
Adaptive Virtual Machine Scheduling and
Migration for Embedded Real-Time Systems

Stefan Groesbrink, M.Sc.

A thesis submitted to the
Faculty of Computer Science, Electrical Engineering and Mathematics

of the
University of Paderborn

in partial fulfillment of the requirements for the degree of
doctor rerum naturalium (Dr. rer. nat.)

2015

Abstract

Integrated architectures consolidate multiple functions on a shared electronic control

unit. They are well suited for embedded real-time systems that have to imple-

ment complex functionality under tight resource constraints. Multicore processors

have the potential to provide the required computational capacity with reduced size,

weight, and power consumption. The major challenges for integrated architectures

are robust encapsulation (to prevent that the integrated systems corrupt each other)

and resource management (to ensure that each system receives sufficient resources).

Hypervisor-based virtualization is a promising integration architecture for complex

embedded systems. It refers to the division of the hardware resources into multiple

isolated execution environments (virtual machines), each hosting a software system

of operating system and application tasks.

This thesis addresses the hypervisor’s management of the resource computation

time, which has to enable multiple real-time systems to share a multicore processor

with all of them completing their computations as demanded. State of the art ap-

proaches realize the sharing of the processor by assigning exclusive processor cores or

fixed processor shares to each virtual machine. For applications with a computation

time demand that varies at run-time, such static solutions result in a low utilization,

since the pessimistic worst-case demand has to be reserved at all times, but is often

not needed. Therefore, adaptability is desired in order to utilize the shared proces-

sor efficiently, but without losing the real-time capability as a prerequisite for the

integration.

The first contribution of this thesis is an algorithm for the partitioning of virtual

machines to homogeneous cores, which produces mappings that support adaptive

scheduling and the protection of safety-critical systems. The second contribution is

a virtual machine scheduling architecture that combines real-time guarantees with

an adaptive management of the computing power. The third contribution is a tech-

nique for real-time virtual machine migration. Together, these contributions enable

the integration of independently developed and validated systems on top of a hy-

pervisor. The processing time redistribution in case of mode changes and execution

time variations follows the varying demand effectively. Adaptive measures are taken

as well to protect critical systems. In case of a worst-case execution time overrun

of a critical system, it is attempted to protect its execution by stealing computation

time from non-critical systems. In case of a hardware failure, migration is performed

to continue the operation of systems on other processors. A prototype demonstrates

the feasibility.

Zusammenfassung

Integrierte Architekturen konsolidieren mehrere Funktionen auf einem gemeinsam

genutzten Steuergerät. Sie sind für eingebettete Echtzeitsysteme geeignet, die kom-

plexe Funktionalität ressourceneffizient implementieren müssen. Mehrkernprozesso-

ren bergen das Potential die erforderliche Rechenleistung bei reduzierter Größe, Ge-

wicht und Leistungsaufnahme zu bieten. Die größten Herausforderungen integrierter

Architekturen sind eine robuste Isolation der integrierten Systeme und eine Res-

sourcenverwaltung, die jedem System die Erfüllung ihrer Anforderungen garantiert.

Hypervisor-basierte Virtualisierung ist eine vielversprechende Integrationsarchitek-

tur für komplexe eingebettete Systeme. Es bezeichnet die Aufteilung der Hardwarer-

essourcen in mehrere isolierte Ausführungsumgebungen (virtuelle Maschinen), von

denen jede ein Softwaresystem aus Betriebssystem und Anwendungen beinhaltet.

Diese Dissertation befasst sich mit der Verwaltung der Ressource Rechenzeit durch

den Hypervisor, so dass alle Systeme die einen Prozessor gemeinsam nutzen ihre Be-

rechnungen wie erforderlich durchführen können. Stand der Technik ist das Teilen des

Prozessors durch die Zuweisung exklusiver Prozessorkerne oder festgesetzter Ausfüh-

rungszeitanteile zu allen virtuellen Maschinen. Solch statische Ansätze führen jedoch

bei Anwendungen deren Bedarf zur Laufzeit schwankt zu einer geringen Auslastung,

da der Bedarf für den ungünstigsten Fall zu jeder Zeit reserviert werden muss, oft

aber nicht benötigt wird. Aus diesem Grund ist Anpassungsfähigkeit für die effizi-

ente Nutzung des geteilten Prozessors wünschenswert, ohne die Echtzeitfähigkeit als

Voraussetzung für die Integration zu verlieren.

Der erste Beitrag dieser Dissertation ist ein Algorithmus für die Aufteilung der vir-

tuellen Maschinen auf homogene Prozessorkerne. Er produziert Zuweisungen, die ad-

aptive Ablaufsteuerungen und den Schutz sicherheitskritischer Systeme unterstützen.

Der zweite Beitrag ist eine Technik zur Ablaufsteuerung von virtuellen Maschinen,

welche Antwortzeitgarantien mit einer adaptiven Verwaltung der Prozessorleistung

verbindet. Der dritte Beitrag ist eine Technik zur echtzeitfähigen Migration virtu-

eller Maschinen. Zusammen ermöglichen es diese Beiträge unabhängig voneinander

entwickelte Systeme mithilfe eines Hypervisors zu integrieren. Die Neuverteilung der

Prozessorleistung im Falle von Betriebsmoduswechseln und Ausführungszeitschwan-

kungen reagiert effektiv auf Veränderungen des Bedarfs. Adaptive Maßnahmen wer-

den zudem zum Schutz sicherheitskritischer Systeme durchgeführt. Wenn ein solches

System die reservierte Ausführungszeit überschreitet, wird versucht durch das Steh-

len von Ausführungszeit von unkritischen Systemen das kritische System zu schützen.

Im Falle von Hardwarefehlern wird Migration zur Fortsetzung des Betriebs auf einem

anderen Prozessor angewandt. Ein Prototyp demonstriert die Machbarkeit.

ii

To my parents.

iv

ACKNOWLEDGEMENTS

I express my deep gratitude to my advisors Prof. Franz-Josef Rammig and Prof.

Luis Almeida. Their support, ambition, dedication, tenacity, and expertise are the

foundation of this work.

I would like to thank my committee Prof. Marco Platzner, Prof. Christian Plessl,

and Dr. Stefan Sauer.

I am also grateful to my brilliant colleagues in Paderborn and Porto.

Foremost, I thank my family for their unwavering support, understanding, and

encouragement. I am deeply thankful to Anne, for all the love, support, and

patience.

v

vi

Contents

Contents vii

Abbreviations . xi

Symbols . xi

1 Introduction 1

1.1 Hypervisor-based Integration . 1

1.2 Application Example . 4

1.3 Adaptive Scheduling of Virtualized Real-Time Systems 7

1.4 Outline and Contributions . 9

2 Fundamentals: Hypervisor-based Multicore Virtualization for Em-

bedded Real-Time Systems 13

2.1 Embedded Real-Time Systems . 14

2.1.1 Embedded Systems . 14

2.1.2 Real-Time Computing . 15

2.1.3 Mixed-Criticality Systems . 21

2.2 Hypervisor-based Virtualization . 23

2.2.1 System Virtualization . 23

2.2.2 Processor Virtualization . 25

2.2.3 I/O Virtualization . 28

2.2.4 Virtualization for Mixed-Criticality Systems 29

2.3 Multicore Processors . 32

2.3.1 Multicore Scheduling . 34

2.3.2 Multicore and Predictability 35

2.4 Virtual Machine Scheduling . 37

2.4.1 Hierarchical Scheduling . 37

2.4.2 Virtual Processor and Virtual Time 38

2.4.3 Classification and Common Solutions 40

vii

2.5 Summary . 43

3 A Multicore Hypervisor for Embedded Real-Time Systems 45

3.1 Problem Statement . 46

3.2 Related Work . 48

3.3 Proteus Multicore Hypervisor . 50

3.3.1 Architecture . 51

3.3.2 Configurability . 52

3.3.3 Processor Virtualization . 55

3.3.4 Paravirtualization Interface 56

3.3.5 Multicore . 57

3.3.6 Memory Virtualization . 59

3.3.7 Virtualization of Timer and I/O Devices 59

3.4 Evaluation . 60

3.4.1 Evaluation Platform: IBM PowerPC 405 60

3.4.2 Execution Times . 61

3.4.3 Memory Footprint . 65

3.5 Summary . 66

4 Models 69

4.1 Workload Model . 70

4.1.1 Task Model . 70

4.1.2 Virtual Machine Model . 73

4.2 Resource Model . 76

4.3 Schedulability Analysis . 77

4.4 Suitability of the Model . 79

4.5 Related Work . 81

4.6 Summary . 85

5 Partitioning 87

5.1 Problem Statement . 89

5.2 Related Work . 90

5.3 Branch-and-Bound Partitioning . 93

5.3.1 Pruning & Server Transformation 94

5.3.2 Optimization Goals . 99

5.3.3 The Algorithm . 100

5.3.4 Example . 103

5.4 Evaluation . 103

viii

5.5 Summary . 108

6 Adaptive Partitioned Hierarchical Scheduling 109

6.1 Problem Statement . 110

6.2 Related Work . 112

6.3 Scheduling Architecture . 114

6.3.1 Server-based Virtual Machine Scheduling 115

6.3.2 Fixed Priority Virtual Machine Scheduling 117

6.4 Adaptive Bandwidth Distribution . 118

6.4.1 Distributing Structural Slack 119

6.4.2 The Algorithm and its Computational Complexity 121

6.4.3 Protection under Overload Conditions 123

6.5 Correctness of Bandwidth Distribution 126

6.5.1 Steady State: Temporal Isolation and Minimum Bandwidth

Guarantee . 127

6.5.2 Correctness during Mode Transitions 129

6.5.3 Correctness of Redistribution of Dynamic Slack 133

6.5.4 Handling of Multiple Mode Change Requests 140

6.6 The Case for Paravirtualization . 140

6.7 Integration into Hypervisor and Operating System 143

6.8 Evaluation . 144

6.8.1 Scheduling Simulator . 144

6.8.2 Execution Times . 146

6.8.3 Overhead versus Benefit: Threshold for Slack Redistribution . 148

6.8.4 Memory Footprint . 149

6.8.5 Paravirtualization Effort . 150

6.8.6 Comparative Evaluation . 150

6.9 Summary . 158

7 Real-Time Virtual Machine Migration 161

7.1 Problem Statement . 163

7.2 Related Work . 164

7.3 Design . 167

7.3.1 Migration Policy . 167

7.3.2 Integration into the Hypervisor 168

7.3.3 Protocol . 169

7.3.4 Migration Test . 171

ix

7.3.5 Integration into Real-Time Virtual Machine Scheduling . . . 173

7.4 Evaluation . 175

7.4.1 Experimental Setup . 175

7.4.2 Memory Footprint & Paravirtualization Effort 176

7.4.3 Execution Times & Downtime 177

7.4.4 Reliability Analysis . 178

7.4.5 Case Study: Autonomous Rail Vehicle 182

7.5 Summary . 186

8 Conclusion & Future Work 189

8.1 Summary of Results . 189

8.2 Outlook . 191

A Publications 193

List of Figures 195

List of Tables 199

List of Algorithms 201

Bibliography 203

x

Abbreviations

AMP Asymmetric Multiprocessing 33

CPU Central Processing Unit 15

ECU Electronic Control Unit 1

EDF Earliest Deadline First Scheduling 20

GPOS General Purpose Operating System 48

I/O Input/Output 28

ISA Instruction Set Architecture 23

ISR Interrupt Service Routine 18

IVCM Inter Virtual Machine Communication Manager 51

MMU Memory Management Unit 31

MPU Memory Protection Unit 31

OS Operating System 15

PIT Programmable Interval Timer 52

RM Rate Monotonic Scheduling 20

RTOS Real-Time Operating System 17

SMP Symmetric Multiprocessing 33

VM Virtual Machine 23

WCET Worst-Case Execution Time 18

xi

Symbols

bdf bandwidth demand factor 154

C computation time of a task 17

χ criticality level 70

dbf demand bound function 74

∆ service delay of a periodic resource 77

δ relative error of budget allocation 154

∆max
i maximum service delay of virtual machine Vi 97

Γ periodic resource 76

Ω task set 73

P processor (Pi: processor core) 76

p mode change probability 154

PCB periodic capacity bound 96

Π period of a periodic resource 76

sbf supply bound function 77

σ scheduling algorithm 73

T period of a task 18

τ task 18

tdown downtime caused by migration 172

texpiry expiry time of dynamic slack 136

Θ allocation of a periodic resource (execution time per period) 76

U utilization of a task set 19

Uadd additional utilization 120

Ulax utilization laxity 71

Umin utilization minimum 71

xii

V virtual machine 73

Ξ mapping of virtual machines to processor cores 89

Z criticality distribution 100

xiii

xiv

Chapter 1

Introduction

Contents
1.1 Hypervisor-based Integration 1

1.2 Application Example . 4

1.3 Adaptive Scheduling of Virtualized Real-Time Systems 7

1.4 Outline and Contributions 9

1.1 Hypervisor-based Integration

The number of functions of complex embedded systems is constantly increasing, and

thus, as well the demand for computing power. Traditionally, each function is realized

on a dedicated Electronic Control Unit (ECU), an integrated hardware/software

component that is typically connected to a bus to exchange data. This federated

approach has the disadvantage that each new function requires an additional ECU,

resulting in 70 to 100 ECUs for modern cars [Broy et al., 2007, Hergenhan and

Heiser, 2008], with a significant impact on hardware costs, space and weight (as well

for connecting cables), and power consumption. Buses have limitations regarding

number of nodes and cable length, which have to be addressed by multiple buses and

gateways between them, increasing the network complexity significantly [Natale and

Sangiovanni-Vincentelli, 2010].

Therefore, there is a trend reversal in many industries such as the automo-

tive [Navet et al., 2010, Obermaisser et al., 2009, Reinhardt and Kucera, 2013] or

aerospace industry [Filyner, 2003,Watkins and Walter, 2007,Littlefield-Lawwill and

Ramanathan, 2007]: multiple functions are consolidated on more powerful ECUs.

Especially multicore processors provide an ideal hardware platform to reconcile the

diverging goals of realizing additional features, but at the same time reducing the

2 Introduction

number of ECUs [Gut et al., 2012]. Multiple stand-alone ECUs are replaced by an

integrated modular architecture with a single ECU, reducing the number of ECU

boxes, communication nodes (or traffic), cabling, connectors, and power supplies as

well as increasing power efficiency (hardware consolidation).

But this integration of independently developed systems on a shared hardware

platform must not lead to a loss of functional and time correctness [Natale and

Sangiovanni-Vincentelli, 2010]. Many embedded systems are safety-critical and sen-

sitive to time, which is why reliable mechanisms are needed to protect their execution.

The integration requires a safe control of the hardware resources and an encapsulated

execution of the integrated systems, so that they do not interfere with each other

and functional and timing faults are not propagated. It must be prevented that one

of the integrated systems corrupts the execution of another system, for example by

manipulating private data of the other guest or by not leaving any resources for it.

Encapsulation is particularly important, since the integration of multiple software

systems leads in many cases to mixed criticality systems. The criticality of a function

or component refers to the severity of failure and might be directly related to a

functional safety certification level. In many application domains, one distinguishes

between multiple criticality levels, which are characterized by a differing importance

for the safety of the system itself and its environment. It must be shown that

safety-critical functions are protected and cannot be compromised by other functions.

Otherwise, certification results cannot be reused and all functions have to be certified

to the highest level.

System virtualization is a technique to integrate multiple software systems in an

encapsulated manner. The integrated software systems consist of operating system

and application tasks, so that existing legacy software can be reused. A software

abstraction layer called hypervisor manages the hardware resources and provides

multiple execution environments. It ensures that these so-called virtual machines

are isolated from each other. The encapsulation implements a freedom from in-

terference, which includes the integrity of exclusive address spaces and that each

integrated system receives the demanded computation time service regarding dura-

tion, rate, and maximum time without service. Independently developed software

(potentially by different vendors) can be integrated and share the hardware resources

with maintained fault containment as well as functional and timing isolation.

System virtualization has the following benefits for embedded systems:

Consolidation. System virtualization replaces multiple processing units by a sin-

gle (typically more powerful) processing unit. The reduction of the number

1.1 Hypervisor-based Integration 3

of processing units can result in a reduction of the costs for hardware and

maintenance as well as of the required space, weight, and power consumption.

Migration to multicore. Multicore technology is a major enabler for virtualiza-

tion, since virtualization supports the migration of single-core software and

use of the full potential of multicore architectures by effective resource man-

agement. Virtualization’s architectural abstraction enables to present a single-

core environment to legacy single-core software and the concurrent hosting of

essentially unmodified single-core software stacks.

Operating system heterogeneity. Many embedded systems are characterized by

differing operating system requirements (system services, device drivers, non-

functional requirements), which are difficult to satisfy by a single operating

system [Oikawa et al., 2006,Augier, 2007]. The hypervisor-based integration

includes operating systems and continues to provide the adequate operating

system, for example, an efficient and highly predictive real-time operating sys-

tem for safety-critical control tasks and a feature-rich general purpose operating

system for a human-machine interface, web protocols, and middleware.

Security. There is a trend towards open embedded systems, which allow the user

to add software on his own (field-loadable software), in contrast to software

loaded by the manufacturer and remaining unchanged for the entire lifetime

of the system. Not knowing which potentially faulty or malicious applications

the user will load, a hypervisor can execute it in an isolated virtual machine

(sandbox), control the communication, and prevent that it endangers the other

software of the system [Brakensiek et al., 2008].

Portability and reusability. One of the key challenges of embedded systems de-

velopment is to implement increasingly complex functionality in a short time

to market. An increased reusability of legacy software addresses this issue.

Virtualization’s integration by hosting a legacy operating system instead of

porting application tasks and its possibility to realize cross-platform portabil-

ity by applying emulation enables to combine legacy software and new software

on state-of-the-art hardware. The hypervisor provides on different hardware an

interface that is consistent with the original configuration, so that the legacy

software does not have to be modified. Time to market can be reduced by

building a system of (validated) systems.

Incremental certification. Virtualization can provide isolated execution environ-

4 Introduction

ments that prevent unwanted interactions between software of differing critical-

ity level. This enables the certification of safety-critical software (potentially

by a supplier) independently of the coexisting software. It obviates an expen-

sive re-certification when the non-critical software is modified, which tends to

happen much more frequently. If hardware and hypervisor are certified, in-

cluding the encapsulation mechanisms, and the supplier provides certification

artifacts in a format that can be merged by the system integrator into the over-

all safety case, a re-use of certified software without re-certification becomes

possible. [Bate and Kelly, 2003,Wilson and Preyssler, 2008]

Of course, system virtualization has drawbacks as well. The integration results in

less physical redundancy and a hardware failure will impact all functions [Williston,

2009]. A distributed architecture can be desired in order to place the computation

close to actuators and sensors. The hypervisor as an additional software layer in-

creases the system’s complexity, especially since it has to be executed in the highest

privileged mode of the processor. The indirection layer involves an execution time

overhead and increases the interrupt handling latencies compared to the native exe-

cution. If Input/Output (I/O) devices are shared, I/O processing is in many cases a

bottleneck.

Hypervisor-based virtualization is state of the art for servers in data centers [Nanda

and Chiueh, 2005,Smith and Nair, 2005a]. The application of this technique to em-

bedded systems has to consider the domain-specific requirements real-time behavior

(determinism), tight resource limitations (memory, computation time, energy), and

functional safety.

1.2 Application Example

The number of functions of automotive systems is constantly increasing, e.g., by

adding systems for advanced driver assistance, sophisticated infotainment, or ve-

hicular communication [Obermaisser et al., 2009]. This leads to the consideration

of system architectures that integrate multiple functions to more centralized sys-

tems [Reinhardt and Kucera, 2013], as introduced in the previous section.

One automotive use case for applying virtualization is the head unit [Pelzl et al.,

2008, Thiebaut and Gerlach, 2012, Hergenhan and Heiser, 2008]. It has typically

a powerful processor and its functionality increased significantly in the last years.

Figure 1.1 lists candidate functions that could be integrated on a head unit multicore

ECU, subdivided into four categories.

1.2 Application Example 5

video module
audio system

mobile cellular

trailer module

park distance control

instrument cluster
center console adaptive cruise control

tv tuner
speech input system

video gaming

vehicular communi-
cation control

fleet management
emergency call system

electronic tolling

telematics modem

sunroof control

climate control

seat control

seat heating control

navigation
media center

bluetooth access point vehicle diagnostics

hazard warning

internet connectivity
wifi router

pedestrian detection
lane departure warning

front collision alert

traffic sign detection

collision avoidance

adaptive lighting

automated parking

driver alertness
monitoring

event data recorder
hill hold control

blindspot detection

Driver AssistanceInfotainment Connectivity

Comfort

head-up display

rear view cameradriver profile
management

Figure 1.1: Candidate functions for hypervisor-based head-unit integration

6 Introduction

First, infotainment functions could be integrated. This is the classic functional

category of the head unit and includes navigation, media players, various displays

(center console, instrument cluster, head-up display), and potentially sophisticated

rear seat entertainment such as video gaming. The second category are vehicular

communication control systems, i.e., systems for the communication from vehicle to

vehicle, roadside stations, cellular, satellite, or internet [Hasan et al., 2013].

The third category are advanced driver assistance systems, especially those with

camera-based object recognition. These systems process images and detect objects.

Examples are systems for adaptive cruise control, collision alert and avoidance, pedes-

trian detection, lane departure warning, driver alertness monitoring, or traffic sign

detection. Many of these systems operate on the same sensor data and they can

share the results of the image preprocessing [Bucher et al., 2003]. Finally, comfort

functions such as driver profile management (stores car settings) or systems for the

control of climate, seat position, or sunroof might be integrated.

For multiple reasons, these categories are well suited for an integrated architec-

ture. The number of features in these categories increased significantly in the last

years. Moreover, many functions are dependent and/or cooperate, within and across

categories. Data from the lane departure warning system is for example input for

the driver alertness monitoring. The displays are controlled by multiple functions,

resulting in synchronization challenges. There is already a connection from cameras

to the head unit in order to display the images, e.g., for parking distance control,

which is why camera-based driver assistance systems could be executed on the head

unit ECU. There is a trend towards open infotainment systems, which enable the

customer to load software, inspired by the world of mobile apps. Virtualization’s

encapsulation and fault containment protect the other functions from faulty or ma-

licious software.

In addition, the head unit requires support of multiple operating systems, an im-

portant feature of hypervisor-based virtualization. Different functions are best served

by different operating systems. A general purpose operating system provides lots of

support for the development of software with human-machine interface (e.g., graph-

ical user interfaces and touch screens) and a well-known look and feel. A system for

in-car communication or connectivity to the outside requires a deterministic real-time

operating system that guarantees response times. Safety-critical functions require a

certified real-time operating system, typically based on AUTOSAR (AUTomotive

Open System ARchitecture [Fürst et al., 2009,Bunzel, 2011]). AUTOSAR and vir-

tualization partially share the common motivation to increase software reusability

1.3 Adaptive Scheduling of Virtualized Real-Time Systems 7

and reduce hardware dependency, but apply integration at different levels. The host-

ing of multiple operating systems is not in the scope of AUTOSAR. An AUTOSAR

software stack might be executed as a guest system within a virtual machine.

The integration of these candidate functions leads to a coexistence of systems

with different criticality levels. Driver assistance systems are safety-critical with

hard real-time requirements, especially if they influence the driving speed, as it is

the case for adaptive cruise control or collision avoidance systems. Connectivity or

infotainment systems are non-safety-critical and typically quality-of-service driven.

An additional observation is that many of the candidate systems are characterized

by varying resource requirements, especially the driver assistance systems whose

main source of input data is image processing. The required execution time of these

systems depends on illumination and weather conditions as well as on the specific

driving situation, since it determines the number of objects to detect.

The resource requirements vary as well based on the mode of the systems. The

requirement of an infotainment system depends on the requested activity. Video

gaming is for example considerably more resource-intensive than playing music. And

there is an increased potential to temporarily deactivate functionality that is not in

constant use while the car is operational [Liebetrau et al., 2012]. This is obvious for

infotainment functions, which can be turned off when not used by any passenger.

Subject to the driving situation, adaptive cruise control, lane departure warning,

park distance control, or hill hold control can be enabled or disabled. The rear view

camera system must only be enabled when the car is reversing. The speech input

system becomes active only when enabled by a manual control input such as pressing

a button on the steering wheel.

1.3 Adaptive Scheduling of Virtualized Real-Time Sys-

tems

The hypervisor is responsible for the management of the hardware resources. This

includes the management of the resource CPU, which is known as scheduling. In the

context of this thesis, the considered processors are homogeneous multicore proces-

sors, with uniformly shared main memory. If the number of virtual machines exceeds

the number of processor cores, hypervisor-based virtualization implies a two-level hi-

erarchical scheduling: the hypervisor schedules the virtual machines and the hosted

operating systems schedule the application tasks.

Hierarchical scheduling is a direct consequence of the integration level of system

8 Introduction

virtualization (software stacks including operating system). The reuse of software

and certification results requires isolation at virtual machine level and separation

of scheduling concerns. The operating systems should schedule the applications

according to their specific scheduling policy and without insight into the scheduling

of other virtual machines.

In the following, we derive requirements for a scheduling technique for integrated

architectures as introduced in the last two sections. These architectures can be

described by the following characteristics:

C1 coexistence of independently developed guest systems of operating system and

application tasks,

C2 coexistence of guests of different criticality levels, especially safety-critical (e.g.,

driver assistance systems) and non-critical (e.g., infotainment systems),

C3 coexistence of guests of different resource requirement characteristics, especially

hard real-time and QoS-driven,

C4 existence of guests with real-time requirements, which benefit from additional

resource allocations (e.g., computer vision systems),

C5 guests with multiple operational modes, incl. deactivation,

C6 guests with varying execution time demand.

C1 defines the separation of scheduling concerns. The desired composability of

software from previous projects and different vendors requires that it is possible

to analyze the schedulability of a guest system independent of the other systems.

C2 asks for criticality-aware scheduling. The remaining characteristics C3-C6 ask

for a scheduling technique that addresses different and at runtime varying resource

demands (incl. varying execution times and operation modes).

Two major requirements for the virtual machine scheduling can be derived from

the characteristics of the hosted guest systems: temporal isolation and adaptability.

Temporal isolation is crucial for the ability to integrate real-time systems, especially

safety-critical ones. The scheduling has to ensure that no guest system compromises

the real-time behavior and safety characteristics of the alongside hosted guest sys-

tems. Each guest system must receive a guaranteed share of the processor time. The

bandwidth must be sufficiently large and be provided in an appropriate frequency,

so that the guest system meets its real-time constraints.

1.4 Outline and Contributions 9

Temporal isolation is a must, but adaptability is desired. The scheduling should

be able to adapt to varying computation time requirements of the guest systems.

Computation time variations are caused by mode changes (incl. enabling/disabling)

and by guest systems temporarily not needing their reserved worst-case demand.

Mode changes often impact the resource requirements significantly and for some

time, especially when functions are disabled, and the scheduling should react by

redistributing processor shares according to the new situation.

Due to dynamic environments, it is a complex task to predict characteristics of

the computational load at design time [Buttazzo, 2006]. In addition, the reserved

computation time is often not needed. This is especially problematic for safety-

critical systems, since it is necessary to allocate computation time according to the

worst-case assumptions. The worst-case execution time is in general very pessimistic,

in particular for multicore processors, since the on-chip shared resource contention

(e.g., memory bus contention) has to be considered [Kotaba et al., 2013]. However,

worst-case scenarios occur rarely and a fraction of the reservation is wasted in all

other cases, leading to a low average processor utilization.

Static resource allocation is in general very inefficient for systems that are char-

acterized by varying computation time demand and inherently leads to resource

fragmentation. Reserved but unused computation time cannot be reclaimed to im-

prove the performance of other guests, but is wasted as idle time. A reaction to

mode changes is not possible and by consequence the hardware has to be dimen-

sioned for the situation that all subsystems are enabled and operating in the mode

with the highest resource requirements. An adaptive scheduling is of great potential

for hypervisor-based systems, since it is able to redistribute on mode change and

since it can make the unneeded fraction of the worst-case reservations available to

other guest systems.

The challenge of this thesis is the reconciliation of these two conflicting require-

ments: temporal isolation is a prerequisite for the integration of real-time systems

and the certification of safety-critical systems, but adaptability is desired in order to

utilize the shared processor cores efficiently and avoid the waste of resources. How

much adaptability are we able to afford without losing temporal isolation?

1.4 Outline and Contributions

System virtualization provides opportunities for system design, but as well challenges

with regard to software engineering (e.g., modeling of functional and non-functional

properties on system and subsystem level), dependability, safety, and deterministic

10 Introduction

timing behavior (predictable composition). New models, methods, and tools for

design, development, and verification have to be developed for the integration of

multiple software systems. In this context, this thesis focuses on two aspects, which

can be entitled as “the adaptive management of the resource computation time: the

scheduling of virtual machines and runtime virtual machine migration.”

Target architectures are embedded systems with real-time constraints, limited

resources, and dynamic behavior, which is hardly predictable due to complex de-

pendencies with the environment and shared on-chip resource contention of a mul-

ticore processor. The required worst-case design approach results for such systems

in many cases in a very low resource utilization. Instead of statically allocating the

resource computation time, the proposed adaptive scheduling technique reacts to

mode changes and updates the allocations. Slack, which is generated if a guest sys-

tem does not need its worst-case reservation, is reclaimed and made available to other

guests. Different types of resource requirement characteristics can be modeled and

the scheduling meets the specific constraints. A guaranteed minimum share of the

computation time guarantees temporal isolation, but adaptive measures enable the

efficient use of the processor, without leading to a violation of real-time constraints.

Adaptive measures are taken as well to increase the reliability of safety-critical

guest systems. In case of a worst-case execution time overrun of a critical guest

system, it is attempted to protect its execution by assigning additional computation

time, which is stolen from non-critical guests. In case of certain hardware failures,

guest systems can be transferred to a different electronic control unit, where their

operation is continued (migration). Next to the algorithms and policies, the co-

design of hypervisor and operating system and the implementation of a prototype on

actual embedded hardware is a focus of this thesis and demonstrates the feasibility

of the developed concepts.

This thesis makes the following major scientific contributions:

An algorithm for the partitioning of virtual machines to processor cores.

(Chapter 5) An algorithmic solution is in contrast to the manual mapping of

virtual machines to cores, which is state of the art. The algorithm includes

the correct dimensioning of periodic resources, a model for the computational

power supplied by a shared processor. The algorithm systematically generates

candidate solutions and tests their schedulability by comparing the computa-

tion time demand of the guest systems and the computation time supply of the

shared processor. It minimizes the overall required computation bandwidth by

exploiting the freedom of periodic resource design to create favorable period

1.4 Outline and Contributions 11

relationships. It considers criticality levels and produces mappings that pro-

vide more possibilities to protect safety-critical guest systems and to benefit

from an adaptive scheduling (as for example done by the second contribution).

An adaptive virtual machine scheduling architecture. (Chapter 6) It ad-

vances the state of the art by combining temporal isolation and real-time guar-

antees with adaptive scheduling. The technique overcomes the limitations of

static resource allocation. It performs a redistribution of computing power

in case of mode changes and varying execution times and attempts to pro-

tect critical guest systems in case of a worst-case execution time overrun. A

novel elastic bandwidth management algorithm is non-iterative, in contrast to

existing ones, and therefore characterized by a smaller and more predictable

execution time overhead.

A technique for real-time virtual machine migration. (Chapter 7) The migra-

tion approach is applied in order to continue the functioning of guest systems

despite certain hardware failures. The technique advances the state of the

art in that it is aware of real-time requirements and addresses the real-time

scheduling issues service outage (non-execution) due to the network transfer

to the target ECU and integration into the scheduling on the target. A migra-

tion protocol and a co-design of hypervisor and paravirtualized guest operating

system are presented.

This thesis is structured as follows. Chapter 2 introduces the background with

fundamental results of prior work and characteristics of the field of application. It

discusses embedded systems and real-time computing, functional safety and critical-

ity levels, multicore processors and the related predictability issues, hypervisor-based

virtualization in general and virtual machine real-time scheduling in specific.

Chapter 3 lists functional and non-functional requirements for a hypervisor for em-

bedded real-time systems and presents the multicore hypervisor Proteus that meets

the requirements of this application domain. This hypervisor is used as a platform

for the prototype-based evaluation of the scheduling technique of Chapter 6 and

the migration approach of Chapter 7. Design and evaluation of the hypervisor were

published in [Gilles et al., 2013].

Chapter 4 defines the used models for workload and processor platform. A demand

bound function denotes the maximum cumulative computation time demand of a

virtual machine and is used as a temporal interface. The periodic resource model

provides a formalization of the minimum cumulative computation time supply of a

12 Introduction

shared homogeneous multicore processor. Schedulability analysis is performed based

on the comparison of demand bound function and supply bound function.

The two subsequent chapters study an adaptive partitioned multicore scheduling

technique for the hypervisor-based integration of multiple real-time systems. Chap-

ter 5 defines the problem of mapping virtual machines that host real-time systems

onto a multicore processor and presents a partitioning algorithm. Chapter 6 intro-

duces a dynamic server-based hierarchical scheduling policy including a bandwidth

distribution algorithm, which is applied after the partitioning. The combination of

these two contributions guarantees that all guest systems meet their real-time re-

quirements, but enables as well adaptive measures. The results of these chapters

were published in [Groesbrink and Almeida, 2014] and [Groesbrink et al., 2014a].

Chapter 7 studies virtual machine migration from one ECU to another one at

runtime as a hardware fault reaction measure. The approach is aware of real-time

requirements, predicts the service outage due to the network transfer and integrates

the migrating VM into the scheduling on the target ECU. This work was published

in [Groesbrink, 2014].

Chapter 8 concludes the thesis and gives some pointers for future research.

Chapter 2

Fundamentals: Hypervisor-based

Multicore Virtualization for

Embedded Real-Time Systems

Contents
2.1 Embedded Real-Time Systems 14

2.1.1 Embedded Systems . 14
2.1.2 Real-Time Computing . 15
2.1.3 Mixed-Criticality Systems 21

2.2 Hypervisor-based Virtualization 23
2.2.1 System Virtualization . 23
2.2.2 Processor Virtualization . 25
2.2.3 I/O Virtualization . 28
2.2.4 Virtualization for Mixed-Criticality Systems 29

2.3 Multicore Processors . 32
2.3.1 Multicore Scheduling . 34
2.3.2 Multicore and Predictability 35

2.4 Virtual Machine Scheduling 37
2.4.1 Hierarchical Scheduling . 37
2.4.2 Virtual Processor and Virtual Time 38
2.4.3 Classification and Common Solutions 40

2.5 Summary . 43

14
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

This chapter introduces the background with the major concepts of prior work and

characteristics of the field of application. It includes an introduction to embedded

systems and real-time computing, criticality levels, multicore processors, as well as

hypervisor-based virtualization in general and virtual machine scheduling in specific.

2.1 Embedded Real-Time Systems

2.1.1 Embedded Systems

Embedded systems can be characterized as electronic programmable subsystems that

are an integral part of a technical system [Bouyssonouse and Sifakis, 2005]. They are

reactive, i.e., respond to events and state changes of the environment in which they

operate.1 Sensors and actuators are the embedded system’s interfaces. The sensors

periodically observe attributes of objects in the environment that are controlled by

the system or influence the system. Based on this sensor data and the previous state,

the control system computes control points for the actuators in order to influence

the environment [Kopetz, 1997]. There are often response time constraints for the

computation, as introduced in the following section. In addition, embedded systems

can have a human-machine interface, realized for example with a touchscreen.

Definition 1. Embedded System. An embedded system is a computer control sys-

tem (combination of hardware and software) that operates with a dedicated function

as an integral part of a larger technical system (often including hardware and me-

chanical parts).

Embedded systems are often characterized by strict resource constraints, espe-

cially regarding memory and processing time, but as well regarding size and weight

(especially for hand-held devices), and power consumption (battery operation or

limited cooling possibility). They are often extremely cost-sensitive since they are

mass-produced.

Many embedded systems are safety-critical. Human lives or the intactness of

facilities or equipment directly depend on the correct operation [Kopetz, 1997]. For

this reason, many safety-critical systems need an approval by a certification authority

such as governmental agencies. This aspect is introduced in Section 2.1.3.

1Reactive systems are seen in contrast to transformational systems, which compute the corre-

sponding output to a certain input and then terminate [Olderog and Dierks, 2008].

2.1 Embedded Real-Time Systems 15

Hardware

Operating System

Application Tasks

Figure 2.1: Computer system with operating system

2.1.2 Real-Time Computing

Task Scheduling

Most complex computing systems use an Operating System (OS), a software layer

between hardware and the functionality-implementing application tasks (see Figure

2.1). The OS manages the computer resources (processors, main memory, disks, I/O

devices) and provides services as well as a hardware abstraction that is easier to

program [Tanenbaum and Woodhull, 2006].

Modern operating systems are so-called multitasking systems, designed to handle

multiple application tasks (also known as processes) concurrently. The tasks share

the hardware and operating system resources in order to increase the resource uti-

lization. Moreover, the division of the functionality into multiple tasks eases software

development. Tasks may depend on each other and cooperatively implement func-

tionality, or they may be unrelated except of being executed on the same hardware.

Definition 2. Operating System. An operating system is a software layer that

manages the hardware resources, controls the execution of tasks, and provides services

and hardware abstraction to tasks and programmers.

The Central Processing Unit (CPU) has to be managed by time-multiplexing:

only a single task can use it at any time. The CPU resource management is known

as scheduling. According to a specific scheduling policy, the OS assigns the processor

at each point in time to exactly one of the tasks. The idle task is executed when

no task is executable, a special task without functionality. The scheduler is the

operating system’s component that implements the scheduling policy.

Definition 3. Task. A task is a schedulable unit of computation that is executed by

the CPU in a sequential manner.

The suspension of the running task in order to execute another task is called

context switch. The OS saves the necessary information (basically the content of

the registers) to allow a future continuation of the task’s execution at the exact

16
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

same point [Horner, 1989]. A context switch might for example be performed when

the running task has to wait for the end of an I/O operation or after a maximum

allowable time of uninterrupted execution. A timer is used to determine when the

time slot of the currently running task expires [Tanenbaum and Woodhull, 2006].

Schedulers that are able to suspend tasks during their execution in order to make a

scheduling decision are called preemptive. A non-preemptive scheduler always lets a

task run to completion. Preemptive schedulers prevent a task from blocking all other

tasks and therefore avert the failure of the whole system if a task is executing an

infinite loop [Nutt, 2000]. The interruption of the running task is called preemption.

Different scheduling algorithms pursue different goals. Possible criteria are fair-

ness (even shares of the computation time for the tasks), processor utilization (avoid

idle time), or response time (respond to requests quickly). An interactive system

should for example minimize the response time to prevent user frustration [Tanen-

baum and Woodhull, 2006].

Definition 4. Task Schedule. Given a set of tasks {τ1, ..., τn}, a schedule is an

integer step function s which at any time t assigns a task τk (1 ≤ k ≤ n) to the

processor: s(t) = k (if the processor is idle at time t: s(t) = 0) [Buttazzo, 2000]. A

schedule is generated by the scheduler of an operating system.

Introduction to Real-Time Computing

Real-time systems are characterized by precise and strict timing constraints for their

execution: they are required to guarantee response times. Real indicates that these

timing constraints are derived from the embedded system’s environment, as a system

interacts in a well-defined relation to the physical time [Olderog and Dierks, 2008].

A real-time system fails not only if its results are wrong, but also if it cannot provide

these results prior to the given deadlines [Kopetz, 1997].

It is important to understand that real-time behavior does not demand that the

results have to be produced very fast. Real-time computing should not be mistaken

for high performance computing. Real-time expresses the quality of predictability,

achieved through deterministic behavior of the embedded system, i.e., the time re-

quired to complete any function must be limited and predictable. As long as the

results are provided prior to the deadline, the performance is sufficient. Real-time

systems guarantee the adherence to the system’s time limits, not extra fast compu-

tation [Stankovic, 1988].

Definition 5. Real-Time System. A real-time system is a computer system with

timing constraints, which ”relate the execution of a task to real time, which is physical

2.1 Embedded Real-Time Systems 17

time in the environment of the computer executing the task” [Lee and Seshia, 2011].

These constraints are typically specified in terms of response time deadlines, by which

the execution of a task must be completed. The correctness of the system depends not

only on the logical results of the computation, but also on the time at which these

results are available.

An OS that is designed to guarantee response times of the executed tasks is termed

Real-Time Operating System (RTOS). Required are a deterministic behavior of all

OS components, keeping of time in well-defined relation to the physical time, and a

task scheduler that controls the task execution according to a policy that guarantees

compliance of all tasks with their timing constraints.

Definition 6. Real-Time Operating System. A real-time operating system is an

operating system that is able to control the execution of tasks with timing constraints

and to guarantee that these constraints are met.

Real-time systems can be categorized into hard and soft real-time systems. For

a hard real-time system, a miss of a deadline (i.e., result not available prior to

it) is unacceptable and leads to the failure of the entire system, with catastrophic

consequences in a safety-critical system. An example is the control of a car’s airbag:

if the airbag control unit does not trigger the ignition not later than 30 milliseconds

after the first moment of vehicle contact, the airbag is not fully inflated when the

passenger’s head hits the steering-wheel.

In contrast, the value of a result of a soft real-time system decreases after the

deadline, but the system does not automatically fail. It could be demanded that the

proportion of tardy operations does not exceed a specific limit. The quality of the

system’s result would decrease, but without rendering it useless [Freedman et al.,

1996]. An example is a video messenger system. If it fails to handle the transfer

and processing of some frames on time, the display freezes temporary, lowering the

service quality.

Real-Time Task Model

The scheduling decisions of an RTOS have to be based on information about the

timing constraints of the real-time tasks. These constraints are specified with the

following parameters (Figure 2.2) [Buttazzo, 2000]:

• Arrival time a: time at which a task becomes ready for execution (synonym:

release time).

18
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

tdfa

C

R
D

Figure 2.2: Parameters of a real-time task (upward arrow indicates task arrival,

downward arrow indicates deadline)

• Computation time C: duration needed by the processor to execute the task.

The task can run for a single time span of length C or for multiple time spans

which add up to a total of C. If the computation time of a task varies, the

maximum possible computation time has to be considered, the so-called Worst-

Case Execution Time (WCET).

• Finishing time f: time at which the task finishes its execution.

• Absolute deadline d: time by which the execution of the task must be finished.

The difference between absolute deadline d and arrival time a is called relative

deadline D.

• Response time R: time span between finishing time f and arrival time a. A

task completes in time if its response time is less than or equal to its relative

deadline.

• Lateness L: difference between finishing time f and absolute deadline d. It

represents the delay of a task’s completion, with a negative lateness in case of

a completion before the deadline.

One distinguishes between periodic and aperiodic real-time tasks. Both kinds are

characterized by an infinite sequence of instances, but consecutive instances of a

periodic task are activated regularly with a time lag of exactly one period T . The

relative deadline D of a periodic task is often equal to its period [Buttazzo, 2000].

Periodic tasks are used to read or produce data at a given rate, for example the

periodic readout and processing of sensor data. Aperiodic tasks are not activated

regularly at a constant time. External events cause the activation of an aperiodic

task instance to handle it. An Interrupt Service Routine (ISR) is an example for an

aperiodic task [Briand and Roy, 1999,Buttazzo, 2000].

Definition 7. Periodic Real-Time Task. A periodic real-time task τ is a task

with an infinite sequence of identical computation activities (instances), which are

activated at a constant rate based on the period T . The first instance is released at the

2.1 Embedded Real-Time Systems 19

phase φ. The activation time of the kth instance is given by φ+ (k−1) ·T [Buttazzo,

2000]. In the context of this thesis, the real-time constraints are specified by the

relative deadline D, which is equal to the tasks period T (implicit deadlines): the

execution of the kth instance must be finished at φ+ k · T .

Real-time systems typically execute a set of periodic real-time tasks.

Definition 8. Task Set. A task set is a set of periodic real-time tasks that is

executed by a real-time operating system. The utilization factor U is the fraction of

processor time spent in the execution of it. It is a measure of the computational load

on the processor and for a task set of n tasks given by [Buttazzo, 2000]:

U =
n∑
i=1

Ci
Ti

Real-Time Scheduling

The scheduler of a real-time operating system has to guarantee that all real-time

tasks are executed in compliance with their timing constraints. A schedule is feasible

if all tasks are executed according to their constraints. A task set is schedulable if

there is an algorithm that can produce a feasible schedule [Buttazzo, 2000]. The most

important scheduling algorithms for real-time systems are presented in this section.

Real-time scheduling algorithms can be classified as follows [Buttazzo, 2000]:

Offline and online scheduling differ in regard to the time at which the scheduling

decisions are taken. Offline algorithms create the entire schedule before runtime.

The result is stored and enforced at runtime [Xu and Parnas, 1993]. This is of

course only applicable to static systems with complete information at design time

about the points in time at which requests for task computation occur. Storing

the entire schedule is possible since the schedule of a periodic task set repeats itself

every hyperperiod, equal to the least common multiple of all task periods. Online

algorithms take the scheduling decisions at runtime and can consider dynamic task

set changes such as the entering of a new task [Stankovic et al., 1998].

Fixed and dynamic priority scheduling differ in regard to whether the scheduling

decisions are based on static or dynamic task parameters. Fixed priority scheduling

is based on static parameters, which never change during execution (equal for all task

instances). Dynamic priority scheduling algorithms determine the task priorities at

each scheduling event based on dynamic parameters [Stankovic et al., 1995].

In the following, three common algorithms are presented: Timeline Scheduling as

an offline algorithm, Rate Monotonic Scheduling as a fixed-priority online algorithm,

and Earliest Deadline First as a dynamic-priority online algorithm.

20
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

Timeline Scheduling (TS). Timeline Scheduling (also known as Cyclic (Executive)

Scheduling [Baker and Shaw, 1989]) is an offline clock-driven scheduling algorithm,

which divides the time axis into slices of equal length, the so-called minor cycle.

One or more tasks are assigned to each minor cycle. This assignment must follow

the frequencies of the tasks. For example, if a task’s frequency is twice as high as

the frequency of another task, it is assigned to twice as many minor cycles. The

tasks within a minor cycle are scheduled successively in a non-preemptive manner

(resulting in a low implementation complexity). The optimal length for the minor

cycle is the greatest common divisor of the task periods. The schedule repeats itself

after each hyperperiod, called major cycle. TS guarantees a feasible schedule if the

sum of the worst-case execution times of all tasks within each time slice is less than

or equal to the minor cycle [Buttazzo, 2000].

Rate Monotonic Scheduling (RM). RM is a preemptive online algorithm for peri-

odic tasks and schedules according to fixed priorities, which are assigned based on

the rate of their requests: the shorter the period (equal for all task instances and

known at design time), the higher the task’s priority [Liu and Layland, 1973a]. RM

preempts the running task at any time when a task with a higher priority becomes

ready to run. The produced schedules are optimal for the class of fixed-priority

scheduling algorithms for periodic tasks with hard deadlines: if RM fails to produce

a feasible schedule for a specific task set, no other algorithm of this class can. RM

guarantees the schedulability of a set of n periodic tasks if the utilization factor U is

less than n(21/n − 1), which converges for large n to ln 2 ≈ 69% [Liu and Layland,

1973a]. This bound is sufficient, but not necessary, and the schedulable utilization

is for many task sets higher [Lehoczky et al., 1987b].

Earliest Deadline First Scheduling (EDF). EDF is a preemptive online algorithm

and schedules based on dynamic priorities: the earlier the absolute deadline of the

current task instance, the higher its priority [Liu and Layland, 1973a]. EDF is

optimal for the class of dynamic priority scheduling algorithms: it minimizes the

maximum lateness [Dertouzos, 1974], implicating that it guarantees to produce a

feasible schedule if one exists. EDF is applicable to periodic and aperiodic tasks

since it does not depend on periodicity [Horn, 1974].

Many real-time systems are characterized by a hybrid task set of periodic hard

real-time and aperiodic soft real-time tasks. The periodic tasks might be scheduled

by RM or EDF. The aperiodic tasks are often scheduled in background : whenever no

periodic task is running, the idle processor is used to execute aperiodic tasks. Back-

ground scheduling can be realized without modification of the periodic task scheduler

2.1 Embedded Real-Time Systems 21

by two ready queues: a high-priority queue for periodic tasks and a low-priority queue

for aperiodic tasks. The head of the low-priority queue is only dispatched when the

high-priority queue is empty [Buttazzo, 2000, Stallings, 2005]. However, a high uti-

lization of the periodic task set leaves in many cases infrequent background service

opportunities, resulting in a large average response time for aperiodic requests.

Servers are a technique to improve the average response time of aperiodic tasks.

A server is a periodic task with the purpose to service aperiodic requests. It is

scheduled like any other periodic task and uses its execution time to run aperiodic

tasks. In contrast to background scheduling, aperiodic tasks do not have automat-

ically the lowest priority, but are executed with the priority of the server. The

service of the server is limited by its budget, which is reduced whenever the server

runs. If none is left, the server cannot execute aperiodic tasks until its capacity is

replenished [Lehoczky et al., 1987a]. There are different types of servers, varying

in when and to which amount the budget is replenished. For a detailed overview

see [Buttazzo, 2000].

2.1.3 Mixed-Criticality Systems

The criticality of a function refers to the severity of failure and the potential negative

impact on the intended functionality and the system’s environment. In general,

the implementing component (e.g., task or subsystem) inherits the criticality of the

function [Papadopoulos et al., 2010]. In many application domains, one distinguishes

between multiple criticality levels, which are characterized by a differing importance

for the safety of the system itself and its environment.

Intuitive criticality levels are safety-critical, mission-critical, and non-critical, in-

troduced in the following with the example of an avionics system. The failure of a

safety-critical function such as the engine control of the flying aircraft can impact

human safety. Other functions such as navigation or communication to the ground

control are not critical for the welfare of the system and its environment, but for the

mission success (purpose of the system). Finally, there are functions that are not

critical for safety or mission success, such as the in-flight entertainment system.

Criticality is directly related to functional safety. Functional safety is achieved

if a system is free from unacceptable risk of injury to the health of people or dam-

age to the environment [Storey, 1996], as it is of high importance for example for

transportation systems (aircraft flight control, train control, automotive systems),

medical devices, or nuclear systems.

In industries that are subject to certification of functional safety, standards such

22
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

as ISO 26262 for automotive systems [ISO, 2011] or DO-178B for airborne sys-

tems [RTCA/DO, 2012] specify criticality levels based on risk classification schemes

and needed risk reduction factors. The criticality level indicates safety requirements

(usually defined in terms of quantitative targets [Papadopoulos et al., 2010]) and for

each function the requested level has to be identified in order to design and imple-

ment the system to comply with this level. The lower the required failure probability,

the higher the criticality level, and usually the higher the development costs.

ISO 26262 specifies five Automotive Safety Integrity Levels (ASILs) based on the

exposure (frequency of occurrence), controllability (ability to avoid a harm through

the timely reactions of the persons involved), and severity (estimate of the extent of

harm to individuals) of any critical hazard. The lowest ASIL is A, while the highest

is D, plus ASIL QM for non-safety-critical functions (no safety requirements). For

example, a component whose failure will (1) result in a common event that (2) will

lead with a high probability to a loss of control of the vehicle and (3) may cause

great harm (serious injury or death) will require certification according to ASIL D

(e.g., electric steering component).

Functional safety standards specify for each criticality the necessary level of assur-

ance against failure. A certified system can then be claimed to be safe to a particular

criticality level. A criticality-level-specific rigor in development is required and dif-

ferent processes, rules, and tools are recommended in order to achieve the demanded

safety margins. Important for real-time systems is the determination of the WCETs,

which becomes dependent on the task’s criticality level. A high criticality level might

require the determination of worst-case execution paths by a static code analysis and

a subsequent counting of processor cycles under extreme pessimistic assumptions re-

garding cache state. For a certification according to a lower criticality level it might

be sufficient to run experiments and measure the runtimes. By consequence, the

higher the criticality level, the higher the required confidence, the larger the required

safety margin, the more pessimistic the obtained WCET [Baruah et al., 2010b].

As motivated in the previous chapter, an increasingly important trend for embed-

ded real-time systems is the co-existence of multiple criticality levels:

Definition 9. Mixed-Criticality System. A mixed-criticality system is a com-

puter system that executes software components of different distinct criticality levels

(safety-critical and non-critical or of different certification levels) in an integrated

manner on a common hardware platform.

In the context of this thesis, we consider computer systems with guest systems

(operating system and application tasks) of differing criticality level executed by a

2.2 Hypervisor-based Virtualization 23

Hypervisor

Hardware

Operating System

Application Tasks

Operating System

Application Tasks

Figure 2.3: Platform replication by system virtualization

hypervisor.

2.2 Hypervisor-based Virtualization

2.2.1 System Virtualization

Virtualization is a classic computer science concept and refers to the abstraction of

the physical characteristics of a given resource in order to allow for a transparent

and highly flexible resource sharing among multiple subsystems. The basic concepts

are about 50 years old. For example, a multitasking operating system virtualizes the

computer resources (first of all the CPU, often as well the memory) and creates the

illusion that multiple tasks are run at the exact same time. The task programmer

can assume that the task gets exclusive hardware access, however, multiple tasks

share the resources.

Virtualization can be applied on different levels. System virtualization refers to

dividing the resources of the entire computer hardware into multiple execution envi-

ronments (platform replication) [Smith and Nair, 2005b]. It lets a real system appear

as a different virtual system or even multiple virtual systems. The interface of the

virtualized system and its resources are mapped to those of the real system. The

virtualization layer, the so-called hypervisor or virtual machine monitor (VMM), is

added in between hardware and OS, and enables the sharing of the underlying phys-

ical hardware among multiple software stacks of OS and application tasks (Figure

2.3). Each OS runs as a guest system within a Virtual Machine (VM), an isolated

duplicate of the real machine [Popek and Goldberg, 1974a]. The real machine is the

set of hardware resources, including processor, memory, and I/O devices.

The hypervisor provides the abstraction of the real machine, manages the map-

ping of hardware resources to the VMs, and controls the execution of the VMs. A

VM is the interface provided by the hypervisor to the guest systems. It can differ

from the interface of the real machine, regarding Instruction Set Architecture (ISA)

24
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

and available resources. The ISA (composed of the native data types, instructions,

registers, addressing modes, memory architecture, interrupt and exception handling,

external I/O, and the set of assembler opcodes) provides the interface for the system

software. The virtualization layer has to map the ISA that is provided to the VM

to the ISA of the physical machine. An instruction that cannot be executed directly

on the physical machine has to be interpreted [Heiser, 2007].

A VM does not have to offer the exact same resources as the real machine, neither

in quantity nor in type. Some physical resources such as memory or disk storage can

be partitioned, so that each virtual machine uses a fraction. Other resources have

to be shared by time-division multiplexing, e.g., the CPU (if the number of VMs

exceeds the number of available processor cores). A fundamental requirement is that

the hypervisor is in control of the system resources. When a guest OS performs an

operation that directly involves shared hardware resources, the hypervisor intercepts

the operation and handles it. When, for example, a guest OS tries to set a processor

control flag, the hypervisor intercepts, stores the current value of the flag, sets the

control flag and resumes the execution of the VM, but resets it before a different VM

is executed.

Definition 10. Virtual Machine. A virtual machine is an execution environment

as created by the hypervisor’s virtualization of the physical hardware. It provides a

complete substitute for the real machine and enables the execution of an operating

system (system virtual machine).

Definition 11. Hypervisor. A hypervisor (or virtual machine monitor) is a piece of

computer software, hardware, or combination of software and hardware that provides

and controls multiple virtual machines by virtualizing the hardware. Each virtual

machine executes a guest system.

Definition 12. Guest System. A guest system is a software stack consisting of

operating system and application tasks that is executed by a virtual machine on top

of a hypervisor (the host).

Popek and Goldberg defined three fundamental requirements for a hypervisor

[Popek and Goldberg, 1974a]:

Equivalence. A virtual machine is required to be able to run all software which

can be executed on the real machine - and vice versa. The execution of software on

the hypervisor is identical to its execution on hardware, apart from a possibly slower

performance and lower resource availability.

2.2 Hypervisor-based Virtualization 25

Hardware

Hypervisor

Guest
OS 1

Tasks
Guest
OS 2

Tasks
VM 1 VM 2

(a)

Hardware

Host OS

Guest
OS 1

Tasks
Guest
OS 2

Tasks
VM 1 VM 2

HypervisorTasks

(b)

Figure 2.4: (a) Native hypervisor (type I) vs. (b) hosted hypervisor (type II)

Resource Control. The hypervisor retains control of the hardware resources.

It must not be possible for guest software to affect the system resources directly.

Software cannot break out of the VM.

Efficiency. The vast majority of the guest software’s instructions must be exe-

cuted natively on the hardware, without an interpretation by the hypervisor.

Smith and Nair demand from hypervisors only to satisfy the conditions equiva-

lence and resource control, and call hypervisors that additionally satisfy the third

condition efficient hypervisors [Smith and Nair, 2005a].

Figure 2.4 shows two different types of hypervisors. A type I hypervisor (native

hypervisor, bare-metal hypervisor) runs directly on the bare hardware. A type II

hypervisor (hosted hypervisor) runs on top of an operating system, the host OS. The

low-level functionality of the host OS can be used to control the hardware. However,

the scheduling of the hypervisor is dependent on the scheduling of the host OS.

2.2.2 Processor Virtualization

Modern processor architectures feature two different execution modes. In the problem

mode for application tasks, also known as user mode, only a subset of the instruc-

tion set can be executed. In the supervisor mode for system software, also known

as kernel mode or privileged mode, the entire instruction set can be executed. The

subset of the instruction set that is only available in supervisor mode is called the

set of privileged instructions and it provides full access to processor state and func-

tionality. [Stallings, 2005] Robust virtualization requires that the hypervisor retains

control of the hardware, so only the hypervisor can be executed in supervisor mode.

26
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

The guest systems have to be executed entirely in problem mode, including guest

operating system. [Smith and Nair, 2005a]

When executed in problem mode, a privileged instruction causes a trap, a syn-

chronous interrupt that results in a switch to supervisor mode, wherein the system

software handles the privileged instruction. An example for a privileged instruction

from the Power ISA is mtmsr (move to machine state register) [IBM, 2010].

An instruction is sensitive, if it either affects the state of the hardware or if its

execution directly depends on the processor mode or the memory location where it is

executed. An example for a sensitive instruction is again mtmsr, since it directly af-

fects the machine state register. Popek and Goldberg defined privileged and sensitive

instructions in a formal manner and stated the following fundamental theorem:

Theorem 2.2.1. (Trap-and-emulate) Virtualizable Instruction Set Archi-

tecture. For any conventional third generation computer 2, a virtual machine mon-

itor may be constructed if the set of sensitive instructions for that computer is a

subset of the set of privileged instructions [Popek and Goldberg, 1974b].

Figure 2.5 depicts the condition of this theorem. On the right, the ISA is virtual-

izable according to their theorem. The ISA on the left is not. Non-virtualizable are

instructions that are sensitive, but non-privileged: executed by a guest system, they

can manipulate the hardware state without being noticed by the hypervisor, since

they do not trap when executed in problem mode. An example for such an ISA is

x86 [Robin and Irvine, 2000]: the instruction popf (pop flags) may change processor

flags (e.g., IF, which controls interrupt delivery), but executed in user modes does

not cause a trap [Adams and Agesen, 2006].

If Theorem 2.2.1 is fulfilled, as it is for example the case for the Power ISA,

full virtualization is possible: unmodified guests (compared to the direct execution

on hardware) can be executed on top of the hypervisor. The hypervisor is able to

intercept and emulate all sensitive instructions. This has the significant advantage

that the guest operating system does not have to be aware of whether being executed

on bare hardware or by a hypervisor. The virtualization is transparent to it.

But system virtualization can be applied as well if the condition of Popek and

Goldberg’s theorem is not fulfilled. It is actually not a theorem for virtualizability in

general, but only for the ability to virtualize a system by trap-and-emulate. Binary

translation, paravirtualization, and hardware virtualization assistance all make non-

virtualizable (i.e., non-privileged and sensitive) instructions trap when executed in
2Popek and Goldberg address a computer with a processor with two modes of operation and

linear, uniformly addressable memory.

2.2 Hypervisor-based Virtualization 27

instruction set

non-privileged privileged

sensitive

(a)

instruction set

non-privileged privileged

sensitive

(b)

Figure 2.5: Popek and Goldberg’s requirement for a virtualizable instruction set

architecture: is the set of sensitive instructions a subset of the set of privileged

instructions? (a) not fulfilled; (b) fulfilled

user mode.

Binary translation implements the emulation of an instruction set (the source)

by another one (the target) by translating executable binary code (sequences of

machine code instructions) [Sites et al., 1993]. VMware applied dynamic binary

translation for x86 virtualization [Adams and Agesen, 2006]. Source instruction set

is the given x86 ISA, translated to a target ISA that does not have x86’s obstacles

to virtualization. The guest is executed by an interpreter instead of directly by a

physical CPU and the interpreter correctly intercepts and implements sensitive and

non-trapping instructions like popf. The translation replaces these instructions by

a sequence of instructions with the intended effect.

Hardware-assisted virtualization enables full virtualization by explicit virtualiza-

tion support from the processor (e.g., Intel Virtualization Technology [Uhlig et al.,

2005]). Architectural extensions include for example a third privileged mode, re-

sulting in different modes for hypervisor (host mode), guest operating system (guest

mode), and guest application tasks (user mode). The new data structure virtual

machine control block (VMCB) stores control state and the state of a virtual CPU.

The hypervisor specifies within the VMCB under which conditions the guest system

is interrupted in order to execute the hypervisor. For example, each execution of

the sensitive and non-trapping instruction popf could cause a context switch from

guest to host mode. This overcomes x86’s virtualization obstacle, but results in a

large overhead. The number of context switches can be reduced by maintaining a

guest-specific shadow of the register and including it in the VMCB [Adams and Age-

28
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

sen, 2006]. Hardware-assisted virtualization has a great potential to provide efficient

virtualization for embedded systems. However, it does not eliminate the challenge

to guarantee that the real-time requirements of guest systems are met, which is of

major importance for this thesis.

Paravirtualization refers to the porting of the guest OS to an interface provided

by the hypervisor, the paravirtualization application programming interface (API)

and application binary interface (ABI) [Whitaker et al., 2002,Barham et al., 2003].

The interface is similar but not identical to the ISA. The guest OS is aware of being

executed by a hypervisor and uses hypercalls to request hypervisor services (e.g., for

memory management or inter-VM communication). A hypercall is a trap from guest

OS to the hypervisor, just as a system call is a trap from an application task to the

OS. The source code of an OS is modified in order to paravirtualize it and sensitive

and non-trapping instructions can be replaced by hypercalls to virtualize an ISA that

is not virtualizable by trap-and-emulate.

The major drawback compared to binary translation and hardware-assisted vir-

tualization is the lack of transparency. Only ported operating systems can be run. If

legal or technical issues preclude the modification of an OS, it is not possible to host

it. A specific advantage of paravirtualization for real-time systems is the possibility

to schedule in a cooperative manner and according to dynamic policies, which in

general requires a passing of scheduling information from guest OS to hypervisor.

A fully virtualized OS cannot cooperate with the hypervisor, since it does not even

know that there is a hypervisor running below it.

2.2.3 I/O Virtualization

A big challenge for the hypervisor-based integration of multiple software systems

is the management of Input/Output (I/O) devices across VMs [Moyer, 2013]. One

solution is to avoid the sharing of I/O devices, which is of course only possible if

the target hardware features as many devices as there are I/O demanding guest

systems. In this case, each guest gets exclusive access to a dedicated I/O device,

which therefore does not have to be virtualized (but might be). The hypervisor

ensures that only the intended guest can access it (bypassing the hypervisor is usually

not possible anyway, since I/O operations require the privileged mode, see below).

The guests can use their own device drivers. If the guest does not run continuously

but is scheduled, incoming data has to be buffered during periods of time in which

the guest is not executed. Interrupt-driven I/O (the I/O controller uses interrupts

to inform the system software) requires that the hypervisor can queue up and inject

2.2 Hypervisor-based Virtualization 29

interrupts into the guest operating system [Smith and Nair, 2005a].

There are different approaches to realize a device sharing. In case of emulation,

the hypervisor intercepts all accesses to I/O devices and handles them in a manner

that realizes a multiplexed sharing (software multiplexing). Interceptions is possible

since I/O instructions are usually privileged and in case of memory-mapped I/O

(specific region of the physical memory is used for accessing I/O devices), memory

addresses used for I/O are usually not accessible in problem mode [Smith and Nair,

2005a]. The guests use virtual devices with an own state, which are presented by

the hypervisor. The hypervisor maintains the states of the virtual devices and the

guests’ operations on it are translated by the hypervisor to operations on the physical

device [Smith and Nair, 2005a]. The guests do not have direct access to the physical

device and therefore cannot corrupt it. Drawbacks are the overhead on all I/O

accesses and the integration of the device driver into the hypervisor (not necessarily

in a monolithic design, preferably in user space) [Moyer, 2013]. Paravirtualized device

drivers that cooperate directly with the hypervisor and are aware of sharing the

device can support software multiplexing [Fisher-Ogden, 2006].

Pass-through refers to direct access of the guest OS to the device with its unmod-

ified device drivers, resulting in higher efficiency, but lower robustness. Isolation of

the guests is no longer given, since a guest might affect the execution of other guests

by improper device accesses. DMA-managed I/O (Direct Memory Access) enables

the I/O controller to access the memory directly. An input/output memory man-

agement unit (IOMMU) supports the pass-through approach by constraining direct

memory accesses. This obviates the need for memory accesses by the guests beyond

their allocated memory, which would otherwise be necessary for a guest OS to use

DMA [Moyer, 2013].

Hardware multiplexing implements virtualization functionality into the I/O de-

vice, enabling it to provide independent I/O resources, e.g., multiple hardware queue

and packet buffer rings [Moyer, 2013].

2.2.4 Virtualization for Mixed-Criticality Systems

For a system with virtualization that requires certification of functional safety, the

hypervisor has to be certified according to the highest criticality level of the hosted

guest systems. This is for example stated by the European Aviation Safety Agency’s

Certification Memorandum, which provides guidance for compliance demonstration

with current standards on specific certification issues, in this case integrated software

architectures:

30
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

In cases where there are multiple software levels within a given system

and/or component, the protection and associated mechanisms between

the different software levels (such as partitioning, safety monitoring, or

watchdog timers) should be verified to meet the objectives of the high-

est level of software associated with the system component. [European

Aviation Safety Agency, 2012]

The hypervisor is essential for the correct execution of the guest systems and

due to this strong influence on safety inherits the criticality level of the guest. One

can derive the requirement for the hypervisor design to be thin, i.e., include only

mandatory functionality in order to ease certification.

The certification requires a “thorough protection/partitioning analysis” [European

Aviation Safety Agency, 2012] and a safe and deterministic partitioning [Littlefield-

Lawwill and Kinnan, 2008]. Resource isolation is the key mechanism to enable

the integration of guest systems of differing criticality levels on the same platform.

A violation of safety requirements arises, if the incorrect behavior of one of the

guest systems corrupts the behavior of another guest. In order to certify a system

with software partitioning such as a hypervisor, freedom from interference between

partitions has to be shown, especially between guest systems of differing criticality

level. The functional safety standard ISO 26262 for automotive systems defines

interference as follows (ISO 26262-9:6):

the presence of cascading failures from a sub-element with no ASIL

assigned, or a lower ASIL assigned, to a sub-element with a higher

ASIL assigned leading to the violation of a safety requirement of the

element. [ISO, 2011]

It is therefore a major requirement for a hypervisor for mixed-criticality systems to

achieve freedom from interference. Otherwise, all hosted software had to be certified

according to the highest criticality level of any software component. ISO 26262

differentiates between three types of freedom from interference (ISO 26262, Part 6,

7.4.11):

• spatial freedom from interference,

• temporal freedom from interference,

• exchange of information. [ISO, 2011]

Spatial freedom from interference refers to the protection of the resource memory.

The integrity of the address space of each guest system and the hypervisor itself

2.2 Hypervisor-based Virtualization 31

must be ensured. A unique address space must be statically allocated to each VM,

not accessible by other VMs, and the guest system must operate entirely in it. By

consequence, a guest system cannot change the software or data of another guest

system and cannot command the private devices or actuators of other VMs [Rushby,

1999]. The damage of a faulty or malicious guest system is restricted to its own

behavior and data. Alike, the integrity of the hypervisor’s address space must be

ensured, so that guest systems cannot affect it.

Spatial isolation is typically enforced by a hardware component that performs

all memory references and prevents illegal memory accesses, either a Memory Pro-

tection Unit (MPU) that enables the hypervisor to partition memory into regions

with defined access permissions or a Memory Management Unit (MMU), which pro-

vides in addition a translation of virtual to physical memory addresses [Tanenbaum

and Goodman, 1998]. With the help of a MMU, virtual memory spaces that are

completely isolated from each other are created and assigned to the VMs.

Temporal freedom from interference refers to the protection of the resource CPU,

i.e., each VM receives the demanded computation time service regarding duration,

rate, and maximum blackout time (time without service) [Rushby, 1999]. The hyper-

visor must ensure that each guest system is executed in compliance with its real-time

constraints, independent from the other guests. When a guest system overruns its

computation time, the correct execution of the other guest must nevertheless be

assured, i.e., a guest cannot prevent another guest from completing its tasks by

depriving it of computing time (time starvation).

The third aspect demanded by ISO 26262 covers the exchange of information:

safety related shared data and signals have to be protected.

A robust partitioning must include as well that resources that are shared between

VMs (or a VM and the hypervisor) are indeed shared in a safe manner, with the

result that all guest systems receive access as demanded to fulfill the functional and

temporal requirements [Rushby, 1999]. For example, if multiple guest systems share

an I/O device, a guest must not be able to prevent another guest from using it, e.g.,

by a denial-of-service attack or a reconfiguration. The hypervisor has to prevent

deadlocks, which occur when two or more guest systems are waiting for each other,

since a requested resource is held by another guest, which in turn is waiting for

another resource (multiple guest systems are waiting for each other to complete and

cannot make any progress) [Stallings, 2005].

32
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

2.3 Multicore Processors

The Central Processing Unit (CPU) is the component of a computer system that

executes program instructions. After fetching the instructions from main memory,

the CPU examines and executes them. A multicore processor is a processor with two

or more CPUs, typically integrated in a single integrated circuit (chip multiproces-

sor). These so-called cores execute instructions in parallel, independent from each

other (processor-level parallelism). Different cores can execute different instructions

on different parts of the memory at the same time (multiple instructions, multiple

data), in contrast to array processors that perform the same sequence of instructions

on multiple instances of data. The ISA is in general the same as for single-core pro-

cessors, except of modifications to support parallelism, since this enables the reuse

of existing software and development tools. [Tanenbaum and Goodman, 1998] Ho-

mogeneous multicore processors feature identical cores (same ISA and frequency).

Heterogeneous architectures combine different processing elements, for example a

digital signal processor and a general purpose processor [Catanzaro, 1994].

It becomes more and more complicated for processor designers to reach the de-

manded performance growth by increasing the frequency of single-core processors,

since the associated growths in power consumption and heat dissipation become un-

acceptable [Keckler et al., 2009]. Multicore processors address the power issue and

achieve a performance growth by parallelism, i.e., increasing the number of processor

cores, instead of increasing the frequency of a single core. The execution of multi-

ple cores at lower frequency results in an increase of the performance in terms of

instructions per second with reduced power consumption.

The cores share main memory and peripheral devices. The main memory is shared

uniformly: the latency of an access to a specific memory location is the same for all

cores. A problem of shared-memory multiprocessing is memory bus contention when

the cores try to access the memory over the same bus. The resulting performance

degradation can be reduced by caches, significantly faster but smaller memories that

buffer data and instructions between CPU and memory [Tanenbaum and Goodman,

1998]. A multi-level cache hierarchy may be present and caches can be core-exclusive

or shared. All components (cores, main memory, caches, I/O devices) are connected

by a bus. Figure 2.6 shows such a bus-based shared memory multicore processor

with per-core private caches.

Private caches raise the challenge of cache coherence. If copies of the same memory

block are stored in multiple caches, problems may arise with inconsistent shared

data. If a core modifies the memory block in main memory, the other cores continue

2.3 Multicore Processors 33

Main
Memory

Core 1 Core 2

CacheCache

I/O

I/O

Bus

Figure 2.6: Single-bus shared memory multicore with private caches

to access the no longer valid copy in their caches [Culler et al., 1999]. Common

mechanisms to ensure coherency are directory-based and snooping protocols. In the

first case, a directory stores the information which data is being shared between

caches and filters all requests of the cores to load or update memory in their caches.

When an entry is modified, the directory either updates or invalidates the copies

in other caches [Moyer, 2013]. In case of snooping protocols, the caches monitor a

shared bus for accesses from other caches to memory locations of which they have

copies. When a write operation is observed to such a location, the cache controller

invalidates its own copy. Another possibility is to broadcast all updates to shared

data and update the affected caches [Culler et al., 1999,Moyer, 2013].

According to Symmetric Multiprocessing (SMP), a single OS controls the software

execution on all cores. All cores share code and data of the OS and execute both the

OS (potentially simultaneously) and application tasks. Asymmetric Multiprocessing

(AMP) uses a separate OS instance on each core. Hypervisor-based system virtual-

ization has to be considered as a third approach. The hypervisor itself controls the

software execution on all cores in a SMP manner and its code and data are shared

among multiple cores. But it manages the execution of different operating systems,

which operate independently on different cores as it is the case for AMP [Moyer,

2013]. Figure 2.7 illustrates these different approaches to use a multicore processor.

The hypervisor might assign each VM to a single core and make the multicore

processor look like a single core to the guest or it might support multicore operating

systems by enabling an execution on multiple cores in parallel. Moreover, VMs might

be pinned to a certain core (full core affinity) or be scheduled by the hypervisor among

34
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

Core 1 Core 2

OS

SMP

Core 1 Core 2

OS

AMP

OS

Core 1 Core 2

Virtualization

OS OS

Hypervisor

Figure 2.7: System software’s core management: symmetric multiprocessing, asym-

metric multiprocessing, and hypervisor-based virtualization

the cores at runtime (no affinity).

2.3.1 Multicore Scheduling

Scheduling was defined so far only for uniprocessors (see Definition 4 in Section

2.1.2). As just introduced, a processor might feature multiple cores, each a full CPU.

A multicore scheduler has to take an additional decision, the so-called allocation

problem: not only which task to execute at any point in time, but also on which

core. The first work on multiprocessor real-time scheduling dates back to the late

1960s, when Liu exposed the complexity of the problem [Davis and Burns, 2010]:

Few of the results obtained for a single processor generalize directly to

the multiple processor case; bringing in additional processors adds a new

dimension to the scheduling problem. The simple fact that a task can

use only one processor even when several processors are free at the same

time adds a surprising amount of difficulty to the scheduling of multiple

processors. [Liu, 1969]

Multiprocessor scheduling algorithms can be classified according to when the allo-

cation is made (migration based classification [Carpenter et al., 2004]). In partitioned

scheduling, each task is allocated to a specific processor core and executed only on

this core (no migration). The scheduler maintains per core a separate ready queue.

Scheduling algorithms where migration is permitted are referred to as global. They

use a single ready queue and do not require that all jobs of a task execute on the same

core. A further differentiation of global scheduling is based on whether migration

is only possible at job boundaries [Carpenter et al., 2004,Davis and Burns, 2010].

In case of task-level migration, different jobs of a task can be executed on different

2.3 Multicore Processors 35

cores, but each job is executed on a single core. Job-level migration permits the pre-

emptive execution of a single job on different processors (but no parallel execution

of a job) [Davis and Burns, 2010].

Global scheduling has the following advantages [Davis and Burns, 2010]:

• in many cases fewer preemptions (only required if no core idles) [Andersson

and Johnsson, 2000],

• spare bandwidth (when a task does not need its WCET) can potentially be

used by all other tasks,

• more appropriate for open systems that permit adding tasks at runtime.

Partitioned scheduling has the following advantages [Davis and Burns, 2010]:

• reduction of the multiprocessor scheduling problem to a set of less complex

uniprocessor scheduling problems [Carpenter et al., 2004],

• no migration overhead (e.g., communication load for transfer of the context of

job/task, additional cache misses),

• overrun of the WCET by a task affects only the tasks on the same core,

• no excessive overhead of maintenance of a single global ready queue for large

systems (scalability).

Partitioned scheduling can reuse well-known uniprocessor scheduling results, e.g.,

schedule the tasks that are allocated to the same core by RM or EDF; whereas using

these optimal uniprocessor scheduling algorithms in a global multiprocessor manner

may result in arbitrarily low utilization (the so-called “Dhall effect”) [Dhall and Liu,

1978]. The main disadvantage of partitioned scheduling is the complexity of the al-

location problem. Finding an optimal allocation of tasks to cores is analogous to bin

packing and therefore known to be NP-Hard [Garey and Johnson, 1979]. By conse-

quence, non-optimal heuristic partitioning algorithms are usually applied [Carpenter

et al., 2004]. A second disadvantage: there are task sets that are schedulable if and

only if migration is permitted [Carpenter et al., 2004].

See Davis and Burns for an extensive survey of both partitioned and global mul-

tiprocessor scheduling algorithms [Davis and Burns, 2010].

2.3.2 Multicore and Predictability

Real-time systems require information about the worst-case execution times in order

to guarantee a deterministic behavior. The certification of functional safety depends

on the ability to determine the system’s exact timing behavior and requires to show

that the system reaches a safe state within a specified time interval after a hazard.

36
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

This is achieved by analyzing the ECU activities and their timing in an end-to-end

event chain [Stappert et al., 2010].

Timing of software is highly dependent on the underlying hardware. A pre-

cise determination of the WCETs of single-core architectures is already challenging,

since processor features such as caches, pipelines, branch prediction, or co-processors

evolved in order to maximize the average performance and complicate the timing

analysis. But multiple established methods and tools exist. [Wilhelm et al., 2008]

Multicore processors are significantly more difficult to analyze as the sharing of

on-chip resources between cores introduces complex timing effects at the machine

instruction level or even nondeterminism. Independently executed software perma-

nently competes for accessing shared architectural elements such as:

• system bus,

• memory bus,

• memory controller,

• non-core-private caches,

• DMA controller,

• interrupt controller,

• I/O controller. [Kotaba et al., 2013]

Two issues arise for the determination of WCETs due to shared resource con-

tention: nondeterminism and pessimism. Resource accesses might be arbitrated by

certain units in a non-explicit manner, introducing nondeterministic delays and mak-

ing it impossible to determine the WCET [Kotaba et al., 2013]. Or the complexity of

the on-chip dependencies results in very long possible delays for certain operations,

and by consequence in extremely pessimistic WCETs, which potentially are no more

economically acceptable.

An example is system bus contention: a static worst-case analysis might have

to expect that each access is delayed by simultaneous accesses of all other cores

plus asynchronous accesses by DMA controllers, as they autonomously access the

shared bus, plus potentially asynchronous accesses of additional hardware units.

The severeness of these issues is emphasized by the common solution of the avionics

domain for the contention on the system bus: all but one core are actually disabled

and any asynchronous DMA or I/O traffic is avoided [Kotaba et al., 2013].

Very challenging are shared caches due to the overhead to keep coherency and due

to unpredictable inter-core interactions (a cache miss on one core can heavily impact

the performance on the other cores in both directions, increasing or decreasing) [Paun

et al., 2013]. Modeling the behavior of shared caches is practically impossible [Schoe-

2.4 Virtual Machine Scheduling 37

berl, 2009]. Solutions are the disabling of shared caches or a static cache partitioning

(each cores gets dedicated cache lines) [Vera et al., 2003,Lin et al., 2009].

Other solutions of the contention problem include capabilities for parallel service

of hardware units. Take the example of a memory controller and interleaved accesses

from different cores: if the controller is able to handle at the same time at least as

many open pages as there are cores, the delay of continuously opening and closing

pages is prevented. Another example is the parallelization of memory access by

multiple memory banks (partitioning of banks among cores supports in addition

isolation [Liu et al., 2012,Yun et al., 2014]). System bus contention can be reduced

by separate interconnects for cache coherence protocols. [Kotaba et al., 2013]

Deterministic arbitration policies (and complete information about the exact be-

havior) are required for all processor elements, e.g., based on FIFO (first in, first

out: accesses are served in the order of occurence), TDMA (time division multiple

access: the cores get different time slots in which their accesses are served) [Rosen

et al., 2007], or static priorities. See for example Paolieri et al. for a predictable

round-robin memory bus arbiter [Paolieri et al., 2009]. Nowotsch et al. [Nowotsch

and Paulitsch, 2012] and Dasari et al. [Dasari et al., 2011] showed how to bound the

impact of system bus contention. Negrean et al. presented a method to analyze the

worst-case delay due to accesses to shared bus and memory [Negrean et al., 2009].

2.4 Virtual Machine Scheduling

2.4.1 Hierarchical Scheduling

System virtualization implies an additional scheduling level, the scheduling of the

virtual machines, which is required if the number of VMs is greater than the num-

ber of processor cores. Two different scheduling decisions have to be made: VM

scheduling and task scheduling.

The VM scheduling is responsibility of the hypervisor, as it controls the execu-

tion of the guest systems and the resource management. The additional scheduling

level is therefore implemented in a different software layer as the task scheduling,

which is still performed by the guest operating systems. Scheduling techniques with

decisions on different levels are called hierarchical scheduling, in this case: the hyper-

visor schedules VMs, the hosted guest OS of the selected VM schedules the guest’s

applications tasks (Figure 2.8).

Hierarchical scheduling is a direct consequence of the coarse-grained integration

of system virtualization. Goal is the integration of existing software stacks including

38
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

VM Scheduler

Operating System's
Task Scheduler

Operating System's
Task Scheduler

Task τ1 Task τ2 Task τ3 Task τ4 Task τ5

VM1 VM2

Figure 2.8: System virtualization’s hierarchical scheduling: virtual machine schedul-

ing by hypervisor and task scheduling by operating systems

OS with verified (or even certified) characteristics and it is not desired to split these

systems up, especially in case of mixed-criticality systems. The intended reuse of

software and certification results requires isolation at guest system (i.e., VM) level.

This is irreconcilable with a merging of the different task sets and a scheduling based

on a global task ready queue. Instead, the guest operating systems should schedule

their task set according to their specific task scheduling policy.

This separation of scheduling concerns is an abstraction for both system software

entities, hypervisor and operating system. The hypervisor is not responsible for task

scheduling, the guest OS does not need any information about the task scheduling

of other guests. The hypervisor schedules virtual machines based on a system-level

global policy, the guest operating system’s task scheduling is based on guest-local

information. The guest systems can be developed and analyzed independently from

each other. The hypervisor needs information about the guests’ timing requirements,

otherwise real-time guarantees are impossible, but no global task schedulability anal-

ysis is required.

2.4.2 Virtual Processor and Virtual Time

A virtual processor is a representation of the physical processor to a virtual machine.

A dedicated virtual processor is created and managed by the hypervisor for each VM.

It is in general slower than the physical processor to allow a mapping of multiple

virtual processors onto a single physical processor (if of equal speed, no abstraction

2.4 Virtual Machine Scheduling 39

75%
25%

CPU
share

V1
V2

t

virtual
time

(a)

VM
schedule

V1
V2

V1
V2

t

virtual
time

blackouts

(b)

Figure 2.9: Progress of virtual machines: (a) ideal; (b) in practice (cf. [Kaiser, 2008])

to a virtual processor is necessary).

Virtualization for real-time systems requires a deterministic mapping between real

world time and virtual time. Only a single virtual machine is active on single-core

processors or a specific core of a multicore processor at any time and the other virtual

machines experience a blackout. From the point of view of a virtual machine, time

only advances while the VM is active. However, the behavior of the guest system

and its scheduling is defined with respect to the real world time, derived directly

from the environment in which the system operates.

The virtual time tvirtk of a guest system that is executed by a virtual processor of

speed vk is incremented when the corresponding virtual machine is executed [Lipari

and Baruah, 2001]:

d

dt
tvirtk

def
=

{
1
vk

, if virtual machine Vk is executed,

0 , otherwise.

Figure 2.9 depicts this mapping of virtual time to real world time for an example

with two VMs and a single core. The left side shows the mapping of an ideal virtual-

ized system, with different virtual processor speeds, but continuous progress of both

VMs. This cannot be achieved in practice, since a processor core has to be shared

in a time-divison multiplexing manner, and has to be approximated. The right side

shows an exemplary VM schedule and the resulting blackouts, in which the virtual

time for the at this time not scheduled VM does not progress. [Kaiser, 2008]

Event-driven real-time systems have to react within specified time spans to exter-

nal events. If the event occurs during a blackout of the handling VM, the reaction

40
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

is delayed until the VM is scheduled again. Compared to a non-virtualized system,

the reaction time is increased by the VM’s worst-case blackout time. The virtualiza-

tion of event-driven real-time systems requires therefore that the maximum blackout

times are deterministic and small enough to meet the guest systems’ reactivity re-

quirements.

2.4.3 Classification and Common Solutions

This section classifies virtual machine scheduling based on different characteristics

and gives an overview of common approaches.

Preemptive vs. Non-preemptive. Preemptive VM schedulers are able to

suspend the execution of a guest system. A non-preemptive scheduler always lets

a guest run until the guest itself suspends, which requires cooperation (to avoid

starvation of other guests) and paravirtualization (to suspend) if multiple VMs are

executed on the same core. A faulty or malicious guest can starve all other guests.

Single-core vs. Multicore. Single-core VM scheduling assigns a single VM

out of the set of hosted VMs at any time to a single available processor. Multicore

scheduling manages the execution of a set of VMs on a set of processor cores and

decides not only which VM to execute at any point in time, but also on which core

(allocation). The allocation can be performed statically (partitioned scheduling:

each VM is executed only on a single core) or dynamically (global scheduling: VMs

migrate between cores). A hypervisor might support multicore VMs (e.g., allocate

two cores to a VM), otherwise, each guest is executed on at most one core at all

times. In the first case, the number of allocated cores might be static or dynamic.

Cooperative vs. Non-communicating. The coaction of VM scheduling and

task scheduling can be cooperative and make use of explicit communication. The

guest OS might pass scheduling related information to the hypervisor and the hyper-

visor might inform the guest OS about VM scheduling decisions, e.g., the amount

and characteristic of the allocated bandwidth. Cooperative scheduling requires par-

avirtualization, since a guest OS that is unaware of being executed by a hypervisor

cannot communicate with it. In case of a non-communicating scheduling architec-

ture, there is no exchange of scheduling related information at runtime.

In the following, common VM scheduling approaches are discussed, namely:

(I) dedicated processor core for each VM (non-preemptive, statically partitioned

multicore, non-communicating),

(II) static precedence of a single real-time VM per core (non-preemptive, single-core

or statically partitioned multicore, cooperative),

2.4 Virtual Machine Scheduling 41

(III) static cyclic schedule with fixed execution time slices (preemptive, statically

partitioned multicore, non-communicating),

(IV) execution-time servers (preemptive, single-core or partitioned multicore or global

multicore, cooperative or non-communicating).

(I) Dedicated processor core for each VM. Each VM is executed on a ded-

icated core. This one-to-one mapping of VMs to cores obviates the need

for a VM scheduler, since each guest system is executed at all times (non-

preemptive). This guarantees that the timing constraints of real-time guests

are met (no blackouts). The approach can be applied only to multicore pro-

cessors, with the required number of cores equal to the number of guests.

(II) Precedence of a single real-time VM per core. A single guest with real-

time requirements is executed on each core. In contrast to the first solution,

it might share the core with non-real-time VMs, which are executed in back-

ground (the scheduler uses the idle time of the real-time guest to run them).

The timing constraints are guaranteed since the real-time guest is executed

whenever it has a computation demand. If the core is shared, paravirtualiza-

tion is required for the real-time VM in order to inform the hypervisor about

idle intervals. The real-time VM is not preempted by the hypervisor, non-

real-time VMs are (they might be scheduled in a round robin manner). This

approach requires a multicore processor if there is more than one real-time

guest. Non-real-time VMs might be partitioned or migrate among the cores.

(III) Static cyclic schedule. Static cyclic scheduling [Baker and Shaw, 1989] is

based on an offline time-division multiplexing schedule, which assigns execution

time windows within a repetitive cycle to the VMs [Sha, 2004,Kerstan, 2011].

Simple solutions apply a weighted round-robin approach: time slices with the

length determined by the product of utilization and cycle length are assigned to

the VMs in circular order. In order to implement a multi-rate cyclic scheduling,

a major cycle (the repetitive cycle, equal to the least common multiple of all

task periods) is divided into minor cycles (time intervals of fixed lengths, often

equal to the greatest common divisor of all task periods) and VMs are statically

allocated to these minor cycles based on their required utilization and execution

frequency, which have to be derived from the guests’ task sets. This time-driven

static scheduling approach is for example part of the software specification

42
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

ARINC 653 3 for avionics systems. The schedule is stored in a dispatching

table and enforced by the hypervisor at runtime, including preemption.

(IV) Execution time servers. The scheduling is based on servers, a technique

to schedule hybrid task sets of periodic and aperiodic tasks, as introduced in

Section 2.1.2. Each VM is executed by a dedicated server, which implements

a virtual processor by providing a limited computation bandwidth. Period

and bandwidth of the server have to be dimensioned based on the computa-

tion requirements of the associated guest system. Servers are periodic tasks

and, therefore, there are multiple options to schedule them, according to static

or dynamic priorities [Buttazzo, 2004], partitioned or global. The hypervisor

might preempt a running server at each point in time. As server algorithm,

different solutions are possible, e.g., periodic servers [Groesbrink et al., 2014a],

constant bandwidth servers [Cucinotta et al., 2011a], work-conserving periodic

servers [Lee et al., 2011], or L4Linux servers [Yang et al., 2011]. A static

server-based scheduling does not require cooperation of the guest OS.

3ARINC 653 (Avionics Application Standard Software Interface) is a software specification for

space and time partitioning in safety-critical avionics real-time operating systems. [Prisaznuk, 2008a]

2.5 Summary 43

2.5 Summary

Embedded systems are computer control systems that operate with a dedicated func-

tion as an integral part of a larger technical system. Many embedded systems have

strict response time constraints, derived from the system’s environment. Scheduling

refers to the management of the resource processor in a time-multiplexing manner.

In case of a real-time system, the major objective of scheduling is to meet the timing

requirements, which demands a predictable system behavior.

The criticality of a component refers to the severity of failure. Human lives depend

on the correct operation of safety-critical systems. Criticality is therefore directly

related to functional safety and the certification according to safety integrity levels.

The criticality level defines safety requirements: the higher the required confidence in

the component, the more pessimistic is in general the obtained worst-case execution

time. Integrated modular systems such as system virtualization lead in many cases

to the co-existence of multiple criticality levels.

Multicore processors are characterized by multiple CPUs and a shared main mem-

ory. The permanent competition for shared architectural elements such as buses or

the memory controller by the software that independently executes on different cores

complicates the determination of worst-case execution times significantly.

System virtualization provides platform replication and enables the concurrent

execution of multiple software stacks (operating system and application tasks). The

hypervisor provides an abstraction of the real machine (virtual machine). It manages

the hardware resources and controls the execution of the virtual machines, including

their scheduling. Paravirtualization requires a porting of a guest operating system. A

paravirtualized guest operating system accesses services provided by the hypervisor

via hypercalls (virtualization awareness).

The hypervisor-based integration of safety-critical systems demands freedom from

interference between the hosted guest systems. This includes spatial (memory) and

temporal isolation (CPU) as well as a safe exchange of information and sharing of

other resources. Hierarchical scheduling refers to the fact that system virtualization

implies scheduling decisions on two levels. The virtual machines are scheduled by

the hypervisor and each guest operating system schedules its tasks. Common virtual

machine scheduling techniques are based on a dedicated core for real-time guest

systems, static cyclic schedules, or execution time servers.

44
Fundamentals: Hypervisor-based Multicore Virtualization for

Embedded Real-Time Systems

Chapter 3

A Multicore Hypervisor for

Embedded Real-Time Systems

Contents
3.1 Problem Statement . 46
3.2 Related Work . 48
3.3 Proteus Multicore Hypervisor 50

3.3.1 Architecture . 51
3.3.2 Configurability . 52
3.3.3 Processor Virtualization . 55
3.3.4 Paravirtualization Interface 56
3.3.5 Multicore . 57
3.3.6 Memory Virtualization . 59
3.3.7 Virtualization of Timer and I/O Devices 59

3.4 Evaluation . 60
3.4.1 Evaluation Platform: IBM PowerPC 405 60
3.4.2 Execution Times . 61
3.4.3 Memory Footprint . 65

3.5 Summary . 66

46 A Multicore Hypervisor for Embedded Real-Time Systems

3.1 Problem Statement

As introduced in the previous chapter, the hypervisor is the software layer that

creates an abstraction of the underlying physical machine in order to provide the

operating system with a virtual machine. It separates operating system and hard-

ware and divides the system resources (CPU, memory, I/O devices) into multiple

virtual execution environments in order to share the hardware among multiple soft-

ware stacks of operating system and application tasks. The hypervisor manages the

execution of these virtual machines.

Hypervisor technology is state of the art for server architectures for many years

[Smith and Nair, 2005c], but this software cannot be applied to embedded systems

due to the fundamentally differing requirements and design goals. Most impor-

tantly, server technology prioritizes the average throughput over predictable timing,

resulting in completely different scheduling strategies. A hypervisor for embedded

real-time systems has to meet the following requirements, which can be derived from

the use cases in Chapter 1:

Real-time Capability. The hypervisor has to provide deterministic behavior for

all of its services and operations as well as bounded interrupt latencies. Each guest

system has to be executed in a predictable way. The virtual machine scheduling

must guarantee that all guest systems are able to meet their timing requirements.

Safe and Secure Partitioning. The hypervisor must be in complete control of

the system resources. It must be protected from the guest systems; virtual machines

must be isolated from each other. Spatial isolation refers to the integrity of a VM’s

address space: a VM must operate completely in a unique and statically allocated

address space, not accessible by other VMs. Alike, the integrity of the address space

of the hypervisor must be guaranteed. The damage that a faulty or malicious guest

system can do, must be restricted to its own data. Temporal isolation refers (in

addition to an appropriate hierarchical scheduling) to the possibility to validate the

timing requirements of a guest system independently from other guests, and the

containment of execution time overruns: if a guest system overruns its computation

time, this must under no circumstances provoke that other guests miss a deadline.

Secure Inter-VM Communication. The system architect must be able to

explicitly relax the strong partitioning in order to allow communication between

guest systems. Communication between guests is mandatory, if one consolidates for-

merly physically distributed systems that cooperate. The hypervisor must authorize

and control the communication channel, so that it is protected against access from

unauthorized VMs.

3.1 Problem Statement 47

Multicore Support. Multicore processors are increasingly popular for embed-

ded systems in order to provide the required computational power. In fact, multicore

processors are a major driver for virtualization, whose architectural abstraction eases

the migration of single-core software to multicore platforms and supports the efficient

resource usage.

Scalability. To increase the applicability, the number of VMs that can be hosted

should be limited only by the system resources (memory and computational power).

In particular, the hypervisor should not be restricted to a dual OS configuration and

it should be able to host more VMs than processor cores available. In addition, it

should be designed considering scalability regarding the number of processor cores.

Efficiency. The overhead of a guest system (execution time and latencies) should

be low compared to the native performance of an unvirtualized execution.

Small Memory Footprint. The hypervisor must use memory very efficiently.

Embedded systems are often memory-constrained, especially with respect to on-

chip memory. Security-critical code such as a hypervisor must be contained in on-

chip memory [Heiser, 2009]. The hypervisor has to be executed at the processor’s

highest privilege level and is part of the system’s trusted computing base (TCB,

components that are critical to the security of the entire system [Rushby, 1981]). A

small hypervisor helps to minimize the size of the TCB, which is important due to

the implications on the costs of the quality assurance process and the trustworthiness

of the system. The smaller the TCB, the easier its validation or even verification,

the more secure and reliable the expected result.

Configurability. Embedded systems are dedicated to a particular functionality.

The hypervisor should be configurable based on the application-specific requirements,

so that only needed functionality is included. This supports the reduction of the

memory footprint.

Support of Paravirtualization and Full Virtualization. Paravirtualization

can often be exploited to reduce the overhead of virtualization and ease the sharing

of I/O devices. Moreover, it is required by all hierarchical scheduling techniques

that are based on an explicit cooperation of hypervisor and OS. A hypervisor should

therefore provide an extensible paravirtualization interface. However, paravirtualiza-

tion’s applicability is limited, since it might not be possible to paravirtualize an OS

(i.e., port it to the hypervisor’s interface) for technical or legal reasons. Therefore, a

hypervisor should support the execution of non-modifiable operating systems by full

virtualization. The concurrent hosting of both paravirtualized and fully virtualized

guests should be possible, since a convenient approach is to host a paravirtualized

48 A Multicore Hypervisor for Embedded Real-Time Systems

RTOS and a fully virtualized General Purpose Operating System (GPOS).

Support of OS-less Guests. Hypervisor-based virtualization is by its nature

coarse-grained: entire software stacks including operating system are integrated.

There are embedded software applications that do not need an operating system. In

order to reduce the overhead regarding latencies and memory footprint, a hypervisor

should provide the possibility to host native tasks within a VM, without OS.

After a look at related work, this chapter presents the multicore hypervisor Pro-

teus for PowerPC 405 processors, which meets these requirements. It is the evalua-

tion platform for the scheduling technique of Chapter 6 and the migration approach

of Chapter 7.

3.2 Related Work

Gu and Zhao [Gu and Zhao, 2012] published a survey of both commercial and aca-

demic virtualization solutions for embedded real-time systems. In the academic

world, Steinberg and Kauer presented a hypervisor for x86 architectures, relying on

hardware assistance for virtualization [Steinberg and Kauer, 2010]. Oikawa, Ito, and

Nakajima developed the paravirtualization-based Gandalf Virtual Machine Monitor,

which can host multiple instances of Linux and the RTOS µITRON on x86 single-

core architectures [Oikawa et al., 2006]. The authors do not address VM scheduling.

Sangorrin, Honda, and Takada realized a dual OS architecture of GPOS and RTOS

based on ARM TrustZone, a processor extension of high-end ARM embedded proces-

sors that provides two virtual CPUs (secure VCPU and non-secure VCPU) mapped

to a single physical CPU [Sangorrin et al., 2012]. The GPOS Linux is assigned to the

non-secure VCPU and the RTOS TOPPERS/ASP is executed by the secure VCPU.

The RTOS schedules the GPOS in an integrated manner as multiple RTOS tasks.

Yoo et al. developed MobiVMM, a hypervisor for mobile phones with single-core

ARM processors [Yoo et al., 2008]. The GPOS is scheduled in background, i.e.,

executed when the RTOS is idle. Nakajima et al. presented SPUMONE, a par-

avirtualization requiring hypervisor for SH-4A multicore processors [Nakajima et al.,

2011, Li et al., 2012b]. Guest OSes are Linux and TOPPERS/JSP. A partitioned

fixed-priority scheduling is applied, which schedules the GPOS in background when

RTOS and GPOS share the physical core. Lin, Mitake, and Nakajima extended this

work by runtime migration of virtual CPUs across cores in order to improve the

performance of the GPOS (global scheduling of virtual CPUs) [Lin et al., 2013].

Crespo et al. developed for the avionics domain XtratuM, a paravirtualization

bare-metal hypervisor for x86, LEON2, LEON3, PowerPC, and ARM [Masmano

3.2 Related Work 49

et al., 2009, Peiró et al., 2010]. A redesign for multicore processors was recently

published [Carrascosa et al., 2013]. VMs can be executed by multiple cores, with

fixed cyclic scheduling or fixed priority scheduling. Each core has its own scheduler,

the coexistence of both policies on different cores is possible. The static configu-

ration of resource allocation, inter-VM communication, memory layout, temporal

requirements of the partitions etc. is done by configuration files, very similar to our

approach. SParK by Ghaisas et al. is a hypervisor for PowerPC platforms without

hardware assistance for virtualization [Ghaisas et al., 2010]. However, their solution

requires paravirtualization and does not support multicore platforms. Closest to our

work, Tavares et al. presented an embedded hypervisor for PowerPC 405, which

supports full virtualization, but no multicore architectures [Tavares et al., 2012].

Multiple independent projects use L4 microkernels for system virtualization. Heiser

and Leslie introduced the OKL4 microvisor for ARM processors, a L4Ka::Pistachio

derivative [Heiser and Leslie, 2010]. They evaluated the overhead by comparing

virtualized and native Linux. Yang et al. proposed a virtualization solution for

x64 uni-processor platforms based on the L4/Fiasco microkernel [Yang et al., 2011].

L4Linux is executed as a paravirtualized guest OS. The microkernel schedules each

guest OS as a periodic thread according to scheduling information obtained from the

guest OS. Similarly, Bruns et al. evaluated a L4/Fiasco microkernel and a paravirtu-

alized Linux to consolidate subsystems of mobile devices on a single processor [Bruns

et al., 2010]. LeVasseur et al. worked with the L4Ka::Pistachio microkernel with a

Linux guest and proposed pre-virtualization, a semi-automatic preparation of an OS

for virtualization [LeVasseur et al., 2008]. They achieve almost the same performance

as paravirtualization with significantly lower engineering costs.

There are multiple studies that extend the popular open source hypervisors KVM

and Xen for the application to embedded real-time systems. KVM (Kernel-based Vir-

tual Machine) is a mainline kernel module that turns Linux into a hypervisor [Kivity

et al., 2007]. It is therefore a hosted hypervisor (type 2). Cucinotta et al. examined

hard reservations and an EDF-based soft real-time scheduling policy for KVM to

provide temporal isolation among I/O-intensive and CPU-intensive VMs [Cucinotta

et al., 2011b]. Their implementation uses only one core. Zhang et al. added support

for real-time priorities to KVM [Zhang et al., 2010]. The Linux kernel is patched

with PREEMPT-RT, which converts Linux into a fully preemptible kernel and adds

hard real-time capabilities [Rostedt, 2007]. Comparably, Kiszka combined KVM

and PREEMPT-RT [Kiszka, 2011]. He paravirtualized Linux in order to give the

hypervisor a hint about the internal states of its guests and prioritized virtualization

50 A Multicore Hypervisor for Embedded Real-Time Systems

workload over uncritical tasks. Ma et al. proposed a real-time virtualization archi-

tecture based on KVM with VxWorks and Linux as guests [Ma et al., 2013]. The

SmartVisor [Su et al., 2009] uses KVM and Intel Atom’s virtualization hardware

extensions for full virtualization of Windows XP.

In contrast to KVM, Xen is a bare-metal hypervisor (type 1), which executes

multiple domains (Xen terminology for virtual machines) [Barham et al., 2003]. The

domain Dom0 is a privileged domain with direct access to the hardware (containing

therefore the device drivers) and the ability to create and terminate other domains.

Following the paravirtualization approach, the guests can use hypercalls to invoke

hypervisor functions. Xen relies on either paravirtualization or on hardware assis-

tance. PowerPC multicore architectures are supported. Gupta et al. implemented a

feedback-controlled EDF scheduler in Xen [Gupta et al., 2006]. Lee et al. added sup-

port for soft real-time tasks by modifying Xen’s Credit Based Scheduler [Lee et al.,

2010]. Masrur et al. implement a novel scheduler in Xen: non-real-time domains are

scheduled with a default Xen scheduler, real-time domains are scheduled with fixed

priorities and get a higher priority [Masrur et al., 2010]. Xi, Lee et al. developed

a real-time scheduling framework for Xen [Xi et al., 2011, Lee et al., 2011]. Their

RT-Xen provides fixed-priority hierarchical real-time scheduling with different server

types.

None of these hypervisors provides full virtualization on multicore PowerPC plat-

forms without hardware assistance. They rely on either paravirtualization or pro-

cessor virtualization extensions. Virtualization support was added to the PowerPC

architecture with instruction set architecture Power ISA Version 2.06 [IBM, 2010],

is however only available for high performance processors. Typical platforms for

embedded systems do not feature hardware assistance and many OSes cannot be

paravirtualized for legal or technical reasons. By consequence, the applicability of

existing PowerPC hypervisors is limited significantly.

3.3 Proteus Multicore Hypervisor

In previous work, as a predecessor, a hypervisor for single-core PowerPC architectures

with the same name Proteus was developed under the direction of Timo Kerstan in

the context of his dissertation [Kerstan, 2011]. The diploma thesis of Daniel Baldin

covered the development of the prototype [Baldin, 2009]. The results have been

published in [Baldin and Kerstan, 2009]. In this work, we present a redesign for

multicore platforms, which reuses fundamental parts of the predecessor. The devel-

opment of the prototype under my direction was part of Katharina Gilles’ master’s

3.3 Proteus Multicore Hypervisor 51

Hardware

Paravirtualized
Operating
System

Emulation
Dispatcher

ISA Emulator

Hypercall
Dispatcher

Fully Virtualized
Operating
System

Program IRQ External IRQ

Hypercalls
Su

pe
rv

iso
r

M
od

e
Pr

ob
le

m
M

od
e

Hy
pe

rv
iso

r

Application Tasks Application Tasks Virtual
Machine

IVCM

Traps
device driver

Syscall IRQ

VM Scheduler

PIT IRQ

Figure 3.1: Design of the Proteus hypervisor (cf. [Baldin and Kerstan, 2009])

thesis [Gilles, 2012]. The results have been published in [Gilles et al., 2013]. Timo

Kerstan, Daniel Baldin, and Katharina Gilles all contributed significantly to the

results that are presented in this chapter.

3.3.1 Architecture

The design of the Proteus hypervisor is based on modularity. The functionality is

accomplished by a cooperation of multiple modules, each providing a specific sub-

functionality. Modules interact via well-defined interfaces and hide implementation

details. This design paradigm increases the reusability and maintainability. It sup-

ports the development of robust systems, since modules can be validated separately,

facilitated by their small size.

Figure 3.1 depicts the basic modules and the control flow based on interrupt han-

dling. The PowerPC 405 features two execution modes [IBM, 2005]. In the problem

mode only a subset of the instruction set can be executed. It is intended for appli-

cation tasks. In the more privileged supervisor mode for system software, full access

to hardware state and functionality is available via privileged instructions. Proteus

executes only a near-minimum set of components in supervisor mode: address space

management, VM context management, interrupt and hypercall handlers, VM sched-

uler, and Inter Virtual Machine Communication Manager (IVCM). Device drivers

are executed in problem mode, reducing the damage a faulty driver can cause to

system stability.

Any occurring interrupt causes a trap to privileged mode and invokes the hyper-

visor. The hypervisor examines the cause and and forwards the interrupt internally

52 A Multicore Hypervisor for Embedded Real-Time Systems

to the appropriate component or back to the interrupt handler of the guest OS. If

the execution of a privileged instruction in problem mode caused the interrupt (Pro-

gram IRQ), it is forwarded to the emulation dispatcher to identify the corresponding

emulation routine. In case of a hypercall or system call (Syscall IRQ), the hyper-

call handler invokes either the emulator, the inter-VM communication manager, or

the VM scheduler. The VM scheduler is called in case of a Programmable Interval

Timer (PIT) interrupt raised by the hardware timer device. An external interrupt

is forwarded to the responsible device driver. [Kerstan, 2011]

Proteus is a bare-metal hypervisor: it runs directly on top of the hardware, in con-

trast to a hosted hypervisor that runs on top of a host operating system [Smith and

Nair, 2005c]. A bare-metal design facilitates a more efficient virtualization solution

regarding both latencies and memory consumption. The amount of code executed in

privileged mode is smaller compared to a hosted hypervisor, since only a (preferably

thin) hypervisor and no OS is incorporated in the trusted computing base (for the

same reason device drivers are executed as introduced outside of the core hypervisor

in problem mode). The attack surface is reduced, both the overall security and the

certifiability of functional safety are increased.

A hosted hypervisor leaves resource management and scheduling at the mercy of

the host OS. The entire system is exposed to the safety and security vulnerabilities

of the underlying OS, which was often not designed to be part of a hypervisor.

The architectural abstraction is restricted to the capabilities of the host OS. An

example is KVM: it is tightly integrated into Linux and VM’s are run and scheduled

as Linux host processes by the existing process management infrastructure [Kivity

et al., 2007]. Due to those performance and robustness advantages as well as the

clearer and more scalable separation, the bare metal approach is more appropriate

for embedded systems.

3.3.2 Configurability

In order to obtain a resource-efficient implementation regarding memory footprint,

Proteus is configurable based on the specific requirements of an application. This

comprises the inclusion/exclusion of entire modules and their parametrization. The

preprocessor of the C programming language (cpp) [Kernighan and Ritchie, 1988] is

used, a popular technique to implement configurability for C/C++ software [Ernst

et al., 2002, Liebig et al., 2011]. The C preprocessor is called by the compiler to

modify source code before translating it. Proteus’ configurability is therefore re-

stricted to compile time: configurability is lost once a program is preprocessed and

3.3 Proteus Multicore Hypervisor 53

a reconfiguration requires re-compiling. [Kerstan, 2011]

The C preprocessor provides the ability to generate different variants of any C

program. The source code is annotated with preprocessor directives. The three basic

mechanisms are file inclusion (#include directive), textual substitution (#define),

and conditional compilation (#ifdef). Most important, conditional compilation de-

fines separate code branches and includes or excludes them dependent on the con-

ditions in the output of cpp. If not included in cpp’s output, a code branch is not

compiled. [Kernighan and Ritchie, 1988]

In order to configure Proteus, the system designer sets the values for the condi-

tions. He modifies a configuration file, but does not have to touch the actual source

code. This configuration files has two sections, one for the hypervisor itself and one

for the VMs. Regarding the hypervisor, features such as paravirtualization, TLB

virtualization, or inter-VM communication can be enabled or disabled. In addition,

parameters like the number of processor cores and the initial number of VMs have

to be set. For each VM a set of parameters has to be specified, e.g., start and end

address of its address space, scheduling parameters, or core affinity.

Based on this configuration file, the preprocessor includes and excludes source

code on the granularity of lines of code inside the source files. As a result, no

unneeded source code is included in the executable software file. Figure 3.2 depicts

the configuration process. In this example, the system designer disabled the feature

TLB virtualization in the configuration file. On the left, an excerpt of the source

code of the hypervisor function vm_resume is given, the function that resumes the

execution of a VM. This configuration file and all source files are the input for the

preprocessor. As specified in the configuration file, the preprocessor excludes the call

of the function vm_restore_tlb, which restores the TLB entries back to the values

that were stored when the VM was paused. As a consequence, the call is as well not

included in the executable file produced by compiler and linker.

The following modules can be included or excluded: virtualization of the TLB,

inter-VM communication via shared memory, paravirtualization, driver for Ethernet

network, functionality for VM migration as introduced in detail in Chapter 7 (re-

quires Ethernet driver), Innocuous Register File Mapping (see Section 3.4.2), and

previrtualization. Pre-virtualization is an approach to paravirtualize guests auto-

matically [LeVasseur et al., 2008]. The source code is analyzed at compile time in

order to identify privileged instructions. At load time, the hypervisor replaces priv-

ileged instructions by hypercalls. Finally, one of three VM scheduling policies has

to be selected: fixed time-slice scheduler, fixed priority scheduler, or server-based

54 A Multicore Hypervisor for Embedded Real-Time Systems

Preprocessor

Compiler & Linker

...
void vm_resume(unint2 vm_id,
unint4 pit_val) {
 vmContext* cVM = &VMs[vm_id];

...

...
#define
VIRTUALIZE_TLB 0

...

Configuration File
...

void vm_resume(unint2 vm_id,
unint4 pit_val) {
 vmContext* cVM = &VMs[vm_id];
 #if VIRTUALIZE_TLB
 vm_restore_tlb(cVM);
 #endif

...

Source Files

System
Designer

PowerPC
Machine

Code

Executable
File

Figure 3.2: Preprocessor-based configuration by conditional compilation

3.3 Proteus Multicore Hypervisor 55

scheduler (see Chapter 6).

Note that configurability does not mean portability. The configurability includes

only the selection and parametrization of features, not the inclusion of processor

architecture specific source code. In fact, up to now Proteus supports only the

PowerPC ISA.

3.3.3 Processor Virtualization

As introduced in Section 2.2.2, an instruction set is virtualizable according to the

theorem of Popek and Goldberg if the set of sensitive instructions is a subset of the

set of privileged instructions [Popek and Goldberg, 1974b] (more precisely, Popek

and Goldberg’s theorem defines trap-and-emulate virtualizability). Fortunately, the

PowerPC fulfills Popek and Goldberg’s requirement and is therefore fully virtual-

izable, as shown in [Kerstan, 2011]: all sensitive instructions cause an exception if

executed in problem mode.

The PowerPC 405 does not provide explicit hardware support for virtualization

such as an additional hypervisor execution mode. Only two execution modes are

available: the problem mode for tasks and the supervisor mode for system software.

Solely the hypervisor is executed in supervisor mode. The guests (both OS and

application tasks) are executed in problem mode with no direct access to the machine

state. This limitation of the guests’ hardware access is mandatory in order to retain

the hypervisor’s control over the hardware and guarantee the separation between

VMs.

However, for the controlled execution of application tasks, guest operating systems

rely themselves on an execution-mode differentiation. Therefore, the problem mode

has to be subdivided into two virtual execution modes: VM’s supervisor mode and

VM’s problem mode (see Figure 3.3). By virtualizing the machine state register,

the hypervisor creates the illusion that a guest OS is executed in supervisor mode,

but runs it actually in problem mode. Consequently, the execution of a privileged

instruction by the guest OS (e.g., an access to the machine state register) causes a

trap and the hypervisor executes the responsible emulation routine. The execution

of a privileged instruction or a system call by a task within the VM’s virtual problem

mode causes a trap that is forwarded by the hypervisor to the guest OS and handled

by it. [Kerstan, 2011]

56 A Multicore Hypervisor for Embedded Real-Time Systems

Hardware

Hypervisor

OS OS

TasksTasksVM's Problem
Mode (virtual)

VM's Supervisor
Mode (virtual)

Processor's
Problem Mode

Processor's
Supervisor Mode

trap/syscall

hypercall

Full
Virtualization

trap

Para
Virtualization

Figure 3.3: Execution mode differentiation and mechanisms for mode transition:

extension of the processor’s two modes by two virtual modes

3.3.4 Paravirtualization Interface

Next to full virtualization, Proteus supports paravirtualization because of its ef-

ficiency (low latencies) and the advantages of an explicit cooperation of OS and

hypervisor, for example for hierarchical real-time scheduling or resource sharing. If

the modification of an OS is possible, the system designer decides whether the ef-

fort of paravirtualization is justified. The concurrent hosting of both paravirtualized

and fully virtualized guests is possible without restriction. A natural approach is

to host a paravirtualized RTOS and a fully virtualized GPOS, since the benefits of

paravirtualization are less important for a GPOS and the ability to paravirtualize it

is often restricted. In addition, bare-metal applications without underlying OS can

be hosted.

Paravirtualization requires a porting of the guest operating system to the paravir-

tualization application binary interface (ABI), specifying the set of hypercalls and

calling conventions, incl. size and alignment of data types as well as which registers

are used to pass arguments and retrieve return values. The hypercall mechanism

is implemented by using the available system call infrastructure: they are executed

with the system call (sc) instruction. In case of a system call interrupt, the hyper-

visor detects whether it is a hypercall or a system call by analyzing the execution

mode of the processor in which the system call instruction was executed. A system

call is identified as a hypercall, if the system call instruction was executed in the vir-

tual VM’s supervisor mode. A system call is executed in the virtual VM’s problem

3.3 Proteus Multicore Hypervisor 57

mode. The hypervisor’s hypercall dispatcher calls the associated hypercall handler

routine. [Kerstan, 2011]

The paravirtualization interface consists of hypercalls of two categories. First, the

interface includes a hypercall for each sensitive instruction. Sensitive instructions

have to be emulated by the hypervisor. The hypercalls provide detailed information

on how to handle it, which reduces the hypervisor’s overhead of analyzing what

caused the context switch from guest to hypervisor. Second, the interface provides

high-level hypercalls, which can be called by a paravirtualized OS to communicate

with other guests, pass scheduling information to the hypervisor, or yield the CPU:

• ivcm_create_tunnel: Create a shared memory tunnel to another VM.

• sched_set_param: Pass information to the scheduler of the hypervisor.

• sched_yield: If a guest idles, it can inform the hypervisor and cooperatively

terminate the assigned execution time slice. [Kerstan, 2011]

3.3.5 Multicore

Proteus is a hypervisor for homogeneous multicore PowerPC 405 processors with a

shared main memory. It uses the cores in a symmetric manner: all processor cores

execute guest systems. When the guest traps or calls for a service, the hypervisor

takes over control and its own code is executed on that core. This context switch

from guest system to hypervisor can be performed from different guests on different

cores at the same time, which is why this design is scalable regarding the number of

processor cores.

A design alternative would have been the sidecore approach: one dedicated core

executes the hypervisor exclusively, the other cores execute guest systems [Kumar

et al., 2007]. When an interrupt occurs, the hypervisor on the sidecore handles it

and no context switch is invoked on the core that executes the guest. The hypervisor

may either be informed via an interprocessor interrupt (not featured by the Pow-

erPC 405) or a notification by the guest OS (either by a hypercall or a write to a

specified memory address that is polled by the hypervisor), which requires paravir-

tualization. To reconcile sidecore approach and full virtualization, a small fraction

of the hypervisor could be executed on each core to forward interrupts. The guest

OS could run unmodified, but each trap would involve a context switch and thereby

a loss of the major benefit. If the sidecore is already serving the request of a guest,

other guests have to wait, resulting in a varying interrupt processing time, which is

inappropriate for real-time systems. For these reasons, Proteus uses the cores in a

symmetric manner.

58 A Multicore Hypervisor for Embedded Real-Time Systems

Proteus provides functionality for both a fixed or a dynamic mapping of virtual

machines to cores. In the first case, each VM is executed only on a single core and a

ready queue for each core is maintained by the hypervisor to implement a scheduling

policy. In the second case, the VMs are managed in a global ready queue and at

runtime assigned to one of the cores. The execution of a VM might be paused and

resumed on a different processor core (migration across cores). A mixture with VMs

that are bound to one specific core and globally scheduled VMs is possible as well. A

VM can be bound to a subset of cores. It is not possible to execute a VM in parallel

on more than one core at the same time.

Each core has its own heap memory, its own stack, and a private memory section

for core-specific global variables of the hypervisor. If, for example, VMs are stati-

cally allocated to a core, the ready queue and the VM contexts of momentarily not

executed VMs are stored in this memory section. For globally scheduled VMs, the

memory that stores the VM context is shared and accessible from all cores.

In a multicore system, the synchronization of access to shared resources is a

complex challenge. For example, the access to the UART interface, the scheduler’s

global ready queue, or the shared memory for inter-VM communication has to be

protected since multiple VMs executed on different cores might try to access it at the

same time. A common solution are semaphores, accessed under mutual exclusion and

assigned exclusively to one VM at any time. Semaphores rely on atomic operations,

however, the PowerPC 405 does not feature multicore-safe atomic operations or any

other hardware support to realize mutual exclusion in a multicore architecture. Its

instructions lwarx (load locked) and stwcx (store conditional) for atomic memory

access do not work across multiple processor cores. Interrupt disabling is a solution

for uniprocessor systems, but is as well not safe for multicore systems.

Therefore, Proteus implements a software solution for this synchronization prob-

lem of access to resources that are shared across processor cores: Leslie Lamport’s

Bakery Algorithm [Lamport, 1974]. This algorithm works in two rounds. In the

first round, VMs that try to access the critical section receive a number and these

numbers increase by one with each request. As this number assignment is not done

under mutual exclusion, more than one VM might receive the same number. In this

case, the VMs’ ID are used as a tie breaker. In the second round, a VM waits until no

other VM is just receiving its number and until all VMs with smaller numbers (or the

same number, but lower ID) finished their resource access. The Bakery Algorithm

does not require atomic operations such as test-and-set, satisfies first-in-first-out fair-

ness and excludes starvation (in which a VM never gets access to the resource), an

3.3 Proteus Multicore Hypervisor 59

advantage over Dijkstra’s algorithm [Dijkstra, 1965]. Essential for real-time systems,

the waiting time is bounded, as derived in Section 3.4.2. Multiple shared resources

protected by semaphores impose the risk of deadlocks. Proteus does not allow to

hold more than one semaphore at a time, precluding circular waiting.

3.3.6 Memory Virtualization

Spatial separation is a key requirement for system virtualization, especially for safety-

critical embedded systems. It refers to the protection of the integrity of the memory

space of both the hypervisor and the guests. Any possibility of a harmful activity

going beyond the boundaries of a VM has to be eliminated. To achieve this, each VM

operates in its own virtual address space, which is statically mapped to a dedicated

region of the shared main memory. A hardware memory protection component is

required to preclude that a guest system accesses memory that has not been allocated

to it. Such a Memory Management Unit (MMU) is part of the PowerPC 405. All

memory references pass the MMU. Next to memory protection, the MMU translates

the virtual memory addresses to physical addresses. Proteus requires a MMU and

most embedded processors that provide enough capability to allow the hypervisor-

based execution of multiple operating systems feature one.

Virtualization adds a level of address translation to memory management. As

usual, guest virtual memory addresses are translated to guest physical addresses us-

ing the guest operating system page tables. In addition, the hypervisor translates the

guest physical addresses to machine physical addresses based on the static allocation

of exclusive memory regions. A guest OS manages the assigned virtual memory and

can create pages. Proteus virtualizes the MMU and maps these virtual pages to

physical pages.

The Translation Look-aside Buffer (TLB) is a cache for the translations of the

MMU. In case of a TLB miss, the miss handler fetches the translation from the page

table of the process. Since the TLB of the PowerPC is software-managed, Proteus

has to virtualize the TLB and maintains a virtual TLB for each VM to store the

VM-specific TLB content. [Kerstan, 2011]

3.3.7 Virtualization of Timer and I/O Devices

An accurate timekeeping with sufficient granularity is essential for real-time systems.

The PowerPC features for this purpose a hardware timer, which provides the required

timing functions. The time base produces a periodic signal, the so-called ticks. The

decrementer is a counter, set by software to a value. It decrements at the same rate

60 A Multicore Hypervisor for Embedded Real-Time Systems

as the time base, i.e., by one per tick, and triggers an interrupt when the counter

reaches zero. The decrementer is used as a programmable interval timer (PIT) for

generating interrupts after the specified time interval has elapsed.

The PIT has to be shared: both the hypervisor and the guest operating systems

rely on it for their preemptive scheduling. Before resuming the execution of a VM

respectively task, the PIT register is set to the desired maximum execution time until

the next scheduling decision. The virtualization of the PIT Register is achieved by a

dedicated virtual register for the hypervisor and each VM. In case of a PIT interrupt,

the hypervisor analyzes the values of the virtual PIT register of the interrupted VM

and of its own virtual PIT register in order to detect whose timer expired and invokes

the associated interrupt handler. If both counter reach zero at the same time, the

hypervisor has priority. The hypervisor is responsible for updating the virtual PIT

registers. [Kerstan, 2011]

Input/output (I/O) devices are assigned statically to VMs. Guest systems obtain

a dedicated I/O device, which is accessed by memory mapped I/O: the hypervisor

maps the associated memory area statically to the VM’s address space and the guest

can access the memory area and hence the device directly. There is no emulation

overhead and no involvement of the hypervisor after the initialization, a concept

introduced by Liu et al. as VMM-Bypass I/O [Liu et al., 2006].

3.4 Evaluation

3.4.1 Evaluation Platform: IBM PowerPC 405

Target architecture of our implementation are processors with multiple IBM Pow-

erPC 405 (PPC405) cores [IBM, 2005], designed for low-power embedded systems. It

features the required Memory Management Unit and Programmable Interval Timer.

Specifications and register-transfer level description are freely available to the re-

search community. Porting the results to other PowerPC processors should be fairly

simple due to the API compatibility within the PowerPC family.

CPU. The PPC405 is a 32-bit RISC core, providing up to 400 MHz (in our case

300 MHz). It implements the Power Instruction Set Architecture Version 2.03 [IBM,

2006] and features 32 general purpose registers, a 5-stage pipeline, static branch

prediction, an Arithmetic Logic Unit, a Multiply-Accumulate Unit, and an interrupt

interface for one critical and one non-critical interrupt signal.

MMU. The MMU provides an independent enabling of instruction and data

translation/protection, page level access control, and software control of the page

3.4 Evaluation 61

replacement strategy. The software-managed TLB has 64 entries, plus hardware-

managed shadow TLBs (4 entries for instructions, 8 entries for data).

Caches. The PPC405 features an on-chip instruction cache unit and a separate

data cache unit (in our case both of size 32kB).

Timers & Debug Interface. As timer facilities, a Programmable Interval Timer

(PIT), a Fixed Interval Timer (FIT), and a watchdog timer are provided with a 64-bit

time base. For debugging, a JTAG interface offers instruction tracing and multiple

instruction address compares, data address compares, and data value compares.

In order to be able to evaluate the software with low effort on different hardware

configurations, the evaluation platform is a software simulator for PowerPC multi-

cores [IBM Research, 2012]. The IBM PowerPC Multicore Instruction Set Simulator

emulates PPC405, PPC440, PPC460, and PPC470 processor cores and can option-

ally include an interrupt controller, main memory (in our case 512 kB of local mem-

ory), and peripheral devices (e.g., an UART). It provides an interface for external

simulation environments, which we do not use. Many components of the simulated

hardware can be configured, e.g., the number of cores (1, 2, or 4) or cache sizes.

The RISCWatch debugger program is used to interface the simulator, control the

execution, and debug code. The user can step through the code cycle by cycle,

examine and manipulate memory locations and registers, and analyze the contents

of the caches. RISCWatch features a tracing of instruction and data accesses and

saves the entire trace of the executed software in a file.

When the simulator is configured to simulate the PPC405 processor, all archi-

tected processor resources are modeled. It operates in cycle approximate mode due

to several functional limitations. Fortunately, these functional limitations do not

occur during the execution of the software routines that are analyzed for this thesis.

For this reason the execution is cycle accurate.

3.4.2 Execution Times

The execution times as presented in the following were determined by counting the

processor cycles of the execution of the investigated code part. The basis for this is

the instruction trace generated by the simulator. All instructions are executed by the

PowerPC 405 in one processor cycle, except from multiplication and division, memory

access with cache miss, and branch instructions [IBM, 2005]. For instructions that do

not execute in one cycle, the worst-case execution time is always assumed (five cycles

for a multiplication, three cycles for a branch with unsuccessful branch prediction).

The simulator is not cycle accurate for external memory accesses, which is why we

62 A Multicore Hypervisor for Embedded Real-Time Systems

execute the analyzed software routines with preloaded instruction and data caches,

resulting in a duration for each instruction fetch of one processor cycle, including

load/store. In practice, this is not always possible, resulting in a larger execution

time, depending on the system’s hardware.

Virtual Machine Context Switch

If multiple virtual machines share a core, switching between them involves saving of

the context of the preempted VM (content of the virtualized registers), selection of

the next VM, and resuming of this VM, including restoring of its context. The exe-

cution time for this procedure is 1250 ns (375 processor cycles), without scheduling,

since the execution time is highly dependent on the specific scheduling algorithm.

The algorithm-specific execution time has to be added.

Synchronized Shared Resource Access Routines

The execution time of the semaphore operations wait() and signal() are plotted

in Figure 3.4.2, implemented according to Lamport’s Bakery Algorithm for synchro-

nized shared resource access across processor cores. The execution time increases

linearly with the number of cores, since the operations perform an iteration over an

array of length equal to the number of cores.

However, these execution times denote actually the best case for the operation

wait(), namely an interrupted execution of the operation, which takes place if re-

source access is granted immediately. When the resource is not available, wait()

causes a blocking of the calling VM. The worst-case blocking time is essential for

real-time systems. In case of four cores, the worst case occurs if the calling VM is

blocked by a VM on each of the three other cores. In this case, the worst-case block-

ing time for synchronized shared resource access sums up to 1797 processor cycles or

about 6µs [Gilles, 2012].

Interrupt Latency

Virtualization increases the interrupt latency. Any interrupt is first delegated to the

hypervisor, analyzed there, and potentially forwarded back to the guest operating

system. For example, the additional latency of a programmable timer interrupt

(PIT IRQ) is about 6.6µs [Kerstan, 2011]. The additional latency for a system call

interrupt (Syscall IRQ) is about 4µs [Kerstan, 2011]. To obtain the total interrupt

latency, one has to add this delay to the interrupt latency of the guest OS. The

additional latency is longer for the timer interrupt, since the virtual interrupt timer

3.4 Evaluation 63

1 2 3 4

400

600

800

417

547

660

743

400

530

643

727

Number of Cores

E
xe

cu
ti

on
T

im
e

(n
s)

wait()
signal()

Figure 3.4: Execution time of routines for protected access to a shared resource

64 A Multicore Hypervisor for Embedded Real-Time Systems

has to be updated, as discussed in Section 3.3.7. In case of a system call interrupt,

the hypervisor just has to analyze in which virtual processor execution mode it was

raised, in order to find out whether it was caused by a hypercall or by a system call.

In case of a hypercall, the hypervisor dispatches to the associated hypercall handler.

Otherwise, the interrupt is delegated back to the VM and the latencies for this case

are given above.

Efficient Virtualization by Paravirtualization

The emulation of privileged instructions is the major cause of virtualization overhead.

The virtualized execution of instructions that manipulate or depend on the hardware

state is the core functionality of a hypervisor. Since the guest is executed in problem

mode, it necessarily includes a context switch to the hypervisor and a processor mode

switch. The emulation service is requested via interrupt (Programm IRQ) in case of

full virtualization or hypercall in case of paravirtualization.

Paravirtualization can be exploited to achieve a significant speedup for the em-

ulation of privileged instructions. An analysis of the steps of an emulation routine

helps to understand why:

1. Reenabling of the data translation and saving of the contents of those registers

that are needed to execute the emulation routine.

2. Analysis of the exception in order to identify the correct emulation subroutine

and jump to it (dispatching).

3. Actual emulation of the instruction.

4. Restoring of the register contents.

The actual emulation accounts for the smallest fraction of the total execution time

and is the same for both full virtualization and paravirtualization. A significant per-

formance gain of paravirtualization is based on the lower overhead for identification

of the cause of the exception and dispatching to the correct handler routine. In case

of full virtualization, a memory access is required to identify the instruction that

raised the interrupt, since the PowerPC stores only the address of the instruction in

a register. In addition, it includes the analysis in which virtual processor privilege

mode the instruction was executed. In case of paravirtualization, only a register

read-out is necessary in order to obtain the hypercall ID, since Proteus’ hypercall

application binary interface specifies that register 13 is used to pass the hypercall

3.4 Evaluation 65

ID. The WCET of privileged instructions is between 7% and 42% smaller in case of

paravirtualization compared to full virtualization. [Baldin, 2009]

An additional performance gain for paravirtualized guests is achieved by Innocu-

ous Register File Mapping (IRFM) [Kerstan, 2011]. For each VM, the hypervisor

maintains a virtual register set. Accesses to registers that have to be accessed by

privileged instructions trap to the hypervisor, which emulates the instruction on the

virtual register set. However, there are registers that can be accessed without having

immediate influence on the state or behavior of the VM. By IRFM’s mapping of this

specific set of registers into the memory space of the VM, they can be accessed by

load and store instructions without trapping to the hypervisor. Paravirtualization

is required since all calls of privileged instructions to access the registers have to be

replaced by calls of load and store. A similar approach has been applied by Xen

[Barhamet al., 2003].

Hypercalls

As introduced in Section 3.3.4, a guest operating system can request hypervisor ser-

vices via the paravirtualization interface. The hypercall vm_yield, which voluntarily

releases the core, has an execution time of 507 ns (152 processor cycles). By calling

sched_set_param, the guest OS passes information to the hypervisor’s scheduler.

The execution time of this hypercall is 793 ns (238 processor cycles). The hypercall

create_comm_tunnel requests the creation of a shared-memory tunnel for commu-

nication between itself and a second VM and is characterized by an execution time

of 1027 ns (308 processor cycles). The hypercall vm_yield does not return to the

VM and the execution time is measured until the start of the hypervisor’s schedule

routine. The other two hypercalls return to the VM and the execution time mea-

surement is stopped when the calling VM resumes its execution.

3.4.3 Memory Footprint

Proteus can be configured offline dependent on the specific requirements of the ap-

plication, as introduced in Section 3.3.2. In order to reduce the memory footprint,

unneeded functional modules can be excluded. Figure 3.5 lists code and data size for

the base functionality and the additionally required memory for different features.

The hypervisor is written in C and assembly language. The efficiency of a hypervisor

is highly dependent on the execution times of the interrupt handling. For this reason,

most of the components called by those handlers and the handlers themselves are

written in assembly language. All executables are generated with compiler optimiza-

66 A Multicore Hypervisor for Embedded Real-Time Systems

Feature Memory Footprint [bytes]

Assembler C code Data Total

Base 2492 5732 2980 11204

ParaV 252 0 148 400

IRFM 292 476 0 768

PreV 0 256 0 256

TLB V 812 264 656 1732

Driver 0 648 12 660

IVCM 0 500 0 500

Total 3848 7876 3796 15520

Figure 3.5: Impact of individual components on memory footprint

tion level 2 (option -O2 for the GNU C compiler), which focuses on the performance

of the generated code and not primarily on the code size. The solely full virtualization

supporting base requires a total of about 11 kB. The addition of paravirtualization,

Innocuous Register File Mapping, Pre-Virtualization, driver support, or inter-VM

communication accounts in each case for less than 1 kB. TLB Virtualization adds

less than 2 kB. If all features are enabled, the memory requirement of the hypervisor

sums up to about 15 kB.

3.5 Summary

A hypervisor for embedded real-time systems has to meet specific requirements that

differ from those of the server domain, as introduced in Section 3.1. This chapter

presented the hypervisor Proteus, which fulfills these requirements:

Real-time Capability. Proteus provides deterministic behavior for all of its

operations and bounded interrupt latencies. Kerstan showed how to derive worst-

case execution times for a guest system executed on top of Proteus [Kerstan, 2011].

An appropriate real-time virtual machine scheduling is introduced in Chapter 6.

Safe and Secure Partitioning. Proteus retains control of the hardware re-

sources at all times by executing all guests in the less-privileged problem mode of

the processor. As a thin bare-metal hypervisor, the trusted computing base is small,

which increases security and certifiability of functional safety. Spatial isolation is

realized by statically allocating each VM and the hypervisor itself in unique address

spaces, not accessible by other VMs. The integrity of these address spaces is ensured

3.5 Summary 67

by the memory access protection of the MMU. Device drivers are not executed in

the privileged mode and cannot damage the stability of the entire system.

Secure Inter-VM Communication. VMs can communicate via shared mem-

ory. The hypervisor sets up the communication and ensures mutually exclusive

access. The spatial isolation guarantees that only authorized VMs have access.

Multicore Support. Proteus supports homogeneous multicore processors. VMs

can be statically or dynamically mapped to processor cores. Access to shared re-

sources is synchronized in a multicore-safe manner.

Scalability. The number of VMs is limited only by the system’s memory. The

number of processor cores is not restricted and the symmetric use of the cores scales

with the number of VMs and cores.

Efficiency. The execution time of synchronization primitives, hypercall handlers,

emulation routines, VM context switch as well as the additional interrupt latencies

are in the range of a few microseconds. Paravirtualization and advanced techniques

such as Innocuous Register File Mapping reduce the virtualization overhead.

Small Memory Footprint. The memory footprint is 11 kB for the base func-

tionality and 15 kB for a configuration with all functional features.

Configurability. Proteus’ compile-time configurability offers the exclusion of

entire modules and module parametrization. It is based on a configuration file, with

which the system designer specifies the application-specific requirements.

Support of Both Paravirtualization and Full Virtualization. Proteus

supports both full virtualization and paravirtualization without relying on special

hardware support, even side by side. Paravirtualized operating systems can use

hypercalls to communicate with other guests, pass scheduling information to the

hypervisor, or yield the CPU.

Support of OS-less Guests. Bare-metal applications without underlying op-

erating systems can be executed.

Fundamental results could be reused from the predecessor, a hypervisor for single-

core PowerPC architectures with the same name Proteus [Kerstan, 2011]. In this

work, we present a redesign for multicore platforms, including synchronization mech-

anisms for shared resource access and a multicore scheduling infrastructure that

enables both partitioned and global virtual machine scheduling. The Proteus hyper-

visor serves as an evaluation platform for both the scheduling policy (Chapter 6) and

the virtual machine migration (Chapter 7).

68 A Multicore Hypervisor for Embedded Real-Time Systems

Chapter 4

Models

Contents
4.1 Workload Model . 70

4.1.1 Task Model . 70
4.1.2 Virtual Machine Model . 73

4.2 Resource Model . 76
4.3 Schedulability Analysis . 77
4.4 Suitability of the Model 79
4.5 Related Work . 81
4.6 Summary . 85

70 Models

4.1 Workload Model

The workload is composed of a set of virtual machines. A virtual machine, in turn,

is characterized as a set of tasks. We abstract from details of the operating system

that is executed within the virtual machine, except for the applied task scheduling

algorithm. In the following, the details of task model and virtual machine model are

introduced.

4.1.1 Task Model

The task model is a combination of the classic periodic real-time task model of Liu

and Layland [Liu and Layland, 1973b] and the elastic resource distribution frame-

work of Marau et al. [Marau et al., 2011]. According to the periodic task model, as

introduced in Section 2.1.2, repeatedly executed computations or data transmissions

are modeled as periodic tasks, which are sequential activities to be executed on a

single core at any time (suspension, migration to another core and subsequent re-

sumption is possible). Each task τi is defined as an infinite sequence of jobs and

characterized by a period Ti, denoting the time interval between the activation times

of consecutive jobs. The worst-case execution time (WCET) Ci of a task represents

an upper bound on the amount of time required to execute the task. We assume

implicit deadlines for all tasks (relative deadline Di = Ti), so a real-time job must

be completed T units of time after its activation at the start of its period. The

execution of a job may be preempted at any time prior to completing execution and

resumed later. The utilization U(τi) is defined as the ratio of WCET and period:

U(τi)
def
== Ci/Ti.

A criticality level χ is assigned to each task, referring to its importance for the

overall system and the severity of failure. Moreover, it might be associated with a

specific certification level as defined by a certification authority. Only two generic

criticality levels are assumed in this work: HI and LO, with HI denoting higher

severity of failure and stronger certification requirements. The periodic task model

is applicable to many real-time applications and well-suited for mixed-criticality sys-

tems. Certification authorities require to determine WCETs to demonstrate the

correctness of the system under pessimistic assumptions and numerous methods and

tools to support the determination of WCETs exist [Wilhelm et al., 2008]. Never-

theless, it should be mentioned that the results of this thesis could be transferred to

the sporadic task model, which defines each task by a WCET, a relative deadline,

and a minimum inter-arrival time between subsequent jobs [Mok, 1983].

Marau et al. extended the periodic task model in order to realize an elastic

4.1 Workload Model 71

Execution
TimeBCET WCET

Possbile Execution TimesFrequency

Figure 4.1: Distribution of execution times of a task between best-case and worst-

case execution time

scheduling [Marau et al., 2011]. A task 1 τi is characterized by a minimum band-

width Umin(τi) ≥ 0 and a maximum bandwidth Umin(τi)+Ulax(τi). Therefore, the

utilization laxity Ulax(τi) ≥ 0 can be understood as the utilization that the task

could use reasonably in addition to the minimum bandwidth. First, all tasks re-

ceive their minimum bandwidth Umin, since this allocation is required for the cor-

rect execution. Umin can be derived from the WCET as Umin(τi) = Ci/Ti. Given

a (fixed) resource capacity UR, the spare bandwidth defines the bandwidth that

can be distributed among n tasks after having guaranteed their minimum require-

ments: Uspare
def
== UR −

∑n
i=1 Umin(τi). It is distributed based on a weight w(τi)

(e.g., a quality of service parameter). The actual bandwidth allocation U(τi) to a

task τi is within the range [Umin(τi), Umin(τi) + Ulax(τi)]. Consequently, the maxi-

mum allowed execution time within a specific period of the task is within the range

[Ti · Umin(τi), Ti · (Umin(τi) + Ulax(τi))].

The WCET denotes the upper bound of the execution time, based on the most

pessimistic assumptions of the execution of the task. The actual execution time of a

job depends on the initial state, the amount and characteristics of the input data (for

embedded systems often dependent on the environmental conditions) as well as the

state of the hardware platform (e.g., cache miss or hit, pipeline stalls) and is in many

cases considerably lower than the WCET [Wilhelm et al., 2008]. Varying execution

times are assumed in the context of this work between a (potentially unknown) best-

case execution time (BCET) and the known WCET, characterized by an arbitrary

and unknown probability distribution, as depicted in Figure 4.1.

Finally, tasks can have multiple operational modes. These modes are mutually

exclusive, i.e., a single mode is active at each point in time. By means of a mode

1Marau et al. refer more generically to services, which are either a periodic task or a message

stream.

72 Models

change, the system is able to adapt to changes in the environment [Fohler, 1993]. See

Real and Crespo for a survey on multi-mode real-time systems [Real and Crespo,

2004]. Each mode produces a different behavior and implements a different func-

tionality or delivers a different quality of service. In the context of this work, modes

are characterized by differing resource demands, in particular regarding processor

utilization. They differ regarding utilization laxity Ulax and potentially regarding

w. Mode-independent task parameters are criticality level, period, relative deadline,

and minimum utilization Umin. An exception is the disabling of tasks as a special

case of a mode change, i.e., it is not executed by the operating system (no resource

requirement at all: Umin = 0), and the corresponding enabling.

A task is characterized by a set of 5-tuples, in which each tuple defines a mode

(M1, ...,Mm indicate different modes of the enabled task, off refers to the disabled

mode):

τi
def
== {τ offi = (Ti, C

off
i = 0, χi, Ulax(τi)

off = 0, w(τi)
off = 0),

τM1
i = (Ti, Ci, χi, Ulax(τi)

M1 , w(τi)
M1),

τM2
i = (Ti, Ci, χi, Ulax(τi)

M2 , w(τi)
M2),

...

τMm
i = (Ti, Ci, χi, Ulax(τi)

Mm , w(τi)
Mm)} , where

• Ti ∈ N+ is the period (Di = Ti is the relative deadline),

• Ci ∈ N represents an upper bound on the execution time,

• χi ∈ {LO,HI} is the criticality level,

• Ulax(τi) ∈ [0, 1] is the utilization laxity,

• w(τi) ∈ [0, 1] is the weight.

Ulax and w differ for each mode (in addition, Coff = 0 and woff = 0), the other

attributes are mode-independent.

Summary. The task model is based on the classic periodic real-time task model.

There is a known worst-case execution time bound, but the actual execution times

of the jobs can be lower and vary at runtime. The task model is elastic: each task is

characterized by a minimum utilization and a utilization laxity that the task could

use reasonably in addition. A criticality level refers to the importance of the task for

the overall system. Tasks can have several operational modes, which differ regarding

behavior and resource demand.

4.1 Workload Model 73

4.1.2 Virtual Machine Model

A virtual machine V k is modeled as a set Ω(Vk) of tasks and the task scheduling

policy σ(Vk) that is applied by the guest operating system. Notation τi ∈ Ω(Vk)

denotes that task τi is executed in Vk. The utilization of a VM is the sum of

the utilizations of its tasks, implying that operating system overhead is neglected:

U(Vk) =
∑

τi∈Ω(Vk) U(τi). Independent VMs are assumed, with neither shared re-

sources except for the processor (static and exclusive allocation of memory regions),

nor data dependencies, nor inter-VM communication.

Many characteristics of the task model apply to the virtual machine model as

well. A criticality level χ is assigned to each VM. If a VM’s task set is characterized

by multiple criticality levels, the highest criticality level determines the criticality of

the VM. The assignment of criticality on VM level is no restriction, since our use

case deals with the consolidation of already certified systems.

Virtual machines can have multiple mutually exclusive operational modes. Modes

differ regarding the set of tasks: which tasks are executed (and not disabled) and in

which mode are they executed? Analogous to task modes, each VM mode produces

a different behavior or delivers a different quality of service, and is characterized by

a differing resource demand (processor utilization). Entire VMs can be disabled and

enabled as well.

From the point of view of the hypervisor, we consider VMs to be schedulable

entities that can be represented comparably to the task model. Since the task set

executed by a VM is characterized by varying execution times, the same is true for

the VM itself. The actual execution time within a specific period is in the range of a

best-case and a worst-case execution time with an unknown probability distribution.

The best case occurs if all jobs of the VM’s tasks within the VM period execute for

their BCET; the worst case occurs if all jobs execute for their WCET. In the usual

case of an arbitrary distribution of the jobs’ execution times, the actual execution

time of the VM lies in between this range.

For the hypervisor’s VM scheduling, each VM Vk will be abstracted as a task

that requires a minimum computation bandwidth Umin(Vi) to carry out the timely

execution of its internal task set Ω(Vi). However, it may benefit in terms of a higher

quality of service from additional bandwidth, if available, up to Ulax(Vi) ≥ 0. The

required minimum utilization Umin(Vi) and the maximum extra bandwidth Ulax(Vi)

are dependent on the task set Ω(Vi) and on the task scheduling policy σ(Vi) and

derived in the context of the periodic resource model design (Section 4.2).

The demand bound function computes for a time interval of length t starting at

74 Models

an arbitrary point in time t0 the total computation time demand of a task, i.e., the

sum of the execution times of all jobs with arrival time and deadline in [t0 +t]. It was

introduced by Baruah, Rosier, and Howell [Baruah et al., 1990] and is also known

as processor demand criterion [Buttazzo, 2004]. This abstraction is adapted in the

context of this work in order to summarize the computation time demand of a VM:

Definition 13. The Demand Bound Function dbfσ(Vi, t) denotes for any time

interval [t0, t0 + t] (t0 ≥ 0, t > 0) the maximum cumulative execution time demand

of a periodic task set Ω(Vi) under a scheduling algorithm σ.

The temporal characteristics of a guest system are summarized in terms of this

function. It is an interface that contains information about the computational re-

source demand and is later used in order to design and analyze a system that inte-

grates multiple VMs. The correct integration of multiple real-time systems is only

possible if such a temporal interface extends the functional interface of a component.

The demand bound functions for Earliest Deadline First (EDF) as an optimal

dynamic priority assignment and Rate Monotonic (RM) as an optimal static priority

assignment [Liu and Layland, 1973b] are for example given as:

dbfEDF (Vi, t) =
∑
τk∈Vi

⌊
t

Tk

⌋
· Ck [Baruah et al., 1990] and

dbfRM (Vi, t, τk) =

⌈
t

Tk

⌉
Ck +

∑
τl∈HPVi

(τk)

⌈
t

Tl

⌉
· Cl [Lehoczky et al., 1989],

where HPVi(τk) denotes the set of tasks in the task set of Vi with a higher priority

than τk, i.e., Tl < Tk. The sum computes the interference caused by the computation

times of all jobs of higher-priority tasks released before t. In case of EDF, there are

exactly
⌊
t
Tk

⌋
invocations of task τk. In case of RM,

⌈
t
Tl

⌉
denotes the worst-case

number of interferes.

In case of RM, the demand bound function has to be denoted for each task on

its own, since the exact schedulability test that is later performed (see Section 4.3)

is based on the computation of the worst-case response time for each task. Since

we use the demand bound function as a scheduling interface, information that is

required for the schedulability test must be included. It is not possible to derive a

single function for the entire task set, as observed by Shin and Lee [Shin and Lee,

2008]. Instead, dbfRM (Vi, t) is the set of all task-specific demand bound functions:

dbfRM (Vi, t) = {dbfRM (Vi, t, τk)|τk ∈ Ω(Vi)} .

4.1 Workload Model 75

0 2 4 6 8 10

2

4

6

8

10

t

de
m

an
d

bo
un

d

0 2 4 6 8 10

τ1

τ2

Figure 4.2: Demand bound function for two EDF-scheduled tasks τ1 = (T = 2, C =

1), τ2 = (T = 5, C = 2) (the dashed line depicts the schedulability bound on a

dedicated processor)

Figure 4.2 depicts schedule and the demand bound function for an exemplary task

set with two tasks, scheduled by EDF. In case of EDF, a task set is schedulable if

the sum of the demand bound functions dbf(t) of all tasks is smaller than or equal

to t for all t ≥ 0, illustrated by the dashed line with slope 1 through the origin.

Summing up, a virtual machine is characterized by a set of 6-tuples, in which

each tuple defines a mode (M1, ...,Mm indicate different modes of the enabled VM,

off refers to the disabled mode):

Vi
def
== {V off

i = (Ω(Vi), σ(Vi), dbfσ(Vi, t), χi, Ulax(Vi)
off = 0, w(Vi)

off = 0),

VM1
i = (Ω(Vi), σ(Vi), dbfσ(Vi, t), χi, Ulax(Vi)

M1 , w(Vi)
M1),

VM2
i = (Ω(Vi), σ(Vi), dbfσ(Vi, t), χi, Ulax(Vi)

M2 , w(Vi)
M2),

...

VMm
i = (Ω(Vi), σ(Vi), dbfσ(Vi, t), χi, Ulax(Vi)

Mm , w(Vi)
Mm)} , where

• Ω(Vi) is the task set,

76 Models

• σ(Vi) is the task scheduler,

• dbfσ(Vi, t) is the demand bound function,

• χi ∈ {LO,HI} is the criticality level,

• Ulax(Vi) ∈ [0, 1] is the utilization laxity,

• w(Vi) ∈ [0, 1] is a weight.

Ulax and w differ for each mode (in addition, Coff = 0 and woff = 0), the

other attributes are mode-independent. This model is the scheduling interface of

the virtual machine, which has to be known to the system designer for the correct

integration of the guest system.

Summary. A virtual machine is modeled as a task set and the scheduling pol-

icy applied to schedule it. A demand bound function summarizes the computation

time demand and is used as an interface for temporal requirements. The virtual

machine model derives many characteristics from the task model: it includes modes,

a criticality level, varying execution times, and an elastic utilization defined by a

utilization minimum and a utilization laxity.

4.2 Resource Model

Target platforms are homogeneous multicore systems of m identical cores with equal

computational power P= {P1, P2, ..., Pm}, also know as identical parallel machines

[Funk et al., 2001]. This implies that each task has the same execution time and

utilization on each processor core. A virtual processor is a representation of a share

of the physical processor core to the VM. A dedicated virtual processor is created for

each VM. It provides a lower computational bandwidth than the physical processor

core to allow a mapping of multiple virtual processors onto a single physical core.

If so, a continuous progress of multiple VMs cannot be achieved in practice, but

approximated. (It might provide the same bandwidth at best, in case of the execution

of a VM on an exclusive processor core.)

The periodic resource model Γ(Π,Θ) [Almeida and Pedreiras, 2004,Shin and Lee,

2003, Saewong et al., 2002, Lipari and Bini, 2003] provides a formal abstraction of

the computational power supplied by a virtual processor. According to this model, a

resource can at most execute for a budget of Θ time units (periodic allocation time)

4.3 Schedulability Analysis 77

Θ

Π 2Π
Θ

Δ=2Π-2Θ

Figure 4.3: Service delay of a periodic resource Γ = (Π,Θ)

every period Π (0 < Θ ≤ Π). The resource capacity, i.e., bandwidth of the periodic

resource, is defined as Θ/Π. A continuous supply is modeled by Γ(Π,Π).

Note that this model, which characterizes a partitioned resource by a periodic

behavior, is actually based on the classic Liu and Layland periodic task model [Liu

and Layland, 1973b]: the virtual processor executes a workload with a periodic

timing behavior (set of periodic tasks) and in order to satisfy this periodic timing

requirement derives itself a periodic behavior [Shin and Lee, 2003].

The minimum computation time allocation that a periodic resource provides is

specified in terms of the supply bound function sbf [Shin and Lee, 2008]:

Definition 14. The Supply Bound Function sbfΓ(t) denotes for any time interval

[t0, t0 + t] (t0 ≥ 0, t > 0) the minimum cumulative computation time allocation of a

periodic resource Γ:

sbfΓ(t) =

⌊
t− (Π−Θ)

Π

⌋
·Θ + εs, where

εs = max

(
t− 2(Π−Θ)−Π

⌊
t− (Π−Θ)

Π

⌋
, 0

)
.

(4.1)

The supply is calculated as the sum of complete periods of the periodic resource

within t and the minimum fraction of the last period that overlaps with t. This

minimum occurs if the supply is delayed to the very end of the period.

The service delay ∆(Γ) specifies the maximum period of time the associated VM

may have to wait before receiving computational service by the periodic resource

[Lipari and Bini, 2003], as illustrated in Figure 4.3:

∆(Γ) = 2 · (Π−Θ) (4.2)

4.3 Schedulability Analysis

The hypervisor-based execution of multiple real-time guest systems has to guarantee

that the processor cores are shared in a manner that allows all guests to meet their

78 Models

real-time constraints. How can we check based on the introduced models for workload

and resource whether all tasks of all guest systems can be completed according to

their specified constraints?

The maximum cumulative computation time demand of a guest system Vi apply-

ing task scheduling policy σ is modeled by the demand bound function dbfσ(Vi, t).

The minimum cumulative computation time allocation of the processor share that

is provided to a guest is modeled as a periodic resource Γi and given by the supply

bound function sbfΓi(t). The comparison of bounded demand of a VM and bounded

supply by the associated virtual processor realizes the schedulability analysis [Shin

and Lee, 2008]:

∀t : dbfσ(Vi, t) ≤ sbfΓi(t) (4.3)

The demand bound is given and it is undesired to modify task set or task schedul-

ing to change it. The periodic resource, however, and consequently the supply bound

function sbfΓi(t) can be designed to enforce schedulability of the task set by forcing

it to be at least as high as the demand bound function dbf(Vi, t) for all t.

Theorem 4.3.1. Assume a set of n virtual machines V = {V1, ..., Vn} with the

computation time demand given in terms of demand bound functions dbfσi(Vi, t) to be

executed on a shared processor core with the VM-specific computation time allocation

given in terms of supply bound functions sbfΓi(t). The set V is schedulable, if, and

only if,

∀Vi : ∀t : dbfσ(Vi, t) ≤ sbfΓi(t)

and

∀t :
n∑
i=1

sbfΓi(t) ≤ t

Shin and Lee have proven Equation 4.3 for EDF and RM and that it is sufficient

to test it for the hyperperiod ∀t : 0 < t ≤ LCMVi in case of EDF (where LCMVi

is the least common multiple of the task periods of Ω(Vi)) [Shin and Lee, 2008]. In

case of RM, they identified the following condition as necessary and sufficient:

∀τj ∈ Vi : ∃tk ∈ [0, Tj] : dbfRM (Vi, tk, j) ≤ sbfΓi(tk)

Figure 4.4 illustrates the schedulability analysis. Depicted are the demand bound

function of a virtual machine with two tasks scheduled by EDF and the supply

bound function of a periodic resource. Since the demand bound is less than the

supply bound for the entire hyperperiod, the VM is schedulable.

4.4 Suitability of the Model 79

2Π-2Θ
2Π-Θ
3Π-2Θ
3Π-Θ
4Π-2Θ
4Π-Θ
5Π-2Θ
5Π-Θ
6Π-2Θ
6Π-Θ
7Π-2Θ
7Π-Θ
8Π-2Θ
8Π-Θ

Θ Θ Θ Θ Θ Θ Θ

Figure 4.4: Schedulability analysis by comparing demand bound function and supply

bound function. Example: two EDF-scheduled tasks τ1 = (T = 5, C = 1), τ2 = (T =

15, C = 2) and periodic resource Γ = (Π = 2,Θ = 1)

4.4 Suitability of the Model

Referring back to the motivational application example in Section 1.3, the target

systems were defined by the following characteristics:

C1 coexistence of independently developed guest systems of operating system and

application tasks,

C2 coexistence of guests of different criticality levels, especially safety-critical (e.g.,

driver assistance systems) and non-critical (e.g., infotainment systems),

C3 coexistence of guests of different resource requirement characteristics, especially

hard real-time and QoS-driven,

C4 existence of guests with real-time requirements, which benefit from additional

resource allocations (e.g., computer vision systems),

C5 guests with multiple operational modes, incl. deactivation,

C6 guest with varying execution time demand.

The introduced workload model meets the requirements of such systems. A re-

quirement derived from C1 is the possibility to analyze the schedulability of a guest

80 Models

system independently of other guests. As introduced in Section 4.3, the schedu-

lability analysis of a guest is based solely on its own demand bound function and

the supply bound function of the associated virtual processor. The integration of a

system within a virtual machine next to other systems on top of the hypervisor does

not require any insight into the system’s internals, especially its task set or applied

scheduling algorithm. Required is only the scheduling interface.

Corresponding to C2, a criticality level is assigned to each guest and a criticality-

aware resource management becomes possible. So far, the model distinguishes only

between safety-critical and non-critical guests and might be extended by a dedicated

level for each risk class / certification level of the considered industry, e.g., the four

Safety Integrity Levels if the standard IEC 61508 or derivatives apply [IEC, 2010]

(e.g., railway, process industries), the four Automotive Safety Integrity Levels plus

the risk class QM for automotive systems [ISO, 2011], or the five Design Assurance

Levels for the avionics domain [RTCA/DO, 2012].

The flexibility of the workload model with a guaranteed minimum bandwidths and

a potentially added bandwidth defined by the utilization laxity enables the specifi-

cation of different resource requirement characteristics as demanded by C3 and C4.

Table 4.1 gives a descriptive example with three different guests. A safety-critical

control system (V1) typically has a constant computation time demand, modeled by

a positive Umin. It is determined based on the worst-case conditions. An additional

allocation is useless, which is why Ulax is set to zero. A computer vision system

(V2) can benefit from additional computation capacity and process more frames per

second, modeled by a positive Ulax. If safety-critical (e.g., collision warning sys-

tem, lane-departure warning system), it demands a certain guaranteed bandwidth

Umin > 0. Finally, V3 represents a background functionality with a Umin of zero and

a positive Ulax, which makes sense if this system has only a computation demand

when the other virtual machines have a very low demand. An example is the seat

control, which is only enabled if the car is parked.

The inclusion of varying execution times and the specification of operation modes

meet the requirements C5 and C6. The execution time of vision systems varies,

for example, since the number of objects to detect varies. Moreover, illumination

and weather conditions heavily influence the demand. This could be tackled as

well with mode changes. Mode changes are suitable in addition for example for an

infotainment system, whose demand depends on the activity of the passengers, or

systems that are only enabled in a specific situation, such as the rear view camera

system or the control of an adjustable driver seat, which can be disabled when the

4.5 Related Work 81

Table 4.1: Suitability of the model: exemplary virtual machine set
VM V1 V2 V3

Description
safety-critical safety-critical non-critical

control system vision system control system

χ HI HI LO

Umin >0 >0 0

Ulax 0 >0 >0

car is not reversing, respectively when the car is not stopped.

4.5 Related Work

Mixed-Criticality Task Model

Vestal introduced a model for tasks with different criticalities [Vestal, 2007]. Main

idea is that different criticality levels require different levels of assurance for a task’s

execution time bound: the higher the criticality level, the less tolerable a deadline

miss, for which reason the more conservative (i.e., larger) the bound. In practice, the

different required levels of assurance result in the use of different methods and tools

for WCET analysis, from measurements during normal operational scenarios at low

criticality levels to instruction cycle counting at high levels. He proposes to model a

task not by a single WCET, but by a set of alternative WCETs, one per criticality

level in the system and determined at different levels of assurance.

Since then, many researchers used Vestal’s formalization of the mixed-criticality

scheduling problem and provided scheduling algorithms [Baruah et al., 2010a, Li

and Baruah, 2010,Mollison et al., 2010,Guan et al., 2011,Huang et al., 2012] and

response-time analysis [Baruah and Fohler, 2011]. Su and Zhu proposed an elastic

mixed-criticality task model with variable periods [Su and Zhu, 2013]. Anderson

et al. presented the first work on server-based mixed-criticality multicore schedul-

ing [Anderson et al., 2009]. Petters et al. addressed temporal isolation of subsystems

for mixed-criticality systems [Petters et al., 2009].

Our work is not based on this model, since according to the use case of consol-

idating certified systems, the system designer has only one WCET per scheduling

entity, namely the one that was used in the certification process. It is unrealistic to

belatedly determine the WCETs corresponding to other criticality levels.

De Niz et al. introduced an alternative mixed-criticality model for tasks that

may overrun [de Niz et al., 2009]. They defined the criticality inversion problem: a

82 Models

high-criticality task that was overrunning its nominal WCET is stopped to schedule

a low-criticality task with a higher scheduling priority, making the high-criticality

task miss its deadline. Two execution times are assigned to each task: the WCET

under non-overloaded conditions and an overload execution budget. In case of an

overload scenario, high-criticality tasks are protected by transferring utilization from

lower-criticality tasks to higher-criticality tasks. This model is well-suited for the

protection of critical tasks in overload situations, however, not flexible enough for

the adaptive resource management that is the research goal of this thesis.

Elastic Task Models

Kuo and Mok provided a framework for tasks with varying timing requirements [Kuo

and Mok, 1991]. Their model defines an adjustable periodic process as a set of

pairs of WCET and period. They address the schedulability of such processes by a

preemptive fixed priority scheduler and present an algorithm for the selection of a

configuration that picks one pair for each process.

Buttazzo et al. observed that the classic periodic real-time task model is hardly

applicable to multimedia or adaptive control systems due to its lack of flexibility [But-

tazzo et al., 1999,Buttazzo et al., 2002]. Their proposal replaces the fixed task period

by varying periods, each associated with a different quality of service. A task itself

can intentionally change its period and the other tasks can adapt to sustain schedu-

lability. An elastic coefficient specifies the flexibility of the task to vary its period

within a defined range. A change is accepted only if there exists a feasible schedule.

Su and Zhu proposed an elastic task model with variable periods that is based on

Vestal’s mixed-criticality model [Su and Zhu, 2013]. Assuming two criticality levels,

high-criticality tasks have a single period. Low-criticality tasks have a maximum

period that is related to a minimum quality of service, however, this period can be

reduced at runtime to provide a higher service level if high-criticality tasks did not

need their worst-case utilizations.

In contrast to these models, we vary the utilization of tasks and VMs not by

flexible periods, but by flexible execution time allocations.

Multi-Mode Models

Mode change protocols for real-time systems have been classified in a survey by Real

and Crespo [Real and Crespo, 2004]. Some approaches define modes by varying

periods, for example [Buttazzo et al., 1999] or [Lee et al., 1996]. In the context of

this work, modes are characterized by differing desired utilization, but equal period.

4.5 Related Work 83

Phan, Lee, and Sokolsky introduced a model for multiple multi-mode applications

under a hierarchical scheduling policy [Phan et al., 2010]. In contrast to this thesis,

their work builds on stream-based task models that specify the resource requirements

in terms of service functions. It models each application as an automaton with a finite

set of modes that differ regarding the set of active tasks and/or the scheduling policy.

One could consider our workload model as a finite automaton with a transition from

all modes to all other modes. Their work allows for defining transition relations

including signals that trigger the transition. The multi-mode resource interface is

a finite state machine and the states abstract the resource requirement of one or

more modes. Each state comes with a minimum service function that is required to

guarantee schedulability, comparable to our inclusion of the demand bound function.

Oberthür developed the Flexible Resource Manager for self-optimizing real-time

systems [Oberthür et al., 2010]. It addresses non-virtualized architectures with a sin-

gle operating system. A set of profiles representing implementation alternatives with

specified transitions is assigned by the developer to each application. An operating

system extension is in charge of switching between these profiles at runtime. Their

work enables assigning temporarily unused resources to other applications based on

profile switches, maintains schedulability, and was very influential for this thesis.

Resource Models

The periodic resource model has been intensively researched. Abstraction of a system

in terms of a periodic resource is addressed in [Davis and Burns, 2005] and [Saewong

et al., 2002]. [Shin and Lee, 2003] and [Easwaran et al., 2006] studied the minimal

dimensioning of periodic resource interfaces. [Almeida and Pedreiras, 2004] used a

more realistic task model that incorporates release jitter and synchronization among

tasks, for example in the context of accessing shared resources. [Shin et al., 2008a] in-

cluded as well resource sharing across subsystems and analyze the trade-off between

resource locking time and CPU allocation. Lipari and Bini presented a methodol-

ogy for finding a class of possible parameters for period and budget that guarantee

schedulability [Lipari and Bini, 2003]. It uses a sufficient but not necessary response

time analysis based on an availability function. Their work includes the minimization

of the context switch overhead.

Saewong et al. presented an exact schedulability analysis for RM or deadline-

monotonic scheduling of periodic resources and derived utilization bounds [Saewong

et al., 2002]. It is based on response time analysis and considers deferrable and

sporadic servers for the implementation of the periodic resources. It was extended

84 Models

by the worst-case response time analysis in [Almeida and Pedreiras, 2004]. [Davis and

Burns, 2005] extended as well Saewong et al.’s work by improving the calculation

of the worst-case response time and providing exact analysis for periodic servers.

In [Harbour and Palencia, 2003], the authors presented a response time analysis for

tasks scheduled under EDF within a component, with the component scheduled by

a fixed-priority scheduler. Their work includes mutually exclusive synchronization

to shared resources.

Matic and Henzinger extended the periodic resource model for interacting tasks,

both within a component and across component borders [Matic and Henzinger, 2005].

Data dependencies are specified as task precedence graphs. The authors analyze

the trade-off between a low end-to-end latency and tighter resource bounds, result-

ing in an increased composability. Davis and Burns extended the periodic resource

model by mutually exclusive resource sharing within (guest-local) and between com-

ponents [Davis and Burns, 2006]. Their Hierarchical Stack Resource Policy combines

server and task ceiling protocols to bound priority inversion and interference on low

priority components caused by overruns. The sharing of any other resource than the

processor core is not addressed in this thesis. For a future extension, however, the

work of Davis and Burns is highly relevant.

Shin, Easwaran, and Lee extended the periodic resource model to a multiproces-

sor model [Shin et al., 2008b]. A resource (Π,Θ,m) provides a budget of Θ time

units every period Π by at most m processors. They address the dimensioning of a

component interface with minimal processor utilization in case of component schedul-

ing based on EDF. With this new model, they analyze cluster-based multiprocessor

scheduling. Tasks are statically assigned to processor clusters and globally scheduled

within this cluster. Clusters are scheduled at runtime on the multiprocessor. Leon-

tyev and Anderson proposed a similar multiprocessor hierarchical scheduling, which

considers next to hard real-time requirements as well soft deadlines [Leontyev and

Anderson, 2009]. Bini, Buttazzo, and Bertogna introduced the Multi Supply Func-

tion abstraction, which models a parallel machine as a set of virtual processors [Bini

et al., 2009]. Each virtual processor is specified in terms of a supply function. Their

approach can be applied for arbitrary reservations. A multiprocessor model is not

needed in the context of this thesis, since after the static partitioning of VMs to

cores, a uniprocessor hierarchical scheduling is applied.

Easwaran, Anand, and Lee introduced the Explicit Deadline Periodic (EDP) re-

source model, a generalization of the periodic resource model [Easwaran et al., 2007].

As in case of the periodic resource model, Θ resource units are provided every period

4.6 Summary 85

Π, but in addition within ∆ time units after the start of a period (relative dead-

line of allocation). A periodic resource model Γ = (Π,Θ) is therefore equal to the

EDP model (Π,Θ,∆ = Π). Their model was designed for the sporadic task model

with explicit relative deadlines (D ≤ T), whereas the periodic resource model is

based on the periodic task model with implicit deadlines (D = T). This enables task

scheduling according to the deadline monotonic scheduling policy [Leung and White-

head, 1982], a generalization of RM for tasks with explicit deadlines: tasks obtain

a static priority inversely proportional to their relative deadline. In this thesis, the

component scheduling is based on RM and the periodic resource model is therefore

sufficiently powerful.

As an alternative to the periodic resource model, Feng, Mok, and Chen proposed

two resource partition models [Mok et al., 2001]. First, the static resource partition

model formalizes a resource that is in a time-multiplexed manner only available

at certain time intervals specified by a list, which periodically repeats itself. The

availability factor α denotes the sum of the time units of availability within the period

divided by the length of the period. Second, the bounded-delay resource partition

is specified by the availability factor α and the maximum delay ∆, which specifies

the maximum time the task group may have to wait before resource availability.

The authors provide a schedulability analysis for a task set that is executed by

such a resource partition for both fixed priorities and EDF, but did not address

component abstraction. Feng and Mok [Feng and Mok, 2002] and Shin and Lee [Shin

and Lee, 2004] extended this work by analysis techniques, component abstraction,

and component composition. The model is especially useful for time-slice based

scheduling, which is not applied in this thesis.

Lorente et al. added interaction between tasks to a hierarchical scheduling model

for component-based real-time systems [Lorente et al., 2006]. A component consists

of a set of threads and a local scheduler. A thread is implemented as a sequence

of tasks and method calls. Tasks interact through Remote Procedure Calls (RPC),

which can be either synchronous or asynchronous. They derive a schedulability

analysis for this architecture based on minimum inter-arrival times for consecutive

RPCs. This thesis considers only independent VMs.

4.6 Summary

The workload model is based on the classic Liu and Layland periodic real-time task

model. A virtual machine is modeled as a set of such tasks and the scheduling policy

applied by the guest operating system to schedule it. The actual computation time

86 Models

demand of tasks and, consequently, of virtual machines might vary from period to

period up to a known upper bound. Tasks and virtual machines can be modeled by

a utilization laxity that the entity could use effectively in addition to a utilization

minimum. Tasks and virtual machines can have several operational modes, which

differ regarding behavior and resource demand. A demand bound function denotes

the maximum cumulative computation time demand of a virtual machine and is

used as a temporal interface in order to design and analyze a system that integrates

multiple virtual machines. This workload model meets the requirements of systems

that integrate guests of different criticality levels and resource requirement charac-

teristics, especially, if there are guests with hard real-time requirements that benefit

from additional resource allocations.

The resource model maps multiple virtual processors to a homogeneous multicore

systems. Each virtual processor is a representation of a share of the physical pro-

cessor and assigned exclusively to a virtual machine. The periodic resource model

provides a formalization of the computation time supply of a virtual processor. The

supply bound function specifies the minimum cumulative computation time alloca-

tion within an interval. The service delay denotes the maximum duration in which a

virtual processor does not provide any computation time. Schedulability analysis is

performed based on the comparison of demand bound functions and supply bound

functions.

Chapter 5

Partitioning

Contents
5.1 Problem Statement . 89
5.2 Related Work . 90
5.3 Branch-and-Bound Partitioning 93

5.3.1 Pruning & Server Transformation 94
5.3.2 Optimization Goals . 99
5.3.3 The Algorithm . 100
5.3.4 Example . 103

5.4 Evaluation . 103
5.5 Summary . 108

88 Partitioning

There are two main approaches in the multiprocessor scheduling domain, as intro-

duced in detail in Section 2.3.1. Partitioned scheduling allocates each task statically

to a processor core, without migration of tasks among cores. Each job of a task

is executed on the same core. In contrast, global scheduling permits migration. A

global ready queue is used to dynamically map the tasks’ jobs to the cores (task-level

migration) or it might even be possible that a single job is migrated and executed on

different cores (job-level migration) [Davis and Burns, 2010]. Aside from the higher

schedulability bounds of global strategies (irrelevant in our case, as we will see in

Section 5.3.1), partitioned scheduling has several advantages. It is characterized by

a higher offline analyzability, enables to apply well-known uniprocessor scheduling

results, and does not introduce a migration overhead [Davis and Burns, 2010].

It is an important observation that the hypervisor-based integration of indepen-

dently developed and validated systems precludes a global task scheduling. The con-

solidation of entire software stacks including operating system results in hierarchical

scheduling and the hosted guest operating systems schedule their tasks according to

their specific task scheduling policies. This is irreconcilable with a scheduling based

on a global task ready queue. Task migration is neither desirable (one does not want

to split up verified or even certified systems) nor in general technically possible across

operating system borders.

In contrast, a dynamic assignment of the entire VMs to the processor cores is

possible. On the shared-memory target platform, virtual machine migration across

cores is no technical issue. Nevertheless, this work allocates each VM statically

to a processor core. A static mapping eases certification significantly, due to the

lower run-time complexity, the higher predictability, and the wider experience of

system designer and certification authority with uniprocessor scheduling. Run-time

scheduling can be performed efficiently in such systems and the overhead of a more

complex VM scheduler is avoided. Cache performance is increased in case of a

hierarchical cache architecture, e.g., a tree-like cache hierarchy with all cores sharing

an L3 cache, two cores sharing an L2 cache and dedicated L1 cache [Calandrino

et al., 2007]. Besides (and presumably for the listed reasons), a static solution is the

option taken by the AUTOSAR consortium [Navet et al., 2010].

Please note, virtual machine migration is not performed across cores of the same

multicore processor. However, migration to another ECU, which is connected via a

network, is possible and actually performed as a fault tolerance technique as intro-

duced in Chapter 7.

With these assumptions, the scheduling problem for system virtualization on mul-

5.1 Problem Statement 89

ticore platforms consists of two sub-problems:

(i) partitioning: allocation of virtual machines to processor cores,

(ii) uniprocessor hierarchical scheduling on each core.

For sub-problem (ii), Chapter 6 introduces a server-based hierarchical schedul-

ing. This chapter focuses on sub-problem (i). After defining the design problem of

mapping VMs with real-time requirements onto a multicore platform, a partitioning

algorithm is presented that splits a set of virtual machines into subsets, with each

subset being schedulable on a single processor core.

Computation time servers realize the computation time supply to the virtual

machines. By transforming their periods to harmonic ones, the core’s utilization

bound is increased and the number of required cores decreased. An introduced

optimization metric realizes a partitioning that considers multiple criticality levels

and distributes critical VMs among the cores.

5.1 Problem Statement

The partitioning problem refers to the decision which virtual machine to execute on

which of the m processor cores P1, ..., Pm. Since homogeneous multicore processors

are considered, the problem is equivalent to subdividing the set of n VMs into m

subsets with 0 to n elements.

Ξ = {Ξ1,Ξ2, ...,Ξm}, with ∀i(1 ≤ i ≤ m) : 0 ≤ |Ξi| ≤ n,
∑
i

|Ξi| = n

Such a mapping Ξ of virtual machines (equivalent to virtual processors) to physical

processor cores is correct if and only if the computation requirements of all virtual

processors are met; and by consequence the schedulability of the associated VMs is

guaranteed. This implies that the partitioning problem depends on the applied VM

scheduling algorithm (sub-problem (ii)), since a set of VMs might be schedulable by

a specific scheduling algorithm, but not by another one. In the context of this thesis,

the VM scheduling is based on servers, as introduced in Section 2.4.3. Each VM is

executed by a dedicated server, characterized by a periodically replenished execution

time budget, which implements a virtual processor by providing a guaranteed but

limited computation bandwidth.

Next to assuring schedulability of the VM set assigned to a processor core, the

partitioning of the VMs focuses on two goals. Minimizing the overall required com-

putation bandwidth is the first goal, since it determines the number of processor

90 Partitioning

cores required to host the set of VMs. In addition, a distribution of critical VMs

among the processor cores is targeted. If VMs of differing criticality share a core,

it is possible to protect the critical guest when it overruns its execution time bud-

get (overload situation) by stealing computation time from non-critical guests and

there are in general more possibilities to apply an adaptive VM scheduling, since the

non-critical VMs can benefit from unused reservations of the critical VMs.

5.2 Related Work

Task Partitioning

Recently, Singh et al. published a survey about the related problem of mapping

tasks to multi/many-core systems and categorized into design-time and run-time

methodologies, different optimization goals as well as homogeneous and heteroge-

neous multicore systems [Singh et al., 2013]. Run-time mapping has the advantage

of being able to adapt to both dynamic workloads (addition/termination of appli-

cations at runtime, varying parameters) and dynamic platforms (varying resource

availability caused for example by enabling/disabling cores or hardware failures).

Drawback is the need for a small execution time of the mapping algorithm in order

to continue the regular operation of the tasks as soon as possible. This thesis ad-

dresses design-time mapping: information about the virtual machines is available at

design time and the execution time of the algorithm is not exceptionally restricted.

Typical optimization goals are performance and timing-related aspects, especially

the guarantee of real-time requirements, but also a minimization of latency or a max-

imization of throughput. Other goals are an optimization of the energy consumption

or the reliability, for example by exploiting redundancy or producing mappings with

lower peak temperatures, which has a positive effect on a chip’s reliability. The goal

of our work is primarily the guarantee of real-time requirements, and among map-

pings that provide this guarantee the minimization of the number of required cores

respectively the maximization of the criticality distribution. Our work addresses only

homogeneous processors: each core offers the same computing power, which implies

that each virtual machine and task has the same execution speed and utilization on

each processor core.

The partitioning of a periodic task set upon homogeneous multiprocessor plat-

forms has been extensively studied, both theoretically and empirically, as [Carpenter

et al., 2004] or [Davis and Burns, 2010] list. Since finding an optimal assignment of

tasks to processors is a problem that is NP-hard in the strong sense [Garey and John-

5.2 Related Work 91

son, 1979], task set partitioning methodologies typically apply Bin-Packing Heuris-

tics [Carpenter et al., 2004, Davis and Burns, 2010], Simulated Annealing [Orsila

et al., 2007], or Genetic Algorithms [Choi et al., 2012]. Dhall and Liu applied in

initial work on the topic the heuristic bin-packing algorithms First Fit and Best

Fit [Dhall and Liu, 1978]. In contrast to these heuristic approaches, this thesis

proposes an algorithm that guarantees to find an optimal solution and that is nev-

ertheless practical due to the low number of VMs.

Lopez et al. analyzed the utilization bound for partitioned EDF scheduling of

independent tasks on homogeneous multiprocessor systems and examined differ-

ent allocation algorithms [Lopez et al., 2000]. Shin et al. proposed cluster-based

scheduling to improve utilization bounds [Shin et al., 2008b]. Each task is statically

assigned to a processor cluster, tasks in each cluster are globally EDF-scheduled

among themselves, and clusters in turn are scheduled by EDF. This leads to a hier-

archical scheduling. In contrast, our work assigns the scheduled entities statically to

cores.

Mixed-Criticality Task Partitioning

Kelly at al. proposed bin-packing algorithms for the partitioning of fixed-priority

mixed-criticality real-time task sets [Kelly et al., 2011]. They experimentally com-

pared offline task ordering according to decreasing utilization and decreasing criti-

cality (with decreasing utilization as the ordering criteria among tasks of the same

criticality) and observed that the latter performed better in terms of schedulability of

random task sets. They also investigated the relative importance of task allocation

and priority assignment and conclude that the priority assignment is more impor-

tant. Giannopoulou et al. proposed a simulated annealing-based technique that

combines mixed-criticality task partitioning and static mapping of memory blocks in

order to account for the effects of shared memory access interference [Giannopoulou

et al., 2014]. These works use a common mixed-criticality model, characterized by

an assignment of multiple WCETs, one per criticality level in the system, which is

however not used in the context of this thesis (see Section 4.5).

Branch-and-Bound Partitioning

Closest to this work and very influential, Buttazzo et al. proposed a branch-and-

bound algorithm for partitioning a task set with precedence constraints, in order

to minimize the required overall computational bandwidth [Buttazzo et al., 2011].

Parallel real-time applications are partitioned into a set of sequential flows so that

92 Partitioning

the overall computational bandwidth or the number of processors is minimized. Not

motivated by hypervisor-based virtualization, but by portability on different hard-

ware architectures, the authors use a virtual platform, which can be implemented by

any resource reservation mechanism (incl. periodic resources). They use Mok et al.’s

bounded-delay time partition model [Mok et al., 2001] for the virtual processors (see

Section 4.5) and address how to select optimal parameters. Since they observed that

the run-time overhead of the branch-and-bound algorithm is too high for more than

15-20 tasks, they developed as well polynomial-time heuristic algorithms. Peng and

Shin presented a branch-and-bound algorithm in order to partition a set of commu-

nicating tasks in a distributed system [Peng and Shin, 1997]. Our algorithm follows

the same paradigm, but for different objectives.

Partitioning of Virtual Entities

Lin et al. briefly touched on the mapping of server-based virtual cores to physical

cores [Lin et al., 2010], but focused on energy-efficient designs. They proposed a task

mapping based on dynamic programming as a design time solution, plus, a simple

runtime solution (mapping to the core with largest or least remaining utilization).

Bobroff et al. introduced a VM mapping approach for non-real-time systems, which

uses a first-fit bin packing heuristic [Bobroff et al., 2007].

Period Transformation

Lopez et al. observed that ordering tasks according to decreasing utilization prior to

the partitioning proves helpful [Lopez et al., 2003], a technique applied in our work

as well. Burchard et al. examined the impact of task period relationships on the

utilization for RM-scheduled systems and proposed heuristics to assign tasks that

fulfill these relationships to the same processor [Burchard et al., 1995]. Similarly,

Lauzac et al. determined ratios of the minimum and maximum period of a task set

that lead to a high utilization and derived an admission control and a partitioning

scheme for RM-scheduled systems [Lauzac et al., 1998]. Instead of looking for favor-

able period relationships, we exploit the freedom of server design to create favorable

period relationships.

Easwaran et al. proposed algorithms for abstracting periodic resource models for

components that apply RM or EDF [Easwaran et al., 2006]. For each component,

a set of periodic resource models differing regarding period is generated. Out of

these sets, one periodic resource model is selected for each component so that all

components of the system have the same period. This is motivated by a minimization

5.3 Branch-and-Bound Partitioning 93

of the collective computation time requirements (least resource demand). As this

leads to all components having the same priority under both RM and EDF, arbitrary

priorities are assigned. In contrast, Shin and Lee let each component itself choose its

period [Shin and Lee, 2003], without restrictions. Our work could be considered to

be in the middle of these two extremes: instead of unrestricted individual periods, we

select periods with a specific relation in order to use the processor more efficiently, as

Easwaran et al. do. Harmonic periods are however less restrictive than equal periods.

A single period can in many cases result in a much smaller period for components

than required by their reactivity requirements, and consequently, in a higher context

switching overhead.

5.3 Branch-and-Bound Partitioning

The partitioning problem is equivalent to bin-packing, as for example Baruah [Baruah,

2004] has shown for the task partitioning problem by transformation from 3-Partition.

The VMs are the objects to pack with size determined by their utilization factors.

The bins are processor cores with a computation capacity value that is dependent

on the applied VM scheduler. The bin-packing problem is known to be intractable

(NP-hard in the strong sense) [Garey and Johnson, 1979] and the research focused

on approximation algorithms (see [Coffman et al., 1996] for a survey).

Common task set partitioning schemes apply Bin-Packing Heuristics or Integer-

Linear-Programming (ILP) approaches in order to provide an efficient algorithm [Car-

penter et al., 2004, Davis and Burns, 2010]. In the context of this work, however,

the number of objects is comparatively small and the partitioning algorithm is to

be run offline and does not have to be executed on the embedded processor. There-

fore, instead of applying an approximation algorithm, the here presented algorithm

performs a systematic enumeration of all candidate solutions following the branch-

and-bound paradigm [Land and Doig, 1960], a general algorithm for finding optimal

solutions of discrete optimization problems.

The systematic enumeration is depicted in Figure 5.1 as a state-space tree. The

problem is solved VM by VM, that is to say that first a partitioning for just V1 is

computed, subsequently, a partitioning for V1 and V2, and so on. Each node repre-

sents a partial solution (or a final solution if it includes all VMs). Branches represent

all possible next steps, each leading to a new partial or final solution. The recursion

of a branch stops when the solution includes all VMs (in this case this solution is

compared to the so far known best solution) or when the partitioning mapped a

set of VMs to a core that is not schedulable. This second case is called pruning : a

94 Partitioning

number of partitions
on level i given by
Bell number Bi :

B1=1

B2=2

B3=5

{V1}

{V1,V2} {V1},{V2}

{V1,V2,V3} {V1,V2},{V3} {V1,V3},{V2} {V1},{V2,V3} {V1},{V2},{V3}

...

...

...

de
pt

h
=

 n

...

...

Figure 5.1: Tree-based visualization of the systematic enumeration of candidate so-

lutions — Example: on level 2, V2 might either be added to the same partition as

V1 or a second partition is created.

non-valid partial solution cannot be turned into a valid one (an unschedulable VM

set cannot become schedulable by adding a VM), for which reason such a branch

can be safely discarded from the search. The depth of the search tree is equal to the

number of VMs n and the number of partitions on level i ≥ 1 is given by the Bell

number Bi (1, 2, 5, 15, 52, 203, 877, ...). We argue that these numbers of partitions

are large enough to justify an automated solution, and small enough to not settle for

a heuristic solution.

5.3.1 Pruning & Server Transformation

It is not sufficient that the partitioning algorithm produces a mapping that assigns

a schedulable set of virtual machines to each core (i.e., there exists at least one algo-

rithm that can produce a feasible schedule, see Section 2.1.2). In fact, practicability

requires that the resulting partitions are schedulable by a given virtual machine

scheduling algorithm. The partitioning algorithm has therefore to be specific to

the applied VM scheduling algorithm and guarantee that exactly this scheduling

algorithm produces a feasible schedule. As introduced in the next chapter, a VM

scheduling according to the rate monotonic (RM) policy is applied. Consequently, a

branch of the tree can be pruned as it cannot lead to a valid solution if and only if

the following equation is not fulfilled:
n∑
i=1

Umin(Vi) ≤ Ulub ≤ UR

Using a rate monotonic server scheduler with its static priority assignment has

the significant advantage of a low runtime overhead and a high analyzability at

5.3 Branch-and-Bound Partitioning 95

0 5 10 15

2

4

6

8

t

re
so

ur
ce

de
m

an
d/

su
pp

ly

demand bound
supply bound Γ1 = (2, 1)

supply bound Γ2 = (5, 3)

Figure 5.2: Existence of multiple periodic resources. Example: two EDF-scheduled

tasks τ1 = (T = 5, C = 1), τ2 = (T = 15, C = 2) and two periodic resources

Γ1 = (Π = 2,Θ = 1), Γ2 = (Π = 5,Θ = 3), both guarantee schedulability

design time, which supports certification. The major drawback is the low utilization

bound, the minimum of the utilization factors over all server sets that fully utilize

the processor core: Ulub = n(21/n− 1) [Liu and Layland, 1973b]. Note that the least

upper bound defines a sufficient and not a necessary condition. All of the server sets

that pass the test are in fact schedulable, but not all server sets that fail the test

are actually unschedulable: a set of servers with a utilization greater than Ulub and

less than or equal to one might be schedulable, which can be analyzed with a more

complex schedulability test (see [Fidge, 1998] for a survey on schedulability tests).

Lehoczky, Sha and Ding obtained by simulations an average utilization bound of

0.88 for random task sets [Lehoczky et al., 1989].

This low utilization bound, however, can be tackled by the freedom of design

regarding the periodic resources. As introduced in Section 4.3, there is not a unique

periodic resource dimensioning that guarantees schedulability for a given workload.

As an example, the supply bound functions of two possible periodic resources that

are both appropriate to execute a given workload are depicted in Figure 5.2.

We exploit this design freedom by choosing harmonic periods. If the period of each

server is an exact multiple of the periods of every other server with a shorter period,

rate monotonic can fully utilize the core [Kuo and Mok, 1991]: Ulub = UR = 1.

Harmonic periods are in fact feasible, since server design approaches such as [Shin

and Lee, 2008] and [Almeida and Pedreiras, 2004] allow the server period to be chosen

within a range of possible values without impact on the schedulability of the internal

96 Partitioning

0 2 4 6 8 10
0

1

2

3

4

resource period Π

pe
ri

od
ic

al
lo

ca
ti

on
Θ

Figure 5.3: Schedulable region of a periodic resource. Example: two EDF-scheduled

tasks τ1 = (T = 50, C = 7), τ2 = (T = 75, C = 9). Integral resource allocation

minimums for 1 ≤ Π ≤ 10

task set, in particular without violating the largest possible VM service delay. Figure

5.3 depicts an exemplary solution space for the selection of period and capacity of a

periodic resource. It shows the minimum periodic allocation Θ in integer values for

periods up to ten (integer values since a scheduler is limited by the granularity of

the timer and can execute an entity only for a multiple of this minimum, which is

assumed to be 1).

Shin and Lee addressed the problem of deriving resource period Π and capacity

Θ in order to guarantee the schedulability for a given workload [Shin and Lee, 2003].

They define the optimal periodic capacity bound PCBVi(Π, A) as a number such that

the workload Vi is schedulable by the algorithm A if PCBVi(Π, A) ≤ Θ/Π.

The PCBs for EDF and RM are defined as [Shin and Lee, 2003]:

PCBW (Π, A) =
Θ+
A

Π
, where (5.1)

Θ+
EDF = max

0<t≤2·L

(√
(t− 2Π)2 + 8ΠdbfW (t)− (t− 2Π)

4

)
(5.2)

L = lcm({Ti|τi ∈W}), least common multiple

Θ+
RM = max

∀τi∈W

(
−(Ti − 2Π) +

√
(Ti − 2Π)2 + 8ΠIi
4

)
(5.3)

5.3 Branch-and-Bound Partitioning 97

Ii = Ci +
∑

∀τk∈{τk|τk∈W∧Tk<Ti}

⌈
Ti
Tk
· Ck

⌉

Note that the + indicates that Θ+ is the smallest possible Θ and any larger

Θ guarantees the schedulability as well. Shin and Lee assume Π as given and the

parameters of Γi follow immediately as Γi(Πi,Θi = Πi · PCBW (Πi, A)).

The question of how to derive Πi for a given VM Vi remains. We assume that the

largest possible service delay ∆max
i is known for a VM. It is defined by the largest

affordable blackout phase, also known as dead interval [Almeida et al., 2002], the

largest acceptable interval without resource supply. If we choose a period Πi and

compute with Equation 5.2 or respectively Equation 5.3 Θ+
i , then we can compute

with Equation 4.2 the service delay ∆ for this resource dimensioning and check

whether the service delay of the periodic resource is less than or equal to ∆max
i .

Only if this is the case, the periodic resource (Πi,Θi = Θ+
i) can be accepted to

implement the virtual processor for VM Vi.

A small period causes a high number of VM context switches. A large period

results in a large service delay and hence in a low reactivity. In general, a large

period is desired, because of the high costs of a VM context switch. Initial resource

parameters were computed for all VMs based on the maximum possible periods,

derived from the reactivity requirements of the guest system, i.e., the largest possible

VM service delay ∆max
i . These resource parameters are denoted as Πopt

i and Θopt
i .

Algorithm 1 accomplishes the transformation of the resource periods to harmonic

ones. First, the set of periodic resources Γ = {Γ1,Γ2, ...,Γn} is sorted according to

increasing Πopt
i . The smallest period is taken as a pivot element (line 3). Resource per

resource, a new period is assigned as a multiple of the so far selected maximum period

Πmax. Since the resources were sorted according to increasing Πopt
i , the assigned

period in each iteration of the loop is at least as large as the one that was set in the

previous iteration. For this reason, we can set Πmax to the current Πi in each iteration

(line 6). The corresponding resource capacity Θi is set to the smallest possible value

that guarantees schedulability (depending on the applied task scheduler).

In the following, two important properties of this algorithm are proven.

Lemma 5.3.1. Algorithm 1 produces for each resource Γi a period that is less than

or equal to Πopt
i .

Proof. By contradiction. Assume that the algorithm computed a resource period

Πi > Πopt
i . By consequence, bΠopt

i /Πmaxc · Πmax > Πopt
i , which requires that

bΠopt
i /Πmaxc > Πopt

i /Πmax. This is a contradiction to the definition of the floor

98 Partitioning

Algorithm 1 Harmonization
1: function harmonize(Γ)
2: Γ← Sort(Γ, increasing Πopt)

3: Πmax ← Πopt
1 . maximum selected period

4: for all Γi ∈ Γ do
5: Πi ← bΠopt

i /Πmaxc ·Πmax

6: Πmax ← Πi

7: Θi ← Πi · PCBW (Πi, A) . according to Eq. 5.1

function, which maps a real number to the largest integer not greater than the input

value (bxc = max{k ∈ Z | k ≤ x}).

This lemma describes an important characteristic of the algorithm, since Πopt
i

was derived from the largest possible VM service delay ∆max
i . The algorithm can-

not generate larger resource periods and, therefore, guarantees that the reactivity

requirements of the VM are met.

Lemma 5.3.2. Algorithm 1 produces harmonic periods for all n periodic resources:

the periods of all resources pairwise divide each other.

Proof. By induction and contradiction. Assume that the algorithm computed a

resource period that does not divide a larger period: ∃Πi,Πj > Πi with Πi - Πj .

This implies that there is no integer d with d ·Πi = Πj .

Base case (n = 2): Π1 = Πopt
1 , since Πopt

1 is the maximum selected period at the

beginning (Line 3), leading to Π1 = bΠopt
1 /Πopt

1 c · Πopt
1 = Πopt

1 (Line 5). The period

Π2 follows as: Π2 = bΠopt
2 /Πopt

1 c ·Πopt
1 . By consequence, d = bΠopt

2 /Πopt
1 c ≥ 1, which

is a contradiction to the assumption that there is no such d.

Inductive step (n n + 1): The periods {Π1,Π2, ...,Πn} pairwise divide each

other, with Πmax = Πn being the largest so far selected period. According to line

5, by replacing Πmax it follows: Πn+1 = bΠopt
n+1/Πnc · Πn. Based on Lemma 5.3.1,

we know that Πn is less than or equal to Πopt
n , which in turn is less than or equal

to Πopt
n+1 (sorting of Γ). Πn ≤ Πopt

n+1 leads to the term bΠopt
n+1/Πnc being an integer

equal or greater than one. This implies that Πn divides Πn+1, so there is a d2 with

Πn+1 = d2 · Πn. We know that the periods {Π1,Π2, ...,Πn} pairwise divide each

other, so for each period Πi, there is a positive integer di with Πn = di · Πi. This,

finally, implies that each period Πi divides Πn+1, with d = di · d2, which, again, is a

contradiction to the assumption that there is no such d.

The transformation of the periodic resources to harmonic periods results in a

schedulability bound Ulub of one. If the sum of the utilizations of all VMs mapped

5.3 Branch-and-Bound Partitioning 99

to a core exceeds one, the branch is pruned (in accordance with Equation 6.1).

5.3.2 Optimization Goals

The algorithm performs a systematic enumeration of all candidate solutions follow-

ing the branch-and-bound paradigm. Candidates are compared according to two

optimization goals. Minimizing the number of cores required to host the set of VMs

is the basic optimization goal. In addition, a distribution of critical VMs (χ = HI)

among the cores is targeted. In the best case, each critical VM is mapped to a

dedicated core, which is potentially shared with non-critical VMs (χ = LO), but not

with other critical VMs.

This second optimization goal is motivated by two different aspects: resource

utilization and safety. First, if VMs of differing criticality share a core, there are

in many cases more possibilities to apply an adaptive scheduling. Critical VMs are

typically characterized by more pessimistic resource reservations that are underrun

significantly and often at runtime, whereas non-critical VMs are often quality-of-

service driven and can benefit from additional computation time out of the unused

share of the critical VMs. Chapter 6 introduces an adaptive bandwidth management

that exploits the co-existence of critical and non-critical VMs on the same core.

Second, if the critical VMs are distributed, it becomes possible to protect a critical

VM in case of an unforeseen run-time overload at the expense of non-critical VMs.

The Criticality Inversion Problem, defined by de Niz et al. [de Niz et al., 2009] (and

here transferred to VM scheduling), occurs if a critical VM overruns its execution

time budget and is stopped to allow a non-critical VM to run, resulting in a deadline

miss for a task of the critical VM. The authors observed that the WCET is difficult

to calculate for many mixed-criticality systems, for example in case of an obstacle

avoidance algorithm whose execution time depends on the number of objects to

detect. Instead of a criticality-unaware scheduling, according to which a non-critical

VM can have a higher scheduling priority than a critical VM, and by definition of

criticality as severity of failure, it is more appropriate to continue the execution of

the critical VM. This can be done for highly utilized cores by stealing execution

time from non-critical VMs. This might lead to a violation of timing requirements

of the non-critical VMs, but if only the requirements of either a critical VM or a

non-critical VM can be satisfied, the former should be induced.

One might argue that a stronger isolation between critical and non-critical VMs

can be achieved if all critical VMs are concentrated on dedicated cores. In this case

as well, however, the hypervisor has to implement and guarantee isolation between

100 Partitioning

all VMs and we assume this as a prerequisite, realized for example by the hypervisor

Proteus and the scheduling approach of Chapter 6. In case of an overload situation,

it is not possible to protect the execution of a critical VM if it shares the core only

with other critical VMs, since we cannot steal execution time from critical VMs.

Moreover, the execution of different criticality levels on dedicated cores results in at

least as many cores as criticality levels. Automotive industry’s differentiation in five

safety integrity levels for example could lead to a minimum of five cores, which in

addition are possibly under-utilized due to the very differing resource requirements

of the software of the different levels.

The second goal is defined by the metric CriticalityDistribution:

Definition. The CriticalityDistribution Z denotes for a partitioning Ξ the dis-

tribution of the ncrit ≤ n critical VMs among the m cores:

Z(Ξ) =

∑m
i=1 ζ(Ξi)

ncrit
, with (5.4)

ζ(Ξi) =

1, if ∃Vj ∈ Ξi : χ(Vj) = HI,

0, otherwise.

For example, assumed that ncrit = 4 and m = 4, Z = 1 if there is one critical

VM mapped to all cores and Z < 1 if there is at least one core without an assigned

critical VM. Thus, for a given set of critical VMs, Z is maximized when the VMs

allocation spans over the largest possible number of cores. We say that a VM is

heavy, if certification requires that this VM is exclusively mapped to a dedicated

core and this constraint is kept by the algorithm as well.

If the number of critical VMs does not exceed the number of cores, all critical

VMs are mapped to different cores. The partitioning algorithm either minimizes

the number of cores, maximizes the criticality distribution (while minimizing the

number of cores among partitions of same criticality distribution), or maximizes the

criticality distribution for a given maximum number of cores. If minimizing the

number of cores is more important, but a high criticality distribution is a secondary

goal, one might first run the algorithm with the goal to minimize the number of

cores, and then run it again with the obtained number of cores as an input in order

to maximize the criticality distribution among solutions with this number of cores.

5.3.3 The Algorithm

The pseudocode listing of the actual partitioning algorithm is shown in Algorithm 2.

The variables mopt, Zopt, and Ξopt (line 2) store the number of processor cores, the

5.3 Branch-and-Bound Partitioning 101

criticality distribution value, and the partition of the so far known optimal solution

and are updated whenever a better solution is found. Before generating the search

tree, the set of VMs V is sorted according to decreasing utilization (line 4). This

is motivated by the introduced pruning condition: if at some node, the sum of the

utilizations of the VMs assigned to a specific core is greater than 1, the computational

capacity of this core is exceeded and the whole subtree can be pruned. Such a

subtree pruning tends to occur earlier, if the VMs are ordered according to decreasing

utilization, as Lopez et al. observed for tasks partitioning [Lopez et al., 2003].

The search function SearchPartition is recursive [Wirth, 1976]. Each call of

the function adds a VM (first parameter) to the so far obtained partitioning (second

parameter). The parameters of the first call are the first VM and an empty set (line

5), since no partitioning decision was taken at this point. The function calls itself

with the next VM (line 30), but only if the stopping condition of the recursion that

all VMs were considered (i = |V |, line 14) is not fulfilled. This stopping condition

ensures that the depth of the tree of n as introduced in Section 5.3 is not exceeded.

First, a new set is created, which represents an additional processor core (line 7).

It is empty at this point, since no VM was mapped to this core so far. Subsequently,

the for-loop looks at each processor core k, more precisely the set Ξk of VMs mapped

to it, and adds the considered VM. The periods of the resulting set are harmonized

(line 10). Line 11 implements the pruning condition: the algorithm proceeds only if

the set of VMs mapped to the considered processor core is schedulable and otherwise

removes the last added VM and ends this iteration of the loop without a recursive

call (line 31).

If the schedulability condition (line 11) was passed and if all VMs were considered

and added to a processor core (line 14), the obtained solution is compared to the

so far known optimal solution. If the optimization goal is the maximization of the

criticality distribution, a higher value of this metric (line 17) or an equal value with

a lower number of processor cores (line 22) means that a better solution was found.

Otherwise, the optimization goal is the minimization of the number of processor

cores (lines 26-28), since, for the sake of readability, the optimization goal “maximize

the criticality distribution for a given maximum number of cores” is not included in

this pseudocode listing. For the same reason, the enforcement of the mapping of all

heavy VMs to a dedicated core is not included.

102 Partitioning

Algorithm 2 Partitioning Algorithm
1: . attributes of optimal solution
2: mopt ←∞, Zopt ← 0, Ξopt ← ∅

3: function BranchAndBoundPartitioning(V)
4: V ← Sort(V, decreasingUtilization)

5: SearchPartition(V1, ∅, V)

6: function SearchPartition(Vi, Ξ, V)
7: Ξnew ← ∅
8: for all Ξk ∈ (Ξ ∪ Ξnew) do
9: Ξk ← Ξk ∪ Vi

10: Ξk ← harmonize(Ξk)
11: if utilization(Ξk) ≤ 1 then
12: if Ξk = Ξnew then
13: Ξ← Ξ ∪ Ξnew

14: if i = |V | then
15: m← |Ξk|
16: if goal = criticalityDistribution then
17: if Z(Ξ) > Zopt then
18: mopt ← m

19: Zopt ← Z(Ξ)

20: Ξopt ← Ξ

21: else
22: if (Z(Ξ) = Zopt) & (m < mopt) then
23: mopt ← m

24: Ξopt ← Ξ

25: else
26: if m < mopt then
27: mopt ← m

28: Ξopt ← Ξ

29: else
30: SearchPartition(Vi+1, Ξ, V)

31: Ξk ← Ξk \ Vi

5.4 Evaluation 103

Table 5.1: Example for partitioning: set of virtual machines

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

χ LO HI LO LO HI HI HI LO LO HI

U 0.6 0.5 0.5 0.3 0.25 0.2 0.2 0.2 0.2 0.15

5.3.4 Example

The different outcomes dependent on the optimization goal of the algorithm are

illustrated with the exemplary VM set of Table 5.1, assumed that the transformation

to harmonic periods was already performed. Figure 5.4 depicts the resulting VM-

to-core mapping for three different goals (critical VMs are marked with an asterisk

*). Subfigure (a) depicts the outcome if the number of cores is minimized. The VM

set is not schedulable on less than four cores, since the sum of the VM utilizations

is 3.1. For this solution, the average utilization per core is 0.775 and the criticality

distribution Z is 3/5 = 0.6. Subfigure (b) depicts the outcome for the maximization

of the criticality distribution, however with a maximum number of mmax = 4 cores

allowed. The partitioning is therefore still characterized by the minimum number

of cores. The criticality distribution Z improves to 4/5 = 0.8. From a criticality

point of view, this mapping is more suitable, since the options to apply an adaptive

scheduling and/or protect critical VMs in case of an overload are very limited for

core P3 in the first solution. Subfigure (c) depicts an unrestricted maximization of

the criticality distribution, resulting in as many cores as there are critical VMs, in

this case one additional core. The optimal criticality distribution Z = 1 is achieved,

however at the cost of exceeding the minimum number of cores, which leads to a

decrease of the average utilization per core to 0.62.

5.4 Evaluation

In the following, the results of the partitioning algorithm for three different opti-

mization goals are compared:

• minimize number of processor cores (abbreviation: NP)

• maximize criticality distribution (CD)

• exclusive: all critical VMs are heavy and cannot share the core (EX)

For the latter two goals, minimizing the number of processor cores is a secondary

optimization goal: solutions are considered as better if they are characterized by

the same criticality distribution value respectively as well a mapping of all heavy

VMs to dedicated cores, but a lower number of processor cores. In order to evaluate

104 Partitioning

P1

V1

P2 P3 P4

V2*

V3

V5*
V6*

V9
V10*

V7*
V8

U=1

P1

V1

P2 P3 P4

V4V2*

V3

V5* V6*
V9

V10*

V7*

V8

P1

V1

P2 P3 P4

V4V2*

V3

V5* V6*
V9

V10*V7*

V8

P5

(a) Minimize Bandwidth (b) Maximize Criticality Distribution
(subject to a maximum of 4
processors)

(c) Maximize Criticality Distribution

U=1

U=1

V4

Figure 5.4: Mappings for different optimization goals

the effectiveness of the harmonization of the periods of the periodic resources, the

algorithm was executed for each of these goals with and without transformation to

harmonic periods (denoted by attaching a H to the introduced abbreviations).

For the random generation of workloads according to uniform distributions, we

used Brandenburg’s toolkit SchedCAT [Brandenburg, 2014]. It is based on Emberson

et al.’s technique for workload generation, which implements an unbiased synthesis

of workload attributes for any values for the number of tasks n and sum of their

utilizations U [Emberson et al., 2010]. It is possible to vary each attribute inde-

pendently: a parameter of interest is varied, all other parameters are held constant.

The unbiased workload generation ensures fairness, since the attribute selection has

a significant influence on the results of empirical evaluations, in our case especially

the period selection.

1000 sets of VMs were generated for each size n between 2 and 10, so a total of

9000, with the following parameters:

• a server period Π uniformly distributed within [10µs, 1000µs],

• a bandwidth Θ of each VM uniformly distributed within [0.1, 0.2, ..., 0.9] in the

first experiment and within [0.1, 0.2, ..., 0.5] in the second experiment,

• a criticality χ ∈ {LO,HI} (with the same probability).

5.4 Evaluation 105

Figure 5.4 plots the obtained number of cores as a function of the number of VMs.

For the bandwidth of each VM within [0.1, ..., 0.9] (Figure 5.4 (a)), the transformation

of the VM sets to harmonic periods reduces the required computation bandwidth on

average by about 15% in the case of minimizing the number of cores, 10% in case of

maximizing the criticality distribution, and 5% in the case of the exclusive execution

of all critical VMs on a dedicated core. In the case of a maximum of 0.5 for the

utilization of any VM (Figure 5.4 (b)), harmonization results in an average reduction

of the required computation bandwidth of about 18% (NP and NPH), 7% (CD and

CDH), and 6% (EX and EXH).

The harmonization is effective for all three optimization goals. However, the addi-

tional partitioning constraints of CD and EX lead to a smaller relative improvement.

This results from the lower number of possible solutions (in case of EX, critical VMs

cannot share the core; in case of CD, critical VMs can share a core only with non-

critical VMs) and the therefore expected lower number of VMs that share a core.

Especially the exclusive execution of critical VMs limits the possibility to increase the

utilization per core by transformation to harmonic periods, since a transformation

cannot be performed for all cores that execute only one critical VM.

If the optimization goal is either the maximization of the criticality distribution or

the exclusive execution of critical VMs, the fewer possibilities for VMs to share a core

result in a significantly higher average number of cores. Compared to NPH, EXH

results in a 33% higher average number of cores for VM bandwidths between 0.1 and

0.9, and even 83% higher for VM bandwidths between 0.1 and 0.5. The difference

is larger for the partitioning of smaller VMs, since there are more possibilities to

share cores, from which NPH benefits more than EXH, which is restricted regarding

core sharing. CDH results in as many cores as there are critical VMs. The average

number of cores is 11% higher for VM bandwidths between 0.1 and 0.9 and 36%

higher for VM bandwidths between 0.1 and 0.5.

On the other side, the advantage of these partitioning goals is a criticality distri-

bution of one, whereas NP produces an average criticality distribution in the range

of about 0.8 to 0.9 and in several cases significantly lower values, even down to the

minimum of 1/n. Therefore, Figure 5.4 depicts next to the average values of the

criticality distribution as well the range of possible values from 1/n to 1. In case

of a maximum of 0.5 for the utilization of a VM, the average criticality distribution

drops to values in the range of 0.65 to 0.8, since it is more likely that VMs share a

core and, thus, as well more likely that critical VMs share a core.

106 Partitioning

2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Number of VMs (n)

N
um

be
r

of
C

or
es

(a
ve

ra
ge

)

(a) ∀Vi : U(Vi) ∈ [0.1, 0.9]

NP
NPH
CD
CDH
EX
EXH

2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

Number of VMs (n)

N
um

be
r

of
C

or
es

(a
ve

ra
ge

)

(b) ∀Vi : U(Vi) ∈ [0.1, 0.5]

NP
NPH
CD
CDH
EX
EXH

Figure 5.5: Average number of processor cores for different partitioning goals: min-

imize number of processor cores (NP), minimize number of processor cores incl.

transformation to harmonic server periods (NPH); maximize criticality distribution

(CD), incl. transformation to harmonic server periods (CDH); minimize number of

processor cores and assign cores exclusively to critical VMs (EX), incl. transforma-

tion to harmonic server periods (EXH); (a) VM Bandwidths between 0.1 and 0.9,

(b) VM Bandwidths between 0.1 and 0.5

5.4 Evaluation 107

2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of VMs (n)

C
ri

ti
ca

lit
y

D
is

tr
ib

ut
io

n
(a

ve
ra

ge
)

(a) ∀Vi : U(Vi) ∈ [0.1, 0.9]

NP
NPH

2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

Number of VMs (n)

C
ri

ti
ca

lit
y

D
is

tr
ib

ut
io

n
(a

ve
ra

ge
)

(b) ∀Vi : U(Vi) ∈ [0.1, 0.5]

NP
NPH

Figure 5.6: Average criticality distribution for the partitioning goal minimize number

of processor cores, with (NPH) and without (PH) transformation to harmonic server

periods; (a) VM bandwidths between 0.1 and 0.9, (b) VM bandwidths between 0.1

and 0.5

108 Partitioning

For practical applications, a combination of the different optimization goals might

be reasonable. It could be the case that not all critical VMs but some have to be

executed on a dedicated core. Moreover, one could first run the algorithm with

the optimization goal minimization of the number of cores and in a subsequent run

find among all solutions with this minimum the one that maximizes the criticality

distribution. Or, if the minimum number of cores is three and this means that a

quad-core processors had to be used, one could maximize the criticality distribution

for all solutions with three or four cores.

5.5 Summary

The manual partitioning of virtual machines with real-time requirements onto a

multicore platform does not guarantee optimality and does not scale with regard to

the upcoming higher number of both virtual machines and processor cores. This

thesis proposes an algorithmic solution. As a prerequisite, the partitioning problem

of mapping real-time virtual machines to a homogeneous multiprocessor architecture

was defined. Models were adapted to abstract and specify the computation time

demand of a virtual machine and the computation time supply of a shared core,

in order to analytically evaluate whether it is guaranteed that the execution time

demand of a virtual machine is satisfied. The virtual processor dimensioning keeps

the reactivity requirements of the virtual machine and exploits the freedom of design

to create harmonic periods for all virtual processors that are assigned to the same

core in order to increase the schedulable utilization.

The application of a branch-and-bound algorithm was proposed, since the realistic

small number of virtual machines enables the systematic generation and comparison

of all candidate solutions. In contrast to a manual solving, the algorithm provides

analytical correctness, which can support system certification. The algorithm’s opti-

mization goal can be configured according to two basic optimization metrics: required

number of processor cores and criticality distribution. The latter realizes a parti-

tioning that considers criticality levels. It increases the chances to be able to protect

critical virtual machines in case of an overload situation and increases the potential

to benefit from an adaptive scheduling. The partitioning algorithm either minimizes

the number of cores, maximizes the criticality distribution, or maximizes the crit-

icality distribution for a given maximum number of cores. If certification requires

that virtual machines are mapped exclusively to a dedicated core, this constraint is

enforced by the algorithm. The different outcomes were illustrated exemplarily and

evaluated with synthetic workloads.

Chapter 6

Adaptive Partitioned Hierarchical

Scheduling

Contents
6.1 Problem Statement . 110
6.2 Related Work . 112
6.3 Scheduling Architecture 114

6.3.1 Server-based Virtual Machine Scheduling 115
6.3.2 Fixed Priority Virtual Machine Scheduling 117

6.4 Adaptive Bandwidth Distribution 118
6.4.1 Distributing Structural Slack 119
6.4.2 The Algorithm and its Computational Complexity 121
6.4.3 Protection under Overload Conditions 123

6.5 Correctness of Bandwidth Distribution 126
6.5.1 Steady State: Temporal Isolation and Minimum Band-

width Guarantee . 127
6.5.2 Correctness during Mode Transitions 129
6.5.3 Correctness of Redistribution of Dynamic Slack 133
6.5.4 Handling of Multiple Mode Change Requests 140

6.6 The Case for Paravirtualization 140
6.7 Integration into Hypervisor and Operating System . . . 143
6.8 Evaluation . 144

6.8.1 Scheduling Simulator . 144
6.8.2 Execution Times . 146
6.8.3 Overhead versus Benefit: Threshold for Slack Redistribution148
6.8.4 Memory Footprint . 149
6.8.5 Paravirtualization Effort . 150
6.8.6 Comparative Evaluation . 150

6.9 Summary . 158

110 Adaptive Partitioned Hierarchical Scheduling

A partitioned multicore scheduling is proposed in this thesis, due to its advantages

over a global scheduling strategy as discussed in the last chapter, e.g., lower run-time

complexity, higher predictability, more efficient run-time scheduling, and improved

cache performance. For a partitioned scheduling, the following two sub-problems

have to be solved:

(i) partitioning: allocation of virtual machines to processor cores,

(ii) uniprocessor hierarchical scheduling on each core.

The previous chapter presented a solution for sub-problem (i). The partitioning

algorithm produces a mapping of virtual machines to processor cores that guarantees

schedulability of all virtual machines, minimizes the number of processor cores and

distributes the critical guests among the cores. This second goal is motivated by the

benefits for an adaptive scheduling technique, since the non-critical virtual machines

can benefit from unused reservations of the critical virtual machines. This chapter

presents such a technique for sub-problem (ii). The virtual machine scheduling is

based on computation time servers, which are replenished at fixed period but with

varying budget in order to implement an adaptive bandwidth management. The

use of the periodic resource model, rate monotonic scheduling, and a bandwidth

distribution mechanism that ensures a guaranteed minimum combines analyzability

at design time with adaptability at runtime.

After specifying the issues that need to be addressed (Section 6.1), we discuss

related work (Section 6.2), introduce the scheduling infrastructure (Section 6.3) and

the dynamic bandwidth distribution policy (Section 6.4), analyze the policy in order

to show its correctness (Section 6.5), make a case for paravirtualization (Section 6.6),

present the integration into system software (Section 6.7), and finally evaluate the

proposal (Section 6.8).

6.1 Problem Statement

Existing virtualization solutions for embedded systems apply a static computation

bandwidth allocation [Gu and Zhao, 2012]. Typical solutions are the allocation of

each VM to a dedicated processor core, the static precedence of a single real-time VM

per core (with the non-real-time VMs scheduled in background), or a cyclic schedule

with fixed execution time slices. The application of static resource allocation to

systems that are characterized by varying computation time demand inherently leads

to resource fragmentation. Reserved but unused bandwidth cannot be reclaimed to

6.1 Problem Statement 111

improve the performance of other VMs, but is wasted as idle time. An adaptive

management of the computation bandwidth is of great potential for hypervisor-based

systems. The two major requirements can be derived from the characteristics of the

hosted guest systems (as introduced with the motivational example of Chapter 1 and

the workload model in Section 4.1): temporal isolation and adaptability.

Temporal Isolation. Safety requires that the VMs do not interfere with each

other, especially since independently developed system of different criticality levels

are consolidated. Key requirement for the integration of real-time systems and par-

ticularly for certification is therefore temporal isolation / freedom from temporal

interference, defined in the context of this work by the following conditions:

• The timing requirements of the integrated guest systems can be validated in-

dependently.

• The hypervisor’s VM scheduling provides all guest systems sufficient compu-

tation time to meet their real-time constraints.

• Overruns within a VM provoke under no circumstances that other VMs violate

their real-time constraints (failure containment).

• The execution of a guest system is never interrupted for a longer time than

demanded by its reactivity requirements.

Adaptability. The scheduling shall respond to varying computation time de-

mand with an appropriate redistribution that reduces waste of CPU cycles (avoid-

able idle time) and increases the allocation to VMs that benefit from additional

computation time. Computation time variations are caused by mode changes (incl.

enabling/disabling) and when a guest system’s actual execution time is considerably

smaller than the reserved worst-case demand.

With the given definition of temporal isolation, these two requirements are not con-

flicting. It does not demand an entirely uninfluenced execution of the guest systems,

a degree of temporal isolation that is irreconcilable with any adaptive scheduling.

The targeted level of temporal isolation is the absence of corrupting impact between

guest systems, derived from the standard for functional safety of road vehicles ISO

26262 [ISO, 2011].

112 Adaptive Partitioned Hierarchical Scheduling

6.2 Related Work

Adaptive Resource Management for Tasks

Feedback-control algorithms for adaptive reservations [Abeni et al., 2005, Santos

et al., 2012] measure the performance of the served tasks and adjust the budgets ac-

cording to a certain control law. Khalilzad et al. introduced a hierarchical single-core

scheduling framework that modifies the budgets of periodic servers after a deadline

miss (overload situation) based on the amount of idle time [Khalilzad et al., 2012].

Block et al. presented an adaptive multiprocessor scheduling framework, which ad-

justs processor shares in order to maximize the quality of service (QoS) of soft real-

time tasks [Block et al., 2008]. In contrast, the redistribution of bandwidth in the

context of this work is triggered by the scheduled components themselves, and not

based on the observation of their performance.

Bini et al. introduced an adaptive multicore resource management for mobile

phones [Bini et al., 2011], which selects a service level for each application by solving

an integer linear programming problem. Maggio et al. proposed a game-theoretic

approach for the resource management among competing QoS-aware applications,

which decouples service level assignment and resource allocation [Maggio et al., 2013].

Applications do not have to inform the resource manager about the available service

levels, but about the start and stop time of each job.

Zabos et al. presented the integration of a spare reclamation algorithm into a mid-

dleware layer [Zabos et al., 2009], which is placed on top of a real-time OS, and not

underneath as a hypervisor. Dynamic reclamation algorithms such as GRUB [Lipari

and Baruah, 2000] or BASH [Caccamo et al., 2005] take advantage of spare band-

width when tasks do not need their WCET and distribute it in a greedy or weighted

manner, as proposed in this work.

Nogueira and Pinho proposed a dynamic scheduler for the coexistence of isolated

and non-isolated servers [Nogueira and Pinho, 2007]. An isolated server obtains a

guaranteed budget, whereas budget can be stolen from a non-isolated server. In order

to avoid the increased computational complexity of a fair distribution, the entire

slack is assigned to the currently executing server. Bernat and Burns proposed as

well a budget-stealing server-based scheduling [Bernat and Burns, 2002]. Each server

handles a single soft task and in overload situations can steal budget from the other

servers. Temporal isolation is lost and a server of low priority might receive less

bandwidth than requested.

IRIS is a resource reservation algorithm that handles overload situations by spare

6.2 Related Work 113

bandwidth allocation among hard, soft, and non-real-time tasks [Marzario et al.,

2004]. As it is the case for our approach, minimum budgets are guaranteed and the

remaining bandwidth is distributed in a fair manner among the servers. Conversely

to the proposal in this thesis, the scheduling is based on an extension of the Constant

Bandwidth Server (CBS) and EDF. In the context of the ACTORS EU project, an

adaptive reservation-based multicore CPU management for soft real-time systems

was developed, as well based on CBS and EDF [Arzen et al., 2011]. Similar to

our work, a partitioned hierarchical scheduler is proposed, however one for the OS

(implemented in Linux), handling groups of threads.

Su and Zhu proposed an elastic mixed-criticality task model and an EDF-based

uniprocessor scheduling [Su and Zhu, 2013]. Slack is passed at runtime to low-

criticality tasks based on variable periods, not on variable execution time allocations

as in our work. Anderson et al. presented the first work on server-based mixed-

criticality multicore scheduling [Anderson et al., 2009]. On each core, budget is

specified for each criticality level and consumed in parallel corresponding to the

respective level. Mollison et al. introduced the notion of higher-criticality tasks

as slack generators for lower-criticality tasks [Mollison et al., 2010]. Herman et al.

presented the first implementation of an OS’s mixed-criticality multicore scheduler

and discussed design tradeoffs [Herman et al., 2012]. Their framework reclaims

capacity lost due to WCET pessimism. All these works are based on the mixed-

criticality task model with one WCET per criticality level, which is not used in this

work as discussed in Section 4.5

Virtual Machine Scheduling

All cited approaches are concerned with the operating system’s scheduling of tasks.

In the following, related work regarding the hypervisor’s scheduling of VMs is dis-

cussed, starting with non-adaptive approaches. Bruns et al. evaluated virtualization

to consolidate subsystems of mobile devices on a single processor [Bruns et al., 2010].

The software stack consists of an L4/Fiasco microkernel with a priority-based round-

robin scheduling and a paravirtualized Linux. Crespo et al. designed XtratuM, a

hypervisor for the avionics domain with a fixed cyclic scheduling [Peiró et al., 2010].

A redesign for multicore processors was recently published [Carrascosa et al., 2013].

Sha [Sha, 2004] and Kerstan [Kerstan, 2011] proposed as well fixed cyclic scheduling

for single-core processors.

Yang et al. proposed a compositional scheduling framework for virtualization

based on the L4/Fiasco microkernel [Yang et al., 2011]. As our proposal, it is based

114 Adaptive Partitioned Hierarchical Scheduling

on servers scheduled by RM, but without slack distribution. Masrur et al. im-

plemented a fixed-priority variant of Xen’s Simple EDF scheduler [Masrur et al.,

2010]. Moreover, they proposed to schedule VMs by partitioned RM and showed

how to design a schedule for guest systems that schedule their tasks according to

the deadline monotonic policy [Masrur et al., 2011]. Cucinotta et al. examined hard

reservations and an EDF-based soft real-time scheduling policy to provide tempo-

ral isolation among I/O-intensive and CPU-intensive VMs [Cucinotta et al., 2011b].

Their implementation is based on the Linux kernel module KVM.

Lee et al. presented an adaptive compositional scheduling framework for the Xen

hypervisor [Lee et al., 2011]. They realize resource models with periodic servers

and introduce enhancements to the server design in order to increase the resource

utilization. Their work-conserving periodic server lets a lower-priority non-idle server

benefit when a high-priority server idles. Their capacity reclaiming periodic server

allows idle time of a server to be used by any other server. In contrast to this

work, their slack distribution does not consider fairness (slack is always passed to a

single VM) and they target application domains with powerful hardware and timing

requirements in the range of milliseconds (scheduling quantum of 1ms), whereas our

work targets low-performance and memory-constrained embedded hardware with

timing requirements in the sub-millisecond range. In addition, our approach includes

the redistribution in case of mode changes.

6.3 Scheduling Architecture

An adaptive hierarchical real-time scheduling technique for hypervisor-based virtu-

alization is introduced in the following. It is based on execution time servers, a fixed

priority assignment according to the Rate Monotonic policy, and an efficient algo-

rithm for the online computation of bandwidth. The hosted operating systems can

apply any scheduling algorithm for task scheduling, as long as it allows to abstract

the computation time requirements of the task set in terms of a demand-bound func-

tion, as introduced in Section 4.1.2. The scheduling architecture is depicted in Figure

6.1. In this example, four VMs are executed on two processor cores. The guest op-

erating systems apply Rate Monotonic (RM), Earliest Deadline First (EDF), and

Cyclic Executive as scheduling policies.

6.3 Scheduling Architecture 115

Core 1 Core 2

Rate
Monotonic

Rate
Monotonic

Server
for V1

Server
for V2

Server
for V3

Server
for V4

RM EDF RM Cyclic

tasks tasks tasks tasks

V1 V2 V3 V4

Hypervisor

Figure 6.1: Server-based partitioned hierarchical scheduling

6.3.1 Server-based Virtual Machine Scheduling

Servers, as introduced in Section 2.1.2, are originally a scheduling concept for hybrid

task sets of periodic and aperiodic tasks. Beyond, servers can be used to realize

virtual processors. The characteristics of a server, provision of computation time,

limited by a capacity, turn servers into an excellent abstraction of virtual processors.

Deng, Liu, and Sun (University of Illinois) presented a pioneering server-based hier-

archical real-time scheduling approach for the two levels application and task, with

multiple tasks belonging to each application and scheduled by application-specific

schedulers [Deng et al., 1996,Deng and Liu, 1997,Deng et al., 1997]. Server-based

hierarchical scheduling has been applied primarily to multiple scheduling levels within

the operating system [Goyal et al., 1996,Kuo and Li, 1998,Lipari et al., 2000,Wang

and Lin, 2000,Regehr and Stankovic, 2001, Lipari and Baruah, 2001, de Niz et al.,

2001, Saewong et al., 2002,Lipari and Bini, 2003,Davis and Burns, 2005,Davis and

Burns, 2006,Pulido et al., 2006,Zhang and Burns, 2007,Behnam et al., 2008,Asberg

et al., 2009, Inam et al., 2011].

Independent of each other, Cucinotta et al. [Cucinotta et al., 2011a], Xi et al. [Xi

et al., 2011], Yang et al. [Yang et al., 2011], and Groesbrink [Groesbrink, 2010]

were to the best of our knowledge the first to implement server-based hierarchical

scheduling on the two levels hypervisor and operating system.

116 Adaptive Partitioned Hierarchical Scheduling

Figure 6.2: Server-based scheduling of two virtual machines V1 and V2: the virtual

processors Γ1(2, 1) and Γ2(5, 2) are implemented by periodic servers

In the context of this work, each virtual processor Γi(Πi,Θi) is implemented as

a periodic server, characterized by a period and an execution time budget. At the

beginning of each period, the budget is replenished by the hypervisor. If scheduled

and therefore active, a server’s budget is used to satisfy the computation time demand

of the associated virtual machine. The budget is consumed at the rate of one per

time unit and once exhausted, the server is not ready for execution until the next

period. There is no cumulation of budget from period to period. Figure 6.2 depicts

an exemplary schedule with two virtual machines and their server budgets.

Such a server enforces a guaranteed, but bounded computation time for a VM in

a specified time span, even in the presence of overloads internal to any VM. Just as

important, it provides already the mechanism to apply an adaptive scheduling. By

varying the replenishment budgets at runtime, it is possible to increase or decrease

the computational bandwidth allocation. By discarding the remaining budget within

a server’s period, reserved but unneeded bandwidth can be withdrawn.

Figure 6.3 shows the state transition diagram for such a periodic server, relative

to the following four states:

Ready. A server that is ready to execute, however, currently not executed, is in

this state. A server is ready to execute if it has budget left for its current period.

Running. In this state, the associated VM is executing on the processor core.

Idle. In the idle state, the associated VM is executing on the processor core, but

does run only the idle task, since it finished the workload for the current period and

6.3 Scheduling Architecture 117

ready running

idledepleted

dispatch

preemption

depletionreplenishment

yielding/
depletion

workload
exhaustion

creation

Figure 6.3: State transition diagram for the periodic server

waits for the beginning of the next period.

Depleted. Once the budget of a server is exhausted, the server enters this state.

The associated VM cannot be executed before the budget is replenished.

After creation, a server enters the ready state. A server moves to the running

state once it was selected by the hypervisor’s scheduler as the highest-priority server

among the ready servers and dispatched. It may be preempted when a higher priority

server becomes ready. In this case, it enters the ready state and preserves its budget.

When the running VM finished its workload for the current period and starts the

execution of the idle task, it moves from the running state to the idle state. It may

either idle its budget away and enter the depleted state, or yield in order to move

to this state immediately (budget is set to zero). Not shown in Figure 6.3, it may

as well be preempted during the execution of the idle task and moved to the ready

state. When the budget of the server in running state is exhausted, it is moved to

the depleted state. Servers in this state wait for the replenishment of their budget at

their next period. As well not shown in the diagram: it is possible that a server in

the ready state, running state, or idle state is replenished. In these cases, the server

stays in its state.

6.3.2 Fixed Priority Virtual Machine Scheduling

In the context of this work, a partitioned virtual machine scheduling is applied, as

justified at the beginning of Chapter 5. On each core, the hypervisor schedules the

corresponding servers of the assigned guest systems by static priorities according to

the Rate Monotonic (RM) policy: the higher the request rate of a server (i.e., the

smaller the period Π), the higher its priority (priority assignment as a monotonic

118 Adaptive Partitioned Hierarchical Scheduling

function of the servers’ rates) [Liu and Layland, 1973b]. The first period of all servers

starts at the exact same time. The hypervisor manages one ready queue per core

and enforces that at each point in time the highest-priority server among those that

have budget (and are therefore ready to execute) is executed. Starvation of lower-

priority servers is nevertheless precluded, since the budget limits the execution time

of the higher-priority servers. For the same reason, a criticality-disregarding priority

assignment may be made.

Since rate monotonic is based on a fixed-priority assignment, it is characterized

by a high analyzability and predictability, even in overload situations. In case of

a dynamic-priority scheduling, it is largely unpredictable to tell which scheduled

task/VM will miss its deadline, since it is dependent on the dynamic priorities at

the time at which the overload occurs. Industry and certification authorities have

a strong preference for static scheduling algorithms such as RM [Leung and Zhao,

2005]. The major drawback of using rate monotonic as server scheduler is its low

utilization bound. This, however, can be tackled by selecting harmonic periods, as

presented in the last chapter. The schedulability of n servers is guaranteed if the

sum of the minimum utilizations is less than or equal to one:

n∑
i=1

Umin(Vi) ≤ 1 (6.1)

The overhead of VM context switches is not negligible and therefore added to the

execution time demand of the VMs. With the applied fixed-priority assignment, each

VM preempts at most one VM (VMs do not perform self-blocking and resume later).

The overhead is included by adding the time for two context switches, one at the start

and one at the completion of a VM’s execution. If a VM is preempted, the context

switch overhead is accounted for through the execution time of the preempting VM.

This approach is pessimistic but safe, since it assumes that every instance of an

executing VM causes preemption, which is not necessarily the case.

6.4 Adaptive Bandwidth Distribution

Virtual machine scheduling with fixed bandwidth allocations is inefficient for dynamic

systems and wastes CPU time. An adaptive scheduling that dynamically allocates

processor bandwidth to VMs and not statically at design time has a great poten-

tial to increase the processor utilization and reduce delays. This section introduces

such an adaptive VM scheduling, which makes spare computation time caused by

mode changes and idling of a guest system available to other VMs. The bandwidth

6.4 Adaptive Bandwidth Distribution 119

adaptation is realized by a dynamic setting of the servers’ replenishment budgets.

Their harmonic periods are always kept fixed, though, which simplifies analysis and

maintenance of schedulability. Moreover, since VMs are statically assigned to the

processor cores, bandwidth redistribution has to be handled separately for each core.

A bandwidth redistribution is considered in two situations:

I. Distribution of Structural Slack :

Events with a significant and lasting impact on the resource utilization trigger

a redistribution of the updated spare bandwidth Uspare. Those events are an

enabling or disabling of a task or entire VM, or a mode change to a mode with

differing resource demand (modes differ regarding Ulax). Both the hypervisor

or the guest system itself can trigger a mode change.

II. Distribution of Dynamic Slack :

Task execution times vary at runtime. When the actual execution time of a

task is considerably smaller than the WCET, the difference is termed dynamic

slack. Especially in the case of critical tasks, the very pessimistic WCET is

often not reached, but has to be reserved for each period. When a guest OS

does not demand the allocated share, it can yield and the hypervisor reassigns

the reserved but no longer required bandwidth, instead of wasting bandwidth

by idling.

The occurrence of these situations potentially triggers a bandwidth redistribution.

But since a redistribution incurs a certain overhead, the hypervisor evaluates whether

a potential adaptation is reasonable. The two situations differ regarding duration.

Structural changes have a long term impact and for most systems tend to be in effect

for orders of magnitude longer than the redistribution overhead. The dynamic slack

distribution is a short term measure, potentially occurring in each server period. For

this reason, the distribution is enforced in a different manner, including an expiration

mechanism, which is explained in detail in Section 6.5.3. Moreover, the redistribution

of dynamic slack is performed only if the slack compensates the costs, which can be

determined offline for each specific hardware platform and used at runtime as a

threshold (see Section 6.8.3).

6.4.1 Distributing Structural Slack

The adaptive resource management is implemented by a dynamic modification of

the bandwidth allocations of the servers. The server period Πk is fixed, whereas the

120 Adaptive Partitioned Hierarchical Scheduling

capacity Θk is set dynamically in an adaptive manner. The actual bandwidth distri-

bution among the VMs is carried out in two steps. First, the minimum bandwidth

requirement Umin is allocated to each VM. Second, the spare bandwidth Uspare is

distributed with the objective to satisfy Ulax of the active VMs as much as possi-

ble. Consequently, a minimum bandwidth is guaranteed for each VM and additional

bandwidth might be assigned. Since VMs are statically assigned to the processor

cores and scheduled in a partitioned manner, spare bandwidth has to be handled

separately for each core. The spare bandwidth of a core that hosts n VMs at point

in time t is equal to:

Uspare(t) = Ulub −
∑
Vi∈V ′

Umin(Vi) = 1−
∑
Vi∈V ′

Umin(Vi) (6.2)

Ulub is equal to one because of the harmonic relation between the server periods.

Uspare is dependent on the point in time t, since a disabled VM has a Umin of zero.

The calculation of Uspare is therefore subject to the set of currently enabled VMs,

denoted as V ′.

The distribution policy considers two VM characteristics for determining the VM-

specific spare bandwidth shares, namely criticality level and weight, in this order.

The criticality level χ is the dominant factor and the bandwidth is assigned in a

greedy manner in order of decreasing criticality. The highest criticality level obtains

as much bandwidth as possible, limited by either the distributable amount Uspare or

the maximum bandwidth requirement of its VMs. Typically, the higher the criticality

of a VM, the more likely a large Umin and a low Uspare, since critical systems are

rarely quality of service driven. If there is spare bandwidth left, the next lower

criticality level is served and so on. The weights influence the bandwidth assignment

among VMs of the same criticality level, since a greedy strategy lacks fairness. The

weights are normalized considering the current set of VMs V ′ among which Uspare
will be distributed:

ŵ(Vi) =
w(Vi)∑

Vj∈V ′ w(Vj)
(6.3)

Assuming the bandwidth Uspare is to be distributed among VMs of similar criti-

cality level, the VM-specific shares Uadd are set to:

Uadd(Vi) =

Ulax if ŵ(Vi) · Uspare(t) > Ulax

ŵ(Vi) · Uspare(t) otherwise
(6.4)

This results in a total bandwidth assignment to a specific VM of:

U(Vi) = Umin(Vi) + Uadd(Vi) (6.5)

6.4 Adaptive Bandwidth Distribution 121

This value determines the new server bandwidth and the replenished budget fol-

lows as Θi = U(Vi) ·Πi.

The formula ŵ(Vi) · Uspare may result in a value of Uadd greater than Ulax for

some VMs. In this case, to avoid a total bandwidth assignment that exceeds the

VM’s maximum, their Uadd is truncated to Ulax, and the remaining bandwidth is

distributed among the other VMs in the same proportion of their weights. The ad-

ditional bandwidth distribution may result in more VMs reaching their Ulax limit,

causing again truncations. This process may continue until there is no remaining

bandwidth, resulting in the iterative algorithms for elastic bandwidth management

proposed in [Buttazzo et al., 2002] and [Marau et al., 2011]. These iterative algo-

rithms are characterized by a significant overhead and execution time variations,

which are problematic for real-time systems.

The next section proposes a new non-iterative algorithm with significant benefits

regarding overhead. The algorithm takes advantage of the fact that, if any VM will

reach its Ulax limit by using Equation 6.4, then the first to reach that limit will be the

VM with the lowest value of Ulax(Vi)/ŵ(Vi). By setting the Uadd values for all VMs,

starting with the VM with lowest Ulax(Vi)/ŵ(Vi) and ending with the largest, it is

guaranteed that the first m VMs (m may be 0) will reach their Ulax limit, while all

subsequent VMs will not reach this limit. A single iteration over all VMs is sufficient

to achieve the same bandwidth distribution as the previously proposed algorithms

with several iterations.

The use of Ulub when computing Uspare guarantees that schedulability of the

VMs is maintained. An important aspect to consider is when to apply the capacity

changes that result from the bandwidth redistribution. The enforcement policy and

its analysis is presented in Section 6.5.

6.4.2 The Algorithm and its Computational Complexity

Algorithm 3 presents the pseudocode of the proposed bandwidth distribution. As just

motivated, the VM set is sorted according to increasing Ulax(Vi)/ŵ(Vi). First, Uspare
is calculated based on Equation 6.2. In the following, the algorithm iterates over

all criticality levels in descending order to implement the greedy strategy regarding

criticality levels. If no Uspare is left after the distribution to the next higher criticality

level or there was none at all, the algorithm terminates (line 4).

Only VMs of the considered criticality level, which are enabled (not depicted),

and could benefit from additional bandwidth are considered (line 6) and added to the

set V [χ]. Next, the sum of the weights (ŵΣ) and the sum of the utilization laxities

122 Adaptive Partitioned Hierarchical Scheduling

(UΣ
lax) is computed for this set (lines 8-9). If the available Uspare exceeds UΣ

lax, all

VMs can be satisfied immediately (lines 10-12). Otherwise, the algorithm iterates

over all VMs and assigns utilization shares based on the normalized weights (lines

14-15). Uadd is bounded to Ulax (lines 16-17). If it has to be truncated, the sum of

the weights and of the utilization laxities has to be updated (lines 18-19).

Algorithm 3 Bandwidth Distribution
Require: V (sorted regarding increasing Ulax/ŵ)

1: Uspare ← compute_u_spare(V)

2: for all χ (descending order) do

3: if Uspare = 0 then

4: exit()

5: ŵΣ[χ]← 0, UΣ
lax[χ]← 0

6: V [χ]← {Vi|Vi ∈ V ∧ χ(Vi) = χ ∧ Ulax(Vi) > 0}
7: for all Vi ∈ V [χ] do

8: ŵΣ[χ]← ŵΣ[χ] + ŵ(Vi)

9: UΣ
lax[χ]← UΣ

lax[χ] + Ulax(Vi)

10: if Uspare ≥ UΣ
lax[χ] then

11: for all Vi ∈ V [χ] do Uadd(Vi)← Ulax(Vi)

12: Uspare ← Uspare − UΣ
lax[χ]

13: else

14: for all Vi ∈ V [χ] do

15: Uadd(Vi)← Uspare · ŵ(Vi)/ŵ
Σ[χ]

16: if Uadd(Vi) > Ulax(Vi) then

17: Uadd(Vi) = Ulax(Vi)

18: ŵΣ[χ]← ŵΣ[χ]− ŵ(Vi)

19: Uspare ← Uspare − Uadd(Vi)
20: exit()

The basic bandwidth distribution for n virtual machines based on Equation 6.4 has

a computational complexity of O(n). But since the algorithm requires the input VM

set to be sorted, the computational complexity becomes O(n · log n). Nevertheless,

note that an initial sorting can be done offline. The sorting needs to be repeated

whenever the utilization laxity Ulax of one or multiple VMs changes due to a mode

change (weights are set by the system designer and do not change at runtime).

In the best case, which is expected to be the most frequent case (it takes for

example place when the mode change is triggered by the guest system itself), only

6.4 Adaptive Bandwidth Distribution 123

the parameters of a single VM differ to the previous execution of the algorithm.

Consequently, the algorithm just has to correct the previous order, i.e., insert this

VM into the sorted order. This can be done in a single iteration over all VMs,

resulting in a computational complexity of O(n). In the worst case, the hypervisor

wants to perform a mode change for all VMs at the exact same time, which requires

a re-sorting of the entire VM set with a computational complexity of O(n · log n).

However, note that the number of VMs assigned to the same core is determining,

not the total number of VMs executed on the multicore processor.

6.4.3 Protection under Overload Conditions

This chapter introduced so far a scheduling framework that is adaptive regarding

mode changes and execution time variations. By adapting the bandwidth according

to the current load of the guest systems, the CPU utilization is increased. A band-

width redistribution is performed as well in a very specific load situation, namely

when an unforeseen overload of a critical guest results in an overload of the entire

system. Such an overload might take place if the determined worst-case demand is

wrong, which is not only theoretically possible due to the complexity of worst-case

analysis for modern embedded software and processor architectures.

Overload handling is motivated by the Criticality Inversion Problem [de Niz et al.,

2009], as already discussed in Section 5.3.2. This problem occurs if a critical VM

requires more computation time than provided by its worst-case reservation and is

stopped to allow a non-critical VM to run, resulting in a deadline miss for a task

of the critical VM. Note that the VM scheduler as introduced so far produces this

behavior: the worst-case reservations are enforced by the hypervisor, even in case

of a run-time overload of a critical guest. The VM scheduling does not consider

criticality levels, but schedules according to priorities based on the periods.

By definition of criticality as severity of failure, it is more important to prevent

a deadline miss for a critical VM by continuing its execution, instead of protecting

non-critical VMs. However, this is true only if computation time of a non-critical

VM can be stolen; there is no preference among VMs of same criticality. If only the

requirements of either a critical VM or a non-critical VM can be satisfied, a criticality

inversion precluding scheduling has to fulfill the requirements of the former.

The considered overload situation is defined as follows: a critical guest system ran

out of budget (both Umin and Uadd) in the current period of its virtual processor, but

did not finish the execution of critical tasks. This can only happen if the determined

worst-case execution time is incorrect, i.e., too small, resulting in a value for Umin

124 Adaptive Partitioned Hierarchical Scheduling

that is too small. An overload is only given if the workload that specifies the minimum

bandwidth is not finished and not related to an unsatisfied utilization laxity Ulax.

An overload does not trigger a redistribution of the spare bandwidth as intro-

duced in the previous section. Instead of considering all VMs and obtaining a higher

bandwidth for the overloaded guest in its next period, an immediate allocation of ad-

ditional computation time is attempted. We differentiate between two cases, namely

whether the guest system that would be dispatched next by the hypervisor’s sched-

uler is critical itself or non-critical. These two cases are explained in the following

with the example of Figure 6.4. Assume two VMs, V1 is executed for two time units

every five time units, V2 is executed for three time units with the same period of

five. From t = 0 until t = 5, the normal non-overloaded scheduling is depicted. The

hatched rectangle in V2’s schedule illustrates that this execution time is based on the

additional bandwidth Uadd, whereas the grey rectangles are based on Umin.

Assume now an overload of V1 at point in time seven: it received already its

minimum bandwidth, could however not finish the execution of its critical tasks.

According to the normal schedule, the hypervisor would perform a VM context switch

to V2 and we assume that V2 would be executed for a time slice of length l. That is

to say, the hypervisor’s scheduler would become active again in l time units, because

either V2 ran out of its budget or because it is preempted by a VM with higher

scheduling priority.

In case of the next-to-dispatch VM V2 being a non-critical guest (Figure 6.4(a)),

the overloaded critical guest V1 is executed for this time slice of length l instead of V2.

The hypervisor withdraws the amount l of V2’s budget and continues the execution

of V1. The black rectangle illustrates the computation time that was additionally

assigned to V1 as a reaction to the overload. The overloaded VM might use the

entire time span for which V2 would normally be executed. If this is not necessary,

the overloaded VM yields and the non-critical VM is executed for the remaining

fraction (not depicted in Figure 6.4). Note, since it does not occur in this simple

example with only two VMs (V2 is not preempted): budget reallocation as a reaction

to an overload considers always individual time slices of the schedule, not the entire

budget of a virtual processor.

In case of a critical guest being up next (Figure 6.4(b)), this drastic measure is

not possible, since we have to avoid that an overload of a guest corrupts the correct

execution of another critical guest. However, it is possible to execute a critical guest

only for its bandwidth minimum Umin. Instead of assigning an additional bandwidth

Uadd to enable it to provide better results, it is more appropriate to protect the basic

6.4 Adaptive Bandwidth Distribution 125

0 2 4 6 8 10

V1(χ = HI)

V2(χ = LO)

�

(a)

0 2 4 6 8 10

V1(χ = HI)

V2(χ = HI)

�

(b)

Figure 6.4: Example of overload reaction: overload of V1 at t = 7; (a) next-to-

dispatch VM V2 is non-critical; (b) next-to-dispatch VM V2 is critical

126 Adaptive Partitioned Hierarchical Scheduling

functionality of the overloaded guest by passing the additional bandwidth. Therefore,

the overloaded guest V1 is executed instead of V2, but only for V2’s execution time

that is based on Uadd (depicted by the hatched rectangle). V1 obtains an additional

execution time of l time units, if l is smaller than or equal to Π2·Uadd(V2), which is the

execution time that results from Uadd and can therefore be withdrawn. Otherwise,

V1 gets only Π2 · Uadd(V2) additional computation time units and V2 is executed for

the remaining l −Π2 · Uadd(V2) time units.

If the allocation of this additional computation time slice did not solve the overload

condition, the next scheduled time slice is handled in the same way. The system

designer might set a limit in terms of a time span for the continuing of this overload

reaction, in order to avoid the system to be in this mode for indeterminate duration.

Expected, however, is that the guest operating system signals a successfully corrected

or unwinnable (deadline miss occurred already) situation. It is not possible to handle

multiple overloads simultaneously.

The idea of this overload reaction is to help the overloaded guest immediately

by transferring the entire or partial next schedule slice. Criticality inversion cannot

occur anymore, since the overloaded critical guest is executed instead of the non-

critical guest. The reallocation of bandwidth from another critical guest is safe

because only the additional bandwidth Uadd is touched. Schedulability is based

on the minimum bandwidth Umin, which is still guaranteed. It is as well safe to

transfer execution time of the giving guest before it is executed, since it just has to

be guaranteed that the minimum bandwidth was provided at the end of the period.

There is no benefit from providing it early.

6.5 Correctness of Bandwidth Distribution

In this section, we show that the proposed adaptive bandwidth management is safe,

i.e., is characterized by the service guarantee defined as follows:

Theorem 6.5.1. Service Guarantee. Let Θk
i denote the computation time allo-

cation for VM Vi at time (k − 1) · Ti (kth instance). Given a set of periodic servers

adaptively maintained by the presented bandwidth management policy: all servers

receive in each instance a computation time allocation of at least Umin(Vi) ·Πi:

∀Vi : ∀k : Θk
i ≥ Umin(Vi) ·Πi (6.6)

Note, the theorem is about the allocation at the beginning of the instance. A

guest might voluntarily yield and reduce by itself the computation time for a specific

instance when this is safe (because the deadlines were already met).

6.5 Correctness of Bandwidth Distribution 127

The next section shows that this theorem is true for the steady state. The fol-

lowing two sections present policies for mode change enforcement and dynamic slack

passing that keep correctness as well during the transition phase.

6.5.1 Steady State: Temporal Isolation and Minimum Bandwidth
Guarantee

In Section 6.1, temporal isolation was introduced as a key requirement for hypervisor-

based consolidation of real-time systems and their certification. The presented com-

putation bandwidth management approach fulfills this level of temporal isolation:

• The timing requirements of the integrated guest systems can be validated inde-

pendently.

As noted in Section 4.2, the design of the periodic server is based only on the

characteristics of the associated guest system. The selection of the periods

according to harmonic relations considers exclusively server dimensionings for

which schedulability can be derived directly from the temporal interface of the

guest system.

• The hypervisor’s VM scheduling provides all guest systems sufficient computa-

tion time in order to meet their real-time constraints.

Schedulability is enforced by the appropriate server design (the server’s supply

bound function is equal or greater than the guest’s demand bound function for

all t, see Section 4.2) and the partitioning algorithm (see Chapter 5), which

guarantees to produce a schedulable mapping, i.e., with n VMs assigned to a

specific core:
n∑
i=1

Umin(Vi) ≤ 1.

The hypervisor’s scheduler ensures by the correct maintenance of all servers

that each guest system receives its required computation bandwidth share. The

specified minimum bandwidth allocation is guaranteed for all VMs. Distributed

dynamically is only the spare bandwidth that remains after subtracting the

Umin of all VMs.

The online bandwidth allocation for a VM Vi is realized as an addition of

a dynamic part (Uadd(Vi)) to a static part (Umin(Vi)). Algorithm 3 com-

putes under all circumstances for all VMs a value for Uadd(Vi) that satisfies

0 ≤ Uadd(Vi) ≤ Ulax(Vi). The upper bound is a direct implication of Equation

6.4. The lower bound is true since the multiplication of two non-negative factors

128 Adaptive Partitioned Hierarchical Scheduling

(Uspare and normalized weight ŵ(Vi)/ŵ
Σ[χ]) results in a non-negative number.

From an implementation perspective, Umin(Vi) and Uadd(Vi) are realized as

different parameters in the VM control block and only the latter is modified

at runtime. It is therefore precluded that the allocated bandwidth falls below

Umin(Vi), implying that an execution time budget of at least Θi = Umin(Vi) ·Πi

is allocated every instance, as defined by Theorem 6.5.1. This minimum bud-

get is not touched by the dynamic bandwidth management. The adaptive

bandwidth distribution might just add budget.

Note, a guest might voluntarily yield and reduce by itself the computation time

for a specific instance, which is analyzed in Section 6.5.3.

The combination of correct determination of Umin, a partitioning that ensures∑n
i=1 Umin(Vi) ≤ 1, and a bandwidth distribution algorithm that produces for

each VM a U(Vi) ≥ Umin with
∑n

i=1 U(Vi) ≤ 1 guarantees that all VMs receive

sufficient computation time to meet their real-time requirements.

• Overruns within a VM provoke under no circumstances that other VMs violate

their timing requirements, since a VM is never executed if the associated server

ran out of budget.

Based on the appropriate setting of the programmable interval timer, the de-

pletion of a server’s budget leads immediately to an interruption of the guest

system and the execution of the hypervisor’s scheduler. Exception is the pre-

vention of criticality inversion: in this case the overrun of a critical VM provokes

that a non-critical VM does not receive sufficient budget, explicitly desired.

• The execution of a guest system is never interrupted for a longer time than its

reactivity requirements demand.

The selection of the server dimensioning as part of the partitioning algorithm

considers exclusively solutions that do not violate the largest affordable black-

out phase, as introduced in Section 5.3.1.

The combination of the provided degree of temporal isolation and the guaran-

teed minimum bandwidth allocations ensures the correct execution of the guests in

terms of their timing constraints, independent from the execution of other VMs on

the same core. Therefore, these guaranteed minimum bandwidths and the described

temporal isolation are the basis for both the schedulability analysis and a poten-

tial certification. An actual certification requires the proper determination (or safe

overestimation) of the minimum bandwidths in due consideration of the inter-core in-

terferences through shared memory and bus interference. Very pessimistic minimum

6.5 Correctness of Bandwidth Distribution 129

bandwidths can be expected if these interferences are considered, but the presented

approach has the benefit of reclaiming unused capacity at runtime, thus making an

efficient use of the processor even in such a situation.

So far, correctness was shown for the steady state. The next section covers cor-

rectness of the mode transition phase and defines a policy that leads to safe mode

transitions, guaranteeing the minimum bandwidths in this phase as well.

6.5.2 Correctness during Mode Transitions

A resource management for critical systems must be safe and must guarantee to

fulfill the computation time requirements of the hosted guest systems at all times,

including the mode transition phase. This section shows how mode changes are

enforced in order to allocate a bandwidth of at least Umin to all VMs as well during

the instances that are affected by the mode change.

Performing each mode change immediately is not an option, as it might cause

timing problems. Consider an example with two VMs of same criticality:

• V1 with Umin(V1) = 1/3, Ulax(V1)M1 = 0, Ulax(V1)M2 = 2/3 and a mode-

independent weight of ŵ = 1/3

• V2 with Umin(V2) = 1/6, Ulax(V2) = 5/6, ŵ = 2/3

Assumed that V1 is first in mode M1 in which it cannot benefit from additional

computation time (Ulax(V1)M1 = 0), the spare bandwidth of 3/6 is given entirely

to V2, resulting in a budget of 1 for V1 and 4 for V2 at point of time zero (see

Figure 6.5). The hatched rectangles illustrates that this execution time is based on

the additional bandwidth Uadd, whereas the grey rectangles are based on Umin. V1

requests a mode change from M1 to M2 at point in time 4. In this mode, it receives

one third of Uspare, leading to a budget of two time slices per period and reducing

the allocation to V2 to three time slices per period. However, V2 received a budget

of four time slices for its current instance, based on the previous situation. A forced

reduction of the budget during an instance by the hypervisor is not an option, as

it might cause consistency problems for the guest system. A guest might have to

perform an internal mode change in order to function correctly with the reduced

bandwidth allocation. Performing V1’s mode change immediately would result in a

total allocation of more computation time than available on the processor.

In the following, the different cases of adaption are analyzed in detail one after

the other. For each case, the transition policy is introduced and it is shown that

130 Adaptive Partitioned Hierarchical Scheduling

0 2 4 6

V1

V2

mcr

Figure 6.5: Mode change request of V1 at t = 4: immediate mode change leads to

overallocation

each VM receives the minimum allocation as well during the transition phase.

Case 1: VM is enabled

In order to avoid the necessity of online acceptance tests, the partitioning algo-

rithm produces only partitions with guaranteed schedulability for the case that all

VMs are enabled:
n∑
i=1

Umin(Vi) ≤ 1.

It is therefore not possible that the enabling of a VM leads to a violation of the

service guarantee.

Transition Policy: Without loss of generality, assume that V1 was disabled before

and is now enabled. This results in a new value for Uspare, since Umin(V1) has to be

subtracted. Consequently, Uadd is newly computed according to Algorithm 3 for all

VMs. The enabled VM is activated at the end of the last finishing instance of all

currently enabled VMs, as depicted by an example in Figure 6.6. At this point in

time, all other instances end as well, based on the harmonic relationship: all smaller

periods divide the longest period, so a new hyperperiod starts. From this point on,

all VMs receive the new allocation, but there is no need to enforce the new (smaller)

allocation for any VM before this point. This transition policy is safe, since there is

no situation in which some VMs receive the old allocation and others receive already

the new allocation. In addition, it can be applied to enable multiple VMs at the

same time.

6.5 Correctness of Bandwidth Distribution 131

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

V1

V2

V3

V4

mcr

Figure 6.6: Case 1: request to enable V1 at t = 1, activation at t = 16

Case 2: VM is disabled

Transition Policy: When a VM is disabled, its impact lasts for the entire length of

its current instance. Figure 6.7 depicts an example with the request to disable V2 at

point in time t = 14. The released bandwidth can be used to provide the other VMs

additional bandwidth, however starting not before the end of V2’s instance. Again,

there is no situation in which some VMs receive the old allocation and others receive

already the new allocation and therefore this transition policy is safe.

Case 3: VM Mode Change

This case deals with the situation that a VM changes to a mode with a differing

Ulax. The set of enabled VMs does not change.

Transition Policy: A mode change of a VM invokes the bandwidth distribution

algorithm, with potentially new Uadd values. Since the spare bandwidth is distributed

in a greedy manner in order of decreasing criticality, a mode change of a specific VM

cannot result in new Uadd values for all VMs of higher criticality, but just for VMs of

same and lower criticality. After the computation of the new distribution, the new

allocations are activated comparably to the introduced policies for the enabling and

disabling of a VM. In case of a change to a mode with a higher utilization laxity

Ulax, the higher allocation is activated at the end of the last finishing instance of

all currently enabled VMs of same or lower criticality. From this point on, all VMs

receive the new allocation. An example is given in Figure 6.8.

132 Adaptive Partitioned Hierarchical Scheduling

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

V1

V2

V3

mcr

Figure 6.7: Case 2: request to disable V2 at t = 14, activation at t = 16 (end of V2’s

instance)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

V1(χ = HI)

V2(χ = LO)

V3(χ = LO)

mcr

Figure 6.8: Case 3: mode change request of V2 at t = 3 (from a mode with Ulax(V2) =

0 to a mode with Ulax(V2) = 0.125; assumed is a higher weight of V2 compared to

V3): the allocation to V1 of higher criticality is unchanged, V2’s larger allocation is

activated at the end of V3’s instance (V3’s allocation is reduced at the same point in

time)

6.5 Correctness of Bandwidth Distribution 133

In case of a change to a mode with a lower utilization laxity, the new allocation

is activated at the end of the current instance. VMs of same or lower criticality

receive their potentially larger allocation with start of their next instance, but not

before the end of the current instance of the mode-changing VM. In both cases, this

transition policy is safe, since there is no situation in which some VMs receive the

old allocation and others receive already the new allocation.

6.5.3 Correctness of Redistribution of Dynamic Slack

The just discussed mode changes are handled in a safe manner by phasing out the old

allocations, so that there is no situation in which old allocations and new allocations

are active at the same time. We have seen before that both the old distribution

and the new distribution are safe, guaranteed by the distribution algorithm. This is

an appropriate solution for mode changes, which happen with an inter-arrival time

of multiple periods. Moreover, this policy avoids a forced reduction of the budget

during an active instance, which is likely to cause problems for the guest system.

However, we cannot apply the same policy to the distribution of dynamic slack.

First, we do not have to delay. We delayed the activation of the smaller budget

in the case of a redistribution on mode change to the beginning of the next period,

since a forced reduction of the budget during an instance might cause inconsistencies.

But this is not true in the case of a yield, since the reduction takes place explicitly

and intentionally by the affected guest. Second, the passing of dynamic slack is a

punctual change that has to be reverted with the start of the next instance of the

giving VM. Therefore, it does not make any sense to delay the redistribution to the

end of the current instance of the giving VM. Dynamic slack is characterized by a

limited validity duration, as explained with the example of Figure 6.9.

Assume that V1 is first in a mode in which it cannot benefit from additional

bandwidth (UM1
lax (V1) = 0) and receives an allocation according to its Umin(V1) =

1/2. V2 receives an allocation according to Umin(V2) = 1/6 plus Uadd(V2) = 2/6. At

point in time t = 7, V1 requests a mode change, we assume to a mode in which it

can benefit from additional bandwidth (UM2
lax (V1) = 1/2). In addition, we assume

that the weight of V1 is zero, so V1 does not receive any structural slack. This mode

change is implemented at the end of V2’s current instance, as introduced previously.

At point in time t = 8, V2 yields and passes two time units of dynamic slack to V1.

V1 cannot use it in this moment, but might keep it for the next instance (after the

already scheduled mode change). In this case, however, V2 is not scheduled again

before t = 17, since it has a lower priority than V1. For its period from t = 12 to

134 Adaptive Partitioned Hierarchical Scheduling

0 2 4 6 8 10 12 14 16 18

V1

V2

mcr

+2

Figure 6.9: Limited validity duration of dynamic slack: timing violation due to use

of dynamic slack later than the end of the period of the giving virtual machine

t = 18, V2 does therefore not receive the correct allocation of 3/6, but only 1/6. The

time interval 12 ≤ t ≤ 18 is overallocated: V1 received 5/6 (it received dynamic slack

and did not use it before) and V2 received 3/6.

To prevent this kind of overallocation, received dynamic slack can only be used

until the end of the instance of the giving VM. But the use of dynamic slack has

to be restricted even more, as the example of Figure 6.10 makes clear. Subfigure

6.10 (a) depicts the schedule without yield. V3 is the only critical VM and receives

therefore the entire Uspare, leading to a large additional bandwidth of Uadd(V3) =

14/24. Moreover, we assume that V2 cannot and that V1 can benefit from additional

bandwidth and would actually fully utilize the processor if possible (Ulax(V2) =

0, Ulax(V1) = 6/8). In Subfigure 6.10 (b), V3 yields at point in time t = 3, generating

a slack of 14, which is passed completely to V1. By consequence, V2 is not executed

at all within its period from t = 8 to t = 16 and misses its deadlines.

For this erratic situation to occur, slack has to be passed from a low-priority VM

to a high-priority VM, with the VM of intermediate priority suffering. While the

14 execution time slices were not critical for the VM of intermediate priority V2 as

long as executed with a lower priority by V3, they prevent V2 from being executed

when executed with a higher priority by V1. The interference of V2 by V1 causes

the timing violation, which becomes clear when applying Audsley et al.’s response

time analysis [Audsley et al., 1991]. According to this method, the longest response

time Ri of a periodic schedulable entity is given by the sum of its own computation

6.5 Correctness of Bandwidth Distribution 135

0 2 4 6 8 10 12 14 16 18 20 22 24

V1(χ = LO)

V2(χ = LO)

V3(χ = HI)

(a) Without yield.

0 2 4 6 8 10 12 14 16 18 20 22 24

V1(χ = LO)

V2(χ = LO)

V3(χ = HI)
+14

(b) With yield and slack passing (unsafe).

0 2 4 6 8 10 12 14 16 18 20 22 24

V1(χ = LO)

V2(χ = LO)

V3(χ = HI)
+14

(c) With yield and slack passing and slack expiry time (safe).

Figure 6.10: Limited validity duration of dynamic slack: timing violation of VM of

intermediate priority due to use of dynamic slack later than the end of the instance

of the receiving VM (example: Umin(V1) = 1/4, Ulax(V1) = 3/4, Umin(V2) = 1/8,

Ulax(V2) = 0, Umin(V3) = 1/24, Ulax(V3) = 23/24)

136 Adaptive Partitioned Hierarchical Scheduling

time (in our case Θi) and the interference Ii caused by preempting entities of higher

priority. For schedulability, this response time must be not greater than the period

Πi (assumed is a task ordering by decreasing priority: i < j ⇔ Πi < Πj):

Ri = Θi + Ii = Θi +

i−1∑
j=1

⌈
Ri
Πj

⌉
Θj [Audsley et al., 1991]

The passing of dynamic slack from V3 to V1 over V2’s head increased the inter-

ference time I2 and caused the timing violation. We obtain the following response

time for V2’s second period:

R2 = Θ2 + I2 = 1 + 14 � 8 = Π2

To preclude such timing violations, dynamic slack obtains an expiry time, which is

communicated to the receiving VM with the notice that dynamic slack was passed.

In the following, Vgiving refers to the slack releasing VM (dgiving to its absolute

deadline), Vreceiving refers to the slack receiving VM, and Vintermediate refers to a VM

with a priority in-between these two VMs. The expiry time is defined as (with p

being the priority of a VM: the priority is based on Πi according to RM, with the

VM index as a tie breaker, so that two VMs do not have the same priority):

texpiry = min{dgiving, dintermediate}
with dintermediate = min{di|preceiving < pi < pgiving, }

(6.7)

Note that texpiry= dgiving if there is no intermediate task between the receiving

and the giving VM.

Dynamic slack is distributed in the weighted manner as introduced in Section

6.4.1, but differs from the distribution of structural slack in this expiration mech-

anism. A guest system can receive slack from multiple other guests with differing

expiry times. Both hypervisor and operating system have to keep track of this.

In the following, we show that this dynamic slack distribution is safe. Figure

6.11 shows the different classes of VMs according to their priority relative to the

slack-giving VM and slack-receiving VM for the case that the receiving VM is of

higher priority. All VMs fall into one of these five categories. We are going to show

that the passing of slack is safe according to Theorem 6.5.1 for all of them. This

categorization assumes that the entire slack is passed to a single receiving VM. If

fractions of slack are passed to multiple receiving VMs, or if a VM receives slack

from multiple giving VMs, the situation can be analyzed as multiple individual slack

transfers from one VM to another VM.

6.5 Correctness of Bandwidth Distribution 137

slack increasing
priority

Figure 6.11: Categorization of all VMs based on priority relative to giving virtual

machine and receiving virtual machine for the case that Vgiving is of lower priority

Class I: The VMs of higher priority than the receiving VM are safe, since

there execution is uninfluenced from the slack passing: the interference time is

unchanged.

Class II: The receiving VM itself is safe, since its interference time is unchanged

and it gets more execution time than planned and required to meet its dead-

lines.

Class III: The VMs with a lower priority than the receiving VM, but a higher

priority than the giving VM (intermediate priority) are safe due to the expiry

time according to Equation 6.7, which is not greater than the smallest time until

the end of the current instance of all VMs of intermediate priority. Note that

multiple instances are executed within the considered instance of the giving

VM, since VMs of intermediate priority have a smaller period than the giving

VM and all periods are harmonic. The first instance within the instance of the

giving VM is safe, since it completed already, otherwise the lower-priority giving

VM would not be executed and could not yield. It is crucial that the hypervisor

starts the first instance of all VMs at the exact same time t = 0, as denoted in

Section 6.3.2, as it is otherwise not guaranteed that the first instance completed

already, as illustrated in Figure 6.12. The subsequent instances are safe, since

they are not influenced by the slack passing due to the limited validity of the

slack: the slack expired with the first end of the current instance of all VMs of

intermediate priority. This is depicted in Figure 6.10 (c): the slack expires at

t = 8 and can therefore not block the second or third instance of V2. This is

safe, however, less slack can be used by the receiving VM.

Class IV: The giving VM is safe: it yielded by its own choice since it completed

its execution in the current instance. The next instance is not influenced.

138 Adaptive Partitioned Hierarchical Scheduling

0 2 4 6 8 10 12 14 16

V1(U = 1/4)

V2(U = 4/8)

V3(U = 4/16)

�

+3

(a) Unsynchronized: deadline miss of V2.

0 2 4 6 8 10 12 14 16

V1(U = 1/4)

V2(U = 4/8)

V3(U = 4/16)
+3

(b) Synchronized.

Figure 6.12: Need to activate virtual machines in a synchronized manner (fractions

denote Θ and Π)

Class V: The VMs of lower priority than the giving VM are safe, since their

interference time is unchanged. It does not make a difference to them whether

they are interfered by the giving VM or the receiving VM (both of higher

priority).

Next, we analyze the safeness according to Theorem 6.5.1 for slack passing in the

other direction, i.e., the receiving VM is of lower priority than the giving VM. Figure

6.13 depicts the different classes of VMs according to their priority relative to the

slack-giving VM and slack-receiving VM and we show that the passing of slack is

safe for all of them.

Class I: The VMs of higher priority than the giving VM are safe, since there

execution is uninfluenced from the slack passing: the interference time is un-

6.5 Correctness of Bandwidth Distribution 139

slack increasing
priority

Figure 6.13: Categorization of all virtual machines based on priority relative to giving

virtual machine and receiving virtual machine for the case that Vgiving is of higher

priority

changed.

Class II: The giving VM is safe: it yielded by its own choice since it completed

its execution in the current instance. The next instance is not influenced.

Class III: The VMs with a lower priority than the giving VM, but a higher

priority than the receiving VM are safe, since their interference time is reduced.

Class IV: The receiving VM itself is safe, since its interference time is reduced

due to the smaller execution time of the giving VM and it gets more execution

time than planned and required to meet its deadlines.

Class V: The VMs of lower priority than the receiving VM are safe, since their

interference time is unchanged. It does not make a difference to them whether

they are interfered by the giving VM or the receiving VM (both of higher

priority).

By consequence, it was shown that the slack passing policy is safe for all VMs in

both cases, slack passing to a VM of higher priority and to a VM of lower priority.

The remaining case slack passing to a VM of same priority does not exist, since the

VM index is used as a tiebreaker for VMs of equal period.

Important prerequisite, the yield of a VM keeps the general schedulability of the

VM set. Baruah and Burns defined a schedulability test as sustainable if any system

deemed schedulable remains schedulable when the parameters of one or more individ-

ual job(s) are changed, among others, by decreased execution requirements [Baruah

and Burns, 2006, Burns and Baruah, 2008]. In addition, they showed that the

utilization-based schedulability analysis for fixed-priority scheduling by Liu and Lay-

land [Liu and Layland, 1973a] and especially as well the one considering harmonic

140 Adaptive Partitioned Hierarchical Scheduling

relations by Kuo and Mok [Kuo and Mok, 1991] are in fact sustainable. This means

that a set of servers that are scheduled by RM and passed the schedulability test,

cannot become unschedulable by a yield of a VM (i.e., a reduction of its execution

requirements).

6.5.4 Handling of Multiple Mode Change Requests

As mode changes are not performed immediately upon mode change request, a mode

change request might occur while a mode change is still pending. This section intro-

duces how multiple mode change requests are handled. The request to perform mode

changes for multiple VMs typically occurs when the controlled system enters a differ-

ent state, e.g., a different operational mode or stand-by mode. This is no problem,

since the bandwidth distribution algorithm can handle resource requirement changes

of multiple VMs.

If a guest requests a mode change before the hypervisor enforced the new al-

location resulting from a pending mode change of the same guest, the first mode

change request is discarded and a new allocation based on the second mode change

is enforced. If mode changes to a mode with a greater Ulax or to enable the VM are

requested for two or more different VMs, they are all performed at the same point

in time, i.e., the end of the last finishing instance of all currently active instances. If

mode changes to a mode with a smaller Ulax or to disable the VM are requested for

two or more different VMs, they are performed together only if the associated VMs

have the same period. Otherwise, the mode changes are performed individually at

the end of the current instance of each associated VM.

If different kinds of mode changes are requested for two or more different VMs,

then the resource requesting ones are performed together as introduced, the resource

releasing ones are performed individually. The distribution algorithm is executed

at each mode change. The distribution of dynamic slack is independent from the

distribution of structural slack.

6.6 The Case for Paravirtualization

The capability to host virtualization-unaware operating systems classifies hypervi-

sors, as discussed in Chapter 2. Full (also known as transparent or pure) virtual-

ization allows hosting unmodified guest operating systems. The same binary can

be executed on a bare machine or by the hypervisor. Contrary, if an OS has to be

ported to the hypervisor’s application programming interface (API) in order to be

6.6 The Case for Paravirtualization 141

RTOS

tasks

RTOS

tasks
System Call API

Hypervisor
Hyperall API

Hardware
EABI

task enabling/disabling
task mode changes
VM mode changes
dynamic slack

VM enabling/disabling
total system utilization
(e.g. overloads)

Figure 6.14: Availability of information with influence on scheduling for hypervisor

and guest systems

able to execute it within a virtual machine, it is called paravirtualization [Barham

et al., 2003]. In this case, the guest OS is aware of being executed in a virtualized

manner and uses hypercalls to request hypervisor services.

Figure 6.14 illustrates the different levels of the system stack and the interfaces

between them. The operating system offers a system call API to the application

tasks, a programming interface to the services provided by the OS (e.g., access to

I/O devices or inter-process communication). A paravirtualized hypervisor offers a

hypercall API to the hosted operating systems. As an example, Section 3.3.4 intro-

duced the hypercall interface of Proteus, including for example a hypercall to pass

scheduling information. Finally, the embedded-application binary interface (EABI)

of the processor architecture specifies for software and development tools conven-

tions for data types (sizes and alignments), register usage, stack frame organization,

function parameter passing etc. to assure compatibility.

The implementation of the proposed adaptive scheduling requires virtualization

awareness of the OS, and thereby paravirtualization. An explicit communication

between hypervisor and guest OS is mandatory and the OS has to be modified

accordingly. The OS has to provide the hypervisor a certain level of insight in order

to support the hypervisor’s bandwidth assignment, which can be done only by a

virtualization-aware OS. The hypervisor in turn informs the guest OSs about the

assigned bandwidth share, since they need this information in order to distribute the

bandwidth among their tasks.

Figure 6.14 shows as well the availability of scheduling related information above

and below the border between hypervisor and guest OS. Communication from OS

to hypervisor is mandatory to inform the hypervisor about adaptation triggering

142 Adaptive Partitioned Hierarchical Scheduling

events such as mode change of a task (incl. enabling/disabling) or mode changes of

the entire guest system. In addition, instead of running the idle task, a paravirtu-

alized guest OS can yield to pass the dynamic slack and enable the hypervisor to

execute another ready VM. Due to this availability of certain scheduling related in-

formation only within a guest OS, the approach requires communication and thereby

paravirtualization.

Actually, any adaptive scheduling technique with the ability to react to events

that are only known within the guest system implies paravirtualization. This is

true as well for feedback control based scheduling approaches, since the controlled

variables such as number of deadline misses or the utilization of a VM are otherwise

unknown to the hypervisor. Independently, two related works recognized the benefits

of paravirtualization for real-time VM scheduling. Kiszka paravirtualized Linux in

order to give the hypervisor (Linux with KVM) a hint about the internal states

of its guests [Kiszka, 2011]. Lackorzynski et al. demonstrated the limitations of

a hierarchical scheduling that handles guest scheduling as a black box for mixed-

criticality systems [Lackorzynski et al., 2012]. As a consequence, they propose to

flatten hierarchical scheduling by exporting scheduling information from the guest

to the host.

Paravirtualization is anyway the prevailing approach in the embedded domain [Gu

and Zhao, 2012]. The need to modify the guest OS is outweighed by the advantages

in terms of efficiency (reduction of the overhead [King et al., 2003], also seen for

Proteus in Section 3.4.2) and in terms of the benefits of an explicit communication

and the hereby facilitated cooperation of hypervisor and guest OS. This cooperation

is in addition to scheduling as well very helpful for resource sharing, e.g., of I/O

devices. Finally, paravirtualization allows the efficient application of virtualization

even on processor architectures that are not trap-and-emulate virtualizable according

to the theorem of Popek and Goldberg, as discussed in Section 3.3.3.

The major drawback of paravirtualization is the need to port an OS to the hy-

pervisor’s interface, which involves modifications of critical kernel parts. If legal or

technical issues preclude the modification of an OS, it is not possible to execute it in a

paravirtualized manner on top of the hypervisor. For this reason, Proteus offers both

paravirtualization and full virtualization (see Section 3.3.4). Paravirtualized guests

can be executed next to fully virtualized guests, however, the adaptive scheduling

technique is restricted to paravirtualized guests. Fully virtualized guests receive a

fixed periodic computational bandwidth allocation.

6.7 Integration into Hypervisor and Operating System 143

6.7 Integration into Hypervisor and Operating System

Paravirtualization is a technical implication from the required communication be-

tween operating system and hypervisor. The communication is realized by two dif-

ferent techniques, namely hypercalls and shared memory. Hypercalls are used by

the operating system to pass information and control immediately to the hypervisor.

A context switch occurs and the hypervisor handles the hypercall. As introduced

in Section 3.3.4, Proteus offers a hypercall interface with two scheduling-related hy-

percalls: sched_set_param(void* param, void* val) and sched_yield(). These

two hypercalls are actually sufficient for the implementation of the required commu-

nication from OS to hypervisor. sched_yield() is called by an operating system

to notify the hypervisor that it does not need the reserved worst-case computation

time demand and would therefore start to idle. The hypercall sched_set_param is

generic and used for all other communication purposes (based on the specification of

multiple parameters param), especially in order to inform about a mode change to a

mode with a differing laxity utilization Ulax.

Hypercalls are a one-way communication mechanism. Communication in the

other direction is needed as well, as the hypervisor informs the guest OS about

changes in bandwidth allocation. For this direction, shared memory communication

is used. A memory region within the memory space that is assigned to a VM is

dedicated to paravirtualization communication. It is accessible by hypervisor and

corresponding VM, however not by any other VM. Even the access of the hypervisor

is additionally restricted: the shared memory is only accessible by the hypervisor

if it is executed on the same core as the VM. The need for a multicore-safe access

synchronization is avoided, resulting in a lower execution time overhead. A paravir-

tualization communication library for shared memory access is provided. A guest OS

includes this library and then calls the methods para_write(void* val) and void*

para_read(). The correct implementation of the shared memory access is therefore

not the responsibility of the software engineer who paravirtualizes the OS.

Main required modification for both hypervisor and operating system is the addi-

tion of the protocol-compliant passing of scheduling information. Figure 6.15 shows

the basic process with a simplified example of just one guest (therefore, the call of

the function schedule is missing). In case of a mode change, the guest OS informs

the hypervisor by the hypercall sched_set_param and passes the desired utilization

laxity of the new node. The hypervisor performs a bandwidth redistribution and

writes the result into the shared memory. In addition, before resuming the execution

of a guest, it sets a processor register in order to inform the guest about the changed

144 Adaptive Partitioned Hierarchical Scheduling

Hypervisor Operating SystemShared Memory Register
sched_set_param(modeChange, newUlax)

newUadd

allocationChanged

read

para_read()

Bandwidth
Distribution

resume()

Figure 6.15: Interaction between hypervisor and operating system in the case of

redistribution on mode change

bandwidth allocation. After the context switch from hypervisor to OS, the OS checks

this register and, if the allocation was modified, reads out the shared memory.

6.8 Evaluation

The evaluation is based on two evaluation platforms: the hypervisor Proteus as

introduced in Chapter 3 and a scheduling simulator. The implementation of the

scheduler as part of the hypervisor enables the determination of real execution times

on a typical embedded processor. This is of particular importance because this work

is motivated by an improvement of the utilization of the processor. This is only the

case if the benefit exceeds the overhead, which has to be evaluated by measuring the

real execution times of a prototype.

Drawback of the evaluation with a prototype on real hardware is the high effort

to conduct experiments with a large number of workloads and the limited possibility

to configure the hardware platform. A scheduling simulator, on the other hand,

enables the evaluation of multiple orders of magnitude larger numbers of workload

configurations. The used scheduling simulator is introduced in the next section.

6.8.1 Scheduling Simulator

The real-time scheduling simulator RTSIM (developed at Retis Lab, Scuola Superi-

ore Sant’Anna [Bartolini and Lipari, 2014]), was extended for our purpose. RTSIM is

a discrete event simulator for scheduling algorithms and real-time tasks: all simulated

6.8 Evaluation 145

entities can change their state at certain discrete events. As a functional scheduling

simulation, it abstracts from all details of hardware and software that are irrelevant

for task scheduling. It models the processor just by the number of cores and tasks

as schedulable entities without functionality. Tasks are characterized by a period

(or a probabilistic arrival pattern), a phase (activation time of the first periodic in-

stance), a worst-case execution time, and potentially by a fixed priority. Scheduling

according to EDF, RM, fixed priorities, and first-in-first-out (FIFO) is supported.

Resources can be defined and shared in a synchronized manner, with resource man-

agement based on first-come-first-serve or priority inheritance. Interrupts can arrive

according to different probability distributions and trigger the execution of tasks.

RTSIM includes a graphical user interface for the specification and modification of

all properties of the system and a visualization of the schedule traces.

We built on this open source simulator and added the following functionality:

• Virtual Machines. VMs are specified by task set, task scheduler (RM, EDF,

fixed priorities, or FIFO), Umin and Ulax, criticality, period and budget of the

associated virtual processor, processor core affinity, whether it yields in case of

not needing the worst-case demand or not, potentially a round robin slice, and

potentially a fixed priority.

• Hierarchical Scheduling. Instead of a mere task scheduling, two dependent

scheduling levels are simulated: the VM scheduler decides for each point in time

and per core which VM to execute and the associated task scheduler schedules

the execution of the VM’s internal tasks. VMs can be scheduled according to

fixed time slices within a repetitive cycle or based on computation time servers.

In the latter case, it is possible to have fixed budgets, or redistribute in the

event of a mode change, or redistribute in addition dynamic slack in case of a

yield.

• Multi-mode. Both tasks and VMs can have multiple operational modes, which

differ regarding computation bandwidth demand (see Section 4.1.2). Mode

transitions can be triggered at fixed times, with a random probability, or con-

ditionally (e.g., in case of a deadline miss).

• Generation of Random Workloads. It is possible to automatically generate an

arbitrary number of synthetic workloads based on Brandenburg’s toolkit Sched-

CAT, which was already introduced in Section 5.4 (originally, the workload

configuration for a simulation run had to be entered manually). An individual

simulation run is started for each configuration.

146 Adaptive Partitioned Hierarchical Scheduling

• Automated Analysis. Each simulation run is analyzed automatically regarding

key metrics, such as number of deadline misses or processor utilization. Before,

the simulator produced only a scheduling diagram, which does not allow to

analyze many simulation runs or long simulation durations.

In a nutshell, we extended RTSIM by the virtual machine model as introduced in

Section 4.1.2, hierarchical scheduling of VMs and tasks, VM scheduling algorithms

(time-slice based and server based), and a pre- and post-processing of the actual sim-

ulation run that enables the automated simulation of many random configurations.

6.8.2 Execution Times

The approach was implemented on an IBM PowerPC 405 multicore processor, as

introduced in Section 3.4.1. The execution times were determined with the IBM

PowerPC Multicore Instruction Set Simulator. For the prototype, the Proteus hy-

pervisor was extended (see Chapter 3). As guest operating system, the RTOS OR-

COS, developed at the University of Paderborn [Kerstan, 2011], was executed by

the hypervisor. ORCOS needs no external libraries and requires 18 kB to 32 kB

of memory (dependent on the configuration). It is available for PowerPC405, Sparc

Leon3, and ARM and it provides scheduling according to round robin, EDF, and

RM.

In the following, the execution times of the main routines of the adaptive scheduler

are presented. The init function initializes the data structures (servers, ready queue)

and performs already an initial bandwidth distribution. schedule implements the

scheduling policy: it determines which VM to execute next, for how long, sets the

programmable interval timer accordingly, and finally calls the function to resume the

selected VM. distribute computes the additional bandwidth allocations based on

the current resource requirements (see Algorithm 3 in Section 6.4.2).

Figure 6.16 depicts the execution times of these main routines subject to the

number of virtual machines executed on the same core (two to six). The execution

times are all in the range of about 1 to 8 microseconds. The most frequently called

routine schedule is characterized by a low execution time below 2 microseconds for

all numbers of VMs. The execution time of distribute is between 1.5 microseconds

for two VMs and about 4 microseconds for six VMs. init requires the longest

execution time, 2.5 microseconds for two VMs, more than 7 microseconds for six VMs.

Included is however already a bandwidth distribution, but no scheduling decision.

init has to be executed only once at system start, which is why its execution time is

6.8 Evaluation 147

2 3 4 5 6
0

2

4

6

8

10

12

Number of Virtual Machines (n)

E
xe

cu
ti

on
T

im
e

in
µ
s

init
schedule
distribute
distribute (iterative)

Figure 6.16: Execution times of scheduler routines subject to the number of virtual

machines (PowerPC 405 @300 MHz)

less critical compared to the functions distribute and schedule, which are executed

regularly at runtime.

For comparison purposes, we also show the execution times of an iterative ver-

sion of the elastic bandwidth distribution, referred to as distribute (iterative). As

discussed in Section 6.4.1, state-of-the-art elastic bandwidth distribution algorithms

perform the distribution in an iterative manner, whereas our algorithm requires only

a single iteration through all VMs. A lower execution time for our algorithm can be

observed for all numbers of VMs: the larger n, the larger the difference (up to 58%

for six VMs). These figures corroborate the hypothesis that the new algorithm has

a lower execution time overhead.

The execution time of all functions is dependent on the number n of VMs assigned

to the same core. init and distribute have a computational complexity of O(n ·
logn) (see Section 6.4.2). However, this is not observable for these small numbers of

VMs, the impact of the sorting is apparently too low.

As a reminder (see Section 3.4.2), the hypercall sched_yield (voluntarily release

the processor) has an execution time of about 0.5 microseconds, measured until the

start of the hypervisor’s schedule routine. By calling sched_set_param, the guest

OS passes information to the hypervisor’s scheduler, e.g., to inform about a mode

change. The execution time of this hypercall is about 0.8 microseconds, with the

measurement stopped when the calling VM resumes its execution. The worst-case

execution times for a shared memory read and write are 2.2 microseconds and 1.8

148 Adaptive Partitioned Hierarchical Scheduling

Table 6.1: Thresholds for distribution of dynamic slack
Slack Threshold [µs]

number of virtual machines n

2 3 4 5 6

2.284 4.573 5.214 5.862 6.427

microseconds, respectively.

6.8.3 Overhead versus Benefit: Threshold for Slack Redistribution

Independent of whether structural or dynamic slack is handled, the overhead of

bandwidth redistribution is the same. However, the redistribution of the two kinds of

slack differs significantly in terms of probability of occurrence and length of period of

validity. Dynamic slack is expected to arise much more frequently, but the bandwidth

redistribution is only valid for a single period. Conversely, mode changes and as

a consequence thereof the redistribution of structural slack are expected to happen

possibly in a scale of seconds. The resulting distribution is valid for the entire interval

between mode changes. Hence, the execution time costs of bandwidth redistribution

are more critical for dynamic slack and actually crucial for the question whether a

system can take advantage of dynamic slack.

Figure 6.17 shows the two different possibilities to react to a sched_yield, redis-

tribution of the dynamic slack or no redistribution. Again, depicted is a simplified

example of just one guest, without call of the function schedule. And it does in

practice not make sense to resume the execution of a guest that just yielded. The

overhead consists of the execution time of the function distribute by the hypervi-

sor (which includes the write to shared memory and register) and the readout of the

shared memory by the operating system. Both the call of the hypervisor function

schedule and the check of the processor flag by the guest OS have to be performed

regardless of whether the hypervisor redistributes or not.

Table 6.1 lists the thresholds for the redistribution of dynamic slack as a function

of the number of VMs: if the amount of dynamic slack is greater than the threshold,

the benefits of a redistribution exceed the costs. In case of two VMs, the dynamic

slack can be passed directly to the other VM, without having to call the distribute

function, resulting in a significantly lower threshold. For the redistribution among

three to six VMs, the amount of dynamic slack has to be greater than 4.6 to 6.5

microseconds. These values are low enough to take effective advantage of dynamic

slack in many practical circumstances.

6.8 Evaluation 149

alt
[no redis-
tribution]

[redis-
tribution]

Hypervisor Operating SystemShared Memory Register

resume()
read

sched_yield()

newUadd

allocationChanged

read

para_read()

Bandwidth
Distribution

resume()

sched_yield()

Figure 6.17: Interaction between hypervisor and operating system in the case of

yield, with and without redistribution

6.8.4 Memory Footprint

As introduced in Chapter 3.4.3, Proteus can be configured statically depending on

the requirements of the application. The module with the dynamic bandwidth redis-

tribution functionality (scheduler and communication between hypervisor and OS)

adds about 2.3 kB. If all features required for dynamic bandwidth management are

enabled, which includes paravirtualization, the memory requirement of the hypervi-

sor hosting two VMs sums up to about 14 kB (see Table 6.2). For each additional

VM the memory requirement increases by 58 bytes.

Table 6.2: Memory footprint for scheduling functionality (2 virtual machines)
Feature Memory Footprint [bytes]

text data total

Base Hypervisor 8224 2980 11204

Paravirtualization 252 148 400

Bandwidth Redistribution 2014 316 2330

Total 10490 3444 13934

150 Adaptive Partitioned Hierarchical Scheduling

6.8.5 Paravirtualization Effort

In order to paravirtualize an operating system for the presented adaptive scheduling,

the scheduler has to be modified and a protocol-compliant communication with the

hypervisor has to be added. The required communication between guest OS and

hypervisor is realized by hypercalls, signaling via a register, and shared memory

communication. The hypervisor informs the guest OS about bandwidth allocation

changes via register and shared memory. Hypercalls are used by the guest OS to

inform the hypervisor about a mode change or to voluntarily release the core and

immediately pass control when it does not need the remaining assigned computation

bandwidth in the current period and would otherwise idle (dynamic slack).

The communication functionality is provided by a library. Main modification

is the addition of the protocol-compliant passing of scheduling information to the

hypervisor. Instead of idling, the guest OS should yield. In case of a task mode

change, the guest OS has to inform the hypervisor. In order to detect whether the

hypervisor changed the bandwidth allocation, the control flow has to be adapted:

after a context switch from hypervisor to OS, the OS has to check a processor flag

and, if the allocation was modified, read out the shared memory. In case of ORCOS,

the paravirtualization effort accounted for about 50 lines of C++ code.

6.8.6 Comparative Evaluation

There are four main approaches to provide temporal isolation between multiple VMs

with real-time constraints, as introduced in Section 2.4.3:

1. dedicated processor core for each VM,

2. static precedence of a single real-time VM per core,

3. static cyclic schedule with fixed execution time slices,

4. execution-time servers.

In the following, these four solutions are compared qualitatively (see Table 6.3 for

a summary). Subsequently, different server-based solutions are compared quantita-

tively by a scheduling simulation.

The first technique executes each VM on a dedicated core, both real-time and

non-real-time VMs. By consequence, each guest system is executed at all times. The

result is a required number of cores equal to the number of virtual machines and in

most cases a low utilization of at least some cores. On the plus side, paravirtual-

ization is not required: a VM that does not share the core must not know that it

6.8 Evaluation 151

is executed by a hypervisor. Moreover, the solution is highly adaptive as VMs can

increase and decrease their bandwidth as desired, but adaptive measures between

VMs are not possible. Finally, this is the only VM scheduling technique that does

not require any information about the guest system, as long as it is known that it is

schedulable on the core. The hypervisor does not schedule the VM and does there-

fore not need any information about task set or timing requirements. Use case for

this solution is the realization of a partitioning of a multicore processor for as many

guest systems as cores (provide single-core execution environments).

According to the second solution, a processor core can host only a single VM with

real-time requirements. In contrast to the first solution, the real-time VM might

share the core with non-real-time VMs, but definitely not with other real-time VMs.

It is guaranteed that the temporal requirements of the real-time VM are met by

executing it whenever it has a computation demand. Other VMs without real-time

requirements can execute in background, not jeopardizing the response times of the

real-time VM. Note, in the case of sharing the core, paravirtualization is required

for the real-time VM, since is has to inform the hypervisor about its requirements.

A safe solution would be the execution of non-real-time VMs only in time intervals

that were explicitly released by the real-time VM, for example by a yield hypercall

with idle interval length passed as parameter.

As it is the case for the first solution, this approach does not use the full po-

tential of virtualization and its application is severely restricted. In many cases, it

leads to both a low utilization of the processor cores and a high number of required

cores (at least as many as there are real-time VMs). The real-time guest has to be

paravirtualized, but without benefit for itself, just to allow the execution of other

guests. Performance characteristics for the non-real-time VMs are hard to predict,

even if detailed knowledge about the real-time guest’s runtime behavior is available,

and impossible to predict without.

The execution of the real-time VM whenever it has a computation demand is

equivalent to highest adaptability. An adaptive scheduling of the non-real-time VMs

is possible as well. Use cases for this scheduling solution are systems that include only

a single real-time guest anyway or systems for which detailed information about the

timing requirements is not available and cannot be derived, so that neither a design

of a cyclic time slice schedule nor a dimensioning of a server is possible.

In the third solution, a static cyclic schedule [Baker and Shaw, 1989] is designed

by analyzing the guests’ task sets and assigning execution time windows within a

repetitive cycle to the VMs based on the required utilization and execution frequency.

152 Adaptive Partitioned Hierarchical Scheduling

This static scheduling approach is for example part of the software specification

ARINC 653 for avionics systems [Prisaznuk, 2008b]. It is well analyzable, highly

predictable, does not require paravirtualization and can fully utilize each core, but

lacks run-time flexibility. It is inadequate for applications with varying resource

demand, since an adaptive measure is only possible by redesigning the schedule,

which can seldom be done at runtime due to the high computation time overhead

involved. If there is only a very limited number of combinations of active modes, it

might be possible to construct at design time a specific schedule for each combination

and switch between these combinations at runtime [Groesbrink et al., 2014b].

Our work is based on the fourth solution: the computation requirements of the

VMs (for example available in terms of a demand bound function) are abstracted as

execution time servers, which are scheduled by the hypervisor as periodic tasks. The

hypervisor’s scheduler enforces the server bandwidths. Real-time and non-real-time

VMs can share a core and fully utilize it. Paravirtualization is not required for a static

server-based scheduling. However, a periodic server with a fixed bandwidth [Sha

et al., 1986] cannot react to mode changes and remains active when the associated

guest system idles until its budget is exhausted. This chapter introduced an adaptive

server-based scheduling, which requires paravirtualization.

In the following, the performance of four server-based approaches is compared,

namely two approaches with fixed server bandwidths and two approaches with adap-

tive bandwidth distribution as proposed in this work. The comparison is carried out

through simulation of synthetically generated workloads by the extended real-time

scheduling simulator RTSIM. We used Brandenburg’s toolkit SchedCAT [Branden-

burg, 2014], which was already introduced in Section 5.4, to generate unbiased syn-

thetic server sets. As the proposed approach is a partitioned multicore scheduling

solution, we analyze the scheduling of a set of servers assigned to the same core.

Experiment I: Effectiveness of Adaptive Scheduling

In this first experiment, we investigate the effectiveness of the adaptive scheduling.

100,000 sets of VMs were generated according to the following parameter ranges:

• n uniformly distributed over [2, 6]

• Ū uniformly distributed over [0.1, 0.2, ..., 0.9]

• Umin(Vi) distributed over [0, Ū] so that Ū =
∑n

i=1 Umin(Vi)

• Πi generated as harmonic within [10µs, 1000µs] (Θi = Umin(Vi) ·Πi follows)

• Ulax(Vi) uniformly distributed over [0, 0.20]

• p(Vi) uniformly distributed over [0.1, 0.3]

6.8 Evaluation 153

T
ec
hn

iq
ue

C
ha

ra
ct
er
is
ti
c

N
um

be
r
of

P
ar
av

ir
tu
-

A
da

pt
iv
en

es
s

R
eq
ui
re
d
In
fo

C
or
es

al
iz
at
io
n

ab
ou

t
G
ue

st
s

D
ed
ic
at
ed

C
or
e

n
no

t
re
qu

ir
ed

hi
gh

no
ne

P
re
ce
de
nc
e

≥
r

re
qu

ir
ed

hi
gh

ut
ili
za
ti
on

St
at
ic

C
yc
lic

d∑ i
U

(V
i)
e

no
t
re
qu

ir
ed

no
ne

ta
sk

se
t

Se
rv
er
-b
as
ed

d∑ i
U

(V
i)
e

no
t
re
qu

ir
ed

hi
gh

(d
em

an
ds

de
m
an

d
bo

un
d

pa
ra
vi
rt
ua

liz
at
io
n)

fu
nc

ti
on

T
ab

le
6.
3:

Q
ua

lit
at
iv
e
co
m
pa

ri
so
n
of

vi
rt
ua

lm
ac
hi
ne

sc
he

du
lin

g
te
ch
ni
qu

es
(n
:
nu

m
be

r
of

V
M
s,
r:

nu
m
be

r
of

re
al
-t
im

e
V
M
s)

154 Adaptive Partitioned Hierarchical Scheduling

• bdf(Vi) uniformly distributed over [0.75, 1.00]

A VM has three modes, differing regarding Ulax. For simplicity, the weights are

based on Ulax(Vi). p(Vi) denotes the probability of a mode change at the beginning

of each period of Vi. The bandwidth demand factor bdf(Vi) represents a variable

demand of the server budget within one specific server period, assuming a value in

the interval [bdf(Vi) ∗ Θi,Θi]. If bdf(Vi) = 1, Vi needs the worst-case demand in

this server period. A smaller value results in idle time, which might be redistributed

by the adaptive approach, but not by the fixed bandwidth management. Every

configuration was simulated for 10s of simulated time.

To assess the effectiveness of our mechanism of distributing slack bandwidth ac-

cording to the presented policy, we define the relative error δ of budget allocation,

defined for the kth period of the server that executes Vi based on the assigned exe-

cution budget Θk
i and the actually desired budget Θk∗

i :

δ(Vi, k) =
Θk
i −Θk∗

i

Θk∗
i

(6.8)

The desired budget Θk∗
i is defined by Umax(Vi) = Umin(Vi) + Ulax(Vi) of the

current mode and therefore not to be mistaken with the required budget Umin(Vi)

that guarantees schedulability. Including the bandwidth demand factor bdf(Vi), the

desired budget of Vi for the kth instance is a random value within the following

interval:

Θk∗
i ∈ [bdf(Vi) · Umax(Vi) ·Πi, Umax(Vi) ·Πi] (6.9)

In case of a negative δ(Vi, k), the desired budget was not saturated. A positive

δ(Vi, k) denotes idle time of Vi in the considered period and therefore unused budget.

Finally, δ(Vi) is the average over all |δ(Vi, k)| for all periods k of VM Vi ∈ V . We

keep track of the average values of each δ(Vi) and define δ as the average over all

δ(Vi).

In a nutshell, the metric for this experiment is the relative error of allocated

budget and desired budget. The desired budget changes constantly during runtime,

based on both mode changes and a bandwidth demand that varies per instance,

that is to say that the VMs might not need the worst-case demand in a specific

instance. The smaller the relative error, the more effective the bandwidth allocation,

since the relative error indicates either a non-saturated desired budget or an unused

budget. The experiment with synthetically generated workloads investigates whether

the adaptive approach is able to follow the varying computation bandwidth demands.

Expected Result: The adaptive algorithms follow the desired bandwidth more

closely. The adaptive distribution of structural and dynamic slack leads to the small-

6.8 Evaluation 155

est relative error, followed by the adaptive redistribution of structural slack, followed

by the non-adaptive distribution.

Table 6.4 lists the average values of δ and the 95% confidence intervals for four

different server-based scheduling policies:

Only Umin allocates for each server period a static budget based on the minimum

utilization of the associated guest.

Fixed allocates as well a static budget, but each VM receives in addition to Umin a

share of Uspare based on the weights of the first mode (one-time offline distri-

bution).

Adaptive (Structural Slack) denotes the adaptive distribution of structural slack

only.

Adaptive (Structural + Dynamic Slack) denotes the adaptive distribution of

both kinds of slack, structural and dynamic slack.

For any VM in all periods, the fixed bandwidth distribution based on Umin re-

sults in an average δ difference of 11.7% between desired budget and allocated bud-

get. When performing an offline distribution of Uspare based on the first modes, the

resulting average δ is 8.1%. When using the proposed adaptive bandwidth distribu-

tion, but redistributing structural slack only, the average δ falls significantly to 4.8%.

This value falls even further to 1.1%, when using in addition the adaptive bandwidth

distribution of dynamic slack. These lower values of the relative error δ confirm that

the actual distribution of bandwidth follows closely the desired bandwidths, showing

the effectiveness of the proposed adaptive scheduling in enforcing an elastic distri-

bution. The adaptive measures reduce the relative error of bandwidth distribution

with statistical significance.

Experiment II: Effect of Mode Change Probability

In this experiment, we investigate the effect of the mode change probability. For

each value for the mode change probability p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} 500 sets of

VMs were generated according to the following parameter ranges:

• n uniformly distributed over [2, 6]

• Ū uniformly distributed over [0.1, 0.2, ..., 0.9]

• Umin(Vi) distributed over [0, Ū] so that Ū =
∑n

i=1 Umin(Vi)

156 Adaptive Partitioned Hierarchical Scheduling

Table 6.4: Relative error δ of allocated bandwidth and desired bandwidth for fixed

distribution and adaptive distribution
Policy Arithmetic 95% Confidence

Mean [%] Interval [%]

Only Umin 11.744 [11.710; 11,777]

Fixed 8.121 [8.083; 8.159]

Adaptive (Structural Slack) 4.828 [4.807; 4.850]

Adaptive (Structural + Dynamic Slack) 1.056 [1.046; 1.067]

• Πi generated as harmonic within [10µs, 1000µs] (Θi = Umin(Vi) ·Πi follows)

• Ulax(Vi) uniformly distributed over [0, 0.20]

• bdf(Vi) uniformly distributed over [0.75, 1.00]

Expected Result: Compared to the non-adaptive algorithm Fixed, the algo-

rithm Adaptive (Structural Slack) leads to a lower relative error. The exception

is p = 0, for which both algorithms produce the same result.

Figure 6.18 depicts the resulting relative errors for the policies Fixed and Adap-

tive (Structural Slack). As expected, they perform equally well for a mode change

probability of 0 (exact same value), since there are no mode changes that trigger a

redistribution. For each mode change probability p > 0 the adaptive distribution

performs significantly better. Observable as well, Adaptive (Structural Slack)

maintains a low relative error even in the case of high mode change probabilities.

Experiment III: Effect of Bandwidth Demand Factor

In this experiment, we investigate the effect of the bandwidth demand factor. For

each bdf value ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} 500 sets of VMs were generated according to

the following parameter ranges:

• n uniformly distributed over [2, 6]

• Ū uniformly distributed over [0.1, 0.2, ..., 0.9]

• Umin(Vi) distributed over [0, Ū] so that Ū =
∑n

i=1 Umin(Vi)

• Πi generated as harmonic within [10µs, 1000µs] (Θi = Umin(Vi) ·Πi follows)

• Ulax(Vi) uniformly distributed over [0, 0.20]

• p(Vi) uniformly distributed over [0.1, 0.3]

Expected Result: Compared to the algorithm Adaptive (Structural Slack),

which redistributes only in case of a mode change, the algorithm Adaptive (Struc-

6.8 Evaluation 157

0.0 0.2 0.4 0.6 0.8 1.0

Mode Change Probability

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e
E

rr
or

Fixed: N
Adaptive (Structural Slack): �

Min = 0.000 µs
Max = 0.000 µs
Mean = µs
ConfInt 0.95 = [µs; µs]

Effect of Mode Change Probability

Figure 6.18: Effect of mode change probability

158 Adaptive Partitioned Hierarchical Scheduling

tural + Dynamic Slack) leads to a lower relative error. The lower the bandwidth

demand factor, i.e., the larger the computation time variations, the larger the differ-

ence regarding relative error.

Figure 6.19 depicts the resulting relative errors for the policiesAdaptive (Struc-

tural Slack) and Adaptive (Structural + Dynamic Slack). As expected, the

policy Adaptive (Structural + Dynamic Slack) leads to a lower relative er-

ror for all bandwidth demand factors. The difference becomes smaller with larger

bandwidth demand factors, as the computation time variations become smaller. The

redistribution of dynamic slack is less useful if the amount of dynamic slack becomes

smaller.

6.9 Summary

Existing hypervisor-based virtualization solutions for embedded real-time systems

apply static resource management policies. An adaptive virtual machine scheduling

is of great and so far untapped potential, especially for systems that operate in

highly dynamic environments. However, it is most important that the scheduling

policy guarantees that all VMs meet their real-time requirements and that temporal

isolation between guest systems is maintained, since this is crucial for the ability to

integrate real-time systems, especially safety-critical ones.

This chapter proposed a virtual machine scheduling that combines adaptability

and temporal isolation, defined not as an uninfluenced behavior, but as the guarantee

that all guests are able to meet their timing constraints. Each guest system receives

a guaranteed share of the processor time. Periodic execution time servers and the

elastic task model combine analyzability at design time with adaptability at runtime.

The correct execution of a virtual machine depends only on the server parameters and

not on the behavior of other virtual machines, and is thus protected from potential

overloads within another virtual machine.

The possibility to replenish the server budgets dynamically is exploited in an

efficient way to implement the adaptive bandwidth measures, taking advantage of

the slack generated by mode changes and shorter execution times than the reserved

worst-case. The bandwidth distribution is carried out with fine-grained control ac-

cording to the elastic model, supporting selected applications that can take advantage

of higher computational bandwidth. A bandwidth redistribution is performed as well

when an unforeseen worst-case execution time overrun of a critical guest results in

an overload of the entire system. In this situation, it is attempted to protect the

6.9 Summary 159

0.0 0.2 0.4 0.6 0.8 1.0

Bandwidth Demand Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
el

at
iv

e
E

rr
or

Adaptive (Structural Slack): �
Adaptive (Structural + Dynamic Slack)): �

Min = 0.000 µs
Max = 0.000 µs
Mean = µs
ConfInt 0.95 = [µs; µs]

Effect of Bandwidth Demand Factor

Figure 6.19: Effect of bandwidth demand factor

160 Adaptive Partitioned Hierarchical Scheduling

execution of the critical guest by stealing computation time from non-critical guests.

An analysis proved that the scheduling architecture guarantees a minimum band-

width service. It is safe in steady state and during the transition phase from a

bandwidth allocation to an updated one. This service guarantee is the basis for the

architecture’s real-time capability and a potential certification of functional safety.

A prototype was integrated into hypervisor and real-time operating system. The

evaluation showed a reasonable paravirtualization effort, a low memory footprint,

and a low execution time overhead that enables to make efficient use of slack. Differ-

ent virtual machine scheduling approaches were compared qualitatively. Moreover,

the proposed adaptive scheduling was compared to a static server-based schedul-

ing. A scheduling simulation with synthetically generated workloads showed that

the adaptive solution follows the varying bandwidth demand effectively.

Chapter 7

Real-Time Virtual Machine

Migration

Contents
7.1 Problem Statement . 163
7.2 Related Work . 164
7.3 Design . 167

7.3.1 Migration Policy . 167
7.3.2 Integration into the Hypervisor 168
7.3.3 Protocol . 169
7.3.4 Migration Test . 171
7.3.5 Integration into Real-Time Virtual Machine Scheduling . . 173

7.4 Evaluation . 175
7.4.1 Experimental Setup . 175
7.4.2 Memory Footprint & Paravirtualization Effort 176
7.4.3 Execution Times & Downtime 177
7.4.4 Reliability Analysis . 178
7.4.5 Case Study: Autonomous Rail Vehicle 182

7.5 Summary . 186

162 Real-Time Virtual Machine Migration

ECU 1

Hypervisor
Instance 1

OS
Tasks

Virtual
Machine

ECU 2

Hypervisor
Instance 2

ECU 1

Hypervisor
Instance 1

OS
Tasks

Virtual
Machine

ECU 2

Hypervisor
Instance 2

Migration

Figure 7.1: Virtual machine migration

Migration refers to the relocation of virtual machines (VMs) from one physical

machine (PM) to another one at runtime [Smith and Nair, 2005c], as depicted in

Figure 7.1. The execution is suspended on the source PM, the image of the VM

(containing all data that is required to execute it) is transmitted to the target PM,

where the execution is resumed at exactly the same point. Prerequisite are a com-

puter network that allows the PMs to exchange data and the execution of an instance

of the hypervisor on both source and target PM. It is assumed that the hardware

configurations of source and target PM are identical.

Virtualization’s architectural abstraction and encapsulation of guest systems pro-

vide flexibility and facilitate migration significantly. The hypervisor is fully aware

of the resource usage and includes already functionality for saving and restoring the

state of a guest, since this has to be done on each virtual machine context switch in

order to suspend the execution of a VM and resume the execution of another one.

Benefits of migration are an increased reliability if applied in order to continue

the functioning of a guest despite a hardware failure or a balanced load, especially

for adaptive systems and systems that allow the addition of software at runtime.

Virtualization became popular for embedded systems for the benefit of a better

resource utilization, but fault tolerance is a new perspective, especially since consoli-

dation creates a single point of failure. Applying VM migration to real-time systems

demands a predictable timing behavior, especially regarding the downtime, during

which the guest system is not executed. The following sections will be devoted to a

VM migration approach for real-time systems.

7.1 Problem Statement 163

7.1 Problem Statement

In the context of this work, virtual machine migration is examined as a fault tolerance

technique. To improve the reliability, defined as the ability of a system to perform its

required functions under stated conditions for a specified period of time [IEEE, 1990],

i.e., continuity for correct service, migration is performed as a service restoration

in response to hardware faults that prevent the guest system to comply with the

functional and/or real-time specification. These faults are external to hypervisor

and VM. In case of partially failed PMs, if the hardware failure still allows for

a saving and transfer of the state of the VM, its operation can be continued on

another PM. Examples for such hardware failures are partial memory failures, failures

of coprocessors, hardware accelerators, or the graphics processing unit, as well as

failures of I/O devices. Migration is not possible anymore in case of a breakdown

of power supply, central processing unit, or the I/O connection to the potential

target PMs. However, one can benefit from self-diagnosing hardware that signals

upcoming failures on the basis of built-in self-tests (proactive fault tolerance), as

often found in safety-critical embedded systems. The reliability regarding memory

failures could be increased by checkpointing techniques, i.e., regularly saving VM

states in a secondary storage, and then, in case of a memory failure, restoring from

it (see for example [Kwak et al., 2001], [Punnekkat et al., 2001]).

Target architecture of this work are homogeneous multiprocessor platforms and

distributed systems of multiple identical processors, each operating on an own ran-

dom access memory, but connected via a network. Each unit of processor and mem-

ory is called physical machine (PM). The adaptive scheduling approach that was

introduced in the last chapter addresses the resource management on a multicore

platform, that is to say on a single PM. Migration is a dynamic resource manage-

ment technique on the granularity of multiple PMs.

Each PM has to execute an instance of the same hypervisor. This is mandatory

even in case of a fully virtualized guest system, since the migration protocol is based

on communication among the involved hypervisors (see Section 7.3.3). Moreover,

the transferred VM image is not executable on bare hardware. The hypervisor has

to initialize the memory as well as the state of processor and used devices in order to

resume at exactly the instruction at which the guest system was suspended on the

source PM.

Highly dynamic virtualization solutions including VM migration are state of the

art for the server market, but cannot be applied to embedded systems for lack of

real-time response time guarantees. Most existing virtualization solutions for em-

164 Real-Time Virtual Machine Migration

t

execution of
guest

target PM

source PM detaching
(hypervisor)

resume
(hypervisor)

tra
ns

fer

execution of
guest

downtime

Figure 7.2: Downtime due to virtual machine migration

bedded systems do not exploit virtualization’s flexibility and assign VMs statically

to PMs [Gu and Zhao, 2012], due to the challenge of applying migration to real-time

systems. The migration process induces a time interval in which the guest system is

inactive. This downtime is composed of the time required by the hypervisor to pre-

pare the migration process incl. the finding of a target, the transfer of the VM image

to the target, and the time required by the target’s hypervisor to restore the VM

state and resume execution (see Figure 7.2). For an embedded systems with real-time

constraints, this outage duration has to be predictable and should be minimized.

This work presents a migration approach for embedded real-time systems. The

migration approach (Section 7.3.1) is aware of real-time requirements and addresses

the real-time issues (1) service outage and (2) integration into the scheduling on

the target PM. The focus is on the integration of migration functionality into a

software stack and the co-design of hypervisor and paravirtualized guest OS. The

evaluation investigates the overhead regarding execution time, memory footprint,

and paravirtualization effort (Section 7.4). A reliability analysis is performed to

motivate the work by quantifying the benefit (Section 7.4.4).

7.2 Related Work

There exist numerous works in the related field of process migration and basic re-

sults are transferrable to VM migration, but with a significant difference regarding

overhead due to the larger amount of data to transfer. See [Milóičić et al., 2000] for

a survey on process migration. The DEMOS/MP operating system provided process

migration with a location independent message-based communication. The entire

7.2 Related Work 165

virtual memory is transferred in a copy-on-reference manner [Powell and Miller,

1983]. The Sprite operating system for networked workstations and file servers ap-

plied process migration to use idle machines, transparent to the user [Douglis and

Ousterhout, 1987]. Stankovic and Ramamritham presented the Spring Kernel, a

real-time operating system that provides process migration in order to balance load

and adapt to varying environment conditions [Stankovic and Ramamritham, 1989].

Regarding VM migration for non-real-time systems, Clark et al. described the

basics of VM migration and specified the data that has to be transferred to the tar-

get node [Clark, 2005]. Hansen and Jul introduced self-migration: the guest OS is

aware of being executed in a virtualized manner, just as a paravirtualized OS is, and

uses checkpointing to transfer its state by itself [Hansen and Jul, 2004]. In contrast,

Nelson et al. presented migration that is transparent to a non-real-time OS [Nelson

et al., 2005]. Kozuch and Satyanarayanan proposed Internet Suspend/Resume, a

virtual machine based technique for the migration of the state of a user environment

from one machine to another over the internet [Kozuch and Satyanarayanan, 2002].

The state is stored in a distributed file system, which is accessible by the target ma-

chine. It is loaded incrementally in modules and execution is resumed as soon as the

necessary modules are present, before the entire state is transferred. Sapuntzakis et

al. proposed a similar solution, however, with a direct transfer from source to target

machine instead of using a distributed file system [Sapuntzakis et al., 2002]. Both

works are implemented on the VMWare GSX Server, a hosted hypervisor (type 2)

that runs either on Linux or Microsoft Windows. VMWare’s VMotion performes

VM migration in a local-area network in order to balance load (for response time

reduction and power management), quarantine an attacked VM, consolidate com-

municating systems, and for fault tolerance and maintenance reasons [Smith and

Nair, 2005c]. Prerequisite is an operation of source and target on shared disks in a

storage-area network. Aalto presented with DynOS SPUMONE runtime migration

of guest OSs to different cores on a multicore processor [Aalto, 2010]. Mitake et al.

introduced with vlk a virtualization solution with an assignment of virtual CPUs

to guest OSs [Li et al., 2012a]. It includes a dynamic mapping of virtual CPUs to

physical CPUs. Since their target architecture has a global shared memory, only the

register content has to be transferred.

In the real-time world, Checconi et al. addressed live migration of VMs with

soft real-time constraints [Checconi et al., 2009]. The execution of the VM is not

interrupted for the entire duration of the transfer. This is achieved by a pre-copying

of memory pages, a technique introduced by Theimer et al. in order to reduce the

166 Real-Time Virtual Machine Migration

downtime [Theimer et al., 1985]. Memory pages that are modified by the source after

the transfer have to be retransmitted and the authors present a stochastic model for

the probability of a page to become dirty again and derive the expected migration

time. (Similarly, post-copy refers to the resume of the VM before the entire memory

was transferred [Hines and Gopalan, 2009]. Pages that are not required to resume

are transferred in a copy-on-reference manner.) The implementation is based on

Kernel-based Virtual Machine (KVM), a Linux kernel virtualization infrastructure.

Regarding real-time VM scheduling, they refer to existing server-based scheduling

solutions.

Baliga and Kumar presented Etherware, a middleware for wireless networked con-

trol systems [Baliga and Kumar, 2005]. The application software is composed of

components. Etherware provides the abstraction that all components execute on a

single computer, in fact, components can be dynamically migrated in order to bal-

ance communication and computational loads. The communication information at

each machine or component that communicates with the migrating component is

updated. The authors do not discuss real-time capabilities.

Rasche and Polze derived a calculation for the blackout time due to a reconfigura-

tion (such as component migration) of real-time software [Rasche and Polze, 2005].

They propose to reserve processor resources for potential reconfiguration commands.

Kalogeraki et al. introduced a resource management system for distributed soft real-

time systems [Kalogeraki et al., 2008]. It operates on top of the CORBA middleware

and distributes the application objects in order to maintain a uniform load on the

different nodes.

In order to quantify the benefits for reliability, Kim et al. developed an availability

model of a virtualized system for data centers, which incorporates both hardware and

software failures as well as VM migration [Kim et al., 2009]. The results showed an

increased steady state availability by applying virtualization. Melo et al. evaluated

migration as a rejuvenation technique for cloud computing environments and could

reduce the system downtime [Melo et al., 2013]. Ramasamy and Schunter quantified

the impact of virtualization on node reliability [Ramasamy and Schunter, 2007].

Roy et al. addressed infrastructure failure and utilization issues by a VM migration

approach that is aware of violations of service level agreement thresholds [Roy et al.,

2013]. Nagarajan et al. studied migration triggered by node health monitoring

(proactive fault tolerance) [Nagarajan et al., 2007].

7.3 Design 167

7.3 Design

7.3.1 Migration Policy

The migration policy is introduced in the following by answering the relevant ques-

tions.

Which events trigger a migration?

In the context of this work, migration is only performed if the functioning of a VM

can continue despite of a hardware failure, and not for load balancing. Migration

involves a significant overhead and the transmission of a VM’s memory causes a

significant downtime, as analyzed in detail in Section 7.4.3. It implies changes for

the hierarchical scheduling on both sides, especially the integration into the vir-

tual machine scheduling at the target node (see Section 7.3.5). For these reasons,

migration-based load balancing is for embedded real-time systems less attractive.

Migration as a load balancing measure would potentially complicate certification,

whereas, if applied in order to continue the functioning of a system in case of a

hardware failure, VM migration actually increases the reliability (see Section 7.4.4)

and might therefore support certification.

What has to be transferred?

The image of a VM includes all data that is required to execute the guest and

includes:

• code, stack, and data segments belonging to operating system and application

tasks,

• VM context (register values, condition codes, stack pointer, program counter

etc.),

• data structures of the hypervisor associated with the VM (identifier, VM

scheduling parameters etc.).

Which VM and which target is selected?

The approach migrates all VMs that have or will have a service outage due to the

hardware failure. In case of different criticality levels, this is done in order of decreas-

ing criticality. If data transfer rates between PMs differ, the PM with the highest rate

is selected as migration target. As a tie-breaker in case of equal rates, the PM with

the lowest CPU utilization is selected. The hypervisor maintains a list of potential

target PMs, possibly VM-specific, if for example some guests require a co-processor

that is not available on all PMs.

168 Real-Time Virtual Machine Migration

Hardware

Paravirtualized
Operating
System

Dispatcher

ISA Emulator
Hypercall
Handler

VM Scheduler

Paravirtualized
Operating
System

Program IRQ Syscall IRQ PIT IRQ External IRQ

Hypercalls

Communication

Load Info Collector

Su
pe

rv
iso

r
M

od
e

Pr
ob

le
m

M
od

e

Hy
pe

rv
iso

r

Shared
Memory

Migration Manager

Application Tasks Application Tasks
Virtual

Machines

Figure 7.3: Integration of the migration functionality into the architecture of the

hypervisor

Who takes the decisions?

The migration policy is realized in a distributed manner without central instance.

Each hypervisor instance can initiate a migration. When a hypervisor instance starts

the evaluation of a potential migration, all other hypervisor instances cannot do the

same until this migration is finished or canceled (at the latest by a timeout).

When is the migration process initiated?

Triggered by a certain event, the hypervisor decides on whether to migrate a VM,

but the VM itself determines the starting time.

7.3.2 Integration into the Hypervisor

The integration of the migration functionality into the hypervisor Proteus is depicted

in Figure 7.3. The impact of the migration components is limited as much as possible.

The behavior of the other components of the hypervisor is not affected until an event

triggers the evaluation of a potential migration. The following components realize

the migration functionality.

The Load Information Collector gathers data about the resource utilization at

runtime. The hypervisor assigns the resources to the VMs and therefore has knowl-

edge about the guests’ memory and I/O usage. However, the hypervisor does not

have any insight in the scheduling and the upcoming deadlines of the guests. Without

this knowledge, it cannot evaluate whether a certain downtime invokes a deadline

7.3 Design 169

miss or not. Consequently, an explicit communication between guest OS and hy-

pervisor is required. When the migration manager considers a migration, the Load

Information Collector invokes the OS to pass information about its task schedul-

ing. The Communication module provides the functionality to communicate with

hypervisor instances on other PMs. It is the Migration Manager’s interface for the

message-based communication, transparent of the underlying network technology.

The Migration Manager organizes the process by implementing the policy as intro-

duced in the previous section. It decides which virtual machine shall be migrated

where and when, based on the data obtained from the Load Information Collector

and other hypervisor instances.

The required communication between guest OS and hypervisor is realized by both

hypercalls and shared memory communication. For the latter, a memory region

within a VM’s memory space is dedicated to paravirtualization communication. It

is accessible by hypervisor and corresponding VM, however not by any other VM.

Hypercalls are a technique for the guest OS to invoke communication. A hypercall

leads to a preemption of the guest system; the hypervisor takes control and handles

the hypercall. The hypervisor cannot call functions of the OS, but it writes code

words to the shared memory. In the process of each context switch from hypervisor

to guest, the OS reads out the shared memory and if necessary subsequently provides

the hypervisor with the requested information. To pass control back to the hypervisor

immediately, it executes the hypercall yield. With the hypercall startMigration,

the OS signals the hypervisor that it can be suspended in order to start the data

transfer.

7.3.3 Protocol

Figure 7.4 depicts the migration process as a UML sequence diagram. For clarity,

the hypervisor is visualized as a single component and only the successful case is

shown, without error or timeout handling etc. To start the migration process of the

operating system Guest, the Migration Manager of the source broadcasts a message

with the intent to migrate a VM to all other hypervisor instances (incl. information

about the required resources). The Migration Managers of the receiving hypervisor

instances perform an acceptance test that checks whether their remaining resources

are sufficient to host the VM (explained in next section) and reply with the result,

incl. information about their resource utilization. The source analyzes the replies,

selects a target among the positive ones and informs the other hypervisors.

The source performs a downtime test, which checks whether the transfer of the

170 Real-Time Virtual Machine Migration

Source:Hypervisor Guest:OperatingSystem Target:Hypervisor Other:Hypervisor

RequestMigration(required utilization):msg
acceptance
test()

acceptance
test()

ReplyToRequest(available utilization):msg

select
target() Inform:msg

downtime
test()

writeToSharedMemory("getSlot")

Ack:msg

migrate
(Guest,Target)

detach
(Guest)

transfer(Guest)

ack resume
(Guest)

writeToSharedMemory("requestToStart")

writeToSharedMemory(slot)

startMigration:Hypercall

Figure 7.4: Migration protocol

7.3 Design 171

guest to the target implies deadline misses (explained in next section). For this test,

the hypervisor asks the OS for the maximum possible downtime (termed slot). The

hypervisor informs the OS about the result of the downtime test and the OS might

switch to a different mode for the case of predicted deadline misses. It resumes the

guest OS and asks it to signal the starting time for the data transfer, since only the

guest OS knows when the maximum downtime is available.

Once having received the signal, the hypervisor detaches the guest and transfers

the VM image to the target PM, where the image is unwrapped, the memory is

copied, and the processor state is reset. The execution is resumed at exactly the

instruction at which it was suspended. The migration does not leave residual depen-

dencies: the source hypervisor does not (and does not have to) continue to provide

data or services for the VM after the migration. Residual dependencies are undesir-

able since they impact the performance of both the source (need to maintain data

structures and provide functionality) and the target (overhead of continuing com-

munication) [Douglis and Ousterhout, 2006]. In addition, they decrease reliability,

since a correct functioning of the communication is mandatory and a failure on one

PM affects VMs on other PMs.

7.3.4 Migration Test

There are two classes of deadline misses: the VM to be migrated could miss a

deadline or another VM on the target PM could miss a deadline because the VM

to be migrated is added and receives resource shares. We can derive two necessary

conditions for a migration that does not provoke deadlines misses:

1. The resource utilization (CPU, memory, I/O) of the target PM must permit

the addition of the VM (checked by the potential target through the acceptance

test). This includes schedulability of both the VM to be migrated and the VMs

that are already executed on the target PM.

2. The downtime imposed by the migration process must be short enough to

exclude a deadline miss of the VM to be migrated (checked by the source

through the downtime test).

A failed acceptance test leads to a cancellation, whereas a failed downtime test

does not, since the alternative is a continued and not a temporal service outage.

172 Real-Time Virtual Machine Migration

Acceptance Test

The acceptance test checks whether the remaining resources of a potential target

PM are sufficient to fulfill the requirements of the arriving VM. Regarding memory,

a simple comparison of unassigned memory and demanded memory is needed, since

the hypervisor assigns static adjacent chunks of memory to the VMs (fragmentation

of memory not considered due to the realistic low numbers of both VMs and mi-

grations). The I/O acceptance test is highly device specific and out of the scope of

this thesis. The test regarding the resource computation bandwidth is introduced in

detail in Section 7.3.5.

Downtime Test

The VM downtime must be predictable for a real-time system. Knowing the com-

munication costs ccom as a function of the VM image size, the source hypervisor can

estimate the downtime tdown:

tdown(Vi) = tdetach + ccom(size(Vi)) + tresume + tservice (7.1)

tdetach is the time required for the hypervisor to create the image for the transfer.

tresume refers to the time to unwrap the image at the target and set up the data

structures, so that the VM becomes executable. Due to the integration into the VM

schedule, the VM might have to wait before its execution starts, denoted by tservice
and derived in the following section.

The hypervisor asks the OS for its maximum affordable interval of inactivity

tmaxdown(Vi) (largest possible service delay) and the downtime test is passed if:

tdown(Vi) ≤ tmaxdown(Vi)

The related value ∆max
i is already required for the correct dimensioning of the

associated periodic resource (see Section 5.3.1). The OS (or system designer) has to

calculate the maximum possible downtime for the specific task set and the applied

task scheduler. This calculation is directly associated with the calculation of slack,

also called laxity, defined for a point in time t as the maximum time a job of a real-

time task can be delayed without causing its deadline to be missed. For example,

at the activation of a job, the slack is given as Xj = dj − aj − Cj . A slack function

A(t, u) returns the maximum amount of computation time that is available in the

interval [t, u] without leading to deadline misses of periodic tasks. [Buttazzo, 2004]

The maximum of the slack function over all intervals within the hyperperiod de-

fines the maximum possible downtime of the VM (lcm(Vi) denotes the least common

7.3 Design 173

multiple of all task periods, i.e., the length of the hyperperiod):

tmaxdown(Vi) = maxt∈[0,lcm(Vi)],u∈[t+1,lcm(Vi)]A(t, u) .

It is possible that in a specific runtime situation (based on the mode that is

active at this time), the maximum affordable interval of inactivity is larger than

∆max
i , since ∆max

i is mode-independent (and has to be for the dimensioning of the

periodic resource). If the OS is able to compute this larger value at runtime (or

offline and store it), it can be used. See [Liu, 2000] for detailed information on slack

computation. It should not be unmentioned that offline slack computations might

not be applicable in case of release-time jitters.

7.3.5 Integration into Real-Time Virtual Machine Scheduling

As introduced in Section 2.4, the execution of VMs with real-time requirements de-

mands an appropriate hierarchical real-time scheduling if the number of VMs exceeds

the number of processor cores. In the previous Chapter 6, an adaptive scheduling

was introduced, which implements virtual processors as scheduling servers Γi(Πi,Θi)

characterized by period and execution time budget. The assignment of a dedicated

server to each VM guarantees a minimum but bounded computation time share for

each VM in a specified time span.

In case of a multi-core platform, VMs are statically assigned to cores. On each

core, the hypervisor schedules the assigned servers by static priorities according to

the Rate Monotonic (RM) policy: the higher the request rate (the smaller Π), the

higher the priority. The schedulability of the VMs is guaranteed if the sum of the

VMs’ resource requirements is smaller than or equal to the least upper bound of

the processor utilization Ulub. In order to fully utilize the core (Ulub = 1), the

partitioning algorithm introduced in Chapter 5 transformed the server periods to

harmonic periods, i.e., the period of each server is an exact multiple of the periods

of every other server with a shorter period. This harmonization is done for all

servers that at design time are assigned to the same core, not for the system’s entire

set of virtual machines. For this reason, the period of the server of the migrated

VM (in the following referred to as Varriving) is not necessarily harmonic to the

periods of the VMs on the target PM. The harmonic relationship might be lost

and, by consequence, schedulability is no longer guaranteed. In order to maintain

the harmonic relationship, the arriving VM has to be integrated. Algorithm 1 as

introduced in Chapter 5 could be applied, but one had to rerun it for all VMs, since

its correctness depends on considering the VMs in order of increasing Πopt. The

174 Real-Time Virtual Machine Migration

arriving VM can be integrated without touching the dimensioning of the already

hosted servers by the following equations:

ΠVarriving = max({Πi|Vi executed on considered core and Πi ≤ Πopt
Varriving

})

ΘVarriving = ΠVarriving · PCBVarriving(ΠVarriving , A)

The period is set to the largest already existing period among those periods

smaller than the maximum possible period Πopt
Varriving

(derived from the reactivity

requirements). Consequently, this value and the optimal periodic capacity bound

PCBVarriving(Π, A) have to be included in the transmission from source to target

hypervisor.

Schedulability on the target PM has to be guaranteed by the acceptance test.

Regarding the resource computation time, this test is based on Equation 6.1 (see

Chapter 6.3.2):

Umin(Varriving) +

n∑
i=1

Umin(Vi) ≤ Ulub = 1

It is still possible to fully utilize the processor (Ulub = 1), since we maintained the

harmonic relationship between the servers’ periods. This schedulability condition

considers only the minimum bandwidths Umin, but the distribution of the spare

bandwidth Uspare might have resulted in a higher bandwidth allocation among the

already hosted VMs than just the sum of the minimum bandwidths. For this reason,

we cannot instantly allocate Umin(Varriving), but first, have to perform a bandwidth

redistribution for this new VM set of all VMs that were already executed on the

target core plus the arriving VM. The hypervisor starts to provide bandwidth (at

least equal to Umin(Varriving), potentially plus a share of the spare bandwidth) to

the arriving VM at the end of the last finishing instance of all currently executed

VMs, depicted as point in time t1 in Figure 7.5.

At this point in time, it is not required to allocate only the minimum bandwidths

to the VMs and Uspare is recalculated and distributed. For this reason, Θ′1 and Θ′2

in Figure 7.5 might not be based only on the minimum bandwidths, but as well on

the just calculated values for Uadd. A distribution of the spare bandwidth is safe at

this point in time, since all VMs incl. Varriving receive their minimum bandwidth

first and the remaining Uspare is distributed subsequently.

The arriving VM has to wait in the worst case for ΠVarriving − ΘVarriving before

receiving computation time:

tservice = t1 + ΠVarriving −ΘVarriving

7.4 Evaluation 175

0

Varriving

V1

arrival

V2

Θ1

Θ2

Θ1‘
Θ2

‘

ΘVarriving

t1 t tarrival tresume

Θ1 Θ1‘

Figure 7.5: Additional delay by virtual machine scheduling: example

This delay has to be considered in addition to the downtime when checking

whether the migration causes deadline misses. For the downtime test, it can be

overestimated by 2×Πmax, with Πmax being the largest period of the already hosted

servers on a potential target PM. Πmax must therefore be communicated by a poten-

tial target hypervisor to the source hypervisor as response to a RequestMigration

message.

7.4 Evaluation

7.4.1 Experimental Setup

For the following evaluation, RAPTOR prototyping boards [Porrmann et al., 2009]

with IBM PowerPC 405 single-core processors were connected via a standard Eth-

ernet network (100 Mbps). An Ethernet system with standard hardware is char-

acterized by a non-deterministic timing behavior and for a real application had to

be replaced by an industrial real-time Ethernet standard such as PROFINET [Feld,

2004] (incl. clock synchronization). The controlled testing network environment

enabled nevertheless the empirical evaluation.

The execution times were measured with a logic analyzer. Software routines were

added to the source code that set General Purpose Input/Output (GPIO) pins.

Probes of the logic analyzer were connected to these dedicated GPIO pins and the

logic analyzer captured the signals and was triggered on a rising edge of a dedicated

signal. The input signals were sampled at regular intervals with a sampling period

of 1.25 ns (sampling frequency of 800 MHz).

176 Real-Time Virtual Machine Migration

Table 7.1: Memory footprint for migration functionality

Feature Memory Footprint [bytes]

text data total

Base Hypervisor 8224 2980 11204

Paravirtualization 252 148 400

Bandwidth Redistribution 2014 316 2330

Ethernet Driver 1068 1522 2590

Migration 2038 656 2694

Total 13596 5622 19218

7.4.2 Memory Footprint & Paravirtualization Effort

The Ethernet driver adds less than 3 kB to the Proteus hypervisor as introduced

in Chapter 3. The migration functionality consisting of Migration Manager, Load

Information Collector, and Communication module accounts for another 3 kB. If

all features required for migration are enabled, plus Bandwidth Redistribution as

introduced in the previous chapter, the memory requirement of the hypervisor sums

up to about 19 kB (see Table 7.1).

The implementation of the presented approach requires paravirtualization: func-

tionality for the interaction with the hypervisor interface has to be added to the

guest OS, since it has to pass information to the hypervisor. Because of the lim-

ited applicability of paravirtualization, the hypervisor supports both kinds and the

concurrent hosting of paravirtualized guests and fully virtualized guests is possible

without restriction. Migration is however confined to paravirtualized guests.

In order to paravirtualize an OS for the presented migration approach, the OS

has to implement the protocol-compliant passing of scheduling information to the

hypervisor. The shared memory communication primitives are provided by a library.

The function to compute the maximum possible downtime has to be implemented.

The control flow has to be adapted: after a context switch from hypervisor to OS, the

OS has to read out the shared memory and respond with the appropriate function

calls, write accesses to shared memory, and hypercalls. In case of our real-time

OS and a simple static scheduling algorithm, the paravirtualization effort accounted

for 450 lines of C++ code. Please note that the paravirtualization effort is highly

dependent on the characteristics of the applied scheduling algorithm, particularly

the complexity of slack computation.

7.4 Evaluation 177

Table 7.2: Execution times of migration routines

Process Step Time [µs]

Acquisition of Data from Target (incl. Acceptance Test) 61

Select Target 1

Downtime Test 18

Initiation of Transfer by VM 8

Detach tdetach 4

Resume tresume 4

7.4.3 Execution Times & Downtime

Table 7.2 lists the execution times for the different routines of the migration process

as measured with the prototype. The execution time of all routines is in the range

of 1 to 61 microseconds. All steps except of the transfer sum up to less than 100

microseconds. The time for the transfer is heavily dependent on the size of the VM

image and not denoted. It might in addition be delayed by other communication

load, e.g., between cooperating systems on different PMs. An average transfer rate

of 35 Mbps was measured, but there is an additional communication overhead for

the handling of the Ethernet frames.1

Virtual machine configurations with a size of 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1

MB, 4 MB, and 16 MB were migrated. VM context and hypervisor data associated

with the VM add 412 bytes, independent of the memory size. Table 7.3 lists the total

migration time for each configuration (from the very beginning of the protocol to

completion), the measured downtime (tservice not included, so tdown − tservice), and
the time for only the transfer. As a simplification, the hypervisor on both source

and target PM can be executed immediately and all the time and does not have to

interrupt itself in order to schedule other guests (and does not schedule the migrating

VM anymore). A real implementation had to integrate the migration processor into

the VM schedule, e.g. by reserving dedicated computation bandwidth. In order to

avoid that this bandwidth is unused when no migration process has to be managed,

a mode change with redistribution should be performed. But the required utilization

has to be included in the system’s overall sum of minimum bandwidths. Moreover,

there is no other communication load on the Ethernet connection, so the transfer is

1The nominal rate of 100 Mbps is not reached due to the connection of the Ethernet device via a

Processor Local Bus interface and memory-mapped I/O, as well as due to a rudimentary Ethernet

driver.

178 Real-Time Virtual Machine Migration

Table 7.3: Migration time for different virtual machine sizes

VM Size 1 kB 4 kB 16 kB 64 kB

Total Migration Time [ms] 0.915 1.479 5.614 21.310

Downtime [ms] 0.809 1.374 5.508 21.198

Transfer Time [ms] 0.801 1.366 5.500 21.190

VM Size 256 kB 1 MB 4 MB 16 MB

Total Migration Time [ms] 83.690 334.400 1336.340 5389.630

Downtime [ms] 83.588 334.308 1336.208 5389.508

Transfer Time [ms] 83.580 334.300 1336.200 5389.500

uninterrupted.

The measured downtimes indicate that the overhead of the presented implemen-

tation is too high for real-time systems with a maximum affordable downtime below

1 ms. For a memory size of 4 kB, it is feasible if the VM can be suspended for at

least 1.4 ms. A VM with 16 kB memory requires at least 5.5 ms. For VMs with a

memory of size greater than or equal to 4 MB, the downtime exceeds already one

second.

Clearly, and not surprising, the time for the transfer of the VM image is the lion’s

share of the migration costs. Detaching and resuming contribute only 8 microseconds

to the downtime. In order to reduce the downtime and increase the applicability

of migration, one can either increase the transfer rate or decrease the amount of

data that has to be transferred. One possibility is an offline distribution of the

code segments on all PMs. Drawback is a higher memory usage for the redundant

storage. The avoidance of a single deadline miss might not be achievable for a given

VM size and communication speed. Especially with the motivation to increase the

availability, that is to say continue the functioning of a system that otherwise would

not be available anymore, a limited number of deadline misses could be acceptable

for some systems, since a non-functioning system misses all of its deadlines.

7.4.4 Reliability Analysis

A reliability model is used in the following in order to quantify the impact of migra-

tion on virtual machine reliability. We perform a comparative reliability analysis of

the fault-tolerant architecture with migration and the migration-less design. Figure

7.6 depicts the system with regard to how the reliability of its components affects

the system reliability as a series-parallel reliability block diagram (RBD) [Ebeling,

7.4 Evaluation 179

(a)

PM

HV

Vi

(b)

PM HV Vi

(e)

PM'1HV1

PM2 HV2

Vi

NW

PMm HVm

...

B1B2

B3

CPU1

(c)

PM'1

HV1
...

Vi
HVm

PM'm

NW

CPU1 CPUm PM'j = POWj COOjMEMj

PMj = PM'jCPUj
(d)

Figure 7.6: (a) System architecture of virtualization without migration: physical

machine (PM), hypervisor (HV) and virtual machine (V); (b) reliability block dia-

gram of system without migration; (c) system architecture with connected PMs; (d)

reliability block diagrams of submodules; (e) reliability block diagram of system with

migration

1997]. It includes structure and RBD of the architecture without migration (Figure

7.6(a),(b)) and with migration (Figure 7.6(c)–(e)). Each component is characterized

by a constant failure rate, i.e., the failures are independent of time. The failures of

all components are mutually independent. Components either operate correctly or

fail (bi-modal). All m PMs have the same hardware failure rate.

The hardware of a PM is composed of CPU, memory (MEM), power supply

(POW), and cooling system (COO) (Figure 7.6 (d)). This subdivision is useful,

since we differentiate between failures that still permit a migration and those that

do not. It is assumed that failures of memory, power supply, and cooling system are

detected early enough by built-in self-tests to permit migration. A failure of CPU or

the software entities Hypervisor (HV) and the VM itself (i.e., the operating system)

render a migration impossible. The overall system succeeds, if any path through

the system is successful, otherwise it fails. A VM fails if either the PM, the HV,

or the VM itself fails. If a working combination of PM and HV remains, migration

180 Real-Time Virtual Machine Migration

Table 7.4: Mean time to failure for all components

Component MTTF [h] Component MTTF [h]

CPU 2,500,000 Network (NW) 1,000,000

Memory (MEM) 480,000 HV 876,000

Power supply (POW) 670,000 VM (V) 876,000

Cooling system (COO) 3,100,000

can enable the continuing of the VM’s service, however, only if the network (NW)

is working. A failure of a VM does not cause a failure of the other VMs (the RBD

depicts only a single VM).

Table 7.4 lists the mean time to failure (MTTF) for all components of the system.

All values for hardware components are retrieved from [Kim et al., 2009], since the

vendors of the used hardware do not provide reliability information. Increased is the

MTTF of the network, since similar network facilities for industrial automation are

characterized by MTTFs in the range of decades.

The failure rate λ is the arrival rate of failure:

MTTF =
1

λ
=

∫ ∞
0

R(t)dt

The failure rates λ of the blocks B1, B2, B3 (see Figure 7.6(e)), and the overall

system can be derived as:

λ(B1) =
1∑m−1

j=1
1

j·(λ(PM)+λ(HV))

λ(B2) = λ(NW) + λ(B1)

λ(B3) =
1

1
λ(PM ′

1)
+ 1

λ(B2) − 1
λ(PM ′

1)+λ(B2)

λ = λ(CPU) + λ(HV) + λ(V) + λ(B3)

Figure 7.7 plots the reliability function for configurations with one to six PMs

according to the exponential failure distribution R(t) = e−λt. It underlines the

effectiveness of migration as a measure to increase reliability. Table 7.5 lists the

MTTFs for the different configurations and the percentage increase compared to the

architecture with a single PM and consequently no migration. The increase becomes

less as the number of PMs increases, since more PMs increase only the reliability of

block B1, but the overall reliability is highly dependent on the components whose

working is prerequisite for migration (network, CPU, hypervisor, VM).

7.4 Evaluation 181

Figure 7.7: Reliability function for m=1 to 6 PMs

Table 7.5: Resulting mean time to failure

Number of PMs 1 2 3 4 5 6

MTTF [d] 6331 7114 7580 188510 7855 8180

Gain - 12% 20% 24% 27% 29%

182 Real-Time Virtual Machine Migration

Figure 7.8: RailCabs on test track

7.4.5 Case Study: Autonomous Rail Vehicle

In the following case study, the applicability of virtual machine migration for the

RailCab is evaluated. The RailCab project2 of the University of Paderborn developed

an innovative railway system with the goal to combine the flexibility of individual

transport with the ecological efficiency of public transport [Gausemeier et al., 2014].

Compared to trains, RailCabs are smaller and able to transport either 10 to 20

passengers or a standard 20-foot-long intermodal container [Lückel et al., 2008].

They are autonomous and driverless and operate in a demand-driven manner, not

based on schedules. The RailCab features a doubly-fed linear motor, modern chassis

technology with active steering, an active suspension system, and allows convoy

driving without mechanical coupling. A test track was built for the validation of this

complex mechatronic system (see Figure 7.8).

In the following, the architecture of the the RailCab is introduced in order to

evaluate the applicability of virtual machine migration and to identify options for

the embedding of this technique. The general control architecture of the RailCab

is based on the Operator Controller Module (OCM) [Hestermeyer et al., 2004] as

depicted in Figure 7.9. On the highest level of this hierarchical architecture, the

cognitive operator applies machine learning approaches and planning algorithms to

optimize the behavior of the system. On the intermediate level of the OCM, the re-

flective operator represents the interface between underlying controller and cognitive

operator. It receives input from the cognitive operator and monitors and configures

the controller. Finally, the controller on the lowest level interfaces directly with the

2http://www.railcab.de/

7.4 Evaluation 183

controlled process by actuators and sensors.

Since such a transportation system is safety-critical, a modular safety system

has been integrated into the system architecture [Henke et al., 2008]. In order to

detect faults and to describe the state of the system, all signals, components, and

modules have to be checked continuously during runtime. The reflective operator of

the Operator Controller Module handles hazardous incidents, as depicted in Figure

7.10. Failures are evaluated by means of a hazard list, which is the result of a hazard

analysis of the RailCab system. Hazards must be either eliminated, reduced, or

controlled, or the damage caused must be minimized [Leveson, 1995].

Virtual machine migration is an additional technique to control hazards, that

is to say to reduce the likelihood that the hazards pose a threat to life, health,

property, or environment. A typical hazard reaction is the transition to fail-safe

mode, in which it will cause no harm. Fail-safe means an immediate stopping of

the vehicle. However, this hazard reaction has a negative impact on other vehicles,

since it implies a blocking of a segment of the track. The RailCab project envisions

networks of thousands of autonomous vehicles, building convoys where possible to

save energy. Migration’s potential to keep a software component alive despite of a

hardware failure could be used to implement an additional fail-operational approach,

which realizes in some cases a controlled driving to a maintenance facility.

The applications on the different levels of the OCM have differing timing require-

ments. The actuator controlling software on the lowest level and the supervising

reflective operator have to meet hard real-time requirements. The self-optimization

procedures of the cognitive operator are characterized by soft real-time requirements,

since a violation of the timing requirements does not lead to a safety-critical malfunc-

tioning of the mechatronic system. This highest level of the hierarchical structure

is characterized by the weakest real-time requirements, and migration with the in-

volved downtime is feasible. However, two examples demonstrate that migration is

actually applicable as well to actuator-controlling low-level software, despite of hard

real-time requirements: a VM with the linear motor control and a VM with the

active guidance module.

The linear motor is controlled by two current controller tasks τc1 and τc2 and a

speed controller task τs, executed according to a fixed-priority policy on a dSPACE

DS1005 PPC board with a PowerPC 750GX processor of 1 GHz [Kerstan, 2011].

Their execution times and periods are stated in Table 7.6.

The maximum affordable downtime is 2.5 ms (see Figure 7.11), resulting in a

feasible real-time migration of a VM with a memory size of up to 4 kB (according to

184 Real-Time Virtual Machine Migration

Figure 7.9: Control architecture for self-optimizing mechatronic systems: operator

controller module [Hestermeyer et al., 2004]

Linear Motor Control Task WCET [ms] Period [ms]

Current Control τc1 0.25 3

τc2 0.25 3

Speed Control τs 0.25 42

Table 7.6: Case study: electrical drive engineering - linear motor control

7.4 Evaluation 185

Figure 7.10: Hazard handling of the RailCab [Henke et al., 2008]

Table 7.3). With 18 kB, the size of the operating system ORCOS exceeds already this

limit. In order to apply migration nevertheless, one can preload the code segments

of both operating system and tasks to all potential target PMs. In this case, only

the data that defines the state of the controller tasks (< 1 kB) has to be transferred.

The big drawback is the additional memory requirement, which grows exponentially

with the overall number of VMs in the distributed system.

RailCabs group to convoys in order to reduce reduce drag and, consequently,

reduce energy consumption. The RailCabs are not mechanically coupled, but drive

with low distance from each other. To enable a RailCab to leave such a convoy at

high velocities of 160 km/h, the railroad switch is passive and the RailCab steers

actively onto the target track. The control of the steering angle of the axles is

realized by the active guidance module. This module controls the steering angle not

only in case of a railroad switch, but permanently, in order to reduce wear on wheels

and rails by compensating track irregularities [Sondermann-Wolke and Sextro, 2009].

The controller is characterized by a period of 80 ms and a WCET of 25 ms [Geisler,

2014]. Referring again to Table 7.3, a virtual machine of size 64 kB can be migrated

in a timely manner. This limit actually allows for the migration of the entire VM,

incl. operating system.

186 Real-Time Virtual Machine Migration

0 2 4 6

τc1

τc2

τs

slack

Figure 7.11: Linear motor control case study: maximum downtime

7.5 Summary

Migration refers to the relocation of a virtual machine from one physical machine to

another one at runtime. Virtualization’s architectural abstraction and encapsulation

of guest systems in virtual machines facilitate migration, but existing virtualization

solutions for real-time embedded systems are characterized by a static mapping of

virtual machines to processors. As a coarse-grained approach with a significant

overhead, particularly regarding the downtime due to the transmission from source

to target physical machine, this chapter proposed to apply it as a fault tolerance

technique in order to continue the functioning of a subsystem despite a hardware

failure.

This work studied migration of virtual machines with real-time constraints on

homogeneous multiprocessor architectures. The migration policy respects real-time

requirements and predicts deadline misses based on a preceding comparison of down-

time caused by the migration and slack-based computation of the virtual machine’s

maximum affordable downtime. The distributed design is characterized by a commu-

nication between the paravirtualized operating system and the hypervisor in order

to provide the required scheduling information. A prototype was integrated into

hypervisor and real-time operating system. The evaluation showed a reasonable par-

avirtualization effort, a low overhead of the migration protocol, and dominating costs

for the data transfer. The transfer of the memory content was indeed identified as

the limiting factor for real-time migration. On the low-performance test hardware,

the approach is applicable to real-time systems with a virtual machine size up to

7.5 Summary 187

about 64 kB and deadlines in the range of multiple milliseconds. A reliability anal-

ysis based on a combinatorial model quantified the positive impact of migration on

reliability.

188 Real-Time Virtual Machine Migration

Chapter 8

Conclusion & Future Work

The increasing number of functions and the goal to reduce or at least maintain

hardware costs, space, weight, and power consumption lead in industries such as the

automotive or aerospace industry to integrated architectures, which consolidate mul-

tiple functions on a shared electronic control unit. Multicore processors provide an

ideal hardware platform to reconcile these opposing trends: realize complex function-

ality, but at the same time reduce the number of control units. The major challenges

for integrated architectures are robust encapsulation (to prevent that the integrated

systems corrupt each other) and resource management (to ensure that each system

receives sufficient resources).

System virtualization is a promising integration technique that can provide the re-

quired reliability and resource management features. It integrates multiple software

systems (operating system and application tasks) in an encapsulated manner. The

hypervisor manages the hardware resources and provides multiple execution envi-

ronments. The benefits are hardware consolidation, operating system heterogeneity,

easy migration of single-core software to multicore processors, secure partitioning,

and incremental certification. The hypervisor has to implement the encapsulation

and is responsible for the management of the hardware resources. Temporal isola-

tion is a prerequisite for the integration of real-time systems and the certification

of safety-critical systems, but adaptability is desired in order to utilize the shared

processor efficiently.

8.1 Summary of Results

In this context of hypervisor-based virtualization for embedded real-time systems,

this thesis investigated the adaptive management of the resource computation time

190 Conclusion & Future Work

and made the following contributions:

An algorithm for the partitioning of virtual machines to processor cores.

(Chapter 5) An algorithmic solution is in contrast to the manual partitioning,

which is state of the art. The algorithm includes the correct dimensioning of

the periodic resources and guarantees in combination with the scheduling al-

gorithm of Chapter 6 the schedulability of all guest systems. It is original in

that it minimizes the overall required computation bandwidth by exploiting

the freedom of server design to create favorable period relationships. In addi-

tion, it considers criticality levels and produces partitions that provide more

possibilities to protect a safety-critical guest system and to benefit from an

adaptive scheduling.

An adaptive virtual machine scheduling architecture. (Chapter 6) It ad-

vances the state of the art by combining temporal isolation and real-time guar-

antees with adaptive bandwidth management. The technique overcomes the

limitations of static resource allocation. Mode changes and varying execution

times trigger a redistribution and the approach attempts to protect critical

guest systems in case of a worst-case execution time overrun. A novel elastic

bandwidth management algorithm is non-iterative, in contrast to existing ones,

and therefore characterized by a smaller and more predictable execution time

overhead. An analysis proved the service guarantee of the scheduling architec-

ture, which is the basis for its real-time capability and a potential certification.

A technique for real-time virtual machine migration. (Chapter 7) It advances

the state of the art, in that the technique is aware of real-time requirements

and addresses the issues service outage due to the network transfer and the

integration into the scheduling on the target control unit. The migration pro-

tocol, the co-design of hypervisor and paravirtualized guest operating system,

and an efficient implementation were presented.

In addition, an architecture of a multicore hypervisor that provides real-time ca-

pability, safe and secure partitioning, and support of both paravirtualization and full

virtualization was presented. The implementation meets the requirements of embed-

ded real-time systems regarding execution time overhead, latencies, and memory

footprint. This hypervisor served as a platform for the prototype-based evaluation

of the contributions. It is not a scientific contribution on its own, but represents the

state of the art.

8.2 Outlook 191

Together, these contributions enable the integration of independently developed

and validated guest systems on top of the hypervisor. The hypervisor’s virtual ma-

chine scheduling guarantees that all guest systems receive sufficient computation

time in order to meet their real-time requirements. This includes that the execu-

tion of a guest is never interrupted for a longer time than allowed by its reactivity

requirements. The redistribution of the bandwidth in case of mode changes and

execution time variations increases the utilization and supports applications that

can take advantage of additional computational bandwidth. Adaptive measures are

taken as well to protect critical guest systems. In case of a worst-case execution

time overrun of a critical guest system, it is attempted to protect its execution by

assigning additional computation time, which is stolen from non-critical guests. In

case of a hardware failure, migration is performed to continue the operation of guest

systems on other processors.

8.2 Outlook

In future work, we plan to remove the constraint that only independent virtual

machines are considered. If systems that have to communicate are consolidated,

inter-VM communication is required. The hypervisor provides already the required

functionality, but partitioning, scheduling, and migration do not yet include this

aspect. The partitioning has a direct influence on communication latencies and over-

head. The scheduling might be influenced by precedence constraints (a guest system

cannot continue before another guest system finished a certain task). If migration

separates systems that formerly shared a processor, the local inter-VM communica-

tion has to be replaced by inter-processor communication, preferably transparent to

the guest systems.

In addition, guest systems so far have to obtain a dedicated I/O device. Support

for I/O device sharing between guest systems should be added. There are different

options for the implementation, as introduced in Chapter 2.2.3, e.g., emulation by the

hypervisor, paravirtualized device drivers, or hardware multiplexing. As a next step,

the I/O bandwidth could be managed as well in an adaptive manner, for example

by a server-based approach [Santos et al., 2011]. It would then be interesting to

explore the relationship between adaptively managed computation bandwidth and

adaptively managed communication bandwidth, and their mutual impact. First

works in this direction exist, but only for non-real-time systems [Cherkasova and

Gardner, 2005,Gupta et al., 2006,Ongaro et al., 2008].

192 Conclusion & Future Work

Appendix A

Publications

Hypervisor (Chapter 3)

K. Gilles, S. Groesbrink, D. Baldin, T. Kerstan: Proteus Hypervisor: Full Virtual-

ization and Paravirtualization for Multi-Core Embedded Systems. Proc. of the 4th

IFIP International Embedded Systems Symposium, Paderborn, Jun. 2013.

Virtual Machine Partitioning (Chapter 5)

S. Groesbrink: On the Homogeneous Multiprocessor Virtual Machine Partitioning

Problem. Proc. of the 4th IFIP International Embedded Systems Symposium, Pader-

born, Jun. 2013.

S. Groesbrink, L. Almeida: A Criticality-Aware Mapping of Real-time Virtual Ma-

chines to Multicores. Proc. of the 19th IEEE International Conference on Emerging

Technology & Factory Automation, Barcelona, Sep. 2014.

Adaptive Virtual Machine Scheduling (Chapter 6)

S. Groesbrink, L. Almeida, M. de Sousa, S. M. Petters: Fair Bandwidth Sharing

among Virtual Machines in a Multi-criticality Scope. Proc. of the 5th Workshop

on Adaptive and Reconfigurable Embedded Systems, CPSWeek 2013, Philadelphia,

Apr. 2013.

S. Groesbrink, L. Almeida, M. de Sousa, S. M. Petters: Towards Certifiable Adap-

tive Reservations for Hypervisor-based Virtualization, Proc. of the 20th IEEE Real-

Time and Embedded Technology and Applications Symposium, Berlin, Apr. 2014.

194 Publications

Virtual Machine Migration (Chapter 7)

S. Groesbrink: Basics of Virtual Machine Migration on Heterogeneous Architectures

for Self-optimizing Mechatronic Systems - Necessary Conditions and Implementation

Issues. Production Engineering Research & Development, Volume 7, Issue 1, pp. 69-

79, Springer, Jan. 2013.

S. Groesbrink: Virtual Machine Migration as a Fault Tolerance Technique for Em-

bedded Real-Time Systems. Proc. of the 8th IEEE Reliability Society’s International

Conference on Software Security and Reliability, San Francisco, Jun. 2014.

Applications

S. Groesbrink, F. Rammig: Safe Self-Evolving Embedded Software via System Vir-

tualization. Proc. of the 3rd SBC Workshop on Autonomic Distributed Systems,

Brasilia, May 2013.

S. Groesbrink, D. Baldin, S. Oberthür: Architecture for Adaptive Resource Assign-

ment to Virtualized Mixed-Criticality Real-Time Systems. ACM SIGBED Review,

Volume 10, Mar. 2013.

S. Groesbrink, S. Korrapati, A. Schmitz, A. Schreckenberg: Hypervisor-based Con-

solidation for Automated Teller Machines. Proc. of the 12th Embedded World Con-

ference, Nürnberg, Feb. 2014.

S. Groesbrink: Increasing the Reusability of Embedded Real-time Software by a

Standardized Interface for Paravirtualization. Proc. of the 6th GI Design For Future

Workshop, Bad Honnef, Apr. 2014.

F. Rammig, S. Groesbrink, K. Stahl, Y. Zhao: Designing Self-Adaptive Embedded

Real-time Software - Towards System Engineering of Self-Adaptation. Proc. of the

4th Brazilian Symposium on Computing Systems Engineering, Manaus, Nov. 2014.

List of Figures

1.1 Candidate functions for hypervisor-based head-unit integration . . . 5

2.1 Computer system with operating system 15

2.2 Parameters of a real-time task (upward arrow indicates task arrival,

downward arrow indicates deadline) 18

2.3 Platform replication by system virtualization 23

2.4 (a) Native hypervisor (type I) vs. (b) hosted hypervisor (type II) . . 25

2.5 Popek and Goldberg’s requirement for a virtualizable instruction set

architecture: is the set of sensitive instructions a subset of the set of

privileged instructions? (a) not fulfilled; (b) fulfilled 27

2.6 Single-bus shared memory multicore with private caches 33

2.7 System software’s core management: symmetric multiprocessing, asym-

metric multiprocessing, and hypervisor-based virtualization 34

2.8 System virtualization’s hierarchical scheduling: virtual machine schedul-

ing by hypervisor and task scheduling by operating systems 38

2.9 Progress of virtual machines: (a) ideal; (b) in practice (cf. [Kaiser,

2008]) . 39

3.1 Design of the Proteus hypervisor (cf. [Baldin and Kerstan, 2009]) . . 51

3.2 Preprocessor-based configuration by conditional compilation 54

3.3 Execution mode differentiation and mechanisms for mode transition:

extension of the processor’s two modes by two virtual modes 56

3.4 Execution time of routines for protected access to a shared resource . 63

3.5 Impact of individual components on memory footprint 66

4.1 Distribution of execution times of a task between best-case and worst-

case execution time . 71

196 LIST OF FIGURES

4.2 Demand bound function for two EDF-scheduled tasks τ1 = (T =

2, C = 1), τ2 = (T = 5, C = 2) (the dashed line depicts the schedula-

bility bound on a dedicated processor) 75

4.3 Service delay of a periodic resource Γ = (Π,Θ) 77

4.4 Schedulability analysis by comparing demand bound function and sup-

ply bound function. Example: two EDF-scheduled tasks τ1 = (T =

5, C = 1), τ2 = (T = 15, C = 2) and periodic resource Γ = (Π =

2,Θ = 1) . 79

5.1 Tree-based visualization of the systematic enumeration of candidate

solutions — Example: on level 2, V2 might either be added to the

same partition as V1 or a second partition is created. 94

5.2 Existence of multiple periodic resources. Example: two EDF-scheduled

tasks τ1 = (T = 5, C = 1), τ2 = (T = 15, C = 2) and two periodic

resources Γ1 = (Π = 2,Θ = 1), Γ2 = (Π = 5,Θ = 3), both guarantee

schedulability . 95

5.3 Schedulable region of a periodic resource. Example: two EDF-scheduled

tasks τ1 = (T = 50, C = 7), τ2 = (T = 75, C = 9). Integral resource

allocation minimums for 1 ≤ Π ≤ 10 96

5.4 Mappings for different optimization goals 104

5.5 Average number of processor cores for different partitioning goals:

minimize number of processor cores (NP), minimize number of pro-

cessor cores incl. transformation to harmonic server periods (NPH);

maximize criticality distribution (CD), incl. transformation to har-

monic server periods (CDH); minimize number of processor cores and

assign cores exclusively to critical VMs (EX), incl. transformation to

harmonic server periods (EXH); (a) VM Bandwidths between 0.1 and

0.9, (b) VM Bandwidths between 0.1 and 0.5 106

5.6 Average criticality distribution for the partitioning goal minimize num-

ber of processor cores, with (NPH) and without (PH) transformation

to harmonic server periods; (a) VM bandwidths between 0.1 and 0.9,

(b) VM bandwidths between 0.1 and 0.5 107

6.1 Server-based partitioned hierarchical scheduling 115

6.2 Server-based scheduling of two virtual machines V1 and V2: the virtual

processors Γ1(2, 1) and Γ2(5, 2) are implemented by periodic servers . 116

6.3 State transition diagram for the periodic server 117

LIST OF FIGURES 197

6.4 Example of overload reaction: overload of V1 at t = 7; (a) next-to-

dispatch VM V2 is non-critical; (b) next-to-dispatch VM V2 is critical 125

6.5 Mode change request of V1 at t = 4: immediate mode change leads to

overallocation . 130

6.6 Case 1: request to enable V1 at t = 1, activation at t = 16 131

6.7 Case 2: request to disable V2 at t = 14, activation at t = 16 (end of

V2’s instance) . 132

6.8 Case 3: mode change request of V2 at t = 3 (from a mode with

Ulax(V2) = 0 to a mode with Ulax(V2) = 0.125; assumed is a higher

weight of V2 compared to V3): the allocation to V1 of higher criticality

is unchanged, V2’s larger allocation is activated at the end of V3’s

instance (V3’s allocation is reduced at the same point in time) 132

6.9 Limited validity duration of dynamic slack: timing violation due to

use of dynamic slack later than the end of the period of the giving

virtual machine . 134

6.10 Limited validity duration of dynamic slack: timing violation of VM

of intermediate priority due to use of dynamic slack later than the

end of the instance of the receiving VM (example: Umin(V1) = 1/4,

Ulax(V1) = 3/4, Umin(V2) = 1/8, Ulax(V2) = 0, Umin(V3) = 1/24,

Ulax(V3) = 23/24) . 135

6.11 Categorization of all VMs based on priority relative to giving virtual

machine and receiving virtual machine for the case that Vgiving is of

lower priority . 137

6.12 Need to activate virtual machines in a synchronized manner (fractions

denote Θ and Π) . 138

6.13 Categorization of all virtual machines based on priority relative to

giving virtual machine and receiving virtual machine for the case that

Vgiving is of higher priority . 139

6.14 Availability of information with influence on scheduling for hypervisor

and guest systems . 141

6.15 Interaction between hypervisor and operating system in the case of

redistribution on mode change . 144

6.16 Execution times of scheduler routines subject to the number of virtual

machines (PowerPC 405 @300 MHz) 147

6.17 Interaction between hypervisor and operating system in the case of

yield, with and without redistribution 149

198 LIST OF FIGURES

6.18 Effect of mode change probability . 157

6.19 Effect of bandwidth demand factor 159

7.1 Virtual machine migration . 162

7.2 Downtime due to virtual machine migration 164

7.3 Integration of the migration functionality into the architecture of the

hypervisor . 168

7.4 Migration protocol . 170

7.5 Additional delay by virtual machine scheduling: example 175

7.6 (a) System architecture of virtualization without migration: physical

machine (PM), hypervisor (HV) and virtual machine (V); (b) reliabil-

ity block diagram of system without migration; (c) system architecture

with connected PMs; (d) reliability block diagrams of submodules; (e)

reliability block diagram of system with migration 179

7.7 Reliability function for m=1 to 6 PMs 181

7.8 RailCabs on test track . 182

7.9 Control architecture for self-optimizing mechatronic systems: operator

controller module [Hestermeyer et al., 2004] 184

7.10 Hazard handling of the RailCab [Henke et al., 2008] 185

7.11 Linear motor control case study: maximum downtime 186

List of Tables

4.1 Suitability of the model: exemplary virtual machine set 81

5.1 Example for partitioning: set of virtual machines 103

6.1 Thresholds for distribution of dynamic slack 148

6.2 Memory footprint for scheduling functionality (2 virtual machines) . 149

6.3 Qualitative comparison of virtual machine scheduling techniques (n:

number of VMs, r: number of real-time VMs) 153

6.4 Relative error δ of allocated bandwidth and desired bandwidth for

fixed distribution and adaptive distribution 156

7.1 Memory footprint for migration functionality 176

7.2 Execution times of migration routines 177

7.3 Migration time for different virtual machine sizes 178

7.4 Mean time to failure for all components 180

7.5 Resulting mean time to failure . 181

7.6 Case study: electrical drive engineering - linear motor control 184

200 LIST OF TABLES

List of Algorithms

1 Harmonization . 98

2 Partitioning Algorithm . 102

3 Bandwidth Distribution . 122

202 LIST OF ALGORITHMS

Bibliography

[Aalto, 2010] Aalto, A. (2010). Dynamic Management of Multiple Operating Sys-

tems in an Embedded Multi-Core Environment. Master’s thesis, Aalto University.

[Abeni et al., 2005] Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., and Palopoli,

L. (2005). QoS Management through Adaptive Reservations. Real-Time Systems,

29:131–155.

[Adams and Agesen, 2006] Adams, K. and Agesen, O. (2006). A Comparison of

Software and Hardware Techniques for x86 Virtualization. In Proc. International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 2–13.

[Almeida and Pedreiras, 2004] Almeida, L. and Pedreiras, P. (2004). Scheduling

within Temporal Partitions: Response-time Analysis and Server Design. In Proc.

of the Conference on Embedded Software.

[Almeida et al., 2002] Almeida, L., Pedreiras, P., and Fonseca, J. (2002). The FTT-

CAN Protocol: Why and How. IEEE Transactions on Industrial Electronics,

49(6):1189–1201.

[Anderson et al., 2009] Anderson, J., Baruah, S., and Brandenburg, B. (2009). Mul-

ticore Operating-System Support for Mixed Criticality. In Proc. of the Workshop

on Mixed Criticality: Roadmap to Evolving UAV Certification.

[Andersson and Johnsson, 2000] Andersson, B. and Johnsson, J. (2000). Fixed-

priority Preemptive Multiprocessor Scheduling: to Partition or not to Partition.

In Proc. of the International Workshop on Real-Time Computing Systems and

Applications.

[Arzen et al., 2011] Arzen, K., Segovia, V. R., Schorr, S., and Fohler, G. (2011).

Adaptive Resource Management Made Real. In Proc. of the Workshop on Adaptive

and Reconfigurable Embedded Systems.

204 BIBLIOGRAPHY

[Asberg et al., 2009] Asberg, M., Behnam, M., Nemati, F., and Nolte, T. (2009).

Towards Hierarchical Scheduling in AUTOSAR. In Proc. of the IEEE Conference

on Emerging Technologies and Factory Automation.

[Audsley et al., 1991] Audsley, N., Burns, A., Richardson, M., and Wellings, A.

(1991). Hard Real-Time Scheduling: The Deadline Monotonic Approach. In Proc.

of the IEEE Workshop on Real-Time Operating Systems.

[Augier, 2007] Augier, C. (2007). Real-Time Scheduling in a Virtual Machine Envi-

ronment. In Proc. of the Junior Researcher Workshop on Real-Time Computing.

[Baker and Shaw, 1989] Baker, T. and Shaw, A. (1989). The Cyclic Executive Model

and Ada. Real-Time Systems.

[Baldin, 2009] Baldin, D. (2009). Entwurf und Implementierung einer komponenten-

basierten Virtualisierungsplattform für selbstoptimierende eingebettete mechatro-

nische Systeme. Master’s thesis, University of Paderborn.

[Baldin and Kerstan, 2009] Baldin, D. and Kerstan, T. (2009). Proteus, a Hybrid

Virtualization Platform for Embedded Systems. In Proc. of the International

Embedded Systems Symposium.

[Baliga and Kumar, 2005] Baliga, G. and Kumar, P. (2005). A Middleware for Con-

trol over Networks. In Proc. of the IEEE Conference on Decision and Control.

[Barham et al., 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the Art

of Virtualization. In Proc. of the 19th ACM Symposium on Operating Systems

Principles.

[Bartolini and Lipari, 2014] Bartolini, C. and Lipari, G. (2012 [accessed: Sep. 10,

2014]). RTSIM - Real-Time system SIMulator. http://rtsim.sssup.it/.

[Baruah, 2004] Baruah, S. (2004). Task Partitioning upon Heterogeneous Multi-

processor Platforms. In Proc. of the Real-Time and Embedded Technology and

Applications Symposium.

[Baruah and Burns, 2006] Baruah, S. and Burns, A. (2006). Sustainable Scheduling

Analysis. In Proc. of the 27th IEEE International Real-Time Systems Symposium.

[Baruah and Fohler, 2011] Baruah, S. and Fohler, G. (2011). Certification-Cognizant

Time-Triggered Scheduling of Mixed-Criticality Systems. In Proc. of the 32nd

IEEE Real-Time Systems Symposium.

BIBLIOGRAPHY 205

[Baruah et al., 2010a] Baruah, S., Haohan, L., and Stougie, L. (2010a). Towards the

Design of Certifiable Mixed-Criticality Systems. In Proc. of the Real-Time and

Embedded Technology and Applications Symposium.

[Baruah et al., 2010b] Baruah, S., Li, H., and Stougie, L. (2010b). Mixed-Criticality

Scheduling: Improved Resource-Augmentation Results. In Proc. of the Conference

on Computers and Their Applications.

[Baruah et al., 1990] Baruah, S., Rosier, L., and Howell, R. (1990). Algorithms and

Complexity Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks

on one Processor. Real-Time Systems, 2:301–324.

[Bate and Kelly, 2003] Bate, I. and Kelly, T. (2003). Architectural Considerations

in the Certification of Modular Systems. Reliability Engineering & System Safety,

81(3):303–324.

[Behnam et al., 2008] Behnam, M., Nolte, T., Shin, I., and Asberg, M. (2008). To-

wards Hierarchical Scheduling in VxWorks. In Proc. of the Fourth International

Workshop on Operating Systems Platforms for Embedded Real-Time Applications.

[Bernat and Burns, 2002] Bernat, G. and Burns, A. (2002). Multiple Servers and Ca-

pacity Sharing for Implementing Flexible Scheduling. Real-Time Systems, 22:49–

75.

[Bini et al., 2009] Bini, E., Buttazzo, G., and Bertogna, M. (2009). The Multi Sup-

ply Function Abstraction for Multiprocessors. In Proc. of the 15th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and Applica-

tions.

[Bini et al., 2011] Bini, E., Buttazzo, G., Eker, J., Schorr, S., Guerra, R., Fohler,

G., Arzen, K.-E., Segovia, V. R., and Scordino, C. (2011). Resource Management

on Multicore Systems: The ACTORS Approach. IEEE Micro, 31:72–81.

[Block et al., 2008] Block, A., Brandenburg, B., Anderson, J., and Quint, S. (2008).

An Adaptive Framework for Multiprocessor Real-Time Systems. In Proc. of the

Euromicro Conference on Real-Time Systems, pages 23–33.

[Bobroff et al., 2007] Bobroff, N., Kochut, A., and Beaty, K. (2007). Dynamic Place-

ment of Virtual Machines for Managing SLA Violations. In Proc. of the Interna-

tional Symposium on Integrated Network Management.

206 BIBLIOGRAPHY

[Bouyssonouse and Sifakis, 2005] Bouyssonouse, B. and Sifakis, J. (2005). Embedded

Systems Design: The ARTIST Roadmap for Research and Development, volume

3436 of Lecture Notes in Computer Science. Springer.

[Brakensiek et al., 2008] Brakensiek, J., Droege, A., Botteck, M., Haertig, H., and

Lackorzynski, A. (2008). Virtualization as an Enabler for Security in Mobile De-

vices. In Proc. of the 1st Workshop on Isolation and Integration in Embedded

Systems.

[Brandenburg, 2014] Brandenburg, B. (2013 [Jan. 6, 2014]). Schedcat: the Schedu-

lability Test Collection and Toolkit.

[Briand and Roy, 1999] Briand, L. and Roy, D. (1999). Meeting Deadlines in Hard

Real-Time Systems - The Rate Monotonic Approach. IEEE Computer Society.

[Broy et al., 2007] Broy, M., Kruger, I., Pretschner, A., and Salzmann, C. (2007).

Engineering Automotive Software. Proceedings of the IEEE, 95(2):356–373.

[Bruns et al., 2010] Bruns, F., Traboulsi, S., Szczesny, D., Gonzalez, E., Xu, Y., and

Bilgic, A. (2010). An Evaluation of Microkernel-based Virtualization for Embed-

ded Real-time Systems. In Proc. Euromicro Conference on Real-Time Systems,

pages 57–65.

[Bucher et al., 2003] Bucher, T., Curio, C., Edelbrunner, J., Igel, C., Kastrup, D.,

Leefken, I., Lorenz, G., Steinhage, A., and von Seelen, W. (2003). Image Pro-

cessing and Behavior Planning for Intelligent Vehicles. IEEE Transactions on

Industrial Electronics, 50(1):62–75.

[Bunzel, 2011] Bunzel, S. (2011). AUTOSAR–The Standardized Software Architec-

ture. Informatik-Spektrum, 34(1):79–83.

[Burchard et al., 1995] Burchard, A., Liebeherr, J., Oh, Y., and Son, S. H. (1995).

New Strategies for Assigning Real-Time Tasks to Multiprocessor Systems. In IEEE

Transactions on Computers, volume 44, pages 1429–1442.

[Burns and Baruah, 2008] Burns, A. and Baruah, S. (2008). Sustainability in Real-

Time Scheduling. Journal of Computing Science and Engineering, 2(1):72–94.

[Buttazzo, 2004] Buttazzo, G. (2004). Hard Real-Time Computing Systems: Pre-

dictable Scheduling Algorithms and Applications. Springer, 2 edition.

[Buttazzo, 2006] Buttazzo, G. (2006). Research Trends in Real-Time Computing for

Embedded Systems. ACM SIGBED Review, 3(3):1–10.

BIBLIOGRAPHY 207

[Buttazzo et al., 2011] Buttazzo, G., Bini, E., and Wu, Y. (2011). Partitioning Real-

Time Applications over Multi-Core Reservations. In IEEE Transactions on Indus-

trial Informatics, volume 7, pages 302–315.

[Buttazzo et al., 1999] Buttazzo, G., Lipari, G., and Abeni, L. (1999). Elastic Task

Model for Adaptive Rate Control. In Proc. of the Real-Time Systems Symposium.

[Buttazzo et al., 2002] Buttazzo, G., Lipari, G., Caccamo, M., and Abeni, L. (2002).

Elastic Scheduling for Flexible Workload Management. IEEE Transactions on

Computers, 51(3):289–302.

[Buttazzo, 2000] Buttazzo, G. C. (2000). Hard Real-time Computing Systems: Pre-

dictable Scheduling Algorithms and Applications. Kluwer Academic Publishers.

[Caccamo et al., 2005] Caccamo, M., Buttazzo, G., and Thomas, D. (2005). Effi-

cient Reclaiming in Reservation-based Real-time Systems With Variable Execution

Times. IEEE Transactions on Computers, 54:198–213.

[Calandrino et al., 2007] Calandrino, J., Anderson, J., and Baumberger, D. (2007).

A Hybrid Real-time Scheduling Approach for Large-Scale Multi-Core Platforms.

In Proc. of the Euromicro Conference on Real-Time Systems.

[Carpenter et al., 2004] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Ander-

son, J., and Baruah, S. (2004). A Categorization of Real-time Multiprocessor

Scheduling Problems and Algorithms. In Handbook on Scheduling Algorithms,

Methods, and Models.

[Carrascosa et al., 2013] Carrascosa, E., Masmano, M., Balbastre, P., and Crespo,

A. (2013). XtratuM Hypervisor Redesign for LEON4 Multicore Processor. In

Proc. Workshop on Virtualization for Real-time Embedded Systems.

[Catanzaro, 1994] Catanzaro, B. (1994). Multiprocessor System Architectures: A

Technical Survey of Multiprocessor/Multithreaded Systems Using Sparc, Multilevel

Bus Architectures and Solaris. PTR Prentice Hall.

[Checconi et al., 2009] Checconi, F., Cucinotta, T., and Stein, M. (2009). Real-

Time Issues in Live Migration of Virtual Machines. In Proc. of the International

Conference on Parallel Processing.

[Cherkasova and Gardner, 2005] Cherkasova, L. and Gardner, R. (2005). Measuring

CPU Overhead for I/O Processing in the Xen Virtual Machine Monitor. In Proc.

of the USENIX Annual Technical Conference, pages 24–24.

208 BIBLIOGRAPHY

[Choi et al., 2012] Choi, J., Oh, H., Kim, S., and Ha, S. (2012). Executing Syn-

chronous Dataflow Graphs on a SPM-based Multicore Architecture. In Proc. of

the Design Automation Conference.

[Clark, 2005] Clark, C. (2005). Live Migration of Virtual Machines. In Proc. of the

Symposium on Networked Systems Design & Implementation.

[Coffman et al., 1996] Coffman, E., Garey, M., and Johnson, D. (1996). Approxi-

mation Algorithms for Bin Packing: a Survey. In Approximation Algorithms for

NP-hard Problems, pages 46—93.

[Cucinotta et al., 2011a] Cucinotta, T., Anastasi, G., and Abeni, L. (2011a). Re-

specting Temporal Constraints in Virtualised Services. In Proc. of the 4th IEEE

International Workshop on Real-Time Service-Oriented Architecture and Applica-

tions.

[Cucinotta et al., 2011b] Cucinotta, T., Giani, D., Faggioli, D., and Checconi, F.

(2011b). Providing Performance Guarantees to Virtual Machines Using Real-Time

Scheduling. Lecture Notes in Computer Science, 6586:657–664.

[Culler et al., 1999] Culler, D. E., Singh, J. P., and Gupta, A. (1999). Parallel Com-

puter Architecture - a Hardware / Software Approach. Morgan Kaufmann.

[Dasari et al., 2011] Dasari, D., Andersson, B., Nelis, V., Petters, S., Easwaran, A.,

and Lee, J. (2011). Response Time Analysis of COTS-Based Multicores Consid-

ering the Contention on the Shared Memory Bus. In 10th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications,

pages 1068–1075.

[Davis and Burns, 2005] Davis, R. and Burns, A. (2005). Hierarchical Fixed Prior-

ity Pre-emptive Scheduling. In Proc. of the 26th IEEE International Real-Time

Systems Symposium.

[Davis and Burns, 2006] Davis, R. and Burns, A. (2006). Resource Sharing in Hi-

erarchical Fixed Priority Pre-emptive Systems. In Proc. of the IEEE Real-time

Systems Symposium.

[Davis and Burns, 2010] Davis, R. and Burns, A. (2010). A Survey of Hard Real-

Time Scheduling for Multiprocessor Systems. In ACM Computing Surveys, vol-

ume 43.

BIBLIOGRAPHY 209

[de Niz et al., 2001] de Niz, D., Abeni, L., Saewong, S., and Rajkumar, R. (2001).

Resource Sharing in Reservation-Based Systems. In Proc. of the IEEE Real-Time

Systems Symposium.

[de Niz et al., 2009] de Niz, D., Lakshmanan, K., and Rajkumar, R. (2009). On the

Scheduling of Mixed-Criticality Real-Time Task Sets. In Proc. of the Real-Time

Systems Symposium.

[Deng and Liu, 1997] Deng, Z. and Liu, J. (1997). Scheduling real-time applications

in an open environment. In Proc. of the 18th IEEE Real-Time Systems Symposium,

pages 308–319.

[Deng et al., 1996] Deng, Z., Liu, J., and Sun, J. (1996). Dynamic scheduling of

hard real-time applications in open system environment. In Proc. of the Real-

Time Systems Symposium.

[Deng et al., 1997] Deng, Z., Liu, J., and Sun, L. (1997). A Scheme for Schedul-

ing Hard Real-Time Applications in Open System Environment. In Proc. of the

Euromicro Conference on Real-Time Systems.

[Dertouzos, 1974] Dertouzos, M. (1974). Control robotics: The Procedural Control

of Physical Processes. In Information Processing, volume 74.

[Dhall and Liu, 1978] Dhall, S. and Liu, C. (1978). On a Real-Time Scheduling

Problem. In Operations Research, volume 26, pages 127–140.

[Dijkstra, 1965] Dijkstra, E. W. (1965). Solution of a Problem in Concurrent Pro-

gramming Control. Communications of the ACM, 8(9).

[Douglis and Ousterhout, 1987] Douglis, F. and Ousterhout, J. (1987). Process Mi-

gration in the Sprite Operating System. In Proc. of the Real-Time Systems Sym-

posium.

[Douglis and Ousterhout, 2006] Douglis, F. and Ousterhout, J. (2006). Transpar-

ent Process Migration: Design Alternatives and the Sprite Implementation. In

Software: Practice and Experience.

[Easwaran et al., 2007] Easwaran, A., Anand, M., and Lee, I. (2007). Compositional

Analysis Framework using EDP Resource Models. In Proc. of the 28th Real-Time

Systems Symposium.

210 BIBLIOGRAPHY

[Easwaran et al., 2006] Easwaran, A., Shin, I., Sokolsky, O., and Lee, I. (2006). In-

cremental Schedulability Analysis of Hierarchical Real-Time Components. In Proc.

of the 6th ACM Conference on Embedded Software.

[Ebeling, 1997] Ebeling, C. (1997). An Introduction to Reliability and Maintainabil-

ity Engineering. Waveland Press.

[Emberson et al., 2010] Emberson, P., Stafford, R., and Davis, R. (2010). Techniques

for the Synthesis of Multiprocessor Tasksets. In Proc. of the Workshop on Analysis

Tools and Methodologies for Embedded and Real-time Systems.

[Ernst et al., 2002] Ernst, M. D., Badros, G. J., and Notkin, D. (2002). An Empirical

Analysis of C Preprocessor Use. IEEE Transactions on Software Engineering,

28(12):1146–1170.

[European Aviation Safety Agency, 2012] European Aviation Safety Agency (2012).

Certification Memorandum - Software Aspects of Certification.

[Feld, 2004] Feld, J. (2004). PROFINET - Scalable Factory Communication for all

Applications. In Proc. of the IEEE International Workshop on Factory Commu-

nication Systems.

[Feng and Mok, 2002] Feng, X. and Mok, A. (2002). A model of Hierarchical Real-

Time Virtual Resources. In Proc. of the 23rd IEEE Real-Time Systems Symposium.

[Fidge, 1998] Fidge, C. J. (1998). Real-Time Schedulability Tests for Preemptive

Multitasking. Real-Time Systems, 14:61–93.

[Filyner, 2003] Filyner, B. (2003). Open Systems Avionics Architectures Considera-

tions. Aerospace and Electronic Systems Magazine, IEEE, 18(9):3–10.

[Fisher-Ogden, 2006] Fisher-Ogden, J. (2006). Hardware Support for Efficient Vir-

tualization. Technical report, University of California, San Diego.

[Fohler, 1993] Fohler, G. (1993). Changing Operational Modes in the Context of Pre

Run-time Scheduling. IEIC Transactions on Information and Systems - Special

Issue on Responsive Computer Systems, pages 1333–40.

[Freedman et al., 1996] Freedman, P., Gaudreau, D., Boutaba, R., and Mehaoua, A.

(1996). The Two Real-Time Solitudes: Computerized Control and Telecommuni-

cations. In Proc. of the 2nd IEEE International Conference on Engineering of

Complex Computer Systems.

BIBLIOGRAPHY 211

[Funk et al., 2001] Funk, S., Goossens, J., and Baruah, S. (2001). On-line Schedul-

ing on Uniform Multiprocessors. In Proc. of the 22nd IEEE Real-Time Systems

Symposium, pages 183–192.

[Fürst et al., 2009] Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-

Biller, F., Heitkämper, P., Kinkelin, G., Nishikawa, K., and Lange, K. (2009).

AUTOSAR–A Worldwide Standard is on the Road. In Proc. of the 14th Interna-

tional VDI Congress Electronic Systems for Vehicles, Baden-Baden.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979). Computers and In-

tractability. W.H. Freman, New York.

[Gausemeier et al., 2014] Gausemeier, J., Rammig, F., Schäfer, W., and Sextro, W.,

editors (2014). Dependability of Self-optimizing Mechatronic Systems. Lecture

Notes in Mechanical Engineering. Springer.

[Geisler, 2014] Geisler, J. (2014). Selbstoptimierende Spurführung für ein neuartiges

Schienenfahrzeug. PhD thesis, University of Paderborn.

[Ghaisas et al., 2010] Ghaisas, S., Karmakar, G., Shenai, D., Tirodkar, S., and Ra-

mamritham, K. (2010). SParK: Safety Partition Kernel for Integrated Real-Time

Systems. In Lecture Notes in Computer Science, volume 6462, pages 159–174.

[Giannopoulou et al., 2014] Giannopoulou, G., Stoimenov, N., Huang, P., and

Thiele, L. (2014). Mapping Mixed-Criticality Applications on Multi-Core Ar-

chitectures. In Proc. of Design, Automation & Test in Europe.

[Gilles, 2012] Gilles, K. (2012). A Multi-Core Hypervisor for Embedded Real-Time

Systems. Master’s thesis, University of Paderborn.

[Gilles et al., 2013] Gilles, K., Groesbrink, S., Baldin, D., and Kerstan, T. (2013).

Proteus Hypervisor: Full Virtualization and Paravirtualization for Multi-Core Em-

bedded Systems. In Proc. International Embedded Systems Symposium, pages

293–305.

[Goyal et al., 1996] Goyal, P., Guo, X., and Vin, H. (1996). A hierarchical cpu

scheduler for multimedia operating systems. In Proc. of the Usenix Association

2nd Symposium on Operating Systems Design and Implementation.

[Groesbrink, 2010] Groesbrink, S. (2010). Comparison of alternative hierarchical

scheduling techniques for the virtualization of embedded real-time systems. Mas-

ter’s thesis, University of Paderborn.

212 BIBLIOGRAPHY

[Groesbrink, 2014] Groesbrink, S. (2014). Virtual Machine Migration as a Fault

Tolerance Technique for Embedded Real-Time Systems. In Proc. of the 8th IEEE

International Conference on Software Security and Reliability.

[Groesbrink and Almeida, 2014] Groesbrink, S. and Almeida, L. (2014). A

Criticality-aware Mapping of Real-time Virtual Machines to Multi-core Processors.

In Proc. of the 19th IEEE International Conference on Emerging Technologies and

Factory Automation.

[Groesbrink et al., 2014a] Groesbrink, S., Almeida, L., de Sousa, M., and Petters, S.

(2014a). Towards Certifiable Adaptive Reservations for Hypervisor-based Virtual-

ization. In Proc. of the 20th Real-Time and Embedded Technology and Applications

Symposium.

[Groesbrink et al., 2014b] Groesbrink, S., Korrapati, S., Schmitz, A., and Schrecken-

berg, A. (2014b). Hypervisor-based Consolidation for Automated Teller Machines.

In Proc. of the Embedded World Conference.

[Gu and Zhao, 2012] Gu, Z. and Zhao, Q. (2012). A State-of-the-Art Survey on Real-

Time Issues in Embedded Systems Virtualization. Journal of Software Engineering

and Applications, 5(4):277–290.

[Guan et al., 2011] Guan, N., Ekberg, P., Stigge, M., and Yi, W. (2011). Effective

and Efficient Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems.

In 32nd IEEE Real-Time Systems Symposium.

[Gupta et al., 2006] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. (2006).

Enforcing Performance Isolation Across Virtual Machines in XEN. In Proc. of the

ACM/IFIP/USENIX 2006 International Conference on Middleware.

[Gut et al., 2012] Gut, G., Allmann, C., Schurius, M., and Schmidt, K. (2012). Re-

duction of Electronic Control Units in Electric Vehicles Using Multicore Technol-

ogy. In Pankratius, V. and Philippsen, M., editors, Multicore Software Engineer-

ing, Performance, and Tools, volume 7303 of Lecture Notes in Computer Science,

pages 90–93. Springer Berlin Heidelberg.

[Hansen and Jul, 2004] Hansen, J. and Jul, E. (2004). Self-migration of Operating

Systems. In Proc. of the Workshop on ACM SIGOPS European Workshop.

[Harbour and Palencia, 2003] Harbour, M. G. and Palencia, J. (2003). Response

Time Analysis for Tasks Scheduled under EDF within Fixed Priorities. In Proc.

of the Real-Time Systems Symposium.

BIBLIOGRAPHY 213

[Hasan et al., 2013] Hasan, S. F., Siddique, N., and Chakraborty, S. (2013). Intelli-

gent Transport Systems. Springer, New York, USA.

[Heiser, 2007] Heiser, G. (2007). Virtualization for Embedded Systems - Technology

White Paper (Document No. OK 40036:2007). www.ok-labs.com.

[Heiser, 2009] Heiser, G. (2009). Hypervisors for consumer electronics. In Proc. of

the 6th IEEE Consumer Communications and Networking Conference.

[Heiser and Leslie, 2010] Heiser, G. and Leslie, B. (2010). The OKL4 Microvisor:

Convergence Point of Microkernels and Hypervisors. In Proc. of the ACM Asia-

Pacific Workshop on Systems.

[Henke et al., 2008] Henke, C., Tichy, M., Schneider, T., J, J. B., and Schäfer, W.

(2008). System Architecture and Risk Management for Autonomous Railway Con-

voys. In Proc. of the International Systems Conference.

[Hergenhan and Heiser, 2008] Hergenhan, A. and Heiser, G. (2008). Operating Sys-

tems Technology for Converged ECUs. In Proc. of the 6th Embedded Security in

Cars Conference.

[Herman et al., 2012] Herman, J., Kenna, C., Mollison, M., Anderson, J., and John-

son, D. (2012). RTOS Support for Multicore Mixed-Criticality Systems. In Proc.

of the Real-Time Technology and Applications Symposium, pages 197–208.

[Hestermeyer et al., 2004] Hestermeyer, T., Oberschelp, O., and Giese, H. (2004).

Structured Information Processing For Self-optimizing Mechatronic Systems. In

Proc. of the International Conference on Informatics in Control, Automation and

Robotics.

[Hines and Gopalan, 2009] Hines, M. and Gopalan, K. (2009). Post-copy Based

Live Virtual Machine Migration Using Adaptive Pre-paging and Dynamic Self-

ballooning. In Proc. of the ACM Conference on Virtual Execution Environments.

[Horn, 1974] Horn, W. (1974). Some Simple Scheduling Algorithms. In Naval Re-

search Logistics Quarterly, volume 21, pages 177—185.

[Horner, 1989] Horner, D. R. (1989). Operating Systems: Concepts and Applications.

Scott, Foresman and Company, Glenview, IL, USA.

[Huang et al., 2012] Huang, H., Gill, C., and Chenyang, L. (2012). Implementation

and Evaluation of Mixed-Criticality Scheduling Approaches for Periodic Tasks.

214 BIBLIOGRAPHY

In Proc. of the 18th IEEE Real-Time and Embedded Technology and Applications

Symposium.

[IBM, 2005] IBM (2005). PPC405Fx Embedded Processor Core User’s Manual.

Technical report, International Business Machines Corporation.

[IBM, 2006] IBM (2006). Power isa version 2.03. Technical report, International

Business Machines Corporation.

[IBM, 2010] IBM (2010). PowerPC ISA 2.06 Revision B. Technical report, Interna-

tional Business Machines Corporation.

[IBM Research, 2012] IBM Research (2012). IBM PowerPC 4XX Instruction Set

Simulator (ISS).

[IEC, 2010] IEC (2010). IEC 61508: Functional Safety of Electri-

cal/Electronic/Programmable Electronic Safety-related Systems. Technical

report, International Electrotechnical Commission.

[IEEE, 1990] IEEE (1990). IEEE Standard Computer Dictionary: A Compilation

of IEEE Standard Computer Glossaries. Institute of Electrical and Electronics

Engineers, New York, USA.

[Inam et al., 2011] Inam, R., Maeki-Turja, J., Sjoedin, M., Ashjaei, S. M. H., and

Afshar, S. (2011). Support for Hierarchical Scheduling in FreeRTOS. In Proc. of

the 16th IEEE Conference on Emerging Technologies and Factory Automation.

[ISO, 2011] ISO (2011). ISO 26262: Road vehicles — Functional safety. Technical

report, International Organization for Standardization.

[Kaiser, 2008] Kaiser, R. (2008). Alternatives for Scheduling Virtual Machines in

Real-time Embedded Systems. In Proc. of the 1st Workshop on Isolation and

Integration in Embedded Systems, pages 5–10.

[Kalogeraki et al., 2008] Kalogeraki, V., Melliar-Smith, P., Moser, L., and Drougas,

Y. (2008). Resource Management Using Multiple Feedback Loops in Soft Real-

Time Distributed Object Systems. Journal of Systems and Software, 81(7):1144–

1162.

[Keckler et al., 2009] Keckler, S. W., Olukotun, K., and Hofstee, H. P., editors

(2009). Multicore Processors and Systems. Springer.

BIBLIOGRAPHY 215

[Kelly et al., 2011] Kelly, O., Aydin, H., and Zhao, B. (2011). On Partitioned

Scheduling of Fixed-Priority Mixed-Criticality Task Sets. In Proc. of the Con-

ference on Trust, Security and Privacy in Computing and Communications.

[Kernighan and Ritchie, 1988] Kernighan, B. and Ritchie, D. (1988). The C Pro-

gramming Language. Prentice Hall.

[Kerstan, 2011] Kerstan, T. (2011). Towards Full Virtualization of Embedded Real-

Time Systems. PhD thesis, University of Paderborn.

[Khalilzad et al., 2012] Khalilzad, N., Behnam, M., Spampinato, G., and Nolte, T.

(2012). Bandwidth Adaption in Hierarchical Scheduling Uzing Fuzzy Controllers.

In Proc. of the Symposium on Industrial Embedded Systems, pages 148–157.

[Kim et al., 2009] Kim, D. S., Machida, F., and Trivedi, K. (2009). Availability

Modeling and Analysis of a Virtualized System. In Proc. of the IEEE Pacific Rim

International Symposium on Dependable Computing.

[King et al., 2003] King, S., Dunlap, G., and Chen, P. (2003). Operating System

Support for Virtual Machines. In Proc. of the USENIX Annual Technical Confer-

ence.

[Kiszka, 2011] Kiszka, J. (2011). Towards Linux as a Real-Time Hypervisor. In Proc.

of the Real Time Linux Workshop.

[Kivity et al., 2007] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A.

(2007). KVM: the Linux Virtual Machine Monitor. In Proc. of the Linux Sympo-

sium.

[Kopetz, 1997] Kopetz, H. (1997). Real-time Systems: Design Principles for Dis-

tributed Embedded Applications. Kluwer Academic.

[Kotaba et al., 2013] Kotaba, O., Nowotsch, J., Paulitsch, M., Petters, S. M.,

and Theiling, H. (2013). Multicore in Real-Time Systems–Temporal Isolation

Challenges due to Shared Resources. In Proc. of the International Workshop

on Industry-Driven Approaches for Cost-effective Certification of Safety-Critical,

Mixed-Criticality Systems.

[Kozuch and Satyanarayanan, 2002] Kozuch, M. and Satyanarayanan, M. (2002). In-

ternet suspend/resume. In Proc. of the IEEE Workshop on Mobile Computing

Systems and Applications.

216 BIBLIOGRAPHY

[Kumar et al., 2007] Kumar, S., Raj, H., Schwan, K., and Ganev, I. (2007). Re-

architecting VMMs for Multicore Systems: The Sidecore Approach. In Proc. of the

Workshop on Interaction between Operating Systems and Computer Architecture.

[Kuo and Mok, 1991] Kuo, T. and Mok, A. K. (1991). Load Adjustment in Adaptive

Real-Time Systems. In Proc. of the IEEE Real-Time Systems Symposium.

[Kuo and Li, 1998] Kuo, T.-W. and Li, C.-H. (1998). A Fixed Priority Driven Open

Environment for Real-Time Applications. In Proc. of the IEEE Real-Time Systems

Symposium.

[Kwak et al., 2001] Kwak, S., Choi, B., and Kim, B. (2001). An Optimal

Checkpointing-Strategy for Real-Time Control Systems Under Transient Faults.

IEEE Transactions on Reliability, 50(3).

[Lackorzynski et al., 2012] Lackorzynski, A., Warg, A., Völp, M., and Härtig, H.

(2012). Flattening Hierarchical Scheduling. In Proc. of the 10th ACM International

Conference on Embedded Software, pages 93–102.

[Lamport, 1974] Lamport, L. (1974). A new solution of Dijkstra’s concurrent pro-

gramming problem. Commununications of the ACM, 17:453–455.

[Land and Doig, 1960] Land, A. and Doig, A. (1960). An Automatic Method of

Solving Discrete Programming Problems. Econometrica, 28(3):497–520.

[Lauzac et al., 1998] Lauzac, S., Melhem, R., and Mosse, D. (1998). An Efficient

RMS Admission Control and its Application to Multiprocessor Scheduling. In

Proc. of the Symposium on Parallel Processing.

[Lee et al., 1996] Lee, C., Rajkumar, R., and Mercer, C. (1996). Experiences with

Processor Reservation and Dynamic QOS in Real-time Mach. In Proc. of the

Multimedia Japan.

[Lee and Seshia, 2011] Lee, E. and Seshia, S. (2011). Introduction to Embedded Sys-

tems - A Cyber-Physical Systems Approach. http://LeeSeshia.org.

[Lee et al., 2011] Lee, J., Xi, S., Chen, S., Phan, L. T. X., Gill, C., Lee, I., Lu, C., and

Sokolsky, O. (2011). Realizing Compositional Scheduling Through Virtualization.

In Proc. of the Real-Time and Embedded Technology and Applications Symposium,

pages 13–22.

BIBLIOGRAPHY 217

[Lee et al., 2010] Lee, M., Krishnakumar, A., Krishnan, P., Singh, N., and Yajnik,

S. (2010). Supporting Soft Real-Time Tasks in the Xen Hypervisor. In Proc. of

the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments.

[Lehoczky et al., 1989] Lehoczky, J., Sha, L., and Ding, Y. (1989). The Rate Mono-

tonic Scheduling Algorithm: Exact Characterization and Average Case Behavior.

In Proc. of the Real-Time Systems Symposium.

[Lehoczky et al., 1987a] Lehoczky, J., Sha, L., and Strosnider, J. (1987a). Enhanced

Aperiodic Responsiveness in Hard Real-Time Environments. In Proc. of the IEEE

Real-Time Systems Symposium.

[Lehoczky et al., 1987b] Lehoczky, J. P., Sha, L., and Ding, Y. (1987b). The Rate

Monotonic Scheduling Algorithm: Exact Characterization and Average Case Be-

havior. Department of Statistics, Carnegie Mellon University.

[Leontyev and Anderson, 2009] Leontyev, H. and Anderson, J. (2009). A Hierar-

chical Multiprocessor Bandwidth Reservation Scheme with Timing Guarantees.

Real-Time Systems, 43:60–92.

[Leung and Whitehead, 1982] Leung, J. and Whitehead, J. (1982). On the Com-

plexity of Fixed Priority Scheduling of Periodic Real-Time Tasks. Performance

Evaluation, 2(4).

[Leung and Zhao, 2005] Leung, J. and Zhao, H. (2005). Real-Time Scheduling Anal-

ysis. Technical report, U.S. Department of Transportation – Federal Aviation

Administration.

[LeVasseur et al., 2008] LeVasseur, J., Uhlig, V., Chapman, M., Chubb, P., Leslie,

B., and Heiser, G. (2008). Pre-virtualization: Soft Layering for Virtual Machines.

In Proc. of the 13th Asia-Pacific Computer Systems Architecture Conference.

[Leveson, 1995] Leveson, N. (1995). Safeware, System Safety and Computers.

Addison-Wesley, Boston.

[Li and Baruah, 2010] Li, H. and Baruah, S. (2010). An Algorithm for Scheduling

Certifiable Mixed-Criticality Sporadic Task Systems. In Proc. of the 31st IEEE

Real-Time Systems Symposium.

218 BIBLIOGRAPHY

[Li et al., 2012a] Li, N., Kinebuchi, Y., Mitake, H., Shimada, H., Lin, T., and Naka-

jima, T. (2012a). A Light-Weighted Virtualization Layer for Multicore Processor-

Based Rich Functional Embedded Systems. In Proc. of the 15th International

Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-

puting.

[Li et al., 2012b] Li, N., Kinebuchi, Y., Mitake, H., Shimada, H., Lin, T.-H., and

Nakajima, T. (2012b). A Light-Weighted Virtualization Layer for Multicore

Processor-Based Rich Functional Embedded Systems. In Proc. of the 15th IEEE

International Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing.

[Liebetrau et al., 2012] Liebetrau, T., Kelling, U., Otter, T., and Hell, M. (2012).

Energy Saving in Automotive E/E Architectures. Technical report, Infineon Tech-

nologies, www.infineon.com.

[Liebig et al., 2011] Liebig, J., Kästner, C., and Apel, S. (2011). Analyzing the

Discipline of Preprocessor Annotations in 30 Million Lines of C Code. In Proc. of

the 10th International Conference on Aspect-oriented Software Development.

[Lin et al., 2009] Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., and Sadayappan, P.

(2009). Enabling Software Management for Multicore Caches with a Lightweight

Hardware Support. In High Performance Computing Networking, Storage and

Analysis, Proceedings of the Conference on, pages 1–12.

[Lin et al., 2013] Lin, T., Mitake, H., and Nakajima, T. (2013). Improving GPOS

Real-time Responsiveness using vCPU Migration in an Embedded Multicore Vir-

tualization Platform. In Proc. of the 16th IEEE International Conference on Com-

putational Science and Engineering.

[Lin et al., 2010] Lin, Y.-C., Yang, C.-Y., Chang, C.-W., Chang, Y.-H., Kuo, T.-W.,

and Shih, C.-S. (2010). Energy-Efficient Mapping Techniques for Virtual Cores.

In Proc. of the Euromicro Conference on Real-Time Systems.

[Lipari and Baruah, 2000] Lipari, G. and Baruah, S. (2000). Greedy Reclamation

of Unused Bandwidth in Constant Bandwidth Servers. In Proc. of the Euromicro

Conference on Real-Time Systems, pages 193–200.

[Lipari and Baruah, 2001] Lipari, G. and Baruah, S. (2001). A Hierarchical Exten-

sion to the Constant Bandwidth Server Framework. In Proc. of the 7th IEEE

Real-Time Technology and Applications Symposium.

BIBLIOGRAPHY 219

[Lipari and Bini, 2003] Lipari, G. and Bini, E. (2003). Resource Partitioning Among

Real-Time Applications. In Proc. of the Euromicro Conference on Real-Time

Systems, pages 151–158.

[Lipari et al., 2000] Lipari, G., Carpenter, J., and Baruah, S. (2000). A Framework

for Achieving Inter-Application Isolation in Multiprogrammed, Hard Real-time

Environments. In Proc. of the 21st Real-Time Systems Symposium.

[Littlefield-Lawwill and Kinnan, 2008] Littlefield-Lawwill, J. and Kinnan, L. (2008).

System Considerations For Robust Time And Space Partitioning In Integrated

Modular Avionics. In Proc. of the Digital Avionics Systems Conference.

[Littlefield-Lawwill and Ramanathan, 2007] Littlefield-Lawwill, J. and Ra-

manathan, V. (2007). Advancing Open Standards In Integrated Modular

Avionics: An Industry Analysis. In Proc. of the 26th Digital Avionics Systems

Conference.

[Liu, 1969] Liu, C. (1969). Scheduling Algorithms for Multiprocessors in a Hard

Real-Time Environment. In JPL Space Programs Summary, volume 37-60, pages

28–31.

[Liu and Layland, 1973a] Liu, C. and Layland, J. (1973a). Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time Envionment. In Journal of the Asso-

ciation for Computing Machinery, volume 20(1).

[Liu and Layland, 1973b] Liu, C. and Layland, J. (1973b). Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time Environment. Journal of the ACM,

20:44–61.

[Liu et al., 2006] Liu, J., Huang, W., Abali, B., and Panda, D. (2006). High Per-

formance VMM-Bypass I/O in Virtual Machine. In Proc. of the USENIX Annual

Technical Conference.

[Liu, 2000] Liu, J. W. S. (2000). Real-Time Systems. Prentice Hall.

[Liu et al., 2012] Liu, L., Cui, Z., Xing, M., Bao, Y., Chen, M., and Wu, C. (2012).

A Software Memory Partition Approach for Eliminating Bank-level Interference

in Multicore Systems. In Proc. of the 21st International Conference on Parallel

Architectures and Compilation Techniques, pages 367–376.

220 BIBLIOGRAPHY

[Lopez et al., 2000] Lopez, J., Garcia, M., Diaz, J., and Garcia, D. (2000). Worst-

case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor Systems.

In Proc. of the 12th Euromicro Conference on Real-Time Systems.

[Lopez et al., 2003] Lopez, J., Garcia, M., Diaz, J., and Garcia, D. (2003). Utiliza-

tion bounds for Multiprocessor Rate-Monotonic Systems. Real-Time Systems.

[Lorente et al., 2006] Lorente, J., Lipari, G., and Bini, E. (2006). A Hierarchical

Scheduling Model for Component-based Real-time Systems. In Proc. of the 20th

Parallel and Distributed Processing Symposium.

[Lückel et al., 2008] Lückel, J., Grotstollen, H., Henke, M., Hestermeyer, T., and

Liu-Henke, X. (2008). RailCab System: Engineering Aspects. Dynamical Analysis

of Vehicle Systems, 497:237–281.

[Ma et al., 2013] Ma, R., Zhou, F., Zhu, E., and Guan, H. (2013). Performance Tun-

ing Towards a KVM-based Embedded Real-Time Virtualization System. Journal

of Information Science and Engineering, 29:1021–1035.

[Maggio et al., 2013] Maggio, M., Bini, E., Chasparis, G., and Arzen, K.-E. (2013).

A Game-Theoretic Resource Manager for RT Applications. In Proc. of the Eu-

romicro Conference on Real-Time Systems, pages 57–66.

[Marau et al., 2011] Marau, R., Lakshmanan, K., Pedreiras, P., Almeida, L., and

Rajkumar, R. (2011). Efficient Elastic Resource Management for Dynamic Em-

bedded Systems. In Proc. of the Conference on Trust, Security and Privacy in

Computing and Communications.

[Marzario et al., 2004] Marzario, L., Lipari, G., Balbastre, P., and Crespo, A. (2004).

IRIS: A New Reclaiming Algorithm for Server-based Real-time Systems. In Proc.

of the Real-time and Embedded Technology and Applications Symposium, pages

211–218.

[Masmano et al., 2009] Masmano, M., Ripoll, I., and Crespo, A. (2009). XtratuM: a

Hypervisor for Safety Critical Embedded Systems. In Proc. of the 11th Real-Time

Linux Workshop.

[Masrur et al., 2010] Masrur, A., Drossler, S., Pfeuffer, T., and Chakraborty, S.

(2010). VM-Based Real-Time Services for Automotive Control Applications. In

Proc. of the 16th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications.

BIBLIOGRAPHY 221

[Masrur et al., 2011] Masrur, A., Pfeuffer, T., Geier, M., Drössler, S., and

Chakraborty, S. (2011). Designing VM Schedulers for Embedded Real-time Ap-

plications. In Proc. of the 7th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, pages 29–38.

[Matic and Henzinger, 2005] Matic, S. and Henzinger, T. (2005). Trading End-to-

End Latency for Composability. In Proc. of the IEEE Real-Time Systems Sympo-

sium.

[Melo et al., 2013] Melo, M., Maciel, P., Araujo, J., Matos, R., and Araujo, C.

(2013). Availability Study on Cloud Computing Environments: Live Migration

as a Rejuvenation Mechanism. In Proc. of the International Conference on De-

pendable Systems and Networks, pages 1–6.

[Milóičić et al., 2000] Milóičić, D., Douglis, F., Paindaveine, Y., Wheeler, R., and

Zhou, S. (2000). Process Migration. ACM Computing Surveys, 32(3):241–299.

[Mok, 1983] Mok, A. (1983). Fundamental Design Problems of Distributed Systems

for The Hard-Real-Time Environment. PhD thesis, Massachusetts Institute of

Technology.

[Mok et al., 2001] Mok, A., Feng, X., and Chen, D. (2001). Resource Partition

for Real-Time Systems. In Proc. of the Real-Time Technology and Applications

Symposium.

[Mollison et al., 2010] Mollison, M., Erickson, J., Anderson, J., Baruah, S., and

Scoredos, J. (2010). Mixed-Criticality Real-Time Scheduling for Multicore Sys-

tems. In Proc. of the International Conference on Computer and Information

Technology.

[Moyer, 2013] Moyer, B. (2013). Real World Multicore Embedded Systems. Newnes.

[Nagarajan et al., 2007] Nagarajan, A., Mueller, F., Engelmann, C., and Scott, S.

(2007). Proactive Fault Tolerance for HPC with Xen Virtualization. In Proc. of

the International Conference on Supercomputing.

[Nakajima et al., 2011] Nakajima, T., Kinebuchi, Y., Shimada, H., Courbot, A., and

Lin, T. (2011). Temporal and Spatial Isolation in a Virtualization Layer for Multi-

core Processor Based Information Appliances. In Proc. of the 16th Asia and South

Pacific Design Automation Conference.

222 BIBLIOGRAPHY

[Nanda and Chiueh, 2005] Nanda, S. and Chiueh, T. (2005). A Survey on Virtualiza-

tion Technologies. Technical report, SUNY Stony Brook, Department of Computer

Science.

[Natale and Sangiovanni-Vincentelli, 2010] Natale, M. D. and Sangiovanni-

Vincentelli, A. (2010). Moving From Federated to Integrated Architectures in

Automotive: The Role of Standards, Methods and Tools. Proceedings of the

IEEE, 98(4):603–620.

[Navet et al., 2010] Navet, N., Monot, A., Bavoux, B., and Simonot-Lion, F. (2010).

Multi-source and Multicore Automotive ECUs - OS Protection Mechanisms and

Scheduling. In Proc. of the International Symposium on Industrial Electronics,

pages 3734–3741.

[Negrean et al., 2009] Negrean, M., Schliecker, S., and Ernst, R. (2009). Response-

time Analysis of Arbitrarily Activated Tasks in Multiprocessor Systems with

Shared Resources. In Proc. of the Design, Automation Test in Europe Confer-

ence, pages 524–529.

[Nelson et al., 2005] Nelson, M., Lim, B., and Hutchins, G. (2005). Fast Transpar-

ent Migration for Virtual Machines. In Proc. of the USENIX Annual Technical

Conference.

[Nogueira and Pinho, 2007] Nogueira, L. and Pinho, L. (2007). Capacity Sharing

and Stealing in Dynamic Server-based Real-Time Systems. In Proc. of the Parallel

and Distributed Processing Symposium, pages 1–8.

[Nowotsch and Paulitsch, 2012] Nowotsch, J. and Paulitsch, M. (2012). Leverag-

ing multi-core computing architectures in avionics. In Proc. of the 9th European

Dependable Computing Conference, pages 132–143.

[Nutt, 2000] Nutt, G. (2000). Operating Systems: A Modern Perspective. Addison-

Wesley.

[Obermaisser et al., 2009] Obermaisser, R., El Salloum, C., Huber, B., and Kopetz,

H. (2009). From a Federated to an Integrated Automotive Architecture. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

28(7):956–965.

[Oberthür et al., 2010] Oberthür, S., Zaramba, L., and Lichte, H. (2010). Flexible

Resource Management for Self-X Systems: An Evaluation. In Proc. of the Work-

shop on Self-Organizing Real-Time Systems.

BIBLIOGRAPHY 223

[Oikawa et al., 2006] Oikawa, S., Ito, M., and Nakajima, T. (2006). Linux/RTOS

Hybrid Operating Environment on Gandalf Virtual Machine Monitor. Lecture

Notes in Computer Science, 4096:287–296.

[Olderog and Dierks, 2008] Olderog, E. and Dierks, H. (2008). Real-Time Systems:

Formal Specification and Automatic Verification. Cambridge University Press.

[Ongaro et al., 2008] Ongaro, D., Cox, A. L., and Rixner, S. (2008). Scheduling

I/O in Virtual Machine Monitors. In Proc. of the 4th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, pages 1–10.

[Orsila et al., 2007] Orsila, H., Kangas, T., Salminen, E., Hämäläinen, T., and Hän-

nikäinen, M. (2007). Automated Memory-aware Application Distribution for

Multi-processor System-on-Chips. Journal of Systems Architecture, pages 795–

815.

[Paolieri et al., 2009] Paolieri, M., Quiñones, E., Cazorla, F. J., Bernat, G., and

Valero, M. (2009). Hardware Support for WCET Analysis of Hard Real-time

Multicore Systems. SIGARCH Comput. Archit. News, 37(3):57–68.

[Papadopoulos et al., 2010] Papadopoulos, Y., Walker, M., Reiser, M.-O., Weber,

M., Chen, D.-J., Törngren, M., Servat, D., Abele, A., Stappert, F., Lönn, H.,

Berntsson, L., Johansson, R., Tagliabo, F., Torchiaro, S., and Sandberg, A. (2010).

Automatic Allocation of Safety Integrity Levels. In Fabre, J.-C., Guetta, O., and

Trapp, M., editors, Proc. of the 1st Workshop on Critical Automotive Applications:

Robustness & Safety, ACM International Conference Proceeding Series, pages 7–

10. ACM.

[Paun et al., 2013] Paun, V.-A., Monsuez, B., and Baufreton, P. (2013). On the

Determinism of Multi-core Processors. In Choppy, C. and Sun, J., editors, Proc.

of the 1st French Singaporean Workshop on Formal Methods and Applications,

volume 31 of OpenAccess Series in Informatics (OASIcs), pages 32–46, Dagstuhl,

Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Peiró et al., 2010] Peiró, S., Crespo, A., Ripoll, I., and Masmano, M. (2010). Parti-

tioned Embedded Architecture based on Hypervisor: the XtratuM Approach. In

Proc. of the European Dependable Computing Conference, pages 67–72.

[Pelzl et al., 2008] Pelzl, J., Wolf, M., and T.Wollinger (2008). Virtualization Tech-

nologies for Cars – Solutions to Increase Safety and Security of Vehicular ECUs.

In Automotive – Safety & Security 2008.

224 BIBLIOGRAPHY

[Peng and Shin, 1997] Peng, D. and Shin, K. (1997). Assignment and Scheduling

Communicating Periodic Tasks in Distributed Real-Time Systems. IEEE Trans-

actions on Software Engineering.

[Petters et al., 2009] Petters, S., Lawitzy, M., Heffernan, R., and Elphinstone, K.

(2009). Towards Real Multi-Criticality Scheduling. In Proc. of the 15th IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications.

[Phan et al., 2010] Phan, L., Lee, I., and Sokolsky, O. (2010). Compositional Anal-

ysis of Multi-Mode Systems. In Proc. of the 22nd Euromicro Conference on Real-

Time Systems.

[Popek and Goldberg, 1974a] Popek, G. J. and Goldberg, R. P. (1974a). Formal

Requirements for Virtualizable Third Generation Architectures. Communications

of the ACM, 17(7):412–421.

[Popek and Goldberg, 1974b] Popek, G. J. and Goldberg, R. P. (1974b). Formal

Requirements for Virtualizable Third Generation Architectures. Communications

of the ACM, 17(7):412–421.

[Porrmann et al., 2009] Porrmann, M., Hagemeyer, J., Pohl, C., Romoth, J., and

Strugholtz, M. (2009). RAPTOR: A Scalable Platform for Rapid Prototyping

and FPGA-based Cluster Computing. In Proc. of the International Conference on

Parallel Computing.

[Powell and Miller, 1983] Powell, M. and Miller, B. (1983). Process Migration in

DEMOS/MP. In Proc. of the ACM Symposium on Operating System Principles.

[Prisaznuk, 2008a] Prisaznuk, P. (2008a). ARINC 653 Role in Integrated Modu-

lar Avionics (IMA). In Proc. of the IEEE/AIAA 27th Digital Avionics Systems

Conference.

[Prisaznuk, 2008b] Prisaznuk, P. (2008b). ARINC 653 Role in Integrated Modular

Avionics (IMA). In Proc. of the 27th IEEEE Digital Avionics Systems Conference.

[Pulido et al., 2006] Pulido, J., Uruena, S., Zamorano, J., Vardanega, T., and de la

Puente, J. (2006). Hierarchical Scheduling with Ada 2005. In Pinho, L. and

Harbour, M. G., editors, Ada-Europe, Lecture Notes in Computer Science 4006,

pages 1 – 12. Springer.

BIBLIOGRAPHY 225

[Punnekkat et al., 2001] Punnekkat, S., Burns, A., and Davis, R. (2001). Analysis of

Checkpointing for Real-Time Systems. The International Journal of Time-Critical

Computing Systems, 20:83–102.

[Ramasamy and Schunter, 2007] Ramasamy, H. and Schunter, M. (2007). Architect-

ing Dependable Systems Using Virtualization. In Proc. of the DSN Workshop on

Architecting Dependable Systems.

[Rasche and Polze, 2005] Rasche, A. and Polze, A. (2005). Dynamic Reconfigura-

tion of Component-based Real-time Software. In Proc. of the IEEE Workshop on

Object-Oriented Real-Time Dependable Systems.

[Real and Crespo, 2004] Real, J. and Crespo, A. (2004). Mode Change Protocols for

Real-Time Systems: A Survey and a New Proposal. Real-Time Systems, 26(2):161–

197.

[Regehr and Stankovic, 2001] Regehr, J. and Stankovic, J. (2001). HLS: A Frame-

work for Composing Soft Real-Time Schedulers. In Proc. of the 22nd IEEE Real-

Time Systems Symposium, pages 3–14.

[Reinhardt and Kucera, 2013] Reinhardt, D. and Kucera, M. (2013). Domain Con-

trolled Architecture – A New Approach for Large Scale Software Integrated Au-

tomotive Systems. In Proc. of the 3rd International Conference on Pervasive and

Embedded Computing and Communication Systems.

[Robin and Irvine, 2000] Robin, J. and Irvine, C. (2000). Analysis of the Intel Pen-

tium’s Ability to Support a Secure Virtual Machine Monitor. In Proc. of the 9th

USENIX Security Symposium.

[Rosen et al., 2007] Rosen, J., Andrei, A., Eles, P., and Peng, Z. (2007). Bus Access

Optimization for Predictable Implementation of Real-Time Applications on Mul-

tiprocessor Systems-on-Chip. In Proc. of the 28th IEEE International Real-Time

Systems Symposium, pages 49–60.

[Rostedt, 2007] Rostedt, S. (2007). Internals of the RT Patch. In Proc. of the Linux

Symposium.

[Roy et al., 2013] Roy, A., Ganesan, R., Dash, D., and Sarkar, S. (2013). Reducing

Service Failures by Failure and Workload aware Load Balancing in SaaS Clouds.

In Proc. of the IEEE/IFIP Dependable Systems and Networks Workshop.

226 BIBLIOGRAPHY

[RTCA/DO, 2012] RTCA/DO (2012). DO-178C: Software Considerations in Air-

borne Systems and Equipment Certification. Technical report, Radio Technical

Commission for Aeronautics.

[Rushby, 1981] Rushby, J. (1981). Design and Verification of Secure Systems. In

Proc. of the 8th ACM Symposium on Operating System Principles.

[Rushby, 1999] Rushby, J. (1999). Partitioning in Avionics Architectures: Require-

ments, Mechanisms, and Assurance. Technical Report NAS1-20334, FAA Techni-

cal Center and NASA Langley Research Center.

[Saewong et al., 2002] Saewong, S., Rajkumar, R., Lehoczky, L., and Klein, M.

(2002). Analysis of Hierarchical Fixed-priority Scheduling. In Proc. of the 14th

IEEE Euromicro Conference on Real-Time Systems.

[Sangorrin et al., 2012] Sangorrin, D., Honda, S., and Takada, H. (2012). Integrated

Scheduling for a Reliable Dual-OS Monitor. IPSJ Transactions on Advanced Com-

puting Systems, 5(2):99–110.

[Santos et al., 2011] Santos, R., Behnam, M., Nolte, T., Pedreiras, P., and Almeida,

L. (2011). Multi-level Hierarchical Scheduling in Ethernet Switches. In Proc. of

the International Conference on Embedded Software, pages 185–194.

[Santos et al., 2012] Santos, R., Lipari, G., Bini, E., and Cucinotta, T. (2012). On-

line Schedulability Tests for Adaptive Reservations in Fixed Priority Scheduling.

Real-Time Systems, 48:601–634.

[Sapuntzakis et al., 2002] Sapuntzakis, C., Chandra, R., Pfaff, B., Chow, J., Lam,

M., and Rosenblum, M. (2002). Optimizing the Migration of Virtual Computers. In

Proc. of the ACM Symposium on Operating Systems Design and Implementation.

[Schoeberl, 2009] Schoeberl, M. (2009). Time-predictable Cache Organization. In

Software Technologies for Future Dependable Distributed Systems, pages 11–16.

[Sha, 2004] Sha, L. (2004). Real-Time Virtual Machines for Avionics Software Port-

ing and Development. In Real-Time and Embedded Computing Systems and Ap-

plications, pages 123–135. Springer Berlin Heidelberg.

[Sha et al., 1986] Sha, L., Lehoczky, J. P., and Rajkumar, R. (1986). Solutions for

Some Practical Problems in Prioritized Preemptive Scheduling. In Proc. of the

Real-Time Systems Symposium, pages 181–191.

BIBLIOGRAPHY 227

[Shin et al., 2008a] Shin, I., Behnam, M., Nolte, T., and Nolin, M. (2008a). Synthesis

of Optimal Interfaces for Hierarchical Scheduling with Resources. In Proc. of the

IEEE Real-Time Systems Symposium.

[Shin et al., 2008b] Shin, I., Easwaran, A., and Lee, I. (2008b). Hierarchical Schedul-

ing Framework for Virtual Clustering Multiprocessors. In Proc. of the 20th Eu-

romicro Conference on Real-Time Systems.

[Shin and Lee, 2003] Shin, I. and Lee, I. (2003). Periodic Resource Model for Compo-

sitional Real-Time Guarantees. In Proc. of the 24th IEEE International Real-Time

Systems Symposium.

[Shin and Lee, 2004] Shin, I. and Lee, I. (2004). Compositional Real-Time Schedul-

ing Framework. In Proc. of the 25th IEEE Real-Time Systems Symposium.

[Shin and Lee, 2008] Shin, I. and Lee, I. (2008). Compositional Real-Time Schedul-

ing Framework with Periodic Model. ACM Transactions on Embedded Computing

Systems, 7(3):30:1–30:39.

[Singh et al., 2013] Singh, A., Shafique, M., Kumar, A., and Henkel, J. (2013). Map-

ping on Multi/Many-core Systems: Survey of Current and Emerging Trends. In

Proc. of the Design Automation Conference.

[Sites et al., 1993] Sites, R. L., Chernoff, A., Kirk, M. B., Marks, M. P., and Robin-

son, S. G. (1993). Binary Translation. Commun. ACM, 36(2):69–81.

[Smith and Nair, 2005a] Smith, J. and Nair, R. (2005a). Virtual Machines. Morgan

Kaufmann.

[Smith and Nair, 2005b] Smith, J. E. and Nair, R. (2005b). The architecture of

virtual machines. In IEEE Computer, volume 38(5), pages 32–38.

[Smith and Nair, 2005c] Smith, J. E. and Nair, R. (2005c). The Architecture of

Virtual Machines. IEEE Computer.

[Sondermann-Wolke and Sextro, 2009] Sondermann-Wolke, C. and Sextro, W.

(2009). Towards the Integration of Condition Monitoring in Self-Optimizing Func-

tion Modules. In Proc. of Future Computing, Service Computation, Cognitive,

Adaptive, Content, Patterns.

[Stallings, 2005] Stallings, W. (2005). Operating Systems: Internals and Design

Principles. Pearson Prentice Hall.

228 BIBLIOGRAPHY

[Stankovic, 1988] Stankovic, J. (1988). Misconceptions about Real-Time Computing.

IEEE Transactions on Computers, Oct.

[Stankovic and Ramamritham, 1989] Stankovic, J. and Ramamritham, K. (1989).

The Spring Kernel: A New Paradigm for Real-time Operating Systems. ACM

Operating System Review, 23(3):54–71.

[Stankovic et al., 1995] Stankovic, J., Spuri, M., Natale, M. D., and Buttazzo, G.

(1995). Implications of Classical Scheduling Results for Real-Time Scheduling. In

IEEE Computer, pages 16–25.

[Stankovic et al., 1998] Stankovic, J., Spuri, M., Ramaritham, K., and Buttazzo, G.

(1998). Deadline Scheduling for Real-Time Systems. Kluwer Academic.

[Stappert et al., 2010] Stappert, F., Jonsson, J., Mottok, J., and Johansson, R.

(2010). A Design Framework for End-To-End Timing Constrained Automotive

Applications. Proc. of the Conference on Embedded Real-Time Software and Sys-

tems.

[Steinberg and Kauer, 2010] Steinberg, U. and Kauer, B. (2010). NOVA: A

Microhypervisor-Based Secure Virtualization Architecture. In Proc. of the Eu-

ropean Conference on Computer systems.

[Storey, 1996] Storey, N. (1996). Safety-Critical Computer Systems. Prentice Hall.

[Su et al., 2009] Su, D., Chen, W., Huang, W., Shan, H., and Jiang, Y. (2009).

SmartVisor: Towards an Efficient and Compatible Virtualization Platform for

Embedded System. In Proc. of the 2nd Workshop on Isolation and Integration in

Embedded Systems.

[Su and Zhu, 2013] Su, H. and Zhu, D. (2013). An Elastic Mixed-Criticality Task

Model and Its Scheduling Algorithm. In Proc. of Design, Automation and Test in

Europe, pages 147–152.

[Tanenbaum and Goodman, 1998] Tanenbaum, A. S. and Goodman, J. R. (1998).

Structured Computer Organization. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 4th edition.

[Tanenbaum and Woodhull, 2006] Tanenbaum, A. S. and Woodhull, A. S. (2006).

Operating Systems: Design and Implementation. Pearson Prentice Hall.

BIBLIOGRAPHY 229

[Tavares et al., 2012] Tavares, A., Carvalho, A., Rodrigues, P., Garcia, P., Gomes,

T., Cabral, J., Cardoso, P., Montenegro, S., and Ekpanyapong, M. (2012). A

Customizable and ARINC 653 Quasi-compliant Hypervisor. In Proc. of the IEEE

International Conference on Industrial Technology.

[Theimer et al., 1985] Theimer, M., Lantz, K., and Cheriton, D. (1985). Preempt-

able Remote Execution Facilities for the V-System. SIGOPS Operating Systems

Review, 19(5):2–12.

[Thiebaut and Gerlach, 2012] Thiebaut, S. S. and Gerlach, M. (2012). Multicore

and Virtualization in Automotive Environments. EE Times europe automotive.

[Uhlig et al., 2005] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C.,

Anderson, A. V., Bennett, S. M., Kagi, A., Leung, F. H., and L. Smith, . (2005).

Intel Virtualization Technology. Computer, 38(5):48–56.

[Vera et al., 2003] Vera, X., Lisper, B., and Xue, J. (2003). Data Caches in Multi-

tasking Hard Real-Time Systems. In Proc. of the 24th IEEE Real-Time Systems

Symposium, pages 154–165.

[Vestal, 2007] Vestal, S. (2007). Preemptive Scheduling of Multi-Criticality Systems

with Varying Degrees of Execution Time Assurance. In Proc. of the Real-Time

Systems Symposium.

[Wang and Lin, 2000] Wang, Y.-C. and Lin, K.-J. (2000). The Implementation of

Hierarchical Schedulers in the RED-Linux Scheduling Framework. In Proc. of the

12th Euromicro Conference on Real-Time Systems, pages 231–238.

[Watkins and Walter, 2007] Watkins, C. and Walter, R. (2007). Transitioning from

Federated Avionics Architectures to Integrated Modular Avionics. In Proc. of the

26th IEEE/AIAA Digital Avionics Systems Conference, pages 2.A.1–1–2.A.1–10.

[Whitaker et al., 2002] Whitaker, A., Shaw, M., and Gribble, S. (2002). Denali:

Lightweight Virtual Machines for Distributed and Networked Applications. In

Proc. of the USENIX Annual Technical Conference.

[Wilhelm et al., 2008] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing,

S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F.,

Puaut, I., Puschner, P., Staschulat, J., and Stenström, P. (2008). The Worst-Case

Execution Time Problem — Overview of Methods and Survey of Tools. ACM

Transactions on Embedded Computing Systems, 7(3):1–47.

230 BIBLIOGRAPHY

[Williston, 2009] Williston, K. (2009). Consolidating Hardware with Virtualization.

In Embedded Innovator, volume Fall.

[Wilson and Preyssler, 2008] Wilson, A. and Preyssler, T. (2008). Incremental Cer-

tification and Integrated Modular Avionics. In IEEE Digital Avionics Systems

Conference.

[Wirth, 1976] Wirth, N. (1976). Algorithms + Data Structures = Programs.

Prentice-Hall.

[Xi et al., 2011] Xi, S., Wilson, J., Lu, C., and Gill, C. (2011). RT-Xen: Towards

Real-time Hypervisor Scheduling in Xen. In Proc. of the International Conference

on Embedded Software.

[Xu and Parnas, 1993] Xu, J. and Parnas, D. (1993). On Satisfying Timing Con-

straints in Hard Real-Time Systems. In IEEE Transactions on Software Engi-

neering, volume 19(1), pages 70–84.

[Yang et al., 2011] Yang, J., Kim, H., Park, S., Hong, C., and Shin, I. (2011). Im-

plementation of Compositional Scheduling Framework on Virtualization. ACM

SIGBED Review, 8(1):30–37.

[Yoo et al., 2008] Yoo, S., Liu, Y., Hong, C., Yoo, C., and Zhang, Y. (2008). Mo-

biVMM: a Virtual Machine Monitor for Mobile Phones. In Proc. of the First

Workshop on Virtualization in Mobile Computing.

[Yun et al., 2014] Yun, H., Mancuso, R., Wu, Z.-P., and Pellizzoni, R. (2014). PAL-

LOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multi-

core Platforms. In Proc. of the IEEE International Conference on Real-Time and

Embedded Technology and Applications Symposium.

[Zabos et al., 2009] Zabos, A., Davis, R. I., Burns, A., and Harbour, M. G. (2009).

Spare Capacity Distribution Using Exact Response-time Analysis. In Proc. of the

International Conference on Real-time and Network Systems, pages 97–106.

[Zhang and Burns, 2007] Zhang, F. and Burns, A. (2007). Analysis of Hierarchical

EDF Pre-emptive Scheduling. In Proc. of the 28th IEEE International Real-Time

Systems Symposium.

[Zhang et al., 2010] Zhang, J., Chen, K., Zuo, B., Ma, R., Dong, Y., and Guan, H.

(2010). Performance Analysis Towards a KVM-Based Embedded Real-Time Virtu-

BIBLIOGRAPHY 231

alization Architecture. In Proc. of the 5th International Conference on Computer

Sciences and Convergence Information Technology.

	Contents
	Abbreviations
	Symbols

	Introduction
	Hypervisor-based Integration
	Application Example
	Adaptive Scheduling of Virtualized Real-Time Systems
	Outline and Contributions

	Fundamentals: Hypervisor-based Multicore Virtualization for Embedded Real-Time Systems
	Embedded Real-Time Systems
	Embedded Systems
	Real-Time Computing
	Mixed-Criticality Systems

	Hypervisor-based Virtualization
	System Virtualization
	Processor Virtualization
	I/O Virtualization
	Virtualization for Mixed-Criticality Systems

	Multicore Processors
	Multicore Scheduling
	Multicore and Predictability

	Virtual Machine Scheduling
	Hierarchical Scheduling
	Virtual Processor and Virtual Time
	Classification and Common Solutions

	Summary

	A Multicore Hypervisor for Embedded Real-Time Systems
	Problem Statement
	Related Work
	Proteus Multicore Hypervisor
	Architecture
	Configurability
	Processor Virtualization
	Paravirtualization Interface
	Multicore
	Memory Virtualization
	Virtualization of Timer and I/O Devices

	Evaluation
	Evaluation Platform: IBM PowerPC 405
	Execution Times
	Memory Footprint

	Summary

	Models
	Workload Model
	Task Model
	Virtual Machine Model

	Resource Model
	Schedulability Analysis
	Suitability of the Model
	Related Work
	Summary

	Partitioning
	Problem Statement
	Related Work
	Branch-and-Bound Partitioning
	Pruning & Server Transformation
	Optimization Goals
	The Algorithm
	Example

	Evaluation
	Summary

	Adaptive Partitioned Hierarchical Scheduling
	Problem Statement
	Related Work
	Scheduling Architecture
	Server-based Virtual Machine Scheduling
	Fixed Priority Virtual Machine Scheduling

	Adaptive Bandwidth Distribution
	Distributing Structural Slack
	The Algorithm and its Computational Complexity
	Protection under Overload Conditions

	Correctness of Bandwidth Distribution
	Steady State: Temporal Isolation and Minimum Bandwidth Guarantee
	Correctness during Mode Transitions
	Correctness of Redistribution of Dynamic Slack
	Handling of Multiple Mode Change Requests

	The Case for Paravirtualization
	Integration into Hypervisor and Operating System
	Evaluation
	Scheduling Simulator
	Execution Times
	Overhead versus Benefit: Threshold for Slack Redistribution
	Memory Footprint
	Paravirtualization Effort
	Comparative Evaluation

	Summary

	Real-Time Virtual Machine Migration
	Problem Statement
	Related Work
	Design
	Migration Policy
	Integration into the Hypervisor
	Protocol
	Migration Test
	Integration into Real-Time Virtual Machine Scheduling

	Evaluation
	Experimental Setup
	Memory Footprint & Paravirtualization Effort
	Execution Times & Downtime
	Reliability Analysis
	Case Study: Autonomous Rail Vehicle

	Summary

	Conclusion & Future Work
	Summary of Results
	Outlook

	Publications
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

