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Abstract

We give a unified construction of the minimal representation of a finite cover G
of the conformal group of a (non necessarily euclidean) Jordan algebra V . This
representation is realized on the L2-space of the minimal orbit O of the structure
group L of V . We construct its corresponding (g, k)-module and show that it can
be integrated to a unitary irreducible representation of G on L2(O).
In particular, we obtain a unified approach to the two most prominent mini-

mal representations, namely the Segal–Shale–Weil representation of the metaplectic
group Mp(n,R) and the minimal representation of O(p+1, q+1) which was recently
studied by T. Kobayashi, G. Mano and B. Ørsted.
In the second part we investigate special functions which give rise to k-finite

vectors in the representation. Various properties of these special functions such
as differential equations, recurrence relations and integral formulas connect to the
representation theory involved.
Finally, we define the conformal inversion operator FO by the action of the longest

Weyl group element. FO is a unitary operator on L2(O) of order 2. We show that the
action of FO on radial functions is given by a special case of Meijer’s G-transform.

Zusammenfassung

Wir konstruieren einheitlich die minimale Darstellung einer endlichen Überlagerung
G der konformen Gruppe einer (nicht notwendigerweise euklidischen) Jordanalgebra
V . Diese Darstellung lässt sich auf dem L2-Raum der minimalen Bahn der Struk-
turgruppe L von V realisieren. Wir konstruieren den zugehörigen (g, k)-Modul und
zeigen, dass er sich zu einer unitären irreduziblen Darstellung von G auf L2(O)
integrieren lässt.
Insbesondere liefert dies eine einheitliche Sichtweise auf die beiden bekanntesten

minimalen Darstellungen: Die Segal–Shale–Weil Darstellung der metaplektischen
Gruppe Mp(n,R) und die minimale Darstellung von O(p + 1, q + 1), die kürzlich
von T. Kobayashi, G. Mano und B. Ørsted studiert wurde.
Im zweiten Teil untersuchen wir spezielle Funktionen, die explizite k-endliche

Vektoren in der Darstellung liefern. Verschiedene Eigenschaften dieser speziellen
Funktionen wie Differentialgleichungen, Rekursions- und Integralformeln werden
bewiesen und in Bezug zur Darstellungstheorie gesetzt.
Zuletzt definieren wir den konformen Inversionsoperator FO durch die Wirkung

des längsten Weylgruppenelements. FO ist ein unitärer Operator der Ordnung 2
auf L2(O). Wir zeigen, dass die Wirkung von FO auf radialen Funktionen durch
eine spezielle Form von Meijer’s G-Transformation gegeben ist.
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Introduction

We explain the results of this thesis from two different points of view:

• The study of minimal representations is motivated from unitary representation
theory. Minimal representations are thought to correspond to the minimal
nilpotent coadjoint orbit via the orbit philosophy.

• On the other hand, the ‘smallness’ of the minimal representation results in
large symmetries in its geometric realizations. We investigate an interesting
relashionship between minimal representations and certain special functions
that solve a fourth order ordinary differential equation. The special functions
appear as k-finite vectors in the L2-model of the minimal representation.

Minimal representations

In the theory of unitary representations it is an unsolved problem to determine
the unitary irreducible representations of all simple real Lie groups. For simply-
connected nilpotent groups G, Kirillov’s orbit method establishes a correspondence
between the unitary irreducible representations of G and its coadjoint orbits. Un-
fortunately, this methods does not work for arbitrary simple real Lie groups. Nev-
ertheless, Kirillov’s method suggests an intimate relation between coadjoint orbits
and unitary irreducible representations.
On the one hand, to every unitary irreducible representation π of a simple real

Lie group G one can associate the annihilator Ann(π) of the derived representation
dπ in the universal enveloping algebra U(g) of g = Lie(G). Its associated variety
V(Ann(π)) ⊆ g∗C is the closure of a nilpotent coadjoint orbit. On the other hand,
there are quantization procedures which associate unitary representations to certain
coadjoint orbits. For the nilpotent coadjoint orbits such a quantization procedure
is least understood. To gain a better understanding of the relation between unitary
representations and nilpotent coadjoint orbits one studies representations which
correspond to the minimal nilpotent coadjoint orbit.

Definition ([GS05, Definition 4.6]). A unitary irreducible representation π of a
simple real Lie group G is called minimal if its annihilator Ann(π) is equal to the
Joseph ideal.

The Joseph ideal is the unique completely prime two-sided ideal in U(g) whose
associated variety is the closure of the minimal nilpotent coadjoint orbit (see [GS05,
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Introduction

Section 4.4]). Therefore, minimal representations are thought to correspond to the
minimal nilpotent coadjoint orbit. For simple real Lie groups the number of iso-
morphism classes of minimal representations is always finite. In many cases there
is either one or no minimal representation. A self-contained exposition of minimal
representations can be found in [GS05].

The most prominent minimal representation is probably the (holomorphic part
of the) metaplectic representation. The metaplectic representation (also called os-
cillator representation or Segal–Shale–Weil representation) is a unitary representa-
tion of the metaplectic group Mp(n,R) (the double cover of the symplectic group
Sp(n,R)) on L2(Rn). There are various connections between the metaplectic repre-
sentation and other fields of mathematics such as symplectic geometry or number
theory. An overview of the metaplectic representation can be found in [Fol89,
Chapter 4] whereas the original papers of I. E. Segal, D. Shale and A. Weil are
[Seg63, Sha62, Wei64].
Another example for a minimal representation has recently attracted more and

more attention: the minimal representation of the indefinite orthogonal group
O(p + 1, q + 1) with p + q even. A realization on L2(C), where C ⊆ Rp+q is
an isotropic cone, was constructed by T. Kobayashi and B. Ørsted in [KØ03c].

There are several results about the construction of minimal representations:

• In [BK94] and [Bry98] R. Brylinski and B. Kostant construct the minimal
representation of a certain class of simple real Lie groups G on the space of
sections of a particular half-form bundle. However, in their construction the
case where the corresponding symmetric space G/K is hermitean is excluded.

• For the hermitean case, S. Sahi constructs the minimal representation in
[Sah92]. Together with A. Dvorsky he also gives a construction for another
class of groups in [DS99]. The same is done in [BSZ06]. They all exclude the
case g = so(p+ 1, q + 1) from their considerations.

• In the case of the group O(p + 1, q + 1), p + q even, there are several re-
sults. For the group O(4, 4) the minimal representation was first constructed
by B. Kostant in [Kos90]. Later B. Binegar and R. Zierau generalized the
construction to arbitrary parameters p and q with p + q even (see [BZ91]).
Two different geometric models including the L2-model are constructed in
[KØ03a, KØ03b, KØ03c].

However, what is missing is a unified construction of an L2-model of the minimal
representation. The right framework for this construction seems to be the framework
of Jordan algebras. In the two examples G = Mp(n,R) and G = SO(p + 1, q + 1)0

the group G is a finite cover of the identity component Co(V )0 of the conformal
group Co(V ) of a certain simple real Jordan algebra V . Therefore, one may ask the
following questions:

2



Introduction

Questions. (1) For which simple real Jordan algebra V does a finite cover G of
Co(V )0 admit a minimal representation?

(2) Is there a natural realization of the minimal representation of G on a certain
L2-space?

By a result of D. A. Vogan, no covering group of SO(p + 1, q + 1)0 admits a
minimal representation if p + q is odd and p, q ≥ 3 (see [Vog81, Theorem 2.13]).
In all other cases one can show that there is a finite cover of the conformal group
which admits a minimal representation. The minimal representation can be realized
on the L2-space of the minimal non-zero orbit O of the structure group Str(V ) of
V . This is proved in [Sah92] for euclidean Jordan algebras, in [DS99], [DS03] and
[BSZ06, Section 8] for non-euclidean Jordan algebras of rank ≥ 3, and in [KØ03c]
for the remaining case G = O(p+1, q+1). In Section 2.1 we give a unified construc-
tion which works for the most general class of Jordan algebras. Our construction
can be described as follows:

We start with a simple real Jordan algebra V of split rank r0 ≥ 2 with simple
maximal euclidean subalgebra V +. Its structure group Str(V ) acts linearly on
V and has finitely many orbits. The minimal non-zero orbit O of the identity
component Str(V )0 carries a unique Str(V )0-equivariant measure dµ. This gives
the representation space L2(O, dµ).
Let g be the Lie algebra of the conformal group Co(V ) of V . First, we construct

a Lie algebra representation dπ of g on C∞(O) (see Section 2.1.1). Further, we
define a function ψ0 ∈ C∞(O) by

ψ0(x) := K̃ ν
2
(|x|), x ∈ O,

where K̃α(z) denotes the normalized K-Bessel function (see Appendix D.1), |−|
is a certain norm on V and ν is a structure constant of the Jordan algebra V .
The subrepresentation of C∞(O) generated by ψ0 is a (g, k)-module if and only if
g � so(p + 1, q + 1) with p + q odd (see Proposition 2.1.4). (This is exactly the
case for which no minimal representation exists.) Excluding this case, the (g, k)-
module integrates to a unitary irreducible representation π of a finite cover G of
Co(V )0 on L2(O, dµ) (see Theorem 2.1.12). This representation is in fact a minimal
representation (see Remark 2.1.15).
The Jordan algebras corresponding to the groups O(p + 1, q + 1) are those of

rank 2. From a representation theoretic point of view, this case is most difficult
to handle, because the corresponding minimal representation is in general neither
a highest weight representation nor spherical. In all other cases the representation
theory is simpler:

• For a euclidean Jordan algebra the minimal representation is a highest weight
representation.

• For a non-euclidean Jordan algebra of rank ≥ 3 the function ψ0 is a K-
spherical vector and hence the minimal representation is spherical.

3
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Therefore, in the case of rank 2 Jordan algebras the calculations are more involved
and are treated separately in Appendix B.

Generalized Laguerre functions

The constructed L2-model of the minimal representation allows a wide range of
applications, in particular to the theory of special functions.

In general, it is quite hard to find explicit expressions for k-finite vectors in unitary
representations. However, for the minimal representation we determine an explicit
k-finite vector in every k-type. In order to do so, we first compute the action of the k-
Casimir on radial functions in Section 2.3. It turns out that the k-Casimir essentially
acts on the radial parameter x ∈ R+ by the ordinary fourth order differential
operator

Dµ,ν =
1

x2

(
(θ + µ+ ν)(θ + µ)− x2

) (
θ(θ + ν)− x2

)
,

where θ = x d
dx

and µ and ν are certain structure constants of the Jordan alge-
bra. We show that this operator extends to a self-adjoint operator on the Hilbert
space L2(R+, x

µ+ν+1 dx) and compute its spectrum (see Corollary 2.3.4). The L2-
eigenfunctions are constructed in terms of their generating function

Gµ,ν
2 (t, x) =

1

(1− t)µ+ν+2
2

Ĩµ
2

(
tx

1− t

)
K̃ ν

2

(
x

1− t

)
.

The generating functionGµ,ν
2 (t, x) is analytic near t = 0 and hence defines a sequence

(Λµ,ν
2,j (x))j of functions on R+ by

Gµ,ν
2 (t, x) =

∞∑
j=0

Λµ,ν
2,j (x)tj.

We show that for every j the function Λµ,ν
2,j (x) is an L2-eigenfunction of Dµ,ν for the

eigenvalue 4j(j+µ+ 1) (see Theorem 3.3.6). This implies that the radial functions

ψj(x) := Λµ,ν
2,j (|x|), x ∈ O,

are explicit k-finite vectors in the minimal representation.

The parameters µ and ν are structure constants of the Jordan algebra. However,
the formula for the operator Dµ,ν as well as the construction of the eigenfunctions
Λµ,ν

2,j (x) makes sense also for general complex parameters µ, ν ∈ C. In Section 3
we study properties of Dµ,ν for arbitrary µ and ν. We further construct a generic
fundamental system Λµ,ν

i,j (x), i = 1, 2, 3, 4, of the differential equation

Dµ,νu = 4j(j + µ+ 1)u.

4
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For i = 2 the function Λµ,ν
2,j (x) is an L2-eigenfunction of Dµ,ν . Various properties of

the special functions Λµ,ν
i,j (x), i = 1, 2, 3, 4, such as recurrence relations and integral

formulas are derived.

Now, if one assumes that the parameters µ and ν appear as structure constants
of a simple real Jordan algebra for which the minimal representation exists, then
representation theory can be used to give short proofs for statements on the L2-
eigenfunctions Λµ,ν

2,j (x):

(1) The functions Λµ,ν
2,j (x) (j = 0, 1, 2, . . .) form an orthogonal basis of

L2(R+, x
µ+ν+1 dx) (see Corollary 3.3.8). A closed expression for their norms

is given in Corollary 3.6.2.

(2) The Lie algebra action predicts various recurrence relations (see Section 3.8).
These recurrence relations are stated in Section 3.6.

In the case that g = so(p+1, q+1), these results are already proved in [HKMM09b].
There, only the minimal representation of O(p + 1, q + 1) is used. Hence, the set
of parameters (µ, ν) which appear in [HKMM09b] is strictly smaller than the set of
parameters for which the statements are proved in Chapter 3.
If the Jordan algebra V with which we start is euclidean, then the parameter ν is

equal to −1. In this case the functions Λµ,ν
2,j (x) simplify to Laguerre functions (see

Corollary 3.4.3):

Λµ,−1
2,j (x) = const · e−xLµj (2x),

where Lαn(z) denote the Laguerre polynomials as introduced in Appendix D.2. For
this case, the differential equation and the recurrence relations are a reformulation
of [ADÓ07, Theorem 6.3].

Another type of special functions occurs if one studies the unitary inversion op-
erator FO. This operator is defined using the group action of the minimal represen-
tation π (see Section 2.4). FO is a unitary involutive operator on L2(O, dµ) which
resembles the euclidean Fourier transform. Various properties of FO are proved
in Theorem 2.4.1. Together with the action of a maximal parabolic subgroup of
G (which can be written down explicitly) the operator FO determines the whole
representation π. Therefore, to gain a better understanding of the minimal repre-
sentation, it might help to find an explicit formula for the action of FO. For the case
g = so(p + 1, q + 1) the full integral kernel of FO was computed by T. Kobayashi
and G. Mano in [KM07a, KM07b]. To generalize this result, we determine, as a first
step into this direction, the action of FO on radial functions. It turns out that FO
preserves the space of radial functions and acts on a radial function ψ(x) = f(|x|)
as the integral transform (see Theorem 2.4.3)

T µ,νf(x) =

∫ ∞
0

Kµ,ν(xy)f(y)yµ+ν+1 dy

5
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with integral kernel

Kµ,ν(x) =
1

2µ+ν+1
G20

04

((x
4

)2
∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
given in terms of Meijer’s G-function (see Appendix D.4). The operator T µ,ν is a
special case of the more general G-transform as studied in [Fox61]. As a corollary
of these observations we obtain that the functions Λµ,ν

2,j (x) are eigefunctions of the
G-transform T µ,ν for the eigenvalues (−1)j.

All in all, we observe an intimate relation between the special functions Λµ,ν
2,j (x)

and minimal representations. On the one hand, results about the special functions
Λµ,ν

2,j (x) are used to obtain explicit expressions for k-finite vectors in the minimal
representation. But on the other hand, representation theory also provides proofs
of statements on the special functions Λµ,ν

2,j (x) such as orthogonality relations, com-
pleteness or integral formulas.

Outline of the thesis

In the first chapter we introduce the concept of Jordan algebras. The basic structure
theory is explained and the structure constants µ and ν are defined. We further
describe the structure group and its orbits as well as equivariant measures on the
orbits. The conformal group and its Lie algebra are discussed in detail. Finally,
we define the Bessel operators which are needed for the Lie algebra action of the
minimal representation.
Chapter 2 is concerned with the minimal representation. We first give a detailed

contruction of the representation. In the second part we explain the relation of the
minimal representation to generalized principal series representations. We further
show that the Casimir element Ck acts on radial functions as the fourth order
differential operator Dµ,ν . In the fourth section we define the unitary inversion
operator FO and prove several properties for it. We also prove that FO acts on
radial functions by the G-transform T µ,ν .
The third chapter deals with the differential operator Dµ,ν and its eigenfunctions.

Here we do in general not assume that µ and ν are the structure constants of a
certain Jordan algebra V . We construct eigenfunctions Λµ,ν

i,j (x), i = 1, 2, 3, 4, of
Dµ,ν in terms of their generating functions and investigate main properties such as
asymptotic behavior, recurrence relations or integral representations. Now suppose,
µ and ν are the structure constants of a Jordan algebra V for which the minimal
representation exists. For the L2-eigenfunctions Λµ,ν

2,j (x) we derive orthogonality
relations, expressions for the norms, a completeness statement and simplification
formulas. In the last section we interpret the functions Λµ,ν

2,j (x) as radial parts of
k-finite vectors in the minimal representation associated to the Jordan algebra V .

6
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Outlook

(1) Our construction of the minimal representation uses the rich structure of
Jordan algebras. A generalization of the concept of Jordan algebras leads to
the notion of Jordan triple systems. Many objects that are needed in our
construction still exist in the theory of Jordan triple systems. Therefore, it is
an interesting question whether the construction of the minimal representation
can also be carried out in the more general framework of Jordan triple systems.

(2) In the special case where g = so(p + 1, q + 1), T. Kobayashi and G. Mano
computed the action of the unitary inversion operator FO not only on radial
functions, but on every KL-isotypic component, where KL = K ∩ Str(V ) =
SO(p) × SO(q) (see [KM07b, Theorem 4.1.1]). Using these results they de-
termined the full integral kernel K(x, y) ∈ D′(O × O) of FO (see [KM07b,
Theorem 5.1.1]). The same method might work also in the general case.

(3) A big advantage of the L2-realization of the minimal representation is that it
is well-suited for tensor product computations. The decomposition of tensor
powers of the minimal representation is studied in [DS99, Theorem 0.2] for
non-euclidean Jordan algebras of rank ≥ 3 and in [Dvo07] for the case g =
so(p + 1, q + 1). It should be possible to prove these results in the general
framework.

(4) The same might be possible for branching laws for the restriction to a sym-
metric subgroup. In [Sep07b, Sep07a, Sep08, MS10] the branching laws for
restriction to the structure group Str(V ) are studied in the case of euclidean
Jordan algebras. Some ideas might also apply in the general case.

Notation: N = {1, 2, 3, . . .}.

7
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1. Jordan theory

In this chapter we introduce the main concepts in the theory of Jordan algebras.
We first define Jordan algebras and analyze their algebraic structure. To every
Jordan algebra we associate two important groups which are needed in Chapter 2
to construct representations:

• The structure group which acts linearly on the Jordan algebra. Its orbits
provide the geometry of the representation space.

• The conformal group which acts on the Jordan algebra by rational transforma-
tions. The minimal representation will be a unitary irreducible representation
of a finite cover of it.

The stated results are either known or simple computations which are needed in
the subsequent chapters. The notation is mostly as in [FK94] where most results
of this chapter can be found, although only for the special case of euclidean Jordan
algebras.

1.1. Jordan algebras

The algebraic framework for the construction of the minimal representation will
be the framework of Jordan algebras. Jordan algebras can be defined over general
fields, but for our purpose it suffices to consider either K = R or K = C.

Definition 1.1.1. A vectorspace V together with a bilinear multiplication V ×V →
V, (x, y) 7→ x · y = xy, and a unit element e (i.e. x · e = x = e · x for every x ∈ V )
is called Jordan algebra if the following two properties hold for any x, y ∈ V :

x · y = y · x, (J1)
x · (x2 · y) = x2 · (x · y). (J2)

Let us fix some notation:
• We denote by L(x) ∈ End(V ) the multiplication by x ∈ V . With this the

axiom (J2) can be written as

[L(x), L(x2)] = 0 ∀x ∈ V.

• Write

P (x) = 2L(x)2 − L(x2)

9



Chapter 1. Jordan theory

for the quadratic representation and

P (x, y) = L(x)L(y) + L(y)L(x)− L(xy)

for its polarized version.
• Define

x�y := L(xy) + [L(x), L(y)]. (1.1)

Then (x�y)z = P (x, z)y.
Let V be a finite-dimensional Jordan algebra of dimension n. To x ∈ V one can

associate a generic minimal polynomial (see e.g. [FK94, Section II.2])

fx(λ) = λr − a1(x)λr−1 + . . .+ (−1)rar(x). (1.2)

Its degree r is called the rank of V . For 1 ≤ j ≤ r the function aj(x) is a ho-
mogeneous polynomial on V of degree j. Every such polynomial aj(x) is invariant
under automorphisms of V , i.e. invertible linear transformations g ∈ GL(V ) which
preserve the Jordan product:

g(x · y) = gx · gy ∀x, y ∈ V.

In particular, the Jordan trace

tr(x) := a1(x)

and the Jordan determinant

det(x) := ∆(x) := ar(x)

are invariant under automorphisms. (To avoid confusion, we write Tr and Det for
the usual trace and determinant of an endomorphism.) For x = e the identity
element we have (cf. [FK94, Proposition II.2.2]):

tr(e) = r, det(e) = 1. (1.3)

An element x ∈ V is called invertible if there exists y ∈ K[x] such that xy = e = yx.
The inverse y is unique and we write x−1 := y. An element x is invertible if and only
if ∆(x) 6= 0, and in this case ∆(x)x−1 is polynomial in x (see [FK94, Proposition
II.2.4]). The differential of the map x 7→ x−1 is given in terms of the quadratic
representation:

Du(x
−1) = −P (x)−1u.

The symmetric bilinear form

τ(x, y) := tr(xy), x, y ∈ V,

10
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is called the trace form of V . The trace form is associative, i.e.

τ(xy, z) = τ(x, yz) ∀x, y, z ∈ V.

If τ is non-degenerate, we call V semisimple, and if K = R and τ is positive definite,
we call V euclidean. Further, V is called simple if V is semisimple and has no non-
trivial ideal. From now on we assume that K = R.
An involutive automorphism α of V such that

(x|y) := τ(x, αy)

is positive definite, is called Cartan involution of V . Such a Cartan involution
always exists and two Cartan involutions are conjugate by an automorphism of V
(see [Hel69, Satz 4.1, Satz 5.2]). We have the decomposition

V = V + ⊕ V −

into ±1 eigenspaces of V . It is further easy to see that

V ± · V ± ⊆ V +,

V + · V − ⊆ V −.

Hence, the +1 eigenspace V + is a euclidean Jordan subalgebra of V with the same
identity element e. Note that if V itself is already euclidean, then the identity
α = idV is a Cartan involution and since two Cartan involutions are conjugate, it
is also the only Cartan involution. In this case clearly V + = V and V − = 0.
We denote by n0 and r0 dimension and rank of V + and call r0 the split rank of

V . The constants n0 and r0 only depend on the isomophism class of the Jordan
algebra V , not on the choice of α. In fact, if β is another Cartan involution, then
β = gαg−1 for an automorphism g. Hence, gV + is the +1 eigenspace of β which is
clearly isomorphic to V + as Jordan algebra. Therefore, dimension and rank of V +

and gV + have to coincide.
One can use the Cartan involution to show that the Jordan trace can be written

as the trace of an endomorphism on V .

Lemma 1.1.2. Let V be a simple real Jordan algebra such that V + is also simple.
Then

Tr(L(x)) =
n

r
tr(x), x ∈ V. (1.4)

Proof. By [FK94, Proposition II.4.3] the symmetric bilinear forms tr(xy) and
Tr(L(xy)) are associative. Since V + is simple, by [FK94, Proposition III.4.1] every
two symmetric associative bilinear forms on V + are scalar multiples of each other.
Hence, there has to be a constant λ ∈ R such that Tr(L(x)) = λ tr(x) for all x ∈ V +.
Putting x = e we find with (1.3) that λ = n

r
. It remains to show (1.4) for x ∈ V −.

But in this case tr(x) = tr(αx) = −tr(x) and hence, tr(x) = 0. On the other hand,
Tr(L(x)) = Tr(αL(x)α) = Tr(L(αx)) = −Tr(L(x)) and therefore also Tr(L(x)) = 0
which shows the claim.

11
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Example 1.1.3. (1) Let V = Sym(n,R) be the space of symmetric n×nmatrices
with real entries. Endowed with the multiplication

x · y :=
1

2
(xy + yx)

V becomes a simple euclidean Jordan algebra of dimension n(n−1)
2

and rank
n. Trace and determinant are the usual ones for matrices:

tr(x) = Tr(x), det(x) = Det(x).

Hence, the trace form is given by τ(x, y) = Tr(xy). The inverse x−1 of x ∈ V
exists if and only if Det(x) 6= 0 and in this case x−1 is the usual inverse of the
matrix x.

(2) Let V = R ×W where W is a real vector space of dimension n − 1 with a
symmetric bilinear form β : W×W → R. Then V turns into a Jordan algebra
with multiplication given by

(λ, u) · (µ, v) := (λµ+ β(u, v), λv + µu).

V is of dimension n and rank 2. Trace and determinant are given by

tr(λ, u) = 2λ, det(λ, u) = λ2 − β(u, u),

and an element (λ, u) ∈ V is invertible if and only if det(λ, u) = λ2−β(u, u) 6=
0. In this case the inverse is given by (λ, u)−1 = 1

det(λ,u)
(λ,−u). The trace

form can be written as

τ((λ, u), (µ, v)) = 2(λµ+ β(u, v)).

Hence, V is semisimple if and only if β is non-degenerate and V is euclidean
if and only if β is positive definite. For W = Rp−1,q = Rp+q−1 with bilinear
form β given by the matrix (

−1p−1

1q

)
we put Rp,q := R× Rp−1,q, p ≥ 1, q ≥ 0. Then

τ(x, y) = 2(x1y1 − x2y2 − . . .− xpyp + xp+1yp+1 + . . .+ xp+qyp+q),

∆(x) = x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q.

Thus, Rp,q is euclidean if and only if p = 1. In any case, a Cartan involution
of Rp,q is given by

α =

 1
−1p−1

1q

 . (1.5)

With this choice the euclidean subalgebra (Rp,q)+ amounts to

(Rp,q)+ = Re1 ⊕ Rep+1 ⊕ . . .Ren ∼= R1,q.

12
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1.2. Peirce decomposition

From now on let V be a simple real Jordan algebra, α a Cartan involution and
assume that V + is also simple. We introduce the Peirce decomposition of V which
describes the structure with the use of idempotents. From the Peirce decomposition
we derive some formulas that are needed later.

1.2.1. Peirce decomposition for one idempotent

Let c ∈ V + be any idempotent , i.e. c2 = c. By [FK94, Chapter VI.1] the only
possible eigenvalues of the operator L(c) are 0, 1

2
and 1. Since L(c) is symmet-

ric with respect to the inner product (−|−), this gives the following orthogonal
decomposition:

V = V (c, 1)⊕ V (c, 1
2
)⊕ V (c, 0), (1.6)

where

V (c, λ) = {x ∈ V : L(c)x = λx}.

(1.6) is called Peirce decomposition corresponding to c. Since L(c) is also symmetric
with respect to the trace form τ , the decomposition in (1.6) is also orthogonal with
respect to τ . The subspaces V (c, 1) and V (c, 0) are subalgebras of V with unit
elements c and e − c, respectively. Hence V (c, 1) · V (c, 1) ⊆ V (c, 1) and similarly
for V (c, 0). We have the following additional inclusions (cf. [FK94, Proposition
IV.1.1]):

V (c, 1) · V (c, 0) = 0,

(V (c, 1) + V (c, 0)) · V (c, 1
2
) ⊆ V (c, 1

2
),

V (c, 1
2
) · V (c, 1

2
) ⊆ V (c, 1) + V (c, 0).

The projection onto V (c, 1) in the Peirce decomposition (1.6) is given by P (c) (see
[FK94, Chapter IV, Section 1]).

1.2.2. Peirce decomposition for a Jordan frame

An idempotent is called primitive if it is non-zero and cannot be written as the
sum of two non-zero idempotents. Further, two idempotents c1 and c2 are called
orthogonal if c1c2 = 0. A collection c1, . . . , ck of orthogonal primitive idempotents in
V + with c1 + . . .+ ck = e is called a Jordan frame. By [FK94, Theorem III.1.2] the
number k of idempotents in a Jordan frame is always equal to the rank r0 of V +. For
every two Jordan frames c1, . . . , cr0 and d1, . . . , dr0 there exists an automorphism g
of V such that gci = di, 1 ≤ i ≤ r0 (see [Hel69, Satz 8.3]).

13



Chapter 1. Jordan theory

Now choose a Jordan frame c1, . . . , cr0 in V +. Then the operators L(c1), . . . , L(cr0)
commute by [FK94, Proposition II.1.1 (1)] and hence are simultaneously diagonaliz-
able. Since each L(ci) has possible eigenvalues 0, 1

2
and 1 and

∑r0
i=1 L(ci) = L(e) =

idV , this yields the Peirce decomposition

V =
⊕

1≤i≤j≤r0

Vij, (1.7)

where

Vii = V (ci, 1) for 1 ≤ i ≤ r0,

Vij = V (ci,
1
2
) ∩ V (cj,

1
2
) for 1 ≤ i 6= j ≤ r0.

Since the endomorphisms L(ci), 1 ≤ i ≤ r0, are all symmetric with respect to the
inner product (−|−), the direct sum in (1.7) is orthogonal. As previously remarked,
the group of automorphisms contains all possible permutations of the idempotents
c1, . . . , cr0 . Therefore, the subalgebras Vii have a common dimension e+ 1 and the
subspaces Vij (i < j) have a common dimension d. Then clearly

n

r0

= e+ 1 + (r0 − 1)
d

2
. (1.8)

We call a Jordan algebra V reduced if Vii = Rci for every i = 1, . . . , r0, or equiv-
alently if e = 0. From [Hel69, §8, Korollar 2] it follows that if V is reduced, then
r = r0, and if V is non-reduced, then r = 2r0. We can write rk(Vii) = r

r0
. Eu-

clidean Jordan algebras are always reduced (see [FK94, Theorem III.1.1]). Hence
V +
ii := Vii ∩ V + = Rci. If we denote by d0 the dimension of V +

ij := Vij ∩ V + (i < j),
then equation (1.8) for the euclidean subalgebra V + reads

n0

r0

= 1 + (r0 − 1)
d0

2
.

Tables A.1 and A.2 list all simple real Jordan algebras with simple V + and their
corresponding structure constants. A close look at the table allows the following
observation: If V is non-euclidean, then d = 2d0 except in the case where V = Rp,q
with p 6= q. We state and prove this observation without using a classification
result.

Proposition 1.2.1. Let V be a simple real Jordan algebra of split rank r0 ≥ 2, α
a Cartan involution and assume that V + is also simple. Then exactly one of the
following three statements holds:
(1) V is euclidean and in particular d = d0,
(2) V is non-euclidean of rank r ≥ 3 and d = 2d0,
(3) V ∼= Rp,q, p, q ≥ 2.
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Proof. Since r ≥ r0, we have r ≥ 2. If V is of rank r = r0 = 2, then V ∼= Rp,q,
p, q ≥ 1, by [BK66, Chapter VI, Satz 7.1]. In the case where p = 1 the algebra V
is euclidean. The case q = 1 cannot occur, because then V + ∼= R1,1 which is not
simple.
Now, if V is non-euclidean of rank r ≥ 3, then either r = r0 or r = 2r0. If r = r0,
then r0 ≥ 3 and by [Hel69, end of §6] we have d0 = dimV +

ij = dimV −ij = d− d0 for
i < j and hence d = 2d0. If r = 2r0, then Vii 6= Rci for i = 1, . . . , r0 and by [Hel69,
Lemma 6.3] we obtain the same conclusion. This finishes the proof.

Example 1.2.2. (1) For V = Sym(n,R) the matrices ci := Eii, 1 ≤ i ≤ n, form
a Jordan frame. The Peirce spaces are given by

Vii = Rci for 1 ≤ i ≤ n,

Vij = R(Eij + Eji) for 1 ≤ i < j ≤ n.

Hence, d = 1.
(2) For V = Rp,q, p, q ≥ 1, a Jordan frame is given by c1 = 1

2
(e1 + en), c2 =

1
2
(e1 − en), n = dim(V ) = p+ q. The Peirce spaces are

V11 = Rc1,

V12 = Re2 ⊕ . . .⊕ Ren−1,

V22 = Rc2.

Therefore V is reduced, i.e. e = 0, and d = p+ q − 2, d0 = q − 1.

1.2.3. Applications

Using the Peirce decomposition we do some calculations that we need later on. First,
to use inductive arguments, we calculate the trace of the lower rank subalgebras
V (c, 1) for c ∈ V an idempotent, and also on V +

Lemma 1.2.3. Let V be a simple Jordan algebra such that V + is also simple.
(1) For x ∈ V + we have

trV +(x) =
r0

r
trV (x).

(2) Let c be an idempotent in V +. Then for x ∈ V (c, 1):

trV (x) = trV (c,1)(x). (1.9)

Proof. We only prove the second statement. The first statement follows by the
same arguments.
Both trV (xy) and trV (c,1)(xy) are associative symmetric bilinear forms on the eu-
clidean simple Jordan algebra V +(c, 1). By [FK94, Proposition III.4.1] they are
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scalar multiples of each other and hence trV (x) = λ trV (c,1)(x) for x ∈ V +(c, 1).
We claim that λ = 1. In fact, write c = c1 + . . . + ck, where ci ∈ V +(c, 1) are
orthogonal idempotents which are primitive in V +(c, 1). Then k = rk(V +(c, 1)) =
r0
r
rk(V (c, 1)). The idempotents ci are also primitive in V + and we can extend the

system to a Jordan frame c1, . . . , cr0 in V +. Since the group of automorphisms con-
tains all possible permutations of c1, . . . , cr0 and leaves the trace invariant, we find
with (1.3) that

trV (c) = k trV (c1) =
k

r0

trV (c1 + . . .+ cr0) =
k

r0

trV (e) = k
r

r0

.

On the other hand,

trV (c,1)(c) = rk(V (c, 1)) = k
r

r0

and hence λ = 1. It remains to show (1.9) for x ∈ V −(c, 1). In this case
trV (x) = trV (αx) = −trV (x) and therefore trV (x) = 0. The same argument works
for trV (c,1)(x) since αc = c and hence α restricts to an automorphism of V (c, 1),
leaving trV (c,1) invariant. This finishes the proof.

The next statements are needed to calculate the action of the Bessel operator in
Section 1.7 and the Casimir operator in Section 2.3.

Lemma 1.2.4. Let (eα)α be an orthonormal basis of V with respect to (−|−) and
(eα)α the dual basis with respect to the trace form τ(−,−), i.e. eα = α(eα). Then∑

α

e2
α =

2n0 − n
r

e and
∑
α

eα · eα =
n

r
e.

Proof. It is easily seen that the elements
∑

α e
2
α and

∑
α eα · eα are independent of

the choice of the orthonormal basis. Since the Peirce decomposition V = ⊕i≤jVij is
orthogonal with respect to (−|−), we can choose an orthonormal basis (eα)α such
that each eα is contained in one of the Vij, i ≤ j. Furthermore, since the Cartan
involution α leaves each Vij, i ≤ j, invariant, we can even choose the eα to be either
in V +

ij := Vij ∩ V + or in V −ij := Vij ∩ V −.
(a) Let eα ∈ V +

ii . Then eα = λci with λ = ‖ci‖−1 =
(
r0
r

) 1
2 by Lemma 1.2.3 (2).

Hence

e2
α =

r0

r
ci and dimV +

ii = 1.

(b) Let eα ∈ V −ii . Then e2
α ∈ V +

ii = Rci and therefore e2
α = λci. Since

1 = ‖eα‖2 = (eα|eα) = −τ(eα, eα)

= −τ(e2
α, e) = −λτ(ci, e) = −λ‖ci‖2 = −λ r

r0

,
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we obtain

e2
α = −r0

r
ci and dimV −ii = e.

(c) Let eα ∈ V +
ij , i < j. Then e2

α ∈ V +
ii + V +

jj and hence e2
α = λci + µcj. Similar

to the calculation in (b) one obtains λ = µ =
√

r0
2r

and hence

e2
α =

r0

2r
(ci + cj) and dimV +

ij = d0.

(d) Let eα ∈ V −ij , i < j. Applying the same arguments as in (b) and (c) yields

e2
α = − r0

2r
(ci + cj) and dimV −ij = d− d0.

Putting everything together gives

∑
α

e2
α =

r0∑
i=1

∑
eα∈Vii

e2
α +

∑
1≤i<j≤r0

∑
eα∈Vij

e2
α

=
r0

r

r0∑
i=1

(1− e)ci +
r0

r

∑
1≤i<j≤r0

1

2
(d0 − (d− d0))(ci + cj)

=
r0

r

(
2

(
1 + (r0 − 1)

d0

2

)
−
(
e+ 1 + (r0 − 1)

d

2

)) r0∑
i=1

ci

=
2n0 − n

r
e.

The second formula follows from the first as follows. Choose an orthonormal basis
(eα)α of V with eα ∈ V + ∪ V −. By Lemma 1.2.3 (1) the elements

√
r/r0 eα with

eα ∈ V + form an orthonormal basis of V +. Further, eα = αeα and we calculate,
using the first formula:∑

α

eα · eα =
∑
α

eα∈V +

e2
α −

∑
α

eα∈V −

e2
α = 2

∑
α

eα∈V +

e2
α −

∑
α

eα∈V

e2
α

=

(
2
r0

r
· n0

r0

− 2n0 − n
r

)
e =

n

r
e.

Lemma 1.2.5. Let c ∈ V + be a primitive idempotent and (eα)α an orthonormal
basis of V with respect to (−|−). Then

∑
α

P (eα)c =
r0

r

(
d

2
− d0 − e+ 1

)
c+

r0

r

(
d0 −

d

2

)
e.
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Proof. Again it is easily seen that the expression
∑

α P (eα)c is independent of the
chosen orthonormal basis. Since the Peirce decomposition V = V (c, 1)⊕ V (c, 1

2
)⊕

V (c, 0) is orthogonal, we can choose an orthonormal basis (eα)α such that eα ∈
V (c, 1)∪ V (c, 1

2
)∪ V (c, 0) for every α. Then, by Lemma 1.2.3 (2), the eα in V (c, 1)

form an orthonormal basis of V (c, 1) and those eα in V (c, 0) = V (e− c, 1) form an
orthonormal basis of V (c, 0). Now let us determine the action of P (eα) on c for the
following three cases:
(a) eα ∈ V (c, 1). Since V (c, 1) is a subalgebra, also e2

α ∈ V (c, 1). Hence

P (eα)c = 2eα(eαc)− e2
αc = 2e2

α − e2
α = e2

α.

(b) eα ∈ V (c, 1
2
). In this case

P (eα)c = 2eα(eαc)− e2
αc = e2

α − e2
αc = (e− c)e2

α.

(c) eα ∈ V (c, 0). Also V (c, 0) is a subalgebra and hence e2
α ∈ V (c, 0). Then

clearly

P (eα)c = 2eα(eαc)− e2
αc = 0.

Altogether we obtain∑
α

P (eα)c =
∑
α

eα∈V (c,1)

e2
α + (e− c)

∑
α

eα∈V (c, 1
2

)

e2
α

= (e− c)
∑
α

e2
α +

∑
α

eα∈V (c,1)

e2
α −

∑
α

eα∈V (c,0)

e2
α.

Put nc := dim V (c, 1), nc,0 := dim V +(c, 1), rc := rkV (c, 1) and similarly for e− c.
We have

nc = e+ 1, ne−c = (r0 − 1)(e+ 1) + (r0 − 1)(r0 − 2)
d

2
,

nc,0 = 1, ne−c,0 = (r0 − 1) + (r0 − 1)(r0 − 2)
d0

2
,

rc =
r

r0

, re−c = (r0 − 1)
r

r0

,

and hence, using Lemma 1.2.4:∑
α

P (eα)c =
2n0 − n

r
(e− c) +

2nc,0 − nc
rc

c− 2ne−c,0 − ne−c
re−c

(e− c)

=
r0

r

(
d

2
− d0 − e+ 1

)
c+

r0

r

(
d0 −

d

2

)
e.
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Lemma 1.2.6. Let (ej)j ⊆ V be an orthonormal basis of V with respect to the
inner product (−|−). Then for x ∈ V :

n∑
j=1

τ(P (αx, αej)x, ej) =
n

r
(x|x). (1.10)

Proof. Using Lemma 1.1.2 we obtain

n∑
j=1

τ(P (αx, αej)x, ej) =
n∑
j=1

τ((αx�x)(αej), ej)

=
n∑
j=1

((x�αx)ej|ej) = Tr(x�αx)

= Tr(L(x · αx) + [L(x), L(αx)]) = Tr(L(x · αx))

=
n

r
tr(x · αx) =

n

r
(x|x).

1.3. The constants µ and ν

For every Jordan algebra V we introduce another two constants µ and ν by

µ = µ(V ) :=
n

r0

+

∣∣∣∣d0 −
d

2

∣∣∣∣− 2, ν = ν(V ) :=
d

2
−
∣∣∣∣d0 −

d

2

∣∣∣∣− e− 1. (1.11)

These constants will appear as parameters of certain special functions in the minimal
representation. Using Proposition 1.2.1 we can calculate µ and ν explicitly:

(µ, ν) =


( rd

2
− 1,−1) if V is euclidean,

( n
r0
− 2, d

2
− e− 1) if V is non-euclidean of rank r ≥ 3

(max(p, q)− 2,min(p, q)− 2) if V ∼= Rp,q, p, q ≥ 2.

Let us collect some basic inequalities for µ and ν here.

Lemma 1.3.1. If V is a simple Jordan algebra of split rank r0 ≥ 2, then
(1) µ+ ν ≥ −1,
(2) µ− ν ≥ 0,
(3) µ ≥ −1

2
.

Proof. First note that r0 ≥ 2 by assumption and d ≥ 1. (If d = 0, then V is be the
direct sum of the ideals V (ci, 1), 1 ≤ i ≤ r0, and hence not simple.) Together with
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(1.8) we obtain:

µ+ ν =
n

r0

+
d

2
− e− 3

=
r0d

2
− 2 ≥ −1,

µ− ν =
n

r0

− d

2
+ 2

∣∣∣∣d0 −
d

2

∣∣∣∣+ e− 1

= (r0 − 2)
d

2
+ 2

∣∣∣∣d0 −
d

2

∣∣∣∣+ 2e ≥ 0.

Finally (3) is a direct consequence of (1) and (2) which finishes the proof.

Denote by Ξ the set of all possible values of (µ, ν), excluding the cases for which
it will turn out that there is no minimal representation:

Ξ := {(µ(V ), ν(V )) : V is a simple real Jordan algebra
of split rank r0 ≥ 2, V + is simple and if r = 2, then n is even}.

The classification of all simple real Jordan algebras (see Table A.3) allows us to
compute the set Ξ explicitly:

Ξ = {(µ,−1) : µ ∈ 1
2
N0} ∪ {(µ, 0) : µ ∈ N0} ∪ {(µ, ν) : µ, ν ∈ N0, µ + ν ∈ 2Z}.

Note that ν is always an integer since

ν = min(d, 2d0)− d0 − e− 1,

whereas µ is in general only a half-integer (e.g. for V = Sym(n,R)).

1.4. The structure group and its Lie algebra

We define the structure group of a Jordan algebra. Further, we give a root space
decomposition of its Lie algebra which is adapted to the structure of the Jordan
algebra.

1.4.1. The structure group

Denote by g# the adjoint of g ∈ GL(V ) with respect to the trace form τ .
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1.4. The structure group and its Lie algebra

Definition of the structure group

The structure group Str(V ) of V is the group of invertible linear transformations
g ∈ GL(V ) such that for every invertible x ∈ V the element gx is also invertible
and

(gx)−1 = g−#x−1.

Str(V ) is a real reductive group (see [Loo77, Corollary 8.8]). By [FK94, Proposition
VIII.2.5] an equivalent description of the structure group is given in terms of the
quadratic representation: g ∈ GL(V ) is in the structure group if and only if

P (gx) = gP (x)g#, ∀x ∈ V. (1.12)

There is yet another equivalent description of Str(V ) in terms of the Jordan de-
terminant. Namely, it is easy to see (cf. [FK94, Chapter VIII, Exercise 5]) that
g ∈ GL(V ) belongs to the structure group if and only if there exists a constant
χ(g) ∈ K× with

det(gx) = χ(g)det(x) ∀x ∈ V. (1.13)

The map χ : Str(V ) → R× is given by χ(g) = ∆(ge) and defines a character of
Str(V ). Using this equivariance property we can now calculate derivatives of the
Jordan determinant ∆(x). For the proof we denote by ` the left-regular represen-
tation of the structure group Str(V ) on functions f which are defined on V :

(`(g)f)(x) := f(g−1x). (1.14)

Lemma 1.4.1. The derivative of ∆ in a point x ∈ V in direction u ∈ V is given
by

Du∆(x) = ∆(x)τ(x−1, u). (1.15)

Proof. By [FK94, Section II.2] the generic minimal polynomial of x is given by
fx(λ) = ∆(λe− x). Hence

Du∆(e) =
d

dt

∣∣∣∣
t=0

∆(e+ tu) =
d

dt

∣∣∣∣
t=0

(1 + tr(u)t+ higher order terms) = tr(u).

Now let x = ge with g ∈ Str(V ). Then `(g−1)∆ = ∆(ge)∆ = ∆(x)∆ and hence, by
the chain rule,

Du∆(x) = Dg−1u(`(g
−1)∆)(e) = ∆(x)tr(g−1u)

= ∆(x)τ(g−#e, u) = ∆(x)τ(x−1, u).

Now, the orbit of Str(V ) containing e is open and both sides of (1.15) are polyno-
mials in x. Therefore (1.15) must hold for every x ∈ V .
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Chapter 1. Jordan theory

The automorphism group

The group Aut(V ) of automorphisms of V is a subgroup of Str(V ). In fact, it
is exactly the subgroup of Str(V ) stabilizing the identity element e (see [FK94,
Proposition VIII.2.4 (ii)]). Moreover, (Str(V ),Aut(V )) is a symmetric pair: The
map

σ : Str(V )→ Str(V ), g 7→ g−# := (g−1)# = (g#)−1,

defines an involution of the structure group and with [FK94, Proposition VIII.2.6]
it is easy to see that

Str(V )σ0 ⊆ Aut(V ) ⊆ Str(V )σ. (1.16)

If V is euclidean, then σ is a Cartan involution and hence, Aut(V ) is compact.
However, this is not true in general. Corresponding to the involution σ, the Lie
algebra str(V ) = Lie(Str(V )) splits into the direct sum of the ±1-eigenspaces of σ
(see [FK94, Proposition VIII.2.6]):

str(V ) = h + q, (1.17)

where

h := {X ∈ str(V ) : σ(X) = X}
= der(V ) := {D ∈ End(V ) : D(x · y) = Dx · y + x ·Dy ∀x, y ∈ V }, (1.18)

q := {X ∈ str(V ) : σ(X) = −X}
= L(V ) = {L(x) : x ∈ V }. (1.19)

The Lie algebra der(V ) of derivations is the Lie algebra of Aut(V ). The defining
property for a derivation can be equivalently written as [D,L(x)] = L(Dx) for all
x ∈ V . Hence, in the decomposition (1.17) the Lie bracket is given by

[L(x) +D,L(x′) +D′] = L(Dx′ −D′x) + ([L(x), L(x′)] + [D,D′]) (1.20)

for x, x′ ∈ V and D,D′ ∈ der(V ). Note that for x, y ∈ V the commutator
[L(x), L(y)] is a derivation. Finite sums of derivations of this type are called inner
derivations. Since V is semisimple, every derivation is inner (see [Jac49, Theorem
2]). A direct consequence of this fact is that the trace of every derivation vanishes,
since the trace of every commutator vanishes:

Tr(D) = 0 ∀D ∈ der(V ). (1.21)

Using Lemma 1.1.2 we also obtain

tr(Dx) =
r

n
Tr(L(Dx)) =

r

n
Tr([D,L(x)]) = 0 ∀D ∈ der(V ), x ∈ V. (1.22)

In Section 1.2.2 we remarked that the automorphism group acts transitively on
the set of Jordan frames in V +. We can now give a more precise version of this
statement.
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1.4. The structure group and its Lie algebra

Lemma 1.4.2. Let V be a simple Jordan algebra such that V + is also simple. Then
for any two Jordan frames c1, . . . , cr0 and d1, . . . , dr0 in V + there exists a derivation
D ∈ der(V ) with αD = Dα such that

eDci = di ∀ i = 1, . . . , r0.

Proof. By [Hel69, Satz 8.3], applied to V +, there exists an element h ∈ Aut(V +)0

such that hci = di for all i = 1, . . . , r0. Since Aut(V +)0 is compact, it is the image
of its Lie algebra under the exponential map. Therefore, there exists a derivation
D ∈ der(V +) such that h = eD. All derivations in der(V +) are inner and hence D
extends to V with the property that αD = Dα which shows the claim.

A Cartan involution

The involution σ is in general not a Cartan involution of str(V ) (only if V is eu-
clidean). To obtain a Cartan involution we have to conjugate with the Cartan
involution α of V . In fact, the involution

θ : Str(V )→ Str(V ), g 7→ g−∗ = αg−#α,

where ∗ denotes the adjoint with respect to the inner product (−|−), is a Cartan
involution of Str(V ). The fixed point set Str(V )θ of θ is therefore a maximal compact
subgroup of Str(V ). By definition Str(V )θ is also the intersection of Str(V ) with
the orthogonal group of the inner product (−|−). Note that if V is euclidean, then
α = 1 and hence θ = σ. As previously remarked, in this case the automorphism
group Aut(V ) is compact.
Returning to the general case, it is easy to see that σ commutes with the Cartan

involution θ. Hence, θ(h) = h and also θ(Aut(V )) = Aut(V ). Then by [War72,
Corollary 1.1.5.4] Aut(V ) is a real reductive group.
The Cartan decomposition of the Lie algebra str(V ) with respect to θ is given by

str(V ) = kl + pl,

where

kl := {X ∈ str(V ) : θ(X) = X}
= {L(x) +D : x ∈ V −, αD = Dα}, (1.23)

pl = {X ∈ str(V ) : θ(X) = −X}
= {L(x) +D : x ∈ V +, αD = −Dα}. (1.24)

Now, let L be the subgroup of GL(V ) generated by the identity component
Str(V )0 of the structure group and the Cartan involution α. Clearly

Str(V )0 ⊆ L ⊆ Str(V ).

L has at most two connected components, namely Str(V )0 and αStr(V )0. Denote
by l = str(V ) its Lie algebra. The involutions θ and σ leave L invariant since
θ(α) = σ(α) = α. Then KL := Lθ is a maximal compact subgroup of L.
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Chapter 1. Jordan theory

Example 1.4.3. (1) The structure algebra of V = Sym(n,R) is easily seen to be
str(V ) = gl(n,R) = sl(n,R)⊕ R, acting by

X · a = Xa+ aX t for X ∈ gl(n,R), a ∈ V.

Integrating this action to the universal cover and factoring out the elements
that act trivially shows that the identity component of Str(V ) is isomorphic
to R+SL(n,R), acting by

g · x = gxgt for g ∈ R+SL(n,R), x ∈ V.

Since V is euclidean, L = Str(V )0. The maximal compact subgroup of L is
KL = SO(n), acting by conjugation.

(2) For V = Rp,q the characterization (1.13) can be used to show that the structure
group is given by

Str(V ) =

{
R+O(p, q) if p 6= q,

R+O(p, q) ∪ g0 · R+O(p, q) if p = q,

where

g0 =

(
0 1p
1p 0

)
.

Then clearly Str(V )0 = R+SO(p, q)0. By (1.5) the Cartan involution α is
contained in Str(V )0 if and only if p is odd. In this case L = Str(V )0. If p
is even, L = Str(V )0 ∪ αStr(V )0. The maximal compact subgroup of L0 is
(KL)0 = SO(p)× SO(q).

1.4.2. Root space decomposition

As a preparation for the root space decomposition we prove a simple lemma con-
cerning derivations of the form [L(c), L(u)] with c an idempotent.

Lemma 1.4.4. (1) Let c ∈ V be an idempotent. Then for any u ∈ V (c, 1) +
V (c, 0):

[L(c), L(u)] = 0.

(2) Let c1, c2 ∈ V be orthogonal idempotents. Then for any u ∈ V (c1,
1
2
)∩V (c2,

1
2
):

[L(c1), L(u)] = −[L(c2), L(u)].

Proof. (2) follows directly from (1) with c := c1 + c2. For (1) we let u1 ∈ V (c, 1)
and u2 ∈ V (c, 0). Using [FK94, Proposition II.1.1 (i)] we find that

[L(u1), L(c)] = [L(u1), L(c2)] = −2[L(c), L(u1c)]

= −2[L(c), L(u1)] = 2[L(u1), L(c)]
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1.4. The structure group and its Lie algebra

and

[L(u2), L(c)] = [L(u2), L(c2)] = −2[L(c), L(u2c)] = 0.

This finishes the proof.

Now, the subalgebra

a :=

r0∑
i=1

RL(ci) ⊆ l (1.25)

is abelian by [FK94, Proposition II.1.1 (1)]. We even have the following lemma:

Lemma 1.4.5. a is maximal abelian in L(V +).

Proof. By the Peirce decomposition of V + it suffices to show that there exists no
non-zero element x =

∑
i<j xij, xij ∈ V

+
ij , with [L(x), L(ci)] = 0 for all i = 1, . . . , r0.

If x is such an element, then for i < j we have

0 = [L(x), L(ci)]cj = ci(cjx) =
1

4
xij

and hence x = 0.

A basis of the dual space a∗ of a is given by the functionals ε1, . . . , εr0 , where for
i = 1, . . . , r0:

εi

(
r0∑
j=1

tjL(cj)

)
:= ti. (1.26)

Denote by Σ(l, a) ⊆ a∗ the set of non-zero weights of l with respect to a.

Proposition 1.4.6. The set Σ(l, a) is a root system of type Ar0−1 and given by

Σ(l, a) =

{
εi − εj

2
: i 6= j

}
. (1.27)

The corresponding root spaces amount to

lij := l εi−εj
2

= {ci�x = 1
2
L(x) + [L(ci), L(x)] : x ∈ Vij} (1.28)

for i 6= j and

l0 =

{
L(x) +D : x ∈

r0⊕
i=1

Vii, Dci = 0∀ i = 1, . . . , r0

}
. (1.29)
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Chapter 1. Jordan theory

Proof. Let γ =
∑r0

i=1 γiεi ∈ Σ(l, a) and 0 6= X = L(x) +D ∈ lγ. Since γ 6= 0, there
is 1 ≤ i ≤ r0 such that γi 6= 0. Hence, by (1.20):

γi(L(x) +D) = γiX = [L(ci), X] = L(−Dci) + [L(ci), L(x)].

Therefore, D = γ−1
i [L(ci), L(x)] and

x = −γ−1
i Dx = −γ−2

i [L(ci), L(x)]ci = −γ−2
i (ci(cix)− cix).

Write x = x1 +x 1
2

+x0 in the Peirce decomposition relative to ci, i.e. xλ ∈ V (ci, λ),
λ = 0, 1

2
, 1. Then

ci(cix)− cix = −1

4
x 1

2

and hence x = (2γi)
−2x 1

2
∈ V (ci,

1
2
). This implies x = x 1

2
and γi = ±1

2
. Altogether

we obtain

X = L(x)± 2[L(ci), L(x)], with x ∈ V (ci,
1
2
).

Now, if γj = 0 for every j 6= i, then for every j 6= i we have

0 = [L(ci), L(x)]cj = ci(cjx) = cj(cix) =
1

2
cjx.

But this is only possible if x = 0 since x ∈ V (ci,
1
2
) =

∑
j 6=i Vij. But x = 0 implies

X = 0 which contradicts our assumption. Therefore, there has to be j 6= i such that
γj 6= 0. The same argument as above shows that x ∈ V (cj,

1
2
) and hence x ∈ Vij.

Thus, by Lemma 1.4.4 (2):

X = L(x)± 2[L(ci), L(x)] = L(x)∓ 2[L(cj), L(x)],

and a direct computation shows that γ = ± εi−εj
2

. It remains to compute l0. An
element X = L(x) +D ∈ l is in l0 if and only if for every i = 1, . . . , r0 we have

0 = [L(ci), X] = L(−Dci) + [L(ci), L(x)].

This is equivalent to Dci = 0 and [L(ci), L(x)] = 0 for all i = 1, . . . , r0. Clearly
x ∈

∑r0
i=1 Vii has this property by Lemma 1.4.4 (1). Conversely, let [L(ci), L(x)] = 0

for every i = 1, . . . , r0. Write x =
∑

1≤i≤j≤r0 xij in the Peirce decomposition, i.e.
xij ∈ Vij, 1 ≤ i ≤ j ≤ r0. Then by Lemma 1.4.4 (1) we find that for all i < j:

0 = [L(ci), L(x)]cj =
1

4
xij

and hence x =
∑r0

i=1 xii ∈
∑r0

i=1 Vii which finishes the proof.
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1.5. Orbits of the structure group and equivariant measures

We choose the positive system

Σ+(l, a) =

{
εi − εj

2
: 1 ≤ i < j ≤ r0

}
. (1.30)

Later we also need some information about the center of l.

Lemma 1.4.7. For the center Z(l) of l we have the following inclusions

RL(e) ⊆ Z(l) ⊆
r0∑
i=1

L(Vii). (1.31)

Proof. The first inclusion of (1.31) is clear since L(e) = idV . For the second inclu-
sion let L(x) +D ∈ Z(l). Then by (1.20) for every x′ ∈ V :

0 = [L(x) +D,L(x′)] = L(Dx′) + [L(x), L(x′)]

Hence, D = 0 and [L(x), L(x′)] = 0 for every x′ ∈ V . Write x =
∑

i≤j xij in its
Peirce decomposition, i.e. xij ∈ Vij. Then for i < j:

0 = [L(ci), L(x)]cj =
xij
4
.

Therefore, x ∈
∑r0

i=1 Vii and the proof is complete.

Remark 1.4.8. In general one does not have Z(l) = RL(e). For instance, let V is
a simple real euclidean Jordan algebra and view its complexification VC also as real
Jordan algebra. Then VC is also simple and the center Z(str(VC)) contains at least
CL(e).

1.5. Orbits of the structure group and equivariant
measures

There are only finitely many orbits under the action of Str(V )0 on V . An explicit
description of these orbits can be found in [Kan98]. We will merely be interested
in the open orbit of Str(V )0 containing the unit element and the orbits which are
contained in its boundary. On these orbits we construct equivariant measures. This
yields L2-spaces on which we later construct unitary representations.

1.5.1. The open cone Ω

Let Ω = Str(V )0 · e be the open orbit of Str(V )0 containing the identity element of
the Jordan algebra. Ω is an open cone in V . Since αe = e, we also have Ω = L · e.
If we denote by H the stabilizer subgroup of e in L, then the cone Ω ∼= L/H is a
reductive symmetric space. In fact, H = L ∩ Aut(V ) and therefore, by (1.16) we
have Lσ0 ⊆ H ⊆ Lσ which shows that (L,H) is a symmetric pair.
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Chapter 1. Jordan theory

Example 1.5.1. (1) For V = Sym(n,R) the cone Ω is the convex cone of sym-
metric positive definite matrices:

Ω = {x ∈ Sym(n,R) : all eigenvalues of x are positive}.

(2) For V = Rp,q we have to distinguish between two cases. If p = 1, q ≥ 2, then
Ω is the convex cone given by

Ω = {x ∈ R1,q : x1 > 0, x2
1 − x2

2 − . . .− x2
n > 0}.

For p, q ≥ 2 we have

Ω = {x ∈ Rp,q : x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

n > 0},

which is not convex.

In the case where V is euclidean, H = KL and hence Ω is a Riemannian symmetric
space. In this case a polar decomposition for Ω is given in [FK94, Chapter VI,
Section 2].
To derive a polar decomposition also in the general case, we follow [vdB05, Chap-

ter 3]. Consider the involutions σ and θ on the Lie algebra level. In the decompo-
sition (1.17) they are given by

σ(L(x) +D) = −(L(x) +D)# = −L(x) +D,

θ(L(x) +D) = −(L(x) +D)∗ = −L(αx) + αDα

for x ∈ V and D ∈ der(V ). The decomposition of l into ±1-eigenspaces of σ and θ
is written as

l = kl + pl = h + q

with the notation of (1.18), (1.19), (1.23) and (1.24). Since σ and θ commute, we
obtain the decomposition in simultaneous eigenspaces

l = (kl ∩ h) + (kl ∩ q) + (pl ∩ h) + (pl ∩ q).

Put

l+ := (kl ∩ h) + (pl ∩ q) = {L(x) +D : x ∈ V +, αD = Dα} ∼= str(V +), (1.32)
l− := (kl ∩ q) + (pl ∩ h) = {L(x) +D : x ∈ V −, αD = −Dα}. (1.33)

Since pl∩q = L(V +), the subspace a ⊆ pl∩q as defined in (1.25) is maximal abelian
by Lemma 1.4.5. Let A := exp(a) be the corresponding analytic subgroup of L and
put

a+ :=

{
r0∑
i=1

tiL(ci) : t1 > . . . > tr0

}
. (1.34)
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Proposition 1.5.2. (1) The group L decomposes as L = KLAH and the orbit Ω
has the polar decomposition Ω = KLA · e.

(2) Up to scalar multiples there is precisely one invariant measure on Ω ∼= L/H
which is given by∫

Ω

f(x) dν(x) =

∫
KL

∫
a+

f(k exp(X) · e)J(X) dX dk,

where dk is a Haar measure on KL, dX a Lebesgue measure on a and

J

(
r0∑
i=1

tiL(ci)

)
=

∏
1≤i<j≤r0

sinhd0
(
ti − tj

2

)
coshd−d0

(
ti − tj

2

)
. (1.35)

Proof. (1) This is [vdB05, Lemma 3.6].
(2) By Proposition 1.4.6 the root system Σ(l, a) is of type Ar0−1. Hence, the

positive Weyl chamber corresponding to the positive system (1.30) is precisely
a+. Let W := NKL(a)/ZKL(a) be the Weyl group of the root system Σ(l, a)
and WKL∩H := NKL∩H(a)/ZKL∩H(a), viewed as a subgroup of W . Then, by
[vdB05, Theorem 3.9] the unique invariant measure on L/H (up to scalar
multiples) is given by∫

Ω

f(x) dν(x) =
∑

[w]∈W/WKL∩H

∫
KL

∫
a+

f(k exp(wX) · e)J̃(X) dX dk,

where

J̃(X) =
∏

α∈Σ+(l,a)

sinhm
+
α α(X) coshm

−
α α(X)

with m±α = dim l±α . Observe that W is the symmetric group on
{L(c1), . . . , L(cr0)}, as it is the Weyl group of the root system Σ(l, a) of type
Ar0−1. We claim that WKL∩H = W . In fact, let π be any permutation on
{1, . . . , r0}. By Lemma 1.4.2 there is a derivation D ∈ der(V ) such that
αD = Dα and eDci = cπ(i). Thus, by (1.23) we have D ∈ kl. Hence, eD ∈
KL ∩H and it follows that WKL∩H = W .
It remains to show that J̃(X) = J(X). Using (1.28), (1.32) and (1.33) we
find that for i 6= j:

l+εi−εj
2

= {ci�x : x ∈ V +
ij } and l−εi−εj

2

= {ci�x : x ∈ V −ij }.

It follows that

m+
εi−εj

2

= dim V +
ij = d0 and m−εi−εj

2

= dim V −ij = d− d0

and hence J̃(X) = J(X). This finishes the proof.
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As a consequence of the decomposition L = KLAH we can now calculate the
character χ of Str(V ) on L:
Proposition 1.5.3. Let V be a simple real Jordan algebra with Cartan involution
α such that V + is also simple. Then

χ(g) = |Det g|
r
n ∀ g ∈ L (1.36)

and

∆

(
r0∑
i=1

etici

)
= e

r
r0

Pr0
i=1 ti . (1.37)

Proof. We first show (1.36) for g ∈ Str(V )0 = L0 = (KL)0A(H ∩L0). Both left and
right side of (1.36) define a positive Character L0 → R+ since L0 is connected. On
(KL)0 both sides are ≡ 1, because (KL)0 is compact. Further, the left side is ≡ 1
on H ∩ L0 since χ(g) = ∆(ge) and ge = e for g ∈ H. But also the determinant is
≡ 1 on H: g ∈ H implies gg# = id and Det(g#) = Det(g). Therefore, it remains
to show that (1.36) holds on A = exp(a).
By Lemma 1.4.2 the group H0 ⊆ H ∩ L0 contains all possible permutations of the
elements L(ci) ∈ a, 1 ≤ i ≤ r0 (acting by the adjoint representation). Therefore,
each character of L0 takes the same values on the elements exp(L(ci)), 1 ≤ i ≤ r0.
Thus, it suffices to show (1.36) for g = exp(X) with X = t(L(c1) + . . .+ L(cr0)) =
tL(e) = t idV ∈ a, t ∈ R. For this we have

χ(exp(X)) = χ(etidV ) = ∆(et · e) = ert = (Det(etidV ))
r
n = (Det(exp(X)))

r
n .

Hence, (1.36) holds for g ∈ L0. Now, L = L0 ∪ αL0. Both sides of (1.36) define
characters of L which agree on L0. Further, χ(α) = ∆(αe) = ∆(e) = 1 and
Det(α) = ±1 since α ∈ KL and KL is compact. Thus, (1.36) follows and it remains
to prove (1.37).
The left side of (1.37) can be written as

∆

(
r0∑
i=1

etici

)
= ∆(exp(X) · e) = χ(exp(X))

with X =
∑r0

i=1 tiL(ci). But since χ takes the same values on exp(L(ci)), 1 ≤ i ≤ r0,
we obtain

χ(exp(X)) = χ

(
exp

(
1

r0

(
r0∑
i=1

ti

)
L(e)

))
= ∆

(
e

1
r0

Pr0
i=1 ti · e

)
= e

r
r0

Pr0
i=1 ti

which proves (1.37).

Using the previous lemma together with (1.13) we find that ∆(x)−
n
r dx, dx de-

noting a Lebesgue measure on Ω ⊆ V , is an L-invariant measure on Ω. Therefore,
by Proposition 1.5.2 it follows that the measure dν is absolutely continuous with
respect to the Lebesgue measure dx on Ω ⊆ V and

dν(x) = const ·∆(x)−
n
r dx.
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1.5.2. Orbits in the boundary of Ω

The boundary ∂Ω is the union of orbits of lower rank. We have the following
stratification:

Ω = O0 ∪ . . . ∪ Or0 ,

where Ok = L0 · ek with

ek := c1 + . . .+ ck, 0 ≤ k ≤ r0.

Since αek = ek, we also have Ok = L · ek. Every orbit is a homogeneous space Ok =
L/Hk, where Hk denotes the stabilizer of ek in L. In general these homogeneous
spaces are not symmetric.

Example 1.5.4. We will mostly be interested in the non-zero orbit O1 of minimal
rank. Let us compute this orbit for our two main examples.
(1) For V = Sym(n,R) we have

O1 = {xxt : x ∈ Rn \ {0}}.

Moreover, the map

Rn \ {0} → O1, x 7→ xxt, (1.38)

is a surjective two-fold covering.
(2) For V = Rp,q we again have to distinguish between two cases. If p = 1, q ≥ 2,

then

O1 = {x ∈ R1,q : x1 > 0, x2
1 − x2

2 − . . .− x2
n = 0}

is the forward light cone in R1,q. For p, q ≥ 2 we have

O1 = {x ∈ Rp,q : x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

n = 0} \ {0}.

In both cases, O1 can be parameterized by bipolar coordinates:

R+ × Sp−1
0 × Sq−1 ∼→ O1, (t, ω, η) 7→ (tω, sη), (1.39)

where Sn−1 denotes the unit sphere in Rn and Sn−1
0 is the identity component

of Sn−1:

Sn−1
0 =

{
{1} if n = 1,

Sn−1 if n > 1.

To construct equivariant measures on the orbits Ok we need to compute the
modular functions of the stabilizers Hk. The crucial point for this is to show that
Hk is contained in a certain parabolic subgroup. The following results are basically
the statements in [BSZ06, Lemma 3.6 and Corollary 3.7]:
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Proposition 1.5.5. The group Qk := {g ∈ L : gV (ek, 1) ⊆ V (ek, 1)} is a parabolic
subgroup of L. The Langlands decomposition of its Lie algebra qk is given by qk =
mk ⊕ nk, where

mk = l0 ⊕
⊕

1≤i,j≤k

lij ⊕
⊕

k<i,j≤r0

lij,

nk =
⊕

1≤i≤k<j≤r0

lij,

and the corresponding Langlands decomposition of Qk is given by Qk = MkNk,
where

Mk = {g ∈ L : gL(ek) = L(ek)g},
Nk = exp(nk).

Proof. In view of Theorem C.1 (1) we claim that Qk = PFk (in the notation of
Appendix C), where

Fk :=

{
ε1 − ε2

2
, . . . ,

εk−1 − εk
2

,
εk+2 − εk+1

2
, . . . ,

εr0−1 − εr0
2

}
= Π \

{
εk − εk+1

2

}
⊆ Π.

In fact, we have

aFk = RL(ek) + RL(e− ek),

and hence

Mk := MFk = {g ∈ L : gL(ek) = L(ek)g},
mk := mFk = {X ∈ l : [L(ek), X] = 0}.

Since for X ∈ lij we have [L(ek), X] =
δik−δjk

2
X, it follows that

mk = l0 ⊕
⊕

1≤i,j≤k

lij ⊕
⊕

k<i,j≤r0

lij.

Further,

Σ+
k := Σ+

Fk
(l, aFk) =

{
εi − εj

2
: 1 ≤ i ≤ k < j ≤ r0

}
,

nk := nFk =
⊕

1≤i≤k<j≤r0

lij,

Nk := NFk = exp(nk),
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1.5. Orbits of the structure group and equivariant measures

and Pk := PFk = MkNk. Clearly Pk ⊆ Qk since both Mk and Nk are contained in
Qk. Since Pk is, as a parabolic subgroup, equal to the normalizer of its Lie algebra,
the inclusion Qk ⊆ Pk follows if we show that Qk has the same Lie algebra as Pk.
Let X ∈ l be an element of the Lie algebra of Qk. Then XV (ek, 1) ⊆ V (ek, 1).
Write X = X0 +

∑
i 6=j Xij, where X0 ∈ l0 and Xij ∈ lij. In particular ek ∈ V (ek, 1)

and hence Xek ∈ V (ek, 1). It is easy to see that Xijek ∈ Vij for i 6= j and X0ek ∈⊕k
i=1 Vii. Therefore, we must have (Xij + Xji)ek = 0 if 1 ≤ i ≤ k < j ≤ r0. Write

Xij = ci�xij with xij ∈ Vij. Then for 1 ≤ i ≤ k < j ≤ r0 we obtain

0 = (Xij +Xji)ek =
(xij

4
+
xij
4
− xij

2

)
+
(xji

4
+
xji
4

)
=
xji
2
.

This yields Xji = 0. It is further easily seen that if Xji = 0 for 1 ≤ i ≤ k < j ≤ r0,
thenXV (ek, 1) ⊆ V (ek, 1) and therefore the Lie algebra ofQk coincides with mk+nk.
This finishes the proof.

Proposition 1.5.6. (1) L = KLQk and for a suitably normalized Haar measure
dg on L we have the following integral formula:∫

L

f(g) dg =

∫
KL

∫
Mk

∫
Nk

f(kmn)e2ρk(m) dn dm dk,

where

ρk := (r0 − k)
d

4

k∑
i=1

εi − k
d

4

r0∑
i=k+1

εi.

(2) Hk ⊆ Qk and Hk = (Mk ∩ Hk)Nk. Moreover we have the following integral
formula for the Haar measure dh on Hk:∫

Hk

f(h) dh =

∫
Mk∩Hk

∫
Nk

f(mn) dn dm. (1.40)

(3) Mk = (Mk ∩KL) exp(ak)(Mk ∩Hk), where

ak =
k∑
i=1

RL(ci).

Further, Mk/(Mk∩Hk) is a symmetric space with invariant measure dνk given
by ∫

Mk/(Mk∩Hk)

f(x) dνk(x) =

∫
Mk∩KL

∫
a+
k

f(k exp(X) · ek)Jk(X) dX dk,

where dk is a Haar measure on Mk ∩KL, dX is a Lebesgue measure on

a+
k =

{
k∑
i=1

tiL(ci) : t1 > . . . > tk

}
(1.41)
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and

Jk

(
k∑
i=1

tiL(ci)

)
=

∏
1≤i<j≤k

sinhd0
(
ti − tj

2

)
coshd−d0

(
ti − tj

2

)
. (1.42)

Proof. (1) The decomposition L = KLQk holds by Theorem C.1 (2). Further, by
Theorem C.1 (3) we have the integral formula∫

L

f(x) dg =

∫
KL

∫
Mk

∫
Nk

f(kmn)e2ρFk (m) dn dm dk,

with Fk as in the proof of Proposition 1.5.5 and ρFk as in Appendix C. It
remains to show ρFk = ρk. In fact,

ρFk =
1

2

∑
α∈Σ+

k

dim(lα)α =
d

2

∑
1≤i≤k<j≤r0

εi − εj
2

= (r0 − k)
d

4

k∑
i=1

εi − k
d

4

r0∑
i=k+1

εi.

(2) If gek = ek, then by (1.12) we have gP (ek)g
# = P (gek) = P (ek). Since P (ek)

is the orthogonal projection onto V (ek, 1) we obtain for x ∈ V (ek, 1):

gx = gP (ek)x = P (ek)g
−#x ∈ V (ek, 1)

and hence gV (ek, 1) ⊆ V (ek, 1). Therefore, Hk ⊆ Qk. Since Nk ⊆ Hk, we
clearly have Hk = (Mk ∩Hk)Nk. It remains to show the integral formula.
By [Hel84, Chapter I, Proposition 1.12]:∫

Hk

f(h) dh =

∫
Mk∩Hk

∫
Nk

f(mn)
Det(AdNk(n))

Det(AdHk(n))
dn dm.

For n = exp(X) ∈ nk we have Det(Ad(n)) = eTr(ad(X)). But nk consists of root
spaces lα with α 6= 0. Since [lα, lβ] ⊆ lα+β, both Tr(adnk(X)) and Tr(adhk(X))
vanish and the determinants in the integral formula are ≡ 1. Hence, (1.40)
follows.

(3) (Mk∩Hk) is the stabilizer of ek inMk. Therefore,Mk/(Mk∩Hk) ∼= Mk·ek. The
restriction g 7→ g|V (ek,1) defines a group homomorphism Mk 7→ Str(V (ek, 1)).
Since the Lie algebra mk of Mk contains the Lie algebra str(V (ek, 1)) of
Str(V (ek, 1)), the image of this map is the union of connected components
of Str(V (ek, 1)). The integral formula then follows essentially from Proposi-
tion 1.5.2.

Now we can finally compute the modular function of the stabilizer Hk.

Corollary 1.5.7. The modular function χHk of Hk is on the Lie algebra hk of Hk

given by

dχHk =
1

2
kd

r0∑
i=k+1

εi. (1.43)
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Proof. By Proposition 1.5.6 the group Hk decomposes as Hk = (Mk ∩ Hk) n Nk.
We first show that Mk ∩ Hk is reductive and hence unimodular. This will follow
from [War72, Corollary 1.1.5.4] if we prove that θ(mk ∩ hk) = mk ∩ hk. For this
let X ∈ mk ∩ hk. Then [L(ek), X] = 0 and Xek = 0. Taking adjoints it follows
that [L(ek), X

∗] = [X,L(ek)]
∗ = 0 and hence X∗ ∈ mk. It remains to show that

X∗ek = 0. Note that since X preserves V (ek, 1), we have X|V (ek,1) ∈ str(V (ek, 1)).
The condition Xek = 0 even implies that X|V (ek,1) ∈ der(V (ek, 1)), because ek is
the unit element in V (ek, 1). Therefore, by Lemma 1.2.3 (2) and (1.22) we obtain
for a ∈ V (ek, 1):

(X∗ek|a) = (ek|Xa) = trV (Xa) = trV (ek,1)(Xa) = 0.

Hence, X ∈ hk and it follows that θ preserves mk ∩ hk. Thus, mk ∩ hk is reductive
and Mk ∩Hk is unimodular.
Since Hk = (Mk ∩Hk)nNk with Mk ∩Hk unimodular, the modular function χHk
can be calculated on the Lie algebra level as the trace of the adjoint action on nk:

dχHk(X) = −Tr(ad(X)|nk).

Since [lα, lβ] ⊆ lα+β for α, β ∈ Σ(l, a), this trace can only be non-zero if X ∈ l0 ∩ hk.
By (1.29) we have

l0 ∩ hk =

{
L(x) +D : x ∈

r0⊕
i=k+1

Vii, Dcj = 0 ∀ 1 ≤ j ≤ r0

}
.

Let X = D ∈ der(V ) with Dci = 0 for all 1 ≤ i ≤ r0. Then for x ∈ V (ci, λ) we
have ci ·Dx = D(ci · x)−Dci · x = λDx and hence DVij ⊆ Vij for all 1 ≤ i, j ≤ r0.
Further, it is easy to show that for x ∈ Vij we have ad(X)(ci�x) = ci�Dx. Hence,
for i 6= j we obtain Tr(ad(D)|lij) = Tr(D|lij) and

Tr(ad(D)|nk) = Tr(D|V (ek,
1
2

)).

Now by (1.21) the trace of a derivation vanishes. Since D|V (ek,1) ∈ der(V (ek, 1))
and D|V (ek,0) ∈ der(V (ek, 0)) we have

Tr(D) = Tr(D|V (ek,1)) = Tr(D|V (ek,0)) = 0.

Since V = V (ek, 1) ⊕ V (ek,
1
2
) ⊕ V (ek, 0), we obtain Tr(D|V (ek,

1
2

)) = 0 and hence
Tr(ad(X)) = 0.
It remains to consider the case X = L(a) for some a ∈ V``, k < ` ≤ r0. Let
us first assume that a ∈ V −`` . It we denote by n±k = ci�V

±
ij , then it is easily

checked that ad(X)n±k ⊆ n∓k and hence Tr(ad(X)|nk) = 0. It remains to calculate
the modular function on L(V +

`` ) = RL(c`). For a = c` and ci�x ∈ nk, x ∈ Vij,
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1 ≤ i ≤ k < j ≤ r0, we obtain with (1.20) and Lemma 1.4.4 (2):

ad(X)(ci�x) =

[
L(c`),

1

2
L(x) + [L(ci), L(x)]

]
= L(−[L(ci), L(x)]c`) +

1

2
[L(c`), L(x)]

=

{
−1

2
ci�x if ` = j,

0 else.

Since dim(ci�Vij) = d, this yields Tr(ad(X)|nk) = −1
2
kd and (1.43) holds.

As another corollary from the previous decomposition theorems we obtain a polar
decomposition for the orbits Ok, 0 ≤ k ≤ r0 − 1.

Corollary 1.5.8. For every 0 ≤ k ≤ r0 − 1 the group L decomposes as L =
KL exp(ak)Hk and the orbit Ok has the polar decomposition Ok = KL exp(ak) · ek.

Proof. The polar decomposition for the orbit Ok clearly follows from the decompo-
sition L = KL exp(ak)Hk on the group level. To show the group decomposition we
use the decompositions of Propositions 1.5.5 and 1.5.6 to calculate:

L = KLQk = KLMkNk = KL(KL ∩Mk) exp(ak)(Hk ∩Mk)Nk

= KL exp(ak)Hk.

1.5.3. Equivariant measures

A measure dµ on a G-space X is called δ-equivariant , δ a positive character of G,
if dµ(gx) = δ(g) dµ(x) for g ∈ G, i.e. for every f ∈ L1(X, dµ) and g ∈ G:∫

X

f(g−1x) dµ(x) = δ(g)

∫
X

f(x) dµ(x).

δ is called the modular function of the equivariant measure dµ. For the existence
and uniqueness of equivariant measures we have the following fact:

Fact 1.5.9 ([Loo53, Section 33D]). In order that a real character δ be the modular
function for an equivariant measure d(gH) on the quotient space G/H, where H
is a closed subgroup of the locally compact group G, it is necessary and sufficient
that δ(h) = χH(h)

χG(h)
for all h ∈ H, where χG and χH denote the modular functions

of G and H, repectively. In this case, the measure is uniquely determined by the
following formula: ∫

G/H

∫
H

f(gh) dh d(gH) =

∫
G

δ(g)f(g) dg. (1.44)
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We apply this to the orbits Ok, 0 ≤ k ≤ r0.

Theorem 1.5.10. (1) On Or0 = Ω the L-equivariant measures which are locally
finite near 0 are (up to positive scalars) exactly the measures∫

Ω

f(x) dµλ(x) :=

∫
KL

∫
a+

f(k exp(X)e)e
λ r
r0

Pr0
i=1 tiJ(X) dX dk,

where X =
∑r0

i=1 tiL(ci) and a+ and J(X) as in (1.34) and (1.35). dµλ
transforms by

dµλ(gx) = χ(g)λ dµ(x) for g ∈ L.

Moreover, dµλ is absolutely continuous with respect to the Lebesgue measure
dx on Ω and we have

dµλ(x) = const ·∆(x)λ−
n
r (x) dx for λ > (r0 − 1) r0d

2r
.

(2) For k = 0, . . . , r0−1 there is (up to positive scalars) exactly one L-equivariant
measure dµk on Ok given by∫

Ok
f(x) dµk(x) :=

∫
KL

∫
a+
k

f(k exp(X)e)e
r0d
2

Pk
i=1 tiJk(X) dX dk,

where X =
∑r0

i=1 tiL(ci) and a+
k and Jk(X) as in (1.41) and (1.42). dµk

transforms by

dµk(gx) = χ(g)k
r0d
2r dµk(x) for g ∈ L.

Proof. (1) Ω ∼= L/H as homogeneous spaces. Both L and H are reductive and
hence unimodular (see e.g. [Kna02, Corollary 8.31 (d)]). Therefore, a charac-
ter δ is the modular function for an equivariant measure on L/H if and only
if δ|H ≡ 1. Let δ be such a positive character of L.
According to Proposition 1.5.2 (1) the group L decomposes as L = KLAH.
Since KL is compact, δ|KL ≡ 1. Therefore, we only have to determine the
values of δ on A. Since A = exp(a), it suffices to calculate the possible de-
rived homomorphisms dδ : l→ R. By Lemma 1.4.2 the group H contains all
possible permutations of the elements L(ci) ∈ a, 1 ≤ i ≤ r0. Therefore,

dδ

(
r0∑
i=1

tiL(ci)

)
= λ

r

r0

r0∑
i=1

ti

for some λ ∈ R. Then by (1.37) we obtain δ = χλ. Hence, the functions χλ
are the only possible modular functions for L-equivariant measures on Ω.
The measures ∆(x)λ−

n
r dx are clearly χλ-equivariant by Proposition 1.5.3.

Since ∆(x)−
n
r dx is an invariant measure on Ω, the stated integral formula

follows from Proposition 1.5.2 (with f(x)∆(x)λ instead of f(x)) and (1.37).
From the integral formula one can also easily see that dµλ is locally finite
near 0 if and only if λ > (r0 − 1) r0d

2r
.
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(2) Ok ∼= L/Hk as homogeneous spaces. As remarked in (1) the modular function
χL is equal to 1 and by (1.43) the derived modular function on hk is given by

dχHk =
1

2
kd

r0∑
i=k+1

εi.

Let δ be a positive character of L with dδ|hk = dχHk . The Lie algebra l is
reductive and hence l = Z(l)+[l, l]. On the semisimple part [l, l] the character
dδ clearly vanishes. Therefore it suffices to compute the values of dδ on⊕r0

i=1 L(Vii) by (1.31). On
⊕r0

j=k+1 L(Vii) ⊆ hk the character dδ is given by
dχHk . Since k < r0 this subspace of hk is non-zero and using the Ad-invariance
of dδ and Lemma 1.4.2 one shows that

dδ =
1

2
kd

r0∑
i=1

εi.

By Proposition 1.5.3 we obtain δ = χk
r0d
2r . For the integral formula we calcu-

late: ∫
L

f(g)χk
r0d
2r (g) dg

=

∫
KL

∫
Mk

∫
Nk

f(kmn)ek
d
2

Pr0
i=1 εi(m)e2ρk(m) dn dm dk

=

∫
KL

∫
Mk/(Mk∩Hk)

∫
Mk∩Hk

∫
Nk

f(kmhn)e
r0d
2

Pk
i=1 εi(m)

dn dh dνk(m(Mk ∩Hk)) dk

=

∫
KL

∫
Mk/(Mk∩Hk)

∫
Hk

f(kmh)e
r0d
2

Pk
i=1 εi(m) dhνk(m(Mk ∩Hk)) dk

=

∫
KL

∫
Mk∩KL

∫
a+
k

∫
Hk

f(kk′ exp(X)h)e
r0d
2

Pk
i=1 εi(X)Jk(X) dh dX dk′ dk

=

∫
KL

∫
a+
k

∫
Hk

f(k exp(X)h)e
r0d
2

Pk
i=1 tiJk(X) dh dX dk.

Now the desired integral formula follows from (1.44).

For convenience we denote for λ > (r0 − 1) r0d
2r

the open orbit Or0 = Ω by Oλ.
Similarly, for λ = k r0d

2r
, k = 0, . . . , r0 − 1, we put Oλ := Ok and dµλ := dµk. This

yields Hilbert spaces L2(Oλ, dµλ) exactly for λ in the Wallach set

W :=

{
0,
r0d

2r
, . . . , (r0 − 1)

r0d

2r

}
∪
(

(r0 − 1)
r0d

2r
,∞
)
,
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and the measures transform by

dµλ(gx) = χ(g)λ dµλ(x) for g ∈ L. (1.45)

For the minimal non-trivial orbit O1 the polar decomposition of Corollary 1.5.8
simplifies to O1 = KLR+c1. Further, the integral formula in Theorem 1.5.10 (2)
amounts to ∫

O1

f(x) dµ1(x) =

∫
KL

∫ ∞
0

f(ktc1)tµ+ν+1 dt dk, (1.46)

since µ+ ν + 1 = r0d
2
− 1. Hence, the space of radial (or equivalently KL-invariant)

functions in L2(O1, dµ1) is given by L2(O1, dµ1)rad
∼= L2(R+, t

µ+ν+1 dt).

Example 1.5.11. (1) For V = Sym(n,R) the two-fold covering (1.38) induces a
unitary (up to a scalar) isomorphism

U : L2(O1, dµ1)→ L2
even(Rn), Uψ(x) := ψ(xxt), (1.47)

where L2
even(Rn) denotes the space of even L2-functions on Rn. In fact, for

ψ ∈ L2(O1, dµ1):∫
Rn
|Uψ(x)|2 dx = vol(Sn−1)

∫
SO(n)

∫ ∞
0

|Uψ(kte1)|2tn−1 dt dk

= vol(Sn−1)

∫
SO(n)

∫ ∞
0

|ψ(t2kc1k
t)|2tn−1 dt dk

=
vol(Sn−1)

2

∫
SO(n)

∫ ∞
0

|ψ(k · sc1)|2s
n
2
−1 ds dk

=
vol(Sn−1)

2

∫
O
|ψ(x)|2 dµ(x),

where dk is the normalized Haar measure on SO(n). Hence U is unitary (up
to a scalar).

(2) For V = Rp,q the measure dµ1 can be expressed in polar coordinates (1.39).
Using (1.46) we obtain

dµ1 = const · tp+q−3 dt dω dη,

where dω and dη denote the normalized euclidean measures on Sp−1
0 and Sq−1,

respectively.

To be able to deal with the measures dµk, 0 ≤ k ≤ r0 − 1, we interpret them as
residues of zeta functions.
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Proposition 1.5.12. (1) Let V be euclidean. Then the measure dµk, 0 ≤ k ≤
r0 − 1, is a constant multiple of the residue of the zeta function

Z(f, λ) :=

∫
Ω

f(x)∆(x)λ−
n
r dx

at the value λ = k r0d
2r

= k d
2
.

(2) Let V be non-euclidean and � Rp,q. Then the measure dµk, 0 ≤ k ≤ r0 − 1,
is a constant multiple of the residue of the zeta function

Z(f, λ) :=

∫
V

f(x)|∆(x)|λ−
n
r dx

at the value λ = k r0d
2r
.

(3) Let V = Rp,q. Then r0 = 2 and the orbits Ok are given by O0 = {0},
O1 = {x ∈ Rp,q \ {0} : ∆(x) = 0} and O2 = Ω = {x ∈ Rp,q \ {0} : ∆(x) > 0}
where ∆(x) is the standard quadratic form of signature (p, q). In this case
the measure dµ0 is just a scalar multiple of the Dirac delta distribution at 0
and the measure dµ1 is again a constant multiple of the residue of the zeta
function

Z(f, λ) :=

∫
Ω

f(x)∆(x)λ−
n
r dx

at the value λ = r0d
2r

= p+q−2
2

.

For details on the meromorphic extension of the zeta functions involved here see
[FK94, Chapter VII, Section 2] for the euclidean case, [BSZ06, Theorem 6.2 (2)] for
the non-euclidean case � Rp,q and [GS64, Chapter III.2] for V = Rp,q.

Proof. Part (1) is [FK94, Proposition VII.2.3], part (2) is proved in [BSZ06, Theo-
rem 6.2] and part (3) can be found in [GS64, Section III.2.2].

Remark 1.5.13. The case differentiation in Proposition 1.5.12 is necessary. Firstly,
the zeta function Z(f, λ) of V = Rp,q vanishes at the value λ = 0 if p is even
(see [GS64, Section III.2.2, Equation (21)]). And secondly, the only two results
on the positivity of zeta functions for Jordan algebras the author could find, are
stated in [FK94, Proposition VII.2.3] and [BSZ06, Theorem 6.2 (2)], where different
definitions for the zeta functions are used. It is an interesting question whether
there exists a theory of zeta functions which works for arbitrary simple real Jordan
algebras and gives the equivariant measures on the orbits Ok as residues of the zeta
functions. Nevertheless, for the purpose of this article it will only be important, that
the measures dµk appear as residues of zeta functions which are for λ > (r0− 1) r0d

2r

supported on the union of open L-orbits and given by |∆(x)|λ−nr .
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1.6. The conformal group

1.6. The conformal group

For a semisimple Jordan algebra V we construct the conformal group Co(V ) which
acts on V by rational transformations. We define a certain open subgroup G of
Co(V ) and construct its universal covering group. The Lie algebra g = co(V ) of
Co(V ), also known as Kantor–Koecher–Tits algebra, is given by quadratic vector
fields on V . We describe g in detail. For a maximal compact subalgebra k of g we
also characterize the highest weights of kl-spherical k-representations via the Cartan–
Helgason theorem. These representations will appear as k-types in the minimal
representation.

1.6.1. The Kantor–Koecher–Tits construction

Let V be a semisimple real Jordan algebra.

Definition of the conformal group

The conformal group will be built up from three different rational transformations.
(1) First, V acts on itself by translations

na(x) := x+ a ∀x ∈ V

with a ∈ V . Denote by N := {na : a ∈ V } the abelian group of translations
which is isomorphic to V .

(2) The structure group Str(V ) of V acts on V by linear transformations.
(3) Finally, we define the conformal inversion element j by

j(x) = −x−1 ∀x ∈ V × = {y ∈ V : y invertible}.

In view of the minimal polynomial (1.2) j is a rational transformation of V .
The conformal group Co(V ) is defined as the subgroup of the group of rational
transformations of V which is spanned by N , Str(V ) and j:

Co(V ) := 〈N, Str(V ), j〉grp.

Co(V ) is a semisimple Lie group which is simple if and only if V is simple (see
[Jac68, Chapter VIII, Section 6]). The center of Co(V ) and even of its identity
component Co(V )0 is trivial (see [Ber00, Theorem VIII.1.3] and its proof). The
semidirect product Str(V )nN is a maximal parabolic subgroup of Co(V ) (see e.g.
[Ber00, Section X.6.3]).

We let G be the group generated by Co(V )0 and the Cartan involution α. The
group G has at most two connected components, namely Co(V )0 and αCo(V )0. If
V is euclidean, then clearly G = Co(V )0, but in general this is not true (e.g. for
V = Rp,q with p even). We also have the inclusions

Co(V )0 ⊆ G ⊆ Co(V ).
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Further, we have L ⊆ G ∩ Str(V ) and we put P := LnN . Here similar inclusions
hold. In general, P is not maximal parabolic in G, but an open subgroup of the
maximal parabolic subgroup Pmax := G ∩ (Str(V )nN). The parabolic Pmax has a
Langlands decomposition Pmax = Lmax nN with Lmax := G ∩ Str(V ).

The conformal algebra

Now let us examine the structure of the Lie algebra g = co(V ) of Co(V ), the so-
called Kantor–Koecher–Tits algebra. An element X ∈ g corresponds to a quadratic
vector field on V of the form

X(z) = u+ Tz − P (z)v, z ∈ V

with u, v ∈ V and T ∈ l. We use the notation X = (u, T, v) for short. In view of
this, we have the decomposition

g = n + l + n, (1.48)

where

n = {(u, 0, 0) : u ∈ V } ∼= V,

l = {(0, T, 0) : T ∈ str(V )} ∼= str(V ),

n = {(0, 0, v) : v ∈ V } ∼= V.

In this decomposition the Lie algebra pmax of Pmax (and P ) is given by

pmax = n + l.

If Xj = (uj, Tj, vj), (j = 1, 2), then the Lie bracket is given by

[X1, X2] = (T1u2 − T2u1, [T1, T2] + 2(u1�v2)− 2(u2�v1),−T#
1 v2 + T#

2 v1), (1.49)

with the box operator � as in (1.1). From this formula it is easy to see that the
decomposition (1.48) actually defines a grading on g:

g = g−1 + g0 + g1,

where g−1 = n, g0 = l and g1 = n. Further, since the box operators u�v, u, v ∈ V ,
generate the structure algebra l, the conformal algebra g is generated by n and n.

Example 1.6.1. Since G0 has trivial center we can calculate it by factoring out the
center from the universal covering: G0 = G̃0/Z(G̃0). Here the universal covering
G̃0 of G0 is uniquely determined by the Lie algebra g which was described in detail.
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1.6. The conformal group

(1) Let V = Sym(n,R). Then g ∼= sp(n,R) via the isomorphism

g→ sp(n,R), (u, T, v) 7→
(
T u
v −T t

)
.

Then G = G0
∼= Sp(n,R)/{±1}, where Sp(n,R)/{±1} acts on x ∈ V by

fractional linear transformations:(
A B
C D

)
· x = (Ax+B)(Cx+D)−1.

(2) Let V = Rp,q. Then an explicit isomorphism g
∼→ so(p+ 1, q + 1) is given by

(u, 0, 0) 7→


−(u′)t (u′′)t

u′ u′

u′′ u′′

(u′)t −(u′′)t

 , u ∈ V,

(0, sT, 0) 7→

 −s
T

−s

 , T ∈ so(p, q), s ∈ R,

(0, 0, αv) 7→


(v′)t (v′′)t

−v′ v′

v′′ −v′′
(v′)t (v′′)t

 , v ∈ V.

Hence, G0
∼= SO(p + 1, q + 1)0/Z(SO(p + 1, q + 1)0). The center Z(SO(p +

1, q + 1)0) is equal to {±1} if p and q are both even, and it is trivial else. By
(1.5) we have G = G0 if p is odd and G = G0 ∪ αG0 if p is even.

A Cartan involution

The involution θ of Str(V ) extends to an involution of Co(V ) by

θ : Co(V )→ Co(V ), g 7→ w0 ◦ g ◦ w−1
0 ,

where w0 := α ◦ j ∈ Co(V ). The map θ is a Cartan involution of Co(V ) which
restricts to Cartan involutions of G and G0. The corresponding involution θ of the
Lie algebra g is given by (see [Pev02, Proposition 1.1])

θ(u, T, v) := (−α(v),−T ∗,−α(u)), (u, T, v) ∈ g. (1.50)

In the above notation n = θ(n). Let g = k + p be the corresponding Cartan
decomposition of g. Then

k = {(u, T,−α(u)) : u ∈ V, T ∈ l, T + T ∗ = 0}. (1.51)

The fixed point group K := Gθ of θ is a maximal compact subgroup of G with Lie
algebra k. Then clearly KL = K ∩ L. The subgroup KL ⊆ K is symmetric, the
corresponding involution being g 7→ (−1) ◦ g ◦ (−1).
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Lemma 1.6.2. Assume that V and V + are simple. Then the center Z(k) of k is
non-trivial only if V is euclidean. In this case it is given by Z(k) = R(e, 0,−e).

Proof. First, let X = (u, T,−αu) ∈ Z(k). Then by (1.49) we have for any v ∈ V
and S ∈ kl:

(Tv − Su, [T, S]− 2u�αv + 2v�αu, T#αv − S#αu) = 0.

Putting S = 0 we obtain T = 0 and this simplifies to

Su = 0 and L(u · αv) + [L(u), L(αv)] = L(αu · v) + [L(v), L(αu)]. (1.52)

In particular, one has

u · αv = αu · v ∀ v ∈ V.

For v = e this gives αu = u and hence u ∈ V +. Then, from (1.52) it also follows
that

[L(u), L(αv)] = [L(v), L(u)]. ∀ v ∈ V. (1.53)

Write u in the Peirce decomposition u =
∑

i≤j uij, uij ∈ V
+
ij . For i < j we put v = ci

in (1.53) and apply both sides to cj which gives −1
4
uij = 1

4
uij and hence uij = 0.

Since V +
ii = Rci, we then have u =

∑r0
i=1 λici with λi ∈ R. Using (1.52) once more,

we know that Su = 0 for S ∈ kl. For every permutation π of {1, . . . , r0} there is
by Lemma 1.4.2 a derivation D ∈ der(V ) with αD = Dα such that eDci = cπ(i) for
every i = 1, . . . , r0. By (1.23) we have D ∈ kl and hence Du = 0. Altogether this
gives

r0∑
i=1

λici = u = eDu =

r0∑
i=1

λicπ(i)

for all permutations π. Therefore, λi = λj for all i, j = 1, . . . , r0 and u = λe, λ ∈ R.
It remains to show that X = (e, 0,−e) is actually contained in the center if and
only if V is euclidean. With (1.49) we find that

[(e, 0,−e), (u, T,−αu)] = (−Te, 2L(u− αu),−T#e).

If V is euclidean, then kl = der(V ) and hence Te = T#e = 0 for any T ∈ kl. Further,
α = 1 and L(u − αu) = 0 for all u ∈ V . Therefore, (e, 0,−e) ∈ Z(k). If V is non-
euclidean, then there exists a non-zero element u ∈ V − and L(u−αu) = L(2u) 6= 0.
Hence, (e, 0,−e) /∈ Z(k) which finishes the proof.
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1.6. The conformal group

Exponential function and adjoint action

The exponential function exp : g −→ G0 is on the subspaces n, l and n given as
follows:

exp(X) = nu for X = (u, 0, 0),

exp(X) = eT for X = (0, T, 0),

exp(X) = nv for X = (0, 0,−v),

where na := jnaj
−1 ∈ N = θ(N) = exp(n), na(x) = (x−1 − a)−1. Furthermore the

adjoint action of g ∈ L on N , L and N is given by

Ad(g)nu = ngu for u ∈ V, (1.54)
Ad(g)h = ghg−1 for h ∈ L, (1.55)
Ad(g)nv = ng−#v for v ∈ V. (1.56)

It follows that the adjoint action of g ∈ L on the Lie algebra g writes as

Ad(g)(u, T, v) = (gu, gTg−1, g−#v) for (u, T, v) ∈ g. (1.57)

We also need the adjoint action of exp(u, 0, 0) ∈ N on (0, 0, v) ∈ n, u, v ∈ V :

Ad(exp(u, 0, 0))(0, 0, v) = ead(u,0,0)(0, 0, v)

= (0, 0, v) + (0, 2u�v, 0) +
1

2
(−2(u�v)u, 0, 0)

= (−P (u)v, 2u�v, v). (1.58)

An sl(2)-triple

There is a natural homomorphism of SL(2,R) into the conformal group given by
(cf. [Ber00, Proposition XI.2.1])

φ : SL(2,R)→ G0, φ

(
a b
c d

)
(x) := (ax+ be)(cx+ de)−1. (1.59)

Denote the corresponding homomorphism of Lie algebras by dφ : sl(2,R)→ co(V ).
As usual, let

e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

Put E := dφ(e), F := dφ(f) and H := dφ(h). Then

E = (e, 0, 0), F = (0, 0, e), H = (0, 2 id, 0) (1.60)
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Chapter 1. Jordan theory

forms an sl(2)-triple in g. Further, we have

e
π
2

(E−F ) = e
π
2

dφ(e−f) = φ(e
π
2

(e−f))

= φ

(
0 1
−1 0

)
= j.

(1.61)

In particular, j ∈ G0. Similarly

eπ(E−F ) = φ

(
−1 0
0 −1

)
= 1. (1.62)

The Killing form

The Killing form on g is for Xi = (ui, Ti, vi), i = 1, 2, given by (see e.g. [Sat80,
Chapter I, proof of Proposition 7.1]):

B(X1, X2) = Bl(T1, T2) + 2Tr(T1T2) + 4Tr (L(u1v2)) + 4Tr (L(u2v1)) ,

where Bl denotes the Killing form on l. Since B is negative definite on the maximal
compact subalgebra k, we define an Ad-invariant inner product on k by

〈X1, X2〉 := −B(X1, X2).

for Xi = (ui, Ti,−αui) ∈ k, i = 1, 2. By Lemma 1.1.2:

〈X1, X2〉 = Bl(T1, T
∗
2 ) + 2Tr(T1T

∗
2 ) +

8n

r
(u1|u2). (1.63)

1.6.2. The universal covering

For the connected group G0 the universal covering G̃0 carries a natural Lie group
structure which turns the covering map G̃0 → G0 into a homomorphism. For the
universal covering G̃ of the (in general disconnected) group G this is not clear. We
now construct a group structure on G̃.

If α ∈ G0, then G = G0 and clearly G̃ := G̃0 is the universal cover of G. Denote
by p̃r : G̃→ G the covering map. For later use we choose any α̃ ∈ G̃ which projects
onto α under the covering map p̃r.
Now assume that α ∈ G \ G0. Then Ad(α) defines isomorphisms G0 → G0 and

g → g and by integration also G̃0 → G̃0. We put G̃ := G̃0 ∪ α̃G̃0, where α̃G̃0

denotes the set of all formal products α̃g with g ∈ G̃0. Then a product ⊗ on G̃ can
be defined as follows. For g1, g2 ∈ G̃0 put

g1 ⊗ g2 := g1g2 ∈ G̃0,

α̃g1 ⊗ g2 := α̃(g1g2) ∈ α̃G̃0,

g1 ⊗ α̃g2 := α̃((Ad(α)g1)g2) ∈ α̃G̃0,

α̃g1 ⊗ α̃g2 := (Ad(α)g1)g2 ∈ G̃0.
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It is easy to see that G̃ turns into a Lie group with two connected components.
We also use the notation α̃ for the formal product α̃1 ∈ α̃G̃0. The element α̃ is
contained in the connected component of G̃ which does not contain the identity. If
p̃r0 : G̃0 → G0 denotes the universal covering map of G0, then the homomorphism

p̃r : G̃→ G,

g 7→ p̃r0(g), ∀ g ∈ G̃0,

α̃g 7→ α · p̃r0(g), ∀ g ∈ G̃0,

is a universal covering of G.
In both cases we obtain a universal covering group G̃ of G with covering map

p̃r : G̃ → G and an element α̃ ∈ G̃ which projects onto the Cartan involution
α ∈ G. Note that if one identifies the Lie algebra of G̃ with g, then

Adg(α̃) = Adg(α). (1.64)

We further observe that the group K̃ := p̃r−1(K) is a universal cover of K since
K is a maximal compact subgroup of G. Note that in the euclidean case, the Lie
algebra k of K has non-trivial center by Lemma 1.6.2 and hence K̃ is not compact.
We further define

j̃ := exp eG
(π

2
(e, 0,−e)

)
∈ K̃0.

By (1.61) we have p̃r(j̃) = j. Then the element define w̃0 := α̃j̃ = j̃α̃ ∈ K̃
projects onto w0 = αj. (That α̃ and j̃ commute follows from the definition of the
multiplication on G̃.)

Lemma 1.6.3. w̃0 ∈ Z(K̃).

Proof. First note that by (1.64) we have Adk(w̃0) = Adk(w0) = 1 and hence w0

commutes with all elements in the identity component K̃0. If K̃ = K̃0 we are done.
In the remaining case where α̃ ∈ K̃ \ K̃0 we have

w̃0(α̃k) = α̃w̃0k = (α̃k)w̃0 ∀ k ∈ K̃0,

since both w̃0 and α̃ commute with all elements in K̃0. Hence w̃0 also commutes with
all elements in α̃K̃0. Altogether, w̃0 commutes with every k ∈ K̃ and is therefore
central.

1.6.3. Root space decomposition

From now on assume that V and V + are simple. Recall the definition (1.25) of the
abelian subalgebra

a =

{
r0∑
i=1

tiL(ci) : ti ∈ R

}
⊆ l ⊆ g.
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The set Σ(g, a) of non-zero a-weights of g forms a root system of type Cr0 . In fact,

Σ(g, a) =

{
±εi ± εj

2

}
,

with εj as in (1.26). The root spaces are given by

g εi+εj
2

= (Vij, 0, 0) ⊆ n,

gα = (0, lα, 0) ⊆ l for α ∈
{ εi−εj

2
: i 6= j

}
∪ {0},

g− εi+εj
2

= (0, 0, Vij) ⊆ n.

We see that the constants d and e+ 1 are exactly the multiplicities of the short and
the long roots, respectively.
We also choose the maximal toral subalgebra

t :=

{(
r0∑
i=1

tici, 0,−
r0∑
i=1

tici

)
: ti ∈ R

}
⊆ k⊥l ⊆ k

in the orthogonal complement of kl in k. The corresponding root system of (gC, tC)
is again of type Cr0 and given by

Σ(gC, tC) =

{
±γi ± γj

2

}
,

where

γj

(
r0∑
k=1

tkck, 0,−
r0∑
k=1

tkck

)
:= 2itj.

In fact, it is the image of a under the Cayley transform c = exp(iπ
4
ad(e, 0,−e))

of g (see e.g. [Sah93, §0] for the euclidean case and [DS99, Section 1.2] for the
non-euclidean case). Using Lemma 1.4.4 (2) we find the root spaces

(gC)± γi+γj
2

= {(u,∓2iL(u), u) : u ∈ (Vij)C},

(gC)± γi−γj
2

= {(u,±4i[L(ci), L(u)],−u) : u ∈ (Vij)C}.

Therefore the root spaces of tC in kC are given by

(kC)± γi+γj
2

= {(u,∓2iL(u), u) : u ∈ (V −ij )C},

(kC)± γi−γj
2

= {(u,±4i[L(ci), L(u)],−u) : u ∈ (V +
ij )C}.

From this one immediately obtains that the root system Σ(kC, tC) is of type
Ar0−1 if V is euclidean,
Cr0 if V is non-euclidean non-reduced,
Dr0 if V is non-euclidean reduced.
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We refer to these cases as case A, C and D. For the half sum of all positive roots
(with multiplicities mγ) we find

ρ =
1

2

∑
i<j

m γi−γj
2

γi − γj
2

+
1

2

∑
i<j

m γi+γj
2

γi + γj
2

+
1

2

∑
i

mγiγi

=
d0

4

r0∑
i=1

(r0 − 2i+ 1)γi +
d− d0

4
(r0 − 1)

r0∑
i=1

γi +
e

2

r0∑
i=1

γi

=

r0∑
i=1

ρiγi, (1.65)

where

ρi =
d0

4
(r0 − 2i+ 1) +

d− d0

4
(r0 − 1) +

e

2
=

1

2

(
n

r0

− 1

)
− d0

2
(i− 1). (1.66)

1.6.4. k-representations with a kl-spherical vector

As previously remarked, (k, kl) is a symmetric pair. Using the Cartan–Helgason the-
orem we can describe the highest weights of all unitary irreducible k-representations
which have a kl-spherical vector.

Proposition 1.6.4. The highest weight of an irreducible k-representation with a kl-
spherical vector vanishes on the orthogonal complement of t in any maximal torus
of k containing t. The possible highest weights which give unitary irreducible kl-
spherical representations are precisely given by

Λ+
kl

(k) =



{
r0∑
i=1

tiγi : ti ∈ R, ti − tj ∈ Z, t1 ≥ . . . ≥ tr0

}
in case A,{

r0∑
i=1

tiγi : ti ∈ Z, t1 ≥ . . . ≥ tr0 ≥ 0

}
in case C,{

r0∑
i=1

tiγi : ti ∈
1

2
Z, ti − tj ∈ Z, t1 ≥ . . . ≥ tr0−1 ≥ |tr0|

}
in case D.

Further, in each irreducible kl-spherical k-representation the space of kl-spherical
vectors is one-dimensional.

Proof. (a) First, let V be non-euclidean. Then k is semisimple by Lemma 1.6.2.
By the Cartan–Helgason theorem (see e.g. [Hel84, Chapter V, Theorem 4.1])
the highest weights of all irreducible k-representations with a kl-spherical vec-
tor vanish on the orthogonal complement of t in any maximal torus of k con-
taining t and are given by

Λ+
kl

(k) =

{
γ ∈ it∗ :

〈γ, α〉
〈α, α〉

∈ N0 ∀α ∈ Σ+(kC, tC)

}
.
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Here we have identified t∗C with tC via the bilinear form 〈−,−〉. Under this
identification γj corresponds to r0

4n
i(cj, 0,−cj). By Lemma 1.2.3 (2) we have

(ci|cj) = δijtr(ci) = δijtrVii(ci)

= δijrk(Vii) = δij
r

r0

and with (1.63) we obtain

〈γi, γj〉 = − r0

2n
δij. (1.67)

Thus, the previous observations imply the claim for the cases C and D.
(b) Now suppose V is euclidean. We have k = Z(k)+[k, k] with Z(k) = R(e, 0,−e)

by Lemma 1.6.2 and [k, k] semisimple. Clearly kl ⊆ [k, k] and the torus{
r0∑
i=1

ti(ci, 0,−ci) :

r0∑
i=1

ti = 0

}
⊆ k⊥l ⊆ [k, k]

is maximal in the orthogonal complement of kl in [k, k]. As in (a) it follows
from the Cartan–Helgason theorem that

Λ+
kl

([k, k]) =

{
r0∑
i=1

tiγi :

r0∑
i=1

ti = 0, ti − tj ∈ Z, t1 ≥ . . . ≥ tr0

}

Now, by Schur’s Lemma, the irreducible representations of k = Z(k) + [k, k]
are irreducible [k, k]-representations where the center Z(k) acts by scalars.
Therefore,

Λ+
kl

(k) = Λ+
kl

([k, k]) + R(γ1 + . . .+ γr0)

which shows the claim for the case A.
That in each irreducible k-representation the space of kl-spherical vectors is at

most one-dimensional follows from [Hel84, remark at the beginning of Chapter V,
§4.2]). This finishes the proof.

For α ∈ Λ+
kl

(k) we denote by Eα the irreducible kl-spherical representation of k

with highest weight α.

1.7. The Bessel operators

In this section we introduce second order differential operators Bλ (λ ∈ C) on V .
These operators are needed later to describe the Lie algebra action of the minimal
representation. We show that for λ ∈ W the operator Bλ is tangential to the orbit
Oλ and defines a symmetric operator on L2(Oλ, dµλ).
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1.7. The Bessel operators

1.7.1. Definition and Properties

For any complex parameter λ ∈ C we define a second order differential operator
Bλ : C∞(V ) −→ C∞(V ) ⊗ V called the Bessel operator , mapping complex-valued
functions to vector-valued functions, by

Bλ := P

(
∂

∂x

)
x+ λ

∂

∂x
. (1.68)

Here ∂
∂x

: C∞(V ) −→ C∞(V ) ⊗ V denotes the gradient with respect to the non-
degenerate trace form τ on V . This means that

τ

(
u,
∂f

∂x

)
= Duf(x) =

d

dt

∣∣∣∣
t=0

f(x+ tu) ∀u ∈ V.

Therefore, if (eα)α is a basis of V with dual basis (eα)α with respect to the trace
form τ , then for f ∈ C∞(V ) we have

∂f

∂x
=
∑
α

∂f

∂xα
eα.

Inserting this in (1.68) yields the following expression of Bλ in coordinates:

Bλf(x) =
∑
α,β

∂2f

∂xα∂xβ
P (eα, eβ)x+ λ

∑
α

∂f

∂xα
eα, x ∈ V.

First, we prove the following product rule for the Bessel operators which is an
easy consequence of the definition.

Lemma 1.7.1. For f, g ∈ C∞(V ) we have

Bλ(f · g) = Bλf · g + 2P

(
∂f

∂x
,
∂g

∂x

)
x+ f · Bλg. (1.69)

The Bessel operator Bλ satisfies an equivariance property with respect to the
action of Str(V ). Recall that ` denotes the left-regular representation of Str(V ) on
functions which are defined on V (see (1.14)).

Lemma 1.7.2 ([FK94, Proposition XV.2.3 (i)]). For any g ∈ Str(V ):

`(g−1)Bλ`(g) = g−#Bλ.

Proof. If F = `(g)f , then by the chain rule

∂F

∂x
= g−#∂f

∂x
(g−1x).
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Therefore,

BλF (x) =

(
P

(
g−# ∂

∂x

)
f

)
(g−1x)x+ λg−#∂f

∂x
(g−1x).

By (1.12),

P

(
g−# ∂

∂x

)
= g−#P

(
∂

∂x

)
g−1,

and the result follows.

We also need the action of Bλ on powers of the Jordan determinant.

Lemma 1.7.3 ([FK94, Proposition XV.2.4]).

Bλ∆(x)µ = µ
(
µ+ λ− n

r

)
∆(x)µx−1. (1.70)

Proof. The first and second derivatives of ∆(x)µ are given by

∂∆(x)µ

∂xα
(x) = µ∆(x)µτ(x−1, eα),

∂2∆(x)µ

∂xα∂xβ
(x) = µ2∆(x)µτ(x−1, eα)τ(x−1, eβ)− µ∆(x)µτ(P (x)−1eα, eβ).

Since ∑
α

tr(eα)eα = e,∑
α

eα · eα =
n

r
e,

by Lemma 1.2.4, it follows that

Bλ∆µ(e) = µ
(
µ+ λ− n

r

)
e.

In order to obtain the value of Bλ∆µ at x = ge, we use the equivariance property
of ∆:

`(g−1)∆(x) = ∆(ge)∆(x),

and the equivariance property of Bλ in Lemma 1.7.2:

Bλ∆µ(ge) =
(
`(g−1)Bλ∆µ

)
(e)

= g−#
(
Bλ`(g−1)∆µ

)
(e)

= ∆(ge)µg−#Bλ∆µ(e)

= µ
(
µ+ λ− n

r

)
∆(ge)µ(ge)−1.

This proves (1.70) for every x = ge in the open orbit of the structure group con-
taining the identity e. Since both sides of (1.70) are polynomials in x the claim
follows.
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1.7. The Bessel operators

1.7.2. Symmetric operators

The crucial part in proving that Bλ is tangential to Oλ and defines a symmetric
operator on L2(Oλ, dµλ), is the following proposition for the corresponding zeta
functions:

Proposition 1.7.4 ([FK94, Proposition XV.2.4]). Let Z(f, λ) denote the zeta func-
tion corresponding to V as in Proposition 1.5.12. Then, for f, g ∈ S(V ) and λ ∈ C
we have

Z((Bλf) · g, λ) = Z(f · (Bλg), λ),

as identity of meromorphic functions in λ.

Proof. It suffices to prove the statement for λ > n
r

+2 > (r0−1) r0d
2r
, then the general

statement follows by meromorphic continuation. In this case

Z(f, λ) =
s∑
j=1

∫
Ωj

f(x)|∆(x)|λ−
n
r dx,

where Ωj denote certain open orbits of L0. (If V is euclidean or V = Rp,q, then
s = 1 and Ω1 = Ω, and if V is non-euclidean � Rp,q, then (Ωj)j is the set of all
open L0-orbits.) Therefore, it is enough to show that for any open orbit Ωj of L0

we have ∫
Ωj

(Bλf(x))g(x)|∆(x)|λ−
n
r dx =

∫
Ωj

f(x)(Bλg(x))|∆(x)|λ−
n
r dx

On every orbit Ωj the Jordan determinant ∆(x) is either positive or negative. Since
λ > n

r
+ 2, we have |∆|λ−nr ∈ C2(Ωj) and all derivatives of |∆|λ−nr up to second

order vanish on ∂Ωj (use Lemma 1.4.1). This means that all boundary terms, which
occur when integrating by parts twice, vanish.
(a) Using integration by parts, we first prove that if all derivatives of g up to

second order vanish on ∂Ωj, then∫
Ωj

(Bλf(x))g(x) dx =

∫
Ωj

f(x)(B 2n
r
−λg(x)) dx.

For this we choose an orthonormal basis (eα)α with eα ∈ V + ∪ V −. Observe
that

∂2

∂xα∂xβ
(xg(x)) = x

∂2g

∂xα∂xβ
(x) + eα

∂g

∂xβ
(x) + eβ

∂g

∂xα
(x)
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and hence, by Lemma 1.2.4:

∑
α,β

P (eα, eβ)
∂2

∂xα∂xβ
(xg(x))

= B0g(x) + 2
∑
α,β

P (eα, eβ)eα
∂g

∂xβ
(x)

= B0g(x) + 2
∑
β

( ∑
eα∈V +

P (eα, eβ)eα −
∑
eα∈V −

P (eα, eβ)eα

)
∂g

∂xβ
(x)

= B0g(x) + 2
∑
β

( ∑
eα∈V +

e2
α −

∑
eα∈V −

e2
α

)
eβ

∂g

∂xβ
(x)

= B0g(x) + 2
∑
β

(∑
α

eα · eα

)
eβ

∂g

∂xβ
(x)

= B0g(x) +
2n

r

∂g

∂x
(x).

Therefore, integration by parts gives

∫
Ωj

Bλf(x) · g(x) dx

=

∫
Ωj

f(x) ·

(∑
α,β

P (eα, eβ)
∂2

∂xα∂xβ
(xg(x))− λ

∑
α

∂g

∂xα
eα

)
dx

=

∫
Ωj

f(x) ·
(
B0g(x) +

2n

r

∂g

∂x
(x)− λ∂g

∂x
(x)

)
dx

=

∫
Ωj

f(x) · B 2n
r
−λg(x) dx.

(b) Now we prove that

Bλ(|∆(x)|µf(x)) = |∆(x)|µ
(
Bλ+2µf(x) + µ

(
µ+ λ− n

r

)
x−1f(x)

)
.

First assume that Ωj is an orbit with ∆(x) > 0 for all x ∈ Ωj. Then |∆(x)|µ =
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1.7. The Bessel operators

∆(x)µ and with the Lemmas 1.7.1, 1.4.1 and 1.7.3 we have

Bλ(∆(x)µf(x)) = ∆(x)µBλf(x) + 2P

(
∂∆µ

∂x
(x),

∂f

∂x
(x)

)
x

+ Bλ(∆(x)µ)f(x)

= ∆(x)µBλf(x) + 2µ∆(x)µP

(
x−1,

∂f

∂x
(x)

)
x

+ µ
(
µ+ λ− n

r

)
∆(x)µx−1f(x)

= ∆(x)µ
(
Bλ+2µf(x) + µ

(
µ+ λ− n

r

)
x−1f(x)

)
.

Now, if ∆(x) < 0 for all x ∈ Ωj, then |∆(x)|µ = (−∆(x))µ and the same
calculation can be carried out.

(c) We now prove the main statement. By (a)∫
Ωj

(Bλf(x))g(x)|∆(x)|λ−
n
r dx =

∫
Ωj

f(x)B 2n
r
−λ
(
g(x)|∆(x)|λ−

n
r (x)

)
dx

and by (b)

=

∫
Ωj

f(x)(Bλg(x))|∆(x)|λ−
n
r (x) dx.

Summing over j = 1, . . . , s shows the claim.

Using the previous proposition we can now prove the main result of this section:

Theorem 1.7.5. For every λ ∈ W the differential operator Bλ is tangential to the
orbit Oλ and defines a symmetric operator on L2(Oλ, dµλ).

Proof. If λ > (r0 − 1) r0d
2r
, then the orbit Oλ = Ω is open and every differential

operator is tangential. Symmetry follows immediately from Proposition 1.7.4.
Now assume that λ = k r0d

2r
, 0 ≤ k ≤ r0 − 1. Let ϕ ∈ C∞c (Oλ) and let ϕ̃1, ϕ̃2 ∈

C∞c (U) be any extensions of ϕ to an open neighborhood U of Oλ. To show that
Bλ is tangential to Oλ we need to show that Bλϕ1 = Bλϕ2 on Oλ. By definition
ϕ̃ := ϕ̃1 − ϕ̃2 vanishes on Oλ. For any ψ ∈ C∞c (U) we obtain with Proposition
(1.7.4): ∫

Oλ
Bλϕ̃ · ψ dµλ = const · resµ=λZ (Bµϕ̃ · ψ, µ)

= const · resµ=λZ (ϕ̃ · Bµψ, µ)

=

∫
Oλ
ϕ̃ · Bλψ dµλ = 0.

Hence Bλϕ̃ = 0 in L2(Oλ, dµλ) which implies Bλϕ̃(x) = 0 for every x ∈ Oλ. But this
means that Bλϕ̃1 = Bλϕ̃2 on Oλ and therefore Bλ is tangential to Oλ. Symmetry
now again follows from Proposition 1.7.4. This finishes the proof.
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1.7.3. Action for the minimal orbit

Now let λ = λ1 = r0d
2r

be the minimal discrete non-zero Wallach point. Let us
compute the action of Bλ1 on radial functions on the minimal orbit O1, i.e. func-
tions depending only on ‖x‖ :=

√
(x|x). For convenience we use the following

normalization:

|x| :=
√

r

r0

‖x‖.

In view of Lemma 1.2.3 (2) we then have for i = 1, . . . , r0:

|ci| =
√

r

r0

tr(ci) =

√
r

r0

trVii(ci) =

√
r

r0

rk(Vii) =
r

r0

. (1.71)

Further, if ψ(x) = f(|x|), x ∈ V , is a radial function, then

∂ψ

∂x
(x) =

r

r0

f ′(|x|)
|x|

αx. (1.72)

Proposition 1.7.6. If ψ(x) = f(|x|), x ∈ O1, is a radial function on O1, f ∈
C∞(R+), then for x = ktc1 we have

Bλ1ψ(x) =

(
f ′′(|x|) + (d− d0 − e)

1

|x|
f ′(|x|)

)
αx+

r0

r

(
d0 −

d

2

)
f ′(|x|)α(ke).

Proof. We extend ψ to V \ {0} by

ψ(x) := f(|x|), x 6= 0.

Now, for an orthonormal basis (eα)α with respect to (−|−) we put eα := α(eα).
Then (eα)α is dual to (eα)α with respect to the trace form τ and for x =

∑
α xαeα

we have ‖x‖2 =
∑

α x
2
α. Thus we can calculate

Bλ1ψ(x) =
∑
α,β

∂2ψ

∂xα∂xβ
(x)P (eα, eβ)x+ λ1

∑
α

∂ψ

∂xα
(x)eα

=
r

r0

∑
α

∂

∂xα

[
xβ
|x|
f ′(|x|)

]
P (eα, eβ)x+

r

r0

λ1

∑
α

xα
|x|
f ′(|x|)eα

=
r

r0

∑
α

[
δα,β
|x|

f ′(|x|)− r

r0

xαxβ
|x|3

f ′(|x|) +
r

r0

xαxβ
|x|2

f ′′(|x|)
]
P (eα, eβ)x

+
r

r0

λ1
α(x)

|x|
f ′(|x|)

=

(
r

r0

)2
P (α(x))x

|x|2
f ′′(|x|) +

r

r0

(∑
α

P (eα)x

|x|
− r

r0

P (α(x))x

|x|3

+ λ1
α(x)

|x|

)
f ′(|x|).
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Now O1 = KLR+c1, and since ψ is KL-invariant, we obtain, using the equivariance
property of Lemma 1.7.2:

Bλ1ψ(ktc1) = `(k−1)Bλ1`(k)ψ(tc1) = k−#Bλ1ψ(tc1) = αkαBλ1ψ(tc1).

Therefore it suffices to compute Bλ1ψ(tc1) for t > 0. With Lemma 1.2.5 and (1.71)
we calculate:

Bλ1ψ(tc1) = tc1f
′′(t|c1|) +

(∑
α

P (eα)c1 +
(
λ1 −

r0

r

)
c1

)
f ′(t|c1|)

= f ′′(t|c1|)tc1 +
r0

r

(
d

2
− d0 − e+

r

r0

λ1

)
f ′(t|c1|)c1

+
r0

r

(
d0 −

d

2

)
f ′(t|c1|)e.

Finally, for x = ktc1 we have |x| = t|c1| and we obtain with λ1 = r0d
2r

Bλ1ψ(x) = αkαBλψ(tc1)

=

(
f ′′(|x|) + (d− d0 − e)

1

|x|
f ′(|x|)

)
αx+

r0

r

(
d0 −

d

2

)
f ′(|x|)α(ke).

This is the stated formula.

The formula in Proposition 1.7.6 can be simplified if one assumes that V is either
euclidean or non-euclidean of rank ≥ 3. (The remaining case is by Proposition
1.2.1 V = Rp,q which is treated separately in Appendix B.) For this we introduce
the ordinary differential operator Bα on R+ which is defined by

Bαf(t) := f ′′(t) + (2α + 1)
1

t
f ′(t)− f(t). (1.73)

Corollary 1.7.7. Let ψ(x) = f(|x|), x ∈ O1, be a radial function on O1.
(1) If V is euclidean, then

(Bλ1 − αx)ψ(x) = B ν
2
f(|x|)αx+

d

2
f ′(|x|)e.

(2) If V is non-euclidean of rank ≥ 3, then

(Bλ1 − αx)ψ(x) = B ν
2
f(|x|)αx.

Proof. By Proposition 1.7.6 we have for x = ktc1:

(Bλ1 − αx)ψ(x) = B d−d0−e−1
2

f(|x|)αx+
r0

r

(
d0 −

d

2

)
f ′(|x|)α(ke).
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(1) If V is euclidean, then ν = −1 = d− d0 − e− 1. Further, KL = H ⊆ Aut(V )
and hence ke = e for k ∈ KL. Therefore,

(Bλ1 − αx)ψ(x) = B ν
2
f(|x|)αx+

d

2
f ′(|x|)e.

(2) If V is non-euclidean of rank ≥ 3, then d = 2d0 and ν = d− d0− e− 1. Thus,
we obtain

(Bλ1 − αx)ψ(x) = B ν
2
f(|x|)αx.

Remark 1.7.8. The normalized I- and K-Bessel functions Ĩα(t) and K̃α(t) solve
the differential equation Bαu = 0 (see Appendix D.1). This is why we call Bλ the
Bessel operators. Since K̃α(t) decays exponentially as t→∞, it is used in the next
chapter to construct an the L2-model of the minimal representation of a finite cover
of the group G.
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2. Minimal representations of
conformal groups

In this chapter we construct the minimal representation of a finite cover of the
conformal group G. First, we construct its underlying (g, k)-module. We then show
that it can be integrated to a unitary irreducible representation of a finite cover of
G on L2(O, dµ). To motivate the definition of the Lie algebra action we show that
it arises by taking the Fourier transform of the action of a certain principal series
representation.
Further, we prove that the k-Casimir acts on the subspace of radial functions as

a fourth order differential operator which will be studied in detail in Chapter 3. We
also introduce a unitary operator FO on L2(O, dµ) which resembles the euclidean
Fourier transform.
Throughout this chapter V will always denote a simple real Jordan algebra, α a

Cartan involution on V and we further assume that V + is simple.

2.1. Construction of the minimal representation

We first construct a representation of g on C∞(Oλ) for any λ ∈ W . For the minimal
non-zero discrete Wallach point λ = λ1 = r0d

2r
we then define a subrepresentation

W of C∞(O1) which is contained in L2(O1, dµ1). Finally we show that W can
be integrated to a unitary irreducible representation of a finite cover of G on the
Hilbert space L2(O1, dµ1). For the special cases V = Sym(n,R) and V = Rp,q we
identify this representation with known representations.

2.1.1. Infinitesimal representations on C∞(Oλ)

On each Hilbert space L2(Oλ, dµλ), λ ∈ W , we define a representation ρλ of the
parabolic subgroup P by

ρλ(na)ψ(x) := ei(x|a)ψ(x) na ∈ N, (2.1)

ρλ(g)ψ(x) := χ(g∗)
λ
2ψ(g∗x) g ∈ L (2.2)

for ψ ∈ L2(Oλ, dµλ).

Proposition 2.1.1. For λ ∈ W the representation ρλ of P on L2(Oλ, dµλ) is
unitary and irreducible, even if restricted to the identity component P0 of P .
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Proof. Clearly, the operators ρλ(na), a ∈ V , are unitary on L2(Oλ, dµλ). Unitarity
of the L-action follows from (1.45) and hence ρλ defines a unitary representation of
P on L2(Oλ, dµλ). It remains to show irreducibility.
For this we use Schur’s Lemma. Suppose A is a unitary operator on L2(Oλ, dµλ)
which intertwines the P0-action. Since A intertwines the N -action, we have∫

Oλ
e−i(x|a)Aφ(x)ψ(x) dµλ(x) =

∫
Oλ
A(e−i(−|a)φ)(x)ψ(x) dµλ(x)

=

∫
Oλ
e−i(x|a)φ(x)Aψ(x) dµλ(x)

for all φ, ψ ∈ L2(Oλ, dµλ) and every a ∈ V . This means, that the euclidean Fourier
transforms of the tempered distributions Aφ(x)ψ(x) dµλ(x) and φ(x)Aψ(x) dµλ(x)
agree in S ′(V ). The Fourier transform is an isomorphism of S ′(V ) and hence,

Aφ(x)ψ(x) = φ(x)Aψ(x) µλ-almost everywhere.

The function ψ(x) := e−|x|
2 is clearly an L2-function and we obtain

Aφ(x) = (ψ(x)−1Aψ(x)) · φ(x).

Therefore, A is given by multiplication with the measurable function u(x) :=
ψ(x)−1Aψ(x). Now, A also commutes with the L0-action. This implies that u
is L0-invariant. Since L0 acts transitively on Oλ, u has to be constant. This means
that A is a scalar multiple of the identity. By Schur’s Lemma the P0-representation
ρ has to be irreducible and the proof is complete.

It is a natural question to ask whether ρλ extends to a unitary irreducible repre-
sentation of G (or some finite cover) on L2(Oλ, dµλ). One possible way to extend
ρλ is to extend the derived representation dρλ of pmax to g and integrate it to a
group representation.
We define a Lie algebra representation dπλ of g on C∞(Oλ) which extends the

derived action of ρλ. On pmax = n + l we let

dπλ(X) :=
d

dt

∣∣∣∣
t=0

ρλ(e
tX) ∀X ∈ pmax.

For ψ ∈ C∞(Oλ), the representation dπλ is given by

dπλ(X)ψ(x) = i(xψ(x)|u) for X = (u, 0, 0), (2.3)

dπλ(X)ψ(x) = DT ∗xψ(x) +
rλ

2n
Tr(T ∗)ψ(x) for X = (0, T, 0), (2.4)
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where we have used Proposition 1.5.3 for the l-action. In view of the Gelfand-
Naimark decomposition (1.48) it remains to define dπλ on n in order to extend it to
a representation of the whole Lie algebra g. For this we use the Bessel operator Bλ
(see Section 1.7 for the definition). By Theorem 1.7.5 the operator Bλ is tangential
to Oλ and hence, for ψ ∈ C∞(Oλ) the formula

dπλ(X)ψ(x) =
1

i
(Bλψ(x)|v) for X = (0, 0,−v), (2.5)

defines a function dπλ(X)ψ ∈ C∞(Oλ).
Proposition 2.1.2. For λ ∈ W the formulas (2.3), (2.4) and (2.5) define a repre-
sentation dπλ of g on C∞(Oλ). This representation is compatible with ρλ, i.e. for
p ∈ P and X ∈ g we have

ρλ(p) dπλ(X) = dπλ(Ad(p)X)ρλ(p). (2.6)

Proof. We first show the compatibility condition (2.6). For X ∈ pmax = n + l this
condition is immediate since dπλ(X) is just the derived action of the representation
ρλ. It remains to show (2.6) for p ∈ P and X = (0, 0,−v) ∈ n, v ∈ V .
(a) Let p = nu ∈ N , u ∈ V . Then Ad(p)X = (P (u)v,−2u�v,−v) by (1.58). We

calculate separately for (P (u)v, 0, 0), (0,−2u�v, 0) and (0, 0,−v).
(1) First, we have

dπλ(P (u)v, 0, 0)ρλ(p)ψ(x) = iei(x|u)(x|P (u)v)ψ(x).

(2) The adjoint of u�v is (u�v)∗ = (αv)�(αu) and its trace is (using Lemma
1.1.2)

Tr((u�v)∗) = Tr(u�v) = Tr(L(uv)) =
n

r
τ(u, v) =

n

r
(αu|v).

Hence,

dπλ(0,−2u�v, 0)ρλ(p)ψ(x)

= − 2D(u�v)∗x

[
ei(−|u)ψ

]
(x)− rλ

n
Tr((u�v)∗)ei(x|u)ψ(x)

= − 2i(x|(u�v)u)ei(x|u)ψ(x)− 2ei(x|u)D((αv)�(αu))xψ(x)

− λei(x|u)(αu|v)ψ(x).

(3) Finally, with Lemma 1.7.1 we obtain

dπλ(0, 0,−v)ρλ(p)ψ(x) =
1

i

(
Bλ
[
ei(−|u)ψ

]
(x)
∣∣ v)

=
1

i

(
Bλψ(x) · ei(x|u) + 2P

(
∂ψ

∂x
(x),

∂

∂x
ei(x|u)

)
x+ ψ(x) · Bλei(x|u)

∣∣∣∣ v)
=

1

i
ei(x|u) (Bλψ(x)| v) + 2ei(x|u)

(
P

(
∂ψ

∂x
(x), αu

)
x

∣∣∣∣ v)
+

1

i
ei(x|u)(P (iαu)x+ iλαu|v)ψ(x)
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=
1

i
ei(x|u) (Bλψ(x)| v) + 2ei(x|u)D((αv)�(αu))xψ(x)

+ iei(x|u)(x|P (u)v)ψ(x) + λei(x|u)(αu|v)ψ(x)

since(
P

(
∂ψ

∂x
, αu

)
x

∣∣∣∣ v) = τ

(
((αv)�(αu))x,

∂ψ

∂x

)
= D((αv)�(αu))xψ(x).

Putting the three summands together gives

dπλ(Ad(p)X)ρλ(p)ψ(x) =
1

i
ei(x|u) (Bλψ(x)| v) = ρλ(p) dπλ(X)ψ(x).

(b) Now, let p = g ∈ L. Then (Ad(p)X) = (0, 0,−g−#v) by (1.57). In this case
the compatibility condition (2.6) is exactly the statement of Lemma 1.7.2.

Now we show that dπλ is a Lie algebra representation, i.e. for X, Y ∈ g we have

dπλ(X) dπλ(Y )− dπλ(Y ) dπλ(X) = dπλ([X, Y ]). (2.7)

For Y ∈ pmax we have dπλ(Y ) = d
dt

∣∣
t=0

ρλ(e
tY ). Therefore, for Y ∈ pmax the

identity (2.7) follows from the compatibility condition (2.6) by putting p := etY and
differentiating with respect to t at t = 0. By the symmetry of (2.7) in X and Y the
remaining case is X, Y ∈ n. So let X = (0, 0,−u), Y = (0, 0,−v), u, v ∈ V . Then
[X, Y ] = 0 by (1.49) and we find that

dπλ(X) dπλ(Y )ψ(x) = −(Bλ(Bλψ|v)(x)|u)

= −

[∑
α,β

∂2(Bλψ|v)

∂xα∂xβ
(x)(P (eα, eβ)x|u) +

∑
α

∂(Bλψ|v)

∂xα
(x)(eα|u)

]

= −

[ ∑
α,β,γ,δ

∂2

∂xα∂xβ

[
∂2ψ

∂xγ∂xδ
(x)(P (eγ, eδ)x|v)

]
(P (eα, eβ)x|u)

+
∑
α,β,γ

∂2

∂xα∂xβ

[
∂ψ

∂xγ
(x)(eγ|v)

]
(P (eα, eβ)x|u)

+
∑
α,γ,δ

∂

∂xα

[
∂2ψ

∂xγ∂xδ
(x)(P (eγ, eδ)x|v)

]
(eα|u)

+
∑
α,γ

∂

∂xα

[
∂ψ

∂xγ
(x)(eγ|v)

]
(eα|u)

]

= −

[ ∑
α,β,γ,δ

∂4ψ

∂xα∂xβ∂xγ∂xδ
(x)(P (eγ, eδ)x|v)(P (eα, eβ)x|u)

+ 2
∑
α,β,γ,δ

∂3ψ

∂xα∂xγ∂xδ
(x)(P (eγ, eδ)eβ|v)(P (eα, eβ)x|u)
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+
∑
α,β,γ

∂3ψ

∂xα∂xβ∂xγ
(x)(eγ|v)(P (eα, eβ)x|u)

+
∑
α,γ,δ

∂3ψ

∂xα∂xγ∂xδ
(x)(P (eγ, eδ)x|v)(eα|u)

+
∑
α,γ,δ

∂2ψ

∂xγ∂xδ
(x)(P (eγ, eδ)eα|v)(eα|u)

+
∑
α,γ

∂2ψ

∂xα∂xγ
(x)(eγ|v)(eα|u)

]
.

The first and the last summand are clearly symmetric in u and v. The same holds
for the sum of third and fourth summand. The fifth summand can be written as∑

γ,δ

∂2ψ

∂xγ∂xδ
(x)

(∑
α

τ(P (eγ, eδ)αv, eα)eα

∣∣∣∣∣u
)

=
∑
γ,δ

∂2ψ

∂xγ∂xδ
(x)(P (eγ, eδ)αv|u) =

∑
γ,δ

∂2ψ

∂xγ∂xδ
(x)τ(P (αeγ, αeδ)v|u)

which is also symmetric in u and v since P (αeγ, αeδ) is a symmetric operator with
respect to the trace form τ . The same method applies for the second summand.
Together we obtain that dπλ(X) dπλ(Y )ψ(x) is symmetric in X, Y ∈ n which means
that

dπλ(X) dπλ(Y )ψ(x)− dπλ(Y ) dπλ(X)ψ(x) = 0.

Hence, (2.7) holds for all X, Y ∈ g and dπλ is a Lie algebra representation. This
finishes the proof.

Remark 2.1.3. In Section 2.2 we show that dπλ is the Fourier transformed picture
of a principal series representation in the non-compact picture. The definition (2.5)
of the n-action is motivated by these considerations. This also gives an alternative
proof that dπλ is indeed a Lie algebra representation.

2.1.2. Construction of the (g, k)-module

From now on we assume that the split rank r0 ≥ 2 and consider only the minimal
orbit O1. For convenience, put λ = λ1 := r0d

2r
, dπ := dπλ, O := O1, dµ := dµ1

and B := Bλ. We use the notation

X · ψ := dπ(X)ψ,

for the action of X ∈ g on a function ψ ∈ C∞(O). The representation dπ clearly
extends to a representation of the universal enveloping algebra U(g) on C∞(O)
whose action will be denoted similarly.
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Let ψ0 be the radial function on O defined by

ψ0(x) := K̃ ν
2
(|x|), x ∈ O, (2.8)

where K̃α(z) denotes the normalized K-Bessel function as introduced in Appendix
D.1 and ν is the parameter defined in (1.11). By (D.9) the function K̃α is a solution
of the second order equation Bαu = 0, where Bα is the operator defined in (1.73).
We put

W0 := U(k)ψ0 and W := U(g)ψ0.

W is clearly a g-subrepresentation of C∞(O) and W0 is a k-subrepresentation of W .
To show that W is actually a (g, k)-module, we have to show that it is k-finite. The
first step is to show that the generator ψ0 is k-finite. This can be done by direct
computation. For the precise statement we fix the following notation: Let P be any
space of polynomials on V . Then we denote by K̃α ⊗ P the space of functions

K̃α ⊗ ϕ : O → C, x 7→ K̃α(|x|)ϕ(x)

with ϕ ∈ P . For P we use

C[V ]≥k := {p ∈ C[V ] : p is a sum of homogeneous polynomials of degree ≥ k},

or the space of spherical harmonics

Hk(Rn) := {p ∈ C[x1, . . . , xn] : p is homogeneous of degree k and harmonic}.

Proposition 2.1.4. Let V be a simple Jordan algebra with simple V +. Then the
k-module W0 is finite-dimensional if and only if V � Rp,q with p + q odd, p, q ≥ 2.
If this is the case, W0

∼= Eα0 with

α0 :=


d
4

∑r0
i=1 γi if V is euclidean,

0 if V is non-euclidean of rank ≥ 3,
1
2

∣∣d0 − d
2

∣∣ γ1 + 1
2

(
d0 − d

2

)
γ2 if V ∼= Rp,q, p, q ≥ 2.

(2.9)

More precisely:
(a) If V is euclidean, then

W0 = Cψ0

and the center Z(k) = R(e, 0,−e) acts by

dπ(e, 0,−e)ψ0 =
rd

2
iψ0.
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2.1. Construction of the minimal representation

(b) If V is non-euclidean of rank r ≥ 3, then

W0 = Cψ0

and ψ0 is a k-spherical vector.
(c) If V = Rp,q with p+ q even, p, q ≥ 2, then

W0 =



q−p
2⊕

k=0

K̃ ν
2

+k ⊗Hk(Rp) ∼= H
q−p
2 (Rp+1) if p ≤ q,

p−q
2⊕

k=0

K̃ ν
2

+k ⊗Hk(Rq) ∼= H
p−q
2 (Rq+1) if p ≥ q,

(2.10)

(d) If V = Rp,q with p+ q odd, p, q ≥ 2, then

W0 =


∞⊕
k=0

K̃ ν
2

+k ⊗Hk(Rp) if p ≤ q,

∞⊕
k=0

K̃ ν
2

+k ⊗Hk(Rq) if p ≥ q.
(2.11)

Proof. Since ψ0 is KL-invariant, clearly dπ(kl)ψ0 = 0. Therefore it suffices to apply
elements of the form (u, 0,−α(u)) ∈ k, u ∈ V , to ψ0. By (2.3) and (2.5) we have

dπ(u, 0,−α(u))ψ(x) =
1

i
τ((B − αx)ψ(x), u). (2.12)

Now we have to distinguish between three different cases.
(1) If V is euclidean, then by Corollary 1.7.7 (1)

dπ(u, 0,−α(u))ψ0(x) =
1

i
B ν

2
K̃ ν

2
(|x|)︸ ︷︷ ︸

=0

(x|u) +
1

i

d

2
K̃ ′ν

2
(|x|)tr(u)

Since ν = −1, we have by (D.7)

K̃ ν
2
(|x|) =

√
π

2
e−|x|

and therefore K̃ ′ν
2
(|x|) = −K̃ ν

2
(|x|). Altogether this gives

dπ(u, 0,−α(u))ψ0(x) = i
d

2
tr(u)ψ0(x). (2.13)

Hence, W0 = Cψ0. Putting u = e gives the action of the center Z(k) =
R(e, 0,−e). Further, for u = ci, 1 ≤ i ≤ r0, we find that W0 is of highest
weight d

4

∑r0
i=1 γi.
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Chapter 2. Minimal representations of conformal groups

(2) If V is non-euclidean of rank r ≥ 3, then d = 2d0 (see Proposition 1.2.1) and
with Corollary 1.7.7 (2) we obtain

dπ(u, 0,−α(u))ψ0(x) =
1

i
B ν

2
K̃ ν

2
(|x|)︸ ︷︷ ︸

=0

(x|u). (2.14)

This implies that W0 = Cψ0 is the trivial representation.
(3) Now, for the case V = Rp,q, p, q ≥ 2, the calculations can be found in Appendix

B.1.

Remark 2.1.5. The fact that ψ0 is not k-finite if V = Rp,q with p + q odd corre-
sponds to the result by D. Vogan that no covering group of SO(p+ 1, q + 1)0 has a
minimal representation if p+ q is odd and p, q ≥ 3 (see [Vog81, Theorem 2.13]).

Now a standard argument shows that the fact that ψ0 is k-finite already implies
that W is k-finite. Since we could not find a reference for this basic fact, we include
a short proof.

Lemma 2.1.6. If W0 = U(k)ψ0 is finite-dimensional, then W = U(g)ψ0 is a (g, k)-
module.

Proof. Let g1 := gC⊕C ⊆ U(g) and define Wn+1 := g1Wn for n ≥ 0. We claim that
(1) Wn is finite-dimensional for every n,
(2) Wn is k-invariant for every n,
(3) W =

⋃
nWn.

The first statement follows easily by induction on n, since W0 and g1 are finite-
dimensional. The third statement is also clear by the definition of U(g). For the
second statement we give a proof by induction on n:
For n = 0 the statement is clear by the definition of W0. For the induction step let
w ∈ Wn+1 and X ∈ k. Then w =

∑
j Yjvj with Yj ∈ g1 and vj ∈ Wn. We have

Xw =
∑
j

X(Yjvj) =
∑
j

([X, Yj]vj + Yj(Xvj)).

Here [X, Yj] ∈ g1 and hence [X, Yj]vj ∈ Wn+1 for each j. Furthermore Xvj ∈ Wn

by the induction assumption and hence Yj(Xvj) ∈ Wn+1 for every j. Together this
gives Xw ∈ Wn+1 which shows that Wn+1 is k-invariant.
Now the k-finiteness of every vector w ∈ W follows.

To see that W integrates to a representation on L2(O, dµ) we have to show that
W is contained in L2(O, dµ).

Proposition 2.1.7. (a) If V is a simple Jordan algebra of rank r ≥ 3, then

W ⊆
∞⊕
`=0

K̃ ν
2

+` ⊗ C[V ]≥2` ⊆ L2(O, dµ). (2.15)
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2.1. Construction of the minimal representation

(b) If V = Rp,q with p+ q even, then

W ⊆
∞⊕
`=0

| p−q
2
|⊕

k=0

K̃ ν
2

+k+` ⊗ C[V ]≥k+2` ⊆ L2(O, dµ). (2.16)

(c) If V = Rp,q with p+ q odd, then W * L2(O, dµ).

Proof. g = k + pmax implies U(g) = U(pmax)U(k) by the Poincaré–Birkhoff–Witt
Theorem. Therefore

W = U(g)ψ0 = U(pmax)W0.

Now if V � Rp,q with p + q odd, then by Proposition 2.1.4 the k-module W0 is
already contained in the direct sum in (2.15) or (2.16), respectively. (In fact, W0

is contained in the direct summand for ` = 0.) Therefore, it suffices to check that
these direct sums are stable under the action of pmax = n + l. We check the actions
of n and l separately.
(1) Action of n. By (2.3) the action of n is given by multiplication by polynomials.

This clearly leaves the direct sums invariant.
(2) Action of l. In view of (2.4) it suffices to show that the operators DTx for

T ∈ l = str(V ) leave the direct sums invariant. But this is a consequence of
the following calculation which uses (1.72) and (D.11):

DTx

[
K̃ ν

2
+k(|x|)ϕ(x)

]
=

r

r0

(Tx|x)
K̃ ′ν

2
+k(|x|)
|x|

ϕ(x) + K̃ ν
2

+k(|x|)DTxϕ(x)

= − r

2r0

K̃ ν
2

+k+1(|x|) · (Tx|x)ϕ(x) + K̃ ν
2

+k(|x|) ·DTxϕ(x).

This proves the first inclusion in (2.15) and (2.16). It remains to show the L2-
statements.
Note that by (1.46) a function K̃α ⊗ ϕ (ϕ ∈ C[V ] homogeneous of degree m) is
contained in L2(O, dµ) if and only if K̃α(t)tm ∈ L2(R+, t

µ+ν+1 dt). By (D.21) the
K-Bessel function K̃α(t) decays exponentially as t → ∞ and hence K̃α(t)tm ∈
L2((1,∞), tµ+ν+1 dt) for any α ∈ R and m ≥ 0. Therefore it suffices to check the
asymptotic behavior of K̃α(t)tm as t → 0. For α < 0 we obtain with (D.20) that
also K̃α(t)tm ∈ L2((0, 1), tµ+ν+1 dt) for any m ≥ 0 (use Lemma 1.3.1: µ+ν+1 ≥ 0).
A similar argument settles the case α = 0. Hence, we may restrict ourselves to the
case α > 0. In this case (see (D.20))

K̃α(t) ∼ const · t−2α as t→ 0.

Therefore, K̃α(t)tm ∈ L2((0, 1), tµ+ν+1 dt) if and only if

µ+ ν + 2m− 4α + 1 > −1.
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(a) For V simple of rank r ≥ 3 we have to show that K̃ ν
2

+`(t)t
2` ∈

L2((0, 1), tµ+ν+1 dt) for any ` ∈ N0. With α = ν
2

+ ` and m = 2` we obtain

µ+ ν + 2m− 4α + 1 = µ− ν + 1 ≥ 1 > −1

by Lemma 1.3.1.
(b) In the case where V = Rp,q with p + q even we need to prove that

K̃ ν
2

+k+`(t)t
k+2` ∈ L2((0, 1), tµ+ν+1 dt) for k = 0, . . . , |p−q

2
| and ` ∈ N0. In this

case µ = max(p, q) − 2 and ν = min(p, q) − 2. With α = ν
2

+ k + ` and
m = k + 2` we obtain

µ+ ν + 2m− 4α + 1 = |p− q| − 2k + 1 ≥ 1 > −1.

(c) Now assume that V = Rp,q with p + q odd. By (2.11) the k-module W0

contains functions K̃ ν
2

+k ⊗ ϕ with ϕ ∈ C[V ] homogeneous of degree k where
k is arbitrary. For large k we have α = ν

2
+ k > 0 and with m = k we obtain

µ+ ν + 2m− 4α + 1 = µ− ν − 2k + 1

which is ≤ −1 for k large enough. Hence, W0 * L2(O, dµ) in this case.
This proves the L2-statements and completes the proof.

To make sure we obtain a unitary representation we show the following proposi-
tion:

Proposition 2.1.8. The (g, k)-module W is infinitesimally unitary with respect to
the inner product of L2(O, dµ).

Proof. Since the group P acts unitarily on L2(O, dµ) by ρλ1 , its infinitesimal action
dρλ1 = dπ|pmax is infinitesimally unitary with respect to the L2 inner product. This
shows that the action of n and l on W is infinitesimally unitary. (In fact, one
can easily prove unitarity of these actions directly with (2.3) and (2.4).) Since
the action of n is by (2.5) given in terms of the Bessel operator B, it follows from
Proposition 1.7.4 that n acts by skew-symmetric operators on L2(O, dµ). In view
of the decomposition g = n + l + n this finishes the proof.

The last ingredient to integrate the (g, k)-module W is admissibility.

Proposition 2.1.9. Assume that V 6= Rp,q, p + q odd, p, q ≥ 2. Then W is
admissible.

Proof. We use the criterion [Wal88, Corollary 3.4.7]. Therefore, it suffices to show
that every X ∈ Z(g), the center of U(g), acts as a scalar onW . To show this we ap-
ply [Wal88, Proposition 1.2.2]. Recall that (ρλ1 , L

2(O, dµ)) is a unitary irreducible
representation of P0 by Proposition 2.1.1. The space D := ρλ1(P0)W is contained
in L2(O, dµ) sinceW ⊆ L2(O, dµ) by Proposition 2.1.7 and ρλ1 acts on L2(O, dµ).
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2.1. Construction of the minimal representation

Since D is P0-invariant, it has to be dense in L2(O, dµ). Further, a closer look at
Proposition 2.1.7 shows that W ⊆ C∞(O) and hence D ⊆ L2(O, dµ) ∩ C∞(O).
Therefore, T := dπ(X) is also defined on D. Since

dπ(Y )ρλ1(p)w = ρλ1(p) dπ(Ad(p−1)Y )w ∀Y ∈ U(g), p ∈ P0, w ∈ W,

by (2.6), it follows that T : D → D. Further, using that T ∈ Z(g), we have
Tρλ1(p) = ρλ1(p)T for all p ∈ P0. The adjoint S := T ∗ of T with respect to the L2

inner product is by Proposition 2.1.8 also given by the action of an element of U(g).
Therefore, S also acts on D. Applying [Wal88, Proposition 1.2.2] to this situation
yields that T is a scalar multiple of the identity on D. Since D contains W , the
claim follows.

2.1.3. Integration of the (g, k)-module

Now we can finally integrate the (g, k)-module W to a unitary representation of a
finite cover of G. For this we first construct the finite cover of G on which we will
define the representation.

In Section 1.6.2 we constructed the universal covering group G̃ of G. Note that
in the euclidean case, the covering G̃→ G is not finite. Thus, we have to factor out
a discrete central subgroup.
Let k ∈ N be the smallest positive integer such that

k
r0

2

(
d0 −

d

2

)
+

∈ Z.

Here we use the notation

x+ :=
1

2
(x+ |x|) =

{
x if x ≥ 0,

0 if x < 0.

for the positive part of a real number x ∈ R. Then the following lemma holds:

Lemma 2.1.10. The discrete subgroup

Γ := exp eG(kπZ(e, 0,−e)) ⊆ G̃

is central in G̃ and the group Ǧ := G̃/Γ is a finite cover of G with covering map

p̌r : Ǧ→ G, gΓ 7→ p̃r(g).

Moreover, Ǩ := K̃/Γ ⊆ Ǧ is a maximal compact subgroup of Ǧ.
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Proof. By (1.62) we have expG0
(π(e, 0,−e)) = 1. Therefore, Γ has to be central in

G̃0 since it projects onto 1 ∈ G0. We claim that Γ is also central in G̃. Since G̃ is
generated by G̃0 and α̃, it suffices to prove that

Ad(α̃) exp eG0
(kπ(e, 0,−e)) = exp eG0

(kπ(e, 0,−e)).

But since Adg(α̃) = Adg(α) on g by (1.64), this follows from (1.57) and the fact that
αe = e. Thus, Γ ⊆ G̃ is a discrete central subgroup and the quotient Ǧ := G̃/Γ is
again a group. By (1.62) we have expG0

(X) = 1 for any X ∈ kπZ(e, 0,−e) and thus
the covering map p̃r : G̃ → G factors through G̃/Γ and hence defines a covering
map p̌r : Ǧ→ G. It remains to show that the cover Ǧ→ G is finite and Ǩ = K̃/Γ
is a maximal compact subgroup of Ǧ.
(a) If V is non-euclidean, then by Lemma 1.6.2 the maximal compact subgroup

K of G is semisimple. Hence, its universal covering K̃ is a finite covering and
therefore K̃ is a maximal compact subgroup of the universal covering G̃ of
G. Passing to quotients modulo the discrete central subgroup Γ preserves this
property.

(b) Now let V be a euclidean Jordan algebra. Then

k = Z(k) + [k, k],

where Z(k) = R(e, 0,−e) by Lemma 1.6.2 and [k, k] is semisimple. Therefore,
the universal covering K̃ ⊆ G̃ of K is given by

K̃ = R× K̃ss,

where the first factor R is the exponential image of the center Z(k) and Kss

denotes the analytic subgroup of K with Lie algebra [k, k]. The group K̃ss

is compact since Kss is semisimple and compact. Therefore, factoring out Γ
yields a compact group

Ǩ = K̃/Γ ∼= S1 × K̃ss.

Hence, the covering Ǩ → K is finite. Ǩ is a maximal compact subgroup of Ǧ,
because K is a maximal compact subgroup of G. Thus, the covering Ǧ→ G
is also finite in this case.

We denote by α̌ the projection of α̃ under the covering map G̃ → Ǧ. (For the
choice of α̃ see Section 1.6.2.) Further, let P̌ := p̌r−1(P ).

Example 2.1.11. (1) Let V = Sym(n,R). We claim that

Ǧ =


Mp(n,R) for n ≡ 1, 3 (mod 4),

Sp(n,R) for n ≡ 2 (mod 4),

Sp(n,R)/{±1} for n ≡ 0 (mod 4).
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First note that the fundamental group π1(Sp(n,R)) = Z is generated by the
closed curve (see e.g. [Fol89, Proposition 4.8])

[0, 2π]→ Sp(n,R), θ 7→
(

cos θ · 1n sin θ · 1n
− sin θ · 1n cos θ · 1n

)
.

Since r0
2

(d0 − d
2
)+ = rd

4
= n

4
, we obtain for the integer k:

k =


4 for n ≡ 1, 3 (mod 4),

2 for n ≡ 2 (mod 4),

1 for n ≡ 0 (mod 4).

and the claim follows.
(2) For V = Rp,q, p+ q even, we have that r0

2
(d0 − d

2
)+ = ( q−p

2
)+ ∈ Z and hence,

k = 1. The Lie algebra element kπ(e, 0,−e) = π(e, 0,−e) corresponds to
0 −2π

2π 0
0

. . .
0


via the isomorphism g ∼= so(p + 1, q + 1) (see Example 1.6.1 (2)). Since the
exponential function of SO(p + 1, q + 1)0 applied to this Lie algebra element
is equal to 1, the group Ǧ0 is a finite cover of the group SO(p+ 1, q + 1)0.

Now, in a first step, we integrate the (g, k)-module to a unitary representation of
Ǧ0.

Theorem 2.1.12. Assume that V � Rp,q with p + q odd, p, q ≥ 2. Then there is
a unique unitary irreducible representation π0 of Ǧ0 on L2(O, dµ) with underlying
(g, k)-module W . The representation π0 has the additional property that

π0(p) = ρλ1(p̌r(p)) ∀ p ∈ P̌0.

Proof. The (g, k)-module W clearly integrates to a (g, K̃0)-module since K̃0 is con-
nected and simply-connected. (Note that in the euclidean case K̃0 is not compact.)
By Proposition 2.1.4 the element kπ(e, 0,−e) acts on the highest weight vector ψ+

of W0 by the scalar

2πi · kr0

2

(
d0 −

d

2

)
+

which is in 2πiZ by construction. Therefore, the central element γ :=
exp(kπ(e, 0,−e)) of K̃0 acts trivially on ψ+ and hence, by Schur’s Lemma, also on
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W0. We claim that γ also acts trivially on W . By the Poincaré–Birkhoff–Witt
Theorem we have W = U(p)U(k)ψ0 = U(p)W0. Let

U(p) =
∞⋃
n=0

Un(p)

be the natural filtration of U(p). Then clearly

W =
∞⋃
n=0

Un(p)W0

and it suffices to show that γ acts trivially on every Un(p)W0. We show this by
induction on n ∈ N0. For n = 0 we have U0(p)W0 = W0 on which γ acts trivially
by the previous considerations. Now suppose γ acts trivially on Un(p)W0. By the
results of Section 1.6.3 the space p is the direct sum of eigenspaces of ad(e, 0,−e)
for the eigenvalues −2i, 0 and +2i. Hence

Ad(γ)X = ekπad(e,0,−e)X = X ∀X ∈ p.

For w ∈ Un(p)W0 and every X ∈ p we obtain

γ ·Xw = Ad(γ)X · γw = Xw

by the induction hypothesis. It follows that γ acts trivially on Un+1(p)W0 and the
induction is complete.
Since the subgroup Γ is generated by γ which acts trivially onW , the whole discrete
central subgroup Γ acts trivially on W . It follows that the representation factorizes
to a (g, Ǩ0)-module. (In contrast to K̃0, the group Ǩ0 is compact in both the
euclidean and the non-euclidean case by Lemma 2.1.10.)
So far, we have constructed a (g, Ǩ0)-module, where Ǩ0 ⊆ Ǧ0 is a maximal compact
subgroup of the semisimple Lie group Ǧ0 and g is the Lie algebra of Ǧ0. Since W
is admissible by Proposition 2.1.9, it integrates to a representation (π0,H) of G̃0

by a standard theorem of Harish–Chandra (see e.g. [Wal88, Theorem 6.A.4.2]).
Now, W is already infinitesimally unitary with respect to the L2 inner product (see
Proposition 2.1.8). Thus, H ⊆ L2(O, dµ) and π0 is unitary with respect to the
L2-inner product. Further, π0 and ρλ1 ◦ p̌r agree on P̌0 since they have the same Lie
algebra action. Now, ρλ1 |P0 is irreducible on L2(O, dµ) by Proposition 2.1.1. Hence
H = L2(O, dµ) and (π0,H) is also irreducible as G̃0-representation. This shows the
claim.

Now it is only a technical matter to extend the representation π0 from Ǧ0 to Ǧ.

Proposition 2.1.13. The representation π0 extends uniquely to a representation π
of Ǧ such that

π(p) = ρλ1(p̌r(p)) ∀ p ∈ P̌ .
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Proof. The group Ǧ has at most 2 connected components: Ǧ0 and α̌Ǧ0. The same
is true for P̌ . We then have the following commutative diagram with exact lines in
the category of groups:

{1} // P̌0

⊆
��

⊆ // P̌ //

⊆
��

ρλ1
◦p̌r

��

π0(P̌ ) //

��

{1}

{1} // Ǧ0

⊆ //

π0 **

Ǧ //

π
CCC

!!C
C

π0(Ǧ) // {1}

U(H)

Here U(H) denotes the group of unitary operators on the Hilbert space H =
L2(O, dµ). To extend π0 to Ǧ such that it agrees with ρλ1 ◦ p̌r on P̌ , we first
have to show that π0 coincides with ρλ1 ◦ p̌r on the intersection Ǧ0 ∩ P̌ . By Theo-
rem 2.1.12, they already agree on P̌0. Therefore, we have to deal with other possible
connected components of Ǧ0 ∩ P̌ .
We first claim that

π0(P̌ )→ π0(Ǧ)

is surjective. In fact, since G is generated by P and j, the finite cover Ǧ is generated
by P̌ and p̌r−1(j). Since p̌r−1(j) is contained in the identity component Ǧ0, we have
Ǧ = P̌ Ǧ0 and the claim follows. Note that π0(P̌ ) and π0(Ǧ) are of order at most 2.
Now we show that

π0 = ρλ1 ◦ p̌r on Ǧ0 ∩ P̌ .

(a) If V is euclidean, then P̌ = P̌0 and Ǧ0 ∩ P̌ = P̌0. As previously remarked,
π0 = ρλ1 ◦ p̌r holds on P̌0.

(b) Next, if V = Rp,q, then π0(P̌ )→ π0(Ǧ) is always an isomorphism (see Exam-
ples 1.6.1 (2) and 2.1.11 (2)) and again it follows that Ǧ0 ∩ P̌ = P̌0.

(c) Finally, let V be non-euclidean with d = 2d0. If α̌ ∈ Ǧ \ Ǧ0, then the order of
π0(Ǧ) is 2 and π0(P̌ ) → π0(Ǧ) is even an isomorphism. Hence, Ǧ0 ∩ P̌ = P̌0

as in (a) and (b) and we are done.
It remains to check the case where α̌ ∈ Ǩ0 ⊆ Ǧ0. Since P̌ is generated
by P̌0 and α̌ it suffices to show π0(α̌) = ρλ1(p̌r(α̌)) = ρλ1(α). Let A :=
ρλ1(α) ◦ π0(α̌−1). Since Ad(α̌) : P̌0 → P̌0, we have for p ∈ P̌0:

A ◦ ρλ1(p̌r(p)) = ρλ1(α) ◦ π0(α̌−1) ◦ π0(p)

= ρλ1(α) ◦ π0(Ad(α̌−1)p) ◦ π0(α̌−1)

= ρλ1(p̌r(α̌)) ◦ ρλ1(p̌r(Ad(α̌−1)p)) ◦ π0(α̌−1)

= ρλ1(p̌r(p)) ◦ ρλ1(p̌r(α̌)) ◦ π0(α̌−1)

= ρλ1(p̌r(p)) ◦ A.
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Chapter 2. Minimal representations of conformal groups

Hence, A commutes with the representation ρλ1|P0 . But ρλ1|P0 is irreducible
and therefore A = z · idH for some z ∈ C. We claim that Aψ0 = ψ0 and hence
z = 1. In fact, on the one hand we have ρλ1(α)ψ0 = ψ0 by (2.2). On the
other hand, α̌ ∈ Ǩ0 and ψ0 is killed by dπ(k) (see Proposition 2.1.4), hence
π0(α̌)ψ0 = ψ0. This shows the claim.

Finally, we can show that and π0 extends uniquely to a representation π : Ǧ→ U(H)
with π = ρλ1 ◦ p̌r on P̌ . First, uniqueness of π is clear, since Ǧ = P̌ Ǧ0. For
the existence, let g ∈ Ǧ. Then gǦ0 = pǦ0 for some p ∈ P̌ by our previous
considerations. Hence, g = pg0 with g0 ∈ Ǧ0. We then define π by

π(g) := ρλ1(p̌r(p))π0(g0).

It remains to show that this gives a well-defined homomorphism π : Ǧ→ U(H).
Well-definedness is again obvious: Suppose pg0 = p′g′0 with p, p′ ∈ P̌ , g0, g

′
0 ∈ Ǧ0.

Then p′−1p = g′0g
−1
0 ∈ P̌ ∩ Ǧ0. Since ρλ1 ◦ p̌r and π0 agree on P̌ ∩ Ǧ0, we obtain

ρλ1(p̌r(p
′−1))ρλ1(p̌r(p)) = π0(g′0)π0(g−1

0 )

and hence

ρλ1(p̌r(p))π0(g0) = ρλ1(p̌r(p
′))π0(g′0).

Thus, π is well-defined. We now prove that π is indeed a group homomorphism.
For this suppose that

p′g′0p
′′g′′0 = pg0

with p, p′, p′′ ∈ P̌ and g0, g
′
0, g
′′
0 ∈ Ǧ0. We have to show that

ρλ1(p̌r(p
′)) ◦ π0(g′0) ◦ ρλ1(p̌r(p

′′)) ◦ π0(g′′0) = ρλ1(p̌r(p)) ◦ π0(g0).

Rearrangement gives g′0p′′ = p′−1pg0g
′′−1
0 . Therefore, p′′ and p′−1p lie in the same

connected component of Ǧ. Hence, one can find h0 ∈ Ǧ0 such that p′−1p = p′′h0.
Together we have g′0 = p′′h0g0g

′′−1
0 p′′−1 = Ad(p′′)(h0g0g

′′−1
0 ). Thus we are finished if

we show that

π0(Ad(p)g0) = Ad(ρλ1(p̌r(p)))π0(g0) ∀ p ∈ P̌ , g0 ∈ Ǧ0.

Since Ǧ0 is connected, it is generated by expǦ0
(g). Therefore, it suffices to show

dπ(Ad(p)X) = Ad(ρλ1(p)) dπ(X) ∀ p ∈ P,X ∈ g. (2.17)

But this was already shown in Proposition 2.1.2 and the proof is complete.

Corollary 2.1.14. Let V be a simple Jordan algebra which is not of rank r = 2 with
odd dimension. Then all coefficients (B|a), a ∈ V , of the Bessel operator extend to
self-adjoint operators on L2(O, dµ).
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Proof. It is a general result that for a unitary representation the Lie algebra acts
by skew-adjoint operators. Then the claim follows from (2.5).

Remark 2.1.15. We do not give a proof here that π is in fact a minimal repre-
sentation in the sense of [GS05]. For this we refer to [Sah92, Section 3.4, Remark
2] for the euclidean case, [DS99, Remark after Theorem 0.1] for the case of a non-
euclidean Jordan algebra of rank ≥ 3, and [KØ03a, Remark 3.7.3 (1)] for the case
V = Rp,q.

2.1.4. Two prominent examples

We show that the representation π of Ǧ is for V = Sym(n,R) isomorphic to the
metaplectic representation (see [Fol89, Chapter 4]) and for V = Rp,q isomorphic to
the minimal representation of O(p+ 1, q+ 1) as studied by T. Kobayashi, B. Ørsted
and G. Mano in [KØ03a, KØ03b, KØ03c, KM07a, KM07b].

The metaplectic representation

The metaplectic representation µ as constructed in [Fol89, Chapter 4] is a unitary
representation of the metaplectic group Mp(n,R), the double cover of the symplectic
group Sp(n,R), on L2(Rn). We do not want to give a construction here, but we
later state the Lie algebra action which uniquely determines the representation µ.
The metaplectic representation splits into two irreducible components (see [Fol89,
Theorem 4.56]):

L2(Rn) = L2
even(Rn)⊕ L2

odd(Rn),

where L2
even(Rn) and L2

odd(Rn) denote the spaces of even and odd L2-functions, re-
spectively. We show that for V = Sym(n,R) the representation π as constructed
in the previous section is isomorphic to the even component L2

even(Rn). A detailed
analysis of the metaplectic representation can e.g. be found in [Fol89, Chapter 4].

Denote by dµ the infinitesimal version of the metaplectic representation. dµ
is a representation of sp(n,R) on L2

even(Rn) by skew-adjoint operators. By [Fol89,
Theorem 4.45] we have

dµ

(
0 0
C 0

)
= −πi

n∑
i,j=1

Cijyiyj for C ∈ Sym(n,R),

dµ

(
A 0
0 −At

)
= −

n∑
i,j=1

Aijyj
∂

∂yi
− 1

2
Tr(A) for A ∈M(n,R),

dµ

(
0 B
0 0

)
=

1

4πi

n∑
i,j=1

Bij
∂2

∂yi∂yj
for B ∈ Sym(n,R).
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Chapter 2. Minimal representations of conformal groups

On the other hand, dπ is a representation of g on L2(O) by skew-adjoint opera-
tors. Now g ∼= sp(n,R) by Example 1.6.1 (1) and L2(O) ∼= L2

even(Rn) by Example
1.5.11 (1). We show that under these identifications combined with the automor-
phism of sp(n,R) given by(

A C
B −At

)
7→
(

0
√
π

− 1√
π

0

)(
A C
B −At

)(
0

√
π

− 1√
π

0

)−1

=

(
−At −πB
− 1
π
C A

)
,

the representations dµ and dπ agree. More precisely, we prove the following equal-
ity of skew-adjoint operators on L2(O):

Proposition 2.1.16. For A ∈M(n,R) and B,C ∈ Sym(n,R) we have

U ◦ dπ(C,A,B) = dµ

(
−At −πB
− 1
π
C A

)
◦ U (2.18)

with U : L2(O)→ L2
even(Rn) as in (1.47).

Proof. Choose an orthonormal basis of V = Sym(n,R) with respect to the inner
product (x|y) = Tr(xy). Then for 1 ≤ i ≤ n:

∂Uψ
∂yi

(y) =
∂

∂yi
ψ(yyt) =

∑
α

∂ψ

∂xα
(yyt)

∂(yyt)α
∂yi

=
∑
α

∂ψ

∂xα
(yyt)

∂

∂yi
Tr(yyteα)

= 2
∑
α

∂ψ

∂xα
(yyt)(eαy)i = 2

(
∂ψ

∂x
(yyt)y

)
i

.

(a) Let (C, 0, 0) ∈ g, C ∈ n = Sym(n,R). Then(
dµ

(
0 0
− 1
π
C 0

)
◦ U
)
ψ(y) = i

n∑
i,j=1

Cijyiyj Uψ(y) = iTr(yytC)Uψ(y)

= i(yytψ(yyt)|C) = (U ◦ dπ(C, 0, 0))ψ(y).

(b) Let (0, A, 0) ∈ g, A ∈ l = gl(n,R). A acts on V by A · x = Ax + xAt (see
Example 1.4.3 (1)). Then(

dµ

(
−At 0

0 A

)
◦ U
)
ψ(y) =

n∑
i,j=1

Ajiyj
∂

∂yi
ψ(yyt) +

1

2
Tr(A)ψ(yyt)

= 2
n∑
i=1

(Aty)i

(
∂ψ

∂x
(yyt)y

)
i

+
1

2
Tr(A)ψ(yyt)

=

(
At(yyt) + (yyt)A

∣∣∣∣∂ψ∂x (yyt)

)
+

1

2
Tr(A)ψ(yyt)

= (U ◦ dπ(0, A, 0))ψ(y),
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2.1. Construction of the minimal representation

since

Tr(V → V, x 7→ A · x) = (n+ 1)Tr(A).

(c) Let (0, 0, B) ∈ g, B ∈ n = Sym(n,R). Then(
dµ

(
0 πB
0 0

)
◦ U
)
ψ(y)

=
1

4i

n∑
i,j=1

Bij
∂2

∂yi∂yj
ψ(yyt) =

1

2i

n∑
i,j=1

Bij
∂

∂yi

[∑
α

∂ψ

∂xα
(yyt)(eαy)i

]

=
1

i

n∑
i,j=1

Bij

∑
α,β

∂2ψ

∂xα∂xβ
(yyt)(eαy)i(eβy)j +

1

2i

n∑
i,j=1

Bij

∑
α

∂ψ

∂xα
(yyt)(eα)ij

=
1

i

∑
α,β

∂2ψ

∂xα∂xβ
(yyt)

n∑
i,j=1

Bij(eαy)i(eβy)j +
1

2i

n∑
i,j=1

Bij

(
∂ψ

∂x
(yyt)

)
ij

=
1

i

∑
α,β

∂2ψ

∂xα∂xβ
(yyt)

(
P (eα, eβ)(yyt)

∣∣B)+
1

2i

(
∂ψ

∂x
(yyt)

∣∣∣∣B)
=

1

i

(
B 1

2
ψ(yyt)

∣∣∣B) = (U ◦ dπ(0, 0,−B))ψ(y).

To obtain an intertwining operator between the group representations π and µ
note that the group Ǧ is by Example 2.1.11 (1) always a quotient of the metaplectic
group Mp(n,R). Therefore, we can lift π to a representation of Mp(n,R) which we
also denote by π. Then we have the following intertwining formula:

Corollary 2.1.17. For g ∈ Mp(n,R) we have

U ◦ π(g) = µ

(
Ad
(

0
√
π

− 1√
π

0

)
g

)
◦ U .

Hence,

µ

(
0 −

√
π

1√
π

0

)
◦ U : L2(O)→ L2

even(Rn)

is an intertwining operator between π and µ.

Proof. This now follows immediately from (2.18).

Remark 2.1.18. Together with Example 2.1.11 (1) the previous proposition shows
that the even part of the metaplectic representation descends to a representation
of Sp(n,R) if n is an even integer, and even to a representation of Sp(n,R)/{±1}
if n ∈ 4Z. This can also seen from the explicit calculation of the cocycle of the
metaplectic representation in [LV80, Section 1.6].
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The minimal representation of O(p+ 1, q + 1)

Let V = Rp,q, p, q ≥ 2. Then by Example 1.5.4 the minimal orbit O = O1 is the
isotropic cone

O = {x ∈ Rp+q : x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q = 0} \ {0},

and the group Ǧ0 is a finite cover of SO(p + 1, q + 1)0 by Example 2.1.11 (2).
In [KØ03c] T. Kobayashi and B. Ørsted construct a realization of the minimal
representation of O(p + 1, q + 1) on L2(O). We use the notation of [KM07b] and
denote by ω the minimal representation of O(p+1, q+1) on L2(O). The action ω of
the identity component SO(p+1, q+1)0 is uniquely determined by the corresponding
Lie algebra action dω. Let f : g→ so(p+ 1, q+ 1) be the isomorphism of Example
1.6.1 (2). Then by [KM07b, equations (2.3.9), (2.3.11), (2.3.14) and (2.3.18)] we
have

dω(f(u, 0, 0)) = 2i
n∑
j=1

ujxj = i(x|u) for u ∈ V,

dω(f(0, T, 0)) = DT ∗x for T ∈ so(p, q),

dω(f(0, s1, 0)) =
n∑
j=1

xj
∂

∂xj
+
µ+ ν + 2

2
for s ∈ R,

dω(f(0, 0,−αv)) =
1

2
i

n∑
j=1

vjPj, for v ∈ V,

where Pj denotes the second order differential operator

Pj = εjxj�− (2E + n− 2)
∂

∂xj

with

� =
n∑
j=1

εj
∂2

∂x2
j

,

E =
n∑
j=1

xj
∂

∂xj
,

εj =

{
+1 for 1 ≤ j ≤ p,

−1 for p+ 1 ≤ j ≤ n.

Proposition 2.1.19. For X ∈ g we have

dω(f(X)) = dπ(X). (2.19)
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Proof. By (2.3) and (2.4) the formula (2.19) clearly holds for X ∈ n and X ∈ l. It
remains to check the case X = (0, 0,−αv) ∈ n, v ∈ V . In this case dπ(X) is given
by (see (2.5))

dπ(X)ψ(x) =
1

i
(Bψ(x)|αv).

We calculate Bψ(x) explicitly. Let (ej)j be the standard basis of V = Rn. The dual
basis with respect to the trace form τ is given by ej := 1

2
εjej, where

εj =

{
+1 for j = 1 and p+ 1 ≤ j ≤ n,

−1 for 2 ≤ j ≤ p.

A short calculation shows that

P (ei, ej)x =


1
2
(xjei + xiej) for i 6= j,

1
2
εi(x1e1 + xiei)− 1

4
εix for i = j 6= 1,

1
4
x for i = j = 1.

Hence,

(Bψ(x)|αek) =
n∑

i,j=1

∂2ψ

∂xi∂xj
(x)τ(P (ei, ej)x, ek) +

p+ q − 2

2

n∑
i=1

∂ψ

∂xi
(x)τ(ei, ek)

=
∂2ψ

∂x2
1

(x)τ

(
1

4
x, ek

)
+

p+q∑
i=2

∂2ψ

∂x2
i

(x)τ

(
1

2
εi(x1e1 + xiei)−

1

4
εix, ek

)

+

p+q∑
i,j=1
i 6=j

∂2ψ

∂xi∂xj
(x)τ

(
1

2
(xiej + xjei), ek

)
+
p+ q − 2

2

∂ψ

∂xk
(x)

=
1

2
εkxk

∂2ψ

∂x2
1

(x) +

p+q∑
i=2

∂2ψ

∂x2
i

(x)

(
εix1δ1k + xiδik −

1

2
εiεkxk

)

+

p+q∑
i=1
i 6=k

xi
∂2ψ

∂xi∂xk
(x) +

p+ q − 2

2

∂ψ

∂xk
(x)

= −1

2
εkxk�ψ + E

∂ψ

∂xk
+
p+ q − 2

2

∂ψ

∂xk
= −1

2
Pk.

This shows (2.19) and finishes the proof.

The previous proposition now implies the following result for the group represen-
tations:

Corollary 2.1.20. The representation π of Ǧ0 descends to the group SO(p+1, q+1)0

on which it agrees with ω.

Remark 2.1.21. Second order differential operators similar to the operators Pj
appear also in [LS99, Section 2]. (In [LS99] they are denoted by Φj and Θj.)
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2.2. Generalized principal series representations

In this section we show that the definition of the action dπλ is motivated by the
study of certain principal series representations ωs of G. More precisely, the action
of every dπλ, λ ∈ W , is obtained by taking the Fourier transform of the non-
compact picture of some principal series representation dωs.

Recall that Pmax denotes the maximal parabolic subgroup of G corresponding to
the maximal parabolic subalgebra pmax (see Section 1.6.1). Pmax has a Langlands
decomposition Pmax = Lmax nN with Lmax ⊆ Str(V ). For s ∈ C we introduce the
character

χs(g) := |χ(g)|s+
n
2r , g ∈ Lmax,

of Lmax and extend it trivially to the opposite parabolic Pmax := LmaxnN . Consider
the induced representation (Ĩs, ω̃s) := IndG

Pmax(χs) with

Ĩs = {f ∈ C∞(G) : f(gp) = χs(p)f(g) ∀ g ∈ G, p ∈ Pmax}

and G acting by the left-regular representation. By the Gelfand-Naimark decom-
position NPmax ⊆ G is open and dense. Therefore, a function f ∈ Ĩs is already
determined by its restriction fV (x) := f(nx) (x ∈ V ) to N ∼= V . Let Is be the
subspace of C∞(V ) consisting of all functions fV with f ∈ Ĩs. Let ωs be the action
of G on Is given by

ωs(g)fV := (ω̃s(g)f)V , g ∈ G, f ∈ Ĩs.

This action can be written as (cf. [Pev02, Section 2])

ωs(g)η(x) = χs(Dg
−1(x))f(g−1x), x ∈ V,

for g ∈ G and η ∈ Is, where Dg−1(x) denotes the differential of the conformal trans-
formation g−1 at x, whenever it is defined. Calculating the differential explicitly
yields (see [Pev02, Section 2])

ωs(na)η(x) = η(x− a), na ∈ N,
ωs(g)η(x) = χs(g

−1)η(g−1x), g ∈ Lmax,

ωs(j)η(x) = |det(x)|−2s−n
r η(−x−1).

Let us describe the infinitesimal version dωs of ωs (cf. [Pev02, Lemma 2.6]):

dωs(X)η(x) = −Duη(x) for X = (u, 0, 0),

dωs(X)η(x) = −
(
rs

n
+

1

2

)
Tr(T )η(x)−DTxη(x) for X = (0, T, 0),

dωs(X)η(x) = −
(

2s+
n

r

)
τ(x, v)η(x)−DP (x)vη(x) for X = (0, 0,−v).
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Now for λ ∈ W consider the Fourier transform Fλ : L2(Oλ, dµλ)→ S ′(V ) given
by

Fλψ(x) =

∫
Oλ
e−i(x|y)ψ(y) dµλ(y), x ∈ V.

We show that Fλ intertwines the actions of dπλ and dωs for a certain s:

Proposition 2.2.1. Let λ ∈ W and s := 1
2

(
λ− n

r

)
. Then for X ∈ g we have

Fλ ◦ dπλ(X) = dωs(X) ◦ Fλ.

Proof. (1) Let X = (u, 0, 0), u ∈ V . Then

Fλ ◦ dπλ(X)ψ(x) = i

∫
Oλ
e−i(x|y) (yψ(y)|u) dµλ(y)

=

∫
Oλ

(iy|u)e−i(x|y)ψ(y) dµλ(y)

= −Du

∫
Oλ
e−i(x|y)ψ(y) dµλ(y)

= dωs(X) ◦ Fλψ(x).

(2) For X = (0, T, 0), T ∈ l, the intertwining formula can more easily be checked
on the group level. Let g ∈ L. Then by (1.45):

χs(g
−1)

∫
Oλ
ei(g

−1x|y)ψ(y) dµλ(y) = χ(g∗)−s−
n
2r

∫
Oλ
ei(x|g

−∗y)ψ(y) dµλ(y)

= χ(g∗)
λ
2

∫
Oλ
ei(x|y)ψ(g∗y) dµλ(y)

Now the intertwining formula for the derived action follows by putting g := etX

and differentiating with respect to t at t = 0.
(3) Let X = (0, 0,−v), u ∈ V . By Theorem 1.7.5 the operator Bλ is symmetric
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on L2(Oλ, dµλ) and hence

Fλ ◦ dπλ(X)ψ(x) =
1

i

∫
Oλ
e−i(x|y) (Bλψ(y)| v) dµλ(y)

=
1

i

∫
Oλ

(
Bλe−i(x|y)

∣∣ v)ψ(y) dµλ(y)

=
1

i

∫
Oλ

((
P

(
∂

∂y

)
y + λ

∂

∂y

)
e−i(x|y)

∣∣∣∣ v)ψ(y) dµλ(y)

=
1

i

∫
Oλ

(
P (−iαx) ye−i(x|y) − iλαxe−i(x|y)

∣∣ v)ψ(y) dµλ(y)

=

∫
Oλ

((
iye−i(x|y) |P (x)v

)
− λτ(x, v)e−i(x|y)

)
ψ(y) dµλ(y)

=
(
−DP (x)v −

(
2s+

n

r

)
τ(x, v)

)∫
Oλ
e−i(x|y)ψ(y) dµλ(y)

= dωs(X) ◦ Fλψ(x).

Remark 2.2.2. We do not claim that for the minimal Wallach point λ = λ1 = r0d
2r

the representation π is a subrepresentation of ωs, s = 1
2

(
λ− n

r

)
. In general this

is not the case. For instance, for a euclidean Jordan algebra one has to consider
principal series representations of some covering of G (see [Sah93]). And for V =
Rp,q the representation π is for p − q ≡ 2 (mod 4) not a subrepresentation of
the spherical principal series representation ωs, but of some non-spherical principal
series (see [Sah95, Remark after Theorem 5.A]). With Proposition 2.2.1 we merely
want to motivate the definition of the differential action dπλ.

Remark 2.2.3. Principal series representations as constructed above have been
studied thoroughly by S. Sahi and G. Zhang. In [Sah93], [Sah95] and [Zha95] they
determine the irreducible and unitarizable constituents of the principal series rep-
resentations associated to conformal groups of euclidean and non-euclidean Jordan
algebras. The proofs are of an algebraic nature. Using these results, A. Dvorsky
and S. Sahi as well as L. Barchini, M. Sepanski and R. Zierau constructed unitary
representations of the corresponding groups on L2-spaces of orbits of the structure
group. In [Sah92] the case of a euclidean Jordan algebra is treated and the non-
euclidean case is studied in [DS99], [DS03] and [BSZ06, Section 8]. However, they
all exclude the case V = Rp,q with p 6= q, p, q ≥ 2. In this case the L2-model of
the minimal representation was first constructed by T. Kobayashi and B. Ørsted in
[KØ03c]. Their construction does not use principal series representations. The re-
lation to the principal series representations in this case is given in [KØ03c, Lemma
2.9].
In contrast to the methods of [Sah93], [Sah95] and [Zha95], our construction is only
carried out for the orbit of minimal rank. On the other hand, the advantage of our
construction is that it includes all cases for which the minimal representation exists.
Hence, it gives a unified construction of the minimal representations.
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2.3. The k-Casimir

2.3. The k-Casimir

We now compute the action of the Casimir operator of k on radial functions. It
turns out that the Casimir acts as a certain ordinary differential operator Dµ,ν of
order four. (The parameters µ and ν were defined in (1.11) and depend on the
Jordan algebra V .) Dµ,ν extends to a self-adjoint operator on L2(R+, t

µ+ν+1 dt).
By using the k-type decomposition of the minimal representation π, we compute
the spectrum of Dµ,ν and show that its L2-eigenspaces are one-dimensional.

2.3.1. k-type decomposition

In this section we give the k-type decomposition of the minimal representation π. Up
to this point we have not used any previous results about the minimal representation
π. For the proof of the k-type decomposition we use results on principal series
representations from [Sah93] and [Sah95] as well as the results of [KØ03c] for the
case V = Rp,q. However, for the construction of the minimal representation in
Section 2.1, we did not need these results.

Theorem 2.3.1. The K-type decomposition of W is given by

W ∼=
∞⊕
j=0

W j,

where we put

W j := Eα0+jγ1 . (2.20)

Proof. Comparing the Lie algebra action (see Proposition 2.2.1), we find that the
representation π is isomorphic to the corresponding unitary irreducible representa-
tion on L2(O, dµ) constructed in [Sah92] for the euclidean case, in [DS99], [DS03]
and [BSZ06, Section 8] for the non-euclidean case � Rp,q and in [KØ03c] for the case
V = Rp,q. In [Sah92] the algebraic results of [Sah93] are used, and the constructions
in [DS99], [DS03] and [BSZ06, Section 8] use the results of [Sah95]. Hence, for these
cases the k-type decomposition follows from [Sah93, Equation (7)] for the euclidean
case and [Sah95, Theorem 4.B] for the non-euclidean case � Rp,q. In the remaining
case V = Rp,q the k-type decomposition is given in [KØ03c, Lemma 2.6 (2)]. This
finishes the proof.

2.3.2. The k-Casimir

Let (Xj)j be any basis of k and (X ′j)j its dual basis with respect to the Ad-invariant
inner product 〈−,−〉 (see Section 1.6.1 for the definition of 〈−,−〉). We call

Ck =
∑
j

XjX
′
j.
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Chapter 2. Minimal representations of conformal groups

the Casimir element of k. This definition is clearly independent of the chosen basis.
Ck is an element of the center Z(k) of the universal enveloping algebra U(k) of k and
hence it acts as a scalar on each irreducible k-representation. In fact, one can show
that Ck acts on the irreducible k-module with highest weight α by (see e.g. [Kna02,
Proposition 5.28])

〈α, α + 2ρ〉,

where ρ is the half sum of all positive roots (counted with multiplicities see (1.65)).
Thus we have the following action of Ck on the K-types in W :

Proposition 2.3.2. The Casimir operator dπ(Ck) acts on every K-type W j of W
by the scalar

− r0

8n

(
4j(j + µ+ 1) +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) .
Proof. By (2.20) the K-type W j has highest weight α = α0 + jγ1. Hence, we just
have to calculate the inner product 〈α0 + jγ1, α0 + jγ1 + 2ρ〉. With (1.66), (2.9) and
(1.67) we obtain

〈α0 + jγ1, α0 + jγ1 + 2ρ〉 = j2〈γ1, γ1〉+ 2j〈γ1, α0 + ρ〉+ 〈α0, α0 + 2ρ〉

= − r0

8n

(
4j(j + µ+ 1) +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) .
We now compute the Casimir action on the subspace L2(O)rad of radial functions.

Theorem 2.3.3. Let ψ(x) = f(|x|) (x ∈ O) be a radial function for some f ∈
C∞(R+). Then

dπ(Ck)ψ(x) = − r0

8n

(
Dµ,ν +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) f(|x|),

where Dµ,ν is the fourth order differential operator in one variable given by

Dµ,ν =
1

t2
(
(θ + µ+ ν)(θ + µ)− t2

) (
θ(θ + ν)− t2

)
and θ = t d

dt
denotes the one-dimensional Euler operator.

Proof. The operator Dµ,ν can alternatively be written as

Dµ,ν = t2
d4

dt4
+ 2(µ+ ν + 3)t

d3

dt3
+ (µ2 + 3µν + ν2 + 6(µ+ ν) + 7− 2t2)

d2

dt2

+
(
µν(µ+ ν) + µ2 + 3µν + ν2 + 2(µ+ ν) + 1− 2(µ+ ν + 3)t2

) 1

t

d

dt
+ (t2 − (µ+ 2)(µ+ ν + 2)).
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2.3. The k-Casimir

Let (ej)j ⊆ V be an orthonormal basis of V with respect to the inner product
(−|−). Then by (1.51) and (1.63)

Ck ≡
r

8n

n∑
j=1

(ej, 0,−αej)2 (mod U(kl))

Since kl annihilates radial (= KL-invariant) functions, the action of the Casimir
element Ck on radial functions is already given by

dπ(Ck) =
r

8n

n∑
j=1

dπ(ej, 0,−αej)2. (2.21)

(a) Let us first assume that V is non-euclidean of rank r ≥ 3. Then d = 2d0 and
hence µ = n

r0
− 2 and ν = d

2
− e− 1. By (2.12) and Corollary (1.7.7) (2):

dπ(u, 0,−αu)ψ(x) =
1

i
(Bνf)(|x|)(x|u),

with Bα as in (1.73). Hence, using again (2.12):

−
n∑
j=1

dπ(ej, 0,−αej)2ψ(x)

(1.69)
=

n∑
j=1

[
(B2

νf)(|x|)(x|ej)2 + 2τ

(
P

(
∂(Bνf)

∂x

∣∣∣∣ ∂(x|ej)
∂x

)
x, ej

)
+ (Bνf)(|x|)τ(Bλ(x|ej), ej)]

(1.72)
= (B2

νf)(|x|)‖x‖2 +
2r

r0

1

|x|
(Bνf)′(|x|)

n∑
j=1

τ (P (αx|αej)x, ej)

+
r0d

2r
(Bνf)(|x|)

n∑
j=1

(ej|ej)

(1.10)
=

r0

r

[
|x|2(B2

νf)(|x|) +
2n

r0

|x|(Bνf)′(|x|) +
nd

2
(Bνf)(|x|)

]
.

Now a short calculation shows that this is equal to r0
r
Dµ,ν .

(b) Now suppose V is a euclidean Jordan algebra. Then µ = rd
2
− 1 and ν = −1.

By (2.12) and Corollary (1.7.7) (1)

dπ(u, 0,−αu)ψ(x) =
1

i
(Bνf)(|x|)(x|u) +

1

i

d

2
(e|u)f ′(|x|).
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Chapter 2. Minimal representations of conformal groups

Using the calculations of (a) we find that

−
n∑
j=1

dπ(ej, 0,−αej)2ψ(x)

=

[
|x|2(B2

νf)(|x|) +
2n

r0

|x|(Bνf)′(|x|) +
nd

2
(Bνf)(|x|)

]
+

n∑
j=1

[
d

2
(x|ej)(e|ej) [(Bνf)′(|x|) +Bνf

′(|x|)] +

(
d

2

)2

(e|ej)2f ′′(|x|)

]

=

[
|x|2(B2

νf)(|x|) +
2n

r0

|x|(Bνf)′(|x|) +
nd

2
(Bνf)(|x|)

]
+
d

2
(x|e) [(Bνf)′(|x|) +Bνf

′(|x|)] + r

(
d

2

)2

f ′′(|x|).

Note that for x = ktc1, k ∈ KL = Aut(V )0, t > 0, we have

(x|e) = tr(ktc1) = t = |ktc1| = |x|.

Using this, a short calculation gives

dπ(Ck)ψ(x) = − r0

8n

(
Dµ,ν + r0

(
d

2

)2
)
f(|x|).

(c) By Proposition 1.2.1 the remaining case is V = Rp,q which is treated in Ap-
pendix B.2.

Recall that Ξ denotes the set of possible pairs (µ, ν) = (µ(V ), ν(V )) of parameters
that appear for some simple Jordan algebra V for which the minimal representation
π exists. Then we can draw the following corollary:

Corollary 2.3.4. For (µ, ν) ∈ Ξ the operator Dµ,ν extends to a self-adjoint operator
on L2(R+, t

µ+ν+1 dt) with only discrete spectrum. The spectrum is given by {j(j +
µ+ 1) : j ∈ N0} and the L2-eigenspaces are one-dimensional.

Proof. Recall that by Theorem 2.3.3 the operator dπ(Ck) acts on the subspace
L2(O, dµ)rad

∼= L2(R+, t
µ+ν+1 dt) of radial functions by

− r0

8n

(
Dµ,ν +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) .
Further, dπ(Ck) acts on each k-type W j by the scalar

− r0

8n

(
4j(j + µ+ 1) +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) .
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2.4. The unitary inversion operator FO

Now, the Casimir element Ck is elliptic in U(k) and hence, by [War72, Theorem
4.4.4.3], dπ(Ck) extends to a self-adjoint operator on L2(O, dµ). Restricting to
radial functions then shows that Dµ,ν is self-adjoint on L2(R+, t

µ+ν+1 dt). Further,
the spaceW of k-finite vectors is dense in L2(O, dµ) and decomposes discretely into
k-types W =

⊕∞
j=0W

j. In every k-type W j the space

W j
rad = W j ∩ L2(O, dµ)rad

of radial (= KL-invariant) functions is one-dimensional by the remark at the end
of Section 1.6.3. Together it follows that

⊕∞
j=0 W

j
rad is dense in L2(R+, t

µ+ν+1 dt)

and Dµ,ν acts on each summand W j
rad by the scalar 4j(j + µ+ 1). This finishes the

proof.

2.4. The unitary inversion operator FO
In this section we define the unitary inversion operator FO and prove various prop-
erties of it. The action of FO together with the action of the parabolic subgroup P̌
determine the whole representation. Therefore, one is interested in a closed formula
for the operator FO. As a first step in this direction we give a closed formula for
the action of FO on radial functions.

Let w̌0 be the projection of w̃0 ∈ G̃ (see Section 1.6.2) under the covering map
G̃→ Ǧ. Then w̌0 = α̌ǰ = ǰα̌, where α̌ is as in Section 2.1.3 and

ǰ = expǦ

(π
2

(e, 0,−e)
)
.

The parabolic P̌ and the element w̌0 generate the whole group Ǧ (since α̌ ∈ P̌ ).
Therefore, the representation π of Ǧ is determined by the action of P̌ , which is
given by the representation ρλ1 (see (2.1) and (2.2)), and the action of w̌0. We call
the operator

FO := e−iπ
r0
2

(d0− d2 )+π(w̌0)

the unitary inversion operator on the minimal orbit O = O1. We will later see that
FO is an operator of order two (see Corollary 3.8.4) which justifies the name. Since
the action of π(α̌) is given by ρλ1(α) and any two Cartan involutions are conjugate,
the operator FO does (up to unitary equivalence) neither depend on the choice of
the Cartan involution α, nor on the choice of α̃ ∈ G̃. We collect a few properties of
FO.

Theorem 2.4.1. (1) FO is a unitary operator on L2(O) of order at most 2k with
k as in Theorem 2.1.12 (1).

87



Chapter 2. Minimal representations of conformal groups

(2) The operator FO is an automorphism of the following topological vectorspaces:

L2(O)∞ ⊆ L2(O) ⊆ L2(O)−∞,

where L2(O)∞ denotes the space of smooth vectors of the representation π and
L2(O)−∞ its dual.

(3) FO intertwines the Bessel operator B and multiplication by −αx:

FO ◦ αx = −B ◦ FO, (2.22)
FO ◦ B = −αx ◦ FO. (2.23)

Moreover, any other unitary operator on L2(O) with these properties is a
scalar multiple of FO.

(4) We have the following commutation relation for the Euler operator E :=∑n
j=1 xj

∂
∂xj

:

FO ◦ E = −
(
E +

r0d

2

)
◦ FO. (2.24)

(5) On every k-type W j the unitary inversion operator FO acts as a scalar.
(6) FO leaves the space L2(O)rad of radial functions invariant and therefore re-

stricts to a unitary operator

FO,rad : L2(O)rad → L2(O)rad.

(7) FO = e−iπ
r0
2

(d0− d2 )+ρλ1(α)ei
π
2

(e|x−B) = e−iπ
r0
2

(d0− d2 )+ei
π
2

(e|x−B)ρλ1(α).

Proof. (1) Clearly FO is unitary since π is a unitary representation. To show the
second statement, observe that

FO = e−iπ
r0
2

(d0− d2 )+ρλ1(α)π(ǰ).

First, by the definition of k (see Lemma 2.1.10), e−iπ
r0
2

(d0− d2 )+ is of order at
most 2k. Further, the operator ρλ1(α) is of order 2 since α2 = 1. Finally, by
the construction of Ǧ (see Lemma 2.1.10), the element ǰ is of order at most
2k in Ǧ. Since all three factors commute, this shows the claim.

(2) The whole group G acts by automorphisms on the space L2(O)∞ of smooth
vectors and hence also on its dual.

(3) The adjoint action of w̌0 on g is given by (see (1.50))

Adg(w̌0)(u, T, v) = Adg(w0)(u, T, v) = θ(u, T, v) = (−αv,−T ∗,−αu).

and for any X ∈ g the identity

π(w̌0) ◦ dπ(X) = dπ(Ad(w̌0)X) ◦ π(w̌0)
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2.4. The unitary inversion operator FO

holds. Now, for X = (u, 0, 0) we have Ad(w0)X = (0, 0,−αu) and for Y =
(0, 0, u) we have Ad(w0)Y = (−αu, 0, 0). Therefore the commutation relations
follow with (2.3) and (2.5). Conversely, let A be another unitary operator on
L2(O) with these properties. Then the operator FO ◦A−1 commutes with the
n- and n-action. Since n and n generate the whole Lie algebra g (see Section
1.6.1), it follows that A leaves the g-module W invariant and the operator
FO ◦A−1 commutes with the action of g. Since W is irreducible as g-module,
it follows from Schur’s Lemma that FO◦A−1 is a scalar multiple of the identity.
Hence, A is a scalar multiple of FO.

(4) Similar to (3) with X = (0, id, 0).
(5) By Lemma 1.6.3 the element w̃0 is central in K̃. Hence, w̌0 is central in Ǩ.

By Schur’s Lemma, FO acts on every k-type W j as a scalar.
(6) In particular, w̌0 commutes with every k ∈ ǨL = p̌r−1(KL). Hence, FO leaves

the space L2(O)KL = L2(O)rad of KL-invariant functions invariant.
(7) We have

π(w̌0) = π(α̌)π(e
π
2

(e,0,−e)) = ρλ1(α)e
π
2

dπ(e,0,−e)

and the claim follows from (2.3) and (2.5).

Example 2.4.2. (1) Let V = Sym(n,R). In the notation of Section 2.1.4 we
have by Corollary 2.1.17:

FO = e−iπ
n
4U−1µ

(
0 π
− 1
π

0

)
U .

From [Fol89, Equation (4.26)] we know that µ
(

0 π
− 1
π

0

)
is essentially the

inverse euclidean Fourier transform. More precisely,

µ

(
0 π
− 1
π

0

)
ψ(x) = eiπ

n
4 2

n
2F−1

Rnψ(2y),

where

FRnψ(x) = (2π)−
n
2

∫
Rn
e−ix·yψ(y) dy,

F−1
Rnψ(y) = (2π)−

n
2

∫
Rn
eix·yψ(x) dx.

Note that if one views the Fourier transform FRn as operator on L2
even(Rn),

then it is of order two since

F2
Rnψ(x) = ψ(−x) = ψ(x)
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for ψ ∈ L2
even(Rn). Therefore, it follows that FO is also of order 2. Further,

by [Fol89, Theorem 4.45]:

UL2(O)∞ = L2
even(Rn)∞ = Seven(Rn)

is the Schwartz space of even functions on which the Fourier transform acts
as isomorphism. This corresponds to Theorem 2.4.1 (2). Moreover, the com-
mutation relations (2.22) and (2.23) follow from to the well-known identities

FRn ◦ xj = −Dj ◦ FRn ,

FRn ◦Dj = xj ◦ FRn .

where Dj = 1
i
∂
∂xj

.
(2) Let V = Rp,q. Then FO is the unitary inversion operator on L2(O) which was

studied in detail by T. Kobayashi and G. Mano in [KM07a, KM07b]. Most
results of Theorem 2.4.1 can be found in [KM07b, Theorem 2.5.2].

By Theorem 2.4.1 (6) the operator FO restricts to an operator on L2(O)rad. Since
the map O → R+, x 7→ |x|, induces an isomorphism L2(O)rad

∼= L2(R+, t
µ+ν+1 dt),

we obtain a unitary operator T on L2(R+, t
µ+ν+1 dt) which makes the following

diagram commutative:

L2(R+, t
µ+ν+1 dt)

∼
��

T // L2(R+, t
µ+ν+1 dt)

∼
��

L2(O)rad
FO,rad // L2(O)rad

The main result of this section is an explicit expression of the integral kernel of
T in terms of Meijer’s G-function. The idea of proof is due to T. Kobayashi and G.
Mano who proved the result for the case V = Rp,q (see [KM07b, Theorem 4.1.1]).

Theorem 2.4.3. The operator T is the G-transform T µ,ν which is defined by

T µ,νu(s) =

∫ ∞
0

Kµ,ν(tt′)u(t′)t′µ+ν+1 dt′ ∀u ∈ C∞c (R+),

with integral kernel

Kµ,ν(t) :=
1

2µ+ν+1
G20

04

((
t

4

)2 ∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
.

Here G20
04(z|b1, b2, b3, b4) denotes Meijer’s G-function as defined in Appendix D.4.

Remark 2.4.4. For the case V = Rp,q T. Kobayashi and G. Mano computed the
action of FO on every (KL)0-isotypic component of L2(O), not only on radial func-
tions (see [KM07b, Theorem 4.1.1]). As integral kernels they obtained G-functions
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2.4. The unitary inversion operator FO

with more general parameters. They further use this result to compute the full
integral kernel K(x, y) ∈ D′(O × O) of the operator FO (see [KM07b, Theorem
5.1.1]). Maybe a similar strategy can be applied in the general case. A further
step in this direction would be to compute the action of FO of other (KL)0-isotypic
components of L2(O).

Example 2.4.5. For ν = ±1 the integral kernel simplifies by (D.34) to a J-Bessel
function

Kµ,±1(t) = t−
µ+ν+1

2 Jµ(2t
1
2 )

such that T µ,±1 becomes a Hankel type transform. Then, in view of Example
2.4.2 (1), Theorem 2.4.3 for V = Sym(n,R) corresponds to the fact, that the
euclidean Fourier transform preserves the space of radial functions and acts on
ψ(x) = f(|x|) by (see [SW71, §3, Theorem 3.3])

FRnψ(x) = Hnf(|x|),

where

Hnf(t) = t−
n−2

2

∫ ∞
0

Jn−2
2

(tt′)f(t′)t′
n
2 dt′

is the Hankel transform. The same happens for the euclidean Jordan algebra V =
R1,n. This case was studied thoroughly in [KM07a].

The rest of this section is devoted to the proof of Theorem 2.4.3. For this we
transfer the situation from R+ to R in order to use classical Fourier analysis. We
introduce two unitary isomorphisms

σ+ : L2(R+, t
µ+ν+1 dt)→ L2(R), σ+f(y) := e

µ+ν+2
2

yf(ey),

σ− : L2(R+, t
µ+ν+1 dt)→ L2(R), σ−f(y) := e−

µ+ν+2
2

yf(e−y).

Define the subspace S ⊆ L2(R+, t
µ+ν+1 dt) by

S := σ−1
+ (S(R)) = σ−1

− (S(R)),

where S(R) denotes the space of Schwartz functions on R. We endow S with the
locally convex topology such that σ+ and σ− become isomorphisms of topological
vectorspaces. By S ′ we denote the dual space of S. Via duality σ+ and σ− then
extend to isomorphisms of S ′. For any κ ∈ S ′ one can define an operator Aκ : S →
S ′ by

Aκf(t) :=

∫ ∞
0

κ(tt′)f(t′)t′µ+ν+1 dt′,
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Chapter 2. Minimal representations of conformal groups

meant in the distribution sense. It is easily seen that

Aκf = σ−1
− (σ−κ ∗ σ+f) ∀ f ∈ S. (2.25)

This shows that Aκ indeed defines a continuous linear operator S → S ′. Now, to
prove Theorem 2.4.3 we have to show that T = AK with K = Kµ,ν . Our strategy
of proof is due to T. Kobayashi and G. Mano (cf. [KM07b, Section 4]) and can be
described as follows:
(1) We first show that T = Aκ for some κ ∈ S ′.
(2) Then we prove that Aκf0 = AKf0 for a specific function f0.
(3) Finally, (2) will imply that κ = K.

These claims are proved in the following three subsections.

2.4.1. Translation invariant operators on R
We recall the following well-known fact which can e.g. be found in [SW71, Theorem
I.3.18]:

Fact 2.4.6. Every bounded translation invariant operator B on L2(R) is a convolu-
tion operator, i.e. Bf = u∗f (f ∈ L2(R)) for some tempered distribution u ∈ S ′(R)
whose Fourier transform û is in L∞(R).

Here translation invariant means that

B ◦ `(x) = `(x) ◦B ∀x ∈ R,

where `(x) : L2(R)→ L2(R), (`(x)f)(y) := f(y − x) denotes the translation opera-
tor.
To transfer our situation from R+ to R we define an operator T̃ on L2(R) by the

following diagram:

L2(R+, t
µ+ν+1 dt)

σ+

��

T // L2(R+, t
µ+ν+1 dt)

σ−
��

L2(R)
eT // L2(R)

Lemma 2.4.7. T̃ is translation invariant.

Proof. We put H := L(e) ∈ l and consider exp(sH) = es1 ∈ L for s ∈ R. Since
Ad(w0) exp(sH) = exp(−sH) we have

FO ◦ ρλ1(exp(−sH)) = ρλ1(exp(sH)) ◦ FO.

Restricting this identity to radial functions yields

T ◦ %(s) = %(−s) ◦ T ,
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2.4. The unitary inversion operator FO

where %(s) denotes the unitary operator on L2(R+, t
µ+ν+1 dt) given by

%(s)f(t) = e−
µ+ν+2

2
sf(e−st).

Multiplying with σ− from the left and σ−1
+ from the right gives

T̃ ◦ (σ+ ◦ %(s) ◦ σ−1
+ ) = (σ− ◦ %(−s) ◦ σ−1

− ) ◦ T̃ .

Now the claim follows from the identities

σ+ ◦ %(s) ◦ σ−1
+ = σ− ◦ %(−s) ◦ σ−1

− = `(s).

By Fact 2.4.6, T̃ is a convolution operator, i.e. for some tempered distribution
u ∈ S ′(R) we have T̃ f = u ∗ f for every f ∈ L2(R). Put κ := σ−1

− u ∈ S ′. We then
obtain

(σ− ◦ T )f = (T̃ ◦ σ+)f

= σ−κ ∗ σ+f

= (σ− ◦ Aκ)f

by (2.25). Since σ− is an isomorphism this implies T = Aκ.

2.4.2. Action on ψ0

Let f0 be the function on R+ defined by

f0(t) := K̃ ν
2
(t).

f0 is exactly the radial part of the k-finite vector ψ0 introduced in Section 2.1.2. For
the equation Aκf0 = AKf0 to make sense we first have to show that f0 ∈ S and
K = Kµ,ν ∈ S ′.

Lemma 2.4.8. f0 ∈ S.

Proof. We show that σ+f0 ∈ S(R). For this define functions fk (k ∈ N0) on R+ by

fk(t) := t2kK̃ ν
2

+k(t).

Then f0 is as above. We have

σ+fk(y) = e(µ+ν+2
2

+2k)yK̃ ν
2

+k(e
y).

The asymptotic behavior of the K-Bessel function near 0 and∞ is given by (D.20)
and (D.21). From this together with Lemma 1.3.1 it easily follows that the functions
σ+fk are rapidly decreasing, i.e. y`σ+fk(y) is bounded on R for all k, ` ∈ N0.
Finally, from the differential recurrence relation (D.11) for the K-Bessel function
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Chapter 2. Minimal representations of conformal groups

one deduces the following recurrence identity for the derivatives of the functions
σ+fk:

d

dy
(σ+fk) =

(
µ+ ν + 2

2
+ 2k

)
(σ+fk)−

1

2
(σ+fk+1).

Hence, higher derivatives of σ+f0 are linear combinations of the functions σ+fk
which are rapidly decreasing by the above considerations. Therefore, σ+f0 ∈ S(R).

To show that Kµ,ν ∈ S ′ we first prove a precise statement for the asymptotic
behavior of Kµ,ν(t).

Lemma 2.4.9. The function Kµ,ν(t) has the following asymptotic behavior:
(1) As t→ 0:

Kµ,ν(t) =
1

2µ+1Γ(µ−|ν|+2
2

)Γ(µ+2
2

)
×


2νΓ

(
ν
2

)
t−ν + o(t−ν) for ν > 0,

−2 ln(t) + o(ln(t)) for ν = 0,

2−νΓ
(
−ν

2

)
+ o(1) for ν < 0.

(2) As t→∞:

Kµ,ν(t) = − 1√
π
t−

2µ+2ν+3
4 cos

(
2t

1
2 − 2µ− 3

4
π

)(
1 +O(t−

1
2 )
)
.

Proof. This follows directly from (D.36) and (D.37).

The proof of the following lemma does not follow [KM07b]. The corresponding
proof of [KM07b, Claim 4.6.4] seems more complicated than necessary.

Lemma 2.4.10. Kµ,ν ∈ S ′.

Proof. Using Lemma 2.4.9 (1) (and Lemma 1.3.1) it is easily verified that there
is some constant C > 0 such that |σ+K

µ,ν(y)| ≤ Ce
1
2
y as y → −∞. Hence,

χ(−∞,0]σ+K
µ,ν ∈ L1(R) ⊆ S ′(R), where χA denotes the characteristic function of

A ⊆ R. It remains to show that also χ[0,∞)σ+K
µ,ν ∈ S ′(R). By Lemma 2.4.9 (2),

the asymptotic behavior of (σ+K
µ,ν)(y) as y →∞ is given by

(σ+K
µ,ν)(y) = − 1√

π
e

1
4
y cos

(
2e

1
2
y − 2µ− 3

4
π

)(
1 +O(e−

1
2
y)
)
.

Therefore χ[0,∞)σ+K
µ,ν − cg ∈ L1(R) ⊆ S ′(R), where c = − 1√

π
and

g(y) := χ[0,∞)(y)e
1
4
y cos

(
2e

1
2
y − 2µ− 3

4
π

)
.
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2.4. The unitary inversion operator FO

Hence, it remains to show that g ∈ S ′(R). (Since clearly g /∈ L1(R), this is the
crucial part.) For ϕ ∈ C∞c (R) we integrate by parts:∫

R
g(y)ϕ(y) dy =

∫ ∞
0

e−
1
4
yϕ(y) · d

dy

[
cos

(
2e

1
2
y − 2µ− 3

4
π

)]
dy

= − cos

(
2− 2µ− 3

4
π

)
ϕ(0)−

∫ ∞
0

d

dy

[
e−

1
4
yϕ(y)

]
· cos

(
2e

1
2
y − 2µ− 3

4
π

)
dy.

The right hand side clearly makes sense also for ϕ ∈ S(R) and defines a tempered
distribution. Since C∞c (R) is dense in S(R), g extends to a continuous linear func-
tional on S(R) and is therefore a tempered distribution which finishes the proof.

Now we can calculate the actions of Aκ and AK on f0.

Proposition 2.4.11. (a) Aκf0 = f0.
(b) AKf0 = f0.

Proof. (a) By Theorem 2.4.1 (7) we have FO = e−iπ
r0
2

(d0− d2 )+ei
π
2

(e|x−B)ρλ1(α). Ap-
plying ρλ1(α) to ψ0 gives ρλ1(α)ψ0 = ψ0 since α ∈ KL and ψ0 is KL-invariant.
Therefore, FOψ0 = e−iπ

r0
2

(d0− d2 )+ei
π
2

(e|x−B)ψ0.
(1) If V is euclidean then by (2.13) we have (e|x− B)ψ0 = rd

2
ψ0 and hence

ei
π
2

(e|x−B)ψ = eiπ
rd
4 ψ0.

(2) If V is non-euclidean of rank r ≥ 3, then by (2.14) the function ψ0 is
annihilated by (e|x− B) and therefore

ei
π
2

(e|x−B)ψ0 = ψ0.

(3) The remaining case V = Rp,q is treated in Appendix B.1. By Lemma
B.1.3 we have

ei
π
2

(e|x−B)ψ0 = eiπ( q−p
2

)+ψ0.

Together we obtain

ei
π
2

(e|x−B)ψ0 = eiπ
r0
2

(d0− d2 )+ψ0

and hence

FOψ0 = ψ0.

Since ψ0(x) = f0(|x|) this gives the result for T f0 = Aκf0.
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(b) The assumptions for (D.35) are satisfied if we put a = −2µ+ν
4

, α = ν
2
, ω = 1,

η = ( s
2
)2 and (b1, b2, b3, b4) = (0,−ν

2
,−µ

2
,−µ+ν

2
) (use Lemma 1.3.1). Then we

obtain

AKf0(t)

=
1

2µ+ν+1

∫ ∞
0

G20
04

((
tt′

4

)2 ∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
K̃ ν

2
(t′)t′µ+ν+1 dt′

=

∫ ∞
0

G20
04

((
t

2

)2

x

∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
K ν

2
(2x

1
2 )x

2µ+ν
4 dx

=
1

2
G22

24

((
t

2

)2 ∣∣∣∣ −µ
2
,−µ+ν

2

0,−ν
2
,−µ

2
,−µ+ν

2

)

=
1

2
G20

02

((
t

2

)2 ∣∣∣0,−ν
2

)
.

where we have used the reduction formula (D.30) for the last step. Eventually,
the claim follows from the simplification formula (D.34).

2.4.3. A uniqueness property

Now we finally prove that κ = K. The main point is the following lemma:

Lemma 2.4.12. Let κ1, κ2 ∈ S ′ If there exists a function f ∈ S such that σ̂+f
vanishes nowhere on R and Aκ1f = Aκ2f , then κ1 = κ2.

Proof. With (2.25) we obtain

σ−κ1 ∗ σ+f = σ−κ2 ∗ σ+f.

Taking the Fourier transform on both sides yields

σ̂−κ1 · σ̂+f = σ̂−κ2 · σ̂+f.

Since σ̂+f vanishes nowhere, this implies σ̂−κ1 = σ̂−κ2 and hence κ1 = κ2.

Now, we already know that Aκ and AK agree on f0. To apply the previous
lemma and finish the proof of Theorem 2.4.3, it remains to show that σ̂+f0 vanishes
nowhere on R. This follows from the next lemma.

Lemma 2.4.13. For the Fourier transform of σ+f0 we have the following formula:

σ̂+f0(ξ) = 2
µ+ν−2

2
−iξΓ

(
µ+ ν + 2

4
− 1

2
iξ

)
Γ

(
µ− ν + 2

4
− 1

2
iξ

)
.

In particular, σ̂+f0 vanishes nowhere on R.
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2.4. The unitary inversion operator FO

Proof. With the formula (D.16) for the Mellin transform of the K-Bessel function
we calculate

σ̂+f0(ξ) =

∫ ∞
−∞

e−ixξ(σ+f0)(x) dx

=

∫ ∞
−∞

e(µ+ν+2
2
−iξ)xK̃ ν

2
(ex) dx

=

∫ ∞
0

s
µ+ν

2
−iξK̃ ν

2
(s) ds

= 2
µ+ν−2

2
−iξΓ

(
µ+ ν + 2

4
− 1

2
iξ

)
Γ

(
µ− ν + 2

4
− 1

2
iξ

)
.

Since µ + ν ≥ −1 and µ − ν ≥ 0 by Lemma 1.3.1 this defines a function on the
whole real axis R which vanishes nowhere.
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3. Generalized Laguerre functions

We consider the ordinary fourth order differential operator

Dµ,ν =
1

x2

(
(θ + µ+ ν)(θ + µ)− x2

) (
θ(θ + ν)− x2

)
,

depending on two complex parameters µ, ν ∈ C. Here θ = x d
dx
. In Theorem 2.3.3 it

was proved that for (µ, ν) ∈ Ξ, the operator Dµ,ν is the radial part of the action of
the k-Casimir on the minimal representation of a simple Lie group Ǧ (see Section 1.3
for the definition of Ξ). In this case, the operator extends to a self-adjoint operator
on L2(R+, x

µ+ν+1 dx) with discrete spectrum given by {4j(j + µ+ 1) : j ∈ N0} (see
Corollary 2.3.4).
In this chapter we explicitly construct the L2-eigenfunctions ofDµ,ν . Furthermore,

for an odd integer µ > 0 and generic ν ∈ C, we find a fundamental system Λµ,ν
i,j (x),

i = 1, 2, 3, 4, of solutions to the fourth order equation

Dµ,νu = 4j(j + µ+ 1)u

for every j ∈ N0. We prove various properties for the functions Λµ,ν
i,j (x) such as

asymptotics, integral formulas and recurrence relations. Finally, we relate the L2-
eigenfunctions Λµ,ν

2,j (x) to the minimal representation of Ǧ as constructed in Section
2.1. This gives explicit expressions of k-finite vectors in the representation. On
the other hand, results from representation theory also provide simple proofs for
statements on the L2-eigenfunctions Λµ,ν

2,j (x), such as orthogonality relations, com-
pleteness in L2(R+, x

µ+ν+1 dx) or integral formulas.
Most results of this chapter are published in [HKMM09b] and [HKMM09a]. There

only the minimal representation of O(p + 1, q + 1) is used and hence the class of
parameters is more restrictive than in this chapter.

3.1. The fourth order differential operator Dµ,ν
In this section we collect basic properties of the fourth order differential operator
Dµ,ν .

Proposition 3.1.1. (1) Dν,µ = Dµ,ν + (µ− ν)(µ+ ν + 2).
(2) Dµ,νu = λu is a differential equation with regular singularity at x = 0. The

characteristic exponents are 0,−µ,−ν,−µ− ν.
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Chapter 3. Generalized Laguerre functions

(3) If µ, ν ∈ R, then Dµ,ν is a symmetric unbounded operator on the Hilbert space
L2(R+, x

µ+ν+1 dx).
(4) If (µ, ν) ∈ Ξ, then Dµ,ν extends to a self-adjoint operator on L2(R+, x

µ+ν+1 dx)
with discrete spectrum given by {4j(j + µ+ 1) : j ∈ N0}. Furthermore, every
L2-eigenspace is one-dimensional.

(5) In the special cases where ν = ±1 the differential operator Dµ,ν collapses to

Dµ,±1 = S2
µ,±1 − (µ+ 1)2,

where

Sµ,−1 :=
1

x

(
θ(θ + µ)− x2

)
,

Sµ,+1 :=
1

x

(
θ(θ + µ+ 2) + µ+ 1− x2

)
.

Proof. (1) A simple computation shows that

Dµ,ν =
1

x2
θ(θ + µ)(θ + ν)(θ + µ+ ν) + x2

− 2

(
θ2 + (µ+ ν + 2)θ +

(µ+ 2)(µ+ ν + 2)

2

)
, (3.1)

whence Dν,µ = Dµ,ν + (µ− ν)(µ+ ν + 2).
(2) It follows from (3.1) that

x2(Dµ,ν − λ) ≡ θ(θ + µ)(θ + ν)(θ + µ+ ν) (mod x · C[x, θ]),

where C[x, θ] denotes the left C[x]-module generated by 1, θ, θ2, . . . in the Weyl
algebra C[x, d

dx
]. Therefore, the differential equation Dµ,νu = λu has a regular

singularity at x = 0, and its characteristic equation is given by

s(s+ µ)(s+ ν)(s+ µ+ ν) = 0.

Hence the second statement is proved.
(3) The formal adjoint of θ on L2(R+, x

µ+ν+1 dx) is given by

θ∗ = −θ − (µ+ ν + 2).

With this it is easily seen from the expression (3.1) that Dµ,ν is a symmetric
operator on the same Hilbert space.

(4) This statement is simply Corollary 2.3.4.
(5) A simple computation.

Remark 3.1.2. It is likely that Dµ,ν is still self-adjoint on L2(R+, x
µ+ν+1 dx) with-

out assuming that (µ, ν) ∈ Ξ. For example, for ν = ±1 and arbitrary µ > −1
we construct L2-eigenfunctions Λµ,±1

2,j of Dµ,±1 which are essentially Laguerre poly-
nomials (see Corollary 3.4.3 and Remark 3.4.4). Hence, they form a basis of the
corresponding L2-space and it follows that Dµ,±1 is self-adjoint with discrete spec-
trum. However, our proof of self-adjointness uses unitary representation theory and
involves the condition (µ, ν) ∈ Ξ in a crucial way.
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3.2. The generating functions Gµ,ν
i (t, x)

To determine eigenfunctions of the operator Dµ,ν we define the following generating
functions Gµ,ν

i (t, x), i = 1, 2, 3, 4:

Gµ,ν
1 (t, x) :=

1

(1− t)µ+ν+2
2

Ĩµ
2

(
tx

1− t

)
Ĩ ν

2

(
x

1− t

)
, (3.2)

Gµ,ν
2 (t, x) :=

1

(1− t)µ+ν+2
2

Ĩµ
2

(
tx

1− t

)
K̃ ν

2

(
x

1− t

)
, (3.3)

Gµ,ν
3 (t, x) :=

1

(1− t)µ+ν+2
2

K̃µ
2

(
tx

1− t

)
Ĩ ν

2

(
x

1− t

)
, (3.4)

Gµ,ν
4 (t, x) :=

1

(1− t)µ+ν+2
2

K̃µ
2

(
tx

1− t

)
K̃ ν

2

(
x

1− t

)
. (3.5)

Here Ĩα(z) and K̃α(z) denote the normalized I- and K-Bessel functions (see Ap-
pendix D.1 for the definition).
Let us state the differential equations for the generating functions which we will

make use of later.

Lemma 3.2.1 (Differential equations for the generating functions). The functions
Gµ,ν
i (t, x), i = 1, 2, 3, 4, satisfy the following three differential equations:
(1) The fourth order partial differential equation

(Dµ,ν)x u(t, x) = 4θt(θt + µ+ 1)u(t, x).

(2) The second order partial differential equation

(2θt + µ+ 1)

(
θx +

µ+ ν + 2

2

)
u(t, x)

=

(
1

t
θt(θt + µ)− t

(
θt +

µ+ ν + 2

2

)(
θt +

µ− ν + 2

2

))
u(t, x).

(3) The fifth order ordinary differential equation in t

8x2

(
θt +

µ− 1

2

)(
θt +

µ+ 1

2

)(
θt +

µ+ 3

2

)
u(t, x)

=

[
2

t2
θt (θt − 1) (θt + µ− 1) (θt + µ)

(
θt +

µ− 5

2

)
− 8

t
θt (θt + µ)

(
θt +

µ− 3

2

)(
θt +

µ

2

)(
θt +

µ+ 1

2

)
+ 2

(
θt +

µ+ 1

2

)(
aθ4

t + bθ3
t + cθ2

t + dθt + e
)
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− 8t

(
θt +

µ+ 1

2

)(
θt +

µ+ 2

2

)(
θt +

µ+ 5

2

)
×
(
θt +

µ+ ν + 2

2

)(
θt +

µ− ν + 2

2

)
+ 2t2

(
θt +

µ+ 7

2

)(
θt +

µ+ ν + 2

2

)(
θt +

µ− ν + 2

2

)
×
(
θt +

µ+ ν + 4

2

)(
θt +

µ− ν + 4

2

)]
u(t, x),

where we set

a = 6,

b = 12(µ+ 1),

c =
1

2
(17µ2 − ν2 + 36µ+ 8),

d =
1

2
(µ+ 1)(5µ2 − ν2 + 12µ− 4),

e =
1

4
(µ− 1)(µ+ 2)(µ+ ν + 2)(µ− ν + 2).

Proof. The proof consists of straightforward verifications using the definition of
Gµ,ν
i (t, x) and the differential equation (D.10) for the I- and K-Bessel functions

Ĩα(z), K̃α(z).

We also need three recurrence relations for the functions Gµ,ν
i (t, x). To state the

formulas in a uniform way we put

δ(i) =

{
+1 for i = 1, 2,
−1 for i = 3, 4, ε(i) =

{
+1 for i = 1, 3,
−1 for i = 2, 4. (3.6)

Lemma 3.2.2 (Recurrence relations for the generating functions). The functions
Gµ,ν
i (t, x), i = 1, 2, 3, 4, satisfy the following three recurrence relations:
(1) The recurrence relation in µ

µ(1− t)Gµ,ν
i (t, x) = 2δ(i)

(
Gµ−2,ν
i (t, x)−

(
tx

2

)2

Gµ+2,ν
i (t, x)

)
.

(2) The recurrence relation in ν

ν(1− t)Gµ,ν
i (t, x) = 2ε(i)

(
Gµ,ν−2
i (t, x)−

(x
2

)2

Gµ,ν+2
i (t, x)

)
.

(3) The recurrence relation in µ and ν

(1− t) d

dx
Gµ,ν
i (t, x) = δ(i)

t2x

2
Gµ+2,ν
i + ε(i)

x

2
Gµ,ν+2
i .
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3.3. The eigenfunctions Λµ,ν
i,j (x)

Proof. (1) and (2): Use the recurrence relations (D.12) and (D.13) for the I- and
K-Bessel functions .

(3) In view of (D.11) the equation is evident.

Lemma 3.2.3 (Local monodromy of the generating functions). We have the fol-
lowing formula for the functions Gµ,ν

i (t, e−iπx) (i = 1, 2, 3, 4):
Gµ,ν

1

Gµ,ν
2

Gµ,ν
3

Gµ,ν
4

 (t, eiπx) =


1 0 0 0
bν aν 0 0
bµ 0 aµ 0
bµbν aνbµ aµbν aµaν




Gµ,ν
1

Gµ,ν
2

Gµ,ν
3

Gµ,ν
4

 (t, x)

where

aα := e−απi, bα :=
Γ(1− α

2
)Γ(α

2
)

2

(
e−απi − 1

)
.

Proof. This follows immediately from the parity formulas (D.5) and (D.6) for the
Bessel functions.

Remark 3.2.4 (Algebraic symmetries for the generating functions). It is also easy
to see that the generating functions satisfy the following algebraic symmetries

Gµ,ν
i (t, x) = Gν,µ

i

(
1

t
,−x

)
(i = 1, 4),

Gµ,ν
2 (t, x) = Gν,µ

3

(
1

t
,−x

)
.

3.3. The eigenfunctions Λµ,ν
i,j (x)

The function K̃µ
2
( tx

1−t) is meromorphic near t = 0 for a fixed x > 0 if and only if
µ is an odd integer. Therefore, we will henceforth assume the following integrality
condition:

µ is an odd integer ≥ 1 for i = 3, 4. (IC)

Then the generating functions Gµ,ν
i are meromorphic near t = 0 and give rise to

sequences (Λµ,ν
i,j )j∈Z of functions on R+ as coefficients of the Laurent expansions

Gµ,ν
i (t, x) =

∞∑
j=−∞

Λµ,ν
i,j (x)tj, i = 1, 2, 3, 4. (3.7)

Since Ĩα
2
(z) is an entire function and K̃α

2
(z) has a pole of order α at z = 0 if α ≥ 1

is an odd integer, we immediately obtain

Λµ,ν
1,j = Λµ,ν

2,j = 0 for j < 0,
Λµ,ν

3,j = Λµ,ν
4,j = 0 for j < −µ.
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Chapter 3. Generalized Laguerre functions

This allows us to calculate the functions Λµ,ν
i,j as follows:

Λµ,ν
i,j (x) =


1

j!

∂j

∂tj

∣∣∣∣
t=0

Gµ,ν
i (t, x) if i = 1, 2, j ≥ 0,

1

(j + µ)!

∂j+µ

∂tj+µ

∣∣∣∣
t=0

tµGµ,ν
i (t, x) if i = 3, 4, j ≥ −µ.

(3.8)

Example 3.3.1. The functions Λµ,ν
2,j (x) (in the i = 2 case) will turn out to be L2-

eigenfunctions of Dµ,ν and are therefore of special interest. Here are the first three
functions of this series:

Λµ,ν
2,0 (x) =

1

Γ(µ+2
2

)
K̃ ν

2
(x),

Λµ,ν
2,1 (x) =

1

Γ(µ+2
2

)

(
µ+ ν + 2

2
K̃ ν

2
(x) + θK̃ ν

2
(x)

)
,

Λµ,ν
2,2 (x) =

1

2Γ(µ+2
2

)

(
(µ+ ν + 2)(µ+ ν + 4)

4
K̃ ν

2
(x)

+
(µ+ 3)(µ+ ν + 2)

µ+ 2
θK̃ ν

2
(x) +

µ+ 3

µ+ 2
θ2K̃ ν

2
(x)

)
.

To formulate the asymptotic behavior of the functions Λµ,ν
i,j (x) we use the Landau

symbols O and o.

Theorem 3.3.2. Let µ ∈ C, µ 6= −1,−2,−3, . . . and ν ∈ R. Assume further that
j ≥ 0 if i = 1, 2 and j ≥ −µ if i = 3, 4.
(1) The asymptotic behavior of the functions Λµ,ν

i,j (x) as x→ 0 is given by

Λµ,ν
1,j (x) =

(µ+ν+2
2

)j

j!Γ(µ+2
2

)Γ(ν+2
2

)
+ o(1)

Λµ,ν
2,j (x) =

(µ−|ν|+2
2

)j

j!Γ(µ+2
2

)
×


2ν−1Γ

(ν
2

)
x−ν + o(x−ν) if ν > 0,

− log
(x

2

)
+ o

(
log
(x

2

))
if ν = 0,

1

2
Γ
(
−ν

2

)
+ o(1) if ν < 0,

Λµ,ν
3,j (x) =

2µ−1Γ(µ
2
)(−µ+ν+2

2
)j+µ

(j + µ)!Γ(ν+2
2

)
x−µ + o(x−µ),

Λµ,ν
4,j (x) =

Γ(µ
2
)(−µ−|ν|+2

2
)j+µ

(j + µ)!
×



2µ+ν−2Γ
(ν

2

)
x−µ−ν + o(x−µ−ν)

if ν > 0,
−2µ−1x−µ log

(x
2

)
+ o

(
x−µ log

(x
2

))
if ν = 0,

2µ−2Γ
(
−ν

2

)
x−µ + o(x−µ)

if ν < 0,
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3.3. The eigenfunctions Λµ,ν
i,j (x)

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol.
(2) As x→∞ we have

Λµ,ν
1,j (x) = Cµ,ν

1,j x
j− ν+1

2 ex
(

1 +O
(

1

x

))
, Λµ,ν

3,j (x) = O
(
xj−

ν+1
2 ex

)
,

Λµ,ν
2,j (x) = Cµ,ν

2,j x
j− ν+1

2 e−x
(

1 +O
(

1

x

))
, Λµ,ν

4,j (x) = O
(
xj−

ν+1
2 e−x

)
with constants Cµ,ν

1,j , C
µ,ν
2,j 6= 0.

Proof. The basic ingredient for the proof is the asymptotic behavior of the Bessel
functions which is for x→ 0 given in (D.19) and (D.20) and for x→∞ in (D.21).
We also make use of the well-known expansion

(1− t)−α =
∞∑
j=0

(α)j
j!

tj. (3.9)

(1) We show how to calculate the asymptotic behavior at x = 0 for the functions
Λµ,ν

2,j (x) with ν > 0. The same method applies to the other cases.
Using the asymptotics (D.19) and (D.20) and the binomial expansion (3.9)
we find that

xνGµ,ν
2 (t, x)|x=0 =

1

(1− t)µ+ν+2
2

1

Γ(µ+2
2

)
(2(1− t))ν

Γ(ν
2
)

2

=
∞∑
j=0

2ν−1Γ(ν
2
)(µ−ν+2

2
)j

j!Γ(µ+2
2

)
tj.

In view of (3.7) this yields

xνΛµ,ν
2,j (x)

∣∣
x=0

=
2ν−1Γ(ν

2
)(µ−ν+2

2
)j

j!Γ(µ+2
2

)
.

(2) Let us first treat the case i = 1, 2. With equation (3.8) it is easy to see that
Λµ,ν
i,j is a linear combination of terms of the form

(
θkĨ ν

2

)
(x) for i = 1,(

θkK̃ ν
2

)
(x) for i = 2

with 0 ≤ k ≤ j such that the coefficient for k = j are non-zero. (In fact this
can be seen in a more direct way from the recurrence relation in Proposition
3.6.1 and Example 3.3.1.) Using (D.11) this simplifies to terms of the form{

x2kĨ ν
2

+k(x) for i = 1,
x2kK̃ ν

2
+k(x) for i = 2
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Chapter 3. Generalized Laguerre functions

with 0 ≤ k ≤ j and non-zero coefficient for k = j. Using (D.21) the leading
term appears for k = j and the asymptotics follow.
For i = 3, 4 equation (3.8) implies that Λµ,ν

i,j is a linear combination of terms
of the form  xk−µ

(
θ`Ĩ ν

2

)
(x) for i = 3,

xk−µ
(
θ`K̃ ν

2

)
(x) for i = 4

with 0 ≤ k + ` ≤ j + µ. Using (D.11) this simplifies to terms of the form{
xk+2`−µĨ ν

2
+`(x) for i = 3,

xk+2`−µK̃ ν
2

+`(x) for i = 4

with 0 ≤ k + ` ≤ j + µ. Then again the claim follows from (D.21).

As an immediate consequence of Theorem 3.3.2 we obtain:

Corollary 3.3.3. If µ+ ν, µ− ν > −2, then Λµ,ν
2,j ∈ L2(R+, x

µ+ν+1 dx).

From the explicit formulas for the leading terms of the functions Λµ,ν
i,j (x) at x = 0

we can draw two more important corollaries.

Corollary 3.3.4. The function Λµ,ν
i,j is non-zero if one of the following conditions

is satisfied:
• i = 1 and µ, ν, µ+ ν > −2.
• i = 2 and µ+ ν, µ− ν > −2.
• i = 3, 4, µ is a positive odd integer and ν > −1 such that µ− ν /∈ 2Z.

Proof. In each case the assumption implies that the leading coefficient at x = 0 in
Theorem 3.3.2 is non-zero, so that the function itself is non-zero as well.

Corollary 3.3.5. Suppose µ is a positive odd integer and ν > 0 such that µ−ν /∈ 2Z,
then for fixed j ∈ N0 the four functions Λµ,ν

i,j , i = 1, 2, 3, 4, are linearly independent.

Proof. The assumptions imply that the leading coefficients at x = 0 of the functions
Λµ,ν
i,j (x) in Theorem 3.3.2 never vanish and that the leading terms are distinct.

Hence, the asymptotic behavior near x = 0 is different and the functions have to
be linear independent.

Now we can prove the main theorem of this section.

Theorem 3.3.6 (Differential equation). For i = 1, 2, 3, 4, j ∈ Z, the function Λµ,ν
i,j

is an eigenfunction of the fourth order differential operator Dµ,ν for the eigenvalue
4j(j + µ + 1). If, in addition, µ is a positive odd integer and ν > 0 such that
µ − ν /∈ 2Z, then for fixed j ∈ N0 the four functions Λµ,ν

i,j , i = 1, 2, 3, 4, form a
fundamental system of the fourth order differential equation

Dµ,νu = 4j(j + µ+ 1)u. (3.10)
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3.3. The eigenfunctions Λµ,ν
i,j (x)

Proof. In view of Corollary 3.3.5 it only remains to show the first statement. We
deduce

Dµ,νΛµ,ν
i,j (x) = 4j(j + µ+ 1)Λµ,ν

i,j (x) ∀ j ∈ Z (3.11)

from the corresponding partial differential equation for the generating function
Gµ,ν
i (t, x). For this we take generating functions of both sides of (3.11). Clearly,

(Dµ,ν)xGµ,ν
i (t, x) is the generating function for the left hand side of (3.11). The

generating function for the right hand side is calculated as follows

∞∑
j=−∞

tj · 4j(j + µ+ 1)Λµ,ν
i,j (x)

= 4
∞∑

j=−∞

(
θ2
t + (µ+ 1)θt

)
tjΛµ,ν

i,j (x)

= 4θt (θt + µ+ 1)Gµ,ν
i (t, x),

where θt := t ∂
∂t
. The resulting partial differential equation is

(Dµ,ν)xG
µ,ν
i (t, x) = 4θt (θt + µ+ 1)Gµ,ν

i (t, x)

which was verified in Lemma 3.2.1 (1).

Remark 3.3.7. Since Dµ,ν = Dν,µ− (µ−ν)(µ+ν+2) by Proposition 3.1.1 (1) and

4

(
j +

µ− ν
2

)((
j +

µ− ν
2

)
+ ν + 1

)
= 4j(j + µ+ 1) + (µ− ν)(µ+ ν + 2),

Theorem 3.3.6 implies that for µ − ν ∈ 2Z also Λν,µ

i,j+µ−ν
2

(x) is an eigenfunction of
Dµ,ν for the eigenvalue 4j(j + µ+ 1).

Corollary 3.3.8. If (µ, ν) ∈ Ξ, then the system (Λµ,ν
2,j )j∈N0 forms an orthogonal

basis of L2(R+, x
µ+ν+1 dx).

Proof. Lemma 1.3.1 implies that µ + ν, µ − ν > −2. Hence, by Corollary 3.3.3,
the functions Λµ,ν

2,j are contained in L2(R+, x
µ+ν+1 dx) and by Theorem 3.3.6 each

function Λµ,ν
2,j is an eigenfunction of Dµ,ν for the eigenvalue 4j(j+µ+ 1). Therefore

the claim follows from Proposition 3.1.1 (4).

Corollary 3.3.8 provides a completeness statement for Bessel functions we could
not trace in the literature:

Corollary 3.3.9. For (µ, ν) ∈ Ξ the sequence (θjK̃ ν
2
)j∈N0 (resp. (x2jK̃ ν

2
+j)j∈N0) is

a basis for L2(R+, x
µ+ν+1 dx). The Gram–Schmidt process applied to this sequence

yields the orthogonal basis (Λµ,ν
2,j )j∈N0 (up to scalar factors).
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Proof. It is an easy consequence of the definitions that Λµ,ν
2,j can be written as a linear

combination of the functions θkK̃ ν
2
for 0 ≤ k ≤ j. (In fact this follows more directly

from the recurrence relation in Proposition 3.6.1.) Then the sequence (θjK̃ ν
2
)j

clearly arises from the complete sequence (Λµ,ν
2,j )j by a base change and hence is

complete. Using (D.11) it is also easy to see that the second series (x2jK̃ ν
2

+j)j

arises by a base change from the sequence (θjK̃ ν
2
)j. Finally, we note that both base

change matrices considered are upper triangular. Thus the Gram–Schmidt process
in both cases yields the orthogonal basis Λµ,ν

2,j .

We end this section with a formula for the local monodromy of the functions
Λµ,ν
i,j (x) at x = 0. This implies a parity formula with respect to x 7→ −x which can

be used to determine also the asymptotic behavior as x → −∞. The monodromy
formula itself is an immediate consequence of Lemma 3.2.3:

Proposition 3.3.10 (Local monodromy at x = 0). We have the following local
monodromy to the differential equation (3.10):


Λµ,ν

1,j

Λµ,ν
2,j

Λµ,ν
3,j

Λµ,ν
4,j

 (eiπx) =


1 0 0 0
bν aν 0 0
bµ 0 aµ 0
bµbν aνbµ aµbν aµaν




Λµ,ν
1,j

Λµ,ν
2,j

Λµ,ν
3,j

Λµ,ν
4,j

 (x)

with coefficients aα, bα as in Lemma 3.2.3.

Remark 3.3.11. If ν is an odd integer, the functions Λµ,ν
i,j (x) extend holomorphi-

cally to C\{0}, not only to its universal covering. In this case, Proposition 3.3.10
expresses Λµ,ν

i,j (−x) as linear combination of the functions Λµ,ν
k,j (x) (k = 1, 2, 3, 4).

The coefficients contain aα and bα with α = 2n+1 an odd integer. In this case they
simplify significantly:

a2n+1 = −1, b2n+1 = (−1)n+1π.

3.4. Integral representations

In this section we show that for i = 1, 2 the functions Λµ,ν
i,j (x) have integral rep-

resentations in terms of Laguerre polynomials. For the definition of the Laguerre
polynomials Lαn(z) see Appendix D.2.

Theorem 3.4.1 (Integral representations). (1) For j ∈ N0, Re(µ),Re(ν) > −1
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3.4. Integral representations

we have the following double integral representations

Λµ,ν
1,j (x) = cµ,ν1,j

∫ π

0

∫ π

0

e−x cosφL
µ+ν

2
j (x(cos θ + cosφ)) sinµ θ sinν φ dφ dθ,

(3.12)

Λµ,ν
2,j (x) = cµ,ν2,j

∫ π

0

∫ ∞
0

e−x coshφL
µ+ν

2
j (x(cos θ + coshφ)) sinµ θ sinhν φ dφ dθ,

(3.13)

with constants cµ,ν1,j and cµ,ν2,j given by

cµ,ν1,j :=
1

πΓ(µ+1
2

)Γ(ν+1
2

)
and cµ,ν2,j :=

1

Γ(µ+1
2

)Γ(ν+1
2

)
.

(2) For ν = −1 and Re(µ) > −1 we have

Λµ,−1
1,j (x) = cµ,−1

1,j

1∑
i=0

∫ π

0

e−(−1)ixL
µ−1

2
j (x(cos θ + (−1)i)) sinµ θ dθ, (3.14)

Λµ,−1
2,j (x) = cµ,−1

2,j

∫ π

0

e−xL
µ−1

2
j (x(cos θ + 1)) sinµ θ dθ (3.15)

with constants cµ,−1
1,j and cµ,−1

2,j given by

cµ,−1
1,j =

1

2πΓ(µ+1
2

)
and cµ,−1

2,j =
1

2Γ(µ+1
2

)
.

Proof. We make use of the formula (3.8) for Λµ,ν
i,j and the generating function (D.24)

of the Laguerre polynomials. Further, we need the integral representations (D.14)
and (D.15) for the I- and K-Bessel functions.
(1) Interchanging differentiation and integration we obtain the desired integral

representations for Λµ,−1
1,j :

πΓ

(
µ+ 1

2

)
Γ

(
ν + 1

2

)
Λµ,ν

1,j (x)

=
πΓ(µ+1

2
)Γ(ν+1

2
)

j!

∂j

∂tj

∣∣∣∣
t=0

Gµ,ν
1 (t, x)

=
1

j!

∂j

∂tj

∣∣∣∣
t=0

1

(1− t)µ+ν+2
2

∫ π

0

∫ π

0

e−
tx

1−t cos θe−
x

1−t cosφ sinµ θ sinν φ dφ dθ

=

∫ π

0

∫ π

0

e−x cosφ 1

j!

∂j

∂tj

∣∣∣∣
t=0

[
1

(1− t)µ+ν+2
2

e−
tx

1−t (cos θ+cosφ)

]
sinµ θ sinν φ dφ dθ

=

∫ π

0

∫ π

0

e−x cosφL
µ+ν

2
j (x(cos θ + cosφ)) sinµ θ sinν φ dφ dθ.
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For the functions Λµ,ν
2,j we do a similar calculation:

Γ

(
µ+ 1

2

)
Γ

(
ν + 1

2

)
Λµ,ν

2,j (x)

=
Γ(µ+1

2
)Γ(ν+1

2
)

j!

∂j

∂tj

∣∣∣∣
t=0

Gµ,ν
2 (t, x)

=
1

j!

∂j

∂tj

∣∣∣∣
t=0

1

(1− t)µ+ν+2
2

∫ π

0

∫ ∞
0

e−
tx

1−t cos θe−
x

1−t coshφ

sinµ θ sinhν φ dφ dθ

=

∫ π

0

∫ ∞
0

e−x coshφ 1

j!

∂j

∂tj

∣∣∣∣
t=0

[
1

(1− t)µ+ν+2
2

e−
tx

1−t (cos θ+coshφ)

]
sinµ θ sinhν φ dφ dθ

=

∫ π

0

∫ ∞
0

e−x coshφL
µ+ν

2
j (x(cos θ + coshφ)) sinµ θ sinhν φ dφ dθ.

(2) Using (D.7), similar calculations as in (1) give the second part.

Remark 3.4.2. The integral representations in Theorem 3.4.1 (2) for the special
case ν = −1 can also be obtained from the integral representations in part (1)
for ν > −1 by taking the limit ν → −1. For example, to obtain the integral
representation for Λµ,−1

2,j we have to verify the limit formula

lim
ν→−1

1

Γ(ν+1
2

)

∫ ∞
0

e−x coshφ coshk φ sinhν φ dφ =
1

2
e−x (3.16)

for 0 ≤ k ≤ j. For k = 0 the identity (D.15) turns the left hand side into

1√
π

lim
ν→−1

K̃ ν
2
(x).

The map α 7→ K̃α(x) is continuous so (3.16) follows from (D.7). For k > 0 and
φ ≥ 0 we have

coshk φ− cosh0 φ = coshk φ− 1 ≤ sinhφ · p(sinhφ)

with some polynomial p. Then one has to show that

lim
ν→−1

1

Γ(ν+1
2

)

∫ ∞
0

e−x coshφ sinhν+`+1 φ dφ =
1

2
e−x.

for ` ≥ 0. But this is easily seen using the integral representation (D.15) and the
continuity of the map α 7→ K̃α(x).
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As an easy application of the integral representations we give explicit expressions
for the functions Λµ,ν

i,j (x), i = 1, 2, in the case where ν = −1.

Corollary 3.4.3. For ν = −1 and µ ∈ C arbitrary we have the following identity
of meromorphic functions

Λµ,−1
1,j (x) =

2µ−1Γ(j + µ+1
2

)

πΓ(j + µ+ 1)

(
e−xLµj (2x) + exLµj (−2x)

)
, (3.17)

Λµ,−1
2,j (x) =

2µ−1Γ(j + µ+1
2

)

Γ(j + µ+ 1)
e−xLµj (2x). (3.18)

Proof. For the proof we may assume that Re(µ) > −1. The general case µ ∈ C
then follows by meromorphic continuation. With the integral formula (D.25) the
substitution y = 1

2
(1± cos θ) yields∫ π

0

L
µ−1

2
j (x(cos θ ± 1)) sinµ θ dθ = 2µ

∫ 1

0

(1− y)
µ−1

2 y
µ−1

2 L
µ−1

2
j (±2x · y) dy

=
2µΓ(j + µ+1

2
)Γ(µ+1

2
)

Γ(j + µ+ 1)
Lµj (±2x). (3.19)

Inserting this into the integral representations (3.14) and (3.15) gives (3.17) and
(3.18).

Remark 3.4.4. The symmetry property (D.4) for the K-Bessel functions implies
that Gµ,−1

2 (x) = x
2
Gµ,1

2 (x) and hence

Λµ,1
2,j (x) =

2

x
Λµ,−1

2,j (x). (3.20)

Therefore, Corollary 3.4.3 also allows us to compute Λµ,1
2,j explicitly:

Λµ,1
2,j (x) =

2µΓ(j + µ+1
2

)

Γ(j + µ+ 1)
x−1e−xLµj (2x). (3.21)

Remark 3.4.5. Corollary 3.4.3 and Remark 3.4.4 suggest a relation between the
fourth order differential equation Dµ,νu = 4j(j + µ + 1)u in the cases where ν =
±1 and the second order differential equation (D.23) for the Laguerre polynomials
Lαn(x). In fact, by Proposition 3.1.1 (5) the fourth order differential operator Dµ,±1

collapses to the simpler form

Dµ,±1 = S2
µ,±1 − (µ+ 1)2

with second order differential operators Sµ,±1 (for their definition see Proposition
3.1.1 (5)). For µ > −1 the operator Sµ,−1 itself is self-adjoint on L2(R+, x

µ dx). It
has discrete spectrum given by (−(2j+µ+1))j∈N0 and an easy calculation involving
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(D.23) shows that Λµ,−1
2,j is an eigenfunction of Sµ,−1 for the eigenvalue −(2j+µ+1).

Applying Sµ,−1 twice yields the fourth order differential equation of Theorem 3.3.6
for Λµ,−1

2,j . The same considerations apply for Sµ,+1 and Λµ,+1
2,j (x) since we have the

relation (3.20) and
Sµ,+1x

−1 = x−1Sµ,−1. (3.22)

3.5. Orthogonal polynomials

In the previous section we have shown that for ν = ±1 the functions Λµ,ν
2,j (x) ba-

sically reduce to Laguerre polynomials. Now we prove that for any odd integer
ν ≥ −1 the functions Λµ,ν

2,j (x) reduce to polynomials.

Theorem 3.5.1. Suppose µ /∈ −N and ν ≥ 1 is an odd integer. Then

Λµ,ν
2,j (x) =

2µΓ(j + µ+1
2

)

Γ(j + µ+ 1)
x−νe−xMµ,ν

j (2x), (3.23)

where Mµ,ν
j (x) is a polynomial of degree j + ν−1

2
(j ∈ N0). The polynomial Mµ,ν

j (x)
is given by

Mµ,ν
j (x) =

Γ(j + µ+ 1)

Γ(j + µ+1
2

)

j∑
k=0

ν−1
2
−k∑

i=0

(−1)k
Γ(j − k + µ+1

2
)(ν − i− 1)!

k!Γ(j − k + µ+ 1)(ν−1
2
− i− k)!i!

Lµj−k(x)xi

=

j+ ν−1
2∑

k=0

βµ,νj,k x
k, (3.24)

where

βµ,νj,k =
Γ(j + µ+ 1)

Γ(j + µ+1
2

)

∑
(m,n)∈Sµ,νj,k

(−1)m+nΓ(j −m+ µ+1
2

)

Γ(n+ µ+ 1)

× (ν + n− k − 1)!

m!n!(k − n)!(j −m− n)!(ν−1
2

+ n− k −m)!

with

Sµ,νj,k =

{
(m,n) ∈ N2

0 :
0 ≤ n ≤ j −m

0 ≤ k − n ≤ ν−1
2
−m

}
. (3.25)

Proof. Let us first assume Re(µ) > −1. With the explicit expression (D.8) for
the K-Bessel functions with half-integer parameter and the integral representation
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3.5. Orthogonal polynomials

(D.14) for the I-Bessel function we obtain

Gµ,ν
2 (t, x) =

1

(1− t)µ+ν+2
2

Ĩµ
2

(
tx

1− t

)
K̃ ν

2

(
x

1− t

)
=

1

Γ(µ+1
2

)
x−νe−x

∫ π

0

1

(1− t)µ−1
2

+1
e−

tx
1−t (cos θ+1) sinµ θ dθ

×
ν−1
2∑
i=0

(ν − i− 1)!

(ν−1
2
− i)! · i!

(2x)i(1− t)
ν−1
2
−i.

Next, we compute the derivatives of the first factor with respect to t at t = 0. Using
the formula (D.24) for the generating function of the Laguerre polynomials we find
that

∂j

∂tj

∣∣∣∣
t=0

[∫ π

0

1

(1− t)µ−1
2

+1
e−

tx
1−t (cos θ+1) sinµ θ dφ

]

= j!

∫ π

0

L
µ−1

2
j (x(cosφ+ 1)) sinµ φ dφ

which is by (3.19) equal to

=
j!2µΓ(j + µ+1

2
)Γ(µ+1

2
)

Γ(j + µ+ 1)
Lµj (2x).

Now we can compute the Taylor coefficients of Gµ,ν
2 (t, x) at t = 0 explicitly as

follows

∂j

∂tj

∣∣∣∣
t=0

Gµ,ν
2 (t, x)

=
1

Γ(µ+1
2

)
x−νe−x

j∑
k=0

(
j

k

)
∂j−k

∂tj−k

∣∣∣∣
t=0

[∫ π

0

1

(1− t)µ−1
2

+1
e−

tx
1−t (cos θ+1) sinµ φ dθ

]

× ∂k

∂tk

∣∣∣∣
t=0

 ν−1
2∑
i=0

(ν − i− 1)!

(ν−1
2
− i)! · i!

(2x)i(1− t)
ν−1
2
−i


= x−νe−x

j∑
k=0

j!2µΓ(j − k + µ+1
2

)

k!Γ(j − k + µ+ 1)
Lµj−k(2x)

×
ν−1
2∑
i=0

(ν − i− 1)!

(ν−1
2
− i)! · i!

(2x)i(−1)k
(
ν − 1

2
− i
)
· · ·
(
ν − 1

2
− i− k + 1

)

= x−νe−x
j∑

k=0

ν−1
2
−k∑

i=0

(−1)k
j!2µΓ(j − k + µ+1

2
)(ν − i− 1)!

k!Γ(j − k + µ+ 1)(ν−1
2
− i− k)!i!

Lµj−k(2x)(2x)i.
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This gives the first expression for Mµ,ν
j (x). Inserting the explicit formula (D.22)

for the Laguerre functions one obtains the expression for the coefficients βµ,νj,k .
Since these clearly extend meromorphically to µ ∈ C with poles at most at µ =
−1,−2,−3, . . ., the claim follows.

Proposition 3.5.2. (1) (Top term)

Mµ,ν
j (x) =

(−1)j

j!
xj+

ν−1
2 + lower order terms.

(2) (Constant term)

Mµ,ν
j (0) =

2ν−µ−1Γ(ν
2
)Γ(j + µ+ 1)

(
µ−ν+2

2

)
j

j!Γ(µ+2
2

)Γ(j + µ+1
2

)
.

Proof. For k = j + ν−1
2

the set Sµ,νj,k defined in (3.25) only contains the tuple (0, j)
and we obtain the top term

βµ,ν
j,j+ ν−1

2

=
(−1)j

j!
.

To calculate the bottom term Mµ,ν
j (0) we use the asymptotic behavior of Λµ,ν

2,j (x)
as x→ 0 (see Theorem 3.3.2 (1)). Together with (3.23) this gives the bottom term
Mµ,ν

j (0).

Remark 3.5.3. As proved in the previous section, we have

Mµ,1
j (x) = Lµj (x).

However, for ν ≥ 3 the special polynomials Mµ,ν
j (x) do not appear in the standard

literature. Properties for these polynomials such as differential equations, orthog-
onality relations, completeness, recurrence relations and integral representations
simply translate from the corresponding properties for the functions Λµ,ν

2,j (x). The
corresponding statements can be found in [HKMM09a].

3.6. Recurrence relations

In this section we give three types of recurrence relations for the functions Λµ,ν
i,j (x).

Our first recurrence relation involves the first order differential operator Hα (α ∈
C) on R+, given by

Hα := θ +
α + 2

2
.

If α ∈ R, then Hα is a skew-symmetric operator on L2(R+, x
α+1 dx). This allows

us to compute the L2-norms for Λµ,ν
2,j explicitly if (µ, ν) ∈ Ξ.
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3.6. Recurrence relations

Proposition 3.6.1. For µ, ν ∈ C, i = 1, 2, 3, 4 we have the following recurrence
relation in j ∈ Z

(2j + µ+ 1)Hµ+νΛ
µ,ν
i,j (x) = (j + 1)(j + µ+ 1)Λµ,ν

i,j+1(x)

−
(
j +

µ+ ν

2

)(
j +

µ− ν
2

)
Λµ,ν
i,j−1(x). (3.26)

Proof. As in the proof of Theorem 3.3.6 we verify (3.26) via a partial differential
equation for the generating function Gµ,ν

i . A short calculation (similar to the one in
the proof of Theorem 3.3.6) shows that the recurrence relation (3.26) is equivalent
to the partial differential equation

(2θt + µ+ 1)

(
θx +

µ+ ν + 2

2

)
Gµ,ν
i (t, x)

=

(
1

t
θt(θt + µ)− t

(
θt +

µ+ ν + 2

2

)(
θt +

µ− ν + 2

2

))
Gµ,ν
i (t, x),

which holds by Lemma 3.2.1 (2).

Corollary 3.6.2. If (µ, ν) ∈ Ξ, then

‖Λµ,ν
2,j ‖2

L2(R+,xµ+ν+1 dx) =
2µ+ν−1Γ(j + µ+ν+2

2
)Γ(j + µ−ν+2

2
)

j!(2j + µ+ 1)Γ(j + µ+ 1)
. (3.27)

Proof. We prove this by induction on j. For j = 0, in view of Example 3.3.1 and
the integral formula (D.18), we can calculate

‖Λµ,ν
2,0 ‖2 =

∫ ∞
0

|Λµ,ν
2,0 (x)|2xµ+ν+1 dx

=
1

Γ(µ+2
2

)2

∫ ∞
0

|K̃ ν
2
(x)|2xµ+ν+1 dx

=
2µ+ν−1Γ(µ+ν+2

2
)Γ(µ−ν+2

2
)

(µ+ 1)Γ(µ+ 1)
.

For the induction step we reformulate (3.26) as

Hµ+νΛ
µ,ν
2,j =

(j + 1)(j + µ+ 1)

2j + µ+ 1
Λµ,ν

2,j+1 −
(2j + µ+ ν)(2j + µ− ν)

4(2j + µ+ 1)
Λµ,ν

2,j−1.

Using the skew-symmetry of Hµ+ν on L2(R+, x
µ+ν+1 dx) together with the pairwise

115



Chapter 3. Generalized Laguerre functions

orthogonality of the functions Λµ,ν
2,j (cf. Corollary 3.3.8) we calculate

‖Hµ+νΛ
µ,ν
2,j ‖2 =

(
Hµ+νΛ

µ,ν
2,j |Hµ+νΛ

µ,ν
2,j

)
= −

(
Λµ,ν

2,j |H2
µ+νΛ

µ,ν
2,j

)
= −

(
Λµ,ν

2,j

∣∣∣∣(j + 1)(j + µ+ 1)

2j + µ+ 1
Hµ+νΛ

µ,ν
2,j+1

)
−(2j + µ+ ν)(2j + µ− ν)

4(2j + µ+ 1)
Hµ+νΛ

µ,ν
2,j−1

)
=

(
(j + 1)(j + µ+ 1)

2j + µ+ 1
· (2(j + 1) + µ+ ν)(2(j + 1) + µ− ν)

4(2(j + 1) + µ+ 1)

+
(2j + µ+ ν)(2j + µ− ν)

4(2j + µ+ 1)
· j((j − 1) + µ+ 1)

2(j − 1) + µ+ 1

)
‖Λµ,ν

2,j ‖2.

On the other hand, orthogonality and the recurrence relation yield

‖Hµ+νΛ
µ,ν
2,j ‖2 =

(
(j + 1)(j + µ+ 1)

2j + µ+ 1

)2

‖Λµ,ν
2,j+1‖2

+

(
(2j + µ+ ν)(2j + µ− ν)

4(2j + µ+ 1)

)2

‖Λµ,ν
2,j−1‖2.

Both identities together complete the induction.

The second type of recurrence relations expresses x2Λµ,ν
i,j as linear combination

in Λµ,ν
i,k for k = j − 2, . . . , j + 2. These recurrence relations are an immediate

consequence of the fifth order differential equation for the generating functions
Gµ,ν
i (t, x) given in Lemma 3.2.1 (3).

Proposition 3.6.3. For µ, ν ∈ C we have

8

(
j +

µ− 1

2

)(
j +

µ+ 1

2

)(
j +

µ+ 3

2

)
x2Λµ,ν

i,j (x)

= 2(j + 1)(j + 2)(j + µ+ 1)(j + µ+ 2)

(
j +

µ− 1

2

)
Λµ,ν
i,j+2(x)

− 8(j + 1)(j + µ+ 1)

(
j +

µ− 1

2

)(
j +

µ+ 2

2

)(
j +

µ+ 3

2

)
Λµ,ν
i,j+1(x)

+ 2

(
j +

µ+ 1

2

)
(aj4 + bj3 + cj2 + dj + e)Λµ,ν

i,j (x)
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3.7. Meijer’s G-transform

− 8

(
j +

µ− 1

2

)(
j +

µ

2

)(
j +

µ+ 3

2

)(
j +

µ+ ν

2

)
(
j +

µ− ν
2

)
Λµ,ν
i,j−1(x)

+ 2

(
j +

µ+ 3

2

)(
j +

µ+ ν − 2

2

)(
j +

µ− ν − 2

2

)
×
(
j +

µ+ ν

2

)(
j +

µ− ν
2

)
Λµ,ν
i,j−2(x)

with a, b, c, d, e as in Lemma 3.2.1 (3).

Remark 3.6.4. For j 6= −µ−1
2
,−µ+1

2
,−µ+3

2
the recurrence relation of Proposition

3.6.3 can be rewritten as

x2Λµ,ν
i,j (x) =

2∑
k=−2

aµ,νi,j (k)Λµ,ν
i,j+k(x)

with constants aµ,νi,j (k).

The last set of recurrence relations in the parameters µ and ν are again immediate
with the corresponding differential equations for the generating functions which have
already been stated in Lemma 3.2.2:

Proposition 3.6.5. Let µ, ν ∈ C. With δ(i), ε(i) as in (3.6) we have three different
recurrence relations:
(1) The recurrence relation in µ

µ
(
Λµ,ν
i,j (x)− Λµ,ν

i,j−1(x)
)

= 2δ(i)

(
Λµ−2,ν
i,j (x)−

(x
2

)2

Λµ+2,ν
i,j−2 (x)

)
.

(2) The recurrence relation in ν

ν
(
Λµ,ν
i,j (x)− Λµ,ν

i,j−1(x)
)

= 2ε(i)

(
Λµ,ν−2
i,j (x)−

(x
2

)2

Λµ,ν+2
i,j (x)

)
.

(3) The recurrence relation in µ and ν

d

dx

(
Λµ,ν
i,j (x)− Λµ,ν

i,j−1(x)
)

= δ(i)
x

2
Λµ+2,ν
i,j−2 (x) + ε(i)

x

2
Λµ,ν+2
i,j (x).

3.7. Meijer’s G-transform

The main result of this section is that for (µ, ν) ∈ Ξ the functions Λµ,ν
2,j (x) are

eigenfunctions of a special type T µ,ν of Meijer’s G-transform. This G-transform
appears as the radial part of the unitary inversion operator FO (see Theorem 2.4.3).
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The integral transform T µ,ν is defined by

T µ,νf(x) :=

∫ ∞
0

Kµ,ν(xy)f(y)yµ+ν+1 dy ∀ f ∈ C∞c (R+),

where the kernel function Kµ,ν(x) is given by

Kµ,ν(x) :=
1

2µ+ν+1
G20

04

((x
4

)2
∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
.

Here G20
04(x|b1, b2, b3, b4) denotes Meijer’s G-function (see Appendix D.4). Using the

differential equation (D.32) for the G-function it is easy to see that Kµ,ν(x) satisfies
the fourth order differential equation

θ(θ + µ)(θ + ν)(θ + µ+ ν)u(x) = x2u(x) (3.28)

The operator T µ,ν is a special case of the more general G-transform which was
first systematically investigated by C. Fox. In [Fox61, Theorem 1] he shows that
for certain parameters the G-transform defines a unitary involutive operator on a
certain L2-space. This result is used to prove the first statement of the following
proposition. Note that we do not yet assume that (µ, ν) ∈ Ξ. However, if (µ, ν) ∈ Ξ,
then the following statement can also be obtained from representation theory (see
Section 3.8 for a proof).

Proposition 3.7.1. Suppose µ+ ν, µ− ν > −2.
(1) T µ,ν extends to a unitary involutive operator on L2(R+, x

µ+ν+1dx).
(2) The G-transform T µ,ν commutes with the fourth order differential operator
Dµ,ν.

Proof. (1) It is proved in [Fox61, Theorem 1] that

Tf(r) :=
1

c

∫ ∞
0

G20
04

(
(rr′)

1
c

∣∣∣∣0,−ν2 ,−µ2 ,−µ+ ν

2

)
f(r′) dr′

defines a unitary involutive operator T : L2(R+) −→ L2(R+) if c > 0 and
c > ν. By assumption c = µ+ν+2

2
satisfies this condition. Then the coordinate

change r =
(
x
2

)2c, r′ =
(
y
2

)2c gives the claim.
(2) A short calculation, using that Dµ,ν is a symmetric operator in

L2(R+, x
µ+ν+1 dx), gives the desired statement if one knows that the kernel

function Kµ,ν(x) satisfies the following differential equation

(Dµ,ν)xK
µ,ν(xy) = (Dµ,ν)yK

µ,ν(xy).

But this is easily derived from the expression (3.1) for Dµ,ν using the identity

θxK
µ,ν(xy) = (θKµ,ν)(xy) = θyK

µ,ν(xy)

and the differential equation (3.28) for Kµ,ν(x).
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Theorem 3.7.2 (Meijer’s G-transform). Suppose that (µ, ν) ∈ Ξ. Then for each
j ∈ N0 the function Λµ,ν

2,j (x) is an eigenfunction of Meijer’s G-transform T µ,ν for
the eigenvalue (−1)j.

Proof. Since Dµ,ν and T µ,ν commute, the function T µ,νΛµ,ν
2,j is also an eigenfunction

of Dµ,ν for the eigenvalue 4j(j + µ+ 1). But by Proposition 3.1.1 (4) and Theorem
3.3.6 the function Λµ,ν

2,j spans the L2-eigenspace of Dµ,ν with eigenvalue 4j(j+µ+1).
Hence, there exists εj ∈ R such that

T µ,νΛµ,ν
2,j (x) = εjΛ

µ,ν
2,j (x). (3.29)

We calculate εj by specializing (3.29) to x = 0.
Let us just treat the case ν > 0 here. The other cases ν = 0 and ν < 0 can be
treated similarly. Multiplying (3.29) with xν and taking the limit x→ 0 yields

lim
x→0

∫ ∞
0

(xy)νKµ,ν(xy)Λµ,ν
2,j (y)yµ+1 dy = εj lim

x→0
xνΛµ,ν

2,j (x). (3.30)

The right hand side is by Theorem 3.3.2 equal to

εj
(µ−ν+2

2
)j2

ν−1Γ(ν
2
)

j!Γ(µ+2
2

)
.

To justify interchanging limit and integral on the left hand side we apply the domi-
nated convergence theorem. By the asymptotic behavior of the G-function at x = 0
and x =∞ (see (D.36) and (D.37)), the function xνKµ,ν(x) is bounded on R+ and
hence ∣∣(xy)νKµ,ν(xy)Λµ,ν

2,j (y)yµ+1
∣∣ ≤ C ·

∣∣Λµ,ν
2,j (y)yµ+1

∣∣
for some constant C > 0. Therefore, the integrand in (3.30) is dominated by the
function C ·

∣∣Λµ,ν
2,j (y)yµ+1

∣∣ which is integrable by Theorem 3.3.2. Hence, the assump-
tions of the dominated convergence theorem are satisfied and with the asymptotic
behavior of the function Kµ,ν(x) at x = 0 (see Lemma 2.4.9) we obtain

lim
x→0

∫ ∞
0

(xy)νKµ,ν(xy)Λµ,ν
2,j (y)yµ+1 dy =

2ν−1Γ(ν
2
)

2µΓ(µ+2
2

)Γ(µ−ν+2
2

)

∫ ∞
0

Λµ,ν
2,j (y)yµ+1 dy

Together with the following lemma this shows that εj = (−1)j which finishes the
proof. (Part (2) of the lemma is needed for the case ν < 0.)

Lemma 3.7.3. (1)
∫ ∞

0

Λµ,ν
2,j (x)xµ+1 dx = (−1)j

2µΓ(µ−ν+2
2

+ j)

j!
,

(2)
∫ ∞

0

Λµ,ν
2,j (x)xµ+ν+1 dx = (−1)j

2µ+νΓ(µ+ν+2
2

+ j)

j!
.
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Proof. We use the integral formula (D.17). Together with (3.3) we obtain∫ ∞
0

Gµ,ν
2 (t, x)xµ+1 dx = 2µΓ

(
µ− ν + 2

2

)
(1− t)

µ−ν+2
2

× 2F1

(
µ+ 2

2
,
µ− ν + 2

2
;
µ+ 2

2
; t2
)

= 2µΓ

(
µ− ν + 2

2

)
(1 + t)−

µ−ν+2
2

=
∞∑
j=0

2µΓ(µ−ν+2
2

+ j)

j!
(−t)j

and∫ ∞
0

Gµ,ν
2 (t, x)xµ+ν+1 dx = 2µ+νΓ

(
µ+ ν + 2

2

)
(1− t)

µ+ν+2
2

× 2F1

(
µ+ ν + 2

2
,
µ+ 2

2
;
µ+ 2

2
; t2
)

= 2µ+νΓ

(
µ+ ν + 2

2

)
(1 + t)−

µ+ν+2
2

=
∞∑
j=0

2µ+νΓ(j + µ+ν+2
2

)

j!
(−t)j.

In view of (3.7) the claim follows.

Remark 3.7.4. For ν = ±1 the functions Λµ,ν
2,j (x) are Laguerre functions by (3.18)

and (3.21). In this case the reduction formula (D.33) implies that the kernel function
Kµ,ν(x) simplifies to a J-Bessel function:

Kµ,±1(x) = x−
µ+ν+1

2 Jµ(2x
1
2 ).

Then T µ,ν is a Hankel type transform and Theorem 3.7.2 is a reformulation of
[EMOT54, 8.9 (3)]. Note that the integral formula in [EMOT54, 8.9 (3)] holds for
a more general set of parameters.

One can use Theorem 3.7.2 to obtain an integral formula for the generating
function Gµ,ν

2 (t, x) and hence for the Bessel functions involved:

Corollary 3.7.5. Let 1
2
< α <∞, β = α

2α−1
and assume that (µ, ν) ∈ Ξ. Then for

x > 0∫ ∞
0

Kµ,ν(xy)Ĩµ
2

((α− 1)y) K̃ ν
2

(αy) yµ+ν+1 dy

=

(
β

α

)µ+ν+2
2

Ĩµ
2
((β − 1)x)K̃ ν

2
(βx).
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Proof. By Theorem 3.7.2 we have

T µ,νΛµ,ν
2,j = (−1)jΛµ,ν

2,j for every j ∈ N0.

Taking generating functions of both sides yields

(T µ,ν)xG
µ,ν
2 (t, x) = Gµ,ν

2 (−t, x),

and this gives the desired formula for α = 1
1−t .

3.8. Applications to minimal representations

In this section we relate the L2-eigenfunctions Λµ,ν
2,j (x) of Dµ,ν to representation

theory in the case where (µ, ν) ∈ Ξ. If (µ, ν) ∈ Ξ, then they are the parameters
introduced in Section 1.3 corresponding to a simple real Jordan algebra V of split
rank r0 ≥ 2 with simple euclidean subalgebra V + which is not isomorphic to Rp,q
with p+q odd. For these Jordan algebras we have constructed a unitary irreducible
representation π of the simple group Ǧ on L2(O, dµ). We now show that for j ∈ N0

the functions Λµ,ν
2,j (x) give rise to kl-spherical vectors in the k-type W j. We further

explain the representation theoretic meaning of several properties for the special
functions Λµ,ν

2,j (x) which were derived in this chapter.

k-finite vectors

Theorem 3.8.1. In each k-type W j the space of kl-invariant vectors is one-dimen-
sional and spanned by the functions

ψj(x) := Λµ,ν
2,j (|x|), x ∈ O.

Proof. By Proposition 1.6.4 the space of kl-invariant vectors in each irreducible k-
representation is at most one-dimensional. The functions ψj are clearly kl-invariant
since they are KL-invariant. By Proposition 2.3.2 the Casimir operator dπ(C) acts
on W j by the scalar

− r0

8n

(
4j(j + µ+ 1) +

r0d

2

∣∣∣∣d0 −
d

2

∣∣∣∣) ,
and by Theorems 2.3.3 and 3.3.6 it acts on ψj by the same scalar. Since all these
scalars are distinct, the claim follows.

Remark 3.8.2. For the euclidean case it is (indirectly) shown in [FK94, Section
XV.4] that the subspace of KL-invariant vectors in W j is spanned by the so-called
generalized Laguerre function `λm(x) with m = (j, 0 . . . , 0) and λ = λ1 = r0d

2r
= d

2
.

We show that these functions agree with the functions ψj on the orbit O.
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Chapter 3. Generalized Laguerre functions

The generalized Laguerre functions are defined in purely Jordan algebraic terms.
Let us recall their construction from [FK94, Section XV.4]: For m ∈ Nr0, m ≥ 0
(i.e. m1 ≥ . . . ≥ mr ≥ 0), we define the generalized power function ∆m on V by

∆m(x) := ∆1(x)m1−m2 · · ·∆r−1(x)mr−1−mr∆r(x)mr .

Here ∆j(x) denote the principal minors of V (see [FK94, Section VI.3] for their def-
inition). Then the corresponding spherical polynomials are obtained by integrating
over KL:

Φm(x) :=

∫
KL

∆m(kx) dk.

The polynomials Φm constitute a basis for the KL-invariant polynomials on V .
Since KL stabilizes the identity element e in the euclidean case, the polynomial
Φm(e+ x) is again KL-invariant and hence a linear combination

Φm(e+ x) =
∑
n

(
m

n

)
Φn(x)

with certain coefficients
(
m
n

)
which are called generalized binomial coefficients . We

then define the generalized Laguerre polynomials by

Lλm(x) := (λ)m
∑
n

(
m

n

)
1

(λ)n
Φn(−x),

where

(λ)m :=
r∏
i=1

(
λ− (i− 1)

d

2

)
mi

and (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol. Finally, the
generalized Laguerre functions are

`λm(x) := e−tr(x)Lλm(2x).

Now let us calculate `λm(x) for m = (m1, 0, . . . , 0), λ = λ1 = d
2
and x ∈ O. Since

∆1(x) = (x|c1), we obtain:

Φm(e+ x) =

∫
KL

(k(e+ x)|c1)m1 dk =

∫
KL

(1 + (kx|c1))m1 dk

=

m1∑
n1=0

(
m1

n1

)∫
KL

(kx|c1)m1 dk =

m1∑
n1=0

(
m1

n1

)
Φ(n1,0,...,0)(x).
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Therefore, (
m

n

)
=


(
m1

n1

)
if n2 = . . . = nr = 0,

0 else.

For the generalized Laguerre functions we thus obtain

`λm(x) = e−tr(x) ·
(
d

2

)
m1

m1∑
n1=0

(
m1

n1

)
1

(d
2
)n1

Φ(n1,0,...,0)(−2x).

Now suppose x = ktc1 ∈ O with k ∈ KL and t > 0. Since `λm is KL-invariant, it
only depends on t = |x| and we obtain

`λm(x) = e−|x| ·
(
d

2

)
m1

m1∑
n1=0

(
m1

n1

)
1

(d
2
)n1

(−2|x|)n1Φ(n1,0,...,0)(c1). (3.31)

To calculate Φ(n1,0,...,0)(c1) we use the following expansion (see [FK94, Section XI.5]):

(tr(y))k = k!
∑
|n|=k

dn

(n
r
)n

Φn(y),

where dm is defined in [FK94, Proposition XI.4.1 (i)]. For y = c1 we have tr(c1) = 1
and Φn(c1) = 0 if one of the n2, . . . , nr is non-zero. Therefore

Φ(n1,...,0)(c1) =
(n
r
)n1

n1! d(n1,0,...,0)

.

For d(n1,0,...,0) one obtains, using the results of [FK94, Section XIV.5]:

d(n1,0,...,0) =
(n
r
)n1(

rd
2

)n1

n1! (d
2
)n1

.

Inserting all this into (3.31) finally yields

`λm(x) =
m1! (d

2
)m1

( rd
2

)m1

· e−|x|Lµm1
(2|x|),

where Lαn(z) denote the classical Laguerre polynomials as defined in Appendix D.2.
In view of Corollary 3.4.3 (2) we have

`λ(j,0,...,0)(x) = const · e−|x|Lµj (2|x|) = const · Λµ,ν
2,j (|x|) = const · ψj(x) ∀x ∈ O.

Example 3.8.3. For the metaplectic representation µ of Mp(n,R) on L2
even(Rn) as

introduced in Section 2.1.4 the KL-invariant vectors in each k-type W j are spanned
by

Uψj(y) = Λµ,−1
j (|yyt|) = const · e−|y|2Lµj (2|y|2).
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Chapter 3. Generalized Laguerre functions

The unitary inversion operator

In Section 2.4 we introduced the unitary inversion operator FO. On radial functions
it acts by the G-transform T µ,ν (see Theorem 2.4.3). For the special case (µ, ν) ∈ Ξ
the results of Proposition 3.7.1 can also be obtained using representation theory. In
fact, FO is (up to a scalar) given by the action of the element w̌0.
(1) Since π is a unitary representation, FO is unitary on L2(O, dµ). The operator
T µ,ν , being the radial part of FO, also has to be unitary on the subspace

L2(O, dµ)rad
∼= L2(R+, x

µ+ν+1 dx)

of radial functions. This proves part (1) of Proposition 3.7.1.
(2) For part (2) observe that w̌0 is central in Ǩ. Therefore, it particularly com-

mutes with the Casimir element Ck of k as introduced in Section 2.3. It follows
that the actions of w̌0 and Ck have to commute as well. The action of w̌0 on
radial functions gives T µ,ν (up to a scalar) and the action of the Casimir Ck is
on radial functions (up to scalars) given by the differential operator Dµ,ν (see
Theorem 2.3.3). Hence, T µ,ν and Dµ,ν commute.

This proves Proposition 3.7.1 for the case where (µ, ν) ∈ Ξ using representation
theory.
In Section 2.4 we further showed that the unitary inversion operator FO acts

as a scalar on each k-type W j. For the minimal k-type W 0 we showed by direct
computation that this scalar is 1. Using the results of Section 3.7 we can now give
the action on all k-types.

Corollary 3.8.4. The unitary inversion operator FO acts on the k-type W j by the
scalar (−1)j. In particular, FO is of order 2.

Proof. By Theorem 2.4.3 the operator FO acts on radial functions by the G-
transform T µ,ν . The G-transform T µ,ν acts on Λµ,ν

2,j (x) by the scalar (−1)j (see
Theorem 3.7.2). Hence, FO acts on the radial function ψj(x) = Λµ,ν

2,j (|x|) by the
scalar (−1)j. By Theorem 3.8.1 the function ψj is in the k-type W j. Since FO acts
on W j by a scalar, this scalar has to be (−1)j.

Example 3.8.5. For the euclidean case the analogous statement for the continuous
part of the Wallach set is proved in [FK94, Corollary XV.4.3].

Recurrence relations via the g-action

Finally, we can also give a representation theoretic explanation for the recurrence
relations in Propositions 3.6.1 and 3.6.3. For this we consider the Lie algebra action
dπ. For H := (0, id, 0) ∈ l the action is given by

dπ(H) = E +
r0d

4
,
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where E =
∑n

i=1 xi
∂
∂xi

denotes the Euler operator on O. Hence, H = (0, id, 0) leaves
the space L2(O)rad of radial function invariant and acts on it by the differential
operator Hµ+ν (see Section 3.6). Further, let (ek)k be any orthonormal basis of V
with respect to the inner product (−|−) and put Nk := (ek, 0, 0) ∈ n. Then

dπ(Nk) = i(x|ek).

In particular, the sum of squares
n∑
k=1

dπ(Nk)
2 = −‖x‖2

leaves the space L2(O)rad of radial function invariant.
The key to an understanding of the underlying algebraic structure of the recur-

rence relations in Propositions 3.6.1 and 3.6.3 is the action of H and Nk on the
k-types W j. For convenience put W−1 := 0.

Lemma 3.8.6. The Lie algebra action dπ(X) :
⊕∞

j=0W
j −→

⊕∞
j=0 W

j (X ∈ g)
induces the following linear maps for each j ∈ N0:

dπ(H) : W j −→ W j+1 ⊕W j−1,

dπ(Nk) : W j −→ W j+1 ⊕W j ⊕W j−1, 1 ≤ k ≤ n.

Proof. We have

dπ(X) : W j −→ W j ∀X ∈ k (3.32)

since W j is a k-module. For the action of p recall that the k-weights of p are by
Section 1.6.3 contained in {

±γi ± γj
2

: 1 ≤ i, j ≤ r0

}
.

To determine which k-types may appear in dπ(p)W j one has to add the weights of
p to the highest weight of W j. By the k-type decomposition (see Theorem 2.3.1)
the only possible k-types that also appear in W are W j−1 and W j+1. Hence, we
have

dπ(X) : W j −→ W j+1 ⊕W j−1 ∀X ∈ p (3.33)

Putting (3.32) and (3.33) together proves the claim since H ∈ a ⊆ p.

By our previous considerations both dπ(H) and
∑n

i=1 dπ(Ni)
2 leave L2(O)rad

invariant. Since W j
rad = W j ∩L2(O)rad is one-dimensional and spanned by ψj(x) =

Λµ,ν
2,j (|x|) for every j ∈ N0, we obtain

Hµ+νΛ
µ,ν
2,j ∈ span{Λµ,ν

2,k : k = j − 1, j + 1},
x2Λµ,ν

2,j ∈ span{Λµ,ν
2,k : k = j − 2, j − 1, j, j + 1, j + 2},

which can be viewed as a qualitative version of Propositions 3.6.1 and 3.6.3.
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A. Tables of simple real Jordan
algebras

A.1. Structure constants of V

V n r d e
I.1 Sym(n,R) n

2
(n+ 1) n 1 0

I.2 Herm(n,C) n2 n 2 0
I.3 Herm(n,H) n(2n− 1) n 4 0
I.4 R1,n−1 (n ≥ 3) n 2 n− 2 0
I.5 Herm(3,O) 27 3 8 0
II.1 ××× × × × ×
II.2 M(n,R) n2 n 2 0
II.3 Skew(2n,R) n(2n− 1) n 4 0
II.4 Rp,q (p, q ≥ 2) p+ q 2 p+ q − 2 0
II.5 Herm(3,Os) 27 3 8 0
III.1 Sym(n,C) n(n+ 1) 2n 2 1
III.2 M(n,C) 2n2 2n 4 1
III.3 Skew(2n,C) 2n(2n− 1) 2n 8 1
III.4 Cn (n ≥ 3) 2n 4 2(n− 2) 1
III.5 Herm(3,O)C 54 6 16 1
IV.1 Sym(2n,C) ∩M(n,H) n(2n+ 1) 2n 4 2
IV.2 M(n,H) 4n2 2n 8 3
IV.3 ××× × × × ×
IV.4 Rn,0 (n ≥ 2) n 2 0 n− 1
IV.5 ××× × × × ×

Table A.1.: Structure constants of V
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Appendix A. Tables of simple real Jordan algebras

A.2. Structure constants of V +

V V + n0 r0 d0

I.1 Sym(n,R) I.1 n
2
(n+ 1) n 1

I.2 Herm(n,C) I.2 n2 n 2
I.3 Herm(n,H) I.3 n(2n− 1) n 4
I.4 R1,n−1 (n ≥ 3) I.4 n 2 n− 2
I.5 Herm(3,O) I.5 27 3 8
II.1 ××× × × × ×
II.2 M(n,R) I.1 n

2
(n+ 1) n 1

II.3 Skew(2n,R) I.2 n2 n 2
II.4 Rp,q (p, q ≥ 2) I.4 q + 1 2 q − 1
II.5 Herm(3,Os) I.3 15 3 4
III.1 Sym(n,C) I.1 n

2
(n+ 1) n 1

III.2 M(n,C) I.2 n2 n 2
III.3 Skew(2n,C) I.3 n(2n− 1) n 4
III.4 Cn (n ≥ 3) I.4 n 2 n− 2
III.5 Herm(3,O)C I.5 27 3 8
IV.1 Sym(2n,C) ∩M(n,H) I.2 n2 n 2
IV.2 M(n,H) I.3 n(2n− 1) n 4
IV.3 ××× × × × ×
IV.4 Rn,0 (n ≥ 2) I.4 1 1 0
IV.5 ××× × × × ×

Table A.2.: Structure constants of V +
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A.3. The constants µ and ν

A.3. The constants µ and ν

V µ ν
I.1 Sym(n,R) (n− 2)/2 −1
I.2 Herm(n,C) n− 1 −1
I.3 Herm(n,H) 2n− 1 −1
I.4 R1,n−1 (n ≥ 3) n− 3 −1
I.5 Herm(3,O) 11 −1
II.1 ××× × ×
II.2 M(n,R) n− 2 0
II.3 Skew(2n,R) 2n− 3 1
II.4 Rp,q (p, q ≥ 2) max(p, q)− 2 min(p, q)− 2
II.5 Herm(3,Os) 7 3
III.1 Sym(n,C) n− 1 −1
III.2 M(n,C) 2(n− 1) 0
III.3 Skew(2n,C) 2(2n− 2) 2
III.4 Cn (n ≥ 3) n− 2 n− 4
III.5 Herm(3,O)C 16 6
IV.1 Sym(2n,C) ∩M(n,H) 2n− 1 −1
IV.2 M(n,H) 4n− 2 0
IV.3 ××× × ×
IV.4 Rn,0 (n ≥ 2) n− 2 −n
IV.5 ××× × ×

Table A.3.: The constants µ and ν
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A.4. Conformal algebra and structure algebra

V g = co(V ) l = str(V )
I.1 Sym(n,R) sp(n,R) sl(n,R)× R
I.2 Herm(n,C) su(n, n) sl(n,C)× R
I.3 Herm(n,H) so∗(4n) sl(n,H)× R
I.4 R1,n−1 (n ≥ 3) so(2, n) so(1, n− 1)× R
I.5 Herm(3,O) e7(−25) e6(−26) × R
II.1 ××× ××× ×××
II.2 M(n,R) sl(2n,R) sl(n,R)× sl(n,R)× R
II.3 Skew(2n,R) so(2n, 2n) sl(2n,R)× R
II.4 Rp,q (p, q ≥ 2) so(p+ 1, q + 1) so(p, q)× R
II.5 Herm(3,Os) e7(7) e6(6) × R
III.1 Sym(n,C) sp(n,C) sl(n,C)× C
III.2 M(n,C) sl(2n,C) sl(n,C)× sl(n,C)× C
III.3 Skew(2n,C) so(4n,C) sl(2n,C)× C
III.4 Cn (n ≥ 3) so(n+ 2,C) so(n,C)× C
III.5 Herm(3,O)C e7(C) e6(C)× C
IV.1 Sym(2n,C) ∩M(n,H) sp(n, n) sl(n,H)×H
IV.2 M(n,H) sl(2n,H) sl(n,H)× sl(n,H)×H
IV.3 ××× ××× ×××
IV.4 Rn,0 (n ≥ 2) so(1, n+ 1) so(n)× R
IV.5 ××× ××× ×××

Table A.4.: Conformal algebra and structure algebra
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B. Calculations in rank 2

Let V = Rp,q with p, q ≥ 2 (see Example 1.1.3 (2)). The structure constants of V
and V + can be found in Tables A.1 and A.2 where V corresponds to the case II.4.
In particular, V has dimension n = p + q and rank r = r0 = 2. The parameter λ
of the zeta function and the Bessel operator corresponding to the minimal orbit of
Str(V )0 is λ = r0d

2r
= p+q−2

2
. Let us for convenience assume that p ≤ q. (The case

p ≥ q can be treated similarly.) Then µ = q − 2 and ν = p− 2.
Denote by (ej)j=1,...,n the standard basis of V = Rn. We use coordinates x1, . . . , xn

for x =
∑n

j=1 xjej. In these coordinates the trace form and the determinant are
given by

τ(x, y) = 2(x1y1 − x2y2 − . . .− xpyp + xp+1yp+1 + . . .+ xnyn),

∆(x) = x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

n.

Hence, αej := εjej defines a Cartan involution of V , where

εj :=

{
+1 for j = 1 or p+ 1 ≤ j ≤ n,
−1 for 2 ≤ j ≤ p.

The basis dual to (ej) with respect to the trace form τ is therefore given by ej =
1
2
εjej. The corresponding inner product and norm are

(x|y) = τ(x, αy) = 2(x1y1 + . . .+ xnyn),

|x|2 = ‖x‖2 = 2(x2
1 + . . .+ x2

n).

An orthonormal basis of V with respect to the inner product (−|−) is hence given
by the vectors 1√

2
ej, 1 ≤ j ≤ n. We also fix the Jordan frame c1 := 1

2
(e1 + ep+q),

c2 := 1
2
(e1 − ep+q).

The gradient ∂
∂x

with respect to the trace form writes

∂

∂x
=

(
εj
2

∂

∂xj

)
j

=
1

2

(
∂

∂x1

,− ∂

∂x2

, . . . ,− ∂

∂xp
,

∂

∂xp+1

, . . . ,
∂

∂xn

)
.

Let us use the notation x = (x′, x′′) ∈ Rp × Rq for x ∈ V . Abusing notation, we
also write x′ and x′′ for the vectors (x′, 0) ∈ V and (0, x′′) ∈ V , respectively. In this
notation the minimal orbit O = O1 can be written as

O = {x ∈ V \ {0} : ∆(x) = 0}
= {(x′, x′′) ∈ V \ {0} : |x′| = |x′′|}.
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In particular, for x = (x′, x′′) ∈ O we have |x′|2 = |x′′|2 = 1
2
|x|2.

Now let us calculate the action of the Bessel operator Bλ (λ = λ1) in this case.
To apply Proposition 1.7.6 we have to calculate ke for k ∈ (KL)0 = SO(p)× SO(q).
One finds that for x = ktc1 ∈ O with t > 0, k ∈ (KL)0 we have kte = (2x′, 0).
Hence we obtain for ψ(x) = f(|x|):

Bλψ(x) =

(
f ′′(|x|) + d0

1

|x|
f ′(|x|)

)
α(x′) +

(
f ′′(|x|) + (d− d0)

1

|x|
f ′(|x|)

)
α(x′′).

For the action of the Lie algebra elements (ej, 0,−αej) ∈ k this yields

dπ(ej, 0,−αej)ψ(x)

=


1
i

(
f ′′(|x|) + (q − 1) 1

|x|f
′(|x|)− f(|x|)

)
(x|ej) for 1 ≤ j ≤ p,

1
i

(
f ′′(|x|) + (p− 1) 1

|x|f
′(|x|)− f(|x|)

)
(x|ej) for p+ 1 ≤ j ≤ n.

(B.1)

B.1. The minimal K-type

In this section we prove the remaining parts (c) and (d) of Proposition 2.1.4 and
calculate the action of FO on ψ0.
To prove (2.10) and (2.11) we need to calculate the k-action on the spaces K̃ ν

2
+k⊗

Hk(Rp), 0 ≤ k ≤ q−p
2
. For this we introduce operators (−)±j on Hk(Rp) for j =

1, . . . , p by:

(−)+
j : Hk(Rp)→ Hk+1(Rp), ϕ+

j (x) := xjϕ(x)−
x2

1 + . . .+ x2
p

p+ 2k − 2

∂ϕ

∂xj
(x),

(−)−j : Hk(Rp)→ Hk−1(Rp), ϕ−j (x) :=
1

p+ 2k − 2

∂ϕ

∂xj
(x).

That ϕ+
j and ϕ−j are (for ϕ ∈ Hk(Rp)) indeed homogeneous harmonic polynomials

of degree k+1 and k−1, respectively, can easily be checked by direct computation.
Then for ϕ ∈ Hk(Rp) one clearly has the following decomposition of xjϕ(x) into
spherical harmonics:

xjϕ(x) = ϕ+
j (x) + (x2

1 + . . .+ x2
p)ϕ

−
j (x).

For convenience we also put (−)+
j := (−)−j := 0 for j = p + 1, . . . , n. Using the

operators (−)+
j and (−)−j we prove the following lemma:

Lemma B.1.1. For j = 1, . . . , n the action of (ej, 0,−αej) ∈ k on K̃ ν
2

+k ⊗ ϕ ∈
K̃ ν

2
+k ⊗Hk(Rp) is given by

dπ(ej, 0,−αej)(K̃ ν
2

+k ⊗ ϕ)

=
1

i

[
(2k + p− q)K̃ ν

2
+k+1 ⊗ ϕ+

j − (2k + p+ q − 4)K̃ ν
2

+k−1 ⊗ ϕ−j
]
.
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Proof. Let ϕ ∈ Hk(Rp) and 1 ≤ j ≤ n. With (2.12), the product rule (1.69) and
(1.72) we obtain

dπ(ej, 0,−αej)(K̃ ν
2

+k ⊗ ϕ)(x) = dπ(ej, 0,−αej)K̃ ν
2

+k(x) · ϕ(x)

+
2

i

K̃ ′ν
2

+k(|x|)
|x|

τ

(
P

(
αx,

∂ϕ

∂x

)
x, ej

)
+

1

i
K̃ ν

2
+k(|x|)τ(Bλϕ(x), ej).

Using the two identities
p∑
j=1

xj
∂ϕ

∂xj
(x) = kϕ(x) and

p∑
j=1

∂2ϕ

∂x2
j

= 0,

which hold since ϕ ∈ Hk(Rp), a short calculation gives

P

(
αx,

∂ϕ

∂x

)
x = kϕ(x′)x′′ +

1

2
|x|2∂ϕ

∂x
(x′),

Bλϕ = (λ+ k − 1)
∂ϕ

∂x
.

(a) 1 ≤ j ≤ p. With (B.1) and the differential equation (D.9) we obtain

dπ(ej, 0,−αej)(K̃ ν
2

+k ⊗ ϕ)(x) =
1

i

[
−2(2k + p− q) 1

|x|
K̃ ′ν

2
+k(|x|) · xjϕ(x)

+|x|K̃ ′ν
2

+k(|x|) ·
∂ϕ

∂xj
(x) +

(
k +

p+ q − 4

2

)
K̃ ν

2
+k(|x|) ·

∂ϕ

∂xj
(x)

]
.

Applying (D.11) and (D.13) yields the stated formula.
(b) p + 1 ≤ j ≤ n. In this case τ(∂ϕ

∂x
, ej) = 0 and τ(x′′, ej) = (x|ej). Using (B.1)

again we find that

dπ(ej, 0,−αej)(K̃ ν
2

+k ⊗ ϕ)(x)

=
1

i

[
K̃ ′′ν

2
+k(|x|) + (2k + p− 1)

1

|x|
K̃ ′ν

2
+k(|x|)− K̃ ν

2
+k(|x|)

]
(x|ej)ϕ(x).

But this is = 0 by (D.9) which finishes the proof.

Now

k = kl ⊕ {(u, 0,−αu) : u ∈ V }

and kl = so(p) ⊕ so(q) acts irreducibly on Hk(Rp) for every k ≥ 0. Therefore, the
previous lemma implies that

W0 =



q−p
2⊕

k=0

K̃ ν
2

+k ⊗Hk(Rp) if q − p ∈ 2Z,
∞⊕
k=0

K̃ ν
2

+k ⊗Hk(Rp) else,
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which proves parts (c) and (d) of Proposition 2.1.4. It remains to calculate the
highest weight of W0.
The isomorphism g

∼→ so(p+ 1, q + 1) given in Example 1.6.1 (2) restricts to an
isomorphism k

∼→ so(p+ 1)⊕ so(q + 1) ⊆ so(p+ 1, q + 1) given by

(0, T, 0) 7→

 T

 , T ∈ kl = so(p)⊕ so(q),

(u, 0,−αu) 7→


2(u′)t

−2u′

−2u′′

2(u′′)t

 , u ∈ V.

Lemma B.1.2. Under the identification k ∼= so(p+ 1)⊕ so(q + 1) the map

Φ :

q−p
2⊕

k=0

K̃ ν
2

+k ⊗Hk(Rp)→ H
q−p
2 (Rp+1),

Φ
(
K̃ ν

2
+k ⊗ ϕ

)
(x0, x

′) :=
(−2i)k

(p−q
2

)k
C̃

p−1
2

+k
q−p
2
−k (x0)ϕ(x′), (x0, x

′) ∈ Sp ⊆ Rp+1.

becomes an isomorphism of k-modules.

Here C̃λ
n(z) denote the normalized Gegenbauer polynomials as defined in Ap-

pendix D.3 and (a)k = a(a+ 1) · · · (a+ k − 1) is the Pochhammer symbol.

Proof. Since so(q+1) acts trivially on both sides, we only have to check the so(p+1)-
action. The action of A ∈ so(p+ 1) on ψ ∈ H q−p

2 (Rp+1) is given by

(A · ψ)(x) := DA∗xψ(x) = −DAxψ(x).

Then it is clear that Φ intertwines the actions of so(p) ⊆ kl. It remains to check
that it also intertwines the actions of (ej, 0,−αej) for 1 ≤ j ≤ p. To prove this,
we make use of the two formulas (D.28) and (D.29) for the normalized Gegenbauer
polynomials. We then have for (x0, x

′) ∈ Sp:(
(ej, 0,−αej) · Φ(K̃ ν

2
+k ⊗ ϕ)

)
(x0, x

′)

=

(
−2xj

∂

∂x0

+ 2x0
∂

∂xj

)
Φ(K̃ ν

2
+k ⊗ ϕ)(x0, x

′)

(D.28)
= − 4

(−2i)k

(p−q
2

)k
C̃

p−1
2

+(k+1)
q−p
2
−(k+1)

(x0)xjϕ(x′) + 2
(−2i)k

(p−q
2

)k
x0C̃

p−1
2

+k
q−p
2
−k (x0)

∂ϕ

∂xj
(x′)

(D.29)
=

1

i

[
(2k + p− q)Φ(K̃ ν

2
+(k+1) ⊗ ϕ+

j )

− (2k + p+ q − 4)Φ(K̃ ν
2

+(k−1) ⊗ ϕ−j )
]

(x0, x
′)

= Φ
(

(ej, 0,−αej) · (K̃ ν
2

+k ⊗ ϕ)
)

(x0, x
′)
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by Lemma B.1.1.

We use the identification k ∼= so(p+ 1)⊕ so(q+ 1) to transfer the torus t ⊆ k, the
roots {±γi±γj

2
} and our choice of a positive system from k to so(p+ 1)⊕ so(q + 1).

Then by [Kna86, Chapter IV.7, Examples (1) & (2)] the function ζ(x) = (x0 +

ix1)
q−p
2 is a highest weight vector in H q−p

2 (Rp+1) and the corresponding highest
weight is given by

ε


0 a
−a 0

∗
. . .
∗

 =
q − p

2
ia.

Under the above identification ε corresponds to q−p
4

(γ1 + γ2) which is in turn the
highest weight of the k-module W0. This proves the last part of Proposition 2.1.4.
Finally we calculate the action of FO = e−iπ

r0
2

(d0− d2 )+π(w̌0) on the function ψ0 to
finish the proof of Proposition 2.4.11. The missing part in the proof is the following
lemma:

Lemma B.1.3. ei
π
2

(e|x−B)ψ0 = eiπ( q−p
2

)+ψ0.

Proof. By the definition of dπ we have

ei
π
2

(e|x−B) = edπ(π
2

(e,0,−e)).

Under the identification k ∼= so(p + 1)× so(q + 1) the element (e, 0,−e) ∈ k corre-
sponds to the matrix 

0 2
−2 0

0
. . .

0

 .

Applying the exponential function of SO(p+ 1)× SO(q+ 1) to π
2
times this matrix

gives (
−12

1p+q

)
. (B.2)

By Lemma B.1.2 the function ψ0 ∈ W0 corresponds to the function

Sp → C, (x0, x
′) 7→ C̃

p−1
2

q−p
2

(x0). (B.3)

In view of the parity formula (D.26) for the Gegenbauer polynomials we see that the
matrix (B.2) acts on the function (B.3) by the scalar (−1)

q−p
2 = eiπ

q−p
2 . Similarly

one shows that for p ≥ q the scalar is 1. Therefore, the claim follows.
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B.2. The Casimir action

In this section we calculate the Casimir action in the rank 2 case. This completes
the proof of Theorem 2.3.3.
The action of (ej, 0,−αej) on radial functions is given in (B.1). Note that (ej)j

denotes the standard basis of Rn which is not orthonormal with respect to the inner
product (−|−). With the notation of (1.73) we find that for x ∈ O:

−
p∑
j=1

dπ(ej, 0,−αej)2ψ(x)

(1.69)
=

p∑
j=1

[
(B2

q−2f)(|x|)(x|ej)2 + 2τ

(
P

(
∂(Bq−2f)

∂x

∣∣∣∣ ∂(x|ej)
∂x

)
x, ej

)
+ (Bq−2f)(|x|)τ(Bλ(x|ej), ej)

]
(1.72)
= 2(B2

q−2f)(|x|)|x′|2 +
2

|x|
(Bq−2f)′(|x|)

p∑
j=1

τ (P (αx|αej)x, ej)

+
d

2
(Bq−2f)(|x|)

p∑
j=1

(ej|ej)

= (B2
q−2f)(|x|)|x|2 +

2

|x|
(Bq−2f)′(|x|)

p∑
j=1

τ (P (αx|αej)x, ej) + pd(Bq−2f)(|x|)

and similarly for
∑n

j=p+1 dπ(ej, 0,−αej)2ψ(x). Now a direct computation shows
that

τ(P (αx, αej)x, ej) = |x|2 ∀ j = 1, . . . , n.

Therefore, we obtain

−
n∑
j=1

dπ(ej, 0,−αej)2ψ(x)

= |x|2(B2
q−2f)(|x|) + 2p|x|(Bq−2f)′(|x|) + dp(Bq−2f)(|x|)

+ |x|2(B2
p−2f)(|x|) + 2q|x|(Bp−2f)′(|x|) + dq(Bp−2f)(|x|),

which turns out to be equal to 2Dµ,ν + (q − p)(p + q − 2). Taking into account
that ( 1√

2
ej)j forms an orthonormal basis of V with respect to (−|−) we obtain with

(2.21) that

dπ(Ck)ψ(x) =
r

8n

n∑
j=1

dπ

(
1√
2
ej, 0,−

1√
2
αej

)2

ψ(x)

= − r

8n

(
Dµ,ν +

(q − p)(p+ q − 2)

2

)
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B.2. The Casimir action

which finishes the proof of Theorem 2.3.3.
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C. Parabolic subgroups

Let G be a real reductive group of inner type (i.e. Ad(G) ⊆ Int(gC)) and g = k + p

be a Cartan decomposition of its Lie algebra. Further, let a ⊆ p be any (not neces-
sarily maximal) abelian subalgebra. Assume that the set Σ(g, a) is a root system.
In this section we construct parabolic subgroups of G just in terms of the root sys-
tem Σ(g, a), not involving a maximal abelian subalgebra.

For α ∈ a∗ we consider the weight space

gα := {X ∈ g : [H,X] = α(H)X ∀H ∈ a}.

Denote by Σ(g, a) the set of all 0 6= α ∈ a∗ such that gα 6= 0. As mentioned in
the beginning, we assume that Σ(g, a) is a root system. Choose a positive system
Σ+(g, a) ⊆ Σ(g, a) and denote by Π(g, a) the corresponding set of simple roots. For
any subset F ⊆ Π(g, a) of simple roots we form the Lie algebras

aF := {H ∈ a : α(H) = 0 ∀α ∈ F} ⊆ a,

mF := {X ∈ g : [X, aF ] = 0}

with corresponding Lie groups

AF := exp(aF ),

MF := {g ∈ G : Ad(g)H = H ∀H ∈ aF}.

Further put

Σ+
F (g, a) := {α ∈ Σ+(g, a) : α|aF 6= 0}

and

nF :=
⊕

α∈Σ+
F (g,a)

gα,

NF := exp(nF ).

Finally, we define

PF := MFNF .
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Appendix C. Parabolic subgroups

Theorem C.1. (1) For every subset F ⊆ Π(g, a) the group PF is a parabolic
subgroup of G.

(2) Each PF has the Langlands decomposition PF =◦MFAFNF , where

◦MF = {g ∈MF : χ(g) = 1 ∀ characters χ : MF → R+},

and the maps

MF ×NF → PF , (m,n) 7→ mn,
◦MF × AF ×NF → PF , (m, a, n) 7→ man,

are diffeomorphisms.
(3) G = KPF and we have the following integral formula for f ∈ Cc(G):∫

G

f(g) dg =

∫
K

∫
◦MF

∫
AF

∫
NF

f(kman)a2ρF dn da dm dk,

where dg, dk, dm, da and dn denote suitably normalized Haar measures on
G, K, ◦MF , AF and NF , respectively, and

ρF (H) =
1

2
Tr(ad(H)|nF ) =

1

2

∑
α∈Σ+

F (g,a)

dim(gα) · α

is the half sum of all positive roots in Σ+
F (g, a).

Proof. Choose a maximal abelian subalgebra ã of p that contains a:

a ⊆ ã ⊆ p.

We denote the weight space with respect to α ∈ ã∗ by g̃α. Then clearly

g̃α ⊆ gbα,
where α̂ = α|a. Since g =

⊕
α∈a∗ gα =

⊕
α∈ea∗ g̃α, we conclude that

Φ : Σ(g, ã) ∪ {0} → Σ(g, a) ∪ {0}, α 7→ α̂ = α|a,

is defined and surjective. One can choose a positive system Σ+(g, ã) of Σ(g, ã) with
corresponding simple roots Π(g, ã) such that Φ restricts to surjections

Φ+ : Σ+(g, ã) ∪ {0} → Σ+(g, a) ∪ {0}, and ΦΠ : Π(g, ã) ∪ {0} → Π(g, a) ∪ {0}.

Then put F̃ := Φ−1
Π (F ) ∪ (Π(g, ã) \ Φ−1

Π (Π(g, a))) ⊆ Π(g, ã). The statements now
follow immediately from [Wal88, Lemmas 2.2.7, 2.2.8 and 2.4.1] applied to F̃ .
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D. Special Functions

In this chapter we give definitions and basic properties of the classical special func-
tions that appear in this paper.

D.1. Bessel functions

The series

Iα(z) :=
(z

2

)α ∞∑
n=0

1

n!Γ(n+ α + 1)

(z
2

)2n

(D.1)

defines a meromorphic function in z and α, called the modified Bessel function of
the first kind or I-Bessel function (see [Wat44, Section 3.7]). For α > −1 and z > 0
this function takes real values. Iα(z) solves the following second order differential
equation:

z2 d2u

dz2
+ z

du

dz
− (z2 + α2)u = 0. (D.2)

Another solution of (D.2) which is linearly independent of Iα(z) is given by the
modified Bessel function of the third kind or K-Bessel function:

Kα(z) :=
π

2 sinπα
(I−α(z)− Iα(z)). (D.3)

For convenience we use the following renormalizations:

Ĩα(z) :=
(z

2

)−α
Iα(z), K̃α(z) :=

(z
2

)−α
Kα(z).

Note that Ĩα(z) is an entire function. Further, since K−α = Kα we have

K̃−α(z) =
(z

2

)2α

Kα(z). (D.4)

It follows directly from the definitions that

Ĩα(eiπx) = Ĩα(x), (D.5)

K̃α(eiπx) = a2αK̃α(x) + b2αĨα(x), (D.6)
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where

aα := e−απi, bα :=
Γ(1− α

2
)Γ(α

2
)

2

(
e−απi − 1

)
.

For the special value α = −1
2
the normalized I- and K-Bessel functions are

Ĩ− 1
2
(z) =

1√
π

cosh(z), K̃− 1
2
(z) =

√
π

2
e−z. (D.7)

In the case where the parameter α ∈ N0 + 1
2
is a half-integer the K-Bessel function

degenerates to a combination of power and exponential function and polynomial
(see e.g. [Wat44, III.71 (12)]):

K̃α(z) =
√
πz−2αe−z

α− 1
2∑

i=0

(2α− i− 1)!

(α− i− 1
2
)! · i!

(2z)i. (D.8)

Corresponding to (D.2), Ĩα(z) and K̃α(z) solve the second order equation

z2 d2u

dz2
+ (2α + 1)z

du

dz
− z2u = 0, (D.9)

or equivalently (
θ2 + 2αθ − z2

)
u = 0, (D.10)

where θ = z d
dz
. For the normalized Bessel functions one has the differential recur-

rence relations (see [Wat44, III.71 (6)])

d

dz
Ĩα(z) =

z

2
Ĩα+1(z),

d

dz
K̃α(z) = −z

2
K̃α+1(z), (D.11)

with which the differential equation (D.9) can equivalently be written as recurrence
relation (see e.g. [Wat44, III.71 (1)]):

αĨα(z) = Ĩα−1(z)−
(z

2

)2

Ĩα+1(z), (D.12)

αK̃α(z) =
(z

2

)2

K̃α+1(z)− K̃α−1(z). (D.13)

For Re(α) > −1
2
the Bessel functions have the following integral representations in

x > 0 (cf. formulas III.71 (9) and VI.15 (5) in [Wat44]):

Ĩα(x) =
1√

πΓ(α + 1
2
)

∫ π

0

e−x cos θ sin2α θ dθ, (D.14)

K̃α(x) =

√
π

Γ(α + 1
2
)

∫ ∞
0

e−x coshφ sinh2α φ dφ. (D.15)
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D.1. Bessel functions

The Mellin transform of the K-Bessel function is given by the following formula
which holds for Re(σ),Re(σ − 2α) > 0 and Re(a) > 0 (see e.g. [GR65, equation
6.561 (16)]): ∫ ∞

0

K̃α(ax)xσ−1 dx = 2σ−2a−σΓ
(σ

2

)
Γ

(
σ − 2α

2

)
. (D.16)

We further have the following two integral formulas involving two Bessel functions:
• For Re(σ),Re(σ−2β) > 0, a < b the following holds (see e.g. [GR65, equation

6.576 (5)]):

∫ ∞
0

Ĩα(ax)K̃β(bx)xσ−1 dx =
2σ−2Γ(σ

2
)Γ(σ−2β

2
)

bσΓ(α + 1)

× 2F1

(
σ

2
,
σ − 2β

2
;α + 1;

(a
b

)2
)
. (D.17)

• For Re(σ) > 2 max(Re(α), 0)+2 max(Re(β), 0) we have (see formula 10.3 (49)
in [EMOT54])

∫ ∞
0

K̃α(x)K̃β(x)xσ−1dx =
2σ−3

Γ(σ − α− β)
Γ
(σ

2

)
Γ

(
σ − 2α

2

)
× Γ

(
σ − 2β

2

)
Γ

(
σ − 2α− 2β

2

)
. (D.18)

Finally, on the positive real line R+ the normalized I- and K-Bessel functions have
the following asymptotic behavior (see [Wat44, Chapters III and VII] and [AAR99,
Chapter 4]): as x→ 0

Ĩα(0) =
1

Γ(α + 1)
, (D.19)

K̃α(x) =


Γ(α)

2

(
x
2

)−2α
+ o(x−2α) if α > 0

− log(x
2
) + o(log(x

2
)) if α = 0

Γ(−α)
2

+ o(1) if α < 0

, (D.20)

and as x→∞

Ĩα(x) =
1

2
√
π

(x
2

)−α− 1
2
ex
(

1 +O
(

1

x

))
,

K̃α(x) =

√
π

2

(x
2

)−α− 1
2
e−x

(
1 +O

(
1

x

))
.

(D.21)
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D.2. Laguerre polynomials

For n ∈ N0 and α ∈ C the Laguerre polynomial Lαn(z) is defined by (cf. [AAR99,
Equation (6.2.2)])

Lαn(z) =
(α + 1)n

n!

n∑
k=0

(
n

k

)
(−1)k

(α + 1)k
zk. (D.22)

Lαn(z) solves the following second order differential equation (see [AAR99, Equation
(6.2.8)]) (

z
d2

dz2
+ (α + 1− z)

d

dz
+ n

)
u = 0. (D.23)

The generating function of the Laguerre polynomials is given by (see e.g. formula
(6.2.4) [AAR99]):

∞∑
n=0

Lαn(z)tn =
1

(1− t)α+1
e−

tz
1−t . (D.24)

Finally, we have the following integral formula for Re(β) > Re(α) > −1 (cf. formula
16.6 (5) in [EMOT54])∫ 1

0

(1− y)β−α−1yαLαn(xy) dy =
Γ(α + n+ 1)Γ(β − α)

Γ(β + n+ 1)
Lβn(x). (D.25)

D.3. Gegenbauer polynomials

The classical Gegenbauer polynomials Cλ
n(z) with parameters n ∈ N0 and λ ∈ C

are defined by (see [EMOT53, 3.15 (2)])

Cλ
n(z) =

1

Γ(λ)

n∑
k=0

(−1)kΓ(λ+ k)Γ(n+ 2λ+ k)

k!(n− k)!Γ(2λ+ 2k)

(
1− z

2

)k
.

We rather use the normalized version

C̃λ
n(z) = Γ(λ)Cλ

n(z).

C̃λ
n(z) is an even function if n is even and an odd function if n is odd (see [EMOT53,

3.15 (5)&(6)]). This can be stated as the parity formula

C̃λ
n(−z) = (−1)nC̃λ

n(z). (D.26)

The Gegenbauer polynomial C̃λ
n(z) solves the second order differential equation (see

[EMOT53, 3.15 (21)])

(z2 − 1)u′′ + (2λ+ 1)zu′ − n(n+ 2λ)u = 0. (D.27)
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D.4. Meijer’s G-function

With the differential recurrence relation (see [EMOT53, 3.15 (30)])
d

dz
C̃λ
n(z) = 2C̃λ+1

n−1(z) (D.28)

the differential equation (D.27) rewrites as the recurrence relation

(2λ+ n− 1)(n+ 1)C̃λ−1
n+1(z)− 2z(2λ− 1)C̃λ

n(z) + 4(1− z2)C̃λ+1
n−1(z) = 0. (D.29)

D.4. Meijer’s G-function

The G-function can be defined in a very general setting. However, we restrict our
definition to the case which is needed in this paper. The results in this section are
taken from [Luk69, Chapter V].
Let 0 ≤ m ≤ q, 0 ≤ n ≤ p, p < q and a1, . . . , ap, b1, . . . , bq ∈ C. Assume further

that ak − bj is not a positive integer for j = 1, . . . ,m, k = 1, . . . , n. For z 6= 0 in
the univeral covering of C× we define

Gm,n
p,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
:=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
zs ds.

Here L is a loop beginning and ending at +∞ and encircling all poles of Γ(bj − s),
1 ≤ j ≤ m, once in the negative direction, but none of the poles of Γ(1 − ak + s),
1 ≤ k ≤ n. Gm,n

p,q (z|apbq ) is called Meijer’s G-function. From the definition one
immediately obtains the reduction formula (cf. [Luk69, Equation 5.4 (1)])

Gm,n
p,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq−1, a1

)
= Gm,n−1

p−1,q−1

(
z

∣∣∣∣ a2, . . . , ap
b1, . . . , bq−1

)
. (D.30)

The G-function Gm,n
p,q (z|apbq ) solves the following differential equation of order

max(p, q) (see [Luk69, Equation 5.8 (1)]):[
(−1)m+n−pz

p∏
j=1

(θ − aj + 1)−
q∏

k=1

(θ − bk)

]
u = 0, (D.31)

where θ = z d
dz

and an empty product is treated as 1. For the special case of
G20

04(z|b1, b2, b3, b4) we find [
4∏
j=1

(θ − bj)

]
u(z) = zu(z). (D.32)

Various special functions can be expressed in terms of the G-function. For instance,
the J- and K-Bessel functions are given by (see [Luk69, Equations 6.4 (8) & (11)])(z

4

)β
Jα(z) = G20

04

((z
4

)4
∣∣∣∣ β + α

4
,
β + α + 2

4
,
β − α

4
,
β − α + 2

4

)
, (D.33)

2
(z

2

)β
Kα(z) = G20

02

((z
2

)2
∣∣∣∣ β + α

2
,
β − α

2

)
. (D.34)
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We also need the following integral formula for the G-function G20
04(z|b1, b2, b3, b4)

which holds for ω, η > 0 and Re(bj − a± α
2
) > −1 (j = 1, 2) (see [Luk69, Equation

5.6 (21), assumptions as in case 4]):∫ ∞
0

x−aKα(2(ωx)
1
2 ))G20

04(ηx|b1, b2, b3, b4) dx

=
ωa−1

2
G22

24

(
η

ω

∣∣∣∣ a+ α
2
, a− α

2

b1, b2, b3, b4

)
. (D.35)

Finally, we give the asymptotic behavior of the function G20
04(z|b1, b2, b3, b4) as z → 0

and z → ∞. For the asymptotics as z → 0 we assume without loss of generality
that b1 ≤ b2. Then it follows from [Luk69, Equations 5.2 (7) & (10)] that

G20
04(z|b1, b2, b3, b4)

=
1

Γ(1 + b1 − b3)Γ(1 + b1 − b4)
×

{
Γ(b2 − b1)zb1 + o(zb1) if b1 < b2,

− ln(z)zb1 + o(ln(z)zb1) if b1 = b2.
(D.36)

For the asymptotic behavior as x→∞ we find with [Luk69, Section 5.10, Theorem
2] that

G20
04(x|b1, b2, b3, b4) = − 1√

2π
xθ cos

(
4x

1
4 + (b3 + b4 − 2θ)π

)(
1 +O(x−

1
4 )
)
,

(D.37)

where θ = 1
4
(b1 + b2 + b3 + b4 − 3

2
).
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