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1. Introduction

Long-term care supports people in need of care with their activities of daily living
[Colombo et al., 2011, p.39]. It has a great importance in society today and the de-
mand is expected to grow in the next years and decades [European Commission Eco-
nomic and Financial Affairs, 2015, p. 144]. One reason is the demographic change
that leads to an ageing society [Colombo et al., 2011, p.62]. The age distribution in
Europe for the years 1950, 2015 and 2050 is shown in the age pyramids in Figure 1.1.
In 1950 only a small part of the populations was aged over 70 years whereas in 2015
the entire distribution is shifted upwards with a clearly higher portion of people aged
over 70 years. The projection for the year 2050 shows that this trend will continue.
With the ageing society also the demand for long-term care grows [Colombo et al.,
2011, p.62].
In the provision of long-term care, home care is an alternative to residential care

in many cases. Home care is any type of care service provided to persons in their
own homes consisting of assistance with daily living, household and nursing activities
[Genet et al., 2012, p.9-10]. In connection with a growing demand for long-term care,
the demand of home care is also increasing. Additionally, there are several reasons
why home care in particular will become more important in the near future. Amongst
others, these are technology advancement in medicine and the preference of people
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Figure 1.1.: Demographic change in Europe. Age distribution in Europe for the years
1950, 2015 and 2050 (Data source: United Nations - Department of Eco-
nomic and Social Affairs - Population Division [2015])
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1. Introduction

staying home as long as possible [Tarricone and Tsouros, 2008]. Furthermore, many
OECD countries encourage home care to face the growing demand for long-term care
[Colombo et al., 2011, p.39]. In most of the OECD countries the share of recipients
receiving home care exceeded those in residential care facilities in 2008 [Colombo
et al., 2011]. Smaller family sizes, women participating in the labor market and
greater mobility of family members promote a shift from care by relatives to formal
care providers [Tarricone and Tsouros, 2008].
In comparison to residential care, the daily management and planning in home care

is more complex because of the geographical dispersion of clients [Milburn, 2012]. Not
only the duty plan of nurses, but also the driving routes need to be determined. Dur-
ing the planning many requirements need to be respected. The complexity increases
with the number of clients, employees and regulations and lead to a challenging task.
Quantitative approaches from operations research (OR) have the capability to ensure
efficient and legal plans as well as consider many requirements at the same time. In
many countries home care is funded by public authorities [Colombo et al., 2011], and
more efficiency could reduce the cost pressure. Furthermore, modeling preferences of
clients and nurses improves the service quality, satisfaction and work-life-balance.

1.1. Scope of the thesis

Many planning problems arise in the context of home care planning for public and
private providers, whereas an important one is addressed in this thesis: Support the
home care providers by proposing solution approaches for the operational planning
that has to be performed on a regular basis. This thesis focuses on the routing and
scheduling task originating from the geographically dispersed locations of the clients.
There is no differentiation between home care and home health care because for both
the routes of the care givers need to planned. Furthermore, the methods are suitable
for private and public providers. In both cases the scheduling of appointments for
clients and routing of employees arises. During the planning many restrictions have
to be considered. These are time restrictions on the services (e.g. time windows due
to medical reasons) and working regulations (e.g. labor law regulations and work
contracts).
The home health care problem in literature considers the routing and scheduling

problem in this context to determine the daily plans for the nurses and client. The
task combines components from the well-known vehicle routing problem with duty
scheduling problems from the health care sector. Additionally, there are home care
related constraints such as the qualifications of nurses that must be considered to
assign the routes to nurses. The routing problem in home care services has received
broad attention in the literature [Sahin and Matta, 2014]. However, the consideration
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1.1. Scope of the thesis

of working regulations, e.g., labor laws, work contracts or personal agreements, is
essential for acceptance in practice. Furthermore, the integration is crucial to ensure
compliance with the regulations. Many publications consider constraints such as
the maximum daily working time and simple break rules, but abstract from further
working regulations.
Therefore, the first part of this thesis contributes to the state-of-the-art by inte-

grating legal working regulations and work contracts into the operational planning
of home care providers. To achieve this, the following research goals are defined:

1. Integrate relevant working regulations to the routing and scheduling for home
care providers in a static multi-day setting

2. Solve the integrated routing and scheduling for real-world sized problem in-
stances

3. Evaluate the influence of working regulations on working hours and compliance
with labor law regulations

To achieve these goals, quantitative solution approaches taking those restrictions
into account are developed. The methods adapt and integrate many regulations
and add new components resulting from practical requirements. The first step is
the formalization of the problem setting as a mixed-integer program resulting in
an exact solution approach. Afterwards, three heuristic approaches are developed
and compared to provide a solution method that is capable of computing feasible
and efficient schedules in a reasonable computation time. All methods are evaluated
on artificial test datasets, which are published online, and instances provided in
literature. A detailed numerical analysis determines the performance of the methods
in comparison to each other and to the exact approach. Based on the capability of the
methods to consider extended working regulations, they are used for an evaluation of
the influence of those restrictions on the working time and feasibility of the schedules.
The methods mentioned above solve the routing and scheduling of home care

providers for a static setting. This means that the clients and nurses as well as
their demands and requirements do not change in the considered planning horizon.
However, in practice the operational planning task needs to be solved periodically due
to the dynamic environment of changes in clients’ health statuses and newly admitted
clients. At the point of planning the current situation cannot be seen isolated from
the previous and future periods. The past decisions have major implications on
the quality and capacities in the future. On the one hand, working regulations
like maximum working times and rest time requirements span often more than one
planning horizon. On the other hand, for the mainly elderly clients, the continuity
of services is important. Thus, the number of different nurses should be minimized
and changes in visit times avoided. These quality indicators need to be ensured
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1. Introduction

across planning horizons to improve satisfaction. The second main contribution of
this thesis is to support the planning of home care providers in a dynamic setting.
Two research goals in this thesis address this setting:

4. Incorporate the feasibility of working regulations and continuity between plan-
ning periods

5. Evaluate the influence of the different continuity metrics on the solutions

Several possibilities to model continuity in a dynamic setting are proposed and evalu-
ated. The heuristic solution approach is extended to a rolling horizon approach that
takes the changing demands into account while ensuring feasibility and continuity
between periods. The numerical results are analyzed concerning the length of the
planning interval and different scenarios of fluctuations.

1.2. Structure

This thesis comprises of eight chapters and is structured as follows. Chapter 2 gives
an short introduction to home care services in the context of the health care system
and shows the development in the sector. Furthermore, an overview of planning
problems arising for home care services is provided and the problem setting in this
thesis is described. The relevant methods from OR and related planning problems
are presented in Chapter 3. The literature review of solution approaches for home
care routing and scheduling in static and dynamic settings is given in Chapter 4. The
research opportunities and goals of this thesis are derived from the state-of-the-art
in Sections 4.4 and 4.5.
The description of how the goals are achieved starts with a mathematical formaliza-

tion of the problem for a static setting in Chapter 5. The chapter is concluded with
a detailed numerical analysis. The heuristic solution approaches are addressed in
Chapter 6. Three heuristics based on the metaheuristics large neighborhood search,
adaptive large neighborhood search and variable neighborhood search, are described
in detail. The parameters for the heuristics are determined with an algorithm config-
urator. Based on the results of the parameter tuning, the evaluation of the methods
is performed in an extensive numerical analysis that takes the observed empirical dis-
tributions of results into account. After determining the most suitable heuristic, the
chosen method is used for evaluating the impact of introducing working regulations
in Section 6.8.
The extension of the heuristic solution approach to a dynamic setting is addressed

in Chapter 7. First, the adapted parts of the heuristic are described, followed by
the formalization of different metrics to achieve continuity between planning periods.
Afterwards, the method is embedded into a rolling horizon approach to provide a
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method to support the regular planning task of a home care provider. The numerical
analysis determines the metrics and configurations that are suitable.
Chapter 8 summarizes the thesis, provides a critical review of the results and

achieved goals and an outlook on future research opportunities.
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2. Planning home care services

This chapter gives an introduction to the field of home care and shows the opportu-
nities of quantitative solution approaches to assist home care planners in their daily
work. Section 2.1 describes home care services from a general perspective to provide
background information of the field. In Section 2.2 the development of long-term care
is shown to underline the growing importance of home care services. An overview
of home care planning problems is given in Section 2.3 followed by the problem de-
scription for routing and scheduling in home care services in Section 2.4 that defines
the scope of this thesis.

2.1. Definition and description of home care services

In addition to institutional and semi-institutional care, like nursing homes and day
care centers, home care services are one possibility for the provision of long-term
care [Leichsenring et al., 2013, p.20]. The World Health Organization (WHO) defines
long-term care as follows:

“Long-term care is the system of activities undertaken by informal care-
givers [...] and/or professionals [...] to ensure that a person who is not
fully capable of self-care can maintain the highest possible quality of life,
according to his or her individual preferences, with the greatest possible
degree of independence, autonomy, participation, personal fulfillment and
human dignity.“ [World Health Organization, 2000, p.6]

Home care is often placed at the intersection of health care and social services,
because services range from household and care (social) to medical activities (health
care provision) [Tarricone and Tsouros, 2008, p.13]. [Genet et al., 2012, pp.9-10] give
an overview of three typical types of activities:

1. Basic Activities of daily living (ADL) [Murray, 2008]: ADLs can be defined as
“the tasks that are required for a person to be able to live in the community“
[Murray, 2008, p.78]. Examples for basic ADLs are eating, bathing and mo-
bility. Basic ADLs are sometimes called personal ADLs and normally required
daily [Genet et al., 2012, pp.9-10].

2. Instrumental activities of daily living (IADL) [Murray, 2008]: IADLs consists
of services that are related to independent living but not necessarily on a daily
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2. Planning home care services

basis. Examples are household activities, shopping and support using the tele-
phone.

3. Nursing activities [Genet et al., 2012, pp.9-10]: This category includes services
concerning medical activities that require trained or qualified staff, e.g., giving
injections. Medical activities often need to be prescribed by a physician.

It can be differentiated between the terms home health care and home care. Castillo-
Salazar et al. [2014] distinguish them by the activities carried out and the length of
the stay. They state that home health care is often provided after a hospital stay
to recover at home assisted by nurses for a limited period. In contrast, they define
home care as the assistance to elderly and disabled people in their daily living, where
the services include household and care activities and are normally for a long-term
period. Madigan [2008] distinguishes home health care and home care not only by
the type of service but also by the qualification of the employees. Thus, home health
care is delivered by health care professionals whereas home care is delivered by aides.
However, in both settings the care givers have to visit clients at their home to provide
a service for which they potentially need a qualification [Castillo-Salazar et al., 2014].
The following definition by Genet et al. [2012] combines both and summarizes the
term home care services:

“Home care can be conceived of as any care provided behind someone’s
front door or, more generally, referring to services enabling people to stay
living in their home environment.“ [Genet et al., 2012, p.9]

An overview of the types of care and the classification used in this thesis is given in
Figure 2.1. Throughout this thesis the term home care is used for all three types of
care activities, i.e., home care includes home health care.
Home care activities can be carried out by informal or formal providers [Euro-

pean Commission Economic and Financial Affairs, 2015, p.146]. Exceptions are the
already mentioned nursing activities in home health care that need a special train-
ing. Informal carers are not employed to care for a person but are, e.g., spouse,
relatives or friends of the person in need of care [Tejada, 2008]. Formal providers
are single persons employed by clients or institutions servicing multiple customers
[European Commission Economic and Financial Affairs, 2015, p.146], e.g., hospitals
or home care providers.
The main costs for providing long-term care, and therefore home care, are the la-

bor costs of the care takers [European Commission Economic and Financial Affairs,
2015, p.147]. But in comparison to inpatient institutions the provision with home
care is potentially less expensive [Milburn, 2012, p. 281] [Slotala, 2011, p. 24] [Tarri-
cone and Tsouros, 2008, p.6]. The financing of home care services differs by country.
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2.2. Development of the home care sector

Figure 2.1.: Home care vs. home health care, including types of care (types of care
based on [Genet et al., 2012, pp.9-10], [Murray, 2008])

In OECD countries the provision of long-term care is mainly funded by public au-
thorities [Colombo et al., 2011, p.47]. Colombo et al. [2011] cluster the different
systems in public funding in the following categories: single programs, means-tested
safety-net schemes and mixed systems. The single programs for long-term care can
be based on taxes (e.g. Denmark), insurances (e.g. Germany) or the health system
(e.g. Belgium). The means-tested safety-net schemes fund long-term care only for
people with income or assets below a certain threshold (e.g. USA). Mixed systems
have different programs and benefits, sometimes dependent on the recipient or the
income (e.g. France). The type of funding for recipients is distinguished mainly
in cash benefits, allowances for informal carers or benefits in-kind [Colombo et al.,
2011, p.49]. Most countries have both, cash and in-kind benefits, and the eligibility
of receiving long-term care services is determined before receiving benefits [Colombo
et al., 2011, p.50]. The financial support for long-term care is often based on the abil-
ity of a person to perform ADLs [Murray, 2008]. The market for private long-term
care funding, e.g., by private insurances, is small and mainly common in the United
States because the public funding is only for poor people [Colombo et al., 2011,
p.248-249]. In other countries, the private insurances extend the services covered by
public funding [Colombo et al., 2011, p.248].

2.2. Development of the home care sector

The home care sector has a major share in the provision of long-term care and is
expected to become more important in the future. This section gives an overview of
the past development and future projections.
For people in need of care home care is an alternative to inpatient institutions

like elderly homes or hospitals. It provides the possibility to a person to stay in
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Figure 2.2.: Preferred long-term care arrangement in EU-27 countries based on the
survey data of [European Commission, 2007, pp.95-97]

his or her familiar environment that is preferred by most of the people [European
Commission, 2007, pp.95-97]. Figure 2.2 shows the results of a survey conducted
in the European Union. According to the data provided by [European Commission,
2007, pp.95-97], the three most preferred types of long-term care (81%) all take place
in the person’s own home. The participants prefer to be cared after in their home
by a relative (45%) or a professional home care provider (25%), if they would need a
long-term care arrangement. The next preferred care alternative is the employment
of a personal carer at home (12%). At last, the options moving to a nursing home
(8%) or a close relative (5%) follow. From this results the preference of people staying
at their own home is obvious.
Figure 2.3 shows the provision of long-term care split up by residential care and

home care for selected OECD countries in 2013. The total and relative number of
recipients underline the importance of and preference for the home care sector in the
presented countries. In nearly all countries the number of persons receiving home
care is substantially higher than those in residential care facilities, with the only
exception of Portugal. In Germany more than 1.8 million people received home care
in 2013 (Figure 2.3(a)). In proportion to the total population aged 65 years and
older, other countries (e.g. Israel, the Netherlands and Switzerland) have a higher
rate of long-term care clients, also in home care, than Germany (see Figure 2.3(b)).
The development of the formal home care sector in the last decade is shown in

Figure 2.4. In most of the countries, the number of home care recipients increased
constantly. Only in the Netherlands the client numbers are volatile. At the same
time the number of persons in residential care facilities also increased for the same
countries (not shown in the Figure). However, in Figure 2.5 the shares of both types
at providing long-term care underline the growing importance of home care. From
this figure it can be seen that the home care provision takes an increasing share in
long-term care in most of the countries.
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Experts state several reasons why the demand for formal home care will further
increase in the next decades:

1. Demographic change: Due to the aging population, the number of people in
need of care is expected to grow in the next decades [Tarricone and Tsouros,
2008, p.3][European Commission Economic and Financial Affairs, 2015, p. 144].
As an example, Figure 2.6 shows the projections of the German Statistical Office
for people in need of care for the years 2030, 2045 and 2050 in Germany. The
projections assume constant care dependency ratios based on the year 2013.
However, even with the assumption of higher life expectation and healthier
people becoming dependent on care later in their lives, the number is expected
to increase in Germany [Statistische Ämter des Bundes und der Länder, 2010].

2. Preference for home care: Along with the number of long-term care recipi-
ents the number of home care recipients will increase [Tarricone and Tsouros,
2008, p.3]. As mentioned before, most people prefer staying in the own home
[European Commission, 2007, pp.95-97] and expect a high quality provision of
long-term [Colombo et al., 2011, p.38] and individualized care [Tarricone and
Tsouros, 2008, p.5]

3. Shift from informal to formal home care: Currently, the greatest portion of
home care is provided by informal carers [Fujisawa and Colombo, 2009, p.27]
[Statistisches Bundesamt, 2013b, p.7]. The number of informal carers will de-
crease and more home care will be provided by professionals because of social
changes. Families tend to be smaller in the future and therefore less informal
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providers are available [Tarricone and Tsouros, 2008, p.3]. Furthermore, the
current majority of informal caregivers are women but many of them are work-
ing full-time nowadays [Tarricone and Tsouros, 2008, p.3][Colombo et al., 2011,
p.38,86] and therefore have less time to care for their relatives. Another reason
is the mobility of people leading to longer distances between family members
[Tarricone and Tsouros, 2008, p.4].

4. Policy decisions: Many countries prioritize and encourage home care over res-
idential care [Colombo et al., 2011, p.39]. Mainly, because home care is less
expensive and addresses preferences of the population [Tarricone and Tsouros,
2008, p.6]. Together with the shift from informal care to formal care, this will
increase the demand for formal home care.

5. Research and technology advancements: Developments in medicine and tech-
nology influence the demand for home care. First, new pharmaceuticals and
therapies increase life expectancy and lead to an aging population [Tarricone
and Tsouros, 2008, p.5]. Second, new technology make home care available in
cases where before only a stay in inpatient facilities (e.g. hospitals) was possible
[Tarricone and Tsouros, 2008, p.5].

Based on these reasons we can conclude that the demand of formal home care will
rise in the next decades. As a result, home care providers must cope with more
clients, which introduces new challenges to the operational planning.
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2.3. Planning problems of home care providers

In this section an overview of planning problems arising in home care services is given
to set the context for this thesis (see Section 2.4). First, the definitions for the terms
clients, nurses and providers used for the description of the planning problems are
given as follows:

• Client: The people in need of care that are serviced by a home care provider are
called clients. They live at their own homes and request one or more services
per week.

• Nurse: The employees of a home care provider are called nurses. The nurses
travel to the clients and perform the requested services at the clients’ homes.
According to the training of the nurse, he or she can carry out tasks requiring
different qualifications. For example, medical services can only be fulfilled by
a registered nurses. In contrast to housekeeping activities, which can be done
by every employee, including registered nurses.

• Provider: The home care provider employs the nurses to fulfill the requests
of the accepted clients. Furthermore, the provider is responsible for the duty
planning of the nurses and also for determining the appointments of the clients.
Thus, the office of the provider is the place where decision support techniques
can be used to assist the person in charge in planning the schedules for the
next weeks.

A broad overview of planning problems arising in the health care context is given
by Hulshof et al. [2012]. The review focuses on publications in operations research
and management sciences (OR/MS) and classifies the relevant literature in six ser-
vice areas. The resulting categories are depicted in Figure 2.7. The definition for
each category by Hulshof et al. [2012] can be summarized as follows: Ambulatory
care services comprise of health care services where the patient does not stay in an
institution after the treatment. This includes primary care and outpatient clinics. In
contrast to this, inpatient care services consider the health care services provided to
clients in institutions like hospitals. Emergency care services are handled in urgent
situations. Planning problems in this area consider ambulances and emergency de-
partments of hospitals. Planning problems for surgical care services consider mainly
capacity planning for surgery facilities like the operating rooms. Residential care
services and home care services concentrate on offering assistance with ADLs. The
former services are performed in an institution like an elderly home whereas the lat-
ter is provided in the patient’s homes. The focus in this thesis lies on the sector of
home care services.
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2.3. Planning problems of home care providers

Figure 2.7.: Health care services according to Hulshof et al. [2012]

The terms home health care and home care are sometimes not clearly differenti-
ated in the OR/MS literature on home care planning (see also discussion in Section
2.1), but as the problems incorporate the same components, publications from both
settings are reviewed throughout this thesis.
Gutiérrez and Vidal [2013] and Gutiérrez et al. [2013] provide a systematic review

of planning problems in the management of home care operations with focus on
decisions in logistics. The authors propose three different dimensions with categories
to classify the relevant literature:

1. Planning horizon: strategic, tactical, operational
2. Management decisions: network design, transportation management, staff man-

agement, inventory management
3. Service processes: medical services, patient services, support services

An overview of the first two dimensions is given in Figure 2.8. The problem setting
in this thesis is located in the staff assignment and staff routing categories, because
the integrated problem of these two components is considered.
Sahin and Matta [2014] also provide a review on operations management in home

care. They give information about the complexity of the processes and summarize
relevant literature in the field. The proposed classification scheme is based on the
length of the planning horizon: long-term, mid-term, short-term and very-short term
decisions. For an overview of the planning problems on the individual levels see
Figure 2.9.
The following description of planning problems arising in the home care context

is based on the classifications of Gutiérrez et al. [2013] and Sahin and Matta [2014].
Thus, the description is related to the Figures 2.8 and 2.9.
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2. Planning home care services

Figure 2.8.: Framework of Gutiérrez et al. [2013] to classify management decisions in
home health care logistics (see Figure 1 in Gutiérrez et al. [2013], only
dimensions one and two are shown here)

Figure 2.9.: Framework of Sahin and Matta [2014] to classify operations management
decisions in home care (see Figure 2 in Sahin and Matta [2014])
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2.3. Planning problems of home care providers

2.3.1. Strategic planning problems

On the strategic level home care providers have to face several decisions. One is
the determination of the service mix, i.e., which services the provider should offer to
his potential clients [Hulshof et al., 2012, Sahin and Matta, 2014]. Furthermore, the
location of the provider needs to be determined [Gutiérrez et al., 2013]. Also, the
long-term capacity dimensioning takes place on a strategic level and includes staffing
and equipment (e.g. vehicles) [Hulshof et al., 2012, Gutiérrez et al., 2013, Sahin and
Matta, 2014]. Other problems are the strategic decision on suppliers of materials
[Gutiérrez et al., 2013] and partnership decisions with other providers [Sahin and
Matta, 2014]. The research on quantitative solutions approaches in strategic planning
for home care is scarce. Sahin and Matta [2014] state they found no publication in
the strategic area (see Figure 2.9 for their classification). In the review of Gutiérrez
et al. [2013] quantitative solutions approaches are also mentioned only on the tactical
and operational level.

2.3.2. Tactical planning problems

The decisions on a strategic level are the basis for tactical planning problems. One
planning problem is the tactical determination of districts [Milburn, 2012, Sahin and
Matta, 2014]. According to Blais et al. [2003] and Benzarti et al. [2013], the districting
problem in home care consists of clustering small units of clients into larger units
with the goal of balanced workload between districts. Districts are serviced by a team
of nurses and thereby reduction of travel distances can be achieved. Benzarti et al.
[2013] claim that smaller teams of nurses lead to a less complex planning problems
and the number of different nurses assigned to a client can be reduced.
Furthermore, the strategic resource allocations can be refined on a tactical planning

level by building care teams [Sahin and Matta, 2014], determining common work
shifts or deciding on temporary staff to handle demand peaks [Gutiérrez et al., 2013].
These decisions are made based on the chosen districts [Hulshof et al., 2012, Sahin and
Matta, 2014]. One example is the assignment of nurses to districts [Boldy and Howell,
1980]. Additionally, demand forecasting is done for a tactical planning horizon to
include the results in the capacity dimensioning [Sahin and Matta, 2014].

2.3.3. Operational planning problems

On the operational level several planning problems arise. The routing and scheduling
of home care nurses is the most widely studied problem in the OR/MS literature on
home care [Gutiérrez et al., 2013, Sahin and Matta, 2014].
The routing and scheduling is characterized by Milburn [2012] as follows: A set of

nurses provides services for a set of clients at the clients’ homes. A client has several
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services defined for consecutive weeks. The services have time requirements, i.e.,
possible days and time windows on a day. The days of the services are not determined
a priori but have to be selected during planning. The nurses have qualifications that
they need to perform a service and their workday length and availability is given a
priori. The outcome of a planning method is the assignment of day, nurse and time
for each service at a client.
Common objectives range from economic goals to client and nurse satisfaction.

Economic objectives aim at minimizing the travel time [Milburn, 2012] or balancing
the workload between nurses (e.g. Cappanera and Scutellà [2014]). The latter also
improves the satisfaction of nurses. Additionally, in some methods the preferences
of nurses regarding clients are maximized (e.g. Trautsamwieser and Hirsch [2010]).
Client satisfaction is achieved by maximizing the preferences of clients (e.g. Traut-
samwieser and Hirsch [2010]) or continuity. Two continuity metrics widely used in
home care planning are continuity of care and continuity of time. The former mini-
mizes the number of nurses visiting a client during the planning horizon whereas the
latter minimizes the deviation in visit times [Milburn, 2012].
The integrated problem of assignment of nurses to clients and routing decisions

is often referred to as home health care problem (HHCP) [Cheng and Rich, 1998,
Bertels and Fahle, 2006, Trabelsi et al., 2012] or home care routing and scheduling
[Mankowska et al., 2014, Morito et al., 2014]. The planning problem and process for
the integrated routing and scheduling underlying in this thesis is described in Section
2.4. An extensive literature review of the state-of-the-art in routing and scheduling
is given in Chapter 4.
Another planning problem studied in OR literature is the assignment of new pa-

tients to home care nurses [De Angelis, 1998, Hertz and Lahrichi, 2009, Sahin and
Matta, 2014]. Mostly, one so called reference nurse per patient needs to be selected
for each new client while balancing the workload among nurses [Hertz and Lahrichi,
2009, Lanzarone and Matta, 2009]. In this way the continuity of care is ensured for
each client as the assigned nurses is carrying out all services for the client. In some
variants of this problem the assignment is not considered as hard requirement but
reassignments are allowed [Lanzarone et al., 2012], the requirement is softened [Lan-
zarone et al., 2012] or omitted for some of the clients [Carello and Lanzarone, 2014].
The routing of nurses has to be determined in a second stage for each nurse indepen-
dently [Yalcindag et al., 2012]. In this case, the routing can be solved as a traveling
salesman problem (TSP) [Yalcindag et al., 2012] or traveling salesman problem with
time windows (TSPTW). The demand of the clients is often assumed to be uncer-
tain [Lanzarone and Carello, 2013, Carello and Lanzarone, 2014]. Methods applied to
this problem are mixed-integer programming [Carello and Lanzarone, 2014], heuris-
tics [Levary, 2015], cost policies [Lanzarone and Matta, 2012] and markov decision
processes [Koeleman et al., 2012].
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2.4. Routing and scheduling home care services

Another problem addressed is the duty planning of nurses by assigning them to
shifts [Hulshof et al., 2012]. In this case, the routes need to be planned afterwards
or given as input to the planning like in Wirnitzer et al. [2016]. In this planning
problem working regulations for the nurses need to be considered [Wirnitzer et al.,
2016].
The integration of inventories and materials like in a supply chain is also a potential

extension to the routing and scheduling [Milburn, 2012]. An example is the integra-
tion of drug production and delivery for the chemotherapy at home in the publication
of Chahed et al. [2009]. The specialty in the home care context is that goods can
either be delivered to the client’s home or the provider’s office to be collected by the
nurses on their way to the client [Milburn et al., 2012].

2.4. Routing and scheduling home care services

In the following sections the planning tasks considered in this thesis are described in
detail. We begin with definitions and describe the planning process and requirements.
Afterwards, the context of the problem setting in this thesis is elaborated.

2.4.1. Definitions

First, the terms clients, nurses and shifts are defined for the context of this thesis to
provide a consistent usage in the literature review and description of the proposed
methods and results.

Clients and jobs. A client (or patient) requires one or more home care services
during the planning horizon. Throughout this thesis, the term home care is used for
services comprising ADLs, IADLs and nursing activities. There is no differentiation
between home care and home health care because both are services that need to be
fulfilled by an employee of a home care provider. For each service a day and the
duration is given. The days are negotiated between client and provider or given due
to a medical prescription, e.g., an injection that has to be given daily. The services
are represented by jobs. A job can bundle several services if they should be carried
out by one nurse in one visit. The total duration of the job is determined by the
included services.

Nurses. The jobs of clients need to be fulfilled by the set of available nurses em-
ployed by the home care provider. Each nurse has specific qualifications determined
by the professional training the nurse received. For example, a nursing activity can
be carried out only by a nurse with medical training whereas help with the household
can be performed by any employee. The jobs that can be assigned to a nurse are
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Figure 2.10.: Example for three possible shift types

further restricted due to availability and working regulations. Finally, the start and
end location of the routes of the nurse need to be known to take driving times at the
beginning and end of tours into account. The location can be either the provider’s
office or the nurses home.

Shifts. Like in inpatient institutions the workday is often divided into shifts, e.g.,
morning and afternoon shifts, to cover 24 hours service. A shift type is defined by its
earliest start time and latest end time on a day. Furthermore, the valid weekdays for
a shift type can be defined to allow different shift types on particular days. In practice
the weekend is often handled differently than normal weekdays, e.g., there are less
employees working longer shifts. An example for shift types is given in Figure 2.10.
In our context the defined shift types provide a framework for the route planning
and to structure the day. Every nurse works at most one shift per day. The working
time is determined by the route and not the shift length.

2.4.2. Planning tasks and requirements

This thesis focuses on the planning process on an operational level at institutions
that provide home care and/or home health care. This means the planning takes
place at a home care provider or hospital employing several persons to take out care
services for geographically dispersed clients. Furthermore, the methods are suitable
for private and public providers. In both cases the described planning has to be
performed.
The operational planning of a home care provider consists of two planning tasks:

routing and nurse scheduling. The planning process is shown in Figure 2.11. In the
routing task the provider groups the jobs to tours and determines the sequences of
jobs (called routes). The visit times at the clients are defined based on the duration
of the jobs in a tour and the driving times between two clients. The nurse scheduling
determines the duty plan of the nurses. Therefore, the provider decides on the
working times for each nurse on each day of the planning horizon. If shift types
are defined, the duty plan is determined by the shift type assigned to each nurse.
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Figure 2.11.: Routing and scheduling planning process

After the tours and nurse schedules are determined, they need to be combined to
a joint schedule. Either the routing is performed first and the nurses are assigned
to the routes or the duty plan is generated first and the routes are build based on
the available nurses. In both planning tasks several requirements must be respected.
These are described in the remainder of the section based on the planning task they
affect.

Requirements for the routing task

The requirements that have to be considered during route construction are the time
windows of jobs and the break assignment inside routes.

Time windows. The start time of a job is restricted by a time window. Like the
days, the time windows are either negotiated by provider and client or predetermined
by a physician due to medical reasons. The latter time windows are often narrower
because the nursing activities must ensure the healthiness of the client, e.g., by giving
a medication at a specific time. The start times of jobs containing household help
do not have narrow time windows but are assignable some time on the day. A time
window can also restrict the start time due to preferences of the clients.

Breaks. The adherence to working regulations is important for the application in
practice. The labor laws determine whether a schedule is legal or not. Many coun-
tries define regulations in labor laws. The European Union (EU) passed a directive
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to provide a framework of working hour regulations for the member countries [Euro-
pean Parliament and Council of the European Union, 2003]. The same elements are
mostly also considered in the national working hours acts. Although the directive
of the EU is cited in this section, the regulations from other countries can also be
considered even if they state other limits. The rules concerning the routing task are
the required breaks during working time. The directive states the following about
breaks during the workday:

“Member States shall take the measures necessary to ensure that, where
the working day is longer than six hours, every worker is entitled to a rest
break, the details of which, including duration and the terms on which
it is granted, shall be laid down in collective agreements or agreements
between the two sides of industry or, failing that, by national legislation.“
[European Parliament and Council of the European Union, 2003, §4]

The placement of breaks during working times can vary between countries, but most
of them follow the same structure: a maximum time span without a break is defined.
If this duration is expired, a break is needed. In some countries also stages of breaks
are defined based on the working period lengths or the division of a break into smaller
breaks is allowed. An example of break rules, derived from the database of the In-
ternational Labour Organization [2012], is given in Figure 2.12 for four countries.
In Germany, the 30-minutes break after six working hours or 45-minutes break after
nine working hours can be divided, but each part has to be at least 15 minutes long
[Bundesministerium für Arbeit und Soziales, 1994]. Note that breaks are not con-
sidered as working time [European Parliament and Council of the European Union,
2003].
Furthermore, the placement of a break in a route must be selected such that

the maximum time without a break is not violated. A break placed directly at
the beginning or end of the tour is not preferred and would possibly result in an
uninterrupted working time after or before the break that is longer than allowed,
respectively.

Requirements in nurse scheduling

In the nurse scheduling many requirements resulting from work contracts and working
regulations need to be considered. Furthermore, the time windows of shift types and
qualifications of nurses are addressed.

Time windows. The shift types define time windows for start and end times of
tours because a shift divides the day into smaller units that are used for further
working regulations.
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Figure 2.12.: Break rules resulting from the working hours acts of Germany, Switzer-
land, Turkey and Brazil [International Labour Organization, 2012]

Qualifications. Each nurse has a set of qualifications that determines which jobs he
or she can carry out. If a job should be assigned to a particular nurse the requirement
must be fulfilled. This aspect has to be considered when assigning nurses to routes
or jobs to nurses.
The required qualification to perform a job depends on the type of service. Qualifi-

cations mostly represent the professional requirements but can also be used for further
planning restrictions. If a provider wants to build special routes that are carried out
by certain employees, an additional qualification can be added to the problem setting.
A possible example is the meals-on-wheels services. No special training is needed to
deliver the meals to the clients but the routes are assigned most likely to employees
that are recruited for this special task. By adding a separate qualification this can
be achieved during automated planning without assigning care takers for this routes
and vice versa. A human planner would not explicitly define a new qualification but
intuitively separates the set of nurses according to their functions.

Nurse availability. The availability of nurses on specific days and shifts can be
limited due to vacations and agreements between provider and employee. Vacation
days are known in advance and can be considered during planning. This kind of
unavailability is called irregular. Regular shifts off can be due to specific agreements
between provider and employee, e.g., every Monday afternoon off. Another example
is a group of nurses working only in the morning, which is typical for home care
services in Germany [Grabbe et al., 2006, p.37].

23



2. Planning home care services

Work contracts. The maximum workload of a nurse is defined by the work contract
closed between nurse and provider. The regulations from work contracts concern the
working hours of each employee and should not be violated as overtimes are expensive
and lead to lower employee satisfaction. The resulting restrictions are the daily
working time as well as weekly or monthly working time. The contracts provide hard
limits that have to be considered during planning. The European Parliament and
Council of the European Union [2003] states the maximum weekly working time of
48 hours (including overtime) but this is often less restrictive than the working times
agreed upon in work contracts. Additional to working times, agreements between
provider and employees influence the weekly workdays. For example, there are two
possibilities for part-time contracts: a nurse working three days a week for six and a
half hours or five days a week only four hours per day. These agreements must be
respected when planning the duty schedules.

Rest times. Additional to breaks during working hours, rest times between shifts
have to be considered to ensure a legal plan. These rest times are again defined by
the working hour acts of the governments. The framework for the daily rest time in
the EU is addressed in the following article:

“Member States shall take the measures necessary to ensure that ev-
ery worker is entitled to a minimum daily rest period of 11 consecutive
hours per 24-hour period.“ [European Parliament and Council of the Eu-
ropean Union, 2003, §3]

This means every employee should be granted an uninterrupted rest of at least eleven
hours before working again. Thus, in some cases the consecutive assignment of an
early shift after a late shift is not possible. It is also common to define a weekly rest
for uninterrupted duty-off time:

“Member States shall take the measures necessary to ensure that, per
each seven-day period, every worker is entitled to a minimum uninter-
rupted rest period of 24 hours plus the 11 hours daily rest referred to
in Article 3.“ [European Parliament and Council of the European Union,
2003, §5]

Figure 2.13 shows an example of daily and weekly rest times fulfilling the criteria.

Cyclic shift pattern. The definition of shift types can be used to allow cyclic shift
patterns to ensure a fair distribution of unpopular shifts among employees. A cyclic
shift pattern determines the sequences of shifts and limits the shift assignments in the
planning periods [De Causmaecker and Vanden Berghe, 2011]. Cyclic shift patterns
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Figure 2.13.: Example for daily (dashed) and weekly rest times (dotted)

Figure 2.14.: Example for a two-week shift rotation and the resulting shift patterns
(M = morning shift, A = afternoon shift, W = weekend shift, - = day
off, p = pattern id)

are widely used in Germany for full-time workers in home care services. According
to Grabbe et al. [2006, p.37], 32.9% of the persons in their study about home care
workers in Germany worked in cyclic shift patterns. One typical example is the
pattern given in Figure 2.14. The example shows a week of early shifts and weekend
off followed by a week of late shifts with an assigned weekend afterwards. In this
pattern two nurses are alternating their shifts to fulfill the demands without one
nurse working only late shifts.

Further restrictions for duty planning. Further restrictions regarding the duty
planning are widely used in inpatient institutions. One example is the maximum
number of consecutive workdays [De Causmaecker and Vanden Berghe, 2011]. Fur-
thermore, the weekend is not favored by most of the employees and the avoidance
of single weekend shifts, i.e., both days or none should be assigned, improves nurse
satisfaction [De Causmaecker and Vanden Berghe, 2011].
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2.4.3. Objectives

Like in many planning problems originating from practical applications, there exist
different goals to achieve during planning. The main costs for home care providers
are the personnel costs for the nurses [European Commission Economic and Finan-
cial Affairs, 2015, p.147]. Furthermore, the income of a home care provider is often
determined by the number and type of services it performs at clients. For example,
in Germany each specific service is compensated with a certain amount and driving
time with an allowance independent of the length [Simon, 2010, p.372-373]. There-
fore, the economic goal from a provider’s point of view is to reduce the driving times
of the nurses to have more time to perform jobs at clients [Milburn, 2012]. Fur-
thermore, the waiting time of nurses for a job time window to open is considered as
working time and should be avoided to increase efficiency. To incorporate both, the
minimization of the tour lengths while assigning as many jobs as possible is suitable.
Note that the durations of jobs are fixed and not shorted during planning. As the
breaks are included in the tour length, the artificial lengthening of tours to insert
breaks is prohibited.
In contrast to the economic goal, client satisfaction is important for home care

providers due to the competition between providers. For example, there is a free
choice of providers in Germany [Simon, 2010, p.364] and the competition is mainly
based on client satisfaction because most of the prices are fixed [Simon, 2010, p.372-
373]. Continuity of care is one criterion for client satisfaction that is often used in
previous research [Milburn, 2012]. The clients of home care providers prefer to be
visited by the same nurse or only a small number of different nurses [Woodward et al.,
2004]. This results from the fact that the employees enter the clients home and some
of the services can be intimate, e.g., showering [Woodward et al., 2004]. Therefore,
the number of different nurses during the planning horizon should be held small.
Another criterion to support client satisfaction is the continuity in time [Milburn,
2012], i.e., to avoid large fluctuations in start times of jobs. The adherence to usual
times is important for the clients to plan their daily life more easily. The times should
not change from week to week but stay nearly the same.
The satisfaction of nurses is also important for home care providers because there

is a high fluctuation of workers in the long-term care sector in OECD countries
[Colombo et al., 2011, p.173]. Nurse satisfaction can be ensured by adherence to
work contracts and working regulations, because it reduces overtime hours. Further-
more, it is important to incorporate the preferences of the nurses according to shift
assignments. The agreements between provider and nurses regarding regular or ir-
regular unavailability must be considered and the avoidance of single weekend shifts
improves the satisfaction of nurses. The similarity of duty schedules is another aspect
that can increase nurse satisfaction. If the duty schedules differ highly from week
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Figure 2.15.: Dependency between routing and nurse scheduling

to week, the nurses cannot plan their everyday life and must adapt to new working
times every week. Therefore, the assurance of similarity should be modeled. We call
this criterion continuity of duty schedules.

2.4.4. Dependency between routing and nurse scheduling

When the routes and duty plans are combined to a joint schedule several aspects
have to be considered. It has to be ensured that both are matched with each other
without violating any of the restrictions. During this task, the dependencies between
both planning tasks become apparent (see Figure 2.15). Depending on how many
nurses are planned by the nurse scheduling, the number of tours is limited. The
qualifications of the scheduled nurses also determine which jobs can be considered
together on the day and in one route. Furthermore, the working time of the nurses
limits the length of the tours. If not enough nurses with the required qualifications
and working hours are assigned, not all jobs can be considered in the routing. If
too many nurses are assigned, the plan is inefficient. The routing also has influences
on the nurse scheduling. The exact working times are known only if the routes are
determined because the driving times depend on the sequence of jobs. The same
holds for the start and end time of a tour which is essential to ensure rest times.
Furthermore, the breaks must be scheduled in the route but the requirements of
the break depend on the assigned nurse because the break types can differ between
nurses, e.g., apprentices under 18 years need earlier breaks than trained employees
in Germany [Bundesministerium für Arbeit und Soziales, 1994].
In contrast to perform both tasks isolated from each other, it is beneficial to con-

sider the routing and nurse scheduling in an integrated approach because of these
dependencies. In a two-phase approach there may be several revisions necessary until
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Figure 2.16.: Planning process for integrated routing and scheduling

both plans are coordinated and efficient. An integrated approach that considers all
requirements at the same time reduces this effort (see Figure 2.16). Regarding the
objectives presented in the previous section, the integrated approach also has sev-
eral benefits. The continuity of care requirement can be considered directly during
planning only if the nurse assigned to a tour is already known. The same holds for
the continuity of duty schedules because the similarity depends on the assignment
of nurses to tours. Thus, an integrated approach allows us to consider those criteria
directly during planning. Besides the benefits of an integrated approach, the inte-
gration also increases the complexity and the planning task gets harder to manage
for a human planner, especially in planning horizon of several days or weeks.

2.4.5. Problem settings

There are two different problem settings surrounding the integrated planning task
that are considered in this thesis. First, the static setting where there are no changes
of clients and nurses during a fixed planning horizon. Second, a dynamic setting
where the demands of client and capacity provided by nurses can change and the
planning has to be performed on a regular basis to approach these changes. Both
settings are described in the remainder of this section. Figure 2.17 shows the differ-
ences in the planning process.

Static setting. The time horizon for the planning task can vary between providers.
The duty planning in inpatient institutions is mostly done for a period of at least
four weeks. This has the advantage that the employees know their working hours
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Figure 2.17.: Static vs. dynamic setting (requirements are not shown)

in advance and therefore can plan their everyday life. This is also important for
the employees of a home care provider. In contrast to this, in practice the routing
decisions are often determined for the next week. To let the providers be flexible with
this decision, the planning horizon in this thesis is not fixed, but can be determined
by the provider. Note that a planning horizon of at least seven days is necessary
to ensure most of the working regulations, e.g., weekly rest times. Therefore, the
test cases in this thesis mainly contain a planning horizon of at least a week. The
demands of clients and the working hours of nurses are assumed to stay stable for
the length of the planning period and the goal is to minimize the tour lengths.

Dynamic setting. In home care several changes of demands and capacities occur
over time. New clients arrive or clients do not need service any more. The demand of
clients can change to more or less services and new or different time windows or days
can be requested. Additionally, new nurses need to be incorporated in the planning
or routes canceled due to leaving nurses.
To handle these changes a planning period of several weeks in a one-time planning

is not beneficial. The plan needs to be revised because the old plan can be infeasible
for the current period. Therefore, the planning problem stated above is not only
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solved in a static setting of fixed clients and nurses, but also for the dynamic setting
with changing demands of clients and capacities of working time. When the planning
is carried on a regular basis (e.g. weekly), the changes can be incorporated in the
new planning task. Furthermore, the previous period can be considered as input to
respect working regulations for a longer period.
The essential part of the planning in a dynamic setting is that the continuity be-

tween periods is ensured. At the point of scheduling major changes in assignments
of nurses and times must be avoided to ensure the client satisfaction. It is unac-
ceptable to provide totally different visits times for the clients with changing nurses
every week. The same holds for the nurses who do not want to have changing work-
ing times. Therefore, the objective function in the dynamic setting has to consider,
besides the tour length, the continuity criteria leading to client and nurse satisfaction.
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This chapter introduces and describes methods and models that build the basis for
this thesis. Section 3.1 provides an overview of operations research methods used for
solving the home care routing and scheduling. Section 3.2 reviews planning problems
that are related to home care planning, namely vehicle routing, nurse rostering and
technician routing.

3.1. Operations research methods

Operations research (OR) aims at planning tasks more efficiently [Eiselt and Sand-
blom, 2012, p.1]. Therefore, planning problems are abstracted and solved with ap-
propriate quantitative methods [Eiselt and Sandblom, 2012, p.4]. Amongst others,
methods that fall in the area of OR are mixed-integer programming and heuristics
[Eiselt and Sandblom, 2012].

3.1.1. Mixed-integer programming

Mixed-integer programs (MIPs) allow to formalize and solve planning problems within
practical applications [Wolsey, 1998, p.3].
The general definitions in literature are often given for the case of maximization.

Note that all definitions in this chapter are transformed to minimization problems
for a consistent objective sense throughout this thesis. The following description of
a MIP is based on [Wolsey, 1998, p.3]:

(MIP ) min cx+ hy (3.1)
Ax+Gy ≤ b (3.2)

x ∈ Rn
+ (3.3)

y ∈ Zp+ (3.4)

A MIP is defined for the column-vectors x and y representing variables. The variables
x can take non-negative continuous values (3.3) whereas the y variables can take only
non-negative integer values (3.4). If the y variables are limited to the values 0 and
1, they are called binary variables. The lengths of the x-vector and y-vector are n
and p, respectively. The feasible values for x and y are restricted by m constraints
that are represented by the matrices A (for continuous variables) and G (for integer
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variables) as well as the right-hand-side b (3.2). The objective is to find such variable
values that minimize the linear function (3.1) with c and h being vectors containing
the coefficients. All feasible solutions S of the MIP can be described by the following
set [Nemhauser and Wolsey, 1999, p.4]:

S = {x ∈ Rn
+, y ∈ Zp+, Ax+Gy ≤ b} (3.5)

The feasible solution (x∗, y∗) ∈ S is an optimal solution, if no other feasible solution
has a lower objective value. This property is expressed in the following inequality
[Nemhauser and Wolsey, 1999, p.4]:

cx∗ + hy∗ ≤ cx+ hy ∀(x, y) ∈ S (3.6)

When no integer variables are present in the formulation, the program reduces to a
linear program (LP) of the form [Wolsey, 1998, p.3]:

(LP ) min cx (3.7)
Ax ≤ b (3.8)
x ∈ Rn

+ (3.9)

The optimal objective value of a MIP can be calculated as z∗ = cx∗+hy∗. During the
solution process primal and dual bounds on this value are obtained. The bounds are
defined as follows [Wolsey, 1998, p.24-25]: Every feasible solution (x, y) ∈ S provides
a primal (upper) bound on the optimal objective value, because the optimal solution
must be at least as good as this value. A dual (lower) bound can be obtained by
relaxation of the original MIP, i.e., replacing the problem by a model that is easier to
solve for an approximation on the real objective value. One possibility is to enlarge
the set of feasible solutions by dropping the integrality constraint of the y variables
MIP, thus resulting in an LP, which is easier to solve. The resulting LP is called LP
relaxation of the original MIP.
Amongst other methods, a MIP can be solved using the Branch-and-Bound al-

gorithm. For the description of methods and further details on mixed-integer pro-
gramming the reader is referred to, e.g., Wolsey [1998] and Nemhauser and Wolsey
[1999]. Although, MIP solvers are able to prove the optimality of a solution, for
problems with a practical application often many computational resources in terms
of computation time and memory are needed.

3.1.2. Metaheuristics

Metaheuristic provide an alternative to exact solution approaches like mixed-integer
programming, in particular for complex problems [Gendreau and Potvin, 2010, p.x].
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Although heuristics do not guarantee the optimality of a solution, they are able to
provide high-quality solutions with less computation time and resources. The term
metaheuristic is defined as follows.

“Metaheuristics [...] are solution methods that orchestrate an interac-
tion between local improvement procedures and higher level strategies to
create a process capable of escaping from local optima and performing a
robust search of a solution space.“ [Gendreau and Potvin, 2010, p.ix]

Gendreau and Potvin [2010, p.ix] state that the field of metaheuristics was extended
over the years from this definition to any search procedures that can overcome local
optima. Typically, the methods contain neighborhood operators or destroy and repair
procedures to move from one solution to another [Gendreau and Potvin, 2010, p.ix].
Thus, the neighbors of a solution are all solutions that can be reached by performing
a defined change step [Michalewicz and Fogel, 2004, p.41]. A local optimum is a
solution that has better or equal objective value than all its neighbors [Michalewicz
and Fogel, 2004, p.41-42].
Although metaheuristics cannot prove optimality of solutions, they are often fa-

vored to solve real-world problems where they achieve excellent results in less com-
putation time [Gendreau and Potvin, 2010, p.x]. This section gives a short overview
of the used metaheuristics in this thesis. For further descriptions of the methods the
reader is referred to the mentioned references.

Simulated annealing

In this section first the concept of hill climbing is described because it provides the
basis for simulated annealing (SA) [Nikolaev and Jacobson, 2010]. Hill climbing
means that the method searching the solution space always accepts a solution that
is better in the sense of the objective function [Michalewicz and Fogel, 2004, p.43].
Thus, if the current found neighbor is better the method switches to this solution.
The pitfall of this method is that it can run into local optima and is not able to escape
them [Michalewicz and Fogel, 2004, p.43], because all other neighbor solutions around
it are worse than the current solution.
The following description of SA is based on Nikolaev and Jacobson [2010]. SA is

a metaheuristic which originates from the physical annealing process. The method
is initialized with a start temperature that is cooled down during the search process
according to a cooling schedule based on the current temperature and iteration.
SA can escape local optima by accepting also worse solutions with a certain proba-

bility (better solutions are always accepted). The probability depends on the temper-
ature of the current iteration and the distance between the objective functions. Thus,
in the beginning worse solutions are accepted with a higher probability than later
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in the search process. The function in the acceptance procedure is called metropolis
criterion. The outline of the SA algorithm is given in Algorithm 1.

Algorithm 1: Simulated annealing [Michalewicz and Fogel, 2004, p.120]
Input: initial solution x0, start temperature T0;
t← 0, T ← T0, x∗ ← x0 ; // initialization
repeat

repeat
x← select random neighbor from N(x∗) ;
if
(
objective(x) < objective(x∗)

)
then

x∗ ← x ; // new global best solution found
end
else if

(
random[0, 1) < e

obj(x)−obj(x∗)
T

)
then

x∗ ← x; // accept worse solution depending on probability
end

until cooling criterion is reached;
T ← cooling(T, t) ; // cool down temperature
t← t+ 1 ;

until stop criterion is reached;
return x∗;

Variable neighborhood search

Variable neighborhood search (VNS) was first proposed by Mladenović and Hansen
[1997]. In Hansen and Mladenović [2001] the basic idea of the method is described as
follows: Instead of using one neighborhood operator like in local search procedures,
VNS performs systematic changes of neighborhoods during the search procedure. A
set of neighborhood operators in some order is necessary for the application of this
method. The neighborhoods are iterated during the search. In every iteration a
random neighbor from the current neighborhood is chosen, called shaking step. This
neighbor is improved by a local search method until no better solution is found. If
the local search led to a global best solution, the neighborhood iterator is reseted to
the start neighborhood. Otherwise the neighborhood is changed to the next level.
The method stops when all neighborhoods are searched for new solutions and no
improvement was found. Often the neighborhoods are nested so that the search
starts with smaller changes to the solutions and increasing to bigger changes during
the search [Hansen and Mladenović, 2001]. If the local search procedure includes
more than one neighborhood and deterministic changes of neighborhoods are made
this step is called variable neighborhood descent (VND) [Hansen and Mladenović,
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2001]. Hansen et al. [2010b] state that the algorithm is based, amongst others, on
the fact that different neighborhoods lead to different local optima and a change of
neighborhood can therefore lead to better results and escape local optima.
There exist many extensions and adaptions of the basic VNS that are presented

and summarized in Hansen et al. [2010a]. Examples are first or best improvement
strategies in the local search step (Basic VNS) or the use of VND instead of local
search (General VNS). The variant used in this thesis is the reduced variable neigh-
borhood search (RVNS). Therefore, it is described in more detail here. For further
extensions and variants, the reader is referred to Hansen et al. [2010a].
The RVNS does not evaluate all neighbors but relies on the shaking step, i.e., it

gets a random neighbor in the current neighborhood and moves to it, if the solution is
better. The basic outline of RVNS is given in Algorithm 2. The outer loop is repeated
until a stop criterion is reached, which is a time limit in our implementation. The
inner loop generates new neighbors by applying the shake function to the current
solution. The function NeighborhoodChange is given in Algorithm 3. It determines
whether the new solution is better than the current global best solution. If yes, the
neighborhood is reseted to the first neighborhood. Otherwise, the next neighborhood
is selected. When the last neighborhood is reached (k = kmax), the entire procedure
is repeated until the time limit is reached.

Algorithm 2: RVNS(x0, kmax) (Hansen et al. [2010b])
x← x0 ; // initial solution
repeat

k ← 1 ; // neighborhood iterator
repeat

x′ ← Shake(x, k); // random neighbor in neighborhood k
NeighborhoodChange(x, x′, k);

until k = kmax;
until stop criterion reached;

Algorithm 3: NeighborhoodChange(x, x′, k) (Hansen et al. [2010b])
if obj(x′) < obj(x) then

x← x′;
k ← 1;

else
k ← k + 1;

end
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Large neighborhood search

The metaheuristic large neighborhood search (LNS) was first proposed by Shaw [1998]
as a solution method for vehicle routing problems (VRPs).
The concept of LNS is presented by Shaw [1998] as follows: The search process

switches between relaxation and re-optimization phases. In this context relaxation
means that parts of the solution are removed. In the re-optimization phase they
are inserted back to the partial solution resulting in a new solution. This step often
relies on heuristics for the problem at hand. In the concept of neighborhood struc-
tures, a new neighbor is generated by applying a relaxation and re-optimization step.
Thus, large steps in the solution space are possible which explains the name of the
method. The basic LNS always moves to solutions that improve the current best
known solution.
In Pisinger and Ropke [2010] the developments of the concept are described and

reviewed. The authors call the relaxation phase destroy and the re-optimization
phase repair. They state that heuristics with large neighborhood structures achieve
good results in many cases, although the search is more time consuming due to the
extensive changes to the solution in each iteration. The acceptance of solutions is
often extended in recent applications by using the simulated annealing acceptance
criterion [Pisinger and Ropke, 2010]. The outline is given in Algorithm 4.

Algorithm 4: Large neighborhood search (Pisinger and Ropke [2010])
x← initial solution, x∗ ← x ; // initialization
repeat

x′ ← repair(destroy(x)) ; // new temporary solution
if accept(x′, x) then

x′ ← x ; // update current solution
end
if
(
objective(x′) < objective(x∗)

)
then

x∗ ← x′ ; // new global best solution
end

until stop criterion is reached;
Return x∗;

Adaptive large neighborhood search

The metaheuristic adaptive large neighborhood search (ALNS) was first proposed
by Ropke and Pisinger [2006] as an extension to the LNS of Shaw [1998]. Both are
widely used in transportation and scheduling problems [Pisinger and Ropke, 2010].
Ropke and Pisinger [2006] describe the ALNS process as follows: In contrast to

LNS that has one destroy and repair method, ALNS works with a set of destroy and
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repair operators. In each iteration one destroy and one repair operator are chosen
by a roulette wheel selection. This means that the operators are chosen randomly
whereas each operator has a different probability. The probability prob(i) to select a
destroy operator i is determined by the weights ρDj of all destroy operators j ∈ ΩD

and given in Equation (3.10) that is stated by Pisinger and Ropke [2010] as follows:

prob(i) = ρDi∑
j∈ΩD ρDj

(3.10)

The same formula is applicable to the repair operators. The weights for the roulette
wheel depend on the success of the operators in the prior iterations, i.e., the weights
are adjusted during the execution. An operator finding a new global solution is
rewarded more than an operator finding a worse solution. Normally, four different
outcomes are used for weight adaption: new global best, new local best, accepted
or worse solution. The acceptance of a neighbor is often decided by the metropolis
criterion which is also used in simulated annealing (see Section 3.1.2). The sensitivity
of the weight update depends on the decay parameter λ ∈ [0, 1] indicating how much
of the old weight is kept and how much the adaption factor Ψ (depending on the
outcome) influences the weight. The formula for weight adaption is given based on
Pisinger and Ropke [2010] in Equation (3.11) for the destroy operator i.

ρDi = λρDi + (1− λ)Ψ (3.11)

The outline of ALNS is given in Algorithm 5.

Algorithm 5: Adaptive large neighborhood search (Pisinger and Ropke [2010])
x← initial solution, x∗ ← x, ρD = (1, . . . , 1), ρR = (1, . . . , 1) ; // initialization
repeat

select destroy and repair operator based on ρD and ρR;
x′ ← repair(destroy(x)) ; // new temporary solution
if accept(x′, x) then

x′ ← x ; // update current solution
end
if
(
objective(x′) < objective(x∗)

)
then

x∗ ← x′ ; // new global best solution
end
Update ρD and ρR ; // update weights

until stop criterion is reached;
Return x∗;
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3.2. Related planning problems

Before the extensive literature review on solution approaches for the home care rout-
ing and scheduling in the next chapter, this section provides an overview of related
planning problems from other domains. As the problem in this thesis contains a
routing subproblem that is basically a vehicle routing problem with time windows
(VRPTW), Section 3.2.1 introduces the VRP and in this context relevant variants.
The consideration of shifts and working regulations also occurs in the duty planning
of inpatient institutions like hospitals. Therefore, a short introduction to the nurse
rostering problem (NRP) is given in Section 3.2.2. Section 3.2.3 gives an overview of
planning problems arising in technician routing that has similar requirements.

3.2.1. Variants of the vehicle routing problem

The vehicle routing problem (VRP) is a standard problem in logistics that is faced
by companies every day [Cordeau et al., 2007]. The first mentioning of this planning
problem in OR literature was the truck dispatching problem presented by Dantzig and
Ramser [1959] as a general extension to the well-known TSP. The problem statement
for the VRP is described as follows [Cordeau et al., 2007]: A fleet of vehicles needs to
serve a set of geographically dispersed customers with a given demand (each customer
exactly once). The capacity of the vehicles is limited to a certain amount. The route
of every vehicle starts and ends at the depot of the company and the length of the
route must not exceed a maximal length. The underlying network is presented as
a graph with customers as nodes and driving connections as arcs. The pairwise
distances between customers are often considered symmetric.
Milburn [2012] states the relationship of home care routing and scheduling to

standard routing problems depending on whether the days and nurses for services
are fixed a priori or not. If the nurse assignment is fixed for each visit the routing can
be modeled by extending the multiple traveling salesman problem with time windows
(mTSPTW), otherwise a VRPTW is needed. If the days are unfixed, the underlying
problem relates to periodic extensions of the problems. The continuity of nurses and
time are also considered in the consistent vehicle routing problem (conVRP). These
variants are presented in the remainder of this section.

The vehicle routing problem with time windows

The VRPTW extends the VRP by adding time windows for the visits at customers
[Desaulniers et al., 2014]. If these time windows are considered as hard constraints, a
vehicle arriving early has to wait for the time window to open. Starting service after
the time window is prohibited. The VRPTW is the basis for the MIP formulation in
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this thesis. To show the similarities of the models, the formulation of the VRPTW
based on Desaulniers et al. [2014] is stated here.
The problem is formulated for a directed graph G = (V,A). The set V represents

the customers including the depot (0 and n+ 1) and N the set of customers without
the depot. The set of vehicles K is homogeneous with each a maximum capacity of
Q. Each customer i ∈ N requires a delivery of quantity qi that takes si time units
to be finished. The arrival of a vehicle is restricted to the time window [ai, bi] at
customer i. The traveling time between customers i and j is denoted by tij and the
traveling costs by cij. The sets δ+(i) ⊆ A and δ−(i) ⊆ A contain the nodes that are
reachable by the outgoing and incoming arcs of node i, respectively.
The decision variables of the problem are the binary variables xijk and continuous

variables zik with the following definitions:

xijk =
{

1, if vehicle k travels directly from customer i to customer j
0, otherwise

zik = Start time of the service at customer i by vehicle k

The corresponding MIP is stated in Equations (3.12) to (3.20).

minimize
∑
k∈K

∑
(i,j)∈A

cijxijk (3.12)

s.t.
∑
k∈K

∑
j∈δ+(i)

xijk = 1 ∀i ∈ N (3.13)

∑
j∈δ+(0)

x0jk = 1 ∀k ∈ K (3.14)

∑
i∈δ−(n+1)

xi,n+1,k = 1 ∀k ∈ K (3.15)

∑
i∈δ−(j)

xijk −
∑

i∈δ+(j)

xjik = 0 ∀k ∈ K, j ∈ N (3.16)

zik + si + tij − zjk ≤ (1− xijk)Mij ∀k ∈ K, (i, j) ∈ A (3.17)
ai ≤ zik ≤ bi ∀k ∈ K, i ∈ V (3.18)∑

i∈N

qi
∑

j∈δ+(i)

xijk ≤ Q ∀k ∈ K (3.19)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (3.20)

The objective function (3.12) minimizes the total traveling costs while serving each
customer exactly once (3.13). Constraints (3.14) and (3.15) ensure that each vehicle
leaving the depot returns to it at the end of the route. Each customer can be visited
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by at most one vehicle and this vehicle has to leave the customer again (3.16). The
variables for the start times are set by constraints (3.17) based on the service and
travel times. The time window of each customer is limited by constraints (3.18) and
the capacity of the vehicles by constraints (3.19).
In many practical applications the VRP and VRPTW are solved using heuristics

due to less computation time [Desaulniers et al., 2014]. Local search, large neigh-
borhood searches and population-based methods are mentioned by Desaulniers et al.
[2014] in particular. They state that in general search with large neighborhoods
achieves better solutions than small neighborhoods but are more time consuming.
Although heuristic methods are successful, the research on exact solution ap-

proaches like Branch-and-Cut-and-Price and Branch-and-Cut also advanced in the
last year as for many of the benchmark instance presented in literature no optimal
solutions are known yet [Desaulniers et al., 2014].
In summary, there exists a huge amount of exact and heuristic solution approaches

for the VRPTW. An overview of route construction and local search algorithms is
given in Bräysy and Gendreau [2005a]. For a review on metaheuristics applied to
the VRPTW the reader is referred to Bräysy and Gendreau [2005b]. A more recent
survey on exact and heuristic approaches is given in Desaulniers et al. [2014].
The VRPTW forms the basis for the home care problem because the nurses can be

represented by the vehicles and the time windows for jobs can be modeled. Neverthe-
less, many requirements for the home care problem are missing in the basic VRPTW
such as the qualifications and availability of nurses, a planning horizon of multiple
days and working regulations.

The skill vehicle routing problem

Another variant of the VRP, which is related to the routing of home care providers,
is the skill VRP proposed by Cappanera et al. [2011]. The authors state that this
problem arises in the setting of technician routing, which is also shortly presented in
Section 3.2.3. The following differences to the standard VRP exist [Cappanera et al.,
2011]: Instead of delivering goods, a service has to be fulfilled at the customer’s loca-
tion. For this service a skill level is required that a technician must have to perform
a service. Vehicles represent the technicians in this problem setting. The skills are
defined hierarchically, i.e., a technician can perform services requiring a skill level
equal or less than his or her skill level. The traveling costs are skill dependent, nor-
mally with higher costs for higher skill level. The planning horizon of this problem is
one day and no time windows for the services are present. Although the qualification
(or skill) requirements of the nurses in home care can be modeled with this variant
of the VRP, the model formulation needs to be extended by working regulations,
availability constraints and time windows to be applicable to the home care setting.
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The consistent vehicle routing problem

The conVRP was first introduced by Groër et al. [2009] to extend the VRP by
considering customer satisfaction during route construction. The practical context in
the publication is the small package shipping industry, but the customer satisfaction
is also relevant for the home care problem. The following description of the conVRP
is based on Groër et al. [2009]. In contrast to the VRP the conVRP has a planning
period of multiple days. The customers require deliveries with a certain duration and
quantity on one or more days. To ensure similar visit times for each customer, the
variation of start times of a customer is limited to a maximum difference (e.g. 15
minutes). Furthermore, the same vehicle has to visit a customer on all days of the
planning horizon. With these two additional restrictions the customer satisfaction is
assumed to improve, because the customers get used to their driver. Additionally,
the customers can adjust to their delivery times due to only small variations.
In Kovacs et al. [2014] the problem formulation is generalized in several aspects.

The number of drivers is still limited, but more than one driver per customer is
allowed. The difference in visit times per customer is part of the objective function
instead of being enforced by constraints. This generalized conVRP considers time
windows for delivery (morning and afternoon), and the vehicles do not have to leave
the depot directly at the beginning of day.

Routing in long-distance transports

Routing under consideration of driving hour regulations in the EU has been studied
for long-distance transports. This topic arose in OR literature due the regulation
No. 561/2006 restricting driving hours [European Parliament and Council of the Eu-
ropean Union, 2006], and the directive 2002/15/EC concerning working hours for
drivers [European Parliament and Council of the European Union, 2002]. Both are
settled by the EU for long-distance transports and contain rules restricting the driv-
ing hours without breaks and maximum driving hours per week as well as regulating
the breaks and rest times for drivers.
The first solution approach considering the VRP with the EU regulation No.

561/2006 was proposed by Goel [2009]. The solution approach combines a label-
ing algorithm with an LNS heuristic. The heuristic manages the improvement by
inserting and deleting jobs for route construction. The labeling algorithm ensures
the adherence to regulations and allows early rest times. The planning horizon is a
week so that no weekly rest time needs to be considered. In addition to regulation
No. 561/2006, Kok et al. [2010] integrate the directive 2002/15/EC into one solution
approach. They use a dynamic programming heuristic to plan the routes and driving
hours for drivers in a weekly planning period.

41



3. Basic models and solution approaches

The inclusion of driver regulations is still scarce in VRP literature and the problem
has been mainly addressed with heuristics due to the complexity [Lahyani et al.,
2015]. In Kopfer and Meyer [2010] a MIP has been proposed for the special case of
the two mentioned regulations. The model solves instances with up to 10 customers.
Lahyani et al. [2015] provide a survey of publications in rich vehicle routing problem
also considering driver regulations from different countries.
The difference to routing with working regulations in the home care problem are the

distances. In home care planning many clients live in one city and the driving times
are short compared to long-distance transports where the customers can be located in
different countries. Because of the long driving times the breaks and rest times have
to be scheduled mostly on the road interrupting the driving. In home care planning
the breaks are scheduled such that the driving is not interrupted. Furthermore, the
rest times are calculated between tours and do not have to be inserted in the routes.
Additionally, no qualifications are modeled in this problem.

3.2.2. The nurse rostering problem

The nurse rostering problem (NRP) addresses the personnel scheduling for inpatient
institutions like hospitals. Burke et al. [2004] describe the following attributes of the
NRP. Every day is divided into shift types with known start and end time. The
typical case is early, late and night shifts. The nurses have skills and each shift in
the planning horizon has a demand for each skill level that needs to be covered. The
planning horizon for the NRP is often set to a period of four weeks. During the
planning several constraints and working contracts are considered. Sometimes the
scheduling is enforced to have cyclical patterns that repeat after a defined number
of weeks (see also description in Section 2.4.2). A categorization of NRPs is given
by De Causmaecker and Vanden Berghe [2011]. Therefore, they also state typical
constraints of the problem area such as:

• Availability of nurses for days and shifts
• Minimum and maximum restrictions on assignments per nurse in the planning

horizon or for certain types of shifts (e.g. night shifts)
• Working hours per day, week or month (minimum and maximum)
• Preferences on shift assignments (e.g. day-off)
• Restriction on consecutive workdays or shift types
• Rest times between shifts
• Forbidden consecutive shift types (e.g. early after night shift)

In the extensive literature review of Burke et al. [2004] the variety of solution methods
for the NRP becomes apparent. Among others, these are based on mathematical
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programming, constraint programming and (meta)heuristics. The authors further
state that they see metaheuristic approaches as the most suitable for solving the
NRP in practical applications with many constraints.
Although many of the working regulations in the NRP are also important for home

care planning, the problems differ in several aspects. The shift length in the NRP is
fixed because a nurse always works the whole shift. In the home care problem, the
length of the shift is determined by the route that is dependent on the assignment
of jobs to nurses. Furthermore, the rest time requirements between shifts need to be
determined based on the varying tour start and end times, whereas in the NRP these
can be calculated due to the fixed start and end of the shift. A working regulation
that is not considered in the standard NRP but important in the home care problem,
is the insertion of breaks based on the length of the routes. In home care the necessity
of a break is unclear before the routing is determined. Furthermore, breaks can be
used to reduce waiting time before time windows.

3.2.3. Technician routing and scheduling

A problem that is related to home care planning is the routing and scheduling of
technicians who visit customers or locations to perform installation, maintenance or
repair activities [Mısır et al., 2014, Cordeau et al., 2010]. Example application areas
are telecommunication and energy provision [Bostel et al., 2008].
In this planning problem the skills of the technicians must be matched with the de-

manded services [Cordeau et al., 2010]. The planning horizon is several days or weeks
and sometimes solved in a rolling horizon setting [Bostel et al., 2008]. Furthermore,
Cordeau et al. [2010] model interdependencies between services, i.e., predecessor and
successor relationships. Another considered feature is the building of teams to per-
form a service at a customer [Cordeau et al., 2010]. Like in the home care problem
availability, maximum daily working time, breaks and rest times need to be respected
during optimization [Mısır et al., 2014, Bostel et al., 2008]. The time windows are
normally wider than in the home care problem, spanning several hours or even days
[Mısır et al., 2014, Bostel et al., 2008]. Furthermore, the client satisfaction and conti-
nuity is not as important as in the home care problem because the visit at a customer
is only once in a long period and not frequent and recurring like in home care.
Mısır et al. [2014] propose a hyper heuristic that uses the same low-level neigh-

borhood operators to solve the home care planning and technician scheduling prob-
lem. They considered all hard constraints as soft constraints, because only then the
method is capable of solving both settings. But they consider only simple working
regulations. In their analysis it becomes apparent that both problems need individual
operators to be solved adequately.
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4. State-of-the-art in home care routing and
scheduling

This chapter provides an overview of publications related to the routing and schedul-
ing of home care services that is first mentioned in Begur et al. [1997] and Cheng and
Rich [1998]. The focus of the literature review in this chapter lies on quantitative
solution approaches for the routing and scheduling problem arising in home care ser-
vices. The chapter is concluded by deriving research opportunities from the current
state-of-the-art and stating the goals of this thesis.
The review is divided into three categories dependent on the specific problem

addressed in the publication:

1. Daily routing and scheduling in a static setting: Section 4.1 reviews publications
considering the routing and scheduling of home care nurses for one day. Thus,
many constraints like working regulations spanning more than one day (e.g. rest
times) and continuity requirements cannot be incorporated. However, the daily
working time and breaks are applicable in a daily setting. Some publications
decompose the planning problem in routing and assignment of nurses to clients.
These are reviewed in Section 4.1.1. An overview of integrated approaches is
given in Section 4.1.2.

2. Multi-day routing and scheduling in a static setting: Solution approaches for
routing and scheduling in a planning horizon of multiple days are reviewed
in Section 4.2. The overview is divided into approaches decomposing (Section
4.2.1) and integrating routing and scheduling (Section 4.2.2). As the integration
of working regulations is a major part of this thesis we review publications with
consideration of additional working regulations in Sections 4.2.3.

3. Routing and scheduling in a dynamic setting: The second major part of this
thesis addresses the routing and scheduling in a dynamic setting. Publications
that have an underlying dynamic setting are reviewed in Section 4.3.

Static setting means that the underlying sets of clients, jobs and nurses are deter-
ministic and do not change. Therefore, the solution approach has to be applied only
once. In the dynamic setting, the demand of clients and capacity provided by nurses
change over time and therefore a regular planning is necessary to incorporate data
changes. Note that the subcategories of the sections are non-exclusive and some of
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the publication could be categorized in more than one. However, the publication
appears in the section where it has the highest similarity with our problem setting.
We consider the basic problem as the integrated routing and scheduling of the

nurses. Thus, the solution approach for the basic problem needs to assign jobs to
nurses and determine the sequences and start times of the jobs. Furthermore, the
following constraints are assumed to be considered in the basic setting.

• Each job needs to be scheduled once on the given day.

• Each job has a hard time window to start in. A nurse arriving early has to
wait for the time window to open.

• The assignment of nurses to jobs is limited by the qualification requirement
needed for the job and provided by the nurse.

• The availability of the nurse is either restricted by a time window or given on
a daily basis. Furthermore, the daily working time is limited by a maximum.

If not indicated otherwise, the publications in Sections 4.1 to 4.3 solve this problem
setting. Constraints apart from the above mentioned or constraints omitted are
stated explicitly in the text or tables.

4.1. Daily routing and scheduling in static setting

In this section the publications addressing the routing and scheduling for a planning
horizon of one day are presented and summarized. The review is divided into decom-
posed and integrated solution approaches. An overview of all publications is given
Table 4.1. The table shows whether the publication uses an integrated approach of
routing and scheduling and if shift types are modeled. Furthermore, the consideration
of the following requirements is given: job time windows (Job TW ), qualifications
of nurses (Qualifications), break rules (Breaks), break placement in the route (Break
TW ), daily working time (Daily WT ) and availability of nurses at specific times or
days (Availability). For further details on the constraints see Section 2.4.

4.1.1. Decomposed assignment and routing

The publications in this section decompose the daily problem in two subproblems:
the assignment of nurses to jobs and the routing.
In Cire and Hooker [2012] the basic HHCP is solved by a greedy logic-based benders

method. The authors decompose the problem in assignment and routing. The master
problem assigns the nurses to the jobs in a greedy manner. The subproblem is solved
with constraint programming (CP) and provides additional constraints (so called
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Cire and Hooker [2012] h x o x x x
Yalcindag et al. [2012] x
Yalcindag et al. [2013] x
Allaoua et al. [2013] x h x x
Jemai et al. [2013] h x x
Aiane et al. [2015] h f
Bastos et al. [2015] x
Issaoui et al. [2015] h x x
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at
ed

Begur et al. [1997] x h x
Elbenani et al. [2008] x h
Ben Bachouch et al. [2010] x x h x x
Mısır et al. [2010] x s s s
Mankowska et al. [2014] x s x
Di Mascolo et al. [2013] x h o x
Riazi et al. [2014] x h x x
Ait Haddadene et al. [2014] x h x x
Laesanklang et al. [2015] x h x x
Rasmussen et al. [2012] x h x
Redjem et al. [2011a] x h x
Redjem et al. [2011b] x h x
Redjem et al. [2012] x h x
Mutingi and Mbohwa [2013a] x s
Mutingi and Mbohwa [2013b] x s

In
te
gr
at
ed

+
W

T

Bertels and Fahle [2006] x s/h x x x
Akjiratikarl et al. [2007] x h x
Trabelsi et al. [2012] x h x x
Rendl et al. [2012] x h x x x
Hiermann et al. [2015] x s/f x x x
Mutingi and Mbohwa [2014] x h x x x
Morito et al. [2014] x h x x x
Braekers et al. [2015] x h/s x x x
Yuan et al. [2015] x x x x

In
te
gr
at
ed

+
B
re
ak

s Cheng and Rich [1998] x h x o x x
En-nahli et al. [2015] x h x o x
Eveborn et al. [2006] x h x o x
Eveborn et al. [2009] x h x o x
Kergosien et al. [2009] x h x o x
Trautsamwieser and Hirsch [2010] x s/h x o x x
Trautsamwieser and Hirsch [2011] x s/h x o x x
Trautsamwieser et al. [2011] x s/h x o x x
Fikar and Hirsch [2014] x h x o x x

Table 4.1.: Overview of main constraints in publications considering a daily routing
and scheduling (x = considered, o = partially considered, h = hard, s =
soft, f = fixed, WT = working time, TW = time windows)
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4. State-of-the-art in home care routing and scheduling

cuts) for the master problem. The constraints considered are the qualifications and
time windows of jobs. Working regulations are modeled using time windows for
nurses and minimum and maximum daily working time. The authors also implement
the assignment of breaks and assurance of a maximum time without a break.
The combination of patient assignment and routing models is investigated in Yal-

cindag et al. [2012]. The authors provide a two-stage approach to balance the work-
load between nurses: first new patients are assigned to a reference operator and
afterwards the routing problem is solved separately for each day and operator. In
the assignment phase two policies are tested (stochastic demand) and a MIP (deter-
ministic demand) of Lanzarone et al. [2012] is used. The routing component is solved
by a TSP with limited daily working time. The results show that the policies achieve
better results due to the consideration of uncertain demand. Furthermore, the con-
sideration of average travel times achieves nearly the same results as performing an
explicit routing. In Yalcindag et al. [2013] a travel time estimator based on regression
and historic data is proposed to replace the average travel times. The estimator is
tested in a two-stage and an integrated approach (both MIPs). The results show the
improvement by using the estimator instead of average travel times. The two-stage
approach performs almost as good as the integrated approach on the small instances.
Allaoua et al. [2013] propose two solution approaches for the HHCP: a MIP and a

matheuristic. For the matheuristic they decompose the problem into rostering and
routing. The routing component is the subproblem for the rostering model and solved
as a TSPTW. The set of jobs for the subproblem is determined by different clustering
algorithms. The constraints considered are the time windows and qualifications for
nurses and jobs and shift types. The goal is to minimize the number of employees
needed to serve the clients.
Jemai et al. [2013] model an abstract version of the problem as mTSPTW, where

each nurse has one qualification and each client requests one job. Therefore, the
authors argue, the problem reduces to a TSPTW for each nurse.
In Aiane et al. [2015] the routing of nurses is modeled as a variant of the mTSPTW.

The assignment of nurses to clients is given as input to the model. The difference to
other approaches is that the MIP considers one time window for several visits on a
day and periods of unavailability of clients. Other constraints like qualifications and
working time limitations are not incorporated.
Bastos et al. [2015] develop a web-based optimization tool for minimizing the route

lengths for care teams offering home health care. The novelty about the approach is
the consideration of aseptic patients that need to be visited before the other patients
to reduce infection risk. The routing problem is an extended VRP with maximum
route length that is solved as MIP and with an adapted savings heuristic. The
solution approaches exclude time windows and qualifications. The second part of the
publication describes the architecture and implementation of the software system.

48



4.1. Daily routing and scheduling in static setting

In Issaoui et al. [2015] a three component objective function for the basic problem
is optimized with a three-phase heuristic. First, the assignment of nurses and clients
is determined. Second, a VNS minimizes the travel distance and unassigned jobs
while considering the minimum and maximum working time. In the last phase, the
satisfaction of clients (assuring the right qualification of nurses) is improved by local
search. The method improves the individual objectives in a lexicographical order.

4.1.2. Integrated routing and scheduling

The integrated routing and scheduling, i.e., assigning jobs and determining routes
at the same time, is reviewed in this section. This variant is the one that is studied
most in home care routing and scheduling.
Begur et al. [1997] are the first presenting a decision support system (DSS) to

support the planning of home health care nurses. The overall process has three
stages: assigning clients to weeks, assigning clients to days and assigning nurses
to clients including routing. Thus, the routing problem is addressed for each day
separately. The days are fixed by the agency beforehand. The time availability of
nurses is given as input to the model. The routing problems are solved by a savings
heuristic and a nearest neighbor heuristic.
Elbenani et al. [2008] model the HHCP as a VRPTW without qualifications. They

further include the scenario of taking blood samples from clients to a hospital two
times a day and consider continuity of care. The authors implemented a tabu search
(TS) as solution method.
A MIP approach is proposed by Ben Bachouch et al. [2010]. They model the

scheduling as a task assignment problem, i.e., they assign tasks to the nurses and
each task gets a rank in the sequence. The driving times are included in the task
durations to propose a general model which can handle all types of requests. The
objective is to balance the workload of the employees.
Mısır et al. [2010] provide a hyper-heuristic with several low-level heuristics (e.g.

swap visits, move visits) to solve the HHCP. All of the HHCP constraints (time win-
dows, qualifications, work time windows, several nurses per job, unpreferred clients
and nurses) are considered as soft constraints. In Mısır et al. [2014] the problem is
considered again with an extended set of low-level heuristics. In this publication,
the heuristic is also applied to the related technician routing and routing of security
guards. Although the problems are related, the results show that different low-level
heuristics are needed to achieve good results on each of the problems.
Mankowska et al. [2014] consider the daily planning with temporal interdependen-

cies (minimum and maximum time distance) and synchronization constraints between
two jobs. They formulate a MIP and propose an adaptive VNS to solve the prob-
lem. For the heuristic approach they introduce a matrix representation to handle
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the linked jobs. The neighborhood structures handle linked jobs together to avoid
infeasibility. Time windows are considered as soft constraints and the working time
of nurses is not limited. The objective function minimizes the sum and maximum of
the time window violations as well as the travel distance.
The synchronization of two nurses for a visit is also modeled and investigated

by Di Mascolo et al. [2013]. They propose a MIP for the daily planning under
consideration of qualifications and time windows for jobs and nurses’ working hours.
The objective function minimizes the waiting time of the nurses at clients. The
results show that with increasing number of synchronized visits the computation
time increases.
Riazi et al. [2014] solve the problem with a MIP and different variants of the

gossip algorithm. In the gossip algorithm the sets of clients and nurses are divided
into smaller subsets. The subproblems are optimized locally. Afterwards, two or more
randomly selected subproblems are considered together and also optimized locally.
If an improvement is achieved, the solutions are updated. The gossip algorithm
outperforms the MIP in computation time with small remaining gaps or even better
solutions for larger instances.
Ait Haddadene et al. [2014] propose a MIP and heuristic solution approach for

the daily routing problem with time interdependencies between jobs. The heuristic
is based on a greedy randomized adaptive search procedure (GRASP). The inter-
dependencies comprise synchronization of two nurses and maximum time between
jobs. The objective is to minimize the travel time and avoid preference violations of
clients.
Laesanklang et al. [2015] solve a problem setting where different geographical re-

gions are known a priori. In addition to travel costs and client preferences, the
objective function assigns the nurses in their preferred regions. To solve the MIP,
the authors decompose the problem by region and optimize the resulting subprob-
lems sequentially. The capacity of the nurses is updated after each optimization
step. Thus, the results are dependent on the ordering of subproblems. To address
this issue, several ordering strategies are developed and analyzed.
Rasmussen et al. [2012] focus on interdependencies between jobs in the HHCP.

They model five types of them in a MIP: synchronization, overlap, minimum time
difference, maximum time difference as well as minimum and maximum time differ-
ence. Assignments are not limited by qualifications in this formulation. The model is
solved with a branch-and-price approach. To reduce the computation time, the au-
thors further introduce clustering methods based on the preferences of clients. Thus,
the subproblem for determining new routes only contains clients that favor the nurse
currently considered. With this clustering the computation time can be reduced
with only slightly negative impact on the results compared to the optimal solution
[Rasmussen et al., 2012].
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In the approach of Redjem et al. [2011b] one or more nurses are preassigned to
each client. Thus, no qualifications requirements need to be modeled. The routes
of the employees must be coordinated to avoid two visits at the same time and
ensure valid sequences of jobs. The authors propose a MIP that they solve with two
strategies. First, they limit the waiting time of clients between visits and minimize
the traveling and waiting time of nurses. Second, they minimize the waiting time
of clients. A similar MIP is subject in Redjem et al. [2011a]. Here two different
objectives to minimize the nurses traveling and waiting times are presented and
analyzed in different scenarios of underlying data. Redjem et al. [2012] formulate
and solve another variant of this problem setting. Here the completion time of visits
is compared to the minimization of waiting and traveling times. The authors conclude
that the latter is more suitable to minimize the waiting times at clients.
Mutingi and Mbohwa [2013b] consider the daily HHCP with different objectives:

holding soft time windows of clients, minimizing traveling distance and adhering to
the preferred working hours of nurses. The different objectives are incorporated with
a weighted sum. The solution approach is a group-based genetic algorithm (GA)
and abstracts from further home care related constraints like qualifications and hard
time windows. In Mutingi and Mbohwa [2013a] the same problem as in Mutingi
and Mbohwa [2013b] is considered but the multi-objective setting is addressed with
a fuzzy satisficing approach. Thus, the designated objective ranges can be given by
the nurses and clients and changed overtime in an interactive way.

Consideration of daily working time

In addition to the qualifications and availability of nurses, the consideration of daily
working time is essential to adhere to work contracts. The publications considering
this constraint are reviewed in this section.
Bertels and Fahle [2006] propose an integrated routing and scheduling with prefer-

ences of nurses and clients in one solution approach. They model hard and soft time
windows that are due to client preferences. The working time of nurses is limited by
a given minimum and maximum. The qualification requirements are partitioned in
hard and soft constraints. The preferences of clients are modeled as soft qualification
requirement. The problem is solved using different heuristic approaches based on
CP, SA and TS as well as a combination of those. They maintain a solution pool
to use historical information about already found solutions to guide the search. The
determination of start times for a given route in the methods is provided by an LP.
Akjiratikarl et al. [2007] use a particle swarm optimization approach to create

routes for home care workers on a daily basis. They abstract from further home care
related constraints and therefore the result is a VRPTW with multiple depots for
the nurse start locations and maximum tour length.
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In Trabelsi et al. [2012] the basic daily planning is solved with a MIP. The authors
consider the maximum daily working time and driving distance as well as multiple
nurses per job while balancing the workload of nurses.
The applicability of metaheuristics on the daily HHCP is examined by Rendl et al.

[2012]. Multi-modality is taken into account by allowing the nurses to use cars
and public transport. The authors create an initial solution with a CP approach and
apply different metaheuristics afterwards. They implement an evolutionary algorithm
(EA), a VNS, a scatter search and a SA hyper-heuristic. The best results on their
instances are provided by the evolutionary algorithm. The objective function of
all approaches is a weighted sum of different penalty terms which are mainly soft
constraint violations. They consider the preferences of clients (time windows and
start times) and nurses (working time) in addition to the traveling time. In Hiermann
et al. [2015] this work is extended by a formalization of the problem, improvement of
the metaheuristics and an extensive numerical analysis. In addition to the economic
goals, all constraint violations (time windows, rejections of staff, daily working time)
are incorporated in the objective. They argue, this setting is easily adaptable for
different providers. The metaheuristics analyzed here are VNS, SA hyper-heuristic,
memetic algorithm and scatter search. The memetic algorithm that extends the EA
of Rendl et al. [2012] provides the best results.
A particle swarm optimization (PSO) approach for an extended problem of Mutingi

and Mbohwa [2013a] is provided by Mutingi and Mbohwa [2014]. The time windows
are considered as hard constraints and the nurses working time is limited by a min-
imum and maximum working time. The goal is to balance the workload among
nurses with a fuzzy objective function. The fitness function of the PSO evaluates the
solutions using fuzzy set theory.
An exact approach with different modes of transportation for the basic HHCP

is proposed by Morito et al. [2014]. The problem considers time windows for jobs
and nurses, qualifications and daily working time. The authors solve their MIP
with a column generation (CG) approach. The master problem is formulated as a
set partitioning problem and the pricing is performed with a resource-constrained
shortest path problem (RCSPP). A preprocessing step (reducing time windows and
possible assignments) reduces the computational time.
Braekers et al. [2015] consider a bi-objective version of the daily HHCP. The ob-

jectives are the traveling and overtime costs versus the client satisfaction (preferences
for nurses and time). The authors provide a MIP formulation and a multi-objective
metaheuristic approach. The MIP is solved using ε-constraint programming. The
metaheuristic uses a multi-directional local search framework with an LNS as sub-
solver. The results show the trade-off between costs and convenience and allows the
planner to select his/her preferred solution.
Uncertain service times (normally distributed) in the HHCP are investigated by
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Yuan et al. [2015] in a branch-and-price (B&P) approach. The time limitation of a
job is modeled with a soft deadline before which the job needs to start. The daily
workload is limited by the maximal number of clients per nurse. The pricing problem
consists of an adaption of the VRPTW.

Consideration of breaks

Representing breaks is important to obtain legal plans. In contrast to other working
regulations, break rules can be considered in a daily setting. All publications in this
section provide only basic break rules because the splitting of breaks is not allowed
and in some cases the break is fixed to a defined point in time.
One of the first solution approaches for the basic home care routing and scheduling

is proposed by Cheng and Rich [1998]. They state two MIP formulations for the
HHCP. They consider full- and part-time nurses and schedule breaks in a fixed time
window. As the MIP is only solvable for small instances, they also propose a heuristic
based on a fix-and-resolve pattern that iteratively fixes variable values and optimizes
the remaining variables.
Eveborn et al. [2006] provide a DSS for the daily planning of home care providers.

They model a set partitioning formulation and solve it with a repeated matching
algorithm. The objective function minimizes the costs of schedules resulting from
traveling and working times as well as preference violations. The availability of
nurses is given as input to the model. For some of the jobs more than one nurse is
needed to carry them out. The schedules consider fixed breaks that cannot be shifted
to other times in a tour. The continuity of care is modeled by a set of preferred nurses.
In Eveborn et al. [2009] the system is presented again but with focus on challenges of
introducing the DSS to organizations and the benefits for the home care providers.
Kergosien et al. [2009] model the HHCP as mTSPTW with additional constraints

for qualifications and work time windows. Furthermore, they consider visits of mul-
tiple nurses with time interdependencies between them and visits that must be per-
formed by the same nurse. Breaks are considered as preassigned jobs in the solution
approaches. The authors formulate a MIP to solve the problem and improve the
solution time by adding domain-specific cuts to the formulation.
The daily planning of home care services is solved by Trautsamwieser and Hirsch

[2010] with a MIP and a VNS heuristic. In addition to the common constraints,
both methods consider the daily working time and break assignment during the
scheduling. The breaks are inserted in such a way that the amount of time without
break never exceeds a certain threshold. The objective consists of seven components
concerning working time and preferences of nurses and clients that are weighted to
form a single function. The model is addressed in Trautsamwieser and Hirsch [2011]
with a more extensive discussion of numerical results and a sensitivity analysis in
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which the number of time-critical jobs is altered. The same approach is used in
Trautsamwieser et al. [2011] to analyze the influence of natural disasters (e.g. floods,
storms, heat-waves) on home care services in Austria. In particular, a real-world
flood scenario from 2002 and three possible future scenarios are used to measure the
impact of the disrupted street connections on the routing decisions.
A novel setting in the home care context is proposed by Fikar and Hirsch [2014].

They consider the routing as a dial-a-ride problem (DARP) where the nurses share
vehicles driven by a driver. The drivers take the nurses to their clients and pick them
up after the job is finished. If the distance is below a certain threshold the nurses
can also walk from one client to the next. Furthermore, the authors consider the
maximum daily working time and break assignments in the routes (with a threshold
for allowed working time without break). The problem is solved with a matheuristic
consisting of several steps including the creation and selection of walking routes, an
adapted savings heuristic and a TS for improvement. The start times inside the
heuristic are determined by an LP with prefixed breaks.
An exact approach is provided by En-nahli et al. [2015]. The objective function

consists of four components: traveling time, balanced workload, preferences of clients
and waiting time. These are normalized and combined in a single objective. The
model further considers the basic home care related constraints and the assignment
of breaks in routes.

4.2. Multi-day routing and scheduling in static setting

This section reviews the publications considering the routing and scheduling in plan-
ning horizon of more than one day. Solution approaches either decompose the routing
and scheduling or solve an integrated problem for several days (see Sections 4.2.1 and
4.2.2, respectively). The integrated approaches are divided into publications consid-
ering working time restrictions for several days and additional working regulations.
An overview of all publications in this section is given in Table 4.2. The table shows
whether the publication uses an integrated approach of routing and scheduling, if shift
types are modeled and if the days of the jobs are fixed a priori. The same constraints
as in the previous section are shown. Furthermore, the consideration of the following
additional requirements is given: total working time in the planning horizon (Total
WT ), weekly workdays (Weekly workdays), daily rest time (Daily RT ), weekly rest
time (Weekly RT ), consecutive workdays (Consecutive workdays) and special rules
for weekends (Weekend rules). The table also indicates whether cyclic shift patterns
are possible (Shift rotations). For further details on the constraints see Section 2.4.
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4.2.1. Decomposed routing and scheduling

Borsani et al. [2006] solve the weekly planning by decomposing the problem in daily
planning intervals. They propose a four-stage solution approach. The paper describes
the first two stages, i.e., assigning nurses to clients and determining the visit days for
a client. During the assignment continuity of care is respected by selecting a reference
nurse for every client. The routing of nurses is neglected. The authors distinguish
between full- and part-time workers and their availability on a specific day and hour.
In Maya Duque et al. [2015] each day of the planning horizon (several weeks) is

divided into time slots. In a first step, possible visit patterns for each client are
determined by assigning clients to time slots. During the process for some of the
patterns, the time continuity between weeks is considered. Afterwards, so called
schemes are generated from the pattern by assigning nurses to the days (at most two
nurses dependent on the number of visits). A set partitioning model selects schemes
for each patient by optimizing the preference of clients for time slots and nurses. The
traveling distance in each time slot is minimized in a second step by a local search
procedure. The process is embedded into a DSS.
A robust solution approach based on a matheuristic is developed by Nguyen et al.

[2015]. The uncertainty considered is the absence of nurses (e.g. calling in sick). The
shift schedule and therefore the availability of the nurses is input to the model. The
metaheuristic used is a GA that optimizes the routes for every day separately. The
start times of jobs are determined by an LP. To address the robustness of a solution,
the worst case costs for different scenarios are included in the objective function.

4.2.2. Integrated routing and scheduling

The integrated routing and scheduling is the basis for considering the working regu-
lations while planning the routes of the nurses. In this section, first, the publications
proposing an integrated approach are reviewed. The subsections address further
extensions, namely the working time consideration and working regulations.
Gamst and Sejr Jensen [2011b] propose a solution approach based on Branch-

and-Price. The subproblem creates daily schedules for every employee. These are
combined in the master problem to form a feasible schedule for the whole planning
horizon. The days of jobs are not fixed but a frequency is given. The objective
function considers continuity of care and continuity of time (i.e. time differences
between appointments). The daily working time of nurses is limited to a time window.
Cattafi et al. [2012] use constraint logical programming to solve a basic problem

without qualifications and time windows. They consider the daily working time and
minimize the workload unbalance and number of nurses assigned to a client.
In the problem setting of An et al. [2012] the clients are already assigned to the
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nurses but the visit days are not given a priori. The proposed solution approaches
determine the days for jobs and the routes for one nurse, simultaneously. Home
care related constraints are omitted except the daily working time of the nurse. The
authors formulate a MIP and provide a two-phase heuristic to solve the problem.
The collection of medical test samples at patients’ homes is solved by Kergosien

et al. [2013] providing three different methods: MIP, TS and VNS. The difference
to the HHCP is the drop-off of time critical samples several times during the day.
The planning horizon of multiple days is solved day-by-day. For some of the jobs the
day is fixed, for others it can be selected from a valid time window of several days.
Requirements and preferences of clients are modeled as hard constraints.
The integrated routing and scheduling with flexible service days is conducted by

Cappanera and Scutellà [2013a] using a MIP. The authors generate several day pat-
terns for each client and one of those is selected during the solution process. The
patterns are generated by three different methods: greedy, taken from the real-world
solution or solved with a multi-commodity flow model. The method abstracts from
time windows in the home care context, but considers the qualifications and avail-
ability of nurses. The proposed model and pattern generation methods are based on
the publication of Cappanera and Scutellà [2013b]. Here the authors also perform an
extensive analysis regarding symmetry breaking constraints and different objective
functions. The model is also used in the study in Cappanera et al. [2013], where two
different objectives for balancing the workload (minimize the maximum workload and
maximize the minimum workload) are investigated in a deterministic and stochastic
setting. The stochastic setting takes the deterministic solution and evaluates it us-
ing random variables for the driving and service times. The results show that the
maxmin approach leads to a better balancing while the minmax approach achieves
lower costs. The publication of Cappanera and Scutellà [2014] extends the analysis
and adds continuity of care by limiting the maximum number of different nurses.
They further limit the maximum daily working time and extend their model to time
window consideration. The authors provide an extensive analysis of the different
pattern generation methods, ways of modeling workload balancing and handling the
continuity of care constraints on the extended problem setting.
Jobs considering more than one staff member and unfixed days are incorporated

to a MIP formulation for the HHCP by Torres-Ramos et al. [2014]. The number of
jobs and period of time between visits is given as input to the model.
Ben Bachouch et al. [2011] model the weekly HHCP as a MIP which minimizes

the traveling distance. Continuity of care is ensured by assigning only one reference
operator to each client. Furthermore, they include shared visits, where more than
one nurse has to care for the client. The lunch breaks of the nurses are ensured by a
one-hour job with a time window.
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Consideration of working times

To model work contracts not only the consideration of daily working times but also
the incorporation of maximum working times in a longer horizon (e.g. a week or
month) is essential. This constraint can be modeled in a multi-day planning horizon.
Steeg and Schröder [2008] solve the HHCP for a planning horizon of several shifts.

The jobs need to be assigned to shifts and sequenced. The feasible shift combinations
are calculated and the availability of nurses regarding shifts is given a priori. Time
windows for jobs are considered, but no qualifications. The problem is solved with a
combination of CP and ALNS. The CP component ensures the validity of the roster
while the ALNS improves the routes. The objective consists of minimizing the nurse
costs and traveling distance while maximizing the continuity of care.
Gamst and Sejr Jensen [2011a] propose a branch-and-price approach for construct-

ing a master schedule for the HHCP. The jobs of the clients are given with a specified
frequency after which they reoccur. The planning period of the master schedule de-
pends on these frequencies and can span several weeks. The resulting schedule is used
as template for future planning, thus every few weeks the schedule repeats. Daily
operational changes are incorporated ad hoc on the day, if necessary. The authors
take preferences of clients, continuity of care and working hours into account.
Bard et al. [2012] solve the weekly scheduling for traveling therapists. The ap-

pointment times of the patients are fixed and cannot be influenced by the routing.
The authors assume the decomposition of therapists and clients such that only one
qualification is present in each model. The lunch break of a therapist must be sched-
uled in a given time window. The authors model different work contracts by limiting
the availability of therapists to specific time windows. In the publication three dif-
ferent MIP formulations are proposed: for the one therapist case, for the multiple
therapist case including breaks and for the multiple therapist case with overtime and
mileage reimbursement consideration. For the latter two different relaxations are de-
veloped to get a heuristic solution in less computation time. The authors provide an
extensive numerical analysis of the results. A modified problem of Bard et al. [2012]
is considered in Shao et al. [2012]. Here not all appointment times are fixed but
only for a subset of clients. For the remaining clients the days and visit times need
to be scheduled by the solution approach. Furthermore, breaks for the therapists
only need to be planned if the route is longer than six hours. The authors solve the
problem using a parallel GRASP. In the algorithm the problem is decomposed by
first assigning days to clients, then clients to therapists and afterwards scheduling
the daily routes in parallel. In the second phase of GRASP a neighborhood search
is applied for improvement. The solution approach is modified in Bard et al. [2014].
The authors change the parallel GRASP to a sequential GRASP. Routes are con-
structed one-by-one and the feasibility of solutions can be guaranteed. The difference
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to the parallel approach is that the days of the clients are not fixed in a first step,
but incorporated in the route construction. The sequential approach achieves better
results on most of the instances but needs more computation time in some cases.
The weekly planning problem with fixed appointments is considered by Luna et al.

[2013]. Thus, the determination of routes has no influence on the start times of jobs.
The authors propose a parallelized EA which considers the minimum and maximum
daily and weekly working times of nurses as well as their availability. The goal is
to minimize the needed employees and the total working time. Qualifications are
omitted in this solution approach.
A MIP for the weekly planning with a weighted sum as objective is proposed

by Nguyen and Montemanni [2013]. The objective function consists of six parts:
minimizing the number of unassigned jobs, overtime, time window violations and
waiting time as well as maximize the continuity of care and balanced workload. The
availability of nurses is restricted day-wise and by the daily and weekly working time.
Yuan and Fügenschuh [2015] consider the HHCP with unfixed days of jobs and

time dependencies between the jobs for a home health care provider in Germany.
In the MIP the shift starts of the nurses are fixed and the working time is limited
per day and week. The authors propose a greedy construction and local search to
reduce the computation time. The nurses can state their preferred workdays and
hours (hard constraints). Thus, it is possible use the unfixed visit days to achieve
higher satisfaction because the wishes of the nurses are fulfilled.

4.2.3. Consideration of additional working regulations

The publications in this section integrate extended working regulations to the HHCP.
This means the publications consider additional working regulations to the maximum
working time and simple break assignments, which are part of many publications.
These regulations can be labor law regulations, agreements from work contracts or
constraints from the NRP.
Bäumelt et al. [2010b] present a heuristic two-phase approach: a routing and a

rostering algorithm are iteratively executed. The routing algorithm uses a set of
already opened routes for inserting jobs. In each iteration the jobs are released and
reinserted. Overtime or the opening of new routes is possible, if no insertion position
is found. The duty roster is built based on these routes. The rostering problem is
solved as an employee timetabling problem with high diversity of shifts (ETPHD)
[Bäumelt et al., 2010a]. The rostering part considers forbidden shift combinations,
availability of nurses and rest times between shifts. The objective tries to balance
nurses’ total and weekend workloads as well as to avoid isolated days-on or -off.
Trautsamwieser and Hirsch [2014] extend the model of Trautsamwieser and Hirsch

[2011] to a medium-term planning horizon. This allows the authors to include the rest
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time requirements for consecutive shifts on different days. Additionally, maximum
weekly working times and minimum weekly rest times are ensured. Clients and nurses
can state rejections regarding each other to be taken into account. The break rules
are the same as in the daily planning model. The more complex model is solved with
a Branch-Price-and-Cut algorithm and an extensive numerical analysis is provided.
The objective function minimizes the working time of the nurses. The instances from
this publication are considered in the numerical analysis of this thesis.
Di Gaspero and Urli [2014] solve the multi-day HHCP using CP and LNS. They

model lower and upper bounds for the daily working time. Additionally, their model
restricts the maximum number of consecutive workdays and for some jobs more than
one nurse is needed. The objective function penalizes unassigned jobs and minimizes
a weighted sum of overtime, slack time and travel distance. The LNS heuristic clearly
outperforms the CP approach on the instance set.
In Wirnitzer et al. [2016] the assignment of nurses to routes in the HHCP is con-

sidered on a monthly basis. The problem is called home care rostering. The routing
is not part of this publication as a master schedule of routes (e.g. like created in
Nickel et al. [2012]) is given as input. The proposed MIP incorporates shift types as
well as maximum daily and total working times. Additionally, the legally required
rest time between shifts is respected. Clients can reject nurses due to preferences.
The goal is to achieve a high degree of continuity of care. Therefore, different metrics
are proposed and compared in the computational study.

4.3. Routing and scheduling in a dynamic setting

So far publications have a static setting with neither changes in the demands or
work capacities nor consideration of the previous planning period. The publications
reviewed in this section consider the planning problem in a dynamic setting that ad-
dresses these two issues. All publications ensure continuity between planning periods
but in different ways. An overview of the reviewed publications is given in Table 4.3.
The table indicates the components that are considered as dynamic in the first three
rows (Dynamic). A “+“ indicates that new clients, jobs or nurses enter the setting
and a “-“ shows a drop-out. In the next rows the considered continuity types are
reviewed (Continuity). Finally, the consideration of the same requirements as in the
previous section are given (Constraints).
Bennett and Erera [2011] are the first to develop a solution approach for the HHCP

with multiple days in a rolling horizon setting. They propose two heuristic solution
methods. New clients are admitted for service and leave after a certain amount of
time. The planning horizon is divided into time intervals of 15 minutes and planning
is done twice a day. As they consider only one nurse no duty planning is necessary.
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Dynamic
Clients +/- + + +
Jobs
Nurses

Continuity
Care x x x x
Time x x x
Duty schedules

Constraints

Job time windows h h/s
Qualifications x x
Breaks x
Break time window x
Daily working time x x x x
Total working time x
Daily rest time
Weekly rest time
Availability x x x x
Shift rotations
Consecutive workdays
Weekend rules

Table 4.3.: Overview of dynamic, continuity and constraints in publications for home
care planning with a dynamic setting (x = considered, h = hard, s = soft,
+ = new, - = drop-out)

Continuity of time is ensured because the visits at a patient have to be assigned to
the same time slot on the same weekday every week. Common constraints like time
windows, breaks and qualifications are omitted in this study. The objective is to
assign as many clients as possible.
Nickel et al. [2012] solve different models in the context of the HHCP. First, they

model the HHCP for multiple days and solve it with an ALNS. Second, they pro-
pose a model for master scheduling. A master schedule is a template plan which
is independent of specific weeks and dates. The refinement for a particular week is
determined by an operational HHCP, which uses the master schedule as input. The
authors consider the continuity of time by minimizing the sum of changes in job start
times, while inserting new clients. For the other clients the continuity is supported
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by the use of the master schedule. The operational model is solved by a combination
of CP and TS. Time windows of shift types and availability of nurses are modeled as
hard constraints.
Nowak et al. [2013] solve a conVRP to ensure continuity of care in the home care

setting. They adapt the record-to-record travel algorithm of Groër et al. [2009] that
uses template routes for solution construction. This concept is similar to master
scheduling. Besides the continuity of care, none of the home care related constraints
is considered. The authors investigate the influences of a week-by-week planning
compared to a long-term planning on the traveling distances and number of required
nurses. The long-term planning achieves superior results even if the arrival of new
clients is assumed uncertain. To address the uncertainty, the authors insert dummy
clients in the template routes as place holders for future clients.
Bowers et al. [2014] consider a home care related optimization problem that routes

midwifes for postnatal care at the clients’ homes. They assume no time windows
for visits and all midwifes have the same qualification. The routing is performed
by an adapted savings heuristic and executed daily. The arrival of new clients is
simulated with a Poisson process. The continuity of care between days is modeled by
maximizing the preferences of clients. Different scenarios are analyzed. The input of
a shift pattern for the midwifes limits the daily availability and working hours.
A recent publication by Rest and Hirsch [2015] considers a daily planning horizon

and is the first allowing to split breaks. The authors consider the daily planning
during normal business as well as in times of disaster (e.g. blackouts or floods) using
different modes of transport. The travel times are dependent on the time of day
because public transport is considered. The working regulations that are considered
are the breaks, maximum daily working times as well as time windows for the working
time. To ensure continuity of time, the difference to the previous period is taken into
account with a reduced time window. Continuity of care is ensured by using teams
of nurses that can only be extended by a limited number of nurses. The duty plan is
either given as input to the algorithm or flexible working hours are considered. The
problem is solved with a time-dependent tabu search. New clients are not handled
by the solution approach.

4.4. Research opportunities

This section summarizes the state-of-the-art in routing and scheduling for home care
planning and derives the research opportunities in this area. Based on this analysis
the research goals of this thesis are defined in the next section. The summary of
the state-of-the-art is divided into the static and dynamic context, because in both
settings different research opportunities arise.
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Static setting

The literature in a static context is reviewed in Sections 4.1 and 4.2 for daily and
multi-day planning, respectively.
The daily routing and scheduling for home care providers is a well-studied problem

in the OR literature. Almost all solution approaches reviewed in Section 4.1 cover
the basic home care constraints needed. These are time windows, qualifications
and availability restrictions. Furthermore, many publications propose a MIP and a
heuristic because of the complexity of the problem. Many of the working regulations
from labor laws and work contracts, like rest times or weekly working times, cannot
be respected during optimization because of the limited planning period of one day.
Thus, the proposed solution approaches are not suitable for the context of this thesis.
However, some of the working regulations that are representable in daily context have
been studied, namely break constraints and daily working time restrictions.
The solution approaches considering a planning horizon of several days offer the

possibility of considering working regulations relevant for home care planning. These
regulations were described in Section 2.4 and often span more than one day, e.g., rest
times between shifts, work contracts and maximum consecutive days. The solution
approach of Trautsamwieser and Hirsch [2014] considers a problem setting that is
closest to the one in this thesis, because they consider rest times and weekly working
times. However, some aspects are missing in their approach, namely the splitting of
breaks, shift types, weekly workdays and shift rotations. Furthermore, the number
of consecutive workdays is not limited and no rules regarding weekends are modeled.
These two constraints are modeled by Bäumelt et al. [2010b], but this publication
omits other regulations like the weekly rest time and breaks. The splitting of breaks
is mentioned by Rest and Hirsch [2015] for the Austrian rules that are not applicable
in all countries because they use specific partitions. Another approach considering
maximum consecutive workdays is proposed by Di Gaspero and Urli [2014] but the
authors omit rest times and breaks.
None of the solution approaches covers all the working regulations described in

Section 2.4 in one integrated approach. Furthermore, two practical requirements are
missing. First, the maximum number of weekly workdays that allows the incorpora-
tion of more complex work contracts. Second, the use of cyclic shift patterns that
are widely used by German home care providers. Additionally, the generic modeling
of the working regulations is essential for the approaches to be applicable in different
countries and providers.
We conclude that the integration of all mentioned labor law regulations in one ap-

proach together with the modeling of work contracts and requirements from practice
is a research opportunity in home care planning. This is also mentioned in the review
publication of Gutiérrez et al. [2013]: “However, key real features [...] as work legal
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regulations for medical staff have received little attention in the research literature“.
The following enumeration summarizes the research opportunities:

1. Model work contracts by including weekly workdays and shift rotations.

2. Integrate the working regulations from labor law regulations and work contracts
in one solution approach.

3. Ensure a generic formulation of work contracts and labor law regulations to be
applicable in many countries and institutions.

4. Investigate the influence of the working regulations on the quality of solutions.

Dynamic setting

There are only a few publications modeling the routing and scheduling in a dynamic
setting. From Section 4.3 we conclude that the consideration of cross-period working
regulations is not considered by these publications. The working regulations spanning
more than one day are omitted by the approaches, although the rest times and total
working times need to be ensured between periods. Additionally, only changes in the
set of clients are investigated with the proposed methods. The changes of jobs and
nurses also need to be considered, because they arise on a regular basis.
The continuity between planning periods is addressed for continuity of care and/or

time. However, there are many possibilities to model continuity and no investigation
of different metrics is carried out. This aspect is also mentioned in the review of
[Milburn, 2012, p.299]: “Furthermore, a comprehensive routing and scheduling tool
with the flexibility to evaluate various consistency policies and their impact on nurse
efficiency would provide important information to home health planners as they de-
velop operating policies“. Continuity of duty schedules for the nurses that would be
interesting for practical applications is neglected in literature. As a result, several
research opportunities arise in the context of the dynamic home care setting:

1. Allowing demand changes for existing clients in the form of new or less job
requests and time window changes.

2. Model the entrance or leave of nurses leading to opening of new or closing of
existing tours.

3. Ensure the feasibility of working regulations across planning periods.

4. Compare different continuity measures for continuity of care and time from the
literature, propose new measures and investigate their influences.

5. Model continuity of duty schedules to improve nurse satisfaction.
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4.5. Research goals

The research opportunities derived from the state-of-the-art in the last section lead
to the following research question that should be answered in this thesis:

“How can legal, efficient and continuous plans for the integrated routing
and scheduling of home care providers in a dynamic setting be achieved
in reasonable computation time?”

To provide an answer for this question, the following goals are defined within in the
scope of this thesis:

1. Integrate relevant working regulations to the routing and scheduling for home
care providers in a static multi-day setting.

2. Solve the integrated routing and scheduling for real-world sized problem in-
stances.

3. Evaluate the influence of working regulations on working hours and compliance
with labor law regulations.

4. Incorporate the feasibility of working regulations and continuity between plan-
ning periods.

5. Evaluate the influence of different continuity metrics on the solutions.

The goals and the course of action to achieve them are described in more detail in
the remainder of this section.

Goal 1: Integrate relevant working regulations to the routing and scheduling
for home care providers in a static multi-day setting.
This goal aims at the integration of the working regulations provided by work

contracts and labor law regulations into one solution approach (presented in Section
2.4). Therefore, the problem setting is formalized by a mathematical program, more
specifically a mixed-integer program (MIP). To ensure the applicability in different
settings, the model formulation should be generic and not limited to a specific case.
The solution of this model provides a schedule for a multi-day planning horizon
taking into account the current set of clients, nurses and jobs. The efficiency of a
plan is measured by the working time needed to perform all the jobs in the planning
horizon.
Because the integrated home care routing and scheduling is a combinatorial opti-

mization problem [Bertels and Fahle, 2006], the computation time needed to solve
the problem to optimality for real-world sized instances is expected to be too long
for an application in practice leading to the second goal. Nevertheless, even if the
proof of optimality is not adduced in reasonable time, intermediate results provide
lower and upper bounds on the optimal objective value.
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Goal 2: Solve the integrated routing and scheduling for real-world sized problem
instances.
The second goal is to develop efficient solution approaches that can solve real-world

sized problem instances in a reasonable computation time due to the complexity of
the problem. To achieve this goal, heuristics have to be designed and implemented
to solve the model formulation from Goal 1. The heuristics use domain-specific
knowledge of the problem setting to achieve good results. The quality of the solu-
tions computed by the heuristics is evaluated by the bounds on the optimal solution
obtained by the MIP. The parameters of the heuristics are determined using an al-
gorithm configurator. Furthermore, the heuristics are compared to each other and
the most suitable heuristic is determined with an extensive numerical analysis.

Goal 3: Evaluate the influence of working regulations on working hours and
compliance with labor law regulations.
The methods proposed for Goal 1 and 2 extend the state-of-the-art because they

integrate all the mentioned working regulations. Therefore, they offer the opportunity
to investigate the influence of these regulations on the solution quality in terms of
working hours. To perform this analysis, the best heuristic from Goal 2 is used to
perform a sensitivity analysis. The experimental setup consists of several scenarios
considering different sets of working regulations or none and comparing the results.
Furthermore, the necessity of modeling working regulations can be emphasized by
analyzing the constraint violations if the regulations are omitted.

Goal 4: Incorporate the feasibility of working regulations and continuity between
planning periods.
To model continuity between planning periods and allowing a dynamic setting of

demands and capacities, the selected heuristic solution approach for a static setting
must be extended with a rolling planning horizon by adapting the instance and
solution representation. The working regulations modeled for the static setting have
to be ensured between planning periods by the method to obtain legal plans. The
approach allows changes in clients, jobs and nurses whereas the current state-of-the-
art omits the latter two. The continuity of care and time must be ensured across
planning periods by implementing metrics from the literature and proposing new
metrics that are incorporated in the objective function. Furthermore, the proposed
method is the first considering the continuity of duty schedules between planning
periods.

Goal 5: Evaluate the influence of the different continuity metrics on the solu-
tions.
To provide an insight into the influences of the continuity on the quality of solu-

tions, the metrics designed and adapted in Goal 4 are used for an experimental study
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in a rolling horizon setting of several weeks. The different continuity metrics for care,
time and duty schedules are compared regarding their influence on the continuity and
working times. Furthermore, different parameters of the rolling horizon approach are
analyzed to show how they affect the continuity over several weeks.

All proposed methods have to be tested and analyzed on different datasets to
provide reliable results and exclude overfitting for one testset. One instance set is
generated to represent the problem setting in this thesis1. The instances cover all
relevant aspects taking into account real-world statistics and labor law regulations.
Two further datasets are provided by Trautsamwieser and Hirsch [2014] and Cap-
panera and Scutellà [2013a] who published on home care planning. Those are based
on real-world data from Austria and Italy, respectively.

1The instances are available at http://hc.guericke.org/.
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In this chapter the formalization of the home care routing and scheduling problem
with a MIP is proposed to achieve the first goal mentioned in the research goals.
First, the notation is introduced in Section 5.1. The MIP is described in Section 5.2
providing a mathematical formulation of the problem approached in this thesis. The
model is solved with a commercial solver to provide optimal solutions and bounds
on objective values. The test instances used for this experiments are presented in
Section 5.3. The numerical results are analyzed in Section 5.4.

5.1. Problem setting and notation

The notation and symbols for the formalization of the home care routing and schedul-
ing problem with working regulations for a static planning horizon are introduced in
this section and commonly used throughout the thesis. An overview of all sets and
parameters for the MIP is also given in Section 5.2 (Table 5.1).
The set J denotes all jobs in the considered planning horizon of |D| days and is

divided into two subsets. Subset J N ⊆ J contains artificial jobs representing start
and end locations of nurses. These are described in more detail in Section 5.1.1.
Jobs that are services at a client’s home are contained in J C = J \{J N}. The set
of clients is denoted by C and the locations of the clients determine the driving time
drivij (in minutes) between two jobs. Each job i in J is defined by its day in the
planning horizon di, time window [ai, bi] and duration ri. The qualification required
to perform a job is denoted by qi.
Each job needs to be assigned to one nurse n in the setN whereas the assignment is

restricted by the qualifications Qn of the nurse. The binary parameter Qj,n indicates
whether nurse n is assignable to job j by matching available nurses with required
job qualifications. Each nurse is not only assigned to jobs but also to a shift type
s ∈ S on each day of the planning horizon. The route formed for a nurse on a day
is restricted by the time window of the selected shift type s, i.e., it has to start and
end in the time window [As, Bs].
The planning horizon is represented by the set of days D = {0, 1, . . . , |D| − 1}.

Furthermore, the set of complete weeks, i.e., weeks containing the days from Monday
to Sunday, are denoted by W . For an example consider a planning horizon of |D| =
14 days starting on a Monday results in the following sets: D = {0, 1, ..., 13} and
W =

{
{0, 1, . . . , 6}, {7, . . . , 13}

}
.
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Figure 5.1.: Parameters for the break regulations in Germany

5.1.1. Working regulations

The basis for correct calculation of working and rest times are the start and end
times of each nurse’s route. Therefore, a set of artificial jobs J N representing the
start and end of each route is introduced. The set contains two jobs for each nurse on
each day of the planning horizon. To determine a specific job in J N , two functions
are defined. The start and end jobs of nurse n on day d are given by O(n, d) and
E(n, d), respectively. The duration of all artificial jobs is zero and no qualification is
needed. The location of the job depends on the start and end location valid for the
nurse.

Work contracts

The formalization of work contracts needs several parameters. Each parameter is
given for each nurse separately to allow individual agreements. The first parameter
is the maximum daily working time of nurse n denoted by HD

n . The maximum weekly
working time per nurse is introduced by HW

n . To differentiate contracts by workdays
per week, the maximum number of days in one week is given by DW

n . The availability
of a nurse n for a specific shift type s on a day d is denoted by the binary parameter
Fn,s,d that equals 1 if the nurse is available, and 0 otherwise.

Labor law regulations

The break regulations described in Section 2.4.2 can be represented by a monoton-
ically increasing step function, like given in Figure 5.1 for the German break rules.
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For the formalization of the problem setting this function needs to be linearized,
which can be achieved by introducing binary variables as described in Section 5.2.1.
The function to determine the required break length is divided into intervals of

equal break duration. These intervals are called break levels in this thesis and are
given by the set Bn for a nurse n. The interval of the break level b ∈ Bn is defined
by [Lb, Ub] where Ub = Lb+1. The break levels are given in ascending order of Lb.
The required break duration is calculated by summing up the parameter lb of all
activated break levels b, i.e., the break duration in level b that is needed in addition
to the duration in the lower levels is denoted by lb. If a splitting of breaks is allowed,
the minimum length of each part is represented by the parameter lminn .
The specific parameters for the German break rules are given in Figure 5.1. In

this example we have three break levels with the intervals [0, 360], [360, 540] and
[540, 1440]. The lowest break level implies no break, therefore, l0 and L0 are set to
zero. After a working period of six hours (U0 = L1 = 360) a break of l1 = 30 minutes
and after nine hours (U1 = L2 = 540) additional l2 = 15 minutes are needed leading
to a total break length of 30 + 15 = 45 minutes.
Additional to breaks during working times, minimum rest times between shifts

need to be ensured. Thus, at least RD
n minutes must lie between the end of the shift

on the previous and the beginning on the current day. Additionally, a minimum
weekly rest time has to be fulfilled and is given by parameter RW

n , i.e., once a week
the daily rest time must be extended to this value.

Cyclic shift pattern

As mentioned in the problem description in Section 2.4.2 a cyclic shift rotation is
given for a predefined time horizon (two weeks in the example in Figure 5.2). A nurse
can start to work according to the rotation on every Monday of the given rotation.
As a result, there are two feasible shift patterns for a cyclic shift rotation of length
two weeks (see Figure 5.2). One pattern starts in the first week, the other in the
second week. The generation of feasible patterns is done in a preprocessing step, so
the input to the model is the set of feasible shift patterns Pn for each nurse n.
To incorporate the pattern in the model formulation, the valid shift assignments

need to be encoded in parameters. We introduce the binary parameter ap,s,d indicat-
ing whether pattern p allows the assignment of shift type s on day d of the planning
horizon. This means the pattern is transferred to the entire planning horizon, even
if the pattern is shorter. An exemplary cyclic shift rotation with parameters ap,s,d is
given in Figure 5.2. The shift rotation results in two possible sets of parameters, one
for each pattern, whereas the second pattern is equal to the first pattern shifted by
one week. A value of one indicates that the shift type is assignable on the specific
day, a zero indicates incompatibility. The solution approach has to decide on the
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Figure 5.2.: Parameters for an exemplary shift pattern (M = morning shift, A =
afternoon shift, W = weekend shift)

pattern for each nurse n in the set NR ⊆ N , i.e., determine the start week of each
nurse in the cyclic shift rotation.

Further restrictions for duty planning

Additional to the already mentioned parameters and sets, we specify subsets and
parameters to model further restrictions on the duty planning of nurses. All nurses
contained in the set NWE ⊆ N must be either assigned on both days of a weekend or
none. For this restriction we need to know all Sundays DSu in the planning horizon
D. The maximum number of consecutive workdays for nurse n is limited by DC

n .

5.1.2. Network structure

The mathematical formulation in the home care context can be modeled based on a
graph G = (V,A). The nodes V represent the route start and end locations of nurses
as well as jobs of clients, i.e., V = J . The arcs A ⊆ (J ×J ×N ) consist of feasible
connections between two nodes, i.e., if and only if (i, j) ∈ A job j can directly follow
job i in a route assigned to nurse n. The following infeasible arcs can be removed
from the set of all arcs (J × J × N ), because they would violate the requirements
of the problem description and thus form an infeasible solution:

1. Cyclic arcs of type (i, i, n) because each job is scheduled exactly once.
2. Arcs connecting jobs that can be planned only in separate routes due to different

days or shift types.
3. Arcs to and from jobs that need another qualification than the nurse has.
4. Arcs that are excluded by time window constraints.
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Figure 5.3.: Network structure for example instance with two nurses (qualifications
shown) and five jobs (qualification, time window and duration shown)
on one day

5. Incoming arcs for shift start nodes and outgoing arcs for shift end nodes because
no other jobs can precede or follow those, respectively.

6. Arcs starting or ending at nodes defined for another nurse than the current.

7. Arcs connecting start with end nodes and vice versa.

Figure 5.3 shows a small example network containing two nurses and five jobs to
explain the rules in more detail. The shift start and end nodes for the two nurses are
labeled o and e, respectively. Additionally, the qualifications of the nurses are given
by Qn. The nodes with numbers from one to five are the jobs at clients labeled with
the needed qualification q, time window [a, b] and duration in minutes. The solid
arcs are valid for nurse 1 and the dashed arcs are valid for nurse 2.
As we can see from Figure 5.3, the start node o1 of nurse 1 is only connected to the

jobs 1, 2, 3 and 4 because they require qualification 1 (striped) or 2 (dotted) (Rule
3). On the contrary, job 5 (checkered) can be performed only by nurse 2 because it
requires qualification 3. Jobs 1, 2 and 3 have no connecting arcs with jobs 4 and 5
due to the shift type definitions (Rule 2). All feasible routes start and end within the
assigned shift type and, thus, the jobs cannot be scheduled in the same route. There
is an arc from job 2 to 1 but not vice versa because the time window restrictions allow
a sequencing only in this order (Rule 4). The same holds for the arcs connecting jobs
4 and 1 as well as jobs 4 and 2. The arcs leading to the shift end nodes of each nurse
are starting only at feasible jobs for the respective nurse (Rule 6).
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With the above mentioned rules, the reduced sets of incoming Ω−(i) (5.1) and
outgoing Ω+(i) (5.2) arcs for each node i ∈ J can be defined.

Ω−(i) ={(j, i, n) ∈ A|i 6= j ∧ di = dj ∧ qi ∈ Qn ∧ qj ∈ Qn ∧ aj ≤ bi

∧ (i 6= O(n, di)) ∧
(
(i = E(n, di) ∧ j /∈ J N) ∨ (i /∈ J N)

)
} (5.1)

Ω+(i) ={(i, j, n) ∈ A|i 6= j ∧ di = dj ∧ qi ∈ Qn ∧ qj ∈ Qn ∧ ai ≤ bj

∧ (i 6= E(n, di)) ∧
(
(i = O(n, di) ∧ j /∈ J N) ∨ (i /∈ J N)

)
} (5.2)

These definitions are used for building sets of reachable nodes j ∈ J for each nurse n
based on the incoming and outgoing arcs of job i. They are given by the sets ∆+(i, n)
and ∆−(i, n), respectively.

∆−(i, n) ={j ∈ J | (j, i, n) ∈ Ω−(i)} (5.3)
∆+(i, n) ={j ∈ J | (i, j, n) ∈ Ω+(i)} (5.4)

The set Γ(i, j) defines the set of nurses that are feasible for traveling from i to j.

Γ(i, j) = {n ∈ N | j ∈ ∆+(i, n)} (5.5)

With these definitions the constraints regarding qualifications matchings of nurses
and jobs are already satisfied. The overall set of arcs A is defined based on the sets
Ω+ and Ω−:

A = {(i, j, n)|i ∈ J ∧ j ∈ J ∧
(
(i, j, n) ∈ Ω+(i) ∨ (i, j, n) ∈ Ω−(j)

)
} (5.6)

5.2. Formalization of the problem setting

This section proposes the formalization of the home care routing and scheduling prob-
lem with working regulations by a MIP. First, the decision variables are presented
and, afterwards, the objective function and constraints of the model are explained in
detail.

5.2.1. Decision Variables

The decision variables xi,j,n model the sequence of jobs in routes and the assignment
of nurses to jobs. The binary variable xi,j,n equals 1 if nurse n travels from job i

directly to job j. The variables xi,j,n are defined on the set of arcs (i, j, n) ∈ A to
reduce the number of binary variables as many infeasible combinations are already
excluded. The start time of a job i is modeled with the continuous variable zi and
the waiting time before job j due to hard time windows with variable wj. The duty
plan of the nurses is encoded in the binary variables yn,s,d that equals 1 if nurse n
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Notation Definition

A Set of arcs, i.e., feasible combinations in (J × J ×N )
Bn Set of break levels for nurse n
D = {0, . . . , |D| − 1} Set of days
DSu ⊆ D Set of Sundays in the planning horizon
J Set of jobs
J C ⊆ J Set of jobs at clients
JN ⊆ J Set of jobs representing start and end or routes
Jd Set of jobs on day d
N Set of nurses
NR ⊆ N Set of nurses working shift rotations
NWE ⊆ N Set of nurses working only complete weekends
Pn Set of feasible shift patterns for nurse n
Q Set of qualifications
Qn Set of qualifications of nurse n
S Set of shift types
W Sets of complete weeks in D
Ω−(i) ⊆ A Incoming arcs of job i
Ω+(i) ⊆ A Outgoing arcs of job i
∆−(i, n) ⊆ J Set of jobs from which job i can be reached by nurse n
∆+(i, n) ⊆ J Set of jobs which can be reached from job i by nurse n
Γ(i, j) ⊆ N Set of nurses feasible to travel from job i to job j
O(n, d) ∈ JN Start job for nurse n on day d
E(n, d) ∈ JN End job for nurse n on day d

ap,s,d ∈ {0, 1} Binary parameter, equals 1 if shift type s on day d is assignable in shift
pattern p

[ai, bi] Time window of job i
[As,d, Bs,d] Time window of shift type s on day d
di ∈ D Day of job i
drivi,j ∈ N Driving time between job i and j (in minutes)
DW

n ∈ N Max. weekly workdays of nurse n
DC

n ∈ N Max. number of consecutive workdays of nurse n
Fn,s,d ∈ {0, 1} Binary parameter, equals 1 if shift type s can be performed by nurse n

on day d, 0 otherwise
HD

n ∈ N Max. daily working time of nurse n (in minutes)
HW

n ∈ N Max. weekly working time of nurse n (in minutes)
[Lb, Ub] Validity interval of break level b
lb ∈ N Required additional length of break in break level b (in minutes)
lmin
n ∈ N Minimum uninterrupted break length for nurse n (in minutes)
qi ∈ Q Qualification needed for job i
Qj,n ∈ {0, 1} Binary parameter, equals 1 if job j can be performed by nurse n, 0

otherwise
ri ∈ N Duration of job i (in minutes)
RD

n ∈ N Min. daily rest time of nurse n (in minutes)
RW

n ∈ N Min. weekly rest time of nurse n (in minutes)
vn ∈ N End of shift on last day of previous period (d = −1) for nurse n

Table 5.1.: Sets and parameters

75



5. Exact solution approach for the static setting

Name Range Definition

xi,j,n ∈ {0, 1} Binary decision variable, equals 1 if job j is performed by nurse n directly
after job i, 0 otherwise, (i, j, n) ∈ A

zj ∈ R Continuous decision variable, start time of job j ∈ J in minutes from the
beginning of the planning horizon

wj ∈ R+ Continuous decision variable, waiting time before job j ∈ J in minutes
yn,s,d ∈ {0, 1} Binary decision variable, equals 1 if nurse n ∈ N works shift type s ∈ S

on day d ∈ D, 0 otherwise
ρn,d,b ∈ {0, 1} Binary decision variable, equals 1 if nurse n ∈ N needs a break of type

b ∈ Bn on day d ∈ D, 0 otherwise
βj,n ∈ {0, 1} Binary decision variable, equals 1 if a break for nurse n ∈ N is assigned

before job j ∈ J , 0 otherwise
δj,n ∈ R+ Continuous decision variable, duration of the break for nurse n ∈ N before

job j ∈ J in minutes
kn,p ∈ {0, 1} Binary decision variable, equals 1 if nurse n ∈ NR works shift pattern

p ∈ Pn, 0 otherwise

Table 5.2.: Decision variables and ranges

works shift type s on day d. The binary variable kn,p is defined for the nurses in NR

and equals 1 if pattern p is selected for nurse n.
The modeling of break assignments requires three sets of variables. First, the

necessity of assigning a break of level b on day d for nurse n is modeled by the binary
decision variable ρn,d,b. The placement of the break inside the route is model by the
binary decision variable βj,n ∈ {0, 1} indicating whether a break is inserted before job
j for nurse n. The length of the break is given by the continuous variables δj,n ∈ R+.
Table 5.2 gives an overview of all variables and their ranges.

5.2.2. Mixed integer program

In this section we describe our mathematical formulation for home care routing and
scheduling with working regulations. The model formulation is based on the VRPTW
formulation described in Section 3.2.1 because the routing with time windows is a
subproblem of the problem setting in this thesis. The model is a MIP, because it con-
tains integer, more specifically binary, variables and continuous variables. First, we
describe the objective function. Afterwards, the required constraints are presented.

min
∑

(i,j,n)∈A

wi + δj,n + (ri + drivi,j)xi,j,n (5.7)
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The objective function (5.7) minimizes the total tour length (in minutes) consisting
of waiting, break and driving times. Note that job durations are a fixed input and
cannot be shortened during optimization. Due to the inclusion of break durations
in the objective function, unnecessary break assignments are avoided because they
would increase the objective value. Thus, artificial lengthening of routes to include
breaks to reduce the overall working time is not possible.∑

j∈∆+(O(n,d),n)

xO(n,d),j,n =
∑
s∈S

yn,s,d ∀n ∈ N , d ∈ D (5.8)

∑
j∈∆−(E(n,d),n)

xj,E(n,d),n =
∑
s∈S

yn,s,d ∀n ∈ N , d ∈ D (5.9)

∑
j∈∆+(i,n)

xi,j,n =
∑

j∈∆−(i,n)

xj,i,n ∀i ∈ J C , n ∈ N (5.10)

∑
n∈N

∑
j∈∆+(i,n)

xi,j,n = 1 ∀i ∈ J C (5.11)

∑
j∈∆+(i,n)

xi,j,n ≤ Qi,n

∑
s∈S

yn,s,di
∀i ∈ J , n ∈ N (5.12)

Constraints (5.8) and (5.9) ensure outgoing and incoming arcs at shift start and end
on assigned workdays, respectively. Thus, no empty routes are possible. Constraints
(5.10) are the flow balance constraints of the VRP, i.e., each job has the same number
of incoming as outgoing arcs. The start and end jobs of nurses are excluded because
they have only outgoing or incoming arcs, respectively. The flow balance equality
must be held for each nurse separately to ensure individual and connected routes.
Constraints (5.11) assign every job of the clients exactly once by setting the number
of outgoing arcs to one. If and only if a nurse is assigned to a shift, the routing
variable can be activated for jobs on that day (5.12).

zi + ri + drivi,j + wj +
∑

n∈Γ(i,j)

δj,n ≤ zj +M(1−
∑

n∈Γ(i,j)

xi,j,n) ∀i ∈ J , j ∈ Ω+(i)

(5.13)

zi + ri + drivi,j + wj +
∑

n∈Γ(i,j)

δj,n ≥ zj −M(1−
∑

n∈Γ(i,j)

xi,j,n) ∀i ∈ J , j ∈ Ω+(i)

(5.14)

ai ≤ zi ≤ bi ∀i ∈ J C (5.15)

The start time for each job is set in constraints (5.13) and (5.14) similar to the
VRPTW. If job j is scheduled after job i, the start time of job j is calculated using
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the start time of job i, the duration of job i and the driving time needed to travel
from i to j. Additionally, a potential waiting time wj or a break of length δj,n in
between is considered. If j is not scheduled after i, the constraints are deactivated
using a big-M (M = 1440|D|) formulation. The time windows for jobs at clients are
ensured by constraints (5.15).

Working time regulations

The following constraints model the working time regulations defined by the work
contracts of the nurses.∑

d∈w

(
zE(n,d) − zO(n,d) −

∑
b∈Bn

lbρn,d,b
)
≤ HW

n ∀n ∈ N , w ∈ W (5.16)

zE(n,d) − zO(n,d) −
∑
b∈Bn

(lbρn,d,b) ≤ HD
n ∀n ∈ N , d ∈ D (5.17)∑

d∈w

∑
s∈S

yn,s,d ≤ DW
n ∀n ∈ N , w ∈ W (5.18)

d′+DC
n∑

d=d′

∑
s∈S

yn,s,d ≤ DC
n ∀n ∈ N , d′ ∈ {0, ..., |D| −DC

n } (5.19)

Constraints (5.16) limit the weekly working time of nurses, with break time not
considered as working time, by summing up the lengths of all tours in one week.
Therefore, the difference between end (zE(n,d)) and start time (zO(n,d)) is calculated
and the assigned break duration subtracted from it (lbρn,d,b). The weekly working
time is determined based on the days in week w ∈ W . The maximum working time on
each day is incorporated by constraints (5.17) and calculated like the weekly working
time just for one day. The number of workdays per week is limited by constraints
(5.18), and the maximum number of consecutive workdays by constraints (5.19).
Both use the sum of shift assignment variables to calculate the number of workdays.

Break assignments

Several constraints are needed to ensure the correct assignment, position and length
of breaks.

zE(n,d) − zO(n,d) −
∑
b∈Bn

lbρn,d,b ≤

U0 +
∑

b∈Bn\{|Bn|}

ρn,d,b(Ub+1 − Ub) + 2RW
n (1−

∑
s∈S

yn,s,d) ∀n ∈ N , d ∈ D (5.20)
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Figure 5.4.: Overview of break activation constraints for break levels 0, 1 and 2 (ρ0 =
1, ρ1 = 1 or ρ2 = 1). The bars consist of working time (grey) and
break time (dashed). The ranges on the right are calculated based on
constraints (5.20) and (5.21). The actual working time is printed in bold

zE(n,d) − zO(n,d) > 0 +
∑

b∈Bn\{0}

(Lb − Lb−1 + lb−1)ρn,d,b ∀n ∈ N , d ∈ D (5.21)

First, the necessity of a break depending on the working time (without break time)
must be determined in constraints (5.20) and (5.21). In (5.20) the correct break level
is activated by limiting the working time depending on the break level intervals. Only
if a break level is activated, the tour length can be longer than U0 minutes. Fur-
thermore, a break can be scheduled only if a shift assignment is selected. Otherwise,
the constraint is deactivated using 2RW

n as big-M. To avoid unnecessary breaks, the
minimum length of a tour based on the selected break level is ensured in constraints
(5.21). Figure 5.4 shows the ranges for activation based on the break level for the
German rules.

ρn,d,b ≤
∑
s∈S

yn,s,d ∀n ∈ N , d ∈ D, b ∈ Bn (5.22)

βi,n ≤
∑

j∈∆−(i,n)

xj,i,n ∀i ∈ J , n ∈ N (5.23)

ρn,d,b ≤ ρn,d,b−1 ∀n ∈ N , d ∈ D, b ∈ {2, ...,Bn} (5.24)

A break can only be assigned for nurse n on day d, if the nurse is assigned to any shift
on day d (5.22). Constraints (5.23) limit the break assignment to insertion before
jobs that are scheduled for the respective nurse. If a connection to job j for nurse
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n is activated, the break variable for job j can be set to a value different from zero.
The consecutive selection of breaks due to the step function is ensured by constraints
(5.24).∑

j∈Jd

δj,n =
∑
b∈Bn

lbρn,d,b ∀n ∈ N , d ∈ D (5.25)

∑
j∈Jd

βj,n ≤
1
lminn

∑
b∈Bn

lbρn,d,b ∀n ∈ N , d ∈ D (5.26)

lminb βj,n ≤ δj,n ≤ max
b∈Bn

{lb}βj,n ∀j ∈ J , n ∈ N (5.27)

Based on the selected break level, constraints (5.25) ensure that the required break
duration is assigned (in one or more breaks). Constraints (5.26) limit the number of
breaks to the maximum number of breaks based on the minimum break length. To
ensure that a break fulfills the minimum length criteria, the bounds on the duration
are set in constraints (5.27). The upper bound limits the break duration before job
j to zero, if no break activation variable is set for j.

zE(n,d) − (zj − δj,n)−M(1− βj,n) ≤ U0 ∀n ∈ N , d ∈ D, j ∈ J (5.28)
(zj − δj,n − wj)− zO(n,d)−M(1− βj,n) ≤ U0 ∀n ∈ N , d ∈ D, j ∈ J (5.29)

To plan breaks in the middle of the route and achieve at most U0 minutes of working
time without a break, constraints (5.28) and (5.29) restrict the placement of the break
inside the route. Constraint (5.28) limits the time after the break and constraints
(5.29) the time before the break to at most U0 minutes, respectively. Constraints
(5.29) have to take the waiting time wj before job j into account because a break is
defined before job j with the variable βj,n, . If the break is split in smaller breaks,
these constraints hold for every part. These constraints work under the assumption
that the maximum daily working time is less than 2U0, which is the common case.

Rest times

As mentioned in Section 2.4.2, the daily and weekly rest times of the employees are
regulated in many countries. The following constraints ensure that these require-
ments are kept.

zO(n,d+1) − zE(n,d) ≥ RD
n − (2−

∑
s∈S

yn,s,d−
∑
s∈S

yn,s,d−1)RD
n

∀n ∈ N , d ∈ {0, ..., |D| − 1} (5.30)

max
d∈{d′∈w|d′>0}

{zO(n,d) − zE(n,d−1)} ≥ RW
n ∀n ∈ N , w ∈ W (5.31)

80



5.2. Formalization of the problem setting

The daily rest time RD
n between shifts on consecutive days is held by constraints

(5.30). If one of the two consecutive days has no shift assignment, the constraints
is deactivated by using a big-M formulation, where M is set to RD

n . The minimum
weekly uninterrupted rest time is guaranteed by constraints (5.31). Due to the fact
that this constraint has to be fulfilled once a week, only the maximum of all rest
times in one week has to be greater equal RW

n . The minimum weekly rest time RW
n

considered in this problem setting often ranges more than 24 hours. As we calculate
the rest time between tour end and start times (5.31), the times at start and end
jobs must be allowed to lie outside their current day. Otherwise, rest times of more
than 24 hours are not possible. However, the times can be restricted by the start of
the current day minus the weekly rest time or the end of the current day plus the
weekly rest time, because these are the maximum cases. These ranges are modeled
in constraints (5.33) and (5.34).

−(1440− vn) ≤ zO(n,0) ≤ zE(n,0) ∀n ∈ N , (5.32)
(1440d−RW

n ) ≤ zO(n,d) ≤ zE(n,d) ∀n ∈ N , d ∈ {1, . . . , |D|} (5.33)
(1440(d+ 1) +RW

n ) ≥ zE(n,d) ≥ zO(n,d) ∀n ∈ N , d ∈ {1, . . . , |D|} (5.34)

An exception is the first day of the planning horizon. Here, the time variables cannot
lie before the tour end of the last tour in a potential previous planning horizon (5.32)
given by the parameter vn. The constraints (5.32) to (5.34) model the ranges when
there is no shift assigned. If a shift is assigned to the nurse, the start and end times
of the route have to lie within the time window of the shift. These time window
constraints are modeled in (5.35) to (5.38) based on the value of the shift assignment
variable yn,s,d.∑

s∈S

As,dyn,s,d − (1−
∑

j∈∆+(O(n,d),n)

xO(n,d),j,n)M ≤ zO(n,d) ∀n ∈ N , d ∈ D (5.35)

∑
s∈S

Bs,dyn,s,d + (1−
∑

j∈∆+(O(n,d),n)

xO(n,d),j,n)M ≥ zO(n,d) ∀n ∈ N , d ∈ D (5.36)

∑
s∈S

As,dyn,s,d − (1−
∑

j∈∆−(E(n,d),n)

xj,E(n,d),n)M ≤ zE(n,d) ∀n ∈ N , d ∈ D (5.37)

∑
s∈S

Bs,dyn,s,d + (1−
∑

j∈∆−(E(n,d),n)

xj,E(n,d),n)M ≥ zE(n,d) ∀n ∈ N , d ∈ D (5.38)

An example of the constraint regarding daily and weekly rest times is given in Figure
5.5 to explain the connections of variables and constraints in more detail. The figure
shows shift assignments on the days 0, 1 and 3 for nurse 1. On days 0 and 1 shift
type 1 is assigned (y1,1,0 = y1,1,1 = 1) and shift type 2 on day 3 (y1,2,3 = 1). The
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Figure 5.5.: Overview of rest time constraints and variables for an example of four
days with one nurse and RW = 1440 minutes (black bars = tours, grey
bars = time windows for start and end jobs)

tours inside the shifts are visualized with black bars. On day 2 no shift is assigned
and thus the y-variables for both shift types are set to zero. According to these shift
assignments, the time windows for the start and end times of the routes are limited
to the shift type time windows (depicted as gray bars below the time line). On day
2 no shift assignment is present and therefore, the start job o2 and end job e2 have a
larger time window to model the weekly rest time. In this example with RW = 1440,
the time window equals [2 · 1440− 1440, 1440 · (2 + 1) + 1440] = [1440, 5760] (based
on constraints (5.33) and (5.34)). Thus, the start times of the jobs o2 and e2 can
moved to the end of the tour on day 1 and start of the tour on day 3 to fulfill the
weekly rest time requirement.

Availability and shift rotations

The assignments of nurses due to rotations and availabilities are modeled by the
following constraints. Furthermore, the correct assignment of shift patterns resulting
from shift rotations is guaranteed.

yn,s,d ≤
∑
p∈Pn

ap,s,dkn,p ∀n ∈ NR, s ∈ S, d ∈ D (5.39)∑
p∈Pn

kn,p ≤ 1 ∀n ∈ NR (5.40)

Constraints (5.39) limit the shift assignment of a nurse to the selected shift pattern
based on the binary parameters ap,s,d. Constraints (5.40) ensure only one pattern per
nurse is selected. These constraints are valid for nurses in NR only. The variables
kn,p are excluded for the nurses n /∈ NR.
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∑
s∈S

yn,s,d ≤ 1 ∀n ∈ N , d ∈ D (5.41)∑
s∈S

yn,s,d =
∑
s∈S

yn,s,d−1 ∀d ∈ DSu, n ∈ NWE (5.42)

yn,s,d ≤ Fn,s,d ∀n ∈ N , s ∈ S, d ∈ D (5.43)

At most one shift assignment per day per nurse is enforced by constraints (5.41).
Constraints (5.42) assign both days on weekends if it is required for a nurse (n ∈
NWE), i.e., Saturday and Sunday or neither (independent of shift types). The shifts
from Monday to Friday are not affected by these constraints. Constraints (5.43)
restrict the shift assignments to the valid shift types and days for each nurse to
model (un)availability of nurses.

Soft constraints

We relax two constraint sets of the above presented MIP, namely the assignment of
jobs and the weekend shift assignments.
First, constraints (5.11) ensuring that each job is assigned exactly once are relaxed.

This enables the solver to find a feasible solution for every data input. This is essential
for practical application because one job that cannot be inserted would lead to an
infeasible model and therefore no schedule can be determined from the MIP. When
the job assignment constraint is relaxed, the solver is able to leave jobs unassigned
if it is not possible to insert them. A home care provider could insert these jobs
manually at the end of a tour after the solution process, although it would cause
overtime.
Furthermore, the MIP solver is able to find feasible solutions earlier in the solution

process and can use the information to potentially speed up the solution process.
Nevertheless, unassigned jobs should be avoided and therefore every unassigned job
is penalized with high costs. The required modifications of the model are presented
in the following. We introduce a new binary variable ui indicating whether a job is
unassigned or not and constraints (5.44) to replace constraints (5.11) by inserting
the new variable as compensation for no assignment.

ui =
{

1, if job i ∈ J C is unassigned
0, otherwise.

∑
n∈N

∑
j∈∆+(i,n)

xi,j,n = 1− ui ∀i ∈ J C (5.44)
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Second, we relax the constraints regarding the complete weekend assignments be-
cause they are no legal or contractual regulations. But as single workdays on week-
ends are not preferred by nurses, this case is penalized in the objective function. Note
that the penalty costs are less than the costs for unassigned jobs, because assigning
jobs has a higher priority in practice. For the relaxation of weekend assignments, we
introduce a binary variable to model constraints (5.42) as soft constraints (5.45).

γn,d =


1, if the weekend belonging to Sunday d ∈ DSu for nurse n ∈ NWE

has only one shift assignment
0, otherwise.

−γn,d ≤
∑
s∈S

yn,s,d −
∑
s∈S

yn,s,d−1 ≤ γn,d ∀d ∈ DSu, n ∈ NWE (5.45)

Finally, the original objective function (5.7) is extended by the penalty costs φU
(=106) for unassigned jobs and φW (=14400) for single shifts on weekends:

min
∑

(i,j,n)∈A

(
wi + δj,n + drivi,jxi,j,n

)
+ φU

∑
j∈JC

uj + φW
∑

n∈NWE

∑
d∈DSu

γn,D (5.46)

In the remainder of this thesis, the original model (5.7) to (5.43) is referred to as
model with hard constraints whereas the model with the relaxed constraints described
in this section is referred to as model with soft constraints.

5.2.3. Consideration of Generic Working Regulations

With the above mentioned model formulation different kinds of working regulations
and agreements can be modeled. The set of shift types allows a home care provider
to define its own set of shift types. If needed, it is possible to define a shift type
which is only valid for one day (e.g. public holidays) or the weekend, which allows
a high degree of freedom, especially since the weekend is often handled in a different
way than the weekdays (e.g. longer shifts). Specific agreements with employees can
also be modeled by defining special shift types for them. The number of shift types
per day is not limited, but increases the model complexity by the number of yn,s,d
variables. However, if the shift type is only valid for one employee, the variables for
all other employees can be omitted. Further individual agreements with employees
can be incorporated by the definition of unavailability or the usage of shift rotations.
Another advantage is the consideration of different contract types, which can be

modeled by the maximum number of weekly workdays as well as daily and weekly
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working times. Thereby, we can differentiate between a part-time nurse working three
days a week the whole day or five days a week for only half of the day. Vacations and
regular unavailability of employees are introduced by the availability parameter. The
generic modeling of the break rules allows the model to be used in many countries
with differences in the labor law restrictions, as long as the break rules can be defined
as a monotonically increasing step function.
Since most of the parameters, such as rest times and working times, are defined

for a specific nurse, it is further possible to incorporate different rules for different
sets of employees. For examples apprentices younger than 18 years versus trained
employees. In many countries there are special regulations for young employees.
These affect mainly the break and rest times. In Germany apprentices younger than
18 need 12 instead of 11 hours rest time and a breaks is mandatory after 4.5 hours
instead of 6 hours [Bundesministerium für Arbeit und Soziales, 1994]. In summary,
many important working regulations and agreements used in the everyday business
of a home care provider can be used as input to the model.

5.3. Test instances

We use three different sets of test instances to evaluate the MIP formulation. These
instances are also the basis for the evaluation of the metaheuristics presented in the
next chapter. The first set of instances is artificially generated to have all the relevant
data representing the problem setting in this thesis. The second set is provided by
Trautsamwieser and Hirsch [2014]. The third set contains the data of Cappanera and
Scutellà [2013a] and Cappanera and Scutellà [2014].

Generated set

The instances in this set are artificially generated but with use of information from
different sources. These sources are legal texts, publications, statistics and discussions
with home care providers. The input parameters of the test data generator are the
number of clients, nurses and days. The remaining data is generated using the
parameters and methods described in the following.
The distance matrix for clients and starting points of nurses is calculated on uni-

form distributed geographic coordinates. The ranges of the coordinates are based
on three cities in Germany with different sizes (small, medium, large). The driving
time is approximated by multiplying the Euclidean distance with a factor of 1.28 to
account for the real street network and assuming an average speed of 30km

h
due to

traffic [Mattfeld and Vahrenkamp, 2014].
The probability for a client having a job on a day is 0.7 and for having a second job

on the same day 0.3 (conditional on the first job). The duration of a job is assumed
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Nurses Jobs

Qualification(s) {1} {2} {1,2} {2,3} 1 2 3

Probability 0.15 0.05 0.5 0.3 0.4 0.5 0.1

Table 5.3.: Qualification probabilities for nurses and jobs. The qualifications for
nurses are grouped

to be normal distributed [Trautsamwieser and Hirsch, 2014] with µ = 30 minutes
and σ = 20 minutes. The minimum duration is set to 5 minutes. The possible time
window width of a job is 30, 45, 60, 120 or 240 minutes and the probability is uniform
distributed. The position of the time window is determined by first randomly choos-
ing a shift type and a time in this shift type. The start time of the time window is
rounded to the next quarter of an hour. The qualification types considered are nurs-
ing (3), personal care (2, ADLs) and other activities (1, IADLs). The probabilities
for a job requiring one of these qualifications are shown in Table 5.3 (right). The
qualifications of nurses are grouped to get one or multiple qualifications. The groups
and probabilities are also shown in Table 5.3 (left).
We use three shift types: morning, afternoon and weekend. The morning shift is

valid from 6 a.m. to 2 p.m. on all days of the week. The afternoon shift is used for
the time from 2 p.m. to 8 p.m. and is valid on Monday to Friday. The weekend shift
is assignable on Saturday and Sunday and has a time window of 6 a.m. to 8 p.m. on
both days.
The data for labor law regulations are taken from the German Working Hours Act

[Bundesministerium für Arbeit und Soziales, 1994]. According to the regulations, an
employee has to rest eleven hours between working shifts and the maximum working
time per day is eight hours. An employee has to take a 30-minute-break, if he
or she is working longer than six hours and 45 minutes, if he or she is working
longer than nine hours. The breaks are splittable in several shorter breaks, but every
part must be at least 15 minutes. The maximum number of consecutive workdays
is set to twelve days, which corresponds to the common shift rotation pattern in
Germany. The minimum weekly uninterrupted rest time is set to 24 + 11 = 35 hours
according to the directive proposed by the European Union [European Parliament
and Council of the European Union, 2003].
The available work contracts for employees are given in Table 5.4, which shows their

attributes and probabilities (ρ1). The contracts represent common work contracts in
Germany. The probabilities are chosen according to the data of the German Federal
Statistical Office for the year 2011 concerning employee numbers in German home
care providers [Statistisches Bundesamt, 2013a].
In some instances, we added apprentices as they have other requirements that have
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Id Attributes Probabilities

h/week h/day Days ∈ NWE ρ1 ρ2

1 40 8 7 yes 0.28 0.26
2 30 8 5 yes 0.34 0.33
3 20 4 5 yes 0.075 0.055
4 20 8 3 no 0.075 0.055
5 10 4 3 no 0.21 0.19
6 40 8 5 no - 0.10

Table 5.4.: Attributes and probabilities of work contracts (h/week = weekly working
hours, h/day = daily working hours, Days = weekly workdays, ∈ NWE

= whether single shifts on weekends are prohibited (yes) or not (no))

Irregular unavailability Regular unavailability

Vacation length Incompatible Incompatible
0.5 day 1 day 3 days 7 days shift type weekday

Probability 0.05 0.05 0.05 0.025 0.05 0.05

Table 5.5.: Regular and irregular unavailability of nurses and the corresponding
probabilities

to be incorporated. Their rest time is twelve hours and the weekly uninterrupted
rest time is 48 hours. Apprentices need a 30-minute-break, if they are working longer
than 4 hours and 30 minutes and a break of 60 minutes, if they work longer than 6
hours. The work contract attributes are described in the last row of Table 5.4 (Id 6).
If we allow apprentices the probabilities ρ2 are used instead of ρ1.
The availability of a nurse can be limited due to incompatible shift types and

weekdays (regular) as well as vacations (irregular). The considered unavailability
is shown in Table 5.5 with according probabilities. In some instances, the nurses
with a full-time contract (Id 1 in Table 5.4) work according to shift rotations. We
selected the most common cyclic pattern in Germany, i.e., the first week contains
morning shifts from Monday to Friday followed by a weekend off, and the second
week afternoon shifts from Monday to Friday and a weekend work.
The test instances have different planning horizon lengths of 7, 14 or 28 days. All

nurses use the office of the home care providers as start and end locations of the routes
on every day. There are no incompatibilities between nurses and jobs due to prefer-
ences. In total, there are 135 generated instances whereas the first 30 instances are
small instances manually constructed for test purposes. The remaining 105 instances
are grouped by the attributes unavailability, shift rotations, apprentices and city size.
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Set # Jobs Nurses Days Unavail. Rotation Apprent. City

small 30 36.9 3.4 1-15 false true,false false misc.

basic-1 10 339.1 18.1 7,14 false false false small
basic-2 10 375.4 17.5 7,14 false false false med
basic-3 10 386.0 20.1 7,14 false false false large

unavail-1 10 328.1 18.1 7,14 true false false small
unavail-2 10 371.4 17.5 7,14 true false false med
unavail-3 10 385.2 20.1 7,14 true false false large

rotation-1 10 661.2 18.1 14,28 true true false small
rotation-2 10 768.6 17.8 14,28 true true false med
rotation-3 10 778.7 20.1 14,28 true true false large

appr-1 5 438.6 19.4 14 true true true small
appr-2 5 510.0 18.6 14 true true true med
appr-3 5 516.8 22.4 14 true true true large

Table 5.6.: Overview of sizes and attributes of generated instances (the numbers of
jobs and nurses are averaged)

An overview of these instance groups, their sizes and attributes is given in Table 5.6.
The generated instances are available for download at http://hc.guericke.org/.

Instances of Trautsamwieser and Hirsch

Trautsamwieser and Hirsch [2014] provide instances that are generated in cooperation
with the Austrian Red Cross. The problem setting described is similar to the one
in this thesis, therefore many of the attributes are included in the data. Further
parameters for the working regulations are added to the instances.
The provided data sets all have a planning horizon of seven days, thus we set the

maximum number of consecutive workdays to seven days. As shift types are not used
in the formulation of Trautsamwieser and Hirsch, we add a general shift type that
is valid for 24 hours on every day of the week. Differences to our problem structure
are that the breaks are not splittable and no shift rotations or unavailability are
modeled. All nurses have the same type of work contract but start and end their
routes at different locations. These locations are set for the start and end jobs of
the routes. Due to preferences or languages some jobs are incompatible with some
nurses, we add them to the list of incompatible jobs per nurse by setting Qj,n to zero.
An overview of the 44 instances is given Table 5.7 based on the instance ids that
distinguish them by the number of clients.
Note that the resulting solutions and objective values of our methods are not
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Id # Clients Jobs Nurses Days

2 1 10 32.0 2 7
3 1 20 76.0 4 7
4 12 30 111.8 6 7
5 2 35 122.0 7 7
6 2 40 153.0 8 7
7 22 45 180.5 9 7
8 2 50 218.0 10 7
9 2 60 255.0 12 7

Table 5.7.: Overview of Trautsamwieser and Hirsch [2014] instances (the number of
jobs is averaged)

directly comparable to the results reported in Trautsamwieser and Hirsch [2014].
Due to the fact, that we prohibit the usage of artificial waiting time to achieve the
time needed for a break, the resulting plans can differ.

Instances of Cappanera and Scutellà

Cappanera and Scutellà [2013a] and Cappanera and Scutellà [2014] provide anony-
mized data instances of an Italian home care provider. The data needs to be extended
because their solution methods solve the home care planning with unfixed days. Thus,
the days of the jobs are not known a priori. However, Cappanera and Scutellà provide
the day patterns for each client that are generated by their method together with the
test instances. Therefore, one valid pattern for each client is sampled and fixed to
know the days before solving. For each instance the day patterns are sampled three
times resulting to a total of 78 instances.
Again we need to add attributes for the working regulations. First, a shift type

valid on each day is introduced. Second, the break rules of the EU regulations
[European Parliament and Council of the European Union, 2003] are assumed, which
are the same as in Germany. The number of weekly workdays is set to five and
the weekly working time to five times the daily working time. The daily rest time
equals eleven and the weekly rest time 24 + 11 = 35 hours [European Parliament
and Council of the European Union, 2003]. All nurses are available on every day.
The time windows of jobs are valid the entire day because they are not given in the
instances. Cappanera and Scutellà model different municipalities in their solution
approach. They assume the driving time to be three minutes within one municipality
but different driving times between municipalities. This driving time is transferred
to the job level to avoid the necessity to model municipalities. An overview of the
78 instances is given Table 5.8 based on the number of clients.
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Id # Clients Jobs Nurses Days

0106 18 40 56.8 4 5
0106 18 60 80.7 5 5
0106 3 128 184.0 11 5
0407 18 50 96.7 5 5
0407 18 80 150.7 6 5
0407 3 162 302.0 11 5

Table 5.8.: Overview of Cappanera and Scutellà [2013a] and Cappanera and Scutellà
[2014] instances (the number of jobs is averaged)

Set # Jobs Nurses Days Attributes

Mean Mean Sets Availability Rotations Apprentices

G1 12 426.8 20.9 7,14 False False False
G2 13 365.0 17.8 7,14 True False False
G3 16 655.1 16.4 14,28 True True False
G4 5 442.4 18.6 14 True True True

all 46 490.4 18.2 7,14,28

Table 5.9.: Instance attribute and size overview of generated instances in the test set

Training and test set

The combined instance set consists of the generated instances as well as the adapted
instances provided by Trautsamwieser and Hirsch [2014], Cappanera and Scutellà
[2013a] and Cappanera and Scutellà [2014] resulting in a total number of 257 in-
stances. For the analyses of the exact and heuristic solution proposed in this thesis,
the instance set is divided into a training and a test set.
The small instances are excluded from the set. From the remaining set 100 in-

stances are randomly sampled to form the test set providing the results used for the
analyses in this thesis. The other 128 instances are used for parameter tuning of the
heuristic as described in Section 6.6. Throughout this thesis the generated instances
are marked with G, the instances of Trautsamwieser and Hirsch [2014] with TH and
the instances of Cappanera and Scutellà [2014] with CS. An overview of the instances
used as test set is given in Tables 5.9 to 5.11. The instances are grouped based on
the attributes availability, rotations and apprentices (G) or the number of jobs (TH
and CS). A detailed table with all instances is provided in Table A.2 in Appendix A.
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Set # Clients Jobs Nurse Days

TH1 7 15-30 110.6 5.6 7
TH2 3 35-40 132.3 7.3 7
TH3 8 45 178.3 9.0 7
TH4 3 50-60 242.7 11.3 7

all 21 39.8 158.3 8.0 7

Table 5.10.: Overview of TH instances in the test set

Set # Clients Jobs Nurse Days

CS1 11 40-50 72.1 4.4 5
CS2 11 60 78.7 5.0 5
CS3 7 80 149.7 6.0 5
CS4 4 128-162 213.5 11.0 5

all 33 107.9 5.7 5

Table 5.11.: Overview of CS instances in the test set

5.4. Numerical results

This section presents the numerical results of solving the proposed mathematical
formulation with a commercial MIP solver. Therefore, first the small instances from
the small set are analyzed in Section 5.4.1 as many of them are solvable in less than
12 hours computation time. The results for instances of the test set are given in
Section 5.4.2. All results in this section are computed with the solver Gurobi 6.0.5
on Xeon E5 processors with four 2.6 GHz CPUs using 32 GB RAM1. If not indicated
otherwise the time limit is set to 12 hours (=43200 seconds).
As described in Section 5.2, there are two different mathematical models. First,

the model containing only hard constraints and, second, the relaxed model with soft
constraints. Furthermore, this section analyzes the influence of giving a start solution
to the solver. This is possible only for the model with soft constraints as the heuristic
solution may have unassigned jobs or single shifts on weekends. The different settings
lead to three MIP solver runs that are indicated in the analysis as Hard, Soft and
Soft+Start. These are defined as follows:

Hard All constraints of the proposed MIP are considered as hard constraints.
Thus, the model consists of Equations (5.7) to (5.43).

1All the reported results have been computed on resources of the Paderborn Center for Parallel
Computing. Gurobi is limited to one thread to reduce memory usage.
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Soft The constraints concerning assignment of jobs and weekend shift as-
signment are relaxed and the resulting soft constraints are penalized
in the objective function (see Section 5.2.2). The model in this run is
given by Equations (5.8) to (5.10), (5.12) to (5.41) and (5.43) to (5.46).

Soft+Start The same model as in Soft is used. Additionally, a heuristic start
solution is given as input to the solver. Thus, the solver can use the
information of this solution during the process. The start solution is
computed by the construction heuristic described in Section 6.2.

5.4.1. Results for small instances

The results for the three solver runs on the small instance are given in Table 5.12.
The solver is able to solve instances with up to 40 jobs (instances D-01 to D-18)
to optimality. The computation time to solve these instances is relatively short in
comparison to those for instances D-19 to D-30 that still have a remaining gap after 12
hours. For the instances solved to optimality the model with hard constraints needs
only 390 seconds whereas the two others need more than 800 seconds on average. For
the instances that reach the time limit without proven optimality (D-19 to D30), the
solver setting Soft+Start achieves the smallest remaining gap on average (13.73%),
although the results for Soft are only slightly worse (13.77%). The model with hard
constraints is not beneficial when the instances get more complex because for five of
the instances the solver found no feasible solution at all, although the results of the
other two settings show that there is a feasible solution without penalty costs that
could have been found by the model with hard constraints. Only for instance D-27
there are remaining penalty costs due to unassigned jobs. The smallest remaining
gap is achieved by soft and soft+start for five instances each. Thus, no suggestion
for one particular setting is possible and the larger instances from the test set are
analyzed in the next section.

5.4.2. Results for test set instances

Figure 5.6 shows the performance of the three solver settings on the 100 instances in
the test set. The x-axis represents the remaining gaps after 12 hours of computation
time in percent and the y-axis the number of instances having a remaining gap of
the value on the x-axis. For example, the model with hard constraints solved 30
instances with a remaining gap of equal or less than 15%. The solver setting with
results in the upper left corner achieves the best results.
From Figure 5.6 it becomes clear that the solver setting hard performs worse than

the two others on the test set. For 70 of the 100 instances this setting does not find
a feasible solution during the solution process. This can be due to the infeasibility
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Hard Soft Soft+Start

Name Obj Gap t [s] Obj Gap t [s] Obj Gap t [s]

S-01 328 0.00 0.2 328 0.00 0.1 328 0.00 0.1
S-02 380 0.00 0.4 380 0.00 0.4 380 0.00 0.4
S-03 473 0.00 10.5 473 0.00 16.6 473 0.00 14.4
S-04 749 0.00 10.5 749 0.00 9.7 749 0.00 6.8
S-05 657 0.00 57.1 657 0.00 58.4 657 0.00 48.6
S-06 586 0.00 3.8 586 0.00 5.9 586 0.00 2.1
S-07 1207 0.00 0.4 1207 0.00 0.5 1207 0.00 0.6
S-08 624 0.00 2.6 624 0.00 1.2 624 0.00 1.4
S-09 540 0.00 7.5 540 0.00 1.4 540 0.00 1.4
S-10 637 0.00 70.9 637 0.00 88.9 637 0.00 42.7
S-11 591 0.00 32.8 591 0.00 33.5 591 0.00 34.2
S-12 708 0.00 1656.7 708 0.00 2806.0 708 0.00 7476.2
S-13 516 0.00 273.6 516 0.00 467.8 516 0.00 280.3
S-14 1313 0.00 2.3 1313 0.00 1.4 1313 0.00 1.1
S-15 846 0.00 2445.8 846 0.00 4268.3 846 0.00 4893.4
S-16 1565 0.00 695.4 1565 0.00 684.8 1565 0.00 881.5
S-17 2411 0.00 267.8 2411 0.00 2181.5 2411 0.00 643.9
S-18 1325 0.00 1482.9 1325 0.00 4120.0 1325 0.00 980.0

S-01-18 0.00 390.1 0.00 819.2 0.00 850.5

S-19 930 5.94 43200.0 930 6.13 43200.0 930 7.53 43200.0
S-20 902 2.12 43200.0 902 1.90 43200.0 902 2.07 43200.0
S-21 884 1.58 43200.0 884 2.10 43200.0 884 1.32 43200.0
S-22 1038 3.89 43200.0 1038 3.11 43200.0 1038 3.37 43200.0
S-23 2669 1.51 43200.0 2669 2.90 43200.0 2669 2.11 43200.0
S-24 - 43200.0 2334 5.95 43200.0 2378 8.19 43200.0
S-25 2520 5.28 43200.0 2520 4.27 43200.0 2520 4.30 43200.0
S-26 - - 43200.0 9940 6.68 43200.0 9940 6.11 43200.0
S-27 - - 43200.0 4002535 99.94 43200.0 3002606 99.92 43200.0
S-28 - - 43200.0 14275 12.58 43200.1 14104 11.56 43200.1
S-29 - - 43200.0 3290 10.88 43200.0 3290 11.25 43200.0
S-30 1391 6.31 43200.0 1424 8.83 43200.0 1391 6.98 43200.0

S-19-30 43.89 43200.0 13.77 43200.0 13.73 43200.0

Average 17.55 5.51 5.49
Optimal 18 18 18
Inf./Pen. 5 1 1

Table 5.12.: MIP results for instances in set small (instances without feasible solution
are assumed to have a gap of 100%; row Inf./Pen. indicates that no
feasible solution was found or there are remaining penalty costs)
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Figure 5.6.: Comparison of different MIP solver settings on the test set2

of the instance when only hard constraints are considered or the incapability of the
solver to find a feasible solution in the computation time.
Both solver runs considering soft constraints are more successful on the test set.

Note that large remaining gaps indicate the presence of penalty costs in the objective
function. Soft and soft+start compute solutions with less than 15% remaining gap
on 51 of the 100 instances. For a gap of up to 55% the two settings achieve similar
results. On the more complex instances that have a large remaining gap, the input
of a start solution (soft+start) enables the solver to reduce the remaining gap mainly
due to the presence of the input solution. In most cases the heuristic start solution
is better than the first solution of the solver resulting in a smaller but still relatively
large remaining gap. Note also that the model with soft constraints does not find an
incumbent solution for 11 instances. On a first glance it can be concluded that the
setting soft+start is the best for solving the instances of the test set.
Tables 5.13 to 5.15 show the results of the solver settings averaged for the different

instance sets to provide an insight for the behavior on particular sets because no
instance information is given in Figure 5.6. The detailed results for each instance
and setting individually are given in Table B.1 in Appendix B. Note that a gap
value of 100% in Tables 5.13 to 5.15 indicates that no feasible solution is found in 12
hours computation time. The column Inf. indicates the number of instances without
incumbent solution or with penalty costs due to unassigned jobs or single shifts on
weekends.
The results for the generated instances in Table 5.13 show that many instances are

not solved in 12 hours computation time indicated by penalty costs in the best found
solution. The number of instances with penalty costs or infeasible solutions are 42,

2The calculation is based on 1% steps of the gap leading to 100 data points.
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Set # Hard Soft Soft+Start

Mean Median Inf. Mean Median Inf. Mean Median Inf.

G1 12 100.00 100.00 12 92.19 99.99 11 68.66 80.05 9
G2 13 69.90 100.00 9 56.31 99.19 7 68.73 83.92 10
G3 16 100.00 100.00 16 99.95 99.98 16 92.73 93.80 16
G4 5 100.00 100.00 5 99.97 99.98 5 91.97 98.63 5

all 46 91.49 100.00 42 85.59 99.98 39 79.59 87.07 40

Table 5.13.: Average MIP Gaps [%] for generated instances

Set # Hard Soft Soft+Start

Mean Median Inf. Mean Median Inf. Mean Median Inf.

TH1 7 1.52 1.31 0 1.60 1.57 0 1.29 1.18 0
TH2 3 0.56 0.25 0 0.08 0.00 0 0.39 0.33 0
TH3 8 41.94 11.87 3 18.80 8.08 1 19.32 8.58 1
TH4 3 39.10 10.93 1 8.40 8.92 0 8.33 8.59 0

all 21 22.15 4.42 4 8.91 3.39 1 9.04 4.68 1

Table 5.14.: Average MIP Gaps [%] for TH instances

39 and 40 out of a total of 46 instances for the settings hard, soft and soft+start,
respectively. The best average remaining gap computed over all generated instances
is achieved by using the start solution for the solver (79.59%). However, the soft
constrained model achieves the best average results on instance set G2, because
more instances have a feasible solution leading to a smaller average gap.
The results for the TH instances are given in Table 5.14 and show that these in-

stances are easier to solve for an exact approach. In particular, the solver settings

Set # Hard Soft Soft+Start

Mean Median Inf. Mean Median Inf. Mean Median Inf.

CS1 11 38.76 4.77 4 3.36 3.18 0 3.21 2.99 0
CS2 11 83.26 100.00 9 22.38 4.67 2 13.54 4.40 1
CS3 7 100.00 100.00 7 44.92 4.62 3 44.92 5.32 3
CS4 4 100.00 100.00 4 76.30 99.66 3 6.43 6.39 0

all 33 74.01 100.00 24 27.36 4.65 8 15.89 4.62 4

Table 5.15.: Average MIP Gaps [%] for CS instances
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Hard Soft Soft+Start

Avg. gap [%]3 71.88 50.27 43.75
Sum of instances with no solution 70 11 0
Sum of solutions with penalty cost - 48 45
Sum of unassigned jobs4 25729 12687 395
Avg. number of unassigned jobs5 257.3 126.9 4.0

Table 5.16.: Summary of MIP results for 12 hours computation time for the entire
test set

with soft constraints are able to solve all instances, except one, with small remain-
ing gaps. On average soft (8.91%) slightly outperforms soft+start (9.04%) but the
difference is small. Some of the instances in set TH1 and TH2 can even be solved to
optimality (see Table B.1). All other instances in TH1 and TH2 only have a small
remaining gaps leading to small average values. The relatively high average value
for set TH3 is caused by the one infeasible solution with a large remaining gap due
to the penalty costs of one unassigned job. The setting with hard constraints is
again outperformed by the two other. By the results for the CS instances, presented
in Table 5.15, the advantage of an input solution becomes apparent. The setting
soft+start achieves the best results regarding average gaps and number of feasible
solutions. The average gaps for the sets CS2 and CS3 are biased by the penalty costs
for unassigned jobs, which can be seen from the relatively low median values.

To explain the results of the exact approach, the instance information needs to be
taken into account (see Section 5.3 for instance description). The largest remaining
gaps appear on the generated instances. This can be explained by the size and
complexity of the instances. The generated set contains more jobs and working
regulations than the TH and SC instances. Thus, it is harder for the solver to
find a feasible solution, which explains the number of infeasible solutions and large
gaps. The capability of the solver to find good solutions on the TH set follows the
same argument, because the instances consider less jobs in a planning horizon of
seven days. Furthermore, all nurses have the same working regulations and shift
rotations and shift types are not considered. The CS instances have even less jobs,
but the remaining gaps after 12 hours are still larger due to the structure of the
problem instances. The jobs have no time windows and, thus, more feasible solutions
exist and need to be considered during the solution process. Due to equal driving
times between all clients in a municipality and the absence of time windows, many
solutions with equal objective value exist and the solver needs to evaluate those to
proof optimality.
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Figure 5.7.: Comparison of 12 hours and 48 hours computation time for MIP with
soft constraints and heuristic start solution (soft+start). The calculation
is based on 1% steps of the gap leading to 100 data points

Table 5.16 gives an overview of the results for all instances. In summary, the exact
solution approach is not capable of providing good solutions in a computation time of
12 hours. By looking at the overall average remaining gaps, the solver setting using
soft constraints and a heuristic start solution achieves the best result. Additionally,
a feasible solution (without penalty costs) is found for more instances than in the
other settings soft and hard. This leads to a substantially lower number of unassigned
jobs in comparison to the two other approaches (395 compared to 25729 and 12687).
Therefore, the setting soft+start is selected to be analyzed with a longer computation
time in the next section.

5.4.3. Analysis of increased computation time

Figure 5.7 shows the remaining gaps of the test set instances for the solver setting
soft+start after 12 hours and 48 hours computation time. The objective and bound
values after 48 hours are given in Table C.5 with the results of the heuristics in
Appendix C. Naturally, the remaining gaps are smaller after the additional 36 hours
of computation. This is indicated by the 48h curve above the 12h curve. However, the
improvement is not as considerable as expected. The curve shapes are very similar
but the runs with 48 hours reach a higher number of solved instances at a remaining
of gap 15%. The difference on the y-axis between the two curves is five at this point,

3For instances with no solution a gap of 100% is assumed.
4For instances with no solution all client jobs are considered as unassigned. Total number of jobs
in all instances is 29446.

5See footnote 4.
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Figure 5.8.: Improvement of bound and objective values from 12 hours to 48 hours
computation time for MIP with soft constraints and heuristic start solu-
tion on generated instance set

i.e., fives instances with a remaining gap of more than 15% after 12 hours are shifted
to the instances with less than 15% gap after the 48 hours computation time.
The background of this observation becomes apparent in Figures 5.8 to 5.10 show-

ing the relative improvement of the objective values and lower bounds after 48 hours
compared to the 12 hour values for all three data sets. Note that the improvement
is given on a logarithmic scale. The figures show that during the 36 hours addi-
tional computation time mainly the lower bounds are improved for the generated
(Figure 5.8) and TH instances (Figure 5.9) but not more than 1% in most cases. On
the CS instances (Figure 5.10) the objective value is improved more often than the
lower bound, which can be explained by the above mentioned high number of feasible
solutions possible for those instances.
For all three sets it can be said, that the improvement of the objective value is

less than 1% for most of the instances. Exceptions with a large improvement of the
objective value are the instances G2-01, G2-03, G2-12 and G1-04 (Figure 5.8) as
well as instance TH4-03 (Figure 5.9). The improvement of the objective value for
those instances is nearly 100% compared to the 12 hours value, which indicates that
the solver succeeded in finding a solution without penalty costs in the additional
computation time. The improved results for those instances lead to the differences
of the curves in Figure 5.7. For nearly all other instances the improvements of the
objective value and bounds are so small that the gap is improved by less than 1%
and, thus, showing no difference in Figure 5.7.
The fact that there are mainly gap improvements can be explained by the inca-
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Figure 5.9.: Improvement of bound and objective values from 12 hours to 48 hours
computation time for MIP with soft constraints and heuristic start solu-
tion on TH instance set
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Figure 5.10.: Improvement of bound and objective values from 12 hours to 48 hours
computation time for MIP with soft constraints and heuristic start so-
lution on CS instance set
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5. Exact solution approach for the static setting

pability of the solver to find new best solutions. Either because the problem is too
complex or the current solution is optimal and there exists no better the solution.
The former is most likely the case for the generated instances and some of the TH
and CS instances with large gaps. The latter may be true for the instances with
already a small remaining gap mostly in the sets TH and CS. In this case, the solver
has to rely on the results of the LP relaxation to slowly close the gap and, thus, prove
optimality. From this results it can be concluded that the additional computation
time has no major implications on the outcome for most of the instances.

5.5. Summary

This chapter proposed a formalization for the home care routing and scheduling with
working regulations as a MIP. The model formulation is solved with a commercial
solver and results for the presented test instances were computed. For each instance
three solver runs were performed. First, all constraints were considered as hard
constraints. Second, no assignment of jobs and single shifts on weekends were allowed
and penalized in the objective function. Third, the latter model was solved with an
additional heuristic start solution given as input to the solver. The results indicated
the last setting as the most successful. However, the results also showed that an exact
approach is not capable of solving the underlying problem setting in a reasonable
amount of computation time. The experiments were performed with a 12 hour time
limit that is reached in most of the cases. The remaining gaps were large and,
therefore, the solution quality is not clearly determinable. Either the solutions are
poor and the solver struggles to find better solutions (most likely for instances with
large gaps) or the solutions are optimal but not proven to be so (most likely for
instances with small gaps). An increase of the computation time to 48 hours showed
no major improvement.
For application in practice the computation time of the exact approach is too long

and the solution quality (number of unassigned jobs) unsatisfactory. Therefore, the
next chapter introduces heuristic solution approaches to find good solutions in less
computation time.
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Based on the observations in the previous chapter, i.e., very long computation times
and many infeasible solutions, this chapter introduces three heuristic solution ap-
proaches to solve the home care routing and scheduling for real-world sized instances.
The proposed heuristics address goal 2 of this thesis presented in Section 4.5.
Each heuristic is based on one of the following metaheuristics: LNS, ALNS or

RVNS. These metaheuristics are selected because of their success on a variety of
routing and scheduling problems [Pisinger and Ropke, 2010, Hansen et al., 2010a].
The implementation1 of the heuristics use shared methods that perform basic op-
erations like the insertion or removal of jobs. These methods and further notation
needed to describe the heuristics are introduced in Section 6.1. The construction
heuristic to provide a start solution is presented in Section 6.2. The description of
the domain-specific components of the LNS heuristic is presented in Section 6.3. Af-
terwards, the more complex ALNS and RVNS heuristics are described in Sections
6.4 and 6.5, respectively. All heuristics contain several parameters that need to be
determined before execution. Therefore, an algorithm configurator is used to deter-
mine the parameters. The results of the configuration are presented in Section 6.6.
Based on the selected parameters the numerical analysis of the heuristics is given in
Section 6.7. The chapter is concluded by addressing goal 3 of thesis, i.e., the analysis
of considering working regulations, in Section 6.8 and a summary in Section 6.9.

6.1. Shared subproblems and methods

This section introduces the notation and sets of the solution representation used in
the heuristics. The common methods used for job insertion and removal as well as
shift assignment are described afterwards. An overview of the notation introduced
in this section is given in Table 6.1.

6.1.1. Notation and solution representation

The proposed heuristics all work with the same solution object containing the infor-
mation about the current tours and assignments. Set T ∗ is introduced to contain all
possible tours. A tour t ∈ T ∗ has a related nurse nt, day dt and shift type st. Not

1All heuristics are implemented in C# with .NET framework 4.5. For the evaluation on Unix
systems, the programs are compiled with Mono 4.0.0.
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6. Heuristic solution approaches for the static setting

Name Definition

known a
priori

T ∗ Set of all possible tours
nt ∈ N Nurse of tour t
st ∈ S Shift type of tour t
dt ∈ D Day of tour t
N(i) ⊆ N Set of nurses compatible with job i ∈ J
S(i) ⊆ S Set of shift types compatible with job i ∈ J

based on
current
solution

U ⊆ J Set of unassigned jobs in current solution
T+ ⊆ T ∗ Set of all assigned tours in current solution
T− ⊆ T ∗ Set of all unassigned tours in current solution
T (u) ⊆ (T+∪T−) Candidate tours for job u, i.e., all tours compatible with job

u in current solution
P ∗(t) Sequence of jobs given by the arcs (i, j) in tour t in solution
P (t, u) Candidate positions for job u, i.e., all feasible insertion po-

sitions (i, j) for job u in tour t in solution
φt Penalty costs of tour t ∈ T+, if the tour is empty
sn,d ⊆ S Shift type s assigned to nurse n on day d

Table 6.1.: Sets and attributes of the solution object

all tours t ∈ T ∗ are part of the current solution because each nurse has at most one
tour per day. Therefore, we distinguish between assigned and unassigned tours. An
assigned tour creates a work shift for a nurse, i.e., the tour contains jobs that the
nurse has to perform. The only exceptions are tours with penalty costs φt due to
single shifts on weekends, which have no jobs but are also assigned to create a penal-
ized shift assignment. Unassigned tours are empty and contain only the information
about nurse, day and shift. The subsets T+ ⊆ T ∗ and T− ⊆ T ∗ represent the current
solution by containing the assigned and unassigned tours, respectively. The union of
both sets represents all possible tours T ∗ = T+ ∪ T−. Figure 6.1 shows an example
for the deviation of tours to those sets. The tour of nurse 1 on Sunday is an empty
tour with penalty costs. The currently assigned shift type of nurse n on day d is
given by sn,d representing the duty schedule based on T+.
In addition to the assigned nurse and shift, a tour t ∈ T+ also has an ordered

sequence of jobs P (t) representing the route. All jobs that are not assigned to one of
the tours in T+ are contained in set U of unassigned jobs leading to penalty costs in
the objective function. As the heuristics allow unassigned jobs and single shifts on
weekends, they resemble the MIP with soft constraints (see Section 5.2.2).
Before describing the determination of candidate tours and positions for job inser-

tion in the next section, two sets containing feasible combinations of jobs and nurses
as well as jobs and shift types can be determined a priori because the compatibility
does not change during the execution. All nurses that are feasible to assign to job i
are given in set N(i) ⊆ N . The feasibility is based on the qualifications Qn a nurse
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6.1. Shared subproblems and methods

Figure 6.1.: Example for the sets of assigned T+ and unassigned tours T− in a solution
for the days Friday to Sunday with two nurses and shift types each (solid
bars represent jobs and striped bars represent empty tours)

n provides and the required qualification of the job qi.
The formal statement for this selection criterion is given in Equation 6.1.

N(i) = {n ∈ N|qi ∈ Qn} ∀i ∈ J (6.1)

The feasible shift types for a job i can be determined based on the compatibility of
the time windows of the shift types [As, Bs] and the job [ai, bi]. They are compatible
if the start of the job’s time window is early enough to fulfill the job before the end
of the shift type time window or the end of the job’s time window is late enough to
start the job at the earliest possible point in time in the shift type (6.2).

S(i) = {s ∈ S|ai + ri ≤ Bs ∨ bi ≥ As} ∀i ∈ J (6.2)

Note that the driving time to the start and end location of the route cannot be
taken into account here as it can depend on the start location of the assigned nurse.
Additional criteria for the compatibility of jobs with tours and insertion positions
need to be evaluated based on the current solution containing the assigned tours and
shifts. Thus, the determination of candidate tours and positions is described in the
next section.

6.1.2. Determination of candidate tours and positions for job insertion

All heuristics insert jobs from the set U into routes to create new solutions. To ensure
the feasibility of a job insertion, several constraints need to be checked beforehand.
The operators of the heuristics decide the job to insert as well as the tour and position
in the route. To limit the number of possible insertion points of a job, the candidate
tours and positions considered are determined based on the current solution. Thus,
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6. Heuristic solution approaches for the static setting

some infeasible combinations are excluded to reduce the computation time.
The set of candidate tours T (u) for insertion of job u are determined from all tours

T ∗ based on assigned nurses, current shift assignments and workloads. Tour t has to
fulfill the following criteria to be considered for insertion.

1. Day dt of tour t equals day of the job du.

2. Assigned nurse nt has the required qualification for the job, i.e., nt ∈ N(u).

3. The tour has a shift type st that is compatible with the time window of the
job. Thus, st needs to be contained in S(u).

4. The tour is already assigned (t ∈ T+) or the nurse has no other shift assignment
on day dt (t ∈ T−). In the latter case, the additional assignment must not
violate the maximum number of weekly workdays and the shift type of the
tour must be valid for the nurse.

5. The current weekly working time is not violated by the additional job duration.

All tours that comply with the five criteria can be considered for insertion. Ad-
ditionally, the feasible positions P (t, u) for job u ∈ U in a tour t ∈ T (u) can be
determined based on time windows. Let P ∗(t) be all insertion positions in tour t.
Each position (i, j) ∈ P ∗(t) with i as predecessor and j as successor of the candi-
date job u can be checked for time window compatibility resulting in the feasible set
P (t, u) (6.3).

P (t, u) = {(i, j) ∈ P ∗(t)|(ai + ri + drivi,u ≤ bu) ∧ (au + ru + drivu,j ≤ bj)}
(6.3)

Job u can be inserted directly after job i, if the time window start ai of i is early
enough to reach job u before the end of its time window bu after fulfilling job i and
driving from one client to the other drivi,u. The same condition must be true for
the start of the time window of u and the end of time window for the successor j.
All positions (i, j) ∈ P (t, u) allow a feasible insertion of u between i and j without
violating the time windows of i, j and u.
Although the candidate tours t ∈ T (u) and positions (i, j) ∈ P (t, u) limit the

number of possible insertion points for job u, the feasibility is dependent on other
factors that are not known prior to insertion. These are rest times, time windows of
all jobs in the route (not only predecessor and successor) and further criteria on shift
assignments. Therefore, the additional feasibility criteria for insertion are described
in the next section.
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Figure 6.2.: Job insertion process

6.1.3. Insertion of jobs into routes

After a heuristic has decided on the job, the position and tour to insert, the final
feasibility of the insertion is determined. Therefore, the following steps are performed:

1. If the considered tour is currently unassigned (t ∈ T−), the feasibility of a shift
assignment for this tour is checked.

2. Start times of all jobs in the tour are determined while the time windows are
kept for all jobs. Furthermore, the daily rest times to shifts on surrounding
days are ensured and necessary breaks are inserted.

3. The rest times are calculated based on the new start times and the weekly rest
time requirement is checked.

The process of job insertion is shown in Figure 6.2. Only if all steps are performed
successfully the job is finally inserted to the tour and the heuristic can proceed with
the next job. If one of the criteria is not fulfilled, the heuristic determines a new
insertion position for consideration or leaves the job unassigned (causing penalty
costs). The details of the tour assignment and start time calculation are described
in the remainder of this section.

Assignment of tours

The assignment of a tour t ∈ T− in step 1 considers the availability of the nurse
and maximum weekly and consecutive workdays. If a shift pattern is selected for
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6. Heuristic solution approaches for the static setting

Figure 6.3.: Three cases that can occur for the assignment of tour t on a weekend.
The assignment before and after the assignment is shown

the nurse, the assignment needs to comply with restrictions of the pattern. Another
constraint to consider is the assignment of both days on a weekend or none. In case
of a weekend shift, a tour on the other day on the weekend t′ must also be assigned
or assignable for nurses for which this rule applies. Furthermore, penalty costs can
potentially be removed. There are three cases that can occur for weekend shifts,
which are also visualized in Figure 6.3.

1. Tour t is assigned and currently has penalty costs (φt > 0), i.e., a tour on the
other day t′ is already assigned (t′ ∈ T+) and t is assigned with empty route to
fulfill the weekend condition. Then the penalty costs of t can be removed and
t stays in T+.

2. The other tour t′ is not assigned (t′ ∈ T−) but the additional assignment of
it does not violate the maximum weekly or consecutive workdays. Then the
penalty costs of t′ are set and t and t′ are moved to T+.

3. The other tour t′ is not assigned (t′ ∈ T−) and the additional assignment
is infeasible due to weekly or consecutive workdays. Then tour t cannot be
assigned.

Calculation of start times and insertion of breaks

The calculation of start times of jobs in step 2 is a non-trivial task even if the sequence
is determined by the heuristic. This is due to the fact that the start and end times
of a tour are not fixed and the jobs can be shifted in their time window bounds. The
objective during determination of start times is to minimize waiting time because it
is time spend without providing services. The driving time is already fixed due to
the sequence given by the heuristic.
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Name Definition

Sets

P ′(t) Temporary sequence of jobs given by the arcs (i, j) in tour t
considered for start time calculation

J ′(t) Temporary set of jobs included in tour t, which are considered
for start time calculation

o ∈ J ′(t) Start job of tour t
e ∈ J ′(t) End job of tour t

Parameters

ed−1 End time of the tour for nurse nt on day dt − 1
od+1 Start time of the tour for nurse nt on day dt + 1
RD Daily rest time of nurse nt

HD Daily working time of nurse nt

l Required break length
drivij Driving time between jobs i and j
ri Duration of job i

Variables

wj ∈ R+ Waiting time before job j in J ′(t)
zj ∈ R+ Start time of job j in J ′(t)
δj ∈ R+ Break duration before job j in J ′(t)
βj ∈ {0, 1} Binary decision variable. Equals 1, if a break is inserted before

j in J ′(t), 0 otherwise

Table 6.2.: Sets, parameters and variables for the mathematical model determining
start times

We use a subproblem of the proposed MIP in Section 5.2 to calculate optimal start
times for a given tour. A similar approach is also used by Bertels and Fahle [2006],
Fikar and Hirsch [2014] and Nguyen et al. [2015]. The subproblem considers the
time windows of jobs, the rest times between consecutive days and break insertion
for one tour. The sequence of jobs in the tour is given as input to the MIP and
has to be determined by one of the heuristic solution approaches described in the
remainder of this chapter. The sequence of jobs in the temporary tour t considered
is denoted by P ′(t) = {(o, j1), (j1, j2), . . . , (jn, e)} where P ′(t) represents a sequence
of jobs ji ∈ J ′(t) ⊆ J by containing the pairwise connections (i, j) of the jobs.
Furthermore, the end time of the tour on the previous and the start of the tour on
the next day are given by ed−1 and od+1, respectively. An overview of the notation
is given in Table 6.2.
The subproblem (6.4) to (6.11) contains the variables wi denoting the waiting time

before job i ∈ J ′(t) and zi denoting the start time of job i ∈ J ′(t).

min
∑
j∈J ′(t)

wi (6.4)

s.t. zi + ri + drivi,j + wj + δj = zj ∀(i, j) ∈ J ′(t) (6.5)
ai ≤ zi ≤ bi ∀i ∈ J ′(t) (6.6)
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zo ≥ RD + ed−1 (6.7)
ze ≤ od+1 −RD (6.8)
ze − zo − l ≤ HD (6.9)
zj ≥ 0 ∀j ∈ J ′(t) (6.10)
wj ≥ 0 ∀j ∈ J ′(t) (6.11)

The objective function (6.4) minimizes the waiting time of the route. The start
times of all jobs are calculated based on the input sequence P ′(t) in constraints (6.5)
while constraints (6.6) ensure time window limits. The validity of the daily rest time
requirement to the surrounding days is held by constraints (6.7) and (6.8). Constraint
(6.9) restricts the maximum daily working time.

The model (6.4) to (6.11) is an LP and solved for the given sequence of jobs.
Afterwards, the resulting working time is checked for a required break denoted by l.
The required break level with the length l is iteratively increased until the solution
is valid. Thus, first the LP (6.4) to (6.11) with δ = 0 and l = 0 is solved and
the calculated working time compared with the break requirements. If the working
time exceeds the lower bound (L1) of the next break level, the model is extended
to a MIP by the following variables and constraints (6.12) to (6.16) and solved with
the required break length l. This process is repeated until the correct break level is
determined. The break duration before job j is modeled by the variable δj and the
insertion position of a break before job j by βj ∈ {0, 1}, respectively.

lminβj ≤ δj ≤ lβj ∀j ∈ J ′(t) (6.12)∑
j∈J ′(t)

δj = l (6.13)

zj − wj − δj − zo ≤ U0 + (1− βj)U0 (6.14)
ze − (zj − δj) ≤ U0 + (1− βj)U0 (6.15)
βj ∈ {0, 1} ∀j ∈ J ′(t) (6.16)

Constraint (6.13) inserts the required break length l in one or more breaks, and
constraints (6.12) ensure the minimum break length of each part. The maximum
time without a break is limited by constraints (6.14) and (6.15). The only binary
variables in this model are the break positioning variables βj. Thus, if no break
assignment is needed inside the route (l = 0), the variables βj and δj can be excluded
and the model reduces to the LP defined by (6.4) to (6.11).

The heuristics do not check all constraints for a feasible insertion of a job into a
route. Thus, the model can be infeasible for a given sequence P ′(t). In this case, no
start times are returned to the heuristic, which indicates that the current sequence
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is infeasible regarding time window, daily rest time and/or working time constraints.
The presented MIP is very fast to solve as it contains at most |J ′(t)| binary

variables, if any. The routes of nurses usually contain not more than ten jobs
(|J ′(t)| ≤ 10). Therefore, a commercial solver is able to solve the MIP in less than
one millisecond in most of the cases. The determined start times are used as basis
for the rest time calculation in step 3.

6.1.4. Removal of jobs from tours

Like the insertion of a job, the removal of jobs from existing tours is an essential
operation during execution of the developed heuristics in order to create new solu-
tions. Again, the set of jobs to remove is determined by the heuristic. These sets can
consist of single or multiple jobs as well as entire tours. Furthermore, the removal of
a shift assignment is necessary to free the nurses working time on a particular day.

Removal of shift assignments

An empty tour t (J ′(t) = ∅) can be removed from the current list of shift assignments
T+ without any implications in most of the cases. Only if the tour is on a weekend
and the assigned nurse has the requirement of forbidden single shift assignments on
weekends, the tour on the other weekend day t′ has also to be checked for removal.
Two cases can occur, which are also shown in Figure 6.4:

1. If both tours are empty (J ′(t) = J ′(t′) = ∅), they can be moved from T+ to T−
and their penalty costs are set to zero.

2. If the other tour t′ contains jobs (J ′(t′) 6= ∅), the considered tour t cannot be
removed. Thus, the sets stay the same and the penalty costs φt for tour t are
activated.

The shift assignment removal is considered whenever the removal of jobs resulted in
an empty tour. The next section addresses the removal of jobs.

Removal of jobs

There are different possibilities for job removal depending on the number and relation
of jobs to remove. The differentiation is made to save computation time for start
time calculations of the remaining jobs. Thus, the following operations are used:

1. Removal of a single job: If only a single job is removed from a tour, the start
times of all other jobs are determined after the removal by the model presented
in Section 6.1.3. This can also result in the removal of breaks that are not
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Figure 6.4.: Two cases that can occur for the removal of the shift assignments of tour
t on a weekend. The assignment before and after the removal is shown

necessary anymore because the start time calculation starts without break and
only inserts one if necessary. Furthermore, the rest times and working times are
updated. If the tour is empty after the change, the removal of shift assignment
from the previous section is taken into account.

2. Removal of multiple jobs: This operation considers the removal of several jobs
from one tour. First, all jobs of the set are removed from the tour. Afterwards,
the start times of the remaining jobs are recalculated to save computation time
for solving the model. Again, rest and working times are updated and the tour
is unassigned, if empty.

3. Removal of entire tour : In the case that all jobs of a tour are removed, no start
time calculation is necessary. Only the removal of the shift assignment takes
place.

Each removed job is moved to the set of unassigned jobs U because this set is used
by the heuristics to determine the jobs for insertion. The start times of unassigned
jobs are set to zero.

6.2. Construction heuristic

All heuristics in this thesis start with an initial solution that has to be provided by
a construction heuristic. The time-oriented, nearest-neighbor heuristic proposed by
Solomon [1987] is used as basis for initial route construction. Solomon [1987] presents
this greedy construction heuristic for the VRPTW. This approach is selected because
it is easy adaptable to further criteria than only driving time and time windows,
which is essential due to the consideration of available working time based on work
contracts and qualification criteria in home care planning. In this section, first, the
underlying method proposed by Solomon [1987] and, afterwards, the adaption and
extension for home care routing is presented.
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Solomon [1987] describes the outline of the time-oriented, nearest neighbor heuris-
tic as follows: The greedy heuristic builds the routes by sequentially appending the
“closest“ customer to the end of the route. In our case a customer is a job. The
closeness of a customer is measured by considering distance, route duration and time
windows. Therefore, Solomon [1987] defines the following components to assess a job
for insertion. Note that the symbols are changed to match the notation in this thesis.
Let i be the job currently at the end of the route and u the job that it is considered
for appending.

zu = max{au, zi + ri + driviu} (6.17)
AddedTimeiu = zu − (zi + ri) (6.18)
RemainingTimeiu = bu − (zi + ri + drivi,u) (6.19)
Scoreiu = ωDisDistanceiu + ωATAddedTimeiu + ωRTRemainingTimeiu (6.20)

Equation (6.17) calculates the earliest possible start time zu of job u when it is
inserted after job i by using the start time zi and duration of ri of i and the driving
time between both. The time added to the tour length by appending job u after
i is calculated in Equation (6.18). To address the time windows, Equation (6.19)
determines the remaining time until the time window of job u closes. Thus, a job u
with a high value of RemainingT imeiu is not so urgent in the current state. As jobs
with small values are preferred, the jobs with a tight deadline will be inserted first.
The overall decision about which job u to append next is based on the score function

in Equation (6.20) that is a weighted sum of all three components. The weights are
denoted by ωDis, ωAT and ωRT . The first component represents the distance between
i and u. All feasible jobs are considered for insertion and job u with the lowest score
will be appended to the current end of the route. When no job is feasible to append
but there are still unassigned jobs, the approach opens a new route initialized with
the start location.
The difference between home care routing and the VRPTW handled by Solomon

[1987] is the heterogeneity of the vehicles that are nurses in our case. In the general
VRPTW all vehicles have the same maximum tour length and no incompatibilities
between vehicles and customers are given. Furthermore, we have to address several
days and qualifications as well as working regulations and shift rotations of nurses
during opening of new routes and insertion of jobs. Figure 6.5 shows the steps of the
extended time-oriented, nearest neighbor heuristic that works as follows.
The first issue to handle is the selection of shift patterns for nurses in set NR. The

construction heuristic starts by iterating through all shift rotations and spreading the
shift patterns evenly among nurses valid for the rotation. If the pattern allows more
than one shift type per day, the shift type with the least number of assignments until
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Figure 6.5.: Steps of the construction heuristic

then is selected. In this way, on every day of the planning horizon a shift is assigned
to each nurse working according to shift rotations (subject to unavailability). Thus,
the heuristic starts with a set of opened routes and these are filled iteratively with
jobs according to the score function.
After this step, there are probably still unassigned jobs. These are successively

appended to tours, similar to the method proposed by Solomon [1987], i.e., whenever
no job is inserted at the end of a route, a new tour is opened. Due to the heterogeneity
of the nurses and several days of planning horizon, the next tour to open has to be
carefully selected. Here the new tour to open is determined based on the number of
candidate jobs. All days and shift types with unassigned jobs to insert are sorted in
descending order of jobs they can potentially cover. Afterwards, the nurse to assign
is selected in descending order of jobs he or she can fulfill based on the qualifications
and availability. If two nurses tie, the nurse with less current weekly working time
is selected to balance the workload between nurses. The first successful pair of shift
and nurse is selected for a new route and the jobs are inserted based on the score
function. This procedure of opening tours is repeated until all jobs are assigned or
an iteration passed without any successful insertion.
The score function of Solomon [1987] is extended with a fourth criterion that

considers the qualification of a job. It is based on the formula stated in (6.21) that
calculates the ratio of nurses providing the required qualification in comparison to all
qualifications. The extended score function used in our version of the construction
heuristic is given in Equation (6.22).
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QualificationFrequencyu = |{n ∈ N|qu ∈ Qn}|∑
q∈Q |{n ∈ N|q ∈ Qn}|

(6.21)

ScoreExtiu = ωDisDistanceiu + ωATAddedTimeiu+
ωRTRemainingTimeiu + ωQQualificationFrequencyu (6.22)

The idea behind this additional criterion is that jobs with a rare qualification are
inserted first because other jobs have more possibilities for insertion later in the
process as more nurses provide their qualification.
Due to the greedy manner of constructing routes in the proposed heuristic, it is

possible to have still unassigned jobs at the end the procedure. All feasible positions
for the remaining jobs are tried in random order to insert them while the first feasible
position is selected. All jobs that remain unassigned afterwards are left unassigned
and penalized with costs in the objective function. The proposed metaheuristics are
able to handle unassigned jobs and will try to insert them in the search process to
avoid penalty costs. The adapted time-oriented, nearest neighbor heuristic provides
the initial solution for all metaheuristics presented in the remainder of this chapter.

6.3. Large neighborhood search

The first heuristic proposed for solving the home care routing and scheduling problem
is based on the metaheuristic LNS. A recent survey states that large neighborhoods
are often included in successful state-of-the-art methods for the VRPTW [Desaulniers
et al., 2014], which is related to our problem. The LNS metaheuristic by Shaw [1998]
provides a framework to use a large neighborhood in a simple search process and was
applied successfully to different transportation problems [Pisinger and Ropke, 2010].
Furthermore, large neighborhoods are often beneficial in highly restricted solution
spaces because it is easier to find feasible solutions than in neighborhoods where
small changes most often result in infeasibility [Pisinger and Ropke, 2010]. Due to
the time windows and working regulations, the problem setting in this thesis is highly
restricted.
The basic outline of LNS is given in Section 3.1.2. In this section the problem spe-

cific components and design decisions are described. First, the acceptance procedure
of the metaheuristic is explained followed by the large neighborhood operator. An
overview of the search process of LNS is given in Figure 6.6. The large neighborhood
operator is embedded in the overall process of the heuristic. The other steps show
the temperature and solution management of LNS.
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Figure 6.6.: Steps of LNS including large neighborhood operator

6.3.1. Acceptance of solutions

Pisinger and Ropke [2010] state that, although not proposed for the original method,
the acceptance criterion of simulated annealing can be used in an LNS implementa-
tion to allow the acceptance of worse solutions in the beginning of the search. This
can be beneficial to diversify and guide the search [Pisinger and Ropke, 2010]. An
outline of the simulated annealing method is given in Section 3.1.2. This approach
is also used in this implementation of LNS. The heuristic manages the temperature
Temp during the search. The temperature is initialized with the value Temp0 and
decreased during search based on a cooling schedule determined by the cooling factor
fCool and number of iterations between cooling itCool.
To determine the initial temperature Temp0, the approach of Ropke and Pisinger

[2006] is chosen, i.e., the initial temperature is selected based on the objective value
of the initial solution to provide an instance-dependent value. Ropke and Pisinger
[2006] take the objective value x0 of the initial solution and determine Temp0 such
that a solution with an objective value (1.0 +wStart) times worse than x0 is accepted
with a probability of 0.5. The parameter wStart has to be determined a priori. They
further state that the penalty costs should be removed from this calculation to avoid
a deteriorated initial temperature due to the high values of those. The formula to
calculate Temp0 is derived from the probability calculation in simulated annealing
(6.23) and given in (6.24).
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e
− (1.0+wStart)x0−x0

T emp0 = 0.5 (6.23)

⇔ Temp0 = (1.0 + wStart)x0 − x0

−ln(0.5) (6.24)

Every iteration a newly created solution x′ is considered for acceptance. If the solu-
tion has a value improving the global best solution value x∗, it is always accepted. If
the solution has a worse objective value it is only accepted with probability e

x∗−x′
T emp .

If the method does not find a new best solution for numerous iterations, a reheating
of the temperature takes place to achieve bigger steps in the search process because
the probability of accepting worse solutions increases again. The reheating depends
on the number of iterations without improvement and the current temperature. If
the temperature sinks below the minimum TempMin and itReheat iterations passed
without improvement of the global best solution, the current temperature is increased
to fReheatTemp0 dependent on the reheat factor fReheat.

6.3.2. Large neighborhood operator

The large neighborhood operator developed to change a solution consists of two
phases: destroy and repair. The destroy phase removes partial and entire tours from
the solution by removing jobs from them. The number of tours to destroy is deter-
mined by the degree of destruction η that is dependent on the current temperature
Temp. In iterations with a high temperature the degree of destruction is higher and
vice versa. The degree of destruction is a value in the interval [0, 1] and calculated
based on the temperature in Equation (6.25).

η = Temp− TempMin

Temp0 − TempMin
(6.25)

The value of η is used as percentage of assigned tours to destroy. Therefore, the
current number of assigned tours is multiplied with η.

θT = bη|T ∗|c (6.26)

The tours to destroy are selected randomly from the current assigned tours. The
exception are instances containing nurses working shift rotations. In this case, the
operator checks if θT exceeds the number of tours needed to remove all tours of one
of those nurses. If yes, the shift pattern of this nurse is moved by one with a certain
probability and all tours are destroyed. Otherwise, the normal procedure takes place
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and the tours are selected randomly. Finally, an additional tour is selected and
destroyed partially based on the remaining fractional tour count ηT ∗ − bηT ∗c. This
value determines the percentage of jobs to randomly remove from the selected tour.
The repair phase of the operator reinserts all unassigned jobs into tours. The

candidate tours T (u) and positions P ∗(t, u) for the unassigned jobs u ∈ U are de-
termined by the methods described in Section 6.1. Candidate positions belonging to
a tour currently having penalty costs are considered first for insertion. Afterwards,
the order of insertion positions is randomly selected. The job is inserted at its first
feasible position.
This operator is a simple and easy neighborhood operator that allows to search

the solution space. Domain knowledge influences the actions in essential parts. Shift
rotations can be changed and penalty costs are avoided. Furthermore, the candidate
insertion positions are limited based on domain knowledge to reduce the number
of infeasible insertions as described in Section 6.1. Additionally, some parts of the
destroy and repair part are randomized to diversify the search, which is important
in large neighborhoods according to [Pisinger and Ropke, 2010].

6.4. Adaptive large neighborhood search

The second metaheuristic implemented for the solving home care routing and schedul-
ing is ALNS. As already mentioned in Section 3.1.2 it extends the concept of LNS by
allowing several destroy and repair operators with different focuses during search and
an adaptive weighting of those operators. Thus, the heuristic changes the weights of
the operators based on the success during search and can adapt to different instances
[Pisinger and Ropke, 2010], which is promising to improve the performance of LNS.
The overall process of ALNS is shown in Figure 6.7. The acceptance of solutions as
well as the determination of temperature, reheating and degree of destruction are

Figure 6.7.: Process of ALNS
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Random Waiting time Random Waiting time
Random with 

shift rotation

first

Penalty cost Random

Figure 6.8.: ALNS destroy process

the same as for the LNS presented in the previous section. The description focuses
on the destroy and repair operators that are used to create new solutions.

6.4.1. Destroy operators

The presented problem formulation has many different types of constraints that re-
strict the metaheuristic during search. The removal of only small parts of the solution,
can lead to difficult and inefficient repair mechanisms. Therefore, the developed de-
stroy operators change solutions with emphasis on different parts. Common concept
is the removal of jobs from routes. The set of jobs depends on the selected destroy
operator. We implement three types of destroy operators: job-based, tour-based and
nurse-based. Each of this operators has several selection strategies that determine
which jobs, tours or nurses to destroy.
Figure 6.8 shows the three destroy operators with their available selection strate-

gies. The decision for an operator in combination with a strategy consists of two
levels. On the first level the roulette wheel selection determines the operator for this
iteration. In the second phase the selection strategy for jobs, tours or nurses is deter-
mined by a second roulette wheel selection considering only the valid strategies. Note
a random sorting is included for all three operators to diversify the search. After the
operator is selected, the methods from Section 6.1.4 are used for job, tour and shift
removal. The details of the destroy operators are described in the remainder of this
section.
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Job-based destroy

The job-based destroy operator removes a set of jobs from their current tours. The
jobs are selected independent of day, client or qualification. The degree of destruction
η determines the number of jobs to remove θJ (6.27).

θJ =
⌈
η · |J C |

⌉
(6.27)

Additionally, there are two strategies to select the θJ jobs. The first strategy takes
random jobs until the limit is reached. The second strategy sorts the jobs in de-
scending order of the current waiting time inserted before them and takes the first
θJ jobs to reduce inefficiencies. In both approaches the unassigned jobs are excluded
from consideration. Finally, the operator iterates through the set and removes one
job after the other until the required number is reached. After the removal of jobs,
the start times of all other jobs are updated before reinsertion.

Tour-based destroy

The tour-based destroy operator removes all jobs of a subset of currently assigned
tours T+ that are selected independent of day and nurse. The number of tours is
calculated by applying the degree of destruction η resulting in θT tours taken for
destruction (6.28).

θT =
⌈
η|T+|

⌉
(6.28)

There are three different sorting methods to determine which tours being destroyed
first. The first method sorts the tours in ascending order of penalty costs due to single
shifts on weekends caused by the assignment. Thus, tours on Sundays that have no
related assignment on Saturday and therefore causing a penalty on Saturday are
taken first. The same holds for tours on Saturdays without equivalent on Sundays.
All other tours are not affected by the penalty consideration and are appended at
the end of this list in random order.
The second sorting strategy determines the total waiting time inside the tours and

prioritizes tours with a high waiting time for destruction. The third strategy sorts the
assigned tours randomly. The destruction itself removes all jobs from the tours and
deletes the according shift assignment of the nurse based on the methods described
in Section 6.1.4.
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Nurse-based destroy

The nurse-based destroy operator changes shift rotations of nurses by destroying all
tours of a nurse. This means, all jobs assigned to a nurse are removed from the tours,
leaving the nurse with no tours assigned. The operator proceeds as follows: First,
the number of nurses is determined based on the degree of destruction η and number
of nurses available (6.29).

θN =
⌈
η|N |

⌉
(6.29)

Afterwards, the nurses are sorted to determine the set of nurses considered in this
iteration. The first sorting method consists of two parts. First, all nurses working
according to shift rotations are randomly sorted. Second, the remaining nurses not
assigned to shift rotations are appended to the list in random order. The second
strategy selects the nurses randomly.
The destruction phase iterates through the list of nurses until θN nurses are

reached. Every tour of a nurse is deleted by removing all jobs and the shift as-
signment. If the nurse has a pattern assigned, the pattern is moved by one week to
enable the method to change the rotation pattern.

6.4.2. Repair operators

The repair operators of ALNS in this thesis are based on greedy construction and
insertion heuristics for the VRPTW. They are adapted and extended to handle qual-
ifications of nurses and working regulations, which are essential for feasible job in-
sertion. In total, there are three different repair heuristics. The first is a reduced
variant of the time-oriented nearest neighbor heuristic described in Section 6.2. The
two other methods are insertion heuristics.
Figure 6.9 gives an overview of the repair step of the ALNS. First, a roulette

wheel selection determines which of the three repair operators to apply. If one of
the insertion heuristics is determined, the job order has an influence on the result.
Thus, the order of the unassigned jobs before executing has to be selected by a second
roulette wheel selection. If the reduced variant of the time-oriented, nearest neighbor
heuristic is selected no job sorting is necessary, but the method has to be linked to an
assignment and a nurse sorting strategy. The details of the heuristics are described
in the next sections.

Reduced time-oriented, nearest neighbor heuristic

This repair heuristic extends the proposed construction heuristic based on the time-
oriented, nearest neighbor heuristic of Solomon [1987] described in Section 6.2. There
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Figure 6.9.: ALNS repair process

are two alterations to the construction heuristic, namely the limitation of jobs con-
sidered for insertion and the sorting methods of nurses and shifts to open new routes.
The basic variant of the time-oriented, nearest neighbor heuristic evaluates every

candidate job for appending it to the current tour’s end. This phase can be time-
consuming if there are many candidate jobs, which is the case when the destroy
operator has a high degree of destruction, especially because the heuristic is called
for repair numerous times during the search process. Therefore, we limit the number
of candidate jobs considered for insertion. We distinguish between already existing
routes and newly opened routs. The set of candidate jobs for an existing tour are
limited to a maximum of τExist jobs. The jobs are sampled randomly from the set
of candidate jobs and the job with the lowest score (see Section 6.2) is appended
to the route’s end. Recall that the candidate jobs contain only a subset of all jobs
that are compatible with the day and qualification of the nurse (see Section 6.1.2).
Furthermore, the number of jobs considered for insertion to a new tour is limited to
τNew jobs. This number is higher than the jobs considered for insertion in existing
tours, i.e., τExist ≤ τNew, because the construction of a new tour has more degrees
of freedom and therefore has potential to improve the new solution substantially, if
the jobs are selected based on a more extensive evaluation. If ALNS passed several
iterations without an improvement and the temperature is reheated, the values of
τExist and τNew are doubled as long as no new global best solution is found, otherwise
they are reseted to their initial values.
As described in Section 6.2, the time-oriented, nearest neighbor heuristic opens

new tours, if no insertion to the existing tours is possible. Thus, the heuristic has to
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decide which nurse to assign on which day for which shift type next. The combination
of shift type and day to assign next is determined by one of the following metrics:

1. Number of candidate jobs available for insertion on this day and in this shift
type (like in the construction heuristic in Section 6.2).

2. Forward sorting based on day and shift type.

3. Backward sorting based on day and shift type.

4. Random sorting.

The first metric addresses the goal of assigning as many jobs as possible. Therefore,
days and shift types with many candidates are selected first. The second and third
criterion offer the possibility of shift assignments on consecutive days. The last
criterion of random order is used for diversification of the search, reaching solutions
that are not possible to reach with the other three sorting methods. After the day
and shift type are selected, the nurses that are feasible for assignment for that day
and shift type are determined. The decision which nurse to assign is essential to
the remaining solution process because it consumes working time of the assigned
nurse. No other shift assignment on this day is possible and the weekly working time
and workdays are reduced. Therefore, there are several different sorting methods to
determine the priorities for nurse assignment.
The first strategy selects the nurse with the highest job coverage in the correspond-

ing shift type to aim at full job assignment. The second strategy sorts the nurses
in descending order of remaining weekly working time. Thus, low utilized nurses are
considered first. Besides, the workload is spread more evenly among nurses. The last
strategy returns the nurses in random order.
The combination of nurse and assignment sorting together with the time-oriented,

nearest neighbor heuristic leads to several repair mechanisms that can be called by the
ALNS. The probability for sorting methods are equally distributed at the beginning
of the search and adapted during search based on the success.

Insertion heuristics

In contrast to the time-oriented nearest neighbor heuristic that only appends jobs,
the following two repair operators are based on insertion heuristics that reinsert jobs
sequentially to tours by evaluating insertion positions in routes. The order of jobs
has an impact on the quality of the resulting solution because a job inserted can
block space for a later considered job.
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Job sorting methods. ALNS allows us to use several different sorting methods
for the unassigned jobs. Each sorting method in combination with one of the repair
heuristics described in the remainder of this section comprises an own repair operator
that can be handled by ALNS, i.e., each combination has an adaptive weight used
for the operator selection. The six implemented insertion orders of unassigned jobs
are the following:

1. Time window width (bi − ai) of job i (tie-breaking by 2.)

2. Time window start ai of job i (tie-breaking by 1.)

3. Time window end bi of job i (tie-breaking by 2.)

4. Duration ri of job i (tie-breaking by 2.)

5. Qualification qi of job i (tie-breaking by 2.)

6. Random

All criteria are used to sort the jobs in ascending order of the respective criterion.
The time windows in 1. to 3. are considered independent of days, i.e., a time window
[360, 480] on day 1 and 2 have the same value. The tie-breaking strategy for each
criterion is given in parentheses.

Random first insertion heuristic. The first insertion heuristic acts randomly and
iterates through the unassigned jobs in the order determined by one of the job sorting
methods. It explores all candidate tours and positions in random order until a feasible
insertion position is found. This position is selected and the next job considered.

Greedy look-ahead heuristic. The second insertion heuristic is based on the greedy
look-ahead heuristic of Ioannou et al. [2001] originally proposed for the VRPTW. This
heuristic is also mentioned by Desaulniers et al. [2014] for providing good quality
solutions in a relatively short computation time. The proposed scoring function of
inserting a job at a position is described by Ioannou et al. [2001] as follows. Note
that the notation is changed to match the symbols in this thesis.
Their method evaluates all feasible insertion positions and chooses the position

with the least (negative) impact on the current solution. Therefore, it calculates
the impact of inserting job u at position (i, j) on itself ISij, other jobs in the same
route IRij and unassigned jobs IUij. In this thesis, the positions are determined
by the candidate tours T (u) and positions P (t, u)∀t ∈ T (u) that are described in
Section 6.1.2. Set P (u) resembles all positions P (t, u) of all tours t ∈ T (u), i.e.,
P (u) =

⋃
t∈T (u) P (t, u). The insertion process is given in Figure 6.10.
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Figure 6.10.: Steps of adapted greedy look-ahead heuristic

The impact of a position (i, j) ∈ P (u) on job u itself is the time difference to the
start of time window given in Equation (6.30).

ISij = zu − au (6.30)

Unassigned jobs U ′ = {u′ ∈ U |u′ 6= u ∧ du′ = du} on the same day are influenced by
the insertion of a job u. If they have overlapping time windows, the position may
be blocked for another job considered later in the insertion procedure. Thus, the
minutes of overlapping are determined and averaged over all unassigned jobs (6.31).

IUij =
∑
u′∈U ′

max{(bu′ − au − drivuu′), (bu − au′ − drivu′u)}
|U ′|

(6.31)

The inner-route IRij impact is a weighted sum of the increase in driving time (6.32),
the remaining time to the end of the time window of the subsequent job (6.33) and
the remaining time to the end of the time window of u (6.34). This weighted sum is
averaged over all jobs J(t) in route P (t) of tour t.

IRij = ωIR1 (drivi,u + drivu,j − drivi,j) (6.32)

+ ωIR2

[(
bj − (zi + ri + drivi,j)

)
−
(
bj − (zu + ru + drivu,j)

)]
(6.33)

+ ωIR3
(
bu − (zi + ri + drivi,u)

)
(6.34)

The final calculated impact of inserting job u at position (i, j) is the weighted sum
of all three criteria given in Equation (6.35).

Impactij = ωISISij + ωUIUIij + ωIR
IRij

|J(t)| (6.35)
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Like for the time-oriented, nearest neighbor heuristic, the heuristic is extended
by a fourth component QF that incorporates the qualification requirement of the
job regarding the offered qualifications of nurses. After the assignment of job u to
the route, there is less available working time provided for the qualification qu on
the corresponding day and in the week. We calculate with how many jobs we share
the qualification requirement and how rare the qualification is. Thus, jobs with rare
qualification requirements are weighted higher. We take a weighted normalized sum
of all jobs, which could also be assigned to nurse n (6.36).

QFij =
∑

u′∈{U ′|qu 6=q′u∧q′u∈Qnt}
(1−QualificationFrequencyu)∑

u′∈U ′(1−QualificationFrequencyu′)
(6.36)

A job is inserted at the position (i, j) with the least costs of the four component
weighted sum given in Equation (6.37).

ImpactExtij = ωISISij + ωUIUIij + ωIR
IRij

|J(t)| + ωQFQFij (6.37)

All weights for the sums (ω) in this method are parameters and need to be deter-
mined a priori. The evaluation of all possible insertion positions for a job can be
computational expensive when the solution contains many tours that fit with jobs
requirements. Therefore, we restrict the number of tours taken into account by the
parameter τTours to restrict the computation time per iteration.

6.5. Reduced variable neighborhood search

The third metaheuristic is RVNS. VNS has been applied successfully to the vehicle
routing domain [Hansen et al., 2010a] and it provides a different concept than the
large neighborhoods. But like ALNS it allows several different operators to search
different neighborhoods in the process [Pisinger and Ropke, 2010].
The advantage of the RVNS is that the operators do not evaluate all feasible neigh-

bors in each iteration but perform the shake step with the current valid neighborhood
and always accept improving solutions. Hansen et al. [2010b] state that “RVNS is
useful in very large instances, for which local search is costly“ [Hansen et al., 2010b,
p.373]. The home care planning instances are large and a local search method is
computational costly due to several reasons. First, there are many neighbors that
need to be evaluated. Second, the evaluation of a new neighbor requires the non-
trivial re-computation of start and rest times for each tour which should be saved in
as many cases as possible. Third, small changes to solutions often lead to infeasible
new solutions due to many requirements.
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6.5. Reduced variable neighborhood search

Figure 6.11.: Process of RVNS

The outline of the standard RVNS is given in Section 3.1.2 and for the specific
RVNS in this thesis in Figure 6.11. This section describes the implemented operators,
neighborhood structure and their parameters.

6.5.1. Neighborhood operators

There are three types of neighborhood operators that are described in this section.
The job operator changes the solution by moving jobs in and between tours. The tour
operator considers entire tours that are altered in one step. The nurse neighborhood
is based on the entire set of tours of one nurse.

Job operator

The job operator removes a set of jobs independent of tours or days from the solution
and directly reinserts them to another random position. The feasible positions and
tours are calculated based on the methods described in Section 6.1.2.
The number of jobs to remove depends on the current parameter setting for the

heuristic because there is no degree of destruction in an RVNS. There are two possi-
bilities implemented. Either the number of jobs is determined relative to the number
of all jobs (6.38) or an absolute number of jobs is given (6.39). The calculation is
based on the parameter lJ determining the percentage or number depending on the
chosen formula.

θJ = Max
{

1, |J \{J ∗}|lJ
}
, with lJ ∈ [0, 1] (6.38)

θJ = lJ , with lJ ∈ N (6.39)

If the relative or absolute value is used, is defined as a parameter and needs to be
determined a priori.
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6. Heuristic solution approaches for the static setting

Tour operator

The tour operator is similar to the repair step in the large neighborhood operator of
the LNS presented in Section 6.3.2. The number of tours to remove from the current
solution is given by parameter lT , which determines the number of tours relative to
the number of assigned tours (6.40) or the absolute value (6.41) depending on the
parameter setting.

θT = Max
{

1, |T |lT
}
, with lT ∈ [0, 1] (6.40)

θT = lT , with lT ∈ N (6.41)

The tours to change are selected randomly from the current assigned tours. The
resulting unassigned jobs are reinserted in random order. The candidate tours con-
sidered for reinsertion are first the tours with penalty costs due to single shifts on
weekends and afterwards all other tours. The jobs are inserted to the first position
feasible for insertion.

Nurse operator

The nurse operator removes all tours of a selected nurses from the current solution.
If there are nurses working according to shift rotations these are considered first
because only by removing all tours the shift pattern can be changed. If there are still
nurses left for removal, the remaining nurses are selected for removal.
The number of nurses is determined by the parameter lN that is again a relative

(6.42) or absolute (6.43) value of nurses.

θN = Max
{

1, |N |lN
}
, with lN ∈ [0, 1] (6.42)

θN = lN , with lN ∈ N (6.43)

The order of nurses is chosen randomly. If the instance has nurses with shift rotations
these are the basis for consideration and only if this set is empty, all other nurses
are added. If no shift rotations are present, the entire set of nurses is considered for
removal from the beginning. For nurses working shift rotations the selected pattern
is changed to the next pattern.
The insertion of jobs works the same way as in the RVNS tour operator, i.e.,

jobs are reinserted in random order to the first feasible position whereas tours with
penalty costs are considered first.
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6.5. Reduced variable neighborhood search

Composition of neighborhoods from parameter settings

As described in Section 3.1.2, RVNS iterates through the kmax neighborhoods during
search. Therefore, the neighborhood structure has to be determined a priori and is
composed by several parameters in this thesis. The parameters levelJ , levelT and
levelN determine how many levels with different removal rates are used for each
operator. Consider a levelJ = 3 for the job operator, then the operator is used
with three removal parameters creating three neighborhoods for RVNS. The lowest
level always has the lowest removal rate. The removal rates on the higher level
are calculated based on the multiplier parameters mulJ ,mulT and mulN . For our
example of levelJ = 3, level 1 gets the minimum removal rate, level 2 considers the
removal rate of level 1 multiplied by mulJ and level 3 the rate of level 2 multiplied
by mulJ . The process of this calculation is given in Algorithm 6 without referring to
any specific operator because the procedure is the same for all three operators. The
parameters lJ , lT and lN are represented by l and mulJ , mulT and mulN by mul.
Furthermore, the parameter contains one value per level indicated by the index in
the squared brackets.

Algorithm 6: Creating neighborhood structure
l[0]← lmin; // minimum removal rate
for i = 2, i ≤ level, i = i+ 1 do

l[1]← l[i− 1] mul;
end

Neighborhood order

The operator order influences the outcome of the algorithm. The operators linked to
a lower k are called more often during the search because the neighborhood iterator k
is reseted every time a new best solution is found. Therefore, four orders are tested for
their results. An overview of the proposed orders for an example parameter setting
are given in Figure 6.12.
The first order Job-Tour-Nurse represents a nested neighborhood structure because

the neighborhood moves from small (single jobs are moved) to large changes (all tours
of a nurse are moved). The size of the changes increases when no better solutions
are found, although the extent of the change depends also on the parameter setting,
but the aforementioned is the most likely case. The second order Nurse-Tour-Job
represents the first in reverse order to intensify the search when a promising solution
is found. In the third case Tour-Job-Nurse, the tour operator is the first to apply
followed by the job and nurse operator. This order is implemented due to the fact
that the tour operator allows shift assignment changes that have a major influence on
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6. Heuristic solution approaches for the static setting

Figure 6.12.: RVNS operator order for a job operator with three levels, a tour oper-
ator with three levels and a nurse operator with two levels (the bold
figures represent the neighborhood iterator k)

the working time capacities. In contrast to this, the job operator only removes single
jobs from a tour and the reassignment of shifts is only possible in the case when all
jobs of a tour are removed. The above mentioned first three orders are based on the
operator, i.e., the different levels of operators are kept together in ascending order.
The fourth operator order Mixed alternates the operators on different levels whereas
the main order is Job-Tour-Nurse. Thus, the search changes between smaller and
larger changes. The order to be used in the evaluation is determined by the parameter
tuning procedure described in Section 6.6.

6.6. Parameter tuning

The parameters for the construction heuristic and all three metaheuristics are de-
termined by the gender-based genetic algorithm (GGA) configurator developed by
Ansótegui et al. [2009], which uses a genetic algorithm to improve the parameters
starting with default values. The quality tuning option is used to improve the de-
fault parameters of our heuristics. The criterion evaluated for each run is the gap to
the best bound found for the MIP after 48 hours (see Section 5.4.3 and Table C.5
in Appendix C) because the evaluation values need to be in the same range for all
instances. The original objective function of tour lengths differs between instances,
especially if they have different sizes. Let x denote the objective value of the heuris-
tic and x the best bound on the objective value found by the MIP, then the gap is
calculated by Equation (6.44).

Gapbound = 100x− x
x

(6.44)
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Figure 6.13.: Parameter tuning results for LNS

As the bound x is always lower than x, the gap lies in the interval [0, 100]. Thus, the
gap is a normalized evaluation criterion that makes the heuristics results comparable
for all instances. The configurator GGA improves the parameters by minimizing the
average outcome over all instances.
The configuration was performed for three days wall-clock time with eight cores2,

i.e., GGA runs eight instance evaluations in parallel. The evaluation of a parameter
setting for one instance is based on three runs with each three minutes computation
time due to the stochasticity of the algorithms. The training set used for configuring
the heuristics is different from the test set. The training set consisted of 128 instances
sampled from the entire instance set as described in Section 5.3. The parameters of
the heuristics that are determined by GGA are given in Tables C.1 to C.4 in Ap-
pendix C including the default values, tuned values and allowed assignments for each
parameter. After the configuration all determined parameter values are validated on
the test set because these are instances that are not considered during configuration.
The improvement for each heuristic on the training and test set is given in Figures

6.13 to 6.15. For this results each instance is evaluated with the default and tuned
parameters3. The runtime is set to five minutes and the values are average over 10
runs. Each data point represents one instance labeled according to the instance set
it belongs to. The x-axis indicates the gap of the heuristic solution to the MIP best
bound (6.44) with tuned parameters and the y-axis with default parameters. All

2All runs are computed on Xeon E5 processors with four 2.6 GHz CPUs using 16 GB RAM
provided by the Paderborn Center for Parallel Computing, using Gurobi 6.0.5 for the start time
calculation

3Using one CPU of the Xeon E5 processors and 4 GB RAM.
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Figure 6.14.: Parameter tuning results for ALNS

data points above the diagonal represent an improvement by the configuration.
The results for the LNS heuristic in Figure 6.13 show that the algorithm configu-

ration resulted in only small improvements for most of the instances of training and
test set. There are also some instances where the new parameters resulted in worse
solution values (data points below the diagonal), which can be explained by the tun-
ing goal: GGA uses the average outcome of the algorithm. Therefore, a deterioration
for single instances is possible.
The configuration of the ALNS heuristic leads to a bigger improvement compared

to LNS on training and test set as shown in Figure 6.14. In particular, the gen-
erated instances and TH instances show smaller gaps with the tuned parameters.
The improvement for the CS instances is very small because the instances are not so
restrictive and ALNS reaches good results already with the default parameters. How-
ever, several instances show a deterioration after the configuration due to tuning the
average outcome. The results before and after configuration for the RVNS in Figure
6.15 shows the best success of GGA because the improvement is clearly visible. Many
instances, especially from the TH and generated set, are improved substantially. But
the positions of the data points also indicate that even if the improvement is large,
the instances have a relatively high remaining gap.
These observations are supported by the average values of gaps and improvements

given in Table 6.3. The smallest remaining gaps for training, test and the entire
set are achieved by ALNS (13.40) whereas the new parameters for RVNS lead to the
highest improvement (-2.82). Looking at the results for each instance set individually,
the large improvement on the TH instance set for the RVNS becomes apparent. The
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Figure 6.15.: Parameter tuning results for RVNS

Heur. Set Train Test Train+Test

Def. Tuned ∆ Def. Tuned ∆ Def. Tuned ∆

ALNS all 13.45 11.11 -2.34 18.27 16.80 -1.47 15.15 13.40 -1.74
G 12.88 10.26 -2.62 17.19 14.85 -2.34 14.62 12.27 -2.36

TH 15.73 13.11 -2.62 20.00 19.70 -0.30 17.73 16.19 -1.54
CS 11.21 10.13 -1.07 18.674 17.68 -1.00 14.37 13.33 -1.04

LNS all 15.53 15.07 -0.47 19.86 19.76 -0.10 16.86 16.59 -0.27
G 15.64 14.77 -0.88 19.09 18.91 -0.18 14.58 14.56 -0.01

TH 17.46 17.66 0.21 23.18 23.13 -0.05 17.15 16.54 -0.62
CS 11.47 11.46 -0.01 18.82 18.80 -0.02 20.13 20.22 0.09

RVNS all 14.21 11.58 -2.63 22.14 19.12 -3.02 17.69 14.87 -2.82
G 15.52 12.32 -3.20 19.90 17.02 -2.89 17.44 14.34 -3.10

TH 20.40 14.67 -5.74 35.51 27.73 -7.79 27.45 20.76 -6.69
CS 9.20 8.96 -0.23 16.74 16.58 -0.16 12.39 12.18 -0.20

Table 6.3.: Comparison of parameter tuning results for all three heuristics given for
training, test as well as training and test set. Def. gives the result with
default values, Tuned after the parameter tuning and ∆ the difference of
both. All values represent the gap [%] to MIP best bound
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6. Heuristic solution approaches for the static setting

default parameters of the RVNS worked poorly on these instances. To summarize
the parameter tuning results, the gap to the MIP bound in the test set is reduced by
-0.10 up to -3.02 on average. For the remainder of this thesis, the tuned parameters
are used for all evaluations.

6.7. Numerical results

This section presents numerical results for the heuristics. If not indicated otherwise,
the time limit is set to five minutes per run4. Due to the stochasticity of the heuristics,
each instance is solved ten times and the solution values are averaged.
In section 6.7.1 the performance of each heuristic is compared to the MIP results.

Afterwards, one heuristic for further use in this thesis is selected based on a detailed
analysis in Section 6.7.2.

6.7.1. Comparison of exact and heuristic solution approaches

To compare the heuristics with the exact solution approach in Chapter 5, the best
found solutions and lower bounds of the MIP with soft+start setting for 48 hours
are used for evaluation, which provides incumbent solutions for all instances (some
containing penalty costs) and constraint violations regarding job assignments and
weekend assignments are considered like in the heuristic.
The gap to the best bound of the MIP is calculated by Equation (6.44) in Section

6.6. In contrast to the gap to the best bound, the objective value of the MIP can
have worse (larger) values than the heuristic. Let x be the objective value of the MIP
solution and x the heuristic solution, then the gap to the objective is calculated by
Equation (6.45).

Gapobj =
{

100x−x
x

if, x ≥ x

−100x−x
x

if, x < x
(6.45)

Depending on whether the MIP solution or the heuristic solution is better, the gap is
calculated with one of the two formulas resulting in a value in the interval [−100, 100].
The resulting value is multiplied by −1, if the heuristic achieved a superior result.
Thus, negative values for the gap to the MIP objective in tables and figures in this
section indicate the heuristic outperformed the MIP solver.
Table 6.4 shows the results for LNS, ALNS and RVNS, respectively. The detailed

results for all instances and heuristics are given in Table C.5 in Appendix C. By
looking at the average and median gaps to MIP objective and bound on the entire test

4using one 2.6 GHz CPU and 4 GB RAM
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6. Heuristic solution approaches for the static setting

set for all three heuristics, the similar outcomes of the heuristics become apparent.
The negative gaps to the objective value of the MIP for the instance sets G1 to G4
show that all heuristics are able to improve the solutions in comparison to the MIP
solver on the generated instances. However, the gaps to the best bound value are also
relatively high for these sets indicating further optimization potential. Taking the
instance characteristics into account, the results for the heuristics on the generated
set are promising because they outperform the solver using less than 0.2% of the
computation time (five minutes versus 48 hours). The large improvement of the
objective value is caused by the capability of the heuristics to insert more jobs to the
final solution and avoid single shifts on weekends, thus, reducing the penalty costs.
There are only three to five instances, depending on the heuristic, in the generated
set that have penalty costs at the end of computation (indicated by column Inf.).
Note that solving the MIP resulted in 36 instances with penalty costs after 48 hours.
For the TH and CS instance sets no improvement of the MIP objective is achieved

by the heuristics indicated by the positive gaps to the objective value. However, for
the CS instances the distance to the MIP solution is relatively small indicated by
gaps of less than 4%, for the RVNS below 1%. The average gap to the best bound for
the CS instances ranges up to 47%, but is less in most of the cases as indicated by the
median values. The four instances that have remaining penalty costs are the same
four instances that have unassigned jobs in the solution of the MIP solver. Thus, it
is possible that no full job assignment is possible in those cases, especially because
none of the heuristics found a feasible solution for them. The good performance of
the heuristics compared to the MIP on the CS instances can be explained by the
nature of the instances. Due to the missing time windows for jobs, many solutions
are feasible and can be searched quickly by the heuristics.
The worst solutions in comparison to the MIP are found for the TH instances. The

gaps to the objective are largest for sets TH2 and TH3 with up to more than 40% but
the median values indicating lower values for most of the instances. At the same time
the gaps to the bound are also large due to the gaps to the objective value. The TH
instances are tight instances that have many jobs in a short time horizon. Therefore,
the heuristics have problems of inserting all jobs and, thus, causing penalty costs.
To provide further details on an instance basis, Figures 6.16 to 6.18 show the

results of the ALNS for each instance set separately. LNS and RVNS show similar
behavior and outcomes and the results are shown in Figures C.1 and C.2 in Appendix
C. The two lines show the gap to the best bound and objective of the MIP after
48 hours computation time. Both gap values are shown on the primary y-axis.
Constraint violations causing penalty costs in the heuristic solution are depicted for
each instance. The values, relating to the secondary y-axis, are either the number of
unassigned jobs or the number of weekends with single shifts.
ALNS achieves better results than the MIP for the majority of the generated in-
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Figure 6.16.: Comparison of ALNS to MIP results for generated instances

stances (Figure 6.16). For 39 of the 46 instances, the heuristic improved the objective
value, which is indicated by the negative values of the gap. The gap to the bounds
are less than 25% for most of the instances. Only the instances G3-08, G3-12 and
G2-06 have a gap to the bound of nearly 100% due to the penalty costs caused by
unassigned jobs (G3-12) and single shifts on weekends (all three). Note that G3-08
and G3-12 are also not feasibly solved by the MIP, LNS or RVNS, i.e., all solutions
have penalty costs.
For the TH instances (Figure 6.17) the heuristic was not able to improve the MIP

results, which can be seen from the positive values for the gap to the MIP objective.
The objective gaps is less than 10% for most of the instances. For the three instances
on the right (TH03-07, TH3-06 and TH2-01) the gap is relatively high because the
heuristic was not able to insert all jobs in contrast to the MIP. The bound gaps
are less than 20% for most of the instances. On the CS instances ALNS (Figure
6.18) performs with nearly the same success as the MIP in only less than 0.2% of
the computation time. The gap to the MIP objective value is less than 4% for all
instances. The gap to the best bound is approximately 100% for the four instances
on the left. This value is caused by one unassigned job on average. But as the gap to
the objective value is also low for these instances, the MIP also returned a solution
with unassigned jobs. For all other instances the gap to the bound is less than 10%.
Note that a computation time of 15 minutes is shortly evaluated for the test set
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Figure 6.17.: Comparison of ALNS to MIP results for TH instances
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Figure 6.18.: Comparison of ALNS to MIP results for CS instances
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instances in Appendix C. Figure C.5 shows that there is no significant improvement
for most of the instances by all three heuristics. Only for a few instances the gap
could be notably reduced. Based on this observation for the remainder of this thesis
a computation time of five minutes is assumed for the heuristics.

6.7.2. Comparison of heuristics

The analyses in the previous sections considered all three heuristics proposed in
this thesis. The goal in this section is to determine the “best“ heuristic for the
analysis of working regulations in Section 6.8 and as basis for the dynamic setting in
Chapter 7. The gap to the MIP bound is used as criterion for the decision because
this evaluation criterion is instance and heuristic independent and it allows us to
compare the heuristics directly with each other.
Table 6.5 shows the average gaps to the MIP bound for all three heuristics on the

entire test set and each instance set separately. Furthermore, the average number of
unassigned jobs is given. Note that the unassigned jobs are considered indirectly also
in the gaps because they cause penalty costs in the objective function. According
to the results in Table 6.5, ALNS achieves the lowest average gap on the instance
sets G and TH and RVNS on the CS set. The lowest number of unassigned jobs on
all sets is reached by LNS. As the heuristic selected for further consideration should
work good on the entire instance set, the overall average gap to the MIP bound is
selected as first decision criterion. ALNS with 16.80% has the best result compared
to 19.76% of LNS and 19.12% of RVNS and should be selected as preferred heuristic,
although the difference is small.
However, because of the small difference and due to the fact that the heuristic with

best performance differs by examined instance set, a further analysis of the results
is taken into account to determine if ALNS is indeed the best heuristic to consider.
Therefore, the difference between the gaps of ALNS and the two other heuristics is
calculated for each instance and used as basis. Let xALNS, xLNS and xRV NS be the

Set ALNS LNS RVNS

Gap |U| Gap |U| Gap |U|

G 14.85 15.70 18.91 12.10 17.02 14.50
TH 19.70 4.00 23.13 3.40 27.73 6.10
CS 17.68 4.00 18.80 4.00 16.58 4.00

all 16.80 23.70 19.76 19.50 19.12 24.60

Table 6.5.: Average gaps to MIP best bound and average unassigned jobs of heuristic
results
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Figure 6.19.: Empirical distribution of the difference between the gaps to the MIP
bound of ALNS-LNS

solution values for ALNS, LNS and RVNS, respectively, and x the bound of the MIP.
Then the differences are calculated by Equations (6.46) to (6.48).

(ALNS− LNS) := 100
(xALNS − x

xALNS − xLNS − x
xLNS

)
(6.46)

(ALNS− RVNS) := 100
(xALNS − x

xALNS − xRVNS − x
xRVNS

)
(6.47)

(LNS− RVNS) := 100
(xLNS − x

xLNS − xRVNS − x
xRVNS

)
(6.48)

The histograms in figures 6.19 and 6.20 show the empirical distributions of (ALNS-
LNS) and (ALNS-RVNS), respectively. Note that the differences of the gaps of
different instances are assumed to be independent of each other by looking at the
autocorrelation coefficients in Figure C.3 in Appendix C.
Figure 6.19 depicts the empirical distribution of the values (ALNS-LNS). A value

below zero indicates that ALNS achieved a better result than LNS and vice versa. The
majority of the 100 instances considered as data clearly have a negative difference,
although the highest frequency is reached in the interval close to zero. The values in
Table 6.6 supports this conclusion because 87% of the instances had a negative and
92% a negative or zero value for the difference (ALNS-LNS). We can conclude that
ALNS achieves better results than LNS considering the entire instance set for 87%
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Figure 6.20.: Empirical distribution of the difference between the gaps to the MIP
bound of ALNS-RVNS

of the instances.
The empirical distribution of the difference (ALNS-RVNS) is given in Figure 6.20.

Although the average gap of RVNS is nearly the same as the one of LNS and we
just determined that LNS is outperformed by ALNS in most of the cases, the picture
looks different here. The majority of the differences is not as clearly located on
the negative side of the x-axis as in Figure 6.19 for LNS. For some instances ALNS
achieves clearly better results (values between -60 to -20 on the x-axis) but the highest
frequency is achieved equally on both sides of the value zero. Therefore, it cannot
be clearly determined which of the heuristics achieves better results. The same can
be interpreted by the values in Table 6.6. ALNS determines better solutions only in
52% of the instances reflecting the results in Figure 6.20. It can be concluded, that
a decision based on the average gap disguises the good performance of RVNS.
To finally decide which heuristic to use in the remainder of the thesis, the instance

Diff < 0 ≤ 0
ALNS-LNS 87% 92%
ALNS-RVNS 52% 57%

Table 6.6.: Relative frequency of gap differences less than or equal to zero (based on
gaps to MIP bound)
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Figure 6.21.: Empirical distribution of the difference between the gaps to the MIP
bound of ALNS-RVNS excluding CS instances

properties are taken into account. The average gaps in Table 6.5 indicate that RVNS
works particularly good on the CS instances. As described in Section 5.3 the CS
instances do not contain time windows. Furthermore, most of the working regulations
are not considered in the instances, e.g., weekly rest time, shift rotations and weekend
rules. Thus, we can conclude that the instance sets G and TH represent the problem
setting in this thesis more accurately. Taking this background into account, Figure
6.21 shows the empirical distribution of (ALNS-RVNS) without CS instances. Now,
the entire distribution is shifted slightly towards the negative part of the x-axis.
Furthermore, the relative frequency increases to 79.11% of ALNS achieving better
results than RVNS.
Thus, ALNS is chosen as heuristic for further consideration in remaining sections.

For the completion of the analysis in this section, Figure C.3 and C.4 in Appendix C
also show the autocorrelation coefficient and empirical distribution of (LNS-RVNS),
respectively. The observation clearly shows RVNS is superior to LNS.

6.8. Impact of working regulations

The impact of introducing working regulations to the problem setting is analyzed
in this section relating to goal 3 of the thesis (see Section 4.5). The solutions for a
subset of the test instances are investigated in matters of working time changes and
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All All x x x x x x x x x x
WR0 None x x
WR1 Legal x x x x x
WR2 Legal+Contracts x x x x x x x

Table 6.7.: Scenarios for working regulations sensitivity analysis (x = considered)

constraint violations. CS instances are not presented because they consider only the
break rules and daily rest time. Note that the working time is considered for this
analysis and not the tour length.
Four different scenarios are defined based on the working regulations considered

and shown in Table 6.7. Scenario All refers to the basic problem setting in this thesis
as described in Section 2.4, i.e., all working regulations are considered. Scenario WR0
relates to the problem without any of the working regulations. Note that the daily
working time and availability of nurses are not excluded, because they are the most
common used working regulations in literature. In scenarioWR1 only legally binding
constraints are considered, namely breaks, daily and weekly rest time. Scenario
WR2 considers legal working regulations and work contracts (represented by weekly
working time and days). Thus, the only constraints left out are the avoidance of
single shifts on weekends, consecutive workdays and shift rotations. These three
requirements are additional constraints without legal or contractual background.
The ALNS heuristic is executed for each of the four scenarios to get the solutions

for evaluating the influences of the respective constraints. The results are averaged
over ten runs and the computation time is set to five minutes per run. The following
sections investigate each scenario in relation to the basic scenario All.

Scenario WR0 - No working regulations

The results for the first scenario WR0 with no working regulations are given in Table
6.8. The working time is given in total hours in the entire planning horizon. The
constraints violations are given as percentage values to take the instance size into
account. The violations of breaks is considered as percentage of tours missing a break.
The weekly working time, days and rest time as well as the weekend regulations are
considered as percentage of workweeks (nurses multiplied by weeks) with violations.
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Instance Working time [h] Unassigned Violations [%]

All WR0 ∆% All WR0 B
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ak
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ly

R
es
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W
ee
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R
es
t

G1-08 259.04 252.00 -2.72 0.2 0 2.62 0.08 51.11
G2-06 89.95 79.19 -11.97 1.6 0 0.00 0.00 38.33
G2-09 408.48 407.71 -0.19 0 0 3.01 0.16 1.30
G2-11 454.25 454.34 0.02 0 0 1.75 0.43 2.32
G2-13 623.51 627.95 0.71 0 0 9.58 0.24 1.21
G3-02 224.79 223.54 -0.56 0 0 0.25 0.05 11.00
G3-05 344.36 341.36 -0.87 0 0 2.01 0.13 6.18
G3-06 258.82 257.73 -0.42 0 0 1.12 0.33 14.62
G3-09 490.93 487.31 -0.74 0 0 10.76 0.23 3.16
G3-10 588.05 582.37 -0.97 0 0 0.48 0.07 1.38
G4-01 168.70 167.36 -0.80 0 0 3.37 0.45 14.38
G4-04 439.00 432.32 -1.52 0 0 11.55 0.58 1.36
TH1-01 70.76 70.62 -0.19 0 0 15.00 0.00 66.67
TH1-03 119.31 118.67 -0.54 0 0 19.62 0.00 63.33
TH1-07 144.39 136.35 -5.57 0 0 14.52 0.00 100.00
TH2-02 129.17 127.99 -0.91 0 0 12.49 0.00 42.86
TH3-01 185.22 178.96 -3.38 0 0 9.30 0.00 68.89
TH3-06 192.24 178.63 -7.08 2.1 0 9.88 0.00 77.78
TH3-08 217.45 200.11 -7.98 0.1 0 13.32 0.79 58.89
TH4-03 244.45 243.97 -0.19 0 0 24.27 0.00 47.50

Mean 282.64 278.42 -2.29

Table 6.8.: Average difference in working time and violations of working regulations
for scenario WR0 (no working regulations)

The first observation is that the difference in working hours of considering all and
no working regulations (∆) is relatively small. In most cases, the solutions without
working regulations have less total working time. This is an expected result because
the tours can be built with less restrictions. The working time is reduced by -2.29% in
the planning horizon. For the instances G2-11 and G2-13 a small increase in working
time is given that can be explained by the replacement of waiting time through
breaks or the stochasticity of the heuristic. The greatest reduction in working time
are -11.97% (10 hours) for G2-06 and -7.98% (17 hours) for TH3-08. Considering
eight hours as a typical working day, this would mean saving one or two workdays,
respectively. Compared to the available 42 workdays for G2-06 and 63 workdays in
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6.8. Impact of working regulations

TH3-08 (9 nurses and planning horizon of 7 days), this reduction is relatively small.
In the basic scenario with all working regulations, there are four instances where
there are still unassigned jobs in some solutions and for instances G2-06 and TH3-06
in every run. After removing the regulations, the heuristic is able to insert all jobs
because the tours are not so restricted anymore and an insertion is easier to achieve.
The average values of constraint violations can be taken into account to explain

these observations. The instances with a high reduction in working time have also
many workweeks for which the weekly rest time constraint is violated. This indicates
that this constraint restricts the heuristics in finding better solutions. The large
values for the TH instances are due to the tightness of the instances. There are many
jobs for only a few nurses. Thus, ensuring the weekly rest time is hard to achieve
and therefore violated often, if not enforced. Furthermore, the average percentage of
tours requiring a break is rather high. There are up to 24.27% of tours in instance
TH4-03 that miss a break.
In contrast to the violations for break and weekly rest times, the violations of

daily rest time are low for all instances. For the generated instances the shift type
definitions of morning and afternoon shift indirectly avoid many violations because
only tours with a very early start time and a very late end time can violate this
constraint. The same holds for the TH instances although there are no shift types.
Here the time windows of the jobs lie in the interval [0, 720]. Thus, the violation of
daily rest time of 720 minutes occurs only, if a job is scheduled at the end of a late
time window leading to a tour end after minute 720. Only then the difference to the
next day is less than 1440-720=720 minutes.
Note that all solutions presented in Table 6.8 do not comply with the labor law

regulations because either the break or the weekly rest time constraints are violated.
Thus, even if the consideration of those regulations leads to a small increase in
working time hours, the consideration is essential to compute legal schedules.

Scenario WR1 - Only legal working regulations

The results for scenario WR1, i.e, enabling the heuristic to consider only legal work-
ing regulations, are given in Table 6.9. The constraints regarding work contracts,
weekends, consecutive workdays and rotations are omitted in this scenario. The dif-
ference in working time is less than in scenario WR0 for most of the instance sets.
Exceptions are the instances G3-02 and G4-01, where there is a greater reduction
than in scenario WR0. However, the difference to WR0 is 0.04 percent and is prob-
ably caused by the stochasticity of the heuristic. The number of unassigned jobs can
be reduced in this scenario. However, for instance TH3-06 there remain two unas-
signed jobs, which is two more than in scenario WR0. Thus, the insertion of the jobs
is limited due to the legal working regulations and not due to the work contracts.
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Instance Working time [h] Unassigned Violations [%]

All WR1 ∆% All WR1 W
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[h
]

G1-08 259.04 252.4 -2.54 0.2 0 5.00 58.33 1.05
G2-06 89.95 79.56 -11.55 1.6 0 25.00 58.33 10.07
G2-09 408.48 408.5 0.01 0 0 3.52 13.15 7.27
G2-11 454.25 455.3 0.23 0 0 14.46 20.89 29.76
G2-13 623.51 628.8 0.84 0 0 8.64 12.12 18.61
G3-02 224.79 223.4 -0.60 0 0 13.33 28.67 13.37
G3-05 344.36 342 -0.68 0 0 5.29 17.94 9.54
G3-06 258.82 257.9 -0.36 0 0 1.54 20.77 0.57
G3-09 490.93 489.9 -0.21 0 0 23.42 25.26 30.43
G3-10 588.05 583.4 -0.79 0 0 7.88 16.75 21.46
G4-01 168.70 167.3 -0.84 0 0 17.50 51.88 10.99
G4-04 439.00 434.1 -1.12 0 0 2.05 7.05 0.80

TH1-01 70.76 70.73 -0.04 0 0 0.00 0.00 0.00
TH1-03 119.31 119.3 -0.02 0 0 0.00 0.00 0.00
TH1-07 144.39 144.4 0.03 0 0 11.67 0.00 2.15
TH2-02 129.17 128.8 -0.26 0 0 0.00 0.00 0.00
TH3-01 185.22 185.1 -0.08 0 0 0.00 0.00 0.00
TH3-06 192.24 190.6 -0.85 2.1 2 2.22 0.00 1.37
TH3-08 217.45 219 0.71 0.1 0 6.67 0.00 1.41
TH4-03 244.45 244.3 -0.07 0 0 8.33 0.00 6.47

Mean 282.64 281.24 -0.91 8.27

Table 6.9.: Average difference in working time and violations of working regulations
for scenario WR1 (only legal regulations)

The average reduction of working time is -0.91% compared to -2.29% in scenario
WR0. This indicates that the legal regulations limit the tour construction more often
than the constraints considered in scenario WR1, especially for the TH instances
where there are many weekly rest time violations in scenario WR0. For all generated
instances the violations of work contract constraints, namely the weekly working time
and particularly the weekly workdays, are high. The solutions of TH instances do
not have any violations of the weekly workdays constraints because the value is set to
the number of days in the planning horizon and can be never violated. When looking
at the mean working time reduction values for the G and TH instances separately
the influence of work contract regulations becomes visible. The average working
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Instance Working time [h] Unassigned Violations [%]

All WR2 ∆% All WR2 W
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G1-08 259.04 255.95 -1.19 0.2 0 34.44 0.00 -
G2-06 89.95 87.52 -2.71 1.6 1.6 15.00 0.00 -
G2-09 408.48 407.51 -0.24 0 0 27.41 0.00 -
G2-11 454.25 454.16 -0.02 0 0 29.46 0.00 -
G2-13 623.51 626.94 0.55 0 0 32.12 0.00 -
G3-02 224.79 223.67 -0.50 0 0 30.33 0.00 12.29
G3-05 344.36 341.40 -0.86 0 0 40.59 0.00 13.28
G3-06 258.82 257.71 -0.43 0 0 47.31 0.00 9.56
G3-09 490.93 487.28 -0.74 0 0 26.58 0.00 9.25
G3-10 588.05 582.12 -1.01 0 0 27.88 0.00 20.07
G4-01 168.70 166.99 -1.02 0 0 28.13 0.00 3.93
G4-04 439.00 434.77 -0.96 0 0 33.41 0.00 7.08

Mean 362.49 360.50 -0.76

Table 6.10.: Average difference in working time and violations of working regulations
for scenario WR2 (legal regulations and work contracts)

time reduction for the generated instances is -1.47% whereas the reduction for the
TH instances is only -0.07%. Thus, it can be concluded that the work contracts
restrict mainly the generated instances, which is also indicated by the high constraint
violations. Furthermore, the violations of weekly rest times cause overtime hours for
the nurses. The column on the right indicates the sum of overtime hours for all
nurses in the instance. There are up to 30 overtime hours in the planning horizon of
14 days for instance G3-09. On average there are eight overtime hours.
The violations of the weekly working time and workdays lead to a lower satisfaction

of nurses because some of them work longer than agreed upon. Thus, it is beneficial
for the home care provider to include these constraints to increase the satisfaction of
nurses. Furthermore, overtime hours can be costly.

Scenario WR2 - Legal regulations and work contracts

Scenario WR2 is only analyzed for the generated instances because the TH instances
do not contain the constraints regarding weekends, consecutive workdays and shift
rotations. The results for the scenario are presented in Table 6.10. Again, the average
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6. Heuristic solution approaches for the static setting

reduction in working time is less (-0.76%) than in scenario WR1 (-1.47%). This is
the expected result because more constraints are considered in this scenario. On
average 1.6 jobs are unassigned in instance G2-06 in contrast to 0.0 in scenario WR1,
indicating that the insertion is restricted by the consideration of work contracts.
There are no violations of the consecutive workdays requirement due the weekly

rest time constraint. As the minimum weekly rest time is 35 hours every week,
the limit of 12 consecutive workdays cannot be reached in the presented instances.
The avoidance of single shifts on weekends is neglected in many cases (30% of all
weekends on average). The heuristic uses the absence of constraints to assign shifts
more freely. The same holds for the consideration of shift rotations. The violations
are only presented for instances of set G3 and G4, because they consider full-time
nurses working according to shift rotations (Table 6.10).
Again the constraint relaxation does not lead to major reductions in the working

time. Thus, a home care provider should use them to avoid single shifts on week-
ends. Furthermore, the consideration of shift rotations enables a provider to model
different circumstances that can be considered during optimization. This can be,
e.g., the common shift rotation pattern in Germany, as mentioned earlier in the the-
sis. Furthermore, the patterns facilitates an even distribution of shift types among
nurses.

6.9. Summary

In this chapter three heuristics were proposed to solve real world sized instances of the
home care routing and scheduling problem. These are based on the metaheuristics
LNS, ALNS and RVNS that are adapted with several domain specific neighborhood
operators. The parameters for each heuristic were determined by the algorithm con-
figurator GGA to improve the default parameter settings. For all heuristics the pa-
rameter configuration led to a slight improvement. Compared to the exact approach
presented in Chapter 5 the heuristics showed superior results, because all three of
them achieve good solutions in a very small portion of the computation time.
An empirical analysis showed that ALNS and RVNS outperform the LNS heuristic.

Although the average results of RVNS were worse than the results of ALNS, a more
detailed analysis revealed that this impression is misleading. The empirical distribu-
tions of the results indicated no clear difference between ALNS and RVNS. A decision
between ALNS and RVNS based on the entire test set could not be clearly made due
to advantages on different instance sets. However, ALNS was chosen for further con-
sideration, because it achieves better results on the instances relating better to the
problem setting introduced in Section 2.4.
ALNS was used for an analysis of the impact of introducing working regulations
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to the problem setting. The results showed a slightly negative implication on the
working time when respecting working regulations for the instance sets and heuristic
in this thesis. However, the consideration of the regulations, especially legal labor
law regulations, is essential to comply with the law. Otherwise, many of the regu-
lations will be violated by the computed solutions. Further restrictions from work
contracts exclude overtime and, therefore, improve the satisfaction of nurses. Even
additional requirements like shift rotations and avoidance of single weekend shifts
can be introduced without increasing the working time significantly.
The solution approaches presented so far focus on a static setting. Thus, the

planning horizon is considered isolated from previous or future planning horizons
and the underlying data does not change over time, i.e., the demands of clients and
the entire client set stay the same. In practice, there are frequent alterations by newly
admitted clients or due to changes in health condition. To address this issue, the
ALNS heuristic is extended to a dynamic setting by using a rolling horizon approach
in the next chapter.
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7. Heuristic solution approaches for the dynamic
setting

The presented solution approaches in the previous chapters consider a static setting,
i.e., during the planning there are no changes of demands or in available working
hours. However, in practical application those occur on a regular basis, e.g., if a new
client requests services. Due to the changes, the solution of the previous period may
be infeasible or inefficient for the current period. Therefore, a new schedule has to be
determined. As mentioned in the problem description in Section 2.4 the continuity
between subsequent periods has to be taken into account to ensure client and nurse
satisfaction. Variations between planning periods may lead to dissatisfaction because
clients and nurses have to adapt to the new schedule with every period. To approach
this issue, this chapter considers the home health care routing and scheduling problem
in a dynamic setting.
The ALNS heuristic is used as basis for a solution approach considering a dynamic

setting because it is selected as most suitable heuristic by the numerical analysis in
Section 6.7.2. The definitions and notation used for the description of the solution
approach for the dynamic setting are given in Section 7.1. The adaption is essential
for the continuity metrics and modes presented in Section 7.2. To provide an ap-
proach for regular weekly planning, the heuristic, continuity metrics and modes are
embedded into a rolling horizon setting in Section 7.3.
In Section 7.4 the generation of periodical test instances with a Poisson process is

described. Afterwards, the numerical results provide insights in individual aspects of
modeling continuity in a dynamic setting. The metrics and rolling horizon approach
are investigated for choosing a suitable setting.

7.1. Planning in a dynamic setting

The difference to the planning process in the solution approaches for a static setting
is that the methods proposed for a dynamic setting do not necessarily provide a
solution for the entire planning horizon. In fact, the planning in a dynamic setting
is performed on a regular basis, e.g., every Friday for the next week. In contrast to
the static setting, the approaches are able to consider the surrounding weeks. This is
essential for ensuring continuity over time. We start by defining relevant terms and
sets.
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Figure 7.1.: Definitions in a dynamic setting with a weekly planning period

7.1.1. Definitions

The definitions used in the description of the solution approaches in a dynamic setting
are given in Figure 7.1. The term planning horizon has the same meaning as in the
static setting. It is the time interval for which we know or anticipate the jobs that
need to be scheduled and the nurses available for assignment. In the dynamic setting,
the clients and nurses are not necessarily the same for each week in the planning
horizon because the demands and available working hours change over time. The
changes, which are considered in this thesis, are the following:

Clients • New clients request home care services
• Clients do not require home care services anymore

Jobs • Additional jobs are requested by a client
• A client does not require particular jobs anymore
• The time window of a job changes
• The duration of a job changes

Nurses • New nurses start employment
• A nurse terminates her or his contract
• The work contract of a nurse is altered

The length of the period that is considered as one indivisible unit in the planning
horizon is called planning period. For example, it is common in practice to plan the
schedule for the entire next week. Then the planning period is one week. Changes
for client and nurses, as listed above, only occur between two planning periods.
The solution approach is able to solve several planning periods at the same time.
The number of planning periods is determined by the planning interval. A planning
interval has at least the length of a planning period and is at most the entire planning
horizon. All periods in the planning interval are considered together in one run of the

150



7.1. Planning in a dynamic setting

solution approach. To improve client and nurse satisfaction, the solution approach
aims at ensuring the feasibility and continuity between the periods in the planning
interval. How to model the continuity in a dynamic setting is addressed in the next
section. The period prior to the planning interval is called reference period and
important for the continuity. By giving a reference period the past schedule can be
taken into account during scheduling the current planning interval. This enables us
to avoid an isolated planning where the schedules can differ highly from period to
period. This is also reason for having a planning interval that is longer than the
planning period. Thus, the demands and capacities of future weeks can already be
taken into account for the current period to improve continuity by avoiding solutions
that would lead to a poor continuity or violation of constraints in the future. The first
period in the planning interval, called focus period, is the relevant period because
this schedule will be implemented in practice next. Furthermore, the schedule for
this period will be used as reference in the next planning. The remaining weeks in
the planning interval are still allowed to be changed in future planning.

7.1.2. Extension of instance and solution representation

In order to address a multi-period planning horizon, ALNS is adapted by changing
the instance and solution representation to explicitly consider nurses, clients and jobs
on a weekly basis. All the definitions mentioned in the previous section are modeled
in the instance and solution representation by extending the notation from Section
5.1. This is the basis for the definition of the continuity metrics in Section 7.2 and
proposing the rolling horizon approach in Section 7.3. An overview of the notation
is given in Table 7.1.
The planning interval for the dynamic setting consists of several weeks W∗ =
{1, . . . , |W|}. Set W ⊂W∗ contains all weeks of W∗ except the first week and is the
basis for continuity calculation. Between the weekly periods changes for the sets of
nurses, jobs and clients can occur.
Based on the occurring changes the set of clients Cw and nurses Nw are determined

to specify the valid weeks for a client c or nurse n, respectively. For example, a client
c′ requiring services starting from the second week in a four week planning interval is
valid only in weeks three and four, i.e., c′ ∈ C3 and c′ ∈ C4, whereasW = {2, 3, 4} and
W∗ = {1, 2, 3, 4}. The same example is valid for a nurse n′ beginning employment in
the second week of the planning interval, i.e., n′ ∈ N3 and n′ ∈ N4. For continuity
calculation the client nurse assignments are determined on a weekly basis. The set
of nurses assigned to a client c in week w in the current solution is denoted by Nc,w.
The determination of valid weeks for jobs and which to consider together for con-

tinuity calculations is slightly more complex because there can be several jobs per
client per day. Therefore, the concept of job groups is introduced. All jobs in a job
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Name Definition

Instance

W∗ {1, . . . , |W|} Set of all weeks in the planning interval
W {2, . . . , |W|} Set of weeks in the planning interval, excluding first week
Nw ⊆ N Set of valid nurses n for week w, excluding first week
Cw ⊆ C Set of valid clients c for week w, excluding first week
Jw ⊆ C Set of jobs j in week w
G ⊆ P(J ) Set of job groups

Solution

Wg ⊆ W Set of valid weeks for job group g, excluding first week and weeks
with unassigned jobs

Gw ⊆ G Set of valid job groups in week w, excluding job groups that have
an unassigned job in week w − 1

Nc,w ⊆ N Nurses assigned to client c in week w
ng,w ∈ N Nurse assigned to job representing job group g in week w
zg,w ∈ R+ Start time of job representing job group g in week w

Table 7.1.: Sets and attributes of the instances and solutions in a dynamic setting

group are assumed to be recurring jobs of the same client, e.g., a bi-weekly service
on Mondays and Thursdays morning that repeats every week would create two job
groups, one on Monday and one on Thursday. These jobs should preferably start at
approximately the same time and be handled by the same nurse to improve client
satisfaction.
Thus, a job group g bundles all jobs that are considered jointly for continuity

calculation. A job group g ∈ G contains jobs that belong to the same client c on
the same weekday wd in different weeks and have overlapping time windows [a, b].
More formally, the set of job groups G contains all subsets of jobs p of the power set
P(J )\{∅} fulfilling the following criteria:

∀i, j ∈ p : ci = cj ∧ wi 6= wj ∧ ai < bj ∧ aj < bi ∧ wdi = wdj (7.1)

Figure 7.2 shows an example for job groups of one client where only the days
Monday and Thursday are taken into account for a three week planning interval.
Jobs 1, 2 and 3 build one job group because they are all on Monday with the same
time window. Jobs 4, 5 and 6 on Monday afternoon are also in one job-group,
although job 6 has a different time window. However, the time window of job 6 is
overlapping with the time windows of job 4 and 5 and, therefore, the same start
time is possible for them. The jobs 7, 8 and 9 are divided into two job groups,
although they are all on Thursday morning. Jobs 7 and 8 form a job group due to
the same time window and job 9 is in another job group because the time window is
not compatible with job 7 and 8.
A job j in a job group g is well-defined by the week w because every job group

contains only one job per week. A nurse assigned to a job in job group g in week
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Figure 7.2.: Example for job groups resulting from nine jobs for one client on Mon-
days and Thursdays in a three week planning interval (the bars represent
the time window of the job)

w is denoted by ng,w and the start time of the job is given by zg,w. Unassigned jobs
are excluded from continuity calculations because they neither have a start time nor
an assigned nurse. Set Wg contains the weeks where there are jobs of job group g

assigned in the current w and previous week w − 1 and Gw the job groups valid in
week w.

7.2. Modeling continuity in a dynamic setting

The introduced weekly solution representation is used for the definition of continuity
metrics (Section 7.2.1) that are combined to a single objective function (Section
7.2.2). Furthermore, the focus area for continuity calculation has to be determined,
i.e., which week is compared to which other week. Different modes are possible and
presented in Section 7.2.3.

7.2.1. Continuity metrics

There are three types of continuity considered in this thesis: continuity of time,
continuity of care and continuity of duty schedules. For each of them different metrics
are defined and presented in this section. The metrics can be used as part of the
objective function to improve the continuity in planning horizon with multiple weeks.
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Figure 7.3.: Example for continuity of time metrics for one job group. Arrows indicate
the deviations taken into account for calculation (θ = 10 for CoT t and
CoTQuad)

Continuity of time

The continuity of time metrics aim at avoiding start time fluctuations of jobs between
weeks of the planning interval. The satisfaction of clients is improved when continuity
of time is ensured because the clients do not have to adapt to new appointments every
week and can keep their daily routine. The start times are defined for each assigned
job. Therefore, the metrics presented in this section are based on the set of job
groups G. An example for all metrics is visualized for one job group in Figure 7.3.
The first possibility to model continuity of time is to minimize the sum of all

deviations in start times for consecutive weeks, like in Nickel et al. [2012]. As they
consider only two periods the definition of job groups is not necessary. However, the
planning interval in this thesis contains several weeks and the definition in Equation
(7.2) uses the job groups and weeks as basis. The sum considers all deviations
between consecutive weeks for all job groups generated from the set of jobs.

CoT Sum =
∑
w∈W

∑
g∈Gw

|zg,w − zg,w−1| (7.2)

The sum of deviations does not specifically consider the maximum deviation. Thus,
it is possible that there are many small deviations and less large deviations leading
to the same sum as only medium deviations. To address this issue, the second metric
minimizes the weekly maximum deviation of start times of all job groups (7.3).

CoTMax =
∑
w∈W

max
g∈Gw

{
|zg,w − zg,w−1|

}
(7.3)

154



7.2. Modeling continuity in a dynamic setting

In practice, small deviations of start times might be tolerated by clients because
they can occur due to several external factors, e.g., uncertainty in services times.
Therefore, the third metric for continuity of time considers only the sum of deviations
that are larger than the threshold of θ minutes (7.5). Values less than the threshold
are assumed to be zero (7.4).

σg,w =
{

0, if |zg,w − zg,w−1| ≤ θ

|zg,w − zg,w−1|, if |zg,w − zg,w−1| > θ.
(7.4)

CoT t =
∑
w∈W

∑
g∈Gw

σg,w (7.5)

The last continuity of time metric implicitly combines the second and third met-
ric by minimizing the quadratic sum of all deviations above the threshold θ (7.6).
By minimizing the quadratic sum large deviations are weighted more than small
deviations.

CoTQuad =
∑
w∈W

∑
g∈Gw

σ2
g,w (7.6)

Note that the quadratic sum is possible only because a heuristic solution approach
is used. In an exact approach, the quadratic objective function would lead to a
non-linear model causing a higher complexity to solve it.

Continuity of care

The continuity of care criterion has the goal of keeping the number of nurse changes
for one client small during the planning horizon. This type also increases the client
satisfaction because the clients get familiar with the nurses and do not prefer changing
visitors. There are two different continuity of care metrics presented in this section.
The first metric minimizes the number of new nurses assigned to client on a weekly

basis (similar to Wirnitzer et al. [2016] for a one period). Equation (7.7) calculates
the difference of nurses assigned to a client in the current week to the previous week.
The number of nurses that were not assigned before are considered in the sum.

CoCClient =
∑
w∈W

∑
c∈Cw

|{Nc,w}\{Nc,w−1}| (7.7)

In contrast to calculation on a nurse level, the changes in nurse client assignments
can be determined on a job level. This introduces even more familiarity, because it
aims at assigning the same nurse to one job group. The metric in Equation (7.9)
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Figure 7.4.: Example for continuity of care metrics for four job groups of one client.
The numbers indicate the nurse assigned to the job (marked jobs have a
different nurse assigned than in the previous week)

sums up all differences in nurse assignments in consecutive weeks based on the job
groups, where (7.8) determines if the nurses in two consecutive weeks are the same.

γg,w =
{

1, if ng,w 6= ng,w−1

0, otherwise
(7.8)

CoCJob =
∑
w∈W

∑
g∈Gw

γg,w (7.9)

Carello and Lanzarone [2014] also use the sum of of reassignments but on a client
level. They solve the patient assignment problem; therefore, no routing decisions are
included to their problem.
An example for the calculation of the two metrics is given in Figure 7.4. There are

four job groups of one client with each having exactly one job per week. The jobs
contained in one job group are connected with an arrow. The CoCClient is given below
the job groups and only takes the set of nurses for each week as basis for calculation.
In contrast to this, CoCJob looks specifically at each job group separately. All jobs
that have another nurse assigned than the job in the previous week are marked gray.

Continuity of duty schedules

A new metric introduced to the routing and scheduling of home care providers in
this thesis is the continuity of duty schedules to achieve similar shift assignments for
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Figure 7.5.: Example for continuity of duty schedules metric CoT Type for one nurse
in a four week planning interval. The numbers in the cells indicate the
shift type id (marked cells show a shift type change compared to the
previous week)

nurses each week. This can improve the nurse satisfaction because they can plan
their everyday life more easily as they know their usual work shifts. Note that the
continuity of duty schedules is only calculated based on nurses that do not work
according to shift rotations (N\{NR}) because shift rotations have changing shift
types by definition.
The similarity of shift assignments is achieved on a shift type level or based on

the start and end times of tours. The first metric minimizes the sum of shift type
changes (7.11) for consecutive weeks (7.10) where sn,d indicates the shift type assigned
to nurse n on day d. An example for the calculation is visualized in Figure 7.5.

ψn,d =
{

1, if sn,d 6= sn,d−7

0, otherwise
(7.10)

CoDType =
∑
w∈W

∑
n∈Nw\{NR}

∑
d∈w

ψn,d (7.11)

This metric is reasonable if different shift types are defined per day. In case of only
one shift type, determining the differences is not effective. Therefore, a second metric
based on the tour start and end times is given in Equation (7.12). The calculation
is similar to CoT Sum for continuity of time but here the time deviations in start and
end times of tours are calculated instead of start times of jobs in job groups.

CoDTime =
∑
w∈W

∑
n∈Nw\{NR}

∑
d∈w

(
|zE(n,d) − zE(n,d−7)|+ |zO(n,d) − zO(n,d−7)|

)
(7.12)

By measuring the time deviations in start and end times for weekdays in consecutive
weeks, the similarity of working times can be improved. Furthermore, even small
time deviations in the same shift type are taken into account which is not possible
with the first metric.
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7.2.2. Overall continuity measurement and trade off

Each of the presented metrics addresses only one particular continuity type. However,
usually the goal is to achieve continuity in all three domains. Therefore, the metrics
must be combined to a single objective function.
In a weighted sum approach, the desired continuity metrics are combined to a

single linear function. Depending on the priorities the components are weighted. Let
ωCoT , ωCoC and ωCoD be the weights from the interval [0, 1] for each type of continuity
whereas the sum of weights equals one (ωCoT + ωCoC + ωCoD = 1). A smaller weight
indicates a lower priority and vice versa. The weighted sum is given in Equation
(7.13) for all three types of continuity without referring to a particular metric.

Continuity = ωCoTCoT + ωCoCCoC + ωCoDCoD (7.13)

The problem with a weighted sum approach is that if the metrics have different
domains, the values need to be normalized to have a consistent domain and weighting.
To achieve the normalization for each metric, a normalization factor is calculated
based on the worst case value dependent on the instance. The actual metric values
are divided by this worst case values on a weekly basis limiting the overall sum to
the interval [0, 1] (7.14). The weekly continuity metrics are taken from the sums in
the definitions in the previous section.

ContinuityNorm = ωCoT
∑
w∈W

CoTw
CoTNormw

+ωCoC
∑
w∈W

CoCw
CoCNorm

w

+ωCoD
∑
w∈W

CoDw

CoDNorm
w

(7.14)

Besides the continuity, the tour length is still an objective to be minimized during
optimization. Therefore, the final objective function considered in the heuristic for
a dynamic setting integrates the tour length with the combined continuity measure
(7.15). The weight for the tour length is denoted by ωTL.

min ωTL
Tour length

TLNorm
+ ContinuityNorm (7.15)

The calculation of the worst case values for each metric is described in Appendix
D. In short, the maximum deviations per week for each metric are determined and
summed up. The worst case for the tour length is approximated by multiplying the
start tour length of the construction heuristic by 1.5.
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Figure 7.6.: Modes for continuity calculation for a planning interval of four weeks

7.2.3. Modes for continuity calculation

After the definition of continuity types and the corresponding metrics, the relation
of the weeks for continuity calculation needs to be determined. There are two cases:
continuity calculation with regard to a reference week or without a reference week.
The former is a use case for application in practice where there exists a previous
schedule that should be altered due to changes of the demand. The latter can be
used to achieve continuity in an isolated planning interval, e.g., when the scheduling
is started from scratch. A reference week is a solution that is determined for a
previous week and the continuity of the current planning period to this week should
be ensured during the execution. When a reference week is considered it is added as
first element to the set W for continuity metric calculation. The heuristic performs
change operations by the neighborhood operators only on the weeks of the current
planning interval and leaves tours of the reference weeks untouched. The tours and
assignments of the reference week are fixed and their solution values are only used
for the calculation of continuity metrics and ensuring the feasibility across periods.
The different settings for the selection of weeks investigated in this thesis are called

continuity modes and an overview is given in Figure 7.6. In the continuity mode
ToReference the deviations of times and assignments of all weeks are calculated in
comparison to the reference week. In ToPreviousRef only the continuity of the first
week is considered based on the reference week. All other weeks in the planning
interval are aligned to their respective previous week. The same is done in the
mode ToPrevious but without reference week. Another setting is the continuity
calculation based on the entire planning interval. In TotalRef and Total only the
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largest deviation per job group, client or nurse is considered in the continuity metric.
In TotalRef the solution values of the reference week are included for determining
the largest deviation. The definitions of the metrics in Section 7.2.1 are valid for the
modes ToPreviousRef and ToPrevious. For the former case, the reference week is
added as first element to the set of weeks for continuity calculation. For the other
three continuity modes the formulas have to be changed slightly. The changes are
discussed for CoT Sum, CoCClient and CoDT ime in this section. The formulas for the
other metrics are presented in Appendix D.
The original metric for CoT Sum is given in Equation (7.16), i.e., the deviations

are calculated between consecutive weeks w and w − 1. Equation (7.17) takes the
deviations of all weeks to the reference week w = 1 into account to represent the
mode ToReference. The largest deviations in a job group are the basis for the modes
TotalRef and Total and given in Equation (7.18) by determining the minimum and
maximum start time in each job group.

ToPrevious/ToPrevRef: CoT Sum =
∑
w∈W

∑
g∈Gw

|zg,w − zg,w−1| (7.16)

ToReference: CoT Sum =
∑
w∈W

∑
g∈Gw

|zg,w − zg,1| (7.17)

Total/TotalRef: CoT Sum =
∑
g∈G

(
max
w∈Wg

{zg,w} − min
w∈Wg

{zg,w}
)

(7.18)

The calculation of CoCClient based on consecutive weeks for ToPrevious and ToPre-
viousRef is given in Equation (7.19). When only the deviations to the reference week
should be considered (ToReference), the changed formula in Equation (7.20) can be
used. It sums up the number of new nurses assigned each week which are not known
from the reference week. The metric for TotalRef is given in Equation (7.21) and
similar. Finally, Equation (7.22) minimizes the number of assigned nurses in the
entire planning interval without considering a reference solution (Total).

ToPrevious/ToPrevRef: CoCClient =
∑
w∈W

∑
c∈Cw

|{Nc,w}\{Nc,w−1}| (7.19)

ToReference: CoCClient =
∑
w∈W

∑
c∈Cw

|{Nc,w}\{Nc,1}| (7.20)

TotalRef: CoCClient =
∑
c∈C

∣∣∣ ⋃
w∈W

(Nc,w\{Nc,1})
∣∣∣ (7.21)

Total: CoCClient =
∑
c∈C

∣∣∣ ⋃
w∈W

Nc,w
∣∣∣ (7.22)
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The metric CoDT ime for the modes ToPrevious and ToPreviousRef for calculating
differences between consecutive weeks is given Equation (7.23). If only the deviation
to the reference week (ToReference) should be taken into account, Equation (7.24) is
used. The day index for the start and end times in the reference weeks is calculated
by subtracting 7w, i.e., seven days for every week lying between the current day d
and the day in the reference week. The last metric for the modes Total and TotalRef
determines the maximum and minimum start and end times of the shifts for every
weekday d ∈ {1, . . . , 7}. The day in the planning horizon is determined by d+ 7w.

ToPrevious/ToPreviousRef:

CoDT ime =
∑
w∈W

∑
n∈Nw\{NR}

∑
d∈w

(
|zE(n,d) − zE(n,d−7)|+ |zO(n,d) − zO(n,d−7)|

)
(7.23)

ToReference:

CoDT ime =
∑
w∈W

∑
n∈Nw\{NR}

∑
d∈w

(
|zE(n,d) − zE(n,d−7w)|+ |zO(n,d) − zO(n,d−7w)|

)
(7.24)

Total/TotalRef:

CoDT ime =
∑

n∈N\{NR}

∑
d∈{1...7}

( max
w∈Wn

{zE(n,d+7w)} − min
w∈Wn

{zE(n,d+7w)})

+
∑

n∈N\{NR}

∑
d∈{1...7}

( max
w∈Wn

{zO(n,d+7w)} − min
w∈Wn

{zO(n,d+7w)})

(7.25)

7.3. Heuristic rolling horizon approach

The continuity metrics and modes are the basis for a rolling horizon approach that
can be used for application in practice when a weekly planning is performed. In this
case, a previous schedule exists and the continuity between this and the new schedule
must be ensured even if the demand of clients and the requirements of nurses changed.
To cover this scenario, the ALNS heuristic is embedded in a rolling horizon ap-

proach. The instance and solution representation from Section 7.1.2 are used during
the execution of the heuristic. Furthermore, the objective function is a weighted sum
of the tour length and the combined continuity metric as presented in Section 7.2.2.
In the proposed rolling horizon approach, the planning is performed for several

planning intervals that are shifted forward week-by-week through the entire planning
horizon. Only the weeks currently in the planning interval are considered by the
heuristic. The first of the planning interval is the week currently in focus, i.e., with
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Figure 7.7.: Planning interval, reference and focus week for a planning horizon of
eight weeks. The length of the planning interval is set to four weeks
(W I = 4)

this iteration of the rolling horizon approach the schedule for this week has to be
fixed. The scheduling for the additional weeks can be revised when they are focused
in later iterations of the rolling horizon approach. If a reference week is present, it
is always the week prior to the focus week. The moving of a planning interval of
four weeks through a planning horizon of eight weeks is given in Figure 7.7. In this
example, the schedules for weeks 1 to 5 are determined.
Figure 7.8 shows the steps to perform a rolling horizon optimization. The ALNS

heuristic is embedded to provide a schedule for the current planning interval of length
W I . When no reference week is given the planning interval spans just the first W I

weeks, e.g., when the optimization is started from scratch. After the planning interval
is moved to the next week, the previous focus week is considered as reference week
and the planning interval spans the next W I weeks. The solution from the previous
planning interval works as initial solution to start the ALNS heuristic. The initial
solution is not complete, because every time the planning interval is forwarded by
one week, the jobs and nurses in the last week are not assigned because they were
not considered before. Therefore, one repair step of the ALNS heuristic is performed
before the actual heuristic solution approach is started. The call of the repair operator
considers the nurses and jobs in the last week of the planning interval as unassigned
and reinserts them into the initial solution to start the ALNS for the next interval.
When the planning interval spans more than one week, several weeks that are

currently not in focus, are considered for continuity calculation. The weeks farther
in the future are not as important in the current focus week as the direct subsequent
week. Therefore, a time-dependent weighting of weeks is introduced and investigated.
The continuity weight between weeks is adjusted based on the point in time, where
earlier weeks are weighted higher than later weeks. The time-dependent weights fw
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Figure 7.8.: Steps of the rolling horizon approach with embedded ALNS

Figure 7.9.: Time-dependent weight for time factor 1.0, 0.5 and 0.25

for each week w in the planning interval are defined in Equation (7.26) based on
the given time-factor f time, where f time ∈ [0, 1]. The adjusted continuity metric is
given in Equation (7.27). Metric is a place holder for any of the presented continuity
metrics and Metricw is the value of the metric in week w.

∀w = 1, ..,W I : fw = f ′w∑
w′∈{1,...,W I} f

′
w

with f ′w =
{

1.0 , w = 1
f ′w−1f

time , w > 1
(7.26)

Metric =
∑

w={1,...,W I}

fwMetricw (7.27)

The time-factors used in the analysis of this thesis are 1.0, 0.5 and 0.25, and their
resulting time-dependent weights are shown in Figure 7.9. Note that a time factor
of 1.0 equals no time-dependent weighting.
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7.4. Analysis of results

This section analyzes the proposed continuity metrics, modes and the rolling ap-
proach. First the test instances used for evaluation are described in Section 7.4.1.
Afterwards the individual metrics for each continuity type are analyzed for their
influence on the continuity and their interdependencies (Section 7.4.2). The best
continuity mode for a rolling horizon settings is selected in Section 7.4.3. Based on
these results, the rolling horizon is investigated in Section 7.4.4.
All results in this section are computed on Xeon E5 processors with one 2.6 GHz

CPU using 4 GB RAM1. If not indicated otherwise, the time limit is set to five
minutes per run. Due to the stochasticity of the heuristics, each instance is solved
ten times and the solution values are averaged.

7.4.1. Test instances for a dynamic setting

The test instances used for the analysis of continuity metrics and the rolling hori-
zon approach need to have changes over the weeks to simulate a dynamic setting.
Therefore, the instances used for the analysis of working regulations in Section 6.8
are reused as basis instances. The changes over time are simulated with a Poisson
process for each type of change like in Bowers et al. [2014].
The following short description of a Poisson process is based on DeGroot and

Schervish [2002, p.255-262, p.300-301]. Poisson processes are often used to model
the arrival of particular events over time, e.g., the arrival of customers or phone
calls. The underlying distribution of arrivals in a fixed time period of length t is
the Poisson distribution with an arrival rate λ per time unit. For a Poisson process
the average number of arrivals in time interval t is λt. Furthermore, the number of
arrivals in two time intervals are independent of each other. The time that elapses
between arrivals in a Poisson process is exponential distributed with parameter λ.
In this thesis, the exponential distribution is used to determine the time between

two requests. For each type of change an own arrival rate parameter λ is used. The
exponential distribution is approximated using uniform distributed random numbers
and the logarithm method proposed by Knuth [1981, p.128]. Each of the 20 instances
is extended to an eight week planning horizon. Instances initially having a planning
horizon longer than one week are shortened to one week. The arrival of requests
concerning nurses, clients and jobs is simulated with the Poisson Process by deter-
mining the time between two arrivals based on the exponential distribution. For each
instance three scenarios are generated: basic, increase and extreme. The arrival rate
parameters λ for each scenario are given in Table 7.2.

1All the reported results are computed on resources provided by the Paderborn Center for Parallel
Computing.
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Scenario

Basic Increase Extreme

Nurses
New nurse 1/12 1/12 1/6
Remove nurse 1/15 0 2/15
Change work contract 1/24 0 1/12

Clients New client 1/2 1/1 3/1
Remove client 7/15 1/2 2/1

Jobs

New job 7/24 7/12 1/1
Remove job 1/4 1/4 1/1
Change job duration 1/3 0 1/1
Change job time window 1/3 0 1/1

Table 7.2.: Poisson process parameters: Average arrival rates given as number of
occurrences per number of weeks (e.g. 1/2 = one request in 2 weeks)

The generation of dynamic instances uses the static instance as initial state of the
first week. The Poisson processes for each type of change simulate for a given planning
horizon of eight weeks. The points in time (generated by the Poisson process) are
broken down to the corresponding weeks to determine the number of add, remove
and change requests. The nurses, jobs and clients to change or remove are randomly
chosen. The attributes for changed jobs (time windows and duration) and nurses
(work contracts) are determined as described for the instance generation in the static
setting in Section 5.3. New nurses and clients are also generated by those methods.

The basic scenario has slow changes over time, e.g., by introducing a new client
every two weeks on average. Furthermore, the staff changes only slowly over several
months. Eventually requests of already known clients arrive, creating or removing
jobs as well as changing time windows or durations.

The increase scenario focuses on an expanding provider, because only new nurses
are added. The arrival rate of new clients is higher than in the basic scenario, with a
relatively small number of clients dropping out. The same holds for new or removed
jobs of known clients. Changes in work contracts, job durations and time windows are
not included in this scenario because it is used to evaluate continuity under growing
demands. The extreme scenario resembles the basic scenario but with higher arrival
rates. Thus, the underlying data sets are more volatile and used to test the metrics
under larger fluctuations.
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7.4.2. Comparison of continuity metrics

In this section the proposed continuity metrics from Section 7.2.1 are evaluated to
determine which to use in a combined continuity metric. The results in this section
are computed by the presented approach for the first four weeks of each of the 20
instances in the basic scenario. No rolling horizon setting is used but the continuity
is calculated for the first planning interval with length of four weeks. The continuity
mode used is ToPrevious, i.e., the goal is to achieve continuity between consecutive
weeks.
Every continuity metric is evaluated with an objective weight of 1.0 and 0.5. The

former only optimizes the continuity metric. The latter has a weight of 0.5 for
the tour length and 0.5 for the continuity metric to take both criteria equally into
account. The analysis of results is based on three parts. First, a boxplot diagram
is generated to show the distribution of the results. Second, the mean, median and
standard deviation of the results are given to provide more details in addition to
the boxplot diagram. Third, the metrics are compared directly with each other by
evaluating the solutions calculated by one metric with all other metrics.

Continuity of time

The influence of the individual continuity of time metrics is shown in the boxplot
diagram in Figure 7.10 for an objective weight of 0.5. The data points show the
maximum deviation of start times for each job group in the instances. The results
when only considering tour length in the objective function is given as reference in
the left boxplot.
The first observation is that the metric CoTMax leads to a much larger deviation

per job group than the sum-based metrics CoT Sum, CoT t and CoTQuad. The im-
provement in minimizing the maximum deviation of start times in each job group
is only slightly better than just considering the tour length. The sum-based metrics
show a clear improvement when considered in the objective function. The median
deviation in a job group is reduced from 43.9 minutes (only tour length) to a value
less than 30 minutes (Table 7.4.2). CoT Sum and CoT t achieve the lowest deviations
measured by mean, median and standard deviation for a weight of 0.5 and 1.0 (Table
7.4.2). When the tour length is omitted in the objective function, i.e., the continuity
metric is weighted with 1.0, the heuristic is able to further reduce the deviations
resulting in a median of about 14 minutes deviation for the metrics CoT Sum and
CoT t. The boxplot diagram for a continuity weight of 1.0 is given in Figure E.1 in
Appendix E and shows the same observations for the metrics.
The interdependency of the continuity of time metrics is given in Tables 7.4 and

7.5 for a weight of 0.5 and 1.0, respectively. The rows indicate the metric used in
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Figure 7.10.: Boxplot diagram for continuity of time metrics with weight 0.5. Data
points represent the maximum deviation in a job group

Weight Tour length CoT Sum CoT Max CoT t CoT Quad

0.5
Mean 54.9 29.0 48.8 29.5 35.4
Median 43.9 21.8 41.1 22.6 28.8
Std.Dev. 42.6 26.8 34.5 26.4 27.5

1.0
Mean 54.9 20.8 45.0 21.1 22.3
Median 43.9 14.3 35.2 14.6 17.5
Std.Dev. 42.6 24.4 36.7 24.3 22.2

Table 7.3.: Mean, median and standard deviation of maximum start time deviation
in job groups for each metric and continuity weights 0.5 and 1.0

the objective function. The values shown are averaged results over all instances and
are normalized column-wise. The columns represent the value of the metric when
the objective function would have consisted of the continuity metric indicated, i.e.,
the solution achieved by the metric given in the row is evaluated with the other
metrics indicated in the column. The value achieved with the same metric as in the
objective function always has the value 1.0. Values greater than 1.0 indicate a worse
continuity and values less than 1.0 an improvement. For example, the value 5.97
in row CoTMax and column CoT Sum of Table 7.5 is interpreted as follows: When
CoTMax is used in the objective function, the value for CoT Sum is on average 5.97
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Metric
CoT Sum CoTMax CoT t CoTQuad Tour length

Objective

CoT Sum 1.00 1.29 0.97 0.85 1.06
CoTMax 2.25 1.00 2.26 2.05 1.05
CoT t 1.05 1.32 1.00 0.90 1.06
CoTQuad 1.37 1.17 1.35 1.00 1.03
Tour length 3.08 1.69 3.05 3.44 1.00

Table 7.4.: Comparison of continuity of time metrics. The rows indicate the metric
used in the objective function with weight 0.5. The columns show the
relative values of the other metrics evaluated on the solution provided by
the selected metric. The tour length is weighted 0.5 in this setting

Metric
CoT Sum CoTMax CoT t CoTQuad Tour length

Objective

CoT Sum 1.00 1.01 1.01 1.29 1.33
CoTMax 5.97 1.00 6.73 9.07 1.27
CoT t 1.06 1.00 1.00 1.28 1.33
CoTQuad 1.17 0.79 1.13 1.00 1.32
Tour length 16.94 1.80 19.50 29.89 1.00

Table 7.5.: Comparison of continuity of time metrics. The rows indicate the metric
used in the objective function with weight 1.0. The columns show the
relative values of the other metrics evaluated on the solution provided by
the selected metric. The tour length is weighted 0.0 in this setting

times higher compared to when CoT Sum was used in the objective function.
The values in Tables 7.4 and 7.5 show that using the metric CoTMax leads to a large

deterioration of the values for the sum-based metrics, especially when the continuity
is weighted width 1.0 (Table 7.5). In contrast to this, all sum-based metrics only
lead to a slightly deteriorated value for CoTMax or even an improvement. CoTMax

considers only the maximum deviation over all job groups per week into account. If
this value is high, e.g., caused by constraints like the working regulation, all other
job groups also can have large deviations without negative influence on the objective
value. The observation that CoT Sum and CoT t achieve the best results for continuity
of time are supported by this comparison. Both work best in comparison with the
other two metrics, i.e., they achieve the best values for all four metrics. However,
CoT Sum often shows superior results, especially for a weight of 0.5.
The increase in tour length when considering continuity of time in the objective
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(a) Continuity of care per client. Data points
represent the average number of nurses as-
signed to a client
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(b) Continuity of care per job group. Data
points represent the average percentage of
jobs per job group that have a reassignment

Figure 7.11.: Boxplot diagrams for continuity of care metrics per client and job group
for objective weight 0.5

function is also given in Tables 7.4 and 7.5. When only the continuity is considered,
there is an increase in tour length of about 30%. If the continuity is weighted 0.5, the
tour length is 3 to 6 % worse than without continuity consideration. The increase in
tour length is lowest for CoTMax (Table 7.5) because the heuristic has more flexibility
in assigning the jobs without reducing the continuity. CoT Sum is used as continuity
of time metric for further analyses because of the observations in this section.

Continuity of care

The continuity of care metrics CoCClient and CoCJob are analyzed and compared in
this section. Figure 7.11 shows the boxplot diagrams of the results based on clients
and job groups for a continuity weight of 0.5. The data points included in Figure
7.11(a) represent the number of nurses assigned to a client in the planning interval.
The same solutions but with focus on the nurse reassignments on a job level are given
in Figure 7.11(b). The data points represent the average percentage of jobs in a job
group that have a new nurse assigned to them between two consecutive weeks. The
results for a continuity weight of 1.0 are shown in Figure E.2 in Appendix E.
In Figure 7.11(a) the improvement of the continuity of care becomes visible when

using either one of the two metrics as objective function. When only the tour length
is minimized, the median number of nurses per client is 7.1 (Table 7.6). The metric
CoCClient and CoCJob both reduce this number to a value between 5 and 6 (Table
7.6). The metric CoCClient achieves the better continuity of care on a client basis,
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Weight 0.5 Weight 1.0

Tour length CoTClient CoT Job CoTClient CoT Job

Mean 7.6 6.2 6.6 5.6 6.2
Median 7.1 5.6 6 5 5.6
Std.Dev. 5.2 4.2 4.4 4.1 4.9

Table 7.6.: Mean, median and standard deviation of number of assigned nurses per
client

Weight 0.5 Weight 1.0

Tour length CoTClient CoT Job CoTClient CoT Job

Mean 0.58 0.48 0.51 0.42 0.46
Median 0.63 0.50 0.55 0.45 0.60
Std.Dev. 0.18 0.22 0.24 0.25 0.30

Table 7.7.: Mean, median and standard deviation of percentage of jobs with a nurse
reassignment per job group

especially by looking at the values in Figure 7.11(a). For CoCJob there are more
clients that see more than 15 nurses in the planning interval. When the continuity
of care is weighted with 0.5 and, thus, the tour length is included into the objective,
both metrics still can reduce the number of nurses and the results are only slightly
worse than with a full continuity weighting (Table 7.6).
The improvement of continuity of care on a job basis is visualized in Figure 7.11(b).

When only the tour length is minimized the median percentage of jobs having a
reassignment is more than 60%. This value is clearly reduced by the metric CoCClient

although it does not consider a job level. The metric CoCJob has a higher median
than the CoCClient, but many job groups have a much smaller value of reassignments.
In all cases, CoCClient achieves better results.
Tables 7.8 and 7.9 support this observation and further show the influence on the

tour length when continuity is considered. When we select the metric CoCClient with
weight 1.0 (Table 7.9), the continuity value of CoCJob is 2.46 times worse compared
to the case where CoCJob is used as metric. The other way around, the value of
CoCClient is only 1.63 worse when CoCJob is selected as metric. When only the tour
length is selected as objective, it has less negative impact on the metric CoCClient

than on CoCJob. However, the tour length is significantly higher, when CoCClient is
used as metric (32%). When the continuity metric is weighted with 0.5 (Table 7.8),
CoCClient could even improve the results for the CoCJob metric. Furthermore, the
increase in tour length reduces to only 4%, which is less than for CoCJob (15%).
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Metric

CoCClient CoCJob Tour length

Objective
CoCClient 1.00 0.94 1.04
CoCJob 1.45 1.00 1.15
Tour length 1.76 1.23 1.00

Table 7.8.: Comparison of continuity of care metrics with weight 0.5. The rows indi-
cate the metric used in the objective with weight 0.5. The columns show
the relative values of the other metrics evaluated on the solution provided
by the selected metric. Tour length is weighted 0.5

Metric

CoCClient CoCJob Tour length

Objective
CoCClient 1.00 2.46 1.32
CoCJob 1.63 1.00 1.27
Tour length 4.19 9.38 1.00

Table 7.9.: Comparison of continuity of care metrics with weight 1.0. The rows indi-
cate the metric used in the objective with weight 1.0. The columns show
the relative values of the other metrics evaluated on the solution provided
by the selected metric. Tour length is weighted 0.0

The observations in this section indicate CoCClient as the superior metric to mea-
sure continuity of care because it works better in a weighted objective function with
the tour length, which will be the common case in practice. This can be explained
by the fact that CoCClient allows more flexibility. The nurses assigned to jobs in a
job group can be selected from a set of nurses without causing an increase in the
objective function. CoCJob is more restrictive and avoids reassignments of known
nurses just because they handled another job group in the previous week. Further-
more, the metric CoCClient also has a positive impact on the value of CoCJob in a
weighted objective function because the number of nurses is held small directly from
the beginning whereas a different nurse is possible for every job group in CoCJob

although several job groups can have the same client.

Continuity of duty schedules

The results for both continuity of duty schedule metrics are given in Figure 7.12 for a
weight of 0.5. Figure E.3 in Appendix E shows the results for a continuity weight of
1.0. The number of shift type changes per nurse for the continuity of duty schedules
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(a) Continuity of duty schedules based on
shift types. Data points represent the aver-
age sum of shift type changes in the planning
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(b) Continuity of duty schedules based on
time fluctuations. Data points represent the
average sum of minutes that the start and
ends deviate per week

Figure 7.12.: Boxplot diagrams for continuity of duty schedules metrics with objective
weight 0.5

Weight 0.5 Weight 1.0

Tour length CoDType CoDT ime CoDType CoDT ime

Mean 8.96 3.33 11.02 2.84 12.37
Median 9.35 2.70 11.50 2.45 13.10
Std.Dev. 3.10 2.77 3.23 2.52 3.65

Table 7.10.: Mean, median and standard deviation of shift type changes per nurse

metrics is shown in Figure 7.12(a). The metric CoDType reduces the number of
shift type changes drastically. The median is reduced from 9 changes to less than
3 (Table 7.10 and Figure 7.12(a)) for both weights. The metric CoDT ime leads to
more shift reassignments because partially assigned weekends cannot be considered
due to missing start times. The chosen shift types can differ on partially assigned
weekends without influencing the objective value. This can lead to even more shift
type changes compared to considering only the tour length (Table 7.10 and Figure
7.12(a)).
Looking at the sum of deviations in start and end times of shifts per week in

Figure 7.12(b), the time-based metric CoDT ime naturally achieves the better results.
The metric CoDType does not take time deviations into account, only the shift types
are considered. Therefore, deviations in one shift type are possible without negative
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Weight 0.5 Weight 1.0

Tour length CoDType CoDT ime CoDType CoDT ime

Mean 8352.83 8411.82 1705.31 8229.01 837.75
Median 7024.50 6701.13 884.13 6627.88 193.50
Std.Dev. 5732.96 6046.87 2123.79 5668.88 1399.65

Table 7.11.: Mean, median and standard deviation of average shift start and end
times fluctuations per week per nurse

Metric

CoDType CoDT ime Tour length

Objective
CoDType 1.00 246.74 1.29
CoDT ime 64.35 1.00 1.33
Tour length 36.40 316.43 1.00

Table 7.12.: Comparison of continuity of duty schedules metrics. The rows indicate
the metric used in the objective with weight 1.0. The columns show the
relative values of the other metrics evaluated on the solution provided
by the selected metric. Tour length is weighted 0.0

impact on the objective function. The sum of deviations can be large as it is the case
in Table 7.11. Here, the advantage of using CoDT ime on similar start and end times
becomes clear. CoDT ime achieves on average approx. 6700 minutes less start and
end time fluctuations than CoDType for a weight of 0.5 and more than 7300 minutes
for a weight of 1.0.
Comparing the normalized values in Tables 7.12 and 7.13 the observation of largely

differing results are supported. For an objective weight of 1.0 for the continuity

Metric

CoDType CoDT ime Tour length

Objective
CoDType 1.00 6.90 1.03
CoDT ime 10.52 1.00 1.03
Tour length 7.11 6.90 1.00

Table 7.13.: Comparison of continuity of duty schedules metrics. The rows indicate
the metric used in the objective with weight 0.5. The columns show the
relative values of the other metrics evaluated on the solution provided
by the selected metric. Tour length is weighted 0.5
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metrics (Table 7.12), the value of CoDT ime is 246 times worse when using CoDType

as metric compared to when CoDT ime is set as objective. However, when selecting
CoDT ime the impact on CoDType is also clearly negative but less than vice versa.
The increase of tour length is nearly the same for both metrics (approximately 30%).
The major negative impacts on each other reduce when the metrics are used in a

weighted objective function with the tour length (Table 7.13). Here the normalized
values are 6.9 and 10.5 which is only a portion of the results when a weight of 1.0 is
used. The high reduction can be explained by the fact, that the values of CoDT ime

are much worse in this case and, therefore, the normalization leads to lower values
for CoDType, which can also be seen from Table 7.11.
Concluding this analysis of the continuity of duty schedule metrics, both metrics

indicate problems to achieve similar duty schedules. This is due to the presence of
working regulations that restrict the shift assignments and regulations spanning more
than one week and influencing the possibility of assigning the same shift type again.
The metric for the remainder of this thesis is CoDT ime due to four reasons. First,
this metric also works when no shift types are present and therefore are applicable
more generally. Second, the impact on the shift type changes is only slightly worse.
Third, the same work times are more preferably than the same shift type because the
deviations of start and end times can be large if ignored in the objective function.
Fourth, although CoDT ime ignores partially assigned weekends, this fact is not as
important in practice as similar working times.

7.4.3. Comparison of continuity modes

After CoT Sum, CoCClient and CoDT ime are selected as metrics for continuity of time,
care and duty schedules, respectively, the different continuity modes presented in
Section 7.2.3 are analyzed for their suitability. The ALNS heuristic is executed with
a combined continuity metric of these three metrics for each mode on each instance of
the basic scenario. There are two different weightings used for the evaluation: First,
a weight of 0.5 for the tour length and 1

6 for each continuity metric and, second, a
weight of 1

3 for each continuity (the tour length is not considered in this case). In the
first case, the combined continuity is weighted with 0.5 and in the second case with
1.0. The continuity modes are divided by the attribute whether a reference week is
given. If a reference week is needed, the best solution provided by the ALNS in a
static setting is used as input because the first week equals to the static instance.
The relative metrics are used as comparison criterion throughout this section due to

the different domains of the three continuity metrics . The results for the continuity
modes without reference week are given in Tables 7.14 and 7.15 for a continuity
weight of 1.0 and 0.5, respectively, and each continuity metric separately. The values
are normalized column-wise and the row indicates the used mode during execution.
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CoT Sum CoCClient CoDT ime

ToPrevious Total ToPrevious Total ToPrevious Total

ToPrevious 1.00 0.73 1.00 1.00 1.00 1.10
Total 2.14 1.00 1.32 1.00 3.92 1.00

Table 7.14.: Normalized results for continuity modes without reference week and com-
bined continuity weight of 1.0. The rows indicate the mode used in the
solution approach. The columns represent the relative metric values for
each other mode evaluated on the solution

CoT Sum CoCClient CoDT ime

ToPrevious Total ToPrevious Total ToPrevious Total

ToPrevious 1.00 0.83 1.00 0.99 1.00 1.69
Total 1.89 1.00 1.31 1.00 2.35 1.00

Table 7.15.: Normalized results for continuity modes without reference week and com-
bined continuity weight of 0.5. The rows indicate the mode used in the
solution approach. The columns represent the relative metric values for
each other mode evaluated on the solution

In both cases, the mode ToPrevious reaches superior results because it has good
results also for the mode Total. For the continuity of time it even outperforms the
continuity mode Total. The metric CoT Sum are 2.14 and 1.89 times worse when using
mode Total instead of ToPrevious with weight of 1.0 and 0.5, respectively. It can
be concluded, that measuring the continuity metrics on a week to week basis leads
to better results than taking only the worst case of the entire planning interval into
account. If the worst case has high deviations all other deviations with a value below
it do not influence the objective function leading to superior results using the sum of
deviations. ToPrevious is selected as mode for instances without reference week.
The results for the three continuity modes considering a reference week are given in

Tables 7.16 and 7.17. The column-wise normalized metrics show a similar result for
the modes ToPreviousRef (ToPrevRef) and TotalRef as for the counterparts without
reference week. Again, ToPrevRef is superior to TotalRef, which is, of course, due to
the same argument as for the setting without reference week. Comparing the setting
ToReference (ToRef.) with ToPrevRef, ToReference reaches slightly better results for
CoT Time. We interpret this based on the normalized metrics. The evaluation of the
results provided by ToReference achieves better results evaluated with ToPreviousRef
than vice versa (1.17 and 1.18 versus 2.11 and 1.43). For the metrics CoCClient and
CoDT ime ToPreviousRef is superior.
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CoT Sum CoCClient CoDT ime

ToRef. ToPrevRef TotalRef ToRef. ToPrevRef TotalRef ToRef. ToPrevRef TotalRef

ToRef. 1.00 1.17 0.79 1.00 1.18 1.18 1.00 2.36 1.01
ToPrevRef 2.11 1.00 0.89 1.25 1.00 1.00 2.21 1.00 1.09
TotalRef 2.12 1.48 1.00 1.17 1.09 1.00 2.06 2.10 1.00

Table 7.16.: Normalized results for continuity modes with reference week and combined continuity weight of 1.0. The
rows indicate the mode used in the solution approach. The columns represent the relative metric values
for each other mode evaluated on the solution

CoT Sum CoCClient CoDT ime

ToRef. ToPrevRef TotalRef ToRef. ToPrevRef TotalRef ToRef. ToPrevRef TotalRef

ToRef. 1.00 1.18 0.91 1.00 1.14 1.09 1.00 1.81 1.07
ToPrevRef 1.43 1.00 0.94 1.07 1.00 0.98 1.54 1.00 1.08
TotalRef 1.46 1.31 1.00 0.99 1.04 1.00 1.43 1.65 1.00

Table 7.17.: Normalized results for continuity modes without reference week and combined continuity weight of 0.5.
The rows indicate the mode used in the solution approach. The columns represent the relative metric
values for each other mode evaluated on the solution
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Based on the knowledge that ToReference aligns all following weeks to the reference
weeks, the mode ToPreviousRef is selected for further evaluation. For long-term use
of the rolling horizon approach, this modes is beneficial. Over time clients, nurses
and jobs that are present in the reference week drop out and, therefore, they are not
included for the continuity calculation in the remaining weeks. Furthermore, new
clients, jobs and nurses, have no respective values in the reference week and, thus,
their continuity cannot be calculated for the scenario ToReference.

7.4.4. Evaluation of rolling horizon approach

Based on the selected continuity metrics and modes, the heuristic rolling horizon
is evaluated for a scheduling of five consecutive weeks in the basic scenario, i.e.,
the planning interval is shifted five times. In the evaluation, the metrics CoT Sum,
CoCClient and CoDT ime are weighted with 1

6 each and the tour length with 0.5. The
continuity modes used are ToPrevious for the first week, because no reference is
present at that time, and ToPreviousRef for the remaining weeks. For each week
the heuristic’s runtime is set to five minutes leading to 25 minutes total computation
time. The evaluation in this section excludes the results of the first week because it
is used just for providing the first reference week for the rolling horizon planning.
First, the influence of a time-dependent weighting on the continuity metrics is

evaluated based on a planning interval of four and two weeks. Afterwards, the results
using a planning interval of one, two and four weeks are analyzed. Finally, the results
of all three instance scenarios are compared based on the continuity metrics.

Influence of time-dependent weighting

The average values of the metrics for the time-factors 0.25, 0.5 and 1.0 in a planning
interval of four weeks are given in Table 7.18. The values presented are given for the
four focus weeks that are planned with the rolling horizon approach. The metrics
are normalized based on the result of the time-factor 1.0. The table shows that a
time-factor of 0.25 and 0.5 both improve the continuity metrics. The tour length is
only increased slightly. The best continuity results are achieved with a time-factor of
0.25. The continuity of time is only 88% of the value achieved with no time-dependent
weighting (time-factor of 1.0). The improvement for the continuity of care and duty
schedules is even larger wit results of 0.84 and 0.79, respectively, because the focus
week has a higher weight for a time-factor of 0.25.
The results for a planning interval with a length of two weeks are given in Table

7.19. Again the time-factor of 0.25 achieves the best results for continuity of all three
types. However, the improvement, compared to no time-dependent weighting, is less
than with a four week planning interval.
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Focus
week

CoT CoC CoD Tour length

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0

1 0.85 0.92 1.00 0.75 0.84 1.00 0.71 0.82 1.00 1.01 1.01 1.00
2 0.89 0.95 1.00 0.80 0.85 1.00 0.77 0.87 1.00 1.01 1.01 1.00
3 0.87 0.92 1.00 0.79 0.84 1.00 0.76 0.84 1.00 1.01 1.01 1.00
4 0.88 0.93 1.00 0.82 0.87 1.00 0.77 0.83 1.00 1.01 1.01 1.00

Avg. 0.88 0.93 1.00 0.75 0.84 1.00 0.79 0.85 1.00 1.01 1.01 1.00

Table 7.18.: Averaged results of metrics for the weeks in the planning horizon with a
planning interval of four weeks given for time-factors 0.25, 0.5 and 1.0.
The values are normalized based on the values for time-factor 1.0

Focus
week

CoT CoC CoD Tour length

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0

1 0.86 0.91 1.00 0.79 0.86 1.00 0.80 0.84 1.00 1.00 1.00 1.00
2 0.90 0.94 1.00 0.80 0.85 1.00 0.84 0.86 1.00 1.00 1.00 1.00
3 0.90 0.94 1.00 0.81 0.89 1.00 0.87 0.91 1.00 1.00 1.00 1.00
4 0.93 0.96 1.00 0.84 0.90 1.00 0.82 0.89 1.00 1.00 1.00 1.00

Avg. 0.90 0.94 1.00 0.81 0.88 1.00 0.83 0.88 1.00 1.00 1.00 1.00

Table 7.19.: Averaged results of metrics for the weeks in the planning horizon with a
planning interval of two weeks given for time-factors 0.25, 0.5 and 1.0.
The values are normalized based on the values for time-factor 1.0

The results presented in the tables so far show only the values for the focus weeks,
i.e., the relevant week in the planning interval. Figure 7.13 additionally shows the
metric values for the other weeks in the planning interval, which are used for providing
information of future planning periods. The focus week and week in the planning
interval are indicated on the x-axis. The plan used in practice would be the solution
where focus week equals week. For example, the actual plan for the first week is
given by the first value of the x-axis. The values for week 2, 3 and 4 are only used in
the current planning interval for week 1 and their final solutions are obtained when
the planning interval is shifted. Again, the results of time factor f time = 0.25 and
f time = 0.5 are calculated in comparison to the basic setting with no time-dependent
weighting and, thus, show the improvement or deterioration of the respective metric.
From the Figures 7.13(a) to 7.13(c) the effect of the time-dependent weighting

on the continuity metrics becomes apparent. For the time-factors 0.25 and 0.5, all
weeks except the focus week are weighted less in continuity calculation. Therefore,
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Figure 7.13.: Influence of time-dependent weighting in in rolling horizon approach
with planning interval of four weeks

the values for all continuity metrics are worse than in the basic setting with equal
weighting. However, the values for the focus week are always better than in the basic
setting. The heuristic can improve the continuity metrics because the highest weight
in the objective function lies on the focus week and, therefore, the search leads to a
better continuity for this week. Even if continuity values for the remaining weeks in
the planning interval are worse if they are not in focus at the moment, the values are
clearly improved over the basic setting when the week is focused. The values for the
tour length in 7.13(d) show an opposite behavior. The tour length is higher than in
the focus weeks because higher continuity weighting leads to longer tours.

The results for the three time-factors for a two week planning interval in a rolling
horizon setting lead to the same observations. They are depicted in Figure E.4 in
Appendix E.
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Analysis of planning interval length

To evaluate the length of the planning interval in the rolling horizon approach, three
different settings are tested. First, a four week planning interval and, second, a two
week planning interval. Both with a time-factor of 0.25 as selected in the previous
section. The last setting, considers only one week as planning interval, i.e, only the
focus week and the reference week are considered during optimization. Note that
no time-dependent weighting is possible in this case because no weeks for further
weighting are present. The planning interval is shifted five times during the execution
leading to schedules for five focus weeks.
The comparison is shown in Figure 7.14 where the x-axis indicates the parts of

the objective function (continuity metrics and tour length) for each of the four focus
weeks consecutively planned in a rolling horizon approach. The value for a planning
interval of one week is used as base value to normalize the two other values. All three
setting lead to a similar tour lengths. The continuity for the two week and four week
planning interval are worse than for the one week planning interval and the results of
the two week planning interval are better than for the four week planning interval in
nearly all the cases. These observations lead to a possible conclusion why a shorter
planning interval leads to better results in our case. First, the heuristic has a bigger
focus on the first week in those two settings. Second, a shorter planning interval
contains less jobs and nurses that are handled by the heuristic. The repair operators
of ALNS need to reinsert less jobs and an iteration is finished faster, which leads to
more solutions that are evaluated in five minutes computation time.
The results for the scenarios Increase and Extreme are given in Figures E.5 and E.6
in Appendix E and look similar, leading to the same conclusion.

Analysis of scenarios

In this section the continuity metrics for all three instance scenarios Basic, Increase
and Extreme are compared to each other. The results are computed with the rolling
horizon approach for a planning horizon of five weeks and a planning interval of one
week. The continuity mode used is ToPreviousRef. The continuity metrics CoT Sum,
CoCClient and CoDT ime are combined with the tour length in one objective function
(weight 1

6 for each continuity metric and 0.5 for the tour length).
The weekly instances resulting from the same initial static instance can differ in

clients, job groups and nurses because different parameters of the Poisson processes
are used. For the comparison a common basis is needed. Therefore, all clients, job
groups and nurses that are valid in all three scenarios are determined. The results
for the metrics in this section are calculated based on these common sets of client,
job groups and nurses. All others are excluded, because they are not valid from
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Figure 7.14.: Comparison of planning interval length in a rolling horizon setting for
basic scenario

Metric Scenario

Basic Increase Extreme

CoT
Mean 69.22 69.60 80.56
Median 54.95 55.90 66.20
Std. Dev. 53.34 52.76 56.95

CoC
Mean 5.34 5.35 5.72
Median 3.70 3.70 4.00
Std. Dev. 4.87 4.98 5.10

CoD
Mean 1352.35 1554.54 1965.37
Median 573.40 695.70 734.40
Std. Dev. 1684.41 1861.34 2476.42

Table 7.20.: Mean, median and standard deviation for the continuity metrics and
all three scenarios. Values show the average sum for all four weeks per
metric (CoT = sum of deviations in minutes, CoC = number of nurses,
CoD = sum of deviations of start and end time in minutes)
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Figure 7.15.: Continuity of time metric for all three scenarios. Data points represent
the sum of start time deviations per job group

the beginning of the planning horizon. The continuity of the first weeks cannot
be evaluated for them and represent missing values. In the scenario Extreme many
changes occur over the planning horizon leading to many missing values that bias the
overall continuity calculation in favor of better looking results for this scenario. The
clients, jobs and nurses present from the beginning are the most important entities in
the continuity consideration because they are used to the old schedules. New clients
and nurses are more flexible until they get familiar with the schedules.
The mean, median and standard deviations for each continuity type and scenario

are given in Table 7.20. Figures 7.15, 7.16 and 7.17 show the boxplot diagrams for
the deviations in start times, number of assigned nurses and fluctuations in shift
times, respectively. The best continuity metrics for all three types are achieved for
the Basic scenario with slowly changing demands of clients and working hours of
nurses. In contrast to this, the values for the Extreme scenario are always the worst
for all three types. The deviations of start times in job groups are similar for the
scenarios Basic (69.22) and Increase (69.20) as given Table 7.20. The slowly growing
client sets in the scenario Increase have no major negative impact on the continuity
of time for the jobs of known clients. The new clients can be inserted to the plan
without affecting the appointment times of those. The same holds for the number
of assigned nurses representing the continuity of care. The values differ only by 0.01
nurses on average (Table 7.20). However, the differences in start and end times of
shifts are clearly influenced by the increased number of new clients. They differ by
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Figure 7.16.: Continuity of care metric for all three scenarios. Data points represent
the number of nurses assigned in four weeks per client

Basic Increase Extreme

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

S
u
m

 o
f 
m

in
u
te

s
 i
n
 f
o
u
r 

w
e
e
k
s

Figure 7.17.: Continuity of duty schedules metric for all three scenarios. Data points
represent the sum of start and end time deviations per nurse
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about 200 minutes more, on average, than in the Basic scenario. The reason for
this is the higher number of clients leading to longer tours, which are affected by the
working regulations more often than short tours (break and rest times). Therefore,
similar shift times are harder to achieve.
The deviations in start times are much higher in the Extreme scenario than in

the other two. On average they deviate by 10 minutes more (Table 7.20). The
distribution of deviations of start times in the boxplot diagram in Figure 7.15 looks
very similar for all three scenarios. The median number of assigned nurses in the
scenario Extreme is only slightly higher than in the two other scenarios (Figure 7.16).
This can be explained by the higher number of new nurses over the planning horizon
that are assigned to the new clients. The deviations in shift times in scenario Extreme
is even higher than in the scenario Increase due the larger fluctuations during the
planning horizon.
To conclude the analysis of the three different scenarios, it can be said that higher

fluctuations makes it harder to achieve continuity values. However, for the continuity
of time and care the differences are not large. Only the similarity of shift times is
clearly negatively affected by the major fluctuations.

7.5. Summary

The extensions proposed in this chapter enable the ALNS heuristic (presented in
6.4) to be used in a dynamic setting. A dynamic setting is present if demands of
clients and working hours of nurses change over time. Furthermore, requests arrive or
expire. In practice, those changes occur on a regular basis. Therefore, it is important
to provide a heuristic to handle this setting. Besides the economic goal of minimizing
the tour lengths, the satisfaction of nurses and clients is essential in a dynamic setting.
Major changes to the schedules must be avoided so that the nurses and clients do not
have to adapt to new appointments, shift times and assignments every week. The
satisfaction of clients is addressed by the continuity types time and care whereas the
nurse satisfaction is considered by the continuity of duty schedules. In this chapter
several different metrics for each of the three continuity types were presented and
different possibilities for determining the basis for continuity calculations (continuity
mode), i.e., which week to compare to which other week, were proposed.
The continuity metrics and mode were used in the ALNS heuristic so that it is

embedded to a rolling horizon approach. The heuristic provides a solution approach
for regular recurring planning while considering the surrounding weeks for continuity
calculation. The metrics, modes and the rolling horizon approach were evaluated on
an instance set for which the changes were simulated by a Poisson process. Based
on the results, the metrics and modes to be used in a rolling horizon approach
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were determined. The analysis of the entire approach showed that a time-dependent
weighting of continuity in different weeks is beneficial. Weeks that are farther in
the future are considered less for continuity calculation in the current focus week,
if a planning interval of several weeks is considered. The analysis also showed that
a planning interval of only one week (plus the previous week as reference week)
leads to the best results regarding continuity. This is probably because the heuristic
needs more time for searching the solution space of a planning interval of several
weeks compared to only one week. There exist more possible solutions and the
repair mechanisms take longer due to the number of considered jobs and nurses. The
analysis of three different scenarios of fluctuations showed that even if there are larger
fluctuations the continuity of duty schedules can be improved, although not as much
as in the other two scenarios with less fluctuations. For the continuity of time and
care the negative impact was only small.
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8. Concluding remarks

This chapter summarizes this thesis and provides a critical review of the results and
goals achieved. Finally, an outlook on future research opportunities is given.

8.1. Summary and critical review

An introduction to home care services and the development of the sector was given
in Chapter 2. The statistics and references used for the description show the growing
importance of long-term care and, in particular, home care as alternative to resi-
dential care facilities. The projections and reasons mentioned indicate an increasing
demand in the near future. To support the management of home care providers,
several planning problems are addressed in OR literature providing quantitative so-
lution approaches. An overview of the planning problems on a strategic, tactical and
operational level was given in Section 2.3. The chapter is concluded with a descrip-
tion of the problem setting in this thesis, namely the routing and scheduling for home
care services in a static and dynamic setting. The planning process and requirements
that need to be considered from a practical point of view were presented in detail.
Chapter 3 presents the OR methods used in this thesis, namely MIP and the

metaheuristics LNS, ALNS and RVNS. Additionally, an overview of related planning
problems from literature, in particular routing problems and duty planning in other
health care institutions, is given.
The state-of-the-art in quantitative solution approaches for home care routing and

scheduling is reviewed in Chapter 4. The literature was categorized based on the
type and length of the considered planning horizon and the working regulations
addressed in the solution approaches. The review shows that many publications
address the routing and scheduling for one day. The publications considering a
planning horizon of multiple days mainly concentrate on simple working regulations,
e.g., the maximum daily working time or basic break rules. Additionally, several
requirements from practice (e.g. shift rotations), were missing in the literature. Based
on the lack of an integrated solution approach considering legal working regulations
as well as work contracts, the first three research goals of this thesis were deduced.
First, to provide a mathematic formalization of the problem setting including the
identified working regulations. Second, to solve the problem setting for real-world
sized instances in reasonable computation time. Third, to investigate the influence
of working regulations on the schedules. The second finding of the literature review
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was that only a few publications address solution approaches in a dynamic setting.
These focus on the arrival of new clients, provide single continuity metrics for time
and care and consider only basic working regulations. Therefore, the remaining two
research goals of thesis were derived. Fourth, enabling the heuristic solution approach
to ensure feasibility and continuity between planning periods in a dynamic setting,
and, fifth, assessing different continuity metrics to select the most suitable.
Chapter 5 proposed a formalization of home care routing and scheduling with

working regulations in a static setting to address the first research goal. The result
was a MIP that can be solved with a mathematical programming solver. Test in-
stances used for the evaluation were introduced, consisting of artificial instances and
data sets provided in other publications. The results computed with a state-of-the-
art commercial solver showed that the solver is not capable of providing solutions for
real-world sized instances with a high quality in a reasonable computation time. Even
with a computation time of 48 hours nearly all of the instances were not solved with
proven optimality. Still, the solutions of the MIP offered lower and upper bounds
on the optimal solutions that are used to evaluate the results of further solution
approaches.
To reduce the computation time and provide solutions with a high quality for

real-world sized instances (second research goal), Chapter 6 proposed three heuristic
solution approaches based on the metaheuristics LNS, ALNS and RVNS. These were
selected due to their success on many routing and scheduling problems. Each meta-
heuristic uses domain problem specific operators that determine which part of the
solution should be changed to create a new solution. The parameters of the heuristics
were determined with the algorithm configurator GGA. The tuning of the parameters
led to an improvement for all heuristics. In the numerical analysis, the heuristics are
compared with each other and to the results of the MIP solver. The analysis showed
that the heuristics outperform the MIP solver on most of the generated instances
considering many working regulations and jobs. The results on test sets from litera-
ture also showed a good performance of the heuristics. Furthermore, the heuristics
only needed a very small portion (5 minutes) of the computation time to achieve
these results compared to the MIP solver (48 hours). The comparison of the heuris-
tics with each other was carried out afterwards. First, the average performances
of the heuristics were analyzed leading to the conclusion that ALNS outperforms
LNS and RVNS on the entire instance set. A more detailed analysis of the empiri-
cal distribution showed that the average performance is misleading. Although LNS
and RVNS achieved the same average results, the empirical distribution indicated
that ALNS is clearly superior only to LNS. For RVNS no clear statement could be
made based on the entire set because each heuristic was superior to the other on
approximately 50% of the instances. Based on the information about the underlying
instance sets, ALNS is selected as more suitable and was used for the evaluation
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working regulations, which relates to research goal three. Scenarios with different
working regulations were solved and the effects regarding the constraint violations
and changes in working time investigated. On the one hand, the analysis showed
that many working regulations are violated if they are omitted from the method. On
the other hand, there was only a slight increase in working time for the instances and
method used in the analysis. We can conclude that the consideration of regulations
was essential to achieve legal plans and the increase in working time was small.
The ALNS heuristic was extended to a dynamic setting in Chapter 7 to address

the fourth research goal. Several continuity metrics were defined for the three types
continuity of time, continuity of care and continuity of duty schedules. The latter was
newly introduced to the context of home care routing and scheduling in this thesis.
All metrics can handle several types of changes over time and not only the arrival
of new clients. Furthermore, different possibilities to measure continuity based on
the selection of weeks to compare were presented. The continuity metrics created a
multi-objective optimization that was addressed with to weighted sum approach. On
the basis of the metrics, a rolling horizon approach was proposed that can be used
for regular weekly planning. The evaluation of the heuristic for a dynamic setting
consisted of several analyses. The instances used for the evaluations are based on the
static instances extended to a dynamic setting using a Poisson process for simulat-
ing the changes over time. First, the most suitable metric for each continuity type
was selected based on a four week planning horizon for the proposed instances (fifth
research goal). The results showed that most of the metrics have a positive effect on
the continuity in a weighted objective function with the tour length. The tour length
increased on average by 5.6% when continuity was considered as equally important
part of the objective (in addition to the tour length) but the continuity was clearly
improved for all types. Second, the rolling horizon approach was investigated re-
garding the length of the planning interval considered and whether a time-dependent
weighting of continuity in the objective is reasonable. The conclusion was that con-
sidering only the previous and current week leads to a higher continuity within the
same computation time than having a longer planning interval by including future
weeks. When several weeks are considered at the same time, weighting the continu-
ity in later periods less than in earlier periods led to an improvement of continuity.
Finally, three scenarios with different degrees of fluctuations of demand were ana-
lyzed. The results indicated that larger fluctuations make it harder to achieve a good
continuity.
To summarize the thesis, we can point out that all research goals derived from

the state-of-the-art were successfully addressed in this thesis. The relevant working
regulations were integrated into exact and heuristic solution approaches for the rout-
ing and scheduling of home care providers. The heuristics provided good results in
reasonable computation time for real-world sized instances. The problem was also
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addressed in a dynamic setting by an extended heuristic solution approach which en-
sures feasibility and continuity between planning periods to improve client and nurse
satisfaction in addition to minimizing the tour lengths. Different continuity met-
rics were successfully evaluated and appropriate ones chosen for the rolling horizon
approach.
The instance sets used for the evaluation in this thesis were artificially generated

to represent the real-world application. Additionally, test sets from previous research
were used to analyze the performance on different data. To provide further insights
into the performance of the proposed methods, the heuristic approaches should be
evaluated on real-world data sets from several home care providers. The resulting
schedules could be compared with the plans of a human planner. This could reveal
the optimization potential and reduction of planning effort compared to a manual
planning. Additionally, the solutions methods can be integrated into a decision sup-
port system to provide a tool that can used in practical application.

8.2. Opportunities for future research

There are several aspects that offer potential for future research. Other requirements
from practice that are already modeled in the literature about home care routing and
scheduling, like multiple transportation modes or time interdependencies between
jobs, can also be integrated with the working regulations to add further details to
the problem setting. The proposed methods in this thesis should be applied to related
planning problems, like the technician routing or the skill vehicle routing problem,
to ensure working regulations that are also important in these areas.
Different degrees of uncertainty are interesting to investigate, especially in the

dynamic setting. The future demands of clients can vary and the fluctuations could
be integrated in a stochastic programming or robust optimization approach to take
the uncertainty into account. Furthermore, the uncertainty of driving or service times
on a daily level should be considered together with the working regulations because
they can cause overtime. Stochastic or dynamic routing problems could provide the
basis for this scenario.
Regarding the methods proposed in this thesis, several extensions are possible.

To solve the proposed MIP formulation for larger instances, the development of
advanced exact solution approaches, like Branch-and-Price, is preferable. They can
take domain knowledge into account to reduce computation times and improve the
solution quality. For the dynamic setting, further advanced continuity metrics can
be investigated for their capabilities of ensuring continuity between periods. The
currently proposed weighted sum approach could be replaced by a multi-objective
solution approach that explicitly considers multiple criteria and enables a Pareto
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optimization. The result would be a set of indifferent solutions from which the
planner can choose the best one regarding his or her preferences.
Finally, the operational planning problem considered in this thesis is influenced

by many decisions made on a strategic or tactical level, e.g, resource allocation,
staffing decisions or the selection of the geographical area to cover. To evaluate the
influences of these decisions on the operational planning problem is another research
opportunity.
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Appendix A.

Instance information

This section provides the detailed instance information of the generated instances in
the small set (Table A.1) and test set (Table A.2). The details on the size of the
instances is given by the number of clients, jobs, nurses and days in the planning
horizon. Furthermore, the attributes of some considered working regulations are
given in the columns Unavail., Rotations and Apprentice. Unavail. indicates whether
there are unavailabilities of nurses considered in the instance (e.g. vacations). If
Rotations is true, some of the full-time nurses in the instance are working according
to shift rotations. Apprentice indicates whether there are apprentices among the
nurses that require different break and rest time regulations.
The instances are available for download at http://hc.guericke.org/.

Table A.1.: Test set instances - Set small
Name Clients Jobs Nurse Days Unavail. Rotations Apprentice

S-01 5 5 2 1 False False False
S-02 5 7 2 1 False False False
S-03 10 10 2 1 False False False
S-04 9 10 2 1 False False False
S-05 10 12 3 2 False False False
S-06 10 11 2 1 False False False
S-07 4 16 3 3 False True False
S-08 9 10 4 1 False True False
S-09 10 11 3 1 False False False
S-10 10 11 4 1 False False False
S-11 10 10 2 1 False False False
S-12 10 15 3 2 False False False
S-13 10 13 2 1 False False False
S-14 9 19 4 2 False True False
S-15 15 16 3 1 False False False
S-16 14 28 4 2 False True False
S-17 5 40 3 8 False True False
S-18 10 27 3 3 False False False
Continued on next page
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Appendix A. Instance information

Table A.1 – Continued from previous page
Name Clients Jobs Nurse Days Unavail. Rotations Apprentice

S-19 15 16 3 1 False False False
S-20 20 21 4 1 False False False
S-21 12 22 4 2 False False False
S-22 15 20 4 2 False False False
S-23 14 47 4 3 False True False
S-24 15 43 3 3 False False False
S-25 10 64 4 7 False False False
S-26 6 168 6 14 False True False
S-27 20 53 4 3 False False False
S-28 10 300 6 15 False True False
S-29 10 60 5 3 False True False
S-30 20 21 4 1 False False False

Table A.2.: Test set instances - Sets G1-G4
Name Clients Jobs Nurse Days Unavail. Rotations Apprentice

G1-01 40 275 18 7 False False False
G1-02 40 255 17 7 False False False
G1-03 50 320 24 7 False False False
G1-04 30 175 10 7 False False False
G1-05 40 249 19 7 False False False
G1-06 60 395 25 7 False False False
G1-07 50 681 26 14 False False False
G1-08 30 378 9 14 False False False
G1-09 50 640 27 14 False False False
G1-10 40 525 21 14 False False False
G1-11 40 484 22 14 False False False
G1-12 60 744 33 14 False False False
G2-01 30 192 16 7 True False False
G2-02 25 154 10 7 True False False
G2-03 25 156 10 7 True False False
G2-04 50 318 24 7 True False False
G2-05 60 388 20 7 True False False
G2-06 20 126 6 7 True False False
G2-07 25 148 10 7 True False False
G2-08 25 293 14 14 True False False
Continued on next page
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Table A.2 – Continued from previous page
Name Clients Jobs Nurse Days Unavail. Rotations Apprentice

G2-09 50 647 27 14 True False False
G2-10 40 510 21 14 True False False
G2-11 60 741 28 14 True False False
G2-12 25 306 13 14 True False False
G2-13 60 766 33 14 True False False
G3-01 25 316 10 14 True True False
G3-02 30 384 15 14 True True False
G3-03 40 497 18 14 True True False
G3-04 50 647 25 14 True True False
G3-05 40 525 17 14 True True False
G3-06 30 388 13 14 True True False
G3-07 25 300 10 14 True True False
G3-08 30 349 10 14 True True False
G3-09 40 506 19 14 True True False
G3-10 40 991 20 28 True True False
G3-11 20 525 8 28 True True False
G3-12 30 731 9 28 True True False
G3-13 40 1067 22 28 True True False
G3-14 60 1508 28 28 True True False
G3-15 30 735 17 28 True True False
G3-16 40 1013 22 28 True True False
G4-01 20 251 8 14 True True True
G4-02 25 303 13 14 True True True
G4-03 30 393 17 14 True True True
G4-04 40 512 22 14 True True True
G4-05 60 753 33 14 True True True
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Appendix B.

Detailed results for the exact approach in a static
setting

Table B.1 in this section states the detailed results for the exact approach in a static
setting with 12 hours computation time. For each instance the results of the three
settings Hard, Soft and Soft+Start are stated. The objective value and remaining
gap between lower and upper bound are given in the columns Obj and Gap (in
%), respectively. Note that the objective value in the latter two cases (Soft and
Soft+Start) can contain penalty costs. The objective and gap values are presented
for all three settings. In contrast to this, the tour length without penalty costs (TL),
the number of unassigned jobs (|U|) and single shifts on weekends (WE) are stated
only for the settings Soft and Soft+Start because the setting Hard does not relax the
respective constraints.
The MIP objective and bound for the setting Soft+Start and 48 hours computation

time are given in Table C.5 together with the results for the heuristics.
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Table B.1.: MIP results for entire test set
Hard Soft Soft + Start

Name Gap Obj Gap Obj TL |U| WE Gap Obj TL |U| WE
CS1-01 4.77 2164 5.40 2169 2169 0 0 3.84 2142 2142 0 0
CS1-02 2.72 2057 2.43 2051 2051 0 0 2.78 2051 2051 0 0
CS1-03 2.76 2041 2.96 2041 2041 0 0 2.81 2041 2041 0 0
CS1-04 3.05 2036 3.18 2045 2045 0 0 2.99 2040 2040 0 0
CS1-05 4.14 2244 5.96 2281 2281 0 0 4.97 2269 2269 0 0
CS1-06 5.40 2284 5.18 2277 2277 0 0 5.22 2285 2285 0 0
CS1-07 3.55 2345 3.23 2345 2345 0 0 3.21 2345 2345 0 0
CS1-08 - - 1.60 3369 3369 0 0 1.60 3369 3369 0 0
CS1-09 - - 1.49 3356 3356 0 0 1.70 3356 3356 0 0
CS1-10 - - 1.51 3690 3690 0 0 1.60 3696 3696 0 0
CS1-11 - - 4.05 3853 3853 0 0 4.62 3876 3876 0 0
CS2-01 7.45 2939 99.98 12002512 2512 12 0 6.56 2911 2911 0 0
CS2-02 8.38 2964 9.00 3000 3000 0 0 7.36 2930 2930 0 0
CS2-03 - - 7.11 2956 2956 0 0 7.65 2942 2942 0 0
CS2-04 - - 3.95 2872 2872 0 0 3.55 2874 2874 0 0
CS2-05 - - 3.98 2893 2893 0 0 4.40 2904 2904 0 0
CS2-06 - - 4.19 2874 2874 0 0 3.54 2867 2867 0 0
CS2-07 - - 4.65 2969 2969 0 0 4.19 2959 2959 0 0
CS2-08 - - 4.24 2962 2962 0 0 4.33 2977 2977 0 0
CS2-09 - - 4.75 2991 2991 0 0 4.68 2989 2989 0 0
CS2-10 - - 4.67 2994 2994 0 0 3.01 2955 2955 0 0
CS2-11 - - 99.70 1003194 3194 1 0 99.69 1003269 3269 1 0
CS3-01 - - 99.50 1005164 5164 1 0 99.50 1005148 5148 1 0
Continued on next page
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Table B.1 – Continued from previous page
Hard Soft Soft + Start

Name Gap Obj Gap Obj TL |U| WE Gap Obj TL |U| WE
CS3-02 - - 99.49 1005201 5201 1 0 99.49 1005158 5158 1 0
CS3-03 - - 99.50 1005180 5180 1 0 99.50 1005239 5239 1 0
CS3-04 - - 3.32 5306 5306 0 0 2.94 5274 5274 0 0
CS3-05 - - 3.43 5297 5297 0 0 2.45 5255 5255 0 0
CS3-06 - - 4.62 5453 5453 0 0 5.32 5486 5486 0 0
CS3-07 - - 4.55 5450 5450 0 0 5.25 5502 5502 0 0
CS4-01 - - 99.37 1006748 6748 1 0 6.29 6735 6735 0 0
CS4-02 - - 5.88 6687 6687 0 0 6.49 6731 6731 0 0
CS4-03 - - 99.95 12006349 6349 12 0 6.02 6735 6735 0 0
CS4-04 - - 99.99 95007137 7137 95 0 6.93 10987 10987 0 0
G1-01 - - 99.98 44009725 9725 44 0 62.66 25076 12116 0 1
G1-02 - - 99.95 19009783 9783 19 0 16.57 10577 10577 0 0
G1-03 - - 99.98 55011589 11589 55 0 13.35 13026 13026 0 0
G1-04 - - 6.54 9453 9453 0 0 6.47 9493 9493 0 0
G1-05 - - 99.99 106008137 8137 106 0 99.71 4030264 17304 4 1
G1-06 - - 99.99 264007139 7139 264 0 99.86 13023274 23274 13 0
G1-07 - - - - - - - 80.00 112469 34709 0 6
G1-08 - - 99.92 17015698 15698 17 0 99.95 27044602 18682 27 2
G1-09 - - - - - - - 68.79 69096 30216 0 3
G1-10 - - 99.99 196014491 14491 196 0 80.09 94773 29973 0 5
G1-11 - - 99.99 155017703 17703 155 0 99.44 4029109 29109 4 0
G1-12 - - - - - - - 96.98 1086343 47463 1 3
G2-01 3.97 6884 4.78 6938 6938 0 0 87.18 51567 12687 0 3
G2-02 1.38 5094 0.73 5063 5063 0 0 0.68 5062 5062 0 0
G2-03 0.76 5858 0.66 5847 5847 0 0 99.43 1021013 8053 1 1

Continued on next page
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Table B.1 – Continued from previous page
Hard Soft Soft + Start

Name Gap Obj Gap Obj TL |U| WE Gap Obj TL |U| WE
G2-04 - - 99.99 106009747 9747 106 0 98.89 1043390 17470 1 2
G2-05 - - 99.99 116011145 11145 116 0 99.66 4030683 17723 4 1
G2-06 - - 17.30 5734 5734 0 0 16.00 5646 5646 0 0
G2-07 2.65 7946 2.25 7948 7948 0 0 2.42 7952 7952 0 0
G2-08 - - 7.11 10772 10772 0 0 82.04 55737 16857 0 3
G2-09 - - - - - - - 67.61 70178 31298 0 3
G2-10 - - 99.99 152013862 13862 152 0 99.15 2035297 22337 2 1
G2-11 - - - - - - - 56.73 58273 32353 0 2
G2-12 - - 99.19 2017372 17372 2 0 99.77 7047938 22018 7 2
G2-13 - - - - - - - 83.92 200649 58089 0 11
G3-01 - - 99.63 3011994 11994 3 0 99.46 2057388 18508 2 3
G3-02 - - 99.97 49012919 12919 49 0 98.85 1131389 27709 1 8
G3-03 - - 99.98 68018036 18036 68 0 88.75 150769 34129 0 9
G3-04 - - 99.99 269016229 16229 269 0 86.96 170329 40729 0 10
G3-05 - - 99.99 181015718 15718 181 0 99.99 181015718 15718 181 0
G3-06 - - 99.97 50013768 13768 50 0 85.89 104459 26699 0 6
G3-07 - - 99.96 36014943 14943 36 0 99.51 3105523 27763 3 6
G3-08 - - 99.96 49032372 19412 49 1 99.96 50033505 20545 50 1
G3-09 - - 99.99 266014663 14663 266 0 99.52 5119829 42069 5 6
G3-10 - - - - - - - 85.10 226817 58337 0 13
G3-11 - - 99.79 9020646 20646 9 0 99.84 12152435 35795 12 9
G3-12 - - 99.98 133024952 24952 133 0 99.95 57116482 38722 57 6
G3-13 - - - - - - - 85.72 263097 68697 0 15
G3-14 - - - - - - - 86.15 381597 96477 0 22
G3-15 - - 99.99 318023905 23905 318 0 86.47 262033 67633 0 15

Continued on next page
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Table B.1 – Continued from previous page
Hard Soft Soft + Start

Name Gap Obj Gap Obj TL |U| WE Gap Obj TL |U| WE
G3-16 - - - - - - - 81.59 268692 87252 0 14
G4-01 - - 99.91 11009725 9725 11 0 99.88 8040160 14240 8 2
G4-02 - - 99.96 38015105 15105 38 0 98.63 1076210 24370 1 4
G4-03 - - 99.98 120015976 15976 120 0 76.19 82704 30864 0 4
G4-04 - - 99.99 179017817 17817 179 0 85.68 160553 43913 0 9
G4-05 - - - - - - - 99.47 6232858 64378 6 13

TH1-01 0.00 4331 0.00 4331 4331 0 0 0.00 4331 4331 0 0
TH1-02 1.52 6707 1.95 6707 6707 0 0 1.88 6707 6707 0 0
TH1-03 1.67 7231 1.57 7231 7231 0 0 1.27 7231 7231 0 0
TH1-04 0.00 7568 0.00 7568 7568 0 0 0.00 7568 7568 0 0
TH1-05 1.31 8487 3.02 8487 8487 0 0 1.18 8487 8487 0 0
TH1-06 0.00 8991 0.00 8991 8991 0 0 0.00 8991 8991 0 0
TH1-07 6.12 8659 4.65 8651 8651 0 0 4.68 8659 8659 0 0
TH2-01 0.00 10443 0.00 10443 10443 0 0 0.00 10443 10443 0 0
TH2-02 0.25 7544 0.25 7544 7544 0 0 0.33 7544 7544 0 0
TH2-03 1.42 9492 0.00 9492 9492 0 0 0.83 9492 9492 0 0
TH3-01 0.00 11087 0.00 11087 11087 0 0 0.00 11087 11087 0 0
TH3-02 - - 8.25 10787 10787 0 0 8.29 10776 10776 0 0
TH3-03 12.68 13327 12.35 13419 13419 0 0 12.60 13486 13486 0 0
TH3-04 4.42 12882 3.39 12857 12857 0 0 5.78 12855 12855 0 0
TH3-05 7.33 11039 5.66 10825 10825 0 0 6.66 10950 10950 0 0
TH3-06 - - 99.02 1011274 11274 1 0 99.02 1011085 11085 1 0
TH3-07 11.05 13966 7.91 13737 13737 0 0 8.87 13554 13554 0 0
TH3-08 - - 13.82 12925 12925 0 0 13.35 12823 12823 0 0
TH4-01 10.93 12935 9.76 12824 12824 0 0 10.62 12921 12921 0 0
Continued on next page
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Table B.1 – Continued from previous page
Hard Soft Soft + Start

Name Gap Obj Gap Obj TL |U| WE Gap Obj TL |U| WE
TH4-02 6.36 15710 6.54 15774 15774 0 0 5.79 15682 15682 0 0
TH4-03 - - 8.92 14191 14191 0 0 8.59 14141 14141 0 0
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Appendix C.

Detailed results for the heuristic approaches in a
static setting

C.1. Parameter settings before and after algorithm configuration

Tables C.1 to C.4 show the results of the algorithm configuration by GGA [Ansótegui
et al., 2009] for the construction heuristic, LNS, ALNS and RVNS, respectively. The
tables contain the following information. The column Param. indicates the name
of the parameter. The defined ranges of the parameter are given in column Range.
Furthermore, the value of the parameter before (Def. = default) and after (Tuned)
the tuning is presented. Column Description contains a short explanation of the
parameter.

Table C.1.: Default and tuned parameters for construction heuristic (time-oriented,
nearest neighbor heuristic)

Param. Range Def. Tuned Description

ωDis [0.0, 1.0] 0.1 0.24758811 Weight for distance
ωAT [0.0, 1.0] 0.4 0.58029951 Weight for added time to tour
ωRT [0.0, 1.0] 0.2 0.05444633 Weight for remaining time until time win-

dow end is reached
ωQ [0.0, 1.0] 0.3 0.11766605 Weight for qualification frequency

Table C.2.: Default and tuned parameters for LNS
Param. Range Def. Tuned Description

wStart [0.4, 0.8] 0.5 0.678123 Parameter for calculation of start tempera-
ture

fCool [0.5, 0.9999] 0.9 0.662491 Temperature cooling factor
itCool [1, 10] 1 4 In every itCool iterations the temperature is

cooled
fReheat [0.0, 1.0] 0.5 0.432538 Reheating factor (percentage of start temp.)
itReheat {50, 100, 200, 500} 100 200 Number of iterations that pass at minimum

temperature until reheating
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Appendix C. Detailed results for the heuristic approaches in a static setting

C.2. Averaged results per instance

The results for the three heuristics LNS, ALNS and RVNS are given in Table C.5 for
each instance in the test set. The instance name is given in the first column (Inst.).
The next two columns contain the objective value (Obj) and lower bound (LB) of the
MIP with the setting Soft+Start after 48 hours computation time as reference values
for the results. For each of the three heuristics the objective value (Obj) and the gap
to the MIP objective value (Gap obj) and lower bound (Gap LB) are presented. The
results of the heuristics are averaged over 10 runs with a computation time of five
minutes for each run.
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Table C.5.: Results of the three heuristics for entire test set
Inst. MIP LNS ALNS RVNS

Obj LB Obj Gap obj Gap LB Obj Gap obj Gap LB Obj Gap obj Gap LB

CS1-01 2142 2061.7 2220.6 3.54 7.16 2178.6 1.68 5.37 2170.7 1.32 5.02
CS1-02 2051 1994.1 2113.9 2.98 5.67 2086.3 1.69 4.42 2068.1 0.82 3.58
CS1-03 2041 1984.3 2099 2.76 5.47 2074.8 1.63 4.36 2051.3 0.50 3.27
CS1-04 2040 1979 2129 4.18 7.05 2075.5 1.71 4.65 2054.1 0.68 3.65
CS1-05 2262 2156.5 2329.5 2.90 7.42 2284.8 1.00 5.61 2266.3 0.19 4.84
CS1-06 2285 2165.9 2343.7 2.50 7.58 2302.7 0.77 5.94 2291.7 0.29 5.49
CS1-07 2345 2270.6 2428 3.42 6.48 2398.7 2.24 5.34 2388.7 1.83 4.95
CS1-08 3369 3315 3561.6 5.41 6.92 3425.1 1.64 3.21 3398.2 0.86 2.45
CS1-09 3356 3299 3525 4.79 6.41 3426.1 2.04 3.71 3382.6 0.79 2.47
CS1-10 3690 3638.1 3867 4.58 5.92 3781.1 2.41 3.78 3755.7 1.75 3.13
CS1-11 3876 3697 4008 3.29 7.76 3970.9 2.39 6.90 3899.3 0.60 5.19
CS2-01 2910 2720 3000 3.00 9.33 2992.9 2.77 9.12 2955.1 1.53 7.95
CS2-02 2930 2714.7 3037 3.52 10.61 3005.1 2.49 9.66 2954.5 0.82 8.11
CS2-03 2935 2717 3036 3.33 10.51 2998.6 2.11 9.38 2968.3 1.12 8.46
CS2-04 2874 2772 3003 4.30 7.69 2942.3 2.32 5.78 2893.4 0.67 4.19
CS2-05 2904 2776.2 2999 3.17 7.43 2927.6 0.80 5.16 2890.3 -0.47 3.95
CS2-06 2867 2766 2991 4.15 7.52 2956.8 3.03 6.45 2888 0.73 4.22
CS2-07 2939 2835 3088 4.83 8.19 3050.4 3.65 7.06 3007.3 2.27 5.73
CS2-08 2965 2848.2 3081.3 3.77 7.57 3053.8 2.90 6.72 2996.2 1.04 4.94
CS2-09 2985 2849 3119.7 4.32 8.68 3037.2 1.71 6.19 2992.3 0.24 4.79
CS2-10 2955 2866 3104 4.80 7.67 3048.3 3.05 5.97 3028.7 2.43 5.37
CS2-11 1003240 3061.8 1003356 0.01 99.69 1003304.4 0.01 99.69 1003271.7 0.00 99.69
CS3-01 1005146 5073 1005379 0.02 99.50 1005364.3 0.02 99.50 1005227 0.01 99.50
CS3-02 1005158 5079.5 1005371 0.02 99.49 1005342.6 0.02 99.49 1005259.7 0.01 99.49
CS3-03 1005151 5066.4 1005399 0.02 99.50 1005376.7 0.02 99.50 1005242.7 0.01 99.50
CS3-04 5267 5119 5515 4.50 7.18 5470.6 3.72 6.42 5356.8 1.67 4.44
CS3-05 5245 5126 5471 4.13 6.31 5452.6 3.80 5.99 5335.3 1.69 3.92
Continued on next page
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Table C.5 – Continued from previous page
Inst. MIP LNS ALNS RVNS

Obj LB Obj Gap obj Gap LB Obj Gap obj Gap LB Obj Gap obj Gap LB

CS3-06 5486 5194 5647 2.85 8.02 5625.8 2.48 7.67 5504 0.32 5.63
CS3-07 5479 5213 5661 3.21 7.91 5620.2 2.50 7.24 5521.4 0.77 5.58
CS4-01 6734 6311.2 6895 2.34 8.47 6892.5 2.30 8.43 6792.4 0.86 7.08
CS4-02 6730 6293.9 6928 2.86 9.15 6913.7 2.66 8.96 6818.9 1.30 7.70
CS4-03 6706 6329.4 6935 3.30 8.73 6930.3 3.24 8.67 6845.4 2.04 7.54
CS4-04 10836 10228 11040 1.85 7.36 11002.7 1.51 7.04 10802.2 -0.31 5.32
G1-01 24942 9367.7 10019.8 -59.83 6.51 9692.1 -61.14 3.35 9715.4 -61.05 3.58
G1-02 10433 8819.2 9827.3 -5.81 10.25 9344.1 -10.44 5.61 9446.7 -9.45 6.64
G1-03 13026 11293 12284.7 -5.69 8.07 11801.6 -9.40 4.31 11953.6 -8.23 5.53
G1-04 9483 8910.9 9921.4 4.41 10.18 9651.1 1.73 7.66 21291.1 49.24 52.30
G1-05 4030134 11662 14735.9 -99.63 20.85 13987.6 -99.65 16.62 14019.9 -99.65 16.81
G1-06 10023395 17909 22763.8 -99.77 21.32 21637.3 -99.78 17.22 21983.2 -99.78 18.53
G1-07 112469 22510 24897.9 -77.86 9.58 23620.5 -79.00 4.70 24000.1 -78.66 6.21
G1-08 27044601 14267 16486.9 -99.94 13.46 215698.2 -99.20 27.15 315586.5 -98.83 35.35
G1-09 69096 21680 24263.8 -64.88 10.64 22981.9 -66.74 5.66 23547.8 -65.92 7.93
G1-10 94722 18878 21184.9 -77.63 10.88 20448.9 -78.41 7.68 20742.9 -78.10 8.99
G1-11 4029162 22788 27748 -99.31 17.87 25600.9 -99.36 10.99 26299 -99.35 13.35
G1-12 1086416 32921 41536.6 -96.18 20.74 38553.2 -96.45 14.59 40280.5 -96.29 18.26
G2-01 6775 6616.4 7783.8 12.95 14.99 6890.7 1.68 3.98 6957.6 2.62 4.90
G2-02 5060 5029 5588.7 9.46 10.01 5117.3 1.12 1.72 5149.1 1.73 2.33
G2-03 5859 5809.6 6085.9 3.72 4.54 5918.9 1.01 1.85 5903.5 0.75 1.59
G2-04 43520 11614 13059.9 -69.99 11.06 12612.5 -71.02 7.91 12750.4 -70.70 8.91
G2-05 4030410 13552 14922.8 -99.63 9.18 14380.1 -99.64 5.76 14403.4 -99.64 5.91
G2-06 1005370 4726.6 1505517.4 24.94 99.65 1605460.1 29.93 99.67 2305528.8 54.87 99.79
G2-07 7946 7761 8514.4 6.67 8.84 8120.8 2.15 4.43 8150.1 2.50 4.77
G2-08 55737 10016 11436 -79.48 12.40 10278.3 -81.56 2.55 10531.8 -81.10 4.89
G2-09 70253 22783 25674.4 -63.45 11.26 24530 -65.08 7.12 25120.2 -64.24 9.30
G2-10 2035580 17316 19765.4 -99.03 12.38 18679.6 -99.08 7.30 18936.6 -99.07 8.56
G2-11 58199 25320 28711.8 -50.67 11.81 27273.1 -53.14 7.16 27712.4 -52.38 8.63
Continued on next page
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Table C.5 – Continued from previous page
Inst. MIP LNS ALNS RVNS

Obj LB Obj Gap obj Gap LB Obj Gap obj Gap LB Obj Gap obj Gap LB

G2-12 17198 16338 18767.3 8.36 12.94 17957.4 4.22 9.01 18018.5 4.54 9.32
G2-13 200660 32404 41059.2 -79.54 21.08 37584.4 -81.27 13.78 39940.1 -80.10 18.86
G3-01 2057388 11147 12837 -99.38 13.16 11729.5 -99.43 4.95 11712.1 -99.43 4.82
G3-02 1131389 12971 14558 -98.71 10.89 13487.3 -98.81 3.82 13441.5 -98.81 3.50
G3-03 150769 16976 19978.9 -86.75 15.02 17673.1 -88.28 3.94 18025.6 -88.04 5.82
G3-04 170329 22232 24013.4 -85.90 7.41 23358.1 -86.29 4.82 23598.1 -86.15 5.79
G3-05 169045011 19145 21716.3 -99.99 11.83 20793.4 -99.99 7.93 21091.8 -99.99 9.23
G3-06 104459 14761 16618.8 -84.09 11.18 15559 -85.11 5.13 15709.1 -84.96 6.03
G3-07 3105523 15263 17405.8 -99.44 12.31 16725.2 -99.46 8.74 16696.1 -99.46 8.58
G3-08 50033505 18539 3121466.2 -93.76 99.27 4832208.7 -90.34 99.51 2823728.2 -94.36 99.26
G3-09 5119796 24599 30984 -99.39 20.60 29710.9 -99.42 17.20 30180.9 -99.41 18.49
G3-10 226817 33831 36647 -83.84 7.68 35292.1 -84.44 4.14 35588.4 -84.31 4.94
G3-11 12166837 19119 22319.4 -99.82 14.33 22112.9 -99.82 11.27 20597.5 -99.83 7.17
G3-12 56116528 27074 7533017.2 -86.58 99.63 9136508.6 -83.72 99.67 9139087.9 -83.71 99.69
G3-13 263097 37717 42856.4 -83.71 11.98 41216.2 -84.33 8.49 41530.9 -84.21 9.18
G3-14 381597 53025 60176.9 -84.23 11.88 59182.6 -84.49 10.40 60908.8 -84.04 12.94
G3-15 262033 35477 44427.9 -83.04 20.14 41620.3 -84.12 14.76 42766.4 -83.68 17.04
G3-16 268692 49674 62963.8 -76.57 21.10 61173.6 -77.23 18.79 62964.3 -76.57 21.10
G4-01 8040160 9526 10577.9 -99.87 9.94 10230.2 -99.87 6.88 10150.7 -99.87 6.15
G4-02 1076210 14765 17136.1 -98.41 13.83 16403.5 -98.48 9.98 16392.7 -98.48 9.93
G4-03 82704 19782 23506.6 -71.58 15.84 22531.9 -72.76 12.20 22898.2 -72.31 13.60
G4-04 160553 22993 27935.1 -82.60 17.68 26466 -83.52 13.12 27216.1 -83.05 15.52
G4-05 6232840 33607 44003.6 -99.29 23.62 41671.9 -99.33 19.35 43515.3 -99.30 22.77
TH1-01 4331 4331 4368.6 0.86 0.86 4335.4 0.10 0.10 4341.9 0.25 0.25
TH1-02 6707 6635.6 7632.3 12.12 13.05 6856.7 2.18 3.22 6832.2 1.83 2.87
TH1-03 7231 7161.4 7893 8.38 9.26 7350.4 1.62 2.57 7398.3 2.25 3.19
TH1-04 7568 7568 8085.2 6.38 6.38 7634.8 0.87 0.87 7664.6 1.25 1.25
TH1-05 8487 8430.4 8919.3 4.84 5.48 8633.5 1.69 2.35 208695.9 21.84 22.36
TH1-06 8991 8991 9840.8 8.63 8.63 9214.1 2.41 2.41 409379.2 42.09 42.09
Continued on next page
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Table C.5 – Continued from previous page
Inst. MIP LNS ALNS RVNS

Obj LB Obj Gap obj Gap LB Obj Gap obj Gap LB Obj Gap obj Gap LB

TH1-07 8659 8282.3 9429.8 8.16 12.16 8930.4 3.03 7.25 9188.6 5.71 9.81
TH2-01 10443 10443 1010169 98.97 98.97 1009823.1 98.97 98.97 1009888.9 98.97 98.97
TH2-02 7544 7521.6 8535.6 11.61 11.87 7837.3 3.73 4.02 7975.8 5.40 5.68
TH2-03 9492 9492 11013.9 13.81 13.81 9665.8 1.79 1.79 9824.6 3.37 3.37
TH3-01 11087 11087 12156.2 8.79 8.79 11280.9 1.72 1.72 11246.5 1.42 1.42
TH3-02 10916 9909.8 411986 45.92 50.90 211172.9 22.08 29.26 1011094.5 60.38 64.03
TH3-03 13438 11762 14721.6 8.72 20.10 13861.1 3.05 15.14 814038.9 70.46 74.15
TH3-04 12862 12407 14401.8 10.69 13.85 13334.2 3.54 6.95 313569.1 33.33 35.69
TH3-05 10925 10240 12169.8 10.22 15.85 11403 4.18 10.19 11674.4 6.41 12.27
TH3-06 1011107 9934 2012890.2 49.77 99.51 2111870.3 51.41 99.52 2012374.9 49.76 99.51
TH3-07 13788 12476 14987.7 7.99 16.74 514442.9 51.00 55.66 314822.4 34.66 40.88
TH3-08 12842 11134 14070 8.70 20.84 113362.2 13.39 24.90 113606.4 15.02 26.32
TH4-01 12972 11580 14880.6 12.82 22.17 13639.7 4.86 15.07 13721.7 5.45 15.60
TH4-02 15626 14810 17677 11.60 16.21 116242.4 13.19 17.72 16451.5 5.00 9.96
TH4-03 14173 12931 16237.8 12.71 20.36 15053.8 5.84 14.09 14795.7 4.20 12.59
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C.3. Additional figures

This section contains additional figures for the analysis of the results of the heuristics.

Figures C.1 and C.2 show the comparison of LNS and RVNS results to the MIP
results based on the gaps to the MIP objective value and lower bound (values on
the primary y-axis) and the violations of soft constraints (values on the secondary
y-axis). For each dataset one subfigure is given.
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Figure C.1.: Comparison of LNS to MIP results
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Figure C.2.: Comparison of RVNS to MIP results
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Appendix C. Detailed results for the heuristic approaches in a static setting
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Figure C.3.: Auto correlation of heuristic runs

The autocorrelation for the pairwise differences of the heuristics results is depicted
in Figure C.3. The values used for this analysis are the differences in the gaps to the
MIP bound.
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C.3. Additional figures
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Figure C.4.: Empirical distribution of the difference between the gaps to the MIP
bound of LNS-RVNS

The empirical distribution of the difference between the gaps of the heuristics LNS
and RVNS is shown in Figure C.4.
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Figure C.5.: Influence of computation time on heuristics based on test set data

The improvement of using 15 minutes compared to 5 minutes computation time are
shown in Figure C.5 for each heuristic separately. The x-axis indicates the gap to
the MIP best bound after 15 minutes and the y-axis the gap after 5 minutes.
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Appendix D.

Normalization factors and additional formulas for
continuity metrics
D.1. Normalization factors
The normalization for the continuity metrics presented in Section 7.2.1 are given
by Equations (D.1) to (D.8). The worst cases are calculated based on the instance
information not by values in the solutions.
The worst case for the continuity of time metrics is, if a job j is moved from the

beginning of its time window ai to the end bi or vice versa, which is the maximum
possible deviation for one job. To have an equally strong consideration of all jobs, the
maximum deviation of all jobs per weeks multiplied by the number of jobs (|J C

w |) is
used as normalization factor. If the worst case for each job individually would be used,
the shift of one minute in short time windows would be weighted more than the same
shift in a longer time windows. For CoTNormMax only the maximum is considered.
The formulas for the normalization factors of metrics CoT Sum, CoTMax, CoT t, and
CoTQuad are the following:

CoTNormSumw = max
j∈JC

w

{|aj − bj|}|J C
w | (D.1)

CoTNormMax
w = max

j∈JC
w

{|aj − bj|} (D.2)

CoTNormTw = max
j∈JC

w

{|aj − bj|}|J C
w | (D.3)

CoTNormQuadw = max
j∈JC

w

{(aj − bj)2}|J C
w | (D.4)

The worst case for the continuity of care metric based on nurse reassignments of
clients is when a client had no nurses assigned and in the next week all nurses are
assigned or vice versa. The normalization factor CoCNormClient (D.5) multiplies the
number of nurses with the number clients to determine the value for each week.

CoCNormClient
w = |Nw||Cw| (D.5)

The normalization factor CoCNormClient (D.6) for the job-based continuity of care
assumes a new assigned nurse for every job.

CoCNormJob
w = |J C

w | (D.6)
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Appendix D. Normalization factors and additional formulas for continuity metrics

The normalization factors for the continuity of duty schedule metrics CoDType and
CoDT ime are stated in Equations (D.7) and (D.8). The worst case for the number of
shift type changes is a shift type change on each day of the week. This case is used
in CoDNormType

w (D.7).

CoDNormType
w = 7|Nw| (D.7)

The maximum time deviation for shift start and end times is a change from earliest
possible time on the day to the latest possible time. The earliest and lastest times are
determined based on the shift types and their time windows [As, Bs]. The maximum
is multiplied by 14 for the seven days in the week and the two values (start and end).

CoDNormTime
w = 14

(
max
s∈S
{Bs} −min

s∈S
{As}

)
(D.8)

D.2. Definitions of continuity modes for remaining metrics

This section presents the formulas for the continuity metrics in different continuity
modes.
The metric CoTMax for the continuity modes ToPrevious and ToReference is given

in Equations (D.9) and (D.10), respectively. In the former case, the maximum differ-
ence between the consecutive weeks is determined. In the latter case, the deviation
to the given reference week is used as basis. The modes Total and TotalRef are not
defined for CoTMax.

ToPrevious/ToPrevRef.: CoTMax =
∑
w∈W

max
g∈Gw

{
|zg,w − zg,w−1|

}
(D.9)

ToReference: CoTMax =
∑
w∈W

max
g∈Gw

{
|zg,w − zg,1|

}
(D.10)

The metrics CoT t and CoTQuad are defined for the different continuity modes sim-
ilar to CoT Sum as presented in Section 7.2.3. In the modes ToPrevious and ToPre-
viousPref the deviation to the previous week is calculated whereas the difference to
reference week is taken into account in mode ToReference. The deviations in each
job group based on the entire planning period is used as basis for the modes Total
and TotalRef. The respective Equations are (D.11) to (D.16).

ToPrevious/ToPrevRef.: CoT t =
∑
g∈G

∑
w∈Wg

max{θ, |zg,w − zg,w−1|} (D.11)

ToReference: CoT t =
∑
g∈G

∑
w∈Wg

max{θ, |zg,w − zg,1|} (D.12)
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D.2. Definitions of continuity modes for remaining metrics

Total/TotalRef: CoT t =
∑
g∈G

max{θ, max
w∈Wg

{zg,w} − min
w∈Wg

{zg,w}}

(D.13)

ToPrevious/ToPrevRef.: CoTQuad =
∑
g∈G

∑
w∈Wg

max{θ, (zg,w − zg,w−1)2}

(D.14)
ToReference: CoTQuad =

∑
g∈G

∑
w∈Wg

max{θ, (zg,w − zg,1)2} (D.15)

Total/TotalRef: CoTQuad =
∑
g∈G

max{θ, (max
w∈Wg

{zg,w} − min
w∈Wg

{zg,w)2}}

(D.16)

Only the continuity modes ToPrevious, ToPreviousRef and ToReference are defined
for metric CoCJob in Equations (D.18) and (D.20). The difference is the week con-
sidered as comparison in (D.17) and (D.19). In the former case the previous week is
taken and in the latter case the reference week is used.

ToPrevious/ToPreviousRef: γg,w =
{

1, if ng,w 6= ng,w−1

0, otherwise
(D.17)

CoCJob =
∑
g∈G

∑
w∈Wg

γg,w (D.18)

ToReference: γ′g,w =
{

1, if ng,w 6= ng,1

0, otherwise
(D.19)

CoCJob =
∑
g∈G

∑
w∈Wg

γ′g,w (D.20)

For the continuity of duty schedules metric CoCType only the continuity modes ToPre-
vious, ToPreviousRef and ToReference are defined. Again, the difference is the week
considered as comparison in (D.17) and (D.19). In the former case the day in the
previous week (d − 7) is taken and in the latter case the day in the reference week
(d− 7w) is used.

ToPrevious/ToPreviousRef: ψn,d =
{

1, if sn,d 6= sn,d−7

0, otherwise
(D.21)

CoDType =
∑

n∈N\{NR}

∑
w∈Wn

∑
d∈w

ψn,d (D.22)
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Appendix D. Normalization factors and additional formulas for continuity metrics

ToReference ψ′n,d =
{

1, if sn,d 6= sn,d−7w

0, otherwise
(D.23)

CoDType =
∑

n∈N\{NR}

∑
w∈Wn

∑
d∈w

ψ′n,d (D.24)

(D.25)

The normalization factors presented in the previous section have to adapted if one
of the modes ToReference, Total or TotalRef is used.
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Appendix E.

Further results for the solution approach in a dynamic
setting

E.1. Comparison of continuity metrics with weight 1.0

Additional boxplot diagrams for the continuity types time, care and duty schedules
are given in Figures E.1, E.2 and E.3, respectively. The weight of the metrics is 1.0
which means that the tour length is neglected in the objective function.
The values in Figure E.1 are the maximum deviation of start times in each job

group. Figures E.2(a) and E.2(b) show the number of nurses assigned to each client
and the percentage of jobs in one job group with nurse change, respectively. Figures
E.3(a) and E.3(b) show the number of shift type changes per nurse and the deviations
in start and end times, respectively.
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Figure E.1.: Boxplot diagram for continuity of time metrics with weight 1.0. Data
points represent the maximum deviation in a job group

235



Appendix E. Further results for the solution approach in a dynamic setting

Tour length CoC Client CoC Job

0
5

1
0

1
5

2
0

N
u

m
b

e
r 

o
f 

n
u

rs
e

s

(a) Continuity of care per client. Data points
represent the average number of nurses as-
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Figure E.2.: Boxplot diagrams for continuity of care metrics with weight 1.0
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(a) Continuity of duty schedules based on
shift types. Data points represent the aver-
age sum of shift type changes in the planning
horizon
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Figure E.3.: Boxplot diagrams for continuity of duty schedules with weight 1.0
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E.2. Influence of time-dependent weighting in two week planning period

E.2. Influence of time-dependent weighting in two week planning
period

The results for the influence of time-dependent weighting in a two week planning
period are given in Figure E.4 for each metric separately. The used time-factors are
1.0, 0.5 and 0.25. The values are normalized based on the value for a time-factor of
1.0. The x-axis indicates the focus weeks (bottom) and weeks in the planning period
(top).
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Figure E.4.: Influence of time-dependent weighting in a two week planning horizon
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E.3. Analysis of planning period length for scenarios increase and
extreme

The results for the different lengths of planning periods for the scenarios increase
and extreme are given in Figures E.5 and E.6, respectively. The relative values for a
planning period of length 4 weeks, 2 weeks and 1 week are compared to each other
whereas the value with 1 week planning period is the reference value. The x-axis
indicates the metric (bottom) and the planning week (top).
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Figure E.5.: Comparison of planning period length in a rolling horizon setting for
increase scenario
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E.3. Analysis of planning period length for scenarios increase and extreme
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