
Automatic Service Discovery and
Composition

for Heterogeneous Service Partners

Zille Huma

A thesis submitted to the
Faculty of Computer Science, Electrical Engineering, and Mathematics

of the University of Paderborn
in partial fulfillment of the requirements

for the degree of Dr. rer. nat.

June 2015

Supervisors:

Prof. Dr. Gregor Engels, University of Paderborn, Germany
Prof. Dr. Christian Gerth, University of Applied Sciences Osnabrück,
Germany

Doctoral Committee:

Prof. Dr. Gregor Engels, University of Paderborn, Germany
Prof. Dr. Christian Gerth, University of Applied Sciences Osnabrück,
Germany
Prof. Dr. Leena Suhl, University of Paderborn, Germany
Prof. Dr. Heike Wehrheim, University of Paderborn, Germany
Dr. Theodor Lettmann, University of Paderborn, Germany

Date of public examination:

July 9th, 2015

Acknowledgments

The research work for this dissertation was carried out in the Database
and Information Systems group at University of Paderborn headed by Prof.
Dr. Engels. It was partially supported by International Graduate School of
Dynamic Intelligent Systems and the German Research Foundation (DFG)
within the Collaborative Research Center 901 “On-The-Fly Computing”.

There are quite a few people, whose support and input made the com-
pletion of this dissertation possible. I would like to thank each of them.

First and foremost, I owe my deepest gratitude to my supervisor, Prof.
Dr. Gregor Engels for his invaluable support and patience. I am thankful
to him for showing me how to do research, for his technical insights into
the topic and for the personal guidance and motivation when I lost the
path during the course of this work. I would also like to express my deepest
gratitude to my co-supervisor Prof. Dr. Christian Gerth, who believed in my
abilities, constantly guided and encouraged me to continue scientific work
and extensively participated in our scientific writing activities. Christian! I
owe a major part of my success in terms of the published scientific papers
to you. Additionally, I would like to thank Prof. Dr. Leena Suhl, Prof. Dr.
Heike Wehrheim and Dr. Theodor Lettmann for being the members of my
doctoral committee.

I would also like to thank all my colleagues from the Database and In-
formation Systems research group for the highly professional and extremely
friendly environment that contributes to the highly-valuable scientific work
produced in this group.

Further, I am deeply thankful to Prof. Dr. M. Jaffar-ur-Rehman (late)
from M.A. Jinnah University, Pakistan, who first discovered my abilities of
a potential researcher and guided me to take my first steps on this path. Dr.
Jaffar! none of this was possible without you and I miss your presence on
every achievement on professional and personal fronts.

Apart from these guiding forces in professional environment, the comple-
tion of this dissertation was not possible without the support of my family.
Here, I owe a heartfelt thanks to my parents for their unconditional love, for
their belief in my abilities, for their big dreams for me and for their extensive
effort to provide me with the best possible resources and opportunities to
excel in different directions in my academic life. Ammi and Abbu! you are
the reason of my existence and I owe everything that I achieved in life only
to you.

Last but not the least, the most heartfelt thanks goes to my husband
Tauseef and my daughter Eshaal. Eshaal! thank you for all your patience,

understanding and support during my work. You are the sunshine of my life
that lit my most stressed days with its beautiful smile. More than anything
else, you are the center of my universe. Tauseef! thank you for being that
strongest pillar of support for me to lean on when I needed it the most.
Thank you for your unconditional support, for bearing with all my mood
swings during the course of this work, for making all those sacrifices just to
let me achieve my dream and for putting things back in perspective for me
whenever they went haywire. You are the wind beneath my wings!

Finally, I thank the International Graduate School of Dynamic Intelligent
Systems for partially providing the financial support for this dissertation.
Additionally, I am thankful for the financial and scientific support of the
Collaborative Research Center 901.

iv

Abstract

For distributed software systems, Service-oriented computing (SOC)
emerged as a promising trend to overcome some major challenges that hur-
dle the development of cross-organizational large-scale enterprise systems.
SOC is based on the idea of providing and consuming distributed software
components as services by the service partners. In this context, service
providers independently develop and publish their services on the service
markets, which in turn are automatically discovered and consumed by the
service requesters to fulfill their needs. With the widespread acceptance of
SOC and service markets, the number of available software services steadily
increased in recent years. To fully leverage the opportunities provided by
this plethora of services for the development of highly flexible and aligned
enterprise systems, there is a requirement for automatic and accurate service
discovery and composition approaches. These approaches mainly rely on au-
tomatic service description matching, which is a complex task due to the
challenges like lack of comprehensive service descriptions and the underlying
multifaceted heterogeneity of the service partners.

In contrast to the current standards like WSDL that allow structural
service descriptions, there is a requirement for comprehensive service de-
scriptions, which comprise structural as well as behavioral aspects of the
services. Otherwise an accurate service discovery and composition is not
possible. An automatic matching of such comprehensive service requests
and offers is complicated due to the multifaceted heterogeneity of the ser-
vice partners including the use of different specification languages, different
data models, or different levels of granularity in the specification itself.

In this thesis, we present a framework for automatic service discovery and
composition mechanism, which is based on rich service description language
(RSDL) with visual notations to specify the service descriptions in terms
of their structural and behavioral aspects. Based on such comprehensive
service descriptions, our framework introduces an elaborated multi-phase
matching mechanism for the service requests and offers. Through different
phases, it also overcomes the underlying heterogeneity of the service part-
ners using different techniques, e.g., data model heterogeneity is resolved
through service description normalization on the basis of local-global data
model matching. Similarly, granularity level heterogeneity and linguistic
heterogeneity are also resolved during service description matching. As a
proof of concept, our work is entailed with an implementation prototype,
which implements a significant part of the proposed framework.

Zusammenfassung

Service-oriented Computing (SOC) ist ein vielversprechender Ansatz, um
einige der großen Herausforderungen bei der Entwicklung von organisa-
tionsübergreifenden, hochflexiblen Software-Systemen für Grounternehmen
zu überwinden. SOC basiert auf der Idee der Bereitstellung und Nutzung
verteilter Software-Komponenten, die in Form von Services von Service-
Anbietern bereitgestellt werden. Service-Anbieter entwickeln ihre Services
unabhängig und veröffentlichen diese auf Service-Märkten, die von Service-
Nutzern verwendet werden können, um geeignete Services zu finden. Die An-
zahl solcher Service-Märkte sowie der bereitgestellten Services ist in den letz-
ten Jahren stetig gestiegen. Um von dieser Vielzahl an Services bei der Ent-
wicklung von hochflexiblen Software-Systemen für Großunternehmen profi-
tieren zu können, müssen geeignete Services automatisiert gefunden und zu
Service-Kompositionen zusammengesetzt werden können. Ansätze hierfür
setzen meist auf ein automatisiertes Service-Matching, welches den gesuch-
ten Service mit den angebotenen Services abgleicht. Ein solches Matching
ist allerdings sehr komplex, da Service-Beschreibungen oft nicht ausführlich
genug sind und die Beschreibungen des gesuchten Service sowie der angebo-
tenen Services sehr heterogen sind.

Im Gegensatz zu gängigen Standards zur Beschreibung von Services wie
der Web Service Description Language (WSDL), die zur Beschreibung von
strukturellen Aspekte eines Dienstes genutzt werden können, besteht ebenso
die Notwendigkeit auch das Verhalten eines Dienstes zu beschreiben. An-
dernfalls ist ein Matching zwischen dem gesuchten Service und den ange-
botenen Services nur auf strukturellen Informationen möglich, was oft zu
ungenauen Ergebnissen führt. Zusätzlich erschwert wird ein Matching auf-
grund der Nutzung von unterschiedlichen Sprachen zur Beschreibung von
Services, durch abweichende Datenmodelle oder dem unterschiedlichen De-
tailgrad der Service-Beschreibungen.

In dieser Arbeit wird ein Ansatz fr das automatisierte Finden von Ser-
vices sowie deren Komposition vorgestellt, der auf der Rich Service Descrip-
tion Language (RSDL) basiert. Die RSDL besitzt visuelle Notationselemen-
te, um die Struktur und das Verhalten sowohl von angebotenen als auch ge-
suchten Services umfassend zu beschreiben. Basierend auf solchen Beschrei-
bungen wird ein mehrphasiger Matching-Ansatz vorgestellt, der die bereits
erwähnten Probleme schrittweise angeht und löst. Zum Umgang mit un-
terschiedlichen Datenmodellen wird ein Local-Global Matching des Daten-
modells durchgeführt, um die Service-Beschreibungen zu normalisieren. Auf
ähnliche Art wird mit unterschiedlichem Detailgrad oder sprachlichen Un-

terschieden der Service-Beschreibungen umgegangen. Als Proof-of-Concept
wurde im Rahmen dieser Arbeit ein Prototyp entwickelt, der einen Großteil
des vorgestellten Ansatzes implementiert.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 An Example Scenario 8

1.1.2 Problem Statement and Solution Requirements 12

1.2 Proposed Solution Overview 14

1.3 Publication Overview . 17

1.4 Thesis Structure . 19

2 Related Work 21

2.1 Service-oriented Computing (SOC) 21

2.2 Automatic Service Discovery and Composition 23

2.3 Service Description . 24

2.3.1 Classification of a Service Description Language . . . 25

Comprehensiveness Level 25

Ease-of-Use . 28

Request/Offer Distinction 29

2.3.2 Overview of Service Description Languages 30

2.3.3 Evaluation . 34

2.4 Service Description Matching 36

2.4.1 Dimensions of Service Description Matching 37

Matched Elements . 37

Heterogeneity Resolution 38

Matching Strategy . 40

Service Description Abstraction Level 41

Service Structure . 42

2.4.2 Overview of the Service Description Matching Ap-
proaches . 42

2.4.3 Evaluation . 48

2.5 Summary and Discussion . 52

3 Rich Service Description Language (RSDL) 53

3.1 Requirements for a Comprehensive Service Description Lan-
guage . 53

3.2 Rich Service Description Language 54

3.2.1 Structure of the RSDL 55

3.2.2 Syntax of RSDL . 55

Data Model . 57

Operation Signatures 59

ix

CONTENTS

Operation Behavioral Semantics 60

Requester Protocol . 62

Provider Protocol . 64

3.2.3 RSDL Service Descriptions for the running Example . 66

3.3 Summary and Discussion . 70

4 Semantics of RSDL 71

4.1 Semantics for the RSDL Data Model and Operation Signatures 71

4.2 Semantics of RSDL Operation Behavioral Semantics 75

4.3 Semantics of RSDL Service Protocol 79

4.3.1 Dynamic Meta Modeling (DMM) 79

4.3.2 DMM for Requested Service Protocol 79

4.3.3 DMM for Offered Service Protocol 82

4.4 Summary and Discussion . 83

5 Service Description Normalization through Data Model
Matching 85

5.1 Service Description Normalization Overview 85

5.2 Data Model Matching - Foundations 88

5.2.1 Local-global Matching Approach 88

5.2.2 Global Ontology and its conforming global Data Model 89

5.3 Data Model Matching Algorithm 94

5.3.1 Attribute Annotation 94

5.3.2 Similarity Value Calculation for Attribute Pairs 96

5.3.3 Attribute Mappings Determination 98

5.3.4 Class Annotation . 99

5.3.5 Similarity Value Calculation for Class Pairs 99

5.3.6 Class Mappings Determination 100

5.4 Visual Contracts Normalization 101

5.5 Summary and Discussion . 104

6 Multi-level Service Discovery 107

6.1 Service Discovery Overview 107

6.2 Category Matching . 110

6.3 Operation Matching . 111

6.3.1 1 : 1 Operation Matching 116

Definition for 1 : 1 Operation Correspondence 116

1 : 1 Operation Matching Algorithm 119

6.3.2 n : 1 Operation Matching 122

Different Scenarios for a n : 1 Operation Correspondence123

x

CONTENTS

Definition for n : 1 Operation Correspondence 127

n : 1 Operation Matching Algorithm 129

6.3.3 1 : n Operation Matching 132

Different Scenarios for a 1 : n Operation Correspondence133

Definition for 1 : n Operation Correspondence 140

1 : n Operation Matching Algorithm 142

6.3.4 n : m Operation Matching 154

Different Scenarios for a n : m Operation Correspon-
dence . 154

6.3.5 Operation Mapping Generation 161

6.4 Summary and Discussion . 166

7 Service Composition 169

7.1 Service Composition Overview 170

7.1.1 Protocol Matching - State of the Art 171

7.1.2 Our Approach . 173

7.2 Protocol Translation to LTS 174

7.3 LTS Composition . 178

7.3.1 Operation Mapping-based LTS Composition 178

7.3.2 LTS Composition Algorithm 182

7.4 Determination and further Examination of valid Service Com-
positions . 187

7.4.1 Successful Service Composition Phase 187

7.4.2 Failed Service Composition Phase 191

7.5 Discussion . 192

7.6 Summary . 195

8 Tool Support 197

8.1 Requirements for the Workbench 197

8.2 Workbench Architecture . 199

8.3 Workbench Implementation 200

8.3.1 Tools and Technologies 201

Eclipse . 201

Eclipse Modeling Framework (EMF) 201

Papyrus . 202

Henshin . 202

EMF Compare . 202

Query-View-Transformation Relations(QVTr) 203

8.3.2 Implemented Features 203

8.3.3 Specify Service Description 203

xi

CONTENTS

8.3.4 Normalize Service Description 206
8.3.5 Publish Service Offer 208
8.3.6 Perform Service Discovery and Composition 209
8.3.7 Manage Global Ontology 212
8.3.8 Manage Service Registry 212

8.4 Evaluation . 212
8.5 Summary and Discussion . 216

9 Conclusion and Future Work 217
9.1 Summary and Contributions Overview 217
9.2 Outlook on Future Work . 220
9.3 Final Remarks . 223

Bibliography 225

xii

1
Introduction

In this chapter, we give a detailed motivation for the work presented in this
thesis. This is followed by a layout of our salient research goals and corre-
sponding research contributions. In the last section, we provide a structure
for the rest of the thesis.

1.1 Motivation

With the infiltration of internet in our daily lives, business organizations
are constantly striving to make an efficient use of the emerging web tech-
nologies and achieve an edge in the competitive market. In this direction,
an important challenge is an ongoing improvement of their existing IT sys-
tems through its modification and collaboration with other existing systems.

Service 1 Service 2 Service n…

Service Repository

Service
Offer findpublish Service

Request

interact
Service
Provider

Service
Requestor

Figure 1.1: An Overview of Service
Publishing and Discovery on Service
Market

In recent years, service-oriented
computing (SOC) [55] has emerged
as a promising trend that enables
the vision of cross-organizational
collaborations by allowing large-
scale, heterogeneous and flexible
systems at enterprise level. SOC
is based on the idea of publishing,
discovering and consuming indepen-
dently developed and distributed
software components as services.

The general scenario of SOC
concerning service publishing and
discovery is shown in Figure 1.1. In this scenario main actors are service
requesters and service providers that interact with each other on a service
market. A service provider independently develops its service as a software

1

CHAPTER 1. INTRODUCTION

unit offering certain functionality. The developed service is then published
in the repository of one or more service markets through its service offer,
i.e., a description of the functionality offered by the service. On the other
hand, a service requester discovers and composes the services available in
the service repository to satisfy its service request, i.e., a description of the
functionality required by the requester. A typical realization of this scenario
can be seen in a service-oriented architecture (SOA) [111], where services
are discovered by the SOA developers and used as basic building blocks for
enterprise-level heterogeneous systems.

With the recent rise of cloud computing and its attached delivery models,
such as, software as a service (SaaS), a steady increase in the number of avail-
able services can be observed. This growing plethora of available services
along with the powerful service and platform technologies provide enormous
opportunities for the development of highly-distributed and highly-scalable
SOAs.

Currently, there are many milestones that need to be achieved for such a
realization of the SOC. The achievement of these milestones is made difficult
mainly due to the dynamic nature of the service market. In today’s world,
business markets are highly dynamic where businesses are always thriving
for agility to meet the changing market conditions. Consequently, the ser-
vice markets in the SOC paradigm are also changing constantly where new
service providers may emerge all the time. The requirements of the service
requesters are also constantly changing in terms of functionality and quality
of the invoked services. This ever-changing nature of the service markets
makes the achievement of following milestones highly difficult: maintain-
ing high availability of services, assuring end-to-end security, and lack of
well-advertised service registries, etc.

However, the most important milestone that needs to be achieved by
SOC in this context is to allow automatic service discovery and composition
while ensuring accurate results. This is enabled through the development of
automatic service description matching mechanisms. Such mechanisms en-
able an automatic matching of requested and offered functionality specified
in the service descriptions and deduce whether the requirements specified
by the requester are fulfilled by one or more offered services. However, the
development of such an automatic service description matching mechanism
faces 2 important challenges: 1) lack of comprehensive service descriptions
for the service partners, 2) the resolution of the underlying multifaceted het-
erogeneity of the service partners. These challenges are discussed in detail
as follows.

Firstly, the service requests and the offers do not comprehensively specify

2

1.1. MOTIVATION

the requested and offered functionality, respectively. Consequently, an au-
tomatic matching based on such uncomprehensive service descriptions lead
to inaccurate results hence making automatic service discovery difficult. For
instance, the prevailing service description standard WSDL [162] allows to
specify a service offer in terms of the structural aspects of the published
service, i.e., its offered operation signatures. On the other hand, a service
requester with no technical expertise often relies on keywords to search for
the required services from the service market. However, our focus is a ser-
vice requester with technical expertise, which also mainly relies on WSDL
to describe its service request in terms of the required operation signatures.
Such WSDL-based service descriptions are limited in the sense that they
only specify the structural aspects of the required and offered functionality,
which do not sufficiently describe the features required or offered by the
service partners. For instance, such structural service descriptions do not
represent the actual behavior of the requested/offered service. Consequently,
a service description matching mechanism based on such descriptions can
lead to inaccurate results. This is further clarified with the example shown
in Fig. 1.2.

A requester with technical expertise wants to search and collaborate
with an e-commerce service. For this purpose, he specifies his requirements
in terms of required operation signatures as a WSDL-based service request.
Additionally, he also has certain requirements concerning the sequence of op-
eration invocation but this required behavior cannot be specified in WSDL.
From the e-commerce services available on the service market, two services,
i.e., OnlineShop1 and OnlineShop2 are selected by the service description
matching mechanism. These matching results are based on a structural
matching of the service request and offers where the required operation
signatures exactly match the offered operation signatures for the selected
service offers. But on a closer look, it is evident that only one of the two
services, i.e., OnlineShop1 actually fulfills the requester’s requirements com-
pletely because it also offers the same operation invocation sequence as re-
quired by the requester.

Hence, a service description matching mechanism based on such struc-
tural service descriptions lead to inaccurate service discovery results. In
order to develop service matching mechanisms that can ensure accurate re-
sults while automating the service discovery process, there is a requirement
for more comprehensive service descriptions that also comprise further in-
formation, e.g., behavioral aspects in addition to the structural aspects of
the required/offered services.

The idea of comprehensively describing the software components in terms

3

CHAPTER 1. INTRODUCTION

OnlineShop1Offer 1 (.wsdl)
signIn(…)

searchItem(…)

buyItem(…)

signIn(…)

searchItem(…)

buyItem()

()

Requester
signIn(…)

searchItem(…)

signIn(…)

searchItem(…)

Request (.wsdl)
buyItem(…)

OnlineShop2

buyItem(…)

()

buyItem(…)

Offer 2 (wsdl) p
searchItem(…)

signIn(…)

buyItem(…)

signIn(…)

searchItem(…)

b ()

Offer 2 (.wsdl)

y ()
buyItem(…)

Figure 1.2: Requester, OnlineShop1, and OnlineShop2 with same Operations
but different Behavior

of their behavioral as well as structural aspects is not new and is already
extensively addressed in the component-based software engineering (CBSE)
domain [44, 32]. A variety of textual (e.g., Z-specification [146]) as well as
visual languages (e.g., UML [115]) provide artifacts and notations to specify
different types of behavior of a software component [63, 133].

For instance languages, such as, First-order logic [143], Object Con-
straint Language (OCL) [164], Visual Contracts (VC) [96], etc. particularly
deal with functional behavior specifying the relationship between provided
input, achieved output and the states of a component before and after its
invocation. On the other hand, languages, such as, state machines [20], petri
nets [58], business process model and notation (BPMN) [116] aim at describ-
ing temporal behavior specifying the possible sequence of the states achieved
by a component resulting from the invocation of different transitions.

Similarly, the idea of comprehensive service descriptions has also been
investigated in the SOC domain in recent years. Approaches like [65] propose
to describe the operations in WSDL-based service descriptions in terms of
their functional behavior. We use the term behavioral semantics for such
a description of an operation in terms of its pre and post conditions as
it describes its meaning through its behavior in contrast to its structural
counterparts. Similarly, proposals like WS-BPEL [77, 112] and WS-CDL
[161] allow a description of the temporal behavior of a service in terms of
its invocation sequences, which is termed as its service protocol. In this
direction, the semantic web services (SWS) paradigm [121, 51, 39, 98, 136]

4

1.1. MOTIVATION

has come up with languages and techniques to specify comprehensive service
descriptions for service partners. However, so far these approaches also face
certain limitations, e.g., some [98, 136] are not comprehensive enough in
terms of behavioral description. On the other hand, approaches like WSML
[51, 39] and OWL-S [121] are still limited to academia and are not widely
accepted in practice because of diversion from the existing standards and/or
the extra effort required by certain service partners to adapt to the complex
textual notations [135].

Requester
signIn(c:Customer)

searchItem():Item

buyItem(i:Item)

OnlineShop1

Customer Item

Order

Receipt

signIn(c:Client)

searchItem():Product

buyItem(p:Product)

Client Product

Order

Invoice

CreditCard

based on
based on

PaymentMode BankAccount

Request Offer

Figure 1.3: Requester, OnlineShop1 and OnlineShop2 with heterogeneous
data models

Second important challenge faced for the development of an automatic
service description matching mechanism is the inherent multi-faceted het-
erogeneity of the service partners in the SOC paradigm. One major reason
of success of SOC is its claim to have flexible integration of the resources
beyond the boundaries of the involved organizations and as a result allow
these organizations to interact seamlessly. This claim of flexible integration
and seamless interaction is only realizable if SOC has the ability to resolve
the underlying heterogeneity of the service partners.

The first aspect of this multi-faceted heterogeneity is the data model
heterogeneity of the service partners. SOC claims that it allows the ser-
vice partners to function in their independent domains. Hence their service
descriptions along with their respective data models conform to their inde-
pendent understanding and knowledge of the domain, which may possibly
be formalized as an ontology. An ontology is a mean to explicitly and for-
mally define the meanings of the terms and concepts in a particular domain
[148]. For instance, GoodRelations [68] is an ontology that formalizes the
knowledge in the e-commerce domain. A conformance to such a formal on-
tology allows the service partners to explicitly specify the meaning of the

5

CHAPTER 1. INTRODUCTION

terms and concepts used in their service descriptions hence specifying their
ontological semantics.

As a result of such independent domain knowledge, there may be sit-
uations where the service descriptions are semantically similar but struc-
turally different or vice versa. To elaborate this point, an example is shown
in Fig. 1.3. In this case, the requester’s request and the providers’ offers
are based on their different knowledge of the e-commerce domain. As a re-
sult, their respective data models are heterogeneous despite representing the
same domain. For instance, a class named as Customer in the requester’s
data model is modeled as Client in the provider’s data model. Similarly,
the classes Item and Product have different names but model same con-
cept. PaymentMode in requester’s data model corresponds to two classes
CreditCard and BankAccount in the provider’s data model. Hence, the as-
sociation between Order and PaymentMode in the requester’s data model
is modeled as two associations namely Order to CreditCard and Order to
BankAccount in provider’s data model. Based on such heterogeneous data
models, the resulting service descriptions are also heterogeneous where sim-
ilar functionality can be specified differently or vice versa. An automatic
service matching mechanism must be able to automatically overcome such
a data model heterogeneity while matching the service descriptions.

The second aspect of the multi-faceted heterogeneity is the granularity-
level heterogeneity of the service partners. Based on their independent do-
main knowledge, service partners can specify their service request/offer at
different granularity levels, e.g., functionality specified in terms of a sin-
gle operation in a service request may be specified by multiple operations
in a service offer and vice versa. This results in complex correspondences,
such as 1 : n, n : 1 and n : m between requested and offered operations
in the service requests and offers. An example is provided in Fig. 1.4 for
further clarification. The requester specifies two operations findItem(...)
and viewDetails(...) in his service description. Additionally, we assume
that service partners also describe their required and offered behavior and
according to this description, findItem(...) finds an item based on the cer-
tain criteria and later on viewDetails(...) is used to view the details of
the found item. On the other hand, OnlineShop1 offers a single operation,
i.e., searchItem(...) whose behavioral description comprise of searching an
item and viewing its respective details. Based on the similarity between the
requested and offered behavior, it can be deduced that there is an n : 1 cor-
respondence between the requested and offered operations. Similarly, there
is a 1 : n correspondence between the buyItem(...) in the service request and
validateCredentials(...) and makePayment(...) in the service offer based on

6

1.1. MOTIVATION

their behavioral descriptions. An automatic service description matching
mechanism must be able to detect such granularity level heterogeneity be-
tween the service descriptions and overcome it in order to enable an n : m
matching between the requested and the offered operations.

signIn(…)

findItem(…)

viewDetails(…)

buyItem(…)

Requester
OnlineShop1

Request

Structure Behavior

…

signIn(…)

searchItem(…)

validateCredentials(…)

makePayment(…)

Offer

Structure Behavior

…

Figure 1.4: Requester and OnlineShop1 with their service descriptions at
different granularity level

Another possible consequence of such a difference of granularity level
between service requests and offers is a service composition. In a realistic
scenario, it is not always possible that a single service offer completely fulfills
the service request and multiple service offers have to be composed to com-
pletely fulfill the service request. For instance in the considered e-commerce
example, it can be the case that the offered service for an online shop only
allows the search and selection of the items. To carry out the payment activ-
ity, a payment service has to be invoked by the requester. Hence, the online
shop and payment services have to be composed in order to completely fulfill
the request. The automatic service matching mechanism must also be able
to determine such 1 : n matching between a service request and available
offers leading to service composition.

Another aspect of this underlying heterogeneity is the linguistic hetero-
geneity among the service partners. Based on their independence allowed in
an SOC environment, the service partners also have the flexibility to choose
service description languages. This choice of language can be driven by dif-
ferent factors, such as, the nature of their domain, their preferences, their
technical expertise and their requirements, etc. For instance, it is possible
that a service provider, who is a skilled programmer prefers to use textual
languages, such as OWL-S, WSML, etc. to specify different aspects of his
service offer whereas a service requester who is an expert of system model-
ing prefers to work with visual notations and hence selects UML to specify
his service request. Similarly, a service partner with expertise in formal
languages may choose languages like Z-specification and CSP [71] for same
purpose. Similarly, the service partners can also choose domain-specific lan-
guages that satisfy the particular needs of their domains, e.g., MARTE [23]

7

CHAPTER 1. INTRODUCTION

and UML-RT are languages that provide specialized notations to specify
embedded and real-time systems.

In order to match such linguistically heterogeneous service descriptions
of the service partners, the service matching mechanism must be able to
translate them to a common representation and hence overcome their lin-
guistic heterogeneity.

The practical application of such an automatic service discovery and
composition mechanism meeting the above-mentioned challenges can be
seen in the Collaborative Research Center (CRC) 901 ”On-The-Fly (OTF)
Computing” 1. This also serves as an example scenario for this thesis. In
Sec. 1.1.1, we give a detailed insight into different aspects of OTF Comput-
ing and introduce a real-world example from the e-tourism domain in this
context.

1.1.1 An Example Scenario

To further elaborate the important concerns for automatic service discovery
and composition and their practical application, we introduce the CRC 901
OTF Computing in this section. Additionally, we introduce the e-tourism
scenario of our industrial partner Hotel Reservation Service (HRS) in the
context of OTF Computing as a running example for this thesis.

A promising research endeavor aiming to overcome the important chal-
lenges faced by SOA is OTF Computing. The vision of OTF Computing is
to develop methods and techniques:

• for the automatic and dynamic composition and execution of IT-
services that are published by the service providers on the service
markets,

• for ensuring the quality of these services,

• for the organization of the service markets.

Similar to the typical SOC scenario in Fig. 1.1, main actors in OTF
Computing are also the service requesters and the service providers. An-
other main actor in OTF Computing is the OTF provider that enables a
seamless interaction between the service requesters and the providers. To
enable this seamless interaction, the OTF provider has to fulfill a variety of
tasks. Firstly, it manages the service repository including a maintenance of

1http://sfb901.uni-paderborn.de/

8

1.1. MOTIVATION

the service offers according to their particular domains and categories. Sec-
ondly, it facilitates the service providers to publish their services through
their service offers. Thirdly, the OTF provider enables an automatic ser-
vice discovery and composition through automatic matching of service de-
scriptions. For this purpose, the OTF provider uses tools and techniques
that deal with different kinds of underlying heterogeneity mentioned ear-
lier. Additionally, the OTF provider also analyzes the service discovery and
composition results on the basis of the non-functional properties. However
for the course of this thesis, this analysis of results on the basis of their
non-functional properties is not relevant and hence not discussed further.

Step 2:
Show

Results

Step 3:
Book
Room

Step 5:
Make

Payment

Step 4:
Get Flight

Offers

Google Public Website Corporate Portal
Step 1:
Search
Room

Figure 1.5: Typical Booking Scenario at HRS

A real-life application for OTF Computing comes from our industrial
partner Hotel Reservation Service (HRS). HRS is a worldwide company
that provides accommodation booking facilities to its B2B and B2C users
by interacting with the services of its 230,000 hotel partners world wide.
Additionally, HRS also wants to extend its features by allowing the end-
user to search and book the possible transport options to his destination.

Such a typical trip planning scenario at HRS is depicted in Fig. 1.5.

9

CHAPTER 1. INTRODUCTION

This scenario is comprised of the following steps: In the first step, the
end-user searches for available hotel rooms through three different options,
i.e., Google search engine, HRS website2 and corporate portal for corporate
clients of HRS. In the second step, the search results are returned by the
partners’ hotel services based on the specified search criteria and the end-
user is directed to these results on the HRS website. In the next step, the
selected room is booked for the end-user on the basis of his credentials and
a confirmation is sent. After hotel booking, the end-user has the facility to
receive flight offers from the partners’ airline services to his destination. For
the selected flight offer, a booking is made and an online payment is carried
out for the booked flight.

This booking scenario is envisioned as an end-to-end use case by a tech-
nical personnel at HRS called HRS application developer. With his technical
expertise in model-based system design, the HRS application developer is
responsible for an overall design of the HRS application and has a complete
view of the system from a higher abstraction level. To realize his designed
booking scenario for HRS, HRS application developer aims to search and
compose the suitable services available on the service market and integrate
the resulting service composition with the HRS application.

In the context of SOC in general and OTF computing in particular, the
HRS application developer acts as the service requester that accesses the
service market with his request to search and compose the suitable services
published by the service providers. These service providers are also techni-
cal personnel who are skilled to model, program and publish these software
services. Fig. 1.6 shows how the service discovery and composition for HRS
is performed in an OTF Computing setting. In Step 1, the requester ac-
cesses the service market with its service request comprising of the required
operation signatures. For the e-tourism domain, the service repository on
the service market contains a variety of services published through their ser-
vice offers, e.g., services for hotels and hotel chains, online payment services,
airline services, train services, etc. In a conventional SOC setting without
OTF Computing, the requester usually have the option to select some of
the published services on the basis of keyword-based search or by manually
matching the requested and offered operation signatures. Later, he has to
communicate personally with the selected service providers through informal
behavioral descriptions of the required functionality to determine whether
these services offer the same behavior as required by the requester or not.
However, this manual matching approach to discover available services based

2http://www.hrs.com

10

1.1. MOTIVATION

Service Repository

HRS Application
Developer

OTF ProviderHRS Request

HotelYHotelX

FlightBooker

HRS

PayOnline

Step 1

Step 2

Step 3

HotelX

HotelY

PayOnline
FlightBooker

HRS Request (.wsdl)
‐checkAvailability(c:Criteria)
:RoomStay
‐viewDetail(…)
‐makeReservation(p:ProfileType,
r:RoomStay)
‐ …

HotelX Offer(.wsdl)
‐searchRoom(c:Criteria):RoomPackage
‐validateCredentials(…)
‐makeRoomReservation(cr:Credentials,
r:RoomPackage)
‐ …

PayOnline Offer(.wsdl)
‐signIn(c:Credentials)
‐ payDues(…)
‐generateReceipt(p:Payment):
Receipt
‐signOut(…)

Figure 1.6: Service Discovery and Composition for HRS in OTF Computing

on structural service descriptions is a time-consuming and error-prone pro-
cess.

OTF Computing aims at overcoming this problem where the OTF
provider as the mediator automates the service discovery and composition
process and enables seamless interaction between service partners. In Step
2, an automatic service description matching mechanism matches the service
request to the available service offers. For this purpose, the OTF provider
may use some existing lexical matching techniques for matching the wsdl-
based structural service descriptions [147, 150]. However, such an automa-
tion can lead to inaccurate results. For instance, based on a lexical matching
of the operation names and their input/output parameters, the requested
operation makeReservation(...) is matched to the offered operation make-
RoomReservation(...) in HotelX service offer. However, the behavior of
the two operations can be completely different. For instance, the requested
operation makeReservation(...) validates the client credentials and reserves
a room for him and sends him a reservation notification at the end. On
the other hand, HotelX specifies its service offer at a different granularity
level and makeRoomReservation(...) does not validate the client credentials
but is defined to book the room only. Hence, the matching results based

11

CHAPTER 1. INTRODUCTION

on an automatic matching of the structural aspects of the request and the
offer are inaccurate, as their requested and offered behavior is totally dif-
ferent. Considering this situation, it is also important to take into account
the behavioral description of the offered/requested operations in addition
to matching their structural features. Conforming to the earlier discus-
sion about the challenges faced for the automation of service discovery and
composition process, OTF Computing has to come up with techniques for
comprehensive service descriptions in case of the HRS scenario.

Additionally, the OTF provider also has to deal with the underlying
heterogeneity of the HRS and the published services, which makes the au-
tomatic matching more complex. For instance, as evident from the types
of input/output parameters, the underlying data model of the service part-
ners are heterogeneous, e.g., RoomPackage in HotelX offer corresponds to
RoomStay in HRS request. Such data model heterogeneity needs to be over-
come to correctly match the respective service descriptions.

Additionally, the service partners have defined their service descriptions
at different granularity levels leading to complex correspondences between
the requested and offered operations. For instance, in the example men-
tioned earlier, a 1 : n operation correspondence occurs between the re-
quested operation makeReservation(...) of HRS and two offered operations
of HotelX validateCredentials(...)→ makeRoomReservation(...).

Similarly, it is also highly likely that different service partners in this
setting use different service description languages according to their require-
ments and skill sets. Hence, the challenge of linguistic heterogeneity has to
be overcome by the OTF provider while matching the service descriptions.

As a result of the service discovery, the OTF provider determines mul-
tiple services that have to be composed to completely fulfill the HRS re-
quest, i.e., HotelX and HotelY provide the hotel booking facilities. Sim-
ilarly, PayOnline offers the required payment functionality. Additionally,
FlightBooker fulfills the transport-related requirements specified in the re-
quest. Consequently in Step 3, the OTF provider automatically creates a
service composition based on the selected individual services and returns it
to the requester.

Based on our example scenario introduced in this section, we will state
the problem and the requirements for a potential solution in the next section.

1.1.2 Problem Statement and Solution Requirements

To fully exploit the potential of the SOC paradigm, OTF Computing aims
at devising methods and techniques that can enable the service partners

12

1.1. MOTIVATION

to collaborate seamlessly while functioning in their independent domains
with their respective domain knowledge. To that extent, an automatic ser-
vice discovery and composition mechanism is required that ensures accurate
results. The main goal of this thesis is to devise such a mechanism.

Comprehensive
Service Request

Comprehensive
Service Offer

Service
Requestor

Service
Providers

Service
Description
Language

R1

instance of instance of

Service Matching
Mechanism

R2

Multi‐faceted Heterogeneity
a. Data model Heterogeneity
b. Granularity level Heterogeneity
c. Linguistic Heterogeneity

enables

Service Composition

resolves
R3 R4

Figure 1.7: The Potential Solution and its Requirements

For the development of such a mechanism, there are certain requirements
that need to be met, which are diagrammatically represented in Fig. 1.7:

R1: A service description language, which allows comprehensive descrip-
tion of a requested/offered service in terms of its structural as well as
behavioral aspects.

R2: An automatic service description matching mechanism that matches
such comprehensive service requests and offers.

R3: A resolution of the underlying multi-faceted heterogeneity of the ser-
vice partners, i.e., data model heterogeneity, granularity level hetero-
geneity and linguistic heterogeneity, etc. while matching their service
descriptions.

R4: Enabling service composition, i.e., composing multiple offers if a single
service offer does not completely satisfy the request at hand.

In the next section, we give an overview of our proposed mechanism for
automatic service discovery and composition.

13

CHAPTER 1. INTRODUCTION

1.2 Proposed Solution Overview

In order to automate service discovery and composition process in OTF
Computing, we have proposed a framework that overcomes the challenges
faced by OTF Provider and fulfills the requirements specified in Sec. 1.1.2.
Fig. 1.8 gives an overview of the proposed solution.

Service
Provider

OTF Provider
R2, R3, R4: Automatic Service Discovery & Composition

R1:
Provider
RSDL

publish find

interact

Global
Ontology & Data Model

Service
Requestor

R1:
Requestor

RSDL

1. Data Model
Matching

2. Service
Description

Normalization

3. Multi‐level Service
Discovery through
Operation Matching

4. Service Composition
through Protocol

Matching

Service
Repository

Offer Request

Figure 1.8: An Overview of the Automatic Service Discovery and Composi-
tion Mechanism of the Proposed Approach

First aspect of this solution is the Rich Service Description Language
(RSDL), which allows the service partners to comprehensively describe their
service requests and offers in terms of its structural and behavioral aspects
(satisfying R1). A service requester accesses the service market with his
RSDL-based service request to search for suitable service offers. As a re-
sult, the automatic service discovery and composition mechanism of OTF
provider is initiated (satisfying R2, R3 and R4). This mechanism comprises
of multiple steps.

In the first step, requester’s data model is automatically mapped to a
global data model conforming to a global ontology. This global ontology and
the conforming data model define a common representation of an informa-

14

1.2. PROPOSED SOLUTION OVERVIEW

tion domain. The local-global data model matching serves as the basis for
the resolution of the data model heterogeneity while matching the request
and available service offers.

In the second step, the request is normalized to a common global rep-
resentation on the basis of local-global data model mappings achieved in
the first step. These two steps are also performed for a service offer when
a service provider accesses the OTF Provider to publish his service on the
service market hence resolving the data model heterogeneity of the service
partners.

In the third step, a multi-level service discovery is performed to dis-
cover the potential service offers that completely or partially satisfy the
requirements specified in the service request. The main focus of this service
discovery mechanism is the matching of operations in the service request
and the available offers on the basis of their comprehensive descriptions,
i.e., their structural elements as well as their behavioral semantics in terms
of preconditions and postconditions.

In the last step, it is determined whether a single service offer can com-
pletely satisfy the service request or a service composition is required. This
is based on a protocol matching between the request and the selected service
offers.

In the following, we give a brief description of the individual components
that realize the above-mentioned aspects of our approach and how they fulfill
the requirements specified earlier:

• Rich Service Description Language (R1): One of the major re-
search concern in SOC is a comprehensive service description language
to enable automatic matching of service descriptions and achieve ac-
curate service discovery results. An important factor in this regard
is that these languages should be widely acceptable in practice. As
mentioned earlier, most of the languages proposed so far have certain
shortcomings in this direction. Particularly focusing on a specification
of functional properties, we propose a Rich Service Description Lan-
guage (RSDL) that provides a detailed set of UML-based notations to
service partners to comprehensively specify their service descriptions.

• Service Description Normalization through Local-Global
Data Model Matching (R3(a)): In order to overcome the data
model heterogeneity of the service partners, we propose a local-global
data model matching mechanism, which serves as the basis for the nor-
malization of the service description to a common representation. In
this direction, our approach extensively relies on a global ontology and

15

CHAPTER 1. INTRODUCTION

the conforming global data model, which formally describes a domain
in a standardized way for all the stakeholders of that domain. The
OTF provider is supported through guidelines to define and maintain
such a global ontology and the conforming data model. When a service
partner accesses the OTF provider to publish his service offers or to
initiate a service discovery, his data model is automatically matched to
the global data model on the basis of the ontological semantics defined
through the global ontology.

Our approach uses the deduced data model mappings to automatically
translate the heterogeneous service descriptions of the service partners
to a standardized representation typed over the global data model.
Hence, this overcomes their data model heterogeneity and enables their
automatic matching in the later stages of the approach. This process
of translation from a local to a common global representation is called
service description normalization.

• Multi-level Service Discovery based on Operation Matching
(R2, R3(b)): After the normalization of a service request on the
basis of data model mappings, the automatic matching of the request
and available offers is initiated through a multi-level service discovery
mechanism. On the first level, a subset of available service offer is se-
lected on the basis of the category matching between the request and
the offers. However, the focus of this service discovery mechanism is
operation matching between the request and the selected offers. For
this purpose, the requested and offered operations are matched on the
basis of their RSDL-based comprehensive descriptions. These com-
prise of their structural elements and their behavioral semantics spec-
ified through their preconditions and postconditions. As mentioned
earlier, the granularity level heterogeneity among the service partners
can lead to 1 : n, n : 1 and n : m operation correspondences and
an operation matching approach must be able to detect such complex
correspondences. In our approach, we carried out an in-depth study
to identify different scenarios of these complex correspondences. Con-
sequently, our approach precisely define the structure of such complex
correspondences and proposes a set of operation matching strategies
to determine these correspondences between a request and the avail-
able offers. On the basis of the operation correspondences determined
in this step, a subset of available service offers is selected as potential
candidates to satisfy the service request. A further analysis of this
subset is carried out in the next step.

16

1.3. PUBLICATION OVERVIEW

• Service Composition based on Protocol Matching (R2, R3(c),
R4): Another important aspect of a behavioral description, which
needs to be taken into account while service matching is the required
and allowed operation invocation sequences specified as service proto-
cols. For this purpose, our approach comprise of a protocol matching
mechanism, which matches the requested and offered protocols on the
basis of complex operation correspondences determined earlier. This
mechanism also allows a composition of service protocols and hence
determine possible service compositions if a single service offer fails to
satisfy the service request.

However, the proposed protocol matching mechanism has to overcome
the linguistic heterogeneity as RSDL offers different notations to ser-
vice requester and provider for the specification of their service pro-
tocols according to their respective needs. Therefore, the proposed
mechanism enables an automatic translation of the linguistically het-
erogeneous service protocols to a common semantic domain, i.e., La-
beled Transition System (LTS) before matching. Later, a specialized
LTS composition operator is used to match and compose the LTSs
on the basis of determined operation correspondences and determine
possible service compositions.

1.3 Publication Overview

Most of the contributions presented in this thesis have been published as
peer-reviewed papers at various international conferences. Fig. 1.9 gives an
overview of these publications. In this figure, the publications are catego-
rized according to the particular component of our framework that they
focus. Below, we briefly describe each of these publications.

In [75], we presented our rich service description language (RSDL), which
allows a comprehensive description of service requests and offers in terms
of their structural and behavioral aspects. This paper was presented at
24th International Conference on Advanced Information Systems Engineer-
ing (CAiSE’12).

Our automatic service discovery mechanism for RSDL-based service de-
scriptions, which acknowledges the granularity level heterogeneity of the
service partners and allows complex operation correspondences was pub-
lished in the proceedings of ACM/IEEE 15th International Conference on
Model Driven Engineering Languages and Systems (MODELS’12) [74].

In [76], we published our automatic service composition mechanism,

17

CHAPTER 1. INTRODUCTION

CAiSE’12 [75]
A UML‐based Rich Service Description Language for Automatic

Service Discovery of Heterogeneous Service Partners

MODELS’12 [74]
Towards an Automatic Discovery for UML‐based

Rich Service Descriptions

Automatic Service Discovery and Composition Framework

Rich Service Description
Language (RSDL)

Data Model Matching &

Service Discovery based
on Operation Matching

Service Composition

Comp. Sc. And Research Development [73]
On‐the‐Fly Computing: Automatic Service

Discovery and Composition in Heterogeneous g
Service Desc.
Normalization

p
based on Protocol

Matching

y p g
Domains

Tool Support

ECMFA’14 [141]
Normalizing Heterogeneous Service Description Models

with Generated QVT Transformation

ICSOC’13 [76]
Automated Service Composition for On‐the‐Fly

SOAs

Figure 1.9: An Overview of the Publications

which is based on the service discovery mechanism and determines possi-
ble service composition by resolving the linguistic heterogeneity of the ser-
vice protocols and composing them. This publication was presented at 11th
International Conference on Service Oriented Computing (ICSOC’13).

For the resolution of data model heterogeneity, our service description
normalization mechanism based on data model matching was published in
the proceedings of the 10th European Conference on Modeling Foundations
and Applications (ECMFA’14) [141]. In this paper, we also presented our
tool support for data model matching and its detailed evaluation.

Our paper [73] published in Journal on Computer Science - Research
and Development (CSRD) in 2014 gave an overview of the CRC 901 On-
the-Fly Computing and in this context, presented our complete framework
with detailed insight into its different components. Additionally, it also
described in detail our prototypic implementation of the framework in terms
of its different aspects.

In the next section, we give an overview of the thesis structure.

18

1.4. THESIS STRUCTURE

1.4 Thesis Structure

In this section, we provide an overview of the structure of this thesis, which
is given in Fig. 1.10.

Background Chapter 2: Related Work

Detailed

Chapter 3: Rich Service Description
Language (RSDL) Chapter 4: Semantics of RSDL

Description
Chapter 5: Service Description Normalization

through Data Model Matching Chapter 6: Multi‐level Service Discovery

Chapter 7: Service Composition

Tool Support
Chapter 8: Tool Support

Figure 1.10: An Overview of the Thesis Structure

In Chapter 2, we build a background for our work by analyzing the ex-
isting work in the related areas. In this chapter, we give an overview of the
SOC domain and the major milestones of automatic service discovery and
composition. In this direction, the main concerns of comprehensive service
descriptions and automatic service matching are investigated in detail in
terms of an overview and evaluation of the existing works. In the following
chapters, we give a detailed description of different parts of our proposed
approach. Our proposed approach comprise of two main parts: A com-
prehensive service description language and an automatic service discovery
and composition mechanism. Chapter 3 and 4 focus the first part of our
approach and introduce the Rich Service Description Language (RSDL). In
Chapter 3, we give a detailed insight into the structure of RSDL and its
offered notations to specify comprehensive service requests and offers. In
Chapter 4, the semantics for different RSDL artifacts are defined.

The second part of the proposed approach, i.e., automatic service dis-
covery and composition mechanism is discussed in detail from Chapter 5
to Chapter 7. These chapters describe different phases and activities of
our mechanism in detail. Chapter 5 covers the details of service descrip-
tion normalization based on data model matching. This normalization is
meant to translate the service descriptions to a common representation while

19

CHAPTER 1. INTRODUCTION

overcoming their data model heterogeneity. Hence, as the basis for the ser-
vice description normalization process, we propose an automatic data model
matching mechanism, which is elaborately explained in Chapter 5. In Chap-
ter 6 and 7, we discuss our service discovery and composition mechanism,
where Chapter 6 mainly focuses the operation matching approach. In this
context, the set of our proposed algorithms for complex operation matching
are explained in detail. Chapter 7 covers the aspect of linguistic hetero-
geneity resolution in our approach in detail. It also describes the proposed
technique for service composition based on service protocol matching and
composition.

In Chapter 8, we discuss the tool support for our approach and introduce
the implemented research prototype called the Service Discovery and Com-
position Workbench. The thesis is concluded by Chapter 9 where the results
are summarized and potential future research directions are mentioned.

20

2
Related Work

In this chapter, we build the necessary background for our work presented
in this thesis by carrying out a detailed examination of the existing related
work. In this direction, we begin with a general introduction of service-
oriented computing (SOC), its emergence and the recent growth. Later, we
describe an important milestone of SOC, i.e., automatic service discovery
and composition. This is followed by an in-depth account of two major areas
that the researchers focus in this context: definition of service descriptions
and automatic matching of these service descriptions. For these two areas,
we identify the salient features that later serve as the criteria to classify
the existing work. Then, we give an overview of the prominent work in
these areas and evaluate them on the basis of the criteria introduced earlier.
Finally, we present a summary and a discussion of this chapter.

2.1 Service-oriented Computing (SOC)

Recently, the Internet has spawned many changes in the way businesses
are conducted and has completely reshaped the business world. It has infil-
trated the daily lives to an extent that customers are focusing their daily life
activities around web-based applications. Similarly, the advent of a whole
new series of web-based technologies allowed organizations to shift their
focus and exploit the opportunities provided by electronic market places.
This also means constantly dealing with rapidly changing market conditions
and coping with the factors such as ever-evolving customer requirements
and new business processes. To achieve a competitive advantage through
organizational agility, the organizations aim at constant modification and
improvement of their enterprise IT system. This leads to an on-going addi-
tion of new capabilities in terms of software units and their integration with
the existing enterprise system.

The recent growth of service-oriented computing (SOC) paradigm

21

CHAPTER 2. RELATED WORK

promises to come up with potential solutions for these challenges. It achieves
this goal by meeting some important requirements [94]: seamless integration
of applications and resources across enterprises, homogeneous access to ap-
plications regardless of their implementation details, a logical architecture
to manage computing resources, etc.

In this context, the concept of services as the basic building blocks
has revolutionized the software development. With the recent technolog-
ical breakthroughs in the area of smart devices, the growth of services has
gone up to a dramatic level. The development and deployment of services
can vary from an infrastructure facility to a software component. This claim
is supported by the emergence of concepts like software-as-a-service (SaaS),
infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS). The re-
sulting benefits are not only reaped by the conventional stakeholders like
E-commerce but other mainstream segments, such as, transportation, pub-
lic sector, manufacturing, and banking, etc. are also following the suit. This
claim is confirmed with the emergence of services for tasks, such as, loan
originations and servicing, shipments track-and-trace services, healthcare,
and water utility monitoring, etc.

For our work, our particular focus is on the software services, which are
referred to simply as services during the course of this thesis. The idea of
remotely consuming software components over networks has a long standing
tradition in SE with initiatives like RPC [17], CORBA [18], etc. This idea
evolved itself into web services [3] as specified in [160]: ”A Web service is a
software system designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a machine-processable
format (specifically web service description language (WSDL) [162]). Other
systems interact with the Web service in a manner prescribed by its de-
scription using SOAP [144] messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards.”
Since then, the conceptual and technological developments in this direction
[111, 165] have further highlighted the benefits of services and SOC.

In a nutshell, software services are independently developed software
computational units that can perform different functions varying in their
degree of complexity. These services are published on the service markets
on the basis of their service descriptions and can be discovered, composed,
and consumed over networks resulting in large-scale distributed, interoper-
able and evolving IT systems. Typically, such services are developed in-
dependently without a preconception of the context they will be used in.
Consequently, this notion culminates the idea of reusability and loose cou-
pling pattern, which is a basic aim of distributed software development.

22

2.2. AUTOMATIC SERVICE DISCOVERY AND COMPOSITION

In this context, an important milestone is the automation of the service
discovery and composition process. In the next section, we give a general
overview of this important milestone of SOC and its different challenges.

2.2 Automatic Service Discovery and Composition

In order to take full advantage of the benefits offered by the services and the
resulting SOC paradigm, an important research concern is to automate the
service discovery process while ensuring accurate results. However, consid-
ering the reusability and loose coupling aspects of SOC, it is not practical to
assume that a single service offer can fulfill all the requirements of the ser-
vice requester. Normally, in realistic scenarios, more than one services have
to be composed to completely fulfill a service request. This aspect is already
a relevant topic of research for the SOC community [131, 9]. This means
that the service discovery approaches should not only devise methods for
automatic discovery of the potential service offers that completely/partially
satisfy a particular service request but should also come up with mecha-
nisms to compose these services in order to completely fulfill the requester’s
requirements.

To achieve this milestone of automatic service discovery and composition
with accurate results, there are certain areas that need to be investigated in
detail. For such a detailed investigation, it is important to outline certain rel-
evant details of the particular scenario of OTF computing considered in this
thesis. In the given scenario, the service providers develop their services and
publish them on the service market through their service offers. In this case,
a service provider is visualized as a person with strong technical know-how
and programming skills to design and develop a SaaS and publish it on the
service market. With the emergence and wide acceptance of model-driven
engineering (MDE) paradigm [22], we assume that the service provider is
also familiar with model-based design and development techniques. In his
respective service offer, the service provider aims at describing the offered
functionality in detail in terms of all the possible usecases that can be in-
voked on the offered service.

On the other hand, the service requester in the given scenario accesses
the OTF provider to initiate an automatic service discovery process in order
to fulfill its requirements specified in his service request. In this case, the
service requester is not a normal web user with minimal technical skills.
Rather, he is visualized as a system architect who is responsible for designing
and building a system on the basis of the underlying services discovered from

23

CHAPTER 2. RELATED WORK

the service market. For this purpose, we assume that the service requester
is well-equipped with model-based design and architecture skills and has an
overall view of the system at a higher abstraction level. Based on these
skills, the service requester specifies his service request by describing the
particular use case that needs to be realized in the designed system on the
basis of available services.

On its invocation, automatic service discovery mechanism of the OTF
provider determines any possible service offer that is able to fulfill these
requirements and realize the required use case of the service requester. In
case, a service offer does not completely satisfy these requirements, possible
service compositions comprising multiple service offers are determined.

In context of this scenario, the first area that need detailed investigation
is the comprehensive specification of the required and offered functionality
in service requests and offers. Second area of investigation is the service de-
scription matching mechanism that enables automatic and accurate service
discovery. In the next two sections, we discuss these aspects in detail and
give an overview of the work done in this direction so far.

2.3 Service Description

As mentioned in Sec. 2.1, SOC has enabled a major shift from everyday ser-
vices to software services. This shift is based on the core idea of publishing
of services by the service providers on the service market and in turn, the
discovery and consumption of these services by the service requester. Anal-
ogous to the concept of print and media advertisements for the everyday
services, the publishing and the discovery of the software services is car-
ried out on the basis of the offered and requested service descriptions called
service offers and service requests, respectively.

The correlation between the conventional and software service descrip-
tions is precisely described by O.Sullivan [120] as follows: ”The everyday
services that surround us, and the way in which we engage with them, are
the result of social and economic interaction that has taken place over a long
period of time. An attempt to provide automated electronic services that
ignores this history will deny consumers the opportunity to negotiate and
refine over a large range of issues, the specific details of the actual services
to be provided.” Keeping this argumentation in view, a requested/offered
software service can be described as a combination of the requested/offered
functionality together with the constraints, obligations, penalties and the
rights of the involved service requester and the provider. Hence, a service

24

2.3. SERVICE DESCRIPTION

request/offer not only has to encompass the functional aspects of the service
but also has to consider its non-functional aspects.

In a broader perspective, service descriptions can be compared to the
software component specification, which is extensively investigated in the
area of software component models since many years [154, 90, 36]. An ex-
tensive study and classification of the existing component models has been
presented in [90, 36]. In order to describe the features of a component to the
outer world, these component models come with the component description
languages to define the interfaces of a component. We particularly analyze
these models on the basis of their component description languages.

With the advent of SOC, the concept of component is interchanged with
that of service and the researchers have put more focus on the specification
of services and their properties in detail [120]. For our work, we are inter-
ested to explore how these existing approaches enable a precise specification
of service descriptions comprising different aspects of the requested and of-
fered service. Hence, we consider the approaches for component as well as
service descriptions because of their similar purpose as the terms service and
component are used interchangeably in the literature.

In the coming sections, we first introduce a classification scheme and
later analyze the existing service description languages in detail on the basis
of this classification.

2.3.1 Classification of a Service Description Language

With the current focus on the elaborate service descriptions to enable auto-
matic service discovery and composition, the researchers have come up with
a variety of languages for the specification of different aspects of a service.
In general, the service description languages can be classified on the basis
of different criteria. In the next section, we introduce the set of selected
criteria that is relevant for our work and that is later used to classify the
existing service description languages.

Comprehensiveness Level

A service partner specifies his service description to describe his re-
quested/offered functionality to the outer world. The level of detail about
the requested/offered functionality specified in the service description can
vary according to the technical expertise and preferences of the service part-
ner. However, this level of comprehensiveness of the service description di-
rectly effects the accuracy of an automatic service discovery process. With

25

CHAPTER 2. RELATED WORK

comprehensive service descriptions, the matching mechanism has more in-
formation about the requested and offered functionality resulting in precise
matching as compared to the matching of less comprehensive service de-
scriptions.

Consequently, a comprehensive service offer will increase the chances
that the published service will be correctly matched, discovered and invoked
to fulfill the relevant service request. Additionally, for the service requester
it is also important to precisely describe the requirements in order to dis-
cover correct services. Hence, the first criteria to classify service description
languages is their allowed level of comprehensiveness in which they describe
different aspects of the requested/offered service.

According to the existing studies [154, 120], a service can be broadly
described on the basis of its functional and non-functional aspects, where
the functional aspects of a service are focused on its operational details in
terms of its inputs, behavior, outputs, calculations, binding protocols and
similar technical details. On a more refined level, these functional aspects
can be further classified in terms of the service’s structural and behavioral
details [133]. Similarly, the non-functional aspects of the service cater to
the non-operational details that are necessary to develop a business contract
between the requester and the provider, such as its pricing, availability,
quality-of-service (QoS) and the related legal obligations, etc.

These varying degrees of comprehensiveness of the service description
languages is visually described in Fig. 2.1.

Service
Description

•Operation Signatures

Comprehensiveness of the service description

checkAvailability(…)
…

{pre}checkAvailability(…){post}
…

Response Time < 4 sec
…viewDetails()

makeReservation()
checkAvailability()

Service
Description

•Operation Signatures
•Ontological Semantics

Service
Description

•Operation Signatures
•Ontological Semantics
•Behavioral Semantics

Service
Description

•Operation Signatures
•Ontological Semantics
•Behavioral Semantics
•Service Protocol

Service
Description

•Operation Signatures
•Ontological Semantics
•Behavioral Semantics
•Service Protocol
•Non‐functional aspects

…

checkAvailability(…)
…

conforms to

Ontology

Figure 2.1: Varying Degrees of Service Description Comprehensiveness

The basic service description describes a service in terms of the structural
elements of its requested/offered functionality. In recent years, WSDL [162]
has emerged as a standard for such structural service descriptions describing

26

2.3. SERVICE DESCRIPTION

a service in terms of its requested/offered operation signatures.
To make these service descriptions comprehensive and meaningful, one

possibility is to define the ontological semantics for the service description
in order to clearly specify the meanings of the terms and the concepts that
it uses on the basis of an underlying ontology.

According to Studer et al. [148] ” An ontology is a formal, explicit
specification of a shared conceptualization. A ’conceptualization’ refers to
an abstract model of some phenomenon in the world by having identified
the relevant concepts of that phenomenon. ’Explicit’ means that the type of
concepts used, and the constraints on their use are explicitly defined. For
example, in medical domains, the concepts are diseases and symptoms, the
relations between them are causal and a constraint is that a disease cannot
cause itself. ’Formal’ refers to the fact that the ontology should be machine
readable, which excludes natural language. ’Shared’ reflects the notion that
an ontology captures consensual knowledge, that is, it is not private to some
individual, but accepted by a group.” Development and usage of ontologies
for semantic interpretation in the software development field has developed
into an extensive trend in recent years. In practice, there is no fixed interpre-
tation and representation for ontology, and different artifacts and terms that
represent an information model are used interchangeably as ontology [52],
e.g., taxonomy, schema, information model, etc. Therefore, the notations
for ontology specification range from Database [104, 130], via XML Schema
[118] to formal ontology languages like RDFS [159] and OWL [158]. Sim-
ilarly, the types of ontologies used in practice range from general-purpose
ontologies, like NAICS [155], WordNet [130], etc. to domain specific ontolo-
gies like GoodRelations [68], OnTour [41], etc.

The ontological semantics of the service description elements are defined
by annotating them with the corresponding semantic concepts in an under-
lying ontology. In case of structural service descriptions, such ontological
semantics can be defined for the operation names, input and output param-
eters. In recent years, the shift of service description languages towards such
ontological semantics [121, 51, 39, 98, 136] have validated the inadequacy of
structural service descriptions.

Another perspective to add more meaning to the structural service de-
scriptions is by describing the behavior of the required/offered service. The
behavior of a service can be described from two different perspectives: func-
tional and temporal. The functional behavior describes its functionality in
a static manner at particular snapshots during execution in terms of the
system states that hold before and after the invocation [63, 133]. For an
operation, such a functional behavior is termed as its behavioral semantics.

27

CHAPTER 2. RELATED WORK

The temporal behavior gives a continuous view on a service by specifying
different states that it goes through as a result of the invoked transitions in
a particular sequence [133]. This continuous view can be internal specifying
the internal execution details, the data flow and the states changes of the
service or it can be external that represents the required/allowed invoca-
tions, the resulting transitions and data flow and the state changes visible
to the outer world. In the particular context of service descriptions that are
meant to describe the required/offered functionality to the outer world, the
specification of external dynamic behavior is more relevant. This external
dynamic behavior is described in terms of the required/allowed operation
invocation sequences known as service protocol.

Such comprehensive functional service descriptions can be further en-
hanced by the addition of non-functional aspects, e.g., response time, cost,
reliability, reputation etc. of the requested/offered service. For our work,
we are particularly focused on comprehensive functional service descriptions
and hence do not go into the detail of the specification of non-functional
aspects in the service descriptions.

Ease-of-Use

An important criteria that contributes to the selection of a service descrip-
tion language is its ease-of-use. This means that a service description lan-
guage is preferred by the service partners if they find it easy to adapt to in
terms of time and resources. In the context of the OTF computing scenario
discussed earlier, different factors can be determined that contribute to the
ease-of-use of a service description language.

From the perspective of a service provider, an important factor to select
a service description language is the conformance to existing standards. A
service offer in a standard language can be published in the commercially
available service registries, which are based on prevailing standards. Addi-
tionally, majority of the service requesters and the service matching mecha-
nisms are likely to be familiar to the standard description language thereby
increasing the chances of the service offer to be discovered and consumed by
a larger audience.

This means that a language conforming to standards can by easily ac-
cepted and adapted in practice by industry as compared to some research
initiative with new and unfamiliar notations limited to the academia. A
suitable example for this case is the service description language SAWSDL
[136], which is an acclaimed initiative for semantic service descriptions and
is based on the prevailing service description standard WSDL [162].

28

2.3. SERVICE DESCRIPTION

From the perspective of the service requester, another important factor
that contributes to the ease-of-use of a specification language is its mode
of specification, i.e., visual vs. textual. In the context of given scenario
where the service requester is the system architect with model-based design
and architecture skills, it is preferable to have visual notations for service
descriptions, which are believed as a comparatively effective, efficient and
unambiguous mean of designing and engineering a component-based system
[6, 40]. Visual languages form an integral part of the research in the SE do-
main and the most promising initiative in this direction is UML [115], which
is an industry standard for software modeling and specification. Carrying
this trend forward to SOC domain, a visual service description language is
likely to be easier to use and promptly adapted by the service partners as
compared to a language with complex textual notations.

Request/Offer Distinction

In the context of CBSE, a component specification comprises of its provided
and required interfaces [99], which specify the provided and the required
functionality of that component, respectively. A communication between
two components is only possible if their respective required and provided
interfaces match. This discrimination between different interfaces has been
carried forward to the SOC domain where the requested and offered func-
tionality is specified as service request and offer, respectively.

The essence of SOC is to allow the service partners to have their in-
dividual contexts with different levels of technical expertise. This is also
evident from the OTF computing scenario at hand. In such a case, the
service requester and the provider have their individual needs as far as the
specification of service request and offer is concerned. For instance, accord-
ing to the profile of the service requester in the given scenario, he prefers
visual notations to specify his service request. Additionally, it is important
for the service requester to precisely describe the particular usecase that it
wants to realize on the basis of discovered services.

On the other hand, with the vast number of service offers available on the
service markets and the thriving competition among the service providers,
it is particularly important for a service provider to add enough information
in his service offer in order to increase its chances of being discovered and
consumed by a suitable service requester. Therefore, comprehensive nota-
tions for service descriptions are particularly important for service provider.
In this direction, his aim is to describe all the possible usecases that can be
realized through his offered service.

29

CHAPTER 2. RELATED WORK

Considering such individual needs and concerns, it is important that a
service description language considers and caters to these requirements of
the service partners and allows to specify the service requests and offers
accordingly.

2.3.2 Overview of Service Description Languages

There is a broad spectrum of existing related work for service specification
languages. As mentioned earlier, a plethora of research work in this direction
already exists in the context of CBSE and component models. In the follow-
ing, we first give a brief overview of description languages developed in the
area of CBSE. Later, we will discuss in detail the description languages that
are developed particularly in the context of SOC for service descriptions.

In the area of component models, we refer to the comprehensive classi-
fication presented by [36]. In this direction, we only consider the general-
purpose component models that consider an operation as the basic unit of
the component description.

The first set of component models under discussion are those based on
a particular technological platform and hence rely on the underlying pro-
gramming language to specify the structural interface description for the
components. EJB [47], Java Beans [149], OSGI [119] are examples of such
component models that heavily rely on Java programming language and the
components are described through interfaces defined in Java. Similarly, the
component models, such as, RUBUS [62] specify C-language interfaces to
describe the functionality of the components.

In order to allow communication between heterogeneous components by
defining language-independent interfaces, the researchers presented the In-
terface Description Language (IDL) approach, where mappings are defined
between IDL and different programming languages in order to translate
the IDL-based request sent to a component to its particular programming
language and vice versa. In this context, the Object Management Group
(OMG) IDL is proposed as a part of the Component Object Request Broker
Architecture (CORBA) component model [113] and allows the specification
of language-independent structural interface descriptions. As an extension,
CompoNETS [10] additionally allows a specification of the component be-
havior through protocols specified as Petri Nets.

Component models like Fractal [45] and Software Appliances (SOFA)
[28] also present their respective IDLs for the specification of structural in-
terface descriptions, which are mapped to the underlying implementation
languages. Additionally, these models come up with their particular no-

30

2.3. SERVICE DESCRIPTION

tations for the specification of behavior protocols. A variation of IDL is
proposed in the Microsoft Component Object Model (MSCOM) [21], which
is one of the most commonly used software component model. It works on
the principle that the interfaces are specified separately from the components
that implement and use them. Hence, its interface specification language
aims at reducing the distance between the IDL and programming languages
by introducing the object-oriented interfaces, which are defined independent
of the components. Later, these interfaces are directly implemented by the
components.

With the emergence of the Unified Modeling Language (UML) [115] as a
de facto industrial standard for multi-purpose modeling, component models
have also attempted to gain from its benefits. UML provides an exten-
sive set of visual notations that holistically encompass different aspects of
component-based systems. Component models, such as, Palladio [12], Ko-
brA [5] and Pin [70] are some prominent ventures that have used UML
notations for component interface description. KorbA [5] is the concep-
tual component model that defines a UML profile for different aspects of
component modeling. It uses the UML concept of interface to specify the
structural interface descriptions. Palladio [12], which particularly aims at
specification and evaluation of performance aspects of the components also
define such UML-based structural descriptions and use Service Effect Speci-
fications (SEFFs) to specify the protocol of the components [132]. Pin [70], a
component model for prediction-enabled component technologies defines the
Component Composition Language (CCL) for interface descriptions, which
specifies operation signatures and UML statemachine-based protocols.

In the area of SOC as well, service description languages are an impor-
tant research concern. Below, we discuss some salient initiatives for service
description languages particularly in the SOC domain.

Carrying the idea of IDL for component descriptions forward to the
SOC domain, the W3C consortium proposed the Web Service Description
Language (WSDL) [162] for service descriptions, which has established into
a standard. WSDL is an XML-based IDL to describe the interface of a
service as a collection of its operations with their structural details.

The concern for having comprehensive service descriptions is not new in
SOC. An important initiative in this direction was the semantic web services
(SWS) trend comprising the comprehensive service description approaches
that mainly focus the use of ontologies for the definition of semantics. Se-
mantic annotations for WSDL (SAWSDL) [136] is a SWS language pro-
duced by the W3C working group, which is a revised and restricted version
of WSDL-S [98]. SAWSDL extends the WSDL standard through the spec-

31

CHAPTER 2. RELATED WORK

ification of the ontological semantics of different WSDL elements, such as,
interface, port, operation, etc. Each of these elements can be annotated
with the concepts in the underlying ontology through the modelReference

element. Although in WSDL-S, elements like precondition and effect

were proposed for the specification of behavioral semantics, these elements
are not carried forward to SAWSDL due to lack of agreement among the
community.

Yet Another Semantic Annotation for WSDL (YASA) [30] was proposed
to cover this gap, which allows a more comprehensive service description
including preconditions, postconditions, effects, and other aspects for dif-
ferent elements of a WSDL description. A web service ontology is used to
model all possible types of aspects that can be specified for different elements
of WSDL. For every element in a WSDL description, a YASA description
specifies its different aspects through a combination of ServiceConcept and
ModelReference element, which refer to the particular aspect through ser-
vice ontology and its annotated concept in the domain ontology, respectively.

OWL-S [121], earlier DAML-S, is one of the most promising SWS incen-
tives by Semantic Web Service Initiative (SWSI). It is based on the Web
Ontology Language (OWL), which is a standard for ontology definition.
The service is described in OWL-S from two different perspectives: a high-
level perspective and a detailed perspective. The high-level perspective in
ServiceProfile element describes a service as an atomic functional unit
in terms of its inputs, outputs, preconditions and effects. For a detailed
description, OWL-S describes the requested/offered functionality through
its ServiceModel element, where the individual operations are specified as
atomic processes with their structural elements, i.e., inputs, outputs and
the behavioral semantics, i.e., preconditions, and effects (IOPEs). The
ontological semantics are specified through an underlying OWL ontology and
the behavioral semantics can be represented as logical expressions. In this
direction, OWL-S does not provide any concrete language and leaves this
choice for the user who can use rule languages, such as KIF [156], SWRL
[72], etc. Composite processes in OWL-S is aimed for process specifica-
tion, which can be the requested/offered service protocols of the individual
services as well as a service composition with interactions among the par-
ticipating services. Special constructs are defined to specify the control and
data flow in these composite processes. Although OWL-S diverges from the
existing standard WSDL, its atomic process notion directly correspond to
the WSDL operation, which allows a direct mapping between the elements
of OWL-S to WSDL through its ServiceGrounding element.

Universal service description language (USDL) [8] is another OWL-based

32

2.3. SERVICE DESCRIPTION

initiative that aims at adding semantics to the WSDL structural service de-
scriptions. For this purpose, an OWL-based representation of the WordNet
Ontology [130] is constructed and the ontological semantics for WSDL ele-
ments, such as, ports, operation, and messages are defined on the basis of
this WordNet ontology through the Concept element of USDL. Addition-
ally, USDL defines the elements Condition and affects for the behavioral
semantics of WSDL elements based on the concepts in the WordNet On-
tology. For instance, an atomic condition is a binary predicate on concepts
and several atomic conditions can be combined to have complex conditions.
Similarly, affects can be of kind creates, updates, deletes, and finds on
one or more concepts.

Web Service Modeling Language (WSML) [39] is a service description
language, developed at DERI institute Innsbruck as a part of the Web Ser-
vice Modeling Framework (WSMX). It realizes the core conceptual model
for service description named as Web Service Modeling Ontology (WSMO)
[51]. WSML/WSMO differentiates between the specification of service offer
and request and defines them as web service and goal, respectively. Like
OWL-S, WSML/WSMO conceptualizes the service descriptions in terms of
a high-level description (class capability) and detailed description (class
interface). The capability of the web service or goal describes it as an
atomic functional unit in terms of its preconditions, postconditions, assump-
tions and effects specified as logical expressions in WSML rule language,
which is based on F-Logic [80]. The ontological semantics can be defined on
the basis on an underlying WSMO ontology. Additionally, WSMO partic-
ularly focuses different types of heterogeneity that can exist between service
descriptions and aim to support their matching through the use of different
mediators for service descriptions. Unlike OWL-S, WSML/WSMO does
not explicitly differentiate between the structural and behavioral parts of
the detailed description and merge them in service protocols specified as
interface. WSML allows the specification of service protocols as Abstract
State Machines (ASMs) and the transition rules that invoke state changes
in these ASMs comprise of input/output parameters, preconditions and ef-
fects. This information contained in the transition rules can be compared
to the structural and behavioral description of operations but according to
WSMO grounding to WSDL [89], these transition rules and WSDL oper-
ations are conceptualized on different granularity level and hence may not
have a direct one-to-one correspondence.

Apart from these initiatives that aim to holistically cover the topic of
service descriptions, there are others that particularly focus a certain as-
pect of the requested/offered service. For instance, Visual Contract (VC)

33

CHAPTER 2. RELATED WORK

[96] is a UML-based language to specify the behavioral semantics for a soft-
ware component in general and a service in particular. VC-based behavioral
semantics of the requested/offered services are specified through a pair of
UML object diagrams depicting the preconditions and postconditions of a
service operation [49, 65]. Similarly, Business Process Execution Language
for Web Services (WS-BPEL) (or BPEL in short) [77] is the industry stan-
dard defined by OASIS for the description of processes for web services.
BPEL is an XML-based language, which can be used to specify individ-
ual requested/offered service protocols as well as service compositions as
processes. It defines a set of activities (e.g., invoke, reply, etc.), whose
invocation can be ordered using the control elements (e.g., sequence, flow,
etc.). BPEL provides a detailed grounding with WSDL, where the activities
in a BPEL process can be directly linked to the operations in the correspond-
ing WSDL document. Web Service Conversation Language (WSCL) [69] is
another such W3C proposal for the description of service protocols as well as
compositions. These focused languages have to be used in combination with
other service description languages to reap their benefits, e.g., METEOR-S
[97] uses a combination of SAWSDL and BPEL to specify different aspects
of the service descriptions.

Next we evaluate these existing languages according to the criteria dis-
cussed earlier.

2.3.3 Evaluation

In this section, we evaluate the existing service description languages ac-
cording to our classification for the languages described earlier in Sec. 2.3.1.
In this evaluation, our emphasis is on the languages that are defined in the
SOC domain and are particularly focused on the description of services.

In case of the component models discussed in Sec. 2.3.2, we evaluate only
those component description languages that allow more than just structural
descriptions. This is because the history of structural component descrip-
tions can be traced back to the advent of CBSE with a wide spectrum of
proposed approaches and we argue that their lower degree of comprehen-
siveness make them less interesting for our evaluation results.

Fig. 2.2 shows the results of our evaluation. In the context of the com-
prehensiveness of the description languages, none of the languages allow a
holistic specification of the functional aspects of the services. In this di-
rection, OWL-S [121] and WSML/WSMO [39, 51] are relatively effective
but have certain shortcomings. Although, OWL-S allows to define the be-
havioral semantics as logical expressions, it does not specify any particular

34

2.3. SERVICE DESCRIPTION

Comprehensiveness Ease‐of‐use

Request /
Offer

Distinction

O
pe

ra
tio

n
Si
gn
at
ur
es

O
nt
ol
og
ic
al

Se
m
an
tic
s

Be
ha
vi
or
al

Se
m
an
tic
s

Se
rv
ic
e

Pr
ot
oc
ol

Co
nf
or
m
an
ce

to
St
an
da
rd
s

Vi
su
al

N
ot
at
io
ns

CompoNETS [10] + ‐ ‐ + o + +

Fractal [45] + ‐ ‐ + ‐ ‐ +

Sofa 2.0 [28] + ‐ ‐ + ‐ ‐ +

Palladio [12] + ‐ ‐ + o + +

Pin [70] + ‐ ‐ + o + +

WSDL [162] + ‐ ‐ ‐ + ‐ ‐

SAWSDL [136] + + ‐ ‐ + ‐ ‐

YASA [30] + + + ‐ + ‐ ‐

USDL [8] + + + ‐ + ‐ ‐

OWL‐S [121] + + o + + ‐ ‐
WSML/WSMO
[39,51] o + + + ‐ ‐ +

VC [96] ‐ ‐ + ‐ + + ‐

WS‐BPEL [77] ‐ ‐ ‐ + + ‐ ‐

Language

Criteria

+ supported ‐ not supported o partially supported

Figure 2.2: Evaluation of existing Service Description Languages

language to specify these logical expressions and suggests to select any ex-
isting rule language. Such combination of OWL-S with other languages
can introduce further complexities in the process of service description. On
the other hand, WSML/WSMO does not have any explicit specification for
the requested/offered operations of a service as it describes a service func-
tionality through its protocol as ASM with transition rules to invoke state
change. These transition rules do not directly correspond to operations and
are conceptualized on different granularity level. Hence, a WSML service
description does not correspond to the conventional structure of a functional
service description described in Sec. 2.3.1

As far as the ease-of-use for these description languages is concerned,
instead of conforming to standard OMG IDL like CompoNETS [10], most
of the component models have come up with their specific IDLs. Addition-
ally, apart from Palladio [12] and Pin [70], none enables the use of visual
notations for component descriptions. In the SOC domain, approaches like

35

CHAPTER 2. RELATED WORK

SAWSDL [136] and YASA [30] conform to the existing service description
standard WSDL. Similarly, OWL-S [121], USDL [8] and VC [96] also rely
on other de facto standards like XML, OWL, and UML. In this context,
WSML [39] totally diverts from the existing standards and comes up with
a group of newly-defined languages for the specification of different aspects.
A significant number of service description languages, such as, SAWSDL,
OWL-S, etc. have textual notations leading to long and complex service de-
scriptions. So despite their conformance to standards like WSDL and XML,
studies [135] claim that such complex textual notations make their wide
acceptance difficult. This also holds true in the given scenario of service
discovery, where particularly the service requester is inclined towards visual
notations due to his modeling expertise and hence it is difficult for him to
adopt to such textual service description languages for the specification of
his service request.

In the context of distinction between service request and offer, all the
component models conceptually differentiate between the required and pro-
vided interface of the components. However, in the SOC domain, none of
the approaches except WSML/WSMO differentiate between these two types
of service descriptions. WSML/WSMO make this conceptual differentiation
through the terms goal and web service for service request and offer. How-
ever, these two types of service descriptions in WSML are considered to be
exactly similar and are specified using exactly similar notations. This means
that these approaches only make this distinction on a conceptual level and
do no investigate and cater to possibly different needs or technical expertise
of the service partners.

For our service discovery and composition approach, we propose a service
description language to overcome these issues discussed here.

2.4 Service Description Matching

In addition to the component specification, seamless adaptation and integra-
tion of the components based on their specification matching has also been
extensively investigated in the area of CBSE [27, 101, 11]. This has been
carried forward to the SOC domain as well, where the process of automatic
service discovery and composition majorly relies on an underlying service
description matching mechanism. Such a matching mechanism matches the
service request at hand to the service offers available on the service market.
On the basis of the matching results, a possible service composition may
be defined that satisfies the requester’s requirements specified in the service

36

2.4. SERVICE DESCRIPTION MATCHING

request marking the success of the service composition process. However to
achieve this success, it is important that the matching mechanism accurately
matches the service descriptions at hand. For this purpose, the matching
mechanism has to take certain parameters into account, which are discussed
in the next section in detail. Later, we also give an overview of the ser-
vice description matching mechanisms proposed by the existing approaches.
Additionally, we also evaluate these mechanisms on the basis of the defined
parameters.

2.4.1 Dimensions of Service Description Matching

The distributed nature of the SOC domain adds multi-faceted complexity to
the problem of service description matching. In this context, Becker et al.
[11] has earlier proposed a detailed classification of different types of com-
ponent description mismatches and has come up with an adaptation model
that can serve as a basis for a component description matching approach.

Based on this initial understanding, we investigate the service description
matching problem and conclude that there are certain dimensions, in which
a matching mechanism can function. Each of these dimensions comprise
of certain aspects that are arbitrarily addressed by a matching mechanism
and it can be evaluated on the basis of its addressed aspects. These dimen-
sions visualized in Fig. 2.3 are discussed in next section in detail, which are
later used to classify and evaluate the existing service description matching
mechanisms.

Matched Elements

Firstly, a service description matching mechanism has to be classified on
the basis of the elements of the service descriptions that it considers while
matching.

As discussed in Sec. 2.3.1, service partners can specify their service re-
quests and offers in varying levels of detail according to their preferences
and technical capabilities. This decision on their part makes an impact on
the outcome of the matching mechanism. For a matching mechanism, it
is important to have sufficient information about the requested and offered
functionality in order to correctly match them. Consequently, the accuracy
of a matching mechanism can be evaluated on the basis of the elements that
it matches in the service descriptions.

As an example, consider the case where a matching mechanism enables
service discovery and composition on the basis of structural service descrip-

37

CHAPTER 2. RELATED WORK

Matched Elements

Operation Signatures

Atomic

Service Structure

Single

Composite

Data Model Heterogeneity

Granularity Level Heterogeneity

Linguistic Heterogeneity

Heterogeneity Resolution

Ontological Semantics

Behavioral Semantics

Service Protocols

Service Description Abstraction
Level

Granular

Matching Strategy

Combined

Isolated

Figure 2.3: Different Dimensions of a Service Description Matching Ap-
proach and their Key Aspects

tion matching only. But the requested and offered operation signatures can
have different ontological semantics with similar structure and vice versa as
discussed in Chap. 1. Hence, in this case, the considered matching mecha-
nism can lead to inaccurate results and can be improved by also considering
the ontological semantics of these operation signatures. Similarly, the accu-
racy of the matching results can be further enhanced by considering different
types of behavioral descriptions in the matched service request and offer.

Additionally, the language selected for the specification of each element
is also important as it directly effects the wide acceptance and usage of the
matching mechanism. An evaluation of the prevailing service description
languages presented in Sec. 2.3.3 can serve as a guideline for the selection
of a suitable language in this case.

Heterogeneity Resolution

The second important dimension that can be used to classify a matching
mechanism is its heterogeneity resolution mechanism. In Chap. 1, we already
mentioned that the essence of SOC is that it allows the service partners to
function in their independent domains and such independence leads to multi-

38

2.4. SERVICE DESCRIPTION MATCHING

faceted heterogeneity among them. A matching mechanism, which is able to
resolve this multi-faceted heterogeneity while matching can cater to many
diverse domains and service partners in a bigger spectrum and hence can be
more effective in practical scenarios.

The first type of heterogeneity that can arise in this case is the data model
heterogeneity. The service partners tend to have their independent domain
knowledge, which leads to their independent local data models. These inde-
pendent data models can be semantically similar and structurally different
or vice versa. As a result, the requested and offered service descriptions that
conform to these heterogeneous data models will also be heterogeneous with
structural and semantic similarities and differences. An important and re-
cent development in SOC is the explicit specification of the semantics called
ontological semantics [121, 51, 136]. In this context, the common approach
is to enable the annotation of the elements of the service descriptions with
the concepts in an underlying ontology resulting in an explicit and formal
semantic specification. This annotation may be done by the service partners
manually or as a more sophisticated solution, their can be an automatic an-
notation mechanism for this purpose. Later, reasoners are developed that
realize the matching of service descriptions based on these formal semantics.
Another direction is added to the problem of data model heterogeneity if the
service partners choose to formally specify their domain knowledge in terms
of their independent local ontologies. With the widespread development
and use of domain ontologies on a commercial level, it is highly likely that
the service partners conform to different local ontologies and consequently
their service descriptions conform to their respective local ontology. In such
a case, a potential solution has to consider these independent ontological
semantics, which need to be consolidated in order to resolve the data model
heterogeneity.

Similarly, this independence of the service partners’ domains lead to their
granularity level heterogeneity as well. Based on their conceptualization
of the requested and offered functionality, the service partners can specify
their service descriptions on different granularity levels. For instance, the
requested functionality specified as a single operation in the service request
may correspond to the offered functionality specified through multiple oper-
ations in the service offer or vice versa. Due to this difference of granularity
level, it is not always possible to have a 1 : 1 matching between the oper-
ations of the service request and offer hence leading to complex, 1 : n, n :
1, and n : m correspondences between the operations in a request and an
offer.

Another important aspect in this regard is the possible linguistic het-

39

CHAPTER 2. RELATED WORK

erogeneity of the service partners. According to the scenario explained in
Sec. 2.2, service partners can select different service description languages
based on their individual technical skills and preferences. In order to enable
their matching, it is necessary to translate these linguistically heterogeneous
service description to a common representation.

In order to ensure its wider acceptance and accurate matching, a service
description matching mechanism has to devise techniques to resolve these
different types of heterogeneity between the service partners and their service
descriptions.

Matching Strategy

Another salient dimension that provides a basis to differentiate the ser-
vice description matching approaches is their strategy to match different
elements of the service descriptions. Comprehensive service descriptions en-
able accurate matching results because of the fact that the service matching
approaches would have elaborate information to match about the requested
and offered service. In this context, there can be different strategies to
achieve an overall matching result on the basis of the matching of compre-
hensive service description.

Firstly, an isolated strategy can be used where corresponding aspects of
the service request and the offer are matched independently and a match
degree between them is determined on the basis of the aggregation of these
independent match results of different aspects. In this case, the contents or
the matching process of one aspect do not affect the matching of another
aspect.

However, we argue that it does not make much sense to match different
aspects of such comprehensive service descriptions in isolation because these
are not independent. Rather, they are interconnected and have dependen-
cies among themselves. Such inter-dependencies and mutual information
among different aspects can be exploited to define a combined strategy for
matching and to further enhance the accuracy of the matching results. For
instance, as the operations’ input/output parameters can also be a part of
their preconditions and postconditions, the operation signature matching re-
sults can be reused for the matching of operations’ behavioral semantics. In
this direction, the consideration of ontological semantic matching result can
further enhance the accuracy of results. Similarly, as the service protocols
define the required and the allowed invocation sequences for the requested
and the offered operation respectively, the operation matching results can
be reused to match the service protocols. On the other hand, the order-

40

2.4. SERVICE DESCRIPTION MATCHING

ing constraints in the service protocols can act as pivotal information for
complex n : m matching between requested and the offered operations.

Service Description Abstraction Level

Another important dimension in which the service description matching
approaches can be differentiated is their conceptualization of the abstrac-
tion level for the service descriptions, which directly effects the accuracy
of matching results. Conceptually, a considerably large number of service
discovery approaches deal with service descriptions on a higher abstraction
level, where the service is considered as a blackbox entity with an atomic
service request/offer. Such atomic request/offer comprises a single operation
in terms of its inputs and outputs. The service description matching mech-
anism in this case is reduced to the matching of such atomic descriptions
on the basis of their inputs and outputs, which is additionally enhanced
by a matching of pre- and postconditions in recent years. Service descrip-
tion languages, such as, OWL-S and WSML, etc. have defined notations to
specify such atomic service descriptions. Service matching approaches for
such atomic service description do not consider further elements of service
description, such as, the multiple requested/offered operations and the ser-
vice protocols during service discovery as these are used later to invoke the
discovered services.

On the other hand, there are matching approaches that consider such a
blackbox description of the service to be conceptually insufficient in current
times. They argue that services are at the core of computing activities and
are designed to perform complex tasks. In such cases, it is not suitable to
conceptualize these services as blackboxes and granular service descriptions
comprising of details like multiple operations and the service protocol are
required to describe the requested/offered functionality. In this direction,
another trend is to partially support granular service descriptions, e.g., con-
sidering a granular service request, which is used to discover and compose
the atomic service offers.

In this context, we argue that in this SOC era, it is important to concep-
tualize services as complex entities with multiple interconnected functions.
Hence, granular service descriptions are more suitable for practical scenarios
as they can ensure accurate service discovery results.

41

CHAPTER 2. RELATED WORK

Service Structure

Another important dimension of a service matching approach is the structure
of the resulting service, i.e., single or composite.

In the context of SOC, which is based on the independent domains and
different granularity levels of the service partners, it is not practical to as-
sume that a single offer fulfills all the requirements in the service request
hence leading to a 1 : 1 match between them. It is important that a service
description matching approach should not restrict itself to a precise match
between the service request and single service offer. Rather, in case of a
partial matching between the request and an offer, it should also enable a
composition of multiple service offer to completely satisfy the service re-
quest. This leads to a 1 : n match and the resulting service is structured as
a composite service based on the discovered service offers.

2.4.2 Overview of the Service Description Matching Ap-
proaches

Existing related work in the area of service description matching exist on a
broad range and comes under the topics, such as, component/service match-
ing, component/service interoperability, component/service discovery, and
component/service composition, etc. Considering this plethora of existing
work over the span of last two decades, we have restricted ourselves to the
study of a selection of the existing approaches that are relatively more rel-
evant to the problem at hand. Firstly, we do not consider the matching
approaches dealing with unstructured service descriptions i.e., service de-
scription that do not comply to any existing service description language
and comprise of unstructured information in form of plain text, keywords,
etc. Secondly, in coordination to the problem at hand, we examine the
matching approaches that focus on the functional aspects and do not con-
sider the approaches that particularly focus the matching of non-functional
aspects. Thirdly, in order to focus on the current state-of-the-art, we focus
on the comparatively recent approaches presented after 2008 and only dis-
cuss few of the earlier prominent approaches relevant to our problem. In the
following, we give a brief overview of these works.

First of these is presented by Naeem et al. [108], which is a service
composition approach for atomic service descriptions based on a visual con-
tracts (VC) matching approach. It is an extension of the 1 : 1 VC matching
presented in [65]. It allows a gradual matching between the request and
multiple offers, each specified as a single VC leading to a 1 : n VC match.

42

2.4. SERVICE DESCRIPTION MATCHING

Graph theory is used as the underlying formalism for matching.
METEOR-S [97] is a framework to support the semantic annotation of

services developed at LSDIS laboratory at University of Georgia. It com-
prises of METEOR-S web services discovery infrastructure (MWSDI) and
METEOR-S web services composition framework (MWSCF) for automatic
service discovery and composition. MWSDI enables the specification and
matching of SAWSDL-based service descriptions, where the definition and
matching of ontological semantics is supported through a semi-automatic
mechanism. For service composition, MWSCF allows to define a BPEL-
based requester protocol and each activity is bound to a service through the
service matching carried out by MWSDI.

Web services modeling framework (WSMX) [61] is a service execution
environment based on WSMO [51] developed at DERI institute Innsbruck.
Relying on the mediator concept introduced in WSMO, WSMX focuses the
heterogeneity resolution while matching of the service goals and capabili-
ties. In this context, the service descriptions and underlying ontologies are
based on WSML and an ontology to ontology mediator (OO-mediator) is
defined to resolve the semantic mismatches between the local ontologies.
For this purpose, a mapping language is introduced to semi-automatically
define the mappings between the service partners’ independent ontologies
at design time. OO-mediator uses these mappings to reason and match the
data elements during service description matching through web service to
goal mediator (WG-mediator). Like METEOR-S, WSMX also considers the
service offers (i.e., WSMO capabilities) as an atomic functionality unit dur-
ing service discovery phase and hence a requester protocol is used to define
service composition.

Corfini et al. [25] proposed a service composition mechanism for OWL-S
based service requests and offers where the particular focus is to allow match-
ing while considering different local ontologies for the available service offers.
In this direction, the mechanism automatically defines mappings between
different local ontologies of the available service offers at design time. For
this purpose, the notion of semantic fields [109] is used and is implemented
through the SemFiT tool comprising of different match strategies using the
information contained in the respective ontologies. These mappings are used
to match heterogeneous data elements at the service discovery time.

Bellur & Vadodaria [14] propose a service description matching algorithm
for atomic OWL-S based service descriptions comprising their respective
inputs, outputs, preconditions and effects. The matching is carried out
in two stages where in the first stage the input and output parameters in
the request and a certain offer are matched on the basis of the ontological

43

CHAPTER 2. RELATED WORK

semantics defined through a common ontology using concepts like semantic
distances and logic-based subsumption reasoning [123]. In the second stage,
the preconditions and effects in the service request and offer specified as
expressions are matched on the basis of the results of the first stage. The
matching results between service request and offer are ranked according to
their degree of match, i.e., the extent to which the requirements specified
in the request are satisfied by the offer. The proposed matching approach
supports a 1 : 1 match between service request and offer, which is extended
to a service composition approach in their later work [13].

Similarly, Bener et al. [15] also proposes a matching algorithm for atomic
OWL-S service descriptions where preconditions and effects are specified as
SWRL rules. Similar to [14], the matching results between the inputs and
outputs based on their ontological semantics are further used to match the
preconditions and effects in the service request and offer. This approach
also considers the case where the service partners may conform to different
local ontologies and hence comes up with a mechanism using WordNet [130]
to match the elements in such a case. Matching results of the algorithm are
in the form of a ranked list of service offers satisfying some/all requirement
specified in the service request.

Kona et al. [88] propose a service composition mechanism for atomic
USDL-based service descriptions. To match the data elements, it is as-
sumed that the input/output parameters, preconditions and postconditions
are matched on the basis of ontological semantics defined through a common
ontology. The approach comes up with an elaborate graph-based mechanism
to determine possible compositions of different types, such as, sequential,
non-sequential, and non-sequential conditional composition represented as
graphs. This graph is further translated to an OWL-S service description of
a composite service.

Brogi et al. [26] particularly focuses the fact that considering a black box
representation of service offers does not suffice for precise service discovery
and the individual operations and their allowed invocations sequences for the
offered services also have to be taken into account. For this purpose, service
aggregation matchmaking (SAM) algorithm is proposed that matches and
composes the offered service protocols specified as OWL-S process models
to satisfy an atomic structural service request. With the assumption of a
common ontology shared among the service partners, this algorithm con-
structs a dependency graph from the OWL-S processes to determine any
possible service composition. In case a determined composition does not
completely fulfill the requester’s requirements, the algorithm suggests possi-
ble improvements to the service request in order to consume the determined

44

2.4. SERVICE DESCRIPTION MATCHING

service composition.
Spanoudakis & Zisman [145] propose a service discovery mechanism to

build a service-based system based on its UML design. In this approach,
the UML-based structural and behavioral elements of the system design
form the service requests and the offered services are described in terms
of their structural and behavioral features specified through WSDL and
BPEL. This approach emphasizes the use of different languages by service
partners according to their technical profiles and comes up with a linguistic
heterogeneity resolution mechanism that translates the service description
elements to data graphs and state machines before their matching. The pro-
posed mechanism however does not support automatic service composition
and suggests that this is done by the requester manually on the basis of the
discovered services.

Chabeb et al. [31] proposed a matching mechanism for YASA-based ser-
vice description. The matching approach matches the individual elements,
such as, interfaces, operations, inputs, outputs, preconditions and postcon-
ditions on the basis of their ontological semantics defined through a domain
ontology. Based on the aggregation of these element-level matching results,
a comprehensive mechanism is used to determine an overall matching degree
between a service request and an offer.

Grigori et al. [60, 35, 59] particularly focuses the behavioral matching
of the request and offer, where the service protocols are specified as BPEL
processes. For this purpose, the requested BPEL process is translated to its
respective graph and later on matched to the graphs of the offered BPEL
processes. It uses different types of matching, such as, linguistic match-
ing, granularity-level matching, etc. between graph elements to determine
a graph similarity value. The mechanism determines 1 : n and n : 1 corre-
spondences between the requested and offered BPEL activities on the basis
of their input/output parameters. The service discovery process returns a
list of the service offers ranked on their similarity values.

Cubo etc al. [37] semantically matches WSDL-based operations in the
requested and offered service descriptions by assuming that ontological se-
mantics are defined through XML-based technologies. The resulting 1 : 1
operation correspondences are used to match the service protocols as special-
ized labeled transition systems (LTSs), which are checked for their compati-
bility through detection of any deadlock resulting from a possible mismatch
in their synchronous product.

Cuzzocrea and Fisichella [38] presents a service matching approach where
the service request and offer are specified as OWL-S processes. The approach
defines a graph representation for OWL-S processes to automatically trans-

45

CHAPTER 2. RELATED WORK

late the requested and offered processes to their respective graphs. Later,
a graph matching approach is applied which finds common substructures
based on node similarities. In this direction, a 1 : 1 node similarity is calcu-
lated for atomic processes (operations) and these matching results are used
to calculate the maximum common subgraph between the two graphs.

Fernández et al. [57] proposes a service matching approach that partic-
ularly deals with the data model and linguistic heterogeneity issues for the
service partners. The approach proposed a common representation of a ser-
vice description known as general common model (GCM) after a conceptual
comparison of the existing languages. To match the possibly linguistically
heterogeneous atomic service descriptions of the service partners, they are
translated to this common representation through the mappings defined be-
tween GCM and their respective specification languages. A service descrip-
tion matching mechanism matches the GCM-based service request and offer
on the basis of its inputs, outputs, preconditions and postconditions consid-
ering their ontological semantics. In case the service partners do not share
a common underlying ontology, their ontological semantics are consolidated
on the basis of already-defined ontology alignments. For this purpose, a
semi-automatic mechanism for defining the ontology alignments is defined.

Klusch et al. [81] proposes a matching mechanism for atomic structural
OWL-S service description. This is a hybrid matching mechanism combining
semantic matching and text-based similarity calculation. If the matcher is
not able to determine a satisfactory result on the basis of semantic match-
ing, it tries to determine an approximate match result through different
text-based similarity calculation techniques. Such an approximate match
may be selected by the requester as it partially satisfies its requirements.
Different variants of this matcher are implemented with different combina-
tions of the semantic and textual matching techniques. Later, a self-adaptive
mechanism [82], which uses a learning mechanism to discover the most opti-
mal combination of these matching techniques to aggregate matching results
and hence enable successful service discovery. This approach of self-adaptive
hybrid matching is further enhanced to also consider the matching of precon-
ditions and effects in iSeM [83] while reusing the signature matching results.
Some other variants [85, 86] reuse the hybrid matching mechanism for other
service description languages.

Similarly, Ke & Huang [79] define a self-adaptive service discovery ap-
proach for OWL-S atomic service descriptions without behavioral semantics.
It is based on the matching of their respective ontology trees constructed
from their ontological semantics and relies on the computation of different
metrics, such as, conception similarity, structure similarity, and attribute

46

2.4. SERVICE DESCRIPTION MATCHING

similarity, etc. In case the matching results are not satisfactory, the request
is automatically adapted on the basis of the similarity results to achieve a
satisfactory matching result.

Liu et al. [95] argue that it is difficult for service partners to adapt
to new languages for service description as well as to define ontologies for
ontological semantics. Hence, they propose to exploit information retrieval
techniques and use a web search engine results for calculating the semantic
distances between the terms used in the WSDL-based service descriptions.
In this approach, the matched service descriptions are presented as bipartite
graphs with the terms as nodes and their semantic distance as the weight of
the connection between the corresponding nodes. The overall similarity of
the two service descriptions is calculated through a similarity metric defined
on the basis of matched and unmatched terms and their similarity distances
in the bipartite graphs.

Masuch et al. [100] proposes a hybrid matcher for atomic OWL-S de-
scriptions, which applies textual and semantic matching techniques and ag-
gregates the matching results to determine the overall similarity value be-
tween the service descriptions. The preconditions and effects are specified
as SWRL rules, which are matched on the basis of their structure and on-
tological semantics.

Motahari-Nezhad et al. [107] argue that for an accurate service descrip-
tion matching, it is important that different aspects are not considered in
isolation. Rather, the service description matching mechanism should be
able to exploit and combine the information in different aspects to achieve
accurate matching results. In this context, they propose an approach to
match the WSDL descriptions while exploiting the ordering constraints and
other information in the respective BPEL service protocols. As a result, 1
: n and n : 1 correspondences are determined between the operations and
their parameters.

Plebani & Pernici [127] propose a matcher for WSDL and SAWSDL
service descriptions where the operation matching is based on their sig-
natures and ontological semantics defined through a common underlying
domain ontology for the service partners. In case of WSDL descriptions,
these ontological semantics are defined by the matcher automatically during
matching whereas the service partners define them beforehand in case of
SAWSDL descriptions. A similar approach is given by Tran et al. [153] for
SAWSDL service descriptions. However, the matching results in this ap-
proach are comparatively detailed comprising of a similarity degree, ratio of
the matching input/output parameters, the mappings between the matched
parameters, etc.

47

CHAPTER 2. RELATED WORK

2.4.3 Evaluation

In this section, we evaluate the service description matching approaches
discussed in Sec. 2.4.2 according to the dimension of this problem defined
in Sec. 2.4.1.

First of all, it is important to note that most of the approaches in this
direction in the recent times realize the importance of comprehensive service
descriptions for the accuracy of automatic service discovery and composi-
tion hence enabling the matching of different aspects of such comprehensive
service descriptions.

In the context of multi-faceted heterogeneity inherent due to the nature
of SOC paradigm, the existing matching approaches have not convincingly
dealt with this aspect so far.

The first in this direction is the resolution of the data model het-
erogeneity. Unfortunately, a considerable number of approaches do not
provide any solution for this important issue. Some [108, 145, 38] con-
sider service descriptions based on the same data model without con-
forming to a formal ontology to define ontological semantics. Others
[97, 14, 88, 31, 37, 81, 79, 100, 95, 127, 153] conform to formal ontology
to define the ontological semantics for these data elements. However, these
simplify the situation at hand by assuming that the service partners share a
common underlying ontology and they define their service descriptions and
their ontological semantics while conforming to this common ontology.

In this direction, with the independence of service partners in SOC and
the diversity of their technical skills, it is not practical to assume that the
service partners will conform to common domain knowledge in advance.
Hence, they use their independent ontologies for the definition of their ser-
vice descriptions and their respective ontological semantics.

Approaches like [15, 25, 61, 57] provide the service partners the flexibil-
ity to conform to their independent local ontologies and the heterogeneity
is resolved while consolidating these different ontological semantics. For
this purpose, [25, 61, 57] propose the definition and use of ontology align-
ments among independent local ontologies. However, such a solution may
perform well in an academic setting but its scalability is questionable in a
practical scenario where alignment between each pair of local ontologies can
be very costly due to considerably large number of requests and offers. In
this context, [15] does not rely on ontology alignments rather it uses the
general-purpose ontology WordNet [130] to define and match the ontologi-
cal semantics in case of independent local ontologies for the matched service
partners.

48

2.4. SERVICE DESCRIPTION MATCHING

Matched Elements
Heterogeneity
Resolution

Match
Strategy

Serv. Desc.
Abstr. Level

Service
Structure

ra
ti
o
n

at
u
re
s

o
lo
gi
ca
l

m
an
ti
cs

av
io
ra
l

m
an
ti
cs

rv
ic
e

to
co
ls

M
o
d
el

o
ge
n
ei
ty

n
u
la
ri
ty

ev
el

o
ge
n
ei
ty

gu
is
ti
c

o
ge
n
ei
ty

d
(i
)
/

n
ed

(c
)

(a
)
/

ar
(g
)

le
(s
)
/

o
si
te

(c
)

Criteria

O
p
e

Si
gn

O
n
to

Se
m

B
eh

a
Se
m Se
r

P
ro

D
at
a

H
et
eo

G
ra
n Le

H
et
er
o

Li
n
g

H
et
er
o

Is
o
la
te
d

C
o
m
b
in

at
o
m
ic

gr
an
u
la

si
n
gl

co
m
p
o

Naeem et al. [108] ‐ ‐ VC ‐ ‐ o ‐ i a c

METEOR‐S [97] WSDL SAWSDL ‐
BPEL
(req.)

‐ ‐ ‐ c(o) g(o) c

System

WSMX [61] WSML WSML WSML
WSML
(req.)

+ ‐ ‐ c(o) g(o) c

Corfini et al. [25] OWL‐S OWL‐S ‐
OWL‐S
(prov.)

+ ‐ ‐ c(o) g(o) c

Bellur & Vadodaria
[14]

OWL‐S OWL‐S
Expr.
lang.

‐ ‐ o ‐ c(o) a c

Bener et al. [15] OWL‐S OWL‐S SWRL ‐ + ‐ ‐ c(o) a s

Kona et al. [88] USDL USDL USDL ‐ ‐ o ‐ i a c

Brogi et al. [26] OWL‐S OWL‐S ‐
OWL‐S
(prov.)

‐ ‐ ‐ c(o) g(o) c

Spanoudakis &
Zi [145]

UML +
WSDL

‐ ‐
UML +
BPEL

‐ ‐ + c(o) g s
Zisman [145] WSDL BPEL

() g

Chabeb et al. [31] WSDL YASA ‐ ‐ ‐ ‐ ‐ i g s

Grigori et al.
[60,35,59]

BPEL /
WSCL

‐ ‐
BPEL /
WSCL

‐ + ‐ c(o) g s

Cubo et al. [37] WSDL XML ‐ LTS ‐ ‐ ‐ c(o) g s

C & Fi i h llCuzzocrea & Fisichella
[38]

OWL‐S ‐ ‐ OWL‐S ‐ ‐ ‐ c(o) g c

Fernandez et al. [57] Diff. Diff Diff ‐ + ‐ + i a s

Klusch et al. [81,83] OWL‐S OWL‐S OWL‐S ‐ ‐ ‐ ‐ c(o) a s

Ke & Huang [79] OWL‐S OWL‐S ‐ ‐ ‐ o ‐ c(o) a c

S h
Liu et al. [95] WSDL

Search
Engine

‐ ‐ ‐ ‐ ‐ c(o) g s

Masuch et al. [100] OWL‐S OWL‐S SWRL ‐ ‐ ‐ ‐ i a s

Motahari‐Nezhad et
al. [107]

WSDL ‐ ‐ BPEL ‐ + ‐ c(o) g s

Plebani & PerniciPlebani & Pernici
[127]

WSDL SAWSDL ‐ ‐ ‐ ‐ ‐ c(o) g s

Tran et al. [153] WSDL SAWSDL ‐ ‐ ‐ ‐ ‐ c(o) g s

Diff.: WSDL / OWL‐S / WSMO / SAWSDL + : supported o : partially supported ‐ : not supported

Figure 2.4: Evaluation of some prominent Service Discovery and Composi-
tion Approaches

As far as granularity level heterogeneity is concerned, very few ap-
proaches consider and come up with mechanism to resolve this type of het-
erogeneity. Approaches like [108, 13, 88, 79] allow service composition by
enabling a match between an atomic service request and multiple atomic
service offers. We believe that in these approaches, the matching of an
atomic service request to atomic service offers is analogous to a 1 : n opera-

49

CHAPTER 2. RELATED WORK

tion correspondence between requested and offered operations. Some others
[107, 59] particularly realize the need to consider the difference of granularity
level between a service request and an offer and come up with mechanism
to determine 1 : n and n : 1 operation correspondences. However, these
approaches restrict the granularity level heterogeneity to the operation sig-
natures only and resolve it through the matching and splitting/merging of
input and output parameters. The complexer case of different granularity of
behavioral semantics despite similar operation signatures and the resulting
complex operation correspondences is ignored in these approaches.

The domain of service description matching also lack sufficient work in
the area of linguistic heterogeneity resolution. Very few approaches [57,
145] realize the fact that the service partners may opt for different service
description languages according to the particular scenario at hand, their
specific requirements and technical skills. Hence, these approaches allow
heterogeneous languages for the specification of service request and offers,
which are translated to a common representation before their matching is
carried out.

As far as the matching strategy of these approaches is concerned, ap-
proaches like [100, 31, 88, 57] adopt an isolated strategy where they match
different elements of the service descriptions in isolation and then aggre-
gate their matching result to determine an overall degree of matching be-
tween the request and offer. Similarly, there are other approaches like
[14, 15, 83, 79, 37, 38, 145, 107, 60, 59], that do not match elements in
isolation rather adopt a combined strategy where the contents or matching
results of one aspect are reused while matching another aspect.

However, it is worth mentioning here that most of the existing ap-
proaches with combined match strategy are limited in nature and do not
elaborately exploit the inter-dependencies of the comprehensive service de-
scriptions. These restricted combined approaches are mentioned through
c(o) in Fig. 2.2. These are limited in the sense that they lay particular fo-
cus on the matching of a certain aspect, such as operations or protocols and
ignore or simplify the matching of other aspects. For instance, approaches
like [14, 15, 83, 79] particularly deal with operation matching where the re-
sults of operation signature matching using ontological semantics contribute
to the matching of their behavioral semantics. However, service protocols
are not considered in these approaches. There are others [37, 38, 145] that
further deal with service protocol matching in addition to operation match-
ing. However in these approaches, simple 1 : 1 operation correspondences
are considered while matching the protocols. For this purpose, either it is
assumed that such 1 : 1 operation correspondences already exist or a rela-

50

2.4. SERVICE DESCRIPTION MATCHING

tively simple operation matching mechanism that mostly rely on signature
matching is defined to determine such correspondences. In this case, the
complex n : m operation correspondences are not considered and hence not
used while matching the protocols. A step further in this direction are the
approaches [107, 60, 59] which handle the operation and protocol match-
ing in an interconnected manner where complex 1 : n and n : 1 operation
correspondences are also taken into account. The ordering constraints speci-
fied in the protocols contribute to determine such complex correspondences.
However, operation matching is limited to matching of operation signatures
and other aspects, i.e., ontological and behavioral semantics do not play any
role.

Hence, none of the existing approaches allows a holistic matching mech-
anism where the operation and protocol matching are combined while con-
sidering their contents and matching results elaborately. In this direction,
it is required that the operation matching should not be restricted to the
operations’ signatures but should also take their ontological and behavioral
semantics as well as their ordering constraints in the service protocols leading
to n : m operation correspondences. These complex operation correspon-
dences should later contribute to the service protocol matching ensuring
accurate service discovery results.

It is also worth noting that a considerably large number of the service
matching approaches target atomic or partially granular service descriptions
(mentioned as g(o) in Fig. 2.2). For example, approaches like [97, 61, 57,
100, 14, 26, 25] allow the matching of service descriptions where one or
both service partners describe their required/offered functionality in terms of
atomic service description. This leads to the fact that the service description
matching in these cases is dealt with an operation matching mechanism only
and protocol matching is not taken into account.

In addition, it is also important to mention that fairly large number of
service matching approaches only realize matching between a single service
request and offer. These approaches ignore the fact that a service requester
can have diverse needs that may not be fulfilled by a single service offer and
a composite service comprising of multiple service offers might be necessary
to completely fulfill the service request.

Based on this evaluation of the existing service description matching
approaches, we deduce that there is a requirement for an automatic service
description matching approach that enables accurate results by:

1. comprehensive matching of the service request and available offers
using different functional aspects, such as, operation signatures, their

51

CHAPTER 2. RELATED WORK

ontological and behavioral semantics and service protocols. In this
direction, the accuracy is improved through a combined approach
where the contents/matching results of one aspect contribute for the
matching of other aspects.

2. providing a multi-faceted heterogeneity resolution mechanism,
which should resolve (i) the data model heterogeneity arising from
different domain knowledge, which may possibly be specified as an on-
tology (i) the granularity level heterogeneity arising from the het-
erogeneous behavioral semantics leading to complex n : m operation
correspondences (ii) the linguistic heterogeneity resulting from the
heterogeneous languages of the service partners selected due to their
individual requirements and skills.

3. enabling service composition in case a single service offer is not able
to completely fulfill the requirements specified in the service request.

2.5 Summary and Discussion

In this Chapter, we provided the background that is necessary for the work
presented in this thesis. This comprises an insight of service-oriented com-
puting and its major concern of automatic service discovery and composi-
tion. In this direction, we further investigated in detail its two important
sub-areas, i.e., specification of service descriptions and their matching. Ad-
ditionally, we presented a detailed overview as well as an evaluation of the
state of the art in both these areas.

On the basis of this evaluation, we derived the basic requirements for
an automatic service discovery and composition approach ensuring accurate
results. In the remainder of the thesis, we present our service discovery and
composition approach that aims to fulfill these requirements and hence lead
to accurate results.

52

3
Rich Service Description Language (RSDL)

In this chapter, we introduce our Rich Service Description Language
(RSDL), which enables service partners in the OTF Computing scenario
to describe their service requests and offers comprehensively in terms of
their functional aspects. In this context, it should be kept in mind that
the main focus of this thesis is not to have a complete language specification
with its elaborate and well-defined semantics. Rather, the aim is to focus on
comprehensive notations for service descriptions that can enable automatic
service matching while fulfilling the criteria specified in Sec. 2.3.1.

Before going into the details of the proposed language, we lay out the
requirements for a comprehensive service description language on the basis
of the evaluation of existing approaches presented in Sec. 2.3.3. To fulfill
these requirements, we present RSDL and its elaborated set of notations
to specify service requests and offers in the later sections. A summary and
discussion will be presented at the end of the chapter.

3.1 Requirements for a Comprehensive Service De-
scription Language

In this section, we outline the requirements that a service description lan-
guage has to fulfill in order to be adopted by the service partners in the OTF
Computing scenario to allow automatic service description matching. These
requirements are based on the criteria laid out in Sec. 2.3.1. As discussed
in Sec. 2.3.3, the existing languages for service description do not meet this
criteria completely.

A potential service description language has to fulfill the following re-
quirements:

• It should introduce an elaborated set of notations allowing the ser-
vice partners to holistically describe the functional aspects of their

53

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

request/offer.

• It should be easily adaptable by the service partners through its con-
formance to the existing standards and use of visual notations.

• It should provide specialized notations for the service requesters and
providers to specify their service descriptions according to their indi-
vidual needs and motives.

In the next section, we introduce our proposed language Rich Service De-
scription Language or RSDL in short.

3.2 Rich Service Description Language

Rich Service Description Language (RSDL) focuses the specification of ser-
vice descriptions while fulfilling the requirements specified in Sec. 3.1. It
provides a detailed set of UML-based visual notations to comprehensively
specify the functional aspects of a service description. It ensures general ac-
ceptability by conforming to UML, which is already a de facto standard in
software engineering domain and provides a detailed set of visual notations
to specify different aspects of a system. Additionally, RSDL acknowledges
the difference between the motives of service requester and provider while
specifying their respective service protocols and hence provides specialized
notations according to the particular nature of the protocols.

RSDL

Functional

Service Description Language

Structural Behavioral

Aspects

Data Model Operation Signatures Operation Behavioral
Semantics

Service Protocol

Aspect Artifacts

Artifact Syntax UML-based Structure
Specification

UML-based
Visual Contracts

UML StateChart Diagram /
UML Sequence Diagram

Figure 3.1: The hierarchical Structure of the RSDL

54

3.2. RICH SERVICE DESCRIPTION LANGUAGE

In the following, we first introduce the hierarchical structure of the RSDL
encompassing its basic artifacts. Later, we will discuss in detail the syntax
of RSDL used to realize its artifacts.

3.2.1 Structure of the RSDL

The elaborate structure of the RSDL is introduced in Fig. 3.1. Fulfilling the
first requirement for a comprehensive service description language, RSDL
allows a detailed specification of functional aspects of a service mainly in
terms of its structure and behavior. For this purpose, it specifies different
artifacts specified through the set of notations comprising the syntax of
RSDL. These artifacts of RSDL also have well-defined semantics, which will
be presented in Chap. 4.

To cater to the comprehensiveness notion defined in Sec. 2.3.1, RSDL also
supports the definition of ontological semantics for the structural artifacts,
which will also be discussed in the next section.

A detailed description of the notations selected for the specification of
these artifacts is as follows.

3.2.2 Syntax of RSDL

The syntax for different artifacts of the RSDL is based on UML as the
underlying language. For visual languages like UML, the syntax mainly
comprises of two parts, i.e., abstract and concrete syntax. Following this
tradition, we define a metamodel for RSDL to specify its abstract syntax.
Additionally, we specify its concrete syntax in terms of RSDL-based service
requests and offers for our running example of a tourism scenario.

Following the existing trend where the frameworks for visual editors
development, e.g., Eclipse Modeling Framework1, mainly use metamodels for
this purpose, the RSDL metamodel also serves as a basis for the development
of the service discovery and composition workbench in our approach.

Before going into the details of RSDL’s syntax, we briefly discuss our
selection of UML. One of the requirements for a suitable service description
language is that it should be easily adaptable by the service partners through
its conformance to the existing standards and based on visual notations.

UML is a standardized modeling language in the SE domain, which
has been approved as an industry standard for specifying, designing and
documenting software systems since 2000. It allows to build a better under-
standing of the large-scale software systems, where the complex design of

1http://www.eclipse.org/modeling/emf/

55

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

the system may not be easily conveyed through textual descriptions. UML-
based visual modeling not only allows better communication but the result-
ing models can also be formally validated. Based on these properties, it
is an open de facto standard, which is widely used in academia as well as
industry.

RSDL

DataModel

OperationSemantics

OperationSignatures

ServiceProtocol

RequesterProtocol

ProviderProtocol

«merge»

«merge»

«merge»

«merge»

«merge»

«merge»

«import»

«import»

«import»

«import»

«import»

Figure 3.2: Package Structure of the RSDL Metamodel

Considering these features of UML and its widespread use in the indus-
try [42], we select UML as the underlying language for RSDL. To realize the
structure illustrated in Fig. 3.1, we specify each of its artifacts as a pack-
age containing its metamodel. These independent metamodels are linked
together on the basis of the dependencies among them, which results into
an integrated coherent metamodel for RSDL. Fig. 3.2 gives an overview of
this package structure of RSDL.

The RSDL package represents the overall metamodel of the proposed lan-
guage and merges the metamodels of different artifacts specified as the
DataModel package, the OperationSignatures package, the Operation-

Semantics package, and the ServiceProtocol package. The Service-

Protocol package constitutes the metamodels for service partners’ protocols
specified in the RequesterProtocol package and the ProviderProtocol

package. The OperationSignatures package imports the DataModel pack-
age to model types of the operation’s input/output parameters. Simi-

56

3.2. RICH SERVICE DESCRIPTION LANGUAGE

larly, the OperationSemantics package imports the DataModel and the
OperationSignatures packages to model the semantics for a particular
operation. On the other hand, the RequesterProtocol and the Provider-

Protocol packages also import the OperationSignatures package to model
the operation invocations in the service protocol. Details of these depen-
dencies among packages will be discussed in more detail later.

Data Model

The first structural artifact for an RSDL-based service description is the data
model of the respective service partner. It comprises of the basic structural
details, such as, the classes2, their attributes and the associations among
these classes. In this context, UML class diagram is selected as the suitable
choice to specify such a data model. Fig. 3.3 shows some relevant parts
of the UML 2.0 metamodel comprising the DataModel package in RSDL
metamodel. [115] can be referred for complete details of the syntax of UML
class diagram.

Kernel

-isAbstract : Boolean

Kernel::ClassifierKernel::Class Kernel::Type

-aggregation : AggregationKind

Kernel::Property

+none
+shared
+composite

«enumeration»
AggregationKind

Kernel::Generalization

Kernel::Association

-class 0..1

-ownedAttribute *

-memberEnd

2..*

-association

1

Kernel::StructuralFeature

Kernel::TypedElement

-type1

-general

1

-specific1

Interfaces

This part is not included in the class diagram meta model right now
because i am not sure whether the interface and its operations are a
part of the data model. Later in, in case it has to be integrated with

the rest of the metamodel, the interface has a generalization
relationship with the classifier class

Kernel::DataType

Import
Ontology
Language

Ontology::Concept...

-annotation1

-annotation 1

Class

Property

Figure 3.3: DataModel Package in the RSDL Metamodel

The DataModel package mainly comprises of the elements from the
Kernel package in UML 2.0 specification constituting the UML class di-
agram. A visual representation is shown in Fig. 3.3, where the classes in the

2Other terms used in literature for the same purpose are data types, concepts, entities,
etc.

57

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

data model are modeled through Class, which is a specialization of UML
Class. A class is a Classifier describing a set of objects having com-
mon features, constraints and semantics. In a data model, the attributes
of a class are represented through Property, i.e., a specialization of UML
Property depicting a StructuralFeature of a Class. Each attribute as a
StructuralFeature is a TypedElement and hence has a Type. The prede-
fined primitive data types are represented through DataType and are used
in the data model to type the attributes of the classes. In this direction,
due to its widespread acceptance as a standard in SOC, RSDL conforms to
XML data types3 as the primitive data types.

The classes in the data model can be related through 2 types of re-
lationships: Generalization and Association. A Generalization rela-
tionship relates a general classifier to a specific classifier. On the other
hand, two classes can be related through an Association, which can have
three different kinds modeled as enumeration values in AggregationKind:
none, shared (representing the aggregation relationship) and composite

(representing the composition relationship). The kind of an association is
modeled as the aggregation attribute of the Property associated to that
Association.

As mentioned earlier, RSDL also supports the specification of ontological
semantics for the structural elements in the service description. In this
direction, the definition of an underlying ontology language is not the focus
of our work. We assume that any existing language like OWL [158] or
RDFS [159], XML Schema, etc. is used for the specification of ontologies
and its language specification can be imported and used as a package. For
our work, we allow the annotation of the basic elements such as classes
and their attributes in the data model with their semantic counterparts
in the underlying ontology. To enable such an annotation, each Class and
Property of the data model is linked to a concept in the ontology. A concept
in the ontology represents a basic unit of information of an information
domain captured in the respective ontology and is modeled differently in
different languages, e.g., element Class in OWL[158] is used to model a
concept. We argue that such an assumption about the underlying ontology
language suffice for the annotation of data model elements in the given
scenario and hence we do not go into its further details.

3http://www.w3.org/TR/xmlschema-2/

58

3.2. RICH SERVICE DESCRIPTION LANGUAGE

Operation Signatures

The second structural artifact in RSDL is the operation signatures. The
OperationSignatures package is shown in Fig. 3.4 based on the elements
of UML 2.0 metamodel meant to define an interface of the system with
particular operations.

Import

Kernel::OperationKernel::Parameter

-direction : ParameterDirectionKind

1

-ownedParameter

*

Interfaces::Interface

-ownedOperation *

-interface1

«enumeration»
ParameterDirectionKind

+in
+out
+inout
+return

Kernel::Type

-type

0..1

-raisedException*

UML allows to specify an interface as required or provided. A provided interface is
modelled through the interfaceRealization association of an interface as it

connects an interface to the classifier that implements that interface. The required
interface can be specified by a usage dependency, i.e., a dependency arrow with
<<uses>> stereotype between the interface and a classifier. It specifyies that the

classifier requires this interface

Kernel::BehavioralFeature

-name : String

-type

1

Figure 3.4: OperationSignatures Package in the RSDL Metamodel

According to this metamodel, an Operation is a BehavioralFeature

owned by an Interface. Each operation has a name and can have input
and output parameters modeled through Parameter. Each parameter has a
Type, which is imported from the DataModel package and direction, whose
value can be selected from the enumeration ParameterDirectionKind. The
direction of a parameter determines whether it is an input or an output
parameter. An operation can have at most one return parameter and the
type of the operation is determined by the type of its return parameter. An
operation may also raise exceptions of specific Type.

It is important to mention here that the service partners using RSDL for
their service descriptions are recommended to type their operation parame-
ters over the classes in the underlying data model instead of using primitive
data types. Such a conscious effort facilitates an implicit matching of oper-
ation signatures while matching of operations’ behavioral semantics hence
ensuring better accuracy of matching results during service discovery pro-
cess. This aspect will be clarified in more detail in Chap. 6, where we discuss
our operation matching mechanism.

As WSDL is the current standard [162] for structural service descriptions,
we claim that RSDL-based structural specification comprising of the data
model and operation signatures directly correspond to the operation-based
structural descriptions in WSDL and can be automatically translated to a

59

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

respective WSDL specification. Such a translation from UML to WSDL
and vice versa is already extensively worked on. For instance, IBM’s tool
[78] allows a two-way model transformation between WSDL and UML. Such
a translation is not the focus of this thesis, therefore we assume that the
existing tools and techniques [43, 78] can be reused for this purpose.

Operation Behavioral Semantics

RSDL allows a functional behavior specification of a service in terms of the
behavioral semantics for its requested/offered operations defined through its
preconditions and postconditions, where the preconditions and postcondi-
tions specify the state of the system before and after the execution of the
said operation, respectively.

Import

Import

VisualContracts::VisualContract

VisualContracts::PostconditionVisualContracts::Precondition

VCElement

InternalStructures::Connector

Collaborations::Collaboration Collaborations::CollaborationUse

Kernel::Operation

InternalStructures::ConnectableElement

Kernel::TypedElement

Kernel::Type

-type 1

-owningContract

1

1

-owningContract

1

1

0..1

-collaborationRole

0..*

-collaborationRole

0..*

0..1

0..1

0..*

0..1

0..*

-type

1

0..1

-collaborationUse 0..1

VisualContracts::NegativeCondition

-owningPre

0..1

-nac0..*

-owningPost

0..1

-npc0..*

0..*

-collaborationRole0..*

Kernel::Parameter

-direction : ParameterDirectionKind

1

-ownedParameter*

VisualContracts::Parameter Collaborations::Parameter

Figure 3.5: OperationSemantics Package in the RSDL Metamodel

In this direction, Visual contracts (VC) [96] is a UML-based visual mod-
eling language for functional behavior specification of the software compo-

60

3.2. RICH SERVICE DESCRIPTION LANGUAGE

nents. A VC for an operation is specified as two UML object diagrams
representing the preconditions and postconditions for its invocation where
the objects are typed over the underlying data model specified as UML-class
diagram. We select visual contracts as the notation to specify the operation
behavioral semantics for the requested/offered operations in RSDL service
description.

The OperationSemantics package in RSDL metamodel is shown in
Fig. 3.5, which is based on the metamodel for visual contracts in [96].

A VisualContract is a Collaboration linked through Collaboration-

Use to an Operation imported from OperationSignatures package. In
UML 2.0, Collaboration provides basic elements to specify a Composite-
Structure-Diagram that visualizes a snapshot of a system in a particular
context to achieve a certain goal in terms of functionality. For this purpose,
Roles are specified that are linked to each other with connectors. At runtime,
these roles are taken over by the instances to reach the system state and
hence achieve the goal specified in the Composite-Structure-Diagram. Based
on this conceptualization, a visual contract in RSDL is a collaboration which
visualizes the invocation of a particular operation. In this context, the
parameters of the operations can also be reused as roles in the corresponding
collaboration. This is realized through Parameter in Collaboration, which
is a specialization of UML Parameter.

A VC further consists of two collaborations: PreCondition and
Postcondition, each of which consists of multiple VCElements that
are ConnectableElements connected through connectors. A parame-
ter of the concerned operation can also be a part of the preconditions
or postconditions of a VC as a VCElement. This is modeled through
VisualContracts:Parameter, which is a specialization of VCElement and
Collaborations:Parameter. As TypedElements, VCElements are typed
over the Types imported from the RSDL-based data model.

A visual contract also allows the specification of negative pre- and post-
conditions modeled as Negativecondition, which is also a collaboration.
These negative conditions can be seen as an extension of preconditions and
postconditions and specify the structures, which are not allowed to occur
before and after the execution of the concerned operation. We refer the
reader to [96] for further details of the visual contracts meta model.

Here we argue that in a realistic scenario, it makes sense that all the
input parameters of an operation are part of the system state before its
execution. Similarly, the output parameter is part of the system state af-
ter its execution. Keeping this argument in mind, RSDL applies a further
constraint on the specification of a VC for an operation as follows:

61

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

Constraint: each input and output parameter of the concerned opera-
tion, which is typed over a class in the underlying data model also occurs in
the preconditions and postconditions of its VC, respectively.

This constraint is important in the sense that it supports the operation
signature matching while matching of the requested and offered operations.
This aspect will be elaborated further during the discussion of our operation
matching mechanism in Chap. 6. Here it suffices to say that our operation
matching mechanism aims at matching the requested and offered operations
on the basis of their structural as well as behavioral descriptions. Based
on the given constraint where the parameters in the operation signatures
are included in the respective behavioral semantics, the proposed operation
matching mechanism only focuses on the matching of the behavioral seman-
tics, i.e., VCs of the requested and offered operations. Consequently, this
includes the matching of their respective operation signatures and no sepa-
rate mechanism is required for operation signature matching of the requested
and offered operations.

Requester Protocol

RSDL allows the specification of the dynamic behavior of service partners in
terms of their respective service protocols specifying their required/allowed
operation invocation sequences. For a requester’s service protocol in the
OTF computing scenario, there are certain motives and requirements that
need to be met. The requester aims to realize a single end-to-end use case by
invoking multiple operations of a discovered service in a specified sequence.
This invocation is carried out in an active manner by the requester without
waiting for any external event. For instance, in our running example, HRS
offers a multi-step tour booking use case to the end user. For its realization,
the HRS application developer wants to invoke multiple operations on a
discovered service TripPlanner in a single sequence.

Keeping these considerations in mind, we argue that UML sequence di-
agram is the suitable choice for the requester service protocol in RSDL. As
one of the interaction diagrams offered by UML, the main purpose of the
sequence diagram is to describe inter-process communication for a particular
scenario of a system by describing the interaction of its components arranged
in time sequence. These interaction sequences are represented through mes-
sages exchanged among the participating components represented through
their lifelines. Fig. 3.6 shows some of the relevant parts of the UML 2.0 meta-
model for interaction diagrams comprising the RequesterProtocol package
in the RSDL metamodel.

62

3.2. RICH SERVICE DESCRIPTION LANGUAGE

Import

BasicInteractions::Interaction

BasicInteractions::Lifeline

1

*

BasicInteractions::InteractionFragment

BasicInteractions::OccurenceSpecification

-covered *

-coveredBy

*

-covered

1 *

-messageKind : MessageKind
-messageSort : MessageSort

BasicInteractions::Message

1

*

+complete
+found
+lost
+unknown

«enumeration»BasicInteractions::
MessageKind

+asynchCall
+asynchSignal
+synchCall
+reply
+createMessage
+DeleteMessage

«enumeration»BasicInteractions::
MessageSort

BasicInteractions::MessageEnd

-sendEvent

0..1

0..1

-receiveEvent0..1

0..1

BasicInteractions::MessageOccurrenceSpecification

Communications::MessageEvent

-event 1
*

Communications::SendOperationEvent

Kernel::Operation

-operation 1

*

BasicInteractions::ExecutionSpecification

-start

1

*

-finish

1

*

Interfaces::Interface-ownedOperation

* -interface

1

-interactionOperator : InteractionOperator

Fragments::CombinedFragment

+seq
+alt
+opt
+break
+par
+strict
+loop
+critical
+neg
+assert
+ignore
+consider

«enumeration»
Fragments::InteractionOperator

Figure 3.6: Excerpt of RequesterProtocol Package in the RSDL Meta-
model based on UML sequence diagram

A requester protocol is a sequence diagram modeled as an Interaction

with participants, i.e, the service requester and the invoked service mod-
eled as Lifelines. An Interaction comprises of InteractionFragments,
which includes complex constructs, e.g., if-else block, loop, and break etc.
modeled through CombinedFragment. The executions on a lifeline is repre-
sented through an ExecutionSpecification graphically represented as a
thin rectangle on lifelines, whose start and finish is represented through two
OccurrenceSpecifications. The OccurrenceSpecification is the basic
semantic unit of an Interaction modeling the basic occurrences along a life-
line. The lifelines communicate with each other through Messages that has a
particular kind (complete, lost, found, and unknown) and a communication

63

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

sort (synchronous, asynchronous, etc.) modeled through the enumerations
MessageKind and MessageSort, respectively. Each message has a sending
and receiving MessageEnd. A message in the sequence diagram can possi-
ble represent the invocation of an operation, which is initiated through the
SendOperationEvent on the sending MessageEnd. SendOperationEvent is
a specialized MessageEvent, which specifies the sending of a request to in-
voke an operation on an object. The referred Operation is imported from
OperationSignatures package. The occurrence of the message events on
the message ends is modeled as MessageOccurrenceSpecification, which
is a special type of OccurrenceSpecification and MessageEnd.

For complete details about these and other elements of the UML Inter-
actions, we refer the reader to the UML specification [115].

Provider Protocol

For a provider’s service protocol in OTF computing scenario also, there are
certain requirements that need to be met. A provider aims to specify all
the possible ways in which it allows its offered service to be invoked. As
a result, the provider’s service protocol can have multiple sequences of the
offered operations, which can be invoked by a service requester who wants
to use the service. For instance, in the running example, a hotel service may
offer other scenarios as well apart from room booking, e.g., It can allow to
the booking of events, etc. or a payment service can offer to make payment
through different payment modes, e.g., credit card or a bank account, etc.

Considering these features, we select UML protocol statemachine diagram
as the notation for the provider service protocol in RSDL. UML statemachine
diagram allows the specification of a complete system in terms of various
states that it can achieve as a result of the invoked transitions. In this
context, UML protocol statemachine is a specialized statemachine diagram
that particularly focuses the specification of the usage protocol of the sys-
tem, i.e., the legal operation invocation sequences that can be invoked on a
system by an external entity. Fig. 3.7 shows some relevant parts of the UML
2.0 metamodel for statemachine diagram comprising the ProviderProtocol
package in RSDL metamodel. [115] can be referred for complete details of
the syntax of UML Statemachine diagram.

A provider protocol is modeled as a particular type of StateMachine,
i.e., ProtocolStateMachine that defines the protocol for an Interface.
The statemachine comprises of Regions, which comprise of multiple
Vertices and Transitions. A Vertex can be a State, a Pseudostate,
or a ConnectionPointReference. The actual state of the component is

64

3.2. RICH SERVICE DESCRIPTION LANGUAGE

Import

BehaviorStateMachines::StateMachine

ProtocolStateMachines::
ProtocolStateMachine

ProtocolStateMachines::
Interface

-interface0..1

-protocol

0..1

Interfaces::Interface

Kernel::Operation

-ownedOperation *

-interface 1

ProtocolStateMachines::State

-isComposite : Boolean
-isOrthogonal : Boolean
-isSimple : Boolean
-isSubmachineState : Boolean

ProtocolStateMachines:
:ProtocolTransition

BehaviorStateMachines::Region

-stateMachine0..1
-region1..*

-state 0..1

-region *
BehaviorStateMachines::

Transition
-kind : TransitionKind

«enumeration»
BehaviorStateMachines::PseudostateKind

+initial
+deepHisotory
+shallowHistory
+join
+fork
+junction
+choice
+entryPoint
+exitPoint
+terminate

«enumeration»
BehaviorStateMachines::TransitionKind

+internal
+local
+external

-container

1 -transition*

-referred*

*

BehaviorStateMachines::
Vertex

-source

1 -outgoing

*
-target1 -incoming

*

BehaviorStateMachines::Pseudostate

-kind : PseudostateKind

-stateMachine

0..1

-connectionPoint

*

BehaviorStateMachines::Connection
PointReference

-entry*

0..1

-exit*

0..1

-state0..1

-connection

*
BehaviorStateMachines::FinalState

-subMachine

0..1

-subMachineState

*

Communications::Trigger

0..1

-trigger*

Kernel::Constraint

0..1

-preCondition

0..1

0..1

-postCondition

0..1

0..1

-stateInvariant

0..1

0..1

-deferrableTrigger

*

-container

0..1

-subvertex*

Figure 3.7: Excerpt of ProviderProtocol Package in the RSDL Metamodel
based on UML statemachine diagram

modeled through State, which can be simple, composed or submachine.
Additionally, different kinds of transient vertices which are used to connect
multiple transition in a complex path, e.g., join, fork, choice, etc. are
modeled through the abstraction Pseudostate. The initialization and ter-
mination of the regions in the statemachine are represented through initial

pseudostate and FinalState, respectively. The transitions in the protocol
statemachine are of a specialized type, i.e., ProtocolTransition. Each of
these transitions refer to an Operation of the Interface. As a result of the

65

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

call Trigger for this Transition, the referred Operation will be called in
the source State under the preCondition and at the end of the transition,
the target State will be reached under the PostCondition. The referred
Operation and its containing Interface are imported from Operation-

Signatures package.

For the provider protocol, an invocation sequence that starts from the
initial state and ends in the final state depicts a complete use case offered by
the service where reaching the final state guarantees its successful comple-
tion. This means that if the final state is not achieved, this means that the
use case is partially invoked and the validity of the results achieved through
the service is not guaranteed in this case.

In the next section, we further elaborate the syntax of RSDL through a
concrete example from our running example.

3.2.3 RSDL Service Descriptions for the running Example

After the specification of the RSDL in terms of its abstract syntax, we spec-
ify its concrete syntax through our running example in this section. Fig. 3.8
shows the RSDL service request for HRS. The data model is specified as a
UML class diagram (Fig. 3.8(a)) that describes the classes, their attributes
and their associations relevant for the HRS in the given scenario. The func-
tionality that HRS requires from a service in order to fulfill his designed trip
planning scenario is firstly specified in terms of operations of the required
service TripPlanner. Fig. 3.8(b) shows these required operation signatures
specified in terms of their names and input/output parameters that are
typed over the classes in the corresponding data model and the XML data
types.

Additionally, for each of these operations, their behavioral semantics are
specified through visual contracts. A VC for a requested operation is inter-
preted in this way that for the particular operation, the requester guarantees
to fulfill the preconditions specified in its VC and in return it requires that
the specified postconditions are met. For instance, Fig. 3.8(c) shows the vi-
sual contract for the operation makeReservation(...) that is required to
carry out a hotel reservation for a client based on his credentials and returns
created hotel reservation. In this case, HRS ensures in the preconditions that
there is a Client with its contact details as Contact, who has selected a cer-
tain RoomStay searched earlier. Additionally, the client provides credentials
for his PaymentCard, which is required while doing online reservation. As
a result of the invocation of the required operation, HRS expects that the
specified postconditions are fulfilled, i.e, selected RoomStay is reserved for

66

3.2. RICH SERVICE DESCRIPTION LANGUAGE

HRS Service Request

‐ checkAvailability(hCriteria:AccomodationSCriteria) :

RoomStay

‐ viewDetails(rs:RoomStay) : Room

‐ makeReservation(cl:Client, rs:RoomStay,

pCard:PaymentCard, arrDate:Date, depDate:Date) :

HotelReservation

‐ addFeature(hRes:HotelReservation, fName:String) :

Boolean

‐ searchFlight(flCriteria:FlightSCriteria) : FlightSegment

‐ bookFlight(cl:Client, seg:FlightSegment) :

AirReservation

‐ getOnlineTicket(cl:Client, aRes: AirReservation) :

FlightTicket

‐ makePayment(cl:Client, aRes : AirReservation,

login:String) : PaymentReceipt

<<interface>>

TripPlanner

(a
)
D
at
a
M
o
d
el

(b
)
O
p
er
at
io
n
 S
ig
n
at
u
re
s

(c
)
O
p
er
at
io
n

B
eh

av
io
ra
l S
em

an
ti
cs

(d
)
R
e
q
u
es
te
d

Se
rv
ic
e
P
ro
to
co
l

HRS Service

checkAvailability()

viewDetails()

makeReservation()

addFeature()

makePayment()

getFlightOffer()

bookFlight()

getOnlineTicket()

Figure 3.8: RSDL-based Service request by HRS

the Client. Consequently, a HotelReservation is created. Additionally,
the provided credentials are validated by the system in order to be used for
the hotel reservation and as a result the PaymentCard is associated to the

67

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

particular Client.
Additionally, HRS specifies its required service protocol shown in

Fig. 3.8(d), which specifies the invocation sequence of the required oper-
ations that HRS expects the TripPlanner to offer.

This RSDL request of HRS is based on the independent knowledge of
HRS application developer about the tourism domain. In this direction,
the HRS application developer so far does not conform to a formal local
ontology for the explicit specification of his domain knowledge. Hence, the
HRS request does not comprise the ontological semantics at the time of its
definition. However, during service discovery and composition process, our
approach enables an automatic annotation of the service descriptions based
on the global ontology of the OTF provider, which later serve as the basis
to resolve their data model heterogeneity. This aspect will be elaborated in
detail in Chap. 5.

Similar to the HRS request defined using RSDL, Fig. 3.9 shows the RSDL
service offer for one of the hotel services HotelX published on the OTF Com-
puting service market. Service offer of HotelX also comprises its data model
(Fig. 3.9(a)), the offered functionality in terms of the offered operation sig-
natures (Fig. 3.9(b)), the behavioral semantics for the offered operations in
terms of their respective visual contracts (Fig. 3.9(c)), and the offered ser-
vice protocol comprising all possible operation invocation sequences offered
by HotelX service (Fig. 3.9(d)).

In this direction, the VC of an offered operation is interpreted differ-
ently from the VC of a requested operation. The VC of an offered operation
specifies the preconditions that the service provider requires to be met in
order to invoke the given operation. In return, it guarantees to fulfill the
postconditions specified in the VC. For instance, Fig. 3.9(c) shows the VC
for the offered operation searchRoom(...). For the invocation of this oper-
ation, the service provider expects that a Customer already exists with his
search criteria as HotelCriteria. If these preconditions are met, the offered
operation can be invoked and the specified postconditions are guaranteed
to be fulfilled, i.e., a Package belonging to a certain Hotel is searched with
its further details, such as, the particular Room with its details, its Price

structure, etc.
According to the offered service protocol, HotelX offers two main use

cases, i.e., booking of hotel room package and booking of hotel facilities for
some event. The basic activities carried out in these two different booking
scenarios are contained in the composite states s1 and s5. Each of these
use cases have different variants, e.g., for the room booking use case, the
customer has the option to also get a voucher if applicable to get any possible

68

3.2. RICH SERVICE DESCRIPTION LANGUAGE

HotelX Service Offer

(a
)
D
at
a
M
o
d
el

(b
)
O
p
er
at
io
n
 S
ig
n
at
u
re
s

(c
)
O
p
er
at
io
n

B
eh

av
io
ra
l S
em

an
ti
cs

(d
)
O
ff
e
re
d

Se
rv
ic
e
P
ro
to
co
l

<<interface>>

HotelXService

‐searchRoom(sc:HotelCriteria) : Package

‐ validateCredentials(c:Customer, cCard CreditCard) :

Boolean

‐ giveDiscountVoucher(c:Customer, p:Package) : Voucher

‐makeRoomReservation(c:Customer, p:Package,

v:Voucher) : HotelBooking

‐reserveFacility(hb:HotelBooking, f:Facility):Boolean

‐notifyPerEmail(c:Customer,

hb:HotelBooking):Notification

‐…

Figure 3.9: RSDL-based Service offer by HotelX

discount for his room booking. Similarly, at the end of the booking process,
he also has the option to get a notification per email if required. Additionally,
for both the offered use cases, the customer has the option to cancel the
booking process at any time. Each of these possible use cases is specified

69

CHAPTER 3. RICH SERVICE DESCRIPTION LANGUAGE (RSDL)

as an invocation sequence starting from the initial state and ending in the
final state of the statemachine.

HotelX also does not conform to any formal local ontology for its service
description and its ontological semantics are defined on the basis the global
ontology when it is published on the service market.

3.3 Summary and Discussion

In this chapter, we introduced the rich service description language (RSDL),
which allows the service partners to comprehensively specify the functional
aspects of their service requests and offers.

Based on the criteria introduced in Chap. 2, we derived the requirements
for a potential service description language. Next, we introduced the pro-
posed RSDL in terms of its overall structure. As RSDL is based on UML
as the underlying language, the abstract syntax of RSDL is specified as a
metamodel mainly based on the UML metamodel [115]. The concrete syn-
tax of RSDL is also based on the standard concrete syntax of UML and VC
and is described on the basis of examples from our tourism example in OTF
computing.

In the context of OTF Computing, such a comprehensive specification of
the service requests and offers enables us to define our automatic mechanism
for service discovery and composition. In the next chapter, we introduce
the formal semantics of RSDL based on the approaches using typed graph
transformation rules for this purpose [96, 137, 110].

70

4
Semantics of RSDL

After defining the syntax for RSDL, we define its linguistic semantics in
this Chapter. Fig. 4.1 gives an overview of our approach for this linguistic
semantic definition. The semantics of RSDL are mainly based on the se-
mantics of its underlying language UML. Its semantics are a combination of
informal and formal semantics for its different artifacts. For data model and
operation signatures, the semantics are described informally conforming to
the semantics of UML Class Diagram specified in UML Specification [115].
Additionally, the data model is also formally specified as an attributed type
graph [33, 66], which serves as the basis for the formal semantics of operation
behavioral semantics. The operation behavioral semantics are described in
terms of graph transformation rules conforming to the semantics of visual
contracts specified in [96]. For service protocol, we rely on the Dynamic
Meta Modeling (DMM) approach [64] to describe the semantics in terms of
labeled transition system (LTS). A detailed semantic specification for each
of these artifacts is given in the following sections.

4.1 Semantics for the RSDL Data Model and Opera-
tion Signatures

The semantics for the RSDL data model and the operation signatures con-
form to the underlying UML specification [115], which are briefly discussed
here and we refer the reader to [115] for further details, if desired.

In the context of the RSDL data model, a classifier defines a particular
type and can be a class or a predefined data type. A class is meant to specify
a classification of objects and the features that characterizes the structure
and behavior of those objects. When an object of a class is instantiated,
the attributes are also instantiated on the basis of the given initial value. If
no initial value is given, the default value specification of that attribute is

71

CHAPTER 4. SEMANTICS OF RSDL

RSDL

Functional

Service Description Language

Structural Behavioral

Aspects

Data Model Operation Signatures Operation Behavioral
Semantics

Service Protocol

Aspect Artifacts

Artifact Syntax
UML-based Structure

Specification
UML-based

Visual Contracts
UML StateChart Diagram /
UML Sequence Diagram

Artifact Semantics
Attributed Type

Graph
Informal textual

Semantics
Graph Transformation

Rules
Labeled Transition

System

Using DMM rules

Figure 4.1: The hierarchical Structure of RSDL with Semantic Specification
for different Artifacts

evaluated to set its initial value. The value for an attribute of an object is in
accordance with its type and multiplicity. Similar to class, a data type also
specifies an object classification but it has a basic difference from class, i.e.,
the instances of a data type are identified only by their value. This means
that all the instances of a data type having the same value are considered
to be the same instance.

A generalization relationship between two classifiers means that each
instance of the specific classifier is also an instance of the general classifier
and hence the features specified for the instances of the general classifier are
implicitly specified for the instances of the specific classifier. Similarly, the
constraints applicable to the general classifier are also valid for the instances
of the specific classifier.

An association relationship between any classifiers means that there can
be a link between the instances of the associated types. This link is rep-
resented through a tuple of the instances for each association end. An as-
sociation may also represent a shared or a composite aggregation where a
composite aggregation is a stronger form of an aggregation. It requires that
an instance of the part classifier must be included in at most one instance
of a composite classifier at a time. When a composite instance is deleted,

72

4.1. SEMANTICS FOR THE RSDL DATA MODEL AND
OPERATION SIGNATURES

all its parts instances are also deleted.
For RSDL operation signatures, an interface declares a set of public fea-

tures and obligations of a classifier representing the required/offered service.
A realizing instance of the classifier has to publicly expose the properties
conforming to the interface. As the interface is only a declaration, its in-
stances cannot be created at runtime. The set of interfaces realized by a
classifier can be termed as provided interfaces specifying the features that its
instance offers to the client or required interfaces specifying the features that
it requires to perform its functions. The operations owned by the interface
are the behavioral features that can be invoked on the instance realizing the
interface. The parameters of an operation specify how the arguments are
passed in and out of that operation. The passed values can be restricted
through the type and multiplicity of the parameters. At the invocation time
of an operation, either the supplied value or in case when no value is sup-
plied, the default value is evaluated and passed as an argument for each
parameter. The parameter direction determines whether its value is passed
into or out of the operation. The type of the operation is same as the type
of its return parameter.

In addition to these informal semantics, we also formally specify the
RSDL data model, which serves as a basis to define the formal semantics
of the other RSDL artifacts. In literature, there are already different ap-
proaches that aim at a formal description of data model in general and UML
class diagram in particular [151, 48, 96]. For instance, [151] specifies a class
diagram and its semantics mathematically on the basis of set theory.

Particularly for our work, we select the formalization of a UML class
diagram defined in [96]. It specifies a class diagram as an attributed type
graph and use this formalization as a basis to define the formal semantics
for visual contracts as graph transformation rules. Using graph-based for-
malism for our approach is a conscious decision because of its preciseness as
well as understandability. Similarly, these visual and model-based semantic
specifications integrate well with the concept of model-based system design
and development.

For a more formal and theoretical account of the relevant graph theory
concepts, we refer the reader to [33, 66, 96]. Here, we aim to provide a
conceptual overview with the help of examples to explain them in the context
of RSDL.

A graph can be simply described as a structure comprising of nodes and
links, where each link connects a source node to a target node. In the soft-
ware engineering paradigm, the graphs are differentiated as type graph and
instance/typed graph. An example for this differentiation is a UML class dia-

73

CHAPTER 4. SEMANTICS OF RSDL

gram as type graph and the corresponding object diagram as instance graph.
In the graph theory, this object-oriented concept is introduced through typed
graphs [33, 66], where the relation between a type graph and typed graph is
specified through a mapping, i.e., a graph homomorphism between the two
graphs. Based on this mapping, the nodes and links in a typed graph are
associated to their respective types in a type graph.

Another important and relevant object-oriented concept is the attributes
of the classes defined through their names and types. This is also catered
in the graph theory domain through attributed graphs [34]. Informally, an
attributed graph can be described as a graph comprising of a simple graph
with object nodes and links and a graph for the representation of attribute
values. The graph for attribute representation comprises of data nodes,
which represent the attribute values conforming to their data types and are
different from object nodes. An attribute in the attributed graph is specified
through an attribute link from an object node to a data node.

Based on this, an attributed instance graph is typed over an attributed
type graph.

In accordance to these concepts from graph theory, elements of a class
diagram correspond to the elements of an attributed type graph as follows:

• A class in the class diagram is represented as a node in the type graph.

• An attribute in the class diagram is represented as an attribute link
to a data type.

• Associations in the class diagram are represented as links in the type
graph.

We explain this with the help of an example shown in Fig. 4.2. On the left
hand side, an excerpt of the HRS data model is shown in the upper part and
the corresponding type graph is shown in the lower part. For the attributes
email address and client id, the value can be an element from the set
containing values for type String. Therefore, these attributes are linked
to the type String in the type graph. Similarly, attribute phone is linked
to type Long. On the right hand side of the figure, the upper part shows
an object diagram and the lower part shows the corresponding attributed
typed graph. This typed graph includes data nodes that are linked to object
nodes through attribute links. For instance, c:Client in the typed graph
is typed over Client in the type graph and the attribute links in the typed
graphs are connected to the data nodes containing their respective values.

74

4.2. SEMANTICS OF RSDL OPERATION BEHAVIORAL
SEMANTICS

-email_address : String
-phone : Long
-forename : String
-family_name : String

Contact

-client_Id : String
-password : String

Client

1 1

-start_date : Date
-finish_date : Date
-payment_time : String

HotelReservation

1

*

typed over

UML Class Diagram UML Object Diagram

U
M
L

G
ra
ph

Client Contact

String

HotelReservation Date

...

email_address
Long

...

...

c:Client con:Contact

abc@abc.com

HotelReservation
02-10-15

...

email_address 8765945

...

... c1

06-10-15

typed over

Atrributed Type Graph Attributed Typed Graph

Figure 4.2: UML Class Diagram and UML Object Diagram vs. Attributed
Typed Graph and Typed Graph

Based on this formalization of RSDL data model, the formal semantics
for the operation behavioral semantics in RSDL are presented in the next
section.

4.2 Semantics of RSDL Operation Behavioral Seman-
tics

To define the semantics for the RSDL operation behavioral semantics, we
rely on the graph theory-based [134, 46] semantics defined in [96] for visual
contracts. According to this approach, a visual contract typed over a class
diagram is interpreted as a graph transformation rule comprising attributed
typed graphs typed over a type graph.

The general idea is that the structure of a graph can be changed through
a graph transformation and these changes are specified as graph transforma-
tion rules [34]. A graph transformation rules comprises of a pair of graphs
representing the left and right-hand sides of the rule. A graph transforma-

75

CHAPTER 4. SEMANTICS OF RSDL

tion is applicable on a host graph if it contains a match for the left-hand
side of the rule, i.e., the structure specified on the left-hand side of the rule
is contained in the host graph. As a result of the application of the rule, the
matched part of the host graph is replaced with the right-hand side of the
rule.

This concept of graph transformation can also be used for attributed
graphs to describe the state changes of a system specified through the visual
contracts. As a continuation for our earlier discussion about the attributed
type graph and instance graph, the elements of a visual contract correspond
to the elements of graph transformation rule for attributed typed graph as
follows:

• The preconditions and postconditions in the visual contract are repre-
sented as the attributed typed graphs on the left- and right-hand side
of a graph transformation rule, respectively.

• A role in the preconditions or postconditions in the visual contract is
represented as a node in the typed graph.

• An attribute of a role, which is assigned a value is represented as an
attribute link to a data node in the typed graph.

• Links in the preconditions or postconditions are represented as the
links in the corresponding typed graph.

Formal definitions of these concepts and further details of this interrela-
tion can be seen in [96].

There are two classic approaches for the interpretation of graph trans-
formations: Double-Pushout (DPO) [34] and Double Pullback (DPB) [67].
DPO defines a strict interpretation stating that a graph transformation rule
completely specifies the transformation of a graph. This means that during
the execution of the rule, no other changes occur in the graph except those
that are explicitly specified in the rule. This strict stance is to make sure
that the resulting graph after the transformation is still a legal graph and
it contains not dangling edges without a source or a target node.

In the context of visual contracts, a VC is conceptualized as a mean
for system specification extensively used during system analysis and design
phase on a higher abstraction level. Hence, it specifies the minimum set of
changes that should be made to the system state as a result of the operation
execution. However, it is possible that according to the implementation de-
tails, there are additional effects that occur as a result of the execution of
the operation at runtime. For instance, an instance of a further class can be

76

4.2. SEMANTICS OF RSDL OPERATION BEHAVIORAL
SEMANTICS

L R
L o Ro o

G H

Figure 4.3: DPB-based graph transformation for makeReservation(...)

created supporting the implementation. Considering this loose interpreta-
tion of visual contracts and the strict stance of DPO, DPO is not a suitable
interpretation for visual contracts.

Unlike DPO, DPB offers a more relaxed interpretation of graph trans-
formation, which claims that a graph transformation rule only specifies the
minimum set of changes that should be made to the host graph on the execu-
tion of the rule. This means that as a result of the transformation, there can
be changes in the system state other than the ones specified in the executed
graph transformation rule.

According to the conceptualization of VC, the concept of DPB-based
graph transformations for the attributed typed graph is a suitable mean

77

CHAPTER 4. SEMANTICS OF RSDL

to specify the semantics of visual contracts. Conforming to the formal set
theory-based definition of a DPB-based graph transformation in [96], we
explain such a graph transformation on the basis of the example shown in
Fig. 4.3.

For the graph transformation rule with left and right-hand side specified
as L and R, the system state before and after its application is shown as
G and H, respectively. The graph transformation is applied in three steps:
First, through a subgraph isomorphism o [34], subgraph oL based on the
left-hand side of the graph transformation rule should be found in the given
graph G. In the given example, it can be seen that a subgraph comprising
all the nodes and links specified in the left-hand side of the rule is indeed
present in the actual graph G. Though G contains further elements that are
not specified in the rule. Second, at least all the graph elements, i.e., nodes,
links and attributes (attribute links) that correspond to L \R, are deleted.
In the given example, nothing is deleted in the rule, i.e., L \ R is empty so
the graph G remains the same. Third, the resulting graph from the second
step should be combined at least with the graph corresponding to R \ L.
This includes creation of nodes, links and attribute links that correspond to
R\L. The resulting graph H contains the subgraph oR based the right-hand
side of the rule, e.g., a node of the type HotelReservation is created, a link
between the node of type Client and the newly created HotelReservation

node is create, the attributes of the HotelReservation node are assigned
values based on the parameter values arrDate and depDate of the rule.
In addition to the effects specified in the given graph transformation rule,
there may be other changes to the system state as well according to the DPB
approach, e.g., the payment time for a hotel reservation is also set based on
the departure date, i.e., the attribute payment time in HotelReservation

node is assigned a value. Similarly, the attribute booked for RoomStay is set
to true notifying its status.

As a result of these three steps, the system state after the rule application
is specified through H. In this case, the subgraph oR from the right-hand
side of the rule is indeed present in H. However based on the lose semantics
concept of DPB, apart from the effects specified in the graph transformation
rule, there are other effects as well that are present in H.

Here it is important to mention that as RSDL is a service description
language and is not meant to be executed, such a runtime application of
the VCs as graph transformation rules does not actually occur. However,
this semantic definition is important to precisely define the meaning of the
VCs as the behavioral specification of the operations comprising an RSDL
service description.

78

4.3. SEMANTICS OF RSDL SERVICE PROTOCOL

In the next sections, we specify the formal semantics for RSDL service
protocols.

4.3 Semantics of RSDL Service Protocol

For the semantic specification of RSDL service protocol, we select existing
graph transformation-based approaches [137, 110]. These approaches allow
the definition of the semantics by applying the Dynamic Meta Modeling
(DMM) approach [64]. Before introducing these approaches, we first intro-
duce the dynamic meta modeling (DMM) approach and its key concepts.

4.3.1 Dynamic Meta Modeling (DMM)

The DMM approach [64] is developed to allow a formal and precise specifica-
tion of the semantics of a modeling language, which are also understandable
at the same time. This approach is based on graph transformations and
is particularly targeted at the modeling languages whose syntax is defined
in terms of a metamodel. The two basic elements of DMM-based semantic
specification are: runtime metamodel and DMM rule set. To define the se-
mantics of a modeling language, the DMM extends the metamodel of the
language with concepts that are used to describe its dynamic semantics.
Such an extended metamodel of the language is called its runtime meta-
model in the DMM approach. In order to describe the runtime behavior,
DMM rules are defined as typed graph transformation rules, where the typed
graphs are typed over the runtime meta model. As a result of the applica-
tion of the DMM rule set on the graph typed over the runtime metamodel,
a transition system is achieved. The overall concept of the DMM approach
is given in Fig. 4.4.

In the following, we briefly introduce the approaches [137, 110] that
define the semantics of UML sequence diagrams and UML statemachine
diagram through the DMM approach. This introduction is based on a brief
overview of some important elements of the respective runtime metamodels
and some example DMM rules from the respective rule set. For complete
details of these approaches and detailed semantics specification, we refer the
reader to [137, 110].

4.3.2 DMM for Requested Service Protocol

[137] defines a runtime metamodel for the DMM specification of UML se-
quence diagram, which is an extension of the its existing metamodel. Based

79

CHAPTER 4. SEMANTICS OF RSDL

Syntax Definition
Semantic Definition

Syntax Metamodel Runtime
Metamodel

DMM
Ruleset

typed oversemantic
mapping

conforms to conforms to conforms to conforms to

Expression

Model

Transition System

s1
s3 s4 …

s2 …

Figure 4.4: Overview of DMM Approach [64]

on this runtime metamodel, more than 250 DMM rules are defined to specify
the behavior of the elements in UML sequence diagram.

Some of the important element from this runtime metamodel are the
InteractionExecution, the Sorter and the ActiveMessage. They are
mainly responsible for the management, basic functions and state specifi-
cation of the sequence diagram. For instance, an InteractionExecution

element is created for every Interaction element at runtime, which serves
as a container for all the semantic elements and maintains the execution state
of an Interaction. Similarly, the Sorter is another important element used
by InteractionExecution to sort the execution of different MessageEvents
on the LifeLine. For this purpose, it extracts the required information from
the metamodel of the sequence diagram. ActiveMessage is created at run-
time for Messages and is used for the identification of the execution state
for the message.

As an example, we show the DMM rule for the start of an Interaction

in Fig. 4.5.

In the runtime model of the a UML sequence diagram, an Interaction-

Execution element is created for every Interaction element in the in-
stance model. At this time, the InteractionExecution of the hierar-
chically highest Interaction in the diagram is activated by setting the
attribute activated to true. In this way, the execution of behavior
starts from the execution of this particular interaction at runtime. An
InteractionExecution starts by setting the hasStarted to true. As

80

4.3. SEMANTICS OF RSDL SERVICE PROTOCOL

(a) startInteraction() (c) setMarker()

ie:InteractionExecution

hasStarted == false
activated == true
hasStarted‘:= true

executes
executes

interaction:Interaction interaction:Interaction ie:InteractionExecution

:Lifeline
init(ie)

interaction
interaction activeMessage

marks:message:Message :ActiveMessage() :message:Message

readyToSend‘:= true

covered sendEvent

(b) init()
lifeLine:Lifeline :MessageOccurenceSpecification :message:Message

sorter first

1: setMarker() 2:checkCombinedFragment()
:Sorter

sorter

:Sorter

i I i E i:ie:InteractionExecution

Figure 4.5: (a)DMM Rule startInteraction() to start an Interaction
(b) init() to initialize Active Message Marker (c) setMarker() to cre-
ate ActiveMessage Marker

a result, the corresponding Interaction starts. This is handled by the
startInteraction() rule as shown in Fig. 4.5(a). This rule is invoked,
as soon as an InteractionExecution is activated. As a result of this
graph transformation, hasStarted is set to true and through the invo-
cation of another rule init(), the event that starts the Interaction is
determined. For instance, init() in Fig. 4.5(b) shows the case where an
Interaction starts with a Message invocation. In this case a Message-

OccurrenceSpecification which has to be a sendEvent and is classified as
the first event on a Lifeline by its Sorter is determined. As a result of this
graph transformation, an ActiveMessage marker is created for the Message

with its readyToSend attribute set to true (rule setMarker() Fig. 4.5(c)).
Consequently, the message is ready to be sent and the interaction can start.

Apart from startInteraction() rule, other basic DMM rules for UML
sequence diagram include rules for message sending, message receiving, mes-

81

CHAPTER 4. SEMANTICS OF RSDL

sage sequencing, etc.

4.3.3 DMM for Offered Service Protocol

For the UML statemachine diagram, [110] defines a runtime metamodel for
the DMM specification of UML statemachine diagram, which is an extension
of its existing metamodel. Based on this runtime metamodel, more than 90
DMM rules are defined to specify the behavior of the elements in UML
statemachine diagram.

Similar to the runtime metamodel of the UML sequence diagram, the
basic elements of the runtime metamodel for the UML statemachine dia-
gram are the StateMachineExecution and the Marker. In this context,
the StateMachineExecution is created for a StateMachine at runtime and
serves as a container for the semantic elements. Additionally, the Marker

element is used to control the sequence of the execution of the individual
states and the transitions in the statemachine.

(a) startStatemachine() (c) createMarker()

executes
name

sm:StateMachine
sme:StateMachineExecution

hasStarted == false

hasStarted‘:= true

:StateMachineExecution

Vertex:Vertex

enterInitialState()

contained_in
marker

:Marker

(b) enterInitialState()
i iti lSt t P d St t

region subvertex kind== ‘initial‘
sm:StateMachine :Region

initialState:PseudoState

createMarker()

Figure 4.6: (a)DMM Rule startStatemachine() to start a Statemachine
(b) enterInitialState() to enter the Statemachine in its initial State (c)
createMarker() to create a Marker for a particular Vertex

As an example for a DMM rule to specify the behavior of a UML statema-
chine, we show the rule namely startStateMachine() in Fig. 4.6(a) for the

82

4.4. SUMMARY AND DISCUSSION

start of a StateMachine. In the runtime model for a UML statemachine dia-
gram, a StateMachineExecution is created for StateMachine element with
hasStarted attribute set to false. Similar to the InteractionExecution

in the UML sequence diagram runtime model, a statemachine can start
only if its hasStarted attribute is set to true as shown in Fig. 4.6(a). As
a result of this graph transformation, the hasStarted attribute is set to
true, which means that the statemachine has started and every orthogonal
Region in the statemachine is in its initial state (through the invocation
of enterInitialState() in Fig. 4.6(b)). Additionally, through the invo-
cation of createMarker() (Fig. 4.6(c)), a Marker is created that points to
the Vertex on which this rule is invoked (the initial state in this case). As a
result of the invocation of this rule, the initial states have markers and the
statemachine can start.

Apart from these rules, other basic DMM rules for UML statemachine
diagram include rules for firing transitions, state execution, etc.

4.4 Summary and Discussion

In this chapter, we define the linguistic semantics for RSDL. For this pur-
pose, we mainly rely on existing approaches in this direction. A collective
basis for these semantics for different RSDL artifacts are graph transforma-
tion rules. In this direction, the RSDL data model is formally specified as a
type graph and the operation behavioral semantics based on visual contracts
are specified as typed graph transformation rules. Similarly, the DMM ap-
proach [64] is used for the semantic specification of service protocols, which
focus the modeling languages like UML and specify their semantics through
graph transformation rules typed over their runtime meta models.

83

5
Service Description Normalization through

Data Model Matching

Service description normalization is the first phase of our service discovery
and composition approach and it deals with the resolution of the data model
heterogeneity of the service partners. That means whenever a requester ac-
cesses the service market with his request to search for possible service com-
positions, its service request is automatically annotated to semantic concepts
on the basis of a global ontology maintained by the OTF provider. Later,
on the basis of these ontological semantics, its data model is mapped to the
global data model conforming to the global ontology. Consequently, these
local-global data model mappings are used to translate the service request
to a common representation typed over the global data model.

Analogously, a service description normalization is also performed, when
a service provider accesses the OTF service market with his offer to publish
his service. Our data model heterogeneity resolution mechanism is based on
our detailed work in this direction presented in [140].

In the following section, we give an overview of our service descrip-
tion normalization approach. Later, we lay foundations for our mechanism
through the explanation of some important concepts. In Sec. 5.3, we present
our data model matching algorithm. Next, a service description normaliza-
tion approach is introduced, which allows the normalization of the service
description to a common representation based on the data model matching
results.

5.1 Service Description Normalization Overview

An important aim of the OTF computing is that it enables the coordination
among the heterogeneous service partners that function in their independent
domains with their individual domain knowledge.

85

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

Consequently, such an independence of the service partners leads to the
data model heterogeneity of their service descriptions, which can make their
automatic matching during service discovery and composition difficult. For
instance, a simple scenario that can lead to data model heterogeneity of
service partners is their use of different terminologies to define their data
models, e.g., a class defined as Client in the requester data model may
be defined as a class User in the provider data model. Similarly, the data
model heterogeneity can also arise due to different granularity levels of the
elements in the data models, e.g., a concept Address in the requester data
model may correspond to two concepts Address and Coordinates in the
provider data model. An important task for the OTF provider is to auto-
matically resolve this data model heterogeneity of the requested and offered
service descriptions in order to enable their automatic matching on the OTF
service market. For instance, approaches like [65, 108, 157] come up with
comprehensive mechanisms for service discovery but ignore this important
aspect altogether by using same data model.

However, as discussed in Sec. 2.3.1, a recent trend in the SOC is to
explicitly define ontological semantics and use them for the matching of data
elements in the service descriptions. In this context, the semantic web service
approaches [121, 51, 39, 98, 136] particularly emphasize and present different
mechanisms to define such ontological semantics for the service descriptions.
In recent years, a considerably large number of approaches [14, 88, 31, 37,
81, 79, 100, 95, 127, 153] in the area of automatic service discovery and
composition have defined mechanisms to match service descriptions while
considering their ontological semantics. However, most of these approaches
do not solve the problem as they are based on the assumption that a common
ontology exists in the service market, which is shared by all the service
partners. Conforming to this common ontology, the service partners describe
their respective service descriptions and their ontological semantics, which
are later used to match these service descriptions. However, according to the
essence of SOC, such an assumption is not realistic and there is a requirement
for approaches that deal with data model heterogeneity while allowing the
service partners to conform to their respective domain knowledge, which can
possibly be specified as their independent local ontologies.

As an improvement to these existing approaches, our approach allows the
service partners to independently define their service descriptions in their
respective domain and introduces an automatic mechanism for the OTF
provider to resolve the data model heterogeneity of the service partners
based on their automatically defined ontological semantics and bring them
to a common representation before their matching. In this chapter, we will

86

5.1. SERVICE DESCRIPTION NORMALIZATION OVERVIEW

OTF Provider

Automatic Service Discovery & Composition

Service Description Normalization

Data Model
Matching

Visual Contract
NormalizationService

Description Data Model Mappings

…

Global Ontology +
Global Data Model

Normalized Service
Description

Service
Partner

Figure 5.1: An Overview of the Service Description Normalization Phase in
the Proposed Approach

explain different steps of this approach in detail in the context of our running
example.

Fig. 5.1 gives an overview of this mechanism. In the setting of OTF com-
puting, the OTF provider maintains a global ontology that comprehensively
covers the information domain under consideration and captures the domain
knowledge in an extensive manner. Additionally, a conforming global data
model is also defined to define the structure of data elements in the global
domain. The automatic mechanism for data model heterogeneity resolution
is initiated when a service requester or provider access the OTF market with
its service request or offer, respectively.

In the first step of this phase, the local data model of the service partner
is matched to the global data model of the OTF provider. This automatic
matching mechanism, which is explained in Sec. 5.2 and Sec. 5.3 is based
on the structural as well as the semantic matching of the local and global
data model elements based on the ontological semantics defined through the
global ontology. The result of this step are the mappings between the local
and the global data models.

In the second step of this phase, the service description of the particular
service partner is normalized on the basis of the local-global data model
mappings. This normalization of the service description is mainly concerned
with the operations in the considered service description because the data
model heterogeneity of the service partners mainly complicates the matching
of their operations, whose structural and behavioral descriptions are typed
over the respective data models.

The operation normalization in the considered service description can be
brought down to the normalization of their behavioral descriptions, i.e., the

87

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

visual contracts. As far as the normalization of structural descriptions, i.e.,
operation signatures is concerned, the input/output parameters are included
in the respective VC according to the RSDL specification in Chap. 3 and
hence do not need to be normalized separately. The normalization of the
operation names is not relevant for our approach as our n : m operation
matching mechanism mainly relies on behavioral descriptions and does not
consider the operation names while matching.

For the service protocol, which describes the operation invocation se-
quences in the considered service description, operation normalization suf-
fices to overcome the data model heterogeneity and hence no further nor-
malization is required for service protocol.

As a result of the service description normalization, the service requests
and offers are typed over the global data model. Consequently, the normal-
ized service request can be matched to the normalized service offers on the
service market.

In the following sections, we describe these steps of the service descrip-
tion normalization phase in detail.

5.2 Data Model Matching - Foundations

Before going into the details of our algorithm for data model matching,
it is important that we introduce some important concepts that lay the
foundations for our data model matching mechanism. These concepts will
be discussed in the following sections in detail.

5.2.1 Local-global Matching Approach

In order to overcome the heterogeneity of the data models, there are three
different options specified as the matching techniques discussed in [163]:
global, local and local-global. In the global approach, all the stakeholders in
a system share a common data model conforming to a global ontology in the
public domain. Hence, in this case the problem of data model heterogeneity
does not arise. As mentioned earlier, this approach negates the very essence
of SOC to allow the service partners to function independently. Hence, in
this particular context, it is unrealistic to apply such a restriction on the
service partners.

In the local approach, it is considered that each stakeholder of the system
can have its own independent data model, which can possibly conform to
its formal local ontology. In order to match the heterogeneous data models
of the stakeholders, the data model of a stakeholder is matched to the data

88

5.2. DATA MODEL MATCHING - FOUNDATIONS

model of every other stakeholder and the result is a mapping between every
pair of the data models. In the context of SOC, this means that every time a
service requester accesses the service market with its request, its data model
is matched individually to the data model of every service offer available on
the service market. Consequently, there will be an individual mapping for
the requester data model with every offered data model. Although this
approach allows the service partners to function independently in the SOC
setting but with the ever-growing plethora of service requests and offers,
such a data model matching approach is unrealistic and is difficult to scale
with increasing number of service partners.

The third option is the local-global approach, where the stakeholders
have their independent data models. Additionally, a global data model
conforming to a global ontology is maintained in the public domain. In this
case, the data model of every stakeholder has to be matched only once to
the global data model. This means that before publishing a service offer
on the service market, its local data model is matched to the global data
model. Similarly, when a service requester accesses the market with its
service request to search for suitable service offers, its data model is not
matched with every offered data model individually but is only matched
once to the global data model. Later, this local-global mapping can be used
to match the service descriptions. In this case, the main challenge is the
development and maintenance of a comprehensive global ontology and the
global data model. If this challenge is met, this approach is most suitable
as it reduces the complexity and makes the data model matching process
highly scalable.

Being suitable for the highly dynamic and ever changing nature of the
service market in OTF computing context, we select the local-global data
model matching option for our approach.

5.2.2 Global Ontology and its conforming global Data Model

As explained in Chap. 1, an ontology [148] is a mean to explicitly and for-
mally define the meanings of the terms and concepts in a particular domain,
which results in the establishment of a common understanding among the
stakeholders in that domain. In the context of the OTF computing, a global
ontology has to be defined that represents a conceptualization of the domain
by the OTF provider, which is shared by all the service partners.

Based on this understanding, our approach recommends the OTF
provider to develop and maintain such a global ontology. Additionally, an
OTF provider also maintains a global data model conforming to this ontol-

89

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

ogy to precisely represent the structure of the data elements in the public
domain. This setting enables the normalization of a service request/offer
typed over a local data model to a common representation typed over the
global data model. In this direction, there are three main concerns for the
OTF provider:

1. The development of a comprehensive global ontology;

2. The maintenance of the global ontology;

3. The development and maintenance of a global data model conforming
to the global ontology.

These concerns are discussed in detail as follows.

Development of the global Ontology: In the OTF computing setting
in this thesis, the OTF provider is responsible to cater to service requests
and offers from diverse domains. For instance, in the running example,
the service request of HRS and the required service offers are from tourism
domain. Similarly, there can be another service discovery and composition
scenario where the service request and offers belong to e-commerce domain.
To cater to this scenario, the global ontology of OTF provider is developed
as a combination of multiple ontologies.

An ontology can be mainly categorized as general purpose ontology
(GPO) or a domain specific ontology (DSO) [53], where the former repre-
sents the common knowledge and the latter particularly focuses a particular
domain of interest and represents the knowledge, i.e., the concepts, their
relations and properties in the context of that particular domain.

The global ontology contains a domain specific ontology (DSO) for ev-
ery domain catered by the OTF provider. In this direction, as the OTF
provider aims to define a common understanding among for all the service
partners through the global ontology, a comprising DSO has to holistically
and comprehensively cover the information of the particular domain. In this
context, the OTF provider can either manually develop a DSO with the help
of a domain expert or can reuse some commercially available DSOs. For
instance, ontologies like the Open Travel Alliance (OTA)1, HarmoNET2,
Travel Guide3, Accomodation4 etc. that are commercially available in the
tourism domain cover the knowledge in this domain quite comprehensively.

1http://www.opentravel.org
2http://www.harmonet.org
3https://sites.google.com/site/ontotravelguides
4http://ontologies.sti-innsbruck.at/acco/ns.owl

90

5.2. DATA MODEL MATCHING - FOUNDATIONS

In a realistic setting, it is also possible that there are many commonal-
ities and discrepancies among DSOs of different domains, e.g., the concept
accomodation have totally different meanings in tourism and banking do-
mains. Similarly, there are concepts, e.g., personal information concepts,
which are same in different domains. If a service description spans over
multiple domains of interest then these inter-connections between different
DSOs have to be taken into account while defining its ontological seman-
tics. However, for the work in this thesis, we restrict ourselves to the service
discovery scenarios that do not span over multiple domains and are rather
limited to a single domain. For instance, the running example is a service
discovery scenario restricted to a single domain where the service request
and offers belong to the tourism. In such cases, the definition of ontological
semantics is concerned with the DSO of the particular domain and is not
effected by its interconnections with other DSOs. Hence, the discrepancies,
interconnections, and overlaps that can occur among different DSOs in the
global ontology are not a focus of our work in this thesis.

In addition to its comprehensiveness in capturing domain information,
there is another important aspect of a DSO in our approach. For our match-
ing mechanism, it is also necessary that the DSO captures the domain
information, i.e., the constituting concepts in a hierarchical classification
based on their specialization-generalization relationship. Such a hierarchi-
cal classification of information is already an established concept in the
ontology world [52], e.g., GPO like WordNet [130] capture the information
where the depth of the hierarchy is 17. Similarly, DSOs like Travel Guide
and HarmoNET, etc. also maintain a deep hierarchy of captured concepts.
Ontology-based matching approaches [52], extract different kinds of informa-
tion from this hierarchy, such as, number of common predecessors, number
of common successors, etc. to determine the semantic distance of any two
concepts. For our matching mechanism also, a deeper hierarchical structure
leads to higher probability of accurate semantic matching between the ele-
ments of the local/global data models. This notion will be clarified further
in the next section where we introduce our data model matching algorithm.

Maintenance of the Global Ontology: In a realistic scenario, it
is possible that the OTF provider requires to update the global ontology.
For instance, a situation can arise where some new information needs to be
added to a DSO in the global ontology. A major concern in this direction is
the maintenance of the existing mappings between the service descriptions
and the global ontology. Some important questions that arise in this situa-
tion are: How can the existing ontology semantics of a service offer defined
on the basis of the existing global ontology be translated to new seman-

91

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

tics based on the updated version of the ontology? How feasible is such a
translation for all the existing mapping every time the ontology is updated?
How are the different versions of the global ontology maintained in a consis-
tent manner? This gives another dimension to the problem at hand, which
can be categorized under the broader area of model versioning. The topic
of model merging and model versioning is an extensively researched topic
[56, 102], which we do not focus for the work in this thesis. Hence to avoid
further complexity and to simplify the situation at hand, we only allow the
udpate of the global ontology in a limited sense.

As mentioned earlier, we assume that the OTF provider builds the global
ontology in a comprehensive manner, where each DSO holistically covers
all the possible information of the particular domain. On the basis of this
assumption, we claim that after its construction, the global ontology remains
constant for the most part. This means that none of the existing information
is removed or updated in the global ontology. However, addition of new
information is allowed in a limited fashion.

Over the period of time, it can occur that new concepts are introduced
in an information domain or the OTF provider decides to cater to some
new information domain. In this case, the OTF provider can add new
information to an existing DSO in the global ontology or can add a new
DSO in the global ontology, respectively. In this case, such an extension of
the global ontology is only allowed if it does not effect the existing semantic
mappings for the service offers on the service market.

Development and Maintenance of the global Data Model: In or-
der to materialize the local-global data model matching approach, the OTF
provider also defines a global data model conforming to the global ontology.
In this context, the co-existence of a global ontology and a global data model
makes sense. The global ontology is meant to be a very detailed account
of the domain knowledge. It particularly aims to capture the information
that can support the semantic matching of concepts, e.g., the hierarchical
structure, synonyms, homonyms, etc., are the different types of information,
which are part of the ontology. On the other hand, for the definition of the
global data model, the main aim is to achieve a standard representation of
the structure of the data elements in the public domain. This structural
representation is meant to be consistent and concise and does not encom-
pass all the information of the ontology, e.g., the synonyms, homonyms or
the hierarchical depth, etc.

The OTF provider defines and maintains the global data model as a
UML class diagram, which is coherent with the domain knowledge of the
OTF provider. This means that every element of the global data model

92

5.2. DATA MODEL MATCHING - FOUNDATIONS

is annotated to a concept in the global ontology. Additionally, this global
data model also has to be updated in case of the updation of the global
ontology and the same restriction also apply in this case that inclusion of
new elements in the data model should not effect the existing local-global
data model mappings.

Fig. 5.2 shows the excerpt of a global data model for tourism domain,
which conforms to a HarmoNET-based tourism DSO maintained by the
OTF provider.

-amount : Decimal
-validTill : String

Payment

-clientId : String
-password : String
-lastLogin : String
-email : String
-telephone : Long
-firstName : String
-lastName : String

User

PaymentMode
-arrivalDate : Date
-departureDate : Date
-noOfGuests : Integer
-children : Integer

HotelBooking

-accountNo : String
-accountType : String

BankAccount
-creditCardNumber : String
-cardHolderName : String

CreditCard

-RoomNumber : Integer
-type : String
-beds : String

Room

Notification

-roomPackageId : String
-bookingStatus : Boolean
-availableFrom : Date
-availableTill : Date

RoomPackage

-hotelId : String
-hotelName : String
-stars : Integer

Hotel
-price : Double
-currency : String

PriceStructure

1

1

1*

-description : String
-isOpenToAll : Boolean

RoomFeature

1

*

1

1

+searchRoom()
+makeRoomReservation()
+notifyPerEmail()
+validateCredentials()
+giveDiscountVoucher()
+cancelBookingProcess()
+reserveFacility()
+arrangeEvent()
+reserveHotelForEvent()

HotelXService

+signOut()
+signIn()
+payDues()
+sendEmail()
+generateReceipt()
+signUp()

PaymentService

+searchFlight()
+comparePrices()
+giveOffers()
+bookFlight()
+showFlightInfo()
+giveSpecialService()
+selectService()

FlightService

-loginId : String
-password : String
-feature : String

PaymentAccount

-source : String
-destination : String
-flightTime : String

Flight

-discount : Decimal
-provision : String

FlightOffer*

*

1

*

1

1..*

+getAvailableRoom()
+reserve()

HotelYService

+findRoom()
+getRoomDetails()
+bookRoom()
+sendConfirmation()

HotelZService

-ratio : Decimal
-timeSpecific : Boolean
-forAll : Boolean

Discount

1

*

1

*

-date : Date
-persons : Integer
-child : Integer
-allowedLuggage : Decimal

FlightBooking

-issueDate : Date
Receipt

1

1

1

*

1

1

-voucherType : String
Voucher1

*

1

1

1

*

1

*

-name : String
-ageGroup : String
-charges : Double

FlightService

* *

*

*

-AgeGroup : String
-quantity : Integer

Facility

TravelOption

Train Cruise

LocalInternationalFlightTicket

1
1

-city : String
-country : String
-zipCode : String
-street : String

Address

1

1

-longitude : Decimal
-latitude : Decimal

Coordinates
1

1

HotelCriteria

*

1

FlightCriteria

*

1

*

1

Figure 5.2: An Excerpt of the Global Data Model conforming to the Tourism
DSO in the global ontology

93

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

5.3 Data Model Matching Algorithm

In this section, we will discuss our data model matching algorithm which is
leveraged every time a service provider wants to publish his service offer on
the service market or a service requester accesses the service market to search
for a suitable service. In this case, the local data model of the service partner
is matched to the the global data model on the basis of their annotations in
the global ontology. The resulting local-global data model mappings are used
to normalize the service request/offer under consideration. Fig. 5.3 gives an
overview of the different steps of this algorithm. In the first step, all the
attributes from the local data model are automatically annotated to concepts
in the global ontology. On the basis of this annotation, a semantic matching
is carried out between all the possible pairs of the attributes resulting in
a similarity value in the next step. In the third step of this algorithm,
possible attribute mappings are determined on the basis of the the calculated
similarity values. In the next step, the local classes are also annotated in the
global ontology in a similar fashion and a similarity value is calculated. For
this purpose, the already determined attribute mappings are also considered.
Lastly, on the basis of the resulting similarity values, possible class mappings
are deduced.

Step 1: Attribute
Annotation

Step 2: Similarity Value
Calculation

for Attribute Pairs

Step 3: Attribute
Mapping

Determination

Step 4: Class
Annotation

Step 5: Similarity Value
Calculation

for Class Pairs

Step 6: Class
Mapping

Determination

Figure 5.3: An Overview of the local-global Data Model Matching Algorithm

Below we will explain each of these steps in detail where the data model
of the requester, i.e., HRS is matched to the global data model of the OTF
provider shown in Fig. 5.2:

5.3.1 Attribute Annotation

The first step of the matching process is to automatically annotate the
attributes in the local data model to the concepts in a DSO in the global
ontology selected according to the domain of the service partner. This is
done to exploit the hierarchy of the concepts in the ontology to enable the
semantic matching of attributes. For this purpose, the identifiers (names) of
the data model attributes are automatically matched to those of the ontology
concepts. This lexical matching is not limited to an exact matching of the
terms rather different lexical techniques are used [52], e.g., the names are
tokenized, stopwords are eliminated, and finally the normalized names are

94

5.3. DATA MODEL MATCHING ALGORITHM

matched. As a result, the best possible match is selected to annotate an
attribute in the local data model to a concept in the DSO in the global
ontology. For a detailed technical account of this automatic annotation
mechanism, we refer the reader to [140].

As mentioned earlier, we assume that the service partners define their
data models using meaningful naming conventions and a DSO in the global
ontology holistically covers the information in that given domain. Based
on these assumptions, we claim that it is highly likely that for every local
attribute a matching concept can be found in the global ontology. In a rare
case, if the attribute name cannot be matched to any concept in the DSO,
the service partner has to coordinate with the OTF provider and manually
select a suitable concept in the DSO to annotate the local attribute. In this
direction, the OTF provider can also decide to add some information in the
DSO if possible under the given limitations for global ontology updation.

In addition to the annotations for the local attributes, the attributes
in the global data model are already annotated in the global ontology. As
already mentioned, the OTF provider defines its global data model conform-
ing to its global ontology. This means that every element in the global data
model is annotated to its conforming concept in the global ontology. This
annotation of the global attributes is done once at the time of the creation of
the global data model and is later used every time the data model matching
algorithm is initiated.

For instance, in our running example, the global attributes like first

name, last name, longitude, latitude, price, etc. are annotated to the
concepts with matching names in the tourism DSO in the global ontology.

thing entity relation possession
transferred
possession

outgo price

charge rate

non‐material
possession

Figure 5.4: Annotation of the local and the global attribute rate and price

in the Global Ontology

As a result of this annotation activity, Each attribute in the local and
global data model is annotated in the global ontology.

An example for the annotation of a local and global attribute in shown
in Fig. 5.4. In this case, the attribute price of the class PriceStructure in
the global data model is annotated to its corresponding counterpart in the

95

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

global ontology. Similarly, the attribute rate of the class RatePlan in the
local data model is automatically annotated to its matching concept in the
DSO.

Once all the attributes in the local and global data models are annotated
in the global ontology, their matching is performed in the next step.

5.3.2 Similarity Value Calculation for Attribute Pairs

After the annotation of the data model attributes, a similarity value is calcu-
lated for all the possible pairs each comprising a local and a global attribute.
As specified in [52], the similarity between any two concepts can be speci-
fied in terms of a numerical value and the normalized similarity is a function
from a pair of model elements to a number that ranges over the unit interval
of real numbers [52]. According to [52], higher the similarity value between
any two concepts, the more similar these concepts are.

Our matching mechanism calculates two types of similarity values be-
tween a pair of attributes: an upward cotopic similarity based on the global
ontology and a type similarity value. These different similarity values are
later aggregated into a single similarity value. Here, we will discuss these
different types of similarity values briefly.

Definition 1 (Upward Cotopic Similarity). The upward cotopic similarity
σ : o× o→ [0, 1] is a similarity over a hierarchy H = 〈o,≤〉, such that:

σ(c, c′) =
|UC(c,H) ∩ UC(c′, H)|
|UC(c,H) ∪ UC(c′, H)|

where UC(c,H) = {c′ | ∀c, c′ ∈ H ∧ c ≤ c′} and c ≤ c′ means that c′ is more
general than c.

The upward cotopic similarity is one of the multiple similarity coefficients
defined by [52] to assign a numerical value to the similarity between any two
concepts. According to its definition specified in Def. 1, the upward cotopic
similarity of any two concepts is the ratio of their shared hypernyms to the
total number of their hypernyms in the taxonomy. For our mechanism, we
calculate the upward cotopic similarity of two attributes on the basis of their
annotated concepts in the global ontology. For instance, Fig. 5.4 shows the
10 hypernyms of the attribute pair rate and price in the global ontology,
where the 6 shared hypernyms are also highlighted. Hence on the basis of its
definition, rate and price have a upward cotopic similarity value of 6/10
= 0.6.

96

5.3. DATA MODEL MATCHING ALGORITHM

In addition to the upward cotopic similarity values, a primitive type
similarity is also calculated for the attribute pair. For this purpose, a static
look-up table is maintained to encode the similarity values for possible pairs
of primitive types. According to this, if both the attributes are of numerical
types, they have a higher type similarity as compared to the case where the
attributes are of a numerical and an alphabetical type, respectively.

These two similarity values discussed here are aggregated into a single
similarity value through the following equation [141]:

δ̂ =
N∑
i=1

δiωi,
N∑
i=1

ωi = 1, ∀ωi : ωi > 0 (1)

town

availableFrom zipCode
latitude

roomNumber

email

bookingStatus

price

street

hotelName

longitude

CreditCardNumber
arrivalDate

beds

hotelId

city

firstName

country

lastName

phone

stars

description

0.12
0.20

Figure 5.5: Similarity values of the local Attribute city with some of the
global Attributes

This equation creates an aggregation of N different similarity values δi,
where each is assigned a weight ωi. The weights of different similarity values
represent their significance in the similarity of the two attributes and can be
adjusted according to the particular situation at hand. For instance, based
on its claim of a comprehensive global ontology, the OTF provider claims
that an upward cotopic similarity value for a local-global attribute pair has

97

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

higher probability of being a correct representation of their similarity and
hence can be assigned a higher weight in the aggregated similarity value.

The equation given above also allows to increase the accuracy of match-
ing mechanism in future by considering other similarity aspects mentioned in
[52], e.g., similarity based on shared synonyms, similarity based on relations
with other concepts, etc.

Fig. 5.5 shows some of the aggregated similarity values between an at-
tribute, i.e., town in the local data model of HRS and the attributes of the
global data model. These aggregated similarity values are calculated based
on equation (1) and this figure shows that town has maximum similarity to
city.

In the next step, attributes in the local and global data model are
mapped on the basis of their aggregated similarity values.

5.3.3 Attribute Mappings Determination

After the calculation of similarity values for all possible attribute pairs,
possible attribute mappings are determined on the basis of these similarity
values for each pair.

Local Global

accomodation_id hotelId

room_id roomNumber

forename firstName

family_name lastName

roosts beds

town city

longitude longitude

start_date arrivalDate

email_address email

rate price

road street

phone telephone

finish_date departureDate

latitude latitude

country country

due_amount amount

availability_time availableFrom

booked bookingStatus

percentage ratio

card_id creditCardNumber

…

0.85

0.78

1

1

0.4

0.98

1

0.48

0.85

0.76

0.82

1

0.48

1

1

0.79

0.5

0.34

0.8

0.77

Figure 5.6: Attribute Mappings with
their Similarity Values

Here it is important to men-
tion that we assume that the at-
tributes in the data models repre-
sent atomic information and hence
we restrict ourselves to only 1 : 1 at-
tribute mappings in our approach so
far. The aim of this step is to have
most optimal attribute mappings so
we consider this as an optimization
problem where the goal is to deter-
mine as many attribute mappings
as possible with maximum similar-
ity values.

To determine such optimal at-
tribute mappings with maximum
similarity (or minimum dissimilar-
ity), we use an existing algorithm
minimum cost flow problem pro-
posed in [152]. As an output of this
algorithm, an excerpt of the local
to global attribute mappings with

98

5.3. DATA MODEL MATCHING ALGORITHM

their respective similarity values is
shown in Fig.5.6.

After this automatic attribute mappings generation, class mappings are
determined in the next step, which are based on these attribute mappings.

5.3.4 Class Annotation

Analogous to the attribute annotation in the Step 1, the classes in the
local and the global data model are also annotated with the concepts from
the global ontology. Similar to the global attributes, the global classes are
already annotated in the global ontology. Additionally, the local classes are
annotated in the global ontology based on the techniques used for Step 1.

5.3.5 Similarity Value Calculation for Class Pairs

Analogous to the similarity value calculation for the attribute pairs, a simi-
larity value is also calculated for all the possible local and global class pairs.
Based on equation 1, this similarity value is an aggregation of multiple sim-
ilarity values.

Firstly, based on the mechanism explained in Step 2, an upward cotopic
similarity is calculated between the class pairs based on their annotation in
the global ontology.

In addition to the upward cotopic similarity of a class pair, their ra-
tio of similar attributes is also considered while determining their overall
similarity. For this purpose, the attribute mappings determined in Step 3
are taken into account. In this case, the argument is that the classes that
share higher number of similar attributes have higher chances of being sim-
ilar and vice versa. This similarity value is named as their shared attribute
similarity. The shared attribute similarity value is based on relating the
number of shared attributes to the total number of the attributes in a class
pair. However, as the similarity between the shared attributes is not abso-
lute rather represented through their similarity value, these similarity values
of the shared attributes are also considered while the calculation of shared
attribute similarity of two classes.

This is explained through an example shown in Fig. 5.7. This ex-
ample shows the attribute mappings between the classes RoomStay and
RoomPackage in the local and the global data models, respectively. So out of
7 attributes in total, the class pair has 3 shared attributes. Additionally, for
these shared attributes, an attribute similarity value is calculated in Step 3.

99

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

Based on this information, the shared attribute similarity value for RoomStay
and RoomPackage is calculated as δ = (0.6 + 0.34 + 0.36 + 3)/7 ≈ 0.61.

RoomStay RoomPackage

‐roomStayId
‐booked
‐availability_time

‐roomPackageId
‐bookingStatus
‐availableFrom

0.6
0.34
0.36y_

‐availableTill

Figure 5.7: Attribute Mappings Between the local class RoomStay and the
global class RoomPackage

On the basis of these different similarity values, an aggregated similarity
value is calculated for every class pair based on equation (1). As mentioned
earlier, there can be other similarity values that can be used in future to
further strengthen the matching results, e.g., a similarity value based on the
similar associations of the classes in a pair can also be considered in future.

The similarity values for class pairs are used to determine the possible
class mappings in the next step of the algorithm.

5.3.6 Class Mappings Determination

Local Global

PaymentCard CreditCard

Client

Contact
User

HotelReservation HotelBooking

RoomStay RoomPackage

RatePlan PriceStructure

Address
Address

Coordinates

AccomodationProperty Hotel

Discount Discount

WrittenConfirmation Notification

…

0.76

0.58
0.73

0.78

0.61

0.82

0.83
0.80

0.67

0.88
0.74

Figure 5.8: Class Mappings with their
Similarity Values

In this step, possible class mappings
are determined on the basis of the
similarity values for the local-global
class pairs calculated in Step 5. Un-
like the Attribute Mappings Deter-
mination step where our approach
aims at optimal attribute mappings
leading to 1 : 1 attribute map-
pings, class mappings are mainly de-
termined through a greedy strategy
leading to complex class mappings.

For this purpose, the class map-
pings are created in a descending or-
der gradually by traversing through
class pairs, which are sorted on the
basis of their similarity values in a
descending order. At the same time,

100

5.4. VISUAL CONTRACTS NORMALIZATION

a class pair is a candidate for a class mapping only if its similarity value is
above a certain threshold, which is decided by the OTF provider. For a
certain candidate class pair, if one of the classes is already a part of a class
mapping, the other is also added to this class mapping. As a result of such
a greedy strategy, disjoint 1 : 1, 1 : n, n : 1, and n : m class mappings can
be determined.

Fig. 5.8 shows an excerpt of the class mappings for the running example
that are determined through the proposed algorithm.

The output of this data model matching algorithm are the mappings
between the elements in the local and the global data models, which are
used as an input for the next phase, i.e., normalization of the VCs in the
service descriptions.

5.4 Visual Contracts Normalization

Once the elements in the local data model of the service partner are mapped
to those in the global data model, the proposed mechanism proceeds with
the normalization of the service description (request/offer) of the service
partners. As mentioned earlier, the service description normalization in our
approach is mainly focused on the normalization of the requested and offered
VCs as these behavioral semantics are mainly effected by the heterogeneity
of the data models. Consequently, the normalization of VCs means that
the service requests and offers conform to a common global data model and
their data model heterogeneity is overcome.

In this context, we explain the normalization of the VCs here with the
help of some examples.

In order to normalize a local VC, the elements of the local data model
are replaced with their mapped counterparts from the global data model.
Fig. 5.9 shows an example of such a normalization of the VC for the re-
quested operation makeReservation(...).

Starting with the normalization of objects in the VC, the objects typed
over the local classes are replaced with their global counterparts, e.g., the
objects of type RoomStay, HotelReservation are normalized to objects of
type RoomPackage, HotelBooking, respectively. Analogously, for a 1 : n
class mapping, the object of a local class is normalized to objects of the
mapped global classes. Similarly, there is a n : 1 class mapping between
the local classes Contact and Client and the global class User. Hence,
the objects of type Contact and Client are replaced with an object of type
User. A normalization on the basis of such an n : 1 class mapping has certain

101

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

normalized to

Figure 5.9: Visual Contract Normalization for the requested operation mak-
eReservation(...)

restriction. In this case, the local VC must contain an object for every local
class that is part of the mapping, otherwise the normalization is not possible.
In the given example, if the VC does not contain an object of type Contact

and only contains Client object, then the normalization to global class User
is not possible. Later in the discussion, we will also discuss some other cases
where such a situation can arise that the normalization cannot be carried
out correctly and what can be possibly done in such cases.

After the normalization of the objects, the links between these objects
need to be normalized. In our data model matching algorithm, we do not
explicitly match the associations in the local and global data model. Instead,
the links in the local data model are normalized exclusively on the basis of
the class mappings. For instance, in the given example, the link between the
objects of type RoomStay and HotelReservation can be normalized to a link
between the objects of type RoomPackage and HotelBooking because the
association between the local classes is implicitly mapped to the association
between their mapped global classes. Similarly, the link between Client and
HotelReservation is normalized to a link between User and HotelBooking.
This means that the links between objects in the local VC are normalized
to links between mapped objects in the normalized VC conforming to the

102

5.4. VISUAL CONTRACTS NORMALIZATION

associations in the global data model.
At present, our normalization mechanism is restricted to the normaliza-

tion of objects and links in the VCs and it does not consider the attributes
normalization so far. This restriction is applied because our service matching
mechanism introduced in the later phases of our approach is only concerned
with the matching of objects and links in the VCs and is does not deal
with attribute matching so far. Hence, we do not go into further details of
the attribute normalization here and would recommend the reader to [140]
for an insight into different methods, aspects and complications of attribute
normalization.

As mentioned earlier, during this normalization of VCs, there is also a
possibility that some information is lost or the normalization of some VCs is
not possible at all. For instance, if certain elements in the local data model
are not mapped to any element in the global data model, then these elements
cannot be translated to any global elements during VC normalization. How-
ever, we argue that based on our assumption about the global data model
comprehensively defining the structure of information in a certain domain,
such a situation where some local elements cannot be mapped to the global
elements is less likely to occur.

On the other hand, the difference of granularity levels between the local
and the global data model can lead to situations where the VC normalization
can be problematic. For instance, we mentioned earlier that in the given
example, if the VC contains object of type Client but Contact object is not
specified following the loose semantics rule, the VC cannot be normalized.
This is because Client and Contact have a n : 1 mapping with User and
the translation can only take place if objects for all the local elements in
the mapping are contained in the VC. Another example which leads to a
more complex situation is that if the VC in Fig. 5.9 additionally specifies
that the object of type Contact and the link between Client and Contact

object are deleted as a post-condition. In such a case, the VC cannot be
normalized because the deletion of these objects cannot be captured in the
normalized VC due to the n : 1 mapping mentioned earlier.

In such situations where certain VCs cannot be normalized, the service
partner is prompted to make any suitable modifications to his service de-
scription if possible. Such modifications can be straightforward for the cases
similar to the first variant mentioned above where the Contact object can
be specified in the VC to allow its normalization.

For the work in this thesis, we assume that such an exceptional situation
does not arise often where a successful normalization of a service description
is not possible. Otherwise, a further processing of the service description in

103

CHAPTER 5. SERVICE DESCRIPTION NORMALIZATION
THROUGH DATA MODEL MATCHING

not possible in the given approach.

However, here we also briefly introduce a possible option to deal with
such a situation, which needs to be investigated and analyzed in detail in
future. If it is not possible for the service partner to make required modifi-
cations, the OTF provider can decide to allow its further processing without
being normalized. In this exceptional case, the service partner cannot fully
utilize the benefits of the proposed approach though.

In case of the requester, such an unmodified request is indeed matched
to the available service offers by the local data model matching approach de-
scribed in Sec. 5.2.1. In this direction, the requester data model is matched
to the data model of each available service offer and the resulting mappings
are used to normalize the request accordingly. Consequently, the service dis-
covery and composition process can be quite time-consuming in this scenario
and the results may not be guaranteed to be completely correct.

In case of the provider, such an unnormalized offer is published on the
service market by adding it to a specific pool of unnormalized service offers
in the repository. These offers are not considered during a normal course
of the service discovery and composition process. Rather, these offers are
taken into consideration only if the requester is not satisfied with the ser-
vice discovery and composition results produced by through the proposed
approach. In this case, the requester compromises on the late response time
and explicitly selects to also consider these pooled offers during his service
discovery process. Subsequently, the service discovery and composition pro-
cess may be re-initiated to also consider the unnormalized pooled service
offers.

The feasibility of such a technique to deal with the unnormalized service
descriptions needs to be further analyzed in future.

After the successful normalization of the service request/offer at hand,
the service discovery mechanism can start in the next phase.

5.5 Summary and Discussion

This chapter encompasses the first phase of our service discovery and compo-
sition approach, i.e., service description normalization. An automatic service
discovery and composition can be adversely effected due to the data model
heterogeneity of the service request and the available offers. To resolve this
issue, our approach allows a normalization of the service requests/offers,
i.e., their translation to a common representation and hence enabling their
actual matching. For this purpose, whenever a service requester/provider

104

5.5. SUMMARY AND DISCUSSION

accesses the service market with its service request/offer, its local data model
is matched to a global data model conforming to a global ontology main-
tained by the OTF provider. This global ontology provides a standardized
and comprehensive account of the information in a particular domain. Our
local-global data model matching algorithm allows the data models match-
ing based on their ontological semantics defined through the global ontology.
The service request/offer under consideration is normalized based on the re-
sulting local-global data model mappings. In this direction, the constituting
VCs, which are typed over the local data model so far are translated to a
normalized VC which is typed over the global data model. The resulting
normalized service description can later by considered for the next phase,
i.e., service discovery phase of the proposed approach.

So far, our data model mechanism does not takes the particular case into
account, where the independent domain knowledge of the service partners
is defined as their local ontology and the local data model conforms to this
local ontology in turn. In future, it needs to be further investigated how
the information in such a local ontology can be used to further improve the
data model matching results.

So far, the data model matching mechanism mainly relies on the hierar-
chical structure of the ontology for the semantic matching of the concepts.
However, this mechanism can be extended in future to consider other infor-
mation contained by an ontology as well, e.g., concept associations, axioms,
synonyms, homonyms, etc.

Additionally, during the course of our research, we deduced that the
problems encountered during VC normalization step as discussed in Sec. 5.4
mostly occur if the local data model is more fine-grained as compared to
the global data model. This means that the chances of the occurrence of
these problems are higher in case of n : 1 or n : m model mappings. This is
because there are chances of information loss during the translation of local
elements to their coarse-grained global counterparts. On the other hand, 1 :
1 and 1 : n mappings between the elements in the local and the global data
model normally lead to seamless VC normalization. However, this claim
needs to be interrogated further to come up with better solutions to deal
with cases where the service discovery process cannot proceed due to the
issues in the service description normalization phase.

105

6
Multi-level Service Discovery

After the service request normalization, next phase in the proposed ap-
proach is service discovery. As input, it takes a normalized service request
and matches it to the set of available service offers (also normalized) us-
ing a multi-level approach. This approach considers different factors, e.g.,
the category assigned to the request and the offer, the structure as well as
the behavior of the requested and offered operations, etc. The output of
this phase is the Requester Operation Mapping, which is the set of possible
operation correspondences between the request and the available offers. A
detailed overview of this phase is given in Fig. 6.1, which will be discussed
in detail in the following section.

6.1 Service Discovery Overview

When a service requester accesses the OTF provider to initiate the service
discovery and composition process, the actual matching of the requested and
offered service descriptions starts from the service discovery phase. This
phase consists of multiple levels to match the service request under consid-
eration to the service offers available on the market, where the result set of
discovered service offers is gradually reduced after each level.

The first level of the service discovery phase is the category matching,
where the service description matching is on the basis of their categorization.
As a result, a subset of the service offers are selected. The concept of
category matching is not new in the context of service discovery. Service
registries [103, 129] allow the publishing and discovery of offered services
on the basis of their categorization. For instance, UDDI [103] allows the
categorization of published web services by using standard taxonomies like
North American Industry Classification System (NAICS) [155]. Similarly,
[4] proposed a categorization ontology development approach for the service
registry programmableWeb [129], which allows to automatically develop and

107

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

maintain an ontology enabling semantic-based publishing and discovery of
services in their respective categories.

Similarly, OTF computing also allows a categorization of service part-
ners broadly based on the information domains that OTF provider caters
to. However, this categorization mechanism and category matching of the
service descriptions is not in focus for our work in this thesis and we briefly
introduce it in Sec. 6.2.

Service

OTF Provider

Repository

Automatic Service Discovery & Composition

available Offers

…
Multi‐level Service Discovery

Category
Matching

Operation
Matchingnormalized

Requester
Operation
Mapping …

Request Request + Category‐
matched Offers

Figure 6.1: An Overview of the Service Discovery Phase in the Proposed
Approach

After category matching, the service descriptions have to be matched
on the basis of the requested and offered functionality. In this context, the
basic unit of functionality are the requested and offered operations in the
matched service descriptions. Hence, an operation matching is performed
for the request and the selected service offers on the next level.

As mentioned earlier, the current standard for service descriptions, i.e.,
WSDL [162] allows to specify a service description in terms of the structural
aspects of the operations, i.e., operation signatures. Therefore, a lot of
research effort has been directed towards devising mechanisms for automatic
service discovery based on operation signature matching. Approaches like
[87, 147, 150] have devised automatic mechanisms to match the requested
and offered operations on the basis of their structural elements, such as,
operation names, input and output parameters.

Although these earlier approaches automatically match the WSDL-based
service requests and offers quite elaborately, they do not ensure accuracy in
the service discovery results. As we claimed in Chap. 1 and 2, an accurate

108

6.1. SERVICE DISCOVERY OVERVIEW

service discovery is only possible if in addition to the structural aspects, the
behavioral aspects of the service requests and offers are also specified and
matched. This means that an operation matching mechanism should not
only consider the structural elements of the operations, rather its should also
take their behavioral semantics into account while matching. Additionally,
according to the OTF computing vision and the essence of SOC, the service
partners describe their requested and offered functionality independently
leading to granularity level heterogeneity among their service descriptions.
Considering such heterogeneous granularity levels of a service request and
offer, an operation matching mechanism should not be restricted to 1 : 1
operation matching rather it should also allow to determine, i.e., 1 : n , n : 1
and n : m correspondences among the requested and offered operations. In a
comprehensive service description, the service protocol is meant to describe
the required/allowed sequence in which the requested/offered operations can
be invoked. This information in the service protocols can be exploited while
determining the complex operation correspondences to further improve the
accuracy of operation matching. Based on this discussion, we define the
requirements for an elaborate operation matching mechanism, which are as
follows:

R1 It must allow the matching of the requested and offered operations on
the basis of their structural as well as behavioral description.

R2 In order to overcome the granularity level heterogeneity between
the requested and offered operations, it must be able to determine
complex correspondences between them while considering their re-
quested/allowed invocation sequences in their respective service pro-
tocols.

From our detailed study and evaluation of the service matching ap-
proaches presented in Chap. 2, it can be deduced that a wide range of
approaches, e.g., [65, 108, 84, 157, 25, 14, 15] acknowledges the need of a com-
prehensive matching of service descriptions and hence also allow to match
behavioral semantics in addition to the structural elements of the opera-
tions. However, most of these approaches consider atomic service requests
and offers comprising of a single requested/offered operation enabling a 1 : 1
operation matching between them. Some approaches [88, 14, 108, 79] allow
complex correspondences in a limited sense as they enable a 1 : n matching
among atomic service descriptions. But due to atomicity of matched service
descriptions, the invocation sequence is not relevant in these approaches.
Some others [107, 35, 59] lay particular focus on the determination of 1 : n

109

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

and n : 1 operation correspondences on the basis of the invocation sequence.
However in these approaches, the matching is only based on the structural
elements of the operations.

Considering these shortcomings of the existing approaches, we proposed
an elaborate operation matching mechanism, which fulfills the requirements
specified earlier.

The output of the service discovery phase is the set of all possible oper-
ation correspondences between the requester and the selected service offers.
In the following sections, we will give details of the different levels of the
service discovery phase in our approach.

6.2 Category Matching

As mentioned earlier, the creation and maintenance of a categorization hi-
erarchy as well as the categorization and discovery of published services on
its basis has been a topic for extensive research in recent years [4, 16, 122].
Similarly, OTF Computing also proposed the categorization of the service
requests and offers on the basis of a categorization hierarchy created and
maintained by the OTF provider.

According to this approach, in order to publish its service offer on the
service market, the service provider manually categorizes its service offer us-
ing the categorization hierarchy of the OTF Provider. Similarly, the service
requester also has to categorize its service request to discover the service
offers satisfying its request. During the service discovery phase, the catego-
rization of service request and the available service offers are matched and
a subset of service offers is selected as a result.

As the development of such a categorization hierarchy is not the focus of
the research in this thesis, we assume that the OTF Provider defines a so-
phisticated mechanism for its creation, maintenance, and category matching
of the service descriptions. For this purpose, it may also reuse the existing
approaches [155, 4, 16, 122]. Here, we give a brief idea of how such a cate-
gorization hierarchy can look like.

Fig. 6.2 visually depicts an excerpt of such a categorization hierarchy
of the OTF Provider and also the categorization of the service offers and
requests. This hierarchy is broadly based on the information domains that
the OTF provider caters to. Each of these domains is then further divided
into the sub-categories belonging to this domain. Each service request and
offer can be assigned the categories from the particular domain that they
belong to. For the running example, the request and the service offers belong

110

6.3. OPERATION MATCHING

...
...

Tourism Content
Management E‐Library ...

Accomodation Travel Tour Photo Music ...

...

Hotel Appartment
Air Train Cruise

HRS

HotelX HotelY Flight
Booker

Rail
AndFly ...

HRS
Request

Figure 6.2: An Excerpt of Service Categorization Ontology maintained by
OTF Provider

to the broader category Tourism. One service description can be assigned
to one or more categories in its domain, e.g., RailAndFly is a service to
search and book flight and train connections. Hence, it is assigned to the
subcategories Air and Train in the Travel category. Similarly, HRS request
is also categorized under different sub categories of the Tourism category.

Based on this categorization of service request and offers, a subset of
available service offers can be selected through category matching that can
be further processed during operation matching.

6.3 Operation Matching

To fulfill the requirements for operation matching specified in Sec. 6.1, we
have come up with an operation matcher for RSDL service requests and
offers, which will be explained in detail in this section.

As shown in Fig. 6.1, the request under consideration and the subset of

111

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

available offers selected after category matching act as inputs for the oper-
ation matching mechanism. The proposed mechanism allows an elaborate
matching of the operations in the request and the offers on the basis of their
structural and behavioral aspects specified in RSDL (satisfying R1). Ad-
ditionally, it acknowledges the difference of granularity level heterogeneity
between the service partners and determines complex operation correspon-
dences between the requested and offered operations while considering their
invocation sequence in the respective RSDL service protocols (satisfying
R2).

For a comprehensive operation matching in terms of their structural
and behavioral aspects, our mechanism mainly focus on the matching of
behavioral semantics specified as visual contracts for the operations while
considering their invocation sequence specified in the service protocol. For
this purpose, we define a set of operation matching strategies that allow to
determine complex operation correspondences by matching their VCs. In
this direction, we claim that an explicit matching of operation signatures is
not required for RSDL service descriptions. In an RSDL service description,
an operation’s signature is in conjunction with its behavioral semantics. As
explained in Sec. 3.2.2, RSDL highly recommends to use non-primitive data
types, i.e., data model classes to type the input and output parameters in
the operation signatures. Additionally, it applies the restriction that all
such parameters with non-primitive data types in an operation signatures
are bound to appear as objects in the corresponding VC of that operation.
Considering this coherence between an operation’s signature and its VC, it
makes senses to claim that the input/output parameters are automatically
matched while the matching of their VCs and hence do not need to be
matched separately. However, there can be situations where it is inevitable
for the service partners to define input/output parameters with primitive
types, e.g., for the requested operation makeReservation(...), two input
parameters of type Date are necessary to specify the arrival and departure
date. To match such primitive parameters in the operation signatures, our
mechanism allows their explicit matching, which will be explained later in
more detail.

It is also important to mention here that our operation matching mech-
anism based on VC matching focus particular aspects of the requested and
offered VCs so far. A VC mainly describes the behavior of an operation in
terms of the structural changes, such as, the deletion, creation and preser-
vation of the objects and the links after its execution. This description can
be further refined in a stepwise manner by also incorporating the attributes
and their modification before and after the execution of the operation. Fur-

112

6.3. OPERATION MATCHING

thermore, negative application condition (NAC) and positive application
condition (PAC) can further constrain and precisely define the behavior of
the particular operation.

So far, our matching mechanism is concerned with the structural changes
in the requested and offered VCs and do not focus further elements in these
VCs, e.g., the attributes, NACs and PACs. In future, the accuracy of these
matching results can be further improved and false positives can be avoided
in the result set by extending the mechanism to also match these additional
elements in the requested and offered VCs.

Before going into the details of the proposed operation matching strate-
gies, we explain some core concepts that are extensively used.

Element Correspondence in Visual Contracts: In order to match
the VCs of the requested and offered operations, the operation matching
mechanism define certain criteria to match the respective preconditions and
postconditions. As the matching of preconditions and postconditions in the
requested and offered VC depends on matching their comprising elements,
i.e., objects and their links, there is the requirement to define the notion of
element correspondence.

For the proposed approach, the notion of element correspondence be-
tween the VC elements is mainly based on the similarity of their types.
In this context, it is important to mention that the requested and offered
VCs are already normalized during operation matching phase and hence the
elements in these VCs are typed over the global data model of the OTF
provider.

According to [123], the similarity of two concepts can be categorized
based on their degree of similarity as exact, plugin, subsume and fail

by matching their underlying ontological semantics. In our case, this also
holds valid for the types of VC elements. For instance, two elements of
type CreditCard have exact type similarity, whereas an element of type
CreditCard has a plugin type similarity to an element of type PaymentMode

based on the specialization-generalization relationship of the types. On the
contrary, the element of type PaymentMode has a subsume type similarity
to the element of type CreditCard. If none of these holds true for any two
elements, then they have a failed type similarity.

These different kinds of type similarity can be can be ordered according
to their strength. Here, it suffices to say that an exact similarity between
two types depicts the most strong similarity. On the contrary, a plugin and
subsume type similarity have a lesser degree of strength. Whereas, fail

type similarity is the least strong. For instance, for an element of type

113

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

CreditCard, is strongly type similar to another element of type CreditCard
as compared to an element of type PaymentMode.

The weaker types of similarities, i.e., plugin and subsume are more rel-
evant for a matching approach where a fuzzy matching between the service
request and offer is considered, i.e., the case where an offer does not com-
pletely satisfy the requirements rather it approximately matches the service
request. In such an approach, such weaker similarity between the types of re-
quested and offered elements can be considered to determine varying degree
of matching between the request and offer. However, in our service match-
ing approach, we so far do not consider an approximate matching between
the service descriptions and hence do not consider weaker type similarity
between the elements. Additionally, the plugin and subsume type similarity
between the VC elements can lead to complex 1 : n and n : 1 correspon-
dences between the elements in the matched VCs adding further complexity
to the operation matching process. Keeping these considerations in mind,
our operation matching mechanism restricts itself to an exact type similarity
between the corresponding elements in the matched VCs so far.

This means that for two elements in the requested and offered VCs to
be corresponding, their has to be an exact similarity between their types.
A formal definition of such a correspondence between the elements in the
requested and offered VCs is presented later, when we present the notion of
matching of VCs for operation matching.

Apart from element correspondence, another important concept for our
operation matching mechanism is the requester operation mapping based on
the operation correspondences between the requested and offered operations.
This is discussed in the next section in detail.

Requester Operation Mapping: The output of the operation match-
ing mechanism is the set of all possible operation correspondences for the
request under consideration. As mentioned earlier, an operation correspon-
dence can be of type 1 : 1, 1 : n, n : 1, or n : m. We already discussed that
for the complex correspondences, their invocation sequence in the respective
service protocols has to be taken into account. For instance, for a 1 : n op-
eration correspondence between the requested and the offered operations, n
stands for a sequence of offered operations that can be invoked in the given
order in the offered service protocol. Below, we give a formal definition for
such an operation sequence and different types of operation correspondences
that can be determined between a request and an offer.

Definition 2 (Operation Sequence). Given an RSDL service description
desc with its respective service protocol prot and some of its operations

114

6.3. OPERATION MATCHING

opi, · · · , opj, opi → · · · → opj represents an operation sequence, if these
operations can be invoked in the given order in prot.

Definition 3 (Operation Correspondence). Given are an RSDL request r
and an RSDL offer o. Further, given are a requested operation opr and a
requested operation sequence seqr in r and an offered operation opo and an
offered operation sequence seqo in o. (seqr,seqo) represents an operation
correspondence between r and o and can have one of the following types:

• A 1 : 1 operation correspondence, where seqr and seqo comprise
of single operations opr and opo, respectively and opr matches to opo
through operation matching.

• A 1 : n operation correspondence, where seqr comprise of single
operation opr, seqo comprise of multiple operations and opr matches
to seqo through operation matching.

• A n : 1 operation correspondence, where seqr comprise of multi-
ple operations whereas seqo comprise of single operation opo and seqr
matches to opo through operation matching.

• A n : m operation correspondence, where seqr and seqo com-
prise of multiple operations and seqr matches to seqo through operation
matching.

The notion of operation matching is defined in detail in the following.
The aim of the operation matching is to determine the set of all possible
operation correspondences for the request under consideration. We term
this set of requester’s operation correspondences as its operation mapping.
All the offers that participate in the requester operation mapping constitute
the set of service offers that are considered for further matching during the
service composition phase. A formal definition for a requester operation
mapping is given in Def. 4.

Definition 4 (Requester Operation Mapping). For a RSDL request r, the
requester operation mapping OpMapr is the set of all possible operation
correspondences with the available service offers.

In the next sections, we describe the set of proposed operation matching
strategies that constitute our operation matching mechanism to determine
different types of operation correspondences. In a bottom up approach, we
also devise a mechanism that use these operation matching strategies to
determine operation mapping for a requester with the available offers. This
mechanism will also be explained later.

115

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

6.3.1 1 : 1 Operation Matching

In this section, we elaborate our strategy for 1 : 1 operation matching, which
results in a 1 : 1 operation correspondence.

Fig. 6.3 shows a diagrammatic representation of a 1 : 1 operation corre-
spondence resulting from a matching between the requested operation opir
and the offered operation opjo. A requested operation matches an offered
operation if the offered operation is invocable and as a result, it satisfies
all the requirements specified by the requested operation. As we discussed
earlier, our operation matching mechanism is mainly concerned with the
matching of the behavioral semantics, i.e., VCs of the requested and offered
operations. Hence, opir has a 1 : 1 operation correspondence with opjo if
their VCs match. 1 : 1 operation correspondence

.

.

Protr
op1r

.

.

Proto
op1o

.

opir

.

opjo
1 : 1

.

.

.

opnr

.

.

.

opmo

Figure 6.3: A diagrammatic Representation of a 1 : 1 Operation correspon-
dence

In the next section where we formally define the structure of a 1 : 1
operation correspondence and later describe how their VCs can be matched
to determine such a correspondence.

Definition for 1 : 1 Operation Correspondence

The definition for a 1 : 1 operation correspondence is proposed by [65,
96], which allows a matching between atomic service requests and offers by
matching their respective visual contracts.

It is important to mention here that for a VC as graph transformation
rule, the elements in the left- and right-hand side can be differentiated as

116

6.3. OPERATION MATCHING

nodes and links in the graph. However, for the work presented in [96], these
elements do not exhibit different behavior and hence are not required to be
differentiated into these two different types. As a result, they are rather
considered on a general level only as elements of the VC and the left- and
right-hand side of a VC are represented as a set of VC elements, respectively.
In this direction, the set operators, such as, union, intersection, etc. are also
applicable on these sets.

In this direction, the VC of the requested operation as a graph transfor-
mation rule is represented as opr = Lr → Rr. Its left-hand side declares the
preconditions, i.e., the elements that the requested operation guarantees to
provide. As a result, it requires that its postconditions declared on right-
hand side are satisfied, i.e., elements in Lr \ Rr are meant to be deleted,
elements in Rr \ Lr are meant to be added, and the elements Lr ∩ Rr are
meant to be preserved, if they are present. On the other hand, the VC of
an offered operation is represented as opo = Lo → Ro. Its left-hand side de-
clares the preconditions that the offered operations requires to exist in order
to make its invocation possible. As a result of its invocation, it guarantees
that it satisfies the postconditions declared on the right-hand side, i.e., ele-
ments in Lo \ Ro, Ro \ Lo, and Lo ∩ Ro are deleted, added, and preserved,
respectively.

To determine a 1 : 1 correspondence between the requested and offered
operation, these requirements and guarantees declared in their respective
VCs have to be compared. A formal definition for 1 : 1 operation corre-
spondence is given in [65, 96] as follows:

Definition 5 (1 : 1 Operation Correspondence). Given the following:

- A request r;

- An offer o;

- A requested operation opir in r with visual contract Li
r → Ri

r;

- An offered operation opjo in o with visual contract Lj
o → Rj

o;

The pair (opir , opjo) is termed as a 1 : 1 correspondence, if there exists
an element correspondence corr (according to Def. 6) with the following
properties:

P1: ∀y ∈ Lj
o ∃x ∈ Li

r : x corr y, i.e., for every element in Lj
o there is a

corresponding element in Li
r;

117

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

P2: ∀x ∈ Li
r \Ri

r ∃y ∈ L
j
o \Rj

o: x corr y, i.e., for every element in Li
r that

is meant to be deleted by opir corresponds to an element that is indeed
deleted by opjo;

P3: ∀x ∈ Li
r∩Ri

r ∃y ∈ L
j
o∪Rj

o: xcorry ⇒ y ∈ Lj
o∩Rj

o, i.e., every element
in Lj

o corresponding to an element that is meant to be preserved by
operations in opir must indeed be preserved by opjo;

P4: ∀x ∈ Ri
r \Li

r ∃y ∈ R
j
o \Lj

o: x corr y, i.e., for every element in Ri
r that

is meant to be added by opir corresponds to an element that is added
by opjo;

Definition 6 (Element Correspondence). Given the following:

- A request r with operations op1r , · · · , opnr and their respective visual
contracts L1

r → R1
r , · · · , Ln

r → Rn
r ;

- An offer o with operations op1o, · · · , opmo and their respective visual con-
tracts L1

o → R1
o , · · · , Lm

o → Rm
o ;

corr is a binary relation over the sets L1
r ∪R1

r ∪ · · · ∪Ln
r ∪Rn

r and L1
o ∪R1

o ∪
· · · ∪ Lm

o ∪Rm
o with the following properties:

1. type-compatible: This means that the corresponding objects have an
exact type similarity and corresponding links have corresponding source
and target objects.

2. Partial: This means that not all the elements in the sets L1
r ∪ R1

r ∪
· · ·∪Ln

r ∪Rn
r and L1

o∪R1
o ∪· · ·∪Lm

o ∪Rm
o have to occur in the relation

corr.

3. One-to-One: This means that every element can occur at most once
in the relation corr and hence has a correspondence with only one
element.

According to this Def. 5, the requested operation opir matches an offered
operation opjo, if the offered operation is invocable, i.e., for all elements in
its preconditions, there are corresponding elements in preconditions of the
requested operation.

Additionally, all the postconditions of the requested operation are satis-
fied by the offered operation. This means that all the elements added and
deleted by the requested operation have corresponding elements added and
deleted by the offered operation, respectively. Similarly, all the preserved

118

6.3. OPERATION MATCHING

elements of the offered operation that correspond to some preserved element
in the requested operation are also preserved in the offered operation.

In this case, the corresponding elements are determined on the basis of
Def. 6, which formalizes our notion of element correspondences between VC
elements discussed earlier in Sec. 6.3. This formal definition is also based on
the element correspondence specified in [96, 65]. For our approach, as the
request and the offer comprise of multiple operations with their respective
VCs, the element correspondence spans over the elements of all the VCs
contained in the request and the offer. According to this definition, the cor-
respondence between objects in the requested and offered VCs is based on
their exact type similarity for objects and correspondence of links is based on
the correspondence between their source and target objects. Additionally,
it is not necessary that every VC element in the request corresponds to a
VC element in the offer and vice versa, e.g., some elements in preconditions
of a requested operation may not be required by any offered operation for
its invocation. In this case, these VC elements of request do not have corre-
sponding VC elements in the offer. Lastly, this element correspondence has
to be 1 : 1. This means that any VC element in the request can correspond
to at most one VC element in the offer and vice versa.

This structure of 1 : 1 operation correspondence is explained through the
examples in next section, where we present an algorithm to determine such
a 1 : 1 operation correspondence between the request under consideration
and an offer.

1 : 1 Operation Matching Algorithm

Apart from the definition of the formalized structure of different kind of
operation correspondences, it is also important for our operation match-
ing mechanism to define a strategy for matching the requested operations
with the offered operations resulting in these different types of operation
correspondences.

Hence, we define a 1 : 1 operation matching algorithm which matches
a requested operation under consideration with the offered operations in an
offer and determine any possible 1 : 1 operation correspondence.

This algorithm is specified in Listing 1. As input, it takes a requested
operation opr, and the set of offered operations Opso. As output, it returns
any possible Corr, i.e., a 1 : 1 correspondence between opr and opo satisfying
the properties specified in Def. 5. For example, as shown in Fig. 6.4, our
operation matching algorithm determines a 1 : 1 operation correspondence

119

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

1:1 Operation Matching

0

VC:checkAvailability()

cr : User cr : User

rpr : RoomPackage

acr : Hotel

scr : HotelCriteria scr : HotelCriteria

VC:searchRoom()

cp : User cp : User

rpp : RoomPackage

acp : Hotel

up : Room pp : PriceStructure

Figure 6.4: 1 : 1 Operation correspondence Example

between checkAvailability(...) of HRS and searchRoom(...) by HotelX.

The algorithm in Listing 1 works as follows:

Step ¬ In order to find a corresponding operation for opr, the algorithm
matches it with every offered operation in Opso. In the given exam-
ple, to find a possible 1 : 1 operation correspondence for the requested
operation checkAvailability() of HRS, the first offered operation in the
set of offered operations by HotelX considered for further matching is
searchRoom().

Step For opr, Pre(opr) and Post(opr) represent the preconditions that it
guarantees to provide and the postconditions that it requires to be
satisfied in terms of deletion, addition and preservation of elements,
respectively. Similarly, For opo, Pre(opo) and Post(opo) represent
the preconditions that it requires in order to be invoked and the
postconditions that it guarantees to satisfy, respectively. In the sec-
ond step, it is checked whether the requested operation satisfies all
the preconditions required for the invocation of the offered opera-
tion. This is determined through the function satisfiespre(Pre(opr)
, Pre(opo)) according to P1 in Def. 5. In the given example,

120

6.3. OPERATION MATCHING

Listing 1: Algorithm for 1 : 1 operation matching between a requester
operation or and an offered operation in Opso

Input: Requested Operation opr
Input: Set of Offered Operations Opso
Output: A resulting operation Correspondence Corr

OneToOneMatching(opr, Opso)

Corr = null;
for next unmatched opo in Opso do // Step ¬

if satisfiespr(Pre(opr) , Pre(opo)) then // Step
if compSatisfiespo(Post(opo) , Post(opr)) then

Corr = create1To1Corr(opr , opo); // Step ®

Exit;
end

end

end
return Corr; // Step ¯

end

searchRoom() requires a cp:User object in its preconditions in or-
der to be invoked. According to Def. 6 for element correspon-
dence, checkAvailability() has a corresponding element cr:User in
its preconditions. Hence, satisfiespre(Pre(checkAvailability()) ,
Pre(searchRoom())) holds true. Additionally, it is important to note
that the requested operation may provide more information than re-
quired to invoke an offered operation, i.e., there are more elements
in the preconditions of the requested VC as compared to those in
the offered VC. For instance, in the given example, the requester ad-
ditionally provides scr:HotelCriteria and a link between cp:User

and scr:HotelCriteria but the offered operation searchRoom() does
not require these elements.

If the preconditions of the offered operation are satisfied, then it
is checked whether the offered operation under consideration com-
pletely satisfies the postconditions of the requested operation ac-
cording to P2, P3, P4 in Def. 5. This is determined through
compSatisfiespo(Post(opo) , Post(opr)), which holds true in case
the requested postconditions are completely satisfied.

For the given example, all the elements created by checkAvailability(),
i.e., acr:Hotel, rpr:RoomPackage, and a link between these two ob-

121

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

jects have corresponding elements created by searchRoom(). Similarly,
searchRoom() indeed preserves the element cp:User that correspond
to an element cr:User preserved by checkAvailability(). As there is no
deleted element in the requested operation, so P2 in Def. 5 is trivial in
this case. Additionally, the offered operation can have additional post-
conditions to those required by the requested operation. For instance,
in addition to the searched RoomPackage, searchRoom() also provides
additional information about the Room and the PriceStructure of that
RoomPackage. These postconditions however are not relevant for the
requester. From this matching of the requested and offered postcondi-
tions, it can be deduced that compSatisfiespo(Post(searchRoom())
, Post(checkAvailability())) holds true.

On the basis of this matching, an element correspondence corr indeed
exists, which satisfies the properties P1, P2, P3, and P4 in Def. 5.

Step ® If the offered operation under consideration is a valid match for
the requested operation, then a 1 : 1 operation correspondence is
created between the requested and the offered operation through
create1To1Corr(). in the given example, checkAvailability() has a
1 : 1 correspondence with searchRoom(). At this point, further of-
fered operations do not need to be considered and hence the further
processing is stopped.

Step ¯ At the end, the determined 1 : 1 operation correspondence Corr is
returned. It is empty, if no offered operation matches the requested
operation under consideration.

Through this algorithm, the operation matching mechanism can deter-
mine any possible 1 : 1 operation correspondence for a requested operation
under consideration in an offer. In the next section, we discuss the n : 1 op-
eration correspondence and our operation matching algorithm to determine
such n : 1 operation correspondences between the request and the offer.

6.3.2 n : 1 Operation Matching

A n : 1 operation correspondence exists between a requested operation se-
quence and an offered operation, when the offered operation can be invoked
as its preconditions are satisfied and it satisfies the requirements specified
in the requested operation sequence. Fig. 6.5 shows a diagrammatic repre-
sentation of such a n : 1 operation correspondence between the requested
operation sequence opir → · · · → opkr and the offered operation opjo.

122

6.3. OPERATION MATCHINGn : 1 operation correspondence (general)

.

.

Protr
op1r

.

.

.

Proto
op1o

.

opir

.

.

opjo

.

n : 1
.
.
.

opkr

.

.

opmo
.
.
.

opnr

Figure 6.5: A diagrammatic Representation of a n : 1 Operation correspon-
dence

There can be different scenarios where a n : 1 operation correspondence
is possible. Below, we briefly explain these different scenarios.

Different Scenarios for a n : 1 Operation Correspondence

.

.

.

Protr
op1r

opir

.

.

.

opkr

.

.

.

Proto
op1o

opjo

.

.

.

n : 1 operation correspondence (Scenario 1)

n : 1

.

.

.

opnr

opmo

Figure 6.6: A Diagram-
matic Representation for
Scenario 1 of n : 1 Opera-
tion Correspondence

While matching a service request under con-
sideration with a particular offer, there are two
potential scenarios that can lead to a n : 1 oper-
ation correspondence. These different scenarios
are as follows:

Scenario 1: In contrast to Fig. 6.5 that de-
picts a general scenario for an n : 1 operation
correspondence between a requested operation
sequence and an offered operation, Fig. 6.6 par-
ticularly emphasizes the scenario where initially
a 1 : 1 correspondence is established between
a requested operation opir and an offered oper-
ation opjo and it is later extended to a n : 1
correspondence.

This happens because the offered operation
also completely satisfies the postconditions of
some subsequent operations in the requested
invocation sequence specified in the requester .
This means that compSatisfiespo(Post(op

j
o),

123

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Post(opxr)) holds true for every requested operation opxr in the operation
sequence opir → · · · → opkr .

For example, as shown in the last section, checkAvailability() of HRS
has 1 : 1 correspondence to searchRoom() of HotelX. However, Fig. 6.7
shows that since the postconditions of the next requested operation in the
requested invocation sequence viewDetails() are also completely satisfied by
searchRoom(), this correspondence can be extended to a n : 1 correspon-
dence between checkAvailability()→viewDetails() and searchRoom().

n : 1 Operation Matching

0

Example1

Figure 6.7: n : 1 Operation correspondence Example for Scenario 1

Scenario 2: The second possible scenario for a n : 1 operation cor-
respondence is shown in Fig. 6.8. In contrast to the general scenario in
Fig. 6.5, it particularly highlights the situation where a 1 : 1 operation
correspondence is not possible between opir and opjo because although opjo
completely satisfies the postconditions of opir but the preconditions required
for its invocation are not satisfied by opir. In this case, some subsequent
operations of opir in the requested invocation sequence participate to satisfy
the preconditions of opjo. This leads to a n : 1 correspondence between the
sequence opir → · · · → opkr and opjo where the combined preconditions of the
operations in the sequence opir → · · · → opkr satisfy the preconditions of opjo.
In this case, the postconditions of the participating subsequent operations
of opir are also completely satisfied by opjo, i.e., compSatisfiespo(Post(op

j
o),

Post(opxr)) holds true for every requested operation opxr in the requested
operation sequence. Similar to Scenario 1, this n : 1 operation correspon-
dence can be further extended with some subsequent requested operations

124

6.3. OPERATION MATCHING

in the invocation sequence if their postconditions are also satisfied by opjo.

n : 1 operation correspondence (Scenario 3)

.

.

.

Protr
op1r

opir

.

.

.

opkr

.

.

.

Proto
op1o

opjo

.

.

.

n : 1

.

.

.

opnr

opmo

Figure 6.8: A Diagram-
matic Representation for
Scenario 2 of n : 1 Opera-
tion Correspondence

This scenario can be better explained
with the help of an example shown in
Fig. 6.9. In this example, the requester
requires to validate the payment credentials
of the user through validatePaymentCreden-
tials(). The requirements specified in this
requested operation are completely satisfied
by the offered operation payForBooking(), i.e.,
compSatisfiespo(Post(payForBooking()),
Post(validatePaymentCredentials())) holds
true. But satisfiespr(Pre(validate-
PaymentCredentials()),Pre(payFor-
Booking())) does not hold true because
payForBooking() also requires a HotelBooking

object and its link to User while payment,
which is not offered in the preconditions of
validatePaymentCredentials().

In this case, a 1 : 1 correspondence is not
possible between the requested and the offered
operation because although the offered opera-
tion satisfies the postconditions of the requested
operation but its preconditions are not satisfied. These are satisfied by a sub-
sequent operation in the requester invocation sequence payForReservation(),
which offers a HotelBooking object linked to User in its preconditions. In
this case, the postconditions of payForReservation() are also completely sat-
isfied by the offered operation payForBooking(). Hence, a n : 1 operation
correspondence can be defined between validatePaymentCredentials() →
payForReservation() and payForBooking(). On further investigation, it
is deduced that the postconditions of next requested operation in the in-
vocation sequence generateReceipt() are also satisfied by payForBooking().
Consequently, the requested operation sequence in the determined n : 1
operation correspondence is further extended.

Here it is worth mentioning that the n : 1 operation correspondence
in the given scenario can be termed as an exceptional case of an operation
correspondence. This is because although such an operation correspondence
can be determined during operation matching process during service discov-
ery phase but at the run time, its invocation can lead to a possible deadlock
situation. On one hand, the invocation of the offered operation opjo is not
possible until all its preconditions are satisfied through the invocation of

125

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

n : 1 Operation Correspondence

0

Example Scenario 2

Figure 6.9: n : 1 Operation correspondence Example for Scenario 2

the corresponding requested operations in the sequence opar → · · · → opkr .
On the other hand, one requested operation in the sequence can only be in-
voked after its predecessor’s invocation is successful and its postconditions
are satisfied.

In such a situation, the operation correspondence determined at design
time cannot be invoked successfully at runtime. A possible solution is that
after the operation matching process is complete, the service requester can
be prompted by OTF provider to deal with such exceptional operation cor-
respondences by restructuring its request such that all the preconditions
of the offered operation opjo are available to it before its invocation. Such
a restructuring leads to an n : 1 operation correspondence conforming to
scenario 1.

For instance, in the example operation correspondence, the requester
can be prompted to ask if he can restructure the request and also pro-
vide a HotelBooking object and its link to User in the preconditions of
validatePaymentCredentials(). If this is possible, the determined operation
correspondence can also be invoked successfully at runtime.

In the next section, we will give the formal definition for a n : 1 operation
correspondence encompassing these two scenarios.

126

6.3. OPERATION MATCHING

Definition for n : 1 Operation Correspondence

Similar to the definition of a 1 : 1 operation correspondence given in
Sec. 6.3.1, we define a n : 1 operation correspondence as follows:

Definition 7 (n : 1 Operation Correspondence). Given the following:

- A request r;

- An offer o;

- A requested operation sequence seqr in r represented as opir → · · · →
opkr with visual contracts Li

r → Ri
r , · · · , Lk

r → Rk
r ;

- An offered operation opjo in o with visual contract Lj
o → Rj

o.

(seqr , opjo) is termed as a n : 1 correspondence, if there exists an element
correspondence corr (according to Def. 6) with the following properties:

P1: ∀y ∈ Lj
o ∃x ∈

k⋃
p=i

Lp
r : x corr y, i.e., for every element in Lj

o there is

a corresponding element in
k⋃

p=i
Lp
r;

P2: ∀x ∈
k⋃

p=i
Lp
r \ Rp

r ∃y ∈ Lj
o \ Rj

o : x corr y, i.e., for every element in

k⋃
p=i

Lp
r meant to be deleted by the operations in opir → · · · → opkr , there

is a corresponding element that is indeed deleted by opjo;

P3: ∀x ∈
k⋃

p=i
Lp
r ∩ Rp

r ∃y ∈ Lj
o ∪ Rj

o : x corr y ⇒ y ∈ Lj
o ∩ Rj

o, i.e., every

element in Lj
o that corresponds to an element meant to be preserved by

operations in opir → · · · → opkr is indeed preserved by opjo;

P4: ∀x ∈
k⋃

p=i
Rp

r \ Lp
r ∃y ∈ Rj

o \ Lj
o : x corr y, i.e., for every element in

k⋃
p=i

Rp
r meant to be created by the operations in opir → · · · → opkr , there

is a corresponding element that is indeed created by opjo.

127

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

We will explain the definition of a n : 1 correspondence with the help
of two examples shown in Fig. 6.7 and Fig. 6.9, which represent the two
different scenarios of n : 1 operation correspondence mentioned earlier.

According to Def. 7, opir is the first operation in the given requested
operation sequence whose postconditions are completely satisfied by opjo,
i.e., compSatisfiespo(Post(op

i
r), Post(op

j
o)). On the other hand, it may

satisfy some or all preconditions of opjo.

In the first scenario of n : 1 correspondence shown in Fig. 6.7, check-
Availability() acts as opir in the seqr = checkAvailability()→ viewDetails().
P1 specifies that for every element in the preconditions of the offered oper-
ation, there is a corresponding element in the preconditions of an operation
in the operation sequence opir → · · · → opkr . For the example under consid-
eration, for cp:User in the preconditions of offered operation, there is a cor-
responding element cr:User in the preconditions of opar . P2 is trivial in this
case as no elements are deleted by any operation in seqr. P3 specifies that ev-
ery element in the preconditions of the offered operation that corresponds to
some element preserved by any operation in seqr is also preserved by the of-
fered operation. cp in the preconditions of searchRoom() corresponds to the
preserved element cr in checkAvailability() and is indeed preserved. P4 spec-
ifies that for every element created by any operation in seqr, there is a corre-
sponding element created by the offered operation. In the given example, for
every element created by operations in checkAvailability()→ viewDetails(),
there is indeed a corresponding element created by searchRoom(). Based on
this, it can be deduced that a corr comprising of corresponding elements
exists that satisfies P1,...,P4 and hence there is a n : 1 operation correspon-
dence of the form (checkAvailability()→ viewDetails() , searchRoom()).

For the example in Fig. 6.9, validatePaymentCredentials() represents
opir in seqr and the later operation payForReservation() participates to sat-
isfy the preconditions of payForBooking(). Additionally, the postconditions
of next requested operation in the sequence generateReceipt() is also sat-
isfied by payForBooking(). Satisfying P1, for the elements in the precon-
ditions of payForBooking(), there are corresponding elements in the com-
bined preconditions of requested operation sequence. P2 is trivial as there
are no elements deleted by any operation in opir → · · · → opkr . Satisfy-
ing P3, cp:User, hbp:HotelBooking, and pp:PaymentMode in precondi-
tions of payForBooking() corresponding to preserved elements in the re-
quested operations are also preserved by payForBooking(). Similarly, P4

concerning the creation of the elements is also satisfied. Hence, there
is a n : 1 operation correspondence depicting scenario 2 of the form

128

6.3. OPERATION MATCHING

(validatePaymentCredentials()→ payForReservation()→ generateReceipt()
, payForBooking()).

Apart from the different scenarios and the structure of n : 1 operation
correspondence, a strategy is also required to determine such correspon-
dences between the requested and offered operations. In the next section, we
specify our n : 1 operation matching algorithm, which allows to determine
an offered operation corresponding to a sequence of requested operations
leading to valid n : 1 operation correspondences conforming to Def. 7.

n : 1 Operation Matching Algorithm

Our n : 1 operation matching algorithm is specified in Listing 2. As in-
put, it takes the requested operation opir and the offered operation opjo with
which opir has a 1 : 1 operation correspondence or where such a 1 : 1 opera-
tion correspondence is not possible according to the situation in scenario 2.
Additionally, it takes as input the end-to-end invocation sequence InSeqr in
the requester Protocol. As output, it returns a possible n : 1 correspondence
Corr between a requested operation sequence containing opir and the offered
operation opjo.

For the example in Fig. 6.7, after a 1 : 1 correspondence be-
tween checkAvailability() of HRS and searchRoom() of Hotel X is de-
tected, n : 1 operation matching algorithm can be initiated for the
requested and offered operation. According to our particular sce-
nario, the requester protocol has a single end-to-end invocation se-
quence checkAvailability() → viewDetails() → makeReservation() →
addFeature()→ searchF light()→ bookF light()→ makePayment().

The algorithm in Listing 2 works as follows:

Step ¬ Seqresult is initiated to represent the requested operation sequence
that is built gradually during the course of this algorithm and has a
n : 1 operation correspondence with the offered operation opjo. For
the requested operation opir, its postconditions are completely satis-
fied by opjo. Therefore, opir is the first requested operation added to
Seqresult. For the example in Fig. 6.7, checkAvailability() becomes the
first operation of Seqresult as it has a 1 : 1 correspondence with search-
Room(). Additionally, a variable PreCheck is initiated to track the
satisfied preconditions of the offered operation opjo. Initially, it con-
tains the preconditions of first requested operation under consideration
opir. PreSatisfied is used to build the sequence of subsequent oper-
ations of opir whose combined preconditions satisfy the preconditions

129

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Listing 2: Algorithm for n : 1 operation matching between a requested
operation sequence from InSeqr including opir and an offered operation
opjo

Input: Offered Operation opjo
Input: Requested Operation opir
Input: End-to-End Invocation Sequence InSeqr in requester’s Service

Protocol
// Protr = op1r → ...→ opir → ...→ opnr
Output: An operation Correspondence Corr

nToOneMatching(opir, InSeqr, op
j
o)

Seqresult = opir; // Step ¬

PreCheck = Pre(opir);
PreSatisfied = null;
Corr = null;
opx = InSeqr.nextOp(opir);

while (! satisfiespr(PreCheck , Pre(opjo)) ∧ (opx! = null)) do
// Step

if compSatisfiespo(Post(opjo) , Post(opx) then // Step ®
PreSatisfied = PreSatisfied+ opx;
PreCheck = PreCheck ∪ Pre(opx);

opx = InSeqr.nextOp(opx);

end
else

Exit; // Step ¯
end

end
if satisfiespr (PreCheck , Pre(opjo)) then // Step °

Seqresult = Seqresult + PreSatisfied;
while (compSatisfiespo(Post(opjo) , Post(opx)) ∧ (opx! = null))
do // Step ±

Seqresult = Seqresult + opx;

opx = InSeqr.nextOp(opx);

end

end
if Seqresult.HasMultOps() then // Step ²

Corr = createNTo1Correspondence(Seqresult , opjo);
end
return Corr; // Step ³

end

130

6.3. OPERATION MATCHING

of opjo. Corr represents the operation correspondence resulting from
the operation matching. opx tracks the currently traversed requested
operation in the invocation sequence.

Step Next, the invocation sequence InSeqr is traversed through nextOp()

until either PreCheck satisfies the preconditions of opjo or the invoca-
tion sequence ends. For the example in Fig. 6.7, further traversal is
not required as PreCheck already satisfies the preconditions of search-
Room(). However, in Fig. 6.9, validatePaymentCredentials() does not
satisfy preconditions of payForBooking(). Therefore, the traversal
starts from payForReservation().

Step ® If the postconditions of the traversed requested operation opx are com-
pletely satisfied by opjo, then it is added to the sequence PreSatisfied.
PreCheck is updated to include the preconditions of the traversed
requested operation. Additionally, the next operation in the invoca-
tion sequence is selected for the next iteration. For the given exam-
ple, payForReservation() is added to PreSatisfied and PreCheck is
updated to contain the combined preconditions of validatePayment-
Credentials() and payForReservation(). The next operation to be tra-
versed is generateReceipt(). As PreCheck built so far satisfy the pre-
conditions of payForBooking(), further traversal is not carried out.

Step ¯ If for a traversed requested operation, its postconditions are not sat-
isfied by opjo, a valid PreSatisfied cannot be built and hence further
traversal is stopped.

Step ° If the PreCheck built so far satisfies the preconditions of opjo, the
invocation sequence can be further traversed to check if the post-
conditions of any further requested operations are also satisfied by
opjo. In this case, Seqresult, which so far contains opir is com-
bined with PreSatisfied to create the requested operation sequence
whose postconditions are completely satisfied by opjo. At this step,
Seqresult contains checkAvailability() for the example in Fig. 6.7 and
validatePaymentCredentials()→ payForReservation() for the example
in Fig. 6.9.

Step ± InSeqr is traversed further until all the subsequent operations whose
postconditions are satisfied by opjo are added to Seqresult. Af-
ter this step, Seqresult contains checkAvailability() → viewDetails()
for the example in Fig. 6.7 and validatePaymentCredentials() →
payForReservation()→ generateReceipt() for the example in Fig. 6.9.

131

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Step ² If an operation sequence Seqresult could be determined that comprise
of requested operations other than opir, then an n : 1 correspondence
Corr is created through createNTo1Correspondence().

Step ³ The determined n : 1 correspondence is returned as an output of the
algorithm, which will be empty if no valid Seqresult is determined.

In the given case, the n : 1 operation matching algorithm success-
fully maps checkAvailability() → viewDetails() of HRS to searchRoom()
of Hotel X and the resulting correspondence satisfies Def. 7. Similarly,
the proposed algorithm also determines the n : 1 correspondence between
validatePaymentCredentials() → payForReservation() → generateReceipt()
and payForBooking() shown in Fig. 6.9.

Apart from the scenarios for n : 1 operation correspondence, there are
also certain scenarios where a 1 : n operation correspondence may be es-
tablished between the service request and the offer. In the next section, we
will describe those scenarios and discuss in detail our strategy to determine
such 1 : n operation correspondences.

.

.

.

Protr
op1r

opir

.

.

.

opko

.

.

.

Proto
op1o

opjo

1 : n operation correspondence(general)

1 : n
.
.
.

opnr

opmo

.

.

.

Figure 6.10: A diagrammatic Representation of a 1 : n Operation corre-
spondence

6.3.3 1 : n Operation Matching

A 1 : n operation correspondence between a requested operation and a
sequence of offered operations can be described as a correspondence where

132

6.3. OPERATION MATCHING

the requirements specified in the requested operation are fulfilled by the
corresponding sequence of invocable offered operations whose preconditions
are satisfied. Fig. 6.10 shows a diagrammatic representation of such a 1 :
n operation correspondence between the requested operation opir and the
offered operation sequence opjo → · · · → opko .

Different scenarios for 1 : n correspondence are discussed in the next
section in detail.

Different Scenarios for a 1 : n Operation Correspondence

Similar to n : 1 operation correspondence, certain scenarios can arise while
matching the service request and offer that can lead to a 1 : n operation
correspondence. These are as follows:

.

.

.

Protr
op1r

opir

.

.

.

opko

.

.

.

Proto
op1o

opjo

1 : n operation correspondence(Scenario 1)

1 : n
.
.
.

opnr

opmo

.

.

.

Figure 6.11: A Diagram-
matic Representation for
Scenario 1 of 1 : n Opera-
tion Correspondence

Scenario 1: In contrast to the general sce-
nario presented in Fig. 6.10, Fig. 6.11 visual-
izes a particular scenario for 1 : n operation
correspondence, which arises from the situa-
tion discussed in scenario 2 in Sec. 6.3.2. This
means that a 1 : 1 correspondence is not pos-
sible between a requested operation opir and
an offered operation opko because although opko
completely satisfies the requirements specified
in opir but its invocation is not possible by opir,
i.e., compSatisfiespo(Post(op

k
o), Post(opir)) is

true but satisfiespr(Pre(op
i
r),Pre(op

k
o)) is

not true.

In this case, the postconditions of some op-
erations earlier to opko in an offered invocation
sequence, i.e., opjo → · · · → opk−1o participate
to satisfy the preconditions of opko resulting in
a 1 : n operation correspondence between opir
and opjo → · · · → opko . In this case, it is also
made sure that the operations in opjo → · · · → opk−1o are also invocable, i.e.,
their preconditions are satisfied by combining the preconditions of opir and
postconditions of the earlier offered operations in the determined operation
sequence. This scenario is explained with the help of an example given in
Fig. 6.12.

Due to different granularity levels of the service request and offer, such a
scenario can occur where the provider offers more functionality as compared
to what is required by the requester. This can lead to situations where

133

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

certain offered operations do not fulfill any requester requirements but they
have to be a part of the operation correspondences as they have created
elements that are required in order to allow invocation of the other offered
operations in the correspondence.

As seen in this example, compSatisfiespo(Post(bookRoom()),
Post(makeReservation())) as a HotelBooking is created and is linked
to the respective User and the selected RoomPackage. On the other
hand, satisfiespr(Pre(makeReservation()),Pre(bookRoom())) is not
true because in order to create the HotelBooking, bookRoom() also
requires the Facility selected by the User and his Voucher apart
from the selected RoomPackage, which are not provided in the pre-
conditions of makeReservation(). In this case, we assume that a
correspondence according to scenario 2 of n : 1 operation correspon-
dence is also not possible. Rather, these elements are created in some
earlier operations selectFacility() and getDiscountVoucher() in the of-
fered invocation sequence and are reused by bookRoom(). This results
in a 1 : n operation correspondence between makeReservation() and
selectFacility() → getDiscountVoucher() → bookRoom(). In this case,
selectFacility() and getDiscountVoucher() are a part of the correspondence
because their preconditions are also satisfied by makeReservation().

1 : n Operation Correspondence

0

1 : n Example Scenario 1

Figure 6.12: Example for Scenario 1 of 1 : n Operation correspondence

134

6.3. OPERATION MATCHING

Scenario 2: This scenario is shown in Fig. 6.13 and results from the
situation where it is not possible to establish a 1 : 1 correspondence for
a requested operation opir with any offered operation because none of the
offered operations completely satisfy the requirements specified in the re-
quested operation under consideration.

In such a situation, there is a possibility to find an offered operation opjo,
which partially satisfies the postconditions of opir, i.e. it creates or deletes
some of the elements created or deleted by opir. To this extent, this is formu-
lated as partSatisfiespo(Post(op

j
o), Post(opir)). In this case, a sequence of

subsequent offered operations opj+1
o → · · · → opko in the invocation sequence

contribute to satisfy the postconditions of opir. Similar to scenario 1, all the
offered operations in the sequence are invocable.

.

.

.

Protr
op1r

opir

.

.

.

opko

.

.

.

Proto
op1o

opjo

1 : n operation correspondence(Scenario 2)

1 : n
.
.
.

opnr

opmo

.

.

.

Figure 6.13: A Diagram-
matic Representation for
Scenario 2 of 1 : n Opera-
tion Correspondence

As a result, a 1 : n operation corre-
spondence can be established between opir and
opjo → · · · → opko , where the postconditions
of all the offered operations operations in the
sequence participate to completely satisfy the
postconditions of the requested operation. Ad-
ditionally, the preconditions of every offered op-
eration in the sequence is satisfied by combin-
ing the preconditions of the requested operation
and the postconditions of its earlier operations
in the given operation sequence.

An example for this scenario is given
in Fig. 6.13 where the postconditions of
the requested operation makeReservation()
are partially satisfied by the offered op-
eration bookRoom(), i.e., a HotelBooking

is created for the selected RoomPackage

and its respective links with User and
RoomPackage are created. This means that
compSatisfiespo(Post(bookRoom()), Post(makeReservation())) does not
hold but partSatisfiespo(Post(bookRoom()), Post(makeReservation()))
holds true.

In this case, a 1 : n correspondence can be determined between
makeReservation() and the sequence of the offered operations, i.e.,
bookRoom() → sendNotification(), as every offered operation partially sat-
isfy postconditions of the requested operation and as a result, the postcondi-
tions of the requested operation are completely satisfied. On the other hand,

135

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

1 : n Operation Correspondence

0

1 : n Example Scenario 2

Figure 6.14: Example for Scenario 2 of 1 : n Operation correspondence

the preconditions of every offered operation are satisfied by a combination
of the preconditions of the makeReservation() and the postconditions of the
earlier operations is the sequence.

.

.

.

Protr
op1r

opir

.

.

.

opko

.

.

.

Proto
op1o

opjo

1 : n operation correspondence

1 : n.
.
.

opnr

opmo

opao

.

.

.

.

.

.

Figure 6.15: A Diagram-
matic Representation for
Scenario 3 of 1 : n Opera-
tion Correspondence

For example, satisfiespr(Pre(make-
Reservation()),Pre(bookRoom())) holds true
and the preconditions of the offered operation
sendNotification() is satisfied by a combination
of the preconditions of makeReservation() and
the postconditions of bookRoom() where the
Facility linked to the booked RoomPackage
required for creating the Notification is created
by bookRoom() which additionally book certain
facilities when a room is booked.

Scenario 3: This scenario is diagram-
matically represented in Fig. 6.15 and also
results from the situation depicted in sce-
nario 2 where a 1 : 1 correspondence can-
not be established for a requested operation
opir but there is an offered operation opjo, such
that, partSatisfiespo(Post(op

j
o), Post(opir)).

However, unlike scenario 2, every offered oper-
ation in the corresponding sequence may not
partially satisfy the postconditions of the re-
quested operation. Rather, it is a part of

136

6.3. OPERATION MATCHING

the corresponding operation sequence because it enables the invocation of
some subsequent operation in the sequence through its postconditions. In
Fig. 6.15, opao in opjo → · · · → opko shows such an operation in the matched
sequence, which only participates to make the invocation of some later op-
erations possible.

In this scenario, there is also the possibility similar to scenario 1, where
the corresponding operation sequence may have to be extended backwards
to some earlier operations in the invocation sequence in order to satisfy the
preconditions of some operation in this sequence.

1 : n Operation Correspondence

0

1 : n Example Scenario 3

Figure 6.16: Example for Scenario 3 of 1 : n Operation correspondence

An example for this scenario is shown in Fig. 6.16. According to
this example, partSatisfiespo(Post(validateCredentials()), Post(make-
Reservation())) holds true and makeReservation() has a 1 : n opera-
tion correspondence to validateCredentials() → getDiscountVoucher() →
makeRoomReservation(). In this case, getDiscountVoucher() is included in
the corresponding sequence only because it satisfies some postconditions of
the subsequent operation makeRoomReservation(), i.e., it creates elements
of type Voucher, Discount and their respective links, which are used to
satisfy the preconditions of makeRoomReservation(). Here it is important
to note that like other operations in the corresponding sequence, such in-
termediate operations also have to be invocable, i.e., their preconditions

137

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

are satisfied like other operations in the sequence. In the given example,
getDiscountVoucher() becomes a part of the corresponding sequence as its
preconditions are satisfied by the preconditions of makeReservation().

For scenario 2 and 3 described above, their are certain considerations,
which are explained in detail as follows:

Firstly, an exceptional situation arises when for some element that is
preserved by the requested operation, there is a corresponding element that
is newly created in the corresponding offered operation. In this case, during
operation matching phase, if a subsequent offered operation in the sequence
requires the said element in its preconditions, it can select between the
element provided in the preconditions of the requested operation and the one
created in the earlier offered operation. However at runtime, this can lead
to a complex situation where two corresponding elements point to different
objects with different attribute values. As a result, a subsequent offered
operation that requires the said element in its preconditions has to choose
from two different objects. It can result in erroneous results at run time.
This exceptional situation can be explained with the help of an example
shown in Fig. 6.17.

1 : n Operation Correspondence

0

1 : n (exception 1)

Figure 6.17: Example for a 1 : n Operation correspondence with correspond-
ing Elements referring to different Objects at Runtime

In this case, the requested operation makeReservation() allows the User

with the Voucher and an attached Discount to book a RoomPackage with
certain Facility. In contrast, the first offered operation in the matched
sequence bookRoom() books the RoomPackage for the User and also creates
the Discount on the basis of the Voucher during the booking process. Hence

138

6.3. OPERATION MATCHING

in this case, dr:Discount in the requested operation and dp:Discount in the
offered operation point to different objects at runtime. In this case, the next
offered operation sendNotification(), which requires the Discount object and
the link between Discount and Voucher can be fulfilled by the preconditions
of bookRoom() or the newly created elements in the postconditions of send-
Notification().

In such a situation, after the operation matching process, the OTF
provider can prompt the service requester about such an exceptional 1 :
n operation correspondence. In this case, the requester can choose to adapt
its service request in order to enable the given operation correspondence
at runtime. If such an adaption is not possible, the service requester may
discard the given operation correspondence. For instance, in the given ex-
ample, the service requester can decide that instead of offering a Discount

attached to Voucher in the preconditions of makeReservation(), it can rely
on the service offer to create a Discount on the basis the Voucher and
hence, the service requester can be modified accordingly and consequently,
the determined 1 : n operation correspondence can be opted by the service
requester.

Another exceptional situation is encountered when a postcondition in
the requested operation is negated by some contradicting postconditions of
the corresponding offered operations. For instance, there can be a situation
where an element created by the requested operation has a corresponding
element created by an offered operation. However, this newly created ele-
ment may be deleted by some subsequent offered operation in the matched
sequence. This is explained with the help of an example in Fig. 6.18, i.e., a
variant of Fig. 6.17.

According to this example, the requested operation makeReservation()
specifies that while booking the RoomPackage, a Discount needs to be cre-
ated on the basis of the Voucher for the booked RoomPackage. This require-
ment is indeed fulfilled by the first operation in the corresponding offered
operation sequence, i.e., bookRoom(). However, in the next offered operation
sendNotification(), the service provider along with sending a Notification

to the User for his HotelBooking, also deletes his Voucher and the related
Discount as they are already consumed and can’t be reused for any future
booking.

In such a situation, although apparently all the postconditions of the
requested operation are satisfied by the corresponding sequence of offered
operations but in reality, some of these postconditions are later on negated
in a subsequent offered operation in the corresponding sequence. Therefore,
it is not a valid 1 : n operation correspondence and must be discarded during

139

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

1 : n Operation Correspondence

0

1 : n (exception 2)

Figure 6.18: Example for a 1 : n Operation correspondence with contradict-
ing postconditions of the offered Operations

the matching process.

Definition for 1 : n Operation Correspondence

A definition for a 1 : n operation correspondence is as follows:

Definition 8 (1 : n Operation Correspondence). Given the following:

- A request r;

- An offer o;

- A requested operation opir in r with visual contract Li
r → Ri

r;

- An offered operation sequence seqo in o represented as opjo → · · · → opko
with visual contracts Lj

o → Rj
o , · · · , Lk

o → Rk
o ;

(opir , seqo) is termed as a n : 1 correspondence, if there exists an element
correspondence corr (according to Def. 6) with the following properties:

P1: For every operation opao in seqo, ∀y ∈ La
o ∃x ∈ Li

r ∨ y ∈
a−1⋃
p=j

Rp
o \ Lp

o :

x corr y, i.e., for every element in La
o of every operation opao in seqo,

there is a corresponding element in Li
r or it is already created by an

earlier operation in the sequence opjo → · · · → opa−1o ;

140

6.3. OPERATION MATCHING

P2: ∀x ∈ Li
r \ Ri

r ∃y ∈ La
o \ Ra

o for some opao in seqo : x corr y, i.e.,
for every element in Li

r that is meant to be deleted by opir there is a
corresponding element that is indeed deleted by some operation opao in
seqo;

P3: ∀x ∈ Li
r ∩Ri

r ∃y ∈ La
o ∪Ra

o for every operation opao in seqo : x corr y
⇒ y ∈ La

o ∩ Ra
o, i.e., every element in La

o of every operation opao in
seqo that corresponds to an element meant to be preserved by opir is
indeed preserved by opao;

P4: ∀x ∈ Ri
r \ Li

r ∃y ∈ Ra
o \ La

o ∧ y /∈
k⋃

p=a+1
Lp
o \ Rp

o for some opao in seqo

: x corr y, i.e., for every element in Ri
r that is meant to be created

by opir there is a corresponding element that is indeed created by some
operation opao in seqo. However, this created element is not deleted by
some subsequent operation of opao in seqo.

We will explain the definition of a 1 : n correspondence with the help
of the example shown in Fig. 6.16. In this case, P1 specifies that for ev-
ery element in the preconditions of every offered operation in the opera-
tion sequence, either there is a corresponding element in the preconditions
of the requested operation or this is an element that is newly created by
an earlier operation in the sequence. For the example under considera-
tion, for cp:User, pmp:CreditCard, rpp:RoomPackage and their respec-
tive links in the preconditions of the operations in validateCredentials() →
getDiscountVoucher() → makeRoomReservation(), there are corresponding
elements cr:User, pmr:CreditCard, rpr:RoomPackage and the respective
links in the preconditions of makeReservation(). Additionally, vp:Voucher,
dp:Discount and their respective links in the preconditions of makeRoom-
Reservation() are created by an earlier operation getDiscountVoucher().
Hence, P1 is satisfied for the example under consideration. P2 is trivial
in this case as no elements are deleted by makeReservation(). P3 specifies
that every element in the preconditions of every offered operation in the
sequence that corresponds to some element preserved by the requested op-
eration is also preserved by the offered operation. In the given example, the
elements meant to be preserved by the requested operation are the objects
cr, cor, pmr, and rpr with their respective links. cp in the preconditions of
every offered operation in the sequence, which corresponds to the preserved
element cr in makeReservation() is indeed preserved by its constituting
offered operations. Similarly satisfying P3, elements corresponding to cor,
pmr, rpr, etc. are also preserved by their constituting offered operations. P4

141

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

specifies that for every element created by the requested operation, there is
a corresponding element created by some offered operation in the sequence
and these newly created elements are not deleted in a subsequent opera-
tion in the sequence. In the given example, for the newly created elements,
hbr:HotelBooking and its links with cr:User and rpr:RoomPackage, a
corresponding element hbp:HotelBooking and its respective links are cre-
ated in makeRoomReservation(). Hence for the given example, an ele-
ment correspondence exists, which satisfies the properties specified in Def. 8
and there is a valid 1 : n correspondence between makeReservation() and
validateCredentials()→ getDiscountVoucher()→ makeRoomReservation().

In the next section, we describe our 1 : n operation matching algorithm
which determines a sequence of offered operations that matches a given
requested operation leading to a 1 : n operation correspondence.

1 : n Operation Matching Algorithm

Listing 3: Algorithm catering different Scenarios for 1 : n Matching
between a Requested Operation opir and an offered operation sequence
in Proto

Input: Requested Operation opir
Input: Offered Operation opjo
// compSatisfiespo (Post(opjo) , Post(opir))
Input: The offered Service Protocol Proto
Output: A resulting operation Correspondence Corr

oneToNMatching(opir, op
j
o, P roto)

Corr = null;
if opjo! = null then Corr = FirstScenarioMatching(opir, op

j
o, P roto) ;

else Corr = SecondScenarioMatching(opir, P roto) ;
return Corr;

end

Our 1 : n matching algorithm is specified in Listing 3 and is invoked if one
of the situations explained in the scenarios is encountered. As input, it takes
the requested operation under consideration opir and an offered operation
opjo, which completely satisfies the postconditions of opir . Additionally, it
takes the offered service protocol Proto as input. As output, it returns
Corr, i.e., a 1 : n correspondence between opir and an offered operation
sequence in Proto, where the preconditions of every offered operation in the

142

6.3. OPERATION MATCHING

Listing 4: Algorithm for Scenario 1 for 1 : n Matching between a
Requested Operation opir and an offered operation sequence in Proto

Input: Requested Operation opir
Input: Offered Operation opjo
// compSatisfiespo (Post(opjo) , Post(opir))
Input: The offered Service Protocol Proto
Output: A resulting operation Correspondence Corr

FirstScenarioMatching(opir, op
j
o, P roto)

Corr = null;
InSeqo = null;
Seqresult = opjo;
while InSeqo = Proto.nextInvSeq() do // Step ¬

if InSeqo.contains(opjo) then
Earlier = extendToEarlierOps(opjo, op

j
o, P re(op

i
r), InSeqo);

Seqresult = Earlier + Seqresult;
if Seqresult.HasMultOps() then

Corr = create1ToNCorrespondence(opir , Seqresult);
Exit;

end

end

end
return Corr;

end

143

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

sequence are satisfied by opir or its earlier operations in the sequence and
the postconditions of opir are completely satisfied by the offered operation
sequence.

As seen in the Listing 3, the algorithm is further subdivided into two
sub-algorithms that cater to different scenarios of 1 : n operation correspon-
dence. If some opjo completely satisfies the postconditions of opir then a 1 : n
operation correspondence according to scenario 1 might be possible, which
is determined through Listing 4. Here we briefly explain, how it works.
Every end-to-end invocation sequence InSeqo in the offered protocol Proto
is considered and if opjo occurs in InSeqo then extendToEarlierOps() is
invoked to determine any possible sequence of earlier operations from opjo
in the invocation sequence InSeqo whose postconditions can be combined
with preconditions of opir to satisfy the preconditions of opjo. The working
of extendToEarlierOps() will be explained in more detail later. If such se-
quence of earlier operations Earlier exists then matching offered operation
sequence Seqresult is created by combining Earlier to opjo. This means that
a 1 : n correspondence is possible between opir and Seqresult. Such a 1 : n op-
eration correspondence is created through create1ToNCorrespondence().
As a valid 1 : n correspondence is already found for opir, further traversal
the offered protocol Proto is also terminated at this point.

Similarly, Listing 5 is invoked to determine a 1 : n operation corre-
spondence according to scenario 2 and 3, if no offered operation completely
satisfies the postconditions of opir and hence opjo is null. As an example for
such a 1 : n operation matching, we consider a scenario from our running ex-
ample shown in Fig. 6.16. In this case, there is no offered operation of HotelX
that completely satisfies the requirements specified in the requested opera-
tion makeReservation() of HRS. Hence, 1 : n operation matching algorithm
has to be invoked to determine any possible 1 : n operation correspondence
according to scenario 2 or 3. For the example under consideration, opjo is
null and the sub-algorithm in Listing 5 is invoked, which takes the requested
operation opir and the offered service protocol Proto as input and returns
any possible 1 : n operation correspondence as output.

The algorithm in Listing 5 works as follows:

Step ¬ At the start, Corr, InSeqo, Seqresult as variables are initiated for the
resulting operation correspondence, the traversed invocation sequence
in the protocol and the resulting operation sequence, respectively. In
order to match the requested operation opir to an operation sequence
in the offered protocol Proto, every end-to-end operation invocation

144

6.3. OPERATION MATCHING

Listing 5: Algorithm for Scenario 2 and 3 for 1 : n Matching between
a Requested Operation opr and an offered operation sequence in Proto

Input: Requested Operation opir
Input: The offered Service Protocol Proto
Output: A resulting operation Correspondence Corr

SecondScenarioMatching(opir, P roto)
Corr = null;
InSeqo = null;
Seqresult = null;
while InSeqo = Proto.nextInvSeq() do // Step ¬

opstart = InSeqo.firstOp();
for opstart= InSeqo.nextTraversableOp(opstart) do

if partSatisfiespo(Post(opstart) , Post(opir)) then
if satisfiespr(Pre(opir) , Pre(opstart)) then
Seqresult = opstart; // Step
else

Earlier =
extendToEarlierOps(opstart, opstart, P re(op

i
r), InSeqo);

Seqresult = Earlier + opstart;

end
if Seqresult! = null then // Step ®

Corr = matchFurther(opir, opstart, InSeqo, Seqresult);
if Corr! = null then // Step 11

Exit;
end

end

end

end

end
return Corr; // Step 12

end

145

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Listing 6: A function that further extends the matched operation se-
quence Seqresult from the matched offered operation opstart in the in-
vocation sequence InSeqo and creates a possible correspondence Corr

Input: Requested Operation opir
Input: The traversed invocation sequence InSeqo
Input: The matching offered operation sequence built so far Seqresult
Input: The offered operation to start further matching opstart
Output: A resulting operation Correspondence Corr

matchFurther(opir, opstart, InSeqo, Seqresult)
Corr = null;
Earlier = null;
opx = InSeqo.nextOp(opstart); // Step ¯

PreCheck = Pre(opir);
PostCheck = Post(opstart);
for every op in Seqresult do

PreCheck = combinePre(PreCheck , Post(op));
end

while (!compSatisfiespo(PostCheck , Post(opir))
∧ (opx! = null)) do // Step °

if (!satisfiespr(PreCheck , Pre(opx))) then // Step ±
Earlier = extendToEarlierOps(opx , Seqresult.firstOp(),
PreCheck , InSeqo);
Seqresult = Earlier + Seqresult;
if Earlier == null then // Step ²

Seqresult = null;
Exit;

end

end
else if (contradicting (opir, PostCheck , opx)) then // Step ³

Seqresult = null;
Exit;

end
Seqresult = Seqresult + opx; // Step ´

PreCheck = combinePre(PreCheck, opx);
PostCheck = combinePost(PostCheck , Post(opx));
opx = InSeqr.nextOp(opx);

end
if (! compSatisfiespo(PostCheck , Post(opir))) then
Seqresult = null; // Step µ

else Corr = create1ToNCorrespondence(opir , Seqresult) ;
return Corr

end

146

6.3. OPERATION MATCHING

sequence InSeqo in Proto is traversed. For the invocation sequence
under consideration InSeqo, every next operation opstart is a candi-
date as the potential first operation of the resulting operation sequence
Seqresult if it partially satisfies the postconditions of opir. In this case,
nextTraversableOp() makes sure that opstart is the operation that
has not be traversed and checked for matching in an earlier iteration
so far. This aspect will be clarified in more detail later. In our given
example, we assume that the first traversed invocation sequence in
the provider protocol is searchRoom() → validateCredentials() →
giveDiscountV oucher() → makeRoomReservation() → notifyPer-
Email(). In this case, validateCredentials() is the first operation,
which partially satisfies the postconditions of the makeReservation(),
i.e., the credentials for the provided CreditCard are validated and as
a valid CreditCard for the Client, a link is created between the two.

Step If the preconditions of opstart are satisfied by opir, it becomes the
first operation of the resulting sequence. For instance in the given
example, the preconditions of validateCredentials() are satisfied by
makeReservation(). Otherwise, some operations earlier to opstart in
InSeqo can participate to satisfy the preconditions of opstart, i.e.,
the elements created in some earlier operations are used in opstart.
To determine such a sequence of operations Earlier, a function
extendToEarlierOps() traverses the InSeqo from opstart backwards.
In case such a sequence of earlier offered operations Earlier exists, it
becomes part of the offered operation sequence Seqresult.

Step ® At this point, Seqresult is either empty or it contains an offered opera-
tion opstart that partially satisfies the postconditions of the requested
operation opir and its preconditions are satisfied by combining the pre-
conditions of opir and earlier offered operations in Seqresult. In case
Seqresult is empty, it means that a matching operation sequence cannot
be built starting from opstart and the next operation in InSeqo that
partially satisfies the postconditions opir has to be considered. Any
further matching will only be carried out if the Seqresult contains an
opstart whose preconditions are satisfied.

In order to further build the resulting operation sequence Seqresult
and create resulting 1 : n operation correspondence, function
matchFurther() is called, which takes as input the requested oper-
ation opir, the traversed invocation sequence InSeqo, the matched op-
eration sequence built so far Seqresult, the offered operation opstart in

147

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

InSeqo that partially satisfies the preconditions of opir and from where
further extension of Seqresult has to start. Here, we explain how this
function carries out further matching.

Step ¯ matchFurther() starts by initiating PreCheck and PostCheck, which
are two variables that track the stepwise satisfaction of the precondi-
tions of the currently-traversed offered operation and the postcondi-
tions of opir. Initially, PreCheck only contains the preconditions of opir
and the PostCheck contains the postconditions of the first offered oper-
ation opstart that partially satisfies the postconditions of opir. However,
as the preconditions of every subsequent matched offered operation in
the sequence is satisfied through a combination of preconditions of
opir and postconditions of the earlier operations, PreCheck needs to
be updated accordingly with the postconditions of the operations in
Seqresult.

For this purpose, special operator combinePre is used, which updates
the PreCheck by combining it with newly created element in the post-
conditions of the offered operations in the matched sequence Seqresult.
For the given example, PreCheck is updated by combining its existing
elements, i.e., the preconditions of makeReservation() to the newly
created elements in the postconditions of validateCredentials(). As a
result, in addition to the existing elements, such as, the objects of type
User, CreditCard, PriceStructure, and RoomPackage and a link be-
tween RoomPackage and PriceStructure, PreCheck is updated by
adding a link between the objects of User and CreditCard.

Step ° With the operation next to opstart as the starting operation, the
InSeqo is iterated until either the postconditions of opir are completely
satisfied or the offered path ends. In the example, after the addition of
validateCredentials() to the matched sequence, further traversal starts
from giveDiscountVoucher().

Step ± Every traversed offered operation opx is a candidate to be added
to the matched sequence if it can be invoked in the given circum-
stances, i.e., its preconditions can be satisfied through PreCheck. If
this is not the case, there can be a possibility that the matched se-
quence Seqresult could be extended backwards with some earlier op-
eration in InSeqo to satisfy preconditions of opx. For this purpose,
extendToEarlierOps() traverses InSeqo backwards starting from the
first operation in Seqresult to determine a sequence of earlier opera-
tions as Earlier whose postconditions can be combined with PreCheck

148

6.3. OPERATION MATCHING

to satisfy the preconditions of opx. The resulting Earlier is com-
bined with Seqresult. In the given example, the preconditions of give-
DiscountVoucher() are satisfied by PreCheck and no backward exten-
sion of Seqresult is required at this point.

Step ² In case where PreCheck does not satisfy the preconditions of opx and
there is no possible backward extension Earlier that can contribute
to satisfy the preconditions of opx, Seqresult cannot be constructed
further in this case. This means that for the particular opstart under
consideration, Seqresult could not be constructed to form a 1 : n opera-
tion correspondence between opir and Seqresult. Therefore, the traver-
sal through the function matchFurther() has to be stopped and the
SecondScenarioMatching() has to move on to the next traversable
opstart in InSeqo, which partially satisfies the postconditions of opir and
starts constructing Seqresult again. By traversable opstart we mean
that the algorithm will skip the operations in InSeqo that have al-
ready been considered and added to Seqresult in the last iteration and
through InSeqo.nextTraversableOp(), an opstart will be selected that
has not been traversed so far. This avoids redundant traversal of those
parts of the invocation sequence that have already been considered for
matching and do not require to be matched again in the next iteration.

Step ³ As explained earlier and specified in P4 in Def. 8, any postconditions
of an offered operation in the matched sequence must not contradict
with some postconditions of the requested operation, i.e. it should
not negate some requested postconditions that are already satisfied by
some earlier operations in the matched sequence. In the algorithm,
this is checked through the function contradicting(), which checks
if the offered operation under consideration opx contradicts with opir
in the sense that it negates some of its postconditions already satisfied
by PostCheck, i.e., the variable to track the satisfied postconditions
of opir. An example for such a contradiction has already been dis-
cussed in detail with the help of the example shown in Fig. 6.18. If
contradicting() holds true, then Seqresult cannot be constructed fur-
ther for opstart and hence the traversal has to be started anew from
the next traversable operation in InSeqo.

Step ´ Once it is determined that the preconditions of the offered operation
under consideration opx can be satisfied either by the PreCheck con-
structed so far or through the participation of some earlier operations,
i.e., Earlier, this means that Seqresult can be updated by extending

149

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

it backwards with Earlier and further extending it with opx. Addi-
tionally, PreCheck is updated by combining it with the postconditions
of opx. Similarly, PostCheck is also updated by further adding the
postconditions of opx to it. Additionally, the operation next to opx
in InSeqo is selected for further traversal and further construction of
Seqresult.

For the given example, giveDiscountVoucher() is added to the matched
sequence Seqresult, which already contains validateCredentials() be-
cause its preconditions are satisfied by PreCheck constructed so far.

After giveDiscountVoucher(), next traversed operation is makeRoom-
Reservation(). The preconditions of this offered operation are indeed
satisfied by PreCheck. In this case, some elements in its precondi-
tions, such as, the objects of type Voucher, Discount and their re-
spective links are satisfied by the newly created element in the earlier
operation in the sequence giveDiscountVoucher(). As a result, make-
RoomReservation() is added to Seqresult. Additionally, makeRoom-
Reservation() also satisfies the postconditions of makeReservation()
that remain to be satisfied, e.g., creation of object of HotelBooking

type and link between User and HotelBooking objects, etc.

Step µ During the traversal, if the postconditions of opir are not completely
satisfied so far and the end of the invocation sequence is reached, this
means that a valid Seqresult could not be found that can lead to a 1
: n operation correspondence between opir and Seqresult. In this case,
Seqresult has to be emptied so that its construction starts afresh for the
next traversed invocation sequence in Proto. Otherwise, if the post-
conditions of opir are completely satisfied, a 1 : n correspondence is cre-
ated between the requested operation opir and the matched sequence of
offered operations Seqresult, which is returned as a valid result. In our
example, after the traversal of InSeqo, the found 1 : n operation cor-
respondence for makeReservation() is validateCredentials() → give-
DiscountV oucher()→ makeRoomReservation(). The resulting 1 : n
correspondence is returned by the matchFurther() function.

Step 11 In SecondScenarioMatching(), it is checked that if the returned cor-
respondence from matchFurther() is a valid 1 : n operation corre-
spondence, then the further traversal of Proto is not required and has
to be stopped.

Step 12 At the end of the algorithm, the determined correspondence is returned

150

6.3. OPERATION MATCHING

Corr, which either contains a valid 1 : n operation correspondence for
the requested operation under consideration opir or it is null if no
matching offered operation sequence in Proto could be found.

The function extendToEarlierOps() is specified in Listing 7. It takes
as input the offered operation under consideration opo whose preconditions
are not satisfied by the PreCheck, which is constructed gradually during 1
: n matching to satisfy the preconditions of the matched offered operations.
Therefore, it takes the invocation sequence under consideration InSeqo as
input and backtracks it from the offered operation opfirst in InSeqo that
represents the starting point of the matched operation sequence. As an
output, it returns any possible operation sequence of the earlier operations
result, whose preconditions can be combined with PreCheck to satisfy the
preconditions of opo.

As an example consider Fig. 6.12, where the offered operation book-
Room() completely satisfies the postconditions of the requested operation
makeReservation(). However, as the preconditions of bookRoom() are not
satisfied by makeReservation(), so earlier operations in the offered invocation
sequence have to be considered to satisfy the preconditions of bookRoom().
A step by step description of extendToEarlierOps() in the context of this
example is as follows:

Step ¬ A variable Pre is initiated with PreCheck to track the satisfied pre-
conditions of of opo. For the given example, there is only one operation
in the matched sequence so opo and opfirst point to the same operation
bookRoom(). PreCheck at this point only contains the preconditions
of the requested operation makeReservation(). Additionally, the back-
ward traversal is started from the operation previous to opfirst in the
invocation sequence InSeqo. For the given example, this traversal
starts from giveDiscountVoucher(). result represents the resulting op-
eration sequence of the earlier operations that is built as a result of
backward traversal.

Step This backward traversal is done to the point when either the precon-
ditions of opo are completely satisfied by the variable Pre or the start
of the invocation sequence is reached. For every traversed operation
opx, Pre is updated with the postconditions of opx using combinePre

operator discussed earlier. Additionally, opx is added to result. For
the given example, Pre is updated to contain the newly created el-
ements by giveDiscountVoucher(), i.e., objects of type Voucher and
its link to User. Additionally, giveDiscountVoucher() is added to the

151

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Listing 7: A Function that backtracks an offered invocation sequence
InSeqo from a particular operation opfirst to determine any earlier
operations that can contribute to satisfy preconditions of an offered
operation opo under consideration

Input: Offered Operation under consideration opo
Input: Operation from where the backtracking starts opfirst
Input: variable used to track the satisfied preconditions so far preCheck
Input: The Offered Invocation Sequence under consideration InSeqo
Output: A resulting operation sequence result from InSeqo

extendToEarlierOps(opo, opfirst, preCheck, InSeqo)
Pre = preCheck; // Step ¬ opx = InSeqo.previousOp(opfirst);
result = null;

while (! satisfiespr(Pre , Pre(opo))) ∧ (opx! = null) do // Step
Pre = combinePre(Pre, Post(opx));
result = opx + result ;
opx = InSeqo.previousOp(opx);

end
if satisfiespr(Pre , Pre(opo)) then // Step ®

matched = true;
op = result.firstOp();
for op=result.nextOp(op) do

if ! satisfiespr(Pre , Pre(op)) then // Step ¯
matched = false;
Exit;

end

end
if matched then // Step °

preCheck = Pre;
return result;

end

end
else return null ;

end

152

6.3. OPERATION MATCHING

resulting sequence result. The inclusion of giveDiscountVoucher() to
result does not completely satisfy the preconditions of bookRoom() as
an object of type Facility linked to RoomPackage is still not satisfied.
Therefore, the InSeqo is further traversed backwards to include select-
Facility() to result. At this point, the preconditions of bookRoom()
are completely satisfied and hence the traversal is terminated.

Step ® At the end of the traversal, if the preconditions of the offered operation
under consideration opo are completely satisfied by Pre, this means
that result is a sequence of the operations earlier to opfirst which
can participate to satisfy the preconditions of a subsequent offered
operation opo in the potential 1 : n correspondence. However, it has
to be checked that every operation in result is also invocable in the
given circumstances, i.e., its preconditions are satisfied by Pre built
so far. matched is initiated to notify if some operation in result is not
invocable. In the given example, result contains the offered operation
sequence selectFacility() → giveDiscountV oucher() so far. As the
Pre at this point satisfies the preconditions of bookRoom(), now it
has to be checked whether the preconditions of selectFacility() and
giveDiscountVoucher() are also satisfied by Pre.

Step ¯ result is traversed to check if the preconditions of every operation op
are satisfied by Pre. If this is not the case for an op, matched is
set to false and further traversal is stopped. This is because if an
op in result is not invocable then this means that result is not an
operation sequence that can participate in the 1 : n operation cor-
respondence. For the given example, preconditions of selectFacility()
and giveDiscountVoucher() are satisfied by Pre, which contains the
objects User and RoomPackage.

Step ° If matched is true, this means that result is a valid offered op-
eration sequence as a result of backtracking from opfirst. Hence,
PreCheck is updated with Pre and result is returned as a valid re-
sult of extendToEarlierOps(). Otherwise, a null is returned. In the
given example, result containing selectFacility() → giveDiscount-
V oucher() is returned, which participate to satisfy the preconditions
of bookRoom() in a potential 1 : n operation correspondence.

In addition to the 1 : 1, n : 1 and 1 : n operation correspondences
discussed so far, there can be situations where a n : m operation correspon-
dence may occur between the requested and offered operations. In the next
section, we describe such n : m operation correspondences in detail.

153

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

6.3.4 n : m Operation Matching

A n : m operation correspondence between a requested and an offered oper-
ation sequence can be described as a correspondence where the operations
in the offered operation sequence are invocable as their preconditions are
satisfied. In turn, these offered operations satisfy the requirements specified
in the sequence of the requested operations. Fig. 6.19 shows a diagram-
matic representation of such a n : m operation correspondence between the
requested operation sequence opir → · · · → opkr and the offered operation
opjo → · · · → oplo.

n : m operation correspondence(general)

.

.

Protr
op1r

.

.

Proto
op1o

.

opir

.

.

opjo
n : m

.

. .
.

oplo
.

.

opkr

.

.

opnr opmo

.

.

.

Figure 6.19: A diagrammatic Representation of a n : m Operation corre-
spondence

Similar to 1 : n and n : 1 operation correspondences, there are also
different scenarios where a n : m operation correspondence is possible. These
different scenarios are discussed in the next section.

Different Scenarios for a n : m Operation Correspondence

Considering different types of scenarios for the n : m operation correspon-
dences, we divide them into two broader categories, which are discussed as
follows.

Basic n : m Operation Correspondence: This category includes
the scenarios where a n : m operation correspondence results from an ex-
tension of the existing 1 : 1, 1 : n, and n : 1 operation correspondences.
Different scenarios in this category are shown in Fig. 6.20. Each row in the

154

6.3. OPERATION MATCHING

existing

1:1

1:n

n:1

(1.1) (1.2)

(1.3) (1.4) (1.5)

(1.6) (1.7)

‐

.

.

.

Protr

opir

.

.

.

Proto

opjo
.
.
.

oplo
opkr

.

.

.

Protr

opir

.

.

.

Proto

opjo

.

.

.

opkr
.
.
.

oplo

.

.

.

Protr

opir

.

.

.

Proto

opjo
.
.
.

oploopkr
.
.
.

.

.

.

.

.

.

Protr

opir

.

.

.

Proto

opjo
.
.
.

oploopkr

.

.

.

.

.

.

opmo

.

.

.

opir

opkr

.

.

.

opnr

Protr .
.
.

Proto

opjo
.
.
.

oplo

.

.

.

‐

opir
.
.
.

opkr

opnr

Protr Proto

opjo

.

.

.

oplo

.

.
.
.
.

.

.

.

opir

opkr
.
.
.

opnr

Protr

.

.

.

.

.

.

opjo

.

.

.

oplo

Proto

.

.

.

.

.

.

.

.

.

.

.
.
.

Figure 6.20: Different Scenarios of Basic n : m Operation Correspondences

table shows the different scenarios where an existing 1 : 1 , 1 : n, and n : 1
operation correspondence can be extended to a n : m operation correspon-
dence, respectively. For instance, (1.1) depicts the scenario where initially
a 1 : 1 operation correspondence is established between the requested oper-
ation opir and the offered operation opjo. However, on further investigation
it is determined that the postconditions of the next requested operation in
the invocation sequence opkr are completely satisfied by the offered operation
sequence opjo → · · · → oplo. opjo from the existing correspondence partici-
pates in the extension as it may partially satisfy the postconditions of opkr
or it may participate to satisfy the preconditions of some subsequent offered
operation in the sequence. In this case, opjo is already invocable as its pre-
conditions are satisfied in the existing 1 : 1 operation correspondence so it
does not need to be checked again. For the rest of the offered operation in
the sequence opj+1

o → · · · → oplo, there preconditions are satisfied by com-
bining the preconditions of opkr with the postconditions of earlier operations
in the offered sequence analogous to 1 : n operation matching.

Similarly, (1.4) depicts a situation where a 1 : n operation correspon-

155

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

dence is determined between opir and opjo → · · · → oplo. On further inves-
tigation, it is determined that some offered operations in the existing 1 :
n correspondence, e.g., oplo in the shown diagram can further participate
to satisfy the postconditions of the next requested operation opkr in the re-
quested invocation sequence. Hence, the existing 1 : n operation correspon-
dence is extended to a n : m operation correspondence between opir → opkr
and opjo → · · · → opmo . In this case, the postconditions of opkr are satis-
fied by the offered operation sequence oplo → · · · → opmo . Additionally, the
preconditions of oplo are already satisfied in the existing 1 : n operation cor-
respondence and the preconditions of the offered operations in the extended
sequence opl+1

o → · · · → opmo are satisfied by combining the preconditions of
opkr with the postconditions of earlier operations in the sequence.

.

.

.

Variant of 1.5

.

.

.

Proto

opjo
.
.
.

oplo

opmo

.

.

.

Protr

opir

.

.

.

opkr
.
.
.

Figure 6.21: A Variant for Scenario
1.5 of basic n : m Operation Corre-
spondence

As an example, we consider
the 1 : n operation correspon-
dence shown in Fig. 6.16 between
makeReservation() of HRS and
validateCredentials() → give-
DiscountV oucher() → make-
RoomReservation() of HotelX. On
further investigation, it is deter-
mined that the postconditions of
the subsequent requested operation
addFeature() are also partially sat-
isfied by makeRoomReservation(),
i.e., a facility fp:Facility is
created and linked to the reserved
room package rpp:RoomPackage.
The subsequent offered operation
reserveFacility() satisfies the rest of the postconditions of addFeature(),
i.e., the facility fp:Facility attached to the room package is also reserved
and hence linked to hbp:HotelBooking. Consequently, the existing 1 : n
operation correspondence can be extended to a n : m operation correspon-
dence shown in Fig. 6.22 where the postconditions of the of the requested
operation addFeature() are completely satisfied by the postconditions of the
operations in the sequence makeRoomReservation()→ reserveFacility().
Moreover, the preconditions of reserveFacility() are satisfied by combining
the preconditions of addFeature() with the postconditions of makeRoom-
Reservation(), whose newly created elements fp:Facility and its link to
hbp:HotelBooking are reused in reserveFacility().

In the scenario (1.1), (1.3), (1.4), (1.5), and (1.6) the extension of the

156

6.3. OPERATION MATCHING

existing correspondence to an n : m correspondence arise from the fact that
the offered operations in the existing correspondence participate to satisfy
the postconditions of the subsequent requested operation. However, it is
also possible that the requested operations in the existing correspondence
may play a role to extend it to an n : m correspondence. Scenario (1.2),
(1.7) and a variant of (1.5) shown in Fig. 6.21 cover such situations. For
instance, in (1.2) an existing 1 : 1 operation correspondence is extended to
an n : m operation correspondence because the preconditions of opir and
the subsequent requested operation sequence opi+1

r → · · · → opkr can be
combined to satisfy the preconditions of the subsequent offered operation
oplo. In turn, oplo satisfies the postconditions of operations in opi+1

r → · · · →
opkr . Same situation holds valid for Fig. 6.21, where an earlier 1 : n operation
correspondence is extended to a n : m correspondence because the requested
operation opir participates to satisfy the preconditions of subsequent offered
operation opmo , which satisfies the postconditions of subsequent requested
operation sequence opi+1

r → · · · → opkr . Similarly, (1.7) depicts a similar case
where some of the requested operations that are a part of the an existing n
: 1 operation correspondence participate in the same manner.

existing 1 : n Operation
Correspondence

0

VC: makeReservation

... ...

n : m Operation
Correspondence

extended to

Figure 6.22: An Example for Scenario (1.4) of n : m Operation Correspon-
dence

Fig. 6.23 gives an example for scenario (1.2). In this example, there
is a 1 : 1 operation correspondence between the requested operation
makeReservation() and the offered operation makeRoomReservation() as

157

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

it reserves a RoomPackage for a particular User. Additionally, make-
Reservation() also provides a PaymentMode for the User, which is not re-
quired by the offered operation makeRoomReservation(). However, next
offered operation sendNotification() requires a PaymentMode for the User,
which is satisfied by makeReservation(). In turn, sendNotification() satis-
fies the postconditions of the next requested operation sendConfirmation()
by creating a Notification for the HotelBooking and also deleting the
Voucher for the User as it is already consumed. As a result, a n : m
operation correspondence is established.

existing 1 : 1 Operation
Correspondence

0

n : m Operation
Correspondenceextended to

Figure 6.23: An Example for Scenario (1.2) of n : m Operation Correspon-
dence

Apart from these basic scenarios of n : m operation correspondence,
there are also some complex scenarios, which are discussed as follows.

Complex n : m Operation Correspondence: There are also certain
scenarios for n : m operation correspondence where it does not arise due
to an extension of existing operation correspondences. Rather in this case,
it is not possible to have 1 : 1, 1 : n or n : 1 correspondences among the
requested and offered operation, hence leading to n : m correspondence.

Fig. 6.24 shows different scenarios for such complex n : m correspon-
dence. Scenario (2.1) shows a situation where the postconditions of the op-
erations in the requested operation sequence opir → · · · → opkr are satisfied
by the offered operation oplo. However, in order to invoke oplo by satisfying
its preconditions, some earlier offered operations in the invocation sequence,
i.e., opjo → · · · → opl−1o have to participate. This leads to an n : m operation

158

6.3. OPERATION MATCHING

P t P t P t P t

opir

Protr.
.
.

.

.

.

Proto

opjo opir

Protr
.
.
.

.

.

.

Proto

opjo

(2.1) (2.2)

.

.

.

opkr

.

.

.

oplo

.

.

.

opkr

.

.

.

oplo

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6.24: Different Scenarios for the complex n : m Operation Corre-
spondences

correspondence between opir → · · · → opkr and opjo → · · · → oplo. The situa-
tion can be further complicated if some requested operations prior to opir are
included in the correspondence to satisfy preconditions of some operations
in the matched offered operation sequence.

Scenario (2.2) shows a situation where the postconditions of a requested
operation opkr are completely satisfied by the sequence of offered operations
opjo → · · · → oplo. However, some earlier requested operations in the se-
quence opir → · · · → opk−1r have to participate in order to satisfy the precon-
ditions of the offered operations in opjo → · · · → oplo. This leads to a n : m
operation correspondence between opir → · · · → opkr and opjo → · · · → oplo.
In this case, the situation is further complicated if the postconditions of some
subsequent requested operations are also satisfied by some offered operation
in the sequence.

An example for scenario (2.1) is shown Fig. 6.25. The requester’s re-
quirements specified in the requested operation sequence bookFlight() →
getOnlineTicket() are satisfied by the offered operation bookFlight(). How-
ever, this requested operation sequence does not satisfy the preconditions of
the offered operation in return, i.e., a FlightService linked to Flight is not
provided in the preconditions of these requested operations, which is required
for the invocation of the offered operation bookFlight(). For this purpose, an
earlier offered operation in the invocation sequence selectService() has to be
included in the operation correspondence, which creates a FlightService

and link it to Flight. This results in an n : m operation correspondence be-
tween bookFlight()→ getOnlineTicket() and selectService()→ bookFlight().

The different scenarios of basic and complex n : m correspondences
discussed in this section specify the primitive cases of n : m operation cor-
respondence. Therefore, the possibility exists that different scenarios can be
combined to have further complex scenarios for n : m correspondences. For

159

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Complex n : m Operation
Correspondence

Figure 6.25: Example for a complex n : m Operation Correspondences

instance, some further scenarios can be determined if we consider an exten-
sion of an existing n : m operation correspondence in the similar fashion as
shown for the basic n : m correspondences.

For the work in this thesis, we do not go into further details of the n : m
operation correspondence, such as, the formalized structure definition and
an n : m operation matching algorithm that encompasses different scenarios.

However, a closer look at the identified scenarios and examples for n :
m operation correspondences make it clear that these correspondences are
a combination of different features of the 1 : 1 , 1 : n, and n : 1 operation
correspondences. For instance, in scenario (1.6), the n : m operation cor-
respondence is an existing n : 1 correspondence, which is extended with a
pattern similar to a 1 : n operation correspondence. Hence, in this case, the
basic n : m operation correspondence combines the features of 1 : n and n
: 1 operation correspondence.

Therefore, we claim that on the basis of our in-depth analysis of different
scenarios for n : m operation correspondences and the proposed strategies for
1 : 1, 1 : n, and n : 1 operation matching, a formalization of the structure
and definition of a matching algorithm for n : m operation matching in
future must be achievable. For instance, an algorithm for an n : m operation
matching catering to scenario (1.6) can result from combining the 1 : n and
n : 1 operation matching algorithms.

In the next section, we describe our strategy to determine the set of all
possible operation correspondences for a particular requester.

160

6.3. OPERATION MATCHING

6.3.5 Operation Mapping Generation

On the basis of the proposed strategies for different kinds of operation cor-
respondences, our operation matching mechanism allows to determine the
requester operation mapping for a particular requester according to Def. 4,
i.e., the set of all possible operation correspondences with the set of offers
selected after the category matching.

Below, we discuss the proposed algorithm to generate the operation map-
ping for a particular requester in detail.

The algorithm for generating operation mapping is shown in Listing 8.
It takes as input the request under consideration req and the set of offers
that are selected in the category matching phase, i.e., offers. As a result,
it outputs the set of all possible operation correspondences for the requester
called requester operation mapping as OpMapr. A detailed description of
this algorithm is as follows:

Step ¬ Initially, OpMapr is initialized to be empty. InSeqr is the single in-
vocation sequence comprising the requested protocol in req. In order
to build OpMapr for req, InSeqr is traversed to match the requested
operations in the given sequence with offered operations and hence
find their possible operation correspondences.

Step Every offer o in offers is considered to determine any possible oper-
ation correspondences for the requester. For this purpose, the offered
protocol also has to be taken into account in case of 1 : n operation
correspondences. Hence, Proto represents the offered protocol in o
determined through protocol(). For instance, in the given example,
there are 4 offered services that are selected in the category matching
phase, i.e., HotelX, HotelY, FlightBooker, and PayOnline. Therefore,
in order to determine OpMapr for HRS, the operations of these 4
offered services have to be considered. In every iteration during the
traversal of requested invocation sequence InSeqr, the next traversable
requested operation, which is not traversed and hence for which there
is no correspondence determined so far is considered for matching.

Step ® For any requested operation under consideration, the most preferred
choice is to have a 1 : 1 operation correspondence with an offered
operation. Therefore, for the current requested operation opr under
consideration, the first option is to search for any possible 1 : 1 op-
eration correspondence from the operations in o determined through
operations().

161

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

Listing 8: Algorithm to determine Requester Operation Mapping
OpMapr for a requester r with request req with available offers offers

Input: Request req
Input: Set of offers offers
Output: Requester Operation Mapping OpMapr

generateOperationMapping(req , offers)
OpMapr = null; // Step ¬
InSeqr = req.InvSeq();
for o=offers.next() do // Step

Proto = o.protocol();
for opr = InSeqr.nextUnmatchedOp() do

corri=oneToOneMatching(opr , o.operations()); // Step ®
if corri != null then // Step ¯

corrj=nToOneMatching(opr, InSeqr, corri.offeredOp());
if corrj != null then OpMapr.add(corrj) ;
else OpMapr.add(corri) ; // Step °

end
else

opo = null;
opo = opx ∈ o.operations():
compSatisfiespo(opx , opr); // Step ±
corri=nToOneMatching(opr, InSeqr, opo);
if corri != null then OpMapr.add(corri) ;
else // Step ²

corrj=oneToNMatching(opr, opo, Proto);
if corrj != null then OpMapr.add(corrj) ;

end

end

end

end
return OpMapr // Step ³

end

162

6.3. OPERATION MATCHING

Step ¯ If a 1 : 1 operation correspondence is found for opr, it is possible
that it can be extended to a n : 1 operation correspondence. As de-
scribed in scenario 1 for n : 1 operation correspondence, in this case
the postconditions of some subsequent operations in the requested
invocation sequence are also satisfied by the matched offered opera-
tion. For instance, in our running example, the requested operation
checkAvailability() has a 1 : 1 correspondence to the offered oper-
ation searchRoom() of HotelX offer. On further investigation, this
correspondence can be extended to a n : 1 operation correspondence
between checkAvailability() → viewDetails() and searchRoom(). In
case where such a n : 1 operation correspondence exists, it is added
to the OpMapr.

Step ° If the determined 1 : 1 operation correspondence cannot be extended
to a n : 1 operation correspondence, it is added to the OpMapr.

Step ± If a 1 : 1 correspondence is not found for opr, the first possibility
is that there is an offered operation opo, which completely satisfies
the postconditions of the requested operation under consideration but
the preconditions of opo are not satisfied by the requested operation
opr. In this case, one option is that some subsequent operations in
the requested invocation sequence InSeqr can participate to satisfy
the preconditions of opo as described in scenario 2 for n : 1 operation
correspondence. An example for such a n : 1 operation correspondence
is shown in Fig. 6.9. Consequently, the resulting correspondence is
added to OpMapr.

Step ² If a n : 1 operation correspondence is not possible in this case, then a
1 : n operation correspondence might be possible. A n : 1 operation is
not possible because of two reasons: firstly, the preconditions of opo are
not satisfied by any subsequent operations in the requested invocation
sequence. In such a case, a 1 : n operation correspondence according
to scenario 1 might be possible where some operations earlier to opo in
the offered protocol Proto participate to satisfy preconditions of opo.

A n : 1 operation correspondence is also not possible, if no opo exists
that completely satisfies the postconditions of opr. In such a case,
there is a possibility of a 1 : n operation correspondence according to
its scenario 2 and 3. For instance, in the running example, the postcon-
ditions of the requested operation makeReservation() are not satisfied
by a single operation offered by HotelX. Instead, an offered operation

163

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

sequence validateCredentials() → giveDiscountV oucher()→ make-
RoomReservation() has to be invoked to fulfill the requirements spec-
ified in makeReservation(). The resulting 1 : n operation correspon-
dence is then added to OpMapr.

1. At the end of this operation matching process, all possible operation
correspondences for a requester’s request with candidate offers are de-
termined. The set of these correspondences, i.e., requester operation
mapping OpMapr is returned as a result.

It is important to mention here that this algorithm can be further ex-
tended in future, when the algorithms for n : m operation matching are also
defined. In this case, in each case where a 1 : 1, 1 : n and n : 1 opera-
tion correspondence is determined, it is checked whether it can be further
extended to one of the scenarios of basic n : m operation correspondences.
For instance, a determined 1 : n operation correspondence may also be ex-
tended to a n : m operation correspondence following scenario 1.3, 1.4, or
1.5 of the basic n : m operation correspondence. For the given example, the
1 : n operation correspondence between makeReservation() and validate-
Credentials()→ giveDiscountV oucher()→ makeRoomReservation() can
be extended to a n : m operation correspondence following scenario 1.4 as
shown in Fig. 6.22.

Similarly, if a 1 : 1, n : 1 or 1 : n operation correspondence is not possible
for a particular requested operation under consideration, then a complex n
: m operation correspondence might be possible.

For our running example, the operation mapping OpMapr for HRS is
shown in Fig. 6.26. It contains the mapping to 4 offered services that are
selected in the category matching phase.

As we discussed earlier, based on the the recommendations and restric-
tions for RSDL service descriptions, our operation matching mechanism as-
sume that the important parts of operation signatures, i.e., the input/output
parameters are automatically matched while matching of their behavioral
semantics. This means that the operation correspondences in the requester
operation mapping assure that the requested and offered operations in an
operation correspondence match on the basis of their structural as well as
behavioral aspects.

However as mentioned earlier, there can be rare occasions when it is in-
evitable for the service partners to specify input/output parameters for the
operations with primitive data types, i.e., XML data types as specified in
RSDL specification. In such a case, an automatic matching of these prim-
itive parameters is not possible through the proposed operation matching

164

6.3. OPERATION MATCHING

Requestor
HRS

HotelX PayOnline

makePayment()

signIn()
payDues()

generateReceipt()
signOut()
(1 : n)

checkAvailability()
viewDetails()

searchRoom()
(n : 1)

makeReservation()
addFeature()

validateCredentials()
giveDiscountVoucher()
makeRoomReservation()

reserveFacility()
(n : m)

HotelY

getAvailableRoom()
(n : 1)

reserve()
(n : 1)

Providers

‐

‐

‐

FlightBooker

getFlightOffer()
searchFlight()

giveOffer
(1 : n)

bookFlight()
getOnlineTicket()

selectService()
bookFlight()

(n : m)

‐ ‐

‐‐

‐ ‐

‐

‐

‐

‐

Figure 6.26: Operation Mapping for HRS Service Request

algorithms as these algorithms only match the objects typed over the non-
primitive types from the data model and links in the visual contracts. In
this situation, it is required that these primitive parameters in the requested
and the offered operation signatures are separately matched. To handle this
situation, our approach relies on a rather simple mechanism at the moment.

After the requester operation mapping is generated on the basis of the
given operation matching algorithms, our mechanism performs a signature
matching for each determined operation correspondence. In this direction,
it is checked that for every primitive input parameter of the offered oper-
ation(s) in the correspondence, there is a corresponding input parameter
of the same type in the comprising requested operation(s). Similarly, for a
primitive output parameter of the requested operation(s) in the correspon-
dence, there is a corresponding output parameter of the same type in the
offered operation(s). If this does not hold true, then the operation signa-
ture matching for the particular operation correspondence is not successful.
However, in such a case, our approach does not directly discard the particu-
lar operation correspondence because we claim that our elaborate operation
matching mechanism based on their behavioral semantics present a more
reliable and stronger notion of similarity. Hence, an operation correspon-
dence cannot be discarded directly on the basis of its operation signature

165

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

mismatch. The requester in this case is notified about the signature mis-
match, who in turn might consider to make some suitable changes to the
requested operation signatures accordingly. In other case, despite the op-
eration signature mismatch, the requester may still decide to maintain the
operation correspondence and proceed with it to the next stage of service
description matching. Later, after negotiation with the particular service
provider, there might be a possibility to resolve the signature mismatch.

We claim that a rather elaborate operation signature matching mecha-
nism for the primitive parameters in the requested and offered operations
can be introduced in future by doing some extension to the existing oper-
ation matching mechanism. Firstly, so far we only match these primitive
parameters on the basis of their data types. However, a semantic matching
can be enabled by defining the ontological semantics for such primitive pa-
rameters. Secondly, the operation matching algorithms that so far only rely
on the matching of the objects and links in the requested and offered visual
contracts can be extended to also consider the attributes during matching
process. In case of such an extension, there is a possibility that the oper-
ation parameters with primitive types can be mapped to the attributes in
the visual contracts and hence they can also be automatically matched while
matching of the requested and offered visual contracts.

After the requester operation mapping is achieved for a particular re-
quester, the service discovery phase is complete and the framework can
proceed to the service composition phase where the protocols in the request
and selected offers are matched and possible service compositions are deter-
mined.

6.4 Summary and Discussion

In this chapter, we presented our multi-level service discovery approach,
which takes the normalized service request as input and returns all its pos-
sible operation correspondences with the normalized service offers available
on the service market. As a result of this phase, a subset of available service
offers is determined, which is used to determine any possible service compo-
sitions satisfying the service request through protocol matching in the next
phase of the proposed approach. The multi-level approach enables a gradual
refinement of the resulting set of selected service offers.

Our service discovery approach comprise of two levels, namely, category
matching and operation matching between the request and the offers. As
category matching is not the focus of our work, we have briefly describes

166

6.4. SUMMARY AND DISCUSSION

how OTF provider develops and maintains a categorization hierarchy to
categorize the service request and the published offers in suitable categories.
Later, this hierarchy is used to match the service requests and offers on the
basis of the assigned categories.

For the operation matching level, we have proposed an operation match-
ing mechanism based on the identified requirements, which allows an elabo-
rate matching of the requested and offered operation in terms of their struc-
tural as well as behavioral specification. Additionally, it acknowledges the
granularity level heterogeneity, which can lead to complex operation corre-
spondences, such as, 1 : n, n : 1, and n : m correspondences between them.
In this direction, we identified different scenarios for each type of correspon-
dence leading to its precise structure definition. Later, we defined a set of
operation matching algorithms to determine these different types of corre-
spondences between the requested and offered operations by matching their
visual contracts. Later, these algorithms are used to generate the requester
operation mapping comprising all possible operation correspondences for a
particular request with the available offers. As a result, the service discovery
phase ends with the requester operation mapping and a subset of available
service offers, which have operation correspondences with the service request
under consideration.

As the service descriptions are defined manually by the service partners
in their independent domains, there are chances that incomplete or incorrect
service descriptions can lead to incorrect operation matching results. There-
fore, our approach allows the service requester to review the results and make
desired modifications accordingly, e.g., some service offers in the result set
may be manually discarded by the requester based on their non-functional
aspects or to select certain operation correspondences, the requester might
make changes to its request (,e.g., n : 1 operation correspondence, scenario
2). In future, we aim to develop an elaborate feedback mechanism that can
guide the requester through different causes of operation mismatches and
can provide suggestions to improve the results.

As mentioned earlier, the accuracy of the proposed mechanism can be
further enhanced in future by also taking other elements of the visual con-
tracts in account, such as, negative and positive application condition, at-
tributes, etc. This can also support a more reliable operation signature
matching mechanism if the operation parameters with primitive data types
are restricted to be a part of the respective visual contract as attributes.
Consequently, the matching of attributes in visual contract will implicitly
match those primitive parameters in operation signatures as well, which are
not elaborately matched so far. Similarly, for the simplification of the sit-

167

CHAPTER 6. MULTI-LEVEL SERVICE DISCOVERY

uation at hand, our operation matching algorithms so far do not deal with
multiple objects of a particular data type in a service description. In order to
deal with multiple objects of a data type, it has to be investigated that how
the notion of element correspondence is affected in this case. Similarly, the
cardinality of the multi-objects also have to be considered while matching
the visual contracts.

Based on the results of the service discovery phase, the service composi-
tion phase can be initiated, which is the topic of the next chapter.

168

7
Service Composition

After constructing the requester operation mapping as a result of the service
discovery phase, possible service compositions are determined in the next
phase, i.e., service composition. As input, it takes the requester operation
mapping. During the service composition phase, the service protocols of the
request and the selected offers are translated to a common semantic domain.
These translated service protocols are matched and composed using a com-
position operator and the resulting composition is analyzed to determine
any possible service compositions satisfying the service request. The output
of this phase is either a set of candidate service compositions satisfying the
service request or a failure notification with feedback about mismatches.

A detailed overview of this phase is given in Fig. 7.1, which will be
discussed in detail in the following section.

OTF Provider

Automatic Service Discovery & Composition

Protocol Translation LTS Composition

Requested + offered
LTSs

Composed
LTS

CandidateRequester

Selected
Offers Request

+ +…

Service Composition

otoco a s at o
to LTS

LTS
Composition

Composition
Analysis …Service

Compositions

q
Operation
Mapping

Figure 7.1: An Overview of the Service Composition Phase in the Proposed
Approach

169

CHAPTER 7. SERVICE COMPOSITION

7.1 Service Composition Overview

During the service composition phase, our approach relies on the match-
ing of the participating service protocols to determine any possible service
compositions.

In this direction, our first concern is that the mechanism should not only
allow a 1 : 1 match between the requested and an offered protocol rather
it should also enable a service composition through protocol composition
leading to 1 : n matching between the requested and offered protocols.

The second important concern is to resolve the linguistic heterogeneity
of the requested and the offered protocols. As mentioned in Chap. 1, SOC
enables the service partners to function in their independent domains and
one of the consequences of this independence is their linguistic heterogeneity.
In this context, as our approach deals with RSDL-based service descriptions,
the linguistic heterogeneity resolution is particularly important for the pro-
tocol composition phase. This is because the requested and offered service
protocols are specified using different sub-languages of RSDL and in order
to match and compose these protocols, it is important that their linguistic
differences are overcome and they are brought to a common representation.

Another important concern in this direction is that our operation match-
ing mechanism introduced in Chap. 6 ensure accurate service discovery by
matching the operations on the basis of their different aspects and result in
complex 1 : n , n : 1 and n : m operation correspondences. As discussed
in Chap. 2, it is important to have a combinatorial approach for the match-
ing of comprehensive service descriptions where the contents and matching
results of one aspect contributes to the matching of another aspect. Hence,
realizing such a combinatorial approach, the complex operation correspon-
dences determined earlier must be taken into account while matching the
protocols in the proposed approach.

From the discussion so far, we derived the requirements that must be
fulfilled by an elaborate protocol composition mechanism for RSDL service
descriptions. These requirements are as follows:

R1 In addition to 1 : 1 matching between the requested and offered pro-
tocols, it must allow a 1 : n protocol matching to determine possible
service compositions.

R2 It must be able to resolve the linguistic heterogeneity of the requested
and offered service protocols.

R3 It must allow the matching of the involved service protocols based

170

7.1. SERVICE COMPOSITION OVERVIEW

on complex operation correspondences resulting from the matching of
different aspects of the requested and offered operations.

In this direction, first we analyze the state of the art in the protocol
matching area to determine whether any existing approach satisfies the re-
quirements mentioned above.

7.1.1 Protocol Matching - State of the Art

Protocol Matching has been a topic of extensive research in CBSE in
past decades [166, 2, 139]. Its main focus is to enable communication
among components by checking the conformance between their behavioral
descriptions specified as protocols. With the vast body of work in this
direction, we restrict our discussion to some salient approaches that we
consider to be relevant for our work. In this context, approaches like
[92, 50, 93, 105, 142, 24, 138] particularly deal with the protocol conformance
of UML-based protocols. [92, 93] aim at defining an elaborate methodology
for consistency checking among UML-based behavioral models of a system.
In this direction, [92] conceptualizes the consistency between a sequence di-
agram that models the overall system and multiple statemachine diagrams
modeling the behavior of each individual component in a real-time systems.
For this purpose, it relies on 1 : 1 operation correspondences, which are
used to match the behavior of every individual object in the sequence di-
agram to its respective statemachine diagram. Additionally, this approach
also conceptualizes the notion of temporal consistency for real-time systems.
However, it deals with the problem on a conceptual level where the concrete
details, such as, automatic consistency checking, language heterogeneity, etc.
are missing. In their later work [50, 93], they further enhance their method-
ology by translation of sequence diagrams and statemachines to the process
algebra CSP [71] to enable their automatic consistency checking. For the
resulting processes, consistency checks are defined as CSP assertions which
are automatically verified by a model checker. Unlike [50], which checks
the consistency of communication patterns between two independent com-
ponents, Moffet et al. [105] analyze the behavior of a single component in
isolation. For this purpose, they define a 1 : n protocol matching mechanism
where the behavior of a component modeled as a single behavioral statema-
chine (BSM) is matched to the protocol specification of its ports specified
as protocol statemachines (PSMs). As all the involved statemachines share
the same set of messages, their matching is based on a 1 : 1 correspondence
between these messages. The approach translates the involved BSM and

171

CHAPTER 7. SERVICE COMPOSITION

PSMs to their formal counterparts, i.e., finite state automata (FSA), which
are later composed to be checked for certain safety and liveness properties.
[142] deals with the same problem from another perspective where the con-
formance among a BSM and PSMs is formally defined and a methodology is
presented to construct such conformant BSM for existing PSMs. However,
the question of how to match the existing BSM to PSMs is not discussed.
[24] allows a 1 : n protocol matching among the components in mechatronics
systems. In this direction, the behavior of individual components is specified
through real-time statecharts (RTSCs) using UML profile for mechatronic
systems MechatronicUML. It is assumed that a 1 : 1 communication protocol
already exists between two components based on the conformance between
their RTSCs. Such a 1 : 1 communication between two components is later
extended to a 1 : n communication between a single component and mul-
tiple components of same type. For this purpose, RTSCs of the involved
components are composed automatically using 1 : 1 communication pro-
tocol and is verified using UPPAAL1. [138] presents an approach similar
to [92, 93] where the possible interactions of the components specified as
UML collaboration diagrams are matched with the individual behavior of
the components specified as statemachines. For this purpose, the statema-
chines and collaboration diagrams are translated to a PROMELA model
and Büchi automata, respectively and Spin model checker is used to verify
the model against the automata. All these protocol matching approaches
deal with the protocol matching concept in different contexts and allow 1 :
n, n : 1 and n : m matching between protocols. Additionally, the problem of
linguistic heterogeneity is also indirectly solved by translating the protocols
to formal semantic domains. However, most of these approaches assume a
closed environment where the components share the same set of messages
leading to 1 : 1 operation correspondences. Hence, complex operation cor-
respondences are not considered.

Particularly in the context of SOC, protocol matching has been investi-
gated in detail as well. For instance, approaches like [106, 128, 29, 145, 124,
125, 107, 59, 37, 38] propose mechanisms to match the protocols for differ-
ent tasks, such as, service discovery, service composition, service replace-
ment, etc. Some of the relevant approaches have already been introduced in
Sec. 2.4.

Each of these approaches focus a certain aspect of the problem at hand.
For instance, [124, 125] allows service composition on the basis of 1 : n
matching among a requested and multiple offered service protocols specified

1http://www.uppaal.org/

172

7.1. SERVICE COMPOSITION OVERVIEW

as labeled transition systems (LTSs). However, this protocol matching is
based on 1 : 1 operation correspondences between the requested and of-
fered operations. Similarly, fairly large number of 1 : 1 protocol matching
approaches [106, 128, 145, 37, 38] rely on such simple operation correspon-
dences for this purpose. A step further in this direction is taken by ap-
proaches like [59, 29] that support a 1 : 1 matching between a requested
and an offered protocol on the basis of complex operation correspondences.
[59] claims to determine 1 : n and n : 1 operation correspondences based on
the matching and consequent splitting/merging of structural elements, such
as, input/output parameters. On the other hand, [29] additionally claims
to match behavioral semantics specified as source and target states for the
transitions in the matched LTSs, however the notion of matching states in
not elaborately defined.

As far as the resolution of linguistic heterogeneity for the service proto-
cols is concerned, only [145] is relevant. It considers the protocols specified
in different languages and translates them to a common semantic domain
before matching.

From this study of the state of the art in the area of protocol match-
ing, it becomes evident that none of the approaches completely fulfills our
requirements for a suitable protocol matching mechanism. Therefore, in the
next section, we introduce our protocol matching mechanism which aims at
meeting these requirements.

7.1.2 Our Approach

Contrary to the existing work in the protocol matching and composition
area, our service composition approach successfully fulfills the requirements
specified earlier. As shown in Fig. 7.1, it takes the requester operation map-
ping generated by the service discovery phase as input. On the basis of this
input, a set of service offers that are candidate to participate in the possible
service compositions are identified from the available offers in the repository.
As mentioned earlier, the main task during this phase is the composition of
the service protocols in the service request and the candidate service offers
(Satisfying R1). For this purpose, their linguistic heterogeneity needs to be
resolved. Hence, in the first step, the requested and the offered service pro-
tocols are translated to a common semantic domain, i.e., labeled transition
system (LTS) (Satisfying R2). In the next step, the LTSs corresponding
to the participating service protocols are matched and composed using our
LTS composition operator, which utilizes the requester operation mapping
from the service discovery phase for this purpose (Satisfying R3). In the last

173

CHAPTER 7. SERVICE COMPOSITION

step, the composed LTS is checked for any possible service compositions that
satisfy the service request under consideration.

In the following, we discuss these steps of the our approach in detail.

7.2 Protocol Translation to LTS

Based on the requester operation mappings, our approach selects a subset
of the services available on the service market further reducing the result set
of the category matching step. For instance, on the basis of the operation
mapping for HRS, i.e., OpMaphrs, the set of selected service offers comprise
of two hotel booking services namely HotelX and HotelY, a flight booking
service FlightBooker and an online payment service PayOnline. For the rest
of this chapter, the service offers of these services are identified by their
respective names.

The requested and the offered service protocol for HRS and HotelX is
already shown in Fig. 3.8 and Fig. 3.9. The service protocols of the other
service offers are shown in Fig. 7.2.

PayOnline ProtocolHotelY Protocol

Ready s1
searchFlight()

comparePrices()

s3 s2

giveOffers()

selectService()selectService()

s4

bookFlight()

s5

giveOffers()

FlightBooker Protocol

Figure 7.2: The Service Protocols of the selected Service Offers

To resolve the linguistic heterogeneity, our approach translates these ser-
vice protocols automatically to their corresponding labeled transition sys-
tems (LTSs). For this purpose, we rely on DMM-based RSDL semantics for
service protocols specified in Chap. 4. These semantics are specified in terms
of DMM rules (graph transformation rules) that are typed over the runtime
metamodel of the UML sequence diagram/UML statemachine diagram and
can be applied for automatic translation to the corresponding LTSs.

Here it is important to mention that an automatic application of DMM
rules through a graph transformation system results in a very extensive and

174

7.2. PROTOCOL TRANSLATION TO LTS

relatively big LTS. For instance, in a resulting LTS for UML sequence dia-
gram, between the transitions and corresponding states that represent the
invocation of messages on the lifelines, there are other transitions and cor-
responding states that simulate the processing of the runtime meta model
elements like sorter and active message marker, etc. These are meant to
track the execution, e.g., determination of the active lifeline, sequencing of
the messages, assignment of the marker to the active message, etc. Simi-
larly, for the UML statemachine diagram also, there are transitions and cor-
responding states in the resulting LTS that deal with the execution details,
such as, initialization of the statemachine, the processing of marker tracking
the execution of statemachine transitions at runtime, etc. Fig.. 7.3 shows
such a blown-up LTSs for the sequence diagram and one of the statemachine
diagram in the running example.

Figure 7.3: The automatically generated LTSs for the running Example
using DMM

However, for our LTS composition mechanism, these particular execu-
tion details at runtime are not relevant as we are mainly concerned with
those parts of LTSs that are concerned with the request/offered operation
invocation, i.e., message invocation and transition firing in the sequence di-
agram and statemachine diagram, respectively. Therefore, a mechanism is

175

CHAPTER 7. SERVICE COMPOSITION

required that can simplify the obtained LTS by removing these irrelevant
execution details without changing the actual semantics necessary for our
LTS composition mechanism.

For the similar purpose, [19, 54] proposes an algorithm that performs
such a simplification of the LTS obtained through the application of DMM
rules for UML activity diagram. In this case, the LTS is simplified by
removing the elements concerned with the runtime execution details, e.g.,
initialization of the activity diagram, processing of token flow, etc. and
the resulting simplified LTS comprises only of transitions and corresponding
states concerned with the execution of actions in the UML activity diagram.
We claim that with some modifications, this algorithm can be used to obtain
such a simplified LTS for the UML sequence diagram and UML statemachine
diagram in our case. Here, we do not indulge in further details of such a
mechanism and refer the reader to [19] for a detailed account of different
technical aspects of this algorithm, such as, the traversal mechanism, the
removal of irrelevant states and transitions, re-labeling of transitions, etc.

After such a simplification, the resulting LTS preserves the initial and
final states, the transitions and states representing the branching structure,
the invocation of messages and transition firing in the sequence digram and
statemachine diagram, respectively. Other details in LTS that are redun-
dant for our LTS composition mechanism, such as, the initialization, marker
setting, etc. are removed during this simplification. Such simplified LTSs
of the requester, i.e., HRS and the selected service offers in our running
example are shown in Fig. 7.4.

A formal definition of such a LTS representing a service protocol is as
follows:

Definition 9 (Requested/Offered LTS). Given a RSDL service descrip-
tion, i.e., a request/offer desc, its corresponding LTS ltsdesc is a 5-tuple
(S, s0, SF , A, δ) where:

(i) S is the set of states;

(ii) s0 ∈ S represents the initial state;

(iii) SF ⊆ S represents the set of final states, i.e., the state(s) corresponding
to the state after the last operation invocation or the final state in the
requested or offered protocol, respectively.

(iv) A is the set of actions corresponding to the requested/offered operations
in desc.

176

7.2. PROTOCOL TRANSLATION TO LTS

(v) δ ⊆ S ×OP × S is the transition relation and is deterministic.

For further explanation, we will use the notation desc.S, desc.s0, desc.SF ,
desc.OP , and desc.δ to refer to the elements of ltsdesc.

Def. 9 specifies different elements of the simplified LTS corresponding
to the requested or offered service protocol. One thing that is important
to mention here is that although in a conventional LTS every state is an
accepting state, the final state defined in Def. 9 is a special state, which
represents the successful completion of the requested/offered usecase. As
the LTSs in our approach correspond to a UML sequence diagram or a UML
statemachine diagram with a final state, it is straightforward to determine
such a final state in the corresponding LTS. As mentioned in Def. 9 (iii),
the final state for a requested LTS represents the state achieved after the
last operation invocation specified in the corresponding sequence diagram.
Similarly, for the offered LTS, the final state corresponds to the final state
of the corresponding statemachine diagram.

FlightBooker(LTSflightBooker)HotelY (LTShotelY) PayOnline(LTSpayOnline)

Requester and Provider LTSs

sf searchFlight()

cp comparePrices()

go giveOffers()

ss selectService()

bf bookFlight()

si signIn()

su signUp()

pd payDues()

gr generateReceipt()

se sendEmail()

so signOut()

gar getAvailableRoom()

re reserve()

s1

s2

s3s4

cp go
go

sf

s5

ss ss

s6

bf

s1

s3

s2

s4

s5

s7

si
su

so

pd

si

gr

so

sose

s6
so

HRS (LTShrs) HotelX (LTShotelX)

ca checkAvailability()

vd viewDetails()

mr makeReservation()

af addFeature()

gfo getFlightOffer()

bfr bookFlight()

got getOnlineTicket()

mp makePayment()

sr searchRoom()

vc validateCredentials()

gdv giveDiscountVoucher()

mre makeRoomReservation()

rf reserveFacility()

ne notifyPerEmail()

cb cancelBookingProcess()

ae arrangeEvent()

rhe reserveHotelForEvent()

Figure 7.4: The simplified LTSs for the requested and offered Service Pro-
tocols in the running Example

LTS as the common semantic domain for the service protocols makes
them machine-interpretable and make their automatic analysis possible.
This further supports the automation of the composition process carried
out in the next step.

177

CHAPTER 7. SERVICE COMPOSITION

7.3 LTS Composition

In order to determine possible service compositions, our approach uses a
parallel LTS composition mechanism.

The parallel composition operation represented as ‖ is already a known
concept in process languages like CCS, CSP, LTS, Petri Nets, etc. In a
distributed environment, these process languages are used to represent the
behavior of the distributed components. Further, an overall system is de-
fined on the basis of the interaction of these distributed components and its
behavior is based on the parallel composition of the individual processes of
these participating components. The basic idea of parallel composition is
that it uses shared actions of the participating processes (the actions that
are common in their action set) in order to synchronize their execution. This
means that a shared action is executed by all the processes at the same time,
while the unshared actions are executed in an interleaving manner.

Based on this conventional idea of parallel composition of processes,
we have come up with a specialized parallel composition operator for the
requested and offered service protocols based on the operation correspon-
dences in requester operation mapping. In the following, we formally define
our operation mapping-based LTS composition operator and describe it in
detail.

7.3.1 Operation Mapping-based LTS Composition

In the conventional parallel composition, the transitions in the composed
LTS are a result of parallel and interleaving transitions of the participating
LTSs based on shared and unshared actions, respectively. With similar
conception, we define an LTS composition mechanism where the parallel
transitions are invoked in the participating service protocols on the basis of
the operation correspondences between the request and the offers.

In the given scenario, requester operation mapping comprises possible
complex operation correspondences. In correlation to the conventional LTS
composition, the operation sequences in these correspondences can be un-
derstood as the shared actions of the participating LTSs and can be invoked
in parallel in the respective LTSs resulting into a transition in the composed
LTS.

Fig. 7.5 gives a closer insight into our LTS composition mechanism, which
performs a parallel composition of all the participating LTSs, i.e., ltsr, lts

1
o,

. . ., ltsko on the basis of the requester operation mapping OpMapr. We
use the term overlapping parts for the parts of the participating LTSs that

178

7.3. LTS COMPOSITION

correspond on the basis of an operation correspondence. This will be later
explained in detail with examples. Consequently, our composition mecha-
nism aims at composing these overlapping parts of the participating LTSs.

In correlation to the conventional LTS composition, those requested and
offered operations that are not part of any operation correspondence are
termed as the unshared actions. In our composition mechanism, such un-
shared actions are not considered in the composed LTS. This is a salient
feature of our composition mechanism called as selective composition strat-
egy which only composes selective parts of the participating LTSs where
the selection is moderated through the requester LTS. This means that only
those parts of the offered LTSs are considered that are relevant for the re-
quester, i.e., that overlap with the requested LTS based on the identified
operation correspondences. In comparison to a conventionally composed
LTS in this case with the unshared actions as well, the selectively composed
LTS with the proposed mechanism is smaller in size and hence easier to
analyze.

ltsr Parallel Composerltsr Parallel Composer

ltsr ltso
ii=1...k

O M C d

...
lts1 ltsk

OpMapr Composed
LTS

ltso ltso

Figure 7.5: An Insight into the LTS Composition Mechanism

The resulting composed LTS can be formally defined as follows:

Definition 10 (Operation Mapping-based Composed LTS). Given the fol-
lowing:

- A request r with operation mapping OpMapr;

- The requested LTS ltsr according to Def. 9;

- The offered LTSs lts1o, . . ., ltsko according to Def. 9 for the selected
offers o1, . . ., ok, respectively.

179

CHAPTER 7. SERVICE COMPOSITION

The composed LTS ltscomp = ltsr ‖i=1,...,k
OpMapr

ltsio. It is a 5-tuple
(S, s0, Sf , A, δ) where:

(i) The set of composed states is given as S = r.S × o1.S × . . . ok.S.
Hence, a composed state sc ∈ S ∧ sc = (sr, so1, . . . , sok) where sr ∈
r.S, s1o ∈ o1.S, . . .,sko ∈ ok.S. This means that a composed state is
represented as a vector of its comprising states from the participating
LTSs;

(ii) The initial state is given as s0 ∈ S ∧ s0 = (r.s0, o1.s0, . . . , ok.s0). This
means that the initial state in the composed LTS is a composition of
the initial states of all the participating LTSs;

(iii) The set of final states is given as Sf ⊆ S ∧ Sf = r.Sf × o1.S ×
. . . ok.S. This means that the set of final states in the composed LTS
comprises of the states where the requested LTS ltsr is in its final state
and the offered LTSs lts1o, . . ., ltsko can be in any state;

(iv) The set of possible actions is given as A =
seqr||seqo : (seqr, seqo) ∈ OpMapr. This means that the set of
possible actions for the composed LTS is based on the requester
operation mapping OpMapr. An action is defined as a parallel
invocation of the requested and offered operation sequences comprising
an operation correspondence in OpMapr.

(v) The transition relation is given as δ = S × A × S. With composed
states sic = (sir, s

i
o1, . . . , s

i
ok), sjc = (sjr, s

j
o1, . . . , s

j
ok), and an action

a = seqr||seqo, a composed transition sic
a−→ sjc is a composition of the

parallel transitions δr ⊆ r.δ and δox ⊆ ox.δ : ox ∈ {o1, . . . , ok}, where:

- Given seqr = opr1 → . . . → oprn, δr is the sequence of transi-
tions sir

opr1−−→ si+1
r , . . . , sj−1r

oprn−−−→ sjr in ltsr resulting from the
invocation of seqr.

- Given seqo = opo1 → . . . → opom, δox is the sequence of transi-
tions siox

opo1−−→ si+1
ox , . . . , sj−1ox

opom−−−→ sjox in ltsox resulting from the
invocation of seqo.

- ∀o ∈ {o1, . . . , ok} \ {ox} : sio = sjo

Similar to Def. 9, the elements of ltscomp can be referred as comp.S,
comp.s0, comp.Sf , compo.A, and comp.δ.

180

7.3. LTS COMPOSITION

Def. 10 specifies the composed LTS resulting from the parallel composi-
tion of the participating LTSs based on the requester operation mapping.
We explain this with the help of an example shown in Fig. 7.6(a), which
is an excerpt of the composed LTS for our running example. Conforming
to (i) in Def. 10, every state in this composed LTS is a composition of the
states of the participating LTSs. Similarly, as specified in (ii) in Def. 10, cs1
in the composed LTS is the initial state, which is a composition of all the
participating initial states. According to (iii) in Def. 10, the composed LTS
is in its final state if the requester LTS ltsr is in its final state notifying a
possible service composition. This notion of final state and possible service
composition will be discussed in more detail in Sec. 7.4.

According to Def. 10(iv), the set of possible actions in the composed
LTS comprises of the requested and offered operation sequences in an oper-
ation correspondence invoked in parallel. Hence, the parallel invocation of
the operation sequences in (hrs.checkAvailability() → hrs.viewDetails()
, hotelX.searchRoom()) in their respective LTSs LTShrs and LTShotelX
forms an action for the composed LTS. The invocation of such an action
results in a composed transition in the composed LTS, which is a composi-
tion of the parallel transitions in the participating LTSs. For instance, the
operation sequences mentioned above can be invoked in the participating
LTSs from their respective states in cs1. This results in a composed transi-
tion from cs1 to cs7. In this case, cs7 represents a composed state, where
the participating LTSs, i.e., LTShrs and LTShotelX are in their respective
states hrs.s3 and hotelX.s2, respectively after the parallel invocation of
the operation sequences. The states of the other participating LTSs remain
unchanged.

As a result of the parallel invocation of operation sequences, the invoked
transitions of LTShrs and LTShotelX are shown in Fig. 7.6(b). We call these
the overlapping parts of the participating LTSs.

Def. 10 defines the structure of the operation mapping-based composed
LTS in the given approach. However, an important question in this direc-
tion is that how such a composed LTS can be built from scratch for the
participating LTSs. For this purpose, a concrete strategy is required and
keeping this requirement is mind, we devised an algorithm that gradually
builds such a composed LTS for the participating LTSs on the basis of their
operation correspondences. In the next section, we present our algorithm to
construct the composed LTS conforming to Def. 10. It also provides a more
detailed insight into Def. 10 based on the running example.

181

CHAPTER 7. SERVICE COMPOSITION

(a) (b)

s1 s2 s3
ca vd

LTShrs

s1

s2

sr

LTShotelX

ca checkAvailability()

vd viewDetails()
sr searchRoom()

Figure 7.6: (a)Composed LTS after the first Iteration (b) Overlapping Parts
of the participating LTSs

7.3.2 LTS Composition Algorithm

We proposed an algoirthm to compose the requested and offered LTSs in
a gradual manner and consequently achieve the operation mapping-based
composed LTS defined in Def. 10. This algorithm is presented in Listing 9.
It takes as input the LTS of a service request ltsr and the set of LTSs of the
selected service offers {ltso1 , ..., ltsok}. Additionally, it takes the requester
operation mapping, i.e., OpMapr as input. As output, it returns a set of
determined service compositions, i.e., Resultcomp. If there is no possible
service composition, a failure is notified and the requester is provided with
suggestions to restructure his/her request based on identified partial com-
positions.

The algorithm in Listing 9 works as follows:

Step ¬ In the first step, a composed LTS ltscomp is initiated, which is ini-
tially empty. Later, a composed state scomp, which is a composition
of the initial states of all the participating LTSs is created through
createState() and added to ltscomp through addState(). Based on
Def. 10(i), r.so in scomp represents the initial state in ltsr. Similarly,
scomp comprises of the initial states of all the participating LTSs. As
shown in Fig. 7.6, cs1 shows the initial state of ltscomp. In this case all
the participating LTSs, i.e., ltshrs, ltshotelX , ltshotelY , ltsflightBooker,
ltspayOnline are in their respective initial states.

Step scur is a variable to track the currently traversed composed state during
the construction of the composed LTS. In this case, scur can be repre-
sented through the vector of participating states (r.sc, o1.sc, ...ok.sc).

182

7.3. LTS COMPOSITION

Listing 9: Algorithm to compose the LTSs of the service partners and
to determine valid service compositions

Input: LTS of Service Request ltsr
Input: Set of LTSs of selected offers {ltso1 , ..., ltsok}
Input: Set of operation mappings OpMapr for r
Output: Set of possible service compositions Resultcomp OR Failure

Notification

findServiceCompositions(ltsr, {ltso1 , ..., ltsok}, OpMapr)
ltscomp = null; // Step ¬
createState(scomp : (r.s0, o1.s0, ..., ok.so));
ltscomp.addState(scomp);

scur : (r.sc, o1.sc, ...ok.sc) = null; // Step
while ltscomp.hasMoreTraversableStates() do // Step ®

scur=ltscomp.nextTraversedState();

while scur.hasInvocableCorr(OpMapr) do // Step ¯

corr=scur.nextInvocableCorr() where corr = (seqr, seqo) ∧
r.sc

seqr−−−→ r.si ∧ ∃ox ∈ {o1, ..., ok} : ox.sc
seqo−−−→ ox.sj ;

createState(star : (r.st, o1.st, ...ok.st)): r.st = r.si ∧
ox.st = ox.sj ∧ ∀o ∈ {o1, ..., ok} \ {ox} : o.st = o.sc; // Step °
ltscomp.addState(star);

createTransition(tcomp:scur
seqr‖seqo−−−−−−→ star); // Step ±

ltscomp.addTransition(tcomp);

end

end

if ltscomp.hasValidTraces() then // Step ²
Resultcomp= ltscomp.getValidTraces();
return Resultcomp;

end
else return Failure Notification;
;

end

183

CHAPTER 7. SERVICE COMPOSITION

Step ® Next, the while-loop traverses over the states of the composed LTS
ltscomp in a breadth-first manner. In every iteration, the next traversed
state determined through nextTraversedState() is referred by scur,
which is used to further construct the composed LTS if possible. The
traversal continues until hasMoreTraversableStates() is false, i.e.,
there are no more states to be traversed.

Step ¯ For every state scur that is currently traversed, every invocable opera-
tion correspondence from OpMapr is referred through corr and is de-
termined by nextInvocableCorr(). This is continued until there are
no more invocable correspondences for scur, i.e., hasInvocableCorr()
is false.

corr represented as (seqr, seqo) is invocable in the state scur because
its requested operation sequence seqr can be invoked on the requested
LTS ltsr from its respective state comprising scur, i.e., r.sc. As a result
of these transitions, ltsr achieves a state r.si. Similarly, the offered op-
eration sequence seqo can also be invoked on one of the offered LTS
ltsox from its respective state in scur, i.e., ox.sc and the resulting state
for ltsox is ox.sc. According to Def. 10, this invocation of the compris-
ing operation sequences is carried out in parallel on the participating
LTSs. For cs1 in Fig. 7.6, there are two invocable correspondences
in OpMaphrs. First correspondence under consideration is (hrs.-
checkAvailability() → hrs.viewDetails() , hotelX.searchRoom()),
which is invocable in cs1 because hrs.checkAvailability()→ hrs.view-
Details() can be invoked from hrs.s1 reaching hrs.s1. Additionally,
hotelX.searchRoom() can be invoked from one of the offered LTSs,
i.e., ltshotelX from its comprising state hotelX.s1. As a result of the
transition, hotelX.s2 is reached.

Step ° For every invocable operation correspondence corr of scur, a new com-
posed state star represented as (r.st, o1.st, ...ok.st) is created and added
to ltscomp. In star, the requester LTS ltsr and the particular offered
LTS ltsox are in their respective new states reached after the invoca-
tion of corr, i.e., r.st = r.si and ox.st = ox.sj , respectively. All the
other offered LTSs are in their same respective states comprising scur.
For instance, for the considered invocable operation correspondence
for cs1, cs7 in Fig. 7.6 is created, where LTShrs and LTShotelX are in
hrs.s3 and hotelX.s2, respectively after the invocation of the opera-
tion sequences in corr. All the other offered LTSs maintain their state
from cs1 in cs7.

184

7.3. LTS COMPOSITION

Step ± Later, a composed transition tcomp with the action seqr ‖
seqo is created between scur and the newly created star
through createTransition() and added to ltscomp through
addTransition(). According to Def. 10(v), tcomp represents the com-
position of the transitions in participating LTSs resulting from the
parallel invocation of the operation sequences in corr. For exam-
ple, the composed transition between cs1 and cs7 in Fig. 7.6 (a)
represents the composition of the parallel transitions resulting from
hrs.checkAvailability() → hrs.viewDetails() and hotelX.search-
Room()in LTShrs and LTShotelX , respectively. As a result, a com-
posite state and a corresponding composition transition is created for
every invocable correspondence of scur. Conceptually, this can be un-
derstood as a composition of the overlapping parts of the participating
LTSs.

Step ² Analogously, the composed states cs2 and cs7 are traversed in the
next iteration and as a result, ltscomp is further constructed. It is
completely constructed if there are no more states to be traversed.
For our running example, the composed LTS is shown in Fig. 7.7.
After the complete construction, ltscomp has to be examined to deter-
mine its valid traces, which represent the valid service compositions.
This is done through hasValidTraces(). In case it holds true, these
are added to Resultcomp through getValidTraces() and returned.
Otherwise, a failure notification is returned. In the next section, we
discuss the notion of valid traces in detail and how the composed LTS
can be examined to determine such valid traces.

As mentioned earlier, a strength of the proposed approach is its selective
LTS composition strategy, where only those parts of the offered LTSs are
considered that are relevant to the requester and hence overlap with the
requested LTS on the basis of the determined operation correspondences.
Consequently, the composed LTS comprises of only parallel transitions re-
sulting from the parallel invocation of the requested and offered operations
in the operation correspondences. In most cases, this strategy results in a
smaller composed LTS as compared to a conventionally composed LTS and
hence makes its examination to determine potential service compositions
easier. For instance, apart from the parallel transitions in the participating
LTSs, a conventionally composed LTS can also comprise the interleaving
transitions in the participating LTSs. These interleaving transitions result
from the operation invocations, which does not participate in any opera-
tion correspondence, e.g., from cs1, we have so far considered the composed

185

CHAPTER 7. SERVICE COMPOSITION

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

flightBooker.s1,
payOnline.s1)

cs2
(hrs.s3,

hotelY.s2,
hotelX.s1,

flightBooker.s1,
payOnline.s1)

cs7
(hrs.s3,

hotelY.s1,
hotelX.s2,

flightBooker.s1,
payOnline.s1)

cs3
(hrs.s5,

hotelY.s3,
hotelX.s1,

flightBooker.s1,
payOnline.s1)

cs6
(hrs.s9,

hotelY.s3,
hotelX.s1,

flightBooker.s6,
payOnline.s7)

cs8
(hrs.s5,

hotelY.s1,
hotelX.s6,

flightBooker.s1,
payOnline.s1)

cs11
(hrs.s9,

hotelY.s1,
hotelX.s6,

flightBooker.s6,
payOnline.s7)

hrs.checkAvailability() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.checkAvailability() hrs.viewDetails()
||

hotelX.searchRoom()

hrs.makeReservation()
addFeature()

||
hotelY.reserve()

hrs.makeReservation()
addFeature()

||
hotelX.validateCredentials()

hotelX.giveDiscountVoucher()
hotelX.makeRoomReservation()

hotelX.reserveFacility()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

cs4
(hrs.s6,

hotelY.s3,
hotelX.s1,

flightBooker.s3,
payOnline.s1)

hrs.getFlightOffer()
||

flightBooker.searchFlight()
flightBooker.giverOffer()

cs9
(hrs.s6,

hotelY.s1,
hotelX.s6,

flightBooker.s3,
payOnline.s1)

hrs.getFlightOffer()
||

flightBooker.searchFlight()
flightBooker.giverOffer()

cs5
(hrs.s8,

hotelY.s3,
hotelX.s1,

flightBooker.s6,
payOnline.s1)

hrs.bookFlight()
hrs.getOnlineTicket()

||
flightBooker.selectService()

flightBooker.bookFlight()

cs10
(hrs.s8,

hotelY.s1,
hotelX.s6,

flightBooker.s6,
payOnline.s1)

hrs.bookFlight()
hrs.getOnlineTicket()

||
flightBooker.selectService()

flightBooker.bookFlight()

Figure 7.7: Composed LTS for our running Example

transitions that result from the parallel transitions of the participating LTSs.
However in a conventional setting, further composed transitions are also pos-
sible resulting from the invocation of operations hotelX.arrangeEvent(),
payOnline.signIn(), etc. in their respective LTSs. But in our selective
composition strategy, these transitions are not relevant since they are not
part of any invocable operation correspondences from the composed state

186

7.4. DETERMINATION AND FURTHER EXAMINATION OF VALID
SERVICE COMPOSITIONS

under consideration and hence are not included to ltscomp.

In the next section, we explain the mechanism that is used to examine
the composed LTS and determine the valid service compositions. In case
of valid service composition, there are some further important observations
that we also discuss in the next section.

7.4 Determination and further Examination of valid
Service Compositions

After the construction of the composed LTS, our approach examines it in or-
der to determine any valid service compositions satisfying the service request
under consideration. As a result, the requester is notified about a success
or failure in service composition phase. These two different scenarios are
discussed in detail in the following sections.

7.4.1 Successful Service Composition Phase

The service composition phase is considered to be successful, if it can deter-
mine at least one valid service composition satisfying the service request. A
valid service composition in the composed LTS is defined as follows:

Definition 11 (Valid Service Composition). Given the composed LTS
ltscomp for the request r and the selected offers o1, . . ., ok, a trace tracecomp

in ltscomp represents a valid service composition, if it reaches a final state
of the ltscomp.

As specified in Def. 10, the final state of the composed LTS is reached
when the requested protocol is in its final state. This means that the request
is completely satisfied by the composition of certain offers selected in the
service discovery phase. In our given example, cs1 → cs2 → cs3 → cs4 →
cs5 → cs6 and cs1 → cs7 → cs8 → cs9 → cs10 → cs11 are the two traces
in the composed LTS, which represent the valid service compositions of the
service offers of HotelX, HotelY, FlightBooker, and PayOnline satisfying the
request of HRS. Based on these results, the service requester, i.e., HRS may
select a particular composition to satisfy its request.

Like service discovery phase, our approach enables the service requester
to examine the results of service composition phase and make suitable
choices accordingly. For instance, our approach performs automatic service
discovery and composition mainly focusing the functional aspects of the re-
quested/offered service. Therefore, once the possible service compositions

187

CHAPTER 7. SERVICE COMPOSITION

are determined, the service requester may manually match and analyze the
non-functional aspects, such as, cost, performance, or reliability, etc. and
then negotiate with the service providers to make a final selection.

Similarly, there is another situation where the service requester must
negotiate with the service providers manually to decide for a certain valid
service composition. This happens when a service composition is unsafe,
unlike the valid service compositions in Fig. 7.7, which we term as safe
service composition. A safe service composition is defined as follows:

Definition 12 (Safe Service Composition). A valid service composition
tracecomp for the request r and the selected offers o1, . . ., ok is also termed
as a safe service composition if:

1. The interaction between the r and the selected offers o1, . . ., ok is
sequential, i.e., another service offer oj is invoked only after the end-
to-end invocation of the offered use case of an already invoked service
oi is complete.

2. None of the involved offered services is in its intermediate state in the
final state of tracecomp.

The valid service compositions in Fig. 7.7 are termed as safe because
the service requester interacts with each offered service in an uninterrupted
manner and completes the offered use case, which guaranteeing a successful
completion and validity of the results achieved at the end. The importance
of such a safe interaction can be better explained with the help of a few
scenarios for unsafe service composition. The examples also clarify why it
is important to communicate with the concerned service providers before
selecting an unsafe service composition.

The first scenario of such a unsafe service composition occurs when the
requester does not have a sequential interaction with the offered services
rather it switches back and forth during their invocation. In this case, the
requester invokes the offered services in an interleaving manner. This can
be understood with the help of an example shown in Fig. 7.8. This is a
variant of our running example, where the sequence of the functionality re-
quired by HRS is slightly different. In this case, it first searches for hotel
room and suitable flights with checkAvailability() and getFlightOffer(), re-
spectively and later proceeds with the booking activity. In this case, one of
the valid service composition is shown in Fig. 7.8. The service composition
proceeds by first invoking the HotelY service to search the hotel rooms.
As a result, LTShotelY is in an intermediate state hotelY.s2 after the first

188

7.4. DETERMINATION AND FURTHER EXAMINATION OF VALID
SERVICE COMPOSITIONS

composed transition. Next, it switches to FlightBooker to search for suit-
able flights. The corresponding composed transition results in a transition
in LTSflightBooker leading to its intermediate state flightBooker.s3. Later,
it switches back to HotelY to book a hotel room from the search results
achieved earlier. In this case, the requester starts interaction with other
services while the allowed sequence of an already invoked service HotelY is
not complete. Consider the case where HotelY has certain time constraints
and the search results are discarded after a certain period of time. In such a
situation, if the requester’s interaction with FlightBooker takes more time,
the search results would be discarded and room booking activity cannot be
carried out later successfully with HotelY. Hence, it is important for the
requester to communicate with these service providers and make sure that
his required functionality is indeed fulfilled and such erroneous situations
do not arise due to the shift of control from one service to the other in the
service composition.

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

flightBooker.s1,
payOnline.s1)cs2

(hrs.s3,
hotelY.s2,
hotelX.s1,

flightBooker.s1,
payOnline.s1)

cs4
(hrs.s6,

hotelY.s3,
hotelX.s1,

flightBooker.s3,
payOnline.s1)

hrs.checkAvailability() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.makeReservation()
addFeature()

||
hotelY.reserve()

cs3
(hrs.s4,

hotelY.s2,
hotelX.s1,

flightBooker.s3,
payOnline.s1)

hrs.getFlightOffer()
||

flightBooker.searchFlight()
flightBooker.giverOffer()

hrs.bookFlight()
hrs.getOnlineTicket()

||
flightBooker.selectService()

flightBooker.bookFlight()cs5
(hrs.s8,

hotelY.s3,
hotelX.s1,

flightBooker.s6,
payOnline.s1)

hrs.checkAvailability() hrs.viewDetails()
||

hotelX.searchRoom()

Figure 7.8: A possible Service Compo-
sition with interleaving offered LTSs

Another scenario where an of-
fered invocation sequence is par-
tially invoked arises from the fact
that a service request may be com-
pletely fulfilled after invoking a part
of the functionality offered by the
service. According to Def. 10, the
composed LTS reaches its final state
when the request is completely ful-
filled, i.e., the requester LTS is in
its final state. This means that it
is not necessary that all the partici-
pating service offers reach their final
state in a valid service composition.
According to RSDL-specification in
Chap. 3, final state of an offered
service protocol represents the suc-
cessful completion of an offered use
case and it has to be reached in or-
der to guarantee the validity of the
achieved results. This means that a
valid service composition where some offered LTSs are in some intermediate
state and have not reached their final state depicts a situation where the
offered use case is not completed and hence the validity of results is not
guaranteed. An example for such a scenario will be discussed shortly.

189

CHAPTER 7. SERVICE COMPOSITION

Consider the offered service protocol of HotelY that notifies that the
offered use case is complete once the room reservation is done through the
operation reserve(). Consider two different variants of this offered protocol:
in the first variant, the service offer allows the user to recommend the hotel
to further users with an operation recommendToOthers() after reserve(). In
the second variant, the service offer allows the user to print its booking con-
firmation with printConfirmation() after reserve(). If the composed LTS in
Fig. 7.7 is constructed with these variants, LTShotelY is invoked partially as
the required functionality of HRS is complete after reserve() and LTShotelY
does not reach its final state in both the valid service compositions. Hence,
HRS has to communicate with the service provider to make a final decision.
In case of the first variant, the service provider notifies that such a partial
invocation is not possible as it implicitly obligate the user to perform recom-
mendation activity or the reservation is canceled otherwise. This means that
the offered service does not allow a successful fulfillment of the requester’s
requirements and hence HRS cannot select this service composition. In case
of the second variant, the service provider notifies that the reservation is still
valid if the confirmation is not printed and allows HRS to partially invoke
the offered use case. Therefore in this case, the HRS can select the service
composition with HotelY service for hotel booking activities. In such a case,
it is also possible that the service provider revises its published service of-
fer and update it with a new use case that successfully completes after the
reservation is done.

As a result of the successful service composition phase, the service re-
quester has some traces of the composed LTS representing valid service
compositions. However, these traces of the composed LTS can be termed as
the blueprints that only represent possible service compositions on a concep-
tual level. These blueprints are not directly invocable on the actual services
and have to be translated to an executable form, e.g., a composed service
or an executable BPEL process. At the moment, we assume that the ser-
vice requester may use these blueprints as guidelines to manually define a
concrete invocable service composition. Additionally, we argue that an au-
tomatic mechanism, i.e., an orchestrator can be developed in future that
can extensively use these blueprints and other information produced during
different phases of our approach to automatically define a concrete invocable
service composition.

190

7.4. DETERMINATION AND FURTHER EXAMINATION OF VALID
SERVICE COMPOSITIONS

7.4.2 Failed Service Composition Phase

If the composition analysis cannot find any valid service composition in the
composed LTS ltscomp, it notifies a failure to the requester. In this case, the
requester is provided with feedback in terms of the composed LTS, that does
not contain any valid service compositions and additional information about
possible reasons of failure. On the basis of this feedback, the requester may
consider to restructure his/her service request.

For example, assuming that HRS request a further operation payment-
InfoPerEmail() (referred as ppe) that is invoked after makePayment().
Fig. 7.9(a) shows the LTS of HRS for this scenario. Also consider that
during operation matching, paymentInfoPerEmail() is mapped to the oper-
ation sendEmail() of the PayOnline service (c.f. Fig. 7.4).

(b) Extended Composed LTS(a) Extended LTS of HRS (LTShrs_ext)

ca checkAvailability()

vd viewDetails()

mr makeReservation()

af addFeature()

Gfo getFlightOffer()

bfr bookFlight()

Got getOnlineTicket()

mp makePayment()

ppe paymentInfoPerEmail()

s10

ppe

s1 s2 s3 s4

s6

ca vd mr

af

s5

s7

gfo

s8 bfrs9
gotmp

Figure 7.9: Extended LTS of HRS and Composed LTS in the Failure Sce-
nario

Fig. 7.9(b) shows the modified scenario of our previously computed com-
posed LTS (c.f. Fig. 7.7), which was complete after the traversal of cs6 and
cs11. In case of Fig. 7.7, cs6 and cs11 were the final states of the composed
LTS according to Def. 10 hence notifying a successful service composition.

In the modified scenario in Fig. 7.9(b), the composed LTS is complete
after the traversal of cs6 and cs11, because there are no further invocable
correspondences from either cs6 or cs11 and hence the composed LTS can-
not be constructed further. However, a final state is not reached in any of

191

CHAPTER 7. SERVICE COMPOSITION

its traces as another transition ppe needs to be invoked on the requested
LTS representing the operation paymentInfoPerEmail() to reach its final
state. Although the operation correspondence (hrs.paymentInfoPerEmail(),
payOnline.sendEmail()) specifies that the PayOnline service fulfills this re-
quirement but this correspondence is not invocable from either cs6 or cs11.
This is for the reason that although paymentInfoPerEmail() can be invoked
from the respective state hrs.s6 of LTShrs but sendEmail() cannot be in-
voked from the respective state payOnline.s7 of LTSpayOnline. As a con-
sequence, none of the traces in the composed LTS reach a final state and
hence there is no possible service composition satisfying the HRS request.

In this case, the requester is provided with the composed LTS and the
operation correspondence that is not invocable in the composed states cs6
and cs11 because the comprising offered operation sequence is not invoca-
ble on the participating offered LTS, i.e., LTSpayOnline from its respective
state. Based on this information, the requester may choose to restructure
the request, e.g., it may decide to not include the operation paymentInfoPer-
Email() in the service request or it may negotiate with the service providers
to modify their service offer if possible.

Hence in this case, our proposed service composition mechanism fails to
determine any possible service composition based the selected service offers
to satisfy the service request.

7.5 Discussion

As evident from the running example, we restrict the service protocols spec-
ified in the service requests and offers to be without any loops for the course
of this thesis. Therefore, our overall approach in general and the proposed
LTS composition mechanism in particular does not consider service proto-
cols with loops so far.

However, considering the importance of loops in the service protocols,
we have done some initial investigation in this direction and expect that our
findings can be used to extend the proposed approach to also consider loops
in the service protocols. It is worth mentioning that with the inclusion of
loops in the service protocols, the earlier phases of the proposed approach,
i.e., service description normalization and service discovery mostly remain
unaffected. In this context, mainly the LTS composition mechanism in the
service composition phase will require an extension.

Fig. 7.10 shows a matrix of different cases of loop occurrence in the re-
quested and offered service protocols with varying degrees of complexity.

192

7.5. DISCUSSION

Requester

Providers

No Loops Loops
with iteration #

Simple Loops Nested Loops Unstructured
Loops

No Loops

Loops
with iteration #

Simple Loops

N t d L

?? ?

Nested Loops

Unstructured

Unstructured
Loops Figure 7.10: Different Cases of Loop Occurrences in the Participating LTSs

Additionally, it also describes the capability of our LTS composition mech-
anism in this regard and possible extension points to handle different cases.
In this figure, a X symbol depicts that the proposed mechanism has the
capability to handle this case, a ? symbol shows that we have analyzed our
mechanism for this case with some examples and our findings can be used
as a basis for an extension to handle this case. A × symbol represent the
cases that have not been investigated by us so far.

The complexity of the loop occurrence in the requested and offered proto-
cols can vary from no loops to nested ones and we do not take unstructured
loops into account. The first row of this matrix shows that our LTS compo-
sition mechanism suffices in the case where the requested service protocol
does not have any loops. As described in Sec. 7.3, our LTS composition
mechanism is primarily moderated through the requested protocol and only
those offered sequences are considered for LTS that are relevant to the re-
quester. Therefore, in case of single sequence in the requested protocol,
the complex loop occurrences in the offered protocols are not relevant for
the composition process. Similarly, if the requested protocol has loops with
fixed iterations, it can be flattened on the basis of the number of iterations
and as a result the proposed composition mechanism is applicable despite
loop occurrences in the offered protocols.

On the contrary, this is not true in case of simple loops in the requested
protocol. In this case, we have deduced that our proposed mechanism is not
completely applicable in its current form. For instance, Fig. 7.11(a) shows
the slightly modified variants of two of the LTSs in our running example,

193

CHAPTER 7. SERVICE COMPOSITION

(b) Composed LTS(a) Participating LTSs

(cavd , sr)

(mr , vc mre)

(af, rf)

LTSr LTSo

Requester Operation Mapping

s1 s2 s3

s4

ca vd

mr

af

s5

ca

ca

cs1
(r.s1
o.s1)

cs2
(r.s3
o.s2)

cs3
(r.s4
o.s4)

cs4
(r.s5
o.s5)

ca vd || srca vd || sr

mr || vc mreca vd || sr

af || rf

Figure 7.11: An Example for correct Composition of LTSs with Loops

i.e., HRS as ltsr and HotelX as ltso. In these variants, both the requested
and the offered LTS have simple loops. In this scenario, the composed LTS
resulting after the LTS composition step of the proposed mechanism is shown
in Fig. 7.11(b). During the determination of valid service compositions, our
mechanism determines that there is a valid service composition as a trace in
the composed LTS reaches a final state. With a closer look on these results,
it can be determined that this valid service composition indeed fulfills the
requested functionality as the loop pattern required in the requested protocol
is also correctly preserved in this service composition. Hence, the results of
the proposed mechanism on the basis of the defined criteria can be termed
as correct. However, this is also important to mention that the criteria
for valid service composition does not explicitly check the preservation of
required loops and this can lead to incorrect result.

This can be understood with the help of an example shown in Fig. 7.12.
In this example, our mechanism will determine a valid service composition,
which is represented through the trace that reaches the final state. How-
ever, a closer insight reveals that this is not actually true as the service
composition represented through this trace does not completely fulfill the
requested functionality. The requested protocol specifies the requirement
that the operations b, c, and d are invoked in a loop but this requirement is
not fulfilled in the composed LTS. Therefore in such a case, the mechanism
must be able to detect that the required loop is not preserved in the com-
posed LTS and hence must be able to notify a failed service composition.

194

7.6. SUMMARY

On the basis of these findings, we conclude that in case of simple loops in
the service protocols, the proposed mechanism needs to be extended.

(b) Composed LTS(a) Participating LTSs

(a , x1 x2)

(b, x3 x4 x5)

(c d e , x6)

LTSr LTSo

Requester Operation Mapping

s1 s2 s3

s4

a b

c

d

s5

b

s6

e

s1 s2 s3

s4

x1 x2

x3

x4

s5

x6

s6

x5

s7

x6

cs1
(r.s1
o.s1)

cs2
(r.s2
o.s3)

cs3
(r.s3
o.s6)

cs4
(r.s6
o.s7)

a || x1 x2

b || x3 x4 x5

c d e || x6

Figure 7.12: An Example for incorrect Composition of LTSs with Loops

So far, our observations for simple loop occurrences in the service pro-
tocols through different examples have not been extended to more complex
cases of nested loops. In future, further examples can be developed to an-
alyze the behavior of our proposed mechanism in these complex cases and
determine possible extension points for the proposed approach.

7.6 Summary

In this chapter, we introduced our service composition approach based on
our mechanism for parallel composition of LTSs. For this purpose, first the
linguistic heterogeneity of the RSDL service protocols is resolved by trans-
lating them to a common semantic domain and hence enable their composi-
tion. Based on their DMM-based semantic specification, the requested and
offered service protocols are translated to their respective LTSs. Later, a
specialized LTS composition operator is used to compose these requested
and offered service protocols on the basis of the operation mapping deter-
mined earlier. The resulting composed LTS is examined to determine valid
service compositions that satisfy the service request. The resulting service
composition can act as a blueprint, which can be used to implement ac-
tual service composition on the basis of the selected services. At the end of

195

CHAPTER 7. SERVICE COMPOSITION

this phase, the service discovery and composition process is complete for a
particular request in the OTF computing environment.

196

8
Tool Support

In this chapter, we present the tool support for automatic service discovery
and composition. For this purpose, a significant part of our service discovery
and composition approach introduced in previous chapters is implemented as
a prototype, which particularly deals with RSDL-based service descriptions.

The remainder of this Chapter is structured as follows: In the next
section, we layout the requirements in terms of use cases that need to be
implemented by the workbench. In Sec. 8.2, we present a component archi-
tecture for our service discovery and composition workbench. The imple-
mented workbench is explained through a detailed insight into its technical
and conceptual aspects in Sec. 8.3. Lastly, Sec. 8.4 presents our evaluation
results for the workbench.

8.1 Requirements for the Workbench

In order to enable automatic service discovery and composition, our ap-
proach comprises different use cases, which are visualized in Fig. 8.1. These
use cases serve as the requirements for a workbench that realizes the pro-
posed approach. In this direction, there are three actors that interact with
the workbench namely the service provider, the service requester and the
OTF provider.

There are two basic use cases, which are mainly initiated by the ser-
vice partners, i.e., Publish Service Offer and Perform Service Discovery and
Composition. Publish Service Offer allows the service provider to publish his
service on the service market. Perform Service Discovery and Composition
allows the service requester to search for a single or composed service offer
to fulfill his request. Both these use cases start with specifying RSDL-based
service description for the respective service partner realized through Spec-
ify Service Description use case. In order to publish the specified service
offer or initiate the service discovery for the specified service request, the

197

CHAPTER 8. TOOL SUPPORT

Service Discovery and Composition
Workbench

Specify Service
Description

Normalize Service
Description

«includes»Publish Service
Offer

«includes»

Perform Service
Discovery and Composition

«includes»

Manage Service
Registry

Manage Global
Onotology & Data Model

Service Provider

Service Requester

OTF Provider

Manage Global
Ontology

«includes»

Figure 8.1: Use Cases for our Service Discovery and Composition Workbench

service description has to be normalized to a global representation based
on the local-global data model matching. This is realized through the Nor-
malize Service Description use case. The OTF provider interacts with the
system mainly through two use cases: Manage Global Ontology enables the
OTF provider to define and maintain the global ontology and its conform-
ing data model, whereas Manage Service Registry provides the interface to
the service registry where the service offers are maintained according to the
categorization hierarchy specified by the OTF provider.

A significant part of these use cases are implemented in our prototype
of Service Discovery and Composition Workbench. In the next section, we
give an architectural overview of our workbench through its components.

198

8.2. WORKBENCH ARCHITECTURE

8.2 Workbench Architecture

To give an overview of our Service Discovery and Composition Workbench,
its component architecture is presented in the Fig. 8.2. Technically, these
components are realized through multiple plug-ins based on the plug-in
mechanism of the underlying Eclipse development platform.

Service Description Editor

Rich Service Description Language

Service Description Normalizer

Service Discovery EngineService Publishing Engine

Service Registry

Operation Matcher

Data Model Matcher

VC Normalizer

Protocol Matcher

Figure 8.2: Architecture of our Service Discovery and Composition Work-
bench

In this architecture, the Rich Service Description Language defines the
language described in Chap. 3 and provides basic operations to specify and
access different elements of the comprehensive service descriptions of the
service partners.

On the basis of this language specification, Service Description Editor
provides an elaborate editor that allows the service partners to specify their
RSDL-based service requests/offers. For this purpose, it uses the Papyrus
and Henshin editors. Similarly, the normalization is carried out through the
Service Description Normalizer component.

An RSDL-based service description is normalized to a common represen-
tation as explained in Chap. 5. For this purpose, Service Description Nor-
malizer takes the service description as input and normalizes it using Data
Model Matcher and VC Normalizer components. In this direction, Data
Model Matcher component is responsible to match the local data model of

199

CHAPTER 8. TOOL SUPPORT

the service partner to the global data model of the OTF provider based on
the matching strategy defined in Chap. 5. For this purpose, the local data
model is annotated with concepts from the global ontology and based on
these ontological semantics, the data models are matched. VC Normalizer
takes the local-global data model mappings from Data Model Matcher and
is focused on the translation of the visual contracts typed over the local data
model to their counterparts typed over the global data model of the OTF
provider.

The Service Publishing Engine allows the service provider to publish his
service offer to the service registry. In this context, an RSDL-based service
offer is categorized on the basis of the categorization hierarchy maintained
by the OTF provider. On the basis of selected categories, the service offer
is published accordingly to the service registry.

For this purpose, the Service Registry component is implemented. It
maintains a database of the published service offers, which are stored ac-
cording to their categorization. This service registry is implemented through
technologies, such as, Jersey framework1 for JAX-RS, Apache Tomcat
Server2, MySQL3, etc.

The Service Discovery Engine allows the service requester to search for
any published service offers that fulfill his requirements specified in his ser-
vice request. On the basis of the normalized requests and offers, it enables
a multi-level service discovery matching different aspects of the involved
service descriptions. In this direction, the Operation Matcher realizes the
operation matching mechanism defined in Chap. 6. The Protocol Matcher
enables a 1 : 1 matching between the requested and the offered protocols,
which is a simpler version of the mechanism defined in Chap. 7. This aspect
will be discussed shortly in more detail.

In the next section, we explain the implementation details of our service
discovery and composition workbench.

8.3 Workbench Implementation

In this section, we introduce the prototypic workbench that implements
salient features of our service discovery and composition approach in detail
through its technical and conceptual details.

1http://jersey.java.net/
2http://tomcate.apache.org
3http://www.mysql.com/

200

8.3. WORKBENCH IMPLEMENTATION

8.3.1 Tools and Technologies

In this section, we introduce the tools and technologies that serve as the
implementation platform for our workbench.

Eclipse

For software development, Eclipse4 is the most commonly used open-source
integrated development environment (IDE). Although majorly aimed to sup-
port Java-based software initially, it evolved into a customizable and ex-
tendable IDE leveraged through its extensive plug-in system. Our service
discovery and composition workbench is also realized through this plug-in
mechanism. In this context, we rely on different eclipse-based tools and
technologies, which we introduce briefly before going into the details of the
workbench.

Eclipse Modeling Framework (EMF)

Eclipse Modeling Framework (EMF)5 is a modeling framework that allows
development of model-based applications. EMF comprises of development
tools and offers runtime support for different aspects of such a model-based
development, such as, model specification, automatic code generation facility
for the developed model, viewing and editing of the model through a visual
editor, etc.

The core of the EMF framework is based on a defined metamodel known
as Ecore and the models defined through EMF are typed over this underlying
Ecore metamodel. Ecore model is aligned to Essential MOF (EMOF) model,
which is a subset of OMG’s MetaObject Facility (MOF) model6. Other
fundamental parts of EMF are EMF.Edit and EMF.Codegen, which enable
editor development for EMF models through facilities like generic reusable
classes for editors and code generation for EMF model, respectively. For our
workbench, EMF is at the core to specify our service description language
RSDL. This in turn serves as the basis for the editor and the matcher for
RSDL-based service descriptions.

4https://eclipse.org/
5http://www.eclipse.org/modeling/emf/
6http://www.omg.org/mof/

201

CHAPTER 8. TOOL SUPPORT

Papyrus

Papyrus7 is a graphical editing tool that aims at providing an integrated
environment for the editing of EMF models. It comes up with diagram
editors for EMF-based modeling languages and also provides the glue to
integrate these editors with other model-based development (MBD) tools.
In this direction, papyrus provides diagram editors for different modeling
languages, such as, UML, SysML and MARTE.

In the context of UML, papyrus provides extensive support by provid-
ing a range of editors for different types of UML models conforming to the
OMG’s UML specification [115]. These UML models created through pa-
pyrus are typed over the UML metamodel, which in turn is defined as EMF
Ecore model8. Papyrus allows detailed extension and customization of dif-
ferent elements, such as, model explorer, diagram editors, property editors,
etc. hence supporting the implementation of UML profiles.

Our workbench uses papyrus to implement the editor for the specification
of RSDL-based service descriptions.

Henshin

Henshin9 is a model transformation tool for EMF models. It comprises of
an Ecore-based model-to-model transformation language, a graphical editor
to create transformations and an execution engine to execute the created
transformations.

Our workbench mainly relies on the Henshin editor to specify the visual
contracts in an RSDL-based service specification as henshin-based graph
transformations. These visual contracts serve as the basis for the operation
matching strategy explained in Chap. 6.

EMF Compare

EMF Compare10 is a facility that allows comparison and merging of EMF
models. This facility comes up with a basic infrastructure for model com-
parison, which can be extended and reused. Additionally, it comes up with
a tool integrated in the eclipse IDE that enables a visualization of the model
similarities and differences and merging of the models on the basis of this
information. Similarly, it facilitates the collaborative team work on models

7https://eclipse.org/papyrus/
8http://eclipse.org/modeling/mdt/?project=uml2
9https://www.eclipse.org/henshin/

10https://www.eclipse.org/emf/compare/

202

8.3. WORKBENCH IMPLEMENTATION

through a generic comparison engine and an export of the differences as a
model patch.

The model matching process of EMF Compare consists of two phases,
namely the matching and the differencing phase. Depending on the individ-
ual comparison strategies, EMF Compare allows a customization of the two
phases accordingly. Our Data Model Matcher component reuses this basic
infrastructure of the EMF Compare and extend it to implement the data
model matching strategy explained in Chap. 5.

Query-View-Transformation Relations(QVTr)

Query-View-Transformation (QVT) [117] is a standard for model transfor-
mations, which covers the querying and views of a model as specialized types
of model transformations. QVT Relations (QVTr) is a specialized language
for QVT, which is mainly based on relation definition for bidirectional model
transformations.

In the context of our approach, This concept of relations is directly com-
parable to the data model mappings achieved after data model matching
process. These mappings can be translated to QVTr relations and the ser-
vice description normalization can be realized as the model transformations
based on these relations.

Support for QVTr is provided in Eclipse through technologies like QVT
declarative11 and mediniQVT, etc. Our workbench use these technologies
to automatically define and execute QVTr-based model transformations and
realize the service description normalization on the basis of the data model
mappings.

8.3.2 Implemented Features

In this section, we give an overview of the implemented features in the
context of the required use cases specified in Sec. 8.1.

8.3.3 Specify Service Description

Whenever a service partner accesses the our workbench to publish his ser-
vice offer or initiate the service discovery process, it is based on his service
request/offer. The Specify Service Description use case enables the service
partners to specify their RSDL-based service requests and offers in terms of
EMF models. Based on our choice of UML as the underlying language for

11http://projects.eclipse.org/projects/modeling.mmt.qvtd

203

CHAPTER 8. TOOL SUPPORT

our RSDL, Papyrus12 is selected as the foundation for the service descrip-
tion editor. In this direction, the papyrus editor is customized according to
the RSDL specification. Screen shots in the Fig. 8.3 show that the user can
particularly select the RSDL palette for papyrus and access RSDL notations
to specify his service description.

Palette Customization

Figure 8.3: Palette Customization Wizard

Additionally, During the specification of his RSDL-based service descrip-
tion, the user is guided through a wizard as shown in Fig. 8.4.

As shown in Fig. 8.5 with different aspects of HRS request, our work-
bench allows the service partners to comprehensively specify different as-
pects of his RSDL-based service request/offer through the service descrip-
tion editor. This specification consists of two main tasks: First, service
partners can specify their underlying data model as a UML class diagram
using a Papyrus-based editor (see Fig. 8.5 (a)).

In addition, service partners can specify their requested/offered func-
tionality in terms of its different aspects, such as, operation signatures, their
respective visual contracts and the requested/offered service protocol typed

12http://www.eclipse.org/papyrus/

204

8.3. WORKBENCH IMPLEMENTATION

Figure 8.4: Wizard for specifying RSDL-based Service Description

Service Description Editor

M
od

el
oc
al
Da

ta
 M

(a
) L

(d) Service Protocol

gn
at
ur
es

O
pe

ra
tio

n
Si
g

(b
) O

Co
nt
ra
ct
s

(c
) V

isu
al

Figure 8.5: Screenshots of the Service Description Editor in our Workbench

over their data models (see Fig. 8.5 (b, c, d)). The operation signatures and
service protocols are specified using the Papyrus editor for UML Interface

205

CHAPTER 8. TOOL SUPPORT

Figure 8.6: Offered Protocol Specification as UML Statemachine Diagram

and UML sequence diagrams / UML statemachine diagrams, respectively.
Similarly, for a service offer, Fig. 8.6 shows the specification of the protocol
as UML statemachine diagram for a hotel service.

The service description editor relies on Henshin editor13 to specify the
visual contracts (VCs). The Henshin editor supports the specification of
VCs as graph transformation rules that are typed over an underlying Ecore
model. A detailed mechanism is defined to navigate between the Papyrus
and Henshin editors. This mechanism automatically translates the data
model specified as UML class diagram in Papyrus editor to an Ecore model
for VC specification in Henshin editor. Additionally, this mechanism also
provides the glue to propagate the modifications in the Papyrus-based data
model to the corresponding Ecore model in Henshin. Overall, the specifica-
tion of service requests/offers is enabled through the coherent environment
provided by the service description editor, which is based on a seamless
customization and integration of the Papyrus and Henshin editors.

8.3.4 Normalize Service Description

The service descriptions of the service partners have to be normalized in or-
der to enable their matching. This normalization is carried out in Normalize
Service Description use case. In this use case, the workbench enables the
automatic translation of the service description to a common representa-

13http://www.eclipse.org/modeling/emft/henshin/

206

8.3. WORKBENCH IMPLEMENTATION

tion conforming to the global ontology and the respective global data model
maintained by the OTF provider.

This normalization is carried out in two steps: In the first step, the local
data model is matched to the global data model of the OTF provider. For
this purpose, our workbench relies on the EMF Compare Infrastructure. It
reimplements the provided interfaces according to the proposed data model
matching algorithm in Chap. 5 and also reuses the EMF Compare GUI to
display the data model matching results.

As discussed in Chap. 5, the matching of the local and global data mod-
els mainly depends on their ontological semantics defined through the global
ontology of the OTF provider. As mentioned in Chap. 5, the global ontology
comprises multiple domain-specific ontologies (DSOs). An automatic access
to these ontologies in order to define and later use the ontological seman-
tics is enabled through use of different technologies, e.g., Jena framework14

is used to access the ontologies defined in commonly-used languages, such
as, OWL, RDFS, etc. Similarly, technologies like extJWNL library15 and
SPARQL web interface16 are used to access WordNet and DBpedia, respec-
tively. For the example under consideration, the global ontology comprises
of an example tourism ontology, which is mainly based on the concepts from
HarmoNET ontology17 with some extensions.

Based on the defined ontological semantics, the local-global data model
matching is performed, which results in the data model mappings as shown
in Fig. 8.7. As seen here, the local data model of HRS (shown in the left
pane) is matched to the global data model of the OTF provider (shown in
the right pane). For the local class Accommodation, the global class Hotel is
found as a match and it further shows the matching between the attributes
of these two classes. During this matching, our mechanism does not consider
the associations of the classes so far.

The second step of the the service description normalization process is
the normalization of visual contracts based on the data model mappings
achieved in the first step. This is realized by our workbench as QVTr-
based model-to-model transformation based on an automatically generated
QVTr transformation script. This automatic generation is driven by the
data model mappings where each class mapping corresponds to a relation
in the transformation script. The automatic generation of the transfor-
mation script is carried out by the eclipse plugin for QVTr, i.e., QVTd.

14http://jena.apache.org/
15http://extjwnl.sourceforge.net/
16http://dbpedia.org/sparql
17http://euromuse.harmonet.org

207

CHAPTER 8. TOOL SUPPORT

Figure 8.7: Data Model Matcher based on EMF Compare

Fig. 8.8 shows such an automatically generated QVTr script for the given
example. As it shows, the script comprises of the relations generated
through the data model mappings achieved earlier. For instance, the re-
lation Hotel Accomodation defines how an Accommodation object can be
transformed to a Hotel object and vice versa.

Taking the generated transformation script as input, the transformation
execution engine of mediniQVT is used to run the transformation. This
results in a transformation of the VCs typed over the local data model to
their global counterparts. Consequently, the normalized service description
is achieved.

8.3.5 Publish Service Offer

The service provider interacts with the service discovery and composition
workbench mainly through the Publish Service Offer use case. In order to
publish his service on the OTF market, the service provider defines his ser-
vice offer realized through the Specify Service Description use case discussed
earlier. Later, he normalizes his service offer according to the mechanism
described in Normalize Service Description use case.

After the definition and normalization of his service offer, he can pub-
lish his service offer in the service registry using service publishing engine.

208

8.3. WORKBENCH IMPLEMENTATION

top relation Hotel_Accommodation{
 var_stars : ecore::EInt;
 var_name : String; ...
 enforce domain global dom_hotel : provider::Hotel {
 stars = var_stars,
 name = var_name,

room = var_room : global::Room {} ...
 };
 enforce domain local dom_accom : local::Accommodation {
 stars = var_stars,
 name = var_name,

address = var_address : local::Address {}...
 };
 when {

 Room_Room(var_room, local::Room.allInstances()‐>any(true)); ...
 }
}
top relation Address_Coordinates_Address{
 var_city : String;
 …
 enforce domain global ag : global::Address {
 coordinates = c,
 city = var_city,
 …
 };
 enforce domain global c : global::Coordinates {
 …
 };
 enforce domain local al : local::Address {
 town = var_city,
 …
 };
}

Figure 8.8: Automatically-generated QVTr Script through local-global Map-
pings

For this purpose, he categorizes his offer on the basis of the categorization
hierarchy maintained by the OTF provider. Consequently, his service offer
is stored under the selected categories.

Fig. 8.9 shows a screenshot of the service publishing engine. In this
screenshot, the normalized RSDL-based service offer of a hotel service is cat-
egorized according to the categorization hierarchy maintained by the OTF
provider and stored in the service registry on the OTF market.

8.3.6 Perform Service Discovery and Composition

This use case provides the main access point for the service requester to
interact with the workbench. Before initializing the service discovery and
composition in the OTF market, the service requester defines and normalizes
his service request as described earlier.

The service discovery engine in our workbench allows to automatically
and accurately match the service request and the available offers through
the multi-level service discovery approach explained in Chap. 6. Fig. 8.10
shows the screenshots of the service discovery engine.

As shown in Fig. 8.10(a), a subset of the available hotel service offers

209

CHAPTER 8. TOOL SUPPORT

Figure 8.9: Screenshot for the Service Publishing Engine in our Workbench

210

8.3. WORKBENCH IMPLEMENTATION

Service Discovery Engine

(a) Category Matching Results

ul
ts

at
ch
in
g
Re

su
pe

ra
tio

n
M
a

(b
) O

(c) Protocol Matching Results

Figure 8.10: Screenshots of the Service Discovery Engine in our Workbench

are selected on the basis of the category matching between the HRS request
and the available offers. On the next level, an operation matching is per-
formed between the HRS request and the selected hotel service offers on
the basis of the set of operation matching strategies presented in Chap. 6.
Fig. 8.10(b) shows the resulting operation correspondences between the re-
quested operations of HRS and the offered operations of the available hotel
services.

In the next step, a protocol matching is performed between the request
and the selected offers, which is based on the operation correspondences
achieved after the operation matching. So far, our workbench implements
a relatively straightforward 1 : 1 matching between the requested and the
offered protocols. Fig. 8.10(c) shows the results of such a protocol match-
ing where the required invocation sequence in HRS protocol matches with
the offered invocation sequence of hotel1 shown in Fig. 8.6. Due to time
constraints, the implemented workbench does not realize the 1 : n proto-

211

CHAPTER 8. TOOL SUPPORT

col matching and composition mechanism for service composition defined in
Chap. 7. However, we believe that a future extension of the workbench which
implements the proposed service composition mechanism can be greatly sup-
ported through the reuse of existing DMM tool support.

8.3.7 Manage Global Ontology

Apart from the service partners, the OTF provider interacts with our work-
bench to set up and maintain the OTF computing environment. In this
direction, he initiates Manage Global Ontology use case to build the global
ontology comprising the domain-specific ontologies (DSOs) for the domains
that it caters to. This also includes the definition of conforming global data
models for the respective domains. Additionally, if the OTF provider later
decides to provide services to a new domain , then the global ontology has
to be extended through this use case.

In this direction, so far our workbench does not provide an ontology
editor for the OTF provider and we assume that a an existing ontology
development tool or an existing commercial ontology is used for this pur-
pose. Additionally, papyrus editor is used to define a conforming global data
model.

8.3.8 Manage Service Registry

Through this use case, the OTF provider has the option to maintain the ser-
vice offers published in the service registry. The first task in this direction
is the maintenance of the categorization hierarchy. This is achieved through
a MySQL database in our workbench. Fig. 8.11 shows a screenshot of the
interface available to the OTF provider to manage this categorization hier-
archy. This interface can be used to add new categories, remove or modify
the existing ones, etc.

Additionally, the service registry is also maintained as a mySQL database
and an interface similar to the one shown in Fig. 8.11 is provided to have
an overview of the published service offers.

In the next section, we present our evaluation results for our workbench.

8.4 Evaluation

For our work, our basic objective was to automate the service discovery
and composition process while ensuring accurate results. Consequently, the
evaluation of our approach comprises two aspects: firstly, the degree of

212

8.4. EVALUATION

Figure 8.11: A Screenshot of the Categorization Hierarchy Management for
the Service Registry

automation that can achieved and secondly, the accuracy of the matching
results achieved through our approach.

For the first aspect, a significant part our approach has been automated
through the implemented workbench discussed in Sec. 8.3 in detail. Hence,
we conclude that the the significant degree of automation of the service
discovery and composition process can be achieved.

For the second aspect, there are two types of automatic matching results
that need to be evaluated for their accuracy: firstly, the local-global data
model matching results, which serve as the basis for the normalization of the
requested/offered service description to a common representation. Secondly,
the service description matching results between the service request and the
available offers on the service market.

We comply to Ontology Alignment Evaluation Initiative 18 (OAEI) to as-
sess the accuracy of results for our data model matching approach. OAEI is
an initiative that aims for a standardized performance evaluation of match-
ing systems for ontologies/data models and identify their strengths and
weaknesses. In order to test different matching systems, OAEI executes
these systems on the test data sets using Semantic Evaluation at Large
Scale19 (SEALS) platform.

The evaluation of our data model matching system is carried out us-

18http://oaei.ontologymatching.org/
19http://www.seals-project.eu/

213

CHAPTER 8. TOOL SUPPORT

ing the 2012 evaluation campaign of OAEI. This evaluation allowed an as-
sessment of the matching results of our system and classified it among 23
matching systems participating for this evaluation campaign. It comprises 5
different test data sets each comprising sufficient number of test cases based
on 4 different data models maintained by the OAEI. These models belong to
different information domains and also vary in their sizes. In each individual
test case, a data model is matched to a modified version of itself. To assess
the quality of matching results, they are compared to a reference mappings
defined by OAEI for the model pair in question.

The evaluation was conducted on a machine with dual core 32-but pro-
cessor with 2.4 GHz and 3 GB RAM. In terms of time consumption, our
matcher took on average 183 seconds per test, which we consider to be sat-
isfactory in comparison to the average of 557 seconds and 6 seconds per test
for the slowest and the fastest matcher, respectively.

The accuracy of the matching results are based on three well-established
metrics in the area of information retrieval [7]: Precision, Recall and F-
measure, which are defined as follows:

Definition 13 (Precision). Let C be the set of the reference mappings for
the data models o1, o2. Further let T be the set of mappings retrieved while
matching o1, o2 with a matching system Sys. Then precision of Sys is de-
fined as:

P =
|C ∩ T |
|T |

Definition 14 (Recall). Let C be the set of the reference mappings and T
be the set of retrieved mappings of a matching system Sys. Then recall of
Sys is defined as:

R =
|C ∩ T |
|C|

Definition 15. F-measure. With the definitions of R and P, the F-
measure F is defined as:

F = 2
P R

P +R

For a particular matcher under consideration, the precision represents
the ratio of the correct mappings determined by the matcher to the total
number of the mappings that it defined. Similarly, recall represents the ratio
of the correct mappings determined by the matcher to the total number of
possible correct mappings. Both these metrics can be misleading if consid-
ered in isolation, e.g., a matcher that determines a relatively small number

214

8.4. EVALUATION

of mappings that are mostly true will have a high precision and thus can be
termed as highly accurate if precision is considered in isolation as an eval-
uation metric. However, an additional consideration of recall value, which
will be low in this case will enable a correct evaluation of the matcher’s
accuracy. Similarly, using high recall value for a matcher as an indication
of higher accuracy can also be incorrect. In this case, the matcher can have
a higher ratio of false positives along with true positives leading to lower
precision and hence cannot be termed as accurate. Therefore, the third
metric F-measure is relatively more meaningful, which is a harmonic mean
of precision and recall.

Seite 2

MapSSS ASE This matcher edna
0

0.2

0.4

0.6

0.8

1

Precision
F-measure
Recall

Figure 8.12: Comparison of the Matchers in
OAEI Evaluation Campaign

Based on these metrics,
Fig. 8.12 shows the match-
ing results of our data model
matcher in comparison with
some selected matchers that
participated for the evalu-
ation campaign. In these
matchers, MapSSS and ASE
could be considered the two
top-most accurate match-
ers on the basis of their
F-measure value. Edna
is a simple string-based
matcher, which is used as a
baseline in this case. The
detailed results of this evaluation are presented in [1].

Compared to the top accurate matchers, we consider the performance
of our matcher satisfactory and the accuracy of our data model matching
results can be termed as reasonably high. Here it is important to mention
that our data model matcher in particular had incorrect matching results in
the cases where the data model elements did not have meaningful names.
This is because the semantic matching of the elements mainly depends on
their ontological semantics in the domain ontology defined on the basis of
their names. This aspect needs to be further investigated in future that
what other information in the data model can be used for the definition of
ontological semantics in case of ambiguous names.

In order to evaluate the accuracy of the service description matching
results, a particular service request needs to be matched to the service offers
published on the service market. For this purpose, a service market with
sufficiently large number of diverse service offers is required. This is partially

215

CHAPTER 8. TOOL SUPPORT

realized as the service registry component in our workbench but it still
lacks a comprehensive collection of service offers. As part of CRC 901 ”On-
The-Fly (OTF) Computing”, our outlook for future work also includes the
development of such a comprehensive OTF service market with adequate
service offers to extensively evaluate the accuracy of our service description
matching results.

8.5 Summary and Discussion

In this chapter, we have presented our prototypic workbench for automatic
service discovery and composition, which is fundamentally based on the
plug-in mechanism provided by Eclipse. For its implementation, we have
used different eclipse-based tools and technologies, such as, EMF, EMF
Compare, Papyrus, Henshin, etc. In this workbench, we have implemented
several components realizing multiple phases of our approach, such as, ser-
vice description normalization, service publishing and service discovery, etc.
Additionally, we also presented our evaluation results for different parts of
this workbench.

In future, we aim to extend it with features that have not been imple-
mented so far, e.g., the service composition mechanism, etc. and carry out
an extensive evaluation on the CRC platform with case studies from different
domains.

216

9
Conclusion and Future Work

In this thesis, we have presented our framework for automatic service dis-
covery and composition, which is one of the major milestones aimed by the
service-oriented computing (SOC) paradigm. In this concluding chapter, we
summarize the work presented in this thesis.

In the next section, we first give a brief summary of the presented frame-
work and an overview of the contributions made. Next, we present an out-
look for the important future work to further extend and enhance this work.
Finally, we conclude with some final remarks and the lessons learnt during
the course of this work.

9.1 Summary and Contributions Overview

The main aim of this thesis was to propose an approach that allows to
achieve one of the major goals of SOC, i.e., enabling automatic service dis-
covery and composition while ensuring accurate results. For that purpose,
a mechanism for automatic service matching is required, which ensures the
accuracy of results by comprehensively matching the service requests and
offers in terms of their structural as well as behavioral aspects. In this direc-
tion, the current standards of the service description, such as, WSDL [162]
allow a limited specification of the requested/offered functionality. There-
fore, there is a need for languages that allow comprehensive specification
of service requests and offers in terms of their different aspects. Addition-
ally, conforming to the essence of SOC, which allows the service partners
to function in their independent domains, the service description match-
ing mechanism must overcome their underlying multi-faceted heterogeneity
while matching their heterogeneous service descriptions.

To achieve the goals of this thesis, we presented a framework for auto-
matic service discovery and composition, which ensures accurate results by
matching comprehensive service descriptions while overcoming the underly-

217

CHAPTER 9. CONCLUSION AND FUTURE WORK

ing multi-faceted heterogeneity of the service partners. In the following, we
give an overview of the main components of our framework together with
the important contributions.

1. Rich Service Description Language: In order to enable the service
partners to specify their service requests and offers comprehensively,
we presented Rich Service Description Language (RSDL). In this di-
rection, our focus was to come up with elaborate notations to specify
different aspects of the service descriptions comprising structural and
behavioral details of the requested/offered service. RSDL comprises
multiple artifacts that cover these aspects of the service descriptions
in detail. Additionally, it ensures a wider acceptance by conforming to
the de facto industry standard UML, whose visual notations make it
easier to use. Similarly, complying to the particular scenario of OTF
computing under consideration, RSDL provides specialized notations
for the specification of service requests and offers according to their
particular features.

We defined the syntax of RSDL in terms of a meta-model, which con-
forms to the syntax of the underlying UML constructs [115]. For the
formal semantics, some relevant existing approaches [96, 64, 137, 110]
are reused. These approaches are mainly based on an important con-
cept from the area of graph theory, i.e., typed graph transformation
rules [34]. Such formal semantics for RSDL allows an automatic pro-
cessing and verification of its different artifacts during service discovery
and composition process.

2. Local-Global Data Model Matching and the Service Descrip-
tion Normalization: One of the strengths of our framework is its
elaborate mechanism to overcome the multi-faceted heterogeneity of
service partners while matching their service descriptions. The first
facet of this is the data model heterogeneity of the service partners.
To overcome this heterogeneity, our framework introduces a technique
that automatically normalizes the service descriptions from their lo-
cal to a common representation in the public domain. Such a nor-
malization to a common representation enables the automatic service
description matching despite their heterogeneous data models.

A local-global data model matching mechanism serves as the basis for
this service description normalization, which extensively relies on the
concept of standardized domain information as global ontology. Our
framework provides guidelines to the OTF provider to define such a

218

9.1. SUMMARY AND CONTRIBUTIONS OVERVIEW

global ontology and a conforming global data model. The data model
matching mechanism allows a semantic matching between the local
and the global data models based on their ontological semantics in the
global ontology. This matching exploits a variety of semantic match-
ing techniques [52] and results in local-global data model mappings.
The service description normalization technique uses these data model
mappings to translate the local service description to their global coun-
terparts automatically.

3. Multi-level Service Discovery: As a first step of the service de-
scription matching process, our framework presented a multi-level ser-
vice discovery mechanism that selects and gradually filters the poten-
tial service offers that may satisfy the requester’s requirements. The
core functionality of this service discovery mechanism is based on an
operation matching between the request and available offers.

Realizing the importance of a comprehensive matching between service
descriptions, our operation matching approach matches the requested
and offered operations on the basis of their structural and behavioral
aspects. Additionally, it also considers the granularity level hetero-
geneity between the service partners and does not restrict itself to 1
: 1 correspondence between the requested and the offered operations.
Rather, it aims to identify 1 : 1 , 1 : n, n : 1, and n : m correspon-
dences between these operations.

In this direction, we carried out an in-depth analysis and precisely
identified different cases of such complex correspondences and formal-
ized the structure of 1 : 1 , 1 : n, n : 1 correspondences on the basis
of these identified cases. Further, we proposed a set of matching algo-
rithms to identify such operation correspondences between the request
and the available offers. As a result of operation matching, a set of
possible operation correspondences for the service request is identified
and on this basis, a subset of offers is selected to determine any valid
service compositions in the next phase of the approach.

4. Service Composition through Protocol Matching: After the
service discovery phase, which results in a subset of candidate offers,
our approach allows to determine possible service compositions based
on a protocol matching mechanism. In this direction, an important
concern is to resolve the linguistic heterogeneity of the requested and
offered protocols specified in RSDL. For this purpose, our mechanism
allows an automatic translation of the heterogeneous requested and

219

CHAPTER 9. CONCLUSION AND FUTURE WORK

offered protocols to a common semantic domain, i.e., labeled transition
system (LTSs) through their semantic specification as DMM rules.

Based on the resulting LTSs, a 1 : n protocol matching between the
requested protocol and the offered protocols of the candidate offers is
performed. This is enabled through a specialized parallel LTS com-
position operator that allows a composition of the participating LTSs
on the basis of the complex operation correspondences resulting from
service discovery phase. As a result of this LTS composition, pos-
sible service compositions are determined that completely fulfill the
requester’s requirements. Additionally, our mechanism provides addi-
tional information by differentiating among different types of service
compositions, such as, safe and unsafe compositions, which further
supports the service requester to make a final selection.

5. Tool Support and Evaluation: As a proof-of-concept for our ser-
vice discovery and composition approach, we implemented a prototypic
workbench, which realizes a significant part of our approach. Based
on the Eclipse plug-in mechanism, this workbench implements some
major usecases, such as, specifying and normalizing of the service de-
scriptions, performing service discovery and composition, managing
service registry, etc. For this purpose, different eclipse-based tools
and technologies, like EMFCompare, Papyrus, Henshin, etc. are used.

Apart from the automation of the proposed approach through the im-
plemented prototype, we evaluated the accuracy of our data model
matching mechanism, which is implemented as a part of the service
description normalization usecase. For this evaluation, we comply to
Ontology Alignment Evalaution Initiative (OAEI) that is a public fo-
rum to evaluate the performance of matching systems. In comparison
to the top accurate matchers submitted to OAEI, the accuracy of our
data model matcher is reasonably high. We claim that other parts
of the workbench will also be evaluated extensively in future on the
basis of a comprehensive service repository and different case studies
developed as a part of CRC 901 - OTF Computing.

9.2 Outlook on Future Work

Apart from its current features and contributions, there are certain aspects
that are so far not covered by the proposed framework. Similarly, there are
certain directions in which this framework can be extended to increase its

220

9.2. OUTLOOK ON FUTURE WORK

scope and make it more effective. We give this outlook on future work as
follows.

Our Rich Service Description Language (RSDL) aims at comprehensively
specifying service descriptions and hence enable their accurate matching.
However, currently its notations are limited to the specification of functional
aspects of the requested/offered service. Recently, the researchers in SOC
have also shifted their focus towards devising approaches for the specification
and matching of non-functional aspects of the service description [91]. A
promising extension for RSDL can be the specification of such non-functional
aspects in service requests and offers. In this direction, the OMG’s UML
profile for modeling quality of service and fault tolerance (QFTP) [114] can
serve as a foundation. Later, the proposed service description matching
mechanism has to be extended as well to automatically match these non-
functional elements of service descriptions.

In the context of the proposed local-global data model matching mecha-
nism, an extension of global ontology definition and maintenance mechanism
is required, which enables the alignment of DSOs in the global ontology to
support service descriptions spanning multiple domains and allows a more
flexible modification of the global ontology. The proposed local-global data
model matching mechanism so far does not consider independent local on-
tologies of service partners. It is worth investigating that how the existence
of such local ontologies can support the data model matching mechnaism,
e.g., the information in the local ontology might be used to improve the
annotation of the local data model in the global ontology. Similarly, calcula-
tion of similarity value between data elements can be further enhanced with
other types of similarity coefficients. In this direction, [52] defines a variety
of similarity coefficients that can be calculated between data elements for
their matching. For service description normalization, certain aspects need
further investigation, such as, attribute normalization, information loss, etc.

In case of the proposed operation matching mechanism, the accuracy
of matching results can be enhanced by matching further elements of visual
contracts, which have not been considered so far. This means an extension of
the matching mechanism with the attributes, negative/positive application
condition and multi-objects. Additionally, on the basis of the detailed analy-
sis about different possible scenarios, the definition of a formal structure and
matching algorithm for different kinds of n : m operation correspondence is
also a potential area for future work in this context.

For the proposed service composition mechanism, a possible extension is
to consider requested and and offered service protocols with complex nota-
tions. For instance, a requested protocol with branching, multiple invocation

221

CHAPTER 9. CONCLUSION AND FUTURE WORK

sequences, and loops, etc. can be considered in future. Similarly, the offered
protocol can also be extended to include parallelism, loops, etc. In Sec. 7.5,
we already pointed out different scenarios that can occur in case of loops
in the requested and offered protocols. On the basis of these initial ob-
servations, it can be further investigated to see how the LTS composition
mechanism and the notion of valid service composition has to be extended
in such cases. Another possible future extension of the framework is the
implementation of a concrete service composition based on the blueprint re-
sulting from service composition phase. In this direction, the RSDL should
also be extended to contain concrete binding details to the actual underlying
services for the service offers.

Another important aspect that can further enhance the relevance of the
proposed framework is the development of a feedback mechanism in future.
In case a valid service composition fulfilling the request cannot be deter-
mined by the proposed framework, the requester can be assisted by provid-
ing him feedback about the cause of failure and how to resolve the failure.
For this purpose, the feedback mechanism has to gather and analyze the
information produced during different phases of the service matching pro-
cess. Based on this analysis, it formulates suggestions for the requester for
any possible modifications in his request that can improve the chances of
achieving a valid service composition with the proposed framework.

Further, the proposed framework only consider an exact match between
the service requests and offers where the requested functionality has to be
completely fulfilled by the determined service composition. However, in case
an exact match cannot be found, an approximate match where the deter-
mined service composition partially satisfies the requested functionality can
also be relevant for the requester. For such a future extension, one possibil-
ity is to consider plugin and subsume type similarity between VC elements
during operation matching resulting in an approximate matching between
operations. An existing approach for approximate matching developed in
the context of OTF computing [126] can provide the basis to extend the
proposed framework in this direction.

Finally, another interesting area that needs further exploration in future
is the adaptation of the proposed framework for a dynamic environment.
The proposed framework allows the requester to carry out service discovery
and composition process at design time. It does not support the scenario
where an on-the-fly adaptation of an existing service composition is required
to support new functionality, incorporate new services, and replace failed
services, etc. It can support to fully realize the vision of OTF computing
with service discovery and composition in such a dynamic and on-the-fly

222

9.3. FINAL REMARKS 223

environment.

9.3 Final Remarks

The contributions made in this dissertation enable OTF computing to
achieve a major goal of the service-oriented computing (SOC), i.e., enabling
seamless interaction among heterogeneous service partners.

We are convinced that the full potential of SOC can only be utilized if
the service partners are allowed to have a seamless collaboration along with
complete independence to function in their independent domains. This can
be ensured through an automation of service discovery and composition pro-
cess while overcoming the underlying heterogeneity of the service partners.
Consequently, we came up with an elaborate service discovery and compo-
sition framework that effectively meets these challenges.

We believe that despite certain unsolved issues, the proposed approach
is a promising endeavor towards meeting the currently faced challenges in
SOC. We are convinced that with focused efforts to extend the approach
according to the recommendations in Sec. 9.2 it can evolve to completely
fulfill the vision of OTF computing.

Bibliography

[1] Aguirre, J., Eckert, K., Euzenat, J., Ferrara, A., van Hage, W. R.,
Hollink, L., Meilicke, C., Nikolov, A., Ritze, D., Scharffe, F., Shvaiko,
P., Sváb-Zamazal, O., dos Santos, C. T., Jiménez-Ruiz, E., Grau, B. C.,
and Zapilko, B. (2012). Results of the ontology alignment evaluation
initiative 2012. In Proceedings of the 7th International Workshop on On-
tology Matching, volume 946 of CEUR Workshop Proceedings, Boston,
MA, USA. CEUR-WS.org.

[2] Allen, R. and Garlan, D. (1997). A Formal Basis for Architectural Con-
nection. ACM Transaction on Software Engineering and Methodology,
6(3):213–249.

[3] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Ser-
vices: Concepts, Architectures and Applications. Springer-Verlag, Berlin
Heidelberg.

[4] Arabshian, K., Danielsen, P. J., and Afroz, S. (2012). Lexont: A semi-
automatic ontology creation tool for programmable web. In AAAI Spring
Symposium: Intelligent Web Services Meet Social Computing, volume SS-
12-04 of AAAI Technical Report. AAAI.

[5] Atkinson, C., Bayer, J., and Muthig, D. (2000). Component-based prod-
uct line development: The kobra approach. In Software Product Lines,
volume 576 of The Springer International Series in Engineering and Com-
puter Science, pages 289–309. Springer US.

[6] Avison, D. and Fitzgerald, G. (2003). Information systems development:
methodologies, techniques and tools (3rd edition). McGraw Hill.

[7] Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[8] Bansal, A., Kona, S., Simon, L., Mallya, A., Gupta, G., and Hite, T.
(2005). A universal service-semantics description language. In Proceedings
of Third IEEE European Conference on Web Services (ECOWS’05), pages
214–225, Orlando, FL, USA. IEEE Computer Society.

[9] Bartalos, P. and Bieliková, M. (2011). Automatic Dynamic Web Ser-
vice Composition: A Survey and Problem Formalization. Computing and
Informatics, 30(4):793–827.

225

226 Bibliography

[10] Bastide, R. and Barboni, E. (2004). Component-based behavioural
modelling with high-level petri nets. In Proceedings of Third Workshop
on Modelling of Objects, Components and Agents (MOCA’04), pages 37–
46. DAIMI.

[11] Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., and
Tivoli, M. (2006). Towards an engineering approach to component adap-
tation. In Architecting Systems with Trustworthy Components, volume
3938 of LNCS, pages 193–215. Springer, Berlin Heidelberg.

[12] Becker, S., Koziolek, H., and Reussner, R. (2009). The palladio compo-
nent model for model-driven performance prediction. Journal of Systems
and Software, 82(1):3–22.

[13] Bellur, U. and Mande, T. (2009). Automated web service composition
using semantic descriptions. In Proceedings of 4th IEEE Asia-Pacific
Services Computing Conference (APSCC’09), pages 377–384, Singapore.
IEEE Computer Society.

[14] Bellur, U. and Vadodaria, H. (2008). On extending semantic match-
making to include preconditions and effects. In Proceedings of IEEE Inter-
national Conference on Web Services (ICWS’08), pages 120–128, Beijing,
China. IEEE Computer Society.

[15] Bener, A. B., Ozadali, V., and Ilhan, E. S. (2009). Semantic match-
maker with precondition and effect matching using SWRL. Expert Sys-
tems with Applications, 36(5):9371–9377.

[16] Bin, X., Yan, W., Po, Z., and Juanzi, L. (2005). Web services searching
based on domain ontology. In Proceedings of IEEE Seventh International
Workshop on Service-Oriented System Engineering (SOSE’05), pages 51–
55, Beijing, China. IEEE Computer Society.

[17] Bloomer, J. (1992). Power Programming with RPC. O’Reilly & Asso-
ciates, Inc.

[18] Bolton, F. and Walshe, E. (2001). Pure CORBA: A Code-Intensive
Premium Reference. SAMS Publishing, Indianapolis, IN, USA.

[19] Bondarenko, A., Dau, D., Feldkord, S., Gellermann, M., Gerth,
C., Hornkamp, M., Mḧlenfeld, B., and Qiu, H. (2006). Abschluss-
bericht:Patternbasierte Geschftsprozess-Modellierung (PaGeMo). Tech-
nical report, University of Paderborn, Germany.

Bibliography 227

[20] Borger, E. and Stark, R. F. (2003). Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag, Berlin Hei-
delberg.

[21] Box, D. (1997). Essential COM. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition.

[22] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool Publishers, 1st edition.

[23] Bran, S. and Gérard, S. (2014). Modeling and Analysis of Real-Time
and Embedded Systems with UML and MARTE. Elsevier, Amsterdam.

[24] Bröggelwirth, J. (2014). Design of Real-Time Coordination Protocols
for Multilateral Communication. Master’s thesis, University of Paderborn.

[25] Brogi, A., Corfini, S., Aldana, J. F., and Navas, I. (2006). Automated
discovery of compositions of services described with separate ontologies.
In Proceedings of 4th International Conference on Service-Oriented Com-
puting (ICSOC’06), volume 4294 of LNCS, pages 509–514, Chicago, IL,
USA. Springer-Verlag Berlin Heidelberg.

[26] Brogi, A., Corfini, S., and Popescu, R. (2008). Semantics-based
Composition-oriented Discovery of Web Services. ACM Transactions on
Internet Technology, 8(4):19:1–19:39.

[27] Brown, A. W. and Wdlnau, K. C. (1996). Engineering of component-
based systems. In Proceedings of 2nd IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’96), pages 414–422,
Montreal, Canada. IEEE Computer Society.

[28] Bures, T., Hnetynka, P., and Plasil, F. (2006). Sofa 2.0: Balancing
advanced features in a hierarchical component model. In Proceedings
of Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06), pages 40–48, Prague, Czech
Republic. Springer-Verlag Berlin Heidelberg.

[29] Cavallaro, L., Nitto, E., and Pradella, M. (2009). An Automatic Ap-
proach to Enable Replacement of Conversational Services. In Proceedings
of 7th International Joint Conference ICSOC-ServiceWave ’09, volume
5900 of LNCS, pages 159–174, Budva, Montenegro. Springer-Verlag Berlin
Heidelberg.

228 Bibliography

[30] Chabeb, Y. and Tata, S. (2008). Yet another semantic annota-
tion for WSDL. In Proceedings of the IADIS International Conference
WWW/Internet (ICWI’08), pages 462–467, Freiburg, Germany. IADIS.

[31] Chabeb, Y., Tata, S., and Ozanne, A. (2010). Yasa-m: A semantic web
service matchmaker. In Proceedings of 24th IEEE International Confer-
ence on Advanced Information Networking and Applications (AINA’10),
pages 966–973, Perth, Australia. IEEE Computer Society.

[32] Cicalese, C. D. T. and Rotenstreich, S. (1999). Behavioral specification
of distributed software component interfaces. IEEE Computer, 32(7):46–
53.

[33] Corradini, A., Montanari, U., and Rossi, F. (1996). Graph processes.
Fundamenta Informaticae, 26(3):241–265.

[34] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., and
Löwe, M. (1997). Algebraic approaches to graph transformation, part
i: Basic concepts and double pushout approach. In Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 1: Foun-
dations, pages 163–245. World Scientific.

[35] Corrales, J. C., Grigori, D., Bouzeghoub, M., and Burbano, J. E. (2008).
Bematch: A platform for matchmaking service behavior models. In
Proceedings of the 11th International Conference on Extending Database
Technology: Advances in Database Technology (EDBT’08), pages 695–
699, Nantes, France. ACM, New York, USA.

[36] Crnković, I., Sentilles, S., Vulgarakis, A., and Chaudron, M. (2011). A
classification framework for software component models. IEEE Transac-
tions on Software Engineering, 37(5):593–615.

[37] Cubo, J., Canal, C., and Pimentel, E. (2010). Context-aware service
discovery and adaptation based on semantic matchmaking. In Proceedings
of Fifth International Conference on Internet and Web Applications and
Services (ICIW’10), pages 554–561, Barcelona, Spain. IEEE Computer
Society.

[38] Cuzzocrea, A. and Fisichella, M. (2011). Discovering semantic web
services via advanced graph-based matching. In Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics (SMC’11),
pages 608–615, Anchorage, Alaska, USA. IEEE Computer Society.

Bibliography 229

[39] de Bruijn, J., Lausen, H., Polleres, A., and Fensel, D. (2006). The Web
Service Modeling Language WSML: An Overview. In Proceedings of 3rd
European Semantic Web Conference (ESWC’06), volume 4011 of LNCS,
pages 590–604. Springer-Verlag Berlin Heidelberg.

[40] DeMarco, T. (1978). Structured Analysis and System Specification.
Yourdon Press, New York, USA.

[41] Digital Enterprise Research Institute (2005). OnTour - The Tourism
Ontology. http://e-tourism.deri.at/ont/.

[42] Dobing, B. and Parsons, J. (2005). Current practices in the use of uml.
In Perspectives in Conceptual Modeling, volume 3770 of LNCS, pages 2–
11. Springer-Verlag, Berlin Heidelberg.

[43] Domı́nguez, E., Lloret, J., Pérez, B., Rodŕıguez, Á., Rubio, Á. L., and
Zapata, M. A. (2007). A survey of uml models to xml schemas transforma-
tions. In Proceedings of 8th International Conference on Web Information
Systems Engineering (WISE’07), volume 4831 of LNCS, pages 184–195,
Nancy, France. Springer-Verlag Berlin Heidelberg.

[44] D’Souza, D. F. and Wills, A. C. (1998). Objects, Components, and
Frameworks with UML: The Catalysis Approach. Addison-Wesley Profes-
sional.

[45] E. Bruneton, T. Coupaye, J. S. (2004). The Fractal Component Model
Specification. http://fractal.ow2.org/specification/.

[46] Ehrig, H., Engels, G., and Rozenberg, G., editors (1999). Handbook of
Graph Grammars and Computing by Graph Transformation: applications,
languages and tools. Vol. 2. World Scientific.

[47] EJB Expert Group (2006). JSR 220: Enterprise JavaBeans 3.0 (Fi-
nal Release). https://jcp.org/aboutJava/communityprocess/final/

jsr220/index.html.

[48] Engels, G., Gogolla, M., Hohenstein, U., Hülsmann, K., Löhr-Richter,
P., Saake, G., and Ehrich, H. (1992). Conceptual modelling of database
applications using extended ER model. Data Knowledge Engineering,
9:157–204.

[49] Engels, G., Güldali, B., Soltenborn, C., and Wehrheim, H. (2007). As-
suring Consistency of Business Process Models and Web Services Using

http://e-tourism.deri.at/ont/
http://fractal.ow2.org/specification/
https://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

230 Bibliography

Visual Contracts. In Proceedings of Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE’07), volume 5088 of LNCS,
pages 17–31, Kassel, Germany. Springer Berlin Heidelberg.

[50] Engels, G., Küster, J. M., Heckel, R., and Groenewegen, L. (2001). A
methodology for specifying and analyzing consistency of object-oriented
behavioral models. SIGSOFT Software Engineering Notes, 26(5):186–195.

[51] ESSI WSMO Working Group (2005). Web Service Modelling Ontology.
http://www.wsmo.org/.

[52] Euzenat, J. and Shvaiko, P. (2007). Ontology Matching, volume 18.
Springer-Verlag, Berlin Heidelberg.

[53] Faber, P., Mairal, R., and Magana, P. (2011). Linking a domain-specific
ontology to a general ontology. In Proceedings of the Twenty-Fourth In-
ternational Florida Artificial Intelligence Research Society (FLAIRS’11),
Palm Beach, Florida, USA. AAAI Press.

[54] Förster, A. (2009). Pattern based business process design and verifica-
tion. PhD thesis, University of Paderborn.

[55] Georgakopoulos, D. and Papazoglou, M. P. (2008). Service-Oriented
Computing. The MIT Press.

[56] Gerth, C. (2013). Business Process Models - Change Management. PhD
thesis, University of Paderborn, Springer, Berlin Heidelberg, LNCS, vol.
7849.

[57] Gil, A. F., Cong, Z., and Baltá, A. (2012). Bridging the gap between
service description models in service matchmaking. Multiagent and Grid
Systems, 8(1):83–103.

[58] Girault, C. and Valk, R. (2001). Petri Nets for System Engineering: A
Guide to Modeling, Verification, and Applications. Springer-Verlag Berlin
Heidelberg.

[59] Grigori, D., Corrales, J., Bouzeghoub, M., and Gater, A. (2010). Rank-
ing bpel processes for service discovery. IEEE Transactions on Services
Computing, 3(3):178–192.

[60] Grigori, D., Corrales, J. C., and Bouzeghoub, M. (2008). Behavioral
matchmaking for service retrieval: Application to conversation protocols.
Information Systems, 33(7–8):681–698.

http://www.wsmo.org/

Bibliography 231

[61] Haller, A., Cimpian, E., Mocan, A., Oren, E., and Bussler, C. (2005).
WSMX - A Semantic Service-Oriented Architecture. In Proceedings of
IEEE International Conference on Web Services (ICWS’05), pages 321–
328, Orlando, FL,USA. IEEE Computer Society.

[62] Hanninen, K., Maki-Turja, J., Nolin, M., Lindberg, M., Lundback, J.,
and Lundback, K.-L. (2008). The rubus component model for resource
constrained real-time systems. In Proceedings of International Symposium
on Industrial Embedded Systems (SIES’08), pages 177–183, Montpellier /
La Grande Motte, France. IEEE Computer Society.

[63] Hatcliff, J., Leavens, G. T., Leino, K. R. M., Müller, P., and Parkinson,
M. (2012). Behavioral interface specification languages. ACM Computing
Surveys, 44(3):16:1–16:58.

[64] Hausmann, J. H. (2005). Dynamic Meta Modeling: A Semantics De-
scription Technique for Visual Modeling Languages. PhD thesis, Univer-
sity of Paderborn.

[65] Hausmann, J. H., Heckel, R., and Lohmann, M. (2005). Model-based
Development of Web Service Descriptions Enabling a Precise Matching
Concept. International Journal of Web Services Research, 2(2):67–85.

[66] Heckel, R., Corradini, A., Ehrig, H., and Löwe, M. (1996). Horizontal
and vertical structuring of typed graph transformation systems. Mathe-
matical Structures in Computer Science, 6(6):613–648.

[67] Heckel, R., Ehrig, H., Wolter, U., and Corradini, A. (2001). Double-
pullback transitions and coalgebraic loose semantics for graph transfor-
mation systems. Applied Categorical Structures, 9(1):83–110.

[68] Hepp, M. (2008). Goodrelations: An ontology for describing products
and services offers on the web. In Gangemi, A. and Euzenat, J., editors,
Knowledge Engineering: Practice and Patterns, volume 5268 of Lecture
Notes in Computer Science, pages 329–346. Springer Berlin Heidelberg.

[69] Hewlett-Packard Company (2002). Web Services Conversation Lan-
guage (WSCL) 1.0. http://www.w3.org/TR/wscl10/.

[70] Hissam, S. A., Ivers, J., Plakosh, D., and Wallnau, K. C. (2005).
Pin component technology (v1.0) and its c interface. Technical report,
Carnegie Mellon University, Software Engineering Institute.

http://www.w3.org/TR/wscl10/

232 Bibliography

[71] Hoare, C. A. R. (1978). Communicating sequential processes. Commu-
nications of the ACM, 21(8):666–677.

[72] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B.,
and Dean, M. (2004). Semantic Web Rule Language (SWRL). http:

//www.w3.org/Submission/SWRL/.

[73] Huma, Z., Gerth, C., and Engels, G. (2014). On-the-fly computing:
automatic service discovery and composition in heterogeneous domains.
Computer Science - Research and Development, pages 1–29.

[74] Huma, Z., Gerth, C., Engels, G., and Juwig, O. (2012a). Towards an
Automatic Service Discovery for UML-based Rich Service Descriptions.
In Proceedings of the 15th International Conference on Model Driven En-
gineering Languages and Systems (MODELS’12), volume 7590 of LNCS,
pages 709–725, Innsbruck, Austria. Springer-Verlag, Berlin Heidelberg.

[75] Huma, Z., Gerth, C., Engels, G., and Juwig, O. (2012b). UML-based
Rich Service Description and Discovery in Heterogeneous Domains. In
Proceedings of the Forum at the CAiSE’12 Conference on Advanced In-
formation Systems Engineering, volume 855 of CEUR Workshop Proceed-
ings, pages 90–97, Danzig, Poland. CEUR-WS.org.

[76] Huma, Z., Gerth, C., Engels, G., and Juwig, O. (2013). Automated
service composition for on-the-fly soas. In Proceedings of the 11th Inter-
national Conference on Service Oriented Computing (ICSOC’13), volume
8274 of LNCS, pages 524–532, Berlin, Germany. Springer-Verlag, Berlin
Heidelberg.

[77] International Business Machines Corporation (IBM) (2007).
Business Process Execution Language for Web Services. http:

//download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-bpel/ws-bpel.pdf.

[78] International Business Machines Corporation (IBM) (2009). Ra-
tional Software Architect RealTime Edition. http://www-947.ibm.

com/support/entry/portal/product/rational/rational_software_

architect_realtime_edition?productContext=443691142.

[79] Ke, C. and Huang, Z. (2012). Self-adaptive semantic web service match-
ing method. Knowledge-Based Systems, 35:41–48.

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www-947.ibm.com/support/entry/portal/product/rational/rational_software_architect_realtime_edition?productContext=443691142
http://www-947.ibm.com/support/entry/portal/product/rational/rational_software_architect_realtime_edition?productContext=443691142
http://www-947.ibm.com/support/entry/portal/product/rational/rational_software_architect_realtime_edition?productContext=443691142

Bibliography 233

[80] Kifer, M. and Lausen, G. (1989). F-logic: A higher-order language
for reasoning about objects, inheritance, and scheme. SIGMOD Records,
18(2):134–146.

[81] Klusch, M., Fries, B., and Sycara, K. (2009a). Owls-mx: A hybrid
semantic web service matchmaker for owl-s services. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(2):121–133.

[82] Klusch, M. and Kapahnke, P. (2012a). Adaptive signature-based se-
mantic selection of services with owls-mx3. Multiagent Grid Systems,
8(1):69–82.

[83] Klusch, M. and Kapahnke, P. (2012b). The isem matchmaker: A flexi-
ble approach for adaptive hybrid semantic service selection. Web Seman-
tics: Science, Services and Agents on the World Wide Web, 15(0):1–14.

[84] Klusch, M. and Kapahnke, P. (2012c). The isem matchmaker: A flexible
approach for adaptive hybrid semantic service selection. Web Semantics:
Science, Services and Agents on the World Wide Web, 15(3).

[85] Klusch, M., Kapahnke, P., and Zinnikus, I. (2009b). Hybrid adaptive
web service selection with sawsdl-mx and wsdl-analyzer. In Proceedings of
the 6th European Semantic Web Conference on The Semantic Web: Re-
search and Applications (ESWC’09), ESWC 2009 Heraklion, pages 550–
564, Heraklion, Crete, Greece. Springer-Verlag, Berlin, Heidelberg.

[86] Klusch, M. and Kaufer, F. (2009). Wsmo-mx: A hybrid semantic web
service matchmaker. Web Intelligence and Agent Systems, 7(1):23–42.

[87] Kokash, N. (2006). A Comparison of Web Service Interface Similarity
Measures. In Proceedings of the Third Starting AI Researchers’ Sympo-
sium (STAIRS’06), volume 142 of Frontiers in Artificial Intelligence and
Applications, pages 220–231, Trentino, Italy. IOS Press.

[88] Kona, S., Bansal, A., Blake, M. B., and Gupta, G. (2008). Generalized
Semantics-Based Service Composition. In Proceedings of IEEE Interna-
tional Conference on Web Services (ICWS’08), pages 219–227, Beijing,
China. IEEE Computer Society.

[89] Kopecký, J., Moran, M., Vitvar, T., Roman, D., and Mocan, A. (2007).
WSMO Grounding. http://www.wsmo.org/TR/d24/d24.2/v0.1/.

http://www.wsmo.org/TR/d24/d24.2/v0.1/

234 Bibliography

[90] Kotonya, G., Sommerville, I., and Hall, S. (2003). Towards a clas-
sification model for component-based software engineering research. In
Proceedings of 29th Euromicro Conference, pages 43–52, Belek-Antalya,
Turkey. IEEE Computer Society.

[91] Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M.,
Benrernou, S., Brandic, I., Kertész, A., Parkin, M., and Carro, M.
(2013). A survey on service quality description. ACM Computing Surveys,
46(1):1:1–1:58.

[92] Küster, J. and Stroop, J. (2001). Consistent Design of Embedded Real-
time Systems with UML-RT. In Proceedings of Fourth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pages
31–40, Magdeburg, Germany. IEEE Computer Society.

[93] Küster, J. M. and Stehr, J. (2003). Towards Explicit Behavioral Con-
sistency Concepts in the UML. In Proceedings of the 2nd International
Workshop on Scenarios and State Machines: Models, Algorithms and
Tools, Portland, USA. IEEE Computer Society.

[94] Leymann, F. (2005). The (Service) Bus: Services Penetrate Every-
day Life. In Proceedings of International Conference on Service-Oriented
Computing (ICSOC’05), volume 3826 of LNCS, pages 12–20. Springer-
Verlag, Berlin Heidelberg, Berlin, Heidelberg.

[95] Liu, F., Shi, Y., Yu, J., Wang, T., and Wu, J. (2010). Measuring
Similarity of Web Services Based on WSDL. In Proceedings of IEEE
International Conference on Web Services (ICWS’10), pages 155–162,
Miami, Florida, USA. IEEE Computer Society.

[96] Lohmann, M. (2006). Kontraktbasierte Modellierung, Implementierung
und Suche von Komponenten in serviceorientierten Architekturen. PhD
thesis, University of Paderborn.

[97] LSDIS Lab (2004a). METEOR-S. http://lsdis.cs.uga.edu/

projects/meteor-s/.

[98] LSDIS Lab (2004b). Web Service Semantics. http://lsdis.cs.uga.

edu/projects/WSDL-S/wsdl-s.pdf.

[99] Manickam, P., Sangeetha, S., and Subrahmanya, S. V. (2013).
Component- Oriented Development and Assembly: Paradigm, Principles,
and Practice Using Java. Auerbach Publications, Boston, MA, USA.

http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-s.pdf
http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-s.pdf

Bibliography 235

[100] Masuch, N., Hirsch, B., Burkhardt, M., Hessler, A., and Albayrak,
S. (2012). SeMa2:A Hybrid Semantic Service Matching Approach. In
Semantic Web Services, pages 35–47. Springer Berlin Heidelberg.

[101] Mätzel, K.-U. and Schnorf, P. (1997). Dynamic component adaptation.
Technical report, Ubilab Technical Report 97.6.

[102] Mens, T. (2002). A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering, 28(5):449–462.

[103] Microsoft (2000). Microsoft UDDI registry. http://uddi.microsoft.
com/.

[104] Miller, G. A. (1995). Wordnet: A lexical database for english. Com-
munications of the ACM, 38(11):39–41.

[105] Moffett, Y., Beaulieu, A., and Dingel, J. (2011). Verifying UML-RT
Protocol Conformance Using Model Checking. In Proceedings of 14th In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’11), volume 6981 of LNCS, pages 410–424, Wellington,
New Zealand. Springer-Verlag, Berlin Heidelberg.

[106] Motahari Nezhad, H. R., Benatallah, B., Martens, A., Curbera, F.,
and Casati, F. (2007). Semi-automated Adaptation of Service Interac-
tions. In Proceedings of the 16th International Conference on World Wide
Web (WWW’07), pages 993–1002, Banff, Alberta, Canada. ACM.

[107] Motahari Nezhad, H. R., Xu, G. Y., and Benatallah, B. (2010).
Protocol-aware Matching of Web Service Interfaces for Adapter Devel-
opment. In Proceedings of the 19th International Conference on World
Wide Web (WWW ’10), pages 731–740, Raleigh, North Carolina, USA.
ACM.

[108] Naeem, M., Heckel, R., Orejas, F., and Hermann, F. (2010). Incre-
mental Service Composition based on Partial Matching of Visual Con-
tracts. In Proceedings of Fundamental Approaches to Software Engineer-
ing (FASE’10), volume 6013 of LNCS, pages 123–138, Paphos, Cyprus.
Springer-Verlag, Berlin Heidelberg.

[109] Navas, I., Sanz, I., Aldana, J., and Berlanga, R. (2005). Auto-
matic generation of semantic fields for resource discovery in the semantic
web. In Andersen, K., Debenham, J., and Wagner, R., editors, Database
and Expert Systems Applications, volume 3588 of LNCS, pages 706–715.
Springer-Verlag, Berlin Heidelberg.

http://uddi.microsoft.com/
http://uddi.microsoft.com/

236 Bibliography

[110] Nesterow, V. (2010). Eine formale, graphbasierte Semantik für UML
Statemachines. Master’s thesis, University of Paderborn.

[111] OASIS (2005). OASIS SOA Reference Model Technical Com-
mittee. https://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=soa-rm.

[112] OASIS (2007). Web Services Business Process Execution Language
2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.

pdf.

[113] Object Management Group (OMG) (2006). Component Object Re-
quest Broker Architecture (CORBA) Component Model. http://www.

omg.org/spec/CCM/4.0/.

[114] Object Management Group (OMG) (2008). UML Profile for Modeling
Quality of Service and Fault Tolerance (QFTP) – 1.1. http://www.omg.
org/spec/QFTP/1.1/.

[115] Object Management Group (OMG) (2009). Unified Modeling Lan-
guage (UML) – Superstructure, Version 2.3. http://www.omg.org/spec/
UML/2.3/Infrastructure.

[116] Object Management Group (OMG) (2011a). Business Process Model
and Notation (BPMN) 2.0. http://www.omg.org/spec/BPMN/2.0/.

[117] Object Management Group (OMG) (2011b). Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification Version 1.1. http:
//www.omg.org/spec/QVT/1.1/PDF/.

[118] OpenTravel Alliance (2014). OTA XML Schema. http://www.

opentravel.org/Specifications/OnlineXmlSchema.aspx.

[119] OSGi Alliance (2007). OSGi Service Platform Core Specification.
http://www.osgi.org/Specifications/HomePage.

[120] O’Sullivan, J. J. (2006). Towards a precise understanding of service
properties. PhD thesis, Queensland University of Technology.

[121] OWL-S Coalition (2006). OWL-based Web Service Ontology. http:

//www.ai.sri.com/daml/services/owl-s/1.2/.

[122] Paliwal, A., Shafiq, B., Vaidya, J., Xiong, H., and Adam, N. (2012).
Semantics-based automated service discovery. IEEE Transactions on Ser-
vices Computing, 5(2):260–275.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/UML/2.3/Infrastructure
http://www.omg.org/spec/UML/2.3/Infrastructure
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/QVT/1.1/PDF/
http://www.omg.org/spec/QVT/1.1/PDF/
http://www.opentravel.org/Specifications/OnlineXmlSchema.aspx
http://www.opentravel.org/Specifications/OnlineXmlSchema.aspx
http://www.osgi.org/Specifications/HomePage
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.ai.sri.com/daml/services/owl-s/1.2/

Bibliography 237

[123] Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. P. (2002).
Semantic Matching of Web Services Capabilities. In Proceedings of the
First International Semantic Web Conference (ISWC’02), pages 333–347,
Sardinia, Italy. Springer-Verlag, Berlin Heidelberg.

[124] Pathak, J., Basu, S., and Honavar, V. (2006a). Modeling Web Service
Composition using Symbolic Transition Systems. In Proceedings of AAAI
Workshop on AI-Driven Technologies for Service-Oriented Computing,
Boston, Massachusetts, USA. AAAI Press.

[125] Pathak, J., Basu, S., and Honavar, V. (2006b). Modeling Web Services
by Iterative Reformulation of Functional and Non-functional Require-
ments. In Proceedings of the 4th International Conference on Service-
Oriented Computing (ICSOC’06), volume 4294 of LNCS, pages 314–326,
Chicago, IL, USA. Springer-Verlag, Berlin Heidelberg.

[126] Platenius, M. C. (2013). Fuzzy service matching in on-the-fly com-
puting. In Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), pages 715–718, Saint Petersburg, Russian
Federation. ACM.

[127] Plebani, P. and Pernici, B. (2009). Urbe: Web service retrieval based
on similarity evaluation. IEEE Transactions on Knowledge and Data
Engineering, 21(11):1629–1642.

[128] Poizat, R. M. P. and Salaün, G. (2008). Adaptation of Service Pro-
tocols Using Process Algebra and On-the-Fly Reduction Techniques. In
Bouguettaya, A., Krüger, I., and Margaria, T., editors, Proceedings of
International Conference on Service Oriented Computings (ICSOC’08),
volume 5364 of LNCS, pages 84–99, Sydney, Australia. Springer-Verlag,
Berlin Heidelberg.

[129] PrgrammableWeb (2005). PrgrammableWeb: Online Web Services
Search Engine. http://www.programmableweb.com/.

[130] Princeton University (2010). WordNet: A Lexical Database for En-
glish. http://wordnet.princeton.edu/.

[131] Rao, J. and Su, X. (2004). A Survey of Automated Web Service Com-
position Methods. In Proceedings of the First International Conference
on Semantic Web Services and Web Process Composition (SWSWPC’04),

http://www.programmableweb.com/
http://wordnet.princeton.edu/

238 Bibliography

volume 3387, pages 43–54, San Diego, CA, USA. Springer-Verlag, Berlin
Heidelberg.

[132] Reussner, R. H., Becker, S., and Firus, V. (2004). Component Com-
position with Parametric Contracts. In Tagungsband der Net.ObjectDays
2004, pages 155–169.

[133] Roshandel, R. and Medvidovic, N. (2003). Modeling multiple aspects
of software components. In Proceedings of 3rd Workshop on Specification
and Verification of Component-based Systems(SAVCBS’03), pages 88–91,
Helsinki, Finland. Addison-Wesley Longman Publishing.

[134] Rozenberg, G., editor (1997). Handbook of Graph Grammars and
Computing by Graph Transformations: Foundations. Vol. 1. World Sci-
entific.

[135] Sabou, M., Richards, D., and van Splunter, S. (2003). An experience
report on using DAML-S. In Proceedings of Workshop on E-Services and
the Semantic Web (ESSW ’03), Budapest, Hungary. ACM Press.

[136] SAWSDL Working Group (2007). Semantic Annotations for
WSDL and XML Schema (SAWSDL). http://www.w3.org/TR/2007/

REC-sawsdl-20070828/.

[137] Schäfer, J. (2010). Eine formale, graphbasierte Semantik für UML
Interactions. Master’s thesis, University of Paderborn.

[138] Schäfer, T., Knapp, A., and Merz, S. (2001). Model Checking UML
State Machines and Collaborations. Electronic Notes in Theoretical Com-
puter Science, 55(3):357–369.

[139] Schmidt, H. W. and Reussner, R. H. (2002). Generating adapters
for concurrent component protocol synchronisation. In Proceedings of
the IFIP TC6/WG6.1 5th International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’02), FMOODS’02,
pages 213–229. Kluwer, B.V.

[140] Schwichtenberg, S. (2013). Ontology-based Normalization and Match-
ing of Rich Service Descriptions. Master’s thesis, University of Paderborn.

[141] Schwichtenberg, S., Gerth, C., Huma, Z., and Engels, G. (2014). Nor-
malizing Heterogeneous Service Description Models with Generated QVT

http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/

Bibliography 239

Transformations. In Proceedings of 10th European Conference on Mod-
elling Foundations and Applications (ECMFA’14), volume 8569 of LNCS,
pages 180–195, York, UK. Springer-Verlag, Berlin Heidelberg.

[142] Shigo, O., Okawa, A., and Kato, D. (2006). Constructing Behavioral
State Machine using Interface Protocol Specification. In Proceedings of the
XIII Asia Pacific Software Engineering Conference (APSEC ’06), pages
191–198. IEEE Computer Society.

[143] Smullyan, R. (1995). First-order Logic. Dover Books on Mathematics
Series. Dover Publications.

[144] Snell, J., Tidwell, D., and Kulchenko, P. (2002). Programming Web
services with SOAP. O’Reilly & Associates, Inc., Sebastopol, CA, USA.

[145] Spanoudaki, G. and Zisman, A. (2010). Discovering Services during
Service-Based System Design Using UML. IEEE Transactions on Soft-
ware Engineering, 36(3):371–389.

[146] Spivey, J. M. (1988). Understanding Z: A Specification Language and
Its Formal Semantics. Cambridge University Press, New York, NY, USA.

[147] Stroulia, E. and Wang, Y. (2005). Structural and semantic matching
for assessing web-service similarity. International Journal of Cooperative
Information Systems, 14(4):407–438.

[148] Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge en-
gineering: Principles and methods. Data and Knowledge Engineering,
25(1-2):161–197.

[149] Sun Microsystems (1997). Javabeans Specification. java.sun.com/

javase/technologies/desktop/javabeans/docs/spec.html.

[150] Syeda-Mahmood, T., Shah, G., Akkiraju, R., Ivan, A.-A., and Good-
win, R. (2005). Searching service repositories by combining semantic and
ontological matching. In Proceedings of IEEE International Conference
on Web Services (ICWS’05), pages 13–20 vol.1, Orlando, FL, USA. IEEE
Computer Society.

[151] Szlenk, M. (2006). Formal semantics and reasoning about uml class
diagram. In Proceedings of International Conference on Dependability
of Computer Systems (DepCos-RELCOMEX’06), pages 51–59, Szklarska
Poreba. IEEE Computer Society.

java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

240 Bibliography

[152] Tarjan, R. E. (1983). Data Structures and Network Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[153] Tran, V. X., Puntheeranurak, S., and Tsuji, H. (2009). A new service
matching definition and algorithm with SAWSDL. In Proceedings of 3rd
IEEE International Conference on Digital Ecosystems and Technologies
(DEST’09), pages 371–376, Istanbul, Turkey. IEEE Computer Society.

[154] Tsui, F. and Karam, O. (2010). Essentials of Software Engineering.
Jones & Bartlett Learning.

[155] United States Census Bureau (2012). North American Industry Clas-
sification System(NAICS). https://www.census.gov/eos/www/naics/

2012NAICS/2012_Definition_File.pdf.

[156] University, K. S. (2006). Knowledge Interchange Format (KIF). http:
//www-ksl.stanford.edu/knowledge-sharing/kif/#manual.

[157] Vaculin, R., Neruda, R., and Sycara, K. (2009). The process mediation
framework for semantic web services. International Journal on Agent-
Oriented Software Engineering, 3(1):27–58.

[158] W3C (2004a). OWL Web Ontology Language. http://www.w3.org/

TR/owl-features/.

[159] W3C (2004b). RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/.

[160] W3C (2004c). Web Service Architecture. http://www.w3.org/TR/

ws-arch/.

[161] W3C (2005). Web Services Choreography Description Language 1.0.
http://www.w3.org/TR/ws-cdl-10/.

[162] W3C (2007). Web Service Description Language(WSDL). http://

www.w3.org/TR/wsdl20/.

[163] Wache, H., Voegele, T., Visser, T., Stuckenschmidt, H., Schuster, H.,
Neumann, G., and Huebner, S. (2001). Ontology-based integration of in-
formation - a survey of existing approaches. In Proceedings of Workshop
on Ontologies and Information at the 17th International Joint Confer-
ence on Artificial Intelligence (IJCAI-01), pages 108–117, Seattle, USA.
Morgan Kaufmann.

https://www.census.gov/eos/www/naics/2012NAICS/2012_Definition_File.pdf
https://www.census.gov/eos/www/naics/2012NAICS/2012_Definition_File.pdf
http://www-ksl.stanford.edu/knowledge-sharing/kif/#manual
http://www-ksl.stanford.edu/knowledge-sharing/kif/#manual
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/

Bibliography 241

[164] Warmer, J. and Kleppe, A. (1999). The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, Reading, MA.

[165] Webber, J. (2010). REST in Practice: Hypermedia and Systems Ar-
chitecture. O’Reilly, Beijing, China.

[166] Yellin, D. M. and Strom, R. E. (1997). Protocol Specifications and
Component Adaptors. ACM Transaction on Programming Languages and
Systems, 19(2):292–333.

List of Figures

1.1 An Overview of Service Publishing and Discovery on Service
Market . 1

1.2 Requester, OnlineShop1, and OnlineShop2 with same Opera-
tions but different Behavior 4

1.3 Requester, OnlineShop1 and OnlineShop2 with heteroge-
neous data models . 5

1.4 Requester and OnlineShop1 with their service descriptions at
different granularity level . 7

1.5 Typical Booking Scenario at HRS 9
1.6 Service Discovery and Composition for HRS in OTF Computing 11
1.7 The Potential Solution and its Requirements 13
1.8 An Overview of the Automatic Service Discovery and Com-

position Mechanism of the Proposed Approach 14
1.9 An Overview of the Publications 18
1.10 An Overview of the Thesis Structure 19

2.1 Varying Degrees of Service Description Comprehensiveness . 26
2.2 Evaluation of existing Service Description Languages 35
2.3 Different Dimensions of a Service Description Matching Ap-

proach and their Key Aspects 38
2.4 Evaluation of some prominent Service Discovery and Compo-

sition Approaches . 49

3.1 The hierarchical Structure of the RSDL 54
3.2 Package Structure of the RSDL Metamodel 56
3.3 DataModel Package in the RSDL Metamodel 57
3.4 OperationSignatures Package in the RSDL Metamodel . . . 59
3.5 OperationSemantics Package in the RSDL Metamodel . . . 60
3.6 Excerpt of RequesterProtocol Package in the RSDL Meta-

model based on UML sequence diagram 63
3.7 Excerpt of ProviderProtocol Package in the RSDL Meta-

model based on UML statemachine diagram 65
3.8 RSDL-based Service request by HRS 67
3.9 RSDL-based Service offer by HotelX 69

4.1 The hierarchical Structure of RSDL with Semantic Specifica-
tion for different Artifacts . 72

4.2 UML Class Diagram and UML Object Diagram vs. At-
tributed Typed Graph and Typed Graph 75

243

244 List of Figures

4.3 DPB-based graph transformation for makeReservation(...) . . 77

4.4 Overview of DMM Approach [64] 80

4.5 (a)DMM Rule startInteraction() to start an Interaction
(b) init() to initialize Active Message Marker (c) set-

Marker() to create ActiveMessage Marker 81

4.6 (a)DMM Rule startStatemachine() to start a Statemachine
(b) enterInitialState() to enter the Statemachine in its
initial State (c) createMarker() to create a Marker for a
particular Vertex . 82

5.1 An Overview of the Service Description Normalization Phase
in the Proposed Approach . 87

5.2 An Excerpt of the Global Data Model conforming to the
Tourism DSO in the global ontology 93

5.3 An Overview of the local-global Data Model Matching Algo-
rithm . 94

5.4 Annotation of the local and the global attribute rate and
price in the Global Ontology 95

5.5 Similarity values of the local Attribute city with some of the
global Attributes . 97

5.6 Attribute Mappings with their Similarity Values 98

5.7 Attribute Mappings Between the local class RoomStay and
the global class RoomPackage 100

5.8 Class Mappings with their Similarity Values 100

5.9 Visual Contract Normalization for the requested operation
makeReservation(...) . 102

6.1 An Overview of the Service Discovery Phase in the Proposed
Approach . 108

6.2 An Excerpt of Service Categorization Ontology maintained
by OTF Provider . 111

6.3 A diagrammatic Representation of a 1 : 1 Operation corre-
spondence . 116

6.4 1 : 1 Operation correspondence Example 120

6.5 A diagrammatic Representation of a n : 1 Operation corre-
spondence . 123

6.6 A Diagrammatic Representation for Scenario 1 of n : 1 Op-
eration Correspondence . 123

6.7 n : 1 Operation correspondence Example for Scenario 1 . . 124

List of Figures 245

6.8 A Diagrammatic Representation for Scenario 2 of n : 1 Op-
eration Correspondence . 125

6.9 n : 1 Operation correspondence Example for Scenario 2 . . 126

6.10 A diagrammatic Representation of a 1 : n Operation corre-
spondence . 132

6.11 A Diagrammatic Representation for Scenario 1 of 1 : n Op-
eration Correspondence . 133

6.12 Example for Scenario 1 of 1 : n Operation correspondence . 134

6.13 A Diagrammatic Representation for Scenario 2 of 1 : n Op-
eration Correspondence . 135

6.14 Example for Scenario 2 of 1 : n Operation correspondence . 136

6.15 A Diagrammatic Representation for Scenario 3 of 1 : n Op-
eration Correspondence . 136

6.16 Example for Scenario 3 of 1 : n Operation correspondence . 137

6.17 Example for a 1 : n Operation correspondence with corre-
sponding Elements referring to different Objects at Runtime . 138

6.18 Example for a 1 : n Operation correspondence with contra-
dicting postconditions of the offered Operations 140

6.19 A diagrammatic Representation of a n : m Operation corre-
spondence . 154

6.20 Different Scenarios of Basic n : m Operation Correspondences 155

6.21 A Variant for Scenario 1.5 of basic n : m Operation Corre-
spondence . 156

6.22 An Example for Scenario (1.4) of n : m Operation Correspon-
dence . 157

6.23 An Example for Scenario (1.2) of n : m Operation Correspon-
dence . 158

6.24 Different Scenarios for the complex n : m Operation Corre-
spondences . 159

6.25 Example for a complex n : m Operation Correspondences . . 160

6.26 Operation Mapping for HRS Service Request 165

7.1 An Overview of the Service Composition Phase in the Pro-
posed Approach . 169

7.2 The Service Protocols of the selected Service Offers 174

7.3 The automatically generated LTSs for the running Example
using DMM . 175

7.4 The simplified LTSs for the requested and offered Service Pro-
tocols in the running Example 177

7.5 An Insight into the LTS Composition Mechanism 179

246 List of Figures

7.6 (a)Composed LTS after the first Iteration (b) Overlapping
Parts of the participating LTSs 182

7.7 Composed LTS for our running Example 186
7.8 A possible Service Composition with interleaving offered LTSs 189
7.9 Extended LTS of HRS and Composed LTS in the Failure

Scenario . 191
7.10 Different Cases of Loop Occurrences in the Participating LTSs 193
7.11 An Example for correct Composition of LTSs with Loops . . 194
7.12 An Example for incorrect Composition of LTSs with Loops . 195

8.1 Use Cases for our Service Discovery and Composition Work-
bench . 198

8.2 Architecture of our Service Discovery and Composition Work-
bench . 199

8.3 Palette Customization Wizard 204
8.4 Wizard for specifying RSDL-based Service Description 205
8.5 Screenshots of the Service Description Editor in our Workbench205
8.6 Offered Protocol Specification as UML Statemachine Diagram 206
8.7 Data Model Matcher based on EMF Compare 208
8.8 Automatically-generated QVTr Script through local-global

Mappings . 209
8.9 Screenshot for the Service Publishing Engine in our Workbench210
8.10 Screenshots of the Service Discovery Engine in our Workbench211
8.11 A Screenshot of the Categorization Hierarchy Management

for the Service Registry . 213
8.12 Comparison of the Matchers in OAEI Evaluation Campaign . 215

	Introduction
	Motivation
	Proposed Solution Overview
	Publication Overview
	Thesis Structure

	Related Work
	Service-oriented Computing (SOC)
	Automatic Service Discovery and Composition
	Service Description
	Service Description Matching
	Summary and Discussion

	Rich Service Description Language (RSDL)
	Requirements for a Comprehensive Service Description Language
	Rich Service Description Language
	Summary and Discussion

	Semantics of RSDL
	Semantics for the RSDL Data Model and Operation Signatures
	Semantics of RSDL Operation Behavioral Semantics
	Semantics of RSDL Service Protocol
	Summary and Discussion

	Service Description Normalization through Data Model Matching
	Service Description Normalization Overview
	Data Model Matching - Foundations
	Data Model Matching Algorithm
	Visual Contracts Normalization
	Summary and Discussion

	Multi-level Service Discovery
	Service Discovery Overview
	Category Matching
	Operation Matching
	Summary and Discussion

	Service Composition
	Service Composition Overview
	Protocol Translation to LTS
	LTS Composition
	Determination and further Examination of valid Service Compositions
	Discussion
	Summary

	Tool Support
	Requirements for the Workbench
	Workbench Architecture
	Workbench Implementation
	Evaluation
	Summary and Discussion

	Conclusion and Future Work
	Summary and Contributions Overview
	Outlook on Future Work
	Final Remarks

	Bibliography

