
Fakultät für Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut und Institut für Informatik
Fachgebiet Softwaretechnik
Zukunftsmeile 1
33102 Paderborn

Analyzing Self-healing Operations in
Mechatronic Systems

PhD Thesis

to obtain the degree of

“Doktor der Naturwissenschaften (Dr. rer. nat.)”

by
Claudia Priesterjahn

Referee:
Prof. Dr. Wilhelm Schäfer

Paderborn, August 28, 2013

Abstract

Self-healing may be used to reduce occurrence probabilities of hazards in mecha-
tronic systems, which are applied in safety-critical environments. Self-healing
mechatronic systems may react to failures by a structural reconfiguration of the
architecture during runtime. This means, the exchange of components or the
modification of the components’ connections, in order to avoid that a failure
results in a hazard. This reaction is subject to hard real-time constraints be-
cause reacting too late does not yield the intended self-healing effects. In order
to judge whether a self-healing operation reduces the probability of the hazard
successfully, we must consider the failure propagation times and the effect of
the self-healing operation on the propagation of failures.

In this thesis, we present an analysis of self-healing operations that particu-
larly considers the two problem mentioned above. This analysis operates on
failure propagation models that contain information about propagation times.
The failure propagation models are generated automatically from the behavior
models of system components.

In the domain of reconfigurable mechatronic systems, not all architectural con-
figurations of a system that are constructed at runtime may be known at design
time. This applies in particular to systems of systems. These systems only meet
at runtime and establish connections in order to cooperate. This connections
may lead to structural configurations that were unknown at design time. How-
ever, the analysis of self-healing operations requires concrete architectural con-
figurations. We consequently present a framework that allows for executing our
analysis of self-healing operations at runtime. Structural reconfigurations are
locked if they construct architectural configurations whose hazard occurrence
probabilities exceed the valid hazard occurrence probability of the system. This
ensures that architectural configurations that violate the safety requirements of
the system cannot be constructed.

iii

Zusammenfassung

Selbstheilung kann in mechatronischen Systemen dazu eingesetzt werden, um
die Auftrittswahrscheinlichkeiten von Gefahren zu reduzieren. Selbstheilende
mechatronische Systeme reagieren zur Laufzeit auf Fehler im System, indem sie
ihre Architektur rekonfigurieren. Das heißt, zur Laufzeit werden Komponenten
ausgetauscht oder Kommunikationsverbindungen verändert, um zu vermeiden,
dass Fehler Gefahren verursachen. Diese Reaktion unterliegt harten Echtzeitbe-
dingungen, da der beabsichtigte Selbstheilungseffekt bei einer zu späten Reak-
tion nicht eintritt. Um zu beurteilen, ob eine Selbstheilungsoperation die Auf-
trittswahrscheinlichkeit einer Gefahr reduziert, müssen die Propagierungszeiten
von Fehlern und der Effekt der Selbstheilungsoperation auf die Fehlerpropagie-
rung betrachtet werden.

In dieser Arbeit wird eine Analyse vorgestellt, die Selbstheilungsoperationen
analysiert und dabei vor allem die beiden oben genannten Probleme berück-
sichtigt. Die Analyse wird mit Hilfe von Fehlerpropagierungsmodellen ausge-
führt, die Informationen über Propagierungszeiten enthalten. Die Fehlerpro-
pagierungsmodelle werden dabei automatisch aus den Verhaltensmodellen der
Systemkomponenten generiert.

Außerdem kann bei rekonfigurierbaren mechatronischen Systemen der Fall auf-
treten, dass zum Entwurfszeitpunkt nicht alle Systemarchitekturen bekannt
sind, die zur Laufzeit erzeugt werden können. Das gilt vor allem für Systeme
von Systemen, die sich erst zur Laufzeit treffen und dann zusammen arbeiten.
Um Aussagen über den Erfolg von Selbstheilungsaktionen treffen zu können,
wird jedoch eine konkrete Systemarchitektur benötigt. Deshalb stellen wir in
dieser Arbeit einen Ansatz vor, der es erlaubt, Selbstheilungsoperationen zur
Laufzeit zu analysieren. Systemarchitekturen, in denen trotz der Anwendung ei-
ner Selbstheilungsoperation die Gefahrenwahrscheinlichkeit den zulässigen Wert
übersteigt, werden gesperrt. Damit wird sichergestellt, dass keine Systemarchi-
tekturen erzeugt werden, die die Sicherheitsanfoderungen an das System ver-
letzen.

v

Acknowledgements

First of all, I thank my supervisor Prof. Dr. Wilhelm Schäfer for the scientific
support and the opportunity to work in the inspiring environment of his research
group. I thank Prof. Dr. Matthias Tichy and Prof. Dr. Franz-Joseph Rammig
for acting as my co-supervisors. Morever, I thank Prof. Dr. Heike Wehrheim
and Dr.-Ing. Roman Dumitrescu for attending my exam.

Prof. Dr. Matthias Tichy was a valuable support with lots of discussions about
my topics. So was Prof. Dr. Steffen Becker who tought me many soft skills. The
current and former PhD-students as well as collegues of our research group Dr.
Stefan Henkler, Dr. Martin Hirsch, Dr. Joel Greenyer, Dr. Matthias Meyer,
Nicola Danielzik, Ahmet Mehic, Björn Axenath, Dietrich Travkin, Christian
Bimmermann, Jan Meyer, Oliver Sudmann, Jörg Holtmann, Stefan Dziwok,
Uwe Pohlmann, Tobias Eckardt, Julian Suck, Christopher Brink, Jan Rieke,
Matthias Becker, Marie-Christin Platenius, Christian Brenner, and Sebastian
Lehrig provided a collegial and trustful environment.

Special thanks go to Markus von Detten and Christian Heinzemann. The first
for being a most valuable office colleague. The latter for the excellent coopera-
tion in many scientific topics.

I thank Dominik Steenken, Steffen Ziegert, Christoph Sondermann-Wölke, Jens
Geisler, Christian Hölscher, Mareen Vaßholz, Peter Reinold, Kathrin Flaßkamp,
Katharina Stahl, and Andry Tanoto for a very good collaboration in the Special
Research Center 614.

Special thanks goes to Jutta Haupt and Jürgen Maniera for excellent adminis-
trative and technical support.

Moreover, I thank the many students without whom this work would not have
been possible. In particular Denis Braun who has been my student worker
for several years and Anas Anis and Sebastian Lehrig who where part of an
outstanding project group.

I thank Markus von Detten, Matthias Becker, and Steffen Priesterjahn for proof
reading.

I thank my parents for providing me with the support to start a scientific
career. Foremost, I thank my husband Steffen and my son Tobias for their
strong support, their trust and belief in me, and the many times they made the
sun shine in my life.

vii

Contents

1 Introduction 1
1.1 RailCab . 2
1.2 Problem Definition . 3
1.3 Contribution . 5
1.4 Integration into the Development Process 6
1.5 Thesis Overview . 9

2 Foundations 11
2.1 Self-healing Mechatronic Systems 11

2.1.1 Mechatronic Systems . 11
2.1.2 Self-healing Systems . 12
2.1.3 Self-healing Process . 14
2.1.4 Integration into the CRC 614 16

2.2 MechatronicUML . 20
2.2.1 Component Model . 20
2.2.2 Behavior Models . 25
2.2.3 Timed Component Story Diagrams 28
2.2.4 Time . 30

2.3 Safety . 31
2.4 Hazard and Risk Analysis . 34

2.4.1 Fault Tree Analysis . 35
2.4.2 Fault Tree Analysis in Self-optimizing Mechatronic Systems 36
2.4.3 Risk Analysis . 39

2.5 Summary . 41

3 Modeling Timed Failure Propagation 43
3.1 Example . 43
3.2 System Architecture . 45
3.3 System Behavior . 47
3.4 Timed Failure Propagation Graphs 53

3.4.1 Formalization . 57
3.4.2 Adjusting the Propagation Time Intervals of TFPGs . . . 61
3.4.3 Component-based Hazard Analysis Using TFPGs 63

3.5 Summary . 64

ix

Contents

4 Generation of Timed Failure Propagation Graphs 65
4.1 Example . 67
4.2 Constructing TFPGs . 67

4.2.1 Timing and Service Failures 68
4.2.2 Value Failures . 81

4.3 Post-processing the Generated TFPGs 87
4.4 Summary . 89

5 Analysis of Self-healing Operations 91
5.1 Example . 94
5.2 Computing the Critical Time . 95

5.2.1 Error Delay . 96
5.2.2 Reconfiguration Delay . 96

5.3 Compute Locations of Errors and Failures 96
5.4 Analyze the Criticality of the MCS 102
5.5 Analyze the Success of the Self-healing Operation 102
5.6 Remarks . 103
5.7 Summary . 104

6 Analysis of Self-healing Operations at Runtime 105
6.1 Example . 107
6.2 System Extensions . 111

6.2.1 Analyzer . 112
6.2.2 Reconfiguration Controller 118

6.3 Risk Analysis . 120
6.4 Timing Concerns . 120
6.5 Summary . 121

7 Tool Support 123
7.1 Tour of the Tool . 123

7.1.1 AShOp . 123
7.1.2 Runtime Analysis . 136
7.1.3 Simulation . 140

7.2 Software Architecture . 141
7.3 Evaluation . 143

7.3.1 RailCab . 144
7.3.2 Identification of Relations Between Incoming and Outgo-

ing Timing and Service Failures 144
7.3.3 AShOp . 145

7.4 Summary . 148

x

Contents

8 Related Work 151
8.1 AShOp . 151

8.1.1 Deductive Cause Consequence Analysis for Self-adaptive
Systems . 152

8.1.2 LARES . 152
8.1.3 Component-based Hazard Analysis for Reconfigurable Sys-

tems . 153
8.1.4 Hybrid Failure Propagation Graphs 153
8.1.5 Discussion . 153

8.2 Automatic Generation of Failure Propagation Models 154
8.2.1 Continuous Time Markov Chains 155
8.2.2 State Machines . 155
8.2.3 Mode Automata . 156
8.2.4 FSAP/NuSMV-SA . 156
8.2.5 Discussion . 156

8.3 Runtime Analysis . 156
8.3.1 Runtime Certification . 157
8.3.2 Other Approaches for Runtime Analysis 157

9 Conclusion 159
9.1 Summary . 159
9.2 Future Work . 160

List of Abbreviations 163

Own Publications 165

References 167

List of Definitions 181

List of Figures 183

List of Tables 187

xi

1 Introduction

The number of technical systems in our world is growing rapidly [Pal08]. A large
proportion of these systems are mechatronic systems. Mechatronic systems are
developed in a joint effort by mechanical engineers, electrical engineers, control
engineers, and software engineers [VDI04]. We find them in our everyday life
such as in coffee makers, medical devices, or cars. They are often embedded
real-time systems that interact with the real world.

Mechatronic systems are usually software-intensive [SW07]. Their functionality
and correctness depend on high quality software. As they are often employed
in safety-critical contexts, guaranteeing this high quality becomes an absolute
must. Besides testing and simulation, formal verification of a software model
and automatic code generation have become an accepted approach to improve
software quality and guarantee correctness [Lev95, Sto96].

Formal verification focuses, in particular, on checking safety and liveness prop-
erties of the system under development. This prevents the introduction of
design faults. However, due to the interaction with the real world, errors in
such systems may also be caused by random faults1. Random faults may occur,
for example, due to the wear of physical components.

Random faults may lead to hazards. Hazards are situations that may lead to
accidents which may in turn harm people or property [Lev95]. The goal of the
system developer is thus to keep the probability of the occurrence of a hazard
acceptable, i.e., below a threshold that has been defined in the system’s safety
requirements.

If there are hazards in the system whose occurrence probabilities exceed the
required threshold, the occurrence probability must be reduced. Of course, it
is desirable, to eliminate all hazards from technical systems. This however,
is not possible, because in this case most technical systems would not fulfill
their function [Lev95]. A reduction of hazard occurrence probabilities may be
achieved by self-healing.

Self-healing systems react to observed faults autonomously by executing a self-
healing operation that returns the system into a safe state [Sha02]. This self-
healing operation may be realized by structural reconfiguration [GSRU07] which
is the creation and removal of software components and communication links.

Self-healing offers a cost-efficient way to implement a reliable system, because of-
ten failures that cannot be avoided require costly maintenance cycles. However,

1According to Avizienis et al. [ALRL04], an error is the deviation from a correct system
state. A fault is the cause of an error.

1

1 Introduction

they may be detected and removed automatically at runtime by self-healing op-
erations [GMP+10].

Of course, the developer needs to analyze whether a self-healing operation re-
duces the occurrence probability of a hazard such that it meets a required
threshold. Such an analysis is usually conducted at design time. However at
runtime, structural reconfigurations may lead to architectural configurations
(from now on configuration) which have been unknown at design time. This
applies in particular to systems of systems where several systems are combined
at runtime to achieve an extended functionality [SBT11]. Consequently, the
effect of self-healing operations on configurations that are only constructed at
runtime cannot be analyzed at design time. Still, the developer must guarantee
acceptable hazard occurrence probabilities for these configurations. Therefore,
self-healing operations must also be analyzed at runtime.

Existing methods that analyze hazards in reconfigurable systems are the ap-
proaches of Güdemann et al. [GOR06], Giese et al. [GT06], and Walter et
al [WGR+09]. The approach of Güdemann et al. [GOR06] allows for analyzing
whether the different configurations of a system lead to hazards. The approach
of Giese et al. [GT06] enables the computation of configurations with the lowest
and highest hazard occurrence probability. However, both approaches do not
take the propagation times of failures into account. They can therefore not
analyze how self-healing operations affect failures which propagate through the
system. Walter et al.[WGR+09] compute the probability that a system fails
despite the fact that self-healing operations are executed. However, they do not
analyze how the self-healing operations affect the system.

Existing approaches for runtime analysis do not analyze hazard occurrence
probabilities or self-healing operations. They aim at runtime certifica-
tion [SBT11] or focus on the detection of anomalies in the executed system
behavior and try to lead the system back to its intended behavior [DDK+07,
FGT11, GMS12, KMM07, Rus08, SRA04].

1.1 RailCab

A concrete example of a self-healing mechatronic system is the RailCab2. Rail-
Cabs are smart rail vehicles that drive autonomously. The vehicles apply the
linear drive technology as used by the Transrapid3 system. Figure 1.1(a) shows
a RailCab on the track. Figure 1.1(b) shows the frame of the RailCab and its
hardware.

RailCabs drive in a convoy in order to reduce energy consumption caused by air
resistance and to achieve a higher system throughput. Such convoys are estab-
lished on demand and require small distances between the RailCabs. However,

2http://www-nbp.upb.de
3http://www.transrapid.de

2

1.2 Problem Definition

(a) RailCab prototype on the track (b) Frame and hardware of the RailCab

Figure 1.1: RailCab

these small distances make the coordination of the RailCabs a very safety-
critical operation because minor inaccuracies in the coordination can already
cause a collision.

Software is an integral part of the RailCab, because a wide range of functionali-
ties such as autonomous driving, active steering, and in particular convoy drive
can only be realized with the help of software. Software is used to coordinate
the vehicles in real-time, to react in the case of an emergency, and to select and
change feedback controllers.

1.2 Problem Definition

The small distances between RailCabs in a convoy are controlled by the drive
speed of each RailCab. Based on the speed that is measured by sensors, the
embedded software of a speed control subsystem determines the required de-
/acceleration to adjust the RailCab’s drive speed. If at least one speed sensor
fails, a wrong speed propagates to the speed controller. This results in a wrong
de-/acceleration, which in turn leads to a wrong distance between at least two
RailCabs. This wrong distance may lead to harmful accidents like a collision
or derailment that may cause severe property damage or even threaten lives.

A self-healing operation may be specified at design time to prevent such a
situation. The self-healing operation replaces the faulty sensor-based speed
measurement by a GPS-based speed measurement at runtime. However, the
self-healing operation only prevents the hazard if it is performed fast enough
such that the wrong speed value does not propagate to the speed controller.

Figures 1.2 and 1.3 show the effects of the self-healing operation for different
points in time. Both figures depict the speed control subsystem of the RailCab
before and after the application of the self-healing operation.

Before the self-healing operation is applied, the component sc:SpeedCtrl computes
the electric current to be set on the linear drive in order to reach a specific speed
and thereby keep a specific distance to the RailCab driving in front. The target

3

1 Introduction

speed is provided by the component se:SpeedEval, which calculates the speed
of the RailCab on the track from speed data provided by the speed sensors
s1:SpeedSensor and s2:SpeedSensor. If the error in s1:SpeedSensor is detected, a
self-healing operation is triggered that removes the link between pos:PosCalc

and sc:SpeedCtrl. In Figures 1.2(a) and 1.3(a), a red arrow indicates how far
the failures which result from the error in s1:SpeedSensor have propagated at the
time when the self-healing operation is executed.

The results after the application of the self-healing operation are depicted in
Figures 1.2(b) and 1.3(b). The sensor-based speed measurement consisting
of the components s1:SpeedSensor, s2:SpeedSensor, pl:Plausability, and se:SpeedEval

have been removed and the components gps:GPS and ge:GPSEval have been cre-
ated. The speed is now measured based on GPS-data by gps:GPS and evaluated
by ge:GPSEval.

In Figure 1.2, the self-healing operation is executed 40 time units after the de-
tection of the error in s1:SpeedSensor. The failure has propagated to se:SpeedEval

before the execution of the self-healing operation (cf. Figure 1.2(a)). The
self-healing operation removes se:SpeedEval including the failure. The resulting
configuration, which is shown in Figure 1.2(b) is thus free from failures. The
hazard has been prevented.

pl : Plausibility

s1 : Speed
Sensor o

s2 : Speed
Sensor

o
se : SpeedEval sc : SpeedCtrl

e

0

40

f

(a) Before applying the self-healing operation

sc : SpeedCtrl

gps : GPS ge : GPSEvalo

(b) After applying the self-healing operation

Figure 1.2: Self-healing on time

In Figure 1.3, we consider the case that the self-healing operation is executed
at 90 time units after error detection. The failure has already propagated
to the component sc:SpeedCtrl before the self-healing operation is executed (cf.
Figure 1.3(a)). The failure remains in the systems even after the self-healing
operation has been applied (cf. Figure 1.3(b)). It will leave sc:SpeedCtrl, prop-
agate to the linear drive and thus cause a wrong speed that leads to a wrong
distance between the RailCabs.

4

1.3 Contribution

pl : Plausibility

s1 : Speed
Sensor o

s2 : Speed
Sensor

o
se : SpeedEval sc : SpeedCtrl

e

0

90

f

(a) Before applying the self-healing operation

sc : SpeedCtrl

gps : GPS ge : GPSEvalo

f
f

(b) After applying the self-healing operation

Figure 1.3: Too late application of a self-healing operation

This example shows that the success of the self-healing operation depends on
the location of the failures in the system at the point in time when the self-
healing operation is executed. If the failures have propagated too far before the
self-healing operation is completed, the self-healing operation fails. To compute
the locations of failures at specific points in time, we need to take into account
the propagation times of failures.

In order to analyze how self-healing operations affect the propagation of failures,
all possible configurations of the system must be known [GT06, PWP+11].
However, in reconfigurable systems, it is possible that configurations occur only
at runtime and are unknown at design time [SBT11].

When, for example, RailCabs have become ready for the market, more than one
manufacturer will produce them. Then, it will be possible that two vehicles of
different manufacturers meet. In order to build a convoy, they need to establish
a connection. This connection leads to a configuration that was unknown at
design time, because the configuration of the unknown vehicle was, of course,
unknown to the developers of the RailCab. The effect of self-healing operations
on such configurations needs to be analyzed at runtime.

1.3 Contribution

In this thesis, we present an approach for the analysis of self-healing operations
(AShOp). It analyzes whether a self-healing operation is executed fast enough
to reduce the occurrence probability of a hazard such that it becomes accept-
able. This analysis is applied at design time and at runtime. At design time, the
developer focuses on constructing self-healing operations that reduce the occur-
rence probabilities of all possible hazards of the system such that they become
acceptable. At runtime, the analysis ensures that only such configurations are

5

1 Introduction

constructed that have acceptable hazard occurrence probabilities. AShOp has
been implemented as plugin for the FUJABA Real-time Tool Suite [PTH+10].
We used this tool to apply AShOp on the RailCab and evaluated the scalability.

Figure 1.4 illustrates how the presented methods are applied in a development
process. A single person or a group of persons, whose task is to assure the
safety of the system, conducts all outlined actions. In the remainder of this
document, we refer to these persons as developer.

The process starts with the behavior models and static and dynamic architecture
models of the system. The static architecture specifies is the initial configura-
tion of the system. The dynamic part is represented by a set of structural
reconfigurations that change the configuration of the system at runtime. Note
that the self-healing operations are a subset of the dynamic architecture. The
behavior models specify the real-time behavior of the system.

Before the self-healing operations are analyzed, the input models for the analysis
need to be created. AShOp uses failure propagation models (FPM) [GTS04]
with timing annotations. They are generated from the real-time behavior of
the system.

Thereafter, the occurrence probabilities and minimal cut sets4(MCS) of the sys-
tem’s hazards are computed. Based on the occurrence probabilities, the devel-
oper decides, which hazards have to be reduced by self-healing. The developer
constructs self-healing operations for each of these hazards.

AShOp checks whether these self-healing operations guarantee to reduce the
probability of a hazard. AShOp requires the static and dynamic architecture,
the real-time behavior, the occurrence probabilities and minimal cut sets, and
the generated FPMs as input. The result is a verdict about the success of the
analyzed self-healing operation. It is successful if the occurrence probability of
the hazard satisfies the safety requirements after the self-healing.

To analyze self-healing operations at runtime, the reachable configurations are
computed at runtime, as well. Then, the self-healing operations are analyzed.
Depending on the resulting hazard occurrence probability, the structural recon-
figurations, which lead to reachable architecture configurations, are approved
or locked.

1.4 Integration into the Development Process

The VDI-Guideline 2206 – “Design methodology for mechatronic
systems” [VDI04] provides a guideline for the systematic development of mecha-
tronic systems. The generic procedure is defined by the V-model as illustrated
in Figure 1.5.

4 The combinations of basic events that lead to a hazard [Lev95]

6

1.4 Integration into the Development Process

runtime

design time

approval or lock

real-time
behavior

static and dynamic
architecture

verdict

generate FPM

FPM

e

f

occurrence probilities
+ MCS

compute MCS and
occurrence

probabilities

analyze
self-healing operations

construct reachable
configurations

analyze
self-healing operations

reachable configurations

Figure 1.4: Process overview

7

1 Introduction

MechatronicUML

specify architecture,

behavior, and

reconfiguration

generate

code

specify self-healing

operations

analyze self-healing

operations

analyze

hazards

Figure 1.5: V-model for the development of mechatronic systems [VDI04] ex-
tended by AShOp

The process starts with the system requirements and ends with the final prod-
uct. In between, there are three phases: system design, domain-specific design,
and system integration. Several cycles of these phases are required for develop-
ing a complex mechatronic system.

A high-level solution is constructed during system design. This solution covers
all domains, which are involved in the system. It specifies the essential physical
and logical modes of action. The domain-specific design is a concretization of
the high-level solution of the system design. During domain-specific design, the
high-level solution is extended in each domain separately. Software engineering
is embedded in the domain information technology. The software architecture
is derived from the high-level solution, further refined, and the behavior is
specified. During system integration the results from the domains are integrated
into one system. The interactions of the domain-specific parts are analyzed.

AShOp can only be applied when the architecture and behavior of the system
have been modeled. Consequently, it is not carried out during system design.
During system integration, the system is assembled and the interaction of the

8

1.5 Thesis Overview

different system components is tested. AShOp is not applied during this phase
either. Consequently, AShOp is only applied during domain-specific-design.

The domain-specific-design is divided into the different domains, which are in-
volved in the development of mechatronic systems. In this thesis, Mechatron-
icUML [BBD+12, EHH+13] is used as a modeling language in the domain of
software engineering. A development process has been specified for Mecha-
tronicUML in [HSST13] that embeds AShOp as shown in the lower part of
Figure 1.5. AShOp is applied when the behavior and structural reconfigurations
have been modeled and verified. Then, failure propagation models are gener-
ated and the occurrence probabilities of the hazards are computed. Self-healing
operations are specified for hazard with too high occurrence probabilities and
the effect of each self-healing operation is analyzed by AShOp.

1.5 Thesis Overview

The next chapter presents the foundations needed to introduce the concepts,
which result from this thesis. The foundations comprise self-healing mecha-
tronic systems and model-based development techniques for self-healing mecha-
tronic systems. The model-based development includes safety related analysis
techniques. In Chapter 3, we introduce our failure propagation models with
timing extensions. These failure propagation models are based on a formal se-
mantics. We therefore present a formal definition of all system models first to
formalize our new failure propagation models. Chapter 4 continues with the
automatic generation of the failure propagation models used in AShOp. The
failure propagation models are generated from the behavior models of the sys-
tem. In Chapter 5, we describe our approach for the hazard analysis of the
self-healing behavior (AShOp). Chapter 6 introduces the necessary extensions
to analyze self-healing operations at runtime. Chapter 7 presents the tools that
implement the concepts described in Chapters 3 to 6. The tools are evaluated
with respect to scalability. Chapter 8 discusses works related to the topics of
this thesis. We conclude in Chapter 9 with a summary and an outlook on future
work.

9

2 Foundations

In this chapter, we introduce the basic concepts, which are needed to understand
the methods that we have developed in the course of this thesis. Therefore, we
first define self-healing mechatronic systems - the domain of systems which we
consider (cf. Section 2.1). In Section 2.2, we present MechatronicUML.
MechatronicUML is a graphical modeling language for the development of
software for mechatronic systems. In Section 2.3, we give an overview of the
concept of safety and potential threats to safety. In Sec 2.4, we present methods
for analyzing hazards.

2.1 Self-healing Mechatronic Systems

Self-healing mechatronic systems are mechatronic systems with self-healing ca-
pabilities. Self-healing means that the systems monitors itself at runtime to
detect errors. Once, an error was detected, the system autonomously prevents
that the error causes malfunctions or even hazards.

2.1.1 Mechatronic Systems

Mechatronic systems, which have to be developed in a joint effort by teams of
mechanical engineers, electrical engineers, control engineers, and software engi-
neers, enable innovative design concepts. Each mechatronic system comprises
four components as depicted in Figure 2.1. The basic system is a mechanical,
electromechanical, hydraulic, or pneumatic structure or a combination of these.
The state of the basic system is measured by different types of suitable sensors.
The information processing unit contains control algorithms, which calculate
the desired values for the actuators. The actuators influence the behavior of
the system. Additionally, three types of flow are necessary to describe the in-
teraction between the four basic components. The information flow is used to
exchange pieces of information like measured values. The energy flow describes
the type and amount of energy transferred mainly from and to the basic sys-
tem. The material flow comes into play, where raw material or semi-finished
products are used to fabricate the desired product, or where inherent processes
use material like oil for hydraulic components.

The information flow between the sensors, the basic system, the actuators, and
the information processing builds a feedback loop: The actuators affect the
basic system. The behavior of the basic system is measured by the sensors,

11

2 Foundations

Information
processing

Information
processing

Communication
system

Human-machine
interface

Human

Actuators

Power
supply

Sensors

Basic
system

Environment

Legend:
 Information flow Necessary unit
 Energy flow Optional Unit
 Material Flow

Figure 2.1: Basic structure of a mechatronic system [VDI04]

which forward this information to the information processing. The information
processing, in turn, controls the actuators based on the information of the
sensors.

The actuators of mechatronic systems interact with the physical world. Con-
sequently, they have to operate in real-time. The behavior of real-time systems
not only depends on the results of computations but also on the point in time
when a result is delivered. The point of time when a result is needed is spec-
ified by deadlines. Depending on the consequences in cases where results are
delivered too late, real-time systems are divided into soft and hard real-time
systems. In hard real-time systems, the miss of a deadline leads to a system
failure. In soft real-time systems, the results may still be used but its usefulness
may be reduced [Kop97].

A key property of software, which is applied in mechatronic systems, is its ex-
posure to hardware failures. Hardware failures differ from software failures in
that hardware fails randomly. The correct functionality of sensors as an exam-
ple of hardware components is essential for the safe operation of mechatronic
systems. Sensors provide information about the behavior of the actuators and
the system in its environment. Broken sensors need to be replaced immediately
by working sensors to prevent accidents. Therefore, we particularly concentrate
on sensor failures and their recovery.

2.1.2 Self-healing Systems

All parts of a mechatronic system, either hardware or software, may fail and
thus affect its behavior. This may lead to dangerous situations, namely hazards,
where people or the environment may be harmed. Self-healing may be used to
prevent hazards in the case of failure. For the understanding of self-healing, we

12

2.1 Self-healing Mechatronic Systems

clarify first specify a healthy system. Shaw [Sha02] defines a healthy system as
follows:

“A system is considered healthy as long as it works according to
its specification. As a system may be used in many ways, criteria
for system health depend on the respective application of the sys-
tem” [Sha02].

In other words, a system is healthy as long as it shows its intended behavior.
Self-healing comes into play if the system is not healthy, i.e., it deviates from
its intended behavior.

As proposed by Carzaniga et al. [CGP08], we refer to self-healing by the ability
of a system to autonomously detect and overcome failures. Self-healing aims
at correcting a system in the case of failure such that failures can be tolerated.
Thus, self-healing is closely related to fault tolerance.

Fault tolerance is the characteristic of a system that faults do not result in
a system failure. Fault tolerance is realized by employing some kind of redun-
dancy [Sto96]. If parts of the basic system fail, backup components continue the
operation of the basic computer system. If one component fails, the remaining
components still provide the functionality (static redundancy) or broken com-
ponents are replaced by spares (dynamic redundancy). Dynamic redundancy is
referred to as self-healing [Sto96].

One approach for the self-healing of mechatronic systems are artificial immune
systems [MR12, RSV13]. Artificial immune systems adapt the principles of
biological immune systems: If a cell of an organism is infected by a pathogen,
special molecules of that cell take the signature of the infecting pathogen. When
the signature is detected, the immune systems starts producing antibodies that
kill the infected cell to heal the organism. The biological immune system is also
able to adapt to different kinds of pathogens. These principles are transfered to
artificial immune systems by implementing the cells of the biological immune
system as software agents1 [MR12].

In artificial immune systems, the behavior of the system is not given in advance.
Instead, the artificial immune systems learns the behavior of the system by
observation at runtime. The borders between normal and anomalous behavior
are specified at the same time. Anomalous system behavior is then detected by
observing the system behavior. The system is returned to normal behavior by a
immune response that switches off the broken system part in the same manner
that a biological immune system kills infected cells. In a computer system, this
may be switching off broken parts of an FPGA2 [MR12].

However, the immune system does not analyze the system behavior that results
from the immune response. Artificial immune systems can therefore only be

1A software agent is a program that acts autonomously and amongst other capabilities is
able to learn from observed behavior[WJ95].

2Field Programmable Gate Array [Rea11]

13

2 Foundations

applied in mechatronic systems, if there is a subsystem that analyzes the effect
and timing of the immune responses and controls them.

2.1.3 Self-healing Process

Self-healing requires a series of actions called self-healing process. According
to Gorla et al. [GMP+10] self-healing comprises the following steps: failure
detection, fault identification and execution of the self-healing operation. In
this work, we focus on the execution of the self-healing operation.

Failure Detection

When for example a sensor is broken, it generates a signal, which deviates from
the correct signal. To detect a broken sensor, the designer needs to know the
correct signal in advance. Correct sensor output can be predicted in most cases,
because for most safety-critical systems the behavior is known in advance, e.g.,
from simulation: Every time, a control command is issued in a mechatronic
system, an actuator alters the system. The response measured by the sensors
will match the command. Otherwise something has failed. For error detection,
the software may, for example, compare actual sensor responses with issued
commands [Dun02], perform self-checks by, e.g. triggering a known value at
the sensor [Mes01], or the system may contain self-validating sensors [HC93,
Cla95, Ise07]. In artificial immune systems, failures are detected by observing
the system behavior and comparing it with the learned behavior. Thereby, it
is difficult to decide whether a deviating behavior is already a failure or still
normal [RSV13]. It is, of course, essential to detect failures as early as possible
to leave the maximum time for recovery.

Fault Identification

When a failure has been detected the causing fault needs to be located and its
type to be determined [LKN+11]. Only then, it can be prevented from causing
further failures. The detected failure may occur anywhere in the system, far
away from the causing fault. In the case of a sensor fault for example, the
failure may be detected at an actuator. The actuator and the sensor may be
separated by several software components that process the sensor signal and
output control commands.

In order to pick an appropriate self-healing operation, the fault needs to be iden-
tified. However, the relation between fault and failure mostly is not one-to-one.
Faults may result in several failures and a failure can be caused by many faults.
The effect of a fault may only result in a failure after long executions [GMP+10].

There exist many techniques to identify faults, for example [BBI+11, Joh03,
dKMR92, dKW87, MDDW05, Rei87]. Faults may be identified by the compar-
ison of failing executions with behavior models [GMP+10]. Another option is

14

2.1 Self-healing Mechatronic Systems

to use fault dictionaries [PR92] A fault dictionary stores the observed system
behavior which is caused by a set of faults. This is done by testing the sys-
tem with fault models. The fault identification compares the observed system
behavior with the precomputed responses and looks up the fault in the fault
dictionary [AO02]. Fault models are used in both cases. Consequently, faults
that have not been modeled cannot be detected. There also exist fault identifi-
cation techniques that work without fault models, but they require much more
effort. Their application in real-time systems is thus not feasible [BO10].

In this work, we use fault dictionaries for fault identification. The advantage
of fault dictionaries is their time efficiency which makes them applicable to
real-time systems [BO10]. However, if the fault dictionary becomes too large,
searching the book may take a long time. Consequently, many approaches
focus on an efficient representation of fault dictionaries [BHF96, PR92, RFP93,
CKKK06].

In artificial immune systems, the fault itself is not needed to select an appro-
priate immune response. Instead, the reaction depends on the signature of the
failure [MR12, RSV13].

Self-healing Operation

The last step of the self-healing process is the actual self-healing operation,
which removes the fault from the system and stops failures from propagating
any further. In this work, we particularly focus on self-healing in the form of
structural reconfiguration, because a self-healing operation can only return a
system to a healthy state by removing failed system parts. On the one hand,
the self-healing operation may simply remove failed system components. In
this case either existing system components provide the functions of the failed
components or the system is degraded. On the other hand, the self-healing op-
eration may replace failed components by creating new software components. In
both cases, the structure of the system is changed [GSRU07]. We consequently
model these changes by structural reconfiguration.

Remark 2.1 In this work, we model self-healing operations by structural re-
configurations. This means, the self-healing operations are a subset of the re-
configuration rules of the system.

Thereby, the concept of encapsulation is preserved: behavior is changed in
the sense of removing or adding functions which are encapsulated in system
components. This helps the developer in understanding the system model. The
comprehensibility of reconfiguration rules, which are based on components is
further supported by the opportunity to model hierarchical architectures which
allows for specifying system architecture and reconfiguration on different levels
of abstraction.

15

2 Foundations

Once a fault has been identified, the failed components are removed from the
basic system using structural reconfiguration. This must happen before failures
propagate to critical parts in the system, i.e., before they may cause hazards.

In artificial immune systems, the kind of immune response differs depending on
the system level it is applied to. On the hardware level, the immune response
may switch off hardware that is broken, e.g., parts of an FPGA [MR12]. On
operating system level, tasks may be restarted or killed [RSV13].

2.1.4 Integration into the CRC 614

In the Collaborative Research Center 614 “Self-optimizing concepts and struc-
tures in mechanical engineering” (CRC 614), we develop design techniques for
self-optimizing mechatronic systems. In order to show the integration of this
thesis into the CRC 614, we sketch how self-optimization is used to implement
self-healing.

Self-optimizing Mechatronic Systems

Self-optimizing mechatronic systems aim at optimizing their behavior. They
evaluate the information, which is collected by their sensors and react optimally
to changing operation conditions. This is the paradigm of self-optimization. It
is implemented in the information processing of the mechatronic system (cf.
Figure 2.1). In the CRC 614, self-optimization is realized by behavior adapta-
tion which is implemented by parameter adaptation or structural reconfigura-
tion [ADG+09].

Self-optimization may be used to recover a system in the case of failure, i.e.,
to heal the system. Thus, self-healing may be considered as a special case of
self-optimization. According to Adelt et al. [ADG+09], the self-optimization
of a technical system is the adaptation of the system objectives to changing
influences on the technical system and the resulting autonomous adaptation of
the parameters and the structure of the system. The adaptation of the system
structure causes an adaptation of the system behavior.

Self-optimizing mechatronic systems determine objectives autonomously and
adapt their behavior correspondingly. According to Gausemeier et
al. [GFDK09], self-optimization is defined by a series of three actions that define
the self-optimization process.

1. Analysis of the Current Situation The current situation consists of the
system state and current and former observations of the system environment.
This information may be collected directly but also indirectly by information
exchange with adjacent systems. The analysis of the current situation deter-
mines whether the current system objectives are suitable for the current situa-
tion. This action corresponds to the first two actions of the self-healing process:
failure detection and fault identification.

16

2.1 Self-healing Mechatronic Systems

2. Setting the System Objectives The system objectives are set by selection,
adaptation, or generation. A selection is made from a given set of alternative
system objectives. Adaptation means the modification of the characteristics or
the weights of system objectives. A generation creates new system objectives
independently from existing system objectives.

This action has no correspondence in the self-healing process. However, it is
possible to specify multiple self-healing operations as a reaction to a failure. In
this case, the self-healing operation would have to be chosen according to the
system objectives.

3. Adaptation of the System Behavior The adaptation of the system be-
havior is achieved by modifying system parameters or the system structure.
This action represents the final feedback of the self-optimization cycle. In the
self-healing process, this action is the self-healing operation.

The self-optimization process may be executed reactively or proactively. Reac-
tive means, the system reacts to changing operational parameters, e.g., changes
in the environment. Proactive means, the system acts in terms of planning,
e.g., in order to transport goods as energy-efficient as possible. For self-healing,
reactive adaptation is applied: The system detects a failure and reacts by an
appropriate self-healing operation.

Development of Self-optimizing Mechatronic Systems

The development process for self-optimizing systems is closely related to the
development process of the VDI-Guideline 2206 – “Design methodology for
mechatronic systems” [VDI04]. The development of self-optimizing mechatronic
systems requires the collaboration of the involved disciplines. They need to
be organized in order to design and construct the system such that it fulfills
its requirements. The disciplines are organized by a domain-spanning system
specification, which is called principle solution as introduced by Gausemeier et
al. [GSG+09]. The principle solution contains all aspects that concern more
than one domain. It is constructed with the collaboration of all involved dis-
ciplines in the first design phase of the development, which is called interdis-
ciplinary conceptual design. The principle solution comprises several languages
for specifying different aspects of the system. They describe the requirements,
logical and physical structure, shape, and behavior of the system [HSST13].

The next phase design and development extends the principle solution in the
different domains and integrates the results of the different domains into the
final system. Each domain uses its domain-specific languages. The design and
development is coordinated by the principle solution [GSG+09]. For the domain
of software engineering, an initial architecture and behavior of the software is
derived from the principle solution [ADG+09, GGS+07]. The architecture and
behavior are extended using the language MechatronicUML, which will be
explained in detail in Section 2.2.

17

2 Foundations

Of course, the principle solution and the models of the different domains need
to be kept consistent [GGS+07, GSG+09], in order to coordinate the different
domains throughout the whole development process. Therefore, changes of
the domain-specific models are transferred automatically to the partial models
of the principle solution. This synchronization is managed by correspondence
models, which define a relation between the principle solution and the domain-
specific models. These changes in the principle solution are transferred to other
domain-specific models as well, if their correspondence is not fulfilled any more.

Operator-Controller-Module

An increasing amount of functionality of mechatronic systems is implemented by
software. Consequently, information processing in such systems becomes more
and more complex [GFDK09]. A huge amount of system components needs
to be coordinated in order to achieve the pursued system objectives. Software
coordinates components that control the system’s hardware and optimization
algorithms adapt the controlling software to changes in the system environment.

In order to achieve the controllability of the information processing, the different
functions must be structured reasonably. Gausemeier et al. [GFDK09] propose
the Operator-Controller-Module (OCM) as shown in Figure 2.2. The OCM is
divided into three levels – the cognitive operator, the reflective operator and
the controller.

The controller contains the control engineering parts of the information pro-
cessing. It processes directly the signals measured by the sensors, computes
adjustment signals and outputs them to the controlled hardware. The reflec-
tive operator monitors the controller. It directs the controller by triggering
parameter changes and structural reconfiguration. The cognitive operator pro-
vides knowledge about the system itself and the system’s environment. This
knowledge is used to optimize the system behavior.

The controller and parts of the reflective operator are executed in hard real-
time. The cognitive operator and the other parts of the reflective operator are
executed in soft real-time.

The self-healing is embedded in the reflective operator, because it is executed
in hard real-time but does not control the hardware directly: If a self-healing
operation misses its deadline, a hazard may occur and thus the self-healing
operation would not yield its intended effect.

18

2.1 Self-healing Mechatronic Systems

A
ct

io
n

Le
ve

l
Pl

an
ni

ng
 L

ev
el

monitoring

sequencer

 C
B

A

Reflective Operator

Controller

Operator-Controller-Module (OCM)

...
configuration-

control
emergency

so
ft

re
al

 ti
m

e
ha

rd
 re

al
 ti

m
e

Model-based Self-Optimiazation

Behavior-based Self-Optimization

cognitive information processingCognitive Operator

Cognitive Loop

Reflective Loop

reflective information processing

motor information processing

configurations

A C
B

controlled system

Motor Loop

Figure 2.2: Structure of the Operator-Controller-Module [GFDK09]

19

2 Foundations

2.2 MechatronicUML

In this section, we introduce our modeling language MechatronicUML as pre-
sented in [BBD+12, BDG+11, EHH+13, HPB12]. MechatronicUML adapts
concepts of the Unified Modeling Language (UML) [Gro09] to model the soft-
ware of mechatronic systems. The MechatronicUML method enables the
model-driven design of discrete software of self-adaptive mechatronic systems.
The key concepts of MechatronicUML are a component-based system model,
which enables scalable compositional verification of safety properties, the model-
driven specification and verification of reconfiguration operations, and the inte-
gration of the discrete software with the controllers of the mechatronic system.
Therefore, MechatronicUML provides a set of domain specific visual lan-
guages as well as a defined development process.

We derive our static architecture from UML component and deployment dia-
grams. For the dynamic part, we consider two types of behavior: reconfiguration
and stateful internal behavior / message passing. For reconfigurations, we use
extended graph transformation rules that we apply to the graphs that constitute
component structures. For modeling the internal behavior of the component in-
stances and their communication with each other, we use real-time statecharts
– UML State machines extended by clocks and constraints over these clocks.

The process of MechatronicUML [HSST13] starts with specifying the mod-
ules of the component types (cf. Sec 2.2.1) and communication protocols called
“coordination patterns”(cf. Section 2.2.1). Then, real-time behavior is added to
the component types (cf. Section 2.2.2). An initial system architecture is spec-
ified by component instance configurations (cf. Section 2.2.1) for software only
and by deployment diagrams (cf. Section 2.2.1) for software which is deployed
on a hardware. The structural reconfiguration is specified (cf. Section 2.2.3)
based on the initial system architecture and integrated via side effects of the
components’ real-time behavior.

Remark 2.2 In the course of this thesis, we will use MechatronicUML to
model system architectures, reconfigurations, and behavior.

2.2.1 Component Model

In MechatronicUML, the static system architecture is specified by compo-
nents. A component encapsulates its inner structure and behavior and allows
interaction with other components only via its interfaces. MechatronicUML
distinguishes between component types and component instances. A compo-
nent instance is the occurrence of a component type. Component instances of
one component type have the same behavior specification but may be in dif-
ferent system states. The component model allows for multiple instantiation of
components within a system.

In MechatronicUML, the interfaces are realized by ports. A component type
defines a set of named port types. Further, port types specify a cardinality with

20

2.2 MechatronicUML

a lower and upper bound. The lower and upper bounds define the minimum and
maximum number of possible port instances of a port. Ports can be either single
ports or multi-ports. Single ports can be connected to only one communication
partner. multi-ports can be connected to one or more communication partners.

MechatronicUML further distinguishes three kinds of ports depending on the
kind of transmitted information: discrete ports, continuous ports, and hybrid
ports. A discrete port is used to send and receive discrete, asynchronous data.
Continuous ports are used to transmit signals. A “signal is a time varying
quantity that has values at all points in time”3. Hybrid ports combine discrete
ports and continuous ports. This means, a hybrid port can process discrete and
continuous data. Hybrid ports are used to connect software components that
process discrete data to hardware components that process continuous data.

The MechatronicUML component model further distinguishes between
atomic components and structured components. Atomic components are active
objects and contain a stateful behavior specification. Structured components
are assembled by embedding other components. The embedded component
types are called component parts. The embedding component type is called
structured component type. A structured component type does not contain a
behavior by itself, because the behavior of the structured component type is
defined by the behavior specification of its component parts.

Figure 2.3 shows the atomic component type PosCalc. Component types are
represented by rectangles. Port types are drawn as squares containing triangles.
The orientation of the triangle indicates the orientation of the communication.
The atomic component type PosCalc has the three hybrid port types speed1,
speed2, and gps, and the discrete port types sender and modeIn. In contrast to
discrete ports, the hybrid port contains a triangle that touches the boarders of
the square.

PosCalc PositionTransmission.sender

sender

speed1

speed2

gps
modeIn

ModeTransmission.receiver

Figure 2.3: Atomic component type PosCalc

Figure 2.4 shows the structured component type RailCab and an excerpt of its
component parts. Component parts are represented by rectangles that are con-
tained in a component type. The structured component type RailCab contains
the two component parts SpeedControl and Coordination and has one multi-port of
the type coordinator. The component part SpeedControl has one single port which
is connected to the single port of Coordination by a connector. The multi-port
coordinator of Coordination is delegated to the multi-port coordinator of RailCab.

3http://www.mathworks.de/help/toolbox/simulink/ug/f15-99132.html

21

http://www.mathworks.de/help/toolbox/simulink/ug/f15-99132.html

2 Foundations

 RailCab

Coordination

coordinator

SpeedControl
provider

refSpeed

coordinator

Figure 2.4: Structured component type RailCab

MechatronicUML uses hardware nodes to model hardware entities. Hard-
ware nodes only exist on instance level. They are drawn as boxes as depicted in
Figure 2.5. They communicate via hardware ports. Each hardware port con-
tains either an “i” or an “o”. “i” means incoming port and “o” means outgoing
port. Signals are received via incoming ports and sent via outgoing ports. The
hardware node in Figure 2.5 represents a distance sensor that sends signals via
two outgoing ports.

dr : DSensor o

o

Figure 2.5: Hardware node ds:DSensor

In MechatronicUML, hardware nodes do not have a state-based behav-
ior [BBD+12]. They are used to model the propagation of hardware failures
into the software.

Remark 2.3 In this thesis, we will use the term “component” as a generic term
for component type, component instance, and hardware node.

Coordination Patterns

A coordination pattern is used to model the communication protocol between
communicating components [GTB+03]. The communicating components are
represented by roles. A coordination pattern consists of two roles and a con-
nector linking the roles. We distinguish single roles and multi-roles. Single
roles can communicate with one communication partner only. Multi-roles may
communicate with more than one communication partner. The role behavior is
implemented by ports that build the interfaces of our components. The behav-
ior of roles and ports is specified by real-time statecharts which will be described
in Section 2.2.2.

Figure 2.6 shows the concrete syntax of our extensions. Coordination patterns
are represented by dashed ellipses. Roles are drawn as dashed squares. Bidi-
rectional connectors are illustrated by lines between port types. Unidirectional
connectors are drawn as arrows. In this example, the coordination between two
RailCabs is modeled by the ConvoyCoordination pattern. It specifies the protocol

22

2.2 MechatronicUML

to coordinate two RailCabs driving in a convoy. It consists of the multi-role co-

ordinator, the single role member, and one connector that models the link between
the two RailCabs. The annotations at the roles specify their cardinalities. The
multi-role coordinator can have one to ten communication partners.

ConvoyCoordination

:member:coordinator

[1...10] [1]

Figure 2.6: Coordination pattern ConvoyCoordination

A multi-role defines the behavior of a role which communicates with several
single roles (cf. Figure 2.7). All simple roles have the same behavior. A
multi-role is a parallel composition of a set of subroles each communicating
asynchronously with a simple role. Subroles communicate synchronously with
each other. An adaptation behavior initializes the multi-role and also initiates
the communication between subroles and creates each subrole.

......

adaptation behavior

subrole1

behavior subrolek

behavior

simple role
behavior

simple role
behavior

subrolen

behavior

simple role
behavior

multi-role

Figure 2.7: Schematic structure of a parameterized coordination pattern

The behavior of a multi-role is specified by the behavior of each subrole and
the adaptation behavior. The adaptation behavior triggers the communication
of the first subrole. Each subrole triggers the next subrole and the last subrole
again triggers the adaptation behavior and so forth.

Component Instance Configuration

Our component model distinguishes between component types and component
instances. It allows for multiple instantiations of component types within a
system. Note that ports are never instantiated on their own. They are rather
instantiated as adjuncts of their respective component type.

A component instance configuration is a concrete assembly of software compo-
nent instances, connected by connectors at the port instances. We illustrate
component instance configurations by UML component diagrams. Figure 2.8
shows a component instance configuration of two RailCabs driving in a convoy.
Component and port instances have the same syntax as component and port
types. The names of component and port instances are underlined. The name
of a component instance has two parts. The unique name of the component

23

2 Foundations

instance is located before the colon, the component type of the component in-
stance is written behind the colon. The names of port instances are prefixed by
colons.

cc:Convoy
Coordination

:coordinatorRole :memberRole

rc1 : RailCab rc2 : RailCab
:memberPort:coordinatorPort

Figure 2.8: Component instance configuration

The instances of coordination patterns have the same syntax as coordination
patterns. In Figure 2.8, the RailCab instances communicate via the instance cc

of the ConvoyCoordination coordination pattern. Names of coordination pattern
instances are underlined as well and have the same layout as names of com-
ponent instances: unique name and coordination pattern name divided by a
colon. The lines which connect the oval of the coordination pattern and the
ports carry the underlined names of the roles (e.g. coordinatorRole) that the port
implements (e.g. coordinatorPort) prefixed by colons. In the remainder of this
thesis, we will omit information about coordination pattern instances and role
instances in component instance configurations, because this information is not
needed to illustrate the techniques, which are presented in this thesis. Port
names will only be annotated if needed.

Deployment Diagram

We use deployment diagrams to model the deployment of software on hard-
ware. A deployment consists of a component instance configuration and a set
of hardware nodes.

Of course, each software component is executed on a hardware node, for ex-
ample an electronic control unit (ECU). This ECU may fail randomly and for
example compute wrong values. Like this ECU, each physical entity of a sys-
tem may fail randomly. To take into account all possible hardware failures of
the system, each physical entity must be represented in the deployment dia-
gram [PSTH11]. In this work, however, we focus on the failure propagation
over time and not on the completeness of the model. To make our examples in
this thesis more comprehensible, we therefore only show physical entities that
help understanding our approach.

Figure 2.9 shows a deployment of a component instance of the type RailCab on
the hardware node ecu:ECU that represents an ECU. Component instances have
the same syntax as in component instance configurations (cf. Section 2.2.1).

24

2.2 MechatronicUML

rc1 : RailCabecu : ECU o

Figure 2.9: Deployment diagram

2.2.2 Behavior Models

The behavior of component types, component instances, roles, ports, and con-
nectors is specified by real-time statecharts [GTB+03]. Real-time statecharts
are an extension of UML state machines that support more powerful concepts
for the specification of real-time behavior. They contain clocks and constraints
over these clocks, which enables the specification of time-dependent behavior.
Deadlines allow for specifying that time passes during the execution of a tran-
sition.

Figure 2.10 shows the real-time statecharts of ports of the coordinator role and
member role of the ConvoyCoordination coordination pattern. In real-time state-
charts, states are represented by rounded rectangles. Transitions are drawn as
arrows. The real-time statecharts of Figure 2.10 only show the basic behavior
of building a convoy. Most acknowledgments, negotiation, and decisions about
reactions to messages are neglected.

default
prepare
c1<=50

leave
c1<=50

coordinator

mode

/convoyProposal
c1:=0

/leaveConoyProposal
c1:=0

[c1>=30]
startConvoy/
enterCoordinatorMode()!
[80;90]

[c1>=30]
leaveConvoy/

leaveCoordinatorMode()!
[80;90]

(a) Coordinator port

default
prepare
c2<=50

leave
c2<=50

member

mode

convoyProposal/
c2:=0

leaveConoyProposal/
c2:=0

[c2>=30]
/startConvoy
enterMemberMode()!
[80;90]

[c2>=30]
/leaveConvoy

leaveMemberMode()!
[80;90]

(b) Member port

Figure 2.10: Real-time statecharts of ports of the ConvoyCoordination pattern

The real-time statechart in Figure 2.10(a) has a clock c1. Based on clocks, real-
time statecharts specify time guards, clock resets, and invariants as known from

25

2 Foundations

timed automata [Alu99]. A timed automaton is a finite automaton extended
by clocks and constraints over the clocks. It thus allows for modeling real-time
behavior.

A time guard is a clock constraint that restricts the execution of a transition to
a specific time interval. A clock reset sets the value of a clock back to zero while
a transition is fired. Invariants are clock constraints associated with locations
that forbid that a timed automaton stays in a location when the clock values
exceed the values of the invariant.

The real-time statechart in Figure 2.10(a) has the clock reset c1 := 0 at the
transition between default and prepare. The transition from prepare to coordina-

tormode has the time guard [c1 ≥ 30]. The time invariant in state prepare is
c1 ≤ 50. Both time constraints together limit the firing of the transition to the
time when c1 has a value between 30 and 50.

Events are defined by ports and occur as trigger or raised events, which are
attached to the transitions of a real-time statechart. A trigger event is placed
in front of a ”/”, a raised event is placed behind it. These events abstract
from real data such as sensor values. Besides events, transitions of a real-
time statechart may carry synchronizations and side effects. Events model
asynchronous communication between real-time statecharts. Synchronizations
model synchronous communication between real-time statecharts of the same
multi-role and inside one component. They are defined analogously to UPPAAL
synchronizations (cf. [BY03]), i.e., they are marked with ”?”or ”!” for received or
initiated synchronizations, respectively. Side effects are methods being executed
by the corresponding component when the transition fires.

In Figure 2.10 both ports are initially in state default, which means that they are
not running in a convoy. When the coordinator port decides to propose building
a convoy, an event convoyProposal is sent to the member port. Both real-time
statecharts reset their clocks c1 and c2 when the transitions are fired and switch
to the state prepare. Next, the member port acknowledges by sending the message
startConvoy which is received by the coordinator port. The member port switches into
the state member mode and sends the synchronization enterMemberMode()!. This
synchronization causes the component internal behavior to create the necessary
component for the RailCab to act as a convoy member. The real-time statechart
of the coordinator port switches into the state coordinator mode and initiates the
reconfiguration for convoy mode by the synchronization enterCoordinatorMode()!.
The transitions must fire the earliest at a clock value of c1 ≥ 30 and the latest at
a clock value of c1 ≤ 50 as specified by the time invariant c1 ≤ 50 in state prepare

and the time guard c1 ≥ 30 at the outgoing transition of state prepare. The
transition carries the deadline [80,90] which specifies that the transition needs
at minimum of 80 and at maximum of 90 time units. Eventually, the coordinator

port decides to break up the convoy and sends a corresponding proposal to the
member port. The communication and reconfiguration triggers are analog to the
communication and reconfiguration triggers needed to build the convoy.

26

2.2 MechatronicUML

The behavior of a component type or instance is specified by only one real-time
statechart. This real-time statechart consists of one state in which all real-time
statecharts of the component type or instance are embedded in compartments.

Formally, real-time statecharts are an extension of timed automata. A mapping
from real-time statecharts to timed automata was defined in [GB03]. This
mapping allows for, e.g., verifying real-time statecharts using the model checker
UPPAAL [BDL04].

Figure 2.11 shows the timed automata that correspond to the real-time state-
charts in Figure 2.10. Circles represent locations. Arrows depict transitions.
Invariants, time guards, and clock reset have the same syntax as in real-time
statecharts.

l1 l2

c1≥30
startConvoy?

convoyProposal!
c1:=0

l3

l4

c1≥80
enterCoordinatorMode!leaveConvoyProposal!

c1:=0l5

c1≥30
leaveConvoy?

l6

c1≥80
leaveCoordinatorMode!

c1≤50 c1≤90

(a) Timed Automaton of the real-time statechart of the coordinator port of Figure 2.10(a)

l1 l2

c1≥30
startConvoy!

convoyProposal?
c1:=0

l3

l4

c1≥80
enterMemberMode!leaveConvoyProposal?

c1:=0
l5

c1≥30
leaveConvoy!

l6

c1≥80
leaveMemberMode!

c1≤50 c1≤90

(b) Timed Automaton of the real-time statechart of the member port of Figure 2.10(b)

Figure 2.11: Timed automata of the real-time statecharts of Figure 2.10

Transitions of real-time statecharts that have a deadline are split into two tran-
sitions and a location [GB03], because transitions in timed automata fire in zero
time. Time may only pass in locations. Therefore, an extra location is added,
where the time of the transition may pass. An example of such a transition in
a real-time statechart is the transition from prepare to coordinatiormode in Fig-
ure 2.10(a). It has the deadline [80, 90]. In the corresponding timed automaton
in Figure 2.11(a), this transitions is represented by the transitions from l2 to l3
and from l3 to l4. The timed automaton may wait until c1 ≤ 90 in location l3
and leave the earliest at c1 ≥ 80. Only then, the outgoing message is sent.

In order to maintain a separation of concerns [MSKC04], i.e., not to mix the
component’s functional behavior with its self-healing behavior, the behavior
of each component is specified by at least two timed automata. One timed
automaton specifies the functional behavior. The other specifies the self-healing
behavior, i.e., error detection and the resulting initiation of reconfiguration.

27

2 Foundations

2.2.3 Timed Component Story Diagrams

In MechatronicUML, we use structural reconfiguration to adapt the system
behavior. This means, the system behavior is adapted at runtime by deleting
or creating software components. The system’s architecture is specified by an
initial deployment diagram and a set of reconfiguration rules [EHH+13]. A re-
configuration rule transforms one deployment diagram into another deployment
diagram.

In this thesis, we model reconfiguration by the change of the system architec-
ture based on the MechatronicUML component model (cf. Section 2.2.1).
Therefore, MechatronicUML employs component story diagrams as intro-
duced in [THHO08]. Component story diagrams specify architectural transfor-
mations on deployment diagrams. They are based on UML activities. Each
activity specifies a transformation of the deployment diagram in the form of a
component story pattern. Component story patterns are an extension of story
patterns that allow for using the concrete syntax of deployment diagrams for
specifying reconfigurations.

We extend component story diagrams to timed component story diagrams
(TCSD) by adding time intervals, namely durations, to the component story
patterns. The time interval specifies the minimum and maximum time units it
takes to apply the timed component story pattern (TCSP) to a deployment di-
agram during runtime. This duration includes the time for created components
to start up and for deleted components to shut down.

The duration of the TCSD is computed from the durations of its TCSPs. For
this, the paths with the shortest and longest duration must be determined. In
order to get a longest duration that is not infinite, the maximum duration of a
TCSD must be bounded by a finite value.

Each TCSD has its own internal clock that starts with zero, when the execution
of the TCSD is started. The duration of the TCSD refers to this internal clock.

Figure 2.12 shows a TCSD that creates an embedded component instance
co:Coordination if it is not yet present, and connects it to the ports provider and
coordinator of the current embedding component instance.

The time constraint [90, 105] in Figure 2.12 specifies that at least 90 and at
most 105 time units elapse from the time when the application of the rule is
initiated and the last change in the deployment diagram that completes the
rule. We assume that the system developer knows this information.

For the specification of reconfigurations in TCSPs, we consider deployment
diagrams as graphs, i.e., components as nodes and connectors as edges. We then
model reconfiguration as a graph transformation rule. A graph transformation
rule consists of a left hand side and a right hand side. The left hand side
identifies the part of the deployment diagram in which the rule can be applied,
i.e., the graph contains an isomorphic image of the left hand side as a subgraph.
The right hand side defines the result of the application, i.e., the changes to be

28

2.2 MechatronicUML

 this

 co:Coordination coordinator coordinator

 sc:SpeedControl

provider

refSpeed

«create»

«create»

«create»

createCoordinationComponent()

 this

 co:Coordination coordinator coordinator

 sc:SpeedControl

provider

refSpeed

[failure]

[success]

[90,105]

Figure 2.12: TCSD creating a coordination component

made to the subgraph such that it is an isomorphic image of the right hand side.
For a short hand notation, left and right hand side are depicted in one single
graph. Instances that are created during rule application are drawn in green
and are annotated with the stereotype «create». Instances that are destroyed
are drawn in red and are annotated with the stereotype «destroy».

A TCSP is executed by first matching the left hand side to the deployment
diagram. Then all parts that are part of the left hand side but not of the right
hand side are deleted. Thereafter, all parts that are part of the right hand side
but not of the left hand side are created.

Then, the right hand side of the TCSP is instantiated and links between the
instances in the match of the left hand side and the rest of the deployment
diagram are redirected to the corresponding ports of the right hand side. Af-
terwards, the now disconnected instances matched by the left hand side are
deleted.

We assume that no concurrent reconfigurations occur, i.e., all aspects of the re-
configuration are described as single TCSDs or sequences of TCSDs. Thereby,
the possibility of unintentional interference between TCSDs is excluded. Oth-
erwise, the creation of arbitrary intermediate architecture or an over- or under-
estimation of the execution time would be possible.

29

2 Foundations

2.2.4 Time

All operations in a mechatronic system have to meet real-time requirements.
Therefore, in MechatronicUML, stateful behavior and reconfiguration is con-
strained by time constraints. These time constraints specify the start time and
duration of operations, and communication delays.

The start time of operations depends on the duration and start time of preceding
operations and communication delays. The duration of operations is determined
by the instructions in the program code, the hardware, the system is deployed
on and by the software that abstracts the hardware from the real-time software.

The computing hardware is the basis for the durations of operations in a system.
The hardware introduces many different parts that all affect the execution of
instructions. It is obvious that the processor speed and the processor cache size
have a direct impact on the speed of executions. However, this speed is for
example also influenced by the bus system and the memory speed. Both affect
memory latency [BO10].

Several layers may exist between the hardware and the real-time software sev-
eral [TG98]. Each layer may introduce delays and affect the duration of oper-
ations. A typical computer architecture consists for example of the following
layers: hardware, firmware, assembler, kernel, operating system [TG98]. The
OCM (cf. Section 2.1.4) also defines a layered architecture of hardware and
software components that each affect the time properties of the system.

Connections between components may have varying delays [BD09]. The delay
is the time required for a message to propagate from source to target. The
delay depends on a variety of parameters, e.g., queuing time, processing delay,
propagation time, and transmission time. The propagation time depends on the
physical properties of the connection. The speed usually has a value of approx.
10−8m

s [BD09]. Propagation times are also affected by changing environment
conditions like changing temperatures. A further uncertainty is introduced by
using buses for data transmission. Depending on the load of the bus transmis-
sion times may vary. Consequently, communication delays have to be expressed
by an interval that specifies minimum and maximum delays. This also applies
to the start time and duration of operations in components, because these op-
erations may depend on data that is transmitted via a connection to another
component.

Several kinds of analyses may be applied to include the above mentioned times
and durations into system models. The durations of reconfigurations, for exam-
ple, are determined by a worst case execution time analysis [TGS06, THMvD08].
The worst-case execution time is the longest time needed to finish an opera-
tion. The reconfigurations are integrated into real-time statecharts as side ef-
fects where they affect the time constraints of the real-time statecharts. The
time constraints in real-time statecharts are for example further influenced by
communication with other system components.

30

2.3 Safety

2.3 Safety

Mechatronic systems are often safety-critical systems. This means, they are
applied in environments where property may be damaged or people may be
harmed as for example in airplanes, trains or medical devices. Dependability
provides a means to characterize safety-critical systems with respect to safety
and security-related aspects.

Figure 2.13 illustrates the complete taxonomy of dependable computing as de-
fined by Avizienis et al. [ALRL04]. It comprises attributes, threats and means
of dependability. We explain these aspects in more detail below.

Dependability

Attributes

Threats

Means

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Faults
Errors
Failures

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Figure 2.13: Taxonomy of dependable computing [ALRL04]

The concept of dependability is a general term covering the following six at-
tributes:

• Availability: to be ready to deliver correct service

• Reliability: to continue a correct service

• Safety: the non-occurrence of critical failures

• Confidentiality: the absence of unauthorized disclosure of information

• Integrity: the non-occurrence of invalid system modifications

• Maintainability: the ability to be modified and repaired

This work particularly focuses on the safety of self-healing mechatronic systems
and on how to maintain it.

The attributes confidentiality and integrity exclusively address the concept of
security. Security and safety are closely related. They both deal with threats
– safety “with threats to life and property”, security “with threats to pri-
vacy” [Lev95]. In this work, we particularly focus on safety and neglect the
concept of security.

31

2 Foundations

Threats to safety particularly focus on the propagation of defects through the
system. Failures are the externally visible deviation from the component’s
behavior. Errors are the manifestation of a fault in the system state, whereas
a fault is the cause of an error.

The means to attain dependability are techniques that aim at maintaining or
improving the dependability of a system. They are grouped into four cate-
gories [ALRL04]:

• Fault prevention: faults do not occur

• Fault tolerance: avoid failures in the presence of faults

• Fault removal: reduce the number of faults

• Fault forecasting: estimate future faults

All these techniques may be applied at design time. Faults may for example be
prevented and removed from the system by using reliable hardware components.
Faults may be forecasted by hazard analysis, which considers the probabilities
of faults. Fault tolerance techniques enable the system to deliver its service even
in the presence of faults [Sto96]. A special case of fault tolerance is self-healing.

The system’s safety may be threatened if the system does not deliver its specified
service. For example, if a RailCab drives at another speed than intended, this
could lead to collision or derailment.

Such situations like the collision are called accident : “An accident is an unin-
tended event or sequence of events that causes death, injury, environmental or
material damage.” [Sto96].

A situation that may, under the right circumstances, lead to an accident is a
hazard. “A hazard is a situation in which there is actual or potential danger
to people or the environment” [Sto96]. A hazard thus specifies a dangerous
situation as, e.g., a RailCab, which is driving with a wrong speed.

Hazards cannot always be prevented, even though the system has been imple-
mented correctly. They must therefore be taken into account during system
design. The occurrence probabilities and causes of hazards are computed by
hazard analysis (cf. Section 2.4). Hazard analysis is used to implement and con-
struct a system such that hazards only occur with a specific probability [Lev95].

However, the occurrence probability of a hazard alone does not provide sufficient
information to assess the criticality of a hazard. In order to assess the criticality
of a hazard, it is related to its occurrence probability and consequences. It
would be more dangerous if, for example, two RailCabs collided that are filled
with passengers compared to the case if two empty RailCabs collided. In the
first case, the severity of the hazard implies multiple deaths compared to no
deaths in the second case. Thus, the wrong distance between two RailCabs is
particularly critical if the RailCabs have loaded passengers.

32

2.3 Safety

A means to measure the criticality of a hazard is the risk. ”Risk is a combi-
nation of the frequency or probability of a specified hazardous event and its
consequence” [Sto96].

Risk provides a means to classify the acceptability of hazards during system de-
sign. The developer specifies a maximum risk for the system under development.
All hazards whose risk does not exceed the maximum are acceptable. If there
are hazards that are not acceptable with respect to the system requirements,
the system must be modified such that all hazards become acceptable. This
may be achieved by several techniques as for example hazard reduction [Lev95].
Reducing a hazard means decreasing its occurrence probability.

Hazards are caused by faults that occur in system components. Faults are clas-
sified by different viewpoints [ALRL04]. They may, for example, be classified by
their dimension (software or hardware), objective (malicious or non-malicious),
or persistence (permanent or transient). In the domain of real-time systems,
persistence is of particular interest. A transient fault that only exists for a
specific time period may have a less negative impact on the system or even be
completely tolerated. In contrast, a permanent fault will always have negative
impact if it is not corrected.

We use the terminology of Avizienis et al. [ALRL04] to specify the propagation
of faults through the system. An externally visible deviation of the component
behavior from its intended function is called a failure. Such failures happen as
a result of a chain of events (cf. Figure 2.14) in a system component: First, a
fault happens, e.g., a sensor part is broken and the sensor delivers values that
deviate from the real values. This fault then causes an error - a deviation from
a correct system state, e.g., a wrong value in the system memory. This error
causes a failure, e.g., due to the wrong value in the memory the system outputs
a wrong value for the control of an engine. This failure may lead to another
fault in a component or system that is connected to this component or system.

Fault Error Failure Fault

Figure 2.14: Fault error failure chain

An important class of faults are byzantine faults. A byzantine fault occurs
if multiple processors of a component in a distributed system deliver wrong
results but the results conform to the component specification. In the field of
self-healing, it depends on the fault detection mechanism whether these faults
are detected correctly. For byzantine faults there exists an approach for fault
tolerance, namely byzantine fault tolerance [CGR11].

Another class of failures, stop failures, lead to a system crash. In this case, only
a fallback arrangement or a restart will help.

33

2 Foundations

2.4 Hazard and Risk Analysis

Hazard analysis is one step to ensure the safety of a system and control safety
threats. Hazards are identified, assessed, and if necessary removed or reduced
in order to guarantee that hazards only threaten the safety of a system by an
acceptable degree.

Hazard analysis is divided into three general tasks [Lev95]:

(1) Development: Potential hazards are identified and assessed at design
time and, if necessary, actions are taken to control or eliminate the hazards.

(2) Operational Management: An existing system is analyzed to identify
and assess hazards with the goal to, e.g., improve the safety of the system.

(3) Certification: The safety of an existing or planned system is demonstrated
to get it accepted by authorities or the public.

In this thesis, we focus on the task development. This means, we aim at ana-
lyzing hazards of a non-existing system, which is under construction. The goal
of this task is to make the developed system safer. The development task is
divided into subtasks [Lev95]:

(1) Identify hazards.

(2) Show the absence of specific hazards.

(3) Determine damages that result from hazards.

(4) Evaluate the causes of the hazards.

(5) Identify procedures to eliminate, minimize or control the hazards.

(6) Find concrete actions to eliminate hazards.

(7) Find concrete actions to control hazards that cannot be eliminated.

(8) Evaluate hazard control.

(9) Provide information for quality assurance.

(10) Evaluate the modification which are to be applied on the system.

In this thesis, we address Step (8) – the evaluation of hazard control. Self-
healing is a method for hazard control as it aims at reducing the occurrence
probabilities of hazards. To evaluate self-healing operations, we apply existing
methods to compute the causes and occurrence probabilities of hazards. A
common method for this evaluation is fault tree analysis [Lev95].

34

2.4 Hazard and Risk Analysis

2.4.1 Fault Tree Analysis

Fault tree analysis [VGRH81, Sto96] is a graphical method for qualitative and
quantitative assessment of hazards. It starts with an event that represents a
hazard. The fault tree works backwards from this hazard to the causes of the
hazard. Events that are related to the top-event are connected by Boolean
operators like AND or OR. This is repeated until the basic events of the hazard
are found.

Figure 2.15 shows an example of a simplified fault tree. The top event “wrong
position on track”represents the hazard of the RailCab being located on another
position on the track than indented. The direct causes for this hazard are a
wrong speed of the RailCab or a wrong steering angle. A wrong speed is caused
if both speed sensors fail at the same time.

wrong position
on track

wrong
speed

≥1

wrong
steering angle

speed sensor 1
failed

speed sensor 2
failed

&

Figure 2.15: Fault tree

Fault tree analysis provides qualitative and quantitative results. Qualitative
fault tree analysis determines the combinations of basic events that lead to a
hazard, namely cut sets. If they occur together, the hazard will occur. Minimal
cut sets (MCS) are a special case of cut sets. A hazard will only occur if all
basic events of a MCS occur. If one basic event does not occur, the hazard will
not occur. Quantitative fault tree analysis determines the occurrence rate or
probability of a hazard. This is based on the occurrence rates or probabilities
of the basic events of the MCS. In this thesis, we use occurrence probabilities.
Occurrence probabilities are computed from occurrence rates.

The occurrence rates of hardware components are determined by testing or by
logging failures during the lifetimes of systems [Lev95]. In this thesis, we assume
that these rates are already given for example by data sheets. Data sheets
are one established method to acquire occurrence rates of basic events. These
sheets are provided by manufacturers of hardware components as for example
an optical transceiver [Tec08] or hard disk drives [LLC08]. These data sheets
provide several means for reliability. Among others, these are the mean time to
failure (MTTF) and the failure rate per 1000 hours. The MTTF specifies the

35

2 Foundations

estimated time of operation until the first failure occurs [Sto96]. The failure
rates or probabilities, which are used for fault tree analysis are derived from
the MTTF.

The following formula computes the MTTF from the failure rate λ and a period
of time t [Sto96]:

MTTF =

∞∫
0

e−λtdt =
1

λ

The failure rate can thus the computed by the multiplicative inverse of the
MTTF.

The occurrence probability of a failure of a component is computed from the
reliability of this component [Sto96]. A failure is the complementary event of
the reliable system. Thus the occurrence probability F (t) that a system may not
work correctly over a given period of time t is the complement of the reliability
over this period t [Sto96]:

F (t) = 1−R(t)

The reliability over a period of time t is computed from the failure rate λ
by [Sto96]:

R(t) = e−λt

2.4.2 Fault Tree Analysis in Self-optimizing Mechatronic Systems

Giese et al. [GTS04, GT06] developed a fault tree analysis for self-optimizing
mechatronic systems. This analysis takes the special characteristics of self-
optimizing mechatronic systems like cyclic structures and reconfiguration into
account, which cannot be analyzed by standard fault tree analysis. To comple-
ment the development of software for self-optimizing mechatronic systems, this
fault tree analysis has been integrated into MechatronicUML.

The approach of Tichy et al. [GT06] uses UML deployment diagrams extended
by hardware ports to specify and analyze the influence of hardware faults to
the software components. Component types and hardware nodes are enhanced
by Boolean formulas that specify the failure propagation inside the component.
The failure propagation between hardware nodes and component instances and
between component instances is derived automatically from the connectors of
the deployment diagram. Hazards are specified by fault trees. The leaves of
the fault trees correspond to outgoing failures of the components of the system
structure. Qualitative and quantitative fault tree analysis is performed based
on Binary Decision Diagrams. The minimal cut-sets (or prime implicants) can
be computed using different approaches (exact ones [vOQ55, McC56, RD97] or
heuristics [BSMH84, Rud84, Sed08]).

36

2.4 Hazard and Risk Analysis

The usage of Boolean formulas instead of fault trees allows for representing and
analyzing cycles and common cause failures. This is particularly important for
analyzing mechatronic systems, because each mechatronic system has at least
one cycle: the control loop (cf. Section 2.1.1).

Errors and failures are typed using an extensible failure classification like the
one from Fenelon et al. [FMNP94]. This allows for the abstraction from concrete
errors and failures. This in turn allows for a more precise specification of failure
propagation between components. We distinguish the general error and failure
classes value, service and timing. A value error specifies that a value deviates
from a correct value, e.g., an erroneous value in the memory of a component. A
service error specifies that no value at all is present, e.g., a component crashed.
A timing error occurs if a value is provided too early or too late.

Error and failure types are ordered by a hierarchy. Upper elements are a gen-
eralization of lower elements and vice versa. Figure 2.16 shows an example of a
failure type hierarchy with the failure types mentioned above. The failure class
value failure, for example, is a generalization of the failure classes coarse value
failure and subtle value failure.

failure type

value failure service failure timing failure

omission
failure

commission
failure

early timing
failure

late timing
failure

coarse value
failure

subtle value
failure

Figure 2.16: Failure type hierarchy

Errors and failures are represented by error and failure variables. Error and
failure variables are named according to the following scheme: ek,ft and fdk.p,ft
for component type k, port type p, error or failure class ft, and d ∈ {i, o}. i
and o specify the direction of failures – i stands for incoming and o for out-
going. In a deployment diagram, error and failure variables are instantiated
when instantiating component types. The notation, described above, holds for
component instances and port instances analogously. This instantiation makes
all error and failure variable instances unique.

Figure 2.17 shows a deployment diagram with a visualization of the Boolean
formulas that specify the failure propagation. Error variables are drawn as
circles and failure variables as rectangles. Operators are depicted by circles.
Arrows indicate the orientation of the propagation.

In the example of Figure 2.17, the value error egps,v in the component instance
gps:GPS causes the outgoing value failure fogps.p1,v at port p1 of gps:GPS. The
outgoing value failure fodg.p3,v at port p3 of component instance dg:DistGPS occurs

if at least one of the incoming value failures f idg.p1,v or f idg.p2,v occurs.

37

2 Foundations

gps : GPS dg : DistGPS

fo
gps.p1,vegps,v fi

dg.p1,v fi
dg.p2,v

fo
dg.p3,v

≥1

Figure 2.17: Deployment diagram with failure propagation model

Hazards are modeled by Boolean formulas that specify the combinations of
outgoing failures of a deployment diagram that cause hazards. The Boolean
formula that defines the hazard is represented by a fault tree. This fault tree
connects the outgoing failures of the deployment diagram to the hazard, which
is the top event of the fault tree.

Figure 2.18 shows the fault tree for the hazard wrong distance that represents
the hazard of a wrong distance between two RailCabs in a convoy. The causes
of this hazard are an outgoing value failure of port p4 of the distance control
component dc or an outgoing value failure of port p3 of the steering angle control
component sa. These failures are represented by the failure variables fodc.p4,v and
fosa.p3,v.

wrong distance

fo
dc.p4,v

≥1

fo
sa.p3,v

Figure 2.18: Fault tree specifying the hazard wrong distance

Reconfiguration is addressed by analyzing all possible architectures of the sys-
tem. Therefore, the reachable architectures of the system are computed with
the help of real-time statecharts and graph transformation rules [GT06]. The
failure propagation of a component is extended by the information about the ar-
chitectures and the according failure propagation. The architectures are stored
in Boolean variables that determine the failure propagation according to the
respective architecture. The results of the reachability analysis are mapped
to constraints over the Boolean variables of the architectures. The resulting
Boolean formula represents a symbolic encoding of all possible failure propaga-
tions that result in the hazard. This model is used to compute which cut sets
cause a hazard on which architecture. Further, the best and worst architecture
with respect to hazard occurrence probability is determined [GT06].

This hazard analysis analyzes all possible system architectures. However, it
does not take into account where failures are located at the point in time when
a reconfiguration is executed. It is therefore not applicable for analyzing self-
healing operations.

38

2.4 Hazard and Risk Analysis

2.4.3 Risk Analysis

Risk analysis combines hazard frequencies and consequences to compute the
risk of a hazard [Sto96] as introduced in Section 2.3. Thereby, risk allows to
classify a hazard by its criticality.

There exist many standards for the quantitative classification of risk. They all
have the combination of the occurrence probability of a hazard and the severity
of its consequences in common. The “International Standard IEC 61508: Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems” [Com98] focuses on the safety of computer controlled systems. This
standard classifies hazard occurrence probabilities and hazard consequences into
categories. The combinations of the categories yield the risk classes.

The result of risk analysis is the risk class of a hazard. For risk classes categories
are used. The standard IEC 61508 proposes the risk classes I, II, III, and IV
ranging from the most serious accident (I) to the least serious accident (IV).
Table 2.1 shows an example of a possible relationship between risk classes and
severities and frequencies of a hazard. The standard does not specify concrete
values for the combination of severity and frequency.

Frequency
Categories

Catastrophic Critical Marginal Negligible

Frequent I I I II
Probable I I II II
Occasional I II III III
Remote II III III IV
Improbable III III IV IV
Incredible IV IV IV IV

Table 2.1: Risk classes from IEC 61508 [Com98]

The concrete values for the severity and frequency categories are not given by
the standard IEC 61508 [Com98]. The standard only provides a guideline for
the development of safety-critical systems. Consequently, results of analyses of
different analyzers may differ even though the system has similar safety-related
characteristics.

Hazards mostly cannot be removed completely from a system. The goal is to
make hazards acceptable. The acceptability of a hazard is a trade-off between
the benefits of the risk level and the costs needed to reduce this risk level. This
principle is called ALARP4[Sto96]. The IEC 61508 [Com98] categorizes risk
levels into three categories as illustrated in Figure 2.19.

The unacceptable region of the diagram represents hazards with a risk that is
so great that it is unacceptable. Hazards whose risk is located in the broadly
acceptable region can be neglected because their risk is very low. Between these

4As low as is reasonably practicable

39

2 Foundations

unacceptable reagion

broadly acceptable reagion

tolerable reagion

negligible risk

Figure 2.19: Levels of risk [Sto96]

two regions lies the tolerable region. Risks that lie within this region may be
acceptable under certain circumstances. A risk within this region is tolerable if
it is as low as reasonably possible. This means, if the risk can be educed easily,
it is not acceptable in this region. If, however, the reduction has high costs, it
will be accepted.

Different systems have different safety requirements. Obviously, the safety re-
quirements for a toy car are far lower than the safety requirement for a real
car. These varying safety requirements are reflected by the concept of safety
integrity:

“Safety integrity is the likelihood of a safety-related system satisfactorily per-
forming the required safety functions under all the stated conditions within a
stated period of time”[Sto96].

There exist many standards for the quantification of safety integrity [Sto96].
They have in common that safety integrity levels (SIL) are allocated to a system.
The classification of SIL varies greatly among the different standards. The
international community converged on a classification of four levels as shown
in Table 2.2. These SIL are specified in the international standard IEC 1508.
They specify the maximum number of failures for a given period of time.

SIL are specified for two classes of systems. Systems that operate in continuous
mode and systems that operate in demand mode. For systems in continuous

40

2.5 Summary

Safety integrity level Continuous mode of op-
eration (probability of
failure per year)

Demand mode of opera-
tion (probability of fail-
ure on demand)

4 ≤ 10−5 to < 10−4 ≤ 10−5 to < 10−4

3 ≤ 10−4 to < 10−3 ≤ 10−4 to < 10−3

2 ≤ 10−3 to < 10−2 ≤ 10−3 to < 10−2

1 ≤ 10−2 to < 10−1 ≤ 10−2 to < 10−1

Table 2.2: Target failure rates for the safety integrity levels of draft IEC 1508
[Sto96]

mode, SIL are quantified by failures per year. For systems that operate on
demand, SIL are quantified by failures per demand [Sto96].

The SIL, which is allocated to a system, is based on its risk classification. For
subsystems, individual SIL may be assigned.

In summary, the main part of risk analysis is the computation of hazard oc-
currence probabilities and MCS. The risk is computed by the product of the
hazard occurrence probability and severity. The severity of hazards mostly can-
not be modified. However, the system design can be adjusted to meet certain
thresholds of hazard occurrence probabilities. In this work, we therefore focus
on hazard occurrence probabilities when referring to safety requirements.

2.5 Summary

In this chapter, we introduced the foundations, which are necessary to under-
stand the methods which have been developed in the course of this thesis. First,
we gave an introduction of self-healing mechatronic systems in Section 2.1. In
Section 2.2, we presented MechatronicUML, a graphical modeling language
which comprises diagrams for modeling the architecture, reconfiguration, and
real-time behavior of the software of mechatronic systems. In this thesis, we
will use MechatronicUML for modeling software of mechatronic systems. In
Section 2.3, we presented means to assess the safety and in particular potential
threats to the safety of a system. One of these threats are hazards, which can-
not be removed completely from technical systems. In Section 2.4, we presented
methods which are used to compute the causes and occurrence probabilities of
hazards. With these methods, the developer has a means to guarantee that haz-
ards only occur with acceptable probabilities. In particular, we presented the
hazard analysis of Giese et al. [GTS04, GT06] which has been integrated into
MechatronicUML. It allows for analyzing hazards in mechatronic systems.
However, it does not take into account where failures are located at the point
in time when a reconfiguration is executed. It is therefore not applicable for
analyzing self-healing operations. However, we will use this analysis to compute

41

2 Foundations

MCS and hazard occurrence probabilities as part of the analysis of self-healing
operations. In the next chapter, we show how we model the propagation of
failures including failure propagation times such that we are able to compute
the location of failures in the systems at specific points of time.

42

3 Modeling Timed Failure Propagation

In this chapter, we introduce the models that are the basis of our analysis of
self-healing operations which will be presented in Chapter 5. The analysis uses
failure propagation models that are extended by propagation times. We call
these failure propagation models timed failure propagation graphs (TFPG).

The propagation of failures through the system during specific time intervals is
computed by a formal analysis. To apply this formal analysis to TFPGs, we
formalize TFPGs the syntax and semantics of TFPGs in Section 3.4. Our def-
inition of TFPGs is based on the component structure of the system, because
AShOp is a component-based analysis. We therefore give a formal definition of
the component architecture of the system in Section 3.2. We further present a
formal definition of the system behavior in Section 3.3, because the propaga-
tion times of TFPGs are computed from the reachable behavior of the system.
We start with the description of an application example, which we will use to
illustrate the models and analyses, which we present in this thesis.

3.1 Example

We explain the approaches and models of this thesis using the speed control
subsystem of the RailCab as an example. The speed control subsystem is a
safety-critical part of the RailCab, particularly when driving in a convoy. A
failure in this subsystem may lead to a wrong speed, which is a hazard. A wrong
speed may result in a collision or derailment and thus cause severe injuries or
property damage. Figure 3.1 shows the deployment diagram of the speed control
subsystem.

The speed of a RailCab is controlled by the speed controller sc:SpeedCtrl. It
computes the electric current, which is applied to the linear drive. The electric
current depends on several parameters: the position of the RailCab on the
track, the distance to other RailCabs in the convoy, and the reference speed
and distance specified by the convoy leader. The position of the RailCab is
computed by pos:PosCalc from the signals of the two speed sensors s1:SpeedSensor

and s2:SpeedSensor and a GPS-signal provided by the GPS-sensor gps:GPS. The
distance to another RailCab is measured by the distance sensor dr:DSensor and
computed from GPS-data by dg:DistGPS. The latter component computes the
distance from the position data of gps:GPS and the GPS data of the adjacent
RailCabs which is received via wireless network by the components wlan:WLAN

and ref:ReferenceData. ref:ReferenceData further provides reference data, e.g., the

43

3 Modeling Timed Failure Propagation

convoy speed from the convoy leader. strt:Strategy determines the drive modes
of the RailCab. In our example, it sets fast and slow drive modes. Therefore,
strt:Strategy forwards the drive mode to different component instances of the
speed control subsystem. The example of Figure 3.1, only shows the connection
between strt:Strategy and pos:PosCalc. We will have a closer look at pos:PosCalc

in Chapter 4.

sa : Sanity

s1 :
SpeedSensor

gps : GPS o

dr : DSensor
o

dg : DistGPS

o

s2 :
SpeedSensor

o

ds : DSelect

sc : SpeedCtrl

strt : Strategy

ld
: LinearDrive

i

ref : ReferenceDatawlan : WLAN o

pos : PosCalc

o

o

e

p1

p2 p3

p4

p5

p4

Figure 3.1: Deployment diagram of the distance control subsystem

The labels of the ports of the component instances pos:PosCalc and sc:SpeedCtrl

show the names of the labeled ports. They will be referred to later in this work.

An error in the distance sensor dr:DistSensor will lead to an outgoing failure of
the speed controller sc:SpeedCtrl which causes the hazard wrong speed. Figure 3.1
illustrates this by a red arrow.

We specify hazards by Boolean formulas over outgoing failures as introduced
in Section 2.4.2. The hazard wrong speed occurs, if a wrong value is output by
sc:SpeedCtrl. This hazard is thus defined by the Boolean formula

wrong speed⇔ fosc.p4,v.

This means, we associate the hazard wrong speed to the outgoing value failure
at port p4 of the speed controller sc:SpeedCtrl.

To prevent the outgoing failure fosc.p4,v of the speed controller in case of an error
in the distance sensor, the component instance sa:Sanity monitors the sanity of
the signal from the distance sensor dr:DSensor. If sa:Sanity detects a failure in this
signal, it forwards a reconfiguration proposal to strt:Strategy. Next, strt:Strategy
triggers a self-healing operation that is specified by the TCSD depicted in Fig-
ure 3.2.

44

3.2 System Architecture

The self-healing operation removes the connectors between the component in-
stances of the types DistGPS and DSelect, and SpeedCtrl and DSelect. It further
creates a new connector between component instances of the types DistGPS

and SpeedCtrl. Thereby, the self-healing operation disconnects dr:DSensor and
ds:DSelect from the system. After the application of the self-healing operation,
the distance between two vehicles will be computed from the values of gps:GPS

and the reference data from the second vehicle only. The execution of the TCSD
takes between 79 and 86 time units.

<<create>>

<<destroy>>
: DSensor

o

: DistGPS

: DSelect

: SpeedCtrl

o

<<destroy>>

[79,86]

Figure 3.2: TCSD specifying a self-healing operation

3.2 System Architecture

The TFPG definition is based on component-based architectures. We therefore
give a formal definition of a component-based architecture and reconfiguration
rules. TFPGs may be applied to all component models that use components
which communicate via ports. In this work, we use the MechatronicUML
component model as introduced in Section 2.2.1. The definition of reconfigu-
ration rules is required to analyze the effect of self-healing operations on the
propagation of failures in AShOp (cf. Chapter 5).

We first define the component specification of the system which gathers all
component types and hardware nodes, which may occur in the system. We
define a component specification as a type graph as defined in [EEPT06].

Definition 3.2.1 (Component Specification)
We define the component specification sys as a type graph sys =

(Vsys, Esys, ssys, tsys) over a set of component types K, a set of hardware nodes
H, a set of port types PK , a set of hardware ports PH , and a set of connector
types L with

• Vsys = K ∪H ∪ PK ∪ PH ,

• Esys = L

• ssys : Esys → Vsys the source function, and

45

3 Modeling Timed Failure Propagation

• tsys : Esys → Vsys the target function.

A component specification specifies a system by defining which component,
port and connector types and hardware nodes exist, which port types are as-
sociated to which component types and hardware nodes, and which connector
can connect which port types.

We define a deployment diagram as a typed graph as defined in [EEPT06] based
on the type graph of the component specification.

Definition 3.2.2 (Deployment Diagram)
Let sys = (Vsys, Esys, ssys, tsys) be a component specification with Vsys = K ∪
H ∪ PK ∪ PH ∪ L. We define K the set of component instances of K, PK the
set of port instances of PK , H the set of hardware instances of H, PH the set
of hardware port instances of PH , and L ⊆ (PK × PK) ∪ (PH × PK) the set
of connector instances of L.

A deployment diagram w = (Gconf , type) of a component specification sys is
a typed graph, where Gconf = (Vconf , Econf , sconf , tconf) is a graph with the
vertices Vconf = K ∪H ∪ PK ∪ PH , the edges Econf = L, and the source and
target function sconf and tconf and type is a graph morphism typing Gconf over
sys.

A deployment diagram is defined by a set of instances of the component and
hardware types of a component specification, and connections between port
instances which are realized by connector instances.

In MechatronicUML, reconfiguration rules are modeled by timed component
story diagrams (TCSD) (cf. Section 2.2.3). In this thesis, we consider TCSDs
that consist of one TCSP only.

Definition 3.2.3 (Timed Component Story Pattern)
Let sys be a component specification.

A timed component story pattern is a tuple r = (LHS,RHS, d). LHS (left
hand side) and RHS (right hand side) are typed graphs as defined in [EEPT06]
typed over sys. d = [dmin, dmax] with dmin, dmax ∈ R≥0, dmin ≤ dmax.

TCSPs are defined for component types and hardware nodes. This means,
TCSPs are specific to the component specification of a system but not specific
to a deployment diagram. TCSP application, of course, takes place on the
deployment diagram rather than the component specification.

d specifies the minimum and maximum duration of time needed to transform
LHS into RHS.

46

3.3 System Behavior

The application of a TCSP to a deployment diagram requires identifying a
matching of the TCSP’s left hand side to the deployment diagram.

Definition 3.2.4 (Matching)
Let w be a deployment diagram and r = (LHS,RHS, d) a TCSP. Let w and
r be typed over a component specification sys. We define a matching m(w, r)
of the TCSP r on the deployment w as a subgraph isomorphism [EEPT06] of
LHS on w.

An LHS may be matched to several subgraphs of a configuration. In the case
of self-healing operations, we allow only one matching, because the self-healing
operation needs to be applied such that it affects the failure propagation as
intended. We therefore assume that the developer specifies a self-healing oper-
ation that only has one matching in the configuration to which it is applied.

The number of matchings of an LHS in a configuration may be computed by
isomorphism checks. Unfortunately, isomorphism checks are NP-complete, be-
cause all possible mappings of all nodes in the LHS and the existence of all
required edges must be checked. However, in timed component story patterns
(cf. Section 2.2.3), and story patterns in general, this complexity can be re-
duced significantly in most cases [SWZ95]. Story patterns are typed graphs.
They usually contain many different types of nodes and edges. Only nodes
and edges of the same types may be matched. Consequently, the graph search
terminates quickly in case it started in the wrong node. Further, the developer
may specify node attributes, e.g., an object name, and thereby define parts of
the matching in the configuration itself. This provides a starting point for the
subgraph search. Additionally, the nodes and edges are accessed by hashing.
This means, request are processed efficiently even in large graphs [SWZ95].

3.3 System Behavior

We specify the real-time behavior of component types and component instances
by real-time statecharts as we have explained in Section 2.2.2. The formal se-
mantics of real-time statecharts is defined by mapping real-time statecharts to
timed automata [BY03]. In the remainder of this thesis, we will use timed au-
tomata to model real-time behavior, because the algorithms which were used
and developed in the course of this thesis are applied on time automata. Timed
automata contain less syntactic elements than real-time statecharts. For exam-
ple in contrast to real-time statecharts, timed automata do not contain dead-
lines. By using timed automata for modeling our running example, the results
of the used algorithms become more comprehensible.

A timed automaton is a finite state machine that is extended by a set of real-
valued variables called clocks and constraints over these clocks. Thus, timed
automata allow for defining time-dependent behavior. As in real-time state-
charts, the specified behavior does not only depend on inputs but also on the

47

3 Modeling Timed Failure Propagation

point in time when these inputs are received. Real-time statecharts are trans-
formed into timed automata as presented in [BGHS04].

Below, we formalize timed automata based on the definition of Bengtsson
and Wang [BY03]. We extend this definition by variables and operations and
guards on these variables, which were introduced informally by Bengtsson et
al. [BGK+96]. We use the variables for passing parameter values between timed
automata, because the definition of timed automata of [BY03] does not support
messages with parameters. We further extend timed automata by side effects
that represent the execution of TCSPs.

Definition 3.3.1 (Timed Automaton)
Let R be a set of TCSPs. A timed automaton A is a tuple A =

(L, l0, C, V,Σ, R,E, I) over R where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C is a finite set of clocks,

• V is a set of data variables,

• Σ = (D × {?, !}) ∪ {τ}) is a finite set of messages where D is a set of
message names and τ is the empty message,

• R ⊆ R is the set of side effects, ε ∈ R is the empty side effect,

• E ⊆ L× B(C)× Σ×R× 2C ×Du × L is the set of edges where

– ϕ ∈ B(C) are the time and variable guards,

– λ ∈ 2C are the clock resets,

– d ∈ Du is a set of data variable assignments where d can be any
expression of “v := exp”, “out := v”, “v := in”, with v ∈ V , and exp
is an expression which uses arithmetic operations and evaluates to
an integer,

• I : L→ B(C) assigns clock constraints to locations, the invariants.

We write l
ϕ,a,r,λ,d−−−−−→ l′ when (l, ϕ, a, r, λ, d, l′) ∈ E.

A constraint B is a conjunctive formula of atomic constraints of the form x ∼
exp for x ∈ C ∪ V , ∼∈ {≤, <,=, >,≥}. We use B(C) to denote the set of
constraints over the set of clocks C.

A timed automaton specifies time guards, clock resets, and invariants based
on clocks. A time guard is a clock constraint that restricts the execution of a
transition to a specific time interval. A clock reset sets the value of a clock back
to zero while a transition is fired. Invariants are clock constraints associated

48

3.3 System Behavior

with locations that forbid that a timed automaton stays in a location when the
clock values exceed the values of the invariant.

Variable assignments are modeled by strings that may be of three different
forms. “v := exp′′ assigns the result of the expression exp to the variable v.
“out := v′′ models the sending of the variable v, and v := in the receiving of v.

Figure 3.3 shows the simplified timed automaton that models the behavior of
the component instance sa:Sanity of Figure 3.1. sa:Sanity checks the signal of
dr:DSensor for plausible values. If a value deviates too much from the values,
which have been measured directly before, it sends a reconfiguration proposal
to st:Strategy.

check
Signal

l1wait

c1≤35

decide

c1≥30
{signalOK:=checkSensorSignal()}

c1≥38
signalOk==1
c1:=0

c1≤40

c1≥38
signalOk==0

switch c1≤45

c1≥43
sa-p2.switchToGPS!

end

c1≥8
sa-p1.dist?
dist:=in

c1≤18

Figure 3.3: Timed automaton specifying the behavior of the component in-
stance sa:Sanity

The timed automaton of the component instance sa:Sanity consists of five loca-
tions and five transitions connecting the locations. The invariant c1 ≤ 18 of
location wait specifies that wait may only be active while the value of c1 is less
than or equal to 18. Accordingly, the time guard c1 ≥ 8 restricts the firing of
the transition from wait to checkSignal to a value greater or equal to eight. The
time intervals are interpreted with respect to the values of clock c1 and not with
respect to the global time that has passed since the system was started. The
reset at the transition from decide to wait sets c1 back to zero.

A transition may carry a message symbol of Σ that specifies input messages
and output messages of the timed automaton. Input messages are denoted by
?, output messages by !.

Remark 3.1 In order to only exchange messages between timed automata of
components and connectors that are connected in the deployment diagram, we
relate messages to ports of component instances. We therefore use messages
of the form k-p.m. k specifies the component instance, p the port, and m the
message that is transmitted. For component types, we use messages of the form
p.m and omit the name of the component type. If the message is used for internal
component communication, the prefix k-p is omitted completely.

In the timed automaton of sa:Sanity, the signal of the distance sensor dr:DistSensor
is modeled by the synchronization sa-p1.dist? and the assignment dist:=in. The

49

3 Modeling Timed Failure Propagation

prefix sa-p1 specifies that the message is received via port p1 of sa:Sanity. dist:=in

denotes that the variable dist is received. The data is passed from a timed au-
tomaton which fires a transition with the message sa-p1.dist! and the assignment
out:=dist that writes the distance value to the variable dist.

The side effect {signalOK:=checkSensorSignal()} executes the plausibility check. If
the sensor signal is plausible, the side effect returns one and assigns it to the
variable signalOK. Otherwise, the side effect returns zero. If the signal of the
distance senor is plausible (signalOK == 1), the timed automaton returns to
location wait. Otherwise, the reconfiguration proposal sa-p2.switchToGPS is sent
to strt:Strategy via port p2.

Figure 3.4 shows the timed automaton that models the behavior of the compo-
nent instance st:Strategy. If st:Strategy receives strt-p1.switchToGPS from sa:Sanity

at any time, it triggers the side effect DiscDistSensor(). This side effect is specified
by the self-healing operation, which is depicted in Figure 3.2. The self-healing
operation disconnects dr:DSensor and ds:DSelect from the system.

disconnectl1wait

strt-p1.switchToGPS?
c2:=0

c2≤10

end

c2≥5
{DiscDistSensor()}

Figure 3.4: Timed automaton specifying the behavior of the component in-
stance st:Strategy

Figure 3.5 shows the timed automaton that models the connector between
sa:Sanity and st:Strategy. The timed automaton receives the synchronization
sa-p1.switchToGPS at any time. When the synchronization is received, the clock
cc1 is reset. After five to six time units the synchronization strt-p2.switchToGPS

is forwarded to st:Strategy.

sa-p2.switchToGPS?
cc1:=0

cc1≥5
strt-p1.switchToGPS!

cc1≤6

wait transmit

Figure 3.5: Timed automaton specifying the behavior of the connector between
sa:Sanity and st:Strategy

Timed automata interact with each other using a joint set of messages. Such a
set of interacting timed automata is referred to as a network of timed automata
(NTA) [BY03]. We extend the definition by a set of shared variables to model
the passing of parameters between timed automata.

50

3.3 System Behavior

Definition 3.3.2 (Network of Timed Automata)
We define A = {A1, . . . , An} with n ∈ N, n ≥ 2 a network of timed automata
(NTA).

For all Ai = (Li, l0i, Ci, V,Σ, Ri, Ei, Ii), Aj = (Lj , l0j , Cj , V,Σ, Rj , Ej , Ij) ∈ A
with i, j ∈ {1, . . . , n}, i 6= j, Li ∩ Lj = ∅, Ci ∩ Cj = ∅.

The timed automata of an NTA share a common alphabet Σ and a set of shared
variables V . The timed automata of Figures 3.3, 3.4, and 3.5 build an NTA
using the joint set of messages {sa-p2.switchToGPS, strt-p1.switchToGPS}.

The real-time statechart of a component type is transformed into an NTA that
contains one timed automaton for each port of the component and one timed
automaton specifying the internal behavior of the component. We denote this
NTA as NTAC.

Definition 3.3.3 (NTAC)
We define NTAC(k) = {A1, ...An} as the network of timed automata that spec-

ifies the behavior of the component type k. Without loss of generality, we define
A1 as the timed automaton that specifies the internal behavior of k. {A2, ..., An}
specify the behaviors of the port types of k.

We compute the propagation times of failures based on the reachable behavior
of the system. The reachable behavior contains all runtime states that an NTA
may visit during its execution. States of an NTA consist of the active locations
of all timed automata in the network, a clock value assignment that assigns a
value to each clock, and an assignment of data variables to values. Since clock
values are real numbers, there exist infinitely many clock value assignments
and, thus, infinitely many states. The problem is solved by using clock zones.

Definition 3.3.4 (Clock Zone)
Let C be a set of clocks and B ⊆ B(C). We define a clock zone h by

h =
∧
b∈B

b.

If a clock zone h contains any two of the constraints (a ∼1 n1), (a ∼2 n2), (a−
b ∼1 n3), and (b − a ∼1 n4) for ∼1∈ {<,≤}, ∼2∈ {>,≥}, a, b ∈ C, and
n1, n2, n3, n4 ∈ N, we call it normalized clock zone [BY03].

We denote the set of all clock zones by H and the function ρ : H → 2C that
returns the set of clocks C of a clock zone h. ⊥ is the empty clock zone.

A clock zone h is a set of clock interpretations described by a conjunction of
clock constraints each of which puts a lower or upper bound on a clock or on

51

3 Modeling Timed Failure Propagation

the difference of two clocks. If C has k clocks, then h represents a convex set
in the k-dimensional Euclidean space. [Alu99].

We define the reachable behavior of an NTA by means of zone graphs. Our def-
inition of zone graphs is based on the definition of Bengtsson and Wang [BY03].

Definition 3.3.5 (Zone Graph)
Given is an NTA A = {A1, ..., An} with Ai = (Li, l0i , Ci, Vi,Σ, R,Ei, Ii), i ∈ N.

Its reachable state space is given by a zone graph Z = (S, s0,Σ
′, T, V, µ, ν) where

• S is the set of states,

• s0 is the initial state,

• Σ′ is the set of transition labels, and

• T ⊆ S × Σ′ × S is the set of transitions.

• V is a set of positive integer variables,

• µ : V → N, and

• ν : S → 2N
|V |

.

States are tuples (l, k, h) where

• l is a location vector,

• k ⊆ N|V | is a set of integer vectors, and

• h is a normalized clock zone.

Let li denote the ith element of the location vector l representing the active
location of Ai and l[l′i/li] the vector l with li being substituted with l′i. In s0 =
(linit, kinit, hinit), for all Ai and all clocks cinit,j ∈ ρ(hinit) have value 0.

Let x(r) denote the execution of a side effect r ∈ R.

We define the set of transition labels by Σ′ = {δ}∪{(i, τ)|i ∈ {1, . . . , n}}∪Σ′act
with Σ′act = {((i, a?), (j, a!))|i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, a ∈ Σ}.

Let ej = (lj , ϕj , aj , rj , λj , dj , l
′
j) ∈ Ej and em = (lm, ϕm, am, rm, λm, dm, l

′
m) ∈

Em with j 6= m. The transitions of the zone graph Z are defined by the rules:

1. (l, k, h)
δ−→ (l, k, h +b) if h ∈ I(l) and (h +b) ∈ I(l), where I(l) =

∧
li∈l I(li)

and b ∈ R+

2. (l, k, h)
(j,τ)−−−→ (l[l′j/lj], k, h ′) if lj

ϕj ,τ,ε,λj ,∅−−−−−−−→ l′j, h ′ = ((h ∧ ϕj)[λj 7→ 0]) ∧
I(l[l′j/lj])

3. (l, k, h)
(j,r)−−→ (l[l′j/lj], k, h ′) if lj

ϕj ,τ,r,λj ,∅−−−−−−−→ l′j, h ′ = ((h ∧ ϕj)[λj 7→ 0]) ∧
I(l[l′j/lj] ∧ x(r))

4. (l, k, h)
((j,a?,r),(m,a!,s))−−−−−−−−−−−→ (l[l′j/lj][l

′
m/lm], k′, h ′) where r, q ∈ R if

52

3.4 Timed Failure Propagation Graphs

a) lj
ϕj ,a?,r,λj ,dj−−−−−−−−→ l′j, lm

ϕm,a!,q,λm,dm−−−−−−−−−→ l′m, with (r = ε ∧ x(q)) xor
(q = ε ∧ x(r)),

b) dj =“v := in”, dm =“out := v”, v ∈ V ,

c) dj =“vj := expj”, dm =“vm := expm”, vj , vm ∈ V , expj and expm are
expressions which use arithmetic operations and evaluate to integers,
or

d) h ′ = ((h ∧ ϕj ∧ ϕm)[λj ∪ λm 7→ 0]) ∧ I(l[l′j/lj][l
′
m/lm]).

States of the zone graph are tuples (l, k, h). l stores the active locations for each
timed automaton of the NTA. Each integer set of k stores the evaluations of a
variable that are possible for the variable in this state. The normalized clock
zone h contains all possible clock interpretations of the state.

We compute the zone graph of an NTA by symbolic execution using the ap-
proach of Heinzemann et al. [HSE10].

In addition to the semantics defined by Bengtsson and Wang [BY03], we allow
shared positive integer variables as introduced by Behrmann et al. [BDL+06].
Therefore, we add a set of positive integer variables V and the functions µ and
ν which map variables to sets of positive integers and states to vectors of sets
of positive integers. Values are transmitted in one direction per transition and
without conditions. The sender writes data to the shared variable v using the
string “out := v′′ and performs a send message a!. The receiver receives the
co-message a? and reads the variable v by “v := in′′. The receiver can access
the transmitted data in the same transition, because the send message a! is
always evaluated before the receive message a?.

Side effects of transitions in timed automata are executed when the transitions
fire.

Figure 3.6 shows the zone graph of the NTA that is built by the timed au-
tomata of the component instances sa:Sanity (cf. Figure 3.3) and strt:Strategy

(cf. Figure 3.4), and the connector between them (cf. Figure 3.5). States are
labeled by clock zones. Transitions are labeled with δ (time passes), τ (silent
transition), or the messages, which are transmitted. The syntax of messages is
the same as in timed automata.

3.4 Timed Failure Propagation Graphs

We use timed failure propagation models called timed failure propagation graphs
(TFPG) to analyze the failure propagation over time. TFPGs, like common
failure propagation models [VGRH81], define a cause-consequence-relation be-
tween failures. In particular, TFPGs include propagation time intervals that
specify minimum and maximum propagation times between failures.

53

3 Modeling Timed Failure Propagation

s1 s2
δ

c1=0
c2=0
cc1=0 s3

sa-p1.dist?

c1≤18
c2≤18
cc1≤18

8≤c1≤18
8≤c2≤18
8≤cc1≤18

δ
s4

8≤c1≤35
8≤c2≤35
8≤cc1≤35

{signalOk:=
checkSensorSignal()}

s5

30≤c1≤35
30≤c2≤35
30≤cc1≤35

δ
s6

τ

s7

c1=0
38≤c2≤40
38≤cc1≤40

30≤c1≤40
30≤c2≤40
30≤cc1≤40

τ

s8

38≤c1≤40
38≤c2≤40
38≤cc1≤40

δ
s9

38≤c1≤45
38≤c2≤45
38≤cc1≤45

s10

strt-p1.switchToGPS

43≤c1≤45
43≤c2≤45
cc1=0

δ
s11

43≤c1≤51
43≤c2≤51
cc1≤6

s12

δ

s13

48≤c1≤51
c2=0
5≤cc1≤6

s14

48≤c1≤61
c2≤10
5≤cc1≤16

53≤c1≤61
5≤c2≤10
10≤cc1≤16

{DiscDistSensor()}

strt-p1.switchToGPS

Figure 3.6: Zone graph of the NTA of Figures 3.3 to 3.5

The benefit of TFPGs is their minimality concerning the information needed
for the analysis of failure propagation times. This analysis actually requires
taking the reachable behavior of the whole system into account. The reachable
behavior of a system comprises the complete data and control flow. However, for
analyzing the propagation times of failures, we only need to take the relations
between failures at the ports of components into account. We therefore abstract
from the system behavior by using TFPGs.

For the specification of failure propagation, we follow the terminology of Avizie-
nis et al. [ALRL04] (cf. Section 2.3). Failures are the externally visible deviation
from the component’s behavior. They are associated with ports where the com-
ponent instances interact with their environment. Errors are the manifestation
of a fault in the state of a component, whereas a fault is the cause of an error.
Errors are restricted to the internals of hardware nodes.

Errors and failures are classified using a failure classification like the one by
Fenelon et al.[FMNP94] (cf. Section 2.3). We distinguish the failure classes
service, value, early timing, and late timing. A value failure specifies that a
value deviates from a correct value, e.g., an erroneous message at the port of
a component. A service failure specifies that no value is present at all, e.g., a
component crashed and does not output any values. A timing failure specifies
that a message has been delivered outside of a defined time interval, e.g., too
late or too early.

TFPGs are generated automatically from the real-time statecharts of compo-
nent types. The generation of TFPGs is described in Chapter 4. We generate a
TFPG for each component type of the system. TFPGs are instantiated in the
deployment diagram at the same time when the component types are instan-
tiated. The connections between the TFPGs of the component instances and
between the TFPGs of component instances and hardware nodes are created
according to the connectors between the component instances and hardware
nodes. The delays of connectors are computed from their real-time statecharts.

54

3.4 Timed Failure Propagation Graphs

By generating TFPGs for component types instead of component instances, we
decrease the effort of the TFPG generation for a system: We generate only one
TFPG for the component type and use it for each instance of that component
type.

Our TFPG generation can be applied to hardware nodes, as well. Therefore,
the developer needs to specify the behavior of the hardware nodes by a real-time
statechart or timed automaton.

In TFPGs, failures are represented by rectangles that are labeled with the
according failure variable (cf. Figure 3.7). Errors are drawn as circles that
are labeled with the according error variable. Operators are depicted by circles
labeled with the according logical operator. In the remainder, we write “AND-
node” for nodes labeled with & and“OR-node” for nodes labeled with OR. Edges
are labeled with propagation time intervals.

fiDistGPS.p1,v

OR

fiDistGPS.p2,v

foDistGPS.p3,v

[27,30] [34,40]

[0,0]

(a) Component type DistGPS

fogps.p1,v
[1,2]

egps,v

(b) Hardware node gps:GPS

Figure 3.7: TFPGs

Remark 3.2 For a component k, a port p, an error or failure class c, and
a direction d, error and failure variables are named according to the following
scheme: ek,c and fdk.p,c with d ∈ {i, o} and fc ∈ {v, s, e, l}. i and o specify the
direction of failures – i stands for incoming and o for outgoing. For error and
failure classes, we use the following symbols: v for value, s for service, e for early
timing, and l for late timing. For a deployment, we instantiate failure variables
by instantiating components. The notation described above holds for component
instances, port instances, hardware nodes, and hardware ports analogously.

The TFPG of Figure 3.7(a) specifies a part of the failure propagation of the com-
ponent type DistGPS of Figure 3.1. The TFPG relates the outgoing value failure
foDistGPS.p3,v at port p3 of DistGPS to the incoming value failures f iDistGPS.p1,v
and f iDistGPS.p2,v at ports p1 and p2. The operator OR specifies that foDistGPS.p3,v
occurs if either of the incoming failures occurs.

The propagation time interval at the edge from f iDistGPS.p1,v to the OR-node
in Figure 3.7(a) specifies that a value failure needs at minimum 27 and at
maximum 30 time units to propagate from port p1 to the OR-node. The edge
originating from the OR-node has a propagation time interval of [0, 0]. This
means between the OR-node and port p3, failures propagate in zero time. These
time intervals are introduced by the automatic generation as we will explain in

55

3 Modeling Timed Failure Propagation

Chapter 4. Thus, a failure needs between 27 and 30 time units to propagate
from port p1 to port p3.

Figure 3.7(b) shows the TFPG of the hardware node gps:GPS. The value error
egps,v which may occur in this hardware node is represented by a circle. The
TFPG specifies that egps,v will propagate to the value failure fogps.p1,v at port
p1 within one to two time units.

Figure 3.8 shows the TFPG of the deployment diagram of the speed control
subsystem of Figure 3.1. The component type DistGPS has been instantiated by
the component instance dg:DistGPS. The incoming and outgoing failures of the
TFPG of dg:DistGPS are connected to failures of connected component instances
according to the connectors of Figure 3.1. In deployment diagrams, edges in
the TFPG are only created if the failure classes at the ports of the connected
component instances are of the same failure class or if one failure class is a
generalization of the other [GTS04]. For example, the outgoing value failure
fodg.p3,v is connected to the incoming value failure f ids.p1,v of ds:DSelect, because
dg:DistGPS and ds:DSelect are connected in the deployment diagram of Figure 3.1
and the failures are both of the failure class value. The edge is labeled with the
propagation time interval [5, 6] of the connector. This edge specifies that the
propagation of a value failure from dg:DistGPS to ds:DSelect takes between five
and six time units.

sa : Sanity

s1 : VSensor

gps : GPS

dr : DSensor

s2 : VSensor

strt : Strategy

ld
: LinearDrive

wlan : WLAN

es1,v [5,6]fo
s1.p1,v

fi
sa.p1,v

fo
ref.p2,v

[1,2]

fo
s2.p1,v

[1,2]
es2,v

fo
gps.p1,v

fo
gps.p2,v

fi
pos.p1,v

[5,6] fi
pos.p2,v

fi
pos.p5,v

fo
pos.p3,v

[1,2]

[1,2]egps,v

[5,6]

fi
dg.p1,v

[5,6]
OR fi

dg.p2,v

[5,6]

fo
dg.p3,v

[5,6]

fi
ds.p1,v

[27,30] [34,40]

[0,0]

fi
ds.p2,v

fo
dr.p1,v

[5,6][1,2]

fo
wlan.p1,v fi

ref.p1,v
[5,6]

fo
ds.p3,vOR

[24,28]

[24,28] [0,0]

[1,2]

fo
ref.p3,v

[5,6]

[30,45]

[30,45]

OR

[25,55]

[18,45]

[43,45]
[0,0] fi

sc.p1,v
[5,6]

fi
sc.p2,v

[5,6]
fi

sc.p3,v fo
sc.p4,v

OR

[20,25]

[17,22]

[14,19]
[3,5]

fi
ld.p1,v

[5,6]

&

[0,0]

fo
dr.p2,v

[1,2]

edr,v

ewlan,v

[5,6]

fi
pos.p4,v

fo
strt.p3,v

[5,6]

Figure 3.8: Deployment diagram with TFPG

56

3.4 Timed Failure Propagation Graphs

The error causing the failure fostrt.p3,v which originates from strt:Strategy is not
shown here, because this failures is of no relevance in our example. The incom-
ing failure f ipos.p4,v which results from the latter outgoing failure fostrt.p3,v is not
connected to the outgoing failure fopos.p3,v, because it does not affect it. As we

will see in Chapter 4, f ipos.p4,v causes the outgoing timing failure fopos.p3,t which
is not part of the depicted TFPG. In the remainder of this thesis, we will omit
fostrt.p3,v and f ipos.p4,v from the TFPG of the speed control subsystem, because
they are of no relevance for the considered hazard wrong speed.

3.4.1 Formalization

The definition of TFPGs requires defining which errors and failures may occur
in the system. We formalize this by the error and failure specification.

Definition 3.4.1 (Error and Failure Specification, V, V)
Let sys = (Vsys, Esys, ssys, tsys) be a component specification, with Vsys = K ∪
H ∪ PK ∪ PH ∪L with the component types K, the hardware nodes H, the port
types PK , the hardware ports PH , and the connector types L.

We denote an error variable by e = (h, ce) with h ∈ H and the error class ce.

We denote a failure variable by f = (k, p, cf , d) with k ∈ K ∪H, the port type
or hardware port p ∈ PK ∪ PH , the failure class cf , and the direction d.

We denote the set of error variables by E and the set of failure variables by F .

We define the error and failure specification V(sys) = (sys, E ,F , fE , fF) with

• E the set of error variables,

• F the set of failure variables,

• fE : E → H (bijective) maps error variables to hardware nodes, and

• fF : F → PK ∪ PH (bijective) maps failure variables to port types and
hardware ports.

Let w = (Gconf = (Vconf , Econf , sconf , tconf), type) be a deployment diagram
over sys with Vconf = K ∪H ∪ PK ∪ PH .

We define the error and failure specification V(w) = (w, E ,F , fE , fF) with

• E the set of error variables,

• F the set of failure variables,

• fE : E → H (bijective) maps error variables to hardware nodes, and

• fF : F → PK ∪ PH (bijective) maps failure variables to port instances
and hardware ports.

57

3 Modeling Timed Failure Propagation

V specifies the error and failure variables on type level and V defines the error
and failure variables on instance level. V is bijective, because hardware nodes,
hardware ports, and component instances are unique.

The component specification of Def. 3.2.1 and the error and failure specification
of Def. 3.4.1 are used to define the TFPG syntax.

Definition 3.4.2 (Timed Failure Propagation Graph)
Let V = (sys, E ,F , fE , fF) be an error and failure specification.

We define O = {AND,OR} as the set of operators.

We then define the timed failure propagation graph (TFPG)
G = (V,E, fs, ft, I, l, ι, η) as a labeled graph (cf. [EEPT06]) over V where

• V is the set of nodes,

• E ⊆ V × V is the set of edges,

• fs, ft : E → V are the source and target functions,

• I = {[tmin, tmax] | tmin, tmax ∈ Q≥0, tmin ≤ tmax} is the set of propaga-
tion time intervals,

• l : V → E ∪ F ∪O is the node labeling function,

• ι : E → I is the edge labeling function, and

• η : V → {active, inactive}.

We define δ+(v) = |{e ∈ E | fs(e) = v}| as the outdegree and δ−(v) = |{e ∈
E | ft(e) = v}| as the indegree of a node v ∈ V . Let V0 = {v ∈ V | δ−(v) = 0}.
Then ∀v ∈ V0 : l(v) ∈ E ∪ F and ∀v ∈ V \ V0 : l(v) ∈ F ∪O hold.

We avoid real numbers as interval bounds of propagation time intervals to enable
mapping to time Petri nets. This mapping will be introduced in Definition 3.4.4.

Nodes in the TFPG are set to active or inactive to allow for tracing failures
through the system. Errors and failures, which have occurred in the system,
are represented by active nodes. All other nodes are inactive.

All nodes with indegree zero are labeled with error variables. All other nodes
are labeled with either a failure variable or a logical operator ≥1 or &.

We define the semantics of TFPGs by time Petri nets (TPN) [CR05]. TPNs are
marked Petri nets [Reu90] with a time extension. Below, we formalize TPNs as
presented in [CR05]. We assume the same semantics.

58

3.4 Timed Failure Propagation Graphs

Definition 3.4.3 (Time Petri Net (TPN) [CR05])
A timed Petri net (TPN) T is a tuple (P, T, •(.), (.)•,M0, (α, β)) where

• P = {p1, p2, ..., p|P |} is a finite set of places,

• T = {t1, t2, ..., t|T |} is a finite set of transitions,

• •(.) : T → N|P |0 is the backward incidence mapping,

• (.)• : T → N|P |0 is the forward incidence mapping,

• M0 ∈ N|P |0 is the initial marking,

• α ∈ Q|T |≥0 and β ∈ (Q≥0 ∪ {∞})|T | are the earliest and the latest firing
time mappings.

In this work, we consider TPNs whose transitions are labeled with time inter-
vals [CR05]. The time interval of each transition specifies the earliest and latest
firing time relative to the internal clock of the transition. The internal clock
starts with zero at the time when the transition is activated. The transition
can only fire if its clock has a value that is within the transition’s time interval.

We use the morphism defined in Definition 3.4.4 below to map a TFPG to a
TPN.

Definition 3.4.4 (Morphism from TFPG to TPN)
We define a graph morphism µ : G 7→ T from a TFPG G =

(V,E, fs, ft, I, l, ι, η) to a TPN T = (P, T, •(.), (.)•,M0, (α, β)) as a tuple
µ = (µV , µE , µI) where

• µV : V → P (bijective),

• µE : E → T (bijective),

• µI : I → Q|T |≥0×Q|T |≥0 (bijective) maps the propagation time intervals to the
earliest and latest firing time mappings.

with

• For all t ∈ T the backward incidence mapping is described by •(t) =
(v1, ..., v|P |), where

vi =

{
x µ−1

V (pi) = fs(µ
−1
E (t))

0 else

with

x =

{
δ−(fs(µ

−1
E (t))) l(fs(µ

−1
E (t))) = &

1 else

59

3 Modeling Timed Failure Propagation

• For all t ∈ T the forward incidence mapping is described by (t)• =
(v1, ..., v|P |), where

vi =

{
1 µ−1

V (pi) = ft(µ
−1
E (t))

0 else

• M0 = (m1, ...,m|P |), where

mi =

{
1 η(µ−1(pi)) = active

0 else

• α = (α1, ..., α|T |) where αi = min(ι(µ−1
E (ti)))

• β = (β1, ..., β|T |) where βi = max(ι(µ−1
E (ti)))

Nodes of the TFPG are mapped to places and edges to transitions. Propagation
time intervals become firing time mappings. The minimum propagation time
is mapped to the earliest firing time mapping and the maximum propagation
time to the latest firing time mapping.

The backward and forward incidence mappings of the TPN are represented
by vectors. There exists one vector for the backward and forward incidence
mapping of each transition, respectively. The size of each vector is equal to the
number of places in the TPN. The entries of the backward incidence mapping
specify the number of tokens needed to activate the transition. The entries of
the forward incidence mapping specify the number of tokens that move from
the transition into the subsequent place.

To model the propagation over logical nodes in the TFPG correctly, we need
to restrict the propagation via edges leaving AND-nodes in the TFPG. This
is achieved by setting the backward incidence mapping of transitions originat-
ing from an AND-node to the sum of edges pointing at the AND-node. The
backward incidence mapping of all other transitions is one.

Active nodes in the TFPG are mapped to the initial marking. Places that
correspond to active nodes in the TFPG are assigned one token. All other
place do not contain tokens.

Figure 3.9 shows the TPN of the TFPG of the component type DistGPS of
Figure 3.7(a). Places are represented by circles and transitions by rectangles.
Arrows connect places and transitions and indicate the direction of the flow
of tokens. Places are labeled by logical operators or error or failure variables.
Transitions are labeled by time intervals that define the earliest and latest firing
time of the transitions.

In order to analyze which error and failure variables are active during a specific
time interval, we define the state of a TFPG. TFPG-states are based on TPN-

60

3.4 Timed Failure Propagation Graphs

fiDistGPS.p1,v

OR

[27,30]

foDistGPS.p3,v
[0,0]

fiDistGps.p2,v

[34,40]

Figure 3.9: TPN of the TFPG of Figure 3.7(a)

states. A state of a TPN specifies a marking for a period of time. This period
of time is represented by a normalized clock zone.

Definition 3.4.5 (State of a TPN, State of a TFPG)
A state s(T) = (m, h) of a TPN T = (P, T,• (.), (.)•,M0, (α, β)) is defined by a
marking m ∈ N|P | and a clock zone h [CR05].

A state q(G) of a TFPG G = (V,E, fs, ft, I, l, ι, η) over the error and failure
specification V = (sys, E ,F , fE , fF) is defined by a set of active error and failure
variables q(G) ⊆ E ∪ F . Let T be the underlying TPN of G and T = µ(G),
µ = (µV , µE , µI) . Let M = (m1, ...,m|P |) ∈ N|P | be a marking in T for the
clock zone h. Then

q(G) =

 |P |⋃
i=1

{l(µ−1
V (pi)) | mi > 0}

 ∩ (E ∪ F) .

q(G) collects all active error and failure variables which are represented by a
token in the underlying TPN of the TFPG G during the time span specified by
the clock zone h .

A state of a TFPG may represent more than one marking of a TPN.

Figure 3.10 shows the TPN of the TFPG of the speed control subsystem Fig-
ure 3.8. It illustrates the state of the TPN for the period [38, 45]. The state is
a marking for the clock zone [38, 45]. It contains the elements that correspond
to the places labeled with f isc.p1,v and f ids.p1,v. The places initially marked with
a token were es1,v, es2,v, and egps,v.

The definition of the semantics of TFPGs allows to apply the TPN reachabil-
ity analysis of Cassez and Roux [CR05] on TFPGs. This, in turn, allows for
analyzing how far failures may propagate during a specific time interval.

3.4.2 Adjusting the Propagation Time Intervals of TFPGs

Failures may not always have an immediate impact on the system. If, for
example, a sensor delivers a single peak value, this peak value may be corrected

61

3 Modeling Timed Failure Propagation

es1,v [1,2] fos1.p1,v [5,6] f
i
pos.p1,v

es2,v [1,2] fos2.p1,v [5,6] f
i
pos.p2,v

&
2 OR[25,55]

[18,45]

[0,0] [0,0] f
o
pos.p4,v

egps,v [1,2] fogps.p1,v [5,6] fipos.p3,v [43,45]

[5,6]
fisc.p1,v

fogps.p2,v [5,6] f
i
dg.p1,v OR[27,30]

fodg.p3,v

[0,0]

fidg.p2,v[34,40]

fids.p1,v

[5,6]

OR

[24,28]
fids.p2,v [24,28][5,6]fodr.p1,vedr,v [1,2] [0,0] f

o
ds.p3,v

[5,6]fowlan.p1,vewlan,v [1,2] firef.p1,v [30,45] f
o
ref.p2,v

[30,45] foref.p3,v

[5,6]

fisc.p2,v

[5,6]

fisc.p3,v[5,6]

OR

fosc.p4,v

[20,25]

[17,22]

[14,19]
[3,5]

[1,2]

Figure 3.10: TPN of the TFPG of Figure 3.8

by smoothing the signal by a low pass filter [AH99]. Only if the deviation
from the correct signal occurs in a several consecutive signals, this may have
an adverse effect on the system. This fact needs to be taken into account in
AShOp because there is more time for the system to react by self-healing if a
controller tolerates a certain amount of wrong values or omissions. We therefore
integrate this time into the TFPG and call this time tolerance time

Each controller reads signals periodically. Each period between two signals has
a specific duration. The number of tolerable wrong values specifies how many
periods of wrong values are tolerable. We thus compute the tolerance time
by the product of the tolerated wrong values and the period with which the
controller reads the signals.

The speed controller sc:SpeedCtrl of the speed control subsystem of Figure 3.1
tolerates a maximum of five consecutive wrong distance values. From the spec-
ification of the controller, we know that the speed controller receives a distance
signal every 24 time units. Thus, the tolerance time is 5 · 24 = 120.

The tolerance time is added to the propagation time interval of each error,
which is a cause of the incoming failure of the controller. We therefore extend
both values of the propagation time interval of all these errors by the tolerance
time. Such in the TFPG, the error is masked by the sensor as long as it is
tolerated by the controller. Only the propagation of the first non-tolerated

62

3.4 Timed Failure Propagation Graphs

error is analyzed. To identify these errors, we track back all paths in the TFPG
from the controller to the errors by depth-first-search.

The speed sensor of our example receives the distance values via port p2. This
means, errors in the distance measurement cause the incoming failure f isc.p2,v.
The causes for this failure are the errors egps,v, edr,v, and ewlan,v. Consequently,
the propagation time intervals at the edges from egps,v to fogps.p2,v, from edr,v to
fodr.p1,v, and from ewlan,v to fowlan.p1,v are increased by the tolerance time from
[1, 2] to [121, 122]. Figure 3.11 shows the resulting TFPG.

sa : Sanity

s1 : VSensor

dr : DSensor

s2 : VSensor

strt : Strategy

ld
: LinearDrive

wlan : WLAN

es1,v [5,6]fo
s1.p1,v

fi
sa.p1,v

fo
ref.p2,v

[1,2]

fo
s2.p1,v

[1,2]
es2,v

fo
gps.p1,v

fo
gps.p2,v

fi
pos.p1,v

[5,6] fi
pos.p2,v

fi
pos.p3,v

fo
pos.p4,v

[1,2]

[121,122]

egps,v

[5,6]

fi
dg.p1,v

[5,6]
OR fi

dg.p2,v

[5,6]

fo
dg.p3,v

[5,6]

fi
ds.p1,v

[27,30] [34,40]

[0,0]

fi
ds.p2,v

fo
dr.p1,v

[5,6]

[121,122]

fo
wlan.p1,v fi

ref.p1,v
[5,6]

fo
ds.p3,vOR

[24,28]

[24,28] [0,0]

[121,122]

fo
ref.p3,v

[5,6]

[30,45]

[30,45]

OR

[25,55]

[18,45]

[43,45]
[0,0] fi

sc.p1,v
[5,6]

fi
sc.p2,v

[5,6]
fi

sc.p3,v fo
sc.p4,v

OR

[20,25]

[17,22]

[14,19]
[3,5]

fi
ld.p1,v

[5,6]

&

[0,0]

fo
dr.p2,v

[1,2]
edr,v

ewlan,v

[5,6]

Figure 3.11: TFPG of Figure 3.8 with integrated tolerance time

3.4.3 Component-based Hazard Analysis Using TFPGs

Before the developer specifies the self-healing operations, he needs to know
which hazards have to be reduced and which errors cause these hazards. This
is computed by the component-based hazard analysis of Giese et al. [GT06]
(cf. Section 2.4.2). It operates on Boolean formulas, which may be computed
from TFPGs. For this, all nodes of the TFPG with an outdegree greater than
one have to be divided into subnodes with outdegree one. Furthermore, all
paths consisting solely of failure variables are replaced by edges. Propagation
time intervals are removed. The result is a syntax tree that can be mapped to
the corresponding Boolean formula. For example, the Boolean formula of the

63

3 Modeling Timed Failure Propagation

TFPG of the component type DistGPS of Figure 3.7(a) is

foDistGPS.p3,v ⇔ f iDistGPS.p1,v ∨ f iDistGPS.p2,v.

We use the TFPG of Figure 3.8 to compute the MCSs of the hazard wrong

speed. The MCSs are {es1,v, es2,v}, {egps,v}, {edr,v}, and {ewlan,v}. To compute
the occurrence probability of the hazard, we assume that each of the errors
occurs with a probability of 0.1. Then, the occurrence probability of the hazard
wrong speed is

1− ((1− p(es1,v) · p(es2,v))(1− p(egps,v))(1− p(edr,v))(1− p(ewlan,v)))
=1− ((1− 0.01)(1− 0.1)(1− 0.1)(1− 0.1))

=0.27829

In our example, the threshold for the occurrence probability of the hazard
wrong speed is 0.2. The computed occurrence probability of 0.27829 exceeds
this threshold. Consequently, the developer needs to reduce the occurrence
probability of this hazard.

3.5 Summary

In this chapter, we have presented a modeling formalism that allows for model-
ing the propagation of failures through the system and in particular allows for
analyzing the propagation times of failures. The propagation times of failures
are needed to analyze how far failures may propagate through the system within
a specific time interval. In order to apply a formal analysis that computes how
far failures may propagate, we defined a formal semantics of TFPGs by means
of time Petri nets. TFPGs may also be used to compute minimal cut sets and
hazard occurrence probabilities, for example by the hazard analysis of Giese et
al. [GTS04, GT06]. In the next chapter, we show how TFPGs are generated
from the real-time statecharts that specify the behavior of component types.

64

4 Generation of Timed Failure
Propagation Graphs

In this chapter, we present our approach for the generation of TFPGs (cf.
Section 3.4) from the real-time statecharts (cf. Section 2.2.2) of component
types as published in [PHS13].

Existing approaches [LR98, KLFL11, MWP11] already generate fault trees from
behavior models. The underlying idea of these approaches is to compare the
reachable behavior of a component with the behavior of the component with
injected failures. Based on this information, the construction of failure propa-
gation models is guided by the rules introduced by Vesely et al. [VGRH81].

We adapt the idea of these approaches and extend it by the identification of
failure classes and the computation of propagation times to generate TFPGs.
Failure classes help to distinguish failures with different properties. These prop-
erties reflect how the failure affects the system. This distinction makes the
analysis more precise. The propagation times are computed from the time
constraints of our behavior models.

The input for our TFPG generation is the real-time statechart (cf. Section 2.2.2)
that specifies the behavior of a component type. However, we define our ap-
proach based on timed automata (cf. Section 3.3), because they are well
established in literature. Real-time statecharts can be transformed into net-
works of timed automata (NTA) (cf. Def. 3.3.2) as illustrated by Burmester et
al. [BGHS04].

Figure 4.1 shows an overview of our TFPG generation. The input is the NTAC
(cf. Definition 3.3.3), the NTA which specifies the behavior of a component
type.

One realistic assumption of our approach is that each location of the NTAC
that has outgoing edges must have an invariant that limits the time the NTAC
is allowed to stay in this location. Otherwise, it would be possible to stay in
a location infinitely long. This would result in an infinitely long propagation
time, which is not defined for TFPGs (cf. Def. 3.4.2).

In order to construct the TFPGs, we first identify which incoming failures cause
which outgoing failures of each component type. Each time, such a relation is
identified, the propagation times between the related failures are computed and
the relation is stored in a TFPG. This is repeated until all combinations of in-
coming failures have been evaluated. The construction of TFPGs from relations
between incoming and outgoing failures will be explained in Section 4.2.

65

4 Generation of Timed Failure Propagation Graphs

identify relations between
incoming and outgoing failures

e

f

TFPGs
compute

propagation
times

(Sec. 4.2)

NTAC

! ?

value failures
(Sec. 4.4)

service and timing failures
(Sec. 4.3)

Figure 4.1: Generation of TFPGs from timed automata

We have to distinguish between the identification of relations between outgoing
and incoming timing and service failures on the one hand and outgoing and
incoming value failures on the other hand.

Service and timing failures change the control flow such that either no message
is sent or a message is sent too early or too late. Causes for these deviations may
be that either transitions, which should have been fired, could not be activated
or other transitions with other time constraints have fired. Relations between
incoming and outgoing timing and service failures are therefore identified by
deviations in the control flow. In Section 4.2.1, we present a method which
analyzes these deviations by comparing the reachable behavior (cf. Def. 3.3.5)
of the NTAC with and without injected failures.

Value failures cannot be detected by deviations in the control flow, because
even though the same transition is fired, the values of variables may differ.
Consequently, we need to identify relations between incoming and outgoing
value failures from the data flow. In Section 4.2.2, we explain how we use
slicing on extended finite state machines [ACH+12] to identify these relations.

We generate TFPGs for component types. However, at type level, we do not
know how instances of the component type will be connected in a deployment
diagram. We consequently need to take all possible incoming and outgoing fail-
ures of the component type into account when generating TFPGs. Nevertheless,
at instance level, AShOp only takes incoming failures into account that result
from outgoing failures of connected component instances. This is because in
deployment diagrams, edges in the TFPG are only created if the failure classes
at the ports of the connected component instances are of the same failure class
or if one failure class is a generalization of the other [GTS04]. Thus, incoming
failures of a failure class, which are modeled in the TFPG of the component
type but do not occur in the deployment diagram, are ignored.

If, however, the developer knows where the instances of a component type will
be placed in the deployment diagram, he may specify incoming failure types
to reduce the complexity of the generation. The outgoing failure types of a
component are then determined by the generation.

66

4.1 Example

4.1 Example

Figure 4.2 shows the simplified timed automaton that models the behavior of
the component type PosCalc that was introduced in Figure 3.1. We will use
this example to illustrate the generation of TFPGs. PosCalc reads the signals of
the two speed sensors and computes the position of the RailCab on the track.
Before, PosCalc receives a message from strt:Strategy about which drive mode is
activated: either fast or slow. Depending on the drive mode, the position data
is output in shorter or longer time intervals. The processing of the GPS-signal
is omitted to keep the example simple.

compute
pos

c1≥8+(18(i-1))
p1.speed1?
s1:=in

c1≤18i

c1≥ 35+(18(i-1))
{pos:=computePos(s1,s2)}send

pos

c1≥43+(18(i-1))
p3.posData!
out:=pos
c1:=0 c1≤ 40+(18(i-1))

c1≤ 45+(18(i-1))

c1≥18+(18(i-1))
p2.speed2?
s2:=in

read
speed2

c1≤ 25+(18(i-1))

select
mode

read
speed1

p4.mode?
m:=in
c1≥20

m==0
c1≥30
i:=1
c1:=0

c1≤30

default
m==1
c1≥30
i:=2
c1:=0

c1≤40

Figure 4.2: Timed automaton specifying the behavior of the component type
PosCalc

The variable m defines the drive mode. It is received via port p4 with the
message p4.mode?. Variable m affects the value of variable i which is set at the
transitions from select mode to read speed1. Variable i affects the time guards at
all transitions after read speed1 and thus the frequency with which the position of
the RailCab is updated. If m is set to zero, the higher transition from select mode

to read speed1 fires and i is set to zero. If m is set to one, the lower transition
fires and i is set to one. If i is one, the transitions will fire within shorter time
intervals (fast drive). If i is two, the transitions will fire within longer time
intervals (slow drive).

When the drive mode is set, PosCalc receives the variables s1 and s2 which contain
the signals measured by the two speed senors. The position of the RailCab is
computed by pos:=(computePos(s1,s2)) using the the speed sensor signals. Finally,
the position is sent to the speed controller via variable pos.

4.2 Constructing TFPGs

The construction of TFPGs is based on the construction of fault trees as intro-
duced by Vesely et al. [VGRH81]. We first identify logical connections between
incoming failures and store them in a TFPG. Then, we compute propagation
time intervals and add them to the TFPG.

67

4 Generation of Timed Failure Propagation Graphs

The construction of logical connections is illustrated in Figure 4.3. For each
failure class of a port, we create a separate TFPG. The top event fo of this
TFPG is a failure which represents all outgoing failures of a failure class. The
basic events are the incoming failures f i11...f

i
nm. A combination of incoming

failures, which causes an outgoing failure, is connected by an AND-operator,
because all failures of this combination have to occur at the same time. All
combinations of incoming failures that lead to an outgoing failure of the same
failure class at the same port are connected by an OR-node, because the failure
will occur if any of these combinations occurs.

fo

[0,0]

fi
11 fi

1j

&

Δt11 Δt1j

fi
21 fi

2k

&

Δt21 Δt2k

fi
n1 fi

nm

&

Δtn1 Δtnm

OR
[0,0]

[0,0]

[0,0]

...

Figure 4.3: TFPG for the outgoing failures of one failure class

The propagation time intervals ∆t11, ...,∆tnm at the edges of the TFPG are
computed from runtimes of paths in the reachable behavior of the NTAC. The
computation of propagation times will be explained in Section 4.2.1.

4.2.1 Timing and Service Failures

The relations between incoming and outgoing timing and service failures are
identified by deviations in the control flow. To provoke these deviations, the
control flow is modified by injecting failures into the NTAC. Failures enter a
component via faulty messages. Thus, for injecting a timing failure, a message
is sent earlier or later than it is specified by the NTAC. For a service failure,
a message that is expected by the NTAC is not sent at all. These modified
messages may change the control flow of the NTAC. Outgoing timing and ser-
vice failures are identified by deviations between the original and the modified
control flow.

To analyze the control flow, we construct the reachable behavior of the NTAC
for the case that no failures are injected (cf. Section 4.2.1). We call this behavior
the normal behavior of the NTAC. We further construct a reachable behavior
for each combination of incoming timing and service failures of the NTAC (cf.
Section 4.2.1). This reachable behavior is the failure behavior of the NTAC. We
compare both behaviors to identify relations between incoming and outgoing
timing and service failures.

68

4.2 Constructing TFPGs

Computing the Normal Behavior

The behavior of a component depends on the messages, which are received via
its ports. If the component is embedded in a system, these messages are sent
by the component’s environment, i.e., other component instances or hardware
nodes. However, this environment does not exist for component types, because
component types are independent of deployment diagrams. Still, the incoming
and outgoing messages need to be sent and received for symbolic execution of
the component type. We therefore model this environment by a set of timed
automata as illustrated in Figure 4.4. We call this environment component
context. The bold arrows illustrate the message flow between the NTAC and
the component context. The component context and the NTAC build an NTA.

NTAC
input

automata
output

automata

component context

Figure 4.4: NTAC and component context

The component context consists of input automata and output automata. Input
automata are timed automata that send a message that is received by the NTAC
while output automata receive messages from the NTAC. The input and output
automata abstract from the timed automata of the other components in the
system. This allows for generating TFPGs from an NTAC. Consequently, the
reachable behavior, which is used for TFPG construction, is much smaller than
the reachable behavior of the system, in particular in systems with concurrency.
This, in turn, allows for generating TFPGs from component types with larger
behavior models in contrast to the case where the whole system behavior needs
to be taken into account.

For the computation of the normal behavior, we use a so-called initial context.

Definition 4.2.1 (Initial Context)
Let A = {A1, ..., An} be an NTAC with Ai = (Li, l0i, Ci, Vi,Σi, Ri, Ei, Ii),

V =

n⋃
i=2

Vi, Σ =

n⋃
i=2

Σi, and E =

n⋃
i=2

Ei.

Let Ω? = {(a?, d?) | a? ∈ Σ and ∃e ∈ EA, e = (lx, ϕ, a?, r,∅, d?, ly),
d? =“v := in”, v ∈ V ∨d? = ε} and Ω! = {(a!, d!) | a! ∈ Σ and ∃e ∈ EA,
e = (lx, ϕ, a!, r,∅, d!, ly), d! =“out := v”, v ∈ V ∨ d! = ε}.

69

4 Generation of Timed Failure Propagation Graphs

We define the initial context Xi(A) = (Ii, Oi) with Ii =
{Ai1, ..., Ai|Ω?|} as the set of initial input automata over Ω? with
Aij = (Lij , l0ij , Cij , Vij ,Σij , Rij , Eij , Iij) where

• Lij = {lij},

• l0ij = lij,

• Cij = ∅,

• Vij = V ,

• Σij = {a!},

• Rij = ε,

• Eij = {(lij ,∅, a!, ε,∅, dij , lij)},

dij =

{
“out := v′′ d? = “v := in′′, v ∈ V
ε d? = ε

, (a?, d?) ∈ Ω?, and

• Iij = ∅

Oi = {Ao1, ..., Ao|Ω!|} is the set of output automata over Ω! with Aoj =
(Loj , l0oj , Coj , Voj ,Σoj , Roj , Eoj , Ioj) where

• Loj = {loj},

• l0oj = loj,

• Coj = ∅,

• Voj = V ,

• Σoj = {a?},

• Roj = ε,

• Eoj = {(loj ,∅, a?, ε,∅, d, loj)},

doj =

{
“v := in′′ d! = “out := v′′, v ∈ V
ε d! = ε

, (a!, d!) ∈ Ω!, and

• Ioj = ∅

The initial context consists of one input automaton for each pair of message and
variable assignment that is received by the NTAC and one output automaton
for each pair of message and variable assignment that is sent by the NTAC.
The input and output automata of the initial context do not have any time

70

4.2 Constructing TFPGs

constraints, because we cannot compute the absolute firing times of transitions
in the NTAC without computing the normal behavior of the NTAC. However,
time constraints are not needed to compute the normal behavior, because the
times when transitions in the NTAC fire are specified by the time constraints of
the NTAC. The omitted time constraints do not affect the computation of the
normal behavior, because the timed automata of the initial context can only
fire synchronously with the transitions in the NTAC.

The initial context for the timed automaton of Figure 4.2 is shown in Figure 4.5.
Figures 4.5(a), 4.5(b), and 4.5(c) show the timed automata that send p4.mode,
p1.speed1, and p2.speed2; the messages which are received as inputs by the timed
automaton of Figure 4.2. Figure 4.5(d) shows the timed automaton that receives
the message p3.posData, which is sent as output message by the timed automaton
of Figure 4.2.

p4.mode!

out:=m

(a) mode

p1.speed1!

out:=s1

(b) speed1

p2.speed2!

out:=s2

(c) speed2

p3.posData?

m:=in

(d) posData

Figure 4.5: Initial context of the component type PosCalc

Note, that we do not test variable assignments. This is done by the reachability
analysis that constructs the reachable behavior.

Figure 4.6 shows the zone graph that specifies the normal behavior of the NTAC
of Figure 4.2. It contains two paths that correspond to the executions of the
NTAC. For later use, we denote the upper path by Path 1 and the lower path
by Path 2. Path 1 represents the behavior of the slow drive mode and Path 2 the
behavior of the fast drive mode.

Path 2

Path 1

τ

δ

s8
δ

p2.speed2?
s2:=in

s9

δ

s10s11
{pos=computePos(s1,s2)}

s12
δ

p3.posData!
out:=pos

s14
δ

p1.speed1?
s1:=in δ

{pos=computePos(s1,s2)}δ

δ

p3.posData!
out:=pos

s15 s16

s19s20s21

c1≤30

36≤c1≤43

36≤c1≤58

53≤c1≤58

53≤c1≤63

c1=0 c1≤18 8≤c1≤18

18≤c1≤40

35≤c1≤40

35≤c1≤45

s1 s2
δ

s3p4.mode?
m:=in

c1=0
20≤c1≤30

s4

20≤c1≤40

20≤c1≤40
τ

s5 s6
δ

p1.speed1?
s1:=in

s7

c1≤36c1=0 26≤c1≤36 26≤c1≤43

s18
δ

p2.speed2?
s2:=in

s17

8≤c1≤25

18≤c1≤25

s13

Figure 4.6: Reachable behavior of the NTAC of Figure 4.2

71

4 Generation of Timed Failure Propagation Graphs

Computing the Failure Behavior

Computing the failure behavior is based on a set of failure contexts. Each
failure context injects a unique combination of incoming failures into the NTAC.
Incoming failures are modeled by input automata such that they either send
no message (service failure) or send the message too early or too late (timing
failure).

The basis for the failure contexts is the refined context. In contrast to the initial
context, the refined context contains one input automaton for each transition of
the NTAC that sends a message. Each input automaton has a time constraint
that specifies the time when the receiving transition in the NTAC is activated
and can thus synchronize with the input automaton. These time constraints
are needed to compute time constraints for input automata that inject timing
failures into the NTAC. The time constraints of input automata of the refined
context are constructed from the clock zones of the normal behavior.

The computation of runtimes in zone graphs requires the time guards of the
transitions in the timed automata that correspond to a zone graph transition.
Therefore, we first define a function that returns these guards from zone graph
transitions.

Definition 4.2.2 (ϕt, λt)
Let Z = (S, s0,Σ

′, T, V, µ, ν) be the zone graph (cf. Definition 3.3.5) repre-
senting the reachable behavior of the NTAC A = {A1, ..., An}, n ∈ N, Ai =
(Li, l0i, Ci, Vi,Σ, Ri, Ei, Ii), i ∈ {1, ..., n},

L =
n⋃
i=1

Li, and E =
n⋃
i=1

Ei.

Let fs : E → L and ft : E → L be the source and target functions of edges in
the timed automata.

Let ϕT : T → B(C) be the mapping from transitions in Z to the time guards
of the corresponding transitions in A and λT : T → C the mapping from
transitions in Z to the clock resets of the corresponding transitions in A.

• Consider t ∈ T with t = ((la, ka, ha), (lb, kb, hb)).

• Ela,lb = {e ∈ E | fs(e) = lai, ft(e) = lbi, i = 1, ..., n, lai 6= lbi}.

• Without loss of generality, let Ela,lb = {e1, ..., em} =
{(l1, ϕ1, σ1, r1, λ1, Du1, l

′
1),...,(lm, ϕm, σm, rm, λm, Dum, l

′
m)}, then

ϕT (t) =

m∧
i=1

ϕi, and λT (t) =

m⋃
i=1

λi.

72

4.2 Constructing TFPGs

Definition 4.2.3 (Runtime of a Zone Graph Path)
Let Z = (S, s0,Σ

′, T, V, µ, ν) be the zone graph (cf. Definition 3.3.5) repre-
senting the reachable behavior of the NTAC A = {A1, ..., An}, n ∈ N, Ai =
(Li, l0i, Ci, Vi,Σ, Ri, Ei, Ii), i ∈ {1, ..., n}, and

E =
n⋃
i=1

Ei.

Consider a path p in Z with p = t1, . . . , tl, ti = (si, σi, si+1), si = (li, ki, hi).

For the set of clocks Cp = {c ∈ C | ∃i ∈ {1, ..., l + 1} : c ∈ ρ(hi)} of the path
p, we partition p into m partitions t11, . . . , t1n1 , t21, . . . , t2n2 , . . . , tm1, . . . , tmnm

with pi = ti1, . . . , tini where λT (tini) 6= ∅ and ∀j = 1, ..., ni − 1 : λT (tij) = ∅.

For a partition pi = ti1, . . . , tini, its clock zones hi1, . . . , hi(ni+1), and for each
clock cj ∈ Cp, we define the following values:

t0i,j = lim
cj→∞

(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : hi1)

t1i,j = lim
cj→0

(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : hini ∧ ϕT (tini)))

t2i,j = lim
cj→0

(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : hi1)

t3i,j = lim
cj→∞

(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : hini ∧ ϕT (tini))

The minimum and maximum propagation times of path p are defined by ϑmin(p)
and ϑmax(p):

ϑmin(p) = max
j∈{1,...,|Cp|}

m∑
i=1

(t1i,j − t0i,j)

ϑmax(p) = min
j∈{1,...,|Cp|}

m∑
i=1

(t3i,j − t2i,j)

The propagation time interval is defined by

∆ϑ(p) = [ϑmin(p), ϑmax(p)].

Since the clocks of the timed automata of the NTA may be reset to zero by clock
resets, the values of the clocks along the path of the zone graph do not reflect the
amount of time that was spent on a path directly. Instead, they only measure
the time that elapsed after the last reset. Thus in order to compute runtimes
of paths in zone graphs, we need to sum up the time that elapsed between two

73

4 Generation of Timed Failure Propagation Graphs

resets along a path of the zone graph. This is done by partitioning the paths
into sub paths that start and end at transitions where a reset occurred.

The runtime of the partitions are computed from the differences between the
clock zones of the last and the first state of each transition. However, the clock
zone of the last state cannot be found in the zone graph: Each transition in
a timed automaton is represented by two transitions in the zone graph. The
first transition in the zone graph modifies the clock zones according to the state
invariants of the target state of the transition in the timed automaton. The
second transition modifies the clock zone according to the time guards of the
timed automaton transition. If the transition in the timed automaton resets a
clock c, the clock zone of the target state of the second transition in the zone
graph is always c = 0. We therefore compute the clock zone of the last state of a
partition by the conjugation of the clock zone of the penultimate state and the
time guards of the transitions in the NTA that correspond to the last transition
in the partition.

The maximum propagation time ϑmax is computed as follows: For each clock
cj , we compute the minimum value t2i,j that satisfies the clock zone hi1 of the

first state of the partition pi and the maximum value t3i,j that satisfies the clock
zone hini of the penultimate state of pi. This clock value must also be a valid
clock value for all other clock zones of the state. Then, we compute the runtime
of the path as the sum of the differences of t3i,j − t2i,j of all partitions for each
clock. We take the minimum over all sums of all clocks, because we must choose
the clock values such that all clock zones are satisfied. This corresponds to the
minimum runtime1 over all clocks. The clock zone of the last state is computed
from the clock zone of the penultimate state and the timed guards of the last
transition of the partition as described above.

For the minimum propagation time ϑmin, we compute for each clock the maxi-
mum value t0i,j that satisfies the clock zone hi1 of the first state of the partition

pi and the minimum value t1i,j that satisfies the clock zone hini of the penulti-
mate state of pi. This clock value must also be a valid clock value for all other
clock zones of the state. Then, we compute the runtime of the path as the sum
of the differences of t1i,j − t0i,j of all partitions for each clock. Of all sums of all
clocks, we take the maximum, because we must choose the clock values such
that all clock zones are satisfied. This corresponds to the maximum runtime2

over all clocks. The clock zone of the last state is computed from the clock
zone of the penultimate state and the timed guards of the last transition of the
partition as described above.

The naive approach would be to measure the path runtimes with a global clock.
This, however, does not work with clock zones. In this case, the global clock
would cause infinite paths in the reachable state space.

1We take the greatest value of the minimum values and the smallest value of the maximum
values to satisfy all clock zones.

2We take the smallest value of the minimum values and the greatest value of the maximum
values to satisfy all clock zones.

74

4.2 Constructing TFPGs

Figure 4.7 shows the two partitions which are created when computing the
minimum and maximum time needed to traverse Path 2 from the initial state
to transition (s15, s16) where p1.speed1 is received. These times are needed to
create the clock constraints for the input automaton that sends p1.speed1.

δ
c1≤30

s1 s2
δ

s3

p4.mode?
m:=in

c1=0 20≤c1≤30 20≤c1≤40

s13 s14
τ

c1=0

(a) Partition 1

s14
δ

p1.speed1?
s1:=in

s15 s16

c1=0 c1≤18 8≤c1≤18

(b) Partition 2

Figure 4.7: Partitions of the path from s1 to s16

For Partition 1 of Figure 4.7(a) we compute the traversal time as follows. The
clock zone of the first state in Partition 1 is c1 = 0. The clock zone of the
penultimate state of Partition 1 is 20 ≤ c1 ≤ 40. To compute the clock zone
of s14, we need the time guards of the corresponding transition of the NTAC.
The only corresponding transition of (s13, s14) in the zone graph of Figure 4.6
is (l2, l3) in the component automaton of Figure 4.2. This transition has the
time guard c1 ≥ 30. We compute the clock zone of the last state in Partition 1 by
(20 ≤ c1 ≤ 40) ∧ (c1 ≥ 30) = 30 ≤ c1 ≤ 40. The propagation time interval for
Partition 1 is therefore [30− 0, 40− 0] = [30, 40]. The propagation time interval
[8, 18] for Partition 2 is computed analogously. Thus the minimum firing time of
transition (l3, l4) in the component automaton of Figure 4.2 is 30 + 8 = 38 and
the maximum firing time is 40 + 18 = 58. These times are used to model the
refined input automaton for transition (s15, s16).

Figure 4.8 shows the refined context that was constructed from Path 2 of the
normal behavior of the component type PosCalc of Figure 4.6. Figures 4.8(a),
4.8(b), and 4.8(c) show the input automata of the refined context of Path 2.
Each input automaton consists of two locations and one transition that sends a
message. The transition has a time guard. In Figure 4.8(a), the transition has
the time guard 20 ≤ c! ≤ 30. This is the absolute time at which p4.mode

is received by the NTAC. This time interval is specified by the clock zone
20 ≤ c1 ≤ 30 at state s3 in the normal behavior of Figure 4.2.

The output automata of the refined context have one location and a self-
transition that receives a message. The activation of the transitions is not lim-
ited by time constraints, because output automata are not used to model timing
failures. Figure 4.8(d) shows the output automaton of message p3.posData of
the refined context.

75

4 Generation of Timed Failure Propagation Graphs

p4.mode!

out:=m

20 ≤ c! ≤ 30

(a) Input mode

p1.speed1!

out:=s1

38 ≤ c! ≤ 58

(b) Input speed1

p2.speed2!

out:=s2

48 ≤ c! ≤ 65

(c) Input speed2

p3.posData?

m:=in

(d) Output posdata

Figure 4.8: Refined context of Path 2 of Figure 4.6

Definition 4.2.4 (Refined Context)
Let Z = (S, s0,Σ, T, V, µ, ν) be the zone graph that represents the normal behav-

ior of an NTAC A = {A1, ..., An}, n ∈ N, Ai = (Li, l0i, Ci, Vi,Σ, Ri, Ei, Ii), i ∈
{1, ..., n},

VA =

n⋃
i=1

Vi, RA =

n⋃
i=1

Ri, and EA =

n⋃
i=1

Ei,

and Xi(A) = (Ii, Oi) the initial context of A.

Without loss of generality let t = (sk, a?, sl), t ∈ T, a? ∈ Σ be a transition in Z
that corresponds to the edge e = (lx, ϕ, a?, r, λ, d, ly), e ∈ EA.

We define the input automaton
A! = (L!, l0!, C!, V!,Σ!, R!, E!, I!) of t with

• L! = {l0!, l1!},

• C! = {c!},

• V! = VA,

• Σ! = {a!},

• R! = ε,

• E! = {(l0!, ϕ!, a!, ε,∅, d!, l1!)}, with ϕ! = c! ≥ ϑmin(p) ∧ c! ≤ ϑmax(p), for
all paths p = tj , ..., t with tj = (s0, σj , sm), sm ∈ S,

d! =

{
“out := v′′ d = “v := in′′

ε d = ε

and

• It(l0!) = I(l1!) = ∅.

76

4.2 Constructing TFPGs

Let T? = {t1, ..., tl} with ti = (sj , a?, sk), sj , sk ∈ S, i ∈ {1, ..., l}, l ∈ N, a? ∈ Σ.
Let E? ⊆ EA be the edges that correspond to the transitions in T?.

We define the refined context by X(A) = (I,O) with I = {Ai1, ..., Ai|T?|} where
Aij is the input automaton of tj ∈ T?, and the set of output automata O = Oi.

Our definition of input automata allows input messages to be sent only once.
Consequently, only the first run of a cycle in the reachable behavior is taken
into account. We leave the analysis of multiple runs in cycles of the normal
behavior for future work.

The refined context is designed such that it adds as little behavior as possible
to the NTAC. All input automata share a common clock which starts with
zero at the same time that the NTAC starts. By using this common clock
instead of a unique clock for each input automaton, we reduce the number of
clock zones of the reachable behavior. Additionally, we construct one output
automaton for each pair of variable assignment and message that is sent by the
NTAC. The output automata have neither clocks nor time constraints. The
shared clocks of input automata and the omission of time constraints in output
automata keep the failure behaviors small. Consequently, the identification of
relations between incoming and outgoing timing and service failures becomes
more efficient.

Computing the failure behavior is based on failure contexts. A failure context
is constructed by replacing one or more input automata of the refined context
by failure automata. Failure automata are constructed by modifying input
automata such that they either send no message (service failure) or send their
message too early or too late (timing failure).

Definition 4.2.5 (Failure Automata)
Let A be an NTAC and Z = (S, s0,Σ, T, V, µ, ν) the zone graph that represents

the normal behavior of A. Let X(A) = (I,O) be the refined context of A. With-
out loss of generality A = (L, l0, C, V,Σ, R,E, I), A ∈ I is an input automaton
of the refined context with

• L = {l0, l1},

• C = {c},

• V = {v},

• Σ = {a?},

• R = {ε},

• E = {(l0, ϕ, a!, ε,∅, d, l1)}, with ϕ = b1 ∧ b2, b1 = c ∼1 n1, b2 = c ∼2 n2,
∼1∈ {≥, >}, ∼2∈ {≤, <}, n1, n2 ∈ N, and

• I = ∅.

77

4 Generation of Timed Failure Propagation Graphs

We define s(A) = ({ls}, ls,∅, V, {τ}, {ε},∅,∅) the service failure automaton of
A.

We define e(A) = (Le, le0, C, V,Σ, R,Ee, I) the early timing failure automaton
of A where

• Le = {le0, le1} and

• Ee = {(le0, ϕe, a!, ε,∅, d, le1)}, ϕe = be1 ∧ be2, be1 = c ≥ 0, and
be2 = c ∼e2 n1,

∼e2=

{
≤ ∼1=>

< ∼1=≥

We define l(A) = (Ll, ll0, C, V,Σ, R,El, I) the late timing failure automaton of
A where

• Ll = {ll0, ll1} and

• El = {(ll0, ϕl, a!, ε,∅, d, ll1)}, ϕl = bl1 ∧ bl2, bl1 = c ∼l1 n2,

∼l1=

{
≥ ∼2=<

> ∼2=≤

, bl2 = c <∞.

A service failure occurs if a message that is expected is never received. We thus
model an incoming service failure by a timed automaton without transitions.
To model a context in which the message a of the input automaton will never be
sent, we replace all input automata that carry this message a by such a timed
automaton.

A timing failure occurs if a message is not delivered within an expected time
interval. Instead of testing every clock value of each clock separately, we analyze
all equivalent clock values of one timing failure by one symbolic execution. For
this, we exploit the fact that intervals of equivalent clock values are represented
by clock zones in the reachable behavior. This enables testing all possible
timing failures by two failure automata: one which models all cases where the
message is sent too early (incoming early timing failure) and one which models
all cases where the message is sent too late (incoming late timing failure). We
thus model an incoming timing failure by altering the time guard of an input
automaton such that the time when the output message is sent is not within
the expected time interval. For each input automaton, we generate a failure
automaton provoking an early timing failure and another one provoking a late
timing failure.

To model a late timing failure for the input message p1.speed1, we modify the
time guard of the input automaton of Figure 4.8(b). The time guard of the input
automaton (cf. Figure 4.8(b)) is 38 ≤ c! ≤ 58. The time guard of the failure
automaton is c! > 58 and thereby enables the transition only when its clock

78

4.2 Constructing TFPGs

p1.speed1!

out:=s1

c! > 58

Figure 4.9: Late timing failure for speed1

has a time value which is greater than the time values of the input automaton.
Consequently, the input message p1.speed1 will always be sent too late.

With the help of the failure automata, we are now able to construct the failure
contexts. The NTAC and each failure context build an NTA. We construct a
failure behavior from each of these NTA.

Definition 4.2.6 (Failure Context)
Let A be an NTAC, Z = (S, s0,Σ, T, V, µ, ν) the zone graph representing the

reachable behavior of A and X(A) = (I,O) the refined context of A. Let
p = t1, ..., t with t1 = (s0, σ, sk), sk ∈ S, and t1, ..., t ∈ T be a path in Z.

Let A be the input automaton of t and F (A) = {A!, s(A), e(A), l(A)} the failure
automata of A.

We define the failure contexts of p by Xf (p) = (If ,Of) where If = F (A1) ×
...×F (A|T?|) with T? = {t1, ..., tl}, ti = (sj , a?, sk), sj , sk ∈ S, i ∈ {1, ..., l}, l ∈ N
and Of = O.

The set of failure automata of each input automaton contains the input au-
tomaton itself. This is needed to construct the set of failure contexts from the
sets of failure automata. Input automata are part of those failure contexts of
which not every input represents and incoming failure.

We actually would need to construct a failure behavior for each combination of
incoming failures of the NTAC. The NTAC has |Xf (p1) × ... × Xf (pn)| combi-
nations of incoming failures. However, the combinations of input messages are
limited by the paths in the normal behavior. Since the injected failures are de-
rived from input messages, the number of combinations of injected failures are
also limited by the paths in the normal behavior. We thus only need to inject
incoming failures for each path of the normal behavior separately. The number
of combinations of injected failures is thereby reduced to |Xf (p1)|+...+|Xf (pn)|.

To inject only failures for a path p of the NTAC, the failure context only contains
failure and input automata of p. The output automata are the same as in the
refined context. They enable the sending of each output message by the NTAC
at any time. This, in turn, enables the occurrences of all possible outgoing
timing failures.

Using the failure behaviors, we identify outgoing timing and service failures.

79

4 Generation of Timed Failure Propagation Graphs

Definition 4.2.7 (Failure Classes of a Zone Graph)
Let A be an NTAC and Z = (S, s0,Σ, T, V, µ, ν) the zone graph representing

the reachable behavior of A, p = tj , ..., tk, ...tl, ti ∈ T, i ∈ {j, ..., l} be a path in
Z, and Ẑ = (Ŝ, s0, Σ̂, T̂ , V̂ , µ̂, ν̂) a zone graph representing a failure behavior of
p.

Ẑ contains an outgoing service failure, iff ∃t ∈ T, t = (sa, σ, sb), sa, sb ∈ S,
σ ∈ Σ @t̂′ ∈ T̂ , t̂′ = (ŝa, σ̂, ŝb), ŝa, ŝb ∈ Ŝ, σ̂ ∈ Σ̂ : σ = σ̂′.

Without loss of generality, consider the transition t̂ = (ŝj , σ̂, ŝk) ∈ T̂ , ŝj , ŝk ∈ Ŝ,
σ̂ ∈ Σ̂.

t̂ produces an outgoing early timing failure, iff @t ∈ T with t = (sl, σ̂, sm),

sl, sm ∈ S, σ̂ ∈ Σ: ĥj − hl = ⊥, and ∃t′ ∈ T with t′ = (sp, σ̂, sq), sp, sq ∈ S,

σ̂ ∈ Σ: ĥj − ĥp ⇑6= ⊥.

t̂ produces an outgoing early timing failure, iff @t ∈ T with t = (sl, σ̂, sm),

sl, sm ∈ S, σ̂ ∈ Σ: ĥj − hl = ⊥, and ∃t′ ∈ T with t′ = (sp, σ̂, sq), sp, sq ∈ S,

σ̂ ∈ Σ: ĥj − ĥp ⇓6= ⊥.

The operator ⇓ (⇑) returns all values of a clock zone and all values before (after)
that clock zone [BY03].

We find an outgoing service failure if the normal behavior outputs a message a
that is not output by the failure behavior. An outgoing timing failure is found,
if the failure behavior outputs a message a earlier or later than the normal
behavior.

If we inject a service failure on port p4 into the NTAC of the component type
PosCalc (cf. Figure 4.2), the NTAC will never leave its initial state. Conse-
quently, there exists no path that ends at a transition in the failure behavior
and that sends p3.posCalc. This means, an outgoing service failure occurred at
port p3. A new TFPG is created with the outgoing service failure on port p3

as top node. The identified relation between this outgoing service failure and
the incoming service failure on port p4 is stored in this TFPG. The propagation
time interval between both failures is [73, 103].

We ensure storing minimal combinations of incoming failures for each outgoing
failure by injecting incoming service and timing failures in the following order-
ing: We start with one incoming failure per failure context. When all cases
of one incoming failure have been analyzed, we add one incoming failure and
check all combinations of two incoming failures. Each time we have analyzed
all combinations of failures of a certain size, we increase the size by one. Each
time we find an outgoing failure for a combination of incoming failures, we save
this combination. A new combination is discarded if it results in an outgoing
failure, which was already caused by a combination of failures, which is a sub-
set of the new combination. We thus avoid redundancies in the TFPGs: All
combinations containing another combination would also lead to the same out-
going failure [Rau01]. By discarding these combinations, our approach keeps

80

4.2 Constructing TFPGs

the TFPG as small as possible. This makes the analysis of failure propagation
more efficient.

4.2.2 Value Failures

Identifying relations between incoming and outgoing value failures is based on
the slicing of extended finite state machines (EFSM) of Androutsopoulos et
al. [ACH+12]. It is the only approach for slicing nonterminating automata,
which makes it the only suitable approach for embedded real-time systems.
The input is an EFSM and a slicing criterion. The slicing criterion specifies
a state in the EFSM and a variable whose dependencies are analyzed. The
resulting slice is also an EFSM, but it only contains the parts, which affect the
variable of the slicing criterion.

We map the NTAC to an EFSM to apply slicing. We then identify relations
between incoming and outgoing value failures using the slice. We map the
slice back to the NTAC to compute the propagation time intervals between the
identified incoming and outgoing value failures. For better readability, we use
the component automaton instead of the NTAC. The component automaton is
the product automaton of the NTAC.

We first repeat the definition of EFSMs of [ACH+12] before defining the map-
ping in Def. 4.2.9.

Definition 4.2.8 (Extended Finite State Machine [ACH+12])
An Extended Finite State Machine (EFSM) M is a tuple (S, s0, T, E, V

′, v0)
where: S is a set of states; s0 ∈ S is the initial state; T is a set of transitions; E
is a set of events, where each event is an atomic message or signal, possibly pa-
rameterized; V ′ is a store represented by a set of variables; and v0 is a mapping
from the variable names to the initial value of these variables. Transitions have
a source state source(t) ∈ S, a target state target(t) ∈ S and a label label(t).
Transition labels are of the form e[g]/a where e ∈ E; g is a guard (we assume
a standard condition language); and a is a sequence of messages (we assume a
standard expression language including assignments). All parts of a label are
optional.

Definition 4.2.9 (Mapping Timed Automata to EFSMs)
Given are the timed automaton A = (L, l0, C, V,Σ, R,E, I) and the EFSM
M = (S, s0, T, E

′, V ′, v0). Let fs : E → L and ft : E → L be the source and
target functions of edges in the timed automaton.

We define the graph morphism µ = (µL, µV , µE , µΣ) where

• µL : L→ S (bijective), µL(l0) = s0 (bijective),

• µV : V → V ′ (bijective),

81

4 Generation of Timed Failure Propagation Graphs

• µE : E → T (bijective), with source(µE(e)) = µL(fs(e)), target(µE(e)) =
µL(ft(e)), and e ∈ E, and

• µΣ : Σ ∪Du → E′, and

v0(v) = 0 ∀v ∈ V′.

µ maps a timed automaton to an isomorphic EFSM by omitting clocks and
clock constraints.

We compute the slice for each variable v that is sent by the component au-
tomaton. The variable assignments that are part of the slice are those which
influence v.

Definition 4.2.10 (Computing the Slice)
The slice M ′ of an EFSM M is computed by the function slice(M,C) where
C = (t, V) is a slicing criterion with the transition t and the set of variables V .

The slice represents the part of the EFSM that influences the values of the
variables in set V after transition t was executed.

In order to compute propagation times between incoming and outgoing value
failures, we need to identify the transitions of the component automaton that
correspond to the transitions in the slice. However, the slicing algorithm does
not guarantee that the slice is an isomorphic subgraph of the component au-
tomaton, because states may be merged and transitions my by deleted during
slicing. However, the states of the original EFSM are stored in the merged
states of the slice. We thus identify the part of the component automaton that
corresponds to the slice by mapping the states of the slice back to the locations
of the component automaton.

Definition 4.2.11 (Construction of timed automata from EFSMs)
Given are the timed automaton A = (L, l0, C, V,Σ, R,E, I), the EFSM µ(A) =
M , and a slicing criterion C.

Without loss of generality let Ms = slice(M,C) with Ms =
(Ss, s0s, Ts, E

′
s, V

′
s , v0s) be a slice of M .

We define ν : Ms 7→ As the mapping of the slice to a subgraph As of A with
As = (Ls, l0s, C, V,Σ, R,Es, I) where

• Ls = µ−1
L (Ss)

• l0s = µ−1
L s0s

• Es = {e ∈ E | µ−1
L (fs(e)) ∈ Ls, and {e ∈ E | µ−1

L (ft(e)) ∈ Ls}

82

4.2 Constructing TFPGs

We construct the subgraph As which corresponds to the slice M of the timed
automaton A by the reverse application of the mapping µL (cf. Definition 4.2.9).
µ−1
l maps EFSM states to locations of the timed automaton. Further, all edges

that connect the nodes of As in A are transfered to As.

With these functions, we can now construct TFPGs with incoming and outgoing
value failures from the component automaton. The computations are formal-
ized in Algorithms 1 - 3. Algorithm 1 maps the component automaton to the
EFSM and triggers the construction of TFPGs (implemented by Algorithm 2)
for each outgoing variable of the EFSM. Algorithm 2 constructs the structure
of the TFPG and triggers Algorithm 3, which computes the propagation time
intervals.

Next, a self-transition is added to the start state of the component automaton
(Line 2). This self-transition is used as the starting transition of the slicing
criterion (cf. Definition 4.2.10). By using this transition in the slicing criterion,
the slicing will always start at the initial state of the component automaton
and consequently take all input variables into account. Then, the EFSM of the
component automaton is constructed as defined in Definition 4.2.9 (Line 3).
Afterwards, a TFPG is constructed for each port pout of the component at
which messages are sent (Lines 4 - 7). For this Algorithm 2 is used. The result
of Algorithm 1 is a set of TFPGs for component type k that contains a TFPG
for each port at which variables are output.

Algorithm 1 ConstructTFPGWithValueFailures

Require: A = (L, l0, C, V,Σ, R,E, I) the component automaton,
k the component type,
V(sys) = (sys, E ,F , fE , fF) the error and failure specification

Ensure: G the generated TFPGs

1: G = ∅
2: create edge e0 = (l0,∅, τ, ε,∅, l0), E = E ∪ e0

3: M = µ(A) with M = (S, s0, T, E
′, V ′, v0)

4: for all pout with ∃a ∈ Σ, ∃d! : a! = pout.m!, d! =“out := vout”, vout ∈ V ′
do

5: G = ConstructTFPGStructure(pout, k, A,M,V(sys))
6: G = G ∪G
7: end for
8: return G

Algorithm 2 constructs the TFPG of a port pout of the component type k.
The algorithm first creates an empty TFPG-tuple (Line 1). This tuple is filled
during the execution of the algorithm. Next, the top part of the TFPG is
created (Lines 2 - 5). The top part comprises the node with the outgoing
failure, an OR-node and an edge which connects both nodes. The propagation
time interval of this edge is set to [0, 0]. Afterwards, the algorithm computes
for each outgoing variable of the port pout which incoming value failures causes
a value failure on this outgoing variable (Lines 6-15). Therefore, the algorithm

83

4 Generation of Timed Failure Propagation Graphs

first computes the slice of each outgoing variable (Line 7). For each incoming
variable that is part of this slice, an incoming value failure and its node are
created and connected to the OR-node of the top part of the TFPG (Lines 9 -
14). In Line 13, Algorithm 3 is used to compute the propagation time interval
for the edge which connects the incoming value failure with the OR-node in the
TFPG.

Algorithm 2 ConstructTFPGStructure

Require: pout the port,
k the component type,
A = (L, l0, C, V,Σ, R,E, I) the component automaton,
M = (S, s0, T, E

′, V ′, v0) the EFSM,
V(sys) = (sys, E ,F , fE , fF) the error and failure specification

Ensure: G the generated TFPG

1: create empty TFPG G = (VG, EG, fs, ft, IG, lG, ι, η) with VG = ∅, EG = ∅,
IG = ∅

2: create outgoing failure fo = fok.pout,v, F = F ∪ fo
3: create failure node vGo with l(vGo) = fo, VG = VG ∪ vGo
4: create operator node vGor with l(vGor) = OR, VG = VG ∪ vGor
5: create TFPG-edge eGor = (vGor, vGo), ι(eGor) = [0, 0], EG = EG ∪ eGor
6: for all vout with ∃t ∈ T :“out := vout”∈ label(t) and pout.m! ∈ label(t) do
7: Ms = slice(M, [t0, vout]) with t0 = µE(e0)

and Ms = (Ss, ss0, Ts, E
′
s, V

′
s , vs0)

8: Fi = ∅
9: for all vin = {v′s ∈ V ′s | ∃ts ∈ Ts, label(ts) = e[g]/a, and e = pin.m?

“vin := in”} do
10: create incoming value failure f = f ik.pin,v, Fi = Fi ∪ f , F = F ∪ f
11: create failure node vGi with l(vGi) = f , VG = VG ∪ vGi
12: create TFPG-edge eGi = (vGi, vGor), EG = EG ∪ eGi
13: G = AddPropagationT imeInterval(vin, vout,Ms, A,G)
14: end for
15: end for
16: return G

Algorithm 3 first identifies the part of the component automaton that corre-
sponds to the slice using the mapping ν defined in Definition 4.2.11 (Line 1).
Then, the propagation time intervals for all paths between the incoming variable
vin and the outgoing variable vout is computed (Lines 3 - 6). For the interval,
which is added to the TFPG, the minimum propagation time is the minimum of
the minimum propagation of all paths and the maximum propagation time the
maximum of the maximum propagation times of all paths (Line 5). In Line 7
the propagation time interval is added to the TFPG-edge.

Note, that we do not evaluate the variable assignments of transitions in the
component automaton. We rather assume that each incoming variable affects
the returned value of a variable assignment, because we do not know, which
combinations of incoming variables in a variable assignment affect the outgoing

84

4.2 Constructing TFPGs

Algorithm 3 AddPropagationTimeIntervals

Require: vin the incoming variable,
vout the outgoing variable,
Ms = (Ss, ss0, Ts, E

′
s, V

′
s , vs0) the slice

A = (L, l0, C, V,Σ, R,E, I) the component automaton
G = (VG, EG, fs, ft, IG, lG, ι, η) the TFPG

Ensure: G the TFPG extended by a propagation time interval

1: As = ν(Ms) with As = (Ls, l0s, C, V,Σ, R,Es, I)
2: create initial propagation time interval δ = [0, 0]
3: for all paths p = eh, ..., ej with eh = (lh, ϕh, ah?, rh, λh, dh, l

′
h) with

dh =“vin := in” and ej = (lj , ϕh, a!, rh, λh, dj , l
′
j) with dj = “out := vout”

do
4: δtmp = ∆ϑ(p) with δtmp = [tmin,tmp, tmax,tmp]
5: δ = [min(tmin, tmin,tmp),max(tmax, tmax,tmp)]
6: end for
7: ι(e) = δ, with l(e) = f ik.pin,v
8: return G

variable. We consequently combine all incoming value failures by a logical OR
in the TFPG. This is a pessimistic but safe assumption.

Consider for example Path 1 of the normal behavior of PosCalc. We compute the
slice of Path 1 with the slicing criterion [e0, pos] where e0 is the self-transition
added to the initial location of the component automaton (cf. Figure 4.10).

compute
pos

c1≥8+(18(i-1))
p1.speed1?
s1:=in

c1≤18i

c1≥ 35+(18(i-1))
{pos:=computePos(s1,s2)}send

pos

c1≥43+(18(i-1))
p3.posData!
out:=pos
c1:=0 c1≤ 40+(18(i-1))

c1≤ 45+(18(i-1))

c1≥18+(18(i-1))
p2.speed2?
s2:=in

read
speed2

c1≤ 25+(18(i-1))

select
mode

read
speed1

p4.mode?
m:=in
c1≥20

m==0
c1≥30
i:=1
c1:=0

c1≤30

default
m==1
c1≥30
i:=2
c1:=0

c1≤40

Figure 4.10: Component automaton specifying the behavior of the component
type PosCalc extended by a self-transition at the initial state

Figure 4.11 shows the slice of the component automaton of Figure 4.10 and the
slicing criterion [e0, pos]. We extract the variables that affect the variable pos

from the variable assignments at the transitions of the slice. In our example,
these are s1:=in and s2:=in. Consequently, the value of pos is affected by the
values of the incoming variables s1 and s2. We conclude that a value failure on
variable pos is caused by a value failure on s1 or s2.

85

4 Generation of Timed Failure Propagation Graphs

compute
pos

p1.speed1?
s1:=in {pos:=computePos(s1,s2)} send

pos

p2.speed2?
s2:=inread

speed2
read

speed1

Figure 4.11: Slice of the component automaton of Figure 4.2 for the slicing
criterion [e0, pos]

To construct the TFPG, we extract the port names from the messages at the
transitions of the slice. For example, s1 is transmitted via port p1, because it is
received with the synchronization p1.speed1?. A value failure on port p3 where
pos is output is caused by a value failure on port p1 or p2 where s1 and s2 are
input.

We construct the subgraph of the component automaton that corresponds to
the slice of Figure 4.11 to compute the propagation times. Figure 4.12 shows
the subgraph of the component automaton that corresponds to the slice of
Figure 4.11. This subgraph is constructed as defined in Definition 4.2.11. This
subgraph does not contain the transition at which the variable pos is output.
However, this transition is required for the computation of the propagation time
interval, because this is the transition where the outgoing value failure occurs.
We therefore extend the subgraph of Figure 4.12 by all paths that lead to the
output of the variable pos. The result is shown in Figure 4.13.

compute
pos

c1≥8+(18(i-1))
p1.speed1?
s1:=in

c1≤18i

c1≥ 35+(18(i-1))
{pos:=computePos(s1,s2)}send

pos

c1≥18+(18(i-1))
p2.speed2?
s2:=in

read
speed2

c1≤ 25+(18(i-1))

read
speed1

Figure 4.12: Subgraph of the component automaton of Figure 4.2 that corre-
sponds to the slice of Figure 4.11

86

4.3 Post-processing the Generated TFPGs

compute
pos

c1≥8+(18(i-1))
p1.speed1?
s1:=in

c1≤18i

c1≥ 35+(18(i-1))
{pos:=computePos(s1,s2)}send

pos

c1≥43+(18(i-1))
p3.posData!
out:=pos
c1:=0

c1≥18+(18(i-1))
p2.speed2?
s2:=in

read
speed2

c1≤ 25+(18(i-1))

read
speed1

Figure 4.13: Subgraph of the component automaton of Figure 4.2 that corre-
sponds to the slice of Figure 4.11 extended by the path to the
output of variable pos

The TFPG of Figure 4.14 shows the TFPG which results from the evaluation
of the slice of Figure 4.11. This TFPG specifies how long value failures need to
propagate through a component instance of the type PosCalc.

foPosCalc.p3,v

OR

[0,0]

fiPosCalc.p1,v fiPosCalc.p2,v

[18,27][25,37]

Figure 4.14: TFPG of the outgoing value failure of the component type PosCalc

4.3 Post-processing the Generated TFPGs

A TFPG of a failure class may contain the same combination of incoming errors
more than once. This redundant information must be removed to allow for a
correct computation of hazard occurrence probabilities and to minimize the size
of the TFPG.

There may be two incoming failure variables of the same class at the same
port but with different propagation time intervals that are connected by an
AND-node. These two failure variables and their propagation time intervals
are united.

Figure 4.15(a) shows an example where the incoming value failure variable
f icomp.p1,v occurs twice. Such a TFPG is constructed, if there are several input
messages at the same port that are received at different points in time. The
problem is solved by uniting both nodes that are labeled with this failure vari-
able and uniting the propagation time intervals. In case the intervals, which
are united, do not overlap, the new interval is built from the minimum and
maximum values of the two intervals.

87

4 Generation of Timed Failure Propagation Graphs

&

ficomp.p1,v

[14,22] [18,20]

[0,0]

[19,30]

ficomp.p1,v ficomp.p2,s

focomp.p3,s

(a) Before

&

[18,20]

[0,0]

[14,30]

ficomp.p1,v ficomp.p2,s

focomp.p3,s

(b) After

Figure 4.15: Incoming failures with overlapping propagation time intervals

It may also be the case that different TFPGs contain the same combination of
incoming failure variables where the incoming failure variables are connected by
AND in one TFPG and by OR in the other. An example of this case is shown
in Figure 4.16. The TFPGs both have the same incoming failures service failure

p1 and service failure p2 but different outgoing failures. In Figure 4.16(a), they
are connected by OR and cause an outgoing value failure. In Figure 4.16(b),
they are connected by & and cause an outgoing service failure.

OR

[19,30] [18,20]

[0,0]

ficomp.p1,s ficomp.p2,s

ficomp.p3,v

(a) Outgoing value failure

&

[19,30] [18,20]

[0,0]

ficomp.p1,s ficomp.p2,s

ficomp.p3,s

(b) Outgoing service failure

Figure 4.16: TFPGs with identical incoming failure variables

However, the OR-connection also covers the case that both incoming failures
occur at the same time, even though this would cause an outgoing service
failure. As a consequence, the correct TFPG for the outgoing value failure
would connect both incoming failures by XOR as shown in Figure 4.17.

However, TFPGs with XOR-nodes cannot be analyzed by AShOp, because
XOR cannot be mapped to Petri nets. We know that

a⊕ b = (¬a ∧ b) ∨ (a ∧ ¬b)

The mapping of OR-nodes and AND-nodes to a TPN was shown in Def. 3.4.4.
¬a however cannot be modeled by a Petri net [EWM90, EW94]. Consequently,
XOR cannot be modeled by a Petri net or TPN.

88

4.4 Summary

XOR

[19,30] [18,20]

[0,0]

ficomp.p1,s ficomp.p2,s

ficomp.p3,v

Figure 4.17: Corrected TFPG of the TFPG of Figure 4.16(a)

Moreover, negative events are usually not considered in failure propagation
models, because these events are hard to figure out during manual construc-
tion. Negations and negative events are only introduced during the automatic
generation. Here, the complete state-based behavior is taken into account and
the generated failure propagation is finer.

We therefore do not replace OR-nodes by XOR-nodes. Consequently, the re-
sults of AShOp will be more pessimistic but safe. This means, the computed
occurrence probabilities of hazards may be higher than the exact occurrence
probabilities but never lower. This is because we do not reduce the set of valid
combinations but extend it.

If none or only one of the input variables are true, the results are the same for
both operators. OR becomes true if at least two variables are true at the same
time. XOR will be false for this case. Thus, OR is true for a larger set of events.
The probability of OR becoming true is always higher than the probability of
XOR becoming true3

4.4 Summary

We have presented an approach for the automatic generation of timed failure
propagation graphs (TFPGs) from timed automata. The automatic generation
of TFPGs relieves the developer from the manual construction of TFPGs where
especially the manual estimation of propagation times is difficult.

We particularly focus on the identification of the failure classes service, timing,
and value and the computation of propagation times. Propagation times are
computed from the real-time statecharts (cf. Section 2.2.2) of Mechatron-
icUML component types. However, any state-based model, which is compatible
to timed automata, may be used. We analyze deviations in the control flow to
identify timing and service failures. For this, we compare the reachable behav-
ior of a component type with and without injected failures. Value failures are
identified by the data flow, which we analyze by an existing approach for slicing
on extended finite state machines [ACH+12].

3This only holds for non-negative events.

89

4 Generation of Timed Failure Propagation Graphs

The generated TFPGs are used by AShOp to analyze how self-healing oper-
ations affect the propagation of failures in the system. In particular, TFPGs
allow for computing where failures are located in the system at the time when
a self-healing operation is applied.

90

5 Analysis of Self-healing Operations

In this chapter, we present our approach for the analysis of self-healing opera-
tions (AShOp) as published in [PST11, PST13]. AShOp checks for a given self-
healing operation whether it is executed fast enough to reduce the occurrence
probability of a hazard such that the occurrence probability becomes accept-
able. AShOp uses the TFPGs, which have been generated from the behavior
models of the system components as described in the previous chapter.

There exist three approaches that analyze hazard probabilities in reconfigurable
systems. The approach of Walter et al. [WGR+09] computes the probability
that a system fails despite the execution of self-healing operations. However,
it does not analyze how the self-healing operations affect the system. The ap-
proach of Giese et al. [GT06] computes the hazard occurrence probabilities of
all possible architectures of a reconfigurable system. This approach computes
hazard occurrence probabilities for system architectures. However, it does not
consider the location of failures in the system at the time when the architec-
ture is changed. Consequently, the approach is not able to analyze how the
reconfiguration affects the propagation of failures, which already occurred. The
approach of Güdemann et al. [GOR06] checks whether the system can always
be returned into a safe state once a hazard has occurred. However, this ap-
proach does not take propagation times or the duration of the reconfiguration
into account. It is thus not able to check whether a self-healing operation is
executed fast enough.

To overcome the limitations mentioned above, we extend the component-based
hazard analysis of Giese et al.[GT06]. Our extension of the component-based
hazard analysis [GT06] comprises two parts. First, we take the propagation
times of failures into account. The propagation times are needed to analyze
how far failures propagate within a specific time span. Second, we analyze the
effect of the structural reconfiguration on the propagation of failures. This is
needed to check whether failures are removed from the system by removing com-
ponents or whether failures are stopped from propagating further by removing
connections between components. The combination of both parts allows for
analyzing whether a self-healing operation is executed fast enough.

In contrast to the existing approaches [GOR06, GT06, WGR+09], AShOp uses
the information provided by the behavior models of the components to generate
TFPGs. On the one hand, they contain all information of the behavior models
which are relevant for analyzing failure propagation. On the other hand, the
benefit of TFPGs is their minimality concerning the information needed for the
analysis of propagation times of failures. The generation from the behavior

91

5 Analysis of Self-healing Operations

models allows considering exactly that part of the behavior, which is necessary
to analyze the failure propagation. This makes the analysis more efficient and
allows thus for analyzing larger systems.

In contrast to the approaches of Güdemann et al. [GOR06] and Walter et
al. [WGR+09], our analysis uses structural reconfiguration. Consequently, it
benefits from the advantages of component-based development, particularly
reuse and facilitated maintainability.

AShOp checks for a hazard and a self-healing operation, whether the self-healing
operation reduces the occurrence probability of the hazard such that the hazard
becomes acceptable. Therefore, AShOp analyzes which MCS of the hazard are
critical after the application of the self-healing operation. An MCS is called
critical if the self-healing operation cannot prevent the errors of the MCS from
causing the hazard. The occurrence probabilities of the critical MCSs provide
the information about the acceptability of the hazard after the application of the
self-healing operation: The occurrence probability of the hazard is acceptable,
if the joint occurrence probabilities of the critical MCS are acceptable. In this
case, the self-healing operation is successful.

AShOp is executed in several steps that are illustrated in Figure 5.1. The steps
are depicted by rounded rectangles and objects are represented by sketches of
the objects. The control flow is given by the enumeration of the activities. The
gray arrows depict the object flow.

Each step that is shown in Figure 5.1 is executed automatically. The developer
provides a hazard, a threshold for an acceptable hazard occurrence probability,
the self-healing operation, the deployment diagram, and the real-time state-
charts of the component instances in the deployment diagram. For hardware
nodes of the deployment diagram, either the behavior is modeled by real-time
statecharts such that TFPGs are generated or the TFPGs of the hardware nodes
are given.

First, (1) the TFPGs are generated from the real-time statecharts of the com-
ponent types, which are instantiated in the deployment. Optionally, TFPGs
are generated from real-time statecharts of hardware nodes. The result is the
TFPG of the deployment diagram. The generation of TFPGs will be explained
in full detail in Chapter 4.

The generated TFPGs are used to compute the MCSs and the hazard proba-
bilities by the hazard analysis of Giese et al. [GT06]. The TFPGs are therefore
translated into the failure propagation models of Giese et al. [GT06]. The
timing annotations of TFPGs are thereby ignored. Based on the computed
hazard probabilities and the deployment diagram, the developer constructs a
self-healing operation. This is the only manual step. We omit these steps from
Figure 5.1, because they are not in the focus of this thesis.

The next four steps (Steps 2 to 5) are conducted for each MCS that has been
computed by the hazard analysis.

92

for each MCS

e

f

TFPG

(1) generate
TFPG

critical time

!

deployment diagram
and real-time statecharts

(2) compute
critical time

(3) compute
locations of errors

and failures

hazards + MCSs

self-healing
operation

(4) apply self-healing
operation

e

f

TFPG-state 1

(6) compute hazard
occurrence probability

(7) check
acceptability

e

f

TFPG-state 2

hazard occurrence
probability

%

success/fail

acceptable hazard
occurrence probability

%

(5) check criticality of
MCS

critical MCSs

Figure 5.1: AShOp process

AShOp (2) computes the critical time which is the maximum time span be-
tween the detection of the error or failure and the completion of the self-healing
operation. The critical time may vary due to system specific properties as has
been explained in Section 2.2.4. We take the maximum value to analyze the
worst case: the failures propagate as far as possible. This guarantees that crit-
ical failures can always be stopped, even in the case that the execution of the
self-healing operation needs the maximum time that is specified in the real-time
statecharts and TCSDs.

Next, AShOp (3) computes the locations of the errors and failures in the system
at the point in time when the structural reconfiguration is applied. Based on
the MCSs, it analyzes how far failures propagate through the system during
the critical time. The result is the state of the TFPG (TFPG-state 1) that

93

5 Analysis of Self-healing Operations

contains all error and failure variables that are reachable before the execution
of the self-healing operation.

The naive way of the described computation would be to perform the reacha-
bility analysis on the TPN of the whole system. But reachability analysis on
TPNs [CR05] is equivalent to timed model checking which is exponential on the
number of states and clocks [Alu99]. We improve the performance and thus the
feasibility of AShOp by performing the reachability analysis only on the part
of the system that is affected by the self-healing operation.

After the reachability analysis, (4) the self-healing operation is applied. It
changes the structure of the deployment diagram and thereby the structure
of the TFPG. The self-healing operation may remove errors and failures from
the system or cut off propagation paths along which failures propagate to the
hazard. The result of this step is the state of the TFPG of the reconfigured
deployment diagram (TFPG-state 2) that contains all errors and failures that
remain in the system after the application of the self-healing operation.

In the next step, the (5) criticality of the MCS is checked based on TFPG-
state 2. This means, AShOp checks whether the errors and failures, which
remain in the system after the application of the self-healing operation, still
lead to the hazard. If this is the case, the MCS is critical. Steps (2) to (5) are
repeated for each remaining MCS, which has not yet been analyzed.

It may happen that another reconfiguration is triggered before the self-healing
operation is executed. In this case, this reconfiguration needs to be analyzed as
well during Step two to five.

The (6) occurrence probability of the hazard is computed based on the oc-
currence probabilities of the critical MCSs. If the occurrence probability is
acceptable (7), the self-healing operation is successful in reducing the hazard.
The developer continues with generating program code. If the occurrence prob-
ability of the remaining MCSs is not acceptable, the self-healing operations have
to be revised and analyzed again.

The errors in hardware components may be detected at runtime using for exam-
ple model-based fault diagnosis [SFP02]. However, an error cannot be observed
directly. The detection observes a failure at the port of the hardware component
or at the port of another component. The errors, which cause the failure, and
an appropriate self-healing operation are stored in a fault dictionary [PR92].
This fault dictionary associates failures in the systems with sets of errors that
cause these failures (cf. Section 2.1.3). The fault dictionary is extended by self-
healing operations, such that the fault detection not only identifies the causes
of failure but also triggers a self-healing operation.

5.1 Example

In this chapter, we analyze the self-healing operation which has been introduced
in Figure 3.2 of Chapter 3. This self-healing operation is applied to the configu-

94

5.2 Computing the Critical Time

ration of the speed control subsystem of the RailCab (Figure 3.1 of Chapter 3)
if an error in the distance sensor occurs, because this error would lead to the
hazard wrong speed. The occurrence probability of this hazard is 0.27829 as we
have computed in Section 3.4.3. The threshold for the occurrence probabil-
ity of the hazard wrong speed is 0.2. The MCSs of the hazard wrong speed are
{es1,v, es2,v}, {egps,v}, {edr,v}, and {ewlan,v}. In this chapter, we use the MCS
{edr,v} to illustrate the execution of Steps (2) to (5).

5.2 Computing the Critical Time

The critical time is the time during which a failure propagates through the
system after it has been detected and before the self-healing operation is com-
pleted. We use the critical time to compute the locations of errors and failures
in the system at the time when the self-healing operation is executed.

By taking the maximum time span between the error occurrence and the com-
pletion of the self-healing operation, we consider the worst case: we let the
failures propagate as far as possible through the system. This is necessary, be-
cause we do not know which step of the self-healing operation is executed at
which time. Consequently, we let the failures propagate for the maximum dura-
tion of the self-healing operation and apply all steps of the self-healing operation
in zero time. This is a safe approximation, because failures will not propagate
for a longer time than the maximum duration of the self-healing operation.
However, they may have less time and thus propagate a shorter distance than
the distance, which was computed during the analysis.

The critical time is composed of three parts (cf. Figure 5.2): the error delay, the
reconfiguration delay, and the duration of the self-healing operation. The error
delay is the time between the occurrence of the errors of the MCS and the failure,
which is detected by the failure detection. The reconfiguration delay is the time
between the detection of the failure and the start of the self-healing operation.
In most cases, the self-healing operation is not executed immediately after the
failure has been detected. The information that a self-healing operation has
to be applied must be transmitted to the component where the self-healing
operation is executed. This transmission results in the reconfiguration delay.
The error delay, the reconfiguration delay, and the duration of the self-healing
operation follow one another directly as depicted in Figure 5.2. The critical
time is consequently the sum of these three parts.

error delay reconfiguration delay duration of TCSD

critical time

self-healing operationcausing errors

Figure 5.2: Composition of the critical time

95

5 Analysis of Self-healing Operations

5.2.1 Error Delay

The error delay is computed from the propagation times of the paths in the
TFPG. A depth first search identifies all paths that lead from the detected
failure back to its causing errors. Then, the propagation times of all these paths
are computed. The error delay is the maximum value over the propagation times
of all these paths. By taking the maximum value, we consider the case, that
the failure is detected at the latest time possible. The error delay is stored in
the fault dictionary. It complements the relation between error and failure.

The value error edr,v in the distance sensor dr:DSensor of Fig. 3.8 is for example
detected by the incoming failure f isa.p1,v at the incoming port of the component
instance sa:Sanity. The error delay is thus the maximum time span between the
occurrences of edr,v and the incoming failure f isa.p1,v at sa:Sanity. The propa-
gation time interval for the path between these nodes is [1 + 5, 2 + 6] = [6, 8].
Thus, the error delay is 8 time units.

5.2.2 Reconfiguration Delay

The reconfiguration delay is computed from the runtimes of paths in the reach-
able behavior of the system as explained in Section 4.2.1.

We extract all paths from the reachable behavior that contain the message of the
detection of the error or failure and the execution of the self-healing operation.
The detection messages and the according self-healing operations are looked up
in the fault dictionary as explained in Section 2.1.3. We compute the maximum
delay for each path as described in Section 4.2.1. The reconfiguration delay is
the delay of the path with the highest maximum delay.

In our example, the failure detection detects the incoming value failure at the
component instance sa:Sanity (cf. Figure 3.8). This value failure enters sa:Sanity

via the message sa-p1.dist. For the reconfiguration delay, we thus need to com-
pute the runtime from the receiving of sa-p1.dist to the firing of the transition
with the side effect DiscDistSensor() using the reachable behavior of Figure 3.6.
The delay between the receipt of the value of the distance sensor dr:DSensor in
the timed automaton of Figure 3.3 and the final trigger of the TCSD by the
execution of the side effect in the timed automaton of Figure 3.4 is [35, 53].

In our example, the maximum duration of the TCSD is 86 time units. Therefore,
the critical time is computed by 8 + 53 + 86 = 147.

5.3 Compute Locations of Errors and Failures

The locations of errors and failures are computed by a reachability analysis on
the underlying TPN of the TFPG (cf. Section 3.4) of the system. For the
reachability analysis on TPNs, we use the reachability analysis of Cassez and

96

5.3 Compute Locations of Errors and Failures

Roux [CR05]. The input for the computation of the locations of errors and
failures is a TFPG. In this TFPG, all errors and failures that are contained
in the MCS are activated. The reachability analysis simulates the propagation
of failures through the TFPG by means of a TPN for the time span, which is
specified by the critical time. The result is the state of the TFPG (cf. Def. 3.4.5)
after the critical time. This means, all error and failure variables of the TFPG
that were visited during the reachability analysis are active.

The locations of errors and failures are computed only on the part of the system
that is affected by the self-healing operation. In the deployment diagram, we
call this part the affected subgraph. By reducing the number of places of the
TPN that considered by the reachability analysis we also reduce the number of
clocks that have to be analyzed. Of course, the runtime remains exponential.
However, the approach becomes applicable in practice. This is shown by an
evaluation of our implementation in Section 7.3.3.

Definition 5.3.1 (Affected Subgraph of a TFPG)
Let w = (Gconf = (Vconf , Econf , sconf , tconf), type) be a deployment diagram

with Vconf = K ∪H ∪PK ∪PHand r = (LHS,RHS, d) the TCSP of the TCSD
that specifies the self-healing operation. r is matched into Gconf by a matching
m. Let further G = (V,E, fs, ft, I, l, ι, η) be the TFPG of w over the error and
failure specification V(G) = (w, E ,F , fE , fF).

Let Gm = (V−1 ◦ m) (LHS \RHS) and Gm = (Vm, Em, fsm, ftm, Im, lm,
ιm, ηm). We define Vm the set of affected nodes of G.

The affected subgraph GA of G is induced by the nodes of a set X of paths
x = v1, . . . , vk, v1, ..., vk ∈ V , where each x ∈ X meets the following conditions:

• l (v1) ∈ E,

• vk 6∈ Vm,

• vk−1 ∈ Vm, and

• vi 6∈ Vm for i > k.

The affected subgraph consists of the nodes which are changed by the TCSD
that represents the self-healing operation (affected nodes), all paths that lead
from error nodes to the affected nodes, and the direct successors of the affected
nodes. The affected nodes are needed to assess the effect of the TCSD on the
TFPG. The affected nodes are connected to all nodes of error variables that
cause the failures, which are represented by the affected nodes. Thus, we can
analyze whether failures may propagate to the affected nodes. The successors of
the affected nodes are needed to analyze whether failures leave the part that is
changed by the component story diagram. This information is used to analyze
whether the failures, which remain in the system, may still cause the hazard.

The affected subgraph is computed from the union of the matchings of the
LHS of all applicable TCSPs of the TCSD. This is sufficient for computing

97

5 Analysis of Self-healing Operations

the affected subgraph, because the order of the application of the TSCPs is
not important for analyzing how the self-healing operation affects the failure
propagation. Therefore, we consider TCSDs as sets of TCSPs in the definition
above.

An example that illustrates the affected part of the TFPG of Figure 3.8 is shown
in Figure 5.3. The affected subgraph is highlighted by a gray background. It
consists of the three paths egps,v, ..., OR, edr,v, ..., OR and ewlan,v, ..., OR.

dr : DSensor

gps : GPS

sa : Sanity

s1 : VSensor

s2 : VSensor

strt : Strategy

ld
: LinearDrive

wlan : WLAN

[5,6]fo
s1.p1,v

fi
sa.p1,v

fo
ref.p2,v

[1,2]

fo
s2.p1,v

[1,2]

es2,v

fo
gps.p1,v

fo
gps.p2,v

fi
pos.p1,v

[5,6] fi
pos.p2,v

fi
pos.p3,v

fo
pos.p4,v

[1,2]

[121,122]
egps,v

[5,6]

fi
dg.p1,v

[5,6]
OR fi

dg.p2,v

fo
dg.p3,v

[5,6]

[27,30] [34,40]

[0,0]

fo
dr.p1,v

[5,6]

[121,122]

fo
wlan.p1,v fi

ref.p1,v
[5,6][121,122]

fo
ref.p3,v

[5,6]

[30,45]
[30,45]

OR

[25,55]

[18,45]

[43,45] [0,0]

[5,6]

fo
sc.p4,v

fi
ld.p1,v

[5,6]

&

[0,0]

fo
dr.p2,v

[1,2]

edr,v

ewlan,v

[5,6]

OR

fi
sc.p3,v

fi
sc.p1,v

[14,19]

fi
sc.p2,v

[20,25]

[17,22]

[3,5]
[5,6]

[5,6]
fi

ds.p1,v

fi
ds.p2,v fo

ds.p3,vOR

[24,28]

[24,28] [0,0]

es1,v

Figure 5.3: Affected subgraph

For computing the locations of errors and failures at the point of time when the
self-healing is applied, we set the state of the affected subgraph according to
the errors of the MCS. This means, the error variables that represent the errors
of the MCS are set to “active”. All other error and failure variables are set to
“inactive”. In our example, the state of the affected subgraph is set to {edr,v}.

We compute the state of the affected subgraph for the duration which is specified
by the critical time (cf. Section 5.2). This state contains all error and failure
variables that may be active before executing the TCSD completely.

Algorithm 4 formalizes the analysis of the affected subgraph.

Algorithm 4 first computes the tolerance time as explained in Section 5.2
(Line 1). Next, the affected subgraph of the TFPG is computed as defined
in Definition 5.3.1 (Line 2) and the state of the TFPG is set as specified by

98

5.3 Compute Locations of Errors and Failures

Algorithm 4 AnalyzeMCS

Require: w = (Gconf , type) a deployment diagram,
G = (V,E, fs, ft, I, l, ι, η) the TFPG of the deployment diagram,
mcs = {e ∈ E},
r the TCSP of the TCSD that specifies the self-healing operation

Ensure: q′′ the active error and failure variables after the reconfiguration for
the lifetime of the system

1: tt = computeToleranceT ime(w, r)
2: GA = (VA, EA, fsA, ftA, IA, lA, ιA, ηA) := buildAffectedSubgraph(G,w, r)
3: q(GA) = setTFPGState(GA,mcs)
4: GA := computeReachableFailures (GA,tt)
5: w

r⇒ ŵ
6: ĜA = V−1(ŵ)
7: return q(ĜA)

the MCS of the hazard. In the next step, the reachability analysis of Cassez
and Roux [CR05] is applied to the affected subgraph (Line 4). The application
is specified in more detail in Algorithm 5. It computes the state of the TFPG
before the application of the self-healing operation. Then, the self-healing op-
eration is applied (Line 5) and the TFPG is reconfigured (Line 6). Finally,
the state of the reconfigured TFPG is returned (Line 7). The active error and
failure variables correspond to the errors and failures that remain in the system
after the application of the self-healing operation.

Algorithm 5 computeReachableFailures

Require: G = (V,E, fs, ft, I, l, ι, η) TFPG,
tt duration

Ensure: q the set of active error and failure variables for the duration tt
1: T = (P, T, •(.), (.)•,M0, (α, β)) = µ(G)
2: M = getReachableMarkings(T , tt)
3: for all v ∈ V do
4: η(v) = inactive
5: end for
6: for all M ∈M do
7: for i = 1 to |P | do
8: v = µ−1(pi)
9: if mi > 0 then

10: η(v) = active
11: else
12: η(v) = inactive
13: end if
14: end for
15: end for
16: return G

99

5 Analysis of Self-healing Operations

Algorithm 5 computes the state of a TFPG for a given duration. For this, it
computes the setM of reachable markings of the TPN for the duration tt using
the approach of [CR05] (Line 2). The state of the TFPG G is reset in Lines 3
to 5. Then, the new state of G is set in Lines 6 to 5. Every node, whose place
in the TPN contains at least one token, is set active (Line 10). All other nodes
are set inactive (Line 12).

Figures 5.4 to 5.6 show states of the TPN and the TFPG of the affected sub-
graph during the reachability analysis. Figure 5.4 shows the state of the TPN
T of the affected subgraph of Figure 5.3 at the point in time when the failure
is detected. The error variable edr,v has been activated, because this MCS is
currently analyzed.

egps,v fogps.p2,v [5,6] f
i
dg.p1,v OR[27,30]

fodg.p3,v

[0,0]

fidg.p2,v[34,40]

fids.p1,v

[5,6]

OR

[24,28]
fids.p2,v [24,28][5,6]fodr.p1,vedr,v [121,122] [0,0] f

o
ds.p3,v

[5,6]fowlan.p1,vewlan,v [121,122] firef.p1,v [30,45] f
o
ref.p2,v

[5,6]

fisc.p2,v
[5,6]

≥1

fosc.p4,v

[17,22]

[3,5]

[121,122]

Figure 5.4: Marking of the TPN at the time when the error occurred

Figure 5.5 shows the reachable marking of the TPN that are reachable during
the critical time. These markings are reachable at the end of the duration of
the self-healing operation but before the execution of the TCSD. During the
critical time of 147 time units, the failure variables fodr.p1,v and f ids.p2,v of the
TPN are reachable. Their corresponding failures may thus have occurred in the
real system.

Figure 5.6 shows the corresponding TFPG marked with the active error and
failure variables of the TFPG-state that corresponds to the marked places in
the TPN of Figure 5.5. The active error and failure variables reflect possible
locations of errors and failures during the critical time.

100

5.3 Compute Locations of Errors and Failures

egps,v fogps.p2,v [5,6] f
i
dg.p1,v OR[27,30]

fodg.p3,v

[0,0]

fidg.p2,v[34,40]

fids.p1,v

[5,6]

OR

[24,28]
fids.p2,v [24,28][5,6]fodr.p1,vedr,v [121,122] [0,0] f

o
ds.p3,v

[5,6]fowlan.p1,vewlan,v [121,122] firef.p1,v [30,45] f
o
ref.p2,v

[5,6]

fisc.p2,v
[5,6]

≥1

fosc.p4,v

[17,22]

[3,5]

[121,122]

Figure 5.5: Reachable markings of the TPN during the critical time

dr : DSensor

gps : GPS

wlan : WLAN

fo
ref.p2,v

fo
gps.p2,v

[121,122]
egps,v fi

dg.p1,v
[5,6]

OR fi
dg.p2,v

fo
dg.p3,v

[5,6]

[27,30] [34,40]

[0,0]

fo
dr.p1,v

[5,6][121,122]

fo
wlan.p1,v fi

ref.p1,v
[5,6][121,122]

[30,45]

edr,v

ewlan,v

OR

fi
sc.p2,v

[17,22]

[5,6]

[5,6]
fi

ds.p1,v

fi
ds.p2,v fo

ds.p3,vOR

[24,28]

[24,28] [0,0]

Figure 5.6: State of the affected subgraph after the critical time

101

5 Analysis of Self-healing Operations

5.4 Analyze the Criticality of the MCS

To analyze the criticality of the MCS m, we compute the MCSs Mr of the recon-
figured TFPG using the component-based hazard analysis of Giese et al. [GT06]
and check which error and failure variables of the MCSs Mr are active in the re-
configured TFPG. The MCS m is critical if at least one of the MCSs mr ∈Mr

contains only active error and failure variable. In this case, the errors and
failures, which remain in the system, would still cause a hazard.

In a TFPG, only error variables, i.e., the first node of each path, which leads to
the hazard, are candidates for the cause of a hazard. However, in the reconfig-
ured TFPG, the paths between error and failure variables and the hazard may
be interrupted. Consequently, the MCSs of the reconfigured TFPG may also
contain failures. Moreover, there may be paths in the TFPG whose error node
is inactive but subsequent failure nodes are active. In this case, the resulting
MCS contains inactive errors, even though there are active failures, which still
may cause the hazard.

We consequently modify the TFPG such that active nodes become the first
nodes of each path that leads to the hazard. This is achieved by deleting the
incoming edges of all active failure variables. In this way, only the active failure
variable with the shortest distance to the outgoing failure that is part of the
specified hazard remains connected to the hazard.

Figure 5.7 shows the TFPG of the speed control subsystem after the execution
of the TCSD. Due to the application of the TCSD, the failure variables f idg.p3,v
and f isc.p2,v and the edges between OR and f ids.p1,v and fods.p3,v and f isc.p2,v have

been removed. A new failure variable f isc.p5,v and an edge between fodg.p4,v and

f isc.p5,v have been created. Further, the incoming edges of fodr.p1,v and f ids.p2,v
have been removed to enable the computation of critical MCSs.

For the TFPG of Figure 5.7, we compute the MCSs {es1,v, es2}, {egps,v}, and
{ewlan,v}. The set of active error and failure variables is {edr,v, fodr.p1,v, f ids.p2,v}.
None of the MCSs contains these variables. They are thus all non-critical and
the hazard cannot occur anymore for the analyzed MCS {edr,v}. We repeat
the steps described in Sections 5.2 to 5.4 to analyze the remaining MCSs of
the hazard wrong speed. The result is the set of critical MCSs. An example of
a MCS which is still critical after the self-healing operation of our example is
{es1,v, es2,v}.

5.5 Analyze the Success of the Self-healing Operation

The occurrence probabilities of the hazard after the application of the self-
healing operation is computed from the occurrence probabilities of the critical

102

5.6 Remarks

sa : Sanity

s1 : VSensor

gps : GPS

dr : DSensor

s2 : VSensor

strt : Strategy

ld
: LinearDrive

wlan : WLAN

es1,v [5,6]fo
s1.p1,v

fi
sa.p1,v

fo
ref.p2,v

[1,2]

fo
s2.p1,v

[1,2]

es2,v

fo
gps.p1,v

fo
gps.p2,v

fi
pos.p1,v

[5,6]
fi

pos.p2,v

fi
pos.p3,v

fo
pos.p4,v

[1,2]

[121,122]egps,v

[5,6]

fi
dg.p1,v

[5,6]
OR fi

dg.p2,v

[5,6]

fo
dg.p4,v

fi
ds.p1,v

[27,30] [34,40]

[0,0]

fi
ds.p2,vfo

dr.p1,v

fo
wlan.p1,v fi

ref.p1,v
[5,6]

fo
ds.p3,vOR

[24,28]

[24,28] [0,0]

[121,122]

fo
ref.p3,v

[5,6]

[30,45]

[30,45]

OR

[25,55]

[18,45]

[43,45]
[0,0] fi

sc.p1,v
[5,6]

fi
sc.p5,v

[5,6]

fi
sc.p3,v fo

sc.p4,v

OR

[20,25]

[17,22]

[14,19]
[3,5]

fi
ld.p1,v

[5,6]

&

[0,0]

fo
dr.p2,v

[1,2]

edr,v

ewlan,v

[5,6]

Figure 5.7: Reduced TFPG

MCSs. The critical MCSs are {es1,v, es2,v}, {egps,v}, {ewlan,v}. The resulting
occurrence probability is computed by

1− ((1− p(es1,v) · p(es2,v))(1− p(egps,v))(1− p(ewlan,v)))
=1− ((1− 0.01)(1− 0.1)(1− 0.1))

=0.1981

The occurrence probability 0.1981 is smaller than the threshold of 0.2. The
occurrence probability of the hazard wrong speed is thus acceptable. We conclude
that the self-healing operation is successful.

5.6 Remarks

AShOp handles multiple errors as well as single errors. This is guaranteed by
applying AShOp to MCSs instead of single errors.

It cannot happen that paths are created by the TCSD that build a ”bridge”
that lets a failure slip through the self-healing. Hence, it does not occur that
AShOp yields that the failure can be stopped though it is not. This is due to the
semantics of TCSDs: First, all objects that are to be destroyed, are removed.
Then, all objects that are to be created are created.

103

5 Analysis of Self-healing Operations

Cycles in the TFPG can also be handled by AShOp, because we map our TFPG
to a TPN. The reachability analysis of Cassez and Roux [CR05] handles cycles
in TPNs. Further, the hazard analysis of Giese et al. [GT06] handles cycles, as
well.

5.7 Summary

In this chapter, we presented an approach for the analysis of self-healing oper-
ations. With this analysis, the system developer is able to analyze whether a
self-healing operation reduces a hazard such that it becomes acceptable. In con-
trast to the approach of Nafz et al. [NSS+11], our approach also checks whether
the self-healing is executed fast enough to reduce the hazard occurrence prob-
ability.

In order to check whether the self-healing operations reduce the occurrence
probability of a hazard, AShOp checks for each MCS of a hazard whether
failures are stopped from propagating before the hazard occurs. Therefore,
AShOp first checks how far failures propagate between their detection and the
completion of the self-healing operation. AShOp then determines how the self-
healing operation affects the failure propagation at the time of the completion of
the TCSD. Finally, it checks whether the errors and failures that remain in the
system after the application of the self-healing operation still cause the hazard.
For all MCSs that still lead to the hazard, AShOp computes the occurrence
probability after the application of the self-healing operation. If the occurrence
probability of all remaining MCSs is acceptable, the self-healing operation is
successful in reducing the hazard. If the occurrence probability of the remaining
MCSs is not acceptable, the self-healing operations have to be revised and
analyzed again. AShOp becomes applicable by performing the reachability
analysis only on that part of the system that is affected by the self-healing
operation.

The analysis, which we presented in this chapter, is applied at design time.
This implies that all configurations of the system are known at design time,
because the configuration is needed to analyze the failure propagation between
components. However, in reconfigurable systems, configurations may be created
at runtime which have been unknown at design time. Therefore, we developed
a framework that allows for executing AShOp at runtime. This is the subject
of the next chapter.

104

6 Analysis of Self-healing Operations
at Runtime

The system developer has to guarantee acceptable hazard occurrence proba-
bilities for all possible system architectures at design time (cf. Section 2.4).
The configuration of a system must be known in order to analyze how a self-
healing operation affects the propagation of failure through a system. However,
in reconfigurable systems, it is possible that system architectures occur only
at runtime and are unknown at design time. This applies particularly to sys-
tems of systems, where different systems are combined at runtime to provide
functionalities that none of the systems could provide alone [CK10].

In this chapter, we call configurations where the self-healing operations of
the system do not reduce hazards occurrence probabilities below the required
thresholds unsafe configurations. For configurations, which only occur at run-
time, we use the term unknown configuration. We will call the system of systems
system and a system which is part of the system of systems subsystem

An example of such a system of systems is the RailCab convoy (cf. Section 1.1).
In the future, there may exist smart rail vehicles apart from the RailCab, which
are produced by foreign manufacturers. Of course, it would be useful, if these
RailCabs and the foreign vehicles formed a convoy. For this, they need to
establish a communication connection. This connection leads to an unknown
configuration, because the system architecture of the foreign vehicle was, of
course, unknown to the developers of the RailCab. Consequently, the effect of
self-healing operations could not be computed at design time either and there
may appear unsafe configurations at runtime. To guarantee that no unsafe
configurations occur, the effect of self-healing operations on unknown configu-
rations must be analyzed at runtime [CGKM12, SBT11].

There exist several approaches that analyze safety properties at runtime. How-
ever, only one approach analyzes the safety requirements of systems before
they are connected [SBT11]. Yet, is does not take self-healing operations into
account. The main focus of runtime analysis approaches is the detection of
anomalies in the executed system behavior and to return the system back to
its intended behavior [DDK+07, FGT11, GMS12, KMM07, Rus08, SRA04].
However, they do not analyze self-healing operations.

To analyze self-healing operations at runtime, we construct reachable configura-
tions at runtime and perform AShOp. Reconfiguration rules that lead to unsafe

105

6 Analysis of Self-healing Operations at Runtime

configurations are locked. Consequently, unsafe configurations are not reach-
able. We published an approach in [PT09, PHST12] that uses this framework
for analyzing risk at runtime.

Figure 6.1 shows an overview of the execution of AShOp at runtime. In the
beginning, (1) the reachable configurations are constructed. This is done by the
reachability analysis of Suck et al. [SHS11]. It is the only approach, which takes
behavior and reconfiguration into account and considers time. Consequently,
only those reconfiguration rules are applied which are reachable as side effects
of the real-time behavior. In contrast to other approaches, e.g, [dLGB+10,
MdR07, ÖM07, RDV09], that apply each reconfiguration rule to each reachable
architecture, the space of reachable architectures is reduced significantly.

reconfiguration
rules

initial configuration
and behavior

e

f

TFPGs

1. reachability
analysis

reachable configurations

2. analyze
self-healing
operations

3. lock/approve
reconfiguration

rules

hazard
occurrence

probabilities

safe
configurations

Figure 6.1: Overview of the runtime analysis

In the next step, (2) the self-healing operations are analyzed as described in
Chapter 5. Of course, all models required for hazard analysis and reachability
analysis must be stored in the running system and must be available at runtime.

106

6.1 Example

In the last step, (3) reconfiguration rules that lead to unsafe configurations are
locked. In the end, only safe system architectures are reachable.

6.1 Example

We illustrate the execution of AShOp at runtime by the example of the speed
control subsystem of the RailCab which has been introduced in Section 3.1.
We extend this example by a rail vehicle of a foreign manufacturer that meets
the RailCab on the track. The vehicles try to build a convoy and thus need to
establish a communication connection.

Figure 6.2 shows an excerpt of the deployment diagram of a rail vehicle of a
foreign manufacturer. This deployment diagram is unknown to the RailCab
developers at design time.

uk : Unknown

pc2 : PosCalc

sc2 : SpeedCtrllim2 : LIM

g2 : GPS o

i

Figure 6.2: Deployment diagram of the foreign rail vehicle

Like the RailCab, the foreign vehicle drives with a linear drive lim2:LIM. The
electric current, which is applied to move the vehicle, is controlled by the speed
controller s2:SpeedCtrl. The target speed is computed from the target position
of the vehicle on the track, which is provided by pc2:PosCalc. The foreign vehicle
measures speed by a GPS-sensor g2:GPS.

The TFPG of the foreign vehicle in Figure 6.3 contains the error eg2,v located
in the component instance gps:GPS. This error may lead to the outgoing value
failure fosc2.p2,v of the speed controller and cause a wrong speed of the unknown
vehicle.

Once the vehicles have met on the track, they need to establish a connection
in order to build a convoy. Figure 6.4 shows the reconfiguration rules that
create the necessary components for convoy mode. The time intervals of the
reconfiguration rules are omitted. The reconfiguration rule createCoordinatorCtrl()

of Figure 6.4(a) creates a component instance of type Coordination and connects
it to a component instance of type PosCalc. The newly created component
instance is also connected to a newly created multi-port, which establishes a
communication link to the member vehicles of the convoy. The component
instance co:Coordination coordinates the convoy by sending reference and target
parameters, e.g., target speed, to the convoy members.

107

6 Analysis of Self-healing Operations at Runtime

uk : Unknown

[5,6]
[43,45]

[5,6]

[23,30]
[5,6]

eg2,v
[1,2]

fo
g2.p1,v fi

pc2.p1,v

fo
pc2.p2,v

fi
sc2.p1,v

fo
sc2.p2,vfi

lim2.p1,v

Figure 6.3: TFPG of the foreign rail vehicle

uk : Unknown

 : PosCalcco : Coordination
<<create>>

<<create>><<create>>

createCoordinatorCtrl()

(a) Convoy coordinator

rc : RailCab

mc : MemberCtrl : SpeedCtrl <<create>>
<<create>>

<<create>>

createMemberCtrl()

(b) Convoy member

Figure 6.4: TCSDs for establishing a convoy

The reconfiguration rule createMemberCtrl() of Figure 6.4(b) creates a component
instance of type MemberCtrl and connects it to the speed controller SpeedCtrl.
The component instance mc:MemberCtrl processes the reference data provided
by the convoy coordinator. This newly created component instance is further
connected to a single port, which establishes a connection to the convoy coor-
dinator.

Before the convoy is built, the vehicles need to agree on the convoy and their
roles, i.e., either coordinator or member. Figure 6.5 shows the according com-
munication needed to build a convoy between the two rail vehicles of our ex-
ample. The communication is simplified with the intention to only show the

108

6.1 Example

steps necessary to trigger the required reconfigurations. Figure 6.5(a) shows
the role statechart of the unknown rail vehicle. Figure 6.5(b) shows the role
statechart of the RailCab. The unknown rail vehicle proposes to build a convoy
by sending the asynchronous message convoyProposal (cf. Figure 6.5(a)). The
RailCab receives the message convoyProposal, reacts by sending startConvoy, and
switches to member mode (cf. Figure 6.5(b)). This message is received by
the unknown rail vehicle. It switches to coordinator mode. Both transitions
are labeled with synchronizations that trigger the reconfigurations required for
convoy mode. The synchronization enterCoordinatorMode of the unknown vehicle
triggers the initial transitions of the adaptation statechart of Figure 6.6. The
synchronization enterMemberMode of the RailCab triggers the initial transition
of the port statechart of Figure 6.7.

default prepare

leave
coordinator

mode

/convoyProposal

/leaveConvoyProposal

newMember/
createPort!

startConvoy/
enterCoordinatorMode!

leaveConvoy/
leaveCoordinatorMode!

(a) Port statechart of the unknown rail vehicle

default prepare
convoyProposal/

/startConvoy
enterMemberMode!

member

mode

leaveConvoyProposal/
leave

/leaveConvoy
leaveMemberMode!

(b) Port statechart of the RailCab

Figure 6.5: Communication for building and leaving a convoy

Figure 6.6 shows the adaptation statechart of the multi-role Coordinator. The
initial transition is triggered by the synchronization enterCoordinatorMode of the
statechart of Figure 6.5(a). The transition triggers the side effect createCoordina-

torCtrl. This side effect (cf. Figure 6.4(a)) creates the components and commu-
nication links required to act as a coordinator and communicate to one convoy
member. If the synchronization createPort is received from the internal behav-
ior, the side effect addMember is executed. It creates another subport for the
coordinator to communicate with another convoy member. If the synchroniza-
tion leaveCoordinatorMode is received from the internal behavior, the side effect
destroyCoordinatorCtrl destroys all components and communication links required
for coordinating a convoy.

109

6 Analysis of Self-healing Operations at Runtime

coordinate addPort

enterCoordinatorMode?

next1!

{createCoordinatorCtrl()}

k:=1

createPort?

{addMember()}

k++

coordinateVehicle?

adaptation

leaveCoordinatorMode?
{destroyCoordinatorCtrl()}

Figure 6.6: Behavior of the multi-role Coordinator

The variable k stores the number of coordinator subports which have been
created and thus the number of vehicles which are connected to the coordinator.
The message next1! at the initial transition triggers the first subrole of the multi-
role. We implement synchronization between different subroles and between
subroles and the adaptation statechart by using integers. Synchronizations
have the form si with s being the synchronization’s name and i the index. Only
synchronizations with the same index synchronize.

Figure 6.7 shows the port statechart of the single role Member. The initial
transition is triggered by the synchronization enterMemberMode of the statechart
of Figure 6.5(b). The side effect createMemberCtrl (cf. Figure 6.4(b)) of the initial
transition creates the components and communication links required to act as
a convoy member. If the synchronization leaveMemberMode is received from the
internal behavior, the side effect destroyMemberCtrl destroys all components and
communication links required to act as a member in a convoy.

member

enterMemberMode?

{createMemberCtrl()}

leaveMemberMode?
{destroyMemberCtrl()}

member

Figure 6.7: Behavior of the single role Member

110

6.2 System Extensions

6.2 System Extensions

In order to execute AShOp at runtime and lock reconfiguration rules, each
subsystem needs to be extended by a safety manager that implements this
functionality.

AShOp is executed globally for the whole system. It is therefore only im-
plemented by the safety manager of one subsystem. This safety manager is
extended by a so-called analyzer that executes AShOp. Therefore, the analyzer
constructs the configuration of the whole system and performs the reachabil-
ity analysis before executing AShOp. The locking of reconfiguration rules has
to be performed in each subsystem, because only the subsystems can control
their behavior. Therefore, the safety manager of each subsystem contains a
reconfiguration controller that evaluates the data of the analyzer and locks re-
configuration rules if they lead to unsafe configurations.

The analyzer may be deployed on any subsystem. Leader election proto-
cols [TvS08] can be employed to determine at runtime which component will
execute AShOp. In systems where the computing hardware resources are lim-
ited, the analyzer may be deployed on an external unit as for example a desktop
computer.

Figure 6.8 shows an excerpt of the deployment diagram of the RailCab and the
unknown rail vehicle driving in a convoy. The software of the two vehicles has
been extended by a safety manager that is implemented by the component type
SafetyManager. The safety manager of each subsystem contains an instance of
the component type ReconfCtrl that implements the reconfiguration controller.
The safety manager of the RailCab contains an instance of the component type
Analyzer that implements the analyzer.

uk : Unknown

sm2 : SafetyManager

co : Coordination

rc : RailCab

mc1 : MemberCtrl

r2 : ReconfCtrl

sm1 : SafetyManager

r1 : ReconfCtrl

an : Analyzer

Figure 6.8: Subsystems with safety manager components

We maintain a separation of concerns by encapsulating the functions of AShOp
into separate components, i.e., we do not mix the system functions with the
analysis [MSKC04].

111

6 Analysis of Self-healing Operations at Runtime

6.2.1 Analyzer

For AShOp, all subsystems send their current configuration, reconfiguration
rules, and failure propagation models to the analyzer. The analyzer constructs
the system configuration and computes the reachable system configurations for a
fixed number of steps. It analyzes the self-healing operations of each subsystem
for each reachable system configuration and decides whether the configuration
is a safe configuration. Subsequently, the analyzer broadcasts the result to
the safety manager of the subsystem, which executes the reconfiguration rule
that leads to the analyzed configuration. After a subsystem has executed a
reconfiguration, it informs the reconfiguration controller about the executed
reconfiguration.

Construction of the System Configuration

For the construction of the system configuration, the analyzer needs to know,
which components are part of the system and how the components are con-
nected. Each time a subsystem wants to join the system, e.g., a vehicle intends
to enter the convoy, the analyzer needs to be informed about which connections
this component intends to establish to other components. Therefore, the ana-
lyzer assigns IDs to all subsystems. The connected subsystems exchange their
IDs and transmit the IDs of subsystems they are connected with the analyzer.
Using these IDs, the analyzer reconstructs which subsystems are connected and
thereby the configuration of the system.

A new subsystem, that intends to join the system, requests an ID from the
analyzer and from the subsystems, it wishes to connect with. This information is
transmitted to the analyzer that judges whether the resulting hazard occurrence
probability of the system is acceptable or not. The communication between a
new subsystem and the system is shown in Figure 6.9.

In this scenario, a third vehicle, namely nr:RailCab, wants to join the convoy of
the RailCab and the rail vehicle of the foreign manufacturer. Therefore, the
new vehicle first requests the ID of the vehicle it wants to establish a connection
with, namely uk:Unknown. Afterwards, nr:RailCab sends its request to entry to
rc:RailCab that acts as the analyzer. The analyzer either permits the connection
or rejects the request. If the connection is allowed, both vehicles connect and
nr:RailCab stores the ID of uk:Unknown for further reconfiguration requests.

Reachability Analysis

For computing the reachable system configurations, we perform a reachabil-
ity analysis on the reconfiguration behavior. As described in Section 2.2, the
reconfiguration behavior consists of real-time statecharts that execute recon-
figuration rules as side effects of their transitions. We compute the reachable
configurations using the reachability analysis of Suck et al. [SHS11]. Based on

112

6.2 System Extensions

nr : RailCab rc : RailCab

entryRequest(this.failureProp, IDs)

allow(ID) / reject

uk : Unknown

get(ID)

ID

connect(ID)

acknowledge

hazardAnalysis()

setConnection(ID)

Figure 6.9: Communication for a new vehicle connecting to the system

the current configuration and the set of reconfiguration rules, the reachability
analysis computes all possible successive configurations. For this, the reach-
ability analysis also considers the real-time statecharts of the system: Only
those reconfiguration rules are applied that are reachable as side effects from
the current real-time state. The result is a labeled transition system whose
states are configurations and whose transitions correspond to applications of
reconfiguration rules. The transitions are labeled with the names of the applied
reconfiguration rules.

Figure 6.10 shows the labeled transition system that represents the reachable
configurations when building a convoy. The labeled transition system consists
of four configurations, namely d1, d2, d3, and d4. We only show the parts of the
configurations that are important to illustrate the reachable configurations. In
the initial configuration d1, the RailCab has the same configuration as the speed
control subsystem (cf. Figure 3.1). The unknown vehicle has the configuration
of Figure 6.2. The component instances of the types Coordination and MemberC-

trl have not been created. Then, either uk:Unknown may create a component
instance mc:MemberCtrl and a port for the communication with rc:RailCab by ex-
ecuting the reconfiguration rule createMemberCtrl of Figure 6.4(a) or rc:RailCab

may create a component instance co:Coordination executing the reconfiguration
rule createCoordinatorCtrl of Figure 6.4(b). This leads to configurations d2 and
d3, respectively. Afterwards, the reconfiguration rule of the respective other
vehicle may be executed and establish the connection between uk:Unknown and

113

6 Analysis of Self-healing Operations at Runtime

rc:RailCab. Of course, there are far more configurations reachable in the system
indicated by the arrows leaving d4.

For improving the efficiency of the analysis, the reachability analysis uses a
depth limited search and identifies isomorphic configurations similar to
GROOVE [Ren07]. The depth limitation restricts the length of a path in the
labeled transition system to a predefined number of states. Thus, we only
investigate the next n configurations that are possible in the system. The iden-
tification of isomorphic configurations further reduces the labeled transition
system. If we reach a configuration, which is identical up to isomorphism to
a configuration that is already contained in the labeled transition system, we
identify both configurations and do not investigate the isomorphic configuration
a second time.

In our example in Figure 6.10, configuration d4 has been obtained by identifying
isomorphic configurations. Applying the reconfiguration rule createCoordinatorC-

trl to d2 leads to exactly the same configuration which is obtained by applying
createMemberCtrl to d3. If the reachability analysis did not identify isomorphic
configurations, the two configurations would be considered as two states, which
would lead to a larger labeled transition system.

114

6.2 System Extensions

d
4

d
3

d
2

d
1

rc
 :

R
ai

lC
ab

u
k

: U
n

kn
o

w
n

p
c

: P
o

sC
al

c
co

 :
C

o
o

rd
in

at
io

n
m

c
: M

em
b

er
C

tr
l

vc
 :

V
el

o
ci

ty
C

tr
l

..
.

..
.

...

...

rc
 :

R
ai

lC
ab

m
c

: M
em

b
er

C
tr

l
vc

 :
V

el
o

ci
ty

C
tr

l
..
.

...

u
k

: U
n

kn
o

w
n

rc
 :

R
ai

lC
ab

p
c

: P
o

sC
al

c
co

 :
C

o
o

rd
in

at
io

n
vc

 :
V

el
o

ci
ty

C
tr

l
..
.

..
.

...

...

u
k

: U
n

kn
o

w
n

p
c

: P
o

sC
al

c

...

rc
 :

R
ai

lC
ab vc

 :
V

el
o

ci
ty

C
tr

l
..
.

...

cr
ea

te
M

em
b

er
C

tr
l

cr
ea

te
C

o
o

rd
in

at
o

rC
tr

l

cr
ea

te
C

o
o

rd
in

at
o

rC
tr

l
cr

ea
te

M
em

b
er

C
tr

l

d
es

tr
o

yC
o

n
vo

y
..
.

cr
ea

te
R

ea
rP

o
rt

ad
d

M
em

b
er

..
.

u
k

: U
n

kn
o

w
n

p
c

: P
o

sC
al

c

...

..
.

Figure 6.10: Labeled transition system

115

6 Analysis of Self-healing Operations at Runtime

Figure 6.11 shows the configuration of both vehicles driving in a convoy. It has
been constructed by applying the reconfiguration rule of Figure 6.4(a) to the
configuration of the unknown vehicle of Figure 6.2 and and the reconfiguration
rule of Figure 6.4(b) to the configuration of the RailCab of Figure 3.1.

rc : RailCab

sa : Sanity

dg : DistGPS

ds : DSelect

sc : SpeedCtrl

strt : Strategy

ref : ReferenceData

pos : PosCalc

s1 : VSensor

gps : GPS o

o

s2 : VSensor o

o

ld : LinearDrive

i

dr : DSensor o

o

wlan : WLAN o

mc : MemberCtrl

uk : Unknown

pc2 : PosCalc

vc2 : SpeedCtrl

co : Coordination

lim : LIM

g2 : GPS o

i

Figure 6.11: Configuration of the two vehicles in convoy mode

Analysis

Figure 6.12 shows the failure propagation model of the two vehicles in convoy
mode. The outgoing failure fosc1.p4,v of the speed controller of the RailCab now
also depends on the value error eg2,v in the gps sensor of the foreign vehicle.

This affects the MCS of the hazard wrong speed of the RailCab. The MCS are
now {edr,v}, {es1,v, es2,v}, {egps,v}, {ewlan,v}, and {eg2,v}. As presented in Sec-
tion 5.4, the MCS {edr,v} is successfully removed by the self-healing operation
of Figure 3.2. All other MCS including the new MCS {edr,v} remain critical.

The threshold for the occurrence probability of the hazard wrong speed is 0.2
(cf. Section 3.4.3). Without the connection to the foreign vehicle, the self-
healing action reduced the occurrence probability of the hazard wrong speed to

116

6.2 System Extensions

rc : RailCab

sa : Sanity

s1 : VSensor

gps : GPS

dr : DSensor

s2 : VSensor

strt : Strategy

ld
: LinearDrive

wlan : WLAN

es1,v [5,6]fo
s1.p1,v

fi
sa.p1,v

fo
ref.p2,v

[1,2]

fo
s2.p1,v

[1,2]
es2,v

fo
gps.p1,v

fo
gps.p2,v

fi
pos.p1,v

[5,6] fi
pos.p2,v

fi
pos.p3,v

fo
pos.p4,v

[1,2]

[1,2]egps,v

[5,6]

fi
dg.p1,v

[5,6]
OR fi

dg.p2,v

fo
dg.p3,v

[5,6]

fi
ds.p1,v

[27,30] [34,40]

[0,0]

fi
ds.p2,v

fo
dr.p1,v

[5,6][1,2]

fo
wlan.p1,v fi

ref.p1,v
[5,6]

fo
ds.p3,vOR

[24,28]

[24,28] [0,0]

[1,2]

fo
ref.p3,v

[30,45]

[30,45]

OR

[25,55]

[18,45]

[43,45]

[0,0]

fi
sc.p1,v

[5,6]

fi
sc.p2,v

fi
sc.p3,v fo

sc.p4,v

OR

[20,25]

[17,22]

[14,19]
[3,5]

fi
ld.p1,v

[5,6]

&

[0,0]

fo
dr.p2,v

[1,2]

edr,v

ewlan,v

[5,6]

uk : Unknown

[5,6]

[43,45]

[5,6]

[23,30]

[5,6]

eg2,v
[1,2]

fo
g2.p1,v fi

pc2.p1,v

fo
pc2.p2,v

fi
sc2.p1,v

fo
sc2.p2,vfi

lim2.p1,v

[43,45] [27,30] [0,0]
[7,9]

[0,0]

[30,36]

[5,6]

fo
pc2.p3,v fi

co.p1,v
[5,6]

fo
co.p2,v fo

uk.p1,v

fi
rc.p1,v

fi
mc.p1,v

fo
mc.p2,v

fo
sc.p5,v

[12,17]

[5,6]
[5,6]

[5,6]

Figure 6.12: Failure propagation model of convoy mode

an acceptable value of 0.1981 (cf. Section 5.5). But, the self-healing operation
does not address the value error eg2,v in the GPS sensor of the foreign vehicle.
For the case that both vehicles drive in a convoy, the occurrence probability is

1− ((1− p(es1,v) · p(es2,v))(1− p(egps,v))(1− p(ewlan,v))(1− p(eg2,v)))
=1− ((1− 0.01)(1− 0.1)(1− 0.1)(1− 0.1))

=0.27829

The occurrence probability 0.27829 is greater than the threshold of 0.2. The
occurrence probability of the hazard wrong speed is thus not acceptable if both
vehicles connect to drive in a convoy. As a consequence, the reconfiguration
rules of Figure 6.4 need to be locked.

117

6 Analysis of Self-healing Operations at Runtime

6.2.2 Reconfiguration Controller

In order to stop reconfigurations from being executed, we must lock the transi-
tions that carry these reconfigurations as side effects. Therefore, we introduced
lockable transitions for real-time statecharts in [PT09]. These transitions are
only executed if the safety manager has approved the reconfiguration they are
executing as a side effect. Otherwise, the safety manager locks them.

Figure 6.13 shows the real-time statecharts of Figures 6.6 and 6.7 with lock-
able transitions. In both real-time statecharts, the initial transition is lockable.
This is illustrated by the «lockable» label at the initial transitions. The recon-
figurations to create coordinator and member control components for convoy
communication may be locked because of this attribute. The reconfigurations,
which are needed to terminate the convoy, are not lockable.

coordinate addPort

enterCoordinatorMode?

next1!

{createCoordinatorCtrl()}

k:=1

<<lockable>>

createPort?

{addMember()}

k++

coordinateVehicle?

adaptation

leaveCoordinatorMode?
{destroyCoordinatorCtrl()}

(a) Adaptation statechart

member

enterMemberMode?

{createMemberCtrl()}

<<lockable>>

leaveMemberMode?
{destroyMemberCtrl()}

member

(b) Member role

Figure 6.13: Real-time statecharts with lockable transitions

The initial transitions of the port statechart of the RailCab (cf. Figure 6.13(b))
is locked, because of the risk that was computed above. The initial transition of
the adaptation statechart of the unknown vehicle (cf. Figure 6.13(b)) is locked,
as well, to keep the system consistent.

Required Reconfigurations

In some cases, locking transitions is not acceptable. Self-healing operations, for
example, are required to be executed once a failure has been detected. Other-
wise, the safety requirements of the system may be violated. Another example is
the synchronization of components. Components that collaborate need to have
consistent states. For example, two RailCabs driving in convoy need to provide
all communication functionality that is required for convoy drive. Therefore,
the subsequent operations must be executed once the vehicles have agreed on
building a convoy. This means, generally speaking, that all reconfigurations
that are part of a series of operations are required to be executed.

118

6.2 System Extensions

Consequently, not all transitions in a real-time statechart that have a recon-
figuration rule attached can be lockable transitions. Therefore, we introduce
required transitions. Required transitions are not allowed to be locked. They
must always be executed once they have been activated.

However, we still need to guarantee that the reconfigurations associated to
required transitions are safe with respect to the occurrence probabilities of haz-
ards. Therefore, we partition the paths in real-time statecharts into lockable
partitions. A lockable partition is a subgraph of the reachable behavior of the
real-time statechart with a tree-like structure. It has one start state (root)
whose only outgoing transition is the the only lockable transition of the par-
tition. A lock ends at the state or states where the next lockable transitions
originate. We analyze all configurations that are part of a lockable partition.
If an unsafe configuration is reachable, the whole partition is locked by locking
the lockable transition.

Figure 6.14 shows an exemplary path in a real-time statechart. Lockable tran-
sitions are represented by bold lines that are labeled with the stereo type «lock-
able». Transition with required reconfigurations are drawn as thin lines.

We assume that the configuration in State5 is an unsafe configuration and we
therefore need to lock the transition from State4 to State5. However, this tran-
sition cannot be locked, because the associated reconfiguration is required once
we enter State4. The last partition which is lockable on the path from State5

back to the initial state is the transition from State2 to State3. Thus, in order to
lock the transition from State4 to State5, we already need to lock the transition
from State2 to State3.

lockable partition

State1

State2 State3 State5

<<lockable>> <<lockable>>

<<lockable>>
State4

State6

Figure 6.14: Required reconfigurations and lockable transitions

When a required transition is executed, the reconfigured subsystem informs the
analyzer about the executed reconfiguration. It is possible that the analyzer
processes the update later than the reconfiguration is executed and does not
know about the current system state. However, this is no threat to safety as
we already excluded unsafe reconfigurations from the last lockable transition
preceding the required transitions.

119

6 Analysis of Self-healing Operations at Runtime

6.3 Risk Analysis

Industrial standards for the development of mechatronic systems consider risks
instead of pure hazard probabilities as we have described in Section 2.4.3. The
risk is the combination of the occurrence probability of a hazard and the con-
sequences that would result from an accident, namely severity, which would
be caused by the hazard. This allows for classifying hazards by their critical-
ity [Lev95]. However, the main part of the computation of risk is the com-
putation of the occurrence probability of the hazard. We consequently focus
on computing hazard occurrence probabilities for the analysis of self-healing
operations at design time.

However, the severity of a hazard may change at runtime. For example, the
severity of a collision of two RailCabs may change depending on their load. If
both RailCabs are empty, the damage is relatively low compared to the case
where one vehicle has loaded dangerous cargo and the other is full of passengers.
Consequently, we also consider risk in our runtime analysis as we have published
in [PT09, PHST12].

Using the classification of the industrial standard IEC 61508 [Com98] for our
example, we assume that the occurrence probability of the hazard wrong speed

is classified Occasional (cf. Table 2.1). The severity of a collision of two empty
RailCabs is classified Marginal and the collision of a RailCab with dangerous
cargo and a RailCab which is full of passengers is classified Catastrophic. In
the first case, the risk class is III and I in the second case. If we assume
an acceptable risk class of III, the convoy would be permitted for the empty
RailCabs. However, the RailCabs with dangerous cargo and the passengers
would have to keep long distances between each other.

6.4 Timing Concerns

A timely completion of reconfigurations is of particular importance when exe-
cuting self-healing operations. If a self-healing operation is completed too late,
it may happen that a failure could not be stopped from propagating to the
hazard. Consequently, the number of minimal cut sets for the hazard would
increase, as would the occurrence probability of the hazard. The increase of the
occurrence probability might lead to a too high hazard probability.

To solve this problem, the duration of the runtime analysis must be analyzed.
This can for example be achieved by a worst case execution time (WCET)
analysis [WEE+08]. A WCET analysis calculates the maximum execution time
of a program. The execution time of the runtime analysis does not only depend
on the code of the analysis itself but also on the analyzed model. In order to
guarantee a WCET, the deployment diagram, reconfiguration rules and failure
propagation must be limited in their size and degree of branching.

120

6.5 Summary

To improve the execution time of the runtime analysis, of course, configurations
that have already been analyzed do not need to be analyzed again. This also
holds for configurations that have already been analyzed at design time. The
drawback is that more memory is needed to store the results.

With the help of the WCET of the runtime analysis, the developer decides,
which reconfiguration are lockable and which are required. For example, for
reconfigurations that are executed very quickly in succession, only the first
reconfiguration should be lockable. Of course, self-healing operations are always
required.

The runtime analysis causes a significant base load. As resources in embedded
systems are usually limited, we suggest to execute the analysis on an external
computer that is not part of the embedded computing hardware. In large
systems (in terms of their physical size) like the RailCab, the analysis may be
executed on an additional desktop computer that is integrated in the RailCab.
In smaller systems, as for example a miniature robot, the desktop computer
may run near the area where the robot operates.

The time needed for runtime analysis does not only depend on the actual analy-
sis described above. In order to analyze the failure propagation between several
subsystems, the models of the subsystems need to be exchanged as described in
Section 6.2.1. The model exchange is particularly expensive when a subsystem
intends to join the system. In this case, the complete deployment diagram and
failure propagation models need to be transmitted to the analyzer at once. In
this case, the connection of the new subsystem may be delayed. If the new
subsystem must connect very quickly, we may assume that the new subsystem
is already known and no runtime analysis needs to be performed. We assume
that it is improbable that unknown subsystems need to connect to the system
urgently.

The transmission time of the models depends on several parameters. Of course,
the size of the transmitted data should be as small as possible. Therefore, the
transmitted models should be as abstract as possible. They should only contain
information that are relevant for hazard analysis. We address this requirement
by using TFPGs instead of complete behavior models. TFPGs only contain
information of the behavior of errors and failures instead of the whole system
behavior. Further, the models must be encoded in an efficient way.

6.5 Summary

In this chapter, we presented a framework that allows for executing AShOp
at runtime. This is necessary, because there may be configurations that are
constructed at runtime and were unknown at design time. Consequently, the
developer could not analyze at design time, which effect self-healing operations
have on the failure propagations of these configurations.

121

6 Analysis of Self-healing Operations at Runtime

Our runtime analysis first computes reachable configurations and then applies
AShOp. Configurations, in which hazards occur with unacceptable probabili-
ties, are locked by locking the reconfiguration rules that would result in these
configurations. Finally, no such configurations are reachable and the developer
can still guarantee that all configuration, which are constructed at runtime,
fulfill the safety requirements.

122

7 Tool Support

The approaches that have been presented in Chapters 4-6 have been imple-
mented as plugins for the Fujaba Real-time Tool Suite [PTH+10]. Fujaba is
an Open Source UML CASE tool project, which was kicked off by the soft-
ware engineering group at the University of Paderborn in 1997. Fujaba was
redesigned and became the Fujaba Tool Suite in 2002. The plug-in architecture
enables developers to add functionality easily while retaining full control over
their contributions. All plugins have been ported to GMF [gmf12] since 2010.

One of the tool suites of Fujaba is the Fujaba Real-time Tool Suite. It supports
the modeling and analysis of software in mechatronic systems with Mecha-
tronicUML. Therefore, editors for the diagrams of MechatronicUML were
implemented. Further, the tool suite provides a tight integration with software
tools used by control engineers like MATLAB.

We now give a tour of the plugins that implement the approaches of this thesis.
The tour explains the necessary steps that the developer has to perform in order
to apply AShOp at design time and at runtime.

7.1 Tour of the Tool

We illustrate the usage of our implementation using the example of the speed
control subsystem of the RailCab, which was used in the previous chapters.

7.1.1 AShOp

The application of AShOp requires the following Fujaba diagrams:

• Mandatory

– An atomic component diagram with the atomic component types

– A coordination pattern diagram that specifies the coordination pat-
terns

– A real-time statechart diagram for each atomic component type with
a substatechart for each port and the synchronization statechart

– A component instance diagram which specifies a configuration

– TFPGs for the hardware nodes in the deployment diagram

123

7 Tool Support

– An error type diagram

– A failure type diagram

• Optional

– A structured component diagram with structured component types

We did not implement a deployment diagram editor in Fujaba. This has two
reasons. First, hardware nodes are only used to model the occurrence of errors
in hardware entities [BBD+12]. This functionality can be implemented for soft-
ware component instances, as well. Second, during the port of Fujaba to GMF,
all editors had to be ported. Since hardware nodes are only used for analyzing
hazards, we spent the time implementing other editors like component diagram
editors or real-time statechart editors. They are more important for modeling
software than a deployment diagram editor. Thus in Fujaba, hardware nodes
are represented by component instances and errors are injected into component
instances.

124

7.1 Tour of the Tool

TFPG Generation

Before the developer can apply AShOp, he needs to generate TFPGs for the
component types. The input model for the TFPG generation are the real-time
statecharts of component types (cf. Chapter 4).

We implemented the generation of TFPGs for service and timing failures (cf.
Section 4.2.1). The tool for slicing [ACH+12] which is needed to identify value
failures (cf. Section 4.2.2) has not yet been integrated.

Our plugin supports the TFPG generation for atomic component types and
not for structured component types. TFPGs of structured components are as-
sembled from the TFPGs of their embedded atomic components automatically
during later steps of AShOp. The generation of the TFPGs of an atomic com-
ponent type is executed from the atomic component diagram editor by right-
clicking the component type and selecting the item “generate TFPG” from the
sub-menu of the item “TFPG generation” (cf. Figure 7.1).

Figure 7.1: Generating TFPGs from real-time statecharts

125

7 Tool Support

Figure 7.2 shows the TFPG which has been generated for the outgoing service
failure of port posOut of the component type PosCalc. The outgoing service
failure is caused by each service or timing failure at the ports v1In, v2In, and
modeIn. Failures at the port GPSIn do not affect the outgoing service failure.

Figure 7.2: TFPG for the outgoing service failure of the component type PosCalc

at port posOut

126

7.1 Tour of the Tool

Specifying Hazards and Probabilities

After the TFPGs have been generated, the developer needs to specify occur-
rence probabilities of errors and define hazards. Therefore, the perspective
“Hazard Analysis” has been implemented during the student’s project “Auto-
motive Software Engineering” [BBD+07]. This perspective originally provided
functionality to specify which errors and failures may occur in components, the
failure propagation inside components, the occurrence probabilities of errors
in components, and to define hazards. The perspective has been extended in
the student’s project “SafeBots” [AAB+11] and “SafeBots II” [AGL+12] with
functionality to support runtime analyses and AShOp.

Figure 7.3 shows the view “Defect Specification”. It is used to specify which
errors and failures occur in a component if TFPGs need to be constructed
manually. When TFPGs have been generated, the view is used to modify the
occurrence probabilities of errors. Figure 7.3 shows the errors of the component
GPS. The errors, which have been generated for this component, are displayed in
the text box on the right. Initially, the occurrence probabilities of the generated
errors are set to zero. This value is modified by selecting an error in the right
text box, entering the new value in the text box in the center, and then pressing
the button “modify”. In Figure 7.3, the occurrence probability of the service
error has already been set to 0.01. The early timing error is selected and will
also be set to 0.01.

Figure 7.3: Specifying error probabilities

The last action before executing AShOp is the specification of the hazard. This
is done in the “Hazard Specification” view as shown in Figure 7.4. First, a
component instance diagram is opened. To activate the editing of the hazard
for the component instance diagram, the user clicks into a white space in the
component instance diagram.

The left text box of the“Hazard Specification”view shows the specified hazards,
the center text box is used to enter the Boolean formula, and the right text box

127

7 Tool Support

Figure 7.4: Specifying hazards

128

7.1 Tour of the Tool

shows which failures are specified for the component instances in the component
instance diagram. To specify a hazard, the name of the hazard is entered in
the small text box on the left bottom. Then, the button “Create New” above
this text box is pressed. The name of the hazard will appear in the text box
in the center. The Boolean formula, which specifies the hazard, is then entered
in the center text box using either the operator buttons at the bottom and the
failures in the right text box or by typing the formula. The formula is saved by
pressing the “Save” button below the center text box. Afterwards, the formula
will appear in the left text box. The formula may be modified by pressing the
button“Edit”or deleted by pressing the button“Delete” below the left text box.

129

7 Tool Support

Manual Specification of TFPGs

In some cases, TFPGs cannot be generated. Hardware nodes, for example, do
not have a state-based behavior by definition (cf. Section 2.2.1). In order to
specify a failure propagation for these hardware nodes, the developer may add
a state-based behavior or model the TFPG directly. Since hardware nodes are
modeled by software component in Fujaba, TFPGs can be generated. However,
if no behavior is specified for hardware nodes, it is easier to simply specify a
TFPG because hardware nodes often have a simple failure propagation. Mostly,
errors are simply connected to failures without logical operators.

Before the developer can model a TFPG, the classes of errors and failures
(cf. Section 2.4.2) which may occur in the system and their hierarchy must be
specified. Therefore, the error type diagram editor and the failure type diagram
editor are used. Figure 7.5 shows the failure type diagram editor with a failure
type hierarchy. This editor has first been implemented in the course of the
project group ASE [BBD+07] and has been implemented in GMF during the
port to GMF in 2010.

Figure 7.5: Specifying failure types

130

7.1 Tour of the Tool

Afterwards, the error and failure types are added to component types and port
types. This is done in the atomic component editor using the view “Defect
Specification”. Figure 7.6 shows an atomic component diagram editor and the
“Defect Specification” view. A failure type is added to a port by selecting the
port in the atomic component editor and adding a failure type in the Defect
Specification view of the Hazard Analysis view. The example in Figure 7.6
shows the atomic component type GPS. Port Out1 is selected and the failure
type early timing failure is added to this port. Occurrence probabilities of errors
are specified as described in the text of Figure 7.3.

Figure 7.6: Specifying failures at ports

131

7 Tool Support

When all error and failure types have been added to a component type, the
TFPGs of this component type can be modeled in the TFPG editor. For this,
the view “TFPG Specification” of the Hazard Analysis perspective is opened
and a port with outgoing failures is selected as shown in Figure 7.7. Then the
outgoing failure that will become the root node of the new TFPG is selected
in the drop down menu in the “TFPG Specification” view. In Figure 7.7, value
failure is chosen. To create the TFPG, the button “Specify TFPG” is pressed
and the TFPG editor opens.

Figure 7.7: Creating a TFPG for port type p3 of component type DistGPS

132

7.1 Tour of the Tool

Figure 7.8 shows the TFPG editor with the TFPG of an outgoing value failure
at port Out1 of the component type DistGPS. This editor has been implemented
in the course a of the student’s project “SafeBots II” [AGL+12].

Figure 7.8: Modeling the incoming failures of a TFPG

When the editor is opened, only the root node is present. It is filled with gray
color. In Figure 7.8, the root node is the outgoing value failure of port Out1. It is
created from the failure of the port which was selected in the atomic component
editor.

The TFPG editor uses the palette at the right and the view “TFPG Specifi-
cation” to edit the created TFPG. Nodes which represent errors and incoming
failures are created using the tools “Error Node” and “Failure Node” from the
palette on the right. Error and failure nodes are associated to concrete errors
and failures using the drop down menu in the “TFPG Specification” view. In
our example of Figure 7.8, the value error of the component is selected.

Operator nodes are created by the tool “Operator Node” from the palette. Ini-
tially, the operator is set to &. The value may by changed to≥1 in the properties
of the operator node.

Edges are created by the “Interval Edge” tool. The source node is selected
an the edge is drawn by dragging the edge to its target node. Initially, the
propagation time interval of the edge is set to [0, 0]. It is modified by selecting
the interval and entering the new values.

133

7 Tool Support

AShOp

AShOp may be applied when the TFPGs have been created, the occurrence
probabilities of the errors have been specified, and the hazards have been de-
fined. This part of the tool has been implemented in the course of the student’s
project “SafeBots II” [AGL+12].

AShOp is started from the component instance diagram editor. Figure 7.9 shows
the component instance diagram editor with a component instance diagram that
represents the configuration of the speed control subsystem (cf. Figure 3.1) that
has been use throughout this thesis. The user right-clicks on a white space in the
diagram and a menu pops up. The sub-menu “Analyze Self-healing Operation”
under menu item “HazardAnalysis” will open the window of Figure 7.10 from
which the analysis is triggered.

Figure 7.9: Executing AShOp

134

7.1 Tour of the Tool

Figure 7.10 shows the window from which AShOp is triggered. Initially, the
text box in the center is empty. AShOp is triggered by pressing one of the two
lower buttons. If “Analyze” is pressed, the analysis will operate on the affected
part as described in Section 5.3. This is the common use case. If “Analyze full
graph” is pressed, the analysis will use the whole configuration. This button
has been implemented for evaluation (cf. Section 7.3.3).

Figure 7.10: Result window

When one of the buttons has been pressed, a dialog opens where the self-healing
operation is selected. Then, the analysis starts.

When the analysis is finished, the window lists the minimal cut sets before
and after the application of the self-healing operation and the according hazard
occurrence probabilities. Initially, the hazard wrong speed has the minimal cut
sets {es1,v, es2,v}, {egps,v}, {edr,v}, and {ewlan}. After the self-healing, the MCS
{edr,v} has been removed.

135

7 Tool Support

Below the minimal cut sets, the occurrence probability of the hazard is dis-
played. Before the application of the self-healing operation, the probability of
the hazard is 0.27829. After the self-healing operation, the probability of the
hazard has been reduced to 0.1981.

7.1.2 Runtime Analysis

We implemented a runtime analysis that prevents unsafe configurations as de-
scribed in Chapter 6. It computes the hazard occurrence probabilities of all
reachable configurations and locks reconfigurations that exceed the acceptable
hazard occurrence probabilities. However, this analysis does not yet take self-
healing operations into account. Still, the same framework that computes reach-
able configurations (cf. Section 6.2.1) and controls reconfigurations (cf. Sec-
tion 6.2.2) may be used to analyze self-healing operations at runtime. Only
the analyzer (cf. Section 6.2.1) needs to be extended by the functionality to
execute AShOp. This part of our implementation has been implemented in two
student’s projects [Nig09, AAB+11].

The runtime analysis needs to perform three different tasks:

1. Compute the reachable configurations

2. Analyze the reachable configurations

3. Lock unsafe configurations

The reachability analysis has already been implemented as a plugin for the
Fujaba Real-time Tool Suite. The reachability analysis and the hazard analysis
of Giese et al. [GT06] have been integrated into a framework during the student’s
project SafeBots [AAB+11] to allow for the execution at runtime.

The configurations, which are analyzed by the runtime analysis, are created at
runtime. This means, hazards cannot be specified for configurations any more.
Therefore, the hazard specification has been altered such that hazards may be
specified for component types [AAB+11]. Figure 7.11 shows the view “Hazard
Type Specification” for the specification of hazards associated to failures of com-
ponent types. It has been adapted from the “Hazard Specification” view. When
a component type has been selected, the outgoing failures of the component’s
port types become visible in the right text box. First, the name of the hazard
is specified in the text box labeled with “Name:”. By clicking the “⇔” button,
the hazard and the equivalence operator become visible in the center text box.
In the example in Figure 7.11 this is “wrong speed ⇔”. Then, failures from
the right text box may be added by selecting them and clicking “Add Literal”.
Operators and brackets are added by clicking the buttons below the center text
box. The formula is saved by clicking the “Save” button below the center text
box.

In order to lock reconfigurations at runtime, transitions that are labeled with
reconfigurations must be lockable (cf. Section 6.2.2). The lockable attribute

136

7.1 Tour of the Tool

Figure 7.11: Specifying hazard types

of a transition is set in the “Properties” view as shown in Figure 7.12. The
transition is selected and the attribute “Lockable” is set to true. Initially, the
attribute is set to false which means that the transition is required.

Figure 7.12: Specifying lockable transitions

137

7 Tool Support

Risk Analysis

In order to analyze the risk, we need to provide functionality to specify the
required parameters, like the severity of a hazard (cf. Section 2.4.3). The risk
analysis plugin provides a user interface for the specification of these parameters.
The user interface has been implemented in the “Risk Analysis” perspective.
The parameters, which are specified using the risk analysis perspective, are the
frequency classes, the severity classes, the risk matrix, hazards for component
types, and severities for hazards. In the following, we present the views of
the risk analysis perspective. All views of this perspective are used with the
atomic component diagram editor. In order to edit the widgets of the views, a
component type needs to be selected in the atomic component diagram editor.

Figure 7.13 shows the view “Frequency Class” for the specification of frequency
classes. The name of the frequency class is specified in the leftmost text box.
The next two text boxes take the lower and upper bounds of the frequency class.
The “Create” button saves the frequency class which then becomes visible in
the rightmost text box.

Figure 7.13: Specifying frequency classes

Figure 7.14 shows the view “Severity Class” for the specification of the severity
classes. The leftmost text box takes the name of the severity class. The integer
values of the severity class are specified in the next two text boxes. Pressing
the “Create” button saves the severity class in the Fujaba model file. Then, the
severity class becomes visible in the rightmost text box.

Figure 7.15 shows the view “Risk Classification” with which the relations be-
tween the frequency and severity classes may be specified in a risk classification
matrix. Here, a standard may be loaded from an XML file. The syntax of the
XML specification has been defined in [AAB+11]. The risk classes may also be
added manually by filling out the cells in the table.

Figure 7.16 shows the “Severity Association Specification” view for the associa-
tion of hazards and severity classes. The hazard is selected in the leftmost text
box. Then, a severity class is chosen from the drop-down menu. Pressing the

138

7.1 Tour of the Tool

Figure 7.14: Specifying severity classes

Figure 7.15: Specifying a risk matrix

“Create” button saves the association in the Fujaba model file. In the exam-
ple of Figure 7.16 the hazard wrongSpeed is selected. It is associated with the
severity “Marginal”, because initially there are no passengers in the RailCab.

Figure 7.16: Specifying hazard severities

139

7 Tool Support

7.1.3 Simulation

The runtime analysis was executed in a simulation and on miniature robots
in the course of the student’s project “SafeBots” [AAB+11]. For this, we used
Player/Stage [VGc12]. Player/Stage consists of the two parts Player and Stage.
Stage is a simulation platform. Player is a network server to control robots. It
acts as a hardware abstraction layer for robots by providing interfaces to the
robot’s sensors and actuators via the IP network. The Player library provides a
set of interfaces from software to robotic hardware. Code which is linked against
the Player library may be used in the simulation with Stage and (without
modification) on a robot which supports Player.

Figure 7.18 shows an example of a simulation in Stage. There are two vehicles
that drive in a convoy. The vehicles are represented by gray squares. The red
triangles in the square indicate the head of the vehicle. The bold lines represent
solid walls in the environment.

Figure 7.17: Two BeBots driving in a convoy in Stage

A code generation that generates C++ source code from MechatronicUML
models was implemented during the student’s project “SafeBots I” [AAB+11].
The source code in particular uses the Player library.

The state of each vehicle in the simulation is displayed in the“Status View”view.
It synchronizes with the executed system via the Player server. Figure 7.18
shows the status view of the simulation of Figure 7.17. Each line in the status
view displays the state of one subsystem. In this example, each vehicle is a
subsystem. The first column shows the ID of the subsystem. The second column
displays the active state in the real-time statechart. The third column shows
which reconfiguration rules have been locked. In the example, the subsystem
localhost:6665 is in state Initial and the reconfiguration rule goMember() has been
locked.

140

7.2 Software Architecture

Figure 7.18: Status window of the simulation

7.2 Software Architecture

Figure 7.19 shows the architecture of our plugin. Plugins that already existed
before the implementation of AShOp are Core, SDMMetamodel, StoryDiagram-

Interpreter, SDMReachabilityAnalysis, StoryChecking, MechatronicUMLMetamodel, and
HazardAnalysis. These plugins are shown in gray. Plugins that have been imple-
mented in the course of this thesis are THA, HazardAnalysisMetamodel, TFPGMeta-

model, TFPGGeneration, RiskAnalysis, and RiskAnalysisMetamodel. These plugins are
shown in black.

Core

MechatronicUML
Metamodel

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

RiskAnalysis

RiskAnalysis
Metamodel

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

HazardAnalysis

THA
TFPG

Metamodel

HazardAnalysis
Metamodel

SDMMetamodel

StoryDiagram
Interpreter

SDMReachability
Analysis

TFPG
Generation

Storychecking

Figure 7.19: Architecture of the AShOp plugin

Core contains the core functionality, e.g., the extension mechanism that allows
to integrate plugins. The MechatronicUMLMetamodel plugin contains all classes
needed to construct MechatronicUML-models. The SDMMetamodel plugin
provides the classes to construct story diagrams. The HazardAnalysisMetamodel

plugin contains the elements for modeling failure propagation formulas of the
HazardAnalysis plugin which have been redesigned for GMF. The failure prop-
agation formulas are now implemented conforming with expressions from the
SDMMetamodel plugin. The TFPGMetamodel provides the data structure for stor-
ing TFPGs (cf. Section 3.4).

141

7 Tool Support

Figure 7.20 shows the TFPG meta-model. The main class is the class TFPG.
The meta-model specifies TFPGs according to Def. 3.4.2. A TFPG has an
arbitrary number of Node and Edge objects. Node objects may be objects of
the subclasses ErrorNode, FailureNode, or OperatorNode. The attribute operation of
the class OperatorNode may either be AND or OR. Objects of the type Edge are
always of the subtype IntervalEdge. The attributes lowerBound and upperBound of
IntervalEdge specify the lower and upper bound of a propagation time interval.

Figure 7.20: TFPG meta-model [AGL+12]

Generation of TFPGs

The TFPGGeneration plugin is used to generate TFPGs from real-time state-
charts. It uses the MechatronicUML metamodel plugin to parse real-time state-
charts. This plugin provides the data structures for real-time statecharts which
are the source models of the generation of TFPGs (cf. Chapter 4). The Sto-

rychecking plugin is used to compute the reachable behavior of component types
(cf. Section 4.2.1). The HazardAnalysis meta-model is used to create error and
failure variables.

AShOp

The main algorithm of AShOp is implemented in the THA plugin. The acronym
THA stems from the initial name of AShOp which was “timed hazard analysis”.
The THA plugin uses the TFPGMetamodel plugin to store TFPGs. The Hazard-

Analysis plugin implements the hazard analysis of Giese et al. [GT06]. It is used

142

7.3 Evaluation

to compute the minimal cut sets and hazard occurrence probabilities which are
needed to analyze the criticality of MCS after the application of the self-healing
operation (cf. Section 5.4) and the success of the self-healing operation (cf.
Section 5.5). The SDMReachabilityAnalysis plugin provides a reachability analysis
on component instance configurations and story diagrams of Heinzemann et
al. [HSE10]. This reachability analysis is used to determine the reconfiguration
delay.

We use the external tool “Roméo” [LRST09] to compute the locations of errors
and failures (cf. Section 5.3). “Roméo” is integrated in the THA plugin by
adapters and provides a reachability analysis for TPNs. The transformation
from TFPG to TPN is also implemented in the THA plugin.

The StoryDiagramInterpreter plugin evaluates story diagrams on component in-
stance configurations. It is used to apply the self-healing operation to the
analyzed configuration (cf. Section 5.3). We use an altered version of the Sto-

ryDiagramInterpreter plugin to determine the matching of the story diagram and
compute the affected subgraph (cf. Section 5.3).

Runtime Analysis

The main plugin of the runtime analysis is the RiskAnalysis plugin. It executes
the risk analysis at runtime. It provides the algorithms for the evaluation of
the reachable component instance configurations of the system, for the compu-
tation of the risk class, and for the decision about allowing or locking a recon-
figuration. The SDMReachabilityAnalysis plugin is used to compute the reachable
configurations. The HazardAnalysis plugin is used to compute hazard occurrence
probabilities of configurations. The hazard occurrence probabilities are used
by the RiskAnalysis plugin to compute the risk. The SDMMetamodel and Mecha-

tronicUMLMetamodel plugins are needed to store real-time statecharts and story
diagrams.

The RiskAnalysisMetamodel plugin provides data structures to specify the param-
eters specific to risk analysis, e.g., severity class or risk classification matrix.
It uses the HazardAnalysisMetamodel plugin to associate hazards with severity
classes.

7.3 Evaluation

We evaluated our implementation of AShOp at design time by conducting three
case studies. First, we applied AShOp to the RailCab using the example of the
speed control subsystem, which we introduced in Section sec:tha-example. This
case study is subject of Section 7.3.1. The other two case studies analyzed the
scalability of the generation of TFPGs (cf. Section 7.3.2) and the analysis
of self-healing operations (cf. Section 7.3.3) using toy examples. The goal of
these two case studies was to find a limit in the size of the models to which

143

7 Tool Support

the approaches are applicable and the evaluation of the execution time of the
TFPG generation and AShOp with respect to the size of the model.

All case studies were executed on a SuSE 11.4 machine with 72 GB RAM and 8
64-bit CPUs with 2.2 GHz clock and 8 MB cache memory. The implementation
uses only one core of the CPU.

7.3.1 RailCab

We applied AShOp to the speed control subsystem that we introduced in Fig-
ure 3.1 and the self-healing operation of Figure 3.2. The execution took 20
seconds.

The TFPGs of the hardware nodes VSensor, GPS, DSensor, WLAN, and LinearDrive

have been constructed manually. The TFPGs of the component types PosCalc,
DistGPS, DSelect, ReferenceData, and DistCtrl have been generated. The generation
of the TFPG for the component type DSelect was the fastest and took 0.25
seconds.

7.3.2 Identification of Relations Between Incoming and Outgoing
Timing and Service Failures

The identification of relations between incoming and outgoing timing and ser-
vice failures is conducted separately for each path in the zone graph that rep-
resents the reachable behavior of a component type (cf. Section 4.2.1). We
consequently evaluate the scalability of this identification for a real-time state-
chart that consists of a single path only. For the generation of TFPGs from
multiple reachable paths in a real-time statechart, the execution times of the
TFPG generation for the different pathes are summed up.

The input for the experiment is a real-time statechart that consists of one path
only. The last transition has an output message (output transition). All other
transitions have input messages (input transitions). The time constraints only
need to fulfill the requirement that no deadlock is created. The experiment
starts with a path that has one input transition and one output transition.
For each step of the evaluation, one input transition is added to the path. We
omit silent transition from the input model, because they do not affect the
reachability analysis significantly. The reason is that no context automata are
generated for silent transitions, which would significantly enlarge the reachable
behavior.

Figure 7.21 shows the result of our experiment. The curve indicates that the
TFPG generation is of exponential complexity. The largest model, which could
be used, was a path with seven input transitions. A path with eight input
transitions resulted in a memory overflow.

During the evaluation, we noticed that the reachability analysis is the most
important factor of the TFPG generation. 95% of the generation is spent for

144

7.3 Evaluation

0

20

40

60

80

100

120

1 2 3 4 5 6 7

ti
m

e
 in

 s
e

c.

number of input transitions

Figure 7.21: Runtime of TFPG generation depending on the number of incom-
ing messages

the computation of the reachable behavior. Only 5% is spent for generating
contexts, evaluating the reachable behaviors, computing propagation times, and
constructing TFPGs. We consequently propose to improve the runtime of the
reachability analysis to improve the runtime of the TFPG generation.

7.3.3 AShOp

We evaluated AShOp using two toy example TFPGs with different structures.
One TFPG has a nearly linear structure while the other is a binary tree. With
these two examples, we aimed to investigate how the branching degree of the
TFPG affects the applicability and the runtime of the analysis. This was
achieved by applying AShOp repeatedly to models of increasing sizes.

Further, we evaluated how the execution time is affected by the reduction of
the reachability analysis to the part of the TFPG which is affected by the self-
healing operation as described in Section 5.3. We therefore applied AShOp to
the same TFPG twice: Once using the affected part and once using the full
graph.

We omitted the computation of the critical time, which has been described in
Section 5.2.

Linear Structure

Our linear TFPGs have a structure as illustrated in Figure 7.22. The TFPG
consists of the two paths e1, . . . , fj3 and e2, . . . , fj3. The reconfiguration deletes
failure variables fn and fj1 and the edges between them (highlighted in red).
Thus, the affected part is built by the path e1, . . . , fj1. For evaluation, we

145

7 Tool Support

extended the length of both paths equally by one component instance per eval-
uation step. We repeated the experiment with different numbers of paths in
the affected part as sketched in Figure 7.22.

swm+1 :
Software

hw2 :
Hardware

fn+1
[1,1]

e2 fn+2
[1,1] [1,1]

fn+3

sw2m :
Software

[1,1]
f2n-1

[1,1]
f2n

[1,1]
...

jsw : JSW Affected Part

fj1
[1,1]

fj3

fj2

OR[1,1]
[1,1]

[1,1]

swm :
Software

[1,1]
fn

sw1 :
Software

hw1 :
Hardware

f1
[1,1]

e1
f2

[1,1] [1,1]
f3

[1,1][1,1]
... fn-1

[1,1]

Figure 7.22: TFPG with sequential structure

Figure 7.23 shows a diagram representing the runtimes for configurations with
two paths depending on the length of the paths: one affected and one non-
affected path. The blue line shows the runtimes of the analysis on the affected
subgraph. The red line shows the runtimes for the reachability analysis when
applied to the whole system. Table 7.1 shows the numerical results of this
experiment. The curve shapes indicate exponential complexity in both cases.
However, the blue curve is significantly flatter than the red curve. For exam-
ple, it took 35.3 hours to analyze a path of length 70 on the full graph and
only 2.3 hours using the affected graph. Thus, the computation of the reach-
ability analysis on the affected part increases the feasibility of the approach
significantly.

affected (ms) non-affected (ms) affected (s) non-affected (s)

0 3249 6989 3,249 6,989

10 14226 54918 14,226 54,918

20 42785 230597 42,785 230,597

30 125344 667827 125,344 667,827

40 254585 1543021 254,585 1543,021

50 387396 3301724 387,396 3301,724

60 566993 6702498 566,993 6702,498

70 828591 12687378 828,591 12687,378

80 1269779 1269,779

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

ti
m

e
 in

 s
e

c.

number of appended components per path

Affected Subgraph full graphaffected subgraph

Figure 7.23: Affected vs. full graph
146

7.3 Evaluation

runtime in sec.
of TFPG nodes path length affected graph full graph

6 0 3.249 6.989
46 10 14.226 54.918
86 20 42.785 230.597

126 30 125.344 667.827
166 40 254.585 1543.021
206 50 387.396 3301.724
246 60 566.993 6702.498
286 70 828.591 12687.378
326 80 1269.779 NA

Table 7.1: Evaluation results of the linear structure of Figure 7.22

Tree Structure

In the course of the student’s project “SafeBots II”, AShOp has been evaluated
for TFPGs with binary tree structures as shown in Figure 7.24. All component
instances in the configuration have a TFPG with one outgoing failure and two
incoming failures, which are connected to the outgoing failure by an operator
node. The hardware nodes have one error, which is connected to an outgoing
failure. We divide the tree structure into l layers. The first and the l − 1th

layer consist of component instances that have TFPGs with an OR operator.
During each run of the experiment, we insert a new layer directly after the first
layer. We increase the number of component instances and hardware nodes
of the layers 3 to l such that the structure of a binary tree is preserved. The
new layer consists of component instances that have a TFPG with an AND
operator. The experiment starts with the layers 1, l − 1, and l.

Table 7.2 shows the results of the experiment. The analysis was able to analyze
the tree structure up to a depth of three when analyzing the affected part and
a depth of two when analyzing the full graph. For greater tree depths, the
memory of the computer was not sufficient.

runtime in sec.
of TFPG nodes # of AND-layers affected graph full graph

20 0 2 4

44 1 4 9, 491

76 2 20, 386 NA

Table 7.2: Evaluation results for the tree structure of Figure 7.24

Discussion

We compare the results of the latter experiment (Exp. 2) to the results of the
experiment using the linear structure of Figure 7.22 (Exp. 1). We do this by

147

7 Tool Support

sw2m :
Software

f2n-1

[1,1]

f2n

jsw : JSW

Affected Part fj1

[1,1]

fj3

fj2

OR

[1,1]

[1,1]

[1,1][1,1]

&

f2n-2

[1,1]

[1,1]
swm :
Software

fn-1

[1,1]

&

fn-2

[1,1]

[1,1]

fn

sw1 :
Software

f3

[1,1]

OR

f4

[1,1]

[1,1]

f5

hw1 :
Hardware

f1

[1,1]

e1

[1,1]

hw2 :
Hardware

f2

e2

[1,1]

[1,1]

swm :
Software

fn+3

[1,1]

OR

fn+4

[1,1]

[1,1]

fn+5

hwn+1 :
Hardware

fn+1

[1,1]

en+1

[1,1]

hwn+2 :
Hardware

fn+2

en+2

[1,1]

[1,1]

Layer 1

Layer 2

Layer l-1

Layer l

Figure 7.24: TFPG with tree structure

comparing the number of TFPG nodes, which could be analyzed in both ex-
periments. In Exp. 1, we were able to analyze a TFPG with approximately 326
nodes, which corresponds to a path length of 70 (cf. Table 7.1). In Exp. 2,
we were able the analyze a TFPG with 76 nodes, which corresponds to two
AND-layers (cf. Table 7.2). In Exp. 2, the next step would have been to analyze
a TFPG with three AND-layers, which would have contained 140 nodes. In
contrast to the linear structure used in Exp. 1, we could not finish the analysis
for 140 nodes on the tree structure in Exp. 2 due to insufficient memory. The
runtime of the analysis was significantly higher, as well. It took approximately
57 hours to analyze a tree with 76 nodes (depth 3) and only approximately four
minutes to analyze a linear structure with 86 nodes (path length 20). Thus, the
theoretically exponential algorithm is applicable to TFPGs with approximately
80 nodes and a high degree of branching and to TFPG with approximately 320
nodes and a low degree of branching.

7.4 Summary

In this chapter, we presented the tools, which implement the approaches that
we developed in the course of this thesis. We realized the implementation as

148

7.4 Summary

a set of plugins for the Fujaba Real-time Tool Suite, which already supported
modeling and analyzing software with MechatronicUML.

We first explained the usage of the tools in Section 7.1 as they have been applied
to the speed control subsystem of the RailCab. We then gave an overview of
their architecture.

Finally, we evaluated our implementation in three case studies. The case studies
indicated that the generation of TFPGs and the analysis of self-healing opera-
tions has exponential complexity in theory. However, these approaches can still
be applied to real systems, because the most complex computations are only
applied to relevant parts of the system.

The most complex part in the generation of TFPGs is the computation of
the reachable behavior. However, for identifying outgoing timing and service
failures, only single paths in the zone graphs of the reachable behavior need to be
analyzed (cf. Section 4.2.1). Our evaluation showed that our implementation is
able to generate TFPGs from paths with a maximum number of input messages
of seven (on the used computer). Thus, all real-time statecharts that have less
than seven input messages in each path, may be used to generate TFPGs.

For the evaluation of the analysis of self-healing operations, we focused on the
effect of only using the affected part for the reachability analysis. Therefore,
we executed the analysis on the complete system and only on the part, which
was affected by the self-healing operation. In both cases, the complexity of the
analysis theoretically exponential. However, the application of the analysis on
the affected part of the system showed a significant improvement compared to
the analysis on the whole system. Thus, the reduction of the analyzed model,
which only takes the affected part of the system into account, makes the analysis
applicable.

149

8 Related Work

This chapter covers the works of others, which are related to the methods,
which have been developed in the course of this thesis. We divide the related
work into three categories: First, we review related work for the analysis of
self-healing operations in Section 8.1. We focus on approaches that analyze
hazard probabilities in reconfigurable systems. In Section 8.2, we consider ap-
proaches for the generation of failure propagation models. Since there exists no
approach that generates failure propagation models that contain propagation
times, we present approaches that generate failure propagation models without
propagation times from behavior models. Finally, we describe related work in
the field of runtime analysis in Section 8.3. We focus on runtime analyses that
pro-actively prevent unsafe system states, like our approach for online analysis.

8.1 AShOp

AShOp is designed for mechatronic systems that react to a detected failure
by structural reconfiguration. Therefore, AShOp considers real-time properties
and structural reconfiguration. Since there exist no approaches for analyzing
hazard occurrence probabilities that consider reconfiguration and propagation
times at the same time, we divide the related work into hazard analysis ap-
proaches, which consider reconfiguration and hazard analysis approaches which
consider reconfiguration and time.

There exists a variety of approaches, which take time into account but no re-
configuration [GCW07, CGW08, GG06, KGF07, KNP11, MS02]. Since we con-
sider the domain of reconfigurable systems, we do not discuss these approaches
any further. Instead, we focus on approaches that deal with hazard proba-
bilities in reconfigurable systems. In this field, there exist three approaches:
the deductive cause consequence analysis for self-adaptive systems of Güde-
mann et al. [GOR06], the LARES approach of Walter et al. [WGR+09], and
the component-based hazard analysis for reconfigurable systems of Giese et
al. [GT06].

151

8 Related Work

8.1.1 Deductive Cause Consequence Analysis for Self-adaptive
Systems

Güdemann et al. [GOR06] model the system behavior by a set of automata.
Apart from the functional behavior, reconfiguration is modeled by an extra
automaton where sets of states are associated to system components. The states
specify different behaviors of the system component. The system is reconfigured
by switching the states. This means, the behavior of the components is changed.
Valid configurations are specified by LTL-formulas. This allows for verifying the
specified reconfigurations.

Hazards are specified by predicate formulas. Failures are modeled by automata
that define how and when a failure occurs and by predicate formulas modeling
the effect of the failure. Minimal cut sets are identified by model checking.
Based on these minimal cut sets hazard occurrence probabilities are computed.
For reconfigurable systems, the analysis checks whether there always exists a
path that leads from a state, in which a minimal cut set is active, back to a
safe system state [GOR06].

Self-healing is implemented by the restore invariant approach [NSS+11]. Invari-
ants in the form of predicate formulas specify unwanted system states. Every
time an invariant is violated, the system reconfigures autonomously into a state
where all invariants are fulfilled. The deductive cause consequence analysis of
self-adaptive systems is used to show that the system can always be returned
to a safe state.

8.1.2 LARES

The LAnguage for REconfigurable dependable Systems (LARES) of Walter et
al. [WGR+09] is a language for modeling fault tolerant systems. It supports
modeling repairable systems with hierarchical architectures, common cause er-
rors, and dependabilities between basic events. It allows for computing the
probability that the whole system fails even though repair operations are exe-
cuted. Thereby, the analysis also takes into account at which probability the
repair operations may fail.

Architecture is defined text-based as program code. System behavior, includ-
ing reconfiguration, is state-based. Repair is modeled by transitions between
states that represent that a system component is broken and that a system
component is working correctly. State transitions are also used for switching
system components on and off which, in turn, allows for switching off broken
components to repair the system. This also allows for specifying a probability
that the repair operation will fail.

For analysis, the LARES models may be transformed into several formal mod-
els [RS12], for example stochastic time Petri nets [Zim10] or process alge-
bras [KSW04]. It is thereby possible to compute the probability that the whole
system fails and the probability that a repair operation fails.

152

8.1 AShOp

8.1.3 Component-based Hazard Analysis for Reconfigurable Systems

The component-based hazard analysis for reconfigurable systems of Giese et
al. [GT06] computes hazard occurrence probabilities of all architectures of a
reconfigurable system. It has been explained in detail in Section 2.4.2.

UML deployment diagrams are extended by hardware ports to specify and an-
alyze the impact of hardware faults on software components. Component types
and hardware nodes are enhanced by Boolean formulas that specify the failure
propagation inside the component. The failure propagation between hardware
nodes and component instances and between component instances is derived
automatically from the connectors of the deployment. Hazards are specified by
fault trees. The leaves of the fault tree correspond to outgoing failures of the
components of the system structure. Qualitative and quantitative fault tree
analysis is performed based on Binary Decision Diagrams.

8.1.4 Hybrid Failure Propagation Graphs

The approach of Dubey et al. [DKM11] diagnoses system faults based on alarms
raised by the system during runtime. In contrast to our approach, the approach
focuses on fault diagnosis. This means, the causing faults are identified.

However, Dubey et al. [DKM11] use a model called hybrid failure propagation
graphs. As in our TFPGs (cf. Section 3.4), the edges in hybrid failure propa-
gation graphs have time intervals that specify the propagation times of failures.
Hybrid failure propagation graphs differ from our TFPGs in some details: fail-
ures, which are called discrepancies, and operators are modeled in one node.
Edges can be activated and deactivated to model reconfigurable systems.

We use the syntax of fault trees [VGRH81] and enhance it by the propagation
time intervals, because fault trees are commonly used in literature.

8.1.5 Discussion

The approaches of Güdemann et al. [GOR06], Walter et al. [WGR+09], and
Giese et al. [GT06] presented above do not consider time. The restore invariant
approach [NSS+11], which analyzes self-healing systems does not consider time,
as well. It can therefore only analyze whether there is a path in the system
behavior that leads to a healthy system state in case of a hazard. However, the
analysis cannot judge whether the self-healing is executed fast enough.

The component-based hazard analysis for reconfigurable systems [GT06] com-
putes hazard occurrence probabilities for single architectures. Since it does not
consider propagation times of failures, it cannot compute the locations of fail-
ures in the system at the point of time when the reconfiguration is applied.

153

8 Related Work

Consequently, the approach cannot take into account how the structural recon-
figuration affects the propagation of failures, which are present in the system.
It is thus not able to assess the success of self-healing operations.

All approaches support the computation of hazard probabilities in reconfig-
urable systems. While Güdemann et al. [GOR06] take the whole system be-
havior into account, Walter et al. [WGR+09] use an abstracted behavior model,
and Giese et al. [GT06] work on failure propagation models. Consequently, the
analyses of Walter et al. [WGR+09] and Giese et al. [GT06] do not need to
explore the whole system behavior. They only take the behavior into account,
which is relevant for failure propagation. On the other hand, the deductive
cause consequence analysis for self-adaptive systems [GT06] is more precise.

We chose to also use failure propagation models for AShOp and extend them
by time intervals as Dubey et al. [DKM11]. But instead of constructing them
manually as in [GT06, DKM11], we generate them from real-time behavior
models (cf. Section 4). This means, we also take the complete system behavior
into account. However, for AShOp we abstract from information, which is
not needed for hazard analysis. We only consider the failure propagation over
time and do not need to evaluate behavior like variable assignments or silent
transitions.

All approaches differ in the specification of reconfiguration, as well. Güde-
mann et al. [GOR06] and Walter et al. [WGR+09] model reconfiguration by
state switches and predicate formulas while Giese et al. [GT06] use structural
reconfiguration. In contrast to simple state switches, structural reconfigura-
tion preserves all advantages of component based modeling like encapsulation,
decomposition and hierarchical architecture (cf. Section 2.2.3). Our analysis
therefore also operates on structural reconfiguration.

8.2 Automatic Generation of Failure Propagation
Models

There exists a wide range of approaches, which are able to generate fault trees
that do not contain timing information. The source models for the fault trees are
for example behavior models [BV07, KLFL11, LR98, MPW10, Rau02], AADL1

models [DD08, JBV07, LZMX11], or decision tables [HA97].

The approaches that generate fault trees from behavior models provide the foun-
dations for our generation of TFPGs from real-time statecharts (cf. Chapter 4).
These approaches use different behavior models as source models, for example
state machines [LR98, MPW10], continuous time Markov chains [KLFL11],
NuSMV models [BV07], or mode automata [Rau02]. All of these approaches
use reachability analysis, mostly model checking, and follow a similar process:
The failures are modeled as part of the behavior model. This is called “fault

1Architecture Analysis & Design Language [FG12]

154

8.2 Automatic Generation of Failure Propagation Models

injection”. The model checker is used to construct the reachable behavior of the
system with injected faults. Failures are identified in this reachable behavior.
The fault tree is constructed from the identified and injected failures.

8.2.1 Continuous Time Markov Chains

Most of the approaches, which use model checking, do not take timing informa-
tion into account. The only approach which considers time is the approach of
Kuntz et al. [KLFL11]. However, this approach does not compute the minimum
and maximum runtime of paths, which are needed for AShOp.

Kuntz et al. [KLFL11] generate fault trees from continuous time Markov chains
(CTMC) using the probabilistic model checker PRISM [KNP11]. A Markov
chain is a stochastic process with a discrete state space [CL06]. Transitions
fire with a specified probability. In CTMCs, the probabilities are distributed
exponentially over a continuous time interval. The goal of probabilistic model
checking is to check the probability of being in any system state at a certain
point in time [CL06].

Kuntz et al. [KLFL11] use the counterexamples of the probabilistic model
checker PRISM [KNP11] to construct a fault tree. However, it is not pos-
sible to compute propagation times from these counterexamples, because the
timing information in CTMC does not define firing times of transitions. In-
stead, transitions are labeled with firing rates, which specify the probability of
a state change within a specified time interval. Thus, the generated fault trees
do not contain propagation times.

8.2.2 State Machines

Liggesmeyer et al. [LR98] provide an approach for the automatic generation of
fault trees from finite state machines. Failures are injected into state machines
first by adding transitions that model failures. Then, the reachable behavior of
the original state machine and the state machine with failures is compared. A
failure model specifies which failures should be considered.

Failures are all values that are specified for a device. Therefore, the set of
failures can be generated automatically from a component specification.

First, the set of all failures that may lead to an undesired event is generated.
For this, the reachability analysis of a model checker is applied. Fault trees are
constructed according to Vesely et al. [VGRH81] from the reachable behavior
of the failure-free system and the behavior of the system with failures.

Mahmud et al. [MPW10] present an approach for the generation of temporal
fault trees from state machines. The generation is performed by a backward
search from the final states of the state machine back to the initial state. The
final states are the top events of the temporal fault tree. Each path from a final
state to the initial state is a branch in the fault tree.

155

8 Related Work

8.2.3 Mode Automata

Rauzy [Rau02] presents an approach to generate fault trees from mode au-
tomata. In mode automata, states are modes. A mode specifies an active
transfer function that determines how to process system inputs. Events trigger
transitions and are used to model failures.

For the generation of fault trees, failures are represented by events of transitions.
Some modes of states represent failure modes. All paths from the initial state
to a failure mode are failure scenarios. To get these, the reachable behavior
of the mode automaton is constructed and the failure scenarios are mapped to
Boolean formulas. These, in turn, are represented as fault trees.

8.2.4 FSAP/NuSMV-SA

The model checker NuSMV is used to generate fault trees from a model given
in the NuSMV input language [BV07] and a top-level event. The goal of the
analysis is to extract minimal cut sets, which are then represented as fault
trees. For this, faults are injected into the NuSMV input model. On this
model, a forward reachability is performed which yields all reachable states in
which the top-level event occurs. Intermediate events are removed by exist
quantification [Rau03]. The minimal cut sets are computed by evaluating a
binary decision diagram as described by Giese et al. [GTS04].

8.2.5 Discussion

None of the presented approaches computes propagation times of failures. Thus,
the generated failure propagation models cannot be used by AShOp. Instead,
we adapt the approach of Liggesmeyer et al. [LR98] to generate TFPGs, because
the input models are most similar to our real-time statecharts.

8.3 Runtime Analysis

In Chapter 6, we presented an approach to analyze self-healing operations at
runtime. There exists a wide range of approaches for runtime analysis [DDK+07,
FGT11, GMS12, KMM07, Rus08, SBT11, SRA04]. The only approach which is
closely related to our runtime analysis is the runtime certification of Schneider
et al. [SBT11].

Another field in runtime analysis is models at runtime [GLB+12, KCF12, MLK12,
NFPB12, VG10]. Models, which are used at design time, are also used at run-
time. However, at runtime, models are required, which provide views related to
the problem spaces, i.e., they only contain information, which is necessary for
the specific analysis. We abstract from information, which is unnecessary for
AShOp, as well, by generating TFPGs from real-time statecharts.

156

8.3 Runtime Analysis

8.3.1 Runtime Certification

Schneider et al. [SBT11] propose an approach for runtime certification. They
consider systems of systems where different systems are combined at runtime to
provide higher-level functionalities. These combinations have to be certified at
runtime and before the systems are combined, because they cannot be foreseen
at design time.

Runtime certification is based on conditional certificates that are created at
design time and specify which properties a system demands and guarantees.
The idea is to perform the actual certification at runtime but to conduct complex
interpretation steps at design time. Systems are only combined at runtime if
the combination can be certified.

Runtime certification is the only approach that analyzes configurations at run-
time before they are constructed. However, Schneider et al. [SBT11] do not
focus on executing any particular analysis at runtime as the certificates can be
used by any safety analysis. As a consequence, Schneider et al. [SBT11] do
not address the analysis of self-healing operations at runtime. However, our
analysis may be integrated into runtime certification.

8.3.2 Other Approaches for Runtime Analysis

Apart from runtime certification, there exist approaches for runtime verification
and quality service management in service-based systems.

Approaches for runtime verification [DDK+07, FGT11, GMS12, KMM07, Rus08,
SRA04] focus on the detection of anomalies in the executed behavior of the sys-
tem and try to lead the system back to its intended behavior. Anomalies are
detected by monitors, which check the executed program continuously against
a specification. In contrast to runtime verification, our analysis aims at pre-
venting unsafe system states.

A wide range of approaches for quality management in service-based systems is
summarized in the survey of Calinescu et al. [CGK+11]. A quality management
identifies and enforces optimal system configuration to ensure quality of service
requirements by adapting to changes in the system. Again, quality management
is a reaction to anomalous system behavior, while our analysis aims at avoiding
such behavior.

157

9 Conclusion

9.1 Summary

We find a growing number of technical systems in our world today. They facili-
tate our lives by performing tedious and exhausting tasks like housework. Tech-
nical systems like air planes or high-tech trains make the world seem smaller
by letting us move longer distances in shorter times. However, these benefits
involve negatives aspects, as well. Whenever a technical device is operating,
random faults may occur and cause hazards, which may lead to accidents like
electric shocks or crashes.

Developers identify design faults by applying a systematic and structured de-
velopment process, for example a model-based development. However, random
faults that occur due to hardware flaws cannot be avoided completely. To still
construct a safe system, the developer must guarantee that random faults and
resulting hazards only occur with an acceptable probability.

One way to achieve acceptable hazard occurrence probabilities is self-healing.
Self-healing systems react autonomously to observed failures by removing these
failures or cutting of failure propagation paths that lead to hazards. In this
work, self-healing operations are implemented by structural reconfigurations,
which create or remove components from the system or modify connections
between components at runtime.

Of course, the developer must guarantee that the application of a self-healing
operation actually reduces the occurrence probability of a hazard to an accept-
able value. In the course of this thesis, we developed an approach to analyze
the effect of self-healing operations in mechatronic systems (AShOp) which has
been introduced in Chapter 5. AShOp takes in particular the propagation times
of failures into account. This allows for analyzing how far failures propagate
through the system within a specific time interval. This, in turn, allows for com-
puting the locations of errors and failures in the system at the point in time
when the self-healing operation is executed which then enables to analyze which
errors and failures are removed from the system or stopped from propagating.

Such analyses are usually carried out at design time. However, in reconfigurable
systems, configurations may occur at runtime that have been unknown at design
time. Still, the developer must guarantee acceptable hazard occurrence proba-
bilities. Therefore, we presented a framework that allows for executing AShOp
at runtime in Chapter 6. Future configurations, which would exceed acceptable

159

9 Conclusion

hazard occurrence probabilities even with the application of self-healing opera-
tions, are locked. Consequently, the system will only create configurations with
acceptable hazard occurrence probabilities.

To enable this analysis, we introduced timed failure propagation graphs (TF-
PGs) in Chapter 3. TFPGs are failure propagation models, which are extended
by propagation times of failures. We defined formal semantics for TFPGs to
allow for the computation of the propagation of failures over time. TFPGs are
generated automatically from real-time statecharts (cf. Chapter 4) that specify
the behavior of the component types of the system.

The methods and models which have been developed in the course of this the-
sis have been implemented as plugins for the Fujaba Real-time Tool Suite as
described in Chapter 7. We applied the implementation to analyze the Rail-
Cab and conducted experiments to analyze the scalability of the generation of
TFPGs and AShOp.

9.2 Future Work

The propagation time intervals of TFPGs allow for computing failure propa-
gation times as presented in Chapter 3. However, the usage of intervals also
adds uncertainty to the propagation times: The longer the path in the TFPG,
which is analyzed, the wider the computed propagation time interval of the
path will become. This uncertainty may be relaxed by adding probability dis-
tributions to the time intervals. This would allow for analyzing for example
the most probable or average failure propagation times of a TFPG path. This
can be achieved, for example, by adding probability distributions to the prop-
agation time intervals of TFPGs and using deterministic stochastic time Petri
nets (DSPN) as a formal semantics. DSPNs allow for analyzing stochastic de-
lays and probabilities of decisions [Zim08]. Another option is to use stochastic
timed automata [CL06]. However, if systems consist of many communicating
stochastic timed automata, the analysis will suffer from state space explosion.

Our analysis of self-healing operations may be extended by taking the durations
of error occurrences into account, because hazard occurrence probabilities also
depend on how long an error is present [Lev95].

AShOp takes a configuration and a self-healing operation as input and ana-
lyzes the success of the self-healing operation. The self-healing operation is
constructed manually. AShOp could also be used reversely to automatically
generate self-healing operations from a given configuration including the earli-
est and latest time of application of the self-healing operation. The generated
self-healing operation would already guarantee to successfully reduce the occur-
rence probability of a hazard to an acceptable value.

AShOp analyzes the real-time statecharts that model the system behavior to
compute the delay between the failure detection and the execution of the self-
healing operation. This analysis requires the computation of the reachable

160

9.2 Future Work

state space of the complete system, which may suffer from state space explosion.
Future research should work on decomposing the system to address this problem
by exploiting existing compositional verification approaches.

Our TFPG generation as presented in Chapter 4 computes relations between in-
coming and outgoing timing and service failures and relations between incoming
and outgoing value failures. Relations between value failures and service failures
or between value failures and timing failures cannot be identified, because we
use different methods to compute this relation. Of course, these relations exist
and our methods for the identification of value failures and of service and timing
failures should be combined such that the missing relation can be identified.

Further, our TFPG generation is currently not able to evaluate side effects
of transitions. Instead, we assume that all variables that are used as input
parameters of side effects have an effect on the output of the side effect. This is
an over approximation which may lead to the computation of too high hazard
occurrence probabilities. Therefore, future works should consider the evaluation
of side effects.

Future research should also investigate how components can be divided into
subcomponents such that the timed automaton of each subcomponent only has
a limited amount of transitions with input messages. In this way, the complexity
of the TFPG generation can be reduced such that TFPGs can also be generated
for timed automata with paths that have many inputs.

Our approach for the runtime analysis uses an analyzer component that con-
ducts the analysis. However, this introduces a single point of failure. If the
analyzer fails, the analysis might output wrong results and the system might
reconfigure into an unsafe configuration. To avoid a single point of failure,
the analyzer may be executed in several subsystems and the results could by
compared.

Another field is a concept for a compositional analysis of self-healing opera-
tions. Each autonomous component computes its hazard probabilities by itself
and the autonomous components only exchange hazard probabilities instead of
behavioral models. Thus, the computing load is distributed among the whole
system. We already developed a decomposition of the hazard analysis of Tichy
et al. [GT06] in the master’s thesis of Anis [Ani12].

The failure propagation models of Tichy et al. [GT06] support the reconfigura-
tion of communication links. However, the failure propagation inside a compo-
nent is static. Consequently, the failure propagation of each component instance
needs to be specified explicitly. This causes a great amount of models to be
constructed manually. In the case of multi-ports, this is even not applicable,
because multi-ports have a varying number of subports. We suggest using dy-
namic failure propagation models for online hazard analysis. First ideas have
been worked out by Braun [Bra12]. Dynamic failure propagation models are
specified for component types and adapt according to the component instance.
For multi-ports, a minimum number of incoming failures of each type is identi-
fied such that a failure is propagated.

161

9 Conclusion

For mechatronic systems, the union of four disciplines into one system requires
the development and analysis of the system as a whole. The key difference
to pure software architecture is that (hardware) connectors that are connected
to hardware components do not only transport information but also physical
items, i.e. material and energy. The active structure is a model that specifies
the architecture of the entire mechatronic system including hardware and soft-
ware parts. Hardware connectors are only represented as simple connections,
even though they represent additional system components. In [PSTH11] we
presented a component-based hazard analysis that considers the entire mecha-
tronic system including hardware connectors and introduces reusable patterns
for the failure behavior of hardware connectors, which can be generated auto-
matically. In this way, the component-based hazard analysis of [GT06] can be
applied to the entire mechatronic system.

162

List of Abbreviations

AShOp analysis of self-healing operations 5

CRC 614 Collaborative Research Center 614“Self-optimizing concepts and struc-
tures in mechanical engineering” 16

CTMC continuous time Markov chain 155

DSPN deterministic stochastic Petri net 160

ECU electronic control unit 24

EFSM extended finite state machine 81

MCS minimal cut set 35

MTTF mean time to failure 35

NTA network of timed automata 50

NTAC network of timed automata that specifies the behavior of a component
type 51

OCM Operator-Controller-Module 18

SIL safety integrity level 40

TCSD timed component story diagram 28

TCSP timed component story pattern 28

TFPG timed failure propagation graph 43

TPN time Petri net 58

WCET worst case execution time 120

163

Own Publications

[BBD+12] Steffen Becker, Christian Brenner, Stefan Dziwok, Thomas Gewer-
ing, Christian Heinzemann, Uwe Pohlmann, Claudia Priesterjahn,
Wilhelm Schäfer, Julian Suck, Oliver Sudmann, and Matthias Tichy.
The MechatronicUML method – process, syntax, and semantics.
Technical Report tr-ri-12-318, Software Engineering Group, Univer-
sity of Paderborn, feb 2012.

[BDG+11] S. Becker, S. Dziwok, T. Gewering, C. Heinzemann, U. Pohlmann,
C. Priesterjahn, W. Schäfer, O. Sudmann, and M. Tichy. Mecha-
tronicuml - syntax and semantics. Technical report, Software Engi-
neering Group, Heinz Nixdorf Institute, 2011.

[EHH+13] Tobias Eckardt, Christian Heinzemann, Stefan Henkler, Martin
Hirsch, Claudia Priesterjahn, and Wilhelm Schäfer. Modeling and
verifying dynamic communication structures based on graph trans-
formations. Comput. Sci., 28(1):3–22, February 2013.

[HPB12] C. Heinzemann, C. Priesterjahn, and S. Becker. Towards model-
ing reconfiguration in hierarchical component architectures. In 15th
ACM SigSoft International Symposium on Component-Based Soft-
ware Engineering (CBSE 2012), 2012.

[PHS13] Claudia Priesterjahn, Christian Heinzemann, and Wilhelm Schäfer.
From timed automata to timed failure propagation graphs. In Pro-
ceedings of the Fourth IEEE Workshop on Self-Organizing Real-time
Systems, 2013. accepted.

[PHST12] C. Priesterjahn, C. Heinzemann, W. Schäfer, and M. Tichy. Run-
time safety analysis for safe reconfiguration. In Proceedings of the
3. Workshop

”
Self-X and Autonomous Control in Engineering Ap-

plications”, 10. IEEE International Conference on Industrial Infor-
matics, 25. – 27. Juli 2012, Beijing, China, 2012.

[PST11] Claudia Priesterjahn, Dominik Steenken, and Matthias Tichy.
Component-based timed hazard analysis of self-healing systems. In
Proceedings of the 8th workshop on Assurances for self-adaptive sys-
tems, ASAS ’11, pages 34–43, New York, NY, USA, 2011. ACM.

[PST13] Claudia Priesterjahn, Dominik Steenken, and Matthias Tichy.
Timed hazard analysis of self-healing systems. In Javier Camara,
Rogerio de Lemos, Carlo Ghezzi, and Antonia Lopes, editors, As-
surances for Self-Adaptive Systems, volume 7740 of LNCS, pages
112–151. Springer Berlin Heidelberg, 2013.

165

Own Publications

[PSTH11] Claudia Priesterjahn, Christoph Sondermann-Wölke, Matthias
Tichy, and Christian Hölscher. Component-based hazard analy-
sis for mechatronic systems. Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops , IEEE International
Symposium on, pages 80–87, 2011.

[PT09] C. Priesterjahn and M. Tichy. Modeling safe reconfiguration with
the fujaba real-time tool suite. In Proceedings of the 7th Interna-
tional Fujaba Days, 2009.

[PTH+10] C. Priesterjahn, M. Tichy, S. Henkler, M. Hirsch, and W. Schäfer.
Fujaba4eclipse real-time tool suite. In Model-Based Engineering of
Embedded Real-Time Systems (MBEERTS). Springer, 2010.

166

References

[AAB+11] Amir Shayan Ahmadian, Caner Aydogan, Denis Braun, Luis G.
Bustamante, Christopher Gerking, Süleyman Issiz, Lukas Kopecki,
and Paul Prescher. Developer documentation of the project group
safebots i. Project group, University of Paderborn, Department of
Computer Science, Paderborn, Germany, September 2011.

[ACH+12] Kelly Androutsopoulos, David Clark, Mark Harman, Robert M.
Hierons, Zheng Li, and Laurence Tratt. Amorphous slicing of
extended finite state machines. IEEE Transactions on Software
Engineering, 99(PrePrints):1, 2012.

[ADG+09] Philipp Adelt, Jörg Donoth, Jens Geisler, Stefan Henkler, Sascha
Kahl, Benjamin Klöpper, Eckehard Münch, Simon Oberthür,
Carlos Paiz, Herbert Podlogar, Mario Porrmann, Rafael Rad-
kowski, Christoph Romaus, Alexander Schmidt, Bernd Schulz,
Henner Voecking, Ulf Witkowski, and Katrin Witting. Selbstopti-
mierende Systeme des Maschinenbaus – Definitionen, Anwendun-
gen, Konzepte. Number 234, in HNI Verlagsschriftenreihe. Heinz
Nixdorf Institute, University of Paderborn, 2009.

[AGL+12] Anas Anis, Sebastian Goschin, Sebastian Lehrig, Christian
Stritzke, and Thomas Zolynski. Developer documentation of the
project group safebots ii. Project group, University of Paderborn,
Department of Computer Science, Paderborn, Germany, March
2012.

[AH99] Karl J. Astrtöm and Tore Hägglund. Pid control. In William S.
Levine, editor, The Control Handbook, chapter 10.5. Jaico Pub-
lishing House, Mumbai, India, 1999.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–33,
2004.

[Alu99] Rajeev Alur. Timed automata. In Nicolas Halbwachs and
Doron A. Peled, editors, Proceedings of the 11th International
Conference on Computer Aided Verification (CAV ’99), July 6-
10, 1999, Trento, Italy, volume 1633 of Lecture Notes in Computer
Science (LNCS), pages 8–22. Springer Verlag, 1999.

167

References

[Ani12] Anas Anis. Component-based decomposition of hazard analysis.
Master’s thesis, University of Paderborn, Department of Computer
Science, Paderborn, Germany, 2012.

[AO02] B. Arslan and A. Orailoglu. Fault dictionary size reduction
through test response superposition. In Computer Design: VLSI
in Computers and Processors, 2002. Proceedings. 2002 IEEE In-
ternational Conference on, pages 480 – 485, 2002.

[BBD+07] S. Bentler, S. Brügger, R. Dorociak, T. Hoffmann, J. Holtmann,
W. Janzen, M. Knoop, A. Oberhoff, S. Polat, R. Reinert, M. von
Detten, and C. Werner. Abschlussarbeit der Projektgruppe ASE
: Automotives Software Engineering. Project group, Fakultät für
Elektrotechnik, Informatik und Mathematik, Universität Pader-
born, 2007.

[BBI+11] Danny Bickson, Dror Baron, Alexander T. Ihler, Harel Avis-
sar, and Danny Dolev. Fault identification via nonparametric
belief propagation. IEEE Transactions on Signal Processing,
59(6):2602–2613, 2011.

[BD09] V.S. Bagad and I.A. Dhotre. Data Communication & Networking.
Technical Publications, 2009.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tuto-
rial on uppaal. In Marco Bernardo and Flavio Corradini, editors,
Formal Methods for the Design of Real-Time Systems: 4th Inter-
national School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number
3185 in LNCS, pages 200–236. Springer–Verlag, sep 2004.

[BDL+06] Gerd Behrmann, Alexandre David, Kim G. Larsen, Paul Petters-
son, Wang Yi, and Martijn Hendriks. Uppaal 4.0. In In Quan-
titative Evaluation of Systems - (QEST’06, pages 125–126. IEEE
Computer Society, 2006.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela
Schilling. Incremental design and formal verification with uml/rt
in the fujaba real-time tool suite. In Proc. of the Intern. Workshop
on Specification and Validation of UML Models for Real Time and
Embedded Systems, SVERTS2004, pages 1–20, Oct. 2004.

[BGK+96] Johan Bengtsson, David W. O. Griffioen, K̊are J. Kristoffersen,
Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Verification of an audio protocol with bus collision using uppaal.
In Rajeev Alur and Thomas A. Henzinger, editors, cav96, number
1102 in LNCS, pages 244–256. Springer–Verlag, July 1996.

[BHF96] Vamsi Boppana, Ismed Hartanto, and W. Kent Fuchs. Full fault
dictionary storage based on labeled tree encoding. In in 14th IEEE
VLSI Test Symposium (VTS’96), April 28 - May 1, pages 174–179,
1996.

168

References

[BO10] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A
Programmer’s Perspective. Addison-Wesley Publishing Company,
USA, 2nd edition, 2010.

[Bra12] Denis Braun. Erweiterung eines gefahrenanalyse-ansatzes für
rekonfigurierbare systeme. Master’s thesis, University of Pader-
born, Department of Computer Science, Paderborn, Germany,
2012.

[BSMH84] Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T.
McMullen, and Gary D. Hachtel. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[BV07] Marco Bozzano and Adolfo Villafiorita. The fsap/nusmv-sa safety
analysis platform. Int. J. Softw. Tools Technol. Transf., 9(1):5–24,
February 2007.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, Lectures on Concurrency and Petri Nets, vol-
ume 3098 of Lecture Notes in Computer Science, pages 87–124.
Springer, 2003.

[CGK+11] R. Calinescu, Lars Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli. Dynamic qos management and optimization in
service-based systems. Software Engineering, IEEE Transactions
on, 37(3):387–409, 2011.

[CGKM12] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela
Mirandola. Self-adaptive software needs quantitative verification
at runtime. Commun. ACM, 55(9):69–77, September 2012.

[CGP08] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. Self-
healing by means of automatic workarounds. In Proceedings of the
2008 international workshop on Software engineering for adaptive
and self-managing systems, SEAMS ’08, pages 17–24, New York,
NY, USA, 2008. ACM.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming (2. ed.).
Springer, 2011.

[CGW08] Robert Colvin, Lars Grunske, and Kirsten Winter. Timed be-
havior trees for failure mode and effects analysis of time-critical
systems. J. Syst. Softw., 81:2163–2182, December 2008.

[CK10] Radu Calinescu and Marta Z. Kwiatkowska. Software engineering
techniques for the development of systems of systems. In Foun-
dations of Computer Software. Future Trends and Techniques for
Development, 15th Monterey Workshop 2008, Budapest, Hungary,
September 24-26, 2008, Revised Selected Papers, volume 6028 of
Lecture Notes in Computer Science, pages 59–82. Springer, 2010.

169

References

[CKKK06] Sunghoon Chun, Sangwook Kim, Hong-Sik Kim, and Sungho
Kang. An efficient dictionary organization for maximum diagnosis.
J. Electron. Test., 22(1):37–48, February 2006.

[CL06] Christos G. Cassandras and Stephane Lafortune. Introduction to
Discrete Event Systems. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2nd edition, 2006.

[Cla95] D. W. Clarke. Sensor, actuator, and loop validations. IEE Control
Systems, 15:39–45, 8 1995.

[Com98] International Electrotechnical Commission. International Stan-
dard IEC 61508. functional safety of electrical/electronic/pro-
grammable electronic safety-related systems, 1998.

[CR05] Franck Cassez and Olivier-H. Roux. Structural translation from
time petri nets to timed automata. Electron. Notes Theor. Com-
put. Sci., 128:145–160, May 2005.

[DD08] Josh Dehlinger and Joanne Bechta Dugan. Analyzing dynamic
fault trees derived from model-based system architectures. Nuclear
Engineering and Technology, 40(5), 8 2008.

[DDK+07] Christoph Danne, Viktor Dück, Benjamin Klöpper, Jürgen
Brinkmann, and Matthias Tichy. Considering runtime restrictions
in self-healing distributed systems. In Proceedings of the IEEE
21st International Conference on Advanced Information Network-
ing and Applications (AINA-07), Niagara Falls, Canada. IEEE
Computer Society Press, May 2007.

[DKM11] A. Dubey, G. Karsai, and N. Mahadevan. Model-based software
health management for real-time systems. In Aerospace Confer-
ence, 2011 IEEE, pages 1 –18, march 2011.

[dKMR92] Johan de Kler, Alan K. Mackworth, and Raymond Reiter. Char-
acterizing dianosis and systems. Artifical Intelligence, 56, 1992.

[dKW87] J de Kleer and B C Williams. Diagnosing multiple faults. Artif.
Intell., 32(1):97–130, April 1987.

[dLGB+10] Juan de Lara, Esther Guerra, Artur Boronat, Reiko Heckel, and
Paolo Torrini. Graph transformation for domain-specific discrete
event time simulation. In Hartmut Ehrig, Arend Rensink, Grze-
gorz Rozenberg, and Andy Schürr, editors, Graph Transforma-
tions, volume 6372 of Lecture Notes in Computer Science, pages
266–281. Springer, 2010.

[Dun02] William R. Dunn. Practical Design of Safety-Critical Computer
Systems. Reliability Press, 2002.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. Springer, 2006.

170

References

[EW94] Uffe H. Engberg and Glynn Winskel. Linear logic on petri nets.
Technical report, Department of Computer Science, University of
Aarhus, 1994.

[EWM90] Uffe Engberg, Glynn Winskel, and Ny Munkegade. Petri nets as
models of linear logic. In Proceedings of Colloquium on Trees in
Algebra and Programming, pages 147–161. Springer-Verlag LNCS,
1990.

[FG12] Peter H. Feiler and David P. Gluch. Model-Based Engineering
with AADL: An Introduction to the SAE Architecture Analysis &
Design Language. Addison-Wesley Professional, 1st edition, 2012.

[FGT11] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-
time efficient probabilistic model checking. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11,
pages 341–350, New York, NY, USA, 2011. ACM.

[FMNP94] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey.
Towards integrated safety analysis and design. ACM SIGAPP
Applied Computing Review, 2(1):21–32, 1994.

[GB03] Holger Giese and Sven Burmester. Real-Time Statechart Seman-
tics. Technical Report tr-ri-03-239, Lehrstuhl für Softwaretechnik,
Universität Paderborn, Paderborn, Germany, June 2003.

[GCW07] Lars Grunske, Robert Colvin, and Kirsten Winter. Probabilis-
tic model-checking support for fmea. Quantitative Evaluation of
Systems, International Conference on, pages 119–128, 2007.

[GFDK09] Jürgen Gausemeier, U. Frank, J. Donoth, and S. Kahl. Specifica-
tion technique for the description of self-optimizing mechatronic
systems. Research in Engineering Design, 20:201–223, 2009.

[GG06] Grzegorz Golaszewski and Janusz Gorski. Hazard prevention
by forced time constraints. In Proceedings of the International
Conference on Dependability of Computer Systems, DEPCOS-
RELCOMEX ’06, pages 84–91, Washington, DC, USA, 2006.
IEEE Computer Society.

[GGS+07] Jürgen Gausemeier, Holger Giese, Wilhelm Schäfer, Björn Axe-
nath, Ursula Frank, Stefan Henkler, Sebastian Pook, and Matthias
Tichy. Towards the design of self-optimizing mechatronic systems:
Consistency between domain-spanning and domain-specific mod-
els. In Proc. of the 16th International Conference on Engineering
Design (ICED), Paris, France, 8 2007.

[GLB+12] Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt,
Stefan Neumann, Thomas Vogel, and Sebastian Wätzoldt. Graph
transformations for mde, adaptation, and models at runtime. In

171

References

Alfonso Pierantonio Marco Bernardo, Vittorio Cortellessa, edi-
tor, Formal Methods for Model-Driven Engineering, volume 7320
of Lecture Notes in Computer Science (LNCS), pages 137–191.
Springer, 6 2012.

[gmf12] Graphical modeling project, 2012.

[GMP+10] Alessandra Gorla, Leonardo Mariani, Fabrizio Pastore, Mauro
Pezzè, and Jochen Wuttke. Achieving cost-effective software relia-
bility through self-healing. Computing and Informatics, 29(1):93–
115, 2010.

[GMS12] Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio. Runtime mon-
itoring of component changes with spy@runtime. In Proceedings of
the 2012 International Conference on Software Engineering, ICSE
2012, pages 1403–1406, Piscataway, NJ, USA, 2012. IEEE Press.

[GOR06] Matthias Güdemann, Frank Ortmeier, and Wolfgang Reif. Safety
and dependability analysis of self-adaptive systems. In Proccedings
of the 2nd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2006), nov
2006.

[Gro09] Object Management Group. Uml 2.2 superstructure specification,
2009.

[GSG+09] Jürgen Gausemeier, Wilhelm Schäfer, Joel Greenyer, Sascha Kahl,
Sebastian Pook, and Jan Rieke. Management of cross-domain
model consistency during the development of advanced mecha-
tronic systems. In Margareta Norell Bergendahl, Martin Grimhe-
den, and Larry Leifer, editors, Proc. of the 17th International Con-
ference on Engineering Design (ICED’09), volume 6 of Design So-
ciety, pages 1–12, August 2009.

[GSRU07] Debanjan Ghosh, Raj Sharman, Rao H. Raghav, and Shambhu
Upadhyaya. Self-healing systems - survey and synthesis. Decis.
Support Syst., 42(4):2164–2185, January 2007.

[GT06] Holger Giese and Matthias Tichy. Component-based hazard anal-
ysis: Optimal designs, product lines, and online-reconfiguration.
In Proc. of the 25th International Conference on Computer Safety,
Security and Reliability (SAFECOMP), Gdansk, Poland, Lecture
Notes in Computer Science (LNCS), pages 156–169. Springer Ver-
lag, September 2006.

[GTB+03] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake. To-
wards the compositional verification of real-time uml designs. In
Proc. of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE-11), 2003.

172

References

[GTS04] Holger Giese, Matthias Tichy, and Daniela Schilling. Compo-
sitional Hazard Analysis of UML Components and Deployment
Models. In Proc. of the 23rd International Conference on Com-
puter Safety, Reliability and Security, Potsdam, Germany, volume
3219 of LNCS. Springer Verlag, September 2004.

[HA97] J.J. Henry and J.D. Andrews. Computerized fault tree construc-
tion for a train braking system. Quality and Reliability Engineering
International, pages 293–298, 1997.

[HC93] M. P. Henry and D. W. Clarke. The self-validating sensor: ra-
tionale, definitions, and examples. Control Engineering Practice,
1(2):585–610, 1993.

[HSE10] C. Heinzemann, J. Suck, and T. Eckardt. Reachability analysis on
timed graph transformation systems. In Proceedings of the Fourth
International Workshop on Graph-Based Tools (GraBaTs 2010),
2010.

[HSST13] Christian Heinzemann, Oliver Sudmann, Wilhelm Schäfer, and
Matthias Tichy. A discipline-spanning development process for
self-adaptive mechatronic systems. In Proceedings of the 2013 In-
ternational Conference on Software and System Process (ICSSP),
2013. accepted.

[Ise07] Rolf Isermann. Fehlertolerante mechatronische systeme, teil 1
(fault-tolerant mechatronic systems, part 1). Automatisierung-
stechnik, 55(4):170–179, 2007.

[JBV07] Anjali Joshi, Pam Binns, and Steve Vestal. Automatic generation
of fault trees from aadl models. In ICSE Workshop on Aerospace
Software Engineering, Minneapolis, 2007.

[Joh03] A. Johnson. Efficient fault analysis in linear analog circuits. Cir-
cuits and Systems, IEEE Transactions on, 26(7):475–484, January
2003.

[KCF12] Filip Křikava, Philippe Collet, and Robert France. Actor-based
Runtime Model of Adaptable Feedback Control Loops. In Inter-
national Workshop on models@run.time 2012(MRT), Innsbruck,
2012.

[KGF07] B. Kaiser, C. Gramlich, and M. Förster. State/event fault trees–A
safety analysis model for software-controlled systems. Reliability
Engineering & System Safety, 92(11):1521–1537, 2007.

[KLFL11] Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From
probabilistic counterexamples via causality to fault trees. In 30th
International Conference on Computer Safety, Reliability and Se-
curity (SAFECOMP 2011), 2011.

173

References

[KMM07] Ingolf Krüger, Michael Meisinger, and Massimiliano Menarini.
Runtime verification of interactions: From mscs to aspects. In
Oleg Sokolsky and Serdar Tasiran, editors, Runtime Verification,
volume 4839 of Lecture Notes in Computer Science, pages 63–74.
Springer Berlin / Heidelberg, 2007.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Veri-
fication of probabilistic real-time systems. In G. Gopalakrishnan
and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers,
Norwell, MA, USA, 1st edition, 1997.

[KSW04] Matthias Kuntz, Markus Siegle, and Edith Werner. Symbolic
performance and dependability evaluation with the tool caspa.
In Manuel Núñez, Zakaria Maamar, FernandoL. Pelayo, Key
Pousttchi, and Fernando Rubio, editors, Applying Formal Meth-
ods: Testing, Performance, and M/E-Commerce, volume 3236
of Lecture Notes in Computer Science, pages 293–307. Springer
Berlin Heidelberg, 2004.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers.
ACM, 1995.

[LKN+11] Patrick E. Lanigan, Soila Kavulya, Priya Narasimhan, Thomas E.
Fuhrman, and Mutasim A. Salman. Diagnosis in automotive sys-
tems: A survey. Technical Report CMU-PDL-11-110, Carnegie
Mellon University Parallel Data Lab, June 2011.

[LLC08] Seagate Technology LLC. Data sheet baracuda 7200.11, 2008.

[LR98] P. Liggesmeyer and M. Rothfelder. Improving system reliabil-
ity with automatic fault tree generation. In FTCS ’98: Proceed-
ings of the The Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing, Washington, DC, USA, 1998. IEEE
Computer Society.

[LRST09] Didier Lime, OlivierH. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for petri nets
with stopwatches. In Stefan Kowalewski and Anna Philippou,
editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 5505 of Lecture Notes in Computer Science,
pages 54–57. Springer Berlin Heidelberg, 2009.

[LZMX11] Yue Li, Yi-an Zhu, Chun-yan Ma, and Meng Xu. A method for
constructing fault trees from aadl models. In Proceedings of the
8th international conference on Autonomic and trusted computing,
ATC’11, pages 243–258, Berlin, Heidelberg, 2011. Springer-Verlag.

174

References

[McC56] Edward J. McCluskey. Minimization of Boolean Functions. Bell
System Technical Journal, 35, 1956.

[MDDW05] M.L. McIntyre, W.E. Dixon, D.M. Dawson, and I.D. Walker. Fault
identification for robot manipulators. Robotics, IEEE Transac-
tions on, 21(5):1028–1034, 2005.

[MdR07] Leonardo Michelon, Simone A. da Costa, and Leila Ribeiro. For-
mal specification and verification of real-time systems using graph
grammars. Journal of the Brazilian Computer Society, 13(4):51–
68, 2007.

[Mes01] Franz Mesch. Strukturen zur selbstüberwachung von messsyste-
men. Automatisierungstechnische Praxis, 43(8):2–7, 2001.

[MLK12] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. A runtime
model for fuml. In Proceedings of the 7th International Work-
shop on Models@run.time (MRT 2012), 2012. Vortrag: 7th Inter-
national Workshop on Models@run.time (MRT 2012), Innsbruck;
2012-10-02.

[MPW10] Nidhal Mahmud, Yiannis Papadopoulos, and Martin Walker. A
translation of state machines to temporal fault trees. Dependable
Systems and Networks Workshops, 0:45–51, 2010.

[MR12] Norma Montealegre and Franz Rammig. Agent-based mod-
eling and simulation of artificial immune systems. In
Object/Component/Service-Oriented Real-Time Distributed Com-
puting Workshops (ISORCW), 2012 15th IEEE International
Symposium on, pages 212–219, Shenzhen, China, 2012.

[MS02] J. Magott and P. Skrobanek. Method of time petri net analysis
for analysis of fault trees with time dependencies. Computers and
Digital Techniques, IEE Proceedings -, 149(6):257 – 271, nov 2002.

[MSKC04] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng.
Composing adaptive software. Computer, 37(7):56 – 64, july 2004.

[MWP11] N. Mahmud, M. Walker, and Y. Papadopoulos. Compositional
synthesis of temporal fault trees from state machines. In Avail-
ability, Reliability and Security (ARES), 2011 Sixth International
Conference on, pages 429 –435, aug. 2011.

[NFPB12] Viet Hoa Nguyen, François Fouquet, Noël Plouzeau, and Olivier
Barais. A Process for Continuous Validation of Self-Adapting
Component Based Systems. In 7th International Workshop on
Models@run.time of the MODELS 2012 Conference., Innsbruck,
Austria, 2012.

[Nig09] Maik Niggemann. Risikoanalyse für die rekonfiguration selbstopti-
mierender mechatronischer systeme. Bachelor’s thesis, University
of Paderborn, Department of Computer Science, Paderborn, Ger-
many, May 2009.

175

References

[NSS+11] Florian Nafz, Hella Seebach, Jan-Philipp Steghöfer, Gerrit An-
ders, and Wolfgang Reif. Constraining self-organisation through
corridors of correct behaviour: The restore invariant approach. In
Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer,
editors, Organic Computing — A Paradigm Shift for Complex
Systems, volume 1 of Autonomic Systems, pages 79–93. Springer
Basel, 2011.

[ÖM07] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics
of Real-Time Maude. Higher-Order and Symbolic Computation,
20(1-2):161–196, 2007.

[Pal08] Sanjay Kumar Pal. 21st century information technology revolu-
tion. Ubiquity, 2008(June):9:3–9:3, June 2008.

[PR92] Irith Pomeranz and Sudhakar M. Reddy. On the generation of
small dictionaries for fault location. In Proceedings of the 1992
IEEE/ACM international conference on Computer-aided design,
ICCAD ’92, pages 272–279, Los Alamitos, CA, USA, 1992. IEEE
Computer Society Press.

[PWP+11] Yiannis Papadopoulos, Martin Walker, David Parker, Erich Rüde,
Rainer Hamann, Andreas Uhlig, Uwe Grätz, and Rune Lien. Engi-
neering failure analysis and design optimisation with hip-hops. En-
gineering Failure Analysis, 18(2):590 – 608, 2011. <ce:title>The
Fourth International Conference on Engineering Failure Analysis
Part 1</ce:title>.

[Rau01] A. Rauzy. Mathematical foundations of minimal cutsets. Reliabil-
ity, IEEE Transactions on, 50(4):389 –396, dec 2001.

[Rau02] Antoine Rauzy. Mode automata and their compilation into fault
trees. Reliability Engineering and System Safety, 78(1):1 – 12,
2002.

[Rau03] Antoine Rauzy. A new methodology to handle boolean models
with loops. IEEE Transactions on Reliability, 52(1):96–105, 2003.

[RD97] Antoine Rauzy and Yves Dutuit. Exact and truncated computa-
tions of prime implicants of coherent and non-coherent fault trees
within Aralia. Reliability Engineering & System Safety, 58(2):127–
144, November 1997.

[RDV09] J. E. Rivera, F. Duran, and A. Vallecillo. A graphical approach
for modeling time-dependent behavior of DSLs. Visual Languages
- Human Centric Computing, pages 51–55, 2009.

[Rea11] B.C. Readler. Verilog by Example: A Concise Introduction for
FPGA Design. Full Arc Press, 2011.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Ar-
tifical Intelligence, 32(1):57 – 95, 1987.

176

References

[Ren07] Arend Rensink. Isomorphism checking in groove. In Albert Zün-
dorf and Dániel Varró, editors, Graph-Based Tools (GraBaTs),
Natal, Brazil, volume 1 of Electronic Communications of the
EASST. European Association of Software Science and Technol-
ogy, September 2007.

[Reu90] Christophe Reutenauer. The mathematics of Petri nets. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[RFP93] Paul G. Ryan, W. Kent Fuchs, and Irith Pomeranz. Fault dictio-
nary compression and equivalence class computation for sequential
circuits. In Proceedings of the 1993 IEEE/ACM international con-
ference on Computer-aided design, ICCAD ’93, pages 508–511, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[RS12] Martin Riedl and Markus Siegle. A LAnguage for REconfigurable
dependable Systems: Semantics & Dependability Model Transfor-
mation. In Proc. of the 6th International Workshop on Verification
and Evaluation of Computer and Communication Systems (VE-
COS’12), eWiC, pages 78–89. British Computer Society, August
2012.

[RSV13] Franz Rammig, Katharina Stahl, and Gavin Vaz. A framework
for enhancing dependability in self-x systems by artificial immune
systems. In Proceedings of the Fourth IEEE Workshop on Self-
Organizing Real-time Systems, 2013. accepted.

[Rud84] Richard L. Rudell. Multiple-Value Logic Minimization for PLA
Synthesis. Technical Report M86/65, University of California at
Berkeley, USA, June 1984.

[Rus08] John Rushby. Runtime verification. In Martin Leucker, editor,
Runtime Certification, pages 21–35. Springer-Verlag, Berlin, Hei-
delberg, 2008.

[SBT11] Daniel Schneider, Martin Becker, and Mario Trapp. Approaching
runtime trust assurance in open adaptive systems. In Proceedings
of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’11, pages 196–201,
New York, NY, USA, 2011. ACM.

[Sed08] Milos Seda. Heuristic Set-Covering-Based Postprocessing for Im-
proving the Quine-McCluskey Method. International Journal of
Computational Intelligence (IJCI), 4(2):139–143, 2008.

[SFP02] Silvio Simani, Cesare Fantuzzi, and Ron J. Patton. Model-based
Fault Diagnosis in Dynamic Systems Using Identification Tech-
niques. Springer Berlin / Heidelberg, 2002.

[Sha02] Mary Shaw. ”self-healing”: softening precision to avoid brittleness:
position paper for woss ’02: workshop on self-healing systems. In

177

References

Proceedings of the first workshop on Self-healing systems, WOSS
’02, pages 111–114, New York, NY, USA, 2002. ACM.

[SHS11] Julian Suck, Christian Heinzemann, and Wilhelm Schäfer. For-
malizing model checking on timed graph transformation systems.
Technical Report tr-ri-11-316, Heinz Nixdorf Institute, University
of Paderborn, September 2011.

[SRA04] Koushik Sen, Grigore Roşu, and Gul Agha. Online efficient pre-
dictive safety analysis of multithreaded programs. In Kurt Jensen
and Andreas Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 2988 of Lecture Notes
in Computer Science, pages 123–138. Springer Berlin / Heidelberg,
2004.

[Sto96] Neil Storey. Safety Critical Computer Systems. Addision Wesley,
1996.

[SW07] Wilhelm Schäfer and Heike Wehrheim. The challenges of build-
ing advanced mechatronic systems. In FOSE ’07: 2007 Future of
Software Engineering, pages 72–84. IEEE Computer Society, 2007.

[SWZ95] Andy Schürr, Andreas J. Winter, and Albert Zündorf. Graph
grammar engineering with progres. In Proceedings of the 5th Eu-
ropean Software Engineering Conference, pages 219–234, London,
UK, 1995. Springer-Verlag.

[Tec08] Avago Technologies. Afct-57j5apz, afct-57j5apz-xxx reliability
data sheet, 2008.

[TG98] Andrew S. Tanenbaum and James R. Goodman. Structured Com-
puter Organization. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 4th edition, 1998.

[TGS06] M. Tichy, H. Giese, and A. Seibel. Story diagrams in real-time
software. In Proc. of the 4th International Fujaba Days 2006,
Bayreuth, Germany, 2006.

[THHO08] Matthias Tichy, Stefan Henkler, Jörg Holtmann, and Simon
Oberthür. Component story diagrams: A transformation language
for component structures in mechatronic systems. In Postproc. of
the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER 4), Paderborn, Germany. HNI Verlagss-
chriftenreihe, 2008.

[THMvD08] Matthias Tichy, Stefan Henkler, Matthias Meyer, and Markus von
Detten. Safety of component-based systems: analysis and improve-
ment using fujaba4eclipse. In Companion of the 30th international
conference on Software engineering, ICSE Companion ’08, pages
973–974, New York, NY, USA, 2008. ACM.

178

References

[TvS08] Andrew S. Tanenbaum and Maarten van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall International, 2nd
rev. ed. edition, 2008.

[VDI04] VDI. VDI 2206: Entwicklungsmethodik für mechatronische Sys-
teme. Verein Deutscher Ingenieure, 2004.

[VG10] Thomas Vogel and Holger Giese. Adaptation and abstract runtime
models. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’10,
pages 39–48, New York, NY, USA, 2010. ACM.

[VGc12] Richard Vaughan, Brian Gerkey, and contributors. Player/stage
documentation, 2012.

[VGRH81] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl.
Fault tree handbook - nureg-0492209. Technical report, U.S. Nu-
clear Regulatory Commission, 1981.

[vOQ55] William van Orman Quine. A Way to Simplify Truth Functions.
The American Mathematical Monthly, 62, 1955.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. The worst-case execution-time problem—overview of meth-
ods and survey of tools. ACM Trans. Embed. Comput. Syst.,
7(3):36:1–36:53, May 2008.

[WGR+09] Max Walter, Alexander Gouberman, Martin Riedl, Johann Schus-
ter, and Markus Siegle. Lares — a novel approach for describing
system reconfigurability in dependability models of fault-tolerant
systems. In Proc. of the European Safety and Reliability Confer-
ence (ESREL 2009), pages 153 – 160. Taylor & Francis Ltd., 2009.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents:
theory and practice. The Knowledge Engineering Review, 10:115–
152, 5 1995.

[Zim08] Armin Zimmermann. Stochastic Discrete Event Systems: Mod-
eling, Evaluation, Applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2008. Chapter 7.

[Zim10] Armin Zimmermann. Dependability evaluation of complex sys-
tems with timenet. In Proceedings of the First Workshop on DY-
namic Aspects in DEpendability Models for Fault-Tolerant Sys-
tems, DYADEM-FTS ’10, pages 33–34, New York, NY, USA, 2010.
ACM.

179

List of Definitions

3.2.1 Component Specification . 45
3.2.2 Deployment Diagram .46
3.2.3 Timed Component Story Pattern . 46
3.2.4 Matching . 47
3.3.1 Timed Automaton . 48
3.3.2 Network of Timed Automata (NTA) .51
3.3.3 NTAC . 51
3.3.4 Clock Zone .51
3.3.5 Zone Graph . 52

3.4.1 Error and Failure Specification, V, V . 57
3.4.2 Timed Failure Propagation Graph . 58
3.4.3 Time Petri Net .59
3.4.4 Morphism from TFPG to TPN . 59
3.4.5 State of a TPN, State of a TFPG . 61
4.2.1 Initial Context . 69
4.2.2 ϕt, λt . 72
4.2.3 Runtime of a Zone Graph Path .73
4.2.4 Refined Context .76
4.2.5 Failure Automata . 77
4.2.6 Failure Context . 79
4.2.7 Failure Classes of a Zone Graph . 80
4.2.8 Extended Finite State Machine . 81
4.2.9 Mapping EFSMs to Timed Automata . 81
5.3.1 Affected Subgraph of a TFPG . 97

181

List of Figures

1.1 RailCab . 3
1.2 Self-healing on time . 4
1.3 Too late application of a self-healing operation 5
1.4 Process overview . 7
1.5 V-model for the development of mechatronic systems [VDI04]

extended by AShOp . 8

2.1 Basic structure of a mechatronic system [VDI04] 12
2.2 Structure of the Operator-Controller-Module [GFDK09] 19
2.3 Atomic component type PosCalc 21
2.4 Structured component type RailCab 22
2.5 Hardware node ds:DSensor . 22
2.6 Coordination pattern ConvoyCoordination 23
2.7 Schematic structure of a parameterized coordination pattern . . 23
2.8 Component instance configuration 24
2.9 Deployment diagram . 25
2.10 Real-time statecharts of ports of the ConvoyCoordination pattern . 25
2.11 Timed automata of the real-time statecharts of Figure 2.10 . . . 27
2.12 TCSD creating a coordination component 29
2.13 Taxonomy of dependable computing [ALRL04] 31
2.14 Fault error failure chain . 33
2.15 Fault tree . 35
2.16 Failure type hierarchy . 37
2.17 Deployment diagram with failure propagation model 38
2.18 Fault tree specifying the hazard wrong distance 38
2.19 Levels of risk [Sto96] . 40

3.1 Deployment diagram of the distance control subsystem 44
3.2 TCSD specifying a self-healing operation 45
3.3 Timed automaton specifying the behavior of the component in-

stance sa:Sanity . 49
3.4 Timed automaton specifying the behavior of the component in-

stance st:Strategy . 50
3.5 Timed automaton specifying the behavior of the connector be-

tween sa:Sanity and st:Strategy . 50
3.6 Zone graph of the NTA of Figures 3.3 to 3.5 54
3.7 TFPGs . 55
3.8 Deployment diagram with TFPG 56
3.9 TPN of the TFPG of Figure 3.7(a) 61

183

List of Figures

3.10 TPN of the TFPG of Figure 3.8 62

3.11 TFPG of Figure 3.8 with integrated tolerance time 63

4.1 Generation of TFPGs from timed automata 66

4.2 Timed automaton specifying the behavior of the component type
PosCalc . 67

4.3 TFPG for the outgoing failures of one failure class 68

4.4 NTAC and component context 69

4.5 Initial context of the component type PosCalc 71

4.6 Reachable behavior of the NTAC of Figure 4.2 71

4.7 Partitions of the path from s1 to s16 75

4.8 Refined context of Path 2 of Figure 4.6 76

4.9 Late timing failure for speed1 . 79

4.10 Component automaton specifying the behavior of the component
type PosCalc extended by a self-transition at the initial state . . . 85

4.11 Slice of the component automaton of Figure 4.2 for the slicing
criterion [e0, pos] . 86

4.12 Subgraph of the component automaton of Figure 4.2 that corre-
sponds to the slice of Figure 4.11 86

4.13 Subgraph of the component automaton of Figure 4.2 that corre-
sponds to the slice of Figure 4.11 extended by the path to the
output of variable pos . 87

4.14 TFPG of the outgoing value failure of the component type PosCalc 87

4.15 Incoming failures with overlapping propagation time intervals . . 88

4.16 TFPGs with identical incoming failure variables 88

4.17 Corrected TFPG of the TFPG of Figure 4.16(a) 89

5.1 AShOp process . 93

5.2 Composition of the critical time 95

5.3 Affected subgraph . 98

5.4 Marking of the TPN at the time when the error occurred 100

5.5 Reachable markings of the TPN during the critical time 101

5.6 State of the affected subgraph after the critical time 101

5.7 Reduced TFPG . 103

6.1 Overview of the runtime analysis 106

6.2 Deployment diagram of the foreign rail vehicle 107

6.3 TFPG of the foreign rail vehicle 108

6.4 TCSDs for establishing a convoy 108

6.5 Communication for building and leaving a convoy 109

6.6 Behavior of the multi-role Coordinator 110

6.7 Behavior of the single role Member 110

6.8 Subsystems with safety manager components 111

6.9 Communication for a new vehicle connecting to the system . . . 113

6.10 Labeled transition system . 115

6.11 Configuration of the two vehicles in convoy mode 116

6.12 Failure propagation model of convoy mode 117

184

List of Figures

6.13 Real-time statecharts with lockable transitions 118
6.14 Required reconfigurations and lockable transitions 119

7.1 Generating TFPGs from real-time statecharts 125
7.2 TFPG for the outgoing service failure of the component type

PosCalc at port posOut . 126
7.3 Specifying error probabilities . 127
7.4 Specifying hazards . 128
7.5 Specifying failure types . 130
7.6 Specifying failures at ports . 131
7.7 Creating a TFPG for port type p3 of component type DistGPS . . 132
7.8 Modeling the incoming failures of a TFPG 133
7.9 Executing AShOp . 134
7.10 Result window . 135
7.11 Specifying hazard types . 137
7.12 Specifying lockable transitions . 137
7.13 Specifying frequency classes . 138
7.14 Specifying severity classes . 139
7.15 Specifying a risk matrix . 139
7.16 Specifying hazard severities . 139
7.17 Two BeBots driving in a convoy in Stage 140
7.18 Status window of the simulation 141
7.19 Architecture of the AShOp plugin 141
7.20 TFPG meta-model [AGL+12] . 142
7.21 Runtime of TFPG generation depending on the number of in-

coming messages . 145
7.22 TFPG with sequential structure 146
7.23 Affected vs. full graph . 146
7.24 TFPG with tree structure . 148

185

List of Tables

2.1 Risk classes from IEC 61508 [Com98] 39
2.2 Target failure rates for the safety integrity levels of draft IEC

1508 [Sto96] . 41

7.1 Evaluation results of the linear structure of Figure 7.22 147
7.2 Evaluation results for the tree structure of Figure 7.24 147

187

	Introduction
	RailCab
	Problem Definition
	Contribution
	Integration into the Development Process
	Thesis Overview

	Foundations
	Self-healing Mechatronic Systems
	Mechatronic Systems
	Self-healing Systems
	Self-healing Process
	Integration into the CRC 614

	
	Component Model
	Behavior Models
	Timed Component Story Diagrams
	Time

	Safety
	Hazard and Risk Analysis
	Fault Tree Analysis
	Fault Tree Analysis in Self-optimizing Mechatronic Systems
	Risk Analysis

	Summary

	Modeling Timed Failure Propagation
	Example
	System Architecture
	System Behavior
	Timed Failure Propagation Graphs
	Formalization
	Adjusting the Propagation Time Intervals of TFPGs
	Component-based Hazard Analysis Using TFPGs

	Summary

	Generation of Timed Failure Propagation Graphs
	Example
	Constructing TFPGs
	Timing and Service Failures
	Value Failures

	Post-processing the Generated TFPGs
	Summary

	Analysis of Self-healing Operations
	Example
	Computing the Critical Time
	Error Delay
	Reconfiguration Delay

	Compute Locations of Errors and Failures
	Analyze the Criticality of the MCS
	Analyze the Success of the Self-healing Operation
	Remarks
	Summary

	Analysis of Self-healing Operations at Runtime
	Example
	System Extensions
	Analyzer
	Reconfiguration Controller

	Risk Analysis
	Timing Concerns
	Summary

	Tool Support
	Tour of the Tool
	
	Runtime Analysis
	Simulation

	Software Architecture
	Evaluation
	RailCab
	Identification of Relations Between Incoming and Outgoing Timing and Service Failures
	

	Summary

	Related Work
	
	Deductive Cause Consequence Analysis for Self-adaptive Systems
	LARES
	Component-based Hazard Analysis for Reconfigurable Systems
	Hybrid Failure Propagation Graphs
	Discussion

	Automatic Generation of Failure Propagation Models
	Continuous Time Markov Chains
	State Machines
	Mode Automata
	FSAP/NuSMV-SA
	Discussion

	Runtime Analysis
	Runtime Certification
	Other Approaches for Runtime Analysis

	Conclusion
	Summary
	Future Work

	List of Abbreviations
	Own Publications
	References
	List of Definitions
	List of Figures
	List of Tables

