
Holistic Use of Analysis Models
in Model-Based System Testing

by
Michael Mlynarski

A dissertation submitted to the
Faculty of Computer Science, Electrical Engineering, and Mathematics of the

University of Paderborn

in partial fulfillment of the requirements for the degree of Dr. rer. nat.

Munich, Germany in September 2011

Supervisors:
Prof. Dr. rer. nat. Gregor Engels

(University of Paderborn)
Prof. Dr. rer. nat. Mario Winter

(Cologne University of Applied Sciences)

Michael Mlynarski: Holistic Use of Analysis Models in Model-Based
System Testing , © University of Paderborn, September 23, 2011

A B S T R A C T

Nowadays software testing techniques have to fulfill the require-
ments of growing complexity of evolving software systems. To
handle the requirements current research is strongly interested
in the field of model-based testing (MBT). While MBT is becom-
ing the next generation of testing, using it in practice at the sys-
tem test level two main problems arise: missing use of analysis
models for testing purposes and low internal quality (as com-
pleteness, understandability, analysability or traceability) of au-
tomatically generated test artefacts. Those problems arise in the
context of the model-driven development, when several inter-
related modelling viewpoints of an analysis model (e.g. struc-
ture, behaviour and interaction) are not used while generating a
test model. Such a holistic view on all viewpoints is needed to
ensure the testability of the analysis model and to generate high-
quality test artefacts from it. Therefore, a holistic usage of analy-
sis models in functional model-based system testing is missing.

In order to tackle the mentioned problems, we introduce a novel
model-based test specification process. It consist of four steps,
which result in automatically generated high quality test cases.
In the first two steps a test model is automatically generated
from a manually annotated analysis model. Afterwards, the test
model has to be manually reviewed and extended with test data.
In the last step concrete test cases are automatically generated. In
our approach we use the meta-models of a representative analy-
sis model from an industry research project and the customized
meta-model of the UML Testing Profile. The whole approach is
prototypically implemented and an experiment providing em-
pirical evidence for the improvement of the internal test quality
and improvement of the modelling effort is conducted.

iii

Z U S A M M E N FA S S U N G

Die heutigen Techniken des Softwaretestens müssen der steigen-
den Komplexität von langlebigen Systemen gerecht werden. Der-
zeit erfreuen sich die Techniken des modellbasierten Testens (MBT)
starkem Interesse sowohl in der Forschung als auch der Indus-
trie. Obwohl MBT seit Jahrzehnten erforscht wird, gibt es praxis-
relevante Probleme die bislang nicht gelöst worden sind. Im
Kontext der modellbasierten Softwareentwicklung fehlt es an
Ansätzen die Entwicklermodelle automatisch wiederverwenden,
dabei aber die interne Testqualität im Sinne der Vollständigkeit,
Verständlichkeit, Analysierbarkeit oder Verfolgbarkeit der auto-
matisch generierten Testartefakte betrachten. Insbesondere fehlt
auf der Stufe des funktionalen Systemtests in MBT eine ganzheit-
liche Sicht auf Analysemodelle die unterschiedliche Modellie-
rungssichten (wie Struktur, Verhalten und Interaktion) bei der
Generierung eines Testmodells betrachten würde. Wir nennen
es die holistische Sicht und untersuchen dessen Anwendung in
MBT und die dabei entstehende Korrelation zu Verbesserung
der internen Testqualität sowie des sinkenden Modellierungs-
aufwands.

In dieser Arbeit stellen wir den holistischen MBT Testspezifika-
tionsprozess vor, der die genannten Probleme behandelt. Der
Prozess besteht aus vier Schritten, von denen zwei automatisch
und zwei manuell durchgeführt werden. Im ersten Schritt wird
das Analysemodell, welches durch Business-Analysten erstellt
wurde, von Testdesignern auf Testbarkeit geprüft und mit einer
Annotationssprache prorisiert. Im zweiten Schritt wird mit Hilfe
mehrerer Algorithmen ein Testmodell generiert und die erreich-
te Modellabdeckung des Analysemodells automatisch berechnet.
Das Testmodell wird im dritten Schritt manuell untersucht und
um Testdaten ergänzt. Am Ende werden konkrete Testfälle in
platformspezifischen Formaten automatisch generiert. In dieser
Arbeit wird ein repräsentatives Analysemetamodell aus einem
Industrieforschungsprojekt verwendet, sowie ein angepasstes Me-
tamodell des UML Testing Profiles. Der holistische Ansatz wurde
prototypisch implementiert. Für die Evaluierung wurde ein Ex-
periment durchgeführt, welcher die empirische Evidenz für die
Verbesserung der internen Testqualität sowie die Minderung des
Modellierungsaufwandes belegt.

iv

A C K N O W L E D G M E N T

First, I would like to thank Gregor Engels, the best phd supervi-
sor and mentor ever. Without his patience and experience-based
advisory, I would not be able to write this thesis in three years
while at the same time working full time for Capgemini. Each
session made me wiser and motivated me to put more effort
into my research.

Second, my dear wife Eva. Only she knows how many sleepless
nights and weekends were necessary to write and submit my
thesis. Thank you for your great support. Especially in those
days were working / writing was the last thing I wanted to do.

To my family, which supported me from Poland. Thank you for
always believing in me and for making me the person who I am.

I also want to thank Waltraut and Heinz Gelhoit for enabling my
computer science studies in Paderborn back in 2003. Up to my
phd defense they supported me in various ways for which I am
very thankful.

Finally, the best phd mates Baris Güldali, Andreas Wübbeke,
Yavuz Sancar in Paderborn and Daniel Méndez Fernández in
Munich. Through the (sometimes) never-ending, late night dis-
cussions I have learned that questioning my own and others re-
search is always the best way to succeed!

v

C O N T E N T S

i ������� ���������� ��� ������� ���� 1
1 ������������ 3

1.1 Problem statement 9
1.2 Contribution . 14

1.2.1 Methodology 15
1.2.2 Practice . 17

1.3 Publications . 17
1.4 Outline . 19

2 ����������� ��� ������������� 21
2.1 Dynamic Software Testing 21

2.1.1 Process and Artefacts 24
2.1.2 Test roles . 26
2.1.3 Meta-Model 27
2.1.4 Risk-Based Testing 28

2.2 Model-Based Testing 29
2.2.1 Definition . 29
2.2.2 Methodological Issues 30
2.2.3 Process and Artefacts 32
2.2.4 Test selection algorithms 34

2.3 Test Modelling Language 38
2.3.1 UML Testing Profile 40
2.3.2 Artefact Meta-Model 42

2.4 Modelling Business Information Systems 45
2.4.1 General definitions 45
2.4.2 Motivation . 47
2.4.3 Representative industry modelling approach 48
2.4.4 Running example "Gabi’s Ski School" 49
2.4.11 Artefact Meta-Model 63

2.5 Model Transformations 65
2.5.1 Definitions . 66
2.5.2 Categorization 66
2.5.3 Traceability Issue 68
2.5.4 Model Transformation Languages 69

2.6 Summary . 71
3 ������� ���� 73

3.1 Evaluation criteria . 74
3.1.1 UML for system modelling 75
3.1.2 Modelling viewpoints 76

vii

viii Contents

3.1.3 Integrated interaction viewpoint 77
3.1.4 Model relations 78
3.1.5 UML for test modelling 78
3.1.6 Test Model . 79
3.1.7 Developer Model 79
3.1.8 Understandability 81
3.1.9 Analysability 82
3.1.10 Completeness 82
3.1.11 Traceability 83
3.1.12 Case study and tool support 83

3.2 Identified related work 84
3.2.1 Generation from system models 84
3.2.2 Generation from several modelling view-

points . 88
3.2.3 Generation from test models 91
3.2.4 Generation of test models from developer

models . 93
3.2.5 Generation using model relations 95
3.2.6 Generation from GUI models 97
3.2.7 Test case quality attributes 99

3.3 Summary . 101

ii �������� ��� ���������� 103
4 ����-����� ������� 105

4.1 Motivation . 106
4.2 Definitions . 108
4.3 Algebra Meta-Model 109
4.4 Related work . 110
4.5 Meta-Model Properties 112

4.5.1 Traceability 112
4.5.2 Modelling viewpoints 113
4.5.3 Model relation 114
4.5.4 Structural mapping 114
4.5.5 Traversability 115

4.6 Algebra Operations 116
4.6.1 transform . 118
4.6.2 select . 119
4.6.3 extract . 119
4.6.4 cover . 119

4.7 Algebra Specification Language 120
4.8 Algebra Instantiation 122
4.9 Applicability discussion 123
4.10 Summary . 124

5 �����-����� ���� ������������� ������� 125
5.1 Requirements . 125

Contents ix

5.2 Approach overview 126
5.2.1 Process . 126
5.2.2 Artefacts . 129

5.3 Step 1. Analyze and annotate the Analysis Model . 130
5.3.1 Manual testability checks 132
5.3.2 Test prioritization through model annotation135

5.4 Step 2. Generate Basic Test Model 138
5.4.1 Test Case Selection 139
5.4.2 Automated Model Analysis 146
5.4.3 Model Transformations 154
5.4.4 Model Coverage Measurement 165

5.5 Step 3. Extend the Basic Test Model 179
5.5.1 Basic vs. extended test model 180
5.5.2 Manual extension process 181

5.6 Step 4. Generate Concrete Test Cases 186
5.6.1 Excursion: Constraints in test data 187
5.6.2 Test Data Selection 189
5.6.3 Platform-specific test case generation 192

5.7 Summary . 194
6 ���������� 197

6.1 Evaluation planning 197
6.1.1 Evaluation goals 198
6.1.2 Experiment design 200
6.1.3 Setting . 202
6.1.4 Null Hypotheses 203
6.1.5 Alternative Hypotheses 203

6.2 Tool support . 204
6.2.1 Motivation . 204
6.2.2 Test Model Generator 204
6.2.3 Test Case Generator 206
6.2.4 Used technology stack 207
6.2.5 Used environment 208

6.3 Experiment "Gabi’s Ski School" 208
6.3.1 Input model 208
6.3.2 Results . 210
6.3.3 Interpretation of results 210

6.4 Discussion of the results 220
6.4.1 Internal validity 220
6.4.2 Construct validity 221
6.4.3 External validity 223

6.5 Summary . 224
7 ������� ��� ������� 227

7.1 Summary of Contributions 228
7.2 Outlook . 232
7.3 Final statement . 234

x Contents

a ���������� ������� 237
a.1 Understandability questionnaires 237
a.2 Coverage reports . 238

a.2.1 Report for Set 1 and 2 240
a.2.2 Report for Set 5 and 6 244

Bibliography 248

L I S T O F F I G U R E S

Figure 1 Fundamental Test Process 4
Figure 2 Model-driven engineering process 5
Figure 3 Logical test case derived from analysis model 7
Figure 4 Model-Based Testing Scenarios 12
Figure 5 Test independency problem 13
Figure 6 Contribution of the phd thesis 16
Figure 7 Fundamental test process after [SL05] 23
Figure 8 Meta-model for functional software testing . 28
Figure 9 Artefact meta-model for the MBT process . . 33
Figure 10 Coverage criteria subsumption 36
Figure 11 Test model structure 39
Figure 12 Artefact meta-model for the UTP 41
Figure 13 Example for a logical test case 43
Figure 14 Example of a test architecture 44
Figure 15 Example of test data viewpoint 45
Figure 16 Modelling ontology 46
Figure 17 Example of the use case overview 53
Figure 18 Example of a use case 54
Figure 19 Example of a logical data type model 58
Figure 20 Example of dialog layouting 60
Figure 21 Example of dialogs behaviour 61
Figure 22 Example of conceptual components 62
Figure 23 Analysis meta-model 64
Figure 24 Evaluation criteria 74
Figure 25 Test Quality Attributes 81
Figure 26 Evaluation Table 85
Figure 27 Approach characteristics 86
Figure 28 TOTEM meta-model from [BL02, p.30] . . . 90
Figure 29 Meta-Model Algebra 107
Figure 30 Meta-Model of the Meta-Model Algebra . . 109
Figure 31 Meta-model property traceability 113
Figure 32 Meta-model property model relation 114
Figure 33 Meta-model property structural mapping . . . 115
Figure 34 Meta-model algebra operation 116
Figure 35 Algebra specification language 121
Figure 36 Example for the transform operation 121
Figure 37 Algebra instantiation process 122
Figure 38 Solution requirements 127

xi

xii List of Figures

Figure 39 Model-Based Test Specification Process . . . 129
Figure 40 Artefacts meta-model 130
Figure 41 Analyze and annotate test basis 131
Figure 42 Annotation example 137
Figure 43 Generate basic test model 139
Figure 44 Algebra operation select 141
Figure 45 Main algorithm for the test selection 142
Figure 46 Recursive algorithm traverse 143
Figure 47 Subalgorithm traverse decision 145
Figure 48 Path selection example 147
Figure 49 Relevant model relations 149
Figure 50 Algebra operation extract 150
Figure 51 Algorithm for Automated Model Analysis . 152
Figure 52 Relations with the mapping table 155
Figure 53 Relations modelling viewpoints 157
Figure 54 MOF-based overview 159
Figure 55 Algebra operation transform 160
Figure 56 Algorithm for Model Transformation 161
Figure 57 Path example 163
Figure 58 LTC example 164
Figure 59 Test architecture example 164
Figure 60 Coverage problem 166
Figure 61 Trace meta-model 167
Figure 62 Algebra operation cover 169
Figure 63 Model coverage algorithm 171
Figure 64 Hierarchy of the model coverage metrics . . 174
Figure 65 Coverage report example 176
Figure 66 Coverage report example 177
Figure 67 Extend basic test model 180
Figure 68 Missing LTC information example 183
Figure 69 Linking test data with LTC 185
Figure 70 Generate CTC 186
Figure 71 Test data combination example 190
Figure 72 SimpleCombination algorithm 191
Figure 73 Thesis mapping 195
Figure 74 Architecture of the Test Model Generator . . 205
Figure 75 Architecture of the Test Case Generator . . . 207
Figure 76 Comparison of the global model coverage . 211
Figure 77 Logical data type coverage 213
Figure 78 Complete and incomplete LTC 215
Figure 79 Annotated use case Book_Attendee_On_Course219
Figure 80 Reached contributions of this phd thesis . . 228
Figure 81 Questionnaire template 239
Figure 82 Global coverage Set 1 and 2 240
Figure 83 Use case coverage Set 1 and 2 241

Figure 84 Dialog Coverage Set 1 and 2 242
Figure 85 Logical data type coverage Set 1 and 2 . . . 243
Figure 86 Global coverage Set 5 and 6 244
Figure 87 Use case coverage Set 5 and 6 245
Figure 88 Dialog coverage Set 5 and 6 246
Figure 89 Logical data type coverage Set 5 and 6 . . . 247

L I S T O F TA B L E S

Table 1 Coverage of modelling viewpoints 9
Table 2 New MBT activities in the FTP 32
Table 3 Structure of the running example 50
Table 4 Model transformation languages 70
Table 5 Mapping table between meta-models 156
Table 6 Model coverage measurement goals 172
Table 7 Test adapter mapping 194
Table 8 Evaluation goal 1 198
Table 9 Evaluation goal 2 199
Table 10 Evaluation goal 3 199
Table 11 Sets definition 202
Table 12 Experiment’s analysis model 209
Table 13 Experiment results 210
Table 14 Time effort in different MBT-scenarios 216
Table 15 Interview answers - complete LTC 237
Table 16 Interview answers - incomplete LTC 238

A B B R E V I AT I O N S

MBT Model-Based Testing

MDD Model-Driven Development

MDA Model-Driven Architecture

MMA Meta-Model Algebra

xiii

xiv ��������

UML Unified Modeling Language

UTP UML Testing Profile

BIS Business Information System

FTP Fundamental Test Process

SUT System Under Test

OCL Object Constraint Language

LTC Logical Test Case

CTC Concrete Test Case

ISTQB International Software Testing Qualifications Board

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

SRS Software Requirements Specification

Part I

P R O B L E M D E F I N I T I O N A N D R E L AT E D
W O R K

1
I N T R O D U C T I O N

Quality of products each one of us is using plays an important
role. We do not like to use products which fail or lack usability,
performance or functionality. This can be also applied to soft- Quality of evolving

softwareware products. As we are surrounded by software, users expect
it to be of high quality. On the other hand, the complexity of
software continuously grows. Software systems evolve over time,
which results in high maintenance. This leads to a very impor-
tant problem in present software engineering: How to develop
and maintain complex software products and guarantee their
high quality?

Since decades (see [Moo56] or [GG75]) the analytical methods of
software engineering have been providing solutions for the men-
tioned problem by analyzing the quality reached during the de-
velopment process. The most known analytical method is the dy- Industrial test

processnamic software testing where test cases are designed, executed
and their results are evaluated with regard to bugs found dur-
ing the execution. The three mentioned steps can be detailed into
several phases which together group a test process. A good ex-
ample of an industry test process is the ISTQB Fundamental Test
Process (FTP) [SL05] shown in Figure 1. The FTP is divided into
several phases like test planning and controlling, test analysis
and design, test implementation and execution, test evaluation
and test closure. As highlighted in Figure 1, we will focus on
test analysis, design and implementation phase and use the syn-
onym test specification for the three mentioned test phases.

Dynamical testing visualizes the software quality in a project.
Reaching high test quality with respect to the test process and
its artefacts is needed to provide a reliable visualization of the
software quality [Wag06]. High test quality is mostly influenced Test quality and

software qualityby the test design phase of the FTP as shown by [Bin99] or

3

4 ������������

C
on

tro
llin

g

Analysis &
Design

Implementation
& Execution

Evaluation &
Reporting

Closure

Planning

Test
Specification

Figure 1: Thesis focus within the simplified FTP

[Lig09]. The quality of test cases designed in this phase can be
described by external (like fault-detection rate or reached cover-
age) and internal (completeness, understandability, analysability,
etc.) quality attributes [ZVS+07]. Most of the approaches in the
current literature in the domain of software testing focuses on
the external quality attributes as shown in surveys like [Wag06,
DNSVT07, DNSV+08, MN10, GECMT05, DM03, McM04]. In this
thesis we focus on the internal test quality, which is crucial for
the maintainability of test artefacts in long-term software engi-
neering projects.

In a testing process as the FTP, test designers use the textual
requirements and system specifications created by other project
members to manually derive test cases. In a model-driven devel-Model-driven

development and
model-based testing

opment process [Obj03] the mentioned documents are replaced
by models created with more precise languages like the Uni-
fied Modeling Language (UML) [Obj09]. By using algorithms
which analyze the models, test designers are able to automate a
great part of the test design task. Especially the automatic test
case generation influences its efficiency as shown in [PPW+05,
NFTJ06] or [Wei09]. If test cases are automatically generated
from models, then we speak of model-based testing (MBT) [UL07].

������������ 5

Requirements
Model

Subsystem
Design Model

Code

Component
Testing

System
Testing

Acceptance
Testing

Integration
Testing

Component
Design Model

Analysis
Model

time order

validation

ActivityArtefact

Legend:

Figure 2: Adjusted V-Model of the model-driven software engineering
process

In this thesis we understand MBT as the automation of the test
design phase of the FTP.

The FTP can be conducted on several test levels as component,
integration, system and acceptance testing [SL05]. The design of
test cases for each test level is based on artefacts created by the
constructive disciplines of the software engineering process as
requirements engineering, business analysis or design [Kru03].
In the context of model-driven development, those disciplines
result in several models. This connection is defined in the devel-
opment model adjusted to the original V-Model [Boe79], which
is shown in Figure 2.

As stated by several literature surveys (see [DNSVT07, DNSV+08,
DM03, MN10]) model-based testing can achieve great benefit on Focus on functional

model-based system
testing

this testing level, since system testing is the most complex and
costly type of testing [PKS02]. In this thesis, we focus on the sys-
tem testing level. Since we do not cover non-functional tests (as
performance, usability, etc.), we focus our work solely on func-
tional system tests.

6 ������������

As shown in Figure 2, system testing is primary based upon the
information from the analysis model. Within this thesis we un-
derstand the analysis model as a Software Requirements Spec-
ification (see SRS in IEEE 830 [IEE98]) which is specified by
using a modelling language (like the Unified Modelling Lan-
guage [Obj09]) according to a predefined modelling approach.
The analysis model specifies the conceptual solution from differ-
ent viewpoints and does not contain technical or architectural
information. Based on this model further design models are cre-
ated and at the end code is implemented manually or partially
generated from the design models [Obj03].

In this thesis we inspect the usage of analysis models for model-
based system testing. In an industrial research project conducted
within this phd thesis, we have used a real-life analysis model
for the domain of business information systems to develop a
test design method for manual testing. We use the collected ob-Example of an

analysis modelling
approach

servations to show the usage of this exemplary analysis model
for model-based system testing. The underlying modelling ap-
proach was introduced by Salger et al. in [SSE09] and is used by
Capgemini Technology Services a custom software development
and IT consulting company. According to [SSE09] the analysis
model consists of the following main viewpoints:

• Structure - defines the functional decomposition of the sys-
tem into conceptual components and its data model

• Behaviour - defines the system’s behaviour

• Interaction - defines the user interfaces and their usage

Each of the mentioned modelling viewpoints can be described
with UML diagrams. The modelling approach gives guidelines
for choosing the appropriate diagram. In the top of Figure 3 we
show an example of models describing the structure, behaviour
and interaction with the system. The models should describeDifferent modelling

viewpoints part of a fictive ski course booking system which will be used as
a running example in this thesis. The behaviour is modelled with
a use case diagram consisting of three use cases. The first one
Create course is refined with an activity diagram. The structure
model consists of a class diagram which defines the data model
consisting of three entity types. Last, the interaction model de-
fines the static layout (proprietary notation) and dynamic be-
haviour (using activity diagrams) of the dialogs which have to
be implemented.

������������ 7

As shown with the dotted edges in Figure 3 the use case is re-
lated to the dialogs’ behaviour, namely the dialog action Search
Course. This action is related to certain dialog elements and fur-
ther to the elements of the underlying data model. The relations
for this analysis model are clearly defined and provided with
an meta-model1. Each relation from the meta-model results in a
link between models by using the UML concept of Association
[Obj09, p.39]. This is done by business analysts while modelling.

TestMethodology-Template_TestCase_v1.0.1_EN.xls Page 1 of 1

Template for test case

ID
Title
Description
Precondition
Postcondition
Priority
Trace
Test data

Author
Date

Test steps
No. Description Expected Result
1 Select a standard course type

[Course_type]
2 Select the date [Course_date]
3 Select a weekly frequency
4 Click the [Create_course] button on

the [DA_Book_Course]
Confirmation is displayed

Michael Mlynarski
17.04.10

TC_1
Create a new, undersubscribed weekly course.
A weekly course with too few participants is created.
Standard course types are created.
Course has been created.
High
UC_Create_Course; DA_Book_Course; DM_Course_Management
Course_name; Course_type; Course_date;

Create
course

Search
course

Book
attendee

Entry
data

Save
data

Behaviour

name
type
date

Course
name
age
skill

Attendee

name
member

Customer

Structure
<Action>
Create
Course

Interaction

Text
Text
TextText

Text
Text

Analysis Model

Logical Test Case

Dialog Elements

Course Type

Date From

Date To

Min Attendees

<Action>
Search
CourseCourse

Management
Attendee

Management

Create Course

Figure 3: Logical test case derived from analysis model

Knowing how a typical analysis model looks like, the question is
how to use it for model-based system testing? The automation of

1 The analysis meta-model describes all artefacts, which have to be created and
the relations between them. It is also called the domain meta-model.

8 ������������

test design in MBT by using sophisticated algorithms can be ap-
plied primarily to the behaviour models [DNSVT07]. The output
of the automatic test generation are logical test cases, which do
not contain concrete values for input data and expected results
[SL05]. An example of a logical test case is shown in the bottom
part of Figure 3. It consists of several attributes as title, descrip-
tion, pre- and post-condition, logical test data definition and step
description. During the test generation, the attribute values have
to be derived from different viewpoints of an analysis model to
reach high internal test quality in terms of completeness, under-
standability and analysability.

Let us consider the information flow showed with the dotted
edges from the analysis model to the test case in Figure 3. The
test steps, pre- and post-conditions needed to execute the test
case are derived from the use case and activity diagrams. But
this description is incomplete, because important information
about the usage of the user interface is missing. That is why theInternal test quality

of test cases description of the test steps has to contain names of used dialog
elements from the static and dynamic interaction models. Also
the action to be triggered on the dialog for each test case step has
to be derived. This way, the complete description of the test steps
has to be derived from two different modelling viewpoints. Fur-
ther, the logical test data definition is partially derived from the
data model, which is related to the static and dynamic interac-
tion models. This kind of information could not be derived only
from the use case or only from the dialog model, because their
modelling purpose is not to define the data structure, but the
behaviour or interaction. The identification of the appropriate
context through model relations of the analysis model is needed.
The conclusion is that information needed to specify logical
test cases which are complete, understandable and analyzable
is spread across several parts of the analysis model.

The relations between single models enable the identification of
related model elements. For example the identification of infor-Model relations are

crucial for test
design!

mation about the user interface in the test case steps (as dialog
elements to be filled with content or buttons to be triggered) is
done by navigating through relations between the behaviour and
interaction models. The relations between modelling viewpoints
are created by business analysts according to the meta-model
definition.

�.� ������� ��������� 9

�.� ������� ���������

This phd thesis thematises the following research questions:

1. How to use all three modelling viewpoints (structure, be-
haviour and interaction) to generate high-quality test cases?

2. How to use analysis models for test generation while guar-
anteeing independency from developers in order to still
find faults in the analysis model?

3. How to measure the test coverage of all modelling view-
points of the analysis model?

The first question consider the main research problem of this
thesis, namely the missing holistic test view on analysis model in
current model-based testing approaches. The second question
depicts a related problem called use of analysis models. The third
question concerns the related problem of test coverage of analysis
models. In the subsequent paragraphs, we will briefly introduce
all three research problems and define the phd hypothesis of this
work.

Holistic Test View on the Analysis Model

According to the survey from Dias Neto et al. [DNSVT07] the
majority of model-based testing approaches uses UML diagrams
for test generation. The authors identified several types of UML
diagrams used in 47 UML-based approaches. Those diagrams
cover only two modelling viewpoints as shown in Table 1.

Table 1: Approach coverage of modelling viewpoints from [DNSVT07]

Modelling Viewpoint Approaches and UML diagrams
Structure 19 with UML class diagrams
Behaviour 27 with UML state machine diagrams,

19 with UML sequence diagrams,
11 with UML use case diagrams,
9 with UML activity diagrams

10 ������������

In the literature survey performed within this phd thesis (see
Chapter 3), we have also found approaches like [MSP01, BM10,
NRP05, SS97] or [BBW06] covering the interaction viewpoint
with single diagrams describing the system’s GUI. To the best
of our knowledge, we have found that most of the known ap-
proaches can generate logical test cases only from one model
viewpoint, namely the structure, behaviour or interaction view.

Regarding the description of the information flow from Figure 3,
the single models used in most approaches have to contain infor-Refinement of

analysis model for
test generation

mation normally spread across the structure, behaviour and in-
teraction model viewpoints. In this case the single models (as in
[BL02], [VLH+06] or [HN04]) were explicitly created for test pur-
poses and contain all test-related information from all modelling
viewpoints. Otherwise the analysis model has to be manually re-
fined by test designers in order to use approaches as [HVFR05]
or [NFTJ06] for test case generation. A detailed literature survey
can be found in Chapter 3 of this thesis.

As the test design phase for system testing is based on the anal-
ysis model, test designers have to use several and not only one
modelling viewpoint for designing test cases. There is a strong
need for a test view throughout the whole model landscape in-
cluding structure, behaviour and interaction model viewpoints
together with the relations between those models in current MBT
approaches. A test view considering the three model viewpointsHolistic view is

needed to guarantee
the test case quality!

during test generation is called holistic. The holistic view is
needed, because only then all information spread across mod-
elling viewpoints, which is relevant for test design can be col-
lected. The current approaches for model-based testing concen-
trate on single modelling viewpoints, which contain only partial
information. This way low-quality test cases are generated and
missing information from the analysis model has to be extended
manually.

The missing holistic view influences several quality attributes of
the internal test quality. In thesis, we use the test quality models
introduced by Zeiss et al. in [ZVS+07], Voigt et al. in [VGE08]
and Deng et al. in [DSWO04]. The following quality attributes
are related to the usage of a holistic view in MBT:

• completeness (Does the test case contain all information needed
for test execution?)

�.� ������� ��������� 11

• understandability (Is it clear what is the purpose of the gener-
ated test case?)

• analysability (Can the test case be diagnosed for deficiencies?)

• traceability (Is the test case traceable to the elements of the anal-
ysis model?)

Based on our industry observations (see [MGSE09] and [Mly10])
and literature research, we identify the following research ques-
tion: How to use a holistic view on analysis models in model-
based system testing?

Use of Analysis Models for Test Generation

So far, we tackled the the holistic usage of analysis models for
creating logical test cases for system testing. Those models con-
tain several modelling viewpoints, which can be used for the
case design. On the other hand those models were created by
business analysts to specify the high level functionality of the
system. This specification does not contain detailed information
about the concrete data for input and output of each system func-
tion [MJV+10]. That is why only logical test cases can be derived
from the analysis model.

Several approaches for model-based system testing as [UL07,
BBW06, DM03, MSP01] propose to create a separate test model Scenarios for test

model creationfrom which concrete test cases (with input and output data) can
be generated. Compared to analysis models, those test models
should contain all information needed for the generation of con-
crete test cases. There are several possibilities of how this test
model can be created. Pretschner and Philipps define in [PP05]
four scenarios for test model creation. The first one called com-
mon model uses a single model for generating test cases and code.
The second one called manual modelling assumes that the test
model is created manually from the requirements and system
specification. The third one called separate models proposes to
create a test model directly from requirements and to omit de-
veloper models (like our analysis model) created by other teams.
In the last one called automatic model extraction the test model is
reengineered from the existing code. Figure 4 depicts the four
scenarios.

12 ������������

Test Cases

Requirements Code

Test Model

System
Specification

Analysis
Model

use?

1

2

3

4

common model

manual modelling

separate models

automatic model extraction

2
4

Code

3

3

2

1

1

equals

Figure 4: Model-Based Testing Scenarios

The main difference between those scenarios lies within the level
of independency (also called redundancy in [PP05]) needed for
test design. This is based on the observation that different or ad-
ditional information with respect to the development specifica-
tion artefacts are given in the test model. The independency level
in test models varies depending on how those are created. If de-
velopment models are directly used as test models, there is low
independency and therefore no additional information is given.
If test models are newly created from user requirements and if
they are independent of the development models the amount of
additional or different information is high. A test model created
by using analysis models jointly with independent test informa-
tion is shown in Figure 5. Independency has a direct impact onIndependency from

developers needed to
find faults

the fault-detecting capability of a MBT approach. The more in-
dependency a test model contains, the more requirement-related
errors (including faults in the analysis model) can be detected
and high requirements coverage can be reached. This way, it has
a direct impact on the test quality, but also on the needed effort
[GMS10, BGM10].

On the other hand business analysts create an analysis model
which contain several information, which could be used for test
design. In practice the use of existing models is strongly ac-
cepted because of lowering the test design effort. The acceptance

�.� ������� ��������� 13

Test Cases

Requirements

Analysis
Model

Test Model

Independent
Test Information

High
coverage

High
fault-detection

rate

Figure 5: Independent test information in the test model

increases even more if the usage can be automated. Regarding
the independency problem and the industry need for usage of
existing models, the following question for the arises: How to
use existing analysis models for test case generation, while en-
suring high independency from those models?

Test Coverage of Analysis Model

The most important attribute describing the test quality in the
test design process is the reached test coverage. Coverage can be
measured according to the code tested by test cases [SL05]. Stud-
ies as [RS05] show that very high code coverage (for example
near 100%) does not necessary guarantee a high fault detection
rate. On the other hand, strong code coverage criteria as branch Code vs. model

coverageor path coverage require high effort to reach all possible code
parts. The other kind of coverage criteria concentrate on the ba-
sis for test design. In the case of model-based system testing, the
basis is the analysis model (see Figure 2). Here, we are interested
in the measurement of the model coverage reached by the test
case generation process. As several modelling viewpoints have

14 ������������

to be used for test generation, the coverage metrics have to con-
sider this.

The state-of-the-art coverage measurement concentrates on sin-
gle modelling viewpoints as shown in the survey from McQuil-
lan and Power [MQP05]. In the context of UML there exist sev-
eral coverage criteria for each of the UML diagrams (see [MQP05,
AFGC03, UL07]). Because of the fact that the most known MBT
approaches use single viewpoints for test generation those cov-
erage criteria are applied on single UML diagrams. In order toNeed for combined

coverage criteria measure the test quality of a holistic model-based testing ap-
proach, the known coverage criteria have to be combined. Those
coverage criteria have to consider the information flow needed to
fully specify logical test cases (see earlier discussion on this topic
in this section), not only the aspect of test case selection. That is
why the following research question for the second subproblem
arises: How to measure the model coverage for a holistic model-
based system testing approach based on analysis models?

Summarizing the research questions described above, we definePhd hypotheses
the following phd hypotheses:

H1 High internal test quality with respect to completeness,
analysability, understandability and traceability of test mod-
els derived from analysis models can be achieved by using
a holistic view.

H2 The holistic view has an impact on the reached coverage
of the analysis model.

H3 The efficiency of the test generation process can be im-
proved by automatically using the analysis model to create
a test model.

�.� ������������

This phd thesis answers the research questions defined in the
last subsection. The solutions presented in this document should
contribute to the field of software testing research. We categorize
this contribution into the following categories:

• Methodology

• Practice

�.� ������������ 15

The contribution categories are not orthogonal and have to be
seen as a whole.

�.�.� Methodology

The most important contribution is the introduction of a holis-
tic approach for model-based system testing in a model-driven
development process. To better explain the planned contribution
we compare the current and future approach in Figure 6. The cur-
rent approaches for model-based system testing consider only
the structure and behaviour viewpoints of the analysis model.
The missing use of the interaction viewpoint is depicted with the
red struck out arrow. The use of analysis models is done manu-
ally by creating separate test models. The relations between the
different viewpoints are incorporated manually by test design-
ers. This is depicted with the red struck out arrows in the analy-
sis model and the red arrows in the test models (see upper part
of Figure 6). Compared to the current situation the new holistic
approach considers all viewpoints, with the model relations (ac-
cording to their meta-model definition) in an automated manner.
This is shown with the filled arrows within the analysis model in
the bottom part of the figure. To avoid the missing test indepen-
dency problem mentioned in Section 1.1, test designers review
the automatically generated test model and extend it with ad-
ditional information. The reached model coverage is measured
automatically.

The research approach presented in this thesis will show how
the internal test quality, in terms of completeness, understand-
ability, analysability and traceability together with the reached
test coverage of the automated test design activity, can be im-
proved. The improvement of the test design process efficiency
through the automatic use of analysis models for test purposes
will be shown. Further, the application of combined model cov-
erage criteria for a holistic model coverage measurement will be
defined.

The contribution of the holistic approach can be decomposed
into the following contribution points:

1. Improvement of the internal test quality - The generated
test cases are of high quality with respect to completeness,
analyzability, understandability and traceability.

16 ������������

Structure

Behaviour

Interaction

"before"

Test Model
(structure)

Test
Designer

"after"

creates
manually

Structure

Behaviour

Interaction

Test
Model

automatical
derivation

generate

Test Model
(behaviour)

creates
manually

generate

generate

Analysis model

Analysis model

Test Cases

Test Cases

Test
Designer

Test Model
(interaction)

creates
manually

ge
ne

ra
te Chapter

1 - 3

Chapter
4 - 6

coverage

Figure 6: Contribution of the phd thesis explained by comparing the
current and future approach

2. Use of analysis models for test model generation - Rather
than creating test models manually, this task is fully auto-
mated.

3. Use of several modelling viewpoints - Different as in many
state-of-the-art approaches, several modelling viewpoints
(structure, behaviour and interaction) with the according
UML diagrams types of the analysis model are used. This
way, a high coverage of the analysis model is reached.

4. Use of the integrated interaction viewpoint - As shown
in Figure 6 the interaction modelling viewpoint (especially
models describing the GUI) integrated into the analysis
model together with structure and behaviour models are
used. This is not the case in the state-of-the-art approaches.

5. Use of model relations created by business analysts - Rather
than creating the model relations manually after the test
model is created, the relations modeled by business ana-
lysts are used.

�.� ������������ 17

6. Holistic model coverage measurement - the coverage of
several modelling viewpoints is measured by using com-
bined coverage criteria.

Requirements

The research approach will be clearly defined by means of pro-
cess descriptions with input and output artefacts. The process
descriptions have to be understandable for software testers. Each
proposed process has to be manageable in terms of number of
manual and automated executed steps. If possible, for all process
steps and artefacts a template or tool support will be provided.
The work related to the underlying research problems and the
developed approach will be shown by means of a literature sur-
vey.

�.�.� Practice

In order to guarantee the practical usage of the research ap-
proach, the underlying research problems have to be based on
a literature survey and observations of real-life software engi-
neering projects. Furthermore, the developed approach has to be
evaluated based on realistic project data. The data used for the
evaluation should consist of documents and models representa-
tive for industry projects. The evaluation results should lead to
the acceptance or rejection of defined phd hypothesis.

�.� ������������

The results of this dissertation were reviewed and published in
the following conferences and workshops:

• Michael Mlynarski, Baris Güldali, Melanie Späth, and Gre-
gor Engels. From Design Models to Test Models by Means
of Test Ideas. In MoDeVVa ’09: Proceedings of the 6th Interna-
tional Workshop on Model-Driven Engineering, Verification and
Validation, pages 1–10, New York, NY, USA, 2009. ACM

• Michael Mlynarski. Holistic Model-Based Testing for Busi-
ness Information Systems. In Proceedings of 3rd Interna-

18 ������������

tional Conference on Software Testing, Verification and Valida-
tion, pages 327–330, Paris, France, April 2010. IEEE

• Baris Güldali, Michael Mlynarski, and Yavuz Sancar. Effort
Comparison of Model-based Testing Scenarios. In Proceed-
ings of 1st International Workshop on Quality of Model-Based
Testing (QuoMBaT 2010), pages 28–36, Paris, France, 2010

Further publications related to the concepts of this thesis were
published in:

• Baris Güldali, Michael Mlynarski, Andreas Wübbeke, and
Gregor Engels. Model-Based System Testing Using Visual
Contracts. In Proceedings of Euromicro SEAA Conference 2009,
Special Session on Model Driven Engineering, pages 121–124,
Washington, DC, USA, 2009. IEEE Computer Society

• Baris Güldali, Stefan Jungmayr, Michael Mlynarski, Stefan
Neumann, and Mario Winter. Starthilfe für modellbasiertes
Testen. OBJEKTspektrum, 3:63–69, 2010

• Dominik Beulen, Baris Güldali, and Michael Mlynarski. Tabel-
larischer Vergleich der Prozessmodelle für modellbasiertes
Testen aus Managementsicht. Softwaretechnik-Trends, 30(2):6–
9, 2010

Furthermore, the author supervised the following students the-
sis with direct relation to this phd thesis:

• Benjamin Niebuhr. Test case generation from UML models
described with the UML Testing Profile. Bachelor thesis,
University of Applied Sciences Brandenburg, Faculty for
Applied Computer Science, December 2009

• Annette Heym. A model-based testing approach for busi-
ness information systems. Master thesis, University of Augs-
burg, Faculty of applied computer science, Chair of Soft-
ware Engineering and Programming Languages, February
2010

• Andreas Fichter. Messung und Bewertung der Modellab-
deckung anhand der Traceability-Informationen eines Mod-
elltransformationsprozesses. Master thesis, Hochschule Furt-
wangen University, Fakultät Wirschaftsinformatik, Studi-
engang Application Architectures, September 2010

�.� ������� 19

�.� �������

This document begins in Chapter 2 with the introduction of
foundations needed to understand the proposed research ap-
proach. Next, the underlying research problems are clearly de-
fined based on the conducted literature survey and shown in
Chapter 3. In Chapter 4, a meta-model algebra is presented,
which is used for the method engineering process of this the-
sis. The holistic approach for model-based system testing is pre-
sented in Chapter 5. In Chapter 6, the evaluation of the research
approach by conducting a experiment is presented. The reached
contributions, summary of the research work and an outlook on
further research is presented in Chapter 7.

2
D E F I N I T I O N S A N D P R E L I M I N A R I E S

In this chapter we briefly introduce the basic definitions and pre-
liminaries needed to understand the research approach of this
phd thesis. Also, several terms used in the last chapter are ex-
plained and the relevant literature is referenced. First, we intro-
duce the field of dynamic software testing. We then explain how
business information systems can be modelled and provide a
short introduction in the representative approach used in this
thesis. Next, the basic concepts of model-based testing are de-
scribed. Besides the modelling approach for analysis models, we
also introduce the modelling language used for the test model.
Finally, we briefly introduce the model-driven development con-
text and especially the model transformation technique.

C�������
2.1 Dynamic Software Testing 21
2.2 Model-Based Testing . 29
2.3 Test Modelling Language 38
2.4 Modelling Business Information Systems 45
2.5 Model Transformations 65
2.6 Summary . 71

�.� ������� �������� �������

Software testing is one of the oldest disciplines of software en-
gineering. We distinguish between statical and dynamical test-
ing [SL05]. The first one groups all quality assurance techniques,
which are performed without executing the system. Against it
dynamical testing relies on executing tests on the system under
test (SUT). Both test kinds can be further categorized in func-

21

22 ����������� ��� �������������

tional and non-functional testing (for example performance or
usability testing) according to the type of requirements they in-
tend to validate. In this thesis we will focus on dynamical testing
of functional requirements.

While testing small systems can rely on the testers knowledge,
testing large-scale business information systems requires a sys-
tematic test process. Such a process helps to coordinate the test-
ing activities in large teams during the project lifecycle. This
need is independent of the development process used in a project.
For example the same need exists in RUP-like [Kru03] but also
in SCRUM-like [SB01] projects. Certain test roles, artefacts and
methods are always necessary.

In the last years several test process models were introduced
in the literature. There exists an international IEEE standard
829 [IEE08], which shows how to specify and manage tests in
a project. But there are also process models not invented by a
standardization organization. The first one is called TMap Next
[KVdABV08] and was created by Sogeti1. It consists of a very
detailed test process definition with several task descriptions.
It incorporates several best practices used in projects at Sogeti.
Another well-known test process model was introduced by the
International Software Testing Qualifications Board (ISTQB) (for
example in Spillner et al. [SL05] and Linz et al. in [LSS07]). It
is one of the most acknowledged definitions of a test process,
test roles and glossary in the industry. In this thesis, we will con-
centrate on the ISTQB test process model from [SL05] because
of its customization possibilities and awareness in the test and
research community.

The so called fundamental test process is shown in Figure 7. It is
divided into six test phases. A Test Phase "is a distinct set of
test activities collected into a manageable phase of a project, e.g.
the execution activities of a test level" [IST, p.40]. Within the test
planning phase the strategy and effort estimation for all test activ-
ities is done. The test controlling phase measures and influences
the current state of all other activities. Within test analysis and
design phase the basis for tests is analyzed and logical test cases
are designed. The test implementation phase refines the logical
into concrete, executable test cases. In this thesis, we use the syn-
onym test specification for the test phases analysis, design and

1 http://www.sogeti.com

�.� ������� �������� ������� 23

C
on

tro
llin

g

Analysis &
Design

Implementation
& Execution

Evaluation &
Reporting

Closure

Planning

Figure 7: Fundamental test process after [SL05]

implementation. Within test execution phase each test case is exe-
cuted and its result is analyzed in the test evaluation phase. After
all mentioned activities are done, the test closure phase is con-
ducted to collect and archive all information for improvements
in further projects.

The test phases in Figure 7 have several dependencies. First,
there exist the execution order (from test planning to test clo-
sure). Second, each test phase has a dependency on the test con-
trolling phase. In this phase the work status of each phase is
controlled and measured according to the goals definition from
the test planning phase. The test controlling has the same purpose
as the according activity in the field of project management. Fi-
nally, three loops in the process exist. Depending on the results
of the test execution phase, the two prior test phases (analysis &
design and implementation & execution) can be repeated. Also the
observations from the test closure phase can lead to changes in
the test planning and analysis&design phase.

24 ����������� ��� �������������

�.�.� Process and Artefacts

To assure a common understanding of the concepts presented
in this thesis, we provide the basic definitions in the context of
the fundamental testing process according to the ISTQB glossary
[IST] here.

In order to speak about model-based system testing, we first
have to define it. First, a Test Level "is a group of test activities
that are organized and managed together. A test level is linked
to the responsibilities in a project" [IST, p.42]. The system test
level in this context is defined as "the process of testing an in-
tegrated system to verify that it meets specified requirements"
[IST, p.43]. For this thesis, we assume a model-driven develop-
ment process, where the requirement verification and validation
in system testing is based on the analysis model. In particular,
model-based testing supports both validation and verification of
requirements by using explicit models as stated in [PP05].

The analysis model is used as the basis for test design. The out-
put of this test phase is a test case. The general definition of a
test case is given by the ISTQB glossary as follows:

Definition 1 Test Case is "a set of input values, execution
preconditions, expected results and execution postconditions,
developed for a particular objective or test condition, such as
to exercise a particular program path or to verify compliance
with a specific requirement". [IST, p.40]

Test cases are divided into two types, namely:

• Logical Test Case (LTC) defined as "A test case without
concrete (implementation level) values for input data and
expected results. Logical operators are used; instances of
the actual values are not yet defined and/or available" [IST,
p.27]

• Concrete Test Case (CTC) defined as "A test case with con-
crete (implementation level) values for input data and ex-
pected results. Logical operators from high level test cases
are replaced by actual values that correspond to the objec-
tives of the logical operators" [IST, p.15]

The IEEE 829 Standard for Test Documentation extends the cat-
egorization of test cases according to the test level (for example
unit level or system level test cases). According to the IEEE 829

�.� ������� �������� ������� 25

[IEE08] the following attributes are necessary to specify a Level
Test Case:

1. Test case identifier - unique identifier

2. Objective - describes the focus, purpose and possible risks
of a test case

3. Inputs - specifies each input needed to execute the test case

4. Outcome(s) - detailed specification of all outputs and ex-
pected behaviour

5. Environmental needs - describes the test environment (hard-
ware and software) needed to execute the test case

6. Special procedural requirements - specifies constraints needed
for test execution

7. Intercase dependencies - list of all other test cases which
have to be executed prior this one

Since the IEEE 829 definition of a test case already requires the
specification of several concrete (implementation level) details,
the distinction between logical and concrete test cases is diffi-
cult in practice. Within the research project conducted as the
part of this phd thesis, we have developed a test case definition
and template based on the observation of several real-life testing
projects.

For the purpose of this thesis we use the following structure of
a test case:

1. Test case identifier - unique identifier

2. Title - meaningful title describing its purpose

3. Description - short description of the test case

4. Priority - test priority for test execution

5. Trace links - backward traceability to the requirements spec-
ification

6. Precondition - condition needed to execute the test case

7. Postcondition - condition after the test execution

8. Test data sets - set of logical or concrete test data

9. Steps

a) Identifier - unique test step identified

26 ����������� ��� �������������

b) Description - short description of the task, which is
performed by the tester

c) Expected results - precise definition of the expected
result

This definition is part of the Capgemini CSD Test Methodology,
which is one of the results of the research project conducted
within this phd thesis. This structure can be used for the specifi-
cation of LTC and CTC. The attribute test data sets contains only
the names of equivalence classes to be used in the case of LTC.
After applying the boundary-value analysis [SL05] several CTCs
out of one LTC are created. In this case the equivalence classes
are replaced with concrete test data values.

Different as in the IEEE 829 definition, we extend it with single
test steps and clear pre/postconditions. Also, the additional pri-
oritization is an important requirement for the execution of test
cases in large-scale projects.

Test cases can be grouped to test suites. A Test Suite "is a set of
several test cases for a component or system under test, where
the post condition of one test is often used as the precondition
for the next one" [IST, p.45].

All test cases (LTC and CTC) specified in the test design and
implementation phases are part of a test case specification docu-
ment. A Test Case Specification "is a document specifying a set
of test cases (objective, inputs, test actions, expected results, and
execution preconditions) for a test item" [IST, p.40].

Finally, a common term used in the context of test cases is a test
oracle. A Test Oracle "is a source to determine expected results
to compare with the actual result of the software under test. An
oracle may be the existing system (for a benchmark), other soft-
ware, a user manual, or an individual’s specialized knowledge,
but should not be the code" [IST, p.43].

�.�.� Test roles

In the fundamental test process several roles are responsible for
the different test phases introduced in the last subsection. For

�.� ������� �������� ������� 27

the purpose of this thesis we define the following test roles ac-
cording to the ISTQB glossary [IST]:

Definition 2 Tester A skilled professional who is involved in
the testing of a component or system.

Since the tester can be involved in several phases of the test pro-
cess, we refine this definition especially for the test design phase
as follows:
Definition 3 Test designer A skilled professional who is re-
sponsible for the design and maintenance of the test case spec-
ification.

Definition 4 Test manager The person responsible for project
management of testing activities and resources, and evalua-
tion of a test object. The individual who directs, controls, ad-
ministers, plans and regulates the evaluation of a test object.

�.�.� Meta-Model

In Figure 8, we have summarized the relations between the arte-
fact definitions and the different test roles provided so far. The
central artefact is a Test Case which consists of several Test Steps.
Test cases can be of type Logical Test Case and its refinement Con-
crete Test Case. Test cases aim to stimulate or execute the system
under test with Test Data Sets and observe the behaviour. Test
cases have to fulfill certain Conditions in order to be executed.
Those conditions are described by test data, which reflects the
state before and after the execution of a system. The verdict
(pass or fail) is decided by a Test Oracle, which can have different
sources (for example human or the SUT). The test oracle is not a
test artefact.

Several test cases can be grouped to Test Suites and several test
suites build up a Test Case Specification. A Test Designer is re-
sponsible for the design of single test cases. The Test Manager
reponses the planning of the test design phase which results in
a test case specification.

28 ����������� ��� �������������

Figure 8: Meta-model for functional software testing

�.�.� Risk-Based Testing

Within a testing project not all requirements and system func-
tionality can be tested. Complete testing is not possible because
of time and effort limitations. Since testing always covers only
an excerpt of the system functionality, the selection of its most
important parts for testing is crucial.

In practice each test method has to incorporate risk management
for the reasons described above. Risk-based testing is defined as
"an approach to testing to reduce the level of product risks and
inform stakeholders of their status, starting in the initial stages
of a project. It involves the identification of product risks and the
use of risk levels to guide the test process" [IST, p.35].

There exist several techniques for implementing risk-based test-
ing in a project. Since system testing has to validate the speci-
fied requirements within the analysis model, those requirements
have to incorporate the definition of risks and priorities. Guided
by the risk level of the requirements manual or automated test
design can be conducted. In both cases a test design method

�.� �����-����� ������� 29

with coverage-oriented or fault-oriented goals has to be defined.
For requirements with high risk level strong coverage criteria as
all possible use case scenarios, all pairwise input data combina-
tions, etc. are defined.

In this thesis the topic of risk-based testing is very important. We
introduce a new approach for automated generation of test cases.
Since this automation can result in infinite number of test cases,
the execution effort can be not practicable. To solve this problem,
a risk-based approach has to guide the test case generation.

�.� �����-����� �������

In this section we briefly introduce our understanding of model-
based testing with its basic concepts and artefacts used in this
thesis.

�.�.� Definition

For a common understanding of model-based testing, we pro-
vide the following main definition of this advanced testing tech-
nique:

Definition 5 Model-Based Testing (MBT) is the automation
of black-box test design [UL07, p.17].

To refine this definition we define the goals of MBT according to
Heckel and Lohmann [HL03]:

• Generation of test cases from models according to a test
selection criteria

• Generation of a test oracle to determine the expected re-
sults of a test

• The execution of tests in test environments, possibly also
generated from models

Despite the wide range of advantages propagated by several re-
searchers as deeper understanding of requirements through for-
mal models, the main characteristic of MBT is still the automatic
generation of test artefacts. The main test artefact are test cases
normally designed by testers. The manual usage of test design

30 ����������� ��� �������������

methods like equivalence class analysis [SL05] or process cycle
testing [KVdABV08] is replaced in MBT by the usage of test se-
lection criteria. We provide an introduction of such criteria later
in this section.

Besides the automatic generation of test cases also the test or-
acles used for test evaluation purposes can be generated. This
generation step can be only done if the expected results can be
clearly modelled within the model used for generation purposes.
Finally, the test environment in which test cases are executed can
be generated from models. The assumption is that architectural
(structure and behaviour) aspects of the test environment can
be modelled. In Güldali et al. [GJM+10], we have introduced a
method to support the decision process for finding the suitable
test artefacts to be generated in MBT.

In this thesis we focus on the generation of test artefacts (es-
pecially test models and test cases) from analysis models. This
is one of the different scenarios for model-based testing known
from the literature. We will briefly introduce two of them in the
next subsection.

�.�.� Methodological Issues

Since there exist hundreds of MBT approaches in the literature,
several categorization approaches have been undertaken. Some
authors tried to define a clear taxonomy for MBT. Utting et al. in
[UPL06] categorizes MBT approaches according to three general
aspects: models used, the test generation and test execution tech-
nology. Such a taxonomy allows us to group approaches with
respect to the mentioned aspects. There exist however method-
ological issues related to the source of the models used for gener-
ation, which are not sufficiently covered with such a taxonomy.

Before we discuss the methodological issues and its relation to
this thesis, we first provide a clear definition of the different

�.� �����-����� ������� 31

models used in model-based testing. We distinguish between
system and test models. Those models can be defined as follows:

Definition 6 System Model describes the system to be devel-
oped. Especially its structure and behaviour. [RBGW10, p.387]
In this thesis we use the analysis model as a system model
since we focus on system testing.

Definition 7 Test Model defines the behaviour of the SUT
from an external point of view and explicitly state what
events the SUT should accept at a certain moment. [MJV+10,
p.292]

Depending on the source for the test model several scenarios
for model-based testing can be defined. Two general scenarios
where the model used for test generation is created separately
or is shared with the developers were introduced by the men-
tioned taxonomy in [UPL06] and in the book from Utting and
Legeard in [UL07]. Pretschner and Philipps introduce in [PP05]
the following four scenarios where: one model is used for both
code and test generation (common model), the model used for test
generation is automatically extracted from the source code (auto-
matic model extraction), the mentioned model is created manually
(manual modeling) and finally two separate models for code and
test generation exists. Within a literature survey performed in
this thesis, further two scenarios where models used for test gen-
eration are created by model transformations or reengineered
from existing test cases were identified. This scenarios were in-
troduced in Güldali et al. [GMS10].

The distinction between several scenarios in MBT is important,
because the level of test independency differs within scenarios.
As described in the introduction of this thesis, we focus on the
separate models scenario from Pretschner and Philipps [PP05, p.8]
with the additional technique of model transformations to gen-
erate test models from system models. In [GMS10] we name this Model from model

scenarioscenario model from model. Besides the level of test independency
and its influence on test quality, the distinction between several
scenarios is needed to select the project- or company-specific
MBT approach and estimate the needed effort. Both aspects (test
independency and effort) are strictly related to the research prob-
lems and contribution of this thesis. Therefore this categoriza-
tion is important for the understanding of the thesis.

32 ����������� ��� �������������

�.�.� Process and Artefacts

The methodological issues of MBT introduced before result in
several scenarios depending on the model usage in MBT. Since in
each of those scenarios different activities as model reengineer-
ing versus manual model creation can be identified, the testing
process differs in each case. In the literature several high-level
process models for model-based testing are propagated. El-Far
and Whittaker introduce in [EFW01] five general MBT activities
(build model, generate tests, run scripts, get actual and expected
results and analyze data), which are executed sequentially. Ut-
ting and Legeard in [UL07, p.26-30] refine the test generation
activity in generating abstract tests and its concretization for test
execution. Further refinements of the mentioned approaches can
be found in [AD97, DNT09]. All referenced publications try to
define a new process for model-based testing.

A different view on MBT and process definition was introduced
by Spijkerman and Eckardt [SE09]. The authors analyzed the
publications mentioned before and identified new or changed
activities in the fundamental testing process (FTP) from [SL05].
This view aims to integrate MBT into the standard testing pro-
cess rather then define a new one.

Based on the ideas from Spijkerman and Eckardt [SE09], we iden-
tified several MBT activities which extend the FTP introduced in
Section 2.1. The result is shown in Table 2.

Table 2: New MBT activities in the FTP

FTP MBT activity
Planning Choose test selection criteria
Controlling Control test model quality
Analysis & Design Create test model,

Generate logical test cases
Implementation & Execution Create test data sets,

Generate concrete test cases
Evaluation & Reporting none
Closure none

�.� �����-����� ������� 33

In order to generate logical test cases, one or more test selection
criteria have to be selected. This activity has to be done in the
planning phase. Additionally to controlling test cases, test results, MBT activities
etc. the controlling of test model quality has to be done in the
controlling phase. The main addition to the FTP is the creation
of test models and automated generation of logical test cases. In
the context of this thesis, we aim to derive test models automat-
ically from analysis models rather then create them manually.
Both activities are part of the analysis & design phase. In order to
implement & execute tests concrete test cases have to be generated.
For this, test data sets have to be created manually or automat-
ically. In the last two phases of the FTP no new activities are
needed. The only difference in MBT context is that new artefacts
as test models have to be taken into account.

Based on the introduction provided so far, we define a artefact
meta-model for MBT. In Figure 9 the derivation of the test model
from the analysis model depicts the model from model scenario from
[GMS10]. We also define a test model to be composed of several
logical test cases. This kind of test model definition is also known Test specification

modelas the test specification model [RBGW10]. The refinement from
logical to concrete test cases with test data sets was already part
of the test meta-model from Figure 8. Additionally the concrete
test cases are automatically derived from the logical test cases.

Figure 9: Artefact meta-model for the MBT process

The derivation of the test model and therefore the logical test
cases from the analysis model is done by using test selection

34 ����������� ��� �������������

algorithms. A brief introduction will be provided in the next
subsection.

�.�.� Test selection algorithms

Automated test case generation in MBT is possible through algo-
rithms, which select test cases from behavioural models of the
SUT. For better understanding of the test selection used in this
thesis, we provide some basic definitions.

Definition 8 Test selection criteria are the means of communi-
cating the choice of tests to a model-based testing tool. Exam-
ples of test selection criteria are: requirements coverage, code
coverage, fault type coverage or model coverage [UL07, p.107].
In this thesis we use structural and data coverage criteria as
test selection criteria.

Definition 9 Structural coverage criteria describe the parts of
a model, which have to be covered by tests.

Definition 10 Data coverage criteria deal with the coverage
of the input data space of an operation or transition in the
model [UL07, p.109].

Definition 11 Test selection algorithm is the implementation,
which tries to satisfy a given test selection criteria for a given
test model. One test selection criteria can be satisfied by sev-
eral test selection algorithms depending on the used heuristic.

In the introduction of this thesis, we have described the prob-
lem of measuring the coverage of the analysis model (see Sec-
tion 1.1). The selection of logical test cases from the analysis
model mainly influence the reached model coverage. By defi-
nition the usage of structural coverage criteria guarantees the
coverage of the desired model parts. As stated by several publi-
cations like [DNSVT07, Bin99, GECMT05], test case selection in
MBT is based mostly on behavioural models of the SUT. This
way, the behavioural modelling viewpoint of the analysis model
is always covered. The research problem of this thesis deals with
the coverage of all three modelling viewpoints by using the holis-
tic view in MBT.

�.� �����-����� ������� 35

In order to use the holistic view, we introduce a new kind of
model coverage called holistic model coverage. It is defined as
follows:
Definition 12 Holistic Model Coverage is the combined cover-
age of all modelling viewpoints, which depends on the used
test selection criteria and the usage of model relations within
the test generation process.

This definition is based on the test selection criteria described
in this section. Further, it is based on model relations as the in-
tegration of different modelling viewpoints, which was already
introduced in Subsection 2.4.11.

The structural coverage criteria in MBT can be further decom-
posed into:

• Control-flow oriented coverage criteria

• Data-flow oriented coverage criteria

• Transition-based coverage criteria

• UML-based coverage criteria

The control-flow oriented coverage criteria are based on the cover-
age of statements, decisions or branches of code. Since we aim
to cover parts of the analysis model, this type of coverage crite-
ria is not considered. The data-flow oriented coverage criteria aim
to cover the data used in a control-flow. The topic of (test) data is Test selection

criteria in this thesisimportant for the generation of concrete test cases. Rather than
the structural coverage criteria, we use the data coverage criteria
here. The transition-based coverage criteria can be applied on all
models using a transition system. This is the case in behavioural
models like the UML activity diagrams. This criteria type is im-
portant for the generation of logical test cases in our approach.
Finally, there exist UML-based coverage criteria which focus espe-
cially on UML diagrams and their structure. The last type of
structural coverage criteria can be seen as a refinement of the
other mentioned types for UML.

As mentioned above, we use transition-based and data coverage
criteria for the purpose of this thesis. In the next paragraphs we
briefly introduce the concrete criteria.

36 ����������� ��� �������������

Transition-based test selection

The goal of the transition-based test selection is to use the transi-
tion system of behavioural models to select paths. In this thesis,
we use UML activity diagrams as the behavioural model from
which test cases represented as paths are selected. In this con-
text, we provide the following definition of a path.

Definition 13 Path is a node sequence from the initial to the
final node. It does not consist of decision, merge or join/fork
nodes. Two paths are equal if their node sequences are equal.
A path is equal to a logical test case.

To select paths from transition-based behavioural models several
coverage criteria exist. In Figure 10 we use the categorization
introduced in Utting and Legeard [UL07]. In general coverage
criteria have a hierarchy, which is depicted in Figure 10 by using
a tree structure with directed edges. An edge A �! B means,
that A is stronger that (subsumes) criterion B. This subsumption
depends on how hard it is to satisfy a given criterion with respect
to the number of paths.

All-
Transition-
Pairs

All-
Configurations

All-One-
Loop-Paths

All-Actions

All-Round-
Trips

All-Loop-
Free-Paths

All-
Transitions

All-Paths

Figure 10: Coverage criteria subsumption derived from Utting and
Legeard [UL07]

The strongest transition-based coverage criterion is All-Paths, where
each path has to be traversed at least once. Due to the existence
of infinite loops, this criterion is not practical. The restriction to
visit paths only once is provided by the All-One-Loop-Paths (also

�.� �����-����� ������� 37

called AllPathOneLoop) criterion. Two further criteria All-Round-
Trips (traverse a loop only once without traversing the precade
of follow loop) and All-Loop-Free-Paths (traverse only loop free
paths) refine this definition.

The All-Paths criterion subsumes also another category of crite-
ria. First, the All-Transition-Pairs criteria exists, where each pair
of adjacent transitions has to be traversed only once. This cri-
terion subsumes the All-Transitions criterion, which requires all
transitions to be covered. The weakest criterion is the All-Actions
criterion, where all action nodes of an UML activity diagram
have to be covered by the traversed paths. Finally, All-Paths sub-
sumes the All-Configurations criterion, which is specific for finite
state machines and requires all configurations (with parallelism)
to be visited at least once.

For the purpose of this thesis, we select two transition-based
coverage criteria highlighted in Figure 10. The goal is to use Chosen transition

criteriaa weaker criterion like All-Actions and a stronger one like All-
One-Loop-Paths. This way, we want to evaluate the impact on the
holistic model coverage while selecting logical test cases from
analysis models based on different coverage criteria.

Test data selection

The transition-based coverage criteria are used to select logical
test cases in this thesis. To select concrete test cases, the selec-
tion of test data rather then paths is needed. Test data is defined
as the values of equivalence classes derived from the input do-
main (in our case the analysis model). For this, we use the data
coverage criteria defined at the beginning of this subsection. As
within the structural coverage criteria, also several types of data
coverage criteria exist. Utting and Legeard [UL07] differentiate
between three criteria categories like boundary value testing (se-
lect test data from the boundaries of equivalence classes), statis-
tical data coverage (select random test data from the equivalence
classes) and pairwise testing (select test data by combining equiv-
alence classes of the input domain). For this thesis the last type
of data coverage criteria is interesting.

There exist three criteria for the pairwise testing category:

• Pairwise coverage (combination of all pairs of equivalence
classes)

38 ����������� ��� �������������

• N-wise coverage (combination of all N equivalence classes)

• All-combinations coverage (each possible combination of all
equivalence classes)

In practice, the All-combinations coverage criterion is not used,
since it leads to the combinatorial explosion. For the purposeChosen data criteria
of this thesis, we use weaker coverage criteria like pairwise or
N-wise coverage. Further, simplified data coverage criteria like a
sequential combination of parameters is possible. For example
values for equivalence classes A,B,C,D are combined to {A1, B1,
C1, D1}, {A2, B2, C2, D2}, etc.

In this section we have introduced the basic definitions of MBT
together with its process and artefacts. We have briefly described
the test selection criteria used in this thesis. Since we focus on
the model from model MBT scenario, we will now introduce the
modelling language used for describing test models.

�.� ���� ��������� ��������

In the last two sections, we have introduced several criteria for
selecting logical test cases, which are part of a test model. In
the context of this thesis, we use a MBT scenario in which a test
model is derived from an analysis model. To enable the auto-
mated derivation of test models, we need to select a test mod-
elling language.

Different test modelling scenarios

To select a test modelling language, we first have to consider the
structure of the analysis model. Especially the structure of the
behavioural models used for test selection influence the struc-
ture of the test model. In Figure 11 we depicted two possible
scenarios for the test model structure. In complete models the be-
havioural model (in the examplary analysis model used in this
thesis the UML activity diagram) is transferred completely into
a new test model, where additional test information (depicted
with notes on each node) is appended. Logical test cases are
selected from the test model. Another possibility is the selected

�.� ���� ��������� �������� 39

parts scenario, where logical test cases are directly selected from
the behavioural model.

Complete models

Concrete Test Cases

Test Model

Analysis Model

Selected parts

Concrete Test Cases

Test Model

Analysis Model

Figure 11: Different scenarios for the test model structure

Since both scenarios can be potentially used to solve the prob-
lems of this thesis, the most suitable has to selected. In complete
models the test designer appends test related information (like
equivalence classes or expected results) to a single behaviour
model. The main advantage of this test model is that different Complete models

scenariotest selection criteria (transition-based and data coverage criteria)
can be applied to generate logical test cases. There is also a com-
mon modelling language used in the analysis and test model,
which supports the work of the test designer. Unfortunately, the
transfer of behaviour models into the test model without prior
selecting logical test cases does not uncover faults in the analysis
model, nor does it support the graphical modelling of single test
cases. Also, if changes in the different modelling viewpoints of
the analysis model occur, they have to be implemented manually
in the test model.

While the main disadvantage of the first scenario is the missing
fault-detection in the analysis model, the selected parts scenario

40 ����������� ��� �������������

solves this problem by providing a means of modelling logical
test cases. This way the test selection has to be performed first.
Since we assume that the analysis model does not contain any in-
formation about test data (for example equivalence classes), only
the transition-based coverage criteria can be applied. ThroughSelected parts

scenario the graphical modelling of logical test cases, further ones can be
created in addition to the generated ones. Since logical test cases
are linear flows through the behaviour model, the branches of
behaviour models are not visible anymore. This problem can be
solved by appending notes to each test case step describing the
selected guards of the mentioned branches. The main disadvan-
tage of this scenario is the effort resulting from changes within
the analysis model.

In this thesis, we use the selected parts scenario because of the
advantage of fault-detection in the analysis model. The problem
of implementing changes from the analysis model in the test
model exists in both mentioned scenarios.

�.�.� UML Testing Profile

In order to select a test modelling language, which can be used in
the selected parts scenario, we define the following requirements:

REQ1 Modelling viewpoint for the test behaviour - the language
should support the modelling of logical test cases

REQ2 Modelling viewpoint for the test data - the language should
support the modelling of equivalence classes for test data
design

REQ3 Relation between the behaviour and data viewpoints -
the language should support the relation between logical
test cases and equivalence classes

REQ4 Standardized modelling language - the language should
be widely-known in terms of a standardization

Within the literature survey performed as part of this phd thesis,
we have identified the UML Testing Profile (UTP) [Obj07b] as the
most suitable for all mentioned requirements. The UTP was in-
troduced by the Object Management Group as the standardized
test modelling language. UTP uses the profiling mechanism of
the UML [Obj09, p.653] to cover the domain of software testing.

�.� ���� ��������� �������� 41

The language provides four concepts for modelling different as-
pects of tests performed on the SUT:

• Test Behaviour - model the behaviour in terms of test cases

• Test Architecture - model the structure of the test environ-
ment and configuration of tests

• Test Data - model the data used in test cases

• Timers - model the time constraints to control the test be-
haviour

The mentioned concepts are the synonym for modelling view-
points. Each viewpoint groups the aspects needed to specify
tests. Since the viewpoints aim to specify test cases and the en-
vironment in which they are executed the model created with
UTP is also called a test specification model [RBGW10].

The UTP was developed for all kind of systems. A broad range
of artefacts have to be created for each viewpoint exists. For the
purpose of this thesis, we have selected a subset of them and ex-
tended some definitions (for example of the test case). Since we
focus on functional testing, the Timers viewpoint is not consid-
ered at all. This way load or performance testing is not covered
in our approach.

Figure 12: Artefact meta-model for the UML Testing Profile

42 ����������� ��� �������������

�.�.� Artefact Meta-Model

In the following we introduce each artefact used in our cus-
tomized version of UTP. Within Figure 12, we have depicted the
underlying artefact meta-model. The meta-model is grouped by
the three modelling viewpoints mentioned above.

Test Behaviour

The main artefact of our test model are Test Cases. Those test
cases do not contain concrete test data and are called logical test
cases. A test case has one Precondition and Postcondition. Each test
case consists of several Steps. We distinguish between Test Steps
(step performed by the tester during execution) and Check Steps
(step executed by the SUT). Each test step contains of several
notes for the information, which will be derived automatically
using the holistic view. The DialogNote references the dialog used
in the test step. TriggerNote references the trigger to be invoked
to stimulate the SUT (for example an action performed on the di-
alog). The input data derived from the analysis model is placed
in the DataNote. Finally, the PathNote references the branch and
guard taken during the test selection. Since the UTP does not pre-
scribe how to precisely model test steps, we added the concept
of several notes to integrate the information collected from the
interaction (DialogNote and TriggerNote) and structure (DataNote)
modelling viewpoint of the analysis model.

In Figure 13 an example of a logical test case is shown. The test
case consists of three steps, which test the creation of a new at-
tendee in a ski course system (see thesis running example in
Subsection 2.4.4). The first step called Enter_Attendee_Data is ex-
ecuted by the tester (TestStep stereotype). The following steps
(CheckAction stereotype) are only triggered by the tester and exe-
cuted by the SUT. As mentioned earlier, several notes define the
pre- and postconditions, the needed input data (like FirstName,
LastName, Age, etc.). The first test step is triggered by clicking a
button called SaveAttendee on the BookAttendeeOnCourse dialog.
To remain the traceability to the analysis model from which the
test case was derived, a path note describes the branch taken in
the behavioural model of the analysis model.

The structure of a Test Case in our customized version of UTP
covers the definition and template of a logical test case from Sub-

�.� ���� ��������� �������� 43

Figure 13: Example for a logical test case

section 2.1.1. Only the concrete test data sets are not part of the
test model. Based on the observations of several large-scale in-
dustry projects during this phd thesis, we identified the need to
manage concrete test data in an external source like database sys-
tem. The management of large amount of such test data within
a model results in high effort, which should be optimized.

Test Architecture

The main artefact of the test architecture viewpoint it the Test
Context. As the name states, it defines the context to be used dur-
ing testing. In UTP the test context groups the test cases from the
behavioural viewpoint. During the derivation of the test model,
the use cases from the analysis model are used as test context.
Further, testing is performed in a test environment on the SUT
and especially in system testing with several Test Components.The
eponymous artefacts in Figure 12 can call each other during test
execution. The SUT is always called from a test case.

In Figure 14, we provide an example for the test architecture
viewpoint. There exist one test context, which was derived from
the use case Book_Attendee_on_Course_Course (see running exam-
ple in the next section). The test context groups four logical test
cases. Additionally, three test components (Employee, Course and
Customer) and one SUT (Booking) exist. The SUT component com-

44 ����������� ��� �������������

Figure 14: Example of a test architecture viewpoint in the test model

municates with the the Course and Employee component. The
Customer test component is only invoked by the Employee com-
ponent.

Test Data

The design of test data in our test model is done with Data Pools,
which contain of several Data Partitions. The application of equiv-
alence class analysis (see [SL05]) results in several data partitions.
Since the analysis model does not contain of partitions, only sug-
gestions like the logical data types can be automatically derived.
Based on those suggestions, the test designer can manually per-
form equivalence and boundary value analysis. A data pool with
several data partitions is always created for one test context.

In Figure 15 an example of the test data viewpoint is shown. Two
data pools BookingData and CourseData exist. Each data pool con-
tains of several data types, which are used as input data in the
logical test cases. For each data pool a valid and invalid data
partition (known as equivalence classes from [SL05]) is defined.
Each data partition is refined with concrete data sets (for exam-
ple Age=50, FirstName=Michael, etc.) by applying the boundary-
value analysis method.

�.� ��������� �������� ����������� ������� 45

Figure 15: Example of a test data viewpoint in the test model

�.� ��������� �������� ����������� ���-
����

In this section, we will briefly introduce the topic of modelling
business information systems. We focus on the modelling task
done performed by business analysts, which create the analysis
model. To explain the usage of the holistic view in model-based
system testing, we use an exemplary modelling approach used
in the industry research project conducted within this thesis.

We first provide some general definitions in the context of mod-
elling. Then, we briefly introduce the exemplary modelling ap-
proach and the running example used in this document.

�.�.� General definitions

To gain a common understanding of the modelling domain used
in this thesis, we created a simple ontology, which is depicted in
Figure 16. In general, we distinguish between the Language part
and the Modelling Notation part. This abstraction is needed to
point out that the holistic view can be applied on different mod-
elling languages. In this thesis we use the UML as an exemplary
modelling language.

46 ����������� ��� �������������

Figure 16: Ontology of the modelling domain used in this thesis

Two basic elements of the ontology are the model and meta-model.
In this thesis we use the following definitions:

Definition 14 Model - partial reproduction of the real-world
created by using abstraction for a certain purpose. Example
are analysis models, which reproduce the requirements for a
software to be build.

Definition 15 Meta-Model - specification of the language used
to create a model, which itself is also model. Example is the
meta-model of the analysis model.

The central element of the Language part of our ontology is a
meta-model. The meta-model consists of several meta-model elements,
which are related by meta-model associations. Further, each meta-
model has one or more modelling viewpoints. Examples are the
structure, behaviour and interaction modelling viewpoint men-
tioned in the introduction of this thesis. Since the exemplary
modelling approach introduced in this section uses the UML,
each modelling viewpoint is described by several UML diagrams.
The diagrams are part of the UML meta-model [Obj09]. This way
the meta-model together with its modelling viewpoints is de-
scribed with the UML. This particular modelling language canModelling notation

is changeable be replaced by any other modelling language under the assump-
tion that several representation forms (here diagrams) can be
used to create models with different viewpoints.

�.� ��������� �������� ����������� ������� 47

According to the Meta-Object Facility (MOF) framework [Obj06a],
models are created by instantiating meta-models. Each model
consists of model elements and model links. Both elements are cre-
ated by the instantiation of the meta-model elements and meta-
model associations.

�.�.� Motivation

Each system is implemented according to some requirements.
The first step is to clearly specify the user requirements from
the problem view. This is the main task of the requirements Software

requirements
specification

engineering discipline [PR10]. The software requirements from
the solution view (see IEEE 830 [IEE98]) are specified within
the business analysis discipline (see RUP discipline "Analysis &
Design" in [Kru03]). This way, a clear distinction between the
problem-oriented and solution-oriented requirements specifica-
tion is given. It results in a deeper understanding of the cus-
tomer needs and prevents the underspecified requirements at
the problem level.

The requirements at the different levels can be specified with
textual descriptions. This often leads to misunderstood require- Modelling

requirementsments specifications, because of the subjective interpretation of
such descriptions. To solve this problem, the model-driven devel-
opment introduces models to specify the requirements [GPR06].
Different notations like the UML can be used to create such mod-
els. In the model-driven architecture framework [Obj03] each
software engineering discipline results in a new model type (like
the requirements model, analysis model and design models)

During the specification and testing of software systems it is
important to distinguish the system type. The type influences Information systems

vs. embedded
systems

the system aspects (like usability, timing, parallelism, environ-
ment, etc.) which have to be accordingly specified and tested. In
general there are two types of systems, namely information and
embedded systems. The information systems support the busi-
ness workflow, the user communicates with the system through
a graphical user interface and a persistence layer to the under-
lying data exists [NRP05]. The embedded systems often do not
have a graphical user interface, communicate through data in-
terfaces and are integrated into a hardware component. In this
thesis, we focus on the specification and testing of business in-

48 ����������� ��� �������������

formation systems and choose an according real-life modelling
approach in the next subsection.

�.�.� Representative industry modelling approach

To perform system testing we have to derive test cases from
an analysis model. In order to define a model-based testing ap-
proach, we have to use a certain structure of the analysis model.
In the current literature there exists no clear standard for mod-
elling business information systems which is used by several
organizations (see discussion in [BL02]). The general concept of
the object-oriented analysis and design (OOA/OOD) introduced
in [BME+07], shows how to model different aspects of the sys-
tem with the UML. The notion of viewpoints can be found in ap-
proaches as Finkelstein et al. [FKN+92] or Pohl and Rupp [PR10].
Several approaches in the OOA field as the one from Ivar Ja-
cobson [Jac92] or Alistair Cockburn [Coc01], concentrate on the
use-case based modelling. Domain-specific modelling with ap-
proaches as Eric Evans [Eva03], focus on modelling the domain
with language definitions. Finally, more formal approaches like
Hesse and Tilley [HT05] show how to derive objects within the
use case or OOD modelling. That is why, we have to select a
representative one.

Based on the problem definition from Section 1.1, we define the
following requirements for a representative modelling approach
for business analysis:

REQ1 Provide a meta-model definition

REQ2 Distinction between the structure, behaviour and interac-
tion modelling viewpoints

REQ3 Support for an integrated interaction modelling

REQ4 Support for model relationships between the modelling
viewpoints

For this thesis we choose the modelling approach introduced
in [SSE09]. It fulfills all of the mentioned requirements. The ap-Exemplary industry

modelling approach proach is used by Capgemini Technology Solutions (TS). The
company develops complex business information systems for
customers in different domains as automotive, finance, govern-
ment, telecommunication and logistics. Since each project at Cap-
gemini TS needs to specify the problem- and solution-oriented

�.� ��������� �������� ����������� ������� 49

requirements, the company developed his own use-case based
specification method. The company-wide approach is based on
almost 30 years software engineering experience and introduces
a task-oriented approach for specifying large-scale business in-
formation systems. In the following parts of this thesis we will
use the term specification method as a synonym for the Capgemini
TS modelling approach.

During the specification process several tasks have to be per-
formed. Each task results in a separate artefact of the analysis
model. For example the task Specify Use Cases results in the use
case specification. The method defines for each artefact its con-
tent, form, process and tool support. We will use this categoriza-
tion to describe the artefacts relevant for this thesis.

The specification method defines several tasks. Not all tasks and
therefore artefacts are needed in our approach. For the purpose
of this thesis we focus on the following tasks:

• Specify Component Model

• Specify Use Cases

• Specify Dialogs

• Specify Logical Data Model

• Specify Logical Data Types

This reduction was chosen because of the focus on the system
testing level. At this level only the workflows, here use cases
for the whole system are tested. The dialogs are used as the
user interface in the mentioned use cases. Because the logical
data model and data types can be used to derive test data, they
are considered too. Last, the component model is important to
identify the conceptual components involved during testing.

After the short motivation of the specification method, we will
now introduce the running example, which is used within this
thesis. This example will help us to describe each artefact result-
ing from the tasks mentioned before.

�.�.� Running example "Gabi’s Ski School"

The running example used in this thesis is a fictive project called
"Gabi’s Skis School". It was developed at Capgemini, CSD Re-

50 ����������� ��� �������������

search for training purposes and to support the method engi-
neering in the internal research department by proving examples
of software requirements. The fictive project "Gabi’s Ski School"
reflects a typical SRS of a business information system in a soft-
ware engineering project.

The goal of the project is to develop a ski course management
system for a small ski school called "Gabi’s Ski School". First,
user requirements were elicited during interviews with the fic-
tive customer. The following problem was identified: Currently
all tasks within the ski school are done manually and are very
error-prone and time intensive. To improve the business process
in the ski school a business information system, which supports
tasks like: booking, course and customer management should
be developed. The specification of a conceptual solution is done
according to modelling approach introduced in this section.

Table 3: Elements of the analysis model for the "Gabi’s Ski School"

Modelling Viewpoint Model Type Name

Structure

Conceptual Booking,
Component Customer,

Course
Logical Data 25 data types
Type

Behaviour Use Case Save_Attendee,
Book_Attendee_on_Course,
Create_Customer,
Search_Customer,
Search_Course

Interaction Dialog Overbooking,
BookAttendeeOnCourse

The results of the specification process is an analysis model. As
shown in Table 3 the model consists of three conceptual compo-
nents and one logical data type model. Six use cases together
with two dialogs were specified. Especially the use cases spec-
ify the way how the tasks of the ski school (like booking a ski
course by an attendee) will be performed after the system is im-
plemented.

�.� ��������� �������� ����������� ������� 51

In the next subsections we briefly introduce the artefacts of the
modelling approach based on [SSE09] and the results of the in-
dustry research project conducted within this thesis. We will
also provide exemplary figures from the running example in-
troduced here. Each artefact will be described through the defini-
tion, content and form. We omit the process descriptions, because
for this thesis we are not interested in how the different artefacts
have to be created, but more how to use them for test design.

�.�.� Use Cases

Definition

A use case specifies one or more steps of a high-level business
process model. Through the specification of several steps per-
formed by an actor or the system, the behaviour of an applica-
tion is defined. Since the actor interacts with the system, the in-
teraction is also defined. This way use cases show the externally
visible as well as the detailed internal application behaviour
from the user perspective.

In the literature body of knowledge, early approaches as the one
from Ivar Jacobson [Jac92] identified the need for requirements
elicitation and SRS specification with use cases. One of the first
approaches showing how use cases can be modelled and (model-
based) tested was introduced by Mario Winter in his dissertation
[Win99]. In the context of agile software development, the use
case-based modelling approach from Alistair Cockburn [Coc01]
is widely used.

The use cases belong to the behaviour modelling viewpoint. De-
spite the specification of the interaction with the system, they are
not used for modelling the structure and behaviour of the user
interface. This aspects are modelled within dialogs (part of the
interaction modelling viewpoint), which will be described later.

Content

Use case models consist of a structured textual description to-
gether with a graphical representation as a flowchart. The fol-
lowing attributes are required to specify the content of a use
case:

52 ����������� ��� �������������

����� Unique identification of a use case

����� ����������� What are we talking about?

������ Who triggers the use case?

������� Who causes the use case to be executed? What is the
reason?

������������� What conditions need to be met at the outset?

��������� What happens during the process?

������� What information is supplied by the use case?

��������� ��������� How often is this use case executed
within the application?

������� ������������ What are the quality requirements (for
example performance, usability, etc.) for this use case?

����� What other relevant information should be included?

Some of the mentioned attributes like title, description, trigger,
preconditions, execution frequency, quality requirements and notes
are self-explanatory. For the other attributes we provide a short
description.

Actors play an important role in specifying use cases. They can
be human and technical users which trigger the use case. We
distinguish between primary and secondary actors. Only the pri-
mary users have the permission to execute the whole use case.
The distinction is important as there can be several scenarios of
how a use case is executed.

In a use case description both the standard and alternative sce-
narios are defined. The standard scenarios describe the error-free
execution case, which suits the objective of the use case. The al-
ternative scenarios describe special execution cases, for example
in the case of special constraints or logical error cases.

The results of a use case include the description of the affected
entities and the description of return values. The first one de-
scribes the state of all entities affected by the use case. The sec-
ond one describes the data which is returned to the use case
caller. Both result descriptions are high-level descriptions instead
of technical details. The return values are specified for the stan-
dard and each alternative scenario separately. The precise spec-
ification of use case preconditions and results is important for
the testability of use cases [Jun99, Bin99].

�.� ��������� �������� ����������� ������� 53

Form

Besides the textual descriptions and the according attributes, the
use case can be represented by using a graphical notation. For
this purpose the UML use case and activity diagrams are used.

In Figure 17 we show an example of an use case diagram, which
gives an overview of all use cases belonging to a conceptual
component. Such diagrams include the primary and secondary
actors involved in the use case execution and depicts the de-
pendencies between several use cases. In this case there exists
only one primary actor Employee. He can call the two use cases
Search_Customer and Book_Attendee_on_Course. The last use case
includes Search_Customer and another use case called Search_
Course. We restrict the usage of use case dependencies in our
modelling approach to include. Especially the underspecification
of dependencies as extends [Obj09, p.592] would lead to addi-
tional problems here.

Figure 17: Part of the use case overview from the running example

Each of the use cases from Figure 17 can be refined with a UML
activity diagram. An example for the use case Book_Attendee_on_
Course is shown in Figure 18. Each swimline represents an actor
of the use case (here Employee) or the involved conceptual com-
ponents (here Booking, Course and Customer). The action nodes
represent single steps performed by the different actors. Each
path from the initial to the final node represents a scenario of
the use case. As there is no notation for specifying the standard
and alternative scenarios in activity diagrams, further textual de-
scription is needed.

54 ����������� ��� �������������

Figure 18: UML activity diagram for use case Book_Attendee_on_Course

�.� ��������� �������� ����������� ������� 55

The purpose of the use case is to book a attendee on a ski course.
First, a new attendee is registered (action Register_Attendee) by
the ski school employee or an existing customer is selected. The
existing customer is selected from the customer database by us-
ing another use case called Search_Customer. Then, according to
certain criteria (as course type, date, etc.) the employee searches
for relevant courses by using another use case called Search_
Course. It the appropriate course is found, the employee selects
it and triggers the system to check its availability with the Re-
sources_ available system action. Here a so called application func-
tion (see next subsection) is invoked. If the course is already
overbooked a notification is displayed and the employee has to
decide whether to book the attendee on an overbooked course
or not (see actor action Overbook_Notification). Finally the system
books the attendee on the selected course within the Book_Attendee
_on_Course system action.

�.�.� Application Functions

Definition

Application functions describe the logical calculations of possi-
ble complex functions which are executed within a use case. The
functions are executed without application interruption, for ex-
ample by using interfaces of external applications. The interfaces
of conceptual components are offered as application functions.

Like the use case description an application function also de-
scribes a flow of steps to be executed. The difference is that the
steps are primary executed by the application, not the user. The
focus of an application function lies on the way how the applica-
tion processes the request.

In this thesis, we do not perform a detailed analysis of applica-
tion functions for test generation purposes. They are only used
in the context of use case system action calls. Therefore the de-
scription of the content and form of application functions is omit-
ted here.

56 ����������� ��� �������������

�.�.� Logical Data Model

Definition

The logical data model describes the application data from the
logical point of view. Each conceptual component has a logical
data model, which consist of entity types and their relationships.
Attributes of entity types are described by logical data types (see
next subsection).

Content

As mentioned the logical data model description consists of the
entity types, their attributes and relationships among entity types.
For each entity type the following information is required:

���� of the entity type

����������� of the entity type referring to the logical concept
formation of the conceptual component

��������������� is a list of all existing specializations of the
corresponding entity type

����� ����� is an optional description of possible states and
the transitions between them for critical entity types

�������� ��������� provides information about the resulting
data volume that will exist. For example 1000 ski courses
are booked per month in the "Gabi’s Ski School".

For the attributes of each entity type, minimum the name and de-
scription has to be provided. The information about the quantity
structure (if specified), can be used for non-functional testing as
load testing [BM08].

The relationship types for the logical data model are associa-
tions, compositions or aggregation, specialization or generaliza-
tion (same as introduced by the UML [Obj09]).

Form

For the specification of the logical data model the graphical rep-
resentation in form of UML class diagrams together with further
textual descriptions are used.

�.� ��������� �������� ����������� ������� 57

�.�.� Logical Data Types

Definition

As mentioned above, the logical data types are used during the
definition of entity type attributes. They define the types and
value ranges of them. The main difference between entity and
data types is that a data type is not modifiable, but represents a
pure value.

Content

The specification method distinguishes between the following
data types:

����� ���� ����� form the atoms of the conceptual data model.
Examples are number, string, date or time

����������� ����� are explicit declarations of data type. Ex-
ample is the currency type = euro, dollar or ruble

������������ ���� ����������� ����� are usually formed
by establishing concrete restrictions for the appearance of
their elements. Example is the telephone number

�������� are equivalent to the specialization concept of entity
types

��������� ���� ����� are conceptual compositions of exist-
ing data types

����������� hold several instances of the same data type

In Figure 19 a subset of the "Gabi’s Ski School" logical data type
model is shown. The type DT_Address specifies the customer ad-
dress with a street number, postcode, city, street and country.
The significant data type DT_Age defines the allowed age for a
ski course attendee within the boundary (0,100) of years. The
gender of an a attendee can be male or female, which is spec-
ified by the DT_Gender data type. There are three levels of ski
courses specified by the DT_Course_Level enumeration data type.
The two main course types are specified by DT_Course_Type. Fi-
nally, the name of the attendee is composed by the first and
the surname, which is specified by the DT_Name composite data
type.

58 ����������� ��� �������������

Figure 19: Subset of the logical data type model for the "Gabi’s Ski
School" project

Form

The logical data types are not defined for single conceptual com-
ponents, but for the whole application scope. As in the case of
the logical data model the UML class diagram together with tex-
tual descriptions are used.

�.�.� Dialogs

Definition

A dialog is a self-contained element of the user interface, which
is used by the application to support a user action by providing
a meaningful part of its functionality for interactive utilization.
Within business information systems, dialogs mainly enable the
interaction of the user with the application.

Single dialogs can be structured into sub-dialogs. Each sub-dialog
is defined as an cohesive area of the screen, which the user can
interact with. In this thesis we omit the topic of sub-dialogs.

Content

A dialog specification consists of static (layout) and dynamic (be-
haviour) characteristics of the dialog. Both views are strongly re-

�.� ��������� �������� ����������� ������� 59

lated as the static elements are used and are influenced by the
dynamic view.

The static view consists of dialog elements, which are defined
as individual fields for the input or output of information by
or for the user. Depending on the window type in which the
dialog is used, information about the resizing and model/non-
modal dialogs have to be specified. Further, plausibility checks
and calculations for dialogs can be specified.

The main element of the dynamic view are dialog actions. Such
actions are triggered by a user when activating a specific control
element, keyboard event or while all predefined dialog elements
are filled with data. The dialog actions correspond to one or
more user actions of a use case.

The dynamic view is further described by presentation and dia-
log states. The first one usually refers to sub-dialogs, for example
"the checkbox is selected". The dialog states refer to the dialog
as a whole. They describe the different states of a dialog and the
transitions between them.

Form

As for other modules also the dialogs can be described by struc-
tured text supplemented by graphics. This is mainly the case
while specifying the static information. As shown in Figure 20
this specification can be supported by using a custom UML di-
agram. In this case it is a custom diagram created with the En-
terprise Architect 2 modelling tool. The dialog elements are de-
picted by rectangles, which correspond to objects with prede-
fined stereotypes (like button, input field, checkbox, etc.). The
Employee actor of the "Gabi’s Ski School" project can search
for curses by selecting a course type (see selectbox of TypeOf-
Course), filling data in the input fields LevelOfCourse, CourseFrom
and CourseUntil. Finally, he can trigger the search by clicking on
the SearchCourse button. The results are displayed in the table ac-
cording to the CourseName, DateFrom DateUntil and CourseUnits
columns. After selecting a course, he can choose the detailed
course units in the second table. The Employee can also register
a new attendee in the elements placed in the left-bottom part of
the dialog. He can also search for an existing customer with the

2 http://www.sparxsystems.com/

60 ����������� ��� �������������

SearchCustomer button. Finally, he can book the attendee with the
BookAttendee button or quit the dialog.

For the dynamic view the UML activity and state diagrams can
be used. In Figure 21 we show an example for dialog action
called DA_Search_Course. Here a UML communication diagram
is used to specify the dialog elements serving as a trigger (here
Search_Course dialog element) or input (several dialog elements
related through ActionImpact links) and output (dialog elements
Course and Course_details related through ActionEffect links) of
the dialog action.

Figure 20: Layout model of the BookAttendeeOnCourse dialog

In our approach we focus on the modelling of dialogs with ac-
tivity diagrams. UML state machines are a powerful language
with a clear formal transition system to describe the behaviour
of systems with respect to the states and transitions between
them. Since the dialog modelling purpose is only to represent
the dialog actions (behavioural part) and the dialog elements

�.� ��������� �������� ����������� ������� 61

Figure 21: Example of a dialog action DA_Search_Course and the re-
lated dialog elements

(structural part) and not the complete behaviour of the system,
the appropriate solution are UML activity diagrams. In this the-
sis we focus on the systems’ behaviour, which is described with
the use case and application function concept (see previous sub-
sections).

�.�.�� Conceptual Components

Definition

"Conceptual components are the fundamental concept of struc-
turing the software specification and grouping its artefacts. They
are derived from the topics of the problem domain" [SSE09, p.130].
The problem domain is defined in the user requirements speci-
fication. The process of structuring the application is also called
functional decomposition. The main idea is to use conceptual
aspects to structure the application and therefore segment the
business logic. The conceptual components are used to manage
the (conceptual) complexity of the application. Conceptual com-
ponents are also used in approaches as Mattsson et al. [MLLF09].

Content

The functional decomposition into conceptual components re-
sults from grouping behaviour artefacts like use cases and appli-

62 ����������� ��� �������������

Figure 22: Example of a functional system decomposition into concep-
tual components

cation functions together with structure artefacts like the logical
data model. As shown in Figure 22 the set of behaviour and
structure artefacts fulfills a certain conceptual aspect or require-
ment like booking (Booking component), customer management
(Customer component) or course management (Courses compo-
nent). Additionally an external component Ski Rental was identi-
fied, which communicates with the system called SkiSchool. Each
of the mentioned artefacts belongs to one and only one concep-
tual component.

The conceptual components can communicate with each other
and also with external systems (see SkiRental in Figure 22). The
communication is handled through logical interfaces3. The in-
terfaces visualize the communication between use cases of con-
ceptual components. Each interface is defined by an application
function, which were introduced earlier.

There exist two types of interfaces: offered and required logical
interfaces. The first ones define the behaviour and data elements
offered to the environment of a conceptual component. The sec-
ond ones defines the behaviour and data elements expected from

3 Logical interfaces are not technical interfaces as the once used in the technical
design or implementation models.

�.� ��������� �������� ����������� ������� 63

the environment. In Figure 22 the component Customer offers a
logical interface called Customer.

Form

The decomposition of the application into single conceptual com-
ponents, which communicate through interfaces is modeled with
the UML component diagram. Textual descriptions of compo-
nents and interfaces motivate and refine the diagram. Those de-
scriptions can be specified with structured text or table form.

�.�.�� Artefact Meta-Model

In this subsection, we summarize the introduction of several
models in the last sections. We do it by introducing a meta-
model for the artefacts part of the specification method relevant
for test model generation. The literature about meta-modelling
as [AK03] or [SK06], distinguishes between two types of meta-
models: linguistic and ontology. The meta-model used in this
thesis is a ontology meta-model and is depicted in Figure 23.

The use case model is depicted in the left upper corner. As men-
tioned in Subsection 2.4.5 each use case consists of one or more
scenarios. In each scenario a primary actor performs several ac-
tions. Beside the actor actions there also exist system actions.
Those are refined by application functions. An action always
calls other actions, which are modeled with an edge in the UML
activity diagram (see Figure 18).

The dialog model is depicted in the right upper corner. The main
parts are the dialog actions and dialog elements. The composite
pattern in Figure 23 depicts the hierarchical structure of dialogs.
The dialog elements can act as input or output relevant for the
execution of dialog actions as explained in Subsection 2.4.9.

The logical data model (Subsection 2.4.7) and logical data types
(Subsection 2.4.8) are summarized in the right bottom corner.
Different as the data types, the entity types can be related to
each other by several relationship types.

The functional decomposition mentioned in Subsection 2.4.10 is
depicted in the left bottom corner. The application scope is called
information system. It consists of one or more conceptual com-

64 ����������� ��� �������������

Figure 23: Relevant part of the artefact meta-model of the exemplary
analysis modelling approach used in this thesis

�.� ����� ��������������� 65

ponents. Each conceptual component groups the use case, dialog
and data model. Conceptual components have logical interfaces,
which are realized by application functions.

Within the artefact meta-model, relations are defined by the UML
concept of Association [Obj09, p.39]. There exist three very im-
portant relationships in this meta-model which are relevant for
this phd thesis:

1. Relation depends_on between the actor actions of the use case
model and dialog actions of the dialog model.

2. Relations input_relevant and output_relevant between the di-
alog actions and dialog elements (both input and output rele-
vant).

3. Relation references between the dialog elements and logical
data types.

Those relations define a context, which can be used for extracting
information needed to specify high-quality test cases. Since the
relations are instantiated as model links, the holistic approach
for model-based testing can navigate through the analysis model
to extract relevant information. The importance of those rela-
tions for the holistic view in model-based testing will be ex-
plained in later chapters of this thesis.

�.� ����� ���������������

The context of this phd thesis is dealing with the model-based
testing scenario, where test models are automatically derived
from test model. In the last sections we have introduced several
meta-models for for both models. Having this knowledge, we
can use the technique of model transformations widely-known
from the model-driven development (MDD) and model-driven
architecture (MDA) domain. Within MDA different models on
several abstraction levels exist. The model transformations are a
technique for transforming models between different abstraction
levels [GPR06]. Since the models used in this thesis have differ-
ent abstraction levels as described in Section 1.1, this technique
is suitable for the automated derivation of test models from anal-
ysis models.

66 ����������� ��� �������������

In this section we use the taxonomy for model transformations
from Mens et al. [MVGVK06] to categorize them. Based on the
requirements derived from the research problems introduced in
Chapter 1, we select the model transformation type and lan-
guage to be used in this thesis.

�.�.� Definitions

To provide a common understanding of model transformations,
we provide some basic definitions here:

Definition 16 Model transformation - is "the automatic gen-
eration of a target model from a source model, according to a
transformation definition" [MVGVK06, p.5]

Definition 17 Transformation definition - is "a set of transfor-
mation rules that together describe how a model in the source
language can be transformed into a model in the target lan-
guage" [MVGVK06, p.5]

Definition 18 Transformation rule - is "a description of how
one or more constructs in the source language can be trans-
formed into one or more constructs in the target language"
[MVGVK06, p.5]

�.�.� Categorization

According to Gruhn et al. [GPR06], we distinguish between the
two general types of model transformations:

• Model to Model (M2M) - the input and output of a trans-
formation is a model

• Model to Text (M2T) - the input of a transformation is a
model, but the output is a textual description (for example
text files with code)

In the context of MDA [Obj03] the definition of a platform-independent
model (PIM) and platform-specific model (PSM) is used to differ the
models with respect to the level of information about the plat-
form in which the developed system is used. Through one or
several M2M or M2T the PIM is transformed into a PSM. In this
thesis the generated test cases have to be executed in a test envi-

�.� ����� ��������������� 67

ronment. The test model is a PIM model and the executable test
cases a PSM.

A more detailed categorization is introduced in the model trans-
formation taxonomy from Mens et al. The authors distinguish in
[MVGVK06] between:

• Number of source and target models - a transformation
can have one source and one target model. Another type
are multiple source models and/or multiple target models
transformation. A combination between single and multi-
ple models used as source or target are also possible.

• Endogenous or exogenous - depending on the meta-models
used in the model transformation to express models the en-
dogenous (same meta-model for source and target models)
and exogenous (different meta-models) exist

• Out-place or in-place - the target model resulting from
the execution of model transformations can be out-place
(different source and target model instances) or in-place
(one model instance for source and target)

• Horizontal or vertical - depending on the abstraction level,
the model transformations can be horizontal (same abstrac-
tion level for source and target) or vertical (different ab-
straction levels)

• Preservation - the target model always preserves certain
aspects of the source model. For example transformations,
which refactor models preserve the behaviour of the source
model

Based on the problem statement from Section 1.1, we identify Transformations in
this thesisthe following type of model transformations to be used in this

thesis:

• M2M and M2T since we aim to automatically derive test
models from analysis models (M2M) and further derive
test cases from test models (M2T)

• One source / multiple target models since we always use one
source (like the analysis or test model) for transformations,
which result in multiple target models (for example test
and trace models)

• Exogenous since we use different meta-models for the mod-
els used in our transformations

68 ����������� ��� �������������

• Out-place since our goal is to automatically derive a sepa-
rate test model

• Vertical since the analysis and test model have different ab-
straction levels

• Preserving behaviour since logical test cases automatically
selected from the analysis model preserve the behaviour
of the use case as linear sequence of actions

The requirements mentioned above, will be refined in more de-
tail while presenting the research approach of this phd thesis.

�.�.� Traceability Issue

While there exist different types of model transformations, they
all transform source into target models. This transformation step
reveals important information, which can be used to trace the el-
ements of the target back to the source model. Such traces are
used to measure the coverage of the analysis model by the au-
tomatically generated test model. The model coverage measure-
ment is one of the research problems (see Section 1.1). In this
thesis we use the following definition of traceability.

Definition 19 Traceability is "the ability to trace the connec-
tion between the artefacts of the testing life cycle or software
life cycle or software life cycle; in particular, the ability to track
the relationships between test cases and the model, between
the model and the informal requirements, or between the test
cases and the informal requirements" [UL07, p.407].

The model coverage measurement inspects the traceability be-
tween test cases and the model. Besides the test behaviour view-
point of the UTP represented by test cases also the test architec-
ture and test data viewpoints should be traceable back to the
analysis model.

To use the traces between source and target models for model
coverage measurement, they have to be made explicit. This is im-
portant, since we aim to develop algorithms which can measure
the reached model coverage based on traceability information.
This way the support for traceability is a further requirement
for the selection of a model transformation language in the next
subsection.

�.� ����� ��������������� 69

�.�.� Model Transformation Languages

In the last two subsections we have introduced the requirements
for model transformations used in this thesis. Now, we will com-
pare several model transformation languages and select one to
be used in this document.

In general, two types of transformation languages exist:

• Declarative transformation languages define relations be-
tween source and target models; this way they focus on the
what has to be transformed

• Operational transformation languages define the steps (and
their order) to be performed to execute a transformation;
this way they focus on how transform

Since the automated derivation of test models from analysis
models requires several tasks (as test selection, navigation through
models, etc.) additionally to model transformation, we need a
hybrid transformation language which is both declarative and
operational. The declarative aspect is needed for pure model
transformations between the analysis and test model. The op-
erational aspect is needed to perform transformation together
with the mentioned additional tasks.

We have identified the following model transformation languages,
which suits most of the requirements mentioned earlier:

• Query/View/Transformation (QVT) Language - standard-
ized transformation language provided by the Object Man-
agement Group [Obj08a]

• Atlas Transformation Language (ATL) - transformation lan-
guage provided by the Eclipse M2M project4

• Epsilon Transformation Language (ETL) - transformation
language provided by the Eclipse Epsilon project5

This set of model transformation languages is based on a broad
evaluation performed in three students thesis (see [Nie09, Hey10,
Fic10]). Additionally, transformation frameworks as openArchi-

4 http://www.eclipse.org/atl/
5 http://www.eclipse.org/gmt/epsilon/

70 ����������� ��� �������������

tectureWare6, MOFScript7 and JET8 were analyzed. All three lan-
guages can only be used for M2T.

In Table 4 we compared the three modelling languages. To per-
form M2M transformations (analysis to test model), all languages
can be used. However, to additionally perform M2T transforma-
tions (logical to concrete test cases) only the ETL seems suitable.
The M2T in ETL are possible through the Epsilon Generation
Language (EGL)9. In EGL the target of the transformation is
specified within a scripting language rather than a predefined
meta-model.

Table 4: Comparison of suitable model transformation languages

Criteria QVT ATL ETL
General M2M M2M M2M/M2T

Models multiple-source multiple-source multiple-source
/ multiple-target / multiple-target / multiple-target

Meta-models exogenous exogenous exogenous

Place in-place in-place in-place
/ out-place / out-place / out-place

Abstraction vertical vertical vertical

Type declarative declarative declarative
/ imperative* / imperative / imperative

Traceability none* built-in, built-in,
not changeable** changeable**

* - this property depends on the concrete implementation of QVT

** - changeable with customized transformation rules

As depicted in Table 4, there exist only slightly differences be-
tween the languages. First, the QVT language has no support for
traceability in terms of an explicit trace model. The QVT specifi-
cation mentions a trace model [Obj08a, p.145-146], but only one
concrete implementation, namely mediniQVT10 supports it. Un-
fortunately, no editable trace meta-model is given in QVT. The

6 http://www.openarchitectureware.com/
7 http://www.eclipse.org/gmt/mofscript/
8 http://www.eclipse.org/modeling/m2t/?project=jet
9 http://www.eclipse.org/gmt/epsilon/doc/egl/

10 http://projects.ikv.de/qvt/

�.� ������� 71

ATL supports the traceability with a so called Weaving Model.
The problem here is that the adaption of the Waaving meta-
model is very complicated from the technical point of view (see
the evaluation in [Fic10]). To overcome this problem, we have
customized the model transformation rules itself to generate an
explicit trace model. For example in ETL the specification of pre-
and post-blocks for each transformation rule is possible. An ex-
tension of ATL transformation rules is also possible and pro-
posed by Jouault in [Jou05].

Based on the comparison described above, we have identified
ETL as the model transformation language used in this thesis.

Feasibility studies

The definition of requirements for a model transformation lan-
guage and systematic selection of a concrete language is impor-
tant for the definition of a holistic approach for model-based
system testing. For each of the mentioned languages, we have
performed a feasibility study. For that, we have used analysis
models collected within the industry research project related to
this thesis. We have observed that standard modelling tools used
in the industry as Enterprise Architect11 exports models in for-
mats not compatible with the widely-used XMI [Obj07a] format.
This format is used as input by all mentioned model transfor-
mation languages. That is why, the prototype implementation
from [Nie09, Hey10, Fic10] used for evaluation purposes is based
on standard programming and scripting languages. Still, the re-
quirements described in this section are fulfilled in the proto-
type implementation. The implementation with pure ETL frame-
works is part of the future work on this prototype.

�.� �������

In this chapter we have introduced all preliminaries and defi-
nitions of this phd thesis. First, we have introduced the Funda-
mental Test Process, its artefacts and basic testing definitions.
Then, the domain of model-based testing, its artefacts and pro-
cess and the essential test selection techniques were presented.

11 http://www.sparxsystems.com

72 ����������� ��� �������������

The UML Testing Profile as the test modelling notation was also
introduced. Further, we have presented the representative mod-
elling approach for business analysis used in this thesis. Finally,
the topic of model transformations was covered.

To underpin the research problems of this phd thesis, we present
a detailed survey of the related work in the next chapter.

3
R E L AT E D W O R K

In this chapter, we will introduce the work related to the prob-
lems identified in the motivation of this thesis. The literature
evaluation presented here has the goal to identify MBT approaches
which use several modelling viewpoints of analysis models for gen-
erating high-quality test models and test cases for system testing. It
was done in a systematic and structured way. First, we have ana-
lyzed the known surveys of model-based testing approaches as
[DNSVT07] and [GECMT05]. Then, we supplemented the list of
relevant approaches found in [DNSVT07] and [GECMT05] with
our own survey. We searched with the research search engines as
IEEE Digital Library1, ACM Library2, Springer Link3 and Cite-
seerx4 for papers according to keywords related to the thesis
contribution points as: model-based testing, UML, business informa-
tion systems, system testing, holistic, test model, modelling viewpoints
and model relations. After a qualitative selection (citation count,
maturity level, publication form, etc.), we ended up with a list
of almost 60 approaches.

In the following sections we will first explain the evaluation crite-
ria and refer to their related work. Then, we show a comparison
table for better literature overview. Finally, we briefly introduce
the approaches related to the problems defined in Chapter 1.

C�������
3.1 Evaluation criteria . 74
3.2 Identified related work 84
3.3 Summary . 101

1 http://ieeexplore.ieee.org
2 http://portal.acm.org/
3 http://www.springerlink.com/
4 http://citeseer.ist.psu.edu/

73

74 ������� ����

�.� ���������� ��������

In order to compare the found approaches, we derived a list of
11 + 2 evaluation criteria based on the problem definition from
Chapter 1. The additional "+2" criteria focus on the overall qual-
ity of the presented approach in terms of provided empirical ev-
idence and tool support. For better understanding, we mapped
the evaluation criteria in Figure 24 to the "before" part of the
contribution figure from Section 1.2.

Structure

Behaviour

Interaction

Analysis model

"before"

Test
Model

(structure)

Test
Designer

creates
manually

Test
Model

(behaviour)

creates
manually

generate

generate

Test Cases

Test
Model

(interaction)

creates
manually

ge
ne

ra
te

8 - 12 13

6

1

2
4

5 6

7

3

11

Figure 24: Evaluation criteria mapped to the research problem figure

The numbers from Figure 24 symbolize the following evaluation
criteria:

����� �����
1. UML for system modelling - does the approach use UML

for modelling the analysis model?

2. Modelling viewpoints - does the analysis modelling ap-
proach use the three viewpoints describing the structure,
behaviour and interaction with the system?

�.� ���������� �������� 75

3. Integrated interaction viewpoint - does the approach use
the interaction modelling viewpoint (especially models of
the GUI) integrated into the analysis model?

4. Model Relation - does the approach use model relations
between the structure, behaviour and interaction modelling
viewpoints for test generation?

5. Test Model - does the approach use a separate test model?

6. UML for test modelling - does the approach use UML for
test modelling?

7. Developer Model - does the approach use the UML analy-
sis model created by developers for test generation?

�������� ���� �������
8. Understandability - are the generated test cases under-

standable?

9. Analysability - are the generated test cases analysable?

10. Completeness - are the generated test cases complete w.r.t.
the information needed for test execution?

11. Traceability - are the generated test cases traceable to the
source models and/or requirements?

�������� �������
12. Case study - does the paper provide an evaluation of the

approach by means of one or more case studies?

13. Tool - does the approach provide tool support?

The evaluation criteria have been selected according to the prob-
lem definition from Section 1.1. In this section we introduce each
criterion and reference to the relevant literature.

�.�.� UML for system modelling

The specification of complex software as the Business Informa-
tion Systems (BIS) requires modelling notations, which can deal
with different abstraction levels and functionality types. The Uni-
fied Modeling Language seems to be the non plus ultra while
modelling software systems [HM08]. The UML is widely used

76 ������� ����

for modelling BIS. As mentioned by [BL02], there exists no stan-
dard UML modelling approach for BIS. We selected the one in-
troduced by Salger et al. [SSE09], which was already introduced
in Section 2.4.

The usage of UML for system modelling in the evaluated ap-
proaches is important, because we focus on modelling approaches
similar to [SSE09]. Further, we focus on system testing (see Chap-
ter 1) for which the abstraction level provided by analysis mod-
els is needed. Low-level models of the system’s design or im-
plementation are not focus of the model-based testing approach
introduced in this thesis. This is based on the fact that within
system testing, high-level workflows rather then technical details
are considered for test analysis and generation purposes.

The system modelling with UML is also widely used in model-
based testing. As shown by the survey from Dias Neto et al.
[DNSVT07] the majority of MBT approaches identified since 1990
uses UML diagrams for test case generation. The notation used
by several approaches are statecharts. For example [OA99, Wei09,
HN04, PJJ+07, UL07] apply different state, transition and data-
flow coverage criteria to statecharts for generating test cases.
Similar or as mentioned by Utting et al. [UL07] the same cov-
erage criteria can be applied for UML activity diagrams. Good
examples for such approaches are [BL02, GECM+09, HVFR05,
MXX06, VLH+06, DSWO04, Bin99]. The other kind of MBT ap-
proaches concentrates on UML sequence diagrams (as [FL02,
NFTJ06]) or UML class and object diagrams, as [GMWE09] or
[Bin99].

�.�.� Modelling viewpoints

As motivated in Chapter 1 there is a strong need to use sev-
eral modelling viewpoints (describing the structure, behaviour
and interaction view of the system) for system level test genera-
tion. This need was also recognized by Deng et al. in [DSWO04]
where a tightly-coupled model for software engineering was in-
troduced. The authors claim that this kind of model (using sev-
eral diagram types and abstraction levels) enables a more com-
plete testing approach.

In the literature only few approaches use several diagram types
of the different viewpoints for testing. Briand and Labiche show

�.� ���������� �������� 77

in "A UML-Based Approach to System Testing" [BL02] how to use
UML analysis artefacts as use cases, sequence and collaboration
diagrams, class diagrams and Object Constraint Language (OCL)
[Obj06b] expressions among those artefacts. Another approach
was introduced by Vieira et al. in "Automation of GUI Testing Us-
ing a Model-driven Approach" [VLH+06]. The authors use UML
use case, activity and class diagrams. The use case diagram is
always refined by an activity diagram, which is extended by
notes to connect it with the class diagram. The last approach
"UML-based integration testing" was introduced by Hartmann et
al. [HIM00]. The main focus is to generate test cases for inte-
gration testing by using UML statecharts refined with the CSP
(Communicating Sequential Processes) language. The usage of
CSP [Hoa85] can be compared with the usage of OCL refine-
ment in [BL02].

The usage of several modelling viewpoints is an important re-
quirement for our evaluation, because we aim to develop a holis-
tic testing approach, which uses information from different mod-
elling viewpoints.

�.�.� Integrated interaction viewpoint

Graphical user interfaces (GUIs) are one of the most commonly
used parts of today’s software [XM08]. Therefore GUI testing is
a very important task. To design test cases, which test the GUI
the interaction modelling viewpoint of the analysis model can
be used. The other possibility is to use separate models created
exclusively for GUI testing.

In the past several model-based test approaches have been de-
veloped to automate GUI testing as shown in the recent survey
from Memon and Nguyen in [MN10]. Early approaches as [SS97]
used finite state machines to generate test cases. Later on mod-
els as the event-flow graph [MSP01] and event-interaction graph
[XM08, MN10] were used. Recent approaches as [BM10] also
use the control-natural language (CNL) to generate test cases
for GUI testing. Except for [BM10] all GUI testing approaches
propose to build a test model separated from the system model.

The usage of GUI models as the interaction modelling viewpoint
is an important requirement for our evaluation, because we fo-

78 ������� ����

cus on BIS where the user interacts with the system through a
GUI.

�.�.� Model relations

Analysis models as the one created in Salger et al. [SSE09] show
that several elements as class and activity diagrams are not or-
thogonal, but strongly related to each other. Those relationships
are often created between diagrams belonging to the different
modelling viewpoints. Deng et al. in [DSWO04] states that there
exist several relationships between model elements. Also Binder
in [Bin99] discusses the topic of model relations. Both sources
state that the relations can be effectively used for testing, as test
cases validate the existence of relations during test execution.

The usage of model relations is an important requirement for
our evaluation, because this way the context for gathering infor-
mation from the analysis model for generating logical test cases
can be identified.

�.�.� UML for test modelling

Besides modelling of the SUT behaviour and then generating
test cases from those models, the UML can also be used for
modelling tests as such. This was the main idea for creating the
UML Testing Profile (UTP) [Obj07b] (see Section 2.3). There ex-
ist several approaches, which use UTP as test model representa-
tion. For example Baker et al. in [BRDG+08] introduces all UTP
concepts and explains how a UML model of a bluetooth proto-
col can be used to create an UTP model. This work was based
on several publications from Zhen Ru Dai as [DGNP04, Dai04,
BRR+06] and finally her phd thesis in [Dai06]. Other approaches
as [CYXZ05] and [LMdG+09] also use UTP as the test model no-
tation.

The usage of UML for test modelling is an important require-
ment for our evaluation, because UML is a widely-known lan-
guage for modelling BIS. While we already aim to use different
modelling viewpoints and UML for business analysis the same
modelling language should be applied for testing in order to
guarantee process consistency and usability for the test designer.

�.� ���������� �������� 79

�.�.� Test Model

Next to the possibility of modelling tests with UTP, there are
several publications which deal with the idea of a separate test
model. In [PP05], Pretschner and Philipps introduce several sce-
narios for model-based testing. One of those uses two models:
one for the development and one for testing. The authors state
that this would be the optimal scenario and would combine the
MBT and MDD advantages. The need for empirical studies on
this topic is needed.

The test model is the external view of the system, rather than
the internal in case of a system model as stated by Malik et al.
in [MJV+10]. In our literature analysis we have found several
approaches using test models for test case generation. Dai et al.
in [DGNP04] and [BRDG+08] uses UTP for testing a bluetooth
protocol. Gross et al. creates in [GSD05] a UTP test model for
generating built-in tests. Rumpe shows in [Rum03] how several
UML diagrams together with so called test patterns can be used
to create a test model. A test model of a GUI as an event-flow
graph is used by Memon in [MSP01]. Another MBT approach
from Bertolini and Mota [BM10] generates test cases from a test
model created by using the controlled natural language (CNL)
[CS08]. A survey from Denger et al. in [DM03] shows several test
design methods which are primary based on creating separate
test models.

The usage of a test model is an important requirement for our
evaluation, because test models are more abstract than analy-
sis models and contain additional information (like concrete test
data and expected results). In order to specify high quality test
cases, this information has to be managed in a separate test
model.

�.�.� Developer Model

Test models can be created explicitly for test generation or auto-
matically generated from existing development models. This has
a direct impact on the effort while using MBT as shown by Gül-
dali et al. in [GMS10]. The topic of automatic usage of developer
models in the context of MBT approaches was introduced by
the work of Dai in [DGNP04], [Dai04], [Dai06] and [BRDG+08].

80 ������� ����

Dai uses model transformation rules for creating a test model
from a system model. Gross et al. [GSD05] also introduces sev-
eral model transformation rules to create an older version of
the UTP model. The usage of transformations for MBT in the
context of the MDA was strongly encouraged by Torres et al.
in [TECMG09] and Gutiérrez et al. in [GECM+09]. A semiauto-
matic usage of developer models was introduced by Vieira et al.
in [VLH+06] and Hartmann et al. in [HVFR05].

The usage of developer models is an important requirement for
our evaluation, because parts of the analysis model are used dur-
ing test modelling. To lower the test modelling effort automatic
test model generation is needed.

Test Case Quality Attributes

Independent of the source for test generation, the important fac-
tor is the quality of test cases5 being generated. Zeiss et al. in
[ZVS+07] shows a quality model for test specifications based on
the ISO9126 quality standard [ISO04]. The quality model is di-
vided into seven main characteristics, as test effectivity, reliabil-
ity, usability, efficiency, maintainability, portability and reusabil-
ity. Two quality attributes as test understandability and analysabi-
lity are of interest for the research problem of the missing holistic
view. Additionally, the completeness and traceability of test spec-
ifications (not mentioned in [ZVS+07]) have to be analyzed in
this context. Like already mentioned in Section 1.1 if the holistic
view on the analysis model is missing during the test generation
process, then the test case quality with respect to the mentioned
quality attributes decreases. Therefore, we consider those qual-
ity attributes during the literature survey. We first provide clear
definitions for each of them:

����������������� describes the degree to which a test de-
signer understands if a test specification is suitable for his
needs.

������������� describes the degree to which a test specifica-
tion can be diagnosed for deficiencies.

5 By test cases we mean the logical test cases which can be part of a test model
(like in UTP), and concrete test cases used for manual or automated test exe-
cution.

�.� ���������� �������� 81

������������ describes the degree of information each at-
tribute of a test case (see Subsection 2.1.1) contains, which
is needed to execute him.

������������ describes the degree to which test cases are traced
back to the test basis (i.e. elements of the analysis model
or requirements specification).

The listed quality attributes have a hierarchical structure, which
is depicted in Figure 25. The holistic view influences the com-
pleteness and traceability attributes. The attended extraction of
information from several modelling viewpoints results in more
complete test models. The traceability to all viewpoints is possi-
ble only during the application of the holistic view. Further, the
completeness influences the understandability and analysability of
logical test cases within the test model. Finally, the traceability in-
fluences the analysability, because each element of the test model
can be traced back to the analysis model.

Figure 25: Dependencies between test quality attributes

�.�.� Understandability

The first test quality attribute understandability deals with the
sometimes subjective notion of how a test designer understands
the purpose and description of a test case. The related quality at-
tribute from Zeiss et. al. [ZVS+07] is also test correctness, which
denotes the correctness of the test specification with respect to
the system specification or the test purposes.

82 ������� ����

The understandability of test artefacts as logical test cases is im-
portant, since test cases have to be understood at every stage of
the software development process. The same understandability
should be given in new and maintenance testing projects. The
completeness quality attribute resulting from the application of
a holistic view has a direct impact on the understandability.

�.�.� Analysability

Besides the understandability also the analysability of test spec-
ifications is important. Test cases automatically generated from
models still have to be analysed for deficiencies. Zeiss et al. men-
tion in [ZVS+07] this maintainability characteristic as important.
They point out that especially the documentation and good struc-
ture of test cases have an influence on the analysability.

The analysability of logical test cases is important, since test de-
signers spend great part of their efforts in understanding and
analysing them. The evolving systems, which are build today re-
quire low maintainability of all artefacts of the software develop-
ment process. Logical test cases, which are analyzable through
good structure and relations to the underlying test architecture
and data improve its maintenance.

�.�.�� Completeness

Another test quality attribute is the test completeness. Deng et
al. [DSWO04] mentions that software testing and maintenance
has to be carried out in a more complete manner. The authors
show how test cases for functional and regression testing can
be generated by using a strongly intra-related model. The au-
thors claim that because the model is more complete than the
ones used in existing approaches, the generated test cases are
also more complete. While Deng et al. by complete means test
cases used for different test types (as functional and regression
testing), we define the test case completeness as containing all
information needed for test execution. Precisely, all attributes of
a test case from Section 2.1.1 are filled with data.

The completeness is important, since it is the main quality at-
tribute, which results from the application of the holistic view. It

�.� ���������� �������� 83

has also a direct relation to the understandability and analysabil-
ity of test artefacts. Since we are interested in the improvement
of the internal test quality in this thesis, the completeness of test
artefacts is a mandatory aspect.

�.�.�� Traceability

Besides the mentioned test quality attributes, the traceability of
test cases is essential for tasks as the coverage measurement or
the impact analysis. Different kinds of traceability links used in
software development were introduced by Ramesh and Jarke in
[RJ01]. In the context of model-based testing some approaches
deal explicitly with this topic. For example Naslavsky et al. in
[NZR07] shows how to guarantee traceability between UML se-
quence diagrams, model-based control-flow graphs and test gen-
eration logs. The mentioned artefacts are generated sequentially
and traceability links are incorporated into the generation pro-
cess. Unfortunately, the authors do not discuss the relation be-
tween traceability, coverage measurement and test case complete-
ness. Another example is the approach by Bouquet et al. in
[BJL+05], where a model in the B language was annotated with
requirement links. While generating test cases from the B mod-
els, traceability links to the requirements were incorporated. Dur-
ing the generation process a traceability matrix is created to visu-
alize the reached coverage. As in [NZR07] the influence on other
test case quality attributes was not discussed.

The usage of traceability is an important requirement for our
evaluation, because each test case should be traceable to the el-
ements of the test basis (analysis model or even single require-
ments). This way, the the basis from which the test case was
derived (especially modelling viewpoints) can be identified and
the test coverage be measured.

�.�.�� Case study and tool support

Besides the criteria introduced above, it is also important to
evaluate the quality of the analysed paper. For this, we define
two further criteria, namely the existence of according case stud-
ies and tool support for each approach. Those two quality fac-

84 ������� ����

tors are widely-used in the research community as described by
Mary Shaw in [Sha03]. The tool support criteria is important in
the context of model-based testing research to provide empirical
evidence and the proof-of-concept of the modelling and genera-
tion approach.

�.� ���������� ������� ����

According to the evaluation criteria from the previous section,
we have performed a detailed analysis of 33 approaches dating
back from 1999 to 2010. The results are shown in Figure 26.

The detailed description of each approach from Figure 26 would
be unnecessary long and would not provide the cognitions for
this thesis. That is why we define the following seven character-
istics to group and describe the found approaches:

1. Generation from system models

2. Generation from several modelling viewpoints

3. Generation using test models

4. Generation of test models from developer models

5. Generation using model relations

6. Generation from GUI models

7. Test case quality attributes

As for the evaluation criteria, we also mapped the different groups
of approaches to the underlying research problems in Figure 27.
For each characteristic, we briefly describe in the following para-
graphs the according approaches and select one or more repre-
sentatives. Those selected approaches will be introduced in de-
tail and are highlighted in Figure 26.

�.�.� Generation from system models

The generation of test cases from models can have several scenar-
ios as shown by Pretschner and Philipps in [PP05]. One possibil-
ity is to generate test cases from so called system models. We
have found that several approaches as [VLH+06, PJJ+07, HN04,
HN03, BL02, GECM+09, DSWO04, NFTJ06, Bin99, UL07, FL02]

�.� ���������� ������� ���� 85

Figure 26: Evaluation Table

86 ������� ����

Structure

Behaviour

Interaction

Analysis model

"before"

Test
Model

(structure)

Test
Designer

creates
manually

Test
Model

(behaviour)

creates
manually

generate

generate

Test Cases

Test
Model

(interaction)

creates
manually

ge
ne

ra
te

6

5

6

1 4

2

7

3

Figure 27: Approach characteristics mapped to the contribution figure

use models of the system behaviour to generate test cases. We as-
sume that those models were not used for code generation as this
would cause the problem mentioned by Pretschner and Philipps.
If code and test cases are generated from the same model, then
the tests are meaningless. Only the functionality of the code gen-
eration algorithm could be tested.

We have already mentioned that system models differ from test
models in certain aspects, as abstraction level or modelling view.
Therefore pure system models cannot be directly used for test
generation. Instead additional information has to be added by
test designers. In all found approaches the additional informa-
tion has been added by using special annotation languages, mod-
elling notations (for example OCL), contract-based modelling,
etc.

To show how system models can be used for test generation, we
selected a representative approach provided by the international
research project called AGEDIS which took place from 2001 to
2004. Several publications as [HN04, HN03] or [PJJ+07] were
published by the AGEDIS participants. The general idea was to
automate the testing activity (design and execution of test cases)
within software engineering projects for object-oriented and dis-
tributed systems. The approach uses a proprietary modelling
language called AGEDIS modelling language (AML). This lan-

�.� ���������� ������� ���� 87

guage is very similar to the UML. The authors use class, state and
object diagrams for test case generation. The generation process as
described by Pickin et al. in [PJJ+07] consists of four steps:

1. Formal specification derivation - on the fly generation of
a labelled transition system (LTS) for a UML specification
(class together with the related state and object diagrams)

2. Formal objective derivation - definition of a LTS seman-
tic for test objectives which are defined as UML state dia-
grams

3. Test synthesis - synthesis of the LTS created in 1. and 2.
which results in test cases

4. UML test case derivation - a precise definition of a test
case (similar to UML sequence diagrams) is derived from
the result of 3.

As AGEDIS considers not only the derivation, but also execution
and evaluation of the test cases there are more than four steps as
introduced above. In the context of this phd thesis the algorithms
performed within step 1 and 3 are interesting.

First, the initial UML system specification is transformed into
a LTS in step 1. For test generation purposes the so called test
objectives (partial state diagrams with regular expressions de-
scribing the state sequence to be reached) have to be modeled.
The whole approach is based on the synthesis of the LTS with
the test objectives. This reflects the observation that pure system
models cannot be directly used for test generation.

Second, the usage of several diagram types relates to the idea
of the holistic view. However the authors do not provide any ex-
planation why those models were used. The assumption is that
UML design models can be used for test purposes and the three
selected diagram types describe an object-oriented system. The
authors assume for example that for each main class a state di-
agram is given. Further, there exist an object diagram defining
the initial state of the application.

As shown in Figure 26 the approach from Pickin et al. [PJJ+07] Cognitions for this
thesisdoes not use any models of the GUI. The only model relations

we could identify was the standard UML typization between the
class and state diagrams. Also, no separate test model but the
UML system specification together with the test objectives was
used in this approach. Because the UML system specification

88 ������� ����

is used for test purposes (through the generation of the LTS),
there exist a certain usage of developer models. Unfortunately
no information about the test case quality (understandability,
analysability, completeness or traceability) is given in [HN04],
[HN03] or [PJJ+07]. Several case studies within different indus-
tries were described in the AGEDIS final report [HN04]. As one
of the goals of the AGEDIS project was to create a tool frame-
work, very good tool support exists.

The AGEDIS modelling and test generation approach is relevant
for this thesis, since it shows that ’pure’ generation from sys-
tem models should not be the goal within model-based testing.
Besides the system specification with AML additional LTS gener-
ation and synthesis with test objectives is needed. Different as in
our approach, the usage of modelling viewpoints and relations
between them was not considered.

�.�.� Generation from several modelling viewpoints

In the last paragraph we have mentioned several approaches
which use system models mostly described with one to two di-
agrams to generate test cases. In order to introduce the work
related to the holistic problem from Chapter 1 we identified ap-
proaches, which use several diagrams from different modelling
viewpoints for test case generation. As diagrams are used in
modelling viewpoints, but the later are not explicitly mentioned
in the found approaches, we analyze the used diagrams and re-
late them to its viewpoint.

A detailed characterization and comparison of almost 50 model-
based testing approaches has been introduced by Dias Neto et
al. in [DNSVT07]. The authors provide a list of all model types
found in the analyzed approaches. As mentioned in Section 1.1,
the approaches use UML statechart, class, sequence, use case or
activity diagrams for test case generation. We have analyzed 15
UML-based approaches found in the survey (qualitative analy-
sis). We have found that three approaches (namely Briand and
Labiche [BL02], Hartmann et al. [HIM00], Vieira et al. [VLH+06])
use more than two UML diagrams to generate test cases.

Besides the three mentioned approaches, there exist four other,
which fall into this category. Deng et al. in [DSWO04] uses class,
activity and use case diagrams to generate test cases. Nebut et

�.� ���������� ������� ���� 89

al. uses in [NFTJ06] use case, sequence diagrams and further
specification of contracts. The usage of state, class and object
diagrams seems to be used by many approaches as [UL07, Wei09,
OA99]. Some detailed thoughts of how each UML diagram can
be used for testing was introduced by Robert Binder in [Bin99].

We have selected the approach from Briand and Labiche [BL02]
as a representative, because of the very high citation rate and
similar analysis model as the one used in this thesis [SSE09]. The
authors show how to use UML for business analysis with dia-
grams as use case, sequence and collaboration diagrams, class
diagrams and Object Constraint Language (OCL) expressions
among those artefacts. The underlying methodology is called
TOTEM (Testing Object-Oriented using the UML). To generate
test cases the following seven steps have to be executed:

1. Check completeness, correctness, consistency of the Analy-
sis model

2. Derive Use Case dependency sequences

3. Derive test requirements from system sequence diagrams

4. Derive test requirements from system class diagram

5. Derive variant sequences

6. Derive requirements for system testing

7. Derive test cases for system testing

8. Derive test oracles and harness

In [BL02] only steps 2,3 and 5 are introduced. Especially the
checks performed in step 1 are interesting for the topic of test
case completeness. Unfortunately, no further references on this
topic in the context of the TOTEM methodology could be found.

Briand and Labiche define test requirements as logical test cases,
which are supplemented with detailed detailed information for
test execution (steps 7 and 8). The derivation of test requirements
uses:

• UML activity diagrams to derive use case sequences

• UML sequence diagrams to derive test execution paths

• UML class diagrams to derive object sets to be tested (ad-
dressed as future work)

90 ������� ����

For each derivation some algorithms and techniques (like depth
search, regular expressions, OCL refinements) are provided. The
usage of several diagrams is motivated by the fact that analysis
model is used as test basis and that this model is described by
several interconnected diagrams. The usage of an analysis model
is motivated by the fact that in a object-oriented UML develop-
ment the system level is based on business analysis artefacts. The
authors state that there is no well-accepted standard for UML
analysis models [BL02, p.2]. The TOTEM methodology defines
how an UML analysis model should look like.

Knowing that [BL02] uses several diagrams, the next question is
how the model relations are used in this context? The model re-
lations can be found in the meta-model of the TOTEM methodol-
ogy [BL02, p.30] shown in Figure 28. As highlighted the Analysis
Document provides the relation between the different diagrams
(interaction and class) and further elements as UCSequentialDe-
pendencies and Data Dictionary Description, which are used in the
approach.

Figure 28: TOTEM meta-model from [BL02, p.30]

Similar to Pickin et al. [PJJ+07] they use system models together
with some additional test information (here OCL expressions).
Therefore no explicit test model is given. As no evaluation study

�.� ���������� ������� ���� 91

is provided, there is no information about the quality of the gen-
erated test cases. The modelling and generation approach from
[BL02] concentrates more on the fault-detection rate and model
coverage, rather than on the test case quality attributes. The au-
thors mention some tool support for their approach.

Summarizing, we identified approaches as Briand and Labiche
[BL02], which use several diagrams representing the structure Cognitions for this

thesisand behaviour modelling viewpoint for test generation purposes.
The underlying meta-model defines relations between them. Un-
fortunately the algorithms from steps 2-4 do not use the relations
within a context (for example use case scenario and the related
parts of the dialog and data model), but try to derive test require-
ments for the single modelling viewpoints. This observation is
relevant for our approach, since we aim to use the relations at
the meta-model level in a context relevant for test generation
purposes.

Further observation is that approaches using several diagrams
consider the structure and behaviour viewpoint without consid-
ering the interaction viewpoint. Only Vieira et al. in [VLH+06]
includes information about the GUI in their model, but incor-
porates it in the structure and behaviour modelling viewpoint.
This way, no clear interaction viewpoint and its relation to the
systems behaviour and structure can be identified.

Finally, approaches using several diagrams analyzed here were
good candidates for applying the holistic view during the test
generation process. Only two of the three modelling viewpoints
are used. The context-based relations between them are not clearly
defined by means of a meta-model. The aspect of the internal test
quality was mentioned in [BL02], but not further analyzed.

�.�.� Generation from test models

We have already mentioned that system models differ from test
models in certain aspects (see [MJV+10] or [WL10]). Until now,
we have introduced several approaches using system models to-
gether with additional information (like the test objectives in
[PJJ+07] or test-related OCL refinements in [BL02]) to generate
test cases. Assuming that test models are created by different
roles (test designers rather than business analysts) and contain

92 ������� ����

test-related information, we have identified several test model
based approaches.

One group of the approaches as [VLH+06, OA99, MXX06, ISBP07,
Wei09, FL02, GMWE09] uses standard UML diagrams together
with additional test information. The additional test information
if often specified with the OCL as shown by Bouquet et al. in
[BGL+07]. Especially for testing GUIs test models like the event-
interaction graph in [MSP01] or CNL-specifications in [BM10]
are used. The UML Testing Profile is also widely used as a
notation for a test model as shown in [DGNP04, Dai04, Dai06,
BRDG+08, CPT+06] and [GSD05]. Some proprietary test models
which derivation is based on use case descriptions was refer-
enced in the survey from Denger et al. in [DM03]. The use case
models used as test models can be also reengineered by analyz-
ing existing test cases as shown by Hasling et al. in [HGB08].
The last group of approaches uses test patterns as an additional
way to model tests with UML. The exemplary publications are
[Rum03] from Bernhard Rumpe or Robert Binders book [Bin99].

We have selected the publication "Model-Based System Testing
using Visual Contracts" by Güldali et al. as a representative ap-
proach. In [GMWE09] the test model consists of so called visual
contracts (VC) [Loh06] which enable the visual representation
of the Design by Contract idea. For each system use case the
pre- and postconditions are specified by two object structures
which are modeled with UML object diagrams. The test case
generation process is based on classical techniques like equiva-
lence and boundary value analysis. For each specified object of
the precondition one or more instances are generated and after-
wards linked to the postcondition object. This way a set of test
input data together with the expected result can be generated.

In order to execute the test cases, some model transformation
rules based on an implementation model are provided. This
way the completeness of the generated test cases according to
implementation details is guaranteed. The VC are created by
test designers and therefore act as a separate test model. Both
the system and the test model are described with UML. In this
approach no GUI models (interaction modelling viewpoint) are
used for test case generation. The relations between models and
automated usage of developer models are not considered. The
completeness and traceability of test cases are mentioned as im-
portant in this approach. The authors mention some tool sup-

�.� ���������� ������� ���� 93

port for generating and transforming the logical into concrete
test cases.

The observation from the analysis of approaches like [GMWE09]
is that test models differ from analysis models by incorporating Cognitions for this

thesistest-related information. Test models are used by test designers
and not business analysts. Further observation is that no auto-
mated usage of analysis models for generating test models is
used. In the cited approaches the interaction modelling view-
point is not used within the test modelling. Models like the VC
act as test models and through the use of model transformations
the internal quality of generated test cases is increased.

�.�.� Generation of test models from developer models

Several publications as [PP05, MJV+10, WL10] mention that sys-
tem and test models differ from each other, but also contain
similar information. Like shown by Pretschner and Philipps in
[PP05] there exist several scenarios how to use system and test
models for testing. One possibility is to derive the test model
from the system specification. In the case of the model-driven
development process, this task can be partially or even fully au-
tomated.

The topic of automatic usage of developer modela for the cre-
ation of test models was investigated in several publications. For
example Torres et al. presents in [TECMG09] a survey of ap-
proaches using MDA techniques (like model transformations)
for testing. Guitierrez et al. in [GECM+09] uses model transfor-
mation techniques to create a test model containing of test sce-
narios and operational variables. In the context of the UML Test-
ing Profile several publications deal with the (semi-)automatic
derivation of such test models. To mention is the work of Zhen
Ru Dai ([Dai04, DGNP04, Dai06]), Baker et al. in [BRDG+08],
Lamancha et al. [LMdG+09] and Chen et al. [CPT+06]. As the
work of Dai is very representative for the the category described
in this subsection, we will describe it now in detail.

The issue of automatically reusing system models for test mod-
elling was investigated by Zhen Ru Dai in her dissertation called
"An Approach to Model-Driven Testing" [Dai06]. Dai uses model
transformations to transform several UML diagrams into a test
model. This model is described with the UML Testing Profile

94 ������� ����

(UTP) [Obj07b]. The standardization of UTP was strongly influ-
enced by the work of Dai (see [Dai04], [DGNP04] or [BRDG+08]).
The UTP was already introduced in Section 2.2.

The system model is introduced by an example of a roaming ap-
proach for bluetooth devices. Dai uses several UML 2.0 diagrams
like: class, package, composite structure, activity, sequence and
state diagrams to describe the system. Although this is a model
for an embedded system, it can be seen as an analysis model in
the early phase of the system development process. On the other
side Dai derives a test model for almost all test levels like accep-
tance, system, integration and also unit testing. In our opinion
the analysis model has an abstraction level which can be used
only for system testing. This way the system model used for
Dai would be more a design model according to the V-Model
[Boe79].

For the transformation the Query/View/Transformation (QVT)
[Obj08a] is used. The transformation process itself incorporates
the so called Test Requirements which define how system model
elements should be used for test purposes. For example the
choice of the SUT component or configuration of the test system.
This way Dai appends test information during the transforma-
tion process.

First observation is that transformation rules introduced in [Dai06]
consider only the single elements of the system model. The rela-
tions between for example the use case and the data model are
not investigated. This can be influenced by the fact that the sys-
tem model has no meta-model other than the one of the UML.
For example in Salger et al. [SSE09] the meta-model enables the
clear definition of the model relations used by Business Analysts.

The usage of model transformations for automatic usage of de-
veloper models is very interesting to solve the problem from Sec-Cognitions for this

thesis tion 1.1. However, during test design the important task is the se-
lection of test cases from models. The examples of the behaviour
modelling viewpoint introduced in [Dai06] as in [DGNP04] or
[Dai04] are mostly sequence diagrams with sequential messages
being send among lifelines. This way, the transformations use
those sequence diagrams as test cases in the UTP model and
no test selection is performed. In the book from Baker et al.
[BRDG+08], which deals with the UTP and the transformation
done by Dai, also other diagram types like activity diagrams

�.� ���������� ������� ���� 95

with decision nodes are considered. But also there no clear test
selection method is presented. The point is that analysis models
for Business Information Systems consist of behaviour models
with different scenarios and the test selection is strongly needed.

Approaches similar to Dai et al. fulfills several of our evaluation
criteria. They use several UML diagrams for test generation and
test modelling purposes. Test models described with the UTP
are automatically created by reusing system models with model
transformations. The approaches are focused on the system test-
ing level. Still, no model relations or the interaction modelling
viewpoint were used. All publications provide examples of in-
dustry case studies together with tool support. Unfortunately,
the evaluation criteria regarding internal test quality were note
met here. Therefore the aspect of a holistic view on several mod-
elling viewpoints is missing in such approaches.

�.�.� Generation using model relations

While in this phd thesis we investigate the usage of a holis-
tic view on several related models, it is important to identify
approaches already using this modelling feature. Back in 1999
Robert Binder already investigated the role and different types
of model relations in [Bin99]. Especially the relation between
behavioural models like use cases and structure models like
class diagrams was investigated by approaches as Kösters et al.
[KSW01]. Based on concept of activity graphs from [Win99], the
early version of the UML model was refined with the appropri-
ate coupling between use cases and class diagrams. This way,
the the quality of the generated tests and the requirements spec-
ification could be supported through validation and verification
measures.

The importance of model relations has motivated the work of
Deng et al. in [DSWO04]. The authors propose a so called Seman-
tic Software Development Model (SSDM) which defines single
models for requirements, design, implementation, testing and
maintenance. The single models of SSDM are described with
different UML diagrams like class, use case, sequence, activity,
statechart, collaboration diagrams. The authors define several re-
lationships between models at different levels. For example re-
lations between class diagrams or use case diagrams and a set

96 ������� ����

of dynamic UML diagrams: "A use case is illustrated by several
dynamic UML diagrams" or "The objects in a Sequence/Collab-
oration diagram and the objects described by a statechart dia-
gram are the instances of the classes in the corresponding Class
diagram" [DSWO04, p. 3]. The SSDM is used to generate test
cases.

While describing the approach from Briand and Labiche (see
Subsection 3.2.2), we have mentioned the different kind of rela-
tions used. Other examples of approaches using model relations
are [HVFR05, HIM00, VLH+06]. The last one can be seen as a
representative approach for this category and will be described
in detail.

An interesting approach for generating test cases from UML
models using model relations was introduced by Vieira et al. in
"Automation of GUI Testing Using a Model-driven Approach"
[VLH+06]. The authors use UML use case, activity (behaviour
viewpoint) and class diagrams (structure viewpoint) as a test
model for test case generation. The use case diagram is always
refined by an activity diagram, which is extended by notes. The
notes or annotations as the authors call them, are used to link
each activity with the elements of the class diagram being used.
The task of annotating the model as well as creating the mod-
els is done manually. In the extended version of this paper by
Hartmann et al. [HVFR05] the authors mention a semiautomatic
usage of the mentioned UML diagrams which are created by the
development team.

The generation of test cases is based on a control-flow (all-path-
criterion) together with data-flow (category-partition method)
test selection. This way a very high number of test cases can
be generated. This is also a current problem of this approach, be-
cause in [VLH+06] for a simple example of six sequentially ex-
ecuted use cases, over 41000 test cases are generated. This high
test case number is not affordable to use in practice as the au-
thors state.

Vieira et al. shows how to use UML models for test genera-
tion. The motivation for the usage of those three UML diagramsCognitions for this

thesis is that those are widely accepted and as describing workflows
are well suited for creating automate test drivers. As the ex-
tended approach from Hartmann et al. [HVFR05] semiautomat-
ically uses the developer models, the assumption is that those

�.� ���������� ������� ���� 97

UML diagrams are also used by business analysts. The idea of
annotating the activity diagram by test designers sounds inter-
esting, but model links created by developers are not mentioned.
Also the topic of test case quality reached by the approach is
not mentioned. The authors concentrate on the model cover-
age reached by their approach. Both publications [VLH+06] and
[HVFR05] provide small case studies and tool support for their
approach.

The aspect of model relations created manually by test design-
ers is interesting for this thesis. In our motivation we mentioned
the different modelling viewpoints and relations between them.
Different as in [VLH+06] we aim to use linkage between mod-
els (instance of model relations at the meta-model level) created
already by business analysts. Vieira et al. also does not analyze
the different kinds of relations between models and does not
provide a clear meta-model as we do.

�.�.� Generation from GUI models

An important group of approaches relevant for this phd thesis
are the GUI testing approaches. A recent overview of such ap-
proaches has been introduced by Memon and Nguyen in [MN10].
First, it is important to say that all GUI-based approaches use
separate test models for test generation. Some early work on this
field used finite state machines for generating GUI test cases as
[SS97]. In the last subsection, we introduced the approach from
Vieira et al. [VLH+06], where a separate class diagram described
the GUI structure and was used in the annotations of the activ-
ity diagram. Another possibility is to use a textual specification
language like the CNL in [BM10], which includes terms related
to the GUI.

Most of the approaches as [MSP01, Xie06, XM08, QJ09] use mod-
els of the GUI events. The generated test cases are sequences of
events to be executed. Special kind of models, which include the
positive and negative aspects of GUI’s behaviour as the undesir-
able malfunctions is applied in Belli et al. [BBH05, BBW06]. The
authors use the term holistic view in this context as referring to
the complementary modelling of undesirable behaviour of the
GUI.

98 ������� ����

As the work of Memon and Xie had a strong influence on this
type of testing, we select their publication [XM08] as the repre-
sentative one and describe it in detail.

In "Using a pilot study to derive a GUI model for automated
testing" [XM08] Xie and Memon introduce a technique, which
uses an event-interaction-graph (EIG) to generate test cases. The
authors mention the typical problems on this field like the enor-
mous input event interaction space, maximization of fault detec-
tion while targeting a subspace and high test case length. Those
problems were not solved by current approaches on this field or
non clear empirical evidence has been shown. That is why the
authors searched for new techniques dealing with the mentioned
problems.

In the previous work of Memon and Xie (see [MSP01] or [Xie06])
the authors defined several hypothesis about the typical defect
types within GUI testing and how to identify them. For exam-
ple only few events of a GUI in a certain context (e.g. typing a
very long text into a dialog field) lead to a crash. Based on this
intuitive ideas, the authors defined new test coverage criteria
like the minimal effective event-context (MMEC). The MMEC is
defined as the shortest sequence of preceding events needed to
detect the fault. The validation of this test coverage criteria and
the EIG as a test model has been conducted by performing sev-
eral case studies. Namely they used the universities open-source
office suite and four open-source projects.

The chosen approach is based on the computation of the MMEC.
The MMEC is computed while executing test cases which are
generated from an EIG by using the coverage criteria introduced
in [MSP01]. The SUT is seeded with faults using the mutation
technology . Each time a mutant is killed (by finding a defect) the
MMEC is calculated. While the MMEC searches for the shortest
sequence of events in a test case, the length can be reduced. The
authors conducted this process (creating an EIG, seeding faults,
executing test cases and computing the MMEC) on the five men-
tioned open-source projects. They compared the found defects
with a bug tracking database and identified four regular expres-
sions to describe the MMEC in each case. This way several bugs
found in the previous versions and new bugs in the mentioned
open-source software could be find.

�.� ���������� ������� ���� 99

Our representative approach for generating test cases from GUI
models like the other mentioned approaches does not use UML. Cognitions for this

thesisSince in this thesis a consistent UML modelling approach is re-
quired, we have identified the need for UML-based GUI mod-
elling. The notation of an EIG is similar to the UML state di-
agrams and describes only the behaviour part of the GUI. We
could not identify approaches which automatically uses system
models to derive a GUI test model. In one publication from
Memon et al. [MBN03] the EFG was reverse engineered from
the existing code. The test cases generated from the EIG were
clearly traceable to the test model and could be analyzed after
the defect detection during the test execution. The authors pro-
vide several case studies and good tool support as mentioned in
[XM08].

�.�.� Test case quality attributes

Out of all approaches analysed during the literature evaluation,
only very few consider the topic of test case quality attributes
like understandability, analysability, completness and traceabil-
ity. Compared with that almost all publications concentrate on Cognitions for this

thesisthe defect-detection rate or reached test coverage in terms of
code coverage. Looking at Figure 26, we could identify the im-
portance of traceability in several approaches as [MSP01, BRDG+08,
BM10, FS05, Wei09, PPW+05, LMdG+09, HGB08] and [XM08].
The analysability issue of the generated test cases was consid-
ered by Xie and Memon in [XM08] while computing the MMEC
after the test execution. The completeness of test cases with re-
spect to implementation details was only considered in Güldali
et al. [GMWE09]. Finally, the understandability of generated test
cases was only partially considered by Offutt and Abdurazik in
[OA99]. Since the internal quality of generated test cases is im-
portant as explained earlier in this chapter and stated by [ZVS+07]
and [PWGW08], we identify a need for further research on this
topic in this thesis.

The only publication identified in our survey, which provides
empirical evidence for analysing the internal test case quality is
the one from Zeiss et al. in [ZVS+07]. The authors introduce a
quality model for test specifications, which was derived from the
ISO 9126 software quality standard [ISO04]. For a subset of the

100 ������� ����

quality attributes from the derived quality model some metrics
were defined using the Goal Question Metric approach [BCR94].
For example, the analysability quality attribute was measured
by the complexity violation metric. The complexity could be
measured for example with the McCabe’s cyclomatic number
[McC76].

The subset of 10 quality attributes was applied to four test spec-
ifications described with the standardized TTCN-3 specification
language [TTC05]. For each quality attribute one or more metrics
were applied. By defining boundaries for each metric, violations
and possible quality improvements of the test specifications have
been shown. Unfortunately only one (namely analysability) of
the four quality attributes relevant for this thesis was considered
in this evaluation. Further the specification of tests with the UML
rather than TTCN-3 is of interest in our context.

Excursion: Term "holistic view" in model-based testing

In this thesis, we use the term "holistic view" and "holistic model-
based system testing" to describe the research problem of apply-
ing a special view on several intra-related modelling viewpoints
in a certain model-based testing scenario (using analysis models
to generate test model). In fact, the term "holistic view" is not
new and has been introduced by Fevzi Belli in a conference pa-
per from 2001 [Bel01] and a technical report called "A Holistic
View for Finite-State Modeling and Testing of User Interactions"
back in 2003 [Bel03]. The author uses this term to describe a
test modelling and generation approach considering the positive
(desired) and negative (undesired malfunctions) aspects of the
SUT. This way, the approach presented in this thesis and the one
introduced by Fevzi Belli both concern modelling aspects. The
difference is that Belli concentrates only on modelling the GUI
(interaction modelling viewpoint) of test model, rather then the
whole model landscape of analysis models.

�.� ������� 101

�.� �������

Until now we have introduced several groups of approaches and
compared them according to predefined evaluation criteria in
Figure 26. For each group we have chosen a representative ap-
proach and described it in detail. There are some general results
of the literature evaluation, which can be summarized as fol-
lows:

• Few approaches use several intra-related modelling view-
points for test generation (missing holistic view)

• The interaction modelling viewpoint is not considered as
an integral part of the analysis model

• GUI models are mostly separated from analysis models
and created exclusively for test purposes

• Model relations are not described within underlying meta-
models and their usage in a context is missing

• Test models with additional and independent test informa-
tion are needed

• Automated use of analysis models is possible through model
transformations

• Internal test quality was considered by very few approaches

Our literature survey provides deeper insight into the problems
introduced in Chapter 1. We investigated several approaches ac-
cording to evaluation criteria (see Section 3.1) derived from the
problem statement of this thesis. By showing that only few ap-
proaches use several diagrams and very few approaches deal
with the interaction viewpoint integrated into the analysis model,
we argument for the missing holistic view problem. Further the
missing usage of model relations is related to the same prob-
lem. Influenced by the work of Dai et al. [DGNP04], we identify
a strong need for automatic usage of developer models and a
possible solution through the usage of model transformations.

A very important conclusion is that the quality of test cases with
respect to understandability, analysability and completeness was
investigated only by four approaches. The missing holistic view
and conceptual and empirical evidence for its influence on the
internal test quality leads to a new research opportunity in the
field of model-based testing.

Part II

A P P R OA C H A N D E VA L U AT I O N

4
M E TA - M O D E L A LG E B R A

The solution developed for the research problems of this thesis
is based on several meta-models (analysis and test meta-model).
We discovered the need for a meta language, which would allow
us to describe the properties of meta-models and the behaviour
of methods of which the solution consists. This language should
support the method engineer (in the case of this phd thesis its
author) to define operations performed on meta-models in a sys-
tematic and understandable way. Like in mathematics, the al-
gebra allows to define operators between sorts. Our language
called meta-model algebra, allows us to define meta-model op-
erations like test coverage measurement between meta-models.

This chapter provides a brief introduction into the meta-model
algebra. We start with a short motivation and basic definitions.
Then, we introduce the main concepts, namely the algebra op-
erations and the related meta-model properties. Afterwards, we
introduce the specification language and the instantiation con-
cept of the algebra. At the end, we discuss its applicability and
summarize the chapter.

C�������
4.1 Motivation . 106
4.2 Definitions . 108
4.3 Algebra Meta-Model . 109
4.4 Related work . 110
4.5 Meta-Model Properties 112
4.6 Algebra Operations . 116
4.7 Algebra Specification Language 120
4.8 Algebra Instantiation . 122
4.9 Applicability discussion 123
4.10 Summary . 124

105

106 ����-����� �������

�.� ����������

The development of methods for model-driven software engi-
neering uses meta-models to describe the structure of artefacts
on which they work on. The according terms known from theNeed for a

meta-model algebra literature are method engineering [Bri96] and meta-modelling
as for example the OMG Software & Systems Process Engineer-
ing Meta-Model (SPEM) [Obj08b]. Another example is the Meta-
Object Facility (MOF) [Obj06a], which can be used to define lan-
guages. In all mentioned domains the meta-modelling of struc-
tural aspects (for example definition of meta-models according
to the MOF-based languages) rather then behavioural (for ex-
ample transformations of meta-models) aspects are focused. Ad-
ditional techniques as constraints modelling (for example OCL
[Obj06b]) or declarative model transformations (for example QVT
[Obj08a]) could be used to specify the behaviour, but they miss
the specification of the required meta-model properties as travers-
ability or structural mapping.

The general idea of the meta-model algebra is to support the
specification of the behaviour of operations on meta-models and
the required properties of meta-models within method engineer-
ing. In Figure 29, we depicted the idea by using views on theGeneral idea
structure, behaviour and roles in method engineering. The main
artefacts are meta-models, which describe the structure of the
data the method operates on. First, the behaviour of the method
is described by the algebra operations (which represent the sig-
nature of a method). Second, algorithms (which represent the se-
mantic of a method) refine the algebra operation. Both artefacts
are created by a method engineer and are based on meta-models.
Finally, the algorithms are implemented into tools and executed
by software engineers in a project on meta-model instances.

In the case of this thesis, we use method engineering to develop a
holistic model-based testing approach, which consists of severalThesis context
meta-model operations. Each operation is based on the analysis
and / or test meta-model (see Chapter 2). The method engineer
from Figure 29 is the thesis’ author. The implementation of al-
gorithms is part of the prototype used in the evaluation chapter.
The execution of our approach can be done by software engi-
neers in model-driven development projects.

�.� ���������� 107

Method
 Engineer

Model

Tool

Software
Engineer

Algebra Operation
(Signature)

Algorithm
(Semantic)

exec

Meta-Model

instance_of

implements

re!nes

based_on

Structure Behaviour Role

1

2

3

Properties

Figure 29: General idea of the meta-modelling with the meta-model
algebra

To motivate the usage of algebras for meta-models, we provide
an exemplary definition of an algebra A:

A = (M, (4.1)

select : M ! M, (4.2)

transform : M ! M, (4.3)

cover : M,M ! M) (4.4)

Exemplary terms specified with algebra A:

select(m) (4.5)

transform(select(m)) (4.6)

In the example provided above, we define an algebra A. This
algebra is defined over the universe of all meta-models M. The
algebra consists of two unary operators select (selection of test
cases), transform (model transformation). This way, the signature
of meta-model operators is specified (see step 1 in Figure 29).
Since the mentioned operations cannot work on any type of
meta-model (for example to select test cases the traversability

108 ����-����� �������

of meta-models is needed), the meta-models M have to fulfill
certain properties. Then, terms like 4.5 (selection of logical test
cases based on the analysis meta-model structure) or 4.6 (trans-
formation of the test selection results) with the variable m 2 M

can be constructed. But, to develop a holistic method in this the-
sis, also the semantic of the operations has to be defined. This is
done by defining algorithms. The specification of algebra oper-
ations with meta-model properties together with algorithms is
the goal of the meta-model algebra.

Since the definition of an complete algebra, which includes all
possible operations on meta-models would require a separate
phd thesis, we concentrate on a set of operations relevant for theCustomization
holistic model-based testing. We apply the set of operations to
concrete meta-models (see analysis and test meta-models from
Chapter 2) in the next chapter. In the context of model-driven de-
velopment, further possible operations could be identified. Since
the meta-model algebra is not the main part of this thesis, we
will give an outlook of possible extensions as future work.

�.� �����������

We provide the following definitions for the purpose of this the-
sis:

����-����� ������� consists of one or more operations and
their related properties, which are performed on single or
multiple meta-models.

������� ��������� specifies an operation, which is performed
on elements of one or several meta-models. Each operation
has a signature, which consists of an input and an output
set of meta-model elements. Both sets can consist of ele-
ments of the same or different meta-models. The concrete
specification of an algebra operation is done by a method
engineer within an algorithm. We assume that algorithms
are implemented in a tool and executed automatically.

����-����� �������� defines an abstract property, which is
fulfilled between elements of single or multiple meta-mo-
dels. Properties are defined over an abstract and not con-
crete meta-model (for example analysis or test meta-model).

�.� ������� ����-����� 109

An algebra operation is always based on one or several
meta-model properties and can be only applied on meta-
models for which the property holds.

����-����� ������� ������������� takes place together with
the instantiation of the meta-models used in the meta-model
algebra operations. The operations are refined as concrete
algorithms and implemented (instantiated) for automated
execution.

�.� ������� ����-�����

In Figure 30, the meta-model of the algebra is shown. The alge-
bra consists of several operations which can be performed on
meta-models. The algebra operations and the properties are the
main concepts of the meta-model algebra. Each operation has
one property on which it is based on. Further, each operation
uses one or several meta-models to define the input and output
sets. A property is described over an abstract meta-model (high-
lighted in Figure 30), since it defines an abstract property which
can hold on any concrete meta-model.

Figure 30: Meta-Model of the Meta-Model Algebra

110 ����-����� �������

Each algebra operation is refined by one or more algorithms.
Let us consider the distinction between algebra operations and
algorithms in the meta-model from Figure 30. The algebra op-Algebra operation

vs. algorithm erations represent the high-level view (what / signature), while
the algorithms represent the concretization of each algebra oper-
ation (how / semantic). We have chosen this distinction because
of the fact that there can be several concrete algorithms, which
can be mapped to one algebra operation. Each algorithm can use
a different technique (for example sequential, parallel or recur-
sive algorithms) to produce the output set based on the input set
of meta-model elements. This distinction can be also compared
to programming languages: the algebra operations are the signa-
tures and algorithms the body of methods.

Together with the instantiation of the meta-models, the imple-
mentation of the algorithms into source code takes place. The
implemented code is executed on models, which are based on
meta-models used as the input and output set of algebra opera-
tions. More detailed description of the instantiation is provided
in Section 4.8.

We have chosen this meta-model structure because of the sim-
plicity and usability of the algebra for the method engineer. Be-
sides the operation and property elements, further ones formal-
izing the semantics by detailed constraints of each operation or
property would be possible. For the purpose of this thesis a lan-
guage, which supports the specification of the syntax and rigour
semantics of operations is relevant. The specification of more pre-
cise formal semantics of operations (for example with algebraic
specification [EM90]) is not part of this thesis.

�.� ������� ����

In the literature the topic of algebra is known from the math-
ematics. Algebra is the branch of mathematics concerning the
study of the rules of operations and relations, and the construc-
tions and concepts arising from them, including terms, polyno-
mials, equations and algebraic structures [BS81]. There are differ-
ent types of algebras. For the purpose of this thesis, the so called
elementary algebra, which consists of variables, operations and
equations is relevant. In its simplest meaning in mathematics

�.� ������� ���� 111

and logic, an operation is an action or procedure, which pro-
duces a new value from one or more input values. There are
two common types of operations: unary and binary. The meta-
model algebra operations used in this thesis are both unary (sin-
gle meta-model operations) and binary (multiple meta-model
operations).

In the field of computer science the domain of algebraic speci-
fication is a formal process of refining specifications to system-
atically develop more efficient programs. Ehrig and Mahr intro-
duced in [EM90] the concept of signature algebras, which are
defined over a set of sorts (data structure) and operations. Se-
mantics in this context is defined by equations over the men-
tioned sorts by using operations. This fundamental concept is
applied within the meta-model algebra by replacing sorts with
meta-model definitions and operations with algebra operations.

In the context of method engineering the general concept of
specifying methods for software engineering was shown by En-
gels and Sauer in [ES10]. The authors provide a good overview
to method engineering, meta-modelling and language engineer-
ing. The goal of the approach presented in [ES10] is to provide
a meta-method for systematically developing methods for soft-
ware engineering. To support the method engineer the authors
introduce a fundamental process of the meta-method, which con-
sists of six steps. The result of this process is a software engi-
neering method. The meta-method integrates the structural (for
example the meta-model structure) and behavioural (for exam-
ple transformations on the meta-model) meta-modelling aspects.
The behavioural aspects of meta-modelling presented in [ES10]
influenced the definition of the algebra operations.

Good examples of meta-modelling approaches for models of
software development methods are SPEM [Obj08b] and the ISO/
IEC 24744 Software Engineering - Metamodel for Development
Methodologies [ISO07]. Both examples introduce the structural
aspects of meta-modelling in form of meta-models. Unfortunately,
none of them supports the behavioural aspects which are rele-
vant in this thesis.

112 ����-����� �������

�.� ����-����� ����������

Before we introduce the concept of algebra operations, we need
to introduce the meta-model properties, since each algebra op-
eration is based on one property. Properties of meta-models are
constraints, which have to be fulfilled for one or several meta-
models. For example the existence of model relations between
meta-model elements is a property. Meta-models without the
possibility to model relations can not be used to define algebra
operations based on the mentioned property. We define the fol-
lowing meta-model properties for the purpose of this thesis:

• traceability

• modelling viewpoints

• model relation

• structural mapping

• traversability

We have chosen the five meta-model properties because of their
relevance for the development of a holistic model-based testing
approach. The modelling viewpoints and model relation propertyIdentification of

properties is the essential property needed to use a holistic view on all
three viewpoints of the analysis model (see Chapter 1). To use
analysis models for test purposes (see Section 1.1), the structural
mapping property is needed. The traceability property is needed
to measure the holistic model coverage (see Section 1.1). Finally,
the traversability property is needed to perform the test selection,
which is essential in model-based testing (see Subsection 2.2.4).
Besides the mentioned properties, further ones can be defined
and used within the meta-model algebra.

In the following we briefly describe each meta-model property.

�.�.� Traceability

Traceability was already defined in Subsection 2.5.3 as the ability
to trace the connection between the artefacts of the testing life cy-
cle or software life cycle [UL07]. In the context of model-driven
development we redefine it as the ability to trace the connection
between elements of models based on their meta-model struc-
ture. For example: a test case (element of the test meta-model) is

�.� ����-����� ���������� 113

traceable to a use case (element of the analysis meta-model). The
identification of the trace between the mentioned meta-model el-
ements can be done at the model instance level by executing
algorithms (refinements of algebra operations).

Figure 31: Meta-model property traceability

In Figure 31 we have depicted the traceability property on the
meta-model level. The element MME2 (part of the meta-model
M2) is traceable to the element MME1 (part of the meta-model
M1). The traceability property is bidirectional, since MME2 can
be traced back to MME1 and MME1 can be traced forward to
MME2. The bidirectional traceability can be used in model-driven
development for impact analysis and especially in model-based
software testing for model coverage measurement.

�.�.� Modelling viewpoints

The essential contribution of this phd thesis is the usage of differ-
ent modelling viewpoints for model-based system testing. Based
on an exemplary analysis modelling approach from Salger et al.
[SSE09], we identified viewpoints as structure, behaviour and
interaction. This viewpoints are defined by the modelling ap-
proach itself and supported by the chosen modelling language
(here UML).

To define operations on meta-models, which use the holistic
view the property of existing modelling viewpoints has to be ful-
filled. It means that the modelling approach and the modelling
language used to create the meta-model have to support the con-
cept of viewpoints.

114 ����-����� �������

�.�.� Model relation

The relations between elements of the analysis model has a di-
rect impact on the quality of the holistic model-based testing
approach (see Section 1.1). Model relations are syntactical as-
sociations between elements of a meta-model. For example the
Association concept of the UML meta-model [Obj09, p.39] fulfills
this meta-model property. The relations are defined for single
elements of the meta-model, which can be part of different mod-
elling viewpoints. This kind of model relations enables the usage
of the holistic view in our approach.

The topic of the semantic of model relations has been covered by
Jan Hausmann in [Hau05]. Within algebra operations, we con-
centrate on the syntax and not semantic of model relations.

Figure 32: Meta-model property model relation

In Figure 32 the model relation relation property is visible be-
tween MME1 and MME2, which both are parts of the meta-
model M1. Similar to the traceability property, also model rela-
tions are bidirectional.

�.�.� Structural mapping

The intended use of analysis models for test purposes is based
on the idea of a structural mapping between the analysis and
test model (see Section 1.1). The meta-model property structural
mapping is defined as the structural mapping between elements
of two or more meta-models. The mapping takes place when an
algorithm (refinement of an algebra operation) is executed. This

�.� ����-����� ���������� 115

property is visualized in Figure 33. Information contained in the
element MME1 is mapped to the element MME2. This property
is not bidirectional, since we assume that MME2 was created by
using the information of MME1 and not otherwise.

Figure 33: Meta-model property structural mapping

�.�.� Traversability

The last meta-model property is the traversability of behavioural
parts of a meta-model. The topic of graph traversation for test
selection was introduced in Subsection 2.2.4. Based on this in-
troduction, we define traversability as the property of traversing
meta-model elements by using its transition system. For exam-
ple traversing meta-models defined in a graph-like structure (for
example sequences of actions within use case scenarios from the
analysis meta-model in Subsection 2.4.11) to select traces (also
called paths) with sophisticated algorithms. In this case the tran-
sition system allows to navigate tokens from the initial to the
final action of the use case scenario. To allow only valid transi-
tions the operational semantics of the transition system has to
be defined.

The problem of infinite loops in such a transition system is han-
dled within the algorithms as the refinement of algebra oper-
ations, which are based on the traversability property. To exe-
cute operations based on this property the assumption of meta-
models, which can be traversed from the initial to the final node
has to be fulfilled.

116 ����-����� �������

�.� ������� ����������

The purpose of the algebra operations is to specify operations
performed on meta-models. The algebra operations specify the
purpose and data structure needed to operate (signature), but
not the concrete steps (semantics) for its execution. The con-
cretization of an algebra operation is an algorithm specified by
a method engineer. Let us consider the visualization from Fig-
ure 34. In a model-driven development process two meta-models
MM1 and MM2 are used to support activities like business analy-
sis, design, code generation, testing, etc. Both meta-models con-
sist of several meta-model elements. An operation can be per-Different operation

types formed on a single meta-model (see OP1 in Figure 34) or several
meta-models (see OP2 in Figure 34). The specification of an op-
eration uses meta-model elements as input and output sets. The
input set for OP1 and OP2 are the elements of MM1. In the case
of OP2 the elements of MM2 are the output set. The output set
of operation OP1 consists of elements of MM1.

Figure 34: Meta-model algebra operation

Based on the description provided above, we define the follow-
ing types of algebra operations:

������ ����-����� ��������� is an operation which input
and output sets are based on the same meta-model.

�������� ����-����� ��������� is an operation which in-
put and output sets are based on different meta-models.

The distinction between single and multiple model operation
types was chosen because of the operations identified in the

�.� ������� ���������� 117

literature. Good examples of single meta-model operations are
test selection algorithms (an overview was introduced in Sub-
section 2.2.4), which are based on meta-models used to describe
the systems behaviour. A widely known example for multiple
meta-model operations are M2M transformations (an overview
was introduced in Section 2.5).

For the purpose of this thesis, we concentrate on single and mul-
tiple meta-model operations, which use a maximum of two dif-
ferent meta-models for the specification of input and/or output
sets. This restriction was chosen because none of the operations
defined in the model-based testing approach from Chapter 5
uses more than two different meta-models. The specification of
algebra operations based on more than two meta-models is pos-
sible and can be evaluated in the future work.

To define an operation of the meta-model algebra the following
requirements have to be fulfilled:

REQ1 The structure of each meta-model has to be defined

REQ2 The input and output element sets based on their meta-
models have to be defined for each operation

REQ3 Each operation has to be based on a meta-model property
(see Section 4.5)

REQ4 Meta-models used in the operation have to fulfill the meta-
model property

Based on the introduction provided so far, we define the follow-
ing attributes of an algebra operation:

• Name (one word name of the algebra operation)

• Goal (short description of the operations purpose)

• Type (type of the algebra operation)

• Input meta-model

• Input set (list of meta-model elements based on one or sev-
eral meta-models serving as the input of the operation)

• Output meta-model

• Output set (list of meta-model elements based on one or
several meta-models serving as the output of the opera-
tion)

• Property (name of the abstract meta-model property which
is used by the algebra operation)

118 ����-����� �������

Based on this template the algebra operation can be formalized
as follows:

operation : M
i

! M

o

(4.7)

where:

• operation stands for the algebra operation

• M

i

stands for the input meta-model(s)

• M

o

stands for the output meta-model(s)

For the purpose of this thesis, we define the following opera-
tions which can be specified for one or more meta-models and
performed on their instances:

• transform (model transformation)

• select (test selection)

• extract (model information extraction)

• cover (model coverage)

In the following we will define each mentioned algebra opera-
tion by using the attributes introduced in this section.

�.�.� transform

Let us take the transform operation and specify it with the men-
tioned template:

• Name = transform

• Goal = elements of meta-model M1 are transformed into
elements of meta-model M2

• Type = multiple meta-model operation

• Input meta-model= meta-model M1

• Input set = elements of meta-model M1

• Output meta-model = meta-model M2

• Output set = elements of meta-model M2

• Property = structural mapping

�.� ������� ���������� 119

�.�.� select

Let us take the select operation and specify it with the mentioned
template:

• Name = select

• Goal = transition systems of behavioural elements of meta-
model M1 are traversed to identify paths

• Type = single meta-model operation

• Input meta-model= meta-modell M1

• Input set = behavioural elements of meta-model M1

• Output meta-model= meta-model M1

• Output set = sequence of behavioural elements of meta-
model M1

• Property = traversability

�.�.� extract

Let us take the extract operation and specify it with the men-
tioned template:

• Name = extract

• Goal = elements of meta-model M1 are analysed to identify
context-related information by using relations between its
meta-model elements

• Type = single meta-model operation

• Input meta-model= meta-model M1

• Input set = elements of meta-model M1

• Output meta-model= meta-model M1

• Output set = elements of meta-model M1

• Property = modelling viewpoints, model relation

�.�.� cover

Let us take the cover operation and specify it with the mentioned
template:

120 ����-����� �������

• Name = cover

• Goal = elements of meta-model M2 are analysed for their
coverage of elements of meta-model M1 by using traces
between M1 and M2

• Type = multiple meta-model operation

• Input meta-model= meta-model M2

• Input set = elements of meta-model M2

• Output meta-model= meta-model M1

• Output set = elements of meta-model M1

• Property = traceability

�.� ������� ������������� ��������

In the last section, we have specified the different algebra op-
erations textually. Since the specification of input and output
sets for each operation is mandatory and depends on the meta-
models used, also a graphical visualization is needed. In this sec-
tion, we introduce the visual specification language for algebra
operations.

The visual specification language is based on the Unified mod-
elling Language [Obj09] and is similar (in terms of visualizationLanguage syntax
and some properties) to the concept of the Visual Contracts (VC)
introduced by Lohmann in [Loh06]. The main idea is to visualize
each operation with UML diagrams. The input and output set of
each operation are separate typed graphs. This does not mean
that both graphs have to be based on different meta-models. The
input set graph is transformed to the output set graph by apply-
ing the algebra operation. Different as in VC the transformation
is applied on meta-models (depicted as class diagrams) and not
objects (depicted as object diagrams).

In Figure 35 the structure of the algebra specification language
is shown. The core elements of the visualization are the input
and output sets depicted as class diagrams. The sets consist of
the meta-model elements and their relations relevant for the op-
eration. This way, each set represents a graph typed over one
or multiple meta-models. The edge between the mentioned sets
symbolizes the algebra operation performed.

�.� ������� ������������� �������� 121

Input Set Output Set

Operation ID

Meta-Model
Elements

Figure 35: Structure of the algebra specification language

The Figure 36 visualizes the example for the transform algebra op-
eration in the algebra specification language. There are three ele- Example

visualizationments (Use Case, Scenario and Actor Action) of the analysis meta-
model (Section 2.4.11) in the input set. The output set consists
of three elements (Test Context, Test Case and Test Step) of the
test meta-model (Section 2.3). The transform algebra operation
transforms the elements of the analysis model into elements of
the test model. The specification of the semantic (concrete steps
needed for the execution of this operation) is done within an
algorithm.

transform

Figure 36: Example for the transform operation in the algebra specifi-
cation language

122 ����-����� �������

�.� ������� �������������

In the last sections, we often mentioned the instantiation of the
meta-model algebra. The purpose of this section is to describe
the instantiation process and its integration in the method engi-
neering process as a part of this phd thesis.

The algebra instantiation is needed to provide a proof-of-concept
for each algebra operation and their refinement in form of algo-
rithms. The meta specification of operations supports the method
engineer in developing model-driven methods. The automatic
execution of algorithms (which are part the method created by
the method engineer) by tool implementations supports the soft-
ware engineers in performing their tasks.

M3

M2

M1

MOF
Algebra

Specification
Language

Meta-Model
Algebra

Operation
(signature)

Model

Algorithm
(semantic)

Constraint

structure behaviour

instance_of

instance_of

Tool

typed_over

Property

execute

Figure 37: Visualization of the instantiation process from the method
engineering perspective

In Figure 37 we depicted the instantiation process of the meta-Instantiation process
model algebra. We distinguish between the meta-model levels
M3, M2, M1 as introduced by MOF [Obj06a] and additionally
the structure and behaviour level (depicted horizontally). The

�.� ������������� ���������� 123

categorization is derived from the method engineering perspec-
tive on meta-levels introduced in Engels and Sauer [ES10]. In
the so called software engineering perspective the meta-model,
algebra operation and algorithm are placed on the M3 level. This
way, the the instantiation of methods from method engineering
to software engineering results in a shift within the MOF levels.

The method engineer is responsible for the specification of alge-
bra operations according to the algebra specification language
presented in this chapter. Based on this specification he refines
each algebra operation into an algorithm. Those two artefacts are
instantiated by implementing them into tools. The algorithms
(implemented in tools) are executed only on models, which are
instances of the meta-models fulfilling the meta-model proper-
ties on which the algebra operations are based. This consistency
is needed, since the algebra operations and their related algo-
rithms are specified for certain meta-model types. Further, the
meta-model properties are instances of constraints from the M3
level. In our approach the constraints on the M2 level are de-
scribed textually because no formal semantics is needed.

�.� ������������� ����������

The concept of the meta-model algebra tackles the problem of
missing behavioural specification in the domain of meta-model-
ling and method engineering. The algebra is based on the specifi-
cation of algebra operations (signature over meta-models and re-
lated properties) and algorithms (semantics specified with UML
activity diagrams). This way, we support method engineers in
their task of specifying operations on meta-models.

We have mentioned, that the meta-model algebra is an elemen-
tary algebra, which uses unary and binary operations (see Sec-
tion 4.4). Further properties of algebras known from mathemat-
ics as commutative, associative, inverse operations or order of
operations were not analyzed in this chapter. The specification
of algebra operations used to develop the holistic model-based
system testing approach does not require the analysis of such
properties. Future work on the meta-model algebra can investi-
gate further algebra operations with respect to the mentioned
properties.

124 ����-����� �������

As mentioned at the beginning of this chapter, for the specifi-
cation of behavioural aspects in meta-modelling techniques like
model transformations or constraints modelling can not be used.
This problem could be solved by extending model transforma-
tion languages as QVT [Obj08a] with general assertions, which
can be checked on any meta-model type. For this, techniques
known from the area of model checking could be used. There
exist no straightforward solution for the modelling of properties
in constraint modelling languages as OCL [Obj06b]. Since OCL
can be only applied on the M2 level, general constraints for meta-
models cannot be specified. Further research on both topics can
lead to more precise language for the meta-model algebra in the
future.

�.�� �������

Until now we have introduced the high-level concept of the meta-
model algebra. By using a visual specification language, we are
able to specify operations on meta-models, which are based on
certain abstract meta-model properties. We will use the meta-
model algebra in the next chapter to introduce the holistic model-
based testing approach, which aims to solve the problems men-
tioned in the introduction of this thesis.

5
M O D E L- B A S E D T E S T S P E C I F I C AT I O N
P R O C E S S

Holistic view in model-based testing is needed! This is what we
have shown in the last chapters. Now, we want to introduce the
research approach developed to solve the problems of missing
holistic view, while using analysis models for test generation
and holistic coverage measurement. We call it the model-based
test specification process.

In this chapter, we first summarize the requirements for a holis-
tic model-based testing approach. Then, we will describe the
process and its artefacts at a general level. Afterwards, we will
provide detailed descriptions for all process steps.

C�������
5.1 Requirements . 125
5.2 Approach overview . 126
5.3 Step 1. Analyze and annotate the Analysis Model 130
5.4 Step 2. Generate Basic Test Model 138
5.5 Step 3. Extend the Basic Test Model 179
5.6 Step 4. Generate Concrete Test Cases 186
5.7 Summary . 194

�.� ������������

During the development of the model-based test specification
process, the following requirements were important as their ful-
fillment is strongly related with the presented research problems
and the contribution of this phd thesis:

125

126 �����-����� ���� ������������� �������

REQ1 UML notation should be used for the analysis and test
model

REQ2 The analysis model should be automatically used to create
a test model

REQ3 Model relations within the analysis model should be used

REQ4 Model elements of the structure, behaviour and interaction
modelling viewpoints within the analysis model should be
used

REQ5 The coverage of several modelling viewpoints of the anal-
ysis model by the test model has to be automatically mea-
sured

REQ6 The test model should be extended with independent test
information

REQ7 Concrete test cases should be automatically generated from
the test model

REQ8 The approach should guarantee high understandability, ana-
lysability, completeness and traceability of test cases

The requirements listed above were defined according to the con-
tribution points from Section 1.2 and the evaluation criteria from
Section 3.1. In Figure 38 we have mapped the requirements to the
contribution figure from Section 1.2.

�.� �������� ��������

In this section, we first briefly introduce the process and after-
wards the artefacts used during the process execution.

�.�.� Process

The model-based test specification process consists of the follow-
ing four steps:

� . ������� ��� �������� ��� ���� ����� In this step, the
analysis model regarded as the test basis is manually an-
alyzed by test designers for testability deficiencies. Addi-
tionally, test designers prioritize use cases by annotating
the relevant parts of the models.

�.� �������� �������� 127

"after"

Structure

Behaviour

Interaction

Test
Model

automatical
derivation

generate

Analysis model

Test Cases

Test
Designer

coverage

5

2

3

4

6

8
1

7

Figure 38: Solution requirements mapped to the contribution figure

Rationale: In this thesis, we automatically generate test models
from analysis models. In order to generate the test model
several testability requirements (as testable pre/postcon-
ditions of use cases) have to be fulfilled. Further, the auto-
mated generation can result in infeasible number of logical
test cases and low coverage of critical parts of the SUT. To
solve both problems, test designers have to prioritize the
behavioural models.

� . �������� ����� ���� ����� In this step, several algorithms
are automatically executed. First, paths in the UML activity
diagrams representing use cases are selected according to a
test selection algorithm. Second, related information from
dialog and data models is collected by using a automated
model analysis algorithm. Afterwards, a basic test model
described with the UML Testing Profile is generated by us-
ing a model transformation algorithm. Finally, the reached
coverage of the analysis model by the test model is calcu-
lated by the model coverage measurement algorithm.

Rationale: This process step is designed to solve the problems
of this thesis. The analysis model is automatically used to
generate a test model with model transformations. Since
we use a test model which consists of logical test cases (see

128 �����-����� ���� ������������� �������

Subsection 2.2.3 and Section 2.3), we automatically select
them. The holistic view is applied by navigating through
model relations and collecting information from the in-
teraction and structure modelling viewpoint. The holistic
model coverage measurement is performed with a dedi-
cated algorithm. All algorithms operate on meta-models
and are specified with the meta-model algebra introduced
in the last chapter.

� . ������ ����� ���� ����� In this step, the automatically
generated basic test model is manually reviewed and ex-
tended with test data and expected results.

Rationale: The usage of analysis models has always to incor-
porate independent test information as stated in Section
1.1. The manual review and extension step guarantees the
quality assurance of the generated test model. It also aims
to reveal faults in the analysis model.

� . �������� �������� ���� ����� In this step, concrete test
cases are automatically generated from the test model and
external test data sources.

Rationale: To execute tests, concrete test cases with test data
and platform-specific information are needed. In this last
process step, the holistic view is applied also on the ex-
tended test model to generate concrete test cases. Because
of the complexity of manually created test data sets, an
external source for test data management is used.

Two of the steps (step 2 and 4) are fully automated and the
other two have to be done manually as depicted in Figure 39. As
shown in this figure the process is classified in the test phases
analysis, design and implementation of the fundamental test pro-
cess from [SL05]. Since the three mentioned phases were already
defined as test specification in Section 2.1.1, we use the name
model-based test specification process.

As shown in Figure 39, two loops are possible in our process. TheLoops in the process
first loop between step 3 and 1 is taken when the automatically
generated basic test model is incomplete or the reached model
coverage is insufficient. In this case the analysis model has to
be manually refined. The second loop between step 4 and 3 is
taken when the automatically generated concrete test cases are
incomplete. In this case the test model has to be further refined.

�.� �������� �������� 129

Analyze and
annotate
test basis

Extend basic
test model

Generate test
cases

Test Analysis Test Design Test Implementation

Generate basic
test model

Figure 39: Model-Based Test Specification Process

�.�.� Artefacts

The model-based test specification process uses the following
artefacts:

• Step1: Analysis model (with annotated model elements)

• Step2-3: Test model (basic and extended)

• Step2: Trace Model

• Step2: Coverage report

• Step4: Concrete test cases

Additionally we have depicted the artefact meta-model in Figure
40. This allows us to show the relations between the mentioned
artefacts.

In the first step, the analysis model created by business analysts
is extended with annotation information. The structure of the
analysis model was described in Section 2.4. The analysis model
is taken as the input for step 2.

The result of step 2 is a test model described with the UML test-
ing profile (UTP). UTP was introduced in Subsection 2.3. We dif- Different

nomenclature for
test models

ferentiate between the basic test model, which is the result of the
automatic generation process and the extended test model, which
results from the manual extension process. In the nomenclature
used in Roßner et al. [RBGW10], the respective terms logical test
specification model and concrete test specification model are used.
Both models have the same structure, but differ in the informa-
tion level.

Additionally to the test model in step 2 a trace model described
with the UML is generated. The syntax and semantic of the trace

130 �����-����� ���� ������������� �������

Figure 40: Artefacts of the Model-Based Test Specification Process

model will be introduced later in Subsection 5.4.4. We measure
the coverage reached by the automatically generated test model.
The result of the model coverage measurement is the coverage
report. The input for the coverage report generation are the anal-
ysis model together with the trace model.

The final result of the model-based test specification process are
concrete test cases. Those are automatically generated from the
manually extended test model and refine the logical test cases it
contains.

To understand the holistic approach for model-based testing, we
now provide a detailed description for each of the mentioned
steps.

�.� ���� � . ������� ��� �������� ��� ����-
���� �����

The first step in our model-based test specification process is the
manual testability check and prioritization of the input model as
shown in Figure 41. The business analysts created the analysisNeed for testability

checks model based on the requirement specification. Like the manual
task of writing specification documents, also the modeling task
is error-prone. Besides the typical modelling problems (for ex-
ample modeling or naming conventions for specifying use cases

�.� ���� � . ������� ��� �������� ��� �������� ����� 131

with activity diagrams could be violated), the testability with
respect to the generation of a test model has to be checked.
There are several context-related requirements (like behaviour
completeness of use cases) for reaching high model quality in
terms of testability as introduced by Voigt et al. in [VGE08]. If
such testability requirements are not met, then the automatic test
model generation in step 2 can fail or result in a low quality test
model. That is why the manual testability check is very impor-
tant for the quality of the overall model-based test specification
process.

Analyze and
annotate
test basis

Extend basic
test model

Generate test
cases

Test Analysis Test Design Test Implementation

Generate basic
test model

Check testability
of the analysis

model

Prioritize use
cases through

annotation

Figure 41: Refinement of the first step within the model-based test
specification approach

Besides the mentioned challenge of testability assessment, an-
other one arises here. The usage of sophisticated test selection Risk-based testing
algorithms in model-based testing can result in a very huge num-
ber of test cases and insufficient coverage of critical parts of the
SUT. To prevent this, each test strategy should apply risk-based
testing (introduction was provided in Subsection 2.1.4). The man-
ual annotation task of the analysis model can drive the test selec-
tion algorithm to select test suites for the most important parts
of the model.

132 �����-����� ���� ������������� �������

�.�.� Manual testability checks

In order to perform the testability checks the knowledge about
the specification method and its meta-model from Section 2.4 is
needed. The role responsible for this task is the test designer. In
case of testability lacks in the analysis model, the test designer
communicates with the business analysts to ensure higher qual-
ity. The modification of the analysis model should be performed
only by business analysts and not test designer.

The reason for the manual execution of this step lies in the test
independency problem described in Section 1.1. Although thereNeed for manual

task execution exist the possibility to automate several verification and valida-
tion checks, manual analysis of the analysis model still reveals
testability lacks like missing consistency, completeness or cor-
rectness. Within the industry research project performed in this
phd thesis, we have performed two assessments in large-scale
projects at Capgemini Technology Services in Germany. The em-
pirical results collected there, motivated the need for manual
testability checks.

The goal of the testability check is not the verification of the anal-
ysis model with respect to its meta-model. With the check we
aim to assure the testability of the analysis model, which helps
us to generate high-quality test models. The testability checks
are performed by the test designer on the following model ele-
ments with quality attributes mentioned in Voigt et al. [VGE08]:

1. Use cases

Behavioural completeness

Pre- and postconditions

Dead actor or system actions

Deterministic transitions

Expressive action names and descriptions

Consistent guards

2. Dialogs

Trigger for each dialog action

Expressive dialog element names

3. Logical data type model

Enumeration types

�.� ���� � . ������� ��� �������� ��� �������� ����� 133

The concrete testability checks can be generalized to any type
of analysis model. Depending on the meta-model used, the list
provided here can be extended or changed.

Testability of Use Cases

Within this check, the testability of use cases of each conceptual
component have to be investigated by the test designer. First, the
behavioural completeness of each use case is checked. Behavioural
completeness is defined as the existence of a behaviour model (in
the case of the specification method used in this thesis, the UML
activity diagram) for each use case. This is important, because
otherwise no automated test selection can be performed. Also,
the specification of detailed pre- and post-conditions is of impor-
tance for the holistic test generation. If the conditions are missing
or are incomplete, the same case is for the pre-/postconditions
of the generated test cases. This way the creation of the test case’
initial state and the evaluation of its results is negatively affected.

Another quality attribute to be checked are dead actor or system ac-
tions within the behavioural model (here UML activity diagram).
Since the test selection searches for paths from the initial to the
final node, no dead nodes for the actor or system action should
exist. This is important, because dead nodes can result in inap-
propriate test selection results. Also the behavioural model has
to be checked for deterministic transitions, which means that each
actor and system action should have only one outgoing transi-
tion. We do not restrict the number of incoming transitions for
the mentioned actions, since loops in the behavioural model are
allowed.

To guarantee the understandability of logical test cases, expres-
sive actions names and descriptions should be checked. The expres-
siveness is assessed by the test designer who has the knowledge
about the domain of the SUT. This is important, since we select
test cases from use cases. The names and descriptions of use case
actions (actor and system) are transformed to test case steps. The
topic of model transformations will be described later in detail.

Finally, the use case’ activity diagram should have consistent
guards. Each decision node of such a diagram is described by a
guard. The consistency of guards to the underlying data model
has to be checked. This is important, since the test selection re-

134 �����-����� ���� ������������� �������

sults in path which differ with respect to the guard value taken
in the activity diagram. Inconsistent guards can results in test
cases which are not understandable for test designers. In this the-
sis we use activity diagrams to refine use case descriptions. In
other approaches different modelling languages for specifying
the behaviour of use cases can be used. The concept of guards
can be found in several of those languages. Therefore this testa-
bility check can be applied on other meta-models as the one used
as an example in this thesis.

Testability of Dialogs

The modelling approach used as an example in this thesis (see
Section 2.4) distinguishes between dialog actions and dialog el-
ements. The execution of each dialog action is triggered by a
dialog element. Since this trigger is important for the execution
of test case steps, the test designer checks if a trigger for each di-
alog action exists in the analysis model. Further, it is important
that the dialog model has expressive dialog element names. Those
names are used in the test case steps to support the test designer
during the test execution. To execute a test case step is has to be
clear what dialog elements should be used (for example fill with
input data).

Testability of the Logical Data Type Model

The last check performed by the test designer are the existence
of enumeration types of the logical data type model. This is impor-
tant, since the generated test model contains the test data struc-
ture, which is derived from the logical data types. The enumera-
tion types deal later for the identification of test data partitions
according to the equivalence class analysis method.

Several of the steps introduced above are simple checks, which
can be performed by using a checklist. The other possibility is to
automate the check of naming conventions, existence of model
relations and attributes. Such syntactical checks can be easily
automated and executed on the model level. The algorithms de-
scribing the constraints to be checked will always be customized
according to the structure of the concrete analysis meta-model.
That is why we do not provide an automation of this step. In-
stead, tools from the area of model checking can be used for that

�.� ���� � . ������� ��� �������� ��� �������� ����� 135

purpose. Especially for automated testing of model consistency
approaches as Engels et al. [EHRS02] can be used.

�.�.� Test prioritization through model annotation

One of the common problems with automatic test case genera-
tion is the test case explosion problem [AFGC03]. Since test cases
are automatically selected by an algorithm, every possible cov-
erage level can be reached. Very high coverage level results in Test case explosion

problema huge number of test cases. If test cases are executed manu-
ally, then their high number can make the execution impossible
due to lack of resources. Even if a great part or even all the test
cases can be automatically executed, the maintenance effort for
test evaluation is not practicable1 [UL07]. That is why intelligent
model-based testing approaches integrating the risk-based test-
ing concept are needed.

To speak about the integration of risk-based testing in the holistic
model-based testing approach, the topic of priority management
has to be considered. The priority is defined in the ISTQB glos-
sary [IST, p.32] as "the level of (business) importance assigned
to an item, e.g. defect". In the context of use-case based test gen-
eration, the priority is assigned to single use cases. We refine
this definition to a priorization level, where the (business) impor-
tance is assigned to single use case steps, which are represented
as action nodes of the activity diagram.

Our approach implements the risk-based testing idea with an
annotation language which we introduced in Mlynarski et al.
[MGSE09]. The purpose of our annotation language is to visually
mark the model elements of the analysis model, which have high
priority for testing. The annotation process reflects the natural
test designers’ method of operating. He combines his knowledge
about the business functionality with the risks defined by the
customer to identify the test-relevant parts of each use case. We
use the term test idea here to describe useful indications as to

1 For example if 10 000 test cases are generated and during the automatic test
execution 2000 test cases failed, then each of the 2000 test logs has to be man-
ually analyzed. A test case which has failed during its execution does not
necessarily mean that a fault has been found. Also the test case itself can be
incorrect. Assuming that the analysis of one test log takes 5 minutes, then for
each test execution 2000*5min=10000min=166 hours would be needed. This
high maintenance effort lowers the ROI of the automatic test case generation.

136 �����-����� ���� ������������� �������

what is to be tested. Test ideas are specified using an annotation
language by test designers.

The prioritization strategy with test ideas aims at the use case
by identifying the annotated use case steps. It means that a use
case is marked with "high-priority" if one or more action nodes
of the activity diagram are annotated by the test designer. We do
not sum and normalize the number of annotated actions to pro-
vide a sophisticated priority classification. As analysis models of
large-scale business information systems can contain several up
to hundred use cases, we want to control the test generation pro-
cess by selecting only the high-prioritized use cases. This way
the restriction of the use cases taken as the test basis for au-
tomatic test selection and the restriction of the selection space
within each preselected use case is performed.

We base our annotation language only on the behavioural model
viewpoint. As we assume that model relations are used, the
other viewpoints are automatically affected. Also we want to
limit the test selection space, which means that the model el-
ements used for the selection should be annotated. In our ap-
proach the selection is based on use cases. The following ele-
ments of the UML activity diagram refining a use case can be
annotated:

• action nodes

• edges

• decision nodes

Besides the question what has to be annotated, also the how is
very important. In the industry test case selection mostly relies
on the experience of testers. They first identify the most impor-
tant parts of the test basis by reviews or in discussions with
the customer. Then, these parts are selected for test design and
used for deriving test cases. In this process test designers de-
velop ideas about what parts of the test basis have to be tested,
because they are important from the business point of view. We
call it test ideas and use this observation for the definition of our
annotation language. The main target is to support the test case
selection process with model-based techniques, while using the
test designers’ method of operating.

The visualization of the annotation language is done by using
a UML stereotype called TestIdea and the green colour. Some

�.� ���� � . ������� ��� �������� ��� �������� ����� 137

modeling tools (as Enterprise Architect2) support the automatic
colouring for model elements having a predefined stereotype.
This way the test designer only has to assign the stereotype
TestIdea to action nodes, edges or decision nodes of an activity
diagram.

An example of activity diagrams with annotated action nodes is
shown in Figure 42. Our example shows three different annota-
tions which lead to different test cases numbers. In the left activ-
ity diagram all action nodes were annotated, which means that
the whole use case is very important and all nodes should be
covered by test cases. The middle activity diagram contains four
annotated action nodes which have to be covered. The last activ-
ity diagram on the right-hand side contains only two annotated
action nodes. The resulting test case number differs because of
the test selection criteria used later.

Figure 42: Example of annotated action nodes in activity diagrams.

Our test selection criteria has the goal to cover all paths within
the activity diagram, which contain the annotated action nodes.
We call it AllPathsAnnotation We assume that between the anno-
tated action nodes (or edges or decision nodes) within a path
through the activity diagram the logical operator AND is used.
Our test selection criteria is satisfied also in the case if several
paths for the same tuple of annotated actions nodes exists. For
example in the right-hand side activity diagram two paths could

2 http://www.sparxsystems.com

138 �����-����� ���� ������������� �������

possibly satisfy the test selection criteria. First path: Action1, Ac-
tion3, Action4. Second path: Action1, Action3, Action5. In this case
only the first or the second path already satisfies the AllPathsAn-
notation.

The annotation language as described above can be applied for
action nodes and edges identically. While annotating decision
nodes a small difference exists. The test selection criteria for an-
notated decision nodes has the goal to cover all paths within an
activity diagram which contain both outgoing edges from an an-
notated decision node. In this case we sharpen the definition of
the logical AND operator. The generated paths should contain
all combinations of outgoing edges from the annotated decision
node. For the right-hand side activity diagram only both paths
(Action1,Action3,Action4 and Action1,Action3,Action5) satisfy the
AllPathsAnnotation.

The quality of our annotation language in terms of number of
generated test cases strongly depends on the number of anno-
tated elements. If all action nodes, edges or decision nodes were
annotated then no difference to classical test selection criteria
(for example AllPathsOneLoop from Subsection 5.4.1) exists.

Within the first step the analysis model has been manually ana-
lyzed and annotated by the test designer. The next step is fully
automated and results in a basic test model.

�.� ���� � . �������� ����� ���� �����

The automatic generation of the basic test model is the most im-
portant step of the model-based test specification process. The
logical test cases are automatically selected and all information
needed to complete the test case description is gathered from
inter-related models. Through model transformations the test
model is automatically generated. Finally, the reached model
coverage of the analysis model is measured. For all mentioned
tasks we define algorithms and specify them with the meta-
model algebra. The tasks are depicted in Figure 43.

As mentioned in earlier chapters of this thesis, the test quality
of the overall testing process depends strongly on the quality of
the test specification document, namely the test cases. The testInfluence on test

case quality

�.� ���� � . �������� ����� ���� ����� 139

case quality depends strongly on the test selection method used
(which influences the reached test coverage) and the complete-
ness of test cases. The first aspect is related to the test selection
algorithm and the second to the used model transformation.

Analyze and
annotate
test basis

Extend basic
test model

Generate test
cases

Test Analysis Test Design Test Implementation

Generate basic
test model

Execute test
selection

Execute
automated

model analysis

Execute model
transformation

Execute model
coverage

measurement

Figure 43: Refinement of the second step within the model-based test
specification approach

Model transformations can only be performed after the test se-
lection is done. That is why we first describe the test selection
algorithm and afterwards the model transformation used.

�.�.� Test Case Selection

In Section 2.2.4 we introduced the different types of test selec-
tion criteria and basic definitions. Each criteria depends on the
behavioural model type used as basis for test selection. The cri-
teria drive the reached model coverage. In order to use a test
selection criteria a formal algorithm has to be defined.

In the case of the analysis model used in this thesis (see Section
2.4), we focus on use case models which are described by UML
use case and activity diagrams. Test cases can be selected only
from the activity diagrams. The use case diagrams describe only
the behaviour decomposition in actor, use cases and the relations
between them. As mentioned in Section 2.2.4 there are several
transition-based test selection criteria which can be applied for
activity diagrams.

140 �����-����� ���� ������������� �������

Our approach does not depend on a certain test selection cri-
teria. Since the application of our holistic model-based testingDifferent test

selection criteria approach should be possible for different types of analysis mod-
els (assuming meta-models fulfilling the modelling viewpoints
and model relations property), several test selection criteria can
be applied. However, for evaluation purposes we have to define
one or more which will be used. We select the following test se-
lection criteria to show the difference with respect to the number
of generated test cases:

1. AllPathAnnotation (low number of test cases)

2. All-Actions (medium number of test cases)

3. AllPathOneLoop (high number of test cases)

All mentioned test selection criteria try to find paths (see defi-
nition in Subsection 2.2.4) from the initial to the final node. The
difference lies in the coverage goal (actions, paths and annotated
actions). While the All-Actions algorithm searches for a mini-
mum set of paths which cover all actions, the AllPathOneLoop
algorithm searches for all possible paths in the activity diagram.
Since the number of paths generated by All-Actions is less3 than
the one found by AllPathsOneLoop, the number of resulting log-
ical test cases differ. In the case of the AllPathAnnotation algo-
rithm, the number of paths depends on the number of anno-
tated action nodes. We assume that the number of annotated
actions is less then the overall number of actions. That is why
this algorithm generates a smaller set of test cases than the All-
Actions algorithm. Similar observations on test selection criteria
with respect to the generated test case number can be found in
Liggesmeyer [Lig09] or Utting and Legeard [UL07].

Before we introduce the concrete test selection algorithm, we
first specify the according algebra operation. In Chapter 4, we
have introduced the purpose and language needed to specify
algebra operations. The test selection algorithm presented here
refines the operation called select. In the following we specify the
operation according to the template from Section 4.6. Addition-
ally in Figure 44 we depict this operation based on the relevant
part of the UML meta-model needed for test selection.

• Name = select

3 Depending on the model complexity and loop types (forward or backward) the
number of paths generated by All-Actions is less or equal to AllPathOneLoop.

�.� ���� � . �������� ����� ���� ����� 141

• Goal = behavioural elements of the UML meta-model, name-
ly the UML activity diagram are traversed to identify paths
(sequences of action nodes)

• Type = Single meta-model operation

• Input meta-model = UML meta-model

• Input set = elements of the behaviour package of the UML
meta-model representing activity diagrams

• Output meta-model = UML meta-model

• Output set = sequence of actions from the initial to the
activity final node

• Property = traversability

• Visualization = see Figure 44

select

Figure 44: Meta-model algebra operation for the test selection

The operation select traverses the activity diagram (input set),
which always consists of an initial, final and several other nodes
(like decision, or merge) connected by activity edges. For the
purpose of this thesis we do not use fork and join nodes, since
the parallelism of workflows is a separate problem during test
selection (see [RBGW10] for detailed analysis).

142 �����-����� ���� ������������� �������

The output set of the operation are several paths through the
activity diagram. The definition of a path was already provided
in Subsection 2.2.4. Since there can exist an infinite number of
paths in an activity diagram, the algorithm refining the algebra
operation has to work on certain assumptions (like a path is
visited only once). We will now provide the description of the
test selection algorithm for the select algebra operation.

Figure 45: Main algorithm for the test selection

As the concrete test selection algorithms differ only slightly, we
provide the algorithm for AllPathAnnotation only. Our selection
is based on a heuristic and recursive algorithm which traverses
each node of the activity diagram. This algorithm is depicted in
Figures 45, 46 and 47 and uses the elements of the UML meta-
model as defined in the select algebra operation. The diagram
from Figure 45 is a high level workflow of the test selection al-
gorithm. The selection is performed by the activity "traverse",
which recursively traverses the activity diagram. The original
version of the test selection algorithm was introduced by Gutier-
rez et al. in [GEMT06]. We have extended the algorithm to re-

�.� ���� � . �������� ����� ���� ����� 143

strict the loop visiting and deal with annotated nodes. We will
now briefly describe the selection algorithm.

Figure 46: Recursive algorithm which traverses the activity diagram

Our test selection algorithm is invoked only on annotated use
cases. It starts with reading the activity diagram and searching
for the initial node. In step 3 within Figure 45 the algorithm
starts to traverse the activity diagram beginning with the Ini-
tialNode. In Figure 46 the algorithm acts differently for decision
(DecisionNode), merge (MergeNode) and final nodes (ActivityFi-
nalNode). If none of the mentioned cases is given, the succes-

144 �����-����� ���� ������������� �������

sor node is selected and the algorithm is executed recursively.
The algorithm terminates each time a final node is found. Since
we want to cover only paths with annotated action nodes, we
mark each path as annotated if one or more annotated nodes
were found during the test selection. A node is annotated only
when it is stereotyped as testidea. This stereotype is used by the
test annotation language from Subsection 5.3.2. In this case the
path created by storing the visited action nodes is stored within
a global path list. Otherwise, the current recursion of the algo-
rithm is terminated.

In the case of visiting a merge node the algorithm simply selects
the successor node and is executed recursively.

More complex is the case of visiting a decision node. In Figure 47
a subalgorithm for decision nodes is shown. First, all outgoing
edges, which we call alternatives are selected. For each alterna-
tive the connected node ANode is selected. The ANode can be of
the type InitialNode, ActivityFinalNode, DecisionNode or MergeN-
ode. If the node was not visited yet and it is not a merge node,
then it will be added to the path created so far. Then, the suc-
cessor node is selected and the traverse algorithm is executed
recursively. In the case the node was already visited (node is
contained in the path list) the next alternative from the decision
node is selected. This way, a loop is visited only once during
the test selection. For the connected node ANode’ the traverse al-
gorithm is executed. The algorithm from Figure 47 is executed
until all alternatives were selected.

The final result of the test selection algorithm is a list with paths
through the activity diagram. A path contains of the InitialNode,
several ActivityNodes and the FinalNode. The algorithm always
terminates since loops can be visited only once (see Figure 47)
and each time reaching the final node terminates the recursive
execution of the algorithm.

To visualize the test selection algorithm, we provide a small ex-
ample. As basis for the test selection we use an activity diagram
depicted in Figure 48, which describes the use case Book Attendee
on Course from the example introduced in Subsection 2.4.4. The
diagram consists of 7 action nodes, 5 decision nodes and 2 merge
nodes. The execution of the AllPathAnnotation algorithm resulted
in 18 paths. Two exemplary paths are depicted in Figure 48 with
the red and green color. Since the first node is a decision, the

�.� ���� � . �������� ����� ���� ����� 145

Figure 47: Subalgorithm which traverses the decision nodes of the ac-
tivity diagram

146 �����-����� ���� ������������� �������

algorithm will recursively traverse each outgoing edge of this
node. The decision node called "course_data" results in a back-
ward loop to the "Search_Course" action node. This loop is exe-
cuted only once by the red path. This is also the case in all other
loops which are covered by all 18 paths.

The results of the test selection algorithm are paths of the activity
diagram, which represent the logical test cases. As mentioned at
the beginning of this section further information is needed to
complete the test case description. A selected path contain only
action nodes of the activity diagram from the initial to the final
node. This way, all test case steps are specified. A logical test case
has to further contain pre- and postconditions, names of dialog
elements and logical data types for each test case step. The goal
is to fill all test case attributes from Section 2.1.1 with data.

To collect the data needed for the specification of logical test
cases, we use model analysis algorithms together with model
transformation rules. Both techniques will be described in the
next subsection.

�.�.� Automated Model Analysis

At the end of the test selection process several paths through the
activity diagram are created. The activity diagram provides the
following information for each node:

• Name

• Description

• Incoming edge (in the case of a predecessor decision node
with the according guard)

• Outgoing edge

• Call to another use case or application function

• Swimlanes4, which reference conceptual components and
actors involved

Further the use case model, which the activity diagram belongs
to provides the following information:

4 Swimlanes are used in the exemplary UML modeling approach in this the-
sis. This modelling construct is not necessarily a part of other modelling lan-
guages.

�.� ���� � . �������� ����� ���� ����� 147

Figure 48: Example of two paths selected according to the All-
PathAnnotation test selection algorithm

148 �����-����� ���� ������������� �������

• Title

• Description

• Trigger

• Precondition

• Results

• Actors

The mentioned information can be used to partially specify a
logical test case in a test model. This kind of test case is not
complete in terms of the test execution. Important information
as the used user interface elements or input and output data is
missing here. To fully specify a logical test case, further informa-
tion is needed. Where to search for this information and how to
extract it is described in the following.

First, the information about the dialog elements and dialog ac-
tions used in each use case action is needed. The test cases auto-
matically selected by the test selection algorithm have to be ex-
ecuted. Independent if executed manually or automatically the
dialog information is needed to interact with the system during
the tests.

Second, the information about the data model used in each use
case action is needed. Test cases without test data are worthless.
The derivation of concrete test data sets is possible if logical data
types are provided in the description of the logical test case.

Both sources (dialog and logical data model) are not orthogo-
nal, but inter-related to the use case in the analysis model. The
extraction of the related dialog actions, its dialog elements and
logical data types is possible by using model relations and model
analysis algorithms.

The model relations between the elements of the analysis model
were already introduced in Section 2.4.11. To define a concrete
model analysis algorithm, the model relations shown in the ex-
cerpt of the analysis meta-model in Figure 49 are important. Es-
pecially the trace between use case actor action �! dialog action
�! dialog element �! logical data type is needed to collect the
information related to the logical test case.

Knowing that the model relations can be used to extract further
information for test case specification, we now have to define an
algorithm, which navigates through the relations and collects the

�.� ���� � . �������� ����� ���� ����� 149

Figure 49: Model relations within the analysis meta-model important
for model analysis

needed information.The algorithm is working on the instance of
the meta-model introduced in Subsection 2.4.11.

The model analysis algorithm refines the meta-model algebra op-
eration called extract. In the following we specify the operation
and additionally in Figure 50 we depict this operation based on
the relevant part of the analysis meta-model needed for model
analysis.

Operation extract according to the template from Section 4.6:

• Name = extract

• Goal = elements of the analysis meta-model are analysed
to identify and extract context-related information

• Type = Single meta-model operation

• Input meta-model = analysis meta-model

• Input set = all elements of the analysis meta-model

• Output meta-model = analysis meta-model

• Output set = elements of the analysis meta-model associ-
ated through context-related model relations

• Property = modelling viewpoints, model relation

• Visualization = see Figure 50

150 �����-����� ���� ������������� �������

Figure 50: Meta-model algebra operation for the model analysis

�.� ���� � . �������� ����� ���� ����� 151

The operation extract uses the whole analysis meta-model as the
input set. The output set is a subset of this meta-model, which
consists of elements with context-related model relations. The
context is defined by the method engineer, who understands the
semantic of modelling viewpoints and model relations between
the elements of the output set. In this thesis the context is given
by using the relations from Figure 49. The model analysis algo-
rithm which navigates through the analysis model according to
the extract algebra operation will be now described.

Our model analysis algorithm is depicted in Figure 51. The goal
of this algorithm is to extract information about dialog actions,
dialog elements and logical data types related to the selected
path from the use case’ activity diagram. The modelling ap-
proach for analysis models used as an example in this thesis
is based on the UML. The UML meta-model fulfills the meta- UML concept of

associations used to
navigate through the
analysis model

model property model relation (see Section 4.5) by using the con-
cept of Association. The UML specification defines an association
as "An association describes a set of tuples whose values refer
to typed instances. An instance of an association is called a link"
[Obj09, p.39]. This way UML meta-model elements of the type
Class can be associated with each other and the navigation be-
tween them at model level is possible by using links. By using
the model relations from Figure 49 as instances of the UML class
Association, the analysis algorithm can navigate through the anal-
ysis model.

First, all actor actions of a use case are listed. This is done by
listing all action nodes, which do not represent a system action.
Then our algorithm finds a related dialog action for each actor
action. This is done by using a relation5 mentioned above. For
the found dialog action all related dialog elements are listed. Fi-
nally, for each dialog element found the algorithm searches for
the related logical data types. The result of our algorithm are the
dialog actions, dialog elements and logical data types related to
the actor actions of a use case given as input. This tripel set of
model elements identified by the algorithm has a context im-
portant while testing a actor action. It supports the stimulation
of the SUT with input data (list of LogicalDataType) through ele-

5 In the model instance on which the algorithm operates the relations are in-
stantiated by model links. The links are manually created by business analysts
during the modelling task.

152 �����-����� ���� ������������� �������

Figure 51: Algorithm for Automated Model Analysis

�.� ���� � . �������� ����� ���� ����� 153

ments of the user interface (list of DialogElement) within a state,
namely the context of an ActorAction.

In Figure 51 the following cases are crucial for the extraction of
information from the different modelling viewpoints:

• There exist no related dialog action for an actor action

• There exist no related dialog element for a dialog action

• There exist no related logical data type for a dialog element

Without providing empirical evidence at this point, we can state
that: If the first case occurs, then the automated model analy-
sis which is an essential part of the holistic view has the low- Correlation between

model relations and
holistic view

est impact on the reached internal test quality as well as the
reached model coverage. The three cases reflect the situation
where none or few of the model relations specified in the meta-
model were transcribed by business analysts while creating the
analysis model. This way no linkage between the behaviour, in-
teraction and structure modelling viewpoint in the model in-
stance exists. The automated model analysis algorithm presented
here cannot navigate from the behaviour to the interaction and
further to the structure models. The essential context-related in-
formation about the user interface and input data is missing.
Based on this fact, the following correlation can be formulated:

holistic ⇠ rel (5.1)

The variable holistic stands for the application of the holistic view
on analysis models in model-based testing. With the rel variable
we symbolize the level of model relations instantiated according
to the analysis meta-model by business analysts. In particular
it is the degree of transcription of model relations at the model
instance level. When the number of model relations grows, then
the application of the holistic view is growing. This way, the
holistic model analysis is directly proportional to the model re-
lations.

Our model analysis algorithm navigates through the model in-
stance assuming a certain structure of the models. In this the-
sis the structure is given by the meta-model of the specifica-
tion method from Section 2.4 and the meta-model of the UML Application on other

meta-models[Obj09] as an example. However, the automated model analysis

154 �����-����� ���� ������������� �������

presented here can be applied on every meta-model structure
supporting semantical relations between different modelling view-
points. According to the concept of the meta-model algebra, those
meta-models fulfill the property model relation. In this case a cus-
tomization of the algorithm presented in this subsection accord-
ing to other meta-models is needed. Those meta-models are fur-
ther important for the execution of model transformation rules,
which will be described in the next subsection.

�.�.� Model Transformations

Within this section we assume the basic knowledge about model
transformations from Section 2.5.

In order to create a transformation definition, we first have to
define a clear mapping between the source (analysis model) and
the target (test model) of the transformation. We do it by intro-
ducing an artefact mapping table and a UML mapping table.

�������� ������� ����� defines the mapping between ele-
ments of the analysis meta-model and the test meta-model.
Example of such a mapping: ActorAction (analysis meta-
model) to TestStep (test meta-model).

��� ������� ����� defines the mapping between UML ele-
ments used in the analysis meta-model and the UML ele-
ments used in test meta-model. The UML mapping table
can be derived from the artefact mapping table, since each
element of the analysis and test meta-models is projected
to an element of the UML meta-model. Example of such
a mapping: Package (e.g. package containing a UseCase in
the analysis meta-model) to Class (e.g. class describing a
TestContext in the test meta-model).

In Figure 52, we depict the artefact mapping table and the differ-
ent meta-models. To define the mapping table information about
the analysis meta-model is needed. We define it as the source
model for the transformation process. The target model is the
test meta-model. Both meta-models are placed on the M2 level
of the meta-level introduced by MOF [Obj06a]. The meta-model
can be seen as profiles of the Unified Modeling Language. That
is why in Figure 52 the UML meta-model is used as the highest
level of abstraction.

�.� ���� � . �������� ����� ���� ����� 155

The structure of the analysis model and the according UML di-
agrams were already introduced in Section 2.4. The test model
and especially the UML testing profile were introduced in Sub-
section 2.3. Having that knowledge, we can now introduce the
artefact mapping table used in our approach.

Analysis Meta-Model

UML Meta-Model

Structure Behaviour Interaction

Class Activity

Object

Note

...

Test Meta-Model

Test Architecture Test Behaviour Test Data

Mapping Table

source model target model

profile of profile of

Figure 52: Relation between different meta-models and the mapping
table

Table 5 contains the definition of all mappings between the anal-
ysis and test model. Each row results in a single model transfor-
mation rule, which is executed while generating the test model.
The mapping from Table 5 were created based on the knowl-
edge about the semantics of both meta-models. In Figure 53
we have depicted the high-level mapping between the different
meta-model viewpoints. The structure viewpoint of the analysis
model can be mapped to the test architecture viewpoint since
both viewpoints describe the structure characteristics. Addition-
ally, the test structure viewpoint can be mapped to the test data
viewpoint since it described the test data structure (see logical
data type model in Section 2.4). The behaviour viewpoint of the
analysis model can be directly mapped to the test behaviour
viewpoint. Additionally, parts of the behaviour viewpoint can
be mapped to the test architecture since some behaviour meta-
model elements (for example use case) create the context of test
architecture meta-model elements (for example test context). Fi-
nally, the interaction viewpoint of the analysis model can be
mapped to the test behaviour viewpoint. This mapping results

156 �����-����� ���� ������������� �������

from the model relations mentioned in Subsection 5.4.2. Know-
ing the motivation for the mapping, we will now describe the
concrete mapping from Table 5.

Table 5: Mapping table between the analysis and test meta-model

Modelling viewpoint Model element To test model

Behaviour

Use Case Test Context
Precondition Precondition
Postcondition Postcondition
Actor Test Component
Scenario Test Case
Actor Action Test Step
System Action Check Step

Interaction Dialog, Dialog Element DialogNote
Dialog Action TriggerNote

Structure Conceptual Component Test Component,
SUT,
Data Pool

Logical Data Type DataNote,
Data Pool

In our example the use case is mapped to a test context. Use case
elements as actor, scenario, actor and system action are mapped
to the according test model elements. We define also a mapping
between the use case’ pre- and postconditions and the accord-
ing conditions in the test model. The conceptual components
are mapped to the test architecture elements (test componentMapping between

meta-model
viewpoints

and SUT) and to the data pool. The logical data types identified
through the model analysis algorithm from Subsection 5.4.2 are
mapped to data notes and attributes of the data pool. In total
we define 14 mappings on this granularity level. For simplicity
we did not define too fine mapping rules. For example, a use
case references the conceptual components through swimlanes
within the activity diagram. The swimlanes, decision nodes, etc.
of an activity diagram could be also defined as single mappings.
This details related to the UML subset used within the speci-
fication method are implemented within model transformation
rules.

�.� ���� � . �������� ����� ���� ����� 157

Structure

Behaviour

Text
Text
Text

Interaction

Analysis Meta-Model

Test
Architecture

 Test
Behaviour

Test Meta-Model

Test
Data

mapped_to

mapped_to

mapped_to

mapped_to

mapped_to

Figure 53: Relation between different meta-model viewpoints

The single model transformation rules are specified based on the
mapping table shown in Table 5. They are implemented directly
in the code of the model-based test specification tool support. As
shown in Section 2.5 there exist different model transformation
languages. To introduce some examples of single model transfor-
mation rules here, we use the Epsilon Transformation Language
(ETL)6. Examples of concrete model transformation rules help to
understand the details of single mappings. Especially the assign-
ment of attributes of meta-model elements is interesting here.
Two exemplary mappings from Table 5 are shown as ETL rules
in Listing 5.1.

The two model transformation rules UseCase2TestContext and
UCConditions2TCConditions work directly on the meta-models
AnalysisModel and TestModel. The operator transform searches for
matches within the model instance of the analysis model while
the to operator creates the model elements in the instance of the
test model.

The single model transformation rules shown above are instances
(in terms of implementation) of the mapping table form Table 5.
In Figure 54 we classify the model transformation in the MOF
levels introduced in [Obj06a]. The model transformation rules
together with the model instances of the analysis and test model

6 http://www.eclipse.org/gmt/epsilon/

158 �����-����� ���� ������������� �������

Listing 5.1: Single model transformation rules in ETL

rule UseCase2TestContext
transform ucp : AnalysisModel!UseCase
to tc : TestModel!TestContext

{
tc.name = ucp.name;

}

rule UCConditions2TCConditions
transform ucpre : AnalysisModel!PreCondition ,

ucpost : AnalysisModel!PostCondition
to tcpre : TestModel!PreConditionNote ,

tcpost : TestModel!PostConditionNote {

ucpre.description = tcpre.description;
ucpost.description = tcpost.description;

} ⇧
belong the the M1 level. The mapping table together with the
meta-models and the UML belong to the M2 level. The highest
level of abstraction is the MOF framework on M3. The mapping
table uses the analysis and test meta-models to define a map-
ping. This mapping is instantiated by the model transformation
rules which expect the analysis model as the input and the test
model as the output of the transformation.

Within the MOF classification of model transformations, also the
specification of the according meta-model algebra operation (see
Chapter 4) is important. The specification of the algebra opera-
tion belongs to the M2 level, where the analysis and test meta-
models are defined. Also the algorithm (refinement of the alge-
bra operation) belongs to the M2 level. Both meta-artefacts (alge-
bra operation and algorithm) provide the specification needed
to implement model transformations within our approach.

Operation transform according to the template from Section 4.6:

• Name = transform

• Goal = elements of the analysis meta-model are transformed
into elements of the test meta-model

• Type = Multiple meta-model operation

• Input meta-model = analysis meta-model

• Input set = elements of the analysis meta-model

�.� ���� � . �������� ����� ���� ����� 159

MOF

UML

Analysis Meta-Model Test Meta-Model
Mapping

Table

M3

M2

M1
Analysis Model Test ModelM2M

instance_of

instance_of instance_of

pro!le_of pro!le_of

instance_of

uses uses

input output

Figure 54: Overview of the solution according to MOF levels

• Output meta-model = test meta-model

• Output set = elements of test meta-model

• Property = structural mapping

• Visualization = see Figure 55

The operation transform uses the whole analysis meta-model as
the input set. The output set is the whole test meta-model. The
mapping between both meta-models is defined by the method
engineer, who understands the semantic of the elements of both
meta-models.

The whole model transformation process is depicted in Figure
56. First the meta-model definitions are read by the algorithm.
Then the instance of the analysis model is read according to its
meta-model. The conformance to the meta-model is important,
because otherwise the model transformation rules would fail. In
the third step an empty instance of the test model is created.
Then the list of all transformation rules is read and executed
sequentially in a loop. For each model transformation rule the
model elements in the analysis model are matched and the ac-
cording model elements within the test model are created. The
algorithm terminates after executing all transformation rules.

160 �����-����� ���� ������������� �������

tr
an

sf
or
m

Figure 55: Meta-model algebra operation for the model transforma-
tions

�.� ���� � . �������� ����� ���� ����� 161

The sequential execution order of the transformation rules is
needed, because several test model elements have dependencies Order of model

transformation rulesas introduced in its meta-model (see Subsection 2.3). For exam-
ple the use case package has to be created before the activity
diagram for a test case, since each test case (and its activity dia-
gram) is placed within the use case package. Another example
is the test context class which operations present the names of
all test cases generated for a use case. The test context class has
to be created before the transformation rules for test cases are
executed.

Figure 56: Algorithm for Model Transformation

162 �����-����� ���� ������������� �������

While executing the transformation rules as shown in Figure 56 a
problem arises. Since we select paths and perform model analy-
sis to search for related information, some model transformation
rules should work only on the gathered information and not the
complete analysis model. That is why we differ between transfor-
mation rules executed before the test selection takes place and
after it.

The following model transformation rules are executed before
the test selection takes place:

• UCPackage2TestModelPackages

• UCPackage2DataPoolClass

The following model transformation rules are executed after the
test selection takes place:

• UCActorAction2TCStep

• UCSystemAction2TCheckAction

• UCConditions2TCConditions

• Dialog2TCStepDialog

• DialogTrigger2TCStepTrigger

• LogicalDataType2TCStepData

• LogicalDataType2DataPool

• Swimlane2TCSwimlane

• Swimlane2TestComponent

• ConceptualComponent2SUT

Earlier in this subsection, we have introduced the high-level map-
ping table between the analysis and test meta-model (see Table
5). The pre- and post-selection transformation rules mentioned
here extend the high-level table. The full specification of all map-
pings and their according model transformation rules does not
provide further cognitions as the ones described until now.

To visualize the model transformations described in this subsec-
tion, we provide an excerpt of a use case (see Figure 57) and a au-Exemplary

transformation
results

tomatically generated logical test case (see Figure 58). By using
the test selection algorithm from Subsection 5.4.1 the red marked
path in Figure 57 was selected. For both actions Register_Attendee
and Search_Course the model analysis algorithm from Subsection
5.4.2 collects the related dialog actions, dialog elements and log-

�.� ���� � . �������� ����� ���� ����� 163

ical data types. Through the execution of several model transfor-
mation rules described in this subsection logical test cases like
the one from Figure 58 are created.

Figure 57: Path within a use case taken as the input for the transfor-
mation

Beside the logical test cases, also the test architecture model ele-
ments like the test context, test component and SUT classes are
created. This way, the model elements needed to specify a test
model according to the UML Testing Profile (see Subsection 2.3)
are created. In Figure 59 we introduce the mentioned elements
of the test model for the use case Book_Attendee_on_Course (see
running example from Subsection 2.4.4). The test context class
groups all logical test cases selected with the test selection al-
gorithm. There exist two naming conventions for test cases: se-
quence of integer numbers from 1 to n (where n is the num-
ber of generated test cases) or path names (which consist of
guard names from the decision alternatives takes during the se-
lection in an activity diagram). Through model analysis algo-
rithms the SUT and test components as the associations between
them could be identified. By executing the model transformation
rules all mentioned elements of the test model were automati-
cally created.

The model transformation technique enables the automation of
a great part of the test specification process. It also supports the
traceability of the test model elements, since the source of each
of them is specified within the model transformation rules. The

164 �����-����� ���� ������������� �������

Figure 58: Logical test case created by the test selection, model analy-
sis and model transformation algorithms

Figure 59: Test architecture package with the test context, several test
component and one SUT class created by the model analy-
sis and model transformation algorithms

�.� ���� � . �������� ����� ���� ����� 165

traceability topic is strongly connected with the model coverage
measurement and will be introduced in the next subsection.

�.�.� Model Coverage Measurement

After executing the test selection algorithm and the model trans-
formation rules a basic version of the test model is created. Be-
fore the test model is extended with further information, the
reached quality in terms of model coverage has to be measured.
Model coverage in the current literature as shown in the sur-
veys from Andrews et al. [AFGC03] or Mc Quillan and Power
[MQP05] concentrate on the coverage reached by the test se-
lection. In our case the coverage reached by the test selection
algorithm together with model analysis and transformation al-
gorithms is relevant. In Subsection 2.2.4, we have already intro-
duced the definition of the holistic model coverage.

The holistic model coverage should be performed on the results
of the mentioned algorithms. The goal is to identify in what ex-
tent the generated test model covers the analysis model. This Traceability for

model coverage
measurement

can be done by using the traceability information between the
single elements of the test model and the analysis model. We
have already introduced the topic of traceability back in Subsec-
tion 2.5.3.

The best source of the traceability information are the model
transformation rules itself. In each rule the source and target
model elements are specified. Knowing this the following ques-
tion arises: Why do we have to measure the reached coverage
rather than analyse the model transformation rules, since all
source and target elements are known? First, there can be el-
ements of the analysis model for which no model transforma-
tion rules were specified. The model transformation rules can
be changed at any time during testing, which also influences the
reached coverage. Finally, we distinguish between rules executed
before and after the test selection.

Especially the later ones depend on the adherence of model re-
lations from the analysis meta-model. If some model links are Importance of model

relationsmissing, the model transformation rules will not result in new
elements of the test model. Let us consider the example from Fig-
ure 60. In the analysis model the use case is linked to the dialog,
but the dialog is not linked to the logical data type model. After

166 �����-����� ���� ������������� �������

Analysis Model Test Model

<Use Case>
UC1

<Dialog>
DIA1

<Logical Data Type>
LDT1

<Test Case>
TC1

<TestStep>
TS1 <DataNote>

covered not
covered

Figure 60: Coverage problem resulting from missing model linkage

executing the algorithms mentioned so far, a test model consist-
ing among other of a test case with several steps is generated.
Since the link between dialogs and the logical data type model is
missing, no data note for a test case step is created. This way only
the use case and dialog model elements are covered (depicted by
gray background). This missing traceability information cannot
be extracted only by analyzing the model transformation rules
without executing them. That is why the traceability information
of the model transformation process has to be made explicit and
compared with the analysis model.

The main artefact used during the model coverage measurement
process is the trace model. In Figure 61 the trace meta-model isTrace meta-model
shown. It consists of multiple trace links. Each trace link repre-
sents the sources (elements of the analysis model) and targets (el-
ements of the test model) used during the model transformation
process. Since our approach uses multiple source and multiple
target transformations, the cardinality is always 1 to *.

The trace model consists of several trace links. In the case the
generation of the test model failed, the trace model is empty.
The trace links consist of a collection of source and target ref-
erences. We have chosen this structure, because of the relation
with model transformation rules. The execution of one or more
model transformation rule results in a trace link. Since an el-
ement of the test model can be transformed by using several
elements of the analysis model, we specify the 1..* cardinality
between the trace link and source and target elements.

Each source and target element is described by an id, name, mod-
elID (id of the model element in the analysis model), modelName
and modelType (for example use case, dialog, etc.). Additionally

�.� ���� � . �������� ����� ���� ����� 167

Figure 61: Trace meta-model

in Source the attribute coveredEdge is used. In the case of activity
diagrams describing a use case, the outgoing edges with guards
of decision nodes play an important role within the test model.

The model coverage measurement compares the source references
from the trace model with the model elements of the analysis
model by using the modelID attribute. Each model element for
which no source reference could be found is automatically not
covered. The relation between sources and targets in a Trace Link
enables the identification and verification of covered elements.
Besides the coverage measurement purpose, each element of the
test model can be traced back to its source and this way its com-
prehensibility is improved.

The specification of the model coverage measurement process
begins with the definition of the algebra operation (Chapter 4).
The algebra operation relevant for the coverage measurement is
named cover.

Operation cover according to the template from Section 4.6:

• Name = cover

• Goal = elements of the trace meta-model are analysed for
their coverage of elements of the analysis meta-model

• Type = Multiple meta-model operation

168 �����-����� ���� ������������� �������

• Input meta-model = analysis and trace meta-model

• Input set = all elements of the trace and analysis meta-
model

• Output meta-model = analysis meta-model

• Output set = covered elements of the analysis meta-model

• Property = traceability

• Visualization = see Figure 62

The operation transform uses the analysis meta-model together
with the trace meta-model as the input set. The output set is the
subset of the analysis meta-model which is covered. The cover-
age is determined by the trace model which represents the traces
between the test and analysis meta-model. Based on this abstract
definition, we will now provide some exemplary algebra terms
and the refinement of the cover operation as a concrete algorithm.

Since the algebra operation described above uses the models re-Exemplary
meta-model algebra

terms
sulting form the execution of other operations as select, extract
and transform, we can specify algebra terms similar to the exam-
ple introduced in Section 4.1.

select(m) (5.2)

extract(select(m)) (5.3)

transform(select(m)[extract(select(m))) (5.4)

cover(transform(n), t) (5.5)

where n,m 2 AM (n and m are typed over the analysis meta-
model) and t 2 Trace (t is typed over the trace meta-model).

In 5.2 the select operation is defined. It is used as input in 5.3 for
the extract algebra operation. Then, in 5.4 the selected test cases
together with the extracted information is transformed into the
test model with the transform operation. Finally, the operation
cover uses the generated test model and the trace model to mea-
sure the model coverage in 5.5.

This simple algebra terms provide an additional specification of
the input/output relation between algebra operation in our ap-
proach. Further, the order of algebra operations and therefore al-
gorithms can be easily specified. Though this meta specification

�.� ���� � . �������� ����� ���� ����� 169

co
ve
r

An
al

ys
is

 M
et

a-
M

od
el

Tr
ac

e
M

et
a-

M
od

el
An

al
ys

is
 M

et
a-

M
od

el
(c

ov
er

ed
 e

le
m

en
ts

)

Figure 62: Meta-model algebra operation for the model coverage mea-
surement

170 �����-����� ���� ������������� �������

in the first place, the corresponding specification of algorithms
is supported.

To measure the reached model coverage we define an algorithm,
which is depicted in Figure 63. The activity diagram contains
four swimlanes, which represent the different algorithms used
in the overall approach. This is needed, because of the depen-
dence of the coverage measurement on model transformation
rules. We gain traceability information during the execution of
the rules. The four steps beginning and ending with the exe-
cution of model transformation rules represent the algorithms
mentioned in the last two subsections. Since the model trans-
formations are executed before and after the test selection, we
introduce a new artefact called trace model, which is generated
after the execution of each model transformation execution.

In Figure 63 we abstract from the details of the general approach
as manual model analysis, test annotation, test model extension,
etc. We also use the analysis model as input for the model cov-
erage measurement without modelling where and how it was
created.

The output of the steps executed at the beginning of the cover-
age measurement process from Figure 63 are the test model andModel coverage

measurement
algorithm

a trace model. Both serve as input for measuring the coverage
level. First the coverage of single model elements (like instances
of use cases) is calculated. Afterwards, the coverage for certain
model types (as use cases, dialogs, logical data types, etc.) is cal-
culated. Then the coverage of the overall analysis model is calcu-
lated. The calculations for model types and the overall analysis
model is done by averaging over the coverage calculated for sin-
gle model elements.

Besides the calculation of percentage coverage for model ele-
ments, the identification of test cases and the coverage reached
by them is important. Typical coverage reports in the field of
requirements-based testing contain information like "for use case
X the following test cases were created: TC1, TC2, TC3, etc.". This
kind of visualization is also important in our model coverage
measurement algorithm.

At the end all calculated information is visualized within a cov-
erage report. This report contains all metrics for the different
calculations in a hierarchical form. The purpose of this artefact
is to support the test manager by checking the fulfillment of test

�.� ���� � . �������� ����� ���� ����� 171

Figure 63: Algorithm for measuring the model coverage integrated
into the workflow of the test model generation

172 �����-����� ���� ������������� �������

strategy by the automatic test generation. If certain goals are met,
but result in too many test cases he can adjust the strategy and
advise test designers to use other test selection criteria.

Within our measurement process, several metrics are used to cal-
culate the reached coverage level. Based on the assumed struc-
ture of the analysis meta-model from Subsection 2.4.11 and the
Goal-Question-Metric approach [BCR94], we have define the fol-
lowing goals for the model coverage measurement:

Table 6: Model coverage measurement goals

Goal dimension Value
Object of study Analyze the analysis and trace model
Purpose for the purpose of coverage measurement
Quality focus with respect to the global, use case, dialog

and logical data type model coverage
Viewpoint from the viewpoint of the test designer and

test manager
Context in the context of the test design phase,

the purpose of generating test models
from analysis models

In the goal definition from Table 6 we differentiate between the
global coverage of the analysis model, the coverage of single
use case (behavioural modelling viewpoint), dialog (interaction
modelling viewpoint) and logical data type models (structure
modelling viewpoint). Additionally the coverage of each model
type (for example use case and dialog) can be measured.

Based on this goal definition, we define the several metrics forCoverage metrics
the mentioned elements of the analysis model. Each metrics is
specified with a basic mathematical equation, which divides the
covered elements by the overall number of elements. For this
specification we use standard mathematical operators as addi-
tion a + b, division a

b

and multiplication a ⇤ b. Additionally,
we use the sum symbol

P
and the intersection symbol \. The

following metrics are defined for the exemplary modelling ap-
proach used in this thesis:

�.� ���� � . �������� ����� ���� ����� 173

cov_global(AM) =
cov_uc+ cov_dia+ cov_dt

3

(5.6)

cov_uc(AM) =

P
m2UC

cov(m)

|UC|
⇤ 100 (5.7)

cov_ad(uc 2 UC) =
|an 2 (ad\ path)|

|an|
⇤ 100 (5.8)

cov_de(dia 2 DIA) =
|de 2 (DIA\ path)|

|de|
⇤ 100 (5.9)

cov_da(dia 2 DIA) =
|da 2 (DIA\ path)|

|da|
⇤ 100 (5.10)

cov_dia(dia 2 DIA) =
cov_de+ cov_da

2

(5.11)

cov_dt(dt 2 DT) =
|dt 2 (DT \ path)|

|dt|
⇤ 100 (5.12)

The following abbreviations are used in our metrics definition:

• AM = analysis model

• UC = all use cases

• uc = use case

• ad = activity diagram

• an = action node

• de = dialog element

• da = dialog action

• dia = dialog

• dt = logical data type

• path = selected paths within the activity diagram

The first metric cov_global describes the global coverage of the
analysis model. We calculate it as the coverage sum of the cov-
erage of different model types (like use case, dialog or data
type model) divided by the overall number of model types (here
three). For each type the metrics cov_uc, cov_dia and cov_dt are
defined.

174 �����-����� ���� ������������� �������

The metric cov_ad describes the coverage of the activity diagram,
which refines each use case. This metric calculates the coverage
of action nodes within the activity diagram. We define it as the
number of action nodes within a path divided by the overall
number of actions. Depending on the test selection criteria (see
Subsection 5.4.1) two other metrics for edges and decision nodes
could be also used here.

For the dialog coverage the metrics cov_de (percentage of cov-
ered dialog elements) and cov_da (percentage of covered dialog
actions) which are used within cov_dia. We define the coverage
of dialogs as the mean value between the coverage of dialog ele-
ments and coverage of dialog actions.

Finally, the coverage of the logical data type model is defined
with the cov_dt metric. All logical data types referenced from the
activity diagram through the dialog actions and dialog elements
are defined as covered. The mentioned reference is used within
the model analysis algorithm in Subsection 5.4.2.

Activity
DiagramTypes

Global

Logical
Data Types DialogsUse Cases

Dialog
Actions

Dialog
Elements

+ ++

+ +

Figure 64: Hierarchy of the model coverage metrics

Our metric set has a hierarchical structure as shown in Figure
64. The main metric cov_global uses the submetrics like cov_uc,
cov_dia and cov_dt to calculate the overall coverage. It uses the
mentioned submetrics, but does nut sum them. The submetrics
also depend on other metrics. For example the coverage of use
cases uses cov_ad to calculate the coverage of each use case.

The visualization of the coverage measurement is the coverage
report. It contains the calculations for all mentioned metrics.
Within the report a final statement about the reached coverage

�.� ���� � . �������� ����� ���� ����� 175

level is given. This statement is based on the cov_global metric
and is calculated as follows:

• cov_global <= 33% (low coverage)

• 34% > cov_global <= 66% (medium coverage)

• 67% > cov_global <= 100% (high coverage)

We have chosen this distribution of the cov_global metric based
on three observations:

1. The analysis model contains more model elements than the
ones used within our algorithms

2. The test selection criteria which uses the annotation lan-
guage uses only a part of the use case model for test selec-
tion

3. Dependent on the model complexity the 100% model cov-
erage is not practicable in most cases because of the test
explosion problem mentioned in Subsection 2.2.4

In order to provide an impression of the reached coverage of the Coverage levels
analysis model, we decided to split the values between 0 and
100% in three groups with approximately each 34%. The first
group (up to 34%) is called low coverage, because only small part
of the analysis model (for example only some of the available
use cases with no model links) were covered. A medium coverage
(up to 66%) visualizes the situation where several inter-related
elements of the analysis model were covered. High coverage (up
to 100%) visualizes a coverage level which can be reached only
by a strongly inter-related analysis model and exhaustive test
selection criteria.

An example of the coverage report for our running example Coverage report
from Subsection 2.4.4 is shown in Figure 65. The global cover-
age equals only 33% and therefore is low. The different coverage
levels are visualized by the colors red (low), yellow (medium)
and green (high). As shown in Figure 65 the color scheme is ap-
plied not only for the cov_global metric, but also for other metrics
like cov_dt, cov_uc and cov_dia.

To visualize the coverage of use cases we show an example in
Figure 66. There are five use cases within our running example.
All use cases were covered by our AllActions test selection algo-
rithm. For the use case Search_Customer only one test case was
generated. This coverage report visualizes the coverage measure-

176 �����-����� ���� ������������� �������

Figure 65: Example of the coverage report visualization (global cover-
age)

ment based on single action nodes of the use case’ activity dia-
gram as mentioned earlier.

As mentioned at the beginning of this subsection the difference
between typical coverage measurement based on test selection
criteria and our holistic approach lies in the usage of model rela-
tions. The coverage report supports the test manager by identify-
ing the reasons for low coverage level (insufficient or acceptable).
Besides the usage of weak test selection criteria, the following sit-
uations can lead to low overall coverage:

• Missing model relations between actor actions and dialog
actions

• Missing model relations between dialog actions and dialog
elements

• Missing model relations between dialog elements and log-
ical data types

The missing relations between model elements result in differ-
ent coverage levels of the related model types. For example aQuality

improvement of the
analysis model

use case can be covered with 100% but the according dialog
only with 30%. This difference is caused by the missing rela-
tions between actor actions and dialog actions. The missing rela-
tions also impact the automated model analysis algorithm (see
Subsection 5.4.2). As in there, also here the degree of model rela-

�.� ���� � . �������� ����� ���� ����� 177

Figure 66: Example of the coverage report visualization (use case cov-
erage)

178 �����-����� ���� ������������� �������

tions transcribed by business analysts with respect to the analy-
sis meta-model is important. Without empirical evidence at this
points, we state that the following correlation holds for the holis-
tic model coverage measurement:

cov_global(AM) ⇠ rel (5.13)

Similar to the correlation introduced in Subsection 5.4.2, the rel
variable symbolizes level of model relations instantiated accord-Correlation with

model relations ing to the analysis meta-model by business analysts. In partic-
ular it is the degree of transcription of model relations at the
model instance level. The cov_ global stands for the global cover-
age metric applied on the analysis model (AM). If the number of
model relations is high, then the global model coverage grows.
Within this equation, we omit the obvious correlation of the cov_
global to the other coverage metrics. The directly proportional
correlation with the model relations is important, because on
the impact on the model coverage and thus on the usage of the
holistic view in model-based testing.

The coverage report visualizes the reached coverage level. In
case of low coverage the test manager can map the coverage
differences between model types with the missing relations in
the analysis model. His role is to advise the business analysis
team to incorporate the missing model relations. This way they
improve the quality of the analysis model and a high quality test
model can be generated.

The trace model is the central artefact used during the model
coverage measurement process. The calculation of all introduced
metrics is based on the information stored within the trace model
and the analysis model. Besides the coverage measurement the
trace model can be also used for impact analysis.

Impact analysis deals with the identification of changes within
a model and their impact on the related model elements. In ourImpact analysis

reference context the impact analysis should be performed automatically
on the analysis and test model. Changes within the analysis
model impact changes in the test model. Through the explicit
traceability information stored in the trace model, we can auto-
mate great parts of the impact analysis process.

�.� ���� � . ������ ��� ����� ���� ����� 179

As the topic of impact analysis would require a separate phd the-
sis, we only refer to the approach from Farooq [Far10]. The au-
thor transforms a business process model described with BPMN
to a test model described with UTP. This way the transforma-
tion process is very similar to ours, since we also use UTP as the
test model representation. During this transformation process
a trace model is stored. This model is used to identify the re-
gressions test suites which have to be executed when the BPMN
model has changed. To identify the changes within the BPMN
model Farooq uses impact analysis techniques which compare
the baseline and a delta BPMN model. Then the trace model is
used to identify the affected parts of the UTP model. The im-
pact analysis approach from [Far10] can be integrated into the
model-based test specification process presented in this chapter
by replacing the BMPN model with our analysis model. This in-
tegration can be implemented in the future and is not part of
this thesis.

Our model coverage measurement approach incorporates the
holistic view used during the transformation process. It enables
the test manager the calibration of the test strategy and gives
important hints for improving the quality of the analysis and
test model. Since the coverage measurement is strongly coupled
with the transformation process, the following problem arises:
After the test model is automatically generated it is manually ex-
tended by the test designer with test data and expected results. Changes within the

test modelWithin this extension process some elements of the test model
can be deleted or new elements be added. This change influ-
ences the coverage level. To recalculate the model coverage, the
according changes within the trace model have to be performed.
This task is done manually by the test designer. In the future
version of our approach this task can be automated by provid-
ing impact analysis algorithms which automatically extend the
trace model and reexecute the coverage measurement process.

�.� ���� � . ������ ��� ����� ���� �����

After applying several model transformation rules and selecting
test cases from the analysis model, a basic test model is created.
This model is described with a customized version of the UML

180 �����-����� ���� ������������� �������

testing profile. The difference between the official OMG version
[Obj07b] and the one used here was described in Subsection 2.3.

Analyze and
annotate
test basis

Extend basic
test model

Generate test
cases

Test Analysis Test Design Test Implementation

Generate basic
test model

Analyze the
generated test

model

Extend test
case

information

Define test data
partitions

Prepare test
data sets

Figure 67: Refinement of the third step within the model-based test
specification approach

The goal of the extension process is to guarantee the test inde-
pendency needed in model-based testing (see Section 1.1) and
to provide high-quality of the test model especially in terms of
completeness. The manual model analysis from Section 5.3.1 has
a similar goal related to the analysis model.

�.�.� Basic vs. extended test model

Prior to the introduction of the extension process, we first define
the basic and extended test model.

����� ���� ����� is the result of the execution of test selec-
tion, model analysis and model transformation algorithms.
It contains of all elements belonging to the three UTP con-
cepts: test architecture, test behaviour and test data.

�������� ���� ����� is the result of the manual extension
process. It extends the basic test model with additional
data partitions and precise pre- and postconditions defi-
nitions. Further, additional test cases can be added or the
automatically generated test cases removed after a manual
review process.

�.� ���� � . ������ ��� ����� ���� ����� 181

The test model is called basic, because several elements have to
be extended or substantiated. Especially the logical test cases as
a main part of the test behaviour concept have to be changed.
The following list gives an overview on the logical test case ele-
ments which have to be changed in this step of the model-based
test specification process:

• ConditionNote

• DataNote

• DialogNote

• TriggerNote

The test designer may also reconsider to delete some of the au-
tomatically generated test cases. For example the test selection
algorithm has selected too many test cases, but a weaker test
selection criteria selects too few. Another case is the business
relevance of the generated test cases. For example the selected
use case scenario is not critical and rarely used in the SUT. The
business relevance can be incorporated within the annotation
process from Subsection 5.3.2. This way risk-based testing is ap-
plied and omits the manual deletion of not needed test cases.

�.�.� Manual extension process

In order to systematically perform the extension process, we de-
fine the following steps:

1. Analyze the generated test model

a) Delete not relevant test cases

b) Check each test case missing information

c) If needed correct the system model and regenerate the
test model

2. Extend test case information

a) Extend ConditionNote(s)

b) Extend DataNote(s)

c) Extend DialogNote(s) and TriggerNote(s)

3. Define the data partitions for each data pool

4. Prepare test data sets (external source)

182 �����-����� ���� ������������� �������

Since each of the mentioned steps has to be performed by test
designers, we provide a brief description for each of them in the
next paragraphs.

Delete not relevant test cases

The automatic test selection can result in several test cases within
the test model. For example a selection based on a medium com-
plex activity diagram with the AllPathsOneLoop algorithm can
result in 15-30 test cases. Some of the generated test cases can
be not relevant for the test execution. This can be the case if
the generated set of test cases is too large or "exotic" test cases7

are included. Since the test designer can edit the generated test
model directly in a modeling tool, he simply deletes the activity
diagrams representing the not relevant test cases.

Check each test case missing information

Besides the deletion step, the generated test cases can reveal
missing information within the analysis model. Missing infor-Completeness checks
mation can be identified by looking at the different UML notes
of the test case activity diagram. If the pre-/postcondition, data,
dialog and trigger notes are empty then this information was
missing in the analysis model. In Figure 68 we provide a cut-out
of the logical test case within the basic test model. As mentioned
the data note is empty. A good practice is to analyze the coverage
report for the coverage of use cases, dialogs and data models sep-
arately. If the coverage of those three model types strongly dif-
fers then relations between models are missing. The easiest way
is to correct the analysis model and regenerate the test model.
Other possibility is to manually extend the test model.

Extend ConditionNote(s)

The pre- and postcondition of use cases are often not sufficient
for testing. Bad examples are post-conditions like "The attendee
is booked on the course units" as shown in Figure 68. What ex-
actly does "is booked" mean? In order to decide if a test case has

7 We define "exotic" test cases as not relevant for the business from the customer
point of view.

�.� ���� � . ������ ��� ����� ���� ����� 183

Figure 68: Example of the missing information in a logical test case
within the basic test model

passed or failed during the test execution more detailed descrip-
tion is needed. Detailed information ensures that the condition
is reachable, observable and analyzable. In the case of the men-
tioned example information about the shown confirmation win-
dow or new database entries is needed. Since this detail level is
mostly needed only for testing, the extension or refinement step
has to be done manually by test designers.

Extend DataNote(s)

The data notes are automatically created during the generation
step. Each note consists of textual names which reference to data
types used as input for a given test step. For example a test case
step called searchCourse needs the TypeOfCourse, LevelOfCourse,
CourseUntil and CourseFrom data types as input. The test de-
signer has to review these automatically generated proposals. If
further data types like NoCourseUnits or MinAttendeeGroup have
to be used, then the data note together with the according data
pool has to be extended. The opposite action has to be performed
if too many data types were automatically generated.

184 �����-����� ���� ������������� �������

Extend DialogNote(s) and TriggerNote(s)

Similar to the data notes two other types of notes (dialog and
trigger note) are generated automatically. Beside the case were
no dialog and therefore no trigger is needed, the test designer
can extend the mentioned notes. For example if more than one
dialog is used in a test case step, then the dialog note has to be
extended. The according trigger note which references the dialog
action used to trigger the test case step has also to be extended,
because different dialog actions (on more than one dialog) are
used.

Define the data partitions for each data pool

As mentioned earlier the test model consists of one or more data
pools for each use case being tested. In a test case step the single
attributes of data pools are used within the data note. Each data
note references to a certain data partition of a data pool through
a so-called tagged value. Since this information cannot be de-
rived from the analysis model, the test designer has to create it
manually. First, the test designer has to define data partitions
for each data pool. By default each data pool has a valid and in-
valid data partition. For example the partitions validCourse and
invalidCourse of the data pool Booking. Following the category-
partition method the invalidCourse can be further decomposed
in invalidCourseFrom, invalidLevelOfCourse, etc.

The decomposition itself is useless, because the data partitions
have to be used within test cases. The important task is to estab-
lish a link between a test case step and the data partition used
within it. Technically it can be done within a modeling tool by
using the tagged values within the data notes of a test case step.
The tagged value should reference to the data partition used in
a step. We will explain the purpose of this linkage in the next
step description.

Prepare test data sets (external source)

Through the definition of the data pools and data partitions the
test designer defined the logical structure of the test data. The
next task is to concretize the data partitions with concrete data
sets. For each data partitions a set of concrete values has to be

�.� ���� � . ������ ��� ����� ���� ����� 185

Logical Test Case
(Test Behaviour Viewpoint)

Data Pool
(Test Data Viewpoint)

reference_to

Figure 69: Example of the linkage between data notes in a test case
and data partitions in the data pool

created. For example invalidCourse with values like 13.12.2010,
18.12.2020, Advanced, Snowboard as shown in Figure 69. The test
designer can prepare more than one set of test data. A good
practice is to use the boundary-value analysis from [SL05] for
test data derivation here.

The definition of concrete test data sets can be performed at the
model level by creating UML object diagrams. Since the amount
of test data sets can be very high, we encourage the use of an
external source like database or xml files to store the test data
sets. It is very important to use the same logical structure as
defined in the test data package.

During the test data preparation the same problem as within
the model coverage measurement arises. The test model is being
changed which influences the coverage level. In the current ver-
sion of the model-based test specification process the model cov-
erage measurement strongly depends on the execution of model
transformation rules. This execution results in a basic test model
which does not incorporate the changes made in the extension
step. Those changes have to be manually appended into the trace
model instance on which the coverage measurement depends.

186 �����-����� ���� ������������� �������

If all needed test data sets are prepared, the generation of con-
crete test cases can be triggered. This step will be described in
the next section.

�.� ���� � . �������� �������� ���� �����

The automatic generation of concrete test cases is the last step
of the model-based test specification process. Those test cases
are used by testers for manual or automatic test execution. The
algorithms and manual tasks executed in the last three steps
of the process lead to high-quality test cases, which fulfill the
quality attributes mentioned in Chapter 3.

Analyze and
annotate
test basis

Extend basic
test model

Generate test
cases

Test Analysis Test Design Test Implementation

Generate basic
test model

Execute test
data selection

Generate
concrete test

cases

Figure 70: Refinement of the fourth step within the model-based test
specification approach

The distinction between a test model and concrete test cases is
motivated by the following requirements:

REQ1 The logical test cases within the test model do not contain
concrete test data, which is needed for the execution

REQ2 The execution of concrete test cases depends on the plat-
form of the used SUT

REQ3 The management of test cases and their execution in projects
is done within professional test management tools

�.� ���� � . �������� �������� ���� ����� 187

The first two requirements are motivated from the problem state-
ment (Section 1.1) and the discussion about different model types
in the MDA (Section 2.5). The third requirement is based on the
observations of large-scale industry projects within this thesis.
To fulfill the first requirement, we use data combination algo-
rithms. For the second and third requirement, we use the con-
cept of platform-independent (PIM) and platform-specific mod-
els (PSM) known from MDA [Obj03]. Here, especially the model
to text transformations are used.

�.�.� Excursion: Constraints in test data

The automatically generated and manually extended test model
contains logical test cases and the logical structure of the test
data. Concrete data sets are created manually or automatically
by using test data generators [RBGW10] according to their logi-
cal structure within the test model. To create concrete test cases
the logical test cases have to be combined with the concrete data
sets.

In large-scale projects, the combination of concrete data sets has Combination of test
datato incorporate constraint definitions. The problem here is that

certain concrete data sets can not be combined with each other
or the combination has to include only certain data partitions.
The following cases should be regarded within the constraint
definition:

• DataSet1 have to be combined with DataSet2

• DataSet1 can not be combined with DataSet2

• InvalidPartition1 can not be combined with InvalidPartition2

• ValidPartition1 have to be combined only with InvalidParti-
tion2

The need for the incorporation of data set constraints is moti-
vated by the complexity of test data for testing information sys-
tems. Since such systems use complex, object-oriented data mod-
els this complexity is also given in the test data model. Within
other system types like the embedded systems this complexity
is not given since the data model structure is typically simpler.

188 �����-����� ���� ������������� �������

Based on the different cases introduced above, we define the
following logical operators, which are used to specify constraints
between test data:

• AND

• NOT

The constraint definition with the mentioned operators has to be
defined at the model and instance level. If constraints exist be-
tween data partitions, then the constraint definition takes place
within the test model. For example the combination of several
data partitions in the test data viewpoint. The other case are
constraints between concrete data sets. For example the combina-
tion of concrete data sets for data partitions. Here the constraint
definition has to be placed outside the model. Based on our ob-
servations from the industry research project conducted within
this thesis, test data in large-scale projects is typically managed
by using database systems. Those systems enable the definition
of constraints (for example by using Structured Query Language
[SQL08]) directly within the database.

To define the constraints at the model level the Object Constraint
Language [Obj06b] is used. This language defines the AND and
NOT operators. At the instance level the SQL [SQL08] defines
the mentioned operators. Both languages support the definition
of complex constraints.

As mentioned earlier, concrete test data can be created manually
or automatically generated with test data generators. Especially
in the automated case the specification of constraints and its us-Problem complexity
age to generate test data according to the logical test data model
is a non trivial problem. Mario Winter analyzed in [Win99] the
generation of (test data) object constellations from UML class
diagrams refined with OCL constraints. The author defined a
problem called "Generierung von Objektkonstellationen (GOK)"
in [Win99, p.184] and provided a proof for its NP-hardness. The
GOK problem emerges, when concrete test data sets have to be
automatically generated from a test model with constraint def-
initions. Winter references well-known test data generation ap-
proaches as [Bei95], which can be adapted for automated test
data generation from the UTP test model in this thesis.

The specification of test data constraints is important for testing
in large-scale project. However, this topic is not strictly related to
the research problem of the missing holistic view. The technique

�.� ���� � . �������� �������� ���� ����� 189

and languages mentioned in this subsection are useful to adopt
the solution in a concrete project scenario. We do not further
detail this topic in this thesis and reference it in the future work.

�.�.� Test Data Selection

During the generation of the basic test model the selection of
logical test cases was conducted. To generate concrete test cases
another selection algorithm has to be defined. The goal of this
algorithm is to combine concrete data sets according to a certain
data coverage criteria (see Subsection 2.2.4). Similar to the selec-
tion of logical test cases with transition-based coverage criteria,
the selection of test data is not restricted to single data coverage
criteria.

In Section 2.2.4 we introduced several types of data coverage
criteria. The simplest solution is to sequentially combine each Simple combination

of test data setsdata set created for the data partitions defined in the test model.
In Figure 71 we provide a simple example. The concrete data
sets d1 - ds5 are combined according to the SimpleCombination
test selection criteria. The data set pairs ds2,ds4 and ds1,ds5 are
combined sequentially. Since no new concrete data set for the
partition ageInvalidBooking is given, the data set ds3 is combined
with the last data set used for partition ageInvalidBooking. This
way ds3 is combined with ds5.

To fulfill the SimpleCombination data coverage criteria, we define
the according algorithm here. Since we do not define a meta-
model for the output of the test data selection, no algebra op-
eration (see meta-model algebra in Chapter 4) is specified here.
Figure 72 depicts the algorithm as an activity diagram. In the
first step the definition of all data partitions is read from the
test model. Next the concrete data sets are read from an external
source (for example a database). In the third step all test cases
are read from the test model. The algorithm iterates through
each found test case. For each test case the referenced data parti-
tions are read. Then for all data partitions the according concrete
data sets are read sequentially. If for one of the data partitions
no more data sets can be found, then the last read data set is
taken. This way for each combination of data sets read for the
data partitions a concrete test case is generated.

190 �����-����� ���� ������������� �������

Figure 71: Combination example of data sets according to the Simple-
Combination test selection criteria

Since the application of the SimpleCombination algorithm omits
several combinations, which could lead to the detection of fur-
ther faults, stronger data coverage criteria like N-wise coverage or
even All-combinations can be used here alternatively.

In the last section we have mentioned that concrete test data setsTest data
management should be stored outside the test model. This is motivated by the

amount and complexity of test data sets in software engineering
projects. External sources like databases provide advanced sup-
port for managing test data.

In order to use an external data source, the following require-
ments have to be fulfilled:

REQ1 Mapping between test model and external source - the
logical structure of test data is defined in the test model by
data pools and data partitions. The structure of the data in
the external source should be defined respectively.

REQ2 Constraint definition - the external data source should
support the definition of constraints as mentioned in Sub-
section 5.6.1.

REQ3 Consistency of data sets - the concrete test data sets should
be consistent according to the constraint definition and the
logical test data structure defined in the test model.

�.� ���� � . �������� �������� ���� ����� 191

Figure 72: Algorithm fulfilling the SimpleCombination test selection cri-
teria

192 �����-����� ���� ������������� �������

The concrete test cases have the same structure as the logical test
cases which were described in Subsection 2.1.1. The only differ-
ence lies in the description of test case steps. This description
contains the concrete data sets which were combined using the
algorithm from the last subsection. Listing 5.2 shows a excerpt
of a concrete test case in the XML file format, which is based on
the running example of this thesis. The important difference to
a logical test case from the test model is the input field. In this
example the input data is filled by concrete values. For example
the TypeOfCourse equals Snowboard.

Listing 5.2: Example of a concrete test case

...
<teststep >
<no>2</no>
<name>Search_Course </name>
<stereotype >TestStep </stereotype >
<datapartition >validCourse </datapartition >
<description >The employee enters the course data

and uses the use case Search_Course for
finding a suitable course.</description >

<dialog >BookAttendeeOnCourse </dialog >
<input >TypeOfCourse:Snowboard ,

LevelOfCourse:Beginner , CourseFrom:10
.10.2010 , CourseUntil:16 .10.2010 </input>

<trigger >SearchCourse </trigger >
<expectedResult ></expectedResult >

</teststep >
.... ⇧
In the last step of the algorithm introduced in Figure 72 concrete
test cases are exported to predefined file formats. The example
of a concrete test case provided above was already depicted in
the XML file format. The transformation of concrete test cases
into a platform-specific file format will be described in the next
subsection.

�.�.� Platform-specific test case generation

Following the idea of PIM and PSM known from the MDA [Obj03],
our approach enables the generation of platform-specific test
cases from the test model. For that model to text (M2T) transfor-

�.� ���� � . �������� �������� ���� ����� 193

mations are used. We distinguish between the following targets
of the M2T:

• Textual description for manual test execution (like Microsoft
Excel8)

• Import format for test management tools (like XML9)

• Test script language (like xUnit10)

Each target type is fully customizable for the project needs, like
the tools used for managing or executing test cases. The tar-
get types are defined using templates which can be interchanged
each time concrete test cases are generated. Since the specifica-
tion of concrete M2T rules would not provide further knowledge
about the holistic model-based testing approach, we do not pro-
vide any concrete examples here.

In the case of transforming test cases to test scripts a problem of
missing information arises. The abstraction level of the analysis Additional

information for
PIM/PSM
transformation

model and the test model is high. Both models do not include in-
formation about the design of the source code. This way, a map-
ping between use case actions or test case steps and methods
within the source code is missing. A similar mapping between
the dialog model and its implementation within the source code
is missing. In the case of dialogs, also the information about the
state model can be included. As introduced in Subsection 3.2.6,
there exist several approaches as [BBW06, MBN03, QJ09, XM08]
for modelling dialog states and events on a very low-level. This
kind of modelling allows the precise specification of the navi-
gation through dialogs (for example order in which dialog ele-
ments have to be filled with test data) and the expected results.
This information is needed for the automatic execution of test
scripts.

To enable the automatic execution the missing mapping has to
be established. We achieve it by introducing the concept of test
adapters known from Utting and Legeard [UL07]. A test adapters
implements the mapping between the source code and the test
model. The implementation is done by specifying M2T rules and
executing them in a model transformation framework. For the
specification and execution the Epsilon Generation Language

8 http://office.microsoft.com/en-us/excel/
9 http://www.w3.org/XML/

10 http://www.junit.org/

194 �����-����� ���� ������������� �������

Table 7: High-level mapping between the test model and source code
within a test adapter

Test model element Source code element
TestStep, TriggerNote Method name
DialogNote Dialog name
Data Pool Variables or

Dialog element

(EGL) can be used. We have already introduced EGL and M2T
in Section 2.5 about model transformations.

In Table 7 we propose a very high-level mapping between the
elements of the test model and source code elements. The sin-
gle steps of logical test cases are mapped to methods within the
source code, which have to be executed. The TriggerNote is also
mapped to a concrete source code method. The DialogNote is
mapped to the concrete dialog implementation. Finally, the ele-
ments of the data pool from the test model is mapped to several
variable within the source code. Additionally those variables can
be used as dialog elements, which are also mapped to the data
pool elements.

�.� �������

The output of the model-based test specification process described
in this chapter are concrete test cases. Those test cases are com-
plete as they contain information from all three views (structure,
behaviour and interaction) of the analysis model. Through the
manual extension process additional information which is inde-
pendent from the analysis model is appended to the test cases.
This way complete test cases ready for test execution are created.

Based on the trace links within concrete test cases, they are
clearly traceable to test model. By using the trace model all el-
ements of the test model are traceable to the analysis model.
Further the trace model is used to measure the holistic coverage
of the analysis model.

�.� ������� 195

They are also analysable since the automatic generation process
uses a predefined template for logical and concrete test cases.
Especially the analysability of architectural and data aspects is
supported by the relation between the logical test cases and the
test architecture and test data viewpoint within the test model.

Since the logical test cases within the test model are defined by a
graphical modeling notation and are refined by textual descrip-
tions, the test cases within our approach are understandable.

Holistic
view and
impact on

internal test
quality

Use of
analysis
models

Model
coverage

Holistic
approach

using
analysis
models

Integrated
interaction
viewpoint

Analyze and
annotate test basis

Generate basic test
model

Extend basic test
model

Problem Solution Contribution

Generate test
cases

Improved
internal

test
quality

Model
relations

created by
business
analysts

Model
coverage

measurement

Figure 73: Mapping of the research problem, solution and contribu-
tion of the phd thesis

In Figure 73 we introduce a mapping between the main research
problems, the solution introduced in this chapter and the main
contribution points of this phd thesis. The problem of the miss-
ing holistic view and its impact on the internal test quality is
being solved in the first three steps of the model-based test speci-
fication process. The aspect of using analysis models for test pur-
poses and the needed information independency is supported by
the test model generation and extension steps. The measurement
of the holistic coverage is done in step two of our process.

The main contribution of this work is the improvement of the in-
ternal test quality. This contribution is implemented in all steps
of our process. Especially the completeness aspect. We improve
the quality of test cases by manually improving the quality of the
analysis model in the first step. Then, we collect several context-
related information from this model by using the automated

196 �����-����� ���� ������������� �������

model analysis algorithm in step two. We append additional and
independent test information to the test cases in step three. By
combining several concrete test data sets in the last step we im-
prove the final completeness of test cases.

By combining algorithms for test selection, model analysis and
model transformation we introduce a novel holistic approach for
model-based system testing. Our method uses model relations
within the analysis model which were created by business ana-
lysts. Since this model also consists of the interaction modelling
viewpoint (especially GUI models), we incorporate them within
our generation approach.

In the next chapter, we introduce two experiments which evalu-
ate our approach according to the phd hypothesis and underpin
the contribution points from Chapter 1.

6
E VA L U AT I O N

In the last chapters, we introduced the theoretical concept of
the meta-model algebra. We then presented the model-based
test specification approach as a holistic solution for model-based
system testing. All automated steps within this approach were
specified with the meta-model algebra. Within the chapter, we in-
troduce an experiment as a proof-of-concept for the mentioned
approach in order to test the hypothesis of this phd thesis.

First, we briefly introduce the evaluation plan according to the
experimental software engineering approach from Wohlin et al.
[WRH+99]. We then briefly describe the tool support (Test
Model Generator and Test Case Generator) implemented as a
proof-of-concept for the holistic model-based testing approach.
We use the Test Model Generator within an experiment based
on a the thesis running example (see Subsection 2.4.4). At the
end, we analyze the threats to validity of our experiment and
discuss the results in relation to the thesis contribution.

C�������
6.1 Evaluation planning . 197
6.2 Tool support . 204
6.3 Experiment "Gabi’s Ski School" 208
6.4 Discussion of the results 220
6.5 Summary . 224

�.� ���������� ��������

In this section, we introduce the evaluation plan for the approach
presented in this thesis. For this, we first define the evaluation
goals according to the thesis hypothesis. We then introduce the

197

198 ����������

experiment design focusing on the used metrics. Afterwards we
describe the setting of our experiment. Finally, we define the
null and alternative hypotheses which are investigated in our
experiments.

�.�.� Evaluation goals

The main goal of the evaluation is to accept or reject the phd
hypothesis from Section 1.1 in terms of:

• Empirical evidence for the improvement of the internal test
quality when applying the holistic view on analysis mod-
els in model-based system testing (see contribution points
1,3,4,5 from Section 1.2)

• Empirical evidence for the improvement of the model cov-
erage of analysis models when applying the holistic view
in model-based system testing (see contribution points 2,3,4,5
from Section 1.2)

• Empirical evidence for the effort optimization with auto-
mated use of analysis models as basis for test model gen-
eration (see contribution point 2 from Section 1.2)

and thus, show whether we tackled the research problems of
a missing holistic view while using analysis models in model-
based testing.

Table 8: Evaluation goal 1

Goal dimension Value
Object of study Analyze the test model
Purpose for the purpose of evaluation
Quality focus with respect to the internal test quality
Viewpoint from the viewpoint of the test designer
Context in the context of the test design phase,

the purpose of generating test models
from analysis models

Using the GQM template for goal definition from [BCR94] we
define the goals mentioned before in a more detailed manner in
Table 8, 8 and 10.

�.� ���������� �������� 199

Table 9: Evaluation goal 2

Goal dimension Value
Object of study Analyze the test model
Purpose for the purpose of evaluation
Quality focus with respect to the reached model coverage
Viewpoint from the viewpoint of the test designer
Context in the context of the test design phase,

the purpose of generating test models
from analysis models

Table 10: Evaluation goal 3

Goal dimension Value
Object of study Analyze the test model
Purpose for the purpose of evaluation
Quality focus with respect to the time effort
Viewpoint from the viewpoint of the test manager
Context in the context of the test design phase,

the purpose of generating test models
from analysis models

200 ����������

The evaluation goals can be determined by performing one or
more case studies or experiments. According to Wohlin et al.
[WRH+99], a case study is performed within a real-life project
during a predefined time slot. The experiment is a study per-
formed in a controlled environment, in example we refer to hy-
pothesis testing here [WRH+99]. Within this thesis, we perform
an experiment rather than case studies, since we aim to influ-
ence certain parameters (as the model relations of the analysis
model or test selection criteria) and observe the reaction in a
controlled environment. The controlled environment consists of
software and hardware artefacts which do not change during
the experiment. Further, we assume that our input model is in-
fluenced only by one person within predefined parameters. We
also assume a situation where a new software product is built
based on the system specification (for example analysis model
together with a design model). This way we minimize the pos-
sible side effects which could occur. Compared to a case study,
where several project parameters (software, hardware, persons,
specification changes, etc.) can dynamically change, we can min-
imize this bias by performing an experiment.

�.�.� Experiment design

We use the following metrics during the experiments’ execution:

• number of generated logical test cases (LTC)

• time effort needed for the automatic generation (in min-
utes)

• reached global, use case, dialog and logical data type model
coverage (in percentage according to the algorithm from
Subsection 5.4.4)

• logical test case completeness (number of test case attributes
filled with data)

• logical test case traceability (number of test model elements
not traceable to the analysis model)

• logical test case understandability (subjective judgement
by test experts on a scale 0-5 according to the method from
Pennington in [Pen87])

�.� ���������� �������� 201

• logical test case analysability (number of logical test cases
without relation to test architecture or test data)

The number of generated LTC is needed to compare the dif-
ferent test selection algorithms from Subsection 5.4.1. The time
effort is used to measure the effort improvement compared to
a) the manual test design and b) the MBT scenario "manual
modelling" from Pretschner and Philipps [PP05]. For this, we
use the mean value of 2,67 person hours per one test case for
manual test design. This value is based on the case study in-
troduced in [RBGW10, p.362]. Based on several case studies as
[UL07, PPW+05, RBGW10, HN04, DNSV+08, Leg08, CSH03], we
provide boundary values for time effort of the modelling, review
and extension of the test modelling tasks in the mentioned MBT
scenario.

The reached model coverage is needed to observe the effects of
using the holistic view on the analysis model by measuring the
coverage of the different modelling viewpoints. The four met-
rics for internal test quality attributes further reflect the appli-
cation of the holistic view during test model generation. Since
the measurement of test case understandability is a subjective
measure we customize the method introduced by Pennington in
[Pen87] by asking three independent test experts the following
questions for a particular LTC generated with and without the
holistic view:

1. Function: Can you describe the overall functionality of the
LTC?

2. Data Flow: Can you describe where does the test data
change in the LTC?

3. Control Flow: Can you describe the execution sequence of
test steps the LTC contains?

4. Operations: Can you describe what does a particular test
step does?

5. State: Can you describe what the content of test data at a
particular point of execution is?

For each question a point is given. We constructed only closed
questions, to provide a simple measurement. If one of the ques-
tions cannot be answered, then one point is subtracted from the
sum. On the scale 0-5 the highest understandability (5) or the
lowest understandability (0) can be reached. To sustain the ob-

202 ����������

jectivity of the test case understandability, we ask three inde-
pendent test experts from industry (test managers at Capgemini
TS) and research (researchers from the Software Quality Lab)
to answer the mentioned questions. For this, we use a simple
questionnaire template based on the five questions. The results
are further cross-examinated with the answers provided by the
thesis author. Finally, a mean value over the reached points is
calculated.

�.�.� Setting

The metrics mentioned in the last chapter are collected during
the experiments on predefined input data (analysis model) and
output data (test and trace model). To influence the input anal-
ysis model with respect to parameters as model relations and
test selection criteria, we have defined six different sets for each
experiment. The sets differ in the parameter values of models
coupling (number of links between model elements) and used
test selection criteria. The model coupling has two possible val-
ues: complete (all model relations from the analysis meta-model
are implemented) and incomplete (not all model relations of the
meta-model are implemented). We are particularly interested in
the model relations between the different modelling viewpoints,
since we aim to solve the missing holistic view problem (see Sec-
tion 1.1). The test selection criterion has three possible values: Al-
lActions, AllPathsOneLoop and AllPathsAnnotated (see Subsection
5.4.1). We depicted the distribution in the following table:

Table 11: Sets definition

Name Model coupling Test selection criterion
Set 1 complete AllActions
Set 2 incomplete AllActions
Set 3 complete AllPathsOneLoop
Set 4 incomplete AllPathsOneLoop
Set 5 complete AllPathsAnnotated
Set 6 incomplete AllPathsAnnotated

�.� ���������� �������� 203

Since we perform a controlled experiment, the model coupling
is influenced manually. The goal here is to observe the outcome
of the treatment with and without the holistic view during test
model generation. By using the modelling tool Enterprise Ar-
chitect the essential linkage between use case’ actor action and
dialog action (see Subsection 5.4.2) is deleted in all use case mod-
els to achieve the incomplete state of model coupling. This state
represents the situation where only the behavioural modelling
viewpoint, namely the use case models are used for test gen-
eration. The relation to the interaction and structure modelling
viewpoints is missing.

As stated in Subsection 5.4.1 about test selection algorithm, the
recursive implementation of the different coverage criteria dif-
fers marginally. On the other hand, the influence on the number
of generated test cases should strongly differ. For evaluation pur-
poses we implemented all mentioned test selection algorithms
and use them in both experiments.

To perform a structured experiment as introduced by Wohlin et
al. in [WRH+99], we first define the hypotheses (null and alterna-
tive) which have to be tested during the experiments’ execution.

�.�.� Null Hypotheses

We define the following null hypotheses:

• The usage of the holistic view does not improve the inter-
nal test quality of test models

• The usage of the holistic view does not influence the global
model coverage of the analysis model

• The usage of analysis models for the test model generation
does not result in lower effort in the test design phase

�.�.� Alternative Hypotheses

In case the null hypotheses from the last subsection are rejected,
the following alternative hypotheses are automatically accepted:

• The usage of the holistic view improves the internal test
quality of test models

204 ����������

• The usage of the holistic view influences the global model
coverage of the analysis model

• The usage of analysis models for test model generation
results in lower effort in the test design phase

�.� ���� �������

In this section, we briefly introduce the tool support used to
perform the experiments of this thesis.

�.�.� Motivation

The goal of the tool development is to support the execution of
the model-based test specification process from Chapter 5. Ac-
cording to the instantiation process of the meta-model algebra
from Section 4.8, each algebra operation with its algorithm is im-
plemented within one or more tools. There are four high-level
process steps from which two namely "generate basic test model"
and "generate concrete test cases" are fully automated. Since the
output of the first step is at the same time the input for the sec-
ond one, we have decided to separate the development into two
standalone applications. We have named the tools according to
the process steps: Test Model Generator and Test Case Generator.
We now briefly explain the technical architecture of both tools.

�.�.� Test Model Generator

The purpose of the Test Model Generator is to support the exe-
cution of all the algebra operations from Section 4.6. This means
that the algorithms for test selection (see Subsection 5.4.1), model
analysis (see Subsection 5.4.2), model transformations (see Sub-
section 5.4.3) and model coverage measurement (see Subsection
5.4.4) are implemented within the generator. The implementa-
tion of the Test Model Generator was part from Annette Heym’s
[Hey10] and Andreas Fichter’s [Fic10] master thesis, which were
supervised by the author of this thesis.

�.� ���� ������� 205

The input is a model created by business analysts within a mod-
elling tool. For proper execution the meta-model properties from
Section 4.6 have to be fulfilled. To edit the analysis and test
model we use the tool from Sparx Systems called Enterprise Ar-
chitect1.

The output is the basic test model. It is described with the cus-
tomized version of the UML testing profile from Section 2.3. Fur-
ther extension of this model is also performed within Enterprise
Architect for the same reason as in the case of the analysis model.
Additionally, a trace model is generated which is used to auto-
matically create a coverage report.

Figure 74: Architecture of the Test Model Generator

In Figure 74, we depicted the architecture of the Test Model Gen-
erator. To read input and write output models, we use the Enter-
prise Architect through a so called Automation Interface. We use
this Java interface instead of model transformation languages
like QVT, ATL or ETL (see Subsection 5.4.3), because of techni-
cal inconsistencies with the XMI specification of the Enterprise
Architect. The central component of the test model generator
is called generationManagement. The purpose of this component
is to trigger the applications workflow. Within the configuration
component all settings as input and output file paths, test selec-
tion algorithm to be used, etc. are read from a configuration file.
The implementation of the test selection algorithms from Subsec-
tion 5.4.1 is hold in the pathSelection component. The model trans-
formation algorithm is the main part of the modelTransformation

1 http://www.sparxsystems.com

206 ����������

component. The management of the internal objects of the appli-
cation (see internalObjects component) together with the model
read/write process (see automated model analysis from Subsec-
tion 5.4.2) is done by the modelManagement component. Finally,
the modelCoverage component is responsible for the generation
of the coverage report based on the test and trace model.

To support the customization of the generation process the user
is able to change or implement own test selection algorithms
within the pathSelection component. Also, the customization of
model transformation rules within the modelTransformation com-
ponent is possible. Further, the form and content of the coverage
report can be customized in the modelCoverage component with
Epsilon Generation Language (EGL)2. EGL provides model-to-
text transformations, which are compiled at runtime.

�.�.� Test Case Generator

The Test Case Generator supports the last step of the model-
based test specification process. The test data combination algo-
rithm from Section 5.6 together with the PIM/PSM transforma-
tion are implemented within the generator. The implementation
of the Test Case Generator was part of a bachelor thesis from
Benjamin Niebuhr [Nie09], which was supervised by the author
of this thesis.

As mentioned in the last subsection, the input for the Test Case
Generator is the test model which was automatically generated
and manually extended. It consists of logical test cases, the log-
ical test data structure and the test architecture description to
be used. The purpose of the Test Case Generator is to combine
the logical test case and test data definitions from the test model
with concrete test data sets from an external source. The algo-
rithm for the generation of concrete test cases uses a holistic view
on all three modelling viewpoints of the test model (see Section
2.3). The results are concrete test cases which are extended with
platform-specific information for test execution.

In Figure 75, the architecture of the test case generator is shown.
The main component called TestcaseGenerator_Manager is respon-
sible for the whole workflow of the test case generation process.

2 http://www.eclipse.org/gmt/epsilon/doc/egl/

�.� ���� ������� 207

Figure 75: Architecture of the Test Case Generator

Three additional components support the single tasks. The Data
component is responsible for reading the test model (which is
the XMI [Obj07a] file exported from Enterprise Architect) and
combining them with test data sets from a external source. The
Transform component enables the transformation of all read data
into an in-memory representation. Finally, the Export component
transforms the concrete test cases into a platform-specific file for-
mat.

The three mentioned components (Transform, Data and Export)
were implemented as Groovy3 scripts. Groovy is chosen because
of the same technical inconsistency with XMI problem as in the
Test Model Generator. Groovy enables the interpretation at run-
time and is standardized as a second official language for the
Java Virtual Machine. This way, Groovy can be used similar to
ETL for declarative specification of M2T transformations. This
requirement was also identified during the elicitation of project
needs in the industry research project conducted within this the-
sis.

�.�.� Used technology stack

For the implementation of the Test Model and Test Case Genera-
tor the following technology stack was chosen:

• Java SDK as the main programming language

3 http://groovy.codehaus.org/

208 ����������

• Groovy SDK as the second programming language to sup-
port adaptability at runtime (instead of ETL)

• Java API for the Enterprise Architect to access the analysis
model and to transform it into a test model (instead of
ETL)

• Eclipse as the development environment, which supports
both Java and Groovy

• Epsilon Generation Language to generate the coverage re-
port

• Sparx Systems Enterprise Architect as the standard mod-
elling tool

• XML Metadata Interchange (XMI) format as the export/im-
port file format for UML models

�.�.� Used environment

To allow a controlled execution environment during both exper-
iments, a constant hard- and software set has to be chosen. For
the execution of the experiment presented here, the following
environment was used:

• Apple iMac 2,66 GHz Intel Core i5 with 8 GB RAM

• Mac OS 10.6.6 with Parallels (virtualisation software)

• Windows XP SP2 (within Parallels 5)

• Java SDK 1.6.0_23

• Enterprise Architect 7.1

�.� ���������� "���� ’� ��� ������ "

The following experiment uses the running example of this phd
thesis, which was already introduced in Subsection 2.4.4.

�.�.� Input model

The composition of the input analysis model for the fictive project
called "Gabi’s Ski School" is shown in Table 12.

�.� ���������� "���� ’� ��� ������ " 209

Table 12: Composition of the analysis model for "Gabi’s Ski School"

Modelling Viewpoint Models
Structure 3 conceptual components,

3 data models,
1 logical data type model

Behaviour 5 use cases with 5 activity diagrams,
5 application functions

Interaction 2 dialogs with
29 dialog elements
and 10 dialog actions

This kind of analysis model is representative for a small soft-
ware engineering project. Based on our industry observations, a
typical large-scale project scales up to 50 use cases with several
dialogs and conceptual component. However, for the purpose of
a controlled experiment this set of input data is sufficient.

The most complex activity diagram within the analysis model
contains:

• 7 action nodes (steps)

• 7 decision nodes

This information is relevant for the approximated number of
generated logical test cases and the time effort for the automated
model analysis, model transformation and model coverage mea-
surement algorithms. By using the McCabe’s complexity met-
ric [McC76] for control-flow models with binary branches, the
maximal number of 8 LTC for the most complex activity dia-
gram is needed. Unfortunately, this metric does not consider
backward-loops, which is the case in several diagrams of the
analysis model. This way, the calculated number is only a guid-
ance for the maximum number of LTC. The complexity has an
impact on the time effort of the mentioned algorithms, since for
each selected path of the activity diagram each algorithm has to
be executed once.

210 ����������

�.�.� Results

Using the analysis model from the previous subsection we have
performed an experiment with six sets of input data (see Subsec-
tion 6.1.3), which resulted in six different test and trace models.
The manual extension of this test model and generation of con-
crete test cases was omitted, since the main contribution of this
work is to provide a holistic method for generating test models
from analysis models. Additional completeness of logical test
cases from the test model can be achieved by performing the
last two steps of the model-based test specification process from
Section 5.5 and Section 5.6.

Table 13: Experiment results

Metric Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Time effort 01:58 01:05 02:40 01:26 02:24 01:02
No. LTC 13 13 25 25 7 7
Global model coverage 64% 33% 64% 33% 58% 27%
Use case coverage 100% 100% 100% 100% 80% 80%
Dialog coverage 54% 0% 54% 0% 54% 0%
Data type coverage 38% 0% 38% 0% 38% 0%
Completeness 7/7 4/7 7/7 4/7 7/7 4/7
Traceability 0 0 0 0 0 0
Understandability 4/5 2/5 4/5 2/5 4/5 2/5
Analysability 0 13 0 25 0 7

The results of the performed experiment are shown in Table 13.
In the next subsection we provide an interpretation of the exper-
iment results.

�.�.� Interpretation of results

Based on the results from our first experiment, several observa-
tions can be concluded. For better understanding, we group the
observations and describe them in detail.

�.� ���������� "���� ’� ��� ������ " 211

Reached model coverage

The main focus of this phd thesis is the holistic usage of analysis
models in model-based system testing. The goal of a holistic ap-
proach is to use several modelling viewpoints and cover as much
information as possible needed to specify high-quality test mod-
els. Unlike the current MBT approaches (see Chapter 3 about
the related work), we want to measure the model coverage of all
modelling viewpoints and not only the behavioural models.

(a) Complete, AllActions

(b) Incomplete, AllPathsAnnotated

Figure 76: Comparison of the global model coverage

In Table 13 we observe strong differences between sets with dif-
ferent model coupling levels. For example in Set1 we reached 64%
global model coverage when the analysis model contained model
links between the behaviour, interaction and structure modelling
viewpoints. An analysis model without those model links used
for test model generation resulted in a global model coverage of
only 33% in Set2. The missing coverage of the interaction and
structure viewpoint is mirrored by the 0% value of the dialog
and data type coverage. We have depicted parts of the coverage
reports in Figure 76 a) and b). The best global coverage could be

212 ����������

reached in Set 1 and the worst in Set 6. As introduced in Subsec-
tion 5.4.4, the coverage report visualizes the current state of the
model coverage by using different colours.

Though, in Set3 and Set4 more logical test cases were generated
by the AllPathsOneLoop criterion, the reached coverage stays the
same. This equal results are due to the measurement of use case
coverage based on action nodes. We have discussed this topic
in detail in Subsection 5.4.4. In the first four sets, all actions of
the activity diagram are covered. Since we analyse the linkage
between actor actions, dialog actions and logical data types, the
other coverage metrics are equal in the mentioned sets.

While the use case coverage reached 100% in the first four sets and
80% in the last two, the dialog and logical data type coverage
never reached more than 54%. This is caused by the fact that not
all dialog elements and logical data types were used in the use
cases. We depicted a part of the coverage report for the logical
data type model (Set1 and Set2) in Figure 76. The state presented
there is questionable because a) not all model links were set or
b) there exist dialog elements and data types not used in the use
cases. In Figure 77 b), all logical data types have 0% coverage.
Since we influence the model coupling during our experiment
only b) is possible.

The missing 62% of logical data types in Figure 77 a) are used in
further parts of the analysis model, as print output or batch spec-
ifications (see [SSE09]). The missing 46% of dialog elements and
actions are probably obsolete in the analysis model and should
be discussed with business analysts within a project. This way,
the results of the holistic coverage measurement support the the
investigation of the analysis model coverage.

In the last two sets of our experiment, the reached global model
coverage is lower than in the other sets. This is caused by the All-
PathsAnnotated selection criteria used here. Only the paths with
annotated action nodes were selected from the activity diagram.
This way only 80% of all action nodes were selected. This lowers
the global model coverage in Set5 and Set6.

In all sets used in our experiment, a 100% global model coverage
was never reached. This result is obvious while looking at the
metrics introduced in Subsection 5.4.4. To reach 100%, the re-
maining use case, dialog and data type coverage would also have
to reach 100%. Further, the global model coverage is not calculated

�.� ���������� "���� ’� ��� ������ " 213

(a) Complete (b) Incomplete

Figure 77: Comparison of the logical data type model coverage

214 ����������

to all possible elements of the analysis model, but with respect
to the mentioned types, which represent the different modelling
viewpoints.

Model coupling and test quality

One of the goals of this evaluation is to provide empirical ev-
idence on the improvement of the internal test quality of the
generated test model. To do so, we have instrumented the anal-
ysis model by adding (even-numbered sets) or removing (odd-
numbered sets) the model links defined within the analysis meta-
model.

The fist observation is that the model coupling influences the
completeness of logical test cases within the test model. In the
case of incomplete analysis model, three out of seven attributes
of a logical test case (see Subsection 2.1.1) could not be gener-
ated. In the other case, complete logical test cases with all seven
attributes filled with data could be generated.

We have also observed that no change of the test models’ trace-
ability is given. This is caused by the fact that our algorithms
always preserve the traceability information for model coverage
purposes.

The understandability of the generated test cases was rated by
four independent test experts (see Appendix A.1). Also here a
correlation between the model coupling and understandability
could also be observed here. In Figure 78, we depicted a part
(first three test steps) of the logical test case generated for the
Book_Attendee_On_Course use case. This test case was sent to the
three independent test experts to rate the understandability. In
Figure 78 a), the complete test case (model coupling = complete)
is shown. The opposite case is shown on the right side of Figure
78 b).

The generated logical test cases have not reached 5/5 for com-
plete analysis model because of missing information in the analy-
sis model. For example in Figure 78 a) there is no indication what
test data have to be used as input in the Select_Course test step.
This way, the data flow question could not be answered properly.
In the case of the incomplete analysis model the questions about
data-flow, operations and state could not be answered, which
leads to the 2/5 rating. In Figure 78 b) the data, dialog and trig-

�.� ���������� "���� ’� ��� ������ " 215

(a) Complete (b) Incomplete

Figure 78: Comparison of complete and incomplete logical test cases

ger notes are missing completely and therefore influence the un-
derstandability rating. The answers collected with our question-
naire from three independent test experts and the thesis author
are depicted in the Appendix A.1.

To measure the analysability, we have inspected the existence of
relations to the test architecture or test data package within the
test model. Since the generation of such relations strongly de-
pends on the automated model analysis algorithm from Subsec-
tion 5.4.2, the model coupling of the analysis model is important
here. In the case of a complete analysis model, also complete in-
formation about the test architecture and test data package could
be generated. This leads to highly-analyzable logical test cases.
In the case of incomplete analysis models all generated test cases
are hard to analyze according to our metric.

Time effort

The second goal of this evaluation is the influence of the time ef-
fort needed to generate logical test cases which are part of a test
model. To compare our results we use the mean value needed
in manual test design which is 2,67 person hours / test case

216 ����������

as introduced in [RBGW10, p.362]. In Table 13, the mean time
effort needed to generate the test model equals 01:45 minutes.
On average, 15 test cases have been generated. The time effort
needed to design the average 15 logical test cases in manual test
design equals 40 hours. This leads to a significant improvement
of the time effort. But the simple comparison of 01:45 minutes
(automated generation) and 40 hours (manual test design) is not
plausible, since further tasks (as modelling, model review, model
extension, etc.) and the resulting additional effort have to be in-
cluded.

This kind of effort comparison also strongly depends on the cho-
sen model-based testing scenario. A paper called "Effort Com-
parison of Model-based Testing Scenarios" [GMS10], dealing with
this problem, was published as part of this phd thesis. Based on
the identified literature, seven different model-based testing sce-
narios were systematically compared according to different pa-
rameters. Without providing empirical evidence, we have shown
in [GMS10] that the comparison of the scenario used in this the-
sis (using analysis models for test model generation) with other
scenarios according to the needed effort is favourable.

Table 14: Comparison of time effort (in PH) in different scenarios

Scenario Modelling LTC Review
Generation & Extension

Manual test design 0 2,67 0
Manual modelling 30 - 2040 0,05 - 0,68 NA
Model from model 0 0,02 LTC*0,2

To provide a more plausible discussion, we compare the time
effort in Table 14 for the following three scenarios: manual test de-
sign, manual modelling scenario from Pretschner and Philips [PP05]
and model from model scenario from Güldali et. al. in [GMS10]. We
compare the scenarios based on the time effort needed for mod-
elling (effort needed to create a test model), LTC generation (effort
needed to generate one LTC) and manual review & extension (ef-
fort needed to review the generated LTC and extend them with
test data). We use the person hour (PH) unit for each metric in
this table.

�.� ���������� "���� ’� ��� ������ " 217

The time effort for the manual test design scenario is based on the
case study from Rossner et al. [RBGW10, p.362]. In this scenario
no effort for creating a test model and for reviewing & extending
the LTC is needed. This is obvious since in manual test design
the LTC are designed using the tester’s knowledge (also called
the mental test model) about the SUT requirements rather than
using an explicit test model.

To collect empirical data for the manual modelling scenario, we
have analyzed our literature survey from Chapter 3 with re-
spect to the Case Study evaluation criteria. We have also iden-
tified further publications (as [UL07, PPW+05, RBGW10, HN04,
DNSV+08]) and unpublished talks (as [Leg08, CSH03]), which
provide empirical data. Unfortunately, most case studies analyze
the fault-finding rate or model coverage as the effectivity metrics.
Only minor publications consider efficiency metrics (like mod-
elling effort, test generation effort, etc.). For example, in Utting
and Legeard [UL07, p.36] the time needed to create a test model
for a hypothetical example is given by 30 PH. In a talk from
the EuroStar 2008 conference, Bruno Legeard provided a case
study for testing a large-scale financial system [Leg08]. Accord-
ing to this study, the time effort needed here was 69 person days,
which equals 552 PH. Finally, the modelling time needed in the
case study introduced by Rossner et al. [RBGW10, 357] was cal-
culated with 255 person days, which equals 2040 PH. Based on
this three exemplary case studies, we have approximated the
modelling effort in the boundaries from 30 to 2040 PH.

The mean time effort for LTC generation based on the three men-
tioned references resulted in the boundary from 0,05 PH (Eu-
roStar 2008 case study [Leg08]) to 0,68 PH (Rossner et al. [RBGW10,
p.362]). To the best of our knowledge, we are not aware of case
studies, which provide effort metrics for reviewing and extend-
ing test models or even the generated LTC. That is why the NA
(not available) value is depicted in Table 14.

Finally, the model from model scenario, which is analyzed in this
thesis, results in no effort needed for modelling test models.
Since we use analysis models created by business analysts, this
initial task of MBT is not needed. Additionally, the effort for the
testability check and annotation of use cases (see Section 5.3)
could be measured in future experiments. The mean value for
LTC generation based on the experiment results equals 0,02 PH.
For the review & extension task, we assume a time effort of 0,2 PH

218 ����������

(10 minutes) for each generated LTC. This value is based on the
experiences collected during the generation of concrete test cases
with the Test Case Generator. For more reliable values, further
experiments or case studies have to be performed in the future.

The main goal of Table 14 is to depict the time effort improve-
ment of our approach with respect to the modelling task. The
values referenced in this table have to be analyzed with caution.
First, we compare pure PH without considering aspects like sys-
tem type, complexity of the SUT, test designers skill level or the
complexity of generated LTC in the referenced case studies. Sec-
ond, high modelling effort can improve the test independency
level (see discussion Chapter 1 or 3) and this way lead to a higher
fault-detection rate. That is why this comparison gives only a
broad idea and should not be understood as a verification of the
effort improvement.

Another observation is the difference in time effort between the
used sets. The time effort in the case of incomplete analysis mod-
els is always lower than by using the complete analysis model.
This is caused by the additional time effort for automated model
analysis (see Subsection 5.4.2) for each generated logical test case.
If no model links exist, then no additional information is col-
lected. Another observation is that this additional time effort in-
creases proportionally with the number of generated test cases.
Future work can improve the algorithms in Section 5.4 to mark
the already visited model links during the automated model
analysis. This way, the additional time effort could be improved.

Test selection

In Subsection 5.4.1, we claimed that the number of generated test
cases strongly depends on the test selection criteria used. While
analyzing Table 13 this correlation is visible. The usage of a weak
coverage criteria as AllActions results in a medium number of
13 test cases. The number of test cases is almost doubled when
using a much stronger coverage criteria as AllPathsOneLoop.

In the last case, we have annotated a maximum of two action
nodes within the use case’ activity diagram. An example of the
annotated use case Book_Attendee_On_Course is shown in Fig-
ure 79. From the business point of view, the actor action Regis-
ter_Attendee is executed very often and therefore critical. The sys-

�.� ���������� "���� ’� ��� ������ " 219

Figure 79: Annotated use case Book_Attendee_On_Course

220 ����������

tem action called Book_Attendee_On_Course is also critical for the
business, since the booking in the system is essential for this use
case. Through this annotation the number of logical test cases
could be reduced from 16 (selecting with AllPathsOneLoop) to 4.
The usage of the AllPathAnnotated coverage criteria resulted in a
much lower total number of seven test cases. Assuming that this
scale effect also holds on more complex models, a reduction of
almost 50% in the number of generated logical test cases can be
observed.

The improvement of the test quality and time effort combined
with the observed importance of the usage of the holistic view
and model relations, leads us to the evidence of the contrary for
the null hypotheses from Subsection 6.1.4. This way, all alterna-
tive hypotheses are accepted.

�.� ���������� �� ��� �������

In this section we discuss the results of the performed experi-
ment. We especially inspect the threats to the internal, construct
and external validity of our evaluation.

�.�.� Internal validity

The internal validity describes the degree of influence through
side effects, which might distort the results reached during ex-
periment’s examination [WRH+99]. The side effects in our case
can be triggered only by the person planning and executing theSide effects
experiment. We minimize all external influences by providing a
single controlled environment and predefined tasks (as the ma-
nipulation of model relations and change of test selection crite-
ria) which influence the experiments results. The input models
used in the experiments were created using the same modelling
approach from Salger et al. [SSE09]. Further, the environment
with respect to the hard- and software, was not changed during
the evaluation phase.

However, the following two aspects may provoke side effectsManual
manipulation of the

input model
during the experiment’s execution. First, the manipulation of
model links has to be defined precisely. In the first experiment,

�.� ���������� �� ��� ������� 221

we have deleted all model links between the use case actor action
and the dialog action for all use cases of the analysis model. If
the manipulation considered only a part of the model links, the
results of this experiment might change. Since we always deleted
the same model links the internal validity of the first experiment
holds.

A second aspect, which may influence the results is the manual
test annotation process. In the first and second experiment we Manual use case

annotationhave annotated a maximum of two action nodes of each use case’
activity diagram. Annotating other, more or less nodes will lead
to other experiments results in terms of the number of generated
test cases. Since in all sets used in the experiments always the
same action nodes were annotated, the internal validity is still
guaranteed.

�.�.� Construct validity

The validity of the experiment’s construction concerns the rela-
tion between the theory (in our case the holistic model-based
testing approach) and collected observations [WRH+99]. Within
our theory we have shown the relation between the model rela- Relation between

theory and
observations

tions from the analysis meta-model and the usage of the holis-
tic view during the test model generation (see Subsection 5.4.2)
and holistic model coverage measurement (see Subsection 5.4.4).
This way, we have constructed a cause usage of model relations,
which leads to two effects: improvement of internal test quality and
improvement of the model coverage level.

The cause/effect construction is defined at the theory level. Within
our evaluation we have constructed the treatments model coupling
and test selection criteria, which resulted in several outcomes (for
example difference in the global model coverage level) discussed
in the last section. In order to discuss the generalisation of the
treatment/outcome relation, its validity to the cause/effect con-
struction from the underlying theory has to be discussed first.

There are different threats to the construct validity, which focus
on design or social aspects of the evaluation. Within the design
threats the inadequate preoperational explication of constructs states
that the theory could be not clear enough and this way the exper- Clear problem and

solution definitioniment cannot be sufficiently clear. In the first three chapters of
this thesis, we have clearly defined the research problem of the

222 ����������

missing holistic view and its effect on the internal test quality
and model coverage. To design a holistic model-based testing
approach, we have defined the meta-model algebra which en-
ables the specification of meta-model properties and algorithms
(operations on meta-models) needed for our approach. Finally,
in Chapter 5 the approach, its relation to the research problems
and the cause/effect relation were shown.

Another important threat is the mono-operation bias, which ques-
tions the underrepresentation of the experiment by using a sin-Mono-operation bias
gle variable, case, subject or treatment. In our evaluation, we
have used two treatments (model coupling and test selection cri-
teria) and measured several variables (see metrics from Subsec-
tion 6.1.2). Since we used only one subject, this threat can be
violated during the generalisation of the evaluation results. The
only possible solution is to perform more experiments on differ-
ent subjects in the future.

During the measurement of the experiments results, the mono-
method bias validity threat can be violated. While using a singleMono-method bias
measurement method for measuring a variable (for example the
completeness of generated LTCs), the results can be misleading.
Except for the understanability, where we cross-checked the re-
sults with three independent test experts, all variables in our ex-
periment use single measurement methods. The mono-method
bias threat is still not violated, since we use objective metrics
(except for understandability) which are not based on subjective
valuations.

Since we use different treatments (model coupling and test selec-
tion criteria) in our experiment, the validity threat interaction ofInteraction of

treatments different treatments can occur. To enable a correct conclusion, we
have constructed six sets which use all possible combinations of
the mentioned treatments. This way the interaction of treatments
in all possible combinations is evaluated.

In our experiment, we violate the restricted generalisability across
constructs threat. Especially while observing the time effort vari-Measurements and

generalisation able we do not measure other possible variables as initial mod-
elling time, time needed to extend the generated test model, etc.
This way, our construction does not enable the generalisation of
the time effort improvement according to the hypotheses of this
thesis. We discuss this issue in the next subsection.

�.� ���������� �� ��� ������� 223

Finally, the social threat to construct validity, namely the exper-
imenter expectancies has to be discussed. While the experiment
was performed by the author of this thesis, this can bias the re-
sults of the experiment. To minimize this threat, the evaluation
results were reviewed by several test experts.

�.�.� External validity

Besides the internal validity, the generalisation of experiment re-
sults is discussed to provide new evidence for the research com-
munity. This kind of generalisation is widely known as external
validity [WRH+99]. In the case of this phd thesis, the results
of the experiment underpin the contribution of the holistic ap-
proach.

The main observation, which can be generalised is the correla-
tion between the model coupling (level of model relations instan- Model coupling and

internal test qualitytiated within the analysis model based on its meta-model defi-
nition) and the internal test quality. Besides the traceability, all
other quality attributes were improved in the case of a complete
analysis model. Missing model relations made it not possible to
use the holistic view and therefore to use all three modelling
viewpoints (structure, behaviour and interaction) in a context
for test generation purposes. In our experiment we have used
the exemplary modelling approach from Salger et al. [SSE09]
which incorporates the mentioned modelling viewpoints. Mod-
elling approaches fulfilling the property of different modelling
viewpoints and relations between them (see meta-model prop-
erty model relations in Section 4.5), improve the internal test
quality while using our holistic model-based system testing ap-
proach. However, the proof of this statement requires further ex-
periments with analysis models created according to other mod-
elling approaches.

Besides the aspect of test quality improvement, we have observed
the correlation between the holistic view and reached model Holistic view and

model coveragecoverage. Since incomplete analysis models disable the usage
of several modelling viewpoints, the reached coverage signifi-
cantly decreases. This correlation has been shown in the experi-
ment and can be generalised since the holistic coverage measure-
ment approach presented in this thesis always considers several
modelling viewpoints. This generalisation assumes the usage of

224 ����������

analysis meta-models fulfilling the meta-model property model
relations (see Section 4.5).

As mentioned in the interpretation of the experiments results,
we have observed a strong improvement of the time effort neededTime effort

improvement to create logical test cases. This result indicates the general im-
provement of time effort while using models created by business
analysts for model-based testing. The indication in our case is
based on some assumptions. First, the comparison with manual
test design has always to consider the model-based testing sce-
nario as described in [GMS10]. Second, the effort for additional
tasks as for example the modelling effort, model review, etc. has
to be added to the time effort needed for the generation of the
test model. To the best of our knowledge, such representative
statistics for the time effort needed to perform the additional
tasks do not exist in the literature or industry case studies. This
way, the generalisation of the time effort improvement for the
particular model-based testing scenario cannot be fully gener-
alised.

Another candidate for the generalisation is the improvement of
the understandability, while using the holistic model-based sys-Improvement of

understandability tem testing approach. The problem with understandability is its
subjective nature. We have solved it by asking three independent
test experts according to the customized method from Penning-
ton [Pen87]. In order to generalise the improvement of the test
case understandability, further experiments with different anal-
ysis models and more test experts are needed.

Regarding the generalisation of the experiment performed within
this thesis, we conclude that the phd hypotheses defined in Chap-
ter 1 are accepted. Both evaluation goals (test quality and time
effort improvement) were met and are based on the experiments
results. The restrictions and assumptions regarding the general-
isation of our experiment was described within this subsection.

�.� �������

In this chapter, we have shown the evaluation of the research
approach presented in this thesis. We have introduced the eval-
uation plan with its goals and metrics used. Since we aimed at
generating test models automatically, the according tool support

�.� ������� 225

was briefly introduced. We have performed an experiment of
two different analysis models. Within the experiment, we used
six sets of data with respect to the model coupling and test se-
lection criteria. The experiment results underpin the hypotheses
of this phd thesis and its contribution. We have introduced the
aspects of the internal, construct and external validity to provide
a objective interpretation of the results.

7
S U M M A R Y A N D O U T LO O K

Using all viewpoints of analysis models for model-based sys-
tem testing, while improving the internal quality of test arte-
facts, is how this thesis can be summarized. In the last six chap-
ters we have defined the main research problem of the missing
holistic view and two subproblems of using analysis models for test
generation and measuring coverage of the analysis model. Based on
the problem definition, we defined three phd hypotheses. Af-
ter defining several preliminaries, we have shown a wide liter-
ature survey for the mentioned research problems. This survey
showed that holistic approaches are missing and that the topic of
internal test quality in model-based testing is poorly considered.

Then, we performed a top-down design of a holistic approach
for model-based system testing. First, we defined a high-level
meta-model algebra, which allowed us to specify operations per-
formed on meta-models and the required properties of meta-
models. In the second step, we defined a four-step approach
with two manual and two automated steps. The automated steps
were specified with the meta-model algebra, since they operate
on an analysis, test and trace meta-model.

To accept or reject the phd hypotheses, we performed an experi-
ment based on fictive example representing typical specification
of SRS for business information systems. We discussed the exper-
iment results and its generalisation, while considering several
threats to validity.

Until now, we have summarized the research problems and so-
lutions developed in this thesis. In the next two sections, we will
provide a detailed summary of the reached contributions and
give a outlook on future work.

227

228 ������� ��� �������

�.� ������� �� �������������

In the following, we discuss how far the contribution points from
Section 1.2 were reached in this thesis. In this discussion we ref-
erence to the results from the last six chapters.

Test
Model

Test
Designer

"after"

Structure

Behaviour

Interaction

automatical
derivation

generate

Analysis model

Test Cases

holistic

coverage

use

independency

H1

H2

H3

✓

✓
✓

Figure 80: Reached contributions of this phd thesis

To visualize the thesis results we introduce Figure 80. We sym-
bolise the investigated research problems with big circles named
after the problem definition from Chapter 1. The small circlesVisualization of

research problems
and hypotheses

represent all three parts of the phd hypothesis. H1 stands for the
improvement of internal test quality. H2 depicts the impact on
the reached model coverage of the analysis model. Finally, H3
stands for the improvement of time effort in MBT scenario. As
depicted in Figure 80 all the problems were tackled in this the-
sis with appropriate solutions. Also each of the hypotheses was
accepted by performing an experiment, which is depicted with
the green symbol. A similar visualization was already presented
in the summary of Chapter 5 (see Section 5.7). Knowing this, we
discuss each contribution point in detail now.

�.� ������� �� ������������� 229

Improvement of the internal test quality

The application of the holistic view leads to the improvement
of the internal test quality. We discussed this topic while intro-
ducing the research approach. Especially the application of the
algebra operation extract (see Section 4.6) and the algorithm for
automated model analysis (see Subsection 5.4.2) lead to more
complete, understandable and analysable test models. The ac-
cording hypothesis from Section 1.1 was accepted by providing
empirical evidence in the evaluation chapter. The correlation be-
tween holistic view and test quality improvement was shown
within our particular example of an analysis model. The gen-
eralisation of this correlation and several validity threats were
discussed in Section 6.4.

Use of analysis models for test model generation

Our approach is an example of the model from model model-based
testing scenario [GMS10]. We showed how to generate test mod-
els described with UTP directly from analysis models. Differ-
ent to the approaches found in the literature (see discussion in
Subsection 3.2.1 and 3.2.4), we combine the test selection and
further algorithms with model transformations. Compared to
model-based testing scenarios, where the test model has to be
created manually, our approach improves the time effort needed
for manual modelling. In the experiment performed in Chapter
6, we have provided first (to the best of our knowledge) empir-
ical evidence for the effort improvement by this model-based
testing scenario. This way, we also contribute to the empirical
body of knowledge within MBT, which is still deficient as stated
by Dias Neto et al. in [DNSV+08]. However, these results can not
be fully generalised as discussed in Section 6.4.3.

Besides the time effort improvement, our approach also supports
the quality assurance of the analysis model. Within the step 3 of
our research approach (review and extension of the test model
in Section 5.5), we showed that test designers can find faults in
the analysis model by analyzing the automatically generated test
model. Further, the investigation of the coverage report supports
the quality assurance of the analysis model as shown within our
evaluation in Section 6.3.3.

230 ������� ��� �������

Use of several modelling viewpoints

Our holistic approach for model-based testing is the first one us-
ing more than two modelling viewpoints while generating test
models from analysis models. To the best of our knowledge,
we could not identify any approach fulfilling all the require-
ments (see evaluation criteria in Section 3.1) derived from the
problem statement. In our approach we have combined several
algorithms for test selection, automated model analysis, model
transformation and model coverage measurement, which oper-
ate on the different modelling viewpoints. This combination of
algorithms is novel in the domain of model-based system testing.
By the usage of several modelling viewpoints, we could improve
the internal quality of test models generated automatically.

Further, through abstraction of the mentioned algorithms, we
defined a meta-model algebra (see Chapter 4). This language
allows the specification of behavioural aspects of method engi-
neering and meta-modelling. It also incorporates the definition
of informal meta-model properties needed to execute the alge-
bra operations. This way, we can specify a holistic model-based
system testing approach on a very high-level. Through this ab-
straction, the comparison with other MBT approaches and exten-
sion of our approach with further techniques (as model checking,
constraint modelling, etc.) is supported.

Use of the integrated interaction viewpoint

In Subsection 3.2.6, we have discussed the topic of model-based
GUI testing. We have shown that most of the current approaches
make use of GUI models separated from the analysis model. In
our approach we use the interaction viewpoint integrated into
the analysis model. This way, the relation between behavioural
models, as use cases and dialog information can be used in a
context. The logical test cases of the generated test model incor-
porate information about the user interface through dialog notes.
Further, through the relation between dialog elements and logi-
cal data types in the exemplary analysis model, the data types
for equivalence class analysis can be identified.

Within the discussion in Subsection 3.2.6, we have pointed out
that GUI models as the event interaction graph from [MSP01]

�.� ������� �� ������������� 231

specify the behavioural aspects, which are used to generate test
cases. In our approach we do not generate test cases directly
from the interaction viewpoint, but use this information to ap-
pend GUI information to logical test cases. This way, the internal
test quality in terms of completeness and understandability is
improved, but not the external test quality as the fault-detection
rate as in the current approaches.

Use of model relations created by business analysts

The usage of model relations for testing is not new. We have
discussed several exemplary approaches in Subsection 3.2.5. Dif-
ferent to the discussed approaches, our solution uses model rela-
tions already implemented by business analysts in the analysis
model. The opposite case, where testers incorporate model re-
lations within a test model, seems to be a common practice in
current approaches. Through the analysis of the reached holistic
model coverage, the users of our approach can find missing re-
lations in the analysis model and therefore improve its quality
(see Subsection 6.3.3).

The general correlation between the holistic view, model cover-
age and the level of model relations in the analysis model was de-
fined in Subsection 5.4.2 and 5.4.4. We have provided empirical
evidence for this correlation in that we performed an experiment.
The improvement of test quality by the usage of the holistic view
and the improvement of the reached model coverage depend on
the level of model coupling as shown in Subsection 6.3.3.

Holistic model coverage measurement

Different as in the current approaches, we measure the cover-
age of several modelling viewpoints. In the first part of this phd
thesis (Chapter 1 and 2), we have shown that there exist several
coverage criteria in the literature, which have to be combined
for the holistic coverage measurement. With the algebra opera-
tion cover and its related property traceability (Section 4.5 and
4.6), we have defined the coverage measurement on the meta-
model level. In the second step of our approach (Section 5.4), we
generate a trace model to automatically calculate several cover-

232 ������� ��� �������

age metrics. The result of the measurement is a coverage report.
This report was used in the experiment to provide empirical data
and to prove the general correlation between the holistic model
coverage and model relations.

�.� �������

The development of the holistic model-based system testing ap-
proach revealed several problems, which were ostracized in this
thesis. Subsequently, we briefly describe each identified prob-
lem.

Impact analysis and change incorporation

In Subsection 5.4.4, we have discussed an important problem
when changes in the analysis or the test model occur. We have
referenced an impact analysis approach (see [Far10]) which op-
erates on similar meta-models. This approach aims to identify
changes in the analysis model, and identify affected parts of the
test model. However, the opposite case, when changes in the test
model occur, also has to be investigated. This is especially impor-
tant for the model coverage measurement since it can affect the
global coverage. For the industrial application of our solution,
the referenced method has to be customized and integrated into
the Test Model Generator.

Generation of infeasible paths

The automated generation of the test model incorporates the se-
lection of test cases. Our solution and evaluation uses three simi-
lar transition-based coverage criteria to select paths. We defined
a new AllPathAnnotated criterion to lower the number of gen-
erated paths while at the same time regarding the priority of
single use case actions (see Subsection 5.4.1). We have also men-
tioned the topic of infeasible paths, which can be selected by
several transition-based coverage criteria. For example a guard
taken in one decision node can influence the selection in sub-
sequent decision nodes. To omit this problem, the test selection

�.� ������� 233

algorithms should use decision tables (excluding the infeasible
combinations) in the future.

Automated test data selection

As discussed in Subsection 5.6.1, the holistic approach can be
improved by enabling an automated generation of concrete test
data. For this, the logical structure of test data pools from the test
model can be used. Additional constraints can be incorporated
at the test model (for example with OCL) or database (for exam-
ple with SQL) level. Even though there exist several approaches
for test data generation, it is still a NP-hard problem as proved
in [Win99].

Besides the mentioned problems, several future work packages
were identified.

Formalization of the meta-model algebra

The meta-model algebra enables the behaviour specification of
operations and properties of meta-models used in this approach.
While we introduced how to specify operations (template and
visual representation) and algorithms (UML activity diagrams
with object flow), the meta-model properties are specified only
with textual descriptions. As discussed in Section 4.9, more for-
mal languages as OCL or graph transformation languages can
be used here. Together with further formalisations, also more re-
search should be done on the properties of algebra operations
(known from elementary algebra).

Modelling and generating the test oracle

While introducing model-based testing (Section 2.2) and evalu-
ating several approaches in our literature survey (see Chapter 3),
we have mentioned that MBT can be used to generate the test or-
acle. This way, the comparison between the expected result and
the result of an manual or automated execution of test cases can
be performed. In our exemplary analysis model, the expected
results are derived from the use case and application function’s

234 ������� ��� �������

postconditions. As shown in several examples in this thesis, the
postcondition of generated logical test cases is always incorpo-
rated. But, the expected results for single test steps occur only
if other use cases or application functions are called. In order
to generate test cases with test oracles, further research should
investigate the extension of the analysis modelling approach (ex-
pected results for each use case step).

Non-functional testing

The focus of the holistic approach for model-based system test-
ing lies on functional testing. Each analysis model (or SRS) in
general, consists also of quality requirements for aspects as per-
formance, usability, etc. For example use cases can additionally
specify the time behaviour and this way incorporate quality re-
quirements. The approach presented in this thesis, can be eas-
ily extended to support time behaviour for performance testing.
The test selection and model analysis algorithms have to be cus-
tomized according to the new meta-model, which incorporates
time behaviour. For other quality requirements as usability, ap-
proaches from the usability testing field are more suitable.

Application in different domains

Throughout this thesis, we have focused on the domain of busi-
ness information systems. We have used the definition from Neto
et al. [NRP05], where the information systems support the busi-
ness workflow, the user communicates with the system through
a graphical user interface and a persistence layer to the under-
lying data exists. Since the application of the holistic view and
the usage of developer models for MBT can be generalised, the
application of our approach in other domains as embedded sys-
tems should be investigated.

�.� ����� ���������

Model-based testing is the next level of software testing. The in-
ternational research community and several industry companies

�.� ����� ��������� 235

have identified the need for using and researching this technique.
The idea of a holistic view together with using developer models
for MBT adds a meaningful and practical aspect to this research
field.

A
E X P E R I M E N T R E S U LT S

In this appendix, we provide additional information for the ex-
periment performed in Chapter 6. First, the detailed description
of the understandability survey is presented. Then, the coverage
reports for several sets of the experiment are depicted.

�.� ����������������� ��������������

To sustain objectivity in the analysis of the understandability of
generated LTC, we have performed a questionnaire with three
independent test experts from Capgemini Technology Services
and the Software Quality Lab (s-lab) plus the author of this the-
sis. In Table 15 we have depicted the answers given for an exem-
plary complete logical test case. Compared to it, we depicted the
answers for the incomplete logical test case in Table 16. The mean
value derived from Table 15 is 4/5 and from Table 16 is 2/5.

Table 15: Comparison of interview answers for complete logical test
case

Question Interviewer 1 Interviewer 2 Interviewer 3 Author
(Capgemini) (Capgemini) (s-lab) (s-lab)

Q1 yes no yes yes
Q2 yes yes no no
Q3 yes yes yes yes
Q4 yes no yes yes
Q5 yes yes yes yes
Sum 5/5 3/5 4/5 4/5

237

238 ���������� �������

Table 16: Comparison of interview answers for incomplete logical test
case

Question Interviewer 1 Interviewer 2 Interviewer 3 Author
(Capgemini) (Capgemini) (s-lab) (s-lab)

Q1 yes yes yes yes
Q2 no no no no
Q3 yes yes yes yes
Q4 yes no yes no
Q5 no no no no
Sum 3/5 2/5 3/5 2/5

In Figure 81 we depicted the questionnaire template used to
interview the independent test experts. The questionnaire was
send via e-mail to all participants. Additionally, the complete/in-
complete test cases as UML activity diagrams together with a
textual description of each test and check step was attached to
the mentioned e-mail.

The interviewed persons had the possibility to place additional
notes for each question in Figure 81. Two improvements were
stated by all participants. First, the additional textual descrip-
tion of each test step is necessary to understand both logical
test cases. The automatically generated test model incorporates
this information. For the purpose of the questionnaire, the tex-
tual description was extracted in a separate pdf file. Second, the
questionnaire should use the term "logical test data" and not
only "test data". This is necessary, because the logical test case
does not contain concrete test data values for which the syn-
onym "test data" if often used. Instead, "logical test data" (for
example equivalence classes, logical data types, etc.) is used in
each data note. Both problems were identified, while discussing
the questionnaire results with each participant.

�.� �������� �������

To provide a detailed view on the results of the model coverage
measurement from Table 13 in Section 6.3, we depict the com-
plete coverage report for Set 1 and 2 (AllActions) and Set 5 and
6 (AllPathsAnnotated). Since the only difference between sets

�.� �������� ������� 239

Figure 81: Questionnaire template used to analyze the understandabil-
ity of logical test cases.

240 ���������� �������

1,2 and 3,4 is the number of generated LTC, we omit set 3 and 4
here.

�.�.� Report for Set 1 and 2

(a) Set 1

(b) Set 2

Figure 82: Global coverage from the coverage report of Set 1 and 2

�.� �������� ������� 241

(a) Set 1

(b) Set 2

Figure 83: Use case coverage from the coverage report of Set 1 and 2

242 ���������� �������

(a) Dialog elements - Set 1 (b) Dialog elements - Set 2

(c) Dialog actions - Set 1 (d) Dialog actions - Set 2

Figure 84: Dialog coverage from the coverage report of Set 1 and 2

�.� �������� ������� 243

(a) Set 1 (b) Set 2

Figure 85: Logical data type coverage from the coverage report of Set
1 and 2

244 ���������� �������

�.�.� Report for Set 5 and 6

(a) Set 5

(b) Set 6

Figure 86: Global coverage from the coverage report of Set 5 and 6

�.� �������� ������� 245

(a) Set 5

(b) Set 6

Figure 87: Use case coverage from the coverage report of Set 5 and 6

246 ���������� �������

(a) Dialog elements - Set 5 (b) Dialog elements - Set 6

(c) Dialog actions - Set 5 (d) Dialog actions - Set 6

Figure 88: Dialog coverage from the coverage report of Set 5 and 6

�.� �������� ������� 247

(a) Set 5 (b) Set 6

Figure 89: Logical data type coverage from the coverage report of Set
5 and 6

B I B L I O G R A P H Y

[AD97] Larry Apfelbaum and John Doyle. Model based
testing. In Software Quality Week Conference, 1997.

[AFGC03] Anneliese Amschler Andrews, Robert B. France,
Sudipto Ghosh, and Gerald Craig. Test adequacy
criteria for UML design models. Software Testing,
Verification Reliability, 13(2):95–127, 2003.

[AK03] Colin Atkinson and Thomas Kühne. Model-
driven development: A metamodeling foundation.
IEEE Software, 20:36–41, 2003.

[BBH05] Fevzi Belli, Christof J. Budnik, and Axel Holl-
mann. A holistic approach to testing of interac-
tive systems using statecharts. In Proceedings of the
2nd South-East European Workshop on Formal Meth-
ods (SEEFM05), pages 59–73, 2005.

[BBW06] Fevzi Belli, Christof J. Budnik, and Lee White.
Event-based modelling, analysis and testing of
user interactions: approach and case study. Soft-
ware Testing, Verification Reliability, 16(1):3–32,
2006.

[BCR94] Victor Basili, Gianluigi Caldiera, and H. Dieter
Rombach. Encyclopedia of Software Engineering,
chapter The Goal Question Metric Approach,
pages 528–532. John Wiley & Sons, 1994.

[Bei95] Boris Beizer. Black-Box Testing:Techniques for Func-
tional Testing of Software and Systems. John Wiley &
Sons, 1995.

[Bel01] Fevzi Belli. Finite-state testing and analysis of
graphical user interfaces. In Proceedings of the 12th
International Symposium on Software Reliability Engi-
neering, pages 34–43, 2001.

[Bel03] Fevzi Belli. A holistic view for finite-state mod-
eling and testing of user interactions. Technical
report, University of Paderborn, Germany, 2003.

249

250 Bibliography

[BGL+07] Fabrice Bouquet, Christophe Grandpierre, Bruno
Legeard, Fabien Peureux, Nicolas Vacelet, and
Mark Utting. A subset of precise UML for model-
based testing. In A-MOST ’07: Proceedings of the 3rd
international workshop on Advances in model-based
testing, pages 95–104. ACM, 2007.

[BGM10] Dominik Beulen, Baris Güldali, and Michael Mly-
narski. Tabellarischer Vergleich der Prozess-
modelle für modellbasiertes Testen aus Manage-
mentsicht. Softwaretechnik-Trends, 30(2):6–9, 2010.

[Bin99] Robert Binder. Testing Object-Oriented Systems:
Models, Patterns, and Tools. Addison-Wesley, 1999.

[BJL+05] Fabrice Bouquet, Eddie Jaffuel, Bruno Legeard, Fa-
bien Peureux, and Mark Utting. Requirements
traceability in automated test generation: appli-
cation to smart card software validation. In A-
MOST ’05: Proceedings of the 1st international work-
shop on Advances in model-based testing, pages 1–7,
New York, NY, USA, 2005. ACM.

[BL02] Lionel C. Briand and Yvan Labiche. A UML-Based
Approach to System Testing. Technical report, Car-
leton University, 2002.

[BM08] Graham Bath and Judy McKay. The Software Test
Engineer’s Handbook: A Study Guide for the ISTQB
Test Analyst and Technical Test Analyst Advanced
Level Certificates. Rocky Nook Inc., 2008.

[BM10] Cristiano Bertolini and Alexandre Mota. A Frame-
work for GUI Testing Based on Use Case De-
sign. In ICSTW ’10: Proceedings of the 2010 Third
International Conference on Software Testing, Verifica-
tion, and Validation Workshops, pages 252–259. IEEE
Computer Society, 2010.

[BME+07] Grady Booch, Robert Maksimchuk, Michael En-
gel, Bobbi Young, Jim Conallen, and Kelli Hous-
ton. Object-Oriented Analysis and Design with Appli-
cations, 3rd Edition. Addison-Wesley, 2007.

[Boe79] Barry W. Boehm. Guidelines for verifying and val-
idating software requirements and design specifi-
cation. In Proceedings of Euro IFIP, pages 711–719,
1979.

Bibliography 251

[BRDG+08] Paul Baker, Zhen Ru Dai, Jens Grabowski, Oystein
Haugen, Ina Schieferdecker, and Clay Williams.
Model-Driven Testing: Using the UML Testing Profile.
Springer Verlag, 2008.

[Bri96] Sjaak Brinkkemper. Method engineering: En-
gineering of information systems development
methods and tools. Information and Software Tech-
nology, 4:275–280, 1996.

[BRR+06] M. Busch, Dai Zhen Ru, Chaparadza R., Hoff-
mann A., Lacmene L., Ngwangwen T., Ndem G.
C., Ogawa H., Serbanescu D., Ina Schieferdecker,
and Justyna Zander-Nowicka. Model transformer
for test generation from test models. In 9th Interna-
tional Conference on Quality Engineering in Software
Technology, 2006.

[BS81] Stanley Burris and H.P. Sankappanavar. A Course
in Universal Algebra. Springer-Verlag, 1981.

[Coc01] Alistair Cockburn. Writing effective use cases.
Addison-Wesley, 2001.

[CPT+06] T. Chen, Pak-Lok Poon, Sau-Fun Tang, T. Tse, and
Yuen Tak Yu. Applying testing to requirements
inspection for software quality assurance. Informa-
tion Systems Control Journal, 2006.

[CS08] Gustavo Cabral and Augusto Sampaio. Formal
specification generation from requirement docu-
ments. Electronic Notes in Theoretical Computer Sci-
ence, 195:171–188, 2008.

[CSH03] Ian Craggs, Manolis Sardis, and Thierry Heuillard.
AGEDIS Case Studies: Model-Based Testing in In-
dustry. In Presented at the 1st European Conference
on Model Driven Software Engineering, Nurembug,
2003.

[CYXZ05] Wei Chen, Qun Ying, Yunzhi Xue, and Chen Zhao.
Unifying the Software Process Spectrum, chapter Soft-
ware Testing Process Automation Based on UTP
- A Case Study, pages 222–234. Springer-Verlag
Berlin Heidelberg, 2005.

[Dai04] Zhen Ru Dai. Model-Driven Testing with UML 2.0.
In 2nd European Workshop on Model Driven Architec-

252 Bibliography

ture with an emphasis on Methodologies and Transfor-
mations, 2004.

[Dai06] Zhen Ru Dai. An Approach to Model-Driven Test-
ing - Functional and Real-Time Testing with UML
2.0, U2TP and TTCN-3. PhD thesis, Fraunhofer
FOKUS, 2006.

[DGNP04] Zhen Ru Dai, Jens Grabowski, Helmut
Neukirchen, and Holger Pals. From Design
to Test with UML – Applied to a Roaming
Algorithm for Bluetooth Devices. In Testing of
Communicating Systems. Proceedings of the 16th IFIP
International Conference on Testing of Communicat-
ing Systems (TestCom2004), Oxford, United Kingdom,
March 2004. Lecture Notes in Computer Science 2978.
Springer Verlag, 2004.

[DM03] Christian Denger and Maricel Mora. Test case de-
rived from Requirement Specification. Technical
report, Fraunhofer IESE, 2003.

[DNSV+08] Arilo Dias Neto, Rajesh Subramanyan, Marlon
Vieira, Guilherme Horta Travassos, and Forrest
Shull. Improving Evidence about Software Tech-
nologies: A Look at Model-Based Testing. IEEE
Softw., 25(3):10–13, 2008.

[DNSVT07] Arilo Dias Neto, Rajesh Subramanyan, Marlon
Vieira, and Guilherme Tracassos. A Survey on
Model-based Testing Approaches: A Systematic
Review. Technical report, Siemens Corporate Re-
search, 2007.

[DNT09] Arilo Claudio Dias Neto and Guilherme Horta
Travassos. Model-based testing approaches selec-
tion for software projects. Information and Software
Technology, 51(11):1487–1504, November 2009.

[DSWO04] Dong Polo Deng, Phillip C. Y. Sheu, Taehyung
Wang, and Akira K. Onoma. Model-based testing
and maintenance. In ISMSE ’04: Proceedings of the
IEEE Sixth International Symposium on Multimedia
Software Engineering, pages 278–285, Washington,
DC, USA, 2004. IEEE Computer Society.

[EFW01] Ibrahim El-Far and James Whittaker. Encyclopedia
of Software Engineering, chapter Model-Based Soft-

Bibliography 253

ware Testing, pages 825–837. John Wiley & Sons,
2001.

[EHRS02] Gregor Engels, Jan Hendrik Hausmann, Heckel.
Reiko, and Stefan Sauer. Testing the Consistency
of Dynamic UML Diagrams. In Proceedings of the
Sixth International Conference on Integrated Design
and Process Technology (IDPT 2002), Pasadena, CA
(USA), 2002.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of
Algebraic Specification. Springer-Verlag Berlin Hei-
delberg, 1990.

[ES10] Gregor Engels and Stefan Sauer. A Meta-Method
for Defining Software Engineering Methods. In
Gregor Engels, Claus Lewerentz, Wilhelm Schäfer,
Andy Schürr, and Bernhard Westfechtel, editors,
Graph Transformations and Model-Driven Engineer-
ing, volume 5765 of Lecture Notes in Computer Sci-
ence, pages 411–440. Springer Berlin / Heidelberg,
2010.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Com-
plexity in the Heart of Software. Addison-Wesley,
2003.

[Far10] Qurat-ul-ann Farooq. A Model Driven Approach
to Test Evolving Business Process based Systems.
In Proceedings of the MODELS 2010 Doctoral Sympo-
sium, pages 19–24, 2010.

[Fic10] Andreas Fichter. Messung und Bewertung
der Modellabdeckung anhand der Traceability-
Informationen eines Modelltransformation-
sprozesses. Master thesis, Hochschule Furtwan-
gen University, Fakultät Wirschaftsinformatik,
Studiengang Application Architectures, Septem-
ber 2010.

[FKN+92] Anthony Finkelstein, Jeff Kramer, Bashar Nu-
seibeh, L Finkelstein, and Michael Goedicke.
Viewpoints: A framework for integrating multiple
perspectives in system development. International
Journal of Software Engineering and Knowledge Engi-
neering, 2(1):31–57, 1992.

254 Bibliography

[FL02] Falk Fraikin and Thomas Leonhardt. SeDiTeC
- testing based on sequence diagrams. In Auto-
mated Software Engineering, 2002. Proceedings. ASE
2002. 17th IEEE International Conference on Auto-
mated Software Engineering, pages 261–266, 2002.

[FS05] Mario Friske and Holger Schlingloff. Von Use
Cases zur Test Cases: Eine systematische Vorge-
hensweise. In Dagstuhl-Workshop Modellbasierte En-
twicklung eingebetteter Systeme, MBEES 2005, pages
1–10, 2005.

[GECM+09] J. Javier Gutiérrez, María Jos´ Escalona Cuaresma,
Manuel Mejías, Isabel Ramod, and Joaquín Tor-
res. An approach for Model-Driven test genera-
tion. In Proceedings of the IEEE International Con-
ference on Research Challenges in Information Science,
RCIS 2009, pages 303–312. IEEE, 2009.

[GECMT05] J.Javier Gutiérrez, María Jos´ Escalona Cuaresma,
Mejías Manuel, and Joaquín Torres. Generation
of test cases from functional requirements. A sur-
vey. In 4th Workshop on System Testing and Valida-
tion, 2005.

[GEMT06] J. Javier Gutiérrez, María Jos´ Escalona, Manuel
Mejías, and Joaquín Torres. Derivation of Test Ob-
jectives Automatically. In Advances in Information
Systems Development: New Methods and Practice for
the Networked Society, pages 435–446, 2006.

[GG75] John Goodenough and Susan Gerhart. Toward a
theory of test data selection. IEEE Transactions on
Software Engineering, 2:156–173, 1975.

[GJM+10] Baris Güldali, Stefan Jungmayr, Michael Mly-
narski, Stefan Neumann, and Mario Winter.
Starthilfe für modellbasiertes Testen. OBJEKTspek-
trum, 3:63–69, 2010.

[GMS10] Baris Güldali, Michael Mlynarski, and Yavuz San-
car. Effort Comparison of Model-based Testing
Scenarios. In Proceedings of 1st International Work-
shop on Quality of Model-Based Testing (QuoMBaT
2010), pages 28–36, Paris, France, 2010.

[GMWE09] Baris Güldali, Michael Mlynarski, Andreas
Wübbeke, and Gregor Engels. Model-Based Sys-
tem Testing Using Visual Contracts. In Proceedings

Bibliography 255

of Euromicro SEAA Conference 2009, Special Session
on Model Driven Engineering, pages 121–124,
Washington, DC, USA, 2009. IEEE Computer
Society.

[GPR06] Volker Gruhn, Daniel Pieper, and Carsten
Röttgers. MDA. Springer, 2006.

[GSD05] Hans-Gerhard Gross, Ina Schieferdecker, and
George Din. Model-based built-in tests. Electronic
Notes in Theoretical Computer Science, 111:161–182,
2005.

[Hau05] Jan Hausmann. Dynamic Meta Modeling: A Seman-
tics Description Technique for Visual Modeling Lan-
guages. PhD thesis, University of Paderborn, 2005.

[Hey10] Annette Heym. A model-based testing approach
for business information systems. Master thesis,
University of Augsburg, Faculty of applied com-
puter science, Chair of Software Engineering and
Programming Languages, February 2010.

[HGB08] Bill Hasling, Helmut Goetz, and Klaus Beetz.
Model Based Testing of System Requirements us-
ing UML Use Case Models. In Proceedings of the
International Conference on Software Testing, Verifica-
tion, and Validation, pages 367–376, 2008.

[HIM00] Jean Hartmann, Claudio Imoberdorf, and Michael
Meisinger. Uml-based integration testing. In IS-
STA ’00: Proceedings of the 2000 ACM SIGSOFT in-
ternational symposium on Software testing and analy-
sis, pages 60–70, New York, NY, USA, 2000. ACM.

[HL03] Reiko Heckel and Marc Lohmann. Towards
model-driven testing. Electronic Notes in Theoreti-
cal Computer Science, 82(6):33–43, 2003.

[HM08] Wolfgang Hesse and Heinrich Mayr. Model-
lierung in der Softwaretechnik: Eine Bestandsauf-
nahme. Informatik Spektrum, 31(5):377–394, 2008.

[HN03] Alan Hartman and Kenneth Nagin. Model driven
testing - AGEDIS architecture interfaces and tools.
In In 1st European Conference on Model Driven Soft-
ware Engineering, pages 1–11, 2003.

256 Bibliography

[HN04] Alan Hartman and Kenneth Nagin. The AGEDIS
tools for model based testing. SIGSOFT Software
Engineering Notes, 29(4):129–132, 2004.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall International, 1985.

[HT05] Wolfgang Hesse and Thomas Tilley. Formal con-
cept analysis used for software analysis and mod-
elling. In Formal Concept Analysis, number 3626
in Lecture Notes in Computer Science, pages 259–
282. Springer Berlin / Heidelberg, 2005.

[HVFR05] Jean Hartmann, Marlon Vieira, Herbert Foster,
and Axel Ruder. A UML-based approach to sys-
tem testing. Innovations in Systems and Software En-
gineering, 1:12–24, 2005.

[IEE98] IEEE Computer Society. IEEE Recommended
Practice for Software Requirements Specifications.
http://standards.ieee.org/findstds/standard/830-
1998.html, 1998.

[IEE08] IEEE Computer Society. IEEE Standard for
Software and System Test Documentation.
http://standards.ieee.org/findstds/standard/829-
2008.html, 2008.

[ISBP07] Timea Illes-Seifert, Lars Borner, and Barbara
Paech. Testfallgenerierung aus semi-formalen Use
Cases. In Informatik 2007. Informatik trifft Logistik.
Band 2. Beiträge der 37. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), pages 404–409, 2007.

[ISO04] ISO/IEC Standard No. 9126: Software engineering
- Product quality; Parts 1-4, 2001-2004.

[ISO07] ISO: ISO/IEC 24774:2007 Software engineering
- metamodel for development methodologies,
2007.

[IST] ISTQB Glossary of Testing Terms Version 2.1.

[Jac92] Ivar Jacobson. Object Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison-Wesley,
1992.

[Jou05] Frédéric Jouault. Loosely Coupled Traceability
for ATL. In Proceedings of the European Conference

Bibliography 257

on Model Driven Architecture ECMDA workshop on
traceability Nuremberg Germany, pages 29–37, 2005.

[Jun99] Stefan Jungmayr. Reviewing software artifacts for
testability. In EuroSTAR99, November 1999.

[Kru03] Philippe Kruchten. The Rational Unified Process. An
Introduction. Addison-Wesley Object Technology
Series, 2003.

[KSW01] Georg Kösters, Hans-Werner Six, and Mario Win-
ter. Coupling use cases and class models as a
means for validation and verification of require-
ments specifications. Requirements Engineering,
6:3–17, 2001.

[KVdABV08] Tim Koomen, Leo Van der Aalst, Bart Broek-
man, and Michiel Vroon. TMap Next: Ein praktis-
cher Leitfaden für ergebnisorientiertes Softwaretesten.
dpunkt.verlag, 2008.

[Leg08] Bruno Legeard. Model-Based Testing of a Finan-
cial Application - A Case Study. In Presentation at
the EuroStar 2008 Conference, 2008.

[Lig09] Peter Liggesmeyer. Software Qualität: Testen,
Analysieren und Verifizieren von Software. Spektrum
Akademischer Verlag, 2009.

[LMdG+09] Beatriz Pérez Lamancha, Pedro Reales Mateo, Ig-
nacio Rodríguez de Guzmán, Macario Polo Us-
aola, and Mario Piattini Velthius. Automated
model-based testing using the UML testing profile
and QVT. In MoDeVVa ’09: Proceedings of the 6th
International Workshop on Model-Driven Engineering,
Verification and Validation, pages 1–10. ACM, 2009.

[Loh06] Marc Lohmann. Kontraktbasierte Modellierung, Im-
plementierung und Suche von Komponenten in service-
orientierten Architekturen. PhD thesis, University of
Paderborn, 2006.

[LSS07] Tilo Linz, Hans Schäfter, and Andreas Spillner.
Software Testing Foundations: A Study Guide for the
Certified Tester Exam - Foundation Level - ISTQB com-
pliant. Rocky Nook, 2007.

258 Bibliography

[MBN03] Atif Memon, Ishan Banerjee, and Adithya Nagara-
jan. GUI Ripping: Reverse Engineering of Graph-
ical User Interfaces for Testing. In WCRE ’03: Pro-
ceedings of the 10th Working Conference on Reverse
Engineering. IEEE Computer Society, 2003.

[McC76] Thomas McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 2(4):308–320,
1976.

[McM04] Phil McMinn. Search-based software test data gen-
eration: A survey. ACM Software Testing, Verifica-
tion & Reliability, 14:105–156, 2004.

[MGSE09] Michael Mlynarski, Baris Güldali, Melanie Späth,
and Gregor Engels. From Design Models to Test
Models by Means of Test Ideas. In MoDeVVa
’09: Proceedings of the 6th International Workshop on
Model-Driven Engineering, Verification and Valida-
tion, pages 1–10, New York, NY, USA, 2009. ACM.

[MJV+10] Qaisar A. Malik, Antti Jaaskelainen, Heikki Vir-
tanen, Mika Katara, Fredrik Abbors, Dragos Tr-
uscan, and Johan Lilius. Model-Based Testing Us-
ing System vs. Test Models - What Is the Differ-
ence? Engineering of Computer-Based Systems, IEEE
International Conference on the, 0:291–299, 2010.

[MLLF09] Anders Mattsson, Björn Lundell, Brian Lings, and
Brian Fitzgerald. Linking Model-Driven Develop-
ment and Software Architecture: A Case Study.
IEEE Transactions on Software Engineering, 35(1):83–
93, 2009.

[Mly10] Michael Mlynarski. Holistic Model-Based Testing
for Business Information Systems. In Proceedings of
3rd International Conference on Software Testing, Veri-
fication and Validation, pages 327–330, Paris, France,
April 2010. IEEE.

[MN10] Atif Memon and Bao N. Nguyen. Advances in Au-
tomated Model-Based System Testing of Software
Applications with a GUI Front-End. Advances in
Computers, 80:121–162, June 2010.

[Moo56] Edward Forrest Moore. Gedanken-experiments
on sequential machines. Automata Studies, pages
129–153, 1956.

Bibliography 259

[MQP05] Jacqueline A. Mc Quillan and James F. Power. A
Survey of UML-Based Coverage Criteria for Soft-
ware Testing. Technical report, Department of
Computer Science, 2005.

[MSP01] Atif M. Memon, Mary Lou Soffa, and Martha E.
Pollack. Coverage criteria for GUI testing. In
ESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIG-
SOFT international symposium on Foundations of soft-
ware engineering, pages 256–267. ACM, 2001.

[MVGVK06] Tom Mens, Pieter Van Gorp, Dániel Varró, and
Gábor Karsai. Applying a model transforma-
tion taxonomy to graph transformation technol-
ogy. Electronic Notes in Theoretical Computer Science,
152:143–159, 2006.

[MXX06] Chen Mingsong, Qiu Xiaokang, and Li Xuandong.
Automatic test case generation for UML activity
diagrams. In AST ’06: Proceedings of the 2006 in-
ternational workshop on Automation of software test,
pages 2–8. ACM, 2006.

[NFTJ06] Clementine Nebut, Franck Fleurey, Yves Le Traon,
and Jean-Marc Jazeque. Automatic test generation:
A use case driven approach. IEEE Transactions on
Software Engineering, 32:140–155, 2006.

[Nie09] Benjamin Niebuhr. Test case generation from
UML models described with the UML Testing
Profile. Bachelor thesis, University of Applied
Sciences Brandenburg, Faculty for Applied Com-
puter Science, December 2009.

[NRP05] Pedro Santos Neto, Rodolfo Resende, and
Clarindo Padua. A method for information sys-
tems testing automation. In Oscar Pastor and
Joao Falcao e Cunha, editors, CAiSE 2005: Ad-
vanced Information Systems Engineering, pages 504–
518. Springer Berlin / Heidelberg, 2005.

[NZR07] Leila Naslavsky, Hadar Ziv, and Debra J. Richard-
son. Towards traceability of model-based testing
artifacts. In A-MOST ’07: Proceedings of the 3rd in-
ternational workshop on Advances in model-based test-
ing, pages 105–114. ACM, 2007.

260 Bibliography

[OA99] Jeff Offutt and Aynur Abdurazik. Generating
Tests from UML Specifications. In UML’99 - The
Unified Modeling Language, volume 1723, pages
416–429. Springer Berlin / Heidelberg, 1999.

[Obj03] Object Management Group. MDA Guide
Version 1.0.1. http://www.omg.org/cgi-
bin/doc?omg/03-06-01, June 2003.

[Obj06a] Object Management Group. Meta-Object
Facility (MOF) Specification, Version 2.0.
http://www.omg.org/spec/MOF/2.0/, 2006.

[Obj06b] Object Management Group. Ob-
ject Constraint Language Version 2.0.
http://www.omg.org/spec/OCL/2.0/PDF,
2006.

[Obj07a] Object Management Group. MOF
2.0/XMI Mapping, Version 2.1.1.
http://www.omg.org/spec/XMI/2.1.1/, 2007.

[Obj07b] Object Management Group. UML Testing Profile
Version 1.0. http://utp.omg.org/, 2007.

[Obj08a] Object Management Group. Meta-Object Facil-
ity (MOF) 2.0 Query/View/Transformation Spec-
ification. http://www.omg.org/spec/QVT/1.0/,
2008.

[Obj08b] Object Management Group. Soft-
ware & Systems Process Engineering
Meta-Model Specification, Version 2.0.
http://www.omg.org/spec/SPEM/2.0/, 2008.

[Obj09] Object Management Group. Uni-
fied Modeling Language Version 2.2.
http://www.omg.org/spec/UML/2.2/, 2009.

[Pen87] Nancy Pennington. Comprehension strategies in
programming. In Empirical studies of programmers:
second workshop, pages 100–113. Ablex Publishing
Corp., 1987.

[PJJ+07] Simon Pickin, Claude Jard, Thierry Jeron, Jean-
Marc Jezequel, and Yves Le Traon. Test Synthesis
from UML Models of Distributed Software. IEEE
Transactions on Software Engineering, 33(4):252–269,
2007.

Bibliography 261

[PKS02] Martin Pol, Tim Koomen, and Andreas Spill-
ner. Management und Optimierung des Testprozesses.
dpunkt.verlag, 2002.

[PP05] Alexander Pretschner and Jan Philipps. Model-
Based Testing of Reactive Systems, chapter Method-
ological Issues in Model-Based Testing, pages 281–
291. Springer Verlag, 2005.

[PPW+05] Alexander Pretschner, Wolfgang Prenninger,
Stephan. Wagner, Christian Kühnel, M. Baumgart-
ner, B. Sostawa, R. Zölch, and Thomas Stauner.
One evaluation of model-based testing and its
automation. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering,
pages 392–401. ACM, 2005.

[PR10] Klaus Pohl and Chris Rupp. Basiswissen Require-
ments Engineering. dpunkt.verlag, 2010.

[PWGW08] Christian Pfaller, Stefan Wagner, Jörg Gericke, and
Matthias Wiemann. Multi-Dimensional Measures
for Test Case Quality. In Software Testing Verifi-
cation and Validation Workshop, 2008. ICSTW ’08,
pages 364–368, 2008.

[QJ09] Siyou Qian and Fan Jiang. An event interaction
structure for GUI test case generation. In Interna-
tional Conference on Computer Science and Informa-
tion Technology, pages 619–622, 2009.

[RBGW10] Thomas Roßner, Christian Brandes, Helmut Götz,
and Mario Winter. Basiswissen Modellbasierter Test.
dpunkt.verlag, 2010.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. To-
wards reference models for requirements trace-
ability. IEEE Transactions on Software Engineering,
27:58–93, 2001.

[RS05] Hridesh Rajan and Kevin Sullivan. Generaliz-
ing AOP for Aspect-Oriented Testing. In Proceed-
ings of the Fourth International Conference on Aspect-
Oriented Software Development (AOSD 2005), pages
14–18. ACM, 2005.

[Rum03] Bernhard Rumpe. Model-based testing of object-
oriented systems. In Formal Methods for Compo-
nents and Objects, International Symposium, FMCO

262 Bibliography

2002, Leiden. LNCS 2852, pages 380–402. Springer
Verlag, 2003.

[SB01] Ken Schwaber and Mike Beedle. Agile Software
Development with Scrum. Prentice Hall, 2001.

[SE09] Michael Spijkerman and Tobias Eckardt. Modell-
basiertes Testen auf Basis des fundamentalen Test-
prozesses. Softwaretechnik-Trends, 29(4):5–8, 2009.

[Sha03] Mary Shaw. Writing good software engineering
research papers: minitutorial. In ICSE ’03: Proceed-
ings of the 25th International Conference on Software
Engineering, pages 726–736. IEEE Computer Soci-
ety, 2003.

[SK06] Motoshi Saeki and Haruhiko Kaiya. On relation-
ships among models, meta models, and ontolo-
gies. In Proceedings of the 6 th OOPSLA Workshop
on Domain-Specific Modeling, 2006.

[SL05] Andreas Spillner and Tilo Linz. Basiswissen Soft-
waretest: Aus und Weiterbildung zum Certified Tester.
dpunkt.verlag, 2005.

[SQL08] ISO: ISO/IEC 9075 :2008 Information technology
– Database languages – SQL, 2008.

[SS97] Richard K. Shehady and Daniel P. Siewiorek. A
method to automate user interface testing using
variable finite state machines. In FTCS ’97: Pro-
ceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS ’97), pages 80–88, 1997.

[SSE09] Frank Salger, Stefan Sauer, and Gregor Engels. In-
tegrated specification and quality assurance for
large business information systems. In ISEC ’09:
Proceeding of the 2nd annual conference on India soft-
ware engineering conference, pages 129–130, New
York, NY, USA, 2009. ACM.

[TECMG09] Arturo Henry Torres, María Jos´
Escalona Cuaresma, Mejías Manuel, and J.Javier
Gutiérrez. A MDA-Based Testing. A comparative
study. In Proceeding of 4th international conference
on Software and Data Technologies ICSOFT 2009,
pages 269–274. INSTICC Press, 2009.

Bibliography 263

[TTC05] ETSI Standard ES 201 873-1 V3.1.1 (2005-06): The
Testing and Test Control Notation version 3; Part
1: TTCN-3 Core Language, 2005.

[UL07] Mark Utting and Bruno Legeard. Practical Model-
Based Testing: A Tools Approach. Morgan Kaufmann,
2007.

[UPL06] Mark Utting, Alexander Pretschner, and Bruno
Legeard. A taxonomy of model-based testing.
Technical Report Technical Report ISSN 1170-
487X, The University of Waikato, 2006.

[VGE08] Hendrik Voigt, Baris Güldali, and Gregor Engels.
Quality Plans for Measuring the Testability of
Models. In Proceedings of the 11th International Con-
ference on Quality Engineering in Software Technology
(CONQUEST 2008), Potsdam (Germany), pages 353–
370. dpunkt.verlag, 2008.

[VLH+06] Marlon Vieira, Johanne Leduc, Bill Hasling, Ra-
jesh Subramanyan, and Juergen Kazmeier. Au-
tomation of GUI testing using a model-driven ap-
proach. In AST ’06: Proceedings of the 2006 interna-
tional workshop on Automation of software test, pages
9–14. ACM, 2006.

[Wag06] Stephan Wagner. A Literature Survey on the Qual-
ity Economics of Defect Detection Techniques.
Technical report, Institut für Informatik, Technis-
che Universität München, July 2006.

[Wei09] Stephan Weißleder. Influencing Factors in Model-
Based Testing with UML State Machines: Report
on an Industrial Cooperation. In Model Driven En-
gineering Languages and Systems, 12th International
Conference, MODELS 2009, Denver, CO, USA, Octo-
ber 4-9, 2009. Proceedings, pages 211–225. Springer,
2009.

[Win99] Mario Winter. Qualitätssicherung für objektori-
entierte Software: Anforderungsermittlung und Test
gegen die Anforderungsspezifikation. PhD thesis, Uni-
versity of Hagen, Department of Computer Sci-
ence, 1999.

[WL10] Stephan Weißleder and Hartmut Lackner. Sys-
tem Models vs. Test Models - Distinguishing

264 Bibliography

the Undistinguishable? In GI Jahrestagung (2)’10,
pages 321–326, 2010.

[WRH+99] Claes Wohlin, Per Runeson, Martin Höst, An-
neliese von Mayrhauser, Björn Regnell, Anders
Wesslën, and Magnus Ohlsson. Experimentation
in Software Engineering: An Introduction. Springer,
Berlin, 1999.

[Xie06] Qing Xie. Developing cost-effective model-based
techniques for gui testing. In ICSE ’06: Proceedings
of the 28th international conference on Software engi-
neering, pages 997–1000, 2006.

[XM08] Qing Xie and Atif M Memon. Using a pilot
study to derive a GUI model for automated test-
ing. ACM Trans. Softw. Eng. Methodol., 18(2):1–35,
2008.

[ZVS+07] Benjamin Zeiß, Diana Vega, Ina Schieferdecker,
Helmut Neukirchen, and Jens Grabowski. Ap-
plying the ISO 9126 Quality Model to Test Spec-
ifications – Exemplified for TTCN-3 Test Specifi-
cations. In Software Engineering 2007 (SE 2007).
Lecture Notes in Informatics (LNI) 105. Copyright
Gesellschaft für Informatik, pages 231–242. Köllen
Verlag, Bonn, 2007.

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Acronyms
	Problem Definition and Related Work
	1 Introduction
	1.1 Problem statement
	1.2 Contribution
	1.2.1 Methodology
	1.2.2 Practice

	1.3 Publications
	1.4 Outline

	2 Definitions and preliminaries
	2.1 Dynamic Software Testing
	2.1.1 Process and Artefacts
	2.1.2 Test roles
	2.1.3 Meta-Model
	2.1.4 Risk-Based Testing

	2.2 Model-Based Testing
	2.2.1 Definition
	2.2.2 Methodological Issues
	2.2.3 Process and Artefacts
	2.2.4 Test selection algorithms

	2.3 Test Modelling Language
	2.3.1 UML Testing Profile
	2.3.2 Artefact Meta-Model

	2.4 Modelling Business Information Systems
	2.4.1 General definitions
	2.4.2 Motivation
	2.4.3 Representative industry modelling approach
	2.4.4 Running example "Gabi's Ski School"
	2.4.5 Use Cases
	2.4.6 Application Functions
	2.4.7 Logical Data Model
	2.4.8 Logical Data Types
	2.4.9 Dialogs
	2.4.10 Conceptual Components
	2.4.11 Artefact Meta-Model

	2.5 Model Transformations
	2.5.1 Definitions
	2.5.2 Categorization
	2.5.3 Traceability Issue
	2.5.4 Model Transformation Languages

	2.6 Summary

	3 Related work
	3.1 Evaluation criteria
	3.1.1 UML for system modelling
	3.1.2 Modelling viewpoints
	3.1.3 Integrated interaction viewpoint
	3.1.4 Model relations
	3.1.5 UML for test modelling
	3.1.6 Test Model
	3.1.7 Developer Model
	3.1.8 Understandability
	3.1.9 Analysability
	3.1.10 Completeness
	3.1.11 Traceability
	3.1.12 Case study and tool support

	3.2 Identified related work
	3.2.1 Generation from system models
	3.2.2 Generation from several modelling viewpoints
	3.2.3 Generation from test models
	3.2.4 Generation of test models from developer models
	3.2.5 Generation using model relations
	3.2.6 Generation from GUI models
	3.2.7 Test case quality attributes

	3.3 Summary

	Approach and Evaluation
	4 Meta-Model Algebra
	4.1 Motivation
	4.2 Definitions
	4.3 Algebra Meta-Model
	4.4 Related work
	4.5 Meta-Model Properties
	4.5.1 Traceability
	4.5.2 Modelling viewpoints
	4.5.3 Model relation
	4.5.4 Structural mapping
	4.5.5 Traversability

	4.6 Algebra Operations
	4.6.1 transform
	4.6.2 select
	4.6.3 extract
	4.6.4 cover

	4.7 Algebra Specification Language
	4.8 Algebra Instantiation
	4.9 Applicability discussion
	4.10 Summary

	5 Model-Based Test Specification Process
	5.1 Requirements
	5.2 Approach overview
	5.2.1 Process
	5.2.2 Artefacts

	5.3 Step 1. Analyze and annotate the Analysis Model
	5.3.1 Manual testability checks
	5.3.2 Test prioritization through model annotation

	5.4 Step 2. Generate Basic Test Model
	5.4.1 Test Case Selection
	5.4.2 Automated Model Analysis
	5.4.3 Model Transformations
	5.4.4 Model Coverage Measurement

	5.5 Step 3. Extend the Basic Test Model
	5.5.1 Basic vs. extended test model
	5.5.2 Manual extension process

	5.6 Step 4. Generate Concrete Test Cases
	5.6.1 Excursion: Constraints in test data
	5.6.2 Test Data Selection
	5.6.3 Platform-specific test case generation

	5.7 Summary

	6 Evaluation
	6.1 Evaluation planning
	6.1.1 Evaluation goals
	6.1.2 Experiment design
	6.1.3 Setting
	6.1.4 Null Hypotheses
	6.1.5 Alternative Hypotheses

	6.2 Tool support
	6.2.1 Motivation
	6.2.2 Test Model Generator
	6.2.3 Test Case Generator
	6.2.4 Used technology stack
	6.2.5 Used environment

	6.3 Experiment "Gabi's Ski School"
	6.3.1 Input model
	6.3.2 Results
	6.3.3 Interpretation of results

	6.4 Discussion of the results
	6.4.1 Internal validity
	6.4.2 Construct validity
	6.4.3 External validity

	6.5 Summary

	7 Summary and Outlook
	7.1 Summary of Contributions
	7.2 Outlook
	7.3 Final statement

	A Experiment results
	A.1 Understandability questionnaires
	A.2 Coverage reports
	A.2.1 Report for Set 1 and 2
	A.2.2 Report for Set 5 and 6

	Bibliography

