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Abstract

Computer controlled systems are a foundation to today’s modern society.
Their use and impact are ever-growing, in particular when considering trends like
smart homes and Industry 4.0. The development of such systems is non-trivial.
Correctness of the functionality provided by these systems is of importance, since
they are often deployed in safety-critical scenarios, where a failure could lead to
a loss in production value or the risk of life. Many of these systems are real-time
systems or include some kind of timed behavior.

In order to ensure a certain quality of these systems, model-based design
approaches can be employed. Within these structured procedures, the systems
under development are designed using models that specify certain aspects of
them. This structured procedure provides for fewer errors being made. In
combination with formal methods, the absence of erroneous behavior can be
ensured. To this end, formal languages with a mathematically defined semantics
are employed, and formal verification, based on this semantics, is used to reason
about the absence of erroneous behavior. There exist several formalisms for the
verification of timed systems, e.g., the formalism of networks of timed automata
used in this thesis. However, today’s techniques and tools for this task often
suffer from the same deficiency. They easily run out of memory when exploring
large, complex models due to the enormous amount of states (state explosion
problem) they need to keep track of.

An additional challenge arises when considering the procedure during the
design phase. The models are repeatedly reconfigured, i.e., changed to reflect
design choices until a final design is found. In addition, they may also be recon-
figured during lifetime, in particular when considering systems of Industry 4.0
that are self-optimizing and adaptable. In consequence, the respective models are
reconfigured to reflect these adaptations. These reconfigurations raise the need to
redo verifications since the state spaces of the models might have changed. Tech-
niques employed for these redone verifications have to meet specific demands, in
particular efficiency, since they might be employed in a sort of online verification
during the lifetime of a system.

In this thesis, we approach both of the challenges mentioned above. First,
we provide a technique for the verification of safety properties specifying the
absence of erroneous behavior for networks of timed automata. Our technique
deliberately works distinct from other state-of-the-art approaches in this field,
as it employs induction and, thus, avoids explicit exploration and storage of
states. In consequence, it is a valuable complement to existing technologies as its
strengths and weaknesses differ to those of other technologies. Our approach
combines the IC3 algorithm, well known in the hardware verification domain,
with the Zone abstraction, used for timed verification. The result, IC3 with Zones
is competitive and includes the strengths of both components, namely the time
abstracting efficiency of zones and the efficiency on discrete structured of IC3.
We show the practicality of it in numerous experiments on different aspects of
scalability.

In our continued work, we employ our algorithm for the verification of
reconfigured models. To this end, we reuse an inductive invariant computed by
IC3 with Zones.
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This basic idea works particularly well for a special class of systems, denoted
Parameterized Timed Systems. They contain an arbitrary, but fixed number of
instances of a process as is the case, e.g., in client-server settings with an arbitrary
number of clients. We propose an approach to avoid the online verification
for such systems, as would be needed whenever the number of processes is
changed, e.g., a client is added. Our technique enables an a priori verification of
the entire system, irrespective of the actual number of instances. To this end,
we verify the safety property for the smaller models of the family and reuse the
computed inductive invariants. These are adapted using the symmetry inherent
in Parameterized Timed Systems, and employed for the reasoning about the
entire system. For this purpose, we propose and prove a Termination Theorem
that enables this reasoning. The practicality of our approach is shown using
several experiments.

In addition, we examine the reusability of the inductive invariant for general
models and reconfigurations with the aim to speed up the verification for recon-
figured models. To this end, the same acceleration technique is employed as in
the special case for Parameterized Timed Systems. We discuss in detail, why it
is hardly feasible to adapt the inductive invariant to reflect a reconfiguration in
general. As a result, we give a best-guess approach that adapts the invariant where
possible. Numerous experiments show that this technique is of value even so, in
particular when the reconfigurations are small.
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Zusammenfassung

Rechnergesteuerte Systeme bilden den Grundstein der heutigen Gesellschaft.
Ihr Einsatz und ihre Verbreitung wachsen stetig, unterstützt durch Trends wie
Smart Homes und Industrie 4.0. Die Entwicklung solcher Systeme ist jedoch
schwierig. Ihre korrekte Funktionalität ist von großer Wichtigkeit, da diese
Systeme oftmals in sicherheitskritischen Szenarios eingesetzt werden, in denen
eine Fehlfunktion zu finanziellem Schaden oder sogar zu Gefahr für Leib und
Leben führen kann. Viele dieser Systeme sind Echtzeitsysteme oder besitzen
zeitgesteuertes Verhalten.

Um die Qualität der Systeme sicherzustellen, können Modell-basierte Design-
Ansätze verwendet werden. In diesen strukturierten Vorgehensweisen werden die
zu erstellenden Systeme mithilfe von Modellen entworfen, die ein System unter
bestimmten Gesichtspunkten spezifizieren. Ein solch strukturierter Ansatz sorgt
dafür, dass weniger Fehler gemacht werden. Durch die zusätzliche Nutzung for-
maler Methoden kann die Abwesenheit von fehlerhaftem Verhalten sichergestellt
werden. Hierzu werden formale Sprachen mit mathematisch definierter Semantik
genutzt, sowie formale Verifikation, die basierend auf der formalen Semantik
über die Abwesenheit von fehlerhaftem Verhalten schlussfolgert. Etliche Formal-
ismen existieren für die Verwendung zur Verifikation zeitlicher Systeme, zum
Beispiel die Netzwerke von zeitlichen Automaten, die in dieser Arbeit verwen-
det werden. Die meisten der heutigen Techniken für die Verifikation zeitlicher
Systeme leiden jedoch unter dem gleichen Problem. Bei der Exploration großer,
komplexer Modelle benötigen sie ein enormes Maß an Speicher, um die besuchten
Zustände zu speichern. Durch das enorme Anwachsen der Anzahl an Zuständen
(Zustandsexplosionsproblem) schlägt die Verifikation oft fehl.

Eine zusätzliche Herausforderung entsteht durch den Ablauf der Design-
Phase. Bis das finale Design entschieden ist, können die Modelle wiederholt
rekonfiguriert, d.h. geändert, werden um Designentscheidungen umzusetzen.
Zusätzlich kann dies auch zur Laufzeit der Systeme auftreten, insbesondere bei
Systemen der Industrie 4.0, die selbstoptimierend und anpassungsfähig sind.
Dementsprechend können sich die entsprechenden Modelle zur Laufzeit ändern.
Diese Rekonfigurationen verlangen eine erneute Verifikation, da sich der Zustand-
sraum geändert haben kann. An die Techniken, die für diese erneuten Verifika-
tionen eingesetzt werden, werden spezielle Anforderungen gestellt, insbesondere
Effizienz, da sie während der Laufzeit als Online-Verifikationen durchgeführt
werden.

In dieser Arbeit werden beide zuvor genannten Herausforderungen ange-
gangen. Es wird eine Technik zur Verifikation von Sicherheitseigenschaften,
die die Abwesenheit von fehlerhaftem Verhalten definieren, in Netzwerken von
zeitlichen Automaten vorgestellt. Diese Technik hat ein grundlegend anderes
Funktionsprinzip als andere aktuelle Ansätze, da sie Induktion nutzt und somit
die explizite Exploration und Speicherung von Zuständen umgeht. Hierdurch
ist sie eine wertvolle Ergänzung zu den bestehenden Ansätzen, da die Stärken
und Schwächen unterschiedlich ausfallen. Der Ansatz kombiniert den IC3 Al-
gorithmus, der in der Hardware Verifikation erfolgreich eingesetzt wird, mit
der Zonen-Abstraktion, die Grundlage vieler zeitlicher Verifikationsverfahren ist.
Der resultierende Algorithmus IC3 mit Zonen ist wettbewerbsfähig und enthält
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Stärken von beiden genannten Komponenten. Dies sind insbesondere die gute
Fähigkeit zur Zeit-Abstraktion von Zonen und die Effizienz auf diskreten Struk-
turen von IC3. Die Anwendbarkeit und Skalierbarkeit der Technik wird in vielen
Experimenten gezeigt.

Aufbauend auf dieser Technik werden Ansätze vorgestellt, die auf die Veri-
fikation von rekonfigurierten Modellen abzielen. Sie nutzen dazu die induktive
Invariante, die von IC3 mit Zonen berechnet wird.

Die Idee der Wiederverwendung der Invariante ist besonders gut einsetzbar
bei einer speziellen Art von Systemen, genannt Parametrisierte Zeitliche Systeme.
Diese enthalten eine beliebige, aber feste Anzahl an Instanzen eines Prozesses, wie
beispielsweise in einem Client-Server System mit beliebiger Anzahl Clients. Unser
Ansatz umgeht die Notwendigkeit einer Online-Verifikation für solche Systeme,
die beispielsweise notwendig wäre, wenn die Anzahl an Clients geändert würde.
Die Technik basiert auf einer Verifikation der gesamten Familie an Modellen,
die von vornherein ausgeführt wird. Hierzu wird die Sicherheitseigenschaft für
die kleineren Modelle verifiziert. Die dabei berechneten induktiven Invarianten
werden anhand der Symmetrie, die durch die Parametrisierung gegeben ist,
angepasst und danach verwendet, um über die gesamte Familie an Modellen zu
urteilen. Hierfür wird ein Terminierungstheorem gegeben und bewiesen. Etliche
Experimente zeigen den Nutzen der Technik.

Zusätzlich wird untersucht, wie man die induktiven Invarianten für allge-
meine Rekonfigurationen und Modelle nutzen kann, so dass die Verifikation für
rekonfigurierte Modelle schneller wird. Es werden die gleichen Techniken zur
Beschleunigung von Verifikationen mithilfe der Invarianten benutzt, wie in der
Arbeit zu parametrisierten Systemen. Detailliert wird dargelegt, warum diese
Invarianten im allgemeinen Fall kaum an die Rekonfiguration angepasst werden
können. Schließlich wird ein Ansatz vorgestellt, der die Invariante soweit wie
möglich anpasst. Experimente zeigen, dass diese Technik eine Bereicherung im
Kontext der Online-Verifikation darstellt.
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1
Introduction

More than ever does today’s society rely on the correct functionality of software and
hardware, as more and more tasks are carried out by computer-controlled systems.
This trend can be observed in everyones personal environment, as well as in the
industry. Examples of importance are the usage of connected controllers in smart
homes, e.g., for doors and radiators, or the paradigm of Industry 4.0 that facilitates the
interconnection and adaptation of all components engaged in a production system.
As a result, the systems and their interaction grow more and more complex.

The increased complexity poses a serious threat to the correct functionality of
the systems, as a mistake might more easily stay unnoticed within a large system.
With most of the systems being safety critical, every possible effort must be made
to avoid and find such mistakes that result in unintended, erroneous behavior.
Considering again the above examples, a mistake might result in the smart door
opening erroneously, or a sudden, undesired stop in a production system. The
consequence might be a loss in production value or the risk of life.

In response to this problem, an increasing effort is made to research and introduce
structured approaches that are able to ensure a certain quality of a system. One such
approach for software is the model driven software development (MDSD) [B+05]
that starts as early as possible during development, namely in the design phase. In
such structured approaches, a system is specified via models that depict different
aspects of it. For example, the unified modeling language (UML) [RJB04] is typically
employed for this task during the development of software systems. UML contains
numerous types of diagrams to specify different aspects of the system, e.g., use case
diagrams to capture behavioral requirements or class diagrams to capture structural
relations. These diagrams are not only employed for specification, but are also used
for documentation purpose and are often involved in the construction of the final
system. To this end, automated transformations and generators are employed that
fully automate the task of transformation into other modeling formalisms, or the
generation of code. This structured procedure for specification and generation of
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parts of a software system is often used and helps to achieve a good code quality and
architecture. However, every manual specification and modeling might introduce
unintended, erroneous behavior in the models and, using the automated generators
and transformations, into the final system. For this reason, formal methods are
employed that are able to guarantee the absence of such behavior in the models and,
in consequence, in the final system, provided the transformations are correct. These
formal methods basically draw on three important elements. First, the unintended,
erroneous behavior has to be specified. Second, the models that are to be checked
need to be specified using a formalism based on a rigorous mathematical semantics
in order to enable reasoning about erroneous behavior. Third, the methods that
check the absence of the unintended behavior in the given model are required to be
sound.

There exist many distinct formalisms for modeling the system under develop-
ment. Many of them are specifically designed to capture certain aspects of the
system, e.g., its structure, communication or timed behavior. They are based on a
rigorous defined mathematical semantics that allows the reasoning about properties.
Using the mathematical foundation, the reasoning about properties of the models
can be done using one of the approaches for formal verification. There exist sev-
eral such techniques, where deductive verification and model checking represent
the most well-known categories. Among the most common modeling formalisms
are automata, petri nets [Mur89], process calculi [Mil80; Mil99], Z [SA92] and the
B-method [AAH05]. In addition, there exist formalisms that encompass an explicit
notion of time, e.g., timed automata [AD90], hybrid automata [Hen00], timed petri
nets [Ram73], Timed CSP [RR86], Duration Calculus [CHR91] and Timed Graph
Transformation Systems [HHH10]. These are of special interest, as real-time systems
are of growing importance.

As an example, consider the numerous embedded real-time controllers that
operate many safety-critical systems, e.g., the time-critical sensing of a car accident
with almost immediate inflation of an air bag. Additionally, in the industry more
and more real-time systems are employed, as the paradigm of Industry 4.0 often
requires the components to communicate using real-time protocols in order to
achieve adaptivity and self-optimization of all components in a plant. There exist
several additional examples that illustrate today’s importance of real-time systems
and time based behavior.

In general, such behavior is of interest in many development scenarios and so
are the respective formalisms and formal verification methods. As in the untimed
case, the formalisms are employed to model specific aspects of the system under
development, and verification is employed to check whether specified properties
hold true for the model.

As explained above, the systems and their interaction grow more and more com-
plex. In consequence, the respective models of these systems become increasingly
complex. The formal verification carried out to ensure the quality of the system
needs to be able to handle such large models. But with models growing intensely,
the verification of properties for them becomes even more challenging due to the
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state explosion problem. An additional problem is the fact that models are often
reconfigured, i.e., changed. In the MDSD process mentioned above, reconfigurations
may occur repeatedly in the design phase until a final design is found. A reason
might be that required properties are not met or that additional parts have to be
included.

In addition, there exist scenarios in which a model is reconfigured at lifetime
of a developed system. These reconfigurations, i.e., changes, to the model reflect
changes to the running system. They are of huge importance, in particular, when
considering the adaptivity and self-optimization proposed for Industry 4.0 plants.

Examples for such reconfigurations at runtime are the adaptation of a plant
in which it switches to another operating mode in order to save energy, or the
modification of the plant including new components. Furthermore, the substitution
of mechanical parts might result in a different timing behavior if the parts possess
distinct operating characteristics.

In such cases, the system is reconfigured at lifetime, possibly in ways that could
not be foreseen within the design-phase. There exist works that are concerned with
intelligent assistant systems for such scenarios [JN12], but they do not consider the
context of formal verification. Every change in the system might lead to unintended
behavior. Thus, there exists a need to verify the properties, which have already been
verified for the original model, again for the reconfigured one.

To this end, the reconfigured model could be provided manually by a model
designer, or even be learned automatically by machine learning algorithms, e.g as
timed automata [Mai14] or hybrid automata [Nig+12].

In any case, the verification should be as efficient as possible, in particular, when
considering that the properties have already been verified for the original model that
might be very similar. Moreover, when taking into account that the reconfigured
system might already be running, the urgency of this task becomes obvious.

Either way, a reconfigured model would result in a renewed need for verification.
With the growing complexity of systems and their models in mind, these verifications
should be as efficient as possible. It is, thus, not desirable that these verifications for
reconfigured models employ techniques that start from scratch.

1.1 Problem Definition

Many of today’s systems exhibit timed behavior. They rely on time in diverse ways,
e.g., using real-time communication protocols as can be found for example in the
PROFINET standard [Fel04]. Furthermore, the interaction of several components
can be seen as timed interdependency, e.g., since the distribution of a product
in the plant relies on its completed creation. The quantity of systems with such
behavior shows the significance of timed verification. For this task, models are
created that reflect the time-based aspects of the system. As illustrated above, the
formal modeling and verification can be done at design time of the system, e.g., in
the context of model-based design processes, or later on during runtime, e.g., using
learned models. Either way, a formal modeling language is required in order to
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model the mentioned timed behavior. There exist formalisms that are capable of
modeling continuous real-time since the early 1990s. They offer various levels of
expressiveness and usability.

In this thesis, we employ the formalism of networks of timed automata [AD90].
It is one of the most well-known formalisms with roughly 25 years of research.
The modular structure as a network consisting of several timed automata enables
an elaborate way of modeling individual components, e.g., representing software
processes or different hardware controllers. It is, thus, well suited for the modeling
of interconnected components as is the case in Industry 4.0 plants or smart homes.
The decidability of reachability questions in this formalism enables the use of formal
verification [AD90].

In networks of timed automata, the interconnection of the distinct components’
behaviors is given implicitly via time. In addition, the formalism allows an explicit
interaction enforced via synchronization and shared variables.

Like in other automata formalisms, timed automata are based on a discrete
structure that offers an easy means to specify distinct states of the various compo-
nents. This discrete structure captures the overall, untimed behavior of the system.
However, in timed systems, this behavior highly depends on time.

To this end, constraints are introduced that restrict the allowed behavior as a
function of the elapsed time. This intuitive mechanism of observing the progress
of time and, in dependence, limiting the allowed behavior is a basic concept, also
included in several other timed formalisms, e.g., timed petri nets or timed graph
transformation systems.

In this thesis, we are concerned with the verification of safety properties that
specify the non-reachability of error states. These error states are an intuitive way to
specify unintended or undesired behavior. The absence of such erroneous behavior
can be guaranteed via a formal verification of the safety properties.

For the formalism of networks of timed automata, there already exist techniques
and tools to verify such properties. Considering the requirements of today’s systems
and Industry 4.0, these approaches are not well suited.

Most of them are optimized for runtime, i.e., they are fast at the expense of used
memory, mostly due to explicit exploration. Taking into account the increasing size
of the systems and their interconnectivity, an approach is desirable that is capable of
verifying large models without running out of memory easily. Furthermore, most
of the current techniques are not suited to cope with reconfigured models as may
happen often, e.g., during model-based design processes. These approaches require
a verification of the properties for the reconfigured model that starts from scratch.

These are the two problems we approach in this thesis. They are summed up in
the following.

• The verification of large models, in particular those with a large set of reachable
states, poses a problem for many existing techniques. Many of these techniques
rely on an explicit exploration and representation of the forward or backward
reachable states. These states have to be stored in order to know which states
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have already been explored. Trivially, a large number of such states results
in huge memory requirements, which is often the reason that a verification is
aborted. We will focus on a technique that does not require the exploration of
each reachable state. To this end, it employs induction. We seek to develop an
approach that handles complex, large models well.

• The second problem in the above setting is that many models might be re-
configured during design time or lifetime. Current verification techniques for
timed automata are not designed for an efficient verification of the reconfig-
ured models. They will start a verification from scratch and, thus, waste the
chance to reuse a previous verification result. Even if they would be capable of
reusing a previous outcome, their explicit method would need to check every
such state again, as the state space has changed. Our focus on an inductive
method establishes a distinct chance, as it can be reused in a more elaborate
way. We seek to develop a technique that efficiently verifies safety properties
for reconfigured models in order to support repeated reconfigurations during
design time, and in order to enable online verification, i.e., verifications during
lifetime of a system.

In the following, we will state our contributions for these two problems.

1.2 Contribution

This thesis is concerned with both of the problems pointed out above. We propose
a novel technique for the verification of safety properties for networks of timed
automata. Based on an inductive invariant computed by this technique, we accelerate
the verification of safety properties for reconfigured models.

In detail, our contribution is as follows.

IC3 with Zones As mentioned above, many of the verification techniques for safety
properties in networks of timed automata suffer from large memory requirements.
When handling large models with a huge set of reachable states, the explicit explo-
ration that is used in many state-of-the-art approaches easily runs out of memory.
The reason is that the algorithm needs to store the already explored states in order to
detect whether a new state was already discovered. Thus, their memory need can be
seen as one of the most important weaknesses of the current verification techniques.

We avoid the explicit exploration and discovery of every reachable state. To
this end, we transfer the IC3 algorithm to the domain of timed verification in a
competitive way. We present, implement and evaluate a concept that combines the
strengths of the following two elements.

• The IC3 algorithm [Bra11] has proven to be successful and efficient, both
regarding runtime and memory, for the verification of safety properties on
discrete structures. It is based on induction and SAT-solving and, thus, works
differently than the exploration algorithms usually employed in timed verifi-
cation. Its mechanisms avoid the discovery and storage over every reachable
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state, but instead compute an inductive invariant stored as a compact proposi-
tional formula. We employ this efficiency and distinctiveness in our approach
in order to avoid the common problem of storing explicitly explored states.

• The Zone abstraction has been employed numerous times for timed verification.
It is versatile in that it can be very fine grained or very coarse and there exist
sophisticated algorithms to efficiently manipulate zones. Using these efficient
algorithms and the proper coarseness, we employ this abstraction in order to
handle the infinite state space imposed by the semantics of timed automata.

By combination of these two elements, we achieve a transfer of the IC3 algorithm to
the domain of timed verification, which is competitive, unlike previous attempts. The
result is a technique that works in a way distinct than other state-of-the-art techniques
in timed verification, namely by using induction. It combines the strengths of the
two included elements and, thus, avoids the weakness of storing explicitly explored
states, i.e., the enormous need for memory.

Our technique employs SMT-solving [BST10] and is based on induction. The
main challenge is the infinite state transition system imposed by the semantics of
timed automata. As explained, we employ the Zone abstraction in order to cope
with this problem and ensure termination. The integration of this abstraction into
the IC3 algorithm is based on the structure of the SMT-queries. Our combination
achieves termination and efficiency.

We show this efficiency and practicality of our proposed technique in numer-
ous experiments. Using standard examples from literature, we illustrate that our
approach is able to outperform state-of-the-art tools by models up to three times as
large. We present experiments to examine the scalability of our approach with regard
to the model size, the used location encoding and the usage of integer variables.

Summing up, we present a combination of two techniques from distinct domains.
It does, unlike most other techniques in the domain, not explicitly explore and
store the reachable state space. Instead, our technique employs induction for
the verification of safety properties in timed systems modeled as networks of
timed automata. Due to its distinct working paradigm, the presented technique
is well suited to be used for large, complex models as in today’s systems. It
is a relevant alternative to long-established approaches and might give thought-
provoking impulses.

Our technique yields a valuable additional outcome in case of verification success,
which we employ for the second problem defined above (Section 1.1). It computes
an inductive invariant that we store and reuse for the verification of properties for
reconfigured models.

In the following, we state our contribution in this direction. The first work
deals with specific reconfigurations that add an instance of a process to an already
existing number of such instances. Doing so numerous times creates a system
with an arbitrary large, but fixed number of processes. These systems are denoted
parameterized timed systems.
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Parameterized Timed Systems Parameterized Timed Systems occur frequently in
modern systems. For example, consider a scenario in which a number of robots
requires the exclusive access to a resource, e.g., to the top element of a pile of raw
materials in order to start working. In order to avoid problems, the decision which
robot gains access can be negotiated by their controllers using a mutual exclusion
algorithm. To ensure error-free functioning, the involved controllers might have
been modeled and mutual exclusion has been verified. However, if an additional
robot is added, e.g., to increase the productivity, the same property needs to be
verified again for the reconfigured system including the additional controller. There
exist many other scenarios that also raise the need for a new verification whenever
the system is reconfigured with a new number of processes.

We have proposed a novel approach for the verification of safety properties for
such parameterized timed systems that consist of an arbitrary, but fixed number
of instantiations of a process. Our technique enables an a priori verification of the
entire system, where the actual number of instances during runtime does not matter.
Thus, the system can be reconfigured by addition or deletion of processes without
raising the need for a new verification. Instead, based on the a priori verification
one can be sure that the safety property holds irrespective of the number.

This technique avoids the need for online verification for systems that can be
modeled as such a parameterized timed system. It is competitive and able to reason
about the entire family of models in the system by considering only a few fixed
instances. To this end, it reuses verification results obtained during the verification
for these fixed instances in order to reason about all larger models. This reuse is
extremely efficient.

Our approach consists of several important parts. We propose a workflow that
incrementally verifies the safety property in question for models with increasing size.
It employs our algorithm IC3 with Zones presented in the previous paragraph and,
thus, profits from possible improvements in the future. The inductive invariants
computed by the algorithm are adapted using the symmetry inherent in parameter-
ized timed systems and later on used to reason about the entire system. To this end,
we propose and prove a Termination Theorem that is the basis for this reasoning.

Additionally, we reuse the adapted inductive invariants in order to accelerate
subsequent verifications of the safety property for reconfigured models, which
means in this context that they include an additional process.

Both reuses of previously computed results are extremely successful as shown in
numerous experiments. We were able to verify mutual exclusion for all considered
parameterized timed systems, i.e., for any number of instances. This ability is a
significant benefit over the single verification for a fixed model. As an example,
consider a model with one million timed automata, which can be verified by our
technique in the context of parameterized timed systems.

Summing up, we present an approach that entirely avoid the need for online
verification in the context of parameterized timed systems. Using an a priori
verification, it allows the reconfiguration of the system in terms of the number of
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processes without raising the need for a new verification. It is competitive and
efficient in that it reuses computed inductive invariants.

Reusing previously computed inductive invariants to accelerate the verification
of reconfigured models does not only work in the parameterized setting, but also
in a general one. We denote this reuse as Feedback-mechanism and apply it in the
following work for general models and reconfigurations.

Verification in the Event of General Reconfigurations In the previous setting, the
specific kind of systems allows an easy estimation of the effects of a reconfiguration
based on the inherent symmetry. For generic reconfigurations, however, the effects
can not be estimated in general.

For example, consider a self adaptation of a system in a plant. Although the
future behavior mode is determined by this adaptation, it can not be estimated how
this behavior will work out considering the entire system in the future. In general, a
reconfiguration as little as the change of a timing constant might ultimately lead to
unintended behavior.

As the effect on the entire system can not be estimated, we propose a best-guess
approach that tries to adapt the inductive invariant as good as possible. Afterwards
the adapted invariant is used in the Feedback-mechanism in order to accelerate the
verification of the property for the reconfigured model.

Based on the reconfigurations that have been carried out, we adapt the invariant
such that it is usable in the new verification and reflects the changes applied to
the model. However, due to the IC3 algorithm and the zone computation, this
adaptation is extremely limited.

Even so, often the adapted inductive invariant can successfully be applied to
accelerate the verification of the safety property for the reconfigured model. We
have conducted several experiments to show the value of this technique. Even with
a reconfiguration that introduces a violation of the safety property, our feedback
mechanism has shown to be of help.

Clearly, the value of this technique in general is limited. Reconfigurations
that introduce too much change in the model will ultimately result in a useless
reuse of the inductive invariant. Nevertheless, we have introduced and examined
a reuse mechanism that is able to accelerate the verification of safety properties
for reconfigured timed systems in general. It is successful for many instances, in
particular, when considering small reconfigurations for large models as might often
be the case in model-based design processes or reconfigurations of timed systems
during lifetime. The technique gives an important impulse for online verification of
reconfigured models, as might be needed increasingly in the future due to paradigms
like Industry 4.0.

In summary, the following contributions are made. We successfully transfer the
IC3 algorithm into the domain of timed systems, such that it is competitive. To
this end, we propose a combination with the Zone abstraction, which works in a
distinct way than other techniques and, thus, gives new impulses and is of value as
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a complement to existing approaches. Numerous experiments show its value and
practicality.

Using the inductive invariant computed by the proposed approach, we introduce
an approach for a priori verification of an entire parameterized timed system. It
allows the verification of safety properties for any number of instantiations of a
processes in these systems, such that the addition or deletion of a process does no
longer raise the need for a new verification. Several experiments are employed to
show the practicality, in particular when reusing previously computed inductive
invariants for the acceleration of new verification runs for reconfigured models.

Finally, we employ this reuse in a general setting. We present a best-guess
approach that allows an efficient verification of safety properties for reconfigured
models and, thereby, enables online verification for reconfigurations during lifetime
of a system. Our experiments are promising, even though general reconfigurations
are hard to handle.

Our work is, thus, of value for the intended use, namely the verification of large,
complex models in the context of reconfigurations.

The contributions are presented in the thesis in the following order.

1.3 Thesis Outline

Following this introduction, Chapter 2 introduces the formalism used throughout
this thesis. We formally define the employed modeling formalism and its semantics
before specifying the considered safety properties. Elaborating the related work, we
highlight important work during the 25 years of research in this field. Afterwards,
we start with an introduction to SAT-based verification, which includes a detailed
section about the employed IC3 algorithm. Its optimizations and related work are
given subsequently. We finish the chapter with relevant related work that employs
IC3, e.g., for timed verification using the region abstraction.

Chapter 3 contains our work on the combination of the IC3 algorithm with the
Zone abstraction. We start with the encoding of our formalism via SMT-formulae.
Subsequently giving a detailed explanation of our integration of the zone computa-
tion in IC3, we close the chapter with a thorough section showing the practicality
and value of our work including numerous experiments.

Chapter 4 presents our work on parameterized timed systems. It starts with a
general introduction of parameterized systems, before defining the models consid-
ered in this work. To this end, we introduce some restrictions necessary to yield
the notion of symmetry we intent and exploit in our approach. We illustrate the
incremental workflow that is the heart of our approach, before giving the Termi-
nation Theorem that enables our reasoning about the entire parameterized system.
Subsequently, we introduce two promising optimizations that accelerate the work-
flow and increase the applicability of the theorem. Next, we present the numerous
experiments we have conducted and their results.

In the next chapter, we propose an extension to the formalism used in our
incremental workflow for parameterized timed systems. It significantly improves the
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application area without a downside. To this end, we refine some of the definitions.
Using a demonstrative example, we illustrate the purpose of the extension and
finally show the performance of our technique for this example.

Chapter 6 finally considers the acceleration of verifications for reconfigured
models in general. As the effect of a reconfiguration can not be estimated in general,
we give a best-guess approach that adapts the inductive invariant where possible.
It is injected in the new verification run to hinder the costly rediscovery of some
already computed parts of the formula. Our experiments show promising results,
although the benefit is extremely dependent on the used model and the executed
reconfiguration.

Lastly, Chapter 7 completes this thesis. We sum up the accomplished work and
discuss design decisions. Finally, we explain our ideas for future work.

The Appendix contains some more detailed results of our experiments, as well
as the proofs for Chapters 4 and 5.



2
Background

Today’s industry deploys an increasing quantity of real-time systems. These systems
are timing based, e.g., rely on information being communicated in a certain amount
of time. With many of these systems being safety critical, the demand for verification
techniques considering the timed behavior increased.

Using model-based design and development processes, these systems are mod-
eled and specified properties, in form of the absence of unintended behavior, can be
formally verified. To this end, time-based modeling formalisms are required.

From the 1980s on, various efforts have been made to incorporate time in models
and verification. Most of the early attempts [AK83; Bur90; AH94] employ a discrete
time, approximating continuous time by a fixed step length. Based on a global
integer variable counting the number of elapsed time steps, they rely on a special
tick transition to increase the time counter.

It was not until the early 1990s that researchers augmented modeling formalisms
with capabilities for expressing continuous real time. Nowadays, there exist various
real time formalisms for modeling Timed Systems, all of which offer different levels
of expressiveness and usability. The list of formalisms includes, but is not limited to,
Timed Petri Nets [Ram73], Timed CSP [RR86], Duration Calculus [CHR91], Timed
Graph Transformation Systems [HHH10] and others. Pioneering, however, was the
work of Alur and Dill in 1990 [AD90; ACD90], who invented the formalism of timed
automata. Based on its decidability, it achieved great success and subsequently
inspired an entire field of research for improvements, variants, abstractions and tools.
The following section presents the formalism of timed automata as used within
subsequent chapters.

2.1 Timed Automata

In 1990, Alur and Dill extended Büchi Automata with mechanisms to model and
reason about real time [AD90; ACD90]. To this end, they employ real valued
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variables that are allowed to be reset individually, but are required to progress
simultaneously as time elapses. These variables are called clocks, phrasing their
utilization for counting time since their last reset. They are formally defined as
follows.

Definition 2.1.1 (Clock). A clock is a non-negative, real valued variable. The set of
clocks is denoted by C. Mapping each clock x ∈ C to a value vc(x) ∈ R≥0 is called a
clock valuation vc (over C). For a clock valuation vc and some δ ∈ R≥0, the elapse of δ

time units, vc + δ, is defined as

∀x ∈ C : (vc + δ)(x) = vc(x) + δ.

A subset R ⊆ C of the clocks can be reset to 0, while keeping the remaining valuation,
formally defined by

∀x ∈ C : vc[R](x) =

{
0 if x ∈ R,

vc(x) else.

Each clock characterizes the time that has passed since its last reset. All clocks
are initially set to zero keeping track of the time that passes from the start. The clock
valuation depicting these initial values is called the initial clock valuation vc

0, formally
∀x ∈ C : vc

0(x) = 0.
In order to be of use other than bookkeeping, there exist mechanisms to steer

and restrict the behavior of the automaton depending on the current clock valuation.
To this end, clock constraints are employed. They are control mechanisms describing
which clock valuations are allowed at certain points of a run of the automaton.

Definition 2.1.2 (Clock Constraint). Let C be a set of clocks. Φ(C) is the set of clock
constraints φ defined by φ := x ./ n | (x − y) ./ n | φ1 ∧ φ2 | true with x, y ∈ C,
./ ∈ {<,≤,=,≥,>} and n ∈N1. If a clock valuation vc satisfies a clock constraint
φ ∈ Φ(C), we write vc |= φ.

The use of clocks and clock constraints allows for a precisely defined automaton
behavior in dependence of time. The following example illustrates the intention
behind these constraints.

Example 2.1.3. For a given clock c1 ∈ C, imagine a clock constraint φ defined as
φ := c1 ≤ 1024. It depicts the restriction that the clock c1 must not have a value
larger than 1024.

In addition, most models demand for extra variables that can be used to store
non-timed information. To this end, our formalism includes integer variables that
are not subject to time-elapse, but may be used to store and share other information.

1As usual, we restrict these bounds to be natural numbers. This is due to the fact, that for bounds in
Q we could upscale the whole timed automaton in order to obtain clock constraints that are solely bound
by natural numbers.
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Definition 2.1.4 (Integer Variable). Let IV be a set of integer variables. Mapping each
integer variable iv ∈ IV to a value vi(iv) ∈ Z is called an integer valuation vi. Ψ(IV)
is the set of integer constraints ψ defined by ψ := iv ./ n|ψ1 ∧ ψ2|true with iv ∈ IV ,
n ∈ Z and ./ ∈ {<,≤,=, 6=,≥,>}. If an integer valuation vi satisfies an integer
constraint ψ ∈ Ψ(IV), we write vi |= ψ.

For each integer variable, an initial value has to be specified. Thus, the initial
integer valuation vi

0 maps each integer variable iv ∈ IV to its initial value vi
0(iv) ∈ Z.

In contrast to clocks, which can only be reset to zero, we allow more complex
assignments for integer variables, defined as follows.

Definition 2.1.5. Let IV be the set of integer variables. Ω(IV) is the set of sequences
of integer assignments ω defined by

true | iv := n | iv := iv + n | ω1; ω2

with iv ∈ IV and n ∈ Z. The latter definition creates a sequence of assignments,
which are applied from left to right. The resulting integer valuation vi[ω] for integer
assignment ω = ω1; ω2 is, thus, defined as (vi[ω1])[ω2]. For the non-recursive
integer assignments, the resulting integer valuation vi[ω] is defined as:

∀iv ∈ IV : vi[ω](iv) =


n if ω = iv := n,

vi(iv) + n if ω = iv := iv + n,

vi(iv) else.

Note, that due to assignments only including the addition of a constant or
the reset to a constant, each sequence of assignments can be combined into a
sequence, in which each integer variable exists at most once as the left hand side
of an assignment. The order in these resulting sequences does not matter, since
no interdependencies between distinct variables exist. It is possible to extend
the concept of assignments using assignment iv := iv2 for iv, iv2 ∈ IV . Their
combination, however, is more complex since combinations like iv := iv2 + iv3 + 3
can be created for iv, iv2, iv3 ∈ IV , which in principle still rely on a specified
sequence. Thus, we omit such assignments here to provide a better understanding.
Note, however, that the concept can be extended to include these assignments by
small adaptations to the techniques presented in this thesis.

The following example illustrates the use of integer variables in constraints and
assignments.

Example 2.1.6. Let the integer variables IV = {id, cnt} be given. As example
consider the integer constraint ψ := cnt > 1. It requires the integer variable cnt to
have a value larger than 1. Consider the valuation vi = {id = 0; cnt = 0}. Applying
the sequence of assignments ω defined as id := 2; cnt := cnt + 1; id := 3 results in
the valuation vi[ω] = {id = 3; cnt = 1}. As can be seen, the leftmost assignment
(id := 2) is applied before the other ones. In addition, it is obvious that the sequence
can be combined into a sequence cnt := cnt + 1; id := 3 in which each integer
variable exists at most once as the left hand side of an assignment.
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Using clocks and integer variables with their respective constraints and assign-
ments, a timed automaton can be defined, whose behavior depends on time and
integer values stored in the variables. When modeling huge systems, however,
timed automata easily grow large, which complicates the modeling itself. Thus,
compositional modeling is often employed that models different parts of a system
separately. Timed automata also benefit from compositional modeling, implemented
as several timed automata that run in parallel. One of the mechanisms for their
interaction is the synchronization of edges in distinct automata, such that they can
only be taken simultaneously. To this end, a global set of synchronization labels is
defined including an empty label (ε) as to allow for non-synchronized edges. Timed
automata communicate in a CCS-like fashion [Mil80], where senders of messages
(m!) synchronize with receivers (m?). We define synchronization labels as follows.

Definition 2.1.7. Let Σ be a set of channels. We define the set of synchronization
labels Σsync = {ε} ∪ {a?|a ∈ Σ} ∪ {a!|a ∈ Σ}.

In the compositional context, we define our integer variables to be globally shared
among all timed automata, i.e., they can be used in constraints and assignments
within every automaton of the compositional model. The set of clocks, however, is
split in disjoint subsets of clocks available globally or locally. The latter, denoted
with Cl , is defined within each automaton, whilst the first set of clocks is defined
once and provided for all timed automata. The set of global clocks is denoted as Cg

and is required to be disjoint to all sets of local clocks.
Finally, we formalize timed automata as used in the subsequent chapters. It

resembles parts of the formalism used in Uppaal [LPY95], rather than the original
one by Alur and Dill [AD90].

Definition 2.1.8 (Timed Automaton). Let the global set of integer variables IV
and the set Cg of global clocks be given, as well as the global set of channels
Σ. A timed automaton A defined over globally shared Cg, IV and Σ is a tuple
A = (L, l0, C, IV , Σ, Invc, Invi, E) such that

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C = Cl ∪Cg is the union of the finite and disjoint sets of local and global clocks
with initial valuation vc

0,

• IV is the finite set of shared integer variables with initial valuation vi
0,

• Σ is the finite set of shared synchronization channels,

• Invc : L→ Φ(C) is a total function of clock invariants, s.t. vc
0 |= Invc(l0),

• Invi : L → Ψ(IV) is a total function of integer invariants, s.t. vi
0 |= Invi(l0),

and

• E ⊆ L× Σsync ×Φ(C)×Ψ(IV)×Ω(IV)× 2C × L is the set of edges.
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Figure 2.1: Timed Automaton from Uppaal [UPP] modeling a process using the
Fischer Mutual Exclusion algorithm

The semantics of a single timed automaton can informally be described as follows.
A state of the timed automaton consists of a location l, a clock valuation vc with
vc |= Invc(l) and an integer valuation vi with vi |= Invi(l). The initial state is given
via the initial location, as well as the initial clock and integer valuations.

An edge (l σ, φ, ψ, ω, R
−−−−−→ l′) ∈ E can be taken, if the clock and integer valuations

of the source state satisfy the constraints φ and ψ, i.e., vc |= φ and vi |= ψ. When
taking the edge, the resulting target state is determined by application of the reset R
and assignment ω, such that the invariants of the target location l′ are satisfied, i.e.,
vc[R] |= Invc(l′) and vi[ω] |= Invi(l′). An edge is taken instantaneously (without
time elapse), whilst time can pass arbitrarily in a location (as long as the location
invariant is satisfied). When considering only a single timed automaton, only
those edges with synchronization label ε can be taken. All other edges require a
synchronization partner and are therefor only taken into account when combining
several timed automata in a network, which we define later. To illustrate this
informal description, we consider the following example.

Example 2.1.9. Consider the timed automaton depicted in Figure 2.1 with no global
clocks (Cg = ∅), no synchronization channels (Σ = ∅), synchronization label ε

omitted, and two integer variables (IV = {id, cnt}). It models a single process
executing the Fischer Mutual Exclusion algorithm [Lam87]. Starting with location l0,
all clocks and integer variables are set to 0 in the initial clock and integer valuations.
Time may pass and eventually the edge leading from l0 to l1 may be taken, if integer
variable id still has value 0. Then, the local clock c ∈ Cl is reset. Taking this edge
models that the process checks whether some other process is currently trying to
access the critical section. Afterwards some time may elapse, but not more than
1024 time units. Before exceeding that boundary, the process is required to actually
announce his request for the critical section. This step is modeled as the edge from
location l1 to l2, where the process identifier (1) is assigned to the shared variable id.
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In addition the clock is reset once more. To gain access to the critical section (location
l3), the process must wait for more than 1024 time units, forcing other processes
requesting access to update the value of id. If there are no other processes, id still
contains the same identifier (1) and the process is allowed to take the edge leading
from l2 to l3. Otherwise, he would have to take the edge leading again to l1, which
may only be taken after the process in the critical section left it and reset the shared
variable id to 0. Note, that the variable cnt counts the number of processes in the
critical section.

The semantics illustrated above can be formalized as a transition system as
was done, e.g., by Behrmann [Beh+04]. It is denoted as concrete semantics due to a
state containing only concrete values, meaning a single location, clock and integer
valuation.

Definition 2.1.10. Let A = (L, l0, C, IV , Σ, Invc, Invi, E) be defined over Cg, IV and
Σ as in Def. 2.1.8. The transition system TS = (S, s0,→) defines the concrete
semantics:

• S = L×RC
≥0 ×ZIV is the set of states,

• s0 = (l0, vc
0, vi

0) ∈ S is the initial state,

• →⊆ S× S contains delay transitions→d and edge transition→e:

– (l, vc, vi)→d (l, vc + δ, vi) iff ∀0 ≤ δ′ ≤ δ : (vc + δ′) |= Invc(l)

– (l, vc, vi)→e (l′, vc ′, vi ′) iff ∃(l ε, φ, ψ, ω, R
−−−−−→ l′) ∈ E, s.t. vc |= φ, vc ′ = vc[R],

vc ′ |= Invc(l′), vi |= ψ, vi ′ = vi[ω], vi ′ |= Invi(l′).

As can be seen only unsynchronized edges (with synchronization label ε) can
be taken in a single timed automaton since no synchronization partner is available.
However, one of the most convenient aspects in modeling timed automata is the
ability for compositional modeling. We call a composed model, consisting of several
timed automata running in parallel, a network of timed automata. These automata are
modeled separately, but interact with each other via clocks, integer variables and
synchronized edges. The downside, however, is the exponential blowup of states, as
the semantics of such a network equals the product automaton. We formally define
the composition of timed automata A1,...,An as follows.

Definition 2.1.11 (Network of Timed Automata). Let Cg, IV and Σ be given, as well
as the timed automata A1 to An defined over them. For distinction, their parts are
marked with subscripts such that Aj = (Lj, l0 j, Cj, IV , Σ, Invc

j, Invi
j, Ej). All sets of

clocks (Cg, Cl
1, . . . Cl

n) are required to be mutually distinct. The product automaton
defining the network of timed automata NTA = 〈A1, ..., An〉 is defined over Cg, IV and
Σ as A = (L, l0, C, IV , Σ, Invc, Invi, E) with
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• L = L1 × ...× Ln with initial state l0 = (l01, ..., l0n) ∈ L,

• C = Cg ∪ Cl
1 ∪ ...∪ Cl

n with initial valuation according to local valuations vc
0,

• Invc(l1, ..., ln) = Invc
1(l1) ∧ ...∧ Invc

n(ln),

• Invi(l1, ..., ln) = Invi
1(l1) ∧ ...∧ Invi

n(ln),

• E is defined as

– ∀i ∈ {1, ..., n} : ((..., li, ...) σ, φ, ψ, ω, R
−−−−−→ (..., li

′, ...)) ∈ E

if (li
σ, φ, ψ, ω, R
−−−−−→ li

′) ∈ Ei

– ∀i 6= j ∈ {1, ..., n} : ((..., li, ..., lj, ...) ε, φ, ψ, ω, R
−−−−−→ (..., li

′, ..., lj
′, ...)) ∈ E

if (li
a!, φ1, ψ1, ω1, R1−−−−−−−−→ li

′) ∈ Ei and (lj
a?, φ2, ψ2, ω2, R2−−−−−−−−→ lj

′) ∈ Ej

with φ = φ1 ∧ φ2, ψ = ψ1 ∧ ψ2, ω = ω1; ω2, R = R1 ∪ R2.

The product automaton contains a non-synchronized edge (with synchronization
label ε) wherever two edges have successfully been synchronized, i.e., that edge
is allowed to be taken. Note, that the assignments of the sender edge (m!) are
applied before those of the receiver edge (m?). Additionally, it still contains the
original edges (see the first bullet point defining E above) including those requiring
a synchronization partner. These are included for further composition, but are not
allowed to be taken as defined in the concrete semantics in Definition 2.1.10 since
they contain a synchronization label distinct from ε.

Verification of properties for timed automata was done right from the start
supported by decidability results of Alur and Dill in 1990 [AD90]. One of the most
important and interesting verification question is reachability of a state s. It asks
whether there exists a finite number of transition steps leading from an initial state
to s. This verification question is challenging not only due to the infinite transition
system introduced by the real valued clocks, but also due to the state explosion
problem in general.

The notion of reachability allows for the definition of safety properties, which
specify that something bad should never happen. To this end, error state specifications
are defined that describe the bad situation. The safety property holds true, i.e., the
model is safe w.r.t. the safety property, if no error state is reachable. The verification
of safety properties is of fundamental importance [Hal93] as many verification
questions of interest can be expressed as safety properties.

We formally define reachability and safety properties as follows.

Definition 2.1.12 (Reachability). Let a timed automaton A be given with concrete
semantics TS = (S, s0,→). A state s ∈ S is reachable, if there exists a finite number of
transitions leading from the initial state to s, formally s0 → s1 → ...→ sn → s.

When considering some states as bad, or error states, we employ reachability to
define safety properties that require these error states to be unreachable. To this end,
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we define error state specifications that are able to efficiently characterize error states.
We employ integer and clock constraints, which allows us to specify more than a
single concrete state at once.

Definition 2.1.13 (Error State Specification). Let a network of timed automata
NTA = 〈A1, ..., An〉 be given as in Def. 2.1.11 with concrete semantics TS =

(S, s0,→). An error state specification is an abstract formalization of a set of undesired
states. The set of error state specifications is defined as ERR = ((L1 ∪ {∗})× · · · ×
(Ln ∪ {∗}))×Φ(C)× Ψ(IV). Each error state specification err = (l̄, φ, ψ) ∈ ERR
includes a clock and an integer constraint and additionally a (partial) location vector
l̄ ∈ (L1 ∪ {∗})× · · · × (Ln ∪ {∗}) specifying at most one location for each timed
automaton. The element ∗ stands for an undefined location. To refer to specific loca-
tions in the vector, we denote the location specified for automaton Ai as l̄[i]. A state
s = ((l1, ..., ln), vc, vi) ∈ S is included in an error state specification err = (l̄, φ, ψ),
denoted s |= err, iff

• ∀i ∈ {1, . . . , n} : l̄[i] = ∗ or l̄[i] = li,

• vc |= φ,

• vi |= ψ.

The states that satisfy an error state specification are called Error States.

The safety properties used within this thesis specify that no reachable state is
allowed to be an error state. We formally define it as follows.

Definition 2.1.14 (Safety Property). Let a network of timed automata NTA =

〈A1, ..., An〉 be given as in Def. 2.1.11 with concrete semantics TS = (S, s0,→).
Using the notation of of the LTL-operator G, we define a safety property ρ :=
G(¬err1 ∧ ¬err2 . . . ) to be the conjunction of the negations of error state specifi-
cations err1, err2, . . . . It holds true, when no reachable state in S is an error state,
formally ∀s ∈ S : s is reachable⇒ (s 2 err1 ∧ s 2 err2 ∧ . . . ). Then, we say the safety
property is invariant. Otherwise, at least one state s ∈ S is reachable via a finite
number of transitions s0 → s1 → · · · → sn → s and satisfies one of the error state
specifications s |= erri. This path violates the safety property and is, thus, called a
counterexample trace for the given safety property.

Usually, the verification of properties for networks of timed automata is done
on-the-fly without the computation of the product automaton, due to the enormous
increase in size of states. However, it still needs to take into account the interde-
pendencies of the individual automata resulting in enormous effort. Thus, since
the beginning diverse attempts have been made to establish the practicality of
verification for timed automata.
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2.1.1 Decidability and Abstractions

The feasibility of verifying reachability properties for timed automata was established
in 1990 by Alur and Dill [AD90]. They proved decidability, which is not intuitive due
to the real valued clocks. To this end, they proposed a finite abstraction of the clock
valuations based on the observation that some of them have equal characteristics.
Given the fact that clocks are only compared to integer constants within clock
constraints the actual fractional part of a clock value does not matter. This fractional
part is only of interest to identify which clock will change its integral part first.
Taking into account that time progresses simultaneously for all clocks, Alur et
al. described the region abstraction, which partitioned the clock valuations into
equivalence regions.

Definition 2.1.15. Let A be a given timed automaton as in Def. 2.1.8. For every
clock x ∈ C let nx be the largest constant with which x is compared to. Two clock
valuations vc and vc ′ are in the same region, iff:

• ∀x ∈ C : bvc(x)c = bvc ′(x)c or vc(x) > nx ∧ vc ′(x) > nx,

• ∀x, y ∈ C with vc(x) ≤ nx and vc(y) ≤ ny: f ract(vc(x)) ≤ f ract(vc(y)) iff
f ract(vc ′(x)) ≤ f ract(vc ′(y)),

• ∀x ∈ C with vc(x) ≤ nx: f ract(vc(x)) = 0 iff f ract(vc ′(x)) = 0.

with f ract meaning the fractional part of the value.

Since the number of clocks and the largest constants are fixed within a timed
automaton, the number of regions is finite [AD94]. Thus, decidability of reachability
was shown since every reachability question for a timed automaton can be decided
via this finite abstraction.

Unfortunately, the number of regions grows exponentially with the size of
constants and number of clocks [AD94]. Hence, decidability via region abstraction is
an interesting theoretical result, but not of substantial value for practical verification
purposes. This drawback is tackled by the zone abstraction.

Definition 2.1.16. A Zone Z is a convex set of clock valuations, specified as a
conjunction of clock difference constraints xi − xj ./ n with xi, xj ∈ C ∪ {x0 =

0}, ./ ∈ {<,≤} and n ∈ Z.

Each zone is a convex union of regions and can be described via upper and
lower bounds on single clocks and clock differences. It can efficiently be stored as a
Difference Bound Matrix (DBMs) [Dil90], which allows for an efficient computation
of the zones of predecessor or successor states.

Thus, it gives rise to a significantly coarser symbolic transition system that is of
practical relevance. It is used within many algorithms and tools.

In the following, we survey the research that was done to establish practicality of
the verification for timed systems.
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2.1.2 Related work

We start with a discussion of some algorithms for the verification of safety properties
for timed automata, followed by special data structure and tools. The same sequence
was also used in a survey paper by Yovine in 1998 [Yov98].

There exist various approaches for the reachability analysis of timed automata.
Given that standard exhaustive exploration on the region abstraction is not efficient,
some tools apply digitization to completely abstract away the time domain. To this
end, a finite set of representatives is computed to represent each region [Göl+94].
In general, digitization enables the use of untimed verification algorithms, which
are often more sophisticated than simple exhaustive search. For some restricted
subclasses of timed automata, a BDD-based fixpoint analysis [Bey01] has proven to
be specifically successful. However, these techniques still suffer from a search space
exponentially in the size of the used constants in the model.

Hence, coarser abstractions were sought after. One way is to find an equivalence
relation that is smaller and, thus, better suited for verification. There exist various
approaches searching the minimal finite transition system equivalent to the region
graph up to time-abstracting bisimulation [Yov98; TY96; Alu+92]. Other approaches
try to minimize the timed automaton itself, while maintaining a similar notion of
bisimulation [DY96].

When considering basic forward or backward search, the utilization of clock
constraints to describe sets of clock valuations comes naturally. Their conjunction,
denoted a Zone, describes a convex set of clock valuations. Due to being closed
under time elapse and transition steps, zones are optimally suited for exhaustive
exploration of the search space. Furthermore, the resulting zones are efficiently
computable.

All these different ways of abstraction show the non-triviality of timed verification.
In the end, the success of the abstraction strongly depends on its combination with
clever verification algorithms and data structures.

Most often, in particular in combination with the region or zone abstraction, a
basic exhaustive search is performed. Starting from the initial state, all successor
states are computed and added to the queue of unprocessed states. This queue is
worked off until there are no states left that have not been processed before. Upon
discovery, every single state is checked for violation of the safety property. Exhaustive
search can also be done in a backwards-manner, where states are discovered starting
from the error states. Especially when using the zone abstraction, this basic algorithm
provides for an easy and efficient analysis. Stored in DBMs, the memory usage is
passable, while providing easy mechanisms to compute successor-, predecessor- or
time-elapse-zones [Dil90; DT98]. More sophisticated approaches try to minimize
memory usage by exploiting the fact, that most often some clock constraints in a DBM
are redundant. There exist various publications on how to compute and maintain
a minimal list of such constraints [YPD94; Lar+97]. Despite these optimizations
in memory efficiency, one major problem of the exhaustive search approach in
combination with zones remains difficult. Each discovered state is stored to be
able to tell whether a state has already been explored. A short check if a new state
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is already stored suffices to stop further exploration on this state. Considering
zones, however, a simple check whether a zone (for a specific location and integer
valuation) has already been stored is inefficient. The reason is that the zone could
be covered by the union of several previously explored zones. Hence, a suitable
coverage check might be needed that stops the exploration of zones covered by
the union of previously explored zones. With zones not being closed under union,
several data structures have been proposed offering efficient mechanisms to store
and maintain non-convex unions of zones with a fast inclusion check. However, in
the end these data structures only provide for a trade-off reducing the enormous
amount of memory needed for storing each single zone, but (most often) slightly
increasing the runtime.

Most of these non-convex data structures are build as decision diagrams. Pro-
posed in 1997, numerical decision diagrams were the first data structure aiming
at a small representation of unions of zones [Asa+97]. The approach is based on
discretization of time and employs binary decision diagrams [Lee59; Ake78] for
storing a bitwise encoding of the time values. Thus, it heavily depends on the size of
the encoded constants rendering it inefficient for the verification of safety properties
for most timed automata. The same disadvantage is observed in region encoding
diagrams [Wan00]. They represent a region by the integer parts of the clock values
and the ordering of the fractional parts. Given all the necessary algorithms for data
manipulation, it is suitable as a decision diagram, but as mentioned lacks the capa-
bility to handle large constants. Later approaches are not tied to a discretized time or
region encoding and are, thus, independent of the size of timing constants. Larsen et
al. introduced clock difference diagrams (CDD) in 1998 [Lar+98; Beh+99] pursuing
the goal of a data structure for completely BDD-based verification approaches. Clock
difference diagrams are defined over the real valued difference of clock values. In
addition, they branch with regard to intervals of the reals, while previous techniques
branched only for single values. This makes them significantly less dependent on
the size of constants. Designed to share redundant substructures, clock difference
diagrams are well suited for space-efficient coverage decisions. Other approaches
were not optimized for coverage checks, but more on space efficiency. Reduced
clock restriction diagrams [Wan01a] utilize the small number of constraints needed
to represent a zone [Lar+97]. Given such a minimal constraint system, a compact
representation is achieved, which lacks the capability for efficient determination of
zone containment. Thus, Wang enhanced his approach resulting in cascading clock
restriction diagrams [Wan02; Wan03]. The technique is based on the cascading form
of zones, which may require more constraints than the reduced form, but still less
than a complete DBM.

All these data structures aim to reduce the memory required for verification,
mostly as a trade-off to a slightly increased runtime. While the presented data
structures were able to reduce memory consumption in general, they still run
out of memory easily when verifying properties for large models. Despite these
shortcomings, they have been applied in various verification tools, which we show
in the following. The implementations of all the different concepts and algorithms
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have been extremely successful in the verification tasks both for academic and real
world models.

Over the last 20 years, research has led to the creation of several tools, most
of which are not actively maintained any more. The concepts used in these tools
are very diverse resulting in different modeling and verification capabilities. In the
following, we give a brief survey.

The development of the first tools started in the early 1990s. Kronos [Daw+96;
Boz+98] uses several of the techniques presented above. It implements symbolic
analysis, as well as time-abstracting bisimulation. It employs several data structures,
e.g., DBMs and NDDs and triggered a lot of research. The last release of Kronos has
been in 2002 and since then it has not been developed any further. Another early tool
for the verification of safety properties for timed automata is called Uppaal [LPY95;
LPY97] developed by researchers from the universities of Uppsala and Aalborg. It is
actively developed and maintained down to the present day. Given its graphical user
interface it offers an easy mechanism for modeling and verification, which might be
one of the reasons for its success even in commercial applications. The other reason
for its huge success is the efficient verification, which has been applied to several
interesting real-world studies [Hav+97; LPY98; Ben+96]. It is based on constraint
solving with DBMs represented as minimal constraint systems. Furthermore, it
can apply CDDs and several options for optimization and approximation. With
more than 15 years of development [Beh+11], it includes a lot of great ideas and
has become the most well known tool and also quasi-standard for the verification of
safety properties for timed automata.

Thus, later tools most often had to compare their performance with Uppaal. The
tool Red [Wan01b] that was first implemented using region encoding diagrams was
developed in the early 2000s. Later its verification engine was based on the presented
clock restriction diagrams. The development of Red, however, was discontinued in
2003.

Other tools are based on other techniques. A perfect example for this sort of
diversity is the tool Rabbit [BR00], which is based on digitization in order to apply
BDD-based techniques. Thorough investigations into the best variable orderings,
and adjusted BDD-based algorithms showed a great performance. However, the
approach is still unsatisfying as it highly depends on the size of time constants.

In the last few years, two new tools have been developed that are capable of
verifying timed automata. Synthia [PEM11] is one of these tools, but has only been
actively developed for 2 years, being discontinued in 2011.

The tool PAT [Sun+09], however, is developed and maintained starting in 2009 up
to now. It includes a wide variety of verification techniques including digitization
and BDD-based algorithms.

In summary, there has been an enormous amount of research in the field of
timed automata over the last 25 years. Many techniques have been investigated
and implemented in various tools. However, today only two tools are left that are
actively maintained. These two represent the most successful verification approaches,
as Uppaal heavily relies on zone based verification and PAT utilized digitization
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with BDD-based verification. With the latter being dependent on the size of time
constants, it is conceptually less relevant. Thus, we will examine the techniques
presented in the following chapters in comparison with Uppaal. Even after 15
years of research, Uppaal can easily be pushed to its limits. As a reason for failed
verification attempts, most often its enormous need of memory has to be named.
In consequence, for this thesis we are interested in techniques with better memory
efficiency.

2.2 SAT- & SMT-Solving

In addition to the techniques presented before, there exist various concepts employ-
ing SAT- or SMT-solvers for verification. We present a short overview on SAT- and
SMT-solving that might be helpful to understand Chapters 3 to 6.

2.2.1 SAT-Solving

The boolean satisfiability problem is defined as follows:

Definition 2.2.1. Let a boolean formula be given. The boolean satisfiability problem
(SAT) asks whether there exists an interpretation, meaning a consistent assignment
of truth values true or f alse to the propositional variables, that evaluates the formula
to true. It is called a satisfying interpretation.

If there exists a satisfying interpretation, the formula is said to be satisfiable,
otherwise it is called unsatisfiable.

Various tools, called SAT-solvers, exist that try to answer the boolean satisfiability
problem. The problem is fundamental for complexity theory and has been subject to
research for many decades. In 1971 it was proven to be NP− complete [Coo71], how-
ever, a lot of research on efficient algorithms and heuristics build up the practicality
of today’s tools, e.g., MiniSAT [ES05], PicoSAT [Bie08] or others [Bie12; AS12; LP10].

Most of the tools are based on conflict-driven clause learning algorithms building
on the DPLL approach, named after the researchers Martin Davis, Hilary Putnam,
George Logemann and Donald W. Loveland [DP60; DLL62]. The algorithm assigns
a truth value to literals and afterwards propagates them to simplify the remaining
clauses. Upon discovery of a conflict, the algorithm learns a clause representing the
cause of the conflict and backtracks. Most SAT-solvers require the boolean formula
to be in conjunctive normal form, which is not a problem due to algorithms for
satisfiability-preserving transformations [Tse83; PG86] in polynomial time.

In 1999 the usage of SAT-solvers found its way into the domain of untimed formal
modeling and verification for finite state transition systems. The reason was that
earlier techniques such as explicit model checking or BDD-based approaches reached
their limits due to scalability issues. Biere et al. [Bie+99] introduced the concept
of Bounded Model Checking in order to check transition systems for counterexample
traces of bounded length. The technique relies on an encoding of a bounded
unrolling of the transition relation as a boolean formula to check for an error path of
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fixed length in the model. The formula is issued to a SAT-solver. In case the solver
returns unsatis f iable, there exists no such path. Otherwise, the returned satisfying
interpretation embodies the found error path.

Due to the success of Bounded Model Checking, the application of SAT-based
techniques for formal verification advanced. Concepts were presented that were
not limited to a bounded exploration of the state space, e.g., by McMillan [McM02].
Other work extended the capabilities of bounded model checking by computing
Craig Interpolants from unsatisfiability proofs [McM03]. Integrated in an iterative
fixpoint computation, these are used to compute an over-approximation of the
reachable states and prove the absence of counterexample traces.

In addition, SAT-solving is applied also in abstraction-based reasoning, called
counterexample-guided abstraction refinement (CEGAR) [Cla+02; Cha+02]. To this
end, abstract counterexamples are checked for spuriousness using SAT-queries and
possible refinements are done based on the results of the solver.

Further applications of SAT-solving include approaches relying on induction. We
discuss these techniques in more detail in Section 2.3.

Many of the above techniques have been transfered to the domain of timed
systems. However, with time being represented by unbounded real valued clocks,
an encoding using boolean variables is non-trivial. Thus, most approaches rely on
an extension of boolean satisfiability, which we present in the following.

2.2.2 SMT-Solving

The Satisfiability Modulo Theories-problem is a generalization of the boolean satisfi-
ability problem. It denotes the search for a satisfying interpretation for a formula
in first-order logic, where some symbols have fixed interpretations determined by
background theories. There exists a large variety of such theories, some of which
are specifically designed to reason about data structures like bit vectors or arrays.
In the context of this work, however, we are most interested in the theory of reals,
which enables the SMT-solver to handle real-valued variables in combination with
operators, e.g., addition and multiplication. Furthermore, the theory of integers may
be employed to encode integer variables. The use of these theories results in an easy
and natural way to encode timed systems as logical formulae.

These can be issued to an SMT-solver asking for satisfiability. If the SMT-
formula is satisfiable, the satisfying interpretation, also called SAT-Model is returned.
Otherwise, the formula is unsatisfiable and the solver may return an UNSAT-Core,
which identifies those parts of the formula that take part in its unsatisfiability.

Various SMT-solvers exist [DB08; Dut14; CHN12; Cim+13b; Bar+11] and although
most of them accept the same input format, standardized as SMT-Lib [BST10], they
differ in their capabilities and algorithms. Most modern SMT-solvers use the lazy
approach, which is based on an extension of the DPLL-algorithm, called DPLL(T)
[NOT06]. In general, a run of a SAT-solver determines candidate assignments
of the boolean structure whose satisfiability would result in the satisfiability of
the whole formula. Afterwards, these assignments are checked by theory solvers
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whether they comply with the theories. A close integration of those theory solvers
within the DPLL-algorithm has shown as successful basis for SMT-solvers. Further
improvements and the rich use of heuristics led to a huge success of these tools.

Although their efficiency is a bit behind the one of SAT-solvers, SMT-solvers
are employed efficiently in many domains and are capable of solving very diverse
SMT-instances. Given their expressiveness, they are an easy and natural way of
encoding timed systems.

Thus, many of the SAT-based model checking approaches have been transferred
to the domain of SMT, including their employment for the verification of safety
properties for timed automata. Bounded Model Checking has been one of the
first employments of SMT-solvers for the verification of safety properties for timed
automata. Starting in 2002, a large number of works has been published from
a variety of researchers [PWZ02; Aud+02; Sor03; KJN12a]. All these works use
SMT-encodings of paths in the timed systems, but differ in nuances and research
focus. SMT is the enabling technique for these contributions, as they employ the
theory of reals to encode the real-valued clocks.

Interpolation-based reasoning has also been transferred to be used with infinite
systems [McM05] like timed automata. However, apart from the mentioned approach
for infinite systems in general, it was not in the focus of research.

In addition to the presented work, a lot of techniques based on induction have
been transferred from the SAT domain to SMT-solving.

2.3 Induction based Reasoning

Induction is a proof-principle of high interest. Checking whether a property is
inductive or not is efficient and trivial since it does not involve an unrolling of the
transition system.

The following explanations rely on the notion of a transition system, which may
be infinite, as can be seen in Definition 2.1.10.

Definition 2.3.1 (Transition System). A transition system A = (S, I, T) is defined
over a set of states S with initial states I ⊆ S. A transition relation T ⊆ S× S defines
the passage from state to state. We denote a transition system to be a finite state
transition system (FTS), whenever S is finite.

We define induction and related concepts using SAT- or SMT-encodings. These
encodings usually employ distinct sets of variables x, x′, x′′, . . . to encode the differ-
ent states occurring on a path. We let ‖I(x)‖ and ‖ρ(x)‖ denote the encodings of the
initial states, and those states that satisfy the property ρ, respectively. Additionally,
‖T(x, x′)‖ encodes the transition relation, where the primed variables refer to the
next state as explained above. Using these encodings within queries to SAT- or
SMT-solvers, their unsatisfiability can be used to check whether certain properties
like induction are satisfied.
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Definition 2.3.2 (Induction). Let a transition system A be given as in Definition 2.3.1.
A safety property ρ is inductive, if the following two characteristics are met.

• Initiation: ‖I(x)‖ ∧ ¬‖ρ(x)‖ is unsatisfiable

• Consecution: ‖ρ(x)‖ ∧ ‖T(x, x′)‖ ∧ ¬‖ρ(x′)‖ is unsatisfiable

Initiation requires all initial states to satisfy the safety property. In order to
check this requirement a query is issued encoding an initial state violating the safety
property. Initiation holds true if the query is unsatisfiable. Consecution states that all
successor states of all states satisfying the safety property must also satisfy the safety
property. It is also encoded as a query checked for satisfiability in order to identify
whether it holds. In combination, these two properties specify that all reachable
states satisfy the safety property, meaning it is invariant and the model is safe w.r.t.
the safety property. In consequence, induction is an efficient way of verifying safety
properties for systems. Sadly, most safety properties are not inductive and, thus, the
presented approach will not work. In case the property is not inductive, one of the
two queries will be satisfiable, meaning the respective property does not hold. The
Initiation-formula being satisfiable denotes the existence of an initial state violating
the safety property, which is therefore not invariant. However, in case of a satisfiable
Consecution-formula no conclusion can be made whether the safety property is
invariant or not. The reason is that there exists at least one pair of successive states
in which the successor violates ρ while the predecessor satisfies it. If this pair of
states is reachable, the model would not be safe, otherwise if no such pair is in
the set of reachable states, it would be safe. Thus, in such a case, induction is not
strong enough to verify safety properties, which is the case for the majority of safety
properties.

In order to decide the above question of reachability, a generalized version of
induction can be employed. By considering several transition steps instead of only
a single one, the requirements are strengthened, possibly ruling out the above
concerns. This generalized version of induction is known as k− Induction.

Definition 2.3.3 (k-Induction). Let a transition system A be given as in Definition
2.3.1. A safety property ρ is k-inductive, if the following two characteristics are met.

• k-Initiation: ‖I(x1)‖∧k−1
i=1 ‖T(xi, xi+1)‖ ∧ ¬∧k

i=1‖ρ(xi)‖ is unsatisfiable

• k-Consecution:
∧k

i=1‖T(xi, xi+1‖∧k
i=1‖ρ(xi)‖ ∧ ¬‖ρ(xk+1)‖ is unsatisfiable

As can be seen, k− Induction using k = 1 is the same as the usual induction
rule defined above in Definition 2.3.2. Otherwise, it relies on the use of more than
a single transition step which strengthens the properties. There exist algorithms
that verify models by means of k− Induction, while k is incremented until either the
model is proven to be safe or a counterexample occurs. These techniques have been
proposed in 2000 [SSS00; BC00] and make use of additional optimizations, e.g., a
loop-free encoding of paths, to ensure completeness.

Induction-based reasoning has also been employed for the verification of safety
properties for timed systems. Using an SMT-encoding that employs the region
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abstraction to ensure loop-free paths, Kindermann et al. [KJN12b] proposed a
complete k-Induction-based approach for timed systems in 2012. Several years earlier,
in 2003, de Moura et al. also employed k− Induction in combination with simulation
relations [DRS03]. In addition, their approach utilized the failed Consecution-
property in order to compute a small formula that strengthens the safety property.

In the untimed domain, the idea of strengthening has also been used in combi-
nation with the usual induction rule (1− Induction). The approach of Bradley and
Manna [BM07] employs relative induction.

Definition 2.3.4 (Relative Induction). Let a transition system A be given as in
Definition 2.3.1. Given a property ψ, the safety property ρ is inductive relative to ψ, if
the following two characteristics are met.

• Initiation: ‖I(x)‖ ∧ ¬‖ρ(x)‖ is unsatisfiable

• Relative Consecution: ‖ψ(x)‖ ∧ ‖ρ(x)‖ ∧ ‖T(x, x′)‖ ∧ ¬‖ρ(x′)‖ is unsatisfi-
able

Their approach utilizes predecessor states that violate Consecution. These states
are blocked either in the safety property or added to a strengthening assertion. The
distinction is based on relative inductiveness denoting if the states non-reachability
is essential for the verification of the safety property or the state only needs to be
blocked in order to not find it again. In addition, they propose a technique called
generalization, which is used to block a set of states rather than a single state.

We will see this generalization procedure in more detail in the next section. It
has led to the development of the algorithm IC3, which is the basic algorithm used
within this thesis.

The 1− Induction rule and the techniques based on it are well suited for veri-
fication, in particular in combination with reconfigured models, as considered in
the next chapters. Due to the two characteristics, inductive properties can easily be
verified. They denote an over-approximation of the set of reachable states and may
be utilized in this spirit as we will see later. One of the primary efficiency reasons is
the fact that they do not need an unrolling of the transition relation, as they consider
only a single transition step. The activity of strengthening non-inductive properties,
however, is expensive and, thus, efficient algorithms for this task are interesting.

As mentioned before, one such algorithm is based on the presented approach
by Bradley and Manna. We explain it in the following. Since the approach, as
well as the rest of the thesis only reasons about a single transition step, we declare
the following abbreviations for better readability of the formulae. We omit the set
of variables x and x′ over which the formulae are defined and mark those that
reason about the next state as primed formulae ‖.‖′. Thus, all formulae reasoning
about a single state are now written as, e.g., ‖I‖ and ‖ρ‖, when reasoning about the
current state, and written as ‖I‖′ and ‖ρ‖′, when reasoning about the next state. The
encoding ‖T(x, x′)‖ of the transition relation always reasons about the transition
from a current to a next state and is, thus, abbreviated as ‖T‖. These notations are
used throughout the rest of the thesis.
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2.4 IC3

In 2011, Aaron Bradley introduced a very successful technique capable of computing
inductive strengthenings of safety properties [Bra11]. Originally called Incremen-
tal Construction of Inductive Clauses for Indubitable Correctness or short IC3, it was
instantly recognized as an interesting and promising approach, especially after its
first implementation achieved third place in the hardware verification competition
2010 [BC10].

Later implementations became even more successful and ensured a constant
attention of researchers. Most implementations nowadays are based on the work
of Een et al. [EMB11], proposing several optimizations of the original algorithm.
His version of the algorithm is called Property Directed Reachability, which we will
use interchangeably with IC3 since they rely on the same basic principles. The
understanding of these principles was enforced by numerous publications [SB11;
Bra12b; Bra12a] explaining the development process of IC3 and its fundamentals.
These thorough descriptions enabled the transfer of the algorithm and some of its
principles to other research areas, generated interest in optimizations and, in general,
provided for a lot of interesting research. In the following, we give a brief overview
over IC3, mostly following the representation given by Een et al. [EMB11].

2.4.1 Algorithm and Explanation

IC3 is an induction-based algorithm for verifying safety properties for finite state
transition systems. It heavily relies on relative induction in order to compute a
strengthening of the safety property that is inductive, or a counterexample trace.
Being based on SAT-solvers, part of its efficiency is due to the fact that the queries
to the solver encode at most one transition step.

IC3 is a completely SAT-based algorithm originally designed and applied to
hardware verification. Thus, it verifies safety properties for finite state transition
systems, which can be used to describe sequential circuits.
In general, IC3 incrementally builds and refines sets of states that over-approximate
k-step reachability, meaning the i-th set includes at least all those states that are
reachable in i transition steps. During the run of the algorithm, these sets are refined
to exclude states found along a path to an error state, a state that violates the safety
property.

During this process, four special properties are preserved for the sets of states
constructed by IC3. These sets are called frames and denoted F0 to Fk, where Fk is
called the frontier, as it is the largest set. The algorithm ensures the following four
properties:

1. ‖I‖ ∧ ¬‖F0‖ is unsatisfiable,

2. ∀i ∈ {0, . . . , k− 1} : ‖Fi‖ ∧ ¬‖Fi+1‖ is unsatisfiable,

3. ∀i ∈ {0, . . . , k− 1} : ‖Fi‖ ∧ ‖T‖ ∧ ¬‖Fi+1‖′ is unsatisfiable,

4. ∀i ∈ {0, . . . , k} : ‖Fi‖ ∧ ¬‖ρ‖ is unsatisfiable.
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The smallest frame F0 is required to include at least all initial states (I). In
practice, in most implementations it includes exactly all initial states, meaning
F0 = I. Furthermore, the sequence of frames is required to be non-decreasing. Every
frame Fi+1 includes at least all the state that are included in the next smaller set
Fi (Property 2). In practice, this is ensured by sharing the same clauses. Frames
are stored as boolean formulae in conjunctive normal form (CNF), meaning a
conjunction of clauses. Thus, an added clause refines (strengthens) a set of states.
Property 2 is ensured by the clauses of Fi+1 being a subset of the clauses of Fi. In
addition, each set over-approximates the successor states of the next smaller set.
This is depicted as Property 3, in which the primed formula ‖Fi+1‖′ denotes that
the next state, after the transition step was applied, has to be an element in set Fi+1.
Lastly, each frame Fi includes only states that satisfy the safety property. Thus, each
such set is a strengthening of the safety property. The goal of the algorithm, in
order to ensure that the safety property holds, is to find such a strengthening that is
inductive.

Definition 2.4.1 (Inductive Strengthening). Let a finite transition system be given
with a safety property ρ. F is an inductive strengthening of ρ if and only if it is
inductive and strengthens ρ:

• Initiation: ‖I‖ ∧ ¬‖F‖ is unsatisfiable,

• Consecution: ‖F‖ ∧ ‖T‖ ∧ ¬‖F‖′ is unsatisfiable,

• Strengthen: ‖F‖ ∧ ¬‖ρ‖ is unsatisfiable.

An inductive strengthening is found when two successive sets Fi and Fi+1 are
equal. As explained, Property 4 ensures that both sets are a strengthening of the
safety property. Additionally, Property 3 in combination with Fi = Fi+1 ensures
consecution and Properties 1 and 2 provide for the initiation.

Thus, IC3 proves the safety property to hold when two of its sets F0 to Fk become
equal. Otherwise, is runs until it finds a counterexample trace leading from an
initial state to a state violating the safety property. Below, we describe the algorithm
following the presentation in the original paper. The main loop is listed in Listing 2.1.

First, the algorithm searches for counterexample traces of length 0 or 1 (lines
2 and 4), meaning an error state is initial or reachable from an initial state via a
single transition step, respectively. The search is executed by issuing two queries to
the SAT-solver. If one of them is satisfiable, a counterexample exists and the safety
property is obviously not invariant. Otherwise, the first two sets are created and
initialized to F0 = I and F1 = ρ, as can be seen in line 6. Since there exist no 0- and
1-step counterexamples, these two frames satisfy the 4 properties explained above.
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Listing 2.1: Main loop of IC3 algorithm

1 IC3 ( ) {
2 i f (‖I‖ ∧ ¬‖ρ‖ s a t i s f i a b l e )
3 re turn 0−length counterexample ;
4 i f (‖I‖ ∧ ‖T‖ ∧ ¬‖ρ‖′ s a t i s f i a b l e )
5 re turn 1−length counterexample ;
6 ‖F0‖ := ‖I‖ , ‖F1‖ := ‖ρ‖ , k =1;
7 while ( t rue ) {
8 i f ( ! s t rengthenClauses ( k ) )
9 re turn counterexample t r a c e ;

10 propagateClauses ( k ) ;
11 i f (∃i < k , s . t . Fi = Fi+1 )
12 / / S a f e t y P r o p e r t y h o l d s
13 return Fi ; / / ind . s t r e n g t h e n i n g
14 ‖Fk+1‖ := ‖ρ‖ , k++;
15 }
16 }

The algorithm proceeds in a loop as follows. In the subroutine strengthenClauses,
it checks for predecessor states on a path leading to an error state and excludes these
in a blocking phase. Afterwards, a propagation phase provides for an accelerated
spread of learned clauses. The loop ends either when two successive frames are
found to be equal after the propagation or if the strengthenClauses routine was
unable to refine the frames while preserving the 4 properties. In the first case, an
inductive strengthening has been found as explained before and the safety property
is proven to be invariant. In the latter case, a counterexample trace has been found
as we will see in the following. Listing 2.2 shows the strengthenClauses function.

Listing 2.2: Algorithm to strengthen the frames in IC3

17 strengthenClauses ( i n t k ) {
18 while (‖Fk‖ ∧ ‖T‖ ∧ ¬‖ρ‖′ s a t i s f i a b l e ) {
19 / / us ing t h e s a t i s f y i n g i n t e r p r e t a t i o n
20 s t a t e s = e x t r a c t predecessor
21 i f ( ! blockCTIs ( { ( s , k ) } ) )
22 / / f ound c o u n t e r e x a m p l e t r a c e
23 return f a l s e ;
24 }
25 re turn true ;
26 }

IC3 checks whether the frames are refined enough to add a new one, as the
creation of a new frame Fk+1 (line 14) has to preserve the 4 properties. The new
frame is created as Fk+1 = ρ, since it must not include an error state. However, it has
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to contain all successors of the states in Fk. In order to fulfill the latter, IC3 checks
whether there exist states in Fk that are predecessors of error states. To this end, it
issues the query

‖Fk‖ ∧ ‖T‖ ∧ ¬‖ρ‖′

to the SAT-solver (line 18). If the query is unsatisfiable, no such state exists and the
sequence of frames is strong enough to be extended by the next frame Fk+1 = ρ

preserving the 4 properties. Otherwise, a state s is extracted from the satisfying
interpretation (line 20). With s being a state in Fk and having a successor violating ρ,
Property 3 would not be preserved when extending the sequence of frames. Thus, s
must be excluded from Fk. This is done in the recursive blocking procedure blockCTIs,
which is explained below. Listing 2.3 shows the pseudocode.

Listing 2.3: Algorithm for excluding states from the frames in IC3

27 blockCTIs ( Set Q) {
28 while (Q6= ∅ ) {
29 get ( s , n ) ∈ Q with s m a l l e s t n ;
30 i f (‖Fn−1‖ ∧ ¬‖s‖ ∧ ‖T‖ ∧ ‖s‖′ u n s a t i s f i a b l e ) {
31 Q : = Q\ { ( s , n ) } ;
32 generalizeAndBlock ( s , n ) ;
33 } e lse i f (n−1==0){
34 / / f ound c o u n t e r e x a m p l e
35 return f a l s e ;
36 } e lse {
37 / / us ing t h e s a t i s f y i n g i n t e r p r e t a t i o n
38 s t a t e t = e x t r a c t predecessor
39 Q : = Q ∪ { ( t,n−1 ) } ;
40 }
41 }
42 re turn true ;
43 }

During the blocking phase, IC3 keeps and updates a set of pairs (s, n), each of
which denotes the necessity to block a state s in a frame Fn. Such a pair is called
obligation and the state included in it is named Counterexample to Induction (CTI),
as it hinders the inductiveness of ρ (predecessors of error states) or the relative
inductiveness of the negation of CTIs (line 38). The blocking phase tries to work off
all obligations starting from the one that needs to be blocked in the smallest frame
(line 29). For this obligation (s, n), the algorithm checks inductiveness of ¬s relative
to frame Fn−1. Imagine blocking s in frame Fn−1, the query issued in line 30 to the
solver asks whether state s can be reached from the remaining states in frame Fn−1

by a single transition step. If the query is unsatisfiable, s is not reachable and can
safely be blocked in all frames F0 to Fn. The reason is that ‖Fi‖ ∧ ¬‖s‖ ∧ ‖T‖ ∧ ‖s‖′
is unsatisfiable for all i < n since each such Fi is a subset of Fn−1.
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This blocking process can be seen as a sequence of exclusions starting from F0

up to Fn. With s being no initial state, it is not a member of F0. The unsatisfiability
of ‖F0‖ ∧ ¬‖s‖ ∧ ‖T‖ ∧ ‖s‖′ assures that s is unreachable in one transition from F0

and can be excluded in F1. The unsatisfiability of ‖F1‖ ∧ ¬‖s‖ ∧ ‖T‖ ∧ ‖s‖′ assures
that s is unreachable in one transition from F1 \ {s} and can be excluded in F2. The
sequence goes forth until s can be excluded from Fn.

However, the query for inductive relativeness might be satisfiable for some
obligations. In that case, a state t (distinct to s) exists that is a predecessor of s and
is a member of Fn−1. The state t prevents the exclusion of s from Fn, since it hinders
¬s from being inductive relative to Fn−1. It is, thus, a Counterexample to Induction
and needs to be excluded from Fn−1 in order to be able to eventually exclude s from
Fn. Line 39 shows the creation of a new obligation (t, n− 1) that expresses this fact.

In a very specific case, such an obligation does not need to be created as the
exclusion of t from Fn−1 is not possible. Line 33 checks whether Fn−1 = F0, which
means we need to block a state from F0, which is not possible since F0 contains
exactly the initial states (cf. line 6). Thus, IC3 found the predecessor t of another
CTI s, which is itself a predecessor.

Following the found list of predecessors creates a path from an initial state to
an error state, meaning a counterexample trace has been found and IC3 terminates
(lines 35, 23 and 9). If no such counterexample is found, eventually all obligations are
worked off (line 31 reduces the number of obligations) and the blocking procedure
finishes. It returns to the strengthenClauses procedure, which checks for further
predecessors of error states to be blocked in order to eventually create the next
frame.

One of the most important aspects of IC3, however, is the fact that it does not
exclude a single state s. Instead, it generalizes the state s into a set of states that are
to be blocked (line 32).

To this end, it employs a Generalization procedure depicted in Listing 2.4.

Listing 2.4: Generalization algorithm in IC3

44 generalizeAndBlock ( s , n ) {
45 f ind minimal subclause ‖c‖ of ¬‖s‖ , s . t .
46 ‖F0‖ ∧ ¬‖c‖ i s u n s a t i s f i a b l e
47 ‖Fn−1‖ ∧ ‖c‖ ∧ ‖T‖ ∧ ¬‖c‖′ i s u n s a t i s f i a b l e
48 for ( i n t i =1 ; i≤n ; i ++)
49 ‖Fi‖ := ‖Fi‖ ∧ ‖c‖ ;
50 }

Employed prior to blocking the state s from Fn, it searches a minimal subclause of
¬‖s‖ that is inductive relative to Fn−1. Such a minimal subclause always exists, since
¬s itself is inductive relative to Fn−1 (line 30). However, the search is non-trivial
since monotonicity is not given for the consecution query of relative inductiveness
of the subclauses. The removal of a single literal in the subclause might destroy the
consecution property although it held before. In addition, the removal might also
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re-establish consecution although it did not hold for the subclause before removing
the literal. The reason is c and ¬c′ being altered at the same time, where the removal
of a literal strengthens c, but weakens ¬c. Thus, the search for such a minimal
subclause is hard. Most implementations rely on two or more combined approaches.
On the one hand, the manual dropping of single literals one by one can be checked
with a short query to the solver. If the query returns unsatisfiable, the subclause is
still inductive relative, otherwise, the dropped literal is put back in the clause. This
manual removal relies on heuristics to determine the order in which literals are tried
to be dropped. While this is a valid approach, it is only capable of testing the removal
of one literal at a time. Using extended concepts of SAT-solving, this drawback
can be reduced. In case the subclause is still inductive relative after the removal of
a literal, the query is found to be unsatisfiable, which allows the extraction of an
unsatisfiability core (UNSAT-Core). Such a core is used to delete all those literals of
the subclause that are not needed in proving the formula unsatisfiable. The removal
of these literals is a safe option if the initiation property is not violated by doing
so. Using this approach, most implementations do not actually care to find the
minimal subset, but in contrast search for a small one in reasonable time. Due to this
non-optimality and the removal of several literals determined by the UNSAT-core,
the heuristics play an important role in steering of the generalization.

Having found a generalized clause ‖c‖ of ¬‖s‖, it is conjoined to every formula
‖F0‖ up to ‖Fn‖ (lines 48 and 49). This conjunction excludes the state s from the
frames, as well as many more states (in case c is a strict subclause).

The benefit of this generalization procedure is a fast refinement and small clauses
computed in a fairly efficient way.

In addition, a second procedure exists that provides for a fast refinement. The
pseudocode depicting this Propagation step is shown in Listing 2.5.

Listing 2.5: Propagation algorithm in IC3

51 propagateClauses ( i n t k ) {
52 for ( i n t i =1 ; i<k ; i ++)
53 for each c lause ‖c‖ in ‖Fi‖ :
54 i f (‖Fi‖ ∧ ‖T‖ ∧ ¬‖c‖′ u n s a t i s f i a b l e )
55 ‖Fi+1‖ := ‖Fi+1‖ ∧ ‖c‖ ;
56 }

The procedure pushes learned clauses to subsequent frames whenever possible,
providing strengthened frames for the next cycle and, thus, a better guided refine-
ment. To this end, IC3 checks all clauses of each frame for relative induction. If a
clause c is inductive relative to a frame Fi, it can be propagated to Fi+1, refining Fi+1

via conjunction as depicted in line 55. Since no state outside of c can be reached
from Fi within one transition, this refinement does not destroy the 4 properties.

The propagation procedure is subject to several tricks in efficient implementations.
By storing clauses in a data structure that associates them only with the largest
frame with which they are conjoined, each clause is tested only once for propagation.
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Furthermore, subsumption checks are often applied in this phase in order to filter
out obsolete clauses that are not needed any longer.

Correctness All these different procedures and phases maintain the four properties
of the frames, such that in the end IC3 is a successful algorithm for computing
inductive strengthenings. We will shortly give an intuition why these properties
hold during all the phases and why the algorithm terminates for finite state transition
systems. These can be found in more detail in the work of Bradley et al. [Bra11].

During the initial phase of the algorithm (lines 1 to 6), IC3 ensures that there
exist no error states that are initial or reachable from an initial state by a single
transition step. Thus, the first two frames F0 = I and F1 = ρ can be created and
adhere to the four given properties. In particular, Property 1 is ensured by F0 being
equal to the initial states. Property 2 is ensured in line 2 since ρ includes all initial
states, while Property 3 is ensured in line 4. The last property is obviously true due
to Property 2 and F1 being equal to ρ.

These properties are maintained during each cycle of the main algorithm (lines
7-15). They are not violated by the call of function strengthenClauses and remain
intact during the call of propagateClauses as we will see below. Finally, the creation
of a new frontier Fk+1 = ρ adheres to the properties. Since it does not alter the
other frames, it remains to show that ‖Fk‖ ∧ ¬‖Fk+1‖, ‖Fk‖ ∧ ‖T‖ ∧ ¬‖Fk+1‖′ and
‖Fk+1‖ ∧¬‖ρ‖ are unsatisfiable before the incrementation of k (line 14) and starting a
new loop. The latter is true by definition of Fk+1 and the first one is true by Property
4 for all smaller frames. The fact that ‖Fk‖ ∧ ‖T‖ ∧ ¬‖Fk+1‖′ is unsatisfiable has
been established by strengthenClauses(), as it ensured that no direct predecessor of an
error state is included in Fk (line 18).

We now consider the method strengthenClauses(). During its run, the 4 properties
are preserved and when returning true, there exists no state in the frame Fk that is a
direct predecessor of an error state. The method itself does not alter the frames, but
however calls function blockCTIs({(s,k)}) to block the direct predecessor s of an error
state in the frame Fk. This is done until no such predecessors are left. What remains
to be shown is that blockCTIs successfully blocks the found CTIs while preserving
the 4 properties.

The function blockCTIs() works off a list of obligations until none is left. The
frames are only altered when calling the function generalizeAndBlock(s, n). This is
only done when ¬s was found to be inductive relative to Fn−1 in which case it is also
inductive relative to all smaller frames. The function generalizeAndBlock(s, n) searches
for a minimal subclause c of ¬s that is still inductive relative. This clause is added to
F1 up to Fn altering the frames and successfully blocking s from Fn. The 4 properties,
however, are preserved. In particular, Property 1 still holds, as F0 is untouched and
Property 4 holds due to frames being strengthened. Property 2 still holds since
‖F0‖ ∧ ¬‖c‖ is unsatisfiable (line 46) and c is added to all F1 up to Fn. Since Property
3 previously held true and relative consecution (line 47) of clause c holds, the refined
frames still satisfy Property 3. Thus, the methods generalizeAndBlock, blockCTIs and
strengthenClauses preserve the 4 properties for the frames.
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In addition, the function propagateClauses also preserves these properties due to
the same reasoning over relative inductiveness. Hence, in total, the 4 properties are
maintained for the frames after and during the main loop, allowing the algorithm to
find an inductive strengthening, if one exists.

Termination The algorithm will always terminate for a finite state transition system.
With the frames being a non-decreasing sequence of sets of states and the algorithm
still running, meaning it did not terminate due to two frames being equal, each
frame has to include at least one additional state compared to the next smaller
frame. That means there can only exist |S| frames at the same time for a finite
state transition system as defined in Definition 2.3.1. Thus, the main loop of the
algorithm will eventually terminate, provided that the functions strengthenClauses
and propagateClauses terminate.

StrengthenClauses will terminate when no direct predecessor of an error state
remains in frame Fk. Assuming the function blockCTIs successfully blocks each found
predecessor, strengthen must terminate after at most |S| runs of its while loop. The
function blockCTIs will always terminate. The list of obligations can only contain
|S| × k obligations. Provided that the call to generalizeAndBlock terminates and indeed
blocks the state s from frames F0 to Fn, the list of obligations will eventually be
worked off or a counterexample is found. Due to the blocking, an obligation can
not be found again in the same run of blockCTIs after being worked off. Thus, the
method will terminate.

Each call of function generalizeAndBlock terminates and successfully blocks state s
in frames F0 to Fn. The reason is that only a finite number of subclauses exist and,
thus, the minimal subclause can be found. Such a minimal subclause always exists,
since ¬s itself is inductive relative to Fn−1. In summary, each call of strengthenClauses
will terminate.

In addition, each call of the function propagateClauses terminates since k is finite
and the number of clauses in a frame is finite.

Summing up, all functions called by the main loop terminate and the main loop
itself also terminates due to adding a new frame each cycle, of which there are only
finitely many.

The argumentations about termination and correctness are carried out formally
and in more detail in the first paper on IC3 by Aaron Bradley [Bra11].

2.4.2 Optimizations

As mentioned above, there exists a large community of researchers trying to improve
and optimize IC3 or transfer it to different domains. Some of the optimizations and
improvements are specifically tailored to the domain of application (for example
ternary simulation in hardware verification), while others are more general. In the
following, we present and discuss some of them.

Many optimizations target the method of generalization (Listing 2.4). Hassan et al.
[HBS13] proposed to utilize Counterexamples to Generalization, meaning predecessor
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states found during the generalization procedure. These are used in order to
infer additional clauses that adhere to the relative inductiveness property. Thus,
the approach utilizes unsuccessful tries for finding subclauses, however, it is not
guaranteed that the inferred clauses are indeed helpful. In general, the optimization
is evaluated as successful.

Chockler et al. [Cho+11] utilize an additional SAT-query as a preliminary
step to generalization. Designed for hardware verification they search for partial
assignments of a CTI by encoding the transition with which the CTI is found, but
negating the successor state. Due to being deterministic for the specific set of input
values, no distinct successor state exists, rendering the SAT-query unsatisfiable.
Chockler extracts a partial assignment of the CTI from the UNSAT-Core, thereby
potentially generalizing the CTI.

A similar effect is the result of ternary simulation, as proposed for use in IC3
by Een et al. [EMB11]. Using three valued logic, the effect of removing literals is
propagated through the hardware circuit and in the end defines whether the removed
literal is of use or not. The same paper also proposed several other optimizations,
including a variation of the four properties for the frames and a variant of the
algorithm that does not need the two basic checks (lines 2-5). In addition, they
propose clever ways of organizing obligations, as well as the clauses in the frames.
The resulting implementation, called Property Directed Reachability (PDR) proved to
be superior to the original implementation and, thus, got adapted as a synonym for
IC3.

Other improvements use the propagation phase as starting point. Suda [Sud13]
proposed to trigger the propagation of clauses only if possible. To this end, he keeps
track of witnesses that hinder the propagation of a clause. Only if such a witness is
not valid any more, the propagation of the clause is tried. The approach seems to
work well.

Other variants, however, did not prove to be of substantial value, as can for
example be seen in the original paper by Bradley [Bra11]. He proposed a variation
of the blocking procedure that searches a subclause inductive relative to a larger
frame than Fn−1 (cf. Listings 2.3 and 2.4). Its performance, however, was worse for
specific hardware designs due to being unable to use the UNSAT-Core.

In summary, a lot of research has been successful to various extend in improving
and optimizing IC3 itself.

There also exists work on the reusage of verification results as is of interest
in this thesis. With hardware models changing often during the design process,
Chockler et al. [Cho+11] utilize a previously computed inductive strengthening for
the re-verification of the changed model. They apply an optimized SAT-encoding
in order to find a subset of clauses of the inductive strengthening that are still
inductive in the changed model. The found (inductive) clauses are then injected in
the re-verification in order to speed it up.

In addition to this incremental way of using IC3, the algorithm has also been
applied in completely different contexts and domains. Some work was done on
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transferring IC3 to domains distinct from hardware verification and on combinations
of IC3 with other techniques.

Hassan et al. [HBS12] utilize the idea of IC3 being incremental and inductive for
CTL-model checking. They successfully build a property-directed abstracting model
checker for CTL with fairness.

Baumgartner et al. [Bau+12] apply IC3 in the hardware verification domain in
order to compute abstractions. They analyze the frames in an incomplete run of IC3
using heuristics in order to obtain priorities for state variables. On the basis of these
priorities, a localization abstraction refinement is guided.

Another approach directly combines IC3 with abstraction and utilizes CTIs for
refinement. In contrast to the original CEGAR approach, the technique of Birgmeier
et al. [BBW14] utilizes single states (the CTIs) for refinement of the abstraction,
while the original approach uses counterexample traces. The focus on CTIs enables
two distinct points for triggering the refinement of the abstraction and, in addition,
enables a choice of delaying the refinement.

More general work examines IC3 from a broader perspective. Bayless et al.
[Bay+13] introduce the concept of SAT modulo SAT, which works similar to lazy
SMT-solvers. They utilize the concept for their implementation of IC3, which proves
to be successful.

IC3 is also applied as coverability check of well structured transition systems, in
particular petri nets. Kloos et al. [Klo+13] propose an IC3-based algorithm for this
task. Their implementation is SAT-based with predecessor and relative inductiveness
computations being directly applied on the petri net.

The concepts of IC3 have also been transferred to domains that require other
concepts than SAT-solving. For example, the application of IC3 for game solving
(Morgenstern et al. [MGS13]) requires a QBF-solver. As a second example, the usage
of IC3 for planning problems (Suda [Sud14]) sticks out with the absence of a solver.
Instead, Suda delegates the tasks of the solver to a specific planning procedure.

In general, most approaches that do not rely on SAT-solving apply the concept
of SMT-solving.

2.4.3 IC3 with SMT

Cimatti et al. were the first to combine IC3 with the concept of SMT-solving in order
to model check software [CG12]. Apart from changes to the algorithm in order to
support software model checking based on the control-flow graph, they apply a
quantifier elimination procedure in linear real arithmetic to cope with the potential
infinity of CTIs in a single blocking phase.

Other approaches try to be less theory-specific. A combination of IC3 using
SMT with abstraction also proposed by Cimatti et al. [Cim+14] allows to handle
a wide range of background theories. During the run of the algorithm an implicit
abstraction is computed that is refined, whenever a spurious counterexample is
found. The work can, thus, be seen as an instance of CEGAR.
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Cimatti also applied IC3 with SMT in order to synthesize parameters [Cim+13a].
Relying on a quantifier elimination procedure, the algorithm searches for param-
eter combinations that allow counterexample traces. Gradually excluding these
combinations, the tool in the end returns a set of safe parameter combinations.

With timed systems in mind, we are specifically interested in applications of IC3
using linear real arithmetic, of which some exist. Hoder et al. [HB12] generalized
the PDR algorithm for usage with nonlinear transformers (used, e.g., for modeling
software with procedures), in which counterexamples unfold to trees instead of
paths. In the same work they apply PDR for linear real arithmetic. Their work
applies interpolation in the generalization procedure in order to ensure decidability
of the reachability of timed push-down systems. Bjørner et al. extend the previous
concept [BG14]. They propose three variations of the generalized PDR algorithm for
linear real arithmetic. The first one is basically a redefinition of the pure generalized
PDR algorithm applying quantifier-elimination-based projection to extract CTIs,
while the other two restrict themselves to find specific inductive invariants. In the
second algorithm, the frames are defined as convex polyhedra, meaning conjunctions
of linear inequalities. Thus, the algorithm is able to compute a convex polyhedron
as inductive invariant. Contrary to this approach, the authors also present a variant
of generalized PDR that is able to compute co-convex invariants, denoting the
complement of a convex polyhedron.

The latter two techniques are, however, not suited for timed automata verification
as they do not reason about discrete parts, e.g., locations of a timed automaton.
The approaches mentioned prior to these two include such capabilities. However,
their usage of interpolation and quantifier elimination is a generic mechanism. In
contrast, we expect more specific techniques designed for timed automata to be
better suited. The combination of discrete and continuous components in a timed
automaton permits adjusted mechanisms, which is done in the approach presented
below.

2.4.4 IC3 for TA

Kindermann et al. [KJN12b] applied IC3 specifically tailored to timed systems. As
explained before, this design decision allows several general optimizations of IC3.
His approach, however, was not competitive.

The infinity of clock valuations inherent in continuously timed systems poses
the main challenge to IC3. When lifting the algorithm to SMT by encoding the
system via SMT-formulae, the strengthen phase is no longer guaranteed to terminate.
The blocking phase blocks the CTI, which is a single concrete state of the infinite
transition systems as defined in Definition 2.1.10. Since there possibly exist infinitely
many states all satisfying the query in line 18, the strengthen phase might never
terminate or only if the generalization blocks all of them by chance. The same
arguments can be used in order to explain a possibly infinite run of the blocking
phase, where also infinitely many CTIs might exist.

Thus, modifications to the algorithm are needed to ensure termination. To this
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end, the decidability result of reachability properties for timed automata might have
led the way for the approach of Kindermann et al. [KJN12b]. With decidability
being proven via a finite, reachability equivalent abstraction, the idea of composing
all clock valuations that are indistinguishable for the timed automaton seemed like
a good candidate. Thus, the region abstraction was employed due to being finite
and easily computable for a single state.

Kindermann uses the original IC3 approach, but encodes the timed system via
SMT-formulae. The algorithm is run as usual, but whenever a CTI is extracted, a
specific technique is applied. As in the original approach, he extracts the concrete
state from the satisfying SMT-interpretation. Afterwards he applies an abstraction
procedure that replaces the concrete clock valuation of the concrete state with its
unique, surrounding region in order to form an abstract state used as CTI. With
only finitely many regions, the abstraction eliminates the risk of possibly having
infinitely many CTIs, ensuring the termination of the algorithm.

Although the surrounding region of a concrete clock valuation is efficiently
computable, the region abstraction is not well suited to be used in practical appli-
cation, as has been explained before. The abstraction is very fine grained and the
number of regions heavily depends on the constants used in the timed automaton.
The combination of these two characteristics ensures a huge number of regions,
rendering the algorithm ineffective, in particular for large constants. Kindermann’s
evaluation of his approach showed a good scalability in terms of model size, but
does not deal well with large constants. While being a nice theoretical concept, the
combination of IC3 with the region abstraction for timed systems proved to be of no
practical value. Kindermann proposed some specific optimizations generalizing the
CTI upfront before the generalization procedure of IC3 was applied. However, these
suggestions could not establish practicality.

Yet, the basic idea has shown to be very interesting since it allows to benefit from
future, general IC3 improvements and optimizations. For this reason, our approach
presented in Chapter 3 builds on it.

Summing up, the work closest to ours is the one of Kindermann et al. [KJN12b]
proposing to use IC3 with the region abstraction for timed system verification. In
addition, the work of Chockler et al. [Cho+11] is closely related to our objective of
handling reconfigurations. In Chapters 4 to 6 we will pick up this concept in order
to improve the verification of safety properties for reconfigured timed models.





3
Timed Automata Verification via
IC3 with Zones

Many of today’s systems are safety critical, which expresses the need for their
correct functioning at all times. Otherwise, undesired behavior could result in a
loss in value, e.g., when a production is stopped, or even be a thread to life and
physical condition. As a countermeasure, model-based design processes introduce
a structured procedure in which models of the systems are built. Then, formal
methods are employed to check whether specified properties are fulfilled. With
an increasing number of systems relying on real-time communication, or being
real-time operating system, there exists a demand for timed models and verification.
As detailed in the previous chapter, networks of timed automata are amongst the
most important modeling formalisms that incorporate time. With roughly 25 years
of research, this modeling formalism is well understood and there exist many
sophisticated algorithm for the verification of safety properties for these models.
However, these algorithms reach their limits for large models, in particular due to
an enormous need of memory during verification.

In the following, we will employ the IC3 algorithm for the verification of safety
properties in the domain of timed automata. IC3 originates from hardware verifi-
cation, in which it has proven to be extremely efficient, both regarding time and
memory requirements. We aim for it to be of value also in the domain of timed
automata. Its huge success for hardware verification has led to a large amount of
optimizations and, in addition, it has been successfully transfered and applied in
many other, very diverse domains. Its first usage in the domain of timed automata
by Kindermann et al. [KJN12b], however, remained unsatisfying, as it was not
competitive.

In this chapter, we introduce our concept combining the IC3 algorithm with the
zone abstraction in order to verify safety properties for networks of timed automata
[IW14]. We first present the basic components, i.e., the SMT-encoding and zone
computation, and afterwards explain their integration in the IC3 algorithm. Lastly,
we present the promising results of numerous experiments. We discuss for which
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models our approach is able to outperform state of the art tools and why it is inferior
for others. Additionally, we experiment with several distinct characteristics of timed
automata, e.g., the number of locations, to observe the effects on the performance of
our approach. We start with our encoding of a network of timed automata using
SMT.

3.1 SMT-Encoding

As detailed in Section 2.4, the IC3 algorithm is entirely based on SAT-solving, which
is why we need an encoding of our models. With networks of timed automata
including real valued clocks, shared integer variables and locations, we encode
them in SMT using linear real arithmetic (LRA), linear integer arithmetic (LIA), as
well as propositional logic. A purely boolean encoding as SAT-formulae is possible
using booleanization (translation into an untimed system, which can be encoded via
propositional logic), but has proven to be non-competitive [KJN12b].

There exist at least three encodings for timed systems, of which the one presented
by Kindermann [KJN12b; KJN12a] is closest to ours, but differs, e.g., in the encoding
of the locations. While Kindermann uses a variable ranging over the number of
locations as has been done by Maria Sorea [Sor03], our approach is closer to the
one by Audemard et al. [Aud+02] using boolean variables to represent locations.
This usage of several variables to encode a location enables a stronger generalization
within IC3. Our SMT-formulae encode the concrete transition system presented in
Definition 2.1.10, handling the zone abstraction separately without the use of SMT.
Note, that our encoding combines an edge transition (→e) with a subsequent time
delay transition (→d) into a single transition step. This combination is a feasible
option for reachability analysis as each path in the transition system can be seen as
an alternating sequence of delay and edge transitions. To this end, time delay steps
with a delay of 0 time are inserted between two adjacent edge steps, and adjacent
time delay steps are combined into a single one.

This combination allows an efficient encoding of the concrete semantics, using
the theories mentioned above (LRA, LIA) for their specific parts. Each continuous
real-valued clock is encoded as a real-valued variable and each integer variable in
the network of timed automata is encoded using an integer-valued variable. The
discrete set of locations is encoded via boolean variables.

We call these variables clock, integer and location variables, respectively. As in
the previous chapter, we denote the encoding of a part x of the model as ‖x‖. Again,
we use two distinct sets of variables to encode a current and a next state, where the
formulae reasoning about the next state are marked as primed. Given a network
of timed automata NTA = 〈A1, ..., An〉 defined over Cg, IV and Σ, we encode it as
follows.
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3.1.1 Variables

Our encoding employs variables for clocks, locations and integer variables in the
model. We use uniquely renamed variables in order to avoid ambiguity and dealing
with characters that are forbidden in SMT. In the following, we give a detailed
explanation.

Variables encoding the Global Clocks Each global clock c ∈ Cg is assigned a
unique identifier id(c) ∈ {0, . . . , |Cg| − 1}. We encode each such clock c as a real
valued variable ‖c‖ := c0

id(c). The subscript shows the unique identifier, while the
superscript zero denotes the clock to be global.

Variables encoding the Local Clocks In contrast to global clocks, local clocks
are part of a specific timed automaton in the network. Let the automaton Aj
(j ∈ {1, . . . , n}) be given. Each local clock c ∈ Cl

j is assigned an identifier id(c) ∈
{0, . . . , |Cl

j | − 1} that is unique in its timed automaton. Given these two identifiers j

and id(c), we encode the clock via real-valued variable ‖c‖ := cj
id(c).

Variables encoding the Integer Variables The encoding of integer variables only
uses a single identifier, as these variables are not associated with a specific timed
automaton, but shared within the entire network of timed automata. We employ
a unique identifier id(iv) ∈ {0, . . . , |IV| − 1} for the encoding of variable iv ∈ IV .
For each integer variable iv ∈ IV in the network, we create an integer variable
‖iv‖ := intid(iv) for use in the SMT-formulae according to its assigned identifier.

Variables encoding the Locations The locations of each timed automaton are
encoded using boolean variables. Consider the timed automaton Aj (j ∈ {1, . . . , n}).
There exist |Lj| different locations. We encode each location using a unique identifier
i ∈ {0, . . . , |Lj| − 1}, which is encoded using its binary representation. To this end,
we create mx boolean variables, where mx is a function over the timed automata
denoting the number of boolean variables needed to encode the largest identifier

|Lj| − 1. Formally, mx is defined as mx(Aj) =

{
1 if |Lj| = 1,

dlog2(|Lj|)e else.

The created variables are named l j
0 to l j

mx−1, where l j
0 encodes the least significant

bit. The encoding of a location is done via its binary representation as a conjunction
of the above boolean variables, s.t. a true value (1) in the binary representation is
encoded as a positive literal and a false value (0) as negated literal. We denote the
encoding of location l of Aj as ‖l‖j. We exemplify such an encoding in the following.

Example 3.1.1. Consider a timed automaton Aj with |Lj| = 4 different locations
assigned identifiers 0 to 3. The location l with identifier 0 is encoded using its binary
representation 00. Having created mx = dlog2(|Lj|)e = 2 boolean variables, the

SMT-formula describing location l of Aj can be written as ‖l‖j := ¬l j
1 ∧ ¬l j

0, since
location l has identifier 0.
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All the above clock, integer and location variables are used to describe a state in
the concrete transition system. For the purpose of encoding a transition step, we
additionally need variables encoding the next state after having taken a transition
step. To this end, all the above variables are copied as a primed version, respectively

c0
i
′, cj

i
′
, inti

′ and l j
i
′
. Using these variables, we create SMT-formulae encoding the

initial states, the transition relation and the safety property.

3.1.2 Encoding of the Initial States

The formula encoding the initial state must adhere to Definition 2.1.10. Initially,
each timed automaton Aj (j ∈ {1, . . . , n}) is in its initial location l0 j ∈ Lj, encoded
via a conjunction of the locations’ encodings. Furthermore, all integer variables are
required to equal their initial values. For each integer variable iv ∈ IV with initial
value vi

0(iv), we encode this requirement as ‖iv‖ = vi
0(iv). As explained above, we

encode a combination of an edge transition (→e) with a delay transition (→d). To this
end, a first time delay transition is encoded directly into the initial states, and each
edge in the transition relation is also followed directly by a time delay. Thus, initially
all clocks have exactly the same value (≥ 0) that includes a first time elapse for all
clocks. The requirement that all invariants have to be met is encoded separately
for a better reusability of the SMT-formula, which is also needed when encoding
a transition step or error states. This separation allows a modular combination
of the individual formulae. Hence, the encoding of the initial clock valuations in
the formula at hand must only ensure all clocks to be of the same value. To this
end, we employ an auxiliary real valued variable called initClockValue. Each clock
c ∈ C is assigned the same value as said variable via conjunct ‖c‖ = initClockValue,
regardless if the clock is local or global. Additionally, the auxiliary variable is
constrained to be larger or equal to 0 by conjunct initClockValue ≥ 0. Formally, the
formula encoding the initial states is defined as follows.

Definition 3.1.2. Let a network of timed automata be given as in Def. 2.1.11. The
SMT-formula encoding the initial states is defined as

‖Init‖ :=
∧

j∈{1,...,n}
‖l0 j‖j

∧
iv∈IV

‖iv‖ = vi
0(iv) ∧ initClockValue ≥ 0

∧
c∈Cg
‖c‖ = initClockValue

∧
j∈{1,...,n}

∧
c∈Cl

j

‖c‖ = initClockValue.

The following example explains the encoding of the initial states.

Example 3.1.3. Let the network of timed automata be given as depicted in Figure
3.1, modeling two processes using the Fischer mutual exclusion algorithm. Each of
the automata has a local clock c and l0 is its initial location assigned identifier 0. The
global integer variables cnt and id have initial values vi

0(cnt) = 0 and vi
0(id) = 0.
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Thus, the encoding of the initial state looks as follows:

‖Init‖ :=¬l1
1 ∧ ¬l1

0 ∧ ¬l2
1 ∧ ¬l2

0

∧ int0 = 0∧ int1 = 0∧ initClockValue ≥ 0

∧ c1
0 = initClockValue ∧ c2

0 = initClockValue.

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤1024
id:=1
c:=0

c>1024
id=1

c:=0l0

l3

l1

l2

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤1024
id:=2
c:=0

c>1024
id=2

c:=0l0

l3

l1

l2

Figure 3.1: Network of two timed automata modeling the Fischer Mutual Exclusion
algorithm for two processes

As explained this formula is satisfiable by interpretations that represent an initial
state. However, there might exist satisfying interpretations that do not represent a
feasible initial state, since we do not check that the values adhere to the locations’
invariants here. Instead, as explained before, we encode the invariants separately.
This additional encoding includes clock and integer constraints. In the following,
we show how these components are encoded.

3.1.3 Encoding of Clock Constraints

Clock constraints play an important role in restricting the models behavior as they
are used as invariants and guards within edges. Using SMT, the encoding of a clock
constraint is straightforward. Each clock is encoded as defined above, while the
encoding of comparison operators is done using the symbols of the employed theory
of linear real arithmetic. In detail, the encoding is defined as follows.

Definition 3.1.4. Let a clock constraint φ be given as defined in Def. 2.1.2. The
SMT-formula ‖φ‖ is inductively defined on the structure of φ. If φ equals

• x ./ n for some clock x, ./ ∈ {<,≤,=,≥,>} and n ∈N, then
‖φ‖ := ‖x‖ ./ n,

• (x− y) ./ n for some clocks x, y, ./ ∈ {<,≤,=,≥,>} and n ∈N, then
‖φ‖ := (‖x‖ − ‖y‖) ./ n,

• φ1 ∧ φ2 for some clock constraints φ1 and φ2, then
‖φ‖ := ‖φ1‖ ∧ ‖φ2‖.
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If the clock constraint equals true, this can naturally be encoded as the boolean
constant true. However, this special constraint represents a location not having a
clock constraint invariant or an edge having no guard. Thus, it can be left out as it is
not restricting the behavior.

The following example illustrates the encoding.

Example 3.1.5. Consider the clock constraint c ≤ 1024 in the second timed automa-
ton in Figure 3.1. It is encoded as c2

0 ≤ 1024.

Similar to clock constraints, we also have to encode integer constraints. In the
following, we will see that they are encoded analogously.

3.1.4 Encoding of Integer Constraints

Integer constraints are used in addition to clock constraints to restrict the model’s
behavior. Their encoding using SMT is straight-forward, employing the theory of
linear integer arithmetic. In detail, the encoding is defined as follows.

Definition 3.1.6. Let an integer constraint ψ be given as defined in Def. 2.1.4. The
SMT-formula ‖ψ‖ encoding it depends on the constraint. If ψ equals

• iv ./ n for integer variable iv ∈ IV , ./ ∈ {<,≤,=, 6=,≥,>} and n ∈ Z, then
‖ψ‖ := ‖iv‖ ./ n,

• ψ1 ∧ ψ2 for some integer constraints ψ1 and ψ2, then
‖ψ‖ := ‖ψ1‖ ∧ ‖ψ2‖.

We exemplify this encoding in the following.

Example 3.1.7. Consider the integer constraint id = 2 in the second timed automaton
in Figure 3.1. With integer variable id having identifier 0, the constraint is encoded
as int0 = 2.

Given the above mechanisms to encode locations and constraints, we can now
define the encoding of invariants.

3.1.5 Encoding of Invariants

Invariants are defined as functions over the locations of the timed automata in the
network. If a reachable state includes a specific location, then the respective invariant
has to be met. This relationship can be encoded as an implication. In particular, each
invariant constraint is only dependent on its respective location being met. Thus,
we do not need to encode the product locations of the network of automata, but are
able to encode each location separately.

In addition to the encoding of the locations’ invariants, we need additional restric-
tions due to locations being encoded using their binary representation. By creating
mx boolean variables to encode the locations of an automaton, 2mx different locations
can be encoded. However, if less than 2mx locations exist, some interpretations of
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the variables are invalid as they represent nonexistent locations. We exclude these
interpretations upfront accompanying the invariants. Furthermore, our encoding
includes restrictions on the real valued variables representing the clocks. We add a
conjunct for each clock ensuring its value to be nonnegative.

The combined encoding is described below.

Definition 3.1.8. Let a network of timed automata be given as in Def. 2.1.11. The
SMT-formula encoding the locations’ invariants, the exclusion of invalid location
identifiers, and clocks being of nonnegative value is defined as follows.

‖Invar‖ :=
∧

j∈{1,...,n}

∧
l∈Lj

‖l‖j ⇒ (‖Invc(l)‖ ∧ ‖Invi(l)‖)

∧
j∈{1,...,n}

∧
nonexistent location l in Aj

¬‖l‖

∧
c∈C
‖c‖ ≥ 0

We illustrate this encoding again with the help of the Fischer model.

Example 3.1.9. Consider the network of timed automata as depicted in Figure 3.1.
Both automata have 4 locations and, thus, no invalid location identifiers have to be
excluded. However, both automata include a clock invariant for location l1 with
identifier 1. Hence, the resulting formula encoding the invariant looks as follows.

‖Invar‖ := ((¬l1
1 ∧ l1

0)⇒ (c1
0 ≤ 1024))

∧((¬l2
1 ∧ l2

0)⇒ (c2
0 ≤ 1024))

∧(c1
0 ≥ 0) ∧ (c2

0 ≥ 0)

Whenever a single state is queried, the above formula ‖Invar‖ is conjoined to the
query in order to ensure the invariants are met and only valid locations and clock
valuations are considered. The same holds true for successor states, being enforced
by the same formula defined over the respective primed variables. Thus, whenever
a transition step is queried, both the primed and unprimed invariant formulae
enforce their restrictions on states by conjunction with the transition formula, which
is introduced below.

The transition relation contains synchronized and unsynchronized edges. The
encoding of the former edges is done straight-forward, while the encoding of the
latter ones requires some preprocessing. We compute all combinations of sender
and receiver edges upfront and afterwards encode these combinations. This process
allows a straight-forward encoding of all edges and a simple extraction of the taken
edge (or edge combination) from a satisfying interpretation. The overhead due to
the computation of combinations is negligible in most models.

A modular encoding separating the sender and receiver edges might be possible,
perhaps using implications and auxiliary variables for signaling purpose. However,
the main characteristic of synchronized edges requiring the synchronization of
exactly one sender and one receiver edge renders a modular encoding rather complex.
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In addition, the extraction of the taken edges needed for the computation of the
CTIs might be more difficult.

Thus, we compute the combinations of edges, as defined in Def. 2.1.11. As
described in the semantics, only those edges of the product automaton can be taken
that are not synchronized (marked by the synchronization symbol ε). We encode
these edges by enforcing the source and target locations of those timed automata,
in which the edges are taken. Furthermore, we encode the constraints and integer
assignments and resets of clocks. In addition, we ensure all unused clock, integer
and location variables to keep their values, meaning they have the same value in
their unprimed and primed versions.

We first describe how integer assignments and resets of clocks are encoded.

3.1.6 Encoding of Clock and Integer Updates

Encoding updates on the clocks and integer variables inherently makes use of both
the unprimed and primed versions of the variables, representing the current and the
next state values, respectively. First, we define the encoding of integer assignments.

Encoding of Integer Assignments As mentioned before, we can combine each
sequence of assignments (Definition 2.1.5) into a sequence, in which the order does
not matter, since each integer variable exists at most once in a left hand side of an
assignment. This fact results in a simple encoding using conjunction to combine
the assignments without the need for intermediate steps. Note, however, that the
encoding of a sequence, in which the order is essential, can easily be done using
auxiliary variables and intermediate steps. The following definition shows the
simple encoding.

Definition 3.1.10. Let an integer assignment ω be given as defined in Def. 2.1.5. The
SMT-formula ‖ω‖ encoding it depends on the assignment. If ω equals

• iv := n for some integer variable iv ∈ IV and n ∈ Z, then
‖ω‖ := ‖iv‖′ = n,

• iv := iv + n for some integer variable iv ∈ IV and n ∈ Z, then
‖ω‖ := ‖iv‖′ = ‖iv‖+ n,

• ω1; ω2 for some integer assignments ω1 and ω2, then
‖ω‖ := ‖ω1‖ ∧ ‖ω2‖,

• true, then
‖ω‖ := true.

For an assignment true, the same arguments applies as for an invariant true. It
is ignored and, thus, all integer variables are to keep their value. This process of
keeping the value is encoded separately (as ‖iv‖′ = ‖iv‖) in each of the edges for all
integer variables iv ∈ IV that are not changed by the assignment.

We illustrate the encoding with the following example.
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Example 3.1.11. Consider again the Fischer model as depicted in Figure 3.1. The
integer assignment id := 0; cnt := cnt− 1 can be seen on the edge between location
l3 and l0 in each of the automata. With integer variable id having identifier 0 and
cnt having identifier 1, the integer assignment is encoded as
‖ω‖ := (int′0 = 0) ∧ (int′1 = (int1 − 1)).

The encoding is straight-forward for the integer assignments. However, clock
updates can not be encoded this way due to always considering the combination
of an edge-transition with a subsequent time elapse step. To this end, we create an
additional real-valued variable δ denoting the time elapse after the edge has been
taken.

Encoding of Clock Resets Given the set R ⊆ C of clocks to be reset, the update of
each clock is encoded dependent on it being an element of R or not. All members
are reset to value 0, while the remaining clocks keep their value. Afterwards all
clock values are increased by a time delay step, encoded as the addition of a real
valued variable δ. Formally, the update for each clock c ∈ C is encoded as

‖c‖′ = δ if c ∈ R,

‖c‖′ = (‖c‖+ δ) else.

Using the above encodings, we can finally formalize the encoding of edges.

3.1.7 Encoding of Edges

When encoding the edges of an NTA, we distinguish between the encoding of edges
that originate from synchronization and those that don’t. We start with the latter,
denoting such edges that can be found in single timed automata in the network,
marked by symbol ε, meaning no synchronization takes place.

Unsynchronized Edges These edges are related only to a single timed automaton
Ai (i ∈ {1, ..., n}) in the network NTA = 〈A1, ..., An〉. Thus, they do not consider the
locations of the other timed automata, as well as their local clocks. These values do
not matter, as they are unchanged when the edge is taken (not taking into account
successive time elapse). Hence, our encoding does not need to compute the product
automaton with all its combinations of locations. Instead, we demand Ai to be in
the source location before taking the edge and to be in the target location afterwards.
In addition, the clock and integer constraints have to be met, as well as the reset of
clocks and the integer assignments. The encoding is presented in detail below.

Definition 3.1.12. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as

in Def. 2.1.11. Each unsynchronized edge e = (l1
ε, φ, ψ, ω, R
−−−−−→ l2) ∈ Ei of each timed

automaton Ai (i ∈ {1, . . . , n}) is encoded as follows.
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‖e‖ :=‖l1‖i ∧ ‖l2‖i
′

∧ ‖φ‖ ∧ ‖ψ‖ ∧ ‖ω‖∧
c∈R
‖c‖′ = δ

∧
c∈C\R

‖c‖′ = ‖c‖+ δ

∧
j∈{1,...,n}

j 6=i

mx(Aj)∧
m=0

l j
m
′
= l j

m

∧
iv∈IV ,iv/∈ω

‖iv‖′ = ‖iv‖

We explain the encoding in the following. The first line encodes the automaton
Ai being in location l1 before the edge is taken and in l2 afterwards, which is encoded
via the primed variables. The next line demands the constraints ψ and φ to hold
before the edge is taken and the assignment ω being applied to the integer variables.
The third line demands the clocks in R to be reset, while all others keep their value.
In addition, a time elapse of δ is encoded, where the requirement of the delay
being nonnegative (δ ≥ 0) is encoded separately, together for all edges. Finally, the
locations of the timed automata other than Ai are preserved, as well as the values of
the integer variables that are not updated in the assignment ω.

We illustrate the encoding with the following example.

Example 3.1.13. Consider the Fischer model as depicted in Figure 3.1. We show the
encoding of the edge e leading from l2 to l3 (with identifiers 2 and 3, respectively) in
the first automaton. It requires A1 to be in the respective locations before and after
the transition, encoded as ‖l2‖1 := l1

1 ∧ ¬l1
0 and ‖l3‖′1 := l1

1
′ ∧ l1

0
′. Furthermore, it

requires integer variable id, encoded as int0, to have value 1 (‖ψ‖ := int0 = 1) and
local clock c of A1, encoded as c1

0, to be of value larger than 1024 (‖φ‖ := c1
0 > 1024).

The integer assignment ω increments the variable cnt by one, encoded as ‖ω‖ :=
int′1 = (int1 + 1). All other variables keep their value during the transition step. The
entire encoding looks as follows.

‖e‖ :=l1
1 ∧ ¬l1

0 ∧ l1
1
′ ∧ l1

0
′

∧ (c1
0 > 1024) ∧ (int0 = 1) ∧ (int′1 = (int1 + 1))

∧ (c1
0
′
= (c1

0 + δ)) ∧ (c2
0
′
= (c2

0 + δ))

∧ (l2
0
′
= l2

0) ∧ (l2
1
′
= l2

1)

∧ int′0 = int0

As explained before, our encoding does not need to compute any product of
locations and is, thus, very scalable. The same holds true for the encoding of
synchronized edges, which we describe below. However, we need to compute all
combinations of synchronized sender and receiver edges, which results in a bad
scalability for models with many sender and receiver edges synchronized via the
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same channel. As noted above, a different kind of encoding without the need for
such a computation might be feasible, but results in an encoding way more complex
with some sort of signaling between sender and receiver that ensures exactly one
edge of each kind.

Thus, we compute the combination of synchronized edges upfront end encode
them similar to the previous encoding. The main differences are the usage of two
source and target locations, as well as two constraints and assignments due to
the sender and receiver edges belonging to two distinct timed automata. In the
following, the encoding is formally defined.

Definition 3.1.14. Let a network of timed automata NTA = 〈A1, ..., An〉 be given
as in Def. 2.1.11. Each synchronized edge e combined from sender edge es =

(l1
a!, φ1, ψ1, ω1, R2−−−−−−−−→ l2) ∈ Ei and receiver edge er = (l3

a?, φ2, ψ2, ω2, R2−−−−−−−−→ l4) ∈ Ej of timed

automata Ai and Aj (i 6= j ∈ {1, . . . , n}) is encoded as follows

‖e‖ :=‖l1‖i ∧ ‖l3‖j ∧ ‖l2‖i
′ ∧ ‖l4‖j

′

∧ ‖φ1‖ ∧ ‖φ2‖ ∧ ‖ψ1‖ ∧ ‖ψ2‖ ∧ ‖ω1; ω2‖∧
c∈R1∪R2

‖c‖′ = δ
∧

c∈C\(R1∪R2)

‖c‖′ = ‖c‖+ δ

∧
h∈{1,...,n}
h/∈{i,j}

mx(Ah)∧
m=0

lh
m
′
= lh

m

∧
iv∈IV ,iv/∈ω1;ω2

‖iv‖′ = ‖iv‖

Using these encodings of the edges, we can encode the transition relation. It is
explained below.

3.1.8 Encoding of Transition Relation

The transition relation consists of all unsynchronized edges and the combined
synchronized ones. When the transition relation is applied, the current state in the
concrete transition system is changed according to the taken edge. Thus, an edge
must be taken, which is encoded as a disjunction of the formulae representing the
edges. The variable δ modeling the elapsed time is used within all the encodings of
the edges and, thus, the requirement that a nonnegative amount of time has passed
is encoded together once for all edges.

Definition 3.1.15. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as
in Def. 2.1.11. Let {e1, . . . , em} be the set of unsynchronized edges and combined
synchronized edges as in the previous definitions. The transition relation describing
the application of one of them is encoded as

‖Trans‖ :=(‖e1‖ ∨ · · · ∨ ‖em‖) ∧ δ ≥ 0.
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All the above definitions are employed to encode the concrete semantics of a
network of timed automata as explained. For our verification approach, however,
the safety property must also be encoded as SMT-formula. This encoding is defined
below.

3.1.9 Encoding of Safety Property

A safety property is defined as a conjunction of negations of error state specifications.
Each error state specification is defined as a triple of partial location vector, clock
constraint and integer constraint. We have described above, how all these parts
are encoded. They are simply combined via conjunction to encode an error state
specification.

Definition 3.1.16. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as
in Def. 2.1.11. Let err = (l̄, φ, ψ) be an error state specification as given in Definition
2.1.13. It is encoded using the above definitions as

‖err‖ :=
∧

j∈{1,...,n}
l̄[j] 6=∗

‖l̄[j]‖j ∧ ‖φ‖ ∧ ‖ψ‖,

where the encoding of the partial location vector encodes only those locations that
are specified. In addition, constraints φ and ψ are discarded, if they specify true.

As stated before, the encoding of the safety property is simply the conjunction of
negations of the error state specifications. We formally define it in the following.

Definition 3.1.17. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as
in Def. 2.1.11. Let the safety property ρ = G(¬err1 ∧ · · · ∧ ¬errx) be given specifying
that no reachable state should satisfy one of the error state specifications err1 to errx.
It is encoded as ‖ρ‖ as follows.

‖ρ‖ :=¬‖err1‖ ∧ · · · ∧ ¬‖errx‖

We illustrate the encoding with the following example.

Example 3.1.18. Consider again the Fischer model as depicted in Figure 3.1. It
models the Fischer mutual exclusion algorithm that ensures only a single process
to be in a critical section. The critical section is modeled as location l3 and the
number of processes in the critical section is counted via integer variable cnt. Let
cnt > 1 be the error state specification considered here. It specifies that more than a
single automaton is in its critical section at the same time. The safety property of
interest denotes that no such error state can occur, formally ρ := G(¬(cnt > 1)). It
is encoded as ‖ρ‖ = ¬(int1 > 1).

Finally, all formulae needed are explained and defined. We briefly summarize
their usage within IC3 below. To this end, we give an overview over the queries
issued to the SMT-solver.
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3.1.10 Usage of the Encodings in the Queries

As stated before, the SMT-formula encoding the transition relation, as well as those
for the initial states or the safety property rely on the combination with the unprimed
and primed invariant formulae. In consequence, we create these formulae modularly
in order to combine them when needed.

We briefly recall the queries issued by IC3 (upper formula) and show how they
are build using our encoding (lower formula).

• (An error state is initial.)
‖I‖ ∧ ¬‖ρ‖:
‖Init‖ ∧ ‖Invar‖ ∧ ¬‖ρ‖

• (A predecessor of an error state is initial.)
‖I‖ ∧ ‖T‖ ∧ ¬‖ρ‖′:
‖Init‖ ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ¬‖ρ‖′

• (A predecessor of an error state is a member of Fk.)
‖Fk‖ ∧ ‖T‖ ∧ ¬‖ρ‖′:
‖Fk‖ ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ¬‖ρ‖′

• (A predecessor of state s that is distinct from s is a member of Fn−1.)
‖Fn−1‖ ∧ ¬‖s‖ ∧ ‖T‖ ∧ ‖s‖′:
‖Fn−1‖ ∧ ¬‖s‖ ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ‖s‖′

• (An initial state is a member of ¬c.)
‖F0‖ ∧ ¬c:
‖F0‖ ∧ ‖Invar‖ ∧ ¬c

• (A predecessor of a state in ¬c is a member of c and of Fn−1.)
‖Fn−1‖ ∧ c ∧ ‖T‖ ∧ ¬c′:
‖Fn−1‖ ∧ c ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ¬c′

• (A predecessor of a state in ¬c is a member of Fi.)
‖Fi‖ ∧ ‖T‖ ∧ ¬c′:
‖Fi‖ ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ¬c′

The above formulae encode states and transitions in the concrete transition
system, as explained in Definition 2.1.10. It might be feasible to encode an abstraction
of the clock valuation space directly, e.g., by introducing variables for bounds of
clock valuations. However, the encodings would most probably grow far more
complex. In particular, the transition relation encoding would do so and, thus,
slow down the generalization step. Our encoding refrains from introducing this
additional complexity and, instead, favors an auxiliary step outside the scope of
IC3’s generalization procedure.

This additional step is vital for our approach. Since our encoding represents
a concrete transition system with clocks having values from R≥0, there might be
infinitely many satisfying interpretations to a satisfiable query. This infinity poses
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a problem, especially when considering the queries asking for counterexamples
to induction (CTIs). There might exist infinitely many satisfying interpretations
and, in consequence, infinitely many CTIs, e.g., within one run of strengthenClauses.
Hence, the algorithm would have to exclude infinitely many CTIs for termination.
Even when taking into account the generalization procedure, termination can not be
ensured. This is due to the fact, that the generalization algorithm is only capable
of deleting literals (for example c = 1.771). Tackling this problem by altering the
generalization algorithm to shift values is hardly feasible.

Thus, we employ an abstraction in order to ensure termination. First, we need
to obtain the concrete states that the solver has computed in form of a satisfying
interpretation. This step, called state extraction, is detailed below.

3.2 State Extraction

Executing the IC3 algorithm using an SMT-solver with the above encoding results
in CTIs being concrete states. Each satisfying interpretation is inspected to extract
values for the location variables, clock variables and integer variables. These repre-
sent the clock valuation, integer valuation and locations of a state in the concrete
transition system (or two states - predecessor and successor - in case of an encoded
transition step). The clock and integer valuations can be extracted directly, however,
the locations need to be computed from the boolean values of the location variables.
The boolean values represent the identifier of the location encoded as integer value
in binary form. The extraction of the concrete state is exemplified in the following.

Example 3.2.1. Let the network of timed automata be given as depicted in Figure
3.1. The query ‖Fk‖ ∧ ‖Invar‖ ∧ ‖Trans‖ ∧ ‖Invar‖′ ∧ ¬‖ρ‖′ asks the solver for a
predecessor state (in Fk) of an error state. Consider the following part of a satisfying
interpretation returned by the solver.

(de f ine− f un int0 () Int 1)

(de f ine− f un int1 () Int 1)

(de f ine− f un l1
1 () Bool true)

(de f ine− f un l1
0 () Bool f alse)

(de f ine− f un l2
1 () Bool true)

(de f ine− f un l2
0 () Bool f alse)

(de f ine− f un c1
0 () Real 1025.0)

(de f ine− f un c2
0 () Real 1.0)

. . .

Note, that the format of the satisfying interpretation depends on the used solver.
The presented interpretation represents only values for the predecessor state. We
extract the following state: Both integer variables int0 and int1 have value 1 and,
thus, the integer valuation vi for the integer variables of the model is set accordingly
(vi(id) = 1, vi(cnt) = 1). The extraction of the clock valuation vc is done in exactly the
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same way (vc(c1) = 1025.0, vc(c2) = 1.0), where c1 and c2 denote clock c in automata
A1 and A2, respectively. The extraction of the locations is a bit more involved.
Taking the values for the boolean variables, we build the binary representations
of the identifiers. In this example, both binary representations are 10 representing
location l2 for A1 and A2.

As explained above, the concrete clock valuation poses a potential thread to the
termination of the algorithm. In the following, we show an example having infinitely
many such valuations for CTIs all taking the same edge to an error state.

Example 3.2.2. We consider the same example as above with query ‖Fk‖ ∧ ‖Invar‖ ∧
‖Trans‖ ∧ ‖Invar‖′ ∧ ¬‖ρ‖′ asking for a predecessor state (in Fk) of an error state.
The satisfying interpretation represents an edge transition from location l2 to l3 in
the first timed automaton, while the second one keeps its location l2. The integer
valuation changes from vi(id) = 1, vi(cnt) = 1 to vi ′(id) = 1, vi ′(cnt) = 2. The
respective concrete clock valuation found by the solver is vc(c1) = 1025.0, vc(c2) =

1.0 and does not change (vc = vc ′) with δ = 0. It is easy to see, that the locations
and valuations enable the given edge with the given successor state being an error
state, i.e., satisfying cnt > 1. Clearly, there exist infinitely many other satisfying
interpretations for the query: Keeping all the above values, but changing vc(c1)

to any arbitrary value strictly larger than 1024.0. Figure 3.2 shows the computed
concrete clock valuation (marked as x), as well as the other valuations that could be
used in a satisfying interpretation (marked gray).

c110241023
.

1

2

1025

...

...

0

c2

....
.....
..........

Figure 3.2: An infinite number of satisfying interpretations can exist: When changing
the clock valuation found by the solver for Example 3.2.2 (marked as x) to any other
one of those marked gray, the respective interpretation still satisfies the issued query

In 2012, Kindermann et al. [KJN12b] proposed a solution to circumvent infinitely
many CTIs by using the region abstraction. They extract the concrete state, as
shown above, and afterwards compute the region surrounding the found clock
valuation. The computation is straight-forward, in particular, due to each concrete
clock valuation belonging only to a single, unique region. This region is used in lieu
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of the concrete clock valuation forming an abstract CTI. The essence of his approach
is that termination is ensured due to the fact that there exist only a finite number of
distinct regions. Thus, when blocking an abstract CTI, none of the concrete clock
valuations included in the entire region can occur again as CTI (for a specific frame)
in the current cycle of the strengthenClauses procedure. Accordingly, with abstract
CTIs being blocked, only a finite number of distinct frames can be created until two
of them are found to be equal (or a counterexample trace is found). As a result,
termination is guaranteed.

Kindermann examines his approach thoroughly leading to the conclusion that it
scales similar to the state of the art tool Uppaal, but is not competitive to it due to
larger runtimes in general. The main reason for the performance issues is the use
of the region abstraction. Although being finite, the number of CTIs may still be
enormously large due to exponential growth of the employed abstraction regarding
time constants and clocks. Thus, the approach is irrelevant in practice.

In general, however, Kindermann’s approach points out a valuable direction. By
applying finite abstraction, IC3 can be utilized for the verification of timed automata.
Such an abstraction should be coarse and efficiently computable in order to be better
suited for practical purposes.

In our approach, detailed below, we apply the zone abstraction. We believe that
this abstraction is particularly suitable for application in IC3 due to its properties.
It is coarser than the region abstraction, it is finite since a zone is the union of
regions and there exist sophisticated algorithms for computation and manipulation
of zones. Even though it is coarse, it is exact enough to describe exactly all those
clock valuations that reach a specific zone of a successor state via the same edge.
Note, that none of the problems of storing disjunctions of zones occurring in other
approaches (see the related work in Chapter 2) are present in the IC3 approach.

However, applying the zone abstraction is not as straight-forward as the region
abstraction, since there is no unique surrounding zone for each clock valuation. We
explain this issue and our solution in the following.

3.3 Zone Abstraction

Our SMT-formulae as shown above encode the concrete semantics of a timed
automaton. The states extracted from satisfying interpretations are, thus, concrete
states with a single clock valuation. Unlike in Kindermann’s approach, one can not
simply compute a surrounding zone for such a clock valuation as there might exist
several surrounding zones. We exemplify the ambiguity in the following example.

Example 3.3.1. Let the set of clocks be given as C = {c1, c2}. A concrete clock
valuation vc extracted from a satisfying interpretation of a query might contain
the values vc(c1) = 1.5, vc(c2) = 0.75. It is depicted in Figure 3.3 marked as x,
together with several surrounding zones. Each such zone is a convex union of clock
valuations (defined as a clock constraint) including the found clock valuation. Some
of these zones are very fine grained and some are extremely coarse. The difficulty
here is to chose the right one.
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(c) The zone true

Figure 3.3: A concrete clock valuation, as extracted from a satisfying interpretation
of an SMT-query, might be included in numerous surrounding zones with different
size

We search for a zone that includes the concrete valuation found by the solver,
and is as large as possible, while permitting only relevant behavior. The last two
properties are opposed, but reasonable. A zone that is too small may result in imprac-
ticality of the approach, while a zone that is too large would break the IC3 algorithm.
For illustration consider computing a zone that equals the region surrounding the
concrete clock valuation. Clearly, this choice results in impracticality due to being
too fine grained. It depicts exactly the approach proposed by Kindermann et al.
[KJN12b]. On the other hand, a zone true allowing all valuations would be too coarse
and disallow the selective blocking of specific clock valuations and, in consequence,
break the IC3 algorithm.

We denote behavior as relevant, if is analog to the one found via the SMT-query,
meaning the same edge is taken with the same error state or CTI as successor. Thus,
the zones we are interested in contain exactly those clock valuations that enable the
same edge and reach the same (abstract) successor state as the clock valuation found
by the query.

Due to the abstraction of the found concrete clock valuation into a zone, the IC3
algorithm no longer deals with concrete states as CTIs, but with abstract states. We
denote these states as abstract CTIs, as opposed to the previously used concrete CTIs.
Abstract CTIs are abstract states as defined below.

Definition 3.3.2 (Abstract State). Let there be given a network of timed automata
NTA = 〈A1, ..., An〉 as in Def. 2.1.11 with concrete semantics TS = (S, s0,→).
The set of abstract states is defined as Sa = L× Φ(C)× Ψ(IV). An abstract state
sa = (l, φ, ψ) ∈ Sa denotes the set of concrete states {(l, vc, vi) ∈ S|vc |= φ ∧ vi |= ψ}.

By taking into account the definition of safety properties and abstract CTIs, it is
easy to formalize the above intuition of the largest zone with relevant behavior.
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3.3.1 Zone Computation

IC3’s search for CTIs always includes an SMT-query involving a single transition
step (lines 18 and 30). Assuming the zone of the successor state to be known, we
can apply traditional backwards reachability computation to compute the zone that
abstracts the found clock valuation of the concrete CTI. It requires the extraction
of the concrete predecessor and successor states from the satisfying interpretation
and based thereon the backwards computation. In detail, the following steps are
performed.

1. • Extract the concrete predecessor state (concrete CTI) s from the satisfying
interpretation for the unprimed location, clock and integer variables.

• Extract the concrete successor state t from the satisfying interpretation for
the primed location, clock and integer variables.

• Extract the used edge e from the satisfying interpretation of ‖Trans‖.

2. Get the successor’s zone Z′ depending on the query.

3. Compute the predecessor zone Z by backwards computation from Z′ using s,t
and e. It abstracts the predecessor’s concrete clock valuation and is used in the
abstract CTI.

Extracting the concrete states is done as described previously in Section 3.2.
However, getting the successor’s zone Z′ is a bit more involved depending on the
employed query. Either, the successor state is an abstract CTI (see Query in line
30) or it is an error state (see Query in line 18). In the first case, an abstract CTI is
encoded as successor state and, thus, its zone must have been previously computed
and can simply be used. In the latter case, the negation of the safety property is
encoded. Hence, the successor state satisfies one of the error state specifications in
the safety property. In order to identify which one, we issue a series of small queries
to the SMT-solver that check compatibility of the extracted concrete successor state t
with each error state specification in the safety property. Definition 3.3.3 denotes
how these queries are build.

Definition 3.3.3. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as in
Def. 2.1.11. Given an error state specification err = (l̄, φ, ψ) as defined in Definition
2.1.13, we check whether a concrete state t = ((l1, . . . , ln), vi, vc) is included in err by
issuing the following SMT-query to the solver.

‖t‖ ∧ ‖err‖ :=
n∧

i=1

‖li‖i
∧

c∈C
(‖c‖ = vc(c))

∧
iv∈IV

(‖iv‖ = vi(iv)) ∧ ‖err‖

At least one of these queries has to be satisfied since the extracted state t clearly
is an error state. In case of satisfiability, t is included in the error state’s specification.
Thus, we extract the respective zone φ from the error state specification and use it as
successor zone Z′.
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Despite the difference in step 2 (getting the successor zone Z′), both methods
have the same idea in mind. Not the found concrete clock valuation of the successor
state t is of interest, but all the clock valuations included in Z′. They are useful in
combination with the knowledge of the predecessor’s and successor’s locations and
integer valuations and the taken edge. Taking into account all the information, we
compute the largest set of clock valuations that enables the given edge and leads
to a successor clock valuation in Z′ under the given assumptions of successor’s
and predecessor’s locations and integer valuations. In the literature, the procedure
is usually called backward analysis (c.f. [Bou09]). The entire handling of zones
within our approach is based on the DBM structure as it is trivial to compute
the DBM representation of a clock constraint and vice versa. Hence, we do not
strictly separate the notion of zones and their storage and manipulation in form
of DBMs here. The employed backwards computation of the predecessor zone is,
thus, presented as a sequence of algorithms based on DBMs. It refers to procedures
defined by Bengtsson [Ben02].

Definition 3.3.4. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as
in Def. 2.1.11. In addition, let the concrete states s = (l, vi, vc) and t = (l′, vi ′, vc ′) be

the states extracted from the satisfying interpretation with taken edge l ε, φ, ψ, ω, R
−−−−−→ l′.

Given the successor zone Z′ represented as a DBM, the following sequence of
operations is executed to compute the predecessor zone Z represented as DBM. As
explained above, the operations refer to algorithms from Bengtsson [Ben02]. The
algorithm backwards(l, l′, e, Z′) is defined by the following sequence of procedures.

1. Z = down(Z′)
The past of the DBM Z′ is computed to include all those valuations that may
have led to a valuation in Z′ via time elapse.

2. Z = and(Z, Invc(l′))
Only those clock valuations are valid that adhere to the successor locations’
invariant. To this end, the conjunction of Z with the DBM representing the
invariant is computed.

3. Z = reset(Z, R)
After a reset all clocks in R are of value 0. Thus, only valuations with these
clocks set to zero must be considered valid.

4. Z = f ree(Z, R)
Prior to the reset all clocks in R may have been of any value. Thus, they are
set free to allow any value.

5. Z = and(Z, φ)

The taken edge is only enabled, if the clock constraint φ is satisfied by the clock
valuation. Thus, all invalid clock valuations are removed via a conjunction
with the DBM representing φ.
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The general problem when employing zone-based computation is that some of
the algorithms need the DBM to be in canonical form, i.e., all its bounds are as tight
as possible. This form is established using the all-pairs-shortest-paths algorithm of
Floyd Warshall [Flo62]. With its cubic runtime, this process is the bottleneck of all
basic zone computation approaches. There exist approaches to reduce the need to
call the Floyd Warshall algorithm, e.g., the above algorithms from Bengtsson [Ben02],
which we employ as explained. The bottleneck is, thus, reduced, but not eliminated
completely.

By employing this sequence of algorithms, we compute a zone Z that includes all
clock valuations that are able to reach a clock valuation in Z′ for the given successor
location and integer valuation under the given predecessor location, integer valuation
and edge. This abstraction of the found concrete clock valuation allows the blocking
of a large number of concrete states at once and, thus, is crucial in respect of
performance and termination. As explained above, all zones are stored as difference
bound matrices, allowing an efficient manipulation. Furthermore, their encoding
via SMT-formulae is straight-forward as the clock difference constraints stored as
bounds in the cells of the matrix are encoded easily as explained in Subsection 3.1.3.

Additionally, we employ another backwards computation for the integer valua-
tions as detailed below.

3.3.2 Integer Constraint Computation

As explained above, our abstract CTIs include a set of integer valuations instead
of a single valuation. These are stored as integer constraints. Analog to the zone,
we extract the successor’s integer constraint from the error state specification or
the abstract CTI. The computation of the predecessor’s integer constraint employs
standard weakest precondition computation [Dij78] in order to include all integer
valuations that enable the edge with a resulting valuation in the successor’s integer
constraint. This procedure is denoted wp(ω, ψ) below, for a sequence ω of integer
assignments and a successor integer constraint ψ. It is defined as follows.

Definition 3.3.5. Let an integer constraint ψ be given, as well as an integer assign-
ment ω. The weakest precondition computation computes the weakest integer constraint
wp(ω, ψ) that includes all integer valuations, which result in a valuation in ψ via
the application of ω. Technically, the left-hand side of the assignment is replaced in
ψ by the right-hand side.

In the following, we show how the original IC3 algorithm changes when employ-
ing our method.

3.4 Algorithm

In general, the structure of the algorithm is kept the same. It is now based on
the computation and blocking of abstract CTIs instead of concrete ones. Their
encoding is straight-forward as explained above. In particular, the combination
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with the encoding of the concrete semantics permits the usage of the generalization
procedure without any modifications. The most complex changes to the algorithm
happen in those parts that are concerned with computing the CTIs.

Two lines are affected, namely lines 20 and 38 in the original algorithm, which are
located in the procedures strengthenClauses (Listing 2.2) and blockCTIs (Listing 2.3).
The two occurrences represent the two distinct cases of accessing the successor’s
zone Z′, in particular, the successor is an error state in method strengthenClauses,
while it is an abstract CTI in blockCTIs. Thus, different modifications are needed
in these separate spots. We present the altered procedures in the following, which
both employ the distinct procedures for the weakest precondition computation of
integer constraints (wpIntegers) and zones (wpClocks) as presented in Listings 3.3 and
3.4. Listing 3.1 shows the adapted procedure strengthenClauses.

Listing 3.1: Algorithm: Strengthen the frames in IC3 for Timed Automata

57 strengthenClauses ( ) {
58 while (‖Fk‖ ∧ ‖T‖ ∧ ¬‖ρ‖′ s a t ) {
59 / / e x t r a c t from s a t i s f y i n g i n t e r p r e t a t i o n
60 concre te predecessor s t a t e s =( l , vi , vc ) ;
61 / / e x t r a c t from s a t i s f y i n g i n t e r p r e t a t i o n
62 concre te successor s t a t e t =( l ’ , vi ’ , vc ’ ) ;
63 / / e x t r a c t from s a t i s f y i n g i n t e r p r e t a t i o n
64 taken edge e with s →e t ;
65 e r r o r s t a t e e r r =( l̄ ’ , φ′ , ψ′ ) = f e t c h E r r o r S t a t e ( t ) ;
66 i n t e g e r c o n s t r a i n t ψ = wpIntegers ( l , e , l ’ , ψ′ ) ;
67 c lock c o n s t r a i n t φ = wpClocks ( l , e , l ’ , φ′ ) ;
68 combine i n t o abstract CTI sa =( l , φ , ψ ) ;
69 i f ( ! blockCTIs ( { ( sa , k ) } ) )
70 / / f ound c o u n t e r e x a m p l e t r a c e
71 return f a l s e ;
72 }
73 re turn true ;
74 }

Starting in line 59, we extract the concrete predecessor (lines 59 and 60) and
successor state (lines 61 and 62) and the taken edge (lines 63 and 64) from the
satisfying interpretation of the issued query. This information is successively used
to find an error state specified within the safety property, s.t. the concrete successor
state t is included in the error state specification as explained in Definition 3.3.3.
To this end, the procedure f etchErrorState is applied (line 65), which is described
below in Listing 3.2.
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Listing 3.2: Algorithm: Finding an error state specified in the safety property that
includes a concrete state

75 f e t c h E r r o r S t a t e ( Concrete S t a t e t ) {
76 / / l e t ρ = ¬err1 ∧ · · · ∧ ¬errx

77 for ( i n t i =1 ; i≤x ; i ++)
78 i f (‖erri‖ ∧ ‖t‖ s a t )
79 re turn erri ;
80 }

Each error state specification is checked whether it includes the concrete successor
state t, in which case the search is terminated and the found error state specification
is returned. Since the concrete successor state has been extracted from the satisfying
interpretation of the query in line 58, it is clearly included in at least one of the
error state specifications. To this end, inclusion checks are performed using short
SMT-queries in which both the error state specification in question, as well as the
concrete state are encoded (line 78). The error state specification contains a partial
location vector, an integer and a clock constraint. Its encoding in conjunction with
the encoding of the concrete state is only satisfiable if the concrete state is included
in the specification. Otherwise at least two literals encode contradicting information,
rendering the formula unsatisfiable.

For illustration, consider the following example.

Example 3.4.1. Let the network of timed automata be given as depicted in Figure
3.1. It includes two local clocks, one for each automaton, denoted c1 and c2. Line 58
queries the solver for a CTI as predecessor of an error state. The concrete successor
state extracted from the satisfying interpretation might be t = ((l3, l2), vc ′, vi ′) with
vi ′(id) = 1, vi ′(cnt) = 2 and vc ′(c1) = 1025.0, vc ′(c2) = 1.0 as previously explained
in Example 3.2.2. The taken edge is the one between locations l2 and l3 in the first
automaton. As explained previously, the safety property specifies mutual exclusion
as ρ := ¬(cnt > 1). The search for an error state specification including the found
concrete successor state will, thus, issue the following query

‖l3‖1 ∧ ‖l2‖2 ∧ (‖id‖ = 1) ∧ (‖cnt‖ = 2)

∧(‖c1‖ = 1025.0) ∧ (‖c2‖ = 1.0) ∧ (‖cnt‖ > 1).

The last conjunct encodes the error state specification and the other parts of the
formula encode the concrete successor state t. With the satisfiability of the query,
the IC3 algorithm knows which error state specification has to be used. In particular,
cnt > 1 is used as successor integer constraint, while the used successor zone
includes all valuations, since the constraint true was specified.

The found error state is exploited afterwards in order to compute the maximum
sets of integer and clock valuations that enable the given edge e using the extracted
locations l and l′, leading to a concrete state satisfying the found integer and clock
constraints of the error state. For both sets of integer and clock valuations, we employ
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backwards computation algorithms computing the weakest precondition. They refer
to the previously presented backwards computation and weakest precondition for
zones and integers, respectively, but additionally ensure the invariants to be met.
They are shown below.

Listing 3.3: Algorithm: Computing the weakest precondition of integer constraints

81 wpIntegers ( l , e , l ’ , ψ ’ ) {

82 / / l e t e = l ε, φe, ψe, ωe, Re−−−−−−−→ l′

83 / / c o n j u n c t i n t e g e r i n v a r i a n t o f l ’
84 ψ = ψ′ ∧ Invi( l ’ ) ;
85 / / wp us ing a s s i g n m e n t s in edge e
86 ψ = wp(ωe, ψ ) ;
87 / / c o n j u n c t i n t e g e r c o n s t r a i n t ( guard ) o f edge e
88 ψ = ψ ∧ ψe ;
89 / / c o n j u n c t i n t e g e r i n v a r i a n t o f l
90 ψ = ψ ∧ Invi( l ) ;
91 re turn ψ ;
92 }

The algorithm starts from the successor’s integer constraint specifying the al-
lowed valuations. Since the integer invariants have to be met by all valuations,
the integer invariant constraints for successor location l′ are added via conjunction
(line 84). These combined constraints denote all integer valuations allowed in l′ for
the considered error state. In order to compute all possible predecessor valuations
regarding edge e, the algorithm considers all integer assignments ωe of e. These
are used to compute the set of integer valuations that result in one of the above
valuations after applying the assignments. To this end, standard weakest precon-
dition as first defined by Dijkstra [Dij78] is employed. Thereafter, these constraints
are conjoined with the integer guard of edge e and the integer invariant of l (lines
88 and 90). Thus, the resulting integer constraint ψ specifies exactly those integer
valuations that are allowed in location l and enable the edge e, whose application
results in a valuation included in ψ′ and allowed in l′.

For illustration, consider the following example.

Example 3.4.2. Consider the same situation as in the previous example. The found
error specification includes the integer constraint cnt > 1 with extracted successor
location (l3, l2) and predecessor location (l2, l2). The extracted taken edge has integer
constraint id = 1 and assignment cnt := cnt+ 1. Applying the procedure wpIntegers
results in the following computation. First, the successor’s integer constraint cnt > 1
is conjoined with the integer invariant constraint of the successor location, which
does not exist here. Then, weakest precondition wp is applied resulting in the integer
constraint cnt + 1 > 1, simplified to cnt > 0. Afterwards, the integer constraint
of the edge is conjoined resulting in integer constraint cnt > 0 ∧ id = 1. Since no
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integer invariant exists for the predecessor location, the above constraint is returned
as depicted.

Similarly, the computation of clock constraints includes clock invariants, guards
and resets. It entirely relies on manipulations of difference bound matrices repre-
senting the involved zones.

Listing 3.4: Algorithm: Computing the weakest precondition of integer constraints

93 wpClocks ( l , e , l ’ , φ ’ ) {
94 / / i n t e r s e c t i o n with c l o c k i n v a r i a n t o f l ’
95 φ := and(φ′, Invc( l ’ )) ;
96 / / backwards c o m p u t a t i o n us ing edge e
97 φ := backwards(l, l′, e, φ) ;
98 / / i n t e r s e c t i o n with c l o c k i n v a r i a n t o f l
99 φ := and(φ, Invc( l )) ;

100 return φ ;
101 }

Before using the backwards computation algorithm as explained in Subsection
3.3.1, the algorithm limits the allowed clock valuations according to the clock
invariants of location l′. To this end, the intersection of the DBMs representing both
zones is build. Subsequently, backwards computation is employed as defined in
Definition 3.3.4 based on edge e. The result is the set of clock valuations that enables
the clock guard of edge e, whose application leads to a valuation, which respects
the clock invariant of l′ and is included in the successor’s zone. Finally, this set is
intersected with the clock invariants of location l in order to include only valuations
respecting the predecessor’s invariants.

For illustration, we again extend the above example.

Example 3.4.3. Consider the same situation as in the previous example. The found
error specification includes no specified clock constraints and, in consequence,
the successor zone includes all valuations. The extracted successor locations are
(l3, l2) and the predecessor locations are (l2, l2) with the clock constraint c1 > 1024
restricting the application of the taken edge. Applying the procedure wpClocks
results in the following computation. The intersection with the successor’s clock
invariant does not alter the set of valuations, as no such invariant exists. Then,
the past is computed, which still includes all clock valuations. The application of
f ree and reset is also without any effect, since no clocks are reset. Afterwards, the
zone is restricted to only include clock valuations respecting the predecessor’s clock
invariant and the clock constraint of the edge (c1 > 1024). Thus, after the application
of procedure wpClocks, the resulting set of clock valuations can be specified by
constraint c1 > 1024.

In summary, both procedures computing the sets of predecessor valuations are
designed to include the maximal sets of valuations that enable edge e while reaching
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a successor valuation as specified by φ′ and ψ′. Thus, they are extremely important,
both related to efficiency and also termination of our approach. They are likewise
used in the blockCTIs procedure whenever the contained query is satisfiable and a
predecessor of a CTI needs to be computed. In contrast to the above case using the
error state specifications, no search of a successor state is necessary here, since it is
known in form of an abstract CTI that already includes a zone and integer constraint.
These informations are, thus, exploited to compute the predecessor’s constraint and
zone. Listing 3.5 shows the changed pseudocode.

Listing 3.5: Algorithm: Excluding states from the frames in IC3 for timed automata

102 blockCTIs ( Set Q) {
103 while (Q6= ∅ ) {
104 / / l e t abstract CTI sa =( l ’ , φ′ , ψ′ )
105 get ( sa ,n ) ∈ Q with s m a l l e s t n ;
106 i f (‖Fn−1‖ ∧ ¬‖sa‖ ∧ ‖T‖ ∧ ‖sa‖′ u n s a t i s f i a b l e )
107 Q : = Q\ { ( sa ,n ) } ;
108 generalizeAndBlock ( sa , n ) ;
109 e lse i f (n−1==0)
110 / / f ound c o u n t e r e x a m p l e
111 return f a l s e ;
112 e lse
113 / / e x t r a c t from s a t i s f y i n g i n t e r p r e t a t i o n
114 concre te predecessor s t a t e t =( l , vi , vc ) ;
115 / / e x t r a c t from s a t i s f y i n g i n t e r p r e t a t i o n
116 taken edge e ;
117 i n t e g e r c o n s t r a i n t ψ = wpIntegers ( l , e , l ’ , ψ′ ) ;
118 c lock c o n s t r a i n t φ = wpClocks ( l , e , l ’ , φ′ ) ;
119 combine i n t o abstract CTI ta =( l , φ , ψ ) ;
120 Q : = Q ∪ { ( ta ,n−1 ) } ;
121 }
122 return true ;
123 }

As can be seen, the same mechanisms are employed in blockCTIs in order to
compute the predecessor state. With the successor state being an abstract CTI, its
zone and integer constraints must have been previously computed and we can
simply reuse them. This is the only difference to the above case located in the
procedure strengthenClauses, in which we previously had to make an effort to find
an abstract successor state.

The computation and usage of our abstract states serves as means able to ensure
termination of the algorithm. However, there exist models for which even this
concept can not guarantee it. We will see reasons for this in the following subsection,
where we analyze and prove termination under certain restrictions to the models.
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3.4.1 Termination

In Chapter 2, we illustrated the termination guarantee for the original IC3 algorithm.
Given that the model is finite, there exist only finitely many states. Since the frames
are sets of states and are required to be distinct, there can only be a finite number
of frames. The rest of the argumentation is about each procedure call terminating
eventually and about progress, meaning at least one of the frames is refined after
the blocking phase.

In the case of our modified IC3 algorithm for timed automata using Zones, a
similar reasoning can be applied, but encounters a couple of problems. The most
obvious challenge concerning the infinite state transition system of a timed automata
is solved using the Zone abstraction. Each abstract CTI includes a zone instead
of a single, concrete clock valuation. When using backwards computation, only
finitely many such zones can occur for a given timed automaton as they are unions
of regions [Bou09]. Thus, the CTIs in our algorithm can only include one of these
finitely many zones. In addition, they can only contain one of finitely many locations.
In combination with a finite number of sets of integer valuations encoded in the
integer constraints, our CTIs are of finite quantity. The generalization procedure
taking place after CTI computation can not destroy finiteness, since it can only delete
some of the literals. The result would be a set of locations with an enlarged zone
and enlarged set of integer constraints. Hence, the same argumentation holds true
as for the original algorithm, stating that there can only be finitely many different
frames and, thus, the algorithm will terminate eventually.

Theorem 3.4.1. Let a network of timed automata NTA = 〈A1, ..., An〉 be given as in Def.
2.1.11. If the set of backwards reachable valuations for the integer variables IV is finite, then
the presented algorithm IC3 with Zones terminates.

However, the presumption that there exists only a finite number of sets of integer
valuations in a CTI may be incorrect. This difficulty comes from integer assignments
iv := iv + n for some iv ∈ IV and n ∈ Z \ {0}. Whenever a cycle is present in the
timed automaton that is able to repeatedly increase or decrease the valuation of an
integer variable, there might exist an unbounded number of CTIs. It might occur
that these are all ruled out by generalization and the algorithm terminates, but it
can not be guaranteed. Thus, the presence of such cycles destroys the guarantee of
termination of our modified IC3 algorithm. Contrary, the absence of such constructs
inducing infinitely many sets of integer valuations guarantees termination. The
following theorem formalizes the above illustration.

Theorem 3.4.2. In general, the verification of safety properties for networks of timed
automata as presented in this thesis is undecidable.

This theorem has been proven for a closely related formalism in 2004 [Bou+04],
which relies on updates on the clocks of a timed automaton. It involves a trivial re-
duction of the halting problem for deterministic 2-counter machines. Our formalism
allows a similar reduction, which does not rely on updates on clocks, but instead



3.4. ALGORITHM 67

relies on our integer variables being unbounded and assignments being able to in-
crement and decrement these values. We explain the details below. The reachability
problem for deterministic 2-counter machines, which was shown to be undecidable
in 1967 [Min67], can trivially be reduced to a safety property verification for networks
of timed automata using our formalism. A 2-counter machine (Q, qo,4) consists of
a finite set of states Q with initial state q0 ∈ Q, where 4 ⊆ Q×Op′ ×Q and Op′ =
{inc(c1), inc(c2), testAndJump(c1), testAndJump(c2), condDec(c1), condDec(c2)} for
two counters c1, c2 that can be incremented, tested for zero or decremented in
dependence of the current value. These operations can be described as

• inc(ci): Increment counter ci,

• testAndJump(ci): Require the value of counter ci to be zero,

• condDec(ci): Require the value of counter ci to be strictly larger than zero and
decrement it.

Note, that the latter two are sometimes combined into a single instruction with two
distinct target states in dependence whether the counter can be decremented or not.
The reachability problem asks whether an accepting state q f ∈ Q is reachable in a
finite number of steps starting from a given initial state with predetermined counter
values. The reduction to a timed automaton is straight-forward.

Given any 2-counter machine M = (Q, qo,4), we build a timed automaton
A = (L, l0, C, IV , Σ, Invc, Invi, E) and safety property ρ that is not invariant if and
only if q f is reachable in M. The two counters are mapped to two integer variables
with respective initial values, i.e., IV = {c1, c2}. There does not exist a clock and
the locations represent the states of the 2-counter machine, meaning C = ∅ and
L = Q with l0 = q0. No synchronization takes place and no invariants are given
on the locations, i.e., Σ = ∅, ∀l ∈ L : Invc(l) = true and ∀l ∈ L : Invi(l) = true.
Furthermore, the instructions that modify the counter values are mapped to updates
on the integer variables on the edges between the locations. Formally, for every
(q1, op, q2) ∈ 4, there exists an edge e ∈ E. If op equals

• inc(ci): e = (q1
ε, true, true, ci := ci + 1, ∅−−−−−−−−−−−−−→ q2),

• testAndJump(ci): e = (q1
ε, true, ci = 0, true, ∅−−−−−−−−−−→ q2),

• condDec(ci): e = (q1
ε, true, ci > 0, ci := ci − 1, ∅−−−−−−−−−−−−−−−→ q2).

The safety property specifies the location representing the accepting state q f to be
an error state, formally ρ := G¬((q f ), true, true). Checking the reachability of the
accepting state in the 2-counter machine is, thus, reduced to checking the violation
of the safety property. Trivially, any path of configurations in the 2-counter machine
exists as well in the timed automaton and, hence, the reachability problem could be
solved if the safety property could be checked for violation. As a consequence, our
problem of checking safety properties for timed automata as defined in Chapter 2
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is undecidable in general. Note, that the undecidability is due to the unbounded
usage of integer variables and assignments.

3.5 Evaluation

The presented approach verifies safety properties for networks of timed automata.
One of its design goals is efficiency regarding memory consumption and runtime.
The IC3 algorithm underlying our approach is one of the key components to achieve
this goal. In addition, the abstraction of concrete clock valuations into zones is
equally important, as it efficiently handles the infinity of the clock valuation space.
In order to evaluate whether the design goal is met in practice, we implemented
the presented technique using Java. Several standard models are employed as
benchmarks in order to compare our method with the state of the art tool Uppaal
and the previous approach by Kindermann [KJN12b]. These experiments provide
a basis to estimate the scalability of the presented approach. The results are very
promising, in particular regarding the scalability, but also point out some drawbacks.

In the following, we present the models employed in our experiments followed by
some details about our implementation. Afterwards, the experiments are presented
and discussed.

3.5.1 Benchmark Models

We employed several standard models from literature, as well as a smaller one
that we developed ourselves considering the context of Industry 4.0. In total, the
following benchmarks are subsequently presented and afterwards employed in
numerous experiments.

• Models obtained from Uppaal website [UPP]

– Fischer Mutual Exclusion algorithm

– Carrier Sense Multiple Access with Collision Detection protocol

– FDDI token ring protocol

• FDDI token ring protocol with counting variable

• Models obtained from Bruttomesso et al. [Bru+12]

– Fischer Mutual Exclusion algorithm

– Lamport Mutual Exclusion algorithm

– Shavit-Lynch Mutual Exclusion algorithm

• A shrunk model of the Lamport Mutual Exclusion algorithm

• Model of the Shavit-Lynch Mutual Exclusion algorithm from PAT [PAT]
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Fischer Mutual Exclusion Algorithm (Uppaal) One of the most important models
for estimating the scalability of our technique is the network of timed automata,
which we have shown previously in the examples. It models the Fischer Mutual
Exclusion algorithm [Lam87] that ensures mutually exclusive access to a critical section
for several processes. Given its dependency on time, it is a perfect fit to be modeled
as a network of timed automata. There exist several models of the Fischer algorithm,
most of which only differ in small details. The model we used in the examples and
our experiments is taken from Uppaal, found at their website [UPP]. We denote
it as Fischer_U_x, where x is the number of timed automata. Mutual exclusion is
handled by each process writing its unique identifier to a shared variable when
requesting access to the critical section. After waiting a certain amount of time, the
process is allowed to proceed only if the shared variable still matches its identifier.
To this end, each process is modeled as a timed automaton, each having its own
unique identifier.

Figure 3.1 shows the model for two processes. The first process has identifier 1,
while the second one has identifier 2. In consequence, the edges between locations l1
and l2, as well as the ones between l2 and l3 are different. Each process has to write
its own identifier to the shared variable and accordingly check for its own identifier.
All other parts of the model are equal for every timed automaton. The critical section
is modeled as location l3 and the integer variable cnt counts the number of processes
currently in the critical section.

The safety property of interest asks whether at most one of the processes is in the
critical section at every point in time. Using the integer variable cnt mentioned above,
we can express this safety property as ρ := G¬((∗, ∗), true, cnt > 1), abbreviated as
ρ := G¬(cnt > 1).

With the Fischer algorithm being independent of the number of processes, it
provides a perfect opportunity for scalability experiments. To this end, the number of
processes, that is, timed automata in the network, is increased while the performance
is examined.

Furthermore, modifications to the used time constants allow inspections to
performance changes caused by time constants. These options are also present in
the other models used within our experiments.

Carrier Sense Multiple Access with Collision Detection Protocol We adopted a
model of the Carrier Sense Multiple Access with Collision Detection Protocol (CSMA/CD)
also found at the website mentioned above [UPP]. We denote it as CSMA/CD_x,
where x is the number of timed automata modeling stations. It models a broadcasting
communication protocol in which several stations are trying to send data over a bus.
In this scenario, only one station may send data at a time as otherwise two or more
transmissions would be simultaneous and collide, s.t. no data can be received by a
station listening to the bus. In this protocol, a station, willing to broadcast data, first
senses whether the bus is busy. If so, it waits a random amount of time and then
starts over. Otherwise, it starts sending data while listening to the bus for collisions,
which may occur due to a propagation delay of the signal, denoting the time until it
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Figure 3.4: Network of three timed automata modeling the CSMA/CD protocol with
a bus (left timed automaton) and two communicating stations (other two automata)

can be sensed by every station. In case a collision occurs, all stations stop sending
and start over again. The model again denotes a mutual exclusion problem, where
only one sender should be sending after the propagation delay time has passed.

Figure 3.4 shows the model for two stations. This model does not require a
shared variable, but makes heavy use of synchronization channels. In particular,
all stations are informed of a collision by the bus consecutively firing synchronized
edges (using cd1!, cd2!, . . . ), one for each station.

The strict sequence of edges fired after a collision reduces the reachable portion
of the state space. Our experiments show that the ratio of this reachable portion
compared to the entire state space is an interesting characteristic with a wide
influence to the utility of our algorithm. The safety property used in this CSMA/CD
model specifies that the second station (automaton A3) is not allowed to transmit
(modeled as location l2), when the first station (automaton A2) is transmitting
since more than 52 time units (the propagation delay). It is formally described as
ρ := G¬((∗, l2, l2), c2 ≥ 52), where c2 denotes clock c in automaton A2.

l5

l0

l3

l1

l2

c:=0
rt2?

c≤0
tt2!

c≤0
tt1!

c:=0
rt1?

c≤0

c≤0

l0

l3 l1

l2

c1:=0,c2:=0
tt1?

c1≤20

l4

c1≥20 ˄ c3<120 

c3≤120

rt1!

c1≥20 ˄ c3≥120 
rt1!

c1:=0,c3:=0
tt1?

c1≤20

c2≤120

rt1!

rt1!

c1≥20 ˄ c2<120 

c1≥20 ˄ c2≥120 

l5

l0

l3 l1

l2

c1:=0,c2:=0
tt2?

c1≤20

l4

c1≥20 ˄ c3<120  

c3≤120

rt2!

c1≥20 ˄ c3≥120 
rt2!

c1:=0,c3:=0
tt2?

c1≤20

c2≤120

rt2!

rt2!

c1≥20 ˄ c2<120 

c1≥20 ˄ c2≥120 

Figure 3.5: Network of three timed automata modeling the FDDI Token ring protocol
with a model of the ring (left timed automaton) and two communicating stations
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FDDI Token Ring Protocol The last benchmark adopted from the above men-
tioned Uppaal website [UPP] is the Token Ring FDDI Protocol. We denote it as
FDDI_x, where x is the number of timed automata modeling stations. It models a
situation in which several symmetric stations are ordered as a ring and a token is
passed between the stations along the ring. In this scenario, there exist two options
for the token passing, one is fast and the other is slow. The ring structure is modeled
as a timed automaton that determines the sequence in which the token is passed
from station to station, each modeled as an additional timed automaton. Due to the
two different passing modes, this model includes many clocks and time constants,
one of which is linearly dependent on the number of stations. Thus, the model is
specifically suitable to examine the effect of large time constants. Furthermore, the
reachable portion of the state space is an extremely small fraction of the entire state
space due to the ring structure. This characteristic allows for interesting insight in
the applicability of our technique.

Figure 3.5 shows the model for two stations. This model does not require a
shared variable, but makes use of synchronization channels to enforce the stations
only communicating in order of the ring.

The safety property specifies that the token is not at two stations at the same
time. Thus, there must not exist a reachable state in which two stations are both in
one of the following locations: l1, l2, l4, l5. Considering the mutual exclusion of only
the first two stations, this safety property is formalized as

ρ := G¬((∗, l1, l1)) ∧ ¬((∗, l1, l2)) ∧ ¬((∗, l1, l4)) ∧ ¬((∗, l1, l5))

∧¬((∗, l2, l1)) ∧ ¬((∗, l2, l2)) ∧ ¬((∗, l2, l4)) ∧ ¬((∗, l2, l5))

∧¬((∗, l4, l1)) ∧ ¬((∗, l4, l2)) ∧ ¬((∗, l4, l4)) ∧ ¬((∗, l4, l5))

∧¬((∗, l5, l1)) ∧ ¬((∗, l5, l2)) ∧ ¬((∗, l5, l4)) ∧ ¬((∗, l5, l5),

where the integer constraint and zone true are each omitted for readability.

FDDI Token Ring Protocol with Counting Variable As can be seen, this way
of specifying mutual exclusion is lengthy. Thus, we adapted the FDDI model by
addition of an integer variable cnt that counts the number of automata currently
in any of the mentioned locations. We denote it as FDDIcount_x, where x is the
number of timed automata modeling stations. Figure 3.6 shows this adapted model
for two stations. The safety property specifying mutual exclusion can, thus, be
reduced to ρ := G¬(cnt > 1). This adaptation allows for an interesting study of the
effect of an additional integer variable (with simultaneous reduction of the number
of error state specifications).

Fischer Mutual Exclusion Algorithm (Bruttomesso) Additional mutual exclusion
algorithms have been employed in our experiments. We adopted a different ver-
sion of the Fischer Mutual Exclusion algorithm as presented by Bruttomesso et al.
[Bru+12], denoted as Fischer_B_x, where x is the number of timed automata. It is
depicted in Figure 3.7.
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Figure 3.6: Adapted network of three timed automata modeling the FDDI Token ring
protocol with two stations as in Figure 3.5 that includes an additional integer variable
cnt used to count the number of stations that are in their respective transmitting
locations
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Lamport and Shavit-Lynch Mutual Exclusion Algorithm Bruttomesso’s publi-
cation also includes models formalizing two other mutual exclusion algorithms,
namely the Lamport and Shavit-Lynch algorithms. The former solely relies on
shared variables, while the latter additionally depends on timing constraints. We
adopted a model for each of these two algorithms, denoted as Lamport_B_x and
ShavitLynch_B_x, where x is the number of timed automata. They are depicted in
Figures 3.8 and 3.9.
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Figure 3.8: Network of two timed automata modeling the Lamport Mutual Exclusion
algorithm for two processes as presented by Bruttomesso et al. [Bru+12]

Shrunk Model of Lamport Mutual Exclusion Algorithm Furthermore, we con-
structed a shrunk version of the Lamport model since some of the locations are not
necessary. It is denoted as Lamport_S_x. The comparison of this shrunk version
with the original one allows us to draw conclusions about the impact of a large
number of locations in a model. The shrunk model is presented in Figure 3.10.

Shavit-Lynch Mutual Exclusion Algorithm (PAT) Additionally, we employ a ver-
sion of the Shavit-Lynch algorithm in our experiments that includes fewer locations.
The model is taken from the PAT website [PAT], denoted as ShavitLynch_P_x. It
is depicted in Figure 3.11. We augmented all these models with a counting vari-
able, s.t. the safety property specifying mutual exclusion can be formalized as
ρ := G¬(cnt > 1).

Lemgo Model The applicability of our technique in real world scenarios is checked
with an additional model. We developed it to represent a part of the Lemgo Smart
Factory [inI] of the Hochschule Ostwestfalen-Lippe [Hoc]. It is similar in terms of
size and structure to those timed automata models that are automatically learned
from existing real world systems [Mai14]. It might, thus, be suitable to estimate the
real world practicality of our approach.
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Figure 3.9: Network of two timed automata modeling the Shavit-Lynch Mutual
Exclusion algorithm for two processes as presented by Bruttomesso et al. [Bru+12]
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Figure 3.11: Network of two timed automata modeling the Shavit-Lynch Mutual
Exclusion algorithm for two processes as found on the PAT website [PAT]

Figure 3.12 shows the model that depicts the interaction between a conveyor
belt transporting bottles and a picker arm picking them up in order to store them
elsewhere. The model is interesting as it can be used to show the effects of different
time constants, as we will see in subsequent chapters.

A safety property of interest in this scenario requires the picking arm to be
ready (location l0) for a new bottle before the conveyor belt brings the next one as
otherwise a bottle might be missed and confuse the rest of the system. Formally,
this is expressed as ρ := G¬((l0, l1), true, true).
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Figure 3.12: Network of two timed automata modeling the interaction between a
conveyor belt (right) and a picker arm (left)

Using all the above models, we conducted numerous experiments in order to
evaluate the performance and scalability of our technique. The used implementation
is presented below.



76 CHAPTER 3. TIMED AUTOMATA VERIFICATION VIA IC3 WITH ZONES

3.5.2 Implementation

We implemented the algorithm presented above. The tool is written in Java version
7. It parses models and safety properties given in extended markup language
(XML). After successful parsing, the verification of the safety property for the model
is started. The algorithm starts with the two basic queries (lines 2 and 4) and
afterwards runs its main loop (lines 7 to 15) constructing and refining the frames. It
terminates whenever a counterexample is found, the property has been verified, a
timeout occurred or the system ran out of memory. The implementation is tightly
integrated with the used SMT-solver. We employ Z3 [DB08], version 4.3.2.0, using
its API Z3 for Java [Leo12]. The experiments are performed on a pc with 3,2 GHz
(AMD Phenom II X4 955). The timeout is set to 5 hours (18000 seconds).

Most parts of the algorithm are implemented straight-forward following the
pseudo code given above. All parts concerning the usage and modification of zones
entirely rely on the DBM data structure, i.e., they are stored and altered as matrices
of clock differences. Whenever a zone needs to be encoded within an SMT-formula,
the clock differences stored in the DBM cells are extracted and encoded such that
those entries that do not contain information, e.g., clocks being unrestricted, are not
used.

The implementation of the generalization procedure is similar to the one in
the reference implementation of IC3. It sorts the literals according to a heuristic
and checks whether the deletion of each literal changes the satisfiability of the
query. To this end, it makes heavy use of the UNSAT-core: In case the query is still
unsatisfiable after the deletion of a literal, the UNSAT-core denotes all literals that
are used to prove unsatisfiability. Thus, all other literals can be discarded. This
mechanism efficiently reduces the number of literals. A second element accountable
for the efficiency of the generalization procedure is the order in which the literals
are tried for deletion. For distinct orders the generalization procedure might result
in very different clauses excluding varying states. Hence, in the successive cycles of
the IC3 main loop, different CTIs may be found and the entire runs of IC3 might
very much diverse. As a consequence, the runtime and memory consumption of
a verification run are tremendously depending on the generalization procedure in
general and its literal ordering in particular.

We have examined various heuristics for the ordering of the literals in the
following subsection.

3.5.3 Heuristics for ordering Literals

In the IC3 reference implementation for hardware verification, the heuristic arranges
the literals according to their history of use. Literals rarely occurring within the
blocking clauses are preferred for deletion. This strategy seems to work fine in
hardware verification, especially considering that few additional information is
available that distinguishes these literals from one another.

For verification of timed automata, however, additional information is available,
especially in the form of different types of literals. Our approach uses three distinct
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Fischer_U_15 (switched) CSMA/CD_15 FDDI_15
Loc<Int<Clock 642,0 408 544
Loc<Clock<Int 481,3 408 575
Int<Loc<Clock 8546,7 405 514
Int<Clock<Loc 1743,0 323 836
Clock<Int<Loc 1742,6 321 376
Clock<Loc<Int 737,1 322 455

reference Heuristics 1780,0 344 501
random Order Range 602-2674 185-303 43-OOM

Table 3.1: Runtime (seconds) of benchmarks for different heuristics ordering the
literals for Generalization, including the heuristic Loc < Clock < Int that is used
below

types of literals, namely location, clock and integer literals. Treating these categories
differently, e.g., preferring location over clock literals for deletion, gives rise to
six different orders. Additionally, the literals within each category can be sorted
differently, e.g., using the heuristic from the reference implementation that prefers
literals that are often used within blocking clauses.

We have explored these heuristics for some of the presented models. The results
are depicted in Table 3.1.

It shows the runtime of our approach for some of the example models under
different heuristics. The first column denotes the ordering of the heuristic, where
Loc < Int < Clock means that first location literals are tried for removal, then
integer literals and at the end clock literals. The penultimate heuristic is the standard
one from the IC3 reference implementation for hardware verification, ordering the
literals according to their history of use as explained above. The last row shows the
interval of runtimes for 10 runs with random literal ordering. The models are the
Fischer, CSMA/CD and FDDI token ring models taken from the Uppaal website
consisting of 15 timed automata each.

As can clearly be seen, none of the above heuristics is superior for all models.
There might exist some characteristics, e.g., number of clocks or synchronized
edges, in the model that might be exploited to indicate the preference of some of
the heuristics. These might be extracted via syntactic analysis and used to decide
which heuristic should be employed. In our evaluation, however, we stick to a fixed
heuristic that works well for all the examined models, namely Loc < Clock < Int
(LCI). Thus, we leave the search for better heuristics, possibly in dependence of the
models characteristic, as future work.

The results of the above experiments point out the tremendous impact of various
heuristics for the performance of our approach. A badly chosen variable ordering is
able to prevent a successful verification since the approach becomes inefficient and
runs out of memory, as can be seen for the FDDI model with random ordering. But
even non-randomly chosen orderings can differ in efficiency very much, as can be
seen for the heuristics Loc < Clock < Int and Int < Loc < Clock when verifying the
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Fischer model. The verification using the latter heuristic is almost 18 times slower.
Thus, the choice, which heuristic should be used, is of enormous importance.

In the following, we employ the Loc < Clock < Int heuristic within the evaluation
section, abbreviated as LCI. Note, however, that we also performed all experiments
with the Clock < Loc < Int heuristic (CLI) as can be seen in the resulting tables
in the Appendix. The difference between both heuristics regarding scalability was
marginal and, thus, only the LCI heuristic is shown in this section.

3.5.4 Experiments

We conducted experiments for the benchmark models mentioned above. Aside from
the Lemgo model, all of them can be scaled up to an arbitrary large network of
timed automata. We use this characteristic in order to check the scalability of our
approach. The runtime and memory consumption are taken during each of the
experiments. The results of all experiments are given in Tables A.1 to A.10 in the
Appendix. They are promising and speak in favor of the practicality of our method.

In the following, however, we will focus on analyzing specific aspects of the
performance of our approach. Note, that all figures display the entire performance,
i.e., if a runtime or memory consumption is not displayed, then the verification ran
out of time or memory, except for the model FDDIcount.

General Scalability Experiments The general scalability of our approach can be
summarized when considering Figures 3.13, 3.14 and 3.15. They show the perfor-
mance of our approach in terms of runtime and memory consumption compared
to the state of the art tool Uppaal [Beh+11], version 4.0.13, with default parameters.
Clearly, Uppaal is superior for small models. For example, consider the experiments
using the Fischer_U model with up to ten timed automata. The verification time
for these models is significantly smaller using the Uppaal tool compared to our
approach. This advantage is due to Uppaal’s forward exploration algorithm in
combination with smart data structures and optimizations. Our approach, however,
includes the overhead of creating and using SMT-formulae and is, thus, not competi-
tive for small models. When verifying safety properties for large models, however,
this downside is reduced and our technique shows promising results.

Uppaal needs enormous amounts of memory when verifying models with a
large set of reachable states. This demand is observable in Figures 3.13 and 3.14,
where the memory consumption of Uppaal increases rapidly for larger models until
running out of memory for models with 14 and 16 timed automata, respectively. Our
algorithm, however, is capable of verifying models with up to 50 timed automata,
respectively. In addition to this capabilities of verifying large models that Uppaal
can’t, it is faster for some of the instances, e.g., the Fischer_U models with twelve
and thirteen automata. It has, thus, proven to be competitive for some models with
a large set of reachable states as Uppaal has difficulties with these models.

When considering Figure 3.15, we can clarify the performance for large models
as the most basic distinction of our approach with Uppaal. While our technique
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Figure 3.13: Results of the experiments using the Fischer_U model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
state of the art tool Uppaal for models with different number of timed automata in
the NTA
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Figure 3.14: Results of the experiments using the CSMA/CD model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
state of the art tool Uppaal for models with different number of timed automata in
the NTA
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Figure 3.15: Results of the experiments using the FDDI model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
state of the art tool Uppaal for models with different number of timed automata

always examines the entire state space encoded via the used SMT-formulae, Uppaal
only examines the reachable states via (forward) exploration. Thus, it has a huge
advantage, if the ratio of reachable states to the entire number of states is small, as
is the case in the FDDI model. Due to the ring structure, the order in which the
automata’s edges may be taken is very strict, reducing the number of reachable
states. As an example, consider the FDDI model with 20 stations. During the entire
verification of the safety property Uppaal explores only 8061 states, while the entire
state space includes 4 ∗ 620 possible location combinations, not taking into account
the additional clock space. It has, thus, an enormous advantage over our approach
exactly for those models with a small number of reachable state, where the entire
state space is large.

The two distinct ways of exploring the model’s states result in different suitabil-
ities of the approaches for different models. In summary, we would recommend
using Uppaal for smaller models and those with a small set of reachable states
(hard to estimate upfront). Nevertheless, this characteristic might be guessed by
means of the structure of the model, e.g., when the model allows only very specific
sequences of edges being taken. On the other hand, we recommend the approach
presented in this chapter to be used for larger models. It has shown to scale well
and is competitive to Uppaal for some of the benchmark models. We emphasize the
fact that it was capable of verifying safety properties for models three times larger
than Uppaal was capable of for the Fischer_U model.

Next, we examine the impact of integer variables on our technique.
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Integer Variable Experiments Scaling up the number of integer variables may
have various effects depending on their usage. It may entirely change the state space,
or may only be of little effect. Thus, we can only exemplify possible impacts of
integer variables here. To this end, we will examine the change introduced by the
addition of the integer variable cnt in the FDDI model.

Our adapted FDDI model includes an additional integer variable cnt that counts
the number of automata in transmitting locations. Six out of eight edges are extended
by an integer update in each of the automata modeling a station. The introduction
of this additional variable has an interesting effect. It simplifies the found inductive
strengthening for every number of automata to include only two clauses. The
first one is the safety property ¬(int0 > 1) with int0 encoding the integer variable
cnt. The second one ¬(¬l1

0 ∧ (int0 > 0)) specifies (via the least significant bit of
the location identifiers) that no location of the first automaton (the ring structure)
with an even identifier (l0, l2, . . . ) is reachable when cnt > 0. Since these are the
only locations with outgoing edges incrementing cnt, the counter can not be larger
than 1. The conjunction of these two clauses is inductive. This verification heavily
profits from the SMT-encoding of locations via boolean variables, as well as the ring
structure of the model including two locations for each station. It allows a found CTI
to be generalized, s.t. it reasons about all locations of A1 with even location identifier.
Figure 3.16 shows the impact on the runtime, which is extremely improved, actually
able to outperform Uppaal.
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Figure 3.16: Results of the experiments using the FDDIcount model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
state of the art tool Uppaal for models with different number of timed automata in
the NTA

The positive impact of the location encoding in combination with the general-
ization procedure becomes apparent by this example. Yet, the presented encoding
introduces additional interesting effects.
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Location Identifier Experiments With our SMT-encoding relying on boolean vari-
ables to encode the identifiers of locations, we were interested whether the actual
assignment of identifiers to locations affects the performance of our approach. To this
end, we examined the runtimes for the verification of the mutual exclusion property
for the Fischer_U models as above, where each location li (i ∈ {0, 1, 2, 3}) has identi-
fier i. Additionally, we performed experiments with a model Fischer_U(switched),
where location l0 and l2 switched identifiers, meaning l0 has identifier 2 and l2 has
identifier 0. The results are shown in Figure 3.17.
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Figure 3.17: Results of the experiments using the Fischer_U models (Figure 3.1) with
distinct assignment of identifiers to the locations: The verification has been executed
using the assignment of location identifiers as used before, where li (i ∈ {0, 1, 2, 3})
is assigned identifier i, and also with switched assignments of identifiers for l0 and
l2, s.t. l0 is assigned identifier 2 and l2 is assigned 0

Clearly, the assignment of identifiers is of importance, as the runs with switched
identifiers exhibit worse performance. Comparing and analyzing these runs did not
result in a definite answer to why the runs differ that much.

In these experiments, switching the identifiers reduced the number of cycles of the
main loop with fewer CTIs found. Thus, the loss of performance must have different
reasons. We noticed that the instances with switched identifiers show a significantly
larger number of SMT-queries. This increase might be due to the generalization
procedure needing more attempts to discard literals, or due to frames and CTIs
being different resulting in the procedures blockCTIs and strengthenClauses issuing
more queries.

In general, it is not feasible to chose the assignment of identifiers upfront such
that the performance is optimized. This drawback of the location encoding via
boolean variables is opposed to the wider generalization capabilities as presented
before. Thus, the encoding can be summarized as ambivalent.

Below, we will examine the effects of the number of locations in a model.
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Location Experiments Our encoding introduces many variables by relying on
the locations being encoded via boolean variables. Thus, more literals have to
be tried to be discarded during generalization, leading to diverse effects. On the
one hand, the increased number of variables introduces additional overhead in the
SMT-formulae and in the generalization procedure. However, as seen above it can
be extremely beneficial in reasoning about several locations in a single automaton
during generalization. In the following, we examine models with additional locations
to get a more general view on the impact of locations. To this end, we compare
the Fischer_B model with the Fischer_U model since they both model the same
algorithm. They use the same number of clocks and integer variables, which are
used in the same way, only differing in smaller details, e.g., the invariants. The most
important distinction, however, is that the larger model includes five additional
location, which is more than twice as much as the smaller model.

Figure 3.18(a) shows the comparison of both models for up to 15 automata in
the NTA. Note, that the safety property could be proved for Fischer_U models up
to 50 automata as shown above. In order to relate the performance change of our
algorithm for the larger model Fischer_B, Figure 3.18(b) shows the comparison with
Uppaal’s performance.
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Figure 3.18: Results of the experiments comparing the performance of the verifica-
tions using the two Fischer models: IC3 with Zones performs significantly worse for
the Fischer_B model

The experiments show that our approach performs significantly worse in the
presence of many locations. The decline is more intense than the one observed for
Uppaal, possibly due to our location encoding being based on boolean variables,
which introduces overhead if the number of locations is large. The deterioration
might, however, also be due to an unsuitable location identifier assignment as seen
in the previous paragraph or due to the general size of the model.

We extend this insight with the comparison of runtimes for the verification
experiments using the Lamport_B and Lamport_S models, which only differ by the
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number of locations. The runtimes of our approach for both models are compared
in Figure 3.19, as well as the runtimes of Uppaal for both models.
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Figure 3.19: Results of the experiments comparing the performance of the verifica-
tions using the two Lamport models: IC3 with Zones performs significantly better for
the shrunk Lamport model

Clearly, our presented approach reacts worse to the additional locations in the
larger model. The increase of runtime is worse than the one for Uppaal. The
conclusion drawn before is, thus, supported by this experiment. Our algorithm
handles models with many locations (in the single automata) worse than Uppaal.
Experiments with the two distinct Shavit Lynch models reach the same conclusion
(see Tables A.7 and A.8 in the Appendix).

We checked whether the bad scalability in terms of locations is caused by the
location encoding via boolean variables. To this end, we replaced this encoding
via several boolean variables with an alternative encoding of the locations via a
single integer variable per automaton. The resulting performance was better, but
the increase was not as significant as expected. However, the loss of the ability
to generalize the locations within a single automaton (as possible with boolean
variables) led to a significantly worsened performance with the FDDIcount model.
In summary, the usage of an adapted encoding is possible and might even yield a
better performance for some models, but we recommend the usage of the encoding
presented in this chapter due to the improved generalization ability.

In the following, we compare our approach with the previous attempt to utilize
IC3 for timed automata verification in order to point out the advancement of
our approach. We compare it with Kindermann’s IC3 approach using the region
abstraction [KJN12b]. For a fair comparison regarding the used programming
language, SMT-solver, encoding and heuristic, we reimplemented his approach.
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Used Constant IC3Regions(LCI) IC3 with Zones(LCI)

Runtime (s) Memory (MB) Runtime (s) Memory (MB)
1 1186,2 669,6 480,2 264,4
4 2174,3 740,2 483,2 262,6

16 2179,7 741,3 482,6 263,9
64 2860,0 779,7 481,5 263,1
256 2628,4 742,3 483,0 263,7

1024 2860,5 778,3 481,9 264,6

Table 3.2: Scalability experiments with distinct time constants in the
Fischer_U_15(switched) model with 15 processes

Experiments with the used Abstraction The employed region abstraction renders
Kindermann’s approach non-practical due to the enormous number the regions. This
insignificance of the region abstraction for practical purposes has been explained in
the previous chapter. In particular, its exponential growth in dependence on the size
of time constants is a crucial argument.

Table 3.2 illustrates this significant drawback. The safety property is verified for
Fischer_U(switched) models with 15 processes and different time constants. This
experiment perfectly shows the lack of the region-based technique to cope with large
constants, while our approach is unaffected.

For illustration of this advantage, we present the runtimes of Kindermann’s
approach for the Fischer_U(switched), CSMA/CD and FDDI model in Figures 3.20,
3.21 and 3.22. These experiments clearly show the improvement accomplished by
using the zone abstraction.
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Figure 3.20: Results of the experiments using the Fischer_U(switched) model: Run-
time and memory consumption of our presented approach IC3 with Zones are
compared with the previous approach using the region abstraction for models with
different number of timed automata in the NTA
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Figure 3.21: Results of the experiments using the CSMA/CD model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
the previous approach using the region abstraction for models with different number
of timed automata in the NTA
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Figure 3.22: Results of the experiments using the FDDI model: Runtime and
memory consumption of our presented approach IC3 with Zones are compared with
the previous approach using the region abstraction for models with different number
of timed automata in the NTA
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In order to test the practicality one last time, we verified the mentioned safety
property for the Lemgo model presented above. Table 3.3 shows the runtime and
memory of our approach when verifying the real world example from Lemgo. It
is apparent, that the performance is sufficient and the presented approach is of
practical value.

IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal

Runtime Memory Runtime Memory Runtime Memory

Lemgo model 0,7 79,1 0,7 75,2 0,1 35,1

Table 3.3: Experiments using our Lemgo model (Figure 3.12): The runtimes (seconds)
and memory consumption (MB) are depicted for our approach IC3 with Zones with
two distinct heuristics for variable ordering (LCI and CLI), as well as for the tool
Uppaal

3.5.5 Inductive Strengthening Experiments

In addition to the verification results that are "There exists a counterexample trace,
i.e., the property is not invariant" or "The property is invariant", our technique yields
an extra outcome in the latter case. It computes an inductive strengthening of the
safety property, which is a formula encoding an inductive set of states that all satisfy
the safety property. Due to its inductiveness, it trivially includes all reachable states
(which means it is an overapproximation). It can, thus, be used as an easy means
to validate a successful verification. To this end, the three properties of inductive
strengthenings (Definition 2.4.1) have to be checked. This check again employs
SMT-solving and usually significantly outperforms a complete re-verification. As a
result, the additional outcome in form of an inductive strengthening can be of huge
importance.

For illustration, consider the following scenario that involves two parties. On the
one hand, there exists a client that wants to verify a safety property for a specific
model. However, his resources in form of time and memory are usually restricted,
s.t. he cannot execute the verification himself. On the other hand, there exists a
provider, e.g., a computing center, that possesses the necessary resources and is,
thus, capable of executing the desired verification. The important aspect in such
scenarios is the question whether the provider is trustworthy and the client can trust
the result of the provider. At this point a certificate, here the inductive strengthening,
can be employed. To this end, the provider ships the certificate to the client. Since
the validation of the certificate is by far easier than the entire verification, the client
is able to validate it using his limited resources. If the shipped formula is indeed an
inductive strengthening of the desired safety property, the client can be sure that
the safety property is invariant. Such approaches are called proof-carrying and are
widely employed in several domains [Nec02], [DKP09].

We have performed a validation of the inductive strengthenings found during
our experiments in the previous chapter. The benefit of validation compared to
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verification is obvious when considering the runtimes in Tables A.11 to A.21 with
Tables A.1 to A.10. As can be seen, most inductive strengthenings found in our
experiments can be validated within seconds. The speed up in comparison with an
entire verification run is significantly better, the larger the instance. In particular,
there exist smaller instances, where almost no speed up was measurable. In contrast,
in some larger instances the required time for validation was as small as roughly
0,02% of the time required for verification. With its small size (max. 2 MB in our
experiments) the inductive strengthenings computed by our technique are perfectly
suitable to be used in certifying scenarios.

In addition, they are of value in other scenarios, where we speed up the verifi-
cation of a reconfigured model or reason about an entire family of models. These
approaches are presented in the subsequent chapters.

3.6 Summary

In summary, we have presented an approach for the verification of safety properties
for networks of timed automata. To this end, we have developed a concept that
combines the successful algorithm IC3 with the Zone abstraction to employ the
runtime and memory efficiency of it for the verification of timed systems.

We have given an SMT-encoding that is designed with IC3’s generalization proce-
dure in mind. Using backwards computation, we have shown how to incorporate the
Zone abstraction into the algorithm. The necessary modifications are only punctual
and, thus, allow the usage of most of the optimizations proposed for IC3 so far and
in the future.

We have implemented the concept in Java and evaluated its strengths and
weaknesses in numerous experiments.

The presented technique scales well and shows promising results. It is com-
petitive to state-of-the-art tools in many instances. However, its weakness is the
dependence on the size of the entire state space. In contrast, other tools only depend
on the size of the reachable portion of the state space.

Taking into account the additional outcome for a successful verification in form
of an inductive strengthening of the safety property, we conclude that the presented
technique is definitely of value (for example in proof-carrying approaches) and yields
promising results. This additional outcome is fundamental for the two approaches
presented in the next chapters, in which it is used to speed up the verification of a
reconfigured model and to reason about a family of models.



4
Incremental Inductive Verification
of Parameterized Timed Systems

In the previous chapter, we have proposed a novel combination of two well-known
techniques that can be used to verify safety properties for timed automata. Aiming
at model-based design processes, this technique is well suited to be employed for
the formal verification of safety properties for real-time systems. With an increasing
number of systems being time-based and safety critical, there exists a large demand
for such techniques.

In some structured model-based design processes, an iterative procedure triggers
a repeated reconfiguration of the model until a final design is found. A similar
scenario is the reconfiguration at lifetime of a system, e.g., due to self-adaptation.
In these scenarios, there exists a need to verify properties for reconfigured models,
which have already been verified before for the original model.

Like other state-of-the-art techniques, the previously presented approach does
not cover these scenarios. It verifies a safety property for a fixed model. In order
to cope with a reconfigured model, it would restart the verification from scratch
like in other approaches. It is, however, likely that the reconfigured model is only
slightly changed. Thus, it is desirable and promising to reuse the results of the
previous verification. We study this reuse in the following. Chapters 4 and 5 propose
a workflow for a restricted subset of models and reconfigurations, while Chapter 6
explores the general case.

Consider the specific setting, where the system consists of an arbitrary, but fixed
number of equal processes. Though this setting is specific, it includes a large number
of situations, e.g., processes communicating via a peer to peer protocol or executing a
mutual exclusion algorithm. Using the technique from the previous chapter enables
us to verify safety properties for each such given model with a fixed number of
processes. We are, however, interested in the verification of the safety property for
every such model as the number of processes is arbitrary. For illustration consider a
system [P1|| . . . ||Pn] with a fixed number n of processes ensuring mutual exclusion.
A reconfiguration that adds an additional process requires an new verification for

89
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the reconfigured model [P1|| . . . ||Pn||Pn+1]. In contrast, it would be preferable to
verify a property φ for the system for every arbitrary number n of processes given as
parameter, formally ∀n ∈N : [P1|| . . . ||Pn] |= φ. Such a family of models specifying
an arbitrary, but fixed number of equal processes is denoted as Parameterized System.
In case timed models are employed, we speak of Parameterized Timed System [Bru+12].
The term Parameterized denotes the dependence of the number of processes from a
parameter. In general, these systems can be parameterized with many parameters,
s.t. each one of them specifies the number of processes of a certain class, e.g., a
system with two classes of processes would require two parameter. However, in
this thesis we only consider systems with a single class of processes. Note, that
the verification question even for untimed parameterized systems is undecidable
in general [AK86]. Yet, there exist numerous works concerned with decidable
fragments or semi-algorithms.

The latter is in spirit with our work presented in this chapter. We verify single
instances (with a fixed number of processes) of the parameterized timed system and
try to generalize the result for all larger instances. In particular, our approach [Ise15]
heavily relies on the reuse of inductive strengthenings as detailed below.

Reuse of Inductive Strengthenings Reconfigurations (changes) of models may
occur frequently within the design phase and thereafter, in particular in the context
of Industry 4.0, where systems are adaptive. They can generally be classified as the
addition, deletion or modification of parts of the system, respectively model. As an
example, consider the transformation of a programmable logic controller program
into timed automata [Wil99]. The addition of a new statement in the program might
result in an additional location, while the rest of the model might be analog to the
original one. On the other hand, the removal of a statement might result in the
removal of a location.

In the present chapter, we only consider specific reconfigurations and models.
As explained above, we work with parameterized timed systems that consist of
a fixed, but arbitrary number of instantiations of the same process. To this end,
our models are networks of symmetric timed automata, which are all equal (up to
certain restrictions) and the considered reconfiguration is the addition of a symmetric
automaton. The verification question of interest asks whether a safety property
is invariant for any number of symmetric automata in the network. So far, our
approach presented in Chapter 3 allows the verification of a safety property only for
a fixed model. We would, thus, need to run the approach for a model with 1 timed
automaton, 2 timed automata, 3 timed automata and so on. Trivially, this can not
be done in finite time and, in addition, the verification becomes infeasible for huge
models, e.g., with one million timed automata in the network.

As a consequence, we propose a workflow that is able to reason about all
models of a parameterized timed system, based on the verification of several of
the fixed instances. To this end, we employ the inductive strengthenings that are
computed by our algorithm IC3 with Zones presented in the previous chapter. They
are a perfect means to validate a successful verification as shown in Subsection 3.5.5.
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Figure 4.1: Overview of our incremental workflow

Considering a reconfigured model, however, their utility is not obvious. An inductive
strengthening of the safety property for the original model will usually not be a
valid inductive strengthening for the reconfigured model. The reason is most often
that it is not inductive for the new model. Yet, it may still be of value. We propose an
iterative procedure specifically designed to adapt and employ a computed inductive
strengthening in scenarios with symmetric models. Figure 4.1 conveys the idea. We
verify a model with a fixed number n of timed automata and reuse the inductive
strengthening to reason about all models with larger number of automata. If the
reasoning step can not be applied, we start over with the verification of the next
larger model with n + 1 automata. However, if the reasoning step can be applied,
we have guaranteed the safety property to be invariant in each model of the entire
parameterized timed system. In the following, we take a closer look at the inductive
strengthenings computed by our algorithm IC3 with Zones to give an intuition why
their reuse is of value in this symmetric setting.

Observations Several similarities can be found between some of the clauses in
the inductive strengthenings. As example consider the Fischer_U model from the
previous chapter for one, two and three timed automata (Fischer_U_1, Fischer_U_2
and Fischer_U_3). Table 4.1 shows the respective inductive strengthenings of the
safety property ρ := G¬(cnt > 1) computed during the experiments.

Fischer_U_1 Fischer_U_2 Fischer_U_3
(int1 ≤ 1) (int1 ≤ 1) (int1 ≤ 1)
∧(l1

0 ∨ (int1 ≤ 0))
∧(l1

1 ∨ (int1 ≤ 0))
∧((int0 6= 0) ∨ (int1 ≤ 0)) ∧((int0 6= 0) ∨ (int1 ≤ 0))
∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0)) ∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0))

∧(¬l2
0 ∨ l2

1 ∨ (int1 ≤ 0)) ∧(¬l2
0 ∨ l2

1 ∨ (int1 ≤ 0))
∧(¬l3

0 ∨ l3
1 ∨ (int1 ≤ 0))

∧(l1
0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) ∧(l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0))
∧(l2

0 ∨ (int0 6= 2) ∨ (int1 ≤ 0)) ∧(l2
0 ∨ (int0 6= 2) ∨ (int1 ≤ 0))

∧(l3
0 ∨ (int0 6= 3) ∨ (int1 ≤ 0))

∧((c1
0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c2

0 > 1024.0)) ∧((c1
0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c2

0 > 1024.0))
∧((c1

0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c3
0 > 1024.0))

∧((c2
0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c1

0 > 1024.0)) ∧((c2
0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c1

0 > 1024.0))
∧((c2

0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c3
0 > 1024.0))

∧((c3
0 ≤ 1024.0) ∨ (int0 6= 3) ∨ (c2

0 > 1024.0))
∧((c3

0 ≤ 1024.0) ∨ (int0 6= 3) ∨ (c1
0 > 1024.0))

Table 4.1: Inductive strengthenings computed for the Fischer models with distinct
number of automata during the experiments in the previous chapter
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Within each of the inductive strengthenings, there exist some clauses that are
extremely similar, meaning they have the exact same structure of literals. They differ
only by the timed automata that are referred. A perfect example are the fifth and
sixth clauses ((l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) and (l2
0 ∨ (int0 6= 2) ∨ (int1 ≤ 0))) in the

inductive strengthening found for the model Fischer_U_2 (second column). Their
structure is the same, but the former clause refers to timed automaton A1 and the
latter one refers to timed automaton A2. The reason is located in the symmetry of
the Fischer model. It results in different CTIs being equal up to symmetry including
their generalized clauses.

In addition, there exist clauses that can be related across distinct inductive
strengthenings. These clauses are written on the same row (but distinct columns)
in Table 4.1, e.g., the clause (l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) that can be found in
the inductive strengthening of the safety property for models Fischer_U_2 and
Fischer_U_3.

We propose to utilize these symmetry-related clauses in a workflow that incre-
mentally verifies the safety property for symmetric networks of timed automata with
an increasing number of automata. This workflow reuses inductive strengthenings of
the safety property found in smaller models for the verification with larger networks
of timed automata by exploiting the symmetric nature of the models.

We start with the definition of the subclass of models that can be verified using
the technique presented in this chapter. To this end, we carefully restrict the
allowed operations. We formalize the intended notion of symmetry and ensure it by
definition of our models as templates. Finally, we present the workflow including
optimizations and evaluate the practicality and performance of it.

4.1 Restrictions

The definitions in Chapter 2 allow for rather general networks of timed automata. In
order to be able to profit from symmetry when reusing inductive strengthenings, we
have to restrict the allowed models. To this end, a model is only permitted to consist
of symmetric timed automata, which all contain the same locations and edges.

All constraints and updates in these automata are exactly the same (but refer to
their respective local clocks). There are, however, specific restrictions. For simplicity
reasons, we disallow synchronization channels in this chapter. In our extension of
the formalism in Chapter 5 they are again allowed in a limited way. Furthermore,
we introduce a separation of integer variables according to their intended use.

There exist general purpose integer variables employed unaware of the fact that
several timed automata exist. Thus, they have to be used in exactly the same way
in each of the automata. In addition, there exist those variables that can be used
distinctively in each of the automata by usage of the identifiers, e.g., for signaling
purposes.

The former set of integer variables is denoted as IV 6id, as it is employed without
knowledge of the identifiers, while the latter set is denoted IV id. The entire set of
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integer variables is the union of these two disjoint sets, formally IV = IV 6id ∪ IV id
with IV 6id ∩ IV id = ∅. We exemplify both sets in the following.

As an example for identifier unaware integer variables consider the variable cnt
in the Fischer_U model (Figure 3.1). In each of the timed automata, it is used exactly
the same way, namely cnt := cnt + 1 and cnt := cnt− 1 at exactly the same edges.

As example for identifier aware integer variables consider the variable id in the
Fischer_U model (Figure 3.1). It is compared to the neutral value 0 and each timed
automaton’s identifier, e.g., 1 and 2. In addition, each automaton assigns the neutral
value 0 to the variable (see edge between l3 and l0) or assigns its own identifier to the
variable (see edge between l1 and l2). The usage of the identifier can be abbreviated
as id == pid and id := pid, where pid needs to be instantiated with each timed
automaton’s identifier.

The ability to reason about specific timed automata induces some restrictions
on the allowed usage as otherwise the symmetry could be broken. The following
definitions redefine the usage of integer variables and overwrite Definitions 2.1.4
and 2.1.5 of Chapter 2.

Definition 4.1.1. Let IV = IV 6id ∪ IV id be a set of integer variables split into
variables unaware/aware of identifiers. Mapping each integer variable iv ∈ IV to a
value vi(iv) ∈ Z is called an integer valuation vi.

Each of the two distinct sets of variables allows for different constraints.

Definition 4.1.2. Ψ 6id(IV) is the set of integer constraints ψ for identifier unaware
integer variables defined by ψ := iv ./ n|ψ1 ∧ ψ2|true with iv ∈ IV 6id, n ∈ Z,
./ ∈ {<,≤,=, 6=,≥,>} and ψ1, ψ2 ∈ Ψ 6id(IV).

Definition 4.1.3. For a given identifier pid ∈ N≥1, let Ψid(IV , pid) be the set of
parameterized integer constraints ψ(pid) := iv ./ n|ψ1 ∧ ψ2|true with iv ∈ IV id, n ∈
{0, pid}, ./ ∈ {=, 6=} and ψ1, ψ2 ∈ Ψid(IV , pid), defined for identifier aware integer
variables.

The variables aware of identifiers are only allowed to be compared with a
neutral value 0 or a specific identifier given as parameter pid, which will later be
instantiated by the identifier of each automaton. These restrictions still allow a usage
of the integer variables for signaling, e.g., checking whether no timed automaton
is interested (iv = 0), or whether an automaton is still the only one interested
(iv = pid) after a respective assignment. In addition, several comparison operators
are prohibited since they destroy symmetry. Figure 4.2 shows an example for the
usage of unbalanced comparison operators breaking symmetry.

Example 4.1.4. When considering the model in Figure 4.2 and the safety property
ρ := ¬((l2, l2), true, true), it is obvious that the model is not symmetric. Starting
with integer valuation vi

0(i) := 0 for identifier aware integer variable i, the edges in
both automata may be taken. When taking the edge in automaton A1, the edge in
automaton A2 can be taken afterwards, resulting in a violation of the safety property.
However, when first taking the edge in the second automaton, the value of i is set to
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l1 l2

i≤1
i:=1 l1 l2

i≤2
i:=2

Figure 4.2: A Network of Timed Automata that is not symmetric due to the use of
identifier aware integer variable i with an unbalanced comparison operator ≤

2 and the edge in the first automaton can not be taken. These two distinct sequences
of edges do not conform to our intended notion of symmetry. The reason is the
integer constraint using the asymmetric comparison operator ≤. Thus, we disallow
such unbalanced operators for parameterized integer constraints.

We combine both distinct types of integer constraints as follows.

Definition 4.1.5. The set of integer constraints for the entire set of integer variables is
defined as Ψ(IV , pid) = {ψ1 ∧ ψ2(pid)|ψ1 ∈ Ψ 6id(IV), ψ2(pid) ∈ Ψid(IV , pid)}.

If an integer valuation vi satisfies an integer constraint ψ ∈ Ψ(IV , pid) for an
instantiated parameter pid, we write vi |= ψ. The initial integer valuation vi

0 maps
each integer variable iv ∈ IV to its initial value vi

0(iv) with vi
0(iv) ∈ Z for iv ∈ IV 6id

and vi
0(iv) = 0 for iv ∈ IV id. Allowing an initial value other than the neutral

element zero for identifier aware integer variables would also destroy symmetry, as
a contained edge may directly be enabled in one of the automata (for example with
constraint i = pid), while not being enabled in the others.

We also have to adapt the definitions of assignments. As above, they are more
restrictive in case of identifier aware integer variables.

Definition 4.1.6. Ω 6id(IV) is the set of integer assignments ω for identifier unaware
integer variables defined by

true | iv := n | iv := iv + n | ω1; ω2

with iv ∈ IV 6id, n ∈ Z and ω1, ω2 ∈ Ω 6id(IV). The latter definition creates a se-
quence of assignments, which are applied from left to right. The resulting integer
valuation vi[ω] for integer assignment ω = ω1; ω2 is, thus, defined as (vi[ω1])[ω2].
For the non-recursive integer assignments, the resulting integer valuation vi[ω] is
defined as:

∀iv ∈ IV 6id : vi[ω](iv) =


n if ω = iv := n,

vi(iv) + n if ω = iv := iv + n,

vi(iv) else.

In contrast, identifier aware integer variables are only allowed to be assigned the
neutral value or a specific value given as parameter. It will later be instantiated to
each automaton’s identifier.
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Definition 4.1.7. For a given identifier pid ∈ N≥1, let Ωid(IV , pid) be the set of
parameterized integer assignments ω(pid) defined by

true | iv := n | ω1; ω2

with iv ∈ IV id, n ∈ {0, pid} and ω1, ω2 ∈ Ωid(IV , pid). The latter definition creates
a sequence of assignments, which are applied from left to right. The resulting
integer valuation vi[ω(pid)] for integer assignment ω(pid) = ω1; ω2 is, thus, defined
as (vi[ω1])[ω2]. For the non-recursive integer assignments, the resulting integer
valuation vi[ω(pid)] is defined as:

∀iv ∈ IV id : vi[ω(pid)](iv) =

{
n if ω(pid) = iv := n,

vi(iv) else.

Taking both adapted definitions into account, we combine the set of allowed
integer assignments as follows.

Definition 4.1.8. With both kinds of integer variables we get the following set
of integer assignments Ω(IV , pid) = {ω1; ω2(pid)|ω1 ∈ Ω 6id(IV) and ω2(pid) ∈
Ωid(IV , pid)}.

Note, that the decision where parameterized assignments ω2(pid) are placed in
the sequence (in front or behind the assignments ω1 for identifier unaware variable)
does not matter, as the sets of variables do not interfere with each other.

Using the above split of the set of integer variables, we can finally formalize the
intended notion of symmetry.

4.2 Symmetry

Our notion of symmetry relies on the permutation of the timed automata in the
model. Ip and Dill introduced this technique using permutations to define and
employ symmetry in 1996 [ID96] for finite state systems. It has, however, also been
applied for timed automata [Hen+04] resulting in a definition of symmetry close
to ours. The utilization of the symmetry, however, is very distinct, as the above
approach is concerned with symmetry reduction when verifying a single model. The
resulting effect of a permutation on the states can be defined as an operation that
swaps the locations and clock and integer values related to the swapped automata.
We show below, how the values of two timed automata are swapped.

Definition 4.2.1 (Swap). Let a network of timed automata NTA = 〈A1, ..., An〉 be
given with concrete semantics TS = (S, s0,→). A swap π = swapi,j of two timed
automata Ai and Aj (i, j ∈ {1, . . . , n}) changes the state s = ((l1, ..., ln), vc, vi) ∈ S
into the state π(s) = ((π(l1), ..., π(ln)), π(vc), π(vi)) ∈ S with

• ∀k ∈ {1, . . . , n} : π(lk) =


li i f k = j,

lj i f k = i,

lk else.
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• ∀c ∈ Cg : π(vc)(c) = vc(c).

• ∀k ∈ {1, . . . , n} : ∀c ∈ Cl
k : π(vc)(c) =


vc(ci) i f k = j,

vc(cj) i f k = i,

vc(c) else,
where ci and cj refer to the clock c in automaton Ai (c ∈ Cl

i ) and Aj (c ∈ Cl
j),

respectively.

• ∀iv ∈ IV 6id : π(vi)(iv) = vi(iv).

• ∀iv ∈ IV id : π(vi)(iv) =


i i f vi(iv) = j,

j i f vi(iv) = i,

vi(iv) else.

Note, that we also use π(m) to denote the identifier of the automaton with which m

has been swapped, formally π(m) =


i i f m = j,

j i f m = i,

m else.

The swap operation swaps the locations of the two automata. Furthermore, it
interchanges the values of their local clocks, as well as values for identifier aware
integer variables that refer to one of the two automata. The swap operation is
applicable, whenever the two swapped automata have the same set of locations and
local clocks. However, its applicability does not ensure symmetry as defined below.

Note, that a permutation involving more than two automata being swapped can
easily be realized via several swap operations in sequence. We employ this swap
operation to define the notion of symmetry required in our workflow.

Definition 4.2.2 (Symmetry of the State Space). Let a network of timed automata
NTA = 〈A1, ..., An〉 be given with concrete semantics TS = (S, s0,→). It is symmetric,
if for any swap π and any states s1, s2 ∈ S, it holds that s1 → s2 with time delay
δ and taken edge e of timed automaton Ai if and only if π(s1) → π(s2) with time
delay δ and taken edge e of timed automaton Aπ(i). Furthermore, it must hold that
s = s0 if and only if π(s) = s0.

Our definition of symmetry ensures the initial state to be symmetric, as well as
paths to be symmetric. This implies for a state s that is reachable via a path from an
initial state, that all its swapped states π(s) are reachable via the respective swapped
paths. Note, that the notion of symmetry characterizes π to be an automorphism on
the transition system that is the concrete semantics TS (c.f. [Hen+04]).

As mentioned above, the applicability of the swap operation is not sufficient to
ensure this notion. It can, however, be ensured via the specific restrictions on integer
variables as above. To this end, we formalize our models as templates that are bound
to these restrictions. We have proven in the Appendix B.1 that all networks of timed
automata created via these templates meet our notion of symmetry.
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4.3 Specification via Templates

Symmetric networks of timed automata allowed in our incremental approach are
defined as instantiations of a template. A template is the abstract specification of a
parameterized network of timed automata using the above redefinitions of integer
variables. In order to actually create the network, it is instantiated several times
with the distinct identifiers of the automata. The resulting timed automata in the
network are, thus, distinct in dependence of their identifiers. In summary, templates
are an intuitive way of formalizing symmetric models for our approach. We define
this concept below. It is closely related to the templates as defined in Uppaal, but
imposes the above restrictions on the automata.

Definition 4.3.1 (Timed Automaton Template). Let the set Cg of global clocks be
given, as well as the global set of integer variables IV = IV 6id ∪ IV id as the union
of disjoint sets of identifier unaware (IV 6id) and aware (IV id) integer variables, s.t.
IV 6id ∩ IV id = ∅. A symmetric timed automaton template A(pid) defined over globally
shared Cg and IV is a tuple A(pid) = (L, l0, C, IV , ∅, Invc, Invi(pid), E(pid)) such
that

• pid ∈N≥1 is a unique parameter, called identifier,

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C = Cl ∪Cg is the union of the finite and disjoint sets of local and global clocks
with initial valuation vc

0,

• IV is the finite set of shared integer variables with initial valuation vi
0,

• ∅ is the set of synchronization channels (no synchronization is allowed),

• Invc : L→ Φ(C) is a total function of clock invariants, s.t. vc
0 |= Invc(l0),

• Invi(pid) : L→ Ψ(IV , pid) is a total function of integer invariants,
s.t. vi

0 |= Invi(pid)(l0), and

• E(pid) ⊆ L × {ε} × Φ(C) × Ψ(IV , pid) × Ω(IV , pid) × 2C × L is the set of
edges.

Instantiating a template A(pid) with unique identifier pid = j ∈N≥1 results in
timed automaton Aj. The following example illustrates the process of instantiation.

Example Figure 4.3 shows the template representing the Fischer_U model shown
in the previous chapter (Figure 3.1) modeling the Fischer mutual exclusion algorithm.
It can be used to create the symmetric model with any number of automata. There
exists only one integer variable (id) that is aware of identifiers and the constraints
and assignments involving it are parameterized with pid. The template can be
instantiated, e.g., with the two identifiers 1 and 2 resulting in the automata depicted
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in Figure 3.1. When instantiating the template with a unique identifier, e.g., pid = 2,
a timed automaton A2 is created in which the parameter pid is replaced by the actual
identifier 2. For instance, the automaton contains the constraint id = 2 instead of the
parameterized one id = pid.

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤1024
id:=pid

c:=0

c>1024
id=pid

c:=0l0

l3

l1

l2

Figure 4.3: Example of a timed automaton template that represents the Fischer
mutual exclusion algorithm (Fischer_U)

We employ templates as intuitive means to specify a parameterized timed system
modeled as symmetric network of timed automata. In order to create a model for a
fixed number n ∈ N≥1 of automata, the template is instantiated n timed with the
respective identifiers 1 to n. We formalize this creation of a symmetric network of
timed automata with fixed number of automata below.

Definition 4.3.2 (Symmetric Network of Timed Automata). Given n ∈ N≥1 and
the timed automaton template A(pid) as defined in Definition 4.3.1. The symmetric
network of timed automata with n timed automata is defined as NTAn = 〈A1, . . . , An〉,
where Ai is the instantiation of A(pid) with pid = i (i ∈ {1, . . . , n}).

This definition of networks of timed automata via templates ensures the models
to be symmetric. Section B.1 in the Appendix proves our notion of symmetry to
hold for the models.

In addition to symmetric models, our technique relies on the safety property to
be symmetric, too. It is defined as follows.

Definition 4.3.3 (Symmetry of the Safety Property). Let a network of timed automata
NTA = 〈A1, ..., An〉 be given with concrete semantics TS = (S, s0,→). Given any
swap π and state s ∈ S, a safety property ρ is symmetric if it holds that s |= ρ if and
only if π(s) |= ρ.

We ensure this symmetry via redefinition of the safety property. The adapted
definition includes all permutations of timed automata in the network and, thus, is
inherently symmetric.
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Recall the definition of error state specifications (Definition 2.1.13). An error
state specification err reasons about the locations, integer and clock valuations of
states in a network NTAm of m timed automata. In order to employ the error state
specification also for larger models of size n ≥ m (as in a parameterized system),
we create a scaled error state specification errn. To this end, the partial location
vector simply needs to be filled with the unspecified location element (∗) for all
additional automata. We obtain a symmetric error state specification by considering all
permutations of the n timed automata.

Definition 4.3.4 (Symmetric Error State Specification). Given an error state specifica-
tion err = ( ¯lm, φ, ψ) for NTAm as in Definition 2.1.13, where ψ = ψ0 ∧ ψ1(1) ∧ · · · ∧
ψm(m) contains parameterized constraints for the m automata. The scaled error state
specification for NTAn (n ≥ m) is defined as errn = (l̄, φ, ψ) with ∀i ∈ {1, . . . , m} :
l̄[i] = ¯lm[i] and ∀i ∈ {m + 1, . . . , n} : l̄[i] = ∗.

The symmetric error state specification for NTAn is defined as errn
sym = ∃π : errn

π

for permutation π (cf. Def. 4.2.1) with errn
π = (π(l̄), π(φ), π(ψ)) being defined as

• ∀i ∈ {1, . . . , n} : π(l̄)[i] = l̄[π(i)],

• π(φ) =


π(φ1) ∧ π(φ2) if φ = φ1 ∧ φ2,

(π(x)− π(y)) ./ n if φ = (x− y) ./ n,

π(x) ./ n if φ = x ./ n,

true if φ = true,
where π(x) refers to clock x itself if x ∈ Cg or otherwise refers to the respective
clock in Cl

π(i) if x ∈ Cl
i ,

• π(ψ) = ψ0 ∧ ψ1(π(1)) ∧ · · · ∧ ψm(π(m)).

With the existential quantification, which is replaced by enumeration and dis-
junction in the SMT-encoding, any combination of timed automata is possible and,
thus, the error state is symmetric. For illustration, consider the following example.

Example 4.3.5. Let the model Fischer_U_3 be given (n = 3). Consider an error
state specification err = ((∗, l1), c1 ≤ 0, cnt ≤ 1 ∧ id = 1) referring to m = 2 timed
automata, namely A1 and A2, and c1 denoting clock c in A1. It specifies that
any state is an error state that includes location l1 for automaton A2, a value for
c of A1 less or equal to 0, and cnt ≤ 1 and id = 1. As can be seen, the timed
automaton A3 is not referred. The scaled version simply states that the location
of A3 is undefined, formally err3 = ((∗, l1, ∗), c1 ≤ 0, cnt ≤ 1 ∧ id = 1). When
considering the swap π1 = swap1,2 the resulting permuted error state specification is
err3

π1
= ((l1, ∗, ∗), c2 ≤ 0, cnt ≤ 1∧ id = 2), where c2 denotes clock c in A2. Another

swap might be π2 = swap1,3 resulting in the specification err3
π2

= ((∗, l1, ∗), c3 ≤
0, cnt ≤ 1∧ id = 3) with c3 denoting clock c in A3. In order to achieve symmetry, all
permutations have to be considered.
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With enumeration, the symmetric error state specification is as follows.

err3
sym =((∗, l1, ∗), c1 ≤ 0, cnt ≤ 1∧ id = 1)

∨((∗, ∗, l1), c1 ≤ 0, cnt ≤ 1∧ id = 1)

∨((l1, ∗, ∗), c2 ≤ 0, cnt ≤ 1∧ id = 2)

∨((∗, ∗, l1), c2 ≤ 0, cnt ≤ 1∧ id = 2)

∨((∗, l1, ∗), c3 ≤ 0, cnt ≤ 1∧ id = 3)

∨((l1, ∗, ∗), c3 ≤ 0, cnt ≤ 1∧ id = 3)

If any of them is satisfied by a state s, then s is an error state. Trivially, any swap
π(s) is also an error state, since all permutations of the error state specification are
considered.

The above symmetric error state specifications allow for the definition of sym-
metric safety properties.

Definition 4.3.6 (Symmetric Safety Property). Let NTAn be a given network of
n timed automata. The symmetric safety property is defined as ρn = ¬(err1n

sym) ∧
¬(err2n

sym) ∧ . . . for symmetric error state specifications err1n
sym,err2n

sym,. . . .

Given the above definitions, we define the actual verification questions we are
interested in when considering parameterized timed systems.

Verification Question: Given the timed automaton template A(pid) and
a symmetric safety property ρ, does the safety property ρn hold for all
networks of timed automata NTAn consisting of n ∈N≥1 instantiations
of the template?

Since the error states in the safety property are defined for models with more than or
exactly m timed automata, we say ρn holds for NTAn with n < m, but need to verify
the property for all n ≥ m. In the following, we shortly elaborate on the decidability
of this verification question.

4.4 Decidability

In general, the above verification question is undecidable. Trivially, the argumen-
tation of the previous chapter (Subsection 3.4.1) can be applied for our symmetric
models as well. One reason for undecidability is the existence of updates on the iden-
tifier unaware integer variables as has been shown via reduction in the mentioned
subsection. An additional issue in the above verification question is the fixed, but
arbitrary large number of timed automata. This allows for a reduction that exploits
the number of automata as shown by Abdulla et al. [ADM04] for timed networks.
Their reduction can be adapted to fit our formalism by representing the controller
via an integer variable and using a global clock in combination with additional
integer variables for synchronization of edges.



4.5. BASIC APPROACH 101

Thus, the verification question for parameterized timed systems is in general
undecidable. However, Abdulla has shown that there exist some decidable instances,
e.g., when a process includes at most one clock like in the Fischer models [AJ03].
Our experiments are in line with these insights. Hence, an approach answering the
given verification question is reasonable for some models. We show our incremental
technique for this problem in the following.

4.5 Basic Approach

We propose to incrementally verify the symmetric models with increasing number n
of timed automata. To this end, we harness the symmetry and composition aspect
resulting in a Termination Theorem that ensures the safety property to hold for all
n ∈N upon successful application.

Valid
for]NTAn+1?

Check]Safety]Property
for]NTAn]

CEX

n:=n+1 [no]

[yes]

Safety]Property]holds]for]all]n

Inductive]strengthening

n=max(1,m,

Extrapolate

Figure 4.4: Basic workflow

The workflow can be seen in Figure 4.4. It comprises a loop that is indefinitely
iterated until the Termination Theorem is applicable, i.e., our extrapolation produces
a valid inductive strengthening for NTAn+1. However, since the verification question
is undecidable in general, there exist instances that run indefinitely with our theorem
never being applicable. The approach is entirely based on SMT-solving and works
as follows. Our workflow starts with the smallest model. Taking into account that
the safety property is specified over m timed automata (cf. Definition 4.3.4), we start
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with a network of timed automata NTAn, where n = max(1, m). The symmetric
safety property ρn is verified for NTAn using our IC3-based technique IC3 with
Zones presented in the previous chapter providing an inductive strengthening of the
safety property in case of success. Otherwise, a counterexample trace is found and
the safety property does not hold for all n ∈ N≥1. The inductive strengthening is
provided as an SMT-formula ‖F‖ in conjunctive normal form. It is a conjunction
of clauses, which consist of location, clock and integer literals reasoning about the
n timed automata in the model NTAn. In order to use it for the next larger model
NTAn+1, we execute a subsequent extrapolation step. Definition 4.5.1 specifies this
extrapolation procedure with which we yield an SMT-formula ‖F‖exp(n+1) reasoning
about all timed automata in NTAn+1.

Definition 4.5.1 (Extrapolation of an Inductive Strengthening). Given the SMT-
formula ‖F‖ representing the inductive strengthening F of safety property ρn for
the network of timed automata NTAn. ‖F‖exp(x) is the SMT-formula representing
the Extrapolation of F to a network NTAx of x ≥ n timed automata. ‖F‖exp(x) is
defined as the SMT-formula representing the conjunction of π(F) for all possible
permutations π of the x timed automata. To this end, ‖F‖ is permuted according
to the operation swap, i.e., location literals are swapped, as well as local clocks and
values of identifier aware integer variables different from the neutral element 0.

The implementation of the extrapolation procedure permutes clauses separately.
To this end, only clauses that are not identical up to permutation are considered. This
allows an efficient handling of clauses and results in a low runtime. The following
example illustrates the above extrapolation procedure.

Example 4.5.2. Consider the timed automaton template depicted in Figure 4.3. The
instantiation for n = 2 results in the symmetric network of timed automata depicted
in Figure 3.1. The verification of the symmetric safety property ρ := ¬(cnt >

1) computes the inductive strengthening as depicted in Table 4.1 in the second
column. There exist five clauses that are not identical up to permutation. The first
column of Table 4.2 depicts representatives for these clauses. The application of
the extrapolation procedure computes all permuted clauses of these representatives
for all permutations of the n + 1 = 3 timed automata. The identifier aware integer
variable id is represented in the encoding as int0 and has to be considered in the
permutations whenever the compared value in the literal is a specific identifier.
The identifier unaware integer variable cnt is represented in the encoding as int1

and must not be considered in the permutations at all. In addition, all location
and local clock variables have to be considered for the permutations. The resulting
clauses are depicted in the second column of the mentioned table. As can be
seen, the extrapolated formula equals the inductive strengthening computed in
the previous chapter for Fischer_U_3. It shows that it is possible to infer a valid
inductive strengthening of the safety property for n + 1 automata from an inductive
strengthening of the safety property for n automata. Our workflow relies on this
potential.
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representative clause from ‖F‖ ‖F‖exp(3)

(int1 ≤ 1) (int1 ≤ 1)
∧((int0 6= 0) ∨ (int1 ≤ 0)) ∧((int0 6= 0) ∨ (int1 ≤ 0))
∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0)) ∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0))

∧(¬l2
0 ∨ l2

1 ∨ (int1 ≤ 0))
∧(¬l3

0 ∨ l3
1 ∨ (int1 ≤ 0))

∧(l1
0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) ∧(l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0))
∧(l2

0 ∨ (int0 6= 2) ∨ (int1 ≤ 0))
∧(l3

0 ∨ (int0 6= 3) ∨ (int1 ≤ 0))
∧((c1

0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c2
0 > 1024.0)) ∧((c1

0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c2
0 > 1024.0))

∧((c1
0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c3

0 > 1024.0))
∧((c2

0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c1
0 > 1024.0))

∧((c2
0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c3

0 > 1024.0))
∧((c3

0 ≤ 1024.0) ∨ (int0 6= 3) ∨ (c2
0 > 1024.0))

∧((c3
0 ≤ 1024.0) ∨ (int0 6= 3) ∨ (c1

0 > 1024.0))

Table 4.2: Each of the clauses (that are not identical up to permutation) in the com-
puted inductive strengthening for n automata (left) is permuted for all permutations
of the n + 1 automata in order to create the extrapolated formula (right)

The resulting extrapolated formula ‖F‖exp(n+1) is denoted as candidate inductive
strengthening for NTAn+1. It is then checked for validity, i.e., whether all three
characteristics of inductive strengthenings hold true for the extrapolated formula
‖F‖exp(n+1) and model NTAn+1. If invalid, n is incremented and the next iteration
of the loop is started. Otherwise, the candidate represents a valid inductive strength-
ening of ρn+1 for NTAn+1, in which case our Termination Theorem (Theorem 4.5.1)
applies. It states that the safety property holds ∀n ∈N≥1, if the candidate is a valid
inductive strengthening.

Theorem 4.5.1 (Termination Theorem). Given the SMT-formula ‖F‖ representing an
inductive strengthening F of ρn for NTAn. If ‖F‖exp(n+1) is an inductive strengthening of
ρn+1 for NTAn+1, then ‖F‖exp(n+2) is an inductive strengthening of ρn+2 for NTAn+2.

The proof of correctness is given in the subsequent chapter for a more general
formalism.

The incremental design of the workflow yields the benefit of starting with
small networks of timed automata, which are efficiently verifiable. Thus, a fast
overall performance of our approach is likely in case the Termination Theorem can
be applied early. Additionally, our theorem is most suitable for an incremental
workflow, being able to reason about all n ∈N≥1 by taking into account the results
of a specific instance.

We illustrate the workflow in the following.

Example 4.5.3. As an example consider the Fischer_U template as given in Figure
4.3 with the symmetric safety property ρ := ¬(cnt > 1) specifying values for x = 0
timed automata. Our workflow starts with the verification of the safety property
for the symmetric network of n = 1 timed automata NTAn. After successful
verification, the found inductive strengthening ‖F‖ = (int1 ≤ 1) ∧ (l1

0 ∨ (int1 ≤
0)) ∧ (l1

1 ∨ (int1 ≤ 0)) is returned as can be seen in Table 4.1. The extrapolation
procedure produces a candidate formula with five clauses, namely ‖F‖exp(n+1) =
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(int1 ≤ 1)∧ (l1
0 ∨ (int1 ≤ 0))∧ (l2

0 ∨ (int1 ≤ 0))∧ (l1
1 ∨ (int1 ≤ 0))∧ (l2

1 ∨ (int1 ≤ 0)).
The candidate is not inductive for NTAn+1, as Consecution fails. Thus, the next cycle
starts with the verification of the safety property ρn for NTAn with n = 2. After
successful verification the resulting inductive strengthening is again extrapolated
into a candidate, which is checked for validity (which means whether Theorem 4.5.1
is applicable). This cycle is iterated indefinitely until the theorem can be applied, a
counterexample trace is found during a run of IC3 with Zones or the systems runs
out of memory or time.

4.6 Optimizations

Technically, the presented workflow can be realized using any verification technique
resulting in an inductive strengthening as defined above. However, we designed
some optimizations tailored specifically to our algorithm IC3 with Zones shown in
Chapter 3. We present these optimizations in the following, namely a Feedback-loop
and the Generalization of the found inductive strengthening. These enhancements
have distinct aims within the workflow. The latter is designed to increase the
applicability of Theorem 4.5.1, while the former is constructed to speed up the
verification of models in the IC3 algorithm itself. We start with a detailed description
of this speed-up optimization.

4.6.1 Feedback Loop

During the basic loop of our workflow, we propose a candidate inductive strengthen-
ing ‖F‖exp(n+1) for the next larger model NTAn+1. In case the Termination Theorem
can not be applied, i.e., the candidate is not a valid inductive strengthening, it is
discarded so far. It might, however, be of substantial value. Even though it is not a
valid inductive strengthening it might be similar to one, as some of its clauses might
occur within a valid inductive strengthening. These clauses should be extracted
and used to accelerate the verification process. To this end, the proposed candidate
is injected into the verification run of IC3 with Zones for NTAn+1. We call this a
Feedback-loop, since the clauses of the candidate are fed back into the cycle instead
of simply being discarded. In order to decide, which of the clauses are relevant, i.e.,
can be reused without breaking the properties of the frames in the IC3 algorithm, we
use two distinct methods. On the one hand, we employ the incremental method of
Chockler et al. [Cho+11] to inject an inductive subset of the clauses in the candidate
formula into each frame of IC3. On the other hand, we employ our own method
to inject clauses that are inductive relative to the set of initial states (frame F0) into
the frame F1. We denote the former one as Chockler-Feedback and the latter one as
Frame1-Feedback. Both methods are shown below.

Chockler-Feedback The following method is taken from Chockler et al. [Cho+11],
where it is used for incremental verification of hardware models. It searches for the
largest subset of the clauses in the candidate formula ‖F‖exp(n+1) that is inductive.
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This set of clauses can, thus, be conjoined to all frames in IC3 with Zones. As a
result, the search space for CTIs in the frames is pruned heavily upfront. Formally,
it searches the largest subset C ⊆ clauses(‖F‖exp(n+1)) of clauses in the candidate
that is inductive, i.e.,

• Initiation: ‖In+1‖ ∧ ¬‖C‖ is unsatisfiable,

• Consecution: ‖C‖ ∧ ‖Tn+1‖ ∧ ¬‖C‖′ is unsatisfiable,

with the formulae ‖In+1‖ and ‖Tn+1‖ denoting the encoding of the set of initial
states and the transition relation of NTAn+1 with invariants as shown, e.g., in
Subsection 3.1.10.

The conjunction of each of the frames with the set C of clauses clearly preserves
the four properties of the frames, as C is inductive. It is extremely powerful
in pruning the considered states in the frames. However, we observed that the
inductive set of clauses C is rather small for some models, since many of the clauses
hinder inductiveness. Despite being of value for the IC3 algorithm, these clauses
are discarded. For this reason, we constructed a weaker Feedback method detailed
below.

Frame1-Feedback Instead of searching an inductive subset of clauses that are
conjoined to every frame, our Frame1-Feedback searches a subset of clauses that
is inductive relative to the set of initial states, but can only be conjoined to frame
F1. Formally, given the proposed candidate formula ‖F‖exp(n+1), we compute the
largest subset C ⊆ clauses(‖F‖exp(n+1)) of clauses that are initialized and inductive
relative to F0 = In+1:

• Initiation: ‖In+1‖ ∧ ¬‖C‖ is unsatisfiable,

• Consecution relative to In+1: ‖In+1‖ ∧ ‖Tn+1‖ ∧ ¬‖C‖′ is unsatisfiable,

with the formulae ‖In+1‖ and ‖Tn+1‖ denoting the encoding of the set of initial
states and the transition relation of NTAn+1 with invariants as shown, e.g., in
Subsection 3.1.10.

The result is injected into IC3 with Zones as clauses of frame F1 (cf. Section 2.4),
which may prevent the costly rediscovery of some of them. Although the conjunction
with F1 does not prune the larger frames F2, . . . the method is of importance. Clearly,
the number of clauses in C is not smaller in the Frame1-Feedback than in the
Chockler-Feedback, as an inductive set of clauses is also inductive relative to F0.
Furthermore, the clauses of the latter method can be propagated to larger frames
during the run of IC3 with Zones. Thus, the restriction of the Frame1-Feedback to
conjoin clauses only with F1 is not a serious cutback.

Both these feedback methods can be used separately or in combination. Fur-
thermore, their implementation is simple as the clauses only have to be checked
and inserted at the start of IC3 with Zones and the rest of the algorithm proceeds
entirely as before. Our implementation is based on the one described by Chockler et
al. [Cho+11] using auxiliary variables for finding the injected subsets.
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Apart from this Feedback technique used to speed up the verification runs of
IC3, we use an additional optimization in our workflow. It is devised to improve the
applicability of the Termination Theorem.

4.6.2 Generalization

The inductive strengthening ‖F‖ of the safety property ρn computed during the
verification run of IC3 for NTAn may not be the only possible inductive strength-
ening. With the intuition that an inductive strengthening with fewer clauses may
more likely be extrapolated into a candidate ‖F‖exp(n+1) that is a valid inductive
strengthening (since there are less clauses that could hinder inductiveness, espe-
cially Consecution), we try to alter ‖F‖. To this end, we generalize it (analog to
the Generalization process in IC3 itself) by deleting clauses while maintaining a
valid inductive strengthening for NTAn. This is done making heavy use of the
SMT-solver, including the utilization of Unsat-Cores as is done in IC3 itself. Since
the subsequent extrapolation procedure will result in a symmetric formula, meaning
all permutations of each clause are included, the Generalization procedure tries to
delete all permutations of a clause at once, not one after another. The order in
which clauses (or rather sets of clauses identical up to permutation) are deleted is
controlled by the Unsat-Core as well as an ordering of clauses, favoring the ones
for deletion that refer to many timed automata over those ones that refer only a
few. The underlying intuition is to get rid of very specific clauses (referring to many
automata) first.

The Generalization step results in an inductive strengthening with potentially
fewer clauses, which might be preferable for the application of Theorem 4.5.1. We
illustrate the approach in the following.

Example 4.6.1. Consider a verification run of the symmetric safety property ρ =

¬(cnt > 1) for Fischer_U_2. It results in the inductive strengthening depicted in
Table 4.3. The table also shows the generalized inductive strengthening, which
clearly includes fewer clauses.

4.6.3 Combination

Using Generalization and a Feedback-loop in combination allows for an additional
choice, if Theorem 4.5.1 could not be applied.

The next iteration of the loop is started with the injection of clauses into IC3.
However, either the generalized inductive strengthening or the non-generalized
(entire) inductive strengthening can be employed for this task. We will explore the
effect of both, as well as the other proposed optimizations in the following section.

Figure 4.5 shows the overall workflow including all proposed optimizations.
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clauses of ‖F‖ found by IC3 Generalization of ‖F‖
(int1 ≤ 1) (int1 ≤ 1)
∧(l1

0 ∨ l2
0 ∨ (int1 ≤ 0))

∧(l1
0 ∨ l2

1 ∨ (int1 ≤ 0))
∧(l1

1 ∨ l2
0 ∨ (int1 ≤ 0))

∧(l1
1 ∨ l2

1 ∨ (int1 ≤ 0))
∧((int0 6= 0) ∨ (int1 ≤ 0)) ∧((int0 6= 0) ∨ (int1 ≤ 0))
∧(l1

1 ∨ ¬l1
0 ∨ (int1 ≤ 0)) ∧(l1

1 ∨ ¬l1
0 ∨ (int1 ≤ 0))

∧(l2
1 ∨ ¬l2

0 ∨ (int1 ≤ 0)) ∧(l2
1 ∨ ¬l2

0 ∨ (int1 ≤ 0))
∧(l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) ∧(l1
0 ∨ (int0 6= 1) ∨ (int1 ≤ 0))

∧(l2
0 ∨ (int0 6= 2) ∨ (int1 ≤ 0)) ∧(l2

0 ∨ (int0 6= 2) ∨ (int1 ≤ 0))
∧(l2

0 ∨ (int0 6= 0) ∨ (int1 ≤ 0))
∧(l1

0 ∨ (int0 6= 0) ∨ (int1 ≤ 0))
∧((c1

0 > 1024.0) ∨ (c2
0 ≤ 1024.0) ∨ (int0 6= 2)) ∧((c1

0 > 1024.0) ∨ (c2
0 ≤ 1024.0) ∨ (int0 6= 2))

∧((c2
0 > 1024.0) ∨ (c1

0 ≤ 1024.0) ∨ (int0 6= 1)) ∧((c2
0 > 1024.0) ∨ (c1

0 ≤ 1024.0) ∨ (int0 6= 1))

Table 4.3: Generalization: Each of the clauses (that are not identical up to permu-
tation) in the computed inductive strengthening ‖F‖ for NTAn (left) is tried for
deletion resulting in a Generalization of ‖F‖ (right)

Valid
for=NTAn,O?

Generalize

Check=Safety=Property
for=NTAn=

CEX

n:=n,O [no]

[yes]

Safety=Property=holds=for=all=n

Inductive=strengthening

n=maxmO)mx

Extrapolate

Feedback=Loop:
F=Chockler
F=Frame=O

ExtrapolateOR

Figure 4.5: Workflow including the optimizations Feedback and Generalization
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4.7 Evaluation

Several of the benchmark models presented for the experiments in Chapter 3 are
symmetric and can be modeled as a template. They do not require synchronized
edges and their structure, including the integer variables, satisfies the restrictions
presented above. We employ these models in experiments to evaluate the practicality
and performance of our approach. In particular, we employ both Fischer models
(Figure 4.6), both Lamport models (Figure 4.7) and also the two Shavit-Lynch models
(Figure 4.8).

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤1024
id:=pid

c:=0

c>1024
id=pid

c:=0l0

l3

l1

l2

(a) Template for Fischer_U
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l8
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c≤1024
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c≥1
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c:=0

c≥1
id=0
c:=0

c≥1
c:=0
id:=pid

c≥1024
c:=0

c≥1
id=pid
c:=0
cnt:=cnt+1

c≥1
c:=0
cnt:=cnt-1c≥1

c:=0

c≥1
c:=0
id:=0

c:=0

c:=0

c≥1
id≠pid
c:=0

(b) Template for Fischer_B

Figure 4.6: Templates for symmetric networks of timed automata modeling the
Fischer algorithm (cf. models Fischer_U and Fischer_B in Figures 3.1 and 3.7)

Starting from the basic workflow, we examine the effects of the proposed opti-
mizations and the overall practicality of our concept. We show promising results
and explain the benefits in relation to non-symmetric verification approaches.

The presented workflows have been implemented in Java based on the imple-
mentation used in the previous chapter. As before, we ran our experiments on a pc
with 3,2 GHz (AMD Phenom II X4 955).

4.7.1 Experiments

In order to evaluate the basic idea of inferring inductive strengthenings for larger
models from the smaller ones, we examine the performance of our basic workflow.
It illustrates the applicability of our Termination Theorem and the practicality of the
pure approach. Table 4.4 shows the runtimes of the basic workflow with a timeout
of 5 hours (18000 seconds). The system ran out of memory when using more than 2
GB of memory.
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l5l6

l7

l8

id:=pid
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cnt:=cnt+1

cnt:=cnt-1

y≠0

id≠pid

y=0

y:=0

(a) Template for Lamport_B
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(b) Template for Lamport_S

Figure 4.7: Templates for symmetric networks of timed automata modeling the
Lamport algorithm (cf. models Lamport_B and Lamport_S in Figures 3.8 and 3.10)
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(a) Template for ShavitLynch_B
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(b) Template for ShavitLynch_P

Figure 4.8: Templates for symmetric networks of timed automata modeling the
Shavit-Lynch algorithm (cf. models ShavitLynch_B and ShavitLynch_P in Figures
3.9 and 3.11)



110 CHAPTER 4. INCREMENTAL INDUCTIVE VERIFICATION OF PTS

Fi
sc

he
r_

U

Fi
sc

he
r_

U
(s

w
it

ch
ed

)

Fi
sc

he
r_

B

La
m

po
rt

_B

La
m

po
rt

_S

Sh
av

it
Ly

nc
h_

B

Sh
av

it
Ly

nc
h_

P

Runtime (s) OOM 35,2 OOM OOT 267,1 OOM OOM
Successfully verified

1-8 ∀n ∈N 1-4 1-4 ∀n ∈N 1-3 1-4models NTAn

for which n?

Table 4.4: Runtime needed for the verification of a symmetric safety property for the
parameterized timed systems using the basic workflow without optimizations: The
safety property was verified for the entire parameterized system (marked as ∀n ∈N

in the lowermost row) or for only a few instances with fixed n, where we give the
sizes of the models that were successfully verified

As can be seen, our basic workflow was not able to verify most of the parame-
terized timed systems. For five out of seven instances, the Termination Theorem
could not be applied before running out of time or memory. However, the presented
technique successfully verifies the safety property for two models for all n ∈N, e.g.,
the shrunk Lamport model. In addition, it verifies some single instances with fixed
n ∈N for the other parameterized systems before running out of memory or time,
e.g., the Shavit Lynch model ShavitLynch_B has been verified for instances with 1,2
and 3 timed automata in the network.

We conclude that the general concept is very promising with huge potential
as shown by the successful runs. The useful intermediate results, namely the
verification of the safety property for models with fixed n ∈N, demonstrate that it
is of use even in case of an incomplete run. However, the results also show that the
overall percentage of models verified for all n ∈N is not satisfying.

Hence, we examine the effect of the proposed optimizations. Individual experi-
ments with these optimizations including all their combinations result in thorough
data for estimating their benefits. We start by studying the effect of the Generalization
step shown in Table 4.5.
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Runtime (s) 1,3 2,5 50,2 OOT 1,3 OOM OOT
Successfully verified

∀n ∈N ∀n ∈N ∀n ∈N 1-4 ∀n ∈N 1-3 1-4models NTAn

for which n?

Table 4.5: Runtime needed for the verification of a symmetric safety property for the
parameterized timed systems using the workflow with Generalization optimization
only: The safety property was verified for the entire parameterized system (marked
as ∀n ∈N in the lowermost row) or for only a few instances with fixed n, where we
give the sizes of the models that were successfully verified
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A comparison of the results with those obtained without optimization clearly
shows the benefit of the optimization. The number of models that could be verified
for all n ∈ N grew from two to four instances. As can be seen, this optimization
does only affect the applicability of Theorem 4.5.1, as it has no influence on the IC3
runs (lowermost row if theorem not applicable).

Yet, some of the instances could still not be verified for all n ∈ N. Thus,
we examine the effect of the other proposed optimization, namely the Feedback-
technique. The results are shown in Table 4.6, showing the performance of the
workflow using the Feedback-loop without any other optimization.
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Chockler - Runtime (s) 14,0 OOM OOM OOM 504,0 OOM 1264,2
Chockler - Verified

∀n ∈N 1-9 1-6 1-7 ∀n ∈N 1-3 ∀n ∈Nmodels NTAn

for which n?
Frame1 - Runtime (s) 1,6 1,2 87,8 8,5 1,7 28,1 2778,5

Frame1 - Verified
∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈Nmodels NTAn

for which n?
Both - Runtime (s) OOM OOM 243,1 51,9 1,9 329,7 OOM

Both - Verified
1-9 1-9 ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N 1-4models NTAn

for which n?

Table 4.6: Runtime needed for the verification of a symmetric safety property for the
parameterized timed systems using the workflow with the Feedback-optimization:
The safety property was verified for the entire parameterized system (marked as
∀n ∈N in the lower rows) or for only a few instances with fixed n, where we give
the sizes of the models that were successfully verified

Obviously, the Feedback-optimization works well. In fact, it shows the best overall
performance in comparison to the previously tested settings (Tables 4.4 and 4.5). The
Feedback-mechanism should, thus, be preferred to the Generalization optimization.
Depending on the actual Feedback-technique, the performance of the verifications is
very distinct.

The only option capable of verifying all instances for all n ∈ N is the Frame1-
Feedback. Apart from the last instance (ShavitLynch_P), all instances have been
verified with reasonable runtime. Noticeably, the combination of both distinct
options (Frame1 and Chockler) is unable to outperform the single options. This fact
can be seen when comparing the respective rows in Table 4.6.

Note, that the optimization speeds up the verification runs. This fact can be seen,
when comparing the runs for Lamport_B. Without the optimization, the approach
ran out of time after verifying models with size 1 to 4. In contrast, the runs with
optimization are faster, e.g., when using the Chockler-Feedback, it does not run out
of time. Instead, it runs out of memory first, after verifying models of size 1 to 7.

The injection of clauses additionally alters each run of IC3 with Zones, s.t. the
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resulting inductive strengthening might be different, which in turn affects the
subsequent cycles of our approach. Thus, the Feedback-optimization has a significant
impact on our approach.

In the following, we evaluate whether the combination of both optimizations
further improves the performance. As stated before, this combination allows for two
options. On the one hand, the extrapolated generalized set of clauses can be used
in the Feedback-loop. On the other hand, the extrapolated non-generalized set of
clauses can be used.

Table 4.7 shows the performance using the two options.
Fi

sc
he

r_
U

Fi
sc

he
r_

U
(s

w
it

ch
ed

)

Fi
sc

he
r_

B

La
m

po
rt

_B

La
m

po
rt

_S

Sh
av

it
Ly

nc
h_

B

Sh
av

it
Ly

nc
h_

P

Feedback using non-generalized set of clauses (all clauses)

Chockler - Runtime (s) 1,3 2,0 55,1 OOM 1,3 OOT OOM
Chockler - Verified

∀n ∈N ∀n ∈N ∀n ∈N 1-7 ∀n ∈N 1-3 1-6models NTAn

for which n?
Frame1 - Runtime (s) 1,2 1,1 34,9 9,0 1,7 199,7 OOT

Frame1 - Verified
∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N 1-4models NTAn

for which n?
Both - Runtime (s) 1,3 1,2 36,0 55,7 1,6 958,1 OOT

Both - Verified
∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N 1-4models NTAn

for which n?

Feedback using generalized set of clauses

Chockler - Runtime (s) 1,3 2,0 50,5 OOM 1,4 OOM 880,3
Chockler - Verified

∀n ∈N ∀n ∈N ∀n ∈N 1-8 ∀n ∈N 1-3 ∀n ∈Nmodels NTAn

for which n?
Frame1 - Runtime (s) 1,5 1,1 35,4 OOM 1,5 6622,6 OOT

Frame1 - Verified
∀n ∈N ∀n ∈N ∀n ∈N 1-8 ∀n ∈N ∀n ∈N 1-4models NTAn

for which n?
Both - Runtime (s) 1,3 1,1 35,7,1 OOM 1,6 6981,5 OOT

Both - Verified
∀n ∈N ∀n ∈N ∀n ∈N 1-8 ∀n ∈N ∀n ∈N 1-4models NTAn

for which n?

Table 4.7: Runtime needed for the verification of a symmetric safety property for
the parameterized timed systems using the workflow with both optimizations. The
safety property was verified for the entire parameterized system (marked as ∀n ∈N

in the second row) or for only a few instances with fixed n, where we give the sizes
of the models that were successfully verified

Clearly, the experiments show that the combination of optimizations does not
improve the overall performance. The basic workflow optimized only by the Frame1-
Feedback loop still shows the best results.

In summary of the above experiments, we conclude that our workflow is of value,
even if the verification run is incomplete. It verifies smaller models with fixed n ∈N

before running out of time or memory and is, thus, not entirely useless in such a
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Runtime (s) 1,6 1,2 87,8 8,5 1,7 28,1 2778,5
Verified

∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈N ∀n ∈Nmodels NTAn

for which n?
Uppaal - Runtime (s) 0,7 0,7 17,8 5,3 0,4 0,3 1218,5

Uppaal - Verified
8 8 5 6 6 4 13models NTAn

for which n?
IC3 - Runtime (s) 0,9 0,8 6,7 5,3 1,1 17,3 149,5

IC3 - Verified
2 2 2 2 2 2 3models NTAn

for which n?

Table 4.8: Comparison of our workflow (first rows) with verifications for instances
with fixed n that could be verified in the same time

case. Furthermore, our proposed Feedback-optimization accelerates the runs of our
IC3 with Zones algorithm, which renders larger models verifiable that could not be
verified without the injected clauses. The overall performance of the workflow using
the optimizations is very promising and the technique, in general, has the benefit
of verifying parameterized timed systems for all n ∈ N. In order to illustrate this
benefit, we show a comparison with verifications of models with fixed n ∈N below.

4.7.2 Comparison with fixed Models

We demonstrate this benefit by comparison with the tool Uppaal and a single
verification run of our algorithm IC3 with Zones of the previous chapter. As these
tools can only verify models with a fixed n ∈ N, we show the largest model with
fixed n that these tools were able to verify in the same time that the above presented
technique requires for the verification of the entire parameterized system for all
n ∈N. Table 4.8 shows the runtimes and sizes of the verified models.

The presented incremental workflow (using the optimization Frame1-Feedback)
clearly improves the verification of single models with fixed size. Due to its ability to
extrapolate inductive strengthenings for larger models, it is able to reason about all
n ∈N by only verifying small models. The reuse of previous computation results by
injecting clauses of the candidate in the next verification run additionally increases
the efficiency. Thus, tools capable of only verifying models with fixed n ∈N are not
able to compete with the presented approach.

In the following, we illustrate the importance of inductive strengthenings for
validation and reuse. If known, an inductive strengthening can easily be validated
as shown in Subsection 3.5.5. Our approach results in an inductive strengthening
that can be extrapolated for any n ∈N. We show the validation time for Uppaal’s
Fischer model (Fischer_U). Note, that Uppaal was only able to verify models up
to n = 13 and our approach of the previous chapter has verified models up to
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Fischer_U n=10 n=20 n=30 n=40 n=50 n=100
Time (s) 0,8 1,5 3,7 6,8 12,7 135,3

Table 4.9: Validation times for the inductive strengthenings computed and extrapo-
lated by the presented approach

n = 50. Table 4.9 shows the time needed to validate the extrapolated inductive
strengthenings for models with fixed n.

Clearly, the approach presented in this chapter performs well. Due to the
presented Termination Theorem, such a validation is not necessary. Our incremental
workflow provides for a verification for all n ∈N upon success.

4.8 Related Work

The related work for IC3 and verification of safety properties for timed automata has
been presented in Chapter 2. The following related work is, thus, only concerned
with the verification of safety properties for parameterized (timed) systems and
symmetry.

Parameterized Systems There exist numerous publications concerning the un-
timed case. It has been shown that this verification question is, in general, unde-
cidable [AK86]. Yet, several works deal with this verification question, resulting
in semi-algorithms or working with restricted families of models. The works for
parameterized systems might be categorized as follows.

Network Invariants: Many of these approaches require human interaction, e.g.,
the proposition of an invariant or closure. Wolper et al. [WL90] require the
manual specification of a network invariant. The invariants are used to check
whether the property holds true for the entire set of models. The manual
specification, however, is a drawback. A similar finding has been made by
Kurshan and McMillan [KM89], where the invariant is denoted as process
invariant. It is used for verification of the entire set of models, but needs to
be specified manually. Several approaches try to overcome the problem of
manual proposition of an invariant. They synthesize invariants automatically,
e.g., based on on network grammars and abstraction (Clarke et al. [CGJ95]) or
based on a fixpoint computation using heuristics (Lesens et al. [LHR97]).

Regular Model Checking: Other approaches are based on reachability analysis
with states represented as words and finite state transducers in between. These
techniques are denoted as regular model checking and differ by the employed
models, transducers and widening operators. Bouajjani et al. were amongst
the first to publish about this technique [Bou+00]. Another representative
is Kesten et al. [Kes+97] using symbolic model checking. Abdulla et al.
extended the techniques in various directions. They examined the effect of
having global conditions [Abd+99], and introduced incremental updates to the
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transducers [Abd+02b]. Further work concerns other improvements [Abd+03]
and specific structures [Abd+02a], [BT02].

Symmetry Reduction: In addition to the above techniques some researchers reduce
the verification in parameterized systems to the one in a quotient structure,
which only includes representatives for symmetric states. Two important works
in this field are Emerson et al. [ES96] and Clarke et al. [Cla+96]. Later, Emerson
et al. [ES97] and Gyuris et al. [GS97] introduced fairness and on-the fly model
checking to the approach. The usage of symmetry in quotient structures was
improved by an explicit modeling of symmetric variables, denoted scalarsets,
by Ip and Dill [ID96]. This explicit modeling is close to the one employed in
our work, where we explicitly define integer variables IV id that are affected
by symmetry. However, the technique closest to ours is the following.

Invisible Invariants: Pnueli et al. [PRZ01], [Aro+01] introduced an approach that
automatically computes strengthenings of properties that may be used to
prove the property for all models. To this end, they employ a project-abstract-
procedure, where the set of reachable states is computed, which is projected
to a smaller model (some references to variables are deleted). Afterwards,
the result is abstracted to again include all processes of the model (similar
to our extrapolation procedure). The outcome is checked for inductiveness.
Additionally, the authors introduce a Small Model Theorem, which states that an
inductive strengthening holds for all models, if it holds in the models up to a
specific size depending on the structure of the models. This theorem defines a
cutoff up to which the models have to be considered only. It is close in spirit
to our Termination Theorem, which also defines sort of a cutoff (dynamically
checked every iteration). Our theorem, however, is suitable for the incremental
workflow with changing candidate formulae every iteration.

Apart from the above method, there exist other works that utilize a cutoff for
verification. They require specific families of models (e.g., rings [EN95]) to
compute a cutoff [EK00] up to which the model needs to be verified in order
to guarantee the property to hold for all models.

Parameterized Timed Systems In addition to the above related work aiming for
untimed models, there exist various, but fewer, publications aiming for parameter-
ized timed systems. One of the first to actually use this terminology was Mahata
[Mah05]. Apart from work with Abdulla [Abd+04] in which they use timed petri
nets for the modeling of parameterized timed systems, they also reason about de-
cidability for parameterized timed systems in general. Abdulla et al. showed that
reachability analysis for timed networks with only a single clock per process is
decidable [AJ03]. However, when increasing the number of clocks the reachability
question becomes undecidable [ADM04].

Various other works exist that consider parameterized timed systems. Brut-
tomesso et al. [Bru+12] and Carioni et al. [CGR10] employ SMT-encodings in a
decidable fragment in the theory of array for verification. Astefanoaei et al. [Ast+15]
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combine locally computed invariants in order to yield invariants for all models. It
builds upon the Small Model Theorem of Pnueli transferred to the domain of hybrid
automata by Johnson et al. [JM12]. For their own approach, Johnson et al. em-
ploy Pnueli’s Project-Abstract-Procedure in a fixpoint computation that searches
an inductive strengthening or a counterexample for a fixed number of processes.
With its usage of the small model theorem, this work is closest to our approach. As
explained above, our Termination Theorem is similar in that is computes a cutoff up
to which size the models have to be considered. The main difference, however, is
the incremental nature of our theorem, as its applicability to the current candidate
formula is checked every cycle.

4.9 Summary

The technique presented in this chapter is capable of verifying safety properties for
parameterized timed systems given as networks of timed automata. To this end, we
employ an incremental workflow that verifies the safety property for models of a
fixed size, starting with the smallest one possible. Using the inductive strengthening
computed during this verification, we try to reason about the entire parameterized
system. If this step fails, the next cycle of the workflow is started with the next larger
model. Otherwise, the reasoning in form of our Termination Theorem could be
applied and we successfully verified the safety property for the entire parameterized
timed system, i.e., for all its models with any number of timed automata.

The ability to reason about an entire parameterized system is of high value, as
many mutual exclusion algorithms and peer to peer protocols can be modeled as
such a system. The benefit is that properties for these algorithms or protocols can
be checked for any number of processes executing them. It is a vital aspect when
dealing with adaptive systems, as is the case in the context of Industry 4.0. Using
our technique allows the verification of the entire parameterized timed system. As
an example for the application context, consider its usage during the design phase,
which allows the safe reconfiguration of the system during lifetime without the need
for further verification. The addition or removal of one of the processes that execute
the mutual exclusion algorithm or protocol has already been proven to be safe. This
a priori verification of the entire system is a vital aspect when dealing with adaptive
and scalable systems.

In the following chapter, we will relax some of the restrictions imposed on the
models allowed in the presented approach. Our technique will, thus, be applicable
to an even larger set of systems, which will greatly improve its practicality.



5
Verification of Extended
Parameterized Timed Systems

With most of today’s systems being safety critical, model-based design processes offer
a structured procedure to ensure a certain quality. They allow the formal modeling
and verification of properties during the design phase of a system. However, during
this phase, the models might be repeatedly reconfigured until a final design is found.
In addition, such reconfigurations may also occur at lifetime of the system, e.g.,
due to self-adaptation. Since the system’s behavior might change unexpected, these
reconfigurations raise the need to redo verifications that have already been done.

In such a setting, a rerun of the verification from scratch is not efficient. We have,
thus, proposed to reuse the result from the previous verification run. In the previous
chapter, we have successfully introduced an incremental technique that follows
this paradigm for parameterized timed systems modeled via a timed automaton
template. It can be applied for various mutual exclusion algorithms or peer to peer
protocols. Its benefit is the verification of the safety property for systems with an
arbitrary, but fixed number of processes executing such an algorithm. Considering
a running system of such processes, the system is safe (w.r.t. the verified safety
property) irrespective of the number of processes. In particular, it implies that a
reconfiguration of the system by adding or removing a process is safe and does not
require a new verification run. This approach enables an a priori verification of the
entire system and, thereby, avoids online verifications during lifetime.

In this chapter, we will relax some restrictions imposed on the models for
which our technique can be employed to verify safety properties. We broaden
the parameterized timed systems that were considered in the previous chapter
(∀n ∈ N : [P1|| . . . ||Pn]). Up to now they consisted of a parameterized number n
of instantiations of a process P, which introduced a symmetric state space. The
extended parameterized timed systems (∀n ∈ N : [S|| . . . ||R||P1|| . . . ||Pn]) now
additionally include a finite number of extra processes S to R. We also permit a
restricted sort of synchronization. As an example, this extension allows to model

117
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an additional communication medium, e.g., a bus. This relaxation provides for a
broader applicability of the technique.

Up to now, the models were created as networks of timed automata, where the
automata are instances of a timed automaton template. The size of the model was
given as parameter denoting the number of automata.

In the extended formalism, an additional, fixed number of extra timed automata
accompany the parameterized number of automata instantiated from the template.
These extra automata allow for the modeling of components associated with the
parameterized system, e.g., a communication medium or a server in combination
with the parameterized number of timed automata modeling clients. Furthermore,
we allow a limited sort of synchronization between the timed automata via channels
with the restriction that at most one of the symmetric automata must be involved in
the synchronization.

In the following, we provide the updated definitions used for the models. Af-
terwards, we redefine the considered swap operations that are used to define the
intended notion of symmetry. We briefly recall the workflow and give the proof for
our Termination Theorem, before concluding this chapter with a short experiment
using one such extended model specifying a gate and controller for a train crossing
with an arbitrary number of trains. Note, that the previous chapter is a special case
of the formalism introduced below. When considering models without extra timed
automata and without synchronization, we receive the formalism and notion of
symmetry as before.

We start with the redefinition of the employed models.

5.1 Extension of the Modeling Approach

The models considered in this chapter are extensions of those from the previous
chapter. They additionally allow extra timed automata in the network that are
not instantiated from the template, as well as synchronization with the extra au-
tomata. The symmetric automata instantiated from the template can not synchronize
with each other, as this would invalidate our Termination Theorem employed for
the reasoning about the entire parameterized timed system. We first update the
definition of templates in order to reflect the added ability to synchronize edges.
Note, that the employed synchronization channel is equal in each instantiation, i.e.,
the synchronization channel does not depend on the automaton’s identifier. In
addition, synchronization is only allowed with the extra automata, not among the
instantiations of the template. The definition for templates using synchronization is
given below.

Definition 5.1.1 (Timed Automaton Template using Synchronization). Let the set
Cg of global clocks be given, as well as the global set of integer variables IV =

IV 6id ∪IV id as the union of disjoint sets of identifier unaware (IV 6id) and aware (IV id)
integer variables, s.t. IV 6id ∩IV id = ∅. In addition, let Σ be the global set of channels.
A symmetric timed automaton template A(pid) using synchronization defined over glob-
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ally shared Cg, Σ and IV is a tuple A(pid) = (L, l0, C, IV , Σ, Invc, Invi(pid), E(pid))
such that

• pid ∈N≥1 is a unique parameter, called identifier,

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C = Cl ∪Cg is the union of the finite and disjoint sets of local and global clocks
with initial valuation vc

0,

• IV is the finite set of shared integer variables with initial valuation vi
0,

• Σ is the finite set of shared synchronization channels,

• Invc : L→ Φ(C) is a total function of clock invariants, s.t. vc
0 |= Invc(l0),

• Invi(pid) : L→ Ψ(IV , pid) is a total function of integer invariants,
s.t. vi

0 |= Invi(pid)(l0), and

• E(pid) ⊆ L× Σsync ×Φ(C)× Ψ(IV , pid)×Ω(IV , pid)× 2C × L is the set of
edges.

It must hold that ∀e1 ∈ E with synchronization label a? ∈ Σsync, there does not exist
an edge e2 ∈ E with synchronization label a! and vice versa.

As before, instantiating a template A(pid) with unique identifier pid = j ∈N≥1

results in timed automaton Aj. Unlike before, the networks of timed automata
considered in this chapter do not only include instantiations of a template, but
additionally contain a finite number of extra timed automata. These supplementary
automata have to obey the restrictions for identifier aware integer variables IV id
as defined in the previous chapter. Effectively this means that even in the extra
automata the variables that are aware of the automata’s identifier can only be applied
in restricted constraints and assignments (using each automaton’s own identifier).
Otherwise, the symmetry of the state space, on which our approach is based, could
be destroyed. We formalize our extended formalism with extra automata below.

Definition 5.1.2 (Extended Symmetric Network of Timed Automata). Given x ∈N≥0

extra timed automata A1 to Ax with unique identifiers 1 to x that are defined as
in Definition 2.1.8, but with the restrictions on integer variables IV id as above,
where in each automaton Ai (i ∈ {1, . . . , x}) only instantiated constraints Ψ(IV , i)
and assignments Ω(IV , i) are allowed. Given parameter n ∈ N≥1 and the timed
automaton template A(pid) using synchronization as defined in Definition 5.1.1.
The Extended Symmetric Network of Timed Automata with x + n timed automata is
defined as NTAn = 〈A1, . . . , Ax, Ax+1 . . . , Ax+n〉, where Ai (i ∈ {x + 1, . . . , x + n})
is the instantiation of A(pid) with pid = i.

Note, that the definition of symmetric networks of timed automata in the previous
chapter is a special case of the above redefinition, in which no synchronization is
used and x = 0 extra automata are given.
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In the following, we illustrate the concept of extra automata in the network with
an example first proposed in 1994 [AD94] (here slightly changed).

Figure 5.1: Illustration of the Train-Controller-Gate model

Example 5.1.3. Consider a train crossing that contains a gate actuated by a controller
as depicted in Figure 5.1. Whenever one of a fixed, but arbitrary number of trains is
crossing a sensor, the controller receives the signal approaching. It requires 1 time
unit to send the lowering signal to the gate. The gate needs at most 1 additional
time unit, until the gate is lowered. The train reaches the crossing after at least 3
time units and exits it after at most 5 time units. When exiting, a sensor tells the
controller that the train has exited, which needs up to 1 time unit to signal the gate
that it should raise. This finishing move requires 1 to 2 time units.

Figure 5.2 shows the two timed automata representing the gate (Figure 5.2(a))
and the controller (Figure 5.2(b)), as well as the template that is instantiated to
represent the trains (Figure 5.2(c)). Clearly, no identifier aware integer variable is
needed in this scenario. It does, however, make use of the added synchronization
capabilities introduced in this chapter. As can be seen, all trains use the same
synchronization with the extra automata.

l0

l2

l1

l3

lower?
c:=0

c≤1

raise?
c:=0c≤2

c≥1

(a) Gate

l0

l2

l1

l3

approach?
c:=0

c≤1

c=1
lower!

exit?
c:=0c≤1

raise!

(b) Controller

l0 l1

l2

approach!
c:=0

c≤5

c≥3

c≤5

exit!

cnt:=cnt+1

cnt:=cnt-1

(c) Train Template

Figure 5.2: Train Template and extra timed automata modeling the Controller and Gate

The introduction of extra automata in the models does not comply with our
previous notion of symmetry, as these extra automata can not be swapped with
any other one. Thus, we redefine the intended notion such that it only covers the
instantiations of the template. To this end, the swap operation needs to be adapted.
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5.2 Symmetry

The extra automata introduced above are not instantiated from the template like
all the other automata. They are, thus, not symmetric, i.e., they can not be used
interchangeably and must not be taken into account in the swap operation. The
necessary adaptation to the swap operation is given below. It restricts the swap to
be only applicable to symmetric timed automata, i.e., those that are instantiated
from the same template. As explained, the intuition behind this restriction is that
the symmetric automata can be used interchangeably, while all others can’t.

Definition 5.2.1 (Swap). Let an extended network of timed automata NTAn =

〈A1, ..., Ax+n〉 be given as defined in Definition 5.1.2 with concrete semantics TS =

(S, s0,→). Let A1 to Ax be the extra timed automata and Ax+1 to Ax+n the symmetric
timed automata instantiated from template A(pid) as defined in Definition 5.1.1.
A swap π = swapi,j swaps two timed automata Ai and Aj (i, j ∈ {x + 1, . . . , x + n})
instantiated from A(pid). It changes the state s = ((l1, ..., lx+n), vc, vi) ∈ S into the
state π(s) = ((π(l1), ..., π(lx+n)), π(vc), π(vi)) ∈ S with

• ∀k ∈ {1, . . . , x + n} : π(lk) =


li i f k = j,

lj i f k = i,

lk else.

• ∀c ∈ Cg : π(vc)(c) = vc(c).

• ∀k ∈ {1, . . . , x + n} : ∀c ∈ Cl
k : π(vc)(c) =


vc(ci) i f k = j,

vc(cj) i f k = i,

vc(c) else,
where ci and cj refer clock c in automaton Ai (c ∈ Cl

i ) and Aj (c ∈ Cl
j),

respectively.

• ∀iv ∈ IV 6id : π(vi)(iv) = vi(iv).

• ∀iv ∈ IV id : π(vi)(iv) =


i i f vi(iv) = j,

j i f vi(iv) = i,

vi(iv) else.

Note, that we also use π(m) to denote the identifier of the automaton with which m

has been swapped, formally π(m) =


i i f m = j,

j i f m = i,

m else.

The effect of the swap operation is the same as in the previous chapter. It swaps
the locations of the two automata, the values of their local clocks, as well as values
for identifier aware integer variables that refer to one of the two automata. The
only difference is the restriction to be applied only for symmetric timed automata.
Again, a permutation involving more than two automata being swapped can easily
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be realized via several swap operations in sequence. Note, that the swap operation as
used in the previous chapter is a special case of the adapted one, namely for those
networks that include x = 0 extra automata.

As in the previous chapter, we apply the swap operation to define the intended
notion of symmetry. Apart from the updated operation, the symmetry notion
remains the same. We recall it below.

Definition 5.2.2 (Symmetry of the State Space w.r.t the Symmetric Timed Automata).
Let an extended network of timed automata NTA = 〈A1, ..., Ax+n〉 be given with
concrete semantics TS = (S, s0,→). It is symmetric, if for any swap π (Def. 5.2.1) and
states s1, s2 ∈ S it holds that s1 → s2 with time delay δ and taken edge e of timed
automata Ai (synchronized edges e1, e2 of Ai, Aj) if and only if π(s1)→ π(s2) with
time delay δ and taken edge e of timed automata Aπ(i) (synchronized edges e1, e2 of
Aπ(i), Aπ(j)). Furthermore, it must hold that s = s0 if and only if π(s) = s0.

This definition requires the initial state to be symmetric, as well as paths to be
symmetric. This implies for a state s that is reachable via a path from an initial state,
that all its swapped states π(s) are reachable via the respective swapped paths. Note,
that the notion of symmetry characterizes π to be an automorphism on the transition
system that is the concrete semantics TS (c.f. [Hen+04]). In the Appendix B.1 we
prove that all networks of timed automata created as defined in Definition 5.1.2 meet
this notion of symmetry.

In addition to the adaptation of the above definitions, we need to update the
definition of safety properties. Previously, these were defined over every permutation
of automata in the network. Given a model that includes extra automata, we have to
consider only those permutations that permute symmetric automata instantiated
from the template. The intended notion of a symmetric safety property is, thus,
defined using the adapted definition of the swap operation.

Definition 5.2.3 (Extended Symmetry of a Safety Property). Let an extended network
of timed automata NTA = 〈A1, ..., Ax+n〉 be given with concrete semantics TS =

(S, s0,→). Given any swap π (Def. 5.2.1) and state s ∈ S, a safety property ρ is
symmetric if it holds that s |= ρ if and only if π(s) |= ρ.

This updated notion of symmetry is also reflected in the redefinition of safety
properties. The adapted definition includes all permutations of symmetric timed
automata in the network and, thus, is inherently symmetric in the above sense. First,
we redefine the employed error state specification.

Definition 5.2.4 (Extended Symmetric Error State Specification). Given an error state
specification err = ( ¯lm, φ, ψ) for an extended symmetric network of timed automata
NTAm (Definition 5.1.2), where ψ = ψ0 ∧ ψ1(1) ∧ · · · ∧ ψx+m(x + m) contains pa-
rameterized constraints for the x + m automata. The scaled error state specification for
NTAn (n ≥ m) is defined as errn = (l̄, φ, ψ) with ∀i ∈ {1, . . . , x + m} : l̄[i] = ¯lm[i]
and ∀i ∈ {x + m + 1, . . . , x + n} : l̄[i] = ∗.
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The symmetric error state specification for NTAn is defined as errn
sym = ∃π : errn

π

for permutation π according to the redefined swap operation (Def. 5.2.1) with
errn

π = (π(l̄), π(φ), π(ψ)) being defined as

• ∀i ∈ {1, . . . , x + n} : π(l̄)[i] = l̄[π(i)],

• π(φ) =


π(φ1) ∧ π(φ2) if φ = φ1 ∧ φ2,

(π(x)− π(y)) ./ n if φ = (x− y) ./ n,

π(x) ./ n if φ = x ./ n,

true if φ = true,
where π(x) refers to clock x itself if x ∈ Cg or otherwise refers to the respective
clock in Cl

π(i) if x ∈ Cl
i ,

• π(ψ) = ψ0 ∧ ψ1(π(1)) ∧ · · · ∧ ψx+m(π(x + m)).

As in the previous chapter, we implement the existential quantification by enu-
meration. The application of the redefined swap operation ensures the intended
notion of symmetry within the employed safety properties. There is no need to
redefine the safety properties or the resulting verification, else than using the above
adapted definitions. However, we recall the definitions for symmetric safety proper-
ties and the verification question below for readability reasons.

Definition 5.2.5 (Symmetric Safety Property). Let NTAn be an extended network of
x + n timed automata. The symmetric safety property is defined as ρn = ¬(err1n

sym) ∧
¬(err2n

sym) ∧ . . . for symmetric error state specifications err1n
sym,err2n

sym,. . . .

Verification Question: Given the timed automaton template A(pid) and
a symmetric safety property ρ, does the safety property ρn hold for all
extended networks of timed automata NTAn consisting of n ∈ N≥1

instantiations of the template with x extra timed automata?

In the following, we continue the above Train-Controller-Gate example and
illustrate the updated definitions.

Example 5.2.6. Let the above example be given with a controller and a gate guarding
a train crossing with a fixed, but arbitrary number of trains. The safety property,
which we are interested in, specifies that when a train is in the crossing (location l2
of the Train automaton), then the gate has to be lowered entirely (location l2 of the
Gate automaton). In other words, an undesired error occurs if the train automaton is
in location l2, but the gate automaton is in a location distinct from l2. This fact can be
specified in three error state specifications, namely err1 = ((l0, ∗, l2), true, true) and
err2 = ((l1, ∗, l2), true, true) and err3 = ((l3, ∗, l2), true, true). They are defined over
m = 1 symmetric automata. The scaled versions for n = 3 symmetric automata are
err13 = ((l0, ∗, l2, ∗, ∗), true, true) and err23 = ((l1, ∗, l2, ∗, ∗), true, true) and err33 =

((l3, ∗, l2, ∗, ∗), true, true).
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Using enumeration, the symmetric specifications are given below.

err13
sym =((l0, ∗, l2, ∗, ∗), true, true)

∨((l0, ∗, ∗, l2, ∗), true, true)

∨((l0, ∗, ∗, ∗, l2), true, true)

err23
sym =((l1, ∗, l2, ∗, ∗), true, true)

∨((l1, ∗, ∗, l2, ∗), true, true)

∨((l1, ∗, ∗, ∗, l2), true, true)

err33
sym =((l3, ∗, l2, ∗, ∗), true, true)

∨((l3, ∗, ∗, l2, ∗), true, true)

∨((l3, ∗, ∗, ∗, l2), true, true)

If any of them is satisfied by a state s, then s is an error state. Trivially, any swapped
state π(s) is also an error state, since all permutations of the error state specification
are considered. The resulting safety property for n = 3 symmetric automata is
ρ3

lowered = ¬err13
sym ∧ ¬err23

sym ∧ ¬err33
sym. Note, that it requires the error state

specification to be scaled for the respective number of symmetric automata.

As can be seen, the adaptations to the formalism and definitions are, in total,
small. Using the redefined symmetry, the incremental workflow from the previous
chapter can be employed unchanged, except that the extrapolation procedure has to
adhere the adapted swap operation, i.e., it only affects literals referring automata
Ax+1 to Ax+n. The incremental workflow including the optimizations as proposed
in the previous chapter can be found in Figure 5.3.

Using the adapted extrapolation procedure, the Termination Theorem holds true
unmodified. We recall it below and give the proof.

Theorem 5.2.1 (Termination Theorem). Given the SMT-formula ‖F‖ representing an
inductive strengthening F of ρn for NTAn. If ‖F‖exp(n+1) is an inductive strengthening of
ρn+1 for NTAn+1, then ‖F‖exp(n+2) is an inductive strengthening of ρn+2 for NTAn+2.

In the following, we provide the proof of correctness. The referred lemmata can
be found in Appendix B.2.
Proof: Assume the contrary, meaning ‖F‖exp(n+2) is not an inductive strengthening
of ρn+2 for NTAn+2, but ‖F‖exp(n+1) is a valid inductive strengthening of ρn+1 for
NTAn+1. At least one of the three properties Initiation, Consecution or Strengthen is
not met by ‖F‖exp(n+2), since it is not a valid inductive strengthening.

We show that each of these three violated properties leads to a contradiction
to the assumption that ‖F‖exp(n+1) is a valid inductive strengthening. Thus, the
theorem holds true.

Let TSn+2 = (Sn+2, sn+2
0 ,→n+2) be the concrete semantics of NTAn+2 and

TSn+1 = (Sn+1, sn+1
0 ,→n+1) be the concrete semantics of NTAn+1.
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Figure 5.3: Optimized workflow

• If Initiation does not hold true for ‖F‖exp(n+2) and NTAn+2, there exists an
initial state s = sn+2

0 that is not a member in the set of states represented by
‖F‖exp(n+2). Clearly, s is not a member of at least one of the permutations
of ‖F‖, as otherwise s would be a member of ‖F‖exp(n+2). We denote this
permutation of ‖F‖ as π(‖F‖). With ‖F‖ being an inductive strengthening
computed by IC3 with Zones for NTAn, it reasons only about n or less of the
symmetric timed automata Ax+1 to Ax+n. Thus, the permutation π(‖F‖) also
only reasons about n or less symmetric timed automata in Ax+1 to Ax+n+2. In
consequence, there exist at least two symmetric timed automata that are not
referred in π(‖F‖). Either the timed automaton Ax+n+2 is among these or not.

– If Ax+n+2 is not referred in π(‖F‖), then we know that π(‖F‖) is a
conjunct in ‖F‖exp(n+1). In addition, Lemma B.2.7 guarantees that the
reduced state (Def. B.2.1) s|n+1, in which the location and values of local
clocks of Ax+n+2 are discarded, is not a member of π(‖F‖). It is, thus, not
a member of the set of states represented by ‖F‖exp(n+1). Furthermore,
Lemma B.2.5 guarantees the reduced state s|n+1 to be initial in NTAn+1.
Clearly, Initiation of ‖F‖exp(n+1) for NTAn+1 does not hold, which is a
contradiction.
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– If Ax+n+2 is referred in π(‖F‖), we deduce the same result using a
swap. Since Ax+n+2 is referred in the formula, there exist two symmetric
automata Ax+i and Ax+j (i 6= j ∈ {1, . . . , n + 1}) that are not. We use the
swap π1 that swaps automata Ax+n+2 and Ax+i. As a result, we know
that π1(π(‖F‖)) is a conjunct of ‖F‖exp(n+1) as it does not reason about
Ax+n+2. Lemma B.2.1 states that π1(s) is not a member of π1(π(‖F‖)).
Lemma B.2.7 guarantees that the reduced state (Def. B.2.1) π1(s)|n+1, in
which the location and values of local clocks of Ax+n+2 are discarded,
is not a member of π1(π(‖F‖)). Thus, π1(s)|n+1 is not a member of
‖F‖exp(n+1). Furthermore, with Lemma B.1.1, we know that π1(s) is still
initial and Lemma B.2.5 guarantees the reduced state π1(s)|n+1 to be
initial in NTAn+1. Clearly, Initiation of ‖F‖exp(n+1) for NTAn+1 does not
hold, which is a contradiction.

In summary, we have reached a contradiction in both cases.

• For Strengthen, a similar argumentation can be carried out as above. There
exists a state s ∈ Sn+2 that is a member of ‖F‖exp(n+2), but violates the safety
property ρn+2. Since the symmetric safety property ρn+2 is violated, one of the
symmetric error state specification has to be satisfied. The symmetric error
state specification is a disjunction of all permutations of the scaled specification
for m ≤ n symmetric timed automata. Thus, one of these permutations must
be satisfied. Let errn+2

π be the respective specification. Again, we split the
proof into two cases depending on whether the automaton Ax+n+2 is referred
in errn+2

π or not.

– If Ax+n+2 is not referred in errn+2
π , we know that this specification is

part of the symmetric safety property ρn+1. Lemma B.2.8 states that the
reduced state s|n+1 satisfies errn+1

π and, thus, violates ρn+1. Furthermore,
Lemma B.2.6 states that s|n+1 is a member of ‖F‖exp(n+1). Thus, Strengthen
of ‖F‖exp(n+1) does not hold for NTAn+1, which is a contradiction.

– If Ax+n+2 is referred in errn+2
π , we deduce the same result using a swap.

With m ≤ n symmetric timed automata referred in errn+2
π , we know

that at least two automata Ax+i and Ax+j (i 6= j ∈ {1, . . . , n + 1}) exist
that are not referred. We use the swap π1 that swaps automata Ax+n+2

and Ax+i. By symmetry, we know that errn+2
π1(π)

is satisfied by π1(s).

Corollary B.2.3 states that errn+2
π1(π)

does not specify values for Ax+n+2.
Using Lemma B.2.8, we know that the reduced state π1(s)|n+1 satisfies
errn+1

π1(π)
. Thus, π1(s)|n+1 violates ρn+1. Furthermore, Corollary B.2.2

states that π1(s) is still an element in ‖F‖exp(n+2). With Lemma B.2.6,
π1(s)|n+1 is a member of ‖F‖exp(n+1). Thus, Strengthen of ‖F‖exp(n+1)

does not hold for NTAn+1, which is a contradiction.

In summary, we have reached a contradiction in both cases.
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• If Consecution does not hold, there exist states s, t ∈ Sn+2, s.t. (s, t) ∈→n+2

via one or two edges. By the definition of synchronization in timed automata
templates, we know that at most one of the edges is taken in automata Ax+1

to Ax+n+2. Assume w.l.o.g. that this edge is not taken in Ax+n+2. This
assumption holds true due to symmetry, as otherwise, we could use a swap
that swaps the automaton Ax+n+2 with any automaton in Ax+1 to Ax+n+1

(Lemmata B.1.2, B.1.3 and B.1.4). The resulting swapped states would fulfill
the above assumption, while still violating consecution (Corollary B.2.2).

Since the combination of s and t violates consecution, t is not a member of
‖F‖exp(n+2). Clearly, t is not a member of at least one of the permutations
of ‖F‖. We denote this permutation of ‖F‖ as π(‖F‖). With ‖F‖ being an
inductive strengthening computed by IC3 with Zones for NTAn, it reasons
only about n or less of the symmetric timed automata Ax+1 to Ax+n. Thus,
the permutation π(‖F‖) also only reasons about n or less symmetric timed
automata in Ax+1 to Ax+n+2. In consequence, there exist at least two symmetric
timed automata that are not referred in π(‖F‖). Either the timed automaton
Ax+n+2 is among these or not.

– If Ax+n+2 is not referred in π(‖F‖), then we know that π(‖F‖) is a
conjunct in ‖F‖exp(n+1). In addition, Lemma B.2.7 guarantees that the
reduced state (Def. B.2.1) t|n+1, in which the location and values of local
clocks of Ax+n+2 are discarded, is not a member of π(‖F‖). It is, thus, not
a member of the set of states represented by ‖F‖exp(n+1). Lemmata B.2.9,
B.2.10 and B.2.11 guarantee that edges can still be taken for the reduced
states, i.e., (s|n+1, t|n+1) ∈→n+1. Furthermore, Lemma B.2.6 guarantees
the reduced state s|n+1 to be a member of ‖F‖exp(n+1). Clearly, Consecution
of ‖F‖exp(n+1) for NTAn+1 does not hold, which is a contradiction.

– If Ax+n+2 is referred in π(‖F‖), we deduce the same result using a
swap. Since Ax+n+2 is referred in the formula, there exist two symmetric
automata Ax+i and Ax+j (i 6= j ∈ {1, . . . , n + 1}) that are not. Using the
above knowledge that at most one edge is taken in automata Ax+1 to
Ax+n+1, we know that at least one of the two automata Ax+i and Ax+j is
not used in the edges. W.l.o.g assume Ax+i to be the one that is not used.
In consequence, we can use the swap π1 that swaps automata Ax+n+2

and Ax+i. The swapped states still violate consecution using the same
edges as the before (Lemmata B.1.2, B.1.3 and B.1.4). In addition, we
know that π1(s) is still a member of ‖F‖exp(n+2) and that π1(t) is not
a member of ‖F‖exp(n+2) (Corollary B.2.2). For the reduced states, we
conclude the following by taking into account that Ax+n+2 is not referred
in π1(π(‖F‖)) and no edge is taken in automaton Ax+n+2. π1(s)|n+1 is
a member of ‖F‖exp(n+1) (Lemma B.2.6). π1(t)|n+1 is not a member of
‖F‖exp(n+1) (Lemma B.2.7), which includes the permutation π1(π(‖F‖))
that does not reason about Ax+n+2 (Lemma B.2.1). Lemmata B.2.9, B.2.10
and B.2.11 guarantee that the edges can still be taken for the reduced
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states. Clearly, Consecution of ‖F‖exp(n+1) for NTAn+1 does not hold,
which is a contradiction.

In summary, we have reached a contradiction in both cases.

We demonstrate the practicality of the extended approach in the following.

5.3 Experiments

Considering the above example of the train crossing, we have conducted experiments
with two distinct safety properties. The first property ρlowered has been presented
above (Example 5.2.6) and specifies that the gate has to be closed entirely, when a
train is crossing. The second one (ρoccupied) denotes that the crossing is not occupied
for no reason, i.e., the gate is only lowering, if at least one train is approaching or in
the crossing. It is specified via the error state specification err = ((l1, ∗, ∗), true, cnt <
1) using an identifier unaware variable cnt that counts the trains that are not far
away (that are not in location l0).

Our workflow successfully verifies these safety properties. The respective run-
times with and without optimizations are shown in Tables 5.1 and 5.2.

Runtime (s) Verified models NTAn for which n?
No Optimization OOM 1-8

Generalization 8,5 ∀n ∈N

Chockler-Feedback 7,4 ∀n ∈N

Generalization and Chockler-Feedback 3,6 ∀n ∈N
using non-generalized set of clauses

Generalization and Chockler-Feedback 3,6 ∀n ∈N
using generalized set of clauses

Frame1-Feedback 3,0 ∀n ∈N

Generalization and Frame1-Feedback 2,6 ∀n ∈N
using non-generalized set of clauses
Generalization and Frame1-Feedback 2,5 ∀n ∈N

using generalized set of clauses
Both-Feedback 4,8 ∀n ∈N

Generalization and Both-Feedback 3,3 ∀n ∈N
using non-generalized set of clauses
Generalization and Both-Feedback 3,5 ∀n ∈N

using generalized set of clauses

Table 5.1: Verification experiments for the safety property ρlowered and the Train-
Controller-Gate model

As can be seen, both safety properties have been successfully verified within
reasonable time. Again, the optimization of using the Frame1-Feedback has shown
to be a good option.
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Runtime (s) Verified models NTAn for which n?
No Optimization OOM 1-7

Generalization 13,0 ∀n ∈N

Chockler-Feedback OOM 1-9
Generalization and Chockler-Feedback

OOM 1-9
using non-generalized set of clauses

Generalization and Chockler-Feedback
6,2 ∀n ∈N

using generalized set of clauses
Frame1-Feedback 25,7 ∀n ∈N

Generalization and Frame1-Feedback
4,6 ∀n ∈N

using non-generalized set of clauses
Generalization and Frame1-Feedback

OOM 1-7
using generalized set of clauses

Both-Feedback 11,4 ∀n ∈N

Generalization and Both-Feedback
8,7 ∀n ∈N

using non-generalized set of clauses
Generalization and Both-Feedback

OOM 1-7
using generalized set of clauses

Table 5.2: Verification experiments for the safety property ρoccupied and the Train-
Controller-Gate model

5.4 Summary

In summary, the presented extensions to the allowed modeling formalism in our
parameterized setting are valuable in that they significantly increase the modeling
capabilities without a drawback. They allow the modeling of server-client situations,
as well as other effects like a communication medium.

The necessary adaptations were small and we were able to use the overall work-
flow, as well as the Termination Theorem without modifications. The experiments
were successful and promising and emphasize the practicality of the approach.

Using this extended formalism, our incremental workflow enables the verification
of safety properties for a broad number of parameterized timed systems that are
composed of a finite number of auxiliary processes accompanying a fixed, but
arbitrary large number of instantiations of the same process. This extension adds
significant value to our technique. Yet, it’s application area remains the a priori
verification of properties for an arbitrary, but fixed number of equal processes. This
context is in line with the paradigm of Industry 4.0, which facilitates the adaptation
of systems during lifetime. The benefits of our proposed technique for this scenario
are obvious. It avoids an online verification by executing an a priori verification,
which removes the necessity to verify every single reconfigured model, in which the
number of processes has been changed.

Other reconfigurations, however, can not be handled using this technique. We
will examine the effects of general reconfigurations in the following chapter and
give a best-guess approach, as the effects of reconfigurations can not be estimated
easily in general.





6
Inductive Verification of
Reconfigured Models

Timed formalisms are of significant importance for the modeling of today’s systems.
As explained, most of these systems are safety critical and, thus, model-based design
processes are employed to ensure a certain quality. To this end, formal models are
created and properties are verified for these models. During such design procedures,
however, the models might repeatedly be reconfigured, resulting in a need to redo
the verification. These reconfigurations might also occur later on, e.g., if the model
represents an adaptive and self-optimizing system as in Industry 4.0.

As every such reconfiguration changes the state space of the model, the desired
safety properties need to be verified again. Doing this from scratch is very inefficient,
in particular, when considering that the original, similar model has been examined
before.

In the previous two chapters, we have proposed a technique that verifies safety
properties for parameterized timed systems. Within such restricted models, our
technique prevents the costly verification from scratch when dealing with recon-
figurations that change the number of processes. It does so using an incremental
workflow specifically designed for parameterized systems. One of the optimizations
presented for this technique, namely the Feedback-loop, is suitable to be used in a
general setting.

It injects an inductive strengthening computed for the original model into the
verification run of the reconfigured model. By doing so, some of the clauses in the
inductive strengthening are injected into all frames of the IC3 run, or at least into
the frame F1 (see Subsection 4.6.1). Our experiments have shown that this reuse of
clauses successfully prevents the costly rediscovery of some of them and, by doing
so, speeds up the entire verification run.

So far, we have employed this acceleration technique only for symmetric re-
configurations in the setting of parameterized timed systems. In the following,
we will try to utilize its benefits for reconfigured models in general and examine

131



132 CHAPTER 6. INDUCTIVE VERIFICATION OF RECONFIGURED MODELS

the effectiveness in several experiments. We start with a classification of possible
reconfigurations.

Taking into account the generality of models expressible with our formalism
of networks of timed automata (Chapter 2), several types of reconfiguration are
possible as detailed in the following. We characterize reconfigurations of a model
within the following three categories:

• Addition of new parts to the model,

• Deletion of parts of the model,

• Replacement/Modification of parts of the model.

We illustrate these categories below.

Addition Analog to the addition of a symmetric timed automaton as in the previ-
ous chapter, other parts can be added to a model. When considering a network of
timed automata modeling the interaction of several components in the real world,
the addition of an extra timed automaton may represent the addition of a new
component interacting with the others. Furthermore, smaller additions are possible.
An extra location might model a new discrete state of a system, an edge models
additional interaction. Note, that the addition of a part to the model does not always
result in additional behavior, e.g., a constraint added to an edge restricts the existing
behavior.

Deletion In contrast, deleted portions of the model might specify the removal of a
part of the system, a state or interaction. These would be performed via the removal
of an entire timed automaton in the model, or of a location or edge, respectively.
Even smaller changes to the constraints or updates of edges can be considered,
where it should be noted that the removal of a constraint might allow additional
behavior of the model.

As illustrated, the options to modify real-world systems and, in consequence,
their models are diverse. The third category contains reconfigurations that are very
specific as they replace detailed parts of the model.

Replacement In addition to the above mentioned reconfigurations, there exist those
that alter parts of the model without addition or deletion. These reconfigurations
essentially rely on clock or integer constraints being altered, or assignments and
resets being changed. They correspond, for instance, to the adaptation of timing
parameters in the modeled systems.

The above variety of reconfigurations makes the reuse of previous verification
results extremely challenging. In this chapter, we propose a general procedure
to employ these results anyhow. It is heavily based on the Feedback-techniques
presented in the previous chapter, which allow the reuse of several clauses of an
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inductive strengthening computed for the original model in order to speed up the
verification run for the reconfigured model.

Our algorithm presented in Chapter 3 successfully combines the IC3 algorithm
with the Zone abstraction for the verification of safety properties for networks of
timed automata. In case the safety property is invariant, it yields an inductive
strengthening of the safety property as additional outcome. Via an efficient validity
check, the inductive strengthening can easily be checked to guarantee the safety
property’s invariance for the original model. In combination with a reconfigured
model, however, a simple check for validity of the inductive strengthening will
most often fail though the safety property is indeed invariant. The reason is that
the formula is not inductive for the reconfigured model. The failed inductiveness
originates from a changed state space. Depending on the performed reconfiguration,
the change to the state space may be drastic.

In the previous two chapters, this change was anticipated based on the structure
of the models, i.e., the symmetry, via an extrapolation procedure. This procedure
adapts the inductive strengthening as anticipated, s.t. it is close to a valid inductive
strengthening for the reconfigured model. However, due to the large variety of
reconfigurations, the change of state space can not be anticipated in general.

In order to give an intuition why the reuse of a formula might be of benefit even
without an adaptation, consider the following example.

Example 6.0.1. Let the Fischer_U_2 model be given as depicted in Figure 3.1. The
inductive strengthening of the safety property ρ := ¬(cnt > 1) computed by our
algorithm IC3 with Zones is listed in the first column of Table 6.1

Fischer_U_2 Fischer_U_2(2048)
(int1 ≤ 1) (int1 ≤ 1)
∧((int0 6= 0) ∨ (int1 ≤ 0)) ∧((int0 6= 0) ∨ (int1 ≤ 0))
∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0)) ∧(¬l1

0 ∨ l1
1 ∨ (int1 ≤ 0))

∧(¬l2
0 ∨ l2

1 ∨ (int1 ≤ 0)) ∧(¬l2
0 ∨ l2

1 ∨ (int1 ≤ 0))
∧(l1

0 ∨ (int0 6= 1) ∨ (int1 ≤ 0)) ∧(l1
0 ∨ (int0 6= 1) ∨ (int1 ≤ 0))

∧(l2
0 ∨ (int0 6= 2) ∨ (int1 ≤ 0)) ∧(l2

0 ∨ (int0 6= 2) ∨ (int1 ≤ 0))
∧((c1

0 ≤ 1024.0) ∨ (int0 6= 1) ∨ (c2
0 > 1024.0)) ∧((c1

0 ≤ 2048.0) ∨ (int0 6= 1) ∨ (c2
0 > 2048.0))

∧((c2
0 ≤ 1024.0) ∨ (int0 6= 2) ∨ (c1

0 > 1024.0)) ∧((c2
0 ≤ 2048.0) ∨ (int0 6= 2) ∨ (c1

0 > 2048.0))

Table 6.1: Inductive strengthenings computed for the models Fischer_U_2 and the
reconfigured model Fischer_U_2(2048) as depicted in Figure 6.1

When changing the timing parameters of the Fischer algorithm, a reconfigured
model might look as depicted in Figure 6.1. It equals the original model, except that
the waiting times that the algorithm adheres to are now doubled. The corresponding
inductive strengthening for the reconfigured model computed without the reuse of
the original inductive strengthening is listed in the second column of Table 6.1.

Clearly, the two inductive strengthenings are similar. In fact, they both consists
of eight clauses and differ only at literals referring the time constants. In particular,
the first six clauses are exactly the same. Thus, the injection of the former inductive
strengthening into the run of our algorithm IC3 with Zones (Chapter 3) to verify the
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cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤2048

c:=0
id=0

c≤2048
id:=1
c:=0

c>2048
id=1

c:=0l0

l3

l1

l2

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤2048

c:=0
id=0

c≤2048
id:=2
c:=0

c>2048
id=2

c:=0l0

l3

l1

l2

Figure 6.1: Reconfigured Fischer model Fischer_U_2(2048) with altered time con-
stants, where all constants 1024 are replaced by 2048

reconfigured model, should prevent the costly rediscovery of these six clauses and,
thus, speed up the verification run.

However, the injection of a previously computed inductive strengthening might
not always be beneficial, as observable in the runtimes depicted in Table 6.2. For
the model Fischer_U_15(2048) with 15 processes, it compares a verification from
scratch as described in Chapter 3 to the one that utilizes the inductive strengthening
previously computed for the original model Fischer_U_15. We show the results for
all three distinct Feedback-techniques presented in the previous chapter (Chockler-
Feedback [Cho+11], Frame1-Feedback, Both-Feedback). All of them are clearly
inferior to a verification from scratch. The reason is that the change in the model is
rather drastic (all time constants are changed) resulting in a significant change of
the state space concerning the time domain. In addition, the ration of clauses that
were of value, i.e., actually occur in the new inductive strengthening computed for
the reconfigured model, is rather small (compared to the 6 out of 8 clauses reused
for Fischer_U_2(2048)).

However, the overall idea of reusing old verification results might be of value in
the general setting even so. Interestingly, in the symmetric setting of the previous
chapters the reuse could be optimized. The employed extrapolation procedure

Runtime (s) Memory (MB)
Verification reconfigured model

140,6 267,8
(from scratch)

Verification reconfigured model
176,8 287,5

with Chockler-Feedback
Verification reconfigured model

245,9 245,1
with Frame1-Feedback

Verification reconfigured model
359,5 261,5

with Both-Feedback

Table 6.2: Comparison of the runtimes for verification from scratch or using the
distinct Feedback-techniques with model Fischer_U_15(2048)
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adapts the original inductive strengthening in order to reflect the reconfiguration,
that is the addition of a symmetric timed automaton. In general, this modification
is not mandatory. In the symmetric setting, however, the results proved to be of
significant value in form of the presented workflow. Hence, we will examine the
feasibility of an adaptation procedure for the general case in the following.

6.1 Adaptation of the Formula

Optimally, an adaptation of the inductive strengthening formula according to the
applied reconfiguration would result in a valid inductive strengthening for a re-
configured model. To illustrate such an optimal approach, consider the following
example.

Example 6.1.1. Consider again the original Fischer_U_2 model and the reconfigured
Fischer_U_2(2048) model as explained in the previous example. They are depicted
in Figures 3.1 and 6.1, where the reconfiguration replaces all time constants 1024 in
the original model by the constant 2048. An optimal adaptation of the formula would
change all time constants according to the reconfiguration, i.e., replace all constants
1024 in the formula by 2048. The resulting formula is a valid inductive strengthening
for the reconfigured model. In fact, it equals the inductive strengthening for the
reconfigured model listed before in the second column of Table 6.1.

We also performed the adaptation with the Fischer_U_15 example above, in
which the reuse of the inductive strengthening was unsuccessful. When comparing
the runtimes of the verifications, it is obvious that the adapted formula improves
on the non-adapted one. The results are shown in Table 6.3, which displays the
runtimes of IC3 with Zones with injection of the adapted inductive strengthening
using the distinct Feedback-techniques. Furthermore, it includes the runtime of
a simple validation of the adapted inductive strengthening as a reference time.
The comparison with Table 6.2 shows a significant improvement over the reuse of
the original (non-adapted) inductive strengthening and over the verification from
scratch.

This example represents an optimal setting, where a valid inductive strength-
ening for the reconfigured model could be produced by adapting the inductive
strengthening for the original model. It is, however, not representative, as many
challenges hinder such perfect adaption in the usual case. This is due to the fact
that the impact of a reconfiguration can hardly be estimated, in particular if the
reconfiguration is more complex. In the following, we propose adaptations to the
formula for the three distinct categories of reconfigurations shown above.

Adaptation to Addition-Reconfigurations The impossibility of an adaptation can
best be observed when considering reconfigurations that include the addition of
parts to the model. In general, an additional timed automaton, as well as additional
edges or locations in existing automata introduce additional behavior in interaction
with the original parts of the model. This means the state space may change in
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Runtime (s) Memory (MB)
Validation of adapted inductive strengthening 1,1 48,4

Verification reconfigured model
36,6 100,0with Chockler-Feedback

(adapted inductive strengthening)
Verification reconfigured model

25,8 82,8with Frame1-Feedback
(adapted inductive strengthening)

Verification reconfigured model
36,7 102,2with Both-Feedback

(adapted inductive strengthening)

Table 6.3: Comparison of the runtimes for validation and verification inject-
ing the adapted formula using the distinct Feedback-techniques with model
Fischer_U_15(2048)

various ways, which can not be estimated without knowledge about any structural
characteristics like symmetry. Thus, a perfect adaptation of the original inductive
strengthening is not feasible in general. For reconfigurations that include the addition
of parts, we are unable to adapt the formula, as we can not estimate the changed
state space. In consequence, the formula remains unchanged with the hope that the
state space has not changed, or at least is similar to the original one.

Adaptation to Deletion-Reconfigurations The same argumentation holds true
when considering reconfigurations including the deletion of parts of the model.
As above, the effect on the state space can hardly be estimated. For illustration
purpose, consider the deletion of a single constraint. Its removal weakens the
restrictions on an edge or location and might allow for additional behavior that
might increase the reachable portion of the state space, s.t. a state violating the
safety property is now reachable. Adapting the inductive strengthening of the safety
property according to these changes in the state space is not feasible. However, when
considering the removal of other parts of a model, e.g., an entire timed automaton,
the formula can, and in fact must, be adapted to reflect this change. It would
otherwise include variables that do not exist in the encoding of the model. Thus, we
adapt the formula as follows.

There might exist literals in some of the clauses of the formula that refer to
deleted parts removed during the reconfiguration. We propose two distinct options
how these literals can be handled.

Definition 6.1.2 (Adaptation to Deleted Parts). Let an inductive strengthening F of
a safety property be computed for an original model NTA. We adapt the formula
‖F‖ concerning parts of the model deleted in a reconfiguration as follows. For each
clause c in ‖F‖ that includes at least one literal referring a nonexistent part (clock,
location or integer variable) in the reconfigured model, we either
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• Delete the entire clause, or

• Delete all disjuncts that refer nonexistent parts in the reconfigured model.

This approach is illustrated in the following example.

Example 6.1.3. Consider a model and a reconfiguration in which a local clock c0

in timed automaton with identifier 1 is deleted. As a result, the respective clock
variable c1

0 must not be used and has to be removed from the inductive strengthening
formula. However, simply deleting the clock variable is not an option, as it would
result in an invalid formula that includes deformed constraints. Considering the
clause l1

0 ∨ (c1
0 ≥ 1) illustrates this issue. Deleting the clock variable c1

0 encoding
clock c0 in timed automaton with identifier 1 results in the invalid formula l1

0 ∨ (≥ 1).
The above presented procedures of deleting the entire clause or only the affected
literals yield distinct results. Either the clause is discarded in its entirety or the
disjunct (c1

0 ≥ 1) is removed resulting in clause l1
0 .

Adaptation to Replacement-Reconfigurations Lastly, reconfigurations that alter
the model by specific replacements of parts offer the best chance to adapt the induc-
tive strengthening accordingly. This is due to the structure of these reconfigurations,
where the model is modified without addition or deletion. Thus, these reconfigu-
rations include the modification of constraints, assignments and sets of clocks to
be reset. The latter two modifications (reset clocks and assignments) are of various
effect and, thus, remain without adaptation of the inductive strengthening formula,
much like the addition or deletion of parts. Changes on constraints, however, can be
handled partly as we will see in the following. Basically, the changes in constraints
that can be handled are those that replace constants. As explained in Chapter 3,
the constraints are incorporated in the predecessor computation within the weakest
precondition computation. To this end, they may be combined with other constraints
(for example in the All-Pairs-Shortest-Paths algorithm for the backwards computa-
tion of the predecessor zone) or be combined with clock resets or assignments (for
integer variables). As a result, the constraints may occur modified or unmodified in
the inductive strengthening, or don’t occur at all. Hence, the chances for a reasonable
adaptation of the formula can be very diverse.

Best Case: Whenever the reconfigured constraint can be uniquely related to parts
of the formula, an adaptation is easy, e.g., whenever all constraints in the model
are unique and occur unmodified in the formula. For illustration, again consider
Example 6.1.1. All constraints in the model are changed and the adaptation of the
formula can, thus, be easily performed by replacing all constants in the formula.
Since all constraints are changed, it does not matter whether the literal (c1

0 ≥ 1024)
refers the invariant constraint of location l1 or the guard constraint of the edge
between locations l1 and l2.

Problematic Mapping: The lack of said knowledge, however, results in the question
which parts of the formula should be replaced. Since no reliable information is given
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about the mapping of constraints in the model to literals in the formula, one can
only guess. We illustrate this problem in the following.

Example 6.1.4. Consider again the original Fischer model (Figure 3.1) and a recon-
figuration that changes only one of the time constants 1024 to 2048, namely the one
in the guard constraint of the edge between locations l1 and l2 in the first timed
automaton. The resulting reconfigured model is depicted in Figure 6.2. The safety
property still holds true based on the invariant constraint in location l1.

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤2048
id:=1
c:=0

c>1024
id=1

c:=0l0

l3

l1

l2

cnt:=cnt+1

id:=0; 
cnt:=cnt-1

id=0 c≤1024

c:=0
id=0

c≤1024
id:=2
c:=0

c>1024
id=2

c:=0l0

l3

l1

l2

Figure 6.2: Reconfigured Fischer model with a single time constant 1024 changed to
2048

Trying to adapt the inductive strengthening according to this change of the single
constant is infeasible. The reason is that it is impractical to identify which literals
will be affected by the reconfiguration since we can not precisely relate a clause to a
specific state.

We overcome this deficit by a best-guess use of the Feedback-loop. Since we do
not know which clauses are affected, we duplicate all those clauses in which we find
the altered constants directly used. Each duplicated clause is adapted according to
the modification. As a result, the adapted inductive strengthening formula includes
the adapted and also the original clauses. All these clauses are used in one of the
presented Feedback-techniques, relying on IC3 and the Feedback-techniques to filter
out non-relevant clauses. We will examine its success in the experiments section.

However, there exist instances, where this best-guess approach does not work.
Whenever the constraints occur in modified form, i.e., combined with other con-
straints or assignments, the above adaptation does not work, as we can not find
literals that include the same constant.

Worst Case: Constraints that occur modified within the formula can not be adapted.
We illustrate this problem with the following example.

Example 6.1.5. Consider the Lemgo model depicted in Figure 3.12. The inductive
strengthening of the safety property found during a run of our algorithm IC3 with
Zones is shown in the first column of Table 6.4.

Clearly, the time constant 8001 is used directly in the formula, as well as in
combination with constant 4000 in the literal (c2

0 − c1
0) > (−4001.0), which uses



6.1. ADAPTATION OF THE FORMULA 139

Lemgo Lemgo(10000)
((c2

0 − c1
0) > (−4001.0)) ((c2

0 − c1
0) > (−6000.0)))

∧(l1
0 ∨ l1

1 ∨ ¬l2
0 ∨ l2

1) ∧(l1
0 ∨ l1

1 ∨ ¬l2
0 ∨ l2

1)

∧(l1
0 ∨ l1

1 ∨ l2
0 ∨ ¬l2

1) ∧(l1
0 ∨ l1

1 ∨ l2
0 ∨ ¬l2

1)

∧(l1
1 ∨ ¬l1

0 ∨ ¬l2
1 ∨ l2

0) ∧(l1
1 ∨ ¬l1

0 ∨ ¬l2
1 ∨ l2

0)

∧((c2
0 > 1000.0) ∨ (c1

0 < 4000.0)) ∧((c2
0 > 1000.0) ∨ (c1

0 < 4000.0))
∧(l1

1 ∨ (c2
0 > 1000.0) ∨ (c1

0 < 2000.0)) ∧(l1
1 ∨ (c2

0 > 1000.0) ∨ (c1
0 < 2000.0))

∧(l2
1 ∨ (c2

0 > 4000.0) ∨ (c1
0 < 8001.0)) ∧(l2

1 ∨ (c2
0 > 4000.0) ∨ (c1

0 < 10000.0))
∧(¬l1

1 ∨ l2
1 ∨ (c2

0 > 4000.0) ∨ (c1
0 < 3000.0)) ∧(¬l1

1 ∨ l2
1 ∨ (c2

0 > 4000.0) ∨ (c1
0 < 3000.0))

∧(¬l2
0 ∨ ¬l1

0 ∨ l2
1 ∨ (c1

0 > 3000.0) ∨ (c2
0 < 4000.0))

∧(¬l1
0 ∨ l2

0)

∧(¬l1
0 ∨ ¬l2

1)

∧(¬l1
0 ∨ (c2

0 < 4000.0))
∧(¬l2

0 ∨ (c1
0 < 10000.0))

∧(¬l1
0 ∨ l2

1 ∨ (c2
0 < 4000.0))

∧(¬l1
0 ∨ ¬l2

0 ∨ (c2
0 < 4000.0))

Table 6.4: Inductive strengthenings computed for the Lemgo model and the recon-
figured Lemgo(10000) model as depicted in Figure 6.3: Clauses occurring in both
formulae (with resp. constants) are displayed at the same row

the combined constant −4001 (4000− 8001). The adaption of the formula would
be feasible in case these combinations of constants were known. However the
computation or a logging of the combinations is infeasible, when considering large
models. Taking into account the All-Pairs-Shortest-Paths algorithm responsible for
the combinations of the constraints, a used constant can theoretically be composed
of n− 1 time constants for models with n clocks. Similar arguments hold true for
constants within integer constraints as they can be composed using several constants
from assignments.

l0 l3

l1 l2

l0 l1

l2

bottleReady?

bottleReady? bottleReady?

bottleReady?

c≤4000

c≤10000

c≤1000
c≥4000
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c≥1000

c:=0

c:=0

c≥10000
c:=0

c≥2000
c:=0

c≥4000
c:=0

c≤4000

c≤3000

bottleReady!

Figure 6.3: Reconfigured model Lemgo(10000) of the interaction between a conveyor
belt (right) and a picker arm (left)

Consider the reconfiguration of the Lemgo model that replaces the constant 8001
by 10000. It might specify a change in the smart factory that the conveyor belt runs
in an energy saving mode and is, thus, slower. As explained before, the inductive
strengthening of the safety property for the original model does also include the
time constant 8001 indirectly. Thus, the formula can hardly be adapted entirely in
order to reflect the reconfiguration.
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The second column of Table 6.4 shows the inductive strengthening computed
for the reconfigured model. A comparison with the original formula shows the
distinctiveness of the composed constant in the first clause. In addition, it can
be seen that the rest of the formula is also different due to diverging runs of the
algorithm.

Counterexample Trace: Finally, we have to take into account that reconfigurations
are able to alter the state space, s.t. a previously invariant safety property does not
hold true any longer. In such cases, the verification using IC3 with Zones will find a
counterexample trace. As in the other examples without a counterexample trace, the
injected clauses are reused to build the internal frame structure of the IC3 algorithm,
ultimately leading to the discovery of the counterexample trace. In the following
experiments section, we will examine whether the use of Feedback-techniques will
be of significant help to find the counterexample trace.

6.2 Approach in Summary

Taking into account the diversity of possible reconfigurations and the impossibility
to estimate their effects on the state space, we propose the following Best-Guess
approach.

1. Store the inductive strengthening computed for the original model.

2. Delete all parts in the formula referring to deleted parts (locations, clocks or
integer variables) that no longer exist in the reconfigured model by

• Deletion of all clauses containing literals that refer the respective parts, or

• Deletion of the disjuncts in the clauses that refer the respective parts.

3. For all constants changed during the reconfiguration, copy the clauses contain-
ing the constant and replace it in the copied clauses.

4. Use one of the three Feedback-techniques proposed in Section 4.6 to inject the
adapted formula.

The presented approach adapts the formula and injects it with the hope to
prevent the costly rediscovery of some of the clauses. To this end, it relies on the
mechanisms of the injection and the IC3 algorithm to filter out irrelevant clauses.

We test this approach in the following using several experiments.

6.3 Experiments

We start with experiments using models we already verified in Chapter 3. In these
experiments, we verified the respective safety properties for models with a distinct
number of timed automata in order to check the scalability of our algorithm IC3
with Zones. We employ the inductive strengthenings computed during these runs in
the following.
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6.3.1 Experiments with Addition

We start with a use-case that does not require adaptation of the found inductive
invariant. We employ the models of the Carrier Sense Multiple Access with Collision
Detection Protocol and the Token Ring FDDI Protocol. We assume the following
scenario. A model was created that represents n stations using the protocol. The
safety property given in Chapter 3 was successfully verified for this model and
the computed inductive strengthening has been stored. At some point, it was
decided that the number of stations it too small and, in consequence, the model is
reconfigured to include n + 1 stations. Since no part of the model is deleted and no
constant has been changed, the inductive invariant remains unadapted. We inject
its clauses into the verification run for the reconfigured model with n + 1 timed
automata.

In our experiments, we used all three Feedback-techniques (Chockler, Frame1
and their combination). In general, all of them are of value for speeding up the
verification for the reconfigured model. The Frame1-technique showed the best
overall performance. Figure 6.4 depicts the reduction of runtime achieved in percent
of the time needed for the original verification from scratch in the CSMA/CD
examples (Subsection 3.5.4). Figure 6.5 shows the respective reduction for the FDDI
models. As can be seen, our technique works well, in particular for the larger models.
It is capable of reducing the runtime by up to 99,5%, or in other words achieves a
speedup of up to 200 times.

6.3.2 Experiments with Deletion

In the following, we examine the utility of the two approaches for adaptation of
the formula that are used whenever parts of the model are deleted during the
reconfiguration. Again, we employ the CSMA/CD and FDDI models. The scenario
is as follows. A model was created that represents n stations using the protocol.
The safety property given in Chapter 3 was successfully verified for this model
and the computed inductive strengthening has been stored. At some point, it was
decided that the number of stations is too large and, in consequence, the model is
reconfigured to include n− 1 stations. As before, we employed all three Feedback-
techniques. We executed the experiments for both options of adaptation, namely the
deletion of entire clauses or of literals. In general, all Feedback-techniques were of
value in both options. The Frame1-Feedback showed the best overall performance.
The results for both options were very similar. In practice, we would prefer the delete
literals option, as it preserves more clauses that could potentially be reused.

We present the reductions of the runtime achieved using the Frame1-Feedback
with this option in Figure 6.6 (CSMA/CD) and Figure 6.7 (FDDI). The concept is
clearly of help, especially for the large models. We achieved a reduction of runtime
by up to 99,7%, or in other words a speedup of up to 330 times.
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Figure 6.4: Reduction of runtime achieved with our presented approach when using
the inductive strengthening computed for NTAn in the verification for a reconfigured
model NTAn+1 of the CSMA/CD-protocol

6.3.3 Experiments with Large Models

The speedup achieved in the previous experiments can be employed to verify
safety properties for models for which verification previously failed. The largest
CSMA/CD and FDDI models for which we could verify the safety property pre-
viously are CSMA/CD_25 and FDDI_18 that include 25 and 18 timed automata
modeling stations, respectively. We apply a cascading approach in order to verify
larger models. To this end, we reuse the inductive strengthenings computed for
CSMA/CD_25 and FDDI_18 in the verification runs for models CSMA/CD_26
and FDDI_19. The inductive strengthenings computed during these verifications
are then injected into the runs for models CSMA/CD_27 and FDDI_20 and so on.

Using this cascading technique, we were able to verify the models CSMA/CD_28
and FDDI_39. These successful verifications are a significant increase. The usage
of our technique in such an cascading way might be useful for many models, for
which the safety property could not be verified previously.
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Figure 6.5: Reduction of runtime achieved with our presented approach when using
the inductive strengthening computed for NTAn in the verification for a reconfigured
model NTAn+1 of the FDDI-protocol

6.3.4 Experiments with Constants

In the following, we examine the value of the adaptation that takes place when a
constant is changed. To this end, we employ the Fischer_U_15 model that has been
adapted as presented in Figure 6.1. The significant value of our adaptation for this
example has been illustrated in Tables 6.2 and 6.3.

In addition, we employ a reconfigured Fischer_U_15 model in which only a single
constant is changed (Figure 6.2). Table 6.5 compares the runtimes of the verification
using the original and the adapted inductive strengthening with the three distinct
Feedback-techniques. Note, that the verification of the reconfigured model from
scratch (without the use of the Feedback-techniques) needed 139,9 seconds. All of
the runtimes using the Feedback-techniques are significantly lower, which speaks in
favor of our method.

The model is reconfigured only slightly, which might be the reason, why the
adaptation does not work as well in this example, as in the one where all constants
were changed (Fischer_U_15(2048)). The Feedback-techniques perform worse using
the adapted inductive invariant. Yet, they significantly outperform a verification
from scratch.

As we can see, an adaptation of the formula is not strictly necessary. In fact, in
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Figure 6.6: Reduction of runtime achieved with our presented approach when using
the inductive strengthening computed for NTAn+1 (with deleted literals) in the
verification for a reconfigured model NTAn of the CSMA/CD-protocol

Runtime (s) using Runtime (s) using
adapted inductive invariant original inductive invariant

Verification reconfigured model
14,1 7,3

with Chockler-Feedback
Verification reconfigured model

9,6 5,3
with Frame1-Feedback

Verification reconfigured model
14,4 7,5

with Both-Feedback

Table 6.5: Comparison of runtimes of our approach with and without adaptation of
the inductive strengthening for the Fischer_U_15 model reconfigured only by the
change of a single time constant in the first automaton as depicted in Figure 6.2



6.3. EXPERIMENTS 145

0

20

40

60

80

100

2 5 10 15 17

R
u
n
ti
m

ec
in

c%

Numbercofctimedcautomata

Deletion:cFDDIcmodels

VerificationcusingcFrame1-Feedback
Verificationcfromcscratch

Figure 6.7: Reduction of runtime achieved with our presented approach when using
the inductive strengthening computed for NTAn+1 (with deleted literals) in the
verification for a reconfigured model NTAn of the FDDI-protocol

this example the Feedback-techniques work worse with an adapted formula than
with the original one. This setback might be due the overhead of adaptation and,
consequently, having more clauses to be injected. Furthermore, the considered
reconfiguration is very small and, thus, the original inductive strengthening might
be closer to a valid inductive invariant for the reconfigured model. Nevertheless, for
other models and reconfigurations the adaptation procedure might be of significant
value as can be seen in the experiment with the Fischer_U_15(2048) model (Tables 6.2
and 6.3). The difference between both Fischer examples is the level of change. With
increased level of change in a reconfiguration, the need for adaptation of the formula
is increased, too. Thus, for small reconfigurations, an adaptation might not be
necessary. For large reconfiguration, however, it seems to be of benefit.

We have executed an additional experiment to check the effects on smaller
models. Table 6.6 shows the same comparison as Table 6.5 for the reconfigured
model Lemgo(10000) (Figure 6.3). The runtimes are averages over 100 runs due to
imprecisions in the small runtime.

Clearly, the runtimes differ not that much for smaller models. Thus, the effect
of an adaptation of the formula is hardly visible. Yet, the improvement over a
verification from scratch, needing 0,83 seconds in average, is visible. Thus, our
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technique can be of value even for such small models. The best acceleration, however,
is achieved with large models, as the overhead of preprocessing the model and the
injection of the formula is negligible there.

In summary, we can state that the technique presented in this chapter is of value
for the acceleration of verifications for reconfigured models. There exist models
and reconfigurations, where the technique works very well and others, where it
does not. When considering models with small reconfigurations, an adaptation of
the formula might be too much overhead. In contrast, when the reconfiguration
introduces a large change to the state space, then an adaptation of the formula is
strongly encouraged.

6.3.5 Counterexample Experiment

In this last experiment, we examine the utility of our approach in matters of coun-
terexamples. To this end, we again consider a reconfiguration to the Lemgo model.
In this setting, the time constant 8001 is changed to 7000. The reconfigured model is
shown in Figure 6.8. The reconfiguration is small as only a single time constant has

l0 l3

l1 l2

l0 l1

l2

bottleReady?

bottleReady? bottleReady?

bottleReady?

c≤4000

c≤10000

c≤1000
c≥4000

c≥5000

c≥1000

c:=0

c:=0

c≥7000
c:=0

c≥2000
c:=0

c≥4000
c:=0

c≤4000

c≤3000

bottleReady!

Figure 6.8: Reconfigured model Lemgo(7000) of the interaction between a conveyor
belt (right) and a picker arm (left)

been modified. Its effect, however, is huge considering the given safety property. The
reconfiguration introduces the reachability of an error state, i.e., a state that violates
the safety property. Our technique will, thus, extract a counterexample trace.

Runtime (s) using Runtime (s) using
adapted inductive invariant original inductive invariant

Verification reconfigured model
0,65 0,66

with Chockler-Feedback
Verification reconfigured model

0,71 0,71
with Frame1-Feedback

Verification reconfigured model
0,66 0,67

with Both-Feedback

Table 6.6: Comparison of runtimes of our approach with and without adaptation of
the inductive strengthening for the Lemgo(10000) model
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After the reconfiguration, the conveyor belt can send the signal bottleReady! after
13000 time units. The picking arm, however, still requires up to 14000 time units to be
ready to reasonably process the signal (in location l0). Thus, after a first cycle of both
timed automata, when 13000 time units have passed, the signal may be send allowing
the conveyor belt to reach location l1 for the second time. When receiving the signal,
the picking arm may not be in location l0, but it may subsequently switch over to that
location, resulting in a violation to the safety property ρ := G¬((l0, l1), true, true).
This sequence models a situation where the picking arm has missed a bottle.

As can be seen, this small reconfiguration provides for a counterexample trace
violating the property, which previously held true in the unchanged model. Each
reconfiguration alters the state space and without an actual verification it is hard to
determine the effects.

We have examined the runtime when injecting the adopted inductive invariant
into the verification run for the reconfigured model. As can be seen, it is only of
small help. Table 6.7 shows the results, which are averages over 100 runs due to
imprecisions in the small runtime.

Runtime (s) Memory (MB)
Verification without Feedback-technique

0,68 62,81
(from scratch)

Verification reconfigured model
0,64 63,51

with Chockler-technique
Verification reconfigured model

0,65 69,61
with Frame1-technique

Verification reconfigured model
0,65 65,60

with Both-technique

Table 6.7: Runtimes of the verification for the reconfigured model Lemgo(7000) that
includes a reachable error state violating the safety property

Yet, this example shows that our technique can also be applied when the recon-
figuration introduces a violation of the safety property.

In general, the utility of our approach is very much dependent on the employed
models, reconfigurations and safety properties. Nevertheless, our experiments show
that it is a promising option to accelerate verifications for reconfigured models.

6.4 Related Work

To the best of our knowledge, there does not exist related work that is directly
concerned with the acceleration of verification runs for reconfigured models in the
timed setting.

In the untimed context, the task is often denoted as regression verification or in-
cremental verification. The work closest to ours is the one by Chockler et al. [Cho+11]
employed in Chapters 3 to 6. It uses an inductive invariant computed by IC3 for
the acceleration of a verification for a reconfigured model. To this end, it computes
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the maximum set of clauses of the invariant that is inductive in the changed model.
Our Frame1 method employs the same ideas, but instead of using an inductive
set of clauses, we compute a maximum set of clauses that are inductive relative
to the initial states of the model. Our technique allows to reuse more clauses, as
the condition is weaker. However, these clauses can not be injected into every
frame of the algorithm as is the case in Chockler’s approach. IC3’s propagation
mechanism compensates for this drawback. Both techniques can also be employed
in combination. In addition, a distinctive characteristic of our approach is the added
adaptation of the employed inductive invariant.

Other work employing inductive invariants for the accelerated verification of
changed models was done by Cabodi [Cab+09; CNQ09]. It is concerned with the
computation of inductive invariants as constraints that are hidden in the design or
property. They are used in non-inductive model checking procedures in different
ways, e.g., via constraining the transition relation.

In general, there exist many works in the context of incremental verification or
regression verification. They can roughly be divided into two categories as they
employ distinct strategies, namely to analyze the changes to the model or to reuse
intermediate results. Either way, their aim is to speed up the verification of the
reconfigured model.

Within the first category there are works that restrict the part of the state space
considered in the new verification, e.g., Böhme et al. [BOR13] use partitions. Backes
et al. [Bac+13] use a combination of symbolic execution and static analysis to
compute the partition of the state space that is impacted by the reconfiguration. There
exist several other approaches, e.g., the reduction of the equivalence of programs to
horn constraints, which are afterwards checked by an SMT-solver [Fel+14]. Godlin et
al. [GS13] base their approach for programs on a representation of the procedures by
uninterpreted functions or give an incremental algorithm for fixpoint computation
that takes into account the changes done to the model [SS94].

The works in the second category all employ the strategy of reusing interme-
diate result from the previous verification. Henzinger et al. [Hen+03] reuse a
previously computed abstract reachability tree and check conformance with the
control flow automaton of the changed program. Other employed artifacts are
derivation graphs [Con+05] or hash values for computed reductions [KM89]. Sery et
al. [SFS12] employ function summaries that are over-approximations computed as
Craig Interpolants. Other work by Visser et al. [VGD12] stores and reuses reduced
constraints to avoid solver calls in a symbolic analysis. Using abstract analysis, Beyer
et al. [Bey+13] store the precision of a previous verification for reuse.

Our work definitely lies within the second category, as it reuses previously
computed inductive invariants. In addition, it analyses the reconfiguration in order
to adapt this artifact. It, thus, also partly falls into the other category.
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6.5 Summary

In summary, we have examined the application and potential benefit of the Feedback-
technique for the acceleration of verifications for reconfigured models. We have
shown the diversity of reconfigurations and illustrated their various effects, which
can hardly be anticipated. In consequence, we have given a best-guess approach
to adapt an inductive strengthening computed for an original model in order to
optimize the injection of this formula into the verification run of the reconfigured
model. We have conducted numerous experiments that indicate the practicality
within certain bounds, since the approach works well for reconfigured models that
do not differ too much from their original ones.

From a broader perspective, we conclude that the presented method is a good
starting point, when dealing with reconfigured systems. The method reduces the
effort during online verification that is generated by models being changed during
their lifetime. It can, furthermore, also be applied for reconfigurations during the
design process. It it of practical value, even if the benefit of it might be small for
some instances.





7
Conclusion

This thesis addressed the formal verification guaranteeing the absence of erroneous
behavior in real-time systems.

As explained in the first chapter, an increasing number of today’s systems is
timing-based, e.g., relies on real-time communication or operating systems. In
addition, many of these systems are safety critical such that their faulty behavior
results in danger to life or production value. In order to avoid these hazards, model-
based design processes are employed, in which the systems can be checked for
erroneous behavior. To this end, models of the systems are build during the design
phase. These models represent the behavior of the systems and can be checked for
reachability of erroneous states. In this thesis, we employed the modeling formalism
of networks of timed automata, as it is one of the most common real-time formalisms.
The undesired error states are specified as safety properties, which express that an
error state should not be reachable.

Within the last 25 years, an enormous amount of research has been carried out
in order to verify safety properties for timed automata. There are sophisticated
tools available that are extremely efficient in answering such verification questions.
Yet, there exist shortcomings in these approaches, most notably the enormous need
for memory. As a result, there are instances in which these tools run easily out of
memory. This issue affects mostly large models that include many timed automata.
Unfortunately, the systems that require formal real-time verification are increasingly
complex and progressively interconnected. Their respective models will, thus, bring
up the above issue.

In this thesis, we have proposed a novel combination of techniques in order to
approach the presented problem. To this end, we combined the IC3 algorithm [Bra11]
for the verification of safety properties designed for the hardware domain with the
Zone abstraction designed for real-time formalisms. Both are sophisticated techniques
with important characteristics, which we tried to utilize in their combination. The
former has proven to be very efficient on finite transition systems, both regarding
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runtime and memory requirements. The latter has successfully been employed to
abstract the infinite transition system introduced by the real-time clocks. Chapter 2
presented these foundations to our work, as well as other related work and the
employed formalism of networks of timed automata. In the subsequent Chapter 3,
we presented the combination detailed above. It includes an encoding of the model
as Satisfiability Modulo Theories (SMT)-formulae and, in particular, the integration
of the Zone abstraction into the IC3 algorithm. To this end, we employ weakest
predecessor computation in an additional step that abstracts the concrete states
found via the issued SMT-queries. We have implemented and tested our proposed
approach IC3 with Zones in numerous experiments. The results indicate a good
scalability. Our implementation was not capable to outperform the established tools
in all experiments, but for larger models it showed a promising performance. We
were able to verify several models that the state-of-the-art tool Uppaal could not
verify due to running out of memory. Additional experiments present the benefit
of our encoding and show that our technique is a significant improvement over a
previous approach using the region abstraction [KJN12b].

In Chapter 4, we employed our presented approach IC3 with Zones in an incre-
mental workflow, which enables the verification of even larger models. These models
are special in that they incorporate a notion of symmetry, i.e., all timed automata in
a model are symmetric. This speciality in the structure of the models is the basis for
our incremental workflow, which is capable of verifying the models for any fixed,
but arbitrary large number of symmetric timed automata in the model, denoted a
Parameterized Timed System. We have shown several mutual exclusion algorithms,
which lie within this restricted formalism of symmetric models. Our workflow
starts with the verification of the symmetric safety property for the smallest model
using our IC3 with Zones technique. The outcome of the successful verification is an
inductive strengthening of the safety property, which is reused to reason about all
larger models. To this end, we have proven a Termination Theorem that allows us to
draw conclusions about all larger models in case its premise is fulfilled. Otherwise,
the incremental workflow starts all over with the verification of the next larger model.
We have proposed two optimizations to this approach that alter and reuse the in-
ductive strengthening and tested their utility in several experiments. The results
of these experiments confirm the overall value of our approach, in particular as it
verifies the safety property for the smaller models even if the Termination Theorem
is not applicable. The approach is, thus, a definite improvement to the verification of
the single models and it allows for an efficient verification of parameterized timed
systems, when using the optimizations.

Chapter 5 extended the above technique to models that include synchronization
and a fixed number of extra timed automata accompanying the parameterized
symmetric automata. It is most suitable to model client-server scenarios or peer
to peer protocols, that require the communication medium to be modeled as well.
We have proven that our Termination Theorem is still valid with the extension and
performed two experiments to show the practicality. As in the previous chapter, the
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approach works best using the proposed optimizations and is of significant value in
direct comparison with the verification of safety properties for fixed models.

One optimization presented in Chapter 4 was a Feedback-loop that injects the
inductive strengthening in a verification run of a reconfigured, i.e., changed model.
To this end, we employed a technique presented in 2011 [Cho+11], and proposed
an additional approach. In Chapter 6, we examined the utility of this Feedback-
technique for reconfigurations in general, not just the addition of a symmetric timed
automaton as before. We explicated the distinct ways of reconfiguring models and
the chances to adapt the inductive strengthening accordingly. As a result, we gave
a sequence of steps that allow the usage of such a Feedback-loop in this general
setting. Our experiments indicate a benefit for some models, but also point out
definite limits. All things considered, the general application of a Feedback-loop can
be considered to be a best-guess approach that might be of help.

In the following, we will discuss the decisions and their effects made during this
thesis.

7.1 Discussion

During the research and writing of this thesis several decisions were made that
influenced the course and characteristics of the presented work. The following
subsection explains these decisions and their reasons and effects. Afterwards, we
list the restrictions of our approaches, before concluding with an enumeration of the
strengths and weaknesses.

7.1.1 Design Decisions

One of our most important design decisions was made concerning the modeling
formalism as detailed below.

Modeling Formalism Our work aims to improve the formal verification of safety
properties in real-time formalisms. We employ the formalism of timed automata as
it is well known and understood. Yet, there exists many, sometimes significantly dis-
tinct, formalizations of timed automata. These offer different modeling capabilities
and drawbacks.

The formalization used in this thesis is close to the one employed in the most
well-known tool for timed automata, namely Uppaal. This decision enables a fast
and easy understanding for those readers that are familiar with Uppaal. One of
the main differences to other formalizations used in the community is the use of
synchronization. Uppaal employs a synchronization feature in a CCS-like fashion,
where there exist a sender that synchronizes with one (handshake synchronization)
or many (broadcast synchronization) receivers. Unlike Uppaal, we do not offer the
latter option. Our formalization does not allow broadcast synchronization. The
reason for this design decision is the SMT-encoding.
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SMT-Encoding The process of encoding the network of timed automata as an SMT-
formula is of vital importance for the performance of all presented techniques in this
thesis. In Section 3.1, we have presented the encoding that is used throughout the
rest of our work. It includes the encoding of all combinations of synchronized edges,
which are computed upfront. This procedure is hardly feasible when encoding
broadcast synchronizations as allowed by Uppaal. For each sender edge, each
possible combination of receiver edges has to be considered, i.e., with 0 receivers
enables, 1 receiver enabled and so on. The resulting encoding would easily grow
too large to be handled efficiently by the solver. As a result, we abstained from
including broadcast synchronization into our formalization. Instead, we consider
it as potential future work to find an improved encoding that enables the use of
broadcast synchronization.

The second design decision concerning the encoding is the handling of locations.
As explained in the mentioned section, we encode a location using a unique identifier,
whose boolean representation is encoded using boolean variables. This procedure
has its benefit, as well as a drawback. We illustrated the impact on the generalization
procedure of the IC3 algorithm in the experiments section of Chapter 3. Since each
location of each automaton is encoded using several variables, the generalization
procedure enables the reasoning about several locations of a single automaton at
once. This ability has been a huge benefit when verifying the mutual exclusion
property of the FDDIcount model, which reasons about all locations of the first
automaton with an even location identifier. The drawback of the presented location
encoding is a significantly increased number of variables. As a result, the SMT-solver
might require more time to answer the queries and the generalization procedure of
IC3 has to test an increased set of literals for removal, which also needs additional
time.

As closing design decision, one can also discuss the usage of the IC3 algorithm.

IC3 Algorithm The IC3 algorithm [Bra11] is the basis for our work. Its advantages
are numerous, from its efficiency in time and memory requirements to its output
of an inductive invariant. It has enabled the work as presented in this thesis, in
which it might be replaced only in (part of) the technique presented in Chapter 4
by another algorithm that computes an inductive invariant. However, despite all
these positive aspects, IC3 also has its drawbacks as shown in the experiment section
of Chapter 3. Using the SMT-encoding, it always considers the entire state space
and not just the reachable part, as other techniques do. Thus, the usage of the IC3
algorithm has its benefits and drawbacks, but we believe the advantages outweigh
the disadvantages by far.

In summary, the design decisions we made are of various importance and effect.
In the following, we will discuss the implied application scope and restrictions.
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7.1.2 Application Scope and Restrictions

During the presentations and illustrations of the presented techniques in Chapters 3
to 6, we discussed their applicability and some restrictions. We will briefly recall
and comment on these details below.

IC3 with Zones - Technique Our approach combining the IC3 algorithm with
the Zone abstraction has a broad scope of application. As explained above, the
employed formalism is well known for the modeling of timed systems. We use an
expressive formalization similar to the one employed in Uppaal, which is sufficient
for the modeling of various systems. However, there exist certain restrictions.

Based on our used SMT-encoding, we disallow broadcast communication as ex-
plained before. Furthermore, we did not include boolean variables in our formalism,
as they can easily be mimicked using integer variables. Thus, their integration into
our formalism would not add expressiveness. It might, however, result in a faster
runtime to model boolean variables directly.

Other formalisms also allow for procedures being executed when taking an
edge in an automaton. We did not include such capabilities. They would require a
suitable encoding, which might be a complex task dependent on the structure of the
procedure. An additional obstacle is the weakest predecessor computation, which
must be possible for the considered kind of procedure.

In summary, we conclude that the application scope of our first technique is
rather general, but there exist restrictions that slightly limit the expressiveness. These
restrictions also exist within our other techniques presented in this thesis.

Parameterized Timed Systems - Technique Several additional restrictions apply
for the technique presented in Chapters 4 and 5. Though we relax some of them in
the latter chapter, the application scope is limited.

The main limitation is the restriction to a single template that models a single
parameterized class of processes. As a reason, consider the structure of our incre-
mental workflow underlying the technique. Whenever the verification result for a
model with fixed number of processes could not be used to reason about all larger
models, we restart the main cycle in the workflow with the next larger model. When
dealing with more than one parameterized class, this concept can not be applied
unchanged, as it is unclear which of the parameters should be increased.

Additional restrictions, in particular those on the integer variables, are introduced
to guarantee symmetry of the state space and, thus, ensure the correctness of our
Termination Theorem. In consequence, their relaxation is not desirable.

General Reconfigurations - Technique Considering the last technique proposing
the use of the Feedback-loop for general reconfigurations (Chapter 6), we conclude
that the same application scope and restrictions apply as for the algorithm IC3 with
Zones.

We complete this section with the summary of strengths and weaknesses of the
approaches.
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7.1.3 Strengths and Weaknesses

The techniques presented in this thesis heavily profit from the efficiency of the IC3
algorithm. Our IC3 with Zones approach has shown to verify safety properties for
models that other state-of-the-art tools could not verify. In particular, the verification
in combination with a large reachable state space is promising using our technique.

Furthermore, the algorithm can easily be parallelized in order to gain additional
efficiency. The states that need blocking in the algorithm can be queried in parallel
along with their generalization into a blocking clause. What must be ensured it that
the same state would not be handled twice and that the blocking clauses are always
up to date.

As explained above, an additional strength of our work is the similarity of our
formalism to the one used in Uppaal, which allows an easy use for people that are
familiar with Uppaal.

Our IC3 with Zones approach guarantees termination (under certain restrictions
on the integer variables) and its output is perfectly suitable to be reused. The appli-
cation for this reuse ranges from simple certification scenarios, where a successful
verification has to be proven, to more complex scenarios as detailed in this thesis.

We reuse the inductive invariant computed by our technique to speed up subse-
quent verifications for reconfigured models. These reuse techniques are devised, s.t.
the termination guarantee of our approach still holds true.

In addition, we have applied the reuse capabilities in a setting that allows the
reasoning about an entire parameterized timed system on the basis of verifications
of single models from the system. A positive advantage of our concept is that
the smaller models have been verified, even if the technique was not capable of
reasoning about the entire system, which might happen due to undecidability.

However, the presented techniques do have some deficiencies. Considering the
experiments done in Chapter 3, we conclude that there exist models for which our
technique works worse than other state-of-the-art-tools. One reason, in particular
when considering small models, is the overhead of SMT-encoding and -solving
inherent in our approach. An additional reason is the internal functioning of IC3,
which does not only consider the reachable portion of the state space, but the entire
state space encoded in the SMT-formulae. As a result, our technique works poorly
on models with a large state space of which only a tiny portion is reachable. We
have shown and explained this effect in the experiments of Chapter 3.

These performance issues of the IC3 with Zones approach also influence the
performance of the other two presented approaches. In addition, the technique
proposed in Chapters 4 and 5 are susceptible to a large number of clauses including
many distinct automata, as all permutations have to be computed in the extrapolation
procedure.

Taking into account all these strengths and weaknesses, we conclude that our
techniques work well in many cases, but also fail in some others. These deficiencies
can be regarded as starting point for future work.
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7.2 Future Work

In the following, we list the starting points for future work. We list them separately
for the distinct techniques presented in this thesis.

7.2.1 IC3 with Zones - Technique

There exist several options for improvements and optimizations for the IC3 with
Zones approach. An interesting research question addresses the heuristic employed
for the ordering of literals in the generalization procedure. By determining which
literals might first be deleted and, in consequence, shaping the resulting blocking
clause, the heuristic is of high value for the overall performance of our approach
as shown above. We have shown in the experiments that none of our proposed
heuristics is completely superior. However, there might be a chance to adapt the
used heuristic based on the model to be verified. A course of action for this future
work would be to think about which characteristics of the models can easily be
determined by a static analysis and try to relate these qualities with the performance
of our approach under different heuristics. Additionally, these static characteristics
might be employed to decide between the presented SMT-encoding and adapted
ones, e.g., one without locations being encoded via boolean variables.

Possible future work also concerns the abstract CTIs. As these are generalized
with as few literals as possible, it could be worthwhile to investigate whether a
reduced constraint system might be applicable. Larsen et al. [Lar+97] store zones in
their work as a minimal constraint system. A course of action would be to examine
whether such a minimal constraint system is sufficient for an encoding of an abstract
CTI. As a consequence, the generalization procedure might be facing fewer literals
and would, thus, possibly terminate faster. However, a reduced set of constraints
might also be counterproductive as a missing constraint might hinder the removal
of other constraints and, in the end, result in larger clauses and larger runtime.

Furthermore, there exist several additional research ideas. They vary from
general ideas such as to directly encode an abstract transition system based on zones
to more specialized ideas such as adapted generalization procedures that may apply
widening operators to change bounds on (integer) constraints.

Furthermore, an interesting experiment might be to implement an IC3 variant that
is directed the other way, i.e., it employs forward computation instead of backward
computation. This might be combined with a structural analysis that decides upfront
which direction might be more profitable. In addition, the substitution of some or
all of the SMT-queries by actual successor/predecessor computation might be of
interest. While this replacement might be counterproductive in the generalization
procedure since the efficient usage of the UNSAT-core would be omitted, it might be
worthwhile in other parts of the algorithm, e.g., the strengthenClauses procedure.
Since the error state specifications heavily limit the set of abstract successor states, a
direct computation of predecessors in the mentioned procedure might be beneficial
over the SMT-query with all its overhead.
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Additionally, benefit might be achieved via an extension of the formalism. When
getting rid of the SMT-encoding as proposed before and doing a forward analysis,
the extension of the formalism with broadcast synchronization and procedures can
be easily implemented. Other extensions might be worthwhile, too.

As an idea to tackle the performance of the approach when dealing with large
state spaces with only a small portion being reachable, a combination with a bounded
exploration upfront might be thinkable. The problem in this scenario is the question
in which way the knowledge obtained in the exploration can be injected and used in
a run of the algorithm IC3 with Zones.

In summary, there exist many possible challenges for future work, but it is hard
to estimate which ones might be profitable.

The outcome of most of the proposed future work would also affect our technique
presented for the verification for parameterized timed systems. There exist, however,
also ideas for future work specifically concerned with the latter technique.

7.2.2 Parameterized Timed Systems - Technique

One of the most obvious directions for future work is the extension of the formalism
to include more than one template, i.e., more than one parameterized class of pro-
cesses. The course of action for this idea, however, is not obvious. Our incremental
workflow currently limits the formalism to only a single template. When adding an
additional template, one can not simply increment both numbers of instantiations,
in which case the parameterized timed system would only be verified if all classes
of processes have the same number of instantiations. But when incrementing only
one of the parameters, the other would remain fixed and needs to be incremented
sometime later. Thus, the combination of more than one parameter introduces a lot
of challenges that need to be solved.

As most promising future work we see the following. Other researchers have
applied symmetry to reduce the number of states that need to be explored and
stored via representatives (Symmetry Reduction), e.g., Hendriks et al. [Hen+04].
A similar technique might be applicable, where in the IC3 with Zones run itself,
the found clauses are permuted and all permutations are conjoined to the frames.
It spares the discovery and blocking of symmetric CTIs and could speed-up the
algorithm significantly.

When considering the best-guess approach proposed for general reconfigurations,
we have the following ideas as starting points for future work.

7.2.3 General Reconfigurations - Technique

Considering general reconfigurations of a single time constant is closely related to the
problem of parameter synthesis, that is, for which interval of constants is the system
safe. Our technique can easily be applied to test specific single reconfigurations. So
far, however, it is not suitable to be used for a clever finding of intervals of such. An
interesting research direction would, thus, be the synthesis of such intervals using
our technique.
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Additional future work could examine the usage of the Feedback-technique for
frequent reconfigurations. In these cases, inductive strengthenings are computed
and injected repeatedly. They could be studied to find only those clauses that are
relevant in all the verification runs. Their sole usage might speed up the upcoming
verification runs for the next reconfigurations as the irrelevant clauses are filtered
out.

In summary, there exist many starting points for future work.
We will, finally, conclude this thesis with a small summary.

7.3 Summary

The aim of this thesis was the advancement of timed verification in the context of
model-based design processes and Industry 4.0. We identified the existence of large,
complex models as crucial characteristics of this setting, as well as the existence of
reconfigurations (changes) to the models that require the verification to be redone in
an online fashion during lifetime.

In the thesis, we have introduced a verification technique for timed systems
that combines two existing concepts. Unlike other approaches, it avoids explicit
exploration of the state space by utilization of induction. Due to this distinctiveness
in concept, it has strengths and weaknesses different to existing approaches and is,
thus, a valuable alternative and complement.

We have furthermore presented techniques that are able to cope with reconfigura-
tions introduced during the design phase, e.g., in the model-based design process, or
during the lifetime of a system, e.g., introduced as adaptation and self-optimization.

For a specific class of systems that are parameterized in the number of instantia-
tions of the same process, we proposed a technique to enable a priori verification
of the entire system, irrespective of the actual number of instances. This approach
avoids the need to do online verification for a reconfigured system in which instanti-
ations are added or deleted.

In a final step, we have applied one of the basic ideas of the previous technique
for general reconfigurations. As a result, we proposed a best-guess approach that
significantly accelerates the verification for some reconfigured models, which is a
huge benefit in the setting of online verification.

Thus, in summary, we achieved our goals and delivered work that is a valuable
complement to existing technologies and is of importance for timed verification in
online scenarios.
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Experimental Results

A.1 Runtime and Memory Consumption of Experiments

IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
CSMA/CD_2 0,7 69,9 0,8 67,7 0,1 35,1
CSMA/CD_3 1,6 74,9 1,5 74,9 0,1 35,1
CSMA/CD_4 2,4 69,9 3 72,8 0,1 35,2
CSMA/CD_5 5,5 84,8 5,6 83,7 0,1 35,3
CSMA/CD_6 11,8 94,7 11,7 92,7 0,1 35,3
CSMA/CD_7 16,4 100,5 16,3 93,5 0,1 35,6
CSMA/CD_8 29,3 101,1 37,3 105,8 0,3 36,3
CSMA/CD_9 42,4 109,4 49 111,4 0,8 37,8
CSMA/CD_10 78 112,5 65,8 123,3 2,4 42,2
CSMA/CD_11 116,8 141,6 120,1 146,1 6,6 53,1
CSMA/CD_12 205,4 182,4 185,2 182,2 18,1 111,1
CSMA/CD_13 220,8 183,2 267,1 202,4 48,8 228,1
CSMA/CD_14 351,9 239,4 337,5 222,7 129,4 547,0
CSMA/CD_15 406,8 251,5 323,1 230,8 333,8 1293,2
CSMA/CD_16 513,5 303 524 275 - OOM
CSMA/CD_17 742,7 322,1 674,7 308 - OOM
CSMA/CD_18 839,1 380,9 847,6 383,5 - OOM
CSMA/CD_19 1110,1 469 889,1 380,1 - OOM
CSMA/CD_20 1324,8 510,3 1204 494 - OOM
CSMA/CD_21 1231,9 473,8 1477,5 495,6 - OOM
CSMA/CD_22 2187,7 617,8 1536,2 570,1 - OOM
CSMA/CD_23 2105,0 603,8 2068,9 594,6 - OOM
CSMA/CD_24 2665,4 637,8 2665,5 638,4 - OOM
CSMA/CD_25 3203,4 679,3 2840,7 631,8 - OOM
CSMA/CD_26 - OOM - OOM - OOM

Table A.1: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI)
and the Uppaal models of the CSMA/CD communication protocol (e.g. depicted in
Figure 3.4)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
Fischer_U_1 0,5 60,3 0,5 60,3 0,1 35,0
Fischer_U_2 0,9 78 0,9 80,1 0,1 35,1
Fischer_U_3 1,8 95,2 2,2 99,5 0,1 35,1
Fischer_U_4 3,5 100 4,3 108,9 0,1 35,1
Fischer_U_5 4,3 98,7 5,2 110,5 0,1 35,1
Fischer_U_6 10 147,3 9,9 137,7 0,1 35,2
Fischer_U_7 14,1 148,7 15,5 159,2 0,2 35,6
Fischer_U_8 14,1 139,3 22,3 175,1 0,7 36,7
Fischer_U_9 26,6 171,9 35,1 180,2 3,0 40,5

Fischer_U_10 34,4 175,8 33,3 180,5 12,6 53,4
Fischer_U_11 54,2 235,6 61,9 219,9 51,4 110,9
Fischer_U_12 73,2 220,5 83,1 267,4 205,3 300,7
Fischer_U_13 97,4 232,5 90,7 262,5 808,5 901,0
Fischer_U_14 104,9 253,6 144,7 287,2 - OOM
Fischer_U_15 158,1 269,7 176,1 306,8 - OOM
Fischer_U_16 153,9 282,6 208,4 324,9 - OOM
Fischer_U_17 221,7 328,1 226,5 383,2 - OOM
Fischer_U_18 290 355,6 347,6 369,8 - OOM
Fischer_U_19 384,9 421,3 351,7 417,3 - OOM
Fischer_U_20 432,9 382 408,7 403,6 - OOM
Fischer_U_21 418,4 415 546,2 459,3 - OOM
Fischer_U_22 727 497,8 615,6 454 - OOM
Fischer_U_23 690,1 475,5 789,3 563,7 - OOM
Fischer_U_24 714,3 490,1 929,6 559,6 - OOM
Fischer_U_25 887,8 527,3 986,8 623,9 - OOM
Fischer_U_26 1022,6 521,1 1258,6 639,8 - OOM
Fischer_U_27 1190,8 522,8 1406,7 648,6 - OOM
Fischer_U_28 1345,8 592,9 1392,9 716,9 - OOM
Fischer_U_29 1631 652,6 1809,7 749,3 - OOM
Fischer_U_30 2110,4 747,9 2202,5 796,9 - OOM
Fischer_U_31 2060,1 746,8 2561,2 842,7 - OOM
Fischer_U_32 2320,8 763,2 3256,1 860,6 - OOM
Fischer_U_33 3016,2 825,3 2867,8 827,5 - OOM
Fischer_U_34 2978,5 894,6 3634,8 969,2 - OOM
Fischer_U_35 3376,9 899,6 3745,8 953,8 - OOM
Fischer_U_36 3587,8 845,2 4905,9 1040,6 - OOM
Fischer_U_37 4291,7 912,0 4910,9 1103,4 - OOM
Fischer_U_38 4941,2 1079,5 5430,3 1098,6 - OOM
Fischer_U_39 5670,1 1131,4 7856,7 1363,2 - OOM
Fischer_U_40 6302,7 1167,9 8360,4 1350,5 - OOM
Fischer_U_41 7391,9 1200,3 9565,2 1398,8 - OOM
Fischer_U_42 6699,5 1100,7 8415,5 1289,6 - OOM
Fischer_U_43 8034,3 1174,1 9676,7 1306,1 - OOM
Fischer_U_44 8851,7 1184,0 11419,8 1459,3 - OOM
Fischer_U_45 10316,0 1425,4 13345,9 1591,4 - OOM
Fischer_U_46 13116,2 1599,6 13137,1 1570,1 - OOM
Fischer_U_47 15380,4 1691,6 - OOM - OOM
Fischer_U_48 13901,1 1515,9 - OOM - OOM
Fischer_U_49 13420,2 1458,5 - OOT - OOM
Fischer_U_50 18316,5 1793,6 - OOT - OOM

Table A.2: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI)
and the Uppaal models of the Fischer mutual exclusion algorithm (e.g. depicted in
Figure 3.1)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
FDDI_2 1,1 87,2 1,0 87,2 0,1 35,1
FDDI_3 2,1 99,0 2,2 99,1 0,1 35,2
FDDI_4 5,8 128,1 7,3 123,5 0,1 35,2
FDDI_5 10,4 128,5 11,9 129,1 0,1 35,3
FDDI_6 38,8 190,9 26,5 178,1 0,1 35,3
FDDI_7 13,1 129,5 20,1 139,4 0,1 35,4
FDDI_8 13,0 129,7 36,5 160,8 0,1 35,4
FDDI_9 42,1 141,7 135,8 248,4 0,1 35,4
FDDI_10 316,8 369,1 136,0 341,7 0,1 35,5
FDDI_11 346,5 398,1 355,6 396,6 0,2 35,5
FDDI_12 423,6 490,4 401,3 379,1 0,2 35,6
FDDI_13 536,4 504,2 135,0 241,0 0,4 35,6
FDDI_14 857,1 603,3 958,8 726,9 0,6 35,7
FDDI_15 579,7 641,9 1141,3 711,7 0,9 35,7
FDDI_16 486,7 567,9 572,9 659 1,2 35,8
FDDI_17 299,5 461,6 724,7 729,8 2,0 35,9
FDDI_18 150,0 325,6 1689,8 953,8 2,7 35,9
FDDI_19 - OOM 1254,8 899,6 4,3 36,0
FDDI_20 - OOM - OOM 5,5 36,0
FDDI_21 - OOM - OOM 9,1 35,8
FDDI_22 - OOM - OOM 12,1 35,8
FDDI_23 - OOM - OOM 17,4 35,9
FDDI_24 - OOM - OOM 24,8 35,9
FDDI_25 - OOM - OOM 24,2 36,0
FDDI_26 - OOM - OOM 42,0 36,1
FDDI_27 - OOM - OOM 67,1 36,1
FDDI_28 - OOM - OOM 122,1 36,2
FDDI_29 - OOM - OOM 109,0 36,4
FDDI_30 - OOM - OOM 215,2 36,5
FDDI_31 - OOM - OOM 324,4 36,5
FDDI_32 - OOM - OOM 428,0 36,6
FDDI_33 - OOM - OOM 850,2 36,8
FDDI_34 - OOM - OOM 846,9 36,9
FDDI_35 - OOM - OOM 1158,5 36,9
FDDI_36 - OOM - OOM 1556,9 37,1
FDDI_37 - OOM - OOM 1932,4 37,1
FDDI_38 - OOM - OOM 3092,2 37,3
FDDI_39 - OOM - OOM 3430,7 37,3
FDDI_40 - OOM - OOM 4832,4 37,4
FDDI_41 - OOM - OOM 8229,8 37,6
FDDI_42 - OOM - OOM 9196,0 37,9
FDDI_43 - OOM - OOM OOT -

Table A.3: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the Uppaal models of the FDDI token ring protocol (e.g. depicted in Figure 3.5)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
Fischer_B_1 0,5 65,7 0,5 65,0 0,1 34,7
Fischer_B_2 6,7 106,6 5,9 97,5 0,1 34,8
Fischer_B_3 390,3 287,3 512,5 329,6 0,1 34,8
Fischer_B_4 11823,1 956,5 17572,2 1082,8 0,2 35,4
Fischer_B_5 OOT - 659,9 474,3 17,8 43,7
Fischer_B_6 OOT - OOT - 16212,9 326,1
Fischer_B_7 OOT - OOT - OOT -

Table A.4: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the models of the Fischer mutual exclusion algorithm from Bruttomesso [Bru+12]
(e.g. depicted in Figure 3.7)

IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
Lamport_B_1 0,3 64,7 0,5 64,6 0,1 34,7
Lamport_B_2 5,3 117,7 5,2 117,7 0,1 34,7
Lamport_B_3 116,5 185,6 116,6 185,4 0,1 34,7
Lamport_B_4 3764,9 490,9 3761,7 490,3 0,1 35,5
Lamport_B_5 OOT - OOT - 0,5 40,5
Lamport_B_6 OOT - OOT - 5,3 78,8
Lamport_B_7 OOT - OOT - 48,7 394,2
Lamport_B_8 OOT - OOT - - OOM

Table A.5: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the models of the Lamport mutual exclusion algorithm from Bruttomesso [Bru+12]
(e.g. depicted in Figure 3.8)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
Lamport_S_1 0,5 68,6 0,5 68,6 0,1 34,7
Lamport_S_2 1,1 79,8 1,2 79,8 0,1 34,7
Lamport_S_3 2,4 101,9 2,4 101,9 0,1 34,7
Lamport_S_4 4,2 100,7 4,4 100,7 0,1 34,9
Lamport_S_5 13,4 106,5 13,3 106,7 0,1 35,4
Lamport_S_6 12,6 113,3 12,7 113,2 0,4 38,1
Lamport_S_7 22,7 138,7 22,6 138,4 2,3 51,2
Lamport_S_8 58,0 130,0 58,9 129,8 12,9 112,7
Lamport_S_9 80,2 135,7 79,9 135,8 71,7 427,8
Lamport_S_10 85,9 154,1 85,9 154,2 392,5 1844,1
Lamport_S_11 469,9 204,8 471,5 205,3 - OOM
Lamport_S_12 572,9 246,3 567,9 244,7 - OOM
Lamport_S_13 477,0 221,1 478,6 221,5 - OOM
Lamport_S_14 1734,3 351,1 1735,7 350,8 - OOM
Lamport_S_15 267,0 199,5 267,6 199,9 - OOM
Lamport_S_16 12639,2 773,6 12654,1 772,8 - OOM
Lamport_S_17 5567,5 469,0 5550,6 463,4 - OOM
Lamport_S_18 6713,9 590,0 6743,7 590,3 - OOM
Lamport_S_19 OOT - OOT - - OOM

Table A.6: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the models of the shrunk Lamport mutual exclusion algorithm (e.g. depicted in
Figure 3.10)

IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
ShavitLynch_B_1 0,7 81,6 0,7 81,6 0,1 34,8
ShavitLynch_B_2 17,3 127,3 29,6 144,9 0,1 34,8
ShavitLynch_B_3 12603,7 1028,7 3870,3 599,1 0,1 34,9
ShavitLynch_B_4 2194,2 633,1 2626,1 665,3 0,3 35,7
ShavitLynch_B_5 OOT - OOT - 28,5 46,8
ShavitLynch_B_6 OOT - OOT - OOT -

Table A.7: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI)
and the models of the Shavit-Lynch mutual exclusion algorithm from Bruttomesso
[Bru+12] (e.g. depicted in Figure 3.9)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
ShavitLynch_P_1 0,6 69,1 0,5 69,1 0,1 34,7
ShavitLynch_P_2 9,9 135,4 10,7 141,7 0,1 34,8
ShavitLynch_P_3 149,5 203,6 208,0 215,7 0,1 34,8
ShavitLynch_P_4 3091,8 409,8 4425,3 457,8 0,1 34,8
ShavitLynch_P_5 OOT - OOT - 0,1 34,9
ShavitLynch_P_6 OOT - OOT - 0,1 35,0
ShavitLynch_P_7 OOT - OOT - 0,2 35,5
ShavitLynch_P_8 OOT - OOT - 1,0 36,8
ShavitLynch_P_9 OOT - OOT - 4,5 40,9
ShavitLynch_P_10 OOT - OOT - 18,8 54,6
ShavitLynch_P_11 OOT - OOT - 76,7 113,4
ShavitLynch_P_12 OOT - OOT - 307,8 305,2
ShavitLynch_P_13 OOT - OOT - 1218,5 930,4
ShavitLynch_P_14 OOT - OOT - - OOM

Table A.8: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the PAT models of the Shavit-Lynch mutual exclusion algorithm (e.g. depicted in
Figure 3.11)
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IC3 with Zones(LCI) IC3 with Zones(CLI) Uppaal
Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB)
FDDIcount_1 0,4 56,6 0,5 56,6 0,1 34,8
FDDIcount_2 0,7 63,7 0,7 63,7 0,1 34,8
FDDIcount_3 0,6 57,9 0,5 57,9 0,1 34,8
FDDIcount_4 1,4 77,9 1,5 77,9 0,1 34,9
FDDIcount_5 1,7 82,7 2,2 82,8 0,1 34,9
FDDIcount_6 2,4 88,7 4,7 105,0 0,1 35,0
FDDIcount_7 0,8 59,6 0,7 59,7 0,1 35,0
FDDIcount_8 2,6 83,4 2,4 73,7 0,1 35,1
FDDIcount_9 1,9 77,2 2,9 77,5 0,1 35,1
FDDIcount_10 0,9 60,8 1,0 61,1 0,1 35,2
FDDIcount_11 4,4 95,7 7,8 100,6 0,2 35,3
FDDIcount_12 3,3 76,9 7,3 77,3 0,2 35,3
FDDIcount_13 4,7 87,4 6,0 86,3 0,4 35,4
FDDIcount_14 5,6 93,1 7,1 93,4 0,6 35,4
FDDIcount_15 1,7 63,2 1,6 63,1 0,9 35,5
FDDIcount_16 2,0 72,0 3,8 81,1 1,2 35,5
FDDIcount_17 3,8 80,8 4,1 84,0 2,0 35,6
FDDIcount_18 9,1 110,0 16,3 121,5 2,6 35,7
FDDIcount_19 5,2 101,0 6,0 103,8 4,3 35,7
FDDIcount_20 10,6 115,0 10,7 116,1 5,5 35,8
FDDIcount_21 10,2 123,2 5,3 94,1 9,1 35,8
FDDIcount_22 9,5 126,0 11,9 134,0 12,2 36,0
FDDIcount_23 7,7 121,4 14,4 131,8 17,4 36,1
FDDIcount_24 17,7 144,6 31,7 154,0 24,8 36,1
FDDIcount_25 5,7 106,4 11,5 132,7 24,2 36,1
FDDIcount_26 18,0 158,2 30,3 179,0 42,0 36,2
FDDIcount_27 3,7 87,5 3,4 110,0 67,1 36,3
FDDIcount_28 3,9 111,7 3,6 112,5 122,1 36,4
FDDIcount_29 18,9 166,0 23,2 184,2 108,9 36,5
FDDIcount_30 18,4 160,6 30,3 168,1 215,3 36,5
FDDIcount_31 27,4 182,4 81,9 322,7 327,6 36,7
FDDIcount_32 3,8 111,9 4,3 112,2 428,3 36,7
FDDIcount_33 16,1 185,3 29,3 214,3 851,3 36,9
FDDIcount_34 18,5 193,9 31,9 241,6 846,9 37,0
FDDIcount_35 8,4 141,3 10,1 186,7 1158,9 37,0
FDDIcount_36 27,0 253,7 60,4 318,3 1157,3 37,2
FDDIcount_37 19,3 212,8 24,3 240,0 1932,9 37,2
FDDIcount_38 35,1 300,8 87,7 351,9 3096,8 37,4
FDDIcount_39 29,2 245,6 69,9 347,1 3429,3 37,5
FDDIcount_40 36,0 326,6 64,9 401,0 4833,3 37,5
FDDIcount_41 67,3 378,2 134,1 424,3 8226,1 37,7
FDDIcount_42 31,0 357,1 44,8 383,8 9188,8 38
FDDIcount_43 26,6 302,6 82,8 405,0 OOT -
FDDIcount_44 37,6 390,3 129,5 440,4 OOT -
FDDIcount_45 30,9 367,7 42,0 375,2 OOT -
FDDIcount_46 42,2 395,6 62,6 405,8 OOT -
FDDIcount_47 41,4 400,0 58,8 402,8 OOT -
FDDIcount_48 74,3 374,0 500,7 431,9 OOT -
FDDIcount_49 27,9 375,5 46,8 387,1 OOT -
FDDIcount_50 36,7 384,5 58,4 387,6 OOT -

Table A.9: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the altered models of the FDDI token ring protocol including an integer variable cnt
to count the number of automata in the critical section (e.g. depicted in Figure 3.6)
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Fischer_U as before Fischer_U with switched identifiers
IC3 with Zones(LCI) IC3 with Zones(CLI) IC3 with Zones(LCI) IC3 with Zones(CLI)
Runtime Memory Runtime Memory Runtime Memory Runtime Memory

(s) (MB) (s) (MB) (s) (MB) (s) (MB)
1 process 0,5 60,3 0,5 60,3 0,5 60,3 0,4 60,3

2 proc. 0,9 78 0,9 80,1 0,8 75,4 0,8 71,3
3 proc. 1,8 95,2 2,2 99,5 1,3 82,7 1,3 82,8
4 proc. 3,5 100 4,3 108,9 2,5 91,6 2,4 89,5
5 proc. 4,3 98,7 5,2 110,5 5,5 101 5,9 99,7
6 proc. 10 147,3 9,9 137,7 11,7 117,2 12,2 113,1
7 proc. 14,1 148,7 15,5 159,2 18,4 123 21,4 127,2
8 proc. 14,1 139,3 22,3 175,1 44,9 156 50,6 155,9
9 proc. 26,6 171,9 35,1 180,2 51,9 145,5 61,3 154,8

10 proc. 34,4 175,8 33,3 180,5 108,7 167,5 83,8 162,1
11 proc. 54,2 235,6 61,9 219,9 147,2 186,6 139,8 182,5
12 proc. 73,2 220,5 83,1 267,4 204,9 200,7 181,2 187,8
13 proc. 97,4 232,5 90,7 262,5 309,3 231,5 363 235,9
14 proc. 104,9 253,6 144,7 287,2 478,7 273,7 407,5 239,2
15 proc. 158,1 269,7 176,1 306,8 481,4 262,3 735 306,3
16 proc. 153,9 282,6 208,4 324,9 638,7 284,4 824,3 311
17 proc. 221,7 328,1 226,5 383,2 1084,4 371,9 1099,1 355,6
18 proc. 290 355,6 347,6 369,8 1475,6 434,3 1483,5 408,1
19 proc. 384,9 421,3 351,7 417,3 2003,2 475,9 2495,8 516,3
20 proc. 432,9 382 408,7 403,6 2646,8 561,4 4561,7 689,1
21 proc. 418,4 415 546,2 459,3 3459,4 608,2 4130,9 629,8
22 proc. 727 497,8 615,6 454 4590,4 707,5 5157,5 705,2
23 proc. 690,1 475,5 789,3 563,7 5452,5 781,7 7743,2 861,1
24 proc. 714,3 490,1 929,6 559,6 7877,7 973,0 7850,3 870,0
25 proc. 887,8 527,3 986,8 623,9 8373,4 966,4 9984,7 971,5
26 proc. 1022,6 521,1 1258,6 639,8 11198,8 1136,2 12908,5 1151,9
27 proc. 1190,8 522,8 1406,7 648,6 OOT - 15701,0 1270,2
28 proc. 1345,8 592,9 1392,9 716,9 OOT - OOT -
29 proc. 1631 652,6 1809,7 749,3 OOT - OOT -
30 proc. 2110,4 747,9 2202,5 796,9 OOT - OOT -
31 proc. 2060,1 746,8 2561,2 842,7 OOT - OOT -
32 proc. 2320,8 763,2 3256,1 860,6 OOT - OOT -
33 proc. 3016,2 825,3 2867,8 827,5 OOT - OOT -
34 proc. 2978,5 894,6 3634,8 969,2 OOT - OOT -
35 proc. 3376,9 899,6 3745,8 953,8 OOT - OOT -
36 proc. 3587,8 845,2 4905,9 1040,6 OOT - OOT -
37 proc. 4291,7 912,0 4910,9 1103,4 OOT - OOT -
38 proc. 4941,2 1079,5 5430,3 1098,6 OOT - OOT -
39 proc. 5670,1 1131,4 7856,7 1363,2 OOT - OOT -
40 proc. 6302,7 1167,9 8360,4 1350,5 OOT - OOT -
41 proc. 7391,9 1200,3 9565,2 1398,8 OOT - OOT -
42 proc. 6699,5 1100,7 8415,5 1289,6 OOT - OOT -
43 proc. 8034,3 1174,1 9676,7 1306,1 OOT - OOT -
44 proc. 8851,7 1184,0 11419,8 1459,3 OOT - OOT -
45 proc. 10316,0 1425,4 13345,9 1591,4 OOT - OOT -

Table A.10: Comparison of runtime (seconds) and memory consumption (MB) during
our scalability experiments using two heuristics for variable ordering (LCI, CLI) and
the Uppaal models of the Fischer mutual exclusion algorithm (e.g. depicted in Figure
3.1) with distinct assignment of identifiers to the locations: Runtime and memory
consumption are shown for the assignment as used before, where li (i ∈ {0, 1, 2, 3})
is assigned identifier i, and for the switched assignments of identifiers for l0 and l2,
s.t. l0 is assigned identifier 2 and l2 is assigned 0
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Size (KB) Runtime of Validation (s)
1 process 1 0,4

2 processes 1 0,4
3 processes 2 0,5
4 processes 3 0,5
5 processes 4 0,5
6 processes 7 0,5
7 processes 10 0,7
8 processes 14 0,7
9 processes 17 0,7
10 processes 17 0,7
11 processes 28 0,8
12 processes 40 1,0
13 processes 38 0,8
14 processes 47 1,0
15 processes 162 2,2
16 processes 66 1,1
17 processes 80 1,9
18 processes 82 1,9
19 processes 106 1,8
20 processes 97 1,9
21 processes 100 2,1
22 processes 119 2,7
23 processes 168 3,4
24 processes 176 3,4
25 processes 191 3,7
26 processes 222 4,0
27 processes 213 4,0
28 processes 258 4,5
29 processes 294 5,3
30 processes 300 5,4
31 processes 318 6,0
32 processes 355 6,1
33 processes 298 5,8
34 processes 435 7,7
35 processes 392 9,3
36 processes 391 8,6
37 processes 437 8,8
38 processes 499 10,0
39 processes 645 13,3
40 processes 656 13,4
41 processes 634 15,0
42 processes 550 12,2
43 processes 687 14,2
44 processes 678 17,2
45 processes 807 17,5
46 processes 704 15,8
47 processes 791 15,6
48 processes 850 20,0
49 processes 595 11,6
50 processes 291 14,3

Table A.11: Size (MB) of the inductive strengthenings computed for the Fischer_U
models during the verification runs in Table A.2, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings
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Size (KB) Runtime of Validation (s)
1 process 1 0,3

2 processes 1 0,5
3 processes 1 0,5
4 processes 2 0,5
5 processes 2 0,5
6 processes 5 0,5
7 processes 5 0,7
8 processes 9 0,6
9 processes 9 0,6
10 processes 13 0,6
11 processes 26 0,7
12 processes 16 0,7
13 processes 31 1,0
14 processes 26 0,9
15 processes 56 1,1
16 processes 45 1,0
17 processes 50 1,1
18 processes 62 1,5
19 processes 66 1,9
20 processes 81 2,0
21 processes 108 2,8
22 processes 108 3,0
23 processes 161 3,6
24 processes 132 3,2
25 processes 119 3,2
26 processes 146 3,7
27 processes 165 3,8

Table A.12: Size (MB) of the inductive strengthenings computed for the Fischer_U
models with switched location identifiers during the verification runs in Table A.10,
and runtime (seconds) needed for the validation checks that the formulae are indeed
inductive strengthenings
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Size (KB) Runtime of Validation (s)
2 processes 1 0,5
3 processes 2 0,6
4 processes 2 0,5
5 processes 3 0,5
6 processes 6 0,7
7 processes 7 0,6
8 processes 12 0,6
9 processes 13 0,7
10 processes 15 0,7
11 processes 26 0,9
12 processes 40 1,0
13 processes 51 1,1
14 processes 48 1,1
15 processes 162 2,2
16 processes 67 1,4
17 processes 78 1,6
18 processes 88 1,7
19 processes 80 1,6
20 processes 99 2,2
21 processes 114 2,3
22 processes 112 2,2
23 processes 153 3,3
24 processes 160 3,3
25 processes 154 2,8

Table A.13: Size (MB) of the inductive strengthenings computed for the CSMA/CD
models during the verification runs in Table A.1, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings

Size (KB) Runtime of Validation (s)
2 processes 2 0,4
3 processes 2 0,5
4 processes 4 0,5
5 processes 7 0,6
6 processes 4 0,6
7 processes 5 0,6
8 processes 7 0,6
9 processes 28 0,9
10 processes 11 0,7
11 processes 38 1,1
12 processes 20 0,9
13 processes 19 0,9
14 processes 32 1,0
15 processes 23 0,9
16 processes 120 1,9
17 processes 70 1,3
18 processes 175 2,6
19 processes 55 1,5

Table A.14: Size (MB) of the inductive strengthenings computed for the FDDI
models during the verification runs in Table A.3, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings
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Size (KB) Runtime of Validation (s)
all verified instances 1 0,5-2,2

Table A.15: Size (MB) of the inductive strengthenings, which is the same for all the
FDDIcount models, and runtime (seconds) needed for the validation checks that
the formulae are indeed inductive strengthenings

Size (KB) Runtime of Validation (s)
1 process 1 0,4

2 processes 10 0,6
3 processes 202 2,9
4 processes 2040 152,5
5 processes 247 8,0

Table A.16: Size (MB) of the inductive strengthenings computed for the Fischer_B
models during the verification runs in Table A.4, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings

Size (KB) Runtime of Validation (s)
1 process 1 0,3

2 processes 10 0,6
3 processes 132 1,9
4 processes 1288 68,7

Table A.17: Size (MB) of the inductive strengthenings computed for the Lamport_B
models during the verification runs in Table A.5, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings

Size (KB) Runtime of Validation (s)
1 process 1 0,4

2 processes 2 0,4
3 processes 4 0,5
4 processes 6 0,5
5 processes 22 0,6
6 processes 11 0,6
7 processes 9 0,6
8 processes 67 1,0
9 processes 11 0,7
10 processes 81 1,2
11 processes 330 3,6
12 processes 392 4,1
13 processes 431 5,0
14 processes 1088 23,1
15 processes 143 1,8
16 processes 1873 49,0
17 processes 376 4,1
18 processes 2191 53,5

Table A.18: Size (MB) of the inductive strengthenings computed for the Lamport_S
models during the verification runs in Table A.6, and runtime (seconds) needed for
the validation checks that the formulae are indeed inductive strengthenings
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Size (KB) Runtime of Validation (s)
1 process 1 0,4

2 processes 36 1,0
3 processes 1077 52,1
4 processes 755 42,3

Table A.19: Size (MB) of the inductive strengthenings computed for the
ShavitLynch_B models during the verification runs in Table A.7, and runtime (sec-
onds) needed for the validation checks that the formulae are indeed inductive
strengthenings

Size (KB) Runtime of Validation (s)
1 process 1 0,4

2 processes 12 0,5
3 processes 177 2,7
4 processes 1008 55,8

Table A.20: Size (MB) of the inductive strengthenings computed for the
ShavitLynch_P models during the verification runs in Table A.8, and runtime (sec-
onds) needed for the validation checks that the formulae are indeed inductive
strengthenings

Size (KB) Runtime of Validation (s)
1 process 1 0,3

Table A.21: Size (MB) of the inductive strengthenings computed for the Lemgo model
during the verification run, and runtime (seconds) needed for the validation checks
that the formulae are indeed inductive strengthenings





B
Proofs

B.1 Templates guarantee Symmetry

In the following, we show that all networks of timed automata created as defined
in Definition 5.1.2 fulfill our notion of symmetry (Def. 5.2.2). The definitions used
in Chapter 4 (Def. 4.3.2 and 4.2.2) can be considered a special case in which no
synchronization is used and no extra automata are given.

We prove that the result of any swap (Def. 5.2.1) applied to an initial state is
itself initial. In addition, any swap applied to two states s1 and s2 connected via
transition using an edge e in Ai with time delay δ results in the states π(s1) and
π(s2), which are connected via transition using the edge e in Aπ(i) with time delay
δ. In the case of a synchronized edge, it holds that any swap applied to two states
s1 and s2 connected via transition using edges e1 and e2 in Ai, Aj with time delay
δ results in the states π(s1) and π(s2), which are connected via transition using
edges e1 and e2 in Aπ(i), Aπ(j) with time delay δ. The first statement is proven in
Lemma B.1.1, while the latter ones are proven in Lemmata B.1.2, B.1.3 and B.1.4. As
a result of the combination of these Lemmata, our notion of symmetry holds for the
defined networks of timed automata.

Recall, that π only swaps automata that are created from the template. A1 to Ax

are unaffected.

Lemma B.1.1. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). If π is a swap (Def. 5.2.1), then s = s0 if and only if π(s) = s0 for all
s ∈ S.

Proof: Given the initial state s = s0 = (~l, vc
0, vi

0), we show π(s) = s. The opposite
direction follows from the fact that π(π(s)) = s.

175
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• Location vector: Swaps are defined, s.t. they swap only symmetric timed
automata that are instantiated from the template. Thus, the locations of
the automata A1 to Ax are unchanged, formally ∀i ∈ {1, . . . , x} : π(~l)[i] =
~l[π(i)] = ~l[i] since π(i) = i. For all symmetric timed automata, all initial
locations are the same as defined by the template (l0). A swap is, thus, without
effect on these locations, formally ∀i ∈ {x + 1, . . . , x + n} : π(~l)[i] =~l[π(i)] =
l0 =~l[i]. Thus, it holds true that π(~l) =~l.

• Integer valuation: Since swap does not affect the values of identifier unaware
integer variables, they remain unchanged. Formally, ∀iv ∈ IV 6id : π(vi

0)(iv) =
vi

0(iv). All identifier aware integer variables are initialized to the neutral value
0 and, thus, remain unchanged, too. Formally, ∀iv ∈ IV id : π(vi

0)(iv) = 0 =

vi
0(iv). In summary, π(vi

0) = vi
0 holds true.

• Clock valuation: Since all clocks are of the same value initially (0), their values
remain the same when applying a swap. Formally, ∀c ∈ C : π(vc

0)(c) = 0 =

vc
0(c).

Lemma B.1.2. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric
timed automata with x extra timed automata as defined in Definition 5.1.2 with concrete
semantics TS = (S, s0,→). Given any swap π (Def. 5.2.1), then (s1, s2) ∈→d if and only
if (π(s1), π(s2)) ∈→d for all s1, s2 ∈ S.

Proof: We prove that if (s1, s2) ∈→d, then (π(s1), π(s2)) ∈→d. The opposite direc-
tion follows from the fact that π(π(s)) = s. Let the states be given as s1 = (~l, vi, vc)

and s2 = (~l, vi, vc + δ) for a δ ≥ 0. Clearly, the location vectors in π(s1) and π(s2)

are equal, as well as the integer valuations since they are equal in s1 and s2 and
the swap is deterministic. In addition, the order whether a swap is applied before
or after the time delay does not matter, formally π(vc) + δ = π(vc + δ), since δ

is added to every clock. It remains to be shown that the locations’ invariants are
satisfied by the swapped clock valuations if they are by the original ones. Assume
the contrary, meaning the invariants are satisfied for the original states, but not the
swapped ones. Then there exists δ′ with 0 ≤ δ′ ≤ δ such that π(vc + δ′) 2 Invc(π(~l)).
Lemma B.1.5 states that vc + δ′ 2 Invc(~l), which contradicts the assumption that
∀0 ≤ δ′ ≤ δ : vc + δ′ |= Invc(~l).

Lemma B.1.3. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Given any swap π (Def. 5.2.1), then (s1, s2) ∈→e via unsynchronized
edge e in Ak (k ∈ {1, . . . , x + n}) if and only if (π(s1), π(s2)) ∈→e via e in Aπ(k) for all
s1, s2 ∈ S.
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Proof: We prove that if (s1, s2) ∈→e via unsynchronized edge e in Ak (k ∈ {1, . . . , x +
n}) then (π(s1), π(s2)) ∈→e via e in Aπ(k). The opposite direction follows from the
fact that π(π(s)) = s.

Let the states be given as s1 = (~l, vc, vi) and s2 = (~l′, vc ′, vi ′) with edge e =

(lx
ε, φ, ψ(k), ω(k), R
−−−−−−−−−→ ly) ∈ Ek for automaton Ak. We know the following facts.

• ~l[k] = lx, ~l′[k] = ly and ∀i 6= k : ~l′[i] =~l[i],

• vc |= φ, vc ′ = vc[R] and vc ′ |= Invc(~l′),

• vi |= ψ(k), vi ′ = vi[ω(k)] and vi ′ |= Invi(~l′).

There exists edge eπ = (lx
ε, φπ , ψ(π(k)), ω(π(k)), Rπ−−−−−−−−−−−−−−→ ly) ∈ Eπ(k) in automaton Aπ(k)

due to the definition of symmetric networks of timed automata, where φπ and Rπ

are defined over the clocks (Cg ∪ Cl
π(k)) usable in Aπ(k). Note, that π swaps only

two timed automata and that π(k) = k holds true if Ak is not swapped. Recall, that
the extra automata are never swapped. We will show that eπ is applicable to π(s1)

and results in π(s2). The edge is clearly enabled by π(s1) = (π(~l), π(vc), π(vi)) as
shown in the following.

• π(~l)[π(k)] =~l[π(π(k))] =~l[k] = lx,

• π(vc) |= φπ holds, since all global clocks keep their values and all local clocks
of Aπ(k) are assigned the values of their respective local clocks in Ak during the
swap. Formally, ∀cπ(k) ∈ Cl

π(k) : π(vc)(cπ(k)) = vc(cπ(π(k))) = vc(ck), where

cx refers local clock c ∈ Cl
x.

• π(vi) |= ψ(π(k)) holds due to Lemma B.1.6.

Furthermore, the resulting location vector and valuations after applying the enabled
edge eπ to state π(s1) results in π(s2) = (π(~l′), π(vc ′), π(vi ′)).

• Lemma B.1.9 guarantees that π(~l′) = π(~l)′, where the latter denotes the
location vector obtained by application of edge eπ to π(s1).

• Furthermore, the resulting location for automaton Aπ(k) is correct. Formally,

π(~l′)[π(k)] = ~l′[π(π(k))] = ~l′[k] = ly.

• Lemma B.1.7 guarantees that π(vc ′) = π(vc[R]) = π(vc)[Rπ ].

• Lemma B.1.8 guarantees that π(vi ′) = π(vi[ω(k)]) = π(vi)[ω(π(k))].

Furthermore, the resulting valuations still satisfy the invariants.

• With vc ′ |= Invc(~l′), Lemma B.1.5 states that π(vc ′) |= Invc(π(~l′)).

• It holds that vi ′ |= Invi(~l′) with vi ′ = vi[ω(k)]. We show that π(vi ′) |=
Invi(π(~l′)). Assume the contrary. Then there exists m ∈ {1, . . . , x + n} with
π(vi ′) 2 Invi

m(π(~l′)[m]) = ψ(m) ∈ Ψ(IV , m) of location π(~l′)[m] in automa-
ton Am. Lemma B.1.6 states, that vi ′ 2 ψ(π(m)) ∈ Ψ(IV , π(m)) for Aπ(m)
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and since π(~l′)[m] = ~l′[π(m)] it holds vi ′ 2 Invi
π(m)

(~l′[π(m)]) and, thus,

vi ′ 2 Invi(~l′). This is a contradiction to the above assumption. Thus, the
integer invariant is satisfied.

The backwards direction simply follows from the fact, that π(π(s)) = s.

Lemma B.1.4. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Given any swap π (Def. 5.2.1), then (s1, s2) ∈→e via synchronized edges
e1, e2 in Ai and Aj (i ∈ {1, . . . , x}, j ∈ {1, . . . , x + n}) if and only if (π(s1), π(s2)) ∈→e

via e1, e2 in Aπ(i), Aπ(j) for all s1, s2 ∈ S.

Proof: We prove that if (s1, s2) ∈→e via synchronized edges e1, e2 in Ai and Aj
(i ∈ {1, . . . , x}, j ∈ {1, . . . , x + n}), then (π(s1), π(s2)) ∈→e via e1, e2 in Aπ(i), Aπ(j).
The opposite direction follows from the fact that π(π(s)) = s.

Let the states be given as s1 = (~l, vc, vi) and s2 = (~l′, vc ′, vi ′) and the edges

be given as e1 = (lx1
chan!, φ1, ψ1(i), ω1(i), R1−−−−−−−−−−−−−→ ly1) ∈ Ei of automaton Ai and e2 =

(lx2
chan?, φ2, ψ2(j), ω2(j), R2−−−−−−−−−−−−−→ ly2) ∈ Ej of automaton Aj synchronized by channel chan.

We know the following facts.

• ~l[i] = lx1, ~l′[i] = ly1, ~l[j] = lx2, ~l′[j] = ly2 and ∀h ∈ {1, . . . , x + n} \ {i, j} :
~l′[h] =~l[h],

• vc |= φ1 ∧ φ2, vc ′ = vc[R1 ∪ R2] and vc ′ |= Invc(~l′),

• vi |= ψ1(i) ∧ ψ2(j), vi ′ = vi[ω1(i); ω2(j)] and vi ′ |= Invi(~l′).

With Ai being an extra automaton (i ≤ x), we know that π(i) = i and, thus, e1 is

not permuted (e1 = e1π = (lx1
chan!, φ1π , ψ(π(i)), ω(π(i)), R1π−−−−−−−−−−−−−−−−−→ ly1) ∈ Eπ(i)). The other

permuted edge e2π = (lx2
chan?, φ2π , ψ(π(j)), ω(π(j)), R2π−−−−−−−−−−−−−−−−−−→ ly2) ∈ Eπ(j) exists due to

the symmetry of the automata created via template (if j > x) or due to the extra
automata not being swapped (if j ≤ x). Both permuted edges are clearly enabled by
π(s1) = (π(~l), π(vc), π(vi)) as shown in the following.

• π(~l)[π(i)] =~l[π(π(i))] =~l[i] = lx1 and π(~l)[π(j)] =~l[π(π(j))] =~l[j] = lx2,

• π(vc) |= φ1π ∧ φ2π holds, since all global clocks keep their values and as well
as the local clocks of the extra automaton Aπ(i). The local clocks of Aπ(j)
are assigned the values of their respective local clocks in Aj during the swap.
Formally, ∀cπ(j) ∈ Cl

π(j) : π(vc)(cπ(j)) = vc(π(cπ(j))) = vc(cπ(π(j))) = vc(cj),

where cx refers local clock c ∈ Cl
x.

• π(vi) |= ψ1(π(i)) and π(vi) |= ψ2(π(j)) hold due to Lemma B.1.6.
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Furthermore, the resulting location vector and valuations after applying the enabled
edges e1π and e2π to state π(s1) results in π(s2) = (π(~l′), π(vc ′), π(vi ′)).

• A trivial extension to Lemma B.1.9 guarantees that π(~l′) = π(~l)′, where the
latter denotes the location vector obtained by application of edges e1π and e2π

to π(s1).

• Furthermore, the resulting location for automaton Aπ(i) and Aπ(j) are cor-

rect. Formally, π(~l′)[π(i)] = ~l′[π(π(i))] = ~l′[i] = ly1 and π(~l′)[π(j)] =
~l′[π(π(j))] = ~l′[j] = ly2.

• Lemma B.1.7 guarantees that π(vc ′) = π(vc[R]) = π(vc)[Rπ ] for R = R1 ∪ R2

and permuted Rπ = R1π ∪ R2π .

• It holds true that π(vi ′) = π(vi[ω1(i); ω2(j)]) = π(vi)[ω1(π(i)); ω2(π(j))]
(using a trivial extension to Lemma B.1.8).

Furthermore, the resulting valuations still satisfy the invariants.

• With vc ′ |= Invc(~l′), Lemma B.1.5 states that π(vc ′) |= Invc(π(~l′)).

• It holds that vi ′ |= Invi(~l′). We show that π(vi ′) |= Invi(π(~l′)). Assume the
contrary. Then there exists m ∈ {1, . . . , x + n} with π(vi ′) 2 Invi

m(π(~l′)[m]) =

ψ(m) ∈ Ψ(IV , m) of location π(~l′)[m] in automaton Am. Lemma B.1.6 states,
that vi ′ 2 ψ(π(m)) ∈ Ψ(IV , π(m)) for Aπ(m) and since π(~l′)[m] = ~l′[π(m)] it

holds vi ′ 2 Invi
π(m)

(~l′[π(m)]) and, thus, vi ′ 2 Invi(~l′). This is a contradiction
to the above assumption. Thus, the integer invariant is satisfied.

The backwards direction simply follows from the fact, that π(π(s)) = s. Note, that
the same argumentation holds true, if e1 is the receiver edge (chan?) and e2 is the
sender edge (chan!).

Lemma B.1.5. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric
timed automata with x extra timed automata as defined in Definition 5.1.2 with concrete
semantics TS = (S, s0,→). Given any swap π (Def. 5.2.1), then vc |= Invc(~l) if and only
if π(vc) |= Invc(π(~l)) for any state s = (~l, vc, vi).

Proof: We prove that if π(vc) |= Invc(~l), then vc |= Invc(~l). The opposite direction
follows from the fact that π(π(s)) = s. Assume the contrary, i.e., that π(vc) |=
Invc(π(~l)), but vc 2 Invc(~l). Then there exists m (1 ≤ m ≤ x + n) with vc 2
Invc

m(~l[m]). We show the contradiction that π(vc) 2 Invc
π(m)

(π(~l)[π(m)]) holds
true.

If m ≤ x, i.e., the invariant of the location of an extra automaton is violated, this
clearly holds true as π does not swap its location and local clock values, as well as
global clock values in state s. Otherwise m refers a symmetric timed automaton, in
which case the contradiction also holds true since the local clock values are swapped
according to π, as well as the locations. As a result, the same clock values are
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applied to the same invariant constraint, only defined over a distinct set of local
clocks.

Formally, we start by showing that each of the clocks that can be used in the
automaton Aπ(m) has the same value in state π(s) as its respective clock used in
Am has in state s. Each global clock c ∈ Cg has the same value in both states
(π(vc)(c) = vc(c)), since their values are not swapped. Each local clock c ∈ Cl

π(m)
of

automaton Aπ(m) has the same value in state π(s) as its respective clock c ∈ Cl
m in

state s, formalized as ∀cπ(m) ∈ Cl
π(m)

: π(vc)(cπ(m)) = vc(cπ(π(m))) = vc(cm) where

cx denotes local clock c of Cl
x. With Invc

π(m)
(π(~l)[π(m)]) = Invc

π(m)
(~l[π(π(m))]) =

Invc
π(m)

(~l[m]), we know that Invc
π(m)

(π(~l)[π(m)]) is the same invariant constraint as

Invc
m(~l[m]), but defined over the clocks used in Aπ(m). Thus, since the clock values of

Aπ(m) in state π(s) are the ones of Am in state s, the invariant Invc
π(m)

(π(~l)[π(m)])

is not satisfied by the valuation π(vc). Formally, π(vc) 2 Invc
π(m)

(π(~l)[π(m)]) holds
true, which is a contradiction. Thus, the assumption is incorrect and it holds that if
π(vc) |= Invc(π(~l)) then vc |= Invc(~l).

Lemma B.1.6. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Given any swap π (Def. 5.2.1), it holds vi |= ψ(m) ∈ Ψ(IV , m) if and
only if π(vi) |= ψ(π(m)) for all m ∈ {1, ..., x + n}.

Proof: We prove that if π(vi) |= ψ(π(m)) then vi |= ψ(m). The opposite direction
follows from the fact that π(π(s)) = s. Assume the contrary, i.e., π(vi) |= ψ(π(m)),
but vi 2 ψ(m). There exists at least one integer variable iv ∈ IV , s.t. one of the
conjuncts iv ./ n in ψ(m) evaluates to false given the integer valuation vi.

• If iv ∈ IV 6id, then π(vi)(iv) = vi(iv) and, furthermore, the conjunct iv ./ n
in ψ(π(m)) is the same as in ψ(m) since Definitions 4.1.2 and 4.1.5 do not
take into account the process identifier for identifier unaware integer variables.
Thus, π(vi) 2 ψ(π(m)) holds true, which is a contradiction.

• If iv ∈ IV id, then the restrictions n ∈ {0, m}, ./ ∈ {=, 6=} apply for the con-
straint iv ./ n. Thus, there exist four possibilities, how the constraint may look
like.

iv 6= 0: With the process identifier m not being used in iv 6= 0, this constraint also
occurs in ψ(π(m)). Since the constraint is not satisfied by the value of
iv in vi, it holds true that vi(iv) = 0, which is not affected by the swap
(π(vi)(iv) = vi(iv) = 0). Clearly, the swapped constraint is not satisfied
with applied swap (π(vi) 2 ψ(π(m))), which is a contradiction.

iv 6= m: With the process identifier m being used in iv 6= m, this constraint does
not occur in ψ(π(m)), but is replaced by iv 6= π(m). Since the constraint
is not satisfied by the value of iv in vi, it holds true that vi(iv) = m, which
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is swapped to π(vi)(iv) = π(m). Clearly, the swapped constraint is not
satisfied (π(vi) 2 iv 6= π(m)), which is a contradiction.

iv = 0: With the process identifier m not being used in iv = 0, this constraint
also occurs in ψ(π(m)). Since the constraint is not satisfied by the value
of iv in vi, it holds true that vi(iv) 6= 0, which might be affected by the
swap. By Def. 5.2.1 the swapped value is still distinct from zero, formally
π(vi)(iv) 6= 0. In consequence, the swapped constraint is not satisfied
(π(vi) 2 ψ(π(m))), which is a contradiction.

iv = m: With the process identifier m being used in iv = m, this constraint does
not occur in ψ(π(m)), but is replaced by iv = π(m). Since the constraint
is not satisfied by the value of iv in vi, it holds true that vi(iv) = j 6= m,
which is swapped to π(vi)(iv) = π(j) 6= π(m). Clearly, the swapped
constraint is not satisfied (π(vi) 2 iv = π(m)), which is a contradiction.

Lemma B.1.7. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Let a set R of clocks to be reset be given using the local clocks Cl

i for
automaton Ai. Given any swap π (Def. 5.2.1), it holds true that π(vc[R]) = π(vc)[Rπ ],
where Rπ equals the set R, but the local clocks Cl

i are replaced by Cl
π(i).

Proof: Assume the contrary. Then, there exists a clock c, s.t. π(vc[R])(c) 6=
π(vc)[Rπ ](c). This clock can either be global or local.

• Global clock:
If c ∈ Cg, then π(vc[R])(c) = vc[R](c). Either c is reset (c ∈ R), then it holds
(vc[R])(c) = 0 = π(vc)[Rπ ](c) since c ∈ Rπ . Otherwise, c is not reset (c /∈ R)
and it holds that (vc[R])(c) = vc(c) = π(vc)(c) = π(vc)[Rπ ](c) since c /∈ Rπ

and c being global. Both cases contradict π(vc[R])(c) 6= π(vc)[Rπ ](c).

• Local clock:
We distinguish two cases.

– The clock is reset, i.e., ci ∈ R and cπ(i) ∈ Rπ . Clearly, π(vc[R])(cπ(i)) =

vc[R](cπ(π(i))) = vc[R](ci) = 0 = π(vc)[Rπ ](cπ(i)), where cx denotes local
clock c of automaton Ax (c ∈ Cl

x).

– The clock is not reset, i.e., ci /∈ R and cπ(i) /∈ Rπ . It clearly holds true that
π(vc[R])(cπ(i)) = vc[R](cπ(π(i))) = vc[R](ci) = vc(ci) = π(vc)(cπ(i)) =

π(vc)[Rπ ](cπ(i)).

Both cases contradict π(vc[R])(c) 6= π(vc)[Rπ ](c).
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Lemma B.1.8. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Given any swap π (Def. 5.2.1), it holds true that π(vi[ω(k)]) =

π(vi)[ω(π(k))] with ω(k) ∈ Ω(IV , k) and ω(π(k)) ∈ Ω(IV , π(k)) being the same
assignment but for distinct identifiers k and π(k).

Proof: Assume the contrary. This means that there exists an integer variable iv,
s.t. π(vi[ω(k)])(iv) 6= π(vi)[ω(π(k))](iv). If iv ∈ IV 6id, we have π(vi[ω(k)])(iv) =
vi[ω(k)](iv) = vi[ω(π(k))](iv) = π(vi)[ω(π(k))](iv), which is a contradiction. Oth-
erwise, iv ∈ IV id for which we reach the same contradiction easily by considering
all possibilities of assignments. Since iv ∈ IV id, there exist three distinct cases.

• iv := 0
Since iv is reset to the neutral value, the assignment iv := 0 is part of ω(k) and
ω(π(k)). Clearly, π(vi[ω(k)])(iv) = 0 = π(vi)[ω(π(k))](iv) since π does not
affect the value 0.

• iv := k
The assignment iv := k is part of ω(k) and the assignment iv := π(k) is part of
ω(π(k)). Clearly, vi[ω(k)](iv) = k and π(vi)[ω(π(k))](iv) = π(k) and, thus,
π(vi[ω(k)])(iv) = π(k) = π(vi)[ω(π(k))](iv).

• iv /∈ ω

Since the value of iv is not affected by the assignment, only the swap needs to
be considered. Clearly, π(vi[ω(k)])(iv) = π(vi)(iv) = π(vi)[ω(π(k))](iv).

All cases contradict the assumption.

Lemma B.1.9. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2 with concrete semantics
TS = (S, s0,→). Given any swap π (Def. 5.2.1) and location vectors~l, ~l′ with~l[m] = lx,
~l′[m] = ly and ∀i 6= m : ~l′[i] =~l[i], the order whether a swap π is applied before or after
an edge e of Am (with source and target location lx and ly) is taken does not matter. Note,
that the edge is swapped, too, from automaton Am to Aπ(m). Formally, it holds true that
π(~l)′ = π(~l′), where π(~l)′[π(m)] = ly and ∀i 6= π(m) : π(~l)′[i] = π(~l)[i].

Proof: Clearly, π(~l)[π(m)] = ~l[π(π(m))] = ~l[m] = lx. Thus, the edge in Aπ(m)

is applicable (regarding the locations) for π(~l), if and only if the edge in Am is
applicable (regarding the locations) for~l. Furthermore, the resulting location vectors
match regardless of the order in which the edge and the swap are applied. In case
the swap is applied first, the location of Aπ(m) is defined as π(~l)′[π(m)] = ly, which

matches the location when the edge is applied first (π(~l′)[π(m)] = ~l′[m] = ly). The
same holds true for the locations of all other automata. In case the swap is applied
first, the locations are defined as ∀i 6= π(m) : π(~l)′[i] = π(~l)[i]. In case the edge is
applied first, the locations match (∀i 6= π(m) : π(~l′)[i] = ~l′[π(i)] =~l[π(i)] = π(~l)[i]).
Note, that π(π(m)) = m.
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B.2 Proof of Termination Theorem

The following lemmata are used in the proof of the Termination Theorem (Theo-
rem 5.2.1). Theorem 4.5.1, presented in Section 4, is a special case of it, as it employs
parameterized timed systems modeled as networks of timed automata without
synchronization and extra timed automata. The first lemma below is employed to
prove symmetric membership of states in the extrapolated inductive strengthening.
The latter ones refer to state membership of reduced states as defined in Def. B.2.1.

Lemma B.2.1. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric timed
automata with x extra timed automata as defined in Definition 5.1.2. Let an inductive
strengthening ‖F‖ of a symmetric safety property ρn (Def. 5.2.5) invariant in NTAn be
given as computed by our algorithm IC3 with Zones. For any larger model with m ≥ n
symmetric timed automata, let TS = (S, s0,→) be the concrete semantics of NTAm. For
state s ∈ S, it holds true that s ∈ πu(‖F‖) if and only if π(s) ∈ π(πu(‖F‖)) for any swap
π (Def. 5.2.1), where πu(‖F‖) is a swapped inductive strengthening ‖F‖ that refers x + n
automata Ai1 to Aix+n , while π(πu(‖F‖)) refers Aπ(i1) to Aπ(ix+n).

Proof: We prove that if π(s) ∈ π(πu(‖F‖)), then s ∈ πu(‖F‖), the opposite direction
follows from the fact that π(π(s)) = s. Assume the contrary, i.e., π(s) ∈ π(πu(‖F‖))
and s /∈ πu(‖F‖).

Let s be given as s = (~l, vc, vi), then π(s) is defined as in Definition 5.2.1. Note,
that the formula πu(‖F‖) is permuted (Def. 4.5.1) according to the operation swap.
Thus, trivially π(s) /∈ π(πu(‖F‖)) holds true. We discuss a proof in more detail
below. The inductive strengthening ‖F‖ is in CNF form, i.e., a conjunction of
clauses. Clearly, if s /∈ πu(‖F‖), then there exists a clause c that is not satisfied
by the interpretation of variables representing state s. Each clause is a disjunction
of location-, clock and integer-literals. None of the literals in c is satisfied by the
interpretation representing state s, as c is a disjunction. We show, that the clause π(c),
which is a clause in π(πu(‖F‖)) is not satisfied by the interpretation representing
state π(s). Recall, that π(i) = i for all extra automata and that these automata are
not swapped.

• Location-literal: Every location literal lk
m in clause c evaluates to false when

considering the interpretation representing state s. Clearly, the boolean rep-
resentation of the location identifier for location~l[k] of automaton Ak in state
s has value 0 at bit m. Trivially, the boolean representation of the location
identifier for location π(~l)[π(k)] =~l[k] of automaton Aπ(k) in state π(s) has

also value 0 at bit m. The permuted literal in clause π(c) is lπ(k)
m , which, thus,

evaluates to false when considering the interpretation representing state π(s).
The same argumentation holds true for a negated literal ¬lk

m with value 1.

• Clock-literal: The value of global clocks is the same in state π(s) as in state s.
In addition, the clock variables of global clocks are not affected by the swap
of the formula. The satisfiability of a clock literal, thus, remains the same in
terms of global clocks. For local clocks, the following holds true. The value
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of local clock cm ∈ Cl
k (with identifier m) in state s is the same as the one of

local clock cm ∈ Cl
π(k) in state π(s). The clock variable ck

m representing the
former local clock with index m in the formula is changed to clock variable
cπ(k)

m representing the latter local clock with index m. Thus, when checking
satisfiability of the permuted clock literal using the interpretation representing
state π(s), the same value applies at the same position. As a consequence, the
satisfiability remains unchanged and the permuted clock literal still evaluates
to false for the permuted state π(s).

• Integer-literal: Since swap does not affect the values of identifier unaware
integer variables, they remain unchanged. In addition, it does not change the
value with which these variables are compared in the clause. Thus, the satisfia-
bility remains unchanged concerning identifier unaware integer variables. For
identifier aware integer variables, the argumentation is as follows. The literals
for this kind of variables are an element of ψ(m) for some timed automaton
Am. Lemma B.1.6 states that the permuted integer valuation π(vi) in state
π(s) does not satisfy the permuted literal ψ(π(m)). Thus, all permuted integer
literals with identifier aware and unaware integer variables evaluate to false,
when considering the interpretation representing the permuted state π(s).

As a consequence, every permuted literal evaluates to false, when considering the
interpretation representing the permuted state π(s). In summary, the clause π(c) is
not satisfied by π(s) and, thus, π(s) /∈ π(πu(‖F‖)). Note, that the timed automata
referred in the formula are swapped according to π.

Using the above lemma, the following corollary can be defined. It states, that the
extrapolated formulae are symmetric, i.e., a state s is a member of an extrapolated
formula, if and only if all permutations π(s) of the state are a member. Obviously,
this corollary holds true due to the extrapolated formulae ‖F‖exp(m) including all
permutations of ‖F‖.

Corollary B.2.2. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric
timed automata with x extra timed automata as defined in Definition 5.1.2. Let an inductive
strengthening ‖F‖ of a symmetric safety property ρn (Def. 5.2.5) invariant in NTAn be
given as computed by our algorithm IC3 with Zones. For any larger model with m ≥ n
symmetric timed automata, let TS = (S, s0,→) be the concrete semantics of NTAm. For
state s ∈ S, it holds true that s ∈ ‖F‖exp(m) if and only if π(s) ∈ ‖F‖exp(m) for any swap
π as defined in Definition 5.2.1.

The same argumentation holds true for symmetric safety properties. If a state
s violates the safety property, then it satisfies one of the symmetric error state
specifications, i.e., one permutation errn

πe of the error state specification is satisfied.
Clearly, due to symmetry, a permuted state π(s) satisfies the permutation errn

π(πe)
of the above mentioned specification and, thus, also violates the symmetric safety
property. Note, that the timed automata referred in the permuted error state
specification are changed according to π as formalized in the following corollary.
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Corollary B.2.3. Let NTAn = 〈A1, . . . , Ax+n〉 be an extended network of n symmetric
timed automata with x extra timed automata as defined in Definition 5.1.2 with concrete
semantics TS = (S, s0,→). Let ρn be a symmetric safety property (Def. 5.2.5) defined over
m ≤ n timed automata, i.e., the largest error state specification is defined for NTAm. For
state s ∈ S, it holds true that s ∈ errn

πe if and only if π(s) ∈ errn
π(πe)

for any swap π, where
errn

πe specifies values for automata Ai1 to Aix+m while errn
π(πe)

specifies values for Aπ(i1) to
Aπ(ix+m).

In the following, we define how to reduce a state that includes values for n + 2
symmetric timed automata to a state that is only defined over n + 1 symmetric
automata.

Definition B.2.1. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2
symmetric timed automata with x extra timed automata as defined in Definition 5.1.2.
Let s ∈ S be a state in the concrete semantics TS = (S, s0,→) of NTAn+2. We define
the reduced state s|n+1 to be equal to the state s in all locations and values with the
location of Ax+n+2 being discarded, as well as the values of its local clocks. Formally,
given s = (~l, vc, vi) we define s|n+1 = (~l|n+1, vc|n+1, vi|n+1) as follows.

• ~l|n+1 is a vector of x + n + 1 locations with ∀1 ≤ i ≤ x + n + 1 :~l|n+1[i] =~l[i]

• vc|n+1 ∈ RCg∪Cl
1∪···∪Cl

x+n+1 with

– ∀c ∈ Cg : vc|n+1(c) = vc(c)

– ∀1 ≤ i ≤ x + n + 1 : ∀c ∈ Cl
i : vc|n+1(c) = vc(c)

• ∀iv ∈ IV : vi|n+1(iv) = vi(iv)

The reduced state does not include a location for automaton Ax+n+2 and also no
values for local clocks in Cl

x+n+2.

When reducing a state, it obviously becomes a state of the concrete state space of
the smaller model NTAn+1. Furthermore, the reduced state satisfies its locations’
invariant if the original one satisfied its’ own. This is due to the invariant being a
conjunction. We formalize this fact in Corollary B.2.4.

Corollary B.2.4. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2
symmetric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+1 = (Sn+1, sn+1

0 ,→n+1) denote the concrete semantics of NTAn+1

and let s ∈ S be a state in the concrete semantics TS = (S, s0,→) of NTAn+2. Clearly,
it holds true that s|n+1 ∈ Sn+1. Furthermore, vc |= Invc(~l) and vi |= Invi(~l) implies
vc|n+1 |= Invc(~l|n+1) and vi|n+1 |= Invi(~l|n+1).

We use this reduce operation on states to argue about set membership. We start
with the membership in the set of initial states.
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Lemma B.2.5. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2 sym-
metric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1) de-

note the concrete semantics of NTAn+2 and of NTAn+1, respectively. It holds true that
∀s ∈ Sn+2 : s = sn+2

0 implies s|n+1 = sn+1
0 .

Proof: Assume the contrary, i.e., s = sn+2
0 and s|n+1 6= sn+1

0 . With the latter fact,
we know that s|n+1 must be distinct from sn+1

0 . We show that this implies s to be
distinct from sn+2

0 , which is a contradiction. Let s = (~l, vc, vi) be given. One of the
following facts must hold for s|n+1 to not be initial.

• There exists a location in the location vector~l|n+1 that is not the initial location
of the respective automaton, formally ∃i ∈ {1, . . . , x + n + 1}, s.t.~l|n+1[i] 6= l0i.
With ∀i ∈ {1, . . . , x + n + 1} : ~l|n+1[i] = ~l[i], we know that the state s is not
initial.

• There exists a clock value in vc|n+1 that is not equal to 0, formally ∃c ∈
Cg ∪ Cl

1 ∪ · · · ∪ Cl
x+n+1 : vc|n+1(c) 6= 0. With Definition B.2.1, we conclude that

vc(c) 6= 0 and, thus, s is not initial.

• There exists an integer variable with a value that is not initial, formally ∃iv ∈
IV : vi|n+1(iv) 6= vi

0(iv). With Definition B.2.1, we conclude that vi(iv) 6=
vi

0(iv) and, thus, s is not initial.

In all cases, s is not initial, which is a contradiction.

Furthermore, if a state is a member of an extrapolated inductive strengthening
for the model with n + 2 symmetric timed automata, then the reduced state is a
member of the extrapolated inductive strengthening for the respective model with
n + 1 symmetric timed automata. We formalize this fact in the following.

Lemma B.2.6. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2 sym-
metric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1) denote the

concrete semantics of NTAn+2 and of NTAn+1, respectively. Furthermore, let ‖F‖ be the
inductive strengthening of the symmetric safety property ρn computed by IC3 with Zones
for NTAn. It holds true that ∀s ∈ Sn+2 : s ∈ ‖F‖exp(n+2) implies s|n+1 ∈ ‖F‖exp(n+1).

Proof: Assume the contrary, i.e., s ∈ ‖F‖exp(n+2) and s|n+1 /∈ ‖F‖exp(n+1). With
the latter fact, we know that s|n+1 does not satisfy one of the permuted formulae
π(‖F‖) in ‖F‖exp(n+1). Clearly, this formula is part of the conjunction of ‖F‖exp(n+2).
With π(‖F‖) being a part of formula ‖F‖exp(n+1), it only refers the automata A1 to
Ax+n+1. Def. B.2.1 specifies that s and s|n+1 agree on the respective values, as well
as the integer valuation. Thus, π(‖F‖) is not satisfied by s, which is a contradiction
to s ∈ ‖F‖exp(n+2).
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The opposite direction of the above lemma does not hold true in general. How-
ever, within certain restrictions the same idea is applicable. We show that if state s is
not a member of the set of states represented by a permuted formula π(‖F‖) that
does not refer automaton Ax+n+2, then the reduced state is not a member either.

Lemma B.2.7. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2 sym-
metric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1) denote the

concrete semantics of NTAn+2 and of NTAn+1, respectively. Furthermore, let ‖F‖ be the in-
ductive strengthening of the symmetric safety property ρn computed by IC3 with Zones for
the respective NTAn. It holds true that ∀s ∈ Sn+2 : s /∈ π(‖F‖) implies s|n+1 /∈ π(‖F‖)
for any π(‖F‖) that reasons only about x + n timed automata in {A1, . . . , Ax+n+1}.

Proof: Assume the contrary, i.e., s /∈ π(‖F‖) and s|n+1 ∈ π(‖F‖). With the latter
fact, we know that s|n+1 satisfies the permuted formulae π(‖F‖). Def. B.2.1 specifies
that s and s|n+1 agree on the locations and clocks of the automata A1 to Ax+n+1,
as well as the integer valuation. With π(‖F‖) only referring timed automata A1 to
Ax+n+1, it is clearly satisfied by s, which is a contradiction.

Lemma B.2.7 can not be applied for general permutations π(‖F‖) of the inductive
strengthening. In particular, it can not be applied if π(‖F‖) refers timed automaton
Ax+n+2, as the reduced state does not specify the required values and no conclusion
about the set membership can be drawn.

The same argumentation as above is valid when reasoning about the safety
property and error state specifications. Again, restrictions apply in form of the
considered permuted error state specifications.

Lemma B.2.8. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2 sym-
metric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1) denote the

concrete semantics of NTAn+2 and of NTAn+1, respectively. Furthermore, let the error
state specification err be given, defined over m ≤ n symmetric timed automata. It holds true
that ∀s ∈ Sn+2 : s ∈ errn+2

π implies s|n+1 ∈ errn+1
π , where errn+2

π is a permutation that
specifies only values for x + m timed automata in {A1, . . . , Ax+n+1}.

Proof: Assume the contrary, i.e., s ∈ errn+2
π and s|n+1 /∈ errn+1

π . With the latter
fact, we know that s|n+1 is not included in the permuted error state specification
errn+1

π . Def. B.2.1 specifies that s and s|n+1 agree on the locations and clocks of
the automata A1 to Ax+n+1, as well as the integer valuation. With errn+2

π only
reasoning about these values, we know that it does not include the state s, which is
a contradiction.

Lastly, we need to reason about transitions using reduced states. We reason
about delay and edge transitions separately.
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Lemma B.2.9. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2 sym-
metric timed automata with x extra timed automata as defined in Definition 5.1.2 and
let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric timed
automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1) de-

note the concrete semantics of NTAn+2 and of NTAn+1, respectively. It holds true that
∀s, t ∈ Sn+2 : (s, t) ∈→n+2

d implies (s|n+1, t|n+1) ∈→n+1
d .

Proof: Assume the contrary, i.e., (s, t) ∈→n+2
d and (s|n+1, t|n+1) /∈→n+1

d . With the
latter fact, we know that (s|n+1, t|n+1) is not a correct delay transition. There exist
several possible reasons, namely distinct locations, integer valuations, improper
clock valuations or a violated invariant. With s = (~ls, vc

s, vi
s) and t = (~lt, vc

t , vi
t), we

show the details below for each of the reasons.

• If the location vectors of s|n+1 and t|n+1 are distinct, we conclude using
Def. B.2.1 that~ls and~lt are also distinct, which is a contradiction to (s, t) ∈→n+2

d .

• If the integer valuations of s|n+1 and t|n+1 are distinct, we conclude us-
ing Def. B.2.1 that vi

s and vi
t are also distinct, which is a contradiction to

(s, t) ∈→n+2
d .

• If the clock valuations of s|n+1 and t|n+1 are improper, meaning @δ ≥ 0, s.t.
∀c ∈ Cg ∪Cl

1 ∪ · · · ∪Cl
x+n+1 : vc

t |n+1(c) = vc
s|n+1(c) + δ, clearly the same holds

true for vc
t and vc

s due to Def. B.2.1. This is a contradiction to (s, t) ∈→n+2
d .

• If an invariant is violated by s|n+1 and t|n+1, then ∃0 ≤ δ′ ≤ δ : vc
s|n+1 + δ′ 2

Invc(~ls|n+1). Using Def. B.2.1 and the fact that Invc(~ls|n+1) is included in
Invc(~ls) via conjunction, we conclude that ∃0 ≤ δ′ ≤ δ : vc

s + δ′ 2 Invc(~ls).
This is a contradiction to (s, t) ∈→n+2

d .

Lemma B.2.10. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2
symmetric timed automata with x extra timed automata as defined in Definition 5.1.2
and let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric
timed automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1)

denote the concrete semantics of NTAn+2 and of NTAn+1, respectively. It holds true that
∀s, t ∈ Sn+2 : (s, t) ∈→n+2

e implies (s|n+1, t|n+1) ∈→n+1
e via an edge e of automaton Ai

with i 6= x + n + 2.

Proof: Let s = (~ls, vc
s, vi

s) and t = (~lt, vc
t , vi

t) be given with (s, t) ∈→n+2
e via edge

e = (lx
ε, φ, ψ(i), ω(i), R
−−−−−−−−→ ly) ∈ Ei of automaton Ai with i 6= x + n + 2. We show that

(s|n+1, t|n+1) ∈→n+1
e via the same edge. With edge e being enabled in s, it clearly is

enabled in s|n+1 as shown below.

• In state s, the location vector includes location lx for Ai. Since i < x + n+ 2, the
same location is also given in the reduced state, formally ~ls|n+1[i] = ~ls[i] = lx.
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• The clock constraint φ only reasons about the global clocks and local clocks of
Ai (Cg ∪ Cl

i ). Clearly, vc
s |= φ holds true. Using Def. B.2.1, we know that s and

s|n+1 agree on the values for these clocks and, thus, vc
s|n+1 |= φ.

• We know that vi
s |= ψ(i) and since the integer valuation remains unchanged

vi
s|n+1 |= ψ(i).

Furthermore, the resulting valuations and locations have to be met.

• We know that ~lt[i] = ly and ∀j ∈ {1, . . . , x + n + 2} \ {i} : ~lt[j] = ~ls[j]. With
Definition B.2.1 we conclude that ∀j ∈ {1, . . . , x + n + 1} \ {i} : ~lt|n+1[j] =
~lt[j] = ~ls[j] = ~ls|n+1[j] and ~lt|n+1[i] = ~lt[i] = ly. This is the correct location
vector after application of edge e to state s|n+1.

• The set R of clocks that are reset when applying edge e only contains global
clocks and local clocks from Ai (a subset of Cg ∪ Cl

i ). We know that ∀c ∈

C : vc
t (c) =

{
0 i f c ∈ R

vc
s(c) else

. Using Def. B.2.1 we conclude that ∀c ∈ Cg ∪

Cl
1 ∪ · · · ∪ Cl

x+n+1 : vc
t |n+1(c) = vc

t (c) =

{
0 i f c ∈ R

vc
s(c) else

. Using ∀c ∈ Cg ∪

Cl
1 ∪ · · · ∪ Cl

x+n+1 : vc
s|n+1(c) = vc

s(c), we conclude that ∀c ∈ Cg ∪ Cl
1 ∪ · · · ∪

Cl
x+n+1 : vc

t |n+1(c) =

{
0 i f c ∈ R

vc
s|n+1(c) else

, which is the correct valuation

after application of edge e to state s|n+1.

• Since the integer valuation is unchanged (vi
s|n+1 = vi

s) and the assignment as
well, the resulting valuation is correct (vi

s|n+1[ω(i)] = vi
s[ω(i)] = vi

t = vi
t|n+1).

With Corollary B.2.4 we conclude that the invariants are met. Thus, the edge can be
applied for the reduced states as formalized in the lemma.

Lemma B.2.11. Let NTAn+2 = 〈A1, . . . , Ax+n+2〉 be an extended network of n + 2
symmetric timed automata with x extra timed automata as defined in Definition 5.1.2
and let NTAn+1 = 〈A1, . . . , Ax+n+1〉 be the respective model with n + 1 symmetric
timed automata. Let TSn+2 = (Sn+2, sn+2

0 ,→n+2) and TSn+1 = (Sn+1, sn+1
0 ,→n+1)

denote the concrete semantics of NTAn+2 and of NTAn+1, respectively. It holds true that
∀s, t ∈ Sn+2 : (s, t) ∈→n+2

e implies (s|n+1, t|n+1) ∈→n+1
e via synchronized edges e1, e2

of automata Ai and Aj with i ∈ {1, . . . , x} and j 6= x + n + 2.

Proof: Let s = (~ls, vc
s, vi

s) and t = (~lt, vc
t , vi

t) be given with (s, t) ∈→n+2
e via edges

e1 = (lx1
chan!, φ1, ψ1(i), ω1(i), R1−−−−−−−−−−−−−→ ly1) ∈ Ei of automaton Ai with i ∈ {1, . . . , x} and

e2 = (lx2
chan?, φ2, ψ2(j), ω2(j), R2−−−−−−−−−−−−−→ ly2) ∈ Ej of automaton Aj with j 6= x + n + 2 syn-

chronized by channel chan. We show that (s|n+1, t|n+1) ∈→n+1
e via the same edges.
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To this end, we first show that these edges are enabled in s|n+1 since they are enabled
in s.

• In state s, the location vector includes location lx1 for Ai and lx2 for Aj, respec-
tively. Since i ≤ x and j < x + n + 2, the same locations are also given in the
reduced state, formally ~ls|n+1[i] = ~ls[i] = lx1 and ~ls|n+1[j] = ~ls[j] = lx2.

• The clock constraint φ1 ∧ φ2 only reasons about the global clocks and local
clocks of Ai and Aj (Cg ∪ Cl

i ∪ Cl
j). Clearly, vc

s |= φ1 ∧ φ2 holds true. Using Def.
B.2.1, we know that s and s|n+1 agree on the values for these clocks and, thus,
vc

s|n+1 |= φ1 ∧ φ2.

• We know that vi
s |= ψ1(i) ∧ ψ2(j) and since the integer valuation remains

unchanged vi
s|n+1 |= ψ(i) ∧ ψ2(j).

Furthermore, the resulting valuations and locations have to be met.

• We know that ~lt[i] = ly1, ~lt[j] = ly2 and ∀h ∈ {1, . . . , x + n + 2} \ {i, j} :
~lt[h] = ~ls[h]. With Definition B.2.1 we conclude that ∀h ∈ {1, . . . , x + n +

1} \ {i, j} : ~lt|n+1[h] = ~lt[h] = ~ls[h] = ~ls|n+1[h] and ~lt|n+1[i] = ~lt[i] = ly1 and
~lt|n+1[j] = ~lt[j] = ly2. This is the correct location vector after application of
edges e1, e2 to state s|n+1.

• The set R = R1 ∪ R2 of clocks that are reset when applying edges e1, e2

only contains global clocks and local clocks from Ai and Aj (a subset of

Cg ∪ Cl
i ∪ Cl

j). We know that ∀c ∈ C : vc
t (c) =

{
0 i f c ∈ R

vc
s(c) else

. Using Def.

B.2.1 we conclude that ∀c ∈ Cg ∪ Cl
1 ∪ · · · ∪ Cl

x+n+1 : vc
t |n+1(c) = vc

t (c) ={
0 i f c ∈ R

vc
s(c) else

. Using ∀c ∈ Cg ∪ Cl
1 ∪ · · · ∪ Cl

x+n+1 : vc
s|n+1(c) = vc

s(c), we

conclude that ∀c ∈ Cg ∪ Cl
1 ∪ · · · ∪ Cl

x+n+1 : vc
t |n+1(c) =

{
0 i f c ∈ R

vc
s|n+1(c) else

,

which is the correct valuation after application of edges e1, e2 to state s|n+1.

• Since the integer valuation is unchanged (vi
s|n+1 = vi

s) and the assignments as
well, the resulting valuation is correct (vi

s|n+1[ω1(i), ω2(j)] = vi
s[ω1(i), ω2(j)] =

vi
t = vi

t|n+1).

With Corollary B.2.4 we conclude that the invariants are met. Thus, the edges can
be applied for the reduced states as formalized in the lemma. Note, that the same
argumentation holds true, if e1 is the receiver edge (chan?) and e2 is the sender edge
(chan!).
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