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A NOTE ON HOWE’S OSCILLATOR SEMIGROUP

by Joachim HILGERT

0. Introduction.

In [KMS] Kramer, Moshinski and Seligman showed that it is possible
to extend the projective representation of Sp(1,R) on the Bargmann-Fock-
space defined by the uniqueness of the canonical commutator relations to
a subsemigroup with interior in Sp(1,C) and applied this representation
to the nuclear cluster model (see also [K]). The corresponding analytic ex-
tension for the symplectic groups of arbitrary dimension was described in
[BrK]. Later Brunet [Br] proved that the projective representation can be
“integrated” to a contractive representation of a double covering semigroup
of the aforementioned complex semigroup. The Shilov boundary of this cov-
ering semigroup is the metaplectic group and the representation restricts
to the metaplectic representation. Starting from integral operators with
Gaussian kernels on L2(R") Howe constructed in [How?2] a semigroup of
contractions whose closure contained the metaplectic representation and
applied his semigroup to prove certain estimates for pseudo-differential
and Fourier integral operators. In this paper we show that the two semi-
groups are isomorphic via the standard isometry between L?(R™) and the
Bargmann-Fock space (cf. [Ba2]) and give detailed information on the rela-
tion between both constructions. It should be mentioned here that analytic
continuations of the type described have been treated in a more general and
abstract manner by Ol'shanskii [O1'1]. For further appearances of related

semigroups see [LM], [Ola@)] and [S].

—_—
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1. Contraction semigroups and the operator Cayley transform.

Let V' be a complex vector space and B : ¥V x 1V — C a non-
degenerate Hermitian form. We consider the semlgroup
(1.1) Sp={g€GIV) - B(gv,gv) < B(v,v),Vv € V}
of B—contractions. Its tangent wedge L(Sp) = {z € gl(V) : eR'* C Sy}
is then given by (cf. [HilHofL))
(1.2) L(Sp) = {z e gl(V) - B(zv,v) + B(v,zv) < 0} .
Note that the interior S of Sp is given by (1.1) with < replaced by <.
Consider the operator Cayley transform defined by

Cop(2) = (2 + 1)z — 1)

whenever the inverse of  — 1 exists. We note that (z + 1)(z — 1)~ - 1=

(+ 1)z -1)-1 - (T-1)(z-1)"1 = 2(z ~ 1) so that we can apply the
Cayley transform twice,

L-1. Remark. — Set D, = {5 ¢ gl(V) : det(z — 1) #£ 0}.
(i) 3, : D. - D. is the identity.
(i) S¢, C D,

Proof. — (i) is an elementary calculation and for (ii) we note that,

because of B(gv,gv) < B(v, v) for all v € V| the transformation g cannot
have the eigenvalue 1. g

L2 ProrosiTion. cop : L(Sp)N D, - Sp N D, is a bijection.
Proof. - et v=(

T~ 1)w be an arbitrary element of V7. Then
B(COP(I)T- Cop(l‘)v) =

B((z + 1)(z - D7 e (2 + 1)z — 1) o)

=Bz + Dw, (z + 1)u)

= B(zw, zw) + Bw,w) + B{rw,w) + B(w,zw)

< B(w,w) + B(va,;rw) — B(zw,w) — B(w, zw)

= B((z - 1), ( - Dw)

= B(v,v) .
Conversely, let g€ 5, N D, then Cop(9) €D, If 3 = Cop(g) is not contained
I L{Sg) then there eXists a w € V' gychy that B(w,zw) + B(zw,w) > 0.
Therefore the calculation aboye with v = (7 1)w shows that B(gv,gv) >
Blv.v) because ofg=(z+ D(z - 1)1, Thys g cannot be in Sg. O
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2. Gauss functions in L*(R") and F,.

We call a function on R™ a function of Gaussian type if it is of the
form ¢ + e~ 26" A€ where A is a symmetric complex matrix. It is integrable
if the real part of A is positive definite. We call a function of Gaussian
type a Gaussian function if it is integrable or, equivalently, if the real part
of A is positive definite, i.e. if A belongs to the generalized Siegel upper
halfplane S,,.

Similarly we call a function on C" of Gaussian type if it is of the
form ¢ ¢ 2¢"4¢ where A is a symmetric complex matrix. Note that such
functions are holomorphic on all of C*. We will call a function of Gaussian
type on C™ a Gaussian function if it belongs to the Bargmann-Fock Hilbert
space F, of entire functions on C* with the L?—norm given by the measure
du(¢) = ﬂfnezfcd(:. We will determine those functions of Gaussian type on
C" which are Gaussian functions using the isometry U : L?*(R") — %,
given by (cf. [Bal,2))

Ufe)= [ vEoses.

where
(2.1) U(C,€) = ¥ HEHHHVAE
2.1. LEMMA. — Let B€ S, and f = e 3658 ¢ L2 R”) be the as-
. n ) 1 1
sociated Gaussian function. Then U f{¢) = m¥{det L)~ 3e 3¢ cop(B)”

Proof.
Uf(¢)= [ U(¢,€)e ¢ Bodg

Rn
- f%/ o~ HGTHE VA e R BE g

:71"%/‘ e“%gze (%(f B&{+E )+\/§Q—tf)d§

1
— g e 2¢C e mg! 42 §de| set T = —=(
R~ 7I'\/§

= T3¢ U by [How2], 134
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Let {2, be the Siegel domain consisting of complex symmetric m x
m—matrices X with X*X < 1.

2.2. LEMMA. — o : X cop(X)~1 is a bijection from Sy, to Qm
with inverse YV —cop(Y).

Proof. — Note first that X and ¥ = cop(X)~! are symmetric so that
Y* =V =¢,,(X)"! and we can calculate
VY- 1=X-1)X+1)Y(x - DX +1)7t -1
=X+ X -1)(x - D(X+1)"1 -1
= (X + 1)1 (4Re X)(X + 1)1
=~4(X+1)7)*Re X (X + 1)"!
which proves that V*y — 1 is negative definite. Similarly we calculate
2ReX =(V+1)1-v) 1 4 (7 4 D1 -7)!
I-¥)"'1+7)+0+ Y)1-1v)~!

I

=1-DN+T1-v)+ I-Y)1+y)1-y)!
=(1-V)'1-vy)- Yyt
which now proves the lemma. .

3. Gauss kernel operators on L?(R") and F,.

Let S5, be the Siegel upper halfplane of complex symmetric 2n X
i —matrices with positive definite reg] part and let

. (A4 B
,x_(Bt D)

be an element of 85,.. Then we set

(3.1) Bxlen) = emsteaenacmyryon _ 1ox,

b)

where ¢t = (gt n'). The corresponding kernel operator

fr—(g— Kx(&n)f(n)dn)

RTI
will be denoteg by Tx | ie. we have

(3.2) Ixf(¢) = / e‘%“'*‘f”f"?"*"’D"’f(n)dn .
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We want describe how the Gauss kernel operators behave under the
transformation U : L?(R") — J%,. Thus we consider a fixed Tx and
calculate the operator T = U o Tx o U~!. Note that , has a reproducing
kernel, so that T has to be a kernel operator. We are going to determine
this kernel. In fact we claim that this kernel will be a Gauss kernel whose
matrix is the inverse of the Cayley transform of X. The first thing to do is
to describe what we mean by a Gauss kernel operator on J.

Let
A B
= (5 o)
be an element of Qs.,.. Then we set
(3:3) Kx(¢,@) = o~ H(CTACH2( BUAT! D) _ g3 XKy

where v' = (¢*, ). The corresponding kernel operator

fr—(— [ Ex((w)f(w)dp(w))

Ccn
will be denoted by T, i.e. we have
(3.4) Tx f(() = f ¢~ ACHC BTHE'DB) f(u) dp(w) .

This motivates the following definition: Let Un.n : L*(R* x R") —

F(C" x C7) be given by
(3.5)

Un,nF(C,G) _ -3 f e-%(C9+52+52+n2)+‘/§(C’5+3‘")F(€, n)dédn
R xR

As in the case of U one shows that U, , is a unitary operator.

3.1. LEMMA. — U, ,F = UoFoU !, where we identify the function

F with the associated integral operator.

- Proof. — Recall the functions x.(€) = U(a,€) and € = Uxa which
S given by e, (¢) = e%°C. It suffices to show that U° F(xa) = UnnFlea).

For the left hand side we calculate :

UVoF(xo)(() = | U(C,&)F(xa)(€)dE

Rn
= [ v.e / F(&, m)xa (1) dnde
R" A"
_/ f 3 - HE ) @) VDR (G, m)dndL.
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For the right hand term we have
UanFea)(@) = | (UnnF)(C.@ea()ds
- / / T e BT ) V(e 1 Tt y)
T: Rn an L,
F(€,m)e “dp(w)dnde
= / / ﬂ-‘%e-é(C2+Ez)e—%(&2+n2)e\/5(6t5+&tn)p(§,n)dndf,
since it follows from [Ba2], (1.6b) that

/ € ET VI e (o) = ¢ bai VT
Cn

O

Now we define [T - B(LQ(R”)) — B(F,) (B means bounded operator)
by
(3.6) ff(T):UoToU*I.

3.2. PROPOSITION. —_ Let X € S,, be of the form

A B
X = ( 2 D) .
Then we have
U(Tx) = )2

— T -1
det(X 4 1)3 ~er(X)

| Proof. - We cap apply Lemma 2.1 with L*(R?") and U, , instead
of L*(R") and [ 14 find

. . 47)%
[n.n(l\[\') - “_(_“ir‘)‘——l—}\.c (X)-1 -
det((X +1)5 v

From Lemma 3.1 we know that the following diagram is commutative

; Tx
LTR") __; L?(Rn)
U o
C-\'Tcup(.‘()‘l Jr

Here we set cx = (47r)'?'(det(X +1))-% .

Next we recall the multiplication of Gauss kerne] operators :
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3.3 PROPOSITION.
(i) ([How?2], 3.2.2) Let X,Y € S,

. (A B .
(3 8) e

Ty oTy = — 21"
det(D + 4)

Dt

).

Ty : L*(R") — L*(R")

T2 by

then we have

o=

where B L~
s (A-B(D +A)"'B*  -B(D+A)'B ~)
~\ =BY{D+A)"'Bt D-BY{D+A)'B/ "’

(ii) ([BrK], 3.6) Let X,Y € Sy,

i A B . (A
v (3 8) -

1

willvel!

).

then we have

Ty oTy = —T7:F — F
TN det(1 - AD))
where
,_ (A+(BQ-AD)'ABY*  -B(1—AD)"'B _ )
- ~-B!(1- ADp)"'B! D+ (B'D(1- AD) 'B)’

Here Cs = %(C +CY).

Proof. — This follows from [How2], 3.2.1 {watch out : misprint!) and
[BrK], 3.6, respectively. U

Note that our normalization for Gaussian functions is different from
Howe’s. The reason for this is that the intertwining operator Un . looks
more complicated in Howe's normalization. We fix some notation for further
use.

3.4. DEFINITION. — A function F : R?" — C is called a real Gauss

kernel if it is of the form F(v) = ce”3*' X for some X € Sy and ¢ € C7.

The set of all real Gauss kernels is denoted by GKR.

A function F : C* x € — C is called a complex Gauss kernel if

it is of the form F(v) = ce~%v'X? for some X € (b and c € C* with

v = (¢, @'). The set of all complex Gauss kernels is denoted by GKc.
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3.5. PROPOSITION. — (GKg, o) and (GK c, o) are isomorphic semi-

i ISOMOor-
groups, where o is the composition of integral operators and the iso
phism is given by U, .

O
Proof. - This follows immediately from Lemma 3.1.

4. The Weyl! transform.

In this section we recall yet another version of the semigroup GI'(;;
GK¢ , this time not as 4 semigroup of integral operators, but of twi

. : , iven b
convolution operators (cf, [How2], §7). The 1somorphism will be given by
the Weyl transform.

: el
The Wey! transform maps Schwartz functions on R2" the kern
operators on L2(R") via

p(F) = TKP(F)

where

(4.1) Kory(&,m) :/ F(§ —n,7)em &30’ gy,

n

4.1. ProPOSITION (cf. [How2], 13.2). — Let v* = (¢!, 9!) and

A B
X:(Bt D)€S2n.
Then

with

s A—(B-m)m(Bt»m) -A+(B_m)zrl(3f+z'7r)) S
’ -(“A*‘(B‘H?T)Ul(Bt%i?r) A=(B+in)D V(B! +in)

Proof. — This follows immediately from [How?2], 13.2 if one takes

- - . D
Into account the change of normalization.

We denote the map X v X by p:8,, - Son.

4.2. PROPOSITION {cf.

[How2], §7 and [Howl]). — Let S(R*") be
the space of Schwartz fupct;

ons on R?" then

P (SR, xy,,) — (S(R*™), o)
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is an involutive algebra isomorphism, where x.,, denotes twisted convolu-
tion, i.e.

Fy o+ Fz(v) = / Fl(w)Fg(v _ w)e—mw’hdw
R2»

7=(400)

and o the composition of integral operators on L*(R™).

with

a

4.3. COROLLARY. — The Weyl transform yields a canonical isomor-
Phism p : (GKRg, *1,) — (GKR, ).

O

5. The Bargmann-Brunet-Kramer realization.

In [Ba2] Bargmann gives a realization of the projective representation
of the symplectic group coming from the Stone-von Neumann Theorem
via kernel operators on %,. He does not use Sp(n,R) but the isomorphic
group G = U(n,n) N Sp(n,C). Note that G is the set of all complex

2n x 2n—matrices of the form
_ (A B
9= B 4/°
where 4 and B are n x n—blockmatrices, which satisfy
AA* - BB =1
A'B = Btfl
OI, equivalently
A*A-B'B=1
AtB = B*A .

From thjs it follows that A is invertible and that the matrices EAI‘I
and ~A4-1B are symmetric. It is shown in [Ba2], §3 that the projective

Tepresentation of G on J, is given by g — Fy({,w), where

(5-1) F((w) = A BATI (AT BT AT T AT B
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This means that Iy is a kernel operator of Gaussian type with matrix

BA™l (47l
- LA

In [BrK] Brunet and Kramer formally extend these kernels by simply
replacing B by an arbitrary C' and then find conditions in which t‘he
resulting kernels vield decent operators. Since we know already which

kernels of Gaussian type we want (cf. Lemma 3.1), we are lead to the
following lemma.

5.1. LEMMA, — Let B:C" xC" _ C be the Hermitian form given

by the matrix
-1 0
(3 1)

and Sg the semigroup of B—contractions (cf. (1.1)). Then

(4 BY)_[/-BHYt  —(BY-p )

"\\B' DJ|~ A(BY)™' -B+ A(BY)"'D
defines a map 5 : Dy — S where Do = {X € Q,,, : det(B) # 0}. The
map y is invertible with inverse v : 85 — Dq given by

(e ) --(e 1)

The first thing to note is that for any

A By
g‘(c D)ESB

we have det(d) # 0. Iy fact if 0 # ¢ € C" with A¢ =0 and v* = (¢".0)
then we calculate

Proof.

Blgv.gv) = v g’ Lgv

oA O Z1 0N /o
““’O)(B* D*)(o 1)(0c)
= ¢Crec

>0

B(v,v) = (¢*,0) (‘01 ‘1}) (g) = (<0

which is 3 contradiction.

and
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Next we show that the image of  is contained in Sp(n, C). We write
A B
AXYyY=[~ =
w(X) (C D)

B'D = (-(B")™'D)Y(B - A(B")"'D)
=D-DB'AB)'D
= (D - DB 'A(B") 'D)
=D'B.

and calculate

Further we have
AC =B 'ABY ' = —(BtABHY) N = (A
and finally
A'D - C'D=-B Y-B+A(B') 'D)+B'A(BY)™'D
=1-B'ABYHY 'D+BtABY D
=1.

Conversely if

A B\ _
9:(0 D)ESB

an easy calculation shows that CA~! and —A~! B are symmetric matrices.
Also it is straightforward to check that voy is the identity on Dg. Moreover

(A B cA™t (A )
oV (C D) =7 T ( A" —-A"'B
A B

- (C (A —CA*IA(wA“IB))

A B )
- (C (A)~t+(4A)'C'B

(2

S0 that in order to prove the lemma it now suffices to prove that ¥(Sg) C
Q?n- )

First we give a characterization of S§3 in terms of the blockmatrix

decomposition
A B
9= (C D) '
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We know that g € §% if and only if L — g*Lg > 0. This yields

-1 0 A* C*\ (-1 0\ /A B)
0<(0 1)_(3*0*)(0 1)(01)

-1 0 ~A* C*\ /A B

0 1) - (_B* D*) (C D)

-1 0 C*C - A*4 C*D—A*B)

0 1)“(—B*A+D*c D*D - B*B

—1-C"C+4A -C'D+ A*B )

B*A-D*C 1-D*D+ B*B
Now let X = ¥(g) and note that

o e=(S11 W)L 0y )

implies that X X* < 1 if and only if

yy-o [(CF 1 Ct* 1\ 7Aa7a 0 )
A\t -BJ\1 -B) <l ¢ aa
Taking the complex conjugate we find that X € Qy, if and only if
= C'C-A"4+1 C* — Bt
= — — — < 0.
X ( C-B 1+BBf—AAt>

Next we perform a similarity transformation with the matrix

(o4 )

and as resylt

2.2, PROPOSITION. —

a subsemigroup of GKc¢ and
homomorphism v: S 5%

The set S§ = {(cKx) € GK¢ : X € Da} s
the map ¢ : D — S% induces a semigroup

Proof. — The fact that S;'f is a subsemigroup follows from Proposi-
tion 3.3, (ii) and the second assert

101 is proved in [BrK], (3.8). =

. Finally we are able to describe the Bargmann-Brunet-Kramer real-
1zation fo the oscillator of metaplectic semigroup (Br]).
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0.3. PROPOSITION. — The set Sq = {(cKx) € S¥ : & =

A B

det —B s 'h _
(' )}, where X B D
semigroup homomorphism ¢ : Sq — S % 1s a double covering.

, is a subsemigroup of 5§ and the

Proof. — Again the semigroup property follows from Proposition
3.3, (ii) while the rest is obvious. o

6. Howes’ realization.

Consider the Hermitian form Bg on C" given by the matrix

(6.1) z'Jzi(_Ol é) .

The subsemigroup of Sp(n, C) consisting of all elements which are contrac-
tions w.r.t. Bg will be denoted by Spg. Note that it follows from (1.2) that
the edge of L(Sgg) is Sp(n,R). In fact we have

Br(Xwv,v) + Br(v, Xtv) = 2Re(Br(v, Xv)) = 2Re(iv* JXv) .

6.1. LEMMA. — The map 8 : Mat(2n,C) — Mat(2n,C) defined
by 8(x) = - Lx induces a linear isomorphism 3 : S3, — intL{Sg,)

. s
which maps the set D,, = {X € Su, : det(X + irJ) # 0} onto D,
(cf. Remark 1.1 ).

Proof. — Note first that_ 3 maps sy_mmetric matrices into sp(n, C)
since B(X)tJ + JB(X) = Iytpgolpx = txpriix =0,
T m m T .

i .
COnVersely, if 3(X) € sp(n,C) then from the above we see that ——;At +

%X =0, so that X is symmetric. Moreover, if X is purely imaginary then
3(X) is real, whence, in order to prove 3(S2,) C L(SBg), it only remains
to show that B8(X) € L(Sp,) for real X € S3,. We calculate
Br(8(X)v,v) + Br(v, 3(X)v) = 2Re(Bgr(v, 3(X)v))
= —2Re(iv*J3(X)v)

_2 Re(v*JJXv)
T

= _ —2- Re(v* Xv)
T

= ——E(U*X'U) <0
T
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since X is positive definite. Since we have 4(X) € isp(n,R) if.a_nd
only if X is real, the above calculation also shows that X is positive
definite if 3(X) € int L(Sg,) Nisp(n,R). The last assertion follows from

det(—~JX — 1) = det(H%J) det(X +inJ) . 0
m

Next we describe Howe’s realization of the oscillator or metaplectic
semigroup.

6.2. ProposrrioN ([How2], §12). — The set S¥ = {(cKx) €
GKr: X €Dy} isa subsemigroup of (GKR, *;,,) and the map (¢, X) —

1 - . /i 7
Cop{——JX) induces a semigroup homomorphism S;ﬁ, — Sg.. Moreover
T
the set

det(X +imJ)
_ # .2
S,gu._{(cKX)ESm,.c == e }

Is a subsemigroup of Sﬁ, and the semigroup homomorphism Cop 0Bt St —

Sty is a double covering.

Proof. — This follows immediately from [How?2], §§8, 11 and 12
taking into account the change of normalization. O

7. Intertwining operators.

The obvious question at this point is how the two realizations of
Bargmann~Brunet-Kramer and Howe are related. We start by showing

that the domains Dy, and Dy are well behaved under the transformation
@0 p: Sy — 0y, (cf. Proposition 4.2 and Lemma 2.1).

7.1. LEMMA, - Let

Doz{X:(g}t g) ESgn:detB#O}.

Then the maps a : S,

— o, and p: Sy, — S, induce bijections
¢ : Dy — Dq and P : De

— Dy, respectively.

Proof. —— Let

A B
X = (Bt D) € Sgn\th
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- A B
P(‘\):(“t B)

Then there exists a (0 # v € C*" such that

71 4 B+in\ (&) _
& (o 77 G) =

where v = (£!,53%). This can be rewritten as
A+ (B+imnp=10
(B'—im)+Dn=0.
But since X € Sy, the matrix D is invertible we have
= ~-D™Y(B' —im)§
which implies that £ # 0 and
(72) AE = (B+im)D B —im)€ .
But this simply means that B'¢ = 0 and hence p(X) € San\Do-

Conversely, if det B = 0 we find a £ # 0 with (7.2) and setting
= -D 4Bt - im)€ yields (7.1) with vt = (&, n') which in turn shows
that X € §,,\D,,,.

In order to show that o has the required properties we
A B
X = ( 4 ) € 52.\Do

and

suppose that

Bt D
and note that this implies the existence of a 0 #¢el”
Then we have

(X + 1)(2) = (‘4;1 Di 1) (g) ~ (Dz§0+ é)

and hence
A0 ) ( 0 )

i\hOte that Re D > 0 since X € Spn so that D§+¢ # 0 which now shows
o a(X) S Q?n\DQ .

Conversely, if

such that B =0.

. (A B
Y = (Et 5) € Q2n\Dﬂ

then there exists a 0 # 5 € C™ such that §§ — 0 so that

x-1(7) = (Eg‘tl () (5¢-¢)
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This time we know that D¢ - £ # Osince D < 1 because of ¥ € gy,

Therefore
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C"D(Y)(Deo— é) - (D50+ E)

proves the claim.

We want to show that Unon 0 p maps Sew bijectively onto Sg . To do

0

that we introduce “intermediate” semigroups in (GKg, o).

7.2. PROPOSITION. —
and

The sets Sf' = {(cKx) € GKg : X € Dy)

B
So={lch) e st i =am(-2))

where

X

o)

(4 B
“\B' D)

are subsemigroups of (GKg,o) .

Proof. — This follows fr

7.3. LEaa, Let

with D invertible then

om Proposition 3.3, (i). O

A B
(2 0)

det X' = det Ddet(A-BD"¢) |

Proof. — (¢f [BrK], 2.3.4)

1 BD-! 4~ BD-
0 1 0

7.4. LEMMA, — Let
X =
and
(copX)
If now

'C o0 10‘443)_
Dj\p-'¢ 1) \c¢ b
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then we have
(i) B=-2B:
() A= ((A+1)- B(1+ D) 'B')"
(i) AB=B(D+1)=0.
In particular we have

det(X + 1) = (det 4) "' det(D +1) .

'l Rve))
SN’

Proof. R
A B A-1 B A
( D) "B D B!
=(4-1)B+ BD . Moreover
A+1 B A Ij)
( ) - ( Bt D+1)\B" D
(A-1)B—-(A+1)B

tge

which shows that B

- —2B.

shows () = (A+1)B+BD so that we find B =

Similarly we find ~
A(A+1)+ BB =1

AB+B(D+1)=0

he last
which implies (iii) and AB(D + 1)~ + B = 0 and hence also (ii). The o
tlaim now follows from Lemma 7.3 applied to X +1.

: i €S
7-5. PROPOSITION. — (cKx) € Sy if and only if Uy n(chx) € 90

ifc? = — =), where
Recall that cA'y € Sy if and only if ¢ = det ( 7r)

i B
X\ — ’ ES‘n'
‘\*(B, D) 2

Proof, -

From Propositi()n 3.2 we know that
c(4m) K. (x)-1 -
T 7. e 1 B X)
Ln n(( ‘f) det(‘k +1)};

Then using Lemma 7. 4, we calculate ~
271 det(—B) dEt(A)

(4m)f  y2  det(~Z)(4m)" _
(det(X+ 1)%) T det(X +1) det(D +1)
_ 2" det(—A\B) —gn det(ﬁ) = det(

det(D + 1)

-B)
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which proves one half of the proposition. The converse direction is proved
by following the above calculation backwards. 0

7.6. PROPOSITION. — (cKx) € S,,, if and only if p(cK,) € Sp.

Proof. — Recall from Proposition 4.1 that

c(2m)%
cKy) = — K-~
pleke) det(D)z ~ #(X)
where A B
X = (Bt D) € Szn .

Using Lemina 7.3 we calculate
( c(2m) ¥ )2 _ (2m)~2n det(X + iwJ)(2m)n
det(D)3 det(D)
= (2m) ™ det(A - (B + im)D™Y (B — in))
- det (b A+ (B + ir;)D‘l(Bt - iw))
s

iew of Proposition 4.1. The
omputation backwards. O

which proves one half of the Proposition in v
converse is again obtained by following this ¢

7.7. LEMMA, —_ The map ¢ - So — S, given by

OleKx) = (2m) ¥ ckyy x|
is an automorphism,

Proof. — 1y order to prove that 6 is a bijection let

A B
X =
(e o)

and calculate

i ty of the map followsg immediately from Proposition 3.3,
i).

Wg denote the map induced op D,

by 6, i.e. the multiplication with
2m, by 4.
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If we now collect the diverse mappings we obtain the following
diagram

(GKR,*tw) 2 Siw — Dw - intL(Spg) = 5B

lP lp P

(GKRaO) D) SO — DO

(GKﬂao) ) So — DO
lU'n.n J(Unln la

(GKc,0) 2 Sq — Dg — Sp -

8. Completing the diagram.

We want to complete the above diagram by filling in an isomorphism
between § g, and S% such that the diagram commutes. We start by

calculating ¢ o a.

8.1. LeMMA. — Let X = ( A g) € Dy then we have

Bt
;) A B
(X +1)7° = gt.

)

where R
B=(Bt—-(D+1)BHA+1)",
A=—(B)y D+ 1)B' =-B(D+1)B™,
D=-B'(A+1)B=-BA+1)(B) .
Proof, N
A+1 B A B\ _ (1 0)
( Bt D+1)\B" D 01
implies
B'A+(D+1)B'=0
(A+1)B+BD =0
S0 that

A=—(B) " Y(D+1)B
p=-B(A+1)B
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whence R N
(A+1)A+ BB' =1
and N R
~(A+1)(B)" D+ 1)B + BBt =1
which proves the claim. o

8.2. LEMMA. — Let

A B
= (Bt D) € Do
and ~
A B
_1 _ e =
(X + 1) - (Bt D)
then we have
Cop(X)_1 =
(2§ 0 )(5(3t+(p+1)3~1(1~4)) = )
0 2B -1 3(B+(4+1)(BY)(1-D))
Proof,
(X +1)-1= (—-B(Dj—l)B‘l B
B! ~B'(A + Iy(BH~!

- (é (1))‘ (“SE -fﬁf) ((Dtllw (A+13;B*)“1)

=28 o \[(-1B- D+yBt
o ib ) (( E —%(ﬁtrl)‘(( & (A+1)(B’)"l))

(%(§*I+2(D+1)B*1 a )
& HEY? — a1y my)

2B ~(D+1)B1 (4 ) ) ) _
3(B - (A+1)(Bty (D - 1))
O
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Now we can calculate poa .

8.3. LEMMA. - - Let X = (;t IB)) € Dy then we have

1 ( B—(A+1)(B)y(D+1) B—-(A+1)(BY(D-1) )

foa(X) = _BH(A-1)(B'){D+1) —B+(A-1)(B")}(D-1)

T2

Proof. — Let poa(X) = (Iﬁi ‘S) then

a(X)=voypoalX)
REATE
B 0 R -1 8§ )
Therefore we have R~! = 2B? (notation as above) which implies

(
R= (B = 2(B-(4+1)(B) *(D+1D)
S==(B-(A+1}B)(D-1))

T = ~2~(+B +(A-1)(BY YD +1).
In order to find V we have to verify the equation RfV =1+ T'S .

1
1B'=(D+1)B™ A+ 1))(-B + (4 - 1)(B) (D~ 1))
1

= BB+ B(A-1)(B) {(D-1)

+(D+1)B Y (A+1)B—(D+1)BH(A*-1)(B ) (D-1))
= i(ﬂB’fB—(DH)B“(A?—1)(Bf)l(D— 1)+(D+1)BH{A-1)B
+B'(A+1)(B') 1(D-1))-2(D-1)+2D+1)

(B +(D+1)B(A-1))(B—(A+1)(B ) (D-1))+1.

M |

g

Next we consider the geometric Cayley transform cgeo : Sp(1,C) =
Sp(n, C) given by Cgeol(g) = hogh ! where

h__llz
°T a\l -i)

B
8.4. LEMMA. — Let g = ( ﬁ) € Sp(n,C) then

A+iB-iC+D g—ié—ié‘*é),
Cgeo(9) = A+iB+iC-D A-iB+iC+D

LN ey

t
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Proof. -— This is a straight forward calculation.
A B
8.5. LEMMA. — Let X € (Bt D) € Dy then

1 —(B*)"1D i(BY)~!
Cgeo 0P 0 (X)) = (Z(B _ A(Bt)—lD) _A(Bt)gl) '

Proof. -— This follows easily from Lemmas 8.3 and 8.4, O

The result of Lemma 8.5 allows us to calculate also the image under
the operator Cayley transform.

8.6. LEMMA. —. Let X ¢ (;t g) € Dy then
ot opoa(x)= [ —B(A-B+B_p) 2B A),
“op © g0 09 0 a(X) = %D+2D+B")B(B+D) i(4-B'+B-D)B
where B =—1'(A+B+B'5+D)ﬁ1.

Proof. — et

Cyovoa( -~y = (4 5)-
Then

(=(B)"'D-1)B+ i(BHY-1p=g
and hence

D=-iD+BY%
Moreover
“B - A(B'YD)B + (~4(pt)-1 _ 1D =1

so that

(B -iA(B')-1p +1A(B?)

"D +iD 1Bt 1 i4)B = 1
which thep gives

B=~i(A4B 4Bty p1
Further

which shows
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Finally we use
{(B— A(B!) 'D)A+ (—AB)"'-1)C =0
to obtain o t
0=B'4+i4+ B
From this we find R R t
1= -iB(41+ B
and
C=-i(B' - i(D + BYYB(A + B))

= -iB' — (D + B')B(4 + B) T

=-iB'~(D+ B")B(A+B+B' +D)+(D+B)B(B+D)

=iD+ (D + B")B(D + B).

\ - hav e that
Now in order to prove the lemma we only have to note

AB
Copocgeoo¢oa(,\)—l+2(c D

and insert the above formulas.

8.7. LEMMA. — Let N ~
A B )
- (é —.it)  int L(Spy)
then

. . 5 (It -1 BHA+D
- )B1(A-1) C+(A'-1)B ) )
91°p°6“1(Y)=§(§ ((4f+1))m(4 1) -C-(A+1)B7(A+D

081-
Proof, 3 1Y) = —niJY so the claim follows from Prop

O
tion 4.1

A B
8.8. LEMMA. - Let X = ( ) € Dy then

B' D 5

. 5 RY

8ot ohi v ——z'B(A—B-%IZ’—D) . - f-ﬂD)B)'
M oé)u)z(2:’D+2(B’+D)B(B+D) i(A+B-B

Whereg’ = ——z(‘4+B +Bt _+_D)A1

Proof, We use the notation of Lemma 8t7 Then (s y
X=1(-C— (At -1)B1(A-1) C+(At—liB (A+1))
2 C+ (A +1)B-Y(A-1) -C-(A'+1])
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This shows 5 ~ ~
~(44B) =2(4' - 1)B~!
1

Z_(Bt +D) =-2(4'+ 1)B~!
[
and hence —2B-1 — —4B7! je.

B=2B.
Moreover we find 2451 — -(A+B - B _ D) which means

o] =

rs

Et:—z’(A+B—B*~D)J§.

Adding all four entries of X with appropriate signs yields

%(-A +B+B - D)y=4C 4415 ]
Thus we calculate
20 = 71,(—A+B+Bt—D)— %(AJFB-BMD)E
:z’(A~B—Bt+D)—i(A+B—Bf—D)z’E’(A+Bt—B*D)
=2i(D-B') - 9Bt 4 D)B(A-B4pt_ D)
= UD+4UB"+ D)B(B + D) . ;
Comparing

the results of Lemma 86 and Lemma 8.8 we find the
following theorem

8.9. Turorey. The following diagram is commutative

(C;I\-H- *fzz‘) 2 SH(‘

3 . o ()
’ Dm — Int L(Snﬁ ) — SHR
i

L Lo 15
(Gi\:ﬁ' .0) 2 SU — 'DU
I le 5 Lewn

(GI\R.O) 2 Sy

N

(GRe.o) o g, _, Dy 4 Sh -

Proof. — Note that €gea(g) is a B~contraction (cf. Lemma 5.1) if

and only if g ig 4 h;Bhohcontraction, since h, is unitary. But one easily
verifies that h;LhO = 1J s0 that h*

oBhy = By (cf. (6.1)). The claim then
follows from Lemma 8.6 and Lemmg 8.8. .
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Addfed in proof : The Fock realization of the oscillator semigroup has
been s.tm.hed independently by G.B. Folland (¢f. G.B. Folland, Harmonic
analysis in phase space, Ann. Math. Studies, 122, Princeton Univ. Press,

1989).

{HilHofL}
[Howl]

iHowQ}

KAMS|

LAg
Olag)]
oryj

Ol'g]

o1y
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