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Abstract 

 

Rectifiers with low power factor cause line interferences due to harmonics in the line 

current and reactive power and therefore reduce the power available from the grid. For this 

reason power factor correction (PFC) rectifiers have been established as front end stage of 

AC-DC converters, which should emulate a resistor on the supply side while providing a 

fairly regulated DC output voltage. Widely utilized topology for this purpose is a boost 

converter together with a diode rectifier. In order to increase the power level and to reduce 

the high-frequency interferences it is common to operate two or more boost converters in 

parallel with phase shifted switching cycles. 

For those interleaved boost PFC rectifiers three different control tasks must be achieved at 

the same time: 

 The inner current control loop needs to achieve nearly unity power factor by 

forcing the input current to track the shape of the sinusoidal line voltage as close as 

possible. 

 The outer voltage control loop has to maintain a nearly constant DC output voltage. 

 The current balancing control must ensure equal rail power for the paralleled 

converters. 

Realization of these complex control tasks for interleaved boost PFC rectifiers was 

dominated by analog technique for many years. Due to cost-efficient digital signal 

processors (DSP) and microcontrollers (µC) with increased computational power and 

appropriate peripherals, digital control is widely used in PFC applications nowadays. 

With applying digital control a multitude of benefits such as flexibility and 

programmability, decreased number of active and passive components, and as a 

consequence improved reliability, negligible and/or compensable offsets and thermal drifts 

arise. However, full digital control is not the panacea for all PFC applications. Sometimes 

it can be beneficial to retain some parts of the PFC control in analog technique, smartly 

combined with digital control parts. 

The purpose of this dissertation is the utilization of digital control for interleaved boost 

PFC rectifiers. After providing basic information regarding the converter topology, digital 

control loops and state of the art PFC control, four advanced control concepts utilizing 

digital control are presented: 

 In a semi-digital PFC control concept analog and digital control parts are smartly 

combined. High bandwidth control parts like the current controller as well as time-

critical protection functions retain in conventional analog technique. Whereas the 

slow voltage compensator, load feed-forward control, multiplier and non-time-

critical protection functions are implemented in the digital control part. 

 By using DSPs or µCs containing analog on-chip comparators, digital peak current 

control is basically feasible with little effort. In order to eliminate the drawbacks of 

peak current control, a digital slope compensation is introduced which does not use 

an analog ramp signal, but instead an algorithm to pre-calculate the desired 
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comparator switch-off threshold. Adaptive algorithms are employed to adjust the 

compensation and to ensure sinusoidal shape of the average inductor current. 

 For PFC converters operating in boundary conduction mode (BCM) interleaving of 

several converters is challenging, because of the variable switching frequency. The 

introduced digital phase shift control enables multi-rail interleaving. With the 

flexibility of the digital implementation it is possible to apply phase shedding and 

limit the switching frequency by maintaining optimal interleaving. 

 Multi-rail interleaving of PFC converters operating in BCM and DCM is realized 

by a feed-forward control. The feed-forward algorithm can be applied alone as 

open-loop control without the requirement of any current measurement or together 

with a parallel current controller in a closed-loop version. With adjustable DCM 

ratio an additional degree of freedom results, which can be used to improve the 

performance in different ways. The switching losses can be reduced at light load 

and even within a line half cycle or the switching frequency can be kept within a 

narrow band. A promising method is introduced which tracks the DCM ratio for 

every operating point in order to minimize the THD in the input current. 

The introduced innovations on digital control provide additional functionality for 

interleaved PFC rectifiers and improve the performance in different categories. The 

investigations have shown that digital control is not a general solution for enhanced 

performance. Often it is beneficial to combine digital control with suitable analog parts 

such as analog comparators. 
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Zusammenfassung 

 

Netzgleichrichter mit nicht-sinusförmiger Stromaufnahme verursachen Oberschwingungen 

im Eingangsstrom, welche die Netzqualität beeinträchtigen und die verfügbare Eingangs-

leistung reduzieren. Aus diesem Grund besitzen moderne elektronische Strom-

versorgungen eingangsseitig eine netzfreundliche Pulsgleichrichterstufe (PFC), die einen 

hohen Leistungsfaktor gewährleisten, so dass sich die Geräte im Idealfall wie ein ohmscher 

Widerstand am Netz verhalten. Zusätzlich zu der sinusförmigen Stromaufnahme muss die 

Eingangswechselspannung in eine möglichst konstante Gleichspannung gewandelt werden. 

Für diesen Zweck wird überwiegend die Topologie des Hochsetzstellers mit vorge-

schaltetem Brückengleichrichter eingesetzt. Zur Erhöhung der Geräteleistung und um die 

schaltfrequenten Störanteile im Eingangsstrom zu reduzieren werden üblicherweise zwei 

oder mehr Hochsetzsteller parallel betrieben und phasenversetzt angesteuert. 

An die Regelung solcher parallel betriebenen, netzfreundlichen Pulsgleichrichterstufen 

ergeben sich hohe Anforderungen. Gleichzeitig müssen drei verschiedene Regelungs-

aufgaben bewältigt werden: 

 Die innere Stromregelschleife muss einen möglichst idealen Leistungsfaktor 

gewährleisten, indem der Eingangsstrom der sinusförmigen Netzspannung 

nachgeführt wird. 

 Mit der äußeren Spannungsregelschleife soll am Ausgang eine möglichst konstante 

Gleichspannung bereit gestellt werden. 

 Eine geeignete Stromsymmetrierung wird benötigt, um eine gleichmäßige 

Leistungsaufteilung auf alle parallel betriebenen Konverter zu erzielen. 

Die Umsetzung dieser komplexen Regelung wurde seit vielen Jahren von analoger Schal-

tungstechnik dominiert. In den letzten Jahren sind digitale Signalprozessoren (DSP) und 

Mikrocontroller (µC) stetig leistungsstärker und kostengünstiger geworden und besitzen 

für die Schaltnetzteilregelung speziell ausgelegte Peripherie. Aus diesem Grund kommen 

heute häufig digitale Regelungen für PFC Anwendungen zum Einsatz. Dies bringt eine 

Reihe zusätzlicher Vorteile mit sich. Durch die Implementierung adaptiver Regelungen 

und komplexer Vorsteueralgorithmen erhöht sich die Flexibilität und Leistungsfähigkeit 

der Geräte. Die Anzahl der aktiven und passiven Bauelemente verringert sich und 

mögliche Offsets und Temperaturabhängigkeiten können kompensiert werden.  

Allerdings ist die Implementierung einer volldigitalen Regelung nicht immer die optimale 

Lösung für netzfreundliche Pulsgleichrichterstufen. Für einige Anwendungen ist es 

vorteilhaft, nur einige Teile der Regelung digital zu realisieren und mit analogen 

Komponenten zu ergänzen. 

Die vorliegende Arbeit beschäftigt sich mit digitalen Regelungsstrategien für parallel 

betriebene, netzfreundliche Pulsgleichrichterstufen. Zunächst werden die grundlegenden 

Eigenschaften der Konvertertopologie und digitaler Regelschleifen behandelt. Nach der 

Betrachtung analoger PFC Regelungen und dem Stand der Technik bei digitalen PFC 



vi 

Regelungen werden vier neuartige Regelungskonzepte vorgestellt, bei denen Teile oder die 

komplette Regelung auf einem DSP oder µC implementiert sind: 

 Bei dem semi-digitalen Regelungskonzept sind die Regelungsaufgaben sinnvoll auf 

digitale und analoge Teile gesplittet. Dort wo hohe Bandbreite gefordert ist, z.B. 

Stromregler und zeitkritische Schutzfunktionen kommen die herkömmlichen 

analogen Schaltkreise zum Einsatz. Die langsame Spannungsregelung, der 

Multiplizierer zur Generierung des Stromsollwerts, die Eingangsleistungs-

vorsteuerung und nicht zeitkritische Schutzfunktionen sind auf einem 

kostengünstigen µC implementiert. 

 Mit DSPs und µC mit auf dem Chip integrierten analogen Komparatoren lässt sich 

ohne großen Aufwand eine digitale Spitzenstromregelung realisieren. Um die 

Nachteile der Spitzenstromregelung zu eliminieren, wird eine sogenannte Slope-

Kompensation benötigt. Anstelle einer analogen Sägezahn-funktion wurde für die 

digitale Implementierung ein Algorithmus entwickelt, der direkt die erforderliche 

Komparatorabschaltschwelle zu Beginn jeder Schaltperiode berechnet. Mit 

weiteren adaptiven Algorithmen lässt sich zum einen die Slope-Kompensation für 

jeden Arbeitspunkt anpassen und zum anderen der Mittelwert des Eingangsstroms 

der sinusförmigen Eingangsspannung nachführen. 

 Beim Parallelbetrieb mehrerer Konverter an der Lückgrenze ist das Einstellen der 

optimalen Phasenverschiebung aufgrund der variablen Schaltfrequenz sehr 

schwierig. Die Implementierung einer digitalen Phasenwinkelnachführung 

ermöglicht das Einhalten der optimalen Phasenverschiebung mit hoher Dynamik. 

Durch gezieltes lastabhängiges zu- oder abschalten einzelner Konverter wird 

zusätzlich die maximale Schaltfrequenz begrenzt. 

 Der synchrone Parallelbetrieb an der Lückgrenze oder im Lückbetrieb lässt sich 

auch ausschließlich mittels Vorsteuerung erreichen, der keine Strommessung 

benötigt. Mit optionaler Eingangsstrommessung und einem Stromregler parallel zur 

Vorsteuerung kann der Konverter auch mit geschlossenem Regelkreis betrieben 

werden. Der Vorsteueralgorithmus bietet aufgrund der einstellbaren Länge des 

Lückintervalls einen zusätzlichen Freiheitsgrad, mit dem sich die Betriebsweise der 

PFC Stufe in verschiedenen Bereichen optimieren lässt. So kann die Schaltfrequenz 

damit innerhalb vorgegebener Grenzen gehalten werden. Durch Absenkung der 

Schaltfrequenz in Abhängigkeit der Ausgangsleistung und dem Augenblickswert 

der Eingangsleistung können die Schaltverluste reduziert werden. In einem 

weiteren Anwendungsfall wird das variable Lückintervall genutzt, um in jedem 

Arbeitspunkt die gesamten harmonischen Verzerrungen (THD) zu minimieren.  

Mit den entwickelten digitalen Regelungsstrategien ergeben sich zusätzliche 

Möglichkeiten für die Betriebsführung, mit denen sich die Leistungsfähigkeit von 

netzfreundlichen Pulsgleichrichterstufen steigern lässt. Die Untersuchungen haben aber 

auch gezeigt, dass eine digitale Realisierung kein Patentrezept für eine Steigerung der 

Leistungsfähigkeit ist. Oftmals ergibt sich erst durch die Kombination digitaler Regelung 

mit analogen Komponenten wie Komparatoren das optimale Regelungskonzept. 
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1 Introduction 

The largest part of the electrical energy is not consumed in the form that the power grid 

provides. Before usage the line voltage needs to be changed in amplitude and frequency. In 

many applications the AC line voltage must be transformed into a DC voltage. 

Consequently, suitable rectification is required. 

Rectifiers with low power factor cause line interferences due to harmonics in the line 

current and reactive power and therefore reduce the power available from the grid. In order 

to guarantee high quality of the line voltage, norms like EN61000-3-2 have been released, 

which indicate limits for line interferences. Thus, power factor correction (PFC) rectifiers 

have been established as front end stage of AC-DC converters. An ideal PFC rectifier 

should emulate a resistor on the supply side, while maintaining a fairly regulated DC 

output voltage [Ros94]. Beyond that high efficiency and power density, low high-

frequency distortions and a cost-effective realization are important design objectives. 

The widely utilized topology for the PFC stage is the boost converter together with a diode 

rectifier. This topology is beneficial for this task because the inductor is connected to the 

input and allows low-distorted input currents. Furthermore, the output voltage is always 

higher than the amplitude of the line voltage, for which reason a worldwide usage of the 

same PFC rectifier at different line voltages and line frequencies is possible. 

Nevertheless, it is the way of controlling the boost switch which let a simple boost 

converter with diode rectifier become a PFC rectifier. Generally, a cascaded control 

structure with outer output voltage control loop and inner current control loop is utilized. 

As for most converters the voltage control loop must provide a nearly constant DC output 

voltage. The task of the current control loop is to achieve unity power factor by forcing the 

average inductor current to track the shape of the sinusoidal input voltage as close as 

possible.  

In order to increase the power level of the rectifier, it is common to operate two or more 

boost converters in parallel. The paralleled converter rails are typically phase shifted in 

order to reduce the filter size and costs and high-frequency interferences. With this 

interleaving technique a further task for the converter control arises. A balance control 

needs to ensure equal rail power. 

The implementation of these complex control tasks for interleaved PFC rectifiers was 

dominated by analog technique for many years. Accordingly, a multitude of dedicated 

control ICs was developed, which provides the basic control functions for PFC 

applications. However, due to cost-efficient digital signal processors (DSP) and 

microcontrollers (µC) with increased computational power and appropriate peripherals 

digital control is widely used in PFC applications nowadays.  
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Digital control offers a multitude of benefits such as flexibility and programmability, 

decreased number of active and passive components, and as a consequence improved 

reliability, negligible and/or compensable offsets and thermal drifts [Mak04]. With 

employing digital control the demand on additional functionality of the PFC control has 

raised, consequently. In order to fulfill these demands it typically does not suffice to 

implement the traditional control structure in digital, but rather advanced control concepts 

needs to be invented. Furthermore, full digital control is not the panacea for all PFC 

applications. Sometimes it can be beneficial to retain some parts of the PFC control in 

analog technique combined with digital control parts. 

In this thesis different control concepts for interleaved PFC rectifiers utilizing digital 

control are presented. 

Thesis Outline 

Chapter 2 of this thesis gives some basic information concerning interleaved boost PFC 

rectifiers. First the structure of distributed power systems (DPS) for server farms and 

communication networks is described with special focus on the tasks of the PFC rectifiers 

in those systems. The topology of the commonly used boost PFC rectifier and the basic 

structure of the PFC control are illustrated together with some typical shapes of voltages 

and currents. The interleaving technique for power converters is explained including its 

beneficial effect on the reduction of the total harmonic distortion (THD) in the input 

current. Before examining the control, the basics of the boost converter are reviewed and 

the differences between continuous conduction mode (CCM) and discontinuous 

conduction mode (DCM) are depicted. After that the three most utilized control methods 

voltage mode, peak current mode and average current mode control are explained. For PFC 

rectifiers only current mode control is suited to ensure sinusoidal input current and 

consequently high power factor. For this reason the control-to-inductor-current transfer 

functions for CCM and DCM are derived and applied for a design example for the average 

current control loop of a boost PFC rectifier. In order to complete the PFC control also the 

design of the outer voltage control loop is explained as well as the multiplier unit, which is 

utilized to generate the sinusoidal current reference value and to realize a load feed-

forward control.  

In Chapter 3 the properties of digital control and its associated parts are described in 

general. The sampling process and the quantization effect of the analog-to-digital 

conversion (ADC) are explained and their impact to the control performance is presented. 

Likewise the digital implementation of the pulse width modulation (PWM) is analyzed. 

Advantageous of digital control is the synchronization of the sampling instance and the 

switching cycle. On the other hand the sample-and-hold process inserts a dead-time into 

the control loop, which can reduce the phase margin significantly.  

In Chapter 4 state of the art analog and digital PFC control is reviewed. First the traditional 

analog realization of PFC control is explained. Often the same control structure is retained 

for full digital PFC control. This is described in addition with some required or valuable 



1  Introduction 3 

functions such as the correction of the inductor current sample in DCM and a duty-ratio 

feed-forward control for CCM and DCM.  

In Chapter 5 - Chapter 8 advanced control concepts for interleaved boost PFC rectifiers 

utilizing digital control are presented.  

As a first mixed-signal solution a semi-digital PFC control concept with smart combination 

of analog and digital control parts is described in Chapter 5. High bandwidth control parts 

like the current controller as well as time-critical protection functions retain in 

conventional analog technique, whereas the slow voltage compensator, load feed-forward 

control, multiplier and non-time-critical protection functions are implemented in the digital 

control part. It is shown that already with such a partial digitalization appropriate power 

management features can be realized in order to improve the light load efficiency. 

For the control concept presented in Chapter 6 digital control is combined with analog 

comparators in order to realize digital peak current control for interleaved PFC rectifier. 

With available DSPs and µCs including analog on-chip comparators digital peak current 

control is basically feasible with little effort. In order to eliminate the drawbacks of peak 

current control, slope compensation is required. Thus, a digital slope compensation is 

introduced, which does not use an analog ramp signal, but instead an algorithm to pre-

calculate the desired comparator switch-off threshold. This method furthermore enables 

adaptive slope compensation, which is beneficial for PFC applications where the operating 

point varies extremely. Several control structures are depicted and compared with respect 

to performance and computational effort. 

A popular control concept for PFC rectifiers is to operate the boost converter at the 

boundary of DCM and CCM. This boundary conduction mode (BCM) can be easily 

realized by utilizing a comparator to detect the instance where the inductor current 

becomes zero, in order to switch on the boost switch. However, due to the resulting 

variable switching frequency interleaving of several converters is challenging. For this 

reason a digital phase shift control for interleaved BCM rails is developed in Chapter 7. 

Because of the analog comparator in the control structure this concept strictly speaking is 

also a mixed-signal control concept. 

In Chapter 8 a pure digital control concept is presented, which enables multi-rail 

interleaving of PFC converters operating in BCM and DCM by applying a feed-forward 

control. The feed-forward algorithm is derived for BCM and extended to DCM operation. 

It can be utilized either alone without any current measurement in an open-loop control or 

together with a parallel current controller in a closed-loop version. The DCM ratio, e.g. the 

duration within the switching cycle where the inductor current is zero, can be adjusted 

individually for every single converter rail. This additional degree of freedom can be 

utilized for several features. If the inductor values of the rails differ, every rail can get its 

individual DCM ratio in order to balance the inductor currents. A novel continuous phase 

shedding method is introduced, which adjusts the DCM ratio of all rails in order to vary the 

effective number of energized converter rails transition-free. Further investigations show 

how this continuous phase shedding method can be utilized to reduce the THD in the input 
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current of paralleled converters in general and especially for PFC rectifiers with its 

continuous varying operation point.  

All the presented innovations were verified in simulation and on a prototype with two or 

three parallel converter rails. Meaningful practical results are shown to illustrate the 

effectiveness of the proposed control concepts. 

The conclusions are given in Chapter 9.  
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2 Basics of Boost Power Factor Correction 

Rectifier 

The boost power factor correction (PFC) rectifier is widely used as front-end stage for AC-

DC switched-mode power supplies (SMPS). The main task of PFC rectifiers is to generate 

a fairly regulated DC output voltage from the sinusoidal AC line voltage by providing 

almost unity power factor [Ros94]. 

For adequate performance of the PFC rectifier suitable dynamics need to be applied to the 

control loops by precisely designing the compensators. For this purpose the static and 

dynamic behavior of the controlled converter needs to be well known. 

In this chapter the application of PFC rectifiers in distributed power systems (DPS) is 

explained. The structure of the cascaded PFC control loops is described and a short review 

of the boost converter functionality and its modes of operation are given. The basic control 

methods are described and the control-to-inductor-current transfer function is derived. 

Finally, the design of the current control loop, the voltage compensator and the PFC 

specific multiplier unit are explained. 

2.1 PFC in Distributed Power Systems (DPS) 

Since the largest part of the electrical energy is not consumed in the form that the power 

grid provides, the line voltage needs to be changed in amplitude and frequency before 

usage. 

In particular the energy demand for server farms and communication networks has 

increased heavily in the last decades. In order to achieve higher processing speed with 

minimized power consumption, the supply voltages have been reduced in new logic 

families [Tab92]. Thus, DC voltages of only a few volts are required to supply the 

processors and electronic circuits. Transformation of the AC line voltage for this purpose is 

usually carried out by several conversion stages. This converter structures are also referred 

to as distributed power systems (DPS) [Tab92, Mam93, Luo05]. The structure of DPS can 

slightly vary depending on the application and mainframe manufacturer. A widely-used 

layout of a DPS with 12V bus voltage is depicted in Figure 2.1. 

In the first step the AC line voltage is transformed into a DC voltage of 12V by a power 

supply unit (PSU). Single line phase PSUs typically have a power range up to 4kW. By 

paralleling of several PSUs the overall power can be scaled and the requirements for 

redundancy and reliability can be fulfilled. On the output side all paralleled PSUs are 

connected to a DC bus, which distributes the DC voltage within the system.  
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In many applications uninterrupted power supply also in the case of temporary power grid 

failure is required. For this reason battery backups are commonly utilized to supply the DC 

voltage bus temporarily. 

In the second step the DC bus voltage is converted to the required voltage levels, for 

instance 3.3V, 1.8V, 1.1V. These last DC-DC converter stages are also referred to as 

voltage regulator modules (VRM) or point of load (POL) converter and are located close to 

the loads. With this method excellent dynamic and noise immunity of the supply voltages 

can be achieved. 
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conversion

DC 
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conversion
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Figure 2.1: Typical structure of a distributed power system (DPS) with 12V DC bus 

voltage 

 

The PSUs are predominantly realized with two converter stages (cf. Figure 2.2) [Wet06]. 

The front-end stage is the power factor correction (PFC) rectifier, which is examined in 

detail in this thesis later on. The PFC rectifier transforms the AC line voltage into a DC 

voltage of typically 400V. In the second stage a DC-DC converter steps down this DC link 

voltage to the desired PSU output voltage. This converter stage needs suitable dynamic to 

ensure constant DC bus voltage during load steps and input voltage variations. Besides 

providing a stable output voltage this stage has a transformer to isolate the system from the 

power grid. Most utilized topologies for this purpose are the two-switch-forward converter, 

the phase-shift full-bridge (PSFB) converter and the LLC resonant converter.  
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Figure 2.2: Classical PSU topology with two converter stages 

 

2.2 Boost PFC Rectifier 

As mentioned in the previous section the PFC rectifier has to convert the AC line voltage 

into a DC voltage. This task could also be done with a simple passive diode bridge rectifier 

connected to the line voltage and feeding a bulky filter capacitor. However, this would 

result in a poor power factor reducing the power available from the power grid, while high 

harmonic distortions in the line current would cause electromagnetic interferences (EMI) 

problems [Ros94]. Thus, the second major task of the rectifier stage is to maintain an ideal 

power factor [Adr02]. This means that the input current of the PSU needs to have the same 

sinusoidal shape like the line voltage (cf. Figure 2.4), i.e. the PSU must act like a resistor 

on the supply side. 

The definition of the power factor is given in Appendix A.1. 
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Figure 2.3: Boost PFC rectifier with cascaded control structure 
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Most suitable for implementing PFC and widely utilized for this purpose is the boost 

converter together with a diode bridge rectifier (c.f. Figure 2.3). This topology is very 

simple and due to the fact that the boost inductor is connected in series with the line input, 

smaller input current ripple is achieved and easy control of the average input current is 

enabled [Xie03]. An additional EMI filter is typically applied to further reduce the high-

frequency ripple in the input current. Figure 2.3 shows the schematic of the boost PFC 

rectifier with its cascaded control structure without EMI filter. The PFC control usually 

consists of an outer voltage loop, controlling the DC output voltage, a multiplier unit and 

an inner current loop. 

There are also several topologies where one diode is eliminated from the line-current path, 

so that the line current simultaneously flows through only two semiconductors [HJJ08]. 

Consequently, the efficiency of these bridgeless PFC topologies is increased. However, the 

control usually is the same than for the conventional topology with bridge rectifier.  

Strictly speaking it is the way of controlling the boost switch which let the converter act as 

a PFC. The controller has to operate the boost switch in such a way to properly shape the 

input current     according to the shape of the rectified line voltage     [Ros94]. In order to 

generate the semi-sinusoidal current reference     , the DC reference current value       is 

multiplied with the normalized input voltage signal. The DC reference current is 

determined by the outer voltage loop to adjust the DC output voltage     . Later in this 

chapter the boost converter and the corresponding control for PFC applications are 

described in detail. 

vac

vout

iin

t

t

t

 

Figure 2.4: Typical voltage and current waveforms of PFC rectifiers  

 

Because of the boost topology the output voltage will be larger than the amplitude of the 

input voltage     . In order to enable a worldwide usage of the PSUs in different power 
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grids the PFC rectifier normally must provide operation at wide line voltage range of  

90V-265V and at line frequencies in the range of 50Hz-60Hz. A typical value for the 

rectified output voltage is around 400V. However, the output voltage is not a pure DC 

voltage, but has an AC ripple of twice the line frequency (cf. Figure 2.4). This is caused by 

the sinusoidal shape of the input voltage and the input current, which cause a pulsating 

input power. To keep the AC ripple in a certain range a large output capacitor is required. 

But in many applications a bulky output capacitor is applied anyway, because it is 

additionally utilized as an energy storage, which ensures continuing operation of the 

system during short term power line failures of up to one line period. 

2.3 Interleaving 

The interleaving technique is characterized by operating two or more identical converters 

in parallel (c.f. Figure 2.5) with phase shifted gate signals and is topic of numerous 

publications, e.g. [Lou06, Bal93, Miw92]. With this method the overall switching 

frequency of the paralleled converters is increased, while the switching frequency of every 

single converter cell remains at its origin value. Hence, the power level can be easily 

extended without increasing the device stress. Due to the overlapping inductor currents the 

ripple of the input current and the output voltage are reduced significantly (c.f. Figure 2.6). 

At certain duty-ratios the ripple      is even eliminated completely (e.g. at       for 

two interleaved converters). In Figure 2.7 the reduction of the ripple in the input current is 

illustrated versus duty-ratio for two interleaved converters. With reducing the input current 

ripple also the RMS current in the DC link capacitor and the EMI of boost PFC rectifiers 

are reduced significantly. This enables easier observance of the standards for line current 

harmonics and conducted EMI with less filter volume and filter components [Zum04]. 
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Figure 2.5: Dual interleaved boost converter 

 

Furthermore, interleaving offers potential to improve the light load efficiency by adjusting 

the number of paralleled converters at partial load [Gro09, ChMa10, QLi09]. Due to 

employment of several small inductances instead of a single bulky inductor faster dynamic 
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response can be achieved. In addition a better thermal management results by spreading of 

the hot spots. 
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Figure 2.6: Interleaved inductor currents and resulting input current 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

Δ
i i

n
 / 

i i
n

_

duty ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

Figure 2.7: Ripple reduction in the input current for dual interleaved converter 
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One drawback of interleaving is the need of balancing the currents of the paralleled 

converters to ensure uniformed spread stress of the devices. Thus, an adequate current 

balancing strategy is one of the design goals for interleaved converter control. 

2.4 Boost Converter Basics 

The boost converter (cf. Figure 2.8) provides a higher output voltage than the input voltage 

[Eri00, Kas91, Zac90a]. For this purpose one active switch (MOSFET), one passive switch 

(diode) and two passive energy storage elements (inductor and capacitor) are utilized.  
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Figure 2.8: Boost converter 

 

The gate of the MOSFET acts as control input port. If the switch is closed, the inductor 

voltage is equal to     and the current through the inductor changes with 

   
  

 
   

 
    (2.1) 

During this interval the energy stored in the inductor increases. When the switch is open, 

the inductor voltage is            and the current flows through the diode and releases 

the inductive energy to the converter output and decreases with 

   
  

 
        

 
    (2.2) 

In Figure 2.9 the equivalent circuits of the different switching conditions are illustrated. 
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Figure 2.9: Equivalent circuits of the switching intervals during one switching cycle 

 

Figure 2.10 shows the waveform of the inductor voltage and current, as well as the 

waveform of the current which flows through the boost diode under steady state 

conditions. This means that the inductor current values at the beginning and at the end of 

the switching period    are equal. From this it follows, that the conversion ratio   is 

determined by interval: 

  
    

   
 

  

      
 

 

   
 

 

  
  (2.3) 

The range of the duty-ratio          goes from zero to one. 



2.4  Boost Converter Basics 13 

vin

 L

vin-vout

    L

iL

t

t

vL

vin-vout

vin

Ts

iD

tTon

iout = iD

 

Figure 2.10: Steady state voltage and current waveforms of an ideal boost converter 

 

2.4.1 Operation Modes 

The operation modes of switching converters can be classified into two modes: firstly the 

continuous conduction mode (CCM), where the inductor current never comes down to zero 

and secondly the discontinuous conduction mode, where the inductor current resets to zero 

within the switching cycle. 

A. Continuous Conduction Mode (CCM) 

In CCM the switching cycle portions in two intervals. First, if the switch is closed, the 

inductor current rises and secondly, the current falls, if the switch is open (cf. Figure 2.11 

a)). In this mode the AC component of the inductor current typically is much smaller than 

the DC component. 

B. Discontinuous Conduction Mode (DCM) 

In DCM a third interval within the switching cycle appears (cf. Figure 2.9 c)). During the 

switch-off time the inductor current decays to zero and the converter remains in this state 

until the next switch-on event. This happens for example at light load operation of the 

converter, if the peak-to-peak inductor current ripple becomes larger than twice the 

average current. In some applications the converter is intentionally designed to operate 

only in DCM in order to avoid problems caused by the reverse recovery effect of the diode 

[Gro11]. Another reason to employ DCM can be avoiding the right half plane zero in the 
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control-to-output transfer function of the boost converter [Ara09]. Figure 2.11 b) shows the 

inductor current waveform in DCM. 
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Figure 2.11: Inductor current waveform in  

a) CCM and 

b) DCM 

 

The converter properties in DCM are significantly different to CCM. Consequently, a 

rigorous change in the small and large signal transfer characteristic occurs with changing 

the mode of operation. In DCM the conversion ratio   becomes dependent of the load 

resistance   [Eri00]:  

          
    

   
 

 

 
 

 

 
 

     

 
   (2.4) 

2.4.2 Control Methods 

2.4.2.1 Voltage mode control 

Beyond the converter control methods voltage mode control is the oldest and simplest one. 

The control structure is illustrated in Figure 2.12 and significant signal waveforms are 

depicted in Figure 2.13. The output voltage is compared with the reference value and the 

resulting error voltage is passed to the voltage compensator. The compensator determines 

the comparator turn-off threshold. Together with the RS-flip-flop the comparator acts as a 

pulse width modulator (PWM), where the sawtooth signal on the negative comparator 

input is utilized as carrier signal. The RS-flip-flop turns on the boost switch at the 
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beginning of each switching cycle and turns off, if the sawtooth signal exceeds the error 

amplifier output value. Due to the fact that the duty-ratio is directly determined by the 

voltage error this method is also known as direct duty-cycle control (DDC) [Zac90]. 
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Figure 2.12: Boost converter with voltage mode control 
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Figure 2.13: Generation of the gate signal with voltage mode control 

 

With adequate amplitude of the sawtooth signal this control method provides a good 

signal-to-noise ratio. Another advantage is the simple design of the feedback loop [Zac90]. 

However, since the loop gain changes with the input voltage a poor control dynamic under 

input voltage variation results. To overcome this drawback an extension of the control 

method can be applied. Thereby the amplitude of the sawtooth signal is changed 

proportional to the input voltage. This method is also known as voltage feed-forward 

control (VFC) [Zac90]. 
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For PFC applications voltage mode control is not suitable, because it is essential to control 

the shape of the input current which is not provided with this control method.  

2.4.2.2 Current mode control 

With current mode control the inductor current which also influences the output voltage is 

implicated as an additional control value. Compared to voltage mode control it exhibits a 

high frequency bandwidth resulting in improved control loop dynamics and leads to a 

better line noise rejection. With reducing the small-signal dynamics from second-order to 

first-order, it additionally simplifies the outer voltage loop design [Hsu79, Don96]. A 

cascaded control structure results where the inner current control loop operates the boost 

switch. The reference value for the current controller is provided by the outer voltage 

controller.  

There is a multitude of methods of implementing the current control, which can be 

separated in fixed and variable switching frequency methods. Widely utilized is the peak 

current mode control. Thereby the switch is turned on with an external clock signal and 

turned off if the current reaches a certain level. Very similar but rarely used is valley 

current mode control, where the clock signal turns off and a comparator turns on the 

switch, if the current falls below the threshold level. A further fixed frequency method is 

average current control. As the name implies with this method the average value of the 

inductor current is controlled. Depending on the current error a compensator determines 

the duty-ratio which is passed to a PWM to generate the switching command. In particular, 

in boost-type PFC rectifiers, average current control ensures very low current distortions 

[Che03]. 

Examples for variable switching frequency methods are constant on-time control, constant 

off-time control and hysteretic control [Zac90]. At hysteretic control two comparators are 

utilized to determine the switching instances. The switch is turned on if the lower threshold 

is reached and turned off at the specified peak value. A special case for hysteretic current 

control is the boundary conduction mode (BCM) (often also called critical conduction 

mode or transition mode). With this method the lower current threshold is set to zero in 

order to operate the converter at the boundary of continuous and discontinuous conduction 

mode. 

In the following peak and average current control are described in detail. 

A. Peak current mode control with slope compensation 

The scheme of a boost converter with outer voltage loop and inner peak current control 

loop is illustrated in Figure 2.14. Again the clock signal turns on the switch at the 

beginning of each switching cycle. The duty-ratio now is terminated when the inductor 

current reaches a threshold level defined by the outer voltage controller (cf. Figure 2.15).  
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Figure 2.14: Peak current controlled boost converter with slope compensation 
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Figure 2.15: Generation of the gate signal with peak current mode control without  

slope compensation  

 

Additionally to the excellent control dynamics this technique features some inherent 

advantages such as simple cycle-by-cycle current limiting and good current sharing of 

paralleled converters [Hsu79, Don96]. Instead of measuring the inductor current it suffice 

to sense the current in the switch path for peak current control. Thus, instead of a shunt 

resistor, which is always a trade-off between good signal-to-noise ratio and additional 

losses, a simple current transformer can be utilized. However, there are several drawbacks 

of peak current mode control in CCM [Hol84, JLu07]. Sensing of the peak instead of the 

average current value causes non ideal control response. Spikes in the current signal due to 

noise or the reverse recovery current of the boost diode can lead to faulty switch-off, 

particularly at small inductor current ripple. However, the major drawback is the loss of 
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stability, if the duty-ratio exceeds 50%, resulting in subharmonic oscillations. This 

situation is depicted in Figure 2.15, where the peak current reference value    is constant 

but the disturbance in the inductor current increases resulting in high variation in the duty-

ratio. A common approach to regain stability at duty-ratios above 50% is to apply a so 

called slope compensation [GrSc09, Hsu79, Don96, Hol84, JLu07, Sam08, YLi2007, 

Sak05]. Therefore an additional sawtooth signal with appropriate slope is either added to 

the current signal or subtracted from the reference value (cf. Figure 2.14). The behavior 

without and with slope compensation is analyzed in the following. 

A.1 Situation without Slope Compensation 

In order to derive the stability criterion of peak current mode controlled CCM converters 

which characterizes the transition to subharmonic oscillations, the operation without slope 

compensation shall be analyzed in a first step [GrSc09]. Therefore inductor currents are 

plotted in Figure 2.16 versus a single switching period    for the undisturbed (solid stroke) 

and a disturbed (dashed stroke) case. Both inductor current shapes have the same rising 

slope   , falling slope    and peak value    . For the undisturbed case (solid line in Figure 

2.16) it can be directly derived 

             (2.5) 

as well as 

              (2.6) 
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Figure 2.16: Growing disturbances in the inductor current under peak current  

control for       
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Whereas for a disturbance of     (dashed line in Figure 2.16) 

                  (2.7) 

and 

                  (2.8) 

applies. 

In both cases the duration of the switching period is identical. This is because of clock-

triggered turn-on. Thus, it follows  

                  (2.9) 

After solving Eq. (2.5) for   , Eq. (2.6) for   , Eq. (2.7) for     and Eq. (2.8) for     , Eq. 

(2.9) can be rewritten as 

      
  

 
      

  
 

          
  

 
          

  
 (2.10) 

and directly simplified to 

   
   
  

 
   
  

   (2.11) 

which is equivalent to 

     
  

  
     (2.12) 

If the magnitude of the current falling slope    is larger than that of the rising slope 

      , the current perturbation    obviously grows. The current error drift propagates 

with every switching period and after   cycles the perturbation will become 

      
  

  
 

 

     (2.13) 

For steady state conditions the ratio of current falling slope to rising slope can be expressed 

as 

  

  
 

 

   
   (2.14) 

where   is the duty-ratio (cf. also Figure 2.17). 

From Eq. (2.13) and Eq. (2.14) it follows that the instability inherently occurs as long as 

the duty-ratio exceeds 50% (     ). 
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A.2 Situation with Slope Compensation 

The instability for       can be eliminated, if a compensation ramp is added to the 

switch-off threshold as shown in Figure 2.17 [GrSc09, Hsu79, Don96, Hol84]. When 

introducing the additional compensation slope     the calculation similar to Eq. (2.5) - Eq. 

(2.13) directly yields as a modified formula for the current perturbation after   cycles 

      
      

      
 

 

     (2.15) 

From Eq. (2.15) it follows that for a stable current loop  
      

      
    must be fulfilled and 

therefore the required slope for the compensation ramp results as 
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Figure 2.17: Inductor current under peak current control with slope compensation 

 

Assuming a constant inductance  , the slope is proportional to the inductor voltage. Table 

2.1 contains the corresponding voltages    ,     and the required compensation      

for buck, boost and buck-boost converter. 

From Eq. (2.15) it can be seen that a perturbation can be compensated within only one 

cycle, if the slope of the compensation ramp     is equal to the falling current slope   . 

This characteristic is called dead-beat control and represents the fastest possible transient 

response [GrSc09, Hsu79, Don96, Hol84]. If applying higher values of     than   , the 

settling takes several cycles without overshoot. 
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buck                            

boost                           

buck-boost                         

Table 2.1: Current slope generating voltages and minimum required compensation  

for basic converters 

 

B. Average current mode control 

Most converters only need to adjust the output voltage accurately. For that purpose the 

outer voltage control loop requests higher current from the inner current control loop to 

increase or less current to decrease the output voltage. In fact it is the average value of the 

output current which needs to be varied, but the exact quantity of the average current is not 

essential. With peak current control with slope compensation there is no direct link to the 

average current value. But due to the fact that the output current can be varied very easily, 

it is well suited for those applications.  

However, especially in PFC applications the situation is different. Besides controlling the 

output voltage also the average value of the input current must follow the reference value 

as good as possible to achieve unity power factor. Consequently, it is the inductor average 

current which needs to be controlled in boost PFC rectifiers. 

Figure 2.18 shows the scheme of the boost converter with average current control. The 

voltage loop is similar to peak current control, but it now determines the average inductor 

current for the inner control loop. Based on the difference between that reference value and 

the actual current average value the current compensator defines the duty-ratio. Similar to 

voltage mode control a comparator and a RS-flip-flop form a PWM unit to generate the 

switching pulses. If the sawtooth signal exceeds the duty-ratio signal, the flip-flop turns off 

the switch and a clock signal turns on the switch at the beginning of each switching cycle. 

By applying an external sawtooth as carrier signal with arbitrary amplitude instead of the 

current slope, average current control is less noise sensitive [Zac90]. There is no need of 

any slope compensation and spikes in the current signal are filtered and cannot lead to 

faulty switch-off events. 

However, to achieve the desired control dynamic and stability an accurate design of the 

compensation network is required. The resulting bandwidth of average current control is 

lower compared to peak current control, but it is quite enough for PFC applications. 

Interleaving with good current sharing is possible, if every rail gets its own current control 

loop. But challenging is the cost effective sensing of the rail inductor currents. For single 

rail a shunt resistor in the ground connection path is mostly utilized, but for interleaved 

rails this method can only be used to sense the overall input current. By placing the shunt 
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resistor in the inductor path it has no direct connection to the signal ground and therefore 

needs resistive voltage divider at the input of a differential amplifier. The use of 

compensated Hall Effect current transducers in the inductor path is easy to implement, but 

too expensive for cost sensitive applications. By measuring in the switch path the inductor 

current information is not available during the switch-off interval. In some analog 

controller ICs a current synthesizer is applied to reconstruct the complete inductor current 

signal from the switch current [TI11]. 
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Figure 2.18: Average current control for boost converter 

 

2.4.3 Modeling of the Boost Converter 

For the analysis and design process of power electronic circuits it is essential to have 

adequate converter models available. They are helpful early in the design process to choose 

the suitable topology, select appropriate circuit components and run simplified simulations 

in order to estimate the converter performance. Furthermore, converter models are 

indispensable for control loop design to ensure stability and meet the dynamic 

requirements.  

There are several modeling methods which are addressed in a multitude of publications, for 

example [Rid90, Zac90, Eri00, Mak01, Kas91]. Elementary circuit modeling of power 

converters usually yields detailed continuous-time nonlinear time-varying models in state-

space form [Mak01]. Those models focus only on the components which are essential to 

the power conversion and control processing. Dynamics occurring at frequencies higher 

than the switching frequency are neglected, e.g. dynamics due to snubber networks. 

Additionally to the multitude of modeling methods there are several different transfer 

functions, which can be derived representing the dynamic behavior of a state variable 

(inductor current or capacitor voltage) under variation of an input variable (duty-ratio, 

input voltage, load, etc.).  

In this work the state space modeling method is utilized to derive the small signal control-

to-inductor-current transfer function 
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 (2.17) 

in order to design the current controller later on. Thereby the inductor current represents 

the control variable and the duty-ratio the actuating variable. The small signal values are 

indicated by ‘ ’. 

Transfer functions can only be determined for linear systems. For this reason linearization 

around a certain operating point is required in order to analyze the small signal dynamic 

behavior of the non-linear system. With state space modeling only the average values of 

the variables within each switching cycle are considered.  

In CCM the two different positions of the boost switch result in two different linear 

systems depicted in Figure 2.9 a) and b). Considered are the state variables inductor current 

   and capacitor voltage   . 

 

Interval I. (   ): switch closed 
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Interval II. (    ): switch open 
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By averaging both intervals over one switching cycle the dynamic average values for the 

state-variables result (cf. Figure 2.19) [Böc09]. For the inductor current the dynamic 

average value is 

   
  

 
 

  

 

 
       

   

 

          
  

   

   

 
 

 
           

 (2.22) 

With similar calculation the equation for the dynamic average value of the capacitor 

voltage results as 

   

  
 

 

 
      

  

 
   (2.23) 
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Figure 2.19: Dynamic average value of the inductor current 

 

The required small signal dynamic model is determined by applying a small perturbation 

around a steady-state operating point. The operating point for this linearizing process is 

given by 

          

          

     
    

 

             

  (2.24) 

 

The ‘0’ indicates the steady state value of the observed operating point. 

Inserting Eq. (2.24) into Eq. (2.22) and Eq. (2.23), it follows 
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and 

    

  
 

 

 
   

       
       

     
   

 
 

   

 
   (2.26) 

Since   
          and   

          , these terms eliminates each other. 

Both equations are transferred into Laplace domain in order to derive the required transfer 

function: 

     
 

 
    

       
           (2.27) 

     
 

 
   

       
     

   

 
  (2.28) 
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With inserting Eq. (2.28) in Eq. (2.27) and solving for    , it follows 

       
 

          

           
  

 
     

       

           
  

 
    (2.29) 

This equation indicates that the average inductor current is not only influenced by the 

control variable   
 , but also due to variations in the input voltage     . The small signal 

model can be separated in the control-to-inductor-current and the line-voltage-to-inductor-

current transfer function (cf. Figure 2.20). The control-to-inductor-current transfer function 

results from the first term on the right side of Eq. (2.29). However, typically    is not the 

applied control variable but  . Therefore the substitution   
      is performed for the 

small signal model. Thus, the control-to-inductor-current transfer function for the boost 

converter in CCM results as 

       
   

  
 

          

           
  

 
   (2.30) 

In the high-frequency region the following approximation can be done to simplify the 

transfer function [Zac90]: 

       
   

  
 

   

  
 (2.31) 
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Figure 2.20: Block diagram of the small signal average inductor current model 

 

From the second term of Eq. (2.29) the line-voltage-to-inductor-current transfer function 

results as 

       
   

    
 

       

           
  

 
   (2.32) 

This equation describes the influences on the inductor current due to line voltage variation. 

The line voltage acts as a disturbance variable on the control loop and especially in PFC 

applications the variation in the line voltage is significant. Because the variation in the line 

voltage occurs periodically with line frequency the disturbances is predictable and can be 

partly compensated by a disturbance variable feed-forward control. Such an approach is 

proposed in [Keu13]. But since the switching frequency is typically in the range of several 
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     , the change of the input voltage during a few switching cycles is small and 

therefore can be neglected for the design of the current compensator. 

The control-to-inductor-current transfer function of Eq. (2.30) is only valid, if the boost 

converter operates in CCM. Consequently, a separate model for DCM operation needs to 

be generated. In DCM there is the third interval within each switching cycle where the 

switch is open and the inductor current is zero (cf. Figure 2.9 c)). 

 

Interval III. (     ): switch open and      

   
  

   (2.33) 

   

  
  

 

 

  

 
 (2.34) 

In order to change the average inductor current in CCM, the current value at the end of the 

switching cycle must be different to the value at the beginning of the switching cycle. In 

DCM the inductor current does not behave as a true state space variable anymore, since it 

has no free boundaries but is fixed to zero at the beginning and the end of each switching 

cycle. Consequently, the inductor current of each cycle is independent and does not carry 

any information to the following cycle [Ara09]. For the dynamic behavior of the converter 

average model this means that with changing from CCM to DCM the order of the system is 

reduced by one (from one to zero) [Böc09]. Instead of a differential equation the inductor 

average current in DCM is represented by the algebraic equation 

   
    

  

     

      
   (2.35) 

However, within each switching cycle, the inductor current is still a dynamic variable and 

does contribute to the fast dynamics of the converter [Ara09]. Figure 2.21 illustrates that 

the average inductor current can be influenced as usual by changing the duty-ratio. The 

change of the average current from cycle to cycle is given by 

                   (2.36) 

For the small signal dynamic model the steady-state operating point for the linearizing 

process is defined by 

           

       

   (2.37) 

 

Applying this operation point on Eq. (2.35) and inserting in Eq. (2.36) it follows 
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   (2.38) 

With rearranging this equation one gets  

    
  

  

     

      

         
    (2.39) 
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Figure 2.21: Dynamic inductor average current in DCM 

 

Typically the small signal change in the duty-ratio is small compared to the large signal 

duty-ratio (  
    ). Consequently, the second term of the equation can be neglected and 

the duty-ratio-to-inductor-current transfer function for DCM can be stated as 

           
   

  
 

         

         
   (2.40) 

 

2.5 Current Control Design 

Responsible for a good power factor in PFC applications is the current control loop. The 

most common current control method for PFC, average current control in CCM, is 

described in this section. For this purpose a well designed current compensator is required, 

which lets the average inductor current track the sinusoidal reference value as good as 
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possible. In the cascaded control structure of PFC rectifiers the current control loop is the 

inner loop with the highest bandwidth. 

The model of the boost converter derived in the previous section depends on the operating 

point. Especially in PFC applications with its continuously varying input voltage and 

current the operation point changes extremely within each line half-cycle (cf. Figure 2.22). 

But, since the switching frequencies of PFC rectifiers are generally well above line 

frequency, input and output voltage can be considered as constant values during several 

switching cycles (Quasi-Static Approach) [Jov06]. Thus, the known small signal model Eq. 

(2.30) can be utilized for the control loop design. 
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Figure 2.22: Varying operation point within line half-cycle 

 

In the small signal block diagram of Figure 2.23 additionally the transfer characteristics 

   of the PWM and    of the current sensing are depicted and need to be considered. They 

typically have a constant gain and are assumed to be unity in the following design 

example. In [Rid90] the characteristic       of the data-sampling nature for the boost 

converter current loop is derived. However, since the current loop crossover frequency     

satisfies               , the high-frequency block diagram can be simplified by 

neglecting       [Jov06]. 

Due to the permanently varying operating point in PFC applications the complete operation 

range needs to be considered and the worst-case operating point must be identified for 

controller design. Figure 2.24 shows Bode plots of the boost converter control-to-inductor-

current transfer function        of different operating points. Note that for all Bode Plots 

normalized transfer functions are utilized, e.g.                   . In Figure 2.24 it can 

be seen that the gain of        is low at low frequencies and depend on the instantaneous 

line voltage and load current. However, at high frequencies the gain of        does not 

depend on input voltage or load current. Since the current loop is a fast control loop the 

high-frequency approximation of        Eq. (2.31) can be utilized for design purpose.  
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Figure 2.23: Block diagram of closed average current control loop        
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Figure 2.24: Bode plot of the normalized boost converter control-to-inductor-current 

transfer function        for different operating points 

 

Typically a PI type compensator for the current loop is applied. Its pole at zero frequency 

(integrator) increases the low-frequency gain of the control loop. The zero is required to 

get sufficient phase margin at crossover frequency    . For adequate stability a phase 

margin of at least 45° is recommended. Therefore the frequency of the zero     should be 
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approximately at           [Jov06, Zac90b]. A good choice for the crossover frequency 

is            . In order to attenuate switching noise in the current signal, it is 

advisable to add an additional pole well above crossover frequency without affecting the 

stability of the current loop. A good choice for this pole is at          [Jov06].  

In Figure 2.25 the asymptotic Bode plots of the current compensator       , the high-

frequency approximation of        and of the resulting open-loop transfer function        

are illustrated. 
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Figure 2.25: Asymptotic Bode plots of high-frequency approximation of the normalized 

control-to-inductor-current transfer function, compensator transfer  

function and open loop transfer function 

 

The design of the current compensator is done for CCM to achieve good power factor, but 

stable operation with adequate dynamic during DCM needs also be ensured. The DCM 

transfer function (Eq. (2.40)) has a constant gain versus frequency of only a few dB (cf. 

Figure 2.26). This results in a cross over frequency of the open current loop of only several 

10Hz up to few 100Hz. Thus, the current loop has not suitable dynamic to track the current 

reference value in DCM. However, due to the fact that the loop gain and accordingly the 

current average value in DCM depends on the input voltage (cf. Eq. (2.35)), a reasonable 

tracking of the reference current is achieved. Especially at low input voltages, where DCM 

typically occurs, the average current follows the input voltage almost linearly.  

The converter parameters which were used for the controller design are given in Table 2.2. 
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Figure 2.26: Asymptotic Bode plots of the normalized control-to-inductor-current transfer 

function in DCM for different input voltages at         W, compensator 

transfer function and resulting open loop transfer functions 

 

 

symbol denotation value 

L boost inductor 400µH 

C output capacitor 560µF 

R100% load resistance at full load 160Ω 

R50% load resistance at half load 320Ω 

vout = vC output voltage 400V 

Pout nominal output power 1000W 

        switching frequency 60kHz 

Table 2.2: Converter parameters utilized for the controller design 
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2.6 Voltage Control Design 

Besides tracking the input current in order to get the same shape like the input voltage and 

consequently unity power factor, the second task for PFC rectifiers is to provide constant 

output voltage. Due to the sinusoidal input voltage and input current a pulsating input 

power occurs, which causes an unavoidable voltage ripple with twice the line frequency at 

the output. The amount of this ripple mainly depends on the average input power and the 

value of the output capacitance. Since the ripple in the output voltage is based on physical 

reasons, it cannot be compensated with the voltage loop without interfering the power 

factor. Consequently, a good PFC requires that the output of the voltage compensator is 

constant during half of the line period. For the voltage loop design this means, that the 

bandwidth needs to be much lower than twice the line frequency in order to sufficiently 

attenuate second-harmonic ripple of the output voltage at compensator output [Jov06]. On 

the other hand a too slow voltage loop cannot respond to load changes in reasonable time. 

Thus, determining the bandwidth of the voltage loop is a trade-off. A good range for the 

crossover frequency is           .  

Since the voltage-loop is much slower than the current-loop, both control loops can be 

designed independent from each other. Furthermore, it is not essential for the voltage loop 

design which current control method is implemented in the inner control, i.e. it can be the 

same for any type of current control. The closed current loop is part of the control path in 

the voltage loop and can be assumed to be unity at the low crossover frequency of the 

voltage loop.  
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Figure 2.27: Block diagram of closed voltage control loop        
     

     
 

 

The block diagram of the output voltage control loop is depicted in Figure 2.27. For the 

design example the voltage divider     for the output voltage measurement and the 

multiplier are assumed to have a constant gain of         . Thus, only the transfer 

characteristic of the output capacitor with connected load remains, which needs to be 
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considered for the design of the voltage compensator. Assuming a resistive load with 

            (cf. Table 2.2) the transfer characteristic of the load results to  

         
     

     
 

     

            
   (2.41) 

As voltage compensator a PI-type controller is applied, which has the zero at 

approximately         to achieve a phase margin of at least 45° (55° is achieved with the 

applied values). Figure 2.28 shows the Bode plots of the load, the voltage compensator and 

the resulting open loop transfer function. 
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Figure 2.28: Bode plots of the normalized voltage loop control path         , compen-

sator transfer function        and open loop transfer function        

 

2.7 Multiplier and Load Feed-Forward Control 

The main difference between the PFC rectifier control structure and that of conventional 

DC-DC converters is the multiplier and load feed-forward unit depicted in Figure 2.29. 

The multiplier is utilized to generate the sinusoidal reference value for the current control 

loop in order to achieve unity power factor. For this purpose a normalized signal of the 

rectified input voltage needs to be generated. This means that the instantaneous value of 

the rectified input voltage needs to be divided by a value which is proportional to the DC 
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component of the rectified input voltage, e.g. the amplitude value      or root mean square 

(RMS) value    . By multiplying the normalized voltage signal with the voltage 

compensator output the sinusoidal current reference signal is generated. 
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Figure 2.29: Multiplier and load feed-forward unit 

 

Due to the fact that the bandwidth of the voltage loop is too low to compensate variations 

in the line voltage in adequate time, a load feed-forward (LFF) control is implemented in 

most PFC applications to achieve constant input power under fluctuation of the line 

voltage. With variation of the line voltage the input current needs to be changed in opposite 

direction in order to keep the input power constant. This task can be accomplished by a 

further division of the DC proportional signal of the rectified input voltage. Accordingly, 

with LFF the voltage compensator output signal physically is a power signal      and the 

current reference value is generated by 

         

   

   
    (2.42) 

With this LFF the voltage compensator does not need to respond to variations in the line 

voltage. However, for the generation of the feed-forward signal a further design tradeoff 

arises. This signal ideally should be pure DC and proportional to the rectified input 

voltage. Typically the feed-forward signal is generated by analog filtering and for high 

dynamic of the LFF higher bandwidth of the filter is required. But, higher bandwidth 

means higher line-frequency ripple in the feed-forward signal, which causes distortions in 

the current reference signal [Jov06]. Advantageous for this design problem is a digital 

implementation where the amplitude of the line voltage is identified within every half-

cycle. Thus, a feed-forward signal is generated, which is constant during the next whole 

line half-cycle. 

For improving the dynamic response during load variation a further feed-forward loop is 

practical [Zac90b]. For this purpose a feed-forward signal proportional to the load current 

can be utilized as additional input of the multiplier. 

 



 35 

3 Digital Converter Control 

As mentioned before digital control offers a multitude of advantages compared to analog 

control. However, the controlled converter is still in continuous time domain. Such systems 

with both continuous-time and discrete-time components are called sampled-data systems 

[Fra98]. To perform the digital control, continuous-time signals need to be converted into 

discrete-time domain and after processing in the DSP or µC the signals have to be 

converted back from digital-time to continuous-time domain. Dedicated DSPs and µCs 

with suitable built-in peripherals are available for that purpose. The optimal control loop 

design and optimization requires understanding and models of the sampling process, 

analog-to-digital conversion (ADC), digital PWM and of course digital controller design 

[BuMa06]. Figure 3.1 shows the structure of a digital current control for a boost converter. 
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Figure 3.1: Typical structure of current control loop with digital controller 

 

3.1 Analog to Digital Conversion (ADC) 

One important part of the digital control loop is the signal acquisition for the digital 

controller. Therefore a suitable description of the ADC process is required, which can be 
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mathematically modeled as cascaded connection of an ideal sampler and an n-bit uniform 

quantizer [BuMa06]. 

3.1.1 Sampling Process 

The sampling process converts a continuous-time signal into a discrete-time signal. The 

sampler can be represented by a simple switch, which is closed at the time instants       

for a very short duration. For mathematical representation of the sampling process the 

impulse modulation can be utilized. Thus, the output of the sampler is considered as a 

stream of null duration impulses [Fra98]: 

                   

 

    

               

 

    

   (3.1) 

with               The impulse coefficients are equal to the signal at the sampling 

instants (cf. Figure 3.2). The Laplace transform of       can be expressed by  

                   

 

    

    (3.2) 
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Figure 3.2: Sampling process 

 

With the utilized constant sampling period    this process is called uniform sampling. 

From Shannon’s Theorem it is known that it is necessary to choose the sampling frequency 

   at least two times larger than the frequency bandwidth of the sampled signal, in order to 

be able to reconstruct a continuous-time signal from samples. The consequence of 

violating Shannon’s Theorem is the aliasing phenomenon illustrated in Figure 3.3. Hence, 

it is essential to limit the frequency spectrum of the sampled signal by filtering, in order to 

make it negligible above half of the switching frequency [BuMa06]. This limit frequency is 

also known as Nyquist frequency. 

Since the filtering needs to be performed before the sampling process, the anti-aliasing 

filters are implemented as analog first- or second order filters [Jov12]. 
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Figure 3.3: a) Reconstructed signal (aliasing) because of a too low sampling frequency 

b) Interpretation of the aliasing effect in frequency domain  

 

3.1.2 Quantization 

The signal after the sampling process is discrete in time, but it has still continuous 

amplitude values. The quantizer transforms the continuous amplitude values into discrete 

amplitude values. Because the sampled signal needs to be present at the input of the 

quantizer during the entire conversion time, the sample value is held constant by a hold 

circuit until the next sampling is performed. The output of the quantizer can only take a 

finite number of values, which depends on the number of bits (cf. Figure 3.4). An n-bit 

quantizer has    quantization levels. With the full scale range (FSR) of the input voltage 

the resolution or quantization step   can be expressed by  

  
   

  
    (3.3) 

The embedded ADCs of today’s DSPs and µCs typically provide         . Due to the 

fact that the resolution of the ADC is limited, a quantization error    occurs (cf. Figure 

3.4). This loss of information from the input signal is inherent to the ADC process and 

unavoidable [BuMa06]. Thus, a key factor to reduce this quantization error is to fully 

exploit the ADC input voltage range.  
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For the control loop design it should be evident, that the quantizer as well as the ideal 

sampler is an essentially instantaneous function, which does not contribute to the dynamic 

of the system [BuMa06]. 

VADC

eq

000

001

101

100

011

010

110

111

+½ LSB

-½ LSB

FSR

ADCout

LSB

VADC

FSR

0.25 0.5 0.75  1

 

Figure 3.4: Transfer characteristic of a 3-bit rounding type quantizer  

and quantization error    

 

3.2 Digital Pulse Width Modulation (DPWM) 

The conversion back from the discrete-time domain to continuous-time domain for 

switching converters is performed by a digital pulse width modulation (DPWM) unit. For 

the boost converter with fixed switching frequency the DPWM gets the computed duty-

ratio and generates the continuous gate-drive signal for the switch. 

Conventional analog PWMs use a triangular or a sawtooth carrier signal and an analog 

comparator. The analog implementation ensures minimum delay between the modulating 

signal and the duty-ratio. The delay is only caused by the non-ideal analog components and 

can always be considered negligible; concluding that the phase lag is actually zero 

[BuMa06].  

For DPWM a discrete counter is utilized to generate the carrier signal and the analog 

comparator is replaced by a digital one. The counter is incremented with every clock pulse 
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and if the counter value is equal to the programmed duty-ratio, the digital comparator 

resets the gate-drive signal. The duty-ratio resolution of the DPWM is determined by the 

ratio between the modulation period    and the counter clock period     :  

   
    

  
 

  
    

  (3.4) 

The value    also represents the duty-ratio quantization step.  
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Figure 3.5: Structure of an digital PWM with signal waveforms versus time of clock 

signal, carrier signal        , duty-ratio     , duty-ratio after zero-order-

hold (ZOH)       and gate signal       

 

Typically the modulating signal update of the DPWM is performed only at the beginning 

of each PWM period (cf. Figure 3.5). This mode of operation can be modeled as a sample-

and-hold effect [BuMa06]. This means that a change in the programmed duty-ratio during 

the modulation period has no effect on the output in the actual period. It can only be 

considered for the following PWM period. This inherent delay effect of DPWM is the 

major difference to the analog implementation, where a change in the duty-ratio during the 
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PWM period has effect on the output with negligible delay. The consequence of this 

systematic delay of the DPWM is a significant reduction of the control loop phase margin. 

However, the DPWM can also be implemented with a double or multi update mode to 

reduce the delay and consequently the loss of phase margin [BöBu13], but these modes of 

operation are not suitable for all SMPS applications.  

For an appropriate small-signal model the DPWM can be represented by an ideal sampler 

followed by a zero-order hold (ZOH) [BuMa06]. The quantization effect is neglected. For 

triangular carrier signal, where modulating signal is sampled in the middle of the switch-on 

period the small-signal transfer function in Laplace domain can be derived as [BuMa06]: 

        
     

    
 

 

    
         

  
          

  
    (3.5) 

Where       and      represent the Laplace transforms of       and       

 

3.3 Digital Controller 

Compared to analog control, where the compensator is realized by operational amplifiers, 

the control law in digital control is realized by binary calculations [Xie03]. 

An important issue for an accurate control loop design is the implementation of a suitable 

data acquisition path. For the current control loop for example the data acquisition path is 

the cascaded connection of the current sensor, a signal conditioning electronic circuit and 

the ADC. A well designed signal conditioning circuit amplifies the sensor signal to fully 

exploit the input voltage range of the ADC and filters the signal to avoid aliasing effects 

[BuMa06].  

Since the control path is still in continuous-time domain, it is often desired to design the 

controller also in continuous-time domain. Such a quasi-continuous sampling controller 

design can be employed, if the sampling period is 10-20% of the summarized time 

constants of the analog control path, if the order of the systems is at least two [Lat95]. The 

advantage of this approach is that no transformation of the converter model into discrete-

time domain is required and the well known controller design methods of the Laplace 

domain can be applied.  

Finally the transfer function of the designed converter needs to be transformed into a 

difference equation for implementing on a DSP or µC. 

Synchronization between sampling and PWM 

It was already mentioned that in order not to violate Shannon’s theorem, the sampling 

frequency should be much higher than the frequency of the sampled signal. Consequently a 

sampling frequency, which is at least one order of magnitude higher than the switching 

frequency of the converter, would be required [BuMa06]. However, most of the utilized 
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standard DSPs and µCs do not support such high sampling frequencies. At least for the 

current control loop, where high bandwidth is desired, the sampling frequency should be 

typically as high as possible.  
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Figure 3.6: Synchronized sampling in the middle of the switch-on period and not 

synchronized sampling of a current signal 

 

In most applications, especially in PFC applications, the average value of the inductor 

current needs to be controlled and the switching frequency ripple is only undesirable noise. 

Considering this fact the precise discrete sampling and the synchronization possibility of 

the sampling process and the PWM period can be utilized in order to directly sample the 

average value of the inductor current (cf. Figure 3.6). This synchronized sampling also 

known as regular sampling can be either done at the middle of the switch-on or the switch-

off period. If double update mode of the DPWM is possible, also sampling at both 

instances can be performed to reduce the delay time of the control loop [BöBu13]. Of 

course, with this method Shannon’s theorem is violated, but if the sampling and switching 

process are suitably synchronized, the normally undesirable aliasing effect is exploited to 

reconstruct the average value of the inductor current [BuMa06]. In addition there is no 

need of an analog anti-aliasing filter to eliminate the ripple from the sampled signal. 

 





 43 

4 State of the Art of Interleaved PFC Rectifier 

Control 

Before figuring digital PFC control a review of the traditional analog control realization is 

given. After that full digital implementation of the conventional cascaded PFC control, 

which is already state of the art, is described.  

4.1 Review of Analog PFC Control 

The analog technique has dominated the PFC control for many years. In particular for the 

fast current control loop the high bandwidth of analog controllers was essential in order to 

faithfully track the semi-sinusoidal current reference. Consequently, a multitude of specific 

analog controller ICs for PFC applications are available, which are easy to understand and 

featuring a variety of functionalities at relative low cost.  
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Figure 4.1: PFC rectifier control structure for two interleaved rails realized with a 

single PFC controller IC and additional analog circuitry for interleaved 

clock signals, PWM, current balancing and safety shutdown 

 

For a long period only controller ICs for single PFC rectifiers were available (for instance 

UCC28019 [TI07], UCC2855 [TI05] and ML4824 [Fai03]). Consequently, these ICs were 

also used for interleaved PFC rails (cf. Figure 4.1) and the current balancing was 

implemented using additional discrete components. For this reason some features of the IC 
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like the PWM unit and some protection functions could not be used. Figure 4.2 shows the 

scheme for such a separate PWM with current balancing functionality [Gro09]. It is 

realized with an inner peak current loop, which inherently provides ideal current sharing. 

Interleaved clock signals are provided by a discrete timer IC to trigger the switching cycles 

and generation of sawtooth signals for the required slope compensation. The compensation 

ramp and the transistor current signal are added and passed to the comparator input. The 

current compensator for tracking the overall input current is realized with an operational 

amplifier (opamp), which is included in the controller IC. The desired dynamic for the 

current loop is determined by connecting external resistors and capacitors. 
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Figure 4.2: Scheme of an interleaved PWM with current balancing 

 

By now there are also PFC control ICs for two interleaved rails available [TI11, Fai13]. 

Some of those even support multi-rail interleaving by operating several control ICs in 

parallel [TI11]. The ICs for interleaved PFC rectifiers have two independent current 

compensators which get the same set point value. The rail currents are typically measured 

in the switch path with simple current transformers. In order to control the current average 

values the absent current down slopes are reconstructed by a current synthesizer [TI11]. 

With this method the average current values in DCM are not covered correctly and the 

resulting error cannot be compensated completely. 

The generation of the semi-sinusoidal current reference for single rail and interleaved rails 

control ICs does not differ. The measured output voltage is subtracted from the set point 

value and the resulting error signal is passed to the voltage compensator. The voltage 

compensator is also realized with an integrated opamp. The compensator output is 

proportional to the RMS value of the required input current. To generate the sinusoidal 

current reference this value is multiplied with the measured input voltage by an analog 

multiplier. Additionally the result is divided by the square of the RMS proportional value 

of the input voltage. This operation represents the load feed-forward control described in 

Section 2.7. Due to the very slow voltage control loop a variation of the input voltage 

cannot be compensated in acceptable time. Thus, the feed-forward compensation ensures 
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faster change of the current reference after input voltage variation in order to keep the 

input power equal to the requested output power. However, by the analog generation of the 

input voltage RMS proportional value there is also a trade-off between fast response and 

low line frequency ripple [Xie03, Jov06]. Ideally the RMS proportional value should be a 

pure DC signal. But in order to get a faster response that value is generated with higher 

bandwidth and therefore still has some line frequency ripple, which causes distortion in the 

current reference signal. 

Another drawback of PFC control ICs is the analog realization of the multiplier and 

divider. Those have typically high tolerances and non-linear characteristic, which can 

cause distortions when operating in a wide input voltage range [FuCh01]. 

4.2 Full Digital Average Current Mode PFC Control 

As a result of low cost DSPs and µCs with sufficient computing power and suitable 

peripherals full digital control of PFC rectifier is already state of the art. Numerous of 

publications on this topic have been published in the last years, for example [Mit96, 

FuCh01, AME05, Pro03, Pro06, Zha04, Zum02, QLi09]. 

In many of the digital implementations the structure of the PFC control is pretty much the 

same than those of traditional analog realizations. However, some modifications are 

obvious or need to be introduced. The main difference to analog control is the sampling 

process in digital control loops. While the analog controller receives the pure signal, only 

discrete samples of the time-continuous signal can be passed to the digital controller. As 

explained in Chapter 3 the signals need to be filtered before sampling to avoid aliasing or 

the required average value needs to be sampled directly with synchronized sampling. The 

most common method is to sample the switch current in the middle of the switch-on 

interval to get the inductor average current for the controller. By designing the current 

controller the phase lag, which is introduced by the digital delay, needs to be considered. 

Compared to the analog control the attainable bandwidth is decreased, accordingly. 

Figure 4.3 shows the structure of a digital control for an interleaved PFC rectifier. In order 

to achieve balanced inductor currents, every rail is assigned its own current controller. 

With this technique there is no need of a shunt resistor for input current measurement. In 

addition this technique exhibits a good performance and can be implemented easily. The 

controller needs only to be designed one time and the parameters are used for each rail. 

However, the required computing power for executing the current control increases 

linearly with the number of interleaved rails. 

If the computing power is limited, it is also possible to use a shunt resistor in order to 

control the overall input current with a single current controller. Hence, balanced rail 

currents are not ensured and additional balancing control is required. The balancing control 

is performed with lower bandwidth in this case by evaluating the sampled switch currents. 
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An appreciable improvement of the digital implementation is the precise generation of the 

semi-sinusoidal current reference signal.  

From the multitude of equidistant samples the true RMS value of the input voltage can be 

computed and the amplitude value can be identified. This values are updated at every line 

voltage zero crossing. Thus, the normalized input voltage is used for multiplying with the 

voltage controller output value and the response of the power feed-forward is accelerated 

without introducing any line frequency ripple. 
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Figure 4.3: Digital control of an interleaved PFC rectifier with two independent current 

compensators for balanced rail currents 

 

One essential advantage of digital control is the possibility to implement sophisticated 

control algorithms. In the following two valuable measures are described, which lead to 

improved current tracking especially in DCM. The first introduces a correction factor to 

compute the current average value from the current sample in DCM and the second 

describes the implementation of a duty-ratio feed-forward loop for DCM and CCM 

operation. 
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4.2.1 Sample Correction in DCM 

Also in DCM the sampling of the inductor current is performed at half of the switch-on 

duration. However, this sample values are not equal to the inductor average value in DCM 

and consequently a systematic error occurs (cf. Figure 4.4). In [Gus03] a method is 

presented, which compensates this error. 
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Figure 4.4: Systematic error in current average value due to sampling the  

inductor current in the middle of the switch-on time in DCM 

 

The average current value in DCM can be computed by integrating the triangular current 

shape over one entire switching period. Therefore the current shape is splitted into two 

intervals, the current rising interval     and the current falling interval     . By dividing 

the sum of this two current components by the switching period the current average value 

results: 

   
   
 

 
        

  
      (4.1) 

Consequently, the sampled current value       needs only to be multiplied by the 

correction factor 

             (4.2) 

For the fraction   the value determined by the current controller is utilized directly to 

compute the correction factor. The fraction    needs to be computed with  

   
    

            
  

   

        
       (4.3) 

Thus, the algorithm for the correction factor results as 
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       (4.4) 

In DCM the value of   is always smaller than unity. With entering CCM the value would 

exceed unity, for which reason a limitation     is required. Consequently, the correction 

factor can be applied in both DCM and CCM. A differentiation is not required, but beyond 

that the correction factor can be utilized to identify DCM and CCM operation for other 

purposes. 

4.2.2 Duty-Ratio Feed-Forward Control for CCM and DCM 

In PFC applications the operation point of the boost converter varies continuously in a 

wide range. Consequently, the current compensator needs to vary the duty-ratio in a wide 

range. Due to this fact it don’t suffice to give the current compensator a good small signal 

disturbance response, but also to offer a suitable large signal reference-variable response.  

Moreover, the converter operates not only in CCM. Typically the operation mode switches 

within the line period between CCM and DCM. From Section 2.4.3 it is known, that the 

duty-ratio-to-inductor-current transfer functions of both modes differ significantly. This 

results in abrupt steps in the converter dynamic during a line period. Since the current 

compensator is mostly designed for CCM, the current tracking in DCM is not satisfying, 

causing input current distortion. 

In [Gus04] a duty-ratio feed-forward control is presented, which adjusts the large signal 

duty-ratio in CCM as well as in DCM. For this purpose the voltage ratio of the ideal boost 

converter for both conduction modes are computed with 

          
   

    
       (4.5) 

and 

         
    

     
 
        

    
  

     

  
 
        

    
         (4.6) 

From Eq. (4.6) it becomes clear, that the duty-ratio in DCM also depends on the desired 

input conductance     of the converter. The curves of the feed-forward duty-ratios during a 

line half-cycle are depicted in Figure 4.5 for different    . The transition from DCM to 

CCM and back take place at the intersection of both curves. Accordingly, the valid value 

for the feed-forward loop can be identified simply by computing the CCM and DCM 

values and utilizing only the lower value. In Figure 4.6 a scheme of the generation of the 

duty-ratio is illustrated. 



4.2  Full Digital Average Current Mode PFC Control 49 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

line voltage phase angle / 1°

d
ff

dff,CCM

1200W

(400V)²
Gin=

Gin=
600W

(400V)²

300W

(400V)²
Gin=

dff,DCM

 

Figure 4.5: CCM and DCM feed-forward duty-ratio values during line half-cycle for 

different output powers (       V;       F;      kHz) 
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Figure 4.6: Generation of the duty-ratio with feed-forward control for CCM and DCM 

 

In the next four chapters advanced control techniques for interleaved PFC rectifiers are 

presented, which utilize digital control. By describing the different control concepts focus 

is laid upon the implementation of the current control and the current balancing. The 

voltage compensator can be realized in the same way for all proposed control concepts and 

is not an issue. 
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5 Semi-Digital PFC Control (Mixed Signal 

Control) 

As a smart combination of analog and digital control techniques a semi-digital control 

concept is presented, which already offers the potential for implementing a multitude of 

advanced power management features in digital.  

5.1 Control Structure 

In many cases available analog controller ICs for PFC applications do not meet adequately 

the required specifications of the power supply. To fulfill those requirements, additional 

analog circuitry is needed as already mentioned in Section 4.1. Thus, it is obvious to 

change over to a completely digital control structure like described in the previous section, 

in order to employ the benefits such as flexibility and programmability as well as 

decreased number of active and passive components. However, the current control loop has 

to provide a much higher bandwidth than the voltage control loop. Therefore, high 

computing power and costly DSPs or µCs are needed for applying fully digital PFC 

control. Even fully digital control still needs some analog circuits for time-critical safety 

shutdown or shunt signal amplification. 

Considering these pros and cons, a semi-digital concept turns out as an attractive 

compromise [Gro09]: 

 The current controller including time-critical protection functions retains the 

conventional analog structure. 

 The voltage controller, feed-forward compensation, multiplier, PWM clock generator 

and non-time critical protection functions are implemented on a µC. 

Such a solution is characterized as follows: 

 Because the required bandwidth of the voltage control is usually small, a cost-effective 

DSP or µC is sufficient. 

 High current control bandwidth is ensured by the analog circuitry. 

 There is no need to apply specific analog controller ICs.  

 Many innovations of digital control still can be realized, because issues of adaptive and 

nonlinear control, programmability etc. often focus on voltage control or rather on 

generating the current loop reference. 

Figure 5.1 shows the semi-digital control structure with the separated analog current 

controller, analog PWM including current balancing and the digital voltage controller. 

ADCs provide the actual values of the rectified input voltage     and PFC rectifier output 

voltage     . There is no need of converting any currents for the control loop. Thus, only 

relatively slowly varying signals need to be converted, making costly ADCs with a high 

sample rate superfluous. 
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In addition the digital part observes the range of      and     and can trigger a safety 

shutdown at overvoltage or undervoltage conditions. 

If no specific digital-to-analog converter (DAC) is available on the DSP or µC, the output 

value      can be passed to the analog current controller as pulse width modulated signal 

and a simple RC low-pass acts as DAC (cf. Figure 5.1). For current control a PI type 

controller with additional low pass filtering is applied, which is implemented using a single 

opamp (cf. Figure 5.2). Another PWM channel also with RC low-pass filter is employed 

for digital offset compensation. The actual current value     is measured via a shunt resistor 

and after filtering and adequate scaling passed to the current controller. PWM and current 

balancing circuits form a complete analog subsection as depicted in Section 4.1. Analog 

comparators are used for time critical safety shutdown like pulse-by-pulse current limiting. 
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Figure 5.1: Semi-digital control structure for interleaved PFC rectifier 
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Figure 5.2: Scheme of the analog current controller with DAC 
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In Figure 5.1 the semi-digital control is depicted for an interleaved PFC rectifier with two 

converter rails, but it can easily be extended for multi-rail interleaved converters without 

the need of more computing power. 

5.2 Digital Control Implementation 

Along with the implementation of the voltage control loop, a multitude of additional 

functionality is feasible in digital. The structure of the digital control parts are shown in 

Figure 5.3. Particular functions are described in the following. Obviously, the presented 

functions can also be implemented in fully digital control structures. 
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Figure 5.3: Block diagram of the digital control part with DAC 

 

5.2.1 Voltage Control, Multiplier and Feed-Forward 

The digital control tasks are computed in equally spaced time slices. A synchronization to 

the switching cycles is not necessary. Furthermore, the repetition frequency of the digital 

control tasks can be much lower than the converter switching frequency. In every cycle 

voltage control, multiplier and feed-forward compensation are computed. 

The structure of the digital control parts is illustrated in Figure 5.3. By means of the control 

variable      and the nominal output voltage reference      the offset      for the voltage 

control algorithm is calculated. The measured input voltage     is primarily needed to 

synthesize the sinusoidal input current reference     . Therefore, typically the voltage 

regulator output, which is proportional to the current reference peak value, is multiplied by 

the normalized input voltage. Optionally, the digital implementation offers the possibility 

to utilize an artificial sinusoidal waveform for multiplying [Gro09]. In this case the 

measured input voltage is needed to detect zero crossing and line frequency. By using a 

sine table systematic phase errors caused by ADC, DAC, computational time, etc. can be 

compensated easily. 
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As described in Section 2.7, the line voltage RMS value     or the amplitude value      

needs to be identified for the feed-forward compensation to achieve constant input power 

under fluctuation of the input voltage. The output value of the digital control part is the 

current reference value      for the current controller, which is converted into a pulse width 

modulated signal.  

Measured input voltage and current waveforms are shown in Figure 5.4. The input current 

replicates the line voltage waveform accurately. Only little disturbances after the zero-

crossing are present, which are related to the analog current control loop. However, high 

power factors are achieved with the semi-digital control concept. The dynamic of the 

digital voltage control loop can be seen in Figure 5.5 during a load step transient response 

from      to     . The response time and the voltage overshoot are kept in an 

acceptable range and match the implemented controller dynamics. 
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Figure 5.4: Line voltage and current waveform 

 

5.2.2 PWM Clock 

The clock signal for the analog PWM module is generated by the DPWM unit of the DSP 

or µC. Two DPWM channels are used in push-pull mode to generate two 180° phase 

shifted clock signals with half of the PWM frequency.  

Because the PWM clock signal is generated in the digital control part, start and stop of the 

PFC operation can be controlled digitally. Furthermore, the switching frequency is kept 

adjustable. 



5.2  Digital Control Implementation 55 

iref

vout,ac (10V/div)

iac (5A/div)

t (40ms/div)load 

step

 

Figure 5.5: Transient response of the current reference after the DAC, the line current 

and the AC part of the output voltage during load change (         ) 
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Figure 5.6: Current reference, line current and output voltage during soft  

start-up process 
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5.2.3 Soft Start-Up 

At start-up the PFC output capacitor voltage has to be raised from the pre-charged level      

to the nominal output voltage     . In order to avoid high current surge, a soft start-up 

procedure needs to be implemented. To avoid a start-up current peak the soft-start process 

starts at zero crossing with multiplying a constant current reference peak value       by the 

normalized input voltage. The result is the sinusoidal current reference value. It is passed 

via DAC to the analog current controller until the nominal output voltage is reached. After 

completing the soft-start procedure the program enters the repetitive loop with all control 

functions being activated. Waveforms of the analog reference current, the converter input 

current and the PFC output voltage during soft-start process are illustrated in Figure 5.6. 

5.2.4 Power Management Features 

A. Phase Shedding 

One advantage of using paralleled converters is the potential to adjust the number of 

energized rails based on the load conditions. Thus it is possible to enhance the efficiency at 

light load conditions [Zum06, Wet06]. Switching between single-rail and interleaved 

operation occurs with hysteresis. For example one rail is switched off, if output power is 

below 40% of the rated power for a defined duration and switched on again when the 

output power exceeds 45%. While running in single rail mode, the energized rail can 

alternate between the converter rails in order to achieve equal thermal stress of all PFC 

components. This toggling can be performed without any disturbances at every line voltage 

zero crossing.  

B. DC Link Voltage Reduction 

In many applications the PFC output capacitor supports two functions: First filtering the 

inductor current and second providing energy in ‘hold-up’ case at line power failure (e.g. 

for one line period). However, since the stored energy depends on the output voltage, the 

output voltage can be reduced at light load. This measure leads to an improved efficiency 

of the PFC stage and the DC-DC stage at light load. Because the DC link voltage equals 

the semiconductor blocking voltage, the latter is strongly related to the switching losses of 

both stages. Hence, the losses decrease significantly with reduced voltage level. 

C. Adaptive Switching Frequency 

Another method to improve the efficiency is to reduce switching losses by an adaptive 

lowering of the switching frequency. This is feasible, if the PFC boost inductance is 

nonlinearly related to the actual current value. Hence, at lower current and therefore 

increased inductance the switching frequency can be reduced, while the current ripple is 

still kept within set limits. This circumstance can be utilized twofold, firstly within every 

sine half-cycle of the line current (cf. Figure 5.7) and secondly depending on the DC 

output current, which defines the line current amplitude (i.e. lower switching frequency at 

lower load). 
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Figure 5.7: Switching frequency dependent on the instantaneous current value  

during line half-cycle 

 

D. Zero Crossing Blanking 

Yet another method to improve light load efficiency is to completely switch off the 

converter and operate it intermittently. This technique is commonly known as burst mode  
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Figure 5.8: Rectified input voltage and average current waveform with zero  

crossing blanking 
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and can also be utilized in PFC applications [Zha11, Jan09]. For this purpose the PFC 

converter is kept off around the line voltage zero crossings and is activated for power 

processing near the line voltage amplitudes. This can be either done with enabling or 

disabling the drivers, which results in high current transients at the enable/disable instants 

[Zha11, Jan09]. Alternatively, a continuous current flow can be achieved, if still a 

sinusoidal reference current is applied only in the center of the line half-cycle. This process 

is shown in Figure 5.8. With this technique the light load efficiency is increased by slightly 

decreasing the power factor. 

E. Adaptive Current Limiting 

In order to avoid overstressing of the devices the current needs to be limited. However, in 

some applications for short-term duration an overcurrent up to 125% of       is required 

(cf. Figure 5.9). This feature also can be realized in the digital part of the control structure. 

Therefore an algorithm is implemented which allows intermediate overcurrent considering 

the past load conditions of the converter. Contrary, no overcurrent is allowed, when the 

power supply is stationary running at full load.  

Assuming that the current loop works correctly, the current reference value is used for the 

algorithm, thus there is no need to convert the actual current value into the digital world. 

Figure 5.9 illustrates the current limiting process from 20% and 80% initial load.  
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Figure 5.9: Current limiting after load step from 20% and 80% initial load into  

over load 
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5.3 Summary 

Digital control offers potential for applying advanced algorithms to enhance the control 

performance. However, it is not essential to implement a full digital control structure to 

achieve high flexibility. It is possible to achieve almost the same performance when only 

realizing the low bandwidth voltage control in a digital manner. By retaining the relative 

fast control functions in analog technique, high control dynamic is ensured without the 

need of high computing power, which decreases DSP or µC costs significantly. By 

replacing the multitude of analog components by DSP or µC the required PCB space for 

PFC control is reduced considerable. 

The semi-digital control can easily be extended from single-rail to multi-rail interleaved 

converters without the need of more computing power. Also a multitude of power 

management features can be implemented in the digital part of the semi-digital control 

structure with little effort. With capable measures the efficiency of the converter can be 

improved especially at light load. 

Some functions like soft-start or inrush current limiting are only used during start-up but 

nevertheless require PCB space, if realized by analog components. Those functions are 

well suited for sequential DSP or µC processing, because they can be added without any 

extra costs and without losing any performance. 
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6 Digital Peak-Current Mode Control for PFC 

Rectifiers 

Since some DSPs and µCs contain analog comparators an implementation of peak current 

control becomes feasible. For such a digital peak current mode control the realization of 

the required slope compensation in a digital manner is derived in this chapter. In order to 

achieve the sinusoidal shape for the average inductor currents in PFC applications different 

extensions of the control structure are proposed. 

6.1 Control Structure with On-Chip Comparators 

Peak current mode control was already described in Section 2.4.2. Due to the fact that 

analog comparators are used predominantly for this purpose, mostly the whole control 

structure is kept analog. However, with available DSPs and µCs including analog on-chip 

comparators and dedicated DACs at the internal input, a digital peak current control is 

basically feasible by utilizing a simple component (cf. Figure 6.1). By combining the 

advantages of peak current control with the benefits from digital control, a promising 

control method arises. 
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Figure 6.1:  Digital implementation of peak current control utilizing on-chip comparator 

 

The on-chip comparator is a common analog comparator with two analog inputs and one 

digital output. One input is connected to an external pin and the other input is connected to 

an internal DAC. A discrete threshold value can be set by software. The DAC converts this 
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discrete value into an analog voltage representing the peak current threshold level for the 

comparator. The comparator output is internally connected to the DPWM unit and is used 

to switch off the DPWM channel, if the threshold level is reached. The DPWM channel is 

switched on at the beginning of each new DPWM cycle. A preset maximum on-time limits 

the duty-ratio.  

The current can be sensed either in the inductor or in the switch path and is directly passed 

to the comparator. Because no current has to be sampled and no code has to be executed to 

compute a duty-ratio, the introduced dead time is minimized for the current control loop. 

6.2 Digital Slope Compensation 

The basic functionality of peak current mode can be implemented in a digital way with 

little effort. But in order to eliminate the drawbacks of peak current control, slope 

compensation needs to be added. All slope compensation techniques described in 

Section 2.4.2 base on analog circuitry implementations. Thus, an obvious solution could be 

to let the slope compensation remain in analog technique and add a ramp to the inductor 

current signal. However, with using such an approach no benefits in terms of complexity 

and adaptivity can be achieved. A solution for a digital implementation of the ramp 

compensation could be realized by permanently decrementing the discrete threshold value 

within every switching cycle with minimal possible step size. But this appears to be 

impractically using a reasonable DSP or µC. 

Hence, the task arises to propose a concept of digital slope compensation without using a 

ramp. Instead, the desired threshold level with integrated amount of compensation is pre-

calculated by means of the valley current   , i.e. the inductor current        at the beginning 

of the cycle   [GrSc09]. As indicated in Figure 6.2, the current threshold level      can be 

expressed as 

              (6.1) 

and  

                  (6.2) 

From Eq. (6.1) and Eq. (6.2) it follows 

    
       
      

   (6.3) 

Using Eq. (6.3) to eliminate DTs from Eq. (6.2) it results 

             

       
      

   (6.4) 
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At this point a compensation factor ksc is introduced as 

    
   

  
   (6.5) 
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Figure 6.2: Inductor current characteristics to illustrate principle of digital slope 

compensation 

 

Thus, Eq. (6.4) can be expressed as 

          
   

     
            or       

 

     
               (6.6) 

Hence, the required current threshold level for the comparator can be computed by the 

current reference value      and the valley current value   . The current reference      is 

obtained from the voltage controller and the valley current    has to be sampled every 

switching-on event and passed via ADC to the digital control.  

Hence, the proposed digital slope compensation algorithm does not require any knowledge 

of the inductance value or other circuit parameters. 

In order to fit the computed threshold value with adequate slope compensation, a proper 

value for the compensation factor     has to be chosen. In Section 2.4.2 the conditions for 

a stable operation were already presented. From Table 2.1 the minimum desired values to 

avoid subharmonic oscillations and values for optimum slope compensation for the basic 

converters are extracted, in order to determine the corresponding values for    . These 

characteristic values are summarized in Table 6.1. It must be considered, that     has to be 

limited to positive values.  

The desired compensation only depends on the input and output voltage. In PFC 

applications these values are measured anyway and therefore can easily be used to 

implement an algorithm for an adaptive compensation factor. Consequently, a desired 

dynamic over a wide range of operation can be guaranteed. This is advantageous in PFC 
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applications, where the input voltage varies continuously. Furthermore, the amount of the 

compensation can be adjusted according to requirements with a compensation gain  

     . For the considered boost converter it results 

    
          

   
   (6.7) 

 min.     optimum     

buck 
           

        
 

    

        
 

boost 
           

   
 

        

   
 

buck-boost 
              

   
 

    

   
 

Table 6.1: Compensation factor for minimum required and optimum slope 

compensation for basic converters 
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Figure 6.3: Scheme of the peak current control with digital slope compensation for a 

boost converter 



6.2  Digital Slope Compensation 65 

With       the minimum required compensation can be applied and with     

optimum compensation for dead-beat control is achieved. If values     are applied, the 

settling of the inductor current takes several cycles without overshoot. 

The block diagram of the digital peak current control implementation on a DSP or µC 

including digital slope compensation is illustrated in Figure 6.3. Computation of an 

adaptive compensation factor is an option and can be replaced by a constant value, if no 

adaptivity is required.  

The following simulation results illustrate the effectiveness of the digital slope 

compensation. In order to verify the comparability with an analog compensation ramp, the 

equivalent conventional slope compensation is depicted, too. 

Figure 6.4 shows the inductor current under steady state conditions with conventional 

compensation ramp and with digital slope compensation. As can be seen, there is no 

difference in the resulting current shapes.  
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Figure 6.4: Simulation results of peak current control with slope compensation under 

steady state conditions (      ,        )  

a) with conventional compensation ramp  

b) with computed current threshold level 
 

Figure 6.5 and Figure 6.6 illustrate the response of the peak current control to a simulated 

perturbation of the inductor current. In Figure 6.5 a small compensation factor close to the 

minimum required compensation was used, so that settling of the inductor current takes 

several cycles. When applying the optimum slope compensation, the settling of the 

inductor current occurs within one cycle, i.e. dead-beat control (cf. Figure 6.6). 
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Figure 6.5: Simulation results with perturbed inductor current 

a) with conventional compensation ramp 

b) with computed current threshold level 
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Figure 6.6: Simulation results with perturbed inductor current and optimum     value 

a) with conventional compensation ramp  

b) with computed current threshold level 
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The practical capability of the proposed peak current control concept is illustrated in 

Figure 6.7 and Figure 6.8. The transient response of a current reference step with an 

implemented slope factor slightly above the minimum required value is shown in Figure 

6.7 for a step-up and in Figure 6.8 for a step-down. This confirms the high dynamic 

performance and robustness of the peak current control method with applied digital slope 

compensation. 
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Figure 6.7: Transient response for a step-up in the current reference 
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Figure 6.8: Transient response for a step-down in the current reference 
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6.3 Special Effects and Measures for Reliable Operation 

6.3.1 How to Handle the Reverse Recovery Current 

Because of the DC component, measuring the inductor current requires costly current 

sensors. For this reason the current is measured in the switch path in most applications. In 

this case a simple current transformer, which can demagnetize during every switch-off 

time, can be utilized.  

Due to the reverse recovery effect of silicon diodes used in boost circuits, a current spike 

appears in the switch path at the beginning of each new cycle (cf. Figure 6.9). 

Consequently, the minimum inductor current cannot be sampled instantaneously at turn-on. 

However, with a short delay, until the reverse recovery process is completed, the current 

can be sampled and utilized for the slope compensation algorithm (cf. Figure 6.9). One 

restriction is that the sampling must be performed during the switch-on time, but this is 

feasible in common PFC application. 

sampling 
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sample delay 

turn-on 

instance

iswitch (1A/div)
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Figure 6.9: Switch current with current spike and delayed sampling instance 

 

The sample delay     has no influence on the stability and the dynamic of the peak current 

mode. This fact is depicted in Figure 6.10 with an extreme delay. The analog equivalent to 

the sample delay is delaying the start of the compensation ramp. The slope of the ramp 

remains constant and consequently the dynamic. However, a variation of         in the 

inductor current occurs due to the sample delay: 

               (6.8) 
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Figure 6.10: Influence on the inductor current due to delayed current sampling 

 

Another problem also caused by the reverse recovery current is that a high current spike 

can exceed the comparator turn-off threshold and force a faulty trigger of the comparator. 

This leads to erratic subharmonic oscillations as indicated in Figure 6.11. In order to avoid 

this effect a leading edge blanking can be implemented in software by deactivating the 

comparator during the reverse recovery process. Also an analog implementation of the 

leading edge blanking is feasible by applying a low-pass filter.  

turn off due to reverse 

recovery current

iswitch (2.5A/div) t (10µs/div)

 

Figure 6.11: Subharmonic oscillation due to faulty activation at reverse recovery  

current spike 

6.3.2 Timing 

Another reason for an unreliable operation in practice is the delay due to the computing 

time. If the current reaches the old threshold value calculated in the previous cycle before 

the new threshold value is updated, a premature turn-off occurs. This can also result in  
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Figure 6.12: Subharmonic oscillation due to turn-off at comparator threshold value of 

previous cycle 
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Figure 6.13: Time flow within the switching cycles 

 

undesired subharmonic oscillation (cf. Figure 6.12). To avoid such accidental trigger of the 

comparator, the threshold value is set to the maximum valid value before each cycle until 

the computation of the new threshold value is finished. In order to minimize the resulting 
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dead time, the comparator threshold value is computed firstly in the interrupt routine. Thus, 

the threshold value is computed with the     value of the previous cycle. However, this is 

not essential as     only depends on the relative slowly varying voltage values (cf.  

Table 6.1).  

Considering the mentioned practical aspects, the timing shown in Figure 6.13 results. With 

this implementation the control loop operates up to high duty-ratio values without 

subharmonic oscillation. 

6.4 Digital Peak Current Control for PFC Application 

In order to achieve a high power factor the average value of the input current must have the 

same sinusoidal shape like the input voltage. For this reason average current control is the 

obvious and most utilized control method in PFC applications. With peak current control 

there is no steady link to the average current, especially with additional slope 

compensation. However, peak current control offers a couple of advantageous like high 

dynamic and inherent overcurrent protection. 

Since recently digital implementation of peak current control and slope compensation 

became feasible, novel opportunities arise to apply peak current control in PFC 

applications. Sophisticated and adaptive algorithms can be developed to achieve high 

power factors [Sch11]. 

It can be shown that primarily the inductor current ripple and the slope compensation cause 

the difference between the reference current      and the average current     . 

Furthermore, the influence of these factors changes with the duty-ratio. Consequently, with 

a sinusoidal reference current a non sinusoidal average current results. 

In order to achieve high power factors with reasonable computational effort, four feasible 

implementations are presented in this contribution: 

 Applying a constant compensation factor 

 Applying the equivalent to a constant compensation ramp 

 Applying a feed-forward algorithm 

 Applying an outer average current controller 

For the simulation results presented in the next sections the parameters listed in Table 6.2 

were utilized. 

Output voltage           

Inductance value         

Sample delay         

Table 6.2: Parameters utilized for the simulations 
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6.4.1 Constant Compensation Factor 

In the first method a constant compensation factor     is applied. This version will in fact 

not provide the best power factor. However, it represents the version with minimum 

computational requirements. The control structure is illustrated in Figure 6.14. The outer 

voltage controller determines the amplitude of the current reference      . This value is 

multiplied by the normalized input voltage         . The resulting sinusoidal current 

reference      as well as the sampled valley current        and the constant compensation 

factor     are utilized to compute the comparator threshold level      with Eq. (6.6).  
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Figure 6.14: Control structure with constant compensation factor     

 

A constant     must not be compared with a constant ramp slope. Rather the equivalent 

slope  

           
       

 
 (6.9) 

decreases at low input voltage. Due to this characteristic relative high values for     needs 

to be chosen. However, higher     values increase the deviation between the sinusoidal 

reference current      and the average inductor current    and thereby impairs the power 

factor. Hence, a compromise must be found between high power factor and avoiding 

subharmonic oscillation. The following simulation results exemplify this characteristic.  

Figure 6.15 shows the situation at low line voltage with an RMS input current of  

           for two different values of    . Due to the slope compensation and the 

inductor current ripple the voltage controller needs to increase the reference value       to 

achieve the desired input current        . In Figure 6.15 a) the constant slope compensation 

factor of         is not sufficient for the small input voltage after and before the line 

voltage zero crossing. Consequently, subharmonic oscillation occurs. With a higher value 

      in Figure 6.15 b) subharmonic oscillation is eliminated completely. However, the 

shape of the average input current differs more from the sinusoidal shape with the larger 

compensation factor. The identified power factor degrades, accordingly. 

At high line voltage smaller values of the compensation factor suffices (cf. Figure 6.16). 

Only at very low input voltage in the region of the line voltage zero crossing higher 
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compensation factors would be necessary theoretically. But typically the converter 

operates in DCM in this region, where no slope compensation is required. 
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Figure 6.15: Current shapes with const.     at        V 

a)                               ;  

b)                              
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Figure 6.16: Current shapes with const.     at        V 

a)                               ;  

b)                                

 

Also the utilization of an adaptive compensation factor is possible to avoid subharmonic 

oscillations under all conditions. However, this would not naturally increase the power 

factor. Furthermore, the computational effort would increase. 
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6.4.2 Constant Compensation Ramp 

Now a constant slope value     is applied. This represents the equivalent to analog 

implementations with constant compensation ramp. Because of the algorithm for digital 

slope compensation, the compensation factor     has to be computed with  

    
      

   
   (6.10) 

In order to apply only a single factor and to utilize the normalized input voltage, the factor 

   
      

    
 (6.11) 

is introduced. The resulting control structure is given in Figure 6.17. The additional 

division increases the computational effort significantly. 
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Figure 6.17: Control structure with constant compensation slope     

 

The drawbacks of the constant     method are still present, even though the negative 

effects on the power factor are moderated. This is illustrated by the simulation results. 

Figure 6.18 illustrates the situation at low line voltage. Similar to the constant     method 

the factor    can be slightly reduced at smaller input currents without causing subharmonic 

oscillation. Again this is because of the wider DCM range where no slope compensation is 

required. Also at high line voltage the DCM operation is beneficial for applying a smaller 

compensation (cf. Figure 6.19). Due to this effect even no slope compensation is necessary 

below a certain input current value (cf. Figure 6.19 a)). 
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Figure 6.18: Current shapes with const.    at        V 

a)                              ;  

b)                               
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Figure 6.19: Current shapes with const.    at        V 

a)                             ;  

b)                                
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6.4.3 Feed-Forward Algorithm 

The previous methods were kept very simple and need only little computational effort. But 

they do not fulfill the power factor requirements of advanced PFC applications and 

therefore illustrate, why peak current control is not utilized in most PFC applications. 

However, with the digital implementation of peak current control and slope compensation 

new potentials for advanced PFC demands arise. 

In order to enable an ideal sinusoidal shape of the average current a feed-forward algorithm 

is investigated, which computes from the sinusoidal reference current      a feedforward 

reference current         for the digital slope compensation. The control structure is 

illustrated in Figure 6.20. An adaptive     is used to prevent subharmoic oscillation at all 

operating points.  
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Figure 6.20: Control structure with feed-forward algorithm and adaptive compensation 

factor     

 

The feed-forward algorithm needs to eliminate all deviations between the current reference 

value and the average inductor current. The deviations due to the inductor current ripple 

and the slope compensation were already mentioned. Other effects which cause deviations 

in the average current are the sample delay and operating in DCM partially. For this reason 

a distinction between CCM and DCM must be performed. 

First, the conditions in CCM are examined. The difference between the inductor peak and 

average current in CCM is half the current ripple. The theoretical steady state value is 

computed with 

   
 

 
    

  
 
         

    
    (6.12) 

The deviation caused by the slope compensation can be expressed as 

        

    

 
 
         

    
    (6.13) 

In Section 6.3 the need of a delayed sampling of the valley current was exemplified. 

Delaying the sampling by     increases the measured current. With using this increased 
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value for the digital slope compensation algorithm the inductor peak current and 

consequently the average current increase by 

              

    

 
      (6.14) 

In order to compensate the deviations of Eq. (6.12), (6.13) and (6.14), these three 

components need to be integrated in the feed-forward reference current 

             
   
 

           (6.15) 

Consequently, the feed forward algorithm for CCM operation can be computed with 

             
   

 

        

    
   

 

 
         

   

 
     (6.16) 

Figure 6.21 illustrates the three components which cause the deviation between the average 

current and the required feed-forward reference current. 
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Figure 6.21: Deviation between the average inductor current and the  

feed-forward reference current 

 

Now the situation at DCM is examined. Of course, the execution of slope compensation in 

DCM is not required to avoid subharmonic oscillations, however, in PFC applications a 

smooth transition during changes in the operation mode must be ensured. Thus, slope 

compensation is applied continuously.  
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In DCM where the current resets to zero in every switching cycle, the valley current is zero 

and can be ignored, if no sample delay is present. The digital slope compensation 

algorithm (cf. Eq. (6.6)) reduces to 

         
 

     
       (6.17) 

The current ripple         is equal to the threshold level         . Consequently, for the 

required feed-forward reference current it follows 

                            (6.18) 

There remains the calculation of the DCM current ripple with 

             
   

 

        

    
      (6.19) 

to get a link to the inductor average current. Since for the feed-forward control          

must apply, the feed-forward algorithm for DCM is computed with 

                          

   

 

        

    
      

   

 
      (6.20) 

Where the last term is added to compensate a sample delay like in CCM.  

Due to the permanent change between CCM and DCM in PFC applications the exact 

instant needs to be identified. In Section 4.2.2 this task is performed by evaluating the 

theoretical duty-ratios. The equal changeover instants are obtained by utilizing the 

theoretical current ripples. The ripple for CCM results from Eq. (6.12) and for DCM from 

Eq. (6.19). The smaller theoretical value determines the operation mode: 

 

                 CCM 

                 DCM 

 

This process is illustrated with exemplary curves of current ripples in Figure 6.22. For 

DCM a series of curves results. The marked intersections with the curve for the CCM 

ripple indicate the changes of the operation mode. For        pure CCM and for 

         pure DCM would result theoretically. 

For simulation an adaptive compensation factor     with a constant compensation gain 

      was utilized. Thus, a stable operation is ensured for all operating points. The 

resulting current shapes during one line cycle are shown in Figure 6.23 for low line voltage 



6.4  Digital Peak Current Control for PFC Application 79 

and in Figure 6.24 for high line voltage with varied input currents. Depicted are the 

average inductor reference current     , the computed feed-forward reference current 

       , the comparator threshold current     , the inductor current    and the resulting 

inductor average current   . 
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Figure 6.22: Theoretical current ripple during line half-cycle  

for CCM and DCM at different input power 

(                            ) 

 

In all simulations the average inductor current reveals a sinusoidal shape like the reference 

value, for which reason a power factor close to unity is achieved for all operation points. 

Consequently, with the applied feed-forward algorithm all deviations are eliminated 

effectively in CCM and DCM. In addition the transition between CCM and DCM occurs 

without any interference. The optimal shape of the computed feed-forward reference 

current differs significantly from the sinusoidal shape of the average current.  

In practice the required input and output voltage are measured anyway and are available 

for the feed-forward control accordingly. However, one disadvantage is the need of the 

inductance value  . Due to tolerances the actual value can differ from the nominal value 

significantly and therefore impair the performance. 

The complete feed-forward control algorithm consists of a multitude of operations 

including time-consuming calculations like square root and divisions. To get the best 

performance the feed-forward algorithm needs to be updated in each switching cycle. This 

method requires an appropriate DSP or µC. However, the feed-forward computation is not 

time critical. Thus, a feasible method is to spread the calculations on a few switching 

cycles. This impairs the performance slightly, but requires less computing power. 
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Figure 6.23: Current shapes with feed-forward algorithm at        V 

a)       A, b)       A, c)       A 
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Figure 6.24: Current shapes with feed-forward algorithm at        V 

a)       A, b)       A, c)       A 
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6.4.4 Outer Average Current Controller 

Another promising method to compensate deviations in the average input current is the 

implementation of an average current controller. For this purpose the average input current 

needs to be captured and compared with the sinusoidal reference current to get the current 

error     . The current controller determines the reference value         for the slope 

compensation algorithm. The resulting control structure is given in Figure 6.25. The 

structure is very similar to the feed-forward control. With an optimal current controller also 

the reference value for the digital slope compensation should have the same shape to 

achieve a sinusoidal average input current. However, compared to the feed-forward control 

the required computing power reduces significantly by using a low-order controller. 

Furthermore, no distinction between CCM and DCM is required. Another advantage is that 

no knowledge of the inductance value or other parameters is required. One drawback by 

applying an average current controller is the loss of dynamic in the entire current control 

loop.  
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Figure 6.25: Control structure with average current controller and adaptive 

compensation factor     

 

For the controller design the transfer function of the control path has to be identified. The 

control path consists of the closed peak current control loop. Compared to the dynamic of 

the current control loop the input and output voltage change very slowly, for which reason 

constant voltage values are assumed for the small signal model. The block diagram of the 

simplified model is given in Figure 6.26. 

The corresponding control-to-inductor current transfer function is 

           

        
 
       

 
         

                   
   (6.21) 

For the boost converter it follows [Eri00] 
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and 

   
        

  
   (6.24) 

Where   represents the large signal duty-ratio 

  
        

    
   (6.25) 
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Figure 6.26: Block diagram of the simplified peak current control 

 

The factor    includes the slope compensation. For digital slope compensation it contains 

the compensation factor      

   
 

        
  (6.26) 

Thus, the control-to-inductor current transfer function Eq. (6.21) depends on the input and 

output voltage, the load and the preset compensation. The influence of the load is 

negligible, especial at higher frequencies. From Eq. (6.26) it follows that the dynamic 

reduces with higher compensation factors. Therefore the controller design is conducted 

with the value for optimum slope compensation. This also ensures that only positive values 

for the compensation factor are applied (i.e.      ). The output voltage typically remains 
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constant and the input voltage varies continuously. Frequency curves for different steady-

state input voltages are considered for the controller design, accordingly.  
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Figure 6.27: Bode plot of the normalized control-to-inductor current transfer function for 

different input voltages 

 

From the set of frequency curves in Figure 6.27 it can be seen that the closed peak current 

control loop has almost unity transfer characteristic up to ca.      . For such a control 

path a simple I-type controller  

      
 

    
  (6.27) 

can be applied. Additionally the dead time of the digital average current loop must be 

considered. For the utilized implementation a dead time of           results. 

Consequently, the transfer function of the open average current loop results as 

                  
        (6.28) 

In order to achieve an adequate dynamic with sufficient phase margin a proper value for    

needs to determined. Therefore the control-to-inductor current transfer function for 

        is employed. For a crossover frequency of         it follows  

          (6.29) 
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The resulting phase margin        can be get form frequency curves in Figure 6.28. 
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Figure 6.28: Frequency curves for the normalized closed peak current loop       , digital 

controller       with included dead time and open average current loop 

       (                        ) 

 

In order to compare the performance of the current controller with the feed-forward 

method the same operating points with equal parameters were utilized for simulation. 

The resulting current shapes during one line cycle are shown in Figure 6.29 for low line 

voltage and in Figure 6.30 for high line voltage with varied input currents.  

Instead of the feed-forward reference current the current controller output value         is 

depicted. However, the shape is similar to the feed-forward results (cf. Figure 6.23 and 

Figure 6.24). This indicates an adequate current control. This is also confirmed by the 

shape of the average inductor current   , which shows a nearly ideal sinusoidal shape.  

Due to the inner peak current loop there is no change in the control path dynamic for the 

average current controller at the transition between CCM and DCM. 



86 6  Digital Peak-Current Mode Control for PFC Rectifiers 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

 

 

i 
/ 

A
i 

/ 
A

t / ms

i 
/ 

A

b)

c)

a)

t / ms

t / ms

iref,cc icmp iL iac,refiL

 

Figure 6.29: Current shapes with average current controller at        V 

a)       A, b)       A, c)       A 
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Figure 6.30: Current shapes with average current controller at        V 

a)       A, b)       A, c)       A 
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6.4.5 Interleaved Operation 

At interleaved operation every single converter rail has its own comparator. Thus, every 

rail requires an individual comparator threshold current     . Accordingly, all minimum 

inductor current values        need to be sampled at the correct instant of time and the 

corresponding slope compensation algorithm has to be computed instantaneously. The 

resulting control structure for three interleaved converters is given in Figure 6.31. 

Optionally, the method with average current controller or with feed-forward algorithm can 

be chosen to determine the optimal reference current for the digital slope compensation. 

The digital slope compensation algorithm needs to be computed for each rail. The optimal 

reference current as well as the compensation factor     is the same for all rails. 

Accordingly, the computational effort for these values does not increase with the number 

of paralleled converters. 
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Figure 6.31: Control structure for three interleaved converters, optional with  

average current compensator or feed-forward algorithm 

 

Generally, peak current mode provides good current sharing capability. Only if the 

inductance values differ, a slight difference in the average currents results consequently. 

With analog slope compensation the deviation in the average current in CCM is  

     
 

  
 

 

  
  

   

 

          

    
      (6.30) 

This deviation also occurs with digital slope compensation. However, additionally the 

compensation factor and the delayed sampling have influence on the average current (cf. 
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Section 6.3). Accordingly, the difference in the average current with digital slope 

compensation in CCM is quantized by  

     
 

  
 

 

  
  

   

 

          

    
         

          

    
                (6.31) 

Thereby an increased compensation factor induces an increased current deviation, whereas 

the sample delay has a damping influence and compensates the error by the compensation 

factor partially. 

Also for the deviation in DCM the inductor average currents needs to be subtracted. Thus, 

the average current is given by 

       
     

                 
  

    

     
 

   

     

       

 
 

 

  (6.32) 

Theoretically, equal average currents under unequal inductance values can be achieved by 

using the feed-forward algorithm, if all inductance values are known and every converter 

rail gets its own feed-forward reference value. However, in most cases the exact 

inductance values are not known and furthermore the calculation of the feed-forward 

algorithm for each rail would significantly increase the computational effort. Thus, it is 

advisable to keep the compensation factor as small as possible for good current balancing.  

The deviation in the average inductor currents of three interleaved rails are depicted in 

Figure 6.32. The inductance values of    and    were intentionally modified by 5% to   . 

The feedforward method with a sample delay of         and an adaptive compensation 

factor     with a compensation gain       was applied.  

As expected only the average current of    follows the reference value accurately. The 

larger inductance    gets an increased and the smaller inductance    a decreased average 

current. However, this systematically error in the average currents should be acceptable for 

most applications. Furthermore, critical for most components are the maximum peak 

currents and since the smallest inductance affected by the highest current ripple is stressed 

by the smallest average current, this effect is beneficial for peak current limitation. 

Because only the algorithm for the digital slope compensation has to be performed for 

every rail the computational effort in interleaved operation is feasible with a standard DSP 

or µC. However, fundamental for a reliable operation is the need of a precise timing within 

each switching cycle (cf. Section 6.3). With interleaving several converters this criterion 

becomes more challenging. 
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Figure 6.32: Inductor average currents during one line cycle with unequal inductance 

values (                                ) 

(                                   ) 

6.4.6 Measurements 

In order to verify the practical effectiveness of the digital peak current control some 

exemplary measurements are presented. The component values of the prototype and the 

utilized parameters are identical to the simulation parameters of Table 6.2.  

The measured input voltage, input current and inductor current waveforms for single-rail 

operation are depicted in Figure 6.33 and Figure 6.34 at full load. Figure 6.33 shows the 

waveforms at low line voltage and with average current controller. In Figure 6.34 the case 

with feed-forward algorithm is illustrated at high line voltage. In both cases the input 

current replicates the line voltage waveform accurately. This confirms the proper modeling 

and quality of simulations. 

The inductor currents and the resulting input current with three interleaved rails are shown 

in Figure 6.35 for a few switching cycles. Waveforms during a complete line cycle of the 

interleaved operation are given in Figure 6.36.  

The measured power factors versus the input current are depicted in Figure 6.37 for low 

and high line voltage with feed-forward and average current control. At low line voltage 

the power factor is already high at small input currents. At higher input currents excellent 

power factors above       are achieved in all cases. Thus, the high power factor 

requirements of advanced PFC applications are achieved with digital peak current control. 
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Figure 6.33: Current and voltage curves with average current controller 
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Figure 6.34: Current and voltage curves with feed-forward control 
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Figure 6.35: Inductor currents and resulting input current with three interleaved rails 
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Figure 6.36: Current and voltage curves with feed-forward control and three interleaved 

rails (                             ) 
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Figure 6.37: Measured power factor versus input current with three interleaved rails for 

low and high line voltage with feed-forward algorithm (blue) and average 

current controller (green) 

6.5 Summary 

Up to now peak current control was predominantly implemented in analog technique. 

However, by dint of available DSPs and µCs with on-chip comparators digital peak current 

control is feasible with little effort. The need of slope compensation at duty-ratios above 

50% to avoid subharmonic oscillation can be solved with simple, but effective digital 

algorithms. Therefore, it suffices to sample only the valley inductor current. Knowledge of 

the inductance or any other specific values is superfluous. By directly triggering the PWM 

unit via on-chip comparator only little computing power is required for the current control. 

Problems occurring in practice due to the reverse recovery current spike and the computing 

time can be handled with simple measures. Hence, digital slope compensation turns out as 

a practical alternative in peak current controlled applications. Furthermore, the digital 

implementation offers the potential to apply adaptive slope compensation. Thus, the 

amount of slope compensation can be adjusted depending on the input and output voltage 

relation of the converter. This guarantees requested dynamic performance of the current 

control loop from dead-beat up to a desired settling time with or without overshoot. 

For PFC applications the digital peak current loop offers several ways of implementations. 

Simple methods with constant compensation factor or constant compensation slope offer 

acceptable power factors with low computational effort. High power factors can be 

achieved with a feed-forward algorithm or with an additional average current controller. 
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The feed-forward algorithm requires significant additional computational effort and 

knowledge of the inductance value. An additional average current controller also enables 

excellent power factors. For this purpose less computation power is required and 

knowledge of the inductance value is not necessary. However, measurement of the average 

input current must be performed for the average current controller. 

By interleaving several converters the slope compensation algorithm needs to be 

performed for every single rail. However, all rails receive the same reference currents and 

compensation factors, for which reason the feed-forward or average current control only 

needs to be computed once for all rails.  

The attainable power factors are similar to other PFC control methods. In contrast to digital 

average current control good current sharing and peak current limitation is inherent with 

digital peak current control. For both control methods an accurate sampling of the inductor 

current is essential. Whereas for average current control directly the average current is 

sampled, the slope compensation algorithm for digital peak current control uses the valley 

inductor current.  

Due to the quite simple algorithm for the digital slope compensation peak current control 

requires little computational effort. Especially with increasing numbers of paralleled 

converters the digital peak current control needs less computational power than average 

current control. However, a precise timing is essential for a reliable operation of 

interleaved converters with digital peak current control.  
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7 Digital Boundary Conduction Mode (BCM) 

PFC Control 

One popular control strategy for PFC applications is the boundary conduction mode 

(BCM), where the boost converter is operated at the boundary of DCM and CCM [HIJ08]. 

Compared to CCM the reverse recovery losses of the boost diode are eliminated. Due to 

turn-on of the boost switch at zero drain-source voltage or in the voltage valley also the 

switching losses are reduced [Mar10]. Thus, high efficiencies are attained together with 

low cost Si-diodes. 

However, the BCM induces relative large inductor currents. Due to this characteristic the 

power level is limited up to          and larger differential mode electromagnetic 

interference (EMI) filters are necessary [Hub09, Cho10]. In order scale up the power levels 

two or more converters should be operated interleaved, whereby the input current ripple 

and consequently the EMI filter can be reduced significantly. However, BCM is 

characterized by variable switching frequency, for which reason optimal interleaving 

becomes challenging. This task is topic of several publications [HIJ09, Cho10, BLu08], 

which mostly focus on interleaving only two converters with an analog control strategy. 

Hence, a new digital phase shift control is proposed in Section 7.3 enabling multi-rail 

interleaving of BCM operated converters. 

7.1 BCM Control Concept 

In order to switch on again after the inductor current decayed to zero, it is necessary to 

detect this instant. A common method to analyze the inductor current is to give the 

inductor an extra winding. The signal of this winding is passed to a comparator to generate 

the binary zero crossing detection (ZCD) signal (cf. Figure 7.1). The resulting ZCD signal 

as well as the inductor current and the drain-source voltage of the boost MOSFET are 

illustrated in the measurement of Figure 7.2 at DCM operation. Note, that due to the 

parasitic capacitors of the MOSFET the current oscillates after the first zero crossing. 

Consequently, several ZCD pulses are generated. However, typically the switch is turned 

on with the first ZCD rising edge. If necessary, the turn-on can slightly be delayed, to 

achieve optimal switching in the valley of the drain-source voltage of the MOSFET. 

In BCM the inductor average current is half of the peak current. This characteristic is 

beneficial for PFC applications, where the average current must follow the shape of the 

input voltage. Consequently, it suffices to control the peak current and employing peak 

current mode control is obvious. This can be easily realized, because there is no need of 

slope compensation in BCM.  
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However, for most boost PFC applications another control strategy is utilized. In this 

method the sinusoidal average current shape is attained by just applying a constant switch 

on-time. This is justified, because the peak current and consequently the average current 

are directly linked to the input voltage:  

   
 

 

   

 
          (7.1) 

Thus, very good power factors are attained with BCM spending little control effort.  
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Figure 7.1: Schematic of the ZCD circuit 
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Figure 7.2: ZCD signals 
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7.2 Control Structure 

For implementing the digital BCM control strategy a DSP with an additional state machine 

is utilized in order to perform the open loop current control. The state machine is realized 

on an FPGA, which provides more than enough logic elements. Thus, also the proposed 

phase shift control and frequency limitation are implemented on the FPGA. The block 

diagram of the BCM control structure is depicted in Figure 7.3. 

The voltage control loop and the system management are still implemented on the DSP. 

The reference value for the current controller is the switch on-time    . Due to the fact that 

    is constant within the line period at steady state conditions the transmission of this 

value needs only be performed with low rate. Because the voltage controller is also very 

slow only little computing power is required for this part. For that reason a low-cost DSP 

or µC suffice.  
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Figure 7.3: Structure of the digital open-loop BCM control 

 

The on-time is passed to the FPGA as PWM signal for example. On the FPGA the received 

pulse width is converted into a binary number and passed to the current controller. The 

structure of the open loop current controller is shown in Figure 7.4. The rising edge of the 

ZCD signal is detected and utilized to reset a counter. With resetting the counter the gate 

signal is turned on until the counter value exceeds the requested on-time value. 
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Figure 7.4: Structure of the open loop BCM current controller 
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7.3 Phase Shift Control for Interleaved BCM Rails 

Higher power levels are attained by interleaving of two or more converter rails in BCM. 

However, due to the permanently varying switching frequency in PFC applications the 

tracking of the optimal phase shift for interleaved converters is challenging. 
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Figure 7.5: Scheme of the phase shift control simulation model 

 

There are a multitude of publications for interleaving strategies for BCM PFC converters 

[HIJ09, Cho10, BLu08]. Most of these implementations are utilizing a master-slave 

strategy, where the master rail operates as a stand-alone converter. The phase shift of the 

slave converter is synchronized to the master rail to achieve optimal interleaving. This is 

either done with an open-loop or with a closed-loop method. The published interleaving 
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strategies are implemented in analog technique and are predominantly limited to only two 

interleaved rails.  

In the following a closed-loop phase shift control method for optimal interleaving of BCM 

operated converters is presented, which is implemented fully digital on an FPGA. Withal, 

the number of interleaved rails is not limited. This digital implementation represents a 

master-slave method. Accordingly, every slave rail gets its own phase shift controller in 

order to be synchronized to the master rail. Thus, all phase shift controllers are running 

independent to each other. 

The structure of the phase shift controller is depicted in Figure 7.5. The reference points 

are the switch-on instants of the master and the slave rail. These are passed to an RS-flip-

flop. The switch-on instant of the master is used to set the flip-flop and with the switch-on 

pulse of the slave rail the flip-flop is reset. The binary output signal of the flip-flop is 

added to the negative phase shift offset. To determine the phase shift    for the slave rail   

the phase shift offset    needs to be preset to  

    
  

    
    (7.2) 
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Figure 7.6: Signals of the phase control for phase shift of 180° with phase error 

 

The DC component of the resulting signal represents the phase shift error, i.e. if there is no 

phase error the DC component is zero. The DC offset is identified by a discrete integrator. 

In order to get the phase error for every single switching cycle, the integrator is reset at 

every switch-on event of the master rail. Before the reset occurs a sample and hold element 
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stores the phase error for the next switching cycle. A simple constant controller gain is 

used to determine the correcting variable     . This value is added to the master on-time 

    and the resulting sum represents the on-time for the corresponding slave rail.  

To clarify the functionality of the phase shift controller two examples are illustrated in 

Figure 7.6 and Figure 7.7. Depicted are the waveforms of both inductor currents, of the 

integrator input and output signal and the resulting controller output value     . Figure 7.6 

shows the situation of two interleaved rails with requested      phase shift (i.e.    

    ). Due to the phase shift control the phase error reduces from cycle to cycle. In Figure 

7.7 there is no phase error present and the requested phase shift is set to      (i.e.    

    ). 
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Figure 7.7: Signals of the phase control for phase shift of 120° without phase error 

 

The effectiveness of the phase shift controller was verified in simulation (cf. Figure 7.8) 

and on the hardware prototype (cf. Figure 7.9). Employed were three paralleled boost 

converters, which start without phase shift. After a short delay the phase shift reference 

values         (i.e.        ) and         (i.e.        ) were applied. 

Depending on the momentary phase shift error the slave rails get slightly increased switch 

on-times and accordingly larger switching periods and higher peak values. In addition to 

the inductor current waveforms Figure 7.8 shows the time shift error. The initial error is 

compensated within a few switching cycles and therefore offers sufficient dynamic for 

PFC applications. 
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Figure 7.8: Phase shift control after common start 
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Figure 7.9: Transient response of the phase shift control  

(channel 2 is master rail;        V;         V;         W) 
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7.4 Switching Frequency Limitation 

Another problem caused by the variable switching frequency in BCM is, that in some 

operating points the switching frequency increases to high values. Especially in the region 

of the line voltage zero crossing and at light load huge switching frequencies occur. For 

this reason a switching frequency limitation is strongly recommended. Two feasible 

methods are proposed in the following, which cause the converter to change to DCM, if the 

switching frequency surpasses set limits.  

7.4.1 Frequency Limitation due to Bounded Switching Period 

Method 1: Switch on after       , if ZCD signal is positive 

Normally, each switching cycle starts with turning on the boost switch, if the ZCD signal is 

set. At the same time a counter whose final value equals the minimum valid period time 

       is reset to zero. Only if the final counter value is reached, the ZCD signal is passed 

to trigger the next cycle. This is feasible, because after the current decayed to zero the 

inductor current oscillates with the parasitic capacitance of the boost switch. Accordingly, 

the ZCD signal occurs periodically until the next switch-on event. 
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Figure 7.10: Structure of the pulse generation for BCM with frequency limitation 

(the dashed block is used for method 2) 
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To implement this method the origin pulse generation of Figure 7.4 was employed. The 

modified structure is depicted in Figure 7.10. But this method does not guarantee valley 

switching. If for example        is reached near the end of the ZCD signal, the drain-source 

voltage     is already growing and due to dead-time, which is implemented to achieve 

optimal valley switching during normal operation, a high     can occur at the switch-on 

event (cf. Figure 7.11). 
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Figure 7.11: Changing switching conditions during frequency limitation 
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Figure 7.12: Measured line and inductor current with method 1 
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Another drawback occurs due to steps in the period time because of waiting for the ZCD 

signal of the next     valley (cf. Figure 7.11). These steps cause interferences in the 

inductor average current and in the input current, consequently (cf. Figure 7.12). 

Additionally, the valley steps don’t occur at the same time for all interleaved rails. This 

results in steps and therefore large errors in the phase shift. Due to this non-optimal 

interleaving also steps in the input current ripple occur. Because the        value 

determines the period time, Tadj has no influence on the on-time anymore. Due to this fact 

the phase shift control does not work during frequency limitation. 

Method 2: Switch on after Ts,min, if rising edge of ZCD signal occurs 

Method 2 differs only little from method 1. Now, the switch-on is only performed at the 

rising edge of the ZCD signal. By doing so, optimal valley switching is achieved all the 

time (cf. Figure 7.13). But compared to method 1 the waiting time for the switch-on event 

can be significantly larger. Thus, the related drawbacks increase with method 2. This can 

be seen in the line current in Figure 7.14. Hence, by this method a higher efficiency is 

attained, but at the cost of a poorer power factor. 
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Figure 7.13: Phase shift step due to switching frequency limitation 
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Figure 7.14: Measured line and inductor current with method 2 

7.4.2 Frequency Limitation with Phase Shedding 

For both described frequency limitation methods the main drawbacks result from improper 

phase shift in interleaved converters during the frequency limitation. To overcome this 

problem, it has to be ensured, that frequency limitation is only active in single-rail 

operation. This can be done by an appropriate phase shedding strategy.  

It is well known, that with this method the number of energized converter rails is reduced 

with decreasing output power. To avoid frequency limitation the shutdown of one rail must 

occur before the frequency limit is reached. 

In the following this method is described for a converter with the data of Table 7.1. 

 

Number of rails     

Boost inductors                    

Output voltage            

Maximum RMS input voltage                

Maximum output power               per rail 

Table 7.1: Converter parameters  
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The shutdown of a rail is triggered, if the power for the remaining rails becomes 95% of 

the maximum power (380W). The critical operation points resulting to high switching 

frequency occur, if the power of each rail is low. Thus, the highest frequencies occur 

directly before another rail is to be shut down.  

From Table 7.2 it can be seen, that the minimum rail power during interleaving occurs 

directly before single-rail operation. Hence, it has to be guaranteed that no frequency 

limitation appears above 190W rail power. 

 

Transition Power per rail before shutdown Power per rail after shutdown 

4 rails  3 rails 285W 380W 

3 rails  2 rails 253W 380W 

2 rails  1 rails 190W 380W 

Table 7.2: Transition levels for phase shedding 

 

Since the maximum switching frequencies result at maximum input voltage, only the 

situation at                  is analyzed. 

The resulting maximum switching frequency can be calculated with 

       
             

         

 
                               

                        

 
                       

            
    (7.3) 

By considering parasitic effects the switch on-time needs to be enlarged in the region of 

the line voltage zero crossing [Hub09]. Due to this behavior the maximum switching 

frequency occurs slightly before and after the zero crossing. Assumed is a line voltage 

phase angle of     respectively      for the largest switching frequency. Applying the 

values of this critical operating point, it follows 

        
                            

                 
           (7.4) 

Thus, the maximum valid switching frequency needs to be set up to       . This is 

equivalent to a minimum switching period of           . 

In order to maintain optimal interleaving and to avoid disturbances in the input current it is 

advisable to perform phase shedding only at line voltage zero crossing. 
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7.5 Efficiency and Power Factor 

Measured efficiencies are shown in Figure 7.15 at low and in Figure 7.16 at high line 

voltage. Separate measurements with single rail and 2 respectively 3 interleaved rails were 

performed. The maximum switching frequency was set to               and the 

inductance value of all rails was      µ . Only power levels with no switching 

frequency limitation were measured. From the separate curves an efficiency optimal phase 

shedding strategy can be easily derived. 

Figure 7.17 illustrates that with the relative simple constant on-time control strategy very 

high power factors are attained in BCM. 
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Figure 7.15: Efficiency curves at low line voltage with 1, 2 and 3 interleaved rails 

(                            W) 
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Figure 7.16: Efficiency curves at high line voltage with 1, 2 and 3 interleaved rails 

(                             W) 
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Figure 7.17: Measured power factor at high and low line voltage with 3 interleaved rails 

(                                                  W) 
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7.6 Summary 

The current control of PFC converters operated in BCM can be realized with little control 

effort. In order to achieve high power factors it suffices to turn on the boost switch for a 

constant duration, after the inductor current decayed to zero. High efficiency is attained 

due to the elimination of the reverse recovery losses of the boost diode and the reduction of 

the switching losses due to switching-on at zero voltage or in the voltage valley. By reason 

of the variable switching frequency specific phase shift control is required to ensure 

optimal interleaving. With the proposed digital phase shift controller multi-rail interleaving 

is achieved. By the use of an optimized phase shedding strategy frequency limitation only 

needs to be performed during single-rail operation. For this reason optimal interleaving and 

undisturbed average current is attained by keeping the switching frequency in the valid 

range. With well-directed phase shedding the efficiency can be optimized even at partial 

load. 
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8 Feed-Forward Control for BCM and DCM 

Operation 

For the interleaved BCM control described in Chapter 7 extensive effort is required to 

detect the zero currents and provide optimal phase shifts. In order to bring down these 

extra costs a feed-forward algorithm for interleaved BCM is promising, which can handle 

multi-rail interleaving with relatively low computational effort [Gro11]. 

8.1 Feed-Forward Algorithm for BCM Operation 

In BCM the peak inductor current is twice the average current and is determined by the 
input voltage    , the inductance value   and the switch on-time    : 

   
 

 
    

 

 

   

 
    (8.1) 

Thus, for   converter rails and a given average input current reference value      the 

required on-time is 

    
  

    

    

 
    (8.2) 
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Figure 8.1: Inductor current in BCM 

 

With the corresponding off-time 

     
  

        

    

 
  (8.3) 
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the necessary switching period results as (cf. Figure 8.1) 

            
      

 
 

    

             
. (8.4) 

With the help of Eq. (8.2)    can be directly computed from    : 

      

    

        
 (8.5) 

Eq. (8.2) and Eq. (8.5) represent the complete current control law for the BCM. This control 

law can be easily implemented on a DSP or µC without any expensive calculations. In 

Figure 8.2 the control structure for a PFC rectifier with   interleaved rails is depicted. 

The computed switching times are loaded into DPWM units of the controller to trigger the 

switching events. 
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Figure 8.2: Control structure for the digital feed-forward BCM and DCM operation of 

multi-interleaved PFC converter 
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Since      has the same sinusoidal shape as    , it follows from Eq. (8.2), that     is 

constant as long as the power demand does not change. Thus, it is not necessary to update 

the on-time for every switching cycle. Due to the relatively slow voltage controller, which 

generates the amplitude of the current reference value, it suffices to update the current 

amplitude and thus     only once in every line half-cycle. 

Even though the calculation of     via Eq. (8.2) includes the inductance  , an exact 

knowledge of this value is not essential for BCM operation. Due to the fact that     is used 

to compute   , BCM operation only depends on     and     . A deviation in the inductance 

value would only cause a deviation in the inductor average current value and such an error 

would be compensated by the voltage controller. Furthermore, the calculation of Eq. (8.2) 

could be completely omitted, if the voltage controller directly determines    . But at least it 

is advisable to retain a division by the input voltage peak value to gain an input power feed-

forward control. 

8.2 Extension into DCM operation 

Since there is no feedback of the zero current event, entering CCM could occur and could 

cause harmful overcurrent. Hence, it is advisable to move slightly into DCM to avoid CCM 

under all conditions. DCM operation can be attained by enlarging the switching period. 

From the BCM control of Chapter 7 it is already known, that a small extension of the 

switching period could also be beneficial for ZVS or near ZVS, if the switch-on instant is 

delayed until the occurrence of the first valley of the oscillating drain-source voltage.  

For changing into DCM, a DCM ratio        is introduced (cf. Figure 8.3). The period 

value for BCM is multiplied by the square of      to get the enlarged DCM switching 

period 

  
        

    (8.6) 

In order to retain the same average current also during DCM, the on-time also needs to be 

modified. It results as 

   
   

                

          
  

    (8.7) 

By substituting Eq. (8.2), (8.5) and Eq. (8.6) in Eq. (8.7), the equation for the required on-

time simplifies to 

   
           (8.8) 

Using the enlarged on-time, the enlarged switching period can be calculated as 
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      (8.9) 

Hence, Eq. (8.8) and Eq. (8.9) represent the control algorithm for DCM. Computation of 

any square root operation is not required. The inductor current waveform at DCM is shown 

in Figure 8.3. 
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Figure 8.3: Inductor current shapes with DCM and BCM 

8.3 Closed-Loop Control Strategy 

8.3.1 Closed-Loop Control Structure 

So far the switch on-time is determined by the feed-forward algorithm or can be obtained 

directly from the voltage controller. For this open-loop realization no current measurement 

is needed (cf. Figure 8.2). In an ideal converter without any losses or parasitic effects this 

suffices to achieve an ideal sinusoidal input current shape. However, deviations in the 

current shape result in a real converter. Thus, in order to achieve an optimal power factor 

under all conditions an additional current controller can be applied.  

For this closed-loop implementation measurement of the input current is required, which 

can be realized with a single common shunt sensor. In Figure 8.4 the control structure with 

closed current loop is shown. The voltage controller determines the current reference peak 

value, which is divided by the normalized input voltage to get the sinusoidal input current 

reference. The deviation in the input current is passed to the current controller. Now     is 
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the global on-time and is generated by adding the controller output value         to the 

feedforward value        computed with Eq. (8.2): 

                   (8.10) 
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Figure 8.4: Closed loop control structure for the digital BCM and DCM operation of 

multi-interleaved PFC converter 

 

With the DCM ratio it follows 

   
                        (8.11) 

This value is used to compute the switching period with Eq. (8.9). 
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8.3.2 Transfer Function and Controller Design 

In Section 2.4.3 the transfer function of the boost converter in DCM was derived. As the 

actuating variable the duty-ratio was utilized and the switching frequency was assumed to 

be constant. Due to the non linear behavior the transfer characteristic changes with the 

operating point and complicates the controller design. 

Utilizing the feed-forward control strategy with variable switching frequency and the 

switch on-time as the actuating variable, a very simple linear system results.  

The control-to-inductor-current transfer function for one rail operated in BCM can be 

directly derived from Eq. (8.1): 

          
  
   

 
   

  
  (8.12) 

This transfer function exhibits pure proportional behavior. Due to the variable switching 
frequency a variation in the resulting dead-time has to be considered in a digital control 
structure.  

Considering   parallel rails and shifting into DCM by applying the ratio     , the control-

to-inductor-current transfer function becomes 

      
     

   
   

 
 

     

      
   (8.13) 

This indicates also a simple proportional behavior in DCM. But there are two aspects which 

have to be considered: 

 By enlarging the switching period with     , the dead-time in the digital control loop 

increases, respectively.  

 Due to the sinusoidally varying input voltage     and the ratio      the loop gain can 

vary significantly. 

Thus, the dynamic of the system varies and complicates the controller design. Especially 

due to the large range of     a current controller with invariant parameters is unfeasible. An 

adaptive controller is required to compensate the variations in     and     . Because these 

values are captured in the system, they can directly be used for an adaptive controller gain  

   
    

   
  (8.14) 

which needs to be updated continuously. Since the control path offers pure proportional 

behavior, a simple integrating controller can be applied. The current controller transfer 

function can be expressed as 

         

    

 
  (8.15) 
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with the crossover angular frequency    and the constant controller gain 

   
  

 
  (8.16) 

Considering the dead-time   , the open loop transfer function results to 

            
           

     
  

 
        (8.17) 

The dead-time in the control loop is not only introduced by the DCM ratio     , but also 

influenced by the kind of implementation.  

It has been mentioned, that for closed loop implementation the input current needs to be 

measured. However, there is still a significant ripple in the input current and the instants for 

directly sampling the average current values are not known and could only be computed 

with unreasonable effort. Hence, a regular sampling method is unsuitable for this 

application. But an oversampling with digital filtering or an additional analog filter can be 

utilized with little effort. The transfer function of such a low-pass filter has to be considered 

for the controller design. 

8.4 Current Balancing 

Because the inductor currents in BCM and DCM reset to zero in every switching cycle, 

there is no risk that a huge unbalance in the inductor currents occurs. However, due to 

tolerances in mass production the inductance value of each sample differs. This results in 

different inductor current slopes and consequently in a rail current mismatch of paralleled 

converters. Applying the same on-time for all inductors would result also in equal off-

times and therefore collective BCM operation (cf. Figure 8.5 a)), or equal DCM ratios, 

respectively. In this case the current difference corresponds with the inductance mismatch. 

In some applications or operating points it can be necessary to ensure identical rail average 

or rail peak currents. In such a case current balancing is required.  

8.4.1 Balancing to Identical Average or Peak Currents 

For a beat frequency-free interleaving all rails have to be operated with equal switching 

periods   . In order to obtain equal average or peak currents an individual on-time for every 

rail needs to be applied. For this purpose the rail with the largest inductance becomes master 

rail, which determines the master on-time       and the global   . A balancing factor 

     is introduced to compute the individual on-time       for each slave rail   with  

                 (8.18) 
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Figure 8.5: Inductor current waveforms for different inductance values (     ).  

a) without current balancing 

b) with average current balancing 

c) with peak current balancing 
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In the example of Figure 8.5 with two rails,    is larger than    and becomes master 

(     ), respectively. To achieve equal average currents (cf. Figure 8.5 b)) the on-time 

for the slave rail with inductance       is calculated by multiplying the master on-time 

with the square-root of the inductance ratio [ScGr10, Gro11]. Thus, the balancing factor is 

     
  

  
   (8.19) 

For equal peak currents (cf. Figure 8.5 c)) the balancing factor must be set to the inductance 
ratio 

    
  

  
   (8.20) 

The determination of the inductor values and the calculation of the correction factors are 

required only once and can be done during an initial calibration sequence before the regular 

operation starts. Such a calibration sequence is described in the next section. 

8.4.2 Initial Calibration Sequence for Inductance Identification 

In order to balance the rail currents to equal average or peak values, the ratios of the 

inductances are required. Also the largest inductance needs to be indentified for this 

purpose. As mentioned, the exact knowledge of the inductance values is not essential for a 

reliable BCM or DCM operation, but it is beneficial for current limitation. 

To identify the inductance values and to calculate the ratios, an initial calibration sequence 

is utilized. This sequence is executed at the beginning of the soft-start process, when the 

output capacitor is charged to the peak value of the input voltage. 
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Figure 8.6: Defined current sample to identify inductance value 

 

In order to identify an inductance value, current pulses with a defined on-time are applied. 

After a specified duration    the inductor current and input voltage are measured (cf. 

Figure 8.6). With this sampled values the inductance value is computed by  
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    Δ 

Δ  
 

          

      
   (8.21) 

Due to the fact that only the total input current is measured, only the inductance value of 

one rail can be identified at a time. Thus, the values are determined one after the other, 

each in a separate line half-cycle. To ensure sufficient voltage drop across the inductance 

during the turn-off time, the identifying process is performed at approx. 75% of the input 

voltage peak value (cf. Figure 8.7). 
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Figure 8.7: Operation point within the line cycle for identifying one inductance 
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Figure 8.8: Initializing process for one inductor 

 

Because typically an input capacitor is placed behind the diode-rectifier, the input voltage 

is equal to the output voltage at no load. Thus, at the beginning of the calibration sequence 

the input capacitor needs to be discharged down to the input voltage. Therefore 16 current 

pulses are generated. The first pulses should only ensure, that the input capacitor voltage is 

equal to the input voltage and only the last four pulses are evaluated for the inductance 
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identification. This process is shown in Figure 8.8 for one inductor and in Figure 8.9 for 

the whole calibration procedure of the prototype with three parallel converters. With 

looking at the current pulses in Figure 8.9, it is striking, that there are different peak 

currents in every line half-cycle. This already indicates different inductance values in each 

converter rail. 
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Figure 8.9: Complete calibration process 

 

The calibration was performed at different input voltages while the on-time was kept 

constant. As can be seen in Figure 8.10 the determined inductance values decrease at 

higher input voltages. Because the on-time is the same for all input voltages, the current 

peaks are higher at higher input voltage. Due to saturation effects the inductance values 

reduce at higher currents. This characteristic results in lower inductance values at higher 

input voltage.  

From the inductance values at different input voltages the average values have been 

calculated and are given in Table 8.1. Also the values measured with an impedance 

analyzer are shown. The resulting deviations are given in the last column. 

 average value calibration 

sequence 

measured with 

impedance analyzer 

rel. deviation 

   183.3 µH 180 µH 1.8% 

   168.0 µH 166 µH 1.2% 

   198.7 µH 197 µH 0.9% 

Table 8.1: Prototype inductance values 
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Figure 8.10: Determined inductance values vs. input voltage 

 

With deviations below 2% an adequate accuracy can be attained. For a series production 

device the deviation could be expected a few percent higher. This is because of the good 

knowledge of the measurement scaling of the used prototype.  

8.5 Phase Shedding 

The benefit of adjusting the number of energized rails in order to enhance the efficiency at 

partial load has already been shown in Section 7.5. Usually this phase shedding method is 

applied based on the load conditions. However, in a PFC application, there is a continuing 

variation in the input power within every line half-cycle, for which reason phase shedding 

based on the instantaneous input power is promising. By changing the number of energized 

rails the average input current has to be allocated and results in a current reference step for 

every single rail. Since the inductor current in BCM and DCM is reset in every switching 

cycle, and a current reference step can be compensated within one switching cycle with the 

proposed control strategy, phase shedding can be performed at any time. Additionally, a 

inductor current variation results in a change of the switching period. This property can be 

utilized to limit the switching frequency. 

8.5.1 Common Discrete Phase Shedding 

In general the levels of phase shedding are limited by the discrete number of interleaved 

rails. For example in a converter with     parallel rails there are 3 discrete interleaving 

modes (3 rails, 2 rails and single rail).  
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With the introduced feed-forward control algorithm the adjustment of the average input 

current is performed by tracking the on-time, which is proportional to the inductor current:  

       
 

 

  

   

    

 
  

 

 
     (8.22) 

Where   is the integer number of energized rails. For the corresponding switching period it 

follows 

      
 

 
   

    

        
 

 

 
      (8.23) 

Hence, with phase shedding the switching frequency in each remaining rail changes with 

the factor    . Furthermore, the number of energized rails where switching events occur, 

changes to    so that the effective switching frequency seen by the EMI filter changes by 

the square of   and can be represented as 

         
  

 

 

  
   (8.24) 

To retain optimal interleaving also the delay time of the phase shift needs to be adjusted. 

The phase shift delay is given by 

          
     

 
   (8.25) 

Shapes of the input and the inductor currents in BCM during a phase shedding process 

from 3 to 2 active rails are shown in Figure 8.11 a). Due to the on-time adjustment with 

Eq. (8.22) the average input current is kept constant. The fundamental frequency of the 

input current is reduced by 55.5%.  

8.5.2 Continuous Phase Shedding 

The principle of the common discrete phase shedding is, that an integer number of converter 

rails are completely turned off, while the remaining rails transfer the energy. The idea of 

continuous phase shedding is to give every single rail a section within the switching period 

where no energy is transferred, i.e. all rails keep running with a required DCM ratio. For 

this purpose the factor      is utilized to implement the needed DCM ratio. In order to 

achieve equal circumstances as compared to discrete phase shedding,      needs to be 

calculated as 

     
 

 
   (8.26) 

where   represents the comparable number of active rails of the discrete phase shedding 

method operated in BCM. However, since        is the range for DCM operation,   is no 
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longer limited to integer values, but rather can be every fractional value in the range 

     . This enables a continuous change for the effective number of energized rails. 

The on-time and switching period are calculated using Eq. (8.8) and Eq. (8.9). The resulting 

effective switching frequency  

         
 

      
  

  

 

 

  
 (8.27) 

is identical to the result from discrete phase shedding in Eq. (8.24). 
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Figure 8.11: Total input current and inductor currents in principle during phase shedding 

from 3 to 2 rail operation at        with 

a) conventional discrete phase shedding method 

b) continuous phase shedding method 

 

The current shapes during continuous phase shedding from       to       are 

illustrated in Figure 8.11 b). By comparing the current shapes of Figure 8.11 a) and b) it is 

obvious that both phase shedding methods result in equal switching instants and input 

current shapes. This circumstance can easily be verified via measurement on a real 

converter with the described DCM control strategy (cf. Figure 8.12). 

All parallel converters should get equal load stress during their lifetime. With continuous 

phase shedding, where all converters keep running with equal DCM ratios, an equal load 

stress is inherent. However, with discrete phase shedding this request is not met naturally. 

An adequate rail management is required to equally spread the load stress during lifetime. 

One drawback of continuous phase shedding are increased losses, because optimal turn-off 

in the first valley of the oscillating drain-source voltage cannot be achieved in DCM, while 

with conventional phase shedding the converter can be operated in BCM with valley 

switching.  
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Figure 8.12: Total input current and inductor currents measured during phase  

shedding from 3 to 2 rail operation 

a) conventional discrete phase shedding 

b) continuous phase shedding 

8.5.3 Switching Frequency Limitation 

Due to the implementation of the control algorithms on a standard DSP or µC, the 

maximum sampling and switching frequency is limited. Thus, for practical use of the 

control concept a switching frequency limitation is required. Considering the frequency 

decreasing property of phase shedding (cf. Eq. (8.27)) such a feature can be implemented, 

which keeps the switching frequency in a desired range. For this purpose the factor   is 

decremented by a specified step size   , if the upper frequency limit is exceeded. When 

reaching the lower frequency threshold,   is increased, where the maximum value of   is  .  
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Figure 8.13: a) Total switching frequency,  

b) effective number of energized converter rails   and  

c) inductor peak current without phase shedding (black),  

with conventional discrete phase shedding (blue) and with continuous phase 

shedding and step size of        (red) 

(                                  W,       H) 
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The curves of the total switching frequency for three parallel converters without phase 

shedding in BCM, with discrete phase shedding (i.e.     ) and for continuous phase 

shedding with        are illustrated in Figure 8.13 a) for one line half-cycle. The 

corresponding preset values of   are given in Figure 8.13 b). It can be seen, that without 

phase shedding very high frequencies occur. Also with discrete phase shedding a wide 

frequency range results. Additionally the switching frequency changes with high steps. This 

causes high steps in the inductor peak currents (cf. Figure 8.13 c)), which are not acceptable 

in PFC applications. Furthermore, due to the related step in the phase shift additional 

undesired current peaks can occur during discrete phase shedding. All this drawbacks can 

be eliminated by applying continuous phase shedding with an appropriate step size   . The 

switching frequency can be kept in a small band and changes only with small steps. 

Accordingly, the inductor currents and the phase shift delay changes only slightly. 

Considering the converter efficiency, it can be seen in Figure 8.13 c), that by reducing the 

number of energized rails the peak currents and accordingly the RMS currents increase and 

cause higher ohmic losses. However, this effect is more than compensated due to less 

switching events and thus reduced switching losses. 

8.6 Harmonic Reduction in Interleaved DCM PFC 

Rectifiers 

It was already mentioned, that one major reason for interleaving several converters is the 

significant reduction of the input current ripple and the THD. The gain of improvement 

depends on the number of interleaved rails and the duty-ratio [Lou06]. At particular duty-

ratios   the harmonics are totally eliminated, e.g. at two interleaved rails with       or 

with       or       at three interleaved rails. Thus, there is the potential to further 

reduce or to eliminate the input current ripple by changing the number of interleaved rails 

depending on the duty-ratio.  

For this purpose a control law was developed, which minimizes the input current ripple 

and respectively the THD by utilizing the phase shedding method to adjust the number of 

interleaved rails [Gro12]. The definition of the THD is given in Appendix A.1. In DCM 

there is a direct link between the current ripple and the average value. For that reason a 

THDDC is introduced for the following investigations, which is defined as the ratio of the 

the geometric sum of the harmonic components to the DC component: 

      
    

  
   

   
 

   
    

    
      

 

   
 (8.28) 

Investigated is a converter with up to     parallel rails. 
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8.6.1 Control law for equal inductance values 

8.6.1.1 Control law for discrete phase shedding 

First the situation with discrete phase shedding is examined, where the energized converter 

rails are operated in BCM. In order to get comparable results for different numbers of 

interleaved converters a normalized input current ripple is used. Therefore the ripple of the 

input current      is divided by the average of the input current    .  

For     interleaved boost converters the normalized input current ripple as a function of 

the duty-ratio can be expressed as 
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For     it results 
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For     it follows 

    

   
    

 

 
 

 
 
 
 
 

 
 
 
 

    

   
                         

 

 
        

        
         

 

 
   

 

 

         

        
       

 

 
   

 

 
     

 
                   

 

 
    

    (8.31) 

These functions are plotted in Figure 8.14. For most duty-ratios the smallest current ripple 

is attained with four interleaved rails. However, there are two regions around the zeros of 

the curve for three interleaved rails at       and      , where the smallest ripple 

results with three interleaved rails. According to this the number of active converter rails 

needs to be reduced from     to    , in order to minimize the current ripple in the 

whole duty-ratio range. With this knowledge a very simple control law can be derived 

which is illustrated in Figure 8.15. 
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Figure 8.14: Normalized input current ripple versus duty-ratio for     (red)     

(green) and     (blue) interleaved converter rails 
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Figure 8.15: Control law to minimize the input current ripple with discrete phase 

shedding for a converter with     interleaved rails 

 

8.6.1.2 Control law for continuous phase shedding 

As described in Section 8.5 the usage of discrete phase shedding has the drawback of high 

switching frequency and peak current steps. Thus, in the next step continuous phase 
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shedding is utilized to minimize the input current ripple and a corresponding control law is 

developed. 

At continuous phase shedding the input current is the sum of the four rail currents with 

determined DCM ratio. The ripple or rather the THDDC of the input current has to be 

analyzed. Hence, a proper method is required to describe the input current mathematically. 

Well suited for this purpose is the Fourier synthesis. Necessary is the calculation of the 

Fourier coefficients    for the inductor currents depending on the variables average 

inductor current   , duty-ratio   and DCM ratio     . 

 

Note: If the duty-ratio   is used in the following for DCM, it represents the voltage ratio  

  
        

    
 (8.32) 

and not the ratio of the on-time and the switching period. 

The resulting formula to compute the Fourier coefficients is 

   
       

 

           
   

    
  

            
   

  
       (8.33) 

The detailed derivation of Eq. (8.33) is given in the Appendix A.2. 

Since all converter rails have equal switching periods   , average inductor currents    and 

DCM ratios     , the Fourier series are identical and need only to be phase shifted for an 

optimal interleaving. The phase shift to each current signal is added by multiplying with  

             (8.34) 

The optimal phase shift between the rails for     parallel converters is      . Thus, 

the Fourier series for the input current can be expressed as 

               
 

 
           

  

 
    (8.35) 

By using the Fourier coefficients to describe the current signal, the exact amount of every 

harmonic component for the THD calculation is already available. In order to extract the 

ripple from the input current, the time signal is computed with 

                 

 

    

  (8.36) 

For the following analysis the first 50 harmonic components are considered to determine 

the THDDC and the current ripple.  
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Figure 8.16: Normalized input current ripple vs. duty-ratio for     (green) and     

(blue) interleaved rails, for fractional values       (grey) and the 

minimum current ripple curve (dashed red) 
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Figure 8.17: Control law for minimum input current ripple with discrete phase shedding 

(blue) and with continuous phase shedding (red) 
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The control law for minimizing the input current ripple with continuous phase shedding 

can be developed similar to that with discrete phase shedding. However, now the number 

of active converter rails   is not limited to integer values, for which reason the resolution 

increases. With the knowledge of the discrete phase shedding result only the range of 

      is considered. In Figure 8.16 the normalized current ripples versus the duty-ratio 

are shown with a resolution of        . Inspecting the curves with the minimum current 

ripple for each duty-ratio, it is obvious, that in a wide duty-ratio range the minimum ripple 

is further reduced due to the increased resolution of continuous phase shedding. Based on 

the minimum ripple curve (dashed red curve) the control law can be extracted (cf. Figure 

8.17). Compared to the control law with discrete phase shedding there are no steps now. 

This is one basic requirement to apply this method in a PFC application, where a 

continuous duty-ratio variation occurs.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

D

T
H

D
D

C
 /

 %

k =3

k =4

k

 

Figure 8.18: THDDC of the input current vs. duty-ratio for     (green) and     (blue) 

interleaved rails, for fractional values       (grey) and the minimum 

THDDC (dashed red) 

 

So far only the input current ripple was considered, but typically the THD should be 

minimized. In Figure 8.18 the THDDC curves are shown for the same phase shedding 

values like in Figure 8.16. The qualitative shape of the curves is similar to those of the 

normalized input current ripple and the resulting control laws are equal. For this reason it is 
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sufficient in this application to minimize the current ripple in order to get an adequate 

reduction in the THDDC. It should be noted, that with reducing the THDDC by decreasing   

the frequency spectrum moves to lower frequencies. 

In Figure 8.19 the inductor currents and the resulting input current are illustrated for an 

exemplary duty-ratio of       to verify the effectiveness of the developed control law. 

In Figure 8.19 a) no phase shedding is applied, so that all four rails are operating in BCM. 

By applying the control law the effective number of energized rails is set to        at 

      (cf. Figure 8.17). Accordingly, all rails get a DCM ratio of          (cf. Figure 

8.19 b)). And even though the inductor peak currents increase, the ripple of the input 

current reduces by 21%.  
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Figure 8.19: Inductor currents and resulting input current at       

a) without phase shedding (   ) 

b) with continuous phase shedding (      ) 

 

8.6.1.3 Switching frequency and current limitation 

It was shown, that the input current ripple can be reduced significantly by applying 

continuous phase shedding. However, the inductor peak currents grow with increased 

DCM ratio     . Moreover in Section 8.5.3 the requirement of a switching frequency 

limitation especially in PFC applications was exemplified. Consequently, the limits in the 

switching frequency and the maximum valid peak current need also to be considered when 
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the current ripple is minimized with continuous phase shedding. For this reason the range 

of      needs to be limited. The minimum value of      is given by the switching period 

and the maximum switching frequency        

         
 

             
   (8.37) 

The inductor current average value    and the maximum allowable peak current         

determine the maximum value of      by  

         
       

       
   (8.38) 

With Eq. (8.37) and Eq. (8.38) the valid DCM ratio range is given by 

 

             
      

       

       
   (8.39) 

Expressing this operating range for the number of effective energized rails  , it follows 

  
    

       
                  (8.40) 

The dedicated borders        and     must still be maintained, respectively. 

By reaching a limit it is obvious to operate the converter with this boundary value. But 

retaining this boundary value must not be the optimum valid value for the minimum 

current ripple. Strictly speaking the new optimal DCM ratio needs to be identified from the 

valid range. However, this could result in undesirable steps in the peak currents and 

switching frequency, for which reason an operation with the boundary value is the 

recommended way.  

8.6.1.4 Verification in a PFC application 

The effectiveness of the ripple minimization under varying duty-ratio and bounded DCM 

ratio can be clearly examined in a PFC application. For this purpose the control law of 

Figure 8.17 was implemented in a look-up table (LUT).  

Characteristic curves during one line half-cycle are depicted in Figure 8.20 for low line 

voltage and in Figure 8.21 for high line voltage. In both figures the situation without and 

with limitation are shown. For limitation the maximum switching frequency is set to 

              and the maximum peak inductor current is set to           . In order 

to illustrate the difference to the situation without optimization, the curves for four 

interleaved converter rails in BCM are added (red curves). In all cases a significant 

reduction of the input current ripple is attained for a wide range within the line half-cycle. 
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The ripple reduction is accompanied by a decreasing of the switching frequency and an 

increasing of the inductor peak currents.  

If the maximum switching frequency is reached, the operation at this boarder can be easily 

achieved by adjusting the number of effective energized rails   with the DCM ratio     . 

By limiting the switching frequency the optimal ripple reduction cannot be ensured 

anymore. Rather the current ripple can increase significantly in that area. However, if a 

maximum switching frequency needs to be kept, this effect will occur anyway.  
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Figure 8.20: Curves of duty-ratio, number of active rails, switching frequency, peak 

current and input current ripple during one line half-cycle in a PFC 

application at         . Without optimization (red), with optimization 

(blue), (                  W) 
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Also during peak current limitation an operation at the boarder can be guaranteed with this 

control concept. In most cases the current limitation still offers a decreased reduction in the 

current ripple, but at particular operating points a slightly higher current ripple results.  

In Figure 8.22 the simulated input current is illustrated. The first line half-cycle was 

simulated without optimization and the second with optimization by dint of the derived 

control law. This simulation verifies the results of Figure 8.21. Complete ripple elimination 

is achieved at             and       in both half-cycles. However, with the 

optimization the ripple is additionally eliminated at       and      . Also a ripple 

reduction around this additionally elimination points yields.  
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Figure 8.21: Curves of duty-ratio, number of active rails, switching frequency, peak 

current and input current ripple during one line half-cycle in a PFC 

application at         . Without optimization (red), with optimization 

(blue), (                   W) 

 



8.6  Harmonic Reduction in Interleaved DCM PFC Rectifiers 137 

8.6.1.5 Practical implementation 

A significant reduction in the THDDC can be achieved using this proposed optimization. 

However, only if this method can be implemented on a DSP or µC with reasonable effort, 

it will be utilized in practice. Thus, a suggestion for practical implementations is presented. 

The control law illustrated in Figure 8.17 is valid for     parallel converters and 

determines the number of active rails depending on the duty-ratio, i.e.     . It does not 

depend on the inductance values. Consequently, the control law is valid in general and can 

be applied for every converter with     parallel converters. For other numbers of 

interleaved converters universal control laws result respectively. These control laws can be 

easily implemented in LUTs, where the optimal values for   are stored for the duty-ratio 

range. 
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Figure 8.22: Input current of a PFC converter at          without and with 

optimization by dint of the control law 

(                   W) 

 

The limits of   due to the maximum peak current and switching frequency need to be 

updated continuously. By reaching a limit, this border value is used until the next valid 

value of the LUT can be applied. 

This method was also utilized for the simulated PFC converter results (Figure 8.20 - Figure 

8.22) and can be implemented on a DSP or µC with little effort. 

Instead of   also the related values for      can be used. This is recommended since this 

value is utilized for the DCM control algorithm. 
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8.6.2 Harmonic Elimination with Unequal Inductance Values 

One major advantage of interleaving   converters with equal inductance values is the 

elimination of the first     harmonics in the input current. The requirement is a time 

shift of      between the inductor currents. However, if there is a variation in the 

inductance values, this effect disappears and all harmonics are present. But with adjusted 

phase shift values it is possible to reduce or even to eliminate the first harmonics [BeSu09].  

If there is no restriction due to current balancing demand, individual DCM ratios for each 

converter rail can be applied. This degree of freedom can be utilized to eliminate further 

harmonics. 

In the following the elimination of harmonics at unequal inductance values is investigated 

with and without restriction due to current balancing. For both cases the introduced 

balancing factor    is utilized to enable an individual DCM ratio for each slave rail. The 

formula to compute the Fourier coefficients is modified to 

   
      

 

           
   

    
  

    
  

        
   

  
    

  
   (8.41) 

The validation of the optimizations in this chapter is conducted with     parallel rails, 

but the methods can be easily modified for other numbers of interleaved rails. Inductance 

values with 5% deviation are utilized for the exemplary calculations (cf. Table 8.2). 

Furthermore, the master rail operates in BCM (      ) and its average current is chosen 

to        for the validations. 

For analyzing the harmonic components the DC component of the currents is not 

significant. For this reason all currents are illustrated without the DC component.  
 

 inductance value relative inductance 

   200 µH 100% 

   190 µH 95% 

   180 µH 90% 

Table 8.2: Variation in the utilized inductance values 
 

The interference in the input current due to unequal inductance values is depicted in Figure 

8.23 b). Compared to the situation with equal inductances (cf. Figure 8.23 a)) a significant 

higher input current ripple results. Also the appearance of a lower fundamental frequency 

can already be seen. The existence of the 1
st
 and 2

nd
 harmonic becomes even clearer by 

looking at the frequency spectrum in Figure 8.24. This illustrates that other measures are 

required to eliminate the harmonic components, if there are deviations in the inductance 

values. 
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Figure 8.23: Inductor currents and resulting input current at        

a) with equal inductance values (             H), 

b) with unequal inductance values (cf. Table 8.2) 
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Figure 8.24: Harmonic components at       with equal and unequal inductance values 
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8.6.2.1 Harmonic elimination without balanced inductor currents 

In order to eliminate harmonic components a system of equations needs to be prepared. For 

each harmonic, which should be eliminated, the real and imaginary part must be set to 

zero. Hence, two independent variables are required to eliminate one harmonic component. 

These independent variables are the phase shift angles    of the slave rails and the 

balancing factors    , which can give every slave rail an individual DCM ratio.  

For example, with     parallel converter rails two harmonic components can be 

eliminated. The phase shift angle of the master rail is fixed to zero and the remaining two 

phase shift angles can be modulated. The balancing factor of the master rail must be set to 

      and the balancing factors of the slave rails can be randomized, if there is no 

current balancing restriction. In this case the system of equations to eliminate the 1
st
 and 

2
nd

 harmonic in the input current can be expressed as 

                            

                            

                            

                            

   (8.42) 

 

where      represents the Fourier coefficient with the order   of the current in rail   (cf. Eq. 

(8.33)).  

Because the nonlinear system of equations cannot be solved analytically, the numeric 

Newton method is utilized. The appliance of the Newton method for this purpose is 

described in Appendix A.3 in detail.  

With the Newton method, the phase shift angles and balancing factors for the entire duty-

ratio range were determined. The resulting curves are depicted in Figure 8.25. It is striking, 

that a discontinuity appears in the curves of the phase angles at      . This means, that 

the two slave rails needs to interchange their order to eliminate the 1
st
 and 2

nd
 harmonic. 

The curves of the balancing factors are continuously and have symmetry to the       

axis.  

In Figure 8.26 the spectrum of the input current is given for      . The corresponding 

inductor and input current shapes are depicted in Figure 8.27. In this figures also the 

situation without optimization are shown, i.e. default values          ,         

and         are applied. It can be seen, that due to applying the optimized phase angles 

and balancing factors the 1
st
 and 2

nd
 harmonic are eliminated successfully. A reduction of 

the other harmonic components cannot be guaranteed. Some components even get higher 

amplitudes. Due to this fact the reduction of the THDDC is not inherent. However, at most 

duty-ratios an improvement of the THDDC is achieved, additionally. This is illustrated in 

Figure 8.28, where the THDDC without and with optimization is plotted for the entire duty-

ratio range. Only in the regions of       and       the THDDC is slightly better 

without the optimization. 
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The inductor currents in Figure 8.27 illustrate that all rails operate with individual DCM 

ratios and phase shifts in the optimized case. By looking at the input current it is 

distinguishable, that with eliminating the first and second harmonic also the peak-to-peak 

current ripple is reduced, significantly. 
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Figure 8.25: Characteristic of the phase angles       and the balancing factors          

versus duty-ratio in order to eliminate the 1
st
 and 2

nd
 harmonic 
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Figure 8.26: Harmonic components with and without optimization at       
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Figure 8.27: Inductor currents and resulting input current at       

a) without optimization  

b) with optimization 
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Figure 8.28: THDDC versus duty-ratio without and with optimization 

 

8.6.2.2 Harmonic elimination with balanced inductor currents 

In Section 8.4.1 a current balancing functionality was presented. Therefore the balancing 

factor    is utilized to give every single rail an individual on-time. Thus, the only 

remaining variable to eliminate or reduce harmonics for balanced average inductor currents 

is the phase shift. 

Again, two independent variables are required to eliminate one harmonic component. With 

    parallel converter rails two phase shift values can be modulated independently. 

Thus, one harmonic component can be eliminated. In this case the system of equations to 

eliminate the first harmonic in the input current is given by 

                            

                            
   (8.43) 

 

Since two variables are required to eliminate one harmonic component, one variable is left, 

if the number of independent variables is odd, i.e. if the number of parallel rails is even. 

This variable can be utilized to minimize a harmonic component. This can be done by 

setting the derivation of the magnitude equal to zero. For example with two parallel rails it 

follows 
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                (8.44) 

The verification of this method is done for three different balancing factors, respectively. 

The applied factors are      for equal on-times,           for equal average 

currents and          for equal peak currents. 

Again the numeric Newton method is utilized to solve the system of equation Eq. (8.43) 

for the entire duty-ratio range. The resulting phase shift values to eliminate the first 

harmonic are depicted in Figure 8.29. At equal on-times the optimal phase shift values are 

constant for all duty-ratios. However, by applying equal average or peak currents the phase 

shift values needs to be changed with the duty-ratio. 
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Figure 8.29: Characteristic of the phase angles       versus the duty-ratio in order to 

eliminate the 1
st
 harmonic, with equal on-times, with equal average currents 

and with equal peak currents 

 

Exemplarily, the spectrums of the input currents for       are illustrated in Figure 8.30. 

The corresponding inductor and input current shapes are given in Figure 8.31. For the not 

optimized case the default values         and         are applied.  

As stipulated the first harmonic can be eliminated for all applied balancing factors. By 

looking at the other harmonic components, it is visible, that the minimum amplitude varies 
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between the methods. However, an improvement of the THDDC compared to the not 

optimized case is attained for all duty-ratios (cf. Figure 8.32). The best THDDC for most 

duty-ratios is achieved with balancing the inductor currents to equal peak values.  
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Figure 8.30: Harmonic components at       without optimization, with equal on-times, 

with equal average currents and with equal peak currents 
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Figure 8.31: Inductor currents and resulting input current at       

a) without optimization   b) with equal on-times 

c) with equal average currents  d) with equal peak currents 
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Figure 8.32: THDDC versus duty-ratio without optimization and with optimization  

at equal on-times, equal average currents and equal peak currents 
 

8.6.2.3 Minimization of the THDDC by applying a master DCM ratio 

So far the elimination of harmonic components was done with the master rail operating in 

BCM (      ). A reduction in the THDDC was already attained with this practice. 

However, in Section 8.6.1 it is shown, that with adjusting the DCM ratio the THDDC can be 

further reduced. 

For this purpose the DCM ratio of the master rail is varied in the range           . 

This range represents the continuous phase shedding with       active rails at equal 

inductance values. Examined is the situation without restriction of current balancing. Thus, 

for every particular value of      the first and second harmonic are eliminated by solving 

the system of Eq.(8.42).  

If there are restrictions to the current balancing, the procedure is very similar. Instead of 

Eq. (8.42) just the system of Eq. (8.43) needs to be applied. 

By applying values for the DCM ratio        it is no longer necessary to limit the values 

for the balancing factor to       . Now the range can be extended to          . 

This means that due to the optimization slave rails can be operated at smaller DCM ratios 

than the master rail.  
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For each particular fractional value of      the entire duty-ratio range has to be examined. 

The resulting curves of the THDDC are depicted in Figure 8.33. In the region of       

    the THDDC can be reduced even further due to applying the optimal DCM ratio for the 

master rail. From the curves of Figure 8.33 a control law can be deduced (cf. Figure 8.34 

solid line). For comparison the control law for equal inductances is also depicted (dashed 

line). Since there are no discontinuities in the control law, it is well suited for practical 

usage including PFC applications. However, the illustrated control law is not valid in 

general. It depends on the deviation in the inductance values and therefore needs to be 

updated for every set of inductance ratios. 
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Figure 8.33: THDDC of the input current vs. duty-ratio at unequal inductances under 

DCM ratio variation in the range of            and minimum THDDC 

(dashed red) 
 

8.6.2.4 Practical implementation 

If there are significant mass production tolerances in the inductance values, an individual 

combination of inductance values will result for each power supply. Consequently, a 

generalized control law for minimizing the THDDC cannot be defined. For which reason, an 

individual control law needs to be computed for each power supply. The required 

inductance ratios can be identified with the method described in Section 8.4.2.  
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Figure 8.34: Control law for minimum THDDC with unequal inductances (solid line) 

and equal inductances (dashed line) 

 

Determining the optimal parameters for minimized THDDC at unequal inductance values 

can be separated in two tasks. First the optimal phase shift values and if applicable, the 

optimal balancing factors need to be computed. If this is accomplished with the Newton 

method for the entire duty-ratio range, it becomes a time-consuming procedure. With an 

increasing number of variables the presetting of adequate start values becomes more 

difficult. In the curves for the optimal phase shift values, steps occur for     (cf. Figure 

8.25). Such steps are not acceptable during operation. Hence, using the optimal phase shift 

values is limited. For example in a PFC application at low line voltage, where only duty-

ratios       occur, the steps in Figure 8.25 are not relevant. In other applications 

restrictions must be accepted, i.e. the optimal values can only be utilized for parts of the 

operation range.  

However, the optimal phase shift values and balancing factors need to be computed offline. 

The results can be stored in LUTs (              ). If there is not enough processor 

performance to perform the offline optimization, this procedure can be outsourced. But 

finding adequate start values remains challenging for multiple converter rails. 

The second task is to determine the optimal      for the master rail. Therefore the first task 

needs to be executed for the relevant      range. The computational effort increases, 

respectively. An additional LUT is generated and is utilized like in the method with equal 

inductance values. Figure 8.34 shows, that it seems also conceivable to apply the 

generalized control law for equal inductance values. The control laws are very similar for 

wide ranges of the duty-ratio. Consequently, the computational effort could be reduced 

significantly by this approximation.  
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8.7 Summary 

Current control of PFC rectifier in BCM and DCM can be established by a simple 

algorithm that is best suited to be realized as full digital control even for high switching 

and sampling frequencies due to low computational effort. By utilizing pure feed-forward 

current control there is no need of any current measurement. For a closed-loop 

implementation an additional current controller for the average input current can be 

applied.  

The control concept can handle multi-rail interleaving without additional computational 

effort. The possibility of specific control of the DCM ratio leads to a novel fractional phase 

shedding method in contrast to conventional phase shedding, where only an integer 

number of converter rails is turned off. This novel continuous degree of freedom can be 

used to minimize switching losses at light load and even within a line half-cycle or to keep 

the switching frequency within a narrow band. If the inductance values are unequal due to 

manufacturing tolerances, the DCM ratio can also be employed to balance the inductor 

currents to equal peak or average values. 

With interleaving several converters the first harmonic components are eliminated and the 

THD and the input current ripple are significantly reduced. In DCM further reduction can 

be attained by adjusting the DCM ratio. A universal control law can be generated for every 

number of paralleled converter rails to operate the converter with minimum THDDC and 

current ripple at any duty-ratio. The method is not limited to the presented application. It 

can be utilized for all paralleled converter operating in DCM. 

The DCM feed-forward algorithm with continuous phase shedding is well suited to enable 

the THDDC minimization. By utilizing LUTs the control law can be implemented with little 

computational effort. 

If the inductance values are unequal, the first harmonics are not longer eliminated by 

applying equal phase shift values. The optimal phase shifts needs to be computed 

depending on the inductance ratios for the entire duty-ratio range. Additionally, the 

balancing factor which gives every single converter rail an individual DCM ratio can be 

utilized to eliminate further harmonic components. The optimal values for the phase shifts 

and balancing factors are computed numerically with the Newton method. The computed 

values are only valid for the given inductance ratios and therefore need to be updated for 

each set of inductors. A generalized control law cannot be generated. For three and more 

parallel converter rails the presetting of adequate start values for the Newton method 

becomes more and more complicated. Additionally, the values for the optimal phase shift 

changes with steps at particular duty-ratios. Accordingly, restrictions have to be accepted 

so that an optimal elimination of harmonic components is not realizable in every 

application.  

To find the optimal DCM ratio of the master rail for minimum THDDC further computation 

cycles need to be performed. However, utilizing the universal control law from equal 

inductances is a good compromise.  
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9 Conclusions 

Alternative control concepts for interleaved boost PFC rectifiers have been introduced in 

this thesis. The requirements for those concepts are sophisticated due to the fact that three 

different control tasks must be achieved at the same time: 

 The inner current control loop needs to achieve nearly unity power factor by 

forcing the input current to track the shape of the sinusoidal line voltage as close as 

possible. 

 The outer voltage control loop has to provide a nearly constant DC output voltage. 

 The current balancing control must ensure equal rail power for the paralleled 

converters. 

In addition, it is in the nature of PFC applications that the operating point varies 

continuously within every line half-cycle. Thus, the operation mode of the boost converter 

can change frequently between CCM and DCM.  

Like for all power converters also for PFC rectifiers there are further general demands, 

such as high efficiency, high power density, good noise rejection and low cost. 

All requirements are also the indicators for evaluating the performance of the presented 

control concepts. However, some control concepts are suited only for particular operation 

modes, what makes an unrestricted comparison regarding all categories impossible.  

Analog control has the advantage of high control bandwidth, which is important for the 

current loop. With digital control the drawback of the limited bandwidth can be overcome 

in particular by applying feed-forward loops, adaptive control or non-linear algorithms. 

The semi-digital control concept shows, that it is not essential to implement a full digital 

control in order to achieve high flexibility. Almost the same performance can be achieved 

when only realizing the low bandwidth voltage control in digital. Fast control functions are 

retained in analog, for which reason only low computing power is required, which reduces 

the costs of the digital controller significantly.  

Highest bandwidth in the current loop can be achieved by applying peak current control. 

Available DSPs or µCs with analog on-chip comparators enables digital peak current 

control and consequently a further mixed-signal PFC control concept. Digital slope 

compensation has been developed in order to avoid subharmonic oscillations at duty-ratios 

above 50%. Adaptive algorithms can be utilized to adjust the compensation and to ensure 

sinusoidal shape of the average inductor current. 

All these control concepts are suited for interleaved PFC rectifiers, which are operated in 

CCM and DCM with constant switching frequency. Since the concepts result in equal 

operation modes, there is no difference in the achievable efficiency. Power management 

features such as phase shedding and load dependent adjustment of the switching frequency 

can contribute to higher efficiency at partial load. Also the THD in the input current and 

the power density of the power path are expected to be equal. Due to differences in 
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required analog circuitry and computational effort only little differences in the required 

printed circuit board (PCB) space and the costs for the control result for the different 

control concepts.  

With operating the converter rails in BCM or DCM only, the realizable power level per rail 

is reduced. An applicable interleaving method is essential to reach higher power levels and 

to reduce the THD in the input current. But the varying switching frequency in these 

operation modes makes interleaving challenging. Two control concepts were presented, 

which provide multi-rail interleaving by applying digital control.  

The already popular BCM control achieves a high power factor by applying a constant 

switch on-time for the boost switch during the whole line half-cycle. By turning on the 

switch in the first valley of the drain-source voltage after the ZCD signal, the switching 

losses are minimized. A digital phase shift control has been presented, which enables 

multi-rail interleaving. With the flexibility of the digital implementation it is possible to 

apply phase shedding and limit the switching frequency by maintaining optimal 

interleaving. 

Current control of interleaved PFC rectifier operated in BCM and DCM can also be 

realized by a simple feed-forward algorithm. Only little computational effort is required for 

the presented control concept even for high switching frequencies and multi-rail 

interleaving. Current balancing is possible even in the case of inductance variations due to 

manufacturing tolerances. The DCM ratio can be controlled while still retaining the desired 

current average value. The adjustable DCM ratio establishes a novel scheme of fractional 

phase shedding in contrast to conventional phase shedding, where only an integer number 

of converter rails can be turned off. With this novel continuous degree of freedom the 

performance can be enhanced in different ways. The switching losses can be reduced at 

light load and even within a line half-cycle or the switching frequency can be kept within a 

narrow band. A promising method is introduced, which tracks the DCM ratio and the phase 

shift between the converter rails for every operating point in order to minimize the THDDC 

in the input current. 

The effort for interleaved operation of the presented PFC control concepts are briefly 

summarized in Table 9.1.  

The introduction of digital control provides additional functionality for interleaved PFC 

rectifiers to improve the performance in different categories. Furthermore, with digital 

control it is possible to realize the PFC control in many ways. This study of different 

control concepts has shown that digital control is not a general solution for improved 

performance. It often makes sense to combine digital control with suitable analog parts 

such as analog comparators.  

There is no control concept which is the best solution for all application. It is still up to the 

design engineer to choose the suitable control for each power converter according to the 

specifications.   
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Table 9.1: Properties of the PFC control concepts regarding the effort for multi-rail 

interleaving. Rating: (++): very good, (+): good, (o): reasonable, (-): poor, 

(--): very poor 
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A Appendix 

A.1 Definition of Power Factor (PF) and Total Harmonic 

Distortion (THD) 

The total harmonic distortion (THD) is defined as the ratio of the geometric sum of the 

harmonic components to the fundamental component. The THD of a current signal is 

computed as 

     
    

  
   

  
 

   
    

    
      

 

  
 (A.1) 

and of a voltage signal as 

     
    

  
   

  
 

   
    

    
      

 

  
   (A.2) 

Where    and                are the fundamental and the harmonic components of the 

current and the voltage signal. 

The total harmonic distortion with respect to the average value of the input current     is 

defined as the ratio of the geometric sum of the harmonic components to the DC 

component: 

      
    

  
   

   
 

   
    

    
      

 

   
 (A.3) 

In general the power factor (PF) is defined as ratio of real power to apparent power: 

   
          

              
 

   

        
 (A.4) 

Where the real power is the average over one cycle of the instantaneous product of current 

and voltage, and the apparent power is product of the current RMS value times the voltage 

RMS value. 

For purely sinusoidal signals, it follows: 

   
   

 
 

         

    
      (A.5) 

If the voltage and current contain harmonics, these need to be considered and the power 

factor results as 
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   (A.6) 

In many cases the voltage is nearly pure sinusoidal and only the current contains 

significant harmonics. Thus, the      is zero and the power factor can be computed with 

   
   

    
 

 

       
 

   (A.7) 

 

A.2 Fourier Coefficient Calculation of DCM Inductor 

Current 

The calculation of the Fourier coefficients    of the periodic DCM inductor current signal 

    , which is shown in Figure A.1, is derived in the following. Because only the harmonic 

components should be analyzed, the DC component is set to zero. 
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Figure A.1: Single cycle of the periodic inductor current in DCM 

 

The Fourier coefficients of a periodic signal are calculated with 

   
 

 
              

 

 

  (A.8) 
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If the signal is a continuous function, the integration by parts 

             

 

 

             
               

 

 

 (A.9) 

can be utilized. In this case  

             (A.10) 

and 

          (A.11) 

are applied. 

For the calculation of the Fourier coefficients it follows 

   
 

 
              

 

 

  
           

     
 
 

 

 
 

    
               

 

 

  (A.12) 

Since the DC component of the signal      is zero and due to the periodicity          , 

the first term on the right side of Eq. A.11 is zero. For solving the second term the time 

derivative       is required: 

       

                               

                                  

                                 

  (A.13) 

Thus, it follows 

   
 

    
              

   

 

             

   

   

   (A.14) 

Solving this equation we get 

   
 

      
          

               
          (A.15) 

For the given application the Fourier coefficients need to be computed depending on the 

average inductor current   , the voltage ratio                   and the DCM ratio 

    . Therefore the unknown values  ,   ,   ,    ,      and   must be eliminated with: 

       (A.16) 
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After substitution of these values the required equation for the Fourier coefficient results as 

   
       

 

           
   

    
  

            
   

  
       (A.22) 

In Figure A.2 the reconstruction of a given signal is illustrated with     and      

Fourier coefficients. 
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Figure A.2: Replication of DCM current signal with Fourier series of length   

(            ;         ) 
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A.3 Harmonic Elimination Utilizing Newton Algorithm 

In order to solve the nonlinear system of equation 

                               

                               

                               

                               

  (A.23) 

 

the numeric Newton method is employed. Where      represents the equation to compute 

the Fourier coefficient   of the rail  . 

The system of equation is merged to the multidimensional function vector 

      

  

  

  

  

   (A.24) 

For the initial step of the iterative calculation the start values  

    

    

     

    

     

  (A.25) 

needs to be defined, which should be ideally already near the final solution. 

In iterative steps the calculation of  

                (A.26) 

is repeated. Where 

     

 

 
 
 
 
 
 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

    

 
 
 
 
 
 

 (A.27) 

is the Jacobian matrix. 

The next iterative step is performed with new start values, determined by 
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             (A.28) 

As terminating condition a lower boundary 

          (A.29) 

can be defined. 
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Short Forms 

ADC  analog to digital converter 

BCM  boundary conduction mode 

CCM  continuous conduction mode 

DCM  discontinuous conduction mode 

DPS  distributed power system 

DSP  digital signal processor 

EMI  electromagnetic interferences 

LFF  load feed-forward 

LSB  least significant bit 

PCB  printed circuit board 

PF  power factor 

PFC  power factor correction 

POL  point of load 

PSFB  phase shift full bridge 

PSU  power supply unit 

PWM  pulse width modulation 

RMS  root mean square 

SMPS  switched mode power supply 

THD  total harmonic distortion 

THDDC total harmonic distortion with respect to the DC component 

VFC  voltage feed-forward control 

VRM  voltage regulator module 

ZCD  zero current detection 

µC  microcontroller 
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Definition of Symbols 

 

   converter output capacitance 

   duty ratio 

        feed-forward duty ratio in CCM 

         feed-forward duty ratio in DCM 

   boost converter voltage ratio (           ); in CCM it follows:     

    control loop crossover frequency 

      DPWM counter clock frequency 

    switching frequency 

          total switching frequency seen by the EMI filter 

        current controller transfer function 

     input conductance of the converter 

       transfer function of I-type controler 

        control-to-inductor current transfer function at peak current control 

   (s)  control-to-inductor current transfer function of the boost converter in CCM 

           control-to-inductor current transfer function of the boost converter in DCM 

          control-to-inductor current transfer function of the boost converter in BCM 

         transfer function of the voltage loop control path 

       open-loop transfer function 

        transfer function of the PWM unit 

        voltage loop compensator transfer function 

    steady state valley inductor current 

     line current 

     RMS value of the line current 

         RMS reference value of the line current 

      current threshold for comparator at peak current control 

         current threshold for comparator at peak current control in DCM 
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     input current after rectification 

     average value of the input current during one switching cycle 

      input current ripple 

    inductor current 

    average value of the inductor current during one switching cycle 

        valley inductor current 

     inductor current peak value within one switching cycle 

    sampled valley inductor current in cycle   

       input current reference value within one line half-cycle 

      reference current 

         feed-forward reference current for peak current control 

            feed-forward reference current for peak current control in DCM 

     deviation in the average inductor current 

        inductor current ripple in CCM 

        inductor current ripple in DCM 

      deviation in the inductor current caused by slope compensation 

      deviation in the inductor current caused by delayed sampling 

    balancing factor 

     compensation factor for digital slope compensation 

      DCM ratio 

    factor for digital slope compensation to emulate constant compensation ramp 

   inductance value 

   conversion ratio of the boost converter in CCM 

      conversion ratio of the boost converter in DCM 

    rising current slope 

    falling current slope 

     equivalent current slope of the slope compensation ramp 

      output power 

      output power reference value  

    Fourier coefficient  
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   load resistance 

      Time offset to adjust phase shift error in BCM 

      DPWM counter clock period 

    dead time 

     switch-on duration 

         switch-on duration determined by current controller 

         switch-on duration determined by feed-forward algorithm 

        switch-on duration for phase shedding case 

      switch-off duration 

    switching period  

        minimum valid period time 

     sample delay 

          phase shift delay for phase shedding case 

     line voltage 

     RMS value of the line voltage 

    output capacitor voltage (       ) 

      clock signal 

     drain-source voltage of MOSFET 

    gate-source voltage of MOSFET 

     input voltage after rectification 

      input voltage peak value 

     RMS value of the inputvoltage (       ) 

      output voltage 

   correction factor for sample correction in DCM 

    phase shift offset for rail   of the phase shift controller in BCM 

   compensation gain for digital slope compensation 

    crossover angular frequency 
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