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Abstract

One-dimensional (1D) electronic systems are currently intensively investigated for
both fundamental and technological reasons. With respect to future nanoelectronic
device concepts the present work aims at generating a solid knowledge and detailed
understanding about the physical foundations of such perspective future devices.
Highly anisotropic surface superstructures have attracted considerable attention in
this context. An acutely studied model system of this kind is the ordered atomic-scale
array of self-assembled In nanowires that forms the Si(111)-(4×1)In phase at room
temperature (RT) [25]. More than 10 years ago it was discovered that this nanowire
array undergoes a reversible phase transition from (4×1)→(8×2) translational sym-
metry at TC = 120 K [30]. However, while being discussed intensively in the scientific
literature, both the (4×1)→(8×2) phase transition’s driving mechanism and low tem-
perature (LT) ground-state with its associated properties remain strongly controver-
sial.

In the present work the In/Si(111)-(4×1)/(8×2) nanowire array is investigated by
means of state-of-the-art ab initio computer simulations. It is demonstrated that the
longstanding problem of determining the internal structure and exact electronic prop-
erties of the nanowire array’s LT ground-state cannot be resolved by the surface ener-
getics alone. It turns out that the density functional theory (DFT) total-energy results
for the In/Si(111)-(4×1)/(8×2) surface are extremely sensitive with respect to the de-
tails of the electron-electron interaction treatment. Electronic structure and transport
calculations performed for the trimer and hexagon models of the LT ground-state in-
dicate hexagon formation, as first suggested by González et al. [35]. These results
demonstrate the distinct influence of small changes of the nanowire geometry on its
conductance (cf. Publ. [12]). Given the ambiguities of the total-energy calculations
in determining the internal structure of the (8×2) ground-state, the comparison of
optical fingerprints calculated for structural candidates with measured data is ex-
pected to be helpful. Calculations of the anisotropic optical response in the visible
and mid-infrared regime including intraband transitions have been performed for
the In/Si(111)-(4×1)/(8×2) nanowire array for the first time. It is demonstrated that



states close to the Fermi energy lead to distinct and unique optical fingerprints in the
mid-infrared regime for each of the examined structural models. Only the spectra
of the (8×2) hexagon model agree closely with recent measurements. These results
are suitable to effectively conclude the search that has been ongoing for more than
10 years (cf. Publ. [1,6,7]). To address the driving mechanism of the phase transition
the In/Si(111)-(4×1)/(8×2) surface’s thermal properties have been explored by large-
scale frozen phonon and molecular dynamics (MD) simulations. The results indicate
that the soft shear mode mechanism, as proposed by González et al. [35], is at least
partially correct. Two further soft phonon modes in conjunction with the shear mode
facilitate the phase transition. By comparing the present results to the Raman spec-
troscopy measurements by Fleischer et al. [46] the existence of these soft modes could
be confirmed for the first time.

In transport physics calculations and measurements are usually carried out at low
bias, low temperature since the main focus is centered on fundamental principles.
However, with respect to device applications the high temperature properties are most
important. Based on the (8×2) hexagon model for the LT ground-state a combined
frozen phonon and MD approach is presented to derive the temperature dependent
transport properties including the phase transition. However, the classical energy
distribution employed by MD calculations effectively prohibits a sufficiently accurate
treatment of the highly subtle energetics of the In/Si(111)-(4×1)/(8×2) nanowire ar-
ray. Instead a quantum Monte Carlo approach is proposed that incorporates both the
correct potential energy landscape and energy distribution. As doping represents the
basic building block of today’s microelectronics first principles calculations of the Lan-
dauer conductance of doped In nanowires have been performed for various adatom
species. Distinct conductance modifications are predicted that are related to potential
well scattering, nanowire deformation or a combination of both effects. (cf. Publ. [9]).

Keywords

density functional theory, DFT, low dimensional systems, nanowires, defects, surface
states, electronic structure, electron transport, optical properties, lattice dynamics
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Kurzfassung

Systeme mit ein-dimensionaler (1D) Elektronenstruktur werden zur Zeit intensiv er-
forscht, sowohl aufgrund fundamentaler als auch technologischer Interessen. Die
vorliegende Arbeit zielt auf die Erlangung soliden Wissens und detaillierten Ver-
ständnisses der physikalischen Grundlagen zukünftiger nanoelektronischer Bauele-
mentkonzepte. Stark anisotrope Oberflächenüberstrukturen erhalten derzeit große
Aufmerksamkeit in diesem Kontext. Bei der atomar-skaligen Anordnung selbstorga-
nisierter In Nanodrähte, welche die Si(111)-(4×1)In Phase bei Raumtemperatur (RT)
bildet, handelt es sich um ein besonders intensiv erforschtes Modellsystem dieser Art
[1]. Bereits vor 10 Jahren wurde erstmals ein reversibler Phasenübergang in dieser
Nanodraht-Anordnung von (4×1)→(8×2) translationaler Symmetrie bei TC = 120K
beobachtet [2]. Trotz fortwährender intensiver Diskussion in der wissenschaftlichen
Literatur, verbleiben sowohl der Mechanismus des Phasenübergangs als auch der Nie-
drigtemperatur (NT) Grundzustand samt seiner Eigenschaften stark umstritten.

In der vorliegenden Arbeit wird das In/Si(111)-(4×1)/(8×2) Nanodraht-System mit
Hilfe akkurater ab initio Computersimulationen untersucht. Es wird gezeigt, dass
das lang bestehende Problem der Bestimmung der internen Struktur und elektroni-
schen Eigenschaften des NT Grundzustands allein mit Hilfe der Oberflächenenergien
nicht gelöst werden kann. Die mittels Dichtefunktional-Theorie (DFT) erhaltenen
Gesamtenergien der In/Si(111)-(4×1)/(8×2) Oberfläche hängen stark von den Details
der Behandlung der Elektron-Elektron Wechselwirkung ab. Berechnungen der Elek-
tronenstruktur und -transport Eigenschaften für die Trimer und Hexagon Modelle des
NT Grundzustands deuten auf Hexagonbildung hin, wie erstmals durch González et
al. vorgeschlagen [3]. Diese Ergebnisse demonstrieren den ausgeprägten Einfluss
geringfügiger Geometrieänderungen der Nanodrähte auf ihren Leitwert (vgl. Publ.
[1]). Hinsichtlich der Mehrdeutigkeit der Gesamtenergie Rechnungen in der Bestim-
mung der Grundzustands-Struktur, sind weiterführende Ergebnisse durch einen Ver-
gleich der optischen Fingerabdrücke struktureller Kandidaten mit dem Experiment
zu erwarten. Das anisotrope optische Antwortverhalten der In/Si(111)-(4×1)/(8×2)
Nanodraht-Anordnung wurde erstmals im sichtbaren und mittleren Infrarot Bereich



unter Berücksichtigung von Intrabandübergängen berechnet. Es wird gezeigt, dass
Zustände nahe der Fermi-Kante für jedes der untersuchten Strukturmodelle aus-
geprägte und einzigartige optische Fingerabdrücke im mittleren Infrarot-Bereich her-
vorrufen. Ausschließlich die Spektren des (8×2) Hexagon Modells stimmen mit
aktuellen Messungen überein. Diese Ergebnisse beschließen die mehr als 10 Jahre
währende Suche nach dem NT Grundzustand überzeugend (vgl. Publ. [1,6,7]).
Zur Untersuchung des den Phasenübergang antreibenden Mechanismus’ wurden
die thermischen Eigenschaften der In/Si(111)-(4×1)/(8×2) Oberfläche durch frozen
phonon und Molekulardynamik (MD) Simulationen untersucht. Die Ergebnisse deuten
darauf hin, dass der von González et al. vorgeschlagene Mechanismus mittels einer
weichen Scherungsmode [35] zumindest teilweise korrekt ist. Zusammen mit der
Scherungsmode unterstützen zwei weitere weiche Moden den Phasenübergang. Ver-
gleichend mit den Raman Spektroskopie Daten von Fleischer et al. [46] konnte die
Existenz dieser weichen Moden erstmals bestätigt werden.

Transport Physik wird für gewöhnlich bei niedrigen Spannungen und niedrigen Tem-
peraturen betrieben, da der Schwerpunkt auf den grundlegenden Prinzipien liegt.
Hinsichtlich der Anwendung in Bauelementen sind jedoch auch die Hochtempera-
tur Eigenschaften von großer Wichtigkeit. Basierend auf dem (8×2) Hexagon Modell
des NT Grundzustands wird ein kombinierter frozen phonon und MD Ansatz zur
Berechnung der temperaturabhängigen Transporteigenschaften inklusive des Pha-
senübergangs vorgestellt. Es stellt sich allerdings heraus, dass die von der MD
verwendete klassische Energieverteilung eine hinreichend genaue Beschreibung der
subtilen Energetik der In/Si(111)-(4×1)/(8×2) Oberfläche verhindert. Statt dessen
wird ein Quantum Monte Carlo Algorithmus vorgestellt, welcher sowohl die poten-
tielle Energieoberfläche als auch die Energieverteilung korrekt beschreibt. Da das
Dotieren den Grundbaustein der modernen Mikroelektronik darstellt, wurden außer-
dem Berechnungen der Landauer Leitfähigkeit für mit verschiedenen Fremdatomen
dotierte In Nanodrähte durchgeführt. Es werden ausgeprägte Modifikationen der
Leitfähigkeit vorhergesagt, welche durch Potentialtopf Streuung, Deformation der
Nanodrähte oder eine Kombination beider Effekte erklärt werden können (Publ. [9]).

Schlagwörter

Dichtefunktional-Theorie, DFT, Niederdimensionale Systeme, Nanodrähte, Defekte,
Oberflächenzustände, elektronische Struktur, Elektronen Transport, optische Eigen-
schaften, Gitterdynamik
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The close connection between fundamental questions and
practical action, which has been accomplished by the an-
cient Greeks, stands at the beginning of the occidental
culture. Our culture’s fortitude is based upon this con-
nection still today.

– Werner Heisenberg

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Development of the speed increase per unit
of cost for computing devices since 1900 [1, 2].

The classical wire as a single, usually
cylindrical string of metal has a his-
tory that ranges back as far as the 2nd
millennium BC in Ancient Egypt. At
the beginning it was used for jewellery
purposes only, but soon evolved into
one of the most versatile and almost
omnipresent construction materials of
human history. Today the wire serves
in an almost countless number of ap-
plications, as diverse as, i. e., architec-
ture and construction, electric appli-
ances, wire netting and fencing, pro-
tective clothing and even musical in-
struments. One of its most notable
uses is its employment by the electrical and electronic industry for telecommunica-
tions, power transmission, motors and generators, lighting, heating and many other
purposes. The sizes of wires range from huge high voltage power transmission cables
to tiny electronic device interconnects. With the advent of the microelectronics indus-
try, the wire has seen a tendency to be scaled down to ever smaller dimensions, i. e.
in chip bonding1 and – most importantly – as interconnects on the chip itself.

1 Nowadays the classical wire bonding technique of connecting the chip to the contacts of the carrier
package is more and more replaced by the flip-chip technique that incorporates contact pads on
both carrier and die instead of wires.

1
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Beginning with the 11th U. S. Census in 1890, which was conducted employing Her-
man Hollerith’s electric tabulating system for the first time, computing devices have
consistently increased in speed and miniaturization (cf. Fig. 1.1). The continuing
miniaturization, resulting ultimately in integrated circuits, has been quantified by
Gordon Moore’s famous law in 1965 [1]. As Moore’s law holds even today, the num-
ber of transistors on a chip doubles roughly every 18 months with the commercially
available minimum structure size currently bordering on 32nm. This shrinking process
represents a critical growth factor for a major part of the electronics and semiconductor in-
dustry. However, the present silicon based devices are expected to reach their techno-
logical limit with respect to miniaturization in the not so distant future. Significantly
smaller future molecular electronics device concepts have already been proven in the
laboratory, such as, i. e., single molecule diodes [3] and amplifiers [4] and even single
layer graphene transistors [5]. Naturally, to connect such molecular components in a
useful device the interconnects need to be scaled down as well. The traditional very
large scale integration (VLSI) interconnects consist of narrow copper-filled trenches
etched into the substrate, that are then stacked in several layers (cf. Fig. 1.2). Un-
fortunately, for the future nanoelectronics this interconnect concept is not sufficiently
scalable. Instead a paradigm change of the technology in use is required.

Figure 1.2: Scanning electron microscopy cross
section of a microprocessor in a 45 nm fabrication
process. A transistor’s gate insulating oxide layer
(marked green) is 1.3 nm thick, corresponding to
about 6 atomic layers. Image source: AMD

Today’s microelectronics faces an espe-
cially pronounced transition: originally,
the two grand theoretical frameworks de-
veloped in the 20th century – relativity
and quantum mechanics – emerged from
the desire to learn and understand the
laws of nature. By now especially quan-
tum mechanics is applied with tremen-
dous success in present day’s electronic
devices. However, as devices approach the
atomistic scale, subtle quantum effects that
arise from the microscopic size of the device it-
self, e. g. quantum interference or quantized
electron transport, become more and more im-
portant even at room temperature. The chemical nature of the metallic element starts to
play an essential role. While, i. e., in the macroscopic world gold is a better con-
ductor than lead by an order of magnitude, for conduction through a single atom,
lead beats gold by a factor of three [8]. Even in today’s 32 nm process the thinnest
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structure, the transistor’s 1.2 nm thin gate insulating oxide layer, corresponds to no
more than 6 atomic layers already (cf. Fig 1.2 inset). Thus quantum effects arising
from the microscopic size of electronic devices will have to be considered in the near
future. Designing such devices close to the atomistic scale poses a major challenge.
Combined with the ability to manipulate atoms and molecules with increasing preci-
sion, this is currently driving a huge research effort into the properties of atomic-scale
nanowires. Such nanowires may be used in future nanoelectronic devices as both in-
terconnects and active circuit elements.

Regarding microscopic electron conduction the most notable consequence is that the
well known Ohm’s law looses its validity. At these dimensions electron transport
occurs within the ballistic regime. Here the resistance does no longer originate from
scattering processes within the conductor, but instead is caused by a finite reflection
probability during the ejection of the electrons from the contact into the conductor.
This reflection probability – or contact resistance – is caused by the confinement of
the electrons in microscopic conductors. In comparison to the larger contacts the
confinement induces a much stronger quantization of the electrons’ wave-vectors per-
pendicular to their propagation direction. Thus the number of current carrying modes
inside the conductor is much smaller than in the contacts. Hence the contact resis-
tance arises from the necessary redistribution of the current among the modes at the
contact-conductor interface. The resistance of a microscopic conductor is thus deter-
mined by its number of modes or, more accurately from a quantum mechanical point
of view, by its electronic structure.

Nanowires are also very promising as active circuit elements that enable highly in-
novative nanoelectronic device concepts. The present day’s microelectronics is based
almost entirely upon the concept of the controlled creation of defects or impurity dop-
ing to design materials with specifically tailored electronic properties. Such doping
effects are much more pronounced in low-dimensional systems due to the increased
correlation between electrons. Doped nanowires might one day serve simultaneously
as both interconnects and active logic circuit elements, i. e. as nanoscale transistors
[9], representing a major step towards the ultimate limit of digital logic: In reversible
computing as governed by the Landauer principle [13] the physical processes under-
lying the logic functions are (almost) reversible [14]. This is predicted to be the only
possible way to improve the efficiency of computing beyond the fundamental von
Neumann-Landauer limit of kT · ln 2 units of energy dispersed per irreversible bit op-
eration. By avoiding the need to increase the information entropy – i. e. by “turning”



4 Chapter 1. Introduction

a logic bit in a memory cell into heat by grounding the cell and by scattering losses
– the amount of heat to be dissipated can be greatly reduced and significantly higher
computational densities may thus be achieved [16, 17].

Figure 1.3: Atomic force microscopy image of a
memristive nanowire crossbar circuit [11]. Im-
age source: HP

However, nanowires offer another very in-
teresting prospect beyond the present day’s
electrical engineering: Today’s applications
are based on three fundamental types of
devices: resistors, capacitors and inductors.
In 1971 Chua discovered that these three
device types do not represent a complete
basis set in current-voltage (IV) space [10].
From symmetry arguments he deduced the
existence and properties of a fourth funda-
mental circuit element: the memristor. While
this work was largely ignored for more than
30 years, Williams et al. demonstrated in
2008 that memristance effects arise natu-
rally at the nanometer scale [11, 12]. They
constructed a memristive nanowire cross-
bar circuit (cf. Fig. 1.3) that features a wide range of possible applications, i. e. as a
transistor replacement in non-amplifying applications such as neural networks, pro-
grammable logic, signal processing and as an ultra high density non-volatile memory.

Thus the future necessity for a new type of VLSI interconnect and innovative nanoelectronic
device concepts appearing on the horizon recently inspired a highly increasing interest in
nanowire research. To understand and accurately predict the properties to be met upon further
size reduction, the microscopic size of such nanowires requires a treatment by state-of-the-art
quantum mechanical approaches.

Apart from the urgent technological needs described above, such one-dimensional
(1D) electronic systems are also highly interesting from a fundamental point of view.
Due to the increased electron correlation in low-dimensional systems, 1D structures
feature a multitude of fascinating physical properties. Most notably, the commonly
used Fermi-liquid model is no longer applicable. Instead this new state of matter ex-
hibits radically different properties and has to be described in terms of the Luttinger-
liquid model [19]. Among its hallmark features is the spin-charge separation. The el-
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ementary excitations of a Luttinger-liquid are spin-density (SDW) and charge-density
waves (CDW) that propagate with different group velocities. They are thus com-
pletely unlike the quasiparticles of the Fermi-liquid, which always carry both spin
and charge.

Even the question regarding the existence of a true 1D-electronic system is not a sim-
ple one. Peierls’s theorem [20] states that a 1D-chain of atoms is unstable with respect
to a periodic lattice distortion, leading to the formation of dimers. This dimerization
opens band gaps at multiples of k = π/a, where a denotes the lattice parameter of
the 1D-chain. The formerly half-filled band is now split into two bands, one filled
and one empty. As a consequence, the electrons are slightly lowered in energy due
to the distortion of the bands near the newly formed gap. Hence the system becomes
insulating. This so-called Peierls instability can be seemingly circumvented by fixating
the 1D-chain on top of a substrate. However, few such systems are known and most
feature phase transitions towards lower temperatures due to the Peierls transition or
charge density wave (CDW) formation [21].

For these fundamental and technological reasons 1D electronic systems are currently a subject
of intensive investigation. One the few known systems are the atomic-size In-nanowires, that
self-organize on the Si(111) surface [22]. This system is readily prepared experimentally and
also accessible from a theoretical point of view. Additionally the In surface states are located
almost completely inside the Si band gap. Hence this system is ideally suited as a testbed for
the study of quasi-1D systems. The following section provides an introduction to the Si(111)-
(4×1)/(8×2)-In nanowire substrate-adsorbate system presenting an overview of both previous
research and today’s open questions.

1.2 Previous Research

1.2.1 Structure and phase transition

While the Si(111)-(4×1)/(8×2)-In substrate-adsorbate system is currently under in-
tensive investigation, it was originally discovered by Lander and Morrison as early
as 1965 [22]. They examined surface reconstructions forming for various In coverages
and temperatures between room temperature (RT) and several 100 ◦C. For a coverage
of one In monolayer (ML) and subsequent tempering at 500 ◦C the formation of a
(4×1) reconstruction was observed. However, it took another 30 years until an impor-
tant and highly intriguing property of this reconstruction was discovered: In 1995 and
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1997 direct [23] and indirect [24] photoemission experiments proved that the (4×1) re-
construction represents in fact a quasi-1D metal with three metallic In surface bands.

While early approaches to develop a structural model were unsuccessful, Bunk et al.
[25] suggested in 1999 a model based on x-ray diffraction data that is consistent with
the experimental observations. In this structural model – which is generally accepted
today – the In atoms form two parallel zig-zag chains. These are separated by Si
zig-zag chains resembling the π-bonded chains of the clean Si(111)-(2×1) surface (cf.
Fig 2.4). The substrate itself remains unreconstructed, while the atoms constituting
the uppermost layer are positioned at three different heights along the surface nor-
mal. The outer In atoms are positioned at the largest height, followed by the inner
In atoms and finally the Si atoms at the lowest sites. This is consistent with scanning
tunneling microscopy (STM) experiments [26] and X-ray photoemission spectroscopy (XPS)
experiments, that indicate two different types of inequivalent In atoms as well [27].
Density functional theory (DFT) total energy calculations also confirm this structural
model [29].

Figure 2.4: Schematic top (a) and side views (b) of the
(4×1) structural model for the In/Si(111)-(4×1) room
temperature phase.

Shortly after a structural model for
the (4×1) reconstruction was estab-
lished Yeom et al. reported the ob-
servation of a temperature-induced
reversible phase transition between
(4×1) translational symmetry and a
semiconducting (4×“2”) reconstruc-
tion. The surface was probed by re-
flection high energy electron diffraction
(RHEED), angle-resolved photoemission
spectroscopy (ARPES) and STM tech-
niques. Streaks found in the RHEED-
patterns below a critical temperature
of 120K indicate a period doubling of
the surface reconstruction [30]. The
emergence of streaks instead of dot-
like reflections suggests the presence
of some remaining disorder in the low
temperature phase. STM experiments
also reveal a corresponding modulation of the charge density. Fig. 2.5 shows high-



1.2. Previous Research 7

Figure 2.5: a) Constant current STM images of the Si(111)-(4×1)/(8×2)-In surface obtained at 121K
with high- and low-temperature phases coexisting in nanoscale domains [31]. The inset shows enlarged
regions of the high- and low-temperature phases with superimposed structural models (cf. Figs. 2.4,2.6).
b/c) An enlargement of a region that fluctuates between the two phases [30].

and low-temperature phase STM images with the structural model of Fig. 2.4 su-
perimposed. Since the STM data often exhibit an antiphase arrangement of adjacent
(4×2) regions Yeom et al. concluded that the system’s true ground state would be in
fact a (8×2) reconstruction accompanied by a 1D charge density wave (CDW) locked
in phase.

The ARPES spectra at 100K reveal an absence of states at the Fermi energy and thus
imply the (4×“2”) reconstruction to be semiconducting. Also according to the ARPES
results the Fermi contours are “nested” with a nesting vector 2kF = π/a0 (a0 = 3.84)
[30]. Thus Yeom et al. interpreted this phase transition as a Peierls transition. Simul-
taneously, they admitted that the unusually high ARPES band gap of 50-100 meV in
relation to the thermal energy of about 10 meV at the critical temperature as well as
the vanishing spectral weights of all three In surface bands at the Fermi energy could
not be explained in terms of a simple Peierls transition.

In 2000 Kumpf et al. presented a x-ray diffraction investigation of the phase transition
and reported the formation of a (8×2) reconstruction at 20K [32]. While the structure
showed strong correlations between adjacent In chains, even at 20K the superstructure
along the chain direction was not fully developed. However, a pure Peierls instabil-
ity would have caused the CDW to condense into a fully developed superstructure
at much higher temperatures for such a strong interchain coupling. This effectively
rules out a simple Peierls transition as the phase transition’s driving force. Based
on their x-ray diffraction data Kumpf et al. derived a structural model for the (8×2)
low temperature (LT) phase. As shown in Fig. 2.6a/b the In atoms in the (4×1)
phase form trimers in antiphase arrangement between adjacent chains, leading to the
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Figure 2.6: Structural models for the low and high temperature phases of In/Si(111)-(4×1)/(8×2) as
imaged in Fig. 2.5. Schematic top views of a) the ideal (4×1) model of the room temperature structure
and b/c) the (8×2) trimer and hexamer structural models for the low temperature phase, respectively.
Arrows indicate the movement of In atoms leading to the formation of trimers and hexamers.

observed (8×2) reconstruction. Kumpf et al. also demonstrated that adjacent (4×2)
subcells can be combined in several different ways to constitute a (8×2) unit cell. The
streaky RHEED-patterns observed by Yeom et al. [30] can thus be explained in terms
of “(4×2) subcell disorder", i. e. different arrangements of the (4×2) subcells along
the chain direction. As the phase transitions driving force Kumpf et al. suggested
either a triple-band Peierls instability or a reduction of the total free energy caused
by the proposed In trimer formation and a subsequent relaxation of the top-layer Si
atoms.

In 2001 Cho et al. presented a density functional theory (DFT) study [29] based on
the (4×1) and (8×2) structural models suggested by Kumpf et al. Both the opti-
mized atomic coordinates and the calculated electronic structure of the (4×1) struc-
tural model are in close agreement with the x-ray diffraction and ARPES data, respec-
tively. Geometry optimizations in (4×2) and (8×2) unit cells employing the trimer
model’s coordinates as initial geometries also lead to optimized structures in close
agreement with the structural models suggested by Bunk et al. It turns out that the
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(4×2) structure is indeed more stable than the (4×1) structure by 8 meV per (4×1)
unit cell. An antiphase arrangement of two (4×2) subcells in a (8×2) unit cell gains
another 0.9 meV per (4×1) unit cell. This rather small difference in energy confirms
the existence of different degenerate (8×2) ground states as assumed by Kumpf et
al. Cho et al. concluded that the (4×2) subcells “freeze” randomly in one of these
degenerate ground states in a temperature range between 20K and 100K. According
to this model fluctuations above 100K give rise to a (4×1) reconstruction “on average”.

However, while the geometric structure and total energy of the (8×2) trimer model is
in close agreement with both experiment and theory, the electronic structure yielded
a surprise: Cho et al. demonstrated that both the (4×2) and (8×2) trimer models still
feature one band crossing the Fermi energy. Thus they are still metals. On the other
hand, the ARPES data clearly show the LT phase to be semiconducting. Upon the
exclusion of a misinterpretation of the ARPES data and DFT band gap problems one
must conclude that the trimer model is not entirely correct. A more recent study of
the temperature dependent conductivity by Uchihashi et al. also confirms the semi-
conducting state of the low temperature phase [33].

With increasing computational power performing DFT molecular dynamics (MD)
simulations became numerically feasible for this system. Gonzáles et al. conducted
a simulated annealing of the (4×1) reconstruction in a (4×2) unit cell. Upon cooling
of the system they found a new structural model, that is more stable than the opti-
mized trimer structure by 72 meV per (4×1) unit cell [34]. Graphically, this structure
is obtained by a shear distortion of an In double chain by ±0.35 Å and a subsequent
trimerization of the In atoms (cf. Fig. 2.6c). The resulting structure is termed hexagon
model due to the hexagonal arrangement of the In atoms. Electronic structure calcula-
tions show this model to be semiconducting with a band gap of about 0.3 eV. This data
also supports a driving mechanism for the phase transition, that was originally sug-
gested by Ahn et al. [36]: The RT phase features three metallic bands with one exactly
half-occupied and the remaining two occupied slightly less. During the phase transi-
tion a charge transfer is induced between the latter two bands, resulting in one empty
and one now exactly half-occupied band. The two remaining metallic bands are now
both exactly half-occupied and exhibit a Fermi contour nesting with the same nesting
vector. This gives rise to a double band Peierls instability that opens a band gap and
induces a period doubling of the unit cell. González et al. demonstrated that the shear
distortion leads to the proposed charge transfer, while the trimerization subsequently
opens a band gap. One year later – in 2006 – González et al. proposed another driving
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mechanism: Based on DFT-MD calculations they explained the (4×1) phase as a dy-
namical fluctuation between the four degenerate ground states of the (4×2) unit cell
(two possibilities of trimerization for each of the two shear directions). MD calcula-
tions at 40 K show the atoms oscillating around the initial (4×2) hexagon structure. At
200 K the system fluctuates between the four degenerate ground states that González
et al. identified as attractors. From this data they extrapolated the existence of a soft
phonon mode inducing the shearing movement, that is the phase transition’s driving
mechanism according to this model. In a very recent study González et al. compare
simulated and measured STM images [37]. Since they obtain the best agreement for
sheared model structures they emphasize the importance of such a shearing mode
again. However, whether such a soft shearing mode indeed exists remains unknown
until today.

However, while indeed novel these results were received rather critically. The DFT
code used by González et al. employs localized atomic orbitals as a basis set. While
this is computationally very efficient, it also introduces a basis set dependence into
the calculations because atomic orbitals do not constitute a complete basis set. Be-
sides even qualitative differences of the electronic structure this may also affect the
structural relaxation and total energy (discussed in detail in chapter 3.2, cf. present
author’s Publ. [12]). According to Cho et al. the (4×2) hexagon model is unstable
within plane-wave DFT [38], which does employ a complete basis set. Given DFT’s
tendency to underestimate band gaps by a factor of 2 the gap obtained by González
et al. is notably too large in comparison with experiment [42]. Yeom also commented
that a driving mechanism by dynamic fluctuations is contradicted by the available
photoemission data [39]. These photoemission experiments take place on a much
faster time scale than the proposed dynamical fluctuations and consistently indicate
a displacive-type phase transition between well-defined RT and LT structures. On the
other hand, the hexagon structure is supported by recent positron spectroscopy data
[40, 41].

In 2007 Fleischer et al. studied both the (4×1) and (8×2) reconstruction’s surface
phonons employing Raman spectroscopy [46]. At 250 K they identified 11 modes
with A′ and 1 mode with A′′ symmetry. Cooling the system down to 60 K yielded
17 modes with A′ and 8 modes with A′′ symmetry2. All major modes of the (4×1)
surface are also found in the (8×2) spectra, though blue-shifted and with increased
2 The (4×1)/(8×2) surface features a 1m (Cs) symmetry with exactly one mirror plane, located per-

pendicular to the In chains. A′ and A′′ denote modes whose corresponding atomic elongations are
situated within and perpendicular to this mirror plane, respectively.
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intensities due to the lower temperature. The new modes of the (8×2) surface are
consistent with a backfolding of weakly dispersing phonon branches upon the phase
transition induced doubling of the surface’s unit cell. This was seen as supporting
evidence for the Peierls model. Fleischer et al. also examined the measured spectra
with respect to González et al.’s soft shear distortion model, where the (4×1) phase is
assumed to be the time-average of dynamical fluctuations between degenerate (8×2)
ground states. This model implies that phonon signatures of the LT phase should be
observed also within the RT spectra. This is not the case effectively ruling out the
dynamical fluctuation model. However, a soft shear mode that may be related to the
phase transition in conjunction with a Peierls instability may provide an explanation
for the single strong A′′ mode along the chain direction at RT. While Bechstedt et al.
had already calculated the (4×1) surface’s phonon spectra in 2003 [47], a quantitative
comparison between theory and experiment proved to be difficult. In Ref. [47] the
topmost 4 atomic layers were taken into account leading to a multitude of calculated
modes, while Raman spectroscopy probes the surface phonon modes only.

Figure 2.7: Experimental vs. theoretical
RA-spectra for the RT/LT phase and (4×1)
ideal & (8×2) trimer models, respectively.
Data is reproduced from Refs. [51, 52].

Reflectance anisotropy spectroscopy (RAS) is an-
other technique that is highly sensitive to sur-
face reconstructions and which is also widely
applied in commercial applications. Since it
involves the difference between spectra for two
polarization axes it profits from a high de-
gree of error cancellation and compares well
with theoretically derived spectra. By com-
paring theory derived results with experimen-
tal data this technique allows to confirm or
reject different structural models for surface
reconstructions.

Experimentally obtained RA-spectra at room
temperature [49, 50, 51] exhibit an astonish-
ing agreement with calculated spectra for the
(4×1) structural model (cf. Fig. 2.7). Es-
pecially the strong anisotropy around 2eV is
very well reproduced [52]. The experimen-
tally observed splitting of the 2eV peak in conjunction with the (4×1)→(8×2) phase
transition is consistent with the trimer model. However, no RAS has been calculated
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for the hexagon model so far. Additionally, the most interesting energy range lies
within the mid-infrared (IR) regime, where the band structures and thus the spectra
of different structural models differ the most. Neither measurements nor calculations
have addressed the mid-IR regime due to both experimental and numerical difficul-
ties. Since some of the competing structural models are metallic a meaningful RAS
calculation needs to incorporate not only interband transitions, but intraband tran-
sitions as well. However, the impact on both the required computational time and
memory is huge.

In conclusion, several different driving mechanisms for the phase transition have been sug-
gested. Even after more than 10 years the matter is still intensively and controversely dis-
cussed. As both the available experimental and theoretical evidence is highly ambiguous nei-
ther the nature of the phase transition itself nor the associated ground state is clear. Total
energy differences for competing structural models of the (8×2) ground state are within the
numerical accuracy of ab initio calculations. This effectively disables any direct approaches to
the LT phase’s structural properties. Several measurements that could be used to distinguish
between structural candidates, i. e. phonon spectra and RAS, lack the necessary theoretical
data to be decisive.

1.2.2 Transport properties and doping

Figure 2.8: Temperature dependence
of the conductivity of a sample with
intact (solid line) and severed (dashed
line) In nanowires, respectively [33].

The discovery of the Si(111)-(4×1)-In surface’s quasi-
1D electronic character also sparked a growing inter-
est for this system’s transport properties, both from
a fundamental and applied point of view. However,
past studies of low-dimensional transport physics
concentrated mainly on 2-dimensional electron gas
systems (2DEG) formed at buried interfaces, such
as GaAs/AlGaAs or metal-oxide Si interfaces [111,
112]. Measuring the conduction through surface-
supported nanowires is even more challenging, be-
cause in this case the conductivity of interest σss cor-
responds to the current carried by surface states. As
the surface is always in contact with the substrate’s
bulk material, the measured conductance σmeas in-
cludes also the bulk conductance σb and the conductance through a surface space-
charge layer σsc arising from band bending effects beneath the surface. Thus the
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measured conductivity accounts to σmeas = σss + σb + σsc and needs to be corrected
accordingly. Since even the electronic character of the LT phase was controversial
(semiconducting/insulating vs. pseudogap opening) transport measurements were
also expected to provide new insights regarding the nature of the phase transition.

In 2002 Uchihashi et al. measured the macroscopic transport properties of the Si(111)-
(4×1)-In surface [33]. They deposited tantalum contact pads on the surface and first
measured the conductance from pad to pad. Subsequently a large number of defects
was introduced, effectively severing the nanowires. By measuring the conductance
between the contact pads again the In surface contribution can be obtained as the
difference between the two measurements. The conductance of the underlying bulk
material and surface layer space-charge effects are thus excluded. Performing these
measurements for different temperatures Uchihashi et al. obtained the results shown
in Fig. 2.8. The conductance drops sharply at a transition temperature of 130K,
indicating a metal-insulator (MI) transition around the same temperature as the pre-
viously observed structural phase transition.

Figure 2.9: Temperature dependent conductivity for
clean and 0.1ML In-decorated In nanowires, respec-
tively [44]. The upper limit of space-charge layer con-
tributions is indicated by the shaded grey area.

Two years later in 2004 Tanikawa et
al. reported novel transport measure-
ments employing a four-point probe
method with a microscopic probe spac-
ing of d = 8 µm [44]. This method ef-
fectively confines the measuring cur-
rent to the space-charge layer and sur-
face states only, a priori excluding any
bulk contributions without reverting to
substraction techniques. They also de-
monstrated that below room temper-
ature (RT) the measured conductivity
is dominated by surface states, thus al-
lowing for a direct measurement of the
surface state conductivity for the first
time. The temperature dependent con-
ductivity σmeas = σss + σsc is indicated
by blue squares in Fig. 2.9, with the
gray area representing the upper limit
of the space-charge layer conductivity σsc. For temperatures below 200K it becomes
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negligible, so that σmeas ≈ σss. Below ∼130K σmeas features a steep decrease clearly
indicating a metal-insulator (MI) transition (note the logarithmic scale). The mea-
sured band gap corresponds to a surprisingly large value of ∼300meV. It is thus
significantly larger than that estimated by PES measurements [45]. This may sug-
gest a strong electron-phonon coupling accompanied by large fluctuations. From a
theoretical point of view the impact of electron-phonon coupling upon the transport
properties has not been addressed so far.

Interestingly, the MI transition occurs together solely with the formation of the (8×2)
reconstruction. Any intermediate (4×“2”) reconstructions between 200K and 130K
– as observed by simultaneous RHEED measurements – were found to be metallic.
These data represent strong evidence against a simple Peierls transition, where the
(4×“2”) reconstruction would already be non-metallic. This is also in accordance
with the ARPES results by Yeom et al., which predicted the (8×2) ground state to be
semiconducting [30].

From a technological point of view the effect of impurities and defects on the wire
conductance is also highly interesting, since current microelectronics is based almost
entirely on the concept of tuning and modulating electronic device characteristics by
the controlled creation of defects or impurity doping. Tanikawa et al. deposited an
additional 0.1 monolayers (ML) of In upon the clean (4×1) reconstruction [44]. Per-
forming the same conductivity measurements as for the clean surface they observed a
significant decrease in conductivity by roughly one order of magnitude. The surface
still features a MI transition, however, at a somewhat higher transition temperature of
∼155K. Neither the conductance quenching mechanism nor the structural properties
of this adatom decorated system are known.

In contrast an earlier STM and RHEED study in 2001 observed a reversion of the (8×2)
low temperature (LT) phase to the (4×1) room temperature (RT) phase by depositing
tiny amounts of In or Ag upon the (8×2) reconstruction at 100K [53]. While Ag re-
verted the (8×2) phase only locally around the adsorption site, In totally quenched
the (8×2) symmetry reverting the whole structure back to the metallic (4×1) phase
(cf. Fig. 2.10a). Thus the adsorption of adatoms on either the (8×2) LT or (4×1) RT
phase clearly leads to completely different adsorbate systems.

Examining adatom species other than In and Ag – including H, O, Li, Na, Co, Pb – the
reverse effect was discovered as well. Employing low energy electron diffraction (LEED),
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Figure 2.10: a) Filled state STM image of the (8×2) LT phase after deposition of 0.1ML In [53].
The surface is reverted completely to (4×1) symmetry. b/c) Filled state STM images of the H and O
adsorbed (4×1) RT phase, respectively [64]. Note the locally induced ×2 ordering of the In chains.

high resolution electron energy loss spectroscopy (HREELS) and STM techniques Lee et
al. observed a (4×1) → (4×2) metal-insulator phase transition at room temperature
upon the deposition of an additional 0.2ML of Na [54]. Lee et al. interpreted their
results in terms of the Na adatoms providing pinning centers to form a CDW upon
deposition at RT as the phase transition’s driving mechanism. However, a subsequent
DFT study in 2002 by Cho et al. [55] found such a phase transition to be energetically
unfavourable. Instead they found the Na adatoms to be highly mobile on the (4×1)
surface and suggested the formation of finite 1D (4×2) Na wires on top of the (4×1)
surface as the cause for the observed ×2 order. Electronic structure calculations for
this structural model mostly explain the experimental data from Ref. [54].

Figure 2.11: Surface state dispersion
and band bending (inset) before/after
(dashed/solid lines) Na doping [56].

In a very recent study from 2009 Shim et al. report
a tuning of the (4×1)→(8×2) phase transition’s crit-
ical temperature TC also by depositing tiny amounts
of Na [56]. They found TC to decrease almost lin-
early from 126K down to 92K up to Na coverages of
0.015ML. Shim et al. proposed Na to act as an elec-
tron donor, causing an upward shift in the Fermi
level. Within the CDW model the Fermi nesting vec-
tor increasingly deviates from its ideal condition for
the commensurate CDW transition (cf. Fig. 2.11). In-
terestingly, a lowering of TC can also be achieved by
optical pumping where excess electrons are added
to the system originating from the Si substrate [57].
To explain this observation a Fermi level shift and subsequent nesting vector deviation
was adopted in this case as well.
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Several studies report a (4×2) period doubling modulation for hydrogen adsorption
similar to the one observed upon Na deposition, also with decreasing TC (cf. Fig.
2.10b) [58, 59, 60, 64]. However, this H induced (4×2) phase seems to be funda-
mentally different from both the LT and Na induced (4×2) phases, since transport
measurements show that H deposition barely affects the conductance [58].

Figure 2.12: Filled state STM image of
the 0.02ML Co adsorbed (4×1) surface.
The pair correlation function g(d) features
a strong preference for Co-Co distances of
1.75nm and 2.5nm, respectively [63].

While a decrease of TC is readily achieved upon
adsorption of various adatom species, O ad-
sorption remarkably increases TC. Other than
in the previous cases the (4×1)→(8×2) phase
transition is supported rather than hindered
[64]. The clean (4×1) reconstruction’s Fermi
nesting vector is slightly smaller than in the
perfect commensurate case [29]. Thus by oxy-
gen hole-doping the Fermi level is lowered and
as a consequence the nesting vector approaches
the perfect Fermi-surface nesting condition for
a commensurate CDW [64]. TC might also be
increased by a spatial correlation of the O de-
fects that would then interfere constructively
helping the CDW to condensate. So far neither
spatially correlated nor mobile O defects have
been observed experimentally, at least not be-
fore cooling. However, both Pb and Co de-
fects have been reported to self-organize by
substrate-mediated indirect interactions such
as, i. e., Friedel oscillations [61, 63]. In case
of Pb such indirect interaction effects are pronounced up to a range of 5 (4×1) lattice
constants a, corresponding to a length of 19.3 along the In chains [61]. Depending
on the exact defect placement of even or odd multiples of the lattice constant a CDW
condensation is either supported or inhibited, respectively.

In conclusion, the 1D transport properties of the Si(111)-(4×1)/(8×2)-In system have been
measured for the ideal and In/H decorated surfaces. Impurity doping has been examined for
several other adatom species as well. Doping itself represents the basic building block of nearly
all present day microelectronics. As its effects are strongly enhanced in low-dimensional sys-
tems such studies are highly interesting with respect to future nanoelectronic device concepts.
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However, no systematic study with regard to the structure of various defect types and their
impact upon the system’s transport properties is presently available. Despite its importance
this system’s transport properties and their temperature dependence as well as doping effects
are barely understood today.

1.3 Project outline

The previous calculations and experiments presented above form a very solid founda-
tion from which the ground state of the In nanowire array, its response to doping by
adatoms, the impact of doping on the electron transport properties and the thermal
and optical properties of this system can be explored. With respect to future nanoelec-
tronic device concepts this project aims at generating a solid knowledge and detailed
understanding about the physical foundations of such perspective future devices. It
employs the prototypical Si(111)-(4×1)/(8×2)-In nanowire array as a suitable model
system and contributes to the following fields of study:

1. What is the precise geometry and electronic structure of the In nanowire array’s
(8×2) LT phase? What mechanism drives the (4×1)→(8×2) phase transition?

2. What are the transport properties of the clean In nanowire array? How are they
influenced by thermal excitations?

3. How does doping by adsorbed atoms modify the electron transport through the
In nanowires? What is the precise mechanism of the conductance modification?

The present work employs state-of-the-art ab initio density-functional theory (DFT)
calculations within both the generalized gradient and the local density approxima-
tion (GGA/LDA). Chapter 2 presents an introduction to the employed methodology
for the derivation of structural, transport and optical properties.

It turns out that the DFT total-energy results for the In/Si(111)-(4×1)/(8×2) surface
are extremely sensitive with respect to the details of the electron-electron interaction
treatment. Thus the influence of semicore-electrons and pseudopotentials is checked
thoroughly and systematically in chapter 3. Subsequently, the electronic and trans-
port properties of the clean In/Si(111)-(4×1)/(8×2) surface are derived. The transport
calculations are performed by means of a combined Green’s function and localized
orbital approach.
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In chapter 4 these transport calculations are extended towards doped In nanowires.
The influence of defects upon structure and conductance as well as the conduc-
tance modification mechanisms are discussed in detail and are compared with ex-
periment to the extent of available measurements. The results allow for a tuning of
the nanowires’ conductance in a wide range by different mechanisms. In most in-
stances experiments to confirm these predictions have yet to be performed.

In chapter 5 calculations of the anisotropic optical response in the visible and mid-
infrared spectral range including intraband transitions are presented. It is demon-
strated that states close to the Fermi energy lead to distinct optical fingerprints in the
mid-infrared regime for each of the examined structural models. In comparison with
a recent experiment these data are suitable to settle the 10-year old dispute about the
In nanowire array’s true LT ground-state.

Vibrational and thermal properties at finite temperatures as well as their influence
on the In nanowire array’s electron transport properties are examined in chapter 6.
Large-scale frozen-phonon (FP) calculations and molecular dynamics (MD) simula-
tions finally allow for the quantitative analysis of longstanding Raman spectroscopy
measurements and an attempt to explain the driving mechanism of the phase transi-
tion. The existence of the soft shearing mode, as proposed by González et al., together
with two further soft modes facilitating the phase transition are confirmed for the first
time. Furthermore, it is demonstrated that the employment of a classical energy dis-
tribution by MD simulations leads to inaccurate results for this highly subtle system.
Several renowned earlier studies are affected and thus need to be revised. A more
accurate scheme that incorporates both the correct energy distribution and potential
energy landscape is proposed.

Finally the 7th and last chapter summarizes the main results of the present work and
suggests some future research directions.



Today we reached a stage in physics that is different than
anything in history before. We have a theory [...], so
why do we not simply check whether it is true or false?
Because to check it we need to calculate the consequences
of this theory first. This time it this first step that is the
problem.

– Richard P. Feynman

Chapter 2

Methodology

2.1 Density Functional Theory (DFT)

The principal workhorse for the project outlined during the introduction is the frame-
work of density functional theory (DFT). It is a calculational scheme to efficiently
solve the Schrödinger equation for complex many-body systems from first principles.
The term first principles – also known as ab initio, the latin term for from the beginning –
implies a scheme based purely on the laws of quantum mechanics without requiring
any empiric or semi-empiric parameters entering the calculation. This approach can
thus be expected to yield highly accurate predictions regarding material properties
in close agreement with experiment. The approaches regarding structural, thermal,
transport and spectroscopic properties employed within the present work are based
solely on these parameter-free DFT calculations.

2.1.1 The many body problem

Any material is comprised of atoms and molecules, which in turn consist of nuclei
and electrons. Describing these materials thus implies correctly describing the mutual
interaction of nuclei and electrons. In the non-relativistic case a quantum mechanical
system’s wavefunction |ψ〉 is governed by the Schrödinger equation

Hen|Ψ〉 = i
∂

∂t
|Ψ〉 (1.1)

with the Hamilton operator

Hen = Te + Tn + Vee + Ven + Vnn (1.2)

Included in this Hamiltonian are the electron kinetic energy Te, the nuclear kinetic en-
ergy Tn, the electron-electron interaction potential Vee, the electron-nuclear interaction
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potential Ven and the nuclear-nuclear interaction potential Vnn. In case of an explic-
itly time-independent Hamiltonian |Ψ〉 can be expanded in terms of the Hamiltonian
eigenfunctions |ψen

i 〉 and eigenvalues Een
i :

|Ψ(t)〉 = ∑
i
〈Ψ(0)|ψen

i 〉e−iEen
i t|ψen

i 〉, (1.3)

with Hen|ψen
i 〉 = Een

i |ψen
i 〉 (1.4)

The Born-Oppenheimer approximation [66] allows to decouple the nuclear degrees of
freedom {Rn} from the electronic degrees of freedom {rn} and to neglect the coupling
of electronic to nuclear motion due to the relatively “slow” motion of the nuclei in
comparison to the electrons. Equation (1.4) is hereby separated into a nuclear and an
electronic part:

Hen({Rn}, {rn}) = Tn + Vnn︸ ︷︷ ︸
Hn({Rn})

+ Te + Vee + Ven︸ ︷︷ ︸
He({re})

(1.5)

This allows for the separate solution of one Schrödinger equation for the nuclei and
another one for the electrons. The wavefunction of the total system is then represented
by a product-ansatz:

|ψen
i ({Rn}, {re})〉 = ψn

i ({Rn})|ψe
i ({re})〉 (1.6)

The nuclear and electronic Schrödinger equations can thus be written as:

Hnψn
i ({Rn}) = En

i ψn
i ({Rn}) (1.7)

He|ψe
i ({re})〉 = Ee

i |ψe
i ({re})〉 (1.8)

Throughout the present work the nuclei will be considered as classical particles, with
the electrons coupled to the nuclei by Coulomb interaction only. The original quan-
tum mechanical problem is hereby reduced to solving the Schrödinger equation for
electrons moving in the electrostatic potential generated by the nuclei:

H|ψi({re})〉 = Ei|ψi({re})〉 (1.9)

From here on the use of indices corresponding to the electrons/nuclei is discontinued,
since only the electronic problem remains. It should be noted that both the electronic
Hamiltonian as well as its associated wavefunction depend implicitly on the nuclear
coordinates {Rn}. Assuming fixed nuclear positions the {Rn} enter eq. (1.9) as pa-
rameters.
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Bohr radius a0 = 4πε0h̄2/mee2 0.529177 · 10−10 m
Hartree energy H = mee4/4ε2

0h2 27.2114 eV
electron mass me 9.1 · 10−31 kg
electron charge e 1.6022 · 10−19 C

Table 1.1: Atomic units used in the present work

However, eq. (1.9) still represents a many-body problem. A multitude of different
methods has been developed to solve this equation to the desired degree of accuracy.
Most famous among these are the Hartree-Fock (HF) method and its further develop-
ments known as post-HF methods [67]. An extremely successful and widely used one
is the framework of density functional theory (DFT). This method represents the build-
ing block of all the methods used throughout the present work and is thus examined
in more detail in the following sections.

2.1.2 The Hohenberg-Kohn theorems

To solve the electronic problem in the external potential of fixed nuclei we consider a
Hamiltonian of the following form:

H = T + V + Vext (1.10)

T represents the kinetic energy operator, Vext the external potential including the
potential caused by the nuclei and V the Coulomb interaction between the electrons.
In atomic units (see Tab. 1.1) V can be written as:

V =
1

|r− r′| (1.11)

This Hamiltonian is determined unambigously by the external potential and the total
number of electrons N in the system. However, Hohenberg and Kohn [71] realized
that by using the electron density n(r) the problem of solving the Schrödinger equa-
tion can be formulated in a much more convenient way, while still being formally
exact. The electron density is given as:

n(r) = N
∫

d3r2

∫
d3r3 ...

∫
d3rNψ∗(r1, r2, ... , rN)ψ(r1, r2, ... , rN) (1.12)

Since the wavefunctions are normalized the total number of electrons N can be re-
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trieved again from the electron density n(r) by:

N =
∫

dr n(r) (1.13)

Hohenberg and Kohn showed that eq. (1.12) is invertable, meaning that from a
given ground-state density n0(r) it is possible to calculate the corresponding ground-
state wavefunction ψ0(r1, r2, ... , rN). While it seems impossible on first glance that a
function of one variable r could be equivalent to a function of N variables r1...rN the
following theorems show that the knowledge of n0(r) implies much more than only
the knowledge of an arbitrary function. These two theorems lie at the heart of DFT
and are simply cited here without demonstration [71]. The first one legitimates the
choice of n0 as the central quantity over ψ.

Theorem I: The external potential vext is an unambigous functional of the ground-
state charge density n0.

This implies the charge density n0 together with the total number of electrons N
already determines the wavefunctions ψ unambigously. The total energy of the system
can be expressed as a functional of the charge density according to

E[n(r)] = T[n(r)] + V[n(r)] + Vext[n(r)] (1.14)

= FHK[n(r)] +
∫

dr vext(r) · n(r) (1.15)

where T[n(r)] and V[n(r)] are the kinetic and potential energy of the electrons, re-
spectively. Vext[n(r)] is the potential energy of the electrons due to the external po-
tential. Furthermore Hohenberg and Kohn introduced the internal-energy functional
FHK[n(r)] according to eq. (1.15). Since it does not depend on Vext it thus allows to
define the ground-state wavefunction ψ0 as that antisymmetric N-particle wavefunc-
tion that minimizes FHK[n(r)] and reproduces n0 [69].

The second theorem establishes the following variational principle:

Theorem II: The density functional

E[n] = FHK[n] +
∫

dr vext(r) · n(r) (1.16)

assumes its minimum at the ground state density n0.

These two theorems allow for changing from the use of the wavefunctions ψ(ri) to the
density n(r). Both schemes are formally equivalent and make no use of any approx-
imations. Only the complexity of the equations to be solved is drastically reduced.
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By calculating the wavefunctions directly 3N degrees of freedom would have to be
taken into account, which is already computationally prohibitive for relatively small
systems. Since n(r) depends on only three coordinates it is much more convenient to
use. Both theorems can be demonstrated for non-degenerate and degenerate ground-
states, as well as for excited states. In the case of excited states n(r) has to satisfy
several more conditions. A detailed treatment can be found in Ref. [70].

2.1.3 The Kohn-Sham equations

While DFT can be implemented in many ways, the minimization of an explicit energy
functional FHK[n] is usually not very efficient. A much more convenient way is the
Kohn-Sham approach [72]. This approach is not based exclusively on the charge
density but it also uses a special type of single-particle wavefunction. This allows the
treatment of the Schrödinger equation as single-particle problem, while many-body
effects are still included by the so-called exchange-correlation functional. First the
functional FHK[n] is decomposed according to:

FHK[n] = Ts[n] + VH[n] + EXC[n] (1.17)

Ts[n] represents the kinetic energy of a non-interacting electron gas and VH[n] its
Hartree energy:

VH[n] =
∫ ∫

dr dr′ n(r)n(r′)
|r− r′| (1.18)

The remaining interacting terms T − Ts and V − VH are merged into the exchange-
correlation term EXC. For non-interacting particles the total kinetic energy Ts equals
the sum over the individual kinetic energies of each single particle. Therefore one can
express Ts[n] in terms of the single-particle wavefunctions of a non-interacting system
with the density n according to:

Ts[n] = − h̄
2m ∑

i

∫
d3r φ∗i (r)∇2φi(r) (1.19)

Since all φi are functionals of n, Ts[n] is an explicit functional of the φi but unfor-
tunately only an implicit functional of n with Ts[n] = Ts[{φi[n]}]. Thus a direct
minimization of E[n] = FHK[n] + Vext with respect to the density n is impossible. To
resolve this problem Kohn and Sham introduced a method that allows to conduct the
necessary minimisation in an indirect way [72]:
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δFHK[n]
δn(r)

!= 0

=
δTs[n]
δn(r)

+
VH[n]
δn(r)

+
EXC[n]
δn(r)

+
Vext

δn(r)
(1.20)

=
δTs[n]
δn(r)

+ vH(r) + vXC(r) + vext(r)

Considering a system of non-interacting particles which move in an effective potential
vs(r) the analogous type of minimisation can be done in a much simpler way because
without interaction there are no Hartree and exchange-correlation terms:

EH[n]
δn(r)

=
Ts[n]
δn(r)

+
Vs[n]
δn(r)

=
Ts[n]
δn(r)

+ vs(r) != 0 (1.21)

This equation is solved by the density ns(r). From the comparison with eq. (1.20) it is
clear that both minimisation problems yield the identical solution ns(r) ≡ n(r) if vs is
chosen as:

vs(r) = vH(r) + vXC(r) + vext(r) (1.22)

So first Hohenberg and Kohn reduced the problem of having to solve the many-body
Schrödinger equation to the problem of minimising the total energy functional E[n]
with respect to n(r). Now Kohn and Sham again reduce the minimisation of E[n]
to solving the single-particle Schrödinger equation for a system of non-interacting
particles moving in an effective potential vs(r). Thus the wavefunctions that satisfy
the single-particle Schrödinger equation

[
− h̄2∇2

2m
+ vs(r)

]
φi(r) = εiφi(r) (1.23)

of this replacement problem reproduce the exact density n(r) of the original many-
body problem,

n(r) ≡ ns(r) = ∑
i

fi|φi(r)|2 (1.24)

where fi are the occupations of the wavefunctions φi. Eq. (1.22) to (1.24) are known
as the Kohn-Sham (KS) equations. However, since vH and vXC depend on n, which
in turn depends on the φi, which again depend on vs, solving the KS equations rep-
resents a nonlinear problem. Therefore the problem is solved in an iterative self-
consistent way. One starts with an initial guess for n(r), calculates the corresponding
vs(r) and solves Eq. (1.23) to obtain the φi. From these a new density is obtained by
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Eq. (1.24) and the cycle is repeated until it converges. Once a converged solution has
been found the total energy can be calculated according to

E0 = ∑
i

εi −
q2

2

∫
d3r

∫
d3r′

n0(r)n0(r′)
|r− r′| −

∫
d3r vXC(r)n0(r) + EXC[n0] (1.25)

which is equivalent to Eq. (1.14). It should be noted that E0 is not simply the sum over
all εi, because the εi are not the eigenvalues of the original many-body problem, but
of an auxiliary single-particle problem. They are thus completely artificial objects.1

The N-particle wavefunction |ψ〉 also does not correspond to the wavefunction of the
non-interacting Kohn-Sham system. Only the ground-state density n0 and thus the
total energy E0 have a strict physical meaning and are formally exact.

However, the Kohn-Sham eigenvalues εi are still used to approximately calculate a
large variety of physical properties. In many situations the εi provide a reasonable
approximation.2 This approach can be rationalised from the point of view of this
mode of DFT as a mean-field theory (although with a very sophisticated mean-field
vs(r)). In fact most band-structure calculations in solid state physics are actually KS
eigenvalue calculations. In practice this approach turned out to be highly successful,
but not all resulting errors can be neglected. The KS eigenvalues underestimate the
bandgap by up to 100% or erroneously even predict metallic behaviour for semicon-
ducting systems. A variety of correctional methods are available for situations where
the KS treatment of the many-body problem is insufficient. Among these are the GW-
approximation (GWA) and Bethe-Salpeter equation (BSE), which will be treated later
in chapter 2.3.

2.1.4 Exchange-correlation (XC) functionals

In principle the KS equations allow to calculate the ground-state energy and den-
sity exactly. However, the exchange-correlation term is unknown – although the HK
theorems guarantee that it is a density functional – and has to be approximated for
practical applications. Usually EXC is decomposed into EXC = EX + EC. While EX

can be expressed exactly at least in terms of the single-particle wavefunctions φi, no
exact expression for EC is known, neither in terms of the φi nor n. With the self-

1 With the exception of the highest occupied KS eigenvalue, which corresponds to the ionisation
energy of the system.

2 These situations are typically characterised by the absence of fermionic quasi-particles and strong
correlations.
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interaction correction to the Hartree term VH and the difference between the kinetic
energy and its non-interacting counterpart EXC contains all the many-body aspects of
the problem:

EXC[n] = (V[n]−VH[n]) + (T[n]− Ts[n]) (1.26)

Thus the exact knowledge of EXC would again require the exact solution of the many-
body problem. Formally, the adiabatic connection approach allows to deduce two im-
portant properties of the exact XC functional, that in turn enable the derivation of
reasonable approximations for EXC [73]. These properties are only cited here. A
demonstration can be found, i. e. in Ref. [75].

• EXC depends only on the spherically averaged exchange-correlation density nXC:

EXC[n] =
1
2

∫
dr n(r)

∫ ∞

0
dx 4πxnsp

XC(r, x) (1.27)

with nsp
XC(r, x) =

1
4π

∫
Ω

dr′ n̄XC(r, r′), Ω = |r− r′| = x (1.28)

As a consequence an approximation that reproduces the spherically averaged
XC-density exactly, is sufficient to also calculate EXC exactly.

• Integration of n̄XC over r′ yields the sum rule:∫
dr′ n̄XC =

∫
dr′ n(r′)h̄(r, r′) = −1 (1.29)

Thus the XC interaction displaces exactly one electron from the environment of
r. This phenomenon is the so-called XC-hole. The averaged density n̄(r, r′), the
pair-distribution function h̄(r, r′) and thus the averaged XC-density n̄XC(r, r′)
are given by:

n̄(r, r′) = n(r)n(r′)(1 + h̄(r, r′)) (1.30)

n̄XC(r, r′) = n(r′)h̄(r, r′) (1.31)

2.1.4a Local density approximation (LDA)

One of the practically most important types of approximations for EXC is the local
density approximation (LDA), which also finds extensive use in the present work. It
was already suggested in the original work of Kohn and Sham [72] and – like almost
all EXC approximations – starts from the homogeneous electron gas. In the LDA EXC
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is approximated by integrating over the local contributions from the homogeneous
electron gas’ exchange-correlation density εhom

XC (n)

EXC[n] =
∫

d3r n(r)εXC[n] ≈ ELDA
XC [n] :=

∫
d3r n(r)εhom

XC (n) (1.32)

with εhom
XC (n) = εhom

X (n) + εhom
C (n). The corresponding exchange-correlation potential

is then given by:

vLDA
XC [n](r) =

∂εhom
XC (n)
∂n

∣∣∣∣∣
n→n(r)

(1.33)

The homogeneous electron gas was subject to extensive theoretical studies [70, 77, 78]
and its exchange density is known exactly:

εhom
X (n) = −3q2

4

(
3
π

) 1
3

n
4
3 (1.34)

Thus ELDA
X can be easily calculated:

ELDA
X [n] = −3q2

4

(
3
π

) 1
3 ∫

d3r n(r)
4
3 (1.35)

Unfortunately the derivation of the correlation density is far more complicated because
its determination for a homogeneous interacting electron gas is already a complicated
many-body problem on its own. However, εhom

C can be calculated in some cases by
perturbation theory [74, 75] or nowadays highly accurately by quantum Monte Carlo
(QMC) approaches [76]. Subsequent fitting of the resulting values for εhom

C completes
the construction of εhom

XC [79, 80].

Despite its simplicity LDA has proven surprisingly successful for many types of cal-
culations, like band structures, structural properties or phonon modes, even when
applied to systems which strongly differ from the reference system of the homoge-
neous electron gas. Typically, LDA systematically underestimates EC but systematically
overestimates EX, resulting in a fortuitous error cancellation. The systematic character
of this error cancellation is a consequence of the fact that the LDA XC-hole satisfies
the sum rule in Eq. (1.29). LDA also gives a good approximation of the spherical av-
erage of the XC-hole since the LDA XC-hole exhibits an a priori circular symmetry. In
Eq. (1.27) it was shown that only the spherical average of the XC-density contributes
to EXC. However, LDA works best for systems with slowly varying electron densities.
Among its most serious shortcomings is its underestimation of bandgaps of up to
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100%. It also tends to overestimate interatomic bond strengths resulting in slightly
too small bond lenghts and too high cohesion energies.

2.1.4b Generalized gradient approximation (GGA)

While any real system has a spatially varying density n(r), LDA exploits only knowl-
edge of the density at the point r. Thus in many cases a systematic improvement
of the LDA can be achieved by incorporating information about the gradient of the
exchange-correlation density:

EXC[n] ≈ EGGA
XC :=

∫
d3r n(r)εXC(n,∇n,∇2n, ...) (1.36)

A large variety of these so-called generalized gradient approximations has been proposed
over the last two decades. The most widely-used are the PW91 and PBE functionals,
as suggested by Perdew, Wang [81, 82] and Perdew, Burke, Ernzerhof [83], respec-
tively. Both types of GGA satisfy the sum rule in Eq. (1.29) and give improved results
over LDA for a wide range of materials. Ground-state energies, molecular binding
energies, hydrogen bonds and simple metal lattice constants are often described more
accurately. However, GGA still has several fundamental shortcomings, such as its in-
ability to describe dispersion-interaction3, an underestimation of bond strengths, no
discontinuity in vGGA

XC (r) with respect to N, causing an underestimation of bandgaps
[85] and an unphysical exponential decay of the electrostatic potential above surfaces.

Both the LDA and GGA have been thoroughly tested with respect to their applicability
in the present work, which will be described in more detail in chapter 3.

2.1.5 Periodic boundary conditions

In case of extended systems, such as crystals or surfaces, application of the Kohn-
Sham formalism quickly becomes impractical due to the huge number of atoms to
be treated. Furthermore the wavefunctions span an equally large space so that an
excessive basis set would be required. Hence it is very useful to introduce periodic
boundary conditions and thus employ the translational symmetry of the system.

3 Dispersion-interaction is missing in LDA as well. Fortunately its incorporation is not required
for the present work, but had to be accounted for in the water related projects mentioned in the
summary (cf. chapter 7). This can be done, i. e., in a semi-empirical approach by the London
dispersion formula [84]
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2.1.5a Plane-wave basis set expansion

For periodic boundary conditions the external potential vext(r) in which the electrons
move is periodic with:

vext(r + R) = vext(r) (1.37)

The periodicity is then given by

R = ∑
i

niai, with ni ∈ N, (1.38)

Ω = |a1 · a2 × a3| (1.39)

with the ai representing the lattice vectors of the primitive unit cell with the volume
Ω. Introducing the reciprocal latticevectors {G} by R · G = 2πn, n ∈ Z allows the
Fourier-representation of arbitrary lattice-periodic functions as:

f (r) =
1√
Ω

∑
G

eiG·r f (G), f (G) =
1√
Ω

∫
Ω

d3re−iG·r f (r) (1.40)

{G} exhibits the same translational symmetry in reciprocal space as {R} in real-
space. In analogy to the Wigner-Seitz cell in real-space there is also a unit cell of
highest symmetry in reciprocal space. This unit cell is the so-called Brillouin zone
(BZ). For a periodic system of this kind any wave-vector q may be written as:

q = k + G, k ∈ BZ (1.41)

The translational symmetry of vext(r) implies that the same symmetry applies to the
Hamiltonian of this system. According to Bloch’s theorem any eigenstate of such a
lattice-periodic operator has to satisfy the condition [149]:

φnk(r + R) = eik·Rφnk(r) (1.42)

The quantum number n denotes the bandindex, which counts the various eigenstates
at a given point k in the Brillouin zone. A naturally emerging type of basis set for this
kind of translationally invariant system are plane-waves

ϕkG(r) := 〈r|kG〉 =
1√
Ω

ei(k+G)·r (1.43)
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which satisfy the orthonomality- and completeness-relations

〈kG|kG〉 = δkk′δGG′ (1.44)

∑
k,G
|kG〉〈kG| = 1̂. (1.45)

As will be seen, this type of basis set is advantageous from both a physical and a
technical point of view, with the electronic eigenfunctions / Bloch-states spread out
over the entire system and a diagonal kinetic energy operator, respectively. In this
basis set any electronic eigenstate can be expanded according to:

|φnk〉 = ∑
G

cnk(G)|kG〉, cnk(G) = 〈kG|φnk〉 (1.46)

Using the partitioning of the 1̂-operator according to Eq. (1.45) the Schrödinger equa-
tion of the Kohn-Sham system assumes the following form:

∑
k′,G′

(
− h̄2

2me
∇+ vH[n](r) + vXC(r) + vext(r)

)
|k′G′〉〈k′G′|φnk〉

= ∑
k′G′

εnk|k′G′〉〈k′G′|φnk〉 (1.47)

All potentials in this equation are periodic with the lattice. With the help of Eq. (1.44),
(1.46) and projection onto 〈kG| the Kohn-Sham equation can then be transformed into
the following numerically very convenient matrix representation:

HG+k,G′+kcnk(G) = εnkcnk(G)

⇒ ∑
G′

(
h̄2

2me
(k + G)2δGG′ + vH(G−G′) + vXC(G−G′)

+ vext(G−G′)
) ′
′ cnk(G′) = εnkcnk(G)

with v(G−G′) = 〈kG|v|kG′〉

(1.48)

(1.49)

In this representation the kinetic energy becomes diagonal in reciprocal space. For
the numerical evaluation the kinetic energy and the potentials have to be Fourier-
transformed into reciprocal space. While the Hartree Term vH may be transformed
analytically using the Poisson equation, the other terms need to be transformed nu-
merically by fast Fourier transformation (FFT) according to Eq. (1.40). The density
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n(G) results from the expansion coefficients cnk(G) as:

n(G) =
2√
V

occupied

∑
n,k

∑
G′

c∗nk(G′)cnk(G′ + G) (1.50)

The expansion coefficients cnk(G) can be determined by diagonalizing the Hamilto-
nian HG+k,G′+k. In an actual numerical calculation the sum over G has to be trun-
cated:

h̄2

2m
|k + G|2max ≤ Ecut (1.51)

Thus a single parameter Ecut controls the size of the plane-wave basis set. All of these
plane-wave basis functions are orthogonal, ruling out any basis set superposition
errors. The number of plane-waves Npw for a given cutoff energy Ecut corresponds
approximately to:

Npw ≈
Ω

6π2

(
2me

h̄2

) 3
2

E
3
2
cut ≈ 2.27 · 10−3 Ecut[eV]

3
2 Ω[Å3] (1.52)

2.1.5b Supercell method

The approach described in the previous section is only applicable for systems which
are translationally invariant in all three spatial directions. This is naturally the case
for crystals but not for lower dimensional systems like surfaces or molecules. There-
fore an artificial periodicity is introduced by the so-called supercell approach, where
the system is periodically repeated in all three dimensions, even if it has no actual
translational symmetry in these directions. Hence, i. e., a surface will be modeled
by a three dimensional superstructure consisting of alternating slabs of bulk mate-
rial terminated by the desired surface and vacuum regions, respectively. The vacuum
region must then be chosen large enough to ensure there is no relevant interaction
between adjacent periodic images of the surfaces. Optionally one can also correct for
surface-induced dipole moments by applying a suitable sawtooth-potential. The slab
itself is either constructed in a symmetric way, where both sides are terminated by
the desired surface and the middle-layer is kept fixed at the bulk lattice constant (see
Fig. 1.1a). It can also be constructed asymmetrically by keeping one surface fixed at
the bulk lattice constant and saturating the dangling bonds with hydrogen to simu-
late continued bulk material (see Fig. 1.1b). Both methods are applied in the present
work, depending on the actual problem.
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Figure 1.1: Supercell methods for a) symmetric and b) asymmetric slabs. The representation is
schematic and dimensions are not true to scale.

An analagous method applies to molecular structures, where the supercell must again
contain sufficient vacuum to minimize the interaction between the molecule and its
neighbouring periodic images.

2.1.5c k-space integration

Calculating expectation values in many instances requires performing integrations
over the Brillouin zone. I. e. in a bulk crystal all occupied states n contribute to the
density n(r) and thus to the potential vext(r) at each point k ∈ BZ. For numerical
evaluation the number of k-points must be restricted and thus the integral over the
Brillouin zone is reduced to a sum over the k-points. Considering a lattice-periodic
function f (k) the goal is to approximately calculate the integral

f̄ =
1
Ω

∫
BZ

d3k f (k) (1.53)
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Therefore a way has to be devised to find a set of k-points that satisfies the require-
ments of a given accuracy at the least possible number of sampling points, while
accounting for the symmetry of f (k). A single point – the mean value point – at which
the function value of the integrand approximates the mean value rather well was first
identified by Baldereschi for the cubic lattice [86] and was later generalized for other
lattices as well [87]. Chadi and Cohen [88] derived a method to calculate larger sets
of special k-points, which was later also generalized for other types of crystal lattices
[89]. According to their method the mean value f̄ is calculated as a weighted sum
over f (k):

f̄ ≈
Nk

∑
k

ωk f (k), with ∑
k

ωk = 1 (1.54)

The error of this approximation may be arbitrarily reduced by constructing increas-
ingly larger sets of k-points. Today the most commonly used approach was suggested
by Monkhorst and Pack, which contrary to the earlier methods, does not depend on
the crystal lattice type [90]. The points of a Monkhorst-Pack (MP) mesh represent a
mesh of ∏i qi equidistant points, situated along the reciprocal basis vectors bi of the
unit cell. The mesh itself is centered at the Γ-point of the Brillouin zone.

kijk = uib1 + ujb2 + ukb3 (1.55)

with ui =
1

2qi
(2r− qi − 1), r = 1, 2, ..., qi (1.56)

In this case the weights ωk in Eq. (1.54) are constant, with ωk = 1/ ∏i qi. By using
symmetry properties one can reduce the summation to wave-vectors inside the irre-
ducible wedge of the Brillouin zone only. The k-point weights ωk have to be adjusted
accordingly then. This scheme offers the advantage of the k-points being very easy
to construct, while the accuracy can be arbitrarily increased by choosing sufficiently
large qi.

The Monkhorst-Pack scheme has proven very successful for semiconductors and in-
sulators, but on first glimpse seems to fail for metals because at T = 0 K the function
to be integrated becomes discontinuous at the Fermi energy. This problem can be re-
solved by introducing fractional occupation numbers into the evaluation of the charge
density:

n(r) = ∑
n,k

ωk f occ
nk |φnk|2 (1.57)
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The simplest approach is using the Fermi-Dirac distribution or Gaussian functions to
calculate the occupation numbers f occ

nk . Several other types of smearing functions have
also been suggested over the years, i. e. by Methfessel and Paxton [91] or Marzari
and Vanderbilt [92]. However, in the present work simple Gaussian smearing turned
out to be well suited in most cases.

2.1.6 The pseudopotential approach

The number of basis functions scales with O(E
3
2
cut) and an actual DFT calculation

with about O(E3
cut). Hence the basis set expansion should be truncated as low as

possible. The inter-atomic part of the wavefunction is usually well described by few
plane-waves because there the KS wavefunctions do not vary very much. To the con-
trary, near the nuclei the KS wavefunctions feature much stronger fluctuations and
oscillations which require a large number of plane-waves for the expansion series to
converge. While computer technology is evolving quickly, the cutoff energy required
for all-electron calculations still induces computational demands that renders large-
scale calculations prohibitive. However, most of the interesting physics and chemistry
take place in the overlap regions of the valence orbitals. Thus the core electrons con-
tribute little of significance to properties like, i. e. the material’s geometric structure,
phonon frequencies and transport properties. A sensible approach is therefore to
further reduce the electronic problem by the so-called frozen-core approximation.

2.1.6a Frozen-core approximation

In the frozen-core approximation the core electron wavefunctions are not anymore
determined self-consistently. Instead they are taken from an all-electron calculation
for the respective atomic species and will then be kept “frozen”. That way the Kohn-
Sham equations only have to be solved for the valence electrons, however, with a
modified effective potential vs(r, [nval]):[

− h̄2∇2

2m
+ vs(r, [nval])

]
φi(r) = εiφi(r) (1.58)

The effective potential vs(r, [nval]) only depends on the valence electron density nval(r),
while the core electron density ncore(r) remains unchanged:

vs(r, [nval]) = vcore(r) + vH(r, [nval]) + vXC(r, [nval]) (1.59)

vcore(r) = v(r) + vH(r, [ncore]) + vXC(r, [ncore + nval])− vXC(r, [nval]) (1.60)
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The effective core potential is comprised of the potential of the bare nuclei v(r), the
Hartree term for the core electrons vH(r, [ncore]) and the core’s exchange-correlation
potential. In a formally exact way this XC-term can only be written as the difference
between the XC-potentials with and without the core electron density, respectively.
Thus it needs to be approximated:

vXC[ncore + nval]− vXC[nval] ≈ ∑
j

vXC[nj,AE
core + nj,AE

val ]− vXC[nj,AE
val ] (1.61)

nj,AE
core and nj,AE

val represent the core and valence electron densities of the atom j, with
the summation ranging across all atoms contained in the system. They are obtained
by performing all-electron (AE) calculations for the free atom j.

2.1.6b Pseudopotential concept

In the frozen-core approximation only the valence electronic problem remains. How-
ever, the shape of the valence wavefunctions remains unchanged. Thus oscillations of
the valence wavefunctions near the nuclei may still affect the required cutoff energy
and convergence behaviour. Extending the frozen-core approximation it may be as-
sumed that not only the core electrons but also the shape of the valence wavefunctions is
irrelevant for the physical and chemical properties of interest. For this purpose the
effective core potential vcore(r) is modified in a way that it yields the desired valence
states [93]. Considering an atomic single-particle Schrödinger equation

H|φα
i 〉 = εα

i |φα
i 〉, with α = {val, core} (1.62)

with the core and valence states |φcore
i 〉 and |φval

i 〉, respectively, one can construct a
so-called pseudo valence state |ϕval

i 〉 by summing across core states:

|ϕval
i 〉 = |φval

i 〉+ ∑
j

aij|φcore
j 〉 (1.63)

These pseudo valence states may be constructed in a particular way, that they do not
exhibit oscillations near the core anymore. They satisfy a Schrödinger equation to the
same eigenvalue as |φval

i 〉, but with a different potential vPS:

(H + vPS)|ϕα
i 〉 = εα

i |ϕα
i 〉, with vPS = ∑

j
(εval

i − εcore
j )|φcore

j 〉〈φcore
j | (1.64)

The potential vPS is called a pseudopotential. Introducing a suitable vPS (which requires
solving the all-electron problem) allows a dramatic reduction of the required cutoff
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energy and number of electrons to be treated explicitly, without any significant loss
of accuracy. Due to certain conditions the vPS have to satisy, many schemes exist for
constructing suitable pseudopotentials.

2.1.6c Norm-conserving pseudopotentials (NC-PP)

Figure 1.2: Schematic illustration of all-
electron and pseudo wavefunctions and po-
tentials.

A first approach to construct pseudopotentials
usable in practical calulations was suggested
by Bachelet, Hamann and Schlüter [94, 95] and
was extended later by Troullier and Martins
[96]. First the exact core and valence wavefunc-
tions are obtained by solving the all-electron
problem for a single isolated atom. A radial
symmetric effective potential vs(r) = vs(r) is
assumed which allows to separate the radial
part of the all-electron Kohn-Sham equation.
Thus the exact KS core and valence wavefunc-
tions are known for reference. Subsequently
a core radius rcore is chosen within which the
all-electron wavefunction is to be replaced by a
pseudo wavefunction (see Fig. 1.2). Naturally,
rcore must be small enough to exclude any over-
laps for the materials to be described. It should
not be too small either, since a smaller rcore requires a larger basis set. Starting from
a desired analytical wavefunction within rcore the inverse radial Schrödinger equation
is solved for each angular momentum component l under the following constraints:

• Normconservation: 〈ϕi|ϕi〉 = 1

• Transferability: Equal atomic pseudo and all-electron eigenvalues εPP
l = εAE

l ,
with equal wavefunctions for r > rcore

• Softness: cusp- and node-free pseudo wavefunction for r < rcore

• Smoothness: pseudo and all-electron wavefunction are equal up to their fourth
derivative at r = rcore

2.1.6d Ultrasoft pseudopotentials (US-PP)

Especially first-row elements like oxygen or carbon are ill-suited for a Troullier-Martin
type pseudopotential description. The cutoff radius rcore needs to be very small, since
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their 2p all-electron wavefunctions are strongly localized near the core. Hence the
resulting pseudopotential is not very “soft” anymore and still requires a high cutoff
energy with respect to the all-electron description. Based on a generalization of the
Troullier-Martins scheme Vanderbilt suggested the concept of ultrasoft pseudopoten-
tials with the following conditions [98]:

• All-electron and pseudo wavefunction do no longer need to exhibit identical
scattering properties at eigenvalues εAE

l , but several arbitrarily chosen energies
ε̃il. These ε̃il can be conveniently placed at the energetic range of the physical
characteristics of interest

• Remove restriction to normconserving pseudopotentials

• Relax smoothness condition from Troullier-Martin scheme

While the application of the second condition turns the Kohn-Sham equation into a
generalized eigenvalue problem, the additional computational cost is usually com-
pensated by the achieved basis set reduction. Within the ultrasoft approach the KS
equation can be expressed in terms of the overlap operator S between the pseudo
wavefunctions:

S = ∞ + ∑
i,j
Qij|βi〉〈β j| (1.65)

Qij = 〈φi|φj〉 − 〈ϕi|ϕj〉 (1.66)

|βi〉 = ∑
j
B−1

ij |γj〉 (1.67)

Bij = 〈ϕi|γj〉 (1.68)

|γj〉 = (ε̃j − Te − vloc)|ϕi〉 (1.69)

with 〈ϕi|S|ϕj〉 = δij (1.70)

vloc represents the local part of the pseudopotential, with vloc(r) = vAE(r) for r > rloc
core.

The KS equation then can be written in terms of S as:[
−1

2
∇2 + vPS + vH[nval] + vXC[nval] + ∑

i,j
Dij|βi〉〈β j|

]
|φi〉 = εiS|φi〉 (1.71)

Dij =
∫

d3r(vH[nval] + vXC[nval])Qij(r) (1.72)

Unfortunately the advantages described above are not without cost: Optical and spec-
troscopic properties do not compare well to the experiment, since the all-electron
wavefunction is not retained.
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2.1.6e Projector-augmented wave pseudopotentials (PAW)

The overlap operator S is the central quantity of the ultrasoft pseudopotential ap-
proach. Realizing that S can be expressed in terms of a transformation operator T ,
with S = T †T , represents the main step towards the projector-augmented wave ap-
proach by Blöchl [99]. The PAW approach is based on T instead of S and leads to an
exact all-electron description within the frozen-core approximation. At the same time
the computational cost is comparable to that of the ultrasoft scheme. By using radial
projector functions one can transform between the all-electron wavefunctions defined
on a radial grid and pseudo wavefunctions in a plane-wave basis set expansion. This
way the original all-electron wavefunction is retained within the calculation without
inducing excessive computational demands due to oscillations near the core. Any
observable is hence evaluated as usual on the plane-wave grid. Near the core it is ad-
ditionally evaluated on the radial grid using the all-electron wavefunction. Especially
optical and spectroscopic properties profit significantly from this approach.

2.1.7 Calculation of the forces: Hellmann-Feynman theorem

Within the DFT framework presented so far it is possible to calculate the electronic
structure of atoms, molecules and solids. It provides access to both the systems
ground-state energy and Kohn-Sham type wavefunction. However, a description of
the forces and thus a dynamic description of the atomic positions and equilibrium ge-
ometry is still required. In analogy to the expression F(r) = −∇rV(r) from classical
mechanics, the quantum mechanical forces can be expressed as:

F = −∇r〈E〉, with 〈E〉 = min〈φ|H|φ〉, 〈φ|φ〉 = 1 (1.73)

The Hellmann-Feynman theorem allows to calculate the forces directly from the ground-
state wave functions [101]. It states that for an exact eigenstate φ the following identity
is valid for any degree of freedom λ, in this case the atomic coordinates:

∂E
∂λ

= 〈∂φ

∂λ
| H|φ〉︸ ︷︷ ︸

=E|φ〉

+〈φ|∂H
∂λ
|φ〉+ 〈φ|H︸ ︷︷ ︸

E〈φ|

|∂φ

∂λ
〉 (1.74)

= 〈φ|∂H
∂λ
|φ〉+ E

∂

∂λ
〈φ|φ〉 = 〈φ|∂H

∂λ
|φ〉 (1.75)

However, due to the variational nature of its calculation φ is expanded in a finite
plane-wave basis set and is thus not an exact eigenstate. Hence the step from Eq.
(1.74) to Eq. (1.75) is no longer valid, since the first and last term of Eq. (1.74) have
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Figure 1.3: DFT calculational scheme for deriving ground-state characteristics for a given system.

to be considered explicitly. They only vanish if the basis set could be constructed in
such a way that φ does not depend on λ, which is known as the Hurley condition
[102, 103]. Fortunately the plane-wave basis set already satisfies this condition so that
the forces may be obtained directly from the ground-state wavefunctions by means of
the Hellmann-Feynman theorem:

F(r) = −〈φ|∂H
∂r
|φ〉 (1.76)

A brief overview of the DFT calculational scheme is shown in Fig. 1.3. Starting with
an initial user-supplied atomic geometry the external potential vext is constructed,
possibly with the help of pseudopotentials. Subsequently the Kohn-Sham equations
are solved in the electronic self-consistent loop. After reaching electronic convergence
the forces can be calculated using the Hellmann-Feynman theorem. Then the atomic
positions are updated according to the Hellmann-Feynman forces and the outer ionic
loop is closed by recalculating the external potential. How electron transport and
optical properties are obtained from the resulting structurally relaxed ground-state is
the topic of the next sections.
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2.2 Transport theory

This section begins with an introduction to the underlying concepts of transport
physics and then moves on to the derivation of the Landauer formalism, that al-
lows to evaluate a given systems conductance from a microscopic point of view in
terms of a transmission probability. Subsequently the further treatment elaborates on
the techniques required to implement the Landauer scheme on top of first principles
electronic structure calculations.

2.2.1 Preliminary concepts

Considering semiconductors, electronic conduction may occur either through elec-
trons in the conduction band or holes in the valence band. However, the present
work is centered on electron transport, which is also the case in most experimental
studies concerning micro- and mesoscopic conduction phenomena. Hence the fol-
lowing treatment is based on that very assumption. The dynamics of electrons in the
conduction band can be modeled according to the effective mass equation [106][

Ec(r) +
(ih̄∇+ eA(r))2

2m
+ V(r)

]
ψ(r) = Eψ(r) (2.77)

where V(r) denotes the potential energy, A(r) represents the magnetic vector poten-
tial, m the effective mass and Ec(r) the conduction band edge energy. The wave-
functions satisfying this equation have the form of plane-waves due to the implicit
incorporation of the lattice potential by the inclusion of its effect into the effective
mass:

ψ(r) = eik·r (2.78)

While this description is a very simple one it allows to introduce several important
concepts that are required for the derivation of the Landauer formalism in section
2.2.2. Hence one should be aware of the exemplary character here. However, the
Landauer formalism itself and the later treatment in terms of Green’s and Wannier
functions is no longer based on this simple model, of course.

2.2.1a Subbands or transverse modes

Consider a conductor where electron transport is restricted in at least one dimen-
sion, i. e., a 2-dimensional electron gas (2-DEG)4 or a nanowire where transport is

4 A well-known experimental realization takes place at the interface layers in GaAs-AlGaAs het-
erostructures [111, 112].
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unrestricted only along a single axis. Specifically for a two dimensional rectangular
conductor that is uniform along x-direction and has a confining potential V(y), such
as a nanowire array on a surface, the effective mass equation reads [106]:

[
Es +

(ih̄∇+ eA)2

2m
+ V(y)

]
ψ(x, y) = Eψ(x, y) (2.79)

Assuming a constant magnetic field Bz along the normal direction of the plane, with

A = −x̂Bzy ⇒ Ax = −Bzy, Ay = 0 (2.80)

Eq. (2.79) may be rewritten as:

[
Es +

(px + eBzy)2

2m
+

p2
y

2m
+ V(y)

]
ψ(x, y) = Eψ(x, y), pj = −ih̄

∂

∂j
(2.81)

The wavefunctions satisfying Eq. (2.81) read in term of plane-waves:

ψ(x, y) =
1√
L

eikxχ(y) (2.82)

L denotes the length of the conductor over which the wavefunctions are to be normal-
ized and the transverse function χ(y) in turn has to satisfy the equation:

[
Es +

(h̄k + eBzy)2

2m
+

p2
y

2m
+ V(y)

]
χ(y) = Eχ(y) (2.83)

Assuming a parabolic potential V(y) = 1/2 ·mω2
0y2 Eq. (2.83) may be rewritten as:

Es +
p2

y

2m
+

1
2

m
ω2

0ω2
c

ω2
c0

y2
k +

1
2

mω2
c0

[
y +

ω2
c

w2
c0

yk

]2
 χ(y) = Eχ(y)

ω2
c0 = ω2

c + ω2
0, ωc =

|e|Bz

m
, yk =

h̄k
eBz

(2.84)

(2.85)

Eq. (2.84) basically represents a one-dimensional Schrödinger equation. Its eigenval-
ues and eigenfunctions are given by
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E(n, k) = Es +
(

n +
1
2

)
h̄ωc0 +

h̄2k2

2m
ω2

0

ω2
c0

χn,k(y) = un

[
q +

ω2
c

ω2
c0

qk

]

q = y ·
√

mωc0

h̄
, qk = yk ·

√
mωc0

h̄

un(q) = Hn(q)e−
q2
2

(2.86)

(2.87)

(2.88)

(2.89)

with Hn(q) being the n-th Hermite polynomial, ω0 the confinement factor and ωc

the cyclotron frequency. States with different n are said to belong to different sub-
bands, with different wavefunctions along the y-axis. These subbands are also known
as transverse modes in analogy to the modes of an electromagnetic waveguide. The
tighter the confinement, the larger ω0 and thus the mode spacing h̄ωc0.

Naturally, the assumption of a two-dimensional conductor also involves a confine-
ment along the z-direction which gives rise to the analogous type of subbands along
the conductors normal direction. However, this confinement is expected to be very
strong, at least in case of surface-supported nanowires. Hence it is assumed that only
a single z-subband is occupied. For this reason Ec was replaced by Es = Ec + ε1 in Eq.
(2.79), with ε1 denoting the eigenenergy of the first z-subband.

On first glance the magnetic field simply seems to increase the effective mass by
m → m · (1 + ω2

c /ω2
0) and thus flattens the dispersion relation. However, by looking

at the spatial localization of the wavefunctions it becomes apparent that states carry-
ing current along +x shift to one side of the conductor and states carrying current
along −x to the other side. While it also seems reasonable from a classical point of
view (Hall effect), it does reduce the spatial overlap between forward and backward
propagating states and can thus suppress backscattering due to imperfections. For
zero magnetic field the purely electronic subbands with effective mass m are retained.

This treatment now allows for two important conclusions:

• In case the conductance were to be measured purely through this type of con-
ductor, in a contactless way without any boundary layers involved in the entire
experiment,5 the conductance would be exactly equal to the number of these

5 In fact this is possible in principle by IR spectroscopy. The group of Prof. N. Esser at the TU Berlin
is currently working on such a measurement.
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modes [114]. This will be further elaborated in the section regarding the Lan-
dauer formalism. For the present work the extremely simple possibility of calcu-
lating the conductance by counting the number of modes allows to conveniently
check the correctness of the yet to be described Green’s function approach for
simple model cases. While the approach is formally exact this is an important
test due to a multitude of numerical conditions that have to be met.

• The above Schrödinger equation can also be solved numerically with the poten-
tial V(r) obtained from DFT as the total effective single-particle potential. This
approach will be used in the present work to corroborate some of the consider-
ations regarding the transport properties of nanowires containing impurities.

2.2.1b Degenerate and non-degenerate conductors

At equilibrium conditions the conductor’s states are filled up according to the Fermi
distribution [106]

f0(E) = (1 + e
E−EF
kBT )−1 (2.90)

with EF representing the Fermi energy. There are two limits in which the Fermi
distribution inside the band (E− Es) may be simplified [106]:

• High temperature or non-degenerate limit (e
Es−EF

kBT >> 1)

f0(E) ≈ e−
E−EF
kBT (2.91)

• Low temperature or degenerate limit (e
Es−EF

kBT << 1)

f0(E) ≈ ϑ(EF − E) (2.92)

In the present work mainly the low temperature (LT) limit is involved. Then the
equilibrium electron density ns per unit area can be expressed as:

ns =
∫

dE N(E) · f0(E) ≈ m
πh̄2 (EF − Es) (2.93)

In the LT limit the conductance is determined entirely by Fermi wavevector electrons

EF − Es =
h̄2k2

F
2m

⇒ kF =
1
h̄

√
2m(EF − Es) =

√
2πns (2.94)

with the corresponding Fermi velocity v f = h̄kFm−1 = h̄m−1√2πns.
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2.2.1c Characteristic length scales

There are three characteristic length scales that determine whether a conductor ex-
hibits classical ohmic behaviour or has to be described using the concepts introduced
in the present section. Non-ohmic behaviour emerges if any of these length scales fall
in the order of magnitude of the conductor’s dimensions [106].

De Broglie wavelength (λ): As a consequence of Eq. (2.94) the Fermi wavenumber
increases with

√
ns. Thus the inverse applies to the corresponding wavelength:

λF =
2π

kF
=
√

2π

ns
(2.95)

Since in the low temperature limit the current is mostly carried by electrons close to
the Fermi energy, this is usually the relevant length scale. I. e. for ns = 5 · 1011cm−2

the Fermi wavelength is λF = 35 nm.

Mean free path (Lm): A single electron moves within an ideal crystal as if in vacuum
but with a different mass, the effective mass m. Any deviations from the ideal state,
caused, i. e., by impurities, phonons or other electrons, lead to scattering processes
that change the electrons’ momentum. The momentum relaxation time τm is thus
related to the collision time τc by

τ−1
m ∝ τ−1

c · αm (2.96)

with αm denoting the “effectiveness” of an individual collision in changing an elec-
tron’s momentum. The mean free path Lm that an electron travels until its initial
momentum is changed can hence be defined as:

Lm = vF · τm (2.97)

Assuming, i. e., ns = 5 · 1011 cm−2 and τm = 100 ps one obtains a mean free path of
Lm = 30 µm.

Phase-relaxation length (Lϕ): The concept of phase may be clarified by considering
an electron split-beam interference experiment inside a magnetic field [113]. By ad-
justing the magnetic field’s strength one can change the electron’s relative phase and
thus tune the interference through alternate constructive and destructive cycles. In
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Figure 2.4: a) In equilibrium at T → 0 K all states within the Fermi circle of radius kF are occupied.
Application of an electric field shifts the Fermi circle along eE. b) States carrying current along +x and
−x are filled up to different quasi-Fermi levels F+ and F−, respectively. Net current flow only occurs
in the interval [F−, F+].

analogy to τm a similar relation applies to the phase relaxation time τϕ

τ−1
ϕ ∝ τ−1

c · αϕ (2.98)

where αϕ denotes the “effectiveness” of an individual collision in changing an elec-
tron’s phase. Phase changing scattering processes include dynamic scattering at im-
purities with internal degrees of freedom, electron-electron and electron-phonon in-
teraction.6 The phase relaxation time may be considerably larger than the momentum
relaxation time, i. e. in the split-beam experiment the two paths may be many times
Lm, so that after τϕ the velocity vector is completely randomized. It is therefore best
to express Lϕ in terms of the diffusion constant D:

Lϕ =
√

Dτϕ, with D =
1
2

v2
Fτm (2.99)

2.2.1d Conduction as dynamics of Fermi-energy electrons

The definition of the current density J = ensvd as the product of the electron density
ns and drift velocity vd conveys the impression, that all the conduction electrons drift
along and thus contribute to the current. However, in fact for a degenerate conductor

6 Static scattering processes, such as scattering at rigid impurities without internal degrees of free-
dom, do not contribute to phase relaxation. Considering, i. e., the above split-beam experiment
a systematic phase-relationship between the two paths would still exist. This is also in agreement
with a slightly more philosophical argument by Feynman [108]: The interference and thus the
phase-relationship is destroyed once the observer is able to tell the actual path an individual elec-
tron took. The observer would be able to do so if by interacting the electron changed the state of a
dynamic scatterer.
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at low temperatures (kBT � EF − Es) the current is non-zero only within a few
kBT around the Fermi energy. Consider a distribution function f (k) that returns the
probability that a state at k is occupied. In equilibrium with no electric field the
distribution yields [106]

f (k) = 1 ∀ ‖k‖ < kF (2.100)

for all states inside a circle with radius kF. Application of an electric field causes the
entire distribution to shift according to:

[ f (k)]E 6=0 = [ f (k− kd)]E=0 ,
h̄kd
m

= vd =
eEτm

m
→ kd =

eEτm

h̄
(2.101)

Deep inside the Fermi sea with ‖k‖ � ‖kF‖ nothing happens, if ‖kd‖ � ‖kF‖. Only
near +kF states that were empty become filled and around −kF states that were filled
become empty (see Fig. 2.4a). Thus from collective point of view the electric field
only moves some electrons from −kF to +kF. Rewriting the current density as

J = e
[

ns
‖vd‖
‖vF‖

]
vF (2.102)

implies the current is carried by a small fraction of the total electrons only that moves
with the Fermi velocity. An approximate way to visualize the shift of the distribution
f (k) is the introduction of quasi-Fermi levels F+ and F− for electrons moving parallel
and antiparallel to eE, respectively (see Fig. 2.4b). Net current is carried only by
electrons in states in the energy range [F−, F+]. F+ and F− can be estimated by

F+ ∼ h̄2(kF + kd)2

2m
, F− ∼ h̄2(kF − kd)2

2m
(2.103)

with kd given by Eq. (2.101). For ‖kF‖ � ‖kd‖ it follows

F+ − F− ∼ 2h̄ kF · kd
m

= 2eτm E · vF = 2e E · Lm, (2.104)

which implies that the separation of the quasi-Fermi levels is proportional to the
energy an electron gains in the applied electric field within the mean free path.

2.2.2 Landauer conductance formalism

Consider a piece of conducting material, that is connected across two large contact
pads. If the dimensions of this conductor are large compared to the characteristic
lengths described in subsection 2.2.1c its conductance G is given by

G = σ
W
L

(2.105)
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with W and L representing the width and length of the conductor, respectively. The
specific conductivity σ is a material parameter that is independent of the conductor’s
dimensions. From the ohmic point of view the conductance would grow indefinitely
with G → ∞ for L → 0. However, experimentally the measured conductance ap-
proaches a limit G → GC when L � Lm becomes significantly shorter than the mean
free path. This resistance G−1

C arises at the interfaces between conductor and contact
pads. Within the contacts the current is carried by infinitely many transverse modes
but inside the conductor only by a handful of modes. The hence required current
redistribution gives rise to the observed contact resistance G−1

C [106].

2.2.2a Calculation of the contact resistance

GC may be obtained by calculating the current through a ballistic conductor (that is,
a conductor without scattering) for a given bias µ1 − µ2. The contacts in this setup
are assumed to be reflectionless, meaning that the electrons can exit from the narrow
conductor into the wide contacts with a negligible probability of reflection. This is
a reasonable assumption as long as the energy is not too close to the bottom of the
band [117]. However, the other way around insertion from contact into conductor
may exhibit quite large reflections.

This assumption represents a considerable simplification [106]: k+ and k− states are
occupied only by electrons originating in the left and right contacts, respectively. This
is because electrons originating in the left contact populate the k+ states and empty
reflectionless into the right contact, while electrons originating from the right contact
populate the k− states and empty reflectionless into the left contact. As a consequence
there is no causal relationship between the right contact and the k+ states nor between the left
contact and the k− states. Hence the quasi-Fermi level F+ for the k+ states is always
equal to µ1 and F− for the k− states is always equal to µ2, even when a bias voltage
is applied. Thus at T → 0K the current is exactly equal to that carried by all k+ states
within [µ1, µ2].

The states in the conductor belong to different transverse modes, each exhibiting a
dispersion relation E(N, k) (cf. Fig. 2.4b) with a cutoff energy εN = E(N, k = 0)
below which it cannot propagate. The number of transverse modes at an energy E is
given by:

M(E) = ∑
N

ϑ(E− εN), ϑ(E) =

{
1, E ≥ 0
0, E < 0

(2.106)
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The current carried by each transverse mode N can be evaluated separately and then
summed up. A single transverse mode in a homogeneous electron gas with n elec-
trons per unit length moving with v, whose k+ states are occupied according to a
distribution f +(E), carries a current equal to env. Since the density n associated with
a single k state in a conductor of length L amounts to L−1, the current I+ carried by
the k+ states is:

I+ = e
1
L ∑

k
v f +(E) = e

1
L ∑

k

1
h̄

∂E
∂k

f +(E) (2.107)

By assuming periodic boundary conditions and converting the sum to an integral
while accounting for spin according to

∑
k
→ 2 · L

2π

∫
k

(2.108)

the expression for the current I+ assumes the form

I+ =
2e
h

∫ ∞

ε
dE f +(E) (2.109)

Extending this result to multi-mode conductors yields:

I+ =
2e
h

∫ +∞

−∞
dE f +(E)M(E) (2.110)

This result is independent of the actual dispersion relation E(N, k). Thus the cur-
rent carried per mode per unit energy by an occupied state amounts to −2e/h ≈
80nA/meV. Assuming the number of modes M(E) to be constant for µ1 < E < µ2

yields:

I =
2e2

h
M

µ1 − µ2

e
⇒ GC =

2e2

h
M, G−1

C ≈ 1
M
· 12.9kΩ (2.111)

Thus the contact resistance decreases inversely with the number of modes. For a
single-moded ballistic conductor placed between to reflectionless contacts the contact
resistance amounts to ≈ 12.9 kΩ.

2.2.2b The Landauer formula

In essence in the microscopic regime the Ohmic scaling law G = σW/L is no longer
valid. Instead there are two corrections to Ohm’s law:

• A contact resistance G−1
C that is independent of the conductor’s length L

• A step-like progression of the conductance with the width W, depending on the
number of transverse modes M(E)
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Both features are incorporated in the Landauer conductance formula [106]:

G =
2e2

h
M(E)T(E) (2.112)

It approaches the calculation of the conductance from a probabilistic point of view.
T(E) denotes the average probability that an electron of energy E injected at one end
of the conductor will transmit to the other end. If T(E) = 1 the correct expression for
a ballistic conductor including contact resistance is recovered.

Consider the setup illustrated in Fig. 2.5a). A conductor is connected by two leads
to two large contact pads. The leads are assumed to be ballistic conductors, each
with M(E) transverse modes. T(E) denotes the average probability that an electron
injected into lead 1 (L1) will eject into lead 2 (L2). The contacts are again assumed to
be reflectionless. As a consequence kx+ states in L1 are occupied only by electrons
originating from the left contact (C1) with the potential µ1. In the same way kx− states
in L2 are occupied only by electrons originating from the right contact (C2) with the
potential µ2. For T → 0K the electron influx from L1 is given by:

I+
1 =

2e
h

M(E)[µ1 − µ2] (2.113)

The outflux I+
2 from L2 is T(E) · I+

1 with the rest of the flux I−1 reflected back to C1:

I+
2 =

2e
h

M(E)T(E)[µ1 − µ2], I−1 =
2e
h

M(E)(1− T(E))[µ1 − µ2] (2.114)

Thus the net current flow I amounts to:

I = I+
1 − I−1 = I+

2 =
2e
h

M(E)T(E)[µ1 − µ2] (2.115)

With the conductance given by

G =
I

−µ1−µ2
e

=
2e2

h
M(E)T(E) (2.116)

the expression for the Landauer conductance (2.112) is obtained. However, so far only
the conductance between L1 and L2 was evaluated instead of between C1 and C2.
Fortunately, the assumption of reflectionless contacts determines that calculating the
conductance between C1 and C2 yields exactly the same result [106].

In any conductor the quasi-Fermi levels F+ and F− must be at least slightly different
for a net current to flow. However, a contact has ideally an almost infinite number of
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Figure 2.5: a) Conductor setup for the derivation of the Landauer formula. b) Dispersion relation
along kx with forward and backward traveling currents indicated, respectively.

modes with an infinitesimal amount of current per mode. Thus F+ may be assumed
to be almost equal to F−. Naturally, the same does not apply to the leads because
they have very few modes and hence cannot be in local equilibrium with the potential
µ. For this reason the common argument is that the conductance would have to be
evaluated between C1 and C2. Fortunately, the derivation of the Landauer conduc-
tance does only depend on the energy distribution of the incoming electrons at the
lead. The energy distribution of any outgoing electrons does not enter the treatment.
Since the contacts are reflectionless an electron originating from C2 can never occupy
a kx+ state, because it originally occupies a kx− state and ejects reflectionless into L1.
The same applies the other way around. Hence due to the reflectionless contacts the
incoming states in each lead are always in equilibrium with the corresponding contact
and thus no error is made by evaluating the conductance between L1 and L2.

2.2.2c Linear response for non-zero temperatures

The preceding derivation of the Landauer formula applies only for zero tempera-
ture, however. This implies that the current is only carried by a single energy chan-
nel around the Fermi energy. In general for non-zero temperature transport occurs
through many energy channels in the range

µ1 + n · kBT > E > µ2 − n · kBT (2.117)

while each channel may exhibit a different transmission coefficient T̄(E) = M(E) ·
T(E). To derive an expression for the current it is now necessary to include electron
injection from both contacts. The electron influx per unit energy from L1 and L2 is
given by

i+1 (E) =
2e
h

M1(E) f1(E) (2.118)

i−2 (E) =
2e
h

M2(E) f2(E) (2.119)
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Figure 2.6: Energy distribution of the incident electrons at non-zero temperature.

where f1,2(E) denotes the energy distribution of the electrons. The electron outflux
per unit energy from L1 and L2 is given by

i−1 (E) = (1− T1(E))i+1 (E) + T2(E)i−2 (E) (2.120)

i+2 (E) = T1(E)i+1 (E) + (1− T2(E))i−2 (E) (2.121)

where T1,2 denotes the transmission probabilities from L1 to L2 and vice versa, respec-
tively (see Fig. 2.6). Hence the net current i(E) can be written as:

i(E) = i+1 − i−1 = i+2 − i−2 (2.122)

= T1i+1 − T2i−2 (2.123)

=
2e
h

[M1(E)T1(E) f1(E)− M2(E)T2(E) f2(E)] (2.124)

=
2e
h

[T̄1(E) f1(E)− T̄2(E) f2(E)] (2.125)

Under the assumption that no inelastic scattering from one energy to another occurs
T̄1(E) = T̄2(E). Then the total current amounts to:

I =
∫

dE i(E), i(E) =
2e
h

T̄(E)[ f1(E)− f2(E)] (2.126)

At µ1 = µ2 ⇒ f1(E) = f2(E) the current is zero. For small deviations from this
equilibrium Eq. (2.126) implies:

δI =
2e
h

∫
dE

(
[T̄(E)]eqδ[ f1 − f2] + [ f1 − f2]eqδ[T̄(E)]

)
(2.127)

The second term is zero and the first one may be expanded into a Taylor series acord-
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ing to

δ[ f1 − f2] ≈ [µ1 − µ2]
(

∂ f
∂µ

)
eq

=
(

∂ f0

∂E

)
[µ1 − µ2] (2.128)

with f0 representing the Fermi distribution:

f0(E) =

[
1

e
E−µ
kBT + 1

]
µ=EF

(2.129)

Thus the non-zero temperature conductance in linear response amounts to:

G =
δI

µ1−µ2
e

=
2e2

h

∫
dE T̄(E)

(
−∂ f0

∂E

)
(2.130)

In the limit of zero temperature Eq. (2.130) is reduced to the original Landauer con-
ductance expression (2.112).

2.2.3 Landauer conductance from Green’s functions

As demonstrated in the previous section the current can be expressed in terms of
the transmission function. The transmission function itself may be obtained from the
conductor’s scattering matrix S . This S-matrix allows to characterize a coherent con-
ductor by relating the outgoing wave amplitudes bi to the incoming wave amplitudes
ai at the different leads according to b = Sa. The total number of modes

MT(E) = ∑
i

Mi(E) (2.131)

is given by the sum over the number of propagating modes Mp(E) at the lead i. Then
the S-matrix has the dimension MT × MT. Once the S-matrix is known the trans-
mission probability from mode n to m across the conductor is given by the squared
magnitude of the corresponding S-matrix element:

Tnm = |snm|2 (2.132)

The total transmission function T̄12(E) from lead 1 to lead 2 is obtained by summing
over all modes n in lead 1 and all modes m in lead 2:

T̄12 = ∑
n

∑
m

Tnm (2.133)

It is important to be noted that the current associated with a scattered wave is pro-
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portional to the square of the wavefunction multiplied by the velocity. So while it
is customary to define the S-matrix in terms of the current amplitude one can also
define a matrix S ′ in terms of the wave amplitudes:

s′nm = snm

√
vn

vm
(2.134)

However, in practical calculations computing the S-matrix directly is usually not the
most convenient approach. A more powerful concept is the Green’s function formal-
ism, that describes the response at any point inside or outside the conductor due to
the excitation at any other point. The S-matrix and thus the transmission function
can then be obtained in a simple manner from the Green’s function of the systems by
the so-called Fisher-Lee relation. This is a more sustainable concept because by means
of Green’s functions one can also account for electron-electron or electron-phonon
interactions, which S-matrices alone cannot perform.

2.2.3a Green’s function formalism

Whenever a response r is related to an excitation e by a differential operator D, with

Dr = s (2.135)

a Green’s function G can be defined and the response expressed according to [105]:

r = D−1s = Gs, G ≡ D−1 (2.136)

For a system described by the Hamiltonian H the problem can also be expressed as

[E−H]ψ = S (2.137)

with S representing an excitation term due to the wave incident from one of the leads.
Thus the Green’s function is given by

G = [E−H]−1 (2.138)

with the subband energy Es incorporated into the potential in the Hamiltonian:

H =
(ih̄∇+ eA)2

2m
+ V(r) (2.139)

Retarded and advanced Green’s function: As the inverse of a differential operator
the Green’s function is only uniquely specified if the boundary conditions are set.
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Considering a simple example of a one-dimensional wire with a constant potential V0

and zero magnetic field G can be written as [106]:

G =

[
E−V0 +

h̄2

2m
∂2

∂x2

]
(2.140)

By means of the Green’s function the problem can be expressed in an analogous way
to the Schrödinger equation (2.142)[

E−V0 +
h̄2

2m
∂2

∂x2

]
G(x, x′) = δ(x− x′) (2.141)[

E−V0 +
h̄2

2m
∂2

∂x2

]
ψ(x) = 0 (2.142)

with the exception of the δ(x− x′) term. Hence the Green’s function G(x, x′) can be
visualized as the wavefunction at x resulting from a unit excitation at x′. The solution
of Eq. (2.141) assumes the form

G(x, x′) = A+e+ik(x−x′), x > x′ (2.143)

G(x, x′) = A−e−ik(x−x′), x < x′ (2.144)

k =
√

2m(E−V0)
h̄

(2.145)

with the amplitudes A+ and A−. In order to satisfy Eq. (2.141) at x = x′ G must be
continous, while its derivative must be discontinous by 2m/h̄:

[G(x, x′)]x=x′+ = [G(x, x′)]x=x′− (2.146)[
∂G(x, x′)

∂x

]
x=x′+

−
[

∂G(x, x′)
∂x

]
x=x′−

=
2m
h̄2 (2.147)

As a consequence the amplitudes are given by:

A+ = A− = − i
h̄v

, v =
h̄k
m

(2.148)

However, it is important to note that there are two possible solutions that satisfy Eq.
(2.141):

Gr(x, x′) = − i
h̄v

e+ik|x−x′| (2.149)

Ga(x, x′) = +
i

h̄v
e−ik|x−x′| (2.150)
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These solutions are called the retarded Green’s function Gr and the advanced Green’s
function Ga, which correspond to different boundary conditions: Gr describes out-
going waves originating at x′, while Ga represents incoming waves disappearing at
x′. Usually these boundary conditions are incorporated into the equation itself by
introducing an infinitesimal imaginary part iη into the energy:

Gr = [E−H+ iη]−1 , η → 0+ (2.151)

Ga = [E−H− iη]−1 , η → 0+ (2.152)

In case of Gr the term iη introduces a small positive imaginary component to the
wavenumber k, causing the advanced function to grow indefinitely. Since a proper
solution must be bounded the retarded function is the only acceptable solution. In
analogy the only physically acceptable solution for Ga is the advanced function.

Extension to the multi-moded case: The Green’s function G(x, y; x′, y′) represents
the wavefunction at (x, y) due to an excitation at x = x′, y = y′. It can be written in
the form [106]

Gr(x, y; x′, y′) = ∑
m

A±mχm(y)eikm|x−x′| (2.153)

with the transverse mode wavefunctions χm(y) satisfying the equation[
− h̄2

2m
∂2

∂y2 + V(y)

]
χm(y) = εm,0χm(y) (2.154)

Since the χn(y) satisfy the same equation with different eigenvalues they are orthog-
onal:

∫
dy χm(y)χn(y) = δmn (2.155)

In analogy to the previous procedure the amplitudes are given by

A+
m = A−m = − i

h̄vm
χm(y′) (2.156)

and thus the Green’s function may be written as:

Gr(x, y; x′, y′) = ∑
m
− i

h̄vm
χm(y)χm(y′)eikm|x−x′| (2.157)

km =
√

2m(E− εm,0)
h̄

, vm =
h̄km

m
(2.158)
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2.2.3b Fisher-Lee relation

The knowledge of the Green’s function allows to calculate the S-matrix elements
in a straightforward manner by means of the Fisher-Lee relation [118]. Consider a
conductor connected to a set of leads, with the interface between lead 1 and lead 2,
and with the conductor defined by x1,2 = 0, respectively. Gr

12 denotes the Green’s
function between points located on the planes x1 = 0 and x2 = 0 [106]:

Gr
12(y1, y2) ≡ Gr(x1 = 0, y1; x2 = 0, y2) (2.159)

The unit excitation at x1 = 0 gives rise to a wave of amplitude A−1 from and A+
1 toward

the conductor, with the latter being scattered by the conductor. For the moment
neglecting the transverse dimension of the leads Gr

12 can thus be written as:

Gr
12 = δ12A−1 + s′12A+

1 (2.160)

With the help of Eq. (2.134) and (2.148)

A+
1 = A−1 = − i

h̄vp
, s′12 = s12

√
v1

v2
(2.161)

the S-matrix elements are obtained from the Green’s function Gr
12 according to:

s12 = −δ12 − ih̄
√

v1v2Gr
12 (2.162)

Extension to multi-moded leads: Instead of Eq. (2.160) the Green’s function Gr
12 can

be expressed as:

Gr
12(y1, y2) = ∑

m
∑
n

[δnm A−m + s′nm A+
m ]χn(y2) (2.163)

From Eq. (2.134) and (2.156) follow:

Gr
12(y1, y2) = ∑

m
∑
n
− i

h̄
√

vnvm
χn(y2)[δ12 + s12]χm(y1) (2.164)

Multiplying Eq. (2.164) by χm(y1)χm(y2) and subsequent integrating over y1, y2 while
using the orthogonality relation Eq. (2.155) yields:

smn = −δmn + ih̄
√

vmvn

∫ ∫
dy2dy1 χn(y2)[Gr

12(y1, y2)]χm(y1) (2.165)
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2.2.3c Tight-binding approach

Calculating the Green’s function of an arbitrarily shaped conductor requires solving
the differential equation for the Green’s function for arbitrary V(r) and A(r):

[E−H(r) + iη]Gr(r, r′) = δ(r− r′) (2.166)

H(r) =
(ih̄∇+ eA(r))2

2m
+ V(r) (2.167)

For numerical evaluation the spatial coordinates are discretized, so that the Green’s
function turns into a matrix

Gr(r, r′) → Gr(i, j) (2.168)

with i, j denoting points on a discrete lattice with an equidistant spacing a. Hence
the differential equation (2.166) turns into a matrix equation

[(E + iη)I −H]Gr = I (2.169)

where I represents the identity matrix and H now denotes the matrix representation
of the system’s Hamiltonian. In principle by inverting the matrix [(E + iη)I − H]
numerically, one could now obtain the desired Green’s function Gr(i, j). However,
throughout the present treatment it was always assumed that the conductor is at-
tached to leads, which allow the electrons to empty reflectionless into the contacts.
This presents a problem because as a consequence the resulting matrix to be inverted
is infinite-dimensional. Unfortunately simply truncating the matrix would mean to in-
troduce finite leads with fully reflecting boundaries [106].

To still allow for a way to perform the necessary truncation and thus enable the nu-
merical calculation of Gr(i, j) it is highly useful to employ the so-called tight-binding
scheme. This approach expresses the electronic wavefunctions in terms of localized
atomic orbitals that are centered on the atoms constituting the system. Consider a
2-terminal setup consisting of a conductor that is attached to two semi-infinite (and
thus reflectionless) leads on either side. Within the tight-binding scheme – and sub-
sequently within a localized basis set – the total Green’s function of this system can be
partitioned into submatrices that correspond to the individual parts of the system (cf.
Fig. 2.7):
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Figure 2.7: A conductor described by GC connected across two semi-infinite leads described by gL, gR
through coupling matrices gLC, gCR. The points yi are adjacent to the points i.

 gL gLC gLCR

gCL GC gCR

gLRC gRC gR

 =

 EI − hL −hLC 0
−h†

LC EI −HC −hCR

0 −h†
CR EI − hR


−1

(2.170)

(EI − HC) represents the Green’s function of the finite isolated conductor without
any coupling to the leads, (EI − h{L,R}) denotes the Green’s function of the semi-
infinite leads and hLC, hCR are the coupling matrices between the conductor and the
leads. Capital and lower case letters denote finite- and infinite-dimensional matrices,
respectively. In Eq. (2.170) zero coupling is assumed between left and right leads by
setting gLRC = gLCR = 0.7 From Eq. (2.170) it is straightforward to obtain an explicit
expression for GC [106]:

GC(E) = (EI −HC − ΣL(E)− ΣR(E))−1

ΣL(E) = h†
LC(EI − hL)−1hLC, ΣR(E) = hRC(EI − hR)−1h†

RC

(2.171)

(2.172)

The terms ΣL(E), ΣL(E) can be viewed as effective Hamiltonians arising from the
interaction between the conductor and the leads. A similar term is widely used
throughout solid state physics to describe electron-electron and electron-phonon in-
teractions and is called self-energy. In analogy these terms are called the self-energies
due to the leads. It is to be noted that no approximation is involved in arriving at
Eq. (2.171) from Eq. (2.166). The treatment is still formally exact. To employ Eq.
(2.171) the Green’s functions gr

{L,R} = (EI − h{L,R})−1 for the isolated leads have to
be calculated. For a semi-infinite wire gr

{L,R} on a discrete lattice is given by

gr
{L,R}(yi, yj) = −1

t ∑
m

χ
{L,R}
m (yi)eikmaχ

{L,R}
m (yj), t ≡ h̄2

2ma2 (2.173)

with a denoting the spacing of the discrete lattice. Inserting Eq. (2.173) into Eq. (2.172)

7 Hence zero coupling also has to be ensured in practical calculations and represents one among
several important convergence parameters.
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yields the desired expression for the self-energy:

Σr
{L,R}(yi, yj) = −t ∑

m
χ
{L,R}
m (yi)eikmaχ

{L,R}
m (yj) (2.174)

By inserting Eq. (2.174) into Eq. (2.171) and applying the Fisher-Lee relation (2.165)
the transmission function can be obtained in a very compact form:

T(E) = Tr[ΓLGr
CΓRGa

C] (2.175)

Tr denotes the trace of the matrix and the Γ{L,R} represent coupling functions that
describe the coupling of the conductor to the leads. The elements of the matrices
Γ{L,R} are given by:

Γ{L,R}(i, j) = ∑
m

χ
{L,R}
m (yi)

h̄vm

a
χ
{L,R}
m (yj) (2.176)

With Eq. (2.174) and the relation h̄v = ∂E/∂k = 2at · sin(ka) for the discrete lattice the
matrices Γ{L,R} can be rewritten as

Γ{L,R} = i
[
Σr
{L,R}(E)− Σa

{L,R}(E)
]

(2.177)

where the advanced self-energy Σa
{L,R} is the Hermitian conjugate of the retarded self-

energy Σr
{L,R}. Ultimately the core of the problem lies in the calculation of the isolated

conductor’s Green’s function GC and the self-energies of the semi-infinite leads Σr
{L,R}.

2.2.4 Bridging the gap to DFT

As introduced in section 2.1.5b the present work employs the supercell approach for
describing any systems at DFT level. The following sections describe a computational
scheme, that allows to calculate the required Green’s functions and self-energies from
state of the art plane-wave DFT calculations within the supercell approach. Wannier
functions will be used as a means to connect the Green’s function tight-binding ap-
proach to plane-wave DFT electronic structure calculations. Both the Bloch functions
within DFT and the Wannier functions span exactly the same function space, in this
case a Hilbert space. Hence this scheme allows a very efficient description of elec-
tron transport within the Landauer formalism at full first principles DFT precision,
simultaneously.
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2.2.4a Transmission within the supercell approach

Any solid or surface can be represented as an infinite or semi-infinite stack of prin-
cipal layers with nearest-neighbour interactions [119, 120], respectively. A left lead –
conductor – right lead (LCR) setup (cf. Fig. 2.8) can be considered as one principal
layer, that describes the conductor, sandwiched between two semi-infinite stacks of
principal layers describing the leads. Within this approach the matrix elements of Eq.
(2.169) between layer orbitals yield a series of matrix equations

(E−H00)G00 = I +H01G10

(E−H00)G10 = I +H†
01G00 +H01G20

...
(E−H00)Gn0 = I +H†

01Gn−1,0 +H01Gn+1,0

(2.178)

with the finite dimension matrices Hnm, Gnm given by the matrix elements between
the layer orbitals. Assuming a bulk system for the moment, with H00 = H11 =
..., H01 = H12 = ..., the series can be reduced by expressing the Green’s function of
an individual layer in terms of the Green’s function of the preceding or following layer
[121, 122]. By introducing the transfer matrices T , T̄ , with G10 = T G00, G00 = T̄ G10,
the bulk Green’s function can be expressed as [123]:

G(E) = (E−H00 −H01T −H†
01T̄ )−1 (2.179)

The required transfer matrices can be obtained from the Hamiltonian matrix elements
by a simple recursive algorithm that usually requires no more than 6 iterations until
it converges [119, 120]:

T = t0 + t̃0t1 + t̃0 t̃1t2 + ... + t̃0 t̃1 t̃2...tn

T̄ = t̃0 + t0 t̃1 + t0t1 t̃2 + ... + t0t1t2...t̃n

ti = (I − ti−1 t̃i−1 − t̃i−1ti−1)−1t2
i−1

t̃i = (I − ti−1 t̃i−1 − t̃i−1ti−1)−1 t̃2
i−1

t0 = (E− H00)−1H†
01

t0 = (E− H00)−1H01

(2.180)

From the comparison of Eq. (2.179) and (2.171) the conductor’s Hamiltonian and the
self energies can be obtained as:

HC = H00, ΣL = H†
01T̄ , ΣR = H01T (2.181)

The coupling functions can be obtained from the the transfer matrices and Hamilto-
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Figure 2.8: Schematic representation of the left lead – conductor – right lead system within the principal
layer approach. Elements of the corresponding Hamiltonian are indicated.

nian matrix elements as well [125]:

ΓL = −Im(H†
01T̄ ), ΓR = −Im(H01T̄ ) (2.182)

Transmission through a left lead – conductor – right lead system: From now on
the assumption of a bulk system (H00 = H11 = ..., H01 = H12 = ...) is dropped in
order to generalize the description to the experimentally more realistic geometry of a
left lead – conductor – right lead (LCR) system (cf. Fig. 2.8). Hence the individual
principal layers may now contain different media. As a consequence this case requires
also a description of the interface regions in terms of Green’s functions. Within the
framework of surface Green’s function matching (SGFM) theory the Green’s functions of
the interface regions may be calculated from the bulk Green’s functions of the isolated
systems [123, 124]. By calculating the transmitted and reflected amplitudes of a unit
excitation propagating from one medium into the other, it can be shown that the
surface Green’s function obeys the equation [123]

GLCR =

 GL GLC GLR

GCL GC GCR

GRL GRC GR


=

 E−HL
00 − (HL

01)
†T̄ −HLC 0

−HCL E−HC −HCR

0 −HRC E−HR
00 −HR

01T


−1 (2.183)

with H{L,R}
nm denoting the Hamiltonian’s matrix elements between the layer orbitals

in the left and right leads, respectively (cf. Fig. 2.8). The transfer matrices can be
computed as described previously. HLC,HCR represent the coupling matrices between
the conductor and the left and right leads, respectively. It is straightforward to obtain
from Eq. (2.183) the Green’s function GC again in the form GC = (E −HC − ΣL −
ΣR)−1 with the self-energies given by [125]:
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ΣL(E) = H†
LC(E−HL

00 − (HL
01)

†T̄L)−1HLC

ΣR(E) = HCR(E−HR
00 −HR

01TR)−1H†
CR

(2.184)

Thus the transmission in the general LCR geometry can be obtained from Eq. (2.171),
(2.175), (2.177) and (2.184). The Green’s function GC also contains direct information
regarding the electronic spectrum via the spectral density of states:

N(E) = − 1
π

Im[Tr(GC(E))] (2.185)

Within DFT the principal layers described in this calculational scheme can be mod-
eled by separate supercell calculations for the conductor region and each of the leads,
respectively. To ensure a complete ab initio description of the interface regions, the
conductor supercell should contain a sufficiently large region of the leads as well.
Sufficient in this context means that the electronic structure at the boundaries of the
conductor supercell is converged up to reaching the bulk electronic structure of the
leads.

However, so far the chain of principal layers was always assumed to be strictly one-
dimensional (1D). This approach can be extended to a truly three-dimensional (3D)
description by effectively describing the three-dimensional case as comprised of an
infinite number of non-interacting one-dimensional chains. In terms of practical DFT
calculations this means that a sufficiently large number k⊥ of k-points perpendicular
to the transport direction has to be taken into account. The total transmittance can
then be calculated as the weighted sum over the individual transmittances along the
k⊥ parallel paths, according to:

T(E) = ∑
k⊥

wk⊥Tk⊥(E) (2.186)

2.2.4b Real-space basis set: Wannier functions

The calculation of the ground-state electronic structure for the individual principal
layers can be performed employing the DFT supercell approach, as described in the
previous section. However, the calculation of the Green’s functions relies on a tight-
binding scheme and thus a localized orbital basis set. On the other hand plane-wave
DFT utilizes Bloch orbitals, which are intrinsically delocalized. The transformation
of Bloch functions into Wannier functions (WF) represents a natural choice for a local-
ized basis set, because both function types still span exactly the same Hilbert space of
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the Hamiltonian’s eigenfunctions. Hence they allow to bridge plane-wave electronic
structure and lattice Green’s function calculations without any principal loss of accu-
racy. A Wannier function wnR(r) at the Bravais lattice vector R is defined via a unitary
transformation of the Bloch functions ψnk(r) of the n-th band

wnR(r) =
V

(2π)3

∫
BZ

dk ψnk(r)e−ik·R (2.187)

with V denoting the volume of the unit cell and the integration being performed
over the entire Brillouin zone. The WFs as defined above form an orthonormal ba-
sis set. Any two for a given n and different R, R′ are simply translational images of
each other. However, this definition does not lead to a unique set of WFs due to the
k-dependent arbitrary phase factor of the Bloch functions and the invariancy of the
electronic structure problem as opposed to the transformation ψnk → eφn(k)ψnk. Be-
sides the arbitrary phase factor φn(k) there is also a more fundamental gauge freedom
arising from the many-body wavefunction actually being a Slater-determinant. A uni-
tary transformation does not change the manifold and thus leaves the total energy
and charge density unchanged as well. Hence starting with a set of N Bloch functions
with periodic parts unk one can construct an infinite number of sets of N WFs which
all exhibit different spatial characteristics:

wnR(r) =
V

(2π)3

∫
BZ

dk

[
∑
m

U(k)
mn ψmk(r)

]
e−ik·R (2.188)

The gauge freedom of phase is included in the unitary matrices U(k) as well. To utilize
these Wannier functions as a basis set for the tight-binding scheme it is necessary to
ensure a degree of localization that excludes any but nearest-neighbour interactions
between the principal layers, as assumed in the derivation of the Green’s function
formalism. Hence a computational scheme is required for identifying those U(k)

mn that
transform the Bloch eigenstates into those WFs with the narrowest spatial distribution.

2.2.4c Localization procedure

Such a scheme that allows to identify those U(k)
mn that lead to maximally localized Wan-

nier functions was proposed by Marzari and Vanderbilt [126]. A measure of the WF’s
spatial localization is given by the spread operator Ω

Ω = ∑
n

[〈r2〉n − 〈r〉2
n] (2.189)
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with the summation perfomed over a selected group of bands and:

〈r〉n = [〈Rn|r|Rn〉]R=0 = 〈0n|r|0n〉 (2.190)

〈r2〉n =
[
〈Rn|r2|Rn〉

]
R=0 = 〈0n|r2|0n〉 (2.191)

Since the spread Ω depends on the choice of U(k)
mn any arbitrary set of U(k)

mn can be
evolved until the stationary case is reached:

∂Ωk

∂U(k)
= 0 (2.192)

The resulting matrices U(k),ML transform the Bloch functions ψnk(r) into maximally
localized Wannier functions according to Eq. (2.188). Restricting the treatment to
the case of k-point mesh calculations Eq. (2.192) can be evaluated employing finite
differences in reciprocal space. For this purpose the expectation values 〈r〉, 〈r2〉 can
be expressed as [130]

〈0n|r|0n〉 = i
1
N ∑

k
eik·R〈ukn|∇k|ukn〉 (2.193)

〈0n|r|0n〉 = i
1
N ∑

k
eik·R〈ukn|∇2

k|ukn〉 (2.194)

with |ukn〉 = e−ik·r|ψkn〉 representing the periodic parts of the Bloch functions. The
overlap matrix between Bloch functions can be defined by

M(k,b)
mn = 〈umk|unk+b〉 = 〈ψmk|e−ikb|ψnk+b〉 (2.195)

where b denotes vectors that connect a mesh point to its nearest neighbours. These
overlap matrices allow to express the expectation values 〈r〉, 〈r2〉 in a form that is
usable in a practical localization algorithm

〈r〉n = − 1
N ∑

k,b
wb = ln M(k,b)

nn (2.196)

〈r2〉n =
1
N ∑

k,b
wb

[(
1− |M(k,b)

nn |2
)

+
(
= ln M(k,b)

nn

)2
]

(2.197)

with wb denoting the weights of the b-vectors, which satisfy the completeness con-
dition ∑b wbbαbβ = δαβ. Inserting the above expressions into Eq. (2.189) yields

an expression for the spread operator in terms of the overlap matrices M(k,b)
mn . To

calculate the gradient in Eq. (2.192) consider the infinitesimal unitary transforma-
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tion U(k)
mn = δmn + dW(k)

mn , where dW represents an infinitesimal anti-unitary matrix
dW† = −dW. This transformation rotates the wavefunctions according to Eq. (2.188)
into |ukn〉 → |ukn〉+ ∑m dW(k)

mn |ukm〉. The following expression can then be obtained,
that is straightforward to implement [126]:

G(k) =
∂Ω

dW(k)
= 4 ∑

b
wb

(
R(k,b) − R(k,b)†

2
− T(k,b) − T(k,b)†

2i

)

R(k,b)
mn = M(k,b)

mn M(k,b)∗
nn , T(k,b)

mn =
M(k,b)

mn

M(k,b)
nn

[
= ln M(k,b)

nn + b · 〈r〉n

]
(2.198)

(2.199)

It is to be noted that the entire expression G(k) is a function of the overlap matrices
M(k,b)

mn , which is numerically very convenient. The minimization itself can be con-
ducted by generic steepest descent or conjugate gradients algorithms. Only the over-
lap and unitary matrices have to be calculated in each step, scaling as O(N3). Note
that neither the wavefunctions have to be updated nor the actual Wannier functions
themselves need to be calculated. The spread of each individual Wannier function
represents a very important convergence parameter. Since the Green’s function for-
malism assumes a localized orbital basis set with nearest-neighbour interactions only,
it must be ensured that the degree of localization for each Wannier function is suffi-
cient to meet this criterion.

Disentangle-procedure and frozen-states: However, the scheme described so far
works only for isolated groups of bands. A band is called isolated in this context if
it does not become degenerate with any other band anywhere in the Brillouin zone.
Generally this is not the case and it is necessary to extend the calculational scheme to
the case of mixed or entangled bands, i. e. bands exhibiting crossings with other bands.
The problem is that any arbitrary choice of states inside a given energy window af-
fects the localization properties of the Wannier functions. Consider, i. e., two bands
that are degenerate at some k-point. The DFT band structure alone allows no infer-
ence whether the bands simply touch or actually cross. Assuming either case clearly
leads to Wannier functions with very different localization properties. This problem
is solved by the introduction of an additional disentanglement-procedure [127], where
the spread Ω is separated into:

Ω = Ω̃ + ΩI (2.200)

Only Ω̃ can be minimized by evolving the U(k). ΩI has to be minimized by selecting
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which states are supposed to form a band, or in other words by selecting the opti-
mal subspace S(k). The procedure begins by choosing a prescribed energy window
within the bands are to be disentangled. The energy window has to contain Nk ≥ N
bands at every k-point, with N denoting the number of desired Wannier functions.
This defines the Nk-dimensional Hilbert space F (k) spanned by the states ukn inside
the energy window. For Nk = N there is nothing to do for the disentangle procedure.
If Nk > N the optimal subspace S(k) ⊆ F (k) needs to be identified, that minimizes
ΩI .

Sometimes it is desirable to treat the states in a small range of interest (usually around
the Fermi energy) as frozen to obtain Wannier functions that correspond exactly to
these states. This is possible by excluding these states from the disentangle-procedure.
However, while perfectly feasible this restriction may lead to badly localized Wannier
functions that require large supercells. In the present work states close to the Fermi
energy are treated as frozen to ensure maximum accuracy. Fortunately the localization
properties are barely affected and the supercells are very large in the relevant cases.

Conditioned minimization and penalty functionals: Another potential problem is
caused by the fact that the above localization criterion in terms of the spread operator
represents a global criterion. Especially in systems containing vacuum regions it may
be highly favourable for some Wannier functions to wander away from the system.
By moving into the vacuum regions they enhance the localization of the remaining
Wannier functions. However, the resulting WF set is useless of course. This behaviour
may be prevented by introducing a penalty functional to the total spread, i. e. by
attaching a spring-like potential to the Wannier function centers

ΩP = A ∑
n

wn [〈r〉n − rn0]
2 , (2.201)

where A represents an arbitrarily chosen amplitude of the functional and rn0 denotes
the target position of the n-th Wannier function.

2.2.4d Obtaining the real-space Hamiltonian

As illustrated in section 2.2.4a the actual conductance calculation requires only the
Hamiltonian’s matrix elements in real space within a localized orbital basis. In the
basis set of Wannier functions the WF Hamiltonian Hij(R) = 〈wi0|H|wjR〉 can be

computed in a simple manner from the unitary matrices U(k)
mn obtained during the
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localization procedure:

H(rot)(k) = U(k)†H(k)U(k) (2.202)

Subsequently H(rot)(k) is Fourier transformed into real space with the corresponding
set of Bravais lattice vectors R:

Hij(R) =
1

Nk
∑
k

e−ik·R H(rot)
ij (k) (2.203)

Note that it should be tested whether the resulting Hamiltonian still describes the
system correctly. This can be done by comparing the eigenvalues of this Hamilto-
nian to the eigenvalues obtained from DFT. Naturally, both bandstructures should be
identical.
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2.3 Optical and spectroscopic properties

The third section of the method review addresses the derivation of optical and spectro-
scopic properties from density functional calculations. First the concept of reflectance
anisotropy spectroscopy (RAS) is introduced, which represents a highly versatile and
widely-used tool for optical probing of surfaces. It is demonstrated how RA spectra
can be derived from the surface dielectric function of the system. Subsequently the
discussion proceeds to the calculation of dielectric functions from DFT. Since DFT
is essentially a ground-state theory, while optical excitations are by definition excited
state properties, Green’s function techniques are presented to incorporate the relevant
many-body aspects into the DFT treatment. The section closes with a short discussion
of the implications of these many-body aspects on the band structure and dielectric
function at the example of LiNbO3.

2.3.1 Reflectance anisotropy spectroscopy (RAS)

Reflectance anisotropy spectroscopy (RAS) is a highly successful technique for the non-
destructive in-situ optical probing of surfaces [133, 134]. It measures the relative
reflectivity of a surface depending on the specimens spatial orientation and the wave-
length. As it turns out many surface reconstructions feature unique RAS signatures.
However, since it is a very indirect method accompanying calculations are a neces-
sity. The basic theory for RAS was developed by Bagchi [140] and extended later by
Del Sole [141]. It’s first application in supercell slab calculations was demonstrated
by Manghi [143]. In the present work it is employed to confirm or reject competing
structural models by predicting RAS data for different surface reconstructions and
subsequent comparison with experiment.

The surface contribution to the reflectance ∆R/R for s-light polarized along i and
normal incidence can be expressed as [139, 140, 141]

∆Ri

R
(ω) =

4ω

c
=
{

∆εii(ω)
εb(ω)− 1

}
(3.204)

where R represents the reflectance according to the Fresnel equation, εb denotes the
bulk dielectric function and ∆εij is given by:

∆εij =
∫

dz dz′ [εij(ω; z, z′)− δijδ(z− z′)ε0(ω; z)]

−
∫

dz dz′ dz′′ dz′′′ εiz(ω; z, z′)ε−1
zz (ω; z′, z′′)εzj(ω; z′′, z′′′) (3.205)
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εij(ω; z, z′) denotes the non-local macroscopic dielectric tensor of the solid-vacuum in-
terface that accounts for all many-body aspects and local field-effects [142]. The sur-
face is located in the plane z = 0, with the bulk material underneath proceeding along
z > 0. However, the second term is difficult to evaluate due to the inverse dielectric
tensor and the 4-fold integration. In practical calculations it is usually neglected [143].
The outer integration of the first term may be stopped at z = d if surface-induced ef-
fects have vanished at the depth d, with εij(ω; z, z′) ≈ εb(ω)δ(z− z′)δij. Eq. (3.205)
can then be evaluated numerically within the supercell approach. It is advisable to
use a symmetric slab that features the surfaces of interest identically on both sides.
This approach enlarges the supercell by introducing a slab thickness of 2d, but avoids
the necessity of truncating the resulting charge density and wavefunctions to remove
the effects of unwanted surfaces, i. e., a hydrogen terminated bottom side of an asym-
metric slab. The diagonal components ∆εij then assume the form

∆εij(ω) =
1
2

∫
dz
∫

dz′ εslab
ii (ω; z, z′)− 2d · εb(ω) = d

[
εslab

ii (ω)− εb(ω)
]

, (3.206)

where the factor 1/2 compensates for the fact that a symmetric slab features two iden-
tical surfaces. Provided (i) a sufficiently large crystal slab to describe both the surface
and surface-modified bulk wavefunctions and (ii) sufficiently small off-diagonal terms
of the dielectric tensor in comparison to the diagonal ones, ∆R/R can be expressed as
[143]:

∆R
R

(ω) =
2ωd

c
=
{

εslab
ii (ω)− εslab

jj (ω)

εb(ω)− 1

}
(3.207)

Given the two conditions mentioned above Eq. (3.207) contains in principle all surface
contributions to the optical reflectance. How the required dielectric tensors εslab

ij can
be obtained from first principles DFT ground-state calculations is the topic of the next
sections.

2.3.2 Obtaining the dielectric tensor from DFT

Despite the known bandgap problem of the Kohn-Sham formalism optical calcula-
tions are routinely based upon the KS-eigenvalues due to the efficiency of the ap-
proach. Conceptually missing aspects, i. e., electron screening effects and electron-
hole interaction, can be subsequently incorporated by Green’s function techniques as
required or computationally feasible. In fact a treatment at the KS-level of theory rep-
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resents the only possible choice in many instances. The computational demands of
such many-body Green’s function techniques are still prohibitive for larger systems,
even on today’s fastest supercomputers.

2.3.2a Independent particle approximation (IPA)

Calculating the dielectric tensor involves the response of a system’s density n(r) to
an external time-varying potential Vext(r, t). The potential Vext(r, t) induces a linear
response nind(r, t) according to

nind(q + G; ω) =
1
V ∑

G′
P(q + G, q + G′; ω)Vext(q + G′; ω) (3.208)

in reciprocal space, with

nind(q + G; ω) =
1√

2πV

∫ ∞

−∞
dt
∫

d3r e−i(q+G)r+iωtnind(r, t) (3.209)

Vext(q + G; ω) =
1√

2πV

∫ ∞

−∞
dt
∫

d3r e−i(q+G)r+iωtVext(r, t) (3.210)

and the polarisation function given by:

P(q + G, q + G′; ω) = 2 ∑
n,k

∑
n′,k′

Bkk′
nn′ (q + G)Bkk′

nn′ (q + G′)

· fn′(k′)− fn(k)
εn′(k′)− εn(k) + h̄(ω + iη)

(3.211)

Bkk′
nn′ (q) = 〈φnk|eiq·r|φn′k′〉 (3.212)

The density nind in turn induces a screening potential Vind that can be written as:

Vind(q + G; ω) =
4πe2

‖q + G‖2 nind(q + G; ω) (3.213)

These functions allow to define the dielectric tensor in reciprocal space according to:

Vext(q + G; ω) = ∑
G′

ε(q + G, q + G; ω)[Vext + Vind](q + G′; ω) (3.214)

By neglecting any non-diagonal elements of ε and thus local field effects one can
obtain the dielectric function as:
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ε(q + G; ω) = 1 +
8πe2

V‖q + G‖2 · ∑
nk′

∑
n′k′

∥∥∥Bkk′
nn′ (q + G)

∥∥∥2

· fn(k)− f ′n(k′)
εn′(k′)− εn(k) + h̄(ω + iη)

(3.215)

For G = 0 this expression is the Ehrenreich-Cohen formula [145]. Solving the KS-
problem yields the required eigenenergies εn(k) and occupation numbers fn(k). In
the optical limit the wavevector q converges towards q → 0. This allows to calculate
the Bloch integrals in Eq. (3.212) according to

lim
q→o

〈φnk|eiq·r|φn′k′〉 = lim
q→0

1
εn(k)− εn′(k′)

〈φnk|
[
H, eiq·r

]
|φn′k′〉

=
1

εn(k)− εn′(k′)
lim
q→0

〈φnk|q · v|φn′k′〉 (3.216)

vi =
dri

dt
=

i
h̄
[H, ri] = lim

qi→0

1
h̄qi

[
H, eiqiri

]
(3.217)

where vi denotes the components of the velocity operator v. Inserting into Eq. (3.214)
yields:

ε(q; ω) = ∑
i,j

q̃iεij(ω)q̃j, q̃k =
qk
‖q‖ (3.218)

εij(ω) = δij +
4πe2h̄2

V ∑
nk

∑
nk′

〈φnk|vi|φn′k′〉〈φn′k′ |vj|φnk〉
[εn(k)− εn′(k′)]2

· fn(k)− f ′n(k′)
εn′(k′)− εn(k) + h̄(ω + iη)

(3.219)

Employing the PAW-approach H represents the all-electron Hamiltonian and |φnk〉
are the all-electron wavefunctions. In semiconducting or insulating cases at T = 0 Eq.
(3.219) can be simplified even further [145, 146, 147]:

εij(ω) = δij +
8πe2h̄2

Vm2
e

∑
k

∑
v,c

〈φvk|pi|φck〉〈φck|pj|φvk〉
[εc(k)− εv(k)] ([εc(k)− εv(k)]2 − h̄[ω + iη]2)

(3.220)

The indices c, v traverse through the conduction and valence bands, respectively.
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2.3.2b Intraband contributions in metallic case

Although it is a classical model, the low energy optical properties of simple metals
can be interpreted in terms of the Drude model for the free electron gas and the
propagation of electromagnetic waves through a medium. The Maxwell equations
for a non-magnetic medium in the absence of any external charges or currents but
presence of the internal charge density ρint and current density Jint are given in Gauss
units by [148]:

divE = 4πρint rotE = −1
c

∂B
∂t

divB = 0 rotB = 1
c

∂E
∂t + 4π

c Jint
(3.221)

Consider the propagation of electromagnetic waves through a homogeneous medium
with the following geometric setup:

E(r, t) = E(z)e−iωt(1, 0, 0) (3.222)

B(r, t) = B(z)e−iωt(0, 1, 0) (3.223)

Jint(r, t) = Jint(z)e−iωt(1, 0, 0) (3.224)

As a consequence of Eq. (3.222) divE = 0, which combined with the first Maxwell
equation implies ρint = 0. Eq. (3.223) is consistent with the second Maxwell equation
divB = 0. The remaining two Maxwell equations yield:

dE(z)
dz

=
iω
c

B(z), −dB(z)
dz

= − iω
c

E(z) +
4π

c
Jint(z) (3.225)

By eliminating B(z) one obtains:

d2E(z)
dz2 = −ω2

c2 E(z)− 4πiω
c2 Jint(z) (3.226)

The current density is linked to the electric field by the common approximation

Jint(z) = σ(ω)E(z) (3.227)

where σ(ω) is the so-called conductivity function of the medium. Inserting Eq. (3.227)
into Eq. (3.226) yields:

d2E(z)
dz2 = −ω2

c2

[
1 +

4πiωσ(ω)
ω

]
E(z) (3.228)

This equation is solved by a damped wave of the form E(z) = E0ei ω
c Nz where the
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complex refractive index N(ω) is given by:

N2(ω) = ε(ω) = 1 +
4πiσ(ω)

ω
(3.229)

Thus the dielectric function of the system can be obtained from the complex con-
ductivity function σ(ω), which is easily derived for the Drude model. Consider a
free-electron gas with n carriers per unit volume, each with an effective mass m and
charge −e. The electrons are embedded in a uniform background of neutralizing pos-
itive charge. Then the classical equation of motion for an electron in the presence of
an electric field E(r, t) = E0ei(q·r−ωt) of wavevector q and frequency ω is given by
[148]

mr̈ = −m
τ

ṙ− eE0ei(q·r−ωt) (3.230)

where r(t) denotes the coordinate of the electron. τ represents a phenomenologi-
cal relaxation time, controlling the viscous damping term −(m/τ)ṙ. This damping
term is meant to account for the various dissipation mechanisms such as random
collisions between the electrons, defect- and impurity-scattering and electron-phonon
interaction. Assuming the spatial excursions of r(t) around any point r0 to be much
smaller than the driving field’s wavelength, one can replace r(t) in the exponent by
r0. Without loss of generality one may assume r0 = 0 and obtains:

mr̈ = −m
τ

ṙ− eE0e−iωt) (3.231)

Inserting r(t) in the form r(t) = A0e−iωt yields:

A0 =
eτ

m
1

ω(i + ωτ)
E0 (3.232)

The free-carrier contribution to the current density is given by:

J = −neṙ = neiωA0e−iωt =
ne2τ

m
1

1− iωτ
E0e−iωt (3.233)

Thus the frequency dependent complex conductivity can be derived as:

σ(ω) =
ne2τ

m
1

1− iωτ
= σ0

1
1− iωτ

(3.234)

Note that the Drude theory neglects the wavevector dependence of the electric field
and optical constants (also known as spatial dispersion) and provides only σ(q → 0, ω).
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Figure 3.9: Schematic representation of the Drude free electron gas dielectric function (ω2
p =

104s−1, τ = 1s).

According to Eq. (3.229) and (3.234) the dielectric constant becomes

ε(ω) = 1−
ω2

p

ω(ω + i/τ)

<{ε(ω)} = 1−
ω2

pτ2

1 + ω2τ2 , ={ε(ω)} =
ω2

pτ

ω(1 + ω2τ2)

(3.235)

(3.236)

where ωp denotes the plasma frequency of the respective material. In this case for the
free electron gas ωp is given by ω2

p = (4πne2)/m. A schematic representation of the
dielectric function for the Drude free electron gas is shown in Fig. 3.9.

Returning to a quantum mechanical point of view it is no longer sufficient to incorpo-
rate only interband transitions between valence and conduction bands as in Eq. (3.220).
A metal features partially occupied bands that cross the Fermi energy. Thus beside
the interband transitions a metal also exhibits intraband transitions. These dominate
at low energies where few to none interband transitions are available anymore. They
are responsible for the low energy characteristics of the dielectric function in analogy
to the Drude model. In reciprocal space neglecting local field effects the intraband
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contribution to the dielectric tensor can be expressed as [151]

εintra(ω) = 1− lim
q→0

{
4π

‖q‖2 ∑
n

∫
BZ

d3k
1

(2π)3 [ fn(k− q)− fn(k)]

× ‖〈nk|eiq·r|nk− q〉‖2

w + εn(k− q)− εn(k)

}
(3.237)

with the sum n restricted to partially occupied bands only. The relation

fn(k− q)− fn(k) = [ fn(k− q)− fn(k)]

·{θ[ fn(k− q)− fn(k)]− θ[ fn(k)− fn(k− q)]} (3.238)

and employing time-reversal symmetry allows to rewrite Eq. (3.237) as:

εintra(ω) = 1− lim
q→0

{
8π

‖q‖2 ∑
n

∫
BZ

d3k
(2π)3

·[ fn(k− q)− fn(k)] · θ[ fn(k− q)− fn(k)]

×‖〈nk|eiq·r|nk− q〉‖2[εn(k)− εn(k− q)]
ω2 − [εn(k)− εn(k− q)]2

}
(3.239)

In the limit q → 0 Eq. (3.239) yields the Drude contribution to the dielectric function:

εintra(ω) = 1−
ω2

p

ω2 +O(‖q‖2)

ω2
p = lim

q→0

{
8π

‖q‖2 ∑
n

∫
BZ

d3k
(2π)3

· [ fn(k− q)− fn(k)] · θ[ fn(k− q)− fn(k)]

× ‖〈nk|eiq·r|nk− q〉‖2[εn(k)− εn(k− q)]

(3.240)

(3.241)

The θ-function in Eq. (3.241) strongly limits the region of the Brillouin zone that
contributes to the integral. Hence the k-point mesh and the chosen q-vector become
two very critical convergence parameters in the numerical evaluation of Eq. (3.241).
For small q-vectors only very few k-points satisfy the condition [ fn(k− q)− fn(k)] 6=
0. However, in practical calculations q must be small enough to ensure the limit q → 0,
while at the same time a sufficiently large number of k-points must still contribute to
the sum. Hence a k-point mesh spacing no larger than kn+1 − kn ≤ q is enforced by
this condition. To attain convergence an enormous number of k-points is required, as
will be seen in the later application of this scheme.
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2.3.3 Many-body correction Green’s function schemes

Optical properties are by definition characteristics of excited states. However, den-
sity functional theory is essentially a ground-state theory and thus describes optical
properties inaccurately in many instances. The most important shortcomings are:

• Disregard of screened electron-electron interaction resulting in a severe underes-
timation of band gaps.

• Missing electron-hole interaction for excited states leading to a major redistribution
of the spectral weights.

Green’s function techniques are highly successful for incorporating these many-body
aspects of excited states. They allow for a systematic improvement of observables
connected to electronic excitations by providing a well defined perturbation series. In
the following sections two approaches will be presented for the perturbative treatment
of one-electron excitations and electron-hole interaction.

2.3.3a One- and two-particle Green’s functions

The one-electron Green’s function of a N-electron system is defined as [155]

G(rt, r′t′) = 〈N|T {ψ(r, t)ψ†(r′, t′)}|N〉 (3.242)

where ψ†(r, t)(ψ(r, t)) is a field operator in the Heisenberg representation which cre-
ates (annihilates) an electron at (r, t), respectively. |N〉 represents the exact N-electron
ground-state and T denotes the time-ordered product of ψ, ψ†. Depending on t, t′ the
Green’s function G(rt, r′t′) may describe two different processes:

t < t′: G(rt, r′t′) describes a (N− 1) electron-state, where a hole created at (r, t) prop-
agates to (r′, t′).

t > t′: G(rt, r′t′) describes a (N + 1) electron-state, where an extra electron created
at (r, t) propagates to (r′, t′).

The one-particle Green’s function allows to describe one-electron excitation processes
including screening effects, such as, i. e., photoelectron spectroscopy. In analogy the
two-particle Green’s function is defined according to

G(1, 2; 1′, 2′) = 〈N|T {ψ(1)ψ(2)ψ†(1′)ψ†(2′)}|N〉 (3.243)

with the abbreviated notation n ≡ (rn, tn). Depending on the time ordering the two-
particle Green’s function represents the following propagators:
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t1, t2 < t′
1, t′

2: hole-hole propagation

t1, t2 > t′
1, t′

2: electron-electron propagation

t1, t′
1 ≶ t2, t′

2: electron-hole propagation

Electron-hole propagation is the most relevant process regarding optical excitations. It
is examined in more detail in section 2.3.3d. From the Heisenberg equation of motion
for the field operator i∂ψ(r)/∂t = [ψ(r),H] one can obtain the equation of motion for
the one-particle Green’s function:[

i
∂

∂t
+

1
2
∇2 −V(r)

]
G(rt, r′, t′)

+ i
∫

d3r′′ v(r, r′′)〈N|T {ψ(r, t)ψ(r′′, t)ψ†(r′′, t)ψ†(r′, t′)}|N〉

= δ(r− r′)δ(t− t′)

(3.244)

The solution to Eq. (3.244) obviously requires knowledge of the two-particle Green’s
function, which results from the electron-electron Coulomb interaction terms. In an
analogous way one could now construct an equation of motion for the two-particle
Green’s function, repeating the process recursively. However, it is much more conve-
nient to avoid the necessity of calculating the two-particle Green’s function at all. This
can be achieved by introducing the concept of the electronic self-energy as the central
quantity.

2.3.3b Electronic self-energy and Hedin’s equations

The electronic self-energy Σ is introduced by rewriting Eq. (3.244) according to [155][
i

∂

∂t
+

1
2
∇2 −V(r)−VH(r)

]
G(rt, r′, t′)

− i
∫

d3r′′ dt′′ Σ(rt, r′′, t′′)G(r′′t′′, r′, t′)

= δ(r− r′)δ(t− t′)

(3.245)

where the Hartree potential VH was extracted from the Coulomb integral in Eq.
(3.244). While this approach does not require obtaining the two-particle Green’s func-
tion anymore, an explicit expression for Σ has yet to be determined. This is achieved
by deriving a set of five integro-differential equations, the so-called Hedin equations
[153, 154], that eventually define the self-energy. Fourier transforming Eq. (3.245) into
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frequency space yields:[
ω +

1
2
∇2 −V(r)−VH(r)

]
G(r, r′, ω)−

∫
d3r′′ Σ(r, r′′, ω)G(r′′, r′, ω)

= δ(r− r′)
(3.246)

Defining G0 as the Green’s function corresponding to Σ = 0 allows to rewrite Eq.
(3.246) in the form of a Dyson equation

G(1, 2) = G0(1, 2) +
∫

d3 d4 G0(1, 3)Σ(3, 4)G(4, 2) (3.247)

where the abbreviated notation n ≡ (rn, tn) is reintroduced. This is already one of the
five Hedin equations to be derived. Several ways exist for the derivation of an explicit
expression for the self-energy. Martin and Schwinger [156, 157] suggested employing
a time-varying field φ(r, t) as a mathematical tool for evaluating the self-energy and
setting it to 0 once the self-energy is obtained. The functional derivative of G with
respect to φ is given by:

∂G(1, 2; φ)
∂φ(3+)

= G(1, 2; φ)G(3, 3+; φ)− G(1, 2; 3, 3+; φ) (3.248)

The superscript “+” indicates an infinitesimal imaginary shift of t to ensure con-
vergence. Together with Eq. (3.243) this relation allows to replace the two-particle
Green’s function in Eq. (3.244). Comparing the result with Eq. (3.245), subsequently
applying the identity

∂

∂φ
(G−1G) = G−1 ∂G

∂φ
+
G−1

∂φ
G = 0 → ∂G

∂φ
= −GG

−1

∂φ
G (3.249)

and evaluating ∂G−1/∂φ, where from Eq. (3.245) G−1 is given by

G−1 = i
∂

∂t
+

1
2
∇2 −V(r)−VH(r)− Σ (3.250)

finally yields the desired expression for the self-energy:

Σ(1, 2) = i
∫

d3 d4 G(1, 3+)W(1, 4)Λ(3, 2, 4) (3.251)
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Λ represents the vertex function

Λ(1, 2, 3) = −∂G−1(1, 2)
∂V(3)

= δ(1− 2)δ(2− 3) +
∂Σ(1, 2)
∂V(3)

= δ(1− 2)δ(2− 3)

+ +
∫

d4 d5 d6 d7
∂Σ(1, 2)
∂G(4, 5)

G(4, 6)G(7, 5)Λ(6, 7, 3)

(3.252)

(3.253)

(3.254)

where the second line is obtained from Eq. (3.251), the last line by applying the chain
rule ∂Σ/∂V = (∂Σ/∂G)(∂G/∂V) and utilizing the identity Eq. (3.249). W represents
the screened Coulomb potential according to:

W(1, 2) =
∫

d3 v(3− 2)ε−1(1, 3) (3.255)

ε−1(1, 2) =
∂V(1)
∂φ(2)

= 1 + v
∂n
∂φ

= 1 + v
∂n
∂V

∂V
∂φ

(3.256)

The response and polarization functions are defined, respectively, as:

R(1, 2) =
∂n(1)
∂φ(2)

, P(1, 2) =
∂n(1)
∂V(2)

(3.257)

R represents the change in the charge density n in response to the change in the exter-
nal field, while P returns the change in n due to a change in the total external+induced
field. The relation n(1) = −iG(1, 1+) allows to rewrite P as:

P(1, 2) = −i
∫

d3 d4 G(1, 3)Λ(3, 4, 2)G(4, 1+) (3.258)

Concerning the screened Coulomb interaction W follows as:

ε−1 = 1 + vR, ε = 1− vP ⇒ R = P + PvR

⇒ W = v + vPW = v + vRv
(3.259)

Summarizing the previous results one obtains the 5 coupled integro-differential Hedin
equations [153, 154] according to:
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Σ(1, 2) = i
∫

d3 d4 G(1, 3+)W(1, 4)Λ(3, 2, 4)

W(1, 2) = v(1, 2) +
∫

d3 d4 v(1, 3)P(3, 4)W(4, 2)

P(1, 2) = −i
∫

d3 d4 G(1, 3)Λ(3, 4, 2)G(4, 1+)

Λ(1, 2, 3) = δ(1− 2)δ(2− 3)

+ +
∫

d4 d5 d6 d7
∂Σ(1, 2)
∂G(4, 5)

G(4, 6)G(7, 5)Λ(6, 7, 3)

G(1, 2) = G0(1, 2) +
∫

d3 d4 G0(1, 3)Σ(3, 4)G(4, 2)

(3.260)

(3.261)

(3.262)

(3.263)

(3.264)

It should be noted that this set of coupled equations is formally exact without any
approximations and in principle allows access to all one-electron properties of the
system. The dynamically screened Coulomb interaction W is central to the calculation
of the self-energy. W in turn is determined by the polarization P, which describes the
N-electron system’s response with respect to an additional electron or hole. P and Σ
are both governed by the vertex function Λ that describes the multitude of interactions
ocurring between screening electrons and holes. However, to utilize Hedin’s equations
in practical applications one needs to derive a calculational scheme for solving this
system of coupled equations. The solution is usually acquired within the so-called
independent quasi-particle approximation.

2.3.3c Independent quasi-particle approximation (IQA)

Assuming Σ = 0 the vertex function is given by Λ(1, 2, 3) = δ(1− 2)δ(2− 3). Inserting
this vertex function into the Hedin equations yields:

Σ(1, 2) = iG(1, 2)W(1+, 2)

W(1, 2) = v(1, 2) +
∫

d3 d4 v(1, 3)P(3, 4)W(4, 2)

P(1, 2) = −iG(1, 2)G(2, 1)

(3.265)

(3.266)

(3.267)

This specific approximation is named GW-approximation (GWA) since Σ is given by the
product of the one-electron Green’s function G and the screened Coulomb interaction
W. On first glance this equation set seems well suited for an iterative self-consistent
solution algorithm. By starting from a suitable Green’s function G0(12) a polariza-
tion function P0 = −iG0(12)G0(21) can be obtained. Subsequently the self-energy
Σ0 = G0W0 is calculated, with W0 = ε−1

0 v. Afterwards the Green’s function is updated
according to the Dyson equation G = G0 + G0(Σ − Ve f f )G and the self-consistency
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loop can be closed. However, experience with these types of calculations show that
the first iteration Σ = G0W0 already gives results in good agreement with experiment.
Further iterations even reduce the accuracy of the results in many cases. This can
be qualitatively understood by taking a look back at Eq. (3.245). From this equation
it is immediately obvious that Σ = 0 corresponds to the Hartree approximation. Thus
the Green’s function in the GW-approximation represents in fact the Hartree Green’s
function. Therefore G cannot be expected to converge towards the exact Green’s func-
tion from the original Hedin equations. It should also be remembered that the vertex
function Λ remains static in this scheme and is not updated accordingly [158]. For
these reasons the common approach is to employ the G0W0-approximation in practi-
cal calculations.

With regard to DFT the GW-approximation can be implemented by post-processing
the DFT results. The GW quasi-particle energies are obtained from the DFT eigenval-
ues employing the following perturbative approach [135]

εn(k)QP = εn(k) +
1

1 + βn,k

[
Σstat

n,k + Σdyn
n,k (εn(k))−VXC

n,k

]
(3.268)

where the self-energy operator Σ has been divided into static and dynamic contribu-
tions, respectively. βn,k denotes the linear coefficient in the expansion of Σdyn around
the DFT eigenvalue εn(k). The static part can be split into two constituents

Σstat(r, r′) =
1
2 ∑

n,k
ψn,k(r)ψast

n,k(r′)
[
W(r.r′; 0)− v(r− r′)

]
(3.269)

−∑
v,k

ψv,k(r)ψ∗v,k(r′)W(r, r′; 0) (3.270)

representing the Coulomb hole ΣCOH and the screened exchange ΣSEX. The summa-
tion for ΣSEX is performed over the valence states v only. The Kohn-Sham wavefunc-
tions ψn,k are utilized as a starting point to construct G0. However, a major bottleneck
is the calculation of the screened interaction W, because the dielectric tensor ε has to
be inverted at every frequency ω. A tremendous speedup can be achieved by replac-
ing the dielectric tensor by a model dielectric function, i. e. within the plasmon-pole
approximation [160]. In the present work the version suggested by Bechstedt et al.
[162] is utilized, where ε is given by

ε(q, n) = 1 +

[
(ε∞ − 1)−1 +

q2

qTF(n)2 +
3q4

4k2
F(n)q2

TF(n)

]−1

(3.271)
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with kF and qTF representing the Fermi and Thomas-Fermi wavevectors, respectively.
In analogy to the local density approximation Hybertsen and Louie [161] suggested
to approximate the spatial dependence of the screening of the inhomogeneous system

W(r, r′; 0) =
1
2

[
Wh(r− r′, n(r)) + Wh(r− r′, n(r)′)

]
(3.272)

by that of the homogeneous electron gas Wh. Eqs. (3.271) and (3.272) allow to derive
ΣCOH analytically as

ΣCOH(r) = −qTF(r)
2

√√√√1− 1
ε∞

[
1 +

qTF(r)
kF(r)

√
3ε∞

ε∞ − 1

]
(3.273)

where kF and qTF are evaluated at the local density n(r). The matrix elements Σstat
n,k

are calculated in reciprocal space. However, during the Fourier transform of W only
the diagonal elements are retained. Its nonlocality is approximated employing state-
averaged electron densities

nn,k =
∫

d3r n(r)‖ψn,k(r)‖2 (3.274)

during the calculation of kF and qTF. The dynamic terms βn,k(r), Σdyn are approxi-
mated by integrals of the dielectric function (3.271) employing a single plasmon-pole
to describe the frequency dependence. Again local-field effects are included by Eq.
(3.274).

Scissors shift: While the GWA as described above is highly efficient, calculating
quasi-particle shifts is still computationally very demanding. On the other hand,
calculating the dielectric function requires a large number of k-points to attain con-
vergence, regularly ranging between several hundreds up to thousands. Even on
the fastest supercomputers available today the requirements for calculating the self-
energy at every k-point can quickly exceed any reasonable amount of time. Thus a
common approach is to calculate quasi-particle shifts only at a few selected k-points
and examine the dependence of the shifts on the k-vector.

In many instances it turns out that the shifts depend rather little on the actual k-
point but more on the distance of the DFT eigenvalue from the Fermi-energy and the
orbital character of the states. I. e., surface states with a different orbital character
than the bulk states often feature a somewhat smaller associated quasi-particle shift.
In case the k-point dependence is sufficiently weak one can extrapolate an analyti-
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Figure 3.10: Diagrammatic representation of the Bethe-Salpeter equation. The macroscopic polarization
is related to the polarization of independent particles (1 → 2, 1′ → 2′) and an interaction kernel
Ξ containing the screened electron-hole attraction (wriggled line) and the unscreened electron-hole
exchange (dashed line) [135].

cal functional from the selected k-points that returns the approximate quasi-particle
shifts at any other. The shifts introduced by this approach are called scissors shifts. If
performed carefully this approach yields almost exactly the same dielectric function
as employing GW at every k-point, albeit at a significantly lower computational cost.
This allows for treating larger systems which are otherwise inaccessible for today’s
technology.

2.3.3d Electron-hole attraction and Bethe-Salpeter Eq. (BSE)

Excitation energies obtained within the independent quasi-particle formalism de-
scribe only one-particle excitations, such as photoemission experiments. However,
for the description of optical absorption the single quasi-particle formalism is insuf-
ficient. To improve the polarization function beyond the independent quasi-particle
approximation it is necessary first to introduce a two-particle polarization function
according to [135]:

P(1, 2, 3, 4) = − i
h̄
G(1, 4)G(3, 2) (3.275)

Inspecting the Hedin equations again reveals that one can obtain the two-particle
polarization function by substituting first Eq. (3.263) into (3.275), then employ the
relation ∂Σ/∂G = W and subsequently insert Eq. (3.261). In GW-approximation with
Λ(1, 2, 3) = δ(1− 2)δ(2− 3) the polarization function assumes the form

P(1, 1, 2, 2) = P0(1, 1, 2, 2)− h̄
∫

d3 d4 P0(1, 1, 4, 3)W(3, 4)P(3, 4, 2, 2) (3.276)

where P0 represents the polarization function in independent quasi-particle approx-
imation. This is the so-called Bethe-Salpeter Equation (BSE). The two-particle polar-
ization function obtained by solving the BSE incorporates not only the quasi-particle
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character of the electrons in GWA, but the excitonic effect of electron-hole-attraction
as well (cf. Fig. 3.10). With regard to DFT the Bethe-Salpeter equation (3.276) can
be conveniently solved in the basis of Bloch functions defined by the Kohn-Sham
formalism. Its solution can be expressed in resolvent representation as

P(n1,n2)(n3,n4) = [H−ω]−1
(n1,n2)(n3,n4)

( fn4 − fn3) (3.277)

with the two-particle Hamiltonian given by:

H(n1,n2)(n3,n4) ≡ (εQP
n1 − εQP

n2 )δ(n1,n3)δ(n2,n4) + ( fn2 − fn1)

×
∫

dr1 dr2 dr3 dr4 ψn1(r1)ψ∗n2
(r2)ψ∗n3

(r3)ψn4(r4)

×[δ(r1 − r2)δ(r3 − r4)v̄(r1 − r3)

−δ(r1 − r3)δ(r2 − r4)W(r1, r2)] (3.278)

fn = 0, 1 is the occupation number of the state n, denoting both band index and
wave vector. In principle one could now obtain the polarization from Eq. (3.277) by
inverting this Hamiltonian at any desired frequency ω. However, this would be com-
putationally far too expensive for any practical calculation due to the non-Hermiticity
and large dimension of H. Fortunately dim(H) can be reduced by a factor of 2 since
only pairs containing one filled and one empty state contribute to the macroscopic
polarization due to the factors ( fn4 − fn3) and ( fn2 − fn1) in Eqs. (3.277) and (3.278).
Another reduction by a factor 2 can be achieved by neglecting the off-diagonal blocks
that couple the Hermitian resonant part of H to the antiresonant part. By restricting
the calculation to spin singlets, static screening, transitions without momentum trans-
fer by photons and neglecting umklapp processes the excitonic Hamiltonian can be
written in reciprocal space according to:

Hres
vck,v′c′k′ = (εQP

ck − εQP
vk )δvv′δcc′δkk′ +

4π

Ω ∑
G,G′

{
2

δGG′(1− δG0)
‖G‖2 Bkk

cv (G)Bk′k′∗
c′v′ (G)

−ε−1(k− k′ + G, k− k′ + G′, 0)
‖k− k′ + G‖2

Bkk′
cc′ (G)Bkk′∗

vv′ (G′)
}

(3.279)

Bkk′
nn′ (G) =

1
Ω

∫
dr u∗nk(G)eiG·run′k′(r) (3.280)

Bkk′
nn′ denotes the Bloch integral over the periodic parts u of the Bloch wavefunctions

and Ω represents the unit cell volume. The numerical evaluation of Eq. (3.279) is still
computationally very demanding due to the rank ofH and the double sum over G, G′.
Again, the computational cost can be significantly reduced by replacing the inverse
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dielectric function by the model dielectric function Eq. (3.271), which has previously
been used for calculating the self-energy operator. However, even after calculating
the Hamiltonian the straight forward evaluation of Eq. (3.277) is still computationally
prohibitive due to the large number of pair states. The usual approach is to convert
the problem of calculating the resolvent into a generalized eigenvalue problem, which
can be solved by diagonalization [167, 168]. Employing the spectral representation

[H−ω]−1 = ∑
λ,λ′

|Aλ〉S−1
λ,λ′〈A

λ′ |
Eλ −ω

(3.281)

with |Aλ〉 and Eλ denoting the eigenvectors and eigenvalues of the excitonic Hamil-
tonian

H|Aλ〉 = Eλ|Aλ〉, Sλ,λ′ = 〈Aλ′ |Aλ〉 (3.282)

the diagonal components of the macroscopic polarizability are given by:

αM
jj (ω) =

4e2h̄2

Ω ∑
λ

∥∥∥∥∥∑k
∑
c,v

〈ck|vj|vk〉
εc(k)− εv(k)

Aλ
vck

∥∥∥∥∥
2

×
{

1
Eλ − h̄(ω + iγ)

+
1

Eλ + h̄(ω + iγ)

}
(3.283)

vj denotes the corresponding Cartesian component of the single-particle velocity op-
erator and γ the damping constant. Here the contributions of the anti-resonant part
of the exciton Hamiltonian is formally included, while the coupling parts are ne-
glected. This expression is straight forward to calculate but requires the solution of
the eigenvalue problem (3.282). Since dim(N) = NvNcNk this algorithm scales with
O(N3), which is computationally prohibitive for larger systems. A better scaling ap-
proach is to formulate the calculation of the polarizability as an initial value problem.
Introducing the dipole moment vectors

µ
j
vck =

〈ck|vj|vk
εc(k)− εv(k)

(3.284)

allows to rewrite Eq. (3.283) according to:

αM
jj (ω) =

4e2h̄2

Ω ∑
λ

‖〈µj|Aλ〉‖2
{

1
Eλ − h̄(ω + iγ)

+
1

Eλ + h̄(ω + iγ)

}
(3.285)

This equation reads in Fourier representation

αM
jj (ω) =

4e2h̄2

Ω
i
∫ ∞

0
dt ei(ω+iγ)t{〈µj|ξ j(t)〉 − 〈µj|ξ j(t)〉∗} (3.286)
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with the time evolution of the vector |ξ j(t)〉 being driven by the pair Hamiltonian:

ih̄
d
dt
|ξ j(t)〉 = H|ξ j(t)〉, |ξ j(0)〉 = |µj〉 (3.287)

Subsequently the initial value problem defined by Eq. (3.287) is solved using a finite
difference method [180] according to:

H|ξ(ti+1)〉 = ih̄
|ξ(ti+2)〉 − |ξ(ti)〉

2∆t
(3.288)

The equivalence can be shown by integrating |ξ(t)〉 = eHt/ih̄|µ〉 and utilizing the
spectral representation in Eq. (3.281). Both Eqs. (3.285) and (3.286) lead to numerically
equivalent spectra. However, the latter approach requires much less computational
resources. Only one matrix-vector multiplication is required per time step, with ∆t <

h̄/‖H‖. The Fourier integral (3.286) can be truncated due to the exponential e−γt. As a
consequence the required number of time steps and thus matrix-vector multiplications
is governed mainly by γ. For γ = 0.1 eV the number of steps is of the order of
103. Thus the scaling is of the order of O(N2), compared to O(N3) for the matrix
diagonalization. Moreover, the matrix-vector multiplications are easily parallelized
or vectorized on massively parallel or vector architectures. Hence it is possible to
incorporate all relevant many-body aspects of optical excitations into first principles
calculations.

2.3.3e Implications on the bandstructure and dielectric tensor

The impact of many-body corrections as presented above will now be discussed at the
example of the lithium niobate band gap (see the present author’s Publ. [10]). LiNbO3

crystallizes in a trigonal structure with 10 atoms per unit cell (cf. Fig 3.11). The ground
state is ferroelectric featuring the space group R3c. Its electro-optic, photorefractive
and nonlinear optical properties are extensively used in a number of devices, such
as surface acoustic wave filters and optical modulators for the telecommunications
market, i. e. in mobile phones.

Given the vast range of applications, the knowledge about its electronic and optical
properties is surprisingly limited. Especially the direct band gap of 3.78 eV for the
ferroelectric phase – frequently cited in the literature – is actually concluded from op-
tical experiments [169]. Thus it is affected by electron-hole attraction effects which may
reduce the actual band gap, i. e., the difference between ionization energy and elec-
tron affinity, substantially. The issue is complicated further by the fact that actually
various band gap values have been reported, all concluded from optical absorption
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experiments. They range from the indirect gap of 3.28 eV [171] to values of 4.0 or 4.3
eV [172, 173].

Figure 3.11: Primitive unit
cell of hexagonal LiNbO3 in
ferroelectric phase.

The theoretical understanding is also limited, since only
few studies are available that address the optical and elec-
tronic properties. Most are based on a single-particle pic-
ture and neglect quasi-particle effects that typically widen the
band gap by a large fraction of its value. The reported
values range between 3.48 to 3.50 eV [174, 175]. Thus the
seemingly good agreement between measured and calcu-
lated band gaps for LiNbO3 may result from a fortuitious
error cancellation between the possibly large exciton binding
energy and the electronic self-energy. The Green’s function
techniques presented above are suitable to clarify this is-
sue.

First-principles projector augmented wave (PAW) calcula-
tions were employed using the VASP implementation of
the DFT-GGA [104]. A (4× 4× 4) k-point mesh was used
to sample the Brillouin zone. The electron wave functions
were expanded into plane-waves up to an energy cutoff of
400 eV, with the mean-field effects of exchange and correla-
tion in GGA modeled using the PW91 functional. First self-energy and subsequently
electron-hole attraction effects were included utilizing the Green’s function schemes
described in the previous sections. It should be noted that the employed model di-
electric function yields results that are typically accurate within about 10% of the
complete calculations [163]. However, it offers another degree of freedom: by varying
ε∞ in Eq. (3.271) one can also account for lattice polarization effects of the system.

On this basis the Kohn-Sham energies were plotted along high symmetry lines of the
hexagonal Brillouin zone (cf. Fig 3.12a, dashed blue lines). The notation of the corre-
sponding high symmetry points is illustrated in Fig. 3.13. Within the single-particle
approximation a band gap of 3.48 eV is obtained in good agreement with previous
DFT calculations [174]. The valence-band maximum (VBM) occurs at the Γ point cor-
responding to O 2p states, while the conduction-band minimum (CBM) is located at
0.4 · ΓK corresponding to Nb 4d states.
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Figure 3.12: a) DFT (dashed blue line) and GW (continuous black line) bandstructures of ferroelectric
LiNbO3 (cf. Fig. 3.13 regarding the notation of high symmetry points). Quasi-particle corrections
widen the indirect band gap from 3.48 eV (DFT-GGA) to 6.53 eV (GWA). b) Parallel and perpendicular
components of the dielectric function at GGA, GWA and BSE levels of theory, respectively. Solid and
dotted lines indicate the results if pure electronic and electronic screening plus lattice polarizability,
respectively, are taken into account.

Figure 3.13: Notation of high symmetry
Brillouin zone points.

However, the band gap calculated within DFT-
GGA does not correspond to the optical gap
measured experimentally, since neither elec-
tronic quasi-particle, i. e., self-energy, effects
nor electron-hole attraction, i. e. excitonic ef-
fects, are included. In order to estimate the
size of quasi-particle effects GW calculations
were performed. The accordingly corrected
energy bands are shown as solid lines in Fig.
3.12a. The band gap is opened substantially
accompanied by slight dispersion changes. For
example, the CBM is relocated from 0.4 · ΓK to 0.6 · ΓK. The – thus still indirect – band
gap amounts to 6.53 eV.

The single-particle excitations are accompanied by a rearrangement of the remain-
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ing electrons in the solid, which screen the excited electrons and holes. However,
polar materials, such as LiNbO3, feature longitudinal optical phonons that give rise
to macroscopic electric fields that couple to the excited electrons/holes and modify
their motion. Thus it is to be expected that the lattice polarizability contributes to the
dressing of the quasi-particles. This effect is not included in the GWA band structures
in Fig. 3.12a, which assumes a purely electronic screening. In principle, to study
the impact of the lattice polarizability upon the single-particle excitation energies the
electron-phonon coupling needs to be considered. As discussed by Bechstedt et al.
[177], however, the GWA in conjunction with the model dielectric function suggests a
simple way to estimate the magnitude of possible lattice polarizability effects, by mod-
ifying the modeling of the screening. Rather than using ε∞ for the purely electronic
screening, one considers to some extent also the contribution of the lattice polarizabil-
ity ∼ (ε0 − ε∞). In the case of LiNbO3, where the static dielectric constant ε0 ≈ 40
is nearly one order of magnitude larger than the optical dielectric constant ε∞ ≈ 5
[169, 170], large effects are to be expected. Assuming a partial lattice contribution to
the screening, by considering a dielectric constant of 20, yields quasi-particle shifts of
about half the size in comparison to those obtained for purely electronic screening.
Thus the band gap assumes a value of 5.37 eV.

In the next step electron-hole attraction effects are incorporated by solving the Bethe-
Salpeter equation. Fig. 3.12b shows the optical spectra according to the the three
levels of theory: DFT-GGA, GWA, and BSE. Again it is not clear to which extent lat-
tice polarizability effects contribute on the time scale of the formation of Coulomb
correlated electron-hole pairs. In order to provide an estimation of their size a partial
lattice contribution was assumed for both the calculation of the quasi-particle ener-
gies and the screened electron-hole attraction entering the two-particle Hamiltonian
(3.279), shown as dotted lines in Fig. 3.12b. The corresponding results for a purely
electronic screening are indicated as solid lines.

The spectrum obtained within DFT-GGA agrees roughly with earlier independent
particle results [175, 176]. There are two main features of the optical absorption cen-
tered at about 5 and 8 eV. They arise from transitions between O 2p and Nb 4d states.
The inclusion of the many-body electron-electron interaction in GWA yields a nearly
rigid blue shift of the spectra by about 1.5–3 eV, depending on the screening. The
electron-hole Coulomb correlation, accounted for by solving the BSE, changes the
lineshape somewhat. The first peak of the low energy main feature becomes more
pronounced, and the hole feature is redshifted compared to the GWA spectrum. It is
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now positioned at about 5.5 or 6.5 eV, depending on whether or not a partial lattice
contribution is accounted for. The oscillator strength of the originally rather broad (∼
2 eV) high-energy main feature is redshifted and transformed into a single sharp peak
at about 9.5 or 10.5 eV, respectively.

Compared to the experimental data for ferroelectric LiNbO3, where absorption peaks
at 5.3–6 and 9.2–10eV are observed [178, 179], the inclusion of self-energy and excitonic
effects improves the theoretical description substantially. This concerns both the peak
positions and the line shapes, which sharpen due to the inclusion of excitonic effects.
Interestingly, the experimental observation that the first absorption peak is broader
for ε‖ than for ε⊥ in ferroelectric material [179] is reproduced in the calculations that
account for electron-hole interactions much more clearly than on the single-particle
level of theory. The surprisingly good agreement between the Kohn-Sham gap with
experiment stated often in the literature is simply fortuitious. Quasi-particle effects
widen the band gap drastically beyond its DFT value. On the other hand, strong
excitonic effects with exciton binding energies of the order of 1 eV can be expected.

2.4 Program packages (VASP, PWScf/WanT, DP)

The DFT calculations presented in this work are performed with the Vienna ab-initio
simulation package (VASP). VASP is commercial software and can be obtained from
the VASP-group at the university of Vienna [104]. It is an implementation of the plane-
wave basis set scheme in reciprocal space and employs the pseudopotential approach
(NC, USPP and PAW). The Kohn-Sham equations are solved for given error margins
using an iterative approach (RMM-DIIS). Ionic relaxation is performed by minimiz-
ing the Hellmann-Feynman forces employing conjugate-gradients or quasi-Newton
schemes. Dipole corrections allow to minimize interactions between neighbouring
supercells. VASP supports the calculation of optical transition matrix elements in
independent particle approximation. An unofficial version also allows to perform
optical calculations within the GW approximation and to solve the Bethe-Salpeter
equation.

Intraband contributions are not taken into account by VASP. The dielectric properties
(DP) package was employed to obtain intraband corrections for the treatment of
metallic cases [182]. These corrections were subsequently added to the spectra ob-
tained by VASP.
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The equilibrium Green’s function scheme of the Landauer coherent transport formal-
ism, as described in 4, is implemented in the Wannier Transport (WanT) program pack-
age. The software is released under the GNU General Public License as open source
[132]. In principle it operates as a post-processing of the ground-state wavefunctions
of any plane-wave DFT program package. It allows the use of both norm-conserving
and ultrasoft pseudopotentials. The minimization of the Wannier functions is per-
formed employing conjugate-gradients and steepest-descent schemes. For the present
work it was interfaced to the Plane-Wave Self-consistent field (PWScf) program package
[131]. This implementation of plane-wave DFT is also released as open source under
the GNU general public license.

A multitude of tools for data processing and manipulation was self-implemented
employing either PERL or Fortran.
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The true delight is in the finding out rather than in
the knowing.

– Isaac Asimov

Chapter 3

Transport properties of the clean
Si(111)-(4×1)/(8×2)-In surface

Predicting the internal structure of materials based on first principles density func-
tional theory (DFT) calculations is one of the prime examples of the achievement of
modern solid state physics. However, in some cases – such as the presently examined
In/Si(111)-(4×1)/(8×2) nanowire array – the results are not without ambiguity. This
chapter presents several different structural models for the In/Si(111)-(4×1)/(8×2)
nanowire array. It is discussed why an unambigous identification of the low temper-
ature (LT) internal structure is not possible based on the total energy results alone.
Subsequently, the electronic and transport properties are derived for the competing
structural models and are compared to the available experimental data.

3.1 Direct approaches to structure and why they fail

Before any of the methods described in the previous chapter can be applied to predict
the unknown properties of any system their accuracy has to be ensured and sensible
numerical parameters need to be obtained. This is usually performed by “predict-
ing” the experimentally well-known bulk-properties of the system of interest’s con-
stituents, in this case In and Si. At equilibrium the free energy F(T, V) is minimized
and for T → 0 K the entropy contribution can be neglected:

0 ≡ p = −
(

∂F(T, V)
∂V

)
T

∣∣∣∣
V=V0

≈ −∂Etot(V)
∂V

∣∣∣∣
V=V0

(1.1)

Thus the equilibrium condition may be reduced to the total energy Etot obtained by
DFT. Varying the lattice constant a of bulk-In or bulk-Si, respectively, leads to different
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Figure 1.1: Schematic top views of a) the ideal (4×1) model of the room temperature structure and
b/c) the (8×2) trimer and hexamer structural models, respectively. Arrows indicate the movement of
In atoms leading to the formation of trimers and hexamers.

total energies that can be fitted employing the Murnaghan equation of state:

F(T, V) = F(T, V0) +
B0V

B′0(B′0 − 1)

[
B′0

(
1− V0

V

)
+
(

V0

V

)B′0
− 1

]
(1.2)

Hence the fit yields the lattice constant a0 and bulk-modulus B0 at equilibrium. This
approach allows to obtain a set of numerical parameters that lead to converged re-
sults that are – depending on the employed pseudopotentials – in good agreement
with experiment. The present work uses PAW pseudopotentials in LDA and GGA.
For these class of pseudopotentials a cutoff energy of EC = 250 eV was sufficient to
obtain converged results and is thus employed throughout the present work. The
In/Si(111)-(4×1), (4×2) and (8×2) surfaces are simulated by repeated assymmetric
slabs with six layers of Si and a vacuum region equivalent in length. Hydrogen is
used to saturate the dangling bonds at the bottom sides of the slabs. The k-space inte-
grations are performed using uniform meshes equivalent to 32 points in the Brillouin
zone of the (4×1) surface.
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GGA LDA
Reconstruction Core d Valence d Core d Valence d
(4×2) trimer 0 5 1 2
(8×2) trimer -0.4 -5 -0.5 -0.6
(4×2) hexagon 36 48 5 15
(8×2) hexagon 25 27 -12 2

Table 1.1: Formation energies (in meV per (4×1) unit cell) of In/Si(111) surface reconstructions
relative to the ideal (4×1) chain in dependence on the treatment of the electron exchange-correlation
and the explicit inclusion of the In 4d states (cf. Publ. [12]).

Fig. 1.1a shows the structure of one In nanowire that is comprised of two ideal zigzag
chains in the (4×1) unit cell parallel to the [11̄0] direction. This structure represents a
local minimum of the surface energy. The displacement of the outer In atoms by about
0.2 Å towards each other – as indicated by horizontal arrows in Fig. 1.1a – to form
pairs and finally trimers with one of the inner In atoms gives rise to another, nearly
degenerate local minimum of the surface energy (cf. Fig 1.1b). The shear movement
of the inner In atoms required to form hexagons – as indicated by diagonal arrows
in Fig. 1.1b – is hindered by an energy barrier. After enforcing this displacement, a
new energy minimum is reached, where the distance of two inner In atoms is reduced
from 3.12 to 2.96 Å (cf. Fig. 1.1c). The antiphase arrangement of hexagons or trimers
in adjacent wires leads to the doubling of the unit cell perpendicular to the wires.

When discussing the calculated energies for these structures, a word of caution is
appropriate. The peculiar low-symmetry ground state of bulk In is related to subtle
electronic effects and – due to its low stabilization energy of only 2 meV per atom –
is easily distorted [183, 184]. The correct simulation of the pressure-induced phase
transition of bulk In requires the inclusion of the relativistic mass velocity and Dar-
win terms as well as the treatment of the In 4d states as valence electrons [185]. While
the inclusion of relativistic effects is out of reach for these large surface structures,
the influence of the d-electron treatment (core or valence) and the XC approximation
(LDA or GGA) has been probed. Similar to bulk In, the outcome of the calculation
for substrate-supported In nanowires depends sensitively on the methodology used
to describe the electron-electron interactions (cf. Tab. 1.1).

Within GGA, the formation of trimers rather than hexagons in (8×2) symmetry is
the most energetically favored structure. This holds also in LDA, provided the In 4d
electrons are explicitly included. However, once the In 4d electrons are frozen into
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the core within LDA the (8×2) hexagon structure becomes the most stable one by
far. In contrast, the (4×2) hexagon structure is not stable in any of the examined ap-
proximations. Irrespective of the computational details, the antiphase arrangement of
trimers or hexagons in (8×2) unit cells is favored over the corresponding arrangement
in (4×2) symmetry. The formation of trimers or hexagons leads to local electron accu-
mulation and loss. The alternating arrangement of these charge oscillations in neigh-
bouring chains lowers the surface Madelung energy. Still, the overall energy gain is
very small, at most 12 meV per (4×1) unit cell according to the calculations. This
explains the sensitivity of the (4×1)→(8×2) phase transition with respect to external
perturbations found experimentally. Tiny amounts of impurity atoms, for example,
may prevent the phase transition or even revert the LT (8×2) phase to the (4×1) sur-
face [44, 53, 64]. Such a behaviour seems hard to explain assuming the (4×1) structure
to be a dynamic fluctuation between degenerate ground states with lower symmetry,
as suggested in Ref. [35]. Obviously, the present findings concerning the surface en-
ergy are less conclusive than the results presented by González et al. [34, 35]. A recent
study by Cho et al. also found the hexagon structure to be unstable within plane-wave
DFT-GGA.

In conclusion, present day first principles calculations cannot describe the energetics
of this system accurately enough to determine this system’s geometric structure di-
rectly and unambigously. Today the required relativistic treatment is still numerically
unfeasible. These results were published in Publ. [12]. However, this systems’s elec-
tronic and transport properties are highly interesting as well. Fortunately, these are
rather insensitive with respect to computational details. Due to their strong depen-
dence on the geometry, transport and electronic properties are also expected to give
new insights with respect to the surface structure.

3.2 Electronic properties

To allow for a quantitative comparison of surface and bulk band structures as well
as transmittances from transport calculations it is necessary to gauge the respective
properties along the energy axis. A natural choice for the gauge is the effective single-
particle potential ve f f (r) of bulk-Si. However, before the actual gauging the Si-bulk
band structure needs to be projected onto the surface Brillouin zone of the respective
structural model for the In/Si(111) surface. After filling the unit cell of the respective
structural model completely with bulk Si the band structure is calculated along the
surface Brillouin zone for different fixed vectors k⊥ perpendicular to the projection
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Figure 2.2: Projection of the Si-bulk band structure onto the surface Brillouin zone of the Si(111)-
(4×1)-In structural model. The projection is performed along the k⊥-direction.

plane. Fig. 2.2a shows the result for the (4×1) unit cell. The actual projection is sub-
sequently performed along k⊥ (cf. Fig. 2.2b).

Averaging the Kohn-Sham effective single-particle potential in plane with the In nano-
wires for both the (4×1) surface and bulk-Si in the equivalent unit cell yields the si-
nusoidal oscillations shown in Fig. 2.3a. Each one of the deep minima corresponds to
the location of one Si bilayer along the surface’s normal axis. The more shallow one
of the (4×1) surface (indicated in red) represents the In nanowires themselves. The
actual gauge can then be performed by shifting the In/Si(111)-(4×1) band structure
along the energy axis by the difference ∆E of the Si bilayer’s effective single-particle
potentials of both systems. This procedure yields the (4×1) surface band structure
shown in Fig. 2.3b, with the projected Si-bulk states indicated by the filled gray area.
The valence band maximum is assumed as the energy zero. Applying the analogous
procedure to the (4×2)/(8×2) structural models leads to the surface band structures
shown in Fig. 2.4a-d.

The (4×1) structural model exhibits three quasi-1D In surface bands (indicated in
blue) with strong dispersion along the chain direction (ΓM), but weak dispersion
perpendicular to the chains (XM), in agreement with earlier work [29]. Upon trimer-
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Figure 2.3: a) Total effective single particle potential averaged in plane with the nanowires for both
the Si(111)-(4×1)-In surface and Si-bulk in the equivalent unit cell. b) Band structure of the (4×1)
structural model of the room temperature phase. Regauging of the In surface bands with respect to the
Si bulk band structure was performed as indicated in Fig. 2.3a.

ization (cf. Fig. 2.4a/b) local gaps are opened near the X and M points. However,
one surface band still crosses the Fermi level, in accordance with Ref. [186]. Hence
the trimer structures do not exhibit a fundamental energy gap in clear contradiction
to the experimental findings in Refs. [30, 31]. The band structure calculated for the
hexagon model in (4×2) symmetry largely reproduces the results by González et al.
[35]. It should be noted, however, that González et al. in contrast obtained the valence
band maximum (VBM) at the Γ-point, while in the present work the VBM is located
near the X-point. This numerical artifact is assumed to be caused by the incomplete-
ness of atomic orbitals as a basis set, which are employed in the work by González et
al. While the hexagon model was originally discovered within this local orbital basis
set, the structural relaxations may not be entirely accurate due to such inconsistencies
in the electronic structure. The plane-wave DFT results in the present work can be
expected to be more reliable.

Remarkably, the small changes of the chain geometry and the interwire interaction
upon arranging the hexagons in an antiphase (8×2) symmetry lead to rather distinct
changes in the band structure, in addition to the band folding. The gap between
occupied and unoccupied surface states near Γ is widened, and the fundamental gap
near X’ shrinks and becomes more direct. Given the underestimation of the band gap
within DFT, the calculated band gap of 0.05 eV (GGA, 4d in valence) is consistent
with the experimental findings of 0.16 eV from STM [42] and 0.3 eV from surface
conductivity measurements [44]. The position of the calculated maximum of occupied
bands near X’ is confirmed by photoelectron spectroscopy [30, 36].
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Figure 2.4: Band structures of the a/c) (4×2) and b/d) (8×2) trimer and hexagon models, respectively.
Regauging of the In surface bands with respect to the Si bulk band structure was performed as indicated
in Fig. 2.3a.

3.3 Transport properties

Based on the derivation of the electronic properties as discussed in the previous sec-
tion, one can now calculate the electron transport properties for these systems. How-
ever, performing these transport calculations is not as straight forward as in the case
of DFT calculations. Therefore a brief discussion of some numerical modeling aspects
is in order before proceeding to the actual results.

3.3.1 Computational details

As described in chapter 2.2.4 electron transport is conveniently and naturally ex-
pressed in terms of a localized basis set. Since the plane-wave basis of DFT is a
priori delocalized, it is necessary to change the basis set. In this case Wannier func-
tions (WFs) were chosen because they can be obtained from plane-waves by a simple
unitary transformation and span exactly the same Hilbert space. Thus there is no
approximation and no loss of the ab initio accuracy involved in this basis set trans-
formation. However, the resulting Wannier functions are non-unique due to the k-
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Figure 3.5: a) Model system for the unreconstructed (4×1) surface with nearest neighbour Si atoms
only. The Si dangling bonds are saturated by hydrogen. b) Orbital symmetries of Wannier trial centers
and isosurfaces of the resulting Wannier functions after the minimization procedure.

dependent arbitrary phase factor of the Bloch functions and the invariancy of the
electronic structure problem as opposed to the transformation ψnk → eφn(k)ψnk (cf.
chapter 2.2.4). Thus the requirement of a localized basis set implies that a basis set of
maximally localized Wannier functions must be identified within the infinite number of
possible WF basis sets.

Due to the size and complexity of this minimization problem’s phase space a fully
automatic solution is impossible in all but the most simple cases. After choosing an
energy window within the electronic bands are to be described by WFs, the localiza-
tion procedure must be supplied with trial Wannier functions – one for each electronic
band – whose symmetries and positions should be sufficiently close to the ones of the
minimized, optimal Wannier functions. In this case atomic orbitals were employed as
Wannier trial centers. The exact choice of these trial centers is highly critical with re-
spect to whether the WFs converge towards an acceptable solution or not. Beginning
with a very small system – i. e. a single nanowire in a (4×1) unit cell with the near-
est neighbour Si atoms only (cf. Fig. 3.5a) – one can conveniently test different trial
centers for their convergence properties. After much experimentation sensible trial
centers for the In nanowires turned out to be s-orbitals placed on each of the bonds
and pz-orbitals oriented along the surface normal located directly at the In atoms.
This way convergence can be achieved within a reasonable amount of time while all
relevant bands are represented. It is to be noted that the In 4d bands are treated as
frozen into the core since they do not contribute to the conductance. Thus no d-orbital
trial centers are required.

If the system under examination contains extended vacuum regions – as it is the case
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for the In nanowires – individual WFs often wander off into these vacuum regions.
By delocalizing completely they significantly improve the localization properties of
the remaining WFs. However, from the employed tight-binding point of view the re-
sulting WF set is completely useless, of course. To suppress this behaviour the WFs
need to be weighted by penalty functionals that effectively attach a spring potential
to the WF centers (cf. section 2.2.4c). The amplitude of this penalty functional has to
be chosen with care. A too small amplitude will not prevent the WF from wandering
off, while a too large amplitude prohibits the localization procedure from ever attain-
ing convergence. To ensure as accurate results as possible the states contained within
an interval of ±1.5 eV around the Fermi energy were treated as frozen during the
disentangle-procedure (cf. section 2.2.4c). Since most of the bands within this interval
are fairely well separated with very few degeneracies the WFs localization properties
are barely affected.

The resulting Wannier functions after the minimization procedure are depicted in Fig.
3.5b, with the average spread amounting to 5.5 Å. Since the tight-binding formalism
requires any basis function overlaps to be negligible beyond nearest neighbour unit
cells this calculation is still slightly out of convergence with respect to the unit cell
size (5.5 Å average spread as opposed to the unit cell’s shortest lenght of 3.86 Å).
While this treatment is adequate for convergence studies, the later calculations need
to be performed in larger unit cells.

It should be stressed again that this treatment is formally exact. However, the condi-
tion that the resulting Wannier function set has to fulfill the tight-binding condition
of negligible interactions between next-nearest neighbour cells and the multitude of
numerical parameters make the derivation of a suitable WF set indeed extremely
error-prone. Thus the final set of WFs needs to be checked very thoroughly. The WFs
must describe exactly the same system within the tight-binding approach as DFT does
within its associated plane-wave basis. Hence a very useful test is to recalculate the
system’s electronic properties from the Hamiltonian in the Wannier basis. Naturally,
the results must be identical to the original DFT data. Both the electronic structures
obtained from DFT (circles) and the WF Hamiltonian (solid lines) for this model sys-
tem (cf. Fig. 3.5) are shown in Fig. 3.6. Around the Fermi energy they match very well
but increasing deviations occur towards larger energies. This is due to the too small
size of the unit cell as well as because the states are not treated as frozen anymore
above 1.5 eV.
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Figure 3.6: Comparison of band structures obtained from DFT (circles) and within the Wannier func-
tion basis (solid lines), respectively, and conductance G(E) of the (4×1) RT phase with nearest neighbour
Si atoms only (cf. Fig. 3.5). The three In surface bands are marked in red.

In this simple test case the conductor and the leads are assumed to be identical. Thus
there is no contact resistance and the respective system’s conductance G(E) must be
identical to the number of modes – in this case the number of bands – at any given
energy E. Comparing the electronic structure with the conductance obtained from the
WF basis set Green’s function approach in Fig. 3.6 shows that this condition is satis-
fied. Thus the description of the system within the WF basis set is indeed accurate.

So far the (4×1) RT model system contained only the nearest neighbour Si atoms as
substrate. Fig. 3.7 shows the conductance spectra for the same model system con-
taining up to 2 bilayers of Si substrate. The first spectrum is identical to the right
hand side of Fig. 3.6. It is obvious that the In surface states depend very little on
the substrate. Within an interval of ±0.2 eV around the Fermi energy the obtained
conductances are identical. Thus for the In/Si(111)-(4×1) surface electron transport is
indeed well described by model structures that contain only the In and nearest neigh-
bour Si atoms with the remaining Si dangling bonds terminated by hydrogen.

One approximation that was introduced with this model system is its strict quasi
one-dimensionality, as it does not represent a surface anymore. Within the employed
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Figure 3.7: Quantum conductance spectra for electron transport along the chain direction calculated
for In/Si(111)-(4×1) model structures containing only the nearest Si neighbour atoms or 1 and 2
substrate bilayers, respectively (cf. Publ. [11]).

Wannier function methodology a two-dimensional system is treated as an inifinite
number of independent parallel one-dimensional systems. In essence a huge number
of k-points perpendicular to the transport direction would be required for an accurate
treatment. For the structures of interest in the present work such a treatment is nu-
merically unfeasible. A better approach to retain at least some of the original surface
reconstruction’s interchain coupling is to perform all calculations within the (8×2)
unit cell, irrespective of the actual translational symmetry. This treatment also en-
sures that the unit cell is large enough with respect to the tight-binding condition. On
this basis it is now possible to perform electron transport calculations for the different
In nanowire array’s structural models.

3.3.2 Conductance spectra and discussion

Fig. 3.8 shows the calculated quantum conductances of five infinite nanowires that
model the In/Si(111) surface. The atomic coordinates of the In and neighbouring
Si atoms were taken from the relaxed surface structures (GGA, In 4d electrons in
valence). The electron transport calculations were performed as described in the pre-
vious section, employing a 20×1×1 k-point grid. Obviously, the energy dependent
transmittance is very sensitive with respect to the wire geometry, as expected from the
band structures discussed in section 3.2. Because of the free electrons in the metallic
In wires of the In/Si(111)-(4×1) surface, its transmittance is nearly constant over the
energy range of the Si band gap. The value obtained in this calculation somewhat
overestimates – by roughly a factor of 2 – the experimentally determined surface-state
conductance in the RT regime [33, 43, 44]. This is partially an effect of the metallic
contacts and their scattering as well as related to the thermal dissipative scattering to
phonons at finite temperature.
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Figure 3.8: Quantum conductance spectra for electron transport along the chain direction calculated
for In/Si(111) model structures (cf. Publ. [12]).

The formation of In trimers with (4×2) or (8×2) symmetry does not quench the con-
ductance but leads to a reduction for energies very close to EF, i. e. within about
10−1 eV. For energies farther below or above EF, the transmittance resembles those
of the ideal chains. Only some conduction channels shift slightly in energy or are
somewhat reduced in magnitude. The conductance changes upon hexagon forma-
tion are significantly more pronounced. In both the (4×2) and the (8×2) symmetry,
the transmittance through surface states is strongly reduced over an energy range of
nearly 1 eV. For energies of 10−1 and 10−2 eV around EF there is zero conductance for
hexagons arranged in (4×2) and (8×2) symmetry, respectively. These findings may
well account for the vanishing surface-state conductance measured for the LT phase
[33, 44] of the In nanowires (cf. Publ. [12]).

The above work also represents a solid foundation for determining the impact of
doping on the wires’ structure and conductance, as examined in the following chapter.



Electricity, n.: The cause of all natural phenomena not
known to be caused by something else.

– Ambrose Bierce

Chapter 4

Transport properties of the doped
Si(111)-(4×1)/(8×2)-In surface

This chapter begins with the determination of the preferred adsorption positions and
geometric structures for H, O, In and Pb impurity atoms. The influence of these de-
fects on the In nanowire conductance is evaluated employing a lead-conductor-lead
partitioning of the system, where the In chain segment with the defect forms the con-
ductor and the semi-infinite leads are modeled with ideal In nanowires. Subsequently,
several different conductance affecting mechanisms are presented and analyzed in de-
tail.

4.1 Adsorption of impurity atoms on In/Si(111)-(4×1)

As discussed in section 3.1 DFT calculations have difficulties to describe accurately
the subtle energetics of the temperature-induced (4×1)→(8×2) phase transition (cf.
Ref. [35], Publ. [12]). On the other hand, all measured properties of the RT (4×1)
phase are well reproduced within DFT [52, 187, 188, 189]. Therefore, and because
the potential energy surfaces (PES) of the adatoms considered here (cf. Figs. 1.2 and
1.1) turn out to be highly corrugated, the following DFT calculations for ideal and
adatom-perturbed In/Si(111)-(4×1) surfaces are expected to be accurate.

4.1.1 Potential energy surfaces (PES)

As a starting point the In/Si(111)-(4×1) surface needs to be probed individually for
each impurity atom species for energetically favourable adsorption positions. By cal-
culating the surface adsorption energies at fixed lateral positions one can construct a
“map” of the adsorption energetics, the so-called potential energy surface (PES). While
the adatom itself was fixed laterally, it was free to relax along the surface’s normal
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Figure 1.1: Potential energy surfaces calculated for indium and lead adatoms on the In/Si(111)-(4×1)
surface The minimum energy positions are marked by × (cf. Publ. [9]).

direction. No restrictions were applied to the surface’s degrees of freedom, with the
exception of the lowest Si layer fixed at Si-bulk coordinates. These calculations were
performed in a (4×3) unit cell with 3 bilayers of Si. A 8×2×1 k-point mesh was
employed to sample the Brillouin zone at an energy cutoff of 400 eV for the wave-
function expansion. The In 4d states were treated as core electrons. The adsorption
energy Eads is given by

Eads = EInSi(4×1)+adatom − EInSi(4×1) − Eadatom (1.1)

where EInSi(4×1) and EInSi(4×1)+adatom denote the total energies of the clean and impu-
rity atom adsorbed In/Si(111)-(4×1) surfaces, respectively. Eadatom is the total energy
of the single isolated adatom.

Figs. 1.1 and 1.2 show the calculated energy landscapes in terms of Eads. In and Pb
prefer a position between neighbouring In chains. In case of Pb an adsorption is also
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Figure 1.2: Potential energy surfaces calculated for hydrogen and oxygen adatoms on the In/Si(111)-
(4×1) surface. The minimum energy positions are marked by × (cf. Publ. [9]).

possible besides the In chain next to one of the inner In chain atoms. However, this
minimum on the PES is slightly shallower. O adsorbs threefold coordinated on top
of one of the In chains. Similar to Pb, O also adsorbs between neighbouring Si and
In chains. For H, however, the adsorption on the In chains represents only a local
minimum on the PES. Instead H prefers to bond directly to one surface Si atom.

In Ref. [64] a possible mobility of O adatoms on the In/Si(111)-(4×1) surface was sug-
gested as one approach to explain the experimentally observed increase of the critical
temperature TC. In contrast to the other adatom species oxygen is strongly attracted
along the entire range of the In chains. However, a closer look reveals rather high
diffusion barriers on the order of 0.5 eV between the preferred adsorption sites. Thus
oxygen is expected to be immobile on the In/Si(111)-(4×1) surface. Diffusion barriers
of similar magnitude exist for the other adatom species as well (H: 0.5 eV, In: 0.25 eV,
Pb: 0.25 eV), effectively immobilizing any of these defects at room temperature.
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Figure 1.3: Schematic top and side views of In and Pb adatoms adsorbed on the In/Si(111)-(4×1)
surface.

4.1.2 Structural properties

Placing the respective adatom species at the minimum energy positions marked in
Figs. 1.1 & 1.2 and allowing the system to relax freely yields the geometric structures
illustrated in Figs. 1.3 and 1.4. While the preferred lateral positions of O, In and Pb
are similar, the adsorption geometries are not. Both the O and In adatoms are located
almost in-plane with the In chain atoms. This affects the structural relaxation of the
In nanowire considerably:

• In strongly displaces the adjacent In chain atoms in an outward direction.

• Pb prefers a pyramidal configuration on top of the In nanowire that induces
comparatively small deformations.

• H adsorbs on one of the surface Si atoms. Thereby the Si-In bond is broken
shifting the In atom slightly inwards. Otherwise the induced chain deformation
is small.

• For the O adatom the reverse is the case with respect to In deposition: O strongly
attracts the adjacent In chain atoms, moving them inwards.
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Figure 1.4: Schematic top and side views of H and O adatoms adsorbed on the In/Si(111)-(4×1)
surface.

This is reflected in the standard deviations of the In-In bond length distribution σ and
the average atomic shifts ∆̄ compiled in Tab. 1.1. The calculated positions of O and
Pb agree well with the available experimental data in Refs. [58, 61, 64]. In case of
H the actual position is somewhat more difficult to determine, since measurements
usually observe the H-induced structural deformations but not the H adatom itself.
Nevertheless, simulated STM images for H atoms adsorbed on the Si chains agree
well with experimental STM images [59, 60, 64]. No experimental data of sufficiently
high resolution could be found for In deposition.

Adatom species σ[Å] ∆̄[Å]
Ideal 0.01 0.00
H 0.04 0.21
O 0.11 0.24
In 0.12 0.38
Pb 0.07 0.16

Table 1.1: Standard deviation σ of the In-In bond length distribution and average shift ∆̄ of the In
chain atoms for ideal and defect-modified nanowires.
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Figure 2.5: a) Partitioning of the left lead – conductor – right lead (LCR) system into a (8×8)
conductor cell and separate (8×2) cells for the semi-infinite leads. The conductor supercell should also
contain part of the leads to treat the interface regions from first principles. b) Conductances of the ideal
unperturbed In nanowires calculated for the bulk case in a (8×2) supercell (black line) and employing
the full LCR formalism with (8×2)/(8×8) supercells (blue line), see text.

4.2 Transport properties

4.2.1 Computational details

Starting from the relaxed adatom positions, the influence of the perturbation on the
In nanowire conductance is calculated employing a left lead – conductor – right lead
(LCR) partitioning of the system. Here the In chain segment with the impurity forms
the conductor within a (8×8) wire segment. The semi-infinite leads are modeled with
ideal In nanowires in a (8×2) wire segment (cf. Fig. 2.5a). For the leads this is exactly
the same calculation as for the ideal In nanowires in the previous chapter. A 16× 1× 1
k-point mesh and an energy cutoff of 250 eV were found to result in converged spectra.

It is to be noted that the conductor supercell should also contain parts of the leads.
Thus the lead-conductor interface regions can also be treated from first principles,
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as both the conductor itself and the interface regions are simulated within the same
calculation. The amount of lead layers to be included within the conductor supercell
should be sufficiently large, so that the local electronic structure at the edges of the
conductor supercell resembles the electronic structure of the bulk leads. This conver-
gence can be controlled by comparing the respective WF Hamiltonian matrix elements
at the edges of both the lead and conductor supercells. A (8×8) supercell was found
to be sufficient.

In the next step the Hamiltonian matrix of the whole LCR system needs to be con-
structed. Constructing the matrix is performed manually by extracting the matrix
elements from the separate lead and conductor calculations. This process is highly
susceptible to both human and numerical errors. Thus it is very useful to perform the
LCR transport calculation first for a system whose conductance is already known. The
ideal In nanowires are a suitable test system, as their bulk conductance was derived
in the previous chapter employing a (8×2) supercell. Filling the conductor supercell
with an (8×8) section of the ideal In nanowires and attaching a (8×2) supercell for the
semi-infinite leads is a rather complicated way to describe the physically equivalent
system. Hence the resulting conductance must again be the same.

Fig. 2.5b shows the conductances of the ideal In nanowires derived from the (8×2)
bulk (black line) and (8×2)/(8×8) LCR calculations (blue line), respectively. The re-
sults show slight deviations from each other due to numerical noise and a small mis-
match in energy between the Hamiltonian matrix elements of the lead and conductor
calculations. As the matrix elements are expressed with respect to the Fermi energy
of the respective calculation, different calculations with different Fermi energies may
require a rigid shift of the matrix elements to avoid such a mismatch. However, in
this case the mismatch is very small indeed and the resulting conductances match
reasonably well. Especially within an interval of ±0.1 eV around the Fermi energy
the agreement is very close (4.0 as opposed to 3.8 in units of 2e2/h). Due to the
In wires’ metallicity conductance measurements are always performed close to EF.
Larger voltage drops across the wires would induce currents causing enough heating
of the array to ultimately destroy the wires. Thus the voltage range of about ±0.1 eV
is the most interesting one and the simulation can be considered accurate.

After performing these tests the ideal In nanowires in the conductor supercell can
now be replaced by the respective adatom-decorated and distorted In nanowires. The
calculational formalism remains identical.
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4.2.2 Conductance spectra

Figure 2.6: Quantum conductance spectra for electron
transport along the wire direction (upper part) and total
density of states (lower part) calculated for ideal and
adatom-modified In/Si(111) structures (cf. Publ. [9]).

Employing the previously described
formalism, the impact of the differ-
ent adatom-induced perturbations on
the In nanowire conductance is cal-
culated. In Fig. 2.6 the resulting con-
ductance spectra of ideal and adatom-
perturbed In nanowires is illustrated.
Compared to the calculations for the
ideal structure, a reduction of the con-
ductance at EF by more than one third
compared to the ideal chains is cal-
culated for the case of In adatoms.
While the experimental conditions are
not sufficiently well defined to allow
for a quantitative comparison, the cal-
culated reduction is of the same order
as measured [44]. Interestingly, apart
from hydrogen which does not sub-
stantially modify the electron trans-
port properties, distinct conductance
drops are predicted as well for Pb and
in particular for O, see Tab. 2.2. On
first glance one might want to explain
these findings with a reduced density of states (DOS) at the Fermi energy EF. How-
ever, as shown in Fig. 2.6 and Tab. 2.2:

Adatom species G [2e2

h ] DOS [a. u.]
Ideal 3.75 0.70
H 3.60 1.44
O 2.43 1.22
In 2.31 0.95
Pb 3.11 1.23

Table 2.2: Average quantum conductance G and DOS in the energy interval ±0.05 eV around the
Fermi energy.
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• The DOS increases irrespective of the specific adatom deposited

• The DOS of the perturbed nanowires shows at best a very weak correlation with
the conductance

For example, the DOS at EF is nearly equal for Pb and O. However, O is far more
effective in reducing the conductance. Obviously, the DOS does not suffice to un-
derstand the trend of the conductance change. From a classical point of view these
findings are rather puzzling: In spite of “making the wire thicker” and thus introduc-
ing many new electronic states within the wire the conductance is significantly lower.
However, before proceeding to a detailed examination of the involved quantum con-
ductance quenching mechanisms a few remarks with respect to the comparison of
experimental and theoretical conductance spectra are in order.

4.2.3 Adatom-localized phonon modes

As discussed in the previous chapter, the transmittance at EF somewhat overestimates
– by roughly a factor of 2 – the experimentally determined surface state conductance
in the RT regime. Besides effects of the contacts this can be attributed to thermal
dissipative scattering due to phonons at finite temperature. These effects arise as well
for perturbed In nanowires. However, the phonon scattering – neglected in Fig. 2.6 –
will modify the electron transport to different degrees.

In order to estimate the influence of adatom-localized surface phonons frozen-phonon
calculations were performed for the uppermost layer of each adatom-deposited struc-
ture, respectively. According to the frozen-phonon approach each atom is displaced
systematically once in each spatial direction to obtain the forces. In harmonic approx-
imation the forces are given by:

Fi(uj) = −ki,juj + li,ju2
j (2.2)

Fi(−uj) = +ki,juj + li,ju2
j (2.3)

The linear force coefficient can be extracted from two elongations:

ki,j =
Fi(−uj)− Fi(uj)

2
(2.4)

The atomic and cartesian indices were combined to simplify the notation. Symmetriz-
ing the force constant matrix K defined by ki,j and employing a harmonic approach
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Figure 2.7: Adatom-localized phonon modes for the In-deposited In nanowires and their impact on the
quantum conductance for room temperature occupation, see text.

u′ = ue−iωt (2.5)

one can obtain the eigenmodes and -frequencies by solving the associated algebraic
eigenvalue problem:

ω2Mu = Ku (2.6)

The resulting adatom-localized eigenvectors and -frequencies for In deposition are
illustrated in Fig. 2.7. Naturally, many more modes are in existence. However, since
they are not localized around the adatom they are similar for all examined structures
and thus also influence electron transport to similar degrees. To estimate an upper
bound for the influence of adatom-localized modes the nanowire atoms are elongated
along the scaled eigenvector b · u so that the mode’s mean potential energy V̄ =
1
2V(b · u) is set to V̄ = 1

2 kBT. The elongation-dependent potential energy V(u) of a
mode is given by:

V(u) = ∑
i

vi(u), [v1, v2, ..., vi](u) =
1
2

ω2Mu2 (2.7)
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Subsequently electron transport calculations were performed for the accordingly dis-
torted structures. Fig. 2.7 shows the resulting conductances for In deposition. Inter-
estingly, there are also modes that increase the nanowire conductance. However, from
the point of view of the phase transition this behaviour is understandable: At LT the
nanowires are semiconducting. Thus there must be phonon modes in existence, that
transform the LT structure to the metallic RT structure (these modes are identified
and discussed in detail in chapter 6). Nonetheless, most of the examined adatom-
localized modes decrease the conductance. Averaging over all 4 modes in an interval
of ±0.05 eV around the Fermi energy yields an average conductance drop of 9% for
In deposition.

The impact is different, however, for H deposition, which exerts practically no influ-
ence at all. This can be understood in terms of the H adatoms eigenfrequencies: The
hydrogen modes are much too high in energy to be excited at room temperature. Due
to the large computational cost the impact of O and Pb induced modes has not been
calculated so far. However, the derivation of the temperature dependent conductance
for doped In nanowires might be an interesting project for the future. In chapter 6 an
approach is presented to perform such calculations for the unperturbed In nanowires.
In principle the same approach can be applied to perturbed In nanowires as well.

In conclusion, the impact of the respective impurity atoms on the temperature de-
pendent conductance can be expected to be rather pronounced. In comparison with
experimental data the different effects of different impurities at finite temperatures
must be kept in mind. Now, the next section proceeds to a detailed examination of
the involved quantum conductance quenching mechanisms.

4.3 Conductance quenching mechanisms

4.3.1 Local density of states (DOS)

While the total DOS proved to be of little help in understanding the conductance
drops, one might suspect the local DOS to be more revealing. Fig. 3.8 shows a dif-
ference plot representing the adsorption induced changes of the local DOS at EF pro-
jected onto the plane of the Si(111) surface. In all cases a distinct and adatom-specific
LDOS modification upon adsorption is observed. I. e., In causes a sharp local DOS
increase close to the adatom that is accompanied by a DOS depletion at the next
nearest neighbour distance. The adsorption of O leads to a DOS redistribution from
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Figure 3.8: Adsorption induced changes (in arbitrary units) of the local density of states (LDOS) at EF
projected on the plane of the Si(111) surface. Negative and positive values indicate local DOS depletion
and accumulation with respect to the ideal In/Si(111) system, respectively (cf. Publ. [9]). Adatom
positions are marked by arrows.

the neighbouring to the adatom decorated In chain. Even hydrogen – that does not
affect the nanowire conductance and adsorbs on one of the Si atoms rather than on
the In chain – clearly affects the nanowire LDOS. From a qualitative point of view
adatom-induced changes in the local DOS may seem suggestive for understanding
the influence of adatoms on the nanowire conductance. However, no quantitative
correlation with the conductance could be deduced.

4.3.2 Potential-well scattering

In case of CO adsorption on substrate-supported Au chains, the drastic conductance
drop could be traced to the deep potential well arising at the adsorption site [190]. In
order to see whether a similar mechanism acts here, the local effective single particle
potential Ve f f (r) was extracted from the DFT calculations. This potential was aver-
aged subsequently in a plane perpendicular to the nanowire direction chosen large
enough to contain – within their covalent radii – the nanowire In atoms, as well as the
adatoms.
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Figure 3.9: a) Computational setup for numerically solving the 2-dim Schrödinger equation for a
gaussian wave-packet of Fermi-energy electrons traveling towards the Pb-induced potential well. b-f)
Snapshots of amplitude distribution after 0.225, 0.675, 1.125. 2.25 and 4.5 fs, respectively. The scaling
is adapted with time for optimum viewability.

Figure 3.10: Averaged (see text) effective poten-
tial along the wire direction calculated for ideal and
adatom-modified In/Si(111) structures (Publ. [9]).

As illustrated in Fig. 3.10, the systems
studied here differ drastically with re-
spect to the local potential. A very
deep potential well is formed upon Pb
adsorption, while additional In atoms
barely change the potential along the
wire direction. Thus it seems likely
that the conductance modification ob-
served upon Pb adsorption obeys a
similar mechanism as proposed in the
case of CO adsorbed Au chains [190].
Judging from Fig. 3.10, however, this
mechanism cannot explain the conduc-
tance drop upon In deposition: In adatoms reduce the In nanowire transmittance even
more than Pb, but do not give rise to large potential fluctuations.
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These considerations are corroborated by 1-dimensional model calculations, where
the time-dependent Schrödinger equation was solved numerically for the potentials
shown in Fig. 3.10 (cf. section 2.2.1a). The transmission of Fermi wave-vector elec-
trons across the Pb potential well is reduced by 8%, while a reduction by only 3
% is obtained in case of In. The difference becomes even more pronounced if the
Schrödinger equation is solved in 2 dimensions. Fig. 3.9a shows a 2-dimensional
projection of Ve f f (r) onto the plane of the Si(111) surface. Analogous to Fig. 3.10 the
potential was extracted from a volume slice containing the In nanowire atoms as well
as the adatoms within their covalent radii. A rotationally symmetric gaussian wave-
packet was placed in front of the defect. Fig. 3.9b-f shows the time-development of
the wave-packet. After an elapsed simulation time of 4.5 fs integrating over the trans-
mitted and received amplitude distributions yields a 12% conductance drop for Pb as
opposed to 2% for In.

4.3.3 Structural effects

Figure 3.11: Quantum conductance spectra for elec-
tron transport along the wire direction calculated for
ideal and adatom-modified In/Si(111) structures that do,
however, not contain the adatom itself (cf. Publ. [9]).

In order to understand the even more
pronounced conductance drop upon
In deposition, the initial observation
should be remembered that the ad-
atoms deform the nanowire to differ-
ent degrees, as can be seen from Tab.
1.1 and Figs. 1.3 and 1.4. While the
smallest deformations are observed
for H and Pb adsorption, In causes
substantial strain. Oxygen represents
an intermediate case. The computa-
tional modeling allows for separat-
ing the impact of the adatom-induced
structure deformation from the im-
pact of the adatom itself: Fig. 3.11 shows the quantum conductances resulting from
transport calculations that were performed for nanowire structures that are deformed
according to their relaxation in response to the adatom, but, however, do not contain
the adatom itself. The results are compiled in Tab. 3.3. As can be seen here, the –
comparatively small – geometry changes of the In nanowire upon adsorption of H
or Pb do not substantially reduce the wire conductance. This is in contrast to the
stronger distortions caused by the adsorption of oxygen or indium, where moderate
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Adatom species G [2e2

h ] G′ [2e2

h ]
Ideal 3.75 3.75
H 3.60 3.74
O 2.43 3.25
In 2.31 2.77
Pb 3.11 3.72

Table 3.3: Average quantum conductance G in the energy interval ±0.05 eV around the Fermi energy.
G′ refers to the respective adatom structure without the adatom.

to strong conductance reductions are calculated, respectively. These results are suit-
able to explain the conductance drop observed in case of In deposition and, in part,
for O deposition as well.

4.3.4 Discussion

The results presented above now allow for a classification of the adatom-induced
conductance modifications:

• Pb adsorption does not substantially modify the nanowire geometry, but forms
a deep potential well that effectively scatters the electrons and thus reduces the
transmittance.

• No significant potential well forms upon In deposition. Here the conductance
drop is related to the wire deformation.

• Both factors contribute in the case of O. A moderate potential well is formed
and on top of that the In nanowire gets somewhat deformed. Both effects com-
bined result in a conductance drop of similar magnitude as calculated upon In
deposition.

• Hydrogen, finally, does neither act as a potential well nor does it significantly
strain the nanowire geometry. Consequently, it has no substantial impact on the
electron transport. This is confirmed by the conductance measurements in Ref.
[58].

The approach to explain the conductance quenching by modifications of the local den-
sity of states did not yield quantifiable results. However, as a qualitative argument
from an illustrative point of view the local DOS approach is not without merit. Fig.
3.12 shows the local DOS of clean and Pb-adsorbed In nanowires. While the ideal In
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Figure 3.12: Isodensity surface of the local DOS at EF, illustrating the local DOS at the ideal In
nanowires and its modification upon Pb adsorption.

nanowire exhibits a single continous channel between the In zigzag chains, a strong
modification and depletion around the Pb adsorption site is observed. Thus the for-
merly continous conduction channel is effectively severed. The results presented in
this chapter were published in Publ. [9].



Nature uses only the longest threads to weave her
patterns, so that each small piece of her fabric re-
veals the organization of the entire tapestry.

– Richard Feynman Chapter 5

Optical properties

Ever since the discovery of the (4×1)→(8×2) phase transition by Yeom et al. more
than 10 years ago [30] the structure and properties of the low temperature (LT) phase
have remained controversial (cf. chapter 1.2.1). As discussed in chapter 3 and Publ.
[12] an unambigous identification of the internal structure of the LT phase on the
basis of the total energy is problematic at best. The energy differences between the
competing structures are very small and depend on numerical details as well as the
approximations made in the calculations concerning, e. g., the treatment of the ex-
change and correlation effects and the In 4d states.

Given the ambiguities of the total-energy calculations in determining the ground-state
structure of the (8×2) LT phase, the comparison of optical fingerprints calculated
for structural candidates with measured data may be helpful. In this chapter it is
demonstrated that the comparison of calculated and measured reflectance anisotropy
spectroscopy (RAS) data in the mid-infrared regime is suitable to settle the more than
10 year old discussion about the nanowire’s true ground state.

5.1 Optical anisotropy in the visible spectral range

The calculated electron transport properties considered in chapter 3 give strong ev-
idence for hexagon formation. On the other hand, the previously calculated optical
anisotropies [52] for the (4×1) and the trimer-reconstructed (8×2) nanowire arrays
are compatible with the measured evolution of the surface optical response during
the (4×1)→(8×2) phase transition [51]: reflectance anisotropy spectroscopy (RAS) at
the Si(111)-(4×1)-In surface [49, 50, 191] shows an optical anisotropy in the energy
region of 2 eV, which splits into two peaks, at 1.9 and 2.2 eV, upon formation of the
LT phase of the Si(111)-In surface [51, 192]. In order to help clarifying the structure of
the In nanowire array, the optical anisotropies were calculated for the (4×1) surface

121
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and the two structural models suggested for the LT (8×2) phase, i. e. the trimer and
the hexagon model.

5.1.1 Computational details

The following results are obtained within the local density approximation (LDA) for
exchange and correlation as implemented in VASP [104], with the electron-ion in-
teraction described by projector-augmented wave (PAW) potentials. The In 4d states
are treated as core electrons. Unlike in the previous chapters, the In/Si(111)-(4×1)
and (8×2) surfaces are simulated by symmetric slabs with 12 Si bilayers (cf. 2.1.5b)
and a vacuum region equivalent in length. The k-space integrations are performed
employing uniform meshes equivalent to 64 and 960 points in the (1×1) surface Bril-
louin zone for electronic structure and optical response, respectively. As discussed in
chapter 2.3.1 the reflection anisotropy ∆R/R for light polarized along i and j can be
derived from a slab calculation and is given by

∆R
R

(ω) =
2ωd

c
=
{

εslab
ii (ω)− εslab

jj (ω)

εb(ω)− 1

}
(1.1)

where εb(ω) is the bulk dielectric function and εij(ω) is the dielectric tensor of the
slab with thickness d. In the following the polarization directions are assumed to be
the [112̄] and [110] directions, respectively.

The dielectric tensor is obtained within the independent-particle approximation based
on the electronic structure calculated within DFT-LDA. A scissors operator is used to
correct the band-gap underestimation. Thereby a constant shift of 0.5 eV is applied to
all unoccupied DFT eigenvalues that lie more than 0.5 eV above the highest occupied
electronic state. This ensures an approximate reproduction of the measured Si bulk
band structure. For the energetically lower lying unoccupied states a linear interpola-
tion up to a zero shift for states directly at the Fermi energy is used in order to model
the energy-dependence of the electronic self-energy. Beyond this approximation of
the self-energy, many-body effects such as excitonic and local-field effects are com-
pletely neglected. While this certainly results in a loss of quantitative accuracy and
may strongly affect the calculated line shape, past experiences indicate that the calcu-
lated spectra can still be expected to be qualitatively reliable. As a consequence of the
substraction εslab

ii (ω)− εslab
jj in Eq. (1.1) RAS calculations profit from a strong degree

of systematic error cancellation. This holds in particular if differences and trends for
very similar systems are considered, as in the present case.
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5.1.2 Results

The calculated optical anisotropy is shown in Fig. 1.1. For all structural models the
RAS is negative for nearly the complete energy range considered. The spectra are
dominated by a very strong anisotropy around 2 eV photon energies of about 3.6%
and 4.8% for the (8×2) and (4×1) surface reconstructions, respectively. This is in ex-
cellent agreement with the experimental findings [49, 50, 191] of a very pronounced
anisotropy of 2.4–4.0% (if the intensities are considered) at 2 eV. The fact that the
calculated optical anisotropy is somewhat larger than measured is expected. These
results refer to a single-domain Si(111) surface free of steps and other defects that is
covered with a perfect In nanowire array. Defects in the In chains and signals from
minority domains present at the real surface may reduce the peak at 2 eV.

Figure 1.1: RAS spectra calculated for the (4×1) ideal
and (8×2) trimer and hexagon models of the In/Si(111)
nanowire array, respectively (cf. Publ. [7]).

The optical anisotropy at 2 eV is
necessarily related to surface states,
because this energy is far below the
direct optical gap of bulk Si. How-
ever, it is not directly related to the
metallicity of the nanowires, which
at low frequencies is expected to re-
sult in a stronger optical coupling
for light polarized along the chain
direction rather than perpendicular
to the chains. Therefore, the quasi-
one-dimensional metallicity of the
In chains should lead to positive op-
tical anisotropies, which are indeed
observed for photon energies below 1 eV [51]. This energy region is addressed specif-
ically in the following section 5.2.

Performing the identical RAS calculations at the Γ-point only yields qualitatively the
same spectra. This allows for an easy identification of the transitions exhibiting a
strongly anisotropic behaviour. The negative anisotropy around 2 eV is related to a
multitude of optical transitions perpendicular to the In chain direction that are either
related to pure In chain states or involve the In-Si bonds. The former occur around 1.9
eV whereas the latter are observed at energies slightly above 2 eV. This shoulder was
not seen in previous calculations. It turns out that the optical response is extremely
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Figure 1.2: Squared wavefunctions of surface electronic states that contribute strongly to the optical
anisotropy of the In/Si(111)-(4×1) nanowire array. The upper/lower panel shows the valence (blue)
and conduction (white) states that cause an anisotropy at 1.9/2.2 eV. The isosurfaces are drawn for a
density of 0.003 Å−3 (cf. Publ. [7]).

sensitive with respect to structure: The (4×1) surface must be relaxed up to remain-
ing forces of lesser than 0.02 eV/Å for the shoulder to develop. The shoulder is also
absent in the measurements, likely due to thermal broadening. Fig. 1.2 shows two
representative transitions for the case of the (4×1) reconstructed nanowire array.

The RAS of the hexagon model for the (8×2) LT phase has not been calculated before.
In order to assist in the identification of structural models the RAS was calculated for
both the hexagon and the trimer model, see Fig. 1.1. The spectra are similar to the one
calculated for the (4×1) phase. However, the shoulder obtained for the (4×1) phase
at around 2.4 eV develops into a separate peak for both models. Also, the optical
anisotropy is reduced from about 4.8–3.6%. The splitting of the 2 eV anisotropy into
two separate peaks corresponds exactly to the optical signature of the (4×1)→(8×2)
phase transition found experimentally [51, 192]. In addition to the peak splitting,
the calculated minimum of the RAS shows a slight redshift by about 0.1 eV, which
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Figure 1.3: Squared wavefunctions of surface electronic states that contribute strongly to the optical
anisotropy of the hexagon model for the In/Si(111)-(8×2) nanowire array. The upper/lower panel shows
the valence (blue) and conduction (white) states that cause an anisotropy at 1.9/2.2 eV. The isosurfaces
are drawn for a density of 0.002 Å−3 (cf. Publ. [7]).

again is in very good agreement with the experimental findings that state a shift from
1.96 to 1.90 eV during the phase transition. Fleischer et al. [51] argue that the mea-
sured changes in the optical anisotropy cannot be explained as a temperature-induced
sharpening of the original 2 eV peak, since the overall width of the measured struc-
ture is much larger for the LT phase. The changes of the RAS spectra can thus only be
explained by electronic and structural modifications of the In nanowire array accom-
panying the phase transition. Surprisingly, both the hexamer and the trimer model
for the (8×2) phase give rise to a very similar optical anisotropy. Within the numer-
ical accuracy of the present calculations a discrimination of the models with respect
to the degree of agreement with experiment is not possible in the visible spectral range.

Due to the fact that a multitude of electronic surface states is relevant for the oc-
curence of the optical anisotropy characteristic for the nanowire array – in fact about
20 transitions are found to be relevant – it is impossible to provide a simple picture
for the spectral changes accompanying the phase transition. The symmetry reduction
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upon hexagon or trimer formation changes the orbital character of nearly all In chain
related states and leads to a reduction of the oscillator strength of many transitions
responsible for the overall larger optical polarizability perpendicular to the In chain
direction. As an example, Fig. 1.3 shows the electronic states responsible for two
optical transitions that lead to strong anisotropies for the case of the (8×2) hexamer-
reconstructed nanowire array. The orbital character of these states is somewhat similar
to the case of the ideal (4×1) nanowire array (cf. Fig. 1.2) and the respective optical
transitions occur at similar energies. The transition matrix elements, however, are
smaller by about one third (cf. Publ. [7]).

5.2 Structure determination by mid-infrared response

As discussed in the previous section, conventional RA techniques in the visible range
of the spectrum do not allow to distinguish between the competing structural mod-
els for the (8×2) LT phase. However, these results represent a very solid foundation
allowing to proceed to the calculation of the RAS in the mid-infrared (IR) regime.
The small differences in geometry of the trimer and hexagon model lead to signif-
icant changes in the band structure near the Fermi level (cf. chapter 3.2). Direct
optical transitions in this energy region, as probed by infrared reflection anisotropy
spectroscopy (IRAS), are expected to be very sensitive to such changes. Both IRAS ab
initio calculations and measurements are presented in Publ. [1,6] for the first time for
this system. These results are suitable to resolve the 10 year old discussion about the
In/Si(111) nanowires’ true ground state.

5.2.1 Computational details

Since the (4×1) ideal nanowire and the (8×2) trimer model are metallic in nature,
they feature intraband transitions in addition to the usual interband transitions (cf.
chapter 2.3.2b). Below transition energies of about 1 eV the spectra are increasingly
dominated by intraband transitions. Thus to calculate the IRAS intraband transitions
need to be taken into account as well.

The calculation of the intraband contributions to the dielectric tensor is performed by
introducing a small q-vector, with the optical transitions proceeding along k → k + q.
The Drude contribution from the intraband transitions is then obtained in the limit
q → 0. In the numerical evaluation of the intraband contributions the k-point sam-
pling and the chosen q-vector become two extremely critical convergence parameters.
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A sufficiently small q-vector must be ensured to reproduce the q → 0 limit. However,
this simultaneously enforces a correspondingly dense k-point mesh. In the present
work the k-space integrations to calculate the intraband contributions is performed
using a uniform mesh equivalent to 30,720 points in the (1×1) surface Brillouin zone.
The chosen q-vectors are ‖q‖ = 0.0125 and ‖q‖ = 0.0417 along and perpendicular
to the nanowire direction, respectively. Due to the enormous computational require-
ments these calculations could only be performed for the ideal In/Si(111)-(4×1) re-
construction and not for any larger reconstructions. However, at a later stage it will
become clear that intraband contributions can be safely neglected for the (8×2) trimer
model.

For the numerical calculation of the intraband contributions the DP code [182] is em-
ployed. Subsequently the intraband contributions are separated and added to the
dielectric tensors obtained by VASP, where the intraband contributions had been ne-
glected. This ensures an optimum comparability between the spectra. In the case of
the semiconducting (8×2) hexagon model the numerical details are identical to the
ones in the previous section, except the quasiparticle corrections: states close to the
Fermi energy – as probed by IRAS – are shifted very little by quasiparticle correc-
tions. A simple linear scissors operator typically does not improve the accuracy of the
resulting spectra. Unfortunately, the (8×2) cell is prohibitively large for many-body
perturbation calculations of the required accuracy. Therefore no quasiparticle shifts
are employed for any of the following spectra.

5.2.2 Mid-infrared optical anisotropy

Fig. 2.4 shows the measured and calculated IRAS spectra. The experimental data
reveal a dramatic difference between the RT (4×1) and LT (8×2) phases. There is a
smooth Drude-like increase to lower energies without any interband transitions re-
maining below 1 eV for the RT (4×1) phase. This is in contrast to the behaviour above
1 eV, where the optical response is dominated by interband transitions. The larger
Drude-like response parallel to the chains arises from the highly anisotropic conduc-
tivity of this surface, as measured by four-point probe STM [43, 44].

The LT (8×2) phase shows two sharp positive peaks at 0.50 and 0.72 eV, while the
low energy Drude tail is removed. Its replacement by these peaks indicates a metal-
insulator (MI) transition. There is no evidence of residual metallic behaviour in the
(8×2) phase in the mid-IR regime. Positive anisotropy indicates that optical transi-
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Figure 2.4: RA-spectra of Si(111)-(4×1)In at RT (300K) and Si(111)-(8×2)In at LT (70K): upper,
experiment; lower, theory. Note the different scales (cf. Publ. [1,6]).

tions parallel to the chains are dominant in this spectral region. Both phases show the
broader negative 1.9 eV feature, which splits below the MI transition. The calculated
anisotropy of the ideal (4×1) reconstruction agrees well with experiment, provided
intraband transitions are taken into account. It should be noted that the calculated
Drude-like features turn out to be apparently too pronounced. This is due to the dif-
ferent scales in Fig. 2.4. The Drude tail is inherently unaffected by any quasiparticle
shifts, while the interband transitions are redshifted due to the absence of quasiparti-
cle corrections. This results in a “compression” of the spectra towards lower energies.
Comparing the Drude-like features on an absolute scale, i. e. at 0.5 eV, yields a good
agreement with experiment.
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While no intraband transitions were calculated for the trimer model of the (8×2) LT
phase, the RAS still shows a steep rise in analogy to the Drude-like behaviour of the
(4×1) RT phase. This results from an increased density of states near the Fermi level
due to band folding effects (cf. chapter 3.2). However, since this model exhibits only
one band crossing the Fermi level – with rather low dispersion in comparison to the
(4×1) RT phase – the contribution of intraband transitions can be expected to be al-
most negligible for the trimer model.

The calculated anisotropy of both the trimer and hexagons models of the (8×2) struc-
ture agree well with experiment above 0.7 eV, as discussed in the previous section.
Below 0.7 eV, only the hexagon model looks similar to the experimental results. In
particular, two positive peaks are predicted, separated by 0.24 eV. This splitting agrees
very well with the experimental splitting of 0.22 eV. Detailed comparison reveals that
the calculated mid-IR peaks are redshifted by about 0.25 eV (note the different scales
in Fig. 2.4). The underestimation of excitation energies is typical for DFT calculations
where self-energy effects are neglected. As mentioned previously, the complexity and
size of the In nanowire structure prevents the calculation of optical spectra employing
many-body perturbation theory that includes self-energy and excitonic effects [193].
Quasiparticle calculations for the high-symmetry points of the hexagon model surface
band structure found self-energy effects to increase the lowest transition energies by
about 0.26 eV on average (cf. Publ. [12]). A larger shift of 0.5 eV, typical for Si excita-
tion energies [193], applies to the higher energy negative optical anisotropies, because
the optical transitions involve Si states (cf. Publ. [7]). Allowing for these energy shifts,
the agreement between the calculated and measured RAS spectra is truly impressive.

5.2.3 Transitions responsible for the observed anisotropy

Identifying the origin of the two peaks in the mid-IR regime is not as easy as tracing
the transitions responsible for the strong negative anisotropy around 2 eV. In contrast
to the 2 eV feature there is no single k-point in existence that even qualitatively yields
the two peaks. However, according to Eq. (3.220) in chapter 2.3 the dielectric tensor
εij(ω) is given by a summation over the k-points and the bands. The additive nature
of εij(ω) allows to implement a suitable search algorithm in a straight forward way.
Searching through all direct transitions at every k-point yields mainly optical transi-
tions close to the X and M points of the surface Brillouin zone, indicated by P1 and
P2/P′2 in Fig. 2.5, corresponding to the labels in Fig. 2.4. Around XM nearly parallel
valence and conduction bands close to the Fermi level give rise to a high joint density
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Figure 2.5: Band structure of the hexagon model for In/Si(111)-(8×2) calculated within DFT-LDA.
Pronounced optical transitions showing up in the RAS spectra as the peaks P1 and P2 in Fig. 2.4 are
marked. Gray regions correspond to the projected Si bulk bands. The bulk valence band maximum is
chosen as energy zero. The Fermi level is indicated (cf. Publ. [1,6]).

of states. The corresponding surface electronic states at the X and M high-symmetry
points of the surface Brillouin zone are shown in Fig. 2.6.

However, not all of the relevant transitions arise from the region of the XM high-
symmetry line, but from inside the Brillouin zone as well. Thus the common practice
of drawing the bands only along the high-symmetry lines is insufficient in this case.
To visualize the relevant transitions a 3-dimensional (3D) representation of the entire
surface Brillouin zone is shown in Fig. 2.7. The notation of the surface bands S1 −
S8 and the peaks P1, P2/P′2 refers to Fig. 2.5 and 2.4, respectively. The transitions
indicated in Fig. 2.7 b/c) take place over the whole width of the surface Brillouin
zone, while the transitions in d/e) occur either near the ΓX or MY high-symmetry
lines only. It can also be seen that in some cases transitions from and to the same
bands contribute to different peaks, as shown in Fig. 2.7e). Transitions from S2 → S5

contribute to either P1 or P2, depending on the exact location of the transition inside
the surface Brillouin zone.
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Figure 2.6: Squared wavefunctions of surface electronic states at the X and M high-symmetry points
that contribute strongly to the optical anisotropy of the hexagon model for the In/Si(111)-(8×2)
nanowire array in the mid-IR regime. The notation is consistent with Figs. 2.4-2.7. The isosurfaces are
drawn for a density of 0.0015 Å−3. Blue and white isosurfaces correspond to valence and conductance
states, respectively.

5.3 Discussion

In conclusion, the optical anisotropies for ideal and hexagon as well as trimer re-
constructed models for the In/Si(111) nanowire array have been calculated from first
principles. The comparison with measured data shows that above 0.7 eV – as mea-
sured by conventional RAS – the optical signatures of both the hexamer as well as the
trimer model are very well suitable to explain the spectral changes acquired during
the formation of the LT phase of the In/Si(111) surface. Predictions of the reconstruc-
tion model are impossible in this spectral range. Since the most pronounced changes
between the band structures of competing structural models occur near the Fermi en-
ergy, the mid-IR regime is expected to be more revealing.

Extending the optical calculations towards lower energies the first mid-IR ab initio
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Figure 2.7: a) 3-dimensional band structure over the entire surface Brillouin zone of the hexagon model
for In/Si(111)-(8×2) calculated within DFT-LDA. The notation of the bands is consistent with Fig. 2.5.
Pronounced optical transitions from within the Brillouin zone causing the peaks P1 and P2 in the RAS
spectra are shown in b) and c-e), respectively. The Fermi level is indicated by EF. (cf. Publ. [1]).

optical response calculations including intraband transitions have been reported for
the In/Si(111) nanowire system. In comparison with recent experimental data, these
optical response calculations reproduce the measured features for the hexagon model.
While excluding the trimer model these results provide strong evidence in favor of
the hexagon model. They are thus suitable to settle the 10 year old dispute about the
In nanowire ground state. The work presented above resulted in a joint experiment-
theory publication (Publ. [6]).



A little wisdom is no doubt possible; but I have found
this happy certainty in all things: that they prefer –
to dance on the feet of chance.

– Friedrich Nietzsche

Chapter 6

Thermal properties

In the previous chapter it was demonstrated, that only the hexagon model for the
(8×2) LT phase can explain the observed spectroscopic properties. While these data
effectively confirm the hexagon ground state model, the question regarding the phase
transition’s driving mechanism is still open. Both the In/Si(111)-(4×1)/(8×2) sur-
face’s thermal properties as well as the phase transition itself have been studied pre-
viously by Raman spectroscopy (RS) [46] and temperature-dependent transport mea-
surements [33, 44]. However, a detailed theoretical understanding of these data has
yet to be achieved. The present chapter is dedicated to the calculation of the phonon
modes and their comparison with the Raman spectroscopy data from Ref. [46]. Based
on these data several soft phonon modes could be identified as the phase transition’s
driving mechanism. In conjunction with large-scale MD calculations an approach for
the calculation of the temperature-dependent transport properties is presented.

6.1 Phonon spectra in theory & experiment

6.1.1 In/Si(111)-(4×1) surface

Beginning with the In/Si(111)-(4×1) surface the phonon modes are calculated within
DFT-LDA as implemented within the VASP package. The In 4d states are frozen into
the core. A plane-wave cutoff of 250 eV and a uniform mesh equivalent to 128 k-points
in the (1×1) surface Brillouin zone were found sufficient to lead to well-converged re-
sults. The (4×1) surface is simulated by repeated asymmetric slabs with 3 Si bilayers
and a vacuum region equivalent in length. Since Raman spectroscopy measures only
modes near the Γ-point of the surface Brillouin zone the calculation was restricted to
zone center phonon modes in the (4×1) unit cell. The modes were obtained within the
frozen-phonon (FP) approach as described in section 4.2.3, choosing a displacement
of 0.1 Å. This is somewhat larger than usual. However, test calculations employing a

133
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Character A′ A′′

In surface mode 51, 53, 67, 85 17, 28, 66
In/Si surface mode 71, 100, 121, 141, 145 70
In/Si resonance mode 76, 198, 204, 265, 394 64
Si/Si resonance mode 279, 421 448, 462, 475 114, 119, 127
Si surface mode 259, 269, 317, 323, 375 95, 436

Table 1.1: Calculated frequencies of A′ and A′′ surface vibrational Γ-point modes of the In/Si(111)-
(4×1) surface in cm−1. Modes that are localized mostly within the top atomic layer are termed surface
modes, while the others are denoted as resonance modes in accordance with Ref. [47]. Any modes that
are not localized within the upper two atomic layers are discarded. The green/violet color scheme refers
to the modes marked in Fig. 1.1.

displacement of 0.05 Å yielded results that were identical within the numerical accu-
racy. In section 6.2.5 it turns out that for the temperature range of interest the average
elongation is of the order of 0.1 Å. Hence this displacement is adopted for all follow-
ing frozen-phonon calculations.

The calculated Γ-point phonons can be classified according to the irreducible repre-
sentations of the point group of the system. As the In/Si(111)-(4×1) surface features a
1m(Cs) symmetry, the only symmetry operation applicable – besides the translations
of the 2-dimensional lattice – is related to the [11̄0] mirror plane. The normal direc-
tion of this mirror plane is located parallel to the In chain direction. Modes whose
elongation patterns are situated within and perpendicular to the [11̄0] mirror plane
are labeled A′ and A′′, respectively.

The obtained modes are categorized and compiled in Tab. 1.1. Their character
has been determined according to their displacement pattern, not according to the
occurence of the modes’ frequencies within pockets of the projected bulk phonon
branches. As Raman spectroscopy probes only surface phonons, any phonons that
are not localized within the uppermost two atomic layers are excluded. Thus 34 sur-
face modes out of 42 total remain. For each mode Fig. 1.1a/c shows the degrees of
localization at the In atoms and the top atomic layer, respectively. In between in Fig.
1.1b a comparison of the calculated and measured modes (measurements taken from
Ref. [46]) is presented. Not all of the calculated modes are observed experimentally,
probably due to selection rules or low scattering efficiency in the experiment. It was
tried to assign the theoretically derived modes to the experimentally observed ones,
as indicated by vertical lines. The single strong A′′ mode at 28 cm−1 is recognized
easily in the calculated spectra. Besides this mode 7 other A′′ modes are present in
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Figure 1.1: a/c) Frequencies and degrees of localization for the calculated Γ-point phonon modes of the
In/Si(111)-(4×1) surface. b) Comparison with the measurements in Ref. [46]. Error bars indicate the
measured line widths. Experimentally observed modes are marked by green and violet lines for A′ and
A′′ modes, respectively. The commented modes refer to Figs. 1.2 and 1.3.

the theoretical spectra. However, none of them is observed experimentally. Up to a
wave number of 150 cm−1 9 A′ modes are obtained, exactly as many as measured.
All of them are localized to a high degree in the top atomic layer. Only the modes in
the range of 100-150 cm−1 correspond closely to the measured wave numbers. The
5 modes between 50 and 85 cm−1 are blueshifted in comparison by about 13 cm−1.
Fleischer et al. noted that the modes observed at wave numbers of 72 and 148 cm−1,
respectively, are possibly two modes very close in energy. The calculated modes con-
firm this to be the case for the 148 cm−1 mode, but not the 72 cm−1 mode.

Fleischer et al. [46] suggested that soft-shear distortions as proposed by González et
al. [35, 37] might provide an explanation for the single broad mode of A′′ symmetry
observed at 28 cm−1. A closer look at the eigenvectors of the A′′ mode at 27 cm−1

obtained from the present calculations is quite revealing: this mode features indeed
a strong shear-distortion that displaces the In chains relative to each other forward
and backward along the chain direction (cf. Fig. 1.2a). With a wave number of 28
cm−1 = 3.43 meV this mode is also sufficiently soft to be occupied near and below the
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Figure 1.2: Eigenvectors of the a) soft shear and b) rotary modes, respectively. The circular blue arrows
indicate the rotation direction of the rectangle constituted by the 4 adjacent In atoms. These modes
are candidates for inducing the shear and trimerization displacements that are required for hexagon
formation in the LT phase. They are sufficiently low in energy to remain excited below the critical
temperature TC = 120 K = 10.34 meV.

phase transition’s critical temperature kB · TC = kB · 120 K = 10.34 meV. It can thus be
considered a candidate for triggering the phase transition by shearing the In chains,
as required for hexagon formation.

However, besides the shear distortion both the hexagon and trimer models of the LT
phase feature a trimerization of the outermost In chain atoms. Interestingly, the cal-
culations predict another low energy mode at 17 cm−1 = 2.08 meV, where 4 adjacent
In atoms form rectangles that rotate back and forth (cf. Fig. 1.2b). This mode could
facilitate the trimerization during the formation of the LT phase. Naturally, while the
eigenvectors illustrated in Fig. 1.2b support the trimerization of only one chain, there
is a symmetrically equivalent degenerate mode for the other chain as well. However,
these modes are X-point modes with respect to the (4×1) surface Brillouin zone and
are thus not observed by Raman spectroscopy as performed in Ref. [46], at least not
for structures with (4×1) translational symmetry.

This claim that the phase transition could be driven by a soft shear-mode and two
degenerate soft rotary modes is supported by the fact that a linear combination of
the frozen-phonon eigenvectors of the ideal In chains allows to reproduce both the
hexagon and trimer models with high accuracy. To this end the frozen-phonon eigen-
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vectors of the (4×1) RT structure were calculated within the (4×2) unit cell. Subse-
quently, the resulting eigenvectors ui,m have been added to the positions xi of the ideal
structure according to:

x = ∑
i,m

xideal
i + am · ui,m (1.1)

The indices i and m denote atomic and mode numbers, respectively. By optimizing
the linear coefficients am both the trimer and hexagon models of the LT phase could
be obtained within an accuracy of 0.01 Å average displacement per In atom.

Figure 1.3: Linear decomposition of the (4×2) hexagon and
trimer models into phonon eigenvectors.

The optimum linear coefficients
for both models are shown in Fig.
1.3. The spectra are clearly dom-
inated by the shear and rotary
modes, respectively. Naturally,
for the trimer model the shear
contribution is negligible. While
both models feature rather sim-
ilar linear coefficients otherwise,
the rotary contributions are also
somewhat smaller for the trimer
model. Besides the shear and ro-
tary contributions, another mode
is present that displaces the out-
ermost In atoms along the normal direction, as illustrated by the inset in Fig. 1.3. The
contribution of the remaining modes to the In atom displacement is rather small. If
only the indicated shear, rotary and normal modes are taken into account both the
hexagon and trimer structures are reproduced within an accuracy of 0.07 Å average
displacement per In atom. With respect to the ideal chains the trimer and hexagon
models feature an average displacement per In atom of 0.28 and 0.52 Å, respectively.

Therefore both structural models for the LT phase can be largely reproduced by a lin-
ear combination of only the soft shear and rotary modes plus another mode inducing
a normal displacement of the outermost In atoms. In combination with the at least
local minima on the potential energy surface for the trimer and hexagon models these
findings provide a strong indication that the phase transition is indeed phonon mode
driven.
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Figure 1.4: a/c) Frequencies and degrees of localization for the calculated Γ-point phonon modes for
the hexagon model of the In/Si(111)-(8×2) surface. b) Comparison with the measurements in Ref. [46].
Error bars indicate the measured line widths. Experimentally observed modes are marked by green and
violet lines for A′ and A′′ modes, respectively. The commented modes refer to Figs. 1.5 and 1.6

6.1.2 In/Si(111)-(8×2) hexagon structure

Turning to the (8×2) hexagon model for the LT phase, frozen-phonon calculations
were performed in the (8×4) unit cell to obtain both Γ- and X-point phonon modes.
While only the Γ-point modes are needed for comparison with the Raman spec-
troscopy results, the X-point modes are required for the later treatment of the trans-
port properties in section 6.2. Due to the resulting size of the unit cell the amount of
substrate had to be restricted to 2 Si bilayers. However, Raman spectroscopy measures
only surface phonons and the transport properties depend very little on the substrate
(cf. chapter 3.3.1). Test calculations in the (4×1) unit cell showed that the obtained
frequencies and eigenvectors are barely affected as well. Otherwise the computational
details are the same as in the previous section.

While the (4×1) RT phase features a 1m(Cs) symmetry, this is no longer the case for
the (8×2) LT phase. Both trimer and hexagon formation break the mirror symme-
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Figure 1.5: Upon the (4×1)→(8×2) phase transition the soft shear mode splits in two separate modes,
one a) antisymmetric at 18.3 cm−1 and one b) symmetric at 22.2 cm−1 due to the (8×2) translational
symmetry, as indicated by arrows. This is consistent with the observation by Fleischer et al. [46], that
the A′′ mode measured at 23.5 cm−1 possibly consists of 2 separate modes.

try. Thus the (8×2) reconstruction features many modes that exhibit elongations both
within and perpendicular to the [11̄0] plane simultaneously. Strictly speaking, the
A′/A′′ notation scheme is no longer applicable. However, due to its convenience it is
still widely applied in the literature to the (8×2) phase as well. Thus in the present
work, modes whose percentaged elongation is larger/smaller within the [11̄0] plane
than perpendicular to it are still labeled A′/A′′ modes, respectively.

Fig. 1.4a/c shows the Γ-point A′/A′′ modes of the (8×2) hexagon model, that are lo-
calized within the upper two atomic layers. Red circles and blue triangles indicate the
modes’ degree of localization at the In atoms and within the uppermost atomic layer,
respectively. In between Fig. 1.4c shows the modes measured by Raman spectroscopy
in Ref. [46]. Error bars represent the measured line widths. A clear assignment of
calculated and measured modes is highly difficult due to the multitude of calculated
modes, most of which are inactive in experiment. Below 200 cm−1 there are especially
many A′ modes with a high degree of localization at both the In atoms and within the
top atomic layer. Only the three lowest energy modes could be assigned clearly, since
exactly four calculated modes are present in this energy range, two of them degen-
erate. The assignment is indicated by vertical green lines. Above 200 cm−1 4 peaks
of localization within the uppermost atomic layer are observed, that coincide with 4
measured modes.

The relatively scarce distributed A′′ modes allow for a somewhat clearer assignment,
since below 100 cm−1 only 9 localized modes are obtained. Fleischer et al. [46] ob-
tained 5 modes but commented that the three lower energy modes probably consist of
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2, 3, and 2 modes, respectively. The calculated modes have been assigned to the mea-
sured ones based on this data. The lowest energy A′′ mode – which was shown to be
the soft shear mode in the previous section – is now slightly redshifted in accordance
with the experiment. Due to the (4×1)→(8×2) change of translational symmetry the
shear mode splits into two almost degenerate modes. The shear distortions may oc-
cur either in antiphase or in phase, as illustrated in Fig. 1.5a/b, respectively. This is
consistent with Fleischer’s et al. observation that the lowest energy A′′ mode is prob-
ably comprised of two separate modes [46]. The two measured modes at 184 and 262
cm−1, respectively, could not be assigned since no calculated modes are present in this
energy range. However, as mentioned previously a clear distinguishment between A′

and A′′ modes is no longer possible for the (8×2) structure due to the absence of
the mirror symmetry. The missing A′′ modes are probably simply categorized as A′.
Most modes in this energy range feature elongations of almost equal magnitudes both
within and perpendicular to the [11̄0] plane. The highest energy and last A′′ mode
was assigned to the localization peak at 441 cm−1.

Figure 1.6: Linear decomposition of the (4×1) ideal recon-
struction into the phonon eigenvectors of the (8×2) hexagon
structure.

In analogy to the linear decom-
position of the LT phase struc-
tural models into the phonon
eigenvectors of the ideal (4×1)
surface, the same process is pos-
sible in the reverse case as well.
Starting from the phonon eigen-
vectors of the (8×2) hexagon re-
construction the ideal (4×1) re-
construction in the (8×2) unit
cell can be obtained as a linear
combination. Fig. 1.6 shows
the optimized linear coefficients
in analogy to Fig. 1.3. Besides
the already known shear, rotary
and normal displacement modes another new mode is present. This mode was termed
hexagon rotary mode (cf. Fig. 1.6 inset) and also facilitates the reversal of the trimer-
ization similar to the 4-atom rotary modes described in the previous section. It is
also marked in the phonon spectra illustrated in Fig. 1.4a. The average displacement
per In atom amounts to 0.56 Å between the (8×2) hexagon and (4×1) ideal structure
within the (8×2) unit cell. Based on the shown optimized coefficients an average dis-
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placement per In atom of 0.04 Å between the linear combination and the (4×1) ideal
structure is achieved. If only the modes marked in Fig. 1.6 are taken into account an
accuracy of 0.18 Å per In atom is obtained.

Hence these soft phonon modes do not only facilitate the (4×1)→(8×2) phase transi-
tion upon cooling the system. The same modes in conjunction with the newly arising
hexagon rotary mode also support the reverse (8×2)→(4×1) transition upon heating
the nanowire array.

6.2 Temperature-dependent transport properties

The present section aims at deriving the temperature-dependent transport properties
for the In/Si(111) nanowire system including the phase transition. On the basis of
the results of the previous chapter the In nanowire array’s true ground state could be
identified. This allows for a combined frozen-phonon (FP) and molecular dynamics (MD)
approach, starting from the hexagon model for the ground state. The FP approach
incorporates the temperature from a fully quantum mechanical point of view, but ap-
proximates the system’s potential by a harmonic ansatz. Hence this approach is well
suited for the low temperature regime. On the other hand, MD employs the correct
potential, but the energy distribution is treated classically. Thus MD is expected to
be accurate at higher temperatures. In principle, combining both approaches should
yield accurate results over the entire temperature range.

6.2.1 Frozen-phonon (FP) approach

As discussed briefly in chapter 4.2.3 the phonon eigenmodes and -frequencies can be
obtained from DFT by calculating the linear force coefficients for each atom in each
spatial direction and solving the associated algebraic eigenvalue problem ω2Mu =
Ku, where M and K denote the mass and force constant matrices, respectively. For
the elongation u′ a harmonic ansatz is assumed

u′i(t) =
1√
Mi

∑
m

bmui,m · e−i(ωmt+φm), (2.2)

where i and m are the atomic and modal indices, respectively. Mi is the mass of
atom i, bm represents a scaling factor for the eigenvector and ui,m denotes the part
of the eigenvector um of the mode m that belongs to the atom i. To incorporate the
temperature T from a quantum mechanical point of view the resulting modes m are
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occupied according to the Bose-Einstein distribution n̄m(T), given by:

n̄m(T) =
1

e(h̄ωm)/(kBT) − 1
(2.3)

Then the energy expectation value of the mode m with the frequency ωm at the tem-
perature T is E =

(
n̄m(T) + 1

2

)
h̄ωm. By relating the potential energy resulting from

the maximum elongation of the isolated mode m to the expectation value of the energy
according to

∑
i

1
2

Miω
2
m

(
1√
Mi

bm(T)ui,m

)2

=
(

n̄m(T) +
1
2

)
h̄ωm (2.4)

one can obtain the temperature-dependent scaling factor bm(T). Inserting bm(T) into
Eq. (2.2) allows to determine the temperature-dependent elongation u′i of any atom i.
Subsequently, the phase factor φm is determined randomly for any mode m. By cal-
culating u′i and elongating the corresponding atoms accordingly, a sufficiently large
number of random configurations is generated for the respective temperature T. The
electron transport properties at T are then obtained by calculating the transport prop-
erties for each individual configuration and subsequent averaging. As discussed in
detail in chapter 2.2.2c the conductance is obtained in linear response according to

G =
2e2

h

∫
dE T̄(E)

(
−∂ f0

∂E

)
, f0(E) =

1
e(E−EF)/(kBT) + 1

(2.5)

where T̄(E) and f0 denote the transmission function and the Fermi distribution, re-
spectively. Since linear force constants have been assumed the elongations must be
sufficiently small to ensure the validity of this approximation. Thus the temperature
may not become too large as well. Due to the quantum mechanical treatment of the
energy distribution this approach is expected to be highly accurate at low tempera-
tures.

6.2.2 Molecular dynamics (MD) approach

For higher temperatures and larger elongations – especially near and beyond the
phase transition’s critical temperature – the force constants are not linear anymore.
Hence the harmonic approximation assumed in the FP approach is no longer valid.
This temperature range is treated by first principles molecular dynamics (MD) calcula-
tions. The MD approach allows to incorporate the exact quantum mechanical forces.
However, the temperature can only be treated classically. Initially the simulation tem-
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Figure 2.7: a) Ground state structure of monoatomic Au zigzag chains. b) Band structure for an
infinite zigzag Au chain along the chain direction.

perature TS is set according to

TS =
1

f · kBT ∑
i

Mi‖vi‖2, (2.6)

where f is the number of degrees of freedom1. The velocities are chosen randomly, so
that they fulfill the Maxwell-Boltzmann distribution. Treating the system as a canoni-
cal ensemble it is equilibrated employing the algorithm of Nosé [194, 195, 196]. After
a sufficiently large equilibration time teq the desired number of configurations can be
extracted at randomly chosen MD timesteps for t > teq.

Subsequently, the procedure is analogous to the FP approach: the electron transport
properties are obtained individually for each configuration in linear response and are
subsequently averaged. The difference between both approaches is only the way the
random configurations are obtained. One is accurate for lower temperatures, while
the other applies for higher temperatures. In an intermediate temperature range both
approaches are expected to yield identical results. This is tested in the following
section.

6.2.3 A simple test system: zigzag Au wires

One of the most intensively investigated test systems in electron transport theory are
monoatomic Au wires. They can be produced in break junctions between Au tips up
to a length of about 8 atoms [7]. Fig. 2.7a shows the zigzag ground state structure of
these chains. Close to the Fermi energy these chains exhibit a single metallic band (cf.

1 Here: 3 times the total number of movable atoms within the unit cell.
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Fig. 2.7b). Due to their simplicity they represent an ideal test system for the combined
FP/MD approach as well.

Figure 2.8: Phonon dispersion relation of the zigzag Au
chain. ⊥/‖ denote polarization directions perpendicular
and parallel to the plane of the Au chains [197].

The following frozen-phonon cal-
culations were performed in a 8-
atom unit cell. With respect to the
Brillouin zone of the 2-atom unit
cell this calculations yields the Γ-
point modes as well as the X-point
and π/2a modes, where a = 4.68
Å denotes the length of the 2-atom
unit cell. By means of the elonga-
tion patterns the resulting modes
were categorized in terms of the six
phonon branches: one longitudinal
optic and acoustic branch each, and
two transverse optic and acoustic
branches, respectively. The acoustic Γ-point modes do not meet exactly at the ori-
gin due to numerical noise. The resulting dispersion relation shown in Fig. 2.8 has
been corrected for these effects. As a result of the high symmetry along the chain
direction optic and acoustic branches of equal polarization become degenerate at the
X-point. The TO branch lies energetically lower than the two other optic branches,
since the coupling is very weak in this direction.

The amplitudes of these phonon modes for Bose-Einstein occupation at 150 K and
300 K, respectively, have been calculated employing the procedure described above.
20 configurations with random phase factors φm were generated. The same number
of random configurations was extracted from MD calculations after an equilibration
time of 15.000 time steps with δt = 2 fs. For this conceptual test periodic boundary
conditions were assumed for the transport calculations as well. Therefore Eq. (2.5) is
reduced to

G =
2e2

h

∫
dE N(E)

(
−∂ f0

∂E

)
, (2.7)

where M(E) denotes the number of bands at the energy E. Extracting M(E) from
band structure calculations for each one of the random configurations obtained by
either FP or MD calculations and evaluating Eq. (2.7) yields the conductances listed
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Frozen-Phonon Molecular Dynamics

150K 0.39 ± 0.17 0.40 ± 0.26
300K 0.44 ± 0.20 0.46 ± 0.25

Table 2.2: Average conductances and standard deviations in units of 2e2/h in linear response for
infinite zigzag Au chains at finite temperatures [197].

in Tab. 2.2. Both approaches result in conductances that match very closely. The
MD approach exhibits slightly higher standard deviations than the FP approach. In-
terestingly, the average conductances at 150K and 300K are somewhat smaller than
the conductance of the equilibrium structure. This can be understood in terms of the
symmetry-breaking longitudinal phonon modes. As a consequence of their occupa-
tion the degeneracy of the bands at the X-point of the Brillouin zone is lifted, resulting
in a small bandgap at the Fermi energy. Since the conductances obtained from both
approaches match very closely, the combination of both approaches seems reasonable.

6.2.4 Quasiparticle corrections and eigenstate symmetries

As it turns out this approach cannot be directly applied to the In/Si(111)-(4×1)/(8×2)
surface. The (8×2) LT phase is seriously affected by the DFT bandgap problem. In
DFT-LDA the gap energy amounts to only EG,LDA = 0.012 eV as opposed to the ex-
perimental values between 0.1–0.3 eV [30, 36, 42, 44]. As a result the phase transition
with respect to the conductance would be obtained at much lower temperatures than
TC. Thus quasiparticle corrections need to be taken into account. However, it is clearly
impossible to perform quasiparticle calculations for each configuration. The method
of choice is to derive a reasonable scissors operator, that can subsequently be applied
to any configuration. Unfortunately, this is not as straight forward as it seems on first
glance.

Fig. 2.9a shows the band structure of a distorted In nanowire in the (8×4) unit cell.
Since the DFT code can only sort the eigenvalues according to their respective energy,
the “band structure” shown is not in actuality a band structure in the strict sense of
the word, but rather a loose collection of eigenvalues. Any connections drawn are
purely artificial. This is very important to note: from the DFT eigenvalues alone it is
impossible to tell which eigenvalues belong to the same band. However, exactly this
information is crucial for the application of the scissors operator because the conduc-
tion bands are affected much stronger by quasiparticle corrections than the valence
bands. The bands shown in Fig. 2.9a are not well separated and exhibit several pos-
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Figure 2.9: a) DFT-LDA band structure of a random In/Si(111)-(8×2) MD configuration. Conduc-
tion, valence and Si bulk bands are drawn in red, blue and black, respectively. b) The same band
structure sorted according to the respective eigenstate symmetry, see text.

sible degeneracies. Therefore it is unknown which eigenvalues represent conduction
states and should be shifted.

Knowing which eigenvalues belong to the same band is crucial for another reason
as well: to apply the linear response formula from Eq. (2.7) requires to know the
number of bands at every energy E with much higher resolution than is numerically
feasible by k-point sampling alone. For both reasons it is essential to be able to dis-
tinguish crossings from anti-crossings in the band structure and obtain information
which eigenvalues together constitute a band. Note that this problem did not arise
for the Au chains in the previous section, since only one band was present near the
Fermi energy.

To solve this problem an algorithm was developed that assigns the eigenvalues to
their respective bands by means of the wavefunction symmetries. In the first step the
wavefunctions φnk are projected onto spherical harmonics Yi

lm that are centered at the
positions of the ions i, according to:
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Pilm
nk = 〈Yi

lm|φnk〉 (2.8)

If the k-point sampling is not too coarse it can be safely assumed that the symme-
try of the wavefunctions belonging to the same bands – and hence the site-specific
projections – change little between adjacent k-points. On the other hand, site-specific
projections of states belonging to different bands are expected to be notably different
as well. At each k-point and band index pair nk the following expression is calculated
for any n < n′ < nmax:

Qnn′k =
∑i,l,m Pilm

nk · Pilm
n′k+1

∑i,l,m Pilm
nk · Pilm

nk+1 + δx
(2.9)

The infinitesimal term δx is introduced in the – unlikely – case that the denominator
would otherwise amount to zero. This ratio between the overlaps of the projections
becomes Qnn′k � 1 if a crossing is present between k and k + 1 and the states φnk and
φn′k+1 belong to the same band.

In practice the implementation is performed by programming 6 nested loops over
the indices n, n′, k, i, l, m and thus systematically scan the band structure for cross-
ings. The results are stored as “hopping indices” from one band index to another in
a (n× k)-matrix. If a crossing is indicated by a Qnn′k � 1 the corresponding matrix
element is set to the difference between the DFT bandindex n and the bandindex of
the band to which the eigenstate actually belongs to. If no crossing is present the
matrix element is set to zero. Calculating this “hopping” matrix allows to efficiently
sort the original DFT eigenvalues according to their respective bands. The described
algorithm is found to work very well in case of the In/Si(111) nanowire system.

The original DFT band structure (cf. Fig. 2.9a) could have represented a case similar
to Ge, which is erroneously metallic within DFT. While Ge features an indirect gap,
the DFT bands are so close in energy that the gap vanishes. Applying this algorithm
to the eigenvalues depicted in Fig. 2.9a yields the band structure shown in Fig. 2.9b.
Now it is clear that the present case is completely unlike the Ge case and that this
band structure is indeed metallic. It will remain so also after introducing quasiparticle
corrections by means of a scissors operator. The combined FP/MD approach and this
eigenvalue sorting algorithm now enable the treatment of the In/Si(111) nanowire
array.
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6.2.5 Results of the combined FP and MD approaches

The (8×2) hexagon structural model is used as a starting point for the following calcu-
lations, since in the previous chapter it has been confirmed to describe the properties
of the In/Si(111)-(8×2) LT phase very well. For this reason DFT-LDA with the In 4d
states frozen into the core is employed because this is the only approximation which
predicts the (8×2) hexagon structure to be stable over the trimer model. The k-space
integrations are performed using uniform meshes equivalent to 256 k-points in the
(1×1) surface Brillouin zone. For both the FP and MD calculations the surface was
simulated by an asymmetric slab with 4 Si bilayers and a vacuum region equivalent to
6 Si bilayers in length. To enable the calculation of Γ- and X-point phonon modes with
respect to the (8×2) surface Brillouin zone both the FP and MD calculations have been
carried out in the (8×4) unit cell. This is the largest unit cell that was still numerically
feasible on the available systems2.

In all cases a number of 30 random configurations has been employed at 50 K and
300 K. Using the FP approach the configurations were obtained for Bose-Einstein oc-
cupation of the phonon modes with random phase factors, as described in section
6.2.1. To estimate the influence of zero-point vibrations another 30 random configu-
rations were generated for zero-point occupation only. The MD configurations were
extracted randomly after an equilibration time of 7700 steps with a step size of δt = 2
fs. For each of the random configurations obtained by either the FP or MD approach
the band structure was calculated in ΓX-direction employing a 16× 1× 1 k-point grid.
Afterwards, the DFT eigenvalues were assigned to their respective bands by means
of the eigenstate symmetry algorithm discussed above. A constant scissors shift of
0.5 eV is applied to the identified conduction states that lie more than 0.5 eV above
the highest occupied electronic state, ensuring an approximate reproduction of the
measured Si bulk band structure. For the energetically lower lying conduction states
a linear interpolation up to a zero shift for states directly at the Fermi energy is used
in order to model the energy-dependence of the electronic self-energy. Subsequently,
the conductance can be obtained in linear response from the resulting band structures.

The averaged conductances and displacements of the In atoms from their respective
equilibrium positions with regard to the hexagon model are compiled in Tab. 2.3. At
T = 0 K the average displacement amounts to 0.08 Å, which is well within the range of
validity for the harmonic approximation. The conductance in linear response is zero.

2 Both the FP and MD calculations ran for several months on a fast NEC-SX9 vector supercomputer.
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Frozen-Phonon Molecular Dynamics

G [2e2/h] ∆ [Å] G [2e2/h] ∆̄ [Å]
0 K 0.00 ± 0.00 0.08 ± 0.03 - -
50 K 0.11 ± 0.28 0.12 ± 0.05 0.22 ± 0.36 0.18 ± 0.08
300 K 0.50 ± 0.32 0.27 ± 0.11 1.95 ± 0.86 0.65 ± 0.26

Table 2.3: Average conductances in linear response and average displacements of the In atoms from
their equilibrium positions within the Si(111)-(8×4)In hexagon model.

Hence zero-point vibrations do not affect the conductance. Increasing the temperature
to T = 50 K yields a small increase in conductivity to 0.11 and 0.22 2e2/h for both the
FP and MD approaches, respectively. However, the MD value is already twice as large
as obtained within the frozen-phonon approximation. This behaviour occurs mainly
due to the classical treatment of the temperature by MD since the modal occupation
does not correspond to the Bose-Einstein distribution. As the average displacement
amounts to 0.18 Å ±0.08 Å anharmonic effects are beginning to arise as well. Still,
0.12 Å as opposed to 0.18 Å obtained by the FP and MD approaches, respectively, is a
rather reasonable agreement between both approaches.

At 300 K a conductance of 0.5 2e2/h is obtained in frozen-phonon approximation. As
very few of the FP configurations are metallic this increase in conductivity can be
attributed mainly to thermal smearing of the Fermi distribution (cf. Eq. (2.7)). On the
other hand, the MD approach yields a much higher conductivity of 1.95 2e2/h for the
two chains in the (8×2) unit cell. However, the experimental value of G = 200 µS per
chain [33, 44] is significantly higher than even the MD value of G = 1/2 · 1.95 2e2/h =
75.5 µS.

6.3 Discussion

Obviously, within the frozen-phonon approximation no insulator-metal transition is
obtained. Only a thermal smearing is observed. Fig. 3.10c shows the radial distribu-
tion of the In atoms at 50 K and 300 K. Due to the harmonic approximation the mean
position is always the (8×2) hexagon model, as indicated by white stars. The ra-
dial distributions are highly localized and never reach the ideal (4×1) reconstruction.
Thus the harmonic potential implied by the frozen-phonon approximation effectively
prohibits a modeling of the phase transition. However, for temperatures sufficiently
below the critical temperature TC the calculated conductivity within the FP approach
is correct.
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Figure 3.10: Radial distribution of the In atoms obtained from the a/b) MD and c) FP approaches. The
mean positions are indicated by white stars. At 50 K the mean MD positions correspond to the hexagon
model (a), while at 300 K the In atoms oscillate between the two degenerate hexagon configurations and
assume the ideal (4×1) reconstruction as the mean configuration (b).

On the other hand the MD simulations exhibit a very different behaviour. At 50 K
the mean configuration remains the (8×2) hexagon model (cf. Fig. 3.10b). Increas-
ing the temperature to 300 K yields the ideal chains in (4×1) reconstruction as the
mean configuration. However, the radial distribution in Fig. 3.10a/b shows that
the chains oscillate between the two degenerate (8×2) hexagon structures with the
ideal (4×1) reconstruction as an intermediate structure. This behaviour contradicts
the experimental findings and explains the underestimation of the experimentally
determined conductivity. A photoemission experiment by Yeom et al. [39] reveals
a sudden change from one well defined band structure to another at the transition
temperature TC. Since these experiments take place on a much faster time scale than
the oscillations predicted by the MD simulations, the presence of such fluctuations
would be clearly visible. Fleischer et al. [46] also observe well defined LT and RT
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Figure 3.11: Linear combination of each of the 30 MD and FP configurations, respectively, in terms
of the frozen-phonon eigenvectors. The resulting eigenvector scaling factors have been transformed into
occupation numbers assuming a harmonic potential according to Eq. (2.4). The inset (c) shows a larger
section of diagram (b), see text. The solid lines are filled according to n(E) = a/(exp(E/(kBT))−
1) + b, with a, b and T as fitting parameters. For the FP configurations only T and b are fitted,
effectively retaining the Bose-Einstein distribution including zero point occupation.

phonon spectra, while these oscillations imply that at least some of the LT phonon
modes would be visible also at room temperature. Hence these MD oscillations are
expected to be unphysical. Assuming that the conductivity measurements in Ref.
[33, 44] represent the conductivity of stable and well defined LT and RT structures, it
is clear that the calculated conductance of a chain oscillating between the RT and LT
phases significantly underestimates the measured conductance at room temperature.
This erroneous behaviour of the MD is most probably related to its ignorance of the
quantum mechanical phonon mode occupations.

To allow for a closer comparison between the FP and MD approaches each of the
30 respective FP and MD configurations at 50 K and 300 K has been factorized into
a linear combination of the frozen-phonon eigenvectors of the (8×2) hexagon struc-
ture. This is still possible even for the 300 K MD configurations. All of the linear
combinations achieve an accuracy of at least 0.01 Å average displacement of the In
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atoms with respect to the original structure. Assuming a harmonic potential the re-
sulting eigenvector scaling factors can be transformed into phonon mode occupation
numbers according to Eq. (2.4). These “occupations” for both the MD and FP con-
figurations are shown in Fig. 3.11. Naturally, in case of the FP configurations the
Bose-Einstein distribution is retrieved within the numerical accuracy (cf. blue lines,
Fig. 3.11), since the FP configurations have been originally generated employing the
Bose-Einstein distribution. At 50 K the factorization of the MD configurations into
phonon modes numbers yields occupation numbers of roughly the same magnitude.
Some modes feature slightly higher occupation numbers than is the case for the FP
configurations. Thus anharmonicities of the potential are not yet pronounced but
noteworthy. The spread of the occupation numbers is significantly higher though
and the Bose-Einstein distribution yields only a fit with poor correlation. Instead the
function

n(E) =
a

eE/(kBT) − 1
(3.10)

was employed with a, T as fitting parameters (cf. red lines, Fig. 3.11). While the
MD correctly takes anharmonicities into account it does not reflect the Bose-Einstein
occupation of the phonon modes due to its classical treatment of the temperature.
Zero-point vibrations are missing as well, which is seen in the phonon spectra espe-
cially towards higher energies.

At 300 K the spread of the occupation numbers for the MD configurations as well
as the distance between the distributions increase even more. Still most occupation
numbers are of the same order of magnitude as the FP occupations (cf. Fig. 3.11b).
However, there are five modes that feature large elongations that are completely be-
yond the harmonic approximation, as shown in the inset in Fig. 3.11c. These are
exactly the modes that transform the (8×2) hexagon structure into the (4×1) ideal re-
construction. Thus the (4×1) phase can never be reached by Bose-Einstein occupation
of the (8×2) hexagon structure’s phonon modes in frozen-phonon approximation.
However, while the harmonic approximation prohibits the modeling of the phase
transition, the frozen-phonon eigenvectors correctly span the phase space of the sys-
tem. Thus employing the frozen-phonon eigenvectors in combination with the correct
potential should enable an accurate treatment of the phase transition.

In conclusion, the derivation of the temperature dependent conductivity is correct
only for temperatures significantly below the critical temperature TC. The phase tran-
sition cannot be modeled using the frozen-phonon approximation. MD calculations



6.3. Discussion 153

in contrast do exhibit an insulator-metal transition, but predict unphysical oscillations
between the two degenerate (8×2) hexagon structures at room temperature. Thus a
classical treatment of the energy distribution is too inaccurate for this highly subtle
system. Instead the phase transition must be treated from a fully quantum mechani-
cal point of view including entropy contributions. The prospect of a suitable method
is discussed further in the outlook.

Furthermore, the frozen-phonon calculations largely explain the experimental Raman
spectra. Several soft phonon modes have been identified that facilitate the phase
transition, providing a strong indication that the phase transition is indeed phonon
mode driven. These results have yet to be published.
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A journey of a thousand miles begins with the first step.

– Lao Tse

Chapter 7

Summary and conclusions

Since the invention of the electric tabulating machine by Hollerith in 1889, computing
devices have been consistently increased in speed and reduced in size at the same
time. This process, as governed by Moore’s famous law, represents a major eco-
nomic factor for the electronics and semiconductor industry. However, today’s mi-
croelectronics faces a very difficult challenge: as devices are beginning to approach
the atomistic scale, quantum effects will become visible at room temperature. Both
these urgent technological needs and interests in fundamental physics are currently
driving a huge research effort into the properties of atomic-scale nanowires. Despite
the importance of atomic-size nanowires for future nanoelectronic applications few
such systems are currently known and the known ones are barely understood today.
One of the most intensively studied structures is the prototypical In/Si(111)-(4×1)
nanowire array. Ever since the discovery of its quasi-1D metallic nature and asso-
ciated (4×1)→(8×2) phase transition more than 10 years ago, this system has been
intensively and controversely discussed.

The present work treats a heterogeneous ensemble of problems related to the un-
derstanding and theoretical modeling of these nanowires by large-scale first principles
computer simulations. With respect to future nanoelectronic device concepts this
work aims at generating a solid knowledge and detailed understanding about the
physical foundations of such perspective future devices. The prototypical In/Si(111)-
(4×1)/(8×2) nanowire array is employed as a suitable model system.

7.1 Results of the present work

It was demonstrated that the intensive and ongoing search for the internal structure of
the low temperature (LT) phase of the In/Si(111)-(4×1)/(8×2) nanowire array cannot
be concluded by the surface energetics alone. Based solely on the surface energies,
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present state-of-the-art first principles calculations are not accurate enough to allow for
an unambiguous identification of the LT phase geometry. Several different structural
models have been examined: the trimer and hexagon models in (4×2) and (8×2) trans-
lational symmetry.

Figure 1.1: Quantum conductance spectrum for electron
transport along the chain direction calculated for In/Si(111)
model structures.

While the relative stability of these
models depends on the exact nu-
merical details, i. e. the treatment
of exchange and correlation effects
and the In 4d states, the calculated
electronic structure and transport
properties, however, strongly in-
dicate the formation of hexagons.
In contrast to In atom pairing and
trimerization, hexagon formation
opens a fundamental energy gap.
The quantum conductance of infinite In nanowires that model the surface chain struc-
tures explains the change of the measured wire resistance for variations between the
room temperature (RT) and LT phases of the In/Si(111) system, provided hexagons
form (cf. Fig. 1.1).

These results demonstrate the distinct influence of small changes of the nanowire geometry on
its conductance. Given the extremely flat potential energy surface, it is not difficult to envisage
“1D devices” where the electron transport can be tuned at will (cf. Publ. [11,12]).

From a technological point of view the effect of impurities and defects on the electron
transport properties is highly interesting, as current microelectronics is based almost
entirely on the concept of tuning and modulating electronic device characteristics by
the controlled creation of defects or impurity doping. The In nanowire array is a very
interesting test bed also for conductance modification at the atomic scale: it is well ac-
cessible to both experiment and first principles theory and thus helps to gain a deeper
understanding of nanoscale electron transport. First principles calculations performed
for ideal and adatom-deposited In nanowires predict an adatom-specific, and in some
cases very pronounced, decrease of the wire conductivity upon adatom deposition.
For In adatoms – where measurements exist – the reduction by more than one third
agrees with the existing data. The adsorption of hydrogen does not substantially re-
duce the conductance, which is also in agreement with existing measurements. For O
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Figure 1.2: a) Quantum conductance spectra for electron transport along the wire direction calculated
for ideal and adatom-modified In/Si(111) structures. b) Isodensity surface of the local DOS at EF,
illustrating the local DOS at the ideal In nanowires and its modification upon Pb adsorption.

deposition, the calculations predict a similar drop in conductance, whereas the impact
of Pb adatoms is slightly smaller (cf. Fig. 1.2a).

The nanowire conductance modification due to the adatoms can be traced to different mech-
anisms: potential-well scattering (Pb), nanowire deformation (In), or a combination of both
effects (O) (cf. Publ. [9]). An interpretation of the conductance drop in terms of perturbed
conduction channels may serve as an illustrative example (cf. Fig. 1.2b). Possible direct appli-
cations of nanowire conductance modification effects include sensing and biosensing devices.
I. e. the detection of viruses and tumor cells has recently been demonstrated by conductance
modification effects of antibody-adsorbed carbon nanotubes [201, 202].

One of the most intensively studied and controversely discussed properties of the
In/Si(111) nanowire array is the internal structure of its associated LT (8×2) ground
state. Given the ambiguities of the total-energy calculations in determining the ground
state structure of the (8×2) phase, the comparison of optical fingerprints calculated
for structural candidates with measured data is expected to be very helpful. The
optical reflectance anisotropies (RA) for ideal and hexagon as well as trimer recon-
structed models for the In/Si(111) nanowire array have been calculated from first
principles. Within the visible spectral range the optical signatures of both the trimer
and hexagon models are very well suitable to explain the spectral changes aquired
during the formation of the LT phase. A prediction of the reconstruction model is
not possible from the visible spectral range alone. However, the small differences in
geometry between the competing structural models lead to significant changes in the
band structure near the Fermi level. Thus the extension of the optical measurements
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Figure 1.3: a) Calculated and measured RA-spectra for In/Si(111)-(4×1)/(8×2). b) Band structure
and pronounced anisotropic optical transitions of the hexagon model for the In/Si(111)-(8×2) surface.

and calculations into the mid-infrared regime is expected to be more conclusive. First
principles calculations of the mid-infrared reflectance anisotropy as well as the intra-
band contributions have been performed for the In/Si(111) nanowire array for the
first time. Two strong anisotropic optical peaks in the mid-infrared regime were pre-
dicted for the hexagon model. In contrast, a steep rise of the RA-spectra in analogy
to a Drude-like behaviour was obtained for the trimer model. Recent measurements
indeed observe the formation of these two anisotropic peaks without any indication
for a remaining Drude-tail. In comparison with this data the trimer model can be
excluded (cf. Fig. 1.3).

The close agreement between measured data and spectra calculated for the hexagon model pro-
vide very strong evidence in favor of the hexagon model for the In nanowire ground state.
These results effectively conclude the search that has been ongoing for more than 10 years (cf.
Publ. [1,6,7]).

While the hexagon model could thus be confirmed as the long-sought internal struc-
ture of the LT ground state, the question regarding the driving force of the phase
transition is still open. Both the In/Si(111)-(4×1)/(8×2) surface’s thermal proper-
ties as well as the phase transition itself have been studied previously by Raman
spectroscopy [46] and temperature-dependent transport measurements. To achieve
a detailed theoretical understanding of these data the calculation of phonon modes
and large-scale molecular dynamics calculations have been performed. The calculated
phonon spectra are suitable to explain both the RT and LT Raman spectroscopy mea-
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Figure 1.4: Comparison of theoretical and experimental a) HT and b) LT phonon spectra. Low energy
c) shear, d) rotary and e) hexagon rotary modes, that facilitate (4×1)↔(8×2) the phase transition.

surements (cf. Fig. 1.4a/b). González et al. suggested a soft shear mode as a possible
driving force of the phase transition [35]. By comparing the experimental data to
the present work’s phonon calculations the existence of such a soft shear mode could
indeed be confirmed for the first time. At the same time it was demonstrated that
the soft shear mode represents only a part of the total picture: two more distinct soft
modes could be identified that facilitate the transition between the high and low tem-
perature phases (cf. Fig. 1.4c-d). These rotary and hexagon rotary modes are suitable
to explain the three lowest energy A′ modes observed in the measured Raman spectra
of the LT phase.

In conjunction with the observed soft shear mode these three soft modes are expected to facili-
tate the (4×1)↔(8×2) phase transition.

To explain the temperature-dependent transport measurements a method was devel-
oped to combine frozen-phonon calculations and molecular dynamics simulations in
order to calculate the nanowires’ conductance in linear response over the entire tem-
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Figure 1.5: Radial distribution of the In atoms obtained from the a/b) MD and c) FP approaches. The
mean positions are indicated by white stars. d/e) Linear combination of each of the 30 MD and FP
configurations, respectively, in terms of harmonic occupations of the frozen-phonon eigenvectors (cf.
Eq. 2.4). The inset (f) shows a larger section of diagram (e). The solid lines are filled according to
n(E) = a/(exp(E/(kBT))− 1) + b, with a, b and T as fitting parameters.

perature range. While the phonon and molecular dynamics calculations are suitable
for low and high temperatures, respectively, it was demonstrated that neither method
is able to correctly address the temperature range near the critical temperature TC of
the phase transition. The harmonic approximation inherent to the frozen-phonon ap-
proach effectively prohibits any modeling of the phase transition. On the other hand,
the molecular dynamics simulations suffer from the classical treatment of the energy
distribution, resulting in unphysical oscillations between the two degenerate hexagon
ground states at room temperature (cf. Fig. 1.5).

It turns out that the mechanisms involved in the phase transition of this highly subtle system
are purely quantum mechanical in nature and can only be treated from a fully quantum me-
chanical point of view. A suitable approach is presented in the outlook. These results have yet
to be published.

The present work as a whole contributes to the understanding of structural, electron transport,
optical and thermal properties of nanoscale systems as encountered upon further size reduc-
tion of current microelectronics. It also represents an important building block towards doping
studies including electron donor and acceptor effects with respect to future nanowire device
applications, as discussed in the outlook.

Furthermore, the present author has also pursued other fields of study, such as optical
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excitation spectra in many-body perturbation theory at the example of LiNbO3 (cf.
Publ. [10]) and the interaction of water with solid surfaces (cf. Publ. [8]), partially in
collaboration with the local chemistry group of Prof. G. Grundmeier (cf. Publ. [2,3]).

7.2 Outlook

7.2.1 Quantum mechanical treatment of the phase transition

The ability to accurately predict a materials properties based on first principles density
functional theory (DFT) calculations is a major achievement of modern solid state the-
ory. However, in the present work it was demonstrated that standard DFT approaches
have difficulties to describe the In/Si(111)-(4×1)/(8×2) nanowire array’s phase tran-
sition due to inherent approximations. In order to obtain an accurate description
and in-depth understanding of this important system’s phase transition several ma-
jor obstacles have yet to be overcome. Frozen-phonon calculations incorporate the
correct quantum mechanical energy distribution, but have to approximate the po-
tential energy landscape. Otherwise the phonon mode calculations for such large
systems would be numerically unfeasible. On the other hand, molecular dynamics
simulations may employ the exact potential energy landscape, but are restricted by
definition to only a classical treatment of the energy distribution. Either approach
alone is unable to capture the In/Si(111)-(4×1)/(8×2) surface’s intriguing and highly
subtle properties for temperatures near the phase transition’s critical temperature TC.
Unfortunately, combining both approaches as demonstrated in the present work is
still not accurate enough. However, the present work represents an ideal starting
point for treating the phase transition from a fully quantum mechanical point of
view. As observed in chapter 6, the frozen-phonon calculations do not employ the
correct potential, but still span the entire relevant phase space of the system. Start-
ing from the hexagon model for the low temperature ground state even the other
degenerate hexagon model could be represented in terms of a linear combination of
the frozen-phonon eigenvectors. Any of the MD configurations at 300K could be lin-
early combined as well. Based on this observation the phase transition is proposed to
be modeled by a quantum Monte Carlo approach employing the frozen-phonon eigen-
vectors in combination with the exact potential energy landscape. The calculational
scheme works as follows:

1. A random mode of frequency ωki is selected and randomly elongated in a way
that reasonably covers the system’s phase space.
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2. Subsequently a total energy calculation is performed for the distorted structure.

3. The selected mode’s occupation for a given temperature T is determined by the
Bose-Einstein distribution. Thus the upper energy limit E is given by:

E =
(

n̄m(h̄ωki) +
1
2

)
h̄ωki, with n̄m(h̄ωki) =

1

e
h̄ωki
kBT − 1

(2.1)

If the resulting energy difference ∆E with respect to zero elongation for the
selected mode is below the threshold E the new configuration is adopted. Oth-
erwise it is discarded.

4. Afterwards the cycle begins again with step 1.

The major point is to ensure an efficient coverage of the system’s phase space. A
sensible approach seems to elongate the modes incrementally in the same direction
until ∆E increases beyond E. Then the direction is reversed. The step size could
be made dependent on the slope of the respective mode’s potential and probably on
its occupation as well. In principle this approach should allow for a much more ac-
curate treatment of the phase transition with respect to MD simulations. However,
the computational impact is huge permitting only small unit cells. An enormous
speedup could be obtained though by taking into account the full potential of only
those modes that exhibit strong anharmonicities. In chapter 6 (cf. Fig. 3.11) it was
demonstrated that many modes of the In/Si(111)-(8×2) surface towards higher ener-
gies feature very similar elongations according to both the frozen-phonon and MD
approaches. Employing the harmonic approximation for these modes is expected to
enable the treatment of sufficiently large unit cells. This work is in progress.

7.2.2 Entropy contributions

Even zero-temperature conditions are not correctly described by ground-state DFT
total-energy calculations, due to the neglect of zero-point contributions. The dis-
crepancies get larger with increasing temperature. To accurately describe the phase
stability at finite temperatures all of the respective system’s excitations and degrees
of freedom involved in creating entropy have to be determined. Generally, phonon
contributions and electron entropy are considered to be only small quantitative cor-
rections. However, in cases where different phases are otherwise very close in energy
these contributions may become important. The electronic and vibronic parts of the
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free energy F are given by [198, 199]

Fel = −kB

∫ +∞

−∞
dE nF[ f ln f + (1− f ) ln(1− f )] (2.2)

Fvib = ∑
k,µ

1
2

h̄ωk,µ︸ ︷︷ ︸
Ezero−point

+ kBT ∑
k,µ

ln

(
1− e−

h̄ωk,µ
kBT

)
︸ ︷︷ ︸

Svib

, (2.3)

where nF, f denote the Fermi distribution and density of states, respectively. ωk,µ is
the µ-th phonon mode at k-point k. Thus Fvib is obtained directly from the phonon
spectra. Fel can be calculated from the band structure. The Fermi level is determined
by the condition [199] ∫ +∞

−∞
dε nF(ε) f (ε) = Ntot, (2.4)

where Ntot represents the total number of valence electrons. It would be highly inter-
esting to see whether entropy contributions are important with respect to the phase
stability of the different structural models.

In conjunction with the quantum Monte Carlo approach described in the previous section
the suggested course of action is expected to allow for an in-depths understanding of the
phase transition’s driving mechanism. Calculating the entropy contributions is currently in
progress.

7.2.3 Doping vs. optical pumping

Nanowire doping has recently become an upcoming “hot topic” that receives strongly
increasing attention. With respect to future device applications it would be highly in-
teresting to extend the present work’s doping study towards electron donor/acceptor
effects and their impact on the nanowires’ structural and electronic properties.

In 2009 a tuning of the critical temperature TC of the In/Si(111)-(4×1)/(8×2) surface’s
phase transition has been observed experimentally by adatom deposition [56, 64].
Tiny amounts of Na adatoms decreased TC. This decrease was attributed to the charge
transfer from the Na atoms towards the surface. The resulting upwards shift of the
Fermi level increases the deviation of the Fermi nesting vector from its ideal condition
for a commensurate charge density wave (CDW) transition. Surprisingly, an increase
of TC was observed upon oxygen deposition. As oxygen defects deprive the surface
of electrons the Fermi level is lowered, approaching the ideal Fermi-surface nesting
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Figure 2.6: Low energy electron diffraction (LEED) pictures for a) clean and b) oxygen-adsorbed
In/Si(111) surfaces. Red arrows indicate (8×2) patterns [64]. STM images of In nanowires under
c) dark and d) illuminated conditions, demonstrating an optically induced triggering of the metal-
insulator transition [57].

condition. Thus electron/hole doping affects the In/Si(111) nanowire array in anal-
ogy to thermal excitations: by supplying additional electrons or holes either the (4×1)
or (8×2) phase is stabilized, respectively.

In 2008 Terada et al. demonstrated an optically induced control of the In/Si(111)
metal-insulator transition [57]. By tuning the band filling of the In surface states
employing optical pumping the nanowires’ phase state could be switched back and
forth between the (4×1) and (8×2) reconstruction, even at T > TC. Simultaneous con-
ductance measurements confirmed the (4×1) and induced (8×2) reconstructions to be
metallic and semiconducting, respectively. Thus Terada et al. effectively demonstrated
the operation of an atomic-size optical switch, with electron transport occurring solely
in the ballistic regime without scattering. Intriguingly, increasing the band filling by
photoexcitation was observed to stabilize the (8×2) phase. This is highly unexpected
because thus optical pumping affects the nanowires in the reverse way with respect
to thermal excitations or impurity doping.

Both optical pumping and impurity doping offer the important prospect of modulating and
controlling the nanowires’ electrical characteristics in a way that may be very useful in future
one-dimensional device applications. However, no satisfying explanation for these observations
has been found as of today. An extensive theoretical study of the mechanisms involved is there-
fore highly suggested. Performing DFT calculations for the In/Si(111)-(4×1)/(8×2) surface
with modified electron occupations is expected to be a useful starting point. The present work
represents an ideal platform to delve into this fascinating and important field of study.
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