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Abstract

ReconVgurable computing has received a high level of attention during the last years.

Scientists presented accelerators for diUerent algorithm classes gaining speedups of several

orders of magnitude. Major supercomputer vendors came out with high-performance

computers that tightly connect reconVgurable devices to the CPUs and/or to the memory

subsystem. One of the major focuses of recent research is put on the programmability

of these reconVgurable high-performance computers. Despite great research results in

this topic, there are still several challenges which make the development process of

reconVgurable accelerators a time consuming and error-prone process.

One of the main issues in this area is the question whether reconVgurable computing is

even able to generate a beneVt for speciVc applications. Since the design of reconVgurable

accelerators typically is a very time consuming process, it is mandatory to estimate

the potential of this technology before actually implementing the accelerator. For this

purpose, modeling techniques are required. Existing modeling approaches are often

restricted to a static architecture model and provide methods for specifying algorithms to

be executed on those speciVc architecture models. These techniques are not well-suited

when considering reconVgurable computing, since in these cases the concrete architecture

is typically generated explicitly for the speciVc algorithms.

In order to analyze the performance potential of the generated accelerator model, a

deep knowledge of the underlying architecture is required. This includes especially the

time necessary for data transfers between CPU and accelerator as well as the time needed

for memory access. Many tools exist for measuring low level performance values on

commodity CPUs, but no corresponding tools are available to measure such values for

reconVgurable hardware.

The design and implementation of reconVgurable accelerators lead to the demand for

a development framework that supports the designer in implementing and testing the
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modeled design. Simulating a complete design typically requires a large amount of time, so

the development framework should support in-system performance monitoring. Another

key issue is the portability of the framework and the resulting accelerators.

This thesis introduces a novel approach to meet these requirements. It introduces a

modeling technique which supports algorithms targeted at commodity CPUs as well as

reconVgurable accelerators. A key point of the modeling technique is that it does not

assume a static architecture model, but allows for specifying the architecture model along

with the execution model of the algorithms to be implemented. Additionally, the modeling

approach does not only focus on the execution time of arithmetic operations performed,

but also on the time needed for data transfers.

The modeling approach is supported by the IMORC architectural template which eases

the implementation of the modeled accelerator. The architectural template assumes

accelerators to be implemented as a set of communicating cores. Each core may reside in

its own clock domain and communicate to others using an on-chip network. A key feature

is that the network allows control structures and datapaths to be implemented completely

independently from each other. Integrated performance counters support the debugging

and the in-system performance analysis of the Vnal accelerator.

In order to further support the modeling phase, an architecture characterization frame-

work based on the architectural template is introduced. This framework allows to measure

the communication bandwidth between CPU and reconVgurable hardware as well as

between reconVgurable hardware and diUerent kinds of memory in detail. It supports

diUerent kinds of communication schemes and can also generate contention on the target

memory by accessing it concurrently using multiple cores.

The introduced approach is Vnally evaluated by demonstrating three case studies out of

diUerent problem domains. These case studies show that the presented approach greatly

helps in analyzing algorithms concerning their acceleration potential on reconVgurable

hardware and in implementing and optimizing the Vnal accelerators. The accelerators are

implemented using only a small amount of hand written VHDL code. Most functionalities

are realized using the features of the IMORC architectural template. The integrated load

sensors helped signiVcantly to identify bugs and performance bottlenecks during the

design phase. Those would have been hard to Vnd using only simulation techniques.



Zusammenfassung

RekonVgurierbares Rechnen hat in den vergangenen Jahren einen hohen Grad an Auf-

merksamkeit erhalten. Wissenschaftler zeigten Beschleuniger für unterschiedliche Klassen

von Algorithmen, die Geschwindigkeitssteigerungen von mehreren Größenordnungen

erreichten. Die Bedeutung von rekonVgurierbarem Rechnen lässt sich auch daran erken-

nen, dass namhafte Anbieter von Hochleistungsrechnern Systeme mit rekonVgurierbarer

Hardware, die eng an die CPU und das Speichersystem gekoppelt ist, entwickelten. Ein

besonderer Schwerpunkt der Forschung liegt in der Programmierbarkeit solcher rekon-

Vgurierbarer Rechner. Trotz nennenswerten Ergebnissen auf diesem Gebiet existieren

allerdings weiterhin einige Herausforderungen, die den Entwicklungsprozess rekonVgu-

rierbarer Beschleuniger zeitaufwändig und fehleranfällig machen.

Insbesondere stellt sich die Frage, welchen Nutzen eine Realisierung anhand von re-

konVgurierbarem Rechnen für eine bestimmte Applikation bietet. Der zeitaufwändige

Entwicklungsprozess erfordert eine genaue Abschätzung der Nutzbarkeit von rekonVgu-

rierbaren Beschleunigern bereits vor der tatsächlichen Implementierung. Hierzu werden

Modellierungsmethoden benötigt. Bestehende Modellierungstechniken basieren häuVg auf

einem festen Architekturmodell und stellen Methoden zur Verfügung, um Algorithmen

für die Ausführung auf dieser Architektur zu speziVeren. Solche Methoden eignen sich

schlecht für die Modellierung von rekonVgurierbarer Hardware, da in diesem Fall die Ar-

chitektur nicht vorgegeben ist, sondern explizit für die zu implementierenden Algorithmen

entworfen wird.

Um das Geschwindigkeitspotential eines Beschleunigermodells zu analysieren, wird

eine tiefgreifende Kenntnis der zugrundeliegenden Architektur benötigt. Dies beinhaltet

vor allem die Zeiten, welche für die Datentransfers zwischen CPU und Beschleuniger

sowie für SpeicherzugriUe benötigt werden. Es existieren viele Hilfsprogramme, um solche

Parameter für typische CPUs zu messen, allerdings mangelt es an äquivalenten Lösungen

um entsprechende Werte für rekonVgurierbare Hardware zu bestimmen.

Das Design und die Implementierung rekonVgurierbarer Hardware erzeugen weiterhin
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einen Bedarf an Frameworks, die dem Entwickler bei der Implementierung und dem

Testen der modellierten Beschleuniger Unterstützung bieten. Die Simulation vollständiger

Schaltungen ist typischerweise sehr zeitaufwändig. Dementsprechend sollte solch ein Fra-

mework Unterstützung für die Geschwindigkeitsanalyse im laufenden System bereitstellen.

Ein weiterer wichtiger Punkt ist die Portabilität eines solchen Frameworks und der darauf

basierenden Beschleuniger.

In dieser Arbeit wird ein neuer Ansatz zur Lösung dieser Anforderungen vorgestellt. Die

Arbeit führt eine Modellierungsmethode ein, die die SpeziVkation von Algorithmen unter-

stützt, welche auf CPUs oder auf rekonVgurierbarer Hardware ausgeführt werden sollen.

Weiterhin betrachtet der vorgestellte Modellierungsanzatz nicht nur die Ausführungszeit

arithmetischer Operationen. Insbesondere wird auch die benötigte Zeit für Datentransfers

berücksichtigt.

Der Modellierungsansatz wird durch das IMORC-Architekturtemplate unterstützt, wel-

ches die Implementierung der modellierten Beschleuniger vereinfacht. Das Architekturtem-

plate basiert auf der Annahme, daß Beschleuniger aus einer Menge an kommunizierenden

Kernen bestehen. Jeder Kern kann in einer eigenen Taktdomäne arbeiten und über ein

On-Chip-Netzwerk mit anderen Kernen kommunizieren. Ein besonderes Merkmal des

Netzwerkes ist, daß es die Möglichkeit bietet, Kontrollstrukturen unabhängig von den

Datenpfaden zu implementieren. Weiterhin stellt es integrierte Lastsensoren zur Verfügung,

die eine Performanceanalyse und das Debugging des entwickelten Beschleunigers zur

Laufzeit im System ermöglichen.

Um die Modellierungsphase weiter zu unterstützen, wird darüber hinaus ein Fra-

mework zur Charakterisierung der Zielplattform vorgestellt, welches auf dem IMORC-

Architekturtemplate basiert. Dieses Framework ermöglicht die detailierte Messung der

zur Verfügung stehenden Bandbreite zwischen CPU und rekonVgurierbarer Hardware

sowie zwischen rekonVgurierbarer Hardware und den verschiedenen Arten an verfüg-

barem Speicher. Es unterstützt unterschiedliche ZugriUsmuster. Darüber hinaus kann es

konkurierende ZugriUe auf den Zielspeicher generieren, indem mehrere Kerne gleichzeitig

auf den Speicher zugreifen.

Das vorgestellte Verfahren wird anhand dreier Fallstudien aus verschiedenen Domänen

evaluiert. Diese Fallstudien zeigen zum einen, daß das vorgestellte Verfahren bei der

Eignungsanalyse von Algorithmen für eine Umsetzung mit rekonVgurierbarer Hardware

hilreich ist. Zum anderen wird deutlich, daß es die Implementierung und Optimierung

der enwickelten Beschleuniger stark vereinfacht. Die Implementierung der Beschleuniger

erforderte nur wenig handgeschriebenen VHDL-Code. Der Großteil der Funktionalitäten

konnte durch die Funktionen des IMORC-Architekturtemplates realisiert werden. Die

integrierten Lastsensoren erleichterten das Aufspüren von Fehlern und Leistungsengpässen

erheblich. Diese Informationen wären mit reinen Simulationstechniken nur sehr schwer

zu identiVzieren gewesen.
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1
Introduction

Since many years academic research has studied the use of application-speciVc coproces-

sors based on Veld-programmable gate arrays (FPGAs) to accelerate high-performance

computing (HPC) applications. Several publications discuss the implementation of acceler-

ators for diUerent kinds of applications.

While early work performed in this area usually used workstations equipped with

traditional PCI or PCIe attached FPGA accelerator boards, in the recent years major

supercomputer vendors started oUering servers with integrated reconVgurable accelerators

tightly connected to the system’s high-performance interconnect. Such integrated solu-

tions are able to harness one of the major issues of traditional accelerator boards — the

communication bandwidth between host processor/memory and the accelerator.

However, designing an accelerator and optimizing its performance still remains a diXcult

and time consuming task requiring signiVcant hardware design expertise. Several diUerent

approaches target at simplifying this implementation task, such as visual design tools and

high-level language compilers.

This thesis aims at guiding the accelerator design process with a model-based approach

that enables performance optimization throughout the design Wow. The approach uses

diUerent modeling techniques to estimate the eUects of diUerent architectural decisions,

monitoring actual performance values in real systems and runtime-optimization.

1.1 Motivation

Many tools are available in traditional high-performance computing that support develop-

ers with optimizing applications for speciVc platforms. ProVling tools exist for identifying

the most computation intensive parts of an application. While from the applications’

perspective those parts are the best candidates for acceleration, this does not imply that

reconVgurable hardware is a suitable technology for accelerating these parts. Implemented
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on FPGAs, lots of applications might achieve speedups of several orders of magnitude,

others might even perform worse on FPGAs when compared to optimized CPU imple-

mentations. Even when algorithms are generally suitable for FPGA acceleration, the

performance of the complete application including the accelerator often depends on system

speciVc parameters, such as the communication performance between the FPGA and the

memory location where the problem resides.

Although with the wide variety of tools supporting the design and implementation of

reconVgurable accelerators, the design and performance optimization step still remains a

diXcult and time consuming task. Trial-and-error methods for generating reconVgurable

accelerators cannot be esteemed as eXcient. Modeling techniques are required to estimate

the performance gains achievable by using reconVgurable accelerators in general and

on the speciVc target platforms available before actually designing, implementing and

optimizing the accelerator. Such modeling techniques should be applicable at a very early

stage of the design phase, with little or no information of the Vnal accelerator design

available.

When this estimation shows that FPGA acceleration is feasible, the design process

begins. Important design decisions based on the application and the target architecture

inWuence the Vnal performance of the accelerator and have to be taken carefully: Var-

ious storage locations are available for storing intermediate data, but all of them may

have diUerent performance characteristics that could inWuence the accelerator’s perfor-

mance; contention may occur when resources are shared among multiple execution units

for example. Therefore, again modeling techniques are required to design an eXcient

accelerator.

Such a design approach needs a detailed knowledge of the target architecture. Parameters

like the amount of memory available in diUerent locations, the bandwidth available when

accessing such memories and the communication bandwidth between diUerent processing

elements are especially interesting. Vendors usually provide such information; however

these communication and memory access bandwidths usually are theoretical peak values

that are not achievable in real applications. For getting detailed knowledge of the target

platform, microbenchmarks have to be created.

Following the design phase, the accelerator is implemented. Several tools and languages

try to ease the implementation phase, all providing diUerent assets and drawbacks. The

success of the implementation greatly depends on an adequate selection of used tools and

methods. With a speciVc modeling approach taken for the design phase, ideally speciVc

methods and tools are available supporting the implementation of designs resulting from

these modeling techniques. Additionally, when the implementation is valid, supporting

methods are needed for debugging and optimizing the implementation.
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1.2 Contributions of this Thesis

The contribution of this thesis is a design and implementation Wow for reconVgurable ac-

celerators with a focus on high-performance computing. More precisely, the contributions

are as follows:

• A modeling Wow for reconVgurable accelerator design is introduced. The model

consists of an architecture model describing the architecture of the target platform

and an execution model describing the application. The execution model especially

characterizes the communication behavior of the application. Mapped to the archi-

tecture model, the communication and execution time can be roughly estimated. In

the design phase, this mapped execution model is reVned for further detailing the

FPGA accelerator in the architecture model, which can then be implemented on the

actual target platform.

• Based on this modeling Wow, this thesis introduces a novel application template

supporting the implementation, optimization and debugging of the accelerator. The

template is based on the Infrastructure for Performance Monitoring and

Optimization of Reconfigurable Computers (IMORC), an infrastructure for im-

plementing accelerators consisting of multiple communicating cores. Additional

functionalities are available for implementing tasks often needed. The application

template was designed to match the modeling approach presented in this thesis, en-

abling the developer to map the application model directly to the resources available.

Additionally, the template provides methods for measuring the performance and

Vnding bottlenecks in a running system, simplifying further performance optimiza-

tions.

• A benchmarking framework for accurately characterizing target platforms is pre-

sented. The framework can measure the bandwidth of communication channels

from the FPGA to diUerent memory locations and between the host CPU and cores

on the FPGA. It does not only measure the peak values achievable, but can also

simulate diUerent communication schemes and contention on the target resource.

1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 Background and Related Work provides the background to this thesis and

summarizes related work. It presents an introduction to HPC computing and FPGA

computing and gives an overview of existing approaches for performance estimation,

design and implementation of FPGA based accelerators.
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Chapter 3 Programming, Execution and Performance Model discusses the modeling

approaches used within this work. It Vrst presents the programming model and methods

for partitioning given problems into a set of tasks that communicate with each other. The

remainder of this chapter discusses the analysis and optimization of the resulting task

graphs for maximizing the overall performance.

Chapter 4 The IMORC Architectural Template introduces the IMORC Infrastructure for

Performance Modeling and Optimization of ReconVgurable Computers. The Vrst part

discusses the architecture of the IMORC communication infrastructure and how the models

presented in Chapter 3 can be mapped to the IMORC architectural template. Several generic

cores are presented that implement subtasks often needed by accelerators. Additionally, as

a basis for the case studies presented in the following chapters the XtremeData XD1000

platform and the corresponding IMORC interface cores are introduced. The second part

presents the features IMORC provides for debugging and optimizing accelerators by

gathering performance values from the system during runtime.

Chapter 5 Architecture Characterization discusses a set of benchmarks based on IMORC

that are used for characterizing the communication performance of diUerent kinds of

memory on individual target architectures. These characterizations form the foundation

of a concrete mapping of data to the individual memories for maximizing the accelerators

performance. A detailed performance analysis for the XtremeData XD1000 is presented.

Chapter 6 Experimental Evaluation demonstrates some case studies based on the pre-

vious three chapters. It introduces some concrete applications from diUerent domains

that are analyzed using the modeling techniques presented in Chapter 3 and presents

accelerator implementations for these algorithms based on these modeling techniques and

the infrastructure presented in Chapter 4. The architecture characterization presented in

Chapter 5 combined with the application model thereby support Vnding a good mapping of

data to the memory resources available. This way, this chapter demonstrates the beneVts

achieved by the techniques introduced in the previous chapters quantitatively compares

the accelerators to equivalent CPU implementations.

Chapter 7 Conclusion and Outlook Vnally summarizes the achieved contributions. It

draws an overall conclusion and gives an outlook on possible future research directions in

this area.



2
Background and Related Work

This chapter summarizes background information of this thesis and related work. First, a

brief overview of current trends in the area of accelerated supercomputing is presented. In

particular some of the current platforms with integrated FPGA accelerators are introduced.

Second, an overview of related work in modeling FPGA accelerators and performance

estimation techniques is given. Third, existing design methods and tools used for imple-

menting, verifying and optimizing reconVgurable accelerators are discussed in regard to

beneVts and limitations of the diUerent approaches.

2.1 Accelerated Supercomputing

Since many years acacemic research has studied diUerent approaches for accelerating

high-performance computing applications. Companies provide special vector processors,

such as the ClearSpeed processor [10], which is able to provide high speedups for diUerent

classes of algorithms. Other trends are the utilization of commodity graphics processing

units (GPU) for performing computations. While these coprocessors often provide very

good results with low eUort, their use still is restricted to several classes of algorithms.

FPGA-based application speciVc coprocessors are an alternative to such vector processors,

which often can provide good speedups for algorithms that do not perform well on such

vector processors. FPGAs gain performance if many operations can be performed in

parallel on a small set of data, for example by pipelining operations.

Clusters of workstations were equipped with reconVgurable hardware for accelerating

computation intense kernels of applications. Examples are given by the Hydra [51] chess

computer operated by the PAL group in Abu Dhabi, the Maxwell cluster operated by

the Edinburgh Parallel Computing Centre (EPCC) [12] for the FPGA High Performance

Computing Alliance [13], Novo-G operated by the NSF Center for High-Performance
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ReconVgurable Computing (CHREC) [17] and the Axel cluster operated by the Imperial

College London [71, 123]. Application speciVc accelerators were developed, such as [1],

[78] and [126]. A major challenge in the accelerator design was the communication be-

tween processors and reconVgurable logic, especially in cases FPGA hardware is connected

to clusters of workstations using PCI or PCIe.

To overcome such issues, in the recent years, major supercomputer vendors reduced

these restrictions by providing servers with integrated reconVgurable accelerators, tightly

connected to the main CPUs and memory. Examples are given by the Cray XD1 [11]

system, the SRC MAP [24] processor available for the SRC-6 and SRC-7 and the SGI

RASC [23] blade available for integration into the Altix line of systems. These three families

of high-performance systems integrate a large number of processors using a proprietary

interconnect into a NUMA-style (Non-Uniform Memory Access) shared memory system.

The FPGAs in these systems are directly connected to this interconnect, allowing them to

communicate with the main memory at a very high speed.

Another approach followed in the last years was to directly integrate the FPGA into

a commodity CPU socket of standard workstations. Given a multi-processor mainboard,

one or several CPU sockets are equipped with CPUs, the others with FPGA accelerators.

Examples are given by the XtremeData XD1000i and XD2000i [128], which integrate the

FPGA into an AMD Opteron socket. Since in Opteron based systems each CPU socket is

connected to a unique bank of memory, the FPGA in these systems can directly access its

own dedicated large area of DDR/DDR2 memory. Additionally, the accelerator’s printed

circuit board (PCB) provides a small amount of low latency SRAM, which is accessible by

the FPGA. CPU and FPGA can communicate to each other using a 16 bit HyperTransport

link at a rate of 800MT/ s, resulting in a theoretical peak bandwidth of 2 × 1.6GB/ s
The XtremeData XD2000F and the Nallatech FPGA-FSB [15] platform integrate an FPGA

in a similar way into the Front Side Bus (FSB) of Intel Xeon based servers. All sockets

are connected to the central memory controller using the FSB, thus sharing the same

main memory. As a result, the FPGAs have not any exclusive access to large DDR/DDR2

SDRAM memories, but only to some smaller areas of SRAM available directly on the PCB.

2.2 Performance Modeling, Analysis and Optimization

A key point in the design of reconVgurable accelerators is the achievable overall perfor-

mance. For traditional computing and HPC computing several research has been conducted

to analyze the performance of applications running on a special kind of hardware.
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2.2.1 Performance Analysis in High-Performance Computing

Lots of research has been conducted to analyze the performance of applications in the area

of traditional high-performance computing. The objective of such work is to analyze the

application’s behavior on a certain computing platform and addresses diUerent aspects.

The approaches can be grouped into diUerent classes:

ProVling

ProVling is a technique that can give an insight into the runtime behavior of an application

using real workloads. Software can be instrumented for example by automatically inserting

additional code for generating proVling data. Alternatively or additionally performance

counters available in hardware can be used for collecting performance data. ProVling

is often used in performance tuning of already existing applications. Frequently called

methods of the application can be identiVed in order to concentrate on these critical points

in the software. Additionally, bottlenecks introduced by the system can be identiVed by

monitoring the resource usage of its components like network, memory and so on.

The knowledge of critical segments in the application and their runtime behavior, such

as the demand for data access and communication or the number and type of operations

performed, forms the basis to estimate the suitability of reconVgurable hardware for

acceleration of these segments. An upper bound on the achievable speedup can for

example be estimated by analyzing the data requirements and calculating the time needed

for data transfers to the reconVgurable hardware. By Amdahl’s law [33] this rough speedup

estimation can be transformed into an upper bound on the speedup realizable for the

complete application. Additionally, the extracted data can be used for parameterizing

analytical models of the application.

A key issue in using proVling tools for gaining performance values is that the application

is required to be already implemented and running on a concrete system. On the one

hand, instrumenting the application may inWuence the runtime behavior of the application,

resulting in potentially corrupted measurements. On the other hand, if only using hardware

monitors to gather runtime performance values the amount of data that can be extracted

is restricted to the performance sensors actually available.

The GNU proVler gprof [57] is an example for a popular proVling tool using instru-

mentation. The application to be proVled is compiled and linked using the GNU compiler

suite with proVling enabled. During execution it generates a proVle data Vle that can be

analyzed using the gprof tool.

OProVle [21] is a well-known proVling tool for Linux-based systems. It consists of a

kernel driver to access hardware performance counters, a pseudo-Vlesystem for commu-

nication with the userspace and an OProVle daemon that communicates with the kernel

interface and stores traces to the disk and tools for later analyzing the collected data.

Since the tool uses the internal performance counters for collecting data, no overhead is
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introduced into the application’s runtime itself. Only the system load is slightly increased

due to the running OProVle daemon storing the collected data.

Intel’s VTune [74] and the Sun Studio Performance Tools [119] are examples for other

proVling tools, which are designed to gather performance information from applications

running on single-processor workstations up to large scale shared memory systems or

even MPI applications running on beowulf clusters. This property makes those tools very

popular in the HPC community. Both tools use non-intrusive proVling, so no recompilation

of existing code has to be performed.

Valgrind [26, 90] uses another approach for gathering such information. It consists

of a core that provides a virtual processor and tools that are based on this core. The

application to be proVled is disassembled into an intermediate representation (IR) which

is then instrumented with analysis code. The code is executed on the virtual processor

with the instrumentation code collecting the performance data as deVned by the tool.

However, since the application is executed on a virtual processor, performance values are

only collected for the original code. For example, if monitoring the runtime of application

segments, only the runtime for the original segment is collected, the overhead imposed by

the instrumentation code is not added to this runtime. Additionally, several parameters

of the virtual processor such as the cache may be speciVed by the user, simulating the

execution on diUerent architectures. These properties make Valgrind a very accurate tool,

but the simulation of a virtual processor also reduces the execution performance.

Modeling

Modeling is another approach for gathering an insight into the runtime requirements

of applications. Analytical models usually consist of an abstract model of the target

architecture and a speciVcation of the application. The execution of the application model

on the architecture model is simulated and the runtime is calculated, usually depending

on parameters like the input size.

Such models are frequently used in theoretical computer science for classifying al-

gorithms by their asymptotic behaviour. Examples are given by the Random Access

Machine (RAM) [43] and the Random Access Stored Program (RASP) [52], which are

simpliVed models of the Harvard architecture and von Neumann architecture, respectively.

Advanced features of modern processors, such as memory hierarchies and pipelining, are

not considered by such models. For the evaluation of parallel algorithms and contention

on shared memory resources, the Parallel Random AccessMachine (PRAM) [56] was

introduced, a simpliVed model of symmetric multiprocessing systems (SMP). The classi-

Vcation by the asymptotic behavior makes algorithms comparable. Figure 2.1 shows the

principal architecture diagram of the PRAM.

However for estimating the runtime on real systems, these methods are usually not

accurate. Especially the time needed for communication between processors and for
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PnP2 P3P1
Shared Memory

Figure 2.1: Diagram of the PRAM architecture

memory access is neglected. Resulting, applications using very Vne-grained parallelism

may perform great on the PRAM while a real implementation might even perform worse

than a single-threaded implementation. The Queuing Shared Memory (QSM) [100]

model was introduced to overcome this issue. It assumes a shared memory system, where

each processor additionally contains a certain amount of local memory (cache, registers).

Algorithms are modeled using three phases: 1) reads from shared memory, 2) writes to

shared memory and 3) local operations. The phases are synchronized; as the reads or

writes may be concurrent, cost functions are provided for such concurrent accesses.

All models presented above assume some kind of shared memory for interprocess

communication. For also supporting systems that communicate using message passing,

several other models were developed. The Bulk Synchronous Programming (BSP) [125]

model assumes an application to be running on a system with multiple processors. In BSP,

the application’s execution is divided into three phases (cmp. Figure 2.2):

1. a computational phase, in which only local operations are performed,

2. a communication phase, in which the processors exchange messages and

3. a synchronization phase, where all processors synchronize using a barrier operation.

After the synchronization the processors continue with the next computational phase.

Computation
Local

Communication

SynchronizationBarrier

Processors

Figure 2.2: Execution diagram of the BSP model with six processors
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The LogP [45] model predicts the communication performance of an application by

assuming processors to communicate using point-to-point messages. The underlying

architecture model implies a number of compute nodes that communicate using a network.

The architecture is characterized by four parameters: Latency (L), overhead (o), gap (g) and
the number of Processors (P). With the communication model of the application and these

parameters, the overall communication performance of the application is predicted. A

problem is that the parameters in this model are static, assuming only Vxed sized messages

to be transferred between the processors. LogGP [30] is an extension to this model

which additionally comprises messages of diUerent sizes. The Latency of Data Access

(LDA) [109] is another modeling approach which supports shared memory systems as well

as clusters of workstations. The architecture model consists of a number of processors

that are connected to some kinds of local memory (registers, caches) and potentially some

shared memory. Additionally, the processors may be connected by some kind of network.

The application is modeled as a set of communicating tasks, which are mapped to the

available processors in the next step. Tasks consist of local operations, memory accesses

to the diUerent kinds of memory and network access. Operations are classiVed due to

their execution time, such as integer operations, Woating point communication, access to

L1/L2/L3-cache or shared memory and so on.

A diUerent modeling approach is followed by the Kahn Process Network (KPN)

introduced by Kahn in 1974 [59]. KPN is a distributed computation model where a group

of sequential processes communicate using FIFO channels. These channels are unbounded,

i. e., they provide an inVnite amount of storage and will never overWow. Processes are

operating on local data and may read from and write to the FIFO channels. Writing to a

channel is non-blocking due to the inVnite amount of storage, reading is blocking. KPNs

are often used for modeling embedded systems, since such systems often get a stream of

input data that has to be processed. Such systems can be eXciently modeled using KPNs

due to the streaming nature of the FIFO channels. Figure 2.3 shows a sample KPN with

Vve processes that communicate using four channels.

P P

P

PP

BA

DC

Figure 2.3: Example KPN with Vve communicating processes
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Architecture Characterization

The models presented in the previous paragraph require a detailed knowledge of the

underlying architecture. Examples for such characteristics are the number of clock cycles

needed per local operation, the bandwidth and latency of memory access to diUerent kinds

of memory and the latency introduced and bandwidth achievable when accessing the

network. Vendors usually provide such performance characteristics, but these values tend

to be optimal peak values that are hardly achievable in real applications. To overcome

this issue, several benchmarking tools exist for gathering such parameters. The CPU’s

raw performance can be measured by implementing a small application that performs a

huge number of operations on a small amount of data. The data in such benchmarking

applications should Vt into the L1 cache of the CPU, so the measurements are not inWuenced

by access to diUerent memory locations.

Characterizing memory access and the communication network is more complex. On

these media contention may occur due to several processors accessing the same memory

or the network at the same time, increasing the latencies and reducing the bandwidths

of these media. While these parameters may often scale linearly with the number of

processors accessing the medium, especially the bandwidth will usually largely depend on

the size of the data to be exchanged.

The STREAM [77, 76] and the RAMSpeed [22] benchmark are characterization tools

that perform simple operations on a large continuous block of memory. Data is accessed

incrementally as a stream of data, so the caching system is not able to accelerate the

memory access. The benchmark is conVgurable regarding the size of the memory block to

be accessed and can be used for measuring the uniprocessor bandwidth achieved as well

as the bandwidth achieved in multiprocessor runs.

For characterizing the communication bandwidth between processors using message

passing a wide range of benchmarking tools exist, for example Netperf [16] for measuring

the TCP/IP communication performance of a beowulf cluster. The OpenFabrics [19]

InVniband stack commonly used by several vendors of InVniband hardware provides

several tools for measuring the low-level performance of an InVniband interconnect,

similar tools are available for other interconnects. A more general approach is the Intel

MPI Benchmark (IMB) [73] that relies on MPI and measures several parameters such as

bandwidth and latency of unidirectional or bidirectional communication and the time

needed for distributing data, for synchronizing the processors, for performing a reduction

operation and many more. The benchmarks are performed with many diUerent data

sizes that are transmitted, giving a detailed insight of the performance values that can be

achieved on the actual system.

Additionally, several benchmarks exist for computational kernels often used in HPC,

such as the Linpack [91] benchmark solving a dense linear equation system which is

also used for the ranking in the Top500 list [25] of the fastest HPC systems in the world.
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Other examples are benchmarks performing sparse matrix calculations [92], FFT [54] and

many more. While such kernel benchmarks do not directly characterize parameters of the

actual system, they may act as a basis for a Vrst estimation of the performance achievable

when implementing similar applications or even applications that make heavy use of such

kernels. Several benchmarking pages exist for comparing systems’ performance achieved

in such benchmarks, for example the PC
2
benchmark site [99].

2.2.2 Analytical Performance Estimation for ReconVgurable HPC

While the methods presented above greatly aid the developer in tuning the runtime

performance of applications executed on commodity large-scale HPC systems, the situation

is more complex when regarding reconVgurable accelerators. The analytical models

described before provide an abstract architecture model simulating the target system and

executed the application model on this target machine under certain constraints. FPGAs

do not provide a predeVned set of execution units that can execute arbitrary code. The

architecture has to be deVned by the user based on the actual execution model. Since

the design and implementation of reconVgurable accelerators is a time consuming task,

models are needed to decide whether and which segments of the application are suitable

for acceleration. The following paragraphs discuss some related approaches to characterize

algorithms and identify such segments.

Characterizing Algorithms by Calculating the Computational Density Function

In [118], SteUen presents a scheme for characterizing algorithms and computing hardware

regarding the suitability of the hardware for the algorithm. The method does not try to

predict the performance of a speciVc design implementing the algorithm on a speciVc

hardware accurately. Instead it is a pre-design analysis of code or algorithms to decide

whether porting the software to an FPGA system is even worth the eUort. For this purpose,

a computational density function ρ of the algorithm is calculated.

The method assumes calculations to be performed on an abstract processor which has

local memory, analogous to a cache in a real processor. First, an input data set of m
operands each of size s has to be transferred to the local store, resulting in a complete

transfer size of M = m · s. Z computations have to be performed, each one requiring

v operands. The local store size is deVned to be of size α, the computational density

function ρ(α) is the number of computations per byte that can be performed by the

abstract processor. The model assumes that the local store is Vlled once and all possible

computations on the data transferred are performed. After this processing, the next block

of data is transferred and processed. This procedure is repeated until the complete problem

M is processed.

In this model, the larger the local store size α is, the more computations per byte
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can be performed before more data is required. If α > M , then the complete problem

can be transferred to the local store for computation in one step. The computational

density function is formulated depending on the number of operations η that are possible
with α bytes of data: ρ(α) =

η(α)
α . The η function has to be deVned by the designer,

requiring detailed knowledge of the algorithm. Several methods for gathering this value

are presented in the paper [118].

Using this computational density function and hardware parameters like the memory

size µ, the bandwidth β and the latency λ, the maximum throughput σ for the abstract

processor can be calculated and compared to the measured value for the real processor.

This comparison supports the developer in deciding whether the algorithm is applicable

for FPGA acceleration without even requiring a rough idea of the Vnal FPGA design.

RAT - the RC Amenability Test

The RC Amenability Test (RAT) presented by Holland et al. in [66] and [67] is a method-

ology for determining an application’s suitability for FPGA acceleration. The method

consists of an analysis of algorithms or existing legacy code combined with some compu-

tations. Three factors for the amenability of an application to hardware are considered:

throughput, numerical precision and resource usage.

The goal of the throughput analysis is to estimate the performance of the application

implemented on a reconVgurable computer based on parameters like the interconnect’s

speed, the amount of data to be transferred, the number of operations performed per

data element and the clock frequency of the accelerator. A set of equations is given

for calculating the time needed for communication and computation based on these

parameters, as well as the overall runtime, utilization and speedup of the accelerator.

In addtition to the throughput analysis, RAT provides methods for estimating the

numerical precision an accelerator has to provide. General-purpose processors have Vxed-

length data types and a Vxed Woating point format and will often use higher precision

than actually needed for speciVc algorithms. In FPGA accelerators, the operators and

their precision can be freely deVned, taking parameters like performance, numerical

errors and resource usage into account. RAT relies on third-party research and tools for

evaluating the required precision and takes the results into account when calculating the

throughput achieved and area used by the accelerator. Examples for such third-party tools

are presented in [37, 41, 39, 58].

Resource utilization is the third property that is considered by RAT. However, for this

step no generic formulae are published. The actual estimation is based on the user’s expert

knowledge of the target FPGA’s architecture and the algorithm. The RAT methodology

starts with a kernel identiVcation and a design created on paper. A throughput analysis is

performed followed by a resource test and a precision test. Using the results, the original

design on paper is updated and the test starts from the beginning. This procedure is
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repeated until no further optimizations are identiVed. The method results in an estimation

of the achievable speedup which then can be used to decide whether implementing the

accelerator is worth the eUort or not. In [65] the authors present the integration of

RAT into the RCML environment for estimation modeling of reconVgurable computing

systems [101].

A Modeling Approach for Complete HPRC Applications

The two approaches presented in the previous two sections only consider the suitability

of a single algorithm or compute kernel for FPGA acceleration. However, for estimating

the performance achievable for complete applications running on multiple processors and

multiple FPGAs, the estimates gathered from these techniques have to be integrated into

more comprehensive models.

The modeling and analysis approach presented by Smith and Peterson in [112] and [113],

as well as by Smith in [111] is such a comprehensive model. As a basis, it assumes a system

consisting of multiple workstations connected to a cluster, each one equipped with one or

several reconVgurable hardware components. The method assumes synchronous iterative

algorithms, in which several tasks can be executed in parallel. The tasks synchronize after

each iteration, just like in the BSP model [125]. Some of the tasks are executed on the

worstations’ CPUs, the others are executed in the reconVgurable hardware. Using these

properties and parameters like communication bandwidth between the nodes, execution

time of the tasks in hardware and software, communication time between CPU and FPGA,

load imbalance between nodes and amount of serial computations, formulae are developed

for calculating the complete runtime of the application on the target system.

The hardware tasks themselves are expected to have a deterministic runtime, e. g., not

containing any decision loops. The runtime can in this case be calculated by counting

the clock cycles used and dividing this value with the processor’s clock frequency. More

complex tasks would need additional eUort and could be analyzed for example by the

methods discussed in the previous two sections.

Tool Supported Performance Estimation

Corresponding to the proVling tools available for commodity workstations, recent research

activities explored the utilization of automatic partitioning tools for heterogeneous com-

puting. In [115], Spacey et al. introduce the 3SP Design Space Exploration System. 3SP

characterizes software and automatically partitions it for execution on heterogeneous ar-

chitectures. Hardware characterization parameters, such as cycle time, number of parallel

execution units, bus latency, bandwidth etc. are provided in a user-initialized conVguration

Vle. The application is characterized using the 3S instrumentation and characterization

framework presented in [116]. With this information, the 3SP tool seeks an optimal
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partitioning between CPU and accelerator.

Another approach presented in [79] by Kenter et al. is based on the LLVM (Low Level

Virtual Machine) compiler infrastructure. Here, the application to be analyzed is compiled

into the LLVM intermediate code (IR) representation. The application is modeled as a set of

instructions classiVed into load/stores and calculations which are grouped into a set of basic

blocks. The architecture model consists of a CPU and an accelerator with private L1 caches,

a shared L2 cache and memory, and a low latency control interface between CPU and

accelerator. Basic blocks can be mapped to the CPU or to the accelerator. The architecture

is characterized by parameters such as cache sizes, execution eXciencies of CPU and

accelerator (e. g., number of clock cycles spent per instruction) and so on. The application

is executed on a commodity workstation and the framework monitors the memory access

scheme of each basic block. With these information, the overhead of moving basic blocks

to the accelerator in terms of data transfer times is calculated — together with the estimated

execution eXciency, the overall speedup is calculated afterwards.

2.2.3 Bottleneck IdentiVcation and Optimization of ReconVgurable
Accelerators

When the initial performance analysis resulted in the perception that the target application

is suitable for FPGA acceleration and an initial hardware/software partitioning was

performed, the design and implementation process is started. While some bottlenecks can

often be identiVed during the simulation phase, due to the reduced problem sizes usually

used in this phase other bottlenecks may be only found in the real system running in the

FPGA.

Software running on commodity CPUs can be analyzed by a wide variety of performance

analysis tools as described above. For FPGA-based accelerators, proVling tools are currently

not as widely accepted as for software. Vendors usually provide methods for reading the

state of a user-deVned set of signals during runtime using JTAG or similar methods. Since

these methods do not count the number of events occurring on the signals monitored, but

only trace the selected signals, they are not directly usable for proVling. Instead, counters

have to be inserted manually which have to be monitored by the JTAG interface.

In [80], Koehler et al. propose a framework for proVling applications running on high

performance reconVgurable computers. A software parses the source HDL code and

enumerates signals, ports, variables and other data. The data to be monitored can be

selected automatically — based on user settings — and modiVed manually. The software

then generates a modiVed type of the original HDL code with instrumentation code

inserted for the data to be monitored. In the software implementation, a seperate thread

is started that polls the performance counters for gathering the data. In [47] and [48]

the authors extend this approach by expanding the framework to support the challenges

occurring in High Level Language Synthesis.
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2.2.4 ReconVgurable Hardware Characterization

Only little related work exists regarding the architecture characterization of reconVgurable

hardware. The achievable clock speed of simple operations like add or subtract usually

greatly depends on the actual implementation, with parameters like the data width,

cycles per operation, latency, etc. Since these implementation parameters depend on the

application to be implemented, no standard benchmarks are available. Instead, designers

evaluate implementations using diUerent parameters as needed by the application.

The maximum communication bandwidth between CPU and FPGA as well as between

FPGA and diUerent kinds of memory is a parameter that is primary deVned by the archi-

tecture and the access scheme, just like the memory and network bandwidth and latency

in traditional HPC systems. Due to the lack of standard interfaces and communication

channels, no standard benchmarking tools can be found. In [105] Schmidt and Sass present

a characterization of the memory access performance on a widely used standalone FPGA

board. Several cores are connected to the memory using a shared bus and access this

memory using diUerent patterns.

2.3 Design Implementation, VeriVcation and
Optimization

ReconVgurable accelerators provide a great Wexibility. This Wexibility also produces several

challenges in the accelerator design. While designing such accelerators using traditional

hardware description languages like VHDL or Verilog provides full control of the design,

this is also the most complex way to go. Several approaches try to harness these challenges,

including the work Wow presented in this work. This work does not try to replace all of

these approaches but may also integrate these other approaches.

An example for methods that simplify the designer’s work are libraries of cores. Such

libraries contain cores for many diUerent functions that are usually customizable to the

concrete applications needs. A graphical user interface is often provided for setting the

core’s parameters and generating a customized variant. Examples of such libraries and

generators are the Xilinx Coregen, which is part of the Xilinx design environment, the

Altera Megawizard providing an equivalent functionality for Altera devices, and the

vendor neutral grlib [27]. The OpenCores Website [18] also provides a wide range of freely

available cores with diUerent functionalities.

2.3.1 High-Level Language (HLL) Synthesis

High-Level Language Synthesis is an approach for overcoming the time consuming and

error-prone task of describing RTL hardware using common HDLs like VHDL [82] or
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Verilog [96]. With the growing acceptance of reconVgurable hardware for accelerating

high-performance computing, such approaches gained a new dimension of attention.

There are various projects that studied the generation of hardware out of standard

high-level languages, usually based on C or C++ with some limitations and extensions.

Table 2.1 gives an overview of well-known HLL compilation languages and tools. All

these tools provide diUerent features and levels of abstraction from the real hardware, and

support diUerent subsets or supersets of ANSI C/C++.

This results in that the languages are not compatible to each other: once decided to

use a speciVc language designers are forced to stay with that language or completely

reimplement the design. This disadvantage becomes even worse due to the fact, that not

all of the languages and tools support generic hardware. For example SRC’s Carte is only

available on machines provided by SRC, Dime-C only for Nallatech’s FPGA platforms.

Other tools, like Impulse C and Handel-C provide board support packages for diUerent

FPGA platforms, including the generation of standard HDL code from disregarding the

concrete platform.

Tool Provider

Carte [117] SRC Computers

Catapult C [84] Mentor Graphics

DEFACTO [50] Univ. of South. California

Dime-C [89] Nallatech

Handel-C [85] Mentor Graphics (formerly: Celoxica)

HardwareC [81, 49] UC Stanford

Impulse C [72] Impulse Accelerated Technologies

Mitrion C [87] Mitrion

NapaC [60] National Semiconductor

PRISM [28, 29] Brown University

ROCCC [62] University of California at Riverside

SA-C [75, 64] Colorado State University

Sea Cucumber [122] Brigham Young University

SPARK [98] UC San Diego

Streams-C [61] Los Alamos National Labs

SystemC [95] Open SystemC Initiative (OSCI)

Table 2.1: Selection of well-known HLL synthesis tools

A complete discussion of all these languages is out of the scope of this thesis, only some

basic properties of commonly used tools will be discussed. Detailed information on the

languages can be found in [40], where the authors present diUerent compilation techniques

for reconVgurable hardware. For an in-depth comparison of some of the languages listed

including benchmarks refer to [68].
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SystemC is based on standard C++ with some extensions implemented as class libraries,

providing support for HW/SW modeling. Behavioral and RTL designs can be modeled;

structural hardware modeling is supported using modules, ports, interfaces and channels.

Since SystemC is completely based on standard C++, standard compilers can be used

for generating an executable out of the source code by linking the SystemC library. The

executable can be executed directly on a workstation for simulation. In addition, several

synthesizers are available converting a SystemC designed system into VHDL or a netlist.

SystemC is an open standard developed by the Open System C Initiative (OSCI) and

approved by the IEEE. These properties made SystemC becoming a very popular language

for system level veriVcation which is supported by many tools from diUerent vendors.

In Mitrion C, the compiler does not directly generate any hardware. Instead, the C source

code is mapped to a virtual processor, the Mitrion Virtual Processor (MVP). In contrast

to regular soft core CPUs available for synthesis in FPGAs, this processor does not come

with a Vxed instruction set and architecture, but is automatically tailored to eXciently

execute the speciVc application. Depending on resource constraints, computational units

can be duplicated to exploit parallelism.

Another method is the one performed by Celoxica’s Handel C. The C code implements

an algorithm, but the code is directly translated into VHDL/Verilog/SystemC or a netlist.

Parallelism can be deVned by using pragmas, resembling the method openMP uses for

implementing parallel applications for shared memory systems. The implementation is

cycle-accurate, all operations occur in one clock cycle, but the compiler may analyze and

optimize the code to improve timing.

Streams C and Impulse C, which is an advanced and commercialized variant of Streams

C, are more resembling the MIMD (Multiple Instruction stream, Multiple Data stream [55])

programming compared to traditional software design. Applications are implemented

using multiple sequential, independent processes which may run concurrently on the

FPGA. Communication and synchronization is performed using streams. The output of

the compiler is a parallel architecture, implemented as generic or FPGA speciVc VHDL

code.

Regarding the underlying model of these compilation techniques, the Streams C and

Impulse C approach resembles the model presented in Chapter 3 in many points. Thus it is

an interesting alternative for implementing part of the cores of an accelerator in the case

the IMORC architectural template introduced in Chapter 4 of this thesis is used.

2.3.2 Visual Design Entry

With visual design entry tools, designers can implement systems on an FPGA partially or

completely in a graphical way. Analogous to HDL designs, structural and RTL designs can

be generated this way. Designs are drawn as circuit diagrams with design units represented

as boxes, which are connected using wires. Design units can be simple gates or WipWops,
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as well as more complex subdesigns which themselves are again implemented using a

schematic, an HDL or any other appropriate way. Often, such tools also provide methods

for modeling the behavior of design units using Vnite state machines or activity diagrams.

After the design phase, the tools generate HDL code for implementation or simulation.

The number of such visual design tools is quite large. Altera includes a simple schematic

editor in their Quartus design suite. A more advanced tool is the HDL designer [86]

provided by MentorGraphics, which provides a complete graphical design environment

for generating the system and documentation.

In the recent years several similar tools were developed with a focus on the generation of

DSP systems. The tools are based on Mathworks’ Matlab/Simulink tool [121] and generate

synthesizable HDL code out of Simulink models. An example for such a tool is the HDL

Coder, an extension for Simulink directly provided by Mathworks. Using HDL Coder,

systems can be modeled in Simulink, StateWow and embedded Matlab code, VHDL or

Verilog code can be produced for synthesis.

Other tools based on Matlab/Simulink are Xilinx System Generator for DSP [127], Altera

DSP-Builder [32] and Synopsys Synphony Model Compiler [120]. The tools provided by

Xilinx and Altera support their own devices and include libraries of functions based on

their own core generator tools (Xilinx Coregen and Altera MegaWizard). Synphony does

not target a speciVc vendor’s devices, similar to the Mathworks HDL Coder, it generates

vendor neutral HDL code.

Since Matlab/Simulink also provides direct interactions to simulators like ModelSim,

generated systems can be directly integrated into a testbench and simulated along with

custom HDL code. While the modeling framework and architecture introduced in this

thesis do not directly build on one of these tools, they may be well integrated into the tool

Wow as required. The schematic editors are appropriate tools for integrating multiple cores

into a complete system. Datapaths and control structures are typically good candidates for

being implemented by the state machine generators or the DSP generator tools.

2.3.3 Multi-Core System Generation

While the visual design entry tools are adequate for structural design if connecting multiple

design entities using custom interfaces, several other tools are available for generating

systems on chip using interconnect standards. The Xilinx Platform Studio is such a tool

for generating systems based on the IBM CoreConnect [70] infrastructure. This consists of

a Processor Local Bus (PLB) and a lower speed On-chip Peripheral Bus (OPB) (the

latter is regarded as deprecated in the latest releases). Multiple of each of these busses

can be used in a system, communication between busses can be performed using bridges.

The bus is a shared medium for all cores connected to it. This leads to the fact that all

connected cores have to communicate to the bus at the same clock frequency and use the

same data width, and that all the time only one core may send requests to the bus and
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only one may utilize the data bus. Usually, one bus is used for fast communication from

processor or computation cores to memory, while a second bus that is connected to the

Vrst using a bridge is available for cores with lower bandwidth demands. The bus in such

a scenario forms a central bottleneck. If cores need to access data at diUerent widths, the

interface to the appropriate bus has to perform a bitwidth conversion. If data buUering is

needed, this also has to be performed by the interface or by the core itself.

A diUerent approach is used by the Avalon infrastructure used by Altera’s SOPC

Designer. This infrastructure uses a technique called Slave Side Arbitration. Here,

one bus exists for each core that can act as a slave, i. e. respond to read/write requests

from other cores. Each master core that is connected to this slave core is connected to the

appropriate slave bus. The fact that only cores connected to the same slave share one bus

reduces the bottleneck introduced by the shared medium. Clock domain crossing bridges

are available for directly connecting masters and slaves residing in diUerent clock domains.

ARM’s [9] AMBA is another popular communication infrastructure often used in SOPC

design. While it is traditionally a bus based interconnect like CoreConnect, other topologies

are also possible for gaining better throughputs. Wishbone [97] is an open infrastructure

frequently used for designs hosted on OpenCores [18] that uses similar concepts like

AMBA.

In [106] and [107], Smith et al. present a diUerent approach for implementing systems

on chip using multiple communicating cores. They use directed links for sending data

from one core to another. Data buUering is done using FIFOs, communication control

and data sending/processing are independent from each other. A dedicated unit is used

as controller in each core which can be programmed for the communication scheme to

be implemented. As a result most of the work is to be spent for the datapath design, only

little eUort is needed for the controller.

To support the interoperability between tools, the IP-XACT [38] format was created by

the SPIRIT consortium. IP-XACT is a XML format to describe and conVgure IP. System

generator tools like the Synopsys System Designer tool that support the XACT format can

directly import such IP, the designer may conVgure and use the IP in his design.

2.4 Chapter Summary

Many diUerent methods exist for assisting developers in generating eXcient accelera-

tors for high performance reconVgurable computing. Modeling techniques are used for

estimating the speedups possible for speciVc algorithms and for generating an eXcient

design, simulation techniques help Vnding errors and bottlenecks before synthesis and

methods are available for measuring runtime performance values and bottlenecks during

runtime. Also, diUerent approaches are available for accelerating the task of the actual

implementation. None of the methods are generally suitable for all kinds of accelerators.
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Depending on the actual architecture of the target design diUerent tools may be chosen for

the actual implementation. The success of a design greatly depends on the methods and

tools used during modeling, design and implementation phase.

The remaining chapters present an alternative integrated modeling and implementa-

tion workWow using a custom communication framework that overcomes some of the

limitations of existing frameworks. The modeling approach introduced does not focus

on mapping algorithms to a speciVc target architecture, but on deVning an architecture

to which the desired algorithms can be eXciently mapped. Furthermore the modeling

approach does not focus on single operations to be performed, but on the amount of data

to be transferred between memories and execution units, and is Wexible in terms of the

level of detail an application is to be speciVed by the model. The modeling approach

is supported by an architectural template that helps in implementing and analyzing the

application modeled. The workWow introduced in this thesis however can coexist with

modeling approaches discussed in this chapter — using the modeling approach, parts of

the overall model may still be speciVed by a PRAM, KPN or other techniques.





3
Programming, Execution and Performance Model

This chapter discusses the design Wow and the diUerent kinds of models used within the

IMORC framework. First, a summary of the programming model and the overall design

Wow is introduced. The diUerent steps of the design Wow are then presented in detail, along

with a discussion of the diUerent models applicable in each step.

3.1 Introduction

For analyzing the performance of algorithms running on commodity workstations, several

theoretical models exist, as outlined in the previous chapter. These models typically consist

of an abstract architecture, such as a set of execution units connected to a shared memory

in the PRAM, and methods to specify the algorithms. The runtime of an algorithm can

then be estimated by calculating the number of operations performed.

When generating FPGA based accelerators for high performance computing, the situa-

tion is more complex. While parts of the target architecture are usually predeVned, such

as the number of CPUs and their connection, the memory architecture and the number of

FPGAs available, parts of the architecture have to be deVned by the designer. The number

and types of cores to be implemented in the FPGAs depends on the concrete algorithms to

be executed, the interconnection network between cores depends on the communication

needs of the algorithm. Moreover, the actual implementation of the algorithm greatly

depends on the type of the core that actually has to execute the algorithm.

Unlike traditional models like the PRAM, the modeling approach presented in this

chapter pays attention to these properties by providing a Wexible way to not only generate

an algorithmic model targeted at a Vxed architecture, but it also provides a method for

deVning the architecture and execution model concurrently. The application is modeled

as a graph of communicating tasks, while the architecture model envisions a network
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of communicating cores. The modeling approach can describe the architecture of the

accelerator and application at diUerent levels of detail. Typically, one will start with

a coarse grained architecture model describing the target system and a coarse grained

execution model containing diUerent tasks that are mapped to diUerent resources of the

target system. The execution model is then reVned stepwise to better demonstrate the

communication behavior of individual kernels. At the same time, the architecture model is

reVned based on the updated execution model, e. g., cores are added to the reconVgurable

hardware in the architecture model.

During reVnement, it is possible to switch to other modeling techniques at a certain

level of detail. For example, if some tasks in the execution model are well suited for being

executed on a PRAM, the concrete implementation of such tasks may be speciVed using

the PRAM model. In the architecture model, such a task can then be mapped to a core

resembling the PRAM architecture, such as a microcontroller.

3.2 The IMORC Programming Model

The IMORC programming model consists of an architecture model and an execution model.

The goal of the architecture model is to characterize the target platform. The execution

model speciVes the application to be implemented. Both models can be created at diUerent

levels of abstraction, depending on the current stage of the design phase. The models are

used for a Vrst estimation of an algorithm’s suitability for FPGA acceleration as well as for

the design phase of the accelerator.

3.2.1 The Architecture Model

The architecture model underlying IMORC is a network of communicating cores. A core

typically consists of some local storage, such as embedded memory blocks or registers, and

an execution unit. Cores can communicate with other cores using an on-chip network. For

accessing the network, each core provides an arbitrary number of communication ports,

which are either master or slave ports. The network connects master to slave ports using

links. Communication may be only initiated by master ports by sending a read or write

request to the slave port. For write requests, the master has to send data corresponding

to the request to the slave, for read request, the slave has to reply with a corresponding

data packet. Master ports may connect to multiple slave ports, in which case addressing

is required to select the target slave port of a communication request. Conversely, slave

ports may connect to multiple master ports through an arbiter.

Figure 3.1(a) shows the block diagram of a typical execution (compute) core. The core

comprises a slave and two master ports, each of which is separated into a request channel

(REQ) providing control information and a data channel (DAT) for the actual data that has



3.2 • The IMORC Programming Model 25

to be transmitted. The slave communication interface is connected to a block of registers

and to internal memory. A communication request controller exists for each of the master

links, and each of them is connected to the register block for retrieving control information.

An execution unit is responsible for performing the actual calculations and is connected to

the data channels of the master ports. If required, the execution unit may also be connected

to the register block and the internal memory block to store local data. Additionally, it

may be connected to the communication request controller. This is, for example, useful

if the core implements an iterative function where the number of iterations necessary

cannot be calculated in advance, but depends on parameters that are calculated during

runtime (e. g., an approximation algorithm). In such a case, the request controller has to be

informed by the execution unit if further iterations are required or not.

The host processor (Figure 3.1(b)) is modeled as a simpliVed core that provides, depend-

ing on the actual target platform, one or multiple master ports and optionally one slave

port. The core comprises a CPU that is able to execute arbitrary tasks and a local memory.

The CPU can access this memory and send messages to the master ports. Additionally

other cores may access the memory using the optional slave port.

Shared memory is modeled as a speciVc kind of core with no execution unit but a large

amount of storage. A memory core provides exactly one slave port (see Figure 3.1(c)).

When a master core sends a write request to a memory core, the corresponding data is

stored in the core’s storage, read request are replied with a response message containing

the corresponding data from the core’s storage.

Execution
UnitMemory

Internal

Registers

REQ DAT

Slave

REQ DAT

REQ
CTRL CTRL

REQ

REQ DAT

Master Master

(a) Compute core

Master Slave

REQ DATREQ DAT

CPU Memory

(b) Host processor

Memory
Internal

Slave
REQ DAT

(c) Memory core

Figure 3.1: Block diagram of an example compute core and a memory core

Figure 3.2 presents a sample architecture diagram including three compute cores, a host

processor core and a memory core. The host interface core can directly access the slave

port of core 0, which provides two master ports for accessing the slave ports of core 1 and
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core 2. These master ports of core 1 and core 2 access the memory core, the master port of

core 2 is additionally connected to the slave port of the host interface core.

Core 2Core 1Core 0 MEM Core

SSMMSMS M S M
Host

Processor

Figure 3.2: Sample architecture diagram with three compute cores, one memory core and

one host processor core. S denotes a slave port, M denotes a master port.

3.2.2 The Execution Model

The intention of the execution model is to specify the application to be implemented and to

support the deVnition of the architecture model. While the architecture model of IMORC

comprises a set of cores that are connected to some kind of network, the execution model

has to specify the actual behavior of these cores and their communication pattern. This

model consists of a set of tasks, which are able to communicate to each other. Tasks are

composed of a number of operations, which are classiVed into three distinct groups:

• Incoming communication operations, so the task has to process incoming messages,

• outgoing communication operations, so the task sends messages to other tasks and

eventually has to wait for a response and

• local operations, such as the addition of two values.

Figure 3.3 shows an example for such a task. The tall box in the middle represents local

operations performed by the task, the smaller boxes on the left and the right represent

communication points with other tasks. Tasks can communicate with other tasks using

messages. Messages can be read (rd) or write (wr), the Vrst kind is used for requesting

data from another task, the other one for sending data to another task. Read requests

need to be followed by a response message (rd resp). Tasks can be modeled at diUerent

levels of abstraction, depending on the actual requirements. On a rather abstract level, the

tasks computations may be described by pseudo code or a code segment in a high-level

language. On a fairly detailed level, the computations may be expressed as a sequence

of micro operations or RTL code. Tasks may directly operate on local memory. Shared

memory accessed by multiple tasks is modeled as a separate task that communicates with

the tasks accessing the memory.

Figure 3.4 shows a sample task graph with two computation tasks accessing a block

of shared memory. Modeling memory as separate tasks simpliVes the runtime analysis,

especially in the case that multiple tasks access a shared block of memory and therefore
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Figure 3.3: Diagram of a sample task

contention may occur. Additionally, due to the request-response nature of the communi-

cation model, tasks operating on streams of data can be modeled in a natural way. The

communication subtasks send read requests to the appropriate memory task, and as soon

as the data becomes available, the local operation subtasks start processing.

MEM
TASK

TASK 2TASK 1TASK 0

Figure 3.4: Sample task graph: task 0 starts two computation tasks, which in turn access a

memory task

It has to be noted that the IMORC architecture and execution models are rather general

and do not pose any restriction on the behavior of tasks or cores, respectively. For example,

there is no need to enforce blocking reads on incoming messages as in the Kahn process
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network (KPN) model, or to specify rates for the production of outgoing messages as in the

synchronous data Wow (SDF) model. In contrast to formal models of computation, IMORC

provides more degrees of freedom but misses formally provable characteristics. However,

formal models such as KPN and SDF can easily be embedded into IMORC by imposing

corresponding rules.

3.3 Development Flow

Figure 3.5 shows a Wow chart of the IMORC development Wow. Accelerator development

starts out with partitioning and initially mapping the application to the reconVgurable

computing system. The communication time between the partitions and the time of

computations is estimated, resulting in a Vrst vague performance prediction. Repartitioning

is performed until no further enhancements can be identiVed.

In the next step, the partitions mapped to the FPGA are reVned for generating a

detailed version of the task graph to be executed on the FPGA. Along with this reVnement,

the architecture model of the FPGA implementation is also reVned for providing task-

speciVc cores implemented in the FPGA. The iterative reVnement process ends when the

architecture model of the FPGA is detailed enough to complete the Vnal implementation.

3.3.1 Partitioning and Initial Mapping

The goal of the partitioning and initial mapping phase is to perform two tasks: Vrst, it

gives a rough estimation whether the time consuming task of implementing an accelerator

for the actual application is worth the eUort. Second, the parts of the application that are

to be mapped to the FPGA are identiVed.

The Vrst step in this phase of the modeling Wow is to generate a task graph representing

the complete application. For a complete application, this task graph can be very complex.

Accordingly the initial task graph should be very coarse grained and not present to many

details. When generating a complete application from scratch, this may be a challenging

task. However, often a software implementation of the original algorithm is already

existing when considering reconVgurable computing for accelerating high-performance

applications. The Vrst decision in this case is, which parts of the application should be

accelerated. For this, the application can be analyzed using one of the large number of

available performance analysis tools. By proVling the most compute intense parts of the

application can be identiVed. With this information an initial mapping of the application

is generated (cmp. Figure 3.6). Each task is mapped to a CPU, an FPGA or to a memory

location.

After partitioning and initial mapping a Vrst performance analysis can be performed,

for example, by estimating the amount of data to be transferred between the partitions.
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Figure 3.5: The IMORC modeling and implementation Wow
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Figure 3.6: Initial partitioning of an application

Considering the mapped task graph in Figure 3.6, the initial runtime estimation can be

performed by splitting the execution time into three phases:

1. in the Vrst phase, the preprocessing task generates data and sends it to the two

storage tasks,

2. in the second phase, the kernels mapped to the FPGA operate on this data and

3. in the third phase, the kernels synchronize with the postprocessing task.

The communication time can now be estimated by considering the amount of data trans-

ferred in each phase and the maximum communication bandwidth.

Such basic performance analysis can lead to new mappings, typically excluding certain

kernels from the FPGA, adding further kernels to the FPGA (e. g., the data generation part
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of the preprocessing task) or remapping storage tasks. The performance estimation can be

improved by taking the communication scheme into account. Communication usually is

faster when transferring large blocks of data than when transferring single values. With a

concrete speciVcation of the target architecture’s communication performance for diUerent

transfer sizes and a more detailed speciVcation of the application’s communication scheme,

more precise communication time estimates can be generated.

3.3.2 Task Graph ReVnement

In the reVnement phase, tasks are broken down to a more detailed level. While for tasks

mapped to the CPU an eXcient implementation often exists, tasks mapped to the FPGA

have to be speciVed more in detail for generating the Vnal implementation. They have to

be split into multiple communicating tasks that actually form speciVcations for subsequent

circuit design. An essential objective of the reVnement step is to extract opportunities for

exploiting parallelism.

An example for such a reVnement is presented in Figure 3.7. The original task graph on

the left consists of two tasks, a master and a worker. The master on the left sends the data

to be processed to the worker task on the right. When Vnished with the Vrst set of data the

results are returned and the next set of data is transferred for processing. In the reVned

task graph, instead of waiting for the Vrst set of data to be completely processed, data is

streamed from the master task to the Vrst worker task. This task performs some processing

on the data and forwards the results to another worker task. The last worker task then

returns the results to the master task. While the original task graph on the left splits the

execution time into phases for communication and phases for computations, the reVned

task graph on the left performs both, communication and computations, in parallel. The

utilization of the communication interface between the master and the worker tasks will

be much higher than in the original task graph, resulting in an improved performance.

Figure 3.7: Example of a reVnement by streaming data through a set of tasks

When streaming is not applicable but the original problem can be divided into subprob-

lems that can be processed independently, the worker task can be split into several tasks all

performing the same operations but on diUerent data. This is especially useful if storage
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tasks can deliver data faster than a single compute task can process it. For example, a

dense matrix-vector multiplication task that processes the complete matrix row wise might

not achieve a good throughput when implemented in an FPGA due to a low clock rate

that is achievable by the arithmetic operators. However, in this example each row of the

matrix can be processed independently of the other rows. An N ×M matrix would result

in M independent subtasks to be executed, each one performing N multiplications and

accumulating the results. These subtasks are subject to the same performance penalties

as the original task concerning the achievable clock rate, but since they are executed in

parallel, the complete throughput of the resulting task graph is calculated by summing up

the throughput of the individual subtasks.

A third possible reVnement is the extraction of the request subtask and the datapath

of a task. This method is helpful when the data to be processed depends on previous

calculations. In many other models, as for example the PRAM, data is assumed to be

directly accessible in constant time, so operations are directly applied to data. In the

IMORC modeling approach, however, this dependency can be modeled as a subgraph.

Requests for data and processing is split into separate tasks that are mapped to the same

core — tasks requesting data are mapped to the communication controller of a core, tasks

operating on the data are mapped to the execution engine of a core. Assuming for example

a task implementing a sparse matrix-vector multiplication, where the matrix is often stored

in Compressed Row Storage (CRS) format. In CRS the matrix is stored as three vectors,

val containing all non-zero elements of the matrix, col containing the column id of each

element in val and row specifying at which element of val a new row starts. The matrix

stored in this way has to be multiplied by a vector vec.
Listing 3.1 shows the pseudocode of the sparse matrix-vector multiplication. The

algorithm iterates over the rows in the matrix (line 13) and over all elements elements

in each row (line 16) in the same manner as it would be done for a dense matrix-vector

multiplication. The main diUerence is that the number of elements in each row is not

Vxed, but can be determined by vector row. The second diUerence is that the index into
vector vec, which identiVes the element of the vector that has to be multiplied with the

current matrix element, is not simply incremented each iteration; instead, it is determined

from vector col. While this method reduces the number of multiply/accumulate operations

necessary, the random access of vector vec introduces a certain performance penalty if vec
is large since random access to memory typically performs worse than sequential access.

Figure 3.8 presents the reVned taskgraph of such a sparse matrix multiplication task

which streams the data through the tasks. It consists of Vve storage tasks, one for each

vector of the matrix (val, row and col), one for the vector to be multiplied with (vec) and
one for the result vector (res). The request col task sends read requests to the col storage,
the response stream (i. e., the stream of column indices corresponding to the matrix values)

is forwarded to the request vec task, which sends corresponding read requests to the vec
storage task. The resulting data stream contains as ith element vec[col[i]], which has to be



3.3 • Development Flow 33

1 / / S p a r s e matr ix − v e c t o r m u l t i p l i c a t i o n
2 / / I n pu t :
3 / / n − t h e number o f rows
4 / / v a l − non− z e r o e l em en t s o f t h e matr ix , | v a l | = nv
5 / / c o l − column i d o f each e l emen t , | c o l | = nv
6 / / row − i n d i c e s o f v a l a t which a new row s t a r t s , | row | = n
7 / / v e c − v e c t o r t o be m u l t i p l i e d w i th t h e ma t r i x
8 / / Output :
9 / / r e s − r e s u l t i n g v e c t o r
10

11 void spmv ( i n t n , double ∗ va l , i n t ∗ co l , i n t ∗ row , double ∗ vec ,

double ∗ r e s )
12 {

13 f o r ( i n t i = 0 ; i <n ; i ++)

14 {

15 r e s [ i ] = 0 . 0 f ;

16 f o r ( i n t j =row [ i ] ; j < row [ i + 1 ] ; j ++)

17 {

18 r e s [ i ] = r e s [ i ]+ v a l [ j ] ∗ vec [ c o l [ j ] ] ;
19 }

20 }

21 }

Listing 3.1: C source code of the sparse matrix-vector multiplication kernel

multiplied by val[i] (see line 19 of listing 3.1).
The values of the matrix are requested by the request val task. The val storage task and

the vec storage task forward the requested values to the mult task. The mult task multiplies

the matrix values with the vector values and forwards the results to the accumulate task.

An additional request and storage task exists for the row vector of the matrix, the row
storage tasks also forwards the corresponding values to the accumulate task. Based on the

row values, the accumulate task calculates how many values have to be accumulated for

each element of the result vector, performs this accumulation on the values received from

the mult task and sends the results to the res storage task.
After these reVnements, the communication scheme can be evaluated in much more

detail as in the original mapping. As a result, with a detailed characterization of the

available communication channels available on the desired target platform and the initial

architecture mapping, the achievable performance may be calculated more precisely than

before. The task graph now gives an overview of which tasks have to be implemented and

how they communicate with other tasks. However, the concrete operations performed

by the tasks to process input data and to generate output data are still not speciVed. The

modeling approach presented does not dictate any rules of how to specify the concrete

algorithm implemented by a compute task. This is due to the fact that diUerent classes of
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Figure 3.8: Detailed taskgraph of the sparse matrix multiplication kernel

algorithms may beneVt from diUerent modeling approaches. Tasks may be stateless, as

for example the multiplication task in the sparse matrix kernel, or they are stateful, as the

accumulation task that needs to observe the number of accumulations which have to be

performed before writing the result to the output stream. Stateless tasks can typically be

eXciently modeled by a data Wow graph that can be mapped to a pipeline of operators

during architecture mapping. The multiplication task in the example above would therefore

be speciVed as a data Wow graph with only one node, the multiplication operator. Stateful

tasks like the accumulation task can be speciVed for example as a RAM with access to any

kinds of network or as a Vnite state machine.

3.3.3 Architecture Generation

After the task graph has been reVned to a reasonable level of detail, the initial architecture

mapping needs updating. Each task has to be mapped to a certain resource, such as an

execution core or a memory core. Multiple tasks may share the same resource, introducing

a need for scheduling the resource. Naturally, the resource used for mapping a task has to

be able to perform the operations speciVed by the task. Depending on the level of detail

the task graph is represented at, a task may be mapped to a complete execution core or

only to one or several resources of the core. Figure 3.9 shows an example for a mapping of

the sparse matrix-vector multiplication task graph’s compute tasks presented in Figure 3.8

to a single compute core. The request tasks of the task graph are mapped to the REQ CTRL

modules of the generic core model as presented in Figure 3.1(a). The multiply and the
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accumulate tasks are both mapped to the execution unit, which employs a multiplier that

multiplies the values received from the two data channels containing vec and val and an

accumulator that decodes the row values and accumulates the corresponding number of

values as received from the multiplier.
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Figure 3.9:Mapping of the sparse matrix multiplication task graph to an architecture

(one core with request controllers for accessing data and an execution unit

implementing the multiply and accumulate tasks)

The storage tasks are mapped to the memory cores available in the target architecture or

to additional memory cores that are implemented in the FPGA. Especially the connectivity

of the available memory resources has to be considered, for example if host memory is
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not directly accessible by the FPGA. In that case only storage tasks that are exclusively

accessed by tasks mapped to the host CPU may be mapped to host memory. Another

essential point that has to be considered is the amount of memory provided by each

memory core and the performance of the resource. In particular if multiple storage tasks

are mapped to the same memory resource, contention occurs that has to be considered.

To estimate the amount of contention and the bandwidth requirements of the com-

putation tasks, a sequential runtime mapping has to be generated, where compute tasks

mapped to the same resource are sequentially scheduled. This sequence is separated into

execution phases so that the amount of data transferred by each core can be estimated

for each computation phase. With an early estimation of the compute cores’ runtime

performance and their bandwidth requirements, the optimal mapping of storage tasks to

memory cores may be found.

In the sparse matrix-vector multiplication example all compute tasks are mapped to

diUerent resources of the compute core and can be executed concurrently. Hence, such

a separation can be omitted, i. e., the whole execution can be seen as one combination

of communication and execution phase. With an M × N sized matrix with Z non-zero

elements, Z values have to be read from col, val and vec storage, N values have to be read

from row storage and N values have to be stored to res.
Another key point for estimating the execution time of such an algorithm is the scheme

in that data is to be accessed. The bandwidth provided by the memory locations usually

not only depends on the amount of data to be accessed, but also on the access scheme

performed. Usually, data accessed in long bursts aligned to certain memory boundaries

can be performed nearly at the peak rate the memory provides. However single-data

transfers perform much slower. In the example presented above col, row and val can be

accessed using such burst schemes, but accesses to vec are usually single-word transfers

to locations depending on the value read from col. For gathering concrete performance

values the memories have to be characterized not only regarding their peak performance

values but also regarding diUerent access schemes. The example presented above will only

perform well if one of the following two conditions are met:

• vec is stored in a memory location with a very short latency (e. g. SRAM or even

on-chip block memory) or

• the non-zero elements of the matrix are usually located in successive columns,

enabling the multiplication algorithm to perform burst reads to vec.
If none of the previous two conditions are fulVlled, the implementation will not perform

better than an implementation on a commodity CPU.

Assume all Woating point values (i. e., the entries in val and vec and the result vector

res) to be wf byte wide and all integer values (i. e., the indices stored in col and row) to be
wi byte wide. The achievable bandwidth on memory k for a transfer size of bs byte per
transfer is denoted as bwk(bs), bwk(MAX) denotes the maximum bandwidth achievable

with an optimal transfer size. If all vectors are stored to the same memory, the available
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bandwidth is shared among the diUerent storage tasks. All transfers are regarded as being

performed sequentially, the runtime is estimated by summing up all times needed for data

access:

t =
Z · wf

bk(MAX)︸ ︷︷ ︸
access val

+
Z · wi

bk(MAX)︸ ︷︷ ︸
access col

+
N · wi

bk(MAX)︸ ︷︷ ︸
access row

+
Z · wf

bk(bsvec)︸ ︷︷ ︸
access vec

+
N · wf

bk(MAX)︸ ︷︷ ︸
write res

(3.1)

If the mapping plans the storage tasks to two diUerent memory resources, memory k for

the three vectors of the matrix and memory j for vec and res, the accumulated memory

access times for both memories are summed up. The overall runtime estimation of the

complete kernel is evaluated as the maximum of these two memory access times:

t = max

 Z · wf

bk(MAX)
+

Z · wi

bk(MAX)
+

N · wi

bk(MAX)︸ ︷︷ ︸
=tk

,
Z · wf

bj(bsvec)
+

N · wf

bj(MAX)︸ ︷︷ ︸
=tj

 (3.2)

In the formula, tk and tj denote the time needed for all data accesses to memories k and
j, respectively. If tk < tj , the overall execution time depends completely on tj . One might

argue that accessing vec happens after col was accessed, so both transfers inWuence each

other. But, if tk < tj then memory k will always be able to supply new input values to the

request val task at the rate required to saturate the bandwidth of memory j. The latencies
of the memories are disregarded in these calculations, since they only exert an inWuence to

the overall runtime for very small problem sizes.

Mapping the algorithm to the XtremeData XD1000 platform, which is introduced in

Chapter 4 and characterized in Chapter 5, data can be mapped to host memory or to

external DDR SDRAM. Figure 3.10 shows the estimated performance in MFlops/s of

diUerent memory mappings to this machine. The estimations consider single precision

Woating point values (32 bit, denoted SP) as well as double precision Woating point values

(64bit, denoted DP). The graph shows three diUerent mappings, Vrst all data is stored in

the DDR SDRAM, second all data is stored in host memory and third, the matrix is stored

in host memory whereas vec and res are stored in DDR SDRAM. The graph assumes a

banded matrix with a bandwidth of α, i. e., col consists of blocks of α consecutive values.

This means that the vector memory can be accessed with a burst size of bsvec = α · wf byte.

However, on the DDR SDRAM as well as on the HyperTransport there are additional

constraints for the addressing the data to be accessed. This results in that for a bandwidth

of α , values from vec might only be accessible at a burst size of α/2 on the actual memory.

Comparing the estimation with the benchmarks for the processor available in the

XD1000 (SP, CPU and DP, CPU in Figure 3.10) might only perform better on the FPGA if

all data is stored in the DDR SDRAM. Since the CPU can access host memory much faster
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Figure 3.10: Performance estimation of the sparse matrix-vector multiplication kernel

mapped to the XD1000. val, row, col and res are accessed with an optimal

transfer size, the x-axis represents the number of elements out of vec trans-
ferred per request

than the DDR SDRAM of the FPGA, this will additionally reduce the overall application’s

performance. Hence, the proposed design will typically only be feasible when the tasks

generating data are also mapped to the FPGA and provide a reasonable performance.

3.4 Chapter Summary

Modeling techniques are necessary for estimating the suitability of FPGA acceleration for

high performance reconVgurable computing and greatly aid the designer in generating

a concrete architecture for the accelerator. The model presented in this chapter does not

aim at providing a detailed and accurate performance estimation but shall give a rough

impression of the suitability of FPGA acceleration for speciVc algorithms. Furthermore,

it helps the designer in generating an eXcient design and to Vnd potential bottlenecks

in existing designs. Performance values of available resources such as memories and

communication interfaces may be gathered from the vendor’s speciVcation or by per-

forming microbenchmarks. After implementation, the model may be annotated with real

performance values gathered out of the running system for further optimizations.
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Contrary to most other modeling approaches, the modeling approach presented in

this work does not highlight the execution time of operations to be performed on the

data to be processed, but on the time needed for data access. The PRAM, for example,

implies a shared memory that can be accessed by several execution units in parallel and

in constant time. However, access times of real memories greatly depend on the actual

type of memory. In shared memory systems, diUerent levels in the memory hierarchy

(e. g., L1-cache, L2-cache or main memory) provide diUerent performance values. In

distributed shared memory systems one has to distinguish between local memory and

remote memory, additionally. ReconVgurable systems typically provide an even larger

number of diUerent storage options that have to be considered, such as host memory, oU-

chip SRAM/SDRAM or conVgurable on-chip memory. This modeling approach supports

diUerent well-known approaches for specifying the datapath of tasks, allowing the designer

to select the speciVcation method that seems most reasonable for a given task.

The model is Wexible as it allows to specify the accelerator at diUerent levels of detail

as required in the current design phase. Cores that can be implemented straight-forward

can be modeled at a very low level of detail, while others may be speciVed more precisely.

This way the developer may choose the complexity of the model to gather the insights

into the application he requires.





4
The IMORC Architectural Template

IMORC stands for Infrastructure for PerformanceMonitoring and Optimization

of Reconfigurable Computers [4] and is an architecture template for implementing

accelerators for high-performance reconVgurable computing. The main focus in the

design of the IMORC architectural template was to provide an easy and straight-forward

method for implementing accelerators with an architecture model as presented in the

previous chapter. Therefore, it assumes an application that is decomposed into multiple

communicating cores, which encapsulate computations and access to memory as well as

to external communication interfaces. A key element of IMORC is its on-chip network for

connecting these cores within the FPGA. To achieve high-throughput communication with

minimal congestion, IMORC relies on a multi-bus architecture with slave-side arbitration.

This chapter discusses the elements of the IMORC architectural template including

the communication infrastructure implementation and gives an overview of the provided

utility cores.

4.1 Cores, Links, and Channels

IMORC cores access the on-chip communication infrastructure via ports. Corresponding

to the architecture model there exist two types of ports, denoted as master and slave ports.

Cores may provide an arbitrary number of master and/or slave ports, so they can directly

be connected to multiple other cores. A link between two cores is formed by connecting a

master with a slave port. Each link splits into three channels, a request channel (REQ), a

master-to-slave channel (M2S), and a slave-to-master channel (S2M). The REQ channel

is used for transmitting write or read requests from the master to the slave port. Data is

transferred from the master to the slave port via an M2S channel, and from slave to master

port via an S2M channel, respectively. A link must comprise at least the REQ channel
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and can, additionally, specify M2S and S2M channels. Many parameters of the IMORC

links are conVgurable at design time, Table 4.1 summarizes the available conVguration

parameters.

Parameter Description

MASTER_ADDR_WIDTH address width at the master port

SLAVE_ADDR_WIDTH address width at the slave port

ADDR_OFFS static oUset added to the address

SIZE_WIDTH width of the size Veld

USE_M2S if true, write transfers are supported

USE_S2M if true, read transfers are supported

SYNC if true, synchronous FIFOs will be used

MASTER_WIDTH bitwidth of the master port

SLAVE_WIDTH bitwidth of the slave port

ALIGNED transfers are guaranteed to be aligned to full slave words

REQ_DEPTH depth of the REQ FIFO

M2S_DEPTH depth of the M2S FIFO

S2M_DEPTH depth of the S2M FIFO

Table 4.1: ConVguration parameters of an IMORC link

Figure 4.1 details the signals for an IMORC link, basically consisting of a data bus and

two handshake signals for each channel. The REQ channel uses a data bus req to transmit

request packets and the two handshake signals req_wait and req_wr on the master side

or req_rd on the slave side, respectively. The data to be written or read is then transferred

over the M2S and S2M channels.

Table 4.2 presents the Velds available on the REQ channel. The CMD Veld is a one-bit

wide Veld specifying whether the current request is a data read or write. ADDR is used

for setting the target base address of the current request and is interpreted by the slave

port. For example, a memory controller core will use the destination address to access

the attached memory, and a compute core could use it to select between a set of internal

registers. Not all kinds of communication need to specify a target address, in which case

this Veld can be omitted. This especially is the case if data has to be streamed from one

core to another one, for example if cores in an image processing system are connected. In

this case, the link can be conVgured to not support this Veld for saving area on the FPGA.

The link can additionally add a static oUset to the address Veld. This feature implements a

rudimentary static virtual address space for each core and is useful if multiple memory

tasks of the execution model are mapped to the same memory core in the architecture

model. It allows cores to transparently access data mapped to arbitrary physical regions in

the memory. The SIZE Veld is a required Veld, needed for determining the amount of data
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Figure 4.1: Block diagram of an IMORC link with its channels and signals

that is transferred. By default, the SIZE Veld speciVes the request size in number of 32 bit

words, but can be conVgured for other granularities if required.

IMORC inserts asynchronous FIFOs into each channel which allows each core to operate

at its maximal speed in its own clock domain. This allows to operate each core at its top

speed by choosing individual clock rates. It also enables slave cores like memory to serve

several compute cores if the slave core’s maximum bandwidth is greater than the individual

CMD command Veld (RD or WR)

ADDR destination address

SIZE amount of data to be transferred

(usually counted in 32 bit words, but conVgurable)

OPT optional information

decoding is up to the designer

Table 4.2: Request packet format
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master cores’ bandwidths. Optionally, the links can be conVgured to insert synchronous

FIFOs if the cores connected share the same clock domain, which reduces latencies and

area consumption of the links. Moreover, the additional FIFO storage in the network

decouples the core’s request task from the datapath. On the one hand, this simpliVes

the implementation of these two parts of the core, since requests usually may be posted

independent of the datapath. On the other hand, this can often improve performance by

hiding latencies of memories or other slave cores.

In case of diUerent data bitwidths of master and slave ports, IMORC inserts a bitwidth

conversion module into the link. The bitwidth conversion modules are placed on the

master side before the FIFOs, which always have the same bitwidth as the slave ports. On

the master side, data is expected to be aligned to the master port’s width. That is, if the

master port is n byte wide, every communication has to start at an address that is an integer

multiple of n and the size also has to represent an integer multiple of n byte. The conversion
from a wide master to a small slave word therefore is straight-forward. Every write to the

master’s M2S channel is translated into multiple writes to the corresponding FIFO, every

read from the S2M channel is translated into multiple reads from the corresponding FIFO.

Converting from small master words to wide slave words may be more complex under

certain circumstances. If it is guaranteed that the master only performs transfers that are

aligned to boundaries of the slave words data width, multiple writes to the M2S channel

are combined to a single write to the corresponding FIFO, corresponding operations are

performed for the S2M channel. If such an alignment cannot be guaranteed, the datapath

has to decode the packet’s request address and calculate an oUset into the word of the

slave’s native size. The module can then generate sub-word write enable signals and

transfer them to the slave. Alternatively, this job can be directly performed by the slave

core.

As a consequence of these bitwidth conversion modules, a compute core with a 32 bit

interface can be connected to a memory core with a 64 bit interface, and also to a 256 bit

interface without any change in the compute core itself. This greatly facilitates reuse of

cores and porting applications to diUerent accelerator platforms. The integration of the

FIFOs and the bitwidth conversion module into an IMORC link is shown in Figure 4.1.

4.2 Network Topology and Arbitration

An application typically comprises several IMORC cores connected in a certain topology.

Each core can be equipped with an arbitrary number of master and slave ports. Hence,

connecting master and slave ports in a 1:1 fashion is basically suXcient to build arbitrary

topologies. However, as this approach requires cores with a rather high number of master

and slave ports, IMORC supports 1:n, m:1, and m:n connections as well.
A 1:n connection allows a master port to address several slave ports at once. To this
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Figure 4.2: Arbitration module for a 2:1 connection

end, the signals req_wr and m2s_wr are turned into vectors. By selecting a subset of these

write enable signals, the master may issue multicast or even broadcast request messages

and data writes. The wait signals from the individual FIFOs also form a vector and are

routed back to the master port. IMORC even supports the S2M channels in a 1:n connection
with the restriction that a master can address only one FIFO to read from at any time.

Read requests are also supported in such connections by turning the signals s2m_rd and

s2m_wait into vectors. Since the bus s2m_data is shared among multiple links, the core

has to make sure not to read data from multiple links at the same time. The links can be

conVgured to tristate the s2m_data signal when s2m_rd is deasserted.

An m:1 connection allows a slave port to be driven from several master ports. IMORC

employs slave-side arbitration and inserts an arbiter module right before the slave port.

Figure 4.2 displays the IMORC interconnect for a 2:1 connection. In this Vgure, the optional
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bitwidth conversion modules are omitted for the sake of readability. Additionally, for the

same purpose the links’ FIFOs are grouped into the three channels REQ, M2S, and S2M. A

selector module SEL attached to the REQ channels of the links decides which request is

served next. By default the selection is done in round-robin manner but it can easily be

changed as needed, for example to introduce priorities. The selector module then informs

the corresponding M2S or S2M channel’s datapath about which request is processed next,

along with the request’s size. Data reads and writes performed to these channels by the

slave core are forwarded to the appropriate link corresponding to the request packet. If

required, m:1 and 1:n patterns can be combined to form an m:n connection.

4.3 Performance Counters

Optimizing the performance of an application consisting of multiple cores is not a trivial

task. It requires to balance computation speed with communication bandwidth and to

minimize contention for shared resources, e. g. for external memory. While the IMORC

architectural template oUers the designer freedom to address performance problems, e. g. by

increasing data widths, replicating compute cores or replacing a compute core with a

higher throughput version, selecting an appropriate remedy requires information about

the dynamic behavior of the application.

To this end, IMORC provides performance counters attached to the FIFOs within the

links and arbiter modules. For each FIFO, the number of full and empty events is counted

as shown in Figure 4.1. A monitoring core reads and resets the performance counters in a

user-deVned time interval.

Figure 4.3 displays the implementation of the performance counters. The signal that is to

be counted is connected to the input event_in of the performance counter and increments

the event counter. Since the cores in a system may operate in diUerent clock domains, the

number of events is not suXcient to draw conclusions about the overall system. Hence,

each performance counter additionally employs a cycle counter that is incremented every

clock cycle.

When the monitoring core asserts the sync signal for one cycle, a register is toggled

in the monitor’s clock domain. The value of this toggle register is synchronized into the

performance counter’s clock domain and asserts signal sync_int for one clock cycle.

When sync_int is asserted, the counters’ current values are registered and the counters

are reset. In register R3, sync_int is delayed by one clock cycle, the resulting signal sets

register R4. R4 is synchronized back into the monitor’s clock domain and there acts as a

valid signal.

The registered counters are forwarded to the monitor, too. Note that no additional

synchronization registers are used for these values. But since their values are set at

the same clock cycle as register R3 is set and signal valid is asserted one cycle in the
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Figure 4.3: Diagram of a load sensor

performance counter’s clock domain and two cycles in the monitor’s clock domain later,

the output values can be regarded as stable when valid is asserted.

All load sensors in the system that are observed have to be connected to a system speciVc

monitoring core, as depicted in Figure 4.1. In user-deVned time intervals the monitoring

core asserts the sync signal and waits for valid to become asserted. Then, it reads the

number of events and cycles and forwards these values to the monitoring PC.

Using the performance counter infrastructure, designers can monitor the dynamic

behavior of an application and gather information about the cores, e.g. when they start or

stop processing or how much bandwidth they use on diUerent channels. Additionally to

the performance counters available in IMORC’s links the designer may integrate custom

performance counters in his cores to monitor other signals.

4.4 Utility Cores

Besides the on-chip interconnect IMORC also provides several infrastructure cores, such

as memory controllers and a host interface core, which are frequently needed in reconVg-

urable accelerators. Additionally, several supporting cores often needed are provided for

simplifying the generation of cores, such as IMORC-to-Register interface cores, request

generator cores and farming cores. While a core in IMORC usually only communicates

using the REQ/M2S/S2M channels, some of the utility cores presented in this section are

intended to be integrated in such cores. Hence, they typically only implement a subset
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of the three channels and additionally provide sideband signals to communicate with the

core that integrates the utility core. The following paragraphs give an overview over these

cores and their features.

4.4.1 Host Interface Cores

A host interface core is needed by every accelerator to be able to communicate with the

host. Accelerators can be attached using a wide variety of diUerent host interfaces, such

as PCI, PCIe, HyperTransport and many more. The host interface core is responsible for

translating the protocol of the host interface to IMORC. The host interface core serves up

to four diUerent purposes, depending on what the actual protocol of the host interface

supports. First, it is used for sending job information from the CPU to the FPGA. This

usually incorporates one or several transfers of a small amount of data from the CPU to the

FPGA accelerator. The second purpose is to transfer large amounts of data from the CPU

to the FPGA, which is usually performed in large bursts for achieving high throughput.

Third, the host interface may or may not support direct FPGA access to the host memory,

which can also be supported by the host interface core. Fourth, the FPGA may be able

to send interrupts to the host CPU. Figure 4.4 illustrates the interface of a host interface

core with one IMORC master port and one IMORC slave port. Communication events

initiated by the host are transformed into IMORC packets and made available on the

master interface. Other cores may access host memory or send interrupts using the slave

interface.

4.4.2 Memory Cores

IMORC provides diUerent kinds of memory cores. First, an interface to on-chip memory

is provided, written in synthesizable VHDL. A drawback at this point is, that current

vendors’ implementation tools are only able to infer simple types of on-chip memory from

VHDL — these are single port or dual port memory without byte-enable signals. Since for

high speed access wide memories are preferred in many cases, making subword writes

necessary, IMORC also provides cores that explicitly instantiate the appropriate memories.

However, this method is only portable when targeting the same FPGA vendor’s devices.

IMORC also provides access to oU-chip memory. The appropriate interfaces instantiate

the FPGA vendor’s memory controller cores and add some logic for translating the interface

to IMORC. The third kind is host memory, as stated in the previous paragraph. When the

host interface core supports direct access to host memory, it provides a separate IMORC

slave port that can be accessed by the IMORC infrastructure on the FPGA. Current systems

usually use virtual addressing for the host memory, so address translation may be needed

in the interface core to generate a physical address.
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Access to these kinds of memories is completely transparent to the accelerator cores.

Since all kinds of memories are accessed using a standard IMORC interface, from a core’s

perspective there is no diUerence between on-chip, oU-chip and host memory.

4.4.3 Request Generator Cores

The request generator cores provide a method for generating diUerent kinds of IMORC

request sequences which are often needed by diUerent kinds of cores. Instead of imple-

menting specialized request tasks manually each time, the request cores can be instantiated

and conVgured for generating the requests needed. A simple form of the request generator

is the streaming request generator (cmp. Figure 4.5). It is conVgured with a command

(read or write), a base address, the amount of data that has to be transferred and the size of

each request. Then it starts posting the appropriate sequence of requests. Sending requests

can be interrupted, for example if diUerent requests have to be inserted by other request

generators.

A more sophisticated request generator can inject a sequence of read and write requests

to the same channel. DiUerent base addresses, amounts of data and request sizes can be set

for read and write requests. The sequence of reads and writes can be programmed by two

further parameters, encoded as bitvectors. The Vrst one represents the initial sequence,
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Figure 4.5: Diagramm of the basic request generator core

that is executed once when the request generator is started. ‘0’ represents a read request,

‘1’ represents a write request. So, setting this parameter to “00010001” means “send three

read requests, followed by one write request and repeat this sequence once”. The second

sequence parameter uses the same encoding and is repeatedly executed after the setup

phase. The setup phase is useful when data has to be read, processed and written back to

memory — in this case, the datapath pipeline gets Vlled before data is written back.

The third version of the request generator posts a sequence of read and write requests,

but does not execute a static sequence. Instead, it monitors the write signal of the M2S

channel. When a conVgurable amount of data is sent to this channel, an appropriate write

request is inserted into the sequence of read requests. Table 4.3 gives an overview of the

resources required by the three diUerent request generator variants on an Altera Stratix II

FPGA.

Implementation

Resource basic sequenced wr-insert

ALUTs 106 308 118

REGs 66 170 67

Table 4.3: Resources required by the diUerent requester implementations

4.4.4 IMORC-to-Register Interface Core

Cores typically need to be conVgured with some parameters describing the job to be

processed. Examples are start addresses of data to be processed and the volume of this

data. These parameters are packed into a job message that needs to be decoded by the core.

The IMORC-to-Register interface core (I2R-IF) is a utility core that performs this decoding.

The core provides a conVgurable amount of internal registers that can be accessed in two

ways: on the one side, an IMORC slave interface is available. Messages appearing on
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this interface are decoded and the appropriate read/write operations are executed on the

register block. The second interface provides direct read/write access to the registers. Here

each register provides a data bus that presents the register’s current value to the user logic

and a data bus used for writing updated values to the register when a corresponding signal

set is asserted. Additionally, for clearing the stored value a signal reset is available for

each register. The precedence of the two ports can be conVgured before synthesis.

Additionally, one of the registers can be conVgured to block the IMORC slave interface.

If this register holds a non-zero value, the IMORC slave interface is blocked. Read and

write requests appearing on this interface are not processed until the register is reset again.

The purpose of this feature is to support chaining of multiple jobs. The I2R-IF receives a

job message on the IMORC slave interface, decodes it and sets the appropriate registers,

including the register that is set to block. The core starts its operations and when Vnished

resets the blocking register. Then, the I2R-IF is able to accept the next job message. Other

cores sending jobs to this core do not need to synchronize with the Vnalization of the job.

They can simply send a stream of job messages and, if they need to be informed of the

Vnalization of the last job, send a Vnal read request that will be responded by the I2R-IF

after all jobs have been processed.

Figure 4.6 shows a sample core using the IMORC-to-Register interface core. A master

core can send a job description to the I2R-IF. The register interface can be connected to

one or multiple request generator cores directly, providing a straightforward method for

generating the control unit of a core. Table 4.4 summarizes the resource consumption of

the I2R-IF in three diUerent conVgurations on an Altera Stratix II FPGA.

# Job Registers

Resource 5 10 15

ALUTs 104 179 211

REGs 179 340 500

Table 4.4: Resource usage of the I2R-IF in diUerent conVgurations (Register width: 32bit)

4.4.5 Register-to-IMORC Interface Core

Corresponding to the I2R-IF presented in the previous section, IMORC also provides a

Register-to-IMORC interface core (R2I-IF). The behaviour is similar to the I2R-IF, but this

time the IMORC interface of the core is an IMORC master interface. While the I2R-IF is

used for decoding job messages and forwarding the information to compute cores, the

R2I-IF is used for encoding such job messages. Figure 4.7 shows the block diagram of the

R2I-IF.

The following signals are provided on the user interface of the core:
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Figure 4.6: Sample core using the IMORC-to-Register interface core

• send: when asserted, values provided on regs_i[0..n-1] are packed into an

IMORC packet and transmitted to the slave core

• rd_all: when asserted, a read request is transmitted to the slave core for getting all

registers’ values, the values responded are shown on regs_o[0..n-1]
• rd_single: read value of a single register, resulting value is shown on regs_o[rd_id]
• rd_id: id of the register that is read

• busy: communication is ongoing, no read/write requests will be accepted

• regs_i[0..n-1]: input values for the registers that have to be sent to the slave

core

• regs_o[0..n-1]: value of the registers as read from the slave core

Using this interface, a core can send jobs to another core by setting the appropriate

job parameters on regs_i and asserting the signal send. The CTRL block instructs the

request generator to send a write request onto the REQ channel. The data provided on

regs_i ist stored in the embedded register block (by asserting wr_all) and successively

sent to the M2S channel. During this phase, the signal busy is kept asserted, so the user
logic is not allowed to send further jobs. When busy is deasserted, the interface is ready
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Figure 4.7: Block diagram of the Register-to-IMORC interface core

to accept further jobs.

In order to synchronize with the completion of a job, the master core has to perform

a read to one or all of the slave’s registers. The user logic asserts rd_all for reading all
registers or sets rd_id to the ID of the desired register and asserts rd_single for reading

only the speciVc register. Again, a corresponding read request is sent to the REQ channel.

The updated register values are read on the S2M channel and stored in the embedded

register block. If the accessed slave interface contains a blocking register, no answer will

arrive until this register is deasserted. In this case busy stays asserted until the complete

read request is processed, i. e., the embedded register block contains the updated values

which are presented to the user logic on regs_o. Table 4.5 summarizes the resource

consumption of the R2I-IF for three diUerent conVgurations on an Altera Stratix II FPGA.

# Job Registers

Resource 5 10 15

ALUTs 136 210 253

REGs 229 390 550

Table 4.5: Resource usage of the R2I-IF for diUerent numbers of job registers (Register

width: 32bit)
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4.4.6 Farming Cores

Farming is a method often used in parallel computer programming. It means that data is

distributed between multiple processors and each one autonomously operates on its own

set of data. IMORC also supports this programming model by providing a dedicated job

scheduler - the farming core. ConVguration parameters of the farming core are the format

of the job description (number and size of registers) and the number of worker cores. The

farming core provides an IMORC slave and an IMORC master port. The master port is

connected to the compute cores’ links using the 1 : n connection scheme described before.

On its slave port the farming core receives job messages which are then distributed to

the compute cores using round robin. Figure 4.8 shows the block diagram of a farming

core conVgured for managing three worker cores. When a new job request is sent to the

slave port, the Select Worker module forwards it to the next worker core. Additionally,

it decodes the request and forwards the amount of data that has to be read or written

(signal n in Fig. 4.8) to M2S or S2M datapath modules along with the port number to send

the data to or to read the data from (signal p).
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Figure 4.8: Block diagram of the farming core managing three worker cores

A very important parameter if using the farming core is the depth of the FIFOs used

in the links that connect the farming core to the worker cores. Deep FIFOs in these links

will introduce a rather large overhead in terms of area consumption. Additionally, if these

links are able to buUer multiple job requests, the performance of the overall system may be

degraded due to an ineXcient job scheduling. This is of importance in particular if the jobs

largely diUer in their expected runtime. The worst case would be that one core is assigned

with several long-running jobs while others can quickly process their short-running jobs
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and then become idle. So, the IMORC links connecting the worker cores to the farming

core usually should be conVgured to buUer exactly one complete job message. The S2M

channels also usually do not need to buUer a large amount of data and can be conVgured

with a FIFO size of one element. Furthermore, the farming core’s implementation is rather

simple and thus should be able to operate in the clock domain of the worker cores. This

enables an implementation as synchronous FIFOs that will use registers for small FIFOs.

The bitwidth conversion modules usually can also be omitted. With these properties, such

IMORC links will be implemented with a very small area consumption. Clock domain

conversion and further buUering of the job descriptions can be performed in the link which

connects the core generating the jobs to the farming core.

Additionally to job messages, the farming core can respond to status requests, which

are implemented as read requests. The read request is forwarded to all worker cores,

which in turn will respond to the request as soon as the jobs already scheduled completed

processing. When all worker cores have responded to this request, the farming core will

respond to the original read request, informing the requesting core that all jobs scheduled

before the status request are Vnished. Table 4.6 shows the resource usage of the farming

core for 5 and 10 compute cores on an Altera Stratix II FPGA.

#,Worker Cores

Resource 5 10

ALUTs 105 139

REGs 27 42

Table 4.6: Resource usage of the farming core (5 × 32 bit wide job registers)

4.5 IMORC on the XtremeData XD1000

The XtremeData XD1000 is a dual socket Opteron system whose sockets are equipped with

a 2.2 GHz AMD Opteron processor and a module featuring an Altera Stratix II EP2S180-3

FPGA. Since the Opteron is a NUMA style architecture, each processor socket is connected

to a dedicated set of memory modules. The XD1000 system comes with 4GB of main

memory (DDR SDRAM) for each the Opteron and the FPGA. CPU and FPGA communicate

via a HyperTransport link which provides a rather low latency communication. Physically,

the FPGA is connected to the processor using a 16 bit HyperTransport link with 800MT/s

(MegaTransfers per second).
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4.5.1 The FPGA

The XD1000 is equipped with the largest Altera Stratix II device available in 2006, the

EP2S180-3. This section summarizes the resources available in this FPGA. Since an in-

depth discussion of the FPGA is out of scope of this work, for further information refer to

the device handbook [31]

Logic Resources

The Stratix II FPGA consists of a two-dimensional architecture to implement custom logic.

Logic resources are grouped into logic array blocks (LABs), each of which consists of eight

adaptive logic modules (ALMs). An ALM is the basic building block of custom logic in the

Stratix II devices. Figure 4.9 shows the block diagram of an ALM. It consists of a number of

look-up tables (LUTs) based resources that can be divided into two adaptive LUTs (ALUTs).

Precisely, each ALUT consists of one four-input LUT and two three-input LUTs. Each

ALM provides a total of eight inputs for the ALUTs. This way, several functions can be

implemented by an ALM:

• Each ALM can implement two arbitrary functions with four inputs,

• two arbitrary functions with three and Vve inputs,

• one arbitrary function with up to six inputs, and

• certain functions with seven inputs.

Additionally, each ALM contains two adders with carry chains, multiplexers and

registers with a register chain. The register chain can be used for implementing shift

registers.

Memory

The Stratix II FPGA provides three diUerent types of on-chip memory: M512, M4K and

M-RAM. M512 is the smallest RAM block containing 576 bits and supports diUerent

conVgurations from 512 × 1 to 32 × 18. M4K contains 6 408 bits in conVgurations from

4K × 1 to 128 × 36 and M-RAM contains 589 824 bits in conVgurations from 64K × 1 to
4K × 144. The memories can be operated in diUerent modes, such as single-port memory,

simple or true dual-port memory, ROM, shift register, etc. Not all memories provide

support for all operation modes. A detailed description of the memories can be found in

the literature [31]
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Figure 4.9: Diagram of an ALM in the Altera Stratix II FPGA

Digital Signal Processing Blocks

To support Digital Signal Processing (DSP) functions, the Altera Stratix II EP2S180 FPGA

provides 96 dedicated DSP blocks. Each DSP block can be conVgured to support up to eight

9×9 bit multipliers, four 18×18 bit multipliers or one 36×36 bit multiplier. Additionally, the

DSP blocks contain an adder output block that can be conVgured for adding, subtracting or

accumulating the results of the multipliers, forming a multiply-add or multiply-accumulate

function.

4.5.2 Host Interface

HyperTransport (HT) is an open standard deVned by the HyperTransport Technology

Consortium [14]. Devices are connected by a point-to-point link that is implemented using

two unidirectional sets of signals:

• CAD (Command, Addresses and Data) is a between 2 bits and 32 bits wide signal and

transports the packets,

• CTL is a one bit wide signal that is asserted when CAD carries a control packet and

• CLK is a 1, 2 or 4 bits wide clock signal — each byte of CAD has a separate clock

HyperTransport is a packet-based protocol. Each packet consists of a header and can have

data attached. Packets are grouped into three virtual channels: Posted for packets that

do not expect a response, Non-Posted for packets requiring a response and Response for

responses to packets received on the Non-Posted channel. Packets are basically separated

into control and data packets. Figure 4.10 shows the basic structure of a read/write request

packet. The purpose of the Velds is as follows:
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Figure 4.10: Structure of a HT read/write request packet

• CMD: command Veld, e. g., byte or doubleword read or write request

• SeqID: used for grouping requests. All requests with the same SeqID have to be

strongly ordered within a virtual channel. Requests with SeqID 0x0 are not part of a

sequence, thus no sequence-ordering is required for such requests.

• PassPW: packets with this bit set may pass packets in the posted request channel.

• SrcTag: tag used to identify all transactions, ie, to match responses with their

requests.

• Addr: doubleword address accessed by the request.

• Mask/Count: For doubleword requests, indicates the number of doubleword data

elements to be transferred. For byte requests, exactly one doubleword is transferred

in the data packet and this Veld is used for masking out non-relevant bytes.

Read response packets are only 4 bytes long since they do not need to provide an ad-

dress. Data packets directly follow a write request/read response packet and contain the

corresponding amount of data. Several other packet types exist, like broadcast, atomic read-

modify-write etc.. For a detailed reference of the HT protocol refer to the speciVcation [69]

or to the HT System Architecture book [34].

For communication between host CPU/memory and FPGA, an IMORC interface core to

HyperTransport exists which is based on the HT cave presented in [110]. During system

boot, the host CPU and the cave negotiate the HT link parameters (i. e., the link’s clock

and width). Then the host reads the cave’s capabilities and conVgures it. The cave maps

up to three distinct address regions into the address space of the host’s CPU.
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After this initialization, accesses to this address space are translated into HT read or

write request packets. Writes into one of these address regions appear as a write packet on

the incoming posted channel, reads appear as a read packet on the non-posted channel. The

cave performs some decoding (e. g., the address region that was assessed by an incoming

packet) and forwards it to the user logic. Connection to user logic is separated into 6

interfaces, one transmitting (Tx) and one receiving (Rx) interface for each virtual channel

(P - Posted, NP - Non-Posted, R - Response).

Figure 4.11 displays the connection of the HT cave to the corresponding IMORC interface.

The IMORC interface for incoming transfers converts packets that hit one of the Vrst

two address regions into equivalent IMORC packets which are posted on two separate

IMORC links. For write transfers this conversion is straightforward — the corresponding

IMORC link is taken from the address region ID. Address and size are extracted from the

corresponding Velds in the HT packet and the appropriate amount of data is forwarded

from the cave’s TxP data FIFO to the corresponding IMORC link’s M2S channel. For reads,

the decoding is the same regarding the packet header. However, additional data has to be

forwarded to the HT’s response channel to be able to generate a response packet header

and to know from which IMORC link the data has to be read. Precisely, this data involves

the TAG, SIZE and the address region. This data is forwarded using a synchronous FIFO.

The response datapath generates an appropriate HT packet header out of these information,

sends it to the corresponding FIFO interface and forwards the appropriate amount of data

from the corresponding IMORC link’s S2M channel to the HT cave.
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Figure 4.11: Block diagram of the HyperTransport interface core
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The third address region is used for supporting communication into the other direction.

The FPGA may send packets to the host CPU for directly accessing its local memory.

However, since the Opteron CPU uses virtual addresses, it is not suXcient to inform

compute cores running on the FPGA at which base address the desired data begins. The

third address region accesses an embedded block of memory for mapping a set of physical

page addresses of the CPU into a continuous address space on the FPGA. IMORC packets

arriving at a separate IMORC slave interface are translated into corresponding HT packets

this way. The upper bits of the IMORC address act as a pointer into the page mapping table,

the lower bits form an oUset to the page. For read requests, an additional counter is used

for generating the TAG Veld of the HT request. HT supports out-of-order responses, while

IMORC expects responses to arrive in-order. To overcome this issue, the receiving response

datapath Vrst stores incoming data packets into a local memory. This local memory

contains one block large enough for storing a full-sized HT data packet per possible TAG.

Data is written to the block corresponding to the TAG Veld of the HT header and marked

as valid. Starting with tag 0, the valid Wag of the next tag which has to be processed is

monitored. In the case the block is marked as containing valid data, the data is forwarded

to the S2M channel of the corresponding IMORC link and the block is marked as invalid.

Additionally to memory access, the IMORC slave link can be used for sending interrupt

messages to the host. Writes to a conVgurable address occurring at the slave IMORC link

are translated into HT interrupt packets and sent to the posted channel of the HT cave.

Table 4.7 lists the resource requirements for the HT host interface core.

Resource # used % of Stratix II EP2S180

ALUTs 8791 6.125 %

REGs 5209 3.629 %

M512 1 0.108 %

M4k 57 7.422 %

M-RAM 1 11.111 %

Table 4.7: Resource requirements for the HT host interface core

4.5.3 External DDR Memory Access

For oU-chip DDR memory access IMORC wraps the Altera DDR SDRAM controller core,

which can access memory in blocks of conVgurable burst sizes. The DDR SDRAM provided

by the XD1000 system is a 128 bit wide memory, which can be accessed in bursts of 2, 4 or

8 clock cycles. The Altera controller can be conVgured for the maximum burst size to be

used.

The user interface signals of the SDRAM controller can be grouped into three classes:

control, read data and write data. Figure 4.12 gives an overview of these signals. The
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Figure 4.12: Block diagram of the XD1000 DDR SDRAM interface core

control signals are used for instructing the controller to perform a burst read or write. The

addr signal’s granularity is 256 bit, the size deVnes the number of 256 bit words which

have to be read or written. Multiple requests can be sent in a sequence, as long as the

ready signal is asserted.

The write datapath calculates an error correcting code (ECC) for the data; ECC code

and data are then forwarded to the controller when the wrdata_req signal is asserted.

The read datapath checks the ECC, performs error correction if necessary and forwards

the data to the S2M channel of the IMORC link as soon as rddata_valid is asserted.

DDR SDRAM transfers usually cover complete bursts, i. e., 2, 4 or 8 clock cycles in the

DDR clock domain or 1, 2 or 4 clock cycles in the SDR domain. Hence, depending on

the burst size conVguration of the controller, 256 bit, 512 bit or 1024 bit are usually read

or written during each transfer. For reads, the controller can additionally break the burst

after 2 or 4 cycles in the DDR clock domain and only responds the number of 256 bit

words requested by the size signal. Write transfers always have to cover a complete

burst. Data can usually be masked out using the wdata_ben signal on the user interface,

which is forwarded to the memory using the dm signal. However, since the dm signal is not

connected to the memory in the XD1000, complete bursts of 256 bit, 512 bit or 1024 bit are

written to the memory. To also support subword writes, the IMORC interface implements

a read-modify-write cycle: data is read from the target position of the memory Vrst, then

forwarded to the write datapath using a short FIFO and Vnally multiplexed onto the data

which is written. While this approach certainly introduces some overhead, it ensures that
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on-chip or host memory is transparently exchangeable with DDR SDRAM on the XD1000.

Table 4.8 lists the resource requirements of the DDR SDRAM.

Resource #used % of Stratix II EP2S180

ALUTs 1992 1.380 %

REGs 2159 1.504 %

M4k 8 1.042 %

Table 4.8: Resource requirements for the DDR CTRL core
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4.6 IMORC Infrastructure Cores and Accelerator
Generation

Figure 4.13 outlines the generation of accelerators based on the architecture model. The

diUerent steps in this Wow are supported by a code generation tool implemented in the

language Ruby.
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Figure 4.13: Architecture generation Wow diagram

4.6.1 Core Generation

Core generation typically begins with specifying the interface to the core, e. g., how many

IMORC slave and master ports it provides and the width of the diUerent S2M and M2S

channels. In the next step several supporting cores such as a I2R-IF, request generator

cores etc. are instantiated, and custom functionalities are implemented.
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Listing 4.1 shows the entity deVnition of an IMORC core with two IMORC ports: one

master and one slave port. While the whole process of core generation can be performed

using VHDL, Verilog or some kind of graphical design tools, the ruby-based code generator

can simplify this process in some ways. Listing 4.2 shows the corresponding code generator

script which produces the entity deVnition in Listing 4.1.

Additionally, the generator generates the architecture implementation of the cores.

For this purpose, the designer can deVne signals, connect signals and IMORC links and

instantiate variants of the utility cores and other cores generated by the code generator.

Listing 4.3 shows the exemplary code of a custom core. The core deVnition myCore is

implemented as a subclass of class Core. The width of the datapath and the number

of job registers are parameterized and need to be deVned when instantiating the class.

The constructor adds the ports rst and clk , a 32 bit wide IMORC slave port s and an

IMORC master port m that is as wide as the datapath. It then generates an instance

of the I2R-IF, maps the ports rst , clk and s to the corresponding ports of “myCore”.

The method genCustomVHDL() can be used for adding arbitrary VHDL code to the

architecture deVnition.

The VHDL for this core can now be generated by generating an instance of class myCore

and calling its method genVHDL(), which is deVned in its superclass Core. The resulting

VHDL Vle contains the code implementing the I2R-IF and the core myCore, including a

component deVnition for the I2R-IF.

The code generator is also able to insert load sensors for monitoring arbitrary single bit

signals. This is done by calling the method loadSensor (< signal >), where < signal > is the

name of the signal to observe. This method automatically generates the needed signals for

accessing the load sensor. By default, these signals are routed to the external interface of

the core. The load sensor signals of instantiated cores are also forwarded to the external

interface by default, hence a core has access to every load sensor at a lower level. The

load sensors thereby are identiVed by a unique name that is generated by the name of the

signal monitored and the core’s instance name. Each time a load sensor is promoted to a

higher level in the hierarchy, the name of the core’s instance name is prepended to the

load sensor’s name. Routing the load sensor signals to the external interface can also be

suppressed. This is useful if the core itself implements the monitoring core and therefore

has to access the sensors.

4.6.2 Communication Infrastructure Generation

The communication infrastructure generation consists of instantiating cores and connecting

them using IMORC links and slave arbiters. Using the methods presented above, the

IMORC code generator can be used for this job. For this purpose, the top level design

entity is regarded as a core. The external interface of this top level core has to match the

interface that connects the FPGA to external resources, such as the host interface and
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1 l i b r a r y i e e e ;

2 use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
3

4 l i b r a r y imorc ;

5 use imorc . d e f s . a l l ;
6 use imorc . t o o l . a l l ;
7 use imorc . s e t t i n g s . a l l ;
8

9 e n t i t y myIMORCcore i s
10 gene r i c (
11 S_WIDTH : INTEGER : = 3 2 ;

12 M_WIDTH : INTEGER : = 32

13 ) ;

14 por t (
15 r s t : in s t d _ l o g i c ;

16 c l k : in s t d _ l o g i c ;

17

18 −− IMORC s l a v e p o r t −−
19 s _ c l k : out s t d _ l o g i c ;

20 s _ r e q : in s t d _ l o g i c _ v e c t o r ( IMORC_REQ_BITS−1 downto 0 ) ;

21 s_ req_wr : in s t d _ l o g i c ;

22 s _ r e q _wa i t : out s t d _ l o g i c ;

23

24 s_m2s_da ta : in s t d _ l o g i c _ v e c t o r ( S_WIDTH−1 downto 0 ) ;

25 s_m2s_wr : in s t d _ l o g i c ;

26 s_m2s_wa i t : out s t d _ l o g i c ;

27

28 s_ s2m_da ta : out s t d _ l o g i c _ v e c t o r ( S_WIDTH−1 downto 0 ) ;

29 s_s2m_rd : in s t d _ l o g i c ;

30 s_s2m_wai t : out s t d _ l o g i c ;

31

32 −− IMORC mas t e r p o r t −−
33 m_clk : out s t d _ l o g i c ;

34 m_req : out s t d _ l o g i c _ v e c t o r ( IMORC_REQ_BITS−1 downto 0 ) ;

35 m_req_wr : out s t d _ l o g i c ;

36 m_req_wai t : in s t d _ l o g i c ;

37

38 m_m2s_data : out s t d _ l o g i c _ v e c t o r (M_WIDTH−1 downto 0 ) ;

39 m_m2s_wr : out s t d _ l o g i c ;

40 m_m2s_wait : in s t d _ l o g i c ;

41

42 m_s2m_data : in s t d _ l o g i c _ v e c t o r (M_WIDTH−1 downto 0 ) ;

43 m_s2m_rd : out s t d _ l o g i c ;

44 m_s2m_wait : in s t d _ l o g i c

45 ) ;

46 end en t i t y ;

Listing 4.1: Sample code specifying the interface of an IMORC core with one IMORC

master and one IMORC slave port
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1 r e q u i r e ’ imorc ’

2

3 mc=Core . new ( "myIMORCCore " )

4 mc . add Inpu t ( " r s t " , 1 )

5 mc . add Inpu t ( " c l k " , 1 )

6 mc . a ddS l a v e ( " s " , 3 2 )

7 mc . addMas te r ( "m" , 6 4 )

8

9 mc . genVHDL ( "myIMORCCore . vhd " )

Listing 4.2: Entity deVnition using the code generator

external memory. In case of the XD1000, this includes the HyperTransport interface and

the interface to external DDR SDRAM. The top level core instantiates the compute cores

and infrastructure cores, such as slave arbiters, IMORC links, farming cores and interface

cores to the host interface and to external memory. Additionally, it may not forward the

load sensor signals on the external interface. Instead, if load sensors shall be monitored,

the top level core has to instantiate an appropriate monitoring core.

For the XD1000, a class deVning the template of such a top level core is provided. It

implements the interface of the XD1000 FPGA, instantiates the HT interface core and

optionally instantiates a DDR controller interface core. Additionally, it provides methods

for specifying the load sensors that have to be monitored. Typically, a designer will

implement a subclass of the XD1000 class that instantiates the IMORC infrastructure

components and compute cores. In a generator script, this class is instantiated, the load

sensors which have to be monitored are selected and the method genVHDL() is called.

This generates a VHDL Vle containing the complete architecture’s implementation. This

last step can also be done interactively using the interactive ruby shell. This way the

designer can, for example, list the available load sensors in the system before selecting the

monitored ones.

Using the code generator is in some ways more Wexible than directly implementing

VHDL code. For example, VHDL does not support a conVgurable number of ports for

an entity. To implement an IMORC slave arbiter with a conVgurable number of ports

in VHDL, the IMORC inputs have to be speciVed as two dimensional vectors of signals.

VHDL supports two variants of such vectors: vectors of vectors like

type t d v e c 1 i s array (NATURAL RANGE < >) of
s t d _ l o g i c _ v e c t o r (NATURAL RANGE < >) ;

and real two dimensional vectors such as

type t d v e c 2 i s array (NATURAL RANGE < >. NATURAL RANGE< >)
of s t d _ l o g i c ;
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1 c l a s s myCore < Core

2 def i n i t i a l i z e ( dwidth , n r e g s )

3 super ( " myCore " )

4 @dwidth=dwidth

5 @nregs= n r e g s

6 add Inpu t ( " r s t " , 1 )

7 add Inpu t ( " c l k " , 1 )

8

9 addS l a v e ( " s " , 3 2 )

10 addMas te r ( "m" , dwidth )

11

12 i 2 r _ i n s t = a d d I n s t a n c e ( " JOB_DECODER " , I 2 R I F . new ( n r e g s ) )

13 i 2 r _ i n s t . mapPort ( " r s t " , " r s t " )

14 i 2 r _ i n s t . mapPort ( " c l k " , " c l k " )

15 i 2 r _ i n s t . mapImorcPor t ( " s " , " s " )

16

17 f o r i in 0 . . n r eg s −1
18 a d d S i g n a l ( " r e g_ " + i . t o _ s ( ) , 3 2 ) ;

19 i 2 r _ i n s t . mapPort ( " r e g_ " + i . t o _ s ( ) , " r e g_ " + i . t o _ s ( ) )

20

21 a d d S i g n a l ( " r e g_ " + i . t o _ s ( ) + " _ s e t " , 3 2 ) ;

22 i 2 r _ i n s t . mapPort ( " r e g_ " + i . t o _ s ( ) + " _ s e t " , " r e g_ " + i . t o _ s ( ) + "

_ s e t " )

23

24 a d d S i g n a l ( " r e g_ " + i . t o _ s ( ) + " _ r s t " , 3 2 ) ;

25 i 2 r _ i n s t . mapPort ( " r e g_ " + i . t o _ s ( ) + " _ r s t " , " r e g_ " + i . t o _ s ( ) + "

_ r s t " )

26 end
27

28 def genCustomVHDL ( )

29 re turn "

30 −−here , custom VHDL commands may be w r i t t e n

31 −− f o r s p e c i f y i n g t h e a r c h i t e c t u r e

32 "

33 end
34 end

Listing 4.3: Sample instantiating another core
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At design time of IMORC the Vrst option was not practically usable because synthesis

tools required at minimum one dimension to be speciVed during type deVnition. Since for

an IMORC slave arbiter the number of ports and the width of the datapaths may diUer for

every arbiter that is instantiated, both dimensions have to be parameterizable. The second

option can be used, but signal assignment in VHDL becomes complicated, since it is not

possible to select a range of signals:

s i g n a l a : t d v e c 2 ( 0 to 3 1 , 31 downto 0 ) ;

s i g n a l b : s t d _ l o g i c _ v e c t o r ( 3 1 downto 0 ) ;

. . .

b <= a ( 2 , 31 downto 0 ) ; −− Wrong !

b ( 3 1 ) <= a ( 2 , 3 1 ) ; −− C o r r e c t !

Using the code generator, custom slave arbiters can be generated with an arbitrary number

of IMORC ports that can be accessed directly.

4.6.3 Simulation

For supporting the simulation of the generated system, the system has to be connected to

external memories and to a host. A basic memory model is implemented that may be used

for simulating the external memory. Additionally to the internal memory core, this model

supports the addition of a certain latency to the memory blocks, but does not consider the

times needed for loading a page, refreshing etc. as in real SDRAM. Thus, timings may vary

between such a simulation and a simulation for the real target platform.

For the host interface, a template exists that provides two IMORC master and one

slave port. The slave port accesses an internal memory, simulating host memory. The

communication performed on the master ports has to be speciVed by the designer in

VHDL.

Alternatively, if the system targets a speciVc platform, appropriate external memory

controllers and a host interface core for that platform can be instantiated. Simulation then

can utilize the platform speciVc simulation models. In case of the XD1000, a model for the

complete accelerator board exists. A HyperTransport Bus Functional Model is attached to

the board model which initializes the FPGA just like a real system would do and provides

the possibility to send commands to the HT link (e. g., to the FPGA).

Additionally, a load sensor monitor model exists which may be used to observe the

sensors available in the system. This model reads out the sensors’ data in a conVgurable

interval and writes the values into a conVgurable Vle for further analysis.
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4.6.4 Synthesis

The IMORC architectural template is completely written in synthesizable VHDL, making

IMORC a vendor neutral tool. SpeciVcally, the FIFOs are implemented based on the

techniques described in [46] without using any architecture speciVc components. For

generating the full and empty Wags of the FIFOs, the read and write pointers need to

be compared. Since these pointers reside in diUerent clock domains, grey counters are

used for generating these pointers, making an asynchronous comparison reliable. The

only vendor-speciVc components are the system speciVc host interconnects and memory

controllers as well as possibly the on-chip memory blocks if subword writes are needed

(see section 4.4.2). These properties ensure that the generic parts of an IMORC system can

typically be synthesized by all major vendors’ synthesis tools.

4.6.5 Execution and Runtime Monitoring

In the next step the Vnal bitstream can be downloaded to and tested on the target FPGA.

The included load sensors can be monitored with the provided monitoring tools. For the

XD1000, load sensors can be monitored using the HT host interface or the JTAG interface.

When using the host interface, data can be written by the monitoring core into a dedicated

memory region of the host processor. The host application has to take care of storing the

data for later analysis. The JTAG methodology is suitable for all Altera devices, data can

be received using the TCL interface of the Altera toolsuite.

4.7 Chapter Summary

The IMORC architectural template provides a versatile method for implementing diUerent

kinds of accelerators. The infrastructure in several ways abstracts from the target hardware

platform, such as bitwidth and type of memories. The main focus of the IMORC architec-

ture template is to facilitate the development of accelerators and to gain high performance

by maximizing the utilization of the communication channels available. Control and

datapaths are separated in IMORC enabling designers to use diUerent implementation

methods for these jobs. Helper cores are provided for various commonly used tasks.

While this chapter provided an insight into the assumptions made and the design

decisions taken during development of the IMORC architectural template, the beneVts still

have to be proven. Hence, the next chapters analyze the IMORC architectural template

running on a concrete system equipped with reconVgurable hardware — the XtremeData

XD1000. The next chapter provides a detailed characterization of this platform which

is performed using the IMORC architectural template. Based on this characterization

Chapter 6 discusses several case studies on diUerent kinds of accelerators.
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Architecture Characterization

Mapping task graphs to an existing platform requires numerous parameters of the platform

to be taken into account. Especially the communication performance to diUerent kinds of

memories and between host and accelerator has to be considered for achieving optimal

results. While vendors usually provide raw performance values based on parameters like

clock frequencies and data widths, these values are most likely not achievable in real

applications due to overheads. Special care has to be taken regarding the measurement:

while vendors often provide performance values in GB/s, with 1GB = 10
9
Byte, in engi-

neering traditionally 1 GB is expected to be 2
30
Bytes, which is nowadays called a GibiByte

(GiB). Additionally, performance values usually depend on the actual communication

scheme. For example, if accessing oU-chip memory, the maximum performance can usually

only be achieved when accessing consecutive addresses and always performing full-burst

transfers. Such conditions cannot always be achieved in real applications. For enabling

designers to Vnd an ideal mapping of memory tasks to actual memory resources on a real

platform and for a Vrst performance estimation, IMORC provides a versatile benchmarking

infrastructure for gathering such performance values based on conVgurable parameters.

This chapter introduces the benchmarking infrastructure and presents an architecture

characterization of the XtremeData XD1000 reconVgurable platform, which also was the

target platform for the case studies presented in Chapter 6.

5.1 The IMORC Benchmarking Infrastructure

The IMORC benchmarking infrastructure consists of one or multiple benchmarking cores,

which communicate with the target memory to be characterized using the IMORC infras-

tructure.
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5.1.1 The Benchmarking Core

The benchmarking core is used to measure the performance achieved on one single IMORC

link. Its interface consists of two separate IMORC ports — a slave port used for setting the

benchmark’s parameters and a master port for accessing the target memory. The slave port

connects an I2R-IF used for decoding the current benchmark’s parameters. The decoded

parameters are forwarded to a control core that conVgures an IMORC request generator

core and the datapath.

Table 5.1 summarizes the runtime parameters of the benchmarking core. The base

address is the Vrst request address to be sent by the core. The request size is the size of

each request to be performed. After a request is submitted, the address increment value is

added to the last request address, allowing to not only benchmark subsequent accesses to

the memory but also strided accesses. The benchmark type deVnes whether the read or

the write bandwidth should be measured. Alternatively, it can be set to pattern allowing

an arbitrary sequence of read/write requests to be submitted, depending on the value of

the pattern parameter. The pattern parameter is a bitvector containing a ‘1’ if a write is to

be performed and a ‘0’ for reads.

Parameter Description

base address starting address of the bench-

mark

request size size of each request

address increment value by which the destina-

tion address for each transfer

increments

benchmark type type of the benchmark, can be

read, write or pattern

pattern when benchmark type is pat-

tern, this parameter deVnes

the access pattern

Table 5.1: Runtime parameters of the benchmarking core

An additional register in the I2R block is used for starting the core. Depending on

the conVguration parameters, the request generator starts posting requests to the REQ

channel. Additionally, the number of transfers that have to occur on the M2S and S2M

channel are calculated and forwarded to the datapath. Here, a counter is initialized with

this number and decremented whenever a data read or write to the channel occurs, i. e. if

the corresponding wait signal is deasserted. Data read from the S2M channel is ignored;

the data written to the M2S channel consists of pseudo-random values. When the counters

become zero, the benchmark is Vnished and the start register of the I2R block is reset for
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unblocking the corresponding IMORC link. A separate counter is used for counting the

clock cycles needed. The value is written to another register of the I2R block and can

be read by the host. Alternatively, the benchmarking core can be conVgured for using

an IMORC load sensor for counting the clock cycles and for providing the host with this

information.

The data width of the M2S and S2M channels is a conVgurable parameter to be set

before synthesis. This way, not only the maximum performance achievable by the memory

can be measured but also the maximum performance of a core with a speciVc data width.

5.1.2 Contention Benchmarking

In real accelerators it is often necessary to map multiple memory tasks to the same memory

core, or to have multiple compute cores accessing the same memory task. Simultaneous

access to the same memory can be implemented in IMORC by using the slave arbiters, as

presented in Chapter 4. However, if multiple cores access the same memory using diUerent

access schemes, the actual performance of the accelerator is hard to predict even if detailed

information about the communication performance for diUerent schemes is available.

For measuring the impact of multiple cores accessing the same memory, the IMORC

benchmarking infrastructure integrates a conVgurable number of benchmarking cores into

a complete system. The cores are connected to the target memory using a slave arbiter.

An additional controller is responsible for forwarding benchmarking parameters to the

cores, to monitor the Vnish condition and to forward read requests for getting the value of

the cycle counters. Each core can be conVgured with diUerent parameters for simulating

multiple cores each performing a diUerent access scheme.

5.2 Performance Characterization of the XD1000

Figure 5.1 pictures the memory layout of the XD1000 and the communication channels

as introduced in Section 4.5. First, the FPGA can be the target of communication events

initiated by the CPU, depicted in the Vgure by labels Bwr(HT) and Brd(HT). Second, the
FPGA can directly access on-chip memory (Bwr/rd(IM)), oU-chip DDR SDRAM (Bwr/rd(EM))

and host memory (Bwr/rd(HM)).

Internal memory is conVgurable regarding the bitwidth, the memory depth and the clock

rate in wide ranges. Since this memory is accessible with a latency of only one clock cycle,

the performance achievable can be directly calculated based on these parameters. Hence,

the further characterization of memory access performance focuses on host memory and

on DDR SDRAM.

Table 5.2 summarizes the capacities and the theoretical maximum bandwidths for all

memories in the XD1000 system, as taken from speciVcations and data sheets. Note that
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Bwr (HM)

Brd (HT)

Brd (HM)

Bwr (HT)

Bwr (IM)

Brd (IM)

Brd (EM) Bwr (EM)

External Memory

Internal
Memory

FPGACPU

Host Memory

Figure 5.1: Memory architecture of the XD1000 architecture

the HT link is implemented as two unidirectional links, each one providing a theoretical

bandwidth of 1.6 GB/s, resulting in a theoretical bidirectional peak bandwidth of 3.2 GB/s.

The DDR SDRAM on the other hand is connected using one bidirectional bus, which

is shared for read and write access. As a consequence, the 5.4 GB/s mentioned are a

theoretical maximum for read only, write only and also combined read/write accesses.

The values for CPU initiated transfers are not presented in the table since the theoretical

parameters do not diUer from the values of host memory access initiated by the FPGA.

The only diUerence is that such transfers produce some overhead on the host CPU.

Memory Capacity Parameter Bandwidth

Host 4 GB
Brd(HM) 1.6 GB/s

Bwr (HM) 1.6 GB/s

External 4 GB
Brd(EM) 5.4 GB/s

Bwr (EM) 5.4 GB/s

Internal 1MB
Brd(IM) �
Bwr (IM) �

Table 5.2: Capacities and theoretical bandwidths for the XD1000

The bandwidth Vgures in Table 5.2 can be considered as upper bounds. Any concrete

implementation such as IMORC will possibly not be able to meet these theoretical Vgures

due to controller and protocol overheads. Typically, such overheads make the bandwidth

dependent on the request size. Furthermore, the bandwidth achieved in an implemented

accelerator can be reduced by contention, in case that several cores compete for accessing

the host or external memory simultaneously.
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5.2.1 CPU↔ Host Memory Bandwidth

The bandwidth between CPU and host memory is characterized using the RAMspeed [22]

benchmark suite with diUerent parameters. RAMspeed performs diUerent kinds of op-

erations to measure the read and write performance separately as well as the combined

performance of the system’s memory. RAMspeed consists of two kinds of benchmarks,

called mem and mark benchmarks.

The mem benchmarks (INTmem, FLOATmem, MMXmem and SSEmem) perform syn-

thetic operations on an array of data to measure the memory performance with realistic

workload. In detail the operations are:

• Copy transfers data from one location to another (A = B)
• Scale modiVes the data before writing it to the target location by multiplying it

with a constant value (A = m · B)
• Add reads data from two memory locations, adds them and writes them back to a

third memory location (A = B + C)
• Triad is a combination of scale and add — it reads data from two locations, scales

data from the Vrst location and adds the result to the value read from the second

location before writing the result back (A = m · B + C)
The benchmarks sum up the amount of data accessed by each operation and with the

resulting value calculate the throughput through the corresponding execution unit. RAM-

speed additionally provides variants of the MMX and SSE benchmarks that insert explicit

prefetching instructions into the code. While the integer and Woating point benchmarks are

implemented in C, the MMX and SSE benchmarks are implemented in machine speciVc

assembler code.

Figure 5.2 shows the results of the RAMspeed mem benchmarks on the XD1000. The

bandwidth achieved is between 2.1GiB/s and 2.5GiB/s for the Integer benchmarks and

between 2.1GiB/s and 2.7GiB/s for the Float benchmarks. The average bandwidths

achieved are about 2.34GiB/s and 2.46GiB/s, respectively. These values are much lower

than the peak values theoretically achievable by the memories. The Vgure also shows

that the utilization of the MMX and SSE units do not directly exert an inWuence on the

bandwidth achieved — the performances measured with these units are very close to

the integer and Woating point benchmarks. A signiVcant improvement is produced by

inserting data prefetching instructions into the computational loops. In this case, the

performance about doubles, resulting in values of between 3.9GiB/s and 4.7GiB/s for the
MMX benchmark and between 3.9GiB/s and 4.8GiB/s for the SSE benchmark, respectively.

The benchmarks also reveal another interesting fact: for the benchmarks without

manual prefetching, the memory bandwidth slightly increases with the complexity of the

operations performed (Triad > Add > Scale > Copy). The benchmarks with prefetching code

inserted showed the contrary behavior — with an increased complexity of the operations

performed, the resulting bandwidth dropped in this case.
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Figure 5.2: Results of the RAMspeed benchmark on the XD1000

The RAMspeed mark benchmarks on the other hand measure the bandwidth achievable

when accessing memory with diUerent block sizes. The benchmark hereby consists of a

scalar variable a and a memory block mem. For the read benchmarks, the values stored in

mem are successively copied to variable a, reading each element of mem exactly one time.

For the write benchmark, value a is exactly written one time to each location of mem.

If the size of the memory block accessed Vts into the L1 or L2 cache, most of the copy

operations can be typically executed directly in this cache without direct access to main

memory. This way, the mark benchmarks measure not only the memory performance but

also the performance achievable when accessing the diUerent levels in the cache hierarchy.

Figure 5.3 presents the results of this benchmark on the XD1000.

Basically, all benchmarks except the MMX and SSE write benchmarks with manual

prefetching behave similarly. Transfers that can be completely performed in L1-cache

(64 byte on the Opteron 248 processor) perform best, achieving from 16GiB/ s to 32GiB/ s
depending on the operation and datatype. For the L2-cache, the bandwidths achieved lie

much closer together. Interestingly, MMX and SSE writes with prefetching however do not

beneVt from L1-cache or L2-cache at all. The throughput in these benchmarks constantly is

around 6GiB/ s for all block sizes. This value is much higher than the bandwidth achieved

by the other benchmarks when accessing main memory, but lower than access to L1- or

L2-cache by the other benchmarks.

5.2.2 CPU↔ FPGA Communication Initiated by the CPU

For characterizing Bwr/rd(HT) the benchmarking application on the CPU maps the FPGA

into its address space and performs memcpy operations with diUerent sizes to/from this

address space. The upper bound for these bandwidth values are given as 1.6 GB/s per

direction, which are however physical peak values. The HT link in each direction is 16 bits

wide and running at 400MHz DDR, resulting at a maximum of 800MT/s or 800M/ s ×
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Figure 5.3: Results of the RAMspeed benchmark for diUerent block sizes

16 bit = 1.6GB/ s ≈ 1.49GiB/ s. Each packet transmitted on the HT link consists of a header

with a minimum size of 8byte and a maximum payload of 64byte, so a maximum of
64 byte

(64+8) byte

of the peak bandwidth is available for payload, which is approximately 1.325GiB/ s.
Figure 5.4 presents the bandwidth achieved when the CPU sends data to and reads data

from the FPGA, respectively. The write bandwidth starts at about 0.25GiB/ s when sending

4 byte large blocks of data. It increases about linearly up to about 1.3GiB/ s for 24 byte
large blocks, which is quite close to the theoretical peak value as depicted above. For larger

transfer sizes, the bandwidth remains about constantly 1.3GiB/ s.
In contrast, the read bandwidth is very low for all packet sizes. Monitoring the HT

link using JTAG resulted in that the host split the large data transfers into HT packets

requesting 64 bit of data. The requests were not chained, each request had to be responded

to before the next request was sent to the FPGA. This results in a very low utilization of

the HT link, making this communication method inappropriate for large amounts of data.

It is only suitable for reading single values from the FPGAs, for example the state of single

registers.

5.2.3 Burst Read/Write Transfers Initiated by the FPGA

As pictured in Chapter 4 the FPGA in the XD1000 is able to directly access its own area

of external DDR SDRAM as well as host memory. Host memory access is performed
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by sending appropriate HT packets to the corresponding links, which will likely provide

the best performance if exploiting the maximum packet size possible. Additionally HT

packets have to respect several alignment rules which may require transfers to be split into

multiple packets even if their size matches the maximum HT packet size. DDR SDRAM

access is done in bursts and will perform best when executing full burst transfers with the

base address aligned to the burst size.

The Vrst benchmark measures the peak bandwidth achievable when conducting appro-

priately aligned transfers with diUerent packet sizes. For this it connects a benchmarking

core with a datapath as wide as the memory’s native width to the appropriate memory,

e. g. 256 bit for the DDR SDRAM and 64 bit for the host memory. The benchmarking cores

are running at 200MHz, which is the host memory’s maximum clock rate and more than

the DDR SDRAM’s clock. This conVguration deployment ensures a full utilization of the

memories. The benchmarking core was conVgured for generating read and write transfers

with diUerent IMORC packet sizes, respectively.

Figure 5.5 presents the resulting read bandwidth achieved on the host memory. The

bandwidth nearly linearly increases with the packet size and reaches a maximum value

of about 1.3GiB/ s at a size of 64 byte per packet. The rate then slightly drops to about

1.2GiB/ s and increases again to the maximum bandwidth at a packet size of 128 byte per

packet. Considering the discussion of the HT packet size in the previous section, one draws
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Figure 5.5: Read bandwidth achieved on the host memory, one core, 64 bit
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Figure 5.6: Write bandwidth achieved on the host memory, one core, 64 bit
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the conclusion that the maximum bandwidth is achieved if the transfer size is a decimal

multiple of the maximum HT packet size. The bandwidth achieved in this case is very

close to the theoretical maximum bandwidth as discussed in the previous section.

A similar behavior can be observed when regarding the write bandwidth presented in

Figure 5.6. However, the values achieved in this case are much lower than those achieved

by the read benchmark — the maximum bandwidth with 64 byte large packets is at about

0.9GiB/ s and drops to about 0.7GiB/ s for packets slightly larger than this.

Figure 5.7 presents the read bandwidth achieved on the DDR SDRAM for diUerent

memory controller conVgurations with 2/4/8-cycle bursts, respectively. As expected, all

cores perform best when the IMORC packet size matches the native burst size of the

memory controller. The 4-cycle burst controller and the 8-cycle burst controller achieve

about the same maximum performance of about 4.8GiB/s. However, the 4-cycle burst
controller already reaches this performance at its native burst size of 64 byte, whereas

the 8-cycle controller does not get this performance before a request size of 128 byte. An

interesting fact is that the graph of the 8-cycle controller matches the one of the 2-cycle

controller for request sizes between 32 byte and 96 byte. Obviously, the controller stops

the bursts and, thus, only performs 2-cycle bursts for request sizes less than 96 byte.

While the read benchmarks suggest the use of the 4-cycle controller in all cases, it is

diUerent for the write benchmarks presented in Figure 5.8. A heavy overhead is introduced

due to the read-modify-write cycle inserted into the SDRAM controller. As a consequence,

the performance is very low for non-aligned or non-full burst writes. Only when executing

full-burst writes, the performance increases to about the same values as in the read

benchmark. In order to achieve a good performance of the XD1000 processing storage

tasks on its DDR SDRAM, aligned and complete burst writes are essential. In some cases,

for getting a resonably high write performance, it may be necessary to only use the 2-cycle

burst controller, even if its maximum read and write performance is only about half of the

other two controller conVgurations.
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Figure 5.7: Read bandwidth achieved on the DDR SDRAM, one core, 256 bit
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5.2.4 Simultaneous Access by Multiple Cores with a Common
Access Scheme (Read or Write)

While the benchmarks presented above show the peak values achievable when accessing

memories, the communication schemes found in real applications often do not match the

communication scheme used in those benchmarks. It has to be especially taken into account

that the benchmarks presented above were performed with a datapath’s width matching

the bitwidth of the memory. However, real-world cores often operate on data with a

diUerent bitwidth and accordingly may introduce some inaccuracy. Additionally, memory

will likely be accessed by multiple cores in a real accelerator whereas the benchmarks

presented above were performed with only one core accessing the memory.

For gathering characterization that more resembles real-world accelerators, further

benchmarks were performed with multiple cores accessing the memory in parallel. Fig-

ure 5.9 presents the results of such a benchmark with four cores accessing the oU-chip DDR

SDRAM. The datapath of all four cores is 64 bit wide; the cores are running at 200MHz.

For simplifying the comparison with the results of the previous benchmarks, the values

presented in the Vgure are the aggregate bandwidth available for all cores. The results

strongly resemble the results of the benchmarks presented in the previous section, which

draws the conclusion that the slave arbitration hardly introduces any overheads in this

scenario.

Figure 5.10 presents the corresponding results for the write benchmark. In this case,

all four cores concurrently write to the DDR SDRAM. The values presented again are

aggregate bandwidth values of all four cores. the results also strongly resemble those of

the previous benchmarks, virtually no overhead is introduced by the slave side arbitration.

Figure 5.11 shows a similar read benchmark using four cores accessing the DDR SDRAM,

but this time the datapath of the cores is conVgured to a width of 32 bit. Since the theoretical

aggregate bandwidth of the four cores (4 × 4 byte × 200MHz = 2.98MiB/s) this time is

much lower than the measured peak bandwidth of the DDR SDRAM, the graph does not

resemble a sawtooth curve. Instead, the bandwidth now approximately linearly increases

up to about 2.7GiB/s and then converges towards the maximum bandwidth achievable on

slave side of about 2.98GiB/s. All curves show a small drop of the bandwidth at a request

size of 68 byte. The 2-burst and the 8-burst controller show an additional drop at a request

size of 36 byte. Again, the measurements prove that the slave arbiters are working nearly

optimally in this case introducing only little overhead. Figure 5.12 shows the corresponding

graph of the write bandwidth. Due to the dramatically reduced bandwidth for non-full

burst transfers, the graph greatly resembles the one using the 64 bit datapath, with the

maxims cut to about the maximum theoretical bandwidth achievable on the slave side.

Other benchmarks performed have shown that the bandwidth achieved can further

be increased by adding more benchmarking cores to the setup. Using seven cores, the
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benchmark achieves about the peak performance of the DDR SDRAM, driving it into

saturation.

5.2.5 Contention Benchmark with Multiple Simultaneous Reads
and Writes

The benchmarks presented above were conVgured so that all cores execute memory

accesses using the same access scheme. Precisely, all cores were conVgured to perform

reads or writes with the same request sizes. While this provides a detailed insight into

the performance achievable in certain situations, real world cores will likely not only

read or write data but Vrst read some input data, process it and write the results back.

The DDR SDRAM uses the same bus for reading and writing data from/to the memory.

Consequently, the combined read/write bandwidth cannot be higher than the maximum

unidirectional bandwidth. The HyperTransport used as host interface contrariwise provides

two distinct unidirectional links between the host CPU and the FPGA. As a result, it should

theoretically be possible to achieve the maximum read bandwidth as measured in the

previous benchmarks and to write to the host memory at the maximum write bandwidth

measured at the same time.

For proving these assumptions, additional benchmarks were performed with a similar

setup as presented in the previous section. The main diUerence between these benchmarks

is that now half of the cores is conVgured to perform memory reads, the other half is

conVgured to perform memory writes.

Figure 5.13 shows the resulting bandwidth values for the DDR SDRAM with the four

diUerent controller conVgurations. Four cores with a 256 bit wide datapath were accessing

the memories, two of them performing read operations, the other two performing write

operations. The graph resembles the one of the write benchmarks presented above. How-

ever, the underlying curve for non-aligned request sizes ascends more steeply than in the

write-only benchmarks. Additionally, the peak values achieved when performing burst size

aligned transfers is decreased to about 4.4GiB/ s for the 4- and 8-cycle burst controllers and
to about 4.2GiB/ s for the 2-cycle burst controller. Contrary to the previous benchmarks,

this peak performance is not already achieved at the Vrst request size matching a full burst.

Instead, the rate for full burst transfers increases continuously with the request size.

The corresponding benchmark for the host memory is presented in Figure 5.14. Analo-

gous to the other results, the bandwidth measured increases with the request size to nearly

1GiB/ s for requests slightly smaller than the HT’s maximum packet size and then jumps

up to about 1.65GiB/ s for requests matching a complete HT packet. It then decreases

again to about 0.6GiB/ s, ascends to about 1GiB/ s and jumps up again to about 1.3GiB/ s
for requests matching two complete HT packets. This value is also the peak bandwidth

achieved for higher request sizes matching an integer multiple of complete HT packets. The

reason for this behavior is currently not completely clear. Monitoring the user interface
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of the HT cave using the IMORC load sensors shows that on the one hand packets are

injected into the HT cave as soon as the cave is able to accept requests. On the other

hand data is read from the response queue as soon as it becomes available. Hence IMORC

completely utilizes the bandwidth provided by the HT cave.

5.3 Chapter Summary

This chapter introduced the IMORC benchmarking infrastructure and presented a detailed

characterization of the diUerent communication channels the XtremeData XD1000 system

provides. While naturally the performance achieved on each of these communication chan-

nels is best when the communication pattern is adopted to the concrete communication

channel, such adoptions are not always possible in real world accelerators. Consequently, a

detailed characterization is necessary for analyzing the performance achievable by such ac-

celerators. The sparse matrix multiplication kernel presented as an example in section 3.3.2

transforms all memory accesses into a stream of data to be processed. However, in an

extreme case the vector to be multiplied with has to be accessed in portions of 32 bit or

64 bit, depending on the Woating point format used. Such access will perform very poorly

on both the host memory and the DDR SDRAM, which makes an accelerator only suitable

when the vector is accessed blockwise.

While the benchmarks already provide a good insight into the communication perfor-

mance of the XD1000, estimating the achievable speedup for concrete applicatons may

require diUerent sets of benchmarks. The benchmarking infrastructure is in that case

Wexible and conVgurable. Hence other kinds of workloads can be easily simulated.

The benchmarks also point out the main design goal of the IMORC architectural

template: The infrastructure provides a very high performance with only little overhead,

with the result that many cores accessing the same memory achieve about the same peak

performance physically achievable on the concrete target memory.





6
Experimental Evaluation

This chapter deals with the design and implementation of some real world accelerators

using the IMORC workWow. The design and optimization of the accelerators are based

on the results presented in Chapter 5. The case studies demonstrate the suitability of the

IMORC development Wow. Each case study starts with a problem description, followed by

an analysis of the algorithm and the design of the accelerator using the IMORC modeling

Wow. The implementations based on the IMORC architectural template express the

usefulness of the infrastructure and of the supporting cores for reconVgurable accelerator

development.

Three case studies taken from distinct problem domains are being evaluated: The Vrst

one demonstrates an accelerator for a kernel of the Cube Cut problem. The kernel performs

a high number of independent bitwise operations on a large amount of data, which is

intuitively a problem class that should perform well on FPGAs. The second case study

focuses on an accelerator for a compositing kernel used in a parallel rendering framework.

In contrast to the Vrst case study, the algorithm is not qualiVed for being implemented

by using a long computation pipeline. Therefore, the performance compared to that of

a commodity CPU greatly depends on the time needed for memory access. The third

case study presents an accelerator for the k-th nearest neighbor thinning problem. The

accelerator consists of several communicating cores, showing the use of the supporting

cores as well as the use of infrastructure cores like, for example, the farming cores. The

accelerators are optimized by using the IMORC performance counters, which especially

give an in-depth insight into the runtime behavior of the complete accelerator in the third

case study.
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6.1 Cube Cut

A d-dimensional hypercube consists of 2
d
nodes connected by d × 2d−1 edges. A familiar

and still unsolved problem in geometry is to determine C(d), the minimal number of

hyperplanes that are required to slice all the edges of the d-dimensional hypercube.

Intuitively, an upper bound for C(d) is given by d. Such a cut can, for example, be

generated by spanning d hyperplanes which are normal to the unit vectors through the

origin of the hypercube. While for d ≤ 5 it is known that at minimum d hyperplanes are

required, it was shown that for d = 6 actually only Vve hyperplanes are required [114].

The cube cut problem is related to the question of linear separability of vertex sets

in a d-hypercube, which plays a central role in several diUerent areas such as threshold

logic [63], integer linear programming [36] and perceptron learning [93]. In the past,

much eUort was put into Vnding C(d) [53, 94, 103]. Basically two diUerent approaches are

followed: an analytical solution and a computational solution. In the analytical solution

scientists try to Vnd a mathematical proof for C(d). Such a proof would be desirable, but

seems to be hard to obtain even for constant values of d. This led to the development

of a computational evaluation of the problem — given a d-dimensional hypercube, the

computational solution Vrst generates all possible slices of the hypercube and then uses

exhaustive search methods to Vnd the minimal subset of these slices cutting all edges of

the hypercube. This method lacks the mathematical strength of a formal proof, but has

indeed achieved a remarkable success during the past years [114, 124].

The large number of possible slices for higher dimensions however produces very long

runtimes to identify the minimal subset of slices cutting all edges of the d-hypercube.
To speedup the process, an additional step is introduced for reducing the data volume

that has to be searched. This case study presents an accelerator for the data reduction

part of the cube cut algorithm. The accelerator’s design is based on previous work which

is presented in [2] that implemented such an accelerator for a cluster equipped with

four AlphaData ADM-XP FPGA boards connected to the host system using PCI 64/66.

The accelerator presented in this section is diUerent in that way that it is based on the

IMORC architecture template and that it provides more Wexibility regarding the throughput

achieved on diUerent platforms.

6.1.1 The Cube Cut Algorithm

The computational solution to the cube cut problem can basically be separated into three

distinct phases:

1. For the d-dimensional hypercube, all possible cuts are generated. The cuts can be

represented by the edges it slices, e. g., for the d-dimensional hypercube containing

n = d · 2d−1 edges a cut can be described by a string of n bits. Each bit position in that
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string corresponds to a speciVc edge and is set to ‘0’ if the edge was not sliced by a

cut and to ‘1’ if it was sliced. For example, for d = 2 a cut is described by a string of

4 bits. For greater values of d, the number of bit strings found can become extremely

large. However, there are principally two ways to reduce the amount of data to be

stored: Vrst, symmetrical cuts are only stored once, e. g., for d = 2 ({1010}, {0101})
would be reduced to {1010} since the second cut can be generated from the Vrst one

by shifting the dimensions. This reduction in storage size can easily be executed

during generation of the cuts.

2. When the Vrst phase of the algorithm is Vnished, the data is further reduced by Vnd-

ing cuts dominating others. Consider a cut a that slices the edges E = {e0, e1, . . . , ek−1}
and another cut b that slices all edges in E plus some additional ones. If a is selected
as a candidate for this minimal subset it can be simply replaced by b since the major

goal is to Vnd a minimum subset of cuts slicing all edges of the d-hypercube. b is
said to dominate a. Formally:

b dominates a⇔ ∀i : (¬ai ∨ bi) = 1; i = 0, ..., n − 1

In the second phase the list of cuts is therefore searched for all cuts that are dominated

by another cut. The cuts dominated are removed from the original list of cuts. This is

realized by Vrst generating two separate lists A and B from the initial list of possible

cuts. B is initialized with all bit strings that slice a maximal number of edges — these

bit strings can consequently not be dominated. Assuming that every element of B
contains exactly kmax ones, list A is initialized with all bit strings containing kmax − 1
ones. Every element in A is compared to every element in B; the elements of A
that are dominated are discarded. Next, the elements of A that were not dominated

are added to list B. List A is now initialized with all bit strings containing exactly

kmax − 2 ones. This procedure is repeated until all elements of the original list have

been checked for dominance. The result of this algorithm is a reduced list of bit

strings whose irrelevant cuts all have been discarded.

3. The last phase of the algorithm is to search the reduced list of bit strings for a

minimal subset of cuts that slice all edges of the d-hypercube. The bit strings

omitted in the Vrst phase due to symmetries to other cuts are considered again —

they can easily be generated from the reduced list of bit strings by shifting and/or

reversing the bit strings available in the list. Taking the example of hypercube with

d = 2, bit string {1010} can be shifted right by one dimension to reconstruct the

second bit string. The bit strings are combined using a bitwise OR operation. This
results in a bit string with all bits set to ‘1’ — in other words, a set of two cuts was

found where each edge of the hypercube had been sliced at minimum once. Since

the list does not contain a single cut with all bits set to ‘1’, this set of two cuts forms

a minimal set of cuts slicing all edges of the hypercube.
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Regarding the outlined algorithm, one might argue that removing bit strings due to

symmetrical properties in the Vrst phase and adding them again in the last phase introduces

a certain overhead. However, it is on the one hand rather simple to omit these bit strings in

the Vrst phase (i. e. to not generate such bit strings at all) and to generate them in the last

phase. On the other hand, it signiVcantly reduces the amount of storage needed for the list

of cuts and therefore also extremely decreases the runtime of phase two of the algorithm.

Although phase two of the cube cut algorithm consists of rather uncomplicated bit

operations on bit strings, it needs a very high runtime in software. This is mainly due to

the fact that the required bit operations and the lengths of the bit strings do not match the

instructions and operand widths of commodity CPUs. FPGAs however can be conVgured

for operating directly on a complete bit string at once and hence exploit the high potential

of Vne-grained parallelism. Moreover, if suXcient hardware area is available, many of

these operations can be executed at the same time with rather small overhead. An FPGA

implementation can therefore also leverage both the Vne- and coarse-grained parallelisms

inherent in phase two of the cube cut algorithm.

6.1.2 Design and Implementation

Algorithm 6.1 outlines the basic dominance check algorithm to be implemented. In a

Vrst step of the design process, a dominance check task is deVned. According to the

nomenclature in Section 6.1.1 the task’s input parameters are a b-value and a stream of

the bit strings in A. Each element in A is compared to the b-value and written back if not

discarded. Then, the task is conVgured with another b-value and again each element in

the reduced list A is compared to this value. This procedure is repeated for all b ∈ B.

1: for all b ∈ B do
2: for all a ∈ A do
3: if

n−1∧
i=0
(¬ai ∨ bi) = 1 then

4: A← A \ a
5: end if
6: end for
7: end for

Algorithm 6.1: Dominance check of the cube cut algorithm

To exploit parallelism in the next step multiple dominance check tasks are chained. The

taskgraph displayed in Figure 6.1 visualizes this chaining. First, every task is conVgured

with a value bi ∈ B. Then, the bit strings in A are streamed through the pipeline and

every task compares each value in A to bi. The maximum pipeline depth depends on the
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resources available in the FPGA. The number of iterations to be performed depend on the

pipeline depth and the number of bit strings in B.

load b’s

discard

Figure 6.1: Task graph of the cube cut algorithm

With a clock frequency of c and 192 bit = 24 byte wide data this design would create a

bandwidth demand of β = c · 24 byte on the input side of the pipeline and a similar demand

on the output side. This would exceed the bandwidth available on the XD1000 even for

low clock frequencies.

To increase the utilization of the pipeline and to reduce the number of iterations to

be performed for a given input data set, the dominance check task is converted into a

multicycle task. This contains some local memory for storing multiple values of B — each

value from set A is now compared to the complete subset of B available in this local

storage.

The maximum depth of the pipeline depends on the number of logic resources and the

amount of embedded memory blocks available in the FPGA. The number of cycles each a
stays in one stage of the pipeline depends on the local memory depth, which depends on

the type of embedded memory blocks the local storage is mapped to.

With a clock frequency of c, 192 bit = 24 byte wide data and a pipeline latency of l, the
incoming bandwidth demand and upper bound for the outgoing bandwidth demand of the

pipeline can be evaluated to

β =
c · 24 byte

l
.

In this design, the number of memory resources available will likely be the restricting

parameter for the pipeline depth because the dominance check itself is a rather simple
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operation that can be implemented with a small number of logic resources. To increase

the amount of logic resources occupied again and to introduce a further parameter for

optimizing the throughput of the pipeline, multiple pipelines can be implemented in

parallel, sharing the same local memory. Using m parallel pipelines, m a-values are
compared to one b in parallel, increasing the maximum throughput of the pipeline by

factorm. This results in an input bandwidth and an upper bound for the output bandwidth

of

β = m ·
c · 24 byte

l
.

6.1.3 Architecture Mapping, Implementation and Performance
Evaluation

The main compute core of the cube cut accelerator implements the dominance check task.

While the original design presented in [2] explicitly instantiated the slice’s carry logic on

the Xilinx Virtex II Pro FPGA, the new version is completely implemented using vendor

neutral VHDL code. The comparator takes as input two 192 bit wide vectors a and b, and
calculates a third vector by bitwise performing the operation δ = ¬a ∨ b. An AND reduction

operator is applied to vector δ. If the result of this reduction evaluates to ‘1’, vector b is
said to dominate vector a.
Figure 6.2 shows the dataWow graph of the dominance check operator (a) and one stage

of the cube cut pipeline (b) with two comparators connected to one local memory block.

Each dominance check task of the task graph presented in the previous section is mapped

to one instance of the dominance check pipeline stage. The core provides an addr, wr
and b signal for writing bs to the internal memory block. The addr signal is also used

for selecting the b to be compared to the current a stored in the register. Signal shift is

used for shifting as from one stage of the pipeline to the next stage. The signal is used as

an enable signal for the register storing the a and as a select signal for the input to the

dominance register. The dominance register stores whether the a was already dominated

by one of the bs it was compared to previously, thus marking the a as invalid.
For mapping the local memories of the pipeline stages, three diUerent types of embedded

memory blocks are available as listed in Table 6.1. Additionally, the table lists those

parameters that are important for mapping the local storage tasks to the diUerent kinds

of memory. The M-RAM blocks are the largest ones, but are not adequate for the desired

purpose due to the low number of available resources. M512 blocks would allow to

implement up to 77 pipeline stages with a latency of 32 clock cycles per pipeline stage.

M4K allows 128 pipeline stages with a latency of 128 cycles. These values are upper bounds,

since additional memory blocks are needed for IMORC’s embedded FIFOs and the host

communication interface. To reduce resource overheads, lists A and B will be stored in

host memory; consequently, no DDR memory controller is required. The local memories
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Figure 6.2: Block diagrams of the dominance check element

are implemented in vendor neutral VHDL and conVgured to store 128 values. This way,

portability is ensured while on the current target platform the synthesis tool will map the

memories to M4K blocks.

M512 M4K M-RAM

# blocks 930 768 9

widest conVg 32 × 18 128 × 36 4 K × 144
blocks/192 bit 12 6 2

max pipeline stages 77 128 4

Table 6.1: DiUerent types of memories available in the Stratix II EP2S180 and their param-

eters

The maximum number of parallel pipelines and the maximum clock rate achievable

using this architecture were evaluated to m = 5 and c = 100MHz in several synthesis

runs. With m = 5 parallel pipelines, the number of registers occupied by the complete

pipeline grows up to 127150, which is 89 % of the register resources available in the FPGA.

With these parameters and a pipeline depth of 128 stages, the input bandwidth demanded
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evaluates to

βin = 5 ·
100MHz · 24 byte

128
= 89.4MiB/ s ,

which is much less than the maximum read bandwidth achievable on the host memory.

Assuming that in the worst case no bit strings are removed in an iteration, i. e., the output

bandwidth of the pipeline is equal to the input bandwidth, the achievable aggregate reading

and writing performance on the host memory is much higher than the aggregate input and

output bandwidth demand generated by the pipeline. Hence, the original, intermediate

and Vnal problem data can completely reside in the host memory, avoiding the need of an

additional DDR memory controller.

The control core wraps the control task of Figure 6.1 and is responsible for loading bs
into the pipeline’s memory blocks, for sending as into the pipeline and for writing the

as, which are not discarded, back to the host memory. It consists of an I2R interface core

decoding job parameters, a request generator core for sending requests to read as and bs
from host memory and another request generator core for sending write requests to host

memory in order to store non-dominated as back. Custom logic is added for controlling

the current state of the accelerator. The accelerator is started with a job request sent to

the I2R interface core, consisting of the base address of lists A and B in host memory and

the number of vectors available in each list. The read request generator core is instructed

to send read requests to gather the appropriate amount of values from list B. Values

received are written to the corresponding locations in the pipline’s embedded memory

blocks. When Vnished, the read request generator is instructed to fetch all values from list

A which are then forwarded to the pipeline. The write request generator is instructed to

send write requests to the location of list A. Since the number of values to be written back

is not known in advance, this request generator waits for values to be written to the M2S

channel and sends the corresponding requests as soon as a conVgurable amount of data is

written back. When all as are processed, the next bunch of list B is transferred from the

host memory to the pipeline’s memory blocks and all values that were written back to list

A in the last iteration are again fed through the pipeline. This procedure is repeated until

all values from list A are checked for dominance by all values from list B.
Figure 6.3 shows the diagram of the complete accelerator including the control block

and the pipeline. Including the control core, the overall design takes up 65 859 ALUTs

(46 %), 101 933 Registers (92.2 %), 721 M4K blocks (93.9 %) and 201 M512 blocks (21.6 %) —

the values in brackets represent relative values to the overall resources available in the

FPGA. The synthesis tool did not to place all local memories of the pipeline stages into

M4K blocks, probably to ensure better routability.

To verify the design presented in the previous sections and to determine its performance,

the accelerator was tested with real data generated by the cube cut algorithm. The dataset

consisted of list A with 5 339 385 strings containing 147 ones and list B with 409 685

strings containing 148–160 ones. Running on the CPU of the XD1000 system, the software
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Figure 6.3: Architecture diagram of the complete cube cut accelerator

solution Vnished after 3281 seconds while the runtime of the accelerator only took 9

seconds, resulting in a speedup of factor 365.

6.2 A Compositing Accelerator for a Parallel Rendering
Framework

The second case study presented implements a compositing accelerator for a parallel

rendering framework [7, 8]. 3D Computer Aided Design (CAD) applications such as

production planning and optimization and mechanical component design nowadays use

highly detailed object models originating from CAD tools or 3D scanners. Engineers can

move around in the scene, rotate and move objects and zoom in or out. To ensure a smooth

visualization of such scenes with huge numbers of polygons, substantial computations

have to be performed. Parallel rendering approaches were developed to fulVll the stringent
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performance requirements. Molnar et al. [88] introduce three approaches for parallel

rendering with diUerent advantages and drawbacks: sort-Vrst, sort-middle and sort-last.

This case study focuses on an in-house parallel renderer using the sort-last approach.

A master node divides a scene (frame) into N − 1 subscenes and distributes the workload

to N − 1 rendering nodes. The subscenes roughly have the same number of geometry

primitives (polygons), but the assignment of polygons to rendering nodes is arbitrary. Each

rendering node runs a rendering pipeline that computes a set of display primitives (pixels)

from the received geometry primitives. A rendering node computes two buUers for its

subscene, the frame buUer containing the color information and the z-buUer containing

the depth information for each pixel. The resulting 2 · (N − 1) buUers are transferred back

to the master node for compositing. Compositing performs the sorting step by comparing

the distances of the N − 1 candidates for each pixel to the view plane. Only the nearest

display primitive is visible.

The parallel renderer is part of a visualization application that can be run in batch-mode

or interactively. The master node stores or displays the composited picture and distributes

the next subscenes to the renderer nodes. The application is implemented with MPI using

double buUering for frames to overlap computation and network communication.

6.2.1 Application Model

The performance of the complete rendering application basically depends on the following

parameters:

• H and W are the height and the width of a subscene (frame) in pixels. Each

rendering node processes a frame buUer and a z-buUer for each subscene, resulting

in P = W × H × 8 bytes of data.

• TR [s/frame] is the time required for one rendering node to compute its subscene. TR
depends on the size of the subscene, i.e., on P and the number of polygons. Since the

workload is evenly distributed, an average value for all rendering nodes can be used.

• TC [s/frame] measures the computation time for the master node and comprises the

compositing time and the time needed to display or store the resulting picture and

redistribute the next workload. The compositing time is dominating and depends on

P and the number of rendering nodes, N − 1.

• Bnet [byte/s] is the bandwidth of the link over which the master node connects to

the computer network.

The aggregated data bandwidth generated by the rendering nodes is (N−1)×P/TR [byte/ s].
Depending on P , the complexity of scenes, and the parameters of the compute cluster, a

reasonably designed and conVgured system will try to set the number of rendering nodes
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1 vo i d compose ( i n t ∗ p i c_a , i n t ∗ p i c_b , i n t s i z e ) {

2 i n t ∗ z_a = p i c _ a + s i z e ;

3 i n t ∗ z_b= p i c _ b + s i z e ;

4 f o r ( i n t i = 0 ; i < s i z e ; i ++) {

5 i f ( z_b [ i ] < z_a [ i ] ) {

6 p i c _ a [ i ]= p i c _ b [ i ] ;

7 z_a [ i ]= z_b [ i ] ;

8 }

9 }

10 }

Listing 6.1: Code for the compositing function

so that the network or the master node is not saturated. Bottlenecks occur if the aggregate

renderers’ bandwidth exceeds Bnet or if the master node’s computation time TC limits the

throughput. Benchmarks on diUerent platforms have shown that the latter is currently

more likely in practice which makes compositing an interesting target for acceleration.

Listing 6.1 shows the pseudocode for the compositing function. The function is compu-

tationally very simple, only comprising a regular loop with comparisons and assignments

which can be parallelized in a straight-forward way. However, the main challenge for

accelerating this code is to establish a continuous stream of data through the computing

core. The compositing function outlined in Listing 6.1 basically needs up to Vve diUerent

storage locations:

• One location for each of the frame- and the z-buUers as received from the rendering

nodes,

• one location for the intermediate frame- and z-buUer, and

• one location for the Vnal frame buUer to be displayed.

The Vrst two locations, the frame- and z-buUers received from the rendering nodes, are

initially available in the host memory since the OpenMPI implementation [20] is unable to

perform MPI receives directly into the FPGA’s address space. The last location also needs

to be available in host memory for being displayed. The intermediate frame- and z-buUer

are exclusively accessed by the accelerator, hence can be mapped to FPGA-local memory

resources. On-chip memory is not available in reasonable capacity for storing buUers in

high resolution, so these buUers are mapped to the external DDR SDRAM.

Figure 6.4 shows a diagram of the memory access scheme of the compositing accelerator

in three diUerent phases. Overall, the accelerator has to transfer (N − 1) × P bytes of data

from host memory to the FPGA module. The Vrst frame is directly transferred to the

external memory. Since Brd(HM) is lower than Brd(EM), the time needed for this Vrst phase
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Figure 6.4:Memory access scheme of the compositing accelerator

of the accelerator is determined by the HyperTransport performance. The following N − 2
frames of size P stream from the host to the FPGA accelerator and, at the same time, the

stored frame streams from external memory to the FPGA. The resulting frame streams back

to external memory. The execution time required for this second phase is dominated by

memory accesses and given as
P

Brd (EM)
+

P
Bwr (EM)

for the external memory and
P

Brd (HM)
for the

host memory read over the HyperTransport link. Consulting the bandwidth measurements

of Section 5.2, i.e., Figures 5.6 and 5.5, one draws the conclusion that for reasonably chosen

request sizes the host memory access limits the execution time. This applies only if external

memory is accessed with request sizes that are multiples of the controller’s burst size. The

actually chosen burst size of the memory controller inWuences the access time for external

memory, but has no eUect on the overall compositing application.

For the last frame, P bytes are read from each host memory and external memory but

only P/2 bytes are written back to host memory since the resulting z-buUer is not needed

for displaying the picture. Despite the fact that the write bandwidth to host memory is

much lower than the read bandwidth, the execution time of this last accelerator phase is

determined by reading the host memory since writing involves only half of the data size.

Figure 6.5 shows a comparison of the execution times for the FPGA compositing acceler-

ator based on these estimations with the measured CPU execution times for the same task
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for diUerent frame sizes. When composing the results from four rendering nodes operating

in parallel, the estimated speedup ranges from 4× to 4.5×. For eight parallel rendering
nodes, the speedup is between 5× and 5.7×. Naturally, the achievable frame rate decreases

with an increasing number of subpictures that need to be composed for generating the Vnal

picture. However, Figure 6.5 presents only the compositing time. The overall performance

of the parallel rendering application will scale with the number of rendering nodes, up to

the point where a bottleneck, such as the network saturation bandwidth, is reached.

6.2.2 Implementation

Figure 6.6 shows the architecture of the IMORC based compositing accelerator. The

compositing controller is conVgured with the parameters of the rendering application,

such as the number of rendering nodes and the size of the buUers to be composed. These

values are translated into parameters for the request core, which encapsulates six IMORC

request generator cores.

For the Vrst frame, read requests are sent to the host memory and corresponding write

requests to the external memory. For intermediate frames, read requests are sent to the

appropriate locations in the host memory and to the compositing buUer in the external

memory, as well as corresponding write requests to the compositing buUer in the external
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Figure 6.6: Architecture of the compositing accelerator

memory. For the last frame similar read requests are sent, but this time the write requests

target the location in the host memory where the frame to be displayed is stored. Requests

for frame- and z-buUers are posted seperately, which is the reason for the instantiation of

six instead of only three request generator cores.

The datapath of the compositing accelerator in the Vrst step directly forwards data

received from the host memory to the compositing buUer in external memory. In the inter-

mediate steps, it compares the z-values received from the host memory to those received

from the compositing buUer and uses the result as a select input to two multiplexers. The

multiplexers get the two data streams for the frame- and z-buUer received from the host

memory and the external memory as input, respectively, and forward the multiplexed

values (i. e., those corresponding to the z-buUer with the lower z-value) to the compositing

buUer. In the last iteration, only the multiplexed frame buUer is forwarded to the host

memory link.

To fully utilize the bandwidth available, the datapath is implemented 64 bit wide, thus

operating on two pixels in parallel. Clocked synchronously to the HT interface core at

200MHz, the datapath’s maximum bandwidth is higher than the HT bandwidth. So the

accelerator’s runtime completely depends on the maximum bandwidth of the HT. The

memory controller is conVgured to 8-cycle bursts and the request size of the request

generator cores is set to 128 byte to achieve maximum throughput.
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6.2.3 Performance Evaluation

In order to evaluate the overall performance of the parallel renderer, a test system compris-

ing an Intel server connected via InVniband to the XtremeData XD1000 was implemented

(cmp. Figure 6.7). The server contains two Clovertown quad-core processors running at

2.66GHz and 8GB of main memory and implements 1–8 rendering nodes. The XD1000

implements the master node including the compositing function. Theoretically, the InVni-

band interconnect provides a peak bandwidth of 10GBit/s. Measurements with the Intel

IMB [73] benchmark show that our test setup reaches a sustained InVniband bandwidth of

700MB/s.
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Figure 6.7: Architecture diagram of the test setup

Figure 6.8 compares the overall performance, measured in frames/s, of the purely CPU-

based parallel renderer with the FPGA-accelerated parallel renderer. Additionally, the

Vgure shows the frame rates that could be achieved if the InVniband interconnect would

have been fully utilized. Figure 6.8 covers all three system states of the parallel renderer

application. The next paragraph discusses these states for a resolution of 1280 × 1024 pixel:
For a small number of rendering nodes (up to three) the performance increases linearly.

Since neither the network nor the master node is saturated, there is no beneVt from using

FPGA acceleration. When the number of rendering nodes increases (four to Vve nodes),

the master becomes a bottleneck. The CPU-based system achieves its maximum frame
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rate for four rendering nodes. In this system state FPGA acceleration is highly useful as

the improved compositing performance allows to achieve a higher peak frame rate. For

example, for four rendering nodes the performance gain is 1.25×. At a certain point (six

or more nodes), the aggregate bandwidth of the rendering nodes saturates the network.

Figure 6.8 clearly shows that the performance of the FPGA-accelerated system is limited

by the InVniband bandwidth. Obviously, also in this state FPGA acceleration is beneVcial

and delivers an improvement in the frame rate of 2.1× for eight rendering nodes.

6.3 K-th Nearest Neighbor Thinning

k-th-nearest-neighbor (KNN) methods are widely used in many areas of science and

engineering. In statistics and data analysis, for example, KNN techniques play an important

role for the non-parametric estimation of density functions from data samples [83]. Given

a set of n data samples, where each sample i is a d-dimensional vector, an Euclidean

distance metric σi is computed for any pair of samples. For each data sample, the resulting

n distance values are sorted in ascending order, i.e., σ1

i ≤ σ
2

i , . . . , ≤ σ
n
i . A KNN density

estimate f^(i) can be formulated by setting: f^(i) ∝ 1/σki .
The parameter k is typically chosen as k ≈

√
n [108]. Thus, the local density around

each data sample i is estimated by the reciprocal of the distance to the k-th nearest
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neighbor. In other words, a low density means that a d-dimensional sphere with data

sample i at its origin has to be rather large in order to contain k data samples.

The KNN approach is also widely applied for solving classiVcations problems, such

as in machine learning, data mining and stochastic optimization [44]. There, a KNN

classiVer requires a labeled training data set consisting of d-dimensional feature vectors

and their class labels. In order to classify a new feature vector, the k nearest training

vectors are determined according to some distance metric. Often, a reduction of the size of

data samples is desired to reduce both the classiVcation time and the memory required

to store the data set. Many reduction techniques fall into the category of condensing or

thinning approaches [104] that aim at properly selecting a subset of training vectors from

the original data set. Well-known thinning approaches are the condensed nearest neighbor

algorithm, the reduced nearest neighbor algorithm, Baram’s method, and proximity graph

based thinning (see, e.g., [35]).

Recently, some methods related to KNN-based thinning have been successfully acceler-

ated with FPGAs. For example, Yeh et al. present a KNN classiVer [129] that operates in

the wavelet domain and uses partial distance search to accelerate the classiVcation process.

The resulting architecture is integrated as a core with the Altera NIOS CPU softcore.

In [42] Chikhi et al. present an FPGA accelerated KNN classiVer for content-based image

retrieval that achieves a speedup of 45× compared to a software implementation. The

related k-means clustering method has also been successfully accelerated in reconVgurable

hardware. For example, Saegusa and Maruyama have presented an architecture [102] that

can perform k-means clustering on video data in realtime.

Preliminary work to this case study was a hardware accelerator for KNN-based thin-

ning [3] which achieved speedups of one order of magnitude for SPEA2 [130], one of the

most popular multi-objective optimizers. SPEA2 optimizes a problem for several typically

conWicting objectives by Vnding reasonable trade-oUs between the diUerent objectives.

SpeciVcally, SPEA2 approximates the set of Pareto points (Pareto fronts) and relies on KNN

methods for thinning out the approximated Pareto fronts. This becomes necessary when

the algorithm generates more Pareto points than can be stored in the Vxed-size archive,

which is rather likely for higher-dimensional problems. Depending on the actual problem

being optimized, the KNN thinning technique takes the vast majority of the optimizer’s

run time.

While the original accelerator presented in [3] achieved good speedups on an embedded

Xilinx Virtex-II Pro based FPGA board and on the XtremeData XD1000, its design limited

the maximum problem size since the problem and intermediate data were completely

stored in on-chip memory. The accelerator presented here overcomes this issue by using

the host memory and the external memory when advisable. A previous version of this

IMORC based accelerator was presented in [5] and [6]. Further improvements based on

the results of these papers is be discussed in the following.

The KNN thinning procedure, shown in Algorithm 6.2, is called with a set P of diUerent
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d-dimensional vectors pi = (pi1, pi2, . . . , pid) and N , the targeted cardinality of P . It

successively eliminates vectors with the shortest Euclidean distance to their neighbors

until P has been reduced to N elements. In each iteration, the algorithm Vrst constructs a

distance matrix σ = (σil) from the pair-wise Euclidean distances σil between all vectors.

Sorting σ row-wise in ascending order deVnes sorted distance vectors σi׳ of length m.

While initially equal to |P |, the number of vectors m is reduced by one in each iteration.

Then, the algorithm iterates over all columns of σ .׳ Starting with column l = 3, the rows

σi׳ with minimum distance values σil ׳ among all distances in column l are selected and

assigned to setM. If the minimum is unique, the respective row σi׳ ∈ σ ׳ as well as the
corresponding vector pi are deleted, which reduces the set of vectors P . If the minimum

is not unique, the next column of σ ׳ is considered, which corresponds to checking the

distances to the next closest neighbors. If no unique minimal distance is found for all

columns of σ ,׳ an arbitrary row having a minimal distance value in the last column is

deleted. Obviously, the Vrst two columns never need to be considered since each vector

has a distance of 0 to itself (Vrst column) and the distances between pairs of vectors are

symmetric (second column).

1: procedure KNN_thinning(P , N )

2: while |P | > N do

3: compute/update σil ←
√∑d

j=1 (pij − plj)2

4: ∀ rows of σ : σi׳← sort(σi)
5: for l← 3, . . . , m do
6: M← {σi׳ | ∀σjl ׳ : σil ׳ ≤ σjl {׳
7: if |M| == 1 then
8: break

9: end if
10: end for
11: delete arbitrary row σi ∈M from σ ׳
12: P ← P \ {pi}
13: end while
14: end procedure

Algorithm 6.2: KNN thinning algorithm

The operation of the KNN-based thinning algorithm is illustrated in the example shown

in Figure 6.9. The initial population of six 2-dimensional vectors as well as the three vectors

that are discarded by three iterations of the thinning algorithm are shown in Figure 6.9(a).

The distance matrix σ for the Vrst iteration is presented in Figure 6.9(b) and the row-wise

sorted distance matrix σ ׳ in Figure 6.9(c). The matrices show the square distances, which

is suXcient for this algorithm since the square root operation does not change the ordering
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Figure 6.9: Example for the KNN-based thinning algorithm in two dimensions: thinning

6 vectors to 3 vectors: (a) shows the original vectors in a graph; (b) shows

the original distance table; (c) shows the sorted distance table with a unique

minimum found in line b, column 3; (d) shows the sorted distance table after b
was discarded; (e) shows the sorted distance table after e was discarded.

of the values. A unique minimum is found in the third column, which leads to the deletion

of row b from the matrix and vector b from the population. In the second iteration, the

distance matrix is updated and re-sorted, which results in the matrix of Figure 6.9(d).

Again, a unique minimum is identiVed in the third column and, consequently, row e and
vector e are deleted (Figure 6.9(d)). Finally, the third iteration leads to the deletion of

vector c (Figure 6.9(e)).

6.3.1 Application Model

Figure 6.10 pictures the modeling Wow of the KNN accelerator. In the Vrst step, Algo-

rithm 6.2 is broken up into four major blocks: computing the distance values (line 3),

sorting the distance values (line 4), searching for vectors to be discarded (lines 5. . . 10) and

discarding them (line 12). The data generation task executed by the overall application

starts the KNN controller task that controls the thinning process. It starts the distance

calculation task and waits for the discard task to Vnish. The distance calculator, sort and
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search tasks directly start the following task upon Vnishing. The controller task initiates

this procedure until the speciVed goal is achieved.

In a Vrst optimization step, the repeated execution of the distance calculation and sort

task is removed. This is accomplished by storing not only the distances of the vectors in

the distance table, but also the IDs of the corresponding vectors. The discard task now not

only operates on the original vector table but also on the distance table for removing all

references to the vector to be discarded. On the one hand, this increases the size of the

distance table and at the same time increases the runtime for all tasks operating on the

distance table due to an increased data transfer size. Additionally, the discard task now

has to process the complete distance table which further increases its runtime. On the

other hand, distance calculation and sorting now are only executed once, thus reducing

the overall runtime of the complete task graph.

To better exploit the bandwidth available, in a further optimization the three steps are

partitioned into substeps. Each distance calculation task now is responsible for calculating

the distances of exactly one vector to each other, hence calculating one row of the distance

matrix σ . The same reVnement is done for the sorter task, each one sorts one row of σ .
Each distance calculation task starts the corresponding sorter task upon Vnish. However,

since the search and discard phase may not be started before all distance calculation tasks

and sorter tasks are Vnished, the sorter tasks are not allowed to directly start the next

phase. Instead, an additional control task is inserted to synchronize the Vnishing of the

sorter tasks. The search and distance calculation phase uses two kinds of subtasks, one for

searching, the other for discarding. Searching is performed sequentially by executing lines

5–10 of Algorithm 6.2. When the vector to be discarded is found, a number of discard tasks

is started, again each one processing one line of σ . An additional discard task is started for

updating the vector table P . Control is handed back to the search core, which repeats this

procedure until the speciVed goal is achieved.

6.3.2 IMORC KNN Cores

Given the execution model discussed in the previous section, the next step is to develop

a set of cores that the diUerent kinds of tasks can be mapped to. The two storage tasks

(vector table and distance table) can be mapped to arbitrary memory locations, the other

tasks are to be mapped to custom cores which are discussed in the following paragraphs.

Distance Calculator Core

The Euclidean distance computation task is wrapped into a distance calculator core

(cmp. Figure 6.11). The square root function is omitted since squared values are suXcient

for comparing distances. The distance calculator core computes one row of the distance

table σi on each invocation, as speciVed in the execution model. Multiple distance cal-
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Figure 6.10: Development of the KNN execution model
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culation tasks can be mapped to a single distance calculator core, which are processed

sequentially.
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Figure 6.11: Block diagram of the distance calculator

To receive job messages, the distance calculator core contains a slave port, connected to

an I2R interface core. A job message comprises the base address of the vectors in the vector

memory, the number of vectors and dimensions, m and d, the index i of the vector for
which the distances to all vectors have to be determined, and the address in the distance

memory where σi is to be stored.
Two request generator cores are connected to the I2R interface core, the Vrst one sending

read requests to the vector memory, the second one for sending writes to the distance

memory. The read request generator is Vrst conVgured for retrieving the vector i from
the vector memory. When Vnished, it is reconVgured for issuing read requests to fetch all

vectors. At the same time, the second request generator is conVgured for sending write

requests to the distance memory for storing the distances.

The datapath reads the Vrst i vector’s coordinates from the vector memory’s S2M-

channel and stores them in an internal buUer. Further coordinates are subtracted from the

appropriate coordinates in the buUer, the coordinates distances are squared and added up.

The resulting distances are sent to the distance memory’s M2S-channel.
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When all distance values are written back, the sorter job generator is started, generating

a sort job for the computed distances. The I2R interface core is then set IDLE for accepting

further distance calculation jobs or state request messages.

Sorter Core

The sort tasks are mapped to a set of cores implementing a variant of bubble sort. On each

invocation, the sorter core sorts one row σi of the distance table. The job messages are

received using a slave port and comprise the number of vectors m and the base address of

σi in the distance memory. The job message is decoded in an I2R interface core.

Then, the core proceeds as follows: In the Vrst iteration, a request generator is conVgured

for reading n elements of σi, i. e., the complete row from distance memory, and for storing

the same amount of data back to the same location. The datapath stores the Vrst element

received on the S2M channel as the current maximum. If the next element is smaller than

or equal to the current maximum, it is directly forwarded to the M2S channel. Otherwise,

it becomes the new current maximum and the previous maximum is sent to the M2S

channel. At the end of the iteration, the current maximum is written to the M2S channel.

Additionally, the position l of the last element in σi that has been moved left is remembered.

Thus, in the next iteration only l elements of σi are to be streamed through the sorter core.

Thus, the request generator core is reconVgured for reading and writing l elements. This

procedure is repeated until the complete row is sorted. Now the state register of the I2R

interface core is reset, so that further sort jobs can be processed or occurring state request

messages can be responded to.

Search Core

The search core implementing the search task is invoked with a job message specifying the

total number of vectors n, the dimension of the vectors and the goal to achieve (i. e., the

number of vectors not to discard). The job is decoded in an I2R interface core. A controller

transforms these values into input data for an IMORC request generator, which generates

read requests to the elements in the third column of the sorted distance matrix. Since data

is stored row-wise, n requests each with a size of 64 bit have to be generated, with an oUset

of n × 8 byte.
The datapath receives the values from the distance memory and stores the minimum

value along with the corresponding vectors’ IDs in internal registers. Additionally, the

core observes whether this minimum appeared only once in the current data stream (i. e.,

whether the minimum is a unique minimum). If no unique minimum was found, the

controller instructs the request generator to generate requests for the next column. This

procedure repeats, until a unique minimum is found or until all columns were searched.

In the latter case one of the vectors corresponding to one of the minimums found in the
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last column is selected for being discarded.

When Vnished, one discard job is generated for each row of the distance table. The

controller waits until all discard jobs are Vnished and, if the conVgured goal is not achieved

yet, starts the next search iteration.

Discarder Core

The core implementing the discard tasks is invoked with a job message specifying the total

original and current number of vectors norig and ncur , their dimension d, the id iddisc of
the vector to discard and the id idc of the current vector (or row in the distance matrix) to

process.

(idc≠ncur − 1) ∧ (idc≠iddisc) idc = ncur − 1 idc = iddisc
rd_base: idc × norig idc × norig (ncur − 1) × d
rd_size: ncur ncur d
wr_base: idc × norig iddiscard × norig iddisc × d
wr_size: ncur − 1 ncur − 1 d

Table 6.2: Parameters of the discarder’s request generator

A read-write request generator is conVgured with the main parameters as deVned in

Table 6.2. Three diUerent cases exist:

• (idc≠ncur − 1) ∧ (idc≠iddisc): the requests target the distance memory, reading ncur
distances and writing ncur − 1 distances back into the same row.

• idc = ncur − 1: the requests also target the distance memory, reading and writing the

same amount of data as in the previous case. This time, the writes do not target the

same row as the reads, but the row where the distances origin at vector iddisc reside.
• idc = iddisc: the requests target the vector memory, reading all coordinates of the last

vector (ncur − 1) and storing them to the location where the coordinates of vector

iddisc reside.
With these parameters, the vector with the ID iddisc is replaced with the last vector

in the vector table as well as in the distance table. Since the id of the last vector is now

changed, the datapath has to perform this change in the distance table’s entries, too. The

datapath connected to the distance memory’s link reads data from the S2M channel and

compares the IDs prepended to the distance value to iddisc and to ncur − 1. Every entry

with an ID equal to iddisc is discarded, every ID equal to ncur − 1 is replaced by iddisc.
Entries not discarded are then written to the M2S channel. The datapath connected to the

vector memory’s link forwards all values from the S2M channel to the corresponding M2S

channel.
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Controller Core

The controller core is responsible for sending job requests to the responsible cores. An

I2R interface core is used for decoding job messages received from the host. When such a

message arrives, the distcalc job generator calculates parameters for n distance calculation

jobs and sends them to the distance calculators using an R2I interface core. When all jobs

are sent, a read request is sent to the distance calculators in order to receive a notiVcation

after all jobs have been Vnished. Then, the sort waiter is started. Since sort jobs are directly

generated and sent to the sorters in the distance calculators, this core only sends a read

request to the sorter cores for getting their Vnishing time. The search job generator sets up

parameters for the search module, sends them to the search core using the R2I interface

core and waits for completion. Finally, the interrupt generator core is started, which sends

an interrupt message to the host link. This way, the host is informed that the current job is

Vnished.

Figure 6.12 shows a block diagram of the controller core. Most elements of the controller

core are implemented using the existing IMORC supporting cores. Only a few lines of

additional HDL code had to be written for calculating the correct job parameters.
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Figure 6.12: Block diagram of the controller core

6.3.3 Architecture Generation

Mapping the application model to the cores presented in the previous section is a straight-

forward task. The two storage tasks, namely the vector table and the distance table, need
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to be mapped to the memory locations on the target platform. The vector table has to be

accessed by the host application as well as by the distance calculator and the discard task.

The distance table is accessed by all tasks that are implemented in the FPGA. The archi-

tecture characterization of the XD1000 presented in the previous chapter states that the

CPU can access its own host memory much faster than data on the FPGA, especially when

reading data (which is necessary after the thinning procedure is Vnished). Consequently,

the vector table is mapped to the host memory. Since the distance table is only accessed

by cores implemented within the FPGA, it can be mapped to the DDR SDRAM, which

provides the best performance in this case.

The control and search tasks are directly mapped to one single instance of the control

and search core, respectively. To exploit parallelism, the distance calculation, sort and

discard tasks can be mapped to multiple cores, which process the jobs in parallel. Hence,

additional job distribution tasks have to be introduced, which are implemented by the

IMORC farming cores. Figure 6.13 pictures the resulting architecture model of the complete

accelerator.

The number of distance calculators, sorters and discarder cores in the accelerator is

conVgurable. All slave arbiters, except that for the sorter job messages, use the default

round robin port scheduler. The sort job slave arbiter uses a modiVed port scheduler, which

tries to select one of the links from the discarder cores in round robin manner Vrst and

only selects the link from the controller core if all other links are empty. This way, the Vnal

status request from the controller is ensured to be posted to the farming core last, when

all job messages are already forwarded to the sort compute cores. Figure 6.13 shows the

IMORC diagram of the complete accelerator with each two distance calculators, sorters

and discarder modules.
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Figure 6.13: Architecture diagram of the accelerator with two distance calculators/sorter-

s/discarders mapped to the XD1000
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6.3.4 Numeric Evaluation

Based on the mapping presented in the previous section, several accelerators with diUerent

conVgurations were generated (indicated as (ndistcalc×nsort×ndiscard)). Table 6.3 demonstrates

the resource usage of some basic elements of the accelerators. The last two rows represent

the resources used by the complete accelerator and the resources used for the IMORC

communication infrastructure of the complete accelerator in the (6 × 6 × 6) conVguration.
The communication infrastructure hereby takes about 14 % of the overall logic resources.

ALUTs REGs DSP M512 M4k M-Ram

EP2S180-3 143520 143520 768 930 768 9

distcalc core 1462 1192 6 - - 1

sorter core 967 1176 - - - -

search core 1758 1035 4 - - -

discarder core 1507 1504 - - - -

CTRL core 782 325 - - - -

IMORC link 99 226 - - 4 -

bitwidth conv. 68 126 - 2 - -

farming core 76 29 - - - -

DDR CTRL 1992 2159 - - 8 -

HT core 8791 5209 - 1 57 1

complete acc. 42084 35492 40 7 383 8

IMORC 5896 4766 - 28 344 -

Table 6.3: Resource requirements for the accelerator

Figure 6.14 shows the speedups these accelerators generate over an optimized software

solution for diUerent dimensions and numbers of vectors. The HyperTransport interface

core was running at 200MHz, the DDR SDRAM at 166MHz. The accelerator clocks

were conVgured to 200MHz for the CTRL core, 100MHz for the distance calculator cores,

120MHz for the sorter cores and 150MHz for the search and the discard cores.

In all cases the speedup increases with the number of compute cores used. The best

conVguration presented in the Vgure is the (6 × 6 × 6)-conVguration, which provides

speedups of up to 44× over the optimized software solution. The (6 × 1 × 1), (1 × 6 × 1) and
(1 × 1 × 6) conVgurations show that the number of distance calculators used only has a

minor impact on the actual computation time. The reason for this is that the distance

calculation is only executed once and during execution only one time accesses the complete

distance table, while the sorter core and the discarder core need to access the complete

distance table several times.
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Figure 6.14: Resulting speedups for diUerent accelerator conVgurations

6.4 Chapter Summary

This chapter presented three case studies with diUerent kinds of applications in order to

evaluate the introduced modeling approach and the IMORC architectural template. The

Vrst case study, the Cube Cut problem, can intuitively be classiVed as well-suited for FPGA

acceleration. The IMORC modeling approach in this case study supported the analysis

of the kernels’ communication demand within a real system. In combination with the

performance characterization presented in Chapter 5, the modeling approach was useful for

Vnding reasonable parameters for the computation pipeline. The compositing accelerator

demonstrates that even algorithms with a low number of computations may beneVt from

using reconVgurable hardware due to the acceleration gained by an eXcient memory

access scheme. Supported by the modeling approach and performance characterization a

well suited memory mapping and an appropriate access scheme has been identiVed, which

achieves reasonable speedups. Furthermore, the KNN thinning accelerator demonstrates

the eXciency of the IMORC architectural template in the case implementing accelerators

consisting of several communicating cores. The accelerator uses all features available in

the IMORC architectural template. Cores are replicated and the workload is eXciently

distributed using the IMORC farming cores. In this way the accelerator can easily be

conVgured for diUerent numbers of compute cores, which simpliVes porting the accelerator

to other target architectures with a diUerent memory layout and performance.
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In all case studies the cores could be implemented with only a few lines of hand written

HDL code. The majority of this code is required for generating the cores’ datapaths.

Control structures are mainly realized by using the IMORC utility cores, such as the

request generator cores implementing the data access scheme. Custom code is only

required for calculating the input parameters of the request generators and, in the case that

cores have to execute multiple iterations, for updating these values with each iteration.

The integrated FIFOs allow the control and datapaths to be implemented independently

from each other, simplifying the overall implementation eUort. The integrated bitwidth

conversion modules further simpliVed the core development since cores can always access

data at their native bitwidth, regardless of the actual target memory resource. Due to the

slave arbitration combined with the integrated FIFOs, memories can be accessed at their

maximum performance even when single cores are not able to process data at the same

rate.

During development of the accelerators, the performance counters have provided the

basis for identifying performance bottlenecks and for further system optimization. Addi-

tionally, the counters have supported the bug analysis of the accelerator, especially in the

kNN application. While calculation faults typically cannot be identiVed by these counters,

communication errors can be related to individual cores. If, for example, a core’s datapath

expects less data to be processed than requested by the corresponding request generator,

the corresponding data FIFO will never become empty again.

Concluding, the case studies demonstrate the beneVts of the IMORC development

Wow and of the IMORC architectural template for the development of reconVgurable

accelerators. IMORC simpliVes accelerator development in many aspects — creating the

complete accelerators from scratch each time would have taken much more time.





7
Conclusion and Outlook

This chapter summarizes the contributions of this thesis, draws a conclusion and gives an

outlook on future directions.

7.1 Contributions

This thesis adds the following contributions to the state of the art in reconVgurable

high-performance computing:

• It introduces a novel modeling Wow for reconVgurable accelerators. The model is

Wexible in regard to the level of expressible detail. It consists of an architecture and

an execution model which are generated in parallel and are useful for estimating

the suitability of reconVgurable accelerators before implementation. This enables to

identify bottlenecks already during the design phase.

• An architectural template for generating reconVgurable accelerators is presented

that was designed to support implementing accelerators as speciVed by the mod-

eling technique presented. The architectural template includes a communication

infrastructure which enables cores to communicate with each other at high speed

with only little impact caused by contention. Supporting cores for functionalities

often needed are provided for further speedup of the design process. Additionally,

performance monitoring methods are introduced for identifying bottlenecks in the

running system.

• An architecture characterization framework is presented that enables an accurate

analysis of the target platform. The bandwidth achievable when communicating

to the diUerent resources of the target platform can be measured with diUerent
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communication schemes. Such information is necessary for implementing well

performing accelerators.

7.2 Conclusion

In this thesis, a method for generating reconVgurable accelerators for high-performance

computing was introduced. The IMORC modeling approach supports the developer in

several stages of the design process. First, it forms a decision basis whether reconVgurable

computing makes sense for a given application or algorithm. Second, it helps in designing

an eXcient architecture implementing the desired algorithms. And third, it may be used

as a basis for an initial performance analysis before actually implementing the accelerator.

The IMORC architectural template disburdens the designer by providing integrated

functionalities that are often needed by reconVgurable accelerators. It provides an eXcient

infrastructure for connecting cores within a FPGA to an integrated system. The FIFOs

inserted into the IMORC links decouple the datapath of cores from the control logic,

enabling a straight-forward core design. The bitwidth conversion modules additionally

make memory resources transparently accessible. The slave arbitration in combination

with the integrated FIFOs enable a maximum utilization of the diUerent memory resources

even if single cores are not able to fully exploit the bandwidth provided. Utility cores

further reduce development time, enabling cores to be implementable with only few lines

of custom HDL code.

The beneVts of the IMORC modeling and implementation approach were demonstrated

in several case studies. Especially the compositing accelerator case study has shown that

even applications with very few computations, which intuitively should not perform well

on reconVgurable architectures, may beneVt from FPGA acceleration due to an eXcient

utilization of available memory resources. In all case studies, the IMORC approach

greatly supported the generation of the accelerators. The modeling approach led to an

eXcient architecture that could be mapped to the FPGA in a straight-forward manner. The

distinction between request and data in the IMORC links combined with the FIFO storage

enabled to implement control functions and datapaths independently from each other.

The control structures could in most cases directly be implemented using the diUerent

variants of request generator cores, with only a small amount of additional code used

for calculating the appropriate parameters. Datapaths are implemented as a computation

pipeline in all cases.

During implementation, the integrated load sensors signiVcantly supported to identify

performance bottlenecks and the further optimization of the accelerators.
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7.3 Future Directions

Future work might incorporate the following interesting directions:

• While the IMORC architecture is implemented with a focus on portability, currently

only the XtremeData XD1000 system is fully supported. While the case studies

presented were also synthesized for current Xilinx devices to prove the vendor

neutrality of the infrastructure and supporting cores, currently no host interfaces

and external memory controllers for further systems are provided. Recently, several

Nallatech systems with a Xilinx Virtex V FPGA attached to the Intel FSB became

available at the University of Paderborn, which are an interesting target for IMORC.

Another interesting target architecture recently installed at the PC
2
is the Convey

HC1, which provides four user programmable Xilinx Virtex V FPGAs. Additionally,

the system provides a large amount of DDR2 SDRAM, which is coherently mapped

into the host CPU’s address space and can be accessed by the FPGAs at a peak rate

of up to 80GB/s.

• The IMORC modeling approach currently supports developers in estimating the

suitability of reconVgurable computing for high-performance computing and in the

design phase of the accelerator. Currently, it does not calculate concrete performance

values but only performs a rough estimation of the beneVts reconVgurable hardware

implies on given algorithms. Possible future work might focus on the suitability

of such modeling approaches for gathering more concrete performance values.

Additionally, the modeling approach could be evaluated targeting diUerent kinds of

hardware, such as GPUs or vector processors like ClearSpeed.

• The current IMORC architectural template primarily consists of modules imple-

mented in VHDL that are customizable using VHDL generics and are to be in-

stantiated in the application design. Currently, a basic code generator exists that

can simplify the task of generating the architecture. Further work could include a

more versatile architecture generation tool, for example including a graphical design

environment or a HLL datapath compiler.
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