “Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web”. In: Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing (STOC). El Paso, Texas, USA: ACM,
1997, pp. 654–663. doi: 10.1145/258533.258660.

[Kin+11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan.
“Load Balanced Scalable Byzantine Agreement Through Quorum
Building, with Full Information”. In: Proceedings of the 12th Interna-
tional Conference on Distributed Computing and Networking (ICDCN).
Bangalore, India: Springer Berlin Heidelberg, 2011, pp. 203–214.
doi: 10.1007/978-3-642-17679-1_18.

[KK03] M. Frans Kaashoek and David R. Karger. “Koorde: A Simple Degree-
Optimal Distributed Hash Table”. English. In: Peer-to-Peer Systems
II. Ed. by M.Frans Kaashoek and Ion Stoica. Vol. 2735. Springer
Berlin Heidelberg, 2003, pp. 98–107. doi: 10.1007/978-3-540-
45172-3_9.

[KMR02] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein. “SOS:
Secure Overlay Services”. In: Proceedings of the 2002nd Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM). Pittsburgh, Pennsylvania, USA:
ACM, 2002, pp. 61–72. doi: 10.1145/633025.633032.

[KS11] Valerie King and Jared Saia. “Breaking the O(N2) Bit Barrier: Scal-
able Byzantine Agreement with an Adaptive Adversary”. In: Jour-
nal of the ACM (JACM) 58.4 (2011-07), 18:1–18:24. doi: 10.1145/
1989727.1989732.

[KSW10] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. “Towards
worst-case churn resistant peer-to-peer systems”. English. In: Dis-
tributed Computing 22.4 (2010), pp. 249–267. doi: 10.1007/s00446-
010-0099-z.

141

https://ipfs.io/
http://dl.acm.org/citation.cfm?id=1251203.1251224
http://dl.acm.org/citation.cfm?id=1251203.1251224
http://dx.doi.org/10.1145/258533.258660
http://dx.doi.org/10.1007/978-3-642-17679-1_18
http://dx.doi.org/10.1007/978-3-540-45172-3_9
http://dx.doi.org/10.1007/978-3-540-45172-3_9
http://dx.doi.org/10.1145/633025.633032
http://dx.doi.org/10.1145/1989727.1989732
http://dx.doi.org/10.1145/1989727.1989732
http://dx.doi.org/10.1007/s00446-010-0099-z
http://dx.doi.org/10.1007/s00446-010-0099-z

Bibliography

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 4.3 (1982-07), pp. 382–401. doi:
10.1145/357172.357176.

[LYL08] Xin Liu, Xiaowei Yang, and Yanbin Lu. “To Filter or to Authorize:
Network-Layer DoS Defense Against Multimillion-node Botnets”.
In: ACM SIGCOMM. 2008, pp. 195–206.

[LYX10] Xin Liu, Xiaowei Yang, and Yong Xia. “NetFence: Preventing Inter-
net Denial of Service from Inside out”. In: SIGCOMM Computer
Communication Review 40.4 (2010-08), pp. 255–266. doi: 10.1145/
1851275.1851214.

[MAD02] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. “Mini-
mal Byzantine Storage”. In: Proceedings of the 16th International Con-
ference on Distributed Computing (DISC). London, UK, UK: Springer-
Verlag, 2002, pp. 311–325. url: http://dl.acm.org/citation.
cfm?id=645959.676126.

[Mer79] Ralph C. Merkle. “Secrecy, Authentication and Public Key Sys-
tems”. PhD thesis. Stanford University, 1979-06.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. “Viceroy: A Scal-
able and Dynamic Emulation of the Butterfly”. In: Proceedings
of the 21st Annual Symposium on Principles of Distributed Comput-
ing (PODC). Monterey, California: ACM, 2002, pp. 183–192. doi:
10.1145/571825.571857.

[MR97] Dahlia Malkhi and Michael Reiter. “Byzantine Quorum Systems”.
In: Proceedings of the 29th Annual ACM Symposium on Theory of Com-
puting (STOC). El Paso, Texas, USA: ACM, 1997, pp. 569–578. doi:
10.1145/258533.258650.

[MV84] Kurt Mehlhorn and Uzi Vishkin. “Randomized and deterministic
simulations of PRAMs by parallel machines with restricted gran-
ularity of parallel memories”. English. In: Acta Informatica 21.4
(1984), pp. 339–374. doi: 10.1007/BF00264615.

[Nak09] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem”. In: (2009-05). url: http://www.bitcoin.org/bitcoin.
pdf.

[Net15] Arbor Networks. Worldwide Infrastructure Security Report. Tech.
rep. IBM Security, 2015-06. url: http://www-03.ibm.com/
security/data-breach/2015-cyber-security-index.
html.

142

http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/1851275.1851214
http://dx.doi.org/10.1145/1851275.1851214
http://dl.acm.org/citation.cfm?id=645959.676126
http://dl.acm.org/citation.cfm?id=645959.676126
http://dx.doi.org/10.1145/571825.571857
http://dx.doi.org/10.1145/258533.258650
http://dx.doi.org/10.1007/BF00264615
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html
http://www-03.ibm.com/security/data-breach/2015-cyber-security-index.html

Bibliography

[NN98] Moni Naor and Kobbi Nissim. “Certificate Revocation and Cer-
tificate Update”. In: Proceedings of the 7th Conference on USENIX
Security Symposium. Vol. 7. San Antonio, Texas: USENIX Associa-
tion, 1998, pp. 17–17. doi: 10.1109/49.839932.

[NW03] Moni Naor and Udi Wieder. “Novel Architectures for P2P Appli-
cations: The Continuous-discrete Approach”. In: Proceedings of the
15th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA). San Diego, California, USA: ACM, 2003, pp. 50–59. doi:
10.1145/777412.777421.

[PR04] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo Hashing”. In:
Journal of Algorithms 51.2 (2004-05), pp. 122–144. doi: 10.1016/j.
jalgor.2003.12.002.

[PS02] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. “The
Case for Cooperative Networking”. In: Revised Papers from the 1st
International Workshop on Peer-to-Peer Systems (IPTPS). London, UK,
UK: Springer Berlin Heidelberg, 2002, pp. 178–190. url: http:
//dl.acm.org/citation.cfm?id=646334.758993.

[PTT09] Charalampos Papamanthou, Roberto Tamassia, and Nikos Trian-
dopoulos. “Cryptographic Accumulators for Authenticated Hash
Tables”. In: IACR Cryptology ePrint Archive (2009).

[Pug90] William Pugh. “Skip Lists: A Probabilistic Alternative to Balanced
Trees”. In: Communications of the ACM 33.6 (1990-06), pp. 668–676.
doi: 10.1145/78973.78977.

[Rat+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. “A Scalable Content-addressable Network”. In: Pro-
ceedings of the 2001th Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM). San
Diego, California, USA: ACM, 2001, pp. 161–172. doi: 10.1145/
383059.383072.

[RD01] Antony I. T. Rowstron and Peter Druschel. “Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-to-Peer
Systems”. In: Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms. London, UK, UK: Springer Berlin
Heidelberg, 2001, pp. 329–350. url: http : / / dl . acm . org /
citation.cfm?id=646591.697650.

[RL05] Rodrigo Rodrigues and Barbara Liskov. “High Availability in DHTs:
Erasure Coding vs. Replication”. English. In: Peer-to-Peer Systems IV.
Ed. by Miguel Castro and Robbert van Renesse. Vol. 3640. Springer

143

http://dx.doi.org/10.1109/49.839932
http://dx.doi.org/10.1145/777412.777421
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dl.acm.org/citation.cfm?id=646334.758993
http://dl.acm.org/citation.cfm?id=646334.758993
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/383059.383072
http://dx.doi.org/10.1145/383059.383072
http://dl.acm.org/citation.cfm?id=646591.697650
http://dl.acm.org/citation.cfm?id=646591.697650

Bibliography

Berlin Heidelberg, 2005, pp. 226–239. doi: 10.1007/11558989_
21.

[RS60] Irving Reed and Golomb Solomon. “Polynomial codes over cer-
tain finite fields”. In: Journal of the Society of Industrial and Applied
Mathematics 8.2 (1960), pp. 300–304. doi: 10.1137/0108018.

[SMB02] Tyron Stading, Petros Maniatis, and Mary Baker. “Peer-to-Peer
Caching Schemes to Address Flash Crowds”. In: Revised Papers
from the 1st International Workshop on Peer-to-Peer Systems (IPTPS).
London, UK, UK: Springer Berlin Heidelberg, 2002, pp. 203–213.
doi: 10.1007/3-540-45748-8_19.

[SRS02] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. “A Lightweight,
Robust P2P System to Handle Flash Crowds”. In: Proceedings of
the 10th IEEE International Conference on Network Protocols (ICNP).
Washington, DC, USA: IEEE Computer Society, 2002, pp. 226–235.
doi: 10.1109/JSAC.2003.818778.

[Sta+05] Angelos Stavrou, Debra L. Cook, William G. Morein, Angelos
D. Keromytis, Vishal Misra, and Dan Rubenstein. “WebSOS: An
Overlay-based System For Protecting Web Servers From Denial
of Service Attacks”. In: Journal of Communication Networks 48.5
(2005-08), pp. 781–807. doi: 10.1016%2Fj.comnet.2005.01.
005.

[Sto+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications”. In: Proceedings of the 2001th Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM). San Diego, California, USA:
ACM, 2001, pp. 149–160. doi: 10.1145/383059.383071.

[Tam03] Roberto Tamassia. “Authenticated Data Structures”. English. In:
Proceedings of the 11th European Symposium on Algorithms (ESA). Ed.
by Giuseppe Di Battista and Uri Zwick. Vol. 2832. Springer Berlin
Heidelberg, 2003, pp. 2–5. doi: 10.1007/978-3-540-39658-
1_2.

[Tor] Linus Torvalds. Git. url: https://git-scm.com/ (visited on
11/24/2015).

[TT05] Roberto Tamassia and Nikos Triandopoulos. Efficient Content Au-
thentication over Distributed Hash Tables. Tech. rep. 2005.

144

http://dx.doi.org/10.1007/11558989_21
http://dx.doi.org/10.1007/11558989_21
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1007/3-540-45748-8_19
http://dx.doi.org/10.1109/JSAC.2003.818778
http://dx.doi.org/10.1016%2Fj.comnet.2005.01.005
http://dx.doi.org/10.1016%2Fj.comnet.2005.01.005
http://dx.doi.org/10.1145/383059.383071
http://dx.doi.org/10.1007/978-3-540-39658-1_2
http://dx.doi.org/10.1007/978-3-540-39658-1_2
https://git-scm.com/

Bibliography

[TT07] Roberto Tamassia and Nikos Triandopoulos. “Efficient Content
Authentication in Peer-to-Peer Networks”. In: Proceedings of the
5th International Conference on Applied Cryptography and Network
Security. Zhuhai, China: Springer Berlin Heidelberg, 2007, pp. 354–
372. doi: 10.1007/978-3-540-72738-5_23.

[TWB13] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. “Zigzag Codes:
MDS Array Codes With Optimal Rebuilding.” In: IEEE Transactions
on Information Theory 59.3 (2013), pp. 1597–1616. doi: 10.1109/
TIT.2012.2227110.

[Val82] Leslie G. Valiant. “A Scheme for Fast Parallel Communication”.
In: SIAM Journal on Computing 11.2 (1982), pp. 350–361. doi: 10.
1137/0211027.

[WK02] Hakim Weatherspoon and John D. Kubiatowicz. “Erasure Coding
vs. Replication: A Quantitative Comparison”. In: In Proceedings of
the 1st International Workshop on Peer-to-Peer Systems (IPTPS). 2002,
pp. 328–338. doi: 10.1007/3-540-45748-8_31.

[XB99] Lihao Xu and J. Bruck. “X-code: MDS array codes with optimal en-
coding”. In: IEEE Transactions on Information Theory 45.1 (1999-01),
pp. 272–276. doi: 10.1109/18.746809.

[Xu+06] Lihao Xu, Vasken Bohossian, Jehoshua Bruck, and David G. Wag-
ner. “Low-density MDS Codes and Factors of Complete Graphs”.
In: IEEE Transactions on Information Theory 45.6 (2006-09), pp. 1817–
1826. doi: 10.1109/18.782102.

[YWA05] Xiaowei Yang, David Wetherall, and Thomas Anderson. “A DoS-
limiting Network Architecture”. In: Proceedings of the 2005th Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM). Philadelphia, Pennsylva-
nia, USA: ACM, 2005, pp. 241–252. doi: 10 . 1145 / 1080091 .
1080120.

[ZKJ01] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Routing.
Tech. rep. Berkeley, CA, USA, 2001.

145

http://dx.doi.org/10.1007/978-3-540-72738-5_23
http://dx.doi.org/10.1109/TIT.2012.2227110
http://dx.doi.org/10.1109/TIT.2012.2227110
http://dx.doi.org/10.1137/0211027
http://dx.doi.org/10.1137/0211027
http://dx.doi.org/10.1007/3-540-45748-8_31
http://dx.doi.org/10.1109/18.746809
http://dx.doi.org/10.1109/18.782102
http://dx.doi.org/10.1145/1080091.1080120
http://dx.doi.org/10.1145/1080091.1080120

	1 Introduction
	1.1 Thesis Overview
	1.2 Related work
	1.2.1 Distributed Hash Tables
	1.2.2 Erasure Codes & Byzantine Fault-Tolerant Storage Systems
	1.2.3 Authenticated Data Structures

	2 Model and Preliminaries
	2.1 Model
	2.2 Preliminaries

	3 Basic IRIS
	3.1 Butterfly Coding Strategy
	3.2 Storage Strategy
	3.2.1 Internal Distributed Error Correcting Code
	3.2.2 Redundancy Analysis

	3.3 Lookup Protocol
	3.3.1 Preprocessing Stage
	3.3.2 Probing Stage
	3.3.3 Decoding Stage
	3.3.4 Differences and Similarities to Previous Works

	3.4 Correctness Analysis of the Lookup Protocol
	3.4.1 Robust Hash Functions
	3.4.2 Analysis of the Probing Stage
	3.4.3 Analysis of the Decoding Stage

	4 Enhanced IRIS
	4.1 Preliminaries
	4.2 Storage Strategy
	4.3 Lookup Protocol
	4.3.1 Preprocessing Stage
	4.3.2 Probing Stage
	4.3.3 Decoding Stage

	5 RoBuSt
	5.1 Preliminaries
	5.2 Storage Strategy
	5.3 Write Protocol
	5.3.1 Preprocessing Stage
	5.3.2 Outline of the Writing Stage
	5.3.3 Details on the Decoding of a Bucket (Step 1)
	5.3.4 Details on the Encoding of a Bucket (Step 2, Step 3b)
	5.3.5 Details on Counting and Selecting (Step 3, Step 3a)

	5.4 Lookup Protocol
	5.4.1 Preprocessing Stage
	5.4.2 Zone Examination Stage

	5.5 Correctness Analysis of the Lookup Protocol
	5.5.1 Analysis of the Probing Stage
	5.5.2 Analysis of the Decoding Stage

	6 OSIRIS
	6.1 Preliminaries
	6.2 Storage Strategy
	6.2.1 Internal Distributed Error Detecting and Correcting Code
	6.2.2 Storage Strategy of a Single Bucket

	6.3 Lookup Protocol
	6.3.1 Outline of the Lookup Protocol
	6.3.2 Probing Stage
	6.3.3 Recovery Stage

	6.4 Write Protocol
	6.5 Correctness Analysis of the Lookup Protocol
	6.5.1 Analysis of the Probing Stage
	6.5.2 Analysis of the Recovery Stage

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

