
Energy-efficient
Scheduling Algorithms

The Cost of High Performance

Peter Kling

University of Paderborn

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

• Prof. Dr. Kirk Pruhs, University of Pittsburgh

• Prof. Dr. Christian Scheideler, University of Paderborn

To Nadine, my beloved wife.

Contents

List of Theorems ix

List of Figures xiii

List of Listings xv

Preface xvii

1 Introduction 1
1.1 A Primer to Speed Scaling . 2
1.2 Thesis Overview . 3

2 Preliminaries 7
2.1 Basics: Approximation & Online Algorithms 8
2.2 The First Speed Scaling Model 9

2.2.1 Model Notions . 10
2.2.2 Optimal Offline Algorithm & Optimal Available 11

2.3 Survey of Relevant Speed Scaling Results 12
2.3.1 Speed Scaling with respect to Deadlines 13
2.3.2 Speed Scaling with respect to Response Time Plus Energy 17

3 Profitable Deadline Scheduling 21
3.1 Related Work & Contribution 23
3.2 Model & Preliminaries . 25

3.2.1 Convex Programming Formulation 26
3.2.2 Power Consumption in Atomic Intervals 28

3.3 An Online Greedy Primal-Dual Algorithm 32

v

Contents

3.4 Analysis . 34
3.4.1 Structure of an Optimal Infeasible Solution 35
3.4.2 A Job-centric Formulation of the Dual Function 38
3.4.3 Balancing the Different Cost Components 42
3.4.4 Deriving the Tight Competitive Ratio 46

3.5 Conclusion & Outlook . 47

4 Slow Down & Sleep for Profit 49
4.1 Related Work & Contribution 50
4.2 Model & Preliminaries . 53
4.3 Lower Bound for Rejection-Oblivious Algorithms 55
4.4 Algorithm & Analysis . 56

4.4.1 Bounding the Different Cost Portions 58
4.4.2 Putting it All Together. 66

4.5 The Speed-Bounded Case . 68
4.6 Conclusion & Outlook . 69

5 Trading Energy for Responsiveness 71
5.1 Related Work & Contribution 73
5.2 Model & Preliminaries . 75
5.3 Overview . 76
5.4 Structural Properties via Primal-Dual Formulation 78
5.5 Computing an Optimal Schedule 82

5.5.1 Affected Jobs . 83
5.5.2 Affection Tree . 88
5.5.3 Algorithm Description 89

5.6 Correctness of the Algorithm 90
5.6.1 The Subroutines . 96
5.6.2 Putting it All Together 98

5.7 The Running Time . 98
5.8 Conclusion & Outlook . 102

6 Sharing Scalable Resources 105
6.1 Related Work & Contribution 107
6.2 Model & Notation . 109

6.2.1 Formal Model Description 110
6.2.2 Graphical Representation 112

6.3 Preliminaries . 113
6.3.1 Structural Properties . 114
6.3.2 Warm-up: Approximating via Round Robin 117

6.4 Problem Complexity . 118

vi

Contents

6.5 Analysis of Balanced Schedules 120
6.5.1 Lower Bounds for Optimal Schedules 120
6.5.2 Deriving a (𝟐 − 𝟏/𝒎)-Approximation 122
6.5.3 Tight Approximation via a Greedy Algorithm 125

6.6 Conclusion & Outlook . 126

Bibliography 129

vii

List of Theorems

2.1 Definition (Worst-case Approximation Ratio) 8

3.1 Proposition (Power Consumption in Atomic Intervals) 29
3.2 Proposition (Power Consumption of Chen et al.'s Algorithm) . 30
3.3 Theorem (Main Result) . 35
3.4 Lemma (Optimal Infeasible Solution) 36
3.5 Lemma (Characterizing Contributing Jobs) 37
3.6 Lemma (Job-centric Dual Function) 39
3.7 Proposition (Tracing a Job's Speed) 41
3.8 Proposition (Energy Bounds) 42
3.9 Lemma (Finished Jobs) . 44
3.10 Lemma (Low-yield Jobs) . 45
3.11 Lemma (High-yield Jobs) . 45
3.3 Theorem (Main Result) . 46

4.1 Fact (Optimal Available Properties) 55
4.2 Theorem (Lower Bound on Rejection Oblivious Algorithms) . 56
4.3 Lemma (Sleep and Idle Energy) 58
4.4 Lemma (Working Energy) . 59
4.5 Proposition (Running Condition) 61
4.6 Proposition (Arrival Condition) 62
4.7 Lemma (Rejected Value) . 64
4.8 Theorem (Main Result) . 66
4.9 Corollary (Main Result – Variant 1) 67
4.10 Corollary (Main Result – Variant 2) 67
4.11 Corollary (Main Result – Variant 3) 68
4.12 Theorem (Competitiveness for Bounded Speed) 68

ix

List of Theorems

5.1 Definition (Dual Lines and Upper Envelope) 80
5.2 Definition (Left Upper Envelope and Discontinuity) 81
5.3 Definition (Line Schedule) . 81
5.4 Lemma (Optimal Line Schedules) 81
5.5 Definition (Affection) . 83
5.6 Observation (Simple Affection) 83
5.7 Observation (Affection Cluster on Upper Envelope) 83
5.8 Observation (Affection Cluster on Left Upper Envelope) 83
5.9 Observation (Intersecting Jobs of Lower Density) 84
5.10 Observation (Obscuring Jobs of Higher Density) 84
5.11 Lemma (Density Ordering via Levels) 85
5.12 Lemma (No Inter-level Edges) 85
5.13 Lemma (Unique Parent) . 86
5.14 Lemma (No Backward Edges 1) 87
5.15 Lemma (No Backward Edges 2) 87
5.16 Definition (Affection Tree) . 88
5.17 Lemma (Affection Tree & Densities) 88
5.18 Definition (Event) . 90
5.19 Observation (Movement of Intersection Points) 92
5.20 Lemma (Movement of Interval Borders) 92
5.21 Lemma (Work Preserving Solution) 93
5.22 Lemma (Occurrence of Affection Change Events) 94
5.23 Theorem (Main Result: Correctness) 98
5.24 Theorem (Main Result: Running Time) 98
5.25 Lemma (Removing Edges is Somewhat Permanent) 99
5.26 Lemma (Total Number of Events) 100
5.27 Lemma (Calculating Events) . 101
5.28 Lemma (Updating the Affection Tree) 102

6.1 Observation (Throughput-based Lower Bound) 111
6.2 Observation (Sequential Connected Components) 113
6.3 Definition (Component Class) 113
6.4 Definition (Non-wasting Schedule) 114
6.5 Definition (Progressive Schedule) 114
6.6 Lemma (Schedules are Non-wasting & Progressive) 114
6.7 Definition (Balanced Schedule) 115
6.8 Proposition (Properties of Balanced Schedules) 115
6.9 Proposition (Active Jobs in Balanced Schedules) 115
6.10 Lemma (Nodes & Edges of Connected Components) 116
6.11 Theorem (Round Robin Approximation) 117
6.12 Theorem (Main Result 1: NP-hardness) 118
6.13 Lemma (Lower Bound based on Throughput) 120

x

List of Theorems

6.14 Lemma (Lower Bound based on Parallelism) 121
6.15 Theorem (Main Result 2: Approximation Ratio) 122
6.16 Theorem (Tight Approximation Algorithm) 125

xi

List of Figures

2.1 Illustration of the speed step function computed by OA. 13

3.1 ILP for profitable deadline scheduling. 27
3.2 Illustration of Chen et al.'s algorithm. 29
3.3 Comparison between PD and OA. 34

4.1 Basic notions for speed scaling with a sleep state. 55

5.1 Dual lines for a 4-job instance, and the associated schedule. . . 77
5.2 ILP and its dual for energy trade-off scheduling. 79
5.3 Illustration of the upper and the left upper envelope. 81
5.4 Illustration of Observation 5.7 and Observation 5.8. 84
5.5 Illustration of Observation 5.10. 84

6.1 Hypergraph representation of a schedule (scheduling graph). 112
6.2 Worst-case example for round robin schedule. 118
6.3 Reduction from Partition to ResourceScaling. 119
6.4 Worst-case instance for GreedyBalance. 126

xiii

List of Listings

3.1 Primal-dual algorithm PS with parameter 𝛿. 33

4.1 Rejection-oblivious online scheduler 𝐴. 58

5.1 Algorithm for computing an optimal energy trade-off schedule. 91

xv

Preface

Writing this thesis to get a Ph.D. degree was by far the biggest project
I ever approached. Writing the following lines is by far the most
satisfying part of it, as it signals myself that I'm done. If not for

the support of many colleagues, friends, and my family, I would not be in the
position to savor this moment. I am deeply grateful to all of you.

There are several people who had a substantial influence on my work and
who deserve more personal words of gratitude. One of them is my mentor and
supervisor Friedhelm Meyer auf der Heide. He not only gave me the possibility
to earn a Ph.D. degree but managed a perfect balance between guiding me
and letting me develop my own research profile. Without your advice and
trust, this thesis would not exist. Thank you.

Special thanks go to Kirk Pruhs, who invited me to work with him and
his research group, supported me in my postdoctoral plans, and agreed to
review this thesis. I truly enjoyed the work with you, your postdocs, and your
Ph.D. students. Thank you.

Working on my Ph.D. thesis was a time of many ups and downs. But even
when algorithms failed, proofs fell apart, and equations did not yield, my
colleagues ensured that work never became a burden. Andreas, with whom
I shared my office almost right from the start, made the early hours at work
less lonely and seemed to have an endless stock of ideas for decorations, cul-
minating in our very own, full-grown office palm tree. Sören (“dance-for-no-

xvii

Preface

reason”) was as musical an office-mate as I could hope for, and our scheduling
discussions and research sessions were always extremely productive, not least
because of his “Gegenbeispiel GmbH”. A very special thank you goes to my
namesake Peter (“der Freundliche”). I don't think there is anyone with whom I
had more discussions, be it on primal-dual algorithms, Starcraft 2 and eSports,
or everyday life. To all my other colleagues, I beg pardon for not naming
you explicitly. I enjoyed playing soccer in our weekly Theory Soccer Sessions,
spending my lunch breaks with you playing World of Padman, and chatting
during our regular meetings at the coffee machine. Thank you all.

I owe much to my family, especially to my parents Thomas and Liesel. You
paved the way for my education, helped me in countless ways during my
studies, and always provided a safe haven. Thank you.

Most of all, I thank the one person who had and has to endure all my moods,
complaints, practice talks, and long working hours. She who (literally) uses
brute force to ensure that I do not neglect other (more?) fun and less analytical
parts of life. She who is always there for me. She to whom this thesis is
dedicated. Thank You!

xviii

CHAPTER 1

Introduction

“ What matters most to the computer designers at Google is not speed, but power,
low power, because data centers can consume as much electricity as a city. ”

Eric Schmidt, former CEO Google [ML02]

High performance comes at a high cost, or so it seems if one considers
technology operating at extremes. The fuel consumption of sport
cars, the cooling cost of today's data centers, or the power consump-

tion of high-end graphics cards – all of these are immense, and doubling the
respective performance easily increases the cost by a factor of eight, nine, or
even more. Thus, it is not surprising that there is considerable research effort
in improving the efficiency of technical systems throughout all phases of their
design and development process. In this thesis, I study methods that deal with
such efficiency issues on an algorithmic level. In particular, I design theoretic
models that isolate specific aspects of a problem, with the goal to study their
inherent complexity and to design provably optimal as well as provably good
approximation and online algorithms.

A distinctive feature of my work is that it considers energy as a major goal in
algorithm design. Classical efficiency and complexity measures study merely
time and space as the primary computational resources. This is not too surpris-

1

1 Introduction

ing, as these are probably the most obvious and perceivable quality measures.
However, considering recent technical developments, a new trend becomes
apparent: energy claims its position as a first-class citizen among quality mea-
sures. Apart from the increased amount of research under the catchphrase
green computing, one can experience this phenomenon much more directly:

• battery life has become a major selling point for mobile devices like
notebooks, e-book readers, and (especially) mobile phones [Ste13],

• data center operators like Apple, Facebook, and Google aggressively
advertise their green computing efforts [App13a; Fac13; Goo13],

• and even mainstream operating systems like OS X 10.9 (a.k.a. Mavericks)
focus on energy efficiency [App13b].

Algorithmic research must live up to this increased public awareness and
rapid development of energy efficiency. Any software engineer learns how
to compute the time and space complexity of algorithms, e.g., by using tools
like the big O notation. However, we still lack a sound understanding and
scientific framework to reason about energy in a similar, systematic way. How
can we come up with such a framework, given that energy behaves physically
so differently than time and space? This is the driving research question
in energy-aware algorithm design. With my thesis, I hope to provide some
insights that get us closer to an answer.

1.1 A Primer to Speed Scaling

In many applications, the need for extreme operating speeds may occur once
in a while, but for the majority of time a lower performance level suffices to
handle the task at hand. In the case of computer systems, chip manufacturers
like Intel and AMD exploit this fact by providing means to throttle a processor's
speed. Such techniques are often referred to as dynamic voltage scaling or
– the term used in my thesis – speed scaling. Speed scaling allows to adjust a
processor's speed by using one of several (discrete) speed levels, where lower
levels consume less energy. If the workload becomes too high to guarantee
a sufficient quality of service, a processor may temporarily be set to a higher
speed level. Theoretical research in this area was initiated by the seminal work

2

1.2 Thesis Overview

of Yao et al. [YDS95]. The authors combined classical deadline scheduling
on one processor with a model for speed scaling, striving to schedule all jobs
while minimizing the total energy consumption.

More precisely, Yao et al.'s speed scaling model considers a single processor
that can run at an arbitrary, continuous speed and has to schedule a set of 𝑛
jobs. Each job 𝑗 has a release time 𝑟u�, a deadline 𝑑u�, and a processing volume
𝑝u�. The processor can run at any speed 𝑠 ≥ 0 and consumes P(𝑠) = 𝑠u� units of
energy per time unit while doing so. Here, 𝛼 > 1 is a constant often referred
to as the energy exponent. In retrospect, one of the most important results in
[YDS95] was the design of the online algorithm Optimal Available (OA), which
was later proven to be exactly 𝛼u�-competitive by Bansal et al. [BKP04]. The
best known lower bound for deterministic algorithms is u�u�−1

u� [Ban+09]. Due to
its simplicity, OA is used as the basis of many sophisticated algorithms both in
the original speed scaling model as well as in its numerous variants.

1.2 Thesis Overview

My thesis aligns with the rich body of literature on variants of Yao et al.'s speed
scaling model. It consists of four parts, the first three of which are directly
related to this model. Parts one (Chapter 3) and two (Chapter 4) give results for
different price-collecting variants of the original problem, where the scheduler
may miss a job's deadline if it pays a job-specific penalty. Part three (Chapter 5)
replaces the deadline requirement by the classical flow time objective. The last
part (Chapter 6) introduces a new type of resource constrained scheduling, in
the remainder denoted as shared resource scaling. This last part does not directly
consider energy, but it might be a first step towards a theoretical model where
energy is seen as a resource shared by several processors. The remainder of
this section provides a short description of each part and the corresponding
results.

Profitable Deadline Scheduling This part generalizes and improves work
of Chan et al. [CLL10a]. They consider the price-collecting version of the
deadline speed scaling model for a single processor. That is, the scheduler may
miss deadlines if it is willing to pay a job-specific penalty corresponding to
the jobs' values 𝑣u�. Chan et al. [CLL10a] design an algorithm based on Optimal

3

1 Introduction

Available and adapt the potential function analysis by Bansal et al. [BKP04].
They prove a competitiveness of at most 𝛼u� + 2𝑒𝛼. I improve upon this in two
respects:

(a) I design an algorithm with a competitiveness of exactly 𝛼u�.

(b) I generalize the algorithm and its analysis to arbitrary many processors
while maintaining the competitive ratio of 𝛼u�.

The proposed algorithm has similarities to Chan et al.'s, but its design and
analysis is significantly different from prior approaches and from the typical
potential function argument (which is dominant in this area). It builds upon
and extends ideas of Gupta et al. [GKP12], utilizing techniques from convex
optimization. The systematic nature and improved results give hope that this
approach might turn out useful in the analysis of other speed scaling problems.

The model, analysis, and results presented in this part are based on the
following publication:

2013 (with P. Pietrzyk). “Profitable Scheduling on Multiple Speed-
Scalable Processors”. In: Proceedings of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), cf. [KP13].

Slow Down & Sleep for Profit The second part extends the results of Chan
et al. [CLL10a] in another way, by considering the more realistic processor
model of Han et al. [Han+10]. Here, the processor's energy consumption at
speed 𝑠 is given by P(𝑠) = 𝑠u� + 𝛽, where 𝛽 > 0 models the energy necessary to
keep the system awake (e.g., to maintain the registers). The scheduler may put
the processor into a sleep state, where energy consumption is negligible but
resuming to work causes additional costs 𝛾 > 0. Most modern devices feature
such a technique (e.g., hibernation). The idea extends to data centers, which
may power off some systems during times of low load but need to reactivate
them fast in case of sudden workload peaks.

Han et al. [Han+10] give an 𝛼u�+2-competitive algorithm for the online setting
without price-collection. My work shows that combining price-collection with
the more realistic processor model adds a new kind of complexity. More
specifically, a natural class of “local” algorithms has – in contrast to the setting
without sleep states – an unbounded competitive ratio. The maximum value

4

1.2 Thesis Overview

density 𝛿max = maxu�
u�u�

u�u�
(the maximum ratio between a job's value and its total

processing volume) turns out to be inherently connected to the achievable
competitive ratio, as shown by the two main results:

(a) The competitiveness of any such algorithm is lower-bounded by 𝛺(𝛿max).

(b) Such an algorithm can achieve a competitiveness of 𝛼u� + 2𝑒𝛼 + O(𝛿max).

The constants hidden by the Landau symbols match. These results extend to
models with a bounded maximum speed.

The model, analysis, and results presented in this part are based on the
following publication:

2012 (with A. Cord-Landwehr and F. Mallmann-Trenn). “Slow
Down and Sleep for Profit in Online Deadline Scheduling”. In: Pro-
ceedings of the 1st Mediterranean Conference on Algorithms (MedAlg),
cf. [CKM12].

Trading Energy for Responsiveness In contrast to the previous parts, this
part considers an offline problem. Moreover, jobs are no longer assumed
to have deadlines. Instead, the classical scheduling objective of (fractional)
weighted flow time (a.k.a. response time) plus energy is considered. This prob-
lem's complexity is a long-standing open question. Pruhs et al. [PUW04] prove
that, for non-fractional flow, it can be solved optimally by a polynomial-time
algorithm if all jobs have size one. Cole et al. [Col+12] consider the prob-
lem with general job sizes but for fractional flow. While they cannot settle
the problem's complexity, they give an algorithm that recognizes an optimal
schedule in polynomial time. The results presented in my thesis make a further
step towards settling the problem's complexity by giving a polynomial-time
algorithm for the fractional flow version if there is only a discrete number of
speeds. Note that the algorithm's running time is polynomial in the number of
both jobs and speeds. Its design uses a geometric approach based on structural
properties obtained from the problem's primal-dual formulation.

The model, analysis, and results presented in this part are based on the
following publication:

2014 (with A. Antoniadis, N. Barcelo, M. Consuegra, M. Nugent,
K. Pruhs and M. Scquizzato). “Efficient Computation of Optimal

5

1 Introduction

Energy and Fractional Weighted Flow Trade-off Schedules”. In:
Proceedings of the 31st Symposium on Theoretical Aspects of Computer
Science (STACS). in press, cf. [Ant+14].

Sharing Scalable Resources In the last part, not energy efficiency but re-
source constrained scheduling is considered. In contrast to most classical
resource constrained scheduling models, the proposed model allows the sched-
uler to partially process a job if only a fraction of the requested resource is
available. As a simple example, consider jobs with extensive I/O transactions
and a number of processors sharing a single I/O bus of a fixed bandwidth.
Granting a job its full requested bandwidth guarantees minimal processing
time. However, even if granted only half of its requested bandwidth the job
can be processed, if only at half the speed. That is, the speed a job is processed
with depends on the amount of resource assigned to it.

The idea of such resource dependent processing speeds is not completely
new. Józefowska and Węglarz [JW98] consider so called discrete-continuous
scheduling problems. The “discrete” part of the term refers to normal multi-
processor scheduling, the processors constituting the discrete resource. The
“continuous” part relates the processing speed of a job 𝑗 to the share it receives
of the (continuous) resource. In general, results for the discrete-continuous
scheduling model seem to be either very pessimistic or heuristic in nature. To
approach this problem from a more analytical angle, my thesis focuses on the
continuous aspect (avoiding additional complexity originating from normal
scheduling decisions). To this end, I consider a simplified model with discrete
time steps and assume that jobs are already assigned to one of the 𝑚 processors
and have a predefined ordering. Thus, the scheduler only has to assign the
resource each processor is granted at a time step. For instances containing
only unit size jobs, I prove NP-hardness in 𝑚 and present an approximation
algorithm with a worst-case approximation ratio of exactly 2 − 1/u�.

The model, analysis, and results presented in this part are based on the
following technical report. An extended version of these results is currently in
preparation for submission.

2014 (with F. Meyer auf der Heide, L. Nagel, S. Riechers and T. Süß).
“Sharing Scalable Resources”. In preparation, cf. [Kli+14].

6

CHAPTER 2

Preliminaries

“ Give me six hours to chop down a tree and I
will spend the first four sharpening the ax. ”

Abraham Lincoln

Before we head into the research parts of this thesis, let us prepare our-
selves by introducing a few preliminaries that ease the further dis-
cussions. Note that all the Chapters 3, 4, 5, and 6 are, in principle,

self-contained. In particular, they are laid out such that readers with a working
knowledge of theoretical computer science can pick an arbitrary chapter and
follow the line of thought without further ado, albeit not necessarily at full
detail.

Field Manual This chapter is not exactly intended to be read front to back.
Instead, the reader is encouraged to cherry-pick what raises her interest and
what seems most beneficial. For readers not familiar with the speed scaling
terminology, I recommend to read at least Section 2.2, which introduces a basic
model that will re-appear in different variations throughout all remaining
chapters.

7

2 Preliminaries

2.1 Basics: Approximation & Online Algorithms

In the following we recapitulate the most basic definitions and intuitions for
approximation and online algorithms. In particular, we consider how to mea-
sure an algorithm's quality by means of its approximation ratio and competitive
ratio. For excellent, much more elaborate introductions to these topics, see the
books by Vazirani [Vaz01] and Borodin and El-Yaniv [BE98], respectively.

Approximation Algorithms Given that certain complexity assumptions are
true, computation of optimal solutions is often provably intractable. This is
the case for so called NP-hard problems, which cannot be solved in time that
depends polynomially on the input size if the complexity classes NP and P are
not equal (the infamous NP vs. P problem). This inequality seems quite likely
to most experts; in fact, most cryptographic primitives are based on this or
similar assumptions. Since many real-world problems (e.g., flight scheduling,
project planning, manufacturing processes, …) fall into the class of NP-hard
problems and must be solved regularly and efficiently, we need alternatives
to computing optimal solutions. Approximation algorithms form one such
alternative. The typical goal is to design efficient (i.e., running in time that is
polynomial in the input) algorithms that compute nearly optimal (i.e., provably
close to optimal) solutions. There are different ways to measure the quality of
approximation algorithms. The most well-known is probably via the (relative)
worst-case approximation ratio (which is also the quality measure used in this
thesis). For minimization problems, one can define it as follows:

Definition 2.1 (Worst-case Approximation Ratio). Let 𝛱 denote the class of
all feasible instances for a given minimization problem. Moreover, let 𝐴(𝐼)
and OPT(𝐼) denote the cost of the approximation algorithm 𝐴 and an optimal
solution for a given problem instance 𝐼. Then the worst-case approximation ratio
of 𝐴 is

𝛾 ≔ sup
u�∈u�

𝐴(𝐼)
OPT(𝐼)

. (2.1)

Note that 𝛾 ≥ 1 for any algorithm 𝐴 (and 𝛾 = 1 only for optimal algorithms).

Online Algorithms Approximation algorithms essentially trade quality for
computation time. But sometimes other resources than computation time

8

2.2 The First Speed Scaling Model

are restricted. One restriction in many real-world scenarios is the lack of
knowledge, especially with respect to the future. This is often referred to as the
online setting of a problem. Scheduling is a typical example for an area where
online problems occur: when jobs arrive over time, the scheduler can often not
know how many and what jobs are yet to come. Graham [Gra66] was probably
among the first to study such scenarios (albeit not in the terminology of online
problems). He considered the problem of how to schedule 𝑛 jobs with different
processing volumes on 𝑚 identical machines to minimize the latest completion
time. In particular, he studied the greedy algorithm that considers jobs in a
fixed order and assigns the current job to the machine of smallest load. He
proved that its quality varies by a factor of at most 2 − 1/u�, depending on the
job order. This is a valid online algorithm: it needs no knowledge of future
jobs but takes decisions only based on the past and current jobs. It follows
easily from [Gra66] that this greedy algorithm is by a factor of at most 2 − 1/u�

worse than an optimal (offline) algorithm.
This kind of statement, bounding the worst-case quality of an algorithm

relative to an optimal solution, is probably the most common quality measure
used for online algorithms and is referred to as the algorithm's (worst-case)
competitive ratio. Formally, it is simply the worst-case approximation ratio of
a given (deterministic) online algorithm. See [BE98] or, more compact and
focused on scheduling problems, [PST04] for an in-depth introduction to online
algorithms.

2.2 The First Speed Scaling Model

Let us give a formal pendant to the speed scaling description from Section 1.1.
Remember that speed scaling describes a technique to adapt a processor's
speed at runtime to the current workload. The model we present is due to the
seminal work of Yao et al. [YDS95], which initiated theoretical research in this
area. We adapt the notation to mimic (as far as possible) the notation of later
chapters.

9

2 Preliminaries

2.2.1 Model Notions

Processor Model Consider a single speed-scalable processor. It can run at
any speed 𝑠 ∈ ℝ≥0. While doing so it processes work at a rate of 𝑠 and con-
sumes energy at a rate of P(𝑠). Here, P∶ ℝ≥0 → ℝ≥0 is a typically continuous
and convex function, often referred to as the processor's power function. If the
speed at time 𝑡 is given by a speed function 𝑠 ∶ ℝ≥0 → ℝ≥0, the workload pro-
cessed and energy consumed during a time interval [𝑡1, 𝑡2) can be expressed
by

𝑊(𝑡1, 𝑡2) ≔ ∫
u�2

u�1
𝑠(𝑡) d𝑡 (2.2)

and

𝐸(𝑡1, 𝑡2) ≔ ∫
u�2

u�1
P(𝑠(𝑡)) d𝑡, (2.3)

respectively.
Typically, the power function is assumed to be of the form P(𝑠) = 𝑠u�, with a

constant 𝛼 that is roughly in the range two to five. The standard example for
this energy exponent is 𝛼 = 3, which leads to a model that mimics the energy
consumption of CMOS-based systems reasonably well1.

Job Model The processor has to process a set of 𝑛 jobs 𝒥 = { 1, 2, … , 𝑛 }.
Each job 𝑗 has a release time 𝑟u�, a deadline 𝑑u�, and a processing volume2 𝑝u�. A job
must be fully processed between its release time and its deadline. Jobs are
preemptable (i.e., can be suspended at any time and resumed later on) but
cannot be processed in parallel (i.e., the processor can process at most one job
at any time).

Schedules A schedule 𝑆 assigns jobs to the processor, ensuring that at most
one job is processed at any time, and sets the processor's speed. It can be
described by a speed function 𝑠 ∶ ℝ≥0 → ℝ≥0 and a job assignment function
𝐽 ∶ ℝ≥0 → 𝒥 . We say a schedule is feasible if it fully processes all jobs (between

1This is typically referred to as the cube-root rule [Bro+00].
2We will refer to a job's processing volume also as its size, workload, or simply work.

10

2.2 The First Speed Scaling Model

their release times and deadlines). That is, feasible schedules must ensure that

∑
[u�1,u�2)⊆u�−1(u�)∩[u�u�,u�u�)

u�u�u�u�u�u�u�

𝑊(𝑡1, 𝑡2) ≥ 𝑝u� (2.4)

holds for all 𝑗 ∈ 𝒥 . The total energy consumption of 𝑆 is 𝐸u� ≔ 𝐸(0, ∞).

Schedule Quality The quality of a schedule is measured by its total energy
consumption. We strive for schedules that are as energy-efficient as possible.
Thus, our general objective is to find a schedule that minimizes 𝐸u�.

We consider essentially two different settings for this quality measure: the
classical offline setting and the online setting. As described in Section 2.1,
these settings differ in that an algorithm in the online setting has no a priori
knowledge of the jobs and their properties, while an offline algorithm knows
the number of jobs as well as all their release times, deadlines, and processing
volumes right from the start.

2.2.2 Optimal Offline Algorithm & Optimal Available

Besides introducing this model, Yao et al. [YDS95] gave an efficient optimal
offline algorithm, typically referred to as YDS. In essence, YDS is a greedy
algorithm. It iteratively computes intervals of maximum density, where the
density of an interval [𝑡1, 𝑡2) is defined by

𝛿(𝑡1, 𝑡2) ≔
∑u�1≤u�u�,u�u�≤u�2

𝑝u�

𝑡2 − 𝑡1
. (2.5)

It is easy to see that a schedule running at speed 𝛿(𝑡1, 𝑡2) during the interval
[𝑡1, 𝑡2) and scheduling jobs by earliest deadline first finishes all corresponding
jobs. The YDS algorithm proceeds by deleting the scheduled jobs and the
corresponding time interval from the given input (adjusting release times
and deadlines ≥ 𝑡1). We will not elaborate on the correctness and running
time of this algorithm, but refer instead to [BKP07]. Nevertheless, note that
Bansal et al. [BKP07] gave a very elegant optimality proof of YDS, based on a
convex programming formulation and the corresponding KKT conditions (see
Chapter 3 for further details).

11

2 Preliminaries

Optimal Available For the online setting, Yao et al. [YDS95] proposed an
algorithm called Optimal Available (OA). Its algorithmic idea is rather simple
and lives up to the name: whenever a new job is released, compute an optimal
schedule for the available (remaining) workload (e.g., via YDS). The authors
did non provide an analysis of OA's competitive ratio, and it took nearly ten
years until such an analysis was provided by Bansal et al. [BKP04]. There,
the authors used a sophisticated potential function argument to prove that
OA is exactly 𝛼u�-competitive. Apart from [YDS95], this is probably one of
the most influential papers in the speed scaling literature, as the proposed
potential function method has been applied in a multitude of related speed
scaling problems. One example is Chapter 4 of this thesis, where we adapt this
analysis to a price collecting variant of speed scaling featuring a sleep state.
See Section 2.3 for further examples.

A noteworthy structural property of OA follows easily from the observation
that all the intermediate schedules computed when a new job is released
correspond to a YDS schedule where all jobs have equal release times. After
all, OA considers only the remaining workload and does not account for jobs
not yet released. Consider such an instance, where all available jobs have
release times equal to the current time 𝑡curr. By definition of an interval's
density, any interval of non-zero density must start at 𝑡curr. From the recursive
nature of YDS, we see that the speed in the resulting schedule must form a
step function, as illustrated in Figure 2.1.

2.3 Survey of Relevant Speed Scaling Results

In contrast to the rather condensed and focused literature discussions in later
chapters, the following section provides a more complete overview of the
history and developments in energy-efficient algorithm design with respect to
speed scaling. Readers questing for a more detailed overview are encouraged to
take a look at the excellent survey by Albers [Alb11]. Further recommendations
on this and related topics include [PST04; IP05; Alb10].

We survey the two major research directions in speed scaling: scheduling
with respect to deadlines [YDS95] (cf. Chapters 3 and 4) and with respect
to response time plus energy [PUW08] (cf. Chapter 5). Since the focus of
Chapter 6 is not (directly) related to speed scaling, we defer the corresponding

12

2.3 Survey of Relevant Speed Scaling Results

u�curr

time

sp
ee

d

finished workload
remaining workload

Figure 2.1: The speed (step) function (green) computed by OA at time 𝑡curr. The
indicated intervals correspond to the release-deadline intervals of jobs still alive and
already released at time 𝑡curr. For the computation of the schedule, all the release
times of these jobs are effectively 𝑡curr.

literature overview to that chapter.

2.3.1 Speed Scaling with respect to Deadlines

As discussed in Section 2.2, the first model and results for speed scaling are
due to Yao et al. [YDS95]. Apart from the optimal offline algorithm YDS and
the online algorithm OA, the authors propose and analyze another online
algorithm called Average Rate (AVR). For every job AVR computes the density

u�u�

u�u�−u�u�
, sets the processing speed at time 𝑡 to the total density of active jobs,

and uses the Earliest Deadline First (EDF) policy to assign jobs to the processor.
Yao et al. prove that AVR's competitive ratio lies in [𝛼u�, 2u�−1𝛼u�]. Bansal et
al. [Ban+08a] tighten this by raising the lower bound to (2−u�)u�u�u�

2 , where 𝛿
depends on 𝛼 and approaches zero as 𝛼 → ∞. The same paper provides an
elegant, alternative proof (based on a potential function) for AVR's competitive
ratio.

Champion Algorithms Currently, the best competitive ratios for speed scal-
ing with respect to deadlines are achieved by the algorithms BKP (for large 𝛼)
and qOA (for small 𝛼). The BKP algorithm by Bansal et al. [BKP04]3 achieves
a competitive ratio of 2(u�

u�−1
)

u�
𝑒u� (≈ 2𝑒u�+1 for large 𝛼). The authors also give

3See [BKP07] for the journal version, probably one of the most influential papers in this area.

13

2 Preliminaries

a lower bound of (4/3)u�

2 for the competitiveness of any randomized online-
algorithm. The qOA algorithm is designed especially for small values of 𝛼.
It is a parametrized version of OA, running at 𝑞 times the speed OA would
use. It is due to Bansal et al. [Ban+09] and achieves a competitive ratio of at
most 4u�

2√u�u� (if 𝑞 is set to 2 − 1/u�). For 𝛼 ∈ { 2, 3 }, a specialized analysis yields
even better results. One of the major technical contributions of this work is the
introduction of a new type of potential functions, which differs considerably
from the one used previously for OA and AVR.

Maximum & Discrete Speeds Chan et al. [Cha+07]4 added a new aspect to
the speed scaling model by restricting the processor's maximum speed. Since
such a processor may not be able to feasibly schedule all jobs, the typical objec-
tive in this case is to maximize the throughput (i.e., the total processing volume
of finished jobs). Even without energy considerations, no online algorithm
can be better than 4-competitive with respect to throughput [Bar+91]. Chan
et al. proposed an algorithm which is O(1)-competitive with respect to both
throughput and energy. The Slow-D algorithm by Bansal et al. [Ban+08b]
achieves an optimal 4-competitiveness for throughput while maintaining a
constant competitive ratio with respect to energy. In Chapter 4, we will see
another example for a setting where the maximum speed is bounded.

If the processor features only a discrete set of 𝑑 different speeds (similar
to the model presented in Chapter 5), the YDS algorithm can be adapted to
yield an optimal polynomial-time algorithm (essentially, by using the discrete
speed levels to simulate an optimal continuous solution). A more efficient,
direct approach by Li and Yao [LY05] computes an optimal schedule in time
O(𝑑𝑛 log 𝑛).

Impact of Sleep States Sleep states are another common energy conser-
vation technique, capturing the phenomenon that most processors have a
non-zero energy consumption when idling (e.g., to maintain the registers). To
avoid this, a processor may transition into a sleep state, in which it has a very
low (negligible) energy consumption, but resuming to work incurs additional
cost (in form of time and/or energy). In the presence of sleep states, it may be

4See [Cha+09] for the journal version.

14

2.3 Survey of Relevant Speed Scaling Results

beneficial to run jobs at slightly higher speeds in order to enter the sleep state
earlier. We will consider such sleep states in Chapter 4 of this thesis.

A theoretical model considering both sleep states and speed scaling (with
arbitrary convex power functions) has first been proposed by Irani et al. [ISG03].
The authors present an offline algorithm for the problem with an approxima-
tion ratio of 3 (improved to 2 in the journal version [ISG07]) and an online
algorithm based on monotonic online algorithms5 for the setting without sleep
states. Han et al. [Han+10] propose the online algorithm SOA (based on OA)
and show that it achieves a competitive ratio of 𝛼u� + 2 if the power function
has the form P(𝑠) = 𝑠u� + 𝛽. This algorithm even works well in the case of a
fixed maximum speed, achieving an optimal competitive ratio for throughput
and being 𝛼u� + 𝛼24u� + 2-competitive with respect to energy. The complexity
of the offline problem was recently settled by Albers and Antoniadis [AA12].
They prove NP-hardness and give improved approximation results (e.g., a
4/3-approximation for arbitrary convex power functions).

Impact of Multiple Processors When considering multiple processors, one
additional aspect to consider is whether job migration – moving a job from one
to another processor – is allowed and, if so, at which cost. Without migration,
a simple reduction from 3-Partition implies NP-hardness, even for identical
release times and deadlines. In contrast, if migration is allowed, Chen et
al. [Che+04] give an optimal polynomial-time offline algorithm.

For the non-migratory case, Albers et al. [AMS07] give a more involved
NP-hardness proof, which holds even for two processors and jobs of unit size.
For a variable number of processors, they prove strong NP-hardness. On
the positive side, the authors propose an algorithm with an approximation
ratio of 𝛼u�24u� for unit size jobs. Improved results are shown for restricted
inputs which feature agreeable deadlines, where for any pair of jobs 𝑗, 𝑗′ with
𝑟u� ≤ 𝑟u�′ we must have 𝑑u� ≤ 𝑑u�′. This restriction allows the formulation of an
optimal polynomial-time offline algorithm for the case of unit size jobs, and to
design an algorithm that computes an 𝛼u�24u�-approximation in the case of non
unit size jobs. Based on these offline algorithms, the authors do also provide
online algorithms achieving constant competitive ratios. A result by Greiner

5Algorithms that increase the processor speed only at the arrival of jobs, as for example AVR.

15

2 Preliminaries

et al. [GNS09] presents a technique yielding algorithms for multiple processors
based on single processor algorithms at the cost of an additional factor of 𝐵u�

in the approximation ratio and competitive ratio, respectively6. Similarly, for
another increase of the same factor, one can transform migratory strategies to
non-migratory strategies.

When migration is allowed, Bingham and Greenstreet [BG08] give an opti-
mal polynomial-time algorithm. It is based on linear programming and, as the
authors note, might have a prohibitively high complexity for most practical
applications. Albers et al. [AAG11] propose a more efficient, purely combi-
natorial algorithm based on repeated maximum flow computations. Also,
they prove that an extension of OA to multiple processors is – as in the single
processor case – exactly 𝛼u�-competitive. Similarly, for an extension of the AVR
algorithm, a competitive ratio of 3u�u�u�

2 + 2u� is proven.
Lam et al. [Lam+07] confine their view to a setting with two speed-bounded

processors. They achieve a strategy which is 3-competitive concerning through-
put and O(1)-competitive concerning energy. Note that the best possible com-
petitive ratio for the throughput objective is 2, even if energy is of no concern.

Approaches based on Convex Programming Many results in the area
of speed scaling are based on potential functions. Such arguments lead to
very elegant and clean proofs once a suitable candidate for the potential has
been found. However, designing such a function is often said to be more art
than science, even for experienced researchers (although there are guidelines
for best practices [IMP11]). In the light of this, analysis techniques based on
mathematical programming and duality theory have recently gained much
attention. Such techniques are not uncommon for the offline setting [BKP07;
PUW08; Col+12; Ant+14], but their potential for the online setting has not been
realized until about two years ago. Independently from each other, both Anand
et al. [AGK12] and Gupta et al. [GKP12] used mathematical programming
formulations of classical speed scaling problems together with techniques
from duality theory to obtain matching competitive ratios for many problems
analyzed via potential functions before. The beauty of this technique lies largely
in its systematic nature. Gupta et al. [GKP12] used it to derive and analyze

6With u�u� denoting the u�-th Bell number (i.e., the number of partitions of a set of size u�).

16

2.3 Survey of Relevant Speed Scaling Results

an online algorithm similar to OA that has the same competitiveness of 𝛼u�.
They also prove new results for online routing in a network of speed-scalable
routers. Anand et al. [AGK12] consider mainly online problems with respect to
resource augmentation, improving the competitive ratios of several scheduling
problems concerned with weighted response times. Following these initial
results, [Ngu13] and the results presented in Chapter 3 elaborate on these
techniques and extend them to other problem variants. Nguyen [Ngu13] give
improved results for speed scaling on unrelated machines with respect to
weighted response time plus energy (see below). In Chapter 3, we use duality
theory to derive an algorithm that is 𝛼u�-competitive for the price collection
version of speed scaling with deadlines on multiple processors. See that chapter
for a more detailed discussion of this new approach and its potential.

2.3.2 Speed Scaling with respect to Response Time Plus Energy

Pruhs et al. [PUW04]7 initiated research on the second major research branch
in energy-aware scheduling: speed scaling with respect to flow time (a.k.a. re-
sponse time). This is a typical objective for desktop environments, where the
end user expects a responsive system. There are different ways to combine the
flow time objective with energy efficiency. The most common is probably to
consider a linear combination of total flow time and energy. Intuitively, this
allows for a user-defined trade-off between energy and responsiveness: by
adjusting the energy unit in this linear combination, the user specifies how
much energy she is willing to spent on decreasing the response time by one
unit. We will consider such a problem in Chapter 5 of this thesis.

Running on Battery Pruhs et al. [PUW04] consider the case of unit size jobs
and the objective to minimize total flow time with a fixed energy budget8.
For this case, it is easy to see that an optimal schedule can use the First In
First Out (FIFO) policy to assign jobs to the processor. Thus, if we order
the jobs by increasing release times, we can restrict ourselves to schedules
with completion times 𝑐u� such that 𝑐1 < 𝑐2 < ⋯ < 𝑐u�. Moreover, using
the power function's convexity, one can see that each job 𝑗 can be run at a

7See [PUW08] for the journal version.
8Their approach extends to the objective of flow time plus energy.

17

2 Preliminaries

constant speed 𝑠u� (cf. [YDS95]). It is relatively easy to derive a convex program
for this problem (cf. [PUW04]). However, the resulting algorithm has the
drawbacks of being rather complex and is not guaranteed to run in lower order
polynomial time. Thus, Pruhs et al. use the convex program only to extract
structural properties of optimal schedules, which are then used to derive an
efficient combinatorial algorithm. The basic idea is to classify schedules by
configurations. A configuration 𝜙∶ 𝒥 → { <, =, > } is a function that specifies
how the completion time 𝑐u� of each job relates to the release time 𝑟u�+1 of its
successor. For any fixed configuration 𝜙, one can define a map 𝑀u� mapping
the available energy to the optimal total flow time for this amount of energy.
Computing the lower envelope 𝑀(𝐴) ≔ minu� 𝑀u�(𝐴) over all maps 𝑀u� solves
the scheduling problem for arbitrary energy bounds 𝐴. The basic approach
to compute 𝑀(𝐴) is as follows: For large enough 𝐴, one has 𝑐u� < 𝑟u�+1 for
the optimal schedule (there is enough energy to finish all jobs fast enough
to avoid overlaps). Now, while continuously decreasing the available energy
𝐴, one has to find a way to (a) compute 𝑀u�(𝐴) for any given configuration
𝜙, (b) recognize when the optimal configuration changes, and (c) find the
new optimal schedule when configurations change. Details of this approach
can be found in [PUW04]9. Bunde [Bun06] extends these results to multiple
processors, showing how to compute arbitrarily good approximations (still
for jobs of unit size). The model and approach presented in Chapter 5 of this
thesis consider a related problem for arbitrary work jobs (but with discrete
speeds and a relaxed objective function). See that chapter for a more detailed
and focused literature discussion on this topic.

The Online Setting Scheduling with a fixed energy budget hardly allows for
good online algorithms: not having any hints about the number of future jobs,
the online algorithm cannot know how much of its energy budget to invest
into available jobs. Thus, Albers and Fujiwara [AF06] propose to minimize
a linear combination of total flow time and energy. For the non-preemptive
case and jobs of arbitrary processing volumes, they prove a lower bound of
𝛺(𝑛1−1/u�) on any deterministic algorithm's competitive ratio.10 For the case

9See [PUW08] for the journal version.
10This implies that speed scaling does not help (much) to overcome bad scheduling decisions,

since this nearly matches the corresponding bound without speed scaling (which is u�(u�)).

18

2.3 Survey of Relevant Speed Scaling Results

of unit size jobs, a deterministic online algorithm that achieves a constant
competitive ratio of at most 8.3𝑒(1 + 𝛷)u� is proposed (𝛷 being the golden
ratio). In the discussion at the end of the journal version of their paper [AF07],
the authors propose a simple, natural algorithm which they believe to yield an
improved performance: by setting the processor speed to u�√𝑙, where 𝑙 denotes
the number of active jobs, both parts of the cost function (flow and energy)
increase at the same rate 𝑙. Bansal et al. [BPS07] prove that this algorithm is in
fact 4-competitive for unit size jobs. For the case of jobs with an arbitrary pro-
cessing volume and total weighted flow time, the authors derive an algorithm
yielding a competitive ratio of approximately u�2/ln2 u� (for large values of 𝛼 and
ignoring lower order terms). It is important to note that this algorithm's speed
depends on the remaining work of active jobs (instead of their number).

For both algorithms in [BPS07], the analysis is based on the idea of another
objective, called fractional weighted flow time plus energy. This objective applies
in situations where jobs benefit from any (infinitesimal small) completed por-
tion of a job (instead of only fully completed jobs). See also Chapter 5, where
we consider a speed scaling problem with respect to fractional weighted flow
time plus energy. This objective allows for a much simpler analysis11 and can
be generalized (in the setting of [BPS07]) to the (integral) weighted flow plus
energy objective at the loss of only a small factor in the competitive ratio. An
interesting feature of [BPS07] is its usage of a potential function instead of
directly comparing the online schedule to an optimal schedule, as was done
before [PUW04; AF06].

Bounded Maximum Speed Bansal et al. [Ban+08b] transfer the aforemen-
tioned results to the setting of bounded maximum speed. More exactly,
they give a 4-competitive algorithm in the case of unit size jobs and a (2 +
o(1)) u�

ln u� -competitive algorithm for the objective of fractional weighted flow
time plus energy. If using a maximum-speed augmented processor12, the last
result can be lifted to the integral weighted flow time plus energy objective.
These bounds essentially match the ones in the unbounded speed setting.

11For example, even for a constant speed processor, computing the optimal weighted flow
schedule is NP-hard, while for fraction flow an optimal schedule is easily achieved by the
Highest Density First (HDF) policy.

12Bansal and Chan [BC09] prove that there is no O(1)-competitive algorithm for minimizing
total weighted flow time (even without energy).

19

2 Preliminaries

Lam et al. [Lam+08] study algorithms where the speed of the online algo-
rithm depends solely on the number of active jobs (instead of their remaining
work, as is the case in [BPS07]). Such algorithms have the benefit to be eas-
ier to employ in non-clairvoyant settings (where the processing volumes of
jobs are not known, even when released) and not to continuously change their
speed. They propose an algorithm for the clairvoyant setting, which uses Short-
est Remaining Processing Time (SRPT) as the job selection policy and ensures
that the power matches the active number of jobs. This improves the results
from [BPS07; Ban+08b] to competitive ratios of approximately u�

ln u� (instead of
the square of this term).

Arbitrary Power Functions A result by Bansal et al. [BCP09]13 yields an-
other generalization, considering for the first time power functions which are
not of the form P(𝑠) = 𝑠u�. They give a 3 + 𝜀-competitive algorithm14 for total
flow time plus energy and a 2+𝜀-competitive algorithm for fractional weighted
flow time plus energy. Note that these are the first results for these problems
with a competitive ratio that does not depend on 𝛼 (even for the classical power
function). The analysis is based on a new kind of potential function, inspired
by the one used in [Lam+08]. Based on this, further improvements are given
by Andrew et al. [AWT09], showing that the schedule using SRPT and speed
P−1(𝑙) is 2-competitive. Furthermore, they show that this is essentially tight,
since for any algorithm there is a power function yielding a matching lower
bound.

13See [BCP13] for the journal version.
14SRPT for job selection and speed set to u�−1(u� + 1), where u� is the number of active jobs.

20

CHAPTER 3

Profitable Deadline Scheduling

“ With multi-core it’s like we are throwing this Hail Mary pass down the field
and now we have to run down there as fast as we can to see if we can catch it. ”

David Patterson, UC Berkeley computer science professor

From an economical point of view, the value of energy has increased
tremendously during the last decades. This applies not only to the
energy consumed in small-scale computer systems but especially to the

energy consumption in large, massively parallel data centers. According to
current reports (see, for example, the report by Barroso and Hölzle [BH07]),
the decisive factors regarding the costs of running a data center are mostly
the energy needed for the cooling process and for the actual computations
rather than the acquisition of the necessary hardware. Thus, energy efficiency
has high priority for all big data center operators1. In order to maximize their
revenue, data centers strive to minimize the energy consumption while still
guaranteeing a sufficiently high quality of service to their customers. One of
the most popular and widespread techniques to save energy is speed scaling,
as introduced in the previous chapters. In this chapter, we study parallel

1Detailed information about energy-saving efforts of Apple, Facebook, and Google can be
found, for example, on the corresponding websites [App13a; Fac13; Goo13].

21

3 Profitable Deadline Scheduling

systems (like data centers) that provide support for speed scaling. How can
data centers utilize speed scaling to save energy while maintaining a suffi-
ciently high quality of service? That is to say, can we come up with scheduling
algorithms to run data centers more profitably?

Profitability Simply decreasing the speed at times of small load may lower
the total energy consumption substantially. However, a lower speed often also
implies a lower quality of service, which in turn may impair a data center's
revenue. On a relatively basic level, we may imagine the situation for data cen-
ters as follows: Jobs of different sizes, values, and time constraints (deadlines)
arrive over time at the data center. For finishing a customer's job in time, the
data center receives a payment corresponding to the job's value. However, to
finish a job, the data center has to invest an amount of energy depending on
the job's size and time constraints. Investing into low-value jobs that require
much energy lowers the profit. But even processing jobs whose values seem
to justify the energy investment may be bad, as this may hinder the efficient
processing of more lucrative jobs that arrive later. Thus, one has to carefully
choose not only how and when to process the different jobs but also which to
process at all. The remainder of this chapter studies this scenario by extending
the classical speed scaling model to multiple processors and by considering
an objective that incorporates profitability.

Chapter Basis The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2013 (with P. Pietrzyk). “Profitable Scheduling on Multiple Speed-
Scalable Processors”. In: Proceedings of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), cf. [KP13].

Chapter Outline Before we give a formal description of the aforementioned
scenario, we survey related work and describe our contribution with respect to
known results in Section 3.1. Afterward, in Section 3.2, we introduce the formal
model and further preliminaries related to a convex programming formulation
of the presented scheduling problem. On this basis, we derive a primal-dual
algorithm (PD) for the problem in Section 3.3. The main part of this chapter

22

3.1 Related Work & Contribution

follows in Section 3.4, where we present and proof our main result: algorithm
PD is exactly 𝛼u�-competitive (Theorem 3.3). Section 3.5 finishes this chapter
with a short résumé.

3.1 Related Work & Contribution

There exists plenty of work concerning energy-efficient scheduling strategies
in both theoretical and practical contexts. In the following, we concentrate
on models for speed-scalable processors and jobs with deadline constraints.
The literature overview presented in this section is largely self-contained and
should cover the prerequisites of this chapter. If desired, the reader may consult
Chapter 2 (especially Section 2.3) for a more general literature overview and
some recommendations for more elaborate surveys.

Theoretical work in this area has been initiated by Yao et al. [YDS95]. They
considered a single speed-scalable processor that processes preemptable jobs
which arrive over time and come with different deadlines and workloads. Yao
et al. studied the question of how to finish all the jobs in an energy-minimal way.
In their seminal work [YDS95], they modeled the power consumption Pα (𝑠)
of a processor running at speed 𝑠 by a constant degree polynomial Pα (𝑠) = 𝑠u�.
Here, the energy exponent 𝛼 is assumed to be a constant 𝛼 ≥ 2. In classical
CMOS-based systems 𝛼 = 3 usually yields a suitable approximation of the
actual power consumption. Yao et al. developed an optimal offline algorithm,
known as YDS, as well as the two online algorithms Optimal Available (OA)
and Average Rate (AVR). Up to now, OA remains one of the most important
algorithms in this area, being an essential part of many algorithms for both the
original problem as well as for its manifold variations. Using a rather complex
but elegant amortized potential function argument, Bansal et al. [BKP04]
proved that OA is exactly 𝛼u�-competitive. They also proposed a new algorithm,
named BKP, which achieves a competitive ratio of essentially 2𝑒u�+1. The
algorithm qOA presented by Bansal et al. [Ban+09] is particularly well suited
for low powers of 𝛼, where it outperforms both OA and BKP. In this work, the
authors also proved that no deterministic algorithm can achieve a competitive
ratio better than u�u�−1/u�. In their recent work, Albers et al. [AAG11] presented
an optimal offline algorithm for the multiprocessor case. Moreover, using this
algorithm, they were also able to extend OA to the multiprocessor case and

23

3 Profitable Deadline Scheduling

proved the same competitive ratio of 𝛼u� as in the single processor case.
All results mentioned so far are only concerned with the energy necessary

to finish all jobs. With respect to the profitability aspect, the two most relevant
results for us are due to Chan et al. [CLL10a] and Pruhs and Stein [PS10]. Both
proposed a model incorporating profitability into classical energy-efficient
scheduling. In the simplest case, jobs have values and the scheduler is no
longer required to finish all jobs. Instead, it can decide to not process jobs
whose values do not justify the foreseeable energy investment necessary to
complete them. The objective is to maximize the profit [PS10] or, similarly, to
minimize the loss2 [CLL10a]. As argued by the authors, the latter model has
the benefit of being a direct generalization of the classical model by Yao et al.
For maximizing the profit, Pruhs and Stein [PS10] showed that in order to
achieve a bounded competitive ratio, resource augmentation is necessary and
gave a scalable online algorithm. For minimizing the loss, Chan et al. [CLL10a]
gave an 𝛼u� + 2𝑒𝛼-competitive algorithm.

Another very important and recent work is due to Gupta et al. [GKP12] and
considers the Online Generalized Assignment Problem (OnGAP). The authors
showed an interesting relation to a multitude of problems in the context of
speed-scalability (not only for scheduling). They developed a convex program-
ming formulation of the problem and applied well-known techniques from
convex optimization. In particular, they used a greedy primal-dual approach
as known from linear programming (see, e.g., [BN09]). This way, they designed
an online algorithm for the classical model by Yao et al. (no job values; one
processor) which is very similar to OA and proved the exact same competitive
ratio of 𝛼u�.

Contribution This chapter presents and studies a new online algorithm for
scheduling valuable jobs on multiple speed-scalable processors. This algorithm
improves upon price-collecting results from [CLL10a] in two respects:

(a) For the single processor case, it improves the best known competitive
ratio from 𝛼u� + 2𝑒𝛼 to 𝛼u�.

(b) Moreover, this constant competitive ratio holds even for the case of mul-
tiple processors.

2Sometimes also referred to as the price-collecting version of Yao et al.'s speed scaling model.

24

3.2 Model & Preliminaries

Note that this is the first algorithm that is able to handle the multiprocessor
case in this scenario. We also prove that its analysis is tight.

The presented analysis is significantly different from the typical potential
function argument, which is dominant in the analysis of online algorithms in
this research area. It is based on a framework recently suggested by Gupta
et al. [GKP12] and utilizes well-known tools from convex optimization, espe-
cially duality theory and primal-dual algorithms. We will develop a convex
programming formulation and design a greedy primal-dual online algorithm.
Compared to the original framework, we have to overcome the additional
issue of integral variables in our convex program, which are caused by the
new profitability aspect. Moreover, the handling of multiple processors proves
to be a challenging task. It not only causes a much more complex objective
function in the convex program but also makes it harder to grasp the structural
properties of the resulting schedule. The results show that this technique is
not only suitable for the classical energy-efficient scheduling model but also
for more complex variants, as conjectured by Gupta et al. It is interesting to
note that, in terms of the analysis, this approach goes back to the roots of
Yao et al.'s model, as the optimality proof of the YDS algorithm [BKP07] is
based on a similar convex programming formulation and the well-known
KKT conditions from convex optimization [BV04]. Our algorithm can be seen
as greedily increasing the convex program's variables while maintaining a
relaxed version of these KKT conditions.

3.2 Model & Preliminaries

We consider a system of 𝑚 speed-scalable processors. That is, each processor
can be set to any speed 𝑠 ∈ ℝ≥0 (independently from the others). When
running at speed 𝑠, the power consumption of a single processor is given by
the power function Pα (𝑠) = 𝑠u�. Here, the constant parameter 𝛼 ∈ ℝ>1 is called
the energy exponent. A problem instance consists of a set 𝐽 = { 1, 2, … , 𝑛 } of 𝑛
jobs. Each job 𝑗 ∈ 𝐽 is associated with a release time 𝑟u�, a deadline 𝑑u�, a workload
𝑤u�, and a value 𝑣u�. A schedule 𝑆 describes if and how the different jobs are
processed by the system. It consists of 𝑚 speed functions 𝑆u� ∶ ℝ≥0 → ℝ≥0

(𝑖 ∈ { 1, 2, … , 𝑚 }) and a job assignment policy. The speed function 𝑆u� dictates
the speed 𝑆u�(𝑡) of the 𝑖-th processor at time 𝑡. The job assignment policy decides

25

3 Profitable Deadline Scheduling

which jobs to run on the processors. At any time 𝑡, it may schedule at most one
job per processor, and each job can be processed by at most one processor at any
given time (i.e., we consider nonparallel jobs). Moreover, jobs are preemptive:
a running job may be interrupted at any time and continued later on, possibly
on a different processor. The total work processed by processor 𝑖 between time
𝑡1 and 𝑡2 is ∫u�2

u�1
𝑆u�(𝑡) d𝑡. Similarly, the overall power consumed by this processor

during the same time is ∫u�2
u�1

Pα (𝑆u�(𝑡)) d𝑡. Let 𝑠u�(𝑡) denote the speed used to
process job 𝑗 at time 𝑡. We say job 𝑗 is finished under schedule 𝑆 if 𝑆 processes
(at least) 𝑤u� units of 𝑗's work during the interval [𝑟u�, 𝑑u�). That is, if we have
∫u�u�

u�u�
𝑠u�(𝑡) d𝑡 ≥ 𝑤u�.

A given schedule 𝑆 may not finish all 𝑛 jobs. In this case, the total value of
unfinished jobs is considered as a loss. Thus, the cost of 𝑆 is defined as the sum
of the total energy consumption and the total value of unfinished jobs. More
formally, if 𝐽rej denotes the set of unfinished (rejected) jobs under schedule 𝑆,
we define the cost of schedule 𝑆 by

cost(𝑆) ≔
u�

∑
u�=1

∫
∞

0
Pα (𝑆u�(𝑡)) d𝑡 + ∑

u�∈u�rej

𝑣u�. (3.1)

Our goal is to construct a low-cost schedule in the online scenario of the problem.
That is, the job set 𝐽 is not known a priori, but rather revealed over time. In
particular, we do not know the total number of jobs, and the existence as well
as the attributes of a job 𝑗 ∈ 𝐽 are revealed just when the job is released at
time 𝑟u�. We measure the quality of algorithms for this online problem by their
competitive ratio: Given an online algorithm 𝐴, let 𝐴(𝐽) denote the resulting
schedule for job set 𝐽. The competitive ratio of 𝐴 is defined as

sup
u�

cost(𝐴(𝐽))
cost(OPT(𝐽))

, (3.2)

where OPT(𝐽) denotes an optimal schedule for the job set 𝐽. Note that, by
definition, the competitive ratio is at least one.

3.2.1 Convex Programming Formulation

In the following, we develop a convex programming formulation of the above
(offline) scheduling problem to aid us in the design and analysis of our on-

26

3.2 Model & Preliminaries

min
0⪯u�

u�∈{ 0,1 }u�

u�
∑
u�=1

𝒫u�(𝑥1u�, 𝑥2u�, … , 𝑥u�u�) + ∑
u�∈u�

(1 − 𝑦u�)𝑣u�

s.t. 𝑦u� −
u�

∑
u�=1

𝑐u�u�𝑥u�u� ≤ 0 ∀𝑗 ∈ 𝐽

Figure 3.1: Mathematical programming formulation (IMP) for profitable deadline
scheduling on multiple processors.

line algorithm (cf. Section 3.3). Following an idea by Bingham and Green-
street [BG08], we partition time into atomic intervals 𝑇u� using the jobs' release
times and deadlines. The goal of our convex program is to compute what por-
tion of each job to process during the different atomic intervals in an optimal
schedule. Once we have such a fixed work assignment, we use a deterministic
algorithm by Chen et al. [Che+04] to efficiently compute an energy-minimal
way to process the corresponding work on the 𝑚 processors in this interval.
The energy consumption of the resulting schedule in the interval 𝑇u� can be
written as a convex function 𝒫u� of the work assignment. This function plays a
crucial role in the optimization objective of our convex program, and studying
its properties and the corresponding schedule's structure is an important part
of our analysis. We will elaborate on 𝒫u� once we have derived the convex
program (see Section 3.2.2).

For a given job set 𝐽, let us partition the time horizon into 𝑁 ∈ ℕ atomic
intervals 𝑇u� (𝑘 ∈ { 1, 2, … , 𝑁 }) as follows. We define 𝑇u� ≔ [𝜏u�−1, 𝜏u�) where
𝜏0 < 𝜏1 < ⋯ < 𝜏u� are chosen such that { 𝜏0, 𝜏1, … , 𝜏u� } = { 𝑟u�, 𝑑u� ∣ 𝑗 ∈ 𝐽 }.
Let 𝑙u� ≔ 𝜏u� − 𝜏u�−1 denote the length of interval 𝑇u�. Note that there are at
most 2𝑛 − 1 intervals. To model the deadline constraint of job 𝑗, we introduce
parameters 𝑐u�u� ∈ { 0, 1 } that indicate whether 𝑇u� ⊆ [𝑟u�, 𝑑u�) (𝑐u�u� = 1) or not
(𝑐u�u� = 0). Our program uses two types of variables: load variables 𝑥u�u� ∈ [0, 1]
for each job 𝑗 ∈ 𝐽 and each atomic interval 𝑘 ∈ { 1, 2, … , 𝑁 }, and indicator
variables 𝑦u� ∈ { 0, 1 } for each job 𝑗 ∈ 𝐽. The variable 𝑥u�u� indicates what portion
of 𝑗's workload is assigned to interval 𝑇u� and the variable 𝑦u� indicates whether
job 𝑗 is finished (𝑦u� = 1) or not (𝑦u� = 0). Figure 3.1 shows the complete (integral)
mathematical program (IMP) for our scheduling problem. The first summand

27

3 Profitable Deadline Scheduling

in the objective corresponds to the energy spent in the different intervals. The
second summand charges costs for all unfinished jobs. The set of constraints
ensures that a job can be declared as finished only if it has been completely
assigned to intervals 𝑇u� lying in its release-deadline interval [𝑟u�, 𝑑u�). We use 𝑥
and 𝑦 to refer to the full vectors of variables 𝑥u�u� and 𝑦u�, and we use the symbol
“⪯” for element-wise comparison.

If we relax the domain of (IMP) such that 0 ⪯ 𝑦 ⪯ 1, we get a convex
program. We refer to this convex program as (CP). By introducing dual
variables 𝜆u� (also called Lagrange multipliers) for each constraint of (CP) we can
write its Lagrangian 𝐿(𝑥, 𝑦, 𝜆) as

u�
∑
u�=1

𝒫u�(𝑥1u�, 𝑥2u�, … , 𝑥u�u�) + ∑
u�∈u�

(1 − 𝑦u�)𝑣u� + ∑
u�∈u�

𝜆u�
⎛⎜
⎝

𝑦u� −
u�

∑
u�=1

𝑐u�u�𝑥u�u�
⎞⎟
⎠

. (3.3)

It is a linear combination of the convex program's objective and constraints.
Instead of prohibiting infeasible solutions (as done by the convex program),
it charges a penalty for violated constraints (assuming positive 𝜆u�). Now, the
dual function of (CP) is defined as

𝑔(𝜆) ≔ inf
0⪯u�

0⪯u�⪯1

𝐿(𝑥, 𝑦, 𝜆). (3.4)

An important property of the dual function 𝑔 is that for any 𝜆 ⪰ 0, the value
𝑔(𝜆) is a lower bound on the optimal value of (CP). Moreover, since (CP) is a
relaxation of (IMP), 𝑔(𝜆) is also a lower bound on the optimal value of (IMP).
See the book by Boyd and Vandenberghe [BV04] for further details on these
and similar known facts about (convex) optimization problems.

3.2.2 Power Consumption in Atomic Intervals

Let us give a more detailed description of the function 𝒫u�(𝑥1u�, 𝑥2u�, … , 𝑥u�u�). We
defined 𝒫u� implicitly by mapping a given work assignment 𝑥1u�, 𝑥2u�, … , 𝑥u�u�

for interval 𝑇u� to the power consumption of Chen et al.'s algorithm [Che+04]
during 𝑇u�. This guarantees an energy-minimal schedule for the given work
assignment. In the following, we give a concise description of this algorithm
and derive a more explicit formulation as well as some properties of 𝒫u�.

28

3.2 Model & Preliminaries

dedicated

pool

u�u�−1 u�u�
CPU 4

CPU 3

CPU 2

CPU 1

time

(a) Before the arrival of a new job.

dedicated

pool

u�u�−1 u�u�
CPU 4

CPU 3

CPU 2

CPU 1

time

(b) After the arrival of a new job.

Figure 3.2: Schedules computed by Chen et al.'s algorithm before and after the arrival
of a new job.

To ease the discussion, let us assume that the jobs are numbered such that
𝑥1u�𝑤1 ≥ 𝑥2u�𝑤2 ≥ … ≥ 𝑥u�u�𝑤u�. In a nutshell, Chen et al.'s algorithm can be
described as follows. Define the job set

ψ(𝑘) ≔
⎧{
⎨{⎩

𝑗 ∈ 𝐽
∣∣∣∣
𝑗 ≤ 𝑚 ∧ 𝑥u�u� > 0 ∧ 𝑥u�u�𝑤u� ≥

∑u�′>u� 𝑥u�′u�𝑤u�′

𝑚 − 𝑗

⎫}
⎬}⎭

. (3.5)

These jobs are called dedicated jobs and are scheduled on their own dedicated
processor using the energy-optimal (since minimal) speed 𝑠u�u� ≔

u�u�u�u�u�

u�u�
. All

remaining jobs, called pool jobs, are scheduled on the remaining (pool) processors
in a greedy manner. The intuition is that dedicated jobs are larger than the
remaining average workload and thus must be processed on a dedicated
processor. See [BG08, Section 3.1] for a relatively short but more detailed
description of the algorithm. Figure 3.2 illustrates the resulting schedule and
how it may change due to the arrival of a new job. Using the above definition
of dedicated jobs we can write 𝒫u� as

𝒫u�(𝑥1u�, … , 𝑥u�u�) = ∑
u�∈ψ(u�)

𝑙u� Pα (
𝑥u�u�𝑤u�

𝑙u�
)+(𝑚−|ψ(𝑘)|)𝑙u� Pα

⎛⎜⎜
⎝

∑u�∉ψ(u�) 𝑥u�u�𝑤u�

(𝑚 − |ψ(𝑘)|)𝑙u�
⎞⎟⎟
⎠

. (3.6)

The following proposition gathers some important properties concerning the
power consumption function 𝒫u� of an atomic interval 𝑇u�.

Proposition 3.1. Consider an arbitrary atomic interval 𝑇u� together with its power
consumption function 𝒫u� ∶ ℝu�

≥0 → ℝ. This function has the following properties:

29

3 Profitable Deadline Scheduling

(a) It is convex and 𝒫u�(0) = 0.

(b) It is differentiable with partial derivatives d 𝒫u�
du�u�u�

(𝑥1u�, … , 𝑥u�u�) = 𝑤u� ⋅ Pα
′(𝑠u�u�).

Here, 𝑠u�u� denotes the speed used to schedule the workload 𝑥u�u�𝑤u� in Chen et al.'s
algorithm:

𝑠u�u� =
⎧{{
⎨{{⎩

u�u�u�u�u�/u�u� , if 𝑗 is a dedicated job
∑u�∉ψ(u�) u�u�u�u�u�

(u�−|ψ(u�)|)u�u�
, if 𝑗 is a pool job.

(3.7)

Proof Sketch.

(a) The equality 𝒫u�(0) = 0 is obvious from the definition of 𝒫u�. The con-
vexity follows from [BG08, Lemma 3.2]. There, the authors proved the
convexity of (𝑥1u�, … , 𝑥u�u�) ↦ 𝒫u�(𝑥1u�/𝑤1, … , 𝑥u�u�/𝑤u�) (a linear transforma-
tion of 𝒫u�).

(b) Differentiability is obvious for all points (𝑥1u�, … , 𝑥u�u�) for which all the
inequalities 𝑥u�u�𝑤u� ≥ ∑u�′≥u� u�u�′u�u�u�′/(u� − u�) in Equation (3.5) are strict: For these,
we have a small interval around 𝑥u�u� such that the set ψ(𝑘) of dedicated
jobs does not change. Differentiability follows by noting that 𝒫u� is given
by Equation (3.6) on these intervals.

For other points, one can compute the left and right derivatives in 𝑥u�u�,
distinguishing whether job 𝑗 switched between a dedicated processor and
a pool processor, whether 𝑗 stays on a dedicated processor, or whether 𝑗
stays on a pool processor and some other jobs switch between processor
types. All cases yield the same left and right derivatives as given in the
statement.

We will also need to compare the result of Chen et al.'s algorithm before and
after the arrival of a new job (cf. Figure 3.2). That is, how can the workloads
on the processors change when a single entry of the work assignment changes
from zero to some positive value?

Proposition 3.2. Consider Chen et al.'s algorithm executed twice for some interval
𝑇u� with the work assignments 𝑥 = (𝑥1, 𝑥2, … , 𝑥u�, 0) and 𝑥′ = (𝑥1, 𝑥2, … , 𝑥u�, 𝑧),
respectively (i.e., before and after the arrival of a new job). Let 𝐿u� and 𝐿′

u� denote the
total workload on the 𝑖-th fastest processor in the resulting schedules, respectively.
Then we have 0 ≤ 𝐿′

u� − 𝐿u� ≤ 𝑧.

30

3.2 Model & Preliminaries

Proof Sketch. We consider only the normalized case. That is, the case of unit
workloads (𝑤u� = 1 for all jobs) and an atomic interval of unit length (𝑙u� = 1). The
general case follows by a straightforward adaption. Without loss of generality,
we furthermore assume 𝑥1 ≥ 𝑥2 ≥ … ≥ 𝑥u�. Note that we do not presume any
relation between the newly arrived workload 𝑧 and the remaining workloads.
Let 𝑆 and 𝑆′ be the schedules produced by Chen et al.'s algorithm for the
work assignments 𝑥 and 𝑥′, respectively. Similarly, we use 𝑑 and 𝑑′ to denote
the number of dedicated processors, and 𝐿pool and 𝐿′

pool for the workload of
a pool processor in 𝑆 and 𝑆′, respectively. Remember that pool processors
have the smallest workload. That is, we have 𝐿u� ≥ 𝐿pool and 𝐿′

u� ≥ 𝐿′
pool for all

𝑖 ∈ { 1, 2, … , 𝑚 }.
We start with the proof of 𝐿′

u� − 𝐿u� ≥ 0. Observe that the arrival of the
workload 𝑧 will not cause any of the former pool jobs to become a dedicated
job (cf. Equation (3.5)). Moreover, by the same equation, for each dedicated
processor that becomes a pool processor we also get a new pool job that has
a workload of at least 𝐿pool. Thus, the workload of pool processors from 𝑆
can only increase. The workload of the 𝑖-th fastest dedicated processor in 𝑆
is exactly 𝑥u�. If it becomes a pool processor, we have 𝑥u� < 𝐿′

pool = 𝐿′
u�, yielding

𝐿u� = 𝑥u� < 𝐿′
u�. If it stays a dedicated processor, its workload is the 𝑖-th largest

value in { 𝑥1, … , 𝑥u�, 𝑧 } and, thus, at least as large as the 𝑖-th largest value in
{ 𝑥1, … , 𝑥u� }, yielding 𝐿u� ≤ 𝐿′

u�. To prove the second statement, 𝐿′
u� − 𝐿u� ≤ 𝑧, let

us assume 𝐿′
u� − 𝐿u� > 𝑧 and seek a contradiction. We distinguish two cases,

depending on the type (pool or dedicated) of the 𝑖-th fastest processor in 𝑆′:

Processor 𝒊 is a pool processor in 𝑺′: Note that 𝑧 < 𝐿′
u� −𝐿u� ≤ 𝐿′

u� and 𝑖 being
a pool processor implies that 𝑧 is also scheduled on a pool processor
(cf. Equation (3.5)). As 𝑑′ is the number of dedicated processors, we must
have 𝑖 > 𝑑′. Moreover, all the jobs with workload less than 𝐿′

u�′ must
be pool jobs in 𝑆′. These are exactly the jobs which are scheduled on
the processors 𝑑′ + 1, … , 𝑚 in schedule 𝑆. Thus, the total workload of
all pool processors in 𝑆′ equals (𝑚 − 𝑑′)𝐿′

u� = 𝑧 + ∑u�>u�′ 𝐿u�. Using 𝑖 > 𝑑′,
𝐿′

u�′ −𝐿u�′ ≥ 0 for all 𝑖′ ∈ { 1, 2, … , 𝑚 }, and that all pool processors in 𝑆′ have
the same workload, we get 𝑧 = (𝑚 − 𝑑′)𝐿′

u� − ∑u�>u�′ 𝐿u� = ∑u�>u�′(𝐿′
u� − 𝐿u�) =

∑u�>u�′(𝐿′
u� − 𝐿u�) ≥ 𝐿′

u� − 𝐿u�. This contradicts our assumption.

31

3 Profitable Deadline Scheduling

Processor 𝒊 is a dedicated processor in 𝑺′: Our assumption implies 𝐿′
u� >

𝐿u� + 𝑧 ≥ 𝑧. Together with 𝑖 being a dedicated processor this yields 𝐿′
u� = 𝑥u�

(because 𝑥u� remains the 𝑖-th largest value in { 𝑥1, 𝑥2, … , 𝑥u�, 𝑧 }). But the
assumption also implies 𝐿′

u� > 𝐿u� + 𝑧 ≥ 𝐿u� ≥ 𝑥u�. We get the contradiction
𝑥u� = 𝐿′

u� > 𝑥u�.

3.3 An Online Greedy Primal-Dual Algorithm

The goal of this section is to use the convex programming formulation (CP) and
its dual function 𝑔 ∶ ℝu� → ℝ to derive a provably good online algorithm for
our scheduling problem. We start by describing an algorithm that computes
a solution to (CP) in an online fashion, but knowing the time partitioning
𝑇u� (𝑘 ∈ { 1, 2, … , 𝑛 }). Subsequently, we explain how this solution is used to
compute the actual schedule and how we handle the fact that the actual atomic
intervals are not known beforehand. To solve (CP), we use a greedy primal-dual
approach for convex programs as suggested by Gupta et al. [GKP12]. Our
algorithm extends their framework to the multiprocessor case and to profitable
scheduling models. It shows how to incorporate rejection policies into the
framework (handling the integral constraints in the convex program) and how
to cope with more complex power functions of a system (in our case 𝒫u�).

The Primal-Dual Algorithm Our primal-dual algorithm, in the following
referred to as PD, maintains a set of primal variables (𝑥, 𝑦) and a set of dual
variables 𝜆, all initialized with zero. Whenever a new job (i.e., a constraint of
(CP)) arrives, we start to increase the primal variables 𝑥u�u� (𝑘 ∈ { 1, 2, … , 𝑁 })
in a greedy fashion until either the full job is scheduled (i.e., ∑u� 𝑥u�u� = 1) or
the planned energy investment for job 𝑗 becomes too large compared to its
value. In the latter case, the variables 𝑥u�u� are reset to zero, 𝜆u� is set to 𝑣u�, and 𝑦u�

remains zero (the job is rejected). Otherwise, we set 𝑦u� to one (the job is finished)
and 𝜆u� to essentially the current rate of cost increase per job workload. When
greedily increasing the primal variables, we assign the next infinitesimal small
portion of job 𝑗 to those atomic intervals that cause the smallest increase in costs.
Essentially, these are the intervals where 𝑗's workload would be scheduled
with the slowest speed. See Listing 3.1 for the algorithm.

The described algorithm is similar to primal-dual algorithms known from

32

3.3 An Online Greedy Primal-Dual Algorithm

1 { executed each time a new job 𝑗 ∈ 𝐽 arrives}
2 initialize 𝑥u�u�, 𝑦u�, and 𝜆u� with zero for all 𝑘 ∈ { 1, 2, … , 𝑁 }
3 for each interval 𝑇u� ⊆ [𝑟u�, 𝑑u�) compute
4 𝜆u�u� ≔ 𝛿 d 𝒫u�

du�u�u�
(𝑥1u�, 𝑥2u�, … , 𝑥u�u�, 0, … , 0)

5
6 let the set 𝒯min contain all 𝑇u� with minimal 𝜆u�u�
7 for each 𝑇u� ∈ 𝒯min in parallel:
8 increase 𝑥u�u� in a continuous way (which in turn raises 𝜆u�u� according to line 3)
9 ensure that all 𝜆u�u� of intervals in 𝒯min remain equal

10 update 𝒯min whenever the 𝜆u�u� reach a 𝜆u�u�′ with 𝑇u�′ ∉ 𝒯min
11 stop increasing once one of the following comes true
12 (a) ∑ 𝑥u�u� = 1 ∶ set 𝑦u� ≔ 1, 𝜆u� ≔ 𝜆u�u�
13 (b) 𝜆u�u� = 𝑣u� ∶ reset 𝑥u�u� ≔ 0, 𝜆u� ≔ 𝜆u�u�

Listing 3.1: Primal-dual algorithm PS with parameter 𝛿.

linear programming, where primal and/or dual variables are raised at certain
rates until the (relaxed) complementary slackness conditions are met. In fact,
this algorithm is derived by using relaxed versions of the Karush-Kuhn-Tucker
(KKT) conditions, essentially a generalization of the complementary slack-
ness conditions for convex (or even general nonlinear) programs. The actual
schedule used is the one computed by Chen et al.'s algorithm when applied to
the current work assignment given by the primal variables 𝑥u�u� for the atomic
interval 𝑇u�.

Concerning the Time Partitioning Our algorithm formulation assumes a
priori knowledge of the atomic intervals 𝑇u�. However, since the jobs arrive in
an online fashion, the exact partitioning is actually not known to the algorithm.
One can reformulate the algorithm such that it uses the intervals 𝑇′

u� induced
by the jobs 𝐽′ = { 1, 2, … , 𝑗 } ⊆ 𝐽 it knows so far. If a refinement of an atomic
interval 𝑇′

u� = 𝑇u�1 ∪ 𝑇u�2 occurs due to the arrival of a new job, the already
assigned job portions are simply split according to the ratios |u�u�1

|/|u�′
u�| and |u�u�2

|/|u�′
u�|.

This reformulated algorithm produces an identical schedule. To see this, note
that the algorithm with a priori knowledge of the refinement 𝑇′

u� = 𝑇u�1 ∪ 𝑇u�2

treats both intervals 𝑇u�1 and 𝑇u�2 as identical (with respect to their relative size
|u�u�u�

|/|u�′
u�|) up to the point when the job causing the refinement arrives.

33

3 Profitable Deadline Scheduling

u�curr 1 2 time

sp
ee

d

(a) PD Schedule

u�curr 1 2 time

sp
ee

d

(b) OA Schedule

Figure 3.3: The dashed lines indicate atomic intervals, the horizontal bars the jobs'
availability. Note that PD's schedule is more conservative in comparison, leaving
more room for scheduling jobs that might occur during the last atomic interval.

Relation to the OA Algorithm For the case of a single processor and suffi-
ciently high job values, algorithm PD is quite similar to the popular OA al-
gorithm by Yao et al. [YDS95]. When a new job arrives, PD essentially finds
the atomic intervals of lowest speed and increases their speed to free com-
putational resources to be used for the new job. This is also true for the OA
algorithm. However, while PD never changes how other jobs are distributed
over atomic intervals, OA may actually influence this distribution. Figure 3.3
gives a simple example for the structural difference of the resulting schedules.
Another interesting observation is that, in the single processor case, our anal-
ysis yields the very same optimal rejection policy as an OA-based algorithm
by Chan et al. [CLL10a]. Indeed, as we will see in Section 3.4, our analysis
yields that 𝛿 = 𝛼1−u� is the optimal choice for the parameter 𝛿. Using this
parameter, one can easily check that our rejection policy essentially states to
reject a job if its energy consumption in the planned schedule exceeds 𝛼u�−2 ⋅ 𝑣u�.
Or, equivalently, a job is rejected if its speed in the planned schedule exceeds
𝛼

u�−2
u�−1 ⋅ (u�/u�)u�−1, the rejection policy from [CLL10a].

3.4 Analysis

In the following, let (̃𝑥, ̃𝑦) and �̃� denote the primal and dual variables computed
by our algorithm PD. Remember that the final schedule computed by PD is
derived by applying Chen et al.'s algorithm to the ̃𝑥1u�, … , ̃𝑥u�u� values in each

34

3.4 Analysis

atomic interval 𝑇u�. We refer to this schedule as the (̃𝑥, ̃𝑦)-schedule or simply
as the schedule PD. Our goal is to use 𝑔(�̃�) to bound the cost of this schedule
(referred to as cost(PD)). Our main result is

Theorem 3.3. The competitive ratio of algorithm PD with the parameter 𝛿 set to
1/u�u�−1 is at most 𝛼u�. Moreover, there is a problem instance for which PD is exactly by
a factor of 𝛼u� worse than an optimal algorithm. That is, our upper bound is optimal.

For the upper bound, we show that cost(PD) ≤ 𝛼u�𝑔(�̃�). Since, by duality,
𝑔(�̃�) is also a lower bound on the optimal value of (CP) and, thereby, on the
optimal value of (IMP), we get cost(PD)

cost(OPT) ≤ 𝛼u�. The lower bound follows from
a known result for traditional energy-efficient scheduling (without job values
but the necessity to finish all jobs) by setting the job values sufficiently high.

In the remainder, we develop the key ingredients for the proof of Theorem 3.3.
We start in Section 3.4.1 and derive a more explicit formulation of the dual
function value 𝑔(�̃�) by relating it to a certain (infeasible) solution to our convex
program (CP) and a corresponding schedule. Section 3.4.2 further simplifies
this formulation by expressing 𝑔(�̃�) solely in terms of the jobs (instead of their
workloads in different atomic intervals). Based on this job-centric formulation,
Section 3.4.3 develops different bounds for the dual function value depending
on certain job characteristics. The actual proof of Theorem 3.3 combines these
bounds and can be found in Section 3.4.4.

3.4.1 Structure of an Optimal Infeasible Solution

First of all, note that the value 𝑔(�̃�) = inf 𝐿(𝑥, 𝑦, �̃�) (cf. Equation (3.4)) is finite
and obtained by a pair (̂𝑥, ̂𝑦) of primal variables. These primal variables
can be interpreted as a (possibly infeasible) solution to the convex program
(CP). Moreover, for our fixed dual variable �̃�, this solution is optimal in that it
minimizes the sum of the objective cost and the penalty for violated constraints.
In this sense, we refer to (̂𝑥, ̂𝑦) as an optimal infeasible solution. Our goal is to
understand the structure of this solution, which will eventually allow us to
write 𝑔(�̃�) in a more explicit way. The results of this subsection are related to
results from [GKP12], but more involved due to the more complex nature of
our objective function.

Note that ̂𝑥 and ̂𝑦 may differ largely from ̃𝑥 and ̃𝑦. However, the following

35

3 Profitable Deadline Scheduling

lemmas show a strong correlation between this optimal infeasible solution and
the feasible (partially integral) solution computed by algorithm PD.

Lemma 3.4. Consider an optimal infeasible solution (̂𝑥, ̂𝑦). Without loss of gener-
ality, we can assume that it has the following properties:

(a) The equality ̂𝑦 = ̃𝑦 holds.

(b) For any atomic interval 𝑇u�, there are at most 𝑚 different jobs 𝑗 with ̂𝑥u�u� > 0.

Proof.

(a) Consider an arbitrary job 𝑗 ∈ 𝐽 and remember that the domain for the
variables ̂𝑦u� is restricted to [0, 1]. The contribution of variable ̂𝑦u� to 𝑔(�̃�) =
𝐿(̂𝑥, ̂𝑦, �̃�) is exactly ̂𝑦u�(�̃�u�−𝑣u�), as can be seen by considering Equation (3.3).
If �̃�u� < 𝑣u�, this is minimized by choosing ̂𝑦u� maximal (̂𝑦u� = 1). Otherwise,
we must have �̃�u� = 𝑣u� (by the definition of algorithm PD). This allows
us to choose ̂𝑦u� arbitrarily, such that we can set it to zero. Both choices
correspond exactly to the way ̃𝑦u� is set by algorithm PD.

(b) Assume there are more than 𝑚 jobs with ̂𝑥u�u� > 0. We can assume 𝑐u�u� = 1
for these jobs, because otherwise we could set ̂𝑥u�u� = 0 without increasing
𝑔(�̃�) = 𝐿(̂𝑥, ̂𝑦, �̃�). Now, the values ̂𝑥1u�, … , ̂𝑥u�u� correspond to a work
assignment for the atomic interval 𝑇u�, as used by Chen et al.'s algorithm
(cf. Section 3.2.2). By Equation (3.3), the contribution of these values to
𝑔(�̃�) = 𝐿(̂𝑥, ̂𝑦, �̃�) is given by 𝒫u�(̂𝑥1u�, … , ̂𝑥u�u�) − ∑u�∈u� �̃�u� ̂𝑥u�u�. Since there are
more than 𝑚 jobs 𝑗 with nonzero ̂𝑥u�u�, at least two of them must share
a processor in the schedule computed by Chen et al.'s algorithm for
this work assignment. In other words, there are two pool jobs 𝑗, 𝑗′ ∈
𝐽 ⧵ ψ(𝑘) with ̂𝑥u�u�, ̂𝑥u�′u� > 0. Together with Equation (3.6), we see that the
contribution of ̂𝑥u�u� and ̂𝑥u�′u� to 𝑔(�̃�) consists of two terms: a convex term

(𝑚 − |ψ(𝑘)|)𝑙u� Pα
⎛⎜⎜
⎝

∑u�∉ψ(u�) ̂𝑥u�u�𝑤u�

(𝑚 − |ψ(𝑘)|)𝑙u�
⎞⎟⎟
⎠

(3.8)

and a linear term −�̃�u� ̂𝑥u�u� − �̃�u�′ ̂𝑥u�′u�. By changing ̂𝑥u�u� and ̂𝑥u�′u� along the line
that keeps the sum ̂𝑥u�u�𝑤u� + ̂𝑥u�′u�𝑤u�′ constant, we can decrease one of the
variables (say ̂𝑥u�u�) and increase the other such that the first (convex) term

36

3.4 Analysis

remains constant and the second (linear) term is not increased. This will
not effect the type (dedicated or pool) of other jobs. The only job that
may change its type is job 𝑗′, as it may become a dedicated job. Once this
happens, we iterate the process with two other pool jobs. As the number
of dedicated jobs is upper bounded by 𝑚, this can happen only finitely
often. Thus, at some point we can decrease ̂𝑥u�u� all the way to zero without
increasing the dual function value 𝑔(�̃�). We continue eliminating ̂𝑥u�u�

variables until at most 𝑚 of them are nonzero.

Given an atomic interval 𝑇u�, we call the jobs 𝑗 with ̂𝑥u�u� > 0 the contributing jobs
of 𝑇u� and denote the corresponding job set by 𝜑(𝑘). As done in the proof of
Lemma 3.4, we can consider ̂𝑥 as a work assignment for the atomic intervals
𝑇u�. By applying Chen et al.'s algorithm, we get a schedule whose energy
cost in interval 𝑇u� is exactly 𝒫u�(̂𝑥1u�, … , ̂𝑥u�u�). We refer to this schedule as the
(̂𝑥, ̂𝑦)-schedule. Using this terminology, the second statement of Lemma 3.4
essentially says that in this schedule at most 𝑚 jobs are scheduled in any atomic
interval 𝑇u�. Moreover, it follows immediately from the description of Chen et
al.'s algorithm that all contributing jobs are dedicated jobs of the corresponding
atomic interval.

We can derive a slightly more explicit characterization of the contributing
jobs 𝜑(𝑘) of an atomic interval 𝑇u� by exploiting that (̂𝑥, ̂𝑦) is a minimizer of
(𝑥, 𝑦) ↦ 𝐿(𝑥, 𝑦, �̃�).

Lemma 3.5. Consider any atomic interval 𝑇u� and its contributing jobs 𝜑(𝑘). Define
the value ̂𝑠u� ≔ (ũ�u�/u�u�u�)

1
u�−1 for any job 𝑗.

(a) For any 𝑗 ∈ 𝜑(𝑘) we have

̂𝑥u�u� =
𝑙u�
𝑤u�

̂𝑠u� =
𝑙u�
𝑤u�

(ũ�u�/u�u�u�)
1

u�−1 . (3.9)

Moreover, 𝑗 is scheduled at constant speed ̂𝑠u� in the (̂𝑥, ̂𝑦)-schedule.

(b) The total contribution of the ̂𝑥u�u� variables to the dual function value 𝑔(�̃�) is

(1 − 𝛼)𝑙u� ∑
u�∈u�(u�)

(
̂𝑥u�u�𝑤u�

𝑙u�
)

u�

= (1 − 𝛼)𝑙u� ∑
u�∈u�(u�)

̂𝑠u�
u� . (3.10)

37

3 Profitable Deadline Scheduling

(c) Let 𝑛u� denote the number of jobs available in the atomic interval 𝑇u� (i.e., jobs
with 𝑐u�u� = 1). The contributing jobs 𝜑(𝑘) are the min(𝑚, 𝑛u�) jobs with maxi-
mal ̂𝑠u�-values under all available jobs.

Proof.

(a) By definition, ̂𝑥 is a minimizer of 𝑥 ↦ 𝐿(𝑥, ̂𝑦, �̃�). This implies that we
must have du�

du�u�u�
(�̃�, ̂𝑥, ̂𝑦) = 0 for any contributing job 𝑗 ∈ 𝜑(𝑘). We get

0 = du�
du�u�u�

(�̃�, ̂𝑥, ̂𝑦) = d 𝒫u�
du�u�u�

(̂𝑥1u�, … , ̂𝑥u�u�) − �̃�u�

= 𝑤u� ⋅ Pα
′(

̂𝑥u�u�𝑤u�

𝑙u�
) − �̃�u� = 𝛼𝑤u�(

̂𝑥u�u�𝑤u�

𝑙u�
)

u�−1

− �̃�u�,
(3.11)

which yields the first statement by rearranging. The second statement
follows from this by noticing that

̂u�u�u�u�u�

u�u�
is the speed used by Chen et al.'s

algorithm for the (dedicated) job 𝑗.

(b) By definition of 𝑔(�̃�) = 𝐿(̂𝑥, ̂𝑦, �̃�), we get that the total contribution of the
̂𝑥u�u� variables is (there are no pool jobs!)

𝒫u�(̂𝑥1u�, … , ̂𝑥u�u�) − ∑
u�∈u�(u�)

�̃�u� ̂𝑥u�u� = ∑
u�∈u�(u�)

𝑙u� Pα (
̂𝑥u�u�𝑤u�

𝑙u�
) − ∑

u�∈u�(u�)
�̃�u� ̂𝑥u�u�

= 𝑙u� ∑
u�∈u�(u�)

Pα (̂𝑠u�) − 𝛼𝑙u� ∑
u�∈u�(u�)

�̃�u�

𝛼𝑤u�
̂𝑠u� = (1 − 𝛼)𝑙u� ∑

u�∈u�(u�)
̂𝑠u�
u� .

(3.12)

(c) The contributing jobs must be chosen such that their contribution is
minimized. Using statement (b) and 𝛼 > 1, we see that this is the case
when choosing the maximal number of available jobs (at most 𝑚) with
the largest ̂𝑠u�-values.

3.4.2 A Job-centric Formulation of the Dual Function

In the following, we assume that the optimal infeasible solution (̂𝑥, ̂𝑦) adheres
to Lemma 3.4. That is, we have ̂𝑦 = ̃𝑦 and we can relate the optimal infeasible
solution to the (̂𝑥, ̂𝑦)-schedule which schedules in each atomic interval 𝑇u�

exactly the |𝜑(𝑘)|(≤ 𝑚) available jobs with the largest ̂𝑠u� = (ũ�u�/u�u�u�)
1

u�−1 -values,

38

3.4 Analysis

each on its own dedicated processor at speed ̂𝑠u�. We use the somewhat lax
notation 𝑘 ∈ 𝜑−1(𝑗) to refer to the atomic intervals 𝑇u� to which 𝑗 contributes.
Our main goal in this section is to derive a formulation of the dual function
value solely in terms of the jobs. We will also define and discuss the trace of a
job, which helps to relate any job (even if unfinished) to a certain amount of
energy consumed by our PD algorithm.

Given a job 𝑗 ∈ 𝐽, let 𝑙(𝑗) ≔ ∑u�∈u�−1(u�) 𝑙u� denote the total time it is scheduled
in the (̂𝑥, ̂𝑦)-schedule. Moreover, let 𝐸ũ�(𝑗) denote the total energy invested by
the (̂𝑥, ̂𝑦)-schedule into job 𝑗. Now, we can formulate the following lemma.

Lemma 3.6. For any job 𝑗 ∈ 𝐽, the total energy invested by the optimal infeasible
solution into job 𝑗 is 𝐸ũ�(𝑗) = 𝑙(𝑗) ̂𝑠u�

u� . Moreover, the dual function value 𝑔(�̃�) can be
written as

𝑔(�̃�) = (1 − 𝛼) ∑
u�∈u�

𝐸ũ�(𝑗) + ∑
u�∈u�

�̃�u�. (3.13)

Proof. The equality 𝐸ũ�(𝑗) = 𝑙(𝑗) ̂𝑠u�
u� follows immediately from the above defini-

tions, as 𝑗 is processed by the (̂𝑥, ̂𝑦)-schedule at constant speed ̂𝑠u� for a total
time of exactly 𝑙(𝑗). For the lemma's main statement, remember that ̂𝑦u� = 0 if
and only if �̃�u� = 𝑣u�. Otherwise we have ̂𝑦u� = 1. Thus, the contribution of ̂𝑦u� to
𝑔(�̃�) is exactly (1 − ̂𝑦u�)𝑣u� + �̃�u� ̂𝑦u� = �̃�u�. As we have seen in Lemma 3.5 for a fixed
𝑘, the contribution of all ̂𝑥u�u� to 𝑔(�̃�) is exactly (1 − 𝛼)𝑙u� ∑u�∈u�(u�) ̂𝑠u�

u� . Summing
over all 𝑘, we get that the total contribution of the ̂𝑥-variables equals

u�
∑
u�=1

(1 − 𝛼)𝑙u� ∑
u�∈u�(u�)

̂𝑠u�
u� = (1 − 𝛼)

u�
∑
u�=1

∑
u�∈u�(u�)

𝑙u� ̂𝑠u�
u� = (1 − 𝛼) ∑

u�∈u�

u�
∑

u�∈u�−1(u�)
𝑙u� ̂𝑠u�

u�

= (1 − 𝛼) ∑
u�∈u�

𝑙(𝑗) ̂𝑠u�
u� = (1 − 𝛼) ∑

u�∈u�
𝐸ũ�(𝑗).

(3.14)

Summing up the contributions of the ̂𝑥- and ̂𝑦-variables we get the desired
statement.

Tracing a Job Given a job 𝑗, we define its trace as a set of tuples (𝑇u�, 𝑖) with
𝑘 ∈ { 1, 2, … , 𝑁 } and 𝑖 ∈ { 1, 2, … , 𝑚 }. That is, a set of atomic intervals, each
coupled with a certain processor. Our goal is to choose these such that we can
account the energy 𝐸ũ�(𝑗) used in the optimal infeasible solution on job 𝑗 to
the energy used by algorithm PD during 𝑗's trace (on the coupled processors).

39

3 Profitable Deadline Scheduling

For the formal definition, let us first partition the contributing jobs 𝜑(𝑘) of an
interval 𝑇u� into the subset 𝜑1(𝑘) ≔ { 𝑗 ∈ 𝜑(𝑘) ∣ ̃𝑦u� = 1 } of jobs finished by PD
and the subset 𝜑2(𝑘) ≔ { 𝑗 ∈ 𝜑(𝑘) ∣ ̃𝑦u� = 0 } of jobs unfinished by PD. Now, for
any job 𝑗 ∈ 𝐽 we define its trace Tr(𝑗) as follows3:

Case 1: ̃𝑦u� = 1

(𝑇u�, 𝑖) ∈ Tr(𝑗) ⟺ ̂𝑠u� is 𝑖-th largest value in { ̂𝑠u�′ ∣ 𝑗′ ∈ 𝜑1(𝑘) }

Case 2: ̃𝑦u� = 0

(𝑇u�, |𝜑1(𝑘)| + 𝑖) ∈ Tr(𝑗) ⟺ ̂𝑠u� is 𝑖-th largest value in { ̂𝑠u�′ ∣ 𝑗′ ∈ 𝜑2(𝑘) }

That is, jobs that are finished by PD are mapped to the fastest processors in
each atomic interval 𝑇u� for which they are contributing jobs, in decreasing
order of their ̂𝑠u�-values. Jobs contributing to 𝑇u� but which are unfinished by
PD are mapped to the remaining processors (the exact order is not important
in this case). Note that by this mapping, all traces Tr(𝑗) are pairwise disjoint.
We use the notation 𝐸PD(𝑗) to refer to the power consumption of PD during
𝑗's trace. That is, the power consumption on the 𝑖-th fastest processor in the
atomic interval 𝑇u� for any (𝑇u�, 𝑖) ∈ Tr(𝑗). We use 𝐸PD to denote the total power
consumption of PD. Since the job traces are pairwise disjoint, we obviously
have 𝐸PD ≥ ∑u�∈u� 𝐸PD(𝑗).

The following proposition formulates an important structural property of a
job's trace. It gives us different lower bounds on the speed used by PD during a
job's trace, depending on whether it is finished or not. To this end, let ̃𝑠u� denote
the speed PD planned to use for job 𝑗 just before �̃�u� got fixed (i.e., just before
PD decides whether to finish 𝑗 or not). If 𝑗 is finished, we have (cf. algorithm
description and Proposition 3.1)

�̃�u� = 𝛿
d 𝒫u�
d𝑥u�u�

(̃𝑥1u�, … , ̃𝑥u�u�, 0, … , 0) = 𝛿𝑤u� Pα
′(̃𝑠u�). (3.15)

Solving this for ̃𝑠u� yields ̃𝑠u� = (ũ�u�/u�u�u�u�)
1/u� − 1 = 𝛿−1/u� − 1 ̂𝑠u�. Similarly, we also get ̃𝑠u� =

𝛿−1/u� − 1 ̂𝑠u� for unfinished jobs. We use ̌𝑥u� = ∑ ̌𝑥u�u� < 1 to denote the corresponding
3Ties are resolved arbitrarily but consistently.

40

3.4 Analysis

portions of the unfinished job 𝑗 planned to be scheduled by PD just before 𝑗
was rejected.

Proposition 3.7. Consider (𝑇u�, 𝑖) ∈ Tr(𝑗) for a job 𝑗 ∈ 𝐽. Let 𝑠(𝑖, 𝑘) denote the
speed of the 𝑖-th fastest processor during 𝑇u� in the final schedule computed by PD.
Then:

(a) If 𝑗 is finished by PD, then 𝑠(𝑖, 𝑘) ≥ ̃𝑠u�.

(b) If 𝑗 is not finished by PD, then 𝑠(𝑖, 𝑘) ≥ ̃𝑠u� −
̌u�u�u�u�u�

u�u�
.

Proof.

(a) Remember that ̃𝑠u� = 𝛿−1/u� − 1 ̂𝑠u�. Because of this relation and the defini-
tion of (𝑇u�, 𝑖) ∈ Tr(𝑗), we must have that ̃𝑠u� is the 𝑖-th largest value in
{ ̃𝑠u�′ ∣ 𝑗′ ∈ 𝜑1(𝑘) }. Together with Lemma 3.5(c), we even have that ̃𝑠u� is the
𝑖-th largest value under all available jobs finished by PD. At the time
𝜏u�−1 (the start of interval 𝑇u�), all these available jobs 𝑗′ have arrived. We
consider two cases: If 𝑗 is a dedicated job at this time, it is scheduled with
a speed of exactly ̃𝑠u�. Moreover, all the 𝑖 − 1 available jobs 𝑗′ with ̃𝑠u�′ ≥ ̃𝑠u�

are dedicated jobs and are scheduled with a speed of ̃𝑠u�′, respectively.
Thus, 𝑗 is scheduled on the 𝑖-th fastest processor, yielding 𝑠(𝑖, 𝑘) ≥ ̃𝑠u�. If 𝑗
is a pool job at this time, it is scheduled on one of the pool processors at
a speed of ̃𝑠u� or higher. But then, since pool processors are the slowest
among all processors, the 𝑖-th fastest processor must also run at a speed
of at least ̃𝑠u�.

(b) Remember that ̌𝑥u�u� denotes the portion of job 𝑗 PD planned to schedule
in 𝑇u� just before 𝑗 got rejected. If 𝑗 was planned as a dedicated job, we
have 𝑙u� ̃𝑠u� = ̌𝑥u�u�𝑤u�. This trivially yields the desired statement because of
𝑠(𝑖, 𝑘) ≥ 0. If 𝑗 was not planned as a dedicated job, it was to be processed
on a pool processor. Let 𝐿(𝑖, 𝑘) denote the workload on the 𝑖-th fastest
processor during 𝑇u� just after 𝑗 was rejected (i.e., without ̌𝑥u�u�𝑤u�). Similarly,
let 𝐿′(𝑖, 𝑘) denote the workload on the 𝑖-th fastest processor during 𝑇u�

just before 𝑗 was rejected (i.e., including ̌𝑥u�u�𝑤u�). Proposition 3.2 gives us
𝐿′(𝑖, 𝑘) − 𝐿(𝑖, 𝑘) ≤ ̌𝑥u�u�𝑤u�. Moreover, since 𝑗 was planned as a pool job
(which run at minimal speed), we must have 𝑙u� ̃𝑠u� ≤ 𝐿′(𝑖, 𝑘). Combining
these inequalities yields that the speed u�(u�, u�)/u�u� on the 𝑖-th fastest processor

41

3 Profitable Deadline Scheduling

during 𝑇u� at 𝑗's arrival was at least ̃𝑠u� −
̌u�u�u�u�u�

u�u�
. As Proposition 3.2 also im-

plies that the workload (and, thus, the speed) of the 𝑖-th fastest processor
in an atomic interval can only increase due to the arrival of new jobs, we
get the desired statement.

3.4.3 Balancing the Different Cost Components

As our goal is to lower-bound the dual function value 𝑔(�̃�) = (1 − 𝛼) ∑ 𝐸ũ�(𝑗) +
∑ �̃�u� by the cost of algorithm PD, we have to relate the values 𝐸ũ�(𝑗) and �̃�u�

to the energy- and value- costs of PD. It depends on the job itself how this
is done exactly. For example, in the case of finished jobs, both terms can be
related to the actual energy consumption of PD in a relatively straightforward
way. This becomes much harder if the job is not finished by PD: after all, in
this case PD does not invest any energy into the job. The job's trace plays a
crucial role in this case, as it allows us to account the energy investment of
the optimal infeasible solution to the energy PD consumed during the trace.
The next proposition gathers the most important relations to be used in the
following proofs.

Proposition 3.8. Consider an arbitrary job 𝑗 ∈ 𝐽. The following properties hold:

(a) 𝐸ũ�(𝑗) = �̃�u�
̂u�u�

u� .

(b) If 𝑗 is finished by PD, then 𝐸ũ�(𝑗) ≤ 𝛿
u�

u�−1 𝐸PD(𝑗).

(c) If 𝑗 is not finished by PD and ̂𝑥u� > 𝛿
1

u�−1 , then

𝐸ũ�(𝑗) < 𝛿
u�

u�−1
⎛⎜⎜⎜⎜
⎝

1 −
𝛿

1
u�−1

̂𝑥u�

⎞⎟⎟⎟⎟
⎠

−u�

𝐸PD(𝑗). (3.16)

Proof.

(a) By using the identities ̂𝑠u� = (ũ�u�/u�u�u�)
1/u� − 1 and 𝑙(𝑗) ̂𝑠u� = ̂𝑥u�𝑤u� (see Lemma 3.5)

we can compute

𝐸ũ�(𝑗) = 𝑙(𝑗) ̂𝑠u�
u� = 𝑙(𝑗) ̂𝑠u� ⋅ ̂𝑠u�−1

u� = ̂𝑥u�𝑤u� ⋅
�̃�u�

𝛼𝑤u�
= �̃�u�

̂𝑥u�

𝛼
. (3.17)

42

3.4 Analysis

(b) Assume 𝑗 is finished by PD. Remember that ̃𝑠u� denotes the speed assigned
to 𝑗 when it arrived and �̃�u� got fixed. We have the relation ̃𝑠u� = 𝛿−1/u� − 1 ̂𝑠u�

(cf. Section 3.4.2). Let 𝑠min denote the minimal speed of 𝑗's trace in the
final (̃𝑥, ̃𝑦)-schedule produced by PD. That is, there is a tuple (𝑇u�, 𝑖) ∈
Tr(𝑗) such that the 𝑖-th fastest processor in 𝑇u� runs at speed 𝑠min and
𝐸PD(𝑗) ≥ 𝑙(𝑗)𝑠u�

min. By Proposition 3.7 we must have 𝑠min ≥ ̃𝑠u�. We
compute

𝐸ũ�(𝑗) = 𝑙(𝑗) ̂𝑠u�
u� = 𝛿

u�
u�−1 𝑙(𝑗) ̃𝑠u�

u� ≤ 𝛿
u�

u�−1 𝑙(𝑗)𝑠u�
min ≤ 𝛿

u�
u�−1 𝐸PD(𝑗). (3.18)

(c) Applying Proposition 3.7 to all (𝑇u�, 𝑖) ∈ Tr(𝑗) yields that the total work-
load 𝐿 that is processed by PD during 𝑗's trace is at least 𝑙(𝑗) ̃𝑠u� − ̌𝑥u�𝑤u� >
𝑙(𝑗) ̃𝑠u� − 𝑤u�. The minimum energy necessary to process this workload in
𝑙(𝑗) time units is 𝑙(𝑗)(u�/u�(u�))u�. We compute

𝐸PD(𝑗) ≥ 𝑙(𝑗)(
𝐿

𝑙(𝑗)
)

u�
> 𝑙(𝑗)(

𝑙(𝑗) ̃𝑠u� − 𝑤u�

𝑙(𝑗)
)

u�

= 𝑙(𝑗) ̃𝑠u�
u�
⎛⎜
⎝

1 −
𝑤u�

̃𝑠u�𝑙(𝑗
)⎞⎟
⎠

u�

= 𝛿− u�
u�−1 𝐸ũ�(𝑗)⎛⎜⎜⎜⎜

⎝
1 −

𝛿
1

u�−1

̂𝑥u�

⎞⎟⎟⎟⎟
⎠

u�

.

(3.19)

Rearranging the inequality yields the desired statement.

Note that the bound for unfinished jobs in Proposition 3.8 has an additional
factor > 1 compared to the one for finished jobs. However, for large enough ̂𝑥u�

this factor becomes nearly one. Thus, we will apply this bound only in cases of
large ̂𝑥u�. If ̂𝑥u� is relatively small, we will instead bound 𝐸ũ�(𝑗) only by its value.
We continue by describing the different types of jobs we consider. In total, we
differentiate between three job categories:

Finished Jobs These are all jobs 𝑗 with ̃𝑦u� = 1 (i.e., jobs finished by PD). As
mentioned above, we bound both components 𝐸ũ�(𝑗) and �̃�u� of 𝑔(�̃�) by
the actual energy consumption of PD. We use

𝐽1 ≔ { 𝑗 ∈ 𝐽 ∣ ̃𝑦u� = 1 } (3.20)

to refer to this job category.

43

3 Profitable Deadline Scheduling

Unfinished, Low-yield Jobs We use the term low-yield jobs to refer to jobs
not finished by PD and which have a relatively small ̂𝑥u�. That is, jobs
of which the optimal infeasible solution does not schedule too large
a portion. Intuitively, the value of such jobs must be small, because
otherwise it would have been beneficial to schedule a larger portion
of them in the optimal infeasible solution. In this sense, these jobs are
low-yield and we will exploit this fact by bounding both components
𝐸ũ�(𝑗) and ̃𝜆u� of 𝑔(�̃�) by the job value PD is charged for not finishing 𝑗.
More formally, this job category is defined as

𝐽2 ≔ { 𝑗 ∈ 𝐽 ∣ ̃𝑦u� = 0 ∧ ̂𝑥u� ≤
𝛼 − 𝛼1−u�

𝛼 − 1
}. (3.21)

Unfinished, High-yield Jobs Correspondingly, the term high-yield jobs refers
to jobs finished by PD and which have a relatively large ̂𝑥u�. More exactly,
these jobs are given by

𝐽3 ≔ { 𝑗 ∈ 𝐽 ∣ ̃𝑦u� = 0 ∧ ̂𝑥u� >
𝛼 − 𝛼1−u�

𝛼 − 1
}. (3.22)

This proves to be the most challenging case, as neither do the jobs feature
a particularly small value nor does PD invest any energy into their exe-
cution. Instead, we use a mix of the job's value and the energy spent by
PD during 𝑗's trace to account for its contribution. One has to carefully
balance what portions of 𝐸ũ�(𝑗) and �̃�u� to bound by either 𝐸PD(𝑗) or by 𝑣u�.

In accordance with these job categories, we split the value of the dual function
by the corresponding contributions. That is, 𝑔(�̃�) = ∑3

u�=1 𝑔u�(�̃�), where 𝑔u�(�̃�) =
(1 − 𝛼) ∑u�∈u�u�

𝐸ũ�(𝑗) + ∑u�∈u�u�
�̃�u�. The following lemmas bound each contribution

separately.

Lemma 3.9 (Finished Jobs). For finished jobs it holds that

𝑔1(�̃�) ≥ 𝛿𝐸PD + (1 − 𝛼)𝛿
u�

u�−1 ∑
u�∈u�1

𝐸PD(𝑗). (3.23)

Proof. We have 𝑔1(�̃�) = (1−𝛼) ∑u�∈u�1
𝐸ũ�(𝑗)+∑u�1∈u� �̃�u�. Using Proposition 3.8(b)

and 𝛼 > 1 we bound the first summand by (1 − 𝛼)𝛿
u�

u�−1 ∑u�∈u�1
𝐸PD(𝑗). For the

44

3.4 Analysis

second summand, we get

∑
u�∈u�1

�̃�u� = ∑
u�∈u�1

u�
∑
u�=1

̃𝑥u�u��̃�u� = ∑
u�∈u�1

u�
∑
u�=1

̃𝑥u�u�𝛿 d 𝒫u�
du�u�u�

(̃𝑥1u�, … , ̃𝑥u�u�, 0, … , 0)

= 𝛿
u�

∑
u�=1

∑
u�∈u�

̃𝑥u�u�
d 𝒫u�
du�u�u�

(̃𝑥1u�, … , ̃𝑥u�u�, 0, … , 0)

≥ 𝛿
u�

∑
u�=1

𝒫u�(̃𝑥1u�, … , ̃𝑥u�u�) = 𝛿𝐸PD.

(3.24)

The involved inequality is based on the fact that for any differentiable convex
function 𝑓 ∶ ℝu� → ℝ with 𝑓 (0) = 0 and 𝑥 ∈ ℝu�

≥0 we have the inequality

u�
∑
u�=1

𝑥u�
d𝑓
d𝑥u�

(𝑥1, … , 𝑥u�, 0, … , 0) ≥ 𝑓 (𝑥) (3.25)

(see, e.g., [BV04, Chapter 3]). Combining these bounds yields the lemma's
statement.

Lemma 3.10 (Low-yield Jobs). For unfinished, low-yield jobs it holds that

𝑔2(�̃�) ≥ 𝛼−u� ∑
u�∈u�2

𝑣u�. (3.26)

Proof. Proposition 3.8(a) together with the fact that �̃�u� = 𝑣u� for 𝑗 ∈ 𝐽2 yields

𝐸ũ�(𝑗) = 𝑣u�
̂u�u�

u� . Applying this to 𝑔2(�̃�) we get

𝑔2(�̃�) = ∑
u�∈u�2

(1 − 𝛼)𝐸ũ�(𝑗) + ∑
u�∈u�2

�̃�u� = ∑
u�∈u�2

1 − 𝛼
𝛼

̂𝑥u�𝑣u� + ∑
u�∈u�2

𝑣u�

= ∑
u�∈u�2

(1 −
𝛼 − 1

𝛼
̂𝑥u�)𝑣u�

Def.
≥
u�2

∑
u�∈u�2

(1 −
𝛼 − 𝛼1−u�

𝛼
)𝑣u�

= 𝛼−u� ∑
u�∈u�2

𝑣u�.

Lemma 3.11 (High-yield Jobs). For unfinished, high-yield jobs and if 𝛿 ≤ 1
u�u�−1 , it

holds that
𝑔3(�̃�) ≥

1 − 𝛼
𝛼u� ∑

u�∈u�3

𝐸PD(𝑗) + 𝛼−u� ∑
u�∈u�3

𝑣u�. (3.27)

45

3 Profitable Deadline Scheduling

Proof. We make use of both Proposition 3.8(a) and Proposition 3.8(c). First
note that the prerequisite 𝛿 ≤ 1/u�u�−1 together with 𝛼 > 1 and 𝑗 ∈ 𝐽3 gives us the
relation 𝛿

1
u�−1 ≤ 1

u� ≤ 1 ≤ u�−u�1−u�

u�−1 < ̂𝑥u�. This allows us to apply Proposition 3.8(c).
The second summand of 𝑔3(�̃�) is split into two parts, one of which is accounted
for by energy invested by PD and the other one by lost value due to unfinished
jobs:

𝑔3(�̃�) = ∑
u�∈u�3

(1 − 𝛼)𝐸ũ�(𝑗) + ∑
u�∈u�3

�̃�u�

= ∑
u�∈u�3

(1 − 𝛼)𝐸ũ�(𝑗) + ∑
u�∈u�3

(1 − 𝛼−u�)�̃�u� + ∑
u�∈u�3

𝛼−u��̃�u�

= ∑
u�∈u�3

(1 − 𝛼)𝐸ũ�(𝑗) + ∑
u�∈u�3

(1 − 𝛼−u�)
𝛼𝐸ũ�(𝑗)

̂𝑥u�
+ ∑

u�∈u�3

𝛼−u�𝑣u�

= ∑
u�∈u�3

(1 − 𝛼)𝐸ũ�(𝑗)⎛⎜
⎝

1 −
𝛼 − 𝛼1−u�

(𝛼 − 1) ̂𝑥u�
⎞⎟
⎠

+ ∑
u�∈u�3

𝛼−u�𝑣u�

> ∑
u�∈u�3

(1 − 𝛼)𝛿
u�

u�−1 𝐸PD(𝑗)⎛⎜⎜⎜⎜
⎝

1 −
𝛿

1
u�−1

̂𝑥u�

⎞⎟⎟⎟⎟
⎠

−u�

⎛⎜
⎝

1 −
𝛼 − 𝛼1−u�

(𝛼 − 1) ̂𝑥u�
⎞⎟
⎠

+ ∑
u�∈u�3

𝛼−u�𝑣u�

≥ ∑
u�∈u�3

(1 − 𝛼)𝛼−u�⎛⎜
⎝

1 −
1

𝛼 ̂𝑥u�
⎞⎟
⎠

−u�
⎛⎜
⎝

1 −
1
̂𝑥u�
⎞⎟
⎠

𝐸PD(𝑗) + ∑
u�∈u�3

𝛼−u�𝑣u�

≥ (1 − 𝛼)𝛼−u� ∑
u�∈u�3

𝐸PD(𝑗) + ∑
u�∈u�3

𝛼−u�𝑣u�.

The first inequality applies Proposition 3.8(c), the penultimate inequality the re-
lations deduced from the prerequisite, and the last inequality is the application
of Bernoulli's inequality.

3.4.4 Deriving the Tight Competitive Ratio

It remains to derive our final upper bound on the competitive ratio of PD. We
do so by combining the bounds from Lemma 3.9, Lemma 3.10, and Lemma 3.11.

Theorem 3.3. The competitive ratio of algorithm PD with the parameter 𝛿 set to
1/u�u�−1 is at most 𝛼u�. Moreover, there is a problem instance for which PD is exactly by
a factor of 𝛼u� worse than an optimal algorithm. That is, our upper bound is optimal.

46

3.5 Conclusion & Outlook

Proof. If we combine the results from Lemma 3.9 to Lemma 3.11 we get

𝑔(�̃�) ≥ 𝛼1−u�𝐸PD + (1 − 𝛼)𝛼−u� ∑
u�∈u�1∪u�3

𝐸PD(𝑗) + 𝛼−u� ∑
u�∈u�2∪u�3

𝑣u�

≥ 𝛼1−u�𝐸PD + (1 − 𝛼)𝛼−u� ∑
u�∈u�

𝐸PD(𝑗) + 𝛼−u� ∑
u�∈u�2∪u�3

𝑣u�

≥ (𝛼1−u� + (1 − 𝛼)𝛼−u�)𝐸PD + 𝛼−u� ∑
u�∈u�2∪u�3

𝑣u�

= 𝛼−u� cost(PD).

(3.28)

Now, let OPT denote an optimal schedule for the current problem instance.
Moreover, let OPT′ denote an optimal solution to the relaxed mathematical
program (CP). Obviously, it holds that cost(OPT′) ≤ cost(OPT). By duality,
we know that 𝑔(�̃�) ≤ cost(OPT′). By combining these inequalities we can
bound PD's competitiveness by

cost(PD) ≤ 𝛼u�𝑔(�̃�) ≤ 𝛼u� cost(OPT′) ≤ 𝛼u� cost(OPT). (3.29)

For the lower bound, consider a single processor and assume the job values
are high enough to ensure that PD finishes all jobs. We create a job instance
of 𝑛 jobs in the same way as done in [BKP04] for the lower bound on OA and
AVR. That is, job 𝑗 ∈ 𝐽 = { 1, 2, … , 𝑛 } arrives at time 𝑗 − 1 and has workload
(𝑛−𝑗+1)−1/u�. All jobs have the same deadline 𝑛. Now, whenever one of the jobs
arrives, PD schedules all remaining jobs at the energy-optimal (i.e., minimal)
speed as pool jobs. In other words, it computes a schedule that is optimal for
the remaining known work. This is exactly what OA does (hence its name),
which means that we get the same lower bound of 𝛼u� as for OA (cf. [BKP04,
Lemma 3.2]).

3.5 Conclusion & Outlook

This chapter presented a new algorithm and an analysis based on duality
theory for scheduling valuable jobs on multiple speed-scalable processors.
Using duality theory for the analysis of energy-efficient scheduling algorithms
was proposed by Gupta et al. [GKP12]. Given that the first formal proof of
the original offline algorithm's optimality was achieved by means of duality

47

3 Profitable Deadline Scheduling

theory using the KKT conditions [BKP07], it seems that this is a very natural
way to approach this kind of problems. However, almost all results for online
algorithms in this area use amortized competitiveness arguments similar to
the original proof of OA's competitiveness, one of the first and most important
online algorithms for energy-efficient scheduling. While this approach proved
to be elegant and very powerful, designing suitable potential functions is
difficult and needs a quite high amount of experience with the topic. Adapting
these potential functions to new model variations and generalizations, or
tuning them to narrow the gap to the known lower bounds, is non-trivial
and remains a challenging task. Using well-developed utilities from duality
theory for convex programming may prove to be a worthwhile alternative
approach. After all, this approach allowed us not only to improve upon known
results but also to generalize them to the important case of multiple processors.
Nguyen [Ngu13] indicates that such duality-based methods seem to be the
“right” tool to analyze speed scaling and resource augmentation models.

However, currently the usage of such convex programming techniques for
online algorithms in speed scaling literature is limited to algorithms that are,
in some sense, greedy. This is a consequence of the fact that these algorithms'
design mostly follows the typical primal-dual approach [BN09], where primal
and/or dual variables are greedily raised until certain conditions are met. In
the setting of speed scaling, such greedy algorithms seem to be quite limited.
For example, to the best of my knowledge, all known greedy algorithms for
deadline scheduling have a competitiveness of at least 𝛼u�. It is not obvious how
to conduct a duality-based analysis on non-greedy algorithms. The algorithm
qOA might be a good candidate for a first try: its potential function based
analysis is not tight and seems relatively weak.

48

CHAPTER 4

Slow Down & Sleep for Profit

“ Death was Nature's way of telling you to slow down. ”
Terry Pratchett, Strata

The ubiquity of technical systems, the rise of mobile computing, a growing
ecological awareness in the public; all of these are reasons why energy
efficiency has become a major concern in our society. The previous

chapters already discussed the importance of energy saving techniques, es-
pecially speed scaling. In combination with improvements on the technical
level, algorithmic research has great potential to reduce energy consumption.
Albers [Alb10] gives a good insight into the role of algorithms to fully exploit
the diverse energy-saving opportunities.

Besides speed scaling, power-down mechanisms are another prominent
technique to save energy. While the former allows a system to save energy by
adapting the processor's speed to the current system load, the latter can be
used to transition into a sleep mode to conserve energy. In the following, we
are interested in the combination of both mechanisms: speed scaling with a
(single) sleep state on one processor. From an algorithmic viewpoint, the most
challenging aspect in the design of scheduling strategies for this setting is to
handle the lack of knowledge about the future: should we use a high speed

49

4 Slow Down & Sleep for Profit

to free resources in anticipation of new jobs or enter sleep mode in the hope
that no new jobs arrive in the near future? This scenario has been considered
before, see [ISG07] and the literature overview in Section 4.1. However, this is
not the case for the price-collecting variant of this problem, which will be the
subject of our study in this chapter.

Chapter Basis The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2012 (with A. Cord-Landwehr and F. Mallmann-Trenn). “Slow
Down and Sleep for Profit in Online Deadline Scheduling”. In: Pro-
ceedings of the 1st Mediterranean Conference on Algorithms (MedAlg),
cf. [CKM12].

Chapter Outline We start with an overview of related literature in Section 4.1,
and use this to put the results of this chapter into perspective. Section 4.2
presents the formal model description, the necessary notation, and some basic
facts about the structure of certain schedules. A first small result is stated
and proven in Section 4.3: a lower bound on the competitiveness for a class
of algorithms which we refer to as rejection-oblivious algorithms. Our main
result follows in Section 4.4, where we present our algorithm and its analysis.
Section 4.5 closes the chapter's analysis part with a short discussion of the
setting with a bounded maximum speed. We conclude the chapter with a
short résumé in Section 4.6.

4.1 Related Work & Contribution

As for the previous chapter, we provide a self-contained literature overview,
even if that means the reader may have to bear with a slight repetition. In
the present chapter, we focus on theoretical results concerned with deadline
scheduling on a single, speed-scalable processor and with sleep states.

Theoretical work in this area has been initiated by Yao et al. [YDS95]. They
considered scheduling of jobs having different sizes and deadlines on a single
variable-speed processor. When running at speed 𝑠, its power consumption is

50

4.1 Related Work & Contribution

𝑃(𝑠) = 𝑠u� for some constant 𝛼 ≥ 2. Yao et al. derived an optimal polynomial-
time offline algorithm as well as two online algorithms known as optimal
available (OA) and average rate (AVR). Up to now, OA remains one of the most
important algorithms in this area, as it is used as a basic building block by
many strategies (including the strategy we present in this chapter). Using an
elegant amortized potential function argument, Bansal et al. [BKP07] were able
to show that OA's competitive ratio is exactly 𝛼u�. Moreover, the authors stated
a new algorithm, named BKP, which achieves a competitive ratio of essentially
2𝑒u�+1. This improves upon OA for large 𝛼. The best known lower bound for
deterministic algorithms is u�u�−1/u� due to Bansal et al. [Ban+09]. They also pre-
sented an algorithm (qOA) that is particularly well-suited for low powers of 𝛼.
An interesting and realistic model extension is the restriction of the maximum
processor speed. In such a setting, a scheduler may not always be able to finish
all jobs by their deadlines. Chan et al. [Cha+07] were the first to consider the
combination of classical speed scaling with such a maximum speed. They gave
an algorithm that is 𝛼u� + 𝛼24u�-competitive on energy and 14-competitive on
throughput. Bansal et al. [Ban+08b] improved this to a 4-competitive algorithm
concerning the throughput while maintaining a constant competitive ratio
with respect to the energy. Note that no algorithm – even if ignoring the energy
consumption – can be better than 4-competitive for throughput (see [Bar+91]).

Power-down mechanisms were studied by Baptiste [Bap06]. He considered a
fixed-speed processor requiring a certain amount of energy to stay awake, but
which may switch into a sleep state to save energy. Returning from sleep needs
energy 𝛾. For jobs of unit size, he gave an optimal polynomial-time offline
algorithm, which was later extended to jobs of arbitrary size [BCD07]. The first
work to combine both dynamic speed scaling and sleep states in the classical
YAO-model is due to Irani et al. [ISG07]. They achieved a 2-approximation for
arbitrary convex power functions. For the online setting and power function
𝑃(𝑠) = 𝑠u� + 𝛽 a competitive ratio of 4u�−1𝛼u� + 2u�−1 + 2 was reached. Han et
al. [Han+10] improved upon this in two respects: they lowered the competitive
ratio to 𝛼u� + 2 and transferred the result to scenarios limiting the maximum
speed. Only recently, Albers and Antoniadis [AA12] proved that the opti-
mization problem is NP-hard and gave lower bounds for several algorithm
classes. Moreover, they improved the approximation ratio for general convex
power functions to 4/3. The papers most closely related to this work are due

51

4 Slow Down & Sleep for Profit

to Pruhs and Stein [PS10] and Chan et al. [CLL10a]. Both considered the dy-
namic speed scaling model of Yao et al. However, they extended the idea of
energy-minimal schedules to a profit-oriented objective. In the simplest case,
jobs have values (or priorities) and the scheduler is no longer required to finish
all jobs. Instead, it can decide to reject jobs whose values do not justify the
foreseeable energy investment necessary to complete them. The objective is to
maximize profit [PS10] or, similarly, minimize the loss [CLL10a]. As argued
by the authors, the latter model has the benefit of being a direct generalization
of the classical model of Yao et al. [YDS95]. For maximizing the profit, Pruhs
and Stein [PS10] showed that, in order to achieve a bounded competitive ratio,
resource augmentation is necessary and designed a scalable online algorithm.
For minimizing the loss, Chan et al. [CLL10a] gave a 𝛼u� + 2𝑒𝛼-competitive
algorithm and transferred the result to the case of a bounded maximum speed.

Our Contribution This chapter presents the first model that not only takes
into account two of the most prominent energy saving techniques (namely,
speed scaling and power-down) but couples the energy minimization objective
with the idea of profitability. It combines aspects from both [ISG07] and
[CLL10a]. From [ISG07] it inherits one of the most realistic processor models
considered in this area: a single variable-speed processor with power function
𝑃(𝑠) = 𝑠u� + 𝛽 and a sleep state. Thus, even at speed zero the system is charged
a certain amount 𝛽 of energy, but it can suspend to sleep such that no energy
is consumed. Waking up causes a transition cost of 𝛾. The job model stems
from [CLL10a]: Jobs arrive in an online fashion, are preemptable, and have a
deadline, size, and value. The scheduler can reject jobs (e.g., if their values do
not justify the presumed energy investment). Its objective is to minimize the
total energy investment plus the total value of rejected jobs.

One of this chapter's major insights is that the maximum value density
𝛿max (i.e., the ratio between a job's value and its workload) is a parameter
that is inherently connected to the necessary and sufficient competitive ratio
achievable for the considered online scheduling problem. We present an online
algorithm that combines ideas from [CLL10a] and [Han+10] and analyze
its competitive ratio with respect to 𝛿max. This yields an upper bound of

52

4.2 Model & Preliminaries

𝛼u� + 2𝑒𝛼 + 𝛿max
u�cr

u�(u�cr)
.1 If the value density of low-valued jobs is not too large

or job values are at least 𝛾, the competitive ratio becomes 𝛼u� + 2𝑒𝛼. Moreover,
we show that one cannot do much better: any rejection-oblivious strategy has
a competitive ratio of at least 𝛿max

u�cr

u�(u�cr)
. Here, rejection-oblivious means that

rejection decisions are based on the current system state and job properties
only. This lower bound is in stark contrast to the setting without sleep states,
where a rejection-oblivious O(1)-competitive algorithm exists [CLL10a]. Using
the definition of a job's penalty ratio (due to Chan et al. [CLL10a]), we extend
our results to processors with a bounded maximum speed.

4.2 Model & Preliminaries

We are given a speed-scalable processor that can be set to any speed 𝑠 ∈ [0, ∞).
When running at speed 𝑠 its power consumption is 𝑃u�,u�(𝑠) = 𝑠u� + 𝛽 with
𝛼 ≥ 2 and 𝛽 ≥ 0. If 𝑠(𝑡) denotes the processor speed at time 𝑡, the total power
consumption is ∫∞

0 𝑃u�,u�(𝑠(𝑡)) d𝑡. We can suspend the processor into a sleep
state to save energy. In this state, it cannot process any jobs and has a power
consumption of zero. Though entering the sleep state is free of costs, waking
up needs a fixed transition energy 𝛾 ≥ 0. Over time, 𝑛 jobs 𝐽 = { 1, 2, … , 𝑛 }
are released. Each job 𝑗 appears at its release time 𝑟u� and has a deadline 𝑑u�,
a (non-negative) value 𝑣u�, and requires a certain amount 𝑤u� of work. The
processor can process at most one job at a time. Preemption is allowed, i.e.,
jobs may be paused at any time and continued later on. If 𝐼 denotes the period
of time (not necessarily an interval) when 𝑗 is scheduled, the amount of work
processed is ∫

u� 𝑠(𝑡) d𝑡. A job is finished if ∫
u� 𝑠(𝑡) d𝑡 ≥ 𝑤u�. Jobs not finished until

their deadline cause a cost equal to their value. We call such jobs rejected. A
schedule 𝑆 specifies for any time 𝑡 the processor's state (asleep or awake), the
currently processed job (if the processor is awake), and sets the speed 𝑠(𝑡).
W.l.o.g., we assume 𝑠(𝑡) = 0 when no job is being processed. Initially, the
processor is assumed to be asleep. Whenever it is neither sleeping nor working
we say it is idle. A schedule's cost is the invested energy (for awaking from
sleep, idling, and working on jobs) plus the loss due to rejected jobs. Let 𝑚
denote the number of sleep intervals, 𝑙 the total length of idle intervals, and

1The expression u�cr

u�(u�cr)
depends only on u� and u�, see Section 4.2.

53

4 Slow Down & Sleep for Profit

ℐwork the collection of all working intervals (i.e., times when 𝑠(𝑡) > 0). Then
the schedule's sleeping energy is 𝐸u�

sleep ≔ (𝑚 − 1)𝛾, its idling energy is 𝐸u�
idle ≔ 𝑙𝛽,

and its working energy is 𝐸u�
work ≔ ∫

ℐwork
𝑃u�,u�(𝑠(𝑡)) d𝑡. We use 𝑉u�

rej to denote the
total value of rejected jobs. Now, the cost of schedule 𝑆 is

cost(𝑆) ≔ 𝐸u�
sleep + 𝐸u�

idle + 𝐸u�
work + 𝑉u�

rej. (4.1)

We seek online strategies yielding a provably good schedule. More formally,
we measure the quality of online strategies by their competitive ratio: For
an online algorithm 𝐴 and a problem instance 𝐼 let 𝐴(𝐼) denote the resulting
schedule and 𝑂(𝐼) an optimal schedule for 𝐼. Then 𝐴 is said to be 𝑐-competitive
if supu�

cost(u�(u�))
cost(u�(u�)) ≤ 𝑐.

We define the system energy 𝐸u�
sys of a schedule to be the energy needed to

hold the system awake (whilst idling and working). That is, if 𝑆 is awake for a
total of 𝑥 time units, 𝐸u�

sys = 𝑥𝛽. Note that 𝐸u�
sys ≤ 𝐸u�

idle + 𝐸u�
work. The critical speed

of the power function is defined as 𝑠cr ≔ arg minu�≥0 u�u�,u�(u�)/u� (cf. also [ISG07;
Han+10]). If job 𝑗 is processed at constant speed 𝑠 its energy usage is 𝑤u� ⋅ u�u�,u�(u�)/u�.
Thus, assuming that 𝑗 is the only job in the system and ignoring its dead-
line, 𝑠cr is the energy-optimal speed to process 𝑗. One can easily check that
𝑠u�
cr = u�

u�−1 . Given a job 𝑗, let 𝛿u� ≔ u�u�/u�u� denote the job's value density. Follow-
ing [CLL10a] and [PS10], we define the profitable speed 𝑠u�,p of job 𝑗 to be the
maximum speed for which its processing may be profitable. More formally,
𝑠u�,p ≔ max { 𝑠 ≥ 0 ∣ 𝑤u� ⋅ u�u�,0(u�)/u� ≤ 𝑣u� }. Note that the definition is with respect
to 𝑃u�,0, i.e., it ignores the system energy. The profitable speed can be more
explicitly characterized by 𝑠u�−1

u�,p = 𝛿u�. It is easy to see that a schedule that
processes 𝑗 at an average speed faster than 𝑠u�,p cannot be optimal: rejecting 𝑗
and idling during the former execution phase would be more profitable. See
Figure 4.1 for an illustration of these notions.

Optimal Available & Structural Properties One of the first online algo-
rithms for dynamic speed scaling was Optimal Available (OA) due to [YDS95].
As it is an essential building block of not only our but many algorithms for
speed scaling, we give a short recap of its idea (see [BKP07] for a thorough dis-
cussion and analysis). At any time, OA computes an optimal offline schedule
assuming that no further jobs arrive. This optimal offline schedule is com-

54

4.3 Lower Bound for Rejection-Oblivious Algorithms

profitable speed profitable speed
(of some job)

speed

po
w

er

(a) Our algorithm tries to use job speeds that
essentially stay within the shaded interval.

transition
energy u�

transition
energy u�

u�1
u�2

u�3

u�

u�(u�cr)

time

po
w

er working energy
idling energy

(b) A sample schedule and the involved energy types.

Figure 4.1: Basic notions and sample schedule for speed scaling with a sleep state.

puted as follows: Let the density of an interval 𝐼 be defined as u�(u�)/|u�|. Here, 𝑤(𝐼)
denotes the total work of jobs 𝑗 with [𝑟u�, 𝑑u�) ⊆ 𝐼 and |𝐼| the length of 𝐼. Now,
whenever a job arrives OA computes so-called critical intervals by iteratively
choosing an interval of maximum density. Jobs are then scheduled at a speed
equal to the density of the corresponding critical interval using the earliest
deadline first policy. Let us summarize several structural facts known about
the OA schedule.

Fact 4.1. Let 𝑆 and 𝑆′ denote the OA schedules just before and after 𝑗's arrival.
We use 𝑆(𝑗) and 𝑆′(𝑗) to denote 𝑗's speed in the corresponding schedule.

(a) The speed function of 𝑆 (and 𝑆′) is a non-increasing staircase function.

(b) The minimal speed of 𝑆′ during [𝑟u�, 𝑑u�) is at least 𝑆′(𝑗).

(c) Let 𝐼 be an arbitrary period of time during [𝑟u�, 𝑑u�) (not necessarily an
interval). Moreover, let 𝑊 denote the total amount of work scheduled
by 𝑆 and 𝑊′ the one scheduled by 𝑆′ during 𝐼. Then the inequality
𝑊 ≤ 𝑊′ ≤ 𝑊 + 𝑤u� holds.

(d) The speed of any 𝑗′ ≠ 𝑗 can only increase due to 𝑗's arrival: 𝑆′(𝑗′) ≥ 𝑆(𝑗′).

4.3 Lower Bound for Rejection-Oblivious Algorithms

This section considers a class of simple, deterministic online algorithms that
we call rejection-oblivious. When a job arrives, a rejection-oblivious algorithm
decides whether to accept or reject the job. This decision is based solely on the

55

4 Slow Down & Sleep for Profit

processor's current state (sleeping, idling, working), its current workload, and
the job's properties. In particular, it does not take former decisions into account.
An example for such an algorithm is 𝑃𝑆(𝑐) from [CLL10a]. For a suitable
parameter 𝑐, it is 𝛼u� + 2𝑒𝛼-competitive in a model without sleep state. In this
section we show that in our model (i.e., with a sleep state) no rejection-oblivious
algorithm can be competitive. More exactly, the competitiveness of any such
algorithm can become arbitrarily large. We identify the jobs' value density as
a crucial parameter for the competitiveness of these algorithms.

Theorem 4.2. The competitiveness of any rejection-oblivious algorithm 𝐴 is un-
bounded. More exactly, for any 𝐴 there is a problem instance 𝐼 with competitive ratio
≥ 𝛿max

u�cr

u�u�,u�(u�cr)
. Here, 𝛿max is the maximum value density of jobs from 𝐼.

Proof. For 𝐴 to be competitive, there must be some 𝑥 ∈ ℝ such that, while 𝐴 is
asleep, all jobs of value at most 𝑥 are rejected (independent of their work and
deadlines). Otherwise, we can define a sequence of 𝑛 identical jobs 1, 2, … , 𝑛
of arbitrary small value 𝜀. W.l.o.g., we release them such that 𝐴 goes to sleep
during [𝑑u�−1, 𝑟u�) (otherwise 𝐴 consumes an infinite amount of energy). Thus,
𝐴's cost is at least 𝑛𝛾. If we instead consider a schedule 𝑆 that rejects all jobs, we
have cost(𝑆) = 𝑛𝜀. For 𝜀 → 0 we see that 𝐴's competitive ratio is unbounded.

So, let 𝑥 ∈ ℝ be such that 𝐴 rejects any job of value at most 𝑥 whilst asleep.
Consider 𝑛 jobs of identical value 𝑥 and work 𝑤. For each job, the deadline is
set such that 𝑤 = 𝑠cr(𝑑u� − 𝑟u�). The jobs are released in immediate succession,
i.e., 𝑟u� = 𝑑u�−1. Algorithm 𝐴 rejects all jobs, incurring cost 𝑛𝑥. Let 𝑆 denote the
schedule that accepts all jobs and processes them at speed 𝑠cr. The cost of 𝑆 is
given by cost(𝑆) = 𝛾 + 𝑛𝑤

u�u�,u�(u�cr)
u�cr

. Thus, 𝐴's competitive ratio is at least

𝑛𝑥

𝛾 + 𝑛𝑤
u�u�,u�(u�cr)

u�cr

= 𝛿max
1

u�
u�u� +

u�u�,u�(u�cr)
u�cr

. (4.2)

For 𝑛 → ∞ we get the lower bound 𝛿max
u�cr

u�u�,u�(u�cr)
.

4.4 Algorithm & Analysis

In the following, we use 𝐴 to refer to both the algorithm and the schedule it
produces; which is meant will be clear from the context. As most algorithms in

56

4.4 Algorithm & Analysis

this area (see, e.g., [ISG07; Ban+09; CLL10a; Han+10; AAG11]), 𝐴 relies heavily
on the good structural properties of OA and on OA's wide applicability to
variants of the original energy-oriented scheduling model of Yao et al. [YDS95].
It essentially consists of two components, the rejection policy and the scheduling
policy. The rejection policy decides which jobs to accept or reject, while the
scheduling policy ensures that all accepted jobs are finished until their dead-
line. Our rejection policy is an extension of the one used by the algorithm PS
in [CLL10a]. It ensures that we process only jobs that have a reasonable high
value (value > planned energy investment) and that we do not wake from
sleep for very cheap jobs. The scheduling policy controls the speed, the job
assignment, and the current mode of the processor. It is a straightforward
adaption of the algorithm used in [Han+10]. However, its analysis proves to
be more involved because we have to take into account its interaction with the
rejection policy and that the job sets scheduled by the optimal algorithm and
𝐴 may be quite different.

The following descriptions of the scheduling and rejection policies assume a
continuous recomputation of the current OA schedule. See Listing 4.1 for the
corresponding pseudocode. It is straightforward to implement 𝐴 such that the
planned schedule is recomputed only when new jobs arrive.

Scheduling Policy All accepted jobs are scheduled according to the earliest
deadline first rule. At any time, the processor speed is computed based on the
OA schedule. We use OAu� to denote the schedule produced by OA if given
the remaining (accepted) work at time 𝑡 and the power function 𝑃u�,0. Let 𝜌u�

denote the speed planned by OAu� at time 𝑡. 𝐴 puts the processor either in
working, idling, or sleeping mode. During working mode the processor speed
is set to max(𝜌u�, 𝑠cr) until there is no more remaining work. Then speed is set
to zero and the processor starts idling. While idling or sleeping, we switch to
the working mode only when 𝜌u� becomes larger than 𝑠cr. When the amount
of energy spent in the current idle interval equals the transition energy 𝛾 (i.e.,
after time u�/u�u�,u�(0)) the processor is suspended to sleep.

Rejection Policy Let 𝑐1 and 𝑐2 be parameters to be determined later. Con-
sider the arrival of a new job 𝑗 at time 𝑟u�. Reject it immediately if 𝛿u� < u�u�−1

cr /u�u�u�−1
2 .

Otherwise, define the current idle cost 𝑥 ∈ [0, 𝛾] depending on the processor's

57

4 Slow Down & Sleep for Profit

1 { at any time 𝑡 and for 𝑥 equal to current idle cost }
2 on arrival of job 𝑗:
3 { let 𝑠OA be OAu�'s speed for 𝑗 if it were accepted}
4 reject if 𝛿u� < u�u�−1

cr /u�u�u�−1
2 or 𝑣u� < 𝑐1𝑥 or 𝑠OA > 𝑐2𝑠u�,p

5
6 depending on current mode:
7 { let 𝜌u� denote OAu�'s speed planned for the current time 𝑡}
8 working:
9 if no remaining work: switch to idle mode

10 otherwise: work at speed max(𝜌u�, 𝑠cr) with earliest deadline first
11 idling:
12 if 𝑥 ≥ 𝛾 : switch to sleep mode
13 if 𝜌u� > 𝑠cr: switch to work mode
14 sleeping:
15 if 𝜌u� > 𝑠cr: switch to work mode

Listing 4.1: Rejection-oblivious online scheduler 𝐴.

state as follows: (i) zero if it is working, (ii) the length of the current idle inter-
val times 𝛽 if it is idle, and (iii) 𝛾 if it is asleep. If 𝑣u� < 𝑐1𝑥, the job is rejected.
Otherwise, compute the job's speed 𝑠OA which would be assigned by OAu�u� if it
were accepted. Reject the job if 𝑠OA > 𝑐2𝑠u�,p, accept otherwise.

4.4.1 Bounding the Different Cost Portions

In the following, let 𝑂 denote an optimal schedule. Remember that cost(𝐴) =
𝐸u�

sleep+𝐸u�
idle+𝐸u�

work+𝑉u�
rej. We bound each of the three terms 𝐸u�

sleep+𝐸u�
idle, 𝐸u�

work,
and 𝑉u�

rej separately in Lemma 4.3, Lemma 4.4, and Lemma 4.7, respectively.
Eventually, Section 4.4.2 combines these bounds and yields our main result: a
nearly tight competitive ratio depending on the maximum value density of
the problem instance.

Lemma 4.3 (Sleep and Idle Energy). 𝐸u�
sleep + 𝐸u�

idle ≤ 6𝐸u�
sleep + 2𝐸u�

sys + 4
u�1

𝑉u�
rej

Proof. Let us first consider 𝐸u�
idle. Partition the set of idle intervals under sched-

ule 𝐴 into three disjoint subsets ℐ1, ℐ2, and ℐ3 as follows:

• ℐ1 contains idle intervals not intersecting any sleep interval of 𝑂. By
definition, the total length of idle intervals from ℐ1 is bounded by the
time 𝑂 is awake. Thus, the total cost of ℐ1 is at most 𝐸u�

sys.

58

4.4 Algorithm & Analysis

• For each sleep interval 𝐼 of 𝑂, ℐ2 contains any idle interval 𝑋 that is not
the last idle interval having a nonempty intersection with 𝐼 and that
is completely contained within 𝐼 (note that the former requirement is
redundant if the last intersecting idle interval is not completely contained
in 𝐼). Consider any 𝑋 ∈ ℐ2 intersecting 𝐼 and let 𝑗 denote the first job
processed by 𝐴 after 𝑋. It is easy to see that we must have [𝑟u�, 𝑑u�) ⊆ 𝐼.
Thus, 𝑂 has rejected 𝑗. But since 𝐴 accepted 𝑗, we must have 𝑣u� ≥ 𝑐1|𝑋|𝛽.
This implies that the total cost of ℐ2 cannot exceed u�u�

rej/u�1.

• ℐ3 contains all remaining idle intervals. By definition, the first sleep inter-
val of 𝑂 can intersect at most one such idle interval, while the remaining
sleep intervals of 𝑂 can be intersected by at most two such idle intervals.
Thus, if 𝑚 denotes the number of sleep intervals under schedule 𝑂, we
get |ℐ3| ≤ 2𝑚 − 1. Our sleeping strategy ensures that the cost of each
single idle interval is at most 𝛾. Using this and the definition of sleeping
energy, the total cost of ℐ3 is upper bounded by (2𝑚 − 1)𝛾 = 2𝐸u�

sleep + 𝛾.

Together, we get 𝐸u�
idle ≤ 𝐸u�

sys + u�u�
rej/u�1 + 2𝐸u�

sleep + 𝛾. Moreover, without loss
of generality we can bound 𝛾 by u�u�

rej/u�1 + 𝐸u�
sleep: if not both 𝐴 and 𝑂 reject all

incoming jobs (in which case 𝐴 would be optimal), 𝑂 will either accept at least
one job and thus wake up (𝛾 ≤ 𝐸u�

sleep) or reject the first job 𝐴 accepts (𝛾 ≤ u�u�
rej/u�1).

This yields 𝐸u�
idle ≤ 𝐸u�

sys + 2u�u�
rej/u�1 + 3𝐸u�

sleep. For 𝐸u�
sleep, note that any but the first

of 𝐴's sleep intervals is preceded by an idle interval of length u�/u�u�,u�(0). Each
such idle interval has cost 𝛾, so we get 𝐸u�

sleep ≤ 𝐸u�
idle. The lemma's statement

follows by combining the bounds for 𝐸u�
idle and 𝐸u�

sleep.

Lemma 4.4 (Working Energy). 𝐸u�
work ≤ 𝛼u�𝐸u�

work + 𝑐u�−1
2 𝛼2𝑉u�

rej

The proof of Lemma 4.4 is based on the standard amortized local competitive-
ness argument, first used by Bansal et al. [BKP07]. Although technically quite
similar to the typical argumentation, our proof must carefully consider the
more complicated rejection policy (compared to [CLL10a]), while simultane-
ously handle the different processor states.

Given a schedule 𝑆, let 𝐸u�
work(𝑡) denote the working energy spent until time 𝑡

and 𝑉u�
rej(𝑡) the discarded value until time 𝑡. We show that at any time 𝑡 ∈ ℝ≥0

59

4 Slow Down & Sleep for Profit

the amortized energy inequality

𝐸u�
work(𝑡) + 𝛷(𝑡) ≤ 𝛼u�𝐸u�

work(𝑡) + 𝑐u�−1
2 𝛼2𝑉u�

rej(𝑡) (4.3)

holds. Here, 𝛷 is a potential function to be defined in a suitable way. It is
constructed such that the following conditions hold:

(i) Boundary Condition: At the beginning and end we have 𝛷(𝑡) = 0.

(ii) Running Condition: At any time 𝑡 when no job arrives we have

d𝐸u�
work(𝑡)
d𝑡

+
d𝛷(𝑡)

d𝑡
≤ 𝛼u� d𝐸u�

work(𝑡)
d𝑡

+ 𝑐u�−1
2 𝛼2

d𝑉u�
rej(𝑡)
d𝑡

. (4.4)

(iii) Arrival Condition: At any time 𝑡 when a job arrives we have

𝛥𝐸u�
work(𝑡) + 𝛥𝛷(𝑡) ≤ 𝛼u�𝛥𝐸u�

work(𝑡) + 𝑐u�−1
2 𝛼2𝛥𝑉u�

rej(𝑡). (4.5)

The 𝛥-terms denote the corresponding change caused by the job arrival.

Once these are proven, amortized energy inequality follows by induction: It
obviously holds for 𝑡 = 0, and Conditions (ii) and (iii) ensure that it is never
violated. Applying Condition (i) yields Lemma 4.4. The crucial part is to
define a suitable potential function 𝛷. Our analysis combines aspects from
both [CLL10a] and [Han+10]. Different rejection decisions of our algorithm 𝐴
and the optimal algorithm 𝑂 require us to handle possibly different job sets in
the analysis, while the sleep management calls for a careful handling of the
processor's current state.

Construction of 𝛷 Consider an arbitrary time 𝑡 ∈ ℝ≥0. Let 𝑤u�
u� (𝑡1, 𝑡2) de-

note the remaining work at time 𝑡 accepted by schedule 𝐴 with deadline in
(𝑡1, 𝑡2]. We call the expression u�u�

u� (u�1,u�2)
u�2−u�1

the density of the interval (𝑡1, 𝑡2]. Next,
we define critical intervals (𝜏u�−1, 𝜏u�]. For this purpose, set 𝜏0 ≔ 𝑡 and define 𝜏u�

iteratively to be the maximum time that maximizes the density 𝜌u� ≔ u�u�
u� (u�u�−1,u�u�)
u�u�−u�u�−1

of the interval (𝜏u�−1, 𝜏u�]. We end at the first index 𝑙 with 𝜌u� ≤ 𝑠cr and set 𝜏u� = ∞
and 𝜌u� = 𝑠cr. Note that 𝜌1 > 𝜌2 > ⋯ > 𝜌u� = 𝑠cr. Now, for a schedule 𝑆 let
𝑤u�

u� (𝑖) denote the remaining work at time 𝑡 with deadline in the 𝑖-th critical
interval (𝜏u�−1, 𝜏u�] accepted by schedule 𝑆. The potential function is defined

60

4.4 Algorithm & Analysis

as 𝛷(𝑡) ≔ 𝛼 ∑u�
u�=1 𝜌u�−1

u� (𝑤u�
u� (𝑖) − 𝛼𝑤u�

u� (𝑖)). It quantifies how far 𝐴 is ahead or
behind in terms of energy. The densities 𝜌u� essentially correspond to OA's
speed levels, but are adjusted to 𝐴's usage of OA. Note that whenever 𝐴 is in
working mode its speed equals 𝜌1 ≥ 𝑠cr.

It remains to prove the boundary, running, and arrival conditions. The
boundary condition is trivially true as both 𝐴 and 𝑂 have no remaining work
at the beginning and end. For the running and arrival conditions, see Proposi-
tions 4.5 and 4.6, respectively.

Proposition 4.5. The running condition holds. That is, at any time 𝑡 when no job
arrives we have

d𝐸u�
work(𝑡)
d𝑡

+
d𝛷(𝑡)

d𝑡
≤ 𝛼u� d𝐸u�

work(𝑡)
d𝑡

+ 𝑐u�−1
2 𝛼2

d𝑉u�
rej(𝑡)
d𝑡

. (4.6)

Proof. Because no jobs arrive we have
du�u�

rej(u�)
du� = 0. Let 𝑠u� denote the speed of 𝐴

and 𝑠u� the speed of 𝑂. Depending on these speeds, we distinguish four cases:

Case 1: 𝑠u� = 0, 𝑠u� = 0
In this case du�u�

work(u�)
du� = du�u�

work(u�)
du� = du�(u�)

du� = 0. Thus, the Running Condi-
tion (4.4) holds.

Case 2: 𝑠u� = 0, 𝑠u� > 0
Since 𝑠u� > 0, algorithm 𝐴 is in working mode and we have 𝑠u� = 𝜌1 ≥ 𝑠cr.
Moreover, du�u�

work(u�)
du� = 𝑃u�,u�(𝑠u�), du�(u�)

du� = −𝛼𝑠u�
u�, and du�u�

work(u�)
du� = 0. We get

du�u�
work(u�)
du� + du�(u�)

du� − 𝛼u� du�u�
work(u�)
du� = 𝑃u�,u�(𝑠u�) − 𝛼𝑠u�

u�

= 𝛽 − (𝛼 − 1)𝑠u�
u� ≤ 𝛽 − (𝛼 − 1)𝑠u�

cr = 0.
(4.7)

Case 3: 𝑠u� > 0, 𝑠u� = 0
In this case 𝑙 = 1 and thus 𝜌1 = 𝑠cr. The terms in Inequality (4.4) become
du�u�

work(u�)
du� = 0, du�(u�)

du� = 𝛼2𝑠u�−1
cr 𝑠u�, and du�u�

work(u�)
du� = 𝑃u�,u�(𝑠u�). We get

du�u�
work(u�)
du� + du�(u�)

du� − 𝛼u� du�u�
work(u�)
du� = 𝛼2𝑠u�−1

cr 𝑠u� − 𝛼u�𝑃u�,u�(𝑠u�)

≤ 𝛼2𝑠u�−1
cr 𝑠u� − 𝛼u�𝑠u�

u�u�,u�(u�cr)
u�cr

≤ 𝑠u�𝑠u�−1
cr (𝛼2 − 𝛼u�) ≤ 0.

(4.8)

61

4 Slow Down & Sleep for Profit

Case 4: 𝑠u� > 0, 𝑠u� > 0
Because of 𝑠u� > 0 we know 𝐴 is in the working state and, thus, 𝑠u� = 𝜌1 ≥
𝑠cr. So, this time we have du�u�

work(u�)
du� = 𝑃u�,u�(𝑠u�), du�(u�)

du� = −𝛼𝑠u�
u� + 𝛼2𝜌u�−1

u� 𝑠u�,

and du�u�
work(u�)
du� = 𝑃u�,u�(𝑠u�). We get

du�u�
work(u�)
du� + du�(u�)

du� − 𝛼u� du�u�
work(u�)
du�

= 𝑃u�,u�(𝑠u�) − 𝛼𝑠u�
u� + 𝛼2𝜌u�−1

u� 𝑠u� − 𝛼u�𝑃u�,u�(𝑠u�)

≤ 𝑠u�
u� − 𝛼𝑠u�

u� + 𝛼2𝑠u�−1
u� 𝑠u� − 𝛼u�𝑠u�

u� ≤ 0.

(4.9)

The last inequality follows from the same argument as in [BKP07]: Divide
by 𝑠u�

u� and substitute 𝑧 = u�u�/u�u�. It becomes equivalent to (1−𝛼)𝑧u�+𝛼2𝑧u�−1−
𝛼u� ≤ 0. Differentiating with respect to 𝑧 yields the correctness.

Proposition 4.6. The arrival condition holds. That is, at any time 𝑡 when a job
arrives we have

𝛥𝐸u�
work(𝑡) + 𝛥𝛷(𝑡) ≤ 𝛼u�𝛥𝐸u�

work(𝑡) + 𝑐u�−1
2 𝛼2𝛥𝑉u�

rej(𝑡). (4.10)

Here, the 𝛥-terms denote the corresponding change caused by the job arrival.

Proof. The arrival of a job 𝑗 does not change the energy invested so far, thus
𝛥𝐸u�

work(𝑡) = 0 and 𝛥𝐸u�
work(𝑡) = 0. If 𝐴 rejects 𝑗, we have 𝛥𝛷(𝑡) ≤ 0 and

𝛥𝑉u�
rej(𝑡) ≥ 0, thus the Arrival Condition (4.5) holds. So assume 𝐴 accepts 𝑗.

The arrival of 𝑗 may change the critical intervals and their densities significantly.
However, as pointed out in [BKP07], these changes can be broken down into a
series of simpler changes affecting at most two adjacent critical intervals. Thus,
we first consider the effect of arrivals which do not change the critical intervals.
Afterward, we use the technique from [BKP07] to reduce an arbitrary change
to these simple cases.

Case 1: The critical intervals remain unchanged and only 𝜌u� for 𝑘 < 𝑙 changes.
Let 𝜌u� and 𝜌′

u� denote the densities of (𝜏u�−1, 𝜏u�] just before and after 𝑗's
arrival, respectively. That is, 𝜌′

u� = 𝜌u� +
u�u�

u�u�−u�u�−1
. Note that 𝜌′

u� is the speed
planned by OAu� for job 𝑗. Because 𝐴 accepted 𝑗 we have 𝜌′

u� ≤ 𝑐2𝑠u�,p. If 𝑗 is
rejected by 𝑂, we have 𝛥𝑉u�

rej(𝑡) = 𝑣u�. Since only the 𝑘-th critical interval

62

4.4 Algorithm & Analysis

is affected, the change in the potential function is given by

𝛥𝛷(𝑡) = 𝛼𝜌′u�−1
u� (𝑤u�

u� (𝑘) + 𝑤u� − 𝛼𝑤u�
u� (𝑘)) − 𝛼𝜌u�−1

u� (𝑤u�
u� (𝑘) − 𝛼𝑤u�

u� (𝑘)).

Now, we compute, analogously to Lemma 4 in [CLL10a], that 𝛥𝛷(𝑡)
equals

𝛼𝜌′u�−1
u� (𝑤u�

u� (𝑘) + 𝑤u� − 𝛼𝑤u�
u� (𝑘)) − 𝛼𝜌u�−1

u� (𝑤u�
u� (𝑘) − 𝛼𝑤u�

u� (𝑘))

≤ 𝛼𝜌′u�−1
u� (𝑤u�

u� (𝑘) + 𝑤u�) − 𝛼𝜌u�−1
u� 𝑤u�

u� (𝑘) = 𝛼
(u�u�

u� (u�)+u�u�)
u�
−u�u�

u� (u�)u�

(u�u�−u�u�−1)u�−1

≤ 𝛼2 (u�u�
u� (u�)+u�u�)

u�−1
u�u�

(u�u�−u�u�−1)u�−1 = 𝛼2𝜌′u�−1
u� 𝑤u� ≤ 𝛼2(𝑐2𝑠u�,p)u�−1𝑤u� = 𝑐u�−1

2 𝛼2𝑣u�.

The penultimate inequality uses the fact that 𝑓 (𝑥) = 𝑥u� is convex, yielding
𝑓 (𝑦) − 𝑓 (𝑥) ≤ 𝑓 ′(𝑦) ⋅ (𝑦 − 𝑥) for all 𝑦 > 𝑥. This implies the Arrival
Condition (4.5). If 𝑗 is accepted by 𝑂, we have 𝛥𝑉u�

rej(𝑡) = 0 and 𝛥𝛷(𝑡)
becomes

𝛼𝜌′u�−1
u� (𝑤u�

u� (𝑘) + 𝑤u� − 𝛼(𝑤u�
u� (𝑘) + 𝑤u�)) − 𝛼𝜌u�−1

u� (𝑤u�
u� (𝑘) − 𝛼𝑤u�

u� (𝑘)).

In the same way as in [BKP07], we now get 𝛥𝛷(𝑡) ≤ 0.

Case 2: Only the amount of work assigned to the last critical interval in-
creases.
Remember that, by definition, 𝜏u� = ∞ and 𝜌u� = 𝑠cr. Since 𝑗 is accepted
by 𝐴 we have 𝑠u�−1

cr ≤ 𝛼𝑐u�−1
2 𝛿u�. If 𝑂 rejects 𝑗 we have 𝛥𝑉u�

rej(𝑡) = 𝑣u� and the
Arrival Condition (4.5) follows from

𝛥𝛷(𝑡) = 𝛼𝜌u�−1
u� (𝑤u�

u� (𝑙) + 𝑤u� − 𝛼𝑤u�
u� (𝑙)) − 𝛼𝜌u�−1

u� (𝑤u�
u� (𝑙) − 𝛼𝑤u�

u� (𝑙))

= 𝛼𝑠u�−1
cr 𝑤u� ≤ 𝛼2𝑐u�−1

2 𝛿u�𝑤u� = 𝑐u�−1
2 𝛼2𝑣u�.

If 𝑂 accepts 𝑗, 𝛥𝑉u�
rej(𝑡) = 0 and the Arrival Condition (4.5) is implied by

𝛥𝛷(𝑡) = 𝛼𝜌u�−1
u� (𝑤u�

u� (𝑙) + 𝑤u� − 𝛼(𝑤u�
u� (𝑙) + 𝑤u�)) − 𝛼𝜌u�−1

u� (𝑤u�
u� (𝑙) − 𝛼𝑤u�

u� (𝑙))

= 𝛼𝜌u�−1
u� 𝑤u�(1 − 𝛼) ≤ 0.

Let us now consider the arrival of an arbitrary job 𝑗. The idea is to split this job

63

4 Slow Down & Sleep for Profit

into two jobs 𝑗1 and 𝑗2 with the same release time, deadline, and value density
as 𝑗. Their total work equals 𝑤u�. Let 𝑥 denote the size of 𝑗1. We determine a
suitable 𝑥 by continuously increasing 𝑥 from 0 to 𝑤u� until two critical intervals
merge or one critical interval splits. The arrival of 𝑗1 can then be handled by
one of the above cases, while 𝑗2 is treated recursively in the same way as 𝑗. For
details, see [BKP07] or [Han+10].

Bounding the Rejected Value In the following we bound the total value
𝑉u�

rej of jobs rejected by 𝐴. The general idea is similar to the one by Chan et
al. [CLL10a]. However, in contrast to the simpler model without sleep states,
we must handle small-valued jobs of high density explicitly (cf. Section 4.3).
Moreover, the sleeping policy introduces an additional difficulty: our algo-
rithm does not preserve all structural properties of an OA schedule (cf. Fact 4.1).
This prohibits a direct mapping between the energy consumption of algorithm
𝐴 and of the intermediate OA schedules during a fixed time interval, as used
in the corresponding proof in [CLL10a]. Indeed, the actual energy used by 𝐴
during a fixed time interval may decrease compared to the energy planned
by the intermediate OA schedule, as 𝐴 may decide to raise the speed to 𝑠cr

at certain points in the schedule. Thus, to bound the value of a job rejected
by 𝐴 but processed by the optimal algorithm for a relatively long time, we
have to consider the energy usage for the workload OA planned for that time
(instead of the actual energy usage for the workload 𝐴 processed during that
time, which might be quite different).

Lemma 4.7 (Rejected Value). Let 𝛿max be the maximum value density of jobs of
value less than 𝑐1𝛾 and consider an arbitrary parameter 𝑏 ≥ 1/u�2. Then 𝐴's rejected
value is at most

𝑉u�
rej ≤ max⎛⎜

⎝
𝛿max

𝑠cr
𝑃u�,u�(𝑠cr)

, 𝑏u�−1⎞⎟
⎠

𝐸u�
work +

𝑏u�−1

(𝑐2𝑏 − 1)u� 𝐸u�
work + 𝑉u�

rej. (4.11)

Proof. Partition the jobs rejected by 𝐴 into two disjoint subsets 𝐽1 (jobs rejected
by both 𝐴 and 𝑂) and 𝐽2 (jobs rejected by 𝐴 only). The total value of jobs in 𝐽1

is at most 𝑉u�
rej. Thus, it suffices to show that the total value of 𝐽2 is bounded by

max(𝛿max
u�cr

u�u�,u�(u�cr)
, 𝑏u�−1)𝐸u�

work + u�u�−1

(u�2u�−1)u� 𝐸u�
work. (4.12)

64

4.4 Algorithm & Analysis

To this end, let 𝑗 ∈ 𝐽2. Remember that, because of the convexity of the power
function, 𝑂 can be assumed to process 𝑗 at a constant speed 𝑠u�. Otherwise
processing 𝑗 at its average speed could only improve the schedule. Let us
distinguish three cases, depending on the reason for which 𝐴 rejected 𝑗:

Case 1: 𝑗 got rejected because of 𝛿u� < u�u�−1
cr

u�u�u�−1
2

.

Let 𝐸u�
work(𝑗) denote the working energy invested by 𝑂 into job 𝑗. Using

the rejection condition we can compute

𝐸u�
work(𝑗) =

u�u�,u�(u�u�)
u�u�

𝑤u� ≥
u�u�,u�(u�cr)

u�cr
𝑤u� ≥ 𝑠u�−1

cr 𝑤u� > 𝛼𝑐u�−1
2 𝑣u�. (4.13)

Together with 𝑏 ≥ 1/u�2 we get 𝑣u� < 𝑏u�−1𝐸u�
work(𝑗).

Case 2: 𝑗 got rejected because of 𝑣u� < 𝑐1𝑥
As in the algorithm description, let 𝑥 ∈ [0, 𝛾] denote the current idle
cost at time 𝑟u�. Since 𝑗's value is less than 𝑐1𝑥 ≤ 𝑐1𝛾, we have 𝛿u� ≤ 𝛿max.
We get

𝐸u�
work(𝑗) =

u�u�,u�(u�u�)
u�u�

𝑤u� =
u�u�,u�(u�u�)

u�u�

u�u�

u�u�
≥

u�u�,u�(u�cr)
u�cr

u�u�

u�max
, (4.14)

which eventually yields 𝑣u� ≤ 𝛿max
u�cr

u�u�,u�(u�cr)
𝐸u�

work(𝑗).

Case 3: 𝑗 got rejected because of 𝑠OA > 𝑐2𝑠u�,p

Here, 𝑠OA denotes the speed OAu�u� would assign to 𝑗 if it were accepted.
We use OAu�u�

− to refer to the OA schedule at time 𝑟u� without 𝑗. Let 𝑏u� ≔ u�u�,p/u�u�.
We bound 𝑣u� in different ways, depending on 𝑏u�. If 𝑏u� is small (i.e., 𝑏u� ≤ 𝑏)
we use

𝐸u�
work(𝑗) ≥ u�u�,0(u�u�)

u�u�
𝑤u� = u�u�,0(u�u�,p/u�u�)

u�u�,p/u�u�

𝑤u� =
u�u�−1

u�,p

u�u�−1
u�

𝑤u� =
u�u�

u�u�−1
u�

. (4.15)

That is, we have 𝑣u� ≤ 𝑏u�−1
u� 𝐸u�

work(𝑗). Otherwise, if 𝑏u� is relatively large, 𝑣u� is
bounded by 𝐸u�

work. Let 𝐼 denote the period of time when 𝑂 processes 𝑗 at
constant speed 𝑠u� and let 𝑊 denote the work processed by OAu�u�

− during
this time. Since 𝐼 ⊆ [𝑟u�, 𝑑u�), Fact 4.1(b) implies that OAu�u� 's speed during 𝐼
is at least 𝑠OA > 𝑐2𝑠u�,p. Thus, the total amount of work processed by OAu�u�

during 𝐼 is larger than 𝑐2𝑠u�,p|𝐼|. But then, by applying Fact 4.1(c), we see
that 𝑊 must be larger than 𝑐2𝑠u�,p|𝐼| − 𝑤u�. Now, 𝑊 is a subset of the work
processed by 𝐴. Moreover, Fact 4.1(d) and the definition of algorithm 𝐴

65

4 Slow Down & Sleep for Profit

ensure that the speeds used for this work in schedule 𝐴 cannot be smaller
than the ones used in OAu�u�

−. In particular, the average speed 𝑠∅ used for
this work in schedule 𝐴 is at least u�/|u�| (the average speed used by OAu�u�

−

for this work). Let 𝐸u�
work(𝑊) denote the energy invested by schedule 𝐴

into the work 𝑊. Then, by exploiting the convexity of the power function,
we get

𝐸u�
work(𝑊) ≥

u�u�,u�(u�∅)
u�∅

𝑊 ≥ u�u�,0(u�∅)
u�∅

𝑊 = 𝑠∅
u�−1𝑊 ≥ u�u�−1

|u�|u�−1 𝑊 = |𝐼|u�
u�

|u�|u�

> |𝐼|(𝑐2𝑠u�,p − 𝑠u�)u� =
u�u�

u�u�
𝑠u�
u�(𝑐2𝑏u� − 1)u� =

(u�2u�u�−1)u�

u�u�−1
u�

𝑣u�.

That is, we have 𝑣u� <
u�u�−1

u�

(u�2u�u�−1)u� 𝐸u�
work(𝑊). Now, let us specify how to

choose from these two bounds:

• If 𝑏u� ≤ 𝑏, we apply the first bound: 𝑣u� = 𝑏u�−1
u� 𝐸u�

work(𝑗) ≤ 𝑏u�−1𝐸u�
work(𝑗).

• Otherwise we have 𝑏u� > 𝑏 ≥ 1/u�2. Note that for 𝑥 > 1/u� the function
𝑓 (𝑥) = u�u�−1

(u�u�−1)u� decreases. Thus, we get 𝑣u� < u�u�−1

(u�2u�−1)u� 𝐸u�
work(𝑊).

By combining these cases we get

𝑣u� ≤ max(𝛿max
u�cr

u�u�,u�(u�cr)
, 𝑏u�−1)𝐸u�

work(𝑗) + u�u�−1

(u�2u�−1)u� 𝐸u�
work(𝑊). (4.16)

Note that both energies referred to, 𝐸u�
work(𝑗) as well as 𝐸u�

work(𝑊), are mutually
different for different jobs 𝑗. Thus, we can combine these inequalities for all
jobs 𝑗 ∈ 𝐽2 to get the desired result.

4.4.2 Putting it All Together.

The following theorem combines the results of Lemma 4.3, Lemma 4.4, and
Lemma 4.7.

Theorem 4.8. Let 𝛼 ≥ 2 and let 𝛿max be the maximum value density of jobs of value
less than 𝑐1𝛾. Moreover, define 𝜂 ≔ max(𝛿max

u�cr

u�u�,u�(u�cr)
, 𝑏u�−1) and 𝜇 ≔ u�u�−1

(u�2u�−1)u� for
a parameter 𝑏 ≥ 1/u�2. Then 𝐴's competitive ratio is at most

max(𝑐u�−1
2 𝛼2, 𝛼u�)(1 + 𝜇) + max(2 + 𝜂, 1 + 4/u�1). (4.17)

66

4.4 Algorithm & Analysis

Proof. Lemma 4.3 together with the relation 𝐸u�
sys ≤ 𝐸u�

idle + 𝐸u�
work bounds the

sleep and idle energy of 𝐴 with respect to 𝑂's cost as 𝐸u�
sleep + 𝐸u�

idle ≤ 6𝐸u�
sleep +

2𝐸u�
idle + 2𝐸u�

work + 4
u�1

𝑉u�
rej. For the working energy, Lemma 4.4 yields 𝐸u�

work ≤
𝛼u�𝐸u�

work + 𝑐u�−1
2 𝛼2𝑉u�

rej. To bound the total value rejected by 𝐴 with respect to
the cost of 𝑂, we apply Lemma 4.4 to Lemma 4.7 and get

𝑉u�
rej ≤ 𝜂𝐸u�

work + 𝜇𝐸u�
work + 𝑉u�

rej ≤ (𝜂 + 𝛼u�𝜇)𝐸u�
work + (𝑐u�−1

2 𝛼2𝜇 + 1)𝑉u�
rej.

Using these inequalities, we can bound the cost of 𝐴 as follows:

cost(𝐴) ≤ 6𝐸u�
sleep + 2𝐸u�

idle + (𝛼u� + 𝛼u�𝜇 + 2 + 𝜂)𝐸u�
work

+ (𝑐u�−1
2 𝛼2 + 𝑐u�−1

2 𝛼2𝜇 + 1 + 4/u�1)𝑉u�
rej.

(4.18)

Since 6 ≤ 𝛼u� + 2 for 𝛼 ≥ 2, we get the following bound on 𝐴's competitive ratio:

cost(u�)
cost(u�) ≤ max(𝑐u�−1

2 𝛼2, 𝛼u�)(1 + 𝜇) + max(2 + 𝜂, 1 + 4/u�1). (4.19)

By a careful choice of parameters we get a constant competitive ratio if restrict-
ing the value density of small-valued jobs accordingly. So, let 𝛼 ≥ 2 and set
𝑐2 = 𝛼

u�−2
u�−1 , 𝑏 = u�+1

u�2
, and 𝑐1 = 4

1+u�u�−1 ≤ 1. Applying Theorem 4.8 using these
parameters yields the following results:

Corollary 4.9. Algorithm 𝐴 is 𝛼u� + 2𝑒𝛼 + 𝛿max
u�cr

u�u�,u�(u�cr)
-competitive.

Corollary 4.10. Algorithm 𝐴 is 𝛼u� + 2𝑒𝛼-competitive if we restrict it to instances
of maximum value density 𝛿max ≔ 𝑏u�−1 u�u�,u�(u�cr)

u�cr
. This competitive ratio still holds if

the restriction is only applied to jobs of value less than 4
1+u�u�−1 𝛾.

Proof. First note the identity 𝑏u�−1 = 𝛼(1 + 1/u�)u�−1. Moreover, using the defi-
nitions from Theorem 4.8, we see that 𝜂 = 𝑏u�−1 and 𝛼u�𝜇 = 𝑏u�−1. By applying
Theorem 4.8 to our choice of parameters, the competitive ratio of 𝐴 becomes

𝛼u�(1 + 𝜇) + 2 + 𝜂 = 𝛼u� + 2 + 2𝑏u�−1 = 𝛼u� + 2(1 + 𝛼(1 + 1/u�)u�−1)

≤ 𝛼u� + 2𝛼(1 + 1/u�)u� ≤ 𝛼u� + 2𝑒𝛼.
(4.20)

67

4 Slow Down & Sleep for Profit

Corollary 4.11. If only considering instances for which the job values are at least
8

2+3u�𝛾 ≤ 𝛾, 𝐴's competitive ratio is at most 𝛼u� + 2𝑒𝛼.

Proof. Follows from Corollary 4.10 by using that for 𝛼 ≥ 2 we have

4
1 + 𝑏u�−1 =

4
1 + 𝛼(1 + 1/u�)u�−1 ≤

4
1 + 3

2𝛼
=

8
2 + 3𝛼

.

Note that the bound from Corollary 4.9 is nearly tight with respect to 𝛿max and
the lower bound from Theorem 4.2.

4.5 The Speed-Bounded Case

As stated earlier, our model can be considered as a generalization of [CLL10a].
It adds sleep states, leading to several structural difficulties which we solved
in the previous section. A further, natural generalization of the model is to
cap the speed at some maximum speed 𝑇. Algorithms based on OA often
lend themselves to such bounded speed models. In many cases, a canon-
ical adaptation – possibly mixed with a more involved job selection rule –
leads to an algorithm for the speed bounded case with similar properties
(see, e.g., [CLL10a; Han+10; Cha+07; Ban+08b]). A notable property of the
profit-oriented scheduling model of [CLL10a] is that limiting the maximum
speed leads to a non-constant competitive ratio. Instead, it becomes highly
dependent on a job's penalty ratio defined as 𝛤u� ≔ u�u�,p/u�. They derive a lower
bound of 𝛺(max(u�u�−1/u�, 𝛤u�−2+1/u�)) where 𝛤 = max 𝛤u�. Since our model gener-
alizes their model, this bound transfers immediately to our setting (for the
case 𝛽 = 𝛾 = 0). On the positive side we can adapt our algorithm, similar
to [CLL10a], by additionally rejecting a job if its speed planned by OA is larger
than 𝑇 (cf. rejection condition in algorithm description, Section 4.4). Our main
theorem from Section 4.4 becomes

Theorem 4.12. Let 𝛼 ≥ 2 and let 𝛿max be the maximum value density of jobs of
value less than 𝑐1𝛾. Moreover, define 𝜂 ≔ max(𝛿max

u�cr

u�u�,u�(u�cr)
, 𝛤u�−1𝑏u�−1) and 𝜇 ≔

𝛤u�−1 u�u�−1

(u�−1)u� for 𝑏 ≥ 1. Then 𝐴's competitive ratio is at most

𝛼u�(1 + 𝜇) + max(2 + 𝜂, 1 + 4/u�1). (4.21)

68

4.6 Conclusion & Outlook

Proof Sketch. Note that the results from Lemmas 4.3 and 4.4 remain valid with-
out any changes, as an additional rejection rule does not influence the cor-
responding proofs. The only lemma affected by the changed algorithm is
Lemma 4.7. In its proof, we have to consider an additional rejection case,
namely that job 𝑗 got rejected because of 𝑠OA > 𝑇 = 1

u�u�
𝑠u�,p. This can be handled

completely analogously to Case 3 in the proof, using the factor 1
u�u�

instead

of 𝑐2. We get the bounds 𝑣u� ≤ 𝑏u�−1
u� 𝐸u�

work(𝑗) and 𝑣u� < u�u�−1
u� /(u�u�/u�u� − 1)u�𝐸u�

work(𝑊). If
𝑏u� ≤ 𝛤u�𝑏 this yields 𝑣u� ≤ 𝛤u�−1

u� 𝑏u�−1𝐸u�
work(𝑗). Otherwise, if 𝑏u� > 𝛤u�𝑏, we have

𝑣u� < 𝛤u�−1
u�

u�u�−1

(u�−1)u� 𝐸u�
work(𝑊). The remaining argumentation is the same as in the

proof of Theorem 4.8.

For 𝑏 = 𝛼 + 1 and the interesting case 𝛤 > 1 we get a competitive ratio of
𝛼u�(1 + 2𝛤u�−1) + 𝛿max

u�cr

u�u�,u�(u�cr)
. For job values of at most 𝛾 it is 𝛼u�(1 + 2𝛤u�−1).

4.6 Conclusion & Outlook

This chapter proposed a new model that combines two modern energy conser-
vation techniques with a profitability aspect. The results point out an inherent
connection between the necessary and sufficient competitive ratio of rejection-
oblivious algorithms and the maximum value density. A natural question
is how far this connection applies to other, more involved algorithm classes.
Can we find better strategies if allowed to reject jobs even after we invested
some energy, or if taking former rejection decisions into account? Such more
involved rejection policies have proven useful in other models [PS10; Han+10],
and we conjecture that they would do so in our setting. Other interesting di-
rections include models for multiple processors (cf. Chapter 3) as well as more
general power functions. Also, Pruhs and Stein [PS10] modeled job values and
deadlines in a more general way, which seems especially interesting for the
presented profit-oriented model.

Apart from such model variants, I conjecture that the presented results can
be improved. Especially considering the results from Chapter 3, it seems likely
that the competitive ratios given in this chapter (especially Corollary 4.11 and
its pendants) can be improved to 𝛼u� + 2.

69

CHAPTER 5

Trading Energy for Responsiveness

“ There's ways to amuse yourself while doing things and
that's how I look at efficiency. ”

Donald Ervin Knuth

Efficiency occurs in various forms, and it depends on the task at hand
which to consider. Typically it involves some kind of resource and
a measure to evaluate a solution's quality. The resource we consider

is essentially fixed by the thesis title: Energy1. With respect to the quality
measure, previous chapters considered deadline scheduling together with
some kind of profit. The present chapter changes focus and studies a quality
measure that incorporates a trade-off between energy and responsiveness.
More precisely, we will consider a linear combination of the total energy
consumption and the average response time of all jobs. Intuitively, this linear
combination fixes the amount of energy we are willing to trade for improving
the average response time by one time unit.

Model Differences & Fractional Flow The model and problem of this chap-
ter, which we formally introduce in Section 5.2, differs slightly from what

1Although, we will slightly deviate from this route in Chapter 6.

71

5 Trading Energy for Responsiveness

we considered previously. To start with, while jobs still come with release
times, we are no longer concerned with the online case but with the offline
setting. That is, the total number of jobs and all their properties are known a
priori. Moreover, instead of the continuous speed scaling model of Chapters 3
and 4, we consider a (single) processor with a discrete number of possible
speed levels, each with its own constant power consumption. Note that this
is actually a much more realistic model than the continuous one, as most
speed-scalable real-world processors provide a fixed set of discrete speed lev-
els. We will discuss this issue more thoroughly together with the related work
in Section 5.1.

The objective of average or, equivalently, total response time is also known
as total flow time or simply total flow. Actually, our objective will consider
fractional flow. Intuitively, one can think of it as the average response time
over all (infinitesimal small) units of work.

Chapter Basis The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2014 (with A. Antoniadis, N. Barcelo, M. Consuegra, M. Nugent,
K. Pruhs and M. Scquizzato). “Efficient Computation of Optimal
Energy and Fractional Weighted Flow Trade-off Schedules”. In:
Proceedings of the 31st Symposium on Theoretical Aspects of Computer
Science (STACS). in press, cf. [Ant+14].

Chapter Outline Section 5.1 explores further literature and its relation to the
results of this chapter. A formal model description can be found in Section 5.2.
The remaining sections deal with the description and analysis of our main
result, a polynomial-time algorithm for our discrete speed scaling problem.
While the presented algorithm will turn out to have a very clean geometric
interpretation, its design and analysis are rather complicated. Thus, we start
with an overview of the main conceptual ideas in Section 5.3 before launching
into details in the subsequent sections. In Section 5.4, we present the obvious
linear programming formulation of the problem, and discuss our interpretation
of information that can be gained about optimal schedules from both the primal
and dual linear programs. This information is used in Section 5.5 to develop a

72

5.1 Related Work & Contribution

polynomial-time algorithm that computes an optimal solution. Section 5.6 is
devoted to the correctness and Section 5.7 to the running time of our algorithm.
Finally, Section 5.8 gives a short résumé of this chapter and the presented
results.

5.1 Related Work & Contribution

We continue with an overview of related work and how it relates to the results
of this chapter, especially with respect to speed scaling and flow time objectives.
Once more, we keep the overview self-contained. See Chapter 2 for a more
general literature overview.

There seem to be essentially three papers in the algorithmic literature that
study the computation of optimal energy trade-off schedules. All assume
that the processor can run at any non-negative real speed, and that the power
used by the processor is some nice function of the speed (most commonly the
speed raised to some constant 𝛼). Both Albers and Fujiwara [AF07] as well
as Pruhs et al. [PUW08] give polynomial-time algorithms for the special case
of our problem where the densities of all units of work are the same. Pruhs
et al. [PUW08] present a homotopic optimization algorithm that, intuitively,
traces out all schedules that are Pareto-optimal with respect to energy and
fractional flow, one of which must obviously be the optimal energy trade-off
schedule. In [AF07], the authors consider a dynamic programming algorithm
and introduce the notion of trade-off schedules. The third paper to be men-
tioned is due to Barcelo et al. [Bar+13] and gives a polynomial-time algorithm
for recognizing an optimal schedule. The authors also show that the optimal
schedule evolves continuously as a function of the importance of energy, im-
plying that a continuous homotopic algorithm is, at least in principle, possible.
However, [Bar+13] could not provide any bound, even exponential, on the time
of this algorithm, nor were the authors able to provide any way to discretize
this algorithm.

To reemphasize, the prior literature [AF07; PUW08; Bar+13] assumes that the
set of allowable speeds is continuous. Our setting of discrete speeds models
the current technology more closely and appears to be algorithmically more
challenging. In [Bar+13] the recognition of an optimal trade-off schedule in
the continuous setting is a direct consequence of the KKT conditions of the

73

5 Trading Energy for Responsiveness

natural convex program, as it is observed that there is essentially only one
degree of freedom for each job in any plausibly optimal schedule. This degree
of freedom can be recovered from the candidate schedule by looking at the
job's speed function (describing when and at what speed it is run). In the
discrete setting, we shall see that there is again essentially only one degree of
freedom for each job, but unfortunately one cannot easily recover the value of
this degree of freedom by examining the candidate schedule. Thus, we do not
know of any simple way to even recognize an optimal trade-off schedule in
the discrete setting.

One might also reasonably consider the performance measure of the aggre-
gate weighted flow over jobs (instead of work), where the flow of a job is the
amount of time between when the job is released and when the last bit of work
of that job is finished. In the context that the jobs are flight queries to a travel
site, aggregating over the delay of jobs is probably more appropriate in the
case of Orbitz, as Orbitz does not present the querier with any information
until all the possible flights are available, while aggregating over the delay
of work may be more appropriate in the case of Kayak, as Kayak presents
the querier with flight options as they are found. Also, often the aggregate
flow of work is used as a surrogate measure for the aggregate flow of jobs as
it tends to be more mathematically tractable. In particular, for the trade-off
problem that we consider here, the problem is NP-hard if we were to consider
the performance measure of the aggregate weighted flow of jobs, instead of the
aggregate weighted flow of work. The hardness follows immediately from the
well-known fact that minimizing the weighted flow time of jobs on a unit speed
processor is NP-hard [Lab+84], or from the fact that minimizing total weighted
flow (without release times) subject to an energy budget is NP-hard [MV13].

There is a fair number of papers that study approximately computing op-
timal trade-off schedules, both offline and online. For example, Megow and
Verschae [MV13] give polynomial-time approximation schemes for minimiz-
ing total flow without release times subject to an energy budget in both the
continuous and discrete speed settings. For the online setting, literature can be
distinguished by whether they consider total flow and energy [AF07; BPS09;
Lam+08; Ban+08b; AWT09; BCP13; CLL10b; DH14] or fractional flow and
energy [Ban+08b; BCP13]. More details about energy-efficient algorithms can
by found in the survey by Albers [Alb10].

74

5.2 Model & Preliminaries

5.2 Model & Preliminaries

We consider the problem of scheduling a set 𝒥 ≔ { 1, 2, … , 𝑛 } of 𝑛 jobs on a
single processor featuring 𝑘 different speeds 0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠u�. The power
consumption of the processor while running at speed 𝑠u� is 𝑃u� ≥ 0. We use
𝒮 ≔ { 𝑠1, … , 𝑠u� } to denote the set of speeds and 𝒫 ≔ { 𝑃1, … , 𝑃u� } to denote the
set of powers. While running at speed 𝑠u�, the processor performs 𝑠u� units of
work per time unit and consumes energy at a rate of 𝑃u�.

Each job 𝑗 ∈ 𝒥 has a release time 𝑟u�, a processing volume (or work) 𝑝u�, and a
weight 𝑤u�. Moreover, we denote the value 𝑑u� ≔ u�u�/u�u� as the density of job 𝑗. All
densities are, without loss of generality, distinct2. For each time 𝑡, a schedule 𝑆
must decide which job to process at what speed. Preemption is allowed, so
that a job may be suspended at any point in time and resumed later on. We
model a schedule 𝑆 by a speed function 𝑆∶ ℝ≥0 → 𝒮 and a scheduling policy
𝐽 ∶ ℝ≥0 → 𝒥 . Here, 𝑆(𝑡) denotes the speed at time 𝑡 and 𝐽(𝑡) the job that is
scheduled at time 𝑡. Jobs can be processed only after they have been released.
For job 𝑗 let 𝐼u� ≔ 𝐽−1(𝑗) ∩ [𝑟u�, ∞) be the union of time intervals during which it
is processed. A feasible schedule must finish the work of all jobs. That is, the
inequality ∫

u�u�
𝑆(𝑡) d𝑡 ≥ 𝑝u� must hold for all jobs 𝑗.

We measure the quality of a given schedule 𝑆 by means of its energy con-
sumption and its fractional flow. The speed function 𝑆∶ ℝ≥0 → 𝒮 induces a
power function 𝑃∶ ℝ≥0 → 𝒫 , such that 𝑃(𝑡) is the power consumed at time
𝑡. The energy consumption of schedule 𝑆 is 𝐸(𝑆) ≔ ∫∞

0 𝑃(𝑡) d𝑡. The flow time
(also called response time) of a job 𝑗 is the difference between its completion
time and release time. If 𝐹u� denotes the flow time of job 𝑗, the weighted flow
of schedule 𝑆 is ∑u�∈𝒥 𝑤u�𝐹u�. However, we are interested in the fractional flow,
which takes into account that different parts of a job 𝑗 finish at different times.
More formally, if 𝑝u�(𝑡) denotes the work of job 𝑗 that is processed at time 𝑡 (i.e.,
𝑝u�(𝑡) = 𝑆(𝑡) if 𝐽(𝑡) = 𝑗, and 𝑝u�(𝑡) = 0 otherwise), the fractional flow time of
job 𝑗 is �̃�u� ≔ ∫∞

u�u�
(𝑡 − 𝑟u�)

u�u�(u�)
u�u�

d𝑡. The fractional weighted flow of schedule 𝑆 is
�̃�(𝑆) ≔ ∑u�∈𝒥 𝑤u��̃�u�. The objective function is 𝐸(𝑆) + �̃�(𝑆). Our goal is to find a
feasible schedule that minimizes this objective.

We define 𝑠0 ≔ 0, 𝑃0 ≔ 0, 𝑠u�+1 ≔ 𝑠u�, and 𝑃u�+1 ≔ ∞ to simplify notation.
2It is not hard to adapt the algorithm if equal densities might occur; see the full version

of [Ant+14] for further details.

75

5 Trading Energy for Responsiveness

Note that, without loss of generality, we can assume u�u�−u�u�−1
u�u�−u�u�−1

< u�u�+1−u�u�
u�u�+1−u�u�

. Oth-
erwise, any schedule using 𝑠u� could be improved by linearly interpolating
the speeds 𝑠u�−1 and 𝑠u�+1. Moreover, we also assume that jobs are ordered by
decreasing density (i.e., 𝑑1 > 𝑑2 > ⋯ > 𝑑u�).

5.3 Overview

The proposed algorithm turns out to have a very nice and simple geometrical
interpretation, but also to be quite technical to write down and to analyze. Thus,
this section provides an overview of our general approach and its intuition.
The reader is advised to start with this overview to get a first idea of what
to anticipate in the remaining sections. The overview is roughly structured
in resemblance of the remaining chapter, to make it easier to come back and
regain a clear picture of the analysis' state.

Geometric Interpretation Our algorithm is based on a natural linear pro-
gramming formulation of the problem. By considering the corresponding dual
program and its complementary slackness conditions, we find necessary and
sufficient conditions for a candidate schedule to be optimal. Reminiscent of
the approach used in the case of continuous speeds [Bar+13], we then inter-
pret these conditions in the following geometric manner: Each job 𝑗 will be
associated with a linear function 𝐷u�u�

u� (𝑡), which we call dual line. This dual line
has a slope of −𝑑u� and passes through the point (𝑟u�, 𝛼u�). Here 𝑡 is time, 𝛼u� is
the dual variable associated with the primal constraint that all the work from
job 𝑗 must be completed, 𝑟u� is the release time of job 𝑗, and 𝑑u� is the density of
job 𝑗. Given such an 𝛼u� for each job 𝑗, one can obtain an associated schedule as
follows: At every time 𝑡, the job 𝑗 being processed is the one whose dual line is
the highest at that time, and the speed of the processor depends solely on the
height of this dual line at that time.

Figure 5.1a shows the dual lines for four different jobs on a processor with
three speed levels. The horizontal axis is time. The two horizontal dashed lines
labeled by 𝐶2 and 𝐶3 represent the heights where the speed will transition
between the lowest speed level and the middle speed level, and the middle
speed level and the highest speed level, respectively. Note that these lines only

76

5.3 Overview

𝐶1

𝐶2

𝐶3

(a)

𝑠3

𝑠2

𝑠1

(b)

Figure 5.1: Dual lines for a 4-job instance, and the associated schedule.

depend on the speeds and powers of the corresponding level (and not on the
jobs). Figure 5.1b shows the associated schedule.

Algorithmic Idea By complementary slackness, a schedule corresponding
to a collection of 𝛼u�'s is optimal if and only if it processes exactly 𝑝u� units of
work for each job 𝑗. Thus we can reduce finding an optimal schedule to finding
values for these dual variables with this property. We do so via a primal-dual
algorithm that raises the dual 𝛼u� variables in an organized way. We iteratively
consider the jobs by decreasing density. In iteration 𝑖, we construct the optimal
schedule 𝑆u� for the 𝑖 most dense jobs from the optimal schedule 𝑆u�−1 for the 𝑖−1
most dense jobs. We raise the new dual variable 𝛼u� from 0 until the associated
schedule processes 𝑝u� units of work from job 𝑖. At some point, raising the dual
variable 𝛼u� may cause the dual line for 𝑖 to “affect” the dual line of a previous
job 𝑗 in the sense that 𝛼u� must be raised as 𝛼u� is raised in order to maintain the
invariant that job 𝑗 is fully processed. Intuitively one might think of “affection”
as meaning that the dual lines intersect (this is not strictly correct, but might be
a useful initial geometric interpretation to gain intuition). More generally, this
affection relation can be transitive in the sense that raising the dual variable 𝛼u�

may in turn affect another job, and so forth.

Tracking of Affections The algorithm maintains an affection tree rooted
at 𝑖 that describes the affection relationship between jobs, and maintains for
each edge in the tree a variable describing the relative rates at which the two
incident jobs must be raised in order to maintain the invariant that the proper
amount of work is processed for each job. Thus this tree describes the rates
that the dual variables of old jobs must be raised as the new dual variable 𝛼u� is

77

5 Trading Energy for Responsiveness

raised at a unit rate.
In order to discretize the raising of the dual lines, we define four types of

events that cause a modification to the affection tree when

• a pair of jobs either begin or cease to affect each other,

• a job either starts or stops using a certain speed level,

• the rightmost point on a dual line crosses another job's release time, or

• enough work is processed on the new job 𝑖.

During an iteration, the algorithm repeatedly computes when the next such
event will occur, raises the dual lines until this event, and then computes the
new affection tree. Iteration 𝑖 completes when job 𝑖 has processed enough
work.

Correctness & Running Time Its correctness follows from the facts that
(a) the affection graph is a tree, (b) this affection tree is correctly computed,
(c) the four aforementioned events are exactly the ones that change the affection
tree, and (d) the next such event is correctly computed by the algorithm. We
bound the running time by bounding the number of events that can occur, the
time required to calculate the next event of each type, and the time required to
recompute the affection tree after each event.

5.4 Structural Properties via Primal-Dual Formulation

In the following, we give an integer linear programming (ILP) description
of our problem. To this end, we start by showing that time can be divided
into discrete time slots such that, without loss of generality, during each time
slot the processor runs at constant speed and processes at most one job. Note
that the resulting time slots may be arbitrarily small, yielding an ILP with
many variables and, thus, rendering a direct solution approach less attractive.
However, we are actually not interested in solving this ILP directly. Instead,
we merely strive to use it and its dual in order to obtain some simple structural
properties of an optimal schedule.

78

5.4 Structural Properties via Primal-Dual Formulation

min ∑
u�∈𝒥

u�
∑
u�=u�u�

u�
∑
u�=1

𝑥u�u�u�(𝑃u� + 𝑠u�𝑑u�(𝑡 − 𝑟u� + 1/2))

s.t.
u�

∑
u�=u�u�

u�
∑
u�=1

𝑥u�u�u� ⋅ 𝑠u� ≥ 𝑝u� ∀𝑗

∑
u�∈𝒥

u�
∑
u�=1

𝑥u�u�u� ≤ 1 ∀𝑡

𝑥u�u�u� ∈ { 0, 1 } ∀𝑗, 𝑡, 𝑖

(a) ILP formulation of our scheduling problem.

max ∑
u�∈𝒥

𝑝u�𝛼u� −
u�

∑
u�=1

𝛽u�

s.t. 𝛽u� ≥ 𝛼u�𝑠u� − 𝑃u�

−𝑠u�𝑑u�(𝑡 − 𝑟u� + 1/2)
∀𝑗, 𝑡, 𝑖 ∶ 𝑡 ≥ 𝑟u�

𝛼u� ≥ 0 ∀𝑗
𝛽u� ≥ 0 ∀𝑡

(b) Dual program of the ILP's relaxation.

Figure 5.2

Discretizing Time Consider 𝜀 > 0 and let 𝑇 ∈ ℕ be such that 𝑇𝜀 is an
upper bound on the completion time of non-trivial3 schedules (e.g., 𝑇𝜀 ≥
maxu�(𝑟u�+∑u�

u�u�/u�1)). Given a fixed problem instance, there is only a finite number
of jobs and, without loss of generality, an optimal schedule performs only a
finite number of speed switches and preemptions. Thus, we can choose 𝜀 > 0
such that

(a) any release time 𝑟u� is a multiple of 𝜀,

(b) an optimal schedule can use constant speed during [(𝑡 − 1)𝜀, 𝑡𝜀), and

(c) there is at most one job processed during [(𝑡 − 1)𝜀, 𝑡𝜀).

We refer to an interval [(𝑡 − 1)𝜀, 𝑡𝜀) as the 𝑡-th time slot. By rescaling the
problem instance we can further assume that time slots are of length one (scale
𝑟u� by 1/u� and scale 𝑠u� as well as 𝑃u� by 𝜀).

ILP & Dual Program Let the indicator variable 𝑥u�u�u� denote whether job 𝑗 is
processed in slot 𝑡 at speed 𝑠u�. Moreover, let 𝑇 be the aforementioned upper
bound on the total number of time slots. This allows us to model our scheduling
problem via the ILP given in Figure 5.2a. The first set of constraints ensures
that all jobs are completed, while the second set of constraints ensures that the

3A non-trivial schedule is one that never runs at speed 0 when there is work remaining.

79

5 Trading Energy for Responsiveness

processor runs at constant speed and processes at most one job in each time
slot.

In order to use properties of duality, we consider the relaxation of the above
ILP. It can easily be shown that any optimal schedule will always use highest
density first as its scheduling policy. This, together with the way we chose
𝜀 to construct the time slots, yields that the value of an optimal solution to
the LP cannot be less than the value of an optimal solution to the ILP. After
considering this relaxation and taking the dual, we get the dual program
shown in Figure 5.2b.

The complementary slackness conditions of our primal-dual program are

𝛼u� > 0 ⇒
u�

∑
u�=u�u�

u�
∑
u�=1

𝑥u�u�u� ⋅ 𝑠u� = 𝑝u�, (5.1)

𝛽u� > 0 ⇒ ∑
u�∈𝒥

u�
∑
u�=1

𝑥u�u�u� = 1, (5.2)

𝑥u�u�u� > 0 ⇒ 𝛽u� = 𝛼u�𝑠u� − 𝑃u� − 𝑠u�𝑑u�(𝑡 − 𝑟u� + 1/2). (5.3)

By complementary slackness, any pair of feasible primal-dual solutions that
fulfills these conditions is optimal. We will use this in the following to find a
simple way to characterize optimal schedules.

A simple but important observation is that we can write the last comple-
mentary slackness condition as 𝛽u� = 𝑠u�(𝛼u� − 𝑑u�(𝑡 − 𝑟u� + 1/2)) − 𝑃u�. Using com-
plementary slackness, the function 𝑡 ↦ 𝛼u� − 𝑑u�(𝑡 − 𝑟u�) can help to characterize
optimal schedules. The following definitions capture a parametrized version
of these job-dependent functions and state how they imply a corresponding
(not necessarily feasible) schedule.

Definition 5.1 (Dual Lines and Upper Envelope). For a value 𝑎 ≥ 0 and a job
𝑗 we denote the linear function 𝐷u�

u� ∶ [𝑟u�, ∞) → ℝ, 𝑡 ↦ 𝑎 − 𝑑u�(𝑡 − 𝑟u�) as the dual
line of 𝑗 with offset 𝑎.

Given a job set 𝐻 ⊆ 𝒥 and corresponding dual lines 𝐷u�u�
u� , we define the

upper envelope of 𝐻 by the upper envelope of its dual lines. That is, the upper
envelope of 𝐻 is a function UEu� ∶ ℝ≥0 → ℝ≥0, 𝑡 ↦ maxu�∈u�(𝐷u�u�

u� (𝑡), 0). We
omit the job set from the index if it is clear from the context.

For technical reasons, we will have to consider the discontinuities in the upper

80

5.4 Structural Properties via Primal-Dual Formulation

(a) (b)

Figure 5.3: Illustration of (a) the upper and (b) the left upper envelope.

envelope separately. Thus, let us also define the left upper envelope below.

Definition 5.2 (Left Upper Envelope and Discontinuity). Given a job set 𝐻 ⊆ 𝒥
and upper envelope of 𝐻, UEu�, we define the left upper envelope at a point
𝑡 as the limit of UEu� as we approach 𝑡 from the left. That is, the left up-
per envelope of 𝐻 is a function LUEu� ∶ ℝ≥0 → ℝ≥0, 𝑡 ↦ limu�′→u�− UEu�(𝑡′).
Note that an equivalent definition of the left upper envelope is LUEu�(𝑡) =
maxu�∈u�∶u�u�<u�(𝐷u�u�

u� (𝑡), 0).
We say that a point 𝑡 is a discontinuity if UE has a discontinuity at 𝑡. Note

that this implies that UE(𝑡) ≠ LUE(𝑡).

An illustration of the upper and left upper envelope is given in Figure 5.3
For the following definition, let us denote 𝐶u� ≔ u�u�−u�u�−1

u�u�−u�u�−1
for 𝑖 ∈ [𝑘 + 1] as

the 𝑖-th speed threshold. We use it to define the speeds at which jobs are to be
scheduled. It will also be useful to define ̂𝐶(𝑥) = minu�∈[u�+1] { 𝐶u� ∣ 𝐶u� > 𝑥 } and

̌𝐶(𝑥) = maxu�∈[u�+1] { 𝐶u� ∣ 𝐶u� ≤ 𝑥 }.

Definition 5.3 (Line Schedule). Consider dual lines 𝐷u�u�
u� for all jobs. The cor-

responding line schedule schedules job 𝑗 in all intervals 𝐼 ⊆ [𝑟u�, ∞) of max-
imal length in which 𝑗's dual line is on the upper envelope of all jobs (i.e.,
∀𝑡 ∈ 𝐼 ∶ 𝐷u�u�

u� (𝑡) = UE(𝑡)). The speed of a job 𝑗 scheduled at time 𝑡 is 𝑠u�, with 𝑖
such that 𝐶u� = ̌𝐶(𝐷u�u�

u� (𝑡)).

See Figure 5.1 for an example of a line schedule. Together with the comple-
mentary slackness conditions, we can now easily characterize optimal line
schedules.

Lemma 5.4. Consider dual lines 𝐷u�u�
u� for all jobs. The corresponding line schedule is

optimal with respect to fractional weighted flow plus energy if it schedules exactly 𝑝u�

units of work for each job 𝑗.

81

5 Trading Energy for Responsiveness

Proof. Consider the solution 𝑥 to the ILP induced by the line schedule. We use
the offsets 𝑎u� of the dual lines to define the dual variables 𝛼u� ≔ 𝑎u� + 1

2𝑑u�. For
𝑡 ∈ ℕ, set 𝛽u� ≔ 0 if no job is scheduled in the 𝑡-th slot and 𝛽u� ≔ 𝑠u�𝐷

u�u�
u� (𝑡) − 𝑃u�

if job 𝑗 is scheduled at speed 𝑠u� during slot 𝑡. It is easy to check that 𝑥, 𝛼, and
𝛽 are feasible and that they satisfy the complementary slackness conditions.
Thus, the line schedule must be optimal.

5.5 Computing an Optimal Schedule

Recall the algorithmic idea roughly sketched in Section 5.3: we aim at a primal
dual algorithm that raises the dual variables in an organized way. Lemma 5.4
provides us with a hint of how to organize this raising process. Raising the
dual variables corresponds to (geometrically) raising the dual lines. Given
Lemma 5.4, one could try to simply raise the dual line of a job 𝑖, leaving the
remaining dual lines static for the moment. At some point, its dual line will
claim enough time on the upper envelope to be fully processed. However,
in doing so, we may affect (i.e., reduce) the time windows of other (already
scheduled) jobs. Thus, while raising 𝑖's dual line, we must keep track of any
affected jobs and ensure that they remain fully scheduled. Sections 5.5.1 to 5.5.3
formalize this idea by defining affections and by structuring them in such a
way that we can efficiently keep track of them.

Describing the Raising Process Within iteration 𝑖 of the algorithm, 𝜏 will
represent how much we have raised 𝛼u�. We can think of 𝜏 as the time parameter
for this iteration of the algorithm (not time in the original problem description
but with respect to raising dual-lines). To simplify notation, we do not index
variables by the current iteration of the algorithm. In fact, note that every
variable in our description of the algorithm may be different at each iteration
of the algorithm, e.g., for some job 𝑗, 𝛼u�(𝜏) may be different at the 𝑖-th iteration
than at the 𝑖 + 1-st iteration. To further simplify notation, we use 𝐷u�

u� to denote
the dual line of job 𝑗 with offset 𝛼u�(𝜏). Similarly, we use UEu� to denote the upper
envelope of all dual lines 𝐷u�

u� for 𝑗 ∈ [𝑖] and 𝑆u�
u� to denote the corresponding

line schedule. Prime notation generally refers to the rate of change of a variable
with respect to 𝜏. To lighten notation even further, we drop 𝜏 from variables if
its value is clear from the context.

82

5.5 Computing an Optimal Schedule

5.5.1 Affected Jobs

We start by formally defining a relation capturing the idea of jobs affecting
each other while being raised.

Definition 5.5 (Affection). Consider two different jobs 𝑗 and 𝑗′. We say job
𝑗 affects job 𝑗′ at time 𝜏 if raising (only) the dual line 𝐷u�

u� would decrease the
processing time of 𝑗′ in the corresponding line schedule.

We write 𝑗 → 𝑗′ to indicate that 𝑗 affects 𝑗′ (and refer to the parameter 𝜏 sepa-
rately, if not clear from the context). Similarly, we write 𝑗 ↛ 𝑗′ to state that 𝑗
does not affect 𝑗′. Let us gather some observations about the cases in which
jobs affect other jobs. See Figures 5.4 and 5.5 for illustrations.

Observation 5.6. Given jobs 𝑗 and 𝑗′ with 𝑗 → 𝑗′, their dual lines must intersect
on the upper envelope, or on the left upper envelope at a discontinuity. That is,
if 𝑡 is the intersection point of 𝑗 and 𝑗′, we have either 𝐷u�

u� (𝑡) = 𝐷u�
u�′(𝑡) = UEu�(𝑡),

or 𝐷u�
u� (𝑡) = 𝐷u�

u�′(𝑡) = LUEu�(𝑡) and 𝑡 is a discontinuity. Further, there must be
some 𝜀 > 0 such that 𝑗′ is run in either (𝑡 − 𝜀, 𝑡) or (𝑡, 𝑡 + 𝜀).

Observation 5.7. For 𝑡 ∈ ℝ≥0 consider the maximal set 𝐻u� of jobs that intersect
the upper envelope at 𝑡 and define 𝐻−

u� ≔ 𝐻u� ∩ { 𝑗 ∣ 𝑟u� < 𝑡 }. Let ̌𝜄 ∈ 𝐻u� denote
the job of lowest density and let ̂𝜄 ∈ 𝐻−

u� denote the job of highest density in
the corresponding sets (assuming the sets are nonempty). The following hold:

(a) For all 𝑗 ∈ 𝐻u� ⧵ { ̌𝜄 } we have 𝑗 → ̌𝜄.

(b) For all 𝑗 ∈ 𝐻−
u� ⧵ { ̂𝜄 } we have 𝑗 → ̂𝜄.

(c) For all 𝑗 ∈ 𝐻u� and 𝑗′ ∈ 𝐻u� ⧵ { ̌𝜄, ̂𝜄 } we have 𝑗 ↛ 𝑗′.

Observation 5.8. For 𝑡 ∈ ℝ≥0 consider the maximal set 𝐻u� of jobs that intersect
the left upper envelope at 𝑡 where 𝑡 is a discontinuity. Define 𝐻−

u� ≔ 𝐻u� ∩
{ 𝑗 ∣ 𝑟u� < 𝑡 }. Let ̂𝜄 ∈ 𝐻−

u� denote the job of highest density in 𝐻−
u� (assuming it is

nonempty). The following hold:

(a) For all 𝑗 ∈ 𝐻−
u� ⧵ { ̂𝜄 } we have 𝑗 → ̂𝜄.

(b) For all 𝑗 ∈ 𝐻u� and 𝑗′ ∈ 𝐻u� ⧵ { ̂𝜄 } we have 𝑗 ↛ 𝑗′.

83

5 Trading Energy for Responsiveness

𝑟1 𝑟2 𝑟 ̂u� 𝑡 = 𝑟 ̌u�

(a) Affections: { 1, 2, ̂u� } → { ̌u� }, { 1, 2 } → { ̂u� }, and
{ 1, 2, ̂u�, ̌u� } ↛ { 1, 2 }.

𝑟1 𝑟 ̂u� 𝑡 = 𝑟3 = 𝑟4

(b) Affections: 1 → ̂u� and { 1, ̂u�, 3 } ↛ { 1, 3 }. Job 3
is denoted by the thick line.

Figure 5.4: Illustration of (a) Observation 5.7 and (b) Observation 5.8.

𝑟0 𝑟1 𝑡2 = 𝑟3𝑡1 𝑟2 𝑟4

Figure 5.5: Observation 5.10. Both the upper envelope and the left upper enve-
lope cases: note that 𝐷u�

0 (𝑡′) < LUEu�(𝑡′) ≤ UEu�(𝑡′) for all 𝑡′ > 𝑡1, and 𝐷u�
2 (𝑡′) <

LUEu�(𝑡′) ≤ UEu�(𝑡′) for all 𝑡′ > 𝑡2.

Observation 5.9. No job 𝑗 ∈ [𝑖 − 1] can intersect a job 𝑗′ of lower density at its
own release time 𝑟u�.

Observation 5.10. Given jobs 𝑗 and 𝑗′ with 𝑑u� > 𝑑u�′ and that intersect on the
upper envelope or left upper envelope at point 𝑡, we have that UEu�(𝑡′) ≥
LUEu�(𝑡′) ≥ 𝐷u�

u�′(𝑡′) > 𝐷u�
u� (𝑡′), for all 𝑡′ > 𝑡.

Structuring the Affection Equipped with the aforementioned observations,
we continue to show several structural properties about how different jobs can
affect each other. Remember that we assume jobs to be ordered by decreasing
density (see Section 5.2) and fix a job 𝑖. In the following, we study how the
raising of job 𝑖 can affect the jobs in { 1, 2, … , 𝑖 − 1 }. We will use our insights
in Section 5.5.2 to prove that the graph induced by the affection relation forms
a tree.

Define the level sets ℒ0 ≔ { 𝑖 } and ℒu� ≔ { 𝑗 ∣ ∃𝑗− ∈ ℒu�−1 ∶ 𝑗− → 𝑗 } ⧵⋃u�−1
u�′=0 ℒu�′

for an integer 𝑙 ≥ 1. Intuitively, a job 𝑗 is in level set ℒu� if and only if the
“shortest path” by which it is affected by 𝑖 has length 𝑙. With this notation, we

84

5.5 Computing an Optimal Schedule

are now ready to prove the following lemmas.

Lemma 5.11. Consider two jobs 𝑗0 ∈ ℒu� and 𝑗+ ∈ ℒu�+1 with 𝑗0 → 𝑗+. Then job 𝑗+
has a larger density than job 𝑗0. That is, 𝑑u�+ > 𝑑u�0.

Proof. We prove the lemma's statement by induction. The base case 𝑙 = 0 is
trivial, as 𝑖 has the lowest density of all jobs and, by construction, ℒ0 = { 𝑖 }.
Now consider the case 𝑙 ≥ 1 and let 𝑗− ∈ ℒu�−1 be such that 𝑗− → 𝑗0. By the
induction hypothesis, we have 𝑑u�0 > 𝑑u�−. For the sake of a contradiction, assume
𝑑u�+ < 𝑑u�0. Let 𝑡1 denote the intersection point of 𝑗0 and 𝑗−, and let 𝑡2 denote the
intersection point of 𝑗0 and 𝑗+. By Observation 5.6, these intersection points lie
on the upper envelope or the left upper envelope. We consider three cases:

Case 𝒕𝟏 > 𝒕𝟐: Because of 𝑡1 > 𝑡2, the assumption 𝑑u�0 > 𝑑u�+ implies 𝐷u�
u�0(𝑡1) <

𝐷u�
u�+(𝑡1) ≤ LUEu�(𝑡1) ≤ UEu�(𝑡1) by Observation 5.10. This contradicts

Observation 5.6.

Case 𝒕𝟏 < 𝒕𝟐: Because of 𝑡2 > 𝑡1, the induction hypothesis 𝑑u�0 > 𝑑u�− implies,
by Observation 5.10, 𝐷u�

u�0(𝑡2) < 𝐷u�
u�−(𝑡2) ≤ LUEu�(𝑡2) ≤ UEu�(𝑡2). This

contradicts Observation 5.6.

Case 𝒕𝟏 = 𝒕𝟐: First note that this intersection point must lie on the upper
envelope since otherwise it would lie on the left upper envelope at a
discontinuity and, by Observation 5.8, 𝑗0 ↛ 𝑗+. Further, because 𝑗0 ≠ 𝑖
and 𝑑u�0 > 𝑑u�+, Observation 5.9 implies 𝑟u�0 < 𝑡1. Together with 𝑑u�+ < 𝑑u�0
and 𝑗0 → 𝑗+, this implies that 𝑗+ has minimal density among all jobs
intersecting the upper envelope in 𝑡1 (by Observation 5.7). We get 𝑗− → 𝑗+
and, thus, 𝑗+ ∈ ℒu�. This contradicts 𝑗+ being a level 𝑙 + 1 node.

Lemma 5.12. Given two level 𝑙 jobs 𝑗1, 𝑗2 ∈ ℒu�, we have 𝑗1 ↛ 𝑗2 and 𝑗2 ↛ 𝑗1.

Proof. The statement is trivial for 𝑙 = 0, as ℒ0 = { 𝑖 }. For 𝑙 ≥ 1 consider
𝑗1, 𝑗2 ∈ ℒu� and assume, for the sake of a contradiction, that 𝑗1 → 𝑗2 (the case
𝑗2 → 𝑗1 is symmetrical). Let 𝜄1, 𝜄2 ∈ ℒu�−1 with 𝜄1 → 𝑗1 and 𝜄2 → 𝑗2. By
Lemma 5.11 we have 𝑑u�1 < 𝑑u�1 and 𝑑u�2 < 𝑑u�2. Let 𝑡0 denote the intersection
point of 𝑗1 and 𝑗2, 𝑡1 the intersection point of 𝑗1 and 𝜄1, and 𝑡2 the intersection
point of 𝑗2 and 𝜄2. Analogously to the proof of Lemma 5.11, one can see that
𝑡0 = min(𝑡1, 𝑡2) (as otherwise at least one of these intersection points would
not lie on the (left) upper envelope). We distinguish the following cases:

85

5 Trading Energy for Responsiveness

Case 𝒕𝟎 = 𝒕𝟏 < 𝒕𝟐: First note that 𝑡1 and 𝑡0 cannot lie on the left upper envelope
at a discontinuity, since by Observation 5.8 either 𝑗1 ↛ 𝑗2 or 𝜄1 ↛ 𝑗1. So,
by Observation 5.6, 𝑡0 and 𝑡1 lie on the upper envelope. Job 𝑗2 must have
minimal density among all jobs intersecting the upper envelope at 𝑡1, as
otherwise its intersection point with 𝜄2 cannot lie on the upper envelope.
But then, by Observation 5.7, we have 𝜄1 → 𝑗2. Together with Lemma 5.11
this implies 𝑑u�2 > 𝑑u�1, contradicting the minimality of 𝑗2's density.

Case 𝒕𝟎 = 𝒕𝟐 < 𝒕𝟏: By Observation 5.6 𝑗1, 𝑗2 and 𝜄2 either lie on the left upper
envelope or the upper envelope. Assume they are on the left upper
envelope. Note that since 𝜄2 and 𝑗1 intersect at 𝑡0, and 𝑡1 > 𝑡0, it must
be that 𝜄1 ≠ 𝜄2 and therefore 𝑙 ≥ 2 in this case. Also, since 𝑡1 > 𝑡0 is a
point where 𝑗1 is on the upper envelope, it must be that 𝑗1 is less dense
than 𝜄2. However, this implies that 𝜄2 is not on the left upper envelope
or upper envelope to the right of 𝑡0. Since it is not the root (𝑙 ≥ 2) there
must be some point 𝑡 < 𝑡0 such that 𝜄2 intersects a less dense job on the
(left) upper envelope (its parent). This contradicts 𝜄2 being on the left
upper envelope at 𝑡0. If instead 𝑗1, 𝑗2 and 𝜄2 lie on the upper envelope the
same argument used in the first case applies.

Case 𝒕𝟎 = 𝒕𝟏 = 𝒕𝟐: The same argument as in the first case shows that these
points do not lie on the left upper envelope at a discontinuity but must
lie on the upper envelope. Without loss of generality, assume 𝑑u�1 > 𝑑u�2.
We get 𝑟u�1 < 𝑡1 (Observation 5.9). With 𝑑u�2 > 𝑑u�2 and Observation 5.7 this
implies 𝜄2 ↛ 𝑗2, contradicting the definition of 𝜄2.

Lemma 5.13. A level 𝑙 job cannot be affected by more than one job of a lower level.

Proof. The statement is trivial for 𝑙 ∈ { 0, 1 }. Thus, consider a job 𝑗 ∈ ℒu� for
𝑙 ≥ 2 and let 𝑗1 and 𝑗2 be two different lower level jobs with 𝑗1 → 𝑗 and 𝑗2 → 𝑗.
By definition, both 𝑗1 and 𝑗2 must be level 𝑙 − 1 jobs. Also, similar to previous
proofs, we can see that all three jobs must intersect at the same point 𝑡 on the
upper envelope or left upper envelope. Let us first assume they intersect at
the upper envelope. Observation 5.7 implies that 𝑗 has maximal density of
all jobs intersecting the upper envelope at 𝑡 (as otherwise 𝑗 can be affected by
neither 𝑗1 nor 𝑗2, both having a lower density). Consider the lowest density job
̌𝜄 intersecting the upper envelope at 𝑡. By Observation 5.7, at least one of 𝑗1 or

86

5.5 Computing an Optimal Schedule

𝑗2 must affect ̌𝜄. Assume, without loss of generality, it is 𝑗1. This implies that ̌𝜄
has level 𝑙′ ≤ 𝑙. Actually, we must have 𝑙′ < 𝑙, because otherwise 𝑑 ̌u� < 𝑑u�1 would
contradict Lemma 5.11. Similarly, 𝑙′ = 𝑙 − 1 would contradict Lemma 5.12.
Thus, we have 𝑙′ ≤ 𝑙 − 2. But since we have ̌𝜄 → 𝑗, we get a contradiction to 𝑗
being a level 𝑙 node.

Now assume that all three jobs intersect at a discontinuity of the left upper
envelope. Observation 5.8 tells us that 𝑗 must be the most dense job intersecting
at 𝑡. Assume without loss of generality that 𝑑u�1 < 𝑑u�2. Then, by Observation 5.10,
𝑗2 is not on the (left) upper envelope to the right of 𝑡. However, since it is not
the root (𝑙 ≥ 2), there must be some less dense job ̌𝜄 that intersects 𝑗2 on the
(left) upper envelope to the left of 𝑡 (its parent). This contradicts 𝑗2 being on
the left upper envelope at 𝑡.

Lemma 5.14. Consider two nodes 𝑗1 ∈ ℒu�1 and 𝑗2 ∈ ℒu�2 with 𝑙2 − 𝑙1 ≥ 2. Then we
must have 𝑗2 ↛ 𝑗1.

Proof. For the sake of a contradiction, assume 𝑗2 → 𝑗1 and let 𝑗 denote a level
𝑙2 − 1 node with 𝑗 → 𝑗2. Similar to the previous proofs, we can see that all three
jobs 𝑗1, 𝑗2, and 𝑗 must intersect the upper envelope or left upper envelope at
a common intersection point 𝑡. In the first case, assume this is on the upper
envelope. Because of 𝑑u�2 > 𝑑u� and 𝑗 → 𝑗2, we get that 𝑟u�2 < 𝑡 and that 𝑗2 has
maximal density among all jobs intersecting the upper envelope at 𝑡 and having
a release time before 𝑡 (Observation 5.9 and Observation 5.7). We get 𝑗1 → 𝑗2,
contradicting 𝑗2 being of at least level 𝑙1 + 2.

In the case when they intersect at a discontinuity of the left upper envelope,
Observation 5.8 implies either 𝑗2 ↛ 𝑗1 or 𝑗 ↛ 𝑗2, a contradiction.

Lemma 5.15. Consider two nodes 𝑗1 ∈ ℒu�1 and 𝑗2 ∈ ℒu�2 with 𝑙2 = 𝑙1 + 1, and
𝑗1 → 𝑗2. Then, if there exists a node 𝑗3 ∈ ℒu�1 such that 𝑗2 → 𝑗3, it must be that
𝑗3 = 𝑗1.

Proof. For the sake of contradiction, assume there exists a node 𝑗3 ≠ 𝑗1 such that
𝑗3 ∈ ℒu�1 and 𝑗2 → 𝑗3. First, note that by Lemma 5.11 we have 𝑑u�1 < 𝑑u�2. Let 𝑡1 be
the intersection of 𝑗1 and 𝑗2, and 𝑡2 be the intersection of 𝑗2 and 𝑗3. There are two
cases to consider. In the first case, assume 𝑡1 = 𝑡2 and note that the intersection
must lie on the upper envelope: if it were on the left upper envelope at a
discontinuity, 𝑗1 → 𝑗2 and 𝑗2 → 𝑗3 would contradict Observation 5.8. Since

87

5 Trading Energy for Responsiveness

𝑑u�1 < 𝑑u�2, either 𝑗1 or 𝑗3 is the job with lowest density. Then, since 𝑡1 = 𝑡2, by
Observation 5.7 either 𝑗1 → 𝑗3 or 𝑗3 → 𝑗1. Both cases contradict Lemma 5.12
since 𝑗1, 𝑗3 ∈ ℒu�1.

In the second case, assume 𝑡1 ≠ 𝑡2. If 𝑡1 < 𝑡2, then, since 𝑑u�1 < 𝑑u�2 by Obser-
vation 5.10, 𝐷u�

u�2(𝑡′) < LUEu�(𝑡′) ≤ UEu�(𝑡′) for all 𝑡′ > 𝑡1 which contradicts 𝑗2
being on the (left) upper envelope at 𝑡2. For the case 𝑡1 > 𝑡2, a similar argument
shows that 𝑗2 must be the least dense job that intersects the upper envelope at
𝑡2, as otherwise 𝐷u�

u�2(𝑡1) < LUEu�(𝑡1) ≤ UEu�(𝑡1). If the jobs meet on the upper
envelope at 𝑡2, Observation 5.7 yields 𝑗3 → 𝑗2. Together with 𝑗1 → 𝑗2 and 𝑗3 ≠ 𝑗1,
this contradicts Lemma 5.13. If the jobs meet on the left upper envelope at 𝑡2,
we see similarly to previous proofs that 𝑗3 is not the root, cannot be processed
to the right of 𝑡2 (since 𝑗2 is less dense), and its less dense parent muss intersect
it to the left of 𝑡2. But then 𝑗2 cannot be on the left upper envelope at 𝑡2, a
contradiction.

5.5.2 Affection Tree

Lemmas 5.11 to 5.15 give us strong structural information about how raising
the dual line of job 𝑖 affects jobs in { 1, 2, … , 𝑖 − 1 }. In particular, the affection
relation naturally defines a graph on the jobs as follows:

Definition 5.16 (Affection Tree). Let 𝐺u�(𝜏) be the directed graph induced by
the affection relation on jobs 1, … , 𝑖. Then the affection tree is an undirected
graph 𝐴u�(𝜏) = (𝑉u�(𝜏), 𝐸u�(𝜏)) where 𝑗 ∈ 𝑉u�(𝜏) if and only if 𝑗 is reachable from
𝑖 in 𝐺u�(𝜏), and for 𝑗1, 𝑗2 ∈ 𝑉u�(𝜏) we have (𝑗1, 𝑗2) ∈ 𝐸u�(𝜏) if and only if 𝑗1 → 𝑗2
or 𝑗2 → 𝑗1.

In the following lemma, we prove that 𝐴u� is indeed a tree rooted at 𝑖 such that
all children of a node 𝑗 are of higher density than 𝑗 itself.

Lemma 5.17. Let 𝐴u� be the (affection) graph of Definition 5.16. Then 𝐴u� is a tree,
and if we root 𝐴u� at 𝑖, then for any parent and child pair (𝜄u�, 𝑗) ∈ 𝐺 it holds that
𝑑u�u� < 𝑑u�.

Proof. Assume, for the sake of contradiction, that there exists a cycle 𝐶 in 𝐺.
Let 𝑣 be a node in 𝐶 that belongs to the highest level set, say ℒu�1. Note that
such a 𝑣 is unique since otherwise there would be two nodes in the same level

88

5.5 Computing an Optimal Schedule

with at least one having an affection to the other contradicting Lemma 5.12. Let
𝑣1, 𝑣2 be the neighbors of 𝑣 in 𝐶 and 𝑣3 ∈ ℒu�1−1 be the node such that 𝑣3 → 𝑣
(Note that it may be 𝑣3 = 𝑣1 or 𝑣3 = 𝑣2). Note that by Lemma 5.14 we also have
𝑣1, 𝑣2 ∈ ℒu�1−1. By Lemma 5.13, either 𝑣1 ↛ 𝑣 or 𝑣2 ↛ 𝑣. Assume, without loss
of generality, this is 𝑣1. Since 𝑣1 is a neighbor of 𝑣 in 𝐶 and 𝑣1 ↛ 𝑣, we have
𝑣 → 𝑣1. However, this contradicts Lemma 5.15.

In the remainder, we will always assume 𝐴u�(𝜏) to be rooted at 𝑖 and use
the notation (𝑗, 𝑗′) ∈ 𝐴u�(𝜏) to indicate that 𝑗′ is a child of 𝑗. The proven tree
structure of the affection graph will allow us to easily compute how fast to
raise the different dual lines of jobs in 𝐴u� (as long as the connected component
does not change).

5.5.3 Algorithm Description

We are finally (almost) ready to state our algorithm. Our algorithm will use
the affection tree to track the jobs affected by the raising of the current job 𝑖 and
compute corresponding raising speeds for each of these jobs. This raising stops,
at latest, when job 𝑖 is completely scheduled. However, there are other events
we must consider, like a change in the topology of the affection tree when
new nodes are affected. The intuition for each event is comparatively simple
(see Definition 5.18), but their formalization is quite technical, requiring us to
explicitly label the start and ending points of each single execution interval of
each job. To do so, we introduce the following interval notation.

Interval Notation Let ̂𝑟1, … , ̂𝑟u� denote the 𝑛 release times in non-decreasing
order. We define 𝛹u� as a set of indices with 𝑞 ∈ 𝛹u� if and only if job 𝑗 is
run between ̂𝑟u� and ̂𝑟u�+1 (or after ̂𝑟u� for 𝑞 = 𝑛). Further, let 𝑥ℓ,u�,u� denote the
time that the interval corresponding to 𝑞 begins and 𝑥u�,u�,u� denote the time that
the interval ends. Let 𝑠ℓ,u�,u� denote the speed at which 𝑗 is running at the left
endpoint corresponding to 𝑞 and 𝑠u�,u�,u� denote the speed 𝑗 is running at the right
endpoint. Let 𝑞ℓ,u� be the smallest and 𝑞u�,u� be the largest indices of 𝛹u�, i.e., the
indices of the first and last execution intervals of 𝑗.

Let the indicator variable 𝑦u�,u�(𝑞) denote whether 𝑥u�,u�,u� occurs at a release
point. Similarly, 𝑦ℓ,u�(𝑞) = 1 if 𝑥ℓ,u�,u� occurs at 𝑟u�, and 0 otherwise. Lastly, 𝜒u�(𝑞) is
1 if 𝑞 is not the last interval in which 𝑗 is run, and 0 otherwise.

89

5 Trading Energy for Responsiveness

We define 𝜌u�(𝑞) to be the last interval of the uninterrupted block of intervals
starting at 𝑞, i.e., for all 𝑞′ ∈ { 𝑞 + 1, … , 𝜌u�(𝑞) }, we have that 𝑞′ ∈ 𝛹u� and
𝑥u�,u�′−1,u� = 𝑥ℓ,u�′,u�, and either 𝜌u�(𝑞) + 1 ∉ 𝛹u� or 𝑥u�,u�u�(u�),u� ≠ 𝑥ℓ,u�u�(u�)+1,u�.

Note that, as the line schedule changes with 𝜏, so does the set of intervals
corresponding to it, therefore we consider variables relating to intervals to be
functions of 𝜏 as well (e.g., 𝛹u�(𝜏), 𝑥ℓ,u�,u�(𝜏), etc.).

Events & Algorithm Given this notation, we now define four different types
of events that force us to recalculate the rate at which the dual lines are raised.
We assume that between 𝜏 and the next event 𝜏0, we raise each dual line
at a constant rate. More formally, we fix 𝜏 and for 𝑗 ∈ [𝑖] and 𝑢 ≥ 𝜏 let
𝛼u�(𝑢) = 𝛼u�(𝜏) + (𝑢 − 𝜏)𝛼′

u�(𝜏).

Definition 5.18 (Event). For 𝜏0 > 𝜏, we say that an event occurs at 𝜏0 if there
exists 𝜀 > 0 such that at least one of the following holds for all 𝑢 ∈ (𝜏, 𝜏0) and
𝑣 ∈ (𝜏0, 𝜏0 + 𝜀):

• The affection tree changes, i.e., 𝐴u�(𝑢) ≠ 𝐴u�(𝑣). This is called an affection
change event.

• The speed at the border of some interval of some job changes. That is,
there exists a 𝑗 ∈ [𝑖] and a 𝑞 ∈ 𝛹u�(𝜏) such that either 𝑠ℓ,u�,u�(𝑢) ≠ 𝑠ℓ,u�,u�(𝑣)
or 𝑠u�,u�,u�(𝑢) ≠ 𝑠u�,u�,u�(𝑣). This is called a speed change event.

• The last interval in which job 𝑖 is run changes from ending before the
release time of some other job to ending at the release time of that job.
That is, there exists 𝑗 ∈ [𝑖 − 1] and 𝑞 ∈ 𝛹u�(𝜏) such that 𝑥u�,u�,u�(𝑢) < 𝑟u� and
𝑥u�,u�,u�(𝑣) = 𝑟u�. This is called a simple rate change event.

• Job 𝑖 completes enough work, i.e., 𝑝u�(𝑢) < 𝑝u� < 𝑝u�(𝑣). This is called a job
completion event.

A formal description of the algorithm can be found in Listing 5.1.

5.6 Correctness of the Algorithm

In the following, we focus on proving the correctness of the previously de-
scribed algorithm. Throughout this subsection, we assume the iteration and

90

5.6 Correctness of the Algorithm

1 for each job 𝑖 from 1 to 𝑛:
2 while 𝑝u�(𝜏) < 𝑝u�: {job 𝑖 not yet fully processed in current schedule }
3 for each job 𝑗 ∈ 𝐴u�(𝜏):
4 calculate 𝛿u�,u�(𝜏) {see Equation (5.6)}
5 let 𝛥𝜏 be the smallest 𝛥𝜏 returned by any of the subroutines below:
6 (a) JobCompletion(𝑆(𝜏), 𝑖, [𝛼′

1, 𝛼′
2, … , 𝛼′

u�]) {next job completion}
7 (b) AffectionChange(𝑆(𝜏), 𝐴u�(𝜏), [𝛼′

1, 𝛼′
2, … , 𝛼′

u�]) {next affection change}
8 (c) SpeedChange(𝑆(𝜏), [𝛼′

1, 𝛼′
2, … , 𝛼′

u�]) {next speed change}
9 (d) RateChange(𝑆(𝜏), 𝑖, [𝛼′

1, 𝛼′
2, … , 𝛼′

u�]) {next rate change}
10 for each job 𝑗 ∈ 𝐴u�(𝜏):
11 raise 𝛼u� by 𝛥𝜏 ⋅ 𝛿u�,u�
12 set 𝜏 = 𝜏 + 𝛥𝜏
13 update 𝐴u�(𝜏) if needed {only if Case (b) returns the smallest 𝛥𝜏}

Listing 5.1: The algorithm for computing an optimal schedule. See Section 5.6.1 for
details on the subroutines.

value of 𝜏 to be fixed. Recall that we have to raise the dual lines such that the
total work done for any job 𝑗 ∈ [𝑖 − 1] is preserved. To calculate the work
processed for 𝑗 in an interval, we must take into account the different speeds
at which 𝑗 is run in that interval. Note that the intersection of 𝑗's dual line with
the 𝑖-th speed threshold 𝐶u� occurs at 𝑡 =

u�u�−u�u�

u�u�
+ 𝑟u�. Therefore, the work done

by a job 𝑗 ∈ [𝑖] is given by

𝑝u� = ∑
u�∈u�u�

𝑠ℓ,u�,u�
⎛⎜⎜
⎝

𝛼u� − ̌𝐶(𝐷u�
u� (𝑥ℓ,u�,u�))

𝑑u�
+ 𝑟u� − 𝑥ℓ,u�,u�

⎞⎟⎟
⎠

+ ∑
u�∶u�ℓ,u�,u�>u�u�>u�u�,u�,u�

𝑠u�
⎛⎜
⎝

𝛼u� − 𝐶u�

𝑑u�
+ 𝑟u� − ⎛⎜

⎝

𝛼u� − 𝐶u�+1

𝑑u�
+ 𝑟u�

⎞⎟
⎠

⎞⎟
⎠

+ 𝑠u�,u�,u�
⎛⎜⎜
⎝

𝑥u�,u�,u� − ⎛⎜⎜
⎝

𝛼u� − ̂𝐶(𝐷u�
u� (𝑥u�,u�,u�))

𝑑u�
+ 𝑟u�

⎞⎟⎟
⎠

⎞⎟⎟
⎠

.

(5.4)

It follows that the change in the work of job 𝑗 with respect to 𝜏 is

𝑝′
u� = ∑

u�∈u�u�

⎡⎢
⎣
𝑠ℓ,u�,u�

⎛⎜
⎝

𝛼′
u�

𝑑u�
− 𝑥′

ℓ,u�,u�
⎞⎟
⎠

+ 𝑠u�,u�,u�
⎛⎜
⎝

𝑥′
u�,u�,u� −

𝛼′
u�

𝑑u�
⎞⎟
⎠

⎤⎥
⎦
. (5.5)

For some child 𝑗′ of 𝑗 in 𝐴u�, let 𝑞u�,u�′ be the index of the interval of 𝛹u� that
begins with the completion of 𝑗′. Recall that 𝐷u�

u� is raised at a rate of 1 with
respect to 𝜏, and for a parent and child (𝜄u�, 𝑗) in the affection tree, the rate of

91

5 Trading Energy for Responsiveness

change for 𝛼u� with respect to 𝛼u�u� used by the algorithm is:

𝛿u�,u�u� ≔(1 + 𝑦ℓ,u�(𝑞ℓ,u�)
𝑑u� − 𝑑u�u�

𝑑u�

𝑠ℓ,u�ℓ,u�,u� − 𝑠u�,u�u�(u�ℓ,u�),u�

𝑠u�,u�u�,u�,u�

+ ∑
(u�,u�′)∈u�u�

((1 − 𝛿u�′,u�)
𝑑u� − 𝑑u�u�

𝑑u�′ − 𝑑u�

𝑠ℓ,u�u�,u�′,u�

𝑠u�,u�u�,u�,u�
+

𝑑u� − 𝑑u�u�

𝑑u�

𝑠ℓ,u�u�,u�′,u� − 𝑠u�,u�(u�u�,u�′),u�

𝑠u�,u�u�,u�,u�
))

−1

.
(5.6)

We prove in Lemma 5.21 that these rates are work-preserving for all jobs
𝑗 ∈ [𝑖 − 1]. Note that the algorithm actually uses 𝛿u�,u� which we can compute
by taking the product of the 𝛿u�,u�′ over all edges (𝑘, 𝑘′) on the path from 𝑗 to 𝑖.
Similarly, we can compute 𝛿u�,u�′ for all 𝑗, 𝑗′ ∈ 𝐴u�.

Observation 5.19. Since, by Lemma 5.17, parents in the affection tree are always
of lower-density than their children, and since dual lines are monotonically
decreasing, we have that 𝛿u�u�,u� ≤ 1. Therefore, intersection points on the upper
envelope can never move towards the right as 𝜏 is increased.

The following lemma states how fast the borders of the various intervals
change with respect to the change in 𝜏.

Lemma 5.20. Consider any job 𝑗 ∈ 𝐴u� whose dual line gets raised at a rate of 𝛿u�,u�.

(a) For an interval 𝑞 ∈ 𝛹u�, if 𝑦ℓ,u�(𝑞) = 1, then 𝑥′
ℓ,u�,u� = 0.

(b) For an interval 𝑞 ∈ 𝛹u�, if 𝜒u�(𝑞) = 1, then 𝑥′
u�,u�,u� = 0.

(c) Let (𝑗, 𝑗′) be an edge in the affection tree and let 𝑞u� and 𝑞u�′ denote the corre-

sponding intervals for 𝑗 and 𝑗′. Then 𝑥′
ℓ,u�u�,u� = 𝑥′

u�,u�u�′,u�′ = −
u�′

u�−u�′
u�′

u�u�′−u�u�
. Note that this

captures the case 𝑞 ∈ 𝛹u�′ with 𝜒u�′(𝑞) = 0 and 𝑗′ ≠ 𝑖.

(d) For an interval 𝑞 ∈ 𝛹u�, if 𝜒u�(𝑞) = 0, then 𝑥′
u�,u�,u� = 0 or 𝑥′

u�,u�,u� = 1/u�u�.

Proof.

(a) Note that since 𝑦ℓ,u�(𝑞) = 1, this implies that 𝑥ℓ,u�,u� = 𝑟u�. Since by Obser-
vation 5.19 intersection points can only move towards the left but by
definition 𝐷u�

u� is defined in [𝑟u�, ∞) the statement follows.

(b) Set 𝑡 = 𝑥′
u�,u�,u� and let us consider two subcases. In the first case, assume

that there exists an 𝜀 > 0 such that 𝑗 is run in (𝑡, 𝑡 + 𝜀). Then we must

92

5.6 Correctness of the Algorithm

have that 𝑡 = 𝑥u�,u�,u� = 𝑟u�′ for some 𝑗′ ≠ 𝑗, as otherwise 𝑞 would not be
maximal. This implies 𝑥′

u�,u�,u� = 0.

In the second subcase, assume that there does not exist any 𝜀 > 0 such
that 𝑗 is run in (𝑡, 𝑡 + 𝜀). This implies that there is some change in the
upper envelope at 𝑡, which can happen only in the following three cases:

(i) The dual line crosses 0 at 𝑡. That is, 𝛼u� − 𝑑u�(𝑡 − 𝑟u�) = 0.

(ii) The dual line crosses a dual line of smaller slope at 𝑡.

(iii) A release time causes a discontinuity on the upper envelope at 𝑡.

Note that (i) and (ii) can only happen at the last execution interval of a
job, but since 𝜒u�(𝑞) = 1, 𝑞 is not the last interval in which 𝑗 is run. In (iii),
since 𝑥u�,u�,u� = 𝑟u�′ at a discontinuity, 𝑥′

u�,u�,u� = 0 and the statement holds.

(c) Note that since (𝑗, 𝑗′) is an edge in the affection tree, by Observation 5.6
we have that 𝐷u�

u�′ and 𝐷u�
u� must intersect on the (left) upper envelope. We

have 𝐷u�
u�′(𝑡) = 𝛼u�′ − 𝑑u�′(𝑡 − 𝑟u�′) and 𝐷u�

u� (𝑡) = 𝛼u� − 𝑑u�(𝑡 − 𝑟u�). Therefore, the
dual lines for 𝑗 and 𝑗′ intersect at

𝑡 =
𝛼u�′ + 𝑑u�′ ⋅ 𝑟u�′ − 𝛼u� − 𝑑u� ⋅ 𝑟u�

𝑑u�′ − 𝑑u�
, and its derivative is

𝛼′
u� − 𝛼′

u�′

𝑑u�′ − 𝑑u�
.

Since 𝑗 is a parent of 𝑗′, 𝑥ℓ,u�u�,u� = 𝑥u�,u�u�′,u�′ = 𝑡 and the result follows.

(d) Note that since job 𝑖 has the lowest density of all jobs currently considered,
its rightmost interval can only stop at a release time of a denser job, or at
a point 𝑡 such that 𝐷u�

u� = 0. In the first case 𝑥′
u�,u�,u� = 0. In the second case

note that 𝐷u�
u� (𝑡) = 𝛼u� − 𝑑u�(𝑡 − 𝑟u�) intersects 0 at 𝑡 = 𝛼u�/𝑑u� + 𝑟u�. Taking the

derivative with respect to 𝜏 yields 𝑥′
u�,u�,u� = 𝛼′

u�/𝑑u� = 1/𝑑u�, as desired.

Equation (5.5) defines a system of differential equations. In the following,
we first show how to compute a work-preserving solution for this system (in
which 𝑝′

u� = 0 for all 𝑗 ∈ [𝑖 − 1]) if 𝛼′
u� = 1, and then show that there is only

a polynomial number of events and that the corresponding 𝜏 values can be
easily computed.

Lemma 5.21. For a parent and child (𝜄u�, 𝑗) ∈ 𝐴u�, set 𝛼′
u� = 𝛿u�,u�u�𝛼

′
u�u�, and for 𝑗′ ∉ 𝐴u� set

𝛼u�′ = 0. Then 𝑝′
u� = 0 for 𝑗 ∈ [𝑖 − 1].

93

5 Trading Energy for Responsiveness

Proof. Clearly, by the definition of affection and construction of the affection
tree, if 𝑗′ ∉ 𝐴u�, then by setting 𝛼′

u�′ = 0 we have that 𝑝′
u�′ = 0.

For a parent and child (𝜄u�, 𝑗) ∈ 𝐴u�, we proceed by setting 𝑝′
u� = 0 in Equa-

tion (5.5) and solving for 𝛼′
u�/𝛼′

u�u� = 𝛿u�,u�u�. Let 𝐼u�,u� = { 𝑞, … , 𝜌u�(𝑞) } if 𝑞 ∈ 𝛹u� and ∅
otherwise. We call 𝐼u�,u� a maximal execution interval of 𝑗 if 𝐼u�−1,u� ∩ 𝐼u�,u� = ∅. Let
𝑀 = { 𝑞 ∈ 𝛹u� ∣ 𝐼u�,u� is a maximal execution interval of 𝑗 }. Clearly ⋃u�∈u� 𝐼u�,u� =
𝛹u�. Let 𝑝′

u�,u� where 𝑆 ⊆ 𝛹u� be the rate of change of 𝑝u� due to the rate of change of
the endpoints of the intervals in 𝑆. If 𝑗 is run at its release time, then 𝑦ℓ,u�(𝑞ℓ,u�) = 1
and, by Observation 5.7, 𝑗 cannot intersect any of its children at its release time,
so by Lemma 5.20

𝑝′
u�,u�u�ℓ,u�,u�

= (𝑠ℓ,u�ℓ,u�,u� − 𝑠u�,u�(u�ℓ,u�),u�)⎛⎜
⎝

𝛼′
u�

𝑑u�
⎞⎟
⎠

+ 𝑠u�,u�u�(u�ℓ,u�),u�(𝑥′
u�,u�u�(u�ℓ,u�),u�). (5.7)

For any other 𝑞 ∈ 𝑀 (including 𝑞ℓ,u� if 𝑦ℓ,u�(𝑞ℓ,u�) = 0), 𝑞 must begin at the intersec-
tion point of 𝑗 and one of its children. That is, there exists a unique (𝑗, 𝑗′) ∈ 𝐴u�

such that 𝑞 = 𝑞u�,u�′. Therefore, by Lemma 5.20

𝑝′
u�,u�u�u�,u�′,u�

= (𝑠ℓ,u�u�,u�′,u� − 𝑠u�,u�(u�u�,u�′),u�)⎛⎜
⎝

𝛼′
u�

𝑑u�
⎞⎟
⎠

+ 𝑠ℓ,u�u�,u�′,u�
⎛⎜
⎝

𝛼′
u� − 𝛼′

u�′

𝑑u�′ − 𝑑u�
⎞⎟
⎠

+ 𝑠u�,u�u�(u�u�,u�′),u�(𝑥′
u�,u�u�(u�u�,u�′),u�).

For any 𝑞 ∈ 𝑀, we have (Lemma 5.20) that 𝑥′
u�,u�(u�),u� = 0 if 𝜌(𝑞) ≠ 𝑞u�,u� and

𝑥′
u�,u�u�,u�,u� = −

u�′
u�u�−u�′

u�

u�u�−u�u�u�
. The lemma follows by observing that 𝑝′

u� = ∑u�∈u� 𝑝′
u�,u�u�,u�

, the

fact that 𝑗 must intersect each of its children exactly once on the (left) upper
envelope, and that for (𝑗, 𝑗′) ∈ 𝐴u�, we have that 𝛼u�′/𝛼u� = 𝛿u�′,u�.

Although it is simple to identify the next occurrence of job completion, speed
change, or simple rate change events, it is more involved to identify the next
affection change event. Therefore, we provide the following lemma to account
for this case.

Lemma 5.22. An affection change event occurs at time 𝜏0 if and only if at least one
of the following occurs.

(a) An intersection point 𝑡 between a parent and child (𝑗, 𝑗′) ∈ 𝐴u� becomes equal
to 𝑟u�. That is, at 𝜏0 > 𝜏 such that 𝐷u�0

u� (𝑟u�) = 𝐷u�0
u�′ (𝑟u�) = UEu�0(𝑟u�).

94

5.6 Correctness of the Algorithm

(b) Two intersection points 𝑡1 and 𝑡2 on the upper envelope become equal. That
is, for (𝑗1, 𝑗2) ∈ 𝐴u� and (𝑗2, 𝑗3) ∈ 𝐴u�, at 𝜏0 > 𝜏 such that there is a 𝑡 with
𝐷u�0

u�1 (𝑡) = 𝐷u�0
u�2 (𝑡) = 𝐷u�0

u�3 (𝑡) = UEu�0(𝑡).

(c) An intersection point between 𝑗 and 𝑗′ meets the (left) upper envelope at the
right endpoint of an interval in which 𝑗′ was being run. Furthermore, there
exists 𝜀 > 0 so that for all 𝜏 ∈ (𝜏0 − 𝜀, 𝜏0), 𝑗′ was not in the affection tree.

Proof. It is straightforward to see that whenever (a), (b), or (c) occurs, an affec-
tion change event has to take place. Therefore, we focus the rest of the proof on
showing the other direction, i.e., any affection change event is a consequence
of one of the aforementioned cases.

By definition, any change in the affection tree is built from a sequence of
edge additions and edge removals. We therefore will separately consider the
cases where an edge is removed or added.

Case 1: An edge between 𝑗 and 𝑗′ is removed.
Let 𝜏0 be a time when an edge between 𝑗 and 𝑗′ is removed, and assume
that 𝑗 and 𝑗′ had an intersection point 𝑡. Assume furthermore, without
loss of generality, that 𝑗 is a parent of 𝑗′. Therefore, the affection 𝑗 → 𝑗′

ceases to exist at 𝜏0 (perhaps also 𝑗′ → 𝑗 if it existed). First note that at 𝑡,
𝐷u�0

u� (𝑡) = 𝐷u�0
u�′ (𝑡) must be on the upper envelope or left upper envelope

at a discontinuity, otherwise there exists some 𝜀 > 0 such that at time
𝜏0 − 𝜀 their intersection was not on the upper envelope or the left upper
envelope but the edge 𝑗 → 𝑗′ existed, contradicting Observation 5.6. We
handle these two cases separately.

Subcase: 𝐷u�0
u� (𝑡) = 𝐷u�0

u�′ (𝑡) = UEu�0(𝑡).
By Lemma 5.17, we know that it must be the case that 𝑑u�′ > 𝑑u�.
Furthermore, by Observation 5.7, since now it is the first time that
𝑗 ↛ 𝑗′, either 𝑟u� = 𝑡 (which is covered in statement (a) of the lemma),
or at least three jobs intersect at 𝑡. If this is the case, let 𝑗″ be the
highest density job among the jobs that intersect at 𝑡. Note that 𝑗″

cannot be 𝑗 (since 𝑑u�′ > 𝑑u�) and it can also not be 𝑗′ (since 𝑗 ↛ 𝑗′).

By Observation 5.7, just before 𝜏0, 𝑗′ does work to the left of the
intersection point (between 𝑗 and 𝑗′) and 𝑗 to the right. But at 𝜏0, 𝑗′

cannot do any work directly to the left of 𝑡, because of 𝑗″. It follows

95

5 Trading Energy for Responsiveness

that the interval of 𝑗′ has disappeared, since to the left of 𝑡, 𝑗″ is run
and to the right of 𝑡, 𝑗 is run. This case is covered in the statement (b)
of the lemma.

Subcase: 𝐷u�0
u� (𝑡) = 𝐷u�0

u�′ (𝑡) = LUEu�0(𝑡) at a discontinuity 𝑡.
Note that since the intersection points do not move towards the
right as 𝜏 increases (by Observation 5.19), the intersection of 𝑗 and
𝑗′ was either at 𝑡 or it was moving to the left towards 𝑡 for all times
during which 𝑗 → 𝑗′. However, since there is a discontinuity at 𝑡,
there is some job 𝑗″ on the upper envelope that is not on the left
upper envelope. If the intersection was at 𝑡 then 𝑗 → 𝑗′ would not be
possible. Therefore, there must exist some 𝜀 > 0 such that at 𝜏0 − 𝜀
the intersection of 𝑗 and 𝑗′ was below the curve of 𝑗″. This contradicts
Observation 5.6. It follows that this subcase cannot occur.

Case 2: A new edge is added to the affection tree.
Let 𝜏0 be the time when a new edge is added to the affection tree. First
note that, without loss of generality, at least one new edge is between
two nodes 𝑗 and 𝑗′ with (a) 𝑗 is in the affection tree immediately before 𝜏0,
(b) 𝑗′ is not in the affection tree immediately before 𝜏0, and (c) 𝑗 becomes
the parent of 𝑗′ at 𝜏0. Indeed, obviously at least one old node 𝑗 of the
affection tree must be involved as a parent in one of the new edges. If all
new children 𝑗′ of such old nodes were in the affection tree immediately
before 𝜏0, there would also be some edge removal at 𝜏0 (as an additional
edge would break the tree property, contradicting Lemma 5.17). This
would reduce this case to the previous one.

From the above we get 𝑑u� < 𝑑u�′ (𝑗 being a parent of 𝑗′). Moreover, by
Observation 5.6, at 𝜏0 the intersection point 𝑡 of 𝑗 and 𝑗′ is on the (left)
upper envelope and 𝑗′ is run either to the left or right of 𝑡. Since 𝑗 has a
lower density, it must be run to the left of 𝑡. This is the case covered by
statement (c) of the lemma.

5.6.1 The Subroutines

The algorithm shown in Listing 5.1 uses four subroutines to compute the
time of the next job completion, affection change, speed change, and simple

96

5.6 Correctness of the Algorithm

rate change events. Computing these times is relatively easy. The following
provides a short sketch for the corresponding computation of each event type.
More elaborate details can be found in the full version of [Ant+14].

Job Completion Event This is the easiest event type, capturing the time
when the current job 𝑖 is fully processed. As long as no other event occurs,
the work of job 𝑖 increases at a constant rate 𝑝′

u�, which can be computed by
Equation 5.5. Thus, if the work of 𝑖 processed at the current time 𝜏 is 𝑝u�(𝜏), job
𝑖 needs time 𝛥𝜏 = u�u�−u�u�(u�)

u�′
u�

to be fully processed.

Simple Rate Change Event A simple rate change event occurs when the
right side of the last execution interval of 𝑖 reaches the release time of some
job. Using Lemma 5.20(d), we can see that this only happens when the rate
𝑥′

u�,u�,u� changes from 1/u�u� to zero. The corresponding time computes easily as

𝛥𝜏 =
̂u�u�u�,u�(u�)+1(u�)−u�u�,u�u�,u�(u�),u�(u�)

1/u�u�

.

Speed Change Event This case is a bit more tedious than the previous
one. For each execution interval of each job, we have to compute the job's
dual function value at the interval borders, their distance to the next speed
thresholds, and the (constant) rate at which these values change. All these
values can be easily computed using Lemma 5.20.

Affection Change Event The exact conditions for an affection change event
are given in Lemma 5.22. Similar to the previous cases, all that needs to be
done is to compute the time when one of the corresponding conditions occurs.
More exactly, note that (a) and (b) of Lemma 5.22 correspond to a removal of
an edge, whereas (c) corresponds to an addition of an edge. For the removal,
we have to compute at which (constant) rates the borders of any execution
intervals change and check when they become equal (i.e., the corresponding
interval vanishes). For the addition, we have to compute at which (constant)
speed the dual lines of two jobs, one in the affection tree and one not) approach
each other at the upper envelope.

97

5 Trading Energy for Responsiveness

5.6.2 Putting it All Together

We are now ready to prove the correctness of the algorithm. Note that we
handle termination in Theorem 5.24, where we prove a polynomial running
time for our algorithm.

Theorem 5.23. Assuming that the algorithm from Listing 5.1 terminates, it com-
putes an optimal schedule.

Proof. The algorithm outputs a line schedule 𝑆, so by Lemma 5.4, 𝑆 is optimal
if for all jobs 𝑗 the schedule does exactly 𝑝u� work on 𝑗. We now show that this
is indeed the case.

For a fixed iteration 𝑖, we argue that a change in the rate at which work is
increasing for 𝑗 (i.e., a change in 𝑝′

u�) may occur only when an event occurs.
This follows from Equation (5.5), since the rate only changes when there is
a change in the rate at which the endpoints of intervals move, when there
is a change in the speed levels employed in each interval, or when there is
an affection change (and hence a change in the intervals of a job or a change
in 𝛼′

u�). These correspond to the events we have defined, which are correctly
computed (see Section 5.6.1). Thus, the algorithm recalculates the rates at any
event, and by Lemma 5.21 it calculates the correct rates such that 𝑝′

u�(𝜏) = 0 for
𝑗 ∈ [𝑖 − 1] and for every 𝜏. This is done until some 𝜏0 such that 𝑝u�(𝜏0) = 𝑝u�,
which corresponds to the job completion event computed by the algorithm
(see Section 5.6.1). Thus, we get the invariant that after iteration 𝑖 we have a
line schedule for the first 𝑖 jobs that does 𝑝u� work for every job 𝑗 ∈ [𝑖]. The
theorem follows.

5.7 The Running Time

The purpose of this section is to prove the following theorem.

Theorem 5.24. The algorithm from Listing 5.1 takes O(𝑛4𝑘) time.

We do this by upper bounding the number of events that can occur, see
Lemma 5.26. This is relatively straightforward for job completion, simple
rate change, and speed change events, which can occur O(𝑛), O(𝑛2), and
O(𝑛2𝑘) times, respectively. However, bounding the number of times an affec-
tion change event can occur is more involved: We show in Lemma 5.25 that

98

5.7 The Running Time

whenever an edge is removed from the affection tree, there exists an edge
which will never again be in the affection tree. This implies that the total
number of affection change events is upper bounded by O(𝑛2) as well. We
then show in Lemma 5.27 that the next event can always be calculated in O(𝑛2)
time, and in Lemma 5.28 that the affection tree can be updated in O(𝑛) time
after each affection change event. By combining these results it follows that
our algorithm has a running time of O(𝑛4𝑘).

Lemma 5.25. Consider some time 𝜏0 where an edge (𝑗, 𝑗′) is removed from the af-
fection tree. Then there exists some edge (𝑢, 𝑣) that is also being removed at 𝜏0 such
that (𝑢, 𝑣) will not be present for all remaining iterations of the algorithm.

Proof. First note that by the definition of the affection tree, it must be that the
affection 𝑗 → 𝑗′ is being removed. Since 𝑗 is a parent of 𝑗′, by Lemma 5.17 we
have 𝑑u� < 𝑑u�′. Also, by Lemma 5.22, this edge can be removed because either
the intersection between 𝑗 and 𝑗′ becomes equal to 𝑟u� or two intersection points
become equal. We handle these cases separately.

In the first case assume that the intersection between 𝑗 and 𝑗′ becomes equal
to 𝑟u�. We show that the affection edge 𝑗 → 𝑗′ cannot be present again. To do
this, we show that the invariant of 𝑗′ not being processed on the (left) upper
envelope to the right of 𝑟u� is always maintained. This implies that the edge
𝑗 → 𝑗′ is never present again. It is clearly true for 𝜏0 (say, in iteration 𝑖). Assume
that for some iteration 𝑖′ ≥ 𝑖 this invariant is true. If 𝑗′ is not being raised the
invariant will remain true since curves are only raised and not lowered. If 𝑗′ is
being raised, since it is not the lowest density job it must intersect some lower
density job 𝑗″ (its parent) that is also being raised. Further, since the invariant
is true to this point, the intersection is not to the right of 𝑟u�. However, while 𝑗′

is being raised, by Observation 5.19 the intersection between 𝑗′ and 𝑗″ moves
only to the left. Since 𝑑u�″ < 𝑑u�′, 𝑗′ will not be on the upper envelope or left
upper envelope to the right of this intersection and the result follows.

In the second case, assume that the intersection between 𝑗1 and 𝑗2 becomes
equal to the intersection between 𝑗2 and 𝑗3 and assume, without loss of gener-
ality, that 𝑑u�1 < 𝑑u�2 < 𝑑u�3. This implies that the edges (𝑗1, 𝑗2) and (𝑗2, 𝑗3) will be
removed. We show that the edge (𝑗2, 𝑗3) will not be present again. First note
that 𝑟u�2 < 𝑟u�3 since otherwise 𝑗2 would not be processed anywhere, contradict-
ing that the rates at which we raise curves are work-preserving. Similar to

99

5 Trading Energy for Responsiveness

the previous argument, we show that 𝑗2 will not be processed on the upper
envelope or left upper envelope to the right of 𝑟u�3 again. This is clearly true at
𝜏0 (say, in iteration 𝑖). Assume for some iteration 𝑖′ ≥ 𝑖 this invariant is true.
Again, if 𝑗2 is not being raised the invariant remains true. If 𝑗2 is being raised,
it must intersect a lower density job (its parent) to the left of 𝑟u�3. Since this
intersection point will move only to the left the result follows.

Lemma 5.26. The total number of events throughout the execution of the algorithm
is O(𝑛2𝑘).

Proof. To prove this we show that the number of events is O(𝑛2𝑘) for each
single type.

• Job completion event: Consider a job completion event. Since this is the
last event in every iteration, it will occur exactly 𝑛 times.

• Simple rate change event: This occurs during iteration 𝑖 when the last
interval of job 𝑖 changes from ending before some job's release to at this
release. Since we never lower job 𝑖's dual line, the rightmost endpoint
will only move to the right and therefore will hit each job's release point
at most once. So, the total number of simple rate change events is O(𝑛)
per iteration, and therefore O(𝑛2) in total.

• Affection change event: These events happen when an edge is either
added or removed in the tree. Note that the number of edge additions is
bounded by 2 times the number of edge removals, so it suffices to bound
the number of removals. By Lemma 5.25, for each (possibly temporarily)
removed edge at least one edge is removed permanently. Thus, the total
number of such events is O(𝑛2).

• Speed change event: These events occur when the right or left endpoint
of an interval for a job 𝑗 cross a speed threshold. Note that as long as
an interval is never removed, each endpoint can only cross each speed
threshold once, since by Observation 5.19 the endpoints of intervals only
move to the left and dual lines never decrease. If an interval is removed,
it remains to verify that it cannot reappear later with either endpoint at
a lower speed. An interval is removed when the right and left endpoint
become equal on the upper envelope at some point 𝑡 (by Lemma 5.22). At

100

5.7 The Running Time

this point there must be some job 𝑗′ of lower density which also intersects
at 𝑡. However, by Observation 5.19, the left endpoint of 𝑗′ (or another
job of lower density than 𝑗′ if 𝑗′'s interval disappears) will only move to
the left while this interval is not present. Therefore, even if the interval
does reappear, the left and right endpoints will not be at lower speeds.
Since each job has at most 𝑛 intervals and each such interval can cause at
most 2𝑘 speed change events, the total number of speed change events is
O(𝑛2𝑘).

Lemma 5.27. Calculating the next event takes O(𝑛2) time.

Proof. We start by noting that the total number of different intervals during
the execution of the algorithm is O(𝑛). This follows by the fact that a new
interval can only be introduced when a new job is released, or a job completes
its execution.

To calculate the next event, we calculate when the next event of each type
will happen. Then we simply choose the event of the type that will happen
sooner. Therefore for the rest we give bounds on the time required to calculate
the next event of each type (see also subroutines in Section 5.6.1).

• Affection change event: By the observation on the number of intervals,
O(𝑛) time suffices to calculate the next event of this type if it is a removal.
On the other hand, if the next event of this type is an addition, O(𝑛2)-time
is required.

• Speed change event: For any fixed interval the next speed change event
can be calculated in constant time. Therefore, by the observation on the
number of intervals, we have that the next such event over all jobs can
be computed in time O(𝑛),

• Simple rate change event: O(𝑛)-time is sufficient in order to identify
𝑞u�,u� and ̂𝑟u�u�,u�+1, and therefore also to calculate this type of event as well.

• Job completion event: We have to calculate 𝑦u�,u�, 𝑦ℓ,u� for each of the O(𝑛)
intervals, identify 𝑖′ and calculate 𝛿u�,u�′. Therefore, we can calculate the
next job completion event in time O(𝑛).

In total we can calculate the next event in O(𝑛2) time.

101

5 Trading Energy for Responsiveness

Lemma 5.28. Updating the affection tree takes O(𝑛) time.

Proof. A simple way to update the affection tree is by recomputing it from
scratch at each update. By Lemma 5.11, jobs in the tree always have a higher
density than their parents. By Observations 5.7 and 5.8, if a job 𝑗 is on the
upper envelope (or left upper envelope) at some time 𝑡 and has release time
before 𝑡, and 𝑗′ ≠ 𝑗 is the highest-density job on the upper envelope (left upper
envelope) at time 𝑡, then 𝑗 → 𝑗′, and for any other job 𝑗″ ≠ 𝑗′ of higher density
than 𝑗 on the upper envelope (left upper envelope), 𝑗 ↛ 𝑗″. Therefore, for
any job 𝑗, its children in the affection tree are those highest-density jobs that
intersect it on the left endpoint of any of its intervals that begin after 𝑗's release.
Thus, to compute the affection tree, we can iterate through each interval 𝐼 of
job 𝑖 that begins afters its release, add as 𝑖's children the highest dense jobs
that intersect it at 𝐼's left endpoint, and recursively do the same for 𝑖's children.
By the observation that there are at most 2𝑛 intervals, this takes at most O(𝑛)
time.

5.8 Conclusion & Outlook

In contrast to previous chapters, which studied speed scaling together with
deadline constraints, the present chapter considered a speed scaling problem
with a flow time (a.k.a. response time) objective. This is both one of the most
well studied scheduling objectives and one of the most important quality of
service measures. Intuitively, the response time plus energy objective allows for
a user-defined trade-off between energy and responsiveness: by adjusting the
energy unit in this linear combination, the user specifies how much energy she
is willing to spend on decreasing the response time by one time unit. Grasping
this problem's offline complexity is one of the fundamental open problems
for speed scaling. This chapter presented an efficient solution for a variant
that relaxed this problem in two ways: we considered fractional flow and the
case of discrete speed levels. The hope is that these relaxations might help to
solve the original problem for arbitrary work shops with respect to average
response time plus energy. To this end, it seems promising to elaborate on
how the presented results and insights might help to solve other relaxations of
the original problem.

102

5.8 Conclusion & Outlook

An obvious open problem is how to resolve the remaining issues in [Col+12]
to get an optimal polynomial-time algorithm for the continuous speed setting.
Apart from the direct approaches suggested in [Col+12], the results of this
chapter may shed some light on this issue. An interesting observation is that
[Col+12] gives a simple method to check for optimality, while a corresponding
algorithm for our discrete speed setting seems to be more complicated; in
particular, not much easier than computing an optimal schedule. At first glance,
this difficulty for discrete speeds comes from the fact that an optimal schedule's
representation is not necessarily unique (in contrast to the continuous case).

Another unsolved problem is how to extend this chapter's results for discrete
speeds to non-fractional response time. Even finding an algorithm that is
polynomial in the number of jobs and exponential in the number of speeds
would be of both theoretical and practical interest.

103

CHAPTER 6

Sharing Scalable Resources

“ The waste of plenty is the resource of scarcity. ”
Thomas Love Peacock

The last part of this thesis introduces a new processor scheduling problem,
which is only remotely connected to the speed scaling idea from pre-
vious chapters1. The proposed scheduling problem is motivated by the

observation that, sometimes, it is not a device's speed or energy consumption
that limits the progress of a given computation, but the fact that data cannot
be provided at the necessary rate. In extreme cases, this may lead to situations
where changing the available I/O rate (or bandwidth) by some factor 𝑥 may
directly affect the running time by (approximately) the same factor.

At first glance, this seems more a network issue than a problem of interest for
processor scheduling. After all, bandwidth bottlenecks are typically imposed
by the interconnection of devices (e.g., networks or data buses), and there is
a huge body of literature concerned with such issues on the network layer.
However, the analysis in this area typically concentrates on the network's per-
formance. In contrast, the model proposed in this chapter focuses on how the
distribution of the bandwidth shared by a fixed set of processing units might

1See the discussion in Section 6.2.1.

105

6 Sharing Scalable Resources

affect their computational performance. That is, given some information about
the bandwidth requirement of a program (e.g., when does it need how much
bandwidth to progress at full speed), the scheduler can speed up critical jobs
by a suitable assignment of the available bandwidth to the different processors.

A First Glimpse at the Model From a more abstract point of view, the afore-
mentioned bandwidth scheduling can be seen as a variant of resource con-
strained scheduling, the bandwidth being an example for the resource. Imagine
a system consisting of several identical processors that run at a fixed speed
and share a given resource. It is assumed that the resource is the system's
performance bottleneck, in the sense that the running time of programs (tasks)
depends directly (that is to say, linearly) on the share of the resource they are
allowed to use. Each task provides information about its resource require-
ments by stating what share of the resource it needs at different phases of its
processing to run at full speed. Thus, we can imagine a task 𝑖 to consist of a
number 𝑛u� of jobs that must be processed sequentially, one after another. Each
job represents a phase of the task's processing where the resource requirement
is constant. When provided a portion 𝑥 ∈ [0, 1] of its requested resource
share, a job's processing time (i.e., the length of the task's corresponding phase)
increases by a factor of 1/u�. We use the term ResourceScaling to refer to this
problem. A more formal description of this model is provided in Section 6.2.

We will see, partly in the discussion of related literature in Section 6.1, that
this type of resource assignment problem is comparatively complex. Most work
considering similar problems seems to be of heuristic nature and analytical
results are scarce (and, if surfaced, quite negative). Since we are interested in
more analytical insights, this chapter approaches the problem by concentrating
on the resource assignment, removing the (classical) scheduling aspect almost
completely. That is to say, we will consider a scenario where there is exactly
one task for each processor, and each task consists of jobs of unit workload (but
different resource requirements). Moreover, we assume discrete time steps
(think of processor cycles), such that the scheduler can change the resource
assignment only at the beginning of such a time step. As we will see, even this
simple setting proves to be challenging.

106

6.1 Related Work & Contribution

Chapter Basis The model, analysis, and results presented in the remainder
of this chapter are based on the following technical report. An extended version
of these results is currently in preparation for submission.

2014 (with F. Meyer auf der Heide, L. Nagel, S. Riechers and T. Süß).
“Sharing Scalable Resources”. In preparation, cf. [Kli+14].

Chapter Outline Section 6.1 surveys related work and describes our contri-
bution in view of known results in this area. A formal model description of the
ResourceScaling problem is provided in Section 6.2, which also introduces
a graphical representation used for the analysis in later chapters. Section 6.3
provides the reader with some preliminaries for the analysis and discusses a
first, simple result for a round robin algorithm. In Section 6.4, we show that
the ResourceScaling problem is NP-hard in the number of processors, even
in the case of unit size jobs. The main part of this chapter can be found in
Section 6.5, where we prove that so called balanced schedules yield a 2 − 1/u�

approximation for ResourceScaling with unit size jobs. We also propose a
natural greedy algorithm for computing balanced schedules and show that the
proven approximation ratio is tight for this algorithm. As usual, we conclude
the chapter with a short résumé and outlook in Section 6.6.

6.1 Related Work & Contribution

Compared to the speed scaling problems considered in previous chapters,
the proposed ResourceScaling problem has a quite different background.
In essence, it is a classical resource constrained scheduling problem. That
is, the scheduler not only has to manage the computational resources (e.g.,
the assignment of jobs to processors) but also the allocation of one or more
additional resources to the currently processed jobs. In our context (processor
scheduling), the most obvious examples for such resources are probably band-
width and memory. However, note that models similar to ours are also used
in project planning or for manufacturing systems.

The following discussion focuses on results for so called discrete-continuous
models, where the computational resource is discrete (e.g., a certain number
of processors) and the additional resources are continuous (e.g., bandwidth

107

6 Sharing Scalable Resources

can be allotted in a continuous manner between the available processors). For
a more general overview of resource constrained scheduling, the interested
reader is referred to [Leu04, Chapters 23 and 24] and [BEP07, Chapter 12].

Discrete-continuous Scheduling The notion of discrete-continuous schedul-
ing traces back to several papers by Józefowska and Węglarz, first and fore-
most [JW98]. While most results in this area study scenarios where the amount
of allocated resources influences the processing time or release dates of jobs
(see [JJL07] for a survey on this), Józefowska and Węglarz [JW98] consider the
case where the amount of allocated resources influences the processing speed
of jobs. More exactly, if the function 𝑅u� ≔ ℝ≥0 → [0, 1] models the share of
the resource that job 𝑗 gets assigned at some time 𝑡 ∈ ℝ≥0, its workload is
processed at a speed of 𝑓u�(𝑅u�(𝑡)). Here, 𝑓u� models how a job's processing speed
is affected by the received resource amount and is assumed to be continuous
and non-decreasing with 𝑓u�(0) = 0. Using this resource model, the authors
consider the problem of scheduling 𝑛 non-preemptable (independent) jobs on
𝑚 processors. They propose an analysis framework based on a mathematical
programming formulation and demonstrate it for the objective of minimizing
the schedule's makespan. For certain classes of 𝑓u� (e.g., convex functions) this
yields a simple analytical solution, but finding an optimal solution for more
realistic cases (especially concave functions) remains infeasible. The results
in [JW98] initiated several research efforts in this area, including a transfer of
the methodology to other scheduling variants (e.g., average flow time instead
of makespan [JW96]) as well as several heuristic approaches to obtain prac-
tical solutions in the general case [Józ+00; Józ+02; Kis05; Wal11]. A detailed
and current survey about these results can be found in [Węg+11] (especially
Section 7).

Our ResourceScaling problem shares several characteristics with discrete-
continuous scheduling problems. In particular, the jobs' resource requirements
can be modeled via functions 𝑓u� of the form 𝑓u�(𝑅) = min(u�/u�u�, 1), where the value
𝑟u� denotes the resource requirement of job 𝑗 (cf. Section 6.2). That is, the speed
used to process a job depends linearly on the share of the resource it receives,
but is capped at one. Our model contains several other important differences,
the most obvious being that the assignment of jobs to processors as well as the
order of jobs on a given processor is fixed. While this severely limits the possi-

108

6.2 Model & Notation

bilities of the scheduler (which can no longer try to simply distribute the jobs
more or less evenly among the available processors), it also allows us to focus
on the inherent problem complexity of assigning the continuous resource such
that the schedule's makespan is minimized. Note that most of the aforemen-
tioned results for the discrete-continuous setting are of heuristic nature and
do not provide any provable quality guarantees with respect to the resulting
schedules. The cases that can be analyzed analytically turn out to feature very
simple optimal solution structures [JW98; Józ+99] (as, for example, processing
only one job at a time). In contrast, solution structures in the ResourceScaling
problem turn out to be much more diverse and complex. Still, focusing solely
on how the resource assignment interacts with a schedule's structure allows
us to derive an algorithm with a provably good quality guaranty.

Contribution This chapter introduces a new resource constrained scheduling
model for multiple processors, where job processing speeds depend on the
assigned share of a common resource. We concentrate on a variant with
unit size jobs where the scheduler only has to manage the distribution of the
resource among all processors. The objective is to minimize the total makespan
(maximum completion time over all jobs). Even for this simple variant, we
can prove NP-hardness with respect to the number of processors. While we
cannot determine the exact complexity for a constant number of three or more
processors, we provide an approximation algorithm that achieves a worst-case
approximation ratio of exactly 2 − 1/u�. To the best of our knowledge, this is
the first strong analytical result for this type of problem. Our approach uses
a hypergraph representation that allows us to capture non-trivial structural
properties.

6.2 Model & Notation

We start by defining the model for the general version of the ResourceScaling
problem, which considers jobs of arbitrary sizes. Afterward, we discuss an
alternative interpretation of our model and its relation to speed scaling. Note
that, while the model description considers jobs of arbitrary sizes, the analysis
part of this chapter focuses on the case where all jobs have unit size.

109

6 Sharing Scalable Resources

6.2.1 Formal Model Description

Consider a system of 𝑚 identical fixed-speed processors sharing a common
resource. At any time step 𝑡 ∈ ℕ, the scheduler can distribute the resource
between the 𝑚 processors. To this end, each processor 𝑖 is assigned a share
𝑅u�(𝑡) ∈ [0, 1] of the resource, which it is allowed to use in time step 𝑡. It is
the responsibility of the scheduler to ensure that the resource is not overused.
That is, it must guarantee that ∑u�

u�=1 𝑅u�(𝑡) ≤ 1 holds for all 𝑡 ∈ ℕ. For each
processor 𝑖, there is a sequence of 𝑛u� ∈ ℕ jobs that must be processed by the
processor in the given order. We write (𝑖, 𝑗) to refer to the 𝑗-th job on processor
𝑖. Parallelism is not allowed, such that a processor can process at most one job
during any given time step. Each job (𝑖, 𝑗) has a processing volume (size) 𝑝u�u� > 0
and a resource requirement 𝑟u�u� ∈ [0, 1]. The resource requirement specifies what
portion of the resource is needed to process one unit of the job's processing
volume in one time step. In general, when a job is granted an 𝑥-portion of its
resource requirement (𝑥 ∈ [0, 1]), exactly 𝑥 units of its processing volume are
processed in that time step. There is no benefit in granting a job more than its
requested share of the resource. That is, a job's processing cannot be sped up
by granting it, for example, twice its resource requirement.

A feasible schedule for an instance of the ResourceScaling problem consists
of 𝑚 resource assignment functions 𝑅u� ∶ ℕ → [0, 1] that specify the resource's
distribution among the processors for all time steps without overusing the
resource. We measure a schedule's quality via its makespan (i.e., the time when
all jobs are finished). Our goal is to find a feasible schedule having minimal
makespan. To simplify notation, we will often identify a schedule 𝑆 with its
makespan (e.g., by writing u�/OPT to denote the makespan of schedule 𝑆 divided
by the makespan of an optimal schedule OPT).

Relation to Speed Scaling An alternative interpretation of our scheduling
problem can be obtained by the following observation: Consider a job (𝑖, 𝑗)
whose processing is started at time step 𝑡1. It receives a share 𝑅u�(𝑡1) ∈ [0, 1]
of the resource. By the previous model definition, exactly min(u�u�(u�1)/u�u�u�, 1)
units of its processing volume are processed. Similarly, in the next time step
min(u�u�(u�1 + 1)/u�u�u�, 1) units of its processing volume are processed. Consequently,
the job is finished at the minimal time step 𝑡2 ≥ 𝑡1 with ∑u�2

u�=u�1
min(u�u�(u�)/u�u�u�, 1) ≥

110

6.2 Model & Notation

𝑝u�u� or, equivalently if 𝑟u�u� > 0, at the minimal time step 𝑡2 ≥ 𝑡1 with

u�2

∑
u�=u�1

min(𝑅u�(𝑡), 𝑟u�u�) ≥ 𝑟u�u�𝑝u�u� ≕ ̃𝑝u�u�. (6.1)

This observation allows us to get rid of the resource aspect and instead think
of a job (𝑖, 𝑗) to have size ̃𝑝u�u� and of a processor 𝑖 to be speed-scalable with
𝑅u�(𝑡) denoting the speed it is set to during time step 𝑡. The scheduler is in
control of the processors' speeds, but it must ensure that the aggregated speed
of all processors does never exceed one. Moreover, in addition to the system's
maximum speed limit, each job (𝑖, 𝑗) is annotated with the maximum speed
𝑟u�u� it can utilize. In this light, our ResourceScaling problem becomes a speed
scaling problem to minimize the makespan. Instead of the typical energy
constraint, the scheduler is limited by both the system's maximum aggregated
speed and a per-job speed limit. Note that the unit size restriction for the
ResourceScaling problem translates into the restriction that job sizes ̃𝑝u�u� equal
the corresponding resource requirements 𝑟u�u�. In other words, all jobs must be
processable in one time step if run at maximum speed.

During the analysis, it will sometimes be more convenient to think of our
problem in the way described above. For example, since the total workload
∑u�

u�=1 ∑u�u�
u�=1 ̃𝑝u�u� is processed at a maximum speed of one in any time step, this

view on the problem immediately yields the following simple but useful ob-
servation:

Observation 6.1. Any feasible schedule needs at least ∑u�
u�=1 ∑u�u�

u�=1 𝑟u�u�𝑝u�u� time steps
to finish a given set of jobs with resource requirements 𝑟u�u� and sizes 𝑝u�u�.

Sometimes we will also use the notion remaining resource requirement to denote
the remaining work of a job's initial workload ̃𝑝u�u�.

Additional Notation & Notions The following additional notions and nota-
tion will turn out to be helpful in the analysis and discussion. For a processor
𝑖 with 𝑛u� jobs, we define 𝑛u�(𝑡) as the number of unfinished jobs at the start
of time step 𝑡. In particular, we have 𝑛u�(1) = 𝑛u�. A processor 𝑖 is said to be
active at time step 𝑡 if 𝑛u�(𝑡) > 0. Similarly, we say that job (𝑖, 𝑗) is active at time
step 𝑡 if 𝑛u� − 𝑛u�(𝑡) = 𝑗 − 1 (i.e., if processor 𝑖 has finished exactly 𝑗 − 1 jobs
at the start of time step 𝑡). We use 𝑀u� ≔ { 𝑖 ∣ 𝑛u� ≥ 𝑗 } to denote the set of all

111

6 Sharing Scalable Resources

2020 1010 9090 1010 1010

5050 5555 0505 9090 5555 1010

5050 0000 4040 9595

𝑒1 𝑒2 𝑒3
𝑒4 𝑒5

𝑒6 𝑒7

(a) Scheduling graph u�u� trying to greedily finish
as many jobs as possible.

𝐶1 𝐶2 𝐶3

𝐶4

2020 1010 9090 1010 1010

5050 5555 0505 9090 5555 1010

5050 0000 4040 9595

(b) The connected components of the scheduling
graph, ordered from left to right.

Figure 6.1: Hypergraph representation of a schedule for three processors. Resource
requirements are given as node labels (in percent). The nodes are laid out such
that each row corresponds to the job sequence of one processor (from left to right).
The edges correspond to the schedule that prioritizes jobs in order of increasing
remaining resource requirement (cf. “Relation to Speed Scaling” in Section 6.2).

processors having at least 𝑗 jobs to process. Finally, we define 𝑛 ≔ maxu� 𝑛u� as
the maximum number of jobs any processor has to process.

6.2.2 Graphical Representation

Given a problem instance of ResourceScaling with unit size jobs and a cor-
responding schedule 𝑆, we can define a weighted hypergraph 𝐻u� = (𝑉, 𝐸)
as follows: The nodes of 𝐻u� and their weights correspond to the jobs and
their resource requirements, respectively. That is, the node set is given by
𝑉 = { (𝑖, 𝑗) ∣ 𝑖 = 1, 2, … , 𝑚 ∧ 𝑗 = 1, 2, … , 𝑛u� }, and the weight of a node (𝑖, 𝑗) ∈ 𝑉
is 𝑟u�u�. The edges of 𝐻u� correspond to the schedule's time steps and contain
the currently active jobs. More formally, the edge 𝑒u� ⊆ 𝑉 for time step 𝑡 is
defined as 𝑒u� ≔ { (𝑖, 𝑗) ∣ 𝑛u�(𝑡) > 0 ∧ 𝑗 = 𝑛u� − 𝑛u�(𝑡) + 1 }. Thus, if we abuse 𝑆 to
also denote the makespan of schedule 𝑆, the edge set of 𝐻u� can be written as
𝐸 = { 𝑒1, 𝑒2, … , 𝑒u� }. We call 𝐻u� the scheduling graph of 𝑆. See Figure 6.1a for an
illustration.

Connected Components In Section 6.3.1 and during the analysis in Sec-
tion 6.5, we will see that the connected components formed by the edges of a
scheduling graph 𝐻u� carry a lot of structural information about the schedule.
To make use of this information, let us introduce some notation that allows
us to directly argue via such components. We start with an observation that
follows from the construction of 𝐻u�.

112

6.3 Preliminaries

Observation 6.2. Consider a connected component 𝐶 ⊆ 𝑉 of 𝐻u� and two time
steps 𝑡1 ≤ 𝑡2 with 𝑒u�1 ∪ 𝑒u�2 ⊆ 𝐶. Then, for all 𝑡 ∈ { 𝑡1, 𝑡1 + 1, … , 𝑡2 }, we have
𝑒u� ⊆ 𝐶.

Let 𝑁 denote the total number of connected components and let 𝐶u� denote
the 𝑘-th connected component (for 𝑘 ∈ { 1, 2, … , 𝑁 }). Moreover, we use #u� to
denote the number of edges of the 𝑘-th component. That is, we have #u� =
|{ 𝑒u� ∈ 𝐸 ∣ 𝑒u� ⊆ 𝐶u� }|. Observation 6.2 implies that a component 𝐶u� consists of
#u� consecutive time steps. This allows us to order the components such that,
for any two components 𝑘, 𝑘′ and edges 𝑒u� ⊆ 𝐶u�, 𝑒u�′ ⊆ 𝐶u�′ with 𝑡 ≤ 𝑡′, we
have 𝑘 ≤ 𝑘′. That is, we can think of the components being processed by the
processors from left to right. See Figure 6.1b for an illustration.

The maximal size of an edge in the 𝑘-th component, which equals the size of
its first edge, gives us a rough estimate for the amount of potential parallelism
available during the corresponding time steps. Note that while the size of edges
𝑒u� is monotonously decreasing in 𝑡, a schedule that tries to balance the number
of remaining jobs on each processor will decrease the edge size only near the
end of a component. We will make use of this fact in the proof of Lemma 6.14.
For now, let us honor its foreshadowed importance by the following definition:

Definition 6.3 (Component Class). Given a component 𝐶u�, we define its class
𝑞u� as the size of its first edge. That is, 𝑞u� ≔ |𝑒u�| with 𝑡 = min { 𝑡′ ∣ 𝑒u�′ ⊆ 𝐶u� }.

Besides being an upper bound on the size of a component's edges, the class 𝑞u�

is also decreasing in 𝑘. Moreover, Lemma 6.10 will show that a component's
class allows us to formulate an important relation between its size and the
total number of its edges.

6.3 Preliminaries

This section is intended to make the reader more comfortable with the intro-
duced terms and notions and to equip her with the tools needed for the analysis
in later sections. We start by discussing and proving some basic structural
properties. Afterward, we analyze a simple round robin algorithm.

113

6 Sharing Scalable Resources

6.3.1 Structural Properties

In the remainder of this section, we will use the introduced notions and nota-
tion to point out some structural properties of schedules for the ResourceScal-
ing problem with unit size jobs. We start by defining two basic properties any
reasonable schedule should have (and show in Lemma 6.6 that this is indeed
the case).

Definition 6.4 (Non-wasting Schedule). We call a schedule non-wasting if it
finishes all active jobs during any time step 𝑡 with ∑u�

u�=1 𝑅u�(𝑡) < 1.

Definition 6.5 (Progressive Schedule). We call a schedule progressive if at most
one job is only partially processed during any time step 𝑡. More formally, we
require that |{ 𝑖 ∣ 𝑛u�(𝑡) = 𝑛u�(𝑡 + 1) ∧ 𝑅u�(𝑡) > 0 }| ≤ 1 holds for all 𝑡 ∈ ℕ.

Lemma 6.6. Given an arbitrary schedule 𝑆, we can transform it into a non-wasting
and progressive schedule 𝑆′ with 𝑆′ ≤ 𝑆 (𝑆 and 𝑆′ denoting the corresponding
makespans). Moreover, the resulting schedule 𝑆′ finishes at least one job per time
step.

Proof. Making a given schedule non-wasting is trivial, as given a time step 𝑡
with ∑u�

u�=1 𝑅u�(𝑡) < 1 and an active job (𝑖′, 𝑗′), we can increase 𝑅u�′(𝑡) until either
the job is finished or ∑u�

u�=1 𝑅u�(𝑡) = 1. In both cases, the schedule's makespan
does not increase.

Given a non-wasting schedule 𝑆 that is not progressive, consider two jobs
(𝑖1, 𝑗1) and (𝑖2, 𝑗2) on different processors at a time step 𝑡 such that 𝑛u�1(𝑡) =
𝑛u�1(𝑡 + 1), 𝑛u�2(𝑡) = 𝑛u�2(𝑡 + 1), and 𝑅u�1(𝑡), 𝑅u�2(𝑡) > 0. We will define the new
schedule 𝑆′ by providing two new resource assignment functions 𝑅′

u�1 and 𝑅′
u�2

that swap some of the resources assigned to jobs (𝑖1, 𝑗1) and (𝑖2, 𝑗2). To this
end, let 𝑡1, 𝑡2 > 𝑡 be the time steps in which (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are finished,
respectively. Without loss of generality, assume 𝑡1 ≤ 𝑡2. Let 𝑅 ≔ ∑u�1

u�′=u�+1 𝑅u�1(𝑡′)
denote the total resource assignment that job (𝑖1, 𝑗1) receives after time step
𝑡. If 𝑅 ≤ 𝑅u�2(𝑡), we define 𝑅′

u�1(𝑡) ≔ 𝑅u�1(𝑡) + 𝑅 and 𝑅′
u�2(𝑡) ≔ 𝑅u�2(𝑡) − 𝑅. This

will finish job (𝑖1, 𝑗1) at time step 𝑡, so that the resources formerly assigned to
(𝑖1, 𝑗1) after time step 𝑡 can be freed. The inequality 𝑡1 ≤ 𝑡2 implies that job
(𝑖2, 𝑗2) is active during the time steps 𝑡 + 1 to 𝑡1. Thus, we can set 𝑅′

u�1(𝑡′) ≔ 0
and 𝑅′

u�2(𝑡′) ≔ 𝑅′
u�2(𝑡′)+𝑅′

u�1(𝑡′) for all 𝑡′ ∈ { 𝑡 + 1, 𝑡 + 2, … , 𝑡1 }. For all remaining

114

6.3 Preliminaries

time steps 𝑡′, we set 𝑅′
u�1(𝑡) ≔ 𝑅u�1(𝑡) and 𝑅′

u�2(𝑡) ≔ 𝑅u�2(𝑡). These changes result
in a feasible schedule, do not increase the schedule's makespan, and do not
waste any resources. Thus, by iterating this procedure we get a non-wasting
and progressive schedule.

Lemma 6.6 allows us to narrow our study to the subclass of non-wasting and
progressive schedules, and from now on we will assume any schedule to have
these properties (if not stated otherwise).

Intuitively, good schedules should try to balance the number of remaining
jobs on each processor. This may provide the scheduler with more choices
to prevent the underutilization of the resource later on (e.g., when only one
processor with many jobs of low resource requirements remains). The better
part of Section 6.5 serves the purpose of confirming this intuition. In the
following, we formalize this balance property and, subsequently, work out
further formal and concise properties of balanced schedules.

Definition 6.7 (Balanced Schedule). We call a schedule balanced if, whenever a
processor 𝑖 finishes a job at some time step 𝑡, any processor 𝑖′ with 𝑛u�′(𝑡) > 𝑛u�(𝑡)
does also finish a job.

Proposition 6.8. Any balanced schedule features the following properties:

(a) For all 𝑖1, 𝑖2 with 𝑛u�1 ≥ 𝑛u�2 and for all 𝑡 ∈ ℕ, we have 𝑛u�1(𝑡) ≥ 𝑛u�2(𝑡) − 1.

(b) For all 𝑖1, 𝑖2 with 𝑛u�1 > 𝑛u�2 and for all 𝑡 ∈ ℕ, we have 𝑛u�1(𝑡) ≤ 𝑛u�2(𝑡) + 𝑛u�1 −
𝑛u�2.

Proof. Both statements follow easily from the definition of balanced schedules.
To see this, first note that both properties hold for 𝑡 = 1, since 𝑛u�(1) = 𝑛u� for
all processors 𝑖. Moreover, at any time step 𝑡, the number 𝑛u�(𝑡) of remaining
jobs cannot increase, and does decrease by at most one during the current time
step. Thus, it is sufficient to show that if one of the statements holds at some
time step 𝑡 with equality, it still holds at time step 𝑡 + 1. For statement (a),
𝑛u�1(𝑡) = 𝑛u�2(𝑡)−1 and the balance property imply that if 𝑖1 finishes its job, then
so must 𝑖2. Thus, we have 𝑛u�1(𝑡 + 1) ≥ 𝑛u�2(𝑡 + 1) − 1. The very same argument
works for statement (b).

115

6 Sharing Scalable Resources

Proposition 6.9. Consider a balanced schedule and the set 𝑀u� of processors having
at least 𝑗 jobs. Let (𝑖, 𝑗) be a job that is active at time step 𝑡 and assume 𝑛u�(𝑡) > 1 (i.e.,
it is not the last job on processor 𝑖). Then all processors 𝑖′ ∈ 𝑀u� are active at time
step 𝑡.

Proof. Let 𝑖′ ∈ 𝑀u� be a processor with at least 𝑗 jobs and consider the case
𝑛u�′ ≥ 𝑛u�. By Proposition 6.8(a), we have 𝑛u�′(𝑡) ≥ 𝑛u�(𝑡) − 1 > 0, so processor 𝑖 is
active at time 𝑡. If 𝑛u�′ < 𝑛u�, we can apply Proposition 6.8(b) and get

𝑛u�′(𝑡) ≥ 𝑛u�′ − (𝑛u� − 𝑛u�(𝑡)) = 𝑛u�′ − (𝑗 − 1) ≥ 1. (6.2)

The equality uses the fact that job (𝑖, 𝑗) is active at time step 𝑡, implying that the
number 𝑛u� − 𝑛u�(𝑡) of jobs finished by processor 𝑖 before time step 𝑡 is exactly
𝑗 − 1. The last inequality comes from 𝑖′ ∈ 𝑀u�.

The final structural property of balanced schedules addresses, as indicated
earlier, how a component's class allows us to relate its size (number of nodes)
to the total number of its edges.

Lemma 6.10. Consider a non-wasting, progressive, and balanced schedule. The
number of nodes and edges in a component are related via the following properties:

(a) The inequality |𝐶u�| ≥ #u� + 𝑞u� − 1 holds for all 𝑘 ∈ { 1, 2, … , 𝑁 − 1 }.

(b) The last component satisfies |𝐶u� | ≥ #u�.

Proof. The second statement follows immediately from Lemma 6.6, which
states that in each time step (i.e., for each edge) at least one job is finished.

For the first statement, fix a 𝑘 ∈ { 1, 2, … , 𝑁 − 1 } and consider the first edge
𝑒u� of the component 𝐶u�. By definition, this edge consists of 𝑞u� different nodes.
We now show that each of the remaining #u� − 1 edges adds at least one new
node to the component. So fix an edge 𝑒u�′ ⊆ 𝐶u� with 𝑡′ > 𝑡 and consider the
time step 𝑡′ − 1. Since we know that at least one job is finished in every time
step (Lemma 6.6) and that 𝑆 is balanced, at least one of the processors having
the maximal number of remaining jobs finishes its current job. More formally,
there is some processor 𝑖′ = arg maxu� 𝑛u�(𝑡′ − 1) that finishes its currently active
job at time step 𝑡′ − 1. Because of 𝑘 ≠ 𝑁, we also know that 𝑛u�′(𝑡′ − 1) > 1,
such that there is a new active job for processor 𝑖′ at time step 𝑡′. This yields
the lemma's first statement.

116

6.3 Preliminaries

6.3.2 Warm-up: Approximating via Round Robin

Consider the following simple round robin algorithm for the ResourceScaling
problem with unit size jobs: Given a problem instance where the maximal
number of jobs on a processor is 𝑛, the algorithm operates in 𝑛 phases. During
phase 𝑗, it processes the 𝑗-th job on each processor, assigning the resource in an
arbitrary way to any processors that have not yet finished their 𝑗-th job. Note
that this algorithm may waste resources (although only between two phases)
and is possibly non-progressive. Still, the following theorem shows that it
results in schedules that are not too bad.

Theorem 6.11. The round robin algorithm for the ResourceScaling problem with
unit job sizes has a worst-case approximation ratio of exactly 2.

Proof. We start with the upper bound on the approximation ratio. The round
robin algorithm needs exactly ⌈∑u�∈u�u�

𝑟u�u�⌉ time steps to finish the 𝑗-th phase
(cf. “Relation to Speed Scaling” in Section 6.2). Thus, the makespan of a round
robin schedule can be bounded by

u�
∑
u�=1

⎡⎢⎢⎢
∑

u�∈u�u�

𝑟u�u�
⎤⎥⎥⎥

≤ 𝑛 +
u�

∑
u�=1

∑
u�∈u�u�

𝑟u�u�. (6.3)

Since any processor can finish at most one job per time step, even an optimal
schedule has a makespan of at least 𝑛. Observation 6.1 yields another lower
bound on the optimal makespan, namely ∑u�

u�=1 ∑u�∈u�u�
𝑟u�u�. Together, we get that

round robin computes a 2-approximation.
For the lower bound on the approximation ratio, consider the following

ResourceScaling problem instance with unit size jobs on two processors: Let
𝜀 > 0 and define the resource requirements for the first processor as 𝑟1u� ≔ 𝑗 ⋅ 𝜀
for 𝑗 ∈ { 1, 2, … , 1/u� }. For the second processor, we define 𝑟2u� ≔ (1 + 𝜀) − 𝑟1u�.
Note that each processor has to process 𝑛 = 1/u� jobs. Figure 6.2 illustrates
the instance as well as the resulting optimal and round robin schedules for
𝜀 = 0.01. An optimal schedule, shown in Figure 6.2a, will waste no resource at
all. In contrast, the round robin schedule, as indicated in Figure 6.2b, wastes a
share of 1 − 𝜀 of the resource in every second time step. As a result, it needs 2𝑛
time steps, while the optimal schedule can finish the same workload in 𝑛 + 1
time steps. Thus, for 𝜀 → 0 we get a 2-approximation.

117

6 Sharing Scalable Resources

0101 0202 0303 …… 9999 100100

100100 9999 9898 …… 0202 0101

(a) Optimal schedule, wastes no resources and
needs exactly u� + 1 time steps.

Phase 1 Phase 2 Phase 3 … Phase 99 Phase 100

0101 0202 0303 …… 9999 100100

100100 9999 9898 …… 0202 0101

(b) Round robin, two time steps per phase and wastes
99% of the resource at the end of each phase.

Figure 6.2: Worst-case example for round robin schedule.

6.4 Problem Complexity

One of our first major results is the following theorem, showing that the
ResourceScaling problem is (even in the case of unit size jobs) NP-hard in the
number of processors.

Theorem 6.12. The ResourceScaling problem with unit size jobs is 𝑁𝑃-hard in
the number of processors.

Proof. In the following, we prove the NP-hardness of the ResourceScaling
problem with unit size jobs via a reduction from the Partition problem. Our
reduction transforms a Partition instance of𝑛 elements into a ResourceScaling
instance on 𝑛 processors, each having three jobs to process.

Let 𝑎1, 𝑎2, … , 𝑎u� ∈ ℕ and 𝑆 ∈ ℕ with ∑u�
u�=1 𝑎u� = 2𝑆 be the input of the

Partition instance (w.l.o.g., 𝑆 ≥ 2). For our transformation, let 𝜀 ∈ (0, 1/u�) and
set 𝛿 ≔ 𝑛𝜀 < 1. We define the first and last job on any processor 𝑖 to have
resource requirements 𝑟u�1 = 𝑟u�3 = ̃𝑎u� ≔ u�u�

u�+u� . The second job on any processor
𝑖 has a resource requirement of 𝑟u�2 = ̃𝜀 ≔ u�

u�+u� . Note that the total resource
requirement of all jobs is

u�
∑
u�=1

𝑎u� + 𝜀 + 𝑎u�
𝑆 + 𝛿

=
4𝑆 + 𝛿
𝑆 + 𝛿

> 3. (6.4)

The last inequality follows from 𝜀 < 1/u� ≤ u�/2u� and the definition of 𝛿. By
applying Observation 6.1, Equation (6.4) yields that any schedule needs at
least four time steps to finish all jobs. To finish our reduction, we show that
there is an optimal schedule with makespan 4 if and only if the given Partition
instance is a YES-instance (i.e., if it can be partitioned into two sets that sum
up to exactly 𝑆).

Let us first assume we have a YES-instance of Partition. Assume, without

118

6.4 Problem Complexity

̃𝑎1̃𝑎1 ̃𝜀 ̃𝜀 ̃𝑎1̃𝑎1

⋮⋮ ⋮⋮ ⋮⋮
̃𝑎ũ�𝑎u� ̃𝜀 ̃𝜀 ̃𝑎ũ�𝑎u�

̃𝑎u�+1̃𝑎u�+1 ̃𝜀 ̃𝜀 ̃𝑎u�+1̃𝑎u�+1

⋮⋮ ⋮⋮ ⋮⋮
̃𝑎ũ�𝑎u� ̃𝜀 ̃𝜀 ̃𝑎ũ�𝑎u�

(a) Optimal schedule for a YES-instance.

̃𝑎1̃𝑎1 ̃𝜀 ̃𝜀 ̃𝑎1̃𝑎1

⋮⋮ ⋮⋮ ⋮⋮
̃𝑎ũ�𝑎u� ̃𝜀 ̃𝜀 ̃𝑎ũ�𝑎u�

̃𝑎u�+1̃𝑎u�+1 ̃𝜀 ̃𝜀 ̃𝑎u�+1̃𝑎u�+1

⋮⋮ ⋮⋮ ⋮⋮
̃𝑎ũ�𝑎u� ̃𝜀 ̃𝜀 ̃𝑎ũ�𝑎u�

(b) Optimal schedule for a NO-instance.

Figure 6.3: Problem instance and schedules used for the reduction from Partition to
ResourceScaling with unit size jobs.

loss of generality, that the first 𝑘 elements form the first partition. One can
easily check that the schedule of makespan 4 shown in Figure 6.3a is feasible.

Now assume that we are given a NO-instance of Partition and an optimal
schedule for the corresponding instance of ResourceScaling. Without loss
of generality, exactly the first 𝑘 processors finish their jobs in the first time
step. This implies ∑u�

u�=1 ̃𝑎u� ≤ 1, which yields the inequality ∑u�
u�=1 𝑎u� ≤ 𝑆 + 𝛿 <

𝑆 + 1. Since the given Partition instance is a NO-instance, we also have
∑u�

u�=1 𝑎u� ≠ 𝑆. Together this implies ∑u�
u�=1 𝑎u� ≤ 𝑆 − 1, which, in turn, yields

∑u�
u�=u�+1 𝑎u� ≥ 𝑆 + 1. After the first time step, we have not yet finished the jobs

(𝑘 + 1, 1), (𝑘 + 2, 1), … , (𝑛, 1). Thus, we need at least two more time steps until
we can start working on the jobs (𝑘+1, 3), (𝑘+2, 3), … , (𝑛, 3). The total resource
requirement of these jobs is at least

u�
∑

u�=u�+1
̃𝑎u� =

∑u�
u�=u�+1 𝑎u�

𝑆 + 𝛿
≥

𝑆 + 1
𝑆 + 𝛿

> 1. (6.5)

Thus, after the first three time steps, we need at least two more time steps to
finish the remaining jobs, yielding a makespan of at least five.

119

6 Sharing Scalable Resources

6.5 Analysis of Balanced Schedules

This section builds up to our second major result, an approximation algorithm
with a tight approximation ratio of 2 − 1/u�. We start by providing two lower
bounds for optimal schedules in terms of a given non-wasting or balanced
schedule. Afterward, we will use these bounds in the proof of our main result
in Theorem 6.15.

6.5.1 Lower Bounds for Optimal Schedules

The following lemma derives a lower bound for OPT by exploiting the fact
that within a component any non-wasting schedule always makes full use of
the resource; the only situation when the resource may not be fully utilized is
during the last time step (edge) of a component.

Lemma 6.13. Let OPT denote the minimal makespan of a given problem instance
and consider the scheduling graph 𝐻u� of a non-wasting schedule 𝑆. Then OPT can
be bounded by

OPT ≥
u�

∑
u�=1

(#u� − 1). (6.6)

Proof. From Observation 6.1, we immediately get that OPT ≥ ∑u�
u�=1 ∑u�u�

u�=1 𝑟u�u�.
Consider a connected component 𝐶u� of our schedule containing the edges
𝑡1, 𝑡1+1, … , 𝑡2. Since 𝑆 is non-wasting, we must have ∑u�

u�=1 𝑅u�(𝑡) = 1 for all time
steps 𝑡 ∈ { 𝑡1, 𝑡1 + 1, … , 𝑡2 − 1 }. If there were such a 𝑡 with ∑u�

u�=1 𝑅u�(𝑡) < 1, the
non-wasting property would imply that all active jobs are finished. But then the
edge 𝑒u�+1 would not be part of 𝐶u�, yielding a contradiction. For the last time step
𝑡2 of 𝐶u� we have ∑u�

u�=1 𝑅u�(𝑡2) ≥ 0. Moreover, 𝑆 is feasible and, without loss of
generality, does not use more of the resource than necessary. Thus, if 𝑇 denotes
the total length of schedule 𝑆, we must have ∑u�

u�=1 ∑u�
u�=1 𝑅u�(𝑡) = ∑u�

u�=1 ∑u�u�
u�=1 𝑟u�u�.

If we use 𝑒(u�) to denote the last edge of component 𝐶u�, we can bound OPT as
follows:

OPT ≥
u�

∑
u�=1

u�u�

∑
u�=1

𝑟u�u� =
u�

∑
u�=1

u�
∑
u�=1

𝑅u�(𝑡) =
u�

∑
u�=1

∑
u�u�⊆u�u�

∑
(u�,u�)∈u�u�

𝑅u�(𝑡)

≥
u�

∑
u�=1

∑
u�u�⊆u�u�
u�u�≠u�(u�)

1 =
u�

∑
u�=1

(#u� − 1).

120

6.5 Analysis of Balanced Schedules

The second lower bound on an optimal schedule's makespan centers around
utilizing parallelism. It is obvious that no schedule can have a makespan lower
than 𝑛, the maximal number of jobs on any one processor. Stated differently,
assuming a problem instance where each processor has exactly 𝑛 jobs, the
maximum parallelism that any schedule can exploit in each time step is 𝑚. On
the other hand, given a schedule with components 𝐶u� of class 𝑞u�, the maximum
parallelism that can be exploited while working on component 𝐶u� is 𝑞u�. In a
sense, the following lemma shows that in the case of balanced schedules this
is actually not too bad.

Lemma 6.14. Let OPT denote the minimal makespan of a given problem instance and
remember that 𝑛 denotes the maximum number of jobs any processor has to process.
Given a balanced schedule 𝑆 and its scheduling graph, OPT and 𝑛 can be bounded by
the inequalities

OPT ≥ 𝑛 ≥
u�−1
∑
u�=1

|𝐶u�|
𝑞u�

+
|𝐶u� |
𝑚

. (6.7)

Proof. Remember that 𝑀u� is the set of processors having at least 𝑗 jobs to process.
Since any schedule can process at most one job per processor in every time
step, even an optimal schedule needs at least 𝑛 time steps to finish all jobs. We
can write 𝑛 as ∑(u�,u�)∈u�

1/|u�u�|, yielding

OPT ≥ 𝑛 = ∑
(u�,u�)∈u�

1
|𝑀u�|

=
u�

∑
u�=1

∑
(u�,u�)∈u�u�

1
|𝑀u�|

≥
u�−1
∑
u�=1

∑
(u�,u�)∈u�u�

1
|𝑀u�|

+ ∑
(u�,u�)∈u�u�

1
𝑚

=
u�−1
∑
u�=1

∑
(u�,u�)∈u�u�

1
|𝑀u�|

+
|𝐶u� |
𝑚

.
(6.8)

It remains to show that, for all but the last component, we have

∑
(u�,u�)∈u�u�

1
|𝑀u�|

≥
|𝐶u�|
𝑞u�

. (6.9)

So fix 𝑘 ∈ { 1, 2, … 𝑁 − 1 } and let (𝑖0, 𝑗0) ∈ 𝐶u� be a job of the 𝑘-th component
with minimal 𝑗0. Furthermore, let 𝑡0 be the first time step when (𝑖0, 𝑗0) is active.
The minimality of 𝑗0 implies that 𝑒u�0 is the first edge of 𝐶u� and, thus, 𝑞u� = |𝑒u�0 |.
We distinguish the following cases:

121

6 Sharing Scalable Resources

Case 1: 𝑛u�0(𝑡0) > 1
By applying Proposition 6.9, we get that all processors 𝑖 ∈ 𝑀u�0 are
active at time step 𝑡0. This yields |𝑀u�0 | ≤ |𝑒u�0 | = 𝑞u�. Moreover, for a
job (𝑖, 𝑗) ∈ 𝐶u�, the minimality of 𝑗0 gives us |𝑀u�0 | ≥ |𝑀u�|. Combining
both inequalities implies |𝑀u�| ≤ 𝑞u�. Applying this to the first part of
Equation (6.9) eventually yields the desired inequality.

Case 2: 𝑛u�0(𝑡0) = 1
In this case, (𝑖0, 𝑗0) is the last job on processor 𝑖0 at time step 𝑡0. However,
for any job (𝑖, 𝑗) ∈ 𝐶u� ⧵ 𝑒u�0 we have 𝑛u�(𝑡0) > 1. Given such a job, let (𝑖, 𝑗′)
be the job processed on 𝑖 at time step 𝑡0. Note that we have 𝑗′ < 𝑗 and,
thus, 𝑀u� ⊆ 𝑀u�′. By applying Proposition 6.9, we get that all 𝑖′ ∈ 𝑀u�′

are active at time step 𝑡0. Together with 𝑀u� ⊆ 𝑀u�′, this yields |𝑀u�| ≤ 𝑞u�.
Thus, to prove Equation (6.9), it only remains to show ∑(u�,u�)∈u�u�0

1/|u�u�| ≥
∑(u�,u�)∈u�u�0

1/u�u�(= 1).

To this end, note that, since 𝐶u� is not the last component, there exists at
least one job (𝑖1, 𝑗1) ∈ 𝑒u�0 with 𝑛u�1(𝑡0) > 1. Let this job be such that 𝑗1 is
minimal. Once more, by applying Proposition 6.9 we get that all 𝑖 ∈ 𝑀u�1
are active at time step 𝑡0. Consider a job (𝑖, 𝑗) ∈ 𝑒u�0 with 𝑖 ∈ 𝑀u�1. If it
is the last job on 𝑖 (i.e., if 𝑛u�(𝑡0) = 1), we have 𝑗 = 𝑛u�. Together with the
definition of 𝑀u�1 we get 𝑗 = 𝑛u� ≥ 𝑗1, yielding |𝑀u�| ≤ |𝑀u�1 |. Similarly, if it
is not the last job on 𝑖 (i.e., if 𝑛u�(𝑡0) > 1), the minimality of 𝑗1 gives us
|𝑀u�| ≤ |𝑀u�1 |. This yields the desired inequality as follows:

∑
(u�,u�)∈u�u�0

1
|𝑀u�|

≥ ∑
(u�,u�)∈u�u�0
u�∈u�u�1

1
|𝑀u�|

≥ ∑
(u�,u�)∈u�u�0
u�∈u�u�1

1
|𝑀u�1 |

= 1.

6.5.2 Deriving a (𝟐 − 𝟏/𝒎)-Approximation

Finally, we have all the ingredients to prove our main result: an approximation
ratio of at most 2 − 1/u� for any balanced schedule.

Theorem 6.15. Consider an arbitrary ResourceScaling instance with unit size
jobs and a feasible schedule 𝑆 for it that is non-wasting, progressive, and balanced.
Then 𝑆 is a 2 − 1/u�-approximation with respect to the optimal makespan.

122

6.5 Analysis of Balanced Schedules

Proof. In the following, let #∅ ≔ ∑u�
u�=1 #u�/u� denote the average number of edges

in a component. Our proof uses two bounds on the approximation ratio. The
first one follows easily from Lemma 6.13 and leads to a better approximation
for instances with small #∅. The second bound is much more involved and
mainly based on Lemma 6.14. It yields a better approximation for instances
with large #∅. To get the first bound, we simply apply Lemma 6.13 and get

𝑆
OPT

≤
∑u�

u�=1 #u�

∑u�
u�=1(#u� − 1)

=
#∅

#∅ − 1
. (6.10)

Let us now consider the second bound, based on Lemma 6.14. Our goal is
to show that the inequality

𝑆
OPT

≤
𝑚 ⋅ #∅

#∅ + 𝑚 − 1
(6.11)

holds. Once this is proven, we can combine both bounds by realizing that the
bound from Equation (6.10) is monotonously decreasing in #∅ and the bound
from Equation (6.11) is monotonously increasing in #∅. Equalizing yields that
their minimum's maximum is obtained at #∅ = 2u�−1

u�−1 , which results in an
approximation ratio of 2 − 1/u�.

The rest of this proof is geared towards proving Equation (6.11). We dis-
tinguish two cases. The first case covers the easier part, where we have
OPT ≥ 𝑛 + 1. That is, even an optimal solution cannot finish the jobs in
𝑛 time steps. The second case, where we have OPT = 𝑛, turns out to be more
difficult to prove. While we can apply a similar analysis, we have to take more
care when bounding our algorithm's progress in the first two time steps. Let
us start with the analysis of the easier case.

Case 1: OPT ≥ 𝑛 + 1
Applying Lemma 6.14 to this case yields

𝑆
OPT

≤
∑u�

u�=1 #u�

∑u�−1
u�=1

|u�u�|
u�u�

+ |u�u� |
u� + 1

≤
𝑁 ⋅ #∅

∑u�−1
u�=1

#u�+u�u�−1
u�u�

+ #u�+u�−1
u�

≤
𝑁 ⋅ #∅

∑u�
u�=1

#u�+u�−1
u�

≤
𝑚 ⋅ #∅

#∅ + 𝑚 − 1
.

(6.12)

123

6 Sharing Scalable Resources

Case 2: OPT = 𝑛
If we apply the same analysis as in the first case, we will fall short of our
desired approximation ratio. Surprisingly, it turns out to be sufficient
to bound only the first two time steps more carefully. The idea of the
following analysis is to consider the first two time steps of 𝑆 and the
remaining part of 𝑆 separately. To this end, first note that we can assume,
without loss of generality, that #1 > 1 (that is, the first two time steps
are part of the same component). If this is not the case, our algorithm
finishes all active jobs in the first time step and, thus, behaves optimally2.
Consider the remaining jobs/workloads after the first two time steps.
We can regard this as a subinstance of our original problem instance. Let
𝑆′ denote the subschedule that results from restricting 𝑆 to time steps
𝑡 ≥ 3. We use 𝑁′, #′

u�, 𝑞′
u�, and 𝑛′ to refer to the corresponding properties of

its scheduling graph 𝐻u�′. Note that we have 𝑁′ ≥ 𝑁 − 1 (because of our
assumption #1 > 1) as well as 𝑁′ ⋅ #′

∅ = 𝑁 ⋅ #∅ − 2 (since exactly two time
steps are missing in the subschedule). Moreover, we also have 𝑛′ = 𝑛 − 2.
The inequality 𝑛′ ≥ 𝑛 − 2 is obvious. For 𝑛′ ≤ 𝑛 − 2, note that OPT
must finish the jobs in the set { (𝑖, 1) ∣ 𝑛u�(1) ≥ 𝑛 − 1 }∪{ (𝑖, 2) ∣ 𝑛u�(1) ≥ 𝑛 }
during the first two time steps. Thus, the total resource requirement of
these jobs is at most two. Since 𝑆 is balanced, it will prioritize and, thus,
finish these jobs in the first two time steps. This yields 𝑛′ ≤ 𝑛 − 2.

Finally, we can bound our approximation ratio as follows (the first in-
equality applies Lemma 6.14 to 𝑆′):

𝑆
OPT

=
𝑁 ⋅ #∅
2 + 𝑛′ ≤

𝑁 ⋅ #∅

2 + ∑u�′−1
u�=1

|u�′
u�|

u�′
u�

+
|u�′

u�′ |
u�

≤
𝑁 ⋅ #∅

1 + 1
u� + ∑u�′−1

u�=1
#′

u�+u�′
u�−1

u�′
u�

+
#′

u�′

u� + u�−1
u�

≤
𝑁 ⋅ #∅

1 + 1
u� + ∑u�′

u�=1
#′

u�+u�−1
u�

=
𝑁 ⋅ 𝑚 ⋅ #∅

𝑚 + 1 + 𝑁′ ⋅ #′
∅ + 𝑁′(𝑚 − 1)

2Formally, this reduces our analysis to a smaller problem instance.

124

6.5 Analysis of Balanced Schedules

≤
𝑁 ⋅ 𝑚 ⋅ #∅

2 + (𝑁 ⋅ #∅ − 2) + 𝑁(𝑚 − 1)
=

𝑚 ⋅ #∅
#∅ + 𝑚 − 1

.

This proves that Equation 6.11 also holds in this case.

6.5.3 Tight Approximation via a Greedy Algorithm

So far, we analyzed the quality of balanced schedules in general but did not yet
provide a concrete example of a corresponding algorithm. One of the most nat-
ural greedy algorithms schedules jobs by prioritizing processors with a higher
number of remaining jobs and, in the case of a tie, by prioritizing jobs with
larger remaining resource requirements. We denote this algorithm by the name
GreedyBalance. In Section 6.5.2, we saw that balanced schedules and, as a con-
sequence, the greedy algorithm GreedyBalance yield a2 − 1/u�-approximation
for the ResourceScaling problem. In the following, we show that the proven
approximation ratio is tight for GreedyBalance.

Theorem 6.16. The GreedyBalance algorithm for the ResourceScaling problem
with jobs of unit size has a worst-case approximation ratio of exactly 2 − 1/u�.

Proof. Since GreedyBalance computes only balanced schedules, the upper
bound follows immediately from Theorem 6.15. For the lower bound, consider
a family of problem instances defined as follows: We define blocks of 𝑚 ×
𝑚 jobs with resource requirements as described below. For the first block,
let 𝑟u�1 ≔ 1 − 𝑖 ⋅ 𝜀 for 𝑖 ∈ { 1, 2, … , 𝑚 }, 𝑟12 ≔ 1 − ∑u�

u�=1(1 − 𝑟u�1) + 𝜀, and
𝑟u�2 ≔ 𝜀 for 𝑖 ∈ { 2, 3, … , 𝑚 }. Moreover, define 𝑟u�u� ≔ 𝜀 for all 𝑖 ∈ { 1, 2, … , 𝑚 }
and 𝑗 ∈ { 3, 4, … , 𝑚 }. This finishes the first 𝑚 × 𝑚-block of jobs. Having
constructed the 𝑙-th block, we construct the next block, starting with its first
column 𝑗 ≔ 𝑙 ⋅ 𝑚 + 1. We define 𝑟u�u� ≔ 1 − (𝑚 − 1)𝜀 for 𝑖 ∈ { 1, 2, … , 𝑚 − 1 }
and 𝑟u�u� ≔ 1 − ∑u�−1

u�′=1 𝑟u�−u�′,u�−u�′. For the second column of this block we set
𝑟1,u�+1 ≔ 1 − ∑u�

u�=1(1 − 𝑟u�u�) + 𝜀, and 𝑟u�,u�+1 ≔ 𝜀 for 𝑖 ∈ { 2, 3, … , 𝑚 }. To finish the
block, we set 𝑟u�u�′ ≔ 𝜀 for all 𝑖 ∈ { 1, 2, … , 𝑚 } and 𝑗′ ∈ { 𝑗 + 2, 𝑗 + 3, … , 𝑗 + 𝑚 − 1 }.
We finish the construction once the next block would contain jobs with negative
resource requirements. Note that by choosing 𝜀 small enough, we can make
this construction arbitrarily long. See Figure 6.4 for an illustration of this
construction and the schedules produced by GreedyBalance and an optimal
algorithm. Our construction is such that GreedyBalance needs exactly 2𝑚 − 1

125

6 Sharing Scalable Resources

Block 1 Block 2 Block 3 …

9999 77 11 9898 1313 11 9898 1919 11 9898 ……

9898 11 11 9898 11 11 9898 11 11 9898 ……

9797 11 11 9292 11 11 8686 11 11 8080 ……

(a) An optimal schedule.

Block 1 Block 2 Block 3 …

9999 77 11 9898 1313 11 9898 1919 11 9898 ……

9898 11 11 9898 11 11 9898 11 11 9898 ……

9797 11 11 9292 11 11 8686 11 11 8080 ……

(b) Schedule computed by GreedyBalance.

Figure 6.4: Construction and schedules used in the proof of Theorem 6.16 for 𝑚 = 3
and 𝜀 = 0.01. Node labels show the corresponding job's resource requirement in
percent (e.g., 𝑟12 = 0.07). Note that the optimal schedule needs (essentially) 𝑚 time
steps to finish a block, while 𝑆 needs 2𝑚 − 1 time steps per block.

time steps per block: By balancing the number of remaining jobs, it is forced
to work 𝑚 time steps on a block's first column (which contains a total resource
requirement of roughly 𝑚) before it can finish the remaining 𝑚 − 1 columns
of a block. In contrast, the optimal algorithm ignores any balancing issues,
which eventually allows it to exploit that all diagonals have a total resource
requirement of one.

6.6 Conclusion & Outlook

This chapter introduced a new resource constrained scheduling problem where
job processing speeds depend on the share of the resource a job gets assigned.
While the problem turned out to be NP-hard in the number of processors (even
for unit size jobs), we were able to derive an approximation algorithm with a
worst-case approximation ratio of 2− 1/u� (for unit size jobs). Still, the problem's
complexity remains unsolved, as we were not yet able to prove or disprove
NP-hardness if the number of processors is a constant larger or equal to 3.

126

6.6 Conclusion & Outlook

The technical report [Kli+14] (in preparation for submission) contains several
additional results, as for example a polynomial-time algorithm for the case
of two processors. Also, it is not too difficult to show that the ResourceScal-
ing problem is not strongly NP-hard, as there exists a relatively simple (but
technical) pseudo-polynomial time algorithm based on a dynamic program.

Besides settling the problem's actual complexity and extending these results
to jobs of arbitrary sizes, it seems worthwhile to extend the model to more
realistic scenarios. What analytical results are possible if we re-introduce the
classical scheduling aspect, where jobs of a task are not a priori fixed to a specific
processor? It may also be possible to use our insights to get analytical results
in special cases of discrete-continuous models as proposed by Józefowska and
Węglarz [JW98].

What might be the most interesting direction, especially given the energy-
centric theme of this thesis, are models that consider energy itself as a con-
tinuously divisible resource. One might imagine a multiprocessor model in
the spirit of the original speed scaling model by Yao et al. [YDS95], but with a
shared energy source (similar to what is proposed in [RW11; RW12]).

127

Bibliography

[AA12] S. Albers and A. Antoniadis. “Race to Idle: New Algorithms for
Speed Scaling with a Sleep State”. In: Proceedings of the 23rd Sym-
posium on Discrete Algorithms (SODA). 2012.

[AAG11] S. Albers, A. Antoniadis, and G. Greiner. “On Multi-Processor
Speed Scaling with Migration”. In: Proceedings of the 23rd
ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). San Jose, California, USA: ACM, 2011, pp. 279–288. isbn:
978-1-4503-0743-7. doi: 10.1145/1989493.1989539.

[AF06] S. Albers and H. Fujiwara. “Energy-Efficient Algorithms for Flow
Time Minimization”. In: Proceedings of the 23rd Symposium on The-
oretical Aspects of Computer Science (STACS). Ed. by B. Durand
and W. Thomas. Vol. 3884. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, pp. 621–633. doi: 10.1007/
11672142_51.

[AF07] S. Albers and H. Fujiwara. “Energy-Efficient Algorithms for
Flow Time Minimization”. In: ACM Transactions on Algorithms
3.4 (2007), p. 49. issn: 1549-6325.

[AGK12] S. Anand, N. Garg, and A. Kumar. “Resource Augmentation for
Weighted Flow-time Explained by Dual Fitting”. In: Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Kyoto, Japan: SIAM, 2012, pp. 1228–1241.

[Alb10] S. Albers. “Energy-Efficient Algorithms”. In: Comm. of the ACM
53.5 (2010), pp. 86–96. doi: 10.1145/1735223.1735245.

129

http://dx.doi.org/10.1145/1989493.1989539
http://dx.doi.org/10.1007/11672142_51
http://dx.doi.org/10.1007/11672142_51
http://dx.doi.org/10.1145/1735223.1735245

Bibliography

[Alb11] S. Albers. “Algorithms for Dynamic Speed Scaling”. In: Proc. of
the 28th International Symp. on Theoretical Aspects of Computer Sci-
ence (STACS). Schloss Dagstuhl, 2011, pp. 1–11. doi: 10.4230/
LIPIcs.STACS.2011.1.

[AMS07] S. Albers, F. Müller, and S. Schmelzer. “Speed Scaling on Par-
allel Processors”. In: Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). San Diego, Cal-
ifornia, USA: ACM, 2007, pp. 289–298. isbn: 978-1-59593-667-7.

[Ant+14] A. Antoniadis, N. Barcelo, M. Consuegra, P. Kling, M. Nugent,
K. Pruhs, and M. Scquizzato. “Efficient Computation of Optimal
Energy and Fractional Weighted Flow Trade-off Schedules”. In:
Proceedings of the 31st Symposium on Theoretical Aspects of Computer
Science (STACS). 2014. In press.

[App13a] Apple. Apple and the Environment. Dec. 2013. url: http://www.
apple.com/environment/renewable-energy/.

[App13b] Apple. OS X Mavericks - Advanced Technologies. 2013. url: http:
//www.apple.com/osx/advanced-technologies/.

[AWT09] L. L. Andrew, A. Wierman, and A. Tang. “Optimal Speed Scaling
Under Arbitrary Power Functions”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 37.2 (Oct. 2009), pp. 39–41. issn: 0163-5999.
doi: 10.1145/1639562.1639576.

[Ban+08a] N. Bansal, D. P. Bunde, H.-L. Chan, and K. Pruhs. “Average Rate
Speed Scaling”. In: Proceedings of the 8th Latin American Conference
on Theoretical Informatics (LATIN). Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 240–251. isbn: 3-540-78772-0, 978-3-540-78772-3.

[Ban+08b] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee. “Scheduling
for Speed Bounded Processors”. In: Proceedings of the 35th In-
ternational Colloquium on Automata, Languages and Programming
(ICALP). Reykjavik, Iceland: Springer-Verlag, 2008, pp. 409–420.
isbn: 978-3-540-70574-1. doi: 10.1007/978-3-540-70575-
8_34.

[Ban+09] N. Bansal, H.-L. Chan, K. Pruhs, and D. Katz. “Improved Bounds
for Speed Scaling in Devices Obeying the Cube-Root Rule”. In:
Proceedings of the 36th International Colloquium on Automata, Lan-
guages and Programming (ICALP). Ed. by S. Albers, A. Marchetti-
Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas. Vol. 5555.
Springer, 2009, pp. 144–155. isbn: 978-3-642-02926-4.

130

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.1
http://www.apple.com/environment/renewable-energy/
http://www.apple.com/environment/renewable-energy/
http://www.apple.com/osx/advanced-technologies/
http://www.apple.com/osx/advanced-technologies/
http://dx.doi.org/10.1145/1639562.1639576
http://dx.doi.org/10.1007/978-3-540-70575-8_34
http://dx.doi.org/10.1007/978-3-540-70575-8_34

Bibliography

[Bap06] P. Baptiste. “Scheduling Unit Tasks to Minimize the Number
of Idle Periods: A Polynomial Time Algorithm for Offline Dy-
namic Power Management”. In: Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithm (SODA). ACM, 2006,
pp. 364–367. doi: 10.1145/1109557.1109598.

[Bar+13] N. Barcelo, D. Cole, D. Letsios, M. Nugent, and K. Pruhs. “Optimal
Energy Trade-off Schedules”. In: Sustainable Computing: Informat-
ics and Systems 3 (3 2013), pp. 207–217.

[Bar+91] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha. “On-line Scheduling in the Presence of Overload”. In:
Proc. of the 32nd Symp. on Foundations of Computer Science (FOCS).
1991, pp. 100–110. doi: 10.1109/SFCS.1991.185354.

[BC09] N. Bansal and H.-L. Chan. “Weighted Flow Time Does Not Admit
O(1)-Competitive Algorithms”. In: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). New York,
New York: Society for Industrial and Applied Mathematics, 2009,
pp. 1238–1244.

[BCD07] P. Baptiste, M. Chrobak, and C. Dürr. “Polynomial Time Algo-
rithms for Minimum Energy Scheduling”. In: Proceedings of the
15th Annual European Symposium on Algorithms (ESA). Springer,
2007, pp. 136–150. doi: 10.1007/978-3-540-75520-3_14.

[BCP09] N. Bansal, H.-L. Chan, and K. Pruhs. “Speed Scaling with an
Arbitrary Power Function”. In: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). New York,
New York: Society for Industrial and Applied Mathematics, 2009,
pp. 693–701.

[BCP13] N. Bansal, H.-L. Chan, and K. Pruhs. “Speed Scaling with an
Arbitrary Power Function”. In: ACM Transactions on Algorithms
Algorithms (TALG) 9.2 (Mar. 2013), 18:1–18:14. issn: 1549-6325. doi:
10.1145/2438645.2438650.

[BE98] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Vol. 53. Cambridge University Press, 1998.

[BEP07] J. Błażewicz, K. H. Ecker, and E. Pesch. Handbook on Scheduling:
From Theory to Applications. Springer, 2007.

[BG08] B. D. Bingham and M. R. Greenstreet. “Energy Optimal Schedul-
ing on Multiprocessors with Migration”. In: Proceedings of the 2008
IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA). Washington, DC, USA: IEEE Computer

131

http://dx.doi.org/10.1145/1109557.1109598
http://dx.doi.org/10.1109/SFCS.1991.185354
http://dx.doi.org/10.1007/978-3-540-75520-3_14
http://dx.doi.org/10.1145/2438645.2438650

Bibliography

Society, 2008, pp. 153–161. isbn: 978-0-7695-3471-8. doi: 10.1109/
ISPA.2008.128.

[BH07] L. A. Barroso and U. Hölzle. “The Case for Energy-Proportional
Computing”. In: Computer 40.12 (2007), pp. 33–37.

[BKP04] N. Bansal, T. Kimbrel, and K. Pruhs. “Dynamic Speed Scaling to
Manage Energy and Temperature”. In: Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS).
2004, pp. 520–529. doi: 10.1109/FOCS.2004.24.

[BKP07] N. Bansal, T. Kimbrel, and K. Pruhs. “Speed Scaling to Manage
Energy and Temperature”. In: Journal of the ACM 54.1 (2007), pp. 1–
39. doi: 10.1145/1206035.1206038.

[BN09] N. Buchbinder and J. Naor. The Design of Competitive Online Algo-
rithms via a Primal-Dual Approach. Hanover, MA, USA: Now Pub-
lishers Inc., 2009. isbn: 160198216X, 9781601982162. doi:10.1561/
0400000024.

[BPS07] N. Bansal, K. Pruhs, and C. Stein. “Speed Scaling for Weighted
Flow Time”. In: Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). Society for Industrial and Ap-
plied Mathematics. Philadelphia, USA: Society for Industrial and
Applied Mathematics, 2007, pp. 805–813. isbn: 978-0-898716-24-5.

[BPS09] N. Bansal, K. Pruhs, and C. Stein. “Speed Scaling for Weighted
Flow Time”. In: SIAM Journal on Computing 39.4 (2009), pp. 1294–
1308.

[Bro+00] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and
P. W. Cook. “Power-Aware Microarchitecture: Design and Model-
ing Challenges for Next-Generation Microprocessors”. In: IEEE
Micro 20.6 (2000), pp. 26–44. issn: 0272-1732. doi: 10.1109/40.
888701.

[Bun06] D. P. Bunde. “Power-Aware Scheduling for Makespan and Flow”.
In: Proceedings of the 18th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). Cambridge, Massachusetts,
USA: ACM, 2006, pp. 190–196. isbn: 1-59593-452-9. doi: 10.1145/
1148109.1148140.

[BV04] S. P. Boyd and L. Vandenberghe. Convex Optimization. Seventh.
Cambridge University Press, 2004.

132

http://dx.doi.org/10.1109/ISPA.2008.128
http://dx.doi.org/10.1109/ISPA.2008.128
http://dx.doi.org/10.1109/FOCS.2004.24
http://dx.doi.org/10.1145/1206035.1206038
http://dx.doi.org/10.1561/0400000024
http://dx.doi.org/10.1561/0400000024
http://dx.doi.org/10.1109/40.888701
http://dx.doi.org/10.1109/40.888701
http://dx.doi.org/10.1145/1148109.1148140
http://dx.doi.org/10.1145/1148109.1148140

Bibliography

[Cha+07] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P. W. H. Wong. “Energy Efficient Online Deadline Scheduling”.
In: Proceedings of the 18th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). New Orleans, Louisiana: Society for
Industrial and Applied Mathematics, 2007, pp. 795–804. isbn:
978-0-898716-24-5.

[Cha+09] H.-L. Chan, J. W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P. W. H. Wong. “Optimizing Throughput and Energy in Online
Deadline Scheduling”. In: ACM Transactions on Algorithms 6.1
(Dec. 2009), 10:1–10:22. issn: 1549-6325. doi: 10.1145/1644015.
1644025.

[Che+04] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo. “Multiprocessor Energy-efficient Scheduling with Task
Migration Considerations”. In: Proceedings of the 16th Euromicro
Conference on Real-Time Systems (ECRTS). 2004, pp. 101–108. doi:
10.1109/EMRTS.2004.1311011.

[CKM12] A. Cord-Landwehr, P. Kling, and F. Mallmann-Trenn. “Slow Down
and Sleep for Profit in Online Deadline Scheduling”. In: Proceed-
ings of the 1st Mediterranean Conference on Algorithms (MedAlg). Ed.
by G. Even and D. Rawitz. Vol. 7659. LNCS. Springer, 2012, pp. 218–
231.

[CLL10a] H.-L. Chan, T.-W. Lam, and R. Li. “Tradeoff between Energy and
Throughput for Online Deadline Scheduling”. In: Proc. of the 8th
Intl. Workshop on Approximation and Online Algorithms (WAOA).
Springer, 2010, pp. 59–70. doi: 10.1007/978-3-642-18318-
8_6.

[CLL10b] S.-H. Chan, T. W. Lam, and L.-K. Lee. “Non-clairvoyant Speed
Scaling for Weighted Flow Time”. In: Proceedings of the 18th annual
European Symposium on Algorithms (ESA), Part I. 2010, pp. 23–35.

[Col+12] D. Cole, D. Letsios, M. Nugent, and K. Pruhs. “Optimal Energy
Trade-off Schedules”. In: Proceedings of the 3rd IEEE International
Green Computing Conference (IGCC). Los Alamitos, CA, USA: IEEE
Computer Society, 2012, pp. 1–10. doi: 10.1109/IGCC.2012.
6322257.

[DH14] N. R. Devanur and Z. Huang. “Primal Dual Gives Almost Optimal
Energy Efficient Online Algorithms”. In: Proceedings of the 25th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2014,
pp. 1123–1140.

[Fac13] Facebook. Open Compute Project. 2013. url: http : / / www .
opencompute.org.

133

http://dx.doi.org/10.1145/1644015.1644025
http://dx.doi.org/10.1145/1644015.1644025
http://dx.doi.org/10.1109/EMRTS.2004.1311011
http://dx.doi.org/10.1007/978-3-642-18318-8_6
http://dx.doi.org/10.1007/978-3-642-18318-8_6
http://dx.doi.org/10.1109/IGCC.2012.6322257
http://dx.doi.org/10.1109/IGCC.2012.6322257
http://www.opencompute.org
http://www.opencompute.org

Bibliography

[GKP12] A. Gupta, R. Krishnaswamy, and K. Pruhs. “Online Primal-Dual
For Non-linear Optimization with Applications to Speed Scaling”.
In: Proceedings of the 10th Workshop on Approximation and Online
Algorithms (WAOA). 2012.

[GNS09] G. Greiner, T. Nonner, and A. Souza. “The Bell is Ringing in
Speed-Scaled Multiprocessor Scheduling”. In: Proceedings of the
21st ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). Calgary, AB, Canada: ACM, 2009, pp. 11–18. isbn:
978-1-60558-606-9.

[Goo13] Google. Google Data Centers. 2013. url: http://www.google.
com/about/datacenters/.

[Gra66] R. L. Graham. “Bounds for Certain Multiprocessing Anomalies”.
In: Bell System Technical Journal 45.9 (1966), pp. 1563–1581.

[Han+10] X. Han, T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong.
“Deadline Scheduling and Power Management for Speed Bounded
Processors”. In: Theoretical Computer Science 411 (40-42 Sept. 2010),
pp. 3587–3600. issn: 0304-3975. doi: 10.1016/j.tcs.2010.05.
035.

[IMP11] S. Im, B. Moseley, and K. Pruhs. “A Tutorial on Amortized Local
Competitiveness in Online Scheduling”. In: SIGACT News 42.2
(2011), pp. 83–97. doi: 10.1145/1998037.1998058.

[IP05] S. Irani and K. R. Pruhs. “Algorithmic Problems in Power Man-
agement”. In: ACM SIGACT News 36.2 (2005), pp. 63–76.

[ISG03] S. Irani, S. Shukla, and R. Gupta. “Algorithms for Power Sav-
ings”. In: Proceedings of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). Baltimore, Maryland: Society
for Industrial and Applied Mathematics, 2003, pp. 37–46. isbn:
0-89871-538-5.

[ISG07] S. Irani, S. Shukla, and R. Gupta. “Algorithms for Power Savings”.
In: ACM Transactions on Algorithms 3.4 (Nov. 2007). issn: 1549-6325.
doi: 10.1145/1290672.1290678.

[JJL07] A. Janiak, W. Janiak, and M. Lichtenstein. “Resource Management
in Machine Scheduling Problems: A Survey”. In: Decision Making
in Manufacturing and Services 1.12 (2007), pp. 59–89.

[Józ+00] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Weglarz.
“Solving the Discrete-continuous Project Scheduling Problem via
its Discretization”. In: Mathematical Methods of Operations Research
52.3 (2000), pp. 489–499.

134

http://www.google.com/about/datacenters/
http://www.google.com/about/datacenters/
http://dx.doi.org/10.1016/j.tcs.2010.05.035
http://dx.doi.org/10.1016/j.tcs.2010.05.035
http://dx.doi.org/10.1145/1998037.1998058
http://dx.doi.org/10.1145/1290672.1290678

Bibliography

[Józ+02] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Węglarz.
“A Heuristic Approach to Allocating the Continuous Resource
in Discrete-continuous Scheduling Problems to Minimize the
Makespan”. In: Journal of Scheduling 5.6 (2002), pp. 487–499.

[Józ+99] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wglarz.
“Discrete-continuous Scheduling to Minimize the Makespan for
Power Processing Rates of Jobs”. In: Discrete Applied Mathematics
94.1 (1999), pp. 263–285.

[JW96] J. Józefowska and J. Wglarz. “Discrete-continuous Scheduling
Problems -- Mean Completion Time Results”. In: European Journal
of Operational Research 94.2 (1996), pp. 302–309.

[JW98] J. Józefowska and J. Węglarz. “On a Methodology for Discrete-
continuous Scheduling”. In: European Journal of Operational Re-
search 107.2 (1998), pp. 338–353.

[Kis05] T. Kis. “A Branch-and-cut Algorithm for Scheduling of Projects
with Variable-intensity Activities”. In: Mathematical Programming
103.3 (2005), pp. 515–539.

[Kli+14] P. Kling, F. Meyer auf der Heide, L. Nagel, S. Riechers, and T. Süß.
“Sharing Scalable Resources”. 2014. In preparation.

[KP13] P. Kling and P. Pietrzyk. “Profitable Scheduling on Multiple Speed-
Scalable Processors”. In: Proceedings of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). New York,
NY, USA: ACM, 2013, pp. 251–260. isbn: 978-1-4503-1572-2. doi:
10.1145/2486159.2486183.

[Lab+84] J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
“Preemptive scheduling of uniform machines subject to release
dates”. In: Progress in combinatorial optimization. Ed. by P. H. R.
Academic Press, 1984, pp. 245–261.

[Lam+07] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong. “Energy
Efficient Deadline Scheduling in Two Processor Systems”. In: Pro-
ceedings of the 18th International Conference on Algorithms and Com-
putation (ISAAC). Sendai, Japan: Springer-Verlag, 2007, pp. 476–
487. isbn: 3-540-77118-2, 978-3-540-77118-0.

[Lam+08] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong. “Speed
Scaling Functions for Flow Time Scheduling Based on Active Job
Count”. In: Proceedings of the 16th Annual European Symposium on
Algorithms (ESA). Ed. by D. Halperin and K. Mehlhorn. Vol. 5193.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2008, pp. 647–659. doi: 10.1007/978-3-540-87744-8_54.

135

http://dx.doi.org/10.1145/2486159.2486183
http://dx.doi.org/10.1007/978-3-540-87744-8_54

Bibliography

[Leu04] J. Y.-T. Leung. Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis. Chapman & Hall/CRC, 2004.

[LY05] M. Li and F. F. Yao. “An Efficient Algorithm for Computing Opti-
mal Discrete Voltage Schedules”. In: SIAM Journal on Computing
35.3 (Sept. 2005), pp. 658–671. issn: 0097-5397. doi: 10.1137/
050629434.

[ML02] J. Markoff and S. Lohr. “Intel's Huge Bet Turns Iffy”. In: The New
York Times (Sept. 2002).

[MV13] N. Megow and J. Verschae. “Dual Techniques for Scheduling on
a Machine with Varying Speed”. In: Proceedings of the 40th In-
ternational Colloquium on Automata, Languages, and Programming
(ICALP). Riga, Latvia, 2013, pp. 745–756. isbn: 978-3-642-39205-4.
doi: 10.1007/978-3-642-39206-1_63.

[Ngu13] K. Nguyen. “Lagrangian Duality in Online Scheduling with Re-
source Augmentation and Speed Scaling”. In: Proceedings of the
21st European Symposium on Algorithms (ESA). Ed. by H. Bod-
laender and G. Italiano. Vol. 8125. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 755–766. isbn:
978-3-642-40449-8. doi: 10.1007/978-3-642-40450-4_64.

[PS10] K. Pruhs and C. Stein. “How to Schedule When You Have to
Buy Your Energy”. In: Proc. of the 13th/14th Workshop on Approx-
imation Algorithms for Comb. Optimization Problems/Randomization
and Computation (APPROX/RANDOM). Springer, 2010, pp. 352–
365. doi: 10.1007/978-3-642-15369-3_27.

[PST04] K. Pruhs, J. Sgall, and E. Torng. “Online Scheduling”. In: Handbook
of Scheduling: Algorithms, Models, and Performance Analysis. Ed. by
J. Y.-T. Leung. Chapman & Hall/CRC, 2004. Chap. 15.

[PUW04] K. Pruhs, P. Uthaisombut, and G. Woeginger. “Getting the Best
Response for Your Erg”. In: Proceedings of the 9th Scandinavian
Workshop on Algorithm Theory (SWAT). Vol. 3111. Springer, 2004,
pp. 14–25. doi: 10.1007/978-3-540-27810-8_3.

[PUW08] K. Pruhs, P. Uthaisombut, and G. Woeginger. “Getting the Best
Response for Your Erg”. In: ACM Transactions on Algorithms 4.3
(July 2008), 38:1–38:17. issn: 1549-6325. doi: 10.1145/1367064.
1367078.

[RW11] R. Różycki and J. Węglarz. “Power-aware Acheduling of Preempt-
able Jobs on Identical Parallel Processors to Minimize Makespan”.
In: Annals of Operations Research (2011), pp. 1–18. issn: 0254-5330.
doi: 10.1007/s10479-011-0957-5.

136

http://dx.doi.org/10.1137/050629434
http://dx.doi.org/10.1137/050629434
http://dx.doi.org/10.1007/978-3-642-39206-1_63
http://dx.doi.org/10.1007/978-3-642-40450-4_64
http://dx.doi.org/10.1007/978-3-642-15369-3_27
http://dx.doi.org/10.1007/978-3-540-27810-8_3
http://dx.doi.org/10.1145/1367064.1367078
http://dx.doi.org/10.1145/1367064.1367078
http://dx.doi.org/10.1007/s10479-011-0957-5

Bibliography

[RW12] R. Różycki and J. Węglarz. “Power-aware Scheduling of Preempt-
able Jobs on Identical Parallel Processors to Meet Deadlines”. In:
European Journal of Operational Research 218.1 (2012), pp. 68–75.
issn: 0377-2217. doi: 10.1016/j.ejor.2011.10.017.

[Ste13] S. Stein. What the next iPhone really needs: Better battery life. Aug. 5,
2013. url: http://reviews.cnet.com/8301- 19512_7-
57597012-233/what-the-next-iphone-really-needs-
better-battery-life/.

[Vaz01] V. V. Vazirani. Approximation Algorithms. New York, NY, USA:
Springer-Verlag New York, Inc., 2001. isbn: 3-540-65367-8.

[Wal11] G. Waligóra. “Heuristic Approaches to Discrete-continuous
Project Scheduling Problems to Minimize the Makespan”. In: Com-
putational Optimization and Applications 48.2 (2011), pp. 399–421.

[Węg+11] J. Węglarz, J. Józefowska, M. Mika, and G. Waligóra. “Project
Scheduling with Finite or Infinite Number of Activity Processing
Modes -- A Survey”. In: European Journal of Operational Research
208.3 (2011), pp. 177–205.

[YDS95] F. F. Yao, A. J. Demers, and S. Shenker. “A Scheduling Model for
Reduced CPU Energy”. In: Proceedings of the 36th Annual Sym-
posium on Foundations of Computer Science (FOCS). 1995, pp. 374–
382.

137

http://dx.doi.org/10.1016/j.ejor.2011.10.017
http://reviews.cnet.com/8301-19512_7-57597012-233/what-the-next-iphone-really-needs-better-battery-life/
http://reviews.cnet.com/8301-19512_7-57597012-233/what-the-next-iphone-really-needs-better-battery-life/
http://reviews.cnet.com/8301-19512_7-57597012-233/what-the-next-iphone-really-needs-better-battery-life/

	List of Theorems
	List of Figures
	List of Listings
	Preface
	Introduction
	A Primer to Speed Scaling
	Thesis Overview

	Preliminaries
	Basics: Approximation & Online Algorithms
	The First Speed Scaling Model
	Model Notions
	Optimal Offline Algorithm & Optimal Available

	Survey of Relevant Speed Scaling Results
	Speed Scaling with respect to Deadlines
	Speed Scaling with respect to Response Time Plus Energy

	Profitable Deadline Scheduling
	Related Work & Contribution
	Model & Preliminaries
	Convex Programming Formulation
	Power Consumption in Atomic Intervals

	An Online Greedy Primal-Dual Algorithm
	Analysis
	Structure of an Optimal Infeasible Solution
	A Job-centric Formulation of the Dual Function
	Balancing the Different Cost Components
	Deriving the Tight Competitive Ratio

	Conclusion & Outlook

	Slow Down & Sleep for Profit
	Related Work & Contribution
	Model & Preliminaries
	Lower Bound for Rejection-Oblivious Algorithms
	Algorithm & Analysis
	Bounding the Different Cost Portions
	Putting it All Together.

	The Speed-Bounded Case
	Conclusion & Outlook

	Trading Energy for Responsiveness
	Related Work & Contribution
	Model & Preliminaries
	Overview
	Structural Properties via Primal-Dual Formulation
	Computing an Optimal Schedule
	Affected Jobs
	Affection Tree
	Algorithm Description

	Correctness of the Algorithm
	The Subroutines
	Putting it All Together

	The Running Time
	Conclusion & Outlook

	Sharing Scalable Resources
	Related Work & Contribution
	Model & Notation
	Formal Model Description
	Graphical Representation

	Preliminaries
	Structural Properties
	Warm-up: Approximating via Round Robin

	Problem Complexity
	Analysis of Balanced Schedules
	Lower Bounds for Optimal Schedules
	Deriving a (2-1/m)-Approximation
	Tight Approximation via a Greedy Algorithm

	Conclusion & Outlook

	Bibliography

