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Abstract

Computer simulations are the heart of modern materials design. The state-of-the-art methodol-
ogy is density functional theory (DFT) which takes into account the quantum mechanical nature of
the interacting atoms and electrons to high accuracy. DFT however has been originally designed to
predict only ground-state properties at T=0K whereas finite temperature effects — indispensable
for practical materials design — are generally neglected due to significant numerical requirements.
The key challenge for the prediction of novel materials by DFT is therefore its extension to finite
temperatures.

While for nonmagnetic systems electronic finite temperature excitations are nowadays consid-
ered standard in DFT, the accurate and full treatment of lattice vibrations turns out to be a
daunting task. The usual approach is to describe the vibrating atoms in harmonic approximation
while anharmonic contributions due to phonon-phonon interactions have been calculated so far only
for a few selected test systems on a fully ab initio level [1, 2]. The corresponding investigations
did however show that the full vibrational spectrum — including anharmonicity — is key for a
quantitatively correct description of material properties at elevated temperatures: Phase stabilities
and phase transition temperatures for instance can easily be changed by anharmonic contributions
by several hundreds of Kelvin [3]. Thermal expansions, heat capacities, scattering of neutrons
and the thermal conductivity of materials are all strongly influenced or even fully controlled by
anharmonic phonon-phonon interactions [1, 2, 4]. A fully ab initio guided materials design at ele-
vated temperatures is currently hindered by two main facts: (i) routine calculations of anharmonic
phonon-phonon interactions are out of reach for first principles methods due to huge computa-
tional requirements and (ii) the magnitude of anharmonic contributions at elevated temperatures
is generally unknown and therefore usually omitted.

In this work I have addressed both points: (a) To assess the physical relevance of phonon-phonon
interactions, full ab initio calculations including anharmonic contributions have been carried out
for a variety of material systems. In particular a wide range study on unary bulk elements was
performed and consequences of phonon-phonon interactions have been also assessed for binary
and defect systems. (b) To address the challenge of the significant computational demands of
anharmonic calculations the novel and highly efficient Local Anharmonic (LA) approximation has
been developed which vastly accelerates the calculation of anharmonic contributions by about two
orders of magnitude without any loss of accuracy. It is found that anharmonic contributions for
bulk systems are of the same order as the generally considered quasiharmonic contributions and
cannot be neglected for thermodynamic assessments. Based on the performed calculations for
defects, the Local Grüneisen theory (LGT) has been developed which is for the first time able
to reconcile all experimentally measured vacancy formation energies of Al and Cu with fully ab
initio computed results over the whole temperature range up to the melting point. Applying the
LGT to experimentally measured vacancy data it is shown that vacancy formation enthalpies —
as compiled, e.g., in the Landoldt-Börnstein series — must be revisited. Consequences of LGT for
novel surface corrected xc functionals such as AM05 are discussed.
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Chapter 1

Introduction: Ab initio
thermodynamics

New materials can be described and even predicted based on known concepts of solid state theory.
By doing so it often turns out that limitations in our understanding of the basic physical mech-
anisms are in the end the limiting factor which determine the performance of devices and their
sustainability.

The modern route to the design of advanced materials is ultimately based on quantum theory.
The gyromagnetic ratio of the electron is one example for the outstanding accuracy of quantum
theory which is in agreement with the experimental measurement to within the experimental ac-
curacy, 10 decimal places [5]. Beyond the high accuracy, a further aspect turns out to be equally
important for practical applications: Quantum theory is parameter free and does not depend on
experimental input. It is based on fundamental physical constants as the nuclei and electron mass,
the electric constant, Planck’s constant, the speed of light etc. Techniques which are only based
on fundamental physical constants are often termed ab initio — Latin for ‘from the beginning’ —
or ‘first principles’ methods. These kind of approaches can be applied also in situations which are
unaccessible to experiment or where actual measurements would be too expensive or time consum-
ing. Physical questions as well as chemical and biological phenomena alike have been correctly
described by quantum theory and there is a justified belief that a deeper understanding of material
properties can be gained by continuing to apply these methods.

Currently, a world-wide trend is observed toward smaller devices and resolving materials phe-
nomena on the atomic or even electronic scale. Many of the used concepts to describe structural
materials originate however from macroscopic observations and can consequently be refined by the
inclusion of atomistic considerations. The access to highly accurate quantum mechanical ab initio
methods provides a major opportunity to investigate the underlying assumptions of established
theories. Refining those increases their predictive power and is a prerequisite for the creation of
advanced materials and devices. One of the well established first principles methods which was
derived in the last decades and which is the current work-horse for practical materials predictions
is density functional theory (DFT). Current implementations can treat hundreds of atoms and
allow to compare theoretical first principles predictions of bulk and defect properties directly to
macroscopic experimental measurements.

A practical question that arises when considering highly accurate theoretical calculations is
which experimental measurements can serve as a sensitive benchmark for ab initio predictions.
Most of the experimental data on semiconductor band gaps for instance are afflicted with an
uncertainty of a few tenth of an eV. Thermodynamic equilibrium properties on the other hand
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have been evaluated experimentally to a higher accuracy. Changes in the free energy of a few
meV are known to effect phase transition temperatures by several hundred Kelvin. One prominent
example being the fcc to bcc phase transition in bulk iron which is the result of an ∼1 meV/atom
free energy difference between the corresponding phases at temperatures above 1200 Kelvin [3]. The
Calphad database [6] collects free energies of all unary elements in the periodic table and changing
those only by a few meV would result in phase diagrams which do not agree with experimental
observations. Free energies — and their derived quantities as volume expansion and heat capacities
— are therefore one of the most sensitive experimental measures for assessing the accuracy of
quantum mechanically derived first principles calculations.

Experimental measurements of defect formation energies turn out to be even more sensitive.
At elevated temperatures they can nowadays be resolved to better than 10 meV/defect using
accurate experimental techniques. In order to study point defects theoretically, about 100 atoms
are necessary to converge the considered defect formation energy. This corresponds to an accuracy
of 0.1 meV per atom in a typical supercell containing 100 atoms. It has been found that — for
bulk free energies and in particular for defect formation energies — this level of accuracy cannot
be met by semi empirical methods as the embedded atom model (EAM) [2, 3, 7, 8] and the current
parameterizations fail at elevated temperatures to yield satisfactory thermodynamic predictions.
The question is therefore whether and to which extent parameter free DFT methods can be used to
obtain accurate and quantitatively correct predictions in particular at realistic temperatures which
are a challenge for DFT implementations which were originally developed for T=0K.

Originally, DFT has been designed as a ground state theory and most first principles calculations
are still performed solely at T=0K. In practice however, materials operate at elevated or even high
temperatures. Calphad [6] free energies are parametrized starting at room temperature and can
therefore not be compared directly to T=0K ab initio calculations. Vacancy formation energies,
which are most sensitive to free energy changes, are accessible to experimental measurements only
above ≈ 60% of the elements melting temperature. The mentioned examples pose a major problem
for parameter free calculations due to the apparent temperature gap between finite temperature
experimental measurements and T=0K first principles evaluations: A meaningful comparison to
experiment is only possible once all relevant finite temperature effects are taken accurately into
account. While the theoretical treatment of electronic excitations is considered standard for ab
initio DFT methods, atomic vibrations are treated usually in an approximative manner and the
full vibrational spectrum, which is decisive at elevated temperatures, is not rigorously captured by
current implementations.

The state-of-the-art first principles approach for the treatment of atomic vibrations in solids is
the quasiharmonic approximation. The full vibrational spectrum beyond quasiharmonic contribu-
tions — namely anharmonic contributions which are governed by phonon-phonon interactions —
has been considered only for a few selected systems due to prohibitive computational demands. Al-
though some empirical estimates for anharmonic contributions exist, a rigorous and fully ab initio
study for a wide range of materials has not been performed. Aluminum is one of the example ele-
ments where the full spectrum of atomic vibrations has been calculated by first principles including
phonon-phonon interactions [2, 9]. For this system, a decisive improvement of the thermodynamic
properties as e.g. the heat capacity and volume expansion has been found with respect to ex-
perimental measurements [2] by including anharmonic contributions. It was also shown that the
entropy of vacancy formation in Al is significantly affected by anharmonic effects. It is therefore
crucial to ask if these findings were an exception or whether the usually neglected anharmonic
effects play an important role for a wide range of materials. The main goal of this thesis is to
evaluate the relevance of anharmonic effects for various material systems on a fully ab initio basis.
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The usual first principles approach to assess finite temperature material properties is to include
the computationally feasible quasiharmonic and electronic contributions while anharmonic contri-
butions are generally neglected. The main reason for this is the numerical effort for the calculation
of phonon-phonon interactions. Recent theoretical approaches aiming at tackling the computation
of anharmonic contributions will be examined as part of this thesis. The development of strategies
which promote the calculation of anharmonic contributions to a routine task is one of the critical
challenges for ab initio methods and one of the main concerns of this study. To gain a physically
intuitive understanding of anharmonic effects corresponding calculations will be performed for bulk
and defect systems.

This thesis is organized as follows: Chap. 2 introduces the state-of-the-art theoretical concepts
necessary for the calculation of thermodynamic material properties and in particular atomic vibra-
tions. Chap. 3 focuses on the developed methods during this PhD work: Sec. 3.1 presents the local
anharmonic (LA) approximation which extends the well established quasiharmonic approxima-
tion and allows to obtain fully converged anharmonic free energies from a few T=0K calculations.
The second part of the methodology chapter, Sec. 3.2, derives a further novel approach, the Local
Grüneisen theory (LGT) which goes beyond the usually applied linear Arrhenius ansatz for defect
formation by considering anharmonic effects.

Selected parts of the results obtained during this PhD work are presented in Chap. 4 which
investigates the consequences of ab initio derived anharmonic contribution on selected material
systems. Sec. 4.1 explores anharmonicity for a wide range of fcc elements and investigates corre-
sponding contributions to thermodynamic material properties. Sec. 4.2 goes beyond standard DFT
functionals and includes non-local many body effects for three selected systems up to the melting
temperature. Sec. 4.3 probes anharmonic effects in a binary alloy system, Mg2Si, and evaluates
the empirically derived Neumann-Kopp rule for the prediction of multinary heat capacity data.
Sec. 4.4 studies in detail the mono- and divacancy formation energy in Al and Cu and compares
the effects of the full vibrational spectrum — including anharmonic contributions — to the current
experimental picture on defect formation.



Chapter 2

Theory

The main motivation for this thesis is an efficient first principles determination of material properties
at finite temperatures. The key quantity which governs all thermodynamic properties of solids at
T > 0K, and which therefore is central in this work, is the Helmholtz free energy F (V, T ) as a
function of the external volume V and temperature T

F (V, T ) = U(V, T )− TS(V, T ). (2.1)

Here, U(V, T ) is the internal energy and S(V, T ) the entropy of the system. Performing a Legendre
transformation, the Gibbs free energy G(P, T ) as a function of pressure and temperature can be
obtained from F (V, T ). Practical approaches for the calculation of the internal energy U(V, T ) and
the entropy S(V, T ) on a fully ab initio level will be covered in the following sections. Since all
material properties in equilibrium can be directly derived from G(P, T ) or F (V, T ), these thermo-
dynamic potentials are of fundamental and practical importance for our understanding of matter.
The entropy S(V, T ) as well as the pressure P (V, T ) can be directly obtained from the free energy
by

S(V, T ) = −
(
∂F (V, T )

∂T

)
V

and P (V, T ) = −
(
∂F (V, T )

∂V

)
T

, (2.2)

where the subscript, V and T , indicate that the corresponding derivative has been performed at
fixed volume or temperature, respectively. It is important to realize that all thermodynamic ex-
perimental observables are directly related to simple derivatives of G(P, T ) or F (V, T ). Therefore,
physical properties as the volume expansion, the adiabatic and isothermal bulk modulus and heat
capacity, the isothermal compressibility of the system are all directly accessible once the thermo-
dynamic potentials are known. The isobaric and isochoric heat capacities, CP (T ) and CV (T ), for
example become

CP (T ) = T

(
∂S(V, T )

∂T

)
P

= −T
(
∂2F (V, T )

∂T 2

)
V,P

, (2.3)

CV (T ) = T

(
∂S(V, T )

∂T

)
V

=

(
∂U(V, T )

∂T

)
V

(2.4)

and the adiabatic bulk modulus BS(T )

BS(T ) = −V
(
∂P (V, T )

∂V

)
S

= V

(
∂2F (V, T )

∂V 2

)
T,S

. (2.5)
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Ultimately, the free energy F (V, T ) defined in Eq.2.1 needs to be determined for the system of
interacting particles — for the purpose of this thesis these are the atoms and electrons — to gain
thermodynamic properties of materials.

The quantity which accordingly enters the constituting U(V, T ) and S(V, T ) terms is the to-
tal energy of the system, E, at a particular temperature and volume. The computation of the
total energy of a solid can nowadays be performed by first principles methods to high accuracy.
Corresponding theoretical details will be presented in Sec. 2.2. While, as will be shown in the
following section, thermodynamic averages for U(V, T ) can straight forwardly be obtained by first
principles at arbitrary temperatures and volumes, the calculation of entropic and related quantities
poses a significant challenge. The problems which arise with the sampling of entropic quantities
usually result in either neglecting finite temperature effects or in treating those approximatively.
Overcoming these limitations is the main aim of this work.

The main constituents entering the total entropy of a system containing electrons and nuclei at
a fixed volume and temperature are

S(V, T ) = Stotal = Sconf + Svib + Sel + Smag, (2.6)

were Sconf denotes the configurational entropy due to all possible arrangements of different atomic
species in a solid, Svib is the entropy due to atomic vibrations and Sel and Smag the entropy due
to electronic and magnetic contributions. Further terms not included in Eq. 2.6 are coupling terms
between the different entropic contribution as, e.g., electron-phonon coupling or contributions due
to vacancies. While the latter is investigated as part of this work, non magnetic coupling terms
for the here investigated systems have been previously shown to be negligible [10]. This thesis will
deal exclusively with unary elements which contain only a single atomic species and with a (also
nonmagnetic) binary compound at fixed stoichiometry. For these systems, Sconf and Smag are zero
and need therefore not to be considered. The calculation of Sel is standard and was performed for
all the calculations presented in this thesis following Ref. [11]. To obtain Svib from first principles
was until recently only practical in an approximative fashion. Only very few cases are known where
the full excitation spectrum of atomic vibrations has been calculated over the whole temperature
range [2, 9] on an ab initio level of accuracy. The reason for the difficulties as well as methods to
overcome those are the subject of Sec. 3.1 of this thesis.

2.1 Entropic quantities and their relation to ensemble averages
from molecular dynamics

A fundamental challenge in numerical simulations of solids is the calculation of the entropy of the
system S(V, T ) and related quantities such as the Helmholtz and the Gibbs free energy, F (V, T )
and G(P, T ). Statistical mechanics considers any system to be distributed across an ensemble of
N (micro) states. Each state has a distinct energy Ei which is associated with a probability of
occurrence pi. The internal energy U is the mean value of the system’s total energy, i.e., the sum
of all state energies (also called microstates), each weighted by their probability of occurrence pi:

U ≡ 〈E〉 =
N∑
i=1

piEi. (2.7)

The probability distribution for the microstates is controlled by the considered statistical ensemble
(micro-canonical, canonical, grand-canonical, etc.). The exact details of the calculation of Ei for a
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particular atomic configuration and electronic state are shown in Sec. 2.2. The probability in the
canonical ensemble pi that the system occupies a state i is given by

pi =
1

Z
e−βEi . (2.8)

where Z(V, T ) = Z is the canonical partition function defined by

Z =
N∑
i=1

e−βEi , (2.9)

with β = (kBT )−1 and kB the Boltzmann constant. According to statistical physics, for a system
in thermodynamic equilibrium, the Helmholtz free energy F is also directly related to the partition
function Z by

F (V, T ) = −kBT lnZ(V, T ) = U(V, T )− TS(V, T ). (2.10)

The entropy of the system is a measure of accessible states and is defined by

S(V, T ) = −kB

N∑
i=1

pi ln pi = kB lnZ(V, T ) +
U(V, T )

T
, (2.11)

and therefore depends, as F and U , on the canonical partition function Z(V, T ). The internal
energy is defined as

U(V, T ) = kBT
2∂ lnZ(V, T )

∂T
= −∂ lnZ(V, T )

∂β
. (2.12)

When a numerical molecular dynamics (MD) run is performed, the phase space of available
states is not randomly sampled but — by construction of the MD — according to the corresponding
phase space probability pi. Since the weighting of total energies Ei is implicitly performed, the
internal energy U can in principle — and also in practice — be calculated by applying MD.
Corresponding thermodynamic averages,

U ≡ 〈E〉 =
1

NMD

NMD∑
i=1

EMD
i , (2.13)

can be converged for manageable computational cost to a reasonable accuracy where NMD is the
number of performed MD steps and EMD

i the total energy for a single MD configuration. In contrast,
performing a similar averaging for the entropy (Eq. 2.11) is computationally not feasible [12] due
to the weighting of pi with the partition function. It is the exponential in Eq. 2.8 which prohibits a
practical assessment of the entropy by means of a direct application of MD. The major challenge is
the large number of configurations which are necessary to converge the thermodynamic ensemble
averages. Simple estimates show that brute force sampling approaches require on the order of
106 − 107 ab initio computed configurations to get the desired accuracy [2] to correctly sample the
partition function. An accurate sampling of entropic quantities by numerical methods is therefore
a challenging task and state-of-the-art approximate and exact methods to tackle this problem will
be presented in the theoretical part of this thesis.

The following part of this chapter is structured as follows: Sec. 2.2 formulates the many-body
problem which yields the total energy E for the system of interacting electrons and nuclei. Density
functional theory (DFT) is introduced as a method which makes the solution of the many-body
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problem numerically feasible. Since, as has been shown above, entropic quantities such as the free
energy can not be sampled directly by means of MD, Sec. 2.3 introduces approximate methods
for the entropy of lattice vibrations. In particular, the Debye, Grüneisen and the harmonic and
quasiharmonic approximations are covered. Sec. 2.4.2 introduces the concept of thermodynamic
integration which makes it possible to calculate free energies and entropies numerically exactly.
The numerical results obtained by thermodynamic integration were an integral part for this PhD
work and the basis for the developed methods.

2.2 From the many-body problem to density functional theory

The many-body problem of interacting nuclei and electrons is governed by the solution of the —
for the purpose of this thesis time independent — Schrödinger equation

HN,eΨN,e(R1,R2, . . . ,RN , r1, r2, . . . , rn) = EN,eΨN,e(R1,R2, . . . ,RN , r1, r2, . . . , rn) (2.14)

where EN,e is the total energy of the system of interacting particles, Ri are the coordinates of the
N nuclei and ri those of the n electrons. ΨN,e is the many-body wave function and the Hamiltonian
HN,e is given by the following equation:

HN,e = −
N∑
I

~2

2MI
∇2
I −

n∑
i

~2

2me
∇2
i +

1

2

∑
i 6=j

e2

|ri − rj |
−
∑
I,i

e2ZI
|Ri − ri|

+
1

2

∑
I 6=J

e2ZIZJ
|RI −RJ |

(2.15)

and can also be summarized

HN,e = TN + Te + Ue−e + UN−e + UN−N . (2.16)

Here, the first summand TN represents the kinetic energy of the nuclei with their mass MI .
The second summand Te describes the kinetic energy of the electrons with corresponding masses
me. Ue−e is the Coulomb repulsion between the electrons and the last term UN−N the repulsion
potential between the nuclei. The remaining summand UN−e describes the Coulomb attraction
between electrons and nuclei.

Though the Schrödinger equation (Eq. 2.14) forms the foundation of quantum theory it can only
be solved analytically exact for the hydrogen atom and for similar cases involving two particles.
Already the hydrogen molecule H2 can not be solved analytically and numerical approximations are
indispensable. At the very heart of every numerical implementation of the many-body Schrödinger
equation is therefore the question of how to approximate the interactions defined in Eq. 2.15
to get the best trade-off between accuracy and computational cost. Two of the well-established
approximations, the Born-Oppenheimer approximation and DFT are introduced in the following.

2.2.1 Born-Oppenheimer approximation

The Born-Oppenheimer — or adiabatic — approximation [13] decouples the many-body Schrödinger
equation (Eq. 2.14) in two independent equations, one for the electronic system and one for the
nuclei. This is possible because the mass of the nucleus is much greater than the mass of an electron
(MI � me) although both experience a rather similar Coulomb force. It is therefore reasonable to
assume that the electrons will react essentially instantaneously upon motion of the nuclei. Due to
the fast electronic relaxation, the electronic system remains in the stationary ground state of the
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Hamiltonian and can therefore be efficiently solved at fixed atomic positions. The nuclei in turn
are governed by the (also external) electrostatic potential caused by all electrons of the considered
system. An alternative argumentation which justifies the separation of the electronic and atomic
degrees of freedom is that the frequency spectra of atomic vibrations do not overlap with the ener-
gies (frequencies) of the electronic system [14]. Energy can therefore not be transfered from ‘slowly’
moving/vibrating atomic system to the ‘fast’ electronic system which occupies higher frequencies.

In practice, the decoupling of the electronic system from the ionic system is performed by
separation of the wave function

ΨN,e({RN}{re}) = Ψe({re})ΨN ({RN}), (2.17)

by which the Schrödinger equation in Eq. 2.14 can be solved independently for the system of
electrons

HeΨe({re}) = (Te + Ue−e + UN−e)Ψe({re}) = EeΨe({re}) (2.18)

and nuclei

HNΨN ({RN}) = (TN + UN−N + E0
e )ΨN ({RN}) = EnucΨN ({RN}). (2.19)

The nuclei positions {RN} enter the electronic Schrödinger equation in Eq. 2.18 as known param-
eters and have therefore been omitted in the nomenclature since they need not to be solved for.
Since the atomic positions are fixed, the interactions between electrons and nuclei, UN−e, enter the
electronic Hamiltonian He only as a static external potential.

In the separated Schrödinger equation for the nuclei, Eq. 2.19, E0
e is the ground state potential

due to the electrons which has to be solved by minimizing Eq. 2.18 and enters therefore also as an
external potential which depends on the atomic positions {RN}. This means that a feedback is
incorporated in both directions, from the electronic to the system of nuclei and vice versa. Solving
the nuclear Schrödinger equation yields the total energy of the system Enuc = Ei which is used in
the thermodynamic potentials (e.g. Eq. 2.13) for different atomic configurations i. The Hamiltonian
for the nuclei, HN , contains the Born-Oppenheimer surface EBO which governs the motion of the
atoms

EBO = UN−N + E0
e . (2.20)

In summary, the adiabatic approximation reduces the many-body problem of atoms and elec-
trons to two separated problems. The complexity of the numerically challenging electronic system
is significantly reduced since the positions of the nuclei enter only as external parameter. Even
with this drastic simplification, a numerical solution of the electronic many-body equation remains
infeasible due to its unfavorable scaling [15]. The solution to this problem is tackled by density
functional theory.

2.2.2 Density functional theory

Density functional theory (DFT) has evolved to one of the most popular and successful methods for
the calculation of the electronic structure of matter. Instead of the full many-body wave function it
uses the electron density as the key variable from which physically relevant observables are derived.
Its main achievement is the — in principal exact — mapping of the difficult many-body problem
onto that of a single electron moving in an effective potential, determined by the electron density.
The derivation of practical DFT calculations is usually split in two main steps: In a first step the
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density is introduced by the Hohenberg and Kohn theorems which however is still a many-body
problem. The second step, formulated by the Kohn-Sham equation, maps this problem onto one
of non-interacting particles.

The foundation of DFT is based on two main theorems which were formulated and proved by
Hohenberg and Kohn [16]:

1) First Theorem: For system of interacting electrons in an external potential (e.g. due to the
fixed nuclei, U extN−e) there is one unique ground state electron charge density n0(r). The
nondegenerate many-body wave function in its ground state, Ψ0

e({re}), is therefore a unique
function of the ground state electron density

Ψ0
e(r1, r2, . . . , rn) = Ψ0

e({re}) = Ψ[n0(r)]. (2.21)

2) Second Theorem: A functional for the energy E[n(r)] can be defined in terms of the density
n(r). The electron density that minimizes the total energy of the interacting electrons is the
ground state density n0(r) and therefore

E[n0(r)] ≤ E[n(r)] (2.22)

where n(r) is an arbitrary electron density and E[n0(r)] = E0
e the ground state energy of the

electronic system which is necessary to solve Eq. 2.19.

The second Hohenberg and Kohn theorem is based on the Rayleigh-Ritz variational principle
which yields a practical way of finding the ground state energy E0

e given a suitable expression
for E[n(r)] and an arbitrary trial wave function Ψtrial = Ψ[n(r)].

The Hohenberg and Kohn energy functional E[n(r)] for the system of interacting electrons
defines Eq. 2.18 in terms of the density

E[n(r)] = F [n(r)] +

∫
n(r)Uext(r)dr (2.23)

where F [n(r)] is a universal functional which is independent of Uext(r) and contains the kinetic en-
ergy of interacting electrons T [n(r)] and the Coulomb potential Ue−e[n(r)] due to electron-electron
interactions

F [n(r)] = T [n(r)] + Ue−e[n(r)]. (2.24)

The many-body wave function Ψe(r1, r2, . . . , rn) — a function of 3N spatial coordinates where
N is the number of electrons — is reduced by means of the Hohenberg and Kohn theorems to a
function of 3 spatial coordinates — Ψ[n(r)] — which defines the electronic density. This drastic
reduction in the degrees of freedom significantly simplifies the wave function and makes a solution of
the many-body interacting problem for the electrons numerically feasible. However, no explicit way
has yet been provided for the computation of the electronic ground-state density or the Hohenberg
and Kohn functional. Though DFT can be realized in several ways, the Kohn and Sham approach
is until today the most popular and successful one [17] to solve this problem.

2.2.3 Kohn-Sham equations

Kohn-Sham [17] proposed in 1965 an ingenious way to map the interacting many-electron system (in
a static external potential due to the nuclei) onto a system of noninteracting electrons moving in an
effective potential due to the charge density of all the other electrons. In this way an electron does
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not interact with other electrons of the system but only with the effective ‘Kohn-Sham’ potential.
Solving the Kohn-Sham equation for the non-interacting electrons — which evolve within the
Kohn-Sham potential vKS

eff (r) — results in an electron density for the noninteracting system which
equals the electron density of the interacting system n(r) ≡ nKS(r). In the following however only
the non-interacting Kohn-Sham density will be used and we drop the subscript by applying the
nomenclature n0(r) = nKS

0 (r) and n(r) = nKS(r). Assuming a system of noninteracting particles,
the universal functional F [n(r)] can be defined by

F [n(r)] = TS [n(r)] + EH [n(r)] + EXC[n(r)] (2.25)

where TS [n(r)] is the single particle kinetic energy (the subscript S is used since this can be
represented by a Slater determinant) which is exactly known for a non-interacting electron gas

Ts[n(r)] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r) dr (2.26)

and where the single-particle states ψi(r) define the Kohn-Sham charge density n(r) in terms of a
set of N non-interacting electrons

n(r) =
N∑
i

|ψi(r)|2 (2.27)

which are often called the Kohn-Sham orbitals. The classical electrostatic Coulomb interaction
EH [n(r)] — also known as the Hartree term — is defined by

EH [n(r)] =
1

2

∫ ∫
n(r)n(r’)

| r− r’ |
dr dr’ (2.28)

and EXC[n(r)] is a small correction term — the exchange-correlation energy. EXC[n(r)] contains

a) the difference TC [n(r)] between the exact and the non-interacting kinetic energy TC [n(r)] =
T [n(r)]− TS [n(r)]. The subscript C indicates that this is the so called ‘correlation term’.

b) the correction due to the difference between the exact and interacting electron-electron Coulomb
repulsion and the classical Hartree term Ee−e[n(r)]− EH [n(r)].

EXC[n(r)] includes therefore all many-particle interactions and although not known exactly,
sophisticated approximations have been developed. Well known examples are the Local local-
density approximation (LDA) and the generalized-gradient approximation (GGA) [18–20]. Once
an approximation has been defined for the exchange and correlation functional, the non-interacting
system can easily be solved since all terms of F [n(r)] are known analytically.

As stated above, the non-interacting Kohn-Sham potential vKS
eff (r) reduces the many-body prob-

lem of interacting particles to solving a one-electron Schrödinger-like equation which is given by(
− ~2

2m
∇2 + vKS

eff (r)

)
ψi(r) = εiψi(r). (2.29)

The above definition is the Kohn-Sham equation with Kohn-Sham orbitals ψi(r) which are used to
construct the electron density defined in Eq. 2.27. The Kohn-Sham potential is defined by

vKS
eff (r) = vext(r) + vH(r) + vXC(r) = vext(r) + e2

∫
n(r’)

|r− r’|
dr’ +

δExc[n]

δn(r)
, (2.30)



2.3. Approximate theories of lattice vibrations 15

where vH(r) and vXC(r) are derivatives of EH [n(r)] and EXC[n(r)] with respect to the density n(r)
respectively.

Since a wave function and the corresponding density are necessary to evaluate the Kohn-Sham
equation 2.29, an iterative way has to be found in order to find the true ground state density n0(r).
This is done by choosing an initial trial density nin(r) and calculating vH(r) and vXC(r) to form the
effective Kohn-Sham potential vKS

eff (r). In the next step the Kohn-Sham equation Eq. 2.29 is solved
using the initial vKS

eff (r) to form a new density nout(r). Given that the predefined energy convergence
criterion is not reached — the total energy difference between nin(r) and nout(r) — both densities
are mixed to form a new density which is used for the next iterative cycle. This iterative procedure
is repeated until self consistency is reached which yields the ground state electron density n0(r).

2.3 Approximate theories of lattice vibrations

2.3.1 Independent harmonic oscillators — The Einstein crystal

The first application of quantum theory to the motion of atoms in a solid was performed by
Einstein in 1906 when he modeled the atoms of a carbon crystal as perfect harmonic oscillators,
the famous Einstein solid [21]. In his model, Einstein assumed that all carbon atoms were oscillating
independently and with the same frequency ω0. The atoms in the crystal were not connected by
springs with each other but rather, every atom was bound to its equilibrium position with a spring.
The occurrence of a single frequency in the system is a direct consequence of the missing interaction
between the atoms. No standing waves can form with the corresponding spectrum of frequencies
which are found for real crystals. The Einstein solid is therefore equal to a sum of simple harmonic
oscillators.

The discrete energy levels of a one dimensional quantum harmonic oscillator (or phonon ener-
gies) are given by

En = ~ω0

(
1

2
+ n

)
, n = 0, 1, 2, 3, . . . ,∞ (2.31)

where ω0 =
√

µ0
m is the eigenfrequency of the atom/oscillator and µ0 and m are the spring constant

and mass of the atom respectively. The spring constant µ can easily be determined by e.g., first
principles by performing a small displacement ∆x and calculating the force on the atom F which
are related by F = µ ∆x. The general definition of the partition function in Eq. 2.9 can be used
with the quantized energy levels of the one dimensional harmonic oscillator, Eq. 2.31, to determine
the temperature dependent partition function of the quantum mechanical (qm) harmonic oscillator

Zqm(T ) =

∞∑
n=0

e−βEn =

∞∑
n=0

e−β~ω0(n+ 1
2) = e−β~ω0/2 (1− e−β~ω0)−1, (2.32)

where the following geometric series has been used

∞∑
n=0

xn =
1

1− x
. (2.33)

We use the derived Zqm(T ) and Eq. 2.10 to define the temperature dependent Helmholtz free energy
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of a single quantum harmonic oscillator

Fqm(T ) = −kBT ln [Zqm(T )]

= −kBT ln
[
e−β~ω0/2 (1− e−β~ω0)−1

]
=

~ω0

2
+ kBT ln

[
1− e−β~ω0

]
, (2.34)

where the positive term ~ω0/2 is the quantum zero point energy which is due to Heisenberg’s
uncertainty principle and increases the classically derived ground state energy E0 by an order of
about 30 meV per atom at T=0K. At a constant volume V all thermodynamic quantities can be
derived from the free energy Fqm(T ). The internal energy e.g. of the quantum mechanical oscillator
is defined in by Eq. 2.10 and yields

Uqm(T ) = Fqm(T ) + TSqm(T ) = Fqm(T )− T
(
∂Fqm(T )

∂T

)
= ~ω0

(
1

2
+

1

eβ~ω0 − 1

)
(2.35)

where the entropy has been substituted from Eq. 2.2. The agreement of Eqs. 2.31 and 2.35 is
apparent since U ≡ 〈E〉 and

n = 〈nBE(T )〉 =
1

eβ~ω0 − 1
(2.36)

is identified as the Bose-Einstein distribution function 〈n(T )〉 which is also called occupation factor.
Other thermodynamic quantities can be directly derived from the free energy by the definitions in
Sec. 2.1. The isochoric heat capacity, e.g., is given by

CV (T ) =

(
∂U(T )

∂T

)
=

~2ω2 csch( ω~
2kBT

)2

4kBT 2
(2.37)

with csch(z) being the hyperbolic cosecant of z which satisfies csch(z) = 1/ sinh(z) with sinh(z)
the hyperbolic sine of z.

For a single atom vibrating in three dimensions — Eq. 2.34 corresponds to a one dimensional
quantum harmonic oscillator — the free energy can simply be multiplied by three since the harmonic
vibrations of atoms are independent for the three spatial coordinates. We define therefore the free
energy of a quantum mechanical oscillator in three dimensions — an atom in an Einstein solid —
by

F atom
qm (T ) = 3

~ω0

2
+ 3kBT ln

[
1− e−β~ω0

]
. (2.38)

What happens however if all the N atoms in the considered system are not vibrating indepen-
dently but are assumed to be coupled by harmonic springs (and are therefore also termed coupled
harmonic oscillators)? It can easily be shown [22] that performing a Fourier decomposition on a
harmonic Hamiltonian it is possible to fully decouple the set of N coupled atoms into a set of N un-
coupled oscillators (phonon’s) which have to be summed over all plane waves in the system of wave
vector k. For instance, considering a 1D atomic chain with length L and atomic distances a, only
discrete k are allowed of k = 2π/L, 4π/L, ... which are scalars for the simple 1D case. The number
of possible wave vectors is L/a due to the periodic boundary conditions and is therefore equal to
the number of atoms N . Summing over all wave vectors, the vibrational free energy Fqm(T ) in



2.3. Approximate theories of lattice vibrations 17

Eq. 2.34 is generally defined by

F vib
qm (T ) =

1

N

3N∑
k

[
~ωk

2
+ kBT ln

[
1− e−β~ωk

]]
, (2.39)

where the prefactor 1/N normalizes the free energy for a single atom.

Let us now compare the differences between a single quantum harmonic oscillator in Eq. 2.38
(Einstein solid) and a classical harmonic oscillator for which the (classical) Hamiltonian is defined
by

H =
p2

2m
+
µ0x

2

2
=

p2

2m
+
mω2

0x
2

2
(2.40)

where µ0, m and ω0 =
√

µ0
m are the spring constant, the mass and the corresponding eigenfrequency

of the atom/oscillator respectively. The classical partition function Zcl(T ) is derived from the
general thermodynamic relation

Zcl(T ) =
1

h

∫∫ ∞
−∞

e−βH dp dx

=
1

h

∫ ∞
−∞

dp e−β
p2

2m

∫ ∞
−∞

dx e−β
mω2

0x
2

2

=
1

h

√
π

−β/(2m)

√
π

−βmω
2
0

2

=
1

β~ω0
, (2.41)

where the reduced Planck constant ~ = h
2π has been used (also known as the Dirac constant). Now

we can obtain the classical definition for the free energy of a one dimensional harmonic oscillator
at fixed volume due to Eq. 2.10

Fcl(T ) = −kBT lnZcl(T ) = −kBT ln

[
kBT

~ω0

]
= kBT ln

[
~ω0

kBT

]
. (2.42)

The same argument as before can be used to define the classical oscillator free energy having
three independent degrees of freedom corresponding to a (real) vibrating atom in a crystal with

F atom
cl (T ) = 3kBT ln

[
~ω0

kBT

]
. (2.43)

Accordingly, the classical entropy is derived from Eq. 2.2 by

Satom
cl (T ) = −

(
∂F atom

cl (T )

∂T

)
= 3kB + kB ln

[
kBT

~ω0

]
= 3kB − kB ln

[
~ω0

kBT

]
. (2.44)

Having derived the free energy of the classical and quantum system, all thermodynamic mate-
rial properties — for a single (fixed) volume — can be calculated by applying the corresponding
thermodynamic derivatives defined in Sec. 2. Assuming an average frequency ω0 is obtained from
DFT for Al of 24 meV/atom (e.g. compare to a phonon dispersion of Al in Ref. [11]), Fig. 2.1 com-
pares (a) the vibrational free energy, (b) the entropy and (c) the isochoric heat capacity between a
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Figure 2.1: Comparison of the classical and quantum mechanical harmonic oscillator assuming a single
frequency of ω0 = 24 meV. (a) Free energy in meV/atom as a function of temperature, F atom

qm (T ) and
F atom

cl (T ), as defined in Eqs. 2.38 and 2.43. (b) Entropy in kB gained by a derivative of the corresponding
free energy using Eq. 2.2. The calssical definition is also given in Eq. 2.44. (c) Isochoric heat capacity as a
function of temerature derived using Eq. 2.4.

quantum mechanical and a classical harmonic oscillator.
For the free energy in Fig. 2.1(a), the corresponding definitions for a single atom (3 degrees of

freedom) have been used from Eqs. 2.38 and 2.43. It can be observed that at T=0K both free
energies differ by the zero point energy of the atom (indicated by green arrow). Already at room
temperatures quantum mechanical effects are significantly diminished and the corresponding free
energy converges to the classical limit at high temperatures. This has important consequences for
ab initio molecular dynamics which are often performed classically. While those MD calculations
will be close to the exact result at high temperatures, at low temperatures differences are to be
expected due to the quantum mechanical nature of atomic motion. Fig. 2.1(b) compares the entropy
by applying the derivation defined in Eq. 2.2 to the classical and quantum mechanical free energy.
At high temperatures both curves converge, while, when decreasing the temperature, only the
quantum mechanical oscillator approaches the limiting value of zero at T=0K. This is a necessary
condition in thermodynamics and is also known as the third law. Fig. 2.1(c) shows the isochoric
heat capacity due to Eq. 2.4 where a drastic difference can be observed between the quantum and
the classical oscillator. The law of Dulong and Petit (black solid line) is found for the classical
harmonic system, 3 kB, over the whole temperature range. This is however known to contradict
experimental findings of solids at low temperatures. Using the quantum version of the harmonic
oscillator, Einstein predicted in 1906 for the first time the correct behavior for the heat capacity of
a carbon crystal also for temperatures below room temperature. With his work he showed that a
quantitatively correct description can be gained assuming quantized energy level for the vibration
of atoms. The energy quanta of lattice vibrations, ~ω, are widely known as phonons.1

2.3.2 Debye and Grüneisen Approximation

A few year after Einstein’s publication, accurate experimental measurements showed that the heat
capacity of solids follows a T 3 dependence at low temperatures which could not be explained with
Einstein’s formula. In 1912 Debye suggested [23] that in a real crystal several frequencies are to be
expected rather than a single frequency which was used in the Einstein solid. Debye argued that
the interactions between the atoms, especially due to the nearest neighbors, are strong in the solid
and that therefore atomic oscillations will be far from periodic. Analyzing the frequency spectrum
of such a solid (e.g. by a Fourier transform of the atomic motion) would result in a spectrum of

1The quantity TE = ~ω0/kB is often referred to as the ‘Einstein temperature’.



2.3. Approximate theories of lattice vibrations 19

- π / a  
 

Einstein 

Debye 

ωD

kv  
 

π / a

v	
  

v	
  

v	
  

v	
  

v	
  

v	
  

v	
  

v	
  v	
  
v	
  

ω

v	
  v	
  v	
   v	
   v	
  v	
  

v	
  

Figure 2.2: Exemplary dispersion relation
(black solid) in one dimension for a crystal in
comparison to the Einstein (red dashed, con-
stant) and Debye (red dashed, linearly increas-
ing) dispersion relation. While the crystal vi-
brates with a single averaged (mean) frequency
ω0 in the Einstein solid, the dispersion relation
is given in Debye approximation by the speed
of sound v = δω

δk . In the Debye approxima-
tion only frequencies are allowed up to ωD and
higher frequencies are cut off.

frequencies which is the direct consequence of atomic interactions. At that time however it was not
possible to experimentally measure the frequencies within a solid and theoretical approximations
were called for.

When analyzing the spectrum of frequencies in the solid two questions arise: a) which fre-
quencies ω are present in the solid and b) to which wave length k does a particular frequency ω
correspond to. The relation between the frequency and its wave vector is given by the dispersion
relation. Debye assumed that the spectrum of available frequencies in the solid is similar to a
homogeneous elastic continuum. He therefore approximated dω/dk by a constant speed of sound
v = dω

dk , a quantity which was experimentally accessible at the time of Debye and which corresponds
to the long wave-length limit in the dispersion relation.2 Since the speed of sound in a solid depends
on the stiffness of the springs between the atoms — which are related to the atomic potential — a
stiffer spring will transmit the sound wave quicker. Fig. 2.2 shows an exemplary dispersion relation
with the assumed frequency dependence due to the Einstein and Debye model respectively.

Treating a d dimensional crystal of length L (d = 1, 2, 3, corresponds to an atomic chain of
length L in one dimension or to a cube of edge length L in three dimensions) as a homogeneous
elastic medium with v = dω

dk , an expression can be derived for the number of frequencies between
ω and δω — the phonon density of states (DOS)

g(ω) =
dN

dω
= Ld

d

(2π)d
sd
ωd−1

vd
. (2.45)

Here, sd is the ”surface” of a sphere of radius 1 in d = 1, 2, 3 dimensions and sd = 2, 2π, 4π for
d = 1, 2, 3 respectively [24]. g(ω) corresponds in three dimensions (d = 3) to

g3D(ω) = 3
ω2V

2π2v3
(2.46)

where L3 = V has been used and V corresponds to the volume of the considered crystal. Since in a
real three dimensional crystal the number of modes is limited to 3N frequencies (N is the number

2In his model, Debye actually distinguished between a longitudinal and two transversal modes of oscillation.
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of the atoms) Debye used the relation

3N =

∫ ωmax

0
g3D(ω)dω (2.47)

to derive the highest frequency — a cutoff frequency ωmax — in the system which is also known as
the Debye frequency ωD. Using Equations 2.46 and 2.47, ωD can be calculated

ωD = ωmax = v(6π2N

V
)
1
3 = 2πv(

N

V

3

4π
)
1
3 (2.48)

which depends only on the speed of sound v and the crystal density V/N , both experimentally well
known. The Debye temperature is defined by

TD =
~ωD
kB

. (2.49)

Since the speed of sound in a crystal corresponds to an average of sound velocities in longitudinal
and transversal direction vl and vt, the speed of sound v in a crystal is

3

v3
=

1

v3
l

+
2

v3
t

. (2.50)

Tabulated values of vl and vt for selected elements can be found in e.g. Ref. [25]. As an example
we calculate the Debye temperature for aluminum: vl and vt are tabulated with 6374 m/s and
3111 m/s respectively [25]. This results in an effective speed of sound v of 3494.76 m/s using
Eq. 2.50. The second factor which characterizes the Debye density of states and therefore ωD in
Eq. 2.48 is N

V which can be calculated by the density of aluminum ρ(Al) = 2.7 g/cm3 [25]:

N

V
=

NA ρ(Al)

Matom(Al)
=

6.02× 1023mol−1 × 2.7 g/cm3

26.981g/mol
= 6.02× 1028 m−3. (2.51)

Using the derived v and N/V in Eqs. 2.48 and 2.49 it follows that ωD = 5.34 × 1013 Hz which
corresponds to a Debye temperature of TD = 408 K for aluminum.

The free energy at a fixed volume in Debye approximation is given by the well known formula

F (T ) =
9

8
kBTD + kBT

[
3 ln

(
1− e−TD/T

)
−D(TD/T )

]
(2.52)

with

D(y) =
3

y3

∫ y

0

x3

ex − 1
dx (2.53)

and is seen to depend solely on the Debye temperature TD. The definitions in Sec. 2 can be used
to calculate all thermodynamic derivative quantities. The heat capacity in Debye approximation
e.g. reads

CV (T ) = 9NkB

[
T

TD

]3 ∫ TD/T

0

x4ex

(ex − 1)2
dx (2.54)

and correctly predicts the experimentally found temperature dependence at low temperatures which
scales with T 3. Considering a linear dispersion relation, Debye improved Einstein’s theory by
effectively considering coupled atomic vibrations with an intuitive approximation for the lower
part of the frequencies spectrum which is correctly given by the speed of sound in the solid.
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While at low temperatures an accurate description for the heat capacity is given by Debye’s
approximation, going to higher temperatures significant deviations were found. The reason is that
with increasing temperature the volume of the crystal expands and the corresponding frequencies
decrease. This effect is often referred to as phonon softening and originates in the fact that in-
creasing the atomic distance widens the potential well in which atoms vibrate and therefore the
interatomic bonds become softer which results also in lower/softer frequencies. In order to make
qualitative predictions of thermodynamic properties it is necessary to therefore access the frequency
spectrum and its dependence on volume. One of the first approximations to this problem was to
assume that the frequencies follow a simple exponential dependence of the change in phonon fre-
quencies when changing the volume. This is known as the Grüneisen approximation which in the
following is considered for cubic crystals when assuming an isotropic expansion of the lattice. The
Grüneisen parameter γi is defined for every phonon mode i [22, 26] by

γi = − V

ωi(V )

∂ωi(V )

∂V
= constant, (2.55)

with the corresponding volume dependent frequency ωi(V ). Solving this equation for ωi(V ) yields

ωi(V ) = aiV
−γi , (2.56)

with an integration constant ai. This can be simply verified by performing the derivative with
respect to volume and substituting Eq. (2.56)

∂ωi(V )

∂V
= ai(−γi)V −γi−1

= aiV
−γi(−γi)V −1

= ωi(V )(−γi)V −1. (2.57)

The total Grüneisen parameter is the sum of all γi’s and introduces at a constant volume a
change in the harmonic potential — more precisely from one harmonic potential to a generally softer
harmonic potential. Since the potential now changes as a function of the volume the Grüneisen
parameter is usually referred to as an indicator for the anharmonicity in a crystal. For the purpose
of this thesis a different notation will be used however. Throughout this work a distinction is
made between quasiharmonicity and (explicit) anharmonicity. While quasiharmonicity will be used
when referring to changes in volume (while keeping a harmonic potential which however depends
on the volume), the term anharmonicity will be used for explicit deviations of the atomic potential
from a simple harmonic dependence U = 1

2µd
2 where d is the atomic distance and µ the spring

constant. While Debye and Grüneisen had to make assumptions for the frequency spectrum of the
lattice vibrations and its dependence on the temperature, these quantities can nowadays be easily
calculated — at least in harmonic approximation — for a given potential using ab initio methods.

2.3.3 Harmonic and Quasiharmonic Approximation

The presently most popular approach to compute thermodynamic properties from ab initio is the
quasiharmonic (QH) approximation [27, 28]. Its basic idea is to apply the harmonic approximation
at different volumes: the Helmholtz free energy F (T ) is derived in harmonic approximation at every
volume F (V1, T ), F (V2, T ), F (V3, T ), . . . and a parametrization of these free energies is performed
to obtain the final free energy surface F (V, T ). The parametrization of the free energy surface is
standard and not the subject of this section. Since the T=0K energy E0(V ) is excluded from the
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vibrational part, F (V, T ) can easily be obtained numerically by e.g. fitting low order polynomials
as a function of volume for every temperature. The main focus of this section is the introduction
of the harmonic approximation [29].

The basic concept of the harmonic approximation is similar to the Einstein solid, with one
major difference: instead of a single frequency ω0 which is allowed for atomic vibrations in the
Einstein solid, the harmonic approximation samples all 3N frequencies of the crystal where N
is the number of atoms. Every atom is connected to every other atom in the crystal by a perfect
spring which obeys Hooke’s law since the approximation is still harmonic. The interactions between
the atoms result in a spectrum of eigenfrequencies. These frequencies are independent and the
(quasi)harmonic approximation contains hence no phonon-phonon interactions. Instead of the
approximative assessment of eigenfrequencies which was performed by Debye, the whole vibrational
spectrum can be calculated nowadays numerically. The accuracy of the harmonic approximation
is thus only dictated by the underlying potential and — the mapping onto a purely harmonic
Hamiltonian.

The general expression for the Born-Oppenheimer surface defined in Eq. 2.20 — which defines
the interatomic potential — can be expanded in a Taylor series around the equilibrium atomic
positions {R0

i } by

EBO({Ri}) = EBO
0 ({Ri}) +

1

2!

3N∑
ij

Φ2ord
ij uiuj︸                 ︷︷                 ︸+

1

3!

3N∑
ijk

Φ3ord
ijk uiujuk + . . .︸                            ︷︷                            ︸, (2.58)

Eh Eah

where EBO
0 ({Ri}) is the total energy for the crystal in equilibrium, the second term is the harmonic

part and the following terms correspond to the anharmonic contribution of atomic vibrations. The
derivatives are given by

Φ2ord
ij =

∂2EBO({Ri})
∂Ri ∂Rj

=
∂FBO({Ri})

∂Ri
, (2.59)

Φ3ord
ijk =

∂3EBO({Ri})
∂Ri ∂Rj ∂Rk

=
∂2FBO({Ri})
∂Ri ∂Rj

, (2.60)

Φ4ord
ijkl = . . . . (2.61)

where FBO({Ri}) are the Born-Oppenheimer forces which act on every atom in the crystal. In
Eq. 2.58, the first order term Φ1ord

i has been omitted since it corresponds to the forces at equilibrium,
which are zero. In harmonic approximation the potential is expanded only to second order. The
central quantity in harmonic approximation is the linear force constant matrix Φ2ord

ij = Φij from
which all phonon frequencies can be derived analytically as will be shown later. The total energy
Eh for any configuration of atoms can be calculated in harmonic approximation by

Eqh =
1

2

3N∑
ij

uiΦijuj = −1

2

 3N∑
i,j>i

Φij(dji − deq
ji )

2

 . (2.62)

Here, Φij is the force constant matrix which holds the linear force constants and u is a dis-
placement vector of the atoms from perfect equilibrium lattice and corresponds to an arbitrary
configuration of atomic positions. Note that in this definition of Φij , the variables i and j run
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over the atoms and the displacement directions. Therefore i = 1 corresponds to displacing the
first atom in the x direction, i = 2 corresponds to displacing the first atom in y direction and so
on. The notation used for the term on the left side — which differs from the standard textbook
definition but is equivalent — is chosen to illustrate the simple two dimensional nature of the force
constant matrix. Substituting i with iα and j with jβ the standard textbook definition is obtained
where greek letters α, β are used to indicate the Cartesian components of ui. The second term
is derived in the Appendix A.1 on page 90. In this formulation it can be observed that the har-
monic approximation is merely a sum which runs over all linear atomic force constants multiplied
by the corresponding distance dij between two atoms in comparison to their equilibrium distance
deq
ij . Evaluating the harmonic force constant matrices Φij from ab initio can be performed by two

approaches: perturbative methods based on linear response theory [30, 31] or the direct method —
also called finite-displacement method — which calculates the response forces given a small atomic
displacements [11, 32]. In the following only the direct method is shortly introduced.

Displacing an atom from its equilibrium position induces forces on all other atoms in the studied
solid. Note that this is not the case in the Einstein solid where a force would only be found on the
displaced atom. For small displacements u of an atom in a particular direction, the induced and
numerically calculated forces on all atoms is proportional to the performed displacement and the
atomic potential is probed in the ‘true’ harmonic regime. For Mg, tests have been performed as
part of this PhD work which did show that atomic displacements ranging from 0.001 Å to 0.1 Å
can be used and will all yield very similar free energies which differ at 1000 K by less than 3 meV.
The harmonic free energy surface can therefore rigorously be calculated by numerical methods and
is well defined. This is necessary since assessing the importance of anharmonic contributions — i.e.
contributions which go beyond the harmonic approximation — is meaningful only when the correct
harmonic part has been determined. Other ways of splitting the final free energy are possible but
doing so the distinction between a harmonic and the anharmonic part would lose their meaning.

The two dimensional force constant matrix Φ for the entire solid can be obtained by displacing
every atom i in the cell in the three Cartesian directions and calculating for each of those dis-
placements the force on all atoms j. Symmetries can be used to reduce the number of necessary
displacements to the irreducible one. Diagonalizing the force constant matrix of size 3N × 3N the
eigenfrequencies ωi and the corresponding eigenvectors ki can be directly obtained where i runs
over the 3N entries of the matrix. The eigenfrequencies and eigenvectors are determined from the
force constant matrix by solving the eigenvalue equation

Φki = ω2
i ki. (2.63)

The derived eigenfrequencies ωi can then be used to calculate the free energy. Using the expression
for the quantum harmonic oscillator in Eq. 2.34 and replacing ω0 by ωi one can sum over all
3N frequencies ωi which are present in the solid to obtain the final temperature dependent free
energy in harmonic approximation defined in Eq. 2.39. Using the small displacement method, the
convergence of the free energy needs to be carefully checked with respect to the supercell size and
with respect to the k point sampling. Diagonalizing Eq. 2.63 directly yields only the frequencies
which correspond to commensurate k-vectors within the sampled supercell. If the complete force
constant matrix is known, the frequency at any k-vector can be determined from the dynamical
matrix which is defined as the Fourier transform of the force-constant matrix. For a monatomic
crystal with a single atom in the primitive cell the dynamical matrix is defined by [29]

Dαβ(k) =
1

m

∑
j

Φiα jβ exp
[
ik · (R0

i −R0
j )
]
. (2.64)
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Here, m is the atomic mass and the Cartesian components α and β have been used. Using Dαβ(k),
the Brillouin zone can be integrated with a dense mesh of k-vectors. This is readily found to
significantly speed-up also the supercell convergence of the free energy. Having calculated F h(T )
at different volumes V , the quasiharmonic free energy surface F qh(V, T ) can be parametrized as
mentioned before.

The quasiharmonic approximation is conceptually well defined and computationally efficient
since it requires for high-symmetry configurations only very few configurations to be sampled to
determine the full force constant matrix Φ [33]. A major drawback is, however, that its accuracy
is difficult to assess. Its inherent approximation — a harmonic potential — does not represent the
true nature of the interatomic potential. At low temperatures, only small atomic displacements
occur in the system and a quadratic potential well is adequate. Consequently, thermodynamic
properties have been found to agree well with experimental findings in the temperature regime
close to T=0K. The predictive power of the quasiharmonic approximation however decreases with
increasing temperatures when atoms start to strongly deviate from their equilibrium positions and
anharmonic effects become important. At these temperatures and in particular for non-harmonic
systems, advanced methods are necessary to fully capture anharmonic contributions to the free
energy.

2.3.4 Methods beyond the quasiharmonic approximation

In the following, two approaches are shortly introduced which go beyond the quasiharmonic approx-
imation. These approaches — TDEP and SCAILD — stay in the harmonic framework but include
finite temperature anharmonicity by sampling particular high temperature atomic configurations
and map the corresponding forces onto a harmonic Hamiltonian. Concepts which explicitly allow a
Hamiltonian which goes beyond second order are introduced thereupon in the following section 2.4.

Self-consistent ab initio lattice dynamics (SCAILD) method

SCAILD has been introduced in 2008 as a method to compute temperature dependent phonon spec-
tra self consistently form first principles [34, 35]. Especially for structures which show a softening
of the phonon dispersion at T=0K — those systems are not stable in harmonic approximation and
cannot be calculated — this method is advantageous. SCAILD treats the calculation of tempera-
ture dependent phonon dispersions and material properties as follows: In a first step the harmonic
approximation is solved and an initial harmonic dispersion is gained — which possibly might still
contain imaginary modes. By defining a target temperature, average displacement amplitudes can
be calculated and used to set up all the displacement vectors k which are contained in the sampled
supercell. The displaced structures introduce forces which are calculated and consequently used
to define a new dynamical matrix with new harmonic frequencies. These new eigenfrequencies
together with the target temperature are again used to define new mean-square atomic displace-
ments which eventually lead to a new force constant matrix. The procedure is repeated until the
harmonic free energy of consecutive iterations converges to a predefined threshold. The resulting
dispersion relations have been shown to agree well for all the sampled elements at high temper-
atures. An advantage of the SCAILD method is that no computationally demanding ab initio
molecular dynamics have to be performed.
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Temperature dependent effective potential (TDEP) method

A further approach to effectively capture anharmonic effects at high temperatures is the temper-
ature dependent effective potential (TDEP) method [36]. The TDEP approach performs a phase
space sampling derived from molecular dynamics to fit a set of temperature dependent coefficients
Φeff
ij (T ) which replace the standard T=0K coefficients of the harmonic force constant matrix defined

in Eq. (2.62). In this way the positions and forces obtained from MD are mapped onto a harmonic
model Hamiltonian which is adjusted to a certain temperature and which is defined by minimizing
the forces between DFT and the ones obtained from the model Hamiltonian. The (quasi)harmonic
framework is retained and effective (quasi)harmonic free energies containing anharmonic corrections
can be computed. The forces minimization is defined by

min ∆F =
1

N

N∑
i

∣∣FMD
i − FTDEP

i

∣∣2 (2.65)

where the molecular dynamics runs over N steps, FMD are the corresponding DFT forces and
FTDEP the forces stemming from the harmonic TDEP force constant matrix Φeff

ij (T ) which is solved
for in Eq. 2.65. The minimization of forces with respect to DFT molecular dynamics results in an
TDEP Hamiltonian with an internal energy which equals the harmonic internal energy 〈UTDEP〉 =
kBT3N , where N is the number of atoms. The TDEP Hamiltonian can be regarded as the best
possible harmonic one for a given temperature. In Sec. 3.1.3 a TDEP Hamiltonian is assessed among
others as possible reference potential for thermodynamic integration. Although in the originally
presented form of TDEP a harmonic model Hamiltonian was used, an extension to higher orders
is in principle possible. A fundamental difference to the introduced SCAILD approach is the
different phase space sampling. While TDEP samples directly DFT molecular dynamic, SCAILD
evaluates snapshots which are self consistently predicted by the corresponding harmonic SCAILD
Hamiltonian.

2.4 Solving lattice vibrations numerically exactly

In the previous section, approximate methods have been introduced which described the potential
energy surface defined in Eq. 2.58 up to second order. The inclusion of higher orders however turns
out to be a significant challenge. This section shortly describes two different approaches which take
the missing higher order contributions into account.

2.4.1 Many-body perturbation theory

The general strategy of many-body perturbation theory (or higher order perturbation theory) is to
separately calculate the second, third, fourth, etc. terms in Eq. 2.58 (see e.g. Ref. [37]). Recent
reviews can be found e.g., in Refs. [38–40]. While the second order (harmonic approximation)
includes only non interacting phonon’s, the terms beyond second order correspond to phonon-
phonon interactions and result in the creation or destruction of phonons. Similar to the harmonic
approximation, the system is treated quantum mechanically and analytical formulas can be obtained
which yield thermodynamic properties. Without going into the practical details which are involved
when pursuing many-body perturbation theory calculations, it will be shown that the numerical
demands increase exponentially with increasing order and that for this reason only a small subset
of higher order terms can be calculated in practice.
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A typical situation for any Taylor expansion, including Eq. 2.58, is that higher orders yield
smaller contributions. In general however it is not known where to truncate this expansion. It is
known that the third and forth order terms yield similar contributions to the free energy and need
therefore to be considered simultaneously to obtain reliable results. Let us consider the amount
of atomic configurations which are necessary to calculate the different terms Φ2ord,Φ3ord,Φ4ord, . . .
of the Born-Oppenheimer surface. The general scaling is ((n − 1) · 3 · N)(n−1) where N is the
number of atoms in the considered cell, 3 represents the three Cartesian directions and n is the
respective order in the expansion. For the example of a N = 32 atom fcc crystal with a single
atomic species it is therefore necessary to calculate 96 displacements in harmonic approximation
— 2nd order — if no symmetries are applied. The 3rd and 4th order need already ≈ 105 and ≈ 108

calculations respectively. When symmetry considerations are taken into account, the necessary
amount of displacements is one for the harmonic approximation, ≈ 103 for the 3rd order and ≈ 104

for the 4th order. It is seen that the number of terms rapidly increases which renders this ansatz
a challenge for numerical approaches.

Very recent approaches of many-body perturbation theory to pristine fcc Aluminum managed to
include all terms necessary up to third order fully from ab initio [41]. Another new implementation
of higher-order perturbation theory, compressive sensing lattice dynamics (CSLD) [39] uses a scheme
which determines the most relevant expansion coefficients from Eq. 2.58 and also their values from
a set of DFT snapshots. Similar strategies are being applied in cluster expansion methods for
determining the most relevant configuration interactions between atom pairs [42]. Related cluster
expansion methods for the calculation of higher order anharmonic terms are also employed by
Thomas et al. [43]. Ai et al. [44] and Chen et al. [40] have constructed a polynomial interatomic
potential within next-nearest neighbors up to forth order. All these examples indicate that it is not
trivial to rigorously determine the influence of the different terms entering Eq. 2.58. Furthermore
it has been found that for strongly anharmonic crystals as He and Ne as well as for rare gas crystals
perturbative methods fail [45]. Due to the high accuracy demands necessary in this study which
were already mentioned in the introduction — better than 1 meV/atom for bulk systems and
0.1 meV/atom for systems containing defects — these approaches are not suitable for the present
study. Methods which go beyond a perturbative treatment and are able to calculate the numerically
exact free energy — and therefore the anharmonic contributions to all orders — will be introduced
in the following.

2.4.2 Thermodynamic Integration

In comparison to many-body perturbation theory, classical statistical approaches (often referred to
as sampling approaches) sample the full nuclei phase space explicitly by e.g., molecular dynamics
or Monte Carlo methods [12]. Therefore, all orders in Eq. 2.58 are implicitly included in the
sampling at the price that the necessary numerical calculations have to be performed at different
temperatures. Thermodynamic integration [1, 46] is a particularly efficient statistical approach
which is used to couple an arbitrary reference potential, e.g., a quasiharmonic reference, to e.g.,
the full DFT potential. Quantum mechanical effects, which are important in particular at low
temperatures, can be explicitly included from the reference potential. The classically computed
free energy difference between the systems which are being coupled is calculated numerically exactly.

Starting from a known reference potential U0 where the free energy is known exactly or analyti-
cally — say a harmonic reference at a fixed external volume V and temperature T — the free energy
difference can be computed with respect to another potential U1, e.g. the full DFT potential energy
surface. It has been noted earlier that a brute force sampling of phase-space requires on the order
of 106 − 107 ab initio computed configurations to converge the free energy to the here necessary
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accuracy which is below 1 meV/atom for bulk systems. Depending on the quality of the reference
potential U0, thermodynamic integration allows to reduce the number of sampling configurations
by usually more than 3 orders of magnitude providing thereby access to the numerically exact free
energy surface. As was however mentioned in Sec. 2.1, the free energy difference ∆F between U0

and U1 cannot be calculated directly by casual molecular dynamics. The reason is that the sampled
phase space as e.g. the averaged spatial coordinates, atomic distances and angles etc. are different
for both systems U1 and U0 due to distinct partition functions. The free energy difference can
nevertheless be calculated by defining a reversible path between both systems which is defined by a
continuous variable. This variable is used to perform a (continuous) switching from a phase space
sampling on U0 to a phase space sampling on U1. Averages of energy differences between both
systems are computed for a distinct number of λ values and integrating those differences yields the
numerically exact free energy difference ∆F .
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Figure 2.3: Exemplary thermodynamic integration
for pristine bulk Ag (fcc) at the melting temperature
of 1235 Kelvin. The integration is performed from a
harmonic reference to DFT. The squares (red) cor-
responds to calculated averages between the DFT
and the harmonic reference, 〈UDFT−Uqh〉λ, for dis-
tinct λ values. Integration of 〈dUλ/dλ〉λ (red curve)
yields the numerically exact free energy difference
∆F (gray shaded area) between DFT and the quasi-
harmonic free energy.

A possible coupling coordinate for instance
is the force, although other coupling coordi-
nates are used in practice as well. Choosing
the force as a coupling coordinate λ, the phase
space is sampled for different λ values which
linearly mix the forces stemming from U0 and
U1 by

Uλ = (1− λ)U0 + λU1. (2.66)

At λ = 0, the phase space is evaluated with
forces which are exclusively governed by U0. At
λ = 0.75 for instance only a quarter of an in-
dividual force is determined by U0 while three
quarters of U1 forces are used. In this way
different parts of phase space are sampled as
a function of λ and results also in averaged
atomic positions which change with the cou-
pling strength. Gradually sweeping the λ pa-
rameter, a gradual change in the phase space
sampling is obtained which also results in dis-
tinct averaged total energy differences between
U0 and U1. For every λ value an MD has to
be performed and the error of the averaged en-
ergy difference 〈U1 − U0〉λ can be reduced by
increasing the sampling time. By statistical
considerations, the error of the free energy difference scales with 1/

√
n where n is the number of

sampling points (atomic configurations). Integrating the finally obtained averages as a function of
lambda, the numerically exact anharmonic free energy correction can be obtained.

The main steps for the derivation of thermodynamic integration are given in the following.
Starting with the definition of the free energy in Eq. 2.10 which is dependent on the partition
function, a well known result from classical statistical mechanics can be derived by considering the
derivative of the free energy with respect to an ‘external’ change dλ

dF = 〈dUλ/dλ〉λ dλ. (2.67)
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Here, a canonical ensemble average 〈. . .〉λ is calculated for a given potential Uλ. Changes in Uλ
by means of the reaction coordinate dλ introduce a change in the Helmholtz free energy dF . The
total free energy difference ∆F is defined by integration of dF over the coupling parameter λ

∆F =

∫ 1

0
dλ 〈dUλ/dλ〉λ. (2.68)

An example for a 〈dUλ/dλ〉λ curve is shown in Fig. 2.3 for fcc bulk Ag for a thermodynamic
integration at the melting temperature (1234 Kelvin) from a harmonic reference potential (U0 =
Uqh) to the full DFT potential (U1 = UDFT).

A linear switching between U0 and U1 can be used as defined in Eq. 2.66 by which the free
energy difference defined in Eq. 2.68 can be rewritten by

∆F =

∫ 1

0
dλ 〈U1 − U0〉λ. (2.69)

A possible implementation of thermodynamic integration is by sampling distinct λ values and
thereafter performing a fit through the numerically obtained points (this was similarly performed
in Fig. 2.3 and resulted in the red curve). In case a harmonic potential has been chosen as reference,
the calculated ∆F is the full anharmonic correction F ah and equals the sum of all missing orders in
a purely harmonic expansion of the Born-Oppenheimer surface in Eq. 2.58. The main challenge in
thermodynamic integration is to minimize the error which is present in the thermodynamic average
〈U1 − U0〉λ for the molecular dynamics runs at a given λ. How fast this difference converges is
decisively influenced by the similarity of both Hamiltonians. An extensive test of different reference
potentials for thermodynamic integration (usually denoted by U0) to the full DFT potential (usually
denoted by U1) is performed in Sec. 3.1.

2.4.3 UP-TILD

The main challenge for the just introduced thermodynamic integration is its numerical convergence
of the free energy difference ∆F . When performing thermodynamic integration using ab initio
methods, a major speed-up can be achieved by the recently proposed up-sampled thermodynamic
integration using Langevin dynamics (UP-TILD) method [2]. The basic idea is to separate the
physical phase space sampling from the numerical convergence with respect to DFT parameters (e.g.
cutoff, k-point sampling, etc.). A general observation when performing DFT molecular dynamics
calculations is that fully converged cutoffs and k-points are in fact not necessary to sample the
phase space with a high accuracy. The highly converged parameters change mainly the kinetic
energy of the electrons which corresponds to a constant energy shift of the Born-Oppenheimer
surface. The forces which determine the phase space sampling turn out to be sufficiently accurate
already when using not the fully converged DFT parameters.

Therefore, a typical thermodynamic integration from e.g. a harmonic reference Uqh to a highly
converged ab initio sampling, UDFT,high, can be split in two steps. In the first step the free energy
difference is calculated by thermodynamic integration from the quasiharmonic reference to the DFT
Hamiltonian with the not yet fully converged parameters which give the potential energy UDFT,low.
Due to the similarity of the forces gained by the low converged DFT sampling to the fully converged
DFT parameters, a nearly identical phase space is sampled. Therefore, in a consecutive step, a
perturbative approach — the up-sampling — is applied which calculates the free energy difference
between UDFT,low and UDFT,high based on the previously obtained sampling points as a function
of λ. Due to the perturbative nature of the UP-TILD approach, its accuracy has been tested and
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demonstrated in Refs. [2, 47] to be much better than one meV/atom in comparison to a sampling on
the fully converged DFT parameters. The number of iteration steps is however significantly reduced
using UP-TILD to about 10 calculations for a single lambda parameter in comparison to about
several thousand DFT molecular dynamic steps using solely thermodynamic integration without
UP-TILD. The calculation of the final vibrational free energy using UP-TILD can be summarized
as follows

F vib = F qh + F ah

= F qh + ∆FDFT,high
qh

= F qh + ∆FDFT,low
qh + ∆FDFT,high

DFT,low (2.70)

= F qh +

∫ DFT,low

qh
dλ 〈UDFT,low − Uqh〉λ︸                                       ︷︷                                       ︸+

∫ DFT,high

DFT,low
dλ 〈UDFT,high − UDFT,low〉DFT,low

λ︸                                                        ︷︷                                                        ︸
thermodynamic integration UP-sampling

where 〈. . .〉DFT,low
λ indicates the up-sampling process which is performed on snapshots which are

gained from the thermodynamic integration step. The corresponding energy difference 〈∆E〉 is
calculated by an arithmetic mean

〈∆E〉 = 〈UDFT,high − UDFT,low〉DFT,low
λ =

1

NUP

NUP∑
u

[
UDFT,high
u − UDFT,low

u

]
(2.71)

for every λ point on the temperature and volume dependent free energy surface. NUP is the
number of up-sampled atomic configurations which are needed to gain the necessary statistical
convergence but are significantly less than the number of MD steps for the phase space sampling
by thermodynamic integration. In cases the ground state energy of the pristine cell EBO

0 ({Ri})
has been removed from the vibrational part defined in Eq. 2.58, it is also necessary to subtract the
corresponding energies from every UDFT,high and UDFT,low.

The significant reduction in calculation time is achieved due to the fact that (i) the numerical
sampling on the not fully converged parameter set significantly saves computational time while (ii)
the convergence of the UP-sampling is significantly enhanced due to the very similar phase space
of the low and high Born-Oppenheimer surface. Fig. 2.4 illustrates the up-sampled thermodynamic
integration using Langevin dynamics scheme introduced in Ref. [2]. It can be seen in (a) that the
thermodynamic integration from a typical quasiharmonic reference needs several thousand steps to
converge to the sub meV precision necessary for defect calculations. Using several of the gained
structures and recalculating those with a higher DFT parameter set (up-sampling) is shown in (b).
For those more demanding calculations typically only up to 30 uncorrelated MD configurations are
necessary. Fig. 2.4(c) shows the sum of the UP-TILD procedure (red) which corresponds to the
anharmonic contribution and consists of the thermodynamic integration (blue) energies and the
up-sampling step (orange).
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Figure 2.4: Illustration of the UP-TILD method: (a) Convergence of the average quantity 〈UDFT,low −
Uqh〉λ = 〈∂U/∂λ〉low

λ at T = 900 K and λ = 0.5 as a function of the number of molecular dynamics (MD)
steps for the thermodynamic integration run on the not fully converged DFT parameter set. (b) Convergence
of the average energy difference 〈UDFT,high − UDFT,low〉λ = 〈∆E〉λ for a set of uncorrelated MD-structures
taken from the λ = 0.5 run in a). (c) The λ dependence of the converged quantities from a) and b) and their

sum, which corresponds to the highly converged quantity 〈∂U/∂λ〉high
λ , are shown. Figure and Caption were

adapted from Ref. [2].



Chapter 3

Methodological developments

In this chapter the main methodological developments are discussed which were obtained during
the present work:

• Section 3.1 summarizes the main observations and consecutive steps which led to the for-
mulation of the local anharmonic (LA) approximation. Predictions of free energies using
the local anharmonic approximation show a significantly improved accuracy in comparison
to the quasiharmonic approximation. When used as reference potential for thermodynamic
integration it yields a speed-up of approximately two orders of magnitude in comparison to
the generally applied and previously used quasiharmonic reference.

• Section 3.2 shows the considerations which led to a Local Grüneisen theory (LGT) interpre-
tation of defect formation. Using this formulation, it is possible to consolidate all experimen-
tally measured high temperature vacancy formation energies of Al and Cu with fully ab initio
computed results over the whole temperature range up to the melting point.

3.1 Efficient sampling of anharmonic contributions in bulk sys-
tems

The state-of-the-art methodology to study vibrational effects at high temperatures using first prin-
ciples is the quasiharmonic approximation as introduced in Sec. 2.3.3. The errors due to this
approximation are not well investigated since the full spectrum of vibrations, which would allow an
unbiased comparison, is difficult to assess on an fully ab initio level. The importance to go beyond
the harmonic picture by including the explicit anharmonic contributions due to phonon-phonon in-
teractions has been recognized a long time ago [22, 26, 37, 48]. These contributions are responsible
for deviations in specific heat, affect thermal expansion, phase transitions and significantly alter
the behavior of thermoelectric materials [2, 9, 37, 48, 49]. The theoretical study of anharmonic
contributions — which are all the missing vibrational contributions beyond the harmonic part —
was for a long time significantly hindered due to a lack of accurate interatomic potentials in the
early days of computer-aided materials design. Later, because the necessary tools to compute these
contributions were still not developed on a fully ab initio basis. Early computational studies based
on empirical potentials showed that anharmonic effects in bulk systems can in principle significantly
modify free energies but were rejected since the strongly anharmonic results seemed unphysical at
that time but also due to significant numerical convergence difficulties for the calculation of anhar-
monic contributions [50]. Only recent methodological advances, mainly based on thermodynamic

31
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integration techniques (see Sec. 2.4.2) provided access to the numerically exact and fully ab ini-
tio free energy surface and did conclusively show the importance of anharmonic excitations for a
few selected systems [1, 2, 9, 51]. From a physical point of view these studies were a significant
break-through since the exact solution enabled for the fist time a true comparison of the errors
introduced by different approximations. Examples include differences in the thermodynamic prop-
erties between e.g. LDA and GGA at finite temperatures as well as the assessment of established
methods as the quasiharmonic, Einstein or the Debye model for calculating the heat capacity of
solids. Having the full excitation spectrum at hand provides furthermore the basis for a detailed
analysis, development and testing of new improved approximations.

Though the principle methods for the numerically exact thermodynamic solution are now
known, fully ab initio based thermodynamic integration has been applied only to very few se-
lected systems. All corresponding studies considered only one or at most two elements at a time.
The reason is that the computational demands are still much too significant in order to apply these
techniques on a regular basis. In fact, to avoid the computational cost of the numerically exact
statistical sampling method as thermodynamic integration, approaches have been developed to get
an approximate description of the potential energy surface which go beyond a quasiharmonic ansatz
introduced in Sec. 2.3.3. Some of those approaches have been presented in Sec. 2. A main route in
this direction is the treatment of anharmonic phonon-phonon interactions using second quantiza-
tion [39–41], where the sum in Eq. (2.62) extends not only over pairwise interactions but includes
higher order terms. Other approaches use machine learning [52] or cluster expansion [43] concepts
for approximating the potential energy surface or replace the at T=0K computed force constant
matrix by one that optimally describes thermodynamic averages at a given temperature [36]. In
contrast to statistical sampling a systematic convergence of these approaches proves challenging
making it difficult to assess their accuracy.

In order to practically enable fully ab initio based thermodynamic integration for a broad range
of material systems, it is therefore necessary to significantly increase its efficiency which, as noted
in Sec. 2.4.2, is exclusively governed by the reference potential at hand. At high temperatures only,
inverse potentials have been successfully applied as a reference for the Al phase transition from
solid to liquid [9]. However, as stated above, the quasiharmonic approximation is in general the
method of choice when the whole temperature range of solid crystals is considered from T=0K up
to melting [2, 53].

An investigation of the high temperature performance of the QH reference is performed in
Sec. 3.1.1 and compared to the full DFT potential. The knowledge of this analysis will be used
to derive a novel approach, the local anharmonic (LA) approximation, which combines ideas from
the quasiharmonic approximation with anharmonic pair interactions and is presented in Sec. 3.1.2.
It will be shown that (a) highly accurate forces and free energies can be predicted using the LA
approach and that (b) using the LA as a reference for ab initio thermodynamic integration, results in
speed-ups in comparison to the QH reference of approximately 2 orders of magnitude. In Sec. 3.1.3
alternative references are compared and insights from the derivation of the LA approximation are
used to interpret thermodynamic integration results when using harmonic reference potentials.

3.1.1 Analysis of harmonic lattice dynamics at high temperatures

The currently established method to describe vibrational material properties at elevated tempera-
tures from ab initio is the quasiharmonic approximation. Solid-state physics textbooks state that it
yields results in agreement with experimentally observed thermodynamic properties in cases where
(i) the deviation of the atoms from their equilibrium position is small (low temperatures) and (ii)
the assumption of a harmonic potential (e.g. linear forces) holds [54]. A significant part of the work
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summarized in this thesis was devoted to perform thermodynamic integration by using a harmonic
potential as reference. Especially at high temperatures strong deviations from the true potential
are observed which result in an significant increase of computational cost for thermodynamic in-
tegration. A major achievement of this study was therefore to investigate the high temperature
properties of the QH reference and suggest a method which overcomes current limitations. In order
to improve the efficiency of thermodynamic integration, the applied reference potential should meet
several requirements:

• It should describe the correct phase space: Positions and forces of the atoms at a given
temperature have to closely resemble the true positions and forces.

• The standard deviation of the reference energy with respect to the true potential has to be
as small as possible. This is the main requirement for a fast convergence of thermodynamic
integration and is prerequisite for minimal computational cost.

• The given reference potential should ideally be accurate over the whole temperature range,
i.e. the same potential can be applied at any temperature.

In the following, the first of the above mentioned points is analyzed: the phase space behavior of the
quasiharmonic approximation in comparison to the fully DFT computed one. The corresponding
harmonic reference is derived for fcc Ag at T=0K via the small displacement method introduced
in Sec. 2.3.3. The (harmonic) force constant matrix is gained by a single displacement due to
symmetry considerations. It is subsequently used to perform a (harmonic) molecular dynamics
run at the melting temperature of Ag at 1235 Kelvin. Any observable from this MD run can be
compared against the same observable derived in a fully DFT-based MD which is performed for
the same system and temperature.

For this purpose, MD data are analyzed to reveal correlations between atomic positions and
various other phase space descriptors. A particularly useful quantity was found to be the dis-
tribution of the first nearest-neighbor vectors ~d1NN using [110] as the corresponding equilibrium
direction. The vector between the two selected neighboring atoms was tracked in MD simulations.
The QH and fully DFT-based distributions projected onto the (001) plane are shown in Fig. 3.1a.
Both distributions show a distinctly different configuration space. The QH distribution shows a
characteristic ellipsoidal shape which, due to its harmonic nature, is symmetric in longitudinal
and transversal direction, ~eL and ~eT respectively. For the fully DFT-based MD a significantly
different picture can be observed: only the transversal direction is symmetric, whereas a clearly
non-symmetric (anharmonic) behavior becomes evident in the longitudinal direction. Going to-
wards the atom which is (only in equilibrium) located at the origin, gives rise to a sharp, almost
planar edge beyond which the probability to find a neighboring atom drops essentially to zero. On
the opposite site, when considering long distances between the tracked neighboring atoms, a sig-
nificant probability exists. The DFT distribution showing the correlation between both atoms can
clearly not be described by a harmonic distribution. It is worth noting that the orientation of both
symmetry axes in the full DFT case shown in Fig. 3.1a, ~eL and ~eT, is very close to the symmetry
direction observed for the QH distribution. The longitudinal direction between two atoms is in
fact generally defined by the eigenvector corresponding to the highest eigenvalue of the harmonic
force constant matrix. Effects on second, third, etc. nearest neighbors are shown in Fig. 3.1b for
an EAM MD which was performed at 1000 Kelvin using a potential parametrization by Zhu et
al. [55]. For first neighbors the same anharmonic behavior is observed while already second (and
further) nearest neighbor interactions show a symmetric distribution. This underlines the localized
character of the anharmonic interactions.
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Figure 3.1: (a) Results from an MD run for Ag at the melting temperature. QH and fully DFT-based

distribution of the projected nearest-neighbor vector ~d1NN with the center of reference at (0,0) (red quadrant).
(b) EAM MD for fcc Pd at 1000 Kelvin using the parametrization by Zhu et al. [55] with center of reference
at (0,0). Projected are only atoms with equilibrium position on the (001) plane. As in the DFT case of Ag,
only first nearest neighbors show an anharmonic distribution while second and further neighbors turn out
to be symmetric and therefore not influenced by anharmonicity. Figure (a) and corresponding part of the
caption is adapted from Ref. [33].

The distribution of the distance vectors between nearest neighbor atoms is surprising as it
demonstrates an unexpectedly strong influence of anharmonicity and the failure of the quasihar-
monic approximation to describe the corresponding configuration space correctly. First nearest-
neighbor distances turn out to be a good collective coordinate to represent anharmonicity. To
analyze the anharmonic longitudinal distances in detail the Gauss-broadened first nearest-neighbor
distribution function1 was computed

ρ1NN(d) =
∑
j

δ([dj1NN − d
eq
1NN]− d) (3.1)

where δ is the Dirac delta function and the index j runs over all first nearest-neighbor distances of
all MD time steps of the simulation. For bulk Ag such a distribution function is shown in Fig. 3.2b
for a DFT MD run at the melting temperature (red dashed line). Comparison with a distribution
function obtained from a QH MD (black dashed line) reveals pronounced deviations: While the
QH distribution is as expected fully symmetric, the one obtained at the full DFT potential shows a
pronounced decrease/increase of configurations smaller/larger than the equilibrium distance. This
redistribution of probabilities observed in the DFT MD case is not accessible by a symmetric QH
potential. It provides direct insight into the mechanism of correlated atomic motion by which the
system is able to lower its energy and which is the root of anharmonicity: By shifting shorter
bond configurations to on average longer bonds, the system very effectively avoids the strong Pauli
repulsion while having to pay only the price for stretched bonds were the corresponding interaction
is softer. This picture becomes even more evident when the atomic distribution function is used to
construct the corresponding effective potential

veff = −kBT ln ρ1NN(d) (3.2)

1Every first nearest neighbor vector was considered without projecting on the [110] direction.
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Figure 3.2: Gauss-broadened first nearest-
neighbor distribution functions ρ1NN (dashed
lines; broadening parameter 0.04 Å−1) and cor-
responding effective potentials veff (solid lines)
obtained from full DFT (red) and QH (black)
MD runs as a function of the first nearest-
neighbor distance d1NN around the effective
equilibrium deq,eff

1NN corresponding to the mini-

mum of veff . The difference in deq,eff
1NN obtained

in quasiharmonic and full DFT calculations is
shown in the appendix A.2 on page 92. Figure
and caption are adapted from Ref. [33].

which is shown as solid black and red lines in Fig. 3.2. As expected the full DFT effective
potential (red line) is harder/softer than the QH one for distances shorter/longer than the equilib-
rium bond length. In fact, the thus constructed nearest neighbor effective potential derived at the
melting temperature of Ag closely resembles the well known features of a Morse potential that is
often used to describe the strength and anharmonicity of a chemical bond at T=0K.

3.1.2 Local Anharmonic (LA) approximation

In Sec. 3.1.1 a strongly anharmonic distribution was discovered for neighboring atoms at high tem-
peratures. The corresponding distance dependence, shown in Fig. 3.2, was traced back to Morse-like
local pairwise interactions. The question to be answered in this section is whether the corresponding
interatomic potential can be directly derived at T=0K, ideally from a few calculations. Exploring
various strategies a method was derived which can be seen as an extension of the QH approach. In-
spired by the distribution shown in Fig. 3.1a, the idea is to sample the local potential of atom pairs
in longitudinal and both transversal directions, ~eL, ~eT1 and ~eT2 in contrast to the global x, y and
z directions probed in quasiharmonic approximation. The longitudinal and transversal directions
for every atom pair in the pristine cell can be obtained by a local unitary transformation which is
given by the eigenvectors of the Hessian matrix. The transformation matrix, U loc, is therefore an
N ×N block matrix with elements

U loc
IJ = νIJ , ΦIJνIJ = ~EIJνIJ , (3.3)

where ΦIJ corresponds to the quasiharmonic force constant matrix between atom I and J as defined
in Eq. (2.62), νIJ is the corresponding matrix of eigenvectors, and ~EIJ the vector of eigenvalues.
Applying the 3×3 matrix U loc

IJ on a Cartesian basis, Axyz = (~ex, ~ey, ~ez), results in a local basis Aloc
IJ

for every atom pair I and J

Aloc
IJ = (U loc

IJ )−1 ·Axyz · U loc
IJ , Aloc

IJ = (~eL, ~eT1, ~eT2), (3.4)

with a longitudinal direction ~eL and two transversal vectors ~eT1 and ~eT2 (orthogonal to ~eL, compare
Fig. 3.1a). Using this new basis, the asymmetry in the DFT distribution function can be captured
already from T=0K calculations. For that purpose, it is necessary to start with a perfect crystal
with all atoms in equilibrium positions. Then atom I is displaced by a vector u along each of
the three principal vectors of Aloc

IJ as shown exemplary in Fig. 3.3. The T=0K force ~F 0K
J and
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Figure 3.3: Mapping of forces in local anharmonic (LA) approximation for the example of an fcc crystal.
Atomic positions of the pristine cell are shown in red. Atom I is displaced by a distance u a) along the
longitudinal direction ~eL towards and away from its nearest neighbor atom J and b) and c) along the

transversal directions ~eT1 and ~eT2 perpendicular to ~eL. The force on atom J , ~F 0K
J , is projected onto the

corresponding orthogonalized displacement direction as explained in the text (here ~eL, ~eT1′ and ~eT2′) to get
the parametrization of the corresponding longitudinal or transversal force Fa(u) with a =L, T1, T2. When

parametrizing transversal forces, longitudinal forces are subtracted from ~F 0K
J first.

corresponding energy potential on the neighbor atom J are then mapped as

Fa(u) = ~F 0K
J (u~ea) · ~e′a, Va(u) =

∫ u

0
Fa(u

′)du′, (3.5)

with a =L, T1, T2. Vectors ~e′a are gained by orthogonalization: When parametrizing the transver-
sal forces by displacing atom I from its original position, the coordinate system of ~eIJ, ~eT1 and
~eT2 is not strictly orthogonal since ~eL has to be replaced by ~eIJ due to the displacement u. Vector
~eIJ can be envisioned by connecting one of the displaced atoms in Fig. 3.3(b) with atom J . Doing
this it is seen that the corresponding direction in ~eT1 is not orthogonal to the just created vector.
Applying a Gram-Schmidt process [56] to the vectors of Aloc

IJ a fully orthogonal coordinate system
is recovered

Aloc′
IJ = ~e′a = (~eIJ, ~eT1′ , ~eT2′) (3.6)

spanned by the longitudinal direction ~eIJ. The effects of orthogonalization turn out to be small since
the significant part of the restoring force on atom J , ~F 0K

J , is directed along the displacement direc-
tion in fcc crystals. Crystal symmetries are employed to reduce the number of T=0K calculations
required to obtain the force and energy parametrizations to the irreducible ones. It has to be
noted that once the longitudinal force FL(u) is parametrized, it is subtracted from ~F 0K

J for the
parametrization of the transversal forces FT1(u) and FT2(u). Doing this ensures the sum of the
parametrized T=0K longitudinal and transversal forces to be close to the true DFT forces (not
exact due to the projection).

Having the parametrization of the forces and potentials available, Eq. (3.5), the forces and
energy for any atomic configuration, e.g., during an MD simulation, can be straightforwardly
computed. While the scalar component of the force is given in Eq. 3.5, the force vector for example
in an MD run ~F MD

J on an atom J is given by

~F MD
J = ~FL + ~FT1 + ~FT2, (3.7)

~FL = FL(|~dIJ | − deq
IJ) ~eIJ , ~FTx = FTx(~dIJ · ~eTx) ~eTx′ , (3.8)
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with ~eIJ = ~dIJ/|~dIJ |, ~dIJ the vector between atom I and J during an MD run and ~eTx′ the
orthogonalized transversal vectors. The energy reads

ELA =
1

2

N∑
J

n∑
I

(VL(uIJ) + VT1(uT1) + VT1(uT2)) , (3.9)

with n the number of nearest neighbors, uIJ = |~dIJ | − deq
IJ , uT1 = ~dIJ · ~eT1, uT2 = ~dIJ · ~eT2, ~dIJ

the vector between atom I and J , and with deq
IJ the equilibrium distance of these atoms at T=0K.

Since the proposed method is based on probing the local anharmonic potential the formalism was
named local anharmonic (LA) approximation.

In the conventional QH direct-force-constant approach the force constants ΦIJ are formally
restricted to the limit of infinitesimally small displacements (typical QH displacements are ≈0.01
Å). In LA approximation however significantly larger displacements are sampled during the LA
parametrization [u in Eq. (3.5)] to accurately reproduce the anharmonic character. The magnitude
of the displacements is dictated by the distribution function at the given temperature (see red
dashed line in Fig. 3.2 and Fig. 3.4a) and can reach values of >1 Å, i.e., two orders of magnitude
larger than those of the QH method. The resulting dependence of the forces in particular of the
longitudinal component is no longer a linear function but highly anharmonic.
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Figure 3.4: Application of the local anharmonic (LA) approximation to Ag. (a) Longitudinal T=0 K DFT

forces (open red circles) obtained by displacing an atom from its T=0 K equilibrium position, deq,0K
1NN , towards

and away from its next-nearest neighbor. The red solid line shows a fit according to the LA approximation
and the black solid line using the QH approach. The shown displacement region is dictated by the distance
distribution at the melting temperature (red dashed line). (b) Comparison between full DFT and LA forces
(red dots), and between full DFT and QH forces (black dots) for configurations obtained from a fully DFT-
based MD run at the melting temperature. Figure and caption are adapted from Ref. [33].

An example for the DFT forces that are used to parametrize the LA approximation, ~F 0K
J ,

are shown in Fig. 3.4a for fcc Ag. The shown distribution function ρDFT
1NN is taken from a DFT

MD run at the melting temperature. It extends over atomic distances from 2.4 Å to 3.9 Å. The
corresponding longitudinal anharmonic forces (open red circles) which are directly derived from
T=0K DFT displacements are highly non-linear in this regime. Trying to fit the DFT forces by a
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Figure 3.5: Comparison of DFT forces derived at T=0 K for an extensive set of unary fcc-metals: Al, Ag,
Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh. All forces are derived by displacements in a 3 × 3 × 3 cubic fcc supercell.
(a-e) For the purpose of representation only the narrowest and broadest corresponding distributions (red
shaded) are shown for all considered elements at their respective melting point. The shown magnitude of
displacement was adapted for every element accordingly to the corresponding distribution. Figures (a), (b)
and (c) compare longitudinal forces for different neighbor shells (first, second and third). Figures (a), (d)
and (e) show for first nearest neighbors the forces in the three major directions of Aloc

IJ : ~eL, ~eT1 and ~eT2

which correspond to the displacements indicated in Fig. 3.3 (a), (b) and (c) respectively. Notice that first
nearest neighbor forces in ~eL direction are about 10 to 20 times higher compared to forces in ~eT1 and ~eT2

direction. Notice further that second nearest neighbor forces are strongest for Ir, Rh, Pt and Au and are
much greater than first nearest neighbor transversal forces. Third nearest neighbor forces are observed to
be significantly smaller as first and second nearest neighbor longitudinal forces. To emphasize the different
scales used in Figs. (a) to (e), Fig. (f) combines all different force contributions for Pt in one picture.

linear function (black solid line) as inherently done by the quasiharmonic approximation is bound
to introduce a large error. Rather a Morse potential is found to provide an accurate description of
the longitudinal DFT T=0K forces (red line in Fig. 3.4). Using a Morse-type fit is however not
compulsory and in principle any function reproducing the anharmonic T=0K forces correctly is
feasible. A direct assessment of the quality of the LA approximation is obtained by comparing DFT
finite-temperature forces extracted during a DFT-MD run with forces computed for the identical
structures but using the LA potential. Such a comparison for Ag at its melting temperature is
shown in Fig. 3.4b (red dots). A dramatically improved Person correlation coefficient [57] can be
observed for the LA approach (0.997) as compared to the QH approximation (0.765) for which the
forces (black dots in Fig. 3.4b) scatter largely around the DFT forces with deviations up to 2 eV/Å.

For a wide range of fcc elements, Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh, a systematic assess-
ment of longitudinal and transversal forces was performed which define the LA potential. Fig. 3.5
summarizes the obtained T=0K results by comparing in (a), (b) and (c) first nearest neighbor
forces in the three principal direction of Aloc

IJ , ~eL, ~eT1 and ~eT2 with longitudinal forces on (d) sec-
ond and (e) third nearest neighbors. This comparison of Fig. 3.5a-e reveals that for all elements
the magnitude of longitudinal first nearest neighbor forces is in fact the dominant contribution to
capture anharmonicity and is seen to be about a factor 10 to 20 higher compared to first nearest
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Table 3.1: (Rows 1-3): Error in the free energy (in meV/atom at Tmelt and V melt) for the various approxi-
mations (QH, LA route (i) as described in text with and without ~eT1) with respect to the numerically exact
DFT free energy. (Row 1): QH approximation. (Row 2): LA approximation using a first nearest-neighbor
longitudinal Morse parametrization only. (Row 3): As row 2, but augmented with a transversal function in
~eT1 direction corresponding to the second largest eigenvalue in Eq. (3.3). (Rows 4 and 5): Speed-up factors
for the thermodynamic integration when replacing the QH by the LA reference. The speed-up is defined
by nQH/nLA, where nQH and nLA are the MD steps necessary to reach a given standard error (typically 1
meV/atom) with a QH and LA reference. Table and caption are adapted from Ref. [33].

neighbor transversal forces. The ~eT1 and ~eT2 directions are in an fcc crystal not equivalent (see
Fig. 3.3). While the ~eT2 displacement points towards a nearest neighbor and considering atom J
defines the place of closest possible packing in fcc, ~eT2 points in the direction to the second nearest
neighbor and in direction perpendicular to the closest packed plane. It is therefore observed that
forces in ~eT2 direction have the smallest magnitude with roughly half the force in ~eT1 direction. The
magnitude of longitudinal forces on second neighbors on the other hand is seen to be significant and
much stronger than first neighbor forces in transversal direction, even when taking into account
that fcc crystals have only 6 second but 12 first nearest neighbors. It was furthermore found that
the magnitude of the calculated DFT forces scales in good agreement with the eigenvalues for the
corresponding eigenvector in QH approximation. It is therefore possible to estimate the importance
of forces in a certain direction just by solving the quasiharmonic eigenvalue equation. Taking for
all considered elements an average of their eigenvalues in first neighbor longitudinal direction and
scaling it to 1, the corresponding mean eigenvalues in ~eT1 and ~eT2 direction amount to 0.12 and
0.032. Considering Fig. 3.5 it was chosen to include step by step all contribution starting with
the strongest. The in the following presented investigations therefore include contributions in first
neighbor ~eL and ~eT1 direction while second and further nearest neighbors as well as ~eT2 on first
neighbors is ongoing work.

To compute anharmonic free energies, the LA approximation can be used following two principle
routes:

(i) A direct computation of local anharmonic free energies using Eq. (3.8). This is performed
by a thermodynamic integration from the quasiharmonic reference to the LA potential at
negligible computational cost once the LA potential is derived. Using this route less than ten
static DFT calculation are sufficient for fcc bulk elements, i.e., there is no need for expensive
DFT MD. Row 3 of Tab. 3.1 summarizes the accuracy which can be gained using this route.

(ii) Calculation of the numerically exact DFT free energies using the LA potential as a reference
system for thermodynamic integration to the full DFT energy surface. Row 5 of Tab. 3.1 sum-
marizes the speed-up factors which can be gained in comparison to a standard QH reference
potential.

Following route (i), the LA potential was computed for all studied elements by a few DFT
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displacements at T=0K , i.e., without any computationally expensive DFT MD. The free energy
in the LA approximation is given by

F ah
LA = F̃ ah

LA + ∆ELA
DFT (3.10)

where F̃ ah
LA is the free energy obtained by thermodynamic integration from QH to LA potential and

∆ELA
DFT =

1

N

N∑
i

(EDFTi − ELAi ) (3.11)

is an averaged difference between LA and DFT energies, ELA and EDFT . This average difference
is obtained from N uncorrelated snapshots taken from a computationally inexpensive LA MD and
corresponds to an UP-TILD like procedure additional to thermodynamic integration. ∆ELA

DFT is
found to converge for all studied elements within a few (<5) uncorrelated structures to better than
1 meV. The actual assessment of the achievable accuracy in LA approximation using route (i) in
comparison to fully ab initio computed anharmonic free energies is shown in row 3 of Tab. 3.1,
∆F ah

LA (L+T1). The errors in LA approximation are in the order of a few meV for all elements

highlighting the accuracy that can be achieved by very few (here < 10) T=0K DFT calculations.
In particular for row 3 of Tab. 3.1, four displacements were calculated using DFT to parametrize the
LA potential (longitudinal and ~eT1) and consequently gain F̃ ah

LA, while two to four DFT calculations
were necessary to converge ∆ELA

DFT to better than 1 meV.

Following the second route (ii) numerically exact DFT free energies were computed by ther-
modynamic integration with the LA approximation as reference. Since the LA forces faithfully
reproduce the DFT forces (Fig. 3.4b), the LA reference and the original system span very similar
configuration spaces allowing to obtain a very fast statistical convergence. The speed-up fac-
tors with respect to the previously applied QH reference are given in the last row of Tab. 3.1,
LA(L+T1) Speed-up. Using the LA method the computational effort can be reduced by about 2
orders of magnitude: The previously necessary 104 MD steps for thermodynamic integration are
now reduced to about (and partly less than) 102 steps when calculating the numerically exact DFT
free energy. An actual example for the computational time in CPU hours is given in the following
for Ag at the melting point and corresponding volume. The considered free energy contributions
were converged to better than 1 meV/atom. A single quasiharmonic free energy calculation (sin-
gle displacement for the bulk fcc case) takes 6 CPU hours (single core, Intel CPU, clock rate of
1800MHz, 8 cores per node) while the electronic calculations are computationally negligible. Using
the QH reference for the anharmonic contribution of the free energy at melting, a total of 31.050
MD steps were required to reach the desired statistical accuracy and amounted to 4504 CPU hours
(same architecture as mentioned above). Changing to the LA reference, < 9 CPU hours were used
for the necessary 60 total MD steps. The additional UP-TILD like steps expressed by ∆ELA

DFT

are significant for the convergence of free energies but negligible in comparison to thermodynamic
integration steps. For the considered Ag free energy, 15 UP-TILD steps were necessary using the
QH reference compared to in total only 2 UP-TILD steps using LA. This example illustrates that
the LA method opens the path towards routine, numerically exact ab initio free energies.

Having derived a simple parametrization for highly accurate free energies over the whole tem-
perature range the question arises whether the proposed method can be efficiently used beyond the
integral characteristics, i.e. for the calculation of phonon dispersion, linewidths and related param-
eters. This would allow to employ the presented approach in an even broader context. Focusing on
one of the quantities — the phonon linewidth — first encouraging tests were performed. For the
sample system, fcc bulk aluminum, an excellent agreement with experiment is found. Using the
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calculated DFT longitudinal LA potential within the LAMMPS package [58] the X-point of phonon
dispersion was sampled at a temperature of 300 K. A phonon linewidth of 1.3±0.4 meV is obtained
which is close to the experimentally measured values of 1.75±0.9 meV [60]. Prior studies using
many-body perturbation theory to third order [59] and employing the GGA functional resulted
in a linewidth of 2.3 meV for the X-point. A systematic study of the performance to accurately
compute non-integral finite temperature quantities goes beyond the present thesis and will be the
focus of future studies.

3.1.3 Comparison of reference potentials

Tab. 3.1 summarized the performance of generally applied quasiharmonic approximation as refer-
ence potential for thermodynamic integration in rows 4-5. In this section other possible references
are tested versus the QH approach for the example of Al and Cu as shown in Fig. 3.6. One of the
tested methods is the inverse-power potential [9] (IP) which mixes the standard harmonic Hamil-
tonian derived from DFT with a repulsive pair potential. The pair potential parameters and the
amount of mixing are determined in such a way as to ensure the minimization of the standard de-
viation σ for thermodynamic integration — in principle at a given temperature. The other tested
approach is the temperature dependent effective potential (TDEP) method [36] which was already
shortly introduced in Sec. 2.3.4.

In Fig. 3.6(a) the Speed-up and in (b) the corresponding standard deviation as a function
of coupling strength λ are shown for MD runs at the corresponding melting temperature. The
considered reference potentials contain different amounts of anharmonic contributions: LA (fully
anharmonic), inverse-power potentials [9] (harmonic Hamiltonian mixed with anharmonic pair in-
teractions), TDEP [36] and QH (fully harmonic). In (a) it can be observed that the quality of the
thermodynamic integration reference improves with increasing degree of anharmonicity for both
considered elements. The standard deviation, σ, shown in Fig. 3.6b is a direct measure for the
fluctuations in total energy differences between DFT and the reference potential as obtained by
finite temperature MD. Both anharmonic potentials, LA and IP, significantly reduce the standard
deviation with respect to the harmonic references. It has to be stressed that effective harmonic
Hamiltonians such as TDEP or SCAILD [34, 36] were not designed as reference potential for ther-
modynamic integration although previous studies have shown that such Hamiltonians can be used
to effectively calculate accurate free energies and phonon dispersions. Due to the strong anhar-
monic interactions shown in Figs. 3.5a however, it is conceptually not possible to capture the correct
phase space distribution by any effective harmonic Hamiltonian as indicated by the asymmetry in
the right figure of Fig. 3.1a. A comprehensive list of GGA and LDA standard deviations gained
for other elements by employing the quasiharmonic approximation as reference for thermodynamic
integration can be found in the Appendix A.3 on page 93. A wide range of unary fcc elements
(Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) is considered and it is observed that Al and Cu are
more harmonic in comparison to other elements which show larger anharmonic contributions and
standard deviations at their melting temperature.

In the following an qualitative analysis will show that the increased standard deviation for
quasiharmonic references, as shown in Fig. 3.6b, can be directly traced back to missing anharmonic
flexibility of the reference potential. In a first step it is shown that the λ dependence of the
anharmonic free energy directly dictates the standard deviation. It is than shown that the calculated
anharmonic free energy as a function of coupling strength λ can be understood in a simple and
intuitive LA picture by considering the difference of an 1D harmonic and anharmonic potential.

As a first step it is necessary to show how the energy differences, UDFT − UQH between DFT
and the quasiharmonic reference influence the standard deviation shown in Fig. 3.6b. To this end it
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Figure 3.6: Thermodynamic integration results for Al and Cu as a function of coupling parameter λ obtained
from MD runs at the respective melting temperature (for lattice constants of 4.13 and 3.75 Å). (a) Speed-
up factors in comparison to the QH approximation and (b) standard deviation σ for various reference
potentials: Inverse-power pair potentials (IP) [1], temperature dependent effective potentials (TDEP) [36]
and local anharmonic (LA) approximation. The speed-up factors for fixed λ are determined by the ratio of
necessary MD steps nQH/ni = (σQH/σi)2 (see also Eq. 4.5 on page 72) with standard deviations σQH and σi

for the corresponding reference i=LA, IP, or TDEP. The standard deviation of the quasiharmonic reference
for a wide range of fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) is shown for LDA and GGA in the
Appendix A.3.

is instructive to start with the definition of the anharmonic free energy in terms of thermodynamic
integration

F ah =

∫ λ=1

λ=0
dλ
〈
UDFT − UQH

〉
λ
, (3.12)

where λ linearly couples the DFT and quasiharmonic system by

Uλ = λUDFT + (1− λ)UQH (3.13)

and where the thermodynamic average 〈. . . 〉λ is determined by Uλ. The averages of total energy
differences between DFT and the reference potential, UDFT − UQH defined in Eq. (3.12), are key
for the performance of any reference employed in thermodynamic integration. When performing a
finite temperature MD run at fixed λ, the energy difference UDFT−UQH is calculated for every time
step. The thermodynamic average

〈
UDFT − UQH

〉
λ

used in Eq. (3.12) can be calculated for different
coupling strengths λ and is shown for a wide range of fcc elements in Fig. 3.7(a) when employing
a QH reference. In general a cotangent shaped curve can be observed with a strong λ dependence
leading to averaged energies from −60 meV to 180 meV underlining the severe deficiencies of the
quasiharmonic reference. The averages at fixed λ shown in Fig. 3.7a however directly dictate the
standard deviation. Considering the textbook definition of the standard deviation

σQH
λ =

√√√√ 1

N

N∑
i=1

(xi − µ)2, with µ =
1

N

N∑
i=1

xi, (3.14)

and substituting every xi by the energy difference of the MD step UDFT − UQH and µ by a corre-
sponding average

〈
UDFT − UQH

〉
λ
, the λ dependence of the standard deviation shown in Fig. 3.6 is

seen to scale with the magnitude of the average energy difference µ. The strong increase/decrease
at small/large λ values is therefore responsible for the increased standard deviation in particular
at λ = 0 and λ = 1 of Fig. 3.6.

It can furthermore be shown that also the λ dependence of average anharmonic energies〈
UDFT − UQH

〉
λ

shown in Fig. 3.7(a) can be understood using the insights derived from the LA
methodology. One can conclude from Tab. 3.1 that the first neighbor pair wise interactions are
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Figure 3.7: (a) λ dependence of the integrand from Eq. (3.12) at the melting temperature. (b) First nearest
neighbor distribution function and corresponding effective potential for the DFT and quasiharmonic based
MD runs.

mainly responsible for the vibrational contributions in fcc metals. For Tab. 3.1 exclusively these
interactions were considered and were found to yield highly accurate free energies in comparison
to the full solution. Consequently further neighbor effects are small. It shall be reminded that
the LA potential contains implicitly the ’full’ vibrational spectrum of harmonic and anharmonic
contribution. For elements with negligible transversal contributions (Ag, Cu, Ir, Ni, Pb, Rh) exclu-
sively the longitudinal first neighbor interactions are needed to accurately describe the free energy
of the system. This is also seen when comparing the last two rows of Tab. 3.1: the dominant
increase in speed-up is gained for the pure longitudinal potential. To capture the physics behind
the λ dependence shown in Fig. 3.7a in a simple and intuitive model it therefore seems plausible
to exclusively consider the mentioned longitudinal first neighbor interactions as the main reaction
coordinate.

Fig. 3.7b shows a schematic similar to Fig. 3.2 where the harmonic and fully DFT computed
distribution functions, ρQH

1NN (black dashed line) and ρDFT
1NN (black dashed line) are gained by cor-

responding MD simulations. The shown distributions are purely derived from longitudinal first
neighbor distances, d1NN. The gained UQH

1NN potential (black solid line) is strictly harmonic reflect-
ing the quadratic dependence of Eq. (2.62), whereas UDFT

1NN (red solid line) shows a clear Morse-type
anharmonic potential with a strong exponential repulsion for small distances and moderate attrac-
tion for large distances. By taking the difference ∆U1NN = (UDFT

1NN − UQH
1NN) (blue solid line) is

is possible to explain the strong λ dependence of
〈
UDFT − UQH

〉
λ

shown in Fig. 3.7a. The two
extreme cases, λ = 0 and λ = 1, can approximate by〈

UDFT − UQH
〉
λ=0

≈
∫
d1NN

d(d1NN) ∆U1NN ρ
QH
1NN, (3.15)

〈
UDFT − UQH

〉
λ=1

≈
∫
d1NN

d(d1NN) ∆U1NN ρ
DFT
1NN . (3.16)

At λ = 1, ρDFT
1NN samples preferably the softer longer bonds corresponding to negative ∆U1NN

and resulting in negative averages
〈
UDFT − UQH

〉
λ=1

in agreement with Fig. 3.7. In contrast for

λ = 0, ρQH
1NN samples large portions of the strongly increasing positive part of ∆U1NN resulting in
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large positive corrections. The behavior at other λ values can be explained in a similar manner
by considering a mixed distribution function. The strongly non-linearly increasing positive part of
∆U1NN which is shown in Fig. 3.7(b) will thereby dominate the integrals in Eqs. (3.15) and (3.16)
explaining the positive anharmonic free energies presented in the first row of Tab. 3.1. The LA
nearest neighbor picture therefore illustrates the deficiencies of a harmonic reference in comparison
to the full anharmonic potential and explains qualitatively the functional dependence shown in
Fig. 3.7 and the resulting standard deviations in Fig. 3.6.
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3.2 Fully ab initio description of point defects at high tempera-
tures

In the previous chapter a detailed investigation of the anharmonic contribution to pristine bulk
thermodynamics was performed. Special emphasis was put on the local character of the anhar-
monicity. The current chapter will focus on consequences of anharmonicity for the formation of
point defects. One of the main achievements of the present thesis is the formulation of the Lo-
cal Grüneisen Theory (LGT) which allows to describe the nonlinear character of the point defect
formation energy by explicitly considering the anharmonic distribution of atoms in the vicinity of
defects. It is shown that the generally applied linear Arrhenius interpretation of defect formation
needs to be replaced by the LGT which is able to capture non-linearities in defect formation ener-
gies as a function of temperature, an observation which is in fact often found in experiment as will
be shown.

3.2.1 The Arrhenius model for defect formation

Vacancies are the most common point defects in crystalline metals and are typically found in
concentrations of 10−3 to 10−4 in pure metals at their corresponding melting point [61]. For
metals which melt at very high temperatures — as W, Mo and Cr — concentrations of 10−2 are
reported [61]. Processes as self diffusion for instance are mainly mediated by vacancy type of
point defects. The key quantity to characterize vacancies is their temperature dependent Gibbs
energy of formation, Gf (T ), since it provides direct information regarding thermodynamic stability,
equilibrium concentration, and solubility. In thermal equilibrium, the dilute limit concentration c
for defects is related to Gf by

c = g exp(−Gf/kBT ), (3.17)

with g a geometry factor (e.g., g = 1 for mono- and g = 6 for di-vacancies in fcc) and kB the
Boltzmann constant. The current model for Gf in the vast majority of literature on point defects
assumes an Arrhenius-like behavior [62–66]

Gf (T ) = Hf − TSf , (3.18)

with a temperature independent enthalpy and entropy of formation Hf and Sf . Combining Eq. 3.17
and Eq. 3.18 the Arrhenius equation is obtained

c = g exp(Sf/kB) exp(−Hf/kBT ) = A exp(−Hf/kBT ), (3.19)

which is widely used in ‘Arrhenius plots’. Using this representation the concentration is plotted
logarithmically as a function of inverse temperature and, assuming constant Hf and Sf , shows a
strictly linear slope.

Obtaining precise values for the defect energy of formation and, in particular, for the entropy
has been an outstanding challenge for both experiment and theory [67]. This is easily illustrated
by using Eq. 3.18. Considering a Gf at 1000 K, an uncertainty of 0.1 eV in Hf introduces an error
of already ≈1.2 kB in the entropy of formation Sf . To minimize the error in experimental measure-
ments [68], (a) vacancies must occur in concentrations well above the experimental detection limit,
(b) their detection should not be shadowed by other defects or impurities, and (c) their concentra-
tion must have reached equilibrium. Particularly conditions (a) and (c) force experimentalists to go
to high temperatures where concentrations are high and defect kinetics is fast. Trying to test the
validity of the generally assumed Arrhenius ansatz (Eq. 3.18) is therefore a delicate task for exper-
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iment due to (i) a limited resolution [69] and (ii) the mentioned restriction to high temperatures.
As is seen from the example above, entropic quantities are difficult to assess experimentally. The
main purpose of this chapter is therefore to theoretically investigate the temperature dependence
of the defect formation energy with particular focus on its entropy dependence.

In the following it will be shown that assuming a classical harmonic theory of lattice vibrations
results in a constant entropy as a function of temperature. A quantum mechanically calculated
entropy converges at high temperatures to the same result — a constant entropy — in case a
harmonic model is used for the bulk and defect system. The linear Arrhenius law as defined
in Eq. 3.18 is therefore the necessary consequence for every (classical) harmonic model of defect
formation2. The classical free energy for a harmonic system is defined in Eq. 2.43. Using harmonic
(and therefore constant) frequencies for the bulk and the defect system, the defect formation energy
becomes

F form(T ) = F defect(T )− F bulk(T )

= kBT
∑
α

ln

[
~ωdefect

α

kBT

]
− kBT

∑
α

ln

[
~ωbulk

α

kBT

]
= −kB

∑
α

ln

[
ωbulk
α

ωdefect
α

]
︸                      ︷︷                      ︸ T (3.20)

const.

where the sum runs over all eigenfrequencies ωα of the corresponding bulk and defect system.
The shown temperature dependent part of defect formation in Eq. 3.20 is decreasing linearly with
temperature since defect frequencies are generally softer (smaller) than bulk frequencies. The defect

formation entropy, Sform = Sdefect − Sbulk = −∂F form(T )
∂T is identified from Eq. 3.20

Sf = kB

∑
α

ln
ωbulk
α

ωdefect
α

= const., (3.21)

for a classical harmonic system, a constant value. Using the general thermodynamic relation(
∂H
∂T

)
= T

(
∂S
∂T

)
it follows that also the enthalpy, Hf , is a constant.

Therefore, at high temperatures the classical harmonic theory directly leads to the generally
applied linear Arrhenius law which assumes a constant entropy and enthalpy. When considering
first principles investigations the harmonic approximation is state-of-the art and studies of defect
formation which go beyond the harmonic picture have not received considerable attention. Fur-
thermore it is often assumed that the vibrational entropy of defect formation is small and therefore
only of secondary importance [70] which naturally supports the ansatz of constant entropy and
enthalpy of formation. An example for a fully quantum mechanically calculated quasiharmonic
entropy of vacancy formation for Al and Cu can be found in Fig. 4.13 on page 74 (thin orange
line labeled qh+el). Despite the fact that some form of anharmonicity is included in the bulk and
defect calculations — due to the volume dependence of the quasiharmonic approximation — the
entropy of formation is seen to be nearly constant as a function of temperature.

Notable deviations from linear Arrhenius plots have however been observed in experimental
studies of diffusion and vacancy formation. Examples for metals, in which non-Arrhenius diffusion
behavior has been found include, e.g. sodium [71], potassium [72], silver [73], vanadium [74, 75],

2A quasiharmonic model is not harmonic due to volume expansion but contains anharmonic contributions to a
certain degree.
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zirconium [76], β-titanium [77–79] and α-zirconium [80]. Since discrepancies in Sf are in general
very difficult to resolve experimentally, deviations from a linear Gibbs formation energy defined in
Eq. 3.18 become most evident when different values for Hf are measured at different temperatures.
For vacancy formation, a well documented non-Arrhenius behavior is known for aluminum where
all high temperature measurements indicate significantly larger formation enthalpies than the low
temperatures data (see Ref. [81]). The corresponding experimentally determined total entropies are
about 2.4–3.12 kB and — notably — only 0.8–1.1 kB are considered to be due to single vacancies [64,
81, 82]. Remaining entropic contribution are assumed to stem from the presence of divacancies and
the ansatz of the linear Arrhenius equation is applied for both defect species. This however is
problematic, since the employed experiments measure effective vacancy concentrations and can
not distinguish between different types of defects. Nonetheless, the existence of divacancies is
necessary under the assumptions of the linear Arrhenius law. A theoretical investigation of a
possible temperature dependence of defect formation parameters — like formation energies and
entropies — is thus highly desirable.

An early theoretical study of vacancy formation energies which used empirical potentials showed
the possible influence of anharmonic contributions [50]. Due to the limited resources and very
significant inherent scatter of the results, no conclusive statements could be made at that time.
The fully ab initio based study of vacancy formation performed in this thesis will show, (see
Sec. 4.4) that the inclusion of the anharmonic contribution in fact significantly increases entropic
contributions at high temperatures and that the experimentally measured effective entropy can be
explained in terms of single vacancies only [68]. Attributing the full (effective) formation entropy
exclusively to only one defect species disagrees however with the experimental interpretation of two
involved types of defect. More importantly, the occurrence of anharmonicity would destroy the link
between harmonic theory and the linear Arrhenius ansatz as stated in Eqs. 3.21 and 3.21. In order
to enable a consistent interpretation of experimental measurements with anharmonic theoretical
results, it is therefore desirable to formulate a theory of defect formation which is either based on
or includes anharmonic contributions.

Several previous theoretical models of defect formation were derived to accurately account for
entropic quantities by assuming anharmonic pair-potentials. Those attempts however concentrated
on non-Arrhenius diffusional behavior rather than that of defect formation [67, 83] or were applied
only at very low temperatures for the case of noble-gas crystals [84]. All of the mentioned works
have one thing in common: By starting from anharmonic pair interactions, a non-Arrhenius be-
havior is derived. These results are obtained without the need to resort to other defect species and
are therefore exclusively described in terms of a single defect. The underlying assumption is that
the potential of the neighbor atoms close to the vacancy center becomes anharmonic and the corre-
sponding frequencies become softer (ωvac

α < ωbulk
α ). The suggested softening of the potential can

in principle be directly investigated by performing MD simulations in a corresponding defect super-
cell. The attempt made here to formulate an anharmonic theory of defect formation will therefore
first investigate the full potential of atoms close to a simple vacancy point defect and compare to a
corresponding harmonic description in Sec. 3.2.2. Subsequently, the local Grüneisen theory (LGT)
for defect formation will be derived in Sec. 3.2.3 and consequences for the interpretation of vacancy
formation energies and in particular entropies will be shown.

3.2.2 High temperature lattice vibrations in the defect and bulk supercell

In Sec. 3.1.1 the correlated motion of atoms was investigated for bulk systems at finite temperatures.
The analysis performed in this section is focused solely on the positions (coordinates) of the atoms
closest to the vacancy. Due to the fcc symmetry of the investigated vacancy cell, which is shown in
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Fig. 3.8a, the distribution of the vacancy neighbors can be reduced by a projection of their positions
during a molecular dynamics run onto the (001) plane. The corresponding investigation will allow
to qualitatively analyze the potential of atoms close to the vacancy.

It is important to consider how different models which describe the softening of phonon modes
due to the presence of a defect can be realized in general. One approach was shown in Eqs. 3.21
and 3.21. There, a purely harmonic Hamiltonian was assumed for the bulk and the defect system to
model the softening of the defect cell. It was shown that this ansatz necessarily leads to a constant
enthalpy and entropy of defect formation — as assumed in the Arrhenius model. In this section
and in the next section of this thesis, it will be shown that a distinctly different result is obtained
when an anharmonic potential is assumed for the atoms close to the defect. To this end we follow
the discussion in [68] for the first half of this section by investigating the first neighbor distribution
function ρV,T (x, y) of the metal atoms which are closest to the vacancy:

ρV,T (x, y) =
∑
i

δ
(
X NN
V,T ; i − x

)
· δ
(
Y NN
V,T ; i − y

)
. (3.22)

Here, the sum runs over all time steps i of a molecular dynamics run at a fixed volume V and
temperature T of an fcc crystal. The δ(b) function in Eq. 3.22 is equal to 1 for b = 0 and otherwise
0. Further, X NN

V,T ; i and Y NN
V,T ; i are the coordinates of all first nearest neighbors of the vacancy at the

ith molecular dynamics step transformed into the first quadrant of the xy-plane by proper point
group symmetry operations. The corresponding xy-plane is indicated by black unit vectors in
Fig. 3.8a together with the [110] equilibrium direction of the considered atom. The [110] direction
represents a line through the vacancy center and the neighboring atom. Figure 3.8b shows for
the example of Cu the computed distribution ρV,T (x, y) for a quasiharmonic (black) and a fully
DFT-based MD run (red) at the melting temperature. The QH reference potential was calculated,
as in the bulk case in Sec. 3.1, by the small displacement method.

The QH and fully DFT-based distributions shown in Fig. 3.8b were for the purpose of Fig. 3.8c
projected onto the [110] direction. The corresponding projection was computed by

ρV,T (d) =
∑
i

δ

(
1√
2

[
X NN
V,T ; i + Y NN

V,T ; i

]
− d
)

(3.23)

and the result is shown in Fig. 3.8c. For both distribution functions, QH and DFT, the effective
potential was constructed by

veff
V,T (d) = −kBT ln ρV,T (d), (3.24)

which is also plotted in Fig. 3.8c. While the resulting quasiharmonic potential of the atoms closest
to the vacancy is fully symmetric (Fig. 3.8b and c), ρV,T and veff

V,T for the fully DFT-based calculation
show an anisotropy along the [110] direction. This behavior can be intuitively understood by the
fact that bond compression is absent towards the vacancy center and, as a consequence, the effective
potential resembles a Morse-like potential which is softer. With increasing temperature the first
nearest neighbors therefore access a larger part of the configuration space in comparison to the
harder harmonic potential as indicated by Fig. 3.8b and Fig. 3.8c.

The large anharmonicity in the fully DFT-based potential is a direct consequence of destroying
the inversion symmetry an atom has in a perfect fcc crystal: For the ideal bulk case without defect,
the averaged position of the neighboring atom — and therefore its effective potential — has to be
symmetric. This argument does not hold when considering the correlated motion of two atoms as
performed in Sec. 3.1, but needs necessarily to hold when considering the average motion of a single
atom in a fixed coordinate system due to symmetry considerations. The symmetry of the harmonic
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Figure 3.8: (a) Fcc crystal with vacancy at (0,0). Atomic positions of the atom in [110] direction are projected
in (b) onto the indicated (x,y) plane. (b) GGA Harmonic (black) and anharmonic (red) distribution ρV,T (x, y)
according to Eq. 3.22 for Cu at Tmelt = 1360 K for a lattice constant of 3.74Å. The vacancy center is placed
at (0, 0) and the equilibrium position of the first-nearest neighbor is marked by a green cross. The points
(black/red) show the MD trajectory of the atom at discrete time steps of 10 fs. The region close to the
equilibrium position is densely populated and thus the individual points are not resolvable. The harmonic
data are obtained from an MD on the harmonic potential. (c) Distribution function ρV,T (d) (dashed lines)
according to Eq. 3.23, i.e., projection of ρV,T (x, y) onto the [110] direction indicated in (b), and corresponding
effective potential according to Eq. 3.24 (solid lines). A Gauss-broadening of 0.04 Å−1 was used for the first
neighbor distribution function. The zero line of the distribution function is shifted upwards by the energy
kBT

melt according to the temperature at which ρV,T (d) was calculated. The red diamonds (scaled by a factor
of 10 on the [110]-axis) mark the shift of the center-of-mass of the shown anharmonic ρV,T (d) at 1360 K and
additionally at 250 K, 450 K, 800 K, 1100 K, 1250 K (related to the energy axis by kBT ). Fig. (b) and (c)
and corresponding part of the caption are adapted from [68].

potential however cancels 3rd and higher odd order anharmonic contributions. In the supercell with
the vacancy on the other hand inversion symmetry is lost and an atom near the vacancy center will
experience sizable odd, in particular third order contributions as shown in the effective potential of
Fig. 3.8c. The question whether the presence of the anharmonic potential on the nearest neighbor
atoms close the vacancy will affect vibrations and consequently the temperature dependence of
vacancy formation will be investigated in detail in the following Sec. 3.2.3.

Based on the above discussion, the largest anharmonic contributions in the defect cell should
be along directions where inversion symmetry is destroyed locally. Indeed, this is found in the
distribution shown in Fig. 3.8b: Odd order anharmonicity is large towards the line through the
vacancy center (along [110]) but absent for directions perpendicular to the [110] direction due to
the presence of a mirror symmetry. An important consequence of this finding is that the dominant
collective degree of freedom is the displacement of the nearest neighbor atoms along a line through
the vacancy center [68]. The effect of the vacancy on second, third and further neighbors can be
observed to be small for the investigated Cu fcc crystal. Already for the bulk system discussed in
Sec. 3.1.2 it has been found that anharmonic interactions are very short ranged. The same observa-
tion is made in the vacancy system for the averaged position of second and further neighbor atoms
where asymmetries are seen to be small. Consequently, these contributions will effectively cancel
out with the corresponding perfect bulk cell when calculating defect formation properties. It can
be therefore concluded that the anharmonic potential of the nearest neighbor atoms in direction
towards the vacancy center is crucial for vacancy creation — other effects as further neighbors and
the directions perpendicular to the vacancy center will cancel out. Assuming however exclusively
the just described anharmonic potential in one dimension to affect the defect properties, a quali-
tative assessment of defect formation energies can be performed by subtracting the shown (single)
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anharmonic potential from a single harmonic potential. In this simplified picture, the fist neighbor
potential can be equivalently used for the defect potential when considering defect formation.
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Figure 3.9: Effective potential according to Eq. 3.24
obtained from averaged atomic positions of fully
DFT-based MD runs at the melting temperature of
Cu in a pristine (black) and a defect (red) super-
cell. For the fully DFT-based bulk potential (black)
no anharmonicity is visible due to the symmetry
of the considered fcc cell as discussed in the text.
The shown anharmonic potential (red) of an atom
in the vicinity of the vacancy is the same potential
which is shown in Fig. 3.8(c). Anharmonicity can
be described in classical Grüneisen (for bulk sys-
tems) or in LGT (for a defect potential). In classi-
cal Grüneisen theory the softer part of the potential
would be for larger displacements — not for smaller
ones — which however only depends on the chosen
vacancy neighbor and does not influence the discus-
sion.

So far, in Fig. 3.8, the DFT-based anhar-
monic potential induced by the vacancy at the
melting temperature was compared to the av-
eraged potential for the same defect structure
obtained from the corresponding harmonic
Hamiltonian. In the next step, the DFT-based
anharmonic potential for the vacancy neighbor
will also be compared to a fully DFT based an-
harmonic potential for the pristine bulk atom.
The DFT MD is performed for the pristine cell
at the same temperature and the same (fixed)
lattice constant as used for the defect potential
shown in Fig. 3.8. Due to the symmetry of the
fcc crystal lattice, the distribution of atomic
positions is, in average, fully symmetric and,
as can be seen from Fig. 3.9, resembles an ef-
fectively harmonic potential although a DFT
MD has been performed. Fig. 3.9 compares
the finally obtained — and in both cases DFT-
based — local potentials for the same atoms
in a pristine (black) and vacancy (red) super-
cell. It is seen that the averaged potential for
the bulk atom in Fig. 3.9 is very similar to
the earlier considered harmonic defect poten-
tial shown in Fig. 3.8 (black). Further, the an-
harmonic bulk potential in Fig. 3.9 (black) is
harder than the nearest neighbor defect poten-
tial (shown in red; identical to the one shown
in Fig. 3.8c in red). This numerically derived
result can be observed to hold for the attrac-
tive and the repulsive part of the potential —
for displacements towards and away from the potential minimum.

It has been indicated that the anharmonicity of the defect system is controlled by a collective
variable, the nearest neighbor distance in the direction toward the vacancy. This formulation
allows to draw a formal relation to the classical Grüneisen theory of solids [26] which describes
the (quasi-) anharmonicity of an ideal bulk system with respect to a collective variable such as the
lattice constant or the volume [68]. The anharmonicity in classical Grüneisen theory is described by
the Grüneisen parameter γ. Instead of describing the anharmonicity of a bulk system however, the
aim in the following section is to describe the anharmonicity due to the presence of the defect. The
anharmonic potential, here induced by a vacancy, can be regarded as local (quasi-) anharmonicity
— induced by the vacancy — which can be described by Grüneisen theory. The term local is
used, since the anharmonic potential is fixed to the neighborhood of the defect whereas in classical
Grüneisen theory the anharmonic potential describes the volume expansion of the bulk system
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which is a collective process of many atoms and is defined for the whole crystal. Fig. 3.9 illustrates
the relation between bulk and defect anharmonicity (text in red). Making such a formal connection,
physical quantities which are related to the bulk collective variable in classical Grüneisen theory
such as the lattice constant or the volume have to be replaced by analogous variables related to
the anharmonic vacancy neighbor potential. In the following we name this new mechanism local
Grüneisen theory (LGT).

3.2.3 Entropy of the defect

The aim of this section is to gain a qualitative model for defect formation on the ground of the
preceding discussion. In the previous section it has been shown that the potential derived from
averaged positions of atoms closest to the vacancy is highly anharmonic. The same averaged
potential — taken from averaged positions — for a bulk system on the other hand has to be fully
symmetric due to the crystal symmetry, resulting in an effectively harmonic potential. It was
assumed that only the atoms in the vicinity of the defect influence the defect formation properties
and that effects of further neighbors — and contributions from directions perpendicular to the
vacancy center — are similar in the bulk and defect cell. Therefore, those contributions will cancel
out when calculating the defect formation energy

F form(T ) = F defect(T )− F bulk(T ). (3.25)

A connection was made between the (effectively harmonic) bulk and the (anharmonic) defect po-
tential by the local Grüneisen theory which is able to describe the introduced anharmonicity by
the parameter γ.

Another assumption that will be made in the following is related to the observation of an in-
creasing volume of defect formation with temperature. The corresponding results will be presented
in Sec. 4.4.4 (shown in Fig. 4.14 on page 83). There, it will be seen that with increasing temperature
the volume of defect formation vf (T ) is strongly increasing

vf (T ) = V defect(T )−Ndefectvbulk(T ) = V defect(T )− V bulk(T ), (3.26)

where V bulk(T ) and V defect(T ) are the temperature dependent supercell volumes of the bulk cell
(appropriately scaled) and the cell containing the defect respectively. vbulk(T ) is the temperature
dependent volume of a single atom in the pristine bulk cell and Ndefect the number of atoms in the
defect supercell. To first approximation the volume expansion of both, the bulk and the defect cell,
can be approximated linearly. The corresponding ansatz for both cells is

V bulk(T ) = V bulk
0 + bbulk T, and V defect(T ) = V defect

0 + bdefect T, (3.27)

with the T=0K equilibrium volumes V bulk
0 and V defect

0 and the corresponding linear expansion
constants bbulk and bdefect for the bulk and defect cell respectively. The results in Sec. 4.4.4 show
an increase of the defect volume with temperature

vf (T ) = (V defect
0 − V bulk

0 ) + (bdefect − bbulk)T, (3.28)

which directly suggest
bdefect > bbulk. (3.29)

Based on the above assumptions, qualitative trends for the temperature dependence of defect
formation will be studied in the following. In particular, the vacancy formation energy and entropy
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will be investigated. While for the following derivation the classical free energy definitions will be
used for simplicity, fully quantum mechanical free energies for the bulk and defect system will be
shown in Fig. 3.10c to result in a very similar temperature dependence of the vacancy formation
entropy. At high temperatures both free energy definitions — classical and quantum mechanical
— converge by definition.

First we define the classical free energy expression (compare to Eq. 2.43) for the bulk and the
defect system

F bulk(T ) = Ebulk
0 + 3kBT ln(

ωbulk

kBT
), and F defect(T ) = Edefect

0 + 3kBT ln(
ωdefect

kBT
), (3.30)

with the total energy of the corresponding bulk and defect cell, Ebulk
0 and Edefect

0 at T=0K. The
factor 3 in Eq. 3.30 is necessary for describing a 3 dimensional system in contrast to the often
found one dimensional case. The bulk and defect frequencies in Eq. 3.30, ωbulk and ωdefect, will be
described both by the Grüneisen dependence as defined in Eq. 2.56

ωbulk(V ) = abulkV
−γbulk and ωdefect(V ) = adefectV

−γdefect , (3.31)

with constant parameters abulk, adefect, γbulk and γdefect. Typical Grüneisen parameter for the
bulk system (γbulk) are about 2-3 [11] while a similar order of magnitude can be expected for the
— potentially softer — anharmonic local neighbor potential. Combining Eqs. 3.27 and 3.31, the
average frequency of the bulk and defect system can be expressed as a function of temperature

ωbulk(T ) = abulk(V bulk
0 + bbulk T )−γbulk and ωdefect(T ) = adefect(V

defect
0 + bdefect T )−γdefect . (3.32)

Dropping for a moment the introduced indices for the bulk and the defect, the free energy
becomes

F (T ) = E0 + 3kBT ln(
a(V0 + bT )−γ

kBT
). (3.33)

Correspondingly, the entropy can be defined (here in units of kB) by

S(T ) = −∂F (T )

∂T

= 3− 3 ln

(
a

kBT

)
+ 3γ

[
ln(V0 + b T ) +

b T

b T + V0

]
= 3− 3 ln

(
ω(T=0K)

kBT

)
+ 3γ

[
2

(
b T

V0

)
− 3

2

(
b T

V0

)2
]

(3.34)

where the two terms inside the square bracket have been Taylor expanded for the final expression
in Eq. 3.34. Reinserting the missing indices for the bulk and the defect in Eq. 3.34, the defect
formation entropy is defined by

Sform(T ) = Sdefect(T )− Sbulk(T ) =

(
−∂F

defect(T )

∂T

)
−
(
−∂F

bulk(T )

∂T

)
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= −3 ln

[
ωdefect(T=0K)

ωbulk(T=0K)

]
︸                           ︷︷                           ︸+ 6

[(
bγ

V0

)
defect

−
(
bγ

V0

)
bulk

]
T︸                                    ︷︷                                    ︸−

9

2

[(
b2γ

V 2
0

)
defect

−
(
b2γ

V 2
0

)
bulk

]
T 2︸                                         ︷︷                                         ︸ .

S0 S′ T S′′ T 2 (3.35)

This formulation of entropy consists of an offset term S0 at T=0K, a term S′ T which increases
linearly with temperature, and the S′′ T 2 term which scales quadratically with temperature. Using
the LGT analogy, the defect formation energy is described by comparing an anharmonic with an
effectively harmonic potential

F form
LGT(T ) = F anharmonic(T )− F (effective) harmonic(T ). (3.36)

It was already indicated in Eq. 3.29 that the bulk expansion coefficient bbulk is expected to be smaller
than the corresponding defect expansion coefficient bdefect. Within the LGT picture, the harmonic
bulk has no expansion — due to its harmonic nature — resulting in bbulk = 0 and γbulk = 0. This
assumption results in the entropy due to LGT

Sform
LGT = −3 ln

[
ωdefect(T=0K)

ωbulk(T=0K)

]
︸                           ︷︷                           ︸ + 6

(
bγ

V0

)
defect

T︸               ︷︷               ︸ − 9

2

(
b2γ

V 2
0

)
defect

T 2︸                   ︷︷                   ︸ .
S0 ≈ 0 S′ T S′′ T 2 (3.37)

The ωdefect and ωbulk parameters in Eq. 3.37 can be accurately assessed at T=0K by the corre-
sponding quasiharmonic frequencies3. For Al and Cu the ratio ωdefect/ωbulk is about 0.98, resulting
in a negligible S0 offset of 0.05kB at T=0K. For realistic values therefore S0 ≈ 0 and can be
neglected.4

For a graphical representation of the temperature dependence of the LGT free energy and
entropy of formation, it will be assumed that defect parameters for γ, b and V0 are of a similar oder
of magnitude as the corresponding bulk values. The necessary parameters are obtained by fitting
to the quasiharmonic bulk properties of aluminum (which represents the anharmonicity due to the
volume expansion). The harmonic bulk properties will be fitted to corresponding harmonic bulk
free energies. It is noted that this ansatz is only performed to get access to qualitative values and
to graphically represent the temperature dependence of the energy and entropy of defect formation
due to LGT. No quantitative agreement is expected with experimentally measured defect formation
properties.

The relevant harmonic and quasiharmonic bulk frequencies of aluminum as well as the corre-
sponding bulk volume expansion are shown in Fig. 3.10(a) and (b). The quasiharmonic quantities
are calculated by the small displacement method with DFT for a 32-atom pristine supercell of
aluminum. The averaged frequencies shown in Fig. 3.10(a) (black dots) are used to fit the a and γ
parameter in Eq. 3.31 (blue dots). The performed fit yields γ = 2.2864 and a = 15648 meV/Å−3γ

and can be compared to the experimental Grüneisen parameter γ for Al of 2.06 [26, 85–87]. To
determine approximate V0 and b parameters for Eq. 3.27, the quasiharmonic volume expansion is
plotted in Fig. 3.10(b). The performed linear fit results in V0 and b parameters of 16.496 Å3 and
0.0014 Å3/K respectively.

Using these parameters for the anharmonic potential in Eq. 3.36 and the corresponding harmonic

3While at elevated temperatures the reliability of the quasiharmonic approximation (QHA) is not rigorously
known, the T =0 K properties can be expected to be accurately described in QHA.

4Using the quantum mechanical definition of the formation entropy, S0 is strictly zero since the constituent
quantum mechanical entropies are zero at T =0 K, in agreement with the third law of thermodynamics.
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Figure 3.10: (a) Average frequencies (in meV) as a function of volume (in Å3) for the aluminum bulk
cell. The harmonic (black dashed line) and quasiharmonic frequencies (black dots and black line) are
shown. The quasiharmonic frequencies are fitted by Eq. 3.31 (blue line) which results in a γ parameter
of 2.29 (dimensionless) and an a parameter of 15648 in units of meV/Å−3γ . (b) Quasiharmonic volume
expansion for bulk Al (black). The best linear fit (blue line) yields V0 = 16.495Å3 and b = 0.0014Å3/K.
(c) Using the parameters gained in (a) and (b), the free energy in meV as a function of temperature
in K is shown for the harmonic bulk with constant frequency (red dashed) and the quasiharmonic bulk
(representing the anharmonic defect) (red full) as defined in Eq. 3.30. (d) Formation energy as a function of

temperature derived from quasiharmonic and harmonic free energies in (c) with Hf
0 of 0.64 eV exemplary.

(e) Corresponding entropies to (c) (red, dashed and full) and the entropy of defect formation (blue) for the
gained parameters. (f) Fully quasiharmonic entropy (including quantum effects) for bulk Al (red full) and
the harmonic entropy (red dashed) for the lattice constant at T=0 K. Taking their difference results in an
formation entropy shown in blue.

T=0K frequency of 25.75 meV for the harmonic potential in Eq. 3.36 (taken from Fig. 3.10(a)),
the bulk and defect free energies defined in Eq. 3.30 can be determined. Fig. 3.10(c) shows the cor-
responding harmonic (red dashed line) and anharmonic (red full line) functions. Both free energies
are used in Fig. 3.10(d) to plot the corresponding temperature-dependent formation energy assum-

ing Hf
0 = 0.64 eV for Al which shows deviations from the typical linear Arrhenius law. Fig. 3.10(e)

shows the corresponding harmonic and anharmonic entropies (red dashed and full lines) and the
resulting entropy of defect formation (blue line) calculated by Eq. 3.37. In contrast to the generally
anticipated constant formation entropy, the found entropy increases linearly with temperature. The
linear S′ term of Eq. 3.35 dominates while the term scaling quadratically with temperature is seen
to be negligible. When the full quantum-mechanical quasiharmonic and harmonic free energies are
used for Eq. 3.36 instead of the parameters gained by the fitting shown in Fig. 3.10(a) and (b), a
similar result is found, which is plotted in Fig. 3.10(f) and also shows an linearly increasing entropy.

The found temperature dependence for the entropy can be compactly summarized by

Sform
LGT(T ) ≈ S′ T (3.38)
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since the S0 and the S′′ T 2 terms seem to be small for typical values. This is in contrast to the
constant entropy of defect formation which is found in Eq. 3.21 when assuming only a harmonic
ansatz for both the defect and the bulk system.

Within the LGT assumptions the entropy of defect formation is not constant, which is the
cornerstone of the generally applied Arrhenius law. The corresponding formation energies, as
shown in Fig. 3.10(d), are found to be nonlinear. It is therefore possible to interpret nonlinearities
found in experimental measurements of vacancy formation energies (i.e. as in Al), by an LGT
form of defect formation instead of applying the linear Arrhenius model. In consequence it seems
desirable to a) numerically investigate the corresponding divacancy formation energies including
anharmonic contributions and b) apply the same procedure to the vacancy to be able to compare the
resulting formation entropies and energies to an LGT temperature dependence. The corresponding
numerical investigations will be performed in Sec. 4.4.



Chapter 4

Results: Impact of anharmonicity on
the thermodynamics of selected
material systems

When employing quantum-mechanically based ab initio approaches for the prediction of real-world
materials properties such as e.g. thermodynamic phase diagrams it is crucial to not only rely on
T=0K ground-state calculations but to take finite-temperature effects accurately into account.
The necessary thermodynamic and statistical mechanics concepts have been introduced in Sec. 2.
Combining these concepts with fully ab initio computed total energies [88, 89], it is possible to
obtain a DFT level of accuracy over the whole temperature range. To this end it is necessary to
calculate all relevant contributions entering the free energy surface

F (T, V ) = E0K(V ) + F el(T, V ) + F qh(T, V ) + F ah(T, V ), (4.1)

fully from DFT. These contributions are the volume dependent T=0K energy E0K(V ) and the
volume and temperature dependent electronic, quasiharmonic, and anharmonic free energy, F el,
F qh, and F ah, respectively. The computation of the first three contributions is standard and
described in detail in Sec. 2.3.3 or e.g. in Ref. [11]. The computation of the anharmonic free
energy which is the objective of this thesis is however still a significant computational challenge
for first-principles calculations. The main reason is the fact that upon raising the temperature the
phase-space that atoms can occupy exponentially increases due to atomic vibrations. Methods such
as the one introduced in Sec. 3.1 enable to include the full spectrum of phonon-phonon interactions
on a regular basis.

Due to the significant computational demands and resulting technical challenges only a few per-
fect bulk systems have been studied so far that include the full set of finite-temperature excitations
based on first principles [1, 2, 9, 47]. For binary systems and defects no study has been performed
on this level of theory to the best of our knowledge. Since a systematic study was not feasible so
far it is presently largely unknown whether and how important anharmonicity is for an accurate
description of thermodynamic properties. The quality of the widely applied quasiharmonic approx-
imation cannot be assessed without the inclusion of all free energy contributions entering Eq. 4.1.
Since temperature-dependent first principle evaluations — often performed in quasiharmonic ap-
proximation — are being applied in commercial thermodynamic databases as CALPHAD [90],
investigations of the — in most cases — missing anharmonic contributions are necessary.

In Sec. 4.1 the anharmonic contribution to a wide range of fcc elements, namely Al, Ag, Au,
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Cu, Ir, Pb, Pd, Pt and Rh, is investigated over the whole temperature range up to the melting
point. Consequences on experimentally available quantities such as heat capacities and volume
expansions are discussed. Sec. 4.2 goes beyond standard DFT approaches by presenting self-
consistent calculations of thermodynamic properties of Pt, Ag and Au using the random-phase
approximation up to melting. Sec. 4.3 assesses the binary Mg2Si system including calculations on
Si and Mg and draws conclusions for empirical rules such as the Neumann-Kopp rule which aim
to predict temperature dependent thermodynamic quantities of alloys based on the constituents.
In Sec. 4.4 the effect of the anharmonic contribution on point defect properties is investigated.
In particular the vacancy and divacancy-formation energies have been calculated for Al and Cu.
Applying the LGT method developed in Sec. 3.2, it is possible to consolidate all experimental
vacancy formation energies and entropies of Al and Cu with ab initio calculated data over the
whole temperature range [68]. The presented results of this thesis conclusively show that including
anharmonicity is crucial to get accurate thermodynamic data, provides a significantly improved
agreement to experiment [33, 91] and even changes thermodynamic quantities qualitatively [68, 92].

4.1 Fcc elements: A wide range study

The current section presents calculations of the anharmonic contribution for a wide range of fcc
metals: Al, Ag, Au, Cu, Ir, Pb, Pd, Pt and Rh. Of particular interest is the volume and temperature
dependence of the anharmonic contribution as well as a comparison between the performance of
LDA and GGA in predicting free energies and derived quantities. In previous quasiharmonic
studies it was found that GGA and LDA results yield a reliable confidence interval for ab initio
assessments [11]. Having now the full free-energy surface including anharmonic contributions at
hand, it is possible to test this empirically found error measure by comparing experimental results
to the solution including the full vibrational spectrum.

In order to make a significant and meaningful distinction between harmonic and anharmonic
(which is the full) contributions it is necessary to calculate the harmonic reference as accurate
as possible. For all DFT calculations presented in the following the quasiharmonic free-energy
surface is used as reference potential for thermodynamic integration. The QH free energies have
been calculated using the small-displacement method introduced in Sec. 2.3.3 and are ensured to
be converged to better than 1 meV/atom with respect to DFT related parameters and supercell
sizes which were tested up to 256 atom supercells. For both considered exchange and correlation
functionals, GGA and LDA, the self consistent volume range has been considered which differs
significantly due to the well known overbinding of LDA and underbinding of GGA. Further details
of the considered quasiharmonic volumes can be found in Fig A.2 on page 92 of the appendix.

4.1.1 Anharmonic free energy contributions in LDA and GGA

The anharmonic calculations were performed for all studied elements in a conventional 32 atom fcc
cell and the free energy at the melting point was additionally tested in a 108 atomic conventional
supercell1. Subsequently, the full Gibbs free energy as a function of volume and temperature was
compared in a 108 atomic supercell for Al, Cu and Au. It is found that the anharmonic contribution
of the smaller 32 atom cell is already converged to within 1 meV at the melting temperature
which is understood by recalling the importance of nearest neighbor interactions found in Sec. 3.1
for the same elements. A summary of further computational details regarding the anharmonic

1Cell sizes of 256 atoms as performed for quasiharmonic assessments are usually prohibitive for anharmonic
evaluations.
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Figure 4.1: Explicit anharmonic free energy contribution F ah as a function of lattice constant calculated for
different temperatures (light grey) using LDA (left picture) and GGA (right picture). The energy scale is
up to 25 meV for all elements but for Al and Pb where it is only up to 4 meV. Calculated statistical error
margins are shown by horizontal lines. Vertical dashed lines mark the self consistently determined volume
at T=0 K and at the melting temperature.

calculations can be found in Ref. [33]. Besides the physical relevance of the anharmonic contribution
to thermodynamic properties, the presented results were prerequisite for assessing the quality of
the derived LA methodology introduced in Sec. 3.1.

The results for the explicit anharmonic contribution to the free energy as a function of volume
are shown in Fig. 4.1 for (a) LDA and (b) GGA. For both exchange-correlation functionals a
positive anharmonic contribution is found for all the calculated fcc elements which leads on average
to higher averaged frequencies and therefore to an effective hardening of the lattice upon inclusion
of anharmonic contributions. Correspondingly the vibrational entropy increases. It can be therefore
concluded that the quasiharmonic reference is too soft for both functionals. Taking into account
that at T=0K LDA is known to overbind and usually results in too stiff lattices, this result is
unexpected and has to be related to a general deficiency of the quasiharmonic approximation.
This finding can be understood by considering Fig. 3.1 on page 34. At finite temperatures, the
harmonic potential occupies positions where atoms are very close to each other. In contrast, using
the anharmonic potential, this part of phase space is completely unaccessible for atoms due to
the strong Pauli repulsion. In effect therefore, the anharmonic potential is stiffer compared to the
relatively soft harmonic potential due to the strong repulsion at short distances One can therefore
conclude that while LDA is too hard at T=0K, it is too soft at finite temperatures in quasiharmonic
approximation of fcc metals.

An increase of the anharmonic contribution is seen for all temperatures as a function of volume.
It has been found earlier [2, 10] that a linear dependence is not sufficient to describe the volume
dependence of the anharmonic free energy. In fact it was pointed out in Ref. [2] that a linear
dependence results in an artificial reduction of derived quantities such as the heat capacity and
that the renormalized phonon frequencies which depend on volume and temperature should be
used [2]. Therefore, for all results calculated in this thesis a corresponding parametrization is used
which guarantees an accurate fit of the free-energy surface.

Comparing the left subfigure (for LDA) with the right one (for GGA) in Fig. 4.1 it is furthermore



4.1. Fcc elements: A wide range study 59

4 4.05 4.1 4.15
Lattice constant Å

0

1

2

3

4

Fah
 (m

eV
/a

to
m

)

GGA
LDA

250K

500K

934K

700K

Al
(a)

3.55 3.6 3.65 3.7 3.75 3.8
Lattice constant Å

0

2

4

6

8

Fah
 (m

eV
/a

to
m

)

GGA
LDA

450K

800K

1360K

1100K

Cu
(b)

3.8 3.85 3.9 3.95 4
Lattice constant Å

0

5

10

15

20

Fah
 (m

eV
/a

to
m

)

GGA
LDA

1100K

1800K

2739K

Ir
(c)

3.95 4 4.05 4.1
Lattice constant Å

0

5

10

15

20

25

Fah
 (m

eV
/a

to
m

)

GGA
LDA

2042K

1500K

Pt
(d)

Figure 4.2: Explicit anharmonic free energy for bulk (a) Al, (b) Cu, (c) Ir and (d) Pt as a function of
volume for LDA (blue) and GGA (orange). All elements are shown with an overlapping volume range. It
can be observed that the explicit anharmonic free energy is dictated by the corresponding volume range to
first order. Differences between LDA and GGA at fixed lattice constant are much smaller than the absolute
anharmonic contribution. Elements with non overlapping volume range show a similar behavior.
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Figure 4.3: Explicit anharmonic free energy contribution F ah as a function of temperature performed at
different lattice constants (indicated by light gray in Angstrom) for LDA (left) and GGA (right). The
dashed vertical line (black) marks the corresponding melting temperature.

apparent that the anharmonic contribution is larger for GGA than for LDA. The before-mentioned
hardening will therefore be smaller for LDA than for GGA. The anharmonic contribution as a
function of lattice constant is plotted for both functionals in a single plot for all elements where an
overlap of calculated volumes can be observed (differences appear to the self consistently calculated
volume range of LDA and GGA). The result is shown in Fig. 4.2 where an important finding of
this study is revealed: to a good approximation the anharmonic contribution is not dictated by the
exchange and correlation functional but is rather a function of the sampled volume range. When
considering the same temperature for LDA (blue) or GGA (orange), a similar free energy correction
is observed to within a few meV for all the shown elements irrespective of the used functional. A
similar trend is also observed for the remaining elements with non overlapping volume range.
This finding has important consequences. Since the anharmonic contribution is similar for the
two investigated and very different functionals (LDA is overbinding, GGA is underbinding), it is
reasonable to assume that at a fixed volume other functionals will yield very similar anharmonic
contributions. Consequently, differences due to exchange and correlation effects will be small and
can therefore be captured computationally very efficiently — due to the small delta in energy — by
a perturbative approach. A corresponding approach is in particular very appealing for advanced
functionals which are just becoming computationally feasible. Consequences of this finding are
used in Sec. 4.2 to calculate finite temperature properties using the random phase approximation
(RPA) over the whole temperature range up to the melting point.

The anharmonic free energy contribution as a function of temperature is shown in Fig. 4.3. It
can be observed that the anharmonic contribution increases when electrons are added to the d-shell
and therefore F ah

Rh < F ah
Pd < F ah

Ag and F ah
Ir < F ah

Pt < F ah
Au. This observation is consistent with the

strong anharmonic behavior known for solid rare (inert) gas crystals [37, 93, 94] which have a filled
shell, and is also in line with the relative weak anharmonic contribution found in Al and Pb which
have an unfilled p-shell. Also, when increasing the principal quantum number in the same group
(period) of the table of elements, the anharmonic contribution is seen to increase and therefore
F ah

Cu < F ah
Ag < F ah

Au which is also found for the other groups. It can be observed that the anharmonic
contribution as a function of temperature may show a convex or concave (for Rh, Pd, Ir and Pt)
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shape and for a correct description needs to be fitted by a curvature which goes beyond second
order. When studying anharmonic contributions, largest effects are to be anticipated at highest
temperatures and volumes.

4.1.2 Effects on derived quantities: Heat Capacity, Expansion

We now turn to the comparison of our DFT results to the derived quantities of the free energy
surface. While F (V, T ) cannot be measured directly by experiment as was elaborated in Sec. 2.4.2,
derived quantities such as the heat capacity or the volume expansion are accessible experimentally
and will therefore be compared to the calculated results. Fig. 4.4(a) shows the isobaric heat ca-
pacity, which is a second derivative of the Gibbs free energy (see Eq. (2.3)) and therefore a very
sensitive measure, for all studied elements. LDA results are shown in blue and GGA in red. The
dotted lines are the results including quasiharmonic and electronic contributions while the full line
is the final result additionally including anharmonic contributions. Up to room temperature the
investigated fcc elements show a remarkable agreement already in quasiharmonic approximation
with the experiment (black symbols) and the Calphad reference [6] shown by the black line. With
increasing temperature the quasiharmonic heat capacity, in particular for GGA clearly overesti-
mates in comparison to experiment for Pd, Ag, Pt, Au. Including anharmonicity decreases the
heat capacity for all the studied elements and for both considered functionals. It can be thus
deduced that the QH approximation consistently overestimates the final, and self consistent heat
capacity of fcc metals.

The magnitude of the anharmonic correction to the heat capacity is consistent with the trend
shown in Fig. 4.3: while the correction is small for Rh, Pd and Ir (about 0.1-0.4 kB), it substantially
increases when the d-shells are being filled or when the principal quantum number (period) is
increased in the table of elements. For GGA the correction to CP is in general larger than for LDA.
When neglecting the divergence for GGA Au, corrections of up to 1.4kB are found for GGA while
the largest LDA correction is 1.2kB. Since it is generally anticipated that fcc elements are only
weakly anharmonic, this finding is surprising.

It was found that the divergence observed for GGA Au can be fully cured upon inclusion of
T=0K non-local many-body effects and additional anharmonic contributions at high tempera-
tures [124]. While Fig. 4.4 shows that LDA is very accurate for describing the heat capacity of
Au, it is also found to underestimate the heat capacity — when comparing to the recommended
Calphad data — for elements such as Ir and Rh where anharmonic effects are small. It is im-
portant to note that neither GGA nor LDA seem to consistently yield reliable results for all the
investigated elements. It will therefore be important to analyze the performance of both functionals
to yield a reliable confidence interval for theoretical calculations which has been proposed based on
quasiharmonic assessments [10].

The anharmonic contribution to the heat capacity in Fig. 4.4 is found to be larger for GGA
than for LDA. This is directly related to the sampled volume range which is smaller/larger than
the experimental volume for LDA/GGA and was elaborated in the discussion of Fig. 4.2. The
quasiharmonic GGA heat capacity is however larger for all the shown elements and the inclusion of
anharmonic contributions results in a significantly reduced discrepancy between LDA and GGA at
the melting point. It thus appears that the quasiharmonic approximation ‘amplifies’ the intrinsic
errors inherent to the specific xc functional while including anharmonicity reduces them.

On the basis of quasiharmonic heat capacity calculations, LDA and GGA were found to sys-
tematically provide a reliable ab initio confidence interval with respect to experiment [10]. Upon
inclusion of anharmonic contributions the difference between LDA and GGA — the thus proposed
error margins — are observed to decrease. This improved confidence interval is especially pro-
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Figure 4.4: Isobaric heat capacity in units of the Boltzmann constant, kB, as a function of temperature. The
quasiharmonic plus electronic (dotted) and the full solution including anharmonic contributions (full line)
is shown for LDA (blue) and GGA (red). In (a) the self consistent solution is shown whereas (b) shows the
mixed approach where the T=0 K contribution is taken from experiment. The black line is the Calphad
Dinsdale evaluation from Ref. [6]. Experimental measurements are shown by full and empty symbols (black)
and are taken from following references: Al [95–102], Pb [95, 103–105], Cu [106–112], Rh [105, 113], Pd [105],
Ag [113–117], Ir [105], Pt [118–121], Au [105, 122, 123].
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nounced in Pt and Ag. For Pb, the one element where the confidence interval increases, this turns
out to be a favorable circumstance since in quasiharmonic approximation the experimental results
were overestimated by both functionals. Further it can be observed that for five of the elements,
Pb, Cu, Ag, Pt and Au, the quasiharmonic LDA and GGA results do not enclose the reliable and
recommended Calphad SGTE heat capacity [6]. Only upon inclusion of the anharmonic contri-
bution the recommended CP curve is, for all the calculated elements, either enclosed or very close.
From Fig. 4.2 it is therefore evident that at elevated temperatures anharmonic contributions are
crucial for a quantitative description. For several of the investigated elements in Fig. 4.4, Al, Pb,
Cu, Ag and Pt, the anharmonic contribution — which is the difference between the dotted and
full line — is similar or even more significant than the error introduced by the exchange correla-
tion functional (indicated by the gray shaded area). In the spirit of a full ab initio prediction of
finite temperature properties this provides a strong argument to include anharmonicity in future
calculations.

Near the melting point, corrections to the here presented heat capacities are expected due to
vacancy point defect contributions [2, 33]. These positive contributions to the heat capacities were
found however — also in the framework of this PhD thesis — to be small. For Al and Cu they were
calculated to be 0.1 kB [125] and can be therefore safely neglected in the following discussion. Since
the investigated materials are non magnetic, Fig. 4.4(a) contains all relevant finite temperature
excitations and can be regarded as a final result. Remaining discrepancies therefore have to be
attributed to the exchange and correlation functional.

A method to test the inherent error introduced by the functional at T=0K is the ‘mixed ap-
proach’ [10] where the experimental bulk modulus and its derivative together with the experimental
volume are used at T=0K instead of the self consistent values of the corresponding functional. Cor-
responding calculations have been performed and are shown in Fig. 4.4(b). It is directly evident
that using the correct T=0K data, the divergence for the heat capacity of Au is lifted. Therefore
the GGA evaluations become a lower bound and LDA an upper bound to experiment. In general,
both functionals represent a convincing confidence interval for all the investigated elements. The
agreement is significantly improved at high temperatures compared to a purely quasiharmonic as-
sessment. The anharmonic correction is reduced for GGA in the ‘mixed approach’ in comparison
to self-consistent calculations. This can be once again traced back to the volume dependence of an-
harmonic contributions. When using the mixed approach with GGA, smaller volumes are sampled
compared to the self-consistent GGA volumes. This results in smaller anharmonic contributions
in GGA. An overcorrection due to the lower bound of the quasiharmonic GGA results is therefore
not observed with respect to experiment. The same argumentation explains the increase of the
anharmonic contribution that is found when using LDA with the ‘mixed approach’.

Fig. 4.5 shows the relative expansion of the lattice constant as a function of temperature. In
the upper figure (a) the self consistent volume, bulk modulus and its derivative at T=0K have
been used whereas in (b) the ‘mixed approach’ is applied as explained above. The effect of the
anharmonic contribution becomes more pronounced, as for the heat capacity, when increasing
the period and filling the d-shell. Using the quasiharmonic plus electronic approximation only,
experimental expansion is not captured in the spirit of the GGA/LDA confidence interval for Pt
and Au. Including anharmonic contributions improves this situation and all elements are found
between the final self consistently calculated expansions. Employing the mixed approach which is
presented in Fig. 4.5(b), the confidence interval shrinks but experimental measurements are still
correctly contained within the now smaller error margins.

In order to compare the influence of the different contributions (electronic, quasiharmonic and
anharmonic), Fig. 4.6(a) summarizes the heat capacity for all elements using the GGA functional.
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Figure 4.5: Relative expansion of the lattice constant as a function of temperature. (a) Self consistent and
(b) solution using the ‘mixed approach’. Results for GGA (red) and LDA (blue) are shown in quasiharmonic
plus electronic approximation (dotted) and additionally including anharmonicity (full lines).
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Figure 4.6: Comparison of quasiharmonic, electronic and anharmonic contributions in GGA to (a) the heat
capacity and (b) the Gibbs energy as a function of homologous temperature. The qh data represent only
the contribution beyond the purely harmonic part. Figure and caption were adapted from [33].

The displayed quasiharmonic contribution shows merely the part due to thermal expansion. It
is directly evident that all three contributions are roughly of the same order of magnitude and
are of equal importance. An attempt to model any of the studied elements without the inclusion
of all excitations would therefore lead to an altered quantitative description and modify the final
result. It can be seen that the quasiharmonic heat capacity is consistently positive, whereas, as
shown before, the anharmonic one is throughout negative for the investigated fcc materials. The
current practice to include only quasiharmonic contributions (sometimes additionally electronic
contributions) is therefore insufficient since anharmonic effects show a similar magnitude and should
not be neglected. Fig. 4.6(b) shows the Gibbs energies corresponding to the previous figure. In
general it can be observed that the anharmonic free energies are roughly half the magnitude of the
quasiharmonic contribution and electronic contributions are most significant. All these energies
can easily modify phase transition temperatures and need therefore to be considered, e.g., in phase
diagram calculations.

4.2 Beyond standard DFT: RPA up to melting

The previous section 4.1 has shown the capabilities and limitations of standard exchange-correlation
functionals to describe finite temperature thermodynamic material properties. It has been unveiled
in Fig. 4.4(a), that self consistent GGA calculations for Au show a divergence in CP. Anharmonic
contributions were found to push this divergence to higher temperatures but could not solve this
deficiency of GGA in a self consistent manner. At T=0K, the shortcomings of standard func-
tionals are well-known. The ‘mixed approach’ was introduced as a possible solution which uses
experimentally measured data at T=0K with finite temperature phonon-phonon vibrational con-
tributions calculated by ab initio. It was shown that the T=0K error significantly influences finite
temperature results. For systems where no experimental measurements have been performed such
an approach will in general not be feasible. More important is however that a priori it is un-
clear to which extent the T=0K parameters influence the finite temperature phase-space sampling
by coupling to vibrational contributions. In view of the limitations of the standard functionals
an approach seems highly desirable which applies advanced functionals self consistently over the
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whole temperature range. Hybrid functionals, e.g. Heyd-Scuseria-Ernzerhof (HSE), are a possible
improvement since they introduce exact exchange. The correct amount of exact exchange however
is not rigorously defined and has therefore to be adjusted to experimental measurements [126]. A
promising route which goes beyond hybrid functionals is to include non-local many-body effects
to the correlation energy. Following this route, the random phase approximation (RPA) has been
developed and has been successfully applied at T=0K to many systems [127–129].
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Figure 4.7: (a) Isobaric heat capacity and (b) linear thermal expansion as a function of temperature. The
red dotted line corresponds to the quasiharmonic plus electronic contribution mixed with RPA at T=0 K.
The full line (red) additionally contains the GGA anharmonic contribution. The full RPA calculation was
only performed for Gold and is shown by the dashed line (green). The error when neglecting the coupling
of the T=0 K contribution to finite temperature vibrational properties — the difference between the dashed
green line and the full red line — is small. The red shaded area is the anharmonic contribution to the final
result. Experimental values (black) are taken in (a) from Ref. [105] and in (b) from Ref. [6].

While advanced functionals calculations recently became feasible at T=0K, the calculation of
finite temperatures free energies is currently out of reach on a similar level of accuracy due to
significant computational demands. In Sec. 4.1 it was however found that the computationally
most challenging finite temperature mechanism — anharmonic phonon-phonon interactions — are
very similar in magnitude for different functionals. Corresponding contributions are therefore
expected to be also similar in magnitude for advanced functionals. For this reason, perturbative
approaches as the UP-TILD method can be applied by first performing the phase-space sampling
on a GGA or LDA level and consequently calculating the correction to the anharmonic free energy
by the advanced functional. This suggested two-step procedure decouples the computationally
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demanding calculation of accurate ab initio free energies from the phase space sampling of atomic
vibrations. Since non-local many-body effects have been shown to significantly influence the self-
consistent volume of Au at T=0K [129], the above elaborated procedure has been recently applied
for the calculation of thermodynamic properties of Au to a RPA level of accuracy over the whole
temperature range [124]. Out of all investigated elements in Sec. 4.1, Au has been revealed to
contribute the most significant anharmonic free-energy contribution (see Fig. 4.1 on page 58). The
effects of non local many-body effects as e.g. van-de-Waals interactions, which might also change
the finite temperature anharmonic contribution has to be investigated.

The procedure for a finite temperature RPA treatment of Au is performed in the following way:
The E0K contribution is calculated fully by RPA while the finite temperature atomic vibrations are
sampled in a first step in the GGA approximation. In the final step, several of the sampled finite
temperature GGA snapshots are recalculated by RPA and the UP-TILD approach. The energy
difference between the GGA and RPA energies shows a rapid convergence since, as expected, the
correction from GGA to the RPA anharmonic contribution turns out to be very small. The resulting
averaged difference amounts to only 3 meV at melting. For other elements which show an even
smaller anharmonic contribution, the correction due to RPA at finite temperatures is therefore
expected to be even smaller. It was demonstrated that a perturbative approach is well suited for
the calculation of — otherwise unaccessible — anharmonic contributions on a fully RPA level of
accuracy. Using the fully RPA derived free energy for Au and additional anharmonic contributions,
the divergence in the GGA heat capacity was eliminated in a self consistent manner [124].

Fig. 4.7(a) and (b) show the heat capacity and the relative expansion of the lattice constant
as a function of temperature for Pt, Ag and Au. The performed T=0K RPA calculations have
been coupled with finite temperature GGA data introduced in Sec. 4.1. The dotted lines (red) are
the quasiharmonic plus electronic GGA results where the T=0K contribution has been calculated
with RPA. The full line (red) contains additionally anharmonic contributions. Only for Au the
full finite temperature coupling form GGA to RPA has been calculated and amounts to 3 meV at
melting [124]. The fully self consistent RPA result is shown by the dashed line (green). For Pt
and Ag no effects of the coupling is expected due to the already mentioned smaller anharmonic
magnitude in comparison to Au. For CP and ε in Fig. 4.7(a) and (b) effects of the anharmonic
correction at finite temperatures are seen in all cases to yield the necessary contribution to reach
a very good agreement with experiment. The maximum deviation from the experimentally found
CP is only 0.2 kB when considering the whole temperature range.

4.3 Binary systems: From Mg and Si to Mg2Si

Mg2Si has been recognized as a promising thermoelectric material for the conversion of heat at
temperature ranges from 500 K to 800 K [130–132]. It is non-toxic and, importantly, consists of
abundant constituents, Mg and Si. One of the widely applied commercial alloys is the Al-Mg-Si
system which is in particular used for lightweight applications. The stability of this alloy system is
essentially dictated by the stability of Mg2Si [91]. While the corresponding phase diagram of the
Mg-Si system is well known, the thermodynamic properties of the single stable compound in this
system, Mg2Si, provides a considerable challenge for experimental measurements. Though its melt-
ing temperature is about 1346 K, very recent and previous attempts to measure its heat capacity
beyond temperatures of 793 K failed [91, 133]. In view of this significant experimental challenge,
the here presented methodology for the calculation fully ab initio based heat capacities including
all finite-temperature excitations is highly desirable. Quasiharmonic plus electronic calculations
for this material system were published during the PhD period; the corresponding computational
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details, performed convergence checks, comparison to experiment and various computed results can
be found in Ref. [91]. Here, the missing anharmonic contributions were calculated for Si, Mg and
Mg2Si and their effects on the heat capacity are presented below.

The thermodynamic integration calculations have been performed from the calculated quasihar-
monic references used in Ref. [91]. All anharmonic free energies have been converged to a standard
error of better than 0.5 meV for the three structures. For Si, supercells containing 64 and 216 atoms
were tested of which the smaller cell converged to better than 1 meV in the anharmonic free energy
at melting. For Mg and Mg2Si, 36 and 96 atom supercells have been used. For Si, Mg and Mg2Si
cutoffs of 400 eV, 400 eV and 500 eV respectively have been found to be sufficient. The converged
k-point grids for the highly converged UP-TILD calculations were 43 for the semiconducting Si and
Mg2Si while a 63 grid was used for the metal Mg.

An important finding for the material system of Si, Mg and Mg2Si is that the final free energies
calculated in GGA and LDA are very close to each other up to the melting temperature. This
is consistently found for all of the three structures, for all the calculated excitations and is also
observed for the finally obtained thermodynamic properties which are very similar for GGA and
LDA. Following the discussion in Sec. 4.1 this corresponds to a very narrow ab initio confidence
interval. The anharmonic contribution to the free energy at the melting temperature in silicon
is 20 meV for GGA and LDA. The difference of the total free energy at the melting temperature
between LDA and GGA — which is the sum of T=0K, electronic and anharmonic contributions
— is, on the other hand, only 1.5 meV. The anharmonic contribution is therefore significantly
higher than the error due to exchange and correlation. Fig. 4.8(a) shows the heat capacity of Si
as a function of temperature. It can be observed that the quasiharmonic contribution beyond the
purely harmonic part is very small in Si (green shaded region labelled ‘expansion’). This is well
understood by the small expansion of Si in comparison to the fcc metals presented in Sec. 4.1.
Due to the semiconducting nature of Si, the electronic contribution is also negligible. Anharmonic
contributions turn out to be crucial for CP. Without them, a quantitative description is not possible
for Si. Including anharmonicity (red shaded area) significantly reduces the discrepancy between
theory and experiment and brings the final CP very close to the Calphad assessment. The blue
and orange arrow at the melting point shown in Fig. 4.8(a) indicate the very close final CP for GGA
and LDA. On the basis of the calculated results and previously performed measurements, the most
recent experimental data for silicon performed by Yamaguchi (grey triangles) seem questionable.
The remarkable agreement for LDA and GGA for CP to the CALPHAD assessments was already
mentioned. The likely very similar Gibbs free energy of LDA and GGA deviates however from the
SGTE CALPHAD assessment at ambient pressure and was found to be lower for both functionals
by 20 meV at melting in comparison. In contrast to the assessed fcc elements (see Sec. 4.1), Si
shows a negative anharmonic contribution which results in the shown positive correction to the
heat capacity. The assumption that anharmonicity yields similar trends and corrections across the
periodic table of elements — an assumption which could have been drawn from the wide range fcc
study in Sec. 4.1 — has therefore to be dropped.

Fig. 4.8(b) shows the heat capacity contributions for Mg. As in the case of Si, the final total
Gibbs free energies are very similar for GGA and LDA and show only a small difference of about
5 meV at melting. The anharmonic contribution is greater than 3 meV at melting and therefore in
the same order of magnitude as the error due to the functional. Though hcp Mg is close packed and
thus similar in structure to the investigated fcc elements in Sec. 4.1, the anharmonic free energy
contribution is negative and of opposite sign to the fcc elements (same sign as Si). Due to the
small 5 meV difference in the final free energy between LDA and GGA, small DFT error margins
are expected for Mg. Indeed, the final heat capacity is very well described by both functionals.
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Figure 4.8: Isobaric heat capacity as a function of temperature for (a) Si, (b) Mg and (c) Mg2Si. Different
colors are used for the different contributions: harmonic (blue), expansion (green), electronic (yellow) and
anharmonic (red). The blue (LDA) and yellow (GGA) arrows indicate the very small difference between
both applied functionals for the finally obtained CP . The very small difference can be observed for all
contributions and all three systems and was found in other ab initio assessments to provide a confidence
interval for experiment. Experimental data (black symbols) are taken from: Si [134–138], Mg [139–142],
Mg2Si [91, 133, 143, 144].



70 4.3. Binary systems: From Mg and Si to Mg2Si

The quasiharmonic contribution, in contrast to Si, is large due to significant expansion of this
hcp metal. Both the electronic and anharmonic contribution are not large but amount in total to
a necessary contribution and yield a finally accurate description in agreement with experimental
measurements. The yellow and blue arrow in Fig. 4.8(b) at melting indicate the small difference in
the heat capacity between GGA or LDA.

Since it has been shown that anharmonic free energies are very similar for GGA and LDA — a
result which was found so far for all fcc elements in Sec. 4.1 and also for the above presented hcp Mg
and dc Si — the anharmonic contribution for Mg2Si is exclusively calculated by GGA. The results
for the CP of Mg2Si can be found in Fig. 4.8(c). At low temperatures the calculated heat capacity
is very close to experimental measurements, a result which was consistently found for all so far
investigated elements. A discussion of both experimental assessments at low temperatures is found
in Ref. [91]. For temperatures up to 793 K, experimental measurements exist but are found to
scatter significantly. Also different Calphad assessments presented in Ref. [91] showed differences
of up to 0.7 kB for the heat capacity at the melting temperature. On the basis of experimental
data alone, a conclusive result seems therefore difficult. The theoretical error margins due to LDA
and GGA on the other hand were found to yield reliable upper and lower bounds for experimental
heat capacity data. In the quasiharmonic assessment of Mg2Si, only a small difference of 0.2 kB is
found between GGA and LDA at the melting point of 1346 K. For Si and Mg, the error due to the
functional amounted at their respective melting temperatures to about 0.1 kB for the quasiharmonic
as well as the anharmonic contribution. If similar error margins are assumed for Mg2Si, the self
consistent and final GGA prediction which includes anharmonic contributions will also possess a
very narrow confidence interval. The final heat capacity for Mg2Si is shown in Fig. 4.8(c). The
small difference between the functionals usually corresponds to a high predictive power and is
very useful for Mg2Si where no experimental data was obtained above 793 K. The most recent
CP measurement is well in agreement with the theoretical prediction which however possesses the
advantage that it is available up to the melting point.

In cases where no experimentally measured heat capacities are available for binary or multinary
systems, the Neumann-Kopp rule [145] is readily applied. It extrapolates from the unary constituent
heat capacities the resulting binary (or multinary) heat capacity. The Neumann-Kopp rule is
formulated for a binary system by

CC
P (T ) = xCA

P (T ) + yCB
P (T ) (4.2)

where CAP (T ) and CBP (T ) are the temperature dependent constituent heat capacities, e.g. for Si
and Mg, CCP (T ) is the resulting heat capacity due to the Neumann-Kopp rule and x and y are the
corresponding molar concentrations of the unary elements. For the case of Mg2Si this is given by

CMg2Si
P (T ) =

2

3
CMg
P (T ) +

1

3
CSi
P (T ) (4.3)

and can be directly used with the heat capacities gained in Fig. 4.8(a) and (b). Fig. 4.8(c) shows
the resulting heat capacity derived for Mg2Si by the Neumann-Kopp rule from Eq. 4.3 by the
dashed gray line. A significant discrepancy can be observed to the full ab initio calculated CP
curve which amounts at 1200 K already to 0.4 kB. Similar concerns have been recently raised
regarding the applicability of the Neumann-Kopp rule for mixed oxides at high temperatures [145].
In view of these results the general applicability of the Neumann-Kopp rule, in particular for
Calphad assessments of multinary systems, seems questionable and temperature dependent ab
initio calculations — as the one developed here — including all vibrational contributions seem a
promising alternative for the calculation of heat capacities of binary and multinary solids.
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4.4 Point Defects

The properties and performance of modern materials critically depend on the presence of point
defects. Already minute changes in their concentrations are known to dramatically impact material
properties. The industrial relevance of point defects can be classified into an electronic and an elastic
regime. Electronic devices rely on controllable changes of electronic conductivity upon careful
introduction of point defects into the perfect crystal. In semiconductors even minute additions can
have substantial influence on electronic properties by placing active energy levels inside the band
gap. In metallic materials, where electronic effects are less pronounced, the elastic influence of point
defects is the basis for an optimized design of structural materials. Point defects act for example
as pinning centers for dislocations or even grain boundaries having therewith a direct impact on
mechanical strength and ductility. They control diffusion processes, accompany melting processes
and therefore govern phase stability and phase transformations.

In view of this enormous economical impact, the experimental characterization of point defects
is grossly limited often requiring an ingenious combination of various techniques. Experimentally
it is not feasible to measure vacancy concentrations over the whole temperature range which makes
theoretical studies indispensable. Sec. 4.4.1 sketches the challenges to compute the anharmonic
contribution for defect formation on a fully ab initio basis with respect to the here employed ther-
modynamic integration techniques introduced in Sec. 2.4.2. In Sec. 4.4.2 the two most prominent
experimental methods are introduced for measuring vacancy concentrations in solids and actual
measurements are shown for Al and Cu. Calculations on divacancies are performed with the here
presented methodology and are extended to monovacancies in Sec. 4.4.3.

By a careful study with the two standard exchange-correlation functionals, LDA and GGA,
a fundamental observation is made regarding the temperature dependence of vacancy formation
followed by a discussion of the results in Sec. 4.4.4. In particular it will be shown that a quasi-
harmonic ab initio treatment of finite temperature vibrational effects — until recently the only
available option for the study of point defects — is not sufficient to capture vacancy formation
energies correctly. Further it will be shown that the linear Arrhenius ansatz, Gf = Hf − TS,
has to be replaced in future studies by the Local Grüneisen theory (LGT) presented in Sec. 3.2.1.
Consequences of the here presented results are discussed for the “official” point-defect data as,
e.g., compiled in the Landoldt-Börnstein series. Implications are drawn for state-of-the-art DFT
exchange correlation functionals.

4.4.1 Including anharmonic contributions to defect formation

For supplementing experimental measurements of defect properties, computational approaches have
crystallized as valuable tools. In principle, computations based on empirical potentials have access
to the full temperature range starting from T=0K up to the melting point. Indeed, various studies
utilizing specifically the embedded atom method have been put forward in the 1990’s seeking to
explain experimentally found ambiguities [50, 146]. A general reasoning was shaped that the an-
harmonic contribution, i.e., phonon-phonon interactions beyond the simple non-interacting picture,
is playing a crucial role. However, the authors had to admit that the employed empirical potentials
showed large scatter and thus any concrete conclusion was fully out of question. Due to the high
demands on accuracy, calculations on point defects based on empirical potentials have been ques-
tioned [64]. Consequently, great hope was put into an accurate DFT-based solution of the problem.
Beginning with the pioneering work of Gillan [147] in 1989, DFT calculations on point defects were
limited to T=0K throughout the 90’s [148–150]. With advances in hardware technology, finite
temperature contribution, in particular electronic and quasiharmonic (non-interacting phonons)
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excitations started to be included [50, 151–153]. The full treatment of explicit anharmonicity due
to phonon-phonon interactions — relevant at high temperatures — could however still only be
performed by resorting to empirical potentials or model potentials derived from DFT. A fully ab
initio based treatment was computationally too expensive and as of 2005 it was generally accepted
that the full set of high temperature excitations cannot be captured within first principles as a
consequence of high computational costs [154]. This situation changed only fairly recently, when
methods were developed which allow to sample anharmonic contributions (phonon-phonon inter-
actions) efficiently and accurately within the DFT methodology. First studies were put forward
showing promising results [2, 9]. The focus of all so far performed ab initio studies was to compare
concentrations limited to the experimentally accessible temperature range by the use of “Arrhe-
nius” plots. An analysis of the Gibbs energy of defect formation on the other hand — a much
more sensitive quantity — turns out to be the better descriptor when comparing theoretical and
experimental predictions. Considering this quantity for the full temperature range, from T=0K
to the melting temperature, and at the same time including the full excitations spectrum, resulted
in a major break-through for the understanding of defect formation and was a major result of this
thesis.

To compute the temperature dependence of Gf it is necessary to calculate the free energy of the
bulk and the vacancy supercell by considering all relevant excitation mechanisms defined in Eq. 4.1
on page 56 on an ab initio basis. The computation of the T=0K total energy, the electronic and
quasiharmonic free energy contributions are standard and can be done to a very high numerical
precision without significant effort on nowaday’s computational resources. Converging however the
anharmonic contribution of the defect formation energy Gf to a similar precision as defined for the
bulk free energy F in Sec. 4.1 — usually 1 meV — is a completely new challenge since the relevant
energy is scaled per defect and not per atom, as it is the case for bulk properties. To illustrate this
point, an example shell be considered where the anharmonic contribution needs to be sampled for
the bulk and defect supercell to a statistical precision of 1 meV

atom which for a 100 atom supercell equals
100meV

cell (see Ref. [2] for a discussion on the required precision). The molecular dynamic runs which
are necessary for thermodynamic integration are performed for the bulk and defect system on the
chosen reference as described in Sec. 2.4.2. Both references are usually obtained in a similar way
and are therefore of similar quality. This implies that when energies are sampled for every snapshot,
the corresponding energy difference between DFT and the reference potential is on average similar
for the bulk runs and the runs containing the defect. Therefore the standard deviation σ is also
similar for thermodynamic integration for the bulk and defect system, σbulk ≈ σdefect. In the bulk
calculation, extensivity holds and the standard error, σn, can be calculated as a per atom quantity.
In the case of a defect formation energy it is necessary to calculate energy differences of the two
supercells (defect minus bulk) and the standard error will therefore be 100 times larger compared
to the bulk free energy calculation. Consequences of this are exemplified in the following.

The necessary number of snapshots n in a molecular dynamics run is assessed using the definition
of the standard error σn with

σn :=
σ√
n
. (4.4)

Having two reference potentials which either have different standard deviation σ1 and σ2 or need
to be converged to different standard error σn1 and σn2 one can write

n1

n2
= (

σ1

σ2
)
2
, and

n1

n2
= (

σn1

σn2
)
2

(4.5)

where n1 and n2 are the necessary steps to calculate in the corresponding MD run using the
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respective reference (e.g. DFT, harmonic or other). Converging the standard error of the bulk
system to σn = 1 meV

atom when assuming a standard deviation of σ = 10 meV
atom results in nb = 102 MD

steps for the bulk system. Converging the standard error of the defect system to σn = 1 meV
defect =

1meV
cell assuming the same standard deviation of σ = 10 meV

atom = 1000meV
cell however results in nd = 106

MD steps which are necessary for the defect calculations. A dramatic effect is therefore observed
on ndefect/nbulk: to obtain the same precision in the defect formation energy as in the bulk free
energy calculation a sampling time is necessary which increases by a factor of 104. Since, as has
been shown in Sec. 4.1, converging the anharmonic bulk free energy to 1 meV/atom is already a
difficult task on an ab initio level, it becomes clear that to converge defect formation energies to a
similar quality is a considerable computational challenge.

For the here employed ab initio calculations the UP-TILD method was used as described in
Sec. 2.4. Only a few hundred fully converged DFT configurations are needed to achieve to the here
desired statistical accuracy of 0.1 meV/atom in F (V, T ) and 10 meV/defect in the corresponding
108(107) atom cell for Gf . Using this approach all contributions entering the free energy of the
vacancy cell and perfect bulk cell, F vac and F bulk, are computed as a function of volume and
temperature. The temperature and pressure dependent Gibbs energy of formation is then given
by:

Gf (P, T ) = F vac(Ω, T ;N)−NF bulk(V, T ) + Pvf . (4.6)

The volume of the defect supercell Ω with N atoms and the volume per atom V of the perfect
bulk are self-consistently determined to correspond to a given pressure P (standard atmospheric
pressure). The volume of vacancy formation is given by vf = Ω−NV .

For the in the following presented ab initio calculations on defect formation in Al and Cu a
summary of technical aspects and a rigorous account for the convergence tests performed can be
found in Refs. [68] and [92]. The convergence errors due to DFT related parameters (e.g., k-points,
energy cutoff) are shown in the mentioned references for the performed T=0K, electronic and
quasiharmonic and anharmonic calculations. Statistical sampling has been very carefully checked
and is ensured to be below 0.1 meV/atom for every MD run.

4.4.2 Mono- and divacancy interpretation of vacancies in Al and Cu

The key quantity to characterize point defects is their Gibbs energy of formation, Gf , defined in
Eq. 3.18 on page 45. Despite the enormous economical impact of point defects, large discrepancies
can be found among the available Gf data even for simple materials like Al and Cu. The major
obstacle is deeply rooted in the very nature of point defects: all affected properties are inevitably
governed by the defect concentration c = exp[−Gf/(kBT )]. It is the exponential factor in this
expression that renders any experimental observation a challenge, forcing strict bounds upon the
available statistics and the accessible temperature window. In Sec. 3.2.1 it was therefore elaborated
that measurements of point concentrations can only be performed at sufficiently high temperatures.

In practice, experiments are restricted to a temperature range between ≈60% to 100% of the
melting point as indicated in Fig. 4.9 for Al and Cu by the gray shaded area. For any element in the
periodic table virtually no measurements exist for vacancy concentrations below this temperature
window. Take differential dilatometry (DD) as an example, the main experimental workhorse
for determining vacancy concentrations pioneered by Simmons and Balluffi in the 60’s [155]. DD
is built on the fact that creating a vacancy — by bringing an atom to the surface — leads to
an increase in the macroscopic length L of the sample, ∆L/L0, where L0 is the length at a given
temperature. Due to the presence of vacancies in the solid the macroscopic expansion is greater than

3Fitting the highly accurate DD data of copper [81] (>1220 K) as suggested in Ref. [82] results in Hf = 1.35 eV.
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Figure 4.9: Experimental (black symbols) and DFT [blue/orange (LDA/GGA-PBE) lines] Gibbs energy of
formation of vacancies in (a) Al and (b) Cu. The insets show the corresponding vacancy concentration
in the typical Arrhenius plot. Experiments (PAS=positron annihilation spectroscopy [81], DD=differential
dilatometry [81, 155]) are limited to a region (gray shaded) close to the melting point, Tmelt

Al/Cu. Extrapola-

tions of available PAS [81, 156–160] and DD data [81, 82, 155, 156, 161–163] to T=0 K using the common
Arrhenius ansatz introduced in Sec. 3.2.1, Gf (T ) = Hf − TSf , introduce scatter in the reported values
(filled/empty black bars mark corresponding intervals)3. Formation energies computed by common ab initio
approximations such as the T=0 K (dotted line) and the electronic plus quasiharmonic (el+qh; dashed line)
approach are shown. The yellow and red dots in Al and Cu correspond to highly accurate T=0 K calcu-
lations using QMC (many-body diffusion quantum Monte Carlo) and the HSE (Heyd-Scuseria-Ernzerhof)
functional taken from Refs. [126, 164].

the simultaneously measured increase in ∆a/a0 where a is the lattice spacing measured e.g. by X-ray
techniques. Measuring ∆L/L0 simultaneously with ∆a/a0 with increasing temperature, accurate
defect concentrations can be obtained at high temperatures and concentrations where statistics is
sufficient. The final concentration using differential dilatometry is defined as c = 3(∆L/L0−∆a/a0).
For a long time the mentioned high temperature DD data of Simmons and Balluffi [66, 155, 165–167]
were an untouchable reference. In 1994, Hehenkamp [81] was able to set a new accuracy standard in
DD measurements and it became possible to measure absolute defect concentrations down to about
10−5 which can also be seen in the insets of Fig. 4.9(a) and (b). The same figures nicely capture
the strength and limitations of DD (open circles): in the temperature range from the melting point
of both elements down to about 80% of Tmelt, the data points are lying accurately on a smooth
curve. Below 80% of Tmelt, the measured points suddenly start exhibiting a strong scatter. In this
temperature/concentration regime statistics are too poor to provide a reliable picture.

The situation can be somewhat improved by utilizing positron annihilation spectroscopy (PAS)
developed in the early 70’s (see Ref. [168] for a summary). PAS relies on the fact that positron
lifetime inside a material increases with increasing vacancy concentration. Due to a strong corre-
lation of this dependency, it allows to assess a lower concentration window (down to ≈ 10−6) and
thus a lower temperature range than DD (filled circles in Fig. 4.9). PAS has, however, other severe
limitations: above roughly a concentration of 10−4 saturation effects set in prohibiting accurate
measurements. An even greater shortcoming is that PAS in general does not yield absolute vacancy
concentrations and can do so only if the measured temperature dependence can be aligned with
other absolute data [81]. In principle though it will only provide vacancy formation enthalpies Hf
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Figure 4.10: Example assessment for the cop-
per vacancy formation energy in the generally
applied mono- and divacancies picture as eval-
uated by Neumann [82]. The blue solid lines
show the corresponding Gibbs energies of for-
mation. Respective concentrations of mono-
and divacancies are plotted in the inset. Due to
application of the Arrhenius law, enthalpy and
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dent for both defect species. The red dashed
line is the effective Gfeff(T ) in Eq. 4.10 which is
obtained assuming ctotal = cvac + 2cdivac as ex-
plained in the text. Experimental data (black)
are similar to Fig. 4.9.

which correspond to the slope in the insets of Fig. 4.9 but in general never entropies of formation.
All this renders experimental point defect characterization a daunting task. Yet, combining both
methods, the best one can ever hope to achieve for unary elements are accurate concentration
measurements to not lower than ≈ 60% of the homologous temperature. Details regarding DD and
PAS can be found in Refs. [61, 92, 168, 169].

Despite the new accuracy standard set by DD and PAS, significant and so far unexplained
ambiguities remain: depending on the method and considered fitting range, the extrapolated en-
thalpy of formation yields a large window which is shown in Fig. 4.9 by the filled and empty black
columns on the left, marked by DD and PAS. This clearly introduces uncertainties regarding the
interpretation of point defect measurements. The established model for point defect formation
assumes an Arrhenius-like behavior Gf (T ) = Hf − TSf with temperature independent enthalpy
and entropy Hf and Sf . As shown in Fig. 4.9, the limited and scattered experimental data do
not allow to check the accuracy of this assumption in the experimentally accessible range. Indeed,
Fig. 4.9 indicates deviations from the simple linear Arrhenius behavior [difference in slopes between
positron annihilation spectroscopy (PAS) and differential dilatometry (DD) data] [68] which have
been extensively and controversially discussed over the last decades [50, 63, 64, 81, 152, 170]. There
are essentially two, not exclusive, alternatives which are heavily debated in literature [64] to explain
the inconsistencies between PAS and DD measurements: Either (A) the enthalpy and entropy of
formation of the point defect, Hf and Sf , are temperature dependent or (B) the experiment mea-
sures effective concentrations which are dominated not only by one, but by at least two types of
point defects. Model (A) is in principle plausible since PAS and DD access different temperature
windows (see also black open and filled experimental data in Fig 4.9) and consequently measure
different Hf values. Assumption (B) however is clearly favored in literature with divacancies as
the second defect species. A temperature dependence of Hf and Sf on the other hand was until
recently clearly against expectations [64] leaving divacancies as the only considered solution.

Assuming the mono- and divacancy picture, the effectively measured vacancy concentration is
written as

c = ctotal = cvac + 2cdivac (4.7)
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Element Al Al Cu Cu Cu Cu

Reference [64] [163] [82] [171] [156] [173]

Sfmono 0.76 0.6 1.08 2.5 1.4 0.35

Sfdi 3.2 2.2 5 6.7 4.9 1-2

factor 3.7 4.2 4.6 2.7 3.5 2.9-5.7

Table 4.1: Mono- and divacancy entropies of formation for Al and Cu. The factor Sf
divac/S

f
vac illustrates

the remarkably high divacancy entropies which have to be assumed in a mono- divacancy picture to fit the
corresponding experimentally found curvature of Gf . Reference [82] is additionally illustrated in Fig. 4.10.

where the factor 2 emphasizes that a divacancy effectively creates two free lattice sites. Corre-
sponding concentrations of mono- and divacancies are defined using Eq. 3.17 on page 45

cvac = 1 exp

[
−Gvac(T )

kBT

]
, and cdivac = 6 exp

[
−Gdivac(T )

kBT

]
(4.8)

where the corresponding geometry factors have been used. Assuming an Arrhenius behavior for
the mono- and the divacancy,

Gvac(T ) = Hvac − TSvac, and Gdivac(T ) = Hdivac − TSdivac (4.9)

and solving Eq. 3.17 for Gf (T ), yields an effective Gibbs energy of vacancy formation

Gfeff(T ) = −kBT ln[ctotal] = −kBT ln

[
exp

(
−Hvac − TSvac

kBT

)
− 12 exp

(
−Hdivac − TSdivac

kBT

)]
,

(4.10)
which is not linear and can be fitted to experimental data. This situation is illustrated in Fig. 4.10
for an assessment of copper by Neumann [82]. The aluminum vacancy is another prominent and
rigorously investigated example where the high temperature DD measurements consistently in-
dicate a larger effective formation enthalpy than the low temperature positron data [81]. These
observations result in a significant curvature of formation energy in the high temperature regime
(compare Fig. 4.9(a)).

A crucial requirement when applying Eq. 4.10 is that the offsets and slopes of the mono- and di-
vacancy Gf curves, i.e., Hvac/divac and Svac/divac, obey certain relations in order to be in agreement

with the observed curvature of the effective Gfeff(T ) in the high temperature region. In particular,
Sdivac needs to be considerably higher for the divacancy in comparison to the monovacancy. Ta-
ble 4.1 collects current evaluations for aluminum and copper and highlights the huge differences
between Svac and Sdivac which result in significant divacancy concentrations. Depending on the as-
sessment, about 20% to 40% of the defects at the melting temperature have to be divacancies. This
generally found experimental interpretation is found in numerous evaluations [64, 82, 156, 163, 171–
173]. Unfortunately however it is not possible to separate the experimentally measured effective
concentrations into mono- and divacancies. A verification of experimentally evaluated divacancy
concentrations is currently not feasible and a theoretical investigation therefore highly desirable.

Theoretical studies on mono- and divacancy formation have so far been restricted to T=0K.
Corresponding formation energies for Al and Cu are shown in Fig. 4.9 as dotted lines. Finite
temperature vibrational effects could only be approximated for these systems in a harmonic or
(quasi-) harmonic ansatz and the results for Al and Cu are also shown in Fig. 4.9. The possible
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Figure 4.11: Gibbs energies of divacancy for-
mation for Al and Cu based on DFT GGA-
PBE results of the present study including
all relevant excitation mechanisms: quasihar-
monic, electronic and anharmonic. Exper-
imental assessments (blue dashed lines) are
taken from Refs. [64, 82]. Resulting diva-
cancy concentrations at the melting point dif-
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tude between DFT calculations and the shown
assessments for both elements. LDA and
QMC results for Al and Cu at T=0 K (yel-
low and blue triangles and dot) are taken from
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deficiencies of this approach on defect formation properties have been discussed in Sec. 3.2.1. To
treat the full temperature dependence on a fully ab initio basis was until recently fully out of
question. Taking the theoretical restrictions to low temperatures and the experimental restriction
to high temperatures into account, it becomes evident that a direct and conclusive comparison
of experiment and theory has so far been hampered by a large temperature gap. To test current
assessments as presented in Fig. 4.10, the formalism introduced in Sec. 4.4.1 is ideally suited.
It allows to investigate the full vibrational spectrum of defect formation including anharmonic
contributions and is therefore able to in particular clarify whether, as postulated by model (B),
di-vacancies contribute to the non-Arrhenius behavior shown in Figs. 4.9 and 4.10. Applying
presented methodology by including all excitation mechanisms including quasiharmonic, electronic
and especially anharmonic contributions the temperature dependence of Gfdivac was calculated.

Fig. 4.11 shows for the GGA functional the calculated quasiharmonic plus electronic Gibbs
energy of divacancy formation (dashed orange lines) for aluminum and copper as well as the final
result including anharmonic contributions (full lines) up to the melting temperature. The calcu-
lated GGA formation energy compares well with recent literature values at T=0K for Al [175]
(orange triangle) and Cu [63] (orange dot). The shown T=0K LDA and QMC formation energies
(blue and yellow) from Refs. [164, 170, 176] are higher in comparison to GGA results. This trend
is well known in literature [177] and consistent with the formation energies in GGA and LDA
for the mono- vacancy shown in Fig. 4.9. For both material systems a substantial anharmonic
contribution can be observed, indicated by red arrows at the corresponding melting temperature.
Especially the high divacancy formation enthalpies at T=0K result in gross deviations from pos-
tulated divacancy results shown by the dashed blue lines. The temperature dependence of the final
curves shows deviations from the generally assumed linear Arrhenius dependence. The resulting
divacancy concentrations are found to be in gross contrast to the estimated values. Focusing on
Cu, the T=0K Gf (actually Hf ) for divacancies is roughly equal to the 2 eV, being therewith
approximately twice the value for the monovacancy Gf of 1.06 eV (see Fig. 4.9). The governing
physics is quickly identified: for creating a monovacancy it is necessary to break 12 bonds (fcc
structure) while (2×12−1) bonds are removed for a divacancy. The resulting GGA divacancy con-
centrations at the melting point resulting from our calculations are about 6× 10−7 − 7× 10−7 and
are summarized in Table 4.2. The corresponding PBE monovacancy concentrations are reported
for completeness and taken from Sec. 4.4.3. Comparing to the total effectively measured exper-



78 4.4. Point Defects

Table 4.2: Comparison of mono- and divacancy concentrations in Al and Cu at their corresponding melting
temperature which in experiment cannot be measured independently. Monovacancy results are presented
in detail in Sec. 4.4.3 and are reported for completeness. A concise summary of Al vacancy data can be
found in Ref. [81]. For Al the experimental concentrations are taken from Ref. [64] by the given values of

Hf
vac = 0.65 eV, Hf

divac = 1.13 eV, Sfvac = 0.8 eV and Sfdivac = 3.2 eV.

Reference ctotal cmono cdivac cdivac/cmono

Experiment
Al [64] 9.3× 10−4 6.9× 10−4 1.2× 10−4 17%
Cu [82] 7.4× 10−4 4.4× 10−4 1.5× 10−4 34%

Theory
Al this work (PBE) 9.7× 10−4 9.7× 10−4 7.0× 10−7 ∼0.1%
Cu this work (PBE) 8.8× 10−4 8.8× 10−4 5.9× 10−7 ∼0.1%
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Figure 4.12: Extended version of Fig. 4.9, in which additionally the full curves are shown (el+qh+ah) which
include all free energy contributions in particular anharmonicity. The error resulting when assuming the
Arrhenius extrapolation, ∆Arr, is marked by the orange arrow at T=0 K. Figure is adopted from Ref. [68].

imental concentrations, 7 × 10−4 − 9 × 10−4, those are ∼0.1% for Al and Cu, respectively, and
not 20% to 40% as had to be assumed in the empirical model (B), i.e., two orders of magnitude
smaller. Divacancy formation energies in LDA or using QMC formation energies are seen to be
even higher and therefore result in even lower divacancy concentrations with corresponding greater
differences to experimental estimates. The consequence of these observations is that (a) the ratio
between the mono and di-vacancy entropy is rather similar and not differing by up to a factor of 5
as was summarized in Table 4.1 and, more importantly, that (b) di-vacancies [model (B)] can be
clearly ruled out as a source of the non-Arrhenius behavior for both elements [152] due to negligible
concentrations. The strong temperature dependence of the formation energy of the mono-vacancy
shown in Fig. 4.9 remains therefore as an exclusive source.

4.4.3 Gibbs energies and entropies of defect formation

In the previous section the mono- divacancy model has been ruled out as a possible mechanism to
explain the temperature dependence observed for PAS and DD data shown in Fig. 4.9. From the
same figure it is also evident that a purely ab initio quasiharmonic treatment of atomic vibrations
including electronic contributions is not sufficient to capture the experimental results of mono-
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Figure 4.13: Entropy of formation, Sf = −dGf/dT , for the (a) Al and (b) Cu mono- (solid) and di-
vacancy (dashed line). The thinner lines indicate the entropy of formation considering only the electronic
and quasiharmonic free energy contribution (el+qh). The thick curves include all contributions in particular
anharmonicity (el+qh+ah). Green lines represent numbers suggested in Refs. [64, 82] for explaining non-
Arrhenius behavior within a mono- and di-vacancy model. Experimental PAS and DD entropies (filled/empty
black bars) are derived from the experimental data shown in Fig. 4.12. Note that in general PAS experiments
only provide the enthalpy of formation, Hf . The values for the entropy of formation, Sf , are given in
experiments when the trapping rate is known or additional DD data is available to align PAS measurements
as done in Ref. [81]. Figure (b) and the caption are adopted from Ref. [68].

vacancy formation. In this section, results will be presented which employ highly accurate finite
temperature DFT calculations for the monovacancy including in particular anharmonic excitations.

Fig. 4.12 compiles available experimental data and shows the resulting Gibbs energy of mono-
vacancy formation for Al and Cu for the two commonly employed exchange-correlation functionals
LDA and GGA (thick solid blue and orange lines). For the full solution a strong non-negligible
deviation from the linear Arrhenius law can be observed. Considering only the experimentally
accessible temperature window (gray shaded regions in Fig. 4.12) this deviation is difficult to de-
termine with certainty. Having the full temperature dependent formation energy at hand, from
T=0K to the melting temperature, allows to measure the error introduced by assuming the state-
of-the-art linear Arrhenius extrapolation. When applying the general procedure, a fit through the
GGA high-temperature data (orange ”Arrhenius” lines), the extrapolated T=0K vacancy forma-
tion energy significantly overestimates the actually calculated formation energy by 0.15 eV (≈23%)
for Al and 0.22 eV (≈20%) for Cu [68]. Since so far only the linear Arrhenius extrapolation has been
used also for other elements, non-negligible corrections to the generally accepted T=0K formation
energies might possibly be found also for other systems. For the investigated elements, Al and
Cu, the differences between PAS and DD formation enthalpies can now be understood by the pre-
sented results. As assumed by model (A) in Sec. 4.4.2, the two methods are restricted to distinct
temperature ranges and probe therefore the slope of the temperature dependent (non-Arrhenius)
formation energy curve in different temperature regions.

The presented results reveal that anharmonic phonon-phonon interactions are an integral con-
tribution to vacancy formation energies and need to be considered in future studies. Previously
reported discrepancies between DFT-GGA and experimental vacancy formation disappear and it
is possible for the first time to consolidate PAS and DD measurements and theoretical ab initio
results in one unified picture.

Having determined the full vacancy formation energy Gf (T ) it is furthermore possible to directly
derive the ab initio computed formation entropy Sf (T ). For both elements, Fig. 4.13 shows the
corresponding results. The current experimental assessments which were restricted to the mono-
and divacancy picture, are shown in green. The experimental entropies for Al [64] and Cu [82] are
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presented in light green for the monovacancy (full line) and divacancy (dashed line). To reflect
the difference between experimental PAS and DD formation entropies, a critical assumption that
had to be made in the empirical mono- divacancy model was to assume for di-vacancies a much
larger entropy of formation than for mono-vacancies. This can be seen in Fig. 4.13 and is also
summarized for other evaluations in Table 4.1 on page 76. The dark green (dashed dotted) curve
represents the final and effective experimental formation entropy which takes into account mono-
and divacancies. It reflects the increase in entropy at high temperatures. From the fully ab initio
calculated results it is seen that the actual ratio between mono- and divacancy entropy of formation
(orange dashed versus full lines) is positive but in gross contrast to the factor of up to 5 higher
which had been postulated when assuming an Arrhenius behavior. The here presented calculations
show that this assumption is unsustainable and that the ratio between the mono- and divacancy
entropy of formation is very similar in the experimentally accessible high temperature region.

4.4.4 Breakdown of the Arrhenius law and implications

Parts of the following discussion follow the outline of Ref. [68].

In Sec. 3.2.3 defect formation energies and entropies were assessed by making a formal con-
nection to the Grüneisen theory of solids which goes beyond a harmonic ansatz for the potential
of atoms close to the defect. This connection allows to understand a further important feature
which can be observed in the calculated vacancy formation entropy of Al and Cu in Fig. 4.13:
The formation entropy it is not a temperature independent constant. This assumption however
is essential for the Arrhenius approximation. For Al and Cu a linear temperature dependence is
found with an offset at low temperatures and the same behavior is observed in good approximation
for both, mono- and di-vacancies. Integrating this linear temperature dependent entropy of va-
cancy formation leads to the observed T 2 scaling in the Gibbs formation energy (see Fig. 4.12). It
can therefore be followed that the calculated numerical results follow the temperature dependence
found for the LGT energy and entropy of formation which were derived in Sec. 3.2.3 and are shown
in Figs. 3.10(d) and (f) on page 54. These findings suggest that the nature of this behavior for
defect calculations might be generic.

It has been shown [68] that at least for Al and Cu the formation entropy, S, is not constant
but has to be replaced with a model in which it is expanded up to the first order in temperature
Sf (T ) ≈ S0 + S′ T . This definition is similar to the LGT entropy (Eq. 3.38) derived in Sec. 3.2.3.
A further observation from Fig. 4.13 is that for mono-vacancies (solid orange line) the S0 term
is negligible with respect to the S′ T term. For divacancies the corresponding offset is higher
but the corresponding contributions have been found to be negligible for the effective vacancy
concentrations and do not influence the effective results. It will be therefore further approximated:

Sf (T ) ≈ S′ T, with S′ = const. (4.11)

Using the general thermodynamic relation(
∂H

∂T

)
= T

(
∂S

∂T

)
(4.12)

and inserting the entropy in Eq. 4.11, the enthalpy of formation can be gained by integrating both
sides

Hf (T ) = C +
1

2
S′ T 2 = Hf

0K +
1

2
S′ T 2 (4.13)

where the integration constant C is identified as the formation enthalpy Hf
0K at T=0K. This
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Table 4.3: Comparison of the previously applied linear Arrhenius approximation and the newly proposed
Grüneisen theory (LGT). Table is adopted from Ref. [68].

Enthalpy of Entropy of Gibbs energy of Temperature Fitting
formation formation formation dependence of Gf coefficients

Linear Arrhenius
Hf

0K ≡ const. Sf ≡ const. Gf = Hf
0K − TSf linear Hf

0K, Sf
approximation

Local Grüneisen
Hf

0K ≡ const.
Sf = TS′

Gf = Hf
0K −

1
2T

2S′ quadratic Hf
0K, S′

theory (LGT) S′ ≡ const.

relation corresponds to fitting experimental point defect formation Gibbs energies to

Gf (T ) = Hf − TSf

= Hf
0K +

1

2
S′ T 2 − T S′ T

= Hf
0K −

1

2
T 2 S′ (4.14)

rather than to Gf = Hf
0K − T Sf with Sf = const. The ab initio derived LGT based on Eq. (4.14)

has the same number of fitting coefficients as the linear Arrhenius model [68]. While both require

Hf
0K, the fitting of S in Arrhenius approximation is replaced by fitting the slope, S′ = ∂Sf/∂T , in

LGT. Table 4.3 is used to compare the main differences between the conventional linear Arrhenius
approximation and the ab initio derived LGT.

Assuming an LGT type of vacancy formation as derived in Eq. 4.14 has far reaching conse-
quences with respect to experimental and theoretical evaluations of vacancy formation. All exper-
imental studies have so far used the conventional Arrhenius dependence with constant entropies
of formation. Applying however the LGT extrapolation to experimental measurements will result
in T=0K enthalpies which differ from the experimentally assessed values. For Al and Cu, revised
enthalpies of formation at T=0K (equivalent to Hf

0K) are given in Tab. 4.4 when using solely ex-
perimental input data with the LGT extrapolation derived in Eq. 4.14 (eights row, grey shaded:
LGT DD+PAS). These values are compared to previous Arrhenius extrapolations of PAS and DD
data (fourth and fifth row, Arrhenius DD and Arrhenius PAS). When performing such a linear
extrapolation, errors of up to 0.24 eV are introduced in comparison to fully ab initio calculated
data (∆Arr in Fig. 4.12).

For Al, the experimental DD and PAS assessments extrapolated by the Arrhenius law span
a range of up to 0.15 eV as shown in Fig. 4.12 by the filled and empty black bars. Tab.4.4
shows that the Landoldt-Börnstein formation energy — extrapolated linearly from PAS data —
is close to the revised LGT formation energy (delta of 0.01 eV) and thus unlikely to change any
conclusions/benchmarks where this value has been used [68]. For Cu a similar spread of 0.25 eV
is found at T=0K between experimental PAS and DD extrapolations. Here however the difference
between the revised LGT value and the one recommended by Landoldt-Börnstein is 0.22 eV, i.e.,
an order of magnitude larger as for Al, making it mandatory to use the revised value [68]. Recent
ab initio calculations on Ag [126] using HSE T=0K calculations show an excellent agreement
between high temperature experimental data extrapolated to T=0K using LGT. Corrections
due to LGT turn out to be 0.15 eV for Ag with respect to the recommended Landoldt-Börnstein
values. Consequently, providing revised experimental enthalpies also for other elements seem highly
desirable to guide future studies which rely on the availability of highly accurate experimental data.
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For elements as Cu and Ag a direct comparison of theory and experiment can not be achieved
without the use of accurate extrapolation methods as LGT. Future studies need to clarify whether
the assumption S0 ≈ 0 made in Eq. 4.11 is valid for Al and Cu only (and apparently Ag) or whether
this assumption can be universally applied when calculating vacancy formation entropies.

Table 4.4: Comparison of experimental formation enthalpies from the compilation in the Landoldt-Börnstein
series [178] and of Arrhenius-extrapolated PAS and DD formation enthalpies (averaged values of black
filled/empty bars in Fig. 4.12) with experimental values obtained from the here proposed local Grüneisen
theory (LGT; Tab. 4.3) and with ab initio computed formation enthalpies at T=0 K. For computing the
ab initio values various flavors of exchange-correlation functionals have been employed: LDA, GGA-PBE,
GGA-PW91, and AM05. Additionally, surface corrections based on the scheme from Ref. [177] have been
used for the PBE and PW91 functional. The columns labelled ∆exp give the difference to the LGT DD+PAS
value. Table and caption are used form Ref. [68].

Al Cu

Hf
0K ∆exp Hf

0K ∆exp

E
x
p

er
im

en
t

Landoldt-Börnstein [178] 0.67 0.01 1.28 0.22
Arrhenius DD 0.72 0.06 1.30 0.24
Arrhenius PAS 0.68 0.02 1.20 0.14
LGT DD 0.67 0.01 1.07 0.02

LGT PAS 0.65 -0.01 1.05 -0.01

LGT DD+PAS 0.66 0.00 1.06 0.00

T
h

eo
ry

LDA 0.69 0.03 1.26 0.20
PBE 0.64 -0.02 1.06 0.00
PBE+surface corr. 0.82 0.16 1.37 0.31
PW91 0.51 -0.15 0.99 -0.07
PW91+surface corr. 0.75 0.09 1.39 0.33
AM05 0.87 0.21 1.29 0.23

A further observation worth noticing in Fig. 4.12 is the similarity of the curvature in the
temperature dependence found for LDA and GGA. While at T=0K the formation enthalpies, Hf

0K,
differ between LDA and GGA, the calculated temperature dependence (curvature) are remarkably
similar. This finding is important since it unveils that a nonlinear vacancy formation energy, as
derived by LGT, is valid irrespective of the chosen exchange-correlation (xc) functional. Therefore,
the temperature dependent GGA or LDA data can both be fitted to experimental high temperature
data and will yield a universal formation enthalpy at T=0K. Since experimental high temperature
formation energies are known to a very high accuracy of about 20meV per defect (see Fig. 4.12),
consequences for the performance of current xc functionals can be drawn.

Figure 4.12 clearly shows that the GGA-PBE based curves are in very good agreement with all
the available experimental data in absolute value and curvature. The ab initio derived LDA curve
on the other hand shows a systematical offset towards too high formation energies (albeit with a
similar curvature). The agreement of GGA-PBE for the vacancy formation in copper has meanwhile
been confirmed by combining LGT with HSE calculations at T=0K [126]. The in this thesis derived
LGT is in evident contrast to the established interpretation of DFT results for vacancy formation
which were in the past a) drawn from calculations without the inclusion of anharmonicity and b)
compared to Arrhenius-extrapolated experimental data [152, 177, 179]. In these previous studies,
it was found that LDA is better suited to calculate vacancy formation energies at T=0K since
the corresponding formation enthalpies — which were however drawn from Arrhenius extrapolated
data — fitted experimental high temperature data best. The general conclusion was that PBE
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Figure 4.14: Volume of vacancy formation as defined in Eq. 3.26 for (a) Al and (b) Cu including quasihar-
monic plus electronic contributions (dashed lines) and additional anharmonic contribution (full lines). The
inset in the left figure is a schematic reflecting the substantial increase of the defect cell upon consideration
of anharmonic effects.

and PW91 systematically underestimate experimental findings. This argumentation can now be
understood due to Fig. 4.12 when comparing the Arrhenius line (orange) to the ab initio formation
energies at T=0K which were available at that time. The Arrhenius extrapolation overestimates
the actual temperature dependence (for LDA and GGA) and therefore agrees well with the higher
formation energies found for Al and Cu by the LDA functional. A similar conclusion can be drawn
when comparing in Tab. 4.4 the experimentally extrapolated Arrhenius Hf

0K values (PAS and DD)
to the theoretical values in the lower part of the table.

The apparent success of LDA to describe vacancy formation better than GGA has been previ-
ously explained by the fact that LDA describes surfaces in metals better than GGA [177, 180]. It
was anticipated that vacancies — which can be regarded as an inner surface in a bulk system — need
to be calculated by novel xc-functionals [152, 181] which are able to partly correct the energetics
of inner surfaces. The performance of corresponding functionals was however benchmarked against
Arrhenius extrapolated experimental data. Consequently, concepts which use surface corrections to
remedy for DFT errors need to be revised since the current study clearly shows that the agreement
of LDA to Arrhenius extrapolated data is accidental as has been discussed above. Tab. 4.4 shows
the vacancy formation energy at T=0K for three functionals which include surface corrections
(lines: PBE+surface corr., PW91+surface corr., AM05). The corresponding data is additionally
displayed in the inset of Fig. 4.12. All three surface corrected functionals yield significantly too large
formation energies at T=0K in comparison to the revised LGT values and also in comparison to
the uncorrected functionals. Considering in Tab. 4.4 the suggested value by Landoldt-Börnstein —
which was extrapolated linearly — it becomes evident why surface corrected functionals had been
favored previously and also highlights the importance to accurately extrapolate experimental data
to T=0K [68]. This study has shown that the overall best performance is found for non-surface
corrected functionals and in particular GGA-PBE as shown in Table 4.4 and Fig. 4.12.

In Sec. 3.2.3 the temperature dependent volume of defect formation has been considered in
Eq. 3.26 when formulating the defect formation entropy. The majority of theoretical studies has
investigated this quantity exclusively at T=0K [182–184]. Theories aiming to predict the tempera-
ture dependence of the vacancy volume turned out to be a daunting task [185, 186]. Corresponding
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Figure 4.15: Explicit GGA anharmonic free energy contribution F ah for bulk (black) and for the defect
supercell (red) as a function of temperature for (a) Al and (b) Cu. The calculated lattice constants are
shown in Å. The anharmonic free energies were scaled per atom. The calculated averages and corresponding
statistical errors are represented by the filled dots and vertical solid lines and were obtained in a 108/107
atomic fcc conventional supercell. A slight convex temperature dependence can be observed for the vacancy
while a concave dependence is seen for the bulk. The solid lines correspond to the performed fit of the free
energy surface and the dotted lines are merely a guide for the eye. The anharmonic correction is significantly
stronger in the bulk case as compared to the vacancy cell. This holds even if the 1/108 part is subtracted
from the bulk free energy which is necessary for calculating defect properties due to Eq. 3.26. The shown
free energy corrections result in an increased hardening effect of bulk frequencies in comparison to the defect
cell. This can also be interpreted as an effective softening due to the defect.

investigations are rare, probably also since it had been argued that the vacancy volume is nearly
constant as a function of temperature [172]. This finding was confirmed by empirical potential
calculations using the quasiharmonic approximation [187].

It is generally known that the vacancy volume at T=0K is smaller than the volume of the bulk
atom. The calculated ratio is found to be similar for all crystal structures and is approximately
vf/vb ≈ 0.7 [174] where vb represents the volume of a single atom in a perfect bulk cell and vf the
(excess) volume created due to the presence of a single vacancy. Having access to the full ab initio
calculated thermodynamics of vacancy formation, the resulting temperature dependence of the
volume of the defect vf can be evaluated by using Eq. 3.26 on page 51. The numerically obtained
result for the temperature-dependent vacancy volume of formation is shown in Fig. 4.14 for Al and
Cu. When considering only the quasiharmonic result, a negligible effect is found with respect to
the T=0K volume, similar to previous estimates [187]. Including the here calculated fully ab initio
anharmonic contributions to vacancy formation, the excess volume increases significant by 20% for
Al and 25% for Cu.

The increasing defect volume is due to a stronger expansion of the defect supercell in comparison
to the bulk supercell. In Fig. 4.5 on page 64 a hardening of the bulk lattice has been found for LDA
and GGA upon inclusion of anharmonic effects which, however, is not a contradiction. Anharmonic
contributions lead to a hardening effect in both, bulk and defect supercell. This is shown in Fig. 4.15
for Al and Cu. It can be observed that the positive anharmonic free energy contribution to the
bulk free energy (black) is larger compared to the correction for the defect supercell (red) which
is smaller. Therefore, the hardening due to anharmonic phonon-phonon interactions is greater in
the bulk as compared to the defect supercell. The resulting net effect is therefore a softening with
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respect to the bulk supercell due to the introduction of the defect and leads in essence to an increase
of the vacancy volume.

The ab initio calculated expansion of the defect volume shown in Fig. 4.14 is a difference
between the corresponding defect and bulk volume. Applying the corresponding expansion for
bdefect in Eq. 3.37 with bulk V0 and γ values, approximate entropies of vacancy formation can be
calculated.4 The experimental Grüneisen parameters γ are considered, 2.16 for Al [26, 85, 86]
and 2.0 for Cu [188, 189]. Resulting entropies of vacancy formation due to Eq. 3.35 at their
corresponding melting temperature are 2.48 kB and 2.94 kB for Al and Cu respectively and therefore
the correct order of magnitude in comparison to Fig. 4.13. In the LGT formulation the expansion
of the defect volume is a critical quantity which directly influences the Gibbs energy as well as the
entropy of defect formation. For defects where an atom is substituted by another atom the created
defect volume — and the anharmonicity towards the defect — is smaller and the corresponding
anharmonic effects could therefore be expected to be less crucial. Corresponding tests are necessary
due to the findings of the significant anharmonic contributions for the vacancy.

4The calculated relative expansion (brel = V (T )
V0

− 1) of the vacancy volume is 0.2 for Al and 0.25 for Cu (see

Fig. 4.14). The corresponding ab initio derived bulk volumes vb at T =0 K are 16.02Å3 for Al and 12.03Å3 for Cu
resulting in absolute b coefficients of 0.0034 Å3/K for Al and 0.0022 Å3/K for Cu.



Chapter 5

Summary and Outlook

The present thesis has addressed a major challenge of ab initio assisted materials design: The
impact of the full spectrum of atomic vibrations — in particular the challenging phonon-phonon
interactions — on the thermodynamic properties of a wide range of materials up to the melting
temperature. Beyond the performed numerical assessments, a physically intuitive picture has been
developed for the interpretation of anharmonic contributions. For bulk systems it was shown that
the correlated motion of atoms breaks the symmetry of the harmonic potential which results in
anharmonicity (see Fig. 3.1 on page 34). The concept of phonon-phonon interactions in fcc elements
emerges mainly as a consequence of the anharmonic interactions between pairs of atoms. Defects
were found to already break the local symmetry of the atomic positions which introduces strong
anharmonic effects (see Fig. 3.8 on page 49). These effects were found to be responsible for the
deviations from the textbook definition of the Arrhenius law.

The key findings of this thesis are summarized as follows:

1) The Local Anharmonic (LA) approximation extends the quasiharmonic approach to capture
anharmonic effects to meV accuracy for similar computational cost.
The discovery of a broken symmetry when considering correlated atomic motion was used
to develop the Local Anharmonic approximation in Sec. 3.1.2 which relates the major part
of anharmonic contributions to the natural picture of Morse-like pair interactions. It was
shown that the new approach can be derived from a small set of T=0K calculations and
goes far beyond the established quasiharmonic approximation for very similar computational
cost. For the investigated wide range of fcc elements the nearest neighbor LA Hamiltonian
was found to yield meV accuracy up to the melting temperature.

2) Using the LA approximation to calculate numerically exact free energies results in a speed up
of about two orders of magnitude in comparison to a harmonic reference for thermodynamic
integration.
Based on the above mentioned approximate LA free energies, numerically exact free energies
can be obtained by using the LA reference for thermodynamic integration to the full DFT
potential energy surface. Harmonic potentials on the other hand describe a different phase
space (see Fig. 3.1 on page 34) and can only be used with significantly lower efficiency as
reference potentials for thermodynamic integration (see Fig. 3.6 on page 42). Corresponding
benchmarks in Sec. 3.1.3 show that anharmonic references, and in particular the LA approx-
imation, speed up thermodynamic integration significantly. The LA method opens therewith
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the possibility to routinely study the full set of vibrational contributions completely from first
principles and without the need to resort to approximative methods.

3) Anharmonic contributions to thermodynamic properties are of the same order of magnitude
as electronic and quasiharmonic contributions and should therefore not be neglected in quan-
titative assessments.
While for bulk aluminum anharmonic effects were previously found to be important [2], it
was shown in this thesis that the corresponding contributions are actually even more dom-
inant for most of the investigated bulk elements (see Secs. 4.1 and 4.3). Since fcc elements
are usually expected to be only weakly anharmonic in comparison to more open systems as
bcc, this result was surprising. Including anharmonic contributions to bulk thermodynamics
not only reduces the discrepancy between theory and experiment (especially for the strongly
anharmonic systems as Ag, Pt, Au and Si) but also the difference between LDA and GGA
which was shown to be a reliable error measure (confidence interval) for ab initio evaluations.
The reliability of the confidence interval is only consistently observed for all elements upon
inclusion of anharmonic contributions. For the investigated bulk systems, anharmonic contri-
butions to the heat capacity are up to 1.4 kB for GGA and up to 0.6 kB for LDA. It was shown
in Fig. 4.6 on page 65 that anharmonic contributions are of the same order of magnitude as
quasiharmonic or electronic contributions. Neglecting any of these contributions seems there-
fore arbitrary in thermodynamic assessments and would result in quantitative changes to
the final results for many of the here considered systems. This is best observed in Fig. 4.4
on page 62 and in Secs. 4.2 and 4.3. The numerically exact evaluation of bulk anharmonic
contributions using thermodynamic integration was key for assessing the accuracy of the LA
approximation.

4) The anharmonic contribution for a certain exchange and correlation functional is to first or-
der dictated by the sampled volume range.
It was found in Sec. 4.1.1 that the anharmonic contribution is predominantly controlled by
the sampled volume range. Therefore, anharmonic contributions are seen to be very similar
for LDA and GGA at the same volume and the corresponding difference — at the same vol-
ume — is consequently small. It was shown in Sec. 4.2 that also differences between standard
functionals (e.g. GGA) and advanced functionals (e.g. RPA) are small and can be treated by
a perturbative approach as e.g. UP-TILD [10]. For the three most anharmonic fcc elements,
corresponding T=0K RPA assessments show a unique agreement with experiment over the
whole temperature range and the performed calculations promise a valuable approach for fu-
ture first principles assessments of thermodynamic properties. The anharmonic contributions
in gold are particularly significant (see Fig. 4.4 on page 62) and decisive to stabilize the heat
capacity at elevated temperatures (see Sec. 4.2).

5) Fully ab initio assessments of the heat capacity of the binary system Mg2Si differ from pre-
dictions by the Neumann-Kopp rule.
For the binary system Mg2Si, a fully temperature dependent ab initio assessment was per-
formed. A significant anharmonic contribution has been found in particular for the unary
constituent element Si. The Neumann-Kopp rule, which aims to predict multinary heat ca-
pacities from its unary constituents, shows only a qualitatively correct trend but fails in the
quantitative prediction in comparison to the full ab initio assessment including all vibra-
tional and electronic contributions. These limitations are necessary to consider in practical
situations where the Neumann-Kopp rule is applied as e.g. in Calphad [6] assessments.
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6) The linear Arrhenius ansatz, Gf = Hf − TSf , which is used to determine defect formation
energies, has to be replaced by a Local Grüneisen Theory.
Anharmonic contributions turn out to be responsible for a strongly nonlinear vacancy for-
mation energy. A qualitative explanation for this effect was given by the Local Grüneisen
Theory. It was found in Sec. 3.2 that the atoms closest to the vacancy experience a very soft
local potential towards the vacancy. It was also shown that the difference between an anhar-
monic system — e.g. an atom close to a defect — and a harmonic system — e.g. a atom in
a bulk cell — results in a formation energy which is a nonlinear function of the temperature.
Starting from these basic assumptions, the LGT not only predicts temperature dependent
formation energies but also a formation entropy which increases linearly with temperature.
The performed numerical calculations in Sec. 4.4.3 support this picture showing consistently
a very linear mono-vacancy formation entropy and corresponding temperature dependent for-
mation energies. With the finding of a temperature dependent vacancy formation energy in
Al and Cu, it is now possible to consolidate all experimental measurements (PAS and DD) at
high temperatures with theoretical ab initio assessments of vacancy formation energies over
the whole temperature range.

7) In contrast to some experimental interpretations of vacancy concentration measurements in
Al and Cu, divacancies are found only in negligible concentrations. They can be therefore
excluded as a source for the experimentally observed non-Arrhenius behavior.
The numerical calculations in Sec. 4.4.2 did conclusively show that divacancy concentrations
are negligible in Al and Cu. This finding allowed to settle a long controversy in which
divacancies were supposed to be present in notable concentrations in Al and Cu and to be
responsible for the temperature dependence in the vacancy formation energies of Al and Cu
(see Fig. 4.10 on page 75, discussion in Sec. 4.4.2 and Table 4.2).

8) Experimental vacancy formation energies as collected in the Landolt-Bornstein series can be
in error by ∼20% due to a linear extrapolation from high temperature data and need to be
corrected. Previously introduced concepts such as surface corrections or the AM05 functional
need to be revisited.
Vacancy concentrations and formation energies are typically extrapolated from high temper-
atures using the linear Arrhenius law. The here performed numerical assessments found, in
contrast, a strongly temperature dependent vacancy formation energy. As has been discussed
in Sec. 4.4.4, this has important consequences: a) It can lead to a severe overestimation of
vacancy formation energies. Hence, a reevaluation of established point defect data as e.g.
collected in the Landolt-Bornstein series becomes critical. b) Approximations which make
use of previously linear extrapolated data have to be revisited. This includes concepts such
as surface corrections [152, 177] and the AM05 functional [181] which introduces energy cor-
rections which have been justified by benchmarking against Arrhenius extrapolated T=0K
vacancy formation enthalpy data [68]. Recently performed highly accurate T=0K calcu-
lations on vacancy formation by QMC [164] and HSE [126] on the other hand — which
beforehand showed discrepancies in comparison to Arrhenius extrapolated data — can now
be consistently interpreted by LGT extrapolated formation energies.

The developed methods, results and insights gained in this study are expected to provide a firm
basis for an accurate description of atomic vibration in solids — both, for bulk and defect systems.
It was shown that realistic calculations of materials properties at high temperatures require free
energies with an accuracy of a few meV/atom for bulk and a sub meV/atom for defect systems.
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New and improved methods which further increase the accessible accuracy, broaden the application
range for reasonable computational cost will likely become key for future materials design. It is
plausible to assume that thermodynamic integration will stay indispensable also for the assessment
of future methods since it provides an access to the numerically exact potential energy surface and
is thus the ultimate benchmark. Its efficiency however will always be dictated by the performance
of the reference system. The next critical points which have to be addressed in the direction for
routine, efficient and accurate first principles descriptions of the atomic motion are:

• The introduced LA methods includes up to now only first-neighbor interactions. It was
shown that second-neighbor interactions are strong for the elements with the most significant
deviations from the exact free energies surface. An extension to second and possibly further
neighbors seems natural and should be investigated. Those tests are also important to assess
the accuracy of a simple pair potential model in general. The extension to anharmonic many-
body interactions might prove a further possible route.

• Only fcc systems were investigated with the LA method. To broaden its applicability range
it is critical to perform similar investigations in bcc, for alloy systems and also for defects. In
case the currently found LA level of accuracy is found for a wide range of material properties,
LA Hamiltonians could serve as new EAM like potentials for the study of material properties
in large systems.

• First encouraging results have been found by investigating spectrally resolved anharmonic
properties as the phonon line width using an LA potential for Al (see final paragraph of
Sec. 3.1.2). This route seems promising also in comparison to many-body perturbative ap-
proaches which have proved computationally very demanding due to the unfavorabe scaling
of many-body interactions (see Sec. 2.4.1). A great benefit is seen by comparing theoretical
concepts to highly accurate experimental phonon lifetime data which can only profit both
fields.

• The accuracy of every ab initio descriptions at elevated temperatures is inherently connected
to the performance of the considered xc functional at T=0K. A balance needs to be found
between the computational demands at T=0K and finite temperatures. Using novel xc func-
tionals such as RPA to parametrize a LA Hamiltonian at T=0K could serve as a unique way
to access the corresponding high temperature phase space accurately for minimal computa-
tional cost since expensive molecular dynamics can be avoided.

Progress in these topics will advance the field of solid state theory, likely improve our under-
standing of solids and therewith unfold new and exciting routes in computational materials design.



Appendix A

Supplement

A.1 Rewriting the quasiharmonic total energy

The original equation for the harmonic energy is readily defined by

Eharm =
1

2

3N∑
ij

uiΦijuj , (A.1)

where N is the number of atoms, Φij is the force constant matrix and ui = Ri−Req
i and Ri(R

eq
i ) is

the (equilibrium) atomic position. We now split Eq. (2.62) in the trace plus the traceless remainder:

Eharm =
1

2

 3N∑
i

uiΦiiui +
3N∑
i,j 6=i

uiΦijuj

 . (A.2)

Since the sum of forces has always to be zero (Newton’s third law) when displacing an atom in
direction i, the restoring forces on the displaced atom — which is always found in the diagonal of
the force constant matrix and therefore i = j — have to be equal to the sum of forces on all other
atoms. This corresponds to using for the trace the property

Φii = −
3N∑
j 6=i

Φij , (A.3)

we obtain

Eharm =
1

2

− 3N∑
i,j 6=i

uiΦijui +

3N∑
i,j 6=i

uiΦijuj

 . (A.4)

Now we split each sum into an upper triangular and a lower triangular sum as

Eharm =
1

2

− 3N∑
i,j>i

uiΦijui −
3N∑
i,j<i

uiΦijui +
3N∑
i,j>i

uiΦijuj +
3N∑
i,j<i

uiΦijuj

 , (A.5)
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and combine the first and third, and second and fourth sum as

Eharm =
1

2

 3N∑
i,j>i

uiΦij(uj − ui) +
3N∑
i,j<i

uiΦij(uj − ui)

 . (A.6)

Changing dummy indices in the second sum we have

Eharm =
1

2

 3N∑
i,j>i

uiΦij(uj − ui) +

3N∑
i,j>i

ujΦji(ui − uj)

 , (A.7)

which we can rewrite using the symmetry property of the force constant matrix Φij = Φji (a partial
differentiation is commutative) as

Eharm =
1

2

 3N∑
i,j>i

uiΦij(uj − ui) +
3N∑
i,j>i

ujΦij(ui − uj)

 , (A.8)

allowing to join the sums as
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1

2
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2
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 , (A.9)

with dji = Rj −Ri and deq
ji = Req

j −R
eq
i . Here

uj − ui = Rj −Req
j −Ri +Req

i

= Rj −Ri − (Req
j −R

eq
i )

= dij − deq
ij (A.10)

It can be therefore summarized

Eharm =
1

2
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2
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2

 (A.11)
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A.2 Local Anharmonic approximation
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Figure A.1: Maximum of first neighbor distribution function
(dos) of the quasiharmonic (dashed line) and DFT (full line)
MD for Al at different temperatures. The center of mass
for both distributions — in contrast to the dos maximum
— is always at the equilibrium distance. For a harmonic
potential, an increase is observed for the nearest neighbor dos
maximum due to transversal motion of the atomic positions.
For the anharmonic potential the DOS maximum is observed
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A.3 Details of calculations on bulk systems
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Figure A.3: (a) Standard deviation σ of the quasiharmonic ab initio computed reference for unary fcc metals
(Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) as function of coupling constant λ. The standard deviation is
shown at the respective melting temperature and volume for GGA (orange) and LDA (blue). (b) dU/dλ
corresponding to MD runs in (a).
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[89] G. Grimvall, B. Magyari-Köpe, V. Ozolinš, and K. A. Persson, Rev. Mod. Phys. 84, 945
(2012), ISSN 0034-6861, URL http://link.aps.org/doi/10.1103/RevModPhys.84.945.

[90] A. Dinsdale, Calphad 15, 317 (1991), ISSN 03645916, URL http://linkinghub.elsevier.

com/retrieve/pii/036459169190030N.

[91] M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, M. Hampl, J. Gröbner,
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