

Model-Based Evaluation of
Service-Oriented Enterprise

Architectures

A thesis submitted to the

University of Paderborn
in partial fulfilment of the requirements for the degree of

„DOKTOR DER NATURWISSENSCHAFTEN“

(Dr. rer. nat.)

submitted by:

Martin Assmann

Sighardstraße 46

33098 Paderborn

First supervisor: Prof. Dr. Gregor Engels

Second supervisor: Prof. Dr. Wilhelm Schäfer

Paderborn, November 2009

i

Abstract. Enterprise Architecture (EA) has undergone many changes since the IT has
found its way into the world of enterprises. The introduction of Service-Oriented
Architecture (SOA) is such a change with major consequences. The introduction of an
SOA increases the flexibility and thus the productivity of an enterprise architecture,
but unfortunately also its complexity. This makes the transformation of an enterprise
architecture to an SOA-like enterprise architecture to a challenging and risky task. To
overcome the change- and complexity-related problems when introducing SOA,
Enterprise Architecture Management (EAM) systems are required. The approach of
this thesis suggests a method on how to establish Enterprise Architecture Management
that is especially suited for an SOA introduction. This thesis suggests a variant of an
EAM system that is especially suited for the introduction of an SOA. The presented
method on creating such an EAM system includes guidance on how to define a meta
model for Service-Oriented Enterprise Architecture (SOEA), which is harmonized
with the respective enterprise architecture. The SOA introduction is especially
supported by defining SOA quality criteria and corresponding metrics. Some metrics
have to be ascertained by experts. Other metrics have their measuring points within
the SOEA models (instances of the SOEA meta model) and their calculation is
automatable. Creating and maintaining SOEA models as well as applying the
automatable metrics are supported by an eclipse-based tool. As metrics only produce
measures that are hard to interpret, indicators are introduced. They allow interpreting
the measures concerning the quality criteria. With the help of this EAM system, the
transformation of an enterprise to a service-oriented enterprise can be planned and the
level of goal-achievement (SOA-conformance of the EA) can be monitored steadily.
By this, the contribution of this work aims at the reduction of the risk when
introducing an SOA.

 ii

Zusammenfassung. Seit die Informationstechnologie Einzug in die
Unternehmenswelt gehalten hat, werden Unternehmensarchitekturen ständig neuen
Veränderungen unterworfen. Die Einführung einer Service-Orientierten Architektur
(SOA) ist eine solche Veränderung mit weitreichenden Folgen. Eine SOA erhöht zwar
die Flexibilität und damit auch Produktivität einer Unternehmensarchitektur, leider
aber auch deren Komplexität. Dadurch wird die Transformation einer
Unternehmensarchitektur zu einer Service-Orientierten Unternehmensarchitektur zu
einer herausfordernden und risikobehafteten Aufgabe. Um den weitreichenden
Veränderungen und der neuen Komplexität Herr zu werden, wird ein Enterprise
Architecture Management (EAM) System benötigt. Diese Arbeit unterbreitet eine
Variante eines EAM-Systems, dass besonders für die Einführung einer SOA geeignet
ist. Die hier aufgezeigte Methode zur Erschaffung eines solchen EAM Systems
beinhaltet die Erzeugung eines Metamodells für eine Service-Orientierte
Unternehmensarchitektur, das auf die jeweilige Unternehmensarchitektur abgestimmt
wird. Die Einführung der SOA wird zudem durch SOA-Qualitätskriterien und dazu
passenden Metriken unterstützt. Einige dieser Metriken müssen durch Experten
ausgewertet werden. Andere Metriken haben ihre Messpunkte innerhalb der SOEA-
Modelle (Instanzen des SOEA-Metamodells) und können deshalb prinzipiell
automatisch ausgewertet werden. Sowohl das Anlegen und Pflegen solcher Modelle
als auch die Auswertung der automatisch auswertbaren Metriken wird durch ein
eclipse-basiertes Werkzeug unterstützt. Da die Resultate von Metriken nur schwer
interpretierbare Messzahlen sind, werden Indikatoren eingeführt. Sie erlauben die
Interpretation der Messzahlen bezüglich der Qualitätskriterien. Mit Hilfe dieses EAM-
Systems kann die Transformation einer Unternehmensarchitektur zu einer service-
orientierten Unternehmensarchitektur geplant und der Zielerreichungsgrad (SOA-
Konformität der Unternehmensarchitektur) ständig überwacht werden. Damit zielt der
Beitrag dieser Arbeit darauf ab, das Risiko eines Fehlschlags bei der Einführung einer
Service-Orientierten Architektur zu verringern.

Contents

iii

Contents

1 Introduction .. 1
1.1 Motivation .. 2
1.2 Task Definition ... 5

2 Basic Concepts, Requirements and Related Work ... 11
2.1 Enterprise Architecture... 12

2.1.1 Enterprise Architecture Definitions .. 12
2.1.2 Comparison of EA definitions .. 21
2.1.3 Choices for EA-specific Dimensions.. 22

2.2 Enterprise Architecture Management ... 25
2.2.1 Enterprise Architecture Management Definitions 25
2.2.2 Comparison of EAM definitions .. 33
2.2.3 Choices for EAM-specific Dimensions 36

2.3 Service-Oriented Architecture .. 38
2.3.1 About the Service Paradigm and SOA 38
2.3.2 Comparison of Existing Definitions ... 48
2.3.3 Choices for SOA-Specific Dimensions 51

2.4 Requirement Derivation.. 54
2.5 Evaluation of Related Work ... 58

3 Solution Concept .. 69
3.1 Designing a Solution Concept .. 69
3.2 Thesis Structure .. 76

4 Service-Oriented Enterprise Architectures... 79
4.1 SOA Definition... 80

4.1.1 SOA as an Evolutionary Product of Enterprise Architecture 80
4.1.2 SOA Service Definition.. 96

4.2 EA Definition Frame .. 100
5 Formalization of an SOEA Modelling Language... 103

5.1 Deriving an SOA Meta Model.. 104
5.1.1 How to derive an SOA Meta Model? 105
5.1.2 Deriving Concepts from the Given SOA Definition 108
5.1.3 Deriving a Meta Model from Identified Concepts.................... 112

5.2 Deriving an Enterprise Architecture Meta Model 117
5.2.1 Deriving a minimal EA meta model ... 117
5.2.2 Defining an individual EA meta model 120

5.3 Union of the SOA and the EA Meta Model.. 125
5.3.1 Transformation to Table Representation 128

 Contents

 iv

5.3.2 Matching Artefacts ... 131
5.3.3 Joining Artefacts... 135
5.3.4 Algorithmic Concerns... 138
5.3.5 Application of the Merging Algorithm..................................... 140

6 Defining Quality Criteria and their Metrics ... 143
6.1 The Quality Criteria Catalogue... 146

6.1.1 Defining Structural Quality Criteria ... 146
6.1.2 Defining SOA Service Quality Criteria.................................... 152

6.2 Metrics for Quality Criteria .. 158
6.2.1 Metrics for Structural Quality Criteria 160
6.2.2 Metrics for Service Criteria .. 184

7 Interpretation of Measures ... 197
7.1 Indicators for Service Orientation Metrics ... 197

7.1.1 Indicators for Structural Criteria... 200
7.1.2 Indicators for Service Criteria .. 206

7.2 Report on Service Orientation of an EA... 210
7.3 Recommendation of Improvements.. 212

7.3.1 Defining Remedial Actions .. 212
7.3.2 Strategy for Prioritizing Actions... 213

8 Tool support with an Eclipse-Based Prototype .. 215
8.1 SOEA Meta Model Implementation with EMF.. 217
8.2 Creation of a Graphical Editor.. 220
8.3 Implementing Service Orientation Metrics .. 225

9 Summary, Conclusion and Outlook ... 229
9.1 Summary... 229
9.2 Conclusion.. 230
9.3 Outlook ... 234

References.. 237
Appendix A.. 247

Figures

v

Figures

Fig. 1-1: Main tasks of the SOA introduction.. 6
Fig. 1-2: Main task of the thesis... 7
Fig. 1-3: General solution concept for quality evaluation problems.............................. 9
Fig. 2-1: Overview of the ISA [Krcmar05].. 13
Fig. 2-2: Layers of Enterprise Architecture based on [Nieman05] 14
Fig. 2-3: Artefacts of Enterprise Architecture based on [Engels08]............................ 15
Fig. 2-4: EA approach of the IAF as in [Capgem01]... 16
Fig. 2-5: Overview of the Zachman Framework [Zachma87] 16
Fig. 2-6: Overview of ARIS [Scheer98] .. 18
Fig. 2-7: Application layer of the EA meta model from [Braun05]............................. 20
Fig. 2-8: Terms defined in the enterprise ontology [Uschol95]................................... 20
Fig. 2-9: Adequacy of alternatives for characterizing enterprise architecture 23
Fig. 2-10: Preferred alternatives for characterizing dimensions of EA 24
Fig. 2-11: Enterprise architecture pyramid based on [DernGe03]............................... 26
Fig. 2-12: Elements of information architecture based on [DernGe03]....................... 27
Fig. 2-13: Elements of software architecture based on [DernGe03]............................ 27
Fig. 2-14: Enterprise Architecture Management as in [Engels08]............................... 29
Fig. 2-15: Overview of the TOGAF Framework [HarenV09] 31
Fig. 2-16: The TOGAF Architecture Development Method [HarenV09] 32
Fig. 2-17: The management cycle.. 34
Fig. 2-18: Adequacy of alternatives for characterizing dimensions of EAM 36
Fig. 2-19: Preferred characterization alternatives for EA and EAM 38
Fig. 2-20: Web Service Triangle from [Dostal05] ... 40
Fig. 2-21: Primitive view of how SOA modularizes automation logic as in [ErlTho06]

.. 43
Fig. 2-22: How components of the SOA relate [ErlTho06]... 43
Fig. 2-23: SOA Pattern example from [ErlTh09] .. 44
Fig. 2-24: Elements of a service as in [Krafzi06] .. 44
Fig. 2-25: Main elements of an SOA as in [Krafzi06] ... 45
Fig. 2-26: Adequacy of alternatives for characterizing dimensions of SOA 52
Fig. 2-27: Preferred alternatives for dimensions of EA, EAM and SOA 53
Fig. 2-28: Requirements derived from preferred characterization alternatives............ 55
Fig. 2-29: The development corridor based on [Engels08].. 56
Fig. 2-30: Categorization of requirements ... 57
Fig. 2-31: Appropriateness of existing approaches.. 66

 Figures

 vi

Fig. 3-1: Listing of categorized requirements .. 69
Fig. 3-2: Solution concept for R1 and R2 .. 70
Fig. 3-3: Solution concept extended by R5 and R6 ... 70
Fig. 3-4: Solution concept extended by R4.. 71
Fig. 3-5: Solution concept extended by R3.. 72
Fig. 3-6: Solution concept extended by R7, R10 and R11... 73
Fig. 3-7: Solution concept extended by R9, R12 and R13... 74
Fig. 3-8: Realization of the basic solution concept .. 75
Fig. 3-9: Sequence of realizing the steps of the solution concept 78
Fig. 4-1: Contribution of chapter 4 .. 79
Fig. 4-2: IT-landscape with two monolithic applications .. 80
Fig. 4-3: IT-landscape with two component based applications.................................. 82
Fig. 4-4: IT-landscape with middleware connecting applications 82
Fig. 4-5: IT-landscape with middleware (EAI) with separation of GUI...................... 84
Fig. 4-6: IT-landscape with basic services... 85
Fig. 4-7: IT-landscape with basic and orchestrated services.. 87
Fig. 4-8: IT-landscape with orchestration engine .. 89
Fig. 4-9: IT-landscape with orchestration engine and human interaction services 90
Fig. 4-10: IT-landscape with orchestration engine and complex event processor 92
Fig. 4-11: IT-Landscape with business process monitoring .. 94
Fig. 4-12: Major concepts combined by Service orientation....................................... 96
Fig. 4-13: Example of an SOA service contract .. 98
Fig. 4-14: Structure of an SOA service.. 99
Fig. 4-15: Essential parts of an enterprise architecture (compare [Assman08]) 101
Fig. 5-1: Contribution of chapter 5 .. 104
Fig. 5-2: Section of the SOA meta model from [CDBISA08]................................... 106
Fig. 5-3: Part of the SOA meta model from [OASISR08]... 107
Fig. 5-4: Part of the SOA meta model from [Baresi03]... 107
Fig. 5-5: Overview on adequacy of existing SOA meta models................................ 108
Fig. 5-6: Layers in Service-Oriented Enterprise Architecture 109
Fig. 5-7: Diagram with SOA meta model.. 116
Fig. 5-8: Essential parts of an enterprise architecture (compare [Assman08]) 118
Fig. 5-9: Diagram with minimal EA meta model .. 119
Fig. 5-10: Diagram with EA meta model .. 125
Fig. 5-11: Simplified meta model merging process... 127
Fig. 5-12: Generic example for table transformation... 128
Fig. 5-13: Transformation of ‘Interface’ to table representation 130
Fig. 5-14: Bayesian network for artefact matching ... 132

Figures

vii

Fig. 5-15: Matching example... 134
Fig. 5-16: Joining example before joining... 137
Fig. 5-17: Joining example after joining.. 138
Fig. 5-18: Algorithm for meta model merging .. 139
Fig. 5-19: Integrated meta-model of EA and SOA concepts 141
Fig. 6-1: Realization of basic solution concept.. 143
Fig. 6-2: Contribution of chapter 6 .. 145
Fig. 6-3: Relation between quality criteria, metrics, and indicators 146
Fig. 6-4: SOA reference architecture ... 147
Fig. 6-5: Structure of an SOA service.. 157
Fig. 6-6: ISA meta model as in [Vascon07]... 159
Fig. 6-7: Adaptation of LCOIS metric ... 160
Fig. 6-8: Adaptation of NOIS metric ... 160
Fig. 6-9: Template for metric description .. 161
Fig. 6-10: Measuring points for multi-channel services .. 164
Fig. 6-11: Measuring points for SOA service reuse... 165
Fig. 6-12: Measuring points for legacy adaptation .. 166
Fig. 6-13: Measuring points for middleware saturation... 167
Fig. 6-14: Measuring points for middleware usage ... 168
Fig. 6-15: Measuring points for standard communication... 169
Fig. 6-16: Measuring points for event enablement .. 172
Fig. 6-17: Measuring points for business object events... 173
Fig. 6-18: Measuring points for process events ... 174
Fig. 6-19: Measuring points for orchestration invocation.. 175
Fig. 6-20: Measuring points for application invocation... 176
Fig. 6-21: Measuring points for SOA service matching .. 177
Fig. 6-22: Measuring points for application invocation... 177
Fig. 6-23: Measuring points for human support .. 178
Fig. 6-24: Measuring points for service realization ... 179
Fig. 6-25: Measuring points for application realization... 179
Fig. 6-26: Measuring points for Orchestration engine existence 180
Fig. 6-27: Measuring points for orchestrated SOA services 181
Fig. 6-28: Measuring points for orchestrated processes .. 181
Fig. 6-29: Measuring points for BPM application ... 183
Fig. 6-30: Measuring points for KPI usage.. 183
Fig. 6-31: Measuring points for KPI messages.. 184
Fig. 6-32: Measuring points for stored business objects.. 186
Fig. 6-33: Measuring points for accessed business objects 187

 Figures

 viii

Fig. 6-34: Measuring points for orchestration ... 189
Fig. 6-35: Measuring points for loose coupling... 190
Fig. 6-36: Measuring points for functional compactness... 191
Fig. 6-37: Measuring points for service registration.. 195
Fig. 7-1: Contribution and structure of chapter 7... 198
Fig. 7-2: Template for indicator definition .. 199
Fig. 7-3: Table view of report on service orientation .. 211
Fig. 7-4: Bar diagram of report on service orientation .. 211
Fig. 7-5: Diagram of report on service orientation .. 212
Fig. 7-6: Precedence graph for quality properties.. 214
Fig. 8-1: Contribution of chapter 8 .. 216
Fig. 8-2: Versions of used technologies... 217
Fig. 8-3: GMF dashboard after first step ... 217
Fig. 8-4: Ecore model with basic elements.. 218
Fig. 8-5: Ecore model diagram with basic elements.. 219
Fig. 8-6: GMF dashboard after second step... 219
Fig. 8-7: Tree syntax editor generated from “Domain Gen Model”.......................... 220
Fig. 8-8: Eclipse workspace with “Graphical Def Model” .. 221
Fig. 8-9: Eclipse workspace with “Tooling Def Model” ... 222
Fig. 8-10: Creation of the mapping model... 223
Fig. 8-11: Defining node labels ... 224
Fig. 8-12: Correcting interchanged mappings ... 224
Fig. 8-13: Screenshot of the graphical editor... 225
Fig. 8-14: Menu bar entry of the OCL plugin.. 226
Fig. 8-15: Metric management window... 226
Fig. 8-16: Metric creation window .. 227
Fig. 8-17: Measure calculation window .. 228
Fig. 9-1: Basic solution concept .. 229
Fig. 9-2: Final table showing the fulfilment of requirements 233

1

1 Introduction

“Change is the only constant” is a citation often used by business analysts. As
described in [WoodsD06], over the years the factor change has steadily increased. It is
pointed out that several average life cycle times, namely those for products,
applications, and business processes, have been decreased by orders of magnitude
during the last decades. During this time, enterprise architectures have significantly
changed several times to keep up with these decreasing life cycle times. Service-
Oriented Architecture is the latest concept targeting the challenge ever shortening
lifecycles, which enterprises are confronted with.

In the last years, Service-Oriented Architecture (SOA) has grown from a hype to a
seriously relevant enterprise topic. On the one hand, this is indicated by the growing
number of enterprises selling SOA solutions like IBM, Oracle, and SAP. On the other
hand, it is indicated by the number of publications on the topic SOA. Often-cited
publications are “SOA – concepts technology and design” by Thomas Erl (compare
[ErlTho06]) and “Enterprise SOA: Service-Oriented Architecture best practices” by
Dirk Krafzig et al. (compare [Krafzi06]).

SOA is a style for enterprise architecture. For this reason, it cannot be compared

with software architecture styles like Enterprise Application Integration (compare
[KaibMi04]). The transformation to SOA concerns the whole enterprise and should be
done by persons that understand themselves as enterprise architects. The variety of
affected parts of the enterprise makes the transformation to SOA a challenging task.

The challenge of introducing SOA brings up governance and technical challenges,

which have to be mastered at the same time. The technical challenge is about
mastering new technologies to develop and implement SOA services. The governance
challenge includes convincing managers and employees of the concept, managing
finances, changing established development processes and transforming the enterprise
architecture. The architectural challenge targets the question on how to transform the
structural elements of an enterprise to a service-oriented style. This question shall be
focused here.

Firstly, the architecture challenge is tough because an enterprise architect will have

to manage the transformation of the current enterprise architecture to a service-
oriented one. Greenfield approaches are rather rare, as enterprises cannot afford

 Chapter 1 Introduction

 2

discarding their existing assets. Therefore, the introduction of a Service-Oriented
Architecture heavily influences the existing enterprise architecture.

Secondly, the architecture challenge is tough, because since the birth of SOA, in the

beginning of the current decade, no standard definition for SOA has been formulated.
Hence, there are several opinions of what SOA is. The only thing they have in
common is that there should be services with which SOA should bridge the gap
between the business world and the IT-world in enterprises. It is shown later on that
SOA definitions reach from very technical to very abstract ones.

This thesis shows how the architectural challenge is faced with a model-based

approach that allows modelling an enterprise architecture and evaluating its service
orientation with the help of service orientation quality criteria. The modelling and
evaluation are realized in a proof-of-concept implementation using the eclipse
modelling framework (EMF).

This thesis was created in cooperation with the Wincor-Nixdorf International

GmbH. Therefore, the focus does not lie on SOA as an artificial concept but on an
SOA suitable in the enterprise context. The author has collected experiences at Wincor
Nixdorf in parallel to elaborating the results of this thesis. He has influenced several
projects pushing service orientation. Many interesting problems and their solutions
have indirectly contributed to this thesis.

The next section shall motivate why SOA is important for an enterprise and why

this thesis was created.

1.1 Motivation

A common problem that enterprises of medium to big size are facing nowadays is the
lack of flexibility concerning their IT. Business processes can change within days, but
the IT-architects cannot keep pace. Their huge IT-landscapes with hundreds of
applications and dozens of technologies cannot be rearranged in the same time as
processes can, at least not with a justifiable effort. Regarding the trend of ever-faster
change that can be observed since several decades (compare [WoodsD06]), this issue
will become more and more delicate in the future.

As markets change more quickly these days, business processes have to change in
the same manner. A business process change usually implies a change in IT. If a

Model-Based Evaluation of Service-Oriented Enterprise Architectures

3

competitor is able to change his IT faster or more efficient than his rivals can do, then
he will experience a serious advantage. He could serve his customers with more
customized solutions or just be faster in delivering solutions while offering the same
or even a lower price.

Furthermore, the IT-related costs of many enterprises have become the lion’s share

regarding their investments. That means that savings in this sector are especially
desirable because of the great saving potential.

In order to be able to keep pace with the changing market situations, not only the

portfolio of an enterprise has to change, but also its internal architecture has to be
changed. This can be compared with the natural evolution process. There are suited
animals and less suited animals for any given environment. They have a portfolio,
which means they have capabilities like running, hunting, hiding, sneaking, etc. Be
there a big cat animal with a physique perfectly suited for the savannah environment.
As a change, be there trees rapidly spawning and growing in that environment. Now
climbing becomes a helpful capability for the big cat. Just like an enterprise that can
expand its portfolio, the big cat can learn climbing. Therefore, it might survive the
change, but there will be another animal with a different genome and thus a different
physique that fits better to the current environment. Changing the physique means
changing the architecture for an enterprise. The previously perfectly suited animal will
lack efficiency in the changed environment. The better-suited animal might have a
different muscle profile as climbing stresses muscles in a different way than running.
Furthermore, it might have a different blood circulation, as it is generally colder in the
tree-crowded environment. Both might have the same capabilities, but one of them is
more efficient due to the differences in its physique. The same goes for enterprises,
changing the portfolio due to a different market situation helps surviving, but
decreases efficiency if the architecture is not changed accordingly.

Service-Oriented Architecture can be regarded as a big step in the evolution of

enterprises. It promises making the enterprise architecture more flexible, which means
that not only the current change of the market can be overcome but also further
changes in the future can be adapted in an easier way. Analogously, the big cat would
not only change its blood circulation but also its evolutionary speed by having
offspring with the age of two and not with the age of three.

For further pointing out a situation that SOA could be a solution for, a realistic

scenario is described in the following. The scenario is given for a fictive company

 Chapter 1 Introduction

 4

named Crimson & Wiley (CW). CW attends two main business segments. Firstly, it
sells ATMs with the related software. Secondly, it sells point of sale systems (POS
systems) with related software for retailers. The company consists of a banking
division and a retail division.

Both divisions started with completely different hardware products with a low

software share. Over time, the software portfolio was growing. The monitoring for the
hardware systems was developed early. Both divisions developed their own solutions,
because of several reasons. At first, not enough information exchange has taken place
between the divisions. Secondly, the systems seemed to be so different that a common
solution would not be profitable. Another reason might be that there were persons in
both divisions wanting to take responsibility for the monitoring development and
therefore did not seek the cooperation between divisions. Once having two different
software development departments in different organization structures, there were
several development projects that were not checked for synergy or reuse effects.

As markets change over time, so did the banking and retail market in this scenario.

Both business segments were growing together. That means that POS systems got
more and more similar to ATMs. POS had to adapt card readers early and nowadays it
is even possible to withdraw money from a POS system. The software-supported
assignment of cash transports in both segments also has been wandering into the
portfolio of CW.

At a certain point of time, the management of CW recognized the potential savings

that lay in the IT. The question how to introduce consolidations in the two divisions
came up. A big bang approach with consultants merging organization structures and
consolidating software systems was not desired. The consequences on staffing would
have been too hard, facing the fact that both organizations should be able to work at
full capacity in mid term. The technical consequences of this approach were also
estimated as risky, because the quality of service could suffer too much from the
abrupt change.

This is where SOA comes into play. With the introduction of SOA, the reuse and

consolidation between the two divisions could be realized in form of a managed
evolution, not a revolution. The definition of SOA services that are registered in a
central registry fosters the reuse of software in the future. Then, the development
process may start with looking up suitable SOA services for the new development
project. Furthermore, SOA services adapt the existing software systems and because

Model-Based Evaluation of Service-Oriented Enterprise Architectures

5

of the implementation transparency of SOA services the stepwise exchange of legacy
systems is eased.

However, not only software systems can be reused and consolidated but also

businesses processes have to be merged. For example, the assignment of cash
transports can be planned for ATM and POS system networks in one process, so that
the overall transport ways may be shortened. The orchestration of SOA services also
delivers supports in this scenario.

The evolutionary merging of two divisions is a scenario where SOA is beneficial.

The given scenario is similar to a possible mergers and acquisition (M&A) scenario
where SOA could have similar benefits. SOA is a considerable strategic option for
enterprises that foresee manifold changes in their business processes like the one from
the cash transport assignment. Otherwise, the problems of integrating software
systems, merging and altering business processes with the underlying IT, and
increasing the enterprise-wide reuse of software systems will be harder to tackle.

This thesis will clarify what SOA is and show how it attempts to meet the

expectations. If SOA holds all of its promises, then it will greatly reduce the IT costs
of an enterprise. The other side of the coin is the complexity of the SOA introduction
and the risk that it might fail if not enough knowledge about SOA is at hand. Methods
for introducing an SOA in an enterprise would be very beneficial because they can
reduce the risk of failure. Therefore, a first task definition for this thesis is given in the
next section.

1.2 Task Definition

As pointed out in the previous section, reducing the risk of an SOA introduction is the
goal of this thesis. In this section, the scope of this goal is further elucidated.

The SOA introduction contains six main tasks being depicted in Fig. 1-1. This
thesis cannot cover all the tasks, but will focus on tasks that are hardly covered by
existing solutions and are regarded as risky.

 Chapter 1 Introduction

 6

Tasks of SOA Introduction

Architecture
view

Organization
view

Management
view

Budgeting

Organization
Restructuring

Skill training

Enterprise
Architecture

Planning

Software
Development

Management
support

Fig. 1-1: Main tasks of the SOA introduction

This thesis takes the management support for granted. This is usually the case when
an adequate business case has been presented to the management to show the
profitability of the SOA. Information on the creation of an adequate business case for
SOA is given in [Assmanb09].

After the acceptance of the business case, the management support should be given

and a budget should be granted. The budgeting for an SOA introduction is similar to
budgeting in any other strategic project. This is the reason why budgeting is not
covered in this thesis.

In the mid term, new roles should be created and employees should be found for

these new roles. A role defines a set of tasks an employee is responsible for. This
restructuring of the organization is not trivial, but as long as it is clear which new tasks
have to be handled, these tasks and also similar existing have to be combined into new
roles. A new role, for example is the enterprise architect. The modelling of
dependencies between business processes and IT-systems as well as the design of new
SOA services supporting changing business processes belong to his tasks.

The skill training requires trainers who are familiar with the concepts of service

orientation and related technologies. These trainers have to be trained or bought from
consulting companies.

One of the more delicate tasks is the software development process. The adaptation

of the existing software development process premises the adequate skill training of
developers and software architects. Especially defining the right SOA services is a
completely new task to be concerned. The problem is not tackled here, but a diploma

Model-Based Evaluation of Service-Oriented Enterprise Architectures

7

thesis describing a method for SOA service tailoring was created (compare
[UecanE08]) parallel to this thesis. This thesis will use the diploma thesis’ results on
the quality of SOA services for the last and remaining task from Fig. 1-1.

Probably, the most problematic task of the SOA introduction is the planning of the

enterprise architecture (EA), including a plethora of elements like business processes,
SOA services and applications. What is the service-oriented style for an enterprise
architecture? How would an individual EA applying this style look like? What
changes have to be initiated in order to transform the EA to an SOA-like EA? As the
answers on these questions are not easy to retrieve, the task of EA planning is tackled
here. This main task of this thesis is illustrated in Fig. 1-2. The person responsible for
the planning of the enterprise architecture is called the enterprise architect. He should
be supported with tools and methods tailored for the EA planning part of the SOA
introduction.

Process ProductProduct

EA SOA-like EAEA Transfor-
mationEAEA

Fig. 1-2: Main task of the thesis

The three topics related to the three boxes are examined in the next chapter. The
first topic concerns enterprise architecture. That means what are the relevant elements
in an enterprise architecture and how can these elements be categorized or modelled.

 The discipline related to EA transformation is Enterprise Architecture Management

(EAM). EAM and SOA fit together in a harmonic way because EAM usually defines
ways how to change an enterprise architecture, but not what to change. However, SOA
defines style of EA and defines what has to be changed, but not how to do this.
Therefore, SOA and EAM complement one another. This is why the second examined
topic is EAM.

The third topic is Service-Oriented Architecture. However, not the term SOA itself

but SOA in the context of an enterprise architecture has to be clarified.

The existing work is examined for each topic and the characterizing dimensions are

elaborated. At the same time the alternatives for each characterizing dimension are
discussed and the best choice for a solution to the here stated problem is given. From

 Chapter 1 Introduction

 8

these choices, the final requirements for a solution are derived at the end of chapter 2.
In chapter 3, the task definition is refined and an overview on the structure of the
remaining thesis is given.

It is very probable that most enterprise architectures have structures and elements

not fitting into a Service-Oriented Architecture. These have to be identified and
changed afterwards. This can hardly be done without the help of models, due to the
immense size of process- and IT-landscapes in enterprises. Without the right
abstraction level, thus leaving out the right details, an architect can probably not
identify the right structures to be changed. Models are often sneered at because they
are seen as an expensive way of documentation, but with increasing complexity of a
system, they get indispensable for planning and restructuring.

In the following, a very general solution concept on how to prove quality properties

of real world systems (like service-orientation of an EA) with the help of models is
introduced. The approach of this thesis will follow this general concept.

The general solution concept proving quality properties of a real world system is

depicted in Fig. 1-3. Quality properties are specified for a given real world system.
The real world system can be anything from a material object like a car to an
immaterial software system like a route planning software. Its quality properties are
often given in texts of natural language. Usually, it should be possible to understand
the quality properties without technical background knowledge. However, the quality
properties are often hard to prove. For example, how to decide how high the
maintainability of a software system is? Inspecting the real world system for this
purpose is tedious because the source code contains much more information than
needed. As long as the real world system is too complicated for understanding it by
just inspecting it, a model of the system that abstracts from irrelevant details is
created. Modelling languages with a well-defined syntax, like the UML, are often used
for this purpose. However, also drawings without neither a defined syntax nor
semantics can be used.

For example, the modelling language could be UML class diagram. Using class

diagrams, the system can be better understood and planned, but still, it is hard to tell
whether the maintainability is given or not. For this reason, the quality properties have
to be refined and transformed to quality criteria. The number of god classes (compare
[RielAr05]) could be a refined quality criterion indicating the maintainability of a
software system. Using a class diagram, the evaluation is easy. In addition, this could

Model-Based Evaluation of Service-Oriented Enterprise Architectures

9

be automated with little effort. However, the quality criteria must fit to the modelling
method chosen. Otherwise, the evaluation is not possible (e.g. when using state charts
together with criteria for class diagrams).

As models are mostly too complicated to be processed on paper, a decision on tool

support has to be taken. This is not easy because a plethora of tools designed for
modelling is available. At first, a choice for the type of modelling language the tool
supports has to be taken. An example for a generic language tool is a drawing
program. Other tools support languages having a formally specified syntax, like
“Enterprise Architect” for the UML. In addition, there are tools for languages with
formal semantics like the Dynamic Meta Modelling editor (compare [Hausma05],
[Banden09]). However, the tool decision is not done with the choice of a modelling
language, because the tool can and should support the evaluation of quality criteria.
An example for such a modelling tool is an architect’s modelling tool that is able to
calculate the statics of the building modelled.

Tool support

Real world
system

Quality
properties

Quality criteria
for model

Evaluation

Transformation/
Refinement

Abstraction

Specification

Model

Modeling
language

Word in

Fig. 1-3: General solution concept for quality evaluation problems

The approach of this thesis will follow this general approach. The elaboration of the
corresponding solution approach for this thesis is given in chapter 3. In the following
chapter 2, the basic concepts and requirements for this thesis are examined.

11

2 Basic Concepts, Requirements and Related
Work

This chapter covers the basic concepts building the foundation of the thesis. In
addition, the requirements for a solution to the task given in section 1.2 will be refined
here.

The basic concepts are enterprise architecture (EA), Enterprise Architecture

Management (EAM) and Service-Oriented Architecture (SOA). The relations of the
basic concepts are depicted in Fig. 1-2. It shows that SOA is the architectural style an
enterprise architecture should be transformed to and EAM is an approach to manage
enterprise architecture transformations in general.

On the one hand, the related work for SOA focuses on how a Service-Oriented
Architecture should look like but merely on how to transform an existing architecture
to it. On the other hand, the EAM-related work places the focus on how to transform
an existing architecture, but not on how it should look like in detail.

For this reason, the concepts shall be integrated in one approach. In order to do this,
the characterizing dimensions for each topic are elaborated and the alternatives are
discussed. Characterizing dimensions are found during the comparison of existing
definitions. From each dimension, the best alternative concerning a solution for the
given task is chosen. From the collection of chosen alternatives the requirements for
the approach of this thesis, which combines the three basic concepts, are derived.

The following section 2.1 gives an overview on enterprise architecture definitions,

identifies the characterizing dimensions, and picks the adequate alternatives for the
approach of this thesis. The sections 2.2 and 2.3 do the same for EAM and SOA.

In section 2.4 the complete set of requirements is derived from the chosen

characterizing dimension alternatives. Finally, in section 2.5 the existing approaches
are evaluated concerning the requirements elaborated.

 Chapter 2 Basic Concepts, Requirements and Related Work

 12

2.1 Enterprise Architecture

This section covers enterprise architecture definitions and the choices for the
alternatives of the characterizing dimensions. Thus, the first subsection covers EA
definitions, the second subsection covers their comparison, and the third subsection
covers the choice of alternatives concerning the characterizing dimensions.

In [Engels08], enterprise architecture is regarded as an ambiguous term. On the one

hand, it is seen as architecture concerning the structure of a system – i.e. enterprise
architecture is concerning the structure of an enterprise. On the other hand, it is seen
as a discipline to manage these architectures. In this thesis, architecture is used in the
sense of system structure and not of a discipline. The discipline to manage enterprise
architecture is referred as Enterprise Architecture Management (EAM). Approaches
claiming focusing on EA but meaning EAM (concerning the given categorization),
will be examined in the EAM section.

2.1.1 Enterprise Architecture Definitions

In the previous sections, the term enterprise architecture was often mentioned. The
term enterprise architecture is described differently by different authors. The
definitions from [Krcmar05], [Nieman05], [Engels08], [Zachma87], [Braun05], and
[Uschol95] are reflected and afterwards compared concerning their characterizing
dimensions.

The Information System Architecture (ISA) as described in [Krcmar05] is a layered
approach to describe an enterprise architecture. The business architecture is the top
layer in the hierarchy. According to the author, it is very closely related to the process
and organization architecture that build the layers below the business architecture. The
third layer consists of the application, data, and communication architecture. The
application architecture describes functions with which business processes are
realized. The data architecture describes the distribution and the relation of the data
entities in the enterprise. The communication architecture holds the information about
the data transfers between the applications. The infrastructure architecture describes
the platform for the layer above. In detail, these are the information and
communication technologies, operating systems, and hardware.

Fig. 2-1 depicts the ISA in a gyroscopic way, which means that these architectures
and their description must be balanced. Furthermore, the business architecture is

Model-Based Evaluation of Service-Oriented Enterprise Architectures

13

depicted by an arrow, such that it should be integrated in all the lower layers of the
enterprise architecture. By this gyroscopic figure, a set of views is defined for this
approach. There is no language suggested, in which the architecture shall be
described. This means the user is free to define his own language and may decide
freely on the meta content.

Da ta
archi tecture

Business
architecture

Process
architecture

Organization
architecture

Communication
architecture

Application
architecture

Infra structure
archi tecture

Fig. 2-1: Overview of the ISA [Krcmar05]

The second EA definition source is depicted in Fig. 2-2, as found in [Nieman05].
Niemann describes enterprise architecture as a layered architecture containing a
business architecture, an application architecture, and an infrastructure architecture.
These layers are not strictly separated from each other. This means they have
intersections at certain points but the meta content is not entirely cohesive. A cohesive
meta content means that all meta concepts can be set into relation with each other. For
example, a formal meta model offers such meta content cohesion. Concrete integration
points as well as a concrete language are not named in this approach. Furthermore, the
layers can be quite different from enterprise to enterprise, as the concrete meta content
in these layers may vary.

Even though enterprise architectures may vary in their appearance according to

[Nieman05], the business architecture generally holds information about the goals and
the strategy of an enterprise, about the business processes, and about the organization.
Furthermore, the application architecture holds information about services or

 Chapter 2 Basic Concepts, Requirements and Related Work

 14

interfaces, about the applications, and the data held by them. The infrastructure
architecture consists of the development environment, the test environment, and the
IT-technologies used.

Business Architecture

Goals
Strategy

Business
Processes Organization

Application Architecture

Services
Interfaces Applications Data

Infrastructure Architecture

Development
Environment Test Environment Technology

Fig. 2-2: Layers of Enterprise Architecture based on [Nieman05]

In Quasar Enterprise (compare [Engels08]), enterprise architecture is depicted as in
Fig. 2-3. The authors of [Engels08] do not follow a layered approach to describe
enterprise architecture. Still, a clear distinction between different kinds of
architectures is given. Furthermore, Quasar Enterprise is based on the Integrated
Architecture Framework (IAF, compare [Capgem01]) which is also a layered EA
approach, depicted in Fig. 2-4.

The architectures named in Quasar Enterprise are the business architecture and the

application landscape architecture. The latter consists of the information system
architecture and the technology infrastructure architecture. Quasar Enterprise does
also concern EAM. For this reason, it is also mentioned in subsection 2.2.1.

The main artefacts of the business architecture are business processes, business

objects, and the organization of the enterprise. The business architecture influences the
application landscape and by that it influences the information system architecture (IS
architecture) and the technology infrastructure architecture (TI architecture).

Model-Based Evaluation of Service-Oriented Enterprise Architectures

15

The artefacts of the IS architecture are application services, logical components and
technical components. Application services gather small-grained business functions.
The realization of an application service makes use of several logical components.
Logical components are abstract, e.g. a monitoring application, a travel booking
system etc. A logical component is realized with a technical component, e.g. IBM
Tivoli as a monitoring application.

Again, a distinction is made between logical and technical elements within the

technology infrastructure. In this case, platforms, namely the system software
components and hardware components are distinguished. Part of a logical platform
could be an application server and the corresponding realization in the technical
platform would be an Oracle Application Server.

The Quasar Enterprise approach provides several small examples or even meta

models to describe most of the EA elements. There is no underlying holistic and
cohesive meta model, but some concepts can be found in different meta model
descriptions. These concepts can be used as integration points.

Enterprise Architecture

Business Architecture

Business Processes
Business Objects

Organization
etc.

Application Landscape Architecture

Information System
Architecture

Application Services
Logical Components

Technical Components

Technology Infrastructure
Architecture

Technical Services
Logical Platforms

Technical Platforms

Fig. 2-3: Artefacts of Enterprise Architecture based on [Engels08]

 Chapter 2 Basic Concepts, Requirements and Related Work

 16

Fig. 2-4: EA approach of the IAF as in [Capgem01]

The next source for an EA definition is the Zachman Framework. In 1987, John
Zachman had the idea in mind to “keep the business from disintegrating”. According
to Zachman, the information system architecture has to be managed if the
disintegration shall be stopped. Motivated by his idea he developed the Zachman
Enterprise Architecture Framework, of which an overview is depicted in Fig. 2-5:

Fig. 2-5: Overview of the Zachman Framework [Zachma87]

Model-Based Evaluation of Service-Oriented Enterprise Architectures

17

The Zachman Framework defines layers and perspectives. The five layers are the
contextual, the conceptual, the logical, the physical layer, and the out-of-context layer.
For each of these layers different kinds of perspectives are introduced. First of these
perspectives is the data perspective, answering the question what is examined. Further
perspectives are the function perspective describing the how, the network perspective
describing the where, the people (or organization) perspective describing the who, the
time (or schedule) perspective describing the when and the motivation (or strategy)
perspective describing the why. An enterprise architecture can be described quite
completely with all these perspectives on all of the layers. Not all of the perspectives
are important for all enterprises, so the user has to choose a suited set of perspectives.
The Zachman Framework gives hints on how to realize these perspectives on the
specific abstraction layer, for example a business process model for the functional
perspective on the conceptual layer. The Framework also defines concepts that have to
be followed when designing an enterprise architecture:

 Every cell describes an aspect of the architecture and is unique
 The six perspectives cover all models required for the development of the

system
 The layers are hierarchical and have to be designed top-down
 The order of the perspectives has no meaning
 The perspectives are treated as abstractions without intersections that shall

improve the handling of the systems complexity
 According to [Minoli08] the framework is recursive, so that an instance of the

framework can describe the whole enterprise and the next instances describe
the divisions of the enterprise.

The Zachman Framework does not present a concrete language to describe the

suggested set of views on the EA. The meta content is described textually only. Thus,
cohesion of the underlying meta concepts is not given.

Another framework is the Architecture of Integrated Information Systems (ARIS)

as described in [Scheer98] and [Scheerb02]. Its EA approach is a little bit different
from the typical layered view on enterprise architecture. Its focus lies more on the
coherence of the elements describing the architecture.

 Chapter 2 Basic Concepts, Requirements and Related Work

 18

Fig. 2-6: Overview of ARIS [Scheer98]

The four main elements as depicted in Fig. 2-6 are the views on Organization, Data,
Control, and Functions. Each of these blocks is layered, whereas the layers are the
conceptual the technical and the physical layer. Such a block is considered as a view
or perspective on the architecture.

The function view describes the activities that are needed to perform a process and

the relations of these activities. Usually a function is related to an information object
and describes an action on this object. Examples are creating an invoice or to take an
incident. Furthermore, a function has a relation to an element of the organization view
that means there is a responsible and or an executing organization unit for this
function. Functions can also be related to events. On the one hand, a function like
“processing order” can require the occurrence of an event like “order created”. On the
other hand, the function itself can create an event like order processed.

The data view describes the information objects and their relations as well as their

environment like in-house, client or provider. Possible upcoming events that trigger
functions are also described in this view.

The organization view contains the elements of the company organization structure.

This reaches from organizational units over roles to jobs and jobholders. Those
elements of this view contain the responsible and accountable persons for functions

Model-Based Evaluation of Service-Oriented Enterprise Architectures

19

defined in the function view. Furthermore, the organization view describes resources
that are required to perform functions.

The control view brings all the elements of the other views together. It contains the

processes acting as the glue for functions, data, and organization. A process defines on
which events it is invoked and the sequence in which the functions are execute. The
execution of processes then leads to the fulfilment of business goals that are not
depicted explicitly in the model.

To sum up, ARIS describes a fixed set of views and suggests languages like the

Event-driven Process Chain (EPC). These have integration points that are indicated by
the lines in Fig. 2-6. Not for every EA part a language like EPC is given, which leads
to partly defined but not entirely fixed meta content predetermination.

Other approaches to describe enterprise architecture are ontologies and meta

models. Meta models are a specification of terms and a syntax for a formal language.
The purpose of the meta model is to describe the set of possible models. A model is
named an instance of this meta model and describes a part of a real world situation
(compare [Zelews99]). However, an ontology has many similarities with a meta
model. It shall describe the relations between real world concepts including their
semantics. This can be done with a formal language, but also with natural language.
Especially the description of semantics, which is more stressed in ontologies, is often
given in natural language.

In [Braun05] a layered meta model is suggested to describe enterprise architectures.

The layers are the strategy, the organization, and the system/application layer. The
application layer is depicted in Fig. 2-7. The three layers have defined integration
points, so that they are not strictly separated from each other and a meta content
cohesion is established. The meta model fixes the predetermined meta content as the
usable elements are exactly described. This approach suggests one and only one
holistic language to describe an enterprise architecture.

 Chapter 2 Basic Concepts, Requirements and Related Work

 20

Fig. 2-7: Application layer of the EA meta model from [Braun05]

In [Uschol95] en extensive enterprise ontology is given. A variety of the described
terms is given in Fig. 2-8. The approach contains the definition of these terms and
their relations to each other. Just like in the approach of [Braun05], the language and
the meta content is exactly defined here, because the variety of elements is fixed to the
about 80 described terms. This ontology is not layered and therefore the meta concepts
are completely cohesive. Maybe as a compensation for not layering the ontology
concepts, categories were defined for the different terms. There is nothing said about
views in this approach, which is interpreted as there is only one fixed view on the
complete model.

Fig. 2-8: Terms defined in the enterprise ontology [Uschol95]

Model-Based Evaluation of Service-Oriented Enterprise Architectures

21

2.1.2 Comparison of EA definitions

In the previous section, it is shown that there are different definitions of enterprise
architecture. In this section, the characterizing dimensions of EA approaches are
defined and afterwards a comparison of the approaches is given.

The meta content predetermination is the first characterizing dimension. As

enterprise architectures are very individual, predetermining the meta content is done in
different forms. Approaches defining a formal meta model will fix the meta content
and do not leave any degree of freedom. Therefore, the alternatives fixed, partly
variable, and variable are identified.

 The second characterizing dimension is identified as meta content cohesion. Often

there are several layers or diagrams describing an EA. There are pieces of information
located in different layers or diagrams that shall be related to each other during the EA
planning. For example, which business process is affected by the removal of a certain
application interface? If the different meta concepts of an EA are not described
cohesively, this will hardly be doable. Some approaches with layers have integration
points, allowing a transitive information recovering. Others are completely cohesive,
e.g. by providing a holistic meta model.

The third characterizing dimension in which the definitions vary is the suggested

language. That means in which extent is the abstraction level fixed and how formal
are the modelling languages to be used. With the suggested language, also the level
granularity is influenced. A meta model fixes the granularity; a self-decided language
leaves everything open. The spectrum of suggested languages reaches from self-
decided modelling languages, to partial suggestions (with small meta models or
diagram types), to meta modelling, or an ontology with a fixed formal syntax. Meta
models and ontologies are very similar in this context as they specify the modelling
elements and their relations. These languages are formal in their syntax but not in their
semantics. Theoretically, it is possible to define formal syntax with formal semantics,
but this is only mentioned for the sake of completeness.

 The fourth characterizing dimension is the suggested view. Most observed

references suggest a set of different views on the enterprise architecture in form of
different layers or diagram types. Possible alternatives are a single fixed view, a
defined set of views, or individual views on the enterprise architecture model.

 Chapter 2 Basic Concepts, Requirements and Related Work

 22

 Meta content
predetermination

Meta content
cohesion

Suggested
language

Suggested
view

[Krcmar05] Variable Integration
points

Self-decided

Set of views

[Nieman05] Partly variable Integration
points

Self-decided Set of views

[Engels08] Partly variable Integration
points

Partly
suggested

Set of views

[Zachma87] Partly variable None Partly
suggested

Set of views

[Scheer98] Partly variable Integration
points

Partly
suggested

Set of views

[Braun05] Fixed Holistic Meta model

Fixed

[Uschol95] Fixed Holistic Ontology

Fixed

The view on enterprise architecture in this thesis will be given in section 4.2. In the

next section, the best choices (concerning the task from section 1.2) for the
alternatives are discussed.

2.1.3 Choices for EA-specific Dimensions

Having taken a look on what is EA, the choices concerning the EA dimensions for the
approach of thesis can be identified. Fig. 2-9 depicts the identified options and
evaluates them concerning their adequacy. Afterwards the choices will be discussed.

The meta content predetermination should not be fixed as enterprise architectures

are too individual and the stakeholders usually have their own nomenclature in mind.
Preventing the relearning by allowing individual contents is regarded as the better
alternative. Partly individual means that there are fixed contents and that
nomenclatures as well as meta elements can be changed. Completely individual model
contents are also acceptable as long as the enterprise architect is able to define the
required content.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

23

Category Alternative Adequacy
Variable +
Partly Variable +

Meta content
predetermination

Fixed -
None -
Integration points O

Meta content
cohesion

Holistic +
Self-decided -
Partly suggested O
Meta model / Ontology +

Suggested
language

Meta model with formal semantics -
Individual views +
Set of views O Suggested view
Fixed -

Fig. 2-9: Adequacy of alternatives for characterizing enterprise architecture

The meta content cohesion heavily influences the quality of the predictable
consequences of changes in the enterprise architecture. The alternative supporting this
feature best is a holistic model. Models with integration points between diagrams or
layers are also possible, but the transitive way to find related pieces of information
from different layers is more complicated.

The often very complex enterprise architecture has to be described somehow if the

enterprise architect wants to deal with it. To do so, a language has to be suggested. A
self-decided language as suggested in [Krcmar05] is probably not very helpful, as the
machine readability that is needed in highly complex EAs is not guaranteed. The same
goes for partly suggested languages. At least they are more helpful, because they build
a frame for the syntax. A formal syntax, e.g. in form of a meta model, greatly
improves the usefulness of a model because of its machine-readability. Together with
an informal description, the different stakeholders have less freedom in interpreting
the semantics of the EA description. It is still possible to interpret the description in
different ways with a formal syntax (like in a meta model) and informal semantics.
Formal semantics could improve this fact but they are rather complicated. Firstly, no
language for enterprise architectures with formally defined semantics exists. Secondly,
the stakeholders using the language would not be used to work formal specifications.
Thirdly, the effort of defining an EA with formal semantics (already given an
appropriate language) is very high and will probably outweigh the advantages.

 Chapter 2 Basic Concepts, Requirements and Related Work

 24

The suggested view is fixed or a set of views in the examined approaches. However,
the best answer on the question is completely dependent on the user. It is hard to
foresee, which view he will find the most interesting. Therefore, the best solution for
an approach that shall be suitable for any kind of enterprise architect should provide
individual views rather than a predefined set of views on the enterprise architecture.

 An overview of the preferred alternatives for the dimensions characterizing

enterprise architecture is illustrated in Fig. 2-10. Having completed the examination of
the first basic concept, the second basic concept – EAM – is elicited in the following
two sections.

Process ProductProduct

EA SOA-like EATransformationEAEA

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Integration Points

No meta content
cohesion

Holistic Modelling

Integration Points

No meta content
cohesion

Holistic Modelling

Partly variable meta
content

Variable meta content

Fixed meta content

Partly variable meta
content

Variable meta content

Fixed meta content

Set of views

Individual views

Fixed view

Set of views

Individual views

Fixed view

Fig. 2-10: Preferred alternatives for characterizing dimensions of EA

Model-Based Evaluation of Service-Oriented Enterprise Architectures

25

2.2 Enterprise Architecture Management

The existing EAM definitions are presented and compared concerning their
characterizing dimensions in this section. EAM is the discipline or process that
controls the transformations of an EA. In the manner of the previous section, the EAM
definitions are examined and compared concerning their characterizing dimension.
Afterwards, the choice of the best alternatives is discussed.

2.2.1 Enterprise Architecture Management Definitions

In this section, the term Enterprise Architecture Management is addressed. The
approaches from [DernGe03], [Engels08], [Nieman05], [Matthe08], [Haren07], and
[Bieman94] are compared here.

In [DernGe03] an architectural pyramid is described that covers Enterprise

Architecture. Central figure is the pyramid as in Fig. 2-11. The EA pyramid and the
process concerning the EA transformation are woven together in this approach. For
this reason, the parts concerning EAM of this approach will be elicited predominantly.

The top layer is the strategy of the enterprise and its influence shall be given on all

levels beneath. The strategy layer itself comprises of strategic goals like
“Technological leadership for hybrid drives until 2015” or “Introduction of service
orientation until 2010”. The business drivers, being part of the business architecture,
are derived from these strategic goals. Business drivers are the main factors
influencing revenue. Common examples for these influencing factors are customer
needs and competition. In addition, the business layer contains business processes
designed for realizing the business drivers. The organizational architecture, containing
structural descriptions of business units and departments, is also regarded as part of
the business architecture. So far, this reads as a normal EA definition.

 Chapter 2 Basic Concepts, Requirements and Related Work

 26

Strategy

Business Architecture

Information Architecture

Software Architecture

Infrastructure Architecture

Fig. 2-11: Enterprise architecture pyramid based on [DernGe03]

However, the information architecture also has elements concerning the
management of the EA. In general, the information architecture is the mediating layer
between the business and the IT architecture. It contains the information concepts
including business objects. It also comprises the information systems being abstracted
from technological details like specific software products. Furthermore, the
interactions between different IS can be abstracted in this layer in form of information
object flow. A domain model is an often used to depict the static part of the
information architecture.

Information systems are often planned only concerning the information systems
itself, but not concerning their context. To prevent that different elements of the IT-
architecture are not fitting to each other, the information architecture acts as a guiding
frame. It contains the information system portfolio with the as-is and target state in its
focus (see Fig. 2-12). The as-is IS portfolio lists the existing information systems and
evaluates them concerning certain criteria, e.g. process support and target platform.
Furthermore, it depicts the integration level of the IS landscape and information flow
between IS. The information objects are often also called business objects are closely
related to information systems. Their knowledge is decisive for the further
development of information and IT architecture. The target IS portfolio describes the
desired state of the application landscape in the future. Planning as-is and target
architecture is based on the IS portfolio in this approach. The elements of the lower
architecture layers are derived from the target IS portfolio. The as-is and target
modelling is the first major extension of EA approaches in the direction of EAM.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

27

Architecture strategy
As-is Target

IS Portfolio Technology strategy

Business Architecture

Information Architecture
Architecture principles

Fig. 2-12: Elements of information architecture based on [DernGe03]

Furthermore, the IS-portfolio is heavily influenced by three concepts: Firstly, the
technology strategy, which has major influence on the IT basic infrastructure. For
example, the strategy primarily to develop internally used software in Java. Secondly,
the architecture strategy that describes the how the target architecture is enforced.
Thirdly, the architecture principles, e.g. that Event-Driven Architecture is generally to
be preferred over a synchronous message architecture. These strategies are also part of
EAM and not of EA.

Implementation Architecture
Development &
Maintenance

Process

Functional Architecture

Information Architecture

Software Architecture
System & Security Architecture

Fig. 2-13: Elements of software architecture based on [DernGe03]

The software architecture layer is divided into a static and a dynamic part. The
dynamic part concerns the software development and maintenance process for the
applications used within the enterprise. The static part concerns the applications
themselves.

The dynamic part, the software development process, is seen as a crucial part of the
IT-architecture as it has great influence on the flexibility of applications. It describes
how the realization of new requirements is planned, designed, implemented, and rolled
out. If there is a sophisticated and flexible software development process the
application landscape can be changed in a more efficient and flexible way. Often there
are many applications in an enterprise and each of them can have a different
development and maintenance process. Considering the software development process
is also a part of EAM.

The static part is covering the applications. Every application has a security
architecture and a system architecture that represent the mapping from the software
architecture to the infrastructure architecture. Besides an application has an
implementation architecture describing which components the software consists of

 Chapter 2 Basic Concepts, Requirements and Related Work

 28

and how these are interacting with each other. In addition, an application has a
functional architecture that describes which functionality an application provides and
the information needed and provided for business processes supported by the
application. The rest of the EA pyramid is not covered, as it does not contain any
EAM relevant information.

In the following, the approach is summarized. The planning strategy is realized as a

reengineering approach with a target and as-is planning of the IS-portfolio. The
change strategy of this approach is evolutionary, as the transformation from as-is to
target architecture is realized over time and not in a big bang approach. Strategies for
the architecture development must be formulated in an informal way. A measurement
of the realization of the strategies is not proposed.

Another approach that regards architecture as a discipline is described [Engels08].
The tasks of Enterprise Architecture Management are depicted in Fig. 2-14. The
Quasar Enterprise approach follows the Integrated Architecture Framework (IAF,
compare [Capgem01]). According to IAF, the following four layers are determined.
The contextual layer tries to clarify why something is done. The conceptual layer
gives the answer on what should be done. The technical layer answers the question
how something is done, and the physical layer gives insight into what things are
finally realized.

In [Engels08] the EA change strategy is represented by the arrows in the figure. In

order, the steps are analyzing and defining a business architecture, defining the ideal
application landscape, defining an integration strategy, and defining an integration
platform. All these steps have to underlie a constant evolution. This evolutionary
planning strategy is realized using three planning instances, the as-is, the target and
the ideal enterprise architecture. A measurement mechanism is not suggested in this
approach.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

29

IT

Contextual

Conceptual

Technical

Physical

Business
Information System (IS) Technology Infrastructure A

s-
Is

Ta
rg

et

Id

ea
l

Business Strategy IT Strategy

Business
Architecture

Business Objects
Business Projects

Organization

Domains
Application Services

Logical
Components

Technical
Components

Technical
Services

Logical
Platforms

Technical
Platforms

Business Architecture

Ideal Application Landscape

In
te

gr
at

io
n

Integration Platform

Evolution

Fig. 2-14: Enterprise Architecture Management as in [Engels08]

In addition, [Nieman05] states something about EAM. The EAM tasks are defined
there as the processes, methods, tools, responsibilities and standards that are required,
so that IT systems do what they are intended to do in an efficient way. According to
[Nieman05], the following tasks have to belong to EAM:

 The strategic process of documenting, analyzing and planning the enterprise

architecture
 The operative process implementing the planned enterprise architecture
 The definition of documentation techniques
 The analysis and planning techniques
 The evaluation techniques
 The tools and their integration in processes
 The performance indicators and controlling

Something completely different in the area of EAM is the enterprise architecture

pattern catalogue [Matthe08]. It presents interesting insights on the tasks concerning
Enterprise Architecture Management. Tasks are formulated as questions and are called
concerns. Patterns can have relations to concerns, meaning that they are useful for

 Chapter 2 Basic Concepts, Requirements and Related Work

 30

working on the concern. The relevance of concerns has been validated in an industrial
case study.

In addition to the concerns, the EA pattern catalogue presents three different kinds

of patterns: methodology, view, and information patterns. Concerns address the
question: “Which goal is to be achieved for which stakeholder?”. An example for this
is: “Which business objects are exchanged over which interfaces?”. For a concern at
least one methodology pattern is given, which provides the reader with steps to be
taken in order to address the given concern. Methodologies range from group
discussions to visualizations to formal methods like metric calculations. For each
methodology pattern there exists at least one view pattern that providing languages for
the methodology pattern. Furthermore, such a view pattern is a way to visualize the
data contained in information patterns. The underlying meta-models for the views
given in one or more V-patterns are provided with the information pattern.

The catalogue does not give recommendations on methods combining several of

these patterns or how to embed them into a process. Concerns are distributed among
the categories “Application Landscape Planning”, “Infrastructure Management”,
“Interface, Business Object, and Service Management” and “Support of Business
Processes”.

In [Matthe08] no planning or change strategy is specified. However, concrete

architecture strategies are given as concerns in an informal way. For this reason, the
catalogue can be used to identify relevant strategies (or concerns) for EAM.
Unfortunately, no measurement method for the concrete concerns is suggested.

Enterprise Architecture Management is also covered by a well-known framework.

The Open Group Architecture Framework (TOGAF) as described in [Haren07] and
[HarenV09] consists of seven parts from which the first one is an introduction. The
others are depicted in Fig. 2-15. Part two and three cover an architecture development
method, whereas part three contributes guidelines and techniques for the development
method. The fourth part describes the Architecture Content Framework, which
provides a structural model for architectural content created by the architect. It allows
the major work products of the architect to be consistently defined, structured, and
presented. Part five presents the enterprise continuum. Its purpose is to aid in
communication between enterprise architects and to aid in organizing re-usable
architecture and solution assets. It presents a classification mechanism for architecture
assets, such that architectures from different contexts can be made comparable. Part

Model-Based Evaluation of Service-Oriented Enterprise Architectures

31

six contains two reference models, a technical and an integrated information reference
model. They provide taxonomies, each with a visual representation for their domain.
Part seven contains the architecture capability framework. In order to provide an
architecture capability an enterprise has to have organization structures, processes,
roles, responsibilities, and skills of employees. The framework shows these artefacts,
their dependencies, and ways how to manage them.

Fig. 2-15: Overview of the TOGAF Framework [HarenV09]

The Architecture Development Method (ADM), as depicted in Fig. 2-16, constitutes
the core of the TOGAF Framework. The ADM is iterative, over the whole process,
between phases, and within phases. For each iteration of the ADM, a decision has to
be taken concerning the breadth of coverage, the level of detail and the time horizon.
These decisions should be assessed concerning the resources and competences needed
and the value generated. As the ADM is generic, it is expected to be extended as
needed for the specific context. However, the ADM of TOGAF suggests a
reengineering-like method for architecture planning but no measurement mechanism
on architecture strategies.

 Chapter 2 Basic Concepts, Requirements and Related Work

 32

Fig. 2-16: The TOGAF Architecture Development Method [HarenV09]

So far, it has been pointed out that EAM concerns the planning of the EA to
transform it into a form of higher quality. From Enterprise Architecture Management a
parallel to the concept of Component Based Architecture (CBA) exists. In
[MyersG73] this concept is described. As there are several degrees of freedom in
tailoring components, there are also different quality attributes for Component Based
Architectures.

Two major quality attributes are coupling and cohesion. These attributes and

metrics for them are presented in [Steven74] and [Bieman94]. According to
[Steven74] coupling between components is regarded as low if there are only simple
and obvious interfaces between them. In addition, the number of interfaces should be
small and the exchanged content shall mainly be data. If the interfaces are complex,
refer to internal elements of other components and have control over other
components, then the coupling is regarded as strong.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

33

Cohesion is closely related to coupling as it refers to the “relatedness” of the

internal parts of a component. A high cohesion means that the component can hardly
be split into separate components, because the internals are working together very
close. A low cohesion means that it is possible to identify subcomponents within a
component that have low coupling. That is why coupling and cohesion are closely
related to each other.

Most interesting for an approach taking care of the quality of architectures are the

formal metrics that are defined for coupling and cohesion. In [Bieman94] the quite
weakly defined term of cohesion is now defined by the number of data tokens that are
used in more than one slice of a program respectively component. A program slice is
the portion of program text that affects a specified program variable (compare
[WeiseR91]). There are deterministic rules how to compute these figures. The result is
a comparable degree of cohesion for components. The idea of measuring quality with
formal methods makes sense if the automation helps to examine a great number of
components. This approach could be used analogously for enterprise architectures and
their quality attributes, as they are often very large.

2.2.2 Comparison of EAM definitions

Having presented several approaches concerning EAM, the characterizing
dimensions of EAM are formulated in order to be able to compare the existing
definitions.

At first, the term management is examined a little further. Typical for management

in many areas (e.g. motor management or total quality management) is the
establishment of a management system. Such a system implements the management
cycle as depicted in Fig. 2-17.

The management cycle is closely related to a concept widely spread and used in

electrical and mechanical engineering – the feedback control system. Without the last
step of measuring the results, it is comparable to an open loop control system. An
example in mechanical engineering is a car going at constant speed. Without
measuring the speed constantly, it is impossible to hold the same speed all the time.
The only thing the driver can influence is the angle of the gas pedal. However, the
same angle of the gas pedal does not guarantee a constant speed, as there are too many
speed-influencing factors. The speed of a car is influenced by the road incline, wind,

 Chapter 2 Basic Concepts, Requirements and Related Work

 34

air pressure influencing the efficiency of the engine, and so on. The driver – or the
cruise control system – needs to measure the current speed and to adjust the gas pedal
to the right angle. Only then, the desired speed will be kept over time. For the
enterprise architecture, this means that all four steps of the management cycle have to
be implemented.

Enterprise
Architecture

1.Plan

2.Implement4.Measure

3.Run

Fig. 2-17: The management cycle

The first step is to plan the object to be managed. Goals and strategies have to be

formulated that steer the transformation direction of the managed object. It will be
hard to find adequate ways to change the current situation so that it will fulfil given
requirements without making a plan of complex structures. Planning is usually
influenced by architecture strategies. Following the SOA style is one of them.

 The second step is to implement what was planned before. Again modelling is

helpful for this task, as concrete changes should be derived from a model and packed
into portions of adequate size.

The third step is running the implemented solution. In the context of enterprise

architecture, it means to operate the enterprise. This lies out of the responsibility of the
management system.

 The fourth step is crucial for management systems. In order to control whether the

previously formulated strategies have been fulfilled, a measurement has to take place,
so that the planned system can be compared to the actual state..

Planning, implementing and operating are what is mostly done anyways, but

measuring and controlling the result is not a matter of course. On the one hand, the
implementation of concrete changes has to be measured and on the other hand, it has

Model-Based Evaluation of Service-Oriented Enterprise Architectures

35

to be checked whether all the architecture strategies have been followed. Controlling
the strategy gets more and more important the more complex the managed structure is.
Usually, enterprise architectures are highly complex.

 The first characterizing dimension of EAM is the planning coordination that is

primarily related to step one. On the one hand, there can be several instances in an
enterprise planning the enterprise architecture. On the other hand, this can be done
centrally. A centralization of planning is suggested in all approaches. Only in
enterprises not following an EAM approach, the planning is often decentralized.

Most of the characterizing dimensions are leaned to this definition of a management

cycle. The first characterizing dimension is also related to step one and identified as
the planning strategy. It concerns the way to find change projects and has two main
alternatives. The defensive alternative is to wait on opportunities for a change. When
an element of the enterprise architecture is created or changed due to pure functional
reasons, then it is implemented in a way that it fits in the target architecture. The more
aggressive alternative is to reengineer the enterprise architecture. Reengineering
requires to model the as-is state and to have a target state for the architecture.

The second characterizing dimension is the change strategy related to step two.

What size are the steps to be implemented? A complete rebuild is possible if the
existing system is not very complex or very different from the target system.
Furthermore, partial rebuilds exchanging whole components of a system are possible.
The last option is the smoothest way, as it suggests a steady evolution of the system.

The third characterizing dimension is the architecture strategy formulation. A

strategy is usually formulated informally or not at all. However, there is also the
possibility to formulate an architecture strategy as a metric like in the case of the CBA
concepts coupling and cohesion.

This leads to the fourth characterizing dimension - the measurement of architecture

strategy. The measurement can be omitted, expert-based or be supported in an
automated way. Even for experts it is a challenging task to decide whether a strategy is
realized or not if there are no concrete metrics for the strategy. A strategy formulation
that is machine-readable is a premise for the automated measurement of architecture
strategy realization. If this is given, the measurement of architecture strategy could be
automated.

 Chapter 2 Basic Concepts, Requirements and Related Work

 36

 Planning
strategy

Change
strategy

Architecture
strategy
formulation

Architecture
strategy
measurement

[DernGe03] Reengineering Evolution Informal None
[Engels08] Reengineering Evolution Informal None
[Matthe08] Reengineering Evolution None None
[Nieman05] Reengineering Evolution Informal None
[Haren07] Reengineering Evolution Informal None
[Bieman94] - Partial rebuild Metric-based Expert-based

2.2.3 Choices for EAM-specific Dimensions

Category Alternative Adequacy
Opportunity - Planning

strategy Reengineering +
Rebuild -
Partial rebuild O

Change
strategy

Evolution +
None -
Informal O

Architecture
strategy
formulation Metric-based +

None -
Expert-based O

Architecture
strategy
measurement Automated +

Fig. 2-18: Adequacy of alternatives for characterizing dimensions of EAM

This subsection covers the identification of adequate alternatives of the characterizing
dimensions of EAM. The results are depicted in Fig. 2-18.

The first characterizing dimension is the planning strategy. A minimalist’s choice

would be to make use of opportunities. If an artefact of the enterprise architecture
shall be changed or build anyway, then the new artefact can be designed in a way that
is conform to the new target architecture. However, this approach is not very effective,
because old components that are hindering others might not be changed. Therefore a
reengineering approach with the modelling of an as-is and target architecture is
suggested.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

37

Transforming something into something different, can be done following different
change strategies. If the existing system is not very complex or very different from the
target system, a complete rebuild can be considered. For an enterprise architecture,
this is not an option because the existing system is much too valuable to be wasted in
favour of a completely new architecture. For software that is build out of components
sometimes a partial rebuild is done. If a component is written in an undesired language
or the fixing of the known bugs would take more effort than rebuilding, then single
components might be built from the scratch again. This strategy is also hardly
favourable for enterprises as the existing system and the target system will usually
have too much commonality. All of the analyzed references suggest a rather smooch
advancement in transforming the enterprise architecture. This smooth advancement is
here referred to as evolution. It is regarded as the best option for the introduction of an
SOA.

The formulation of the architecture strategy is often done informally. The

disadvantage of strategies or goals that are defined informally is that it is hard to tell
whether they are fulfilled or not. This also depends on the understanding of the
individual employee. For this reason, the formulation of metrics for strategies is
helpful as there is less freedom for interpretation and the result is measurable.

The architecture strategy measurement is not considered in EAM approaches.

However, its omission may lead to planned actions that do not follow the wanted
strategy. For this reason, the measurement is regarded as essential. There is a
disadvantage if experts try to follow these strategies with their actions. For complex
structures and complex strategies, it gets harder to have everything in mind and to
evaluate the situation in the right way. This is why an automated support for strategy
measurement is suggested.

Having found the desired alternatives for Enterprise Architecture Management, they

are illustrated in Fig. 2-19. Finally yet importantly, SOA has to be taken care of,
which is done in the following two sections.

 Chapter 2 Basic Concepts, Requirements and Related Work

 38

Process ProductProduct

EA SOA-like EATransformation

Reengineering

Opportunistic changes

EAEA

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Integration Points

No meta content
cohesion

Holistic Modelling

Integration Points

No meta content
cohesion

Holistic Modelling

Partly variable meta
content

Variable meta content

Fixed meta content

Partly variable meta
content

Variable meta content

Fixed meta content

Set of views

Individual views

Fixed view

Set of views

Individual views

Fixed view

Partial rebuild

Rebuild

Evolution

Informal strategy
formulation

No strategy
formulation

Metric-based strategy
formulation

Expert-based strategy
measurement

No strategy
measurement

Automated strategy
measurement

Fig. 2-19: Preferred characterization alternatives for EA and EAM

2.3 Service-Oriented Architecture

The existing SOA definitions are presented and compared concerning their
characterizing dimensions in this section. In the manner of the previous section, the
SOA definitions are examined and compared concerning their characterizing
dimension. Afterwards, the choice of the best alternatives is discussed.

2.3.1 About the Service Paradigm and SOA

Defining Service-Oriented Architectures, the term service has to be defined. At least
since the SOA-hype started, the term service has several meanings in an enterprise. On
the one hand, there are services in the business sense that are brought by an enterprise
for a client. These are mostly complex processes with mandatory accounting and
specific Service Level Agreements (SLA). On the other hand, there are SOA services,
whose character will also be enlightened in this section. In the following, service and

Model-Based Evaluation of Service-Oriented Enterprise Architectures

39

SOA definitions from the sources [OASISR06], [Dostal05], [WoodsDo6], [Sieder07],
[ErlTho06], [ErlTho09], [Krafzi06], [Winter08], and [Bianco07] are presented.

From the Organization for the Advancement of Structured Information Standards

(OASIS) point of view, which has established an official standard with its SOA
Reference Model (compare [OASISR06]), a service is strongly related to needs and
capabilities, because it should bring them together. A capability is the ability to
perform work. Capabilities already exist in the environment of an enterprise, they are
owned by IT-systems, people and organisations.

Though capabilities already exist, services as meant in the context of SOA (SOA

services) not necessarily exist in the same enterprise. A service is more than a
capability, as it makes one or more capabilities accessible by an interface and disposes
of a specification of the work that it can perform, included in a so-called service
contract. If SOA is new to the reader, it is recommended to read the OASIS Reference
Model (compare [OASISR06]). It provides a vocabulary for Service-Oriented
Architectures and allows people to achieve a common understanding when talking
about services.

“A service is a mechanism to enable access to one or more capabilities, where the

access is provided using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description. A service is provided
by a service provider. Moreover, the service is to be consumed by a service consumer.
However, the potential consumers of the service might not be known to the service
provider in advance. Furthermore, the consumers could make use of the service
beyond the scope that was originally conceived by the provider. A service is accessed
by means of a service interface, where the interface comprises the specifics of how to
access the underlying capabilities. There are no constraints on what constitutes the
underlying capability or how the service provider implements the access to the
service.

Thus, the service could carry out its described functionality through one or more

automated and/or manual processes. These could invoke other available services. The
consequence of invoking a service is a realization of one or more real world effects.
These effects may include:

1. Information returned in response to a request for that information,
2. A change to the shared state of defined entities, or

 Chapter 2 Basic Concepts, Requirements and Related Work

 40

3. Some combination of (1) and (2).

Note, the service consumer in (1) does typically not know how the information is

generated, e.g. whether it is extracted from a database or generated dynamically. In
(2), he does typically not know how the state change is effected.

The service concept above emphasizes a distinction between a capability that
represents some functionality created to address a need and the point of access where
that capability is brought to bear in the context of SOA. It is assumed that capabilities
exist outside of SOA. In actual use, maintaining this distinction may not be critical
(i.e. the service may be talked about in terms of being the capability) but the
separation is pertinent in terms of a clear expression of the nature of SOA and the
value it provides.”

 (OASIS Reference Model [OASISR06])

The OASIS is a global consortium that drives the development, convergence, and

adoption of e-business and web service standards. It does not clearly describe how a
Service-Oriented Architecture itself looks like as it provides a reference model only.
Realizations of it can have many different faces. The OASIS regards SOA as an
architecture that follows the concepts of visibility, interaction, and effect.
Furthermore, there are entities (people and organizations) offering capabilities and
acting as service providers. The ones who make use of services are called service
consumers. The service description allows prospective consumers to decide if the
service is suitable for their current needs and establishes whether a consumer satisfies
any requirements of the service provider.

Dostal ([Dostal05]) firstly specifies three actors in a Service-Oriented Architecture;

the service provider, the service requester and the service registry as shown in Fig. 2-
20. This well-known service triangle is also quite abstract, but depicts a basic idea of
the service paradigm.

Service
Registry

Service
Provider

Service
Requestor

Publish

Interact

Search/Reply

Fig. 2-20: Web Service Triangle from [Dostal05]

Model-Based Evaluation of Service-Oriented Enterprise Architectures

41

At first the providing service is published in the registry, afterwards the requestor
searches the registry and hopefully finds a suitable service for its demands and can
then interact with the provider. A service, as defined by Dostal, is a program or a
software component underlying the concept of information hiding. This means access
may only happen via a publicly described interface. This form of encapsulation is
compared with the plug-in concept that is similar but less useful due to inflexible
interfaces.

A service should be represented by a web service, which needs a properly described

interface from the point of view in [Dostal05]. The Web Service Description
Language (WSDL, compare [Christ01]) is the method of choice so far, but semantic
issues are not properly covered by that and therefore additional documentation is
useful.

In [WoodsDo6] SOA is motivated with the need of new processes that have arisen

in enterprises due to changing markets and globalization. These new processes span
several segments in an enterprise. Moreover, existing systems like SCM and CRM do
not properly support the processes as the systems focus on their segments only.

According to [WoodsD06] the flexibility demand increases with the shortening of

life cycles. During the last hundred years process execution times, product life cycles
and process life cycles (change management) have drastically decreased. Especially
the shortening of process life cycles is hard to realize with traditional enterprise
architectures, however these maybe efficient but just as long as flexibility is not
required.

Because of ongoing changes in the enterprise environment, more flexibility of IT is

demanded that can only be brought by a new architecture. That architecture should
solve integration needs so that application-spanning workflows should be easily
realizable. According to [WoodsD06] an architecture not holding process control in a
separate and maintainable entity but having it scattered over applications (where it is
often even hard-coded) and humans will hardly prove out to be efficient in the next
decade.

According to Siedersleben, SOA is a concept providing an architecture for

(software) system landscapes (compare [Sieder07]). System landscapes are
characterized by their evolving structure just like networks of motorways. They are
never finished and never perfect. In such a network, road works permanently exist and

 Chapter 2 Basic Concepts, Requirements and Related Work

 42

sometimes previously made design decisions turn out to be false afterwards. Coping
with these facts alone demands a flexible architecture, but in addition, system
landscapes contain redundancies that are not wanted but are inevitable up to certain
extent and system landscapes are massively heterogeneous. It is desirable that an
architecture minimizes the negative impact of these characteristics. Therefore,
Siedersleben suggests three attributes for an appropriate architecture. Firstly, systems
are loosely coupled which means they communicate asynchronously and react robust
on failures of other systems. Secondly, systems exclusively communicate over well-
defined interfaces and thirdly the workflow control is a separate component, so that
systems do not need to “know” much of each other. The service is an ideal element to
support these attributes.

Thomas Erl ([ErlTho06]) defines services by their attributes that clearly belong to

his principles of service orientation. Services (should) adhere to the principles of
reusability, formal contract, loose coupling, abstraction, composability, autonomy,
statelessness, and discoverability. Erl thinks of services as a way to offer work for
other entities following the previously named principles.

Thomas Erl states that a Service-Oriented Architecture cuts into four logical

components:

 Messages
 Operations
 Services
 Processes

The first item, messages, represents units of communication containing the data

required to complete some or all parts of a unit of work. An operation stands for a
simple unit of work. Several units of work comprise to a unit of processing logic
called a service. This service represents the logic required to process messages in
order to complete a unit of work. Finally yet importantly, a process is the coordinated
aggregation of units of work and contains business rules that determine which service
operations are used to complete a unit of automation. Fig. 2-21 depicts the relationship
between these components:

Model-Based Evaluation of Service-Oriented Enterprise Architectures

43

Automation logic

Processing logic

Work

Work

Work

Work

Processing logic

Work

Work

Work

Work

Units of

communication

Process

Messages

Service

Operations Operations

Service

Fig. 2-21: Primitive view of how SOA modularizes automation logic as in [ErlTho06]

Services

Messages

Operations

Process
instancescompose

logically
group

send and
receive

execute a
series of

Fig. 2-22: How components of the SOA relate [ErlTho06]

As the figure above shows, operations send and receive messages to perform work.
A service logically groups a collection of related operations. A process instance can
compose services and at the same time may only require a subset of the functionality
offered by the services.

The SOA Design Pattern Catalogue [ErlTh09] contains over 80 patterns for the

design of a Service-Oriented Architecture. There are basic and compound patterns that

 Chapter 2 Basic Concepts, Requirements and Related Work

 44

consist of several basic patterns. The patterns are described following an informal
schema that can be seen in Fig. 2-23:

SOA Pattern “Event-Driven Messaging”

Problem
Events that occur within the functional boundary encapsulated by a service may be of relevance
to service consumers, but without resorting to inefficient polling-based interaction, the consumer
has no way of learning about these events.

Solution
The consumer establishes itself as a subscriber of the service. The service, in turn, automatically
issues notifications of relevant events to this and any of its subscribers.

Application
A messaging framework is implemented
capable of supporting the publish-and-
subscribe MEP and associated complex
event processing and tracking.

Impacts
Event-driven message exchanges cannot
easily be incorporated as part of Atomic
Service Transaction, and publisher/
subscriber availability issues can arise.

Principles
Standardized Service Contract, Service
Loose Coupling, Service Autonomy

Architecture
Inventory, Composition

Fig. 2-23: SOA Pattern example from [ErlTh09]

These patterns can be useful to get an idea in where the development of single
aspects of an SOA landscape should be directed. This is very useful if a single
problem occurs that fits to a pattern. However, within the development of a system
landscape, there are always several topics to be covered at the same time and these
will have intersections. Therefore, the problem of system landscape is not solved
completely with these patterns but they help choosing the right direction.

Another author being observed here is Krafzig ([Krafzi06]) who states that a service

is built up as shown in the figure below. Krafzig’s service definition is more detailed
and therefore less abstract.

Service

Interface Implementation Contract

Data Business Logic

Service

Interface Implementation Contract

Data Business Logic

Fig. 2-24: Elements of a service as in [Krafzi06]

Model-Based Evaluation of Service-Oriented Enterprise Architectures

45

The contract includes all descriptions of the service. The form of these descriptions
is not fixed at all and does not have to be formal, though formal descriptions like IDL
or WSDL for interfaces may have great benefits. The contract describes:

 Interface
 Purpose
 Constraints
 Functionality
 Availability
 Accessibility
 Visibility

The interface, as described in the contract, enables interaction between service

provider and service consumer. Functionality is made accessible by it. The
implementation provides business logic and data and thereby fulfils the contract.

A service is a black box from the client perspective. It typically encapsulates a high-

level business concept and consists of several parts shown in the figure above. They
are coarse grained and impose a strong vertical slicing of the underlying applications.

From Krafzig’s point of view, the whole concept of SOA focuses on the definition

of business infrastructure. When using the term service a business service, like get
reservation, is meant. Services provide the structure of the SOA because they often
remain unaltered while frontends, service implementations, as well as business
processes often are subject to change. Krafzig’s main elements of an SOA are shown
in the figure below:

SOA

Application
Frontend Service Service

Repository
Service

Bus

SOA

Application
Frontend Service Service

Repository
Service

Bus

Fig. 2-25: Main elements of an SOA as in [Krafzi06]

Application frontends are the active players that initiate activities of enterprise
systems. Usually they enable users to invoke services and receive the results. Services
are governed in the services repository, i.e. they are registered there and their meta

 Chapter 2 Basic Concepts, Requirements and Related Work

 46

information is given to requesting service users. The service bus connects all
participants with each other.

The introduction of SOA in enterprises is not only a technical problem but also a

governance problem. As it takes investments to establish an SOA, like hiring SOA
specialists buying tools and training people, managers are often sceptical. As long as
they do not see the monetary benefits, they are usually hard to convince. For this
reason, “The economic justification of Service-Oriented Architecture” is covered in
[Winter08] and in [Assmanb09].

The authors of the study in [Winter08] have identified two general approaches for a

business case. The first one is the SOA infrastructure business case and the second the
SOA business platform business case. The former concentrates on the benefits of the
technical infrastructure and the IT organization. This means that the reuse of services
and the reduced software development costs stand in the foreground. The business
case for the business process platform includes the infrastructure approach and
additionally covers a broader more comprehensive way of evaluating SOA. The
concept for the business process platform includes service-enabled solutions, business
intelligence, and a unified technology foundation.

The two business case approaches come with a blueprint covering quantitative and

qualitative benefits as well as upcoming costs. Within the blueprint for the
infrastructure, business case the quantitative benefit section covers categories like
development efficiency, maintenance efficiency, application lifecycle extension, and
consolidation. A category contains an example for benefits and metrics, like less
component development effort as measurement and percentage of overall
development costs as a metric. An example for a qualitative benefit is business IT-
alignment. Costs are categorized like quantitative benefits with categories like
hardware/software costs and IT change management.

The blueprint for the business process platform additionally contains the

quantitative benefit categories business process quality and productivity, innovation
and insight. Qualitative benefits cover the categories Time-to-market, mergers and
acquisitions, and business network transformation.

The business case blueprints presented in [Winter08] can be used as basis to create

an SOA business case in an enterprise. It covers an important governance topic,
namely convincing the management of the SOA concept. In the context of this work, it

Model-Based Evaluation of Service-Oriented Enterprise Architectures

47

can be seen as a tool to create the right circumstances for an SOA introduction so that
the use of sophisticated tools and methods will be financed.

In the technical report [Bianco07], the ATAM Framework (Architecture Tradeoff

Analysis Method) [Kazman00] is used to evaluate Service-Oriented Architectures.
The authors present several quality criteria that can be used to evaluate an SOA. As
the report was developed using the ATA Method, it shall provide means for a quick
analysis in the beginning of a project but is not intended to cover a whole lifecycle as
EAM intends to.

The SEI definition of SOA refers only to a landscape that is implemented with

services, whereas services can be implemented by technologies like Web Service or
CORBA. Advanced concepts like Event-Driven Architecture (EDA) and Complex
Event Processing (CEP) are only mentioned as an outlook on emerging technologies.
With this quite narrow definition of SOA, the authors state that SOA descriptions are
best given as a run time view – the component & connector view as proposed in
[Kazman00].

For the focused concepts, which are mainly services interfaces, Enterprise Service

Bus (ESB – as middleware concept) and orchestration, interesting insights are given.
Firstly, a high-level technology discussion is lead. The first question discussed is
whether service communication should be implemented with SOAP, REST or other
messaging solutions. Furthermore, the discussion covers the topics service middleware
(ESB or point-to-point) and service binding (static or dynamic). The topic service
orchestration is supposed to be realized with BPEL, which is a common way to
implement orchestrations but not the only one (compare “hard-wired orchestration” in
section 4.1). These discussions give an overview for architects which technologies are
mainly used today and what could be the right solution for its ones own requirements.

In addition to the technology discussion, questions concerning quality attributes are

given. The quality attribute is discussed and sample evaluation questions are given for
each question. The examined quality attribute topics are:

 Target platform
 Synchronous versus asynchronous services
 Granularity of services
 Exception handling and fault recovery
 Security

 Chapter 2 Basic Concepts, Requirements and Related Work

 48

 XML optimization
 Use of a registry of services
 Legacy systems integration
 BPEL and service orchestration
 Service versioning

Unfortunately, [Bianco07] lacks the full relation to Enterprise Architecture

Management, but still gives interesting and useful insights on quality questions of
Service-Oriented Architectures.

2.3.2 Comparison of Existing Definitions

As to be read on the previous pages, SOA and service definitions are nearly as
manifold as the general statements given in the section before. The authors are using
different ways to define Service-Oriented Architectures. The characterizing
dimensions are presented in the following.

The most general and abstract picture for SOA is given by the [OASIS06] followed

by [ErlTho06], [Dostal05] and then [Krafzi06]. Many authors do not establish a
relationship to enterprise architecture but focus on abstract descriptions like
[OASISR05] or technologies suitable for SOA like [Bianco07]. At the same time
[Bianco07] presents an evaluation method for SOAs, which is implicitly a relation to
Enterprise Architecture Management. Others like [Krafzi06] give describe SOA in an
enterprise context. The definition context is the first dimension for SOA definitions
with the alternatives abstract, technical, enterprise-oriented, EA-oriented or mixed.

Furthermore, there is a parallel of the SOA definitions to EA definitions - the

formalization. For EA the formalization of the model later used had to be defined.
Here, only the definition formalization is of interest. These alternatives are a meta
model as in [OASISR05] or informal descriptions as in [Krafzi06]. Thus, the
alternatives are formal syntax descriptions or informal description.

Another characterizing dimension of SOA definitions are their SOA service

definitions. The SOA service is the building block or in other words the structuring
element of the Service-Oriented Architecture. The service of course does not exist for
self-purpose. There are always entities that consume services and those that provide
services. In [OASISR05], [Dostal05], and [Krafzi06] these are mentioned namely. Erl
does not mention these roles, but also regards service as work that is offered by some

Model-Based Evaluation of Service-Oriented Enterprise Architectures

49

entity and is consumed by some other entity. Next to this purpose, descriptions always
include that an SOA service has a description or contract, an implementation, and one
or more interfaces. The differences are shown in the formulation of quality attributes
for services. For now, it is distinguished between none, few and comprehensive.

The term service registry is always used for describing an entity that allows

searching for registered services. Sometimes it is also called service repository. In this
thesis, it is distinguished between the terms registry and repository. A service registry
is found in nearly every description of an SOA, though the implementation varies and
reaches from documents to sophisticated search engines. The OASIS Reference Model
does not directly include something similar but this is because it is more general and
abstract. It demands the visibility of services, which means that there have to be
mechanisms that allow entities to find services. The implementation of such
mechanisms is most probably represented by a service registry.

The term service repository is used in [Krafzi06] as one of the elements forming an

SOA. He uses this term equivalent to service registry. However, according to several
major software provider like HP, Software AG and IBM a repository contains a
service registry and is far more than that. The functionality is similar to the
functionality of a Configuration Management Database plus the functionality of a
service registry. A repository manages user defined configuration items including
SOA services, of course. These items can be attached with document links, they can
be versioned, they can have statuses, and on top, a workflow management system can
be used that implements internal processes working on these configuration items.
Thus, a service repository is far more than a service registry.

Due to their close relation, the service registry and the service repository build a

characterizing dimension – the discoverability support. The alternatives are none,
registry only, and repository (the repository includes the registry).

The next dimension is the middleware. The term Enterprise Service Bus (ESB) is

mentioned in some definitions. In [OASISR05] and [ErlTho06], it is not mentioned at
all, but many other authors regard it as an essential element and all important software
vendors sell according products. Definitions of the ESB are sometimes vague and
always concern the communication of SOA services. The alternatives in this
dimension are not mentioned, middleware, and ESB.

 Chapter 2 Basic Concepts, Requirements and Related Work

 50

Moreover, there is a dimension that is named workflow management here. This term
is rarely mentioned in definitions, but instead the term orchestration is used the more.
The orchestration can be restricted to services that are calling each other in their
program code (hard-wired) and through an engine that is able to interpret workflow or
orchestration languages (soft-wired). The option not to mention workflow
management is also possible.

The seventh characterizing dimension is Event-Driven Architecture (EDA). The

idea behind is that asynchronous messages are sent when services are invocated and
have done some work. This concept can be supported by a complex event processor
that correlates different events according to rules specified or by a broker forwarding
events to subscribers. The alternatives are not existent, event broker and complex
event processor.

The last dimension is business process monitoring that only rarely appears in SOA

definitions. From all other authors’ statements emerges the same impression (at the
latest when looking at the detailed architecture descriptions) that services abstract
from applications and are composed to processes. That means processes are covered in
most definitions but not their management. Business process monitoring is an
important concept of a Service-Oriented Architecture that may be explicitly supported
by the Event-Driven Architecture by using the events as information source for
business process monitoring. The alternatives for it are none, and simple and EDA
supported.

In the following tables, the definitions are compared and evaluated concerning the

characterizing dimensions defined. The best choices of alternatives for the approach of
this thesis are discussed in the next subsection.

 [OASISR06] [Dostal05] [WoodsD06] [Krafzi06]
Definition
context

Abstract Technical Enterprise-
oriented

Enterprise-
oriented

Definition
formalization

Meta model Informal Informal Informal

SOA Service
definition

Few Few Few Few

Discoverability
support

Registry Registry Registry Registry

Middleware Middleware ESB Middleware ESB
Workflow Soft-wired Soft-wired Soft-wired Soft-wired

Model-Based Evaluation of Service-Oriented Enterprise Architectures

51

Management
Event-driven
Architecture

Event broker Event broker Complex Event
processor

None

Business process
monitoring

None None Simple None

 [ErlTho06] [Sieder07] [Winter08] [Bianco07]
Definition
context

Abstract
Technical

Enterprise-
oriented

Enterprise-
oriented

Technical, EA-
oriented

Definition
formalization

Informal Informal Informal Informal

SOA Service
definition

Compre-
hensive set

Few None Few

Discoverability Registry Registry Repository Registry
Middleware Middleware ESB ESB Middleware
Workflow
Management

Soft-wired Soft-wired Soft-wired Soft-wired

Event-driven
Architecture

Event broker Event broker None None

Business process
monitoring

None EDA
supported

simple None

2.3.3 Choices for SOA-Specific Dimensions

Category Alternative Adequacy
Abstract -
Technical -
Enterprise-oriented O
EA-oriented +

Definition
context

Mixed O
Informal - Definition

formalization Meta model O
Without quality attributes -
With few quality attributes O

SOA Service
definition

With a comprehensive set of attributes +
None -
Registry O

Discoverability

Repository +

 Chapter 2 Basic Concepts, Requirements and Related Work

 52

None -
Middleware +

Middleware

Enterprise Service Bus +
None -
Hard-wired O

Workflow
Management

Soft-wired +
None -
Event broker O

Event-driven
Architecture

Complex event processor +
None -
Simple monitoring O

Business
process
monitoring EDA-based monitoring +

Fig. 2-26: Adequacy of alternatives for characterizing dimensions of SOA

Fig. 2-26 shows the different alternatives for the characterizing dimensions of
Service-Oriented Architectures.

For the task given in this thesis it should be clear that EA-oriented definition context

for the SOA is desirable. This means that SOA is clearly regarded as a style of EA and
its definition is based on concepts concerning the EA. Definitions that at least use an
enterprise context and an adequate vocabulary are suitably to a limited extent only.

With respect to the formalization of the EA modelling the SOA definition

formalization should also be given, so that the benefits of the formalization can be
used for an integrated approach. Informal definitions without a meta model will be
hard to integrate into an SOA-like EA meta model.

The SOA service definition should be based on a comprehensive set of quality

attributes, because this is a premise for a measurement of their quality (needed in
EAM context).

The discoverability of SOA services should at least be supported by a registry. The

better choice is a repository supporting further tasks in the service lifecycle.

 The middleware should be provided either by a middleware technology like web

service or CORBA or by an ESB. According to some definitions, the ESB is a little
more than just a middleware, as it may enforce simple rules and monitor service

Model-Based Evaluation of Service-Oriented Enterprise Architectures

53

usage. These functions could also be implemented with the help of an Event-Driven
Architecture. Therefore, it is as useful as a simple middleware if an EDA is present.

The workflow management should be soft-wired in every case. It offers the most

flexibility and probably because of this, none of the examined references suggests
something different.

The approach of the Event-Driven Architecture should be realized with a complex

event processor that is able to analyze complex patterns in event occurrences. This is
very beneficial for business process monitoring.

The business process monitoring should be based on the complex event processing,

because there is probably no other source of information that delivers the pieces of
information so fast and so easy form all parts of the IT-landscape. Without EDA-
support, it will be hard to retrieve all the needed information in the right quality.

Process ProductProduct

EA SOA-like EATransformation

Reengineering

Opportunistic changes

EAEA

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Meta Model with
informal semantics

Self-decided language

Partly defined
language

Meta Model with
formal semantics

Integration Points

No meta content
cohesion

Holistic Modelling

Integration Points

No meta content
cohesion

Holistic Modelling

Partly variable meta
content

Variable meta content

Fixed meta content

Partly variable meta
content

Variable meta content

Fixed meta content

Set of views

Individual views

Fixed view

Set of views

Individual views

Fixed view

Partial rebuild

Rebuild

Evolution

Informal strategy
formulation

No strategy
formulation

Metric-based strategy
formulation

Expert-based strategy
measurement

No strategy
measurement

Automated strategy
measurement

Technical definition
context

Abstract definition
context

EA-oriented context

Enterprise-oriented
definition context

Mixed definition
context

Formal definition

Informal definition

Few service quality
attributes

No service quality
attributes

Comprehensive set of
quality attributes

Middleware

No middleware

Enterprise Service
Bus

Hard-wired workflow
management

No workflow
Management

Soft-wired workflow
management

Event Broker

No event processing

Complex event
processor

Simple business
process monitoring

No business process
monitoring

EDA-based business
process monitoring

Fig. 2-27: Preferred alternatives for dimensions of EA, EAM and SOA

 Chapter 2 Basic Concepts, Requirements and Related Work

 54

Fig. 2-27 depicts the preferred alternatives for all three topics examined. From these

chosen alternatives, the requirements for the realization of the approach of this thesis
are derived in the next section.

Having examined all the relevant topics for the thesis task, the requirements for the

approach can be derived form the chosen alternatives.

2.4 Requirement Derivation

In the previous sections, the best alternatives of the characterizing dimensions were
chosen. In order to realize the approach, the final requirements are derived in this
section. Fig. 2-28 illustrates the overview on the requirements derived from the chosen
options.

Firstly, the requirements arising from the chosen EA dimension alternatives are

identified. Supporting an individual views is a requirement as-is. The description of
the enterprise architecture with a structured syntax means that there has to be an
enterprise architecture formalization in form of a meta model. As enterprises are very
individual in their structure, there should not be a fixed meta model for all enterprises.
Instead, the formulation of an individual EA meta model should be possible. The
holistic modelling of the enterprise architecture is also directly taken as a requirement.
Nearly all the requirements so far should be concerned in the tool support. The
individual meta model does not because it will be overridden by another requirement
(integrated language for EA and SOA).

Secondly, the EAM alternatives are focused. The evolutionary character of the

approach together with the quite low SOA experience level of many architects leads to
the requirement of a methodical approach. The methodical approach formulates a
sequence of actions to get to the desired result. As the evolutionary approach requires
many small improvement steps, improvement suggestions on how to redesign the
enterprise architecture are noted as a requirement. The reengineering approach also
benefits from these suggestions. Moreover, reengineering requires the as-is and target
modelling. The metric-based strategy formulation requires the formulation of SOA
conformance criteria, as SOA is to be seen as the strategy (or style) for the enterprise
architecture. Improvement suggestions and as-is & target modelling should be tool
supported. The methodical approach cannot completely be tool supported, as the
creation of an individual tool might be part of the method. The SOA conformance

Model-Based Evaluation of Service-Oriented Enterprise Architectures

55

criteria should also be tool supported but this is a premise for the requirement
automation of criteria checks that will be identified in the next paragraph.

Process

ProductProduct

SOA-like EA

Transformation

EA

Integrated language
for EA and SOA

Individual EA meta
model

As-Is & Target
Modelling

Methodical
approach

Tool support

Holistic EA
Modelling

Automation of
criteria checks

EA Formalization

Individual views

SOA Conformance
criteria

SOA formalization

SOA definition

Improvement
suggestions

3

2

1 3

2

Low expertise of architects No common SOA definition

High number of EA objects

Meta Model with
informal semantics

Holistic Modelling

Variable meta content

Individual views

Reengineering

Evolution

Metric-based strategy
formulation

Automated strategy
measurement

EA-oriented context

Formal definition

Comprehensive set of
quality attributes

Soft-wired workflow
management

Complex event
processor

EDA-based business
process monitoring

Middleware

Comprehensive set of
quality attributes

Soft-wired workflow
management

Complex event
processor

EDA-based business
process monitoring

Middleware

1

Fig. 2-28: Requirements derived from preferred characterization alternatives

A reengineering approach is based on the idea of as-is & target modelling. Due to
the high number of assets in an EA (2), a tool should supported the modelling. As
suggested in [Engels08] there should the picture of an ideal landscape acting as a
lighthouse for the target landscape (compare Fig. 2-29). Here, the explicit modelling
of the target architecture is not followed, but the target architecture is defined by a set
of conformance criteria. An enterprise architecture fulfilling all criteria would be
equivalent to the ideal landscape. The decision for the criteria approach lies in the
easier and continuous measuring of the goal achievement. With an ideal landscape
model and an existing landscape, a comparison of both models had to be done each
time something is changed. In this thesis, the approach of formulating SOA
conformance criteria is favoured, because these can be continuously checked and
separately formulated. Being continuously checkable means the automation of
conformance criteria checks is implemented based on the formally described EA
model.

 Chapter 2 Basic Concepts, Requirements and Related Work

 56

Ideal
landscape

Minimal costs

Tim
e &

 B
udget

Q
uality &

 E
fficiency

Development-
corridor

Orientation
towards

Budget-
restriction

Target-
landscape

Existing landscape

Costs

Time

Fig. 2-29: The development corridor based on [Engels08]

Thirdly, the requirements derivable from the SOA alternatives are concerned. If the
conception of an SOA is decoupled from the enterprise architecture and the EA
management system, then the restructuring of the EA to a service-oriented style is
unnecessarily complicated. As SOA is a style of enterprise architecture, it has to be
defined in the same terms as enterprise architecture itself. That means a common
language has to be found, which is able to express SOA conformance criteria in terms
of enterprise architecture. Therefore, an integrated language for SOA and EA is
required.

The alternatives from soft-wired workflow management to EDA-based business

process monitoring are all concerning the content of the SOA definition. As none of
the given definitions covers all of the SOA contents, a definition is given in this thesis.
The result shall be an EA-oriented SOA definition.

The formal definition of SOA is also a requirement, because it is a premise for the

automated checks of the SOA conformance criteria and for the integration with the
formal EA meta model.

From now on, the requirements will be referenced with R followed by a number.

The sequence was not chosen randomly but with respect to categories that have been
found for them. The categories of requirements are depicted in Fig. 2-30.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

57

Modelling

Method

Tooling

Definition and Formalization

R10 Tool support

R11 Automation of
criteria checks

R13 Methodical
approach

R12 Improvement
suggestions

R4 Integrated language
for EA and SOA

R8 Holistic Modelling

R1 SOA definition

R6 Individual EA meta
model

R7 As-Is & Target
Modelling

R9 Individual views

R5 EA Formalization

R3 SOA Conformance
criteria

R2 SOA formalization

Modelling

Method

Tooling

Definition and Formalization

R10 Tool support

R11 Automation of
criteria checks

R13 Methodical
approach

R12 Improvement
suggestions

R4 Integrated language
for EA and SOA

R8 Holistic Modelling

R1 SOA definition

R6 Individual EA meta
model

R7 As-Is & Target
Modelling

R9 Individual views

R5 EA Formalization

R3 SOA Conformance
criteria

R2 SOA formalization

Product

EA

Meta Model with
informal semantics

Holistic Modelling

Variable meta content

Individual views

Product

SOA-like EA

EA-oriented context

Formal definition

Comprehensive set of
quality attributes

Soft-wired workflow
management

Complex event
processor

EDA-based business
process monitoring

Middleware

Comprehensive set of
quality attributes

Soft-wired workflow
management

Complex event
processor

EDA-based business
process monitoring

Middleware

Process

Transformation

Reengineering

Evolution

Metric-based strategy
formulation

Automated strategy
measurement

Fig. 2-30: Categorization of requirements

For the sake of readability, the requirements are also given in form of a list:

R1 SOA definition
R2 SOA formalization
R3 SOA conformance criteria
R4 Integrated language for EA and SOA
R5 EA Formalization
R6 Individual EA meta model
R7 As-Is & Target Modelling
R8 Holistic EA Modelling
R9 Individual views
R10 Tool support
R11 Automation of criteria checks
R12 Improvement suggestions
R13 Methodical approach

In this section the requirements derived from the three different fields EA, EAM

and SOA were elaborated, which are the foundation for the rest of the thesis. In the
next section the approaches in the field of EAM and SOA is evaluated concerning the
fulfilment of these requirements.

 Chapter 2 Basic Concepts, Requirements and Related Work

 58

2.5 Evaluation of Related Work

This section examines a part of the related approaches that have been previously
presented. This time they are not examined concerning a single basic concept but
concerning the whole set of requirements presented in the previous section. In the
following the approaches of TOGAF, Quasar Enterprise, Zachman Framework, ISA,
and the approach from the SEI are concerned.

The fulfilment of a criterion is reflected with the help of three categories. The

options not fulfilled, partly fulfilled, and mostly fulfilled are possible. Every option
covers a third of the range of values. That means if less than a third of a requirement is
fulfilled it is rated as not fulfilled, between a third and two thirds it is rated partly
fulfilled and above two thirds it is rated as mostly fulfilled.

Zachman Framework

 R1 SOA definition
The Zachman framework was created in the late 80’s and since it was never
modified concerning SOA-principles. This is the reason why the Zachman
framework does not have SOA elements defined. Thus, R1 is not fulfilled.

 R2 SOA formalization
If R1 is not fulfilled then R2 cannot be fulfilled either.

 R3 SOA conformance criteria
If R1 is not fulfilled then R3 cannot be fulfilled either. R3 is not fulfilled.

 R4 Integrated language for EA and SOA
As R1 is not fulfilled, there is no integrated language. R4 is not fulfilled.

 R5 EA Formalization
As R1 is not fulfilled, R5 is not fulfilled.

 R6 Individual EA meta model
There is no meta model predefined, thus an individual model can be defined.
As this is not part of the framework, R6 is only partly fulfilled.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

59

 R7 As-Is & Target
For the Zachman approach, the whole EA model is split up in layers and
perspectives. Each perspective of a layer has a recommendation of an
adequate model, e.g. the function view of the conceptual layer can be
expressed with a business process model. The framework does not specify a
certain languages, such as BPMN or activity diagrams. Furthermore, it is up to
the user, which set of models he chooses to work with. As freedom in
modelling languages is wanted but target modelling is not supported in the
framework the criterion R1 is regarded as partly fulfilled.

 R8 Holistic EA
The Zachman Framework does not make efforts to integrate the views
between the layers. The set of models is not integrated and it will cause high
efforts to be kept consistent. R8 is not fulfilled.

 R9 Individual views
The Zachman Framework offers a variety of views from which an adequate
set should be chosen. R9 is fulfilled.

 R10 Tool support
The Zachman Framework is not supported by a specific tool. This would also
be hard to realize as modelling languages can be chosen freely. However, it is
possible to manage diagrams with tools chosen independently. For example,
there is an add-in for the Sparx Enterprise Architect. R10 is partly fulfilled.

 R11 Automation of criteria checks
As R10 is not given R11 cannot be fulfilled either.

 R12 Improvement suggestions
As the Zachman is a framework, it cannot give any suggestions for improving
a specific enterprise architecture. R12 is not fulfilled.

 R13 Methodical approach
The Zachman Framework specifies a generic top-down sequence in that the
model should be created. Additionally, there is a set of rules. More methodical
guidelines are not given. R13 is partly fulfilled.

 Chapter 2 Basic Concepts, Requirements and Related Work

 60

TOGAF Assessment

 R1 SOA definition
TOGAF has no explicit SOA definition. However, it provides concepts for
business services and for logical applications. With this TOGAF is closer to
an SOA definition than e.g. the Zachman Framework is. R1 is partly fulfilled.

 R2 SOA formalization
As TOGAF provides extensive meta models the parts of the SOA definition is
also covered. R2 is partly fulfilled.

 R3 SOA conformance criteria
TOGAF does not provide any details on how to evaluate the quality of a
Service-Oriented Architecture. R3 is not fulfilled.

 R4 Integrated language for EA and SOA
There is a full meta-model for the EA with the partly fulfilled SOA definition.
Therefore, R4 is also partly fulfilled.

 R5 EA Formalization
As R3 is not fulfilled and R4 is only partly fulfilled R5 is not fulfilled.

 R6 Individual EA meta model
There is an EA meta model predefined, thus an individual model cannot be
defined. R6 is not fulfilled.

 R7 As-Is & Target

TOGAF provides a full meta model and smaller views on the meta model.
There are no notations for the languages specified, but this is not important.
However, target modelling is not concerned in TOGAF. R7 is partly fulfilled.

 R8 Holistic EA
TOGAF integrates all the layers it defines and provides a holistic modelling.
The requirement is completely fulfilled.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

61

 R9 Individual views
TOGAF offers a considerable set of views. However, individual views are not
supported. Therefore, R9 is partly fulfilled.

 R10 Tool support
TOGAF is supported in Enterprise Architect with the help of an MDG add-on.
Therefore, R10 is partly fulfilled.

 R11 Automation of criteria checks
As R9 is not given, R11 cannot be fulfilled, either.

 R12 Improvement suggestions
As R3 and R10 are not fulfilled, R12 cannot be fulfilled, either.

 R13 Methodical approach
TOGAF defines steps and their order on how to manage enterprise
architecture. R13 is fulfilled

Quasar Enterprise

 R1 SOA definition
Quasar Enterprise defines SOA services and puts them in the context of the
enterprise architecture via a meta-model. Not all SOA-related concepts are
described, but even attributes of services are described. Therefore, R1 is
fulfilled.

 R2 SOA formalization
There is a meta model given by Quasar Enterprise. However, service attributes
are not formalized. R2 is partly fulfilled.

 R3 SOA conformance criteria
There are no specific criteria given by Quasar Enterprise. The quality
concerning service orientation of the Service-Oriented Enterprise Architecture
cannot be evaluated. R3 is not fulfilled.

 R4 Integrated language for EA and SOA

 Chapter 2 Basic Concepts, Requirements and Related Work

 62

The EA meta-model contains the SOA elements defined by Quasar Enterprise.
R4 is fulfilled.

 R5 EA Formalization
As there is a meta model for the integrated language but R3 is not fulfilled R5
is partly fulfilled.

 R6 Individual EA meta model
There is an EA meta model predefined, thus an individual model cannot be
defined. R6 is not fulfilled.

 R7 As-Is & Target
Quasar Enterprise provides a meta model for Service-Oriented Enterprise
Architecture. There are no notations for the languages specified, but this is not
important for this requirement. Furthermore, the method concerns target
modelling. R7 is fulfilled.

 R8 Holistic EA
The Enterprise architecture definition of Quasar Enterprise does not strictly
separate the EA Layers, so that relations between elements from different
layers can be recognized.

 R9 Individual views
Quasar Enterprise offers a set of views and leaves it open to define others.
However, individual views are not further concerned in the method.
Therefore, R9 is partly fulfilled.

 R10 Tool support
The tool “Visualize IT” could not be evaluated directly. Probably not all the
requirements are fulfilled by the tool. Especially the support for conformance
criteria checks cannot be implemented, as those are not defined in Quasar
Enterprise. R10 is partly fulfilled.

 R11 Automation of criteria checks
As R3 is not fulfilled, R11 is also not fulfilled.

 R12 Improvement suggestions

Model-Based Evaluation of Service-Oriented Enterprise Architectures

63

The Quasar Enterprise Method suggests keeping a model of the ideal
enterprise architecture. An improvement would be any step of the current
situation towards the ideal model. Unfortunately, there is little advice on how
to fill the ideal model with the suitable content as no conformance criteria are
defined. Furthermore, there is no support in defining small projects improving
the current situation. Therefore, R12 is not fulfilled.

 R13 Methodical approach
Quasar enterprise delivers a comprehensive methodical approach. Therefore,
R13 is fulfilled.

Information System Architecture (ISA)

 R1 SOA definition
The ISA approach does not define elements of a Service-Oriented
Architecture, but resides on a substantial definition of enterprise architecture.
R1 is not fulfilled

 R2 SOA formalization
As no SOA definition is given, formalization cannot be given either. R2 is not
fulfilled.

 R3 SOA conformance criteria
Due to the lack of an SOA definition, conformance criteria do not exist either.
R3 is not fulfilled.

 R4 Integrated language for EA and SOA
As R1 is not fulfilled R4 is not fulfilled either.

 R5 EA Formalization
As R3 and R4 are not fulfilled this requirement is not fulfilled either.

 R6 Individual EA meta model
There is no meta model predefined, thus an individual model can be defined.
As this is not part of the framework, R6 is only partly fulfilled.

 Chapter 2 Basic Concepts, Requirements and Related Work

 64

 R7 As-Is & Target
The ISA approach does not suggest any specific forms of modelling but
demands that the views should always be aligned to the enterprise strategy. As
target modelling is not concerned, R7 is partly fulfilled.

 R8 Holistic EA
The integration between the EA layers is a weakly enforced focus of the ISA
approach. Therefore, R8 is partly fulfilled.

 R9 Individual views
The ISA suggests a set of views but leaves open their granularity. Therefore,
R9 is partly fulfilled.

 R10 Tool support
There is no dedicated tool support for ISA.

 R11 Automation of criteria checks
As R3 is not fulfilled R11 is not fulfilled either.

 R12 Improvement suggestions
The ISA cannot give any detailed improvement suggestions. R12 is not
fulfilled.

 R13 Methodical approach
There is a concept in which order the EA model shall be made but not more.
R13 is partly fulfilled.

SEI – Evaluating a Service-Oriented Architecture

 R1 SOA definition
An SOA definition is given by the SEI approach. R1 is fulfilled.

 R2 SOA formalization
Even though there is an SOA definition, no efforts have been made to describe
SOA in a formalized way (e.g. with a meta model). R2 is not fulfilled.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

65

 R3 SOA conformance criteria
There is a catalogue of questions on service-oriented enterprise architecture.
However, this catalogue does by far not cover the whole bandwidth of SOA
criteria. Still R3 is fulfilled.

 R4 Integrated language for EA and SOA
The SEI approach focuses on the SOA evaluation and does not combine it
with Enterprise Architecture Management. Therefore, R4 is not fulfilled.

 R5 EA Formalization
There is no formalization suggested by the approach, neither for the language
nor for the criteria. R5 is not fulfilled.

 R6 Individual EA meta model
There is no meta model predefined, thus an individual model can be defined.
As this is not part of the framework, R6 is only partly fulfilled.

 R7 As-Is & Target
The SEI Approach does not suggest modelling the EA in order to be able to
evaluate it. Therefore, R7 is not fulfilled.

 R8 Holistic EA
The SEI approach does not focus on holistic Enterprise Architecture
Modelling. R8 is not fulfilled.

 R9 Individual views
The SEI approach does not concern EA modelling and therefore does not state
anything about individual views. R9 is not fulfilled.

 R10 Tool support
There is no tool support for the SEI approach. R10 is not fulfilled.

 R11 Automation of criteria checks
As R10 is not fulfilled R11 is not fulfilled either.

 R12 Improvement suggestions
There are considerations of conceptual solutions for some key concepts of
SOA, e.g. synchronous or asynchronous messaging. These can be used to find

 Chapter 2 Basic Concepts, Requirements and Related Work

 66

improvements of the current architecture. Unfortunately, these are only
available for very fundamental key concepts. R12 is partly fulfilled.

 R13 Methodical approach
The SEI approach indirectly defines a method by presenting an evaluation
example. R13 is partly fulfilled.

Zachman
Framework

TOGAF
Quasar
Enterprise

Information
System
Arch.

SEI
approach

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13

 fulfilled partly fulfilled not fulfilled

Fig. 2-31: Appropriateness of existing approaches

First of all, Fig. 2-31 shows that none of the existing approaches can fulfil the
requirements placed. There are two EAM approaches, the Zachman Framework and
the Information System Architecture, lacking an SOA definition. This makes them
also inappropriate for fulfilling other requirements. However, the Zachman
Framework describes an interesting variety of modelling approaches. The SEI
approach is the only approach that offers detailed conformance criteria for a Service-
Oriented Architecture. Overall, Quasar enterprise fulfils the most requirements of the
existing approaches. However, it still lacks conformance criteria, formalization, and
automation.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

67

Generally spoken, the existing approaches either concentrate either on SOA or on
Enterprise Architecture Management. For this reason, the thesis concept combining
both approaches will be presented in the next chapter.

69

3 Solution Concept

This chapter describes the solution concept that will be followed in this thesis. The
proposed solution shall fulfil the derived requirements as far as possible. For this
purpose, the concept is stepwise defined and illustrated in the next section. In the
second section of this chapter, an overview on the chapters covering the single
realization steps is given.

3.1 Designing a Solution Concept

In this section, the solution concept is elicited stepwise. It is aligned with the
general solution concept depicted in Fig. 1-3 and aims at realizing the requirements
from section 2.4. At the end of the section, it will be shown that the elaborated
solution is aligned with the general solution approach.

In the following, the realization of each requirement is discussed with respect to the

previously mentioned general solution concept. Each time when a portion of the
solution has been defined, the central solution figure (starting with Fig. 3-2) will be
updated. To have the requirements present, they are repeated in Fig. 3-1.

Modelling

Method

Tooling

Definition and Formalization

R10 Tool support

R11 Automation of
criteria checks

R13 Methodical
approach

R12 Improvement
suggestions

R4 Integrated language
for EA and SOA

R8 Holistic Modelling

R1 SOA definition

R6 Individual EA meta
model

R7 As-Is & Target
Modelling

R9 Individual views

R5 EA Formalization

R3 SOA Conformance
criteria

R2 SOA formalization

Modelling

Method

Tooling

Definition and Formalization

R10 Tool support

R11 Automation of
criteria checks

R13 Methodical
approach

R12 Improvement
suggestions

R4 Integrated language
for EA and SOA

R8 Holistic Modelling

R1 SOA definition

R6 Individual EA meta
model

R7 As-Is & Target
Modelling

R9 Individual views

R5 EA Formalization

R3 SOA Conformance
criteria

R2 SOA formalization

Fig. 3-1: Listing of categorized requirements

 Chapter 3 Solution Concept

 70

R1 demands an SOA definition. The definition of SOA shall preferably include all
concepts identified in the related work section. R2 demands that this definition shall
be formalized, which will be done in form of a meta model. A UML conform meta
model is chosen, because it will ease the realization of the tool support. The definition
of SOA and the derivation of the SOA meta model are described in chapter 4. Fig. 3-2
illustrates this part of the solution concept. Requirements are illustrated with ellipses.
They are preferably situated on the upper left corner of the items they are related to.

SOA Meta Model

Service-Oriented
Architecture

Definition

derive

R1

R2

Fig. 3-2: Solution concept for R1 and R2

With R5, the formalization of EA is demanded. This requirement is closely related
to R6 demanding the freedom to bring in an individual EA meta model into the
solution. Individual EA meta model does not mean an entirely individual meta model.
To ensure that it is an EA meta model, a frame for an EA definition is given and a
small set of fixed meta model entities will be defined. By this, the holistic modelling
as demanded by R8 will also be realized.

Service-Oriented Enterprise Architecture
Meta Model

SOA Meta Model Individual EA
Meta ModelMerging

Service-Oriented
Architecture

Definition

Enterprise
Architecture

Definition Frame

derive derive

R1

R2

R6

R5
R6R4

R4

R8

R8

Fig. 3-3: Solution concept extended by R5 and R6

Model-Based Evaluation of Service-Oriented Enterprise Architectures

71

An integrated modelling language for SOA and EA is demanded by R4. The
integration of the language is also a reason for having chosen meta models as formal
language definitions for SOA and EA. If having commonalities, two meta models can
be merged to one. To ensure some commonalities an EA definition frame is given and
a minimal EA meta model is derived from it. The two resulting meta models shall be
merged, which is not a simple task. For this reason, a method to realize the merging
will be described here. The result of the merging will be the Service-oriented
Enterprise Architecture (SOEA) meta model. It realizes R4, which demands an
integrated modelling language for SOA and EA. The meta model merging and the
resulting SOEA meta model also support the fulfilment of R8.

Service-Oriented Enterprise
Architecture Meta Model

derive derive

Service-Oriented
Architecture

Definition

R1
Service-Oriented

Architecture
Definition

R1

SOA Meta Model

R2

SOA Meta Model

R2

Enterprise
Architecture

Definition Frame

R6
R8 Enterprise

Architecture
Definition Frame

R6
R8

Individual EA
Meta Model

R5
R6

R8
Individual EA
Meta Model

R5
R6

R8

Meta model
Merging

leads to

input for
R4

R4

Fig. 3-4: Solution concept extended by R4

Furthermore, the method has to provide conformance criteria for service orientation
as demanded by R3. These criteria are formulated in form of an SOA quality criteria
catalogue. This catalogue will be divided in architecture quality criteria and Service
quality criteria. The former mainly concerns the structure of elements in the SOEA.
The latter concerns SOA services only and formulates requirements for well-designed
SOA services. In Fig. 3-5 the SOA quality criteria catalogue is added to the solution
concept. Furthermore, the SOEA model as instance of the SOEA meta model is
depicted. Taking up the information for this model is not covered here, as the sources
for information will be different from enterprise to enterprise. The creation of the

 Chapter 3 Solution Concept

 72

model has to be realized by the enterprise architect and his team as an individual piece
of work.

Service-Oriented Enterprise
Architecture Meta Model

SOEA Model

derive derive

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Service-Oriented
Architecture

Definition

R1
Service-Oriented

Architecture
Definition

R1

SOA Meta Model

R2

SOA Meta Model

R2

R3

R3

R3

Enterprise
Architecture

Definition Frame

R6
R8 Enterprise

Architecture
Definition Frame

R6
R8

Individual EA
Meta Model

R5
R6

R8
Individual EA
Meta Model

R5
R6

R8

instance of

Meta model
Merging

leads to

input for
R4

R4

Fig. 3-5: Solution concept extended by R3

In order to make the SOA conformance criteria applicable to the SOEA meta model
in an automated way (required because of R11), the criteria have to be made
measurable and then automated. The former is done by defining metrics and indicators
for the SOA conformance criteria. A metric defines a measure, as well as a measuring
point. An indicator defines how to interpret the measures. Automation is achieved by
tool support that is demanded in R10. The as-is and target modelling as demanded by

Model-Based Evaluation of Service-Oriented Enterprise Architectures

73

R7 are realized by the automated checking of the conformance criteria. That means
that there is only one model at a time. An extra target model with the ‘perfect’ SOA-
like EA (perfect in the sense of service-orientation) is not needed because all changes
that lead to the fulfilment of the conformance criteria will lead the EA model towards
the ‘perfect’ SOA-like EA. To have an overview how far the EA is away from the
target, a check of the conformance criteria should result in a report on the fulfilled and
unfulfilled criteria. The update of the solution concept is depicted in Fig. 3-6.

“SOA-Meter” Tool Support

Service-Oriented Enterprise
Architecture Meta Model

SOEA Model

Conformance
Report

derive derive

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Service-Oriented
Architecture

Definition

R1
Service-Oriented

Architecture
Definition

R1

SOA Meta Model

R2

SOA Meta Model

R2

Indicators

Metrics

applied
on

Automated
evaluation

i

results
in

R3

R3

R3

Enterprise
Architecture

Definition Frame

R6
R8 Enterprise

Architecture
Definition Frame

R6
R8

Individual EA
Meta Model

R5
R6

R8
Individual EA
Meta Model

R5
R6

R8

instance of

Meta Model
Merging

leads to

input for
R4

R4

R10

R7

R7

R7

R7

R11

R11

R11

R11

R11

R8

R8

R4
R8

Fig. 3-6: Solution concept extended by R7, R10 and R11

 Chapter 3 Solution Concept

 74

“SOA-Meter” Tool Support

Service-Oriented Enterprise
Architecture Meta Model

SOEA Model

Conformance
Report

Recommen-
dations

derive derive

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Service-Oriented
Architecture

Definition

R1
Service-Oriented

Architecture
Definition

R1

SOA Meta Model

R2

SOA Meta Model

R2

Indicators

Metrics

applied
on

Automated
evaluation

i

results
in

derive

R3

R3

R3

Enterprise
Architecture

Definition Frame

R6
R8 Enterprise

Architecture
Definition Frame

R6
R8

Individual EA
Meta Model

R5
R6
R8

Individual EA
Meta Model

R5
R6
R8

instance of

Meta Model
Merging

leads to

input for
R4

R4

R10

R7

R7

R7

R7

R11

R11

R11

R11

R11

R8

R8

R4
R8

R9

R12

Method Supporting SOA Introduction
R13

Fig. 3-7: Solution concept extended by R9, R12 and R13

Model-Based Evaluation of Service-Oriented Enterprise Architectures

75

The individual views as demanded in R9 have to be realized via the tool support.
From the report of SOA conformance some suggestions and recommendations on
changes of the architecture should be given. The derivation of these will be covered in
this thesis. For this reason, the fulfilment of R12 is given. Finally yet importantly, the
methodical approach as in R13 is given by the concept that has been described in this
section. All the steps described can be followed by an enterprise architect, so that he
receives a system allowing SOA conformance checks. That means the whole figure of
the solution concept describes the demanded method at the same time. The complete
solution concept can be seen in Fig. 3-7.

Now the general solution concept is picked up again. It will be shown how the basic

concept has been realized with the solution concept elaborated in this chapter. It will
not be explained here, why some of the realizations have been chosen. This will be
done in the according chapters. The chapter content is explained in the next section.

Tool support
Eclipse SOA-Meter(EMF + GMF + OCL)

Real world
system

Enterprise
Architecture

Quality
properties

SOA-like EA

Model

SOEA meta
model

Quality criteria
for model

SOA quality
criteria catalogue

Evaluation

Metrics and
indicators

Transformation/
Refinement

Abstraction

Specification

Fig. 3-8: Realization of the basic solution concept

Figure Fig. 3-8 depicts the realization of the basic solution concept. The real world

system is the enterprise architecture that has been recognized as the object of change.
The high-level quality property that the EA should fulfil is to be an SOA-like EA. The
refinement of this criterion will lead to the SOA quality criteria catalogue. The criteria
will be evaluated with the help of metrics and indicators working on the SOEA meta
model. The SOEA meta model is the realization of the modelling for our approach.
SOEA meta model, as well as the metrics and indicators for the SOA quality criteria

 Chapter 3 Solution Concept

 76

catalogue will be implemented in an eclipse-based prototype. The prototype mainly
uses the eclipse modelling framework (EMF), the graphical modelling framework
(GMF) and a plugin using the Object Constraint Language (OCL, compare
[OCLspe06]) for the evaluation of the metrics defined on the meta model.

Having defined a solution concept, it has to be clarified in which sequence the

realization is described. This is done in the next section.

3.2 Thesis Structure

On the basis of the defined solution concept, the sequence of the realization steps will
be set. For this reason, the structure of the remaining thesis is described in this section.
In Fig. 3-9 the distribution of the steps over the chapters is illustrated. The pentagon
on the upper right corner indicates that the solution concept item is covered in the
according chapter.

The first step is to define Service-Oriented Architecture in the enterprise context
including the motivation and benefits of this architectural style. Part of this section is
an illustration of the development of enterprise architectures since the upcoming of IT
systems. Afterwards a frame for the definition of EA is given. It leaves open the
necessary degrees of freedom to define an individual EA. The EA and SOA
definitions are given in chapter 4.

Afterwards, the formal part for modelling is described. Chapter 5 contains the

description on how the Service-Oriented Architecture meta model is derived from the
SOA definition. In addition, a minimal enterprise architecture meta model is given.
For architects that do not have made up their mind about an EA meta model, an
example on how to create such a meta model is described. The resulting EA meta
model is then used as example for the following merging process. The resulting meta
model is named the Service-Oriented Enterprise Architecture (SOEA) meta model. It
has the advantage that the resulting meta model can be used for enterprise architecture
planning and for evaluating service orientation of the enterprise at the same time. The
description of the merging method includes an example of an SOEA meta model that
completes chapter 5.

The resulting SOEA meta model has the ability to describe enterprise architectures

that are not service-oriented as well as service-oriented ones. To identify the parts of
the architecture that are not SOA conform an SOA quality criteria catalogue is put up

Model-Based Evaluation of Service-Oriented Enterprise Architectures

77

in chapter 6. The catalogue is divided into two major parts. Firstly, the service quality
criteria, which only concern the set of services within the enterprise. Criteria like
granularity, coupling and cohesion are covered there. Secondly, the architecture
quality criteria, which evaluate the enterprise architecture concerning its conformance
to the Service-Oriented Architecture style are described. Architecture quality criteria
focus on relations between EA elements. Service quality criteria focus on services
themselves. In addition to the quality criteria, the metrics for measuring these criteria
are elaborated in chapter 6.

Chapter 7 concerns the results of the measuring defined in chapter 6. Therefore, the
indicators for the metrics are defined, so that every measure can be interpreted in the
right way. Moreover, chapter 7 presents the way a report on service orientation could
look like and which improvement recommendations can be derived from the possible
report results.

The description of the tool support that has not been treated so far will be given in

chapter 8. It enlightens the eclipse based prototype that allows defining meta models,
allows formulating conformance criteria in the Object Constraint Language (OCL
compare [OCLspe06], and allows executing these conformance checks on a given
model. The thesis is completed in chapter 9 giving a conclusion and an outlook on
possible further developments of the work presented.

With sequence in mind, the realization of the solution concept is elaborated

stepwise. It begins with chapter four delivering the required definitions.

 Chapter 3 Solution Concept

 78

“SOA-Meter” Tool Support

Service-Oriented Enterprise
Architecture Meta Model

SOEA Model

Conformance
Report

Recommen-
dations

derive derive

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Service-Oriented
Architecture

Definition

SOA Meta Model

Indicators

Metrics

applied
on

Automated
evaluation

i

results
in

derive

C4
Enterprise

Architecture
Definition Frame

Individual EA
Meta Model

instance of

Meta Model
Merging

leads to

input for

Method Supporting SOA Introduction

C4

C5

C5C5

C5

C5

C5

C8

C5

C6

C6

C6

C7

C7

C7

C6
C8

Fig. 3-9: Sequence of realizing the steps of the solution concept

79

4 Service-Oriented Enterprise Architectures

Within this chapter an own, comprehensive definition of Service-Oriented
Architecture is given. In addition, a frame for Enterprise Architecture is described.
The SOA definition is given to fulfil R1. R6 and R8 are at least partly fulfilled by
providing the EA definition frame. Fig. 4-1 shows that these definitions are needed to
be able to derive the formal meta models of each kind of model.

derive derive

Service-Oriented
Architecture

Definition

SOA Meta Model

Enterprise
Architecture

Definition Frame

Individual EA
Meta Model

Meta Model
Merging

input for

R1 R6
R8

4.1 4.2

Fig. 4-1: Contribution of chapter 4

Section 4.1 contains the two-part SOA definition for this thesis. The first of the two
subsections (4.1.1) provides the SOA reference architecture. To provide this definition
in an EA context, the historical development of enterprise architecture is examined in
this subsection. The historical outline of enterprise architecture leads to the conclusion
that SOA is an evolutionary product of enterprise architecture. The second subsection
(4.1.2) contains the SOA service definition. Purpose of the SOA definition is to
provide the basis for the derivation of a formal SOA meta model and for the quality
criteria catalogue.

In section 4.2 an enterprise architecture definition frame is described. It allows the

use of an individual EA model and will be used to derive a minimal EA meta model.

 Chapter 4 Service-Oriented Enterprise Architectures

 80

4.1 SOA Definition

This section embraces the evolutionary description of the SOA reference architecture
and the SOA service definition.

4.1.1 SOA as an Evolutionary Product of Enterprise
Architecture

The historical outline of the EA evolution shall lead to a better understanding of SOA
and an EA-oriented definition. For this reason, this section depicts the evolution of
enterprise architecture from the early beginning up to the stage of SOA as a style for
EA. SOA can be regarded as the latest step in the evolution of EA. It combines many
of the previously gained capabilities and discards some of the early ones.

To illustrate the evolution process of enterprise architectures a running example is

introduced. It is always focused on the layers reaching from the applications up to
process definitions. For every evolution step, reasons are given why the systems have
been built the way they are and why they did not suffice anymore, so that the next
evolution step was developed.

ERPCRM

Functionality

GUI

Functionality

GUI

realized by process control flow

Request Cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Fig. 4-2: IT-landscape with two monolithic applications

Model-Based Evaluation of Service-Oriented Enterprise Architectures

81

The running example of enterprise architecture starts with a very simple setting,
being depicted in Fig. 4-2. There is a process reaching from a customer request to
production up to payment handling. All steps involve human work and IT systems so
that IT systems always have to be operated via a graphical user interface (GUI). The
monolithic IT systems, namely a Customer Relationship Management system (CRM)
and an Enterprise Resource Planning system (ERP), are characterized by integrated
GUIs, huge functionality and no communication with other systems. We are aware of
the fact that the notions ERP and CRM are not as old as that kind of monolithic
systems, but the tasks they fulfil exist for a longer time.

In the beginning, monolithic systems were often developed directly on purpose,

because efficiency was a major design driver. Furthermore, the process life cycle was
much longer in the past, and processes could be implemented directly in the
applications. Therefore, the coupling of functionality in this system is very strong.
Often users and developers either were the same or had close contact.

The reasons why these systems did not suffice anymore are relatively simple: Over
time, the monolithic systems had to be adapted to (slowly) changing processes.
Maintenance effort is relatively high because every change concerning the system
requires testing the whole system. In addition, previous updates of a system make its
architecture more complex and hinder the implementation of new updates. IT-
responsible persons recognized that maintenance was a growing cost factor that should
be reduced by improving the architecture of the usually growing enterprise systems.

This leads to the novelty of components within the applications, depicted in Fig. 4-

3. The components are connected by interfaces. Often proprietary interface
technologies were used so that components could be exchanged but it was hard to
integrate them with other components. This means they were still closely coupled. The
functional expansion or replacement of a component is easier than the one of a
monolithic system. However, there is also a disadvantage because somebody has to
decide how the components are tailored. If they are not tailored well, it will happen
that simple updates often concern several components and communication effort
between these components is very high.

 Chapter 4 Service-Oriented Enterprise Architectures

 82

CRM

Clients

Functionality

ERP

Resources

Functionality

Payment

GUI

Orders

GUI

realized by

Functionality Functionality

process control flow

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Fig. 4-3: IT-landscape with two component based applications

ERPCRM

PaymentResourcesClientsOrders

realized by

FunctionalityFunctionality Functionality Functionality

Middleware

GUIGUI

automated process control flow

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Fig. 4-4: IT-landscape with middleware connecting applications

However, component based systems were a big step that reduced the maintenance
effort of single software applications. In the following time, requirements arose from
the process side concerning the integration of different components and applications.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

83

Building ever-new interfaces between components implemented with different
technologies became a serious cost problem.

Enterprise Application Integration has been a hype topic several years ago. Its goal

is to integrate several applications with each other. The main concept to achieve this is
middleware technology like CORBA (compare [OMGCOR92]) or ActiveMQ
(compare [Apache03]) which strongly decreased the integration effort in enterprise
systems. A simple reason for this is the 1:n communication pattern instead of the n:n
communication pattern. Without a middleware, the communication pattern is n:n
because if each of the n components wants to interact with the other components then
n-1 different interfaces have to be implemented for every component in the worst case.
The worst case occurs if all components have different technologies. On the other
hand, if a component offers an interface in the middleware technology then it can
communicate with all other applications, i.e. a 1:n communication is possible. For
these reasons, middleware is an indispensable concept for an enterprise architecture.

Middleware

 A middleware is a communication technology that is used by the as much
software interfaces as possible. It greatly reduces the integration and
communication costs of within an enterprise.

Obviously, something has radically changed in Fig. 4-4. The human actors two and

three from left hand side do not have to access the CRM system anymore. Before they
had to look up the order being stored in the CRM system, now the order data they
need for procurement and giving work orders is transferred to the ERP system in a
nightly batch run. This saves a lot of effort and reduces the number of mistakes in the
process. Drawback of the middleware is that a new technology is required within the
enterprise systems. Its introduction always comes with additional costs.

Still, the integrations problems were not solved completely. There are systems,

especially older ones, which offer their functionality only via the graphical user
interface so that the middleware cannot adapt to it and automation is hindered once
again. To reach this functionality the GUI design had to be changed.

 Chapter 4 Service-Oriented Enterprise Architectures

 84

PaymentsResourcesClientsOrders

realized by

FunctionalityFunctionality Functionality Functionality

Middleware

GUIGUI GUIGUI

automated process control flow

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Fig. 4-5: IT-landscape with middleware (EAI) with separation of GUI

The separation of GUIs implies the disclosure of functionality of software
components. It increases the flexibility of systems because all functionality is now
reachable for automation purposes via the middleware. Of course, this disclosure of
functionality increases the design and implementation effort slightly. Fig. 4-5 shows
that the graphical user interfaces now have to use middleware interfaces that can be
used by other automated components.

Disclosure of Functionality

 Each functionality of a software has to be offered with an interface technology
suitable for automation purposes (e.g. the middleware technology). It is not
acceptable that functionalities are only reachable via a graphical user interfaces.

Now one might ask what is left to optimize, what is the new requirement from the

business side that makes the present architecture more sufficient. The main driver is
flexibility, as process lifecycles are steadily decreasing. Especially since the beginning
of the new decade this topic has been discussed by IT and business experts. Maybe the
fact that business experts found their way into the discussion about IT flexibility has
been given birth to service orientation. Because from the view of IT experts an IT
landscape with separated GUIs and Enterprise Application Integration is already

Model-Based Evaluation of Service-Oriented Enterprise Architectures

85

relatively flexible. For business experts it is not that perfect because the tailoring of
functionalities was made with respect to technical and maybe organizational
circumstances. This means that the building blocks of functionality that are reusable
from the process view are not the ones that were developed by IT-experts. For an
enterprise that wants to react on steady process changes the adequate tailoring of
business functions implemented by IT is helpful. This brings the service concept into
play. In its simplest form a service is a business function that is implemented by IT.
For a service, it is only interesting what it does and not how it does something. This
especially means that a service implementation is not bound to a certain application.

PaymentResourcesClientsOrders

realized by

FunctionalityFunctionality Functionality Functionality

GUIGUI

Order
Service

Estimation
Service

Procurement
Service

GUIGUI

Billing
Service

Client
Service

automated process control flow

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Worker
Service

Service
Registry

Fig. 4-6: IT-landscape with basic services

Fig. 4-6 depicts an IT-landscape that offers services that are consumed by the GUIs
or directly by applications. For example, the procurement service is executed in a
batch run every 24 hours. The picture shows an ideal landscape were all functions are
exposed by services. However, this is not necessary. Especially during the
transformation phase to a service-oriented enterprise there will exist both forms.

There is a new concept showing up at this stage, named service registry. It keeps all

the information about services that are required to use them. This includes behavioural
descriptions, usage costs, availability etc. Potential users of SOA services can search
for services and use them afterwards.

 Chapter 4 Service-Oriented Enterprise Architectures

 86

The SOA services represent a new form of abstraction bringing up advantages and
drawbacks. The drawbacks occur in form of increased effort for identifying,
implementing, and maintaining services as well as the related service registry. The
first advantage is the increased reusability of services if they are tailored well and
documented in the service registry. Thusly, the SOA services themselves are used
properly by developers. Moreover, functions spanning several applications can be
offered with SOA services. This important concept will be referred to as IT-business
alignment:

IT-Business Alignment

 A SOA service bundles functionality with respect to business needs and not with
respect to technical needs. As the SOA service is unaware of its implementation,
it may use several technical applications for its realization. This business-
oriented bundling of functionality is major contribution to the IT-business
alignment.

The role of the GUIs is again important in this scenario, because with changing

processes the GUIs have to be transformed, too. For this purpose, the use of web-
based interfaces e.g. implemented with portal and servlet technology, can save effort
when changing a process and therefore increases flexibility.

Now there is a very premature kind of Service-Oriented Architecture, as it uses the

service concept for the first time. However, flexibility regarding the implementation of
new processes has no yet reached its climax. This is because until now the control of
the process flow is distributed over humans and the whole application landscape.
Humans can learn new things quite easily, but applications have to be reprogrammed
in their specific language. This is tedious because the programmer has to find the code
fragments that change the desired process control flow among other uninteresting code
fragments. Consequences of code changes are at least, recompiling, testing, and down
time for restarting. If there was a way to extract process flow information and make it
available in an explicit way, the effort of changing processes could be reduced
drastically.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

87

PaymentResourcesClientOrder

realized by

FunctionalityFunctionality Functionality Functionality

GUIGUI GUIGUI
Incoming

order

automated process control flow

Order
Service

Estimation
Service

Procurement
Service

Billing
Service

Client
Service

Worker
Service

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Service
Registry

 Fig. 4-7: IT-landscape with basic and orchestrated services

Fig. 4-7 shows the orchestrated incoming order service. It represents the process
part that begins after the “Accepted” event and ends with the “Material available”
event. The incoming order orchestration contains the process control flow information
of the named process part and the calls of the subordinate basic services. This service
orchestration can be realized with any technology that is able to call the other services
and can be used like a service operation, for example a web service that is deployed on
an application server. This means the process control flow is now made more explicit
as it is separated from other implementation details. However, it still exists in form of
a programming language, which is the reason why we call this a “hard-wired”
orchestration.

Within the “Procurement” service, something has been changed, too. As mentioned

before, required data from the “Order” component was transferred in a daily batch run
to the “Resources” component. By that, the data was hold redundantly in both
applications and was not available in real time. When the batch run was implemented,
it was the only practicable solution to have a batch run each night, due to performance
restrictions. The situation has changed over time and now the data load could also be
transferred in real time, which would speed up the process in a noticeable way. The
triggering (process control flow) of the batch run was implemented in the “Order”
component. Now a redesign has been realized, so that the old batch run was removed
from the system by finding the appropriate code fragments in the “Order” component.

 Chapter 4 Service-Oriented Enterprise Architectures

 88

Instead, the process control flow was moved to the “Procurement” service. The
according operation now retrieves the data directly from the “Order” Component. This
change is regarded as a stable solution (change not predicted for longer time, reuse is
likely, small granularity), which is the reason why this hard-wired orchestration is now
a usual service operation of the “Procurement” service.

Another advantage of service orientation is observable within this transformation.

The exchange of the two solutions did not bother any users of the “Procurement”
service, because its interface remained unchanged. Only the hidden part, the
implementation was exchanged. This probably saves some effort in the transformation
process.

In this case, we have shown two examples for hard-wired orchestrations. One of

them is regarded as reusable and became a service operation of a basic service. The
other embraces a bigger process part and is less likely to be reused. Just like the
process part it represents, it is more likely to be changed. In both variants, the process
control flow was made explicit in the service layer, thus the effort for process changes
was decreased. The price to pay for this flexibility is the increasing number of services
that have to be maintained.

Until now, service orchestrations could be used to easily implement the process

control flow in a relatively well-isolated form. Still one has to read the code of several
services to gain knowledge about the process control flow. Furthermore, changing the
flow requires reprogramming several services. There is a restricted amount of logic
that has to be programmed within service orchestrations. Mainly, the parallel and
alternative paths from process models are implemented within it. To meet decisions
for the alternative paths parameters of service operations are evaluated and forwarded.
A further desirable enhancement regarding the quick implementation of new processes
is to have a (visual) language that combines concepts of process models and that is
interpretable at the same time. Interpretable mainly means that there are service-
operations instead of non-executable activity-rectangles.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

89

Orchestration
Engine

PaymentResourcesClientOrder
realized by

FunctionalityFunctionality Functionality Functionality

GUIGUI

automated process control flow

CallCall

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Order
Service

Estimation
Service Procurement

Service
Billing

Service
Client

Service

Worker
Service

Service
Registry

Call Call

GUIGUI

Fig. 4-8: IT-landscape with orchestration engine

Fig. 4-8 introduces a new component of a Service-Oriented Architecture, the
Orchestration Engine. It is able to interpret special process models. The most common
language for these process models is the Business Process Execution Language
(BPEL, compare [OASIS07]). The concept behind the orchestration is also known for
a longer time. It is called Workflow Management. It first brought up the idea of
making the process control flow more explicit and modelling it in an interpretable
language. In combination with the middleware, it is possible to access most of the
business functions available. At the same time, the process-oriented tailoring of
services eases the modelling of executable process models.

In the previous figure, the hard-wired incoming order service has been introduced.

It is now replaced by the soft-wired orchestration. It is called soft-wired because it is
modelled in language such as BPEL, which makes it easier to change. This invited us
to add the “give work orders” process step to the orchestration. Before this step was
triggered by a human person that also sent the work orders via mail. The sending has
been automated and thereby the whole step could be automated and integrated in the
orchestration. Furthermore, the orchestration is now much nearer to the process
description (similar modelling concepts like visual modelling of activities, forks, and
joins) but still executable because it is interpretable by the orchestration engine.

 Chapter 4 Service-Oriented Enterprise Architectures

 90

What has been reached until now is quiet good for flexibility, but the reader might
ask what all this technical stuff is good for if there are many humans involved in a
process. With the means provided by now, human work is a serious problem because
it cannot be integrated in any orchestration. The second person from the left in Fig. 4-
8 just initiates the orchestration. Our orchestrations are only interpretable if no humans
are involved. Every time a human interacts in the process, the process control flow
hold by the orchestration engine is lost. However, human interaction can also be seen
as part of a service implementation. “Send order confirmation” is a business function
and therefore a possible service operation. On the one hand, its implementation could
be an employee who writes letters and sends them via mail to the clients address, on
the other hand, this could be fully automated with an application that retrieves the
required data and sends the confirmation via email. Theoretically, nothing speaks
against human interaction within service implementation; the problem lies in the
technical realization.

Orchestration
Engine

GUIGUI

Call Call

GUIGUI

CallCall CallCall

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

PaymentResourcesClientOrder
realized by

FunctionalityFunctionality Functionality Functionality

automated process control flow

Order
Service

Estimation
Service Procurement

Service
Billing

Service
Client

Service

Worker
Service

Service
Registry

Fig. 4-9: IT-landscape with orchestration engine and human interaction services

Human actions are triggered like any other service operation in Fig. 4-9. Of course,
some extra effort is required to provide this possibility. Generally, if a service with
human interaction is triggered, the potential actors have to be informed. The task has
to be delegated to an employee who will actually execute the action. After completing
the task, he has to transfer the results back to the orchestration engine, which then

Model-Based Evaluation of Service-Oriented Enterprise Architectures

91

regains control of the process flow. A role concept for human actors is very helpful to
be able to inform those and only those employees being able to fulfil the task.

BPEL4People (compare [OASISP05]) is an extension of the Business Process
Execution Language that provides support for human interaction. It comprises a role
concept, task delegation and support for scenarios like escalation and the four eyes
scenario.

The integration of human work in service operations is laborious but allows to
model whole processes in an interpretable language like BPEL. For a Service-Oriented
Architecture, orchestration with the integration of human work is indispensible
because it greatly increases the flexibility if processes that have to be reorganized
concerning their control flow:

Orchestration

 Orchestration is the isolation of the process control flow by using an executable
process modelling language for processes and a respective execution engine.
Human work tasks are treated just as electronically initiated steps within this
concept. The executable process models are referred to as orchestrations and
their execution engines as orchestration engines.

Now, there seems not much left that can be done to improve the flexibility. This is

true as far as no interaction with enterprises in the process is required. This scenario is
named choreography because enterprises act on their own and are not steered by a
central unit like the services in an orchestration. However, we will not follow this
concern now, as there is a more pressing one.

Meanwhile our enterprise can implement new processes quite fast and efficient.

That might be faster than most of the processes are even executed. Short process
execution times have become a critical aspect nowadays. For this reason, the processes
should be supported by the enterprise architecture, too.

Now what could make our architecture generally slow? Time is often wasted

between actions and not during their execution. There is only one process in the
figure, but the real world is a little more complex, because the figure depicts only a
model of the real world and abstracts in this way from details. No one should be able
nor should he have interest in modelling all activities of an enterprise in a single

 Chapter 4 Service-Oriented Enterprise Architectures

 92

executable process model. There will always be several processes and they have to be
invoked when certain conditions are fulfilled. These conditions are mostly distributed
over the enterprise or base on external events. Events can also be regarded as a
condition that is fulfilled and maybe a reaction is necessary in a certain time.
Generally, there are two possibilities to check these conditions.

First one is checking them on a regularly basis or even wait until one can be sure

that they will be fulfilled. Checking conditions on a regular basis means that one could
lose nearly a whole cycle length if the conditions become fulfilled just after they were
checked. This is the way it is often done today.

Second one is to create small notifications when something changes and

immediately when all conditions have become fulfilled. This is not as easy as it might
sound, so we will see what the consequences are.

Orchestration
Engine

Interpretable Process Model

event flow

Call CallCall

isolated automated process control flow

Call CallCall

Complex
Event Processor

Event DispatcherEvent Correlation

Subscriber
Lists

complex
events

Correlation
Rules

Event
Handler

Request Rough cost
estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling
Request Rough cost

estimation

Accepted

Denied

Create client
and order

Order
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Incoming
order

Order
Service

Estimation
Service

Procurement
Service

Billing
Service

Client
Service

Worker
Service

Fig. 4-10: IT-landscape with orchestration engine and complex event processor

In Fig. 4-10 several new concepts are introduced. On top of the service layer, a
complex event processor (CEP) is added that receives all events (notifications)
generated by event producers (any services or applications may create events). The
CEP also holds subscriber lists. Any application can subscribe for a type of event. If
so, the dispatcher forwards the event to the subscriber immediately after its
occurrence.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

93

The event correlator is a component of the CEP that receives a copy of all events. It

checks the flow of events on occurrence patterns where several events are involved in
a certain time. These patterns are specified in correlation rules. For example, if an
error occurs in a process usually nothing is done, because a single error is not regarded
as problem that requires intervention. However, if the error occurs ten times within an
hour, a process for quality improvement should be invoked. The event correlator can
recognize this easily, but on the basis of single events this would not be possible. If
such a rule is fulfilled the correlator fires a new (complex) event, which then is treated
as any other event by the dispatcher.

Another very important event consumer is the orchestration engine. It can invoke

new processes if a certain event occurs. This means a further decoupling of the IT-
landscape. The process control flow within processes is made explicit with the help of
soft-wired orchestration. With an Event-Driven Architecture and an event-listening
orchestration engine, the control flow between different processes can also be made
explicit. Without events, any kind of application or human has to check some
conditions in the system until a reactive process is launched.

For example, a batch script might check the log files for errors every night. As it is

executed every 24 hours, only a delayed reaction is possible. If it finds more than ten
errors, it invokes a quality insurance process. In order to do so, it has to know its
information source and any kind of application or address where the process can be
invoked. This means that the control flow logic is hidden in an application or in
human minds. With the event handler of the orchestration engine this control flow can
be made explicit and a lot of time can be saved as reactions are executed immediately.

For the development process of enterprise architectures this means that complex

and simple events have to be identified and implemented, but this will be outweighed
by the shorter execution times, the information gain, and the automated initiation of
reactive processes. For these reasons, Complex event processing is an indispensible
part of a Service-Oriented Architecture:

Complex Event Processing

 Complex event processing concerns the automated generation of business events
and their correlation within a complex event processor. The generated events can
be used to trigger other processes or for covering information needs.

 Chapter 4 Service-Oriented Enterprise Architectures

 94

This kind of architecture is very flexible and allows a quick process execution.

However, with the frequent business process changes a new drawback occurs in
enterprises. A business process model, just like a piece of code or any other result of
human work, is rarely perfect. It undergoes several (minor) changes to improve its
quality during its lifetime. One of the problems with the quality assurance of processes
is the recognition of errors. The reason for this is that every business process can have
different characteristics that mirror its quality. The present architecture does not
support the monitoring of processes, so that their weaknesses cannot be recognized as
soon as possible. However, due to ever more frequent changing business processes,
this becomes a driving demand in enterprises.

Complex Event Processor

Middleware

Business Process Monitor

CRM Application

Orchestration
Engine

ERP Application

Payment
Component

Resource
Component

Client
Component

Order
Component

realized by

GUI (Portal)GUI (Portal)

isolated process control

Call CallCall

Request Create client
and order

Both
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Incoming
order

Order
Service

Estimation
Service Procurement

Service
Billing

Service
Client

Service

Worker
Service

Event
Dispatcher

Event
Correlation

Service
Registry

Fig. 4-11: IT-Landscape with business process monitoring

Model-Based Evaluation of Service-Oriented Enterprise Architectures

95

The novelty in Fig. 4-11 is the business process monitor. For every business
process, it holds several performance indicators, like the execution time between
specific steps or the number of used resources during process execution. In order to
gain knowledge about these it has to retrieve the information from the IT-landscape. If
it would hold an interface to every component that provides information required for a
performance indicator, it would relatively soon deliver wrong results, as the sources
for specific pieces of information can change their locations over time. Furthermore, it
would hardly be possible to get informed about the exact point in time when an action
was executed.

A more sophisticated method to retrieve the required information is to get it

delivered. The events we introduced in the previous section are the method of choice
for this task. Any performance indicator has to be calculated with any kind of event
and some rules what do to with several events. The example with the number of used
resources requires a “resource used” event that is added up with every occurrence in
the context of a certain process. For the execution time, start and end events of the
according steps are read and the duration time is calculated. Furthermore, a
performance indicator can have thresholds and upon the crossing of a threshold, an
alert is created. This can be done in form of an event or visualization on a dashboard.

By this, the quality characteristics of a business process are monitored in real-time,

enabling business analysts to react immediately on quality problems. With low
thresholds and indicator trend analyses, even pro-active reaction can be invoked.

Just like events, performance indicators have to be identified at first. These

indicators are heavily influenced by the business goals the enterprise aims at. The
realization of those performance indicators has to be planned. This means to identify
which events are required to measure it and how the events have to be processed.

Business process monitoring offers the chance to

Business Process Monitoring

 Business process monitoring concerns the definition of performance metrics for
processes, the information retrieval for measures as well as the graphical
processing of the data. Monitoring is, unlike reporting, executed nearly in real-
time. This has the advantage, that reactions can be immediately triggered if a
performance indicator is out of its range.

 Chapter 4 Service-Oriented Enterprise Architectures

 96

Fig. 4-11 implicitly contains a set of concepts. The 6 most important were pointed

out in this section and are now summarized in Fig. 4-12. Some of them are more
business related and some of them are more IT related. The more business-related
concepts are Business Process Monitoring (BPM), Orchestration, and IT-business
alignment. The more IT-related concepts are disclosure of functionality, middleware,
and complex event processing. Orchestration, BPM, middleware, and complex event
processing have been explicitly described in the previous paragraphs. IT-business
alignment concerns the SOA services that bundle functionality in a more business
suitable way. Disclosure of functionality demands that every functionality is offered
by machine processable interfaces, or in other words, GUIs must not be the only way
to access a certain functionality

Business
Process

Monitoring
Orchestration

Disclosure of
Functionality

Middleware

IT-Business
Alignment

Complex
Event

Processing

SOA

Fig. 4-12: Major concepts combined by Service orientation

The evolution of EA was outlined in this section. Moreover, an SOA reference
architecture that depicts the latest style in this evolutionary process was described.
SOA is regarded as an architectural style for enterprise architecture that aims at an
optimal IT realization (automation) of business processes. The reference architecture
is a major part of the SOA definition. The missing part – the SOA service definition
will be given in the next section.

4.1.2 SOA Service Definition

This subsection provides the definition of SOA services. The SOA definition starts
with the differentiation of the SOA service from the business service and the Web

Model-Based Evaluation of Service-Oriented Enterprise Architectures

97

Service (compare [Christ01]). All three terms can be referred to as service but they
have different meanings. This is why they are often confused.

A business service is a business product of an enterprise that requires payment and

is directed towards clients only. Usually, there exists a service level agreement (SLA)
for each service sold to a client. The SLA specifies the performance of the service and
defines penalties if the promised performance could not be delivered. SOA Services
represent collections of business functions belonging together because they work on
the same topic or business object. They are not contracted with a client and usually of
a finer granularity. That means several SOA services will be required to deliver a
business service.

An SOA service is regarded as a business function containing several operations.

SOA Services are loosely coupled, but they can use each other with preferably low
integration effort. Operations of an SOA service are grouped according to business
demands. A possible and widespread concept is to identify business objects and their
manipulations/actions and then derive a service according to the business object and
its operations according to its manipulations/actions. This part adheres from
technology and is called the business interface.

Web services are a possible implementation form for SOA services. However and

as just mentioned, the SOA service adheres from technology. SOA services can also
be implemented with other technologies like CORBA (compare [OMGCOR92]) or
JMS (compare [SunMic00]). The Web Service is just a widespread variant of the SOA
service implementation.

Having cleared the differences between business services, SOA services, and web

services, the definition of the SOA service is rendered more precisely in the following.
As an SOA service with interfaces is not self-explaining it needs to be described by a
service contract. The contract comprises three blocks of information. In Fig. 4-13 the
structure of a service contract is depicted wit the example of a cash order service.

The first and biggest part contains the general description items including operation

semantics and details like a responsible person, related documents, and interfaces. The
description of service operations is mostly given in textual form. Possible other forms
are use case diagrams or visual contracts (compare [Lohmann06])

 Chapter 4 Service-Oriented Enterprise Architectures

 98

The second block contains information about the operational level agreements
(OLA) the service can deliver. For example, only if the SOA services used in a
process promise a degree of performance then the degree of performance of the whole
process can be predicted.

The third block describes the monitoring and reporting information a service can

deliver. Monitoring information constitutes the events that a service sends upon
execution. The information carried by these events is noted here. The reporting
information describes the performance indicators for which reports can be generated.

SOA-Service Contract for Cash Order Service (COS)

General Description
The service allows the management of cash orders.
Operations: Plan, Create, Add, Change Date, Change Value, Cancel, Delete, Finish
Description of Operations:

Plan: Creates cash order with long time in advance. Checks calendar collisions.
Input: Date, denominations and lot sizes, location
Output: Cash Order

Responsibility: Managed Services (John Doe)
Technical Interfaces: Web Service, JMS
WSDL Location: http://depb3334:9080/WSRouter_EAI/SRVO.wsdl
…

Operational Level Agreement
Reachable 24/7 at 99.7% availability, Cash Order creation incl. cheks in less than 90 sec.
Plan cash order needs to be 48h in advance
…

Monitoring: Cash order created (EventID, ProcessID, client lots, location)
Cash order planned on critical date(EventID, ProcessID, client, collison reaseon)
Reporting:
Monthly report on number cash orders and average execution time
…

Fig. 4-13: Example of an SOA service contract

Services are not stand-alone components without any relations to each other. It
should be the usual case that services use each other. It works the same way as with
components in the context of component-based architectures. In the context of service
orientation, this concept got a new name – orchestration. A reason might be that
orchestration can be realized in two ways. First, by adding service interface calls in the
implementation (hard-wired) of a service or second by using an orchestration engine
(soft-wired). Detailed descriptions on this were given in section 4.1.1 .

Fig. 4-14 depicts the structure of a service consisting of one business interface and

technical interfaces implementing the business interface. Furthermore, an extensive

Model-Based Evaluation of Service-Oriented Enterprise Architectures

99

description of the service, called service contract describes what the service does. A
service contract should not hold information on how it is implemented (except from
the available technical interfaces). Although the realization of the service has a
determined appearance, e.g. a CRM system that is used by a call centre agent, this
appearance is made transparent to the users. Next to this transparency, there are other
characteristics for well-build services like adequate granularity and statelessness.
These are covered in detail in chapter 5.

SOA-Service

Realization

Technical Interfaces

Service Contract

Business Interface

DataBusiness
logic

Description OLA Monitoring
Reporting

Fig. 4-14: Structure of an SOA service

Next to the description of the service expressed in natural language, in diagrams, or
whatever preferred, there should be an Operation Level Agreement (OLA). The OLA
is similar to an SLA but it contains no financial details like penalties for unperformed
work. OLAs are to be seen as helpful information not as part of a contract.
Furthermore, there should be a part in the service contract that states the information
that can be monitored (event messages sent) and reported.

This section has, together with the previous section, provided the EA-oriented SOA

definition as being used as a foundation for this thesis. A short form of this definition
is given as conclusion of this section:

 Chapter 4 Service-Oriented Enterprise Architectures

 100

Service-Oriented Architecture

 A Service-Oriented Architecture is a productive system of processes, SOA
services and applications that work together using the following concepts:

• Middleware

• Disclosure of functionality

• IT-business alignment

• Orchestration

• Complex Event Processing

• Business Process Monitoring

The mediating element is the SOA service. It has a business interface described
in a service contract. The business interface offers a set of functionalities and
completely abstracts from the realization of these functionalities. An SOA
service can have different technical realisations.

After giving a definition frame for an individual EA in the next section, the required

formalisation of both definitions can be elaborated in the next chapter.

4.2 EA Definition Frame

According to the requirement R6 an individual EA meta model is required. This
section realizes a first step for this requirement by describing an EA definition frame.
This frame will be used to define a minimal EA meta model in the next chapter. With
the minimal EA meta model the individuality of an own enterprise architecture is
restricted as little as possible.

The representation of enterprise architecture is chosen as in fig. 4-15 from

[Assman08]. The enterprise architecture is depicted there as a layered structure and as
a hierarchical structure. The layers depicted in fig. 4-15 serve only as a categorization
and do not indicate a separation of the underlying EA meta model. A distinction
between the business, the service, the application, and the infrastructure layer is made
in the layered view.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

101

In the hierarchical view, the enterprise architecture can be roughly divided in
business and IT architecture. The main elements from the other definitions within the
spectrum between business architecture and infrastructure architecture are strategy and
goals, organization architecture, process architecture, information architecture and
software/application architecture. In addition, the service layer has been added.
However, this layer is optional because this representation form shall still allow
expressing the structure of non-SOA architectures.

More important are the elements that are in direct relation with the service layer.

These are the elements with dashed frames, namely the process architecture, the
information architecture, the software architecture, and especially its applications. As
the service layer is embedded between these elements, they have to be present in any
EA definition.

Business
Layer

Application
Layer

Infra-
structure
Layer

Service
Layer

Enterprise
Architecture

Business
Architecture

Infrastructure
Architecture

IT
Architecture

Organization
Architecture

Software
Architecture

Business Goals

Process
Architecture

Basic
Services

Composite
Services

Orchestration

Applications

Gap between
Processes

and IT

Information
Architecture

Fig. 4-15: Essential parts of an enterprise architecture (compare [Assman08])

In the rest of this section, the elements shown are described shortly to get an
impression of their content. A more concrete meta model for the definition frame will
be given in the next chapter.

The goals as part of the business architecture display the strategy an enterprise

wants to follow in the mid or long term. Goals like “Market leadership in ATM
selling” or “Best-in-Class for Cash Management” are embedded there.

 Chapter 4 Service-Oriented Enterprise Architectures

 102

The organization architecture may reflect divisions and departments of an
enterprise. At least there should be a role model so that actors in processes and
responsible persons can be named anonymously.

There are usually different types of processes in an enterprise. Some are

representing the main business; others are internal like development and
administration processes. All these kinds of processes are part of the process
architecture. When modelling this architecture, mostly the processes with a long
lifetime are concerned. Ad-hoc processes being executed only a few times and never
occurring again are usually not in scope.

The service architecture containing basic and composite services is part of a Service

-Oriented Enterprise Architecture. However, it is possible that these elements do not
exist in an enterprise architecture.

The information architecture is an abstraction of the application architecture. It

contains the information or business objects that are treated within the processes. Such
an in formation object could be a contract, an order or even an event message
generated by a broken ATM. A model of this architecture could also depict logical
applications, which are types of applications that are then realized by one or more real
technical applications.

The application architecture contains the applications installed and running in an

enterprise. Furthermore, the interfaces between the applications are objects of interest
here. On this level of architecture, specific technologies such as programming
languages and transport protocols play a decisive role.

The infrastructure architecture contains elements that are necessary to operate

applications such as operating systems and hardware. It is regarded as optional
whether the instances and locations of hardware systems are modelled in this context.
Models containing this information can become very large.

This section has described a frame in that an enterprise architecture definition

should be. It is a prerequisite for the formalization of a minimal EA meta model. The
section also concludes the chapter. Having defined SOA and EA, the formalization of
both may be elicited in the next chapter.

103

5 Formalization of an SOEA Modelling
Language

The content of this chapter is depicted in Fig. 5-1. It covers the creation of meta-
models for Service-Oriented Architecture, enterprise architecture and the merging
process of the two meta models. By that, a modelling language for enterprise
architectures is derived that can also express Service-Oriented Architectures. The
purpose of this modelling language is to make service orientation of the enterprise
measurable and at the same time to use the model for enterprise architecture planning.
The measurement of service orientation will be based on a set of criteria that are
evaluated with the help of metrics, which is covered in chapter 6.

Before eliciting the single steps depicted in Fig. 5-1, the decision for the meta

model approach shall be discussed shortly. This has been done in more detail during
the elaboration of the requirements in chapter 2.

In order to change an enterprise architecture in such a comprehensive way SOA

requires, planning activities are needed. The planning should be based on a model.
Otherwise, the complexity of the whole enterprise architecture would not be
controllable. Such models could be informal, e.g. in natural language or drawings. A
high ambiguity concerning syntax and semantics are major drawbacks of this
approach. For this reason, as a tradeoff between formalism and informalism, a formal
meta model with informally described semantics has been chosen. Informal means that
the semantics of the meta model elements are given in natural language.

The requirements touching these facts are R2 “SOA formalization”, R4 “Integrated

language for EA and SOA”, and R5 “EA Formalization”. R2 and R5 will clearly be
fulfilled by the formal meta models. R4 will be partly fulfilled as the two halves of the
integrated language are provided by the meta models.

The following sections in this chapter will cover the topics in the dashed frame of

Fig. 5-1. The way to find a suitable SOA meta model is described in section 5.1.
Afterwards, a minimal EA meta model and an exemplary EA meta model are elicited
in section 5.2. Finally, an algorithm to merge the two meta models is elaborated in
section 5.3.

 Chapter 5 Formalization of an SOEA Modelling Language

 104

Service-Oriented Enterprise
Architecture Meta Model

derive derive

Service-Oriented
Architecture

Definition

SOA Meta Model

Enterprise
Architecture

Definition Frame

Individual EA
Meta Model

Meta Model
Merging

leads to

input for

SOA Meta Model

R2

SOA Meta Model

R2

Individual EA
Meta Model

R5
R6
R8

Individual EA
Meta Model

R5
R6
R8

R4

R4

R8

R8

5.1 5.2

5.3

5.3

Fig. 5-1: Contribution of chapter 5

5.1 Deriving an SOA Meta Model

The meta model for the Service-Oriented Architecture is derived in this chapter. It is
not intended to be changed by an enterprise architect. If the meta model was variable,
the metrics that will be defined for the conformance criteria would have a variable
basis. Most of the metrics will rely on the SOA meta model. Changing the meta model
would result in a much more complicated method. Therefore, this option is not
considered here. If an enterprise architect wants to define his own SOA meta model,
he can do so but has to be aware that neither the conformance criteria nor their metrics
might be applicable anymore for his own approach.

The question whether an existing SOA meta model should be chosen is answered in

subsection 5.1.1. It is pointed out that the manual derivation – as described in
subsection 5.1.2 from the SOA definition of this thesis is most adequate for the

Model-Based Evaluation of Service-Oriented Enterprise Architectures

105

approach. The result of the manual derivation is an SOA meta model that is to be used
in the meta model merging process (compare section 5.3).

5.1.1 How to derive an SOA Meta Model?

In order to derive a suitable SOA meta model, some criteria for adequateness have
to be fulfilled. The criteria for a suitable SOA meta model are:

 The SOA definition from this thesis must completely be reflected in the

SOA meta model. Otherwise, it cannot be used for planning and evaluating
a fully-fledged SOA (R1).

 The detail level should be similar to the detail level of an enterprise
architecture meta model, so that the detail level after the merging is
consistent (R4). The SOA meta model should only be as detailed as needed.
Otherwise, user acceptance is lowered and the effort/benefit ratio is
decreased.

 The SOA meta model must be connected, so that a holistic modelling is
possible (R8).

Existing approaches are examined concerning their suitability in the remainder of

this subsection. It will be shown that the SOA meta model should be derived manually
from the SOA definition in chapter 4.

The existing approaches concerned here are the SOA meta model from CBDI

Service Architecture & Engineering (compare [CBDISA08]), the OASIS Reference
Architecture for SOA (draft status, compare [OASISR08]), and the approach from
[Baresi03].

According to [CBDISA08] the “objective in making the model available is to

provide a detailed concept model […] that can form the basis for coherent cross
lifecycle asset recording and management.” An asset management or more precisely
an IT asset management covers financial, contractual and inventory functions over
assets. There are about 90 asset types in the sense of [CBDISA08] reaching from a
business process to a single network address. For this reason, the abstraction level of
the CBDI SOA meta model is very low. A part of the meta model is showing this is
depicted in Fig. 5-2.

 Chapter 5 Formalization of an SOEA Modelling Language

 106

Fig. 5-2: Section of the SOA meta model from [CDBISA08]

The purpose of the CBDI SOA meta model is therefore different from the purpose
of the meta model required in this thesis. The CBDI SOA meta model is e.g. to be
used to design and implement a software that manages the complete inventory of hard
and software assets of an enterprise. On the one hand, asset management works on a
low abstraction level and covers probably thousands or even millions of assets. On the
other hand, enterprise architecture planning works on a high abstraction level. Hence,
the magnitude of the targeted SOA meta model is definitely smaller. Furthermore, the
CBDI SOA meta model does not address the concept of business process monitoring.

The OASIS SOA reference architecture [OASISR08] also defines a meta model for

a Service-Oriented Architecture. It is given in form of several parts. One of them is
depicted in Fig. 5-3. Due to the OASIS, the reference architecture is intended to cover
“the issues involved in constructing, using, and owning an SOA-based system.” This SOA
meta model is even more complicated than the one from CBDI. IT comprises social,
governance and other related issues. The detail level reaches down to the log file
specific actions are recorded in. The purpose of the SOA reference model is also
directed towards SOA asset management. In addition, it us intended to clarify SOA
governance issues, like decision processes for SOA service development. For these
reasons, the OASIS SOA meta model was not build for the purpose required here and
thus does not deliver the needed granularity. In addition, the OASIS SOA reference
model also does not cover the concepts complex event processing and business
process monitoring adequately. For these reasons, the SOA meta model provided by
[OASISR08] does not fulfil the criteria for an adequate meta model, neither.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

107

Fig. 5-3: Part of the SOA meta model from [OASISR08]

Already in 2003, a meta model for SOA was presented in [Baresi03]. The intention
of this meta model was to be able to predict the possible configurations of this
architecture. A configuration means which services can communicate with each other
and which sequence of operation can be realized. This kind of meta model is not
adequate because it was not designed to plan enterprise architecture. None of the high-
level concepts like Event-Driven Architecture or workflow management has been
considered.

Fig. 5-4: Part of the SOA meta model from [Baresi03]

 Chapter 5 Formalization of an SOEA Modelling Language

 108

Criteria \ Meta
Model

CBDI OASIS [Baresi03] Targeted
solution

Main Purpose SOA Asset
management

SOA Asset
Management,
SOA
Governance

Service
Configuration
determination

EA
Planning

SOA definition
conformance

5/6 4/6 2/6 6/6

Granularity
(# concepts)

~90 ~120 ~15 ~20

Fig. 5-5: Overview on adequacy of existing SOA meta models

The adequacy of existing meta models is summed up in Fig. 5-5. Neither of the
approaches has been chosen, because of the different purpose and granularity level of
the approaches. There would have been the possibility to adapt the CBDI or OASIS
meta model. At first, they had to be reduced to the appropriate detail level, i.e. leaving
out 4/5 of the concepts. Eventually, some further adjustments of the core had to be
taken. In addition, the missing main concepts had to be added to the model. After all
these steps, the remaining content of the existing models would be diminished to a
very low level. Furthermore, the OASIS and the CBDI SOA meta model have been
developed in parallel to this work and were not published until 2008.

Several existing meta model approaches have been examined, but none of them

fulfils the criteria for a meta model that is adequate for this approach. The too high
detail level and the missing concepts like business process monitoring or Event-
Driven Architecture are most problematic. For this reason, the derivation of the SOA
meta model is elaborated in the next section.

5.1.2 Deriving Concepts from the Given SOA Definition

In this section, the definition of a fully developed SOA from chapter 4 is reconsidered
and a meta model is derived. The definition is analyzed concerning concept candidates
for an SOA meta model. In order to identify all the concepts that are needed to
describe Service-Oriented Architectures, the reference architecture (compare
subsection 4.1.1) and the SOA service definition (compare subsection 4.1.2) will be
discussed concerning their conceptual elements. The candidate elements of the SOA
meta model will be marked in italic style.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

109

Complex Event Processor

Middleware

Business Process Monitor

CRM Application

Orchestration
Engine

ERP Application

Payment
Component

Resource
Component

Client
Component

Order
Component

realized by

GUI (Portal)GUI (Portal)

isolated process control

Call CallCall

Request Create client
and order

Both
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Incoming
order

Order
Service

Estimation
Service Procurement

Service
Billing

Service
Client

Service

Worker
Service

Event
Dispatcher

Event
Correlation

Service
Registry

Fig. 5-6: Layers in Service-Oriented Enterprise Architecture

The reference architecture from section 4.1 is shown again in Fig. 5-6. The major

concepts of service-orientation from Fig. 4-12 are one by one revisited in order to
derive candidate elements of an SOA meta model.

The most obvious candidate element related to middleware is the interface. An
interface offers the functionality of an application or application component. In
addition, the interface is implemented in a technology of which one is the middleware
technology. Furthermore, interfaces can have write or read access on business objects.

The IT-business alignment primarily concerns the SOA service. A SOA service

consists of a service contract and a service realization. The service contract describes
the business interface of the SOA service. The service realization specifies a service

 Chapter 5 Formalization of an SOEA Modelling Language

 110

interface with which the business interface is instantiated. All the SOA services have
to be registered in a service registry. A service repository is an application containing
a service registry. In addition, the service repository offers functionalities that support
architects and developers. It contains a model of the elements used in the software
development process for Service-Oriented Architectures. Preferable features of a
repository are a free definable object meta model and taxonomy of software
development elements, a role model support, a versioning of objects and attached
documents and a lifecycle support for arbitrary object types.

The disclosure of functionality mainly concerns the applications and their

interfaces. Due to this concept, graphical user interfaces may not contain the only
possibility to reach a piece of functionality. Each piece of functionality has to be
reachable by interfaces suitable for automation, preferably in the middleware
technology. If a proprietary interface cannot be used by an SOA service, then a service
integration adapter (SIA) is created for this interface. The adapter itself is not an SOA
service but only a copy in a different technology.

Orchestration concerns the automated execution of business process steps. An

orchestration is regarded as executable pattern of linked business process steps. Such
an orchestration is executed by an orchestration engine. The automated execution of
business process steps does not distinguish between completely electronically work or
and steps in that employee roles are involved.

The main element for complex event processing is the complex event processor. Its

event correlator correlates the events the event dispatcher has received. The
correlation is based on predefined correlation rules. An event correlated from several
other events is called complex event.

The business process monitoring focuses business processes and their performance.

Therefore, performance indicators are defined for a business process. The business
process monitor is an application that supports the determination of performance
indicators, the required information retrieval, and the presentation of the monitored
indicators. The examination of the business process monitoring concludes the
candidate concept examination.

As the concepts were gathered together indiscriminately, some of them have to be

reconsidered for combining or skipping, which is done after listing the candidate

Model-Based Evaluation of Service-Oriented Enterprise Architectures

111

concepts. Combining and skipping are options for adjusting the detail level of the
resulting meta model.

Middleware
 Interface
 Application
 Business object
 Technology
 Middleware
 Application Component

IT-business alignment
 SOA service
 Service contract
 Service realization
 Business interface
 Service interface
 Service registry
 Service repository

Disclosure of functionality
 Graphical user interface
 Service integration adapter

Orchestration
 Business process step
 Orchestration engine
 Orchestration
 Role

Complex event processing
 Complex event processor
 Event Dispatcher
 Event Correlator
 Correlation rules
 Event
 Complex event

Business process monitoring
 Business process
 Business process monitor
 Performance indicator

The complex event processor with its dispatcher, correlator, and correlation rules is

regarded as one concept, because it usually is a single application built these
components. The only difference between events and complex events is their origin.
Complex events are created by the correlation engine. As they do not differ in their
appearance, complex events and events are regarded as the same concept.

The SOA service consists of a business interface and a service realization. The

realization is given implicitly through its relation to other concepts, e.g. service
interfaces. The business interface is regarded as the SOA service itself. That means
these two concepts are merged to the SOA service.

The concept middleware is not taken explicitly here. A middleware will be regarded

as a technology for interfaces. Often the middleware cannot be named clearly as there

 Chapter 5 Formalization of an SOEA Modelling Language

 112

are several technologies used in practice, but only the one with the highest prevalence
or the one favoured in the IT-strategy is considered as official middleware. For this
reason, middleware is regarded as interface technology. Application components are
also not regarded in the desired detail level. An application owns all the interfaces the
different components have.

With these changes the following list of concepts remains:

Middleware
 Interface
 Application
 Business object
 Technology
 Middleware

IT-business alignment
 SOA service
 Service interface
 Service registry
 Service repository

Disclosure of functionality
 Graphical user interface
 Service integration adapter

Orchestration
 Business process step
 Orchestration engine
 Orchestration
 Role

Complex event processing
 Complex event processor
 Event

Business process monitoring
 Business process
 Business process monitor
 Performance indicator

In this subsection, the concepts for an SOA meta model have been derived. In the

next chapter, a meta model with its relations between the concepts is formed out of
these concepts.

5.1.3 Deriving a Meta Model from Identified Concepts

Having identified the relevant concepts for an SOA meta model, the creation of the
meta model may be completed. The complete meta model will be elaborated in the
remainder of this section.

There are no associations between the concepts yet. In the following, the

associations are elaborated by discussing the identified concepts. Relevant

Model-Based Evaluation of Service-Oriented Enterprise Architectures

113

associations are noted after each paragraph in the following form. The arrows indicate
the reading direction of the association.

Concept A association Concept B

The concept interface has several subtypes. These are the graphical user interface

(GUI), the service interface and the service integration adapter. The interface itself is
regarded as a general type of interface that is used to describe interfaces of legacy
applications.

Interface is generalization of GUI
Interface is generalization of Service interface
Interface is generalization of Service integration adapter

The interface always deals with business objects. These can be read or stored by an

interface.

Interface has write access Business object
Interface has read access Business object

An SOA service can require other SOA services or applications via interfaces. SOA

services are used via service interface or they require service integration adapters.
Service integration adapters adapt legacy interfaces to the current middleware
technology so that they can be used by SOA services, too. SOA services also provide
their functionality with at least one interface. Any interface must be implemented in at
least one kind of technology.

SOA service require Interface
SOA service provide Interface
Interface implemented in Technology

Interfaces are also provided and used by applications. Among the applications are

the legacy applications and some special SOA related applications. These are the
orchestration engine, the business process monitor, the complex event processor the
service registry and the service repository.

Application is generalization of Orchestration engine
Application is generalization of Business process monitor

 Chapter 5 Formalization of an SOEA Modelling Language

 114

Application is generalization of Service registry
Application is generalization of Complex event processor
Application is generalization of Service repository

The service repository always contains a service registry and each SOA service

should be registered in a service registry. An orchestration engine can execute
orchestrations (like BPEL models) This means that SOA services are used by the
orchestration in a certain order. The purpose of the business process monitor is to
observe business processes.

Service registry is part of Service repository
SOA service is registered in Service registry
Orchestration engine can execute Orchestration
Orchestration use SOA service
Orchestration cover Business process step
Business process monitor observe Business process

An application is realized in one or more technologies and can receive and fire

events. Furthermore, an application may provide or require interfaces. An application
can support a business process.

Application implemented in Technology
Application can fire Event
Application can receive Event
Application provide Interface
Application require Interface
Application support Business process step

SOA services can realize business process steps and can fire events that can be

required by performance indicators. Business processes have performance indicators
for evaluating their quality and consist of business process steps. Orchestrations can
realize business process steps.

SOA service can fire Event
SOA service realize Business process step
Performance indicator require Event
Business process have Performance indicator

Model-Based Evaluation of Service-Oriented Enterprise Architectures

115

Business process consist of Business process step
Orchestration realize Business process step

A business process step and an SOA service can also be realized by a role. Often

this role uses a GUI to realize the process step.

Role realize Business process step
Role realize SOA service
Role use GUI

Finally yet importantly, the concepts have to become meta classes. In addition, they

need attributes specifying them. Instances will have a name and a description. The
realization of this is given as abstract meta class “Named Element”. Every other meta
class inherits from this abstract one. The diagram does not show this, because this
would result in a confusingly huge number of arrows providing only little information.
The resulting meta model is depicted in Fig. 5-7.

 Chapter 5 Formalization of an SOEA Modelling Language

 116

Business Process

Business Process Step

GUI

Business Process Monitor

Complex Ev ent Processor

Event

Perfomance
Indicator

Application

Interface

Technology

Business Object SOA Serv ice

OrchestrationOrchestration Engine

Serv ice Repository

Serv ice Integration Adapter

Role

Serv ice Registry

Serv ice Interface

Named Element

- Name: char
- Description: char

provide

involved in

provide

consistsOf

1..*

1

have
require

canFire

canReceive

hasRead
Access

hasWrite
AccessimplemntedIn

observe

require

realize

isRegisteredIn

realize

canFire

use

realize

realize

use

canExecute

require

ImplementedIn

Fig. 5-7: Diagram with SOA meta model

In this section, the SOA meta model has been defined. The derivation of an
enterprise architecture meta model is described in the next section. This is done in
order to be able to integrate both models to an SOEA meta model.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

117

5.2 Deriving an Enterprise Architecture Meta Model

With the SOA meta model at hand an enterprise architecture meta model is required in
order to fulfil the requirement of a formal and individual EA meta model within the
approach of this thesis (R5 and R6). Furthermore, the EA meta model is needed for
the derivation of the SOEA meta model that formalizes the language containing SOA
and EA concepts. In section 4.2 an EA definition frame was given. This frame is used
to derive a minimal EA meta model. Afterwards, an approach to define an individual
EA meta model is described.

5.2.1 Deriving a minimal EA meta model

The minimal EA meta model will have some commonalities with the SOA meta
model. An intersection of the two meta models ensures that the resulting merged meta
model will be a connected graph. An unconnected graph would lead to the situation
that R8 “Holistic EA Modelling” is not fulfilled.

The minimal EA meta model restricts the individual meta model in the way that all

the concepts from the minimal EA meta model have to be present in the individual EA
meta model. Extensions of the minimal EA meta model are allowed.

In Fig. 5-8 the previously defined frame of the EA definition is depicted. The

concerned elements are the process architecture, the information architecture, the
software architecture and from this one especially the applications. In the following
the main concepts concerning these elements are identified and brought into relation
so that the minimal EA meta model can be derived. The notation of concepts and
associations is the same as in the previous section. If possible, then meta elements
from the SOA meta model are used.

 Chapter 5 Formalization of an SOEA Modelling Language

 118

Business
Layer

Application
Layer

Infra-
structure
Layer

Service
Layer

Enterprise
Architecture

Business
Architecture

Infrastructure
Architecture

IT
Architecture

Organization
Architecture

Software
Architecture

Business Goals

Process
Architecture

Basic
Services

Composite
Services

Orchestration

Applications

Gap between
Processes

and IT

Information
Architecture

Fig. 5-8: Essential parts of an enterprise architecture (compare [Assman08])

The process architecture has the business processes as a main element. A business
process consists of business process steps, which are central elements in the minimal
meta model.

Business process consist of Business process step

Moreover, business process steps are realized by applications. These applications

usually offer interfaces and may also require interfaces for their function.

Application supports Business process step
Application offer Interface
Application require Interface

This concludes the derivation of the minimal EA meta model that is finally depicted

in Fig. 5-9. The red coloured concepts represent the application layer and the blue
coloured concepts represent the business layer. Leaving out any of these concepts
would lead to underrepresentation of a layer. Therefore, this is not suggested. As
desired, there are structures in the minimal EA meta model that are overlapping with
the SOA meta model.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

119

Application

Business ProcessInterface

Business Process Step

Named Element

- Name: char
- Description: char

consistsOf

1..*

require offer

support

Fig. 5-9: Diagram with minimal EA meta model

The minimal EA meta model that was constructed in this subsection is the premise
for the merging of the SOA and an individual EA meta model. Any individual EA
meta model has to be an extension of this meta model. This means meta classes,
attributes, and associations can be added as desired. Leaving out or changing existing
meta classes, attributes, or associations is not allowed. Otherwise, the merging of the
two meta models is complicated and the focus on enterprise architecture may get lost.

Probably, an EA meta model that already exists in an enterprise does not include

exactly the given minimal EA meta model. In this case, at least matching meta classes
have to be found. Because of the coarse granularity and the essential meaning of the
meta classes in an EA meta model, this is regarded as possible. The matching meta
classes have to be integrated in the individual EA meta model. Their meta associations
should also find matching partners, but if none is found, they can just be added. Of
course and from then on, these added meta associations have to be minded in the
modelling process.

If it is not possible to find at least matching classes, then the individual EA meta

model is regarded as inadequate for an EA description and with this also inadequate
for further use in this method.

 Chapter 5 Formalization of an SOEA Modelling Language

 120

In this section a minimal EA meta model was defined that leaves enough freedom
to use an own and existing EA meta model but also determines the smallest set of
requirements for an EA meta model. For users that do not have an own EA model at
hand, the definition process for an own EA meta model is illustrated shortly in the
next subsection.

5.2.2 Defining an individual EA meta model

Unlike the definition process of the SOA meta model, the definition process of the
EA meta model shall be a very individual step. There is related work in the field of EA
meta models like in [Braun05], [Engels08] and in [Butler07]. These can be chosen as
long as they are compliant to the minimal EA meta model.

Enterprises often have very individual structures that are different from structures

suggested in existing EA meta models. One reason to insist on an individual meta
model is that an existing meta model is already used in another context. Furthermore,
the nomenclature can be very different and people refused to adapt to the new terms.
The learning effort for the new nomenclature can thus be too high.

Moreover, there can be concepts within an existing meta model that are out of the

desired focus. Some are disregarded because the information retrieval would be so
expensive that the costs would outweigh the benefit. Others could be simply not of
interest for the EA management.

Furthermore, there could be concepts that are not comprised by an existing meta

model. As these concepts cannot be omitted without significantly lowering the
usefulness for the users, they have to become part of an individual EA meta model.

For these reasons, a way to create a completely individual EA meta model is

described in this section. Every reader of this thesis is free to choose an existing meta
model, adapt it, or to create a new one.

For this thesis, many discussions with employees were lead for defining an

individual enterprise architecture meta model. During these discussions, the relevant
concepts and relations were taken down and a first meta model, being consistent with
the minimal EA meta model, was depicted. After a review phase, the final meta model
was created.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

121

In the following, the concepts found in the interviews are given as a list.
Afterwards, their relations are described and the associations for the meta model are
pointed out.

 Business goal
 Business application
 Application
 Interface
 Key performance indicator
 Graphical user interface
 Operating system
 Application server
 Data base
 Workflow management tool
 Technology

 Business process
 Business process step
 Deployment component
 Business event
 Business event message
 Business object
 Business service
 Sub service
 Organizational unit
 Role
 Service provider
 Contract

A business goal is part of the business strategy. It may be formulated vaguely, but

should be as precise as possible. An example for a vague goal is to become technology
leader in a certain sector, because technology leadership might not be clearly defined.
The goal to generate 200 million € of volume is more precise. In every case, a
business goal should be supported by processes. Otherwise, its fulfilment will
probably fail.

Business process support Business goal

A business process is a complex sequence consisting of several process steps or

even other business processes. Its purpose can be to realize a business service.
Furthermore, the business process may have performance indicators that make the
quality of the process measurable.

Business process consist of Business process step
Business process is part of Business process
Business process realize Business service
Business process have Key performance indicator

A business service is a kind of product or service that the enterprise sells to its

clients. In the simplest case, it is a piece of hardware, like an automaton. It may also

 Chapter 5 Formalization of an SOEA Modelling Language

 122

be a service that guarantees the functionality of an automaton. In this case, there may
be several sub services that the business service consists of. A set of business services
is bundled and sold to a client, which is escrowed in a contract. The business service is
the smallest element a contract may provide. A contract is an agreement with a client
on a set of defined business services to certain conditions.

Contract provide Business service
Business service consist of Sub service

A sub service is the smallest part of a business service that can be fulfilled by a

single service provider. The service provider may be any kind of legal person that is
able to fulfil a sub service.

Service provider deliver Sub service

There is exactly one responsible organizational unit for a business process step. If

an organizational unit acts as a service provider for a sub service, it will be responsible
for the business process steps realizing the sub service. Business process steps also
work on business objects, which can be accessed in a reading or writing way. During
the execution of a process step business events may occur. These business events may
be triggered by an application supporting the execution of the business process step, a
role (employee) that acts in the process step, or any external system or actor.

Business process step realize Sub service
Business process step hasReadAccess Business object
Business process step hasWriteAccess Business object
Business event occur in Business process step

An organizational unit holds responsibilities. Firstly, the responsibility for process

steps. The organizational unit has to ensure that the process step can be executed in the
context of any business process. Secondly, an organizational unit hosts applications.
That means it has to take care that the application is working correctly all the time.
Thirdly, roles have to be provided by them. Roles stand for human actors that have
certain skills and act in business processes.

Organizational unit responsible for Business process step
Organizational unit host Application
Organizational unit provides Role

Model-Based Evaluation of Service-Oriented Enterprise Architectures

123

Role act in Business process step

A business object is the input or output for a process step, for example an

automaton or an invoice. The business objects do not have to exist in material form;
they can also be seen as a piece of information. A business object can have different
attributes, like the invoice that has a sender and a receiver. As the receiver of an
invoice is a business object itself, business objects can contain other business objects.

Business object is part of Business object

An application is a piece of software that fulfils a certain purpose in a process step.

This reaches from infrastructure software to business applications like a customer
relationship management system. The concept infrastructure is not treated as a single
concept here, although this would be possible. Instead, several application types are
regarded as attribute of an application. The different application types represent the
infrastructure needed here. The different application types concerned here are
operating system, database, application server, and workflow management tool and
business application. Business applications are all applications that do not fit into
another category.

Application support Business process step
Application is generalization of Business application
Application is generalization of Application server
Application is generalization of Operating system
Application is generalization of Data base
Application is generalization of Workflow management tool

Applications can be packaged in deployment components. That means that this set

of applications is always deployed together. This helps to define approved
combinations of applications and eases their version management.

Application is part of Deployment component

Each application offers interfaces allowing the invocation of operations. When

communicating with other applications, an application requires interfaces that are
offered by the other applications used.

 Chapter 5 Formalization of an SOEA Modelling Language

 124

Application offer Interface
Application require Interface

An interface can generally have two different types – a graphical user interface and

a general interface. The graphical user interface allows employees (roles) to interact
with the application. The general interface allows applications to communicate with
each other.

Interface is generalization of Graphical user interface

Technologies are implemented by interfaces and applications. For interfaces, these

are protocols like JMS (compare [SunMic00]), CORBA (compare [OMGCOR92]), or
Web Services. For applications, these are the programming languages and technical
frameworks.

Application implement Technology
Interface implement Technology

Business event messages are the electronic equivalent of intangible business events.

They contain execution time, context, and content data of a business event.
Furthermore, they are created by interfaces. They can be consumed to compute key
performance indicators that are monitored in real time.

Interface can create Business event message
Key performance indicator need Business event message

Key performance indicators are measurement instruments to monitor the quality of

business processes. Each process can have several of these indicators defined.

Business process have Key performance indicator

At this point, all concepts and their relationships have been described. From these

the meta model in Fig. 5-10 is derived. Just like in the SOA meta model, the abstract
class “Named Element” has been added. All other classes are sub classes, so that their
instances have minimum set of attributes for identification and description. The
colours of the meta classes indicate their layer affiliation.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

125

Business Process

Application

Organizational Unit

Interface

Sub Serv ice

Business Object

Deployment Component

Technology

Business Serv ice Business Process Step

Role

Key Performance Indicator

Business Ev ent Message

Serv ice Prov ider

Business Layer

Application Layer

Business Goal

Graphical User Interface

Business Ev ent

Contract

Operating System

Application Serv er

Data Base

Workflow Management Tool

Business Application

Named Element

- Name: char
- Description: char

Serv ice Interface

Business Process Monitor

Complex Ev ent Processor

Orchestration SOA Serv ice

Serv ice Integration Adapter

Serv ice Registry

Serv ice Repository

Service Layer

support

0..1

consume

actIn

hasReadAccess

hasWriteAccess

real ize

occurIn

implement
canCreate

provide

0..1

host

implement

offer

involved
in

support

1

have

consistOf

1..* 0..1

provide
1..*

deliver

0..1

1..*

1

responsible
for

use

canExecute
realize

isRegisteredIn

use

provide

require

realize

hasRead
Access

canReceive

require

realize

observe

consistsOf haswrite
Access

Fig. 5-10: Diagram with EA meta model

The way to find an individual EA meta model was illustrated in this section.
Together with the SOA meta model, the union of the two meta models can be worked
out. By this, the foundation for the planning of the Service-Oriented Enterprise
Architecture is created.

5.3 Union of the SOA and the EA Meta Model

This section describes the merging process of the SOA end the EA meta models. The
merging will exemplarily be shown with the parts of the meta models derived in the
previous sections. The complete meta models would be too big as examples. Their
merged version is shown after the description of the merging process.

The merging of the meta models is necessary, because of several requirements. At
first, R8 demands holistic modelling, which forbids the usage of two different meta
models. Moreover, R4 demands an integrated language for SOA and EA. This

 Chapter 5 Formalization of an SOEA Modelling Language

 126

language also has to be formal (R5) and the EA part has to be individual (R6).
Merging the individual EA meta model with the SOA meta model will fulfil these
requirements.

There are already approaches on how to merge meta models. These have emerged
in the fields of very large databases (VLDB, compare [VLDBOR09]) and the semantic
web (compare [Berners01]), mainly. Some approaches like [Madhav02] make use of
existing instances of meta models and apply learning algorithms. These are not suited
for the problem here, because there is probably at most one EA meta model per
enterprise (and probably none for the SOA meta model). Learning algorithms are not
applicable with such a small number of instances.

Other approaches, like the model management approach in [Bernst03] work on the

meta models only. The approach of [Bernst03] is picked up and used for the meta
model merging in this thesis.

In [Bernst03] generic operators working on meta models are described. The ones

being useful in this context are match and merge. As the term merge has already been
used for the whole process of delivering a unified meta model, merging in the sense of
[Bernst03] is referred to as joining. Match takes two models and returns a mapping
between them. Join takes two models A and B and a mapping between them and
returns the union C of A and B. Hence, the merging problem is split into the two sub
problems matching and joining.

Unfortunately, in [Bernst03] only the semantics but not the implementation of the

operators is given. For the implementation of the matching and the joining operator,
two different references are used. The matching follows the approach of [Lagers08],
which is based on the main idea that two concepts match if concepts in their
neighbourhood match. The joining follows the ideas given in [Borona07], which
describes possible joining conflicts and suggests resolution strategies. Both do not
work on a whole model, as suggested in [Bernst03], but on single concepts of a meta
model.

Before starting the manipulation of the meta models, these will be transformed in a

representation form that is easier to process as the graph form. As already mentioned,
merging algorithms originate from the field of databases. That is why the simple table
is chosen as representation form.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

127

Transform graphs to table
representation (M and S)

Match a concept of S with
concepts of M

Join concept into M

All entries
processed?

Retransform to graph
representation

[No]

[Yes]

5.3.1

5.3.2

5.3.3

5.3.1

Fig. 5-11: Simplified meta model merging process

In Fig. 5-11 a first simplified form of the merging process is depicted. It contains
the main operations used in the algorithm, which are described in the next subsections.
At first, the graphs of the meta models are transformed into table representations,
namely the master and the slave table (M and S), which is described in subsection
5.3.1. This is followed by describing the matching operator in subsection 5.3.2.
Afterwards, the joining operator for entries having been matched is elicited in
subsection 5.3.3. When the point is reached that all entries have been matched and
joined, then the resulting table can be transformed back to a meta model graph. This is
simply the reversion of the previously applied transformation process and described in
subsection 5.3.1.

With the understanding of the single operations, the complete algorithm will be
described in detail in subsection 5.3.4. The result of its appliance on the SOA and the
EA meta model is given in 5.3.5.

 Chapter 5 Formalization of an SOEA Modelling Language

 128

5.3.1 Transformation to Table Representation

This subsection describes how the meta models are transformed into table
representations. There are two reasons why the meta model graphs are transformed to
tables. The first reason is to be able to process the elements of the meta model with
ease. The table representation allows sorting, marking and enumerating entries with a
simple spreadsheet program. Using the graphical representation form could easily lead
to confusion of the user, because too many graphical elements have to be processed at
once. In table form, this can be done entry for entry. Secondly, to abstract from the
syntactical structures the meta model defines. This is done because it may happen that
a concept in one meta model is expressed as a meta class, and in another meta model it
is just represented by an attribute of a meta class. For this reason, attributes, concepts,
and inherited concepts are transformed into the same representation form. In the
following, these will be referenced as (meta modelling) artefacts.

In Fig. 5-12 a generic example with all the elements that are concerned in the

transformation is given. Exactly one entry is generated for each artefact (concepts,
inherited concepts, and attributes). This allows that each of them potentially is a
concept, inherited concept, or attribute in the target meta model.

class Merging Example

A

- attributename: char

B Class C

0..1

Association
Name

0..*

Artefact Name Association Name Cardinality Referenced artefact Semantic Description
Pro-
cessed?

Class A - - - A is a metamodelling concept 1
Class A Association name 0..* Class B A may have a relation to several B's 1
Class A has attribute 0..1 A.attributename - 1
Class A has specialization 0..* Class C - 1
A.attributename - - - The attribute characterizes A 0
A.attributename is attribute of 0..* Class A - 0
Class B - - - B is another metamodeling concept 0
Class B Association name (b) 0..1 Class A B may be related to one A 0
Class C - - - C is a specialization of A 0
Class C has generalization 1 Class A - 0
Class C Association name 0..* Class B C may be related to B 0
Class C has attribute 0..1 A.attributename The attribute characterizes A 0

Entry for
‚Class A‘

Fig. 5-12: Generic example for table transformation

An entry can consist of several rows, like the entry for Class A. The first row
represents the artefact itself and the following rows represent its associations. Any
undirected association is split into two directed associations. Only the directed
associations originating in the concerned artefact are considered in the entry for the

Model-Based Evaluation of Service-Oriented Enterprise Architectures

129

artefact. Each row of an entry has six fields (columns). These are the names of the
concerned artefact, the name of an association of the concerned artefact, the
cardinality of the association, the referenced artefact, the semantic description, and a
boolean flag that is not important now. The second to fourth fields are always empty
for the first row of an entry.

There are special association types for attributes and inheritances defined for the

second field. If an artefact has an attribute or inheritance relation, then this results in
an extra row. In this case, the second field is filled with “has attribute”, “is attribute
of”, “has specialization”, or “has generalization”. Of course, normal associations also
occur in the opposite direction in the case of bidirectional associations. For normal
associations the name is concatenated with “(b)” for backwards.

The third field describes the cardinality of the association to the referred object. If

there are cardinalities denoted in the graph, then these have to be chosen. As the
cardinality field may not be left empty, default values are defined. The default values
depend on the association types:

Normal association 0..*
Normal association (b) 0..*
Has attribute 0..1
Is attribute of 0..*
Has specialization 0..*
Has generalization 1

The third field contains the information about the artefact that is referenced by the

association. In the case of attributes or inheritance relations, the corresponding
attribute or class is inserted.

When applying these transformation rules on the graph given in Fig. 5-12, the table
below the graph is generated. With this method, both meta model graphs are to be
transformed into a table.

In the following, a running example is introduced. The artefact interface from the

EA meta model is considered from now on. In Fig. 5-13 Interface and its associated
concepts are shown. The table below is the result of the transformation for just
interface. The neighbouring classes are only shown, because they are referenced by
associations of interface.

 Chapter 5 Formalization of an SOEA Modelling Language

 130

Interface

Application

Business Ev ent
Message

Graphical User Interface

Technology
implement

can
create

require offer implement

Artefact Association Name Cardina
lity

Referenced Artefact Semantic
Description

Proce
ssed?

Interface Connects
applications

0

0Interface offer (b) 0..* Application

0

Interface require (b) 0..* Application 0

Interface can create 0..* Business Event Message

Interface has specialization 0..*

Interface implement 0..* An interface is
implemented in a …

0

Graphical User Interface

Technology

0

Fig. 5-13: Transformation of ‘Interface’ to table representation

After the generation of the two tables for the EA and the SOA meta model, a
decision on the master and the slave table has to be met. The reason for this originates
in the conflict resolution strategy given in subsection 5.3.3. The slave table will later
be inserted in the master table. The result will slightly be influenced by the choice.
That means if there are similar or equal artefacts it is more likely that the artefact
characteristics from slave table artefacts will be discarded.

The reversion of the transformation is achieved by applying the transformation rules

the other way round. At first, only the artefacts without their associations are
processed. That means only the first row of an entry and the “is attribute of” rows are
processed in the first run. When all concepts are transformed, the associations can be
transformed as well. Having the meta models transformed to tables, the matching of
artefacts can be elicited in the next subsection.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

131

5.3.2 Matching Artefacts

The matching of artefacts is required to be able to decide which artefacts are similar
enough to be united during the join operation. The matching operator will be defined
for two artefacts resulting in a number indicating similarity. The similarity measure is
given as a ratio between zero and one. One means that they are equal in their
semantics. Its signature reads:

[0,1] artefactartefact →×

The matching technique presented here is based on the idea of Bayesian networks
(compare [Jensen08]) that are used as suggested in [Lagers08]. The approach allows
determining the grade of similarity of two meta classes or meta attributes in an
automated way, because it was designed to automate the merging of larger meta
models. As the scenario of merging an EA and an SOA meta model is still doable by
hand and complete automation is not needed because of the relatively rare usage, the
approach of [Lagers08] is adapted here. Every evaluation step can be influenced by an
expert. Even in [Bernst03] this had been suggested for the complex matching
operation. The use of the Bayesian network approach is to be seen as decision support
only.

In the rest of the subsection, Bayesian networks are introduced and the way of their
usage in the matching operation is elaborated. Afterwards, a small example from the
SOA and EA meta model is given.

A Bayesian network B consists of a directed acyclic graph G and a conditional

probability distribution P over the nodes of the graph, shortly B = (G,P). The graph
consists of a set of vertexes V and a set of edges E. That means G = (V,E), where
E = VxV. Each vertex represents a variable Vi єV. The variables concern the similarity
of a single aspect of two joining candidates and have a value vi in the finite set of
val(Vi). Usually, these variables are random variables and their distribution is given
through probability tables, but here their distribution is given by the instances of the
artefacts to be joined and formulas on how to compute the resulting probabilities.

Edges denote causal dependencies between the nodes. All nodes that are connected
to Vi by incoming edges build the set of parent nodes pa(Vi). The outgoing edges of Vi
build the set of child nodes ch(Vi). That means, a source node of an edge is a parent

 Chapter 5 Formalization of an SOEA Modelling Language

 132

and a target node is a child node. P describes how the variable values from the nodes
are distributed.

In Fig. 5-14 the Bayesian networks for artefact and association matching are given

with example values. The artefacts that were compared there cannot be seen in this
diagram, but only the result of the comparison. The child nodes of the association
node all have simple set of values, which is either {equal, unequal} or {equal, similar,
unequal}. Each of these values can be either one or zero but the sum within each node
has to be exactly one.

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Artefact Name

Equal
Similar
Unequal

0
1
0

Artefact Name

Equal
Similar
Unequal

0
1
0

Artefact Semantic
Description

Equal
Similar
Unequal

0
1
0

Artefact Semantic
Description

Equal
Similar
Unequal

0
1
0

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association Name

Equal
Similar
Unequal

0
1
0

Association Name

Equal
Similar
Unequal

0
1
0

Equal
Unequal

1
0

Cardinality

Equal
Unequal

1
0

Cardinality Referenced
Artefact

Equal
Similar
Unequal

0
1
0

Referenced
Artefact

Equal
Similar
Unequal

0
1
0

Assoc. Semantic
Description

Equal
Similar
Unequal

0
1
0

Assoc. Semantic
Description

Equal
Similar
Unequal

0
1
0

Equal
Unequal

70%
30%

Artefact

Equal
Unequal

70%
30%

Artefact

Equal
Similar
Unequal

30%
50%
20%

Set of
Associations

Equal
Similar
Unequal

30%
50%
20%

Set of
Associations

Fig. 5-14: Bayesian network for artefact matching

Depending on the values of the child nodes, the value for the parent node
“association match” is computed. Weights for the nodes are given, where equal has
weight 1, similar has weight 0.75, and unequal has weight 0. In the beginning, it was
mentioned that expert opinions can influence the method. If the value of the “semantic
description” node is set on equal, then the result value is overridden by that. That

Model-Based Evaluation of Service-Oriented Enterprise Architectures

133

means an expert has stated that these associations are definitely equal. The value of
AssociationUnequal is the complement to one of AssociationEqual. The computation is
done with the following formula:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +

=
∑

∈
Equal

chi
SimilarEqual

ch

ii
nDescriptio Semantic,

)nAssociatio(

75.0
maxnAssociatio tion)(Associa

Equal

Only with the association match values computed, the artefact match values can be

computed. The “set of associations” node is computed with the values of the of the
association nodes of the artefacts that are compared. At first, the artefact with the
smaller set of associations is identified. This smaller set of associations is named XS.
The larger set of associations from the other artefact is called XL.

For each association in XS the equality value for the best fitting association in XL

has to be found. If the value is at or above 75%, the association of XS is categorized as
equal. If the value is at or above 50% but below 75% the association is categorized as
similar, else it is categorized as unequal. After that, the associations are summed up
according to their categories. The sums are afterwards normalized to one, so that a
valid distribution for the values of the node “set of associations” is created.

{ }
S

EqualS

X
iXii 75.0.|

nsAssociatio ofSet Equal

≥∧∈
=

{ }
S

EqualEqualS

X
iiXii 5.0.75.0.|

nsAssociatio ofSet Similar

≥∧<∧∈
=

{ }
S

EqualS

X
iXii 5.0.|

nsAssociatio ofSet Unequal

<∧∈
=

Now, as the value for the “set of associations” is available, the value for the artefact

comparison can be computed. The formula is similar to the formula for the
computation of the “Association” node.

 Chapter 5 Formalization of an SOEA Modelling Language

 134

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+++

=

∑∑
∈∈

Equal

S

Xi
SimilarEqualS

i
SimilarEqual

X

iiXii
S

nDescriptio Semantic ,
2

75.075.0

maxArtefact
}nDescriptio Semantic Name,Artefact {

Equal

For the case that an expert is sure to have recognized the same artefacts, the value

of the semantic description overrides the other values. According to the value of
ArtefactEqual, the two artefacts are regarded as semantically similar. At values above or
equal 75% the two artefacts are recommended to be joined.

At this point, the running example is picked up again. The interface from the EA

meta model will be matched with the Interface from the SOA meta model. The
comparison leads to a result of 78.6% equality. Thusly, the artefacts are regarded as
equal enough to be. They will be joined later on, as long as no better matching
candidate is found.

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

Association

Equal
Unequal

70%
30%

InterfaceEA
InterfaceSOA

Equal
Similar
Unequal

1
0
0

InterfaceEA
InterfaceSOA

Equal
Similar
Unequal

1
0
0

“Connects applications”EA
“Allows communication

of applications”SOA

Equal
Similar
Unequal

0
1
0

“Connects applications”EA
“Allows communication

of applications”SOA

Equal
Similar
Unequal

0
1
0

implements (Technology)EA
uses (Technology)SOA

Equal
Unequal

68,8%
31,2%

implements (Technology)EA
uses (Technology)SOA

Equal
Unequal

68,8%
31,2%

implementsEA
usesSOA

Equal
Similar
Unequal

0
0
1

implementsEA
usesSOA

Equal
Similar
Unequal

0
0
1

Equal
Unequal

1
0

0..*EA
0..*SOA

Equal
Unequal

1
0

0..*EA
0..*SOA

TechnologyEA
TechnologySOA

Equal
Similar
Unequal

1
0
0

TechnologyEA
TechnologySOA

Equal
Similar
Unequal

1
0
0

“An interface is …”EA
“Interfaces use …”SOA

Equal
Similar
Unequal

0
1
0

“An interface is …”EA
“Interfaces use …”SOA

Equal
Similar
Unequal

0
1
0

Equal
Unequal

78,6%
21,4%

InterfaceEA
InterfaceSOA

Equal
Unequal

78,6%
21,4%

InterfaceEA
InterfaceSOA

Equal
Similar
Unequal

60%
20%
20%

Set of
Associations

Equal
Similar
Unequal

60%
20%
20%

Set of
Associations

Fig. 5-15: Matching example

Model-Based Evaluation of Service-Oriented Enterprise Architectures

135

For now, it should be clear how the matching operator works. When having a look
back on Fig. 5-11, where the merging process is described, the next major step in
order is to join artefacts, which will be described in the next section.

5.3.3 Joining Artefacts

This section describes the join operator, which decides how artefacts are joined or
inserted into the resulting model. The signature of the join operator reads:

M'S'MMSS model model model artefact model artefact ×→×××

The first item in the signature, artefactS, is any artefact from the slave table that has

been compared to the existing artefacts in the master table. modelS represents the slave
table, from where artefactS comes from. The second artefact, artefactM is the best
matching artefact from the master table. If there is no artefact matching to 75% or
more, then this parameter is empty. The second input model, modelM, is the master
table without the artefactS. The first output model, modelS’ is the slave table without
artefactS. On the contrary, modelM’ now contains artefactS, either completely or in a
form joined with artefactM.

Joining an artefact into a model, two cases may occur. The first case occurs if there
is no matching artefact. Then, the artefact is just added to the master table. The
resulting model will always be connected as long as there is at least one joined
artefact. Due to the minimal EA meta model and its intersection with the SOA meta
model, this will always be the case. The second case that may appear when joining an
artefact into a model is that there is a nearly equal artefact in both models that can be
joined. This requires two steps, first, resolving joining conflicts if a matching is not
exactly equal. Secondly, inserting the new artefact including updating the associations
of neighbouring artefacts. For bidirectional associations, both ends of the association
have to be updated.

For the case that two nearly equal artefacts have been identified, their joining

conflicts have to be solved. That means for each conflict type a strategy, on which
artefact brings in the dominating property, has to be formulated. For this case, the
master table had to be identified. Whenever there is a joining conflict, the property of
the master table artefact will preferably be chosen.

 Chapter 5 Formalization of an SOEA Modelling Language

 136

The conflict types that may occur are identified in [Borona07]. They have a high
similarity with the child nodes from Fig. 5-14. Thusly, the following joining conflicts
may appear:

• Name conflict
• Semantic description conflict
• Association name conflict
• Association semantic description conflict
• Cardinality conflict

In general, the master table holds the dominating artefacts. Names and descriptions

are usually chosen from the master table. The “Artefact Name” and “Association
Name” will be chosen from the master table as it means less learning effort for the
employees of the enterprise. The “Artefact Semantic Description” and the
“Association semantic description” can be extended by the one of the slave table
artefact if there is a point worth adding.

Concerning cardinalities, two strategies make sense. Firstly, to choose a cardinality

that is at least as lax as the two joined cardinalities, or secondly, choosing the
cardinality from the master table. If there are two different cardinalities given for the
association to be joined, then the union of these cardinalities should be given to the
new association. For example, the cardinalities 2..5 and 4..* are joined to 2..*.

If the joining conflicts have been resolved, the insertion of the artefact may begin. If

it is a joined artefact, the existing entry in the master table is extended by associations
of artefactS. If not, a new entry is created and the associations of the artefactS are
inserted line per line.

For the case of joined artefacts, the bidirectional associations have to be updated.

Otherwise, inconsistencies would occur. Every association has a referenced artefact. If
the referenced artefact of an association has been joined, so that its name has changed,
then the referenced artefact does not exist anymore with its former name. For this
reason, all associations that reference a joined artefact have to be updated. This goes
for artefacts in the slave table, too.

The update is realised by replacing the discarded name throughout both tables. This

happens if the artefact is referenced by an association. To prevent that two different

Model-Based Evaluation of Service-Oriented Enterprise Architectures

137

artefacts, by chance sharing the same name, are both renamed, the slave table names
were marked with a preceding underscore.

The associations between artefacts in the master and the slave table will always be
kept during the process. This is wanted, because it ensures the connectivity of the
resulting model. All associations between the master and the slave model will be
cleared during the whole process, because all the artefacts from the slave model will
be either inserted or joined into the master model. With an empty slave model, no such
model crossing association can occur. When the slave table is empty, the
retransformation of the table back to a graph can be initiated.

After the textual explanation of the joining operation, the running example is picked

up again. The joining of the two interface artefacts is illustrated in the example. In Fig.
5-16, the dashed arrows indicate the matching entries that have been found. The
joinings are executed by resolving eventual conflicts and inserting the new values into
the master table. The entry in the slave table is deleted. The result of the joining can be
seen in Fig. 5-17.

Artefact Association

Name
Cardina
lity

Referenced
Artefact

Semantic
Description

Process
ed?

Interface Connecting … 1
1

1

1

1

1

Application

Interface offer (b) 0..* Application

Interface has
specialization

Graphical User
Interface

0..*

TechnologyInterface implement 0..*

Interface can create 0..* Business Event
Message

Interface require (b) 0..*

Artefact Association
Name

Cardina
lity

Referenced Artefact Semantic
Description

Proces
sed?

Interface Allows … 1
1

1

1

1

1

1

1

1

1

1

Interface

Interface has
specialization

0..*

Interface provide (b) 0..*

provide (b) 0..*

Interface hasWriteAcces
s

0..*

Interface hasReadAccess 0..*

Interface

Service Interface

SOA Service

Application

GUI

require (b) 0..*

has
specialization

0..*

Interface require (b) 0..*

Interface implement 0..* Technology

Application

Service Integration
Adapter

Interface

Interface has
specialization

0..*

SOA Service

Business Object

Business Object

Matched entries

Fig. 5-16: Joining example before joining

 Chapter 5 Formalization of an SOEA Modelling Language

 138

Artefact Association
Name

Cardina
lity

Referenced Artefact Semantic
Description

Process
ed?

Interface Allows … 0
0

0

0

0

0

0

0

0

0

0

0

Business Event
Message

Interface

Interface can create 0..*

Interface has
specialization

0..* GUI

implement 0..* Technology

Interface require (b) 0..* Application

Interface has
specialization

0..* Service Integration
Adapter

Interface require (b) 0..* SOA Service

Interface hasRadAccess 0..* Business Object

Interface hasStoreAccess 0..* Business Object

Interface offer (b) 0..* Application

Interface provide (b) 0..* SOA Service

Interface has
specialization

0..* Service Interface

Fig. 5-17: Joining example after joining

5.3.4 Algorithmic Concerns

So far, the single steps of the merging process have been described. The algorithm
presented in this section orchestrates these steps in the way that the result will be a
graph representing the merged meta model.

In Fig. 5-18 a detailed diagram for the algorithm is given. The algorithm starts with
the transformation of the two graphs into the slave and the master table. This step was
explained in sub section 5.3.1. When done so, the comparison of entries may begin.
Always the first unmarked entry of the slave table is compared with each entry of the
master table. If exactly one matching entry is found (guard [Equal to exactly one]) in
the master table, then the two entries are joined (which includes updating the other
entries) and the next unmarked slave table entry is compared.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

139

Within the comparison step, a slave table entry is marked when all its comparison
computations with master table entries have been done, but no clear matching entry
has been found (guard [Else]). As long as this is the case and not all entries are
marked, the entry remains in the slave table. The entry could change later because
another entry is joined into the master table. If that happens, the processed mark is
deleted and the computation is repeated in one of the next comparison iterations.

Transform graphs to table
representation (M and S)

Match an artefact of S
with artefacts of M

All entries processed?

Retransform to graph
representation

Join into master table

Equality of Entries?

Equality of entries?

Mark slav e entry

All slave entries
marked?

Cut and insert into master
table

Choose most similar entry

[Yes]

[Yes]

[Equal
to
exactly
one]

[Equal to several]

[No]
[Equal to
none]

[No]

[Else]

Fig. 5-18: Algorithm for meta model merging

 Chapter 5 Formalization of an SOEA Modelling Language

 140

At the point of time where all slave table entries are marked, these entries are forced
to be joined or inserted into the master table. If there is a slave table entry that equals
(equality value >75%) more than one master table entry (guard [Equal to several]),
then the entry with highest computed equality value is chosen. If there is no master
table entry with a high equality value for a slave table entry, then the entry is inserted
in the master table. Entries that were inserted or joined are taken out of the slave table.

The algorithm leads to an empty slave table, which means that all entries have been

processed. If so, the resulting master table is retransformed into the graph
representation.

This sub section has shown how the single steps of the previous sub sections are

applied in an algorithm that merges two meta models. The next step is to apply it on
the given meta models.

5.3.5 Application of the Merging Algorithm

With the meta model merging algorithm given, the SOA and the EA meta model can
be merged to an SOEA meta model. Only a brief overview and the results will be
shown in this subsection. Some intermediate results of the merging process are given
in appendix A.

The decision on master and slave table is taken to the favour of the EA meta model.

That means it will be transformed to the master table and the SOA meta model will be
transformed in the slave table. This is done because the EA meta model is more
specific to the enterprise and employees are more familiar with the old labels.

In Fig. 5-19 the merged SOEA meta model is depicted. The concepts are coloured

according to the layers they belong to. In most cases, the joined objects kept the names
from the EA meta model. Their names will be better known to the users in an
enterprise.

With an SOEA meta model at hand, the enterprise architect has a basis for planning

the next steps of the transformation of the enterprise. In this chapter, an SOA meta
model and an EA meta model were defined. Moreover, a methodical approach on how
to merge them to an SOEA meta model is given. Through the SOA meta model the
requirement R2 “SOA formalization” has been fulfilled. Through the EA meta model
that may be designed individually by the enterprise architect, the requirements R5

Model-Based Evaluation of Service-Oriented Enterprise Architectures

141

“EA Formalization” and R6 “Individual EA meta model” were satisfied. The result of
the meta model merging process, the SOEA meta model, leads to the fulfilment of the
requirements R4 “Integrated language for EA and SOA” and R8 “Holistic EA
Modelling”. R13 “Methodical approach” has to be covered by all realization chapters.
Therefore, it is only partly fulfilled here. At least concerning the SOEA meta model
definition, a methodical approach has been realized in this chapter.

Business Process

Application

Organizational Unit

Interface

Sub Serv ice

Business Object

Deployment Component

Technology

Business Serv ice Business Process Step

Role

Key Performance
Indicator

Business Event
Message

Serv ice Prov ider

Business Layer

Application Layer

Business Goal

Graphical User Interface

Business Ev ent

Contract

Operating System

Application Serv er

Data Base

Workflow Management
Tool

Business Application

Named Element

- Name: char
- Description: char

Serv ice Interface

Business Process
Monitor

Complex Ev ent Processor

Orchestration SOA Serv ice

Serv ice Integration
Adapter

Serv ice Registry

Serv ice Repository

Service Layer

support

0..1

consume

actIn

hasReadAccess

hasWriteAccess

real ize

occurIn

implement
canCreate

provide

0..1

host

implement

offer

involved
in

support

1

have

consistOf

1..* 0..1

provide
1..*

deliver

0..1

1..*

1

responsible
for

use

canExecute
realize

isRegisteredIn

use

provide

require

realize

hasRead
Access

canReceive

require

realize

observe

consistsOf haswrite
Access

Fig. 5-19: Integrated meta-model of EA and SOA concepts

To be able to realize the management cycle from Fig. 2-17, as well as the
requirements R3 “SOA conformance criteria” and R11 “Automation of criteria
checks”, not only planning has to be supported. A more crucial point is the measuring
that is not covered by the SOEA meta model itself. The next chapter will define
everything that is needed to realize the measuring concerning service orientation.

143

6 Defining Quality Criteria and their Metrics

Quality is the overall goal of planning and design activities and an enterprise
architecture planning is not an exception. Thus, mechanisms that allow the evaluation
of the design and planning are desirable. Especially quantitative measuring
mechanisms should play a role, as they are more precise than qualitative ones
(compare [Sommer01]). The quantitative measurement results should then be used to
derive qualitative statements.

The derivation of metrics from quality criteria, which are derived from quality
properties, will deliver the demanded quantitative measuring mechanisms. The
qualitative statements are then determined by indicators (treated in the next chapter).
Fig. 6-1 shows the meaning of properties, criteria, metrics, and indicators in the
context of the basic solution concept. This chapter focuses only on the definition of
quality criteria of an SOA-like EA and their metrics, not their indicators.

Tool support
Eclipse SOA-Meter(EMF + GMF + OCL)

Real world
system

Enterprise
Architecture

Quality
properties

SOA-like EA

Modelling

SOEA meta
model

Quality criteria
for model

SOA quality
criteria catalogue

Evaluation

Metrics and
indicators

Transformation/
Refinement

Abstraction

Specification

Fig. 6-1: Realization of basic solution concept

The quality concerning an SOA-like EA is regarded as the grade of service
orientation of the enterprise architecture. Thus, the here measured quality concerns the
conformance of the EA to the SOA definition given in chapter 4. There are also other
quality aspects of an enterprise architecture that could be measured. However, this
would go beyond the scope of the thesis. However, the evaluation method and tool
support could be easily used to implement other quality checks.

 Chapter 6 Defining Quality Criteria and their Metrics

 144

The criteria for the evaluation of service orientation are grouped in two categories
to cover task fields determined in section 1.2. Firstly, the structural criteria that can
mostly be evaluated on the basis of the meta model. The structural criteria focus on the
conformance of the enterprise architecture to the SOA reference architecture described
in section 4.1.1. The criteria vary from “Is there a service registry?” to “How high is
the ratio of monitored processes to unmonitored processes?”.

 Secondly, the SOA service quality criteria. They evaluate whether the services

within the Service-Oriented Enterprise Architecture are designed well or not. Quality
criteria for well-designed services are defined and checked for this purpose.

In Fig. 6-2 the parts of the overview diagram covered by this chapter are shown in

the dashed frame. The creation of an instance of the SOEA meta model is task of the
architect. It is assumed that the architect is able to describe such an instance.
Furthermore, he has to take care that the information in the model is held up to date.
This is a general modelling problem. The typical way should be to change the model
and then to change the real world system accordingly. However, often the real world
system is changed and then the model has to be updated. This is also part of the
governance tasks not being covered here.

The major subject of this chapter is the SOA quality criteria catalogue fulfilling the

requirement R3 “SOA conformance criteria”. It consists of two parts, the structural
quality criteria and the service quality criteria. Subsection 6.1.1 focuses on structural
quality, which means the conformance of the EA to the SOA reference architecture.
Subsection 6.1.2 focuses on the quality of SOA services. Afterwards in section 6.2, the
metrics required to execute quantified measurements for the whole set of quality
criteria are elaborated. The metrics support the fulfilment of R7 “As-Is & Target
Modelling” and R11 "Automation of criteria checks”.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

145

Conformance
Report

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Indicators

Metrics

applied
on

i

results
in

SOEA Model

R3

R3

R3

R7

R7

R11

R11

6.1

Automated
evaluation

R11
R7 6.26.1.1

6.1.2

Fig. 6-2: Contribution of chapter 6

Metrics are instructions on how to derive values for measures and their use realizes
the measuring step from Fig. 2-17. Their measures stand in relation to the aimed
quality criteria. The measure itself does not say whether the quality criterion it
concerns has been reached or not. Indicators are required to interpret the measures.
The indicator specifies which values of a measure are desirable and which not. The
interpretation of the results of the metrics is described in chapter 7 .

The approach for the evaluation of quality criteria is originally based on the Goal

Question Metric (GQM) approach described in [Basili92]. The questions in the GQM-
approach are synonym with the quality criteria in this approach. For the realization in
this thesis, the quality evaluation concept from [VoigtH09] has been adapted. The
concepts used are illustrated in Fig. 6-3. A quality property is derived in one or more
quality criteria. For every quality criterion there is exactly one indicator. An indicator
is a mapping between the values of a metric and the possible values of the indicator.
Every indicator has the co-domain [0,1], where zero is the least and 1 is the most
desirable value. Furthermore, the indicator can posses a calculation rule, if it uses a
compound metric. A metric can be compound of other metrics that are either base
metrics or other compound metrics. In contrast to metrics, the indicators are dependent
from individual preferences. For this reason, the indicators are elaborated in chapter 7.

 Chapter 6 Defining Quality Criteria and their Metrics

 146

Quality Criterion

Indicator

BaseMetric

AbstractMetric

Compound Metric

Calculation Rule

Quality Property

0..*

uses

1

1
evaluates

1 2..*

1..*

Fig. 6-3: Relation between quality criteria, metrics, and indicators

In the remainder of this chapter, the definition of quality criteria catalogue is given
and the corresponding metrics are elaborated.

6.1 The Quality Criteria Catalogue

This section is dedicated to the quality criteria catalogue. The first half of the
catalogue consists of the part for the structural quality criteria and is presented in
subsection 6.1.1. The second half of the catalogue consists of the part for service
quality criteria and is presented in subsection 6.1.2.

6.1.1 Defining Structural Quality Criteria

The structural quality criteria are refined from the SOA definition of this thesis. The
main artefact examined for this is the reference architecture depicted again in Fig. 6-4.
In addition, the rest of the SOA definition from subsection 4.1.1 is used for the
refinement step.

The quality properties according to Fig. 6-1 are the main concepts of service

orientation. These have already been pointed out in section 4.1. They are:

P1 Middleware
P2 Disclosure of functionality

Model-Based Evaluation of Service-Oriented Enterprise Architectures

147

P3 Complex event processing
P4 IT-business alignment
P5 Orchestration
P6 Business process monitoring

The structural criteria are categorized concerning these properties. Each criterion is
formulated as a question, which is usual in the GQM approach. The quality of a
Service-Oriented Enterprise Architecture is tending to be high if the question can be
answered positively or a high value within the value range is achieved. That means
with all the questions answered in a positive way the examined enterprise architecture
is assumed to be conform to the reference architecture.

Complex Event Processor

Middleware

Business Process Monitor

CRM Application

Orchestration
Engine

ERP Application

Payment
Component

Resource
Component

Client
Component

Order
Component

realized by

GUI (Portal)GUI (Portal)

isolated process control

Call CallCall

Request Create client
and order

Both
created

Procure
material

Material
available

Give work
orders Work done Payment

handling

Incoming
order

Order
Service

Estimation
Service Procurement

Service
Billing

Service
Client

Service

Worker
Service

Event
Dispatcher

Event
Correlation

Service
Registry

Fig. 6-4: SOA reference architecture

 Chapter 6 Defining Quality Criteria and their Metrics

 148

There are 22 questions refining the six quality properties of the reference
architecture. The questions are elicited in the remainder of this subsection.

P1 Middleware

Middleware is the first examined area of the reference architecture. There should be

a service registry in every service-oriented enterprise architecture. This belongs to the
category middleware, because the service registry is essential for the communication
initiation. It does not matter whether the registry is implemented in a distributed form
or in a centralized form as long as it can be accessed as one logical registry from
where all services can be discovered.

Q01 Is there a central service registry?

A service repository usually includes a registry. Hence, it is a suitable alternative

for a registry.

Q02 Is there a central service repository?

On the one hand, SOA services shall abstract from technology. For this reason, they

have a business interface. On the other hand, they have to be versatile in their field of
application. The creation of multi-channel services supports this versatility. Multi-
channel services have different technical implementations for the same business
interface.

Q03 Are there multi-channel SOA services?

The reuse of SOA services is one of the major aims of an SOA. For this reason, it

has to be ensured that this is realized in the architecture.

Q04 Are SOA services reused?

A fully-fledged SOA should cover wide parts of the enterprise architecture. Not

only newly developed systems should be built SOA-conform, but also existing legacy
applications shall be used within this architecture. The adaptation of legacy systems is
the way to integrate them.

Q05 Are legacy systems integrated in the SOA by adapting them?

Model-Based Evaluation of Service-Oriented Enterprise Architectures

149

The common middleware is often hard to achieve within an enterprise architecture

that has grown over years. Multi-channel interfaces are suitable when cooperating
with other stakeholders, but internally the use of a common middleware is to be
achieved.

Q06 Is there a common middleware?

The middleware shall not only be widely spread within the enterprise, but also

widely spread among users. By using established standards, the development and
integration effort can be reduced in the long term.

Q07 Are exclusively standards used for communication protocols?

P2 Disclosure of functionality

A quality criterion of an SOA as shown in Fig. 6-4 is the disclosure of functionality.
Every graphical user interface should use other interfaces that are available for other
software components. In every case, the existence of user interfaces offering the only
way to invoke a specific software functionality is to prevent.

Q08 Are visualization and functionality separated from each other?

Interfaces should not demand the usage of a certain implementation. At least SOA

services should be designed in this way. Applications and SOA services having
exchangeable implementations are desirable.

Q09 Are application and SOA service implementations exchangeable?

P3 Complex event processing

The realization of a Service-Oriented Enterprise Architecture demands an event
processor to dispatch events and correlate them to complex events.

Q10 Is there an event processor?

 Chapter 6 Defining Quality Criteria and their Metrics

 150

Event processing is dependent on event sources. For this reason, SOA services and
applications should be event enabled. Event-enabled means that an event is fired for
each business relevant operation.

Q11 Are SOA services and applications event-enabled?

The change of a business object state is such a business relevant operation.

Therefore, an event should be fired on the change of a business object.

Q12 Are business objects observed with events?

The processing of a process step is another source for a business relevant operation

for which an event should be fired.

Q13 Are process steps observed with the help of events?

The flexibility of an enterprise architecture is increased if events can lead to the

automated execution of other processes.

Q14 Can events lead to the execution of applications, SOA services, or
orchestrations?

P4 IT-business alignment

The concept of SOA services was originally designed to close the gap between the

business and the IT. To achieve this SOA services should provide business functions
that match well to process steps.

Q15 Do SOA services provide business functions that match well to process

steps?

Repetitive human work shall be integrated in SOA services. That means not the

employee invokes the next process step, but the orchestration engine. The employee
only reports the results of his work to the orchestration engine. If the employee
invokes the next process step, the electronically controlled process control flow is
interrupted.

Q16 How high is the ratio of human work that is supported by SOA services?

Model-Based Evaluation of Service-Oriented Enterprise Architectures

151

The processes that are executed in a company should be realized by SOA services,

so that the gap between processes and IT is narrowed.

Q17 Are process steps realized through SOA services?

P5 Orchestration

An orchestration engine is responsible for the automated execution of SOA service
orchestrations. Out of the architectural view, it does not make a difference if there are
several instances of an orchestration engine, as long as they use the same orchestration
language.

Q18 Is there an orchestration engine that executes SOA service orchestrations?

The automation of business processes is one purpose of service orchestration. For

the realization, the business processes have to be modelled and executed in an
orchestration language.

Q19 How high is the ratio of processes that are modelled and executed in an

interpretable orchestration language?

The second purpose of service orchestration is to render the process control flow

explicit. This will greatly improve flexibility as business process implemented with
orchestrations can be changed with less effort.

Q20 How much process control flow is hidden in applications?

P6 Business process monitoring

The monitoring of processes has to be supported by a dedicated application.

Otherwise, the information retrieval and transformation of all the process relevant data
would hardly be manageable.

Q21 Is there a BPM application?

Furthermore, the existing business processes should be monitored with this

application by making use of automatically generated business events.

 Chapter 6 Defining Quality Criteria and their Metrics

 152

Q22 How high is the ratio of processes that are monitored automatically?

The quality criteria for SOA services have not been defined yet, but this will be

done in the following subsection.

6.1.2 Defining SOA Service Quality Criteria

In this subsection, the quality properties and the corresponding criteria of SOA
services are named and explained. The quality properties differ from the structural
properties because they only concern the quality of SOA services and not the
environment they are used in. It is strongly recommended to have the SOA service
definition (section 4.1.2) in mind, when reading this section.

The quality properties were gathered from several references. These are [Krafzi06],
[OASIS05], [ErlTho06], [Dostal05], [Engels08], [Josutt08], and [UecanE08]. The
gathered collection has had a plethora of properties with substantial overlaps. The
overlaps were filtered out and the following set of properties was refined. Just as in the
subsection before, questions concerning the quality criteria are formulated.

P7 Reusability
P8 Granularity
P9 Technology Independence
P10 Orchestration
P11 Statelessness
P12 Loose Coupling
P13 Functional compactness
P14 Compensation
P15 Service Contract
P16 Discoverability

P7 Reusability

Generally, this is nothing new in software development. It aims at the usage of code in
different applications instead of writing similar or even the same code in every
application. Common libraries with mathematical functions are an example for this
principle. When designing an SOA service, the architect will have a certain scenario

Model-Based Evaluation of Service-Oriented Enterprise Architectures

153

with specific users for it in mind. However, simple usage by other users shall be
supported.

Reusability brings a new facet into the service-oriented world. Compared with reuse

in object-oriented programming there is a difference. An object has a blueprint and
with this information, it can be instantiated. When reusing an object the blueprint (the
code) is used in another context and other instances of the object are created on
another platform. An SOA service also has a blueprint (the contract) that leaves out
implementation details and execution platform. Therefore, an SOA service is shared
for all users in the same way.

Q23 Are the SOA services reusable?

The reusability question will be answered with the help of other quality properties.

These are P8 Granularity, P9 Technology Independence, P11 Statelessness, P12 Loose
Coupling, P15 Service Contract and P16 Discoverability.

P8 Granularity

Granularity relates to the functional extent services are offering. If services are too
fine-grained, usability decreases because it is hard to find the right one among all the
others and it is laborious to orchestrate them. If they are too coarse-grained, they will
not fit to the demands of the user, thus reducing reusability. Because of this, an
adequate number of SOA services and service operations per service should be found.

Q24 How many service operations do SOA services have?

Too many operations within an SOA service decrease the usability. A SOA service

with too many operations is similarly negative as a god class for object orientation.

Q25 How many business objects are covered by an SOA service?

Business objects are closely related to services. The smaller the number of write

and read accessed objects per service, the better the IT-business alignment.

 Chapter 6 Defining Quality Criteria and their Metrics

 154

P9 Technology Independence

Technology independence aims at the transparent implementation of SOA services. It
is not of interest how an SOA service does something but what it does. For example, if
there is an SOA service storing an order the service requester does (and should) not
know whether there is a MySQL database or an employee with a sheet of paper
storing the information. If the user does not know where the information is stored,
then how should he know how to retrieve later on? The answer comes with the
appropriate service that retrieves the order data (for a certain order number). Again, it
is not of interest whether the service searches a database or causes an employee to
look it up on his sheet. Technology independence decouples function from
technology.

Q26 Do SOA services enforce the use of concrete technologies?

A SOA service should be described transparent fro technology. For this reason, it
should not enforce the use of any concrete technology.

P10 Orchestration

Orchestration means to combine several SOA service calls, which leads to the creation
of a new high level SOA service. SOA services should be designed for using each
other. Otherwise, the hard-wired orchestration (as described in section 4.1) will be
hard to realize.

Q27 Do SOA services provide interfaces being adequate for orchestration tools?

SOA services must provide interfaces that can be used by orchestration tools.

P11 Statelessness

Statelessness in general means that services do not have an internal state affecting the
execution of operations. In other words, this means that the repeated execution of an
operation does not lead to a different result than the single execution. This is hard to
achieve in every case. Getting closer to this ideal state is of advantage for the
predictability and therefore the quality and test effort of the system.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

155

Q28 Are SOA service operations idempotent?

Calling the same operation with the same input parameter twice should result in the

same state. This is called idempotency.

P12 Loose Coupling

Loosely coupled SOA services are only weakly dependent from each other. Their
implementation may change without affecting other SOA services. If a service A
premises the availability of service B then A is strongly coupled to B. If B additionally
premises A, they are strongly coupled to each other (compare [Sieder07]). Loose
coupling increases the maintainability of software systems and is a necessity for
binding of services at runtime that provides a new degree of freedom.

Q29 Do SOA services communicate with business event messages?

The communication via business event messages is regarded as a form of very loose

coupling.

P13 Functional compactness

Functional compactness aims at the use of a preferably little number of services in a
process. It is regarded as positive if several process steps are covered by the operations
of a single service. This generally eases the work with the services, because the user
has to read less documentation and a better working experience.

Functional compactness also means that an SOA service has only a small amount of
dependencies to other services, as this allows covering a process or task domain with a
small number of SOA services. Therefore, SOA services having a low adherence
(dependencies to other services) and a high coherence (dependencies among own
service operations) have a high usability.

Q30 Do SOA services have a compact process context?

SOA services should hold as much as possible of the functionality required in a

certain process context to increase the IT-business alignment.

 Chapter 6 Defining Quality Criteria and their Metrics

 156

P14 Compensation

Compensation is the counterpart of transaction rollback in the context of service
orientation. The transaction concept is not embedded in the concept of service
orientation. However, transactions can be parts of SOA service operations. The
execution of service orchestrations can be lasting over a long time, so that a
transaction locking all used resources is not practicable. Instead, the relevant service
operations have to be compensated by other service operations. This means a sequence
of service operations will lead the system to a state that is (at least nearly) equal to the
state it had before the execution of the first operation. Of course, this is not always
possible, but at least desirable.

Q31 Are the SOA services compensable?

The service operations of an SOA service should be compensable by the operations
of the same service at least with operations from other services.

P15 Service Contract

An SOA service contract holds all the information that could be relevant to the
requester. On the one hand, the contract must contain sufficient information allowing
the requester to decide whether it fits to its needs. On the other hand, the contract may
not include any implementation details. Otherwise, the contract must be changed when
the implementation is changed. The form of these descriptions is not fixed at all and
does not have to be formal, though machine-readable descriptions like IDL or WSDL
for interfaces may have great benefits. According to the definition from Fig. 6-5, the
contract has to provide information about:

 Description

 Interface
 Functionality
 Usage
 Lifecycle Status
 Responsibility

 Objection Level Agreement (OLA)
 Constraints
 Availability
 Accessibility

Model-Based Evaluation of Service-Oriented Enterprise Architectures

157

 Visibility
 Security

 Monitoring and Reporting
 Business event messages
 Predefined reports

SOA-Service

Realisation

Technical Interfaces

Service Contract

Business Interface

DataBusiness
logic

Description OLA Monitoring
Reporting

Fig. 6-5: Structure of an SOA service

Q32 Are the contracts of SOA services complete?
A complete contract is inevitable for the adequate use of SOA services.

P16 Discoverability

Discoverability is strongly dependent on adequate service contracts. A requester that
has a certain task to be done must be able to find the service that fits to his needs.
Otherwise, a reusability benefit can hardly be drawn. There are several possibilities to
ensure this characteristic and generally, the service registry is responsible for this task.
However, a service registry does not have to be a high performing software system. In
the beginning, a simple text document or Wiki can be sufficient.

Q33 Can SOA service be discovered easily within the enterprise?

SOA services should be registered in a service registry. Furthermore, the registry

should offer sophisticated search mechanisms.

 Chapter 6 Defining Quality Criteria and their Metrics

 158

This concludes the definition of service quality criteria. In the following section,
metrics are defined on the basis of the questions to be able to measure the realization
of the quality criteria catalogue.

6.2 Metrics for Quality Criteria

In this section, the metrics delivering quantifiable results for the quality criteria are
described. These metrics should be as formal as possible and their information should
be retrievable from the SOEA model if possible. As it is not possible to answer all
questions completely with formal metrics, there is a distinction between formal
metrics and subjective metrics. These have to be determined by one or more experts.
However, they are tried to be avoided as the requirement R11 “Automation of criteria
checks” will suffer from these.

Other approaches using metrics for quality evaluation already exist. Some of them

have been examined for potential reuse in this thesis. However, metrics for quality are
rare. Many related approaches exist in the field of software development. A metrics
suite for object-oriented design has been defined in [Chidam94]. There are six metrics
measuring properties of a class diagram. One example for a metric is CBO. It counts
the number of classes associated to a given class. The kind of metrics given in
[Chidam94] is completely independent of the model context. Unfortunately, this
makes the metrics useless for the evaluation of service-oriented enterprise
architectures. Not the number of relations is of interest for the evaluation of the SOEA
model, but it is of interest if the right kinds of objects are related to some object. The
metrics presented in [Santan03] are an extension of the approach in [Chidam94]. The
old metrics are adapted for aspect-oriented system designs. However, the approach
remains completely context independent, which renders it inadequate for evaluating
SOEAs.

A more interesting suite of metrics is proposed in [Vascon07]. The approach

presents a simple meta model for the information system architecture (ISA, compare
[Krcmar05] and section 2.1.1). The ISA meta model is depicted in Fig. 6-6. The
measuring points of the metrics are defined on the basis of the meta model. The major
goal of the metrics is to assist the architect previewing the impact of his ISA design
choices on the non-functional qualities of the enterprise information system.

This is already very similar to the approach needed for the evaluation of an SOEA.

As first reason, the metrics are designed for evaluating quality criteria of enterprise

Model-Based Evaluation of Service-Oriented Enterprise Architectures

159

architecture (called information system architecture in [Krcmar05]). That means a
similar context is given. Secondly, the basis for the measuring points is built by a meta
model.

Fig. 6-6: ISA meta model as in [Vascon07]

However, the SOEA meta model is quite different from the ISA meta model.
Furthermore, the quality criteria are different, too. In [Vascon07], the quality criteria
are not further specified than on the level of usability, maintainability, reliability and
so on. For this reason, the intersection of the metrics from [Vascon07] with metrics
usable in this thesis is very small. Only two of the metrics could be adapted to service
quality criteria. Adaptation means, that the measuring points of the ISA meta model
are changed to measuring points in the SOEA meta model. In the following, the
adapted metrics are named and the relation to the respective quality criteria from the
previous section is discussed.

 Chapter 6 Defining Quality Criteria and their Metrics

 160

ISA metric name LCOIS - Average Lack of Cohesion in IS Blocks.
ISA metric description This metric measures the correlation between application

blocks and the information entities used in that
application block.

Corresponding quality
criteria

P8 Granularity

Changes for adaptation This metric is adapted as the metric M46 Stored Business
Objects. Information entities are regarded as business
objects and application blocks are regarded as service
interfaces.

Fig. 6-7: Adaptation of LCOIS metric

ISA metric name NOIS - Average Number of Operations in IS Blocks.
ISA metric description The Average Number of Operations in IS Blocks is

computed counting the number of operations on each IS
Block divided be the number of IS Blocks

Corresponding quality
criteria

P8 Granularity

Changes for adaptation This metric is adapted as the metric M48 Operation
quantity. Information entities are regarded as business
objects and application blocks are regarded as service
interfaces.

Fig. 6-8: Adaptation of NOIS metric

In the remainder of the section, the metrics for the quality criteria are elaborated.
The adaptations mentioned above will already be included.

6.2.1 Metrics for Structural Quality Criteria

In Fig. 6-9 the template for a metric description is given. It is based on the metric
definition of the ISO standard [ISOIEC01]. It contains a name of the metric, a short
description and shows whether it is a compound or base metric. Furthermore, there
three types of metrics. A metric can be automatable, objective, subjective, or have a
mix of these properties. An automatable metric is always objective. Additionally, it
can be computed with the help of the SOEA model. On objective metric can be clearly
decided with the help of facts. For example, the fact if a registry has a key word search
or not, can be decided objectively. A subjective metric has to be decided by an expert,

Model-Based Evaluation of Service-Oriented Enterprise Architectures

161

because there are no clear facts or the information gathering would be too
complicated. In the latter case, the expert estimates the value. Compound metrics can
have a mix of these metric properties.

The co-domain of a metric informs about the range of results that the metric may
have. The interpretation gives a rough indication about what is a “good” or “bad”
result within the co-domain. If the co-domains of two base metrics that are used in a
compound metric cannot be merged, then the co-domain is defined as their Cartesian
product. The operator for the Cartesian product is “x”. A compound metric consists of
several base metrics. Their measures are stored as a tuple, but not calculated with each
other. Only indicators apply calculations on measure tuples.

The co-domains of the metrics are often the sets of natural or real numbers denoted
by N and R respectively. N includes the zero element. The notation N6 stands for the
natural numbers from zero to six. R1 is used for relative amounts, which means it
embraces the interval [0,1].

Acronym, Name {Base |

Compound}
{Automatable|
Objective|
Subjective| Mixed}

Short Description
Calculation Rule or Measuring Point
Co-domain Interpretation

Fig. 6-9: Template for metric description

In the rest of this subsection, the metrics for the quality criteria are named and
described. As already mentioned, the indicators for the metrics are given later in the
results chapter.

Q01 Is there a central service registry?

A service registry holds information on SOA services. It acts as the mediator between
service requestor and provider. Without a service registry, the reuse of SOA services
is improbable, because it will be hard to find the suiting SOA services. The knowledge
should be stored centrally and not distributed over several registries (from the logical
point of view). The realization of the service registry may be distributed over several
systems. However, the main property of a logical registry is that every SOA service
has to be discoverable by using any of the physical service registries.

 Chapter 6 Defining Quality Criteria and their Metrics

 162

The metric suggested for this question is a compound metric that measures the
existence and the main features of the registry.

M1 Registry features Base Objective
Evaluates the feature richness of the service registry
The search and automation features are examined for the measurement. There
should (also) be machine-readable descriptions like WSDL files for services.
Furthermore, the search mechanism is distinguished into key word search, meta
information search and search mechanisms that support behavioural descriptions
like visual contracts, sequence diagrams or similar.

The registry feature measure has the result 0 but its result is increased by one for
machine-readable descriptions. Additionally, either zero, one or two points are
added, for the case that key word search and/or meta information search or
behavioural description based search are implemented. If there are several logical
registries, the rounded average value is taken into account. A maximum of three
points can be reached.

N3 The higher the number, the better the

registry will support the visibility of the
SOA services.

M2 Registry existence Base Automatable
Counts the number of existing logical service registries
The instances of the class “service registry” are counted
N No registry is worst, one is best because

it is central then. Beyond this, the more
logical registries the worse.

M3 Service registry Compound Mixed
Combines M1 and M2
M1 x M2
N3 x N The better the singular results the better

the result of the compound metric.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

163

Q02 Is there a central service repository?

The service repository usually allows the user to define its own meta model of a
domain. For example, a domain with services, service orchestrations, processes, users,
solutions, and the according relations between these object types. It is used by many
stakeholders that get in contact with any of the object types and need to be informed
about status changes of the objects. A repository can also support the lifecycles of
these objects, e.g. the development phases of a service that is designed by architects,
implemented by developers, and tested by testers. The repository usually includes the
functionality of a service registry. Developing SOA services, a repository is helpful.

M4 Repository features Base Objective
Evaluates the feature richness of the service repository
For the measurement, features are examined. Important features of a repository are:

 Free definable object meta model and taxonomy support
 Role model support for users/stakeholders
 Versioning of objects and attached documents
 Lifecycle support of arbitrary object types

Each supported feature increases the result by one. If several repositories exist, the
rounded average value is taken into account.
N3 The higher the number, the better the

repository.

M5 Repository existence Base Automatable
Counts the number of existing service repositories
The instances of “service repository” are counted
N No repository is worst, one is best

because it is central then. Beyond this,
the more repositories the worse.

M6 Service repository Compound Mixed
Combines M4 and M5
M4 and M5
N3 x N The better the singular results the better

the result of the compound metric

 Chapter 6 Defining Quality Criteria and their Metrics

 164

Q03 Are there multi-channel SOA services?

Multi-channel services offer different technical interfaces for the same functionality.
The advantage is that different service users in different situations (firewall,
technology preference, etc.) may use the service. A multi-channel service is
recognized by the technologies its interfaces are implemented in.

M7 Multi-channel services Base Automatable
Observes the different interface technologies a service interface is implemented in.
Each SOA service is examined for its Service interfaces and the technologies they
are implemented in. Within the meta model, the items shown below are used as
measuring points. The associations each SOA service holds to a technology over the
given path are counted and the average is built over these numbers.

SOA Serv iceServ ice InterfaceTechnology
implement provide

Fig. 6-10: Measuring points for multi-channel services

R Up to a certain point, the higher the
number the better. Bigger numbers of
interfaces become worse again.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

165

Q04 Are SOA services reused?

M8 SOA service reuse Base Automatable
Observes reuse of SOA services by examining the number of process steps they are
used in.
Within the meta model, SOA services and process steps are directly connected as
depicted. The number of process steps per SOA service is counted and an average is
computed.

Business Process Step SOA Serv ice
realize

Fig. 6-11: Measuring points for SOA service reuse

R The higher the number the higher the
reuse and therefore the better.

Q05 Are legacy systems integrated in the SOA by adapting them?

Legacy systems shall be integrated in a service-oriented landscape. For this purpose,
they have to be used by SOA services. If there is no adequate interface provided by a
legacy application, then a service integration adapter is written. It just offers the
functionality in any suitable form to make it available for the SOA service and is
therefore not comparable to a service interface.

 Chapter 6 Defining Quality Criteria and their Metrics

 166

M9 Legacy adaptation Base Automatable
SOA services are examined for the number of interfaces they use and that are
provided by applications.
As shown in the figure below, the relations from SOA services to applications via
interfaces are followed to determine the application used. As result, the ratio
between applications used by SOA services to the number of all applications is
computed.

SOA Serv ice

Application

Interface

Serv ice Integration
Adapter

require

offer

Fig. 6-12: Measuring points for legacy adaptation

R1 The higher the number the higher the
adaptation ratio and therefore the better.

Q06 Is there a common middleware?

A common middleware shall be implemented by all interfaces (except the graphical
ones) so that integration is eased on the technological level. On the one hand, the
offering of such a technology is important, on the other its usage degree also states
something about the quality of the middleware.

M10 Common middleware Compound Automatable
The enterprise architecture is examined for a middleware, or in other words
interface technology that is widely used and widely spread. Combines M11 and
M12.
M11 x M12
R1 x R1 The higher the numbers the higher the

middleware prevalence and therefore the
better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

167

M11 Middleware saturation Base Automatable
The enterprise architecture is examined for an interface technology that is widely
spread.
There are applications and SOA services that share the middleware interface
technology via a service integration adapter or a service interface. The ratio to
service integration adapters and service interfaces that do not share the middleware
technology is computed. The middleware technology has to be determined by the
architect.

Application

Interface

Serv ice Integration
Adapter

Serv ice Interface

TechnologySOA Serv ice provide implement

offer

Fig. 6-13: Measuring points for middleware saturation

R1 The higher the number the higher the
saturation ratio and therefore the better.

 Chapter 6 Defining Quality Criteria and their Metrics

 168

M12 Middleware usage Base Automatable
The enterprise architecture is examined for an interface technology that is widely
used.
For applications or SOA services that share the same interface technology via a
service integration adapter or a service interface, the ratio of usage (required for
applications respectively) is computed.

Technology

Serv ice Integration
Adapter

Serv ice Interface

Application

Interface

SOA Serv ice require

require

implement

Fig. 6-14: Measuring points for middleware usage

R1 The higher the number the higher the
usage ratio and therefore the better.

Q07 Are exclusively standards used for communication protocols?

There should be a limited set of technologies used for communication. The ideal
solution would be that there is only the middleware technology that is used, but this is
probably utopian. Therefore, also the number of the different technologies used is
examined. According to how many different technologies are agreed as supportable
standard in the enterprise, the value can be used to find out whether more are used or
not.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

169

M13 Standard communication Base Automatable
The enterprise architecture is examined for the number of interface technologies
that are currently in use.
For applications and SOA services that require a service integration adapter or a
service interface, the number of implemented technologies is counted.

Technology

Serv ice Integration
Adapter

Serv ice Interface

Application

Interface

SOA Serv ice require

require

implement

Fig. 6-15: Measuring points for standard communication

R The higher the number of technologies
the worse.

Q08 Are visualization and functionality separated from each other?

The graphical user interface of an application should not be the only possibility to
invoke functionalities. There should always be interfaces that are also machine-
processable in order to orchestrate the functionality in a service-oriented way.
Completely determining the functionality of an interface would require behaviour-
based descriptions of interfaces. These are rather rare and often not comparable.
Therefore, the metric is a subjective metric.

M14 Functionality separation Base Subjective
The ratio of functionality that is provided by graphical user interfaces only, is
measured with this metric.
An expert knowing the applications and their interfaces has to estimate this value.
R1 The lower the ratio the better.

 Chapter 6 Defining Quality Criteria and their Metrics

 170

Q09 Are application and SOA service implementations exchangeable?

An exchangeable implementation allows replacing the implementation of functionality
without affecting its users – as long as the functionality stays the same. Especially
SOA services are designed for this characteristic. But, also applications may interface
facades that allow unnoticeable changes. Whether applications of interfaces have this
possibility, has to be estimated by an expert. However, SOA services, when build
correctly, have this characteristic from scratch.

The measured values can only give hints on the characteristic. As the functional

extent of an applications and SOA services cannot be measured here, instead the
number of instances is taken into account.

M15 Implementation exchangeability Compound Mixed
This metric combines M16, M17 and M18 and measures the exchangeability of
implementations.

(M16*1 + M17*M18) / (M16*M17)
R1 The higher the ratio the better.

M16 SOA services Base Automatable
Simply counts the number of SOA services.
Within the SOEA model, the number of instances of SOA services is counted.
N No interpretation suggested.

M17 Applications Base Automatable
Simply counts the number of applications (without operating systems and
databases).
Within the SOEA model, the number of instances of applications except of
operating systems and databases is counted.
N No interpretation suggested.

M18 Application exchangeability Base Subjective
Determines the ratio of implementation of functionality of applications that is
easily exchangeable.
An expert estimates the value.
R1 The higher the better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

171

Q10 Is there an event processor?

M19 Event processor Base Objective
Measures the existence and feature richness of event processors. The features
complex event processing and event distribution are examined. Complex event
processing concerns the possibility to correlate events over time. Event
distribution allows to distribute events on the manner of the publish-subscribe
approach. There may be several instances of the event processor.
If there are no event processors the result is zero else at least one. For each feature
that is owned by at least 50% of the event processors an additional point is
granted.
N3 The higher the number, the better event

processors will be able to support the
complex event processing.

Q11 Are SOA services and applications event-enabled?

If the interfaces that are provided by an application or SOA service create business
event messages, they are regarded as event-enabled. There is no specific value for an
interface how many business event messages it should be able to create, because this
depends on the implemented functionality. The minimum number of events should be
three for start, stop, and abort messages of one piece of functionality.

The target value is somewhere near one but not exactly one, as not every kind of

interface has to send event-messages in order to be able to monitor the actions in an IT
landscape.

 Chapter 6 Defining Quality Criteria and their Metrics

 172

M20 Event enablement Base Automatable
Measures the ratio of event-enabled services and applications
The ratio of interfaces provided by applications and SOA services probable of
creating at least three event messages is measured within the SOEA model.

Interface Business Ev ent Message

SOA Serv ice

Application

provide

canCreateoffer

Fig. 6-16: Measuring points for event enablement

R1 The higher the ratio, the better the
business layer will be supported by CEP.

Q12 Are business objects observed with events?

A Service-Oriented Architecture concerns business objects in several ways. SOA
services are often designed with the help of business objects. The number of business
objects that are observable with events is also a hint on the service enabling of an
enterprise architecture.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

173

M21 Business object events Base Automatable
Measures the ratio of business objects that are treated with event-enabled interfaces.
The ratio of business objects that are treated with event-enabled interfaces is taken
from the SOEA model.

Business Ev ent MessageInterfaceBusiness Object haswrite
Access canCreate

Fig. 6-17: Measuring points for business object events

R1 The higher the ratio, the better the business
layer will be supported by CEP.

Q13 Are process steps observed with the help of events?

Business event messages should not only be potentially created by applications and
SOA service but also be used in process steps. Therefore, the ratio of process steps
that are realized with event enabled SOA services and applications are of interest.

 Chapter 6 Defining Quality Criteria and their Metrics

 174

M22 Process events Base Objective
Measures the ratio of process steps that are treated with event-enabled applications
or SOA services.
The ratio of process steps that are treated with event-enabled applications or SOA
services is taken from the SOEA model.

Business Ev ent
Message

Application Interface

SOA Serv iceBusiness Process Step

providerequire

realize

require

canCreate

support

offer

Fig. 6-18: Measuring points for process events

R1 The higher the ratio, the better will the
business layer be supported by CEP.

Q14 Can events lead to the execution of applications, SOA services, or
orchestrations?

The main objects to the answer of this question are the workflow management tool,
the applications, and the SOA services. Only workflow management tools are able to
execute orchestrations. Therefore, they offer the mightiest actions to react on events.
Applications and SOA services can (theoretically) invoke each other. Most often SOA
services will invoke applications and not vice versa.

M23 Invocations Compound Automatable
The ratio of possible invocations upon events is measured with the help of the
metrics M24 and M25. They measure the business event messages upon those
orchestrations and applications respectively SOA services can be invoked.
M24 x M25
R1 x R1 The higher the ratio, the better CEP will

be supported.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

175

M24 Orchestration invocation Base Automatable
This metric measures the ratio of events that are receivable by a workflow
management tool.
If the workflow management tool has interfaces that are able to receive business
event messages, it can initiate the execution of orchestrations. The ratio of
receivable events to non-receivable events per workflow management tool is
determined with the SOEA model concepts shown below.

Workflow Management
Tool

Application

Business Ev ent MessageInterface
canReceive

offer

Fig. 6-19: Measuring points for orchestration invocation

R1 The higher the ratio, the better CEP will
be supported.

 Chapter 6 Defining Quality Criteria and their Metrics

 176

M25 Application invocation Base Automatable
This metric measures the ratio of events that are receivable by applications and
SOA services.
If applications and SOA services have interfaces that are able to receive business
event messages, they can invoke other services (provided an existing middleware).
The ratio of receivable events to non-receivable events per application or SOA
service is measured and the average ratio is computed from the SOEA model.

Application

SOA Serv ice

Interface Business Ev ent Message

provide

canReceive

offer

Fig. 6-20: Measuring points for application invocation

R1 The higher the ratio, the better CEP will
be supported.

Q15 Do SOA services provide business functions that match well to process
steps?

As SOA services shall be tailored with alignment to the business, a process step
should be implementable with the least possible number of SOA services (which still
may have several operations). Applications used for the realization of the process step
will be interpreted negatively.

M26 Process step matching Compound Automatable
This metric measures the average number of SOA services and the average number
of applications that are involved in a process step. Therefore, it combines M27 and
M28.
M27 x M28
R1 x R1 The higher the ratio, the better the IT-

business alignment will be supported.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

177

M27 SOA service matching Base Automatable
This metric measures the average number of SOA that are involved in a process
step.
Measuring points can be taken from the SOEA model as shown below.

Business Process Step SOA Serv ice
realize

Fig. 6-21: Measuring points for SOA service matching

R The higher the ratio, the better the IT-
business alignment will be supported.

M28 Application matching Base Automatable
This metric measures the average number of applications that are involved in a
process step.
Measuring points can be taken from the SOEA model as shown below.

ApplicationBusiness Process Step
support

Fig. 6-22: Measuring points for application invocation

R The higher the ratio, the better the IT-
business alignment will be supported.

Q16 How high is the ratio of human work that is supported by SOA services?

Process steps humans act in should be covered by SOA services embracing the

human interaction. Otherwise, the process control flow is given from a workflow
management tool to a human, which is unreliable because humans are forgetful.

 Chapter 6 Defining Quality Criteria and their Metrics

 178

M29 Human support Base Automatable
This metric measures how extensively the human work that is done in process steps
is covered by SOA services.
For measurement, the process steps that have human actors are concerned. If there
are SOA service realizing the process step where the same roles are involved that
act in the process step, then the human work counts as covered by SOA services.
The metric returns the ratio between supported to unsupported human work.

Role

Business Process Step

SOA Serv ice

realizeactIn

involved in

Fig. 6-23: Measuring points for human support

R1 The higher the ratio, the better the IT-
business alignment will be supported.

Q17 Are process steps realized through SOA services?

Processes shall be implemented by services and not by applications directly.
Therefore, the process steps that are realized by service or orchestrations are observed.
Process steps that are supported directly by applications are usually not desired in a
Service-Oriented Enterprise Architecture.

M30 Process realization Compound Automatable
This metric combines M31 and M32 and measures process realization with SOA
services and orchestrations. Direct application usage is punished.
(M31 +1) / (M32+1)
R The higher the value the better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

179

M31 Service realization Base Automatable
The number of process steps that are directly realized by SOA services or
orchestrations are computed with this metric.
The number of process steps that have at least one association to SOA service or
orchestration is set into ratio with the total number of process steps.

Business Process Step

Orchestration

SOA Serv ice

realize

use

realize

Fig. 6-24: Measuring points for service realization

R1 The lower the ratio the better.

M32 Application realization Base Automatable
The number of process steps that are directly supported by applications is computed
with this metric.
The number of process steps that have at least one association to application is set
into ratio with the total number of process steps.

ApplicationBusiness Process Step
support

Fig. 6-25: Measuring points for application realization

R1 The lower the ratio the better.

Q18 Is there an orchestration engine that executes SOA service orchestrations?

An orchestration engine is a workflow management tool that is able to interpret
service orchestrations that are given in a specific language like BPEL or XPDL (XML

 Chapter 6 Defining Quality Criteria and their Metrics

 180

Process Definition Language, compare [WFMCXP05]). The process control flow can
be hold by such an engine, so that the process flow will not stop because of human
failure. Therefore, it is desirable to have most of the services used in orchestrations.

M33 Orchestration engine Compound Mixed
This metric measures the existence of an orchestration engine and the ratio of SOA
services that is used in service orchestrations. For this reason it combines M34 and
M35
M34 x M35
N x R1 The higher the number the better, the

higher the ratio the better,

M34 Orchestration engine existence Base Subjective
This metric measures the existence of an orchestration engine being able to interpret
SOA service orchestrations.
The number of instances of workflow management tools that have a technology
adequate for SOA service orchestration. These technologies are for example BPEL or
XPDL. An expert has to add new technologies that come up for service orchestration.

Workflow Management
Tool

Technology Application
implement

Fig. 6-26: Measuring points for Orchestration engine existence

N The higher the better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

181

M35 Orchestrated SOA Services Base Automatable
This metric measures the ratio of SOA services that is used in service
orchestrations.
The ratio of SOA services that are part of an orchestration and are executed by an
arbitrary workflow management tool is measured with the SOEA model as shown
below.

SOA Serv iceOrchestrationWorkflow Management Tool
canExecute use

Fig. 6-27: Measuring points for orchestrated SOA services

R1 The higher the ratio the better.

Q19 How high is the ratio of processes that are modelled and executed in an
interpretable orchestration language?

The number of processes realized by SOA service orchestrations is a sign for service
orientation in an enterprise.

M36 Process orchestrations Base Objective
This metric measures the ratio of processes that are realized with SOA service
orchestrations.
The ratio of processes that is realized by SOA service orchestrations is determined
by the number of process steps that are covered by an orchestration in relation to the
total number of process steps.

OrchestrationBusiness Process StepBusiness Process
realizeconsistOf

1..*

Fig. 6-28: Measuring points for orchestrated processes

R1 The higher the ratio the better.

 Chapter 6 Defining Quality Criteria and their Metrics

 182

Q20 How much process control flow is hidden in applications?

The process control flow shall be isolated in a Service-Oriented Architecture, and
shall be modelled in executable SOA service orchestrations. Otherwise, the flexibility
to change processes can hardly be realized. Applications often have this process
control flow built-in so that the applications have to be changed if the process logic is
changed.

M37 Process logic Base Subjective
This metric measures the ratio of process control flow that is located in applications.
As the implementation details of applications are not visible in the SOEA model but
rather hidden in the program code, the process control flow ratio of applications has
to be guessed by experts knowing the application landscape.
R1 The lower the ratio the better.

Q21 Is there a BPM application?

A business process monitoring application has to observe processes concerning their
key performance indicators.

M38 BPM usage Compound Objective
This metric measures the ratio of processes that are monitored with the help of a
BPM application and have sufficient key performance indicators. Therefore, it
combines M40 and M41.
M40 x M41
R x R1 The higher the values the better.

M39 BPM observation Base Objective
This metric measures the ratio of processes that are monitored with the help of a
BPM application.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

183

The measuring point is found in the SOEA model where the ratio of processes that
are monitored to processes that are not monitored is computed.

Business Process MonitorBusiness Process
observe

Fig. 6-29: Measuring points for BPM application

R1 The higher the ratio the better.

M40 KPI usage Base Objective
This metric measures the number of KPIs per process.
The measuring point is determined by the number of instances of key performance
indicators per business process. The information is retrieved from the SOEA model
as depicted below.

Key Performance
Indicator

Business Process

1

have

Fig. 6-30: Measuring points for KPI usage

R The higher the number the better.

Q22 How high is the ratio of processes that are monitored automatically?

A process should be monitored with automated IT support so that business event
messages are used.

M41 BPM automation Base Objective
This metric measures the support of process monitoring by business event
messages. Therefore, it combines M40 and M42.
M40 x M42.
R x R The higher the values the better.

 Chapter 6 Defining Quality Criteria and their Metrics

 184

M42 KPI messages Base Objective
This metric measures the number of consumed business event messages per key
performance indicator.
Measuring points are found in the SOEA model as depicted below. The metric
computes the number of consumed messages per key performance indicator.

Key Performance
Indicator

Business Ev ent
Messageconsume

Fig. 6-31: Measuring points for KPI messages

R The higher the value the better.

6.2.2 Metrics for Service Criteria

The second part of the quality criteria catalogue is given in this section. It concerns the
quality attributes of SOA services that are observed out of their enterprise architecture
context. The first subsection defines the quality criteria and the following one defines
appropriate metrics for these criteria. The indicators for the metrics are given in
chapter 7. The topic of SOA service quality has been treated in the supervised diploma
thesis [UecanE08]. The results of the work are integrated in this section.

Now, metrics for the quality criteria of SOA services are introduced. These metrics
can be based on the SOEA meta model but are often based on other information
sources like the service contract. Metrics for SOA services are given in the same
format as the metrics for the structural quality criteria.

Most metrics are applied on single SOA services, allowing improving services in a
well-directed way. In order to evaluate the whole set of services within an enterprise,
the arithmetic average or the median has to be computed.

P7 Reusability
Q23 Are the SOA services reusable?

Model-Based Evaluation of Service-Oriented Enterprise Architectures

185

Reusability is the most diversified quality criteria for SOA services. The reason for
diversity is that most of the other quality criteria are integrated in this one. Only the
sum of the other concepts allows a judgment over the reusability of services. The
reusability depends on the P8 Granularity, P9 Technology Independence, P11
Statelessness, P12 Loose Coupling, P15 Service Contract and P16 Discoverability.

M43 Reusability Compound Mixed
Reusability is dependent from many other metrics for service criteria. The metrics
M44, M49, M51, M52, M58 and M59 are taken into account.
M44 x M49 x M51 x M52 x M58 x M59
(N x N x N) x N x N1 x (N x N) x R1 x

N1 x N3 x N
The better the single metrics the better
this one. Refer to interpretations of sub
metrics.

P8 Granularity
Q24 How many service operations do SOA services have?

Granularity metrics concern the number of service operations per service and the
number of services itself. It is difficult to identify a useful number of services within
an organization. This heavily depends on the range of processes and functionality the
enterprise provides.

Q25 How many business objects are covered by an SOA service?

A possible way to evaluate the appropriate number of SOA services is to compare it
with the number of business objects that are covered with each SOA service. Of
course, this value depends on the granularity of business objects, but still offers a lead
for service granularity.

M44 Granularity Compound Automatable
The granularity of an SOA service is based on the number of services and the
number of operations per service. Therefore, M45 and M48 are combined in this
metric
M45 x M48
(N x N) x N The values should not be too high and

not too low.

 Chapter 6 Defining Quality Criteria and their Metrics

 186

M45 Business object coverage Compound Automatable
The granularity of an SOA service is also based on the number of services. Absolute
numbers are hard to define. Therefore, the number of business objects that are
involved in the SOA service is determined as a reference value.
M46 x M47
N x N The values should not be too high and

not too low.

M46 Stored Business Objects Base Automatable
The granularity of an SOA service is also based on the number of services. Absolute
numbers are hard to define. Therefore, the number of business objects that are
stored by the SOA service is determined as a reference value.
The provided service interface of an SOA service stores business objects that are
counted per service.

SOA Serv ice

Business ObjectInterfaceServ ice Interface

provide

haswrite
Access

Fig. 6-32: Measuring points for stored business objects

N The value should not be too high and not
too low.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

187

M47 Accessed Business Objects Base Objective
The granularity of an SOA service is also based on the number of services. Absolute
numbers are hard to define. Therefore, the number of business objects that are
accessed by the SOA service is determined as a reference value.
The provided service interface of an SOA service accesses business objects that are
counted per service.

SOA Serv ice

Business ObjectInterfaceServ ice Interface

provide

hasRead
Access

Fig. 6-33: Measuring points for accessed business objects

N The value should not be too high and not
too low.

M48 Operation quantity Base Objective
The granularity of an SOA service is based on the number of services and the
number of operations per service.
The number of service operations has to be found in the service description of an
SOA service or can be determined with any technical interface description like a
WSDL file.
N The value should not be too high and not

too low.

P9 Technology Independence

Q26 Do SOA services enforce the use of concrete technologies?

Technology independence is given if the service does not enforce the use of any
technology or application within its description. In addition, the description has to be

 Chapter 6 Defining Quality Criteria and their Metrics

 188

complete. If there is no reference to an application or technology within the service
description, the service is evaluated positively for this criterion. The interface
technology with that the service is implemented is not regarded.

M49 Technology transparency Base Subjective
An SOA service should have no references to concrete technologies, aside from the
interface technology, nor should describe how something is done.
The complete service description is scanned for implementation restrictions.
Concrete technologies or restrictions on the (manual) implementation of the service
are counted. The technologies from the SOEA model can be taken as help. Interface
technologies must not be concerned.
N The value should be as low as possible.

P10 Orchestration
Q27 Do SOA services provide interfaces being adequate for orchestration tools?

An electronic interface is the necessary requirement for orchestration. It should be
given by default. However, an interface implemented in a technology that is adequate
for the use in the existing orchestration engines (workflow management tool) has to be
present.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

189

M50 Orchestration Base Objective
An SOA service should have an interface technology that is also used by the
majority of orchestration engines.
For the measurement, interface technologies and workflow management tool
technologies are compared. This can be done with the help of the SOEA model. If
there is no workflow management tool, the value is zero. If the technology of any
service interface of a service is covered by a workflow management tool, the value
increases by 1/(number of workflow management tools).

Interface

SOA Serv iceServ ice InterfaceWorkflow Management
Tool

Application Technology

provide

implementimplement

 Fig. 6-34: Measuring points for orchestration

R1 The higher the value the better.

P11 Statelessness
Q28 Are SOA service operations idempotent?

Statelessness is measured by the ratio of idempotent service operations within a
service. An idempotent service operation is regarded as stateless. Idempotency is
mathematically defined as f(x) = f(f(x)). This means that multiple execution of a
service operation (with identical input parameters) always leads to the same result
(output and post conditions).

 Chapter 6 Defining Quality Criteria and their Metrics

 190

M51 Statelessness Base Subjective
A service is regarded as stateless if his service operations are idempotent.
Testing all operations with all inputs concerning their result in case of repeated
execution is not justifiable. Therefore, an expert known to the SOA service has to
estimate whether an operation is idempotent or not. That means the repeated
execution of an operation with the same input parameters leads to the same output
and post conditions.
R1 The higher the value the better.

P12 Loose Coupling
Q29 Do SOA services communicate with business event messages?

Loose coupling concerns the premise of other systems. Sending events is regarded as a
very loose form of coupling, because the sender does not know its recipients and the
recipient does not have to know the sender.

M52 Loose Coupling Base Objective
SOA services should not be dependent on other services or applications. Therefore,
their communication should be processed with events.
For the measurement, the number of business event messages sent by an SOA
service is concerned. The number of different business event messages events has to
be seen in relation with the number of service operations. For this reason, the ratio
the number of events per service operation is measured.

SOA Serv ice

Serv ice Interface

InterfaceBusiness Ev ent Message
providecanCreate

 Fig. 6-35: Measuring points for loose coupling

R The higher the value the better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

191

P13 Functional compactness
Q30 Do SOA services have a compact process context?

Functional compactness is measured with help of the processes that are
implemented by the SOA services. As a positive criterion, the number of process steps
within a process that are realized by an SOA service is observed. Within a process, the
process steps that are realized by an SOA service are counted and the ratio to the total
number of steps is computed. It does not play a role which service operation is used to
implement the process step. The higher the number of steps realized within a service
the more compact the service seems to be. The value is averaged over the number of
processes the SOA service is involved.

M53 Functional compactness Base Objective
SOA services should hold as much as possible of the functionality required in a
certain context. This is measured with the help of the business processes the SOA
service is used in. The more process steps the SOA service is involved in, the better
the functional compactness.
The measurement is done with the help of the SOEA model. For an SOA service,
the average number of process steps it realizes within a process is counted.

Business Process SOA Serv iceBusiness Process Step
realizeconsistOf

1..*

 Fig. 6-36: Measuring points for functional compactness

R The higher the value the better.

P14 Compensation
Q31 Are the SOA services compensable?

Compensation is considered as given if a service operation can generally be undone
with a sequence of service operations from the same service. Of course, read only
services should not be regarded. If the service operation can only be undone with the
help of service operations from other services the compensation attribute is given in a
weaker form. The worst case occurs if no compensation is possible at all.

 Chapter 6 Defining Quality Criteria and their Metrics

 192

M54 Compensation Compound Subjective
The service operations of an SOA service should be compensable by the operations
of the same service or at least with operations from other services. This metric
combines M55, M56 and M57
M55 x M56 x M57
R1 x R1 x R1 The higher the third value the better.

Apart from that, the higher the second
value the better. The lower the first value
the better.

M55 No Compensation Base Subjective
Compensation can hardly be determined automatically. For this reason, an expert
has to decide which of the operations of a service are not compensable at all.
The expert evaluates the compensability of the service operations of an SOA
service. Read-only service operations are not concerned. Not compensable means
that there is no way to compensate the results of a service operation. The ratio of
these service operations to other service operations of the same SOA service is
measured.
R1 The lower the value the better.

M56 External Compensation Base Subjective
Compensation can hardly be determined automatically. For this reason, an expert
has to decide which of the operations of a service are externally compensable.
The expert evaluates the compensability of the service operations of an SOA
service. Read-only service operations are not concerned. Externally compensable
means that there is the possibility to compensate an operation with the help of other
SOA services. The ratio of such service operations to other service operations of the
same SOA service is measured.
R1 The higher the value the better.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

193

M57 Internal Compensation Base Subjective
Compensation can hardly be determined automatically. For this reason, an expert
has to decide which of the operations of a service are internally compensable.
The expert evaluates the compensability of the service operations of an SOA
service. Read-only service operations are not concerned. Internally compensable
means that there is the possibility to compensate with the help of operations from
the same SOA service. The ratio of such service operations to other service
operations of the same SOA service is measured.
R1 The higher the value the better.

P15 Service Contract
Q32 Are the contracts of SOA services complete?

Service Contracts are inevitable for SOA services. Their quality is measured by the
completeness of their descriptions.

 Chapter 6 Defining Quality Criteria and their Metrics

 194

M58 Service contract Base Subjective
The SOA service should have a description containing the following information:

 Description
 Interface
 Functionality
 Usage
 Lifecycle Status
 Responsibility

 Objection Level Agreement (OLA)
 Constraints
 Availability
 Accessibility
 Visibility
 Security

 Monitoring and Reporting
 Business event messages
 Predefined reports

The measurement is supposed to be done by an expert. Each criterion should be
checked and if one of them misses, the result is decreased by 0.1, starting with the
value one. Negative results are not possible.
R1 The higher the value the better.

P16 Discoverability
Q33 Can SOA service be discovered easily within the enterprise?

Discoverability is achieved by providing means to discover the service without special
previous knowledge. Within a Service-Oriented Architecture, this is achieved by
registering the service in a registry. Of course, sheer registration is no guarantee for
discoverability. However, from the service point of view it is a precondition that the
service registered and that is described in detail. The latter is covered by the service
contracts.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

195

M59 Discoverability Compound Mixed
A service is regarded as discoverable if it is registered in a service registry or
repository determined by M60. The kind of registry has influence on the evaluation
of this criterion and is already covered with M1.
M60 x M1
N1 x N3 x N The higher the values the better.

M60 Service registration Base Automatable
A service is regarded as discoverable if it is registered in a service registry or
repository. This metric determines whether the SOA service is registered in a
registry or not.
The measurement can be done with the SOEA model, where the registration of
SOA services in registries can be examined.

Serv ice RegistrySOA Serv ice
isRegisteredIn

Fig. 6-37: Measuring points for service registration

N1 The higher the value the better.

The definitions of the service criteria catalogue and the corresponding metrics have

been presented in this chapter. Using the metrics for an evaluation requires indicators
that are given in the following chapter.

197

7 Interpretation of Measures

The metrics that were described in the previous chapter do not yet allow a statement
about the fulfilment of the given quality criteria. For this reason, this chapter covers
the definition of indicators for the defined metrics. The metrics and their indicators are
treated separately in section 7.1, because the indicators are, other than the metrics,
dependent on the context of usage. With the indicators defined, a complete report on
service orientation of an enterprise architecture can be given. The form of
representation is described in section 7.2. If the quality criteria are not fulfilled,
actions that lead to improvement of the situation have to be defined. In section 7.3 the
improvement suggestions are covered.

7.1 Indicators for Service Orientation Metrics

Indicators are dependent from their context that means there are no fixed values for
the metrics that have to be stuck to. Dependent on the user of this framework, who
considers a quality criterion as more or less important, the preferred indicator values
may differ. Here, every metric is treated as equally important and the indicator values
are to be seen as a suggestion or default setting.

Fig. 7-1 depicts the structure of chapter 7 and the requirements that are covered.

The indicators for metrics of structural criteria are described in subsection 7.1.1.
Afterwards, the indicators for service criteria are given in subsection 7.1.2. Both
sections support the fulfilment of the requirements R7 “As-Is & Target Modelling”
and R11 “Automation of criteria checks”. Section 7.2 presents a how the information
of indicators can be condensed and formatted. The indicators allow evaluating the
current situation of an enterprise architecture (concerning service orientation) but an
improvement of the situation requires actions to be taken. The way to find and
prioritize those actions is given in section 7.3. With this, R12 “Improvement
suggestions” will be covered.

 Chapter 7 Interpretation of Measures

 198

Conformance
Report

Recommen-
dations

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Indicators

Metrics i

results
in

derive

Automated
evaluation

7.1

7.2

7.3

R7
R11

R11

R12

Fig. 7-1: Contribution and structure of chapter 7

The indicators for structural criteria and for services are given in the format
depicted in Fig. 7-2. Numbering of the indicators is consistent with the numbering of
the metrics. That means IM1 corresponds to M1, IM2 to M2 and so on. If there is a
compound metric for a quality criterion, then there is no indicator for its base metrics.

The domain of an indicator is equal to the co-domain of the corresponding metric.

The co-domain of the indicator is always the interval [0,1]. Discrete sets like a traffic
light system or a grade point system are not chosen here because these can be defined
after the needs of the user afterwards. The value of the indicator is always the better
the higher it is. That means 0 is the worst and 1 is the best result.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

199

Acronym, Name of the corresponding
metric

Domain Calculation Rule
(if compound)

Interpretation Rule

Indication function

Conditions for parameter integrity Suggested values for adjustable
parameters

Fig. 7-2: Template for indicator definition

Within the indication function, the determined value of a base metric is referenced
with its acronym, e.g. M1. Compound metrics have tuple values. The single tuple
elements are referenced with the corresponding base metric acronyms.

Adjustable parameters are often part of the indication function. If the interpretation

of a metric is adjustable, then these parameters are the adjustable screws to
concentrate on. Adjustable parameters are named like the indicator acronym plus an
additional index, e.g. IM11. Suggested values for the parameters are given in the lower
right corner of the table. Changing parameters requires taking care of the resulting co-
domain of the function. Therefore, conditions for parameter integrity are defined.
These ensure that the co-domain remains [0,1]. If it is not [0,1] afterwards, the
changed parameter values are invalid. The redefinition of the indicator function could
solve this but is not suggested.

A traffic light system could easily be applied on these indicators by defining that

values in the interval [0, 1/3[correspond to red, values in [1/3, 2/3[correspond to
orange and values between [2/3, 1] correspond to green. Other values are possible as
well.

 Chapter 7 Interpretation of Measures

 200

7.1.1 Indicators for Structural Criteria

This subsection covers the definition of indicators for the structural criteria metrics.

IM3 Service registry N3 x N M1 x M2

The higher the value for M1 the better. M5 equal zero means no registry exists,
which is worst. One is best because it is central then. Beyond this, the more logical
registries the worse.

IM1 := M1 /3

IM2 := If M2 = 0 then 0

 if M2 = 1 then 1

 else 1/M2

IM3 := IM1 * IM11 + IM2 * IM21

IM11 + IM21 = 1 IM11 = ½

IM21 = ½

IM6 Service repository N3 x N M4 x M5

The higher the value for M4 the better, as more functions are implemented. M5
equal zero means no repository exists, which is worst. One is best because it is
central then. Beyond this, the more repositories the worse.

IM4 := M4 /3

IM5 := If M5 = 0 then 0

 if M5 = 1 then 1

 else 1/M5

IM6 := IM4 *IM41 + IM5 *IM51

IM41 + IM51 = 1

IM41 = ½

IM51 = ½

Model-Based Evaluation of Service-Oriented Enterprise Architectures

201

IM7 Multi-channel services R M7

A plethora of service interface technologies is helpful but not too much interface
technologies should be supported, as the maintenance of too many interface
technologies will outweigh their benefit.

IM7 := If M7 < IM71 then M7 / IM71

 if M7 = IM71 then 1

 else 1/(M7- IM71)

IM71 >= 1 IM71 = 4

IM8 SOA service reuse R M8

The higher the number of process steps used by a service the better. Theoretically,
an unlimited number of reuses is possible. To keep the values of the indicator in a
reasonable high range, a maximum reference value (IM81) is set.

IM8 := If M8 <= IM81 then M8 / IM81

 else 1

IM81 >= 1 IM81 = 20

IM9 Legacy adaptation R1 M9

The higher the ratio of applications used by SOA services the better.

IM9 := M9

- -

IM10 Common middleware R1 x R1 M11 x M12

The higher the numbers the higher the middleware prevalence and thus the better.

IM10 := M11 * IM111 + M12 * IM121

IM111 + IM121 = 1

IM111 = 2/3

IM121 = 1/3

 Chapter 7 Interpretation of Measures

 202

IM13 Standard communication R M13

The lower the number of interface technologies the better, except of a small
number of common interface technologies (IM131). To keep the indicator value in
reasonable borders a maximum reference value (IM131) is set.

IM13 := If M13 <= M131 then 1 else

 if M131 <= M13 <= M132 then 1 – (M13 - IM131)/(IM132 - IM131)

 else 0

IM131 >= 1 IM131 = 4

IM132 = 20

IM14 Functionality separation R M14

The ratio of functionality that is only provided by graphical user interfaces is
measured with M14. As high values are not acceptable at all, a ratio of IM141 is
already considered as worst possible result.

IM14 := If M14 > IM141 then 0

 else 1 – (M14 / IM141)

0 < IM141 <= 1 IM141 = 1/3

IM15 Implementation
exchangeability

R1 (M16 + M17 * M18)
/(M16 + M17)

The measurement of M18 has to be done by an expert, whereas the ratio for SOA
services is regarded as given. The higher the overall exchangeability the better.

IM15 := M15

- -

Model-Based Evaluation of Service-Oriented Enterprise Architectures

203

IM19 Event processor N3 M19

The higher the value for M19 the better the feature richness of the event processor.

IM19 := M19 / 3

- -

IM20 Event enablement R1 M20

The higher the value for M20 the better the EDA support.

IM20 := M20

- -

IM21 Business object events R1 M21

The higher the value for M21 the better the EDA support.

IM21 := M21

- -

IM22 Process events R1 M22

The higher the value for M22 the better the EDA support.

IM21 := M21

- -

IM23 Invocations R1 x R1 M24 x M25

The higher the value for M23 the better the EDA support.

IM23:= M24 * IM241 + M25 * IM251

IM241 + IM251 = 1

IM241 = ½

IM251 = ½

 Chapter 7 Interpretation of Measures

 204

IM26 Process step matching R x R M27 x M28

The higher the values the better the support for IT-business alignment.
Theoretically, the number of SOA services and applications is unlimited. For
getting reasonable indicator values, a maximum reference value of IM261 is set. As
services are considered coarser grained than applications their weight is increased.

IM26 := If M27 * IM271 + M28 * IM281 > IM261 then 1

 else (M27 * M271 + M28 * M281) / IM261

IM261 > 1

IM271 + IM281 = 1

IM261= 20

IM271 = 3/5

IM281 = 2/5

IM29 Human support R1 M29

The higher the value for M22 the better the IT-business alignment.

IM29 := M29

- -

IM30 Process realization R M30 =
(M31 + 1)/(M32 + 1)

The higher the value the better for the IT-business alignment.

IM30 := (M30 – 0.5)*0.75

- -

IM33 Orchestration engine N x R1 M34 x M35

The higher the value for orchestration engine existence and the ratio of orchestrated
services the better. A maximum reference value for M34 has to be set (IM341),
because its co-domain is infinite.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

205

IM33 := If M34 > IM331 then 1 * IM341 + M35 * IM351

 else (M34 * IM341)/ IM331 + M35 * IM351

IM331 >= 1

IM341 + IM351 = 1

IM331 = 30

IM341 = ¼

IM351 = ¾

IM36 Process orchestrations R1 M36

The higher the ratio of processes realized by orchestrations the better.

IM36 := M36

- -

IM37 Process logic R1 M37

The lower the ratio of process control flow hidden in applications the better.

IM37 := 1/ M37

- -

IM38 BPM usage R1 x R M39 x M40

The higher the value for BPM observation of processes and the usage of KPIs the
better. A maximum reference value for M40 has to be set (IM381), because its co-
domain is infinite.

IM38 := If M40 > IM381 then M39 * IM391 + 1 * IM401

 else M39 * IM391 + (M40 * IM401)/ IM381

IM381 >= 1

IM391 + IM401 = 1

IM381 = 5

IM391 = ½

IM401 = ½

 Chapter 7 Interpretation of Measures

 206

IM41 BPM automation R x R M40 x M42

The higher the value for the usage of business event messages for KPIs and the
usage of KPIs the better. Maximum reference values for M40 and M42 have to be
set (IM411, IM412), because their co-domains are infinite.

IM40 := If M40 > IM411 then 1

 else M40

IM42 := If M42 > IM412 then 1

 else M42

IM41 := IM40 * IM402 + IM42 * IM421

IM411 >= 1

IM412 >= 1

IM402 + IM421 = 1

IM411 = 5

IM412 = 5

IM402 = ½

IM421 = ½

7.1.2 Indicators for Service Criteria

Indicators for service criteria are given in exactly the same way as the indicators for
structural criteria. Metrics for service criteria carry the same name as their service
quality criterion and as their indicator. The acronym only differs in the first letters,
which are M, S, and IM respectively.

IM43 Reusability (N x N x N) x N x
N1 x (N x N) x R1
x N1 x N3 x N

M44 x M49 x
M51 x M52 x
M58 x M59

The better the single metrics the better the reusability.

IM43 := IM431*IM44 + IM432*IM49 + IM433*IM51 +

 IM434*IM52 + IM435*IM58 + IM436*IM59

IM431 + IM432 + IM433 +

IM434 + IM435 + IM436 = 1

IM431 = 1/6 IM434 = 1/6

IM432 = 1/6 IM435 = 1/6

IM433 = 1/6 IM436 = 1/6

Model-Based Evaluation of Service-Oriented Enterprise Architectures

207

IM44 Granularity (N x N) x N M45x M48

The values should not be too high and not too low in order to have SOA services of
balanced size.

IM44 := IM441*IM45 + IM442*IM48

IM45 := IM451*IM46 + IM452*IM47

IM46 := If M46 >= IM461 then 0 else

 If M46 <= IM462 then 1

 else (IM461 - M46)/(IM461 - IM462)

IM47 := If M47 >= IM471 then 0 else

 If M47 <= IM472 then 1

 else (IM471 - M47)/(IM471 - IM472)

IM48 := If M48 >= IM481 then 0 else

 If IM481M48 <= IM472 then 1

 else (IM471 - M47)/(IM471 - IM472)

IM441 + IM442 = 1

IM451 + IM452 = 1

IM461 > IM462

IM471 > IM472

IM441 = ½

IM442 = ½

IM451 = ½

IM452 = ½

IM461 = 10

IM462 = 2

IM471 = 20

IM472 = 5

 Chapter 7 Interpretation of Measures

 208

IM49 Technology transparency R1 M49

Any technology restriction within the SOA service description leads to a reduction
of the value. Three restrictions are taken as a reference value for a completely
inadequate service description.

IM49 := If M49 >= IM491 then 0 else

 else (IM491 - M49)/IM491

IM491 >= 1 IM491 = 3

IM50 Orchestration R1 M50

The more SOA services there are that can be orchestrated in the present workflow
engines (with any service interface technology provided) the better.

IM50 := M50

- -

IM51 Statelessness R1 M51

The higher the ratio of stateless SOA services the better. However, 1 is an ideal
value. This is why the value IM511 is already regarded as optimal.

IM51 := If M51 >= IM511 then 1 else

 M51 / IM511

IM511 <= 1 IM511 = 0.8

IM52 Loose Coupling R M52

The more events per operation are created by an event the better. A value of IM521
events per operation is regarded as sufficient.

IM52 := If M52 >= IM521 then 1 else

 M52 / IM521

IM521 <= 1 IM521 = 5

Model-Based Evaluation of Service-Oriented Enterprise Architectures

209

IM53 Functional compactness R M53

The more process steps within a process can be covered the better. A value of
IM531 is regarded as sufficient.

IM53 := If M53 >= IM531 then 1 else

 M53 / IM531

IM531 <= 1 IM531 = 6

IM54 Compensation R1 x R1 x R1 M55 x M56 x
M57

The more service operations can be compensated with the same service or at least
can be compensated at all the better.

IM54 := IM541*M55 + IM542*M56 + IM543*M57

IM541 <= 1

IM542 <= 1

IM543 <= 1

IM541 = 1

IM542 = ½

IM543 = 0

IM58 Service contract R1 M58

The more description details there are the better.

IM58 := M58

- -

IM59 Discoverability N1 x N3 x N M60 x M1

The higher the values the better the discoverability of the SOA services.

IM59 := IM591 * M60 + IM592 * IM1

IM592 + IM591 = 1 IM592 = 1/3

IM591 = 2/3

 Chapter 7 Interpretation of Measures

 210

IM60 Service registration N1 M60

The higher the values the better the discoverability of the SOA services.

IM60 := M60

- -

Now, all the indicators for the metrics have been defined. With this, a report on

service orientation can be created. The structure of this report is given in the next
section.

7.2 Report on Service Orientation of an EA

Having the results of the metrics and indicators at hand, a user-friendly form of
representation is needed. This section proposes a clearly arranged way to represent the
results. The enterprise architect shall be able to draw his conclusions from the
information with the overview on the metric and indicator results. For this reason, this
section describes the layout of a report on service orientation of an enterprise
architecture.

The retrieval of the measures has not yet been described, but will be done in the
next chapter. This is done, because the tool support shall retrieve the lion’s share of
the required metrics.

A report on service orientation should include the following information. Firstly, it

should list the quality criteria and their categorization. Secondly, it should include the
indicator values for each criterion. Thirdly, the metric values used for the computation
of indicators should be contained as well. Of course, a clear arrangement should also
include an aggregated graphical representation of the information. To have an
overview on the information, the table and diagram views from Fig. 7-3 and Fig. 7-4
are proposed.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

211

Category Criterion
Acronym Criterion Question Indicator

Acronym
Indicator

Value Metric Value

Q01 Is there a central service registry? IM3 1 1

..

Q07 Are exclusively standards used for communication protoco IM13 0,25 17

Q08 Are visualization and functionality separated from each oth IM14 0,3 0,23

Q09 Are application and SOA-service implementations exchan IM15 0,5 0,5

Q10 Is there an event processor? IM19 0,33 1

…

Q14 Can events lead to the execution of applications, SOA-ser IM23 0,5 0,6 x 0,4

Q15 Do SOA-services provide business functions that match w IM26 0,7 10 x 20

…

Q17 Are process steps realized through SOA services? IM30 0,5 1,16

Q18 Is there an orchestration engine that executes SOA servic IM33 0,3 9 x 0,3

…

Q20 How much process control flow is hidden in applications? IM36 0,2 0,2

Q21 Is there a BPM application? IM37 0,7 1,42

…

Q22 How high is the ratio of processes that are monitored auto IM41 0,5 2 x 3

Q23 Are the SOA services reusable? IM43 0,6 0,7 x 0,4 x 0,9 x 0,2
x 0,6 x 0,8

…

Q33 Can SOA service be discovered easily within the enterpris IM60 1 1

Orchestration

Business
Process

Monitoring

SOA Services

Middleware

Disclosure of
Interfaces

Complex
Event

Processing

IT-Business
Alignment

Fig. 7-3: Table view of report on service orientation

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Q
01

Q
03

Q
05

Q
07

Q
09

Q
11

Q
13

Q
15

Q
17

Q
19

Q
21

Q
23

Q
25

Q
27

Q
29

Q
31

Q
33

Quality Criterion

In
di

ca
to

r V
al

ue

Fig. 7-4: Bar diagram of report on service orientation

 Chapter 7 Interpretation of Measures

 212

The kiviat diagram showing categories of the quality criteria is a more condensed
form of the report. It can be used as summary, e.g. in presentations.

0,00

0,25

0,50

0,75
Middleware

Interface separation

IT-Business Alignment

Complex Event ProcessingBusiness Process Monitoring

Orchestration

SOA Services

Fig. 7-5: Diagram of report on service orientation

This section has provides a way to present the results of the SOEA evaluation in a
clearly layouted form. By that, the weaknesses of the EA concerning service
orientation can be revealed. Of course, consequences should be drawn from these
insights. The next chapter will propose remedial actions for potential weaknesses.

7.3 Recommendation of Improvements

Knowing the weaknesses of the enterprise architecture concerning service orientation
is only the premise for improving the situation. Actions for improvements have to be
derived from the gathered information. This section describes an approach on how to
derive these actions. The result will consist of the actions to be taken and a priority
order in that the steps shall be executed. The strategy for prioritizing actions is
presented in 7.3.2 and the strategy for defining actions is given in 7.3.1.

7.3.1 Defining Remedial Actions

A remedial action is a task or project that increases the quality of an enterprise
architecture towards service orientation. The determination of these actions is
dependent from the indicator values that have been identified. Any low indicator value
points out room for improvement.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

213

Up to a certain point, the way for determining an action corresponding to a low

indicator is similar in each case. This similar process will be described as a strategy.
The part beyond the strategy is dependent from the individual case and has to be
covered by the enterprise architect.

A low indicator value is the result of the measures it is calculated from. Increasing

an indicator value premises the alteration of its measures. The metrics included in the
calculation of the indicator can be tracked in section 7.1 containing the indicator
definitions. The metrics listed there have to be examined concerning their measures. If
the measuring points lie within the model, then a model design and the according real
world system changes have to be brought up. This changes the measures in a way
increasing the targeted indicator value.

For example, if IM3 is very low, then the metrics M1 and M2 have to be influenced.

M1 measures the features of the service registry and M2 its existence. If M2 is low
then a registry should be added to the model and the possible consequences should be
checked. Afterwards, a task to set up a registry has to be created and realized. Which
registry to choose and how to install it, is task of the enterprise architect then.

7.3.2 Strategy for Prioritizing Actions

Concerning the priority ordering, a top down approach is favoured here. It starts with
the examination of the quality properties for service orientation, specifies a priority
order, and then examines the possible improvements for single quality properties (P1
to P6). P7 to P16 are regarded here as one group of SOA service quality properties.

A precedence relation graph for the quality properties is shown in Fig. 7-6. The

higher a property is depicted the higher its priority. The higher the priority of a
property the sooner the actions to improve these properties should be taken.

The first property to be concerned is the middleware. A middleware strategy for the

realization of SOA services should be decided first. Tailoring SOA services is closely
related to establishing an IT-business alignment and the disclosure of functionality. An
adequate method for the tailoring of SOA services is given in [UecanE08]. When at
least some SOA services exist, their orchestration can be concerned. The correlation of
events and the initiation of compensating workflows upon critical events should be
tackled when the basis for the orchestration of SOA services has been established. The

 Chapter 7 Interpretation of Measures

 214

last property in the hierarchy is business process monitoring. It is strongly dependent
on the complex event processing and should be realized afterwards.

There are different quality criteria within each property. In general, their

prioritization can be decided as follows. Quality criteria that demand the existence
something are to be preferred over criteria that demand ratios of certain items. For
example, the existence of a registry (IM3) is more important than the ratio of service
reuses per service (IM8). It does not make sense to aspire high a reuse ratio of 20
before realizing other steps of the property orchestration (like establishing an
orchestration engine). As a rule of thumb, an averaged indicator value of a property as
shown in Fig. 7-5 should be higher as the values for properties of lower precedence.

Middleware

Business Process
Monitoring

IT-Business
Alignment

Orchestration

Disclosure of
Functionality

Complex Event
Processing

SOA Services

Fig. 7-6: Precedence graph for quality properties

The strategy for the determination of a priority order concludes this chapter. The
chapter has covered the interpretation of measurements by defining indicators and
suggesting a presentation form. Furthermore, the derivation of actions has been
covered here. The prototypical implementation of a customized modelling tool
allowing the automated evaluation of quality criteria will be described in the next
chapter.

215

8 Tool support with an Eclipse-Based
Prototype

This chapter is dedicated to the description of the tool support for the evaluation
method described in the previous chapters. It is a guide for the enterprise architect on
how to create the SOAMeter tool that fits to his individual SOEA meta model. Every
tool is individual because of the individual SOEA meta model that is allowed in the
method. Other parts of the editor, like the graphical editor, are dependent from the
individual SOEA meta model and their creation has to be described generically as
well. The tool is based on the work of the master’s thesis [Doroci09].

The construction of the SOAMeter tool is split into three parts. Section 8.1 covers

the implementation of the SOEA meta model and a primitive tree syntax editor for its
instances – the SOEA models. Section 8.2 describes how to implement a graphical
editor for SOEA models. Afterwards, the metrics based on the SOEA model will be
implemented. The main requirements fulfilled by the SOAMeter tool are R10 “Tool
support” and R11 ”Automation of criteria checks” with the stress on automation.
Many other requirements are covered by the tool. However, they are only the
implementation of what has been elaborated in the previous chapters.

 Chapter 8 Tool support with an Eclipse-Based Prototype

 216

“SOA-Meter” Tool Support

Service-Oriented Enterprise
Architecture Meta Model

SOEA Model

Conformance
Report

Recommen-
dations

Conformance
Measurement

SOA Quality
Criteria Catalog

Architecture
Quality

Service
Quality

Indicators

Metrics

applied
on

Automated
evaluation

i

results
in

derive

R3

instance of

R4

R10

R7

R7
R11

R11

R11

R8

R4
R8

R9

8.1

8.2

8.3

8.3

8.3

8.1

8.3

Fig. 8-1: Contribution of chapter 8

The eclipse platform has been chosen for the prototypical implementation of the
tool. The decision for eclipse is based on the plethora of functionalities that are
already implemented by existing framework components. The Eclipse Modelling
Framework (EMF, compare [Eclips03]) supports the creation of an SOEA meta model
and offers a tree syntax editor for models that are instances of the pre-defined SOEA
meta model. The graphical modelling framework (GMF, compare [Eclips06]) offers
the possibility to create a graphical editor for SOEA models. Finally, the EMF
contains an OCL library (compare Elips07) offering the possibility to implement
statements of the object constraint language (OCL, compare [OCLspe06]) for models
of the EMF. OCL is a formal language used to describe expressions on UML models.
These expressions typically specify invariant conditions that must hold for the system
being modelled.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

217

The following table specifies the versions of the eclipse frameworks used for the
implementation:

Eclipse Platform 3.4.2
Eclipse Modelling Framework 2.4.2
Eclipse Graphical Modelling Framework 1.1.3
OCL 2.0 Parser/Interpreter 1.2.3
J2SE 1.5

Fig. 8-2: Versions of used technologies

Based on this configuration, the steps of the creation of a SOAMeter tool for the
modelling and evaluation of enterprise architectures will be described in the next
sections.

8.1 SOEA Meta Model Implementation with EMF

The first step after setting up a new workspace is to implement the SOEA meta model
with the Eclipse Modelling Framework. The second is to create a new GMF project.
The GMF offers a very comfortable tutorial in form of a cheat sheet and a dashboard.
The cheat sheet guides the user step for step when creating a graphical meta model
editor. The dashboard does the same but with a graphical illustration of the steps.

Fig. 8-3: GMF dashboard after first step

In Fig. 8-3, the GMF dashboard is depicted after the initial creation of an empty
Ecore Model. Ecore is the eclipse implementation of the Meta Object Facility and

 Chapter 8 Tool support with an Eclipse-Based Prototype

 218

allows the creation of a description of the SOEA meta model. The Ecore Model syntax
tree with some basic elements is shown in Fig. 8-4. The elements shown there should
be added to every SOEA Ecore model, because they will ease the implementation of
the metrics (in form OCL constraints) afterwards. The first element is the eclass
“Enterprise_Architecture” having a “consists of” reference to “__Named_Element”.
Furthermore, “__Named_Element” is a supertype for all SOEA meta model classes.
The “__Metric” is the last additional class.

Fig. 8-4: Ecore model with basic elements

In the following, the meta model elements have to be added to this Ecore model.
This can be done in a graphical representation of the Ecore model – the Ecore
diagram. Changes in the diagram are automatically updated in the Ecore model and
vice versa. The diagram is created by right clicking the SOEA.ecore file in the
package explorer and choosing the option “Initialize Ecore Diagram File…”.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

219

Fig. 8-5: Ecore model diagram with basic elements

All classes of the SOEA meta model have to be added as subclass of
“__Named_Element”. There is a noteworthiness about the bidirectional associations
(or ereferences) in the Ecore model. To create a bidirectional ereference, two directed
edges have to be created and their attribute “EOpposite” has to be set to the edge in
the other direction. When all elements from the individual SOEA meta model have
been added, the next dashboard step can be taken. The Ecore model will be
transformed to the domain gen model. This model is used for generating code from the
Ecore model. After the wizard dialog, the genmodel will be created.

Fig. 8-6: GMF dashboard after second step

The editor with tree syntax can be generated by right clicking the genmodel
package and selecting “Generate all”. Three new projects are generated. Now, the new
project with the extension .editor has to be run in an eclipse application. When the
new eclipse has started a new project via File New Other Example EMF Model

 Chapter 8 Tool support with an Eclipse-Based Prototype

 220

Creation Wizards SOEAPackage has to be created. For the use of the editor, refer to
the EMF documentation (compare [Eclips03]). Fig. 8-7 shows the tree syntax editor
with some sample objects.

Fig. 8-7: Tree syntax editor generated from “Domain Gen Model”

The steps taken so far have resulted in a tree syntax editor for SOEA models. In the
following, a more comfortable graphical editor will be created with the help of the
GMF.

8.2 Creation of a Graphical Editor

This section proceeds with the tool creation for the SOEA meta model. The tree
syntax editor is not very user friendly, because it is quite complicated to create bigger
models and following a path of references is tedious. For these reasons, a simple
graphical editor will be created.

The remaining steps from the GMF dashboard are required to create the graphical

editor. Therefore, the derivation of the “Graphical Def Model” is processed now. The
Graphical Def Model determines the graphical representation of the Ecore model
elements. The second dialogue window in the “Graphical Def Model” wizard demands
to determine a domain element. In this case, it has to be “Enterprise Architecture”.
The third and last dialog window allows specifying elements that should not be
represented in a graphical way. Everything except of “__Named_Element”,
“Enterprise_Architecture”, and “__Metric” has to be selected in this step. Afterwards,
the eclipse workspace should look similar as in Fig. 8-8.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

221

Fig. 8-8: Eclipse workspace with “Graphical Def Model”

The next dashboard step creates the “Tooling Def Model”. This model determines
for which Ecore model elements creation tools will be generated. Creation tools are
the pushbuttons (including functionality) in an editor, which create a new model
element. Again, a wizard guides through the creation process, which is similar to the
previous one. In the third dialogue window of the wizard, the elements for which a
creation tool should be generated have to be selected. Everything except of
“__Named_Element”, “Enterprise_Architecture”, and “__Metric” should be selected.
The result is depicted in Fig. 8-9.

 Chapter 8 Tool support with an Eclipse-Based Prototype

 222

Fig. 8-9: Eclipse workspace with “Tooling Def Model”

The next step is the most complicated for the creation of the graphical editor. It
combines the “Domain Model” with the “Graphical Def Model” and the “Tooling Def
Model”. The resulting mapping model defines a mapping between a meta model
element from the “Domain Model”, a display variant from the “Graphical Def Model”
and a creation tool from the “Tooling Def Model”. The combine button from the
dashboard calls a wizard dialogue. Firstly, the existing three models to be mapped
have to be specified. Afterwards, the nodes and links for the editor have to be selected.
The dialogue is given in Fig. 8-10. All nodes to appear in the graphical editor have to
be selected there. As before, “Enterpise_Architecture”, “__Named_Element” and
“__Metric” have to be left out.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

223

Fig. 8-10: Creation of the mapping model

Unfortunately, the labels for the nodes are not filled in an automated way.
Therefore, the label mappings for each node have to be set. The label for a node will
be filled with the name attribute of the corresponding node (compare Fig. 8-11).

In addition, it may happen that the creation tools and diagram links have been

interchanged by the framework. For this reason, the properties of each “Node Link”
have to be checked. The entries “Diagram Link” and “Tool” have to be examined on
correctness. Both entries must match to the “Target feature” that can also be seen in
the property window in Fig. 8-12.

Afterwards, the generation of the editor can be started by pressing the transform

button on the GMF dashboard. This initiates the creation of the “Diagram Editor Gen
Model”. The last step is to generate the editor code by clicking on the “Generate
diagram editor” link in the dashboard. Starting the graphical editor is similar to the
syntax tree editor. The code has to be run as new eclipse application by selecting
File New Other Examples SOEA Diagram. A screenshot of the graphical editor
is shown in Fig. 8-13. The graphical editor allows the generation and manipulation of
instances of the SOEA meta model that was previously defined as “Domain Model”
(Ecore Model). The editor prevents the manipulations of the model, which would
result in non-conformance to the SOEA meta model.

 Chapter 8 Tool support with an Eclipse-Based Prototype

 224

Fig. 8-11: Defining node labels

Fig. 8-12: Correcting interchanged mappings

Model-Based Evaluation of Service-Oriented Enterprise Architectures

225

Fig. 8-13: Screenshot of the graphical editor

The creation of an editor for SOEA models with an individual SOEA meta model
has been described so far. As next step, the editor will be extended by a plugin
allowing formulating OCL constraints on the model.

8.3 Implementing Service Orientation Metrics

The metrics for service orientation that can be evaluated in an automated way will be
implemented with the help of the Object Constraint Language (OCL, compare
[OCLspe06]). OCL constraints are suited for this task because they allow checking the
structure of graphs and executing simple calculations. This is sufficient for the metrics
having their measuring points within the SOEA model.

The implementation is realized as an eclipse-plugin for the existing SOAMeter tool.
This section will only describe the usage of the plugin. The source code creation is not
of interest for the user because he is able to use the plugin with small adaptations.
These adaptations consist of changing labels of meta classes within the OCL
constraints. An OCL constraint is formulated on the level of the meta model. Changes
in the meta model may occur if the merging process has changed the label of a meta

 Chapter 8 Tool support with an Eclipse-Based Prototype

 226

class, e.g. from “Orchestration” to “Service_Orchestration”. In this case, the OCL
constraints have to be changed. How this can be done is explained later in this section.

The source code needs not to be changed as long as the basic Ecore elements from

Fig. 8-4 remain the same. As they are used for implementation reasons and do not
belong to SOEA meta model used in the editor, there should be no reason for changing
them.

The plugin is reached via the entry “SOEA Metrics” in the menu bar (see Fig. 8-

14). Only the options “Calculate measures” and “Manage metrics” are of interest here.
At first, manage metrics will be examined.

Fig. 8-14: Menu bar entry of the OCL plugin

The metric management window (see Fig. 8-15) shows an overview of the metrics
that have already been created. In addition, it allows creating, changing, and deleting
metrics.

Fig. 8-15: Metric management window

Model-Based Evaluation of Service-Oriented Enterprise Architectures

227

Changing and creating a metric is nearly the same step. In the case of changing a
metric, the metric creation window is filled with the data of the existing metric. Fig. 8-
16 shows a metric creation window with the metric M2 Service registry existence.
Next to a name and a description, a target value can be declared here. The target value
can be used as the aim that is considered as ideal for this value.

The OCL constraint has to be typed in the respective field. The OCL specification

[OCLspe06] describes how valid constraints have to be arranged. In addition, the
result type has to be declared. If all mandatory fields have been filled, then the
progress can be saved by clicking the “Finish” button.

Fig. 8-16: Metric creation window

 Chapter 8 Tool support with an Eclipse-Based Prototype

 228

Fig. 8-17: Measure calculation window

After having defined the metrics, their calculation can be executed by the eclipse
plugin. The window in Fig. 8-17 shows the window that appears when selecting the
entry “Calculate measures” from the menu bar. It shows the result values of the OCL
constraints and their target values. If an entered OCL constraint is not well-formed,
then the error is denoted in the result field.

Large parts of the report on service orientation can be filled with the information of

the plugin because the objective measures are calculated with the OCL constraints.
However, the remaining subjective measures have to be retrieved by experts and the
indicators have to be applied afterwards.

This chapter has described how to implement a SOAMeter tool supporting the

planning of enterprise architectures and supporting the automated calculation of
metrics. The implementation is to be seen as a proof of concept and not as a tool ready
for production. The chapter on the tool support finalizes the contribution of this thesis.
Therefore, the conclusion is given in the next chapter.

229

9 Summary, Conclusion and Outlook

The model-based support for the transformation of an enterprise architecture to a
Service-Oriented Enterprise Architecture is the topic of this thesis. The here presented
SOAMeter approach tackling this task will be summarized in section 9.1. The novelty
of the approach and the differences to existing approaches concerning the
requirements stated in section 2.4 will be pointed out in the conclusion in section 9.2.
Section 9.3 finalizes this thesis by providing an outlook that names the open
challenges and the tasks for possible future work.

9.1 Summary

This section will give an overview on the contribution of this thesis. In one sentence,
this thesis provides a model-based approach allowing enterprise architecture
modelling paired with the evaluation of service orientation of the modelled enterprise
architecture. In order to realize this, a definition of SOA including a meta model, a
meta model merging algorithm leading to an SOEA meta model, an SOA quality
criteria catalogue, as well as corresponding metrics and indicators have been
elaborated. In the following, the interplay of these solution items is summarized and
the value of the SOAMeter approach will be accentuated.

Tool support
Eclipse SOA-Meter(EMF + GMF + OCL)

Real world system

Enterprise
Architecture

Quality properties

SOA-like EA

Quality criteria for
model

SOA quality criteria
catalogue

Evaluation

Metrics and
indicators

Transformation/
Refinement

Abstraction

Specification

Model
SOEA Model

Instance of

Modelling language
SOEA Meta Model

Fig. 9-1: Basic solution concept

 Chapter 9 Summary, Conclusion and Outlook

 230

The basic solution concept as depicted in Fig. 9-1 depicts the relation of the solution
items. Quality properties in form of an SOA definition have been specified for the
enterprise architecture being a real world system. The SOEA meta model and the
corresponding SOA quality criteria catalogue were developed in order to be able to
evaluate the quality properties of an existing EA. The SOEA meta model can express
EAs that are service-oriented as well as those that are not service-oriented. An SOEA
model that is not service-oriented yet, can be step-wise transformed to a service-
oriented EA by applying changes that will raise the value of the evaluation results and
therefore guide the transformation process.

The modelling of SOEAs and the evaluation of the SOA quality criteria has been

prototypically implemented in an eclipse-based tool. This SOAMeter tool allows the
creation of SOEA meta models and their instantiation. This feature is based on the
EMF and GMF. Furthermore, the calculation of metrics is supported by an OCL
plugin for this tool.

The elaborated approach allows an enterprise architect to model and plan the
elements of the enterprise architecture. Furthermore, he can control the conformance
of his EA to a fully-fledged SOA with the evaluation system of metrics and indicators.
By this, the transformation of an enterprise architecture to an SOA-like EA is
supported. Hence, the risk of failure when introducing an SOA is decreased.

9.2 Conclusion

In the conclusion, the approach from this thesis is compared with the existing
similar approaches. For this reason, the requirements from section 2.4 are picked up
again. At first, their fulfilment is elicited. Afterwards, the table overview shows the
rating of other approaches in direct comparison with this approach.

 R1 SOA definition

This thesis provides a comprehensive SOA definition that includes a reference
architecture for SOA and a service definition. The reference architecture comprises six
main concepts of service-orientation. These are middleware, IT-business alignment,
disclosure of functionality, orchestration, complex event processing, and business
process monitoring. R1 is fulfilled.

 R2 SOA formalization

Model-Based Evaluation of Service-Oriented Enterprise Architectures

231

 A meta model for Service-Oriented Architectures has been derived from the SOA
definition of this thesis. R2 is fulfilled.

 R3 SOA conformance criteria

The SOA conformance criteria are formulated in the form of the SOA quality
criteria catalogue. The catalogue concerns structural criteria (concerning the
architecture) and service criteria (concerning the quality of SOA services). R3 is
fulfilled.

 R4 Integrated language for EA and SOA

The SOEA meta model is the integrated modelling language for EA and SOA. It
has been derived by merging the SOA meta model and an individual EA meta model.
R4 is fulfilled.

 R5 EA Formalization

The exemplary derivation of an EA meta model has been shown. Furthermore, the
defined minimal EA meta model serves as a lead for individual EA meta models. R5 is
fulfilled.

 R6 Individual EA meta model

Any individual EA meta model that contains the minimal EA meta model can be
used, because the meta model merging method from section 5.3 has been provided. It
allows the creation of an integrated modelling language for SOEAs. R6 is fulfilled.

 R7 As-Is & Target

The as-is and target modelling is realized by the checking of the conformance
criteria. That means that there is only one model at a time. An extra target model with
the completely SOA-like EA (perfect in the sense of service-orientation) is not needed
because all changes that lead to the fulfilment of the conformance criteria will lead the
EA model towards the ‘perfect’ SOA-like EA. An extra model with the ideal
architecture vision could be helpful, but has not been implemented. For this reason, R7
is only partly fulfilled.

 R8 Holistic EA Modelling

Firstly, the EA meta model is connected. For this reason, consequences of changes
can be foreseen easily. Secondly, depending on the individual EA meta model, the
SOEA meta model encloses the business, service and application layer of an EA. R8 is
fulfilled.

 Chapter 9 Summary, Conclusion and Outlook

 232

 R9 Individual views

The individual views are part of the tool support and were not covered, because the
created tool serves as a prototype only. Creating different views is a technical
challenge, not as a conceptual one. R9 is not fulfilled.

 R10 Tool support

The tool prototype for the creation of SOEA models and automated checking of
quality metrics has been implemented. Furthermore, a description on how to create
such a tool with respect to the individual EA meta model is provided. The
functionality of the tool is still on a premature level. R10 is partly fulfilled.

 R11 Automation of criteria checks

A complete set of metrics has been created for quality criteria catalogue. As far as
possible, the calculation of the metrics has been automated. The interpretation rules
for metric results have been defined but are not implemented in the prototype. As the
implementation belongs to the tool support requirement, R11 is still regarded as
fulfilled.

 R12 Improvement suggestions

Only strategies for improvement suggestions have been formulated. The approach is
not able to make improvement suggestions like change the technology of interface A
from X to Y. For this reason, R12 is only partly fulfilled.

 R13 Methodical approach

From the enterprise architects view, the steps from creating an EA meta model to
merging the meta models to building an individual tool prototype have been described
in a methodical way. No method has been defined for the regular use and maintenance
of the tool. For this reason, R13 is only partly fulfilled.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

233

Information
System
Arch.

Zachman
Framework

SEI
approach

TOGAF
Quasar
Enterprise

SOA-
Meter

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13

Fig. 9-2: Final table showing the fulfilment of requirements

The table overview in Fig. 9-2 shows the table from Fig. 2-31 extended by the
column for the approach of this thesis. The suggested approach cannot fulfil all the
demanded requirements. However, it clearly has advantages over the existing
approaches. The most important point hereby is R11. The combination of a modelling
approach and the automated checking of quality criteria has not been realized for the
domain of service-oriented enterprise architectures. In addition, the strengths of the
presented work lie in the SOA definition and its combination with enterprise
architectures.

An unfulfilled requirement is the demand for individual views on the SOEA model.

These are not implemented yet, but this could be done within the prototype tool.
Furthermore, a second instance of the SOEA model as target model is not realized in
the approach. Due to the conformance checks, this is dispensable but it would ease the
SOEA planning further.

The tool support has only been developed to a prototype level. Therefore it lacks the

support for displaying and managing indicators. In addition, the improvement
suggestions could be further automated, but it is even hard to make a concept fur such
an approach.

 Chapter 9 Summary, Conclusion and Outlook

 234

Finally, the presented approach is not complete or perfect, but it provides clear

improvements in comparison to the existing approaches. It also shows up a possible
path for the further development of this and similar approaches. The possible
improvements for this approach are elicited in the following and final section.

9.3 Outlook

The SOAMeter approach has been designed to support the transformation of an EA to
an SOA-like EA. This task is related to many of the artefacts and processes within an
enterprise. Hence, there is a plethora of possibilities to enhance the approach. The
possible options are categorized in conceptual and tooling improvements.

Some conceptual improvements can be derived from the missed requirements. So,

the missing explicit target model that embodies the vision of a completely SOA-like
EA can extend the approach. With this target model, the improvement suggestions
could be derived more easily. Comparing the concrete SOEA target model to the as-is
SOEA model, change steps could be generated that transform the as-is model in the
direction of the target model, while increasing the quality measures of the model.

The explicit target model would be one way to improve the improvement

suggestion approach. Another way could be a catalogue of patterns. If a certain pattern
within the SOEA model is recognized and certain quality measures are not fulfilled,
then such a pattern could be suggested to improve the current model.

If a suitable SOA meta model arises to a standard, then it could be adapted as meta
model for the SOAMeter. With high effort, the OASIS SOA reference architecture
[OASISR08] could be reduced to an adequate granularity level and afterwards be
extended by the missing concepts of business process monitoring and complex event
processing. However, there is no official standard of an SOA meta model yet.

A justified point of criticism of the SOAMeter concerns the data import and data

retrieval for the SOEA model. If there is an existing EA model in an enterprise, then
there should be a possibility to transfer or steadily access the available data.
Furthermore, the changes in the real world system have to be updated by hand in the
SOAMeter tool. Means of automation for this process could save a lot of tedious and
error-prone work.

Model-Based Evaluation of Service-Oriented Enterprise Architectures

235

The basic solution concept from Fig. 9-1 can be extended for further quality
properties that concern an enterprise architecture. The new quality properties have to
be transformed into quality criteria that can be evaluated with the help of metrics
related the existing SOEA model. If necessary, the meta model has to be extended by
concepts that are needed to evaluate the new quality criteria. An example for the
extension could be the need for compliance to the ISO 27001 [ISO05]. The required
information security management system has to plan, implement, check, and optimize
the usage of current security technologies. The comprehensive usage of such
technologies could be checked by an extension of the SOAMeter.

SOA has been described as the latest evolution step of enterprise architectures. This

evolution will surely not stop at the level of the SOA described in this thesis. At the
point of time, when a new trend becomes apparent, the SOAMeter should be extended
by this new trend. Of course, this entails changes of the quality properties and criteria,
the metrics and indicators, as well as the SOEA meta model.

The tool prototype can be improved with several features. First of all the missing
views on the model were helpful for planning and impact analysis. In addition, an
explicit target model and a difference function comparing the as-is and target model
could be supported by the tool. Rather easy to implement is the display of indicator
values. For now, only the metric values are supported by the SOAMeter tool. The
realization of data import and retrieval will be more challenging as the implementation
has to integrate several data sources within the enterprise. Finally yet importantly,
automated improvement suggestions would increase the value of the tool.

This probably non-exhaustive list of possible improvements and extensions of the

SOAMeter approach finalizes this thesis.

237

References

[Apache03] Apache Software Foundation. Apache Active MQ (Version 5.2.0), The
Apache Software Foundation: Forest Hill, MD, USA (2003)
http://activemq.apache.org/ (accessed 12.04.09).

[Assman08] Assmann, Martin; Engels, Gregor. Transition to Service-Oriented
Enterprise Architecture. In Proceedings of the Second European
Conference on Software Architecture 2008. Morrison, R.,
Balasubramaniam, D., Falkner, K., Eds., pp 346–349. Springer: Berlin,
(2008).

[Assmanb09] Assmann, Martin; Haack, Markus; Scheider, Hendrik; vom Hagen,
Nico; Zacharias, Roger. SOA Business case. In Transform IT: Optimale
Geschäftsprozesse durch eine transformierende IT. Frank Keuper,
Kiumars Hamidian, Eric Verwaayen, Torsten Kalinowski, Eds. Gabler:
Wiesbaden, Deutschland (2009).

[Assmanc09] Martin Assmann; Gregor Engels; Thomas von der Maßen; Andreas
Wübbeke. Identifying Software Product Line Component Services. In
Proceedings of the 4th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE. Stefan Jablonski and
Leszek Maciaszek, Ed., pp 45–56. INSTICC Press: Setubal (2009).

[Assmann08] Assmann, Martin; Engels, Gregor. Service-Oriented Enterprise
Architectures: Evolution of Concepts and Methods. In Proceedings of
the 12th International IEEE Enterprise Distributed Object Computing
Conference, pp xxxiv--xliii. IEEE Computer Society: Washington, DC,
USA (2008).

[Banden09] Bandener, Nils. Diploma thesis: Visual Interpreter and Debugger for
Dynamic Models Based on the Eclipse Platform. University of
Paderborn (2009).

[Baresi03] Baresi, Luciano; Heckel, Reiko; Thöne, Sebastian; Varro, Daniel.
Modeling and Validation of Service-Oriented Architectures: Application
vs. Style. In Proceedings of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), Helsinki (Finland), pp 68-77.
ACM Press (2003).

 References

 238

[Basili92] Basili, Victor R. Software modelling and measurement: the
Goal/Question/Metric paradigm. College Park, MD, USA (1992).

[Berner01] Berners-Lee, Tim; Hendler, James; Lassila, Ora. The Semantic Web. In
Scientific American. http://www.sciam.com/print_version.cfm?
articleID=00048144-10D2-1C70-84A9809EC588EF21 (accessed
10.02.08).

[Bernst03] Bernstein, Philip. Applying Model Management to Classical Meta Data
Problems. In Online Proceedings of the First Biennial Conference on
Innovative Data Systems Research. Asilomar, CA, USA (2003)

[Bianco07] Bianco, Phil; Kotermanski, Rick; Merson, Paulo. Evaluating a Service-
Oriented Architecture. Carnegie Mellon - Software Engineering
Institute (2007) http://www.sei.cmu.edu/publications/
documents/07.reports/07tr015.html (accessed Mar 12, 2009).

[Bieman94] Bieman, J. M.; Ott, L. M. Measuring functional cohesion. In IEEE
Transactions on Software Engineering. 20 (8) 644–657, (1994)

[Borona07] Boronat, Artur; José; Ramos, Isidro; Letelier, Patricio. Formal Model
Merging Applied to Class Diagram Integration. In Electron. Notes
Theor. Comput. Sci. Jg. 166, S. 5–26 (2007).

[Braun05] Braun, C.; Winter, R. A Comprehensive Enterprise Architecture
Metamodel and Its Implementation Using a Metamodelling Platform. In
Enterprise Modelling and Information Systems Architectures (EMISA),
Proceedings of the Workshop in Klagenfurt, October 24-25. J. Desel, U.
Frank, Eds. LNI, pp 64–79. Gesellschaft für Informatik (GI) (2005).

[Butler07] Butler, John C.; Hubbly, Ravi; Koethe, Manfred R.; Melo, Walcelio L.
EAML: A MOF-Based, Common Enterprise Architecture Meta-model.
OMG Whitepaper (2007) http://www.omg.org/news/whitepapers/
isp_ea_paper.pdf (accessed May 20, 2009).

[Capgem01] Capgemini Inc. The Integrated Architecture Framework.
www.capgemini.com/iaf (accessed Feb 23, 2009).

[CBDISA08] CBDI Service Architecture & Engineering. CBDI SAE Meta Model for
SOA version 2.0. (2008) http://www.cbdiforum.com/
public/meta_model_v2.php (accessed May 10, 2009).

Model-Based Evaluation of Service-Oriented Enterprise Architectures

239

[Chidam94] Chidamber, S. R.; Kemerer, C. F. A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, 20 (6) 476–493
(1994).

[Christ01] Christensen, Erik; Curbera, Francisco; Meredith, Greg; Weerawarana,
Sanjiva. Web Service Definition Language (WSDL) W3C (2001).
http://www.w3.org/TR/wsdl (accessed Jun 12, 2008).

[Decker07] Decker, Gero; Barros, Alistair. Interaction Modelling Using BPMN. In
Business Process Management Workshops. Arthur H. M. ter Hofstede,
Boualem Benatallah, Hye-Young Paik, Eds. Lecture Notes in Computer
Science, pp 208-219. Springer (2007).

[DernGe03] Dern, Gernot. Management von IT-Architekturen: Leitlinien für die
Ausrichtung, Planung und Gestaltung von Informationssystemen. 2nd
ed., Friedr. Vieweg & Sohn Verlag, Wiesbaden (2003).

[Dmytro07] Dmytro Rud. Granularitätsmetriken für serviceorientierte
Architekturen. Vortrag zum DASMA Metrik Kongress. Magdeburg
(2007).

[Doroci09] Dorociak, Rafal. Masters thesis: Erstellung und Evaluierung von
serviceorientierten Unternehmensarchitekturmodellen. University of
Paderborn, Germany (2009).

[Dostal05] Dostal, Wolfgang. Service-orientierte Architekturen mit Web Services:
Konzepte - Standards – Praxis. 1st ed., Elsevier Spektrum Akad.
Verlag, München (2005).

[Eclips01] Eclipse Foundation. The Eclipse Platform. http://www.eclipse.org/
(accessed Sep 12, 2009).

[Eclips03] The Eclipse Foundation. The Eclipse Modeling Framework Project.
http://www.eclipse.org/modeling/emf/?project=emf (accessed Sep 12,
2009).

[Eclips06] Eclipse Foundation. The Eclipse Graphical Modeling Framework.
http://www.eclipse.org/modeling/gmf/ (accessed Sep 12, 2009).

[Eclips07] Eclipse Foundation. The Eclipse Modeling Development Tools.
http://www.eclipse.org/modeling/mdt/?project=ocl (accessed Sep 12,
2009).

[Engels08] Engels, Gregor; Hess, Andreas; Humm, Bernhard; Juwig, Oliver;
Lohmann, Marc; Richter, Jan-Peter; Voß, Markus; Willkomm,

 References

 240

Johannes. Quasar enterprise: Anwendungslandschaften
serviceorientiert gestalten. 1st ed., dpunkt.verlag, Heidelberg (2008).

[ErlTho06] Erl, Thomas. Service-Oriented Architecture: Concepts, technology, and
design. 6th ed., Prentice-Hall, Upper Saddle River, NJ (2006).

[ErlTh09] Erl, Thomas. SOA design pattern. 1st ed., Prentice Hall, Upper Saddler
River, NJ (2009).

[Frohnh09] Frohnhoff, Stephan. Dissertation: Use Case Points 3.0. University of
Paderborn, Germany (2009).

 [Goethe96] Goethert, Wolfhart B.; Park, Robert E.; Florac, William A. Goal-Driven
Software Measurement - A Guidebook. CMU/SEI-96-HB-002, Carnegie
Mellon - Software Engineering Institute (1996).

[Hafner08] Hafner, Martin; Winter, Robert. Processes for Enterprise Application
Architecture Management. In HICSS ’08: Proceedings of the
Proceedings of the 41st Annual Hawaii International Conference on
System Sciences, p 396. IEEE Computer Society: Washington, DC,
USA (2008).

[Hausma05] Hausmann, Jan Hendrik. Dynamic Meta Modeling: A Semantics
Description Technique for Visual Modeling Languages. PhD Thesis,
University of Paderborn (2005).

[Haren07] Haren, Vann. TOGAF 2007 Edition: The Open Group Architecture
Framework (Incorporating 8.1.1). 8th ed.; TOGAF series, Van Haren
Publishing, Zaltbommel (2007).

[HarenV09] Haren, Vann. TOGAF Version 9: A Manual. 9th ed.; TOGAF series, Van
Haren Publishing, Zaltbommel (2009).

[HessHu07] Hess, Andreas; Humm, Bernhard; Voss, Markus; Engels, Gregor.
Structuring Software Cities A Multidimensional Approach. In EDOC
’07: Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, pp 122–129. IEEE Computer Society:
Washington, DC, USA (2007).

[Hofmei08] Hofmeister, Helge; Wirtz, Guido. Supporting Service-Oriented Design
with Metrics. In EDOC ’08: Proceedings of the 2008 12th International
IEEE Enterprise Distributed Object Computing Conference, pp 191-
200. IEEE Computer Society: Washington, DC, USA (2008).

Model-Based Evaluation of Service-Oriented Enterprise Architectures

241

[HuhnsM05] Huhns, Michael N.; Singh, Munindar P. Service-Oriented Computing:
Key Concepts and Principles. IEEE Internet Computing, 9 (1) 75–81 .
(2005).

 [IBMGov07] IBM. SOA Governance and Service Lifecycle Management. http://www-
01.ibm.com/software/solutions/soa/gov/lifecycle/ (accessed Jul 22,
2009).

[IBMSOA06] IBM. Effective SOA governance (2006)
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/soagov-
mgmt.pdf (accessed Jul 22, 2009).

[ISO99] The International Standards Organization. Industrial automation
systems - Requirements for enterprise-reference architectures and
methodologies. (1999). http://www.mel.nist.gov/sc5wg1/gera-
std/15704fds.htm (accessed 04.04.09).

[ISO05] The International Standards Organization. The ISO 27001 Information
Security Management System Specification. (2005)
http://www.standards.bz/iso-27001.html (accessed 02.10.09).

[Jensen01] Jensen, Finn V. Bayesian networks and decision graphs. 1st ed.,
Springer, New York, NY (2001).

[Josutt08] Josuttis, Nicolai. SOA in der Praxis: System-Design für verteilte
Geschäftsprozesse. 1st ed., dpunkt.verlag, Heidelberg (2008).

[KaibMi04] Kaib, Michael. Enterprise Application Integration: Grundlagen,
Integrationsprodukte, Anwendungsbeispiele. 1st ed., Deutscher
Universitäts-Verlag, Wiesbaden (2004).

[Kaisle05] Kaisler, Stephen H.; Armour, Frank; Valivullah, Michael. Enterprise
Architecting: Critical Problems. Hawaii International Conference on
System Sciences (2005).

[Kazman00] Kazman, Rick; Klein, Mark; Clements, Paul. ATAM: Method for
Architecture Evaluation. CMU/SEI (2000)
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.htm
l (accessed Mar 12, 2009).

[Krafzi06] Krafzig, Dirk; Banke, Karl; Slama, Dirk. Enterprise SOA: Service-
Oriented Architecture best practices. 6th ed., Prentice-Hall, Upper
Saddle River, NJ (2006).

 References

 242

[Krcmar05] Krcmar, Helmut. Informationsmanagement, 4th ed., Springer, Berlin
(2005).

[Lagers08] Lagerstrom, Robert; Chenine, Moustafa; Johnson, Pontus; Franke,
Ulrik. Probabilistic Metamodel Merging. In CAiSE Forum. Zohra
Bellahsène, Carson Woo, Ela Hunt, Xavier Franch, Remi Coletta, Eds.
CEUR Workshop Proceedings, pp 25–28. CEUR-WS (2008).

[Lankes05] Lankes, Josef; Matthes, Florian; Wittenburg, Andre.
Softwarekartographie: Systematische Darstellung von
Anwendungslandschaften. In Wirtschaftsinformatik 2005. eEconomy,
eGovernment, eSociety: 7. Internationale Tagung Wirtschaftsinformatik
(WI 2005) Bamberg (23.-25.02.2005). Ferstl, O. K., Sinz, E. J., Eckert,
S., Eds., pp 1443-1462. Physica-Verl.: Heidelberg (2005).

[Madhav02] Madhavan, Jayant; Doan, AnHai; Domingos, Pedro; Halevy, Alon.
Learning to map between ontologies on the semantic web. In WWW
’02: Proceedings of the 11th international conference on World Wide
Web, pp 662-673. ACM: New York, NY, USA (2002).

[MDAspe03] OMG, editor. Model Driven Architecture Specification. Object
Management Group Inc. Framingham, MA (2003)
http://www.omg.org/mda/specs.htm (accessed 23.05.08)

[Masak05] Masak, Dieter. Moderne Enterprise Architekturen. Springer-Verlag,
Berlin (2005).

[Matthe08] Florian Matthes, Sabine Buckl Alexander M. Ernst Josef Lankes.
Enterprise Architecture Management Pattern Catalog. TU München.
sebis: München (2008).

 [Minoli08] Minoli, Daniel. Enterprise architecture A to Z: Frameworks, business
process modelling, SOA, and infrastructure technology. CRC
Press/Taylor & Francis, Boca Raton, Fla. (2008).

[MyersG73] Myers, G. J. Composite Design: The Design of Modular Programs.
IBM. Poughkeepsie, New York (1973).

[Nieman05] Niemann, Klaus D. Von der Unternehmensarchitektur zur IT-
Governance: Bausteine für ein wirksames IT-Management. 1. Aufl.;
Edition CIO, Vieweg, Wiesbaden (2005).

Model-Based Evaluation of Service-Oriented Enterprise Architectures

243

[ISOIEC01] International Organization for Standardization (ISO) / International
Electrotechnical Commission. ISO/IEC Standard No. 9126: Software
engineering – Product quality; Parts 1–4. Geneva, Switzerland (2001).

[O’Brien05] O’Brien, Liam; Bass, Len; Merson, Paulo. Quality Attributes and
Service-Oriented Architectures. Software Engineering Institute of
Carnegie Mellon University (2005).

[Merson07] O’Brien, Liam; Merson, Paulo; Bass, Len. Quality Attributes for
Service-Oriented Architectures. In SDSOA ’07: Proceedings of the
International Workshop on Systems Development in SOA
Environments, p 3. IEEE Computer Society: Washington, DC, USA
(2007).

[OASIS05] OASIS. OASIS Web Services Business Process Execution Language
(WSBPEL) TC. (2005) http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel (accessed Mar 26, 2009).

[OASISR06] OASIS. Reference Model for Service Oriented Architecture v1.0. (2006)
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html (accessed Apr 05,
2006).

[OASISP05] Organization for the Advancement of Structured Information Standards
(OASIS). OASIS WS-BPEL Extension for People (BPEL4People)
Version 1.0. (2005) http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=bpel4people (accessed Apr 01, 2009).

[OCLspe06] OMG, editor. Object Constraint Language Specification - Version 2.0.
Object Management Group Inc. Framingham, MA (2006)
http://www.omg.org/docs/formal/06-05-01.pdf (accessed Apr 28, 2009).

[OMGCOR92] OMG, editor. CORBA Specification Catalog (Version 1.0). Object
Management Group Inc.: Framingham, MA (1992)
http://www.omg.org/technology/documents/corba_spec_catalog.htm
(accessed 17.06.09).

[RielAr05] Riel, Arthur J. Object-oriented design heuristics. 11th ed.; Addison-
Wesley: Reading, Mass. (2005)

[Santan03] Sant’anna, Claudio; Garcia, Alessandro; Chavez, Christina; Lucena,
Carlos; Staa, Arndt von v. On the Reuse and Maintenance of Aspect-
Oriented Software: An Assessment Framework. In Proceedings of the
XVII Brazilian Symposium on Software Engineering. (2003).

 References

 244

[Scheer98] Scheer, August-Wilhelm. ARIS: Modellierungsmethoden, Metamodelle,
Anwendungen. 3rd ed., Springer, Berlin (1998).

[Scheerb02] Scheer, August-Wilhelm. ARIS: Vom Geschäftsprozess zum
Anwendungssystem. 4th ed., Springer, Berlin (2002).

[Schelp07] Schelp, Joachim; Stutz, Matthias. SOA-Governance. HMD - Praxis
Wirtschaftsinformatik, 253 (2007).

[Sieder07] Siedersleben, Johannes. SOA revisited. Komponentenorientierung bei
Systemlandschaften. Wirtschaftsinfomatik. (49) 110–117 (2007).

[Sommer01] Sommerville, Ian. Software Engineering. 6th ed.; Pearson Studium:
Munich, (2003).

[Steven74] Stevens, Wayne P.; Myers, Glenford J.; Constantine, Larry L.
Structured Design. IBM Systems Journal. 13 (2) 115–139 (1974).

[SunMic00] Sun Microsystems. Java Messaging Service.
http://java.sun.com/products/jms/ (accessed Apr 08, 2008).

[SunMi03] Sun Microsystems. Java RMI over IIOP. Technology Documentation
Home Page. http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/
(accessed 08.04.08).

[UecanE08] Esref Ücan. Diploma thesis: Serviceidentifikation anhand erweiterter
Geschäftsprozessmodelle. University of Paderborn, Germany (2008).

[Uschol95] Uschold, Mike; King, Martin; Moralee, Stuart; Zorgios, Yannis. The
Enterprise Ontology. The Knowledge Engineering Review. 13 (1) pp.
31–89 (1995).

[Vascon07] Vasconcelos, A.; Sousa, P.; Tribolet, J. Information System Architecture
Metrics: An Enterprise Engineering Evaluation Approach. The
Electronic Journal Information Systems Evaluation, 10 (1) 91–122
(2007).

[Vinosk05] Vinoski, Steve. Old Measures for New Services. IEEE Internet
Computing, 9 (6) 72–74 (2005).

[VoigtH09] Voigt, Hendrik. Kontextsensitive Qualitätsplanung von
Softwaremodellen. Dissertation. University of Paderborn (2009), to be
published.

[VLDBOR09] Very Large Data Base Endowment Inc. VLDB.org.
http://www.vldb.org/ (last accessed 04.02.2009).

Model-Based Evaluation of Service-Oriented Enterprise Architectures

245

[WeiseR91] Weiser, Mark. Program slicing. In ICSE ’81: Proceedings of the 5th
international conference on Software engineering, pp 439–449. IEEE
Press: Piscataway, NJ, USA (1981).

[WFMCXP05] WFMC. Workflow Management Coalition Workflow Standard:
Process Definition Interface - XML Process Definition Language.
Workflow Management Coalition (2005)
http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf.
(accessed 17.07.09)

[Winter08] Winter, Robert; Aier, Stephan; Scholl, Ulrich; Discher, Stefan.
Economic Justification of Service-Oriented Architecture. SAP AG and
University of St. Gallen (2008) http://www.sap.com/community/
showdetail.epx?ItemID=16041 (accessed Mar 25, 2009).

[WoodsD06] Woods, Dan; Mattern, Thomas. Enterprise SOA designing IT for
business innovation. 1st ed., O'Reilly, Beijing (2006).

[Zachma87] Zachman, John. A framework for information systems architecture. IBM
Systems Journal, 26 (3) 276-292 (1987).

[Zelews99] Zelewski, Stephan. Ontologien zur Strukturierung von Domänenwissen.
University of Essen (1999) http://www.pim.uni-
essen.de/mitarbeiter/person.cfm?name=pimstze, (accessed 12.06.2008).

247

Appendix A

In this part of the appendix, the application of the merging algorithm described in
chapter 5 shall be demonstrated in more detail. Therefore, the table representations of
the meta models are given and some chosen options are documented.

The meta models were merged with the knowledge of an expert. That means the

“Semantic Description” column was used to determine artefacts that are regarded as
equal by the expert. For example, “Business Process Step” from the SOA meta model
was set equal with the “Process Step” from the EA meta model. To do so the semantic
description was set to an exact equal string for both meta models. This has also been
done for “Named Element”/”Named Element”, “Performance Indicator”/”Key
Performance Indicator”, “Business Process”/ “Business Process”, “Interface”/
“Interface”, “Application”/ “Application”, “Role”/”Role and “Technology”/
“Technology”. This decreases the effort for applying the algorithm drastically.

Artefact Association

Name
Cardinality Referenced Artefact Semantic

Description
Application Application
Application has

specialization
0..* Business Process Monitor

Application has
specialization

0..* Orchestration Engine

Application provide 0..* Interface

Application has
specialization

0..* Service Repository

Application canFire 0..* Event

Application has
specialization

0..* Service Registry

Application canReceive 0..* Event

Application has
specialization

0..* Complex Event Processor

Application realize 0..* Business Process Step

Application require 0..* Interface

Application ImplementedIn 0..* Technology

 Appendix A

 248

Business Object

Business Object hasRead
Access (b)

0..* Interface

Business Object hasWrite
Access (b)

0..* Interface

Business Process Business
Process

Business Process consistsOf 1..* Business Process Step

Business Process have 0..* Perfomance Indicator

Business Process observe 0..* Business Process

Business Process
Monitor

Business Process
Monitor

has
generalization

1 Application

Business Process
Monitor

observe 0..* Business Process

Business Process
Step

 Process Step

Business Process
Step

consistsOf (b) 0..* Business Process

Business Process
Step

realize (b) 0..* Orchestration

Business Process
Step

realize (b) 0..* Role

Business Process
Step

realize (b) 0..* SOA Service

Business Process
Step

realize (b) 0..* Application

Complex Event
Processor

Complex Event
Processor

has
generalization

1 Application

Event
Event require (b) 0..* Perfomance Indicator

Event canFire (b) 0..* Application

Event canReceive
(b)

0..* Application

Model-Based Evaluation of Service-Oriented Enterprise Architectures

249

Event canFire 0..* SOA Service

GUI
GUI use (b) 0..* Role

GUI has
generalization

1 Interface

Interface Interface
Interface provide (b) 0..* SOA Service

Interface provide (b) 0..* Application

Interface has
specialization

0..* Service Interface

Interface hasRead
Access

0..* Business Object

Interface hasWrite
Access

0..* Business Object

Interface implemntedIn 0..* Technology

Interface require (b) 0..* SOA Service

Interface has
specialization

0..* Service Integration
Adapter

Interface has
specialization

0..* GUI

Interface require (b) 0..* Application

Named
Element.Name

is attribute of 0..* Named Element

Named
Element.Description

is attribute of 0..* Named Element

Named Element Named
Element

Named Element has attribute 0..1 Name

Named Element has attribute 0..1 Description

Orchestration
Orchestration realize 0..* Business Process Step

 Appendix A

 250

Orchestration use 0..* SOA Service

Orchestration canExecute 0..* Orchestration

Orchestration
Engine

Orchestration
Engine

has
generalization

1 Application

Orchestration
Engine

canExecute 0..* Orchestration

Perfomance
Indicator

 Key
Performance
Indicator

Perfomance
Indicator

have (b) 1 Business Process

Perfomance
Indicator

require 0..* Event

Role Role
Role involved in 0..* SOA Service

Role realize 0..* Business Process Step

Role use 0..* GUI

SOA Service
SOA Service provide 0..* Interface

SOA Service involved in
(b)

0..* Role

SOA Service require 0..* Interface

SOA Service isRegisteredIn 0..* Service Registry

SOA Service canFire (b) 0..* Event

SOA Service realize 0..* Business Process Step

SOA Service use (b) 0..* Orchestration

Service Integration
Adapter

Service Integration
Adapter

has
generalization

1 Interface

Service Interface
Service Interface has 1 Interface

Model-Based Evaluation of Service-Oriented Enterprise Architectures

251

generalization
Service Registry
Service Registry Aggregation 0..* Service Repository

Service Registry has
generalization

1 Application

Service Registry isRegisteredIn
(b)

0..* SOA Service

Service Repository
Service Repository has

generalization
1 Application

Service Repository Aggregation
(b)

0..* Service Registry

Technology Technology
Technology implemntedIn

(b)
0..* Interface

Technology ImplementedIn
(b)

0..* Application

Interface Technology uses (b) 0..*

Table representation of the SOA meta model

Artefact Association
Name

Cardinality Referenced Artefact Semantic
Description

Application Application
Application Aggregation 0..* Deployment Component

Application support 0..* Business Process Step

Application has
specialization

0..* Application Server

Application has
specialization

0..* Business Application

Application host (b) 1 0..Organizational Unit

Application has
specialization

0..* Data Base

Application has
specialization

0..* Operating System

Application implement 0..* Technology

Application require 0..* Interface

Application offer 0..* Interface

 Appendix A

 252

Application has
specialization

0..* Workflow Management
Tool

Application Server Application
Server

Application Server has
generalization

1 Application

Business
Application

 Business
Application

Business
Application

has
generalization

1 Application

Business Event Business
Event

Business Event occurIn 0..* Business Process Step

Business Event
Message

Business Event
Message

need (b) 0..* Key Performance Indicator

Business Event
Message

can create (b) 0..* Interface

Business Goal

Business Goal support (b) 0..* Business Process

Business Object
Business Object hasWriteAccess

(b)
0..* Business Process Step

Business Object Aggregation 1 0..Business Object

Business Object hasReadAccess
(b)

0..* Business Process Step

Business Process Business
Process

Business Process support 0..* Business Goal

Business Process realize 0..* Business Service

Business Process has
generalization

1 Business Process

Business Process consistOf 1..* Business Process Step

Business Process have 0..* Key Performance Indicator

Model-Based Evaluation of Service-Oriented Enterprise Architectures

253

Business Process Aggregation 1 0..Business Process

Business Process
Step

 Process Step

Business Process
Step

hasWriteAccess 0..* Business Object

Business Process
Step

support (b) 0..* Application

Business Process
Step

occurIn (b) 0..* Business Event

Business Process
Step

realize 0..* Sub Service

Business Process
Step

hasReadAccess 0..* Business Object

Business Process
Step

responsible for
(b)

1 Organizational Unit

Business Process
Step

consistOf (b) 0..* Business Process

Business Process
Step

actIn (b) 0..* Role

Business Service

Business Service consistsOf 0..* Sub Service

Business Service realize (b) 0..* Business Process

Business Service provide (b) 0..* Contract

Contract
Contract provide 1..* Business Service

Data Base
Data Base has

generalization
1 Application

Deployment
Component

Deployment
Component

Aggregation (b) 1..* Application

Graphical User
Interface

Graphical User has 1 Interface

 Appendix A

 254

Interface generalization
Interface Interface
Interface implement 0..* Technology

Interface has
specialization

0..* Graphical User Interface

Interface can create 0..* Business Event Message

Interface require (b) 0..* Application

Interface offer (b) 0..* Application

Key Performance
Indicator

 Key
Performance
Indicator

Key Performance
Indicator

need 0..* Business Event Message

Key Performance
Indicator

has
generalization

1 Key Performance Indicator

Key Performance
Indicator

have (b) 1 Business Process

Named
Element.Name

is attribute of 0..* Named Element

Named
Element.Description

is attribute of 0..* Named Element

Named Element Named
Element

Named Element has attribute 0..1 Name
Named Element has attribute 0..1 Description
Operating System

Operating System has
generalization

1 Application

Organizational Unit
Organizational Unit responsible for 0..* Business Process Step

Organizational Unit provide 0..* Role

Organizational Unit host 0..* Application

Role Role
Role provide (b) 0..* Organizational Unit

Role actIn 0..* Business Process Step

Model-Based Evaluation of Service-Oriented Enterprise Architectures

255

Service Provider
Service Provider deliver 1 0..Sub Service

Sub Service
Sub Service deliver (b) 0..* Service Provider

Sub Service consistsOf (b) 0..* Business Service

Sub Service realize (b) 0..* Business Process Step

Technology Technology
Technology implement (b) 0..* Interface

Technology implement (b) 0..* Application

Workflow
Management Tool

Workflow
Management Tool

has
generalization

1 Application

Table representation of the EA meta model

In the following table the merged concepts and associations are listed. The boldly
marked concepts were the dominating ones, so that their name was kept in the
resulting SOEA meta model.

EA Meta Model Associatio

n
Ref. Artefact SOA Meta

Model
Associatio
n

Ref. Artefact

Application support Business Process
Step

Application realize Business
Process Step

Application implement Technology Application Implemented
In

Technology

Application require Interface Application require Interface
Application offer Interface Application provide Interface
Application has

specializatio
n

Workflow
Management
Tool

Application has
specialization

Orchestration
Engine

Business Object

 Business
Object

Business Process

 Business
Process

Business Process

consistOf

Business Process
Step

Business
Process

consistsOf Business
Process Step

Business Process have Key Performance
Indicator

Business
Process

have Perfomance
Indicator

 Appendix A

 256

Business Process
Step

 Business
Process Step

Graphical User
Interface

 GUI

Graphical User
Interface

has
generalizatio
n

Interface GUI has
generalizatio
n

Interface

Interface Interface

Interface implement Technology Interface implemented
In

Technology

Key Performance
Indicator

 Perfomance
Indicator

Key Performance
Indicator

need Business Event
Message

Perfomance
Indicator

require Event

Named Element Named
Element

Named
Element.Name

is attribute
of

Named Element Named
Element.Name

is attribute of

Named
Element

Named
Element.Descripti
on

is attribute
of

Named Element Named
Element.Descri
ption

is attribute of Named
Element

Role Role

Role

actIn

Business Process
Step

Role realize Business
Process Step

Workflow
Management Tool

 Orchestration
Engine

Workflow
Management Tool

has
generalizatio
n

Application Orchestration
Engine

has
generalizatio
n

Application

