MULTILEVEL SIMULATION TECHNIQUES

Franz J. Rammig

Universitdt-GH Paderborn

0. Abstract

Caused by the increasing complexity of design objects simulation on
higher levels of abstraction becomes more and more important. It is discussed

in this paper how simulation on various levels of abstraction can be
integrated.

At first the levels of abstraction and the modelling concepls used are
investigated. Then the three main simultation techniques (straightline code,
cquitemporal iteration, and event scheduling) are discussed. Finally two
approaches to multilevel simulation are compared. They are characterized as
Multi Simulation Approach and Broadband Approach. The first one tries to
offer multilevel simulation by combining dedicated simulators while the
second on tries to provide a unified concept for all levels envolved.

1. Levels of Abstraction

Highly complex digital sysiems have 1o be described at various levels of
abstraction. Higher levels allow the modelling of entire systems while lower
levels are necessary for detailled studies of single components. 1t should be
notcd that abstraction and hicrarchy are orthogonal concepts. A level of
abstraction is constituied by certain modelling concepts while a hierarchy
arganizes an object in a treestructured manner. On each level of abstraction a
tierarchical description may be provided. On the other hand within 2 hierarch-
ical description differcnt components may be described at different levels of
abstraction.

There is o “standard” on levels of abstraction, but the following system
seems (o be widely accepied. This system consist of six levels, level o (electr-
ical fevel) being the lowest one and level 5 (system level) being the highest

one. As we are concentrating on simulation only behavioural aspects of sys-
tems are of interest.

Level & System Level

The modelling concept on this level is given by a system of cooperating
semi-atonomous modules like processors, channels, etc.. All these com-
ponenus are viewed at as “processors” in a wider sense, ie. a device that
reacts in a well defined way on instructions. So abstract data types (ADT) are
a well suted point of view for this level. Usually the iming mode! is reduced
to a causality structure. At observation points arbivrary values within a freely
definable finite domain may occur. SIMULA (3} may serve as the typical

dedicated Tanguage for this level, but also OCCAM {14] can be used for this
purpose.

Level 40 Algonithmic Level

The components of the system level being processors in 2 wider sense,
e component the inlerpretation algorithm of the instruction set has 1o be
defined. This 15 done at the algorithmic level. Usually this interpretation algo-
rithi is & highly concurrent one (c.g. if pipelining is envolved). Therefore
moddelling concepts like CCS {17] or Interpreted Petri Nets {20] seem 1o be
best suited for this purpose. For a compositional view we have 1o distinct
between components of the overall structure of the algorithm fike toops or
forl/jom constructs and components of the operational part of the description.
Here usually rather hardware-oriented components like registers or busses are
used. In most cases &t this level of abstraction stll a causality structure is
gsed as uming model. In some cases it makes sense 10 introduce a first clock-
ing scheme. Values that can be observed are bitstings with interpretaton leg
as integers). 18PS {2] is the best known dedicated language at this level. .

Level 3. Repister Transfer Level

Thje RT level may be charcierized as inveried Algorithmic lev
glgbal view of the algorithm (imperative view) is rep)acid by ;Cc:;n::;nzste-
oriented reactive view. The system now is described by a collection of com-
ponents shaxjng SOme common connection lines. Each component is passive
unti! a centain condition becomes true. Whenever this happens the components
perform a well dgﬁned action that may influence the conditions of other com-
ponents. The typical observable valug is the bitstring, CDL {5) may serve as
the classical example for a dedicated lan

guage at this level. Mo
examples are DDL (7], CASSANDRE (15}, RTS {18}, and KARL [m[f foeent

CH2417-4/87/0000/0188801.00 € 1987 [EEE

Level 22 Gate Level

Gate level descriptions are obtained by simply expanding the com-
ponents of the RT level to gate level implementations, i.e. ta interconnection
structares of gates. It should be noted that by this expansion we are loosing
the information about the distinction between control and data sigoals. The
modelling concept is now a system of Boolean equations. The components art
gates and simple flipflops. The timing model is given in reat numbers. Observ-
able values are "bits" within a 2-16 valued logic. Typical dedicated languages
for this level are the description languages for gatw level simufators, €.2. the

DISIM language {12). The structural aspects of this level are also covered by
schematic entry systems.

Level 1; Switch Level

Switch level descriptions are obtained either by expanding gates ©
switch networks or by desctibing switch circuits that have no equivalent at th;
gate level. The modelling concept is giver by a finite antomaton. Jts staie 13
given by the charge distribution on the capacitances envolved. The com-
ponents are simplificd transistors (switches) and “nodes” (capacitances)
Observable values are interpreted chargings, in most cases within discretc
domain. The dming mode! is given in real numbers. The MOSSIM (4}
description language may serve as a typical dedicated language for this level.

The structural aspects af this level are also covered by stick diagrams.

They add some topological information to behavioral switch level descrip-
tions.

Level 0. Electrical Level

At this fevel the digital interpretation of a circuit is reduced 10 its and
log behaviour. The modelling concept is given by a system of diffetel[hal
equations over a real domain and with a continuous timing model in mind.
The components used are resistors, capacitances, etc.. The inpul Janguage of
SPICE [21] may serve as an example of a dedicated language for this level

The structural aspects of this level are also covered by the layout ofa

cireuit. The layout together with the parameters of the process it is made for
defines the electrical behaviour.

Unfortunately a lower level of abstraction does not automatically mean
that mose information is present. In most cases the increase of local informe
tion is paid for by loosing information about the global interaction and the
design intentions. E.g, from the algorithmic level to the RT level the informa-
tion about the algorithm to be performed is lost, at the gate level we lost the
information about the distinction between control and data signals while at the

%owest levels even the information about the logical function to be perform
is no longer present.

2. Modelling Concepts

A muhtidevel simulator has to deal with all the modelling concer's
mentioned above, To study this problem in more detail the concepts at U S
different fevels of abstractions have 1o be investigaed further.

2.1 External Modeling Concepts

Two main concepts can be identified immediately:
Continuous evaluation

- Triggered evaluation.

Continuous evaluation is used al the gate, switch, and electrical level. In .all
cases we have a sysiem of equations having 2 siable state as global soluto®
(if such a solution exists). This equilibrium may be distorbed by an X
event (stimulus) or endogenous if there is no stable state at all. In both 8%
the system tries to restablize in equlibrium. This global concept is common ©0
all three levels, only the type of the individual functions is different. In ¢
case of the gate level we have Boolean or quasi Boolean equations, i e
ease of the switch level more general but still discrete functions are envolv
while at the elecirical leve! differential equations are used.

Triggered evaluation is used at the system, algorithmic, and register
transfer level. Here we have to distinct between the active and passive view,
Le. either the system is described from the point of view of the instance that
gengrated the triggering signals or from the point of view of the comparents
that receive the triggering signals.

The algorithmic level make use of the active view only. This is the
imperative nature of an algorithm. On the other hand the RT level is com-
pletely passive. The system level with its object oriented approach is both
active and passive. A component reacts on ceriain requests (passive view) but
also explicitely causes other requests (active view).

So the modelling concepts can be summarized in the following diagram:
Modelling concept

continuous evaluation

(quasi) Boolean equations (gate level)

discrete equations (switch level)

differential equations (electrical level)
triggered evaluation

active view (system level & algorithmic level)
passive view (system level & register transfer level)

2.2 Internal Modelling Concepts
Multilevel simulation systems may either try (0 provide mechanisms for
each of the above mentioned concepts or may be based on few but powerful
internal modelling concepts where all external ones can be mapped on.
Interpreted Petri Nets may serve as an example of such a powerful
internal concept.

Def. 2.2.1
PG=(P,T,E) is called Petri Net Graph : <=>
P finite set (of "places")
T finite set (of "transitions")
ECPxTUTxP
PNT=0
Vxe PUT JyePUT:(xy)eE v (yx)eE

Def. 222
PN=(PG,m_,R) is called Petri Net : <=>
PG=(P,T E) Petri Net Graph
m,€ M={mlm:P—IN,) (initial marking)
Re {rirT—f7) with fr={flte T} and
Ve T:(f,;M—M) (firing rule of 1)

In Petri Nets "places” are used to model conditons. If a place contains a
token, the associated condition is assumed to be true. So a "marking” model‘s
a global siate of the overall condition space. Actions are modelled by transi-
tions. A transition is firable if a certain condition on its input places is true
(e.g. all input places are marked). By firing it manipulates the marking of its
input places and output places (e.g. demarks all input places and marks every
output place). By this a transistion modifies locally the global state of the con-
dition space.

Classical Petri Nets make use of exactly one firing rule (the rule men-
tioned as example) while our definition also allows heterogenous rules.

Def. 223
IPN=(PN ID} is called Interpreted Petri Net : <=>
PN=((P,T E),m,,R) Petri Net
Ie (il:T—aU(A}) with
0={0lo: dom (0)cX(D)— codom (0)cX(D)}
where D is a manysorted set (of "data objects”) and
X(D) denotes the Cartesion product over all elements of D.

Interpreted Petri Nets are obtained by attaching datamanipulations _0({)
to transitions 7. Whenever 7 fires its attached operation is performed. This is
called an Interpreted Firing.

189

Def. 224
TIPN=(IPNA) is called Timed Interpreted Petri Net : <=>
IPN=(((P,T E).,m,,R).1D) Interpreted Petri Net
A€ {316:T—1} with
t=(0'lo": dom (0")X(D)>IR)

A timed interpreted firing of a transition is defined as follows:

Assume that transition ¢ becomes firable at point of time 1,. At this point of
time the attached operation (if existing) i(f)=0 is initiated. That means that
the values of dom (0) at this point of time are evaluated. At the same point of
time the delay function 8(f)=¢” is evaluated based on the values of dom ©"
at point of time £,. Assume that the result of 0” is k. Then at point of time
L54x the values calculated by 0 are stored in codom (0) and the firing (i.e. the
token game) takes place.

The usual graphical representation of Petri Nets is as follows:

For each place a "-O-" is drawn, for each transition a "$". These sets are con-
nected by directed edges according to E. The marking of a place is indicated
by little dots, within the symbol for this place. Interpretation and timing of a
transition are just written close to the symbol of the transition.

Example:

This net describes two circular processes, synchronized by a common
condition.

Obviously a concurrent algorithm can be represented by a timed interpreted
Peiri Net. Instead of a formal proof we just give some net templates for typi-
cal algorithmic constructs:

a) segbegin 51;52 end

5 3s

OO0

b) conbegin §y;5; end

O
-y j:

O

So timed interpreted Petri nets seem to be well suited for the algo-
rithmic level. But what about the other levels. First of all passive triggered
evaluation should be investigated. For this purpose the following template is

appropriate:

For cach guarded command in such a description (and such a descrip-
tion is completely given by an unordered set of guarded coqmmds) a net
template of this type has to exist. From the Petei net point of view these neis
are autonomous. They are only linked via the conditions, i.c. by the atached
interpretation.

A continuous evaluation can be viewed at as a triggered one where the

iriggering signal is always present, Therefore the following net template is
appropriate:

Again there is one autonomous net per equation § and the link between
the nets is only via intersections between dom and codom of different
cquations.

. Simulstion Techniques

The simulation algorithm has o map the different modelling concepts to
the architecture of the host computer. The most efficient simulation atgorithm
is present if the architecture of the host computer is identical to the modelling
concept or at least rather similar, This is the basic idea of one class of simula-
tion cagines, cg. [6, 9]. (Another class of such engines uses pipelining to
speed up sequential algonthms, e.g. [1]). In our context we will only discuss
sequential v.Neumann computers as host architecture.

3.1 Streamline Code Simulation (SCS)

This class of simulators s also known as "compiled mode” simulators,
The idea is to produce executable code for the host machine from the circuit
description. SCS is applicable only under cenain restrictions:

Modelling concept is continuous evaluation.

The object to be simulated is cither combinational or a siricly synchro-
nous sequential circuit.

- Timing information s of no interest.)

The classical application is gate level simulation for combinational circuits. So
this example may be explained first:

A combinational citcuit can be represented as a directed acyclic graph (dag).

The gates are mapped on the nodes of the dag while the interconnecting nets
result in edges of the dag.

Example
o ey
—
N
el 3
!
Ly
oR
r“.ﬁ_‘l

The nodes of a dag can be semi-ordered due o their longest distgnc; to the
primary inputs. This is called levelization. The level of e:ach node is given by
the maximal number of nodes between it and a primary input. In our example
we get

o '

Levelization now indicates the order of the code 10 be geperated. Code. for the‘
nodes (in the case of gae level simulation one instruction per gaie in 1:)1(105
cases) have to be sequenced in accordance 0 increasing level number. Nff esl
within one level can be arranged in arbitrary sequence as they can not efiec
each other.

So within the restrictions mentioned above a highly efficient simulation
algorithm is obtained.

Strictly synchronous circuits can be handled as well. In thi§ case t.h_e
registers are updated after gvery simulation cycle (which in this case is

equivalent 1o one clock cycle) from the values at the respective primary out-
puts.

SCS is used mainly at low levels {21 and for fault simulation at the gate
level [11, 13].

3.2 Equitemporal Iteration (ET)

This is the simplest tabel driven simulation technique. Like in $CS 2
sweep over the eatire model of the system takes place iteratively. ,Aﬂﬂ. each
sweep the global time is increased by a step which may vary from iteration to
iteration but is always the same for all components visited. Each component !
of the system 10 be simulated is modelled by a triplet (c;a;,d;). Here ¢ stands
for the executability condition attached to the component. By ﬂ“s also U
gered evaluation can be performed and assignable delay is possible. Assume
that ¢ is lrue in a certain iteration. Then action 4 is performed. As a cOnSe-
quence some variables get new values. However this assignment is not cgmed
out directly to the target variables d but to buffers. So the components visited
next during the actual sweep are not affected by this assignment. 'Aflcr the
ertire sweep all buffers are copied into the target variables stored in & com-
mon memory. A skeleton of such an algorithm is given by:
while 1<ty do

begin
for all d" do
ifci m d"'::al'(D)
t=t+h;
for all d; do
d‘*:'—'({"
end
with
f actual time, f final time, D global data space, D=(d),....d,)

This simulation technique is very simple and easy to implement. There-
fore it has been very popular for gate level simulation and is still popular &
the RT-level. Unfortunately it is rather inefficient in most cases. The reasof 5
that typically at a certain point of time more than 95% of a circuit is Stable-

This means that the probalility that an operation other than the identity has 10

be performed for a certain component during a given iteration is 1688
0.05.

33 Critical Event Scheduling (CES)

This method is an attempt to overcome the efficiency problems of E1 Y
concentrating on nontrivial computations.

CES is applicable to modelling concepts that match the following restrictions:

The time of the next occurence of an event is predictable.

If the time of the next occurence of an event is not predictable this eveat

does not take place until it becomes predictable by the occurencé of othef
events.

Between two sceeding events thers happens nothing influencing 1he Rid
tem.

These resirictions are fulfilled in all modelling concepts discussed
above. So CES is a universal algorithm in our context, From the three state-
ments the CES algorithm can be deduced directly, In contrary to global
approaches like 8CS and EI, CES is a local method.

The following skeleton illustrates the algorithm:

begin -
time := 0;
while time < final_time and queue # empty do
begin
extract event E, with ¢ minimal from queue;
execute event £,
for all predictable events E,....E,, influenced by E,
do begin
calculate haiching time of Ej;
insert E; properly into queue
end
end
¢nd

Obviously this algorithm reduces the number of components to be
visited and the operations to be executed drastically. The price to be payed is
the overhead of keeping the queue sorted. But this is neglectable as the queue
typically holds less than 5% of all components of a model. CES is the most
widly used algorithm today. It seems to be the most efficient one if the res-
trictions of SCS can not be tolerated.

4. Multilevel Simulation

The traditional approach to offer a dedicated simulator for each level of
abstraction runs into problems if complex systems have o be handled. The
first problem is that accompaning the design process different simulators have
to be used. So the user has to be familiar with a couple of rather complex
software systems and the design data has to be transformed several times,

The most severe drawback however is that always the entire design
object has to be modelled and simulated at one level of abstraction. The typi-
cal design style of piecewise refinement is not supported at all. Therefore the
request for multilevel/mixed level simulation arises. Such simulators are cou-
pled into a more or less integrated system or a broadband simulator is offered.

4.1 Multi Simulator Approach

The simplest approach to multilevel simulation scems to be the coupling
of existing dedicated simulators. Two main problems have to be solved:

- The exchange of data.
- Synchronization.

Concerning data exchange the easiest situation is given in the case of identical
domains and identical representations of data. This situation is rarely found in
our context, as we are interesied in multilevel solutions. If only the represen-
tations differ then a simple conversion is neccessary whenever daa has to be
exchanged.

Typically in our context however we have different domains. Typically
at a lower level of abstraction domains of a high cardinality are used. Certain
subsets of such a domain are interpreted as a certain value at a higher level,
such forming the domain at the higher level. This indicates that it is relatively
simple to hand over data from a low level simulator to such one at a higher
level. In most cases a simple threshhold function has to be performed. The
reverse direction is much more complicated. E.g. if a gate level simulator
hands over a logical value 1o an electrical simulator this data carries much too
less information for the electrical simulator. So certain assumptions about the
driver part of the sending gate have to be made. Such assumptions may either
be part of the coupling software or may be provided by the user.

Conceming synchronization either a centralized supervisor has to be
installed or control may be distributed with the possibility of mutual interup-
tion. In both cases the simulators envolved have to be modified.

In the case of a centralized supervisor each simulator of the system has
to hand over control to this superviser before advancing time. During this in
addition it has to indicate the next point of time it wants to handle. The super-
visor now identifies the simulator with the closest future time to be handled
and hands over control to this simulator. Passing data to another simulator can
be handled like a stimulus for the receiving system. This causes no extra

191

problem if the target simulator is able to handle dynamic stimuli. This syn-
chronization is rather simple and only very slight modifications are neccessary
at the simulators envolved. However at each point of time only one simulator
can be active even when running on different processors.

The other approach to synchronization is to have relatively free running
simulators. Whenever simulator Sy wants to hand over data d 1o simulator 5,
at point of time ! it sends an mlerrupl packet (d,1) 10 S,.8, compares with
its currem point of time ¢, If £>7 it simply schedules d as stimulus at point
of time ¢'. Otherwise it has to restore ifs state al point of time -1 and recalcu-
late with the stimulus 4 at point of time f in mind. This restoring operation is
a crucial one. Either the simulator is able to simulate backwards or there have
to be checkpoints at a certain frequency where the state of the simulator is
saved. In this case S, has to look for its last checkpoint ¢” with "<t and
resimulate from this point of time, concerning stimulus d at £,

This method is more efficient than the supervisor approach if data
exchange happens not too frequently and if a powerrful restoring mechanism
is included in the simulators used. However the modifications at the simula-
tors are more complicated than in the case of a supervisor,

A couple of multisimulator projects produced reasonable results. A
remarkable one seems to bee (16].

4.2 Broadband Simulators

An altemative solution is to produce one single simulator that covers a
wide range of modelling concepts. For this purpose there has 1o exist a simple
internal modelling concept that is powerful enough. In section 2.2 timed inter-
preted Petri nets have been introduced as an example for such a concept.
Based on this idea the author has designed the broadband hardware descrip-
tion language <CAP/DSDL (Concurrent Algorithmic Programming
Language/Digital Systems Description Language) [(19]. Broadband simulators
for this language are the SMILE system from Siemens [8] and the DACAPO
system by DOSIS {22]).

CAP/DSDL covers the levels from system level via algorithmic level,
RT level, gate level down to switch level. It offers a powerful modularization
concept including abstract data types and generic instantiable module types.
There is a wide variety of data types and an extremely precise timing concept
including optional intervals of uncertaincy. A rather similar but much more
restricted language is VHDL (23] but CAP/DSDL in its present version is in
practical use since 1980, earlier versions since 1977. CAP/DSDL descriptions
are compiled into an internal representation. This code is exactly a timed
interpreted Petri net. The data structure representing this net is separated into
two main parts: One part 10 describe the control structure (the pure Petri net)
and one for interpretation and timing. This part is rather conventional code for
a virtual three address machine. The main feature that has been added is an
event mechanism that allows to trigger operations just by a wrile access to a
data object.

The internal representation as generated by the compiler is interpreted
by a virtual CAP-engine. It is implemented as an event scheduling algorithm.
This algorithm fits very naturally to the concept of Petri nets. The firing of a
transition is treated as an event. As we have timed Petri nets (ie. timed
firings) in fact we have two subevents: The initiation of the firing and its ter-
mination. CAP nets are defined in such a way that the firing of a transition is
initiated tmmediately when the firing condition of this transition becomes true.
At the same point of time the attached data operation is initiated and based on
values of this point of time the proper delay is caiculated (CAP/DSDL allows
dynamic delay expressions that may dependent on the actual state of a sys-
tem). The assignments take place after the calculated delay time elapsed. This
terminates the data operation. Al the same point of time the firing terminates,
i.e. the token game is played according to the firing rule of the transition.

Following this concept efficient multilevel simulators have been imple-
mented. A reacent version of the DACAPO system is even more efficient by
replacing the interpretation algorithm by generation of directly executable
code. This combines the flexibility and generality of event scheduling with the
high performance of compiled mode simulation.

5. Summary

Multilevel/mixed level simulation is an important tool for the design of
highly complex systems. From the designer’s point of view it is essential to
look at a design object from very different modelling concepts. In a stepwise
refinement process several concepts have to be present at the same time. This
causes problems to the simulation system. These problems may either be
solved by coupling dedicated simulators or by building one broadband system.
The first solution is preferable when few interaction between the levels takes
place and if the use of special simulators is essential, e.g. because of the

offered libraries. If the levels vary rapidely and high flexibility is requested
then the broadband approach seems to be more appropriate.

6. References

(1

21

&)

151

{6l

{12

Abranovici, M. etal:

"A Logic Simulation Machine",
IEEE Transactions on CAD of Imtegrated Circuits and Systems Vol.
CAD-2, No. 2
Barbacci, MR.: "lnstruction Set Processor Specification (ISPS): The
Notation and its Application, Dept._of CS

Carnegie Mellon University, 1979

Belsness, O.: "The Use of SIMULA for Real-Time System Implementa-
tion”, Norwegian Computing Center, Oslo, 1978

Bryant, RE: "MOSSIM: A Switch-Level Simulator for MOS-LSI", in
Proceedings of 18th Design Automation Conference, 1981

Chu, Y.: "Introducing CDL", IEEE Computer, Dec. 1979

Dennau, MM.: "The Yorktown Simulation Enginge: Architecture and

Hardware Description”, in Proceedings of 19th Design
Automation Conference, 1982

Duley, IR, Dietmeyer, DL: "A Digital system Design Langugac
(DDLY", IEEE ToC, Vol 24, No. 2, 1975

Gonauser, M. Egger, F., Frantz, D.: "SMILE - A Multilevel Simulation
System”™ in Proceedings of 1CCD’84, 1984

Hahn, W., Fischer, K. "High Performance Computing for Digital
Design Simulation”, in Procepdings IFIP_VLSI'85, 1985

Hactenstein, R “Fundamentals of Structured Hardware Design”,
forth Holland, 1977

tshiura, N., et.al.: "High-Speed Logic Simulation Using a Vector Proges-
sor’, in Proceedings of IFIP VLSI'BS, 1985

Jiger, U "Logik- und Fehlersimulation mit dem Programmsystem
DISIM", in minarunterlagen Praxis der Grofintegration, Abt,
Elektrotechnik, Univ, Dortmund, 1983

Kbpper, §., Starke, C.: "Logiksimulation komplexer Schahungen fir
sehr grofe Testlngen™, in NTG-Fachtberichte, Band 87, 1985

May, MD: "OCCAM", ACM SIGPLAN Notices, Vol 184, Apr.
1983

{15] Mermet, J.: “Etude méthologique de la Conception Assistée par Ordina-

192

(18]

(17

{18

{19}

120}

21

22

ar des systémes logiques: CASSANDRE' These d'éat,

Université de_Grenople, 1973

Mermet,] "The CASCADE Hierarchical Multlevel Mixed Mode
(HM3) Simulator” in Proceedings EUROMICRO'85, 1985

Milner, R. "A Calculus of Communication Systems’, in
Lecture Notes in Computer_Science, Vol. 92, Springer-Verlag, 1980

Piloty, R: "RTS (Register Transfer Sprache)” Technischer Bericht,
Institut fir Datentechnik, TH Darmstadt, 1969

Rammig, FJ: "Preliminary CAP/DSDL Language Reference Manual”
Forschungsbericht der Abt. Informatik, Univ, Dortmund, Nr. 129,
1980

Reisig, W.: “Petri Nets: An Introduction”, Springer-Verlag, 1985

Viadimirescu, A., Lit, S.: "The Simulation of MOS Integratqd Circuits
Using SPICE 2", Memo VCB/ERLM 80/7, Univ. of Califomia,
Berkeley, 1980

- "DACAPO-I System User Manual’, DOSIS GmbH Dortmusd
1986

123] -, "VHDL Language Reference Manual, Version 7.2°, IEEE, Junc 1986

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5

