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Abstract

We give a unified construction of the minimal representation of a finite cover G
of the conformal group of a (non necessarily euclidean) Jordan algebra V. This
representation is realized on the L?-space of the minimal orbit O of the structure
group L of V.. We construct its corresponding (g, €£)-module and show that it can
be integrated to a unitary irreducible representation of G on L*(O).

In particular, we obtain a unified approach to the two most prominent mini-
mal representations, namely the Segal-Shale—Weil representation of the metaplectic
group Mp(n,R) and the minimal representation of O(p+1, ¢+ 1) which was recently
studied by T. Kobayashi, G. Mano and B. Orsted.

In the second part we investigate special functions which give rise to &-finite
vectors in the representation. Various properties of these special functions such
as differential equations, recurrence relations and integral formulas connect to the
representation theory involved.

Finally, we define the conformal inversion operator F» by the action of the longest
Weyl group element. Fo is a unitary operator on L*(O) of order 2. We show that the
action of F» on radial functions is given by a special case of Meijer’s G-transform.

Zusammenfassung

Wir konstruieren einheitlich die minimale Darstellung einer endlichen Uberlagerung
G der konformen Gruppe einer (nicht notwendigerweise euklidischen) Jordanalgebra
V. Diese Darstellung lisst sich auf dem L2-Raum der minimalen Bahn der Struk-
turgruppe L von V realisieren. Wir konstruieren den zugehérigen (g, £)-Modul und
zeigen, dass er sich zu einer unitéren irreduziblen Darstellung von G auf L?(O)
integrieren lasst.

Insbesondere liefert dies eine einheitliche Sichtweise auf die beiden bekanntesten
minimalen Darstellungen: Die Segal-Shale-Weil Darstellung der metaplektischen
Gruppe Mp(n,R) und die minimale Darstellung von O(p + 1,¢ + 1), die kiirzlich
von T. Kobayashi, G. Mano und B. Orsted studiert wurde.

Im zweiten Teil untersuchen wir spezielle Funktionen, die explizite £-endliche
Vektoren in der Darstellung liefern. Verschiedene Eigenschaften dieser speziellen
Funktionen wie Differentialgleichungen, Rekursions- und Integralformeln werden
bewiesen und in Bezug zur Darstellungstheorie gesetzt.

Zuletzt definieren wir den konformen Inversionsoperator F» durch die Wirkung
des langsten Weylgruppenelements. Fo ist ein unitdrer Operator der Ordnung 2
auf L*(0). Wir zeigen, dass die Wirkung von Fp auf radialen Funktionen durch
eine spezielle Form von Meijer’s G-Transformation gegeben ist.
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Introduction

We explain the results of this thesis from two different points of view:

e The study of minimal representations is motivated from unitary representation
theory. Minimal representations are thought to correspond to the minimal
nilpotent coadjoint orbit via the orbit philosophy.

e On the other hand, the ‘smallness’ of the minimal representation results in
large symmetries in its geometric realizations. We investigate an interesting
relashionship between minimal representations and certain special functions
that solve a fourth order ordinary differential equation. The special functions
appear as E-finite vectors in the L?-model of the minimal representation.

Minimal representations

In the theory of unitary representations it is an unsolved problem to determine
the unitary irreducible representations of all simple real Lie groups. For simply-
connected nilpotent groups G, Kirillov’s orbit method establishes a correspondence
between the unitary irreducible representations of G and its coadjoint orbits. Un-
fortunately, this methods does not work for arbitrary simple real Lie groups. Nev-
ertheless, Kirillov’s method suggests an intimate relation between coadjoint orbits
and unitary irreducible representations.

On the one hand, to every unitary irreducible representation 7 of a simple real
Lie group G one can associate the annihilator Ann(7) of the derived representation
dm in the universal enveloping algebra U(g) of g = Lie(G). Its associated variety
V(Ann(m)) C g is the closure of a nilpotent coadjoint orbit. On the other hand,
there are quantization procedures which associate unitary representations to certain
coadjoint orbits. For the nilpotent coadjoint orbits such a quantization procedure
is least understood. To gain a better understanding of the relation between unitary
representations and nilpotent coadjoint orbits one studies representations which
correspond to the minimal nilpotent coadjoint orbit.

Definition ([GS05, Definition 4.6]). A unitary irreducible representation 7 of a
simple real Lie group G is called minimal if its annihilator Ann(7) is equal to the
Joseph ideal.

The Joseph ideal is the unique completely prime two-sided ideal in U(g) whose
associated variety is the closure of the minimal nilpotent coadjoint orbit (see [GS05,
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Section 4.4]). Therefore, minimal representations are thought to correspond to the
minimal nilpotent coadjoint orbit. For simple real Lie groups the number of iso-
morphism classes of minimal representations is always finite. In many cases there
is either one or no minimal representation. A self-contained exposition of minimal
representations can be found in [GS05].

The most prominent minimal representation is probably the (holomorphic part
of the) metaplectic representation. The metaplectic representation (also called os-
cillator representation or Segal-Shale-Weil representation) is a unitary representa-
tion of the metaplectic group Mp(n,R) (the double cover of the symplectic group
Sp(n,R)) on L*(R"™). There are various connections between the metaplectic repre-
sentation and other fields of mathematics such as symplectic geometry or number
theory. An overview of the metaplectic representation can be found in [Fol89,
Chapter 4] whereas the original papers of I. E. Segal, D. Shale and A. Weil are
[Seg63, [Sha62l, Wei64].

Another example for a minimal representation has recently attracted more and
more attention: the minimal representation of the indefinite orthogonal group
O(p + 1,¢ + 1) with p + ¢ even. A realization on L?(C'), where C' C RP'? is
an isotropic cone, was constructed by T. Kobayashi and B. Orsted in [K©Q03c].

There are several results about the construction of minimal representations:

e In [BK94] and [Bry98| R. Brylinski and B. Kostant construct the minimal
representation of a certain class of simple real Lie groups GG on the space of
sections of a particular half-form bundle. However, in their construction the
case where the corresponding symmetric space G/ K is hermitean is excluded.

e For the hermitean case, S. Sahi constructs the minimal representation in
[Sah92]. Together with A. Dvorsky he also gives a construction for another
class of groups in [DS99]. The same is done in [BSZ06|. They all exclude the
case g = s0(p+ 1,¢+ 1) from their considerations.

e In the case of the group O(p + 1,¢ + 1), p + g even, there are several re-
sults. For the group O(4,4) the minimal representation was first constructed
by B. Kostant in [Kos90|. Later B. Binegar and R. Zierau generalized the
construction to arbitrary parameters p and ¢ with p + ¢ even (see [BZ91]).
Two different geometric models including the L?-model are constructed in

[KO03al, [KG03b, [KO03d).

However, what is missing is a unified construction of an L2-model of the minimal
representation. The right framework for this construction seems to be the framework
of Jordan algebras. In the two examples G = Mp(n,R) and G = SO(p + 1,q + 1)
the group G is a finite cover of the identity component Co(V')q of the conformal
group Co(V') of a certain simple real Jordan algebra V. Therefore, one may ask the
following questions:
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Questions. (1) For which simple real Jordan algebra V' does a finite cover G of
Co(V)o admit a minimal representation?
(2) Is there a natural realization of the minimal representation of G on a certain
L?-space?

By a result of D. A. Vogan, no covering group of SO(p + 1,¢ + 1) admits a
minimal representation if p 4+ ¢ is odd and p,q > 3 (see [Vog81, Theorem 2.13]).
In all other cases one can show that there is a finite cover of the conformal group
which admits a minimal representation. The minimal representation can be realized
on the L-space of the minimal non-zero orbit O of the structure group Str(V') of
V. This is proved in [Sah92] for euclidean Jordan algebras, in [DS99], [DS03] and
IBSZ06l, Section 8| for non-euclidean Jordan algebras of rank > 3, and in [K©Q03c]
for the remaining case G = O(p+1,¢+1). In Section [2.1| we give a unified construc-
tion which works for the most general class of Jordan algebras. Our construction
can be described as follows:

We start with a simple real Jordan algebra V' of split rank rq > 2 with simple
maximal euclidean subalgebra V*. Its structure group Str(V) acts linearly on
V' and has finitely many orbits. The minimal non-zero orbit O of the identity
component Str(V)y carries a unique Str(V')p-equivariant measure du. This gives
the representation space L?(O, du).

Let g be the Lie algebra of the conformal group Co(V') of V. First, we construct
a Lie algebra representation dm of g on C*°(0) (see Section 2.1.1). Further, we
define a function 1y € C*°(O) by

olx) == Ky (), ze 0,

where K, (z) denotes the normalized K-Bessel function (see Appendix [D.1)), ||
is a certain norm on V and v is a structure constant of the Jordan algebra V.
The subrepresentation of C'*°(O) generated by vy is a (g, £)-module if and only if
g Zso(p+1,qg+ 1) with p+ ¢q odd (see Proposition . (This is exactly the
case for which no minimal representation exists.) Excluding this case, the (g, €)-

module integrates to a unitary irreducible representation m of a finite cover G of
Co(V)o on L2(O, dpu) (see Theorem[2.1.12)). This representation is in fact a minimal
representation (see Remark .

The Jordan algebras corresponding to the groups O(p + 1,¢ + 1) are those of
rank 2. From a representation theoretic point of view, this case is most difficult
to handle, because the corresponding minimal representation is in general neither
a highest weight representation nor spherical. In all other cases the representation
theory is simpler:

e For a euclidean Jordan algebra the minimal representation is a highest weight
representation.

e For a non-euclidean Jordan algebra of rank > 3 the function 1y is a K-
spherical vector and hence the minimal representation is spherical.
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Therefore, in the case of rank 2 Jordan algebras the calculations are more involved
and are treated separately in Appendix [B]

Generalized Laguerre functions

The constructed L?2-model of the minimal representation allows a wide range of
applications, in particular to the theory of special functions.

In general, it is quite hard to find explicit expressions for -finite vectors in unitary
representations. However, for the minimal representation we determine an explicit
t-finite vector in every €-type. In order to do so, we first compute the action of the -
Casimir on radial functions in Section[2.3] It turns out that the €&-Casimir essentially
acts on the radial parameter z € R, by the ordinary fourth order differential
operator

Dy, = % (0 + p+v) (0 + p) —2%) (000 +v) —2?),

where 6 = xd%, and p and v are certain structure constants of the Jordan alge-
bra. We show that this operator extends to a self-adjoint operator on the Hilbert
space L*(R,z#*"*1dx) and compute its spectrum (see Corollary [2.3.4). The L*-

eigenfunctions are constructed in terms of their generating function

1 ~ tx ~ x
Y (t = I Kv .
G2 (,I‘) (1_t)u+g+2 2(1—t> 3 <1—t)

The generating function G5 (¢, x) is analytic near t = 0 and hence defines a sequence
(Ay7 (z)); of functions on Ry by

o0

Gy (tw) =Y Ay ()t

=0
We show that for every j the function AYY () is an L*-eigenfunction of D, , for the
eigenvalue 45(j + p+ 1) (see Theorem [3.3.6)). This implies that the radial functions
i) = Ay (), z €0,

are explicit £-finite vectors in the minimal representation.

The parameters p and v are structure constants of the Jordan algebra. However,
the formula for the operator D,,, as well as the construction of the eigenfunctions
Ay (x) makes sense also for general complex parameters p,v € C. In Section
we study properties of D,,, for arbitrary p and v. We further construct a generic
fundamental system A} (z), i = 1,2,3, 4, of the differential equation

Dyt = 45(j + o+ Du.
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For i = 2 the function A7 (x) is an L*-eigenfunction of D,,,. Various properties of

the special functions AZ ’j”(x), 1 =1,2,3,4, such as recurrence relations and integral
formulas are derived.

Now, if one assumes that the parameters pu and v appear as structure constants
of a simple real Jordan algebra for which the minimal representation exists, then
representation theory can be used to give short proofs for statements on the L?-
eigenfunctions A4/ (z):

(1) The functions Ay (r) (j = 0,1,2,...) form an orthogonal basis of
L3R,z dzx) (see Corollary [3.3.8). A closed expression for their norms
is given in Corollary

(2) The Lie algebra action predicts various recurrence relations (see Section [3.8).
These recurrence relations are stated in Section [B.6l

In the case that g = so(p+1, ¢+ 1), these results are already proved in [HKMMOQ9b].
There, only the minimal representation of O(p 4+ 1,¢q 4+ 1) is used. Hence, the set
of parameters (u, v) which appear in [HKMMOQ9b] is strictly smaller than the set of
parameters for which the statements are proved in Chapter 3]

If the Jordan algebra V with which we start is euclidean, then the parameter v is
equal to —1. In this case the functions Ag;’(:zr) simplify to Laguerre functions (see

Corollary [3.4.3)):
A‘z‘:;l(x) = const - e~ "L} (21),

where L% (z) denote the Laguerre polynomials as introduced in Appendix . For
this case, the differential equation and the recurrence relations are a reformulation
of [ADOO7, Theorem 6.3].

Another type of special functions occurs if one studies the unitary inversion op-
erator Fo. This operator is defined using the group action of the minimal represen-
tation 7 (see Section [2.4). Fo is a unitary involutive operator on L*(QO, du) which
resembles the euclidean Fourier transform. Various properties of Fp are proved
in Theorem [2.4.1] Together with the action of a maximal parabolic subgroup of
G (which can be written down explicitly) the operator F» determines the whole
representation m. Therefore, to gain a better understanding of the minimal repre-
sentation, it might help to find an explicit formula for the action of F». For the case
g =so(p+ 1,¢+ 1) the full integral kernel of F» was computed by T. Kobayashi
and G. Mano in [KMO07a, KMO7b|]. To generalize this result, we determine, as a first
step into this direction, the action of F» on radial functions. It turns out that Fp
preserves the space of radial functions and acts on a radial function ¥ (x) = f(|z|)
as the integral transform (see Theorem [2.4.3))

T (o) = / K () f () dy
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with integral kernel

v 1 20 [ (T2 v.op ptv
K <1’>:WG04((1> ‘0*5’—5’— 2

given in terms of Meijer’s G-function (see Appendix [D.4). The operator T+ is a
special case of the more general G-transform as studied in [Fox61]. As a corollary
of these observations we obtain that the functions A} (x) are eigefunctions of the
G-transform 7+ for the eigenvalues (—1).

All in all, we observe an intimate relation between the special functions A4/ (z)
and minimal representations. On the one hand, results about the special functions
A7 (x) are used to obtain explicit expressions for £-finite vectors in the minimal
representation. But on the other hand, representation theory also provides proofs
of statements on the special functions A’} () such as orthogonality relations, com-
pleteness or integral formulas.

Outline of the thesis

In the first chapter we introduce the concept of Jordan algebras. The basic structure
theory is explained and the structure constants p and v are defined. We further
describe the structure group and its orbits as well as equivariant measures on the
orbits. The conformal group and its Lie algebra are discussed in detail. Finally,
we define the Bessel operators which are needed for the Lie algebra action of the
minimal representation.

Chapter [2| is concerned with the minimal representation. We first give a detailed
contruction of the representation. In the second part we explain the relation of the
minimal representation to generalized principal series representations. We further
show that the Casimir element C} acts on radial functions as the fourth order
differential operator D, ,. In the fourth section we define the unitary inversion
operator F» and prove several properties for it. We also prove that F» acts on
radial functions by the G-transform 7.

The third chapter deals with the differential operator D,,,, and its eigenfunctions.
Here we do in general not assume that o and v are the structure constants of a
certain Jordan algebra V. We construct eigenfunctions Aﬁf ’j”(a:), 1 =1,2,3,4, of
D, in terms of their generating functions and investigate main properties such as
asymptotic behavior, recurrence relations or integral representations. Now suppose,
p and v are the structure constants of a Jordan algebra V' for which the minimal
representation exists. For the L?-cigenfunctions A’Q”]V(w) we derive orthogonality
relations, expressions for the norms, a completeness statement and simplification
formulas. In the last section we interpret the functions Ay (z) as radial parts of
£-finite vectors in the minimal representation associated to the Jordan algebra V.
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Outlook

(1)

Our construction of the minimal representation uses the rich structure of
Jordan algebras. A generalization of the concept of Jordan algebras leads to
the notion of Jordan triple systems. Many objects that are needed in our
construction still exist in the theory of Jordan triple systems. Therefore, it is
an interesting question whether the construction of the minimal representation
can also be carried out in the more general framework of Jordan triple systems.

In the special case where g = so(p + 1,¢ + 1), T. Kobayashi and G. Mano
computed the action of the unitary inversion operator F» not only on radial
functions, but on every K-isotypic component, where K, = K N Str(V) =
SO(p) x SO(q) (see [KMOTb, Theorem 4.1.1]). Using these results they de-
termined the full integral kernel K (z,y) € D'(O x O) of Fo (see [KMOTh),
Theorem 5.1.1]). The same method might work also in the general case.

A big advantage of the L?-realization of the minimal representation is that it
is well-suited for tensor product computations. The decomposition of tensor
powers of the minimal representation is studied in [DS99, Theorem 0.2| for
non-euclidean Jordan algebras of rank > 3 and in |[DvoQ7| for the case g =
so(p+ 1,9+ 1). It should be possible to prove these results in the general
framework.

The same might be possible for branching laws for the restriction to a sym-
metric subgroup. In [Sep07h, [Sep07a) [Sep08|, MS10] the branching laws for
restriction to the structure group Str(V') are studied in the case of euclidean
Jordan algebras. Some ideas might also apply in the general case.

Notation: N = {1,2,3,...}.
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1. Jordan theory

In this chapter we introduce the main concepts in the theory of Jordan algebras.
We first define Jordan algebras and analyze their algebraic structure. To every
Jordan algebra we associate two important groups which are needed in Chapter
to construct representations:

e The structure group which acts linearly on the Jordan algebra. Its orbits
provide the geometry of the representation space.

e The conformal group which acts on the Jordan algebra by rational transforma-
tions. The minimal representation will be a unitary irreducible representation
of a finite cover of it.

The stated results are either known or simple computations which are needed in
the subsequent chapters. The notation is mostly as in [FK94] where most results
of this chapter can be found, although only for the special case of euclidean Jordan
algebras.

1.1. Jordan algebras

The algebraic framework for the construction of the minimal representation will
be the framework of Jordan algebras. Jordan algebras can be defined over general
fields, but for our purpose it suffices to consider either K =R or K = C.

Definition 1.1.1. A vectorspace V together with a bilinear multiplication V xV —
V, (z,y) — x -y = zy, and a unit element e (i.e. x-e=x =e-x for every x € V)
is called Jordan algebra if the following two properties hold for any x,y € V:

rT-y=vy-ux, (J1)

v (a?-y) =a®- (z-y). (J2)

Let us fix some notation:

e We denote by L(z) € End(V) the multiplication by z € V. With this the
axiom can be written as

[L(z), L(z*)] =0 VeeV.

e Write
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for the quadratic representation and
P(z,y) = L(x)L(y) + L(y) L(z) — L(zy)

for its polarized version.
e Define

x0y := L(zy) + [L(z), L(y)]. (1.1)
Then (z0y)z = P(x, 2)y.

Let V be a finite-dimensional Jordan algebra of dimension n. To x € V one can
associate a generic minimal polynomial (see e.g. [FK94] Section I1.2|)

foN) =X —a ()N 4+ 4 (D) (). (1.2)

Its degree r is called the rank of V. For 1 < j < r the function a;(z) is a ho-
mogeneous polynomial on V' of degree j. Every such polynomial a;(z) is invariant
under automorphisms of V, i.e. invertible linear transformations g € GL(V') which
preserve the Jordan product:

g9(x-y) =gz - gy Va,yeV.
In particular, the Jordan trace
tr(z) := a1(x)
and the Jordan determinant
det(z) := A(x) = a.(z)

are invariant under automorphisms. (To avoid confusion, we write Tr and Det for
the usual trace and determinant of an endomorphism.) For x = e the identity
element we have (cf. [FK94) Proposition I1.2.2|):

tr(e) =, det(e) = 1. (1.3)

An element z € V is called invertible if there exists y € K[z] such that zy = e = yz.
The inverse ¥ is unique and we write 2! := 3. An element z is invertible if and only
if A(z) # 0, and in this case A(z)z~! is polynomial in = (see [FK94, Proposition
11.2.4]). The differential of the map = +— z~! is given in terms of the quadratic
representation:

Dy(z7") = —P(x) tu.
The symmetric bilinear form

7(,y) = tr(zy), z,y €V,

10



1.1. Jordan algebras

is called the trace form of V. The trace form is associative, i.e.
T(ry, z) = 7(x, y2) Va,y,2€V.

If 7 is non-degenerate, we call V' semisimple, and if K = R and 7 is positive definite,
we call V' euclidean. Further, V is called simple if V' is semisimple and has no non-
trivial ideal. From now on we assume that K = R.

An involutive automorphism « of V' such that

(zly) == 7(z, ay)

is positive definite, is called Cartan involution of V. Such a Cartan involution
always exists and two Cartan involutions are conjugate by an automorphism of V'
(see [Hel69l Satz 4.1, Satz 5.2]). We have the decomposition

V=VteV"-

into £1 eigenspaces of V. It is further easy to see that
V:t . V:I: C V+,
VvtV CcvT.

Hence, the +1 eigenspace V' is a euclidean Jordan subalgebra of V' with the same
identity element e. Note that if V itself is already euclidean, then the identity
a = idy is a Cartan involution and since two Cartan involutions are conjugate, it
is also the only Cartan involution. In this case clearly V' =V and V~ = 0.

We denote by ng and 7y dimension and rank of V't and call o the split rank of
V. The constants ng and rg only depend on the isomophism class of the Jordan
algebra V', not on the choice of a.. In fact, if § is another Cartan involution, then
B = gag~! for an automorphism ¢. Hence, gV " is the +1 eigenspace of 3 which is
clearly isomorphic to V* as Jordan algebra. Therefore, dimension and rank of V'
and gV have to coincide.

One can use the Cartan involution to show that the Jordan trace can be written
as the trace of an endomorphism on V.

Lemma 1.1.2. Let V be a simple real Jordan algebra such that V't is also simple.
Then

Tr(L(z)) = ;tr(x), zeV. (1.4)

Proof. By [FK94l Proposition I11.4.3] the symmetric bilinear forms tr(zy) and
Tr(L(zy)) are associative. Since V7 is simple, by [FK94, Proposition I11.4.1] every
two symmetric associative bilinear forms on V' are scalar multiples of each other.
Hence, there has to be a constant A\ € R such that Tr(L(z)) = A tr(x) forallz € V.
Putting « = e we find with that A = . It remains to show forz e V.
But in this case tr(z) = tr(az) = —tr(z) and hence, tr(z) = 0. On the other hand,
Tr(L(z)) = Tr(aL(x)a) = Tr(L(az)) = —Tr(L(z)) and therefore also Tr(L(z)) = 0
which shows the claim. ]

11



Chapter 1. Jordan theory

Example 1.1.3. (1) Let V = Sym(n,R) be the space of symmetric nxn matrices

12

with real entries. Endowed with the multiplication
1

-y = ey +yo)

V' becomes a simple euclidean Jordan algebra of dimension
n. Trace and determinant are the usual ones for matrices:

tr(z) = Tr(x), det(z) = Det(x).

@ and rank

Hence, the trace form is given by 7(z,y) = Tr(zy). The inverse ' of x € V
exists if and only if Det(z) # 0 and in this case 7! is the usual inverse of the
matrix .

Let V = R x W where W is a real vector space of dimension n — 1 with a
symmetric bilinear form 5 : W x W — R. Then V turns into a Jordan algebra
with multiplication given by

(Aw) - (s v) i= (A + B(u,v), Av + pu).
V' is of dimension n and rank 2. Trace and determinant are given by
tr(A, u) = 2, det(\,u) = A\? — B(u,u),

and an element (), u) € V is invertible if and only if det(\, u) = A\* — 3(u, u) #
0. In this case the inverse is given by (\,u)~! (A, —u). The trace
form can be written as

T((A ), (1, v) = 2(Me + B(u, v)).

Hence, V is semisimple if and only if 3 is non-degenerate and V' is euclidean
if and only if 3 is positive definite. For W = RP~14 = RPH9~1 with bilinear
form [ given by the matrix
1,
1,

we put RP4 :=R x RP~54 p > 1, ¢ > 0. Then

_ 1
T det(A\u)

T(z,y) = 2(z1y1 — Tolo — .. — Tplp + Tpr1Ypt1 + - - - + TpiqUprq),
Al)=ai+.. . +ai—al —...—ao,

Thus, RPY is euclidean if and only if p = 1. In any case, a Cartan involution
of RPY is given by

a = 1, . (1.5)
1q

With this choice the euclidean subalgebra (RP)* amounts to

(Rp’q)+ =Re; D Repy1 @ ... Re, = RbM,



1.2. Peirce decomposition

1.2. Peirce decomposition

From now on let V' be a simple real Jordan algebra, a a Cartan involution and
assume that V1 is also simple. We introduce the Peirce decomposition of V' which
describes the structure with the use of idempotents. From the Peirce decomposition
we derive some formulas that are needed later.

1.2.1. Peirce decomposition for one idempotent

Let ¢ € VT be any idempotent, i.e. ¢* = c. By [FK94, Chapter VI.1] the only

possible eigenvalues of the operator L(c) are 0, 3 and 1. Since L(c) is symmet-

ric with respect to the inner product (—|—), this gives the following orthogonal
decomposition:

V=Vl)aV(,3) o V(c0), (1.6)
where

Vie,\) ={x eV : L(c)xr = Az}

is called Peirce decomposition corresponding to c. Since L(c) is also symmetric
with respect to the trace form 7, the decomposition in is also orthogonal with
respect to 7. The subspaces V (¢, 1) and V(c,0) are subalgebras of V' with unit
elements ¢ and e — ¢, respectively. Hence V (¢, 1) - V(e, 1) C V(c, 1) and similarly
for V(c,0). We have the following additional inclusions (cf. [FK94, Proposition
IV.1.1)):

Ve, 1) - V(e,0) =0,
(V(e,1) 4+ V(c,0) - V(e,3) S V(e 3),
Vie,3) V(e 3) S V(e 1)+ V(c,0)

The projection onto V'(¢, 1) in the Peirce decomposition (1.6 is given by P(c) (see
[FK94, Chapter IV, Section 1]).

1.2.2. Peirce decomposition for a Jordan frame

An idempotent is called primitive if it is non-zero and cannot be written as the
sum of two non-zero idempotents. Further, two idempotents ¢; and ¢y are called
orthogonal if cyco = 0. A collection ¢y, . . ., ¢; of orthogonal primitive idempotents in
V* with ¢; ...+ ¢ = e is called a Jordan frame. By [FK94, Theorem III.1.2] the
number k of idempotents in a Jordan frame is always equal to the rank rq of V. For
every two Jordan frames cy,...,¢,, and dy, ..., d,, there exists an automorphism g
of V such that gc¢; = d;, 1 <i <ry (see [Hel69, Satz 8.3]).

13



Chapter 1. Jordan theory

Now choose a Jordan frame ¢y, . .., ¢,, in V. Then the operators L(cy), . .., L(cy,)
commute by [FK94, Proposition I1.1.1 (1)]| and hence are simultaneously diagonaliz-
able. Since each L(c;) has possible eigenvalues 0, 3 and 1 and }_/°, L(¢;) = L(e) =
idy, this yields the Peirce decomposition

P vi (1.7)

1<i<j<ro
where
Vii=V(c;, 1) for 1 <i <y,
Vij=V(ci,5) NVI(c,5) for 1<ij<ro

Since the endomorphisms L(¢;), 1 < i < rg, are all symmetric with respect to the
inner product (—|—), the direct sum in is orthogonal. As previously remarked,
the group of automorphisms contains all possible permutations of the idempotents
€1, -..,Cr. Therefore, the subalgebras V;; have a common dimension e 4+ 1 and the
subspaces V;; (i < j) have a common dimension d. Then clearly

n d

— = 1 —1)= 1.8

%=t 1 (ro - 1)5 (1.9
We call a Jordan algebra V' reduced if V;; = Re; for every ¢ = 1,...,r, or equiv-

alently if e = 0. From [Hel69, §8, Korollar 2| it follows that if V' is reduced, then
r =1y, and if V' is non-reduced, then r = 2ry,. We can write rk(V};) = % Eu-
clidean Jordan algebras are always reduced (see [FK94, Theorem III.1.1]). Hence
Vi = VunV* =Re;. If we denote by dy the dimension of V;J := V;; NV* (i < j),
then equation (1.8} - for the euclidean subalgebra V' reads

no do
— =1 -1
T +(’I“0 )2

Tables and list all simple real Jordan algebras with simple V* and their
corresponding structure constants. A close look at the table allows the following
observation: If V' is non-euclidean, then d = 2d, except in the case where V' = RP4
with p # ¢q. We state and prove this observation without using a classification
result.

Proposition 1.2.1. Let V' be a simple real Jordan algebra of split rank rq > 2, «
a Cartan involution and assume that V't is also simple. Then exactly one of the
following three statements holds:

(1) V is euclidean and in particular d = dy,

(2) V is non-euclidean of rank r > 3 and d = 2d,,

(3) VERPI pq>2.

14
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Proof. Since r > ry, we have r > 2. If V is of rank r = rg = 2, then V' = RPY,
p,q > 1, by [BK66, Chapter VI, Satz 7.1]. In the case where p = 1 the algebra V'
is euclidean. The case ¢ = 1 cannot occur, because then V+ = RY! which is not
simple.

Now, if V' is non-euclidean of rank r» > 3, then either r = rg or r = 2r¢. If r = 7,
then ro > 3 and by [Hel69, end of §6] we have dy = dim VJ =dimV;; =d —dy for
i < j and hence d = 2dy. If r = 2r¢, then V;; # Re; for i = 1,...,7¢ and by [Hel69,
Lemma 6.3] we obtain the same conclusion. This finishes the proof. O

Example 1.2.2. (1) For V = Sym(n,R) the matrices ¢; := E;;, 1 <i < n, form
a Jordan frame. The Peirce spaces are given by

Vii =Re; for 1 <i <mn,
Vij = R(Ej; + Ej) for 1 <i<j<n.

Hence, d = 1.
(2) For V.= RP4 p g > 1, a Jordan frame is given by ¢; = %(61 +e,), o =

+(e1 —en), n = dim(V) = p + q. The Peirce spaces are

‘/11 :Rcl7
‘/12 = R€2 D... @R@n,h
Vas = Res.

Therefore V' is reduced, i.e. e=0,and d=p+q—2, dy =q — 1.

1.2.3. Applications

Using the Peirce decomposition we do some calculations that we need later on. First,
to use inductive arguments, we calculate the trace of the lower rank subalgebras
V(c, 1) for ¢ € V an idempotent, and also on V'

Lemma 1.2.3. Let V be a simple Jordan algebra such that V' is also simple.
(1) Forxz € V' we have

”
try+(z) = ftrv(x).

(2) Let ¢ be an idempotent in V. Then for x € V(e, 1):

try (@) = try(en (). (1.9)

Proof. We only prove the second statement. The first statement follows by the
same arguments.

Both try(zy) and try.1)(zy) are associative symmetric bilinear forms on the eu-
clidean simple Jordan algebra V*(c,1). By [FK94, Proposition I11.4.1] they are

15



Chapter 1. Jordan theory

scalar multiples of each other and hence try(z) = Atry1(x) for z € V*¥(c,1).
We claim that A = 1. In fact, write ¢ = ¢; + ... 4 ¢, where ¢; € V*T(c, 1) are
orthogonal idempotents which are primitive in V*(¢,1). Then k = rk(V*(c, 1)) =
“rk(V(c,1)). The idempotents ¢; are also primitive in V' and we can extend the
system to a Jordan frame ¢y, ..., ¢, in V. Since the group of automorphisms con-
tains all possible permutations of ¢y, ..., c,, and leaves the trace invariant, we find

with (1.3]) that

k k r
try(c) = ktry(c) = T—Otrv(cl + .t = T—Otrv(e) = k%.

On the other hand,

”
trv(cyl)(c) =r1k(V(c, 1)) = kr_o

and hence A = 1. It remains to show (1.9) for z € V~(c,1). In this case

try (z) = try(az) = —try(z) and therefore try (z) = 0. The same argument works
for try(c1)(x) since ac = ¢ and hence « restricts to an automorphism of V(c, 1),
leaving try (1) invariant. This finishes the proof. O

The next statements are needed to calculate the action of the Bessel operator in
Section and the Casimir operator in Section [2.3]

Lemma 1.2.4. Let (e,)q be an orthonormal basis of V' with respect to (—|—) and
(€a)a the dual basis with respect to the trace form 7(—,—), i.e. €, = a(e,). Then
2ng —n n
2 0 _
= —— d o €Eq = —C.
Ea e — an Ea CaCa =€

Proof. Tt is easily seen that the elements > €2 and Y e, - €, are independent of
the choice of the orthonormal basis. Since the Peirce decomposition V = @;<;V;; is
orthogonal with respect to (—|—), we can choose an orthonormal basis (e, ), such
that each e, is contained in one of the Vj;, ¢« < j. Furthermore, since the Cartan
involution « leaves each V;;, ¢ < j, invariant, we can even choose the e, to be either
in V=V NnV*torinVy :=V;NV".

(a) Let e, € V7. Then e, = A¢; with A = [|¢;|| 7 = (7"70)% by Lemma [1.2.3[ (2).

Hence

To

e2 = —¢ and dimV,f = 1.
r

(b) Let e, € Vi; . Then €2 € V. = Re; and therefore €2 = A\¢;. Since
1= [leal® = (ealea) = —7(€a, €a)

= —7(e2,e) = —Ar(ci,e) = —A|ai|]? = —/\TL,
0

16
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we obtain

r
2 0
605

=——q and dimV, =
,

(c) Let eq € ViJ, i < j. Then ¢ € V;/ 4 V5 and hence e, = A¢; + pc;. Similar
to the calculation in (b) one obtains A = y = /52 and hence

e = ;—O(ci +¢j) and dim V;J" = do.
r
(d) Let e, € V5, i < j. Applying the same arguments as in (b) and (c) yields
S d dimV;; =d—d
e = _Q_T’(Ci +¢;)) an imV;; = d — dy.

Putting everything together gives

2 Y Yar Y ya

i=1 eq €V 1<i<j<rg ea €V
To
7’0 1
=2 (1—e+t 7 Z 5(do — (d = do)) (ci + ¢;)
i=1 1<i<j<ro
To do d &
2ng —n

r

The second formula follows from the first as follows. Choose an orthonormal basis
(€a)a of V with e, € VT UV~. By Lemma m (1) the elements /7 /rg e, with
eq € VT form an orthonormal basis of V. Further, e, = ae, and we calculate,
using the first formula:

Za:ea-ea—za:e—Ze—2Ze—Ze

(0%
ea€VT eq €V eq€VT eq €V
ro Mo 2Ng—n n
=|2— — — e = —e. [
r o T r r

Lemma 1.2.5. Let ¢ € VT be a primitive idempotent and (eq)s an orthonormal
basis of V' with respect to (—|—). Then

ro [ d d
Za:P(ea>C:70(§—do—€+1)c+—(do—i)e.

17
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Proof. Again it is easily seen that the expression ) P(eq)c is independent of the
chosen orthonormal basis. Since the Peirce decomposition V = V(c,1) ® V(c, 1) @
V(e,0) is orthogonal, we can choose an orthonormal basis (e,), such that e, €
V(e,1)UV(c,35)UV(c,0) for every a. Then, by Lemma (2), the e, in V(c, 1)
form an orthonormal basis of V' (¢, 1) and those e, in V(c,0) = V(e — ¢, 1) form an
orthonormal basis of V'(¢,0). Now let us determine the action of P(e,) on ¢ for the
following three cases:
(a) ey € V(e,1). Since V(c,1) is a subalgebra, also €2 € V(c, 1). Hence
P(eq)c = 2eq(eqc) — €2c = 2e2 — e = e2.
(b) ea € V(c,1). In this case
2 _ 2 2

P(eq)c = 2eq(eqc) — €2c =€ —e2c = (e — c)e2.

(c) ea € V(c,0). Also V(c,0) is a subalgebra and hence €2 € V(c,0). Then
clearly

P(eq)c = 2eq(eqc) — e2c = 0.

Altogether we obtain

ZP% = Z ez +(e—c) Z e?

eae‘(}(cl eQEV( %)
SR S T S S
eaeV(c 1) eq 6\7(0,0)

Put n. :=dim V (¢, 1), n.o :=dim V*(c, 1), r. :==1k V(c, 1) and similarly for e — c.
We have

d
ne=e+1, ne_c:(TO—1)(e+1)+(r0—1)(r0—2)§,
do
71670:1, n6_070:(T0—1)+(T0—1)(T0—2)2
r r
c— e—c — -1 )
r - r (ro )7“0

and hence, using Lemma [1.2.4}

2 — 2 c.0 — Tle 2 e—c,0 7 Tle—c¢
D" Plea)e = = e — o) + e - Tt Rt (e —¢)
r Te Te—c

d d
:@ ——d0—€+1 C+— d()—— e. Il
r \ 2 2
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Lemma 1.2.6. Let (ej); C V be an orthonormal basis of V with respect to the
inner product (—|—). Then for x € V:

n

ZT(P(ax,aej)x,ej) = ;(ﬂx) (1.10)

Jj=1

Proof. Using Lemma we obtain

n n

Z T(P(ax, aej)x, ;) = Z 7((azOx)(ce;), €5)

J=1 Jj=1

= Z ((z0ax)ejle;) = Tr(z0ax)

=Tr(L(z - ax) + [L(x), L(ax)]) = Tr(L(x - az))

n n
— Yz ax) = Lala). 0
. r(z - ax) T(x|:r;)

1.3. The constants i and v
For every Jordan algebra V' we introduce another two constants p and v by

d
do — 5‘ —e—1. (1.11)

d d
do——‘—2, v=vV):=-—

n
p=pV)=—+
To

2 2

These constants will appear as parameters of certain special functions in the minimal
representation. Using Proposition we can calculate p and v explicitly:

(& —1,-1) if V' is euclidean,
(v)=q (2 —2,4—e—1) if V' is non-euclidean of rank » > 3
)

(max(p,q) — 2, min(p,q) —2) if V=RPI p g > 2.
Let us collect some basic inequalities for x4 and v here.

Lemma 1.3.1. If V is a simple Jordan algebra of split rank ro > 2, then
(1) :u _'_ v Z _17
(2) H—=V > 07
(3) ju> L

Proof. First note that rq > 2 by assumption and d > 1. (If d = 0, then V' is be the
direct sum of the ideals V(¢;, 1), 1 < < rg, and hence not simple.) Together with
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(1.8)) we obtain:

n d
p+v=—+—-—e—3
To 2
_rnd o5y
2
n d d
—v=——=-+2|dy— = -1
Hor =, 2 0 2‘+€
d d
:(7’0—2)—+2d0——+2620.
2 2
Finally (3) is a direct consequence of (1) and (2) which finishes the proof. O

Denote by = the set of all possible values of (u, ), excluding the cases for which
it will turn out that there is no minimal representation:

E:={(uw(V),v(V)):V is a simple real Jordan algebra
of split rank ro > 2, VT is simple and if » = 2, then n is even}.

The classification of all simple real Jordan algebras (see Table |A.3) allows us to
compute the set = explicitly:

E={(p,—1) s p € INo}U{(1,0) : p € No} U{(pt,v) : p,v € No, pu+ v € 2Z}.
Note that v is always an integer since
v = min(d, 2dy) — dy — e — 1,

whereas p is in general only a half-integer (e.g. for V' = Sym(n, R)).

1.4. The structure group and its Lie algebra
We define the structure group of a Jordan algebra. Further, we give a root space

decomposition of its Lie algebra which is adapted to the structure of the Jordan
algebra.

1.4.1. The structure group

Denote by g7 the adjoint of g € GL(V) with respect to the trace form 7.
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Definition of the structure group

The structure group Str(V') of V is the group of invertible linear transformations
g € GL(V) such that for every invertible x € V' the element gx is also invertible
and

(gx) ™' =g *a™l.
Str(V) is a real reductive group (see [Loo77, Corollary 8.8|). By [FK94l Proposition
VIIIL.2.5] an equivalent description of the structure group is given in terms of the
quadratic representation: g € GL(V) is in the structure group if and only if

P(gx) = gP(x)g%, Ve elV. (1.12)

There is yet another equivalent description of Str(V') in terms of the Jordan de-
terminant. Namely, it is easy to see (cf. [FK94, Chapter VIII, Exercise 5|) that
g € GL(V) belongs to the structure group if and only if there exists a constant
x(g) € K* with

det(gz) = x(g)det(x) VeeV. (1.13)

The map y : Str(V) — R* is given by x(¢9) = A(ge) and defines a character of
Str(V'). Using this equivariance property we can now calculate derivatives of the
Jordan determinant A(x). For the proof we denote by ¢ the left-regular represen-
tation of the structure group Str(V') on functions f which are defined on V:

(U9)f)(x) = f(g~ " 2). (1.14)

Lemma 1.4.1. The derivative of A in a point x € V in direction uw € V is given
by

D,A(z) = A(x)T(x 7, u). (1.15)

Proof. By [FK94, Section II.2| the generic minimal polynomial of z is given by
fz(A) = A(Xe — x). Hence

d d
D,A(e) = T Ale +tu) = T (1 + tr(w)t + higher order terms) = tr(u).
t=0 t=0

Now let x = ge with g € Str(V'). Then ¢(g7 ')A = A(ge)A = A(x)A and hence, by

the chain rule,

DuAA(z) = Dy a(tlg™)A)(e) = A@)tr(g ")
= A(z)7(g e, u) = Alx)r(z™4, u).

Now, the orbit of Str(V') containing e is open and both sides of (1.15|) are polyno-
mials in x. Therefore ([1.15) must hold for every z € V. O]
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The automorphism group

The group Aut(V) of automorphisms of V is a subgroup of Str(V'). In fact, it
is exactly the subgroup of Str(V) stabilizing the identity element e (see [FK94,
Proposition VIII.2.4 (ii)]). Moreover, (Str(V'), Aut(V)) is a symmetric pair: The
map

o Str(V) — Str(V), g g # = (¢ O)F = (¢*) 7,

defines an involution of the structure group and with [FK94, Proposition VIII.2.6]
it is easy to see that

Str(V)g € Aut(V) C Str(V)7. (1.16)

If V is euclidean, then o is a Cartan involution and hence, Aut(V') is compact.
However, this is not true in general. Corresponding to the involution o, the Lie
algebra ste(V') = Lie(Str(V)) splits into the direct sum of the +1-eigenspaces of o
(see [FK94, Proposition VIII.2.6]):

ste(V) =bh+q, (1.17)
where
h:={X este(V):0(X)=X}
=vet(V):={De€End(V): D(x-y)=Dx-y+az-DyVx,ycV} (1.18)
q:={X este(V):0(X)=—-X}
=L(V)={L(z):x € V}. (1.19)
The Lie algebra der(V') of derivations is the Lie algebra of Aut(V'). The defining

property for a derivation can be equivalently written as [D, L(x)] = L(Dzx) for all
x € V. Hence, in the decomposition (1.17)) the Lie bracket is given by

|[L(z) + D, L(z") + D'] = L(D2' — D'z) + ([L(z), L(z")] + [D, D']) (1.20)

for z,2’ € V and D,D’" € det(V). Note that for z,y € V the commutator
[L(x), L(y)] is a derivation. Finite sums of derivations of this type are called inner
derivations. Since V is semisimple, every derivation is inner (see |[Jac49, Theorem
2]). A direct consequence of this fact is that the trace of every derivation vanishes,
since the trace of every commutator vanishes:

Tr(D)=0 VD e oer(V). (1.21)
Using Lemma we also obtain
tr(Dx) = %Tr(L(Dx)) - %Tr([D, L)) =0 VDeder(V),zeV. (1.22)

In Section we remarked that the automorphism group acts transitively on
the set of Jordan frames in V. We can now give a more precise version of this
statement.
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Lemma 1.4.2. Let V be a simple Jordan algebra such that V' is also simple. Then

for any two Jordan frames ci, ..., ¢y, and dy, ... d,, in VT there exists a derivation
D € der(V) with oD = Da such that
€DCi:dZ‘ \V/izl,...,TO.

Proof. By [Hel69 Satz 8.3], applied to V', there exists an element h € Aut(V*),
such that he; = d; for all i = 1,... 7. Since Aut(V1), is compact, it is the image
of its Lie algebra under the exponential map. Therefore, there exists a derivation
D € ver(V*) such that h = eP. All derivations in der(V ™) are inner and hence D
extends to V' with the property that D = Da which shows the claim. O

A Cartan involution

The involution ¢ is in general not a Cartan involution of ste(V') (only if V is eu-
clidean). To obtain a Cartan involution we have to conjugate with the Cartan
involution « of V. In fact, the involution

0:Str(V) — Str(V), g+ g% = ag *a,

where * denotes the adjoint with respect to the inner product (—|—), is a Cartan
involution of Str(V'). The fixed point set Str(V)? of § is therefore a maximal compact
subgroup of Str(V). By definition Str(V)? is also the intersection of Str(V') with
the orthogonal group of the inner product (—|—). Note that if V' is euclidean, then
a = 1 and hence § = 0. As previously remarked, in this case the automorphism
group Aut(V) is compact.

Returning to the general case, it is easy to see that ¢ commutes with the Cartan
involution 6. Hence, 6(h) = b and also §(Aut(V)) = Aut(V). Then by [War72,
Corollary 1.1.5.4] Aut(V) is a real reductive group.

The Cartan decomposition of the Lie algebra ste(V') with respect to 6 is given by

Ett(V) =&+,
where

b= {X e ste(V) : 0(X) = X}

={L(x)+ D :x €V~ ,aD = Da}, (1.23)
p={X este(V):0(X)=-X}
={L(x)+D:2€ V' aD = —Da}. (1.24)

Now, let L be the subgroup of GL(V') generated by the identity component
Str(V')g of the structure group and the Cartan involution «. Clearly

Str(V) C L C Str(V).

L has at most two connected components, namely Str(V), and aStr(V'),. Denote
by [ = ste(V) its Lie algebra. The involutions ¢ and o leave L invariant since
0(a) = o(a) = a. Then K, := L? is a maximal compact subgroup of L.
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Chapter 1. Jordan theory

Example 1.4.3. (1) The structure algebra of V' = Sym(n, R) is easily seen to be
ste(V) = gl(n,R) = sl(n,R) & R, acting by

X -a=Xa+aX" for X € gl(n,R),a € V.

Integrating this action to the universal cover and factoring out the elements
that act trivially shows that the identity component of Str(V') is isomorphic
to R;SL(n,R), acting by

g-x=gxg' for g € R,SL(n,R),z € V.

Since V' is euclidean, L = Str(V'),. The maximal compact subgroup of L is
K1, = SO(n), acting by conjugation.

(2) For V' = RP? the characterization can be used to show that the structure
group is given by

R,O(p,q) if p # ¢,
R,O(p,q) Ugo-R:O(p,q) ifp=gq,

— 0 1p
90—(1p O)

Then clearly Str(V)o = R:SO(p,q)o. By the Cartan involution « is
contained in Str(V'), if and only if p is odd. In this case L = Str(V),. If p
is even, L = Str(V)y U aStr(V),. The maximal compact subgroup of Lg is
(KL)o = SO(p) x SO(q).

Str(V) = {

where

1.4.2. Root space decomposition

As a preparation for the root space decomposition we prove a simple lemma con-
cerning derivations of the form [L(c), L(u)] with ¢ an idempotent.

Lemma 1.4.4. (1) Let ¢ € V be an idempotent. Then for any u € V(c,1) +
V(e 0):

[L(c), L(u)] = 0.
(2) Letci,co € V be orthogonal idempotents. Then for anyu € V(ci,3)NV (ca, 3):
[L(cr), L(w)] = —[L(c2), L(u)].

Proof. (2) follows directly from (1) with ¢ := ¢; + ¢5. For (1) we let uy € V(e, 1)
and us € V(c,0). Using [FK94, Proposition II.1.1 (i)] we find that

[L(w1), L(0)] = [L(w1), L(c*)] = =2[L(c), L(uac)]
= —2[L(c), L(u)] = 2[L(u1), L(c)]
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1.4. The structure group and its Lie algebra

and
[L(u2), L(c)] = [L(us), L(c*)] = =2[L(e), L(uzc)] = 0.
This finishes the proof. n

Now, the subalgebra
To
a:=>» RL(¢)C!I (1.25)
i=1

is abelian by [FK94, Proposition II.1.1 (1)]. We even have the following lemma:
Lemma 1.4.5. a is mazimal abelian in L(V™T).

Proof. By the Peirce decomposition of V1 it suffices to show that there exists no

non-zero element x = =, i, x5 € V7', with [L(2), L(c;)] = 0 for all i = 1,... 7.

If z is such an element, then for ¢ < j we have

1
0= [L(z), L{ci)lej = cilejz) = 24
and hence x = 0. O]
A basis of the dual space a* of a is given by the functionals ¢4, ..., ,,, where for

izl,...,TO:

E; (i th(Cj)) = ti. (126)

Denote by (I, a) C a* the set of non-zero weights of [ with respect to a.
Proposition 1.4.6. The set 3(I,a) is a root system of type A,,_1 and given by

E; —

S(l,a) = {Tgf :i;éj}. (1.27)

The corresponding root spaces amount to

lj o= le—; = {c;0z = L1L(z) + [L(;), L(z)] : © € V;5} (1.28)
2
fori # j and
70
[0:{L(m)+D:az€@‘/§i,Dci:0Vi:1,...,r0}. (1.29)
i=1
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Chapter 1. Jordan theory
Proof. Let v =>""° ve; € £(I,a) and 0 # X = L(z) + D € [,. Since y # 0, there
is 1 <4 < rg such that +; # 0. Hence, by :
n(L(x) + D) = %X = [L(e), X] = L(=De;) + [L(ci), L(x)].
Therefore, D = ~; '[L(c;), L(x)] and
v =—7; ' Dz = = °[L(¢;), L(z)]e; = =77 *(cileiw) — i)

Write x = z1 + 1+ in the Peirce decomposition relative to ¢;, i.e. x) € V(¢ A),
A=0, %, 1. Then

ci(x) —r = —=x

(NI

o]

and hence z = (2%)’%% € V(c;, 3). This implies = = z1 and ; = +1. Altogether
we obtain

X = L(z) £ 2[L(c;), L(2)], with z € V(e;, 3).
Now, if 7; = 0 for every j # i, then for every j # 7 we have

1
0= [L(c), L(z)]e; = ci(cjx) = ¢j(cix) = Cit-
But this is only possible if z = 0 since z € V(¢;,3) = > jzi Vij- But = 0 implies
X = 0 which contradicts our assumption. Therefore, there has to be j # i such that
v; # 0. The same argument as above shows that = € V(c;, %) and hence z € V;.

Thus, by Lemma [1.4.4] (2):
X = L(z) £ 2[L(c;), L(2)] = L(x) F 2[L(¢;), L(x)],

and a direct computation shows that v = :I:% It remains to compute [p. An
element X = L(z) + D € lis in [y if and only if for every i = 1,...,ry we have

0= [L(ci), X] = L(—=De;) + [L(c;), L(z))-

This is equivalent to D¢; = 0 and [L(¢;), L(x)] = 0 for all ¢ = 1,...,ry. Clearly
z € Y_1°, V;; has this property by Lemmal[l.4.4] (1). Conversely, let [L(c;), L(z)] =0
for every i = 1,...,r9. Write x = Zl§i§j<r x;; in the Peirce decomposition, i.e.
zi; € Vij, 1 <i < j <ry. Then by Lemmam (1) we find that for all i < j:

1
0= [L(ei), L(x)]ej = iy
and hence . =) %, x;; € >":%, Vi; which finishes the proof. O
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1.5. Orbits of the structure group and equivariant measures

We choose the positive system

(L a) :{

Later we also need some information about the center of [.

82'—8]‘

:1§z’<j§r0}. (1.30)

Lemma 1.4.7. For the center Z(l) of | we have the following inclusions
ro
RL(e) € Z(1) € Y L(Vi). (1.31)
i=1

Proof. The first inclusion of (1.31)) is clear since L(e) = idy. For the second inclu-
sion let L(x) + D € Z([). Then by (1.20) for every 2’ € V:

0= [L(z) + D, L(z')] = L(Da') + [L(x), L(2")]

Hence, D = 0 and [L(x), L(2")] = 0 for every 2’ € V. Write z = }_,_, z;; in its
Peirce decomposition, i.e. ;; € V;;. Then for i < j:

0 = [L(c), L@le; = =L
Therefore, x € Y _.°, V;; and the proof is complete. O

Remark 1.4.8. In general one does not have Z(I) = RL(e). For instance, let V is
a simple real euclidean Jordan algebra and view its complexification V¢ also as real

Jordan algebra. Then V¢ is also simple and the center Z(ste(V()) contains at least
CL(e).

1.5. Orbits of the structure group and equivariant
measures

There are only finitely many orbits under the action of Str(V)y on V. An explicit
description of these orbits can be found in [Kan98]. We will merely be interested
in the open orbit of Str(V')y containing the unit element and the orbits which are
contained in its boundary. On these orbits we construct equivariant measures. This
yields L2-spaces on which we later construct unitary representations.

1.5.1. The open cone ()

Let 2 = Str(V)o - e be the open orbit of Str(V'), containing the identity element of
the Jordan algebra. €2 is an open cone in V. Since ae = e, we also have Q = L - e.
If we denote by H the stabilizer subgroup of e in L, then the cone Q = L/H is a
reductive symmetric space. In fact, H = L N Aut(V) and therefore, by we
have L§ C H C L? which shows that (L, H) is a symmetric pair.

27



Chapter 1. Jordan theory

Example 1.5.1. (1) For V = Sym(n,R) the cone 2 is the convex cone of sym-
metric positive definite matrices:

Q= {z € Sym(n,R) : all eigenvalues of = are positive}.

(2) For V = RPY we have to distinguish between two cases. If p = 1, ¢ > 2, then
() is the convex cone given by

Q={reRY 2 >0,2] —25—...— 22 > 0}.
For p,q > 2 we have

Q={zeRP:ai+.. . +al—az ,, —...—x >0},

which is not convex.

In the case where V' is euclidean, H = K, and hence (2 is a Riemannian symmetric
space. In this case a polar decomposition for €2 is given in [FK94, Chapter VI,
Section 2].

To derive a polar decomposition also in the general case, we follow [vdB05, Chap-
ter 3]. Consider the involutions ¢ and # on the Lie algebra level. In the decompo-

sition (|1.17)) they are given by

o(L(z) + D) = —(L(z) + D)* = —L(z) + D,
O(L(z)+ D) = —(L(x) + D)* = —L(ax) + aDa

for x € V and D € der(V). The decomposition of [ into +1-eigenspaces of o and 6
is written as

[=t+p=b+q

with the notation of (1.18)), (1.19)), (1.23) and (1.24)). Since ¢ and # commute, we
obtain the decomposition in simultaneous eigenspaces

(= (&Nb)+ (&Ng)+(pNb)+ (prNa)

Put

f:=®nh) +(pnNg)={Lx)+D:2€V*' aD=Da} 2ste(V"), (1.32)
[C:=®nNnqg)+@ENnh) ={Lx)+D:xeV ,aD=—Da}. (1.33)

Since pyNq = L(V™T), the subspace a C p;Nq as defined in ([1.25)) is maximal abelian
by Lemma(1.4.5| Let A := exp(a) be the corresponding analytic subgroup of L and
put

ro
Cl+ = {ZEL(Q’) > > tm} . (134)
=1
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1.5. Orbits of the structure group and equivariant measures

Proposition 1.5.2. (1) The group L decomposes as L = K, AH and the orbit Q
has the polar decomposition 2 = KA - e.
(2) Up to scalar multiples there is precisely one invariant measure on Q = L/H
which is given by

/f )dv(z /KL/a f(kexp(X)-e)J(X)dX dk,

where dk is a Haar measure on Ky, dX a Lebesque measure on a and

0
J (Z tz‘L(Ci)) = H sinh™ (%) cosh?~ (%) (1.35)
i=1

1<i<j<rg

Proof. (1) This is [vdB05, Lemma 3.6].
(2) By Proposition the root system X([,a) is of type A,,—1. Hence, the
positive Weyl chamber corresponding to the positive system is precisely
at. Let W := Nk, (a)/Zk, (a) be the Weyl group of the root system X(I, a)
and Wk, ng = Nk, nu(a)/Zk,nu(a), viewed as a subgroup of W. Then, by
[vdB05, Theorem 3.9] the unique invariant measure on L/H (up to scalar
multiples) is given by

/Q f(@) dv(z) =

where

/KL/ Flkexp(wX) -e)J(X)dX dk,

6W/WK NH

J(X) = H sinh™ a(X) cosh™ a(X)

aeXt(la)

with mE = dim [Z. Observe that W is the symmetric group on
{L(c1),...,L(cy)}, as it is the Weyl group of the root system (I, a) of type
Apo—1. We claim that Wx, g = W. In fact, let 7 be any permutation on
{1,...,7r0}. By Lemma there is a derivation D € det(V') such that
aD = Da and eP¢; = Cr(i)- Thus, by we have D € ¥,. Hence, e €
K, N H and it follows that Wy, g = W.

It remains to show that J(X) = J(X). Using (1.28), (1.32) and (T.33) we
find that for i # j:

51 Gee; = ={¢0zx:x € VJ and .. ={c¢0z:z€ Vw_}

It follows that

m?,_., = dim V;; = do and m,,_., =dim V;; =d —dy

€i—¢j
2

and hence J(X) = J(X). This finishes the proof. O
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Chapter 1. Jordan theory

As a consequence of the decomposition L = K;AH we can now calculate the
character x of Str(V') on L:

Proposition 1.5.3. Let V' be a simple real Jordan algebra with Cartan involution
a such that V' is also simple. Then

x(g) = |Det g|% Vge L (1.36)

and

o )
A (Z etic¢> = 7o il (1.37)
i=1

Proof. We first show for g € Str(V')g = Lo = (K1)oA(H N Ly). Both left and
right side of define a positive Character Ly — R, since Lg is connected. On
(K)o both sides are = 1, because (K)o is compact. Further, the left side is = 1
on H N Lg since x(g) = A(ge) and ge = e for g € H. But also the determinant is
= 1on H: g € H implies gg” = id and Det(g#) = Det(g). Therefore, it remains
to show that holds on A = exp(a).

By Lemma the group Hy € H N Ly contains all possible permutations of the
elements L(c;) € a, 1 < i < ry (acting by the adjoint representation). Therefore,
each character of Ly takes the same values on the elements exp(L(c;)), 1 < i < ry.
Thus, it suffices to show for g = exp(X) with X =¢(L(c1) + ...+ L(cy,)) =
tL(e) =tidy € a, t € R. For this we have

x(exp(X)) = x(e'idy) = A(e' -e) =™ = (Det(etidv))% = (Det(exp(X)))%.

Hence, (1.36)) holds for ¢ € Lo. Now, L = Ly U aLy. Both sides of (1.36|) define
characters of L which agree on Ly. Further, x(a) = A(ae) = A(e) = 1 and
Det(a) = £1 since a € K, and K, is compact. Thus, ([1.36]) follows and it remains

to prove (|1.37)).
The left side of (1.37) can be written as

A (Z 6“@) = Aexp(X) - €) = x(exp(X))

i=1
with X = >""° ¢;L(c;). But since x takes the same values on exp(L(¢;)), 1 <1 < g,
we obtain

x(exp(X)) = x (eXp (r—lo (i: ti> L(e))> =A (6% it e> — et ot

which proves (|1.37)). O

Using the previous lemma together with we find that A(z)™* dz, dz de-
noting a Lebesgue measure on ) C V', is an L-invariant measure on 2. Therefore,
by Proposition it follows that the measure dv is absolutely continuous with
respect to the Lebesgue measure dx on 2 C V and

dv(z) = const - A(z) ™+ da.
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1.5. Orbits of the structure group and equivariant measures

1.5.2. Orbits in the boundary of

The boundary 02 is the union of orbits of lower rank. We have the following
stratification:

Q=0yU...U0,,
where O, = Ly - ¢, with
er:=c1+ ...+ cp, 0<k<ny.

Since aey, = ey, we also have Oy = L - ;. Every orbit is a homogeneous space Oy =
L/Hy, where Hj, denotes the stabilizer of e, in L. In general these homogeneous
spaces are not symmetric.

Example 1.5.4. We will mostly be interested in the non-zero orbit O; of minimal
rank. Let us compute this orbit for our two main examples.
(1) For V = Sym(n,R) we have

O = {zz' :x € R"\ {0}}.
Moreover, the map
R"\ {0} — Oy, z — a2, (1.38)

is a surjective two-fold covering.
(2) For V = RP? we again have to distinguish between two cases. If p =1, ¢ > 2,
then

Or={zeR": 2, >0,23 —a5—...—22 =0}
is the forward light cone in R%. For p,q > 2 we have
Op={zeR:ai+.. . +a2—a—...—a2=0}\{0}.
In both cases, O; can be parameterized by bipolar coordinates:
Ry x SE' xS 5 0y, (t,w,n) — (tw, sn), (1.39)

where S"~! denotes the unit sphere in R” and S{~' is the identity component

of S*—1:
g1 _ {1} ifn=1,
0 St it p > 1.
To construct equivariant measures on the orbits O, we need to compute the
modular functions of the stabilizers Hy. The crucial point for this is to show that

Hj, is contained in a certain parabolic subgroup. The following results are basically
the statements in [BSZ06, Lemma 3.6 and Corollary 3.7]:
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Proposition 1.5.5. The group Qy :={g € L: gV (ex,1) C V(ex, 1)} is a parabolic
subgroup of L. The Langlands decomposition of its Lie algebra qi is given by qi =
my @ ny, where

mk:[o@ @ [z‘j@ @ [ijy

1<i,j<k k<i,j<ro

ng = @ [z'ja

1<i<k<j<rg

and the corresponding Langlands decomposition of Qy is given by Qr = MypNy,
where

My, ={g € L:gL(ex) = L(ex)g},
Ny = exp(ng).

Proof. In view of Theorem [C.1| (1) we claim that @y = Pp, (in the notation of
Appendix |C]), where

Fk =

€1 —¢&2 €k—1 — €k E€k+2 — €k+1 €rg—1 — Epq
2 gty 2 9 2 7...,T

:H\{@}QH‘

In fact, we have
ap, = RL(ex) + RL(e — eg),
and hence

My, == Mp, ={g € L:gL(e;) = L(ex)g},
mg (= mp, = {X el: [L(@k),X] = 0}

Since for X € [;; we have [L(e), X] = MX, it follows that
m=hd P Lo P L
1<i,j<k k<i,j<ro
Further,

Iy :zZ}k([,aFk):{gi;&:j :1§i§l{:<j§7’0},

n,i=np = @ s,

1<i<k<j<rg

Ny := Np, = exp(ny),
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and Py, := Pp, = M;Ny. Clearly P, C )y since both M, and N are contained in
Q. Since Py is, as a parabolic subgroup, equal to the normalizer of its Lie algebra,
the inclusion @), C Py follows if we show that (), has the same Lie algebra as P.
Let X € [ be an element of the Lie algebra of ;. Then XV(eg, 1) C Ve, 1).
Write X = X, + Z#j Xi;, where Xy € [y and X;; € [;;. In particular e, € V (e, 1)
and hence Xej, € V(eg, 1). It is easy to see that X;;e, € V;; for i # j and Xpey, €
@le Vii. Therefore, we must have (X;; + Xji)e, =01if 1 <i <k < j <ry. Write
Xi; = ¢;0z;; with ;; € Vj;. Then for 1 <@ <k < j <1y we obtain

0= (X; + X, :<£ ﬁ_£> <i i)Zi‘
Ko+ X =7 5~ 5 )T (Tt 2

This yields Xj; = 0. It is further easily seen that if X;; = 0for 1 <i <k < j <y,
then XV (eg, 1) C V (e, 1) and therefore the Lie algebra of @, coincides with my+ny.
This finishes the proof. n

Proposition 1.5.6. (1) L = K;Qy and for a suitably normalized Haar measure
dg on L we have the following integral formula:

_ 2pk
/Lf(g)dg—/KL /Mk . f(kmn)e***(m) dn dm dk,

where
pr = (ro — k 5 62—]€ E g
i=k+1

(2) Hy C Qy and Hy, = (My N Hy)Ny. Moreover we have the following integral
formula for the Haar measure dh on Hy:

f(h) dh:/ f(mn)dndm. (1.40)
Hy, MpNnHy J N

(3) My = (My N Ky)exp(ap)(My N Hy), where

k

@ = Y RIL(c).

i=1
Further, My /(MyNHy) is a symmetric space with invariant measure dvy given
by

/ x) dyg(z / / f(kexp(X) - ex)Jp(X)dX dk,
Mk/(MkﬁHk) MkﬂKL

where dk is a Haar measure on M, N K, dX is a Lebesgue measure on

af = {ZtiL(Ci) it > > tk} (1.41)
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and

k
t—t; o (ti—t
J (Z tiL(cZ-)> = H sinh% <TJ> cosh?d—d <TJ> (1.42)
=1

1<i<j<k

Proof. (1) The decomposition L = K@y holds by Theorem |C.1] (2). Further, by
Theorem |C.1| (3) we have the integral formula

/Lf(-ilﬁ) dg:/KL /Mk Nkf(kmn)e2ka(m) dndmdk,

with Fj as in the proof of Proposition and pp, as in Appendix [C| It
remains to show pp, = pg. In fact,

—EZdim(wa—il D gi_gj—(r—k)ilZe—kilie
PR =5 ) =9 o V0T si TRy g

aex 1<i<k<j<ro i=1 i=k+1

(2) If gey = ey, then by (1.12)) we have gP(ex)g? = P(ger) = P(ex). Since P(ey)
is the orthogonal projection onto V'(eg, 1) we obtain for x € V (e, 1):

gr = gP(ey)x = Pley)g 7x € Ve, 1)

and hence gV'(eg, 1) € V(ex,1). Therefore, H, C Q. Since Ny C Hy, we
clearly have Hy = (M N Hy)Ng. It remains to show the integral formula.
By [Hel84, Chapter I, Proposition 1.12]:

B Det(Ady, (n))
OB SO gy

For n = exp(X) € n; we have Det(Ad(n)) = e™@(X) But n;, consists of root
spaces [, with a # 0. Since [l,, I5] C l444, both Tr(ady, (X)) and Tr(ady, (X))
vanish and the determinants in the integral formula are = 1. Hence,
follows.

(3) (MyNHy) is the stabilizer of e, in Mj.. Therefore, My /(MyNH},) = Mj-e,. The
restriction g — gl (e,,1) defines a group homomorphism M, +— Str(V (e, 1)).
Since the Lie algebra mj of Mj contains the Lie algebra ste(V(eg, 1)) of
Str(V(eg, 1)), the image of this map is the union of connected components
of Str(V(eg,1)). The integral formula then follows essentially from Proposi-
tion [[L5.21 O

Now we can finally compute the modular function of the stabilizer Hy.

Corollary 1.5.7. The modular function x g, of Hy is on the Lie algebra by of Hy
given by

1, &
dyn, = Shd e (1.43)
i=k+1
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Proof. By Proposition the group Hj decomposes as Hy = (M N Hy) x Ny.
We first show that M, N Hy is reductive and hence unimodular. This will follow
from [War72, Corollary 1.1.5.4| if we prove that 6(my N bh;) = my N h. For this
let X € my Nbhg. Then [L(ey), X] = 0 and Xe, = 0. Taking adjoints it follows
that [L(ex), X*] = [X, L(ex)]* = 0 and hence X* € my. It remains to show that
X*e, = 0. Note that since X preserves V(eg, 1), we have X|y(, 1) € ste(V(ex, 1)).
The condition Xe;, = 0 even implies that X|y(, 1) € det(V(ex, 1)), because ey, is
the unit element in V' (e, 1). Therefore, by Lemma (2) and we obtain
for a € V(eg, 1):

(X"erla) = (ex|Xa) = try(Xa) = try(, 1)(Xa) = 0.

Hence, X € b, and it follows that 6 preserves my N hi. Thus, my N b is reductive
and M N H;, is unimodular.

Since Hy = (My N Hy) x Ny with My N Hy unimodular, the modular function y g,
can be calculated on the Lie algebra level as the trace of the adjoint action on ny:

dxm, (X) = =Tr(ad(X)]s,).

Since [la, [5] C l44p for a, 5 € 3(I, a), this trace can only be non-zero if X € [N by.

By ([1.29)) we have

To
[oﬂbkz{L(x)+D:xe ar) V}i,ch:OV1§j§r0}.
i=k+1

Let X = D € ver(V) with D¢; = 0 for all 1 < i < ryg. Then for x € V(¢;, A) we
have ¢; - Dz = D(¢; - ) — D¢; - © = ADx and hence DV; C Vj; for all 1 <4, 5 <.
Further, it is easy to show that for z € V;; we have ad(X)(¢;0z) = ¢;0Dx. Hence,
for i # j we obtain Tr(ad(D)|,) = Tr(D|;,) and

Tr(ad(D)]n,) = Tr(Dly e, 1)

Now by (1.21)) the trace of a derivation vanishes. Since D|y (1) € det(V(ex, 1))
and Dy (c,.0) € 0er(V(ex,0)) we have

TI“(D) = Tr(D\V(ekyl)) = Tr(D‘V(ek,O)) =0.

Since V = V(ex,1) @ V(eg, 1) @ V(ex,0), we obtain Tr(Dl‘/(ek,%)) = 0 and hence
Tr(ad(X)) = 0.

It remains to consider the case X = L(a) for some a € Vi, k < £ < ry. Let
us first assume that a € V,,. It we denote by nf = chVZ-j[, then it is easily
checked that ad(X)n¥ C nf and hence Tr(ad(X)|,,) = 0. It remains to calculate
the modular function on L(V,}) = RL(¢). For a = ¢ and ¢;0x € ny, x € Vyy,
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1 <i<k<j<ry, we obtain with (1.20) and Lemma [1.4.4] (2):

1L(QL’) + [L(c;), L(x)]

ad(X)(¢0x) = {L(q), 5

= L(-[L(e), L(x)ler) + 5[L{ec), L)

_ —%cil:lx if 0 =7,
0 else.

Since dim(¢;0V;;) = d, this yields Tr(ad(X)|s,) = —1kd and (1.43)) holds. O

As another corollary from the previous decomposition theorems we obtain a polar
decomposition for the orbits Oy, 0 < k < rg — 1.

Corollary 1.5.8. For every 0 < k < ro — 1 the group L decomposes as L =
Ky exp(ag)Hy and the orbit Oy has the polar decomposition O = K exp(ay) - ex

Proof. The polar decomposition for the orbit Oy clearly follows from the decompo-
sition L = K exp(ax)Hy on the group level. To show the group decomposition we
use the decompositions of Propositions [1.5.5 and [1.5.6| to calculate:

L =KpQr = KL MyNy, = K(Kp N M) exp(ag)(Hp N M) Ny,
= KL exp(ak)Hk. ]

1.5.3. Equivariant measures

A measure du on a G-space X is called §-equivariant, 0 a positive character of G,
if du(gx) =0(g)du(z) for g € G, ie. for every f € LY(X, du) and g € G:

/fg:vdu /f ) dpu(z

0 is called the modular function of the equivariant measure du. For the existence
and uniqueness of equivariant measures we have the following fact:

Fact 1.5.9 (JLoo53, Section 33D|). In order that a real character & be the modular
function for an equivariant measure d(gH) on the quotient space G/H, where H
1s a closed subgroup of the locally compact group G, it is necessary and sufficient
that 6(h) = ’;g—((hh; for all h € H, where xg and xy denote the modular functions
of G and H, repectively. In this case, the measure is uniquely determined by the

following formula:
/G/H/Hf(gh) dhd(gH) :/Gé(g)f(g) dg. (1.44)
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1.5. Orbits of the structure group and equivariant measures

We apply this to the orbits O, 0 < k < ry.

Theorem 1.5.10. (1) On O,, = 2 the L-equivariant measures which are locally

finite near 0 are (up to positive scalars) exactly the measures
/f ) dpix(z / / F(k exp(X)e)e s 2t J(X) dX dk,
Ky,
where X = >7° t;L(¢;) and a™ and J(X) as in and (L.35). dpa

transforms by

dux(gz) = x(9)* dpu(x) forge L.

Moreover, duy s absolutely continuous with respect to the Lebesque measure
dx on Q and we have

dyux(z) = const - A(z) 7+ (z) dz for X > (rg — 1)224.

Fork=0,...,mr0—1 there is (up to positive scalars) exactly one L-equivariant
measure du on Oy given by

[ s /K / F(kexp(X)e)e ™ Tt g (X) dX d,

where X = Y% t:L(¢;) and a; and Jp(X) as in and (L.42). du

transforms by

rod
dpk(gz) = x(9)" 2 dpuw() for g € L.

Proof. (1) Q = L/H as homogeneous spaces. Both L and H are reductive and

hence unimodular (see e.g. [Kna02, Corollary 8.31 (d)]). Therefore, a charac-
ter ¢ is the modular function for an equivariant measure on L/H if and only
if 0|y = 1. Let § be such a positive character of L.

According to Proposition (1) the group L decomposes as L = K, AH.
Since K, is compact, 6|k, = 1. Therefore, we only have to determine the
values of § on A. Since A = exp(a), it suffices to calculate the possible de-
rived homomorphisms dd : [ — R. By Lemma the group H contains all
possible permutations of the elements L(c¢;) € a, 1 < i < rg. Therefore,

i=1 0 =1

for some A € R. Then by we obtain § = x*. Hence, the functions y*
are the only possible modular functions for L-equivariant measures on 2.

The measures A(x) ™7 dz are clearly y*-equivariant by Proposition m
Since A(z)~* dz is an invariant measure on €, the stated integral formula
follows from Proposition [1.5.2] (with f(z)A(z)* instead of f(z)) and (L.37).
From the integral formula one can also easily see that du, is locally finite

near 0 if and only if A > (rg — 1)24
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(2) O = L/Hj as homogeneous spaces. As remarked in (1) the modular function
X1 is equal to 1 and by ((1.43) the derived modular function on b is given by

1 0
dyn, = Shd p=t
i=k+1

Let § be a positive character of L with dd|y, = dyxm,. The Lie algebra [ is
reductive and hence [ = Z(I)+[[, []. On the semisimple part [[, [] the character
do clearly vanishes Therefore it suffices to compute the values of dé on

D2, L(Vi;) by (L.31] - On ] ®er1 L(Vii) € by the character dd is given by
dxm,- Smce k < rg this subspace of b, is non-zero and using the Ad-invariance

of dd and Lemma [1.4.2] one shows that
j R
A6 = Skd ; &;.

By Proposition we obtain § = y* % For the integral formula we calcu-
late:

/ f X T207‘d

= / / f(kmn)ek% Z:1218"(771)62’”“(771) dndmdk
Ky Iy, Iy,

/ / / f(k'mhn)e%d SE e (m)
Ky, J My /(MynHy) J MynHy, J N,
dn dh dvg(m(M; N Hy)) dk

= /K /]W Jonnm i f(kmh)e%d Z?:l €z<m) thk(m(Mk N Hk>> Ak
L k kNHy k
- / / / f(kk, eXp(X)h)e%d Zf:l fi(X)Jk<X) dhdX dk dk
Ky, J MpNKp, Hy,

= / / Fkexp(X)h)e ™S it 1 (X) dh dX dk.
KL a Hk

Now the desired integral formula follows from (|1.44)). m

For convenience we denote for A > (ro — 1)%[ the open orbit O,, = €2 by O,.
Similarly, for A = k%, kE=0,...,10— 1, we put O, := O and duy := dug. This
yields Hilbert spaces L?(O), duy) exactly for A in the Wallach set

Tod Tod Tod
W= {0 ? (7’0—1) o }U <(T‘0—1)§ OO)
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1.5. Orbits of the structure group and equivariant measures

and the measures transform by

dpa(gz) = x(9)* dpa() for g € L. (1.45)

For the minimal non-trivial orbit O; the polar decomposition of Corollary
simplifies to O; = KR c;. Further, the integral formula in Theorem [1.5.10f (2)

amounts to
/ dul / / f k:tc t“+”+1 dt dk, (1.46)
01 Ky,

since p+ v+ 1 = 8% — 1. Hence, the space of radial (or equivalently K-invariant)

functions in L?(Oy, du;) is given by L*(Oy, dpu)raq = LA (R, t#T7 1 de).

Example 1.5.11. (1) For V = Sym(n, R) the two-fold covering (|1.38]) induces a

unitary (up to a scalar) isomorphism

U: L0y, dpy) — L2 (R™), Utp(x) := p(xa?), (1.47)

even

where L2 (R™) denotes the space of even L*-functions on R". In fact, for

even

¢ €L’ (017 d:ul):
U(2)]? dz = vol(S™ 1) / / U (etey) P4 dt i
R SO(n) J0O

— vol(s™Y) / / (e, k)27 dt
O(n)

1( S“ h n
= vol( / / (k- scp)|*s2 T dsdk

vol(S"~ 1
=2 [ e duto)

where dk is the normalized Haar measure on SO(n). Hence U is unitary (up
to a scalar).
(2) For V' = RPY the measure dp; can be expressed in polar coordinates ((1.39)).

Using ((1.46) we obtain

dy = const - tPT473 dt dw dn,

where dw and dn denote the normalized euclidean measures on S5~ and 971,
respectively.

To be able to deal with the measures dug, 0 < k < rg — 1, we interpret them as
residues of zeta functions.
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Proposition 1.5.12. (1) Let V be euclidean. Then the measure dug, 0 < k <
ro — 1, is a constant multiple of the residue of the zeta function

Z(f.0) = / F@) A d

at the value A = k’;)—;l = kg.
(2) Let V' be non-euclidean and 2 RP9. Then the measure duy, 0 < k < rg—1,
18 a constant multiple of the residue of the zeta function

Z(f.0) = /V F(@)|A @)% da

at the value A\ = k%l.

(3) Let V.= RPY. Then rg = 2 and the orbits Oy are given by Oy = {0},
O ={x e R\ {0} : A(x) =0} and Oy = Q = {z € R\ {0} : A(x) > 0}
where A(x) is the standard quadratic form of signature (p,q). In this case
the measure dug is just a scalar multiple of the Dirac delta distribution at 0
and the measure dpuy is again a constant multiple of the residue of the zeta
function

2040 = [ f@ae) s

at the value \ = %l _ p+g

For details on the meromorphic extension of the zeta functions involved here see
|[FK94, Chapter VII, Section 2] for the euclidean case, [BSZ06, Theorem 6.2 (2)] for
the non-euclidean case 22 R”? and [GS64, Chapter 111.2] for V' = RP4.

Proof. Part (1) is [FK94l Proposition VII.2.3], part (2) is proved in [BSZ06, Theo-
rem 6.2] and part (3) can be found in [GS64] Section II1.2.2]. O

Remark 1.5.13. The case differentiation in Proposition is necessary. Firstly,
the zeta function Z(f,\) of V' = RPY vanishes at the value A = 0 if p is even
(see [GS64, Section II1.2.2, Equation (21)]). And secondly, the only two results
on the positivity of zeta functions for Jordan algebras the author could find, are
stated in [FK94, Proposition VII.2.3] and [BSZ06, Theorem 6.2 (2)|, where different
definitions for the zeta functions are used. It is an interesting question whether
there exists a theory of zeta functions which works for arbitrary simple real Jordan
algebras and gives the equivariant measures on the orbits Oy, as residues of the zeta
functions. Nevertheless, for the purpose of this article it will only be important, that
the measures dyy appear as residues of zeta functions which are for A > (rg — 1)%
supported on the union of open L-orbits and given by |A(z)[* .
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1.6. The conformal group

1.6. The conformal group

For a semisimple Jordan algebra V' we construct the conformal group Co(V') which
acts on V by rational transformations. We define a certain open subgroup G of
Co(V) and construct its universal covering group. The Lie algebra g = co(V') of
Co(V), also known as Kantor—Koecher—Tits algebra, is given by quadratic vector
fields on V. We describe g in detail. For a maximal compact subalgebra € of g we
also characterize the highest weights of £-spherical €-representations via the Cartan—
Helgason theorem. These representations will appear as £-types in the minimal
representation.

1.6.1. The Kantor—Koecher—Tits construction

Let V' be a semisimple real Jordan algebra.

Definition of the conformal group

The conformal group will be built up from three different rational transformations.
(1) First, V acts on itself by translations

ne(r) =z +a VeeV

with a € V. Denote by N := {n, : a € V'} the abelian group of translations
which is isomorphic to V.

(2) The structure group Str(V) of V' acts on V' by linear transformations.

(3) Finally, we define the conformal inversion element j by

j(x) = —o* Ve e V* ={y eV :y invertible}.

In view of the minimal polynomial (1.2 j is a rational transformation of V.
The conformal group Co(V') is defined as the subgroup of the group of rational
transformations of V' which is spanned by N, Str(V') and j:

Co(V) :== (N, Str(V), 7) grp-

Co(V) is a semisimple Lie group which is simple if and only if V' is simple (see
[Jac68, Chapter VIII, Section 6|). The center of Co(V) and even of its identity
component Co(V)q is trivial (see [Ber00, Theorem VIII.1.3| and its proof). The
semidirect product Str(V') x N is a maximal parabolic subgroup of Co(V') (see e.g.
[Ber00, Section X.6.3]).

We let G be the group generated by Co(V)g and the Cartan involution a. The
group G has at most two connected components, namely Co(V')y and aCo(V),. If
V' is euclidean, then clearly G = Co(V')y, but in general this is not true (e.g. for
V = RP? with p even). We also have the inclusions

Co(V)g C G C Co(V).
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Chapter 1. Jordan theory

Further, we have L C G N Str(V) and we put P := L x N. Here similar inclusions
hold. In general, P is not maximal parabolic in G, but an open subgroup of the
maximal parabolic subgroup P™** := G N (Str(V) x N). The parabolic P™** has a
Langlands decomposition P™®* = [™®* x N with L™ := G N Str(V).

The conformal algebra

Now let us examine the structure of the Lie algebra g = co(V') of Co(V), the so-
called Kantor—Koecher—Tits algebra. An element X € g corresponds to a quadratic
vector field on V' of the form

X(z) =u+Tz— P(2)v, zeV

with u,v € V and T € I. We use the notation X = (u,T,v) for short. In view of
this, we have the decomposition

g=n+I[+n, (1.48)
where

n={(u,0,0):ueV} =V,
[={(0,T,0): T € ste(V)} = ste(V),
n={(0,0,v):veV} =V

In this decomposition the Lie algebra p™®* of P™®* (and P) is given by
P =n+ 1
If X; = (u;,T},v;), ( =1,2), then the Lie bracket is given by
(X1, Xo] = (Tyug — Toug, [T1, To) 4+ 2(u10vy) — 2(ue0vy), =T vy 4+ T vy), (1.49)

with the box operator O as in ([1.1). From this formula it is easy to see that the
decomposition (|1.48) actually defines a grading on g:

g=9g-1+¢go+ g1,

where g_1 = n, go = [ and g, = n. Further, since the box operators ullv, u,v € V|
generate the structure algebra [, the conformal algebra g is generated by n and n.

Example 1.6.1. Since G has trivial center we can calculate it by factoring out the
center from the universal covering: Gy = G¢/Z(Gy). Here the universal covering
Gy of Gy is uniquely determined by the Lie algebra g which was described in detail.
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1.6. The conformal group

(1) Let V = Sym(n,R). Then g = sp(n,R) via the isomorphism

a— (B, Ty (1 4.

v

Then G = Gy = Sp(n,R)/{£1}, where Sp(n,R)/{£1} acts on = € V by

fractional linear transformations:

(é g)'x:<Ax+3)(CI+D)—1_

(2) Let V = RP4. Then an explicit isomorphism g — so(p + 1,¢ + 1) is given by
(W)t (")
(u’ 07 0) = " " Y U E ‘/7

IS
IS

(0,sT,0) — T : T € s0(p,q),s € R,

(O’ 07 av) = _I/Zf ! " Y v e V

(,U/>t (,U//)t
Hence, Gy = SO(p+1,¢+ 1)o/Z(SO(p+ 1,q + 1)¢). The center Z(SO(p +

1,q+ 1)g) is equal to {£1} if p and ¢ are both even, and it is trivial else. By
(1.5) we have G = Gy if p is odd and G = Gy U aGy if p is even.

A Cartan involution
The involution @ of Str(V') extends to an involution of Co(V') by
6 : Co(V) — Co(V), g wpogowy,

where wy := a o j € Co(V). The map 6 is a Cartan involution of Co(V') which
restricts to Cartan involutions of G and Gy. The corresponding involution € of the
Lie algebra g is given by (see [Pev02, Proposition 1.1])

O(u, T,v) := (—a(v), =T*, —a(u)), (u,T,v) € g. (1.50)

In the above notation n = 6(n). Let g = € 4+ p be the corresponding Cartan
decomposition of g. Then

t={(u,T,—(u) :ueV,T e ,T+T"=0}. (1.51)

The fixed point group K := G? of 0 is a maximal compact subgroup of G with Lie
algebra . Then clearly K;, = K N L. The subgroup K; C K is symmetric, the
corresponding involution being g — (—=1) o go (—1).
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Chapter 1. Jordan theory
Lemma 1.6.2. Assume that V and V' are simple. Then the center Z(¥) of € is
non-trivial only if V' is euclidean. In this case it is given by Z(€) = R(e, 0, —e).

Proof. First, let X = (u, T, —au) € Z(¢). Then by (1.49) we have for any v € V
and S € ¢

(Tv — Su, [T, S] — 2u0av + 2v0au, T#*av — S*au) = 0.
Putting S = 0 we obtain 7' = 0 and this simplifies to
Su=0 and L(u-av)+ [L(u), L(aw)] = L(ou - v) + [L(v), L(au)].  (1.52)
In particular, one has
U-0U = Qu - v YvelV.

For v = e this gives au = u and hence u € V*. Then, from (1.52)) it also follows
that

[L(u), L(aw)] = [L(v), L(u)]. VoelV. (1.53)

Write u in the Peirce decomposition u = Zigj Uij, Uij € V;;“ Fori < j we put v = ¢
in and apply both sides to ¢; which gives —tu;; = Ju;; and hence u;; = 0.
Since V7 = Re¢;, we then have u = Y_1°, \;¢; with \; € R. Using once more,
we know that Su = 0 for S € €. For every permutation 7 of {1,... 79} there is
by Lemma a derivation D € der(V) with aD = Da such that ePc¢; = Cr(i) for
every i = 1,...,19. By we have D € ¢ and hence Du = 0. Altogether this

gives

70 To
E Nc; =u = ePu= E AiCr (i)
i=1 i=1

for all permutations w. Therefore, \; = A\ forall 4,7 =1,...,rg and u = Ae, A € R.
It remains to show that X = (e,0,—e) is actually contained in the center if and
only if V' is euclidean. With (1.49) we find that

[(67 07 —6), (U, Tv —au)] = (_T67 2L(U - au), _T#e)'
If V is euclidean, then & = der(V) and hence T'e = T#e = 0 for any T € €. Further,
a=1and L(u — au) =0 for all u € V. Therefore, (e,0,—e) € Z(£). If V is non-

euclidean, then there exists a non-zero element v € V'~ and L(u—au) = L(2u) # 0.
Hence, (e,0,—e) ¢ Z(¢) which finishes the proof. O
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Exponential function and adjoint action

The exponential function exp : g — G is on the subspaces n, [ and n given as
follows:

exp(X) = ny for X = (u,0,0),
exp(X) = e’ for X =(0,7,0),
exp(X) =7, for X = (0,0, —v),

-1

where 7, == jn,j ' € N = 0(N) = exp(n), u(r) = (x7' — a)~'. Furthermore the

adjoint action of ¢ € L on N, L and N is given by

Ad(g)n, = ng, for u €'V, (1.54)
Ad(g)h = ghg™! for he L, (1.55)
Ad(9)Ty = Try-#, forve V. (1.56)

It follows that the adjoint action of g € L on the Lie algebra g writes as
Ad(g)(u, T,v) = (gu,gTg ™", g~ *v) for (u, T,v) € g. (1.57)
We also need the adjoint action of exp(u,0,0) € N on (0,0,v) € 0, u,v € V:

Ad(exp(u,0,0))(0,0,v) = 24000 0, v)

(0,0,v) + (0,2ulv,0) + %(—Q(uDv)u, 0,0)
= (—P(u)v, 2uldv, v). (1.58)

An sl(2)-triple

There is a natural homomorphism of SL(2,R) into the conformal group given by
(cf. [Ber00, Proposition XI.2.1])

¢ :SL(2,R) — Gy, ¢ ( CCL Z ) (z) := (az + be)(cx + de) . (1.59)

Denote the corresponding homomorphism of Lie algebras by d¢ : sl(2,R) — co(V).
As usual, let

(1) (1) (30

Put E := d¢(e), F':= d¢(f) and H := d¢(h). Then

E = (e,0,0), F=(0,0,¢), H = (0,2id,0) (1.60)
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forms an s[(2)-triple in g. Further, we have
S(E=F) _ 5 dole—f) — (e G f))

0 1 . (1.61)
In particular, j € Gy. Similarly

e E-F) = ¢( _01 01 ) = 1. (1.62)

62

The Killing form

The Killing form on g is for X; = (u;, T;,v;), i = 1,2, given by (see e.g. [Sat80,
Chapter I, proof of Proposition 7.1]):
B(Xl, XQ) = B[(Tl, TQ) -+ 2TI‘(T1T2) + 4Tr (L(Ulvg)) + 4Tr (L(u2v1)) s

where By denotes the Killing form on [. Since B is negative definite on the maximal
compact subalgebra £, we define an Ad-invariant inner product on € by

<X1,X2> = —B(Xl,XQ).
for X; = (u;, T;, —au;) € ¢, i = 1,2. By Lemma[l.1.2}

8n
<X1,X2> = B[(Tl,Tg*) + 2TI'(T1T2*) + 7(U1|U2) (163)

1.6.2. The universal covering

For the connected group Gy the universal covering EJVO carries a natural Lie group
structure which turns the covering map Gy — Gy into a homomorphism. For the
universal covering GG of the (in general disconnected) group G this is not clear. We
now construct a group structure on G.

If a € Gy, then G = Gy and clearly G = GO is the universal cover of G. Denote
by pr : G — G the covering map. For later use we choose any a € G which projects
onto a under the covering map pr.

Now assume that a € G'\ Gp. Then Ad(«) defines isomorphisms Gy — Gy and
g — g and by integration also a) — évo We put G = Go U aGO, where aGO
denotes the set of all formal products ag with g € Gy. Then a product ® on G can
be defined as follows. For g1, g2 € Gy put

91 @ g2 = G192 e Go,
agr ® ga = a(g192) € aGy,
91 ® ags = a((Ad(a)g1)gs) € aG,

agr ® ags := (Ad(a)g1)ga € Go.
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It is easy to see that G turns into a Lie group with two connected components.
We also use the notation a for the formal product al € aGy. The element « is
contained in the connected component of G which does not contain the identity. If

1y : Gop — Gj denotes the universal covering map of Gy, then the homomorphism

pr: G — G,
g'_)lzﬁ‘/ﬂ(g)a VgGGO,
&gHOéf)\fE)(g), VQEG(],

is a universal covering of G.
In both cases we obtain a universal covering group G of G with covering map
. G — @ and an element & € G which projects onto the Cartan involution
« E G. Note that if one identifies the Lie algebra of G with g, then

Ady(@) = Ady(a). (1.64)

We further observe that the group K := pr'(K) is a universal cover of K since

K is a maximal compact subgroup of G. Note that in the euclidean case, the Lie

algebra £ of K has non-trivial center by Lemma and hence K is not compact.
We further define

J = expg (g(e,(), —e)) € K.

By (1.61) we have pr(j) = j. Then the element define wy := aj = ja € K
projects onto wy = «j. (That a and j commute follows from the definition of the
multiplication on G.)

Lemma 1.6.3. 0, € Z(K).

Proof. First note that by - we have Adg(wg) = Adg(wo) = 1 and hence wy

commutes with all elements in the identity component Ko If K = Ko we are done.
In the remaining case where @ € K \ Ky we have

Wo(ak) = awok = (ak)wp Vk e Ko,

since both wy and ‘a commute with all elements in K, 0. Hence wy also commutes with
all elements in aKj. Altogether, w, commutes with every k& € K and is therefore
central. O

1.6.3. Root space decomposition

From now on assume that V and V' are simple. Recall the definition (1.25]) of the
abelian subalgebra

To
= {ZtiL(Ci) 1 € R} ClCyg.
=1
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The set (g, a) of non-zero a-weights of g forms a root system of type C,,. In fact,

:]:€Z' e
E(gaa) = {Tj}u

with €; as in ([1.26]). The root spaces are given by
gere;, = (V45,0,0) Cn,
2

o = (O, [omo) -

Cl for v € {52 1i # j} U {0},
g_8i+5j = (Oa())‘/;]) g n.
2

We see that the constants d and e+ 1 are exactly the multiplicities of the short and
the long roots, respectively.
We also choose the maximal toral subalgebra

T0 T0
t:= { (Ztici,O,—Ztici> : tz‘ € R} Q E[L g ¢
i=1 i=1
in the orthogonal complement of ¢ in €. The corresponding root system of (gc, tc)
is again of type C,, and given by

HENRNEph
X(gc, te) = {%},

where

70 0
Vi (Z tkck, 0, — Z tk@c) = 22t]
k=1 k=1

In fact, it is the image of a under the Cayley transform ¢ = exp(ijad(e, 0, —¢))
of g (see e.g. [Sah93, §0| for the euclidean case and [DS99, Section 1.2] for the
non-euclidean case). Using Lemma [1.4.4] (2) we find the root spaces

(00) 2t = ({0, F2L (), w) - w € (Vig)e),

(8c) 20 = 1w, Fi[L(ci), Lw)], —u) s w € (Vy)c}-
Therefore the root spaces of t¢ in €¢ are given by

() oy = {(uw, F2iL(w),u) s u € (Vij)ch,

(tc) s = {(u, £4i[L(c), L(w)], —u) s u € (Vif)c}-
From this one immediately obtains that the root system X (¢, tc) is of type

A,o—1 if V is euclidean,
Cry if V' is non-euclidean non-reduced,

D if V' is non-euclidean reduced.

T0
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1.6. The conformal group

We refer to these cases as case A, C' and D. For the half sum of all positive roots
(with multiplicities m,) we find

1 Yi—v 1 yityo, 1
pzézm'yi;'ﬁ 5 ]+§Zm'¥i:7j 9 ]+§;m'yi7i

1<J 1<J

B S~ (o =914 1) 4 L0 1)% +ei
= To — 4t i To — iT S i
4’i=1 ’ fy 4 ’ i:lﬁy 2i=1fy

To
i=1

where

d() . d—do [ ]. n d(),
i 4(7“0 i+1)+ 1 (ro )+2 2(T0 ) 2(2 ) (1.66)

1.6.4. t-representations with a ¢-spherical vector

As previously remarked, (£, €) is a symmetric pair. Using the Cartan—Helgason the-
orem we can describe the highest weights of all unitary irreducible ¢-representations
which have a €-spherical vector.

Proposition 1.6.4. The highest weight of an irreducible €-representation with a -
spherical vector vanishes on the orthogonal complement of t in any mazimal torus
of € containing t. The possible highest weights which give unitary irreducible ¥-
spherical representations are precisely given by

r 0
Zti%:tiER,ti—tjGZ,tIZ...ztm} in case A,
i=1
T0o
A;(?): Zti%:tiEZ, t1>...2t,>0 in case C,
i=1
T0 1
D tiyiiti€ 5Ziti—tj €Lty > .. > tey 1 > |tny| o in case D.
i=1

\

Further, in each irreducible &-spherical €-representation the space of €-spherical
vectors is one-dimensional.

Proof. (a) First, let V' be non-euclidean. Then ¢ is semisimple by Lemma [1.6.2]
By the Cartan—Helgason theorem (see e.g. [Hel84, Chapter V, Theorem 4.1])
the highest weights of all irreducible g-representations with a €-spherical vec-
tor vanish on the orthogonal complement of t in any maximal torus of £ con-
taining t and are given by

A () = {7 it 8 Zi eNyVae 2+(e@,t¢;)} .
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Chapter 1. Jordan theory

Here we have identified ;. with tc via the bilinear form (—,—). Under this
identification ; corresponds to ;2i(c;, 0, —¢;). By Lemma m (2) we have

(cilej) = ditr(cs) = dijtry;, (ci)
= 6,0k(Vii) = 6
To

and with (1.63) we obtain

To

50 (1.67)

(vis i) = —

Thus, the previous observations imply the claim for the cases C' and D.
(b) Now suppose V' is euclidean. We have ¢ = Z(£) + [¢, €] with Z(€) = R(e, 0, —e)
by Lemma and [€, ¢] semisimple. Clearly ¢ C [¢, €] and the torus

To 70
{Zti(%oy —¢) Zti = 0} CE C [t
i=1 i=1

is maximal in the orthogonal complement of & in [¢,€]. As in (a) it follows
from the Cartan—Helgason theorem that

A ([e,8]) {Ztl% Zt —t EZtl_...Ztm}

Now, by Schur’s Lemma, the irreducible representations of ¢ = Z(£) + [¢, €]
are irreducible [t €]-representations where the center Z(¥) acts by scalars.
Therefore,

Af(e) = A;([e, )+ Ry + -+ 7o)

which shows the claim for the case A.
That in each irreducible €-representation the space of £-spherical vectors is at
most one-dimensional follows from [Hel84 remark at the beginning of Chapter V,
§4.2]). This finishes the proof. [

For oo € Ay () we denote by E* the irreducible €-spherical representation of ¢
with highest weight a.

1.7. The Bessel operators

In this section we introduce second order differential operators By (A € C) on V.
These operators are needed later to describe the Lie algebra action of the minimal
representation. We show that for A € W the operator B, is tangential to the orbit
O, and defines a symmetric operator on L?(Oy, duy).

20



1.7. The Bessel operators

1.7.1. Definition and Properties

For any complex parameter A € C we define a second order differential operator
By : C®(V) — C®(V)®V called the Bessel operator, mapping complex-valued
functions to vector-valued functions, by

By:=P (%) T+ As (1.68)

Here 2 : C*°(V) — C*(V) ® V denotes the gradient with respect to the non-
degenerate trace form 7 on V. This means that

of\ o d
T(u,a—x)—Duf(x)— i,

Therefore, if (e,)q is a basis of V' with dual basis (€,), with respect to the trace
form 7, then for f € C*>(V) we have

f(x + tu) VuelV.

Inserting this in (1.68)) yields the following expression of B, in coordinates:

_ of _
By f(x Z c%aaxg €a7€ﬂ>x+)\2 c%aea’ reV.

First, we prove the following product rule for the Bessel operators which is an
easy consequence of the definition.

Lemma 1.7.1. For f,g € C*(V) we have

e

BA(f-g) = Baf-g+2P (ar o

) + f B)\g (169)

The Bessel operator B, satisfies an equivariance property with respect to the
action of Str(V'). Recall that ¢ denotes the left-regular representation of Str(V') on
functions which are defined on V' (see ([1.14])).

Lemma 1.7.2 ([FK94, Proposition XV.2.3 (i)]). For any g € Str(V):
(g Br(g) = g 7 Ba.
Proof. If F'=/{(g)f, then by the chain rule

OF  _,0f

—1
5 =Y aI(g ).
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Chapter 1. Jordan theory

Therefore,
NG _ _,of, _
_ #_ 2 1 #Y9J 1
BAF(x)_<P(g ax>f) (97 2)z +Ag™" (g™ ).
By (1.12]),
0 0
Plg*—)=g%P(=—)g"
(54 5n) =o*r (5) o
and the result follows. O

We also need the action of By on powers of the Jordan determinant.

Lemma 1.7.3 (|[FK94, Proposition XV.2.4]).

ByA(z)t = p <u + A - %) A(x) z 1. (1.70)
Proof. The first and second derivatives of A(z)* are given by
OA(x)* _
02 1) = paapr a7 ),
PA(z)* B _ N
(o) = 1A (o o) e5) = A T(P(a) o).

Since

by Lemma [I.2.4] it follows that
ByA*(e) = p (u + A= ;) e.

In order to obtain the value of ByA* at x = ge, we use the equivariance property

of A:
g™ )A(z) = Alge)A(w),
and the equivariance property of By in Lemma [[.7.2}
BuAi(ge) = (g™ )BrA") (¢)
=g (Bal(g™)A") (e)
= A(ge)'g " BrA (e)
= _n K -1
=p <u+ A T) A(ge)*(ge)

This proves ([1.70)) for every x = ge in the open orbit of the structure group con-
taining the identity e. Since both sides of ([1.70)) are polynomials in x the claim
follows. O
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1.7. The Bessel operators

1.7.2. Symmetric operators

The crucial part in proving that B is tangential to O, and defines a symmetric
operator on L?(O,, duy), is the following proposition for the corresponding zeta
functions:

Proposition 1.7.4 ([FK94, Proposition XV.2.4]). Let Z(f, \) denote the zeta func-
tion corresponding to V' as in Proposition|1.5.19. Then, for f,g € S(V) and A € C

we have

Z((Bxf) -9, A) = Z(f - (Brg), M),
as identity of meromorphic functions in \.

Proof. It suffices to prove the statement for A > 2 +2 > (rg— 1)%, then the general
statement follows by meromorphic continuation. In this case

24N =3 [ 1@IA@PF e

where €2; denote certain open orbits of Ly. (If V' is euclidean or V' = RP4, then
s =1 and ; =, and if V is non-euclidean 2 RP9, then (£2;); is the set of all
open Lg-orbits.) Therefore, it is enough to show that for any open orbit €2; of Ly
we have

|, BrEs@IA@P e = [ @ Bg)am - ds

J

On every orbit €2; the Jordan determinant A(x) is either positive or negative. Since
A > 242 we have |A*7 € C*(Q;) and all derivatives of [A[*~% up to second
order vanish on 99; (use Lemma([l.4.1)). This means that all boundary terms, which
occur when integrating by parts twice, vanish.
(a) Using integration by parts, we first prove that if all derivatives of g up to
second order vanish on 0f2;, then

J,

J

Brf(@ale)do = [ (@B rgla) o

For this we choose an orthonormal basis (e,), With e, € VT U V™. Observe
that

0? 0%g dg

dg
01,015 (vg(z)) = x@xaaxg () + eaa_:cﬁ

oz, @)

() +eg
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Chapter 1. Jordan theory

and hence, by Lemma

2

0
P(e
D P Tl (29(e)

0
= Bog(x) + QZP €q,€3)€q j (x)
a,f g
_ _ 99
= Byg(z —{—22 ( Z (€a,€3)€q — Z P(ea,eg)ea) a—mﬁ(x)
e €V T ea€V ™
= Byg(x —i—QZ(ZG—Z )6ﬂ8$
e €V T ea€V™ A
= Bog(x (Z €q ea> eﬁ@xg( )
n
= Bog(z) + _a_g x

Therefore, integration by parts gives

(b) Now we prove that

BAA@IAF @) = M@ (Braf (@) + 1 (4 A= =) a7 f(2)).

First assume that €; is an orbit with A(z) > 0 for all z € Q;. Then |A(z)|* =
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1.7. The Bessel operators

A(z)* and with the Lemmas|1.7.1] [1.4.1} and [1.7.3| we have

Bu(A)(a) = A Bus (o) + 27 (500, S )

+ Ba(A(2)") f ()
= A(x)"Brf(z) + 2uA(x)" P (x_l, %(w)) T
Yo (u T 9) Ax)z ()

= A(z)* (BA+2uf( )+ (“ A= _) v fla ))

Now, if A(z) < 0 for all x € Q;, then |A(x)|* = (—A(z))* and the same
calculation can be carried out.
(c) We now prove the main statement. By (a)

| Bur@e@Ia@PF o= [ @B, (o)A@ @) da

and by (b)

= [ f@EB @)@ (@) da

Summing over j = 1,..., s shows the claim. m

Using the previous proposition we can now prove the main result of this section:

Theorem 1.7.5. For every A\ € W the differential operator By is tangential to the
orbit Oy and defines a symmetric operator on L*(Oy, duy).

Proof. If A > (rg — 1)7"0”{ then the orbit O, = () is open and every dlfferentlal
operator is tangential. Symmetry follows immediately from Proposition [1.7.4]

Now assume that A = k%%, 0 < k < rg — 1. Let ¢ € C°(0,) and let &1,{52 €
C(U) be any extensions of ¢ to an open neighborhood U of O,. To show that
B, is tangential to O, we need to show that Byp; = Byps on O,. By definition

© = 1 — P2 vanishes on O,. For any ¢ € C°(U) we obtain with Proposition
(1.7.4):

/ Byp -1 duy = const - res,F,\Z (Bu@' Y, N)
Ox

= const - res,=\Z (¢ - B, 1)

~ [ &-Bwdm=o
Ox

Hence By@ = 0in L?(Oy, duy) which implies Byx@(z) = 0 for every x € Oy. But this
means that Byp; = Byps on O, and therefore B, is tangential to O,. Symmetry
now again follows from Proposition [I.7.4] This finishes the proof. O
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Chapter 1. Jordan theory

1.7.3. Action for the minimal orbit

Now let A = A\ = % be the minimal discrete non-zero Wallach point. Let us
compute the action of By, on radial functions on the minimal orbit Oy, i.e. func-
tions depending only on ||z| := y/(x|z). For convenience we use the following

normalization:
T
o] = ,/r—ua:w

In view of Lemma [1.2.3] (2) we then have for i = 1,...,7y:
;| = \/—tr c) \/—trV“ ¢) = —rk(V ) = Tio (1.71)

Further, if ¢(z) = f(|z|), x € V, is a radial function, then
9y = 7S (1.72)

ox " vy x|

Proposition 1.7.6. If ¢(z) = f(|z]), x € O4, is a radial function on Oy, f €
C*(R,), then for x = ktc; we have

Bayih(x) = (f"<|x|> F(d—dy—e) ‘%f’(lﬂ)) art (do - 51) F(lelake).
Proof. We extend 9 to V '\ {0} by
Y(x) == f(|zl), x # 0.

Now, for an orthonormal basis (e,), with respect to (—|—) we put €, = a(e,).
Then (€,), is dual to (eq) with respect to the trace form 7 and for z = ) zqeq
we have ||z|> = > 22. Thus we can calculate

o

By y(x) = (2)PCars)r+ M1 ) 5= (7)ea

0 o o _
_ za: . {%f'(lfl)] P(e,,e3)r + rLO/\l za: %f (|])ea

T Takg T Tl

(Sa , , " Ep—
LY [Se2r el - S5 + Lo o) | el
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1.7. The Bessel operators
Now O = KR ¢y, and since ¥ is Kp-invariant, we obtain, using the equivariance
property of Lemma
B)\lw(ktcl) = g(k_lﬂg)qg(k)w(tCl) = k_#BA1¢(t01) = akaB/hw(tcl)'

Therefore it suffices to compute By, ¥ (tc;) for t > 0. With Lemma and ((1.71)

we calculate:

&qupﬁqﬂ@mn+(Ejm%yr+oy—%)§)fmqp

ro (d r
- e s (§-tomes ) e
0

2
+%(%—g>fmqk.

Finally, for z = ktc; we have || = t|c;| and we obtain with \; = 2¢

By(z) = akaByy(tc)
= (£ + (@ = do =€) 7 e ) a4 72 (do = 5 ) £ el

|| 2
This is the stated formula. O]

The formula in Proposition [I.7.6] can be simplified if one assumes that V' is either
euclidean or non-euclidean of rank > 3. (The remaining case is by Proposition
V = RP? which is treated separately in Appendix ) For this we introduce
the ordinary differential operator B, on R, which is defined by

Bof(t) :== f"(t) + 2a + 1)%f’(t) — f(t). (1.73)

Corollary 1.7.7. Let ¥(x) = f(|z|), x € Oy, be a radial function on O;.
(1) If V is euclidean, then

.
(Bxn — az)y(z) = By f(|z[)az + 5 f(Jz])e.
(2) If V is non-euclidean of rank > 3, then

(Bx, — ax)y(x) = By f(|z])a.

Proof. By Proposition [1.7.6| we have for x = ktc;:

(By, — az)y(z) = Bd—dO;e—l f(z|)ax + % (do — g) ' (|z))a(ke).
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Chapter 1. Jordan theory

(1) If V is euclidean, then v = —1 =d — dy — e — 1. Further, K, = H C Aut(V)
and hence ke = e for k € K. Therefore,

(B, — ax)(x) = By f(lal)ax + 37/

(2) If V is non-euclidean of rank > 3, then d = 2dy and v = d — dy — e — 1. Thus,
we obtain

(B, — o)) = By f(Jalyour. =

Remark 1.7.8. The normalized I- and K-Bessel functions I, (t) and K, (t) solve
the differential equation B,u = 0 (see Appendix . This is why we call By the
Bessel operators. Since l?a(t) decays exponentially as t — o0, it is used in the next
chapter to construct an the L2-model of the minimal representation of a finite cover
of the group G.
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2. Minimal representations of
conformal groups

In this chapter we construct the minimal representation of a finite cover of the
conformal group G. First, we construct its underlying (g, £)-module. We then show
that it can be integrated to a unitary irreducible representation of a finite cover of
G on L*(O, du). To motivate the definition of the Lie algebra action we show that
it arises by taking the Fourier transform of the action of a certain principal series
representation.

Further, we prove that the £-Casimir acts on the subspace of radial functions as
a fourth order differential operator which will be studied in detail in Chapter [3] We
also introduce a unitary operator Fo on L?*(O, du) which resembles the euclidean
Fourier transform.

Throughout this chapter V' will always denote a simple real Jordan algebra, o a
Cartan involution on V and we further assume that V' is simple.

2.1. Construction of the minimal representation

We first construct a representation of g on C*°(Q,) for any A € W. For the minimal
non-zero discrete Wallach point A = A\ = ”O—d we then define a subrepresentation
W of C*°(O;) which is contained in LQ((’)l, dpq). Finally we show that W can
be integrated to a unitary irreducible representation of a finite cover of G on the
Hilbert space L?(O;, du;). For the special cases V = Sym(n,R) and V = RP? we
identify this representation with known representations.

2.1.1. Infinitesimal representations on C*(0,)

On each Hilbert space L*(Oy, duy), A € W, we define a representation py of the
parabolic subgroup P by

pa(na)y(x) = ey (x) ng € N, (2.1)
(g () = x(g")2¢(g"x) geL (2.2)
for ¢ € L*(Oy, duy).

Proposition 2.1.1. For A\ € W the representation py of P on L*(O,, duy) is
unitary and irreducible, even if restricted to the identity component Py of P.
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Chapter 2. Minimal representations of conformal groups

Proof. Clearly, the operators py(n,), a € V, are unitary on L?(Oy, duy). Unitarity
of the L-action follows from (|1.45]) and hence p) defines a unitary representation of
P on L*(Oy, duy). It remains to show irreducibility.

For this we use Schur’s Lemma. Suppose A is a unitary operator on L*(Oy, duy)
which intertwines the Py-action. Since A intertwines the N-action, we have

/O ei(xa)A¢<$)WdM<x):/ A(e*i(*la)(p)(az)w(x)duA(SU)

Ox

- /O &1 b () A(E) dpua ()

for all ¢, € L*(Oy, duy) and every a € V. This means, that the euclidean Fourier

transforms of the tempered distributions A¢(x)y(z) duy(z) and ¢(x) A (x) duy(z)
agree in §’(V'). The Fourier transform is an isomorphism of S’(V') and hence,

Ap(x)(z) = p(x) Ay (x) pa-almost everywhere.
The function v (x) := e~ ** is clearly an L?-function and we obtain

Ad(z) = (¥(2) " Ap(z)) - ¢(=).

Therefore, A is given by multiplication with the measurable function w(z) :=
Y(x) "t AY(x). Now, A also commutes with the Lg-action. This implies that u
is Lo-invariant. Since L acts transitively on O,, u has to be constant. This means
that A is a scalar multiple of the identity. By Schur’s Lemma the Py-representation
p has to be irreducible and the proof is complete. ]

It is a natural question to ask whether p) extends to a unitary irreducible repre-
sentation of G (or some finite cover) on L*(Oy, duy). One possible way to extend
px is to extend the derived representation dp, of p™** to g and integrate it to a
group representation.

We define a Lie algebra representation dmy of g on C*°(0,) which extends the
derived action of py. On p™** =n + [ we let

dmy(X) = —|  pa(e™) VX epm.

For ¢ € C*(0,), the representation dm) is given by

dmy (X)) (z) = i(zy(x)|u) for X = (u,0,0), (2.3)
TA

dmy\(X)Y(z) = Dpsptp(z) + %Tr(T*)w(x) for X = (0,7,0), (2.4)
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2.1. Construction of the minimal representation

where we have used Proposition for the [~action. In view of the Gelfand-
Naimark decomposition (|1.48)) it remains to define dmy on n in order to extend it to
a representation of the whole Lie algebra g. For this we use the Bessel operator B)
(see Section for the definition). By Theorem the operator B) is tangential
to O, and hence, for p € C*(0O,) the formula

dmy (X)) = %(BAw(x)\v) for X = (0,0,—v),  (25)
defines a function dmy(X)y € C(0O,).

Proposition 2.1.2. For A € W the formulas (2.3), (2.4) and (2.5)) define a repre-
sentation dmy of g on C*(0O,). This representation is compatible with py, i.e. for
p € P and X € g we have

pA(p) dmy(X) = dmx(Ad(p)X)pa(p). (2.6)

Proof. We first show the compatibility condition (2.6). For X € p™® = n + [ this
condition is immediate since dmy(X) is just the derived action of the representation
px. It remains to show forpe P and X = (0,0,—v) en,ve V.
(a) Let p=mn, € N, u € V. Then Ad(p)X = (P(u)v, —2ulv, —v) by (L.58). We
calculate separately for (P(u)v,0,0), (0, —2uldv,0) and (0,0, —v).
(1) First, we have

dm(P(u)v,0,0)pa(p)t(2) = ie"") (] P(u)v)) ().
(2) The adjoint of u[Jv is (uldv)* = (aw)d(au) and its trace is (using Lemma
1.1.2)

Tr((uTv)*) = Tr(ullv) = Tr(L(w)) = gT(u, v) = ;(au\v).
Hence,
drma (0, —2u00, 0) pa(p) ¥ ()
= — 2Dy [0 () — T Tr((u0) ) )

= — 2i(z|(u0v)u)e' ™ y(x) — 2" D\ (0u)O(au)a ()
— 2@ (qulv)e(z).
(3) Finally, with Lemma we obtain

s (0,0, ~0)pa(p)(x) = 7 (By [199] ()] )
(Bm )- ¢ 2P (W( ) “w'“)) T+ (@) By v

(o (o))

' (P(iqu)z + idaulv)(z)

7

9,
oz
= lei(z‘“) (Batp(z)| v) + 268 (P (

Z
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Chapter 2. Minimal representations of conformal groups
1 italu) i(alu)
= 26 (BA¢<J;)| )+2€ D O(au) xqu)( )
+ iez(x‘“) (x| P(w)o)ip(z) + 2" (qulv)y ()

since

(P (g—i}, au) x v) =T (((av)l](au))x, %ﬁ) = D ((av)0(au))a ¥ (T).

Putting the three summands together gives

dm(Ad(D) X)pa (p)b() = ~) (Byap()| v) = pa(p) dma (X )ip().

(4

(b) Now, let p = g € L. Then (Ad(p)X) = (0,0, —g #v) by (1.57). In this case
the compatibility condition ({2.6]) is exactly the statement of Lemma m
Now we show that dmy is a Lie algebra representation, i.e. for X,Y € g we have

dﬂ')\(X) dﬂ')\(Y) — dT(',\(Y) d7T)\(X) = dﬂ')\([X, Y]) (27)

For Y € p™* we have dm\(Y) = %|t:0 pa(e’Y). Therefore, for Y € p™@ the
identity follows from the compatibility condition by putting p := e?¥ and
differentiating with respect to t at t = 0. By the symmetry of in X and Y the
remaining case is X,Y € n. So let X = (0,0, —u), Y = (0,0, —v), u,v € V. Then
[X,Y] =0 by and we find that

dmy(X) dma(Y)¢(2) = —(BA(Bagfv)(w)[u)
- — Z aBﬂMU P(eq, €s3)x|u) +Z B/\MU a‘u)]

T Z 8358 {afvgx(;(x)(]g(é”’éé)xw)} (P(eq, €s)|u)

3 g [ @E )| (Pl

- Z 8xa8$ag§xwax5( o) P8y, E)jv) (P (Eas B9)|u)

+2 3 ) Ple eeale) P o)l
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2.1. Construction of the minimal representation

+ Z %a—w(:ﬂ)(gﬁv)(P(éa,éﬁ)ﬂu)

T Z axaa—w(x)(P(éw%)ﬂv)(éam)

o O0x,0xs
0*yY
Pl @ _
3 5o P Eealt) o)
0%y (=
G, @@l

The first and the last summand are clearly symmetric in v and v. The same holds
for the sum of third and fourth summand. The fifth summand can be written as

!

which is also symmetric in u and v since P(c€,, a€;) is a symmetric operator with
respect to the trace form 7. The same method applies for the second summand.
Together we obtain that dmy(X) dmy(Y)1(z) is symmetric in X, Y € n which means
that

2
3 857;;;55 (z) (ZT(P@%@&)O&U,@&)EQ

67

(x)7(P(ae,, aés)v|u)

dmy(X) dmy (Y)Y (z) — dma(Y) dma(X)w(x) = 0.

Hence, (2.7) holds for all X,Y € g and dm, is a Lie algebra representation. This
finishes the proof. O

Remark 2.1.3. In Section [2.2| we show that dm, is the Fourier transformed picture
of a principal series representation in the non-compact picture. The definition
of the n-action is motivated by these considerations. This also gives an alternative
proof that dm, is indeed a Lie algebra representation.

2.1.2. Construction of the (g, £)-module

From now on we assume that the split rank ry > 2 and consider only the minimal
Tod

orbit O;. For convenience, put A = Ay := 2%, dm := dmy, O := Oy, dp = duy
and B := B). We use the notation

X = dn(X ),

for the action of X € g on a function ¢ € C*°(O). The representation dr clearly
extends to a representation of the wniversal enveloping algebra U(g) on C*(O)
whose action will be denoted similarly.
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Chapter 2. Minimal representations of conformal groups

Let 1)y be the radial function on O defined by

Yo(z) = Ky (|a]), ze0, (2.8)

where I?a(z) denotes the normalized K-Bessel function as introduced in Appendix

and v is the parameter defined in ((1.11]). By (D.9)) the function K, is a solution

of the second order equation B,u = 0, where B, is the operator defined in (|1.73)).
We put

Wo = U(E)hg and W = U(g)vo.

W is clearly a g-subrepresentation of C*°(Q) and W) is a -subrepresentation of .
To show that W is actually a (g, €)-module, we have to show that it is ¢-finite. The
first step is to show that the generator v, is &-finite. This can be done by direct
computation. For the precise statement we fix the following notation: Let P be any
space of polynomials on V. Then we denote by K, ® P the space of functions

Ky ® 0:0—=C,x— l?a(|a:|)g0(x)
with ¢ € P. For P we use
C[V]sk := {p € C[V] : p is a sum of homogeneous polynomials of degree > k},
or the space of spherical harmonics
H*(R™) := {p € C[xy,...,x,] : p is homogeneous of degree k and harmonic}.
Proposition 2.1.4. Let V' be a simple Jordan algebra with simple V. Then the
t-module Wy is finite-dimensional if and only if V 2 RP? with p 4+ q odd, p,q > 2.

If this is the case, Wy = E* with

4y if V is euclidean,
ap =<0 if V' is non-euclidean of rank >3, (2.9)
sldo—§[m+3(do—9) 7 V=R pg=2.

More precisely:
(a) IfV is euclidean, then

Wy = Cy

and the center Z(¥) = R(e, 0, —e) acts by

d
(e, 0, )iy = v,
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2.1. Construction of the minimal representation

(b) If V' is non-euclidean of rank r > 3, then
Wo = Cio

and 1y is a t-spherical vector.
(c) If V =RP? with p+ q even, p,q > 2, then
(3
P Ky p @ HARY) = 1S (R ifp<g,
W k=0 (2.10)

pz;q
P Ksor @ HHRY) = HZ (R ifp>g,
k=0

\

(d) If V. =RP? with p+ q odd, p,q > 2, then

P K oH®RY) ifp<q,
Wy =< k0 (2.11)
D Esu oM R ifp=q.
k=0

Proof. Since 1 is K-invariant, clearly dm (€)1 = 0. Therefore it suffices to apply
elements of the form (u,0, —a(u)) € ¢, u € V, to ¢y. By (2.3) and (2.5 we have

dm(u, 0, —a(u))y(z) = lT((B —azx)Y(x),u). (2.12)

1

Now we have to distinguish between three different cases.
(1) If V is euclidean, then by Corollary (1)

(0,0, ~a(u)bo(r) = & By Ky () (alu) + S K% (] ex(u)

=0
Since v = —1, we have by (D.7))

Ry(lal) = Yo

and therefore f?%(|$|) = —I?%(|x|) Altogether this gives

d
dm(u, 0, —a(u))y(z) = thl”(u)l/Jo(ZE). (2.13)
Hence, Wy = Cipy. Putting u = e gives the action of the center Z(¢) =

R(e, 0,—e). Further, for u = ¢;, 1 < i < ro, we find that Wy is of highest
weight 4377 ;.
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Chapter 2. Minimal representations of conformal groups

(2) If V is non-euclidean of rank r > 3, then d = 2d, (see Proposition |1.2.1]) and
with Corollary (2) we obtain

dm(u, 0, —a(u))ho(x) = %B;Eg(|$|)($|u) (2.14)
T/

This implies that W, = Ct)y is the trivial representation.
(3) Now, for the case V= RP4 p, q > 2, the calculations can be found in Appendix
B.1 O

Remark 2.1.5. The fact that ¢ is not e-finite if V' = RP? with p + ¢ odd corre-
sponds to the result by D. Vogan that no covering group of SO(p+1,¢+ 1)y has a
minimal representation if p + ¢ is odd and p, ¢ > 3 (see [Vog81, Theorem 2.13]).

Now a standard argument shows that the fact that vy is €-finite already implies
that W is ¢-finite. Since we could not find a reference for this basic fact, we include
a short proof.

Lemma 2.1.6. If Wy =U (%)Y is finite-dimensional, then W = U(g)1y is a (g, t)-
module.

Proof. Let g1 :== gc®C C U(g) and define W,, 1 := g1 W, for n > 0. We claim that
(1) W, is finite-dimensional for every n,
(2) W, is t-invariant for every n,
(3) W=U,W,.
The first statement follows easily by induction on n, since W, and g, are finite-
dimensional. The third statement is also clear by the definition of U(g). For the
second statement we give a proof by induction on n:
For n = 0 the statement is clear by the definition of Wj. For the induction step let
w € Wy and X € & Then w = Zj Yjv; with Y; € g, and v; € W,,. We have

Xw = ZX(YjUj) = Z ([X, Ylvj + Y;(Xvy)).

J J

Here [X,Y]] € g1 and hence [X,Y}]v; € W,,4; for each j. Furthermore Xv; € W,
by the induction assumption and hence Y;(Xwv;) € W44 for every j. Together this
gives Xw € W11 which shows that W, is -invariant.

Now the €-finiteness of every vector w € W follows. n

To see that W integrates to a representation on L?(Q, du) we have to show that
W is contained in L?(O, du).

Proposition 2.1.7. (a) If V is a simple Jordan algebra of rank r > 3, then

W CEP Ky ®CV]sar € LX(O, dp). (2.15)

66



2.1. Construction of the minimal representation

(b) If V =RP? with p+ q even, then

p—aq
oo |5

W <P B Kyiree @ CV]spaar € LX(O, dp). (2.16)
(=0 k=0

(¢) If V. =TRP? with p+ q odd, then W & L*(O, dp).

Proof. g = €4 p™ implies U(g) = U(p™)U(E) by the Poincaré-Birkhoff-Witt
Theorem. Therefore

= U(g)vo = U(p™)Wo.

Now if V' 22 RPY with p + ¢ odd, then by Proposition Im the t-module W, is
already contained in the direct sum in (2.15)) or (2.16)), respectively. (In fact, Wy
is contained in the direct summand for ¢ = 0.) Therefore, it suffices to check that
these direct sums are stable under the action of p™* = n + [. We check the actions
of n and [ separately.
(1) Action ofn. By the action of n is given by multiplication by polynomials.
This clearly leaves the direct sums invariant.
(2) Action of . In view of it suffices to show that the operators D, for
T € | = ste(V) leave the direct sums invariant But this is a consequence of
the following calculation which uses ) and m

Dry [Kyan(lz))p()]

P Riule)
—E(Tx] r)—— 2 o(z) + Ky (|z]) Drop()

T 2me~(;+k+1(lxl> (Talw)p(x) + Ky a(|]) - Dragp(a).

This proves the first inclusion in and (2.16). It remains to show the L2-
statements. B

Note that by a function K, ® ¢ (¢ € C[V] homogeneous of degree m) is
contained in L2(O, du) if and only if K,(t)t™ € L*(R,, t#+7+1dt). By (D21) the
K-Bessel function l?a(t) decays exponentially as ¢ — oo and hence K, (t)t" €
L3((1,00), t*T 1 dt) for any o € R and m > 0. Therefore it suffices to check the
asymptotic behavior of [?a(t)tm as t — 0. For a < 0 we obtain with (D.20]) that
also K, (1)t™ € L*((0,1), t#+*+1 dt) for any m > 0 (use Lemma|1.3.1f p+v-+1 > 0).
A similar argument settles the case @ = 0. Hence, we may restrict ourselves to the
case a > 0. In this case (see (D.20)))

Ko(t) ~ const - t72° as t — 0.
Therefore, K, (£)t™ € L2((0,1), t**+1dt) if and only if
p+v+2m—4da+1> -1
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Chapter 2. Minimal representations of conformal groups

(a) For V simple of rank r >3 we have to show that IN(%M(t)t% €
L?((0,1), ¢t +1 dt) for any £ € No. With v = ¥ + ¢ and m = 2¢ we obtain

p+v+2m—-—4da+l=p—-v+1>1> -1

by Lemma [1.3.1]

(b) In the case where V = RPY with p+ ¢ even we need to prove that
Kyopro(t)t520 € L2((0, 1), #7410 dt) for k = 0,...,]%5?| and ¢ € Ny. In this
case pt = max(p,q) — 2 and v = min(p,q) — 2. With a = § +k + £ and
m = k + 2¢ we obtain

pt+v+2m—4da+1l=Ip—q|—2k+1>1>—1.

(¢c) Now assume that V' = RP? with p + ¢ odd. By (2.11)) the t-module W}

contains functions K v ® @ with ¢ € C[V] homogeneous of degree k where
k is arbitrary. For large k we have a = 5 + k > 0 and with m = k we obtain

p+v+2m—da+l=p—v—-2k+1

which is < —1 for k large enough. Hence, Wy € L*(O, du) in this case.
This proves the L?-statements and completes the proof. O

To make sure we obtain a unitary representation we show the following proposi-
tion:

Proposition 2.1.8. The (g, t)-module W is infinitesimally unitary with respect to
the inner product of L*(O, du).

Proof. Since the group P acts unitarily on L?(O, du) by py,, its infinitesimal action
dpy, = dr|pmax is infinitesimally unitary with respect to the L? inner product. This
shows that the action of n and [ on W is infinitesimally unitary. (In fact, one
can easily prove unitarity of these actions directly with and ) Since
the action of n is by given in terms of the Bessel operator B, it follows from
Proposition that m acts by skew-symmetric operators on L*(O, du). In view
of the decomposition g = n + [+ n this finishes the proof. n

The last ingredient to integrate the (g, €)-module W is admissibility.

Proposition 2.1.9. Assume that V # RPY p+ q odd, p,q > 2. Then W 1is
admissible.

Proof. We use the criterion [Wal88, Corollary 3.4.7]. Therefore, it suffices to show
that every X € Z(g), the center of U(g), acts as a scalar on W. To show this we ap-
ply [Wal88, Proposition 1.2.2]. Recall that (py,, L*(O, du)) is a unitary irreducible
representation of Py by Proposition 2.1.1] The space D := py, (Fy)W is contained
in L*(O, du) since W C L*(O, dp) by Proposition2.1.7and py, acts on L*(O, du).
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2.1. Construction of the minimal representation

Since D is Py-invariant, it has to be dense in L*(O, du). Further, a closer look at
Proposition shows that W C C*(0) and hence D C L*(O, du) N C*(0O).
Therefore, 7' := dn(X) is also defined on D. Since

dr(Y)pa, (P)w = pr, (p) dr(Ad(p~)Y)w VY € U(g),p € Po,w € W,

by (2.6), it follows that T : D — D. Further, using that 7 € Z(g), we have
Tpx, (p) = pa, (p)T for all p € Py. The adjoint S := T* of T with respect to the L?
inner product is by Proposition also given by the action of an element of U(g).
Therefore, S also acts on D. Applying [Wal88, Proposition 1.2.2] to this situation
yields that T is a scalar multiple of the identity on D. Since D contains W, the
claim follows. O]

2.1.3. Integration of the (g, £)-module

Now we can finally integrate the (g, €)-module W to a unitary representation of a
finite cover of G. For this we first construct the finite cover of G on which we will
define the representation.

In Section we constructed the universal covering group G of G. Note that
in the euclidean case, the covering G — G is not finite. Thus, we have to factor out
a discrete central subgroup.

Let k£ € N be the smallest positive integer such that

0 (do—il) c7Z.
2 2) .

Here we use the notation

x ifx >0,

1
vl =30 . <o

for the positive part of a real number x € R. Then the following lemma holds:

Lemma 2.1.10. The discrete subgroup

I' := expg(knZ(e, 0, —€)) € G
is central in G and the group G := é/F s a finite cover of G with covering map
pr: G — G, gT' — pr(g).

Moreover, K = [?/F C G is a mazimal compact subgroup of G.
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Proof. By (1.62)) we have expg, (7(e, 0, —e)) = 1. Therefore, I" has to be central in

G since it projects onto 1 € Gy. We claim that I' is also central in G. Since G is
generated by Gy and «, it suffices to prove that

Ad(a) expg, (km(e, 0, —e)) = expg, (km(e, 0, —e)).

But since Adg(@) = Ady(a) on g by (1.64)), this follows from and the fact that
ae =e. Thus, I' C G is a discrete central subgroup and the quotient G := é/F is
again a group. By we have expg (X) = 1 for any X € knZ(e, 0, —e) and thus
the covering map pr : G — G factors through G /T" and hence defines a covering
map pr: G — G. It remains to show that the cover G — G is finite and K = f(/l1
is a maximal compact subgroup of G.

(a)

If V' is non-euclidean, then by Lemma the maximal compact subgroup
K of G is semisimple. Hence, its universal covering K is a finite covering and
therefore K is a maximal compact subgroup of the universal covering G of
G. Passing to quotients modulo the discrete central subgroup I' preserves this
property.

Now let V' be a euclidean Jordan algebra. Then

b= Z(¢) + [t ¢,

where Z(t) = R(e, 0, —e) by Lemma and [€, €] is semisimple. Therefore,
the universal covering K C GG of K is given by

K=Rx K.,

where the first factor R is the exponential image of the center Z(£) and Kj;
denotes the analytic subgroup of K with Lie algebra [¢,€]. The group K,
is compact since K, is semisimple and compact. Therefore, factoring out I'
yields a compact group

K=K/T~S"x K,,.

Hence, the covering K — K is finite. K is a maximal compact subgroup of G,
because K is a maximal compact subgroup of G. Thus, the covering G — G
is also finite in this case. m

We denote by & the projection of a under the covering map G — G. (For the
choice of @ see Section [1.6.2) Further, let P := pr—'(P).

Example 2.1.11. (1) Let V = Sym(n,R). We claim that
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2.1. Construction of the minimal representation

First note that the fundamental group m(Sp(n,R)) = Z is generated by the
closed curve (see e.g. [Fol89, Proposition 4.8])

[O,27r]—>Sp(n,R),9»—>( cosf -1 sin0-1, )

—siné -1, cosf-1,

Since 2(dp — 4)4 == = 2 we obtain for the integer k:

4 forn=1,3 (mod4),
k=42 forn=2 (mod4),
1 forn=0 (mod4).

and the claim follows.
(2) For V =RP4, p+ q even, we have that 2(dy — 9)4 (Tp)+ € 7 and hence,
k =1. The Lle algebra element km(e, 0, —e) = (e, 0, —e) corresponds to

0 -2«
27 0

0

via the isomorphism g = so(p + 1,¢ + 1) (see Example [1.6.1] (2)). Since the
exponential function of Sp(p +1,q + 1)o applied to this Lie algebra element
is equal to 1, the group Gy is a finite cover of the group SO(p +1,q + 1)o.

Now, in a first step, we integrate the (g, €)-module to a unitary representation of
Go.
Theorem 2.1.12. Assume that V 22 RPY with p 4+ q odd, p,q > 2. Then there is

a unique unitary irreducible representation Ty of Gy on L*(O, du) with underlying
(g, %)-module W. The representation my has the additional property that

mo(p) = pa, (Pr(p)) Vp € Ry

Proof. The (g, t)-module W clearly integrates to a (g, EO)—module since K is con-

nected and simply-connected. (Note that in the euclidean case Ky is not compact. )
By Proposition the element km(e, 0, —e) acts on the highest weight vector ¢

of Wy by the scalar
d
2mi - k2 (do - —)
2 2/,

which is in 2mZ by construction. Therefore, the central element v :=
exp(km(e, 0, —e)) of Ky acts trivially on )™ and hence, by Schur’s Lemma, also on
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Wy. We claim that 7 also acts trivially on W. By the Poincaré-Birkhoff-Witt
Theorem we have W = U (p)U(¥)py = U(p)Wy. Let

= U un(p)

be the natural filtration of ¢(p). Then clearly

W= Ua(p)W,

and it suffices to show that v acts trivially on every U, (p)Wy. We show this by
induction on n € Ny. For n = 0 we have Uy(p)Wy = Wy on which v acts trivially
by the previous considerations. Now suppose v acts trivially on U, (p)Wy. By the
results of Section the space p is the direct sum of eigenspaces of ad(e, 0, —e)
for the eigenvalues —2i, 0 and +2:. Hence

Ad(7)X = ekmade0—e) x — x VX €ep.
For w € U,(p)Wy and every X € p we obtain
v Xw=Ad(7)X - yw = Xw

by the induction hypothesis. It follows that v acts trivially on U,,1(p)Wy and the
induction is complete.

Since the subgroup I is generated by v which acts trivially on W, the whole discrete
central subgroup I" acts trivially on W. It follows that the representation factorizes
to a (g, Ko)-module. (In contrast to Ko, the group K is compact in both the
euclidean and the non-euclidean case by Lemma )

So far, we have constructed a (g, K)-module, where Kg C Gy is a maximal compact
subgroup of the semisimple Lie group Gy and g is the Lie algebra of Gy. Since W
is admissible by Proposition , it integrates to a representation (g, H) of Go
by a standard theorem of Harish-Chandra (see e.g. [Wal88, Theorem 6.A.4.2]).
Now, W is already infinitesimally unitary with respect to the L? inner product (see
Proposition 2.1.8). Thus, H C L*(O, du) and 7 is unitary with respect to the
L?-inner product Further, my and py, o pr agree on Py since they have the same Lie
algebra action. Now, py, |p, is irreducible on L?(O, du) by Proposition 2.1.1] Hence
H = L*(O, dy) and (mo, H) is also irreducible as Go-representation. This shows the
claim. O

Now it is only a technical matter to extend the representation 7, from Gy to G.

Proposition 2.1.13. The representation my extends uniquely to a representation m
of G such that

m(p) = pa, (Pr(p)) Vpe P.
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Proof. The group G has at most 2 connected components: Gy and @Gy. The same
is true for P. We then have the following commutative diagram with exact lines in
the category of groups:

N

{1} Py p——m(P) —={1}

N

AN
N
e \
™0 N\

Here U(H) denotes the group of unitary operators on the Hilbert space H =
L*(0, dy). To extend 7y to G such that it agrees with py, o pr on P, we first
have to show that 7y coincides with p,, o pr on the intersection Go N P. By Theo-
rem , they already agree on P,. Therefore, we have to deal with other possible
connected components of Gy N P.

We first claim that

mo(P) — mo(G)

is surjective. In fact, since G is generated by P and j, the finite cover G is generated
by P and pr='(j). Since pr~!(j) is contained in the identity component Gy, we have
G = PGy and the claim follows. Note that m(P) and 7mo(G) are of order at most 2.
Now we show that

Ty = Px, © PT on Goﬁp.

(a) If V is euclidean, then P = Py and Gy N P = Py. As previously remarked,
To = pa, © Pr holds on B.

(b) Next, if V = RP¢, then mo(P) — mo(G) is always an isomorphism (see Exam-
ples m (2) and (2)) and again it follows that Gy N P = F.

(¢) Finally, let V be non-euclidean with d = 2d,. If & € G'\ G, then the order of
Wo(é) is 2 and WO(P) — 7o(G) is even an isomorphism. Hence, GoN P = B,
as in (a) and (b) and we are done.

It remains to check the case where @ € Ky C Gy. Since P is generated
by Py and & it suffices to show mo(d) = py, (pr(@)) = pa,(a). Let A :=
px, (@) o mo(a1). Since Ad(&) : Py — Py, we have for p € Fy:
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Hence, A commutes with the representation py,|p,. But py,|p, is irreducible
and therefore A = z-idy for some z € C. We claim that Ay = 1)y and hence

z = 1. In fact, on the one hand we have py,(@)vo = o by (2.2). On the
other hand, & € Kj and )y is killed by dm(£) (see Proposition [2.1.4)), hence

7o(&)o = 9. This shows the claim.
Finally, we can show that and 7y extends uniquely to a representation 7 : G — U(H)
with 7 = py, o pr on P. First, uniqueness of 7 is clear, since G = PG,. For
the existence, let ¢ € G. Then ¢Gy = pGy for some p € P by our previous
considerations. Hence, g = pgo with gy € Go. We then define 7 by

7(g) :== px, (Pr(P))70(g0)-

It remains to show that this gives a well-defined homomorphisrn TG —UH).
Well-definedness i 1s again obvious: Suppose pgy = p'g{, with p, p e P, g, g0 € Go.
Then p'~'p = ghgs ' € PN Gy. Since py, o pr and m, agree on P N Gy, we obtain

P (Br(p 1)) pa, (B2 (p) = mo(g0)mo (9 )

and hence

Px (BT(P))m0(g0) = P, (PT(P)) 70 (g0)-

Thus, 7 is well-defined. We now prove that 7 is indeed a group homomorphism.
For this suppose that

/I

P goP 9o = PYo
with p,p/,p" € P and go, gb, 9o € Go. We have to show that

P (BE(p")) 0 mo(gh) © pa, (BT(P")) © To(gg) = pa, (B (P)) © mo(go)-

Rearrangement gives ghp” = p'"'pgogy~'. Therefore, p” and p'~!p lie in the same

connected component of G. Hence, one can find hy € GO such that p'~'p = p”hy.
Together we have g, = p"hogogy 'p -t = Ad(p")(hogogy'). Thus we are finished if
we show that

mo(Ad(p)go) = Ad(px, (pr(p)))mo(g0) Vpe P, g€ Go.
Since Gy is connected, it is generated by expg, (9). Therefore, it suffices to show
dr(Ad(p)X) = Ad(py, (p)) dr(X) Vpe P X €g. (2.17)
But this was already shown in Proposition 2.1.2] and the proof is complete. O

Corollary 2.1.14. Let V' be a simple Jordan algebra which is not of rank r = 2 with
odd dimension. Then all coefficients (Bla), a € V', of the Bessel operator extend to
self-adjoint operators on L*(O, du).
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Proof. 1t is a general result that for a unitary representation the Lie algebra acts
by skew-adjoint operators. Then the claim follows from (2.5)). O

Remark 2.1.15. We do not give a proof here that = is in fact a minimal repre-
sentation in the sense of [GS05]. For this we refer to [Sah92, Section 3.4, Remark
2] for the euclidean case, [DS99, Remark after Theorem 0.1] for the case of a non-
cuclidean Jordan algebra of rank > 3, and [KO03al Remark 3.7.3 (1)] for the case
V =RP1,

2.1.4. Two prominent examples

We show that the representation 7 of G is for V' = Sym(n,R) isomorphic to the
metaplectic representation (see [Fol89, Chapter 4|) and for V' = RP? isomorphic to
the minimal representation of O(p+1, ¢+ 1) as studied by T. Kobayashi, B. Orsted
and G. Mano in [K003a, [KO03bl, KO03c, [KMOT7al, KMOTh].

The metaplectic representation

The metaplectic representation p as constructed in [Fol89, Chapter 4] is a unitary
representation of the metaplectic group Mp(n,R), the double cover of the symplectic
group Sp(n,R), on L*(R™). We do not want to give a construction here, but we
later state the Lie algebra action which uniquely determines the representation p.
The metaplectic representation splits into two irreducible components (see [Fol89,
Theorem 4.56):

LQ(Rn) L2 (Rn> D Lodd(Rn)7

even

where L2 . (R") and L2;(R") denote the spaces of even and odd L*-functions, re-
spectively. We show that for V' = Sym(n,R) the representation 7 as constructed
in the previous section is isomorphic to the even component L2 . (R"). A detailed

analysis of the metaplectic representation can e.g. be found in [Fol89, Chapter 4].

Denote by dpu the infinitesimal version of the metaplectic representation. du
is a representation of sp(n,R) on LZ  (R") by skew-adjoint operators. By [FoI89,
Theorem 4.45| we have

au ( oo ) i Z Cisyiys for C € Sym(n,R),
2,7=1
A 0
d,LL < O At ) Z;Azjyja 5 (A) fOI' A I~ M(TL7 R>7
irj
0 B 1 — H2
,u< 0 0 ) 47riij:1 7 0y 0y; or B € Sym(n,R)
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On the other hand, dr is a representation of g on L*(0) by skew-adjoint opera-
tors. Now g = sp(n,R) by Example (1) and L*(0) = L2 ., (R™) by Example

even

1.5.11] (1). We show that under these identifications combined with the automor-
phism of sp(n, R) given by

(A C )H( 0 ﬁ)(A C )( 0 ﬁ>‘1
t _ 1 t _ 1

B —-A = 0 B —-A 7= 0

([ A" —rnB

T\ -iCc A4 ’
the representations du and dn agree. More precisely, we prove the following equal-
ity of skew-adjoint operators on L?(QO):
Proposition 2.1.16. For A € M(n,R) and B,C € Sym(n,R) we have

At —7B
Uo dW(C,A,B):du(_%C A )oZ/{ (2.18)

withU : L*(O) — L2, (R™) as in (1.47).

Proof. Choose an orthonormal basis of V' = Sym(n,R) with respect to the inner
product (z|y) = Tr(zy). Then for 1 < i < n:

gy, .0 n_ N\~ U 8 yy t
oy W) = ) = ' o, (yy Z - (yy'ea)
0 0
=2 Za: %(gyt)(eay)i (aw (yy' )y)i :
(a) Let (C,0,0) € g, C € n = Sym(n,R). Then
(au( 30 o )ou) vin = Z Chypiay U (y) = Ty YU (y)

= i(yytw(yyt)lc) = (U o dr(C,0,0)) ¥(y).

(b) Let (0,A4,0) € g, Ael=glnR). Aactson V by A-x = Az + xA" (see
Example [.4.3 (1)). Then

(d,u ( _(’;U 31 ) ) Z Aﬂy]a yy') + %Tr(A)@D(yyt)

1]1

=2 Z (A'y)s (a—d}(yyt)y) + %TY(A)w(yyt)

<At(yy

DA|geon) + 5
— (U o dn(0, A,0)) P(y

Y ) + 1Tr(fl)i/)(wf)
),
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2.1. Construction of the minimal representation

since
Te(V—->V,e— A-z)=(n+1)Tr(A).

(c) Let (0,0,B) € g, B € n=Sym(n,R). Then

<du( o ) oU) ¥(y)

:%J:lBij%;y@/J(yy) 21;% 9 Dy [Za () (€ay ]

- _”ZI BUZ (91: a (yy")(eay)i(esy); ]Zl UZ

_ % > 3:1fi2§$5 ! le Bi;(eay)i(esy); + — Ji Bij (gw (yy' ))lj

- % > a:fjgxﬁ (yy") (Pleas ea)yy)| B) + o (Zw (yy") B)

= - (Byelyy))| B) = @ o dn(0,0,-B)) (). -

To obtain an intertwining operator between the group representations 7 and p
note that the group G is by Example (1) always a quotient of the metaplectic
group Mp(n,R). Therefore, we can lift 7 to a representation of Mp(n, R) which we
also denote by m. Then we have the following intertwining formula:

Corollary 2.1.17. For g € Mp(n,R) we have
0
Uow(g):,tL(Ad( 1 \{f)g)ou.
N
Hence,

i( 3TV )ous 120) - 2@
o/

s an intertwining operator between w and L.

Proof. This now follows immediately from ([2.18)). O]

Remark 2.1.18. Together with Example[2.1.11|(1) the previous proposition shows
that the even part of the metaplectic representation descends to a representation
of Sp(n,R) if n is an even integer, and even to a representation of Sp(n,R)/{£1}
if n € 47. This can also seen from the explicit calculation of the cocycle of the
metaplectic representation in [LV80, Section 1.6].
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Chapter 2. Minimal representations of conformal groups

The minimal representation of O(p+ 1,q+ 1)

Let V =RP9 p g > 2. Then by Example the minimal orbit O = O is the
isotropic cone

O={zeR:al+ . +al—-al,—...—ao,=0}\{0},

and the group Gy is a finite cover of SO(p + 1,¢q + 1) by Example [2.1.11] (2).
In [KOQ03c| T. Kobayashi and B. Orsted construct a realization of the minimal
representation of O(p + 1,q + 1) on L*(O). We use the notation of [KMO7b] and
denote by w the minimal representation of O(p+1,¢+1) on L*(O). The action w of
the identity component SO(p+1, g+1)g is uniquely determined by the corresponding
Lie algebra action dw. Let f:g — so(p+1,g+ 1) be the isomorphism of Example
1.6.1] (2). Then by [KMO7bh, equations (2.3.9), (2.3.11), (2.3.14) and (2.3.18)] we
have

dw(f(u,0,0)) = Qiiujxj = i(z|u) foru e 'V,
dw(f(0,7,0)) = Dzi: for T' € so(p, q),
dw(f(O,sl,O)):jilxjaij+M+;+2 for s € R,
dw(f(0,0, —aw)) = %izn:ijj, forv eV,
j=1

where P; denotes the second order differential operator

PJ:ETJZE]D—(QE‘FTL—Q)%
J

with

+1 for1<j<p,
g; =
! -1 forp+1<j<n.

Proposition 2.1.19. For X € g we have

dw(f(X)) = dr(X). (2.19)
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2.1. Construction of the minimal representation

Proof. By (2.3) and (2.4]) the formula (2.19) clearly holds for X € nand X € [. It
remains to check the case X = (0,0, —av) € n, v € V. In this case dr(X) is given

by (see £3)
Ar(X)0(a) = § (Bu(a)jav).

We calculate By (x) explicitly. Let (e;); be the standard basis of V' = R". The dual
basis with respect to the trace form 7 is given by €; := %ejej, where

+1 forj=1landp+1<7<n,
€ =
! -1 for2<j5<np.

A short calculation shows that

3 (28 + %)) for i # j,
P(e;, €)= < te(mier + zie;) — tex fori=j #1,
%195 fori=7=1.
Hence,
"L 92 20
(By(x)|aey) = (‘9@;/}1:] (P(ei, )z, ex) + p+g > 8;%)7; (z)7 (€, ex)
82 1 o4 52 1 1
a;f( )T (Zﬂf, €k> -+ ; a;f;( )T (562‘(13161 + :ciei) — ZE@T, ek)
p+q
0% 1. _ _ pH+q—2 00
+ ; ST, ()7 (5(:% + xjei),ek) + 8_:1%(36)
i#j
1 82 p+q 82
= §Ekl'k ang (a:) ; 8.’1:? (ZL‘) (€1$1(51]€ +x 511.3 €Z€k$k>
p+q
0% p+q—2 0
+2 Z@xiaxk( ) 2 8_:L"k( )
ik
1 oY p+q—20Y 1
= e O+ E —
5 EkTk Y+ B + > On 2
This shows ([2.19) and finishes the proof. O

The previous proposition now implies the following result for the group represen-
tations:

Corollary 2.1.20. The representation n of Gy descends to the group SO(p+1, g+1),
on which it agrees with w.

Remark 2.1.21. Second order differential operators similar to the operators P;
appear also in [LS99, Section 2|. (In [LS99] they are denoted by ®; and ©;.)
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Chapter 2. Minimal representations of conformal groups

2.2. Generalized principal series representations

In this section we show that the definition of the action dm is motivated by the
study of certain principal series representations w, of G. More precisely, the action
of every dmy, A € W, is obtained by taking the Fourier transform of the non-
compact picture of some principal series representation dws.

Recall that P™** denotes the maximal parabolic subgroup of G' corresponding to
the maximal parabolic subalgebra p™** (see Section . P™* has a Langlands
decomposition P™* = L™ x N with L™ C Str(V'). For s € C we introduce the
character

Xs(9) = [x(g)]** 2, g€ L™,
of L™** and extend it trivially to the opposite parabolic Pmax ;= [max x N. Consider
the induced representation (I, w,) := Ind%(xs) with

I,={f € C™®(G): f(gp) = xs(P)f(g) Vg € G,p € P}

and G acting by the left-regular representation. By the Gelfand-Naimark decom-
position NPmax C (J is open and dense. Therefore, a function f € I, is already
determined by its restriction fy (z) := f(n.) (x € V) to N = V. Let I be the
subspace of C*°(V') consisting of all functions fy with f € I,. Let w; be the action
of G on I given by

ws(9) fv = (@s(9)f)v, geG, fe Zs
This action can be written as (cf. [Pev02, Section 2|)
ws(g)n(z) = xs(Dg~"(2)) f(g™ =), zeV,

for g € G and n € I, where Dg~!(z) denotes the differential of the conformal trans-
formation g~! at x, whenever it is defined. Calculating the differential explicitly
yields (see [Pev02l, Section 2|)

ws(na)n(r) = n(z — a), ng € N,
ws(g)n(x) = xs(g~ " (g~ 2), g € L™,
w(f)n(x) = [det(z)] > rn(—a").

Let us describe the infinitesimal version dws of w, (cf. [Pev02, Lemma 2.6]):

dws(X)n(x) = —Dyn(x) for X = (u,0,0),
An(0n(e) = = (24 3) TTnte) - Dranla)  for X = (0,7.0)

dws(X)n(x) = — <25 + ;) 7(z,v)n(x) = Dp@ypn(z)  for X = (0,0, —v).
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2.2. Generalized principal series representations

Now for A € W consider the Fourier transform Fy : L?(O,, duy) — S'(V) given
by

Falz) = /O e~ () djia (). cev

We show that F, intertwines the actions of dwy and dw, for a certain s:

Proposition 2.2.1. Let A € W and s := % (>\ — %) Then for X € g we have
f>\ ©) dﬂ')\(X) = de(X) O"FA.

Proof. (1) Let X = (u,0,0), u € V. Then

Fro dma(X)u(z) = i / e~ (yp(y)] ) dpiay)

Ox

= / (iylu)e " "y (y) dua(y)
Ox

=D, [ e "“Wy(y)dus(y)
Ox

= dws(X) o Fab(z).

(2) For X = (0,7,0), T € I, the intertwining formula can more easily be checked
on the group level. Let g € L. Then by ([1.45)):

n

(g™ / 6D () dpan(y) = x(g") " F / TV () dua(y)
Ox Ox

— x(g")} /@ (™) dua(y)

Now the intertwining formula for the derived action follows by putting g := e
and differentiating with respect to ¢ at ¢t = 0.
(3) Let X = (0,0,—v), u € V. By Theorem the operator B, is symmetric
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Chapter 2. Minimal representations of conformal groups

on L?(0,, duy) and hence

Fio dmy(X)(x) = - /O &) (Byp(y)] v) djua(y)

(Bae "] v) ¥(y) dpa(y)

0 0 ,
. il —i(z|y)
N (<P (021) yJM@y) ‘

(P (—iox) ye i@l _ i)\axe’i(“lyw v) ¥(y) dpa(y)

>

) () daa(y)

R R T

S~ — o

>

= [ (e 1P(@0) = Arla, o)) b))

(~Drwp = (25+ %) 7(a,v) /O T WY (y) dpa(y)

A

— dws(X) o Far(x). O

Remark 2.2.2. We do not claim that for the minimal Wallach point A = \; = %l

the representation 7 is a subrepresentation of wg, s = % ()\ — %) In general this
is not the case. For instance, for a euclidean Jordan algebra one has to consider
principal series representations of some covering of G' (see [Sah93]). And for V =
RP4 the representation 7 is for p — ¢ = 2 (mod 4) not a subrepresentation of
the spherical principal series representation wg, but of some non-spherical principal
series (see [Sah95, Remark after Theorem 5.A|). With Proposition we merely

want to motivate the definition of the differential action d).

Remark 2.2.3. Principal series representations as constructed above have been
studied thoroughly by S. Sahi and G. Zhang. In [Sah93], [Sah95| and [Zha95| they
determine the irreducible and unitarizable constituents of the principal series rep-
resentations associated to conformal groups of euclidean and non-euclidean Jordan
algebras. The proofs are of an algebraic nature. Using these results, A. Dvorsky
and S. Sahi as well as L. Barchini, M. Sepanski and R. Zierau constructed unitary
representations of the corresponding groups on L2-spaces of orbits of the structure
group. In [Sah92| the case of a euclidean Jordan algebra is treated and the non-
euclidean case is studied in [DS99], [DS03| and [BSZ06) Section 8|. However, they
all exclude the case V = RP? with p # ¢, p,q > 2. In this case the L?-model of
the minimal representation was first constructed by T. Kobayashi and B. @rsted in
[KOD03c|. Their construction does not use principal series representations. The re-
lation to the principal series representations in this case is given in [K©003c, Lemma
2.9].

In contrast to the methods of [Sah93|, [Sah95] and [Zha95], our construction is only
carried out for the orbit of minimal rank. On the other hand, the advantage of our
construction is that it includes all cases for which the minimal representation exists.
Hence, it gives a unified construction of the minimal representations.
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2.3. The e-Casimir

2.3. The &-Casimir

We now compute the action of the Casimir operator of £ on radial functions. It
turns out that the Casimir acts as a certain ordinary differential operator D,,, of
order four. (The parameters pu and v were defined in ([1.11)) and depend on the
Jordan algebra V.) D, , extends to a self-adjoint operator on L*(R., ¢+ dt).
By using the #-type decomposition of the minimal representation 7, we compute
the spectrum of D, and show that its L*-eigenspaces are one-dimensional.

2.3.1. t-type decomposition

In this section we give the -type decomposition of the minimal representation 7. Up
to this point we have not used any previous results about the minimal representation
7. For the proof of the €-type decomposition we use results on principal series
representations from [Sah93| and [Sah95| as well as the results of [KO03c| for the
case V = RPY. However, for the construction of the minimal representation in
Section we did not need these results.

Theorem 2.3.1. The K-type decomposition of W is given by

W=
=0
where we put
Wi = pootim, (2.20)

Proof. Comparing the Lie algebra action (see Proposition [2.2.1]), we find that the
representation 7 is isomorphic to the corresponding unitary irreducible representa-
tion on L?(O, du) constructed in [Sah92] for the euclidean case, in [DS99], [DS03]
and [BSZ06|, Section 8] for the non-euclidean case 2 RP? and in [KQ03c| for the case
V = RP4. In [Sah92| the algebraic results of [Sah93| are used, and the constructions
in [DS99], [DS03| and [BSZ06, Section 8] use the results of [Sah95]. Hence, for these
cases the €-type decomposition follows from [Sah93, Equation (7)] for the euclidean
case and [Sah95, Theorem 4.B] for the non-euclidean case 2 R4, In the remaining
case V = RP? the £-type decomposition is given in |[KO03c, Lemma 2.6 (2)]. This
finishes the proof. O

2.3.2. The £-Casimir

Let (Xj); be any basis of £ and (X/); its dual basis with respect to the Ad-invariant
inner product (—, —) (see Section for the definition of (—, —)). We call

Ce=> X;X.
J
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Chapter 2. Minimal representations of conformal groups

the Casimir element of €. This definition is clearly independent of the chosen basis.
Cl is an element of the center Z(¥) of the universal enveloping algebra U (£) of € and
hence it acts as a scalar on each irreducible €-representation. In fact, one can show
that C acts on the irreducible ¢-module with highest weight « by (see e.g. [Kna02),
Proposition 5.28|)

(o, o0 + 2p),

where p is the half sum of all positive roots (counted with multiplicities see ((1.65])).
Thus we have the following action of C; on the K-types in W:

Proposition 2.3.2. The Casimir operator dn(C%) acts on every K-type W7 of W
by the scalar

. r
% (4](]+M+1)+—

Proof. By (2.20) the K-type W/ has highest weight a = g + jv;. Hence, we just
have to calculate the inner product (ag+ jv1, a0+ jv1 +2p). With (1.66)), (2.9) and
(1.67)) we obtain

{ap + jvi, ap + jvi + 2p) = 72 (v, ) + 25 {71, a0 + p) + (a0, o + 2p)

d d
—r—0(4j(j+u+1)+r° ) 0

LU P A
&n 2 |
We now compute the Casimir action on the subspace L?(O),.q of radial functions.

2

Theorem 2.3.3. Let ¥(x) = f(|z|) (x € O) be a radial function for some f €
C>®(Ry). Then

An(Covte) =~ 12 Dy + 15

i) 7GeD

where D,,,, is the fourth order differential operator in one variable given by
1
Dyw =35 (0 +p+v)(O+ ) =) (000 +v) - t*)

and 0 = t% denotes the one-dimensional Fuler operator.

Proof. The operator D,,,, can alternatively be written as

d! d3 d?
42 2 2 . 2
D,, =t T 2(n+v + 3)t—dt3 + (" +3ur+ v +6(p+v)+7-2t )—dt2

1d
+ (v +v) + 7 4 3w + 7+ 2 v) + 1 =2+ v +3)8°)
+ (= (p+2)(p+v+2).
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Let (ej); € V be an orthonormal basis of V' with respect to the inner product
(—|—). Then by (1.51)) and (1.63))

-
Ce = o ; e;, 0, 056] (mod U (&)

Since ¢ annihilates radial (= Kj-invariant) functions, the action of the Casimir
element Cy on radial functions is already given by

Z dr(ej, 0, —ae;)?. (2.21)

(a) Let us first assume that V' is non-euclidean of rank r» > 3. Then d = 2d, and
hence = —2 and v = ¢ _ e —1. By (2.12) and Corollary (L.7.7) (2)

(w0, ~au) () = <(Buf)(jal)(alu),

with B, as in (1.73]). Hence, using again (2.12)):

e e (G EC Py
) + (Bof)(|z])7(Ba(ze;), €5)]

E2 (g2 ) (]l + 21|—1|<B P(1a) 37 (P (az] aey) 7, ¢;)

+ 2B (1) Y (esler)
! |z[2(B2f)(|z |)+—|x|(B 1Y (|x|)+%Z(B f)(lﬂ)}

Now a short calculation shows that this is equal to ™ Du .
(b) Now suppose V' is a euclidean Jordan algebra. Then p=5%—1land v=—1.

By (2.12) and Corollary (1.7.7) (1
d
m(u,0, ) () = < (B ) (olu) + 5 (elu) £ (1)
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Chapter 2. Minimal representations of conformal groups

Using the calculations of (a) we find that

— Z dm(e;, 0, —aej)*(x)

_ [rx|2<Bzf><|x|> + 222l (B () + 5 (B, f><|x|>]

+Z
nd

- [rx|2<Bzf><|x|> + 2242l b+ 5 (B ()

Sl le) (B (e + Bur )] + ( 5) (6Iej)2f”(|x|)]

5o (B e + Bur ] + 7 (5 ) (oD

Note that for © = ktey, k € K, = Aut(V)g, t > 0, we have
(z]e) = tr(ktey) =t = |kteq| = |z].

Using this, a short calculation gives

dn(Co(z) = —g—fl (DW + 70 (2)2) ().

(c¢) By Proposition the remaining case is V' = RP? which is treated in Ap-
pendix B.2] O

Recall that = denotes the set of possible pairs (p, v) = (u(V), v(V)) of parameters
that appear for some simple Jordan algebra V' for which the minimal representation
7 exists. Then we can draw the following corollary:

Corollary 2.3.4. For (p,v) € = the operator D,,,, extends to a self-adjoint operator
on L2(R, "1 dt) with only discrete spectrum. The spectrum is given by {j(j +
p+1):5€Ng} and the L*-eigenspaces are one-dimensional.

Proof. Recall that by Theorem the operator dm(C) acts on the subspace
L3O, dp)rag & L* (R, t#T 1 dt) of radial functions by

2o thd)
/J’l’ 9

3n
Further, dm(Ct) acts on each £-type W7 by the scalar

)

rod

(4J(J+u+1)+7

8n
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Now, the Casimir element C is elliptic in U(€) and hence, by [War72, Theorem
4.4.4.3|, dn(C) extends to a self-adjoint operator on L*(O, du). Restricting to
radial functions then shows that D, , is self-adjoint on L*(R, ¢ d¢). Further,
the space W of £-finite vectors is dense in L*(O, du) and decomposes discretely into
t-types W = @2, W7. In every t-type W/ the space

erad = Wj N L2<07 d”)rad

of radial (= K-invariant) functions is one-dimensional by the remark at the end

of Section [1.6.3] Together it follows that > W, is dense in L2(R., t*++1dt)

and D, , acts on each summand Wf;d by the scalar 45(j + p+ 1). This finishes the
proof. O

2.4. The unitary inversion operator Fp

In this section we define the unitary inversion operator F» and prove various prop-
erties of it. The action of Fp together with the action of the parabolic subgroup P
determine the whole representation. Therefore, one is interested in a closed formula
for the operator Fp. As a first step in this direction we give a closed formula for
the action of Fp» on radial functions.

Let wy be the projection of wy € G (see Section ) under the covering map

G — G. Then Wy = & = j&, where & is as in Section [2.1.3] and
j = €XPg (g(ea 07 —6)) :

The parabolic P and the element wj, generate the whole group G (since & € P).
Therefore, the representation 7 of G is determined by the action of P, which is
given by the representation py, (see and (2.2)), and the action of wy. We call
the operator

the unitary inversion operator on the minimal orbit O = O;. We will later see that
Fo is an operator of order two (see Corollary which justifies the name. Since
the action of w(&) is given by p,, () and any two Cartan involutions are conjugate,
the operator Fp does (up to unitary equivalence) neither depend on the choice of

the Cartan involution «, nor on the choice of @ € GG. We collect a few properties of
Fo.

Theorem 2.4.1. (1) Fo is a unitary operator on L*(O) of order at most 2k with

k as in Theorem|2.1.12 (1).

87
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(2) The operator Fo is an automorphism of the following topological vectorspaces:
IO € 12(0) € I(0)™,

where L*(0)> denotes the space of smooth vectors of the representation m and
L*(0)~ its dual.
(3) Fo intertwines the Bessel operator B and multiplication by —ax:

Fooaxr =—Bo Fp, (2.22)
FooB=—azxo Fo. (2.23)

Moreover, any other unitary operator on L*(O) with these properties is a
scalar multiple of Fo.
(4) We have the following commutation relation for the Euler operator E =

n o .
Zj:l Lj Ba;

FooE =— (E+T%d> o Fo. (2.24)

(5) On every t-type W7 the unitary inversion operator Fo acts as a scalar.
(6) Fo leaves the space L*(O)raq of radial functions invariant and therefore re-
stricts to a unitary operator

fO,rad : L2<O)rad - L2(O>rad-
(7) Fo = e—m%(do—gpph(a)eig(e\x—B) - e—iw?(do—%)+€i%(e\x—6)ph(a),

Proof. (1) Clearly Fp is unitary since 7 is a unitary representation. To show the
second statement, observe that

it 0 (do— 2 g
Fo = e 2072t py ()7 ().

First, by the definition of k (see Lemma [2.1.10)), e~im 3 (d-%)+ i of order at

most 2k. Further, the operator py, () is of order 2 since a? = 1. Finally, by
the construction of G (see Lemma [2.1.10)), the element j is of order at most

2k in G. Since all three factors commute, this shows the claim.

(2) The whole group G acts by automorphisms on the space L?(0)* of smooth
vectors and hence also on its dual.

(3) The adjoint action of wy on g is given by (see ((1.50)))

Adg(wo)(u, T, v) = Adg(wo)(u, T,v) = 8(u, T, v) = (—av, =T, —au).
and for any X € g the identity

7(wo) o dm(X) = dm(Ad(uig)X) o 7 (up)
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2.4. The unitary inversion operator Fp

holds. Now, for X = (u,0,0) we have Ad(wy)X = (0,0, —au) and for Y =
(0,0, u) we have Ad(wy)Y = (—awu,0,0). Therefore the commutation relations
follow with and . Conversely, let A be another unitary operator on
L*(O) with these properties. Then the operator Fpo A™' commutes with the
n- and n-action. Since n and 0 generate the whole Lie algebra g (see Section
1.6.1), it follows that A leaves the g-module W invariant and the operator
Fo o A~ commutes with the action of g. Since W is irreducible as g-module,
it follows from Schur’s Lemma that FpoA~! is a scalar multiple of the identity.
Hence, A is a scalar multiple of Fp.

(4) Similar to (3) with X = (0,id, 0).

(5) By Lemma the element @, is central in K. Hence, 1, is central in K.
By Schur’s Lemma, Fp acts on every -type W7 as a scalar.

(6) In particular, wy commutes with every k € K = pr~'(Ky). Hence, Fo leaves
the space L*(0)%t = [?(0),.q of Kp-invariant functions invariant.

(7) We have

7T<U70) = W(d)ﬂ(eg(ﬂo,fe)) = P, (Oé)eg dn(e,0,—€)

and the claim follows from ([2.3)) and (2.5)). O

Example 2.4.2. (1) Let V = Sym(n,R). In the notation of Section we
have by Corollary [2.1.17}

Fo=e ™iU Y ( _Ol 7(; ) U.

T

™

From [Fol89, Equation (4.26)] we know that p ( _01 0

™

) is essentially the

inverse euclidean Fourier transform. More precisely,
0 (4 P P, |
% 1 0 @ZJ(I‘) =€ 422~7:Rn¢(2.y)7
where

Fanth() = (27) 3 / e (y) dy,

n

Fanth(y) = (27T)_g/ e V() da.

n

Note that if one views the Fourier transform Fg» as operator on LZ . (R"),
then it is of order two since

Finth(a) = ¢(—2) = ¥(2)
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Chapter 2. Minimal representations of conformal groups

for ¢ € L2 ., (R™). Therefore, it follows that Fo is also of order 2. Further,

even

by [Fol89, Theorem 4.45]:

UL (0)% = Lgyen(R")* = Seven(R")

even

is the Schwartz space of even functions on which the Fourier transform acts
as isomorphism. This corresponds to Theorem m (2). Moreover, the com-
mutation relations (2.22) and (2.23)) follow from to the well-known identities

fRn °ox; = —Dj o fRn,
fRnODj :l’jofRn.
10
i 0x; "
(2) Let V = RP% Then Fp is the unitary inversion operator on L*(Q) which was
studied in detail by T. Kobayashi and G. Mano in [KM07a, [KMO7h]. Most
results of Theorem can be found in [KMO7b], Theorem 2.5.2].

where D; =

By Theorem [2.4.1] (6) the operator Fp restricts to an operator on L2(0),aq. Since
the map O — R, z — |z|, induces an isomorphism L*(O),,q = L*(R,, t* 1 d¢),
we obtain a unitary operator 7 on L?*(R.,t*™*1dt) which makes the following
diagram commutative:

LA(Ry, tv 1 dt) —T= L2(Ry, to v+ dt)

Ni iw

L2(0>rad LQ(O)rad

f(’),rad

The main result of this section is an explicit expression of the integral kernel of
7T in terms of Meijer’s G-function. The idea of proof is due to T. Kobayashi and G.
Mano who proved the result for the case V = RP? (see [KMOTh, Theorem 4.1.1]).

Theorem 2.4.3. The operator T is the G-transform T"" which is defined by
Trvy(s) = / K (4 Yu ()4 Vu e CF(R,),
0

with integral kernel

V(g . 1 o0 (1) v o p ptv
KEA(0) 2= 2M+”+1G04<(1) ‘0’_5’_5’_ 2 |

Here G2(z|by, by, b3, by) denotes Meijer’s G-function as defined in Appendix [D.4]

Remark 2.4.4. For the case V' = RP? T. Kobayashi and G. Mano computed the
action of Fp on every (K )g-isotypic component of L?(0), not only on radial func-
tions (see [KMOTh, Theorem 4.1.1]). As integral kernels they obtained G-functions
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2.4. The unitary inversion operator Fp

with more general parameters. They further use this result to compute the full
integral kernel K (x,y) € D'(O x O) of the operator Fp (see [KMO7hb, Theorem
5.1.1]). Maybe a similar strategy can be applied in the general case. A further
step in this direction would be to compute the action of Fp of other (K7)o-isotypic
components of L*(0).

Example 2.4.5. For v = +1 the integral kernel simplifies by (D.34]) to a J-Bessel
function

_ptv+1 1

KPEHt) =t J.(2t2)

such that 7#*! becomes a Hankel type transform. Then, in view of Example
(1), Theorem for V' = Sym(n,R) corresponds to the fact, that the
euclidean Fourier transform preserves the space of radial functions and acts on
Y(z) = f(|z]) by (see [SWTI, §3, Theorem 3.3|)

where
Hof(t) =t "% / Tuce () ()5 dt’
0

is the Hankel transform. The same happens for the euclidean Jordan algebra V =
RY™. This case was studied thoroughly in [KM07a.

The rest of this section is devoted to the proof of Theorem [2.4.3] For this we
transfer the situation from R, to R in order to use classical Fourier analysis. We
introduce two unitary isomorphisms

oy o LRy, 0 dt) — L(R), o fy) = eEVf(eY),
- LA(Ry, tH M dt) — L(R), o_fly) = e TEf(eY).

Define the subspace & C L*(R, t*t 1 dt) by

S =07 (S(R)) = o (S(R)),

where S(R) denotes the space of Schwartz functions on R. We endow S with the
locally convex topology such that o, and o_ become isomorphisms of topological
vectorspaces. By S’ we denote the dual space of §. Via duality o, and o_ then
extend to isomorphisms of §’. For any x € 8§’ one can define an operator A, : S —

S’ by

Af(t) = /O h k(tt) fOP A,
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Chapter 2. Minimal representations of conformal groups

meant in the distribution sense. It is easily seen that
Af=0"Yo_k*o.f) VfesS. (2.25)

This shows that A, indeed defines a continuous linear operator S — S’. Now, to
prove Theorem we have to show that 7 = Ay with K = K#*”. Our strategy
of proof is due to T. Kobayashi and G. Mano (cf. [KMQO7bl Section 4|) and can be
described as follows:

(1) We first show that 7 = A, for some k € §'.

(2) Then we prove that A, fo = Ak fo for a specific function fj.

(3) Finally, (2) will imply that x = K.
These claims are proved in the following three subsections.

2.4.1. Translation invariant operators on R

We recall the following well-known fact which can e.g. be found in [SWTI] Theorem
1.3.18]:

Fact 2.4.6. Every bounded translation invariant operator B on L*(R) is a convolu-
tion operator, i.e. Bf = uxf (f € L*(R)) for some tempered distribution u € S'(R)
whose Fourier transform u is in L= (R).

Here translation invariant means that
Bol(zx)=1{(x)oB VzeR,

where {(z) : L*(R) — L*(R), ({(x)f)(y) := f(y — x) denotes the translation opera-
tor.

To transfer our situation from R to R we define an operator 7 on L%(R) by the
following diagram:

LRy, tr L de) — > L2(Ry, t#Hv L dt)

Hl ) i

L*(R) L*(R)

Lemma 2.4.7. T is translation invariant.

Proof. We put H := L(e) € | and consider exp(sH) = ¢°1 € L for s € R. Since
Ad(wy) exp(sH) = exp(—sH) we have

Fo o px (exp(—sH)) = py, (exp(sH)) o Fo.

Restricting this identity to radial functions yields

Tog(s)=o(=s)oT,
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2.4. The unitary inversion operator Fp

where o(s) denotes the unitary operator on L?(R,, t**1dt) given by

o(s)f(t) = e fle=t).

Multiplying with o_ from the left and o' from the right gives

_ ptrt2
5 S

T o (04 00(s)o 0.')=(0_o0p(—s)oo ") oT.

Now the claim follows from the identities

or00(s)oo ! =0_o0p(—s)oo !t ={(s). O

By Fact , T is a convolution operator, i.e. for some tempered distribution
u € S'(R) we have Tf = u* f for every f € L*(R). Put s := 0_'u € S’. We then
obtain

(0-oT)f = (Too)f

=0 Kkxo,f

= (U— © Aﬁ)f
by (2.25)). Since o_ is an isomorphism this implies 7 = A,.

2.4.2. Action on
Let fy be the function on R, defined by

fo is exactly the radial part of the €-finite vector vy introduced in Section [2.1.2| For
the equation A, fy = Ak fo to make sense we first have to show that fy € S and
K=Kt eS8

Lemma 2.4.8. f, € S.
Proof. We show that o, fo € S(R). For this define functions fi (k € Ny) on Ry by

Filt) ==t Ky i (2).

Then fy is as above. We have

(u+u+2
2

o fi(y) =€ Wy (eY).

The asymptotic behavior of the K-Bessel function near 0 and oo is given by
and (D.21]). From this together with Lemmal[1.3.1]it easily follows that the functions
o, fr are rapidly decreasing, i.e. y‘oy fi(y) is bounded on R for all k,¢ € Nj.
Finally, from the differential recurrence relation for the K-Bessel function
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Chapter 2. Minimal representations of conformal groups

one deduces the following recurrence identity for the derivatives of the functions
o4 fi:

d pA v+ 2

d—y(<7+fk) = (T + %) (o4 fr) — %(U+fk+1)'

Hence, higher derivatives of o, f, are linear combinations of the functions o fi

which are rapidly decreasing by the above considerations. Therefore, o fy € S(R).
O

To show that K*" € S’ we first prove a precise statement for the asymptotic
behavior of K*"(t).

Lemma 2.4.9. The function K*"(t) has the following asymptotic behavior:
(1) Ast —0:

27T (5)t™ +o(t™) forv >0,

1
BV (1) — _ _

KM (t) = TS ey X 2In(t) + o(In(t))  forv =0,

2 2 27T (=%) + o(1) forv < 0.
(2) Ast — oo:
1 2ut2043 1 2u—3 1
K'val/ [ 4 2 2 — 1 2 .
(t) \/7_rt cos( t 1 7'(') < +O(t ))

Proof. This follows directly from (D.36)) and (D.37). O

The proof of the following lemma does not follow [KMO7b]. The corresponding
proof of [KMOT7b| Claim 4.6.4] seems more complicated than necessary.

Lemma 2.4.10. K" € §'.

Proof. Using Lemma (1) (and Lemma it is easily verified that there
is some constant C' > 0 such that |o K*¥(y)| < Ce2¥ as y — —oo. Hence,
X(—,00+ K" € LY(R) C S'(R), where x4 denotes the characteristic function of
A C R. It remains to show that also xjo )0+ K" € S’'(R). By Lemma (2),
the asymptotic behavior of (o, K*")(y) as y — oo is given by

(0 )) = = e cos (2eéy s 3#) (1406 H).

Therefore x(9.00)04 K*" — cg € L*(R) C S'(R), where ¢ = —\/%7 and

1 1 2 _3
0(0) = X ()t cos (280 - 22,
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2.4. The unitary inversion operator Fp

Hence, it remains to show that g € S'(R). (Since clearly g ¢ L'(R), this is the
crucial part.) For ¢ € C2°(R) we integrate by parts:

w1 d 1, 2u—3
/g(y)w(y) dy =/ e Hp(y) - —— |cos 263y — 22 | ay
R 0 dy 4
- (2 B 2M4_ BW) ‘P(O) - /0 (% [G_inO(y)} - COS (26%3/ _ 2#4— 37?) dy.

The right hand side clearly makes sense also for ¢ € S(R) and defines a tempered
distribution. Since C2°(R) is dense in S(R), ¢ extends to a continuous linear func-
tional on S(R) and is therefore a tempered distribution which finishes the proof. [

Now we can calculate the actions of A, and Ag on fj.

Proposition 2.4.11. (a) A.fo = fo.
(b) Ak fo = fo.
Proof. (a) By Theoremm (7) we have Fp = e_”%()(do_%)ﬂ“eig(e‘x_B)p)\l (). Ap-
plying py, («) to ¥y gives py, (a)g = 1y since o € K, and 1) is K-invariant.

Therefore, Foty = =3 (do=5)+¢i% (ele=B)y,
(1) If V is euclidean then by (2.13)) we have (e|x — B)¢o = ¢y and hence

6i%(e|x B) w _ 67,7r—¢

(2) If V is non-euclidean of rank r > 3, then by (2.14) the function )y is
annihilated by (e|z — B) and therefore

e 3By = .

(3) The remaining case V = RP? is treated in Appendix . By Lemma
[B1.3 we have

iz (e=B)yy — ot ITE )4 g
Together we obtain
eig(dx—l’j’)wo _ do—é)wjo
and hence

Fotho = tho.

Since 1o(z) = fo(|x|) this gives the result for 7 fo = A, fo.
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Chapter 2. Minimal representations of conformal groups

(b) The assumptions for (D.35)) are satisfied if we put a = —2“4”, a=%w=1,

n = (%)% and (by, by, bs,bs) = (0, %, -4 — £ (use Lemma [1.3.1). Then we

\ 2y 2
obtain

Ak fo(t)

_1 > 20 ¢t ’ v % pAv = N pptr+1 347
g [0 (() g 55 R
= /OOG?)Q z 237 0 Lz B —M+V Kz(?mé)x%:y dz
0 2 22 2 2
1 £\ 2
:5(;5;1((5)
1 £\ 2
38 ((3)

where we have used the reduction formula (D.30]) for the last step. Eventually,
the claim follows from the simplification formula (D.34]). O

2.4.3. A uniqueness property
Now we finally prove that x = K. The main point is the following lemma:

Lemma 2.4.12. Let ky,ky € S If there exists a function f € S such that a/;”
vanishes nowhere on R and A, f = Ay, [, then k1 = Ka.

Proof. With (2.25)) we obtain
O_RKy*0,f =0_Koxo,f.

Taking the Fourier transform on both sides yields

—

T R 0rf =0_Ra-04f.

. - . . . . —_— —_—
Since o, f vanishes nowhere, this implies 0_xk; = 0_k3 and hence k1 = Ko. O

Now, we already know that A, and Ax agree on fy. To apply the previous

lemma and finish the proof of Theorem , it remains to show that aﬁ vanishes
nowhere on R. This follows from the next lemma.

Lemma 2.4.13. For the Fourier transform of o fy we have the following formula:

m(ﬁ)IQHZQ”fF <M+V+2—%i§)l“(#_y+2—lz’§).

4

—_—
In particular, o fo vanishes nowhere on R.
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2.4. The unitary inversion operator Fp

Proof. With the formula (D.16]) for the Mellin transform of the K-Bessel function

we calculate

o) = | " e (o fo) (@) da

o0

= / eEE O, (") dx

P B <“+”+2—1¢§)F(“_:+2—%@'§).

Since p +v > —1 and 4 — v > 0 by Lemma this defines a function on the
whole real axis R which vanishes nowhere. O
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3. Generalized Laguerre functions

We consider the ordinary fourth order differential operator
1
Duv = — (0 +p+0)(0+p) —2%) (000 +v) — %),

depending on two complex parameters u, v € C. Here 6 = xd%. In Theorem it
was proved that for (u,v) € =, the operator D,,,, is the radial part of the action of
the £-Casimir on the minimal representation of a simple Lie group G (see Section
for the definition of =). In this case, the operator extends to a self-adjoint operator
on L?(R,, z#*t 1 dz) with discrete spectrum given by {4j(j +pu+1):j € Ng} (see
Corollary [2.3.4)).

In this chapter we explicitly construct the L?-eigenfunctions of D,,,. Furthermore,
for an odd integer p > 0 and generic v € C, we find a fundamental system AZ ’j”(x),
1 =1,2,3,4, of solutions to the fourth order equation

Dyyu=45(j+p+1)u

for every j € Ny. We prove various properties for the functions A} J”(:v) such as
asymptotics, integral formulas and recurrence relations. Finally, we relate the L2-
eigenfunctions Ay (x) to the minimal representation of G as constructed in Section
2.1l This gives explicit expressions of €-finite vectors in the representation. On
the other hand, results from representation theory also provide simple proofs for
statements on the L2-eigenfunctions A’Z‘J” (x), such as orthogonality relations, com-
pleteness in L*(R,, z#T*1 dx) or integral formulas.

Most results of this chapter are published in [HKMMO09b] and [HKMMO09a]. There
only the minimal representation of O(p + 1,¢ + 1) is used and hence the class of
parameters is more restrictive than in this chapter.

3.1. The fourth order differential operator D, ,

In this section we collect basic properties of the fourth order differential operator

D

e

Proposition 3.1.1. (1) D,, =D, , + (p—v)(p+v+2).
(2) Duu = M is a differential equation with reqular singularity at x = 0. The
characteristic exponents are 0, —p, —v, — i — V.
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Chapter 3. Generalized Laguerre functions

(3) If p,v € R, then D,,,, is a symmetric unbounded operator on the Hilbert space
L3R, z# 7+ dx).

(4) If (u,v) € Z, then D,,,, extends to a self-adjoint operator on L*(R., zF 1 dx)
with discrete spectrum given by {4j(j +n+ 1) : j € No}. Furthermore, every
L?-eigenspace is one-dimensional.

(5) In the special cases where v = %1 the differential operator D,,, collapses to

D1 = Sz,:tl — (p+ 1)27
where

Su—1 =~ (0(0 + p) — 2?),

Spt1 :—x(0(0+u—|—2)+u+1—m)

P—‘&It—\

Proof. (1) A simple computation shows that

1
Dy = 90(0 +p) (O + )0+ p+v) + 2?

—2(92+(u+u+2)8+ (”+2)(‘;+V+2)>, (3.1)

whence D, , =D, , + (p—v)(p+ v +2).
(2) It follows from ((3.1]) that

2Dy — N =00+ )@ +v)0+p+v) (modz-Clx,0)),

where Clz, 0] denotes the left C[z]-module generated by 1,6,62, ... in the Weyl
algebra Clz, -L]. Therefore, the differential equation D, ,u = >\u has a regular
singularity at x = 0, and its characteristic equation is given by

s(s +p)(s +v)(s +p+v)=0.

Hence the second statement is proved.
(3) The formal adjoint of # on L?(R ., x#* 1 dx) is given by

0" =—0—(n+v+2).

With this it is easily seen from the expression that D, , is a symmetric
operator on the same Hilbert space.

(4) This statement is simply Corollary [2.3.4]

(5) A simple computation. ]

Remark 3.1.2. It is likely that D, is still self-adjoint on L*(R;, 2#***! dx) with-
out assuming that (u,v) € Z. For example, for v = £1 and arbitrary p > —1
we construct L2-eigenfunctions A“ =+ oof D,, +1 which are essentially Laguerre poly-
nomials (see Corollary |3.4.3] H and Remark - Hence, they form a basis of the
corresponding L?-space and it follows that D, ;1 is self-adjoint with discrete spec-
trum. However, our proof of self-adjointness uses unitary representation theory and
involves the condition (u,r) € = in a crucial way.
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3.2. The generating functions G!"”(t, z)

To determine eigenfunctions of the operator D,,,, we define the following generating
functions G4 (t,z), i = 1,2,3,4:

Gh¥ () = : _;)wgﬁ Ku (fft) Ky (12) . (3.5)

Here fa(z) and I?a(z) denote the normalized I- and K-Bessel functions (see Ap-
pendix for the definition).

Let us state the differential equations for the generating functions which we will
make use of later.

Lemma 3.2.1 (Differential equations for the generating functions). The functions
G (t,x), 1 = 1,2,3,4, satisfy the following three differential equations:
(1) The fourth order partial differential equation

(Duy), ult,x) = 40,0, + p + Lu(t, x).

(2) The second order partial differential equation

2
(20, +p+ 1) (ew 4 %) ult, z)

1 2 — 2
:(¥9t(6t+u)—t(9t+—u+;+ )(Qt—i——u ;+ ))u(t,x)

(3) The fifth order ordinary differential equation in t

—1 1 3

_ L%gt (0, — 1) (0, + p — 1) (6, + o) (& * NT_E))

8 =3 I w1
—tet(9t+u)(et+ > )(9t+2)(9t+ . )

1
+2 (@ - %) (ab + b6} + 07 + db; + )
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+1 + 2 +5
— 8t (et—i'MT) (91:‘1‘“7) (Qt—i—ﬂT)
" <6t+,u—|—u+2) (9t+u—u+2)
2 2
+Qﬁ(@+ﬁ§1)(@+ﬁi%i2><@+ﬁigi2>

< (o420 (o 22 e

where we set

a =0,

b=12(p+ 1),
CZ%anﬂ—uﬁ+%u+&,
d:%m+¢xmﬁ—uﬁ+mu—®,

e = 10— D+ 2t v+ 2 — v +2)

Proof. The proof consists of straightforward verifications using the definition of
G!""(t,z) and the differential equation (D.10]) for the I- and K-Bessel functions
I,(z), K.(2). O

We also need three recurrence relations for the functions Gt (¢, ). To state the
formulas in a uniform way we put

~ ) 41 fori=1,2, ~ ) +1 fori=1,3,
5@_{—1mm_&¢ d”_{—1mm_z4 (3.6)

Lemma 3.2.2 (Recurrence relations for the generating functions). The functions
G (t,x), i =1,2,3,4, satisfy the following three recurrence relations:
(1) The recurrence relation in u

u(l = )G (t, ) = 26(4) (Gf_zy(t,x) — (%E)Q GH(t, x)) :
(2) The recurrence relation in v
Ml—ﬂGﬁﬁJﬂde@(G?“%mm—(gYG#”%u@).
(3) The recurrence relation in pu and v
t?x

(1= )2 (1,2) = 6(3) 5 @H2 (i)

T

1 v+2
SGE
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Proof. (1) and (2): Use the recurrence relations (D.12]) and (D.13) for the /- and
K-Bessel functions .
(3) In view of (D.11)) the equation is evident. O

Lemma 3.2.3 (Local monodromy of the generating functions). We have the fol-
lowing formula for the functions G (t,e ""x) (i =1,2,3,4):

G 1 0 0 0 G
GY” ; b, a, 0 0 GY"
y t,e'"r) = v t,x

giv | BT =y g . qiv | 67

Gy bb, ayb, aub, aua, G
where

, 1—-9r(s ,
Ay =e ™, by = —< )0(5) (e_o‘m —-1).
2

Proof. This follows immediately from the parity formulas and - ) for the
Bessel functions. O

Remark 3.2.4 (Algebraic symmetries for the generating functions). It is also easy
to see that the generating functions satisfy the following algebraic symmetries

G (t,x) = G (1, —x) (i =1,4),

t

1
GV (t,x) = G (;, —x) :

3.3. The eigenfunctions A} (7)

The function Ku (1xt) is meromorphic near ¢ = 0 for a fixed x > 0 if and only if

1 is an odd 1nteger Therefore, we will henceforth assume the following integrality

condition:
i is an odd integer > 1 for i = 3,4. (IC)

Then the generating functions G4 are meromorphic near ¢ = 0 and give rise to
sequences (A ") jez of functions on R, as coefficients of the Laurent expansions

G (t,z) = Z A ()t i=1,2,3,4. (3.7)
j=—00

Since f% (z) is an entire function and I?% (z) has a pole of order v at z =0if a > 1
is an odd integer, we immediately obtain

AP =AY =0 for j <0,
Ay = AP =0 for j < —pu.
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Chapter 3. Generalized Laguerre functions

This allows us to calculate the functions AZ ’j” as follows:

I

- = G (t, x) ifi=1,2,7>0
» ' atj _ 1 Y ) ) — )
A (@) =q =0, (3.8)

G (tx) ifi=3,4,5> —p.

(j+p)! otitr|,_,

Example 3.3.1. The functions Ay (x) (in the ¢ = 2 case) will turn out to be L*

eigenfunctions of D,,, and are therefore of special interest. Here are the first three
functions of this series:

1 ~

Ay (x) = Ky (x),
> NCORE
1 pwHv+2~ ~

M) = g ( Rylo) + 05 (0)).

INEE=Y 2

y 1 (+v+2)(p+v+4)~

ABY (@) = ( Ry (@)

oI (1£2) 4

+(M v Q)HINQ(QU) + M—%QQINO(JU)) :
p+2 ’ p+2

To formulate the asymptotic behavior of the functions A}’;’(x) we use the Landau
symbols O and o.

Theorem 3.3.2. Let p € C, u # —1,—-2,-3,... and v € R. Assume further that
j>0ife=1,2andj > —pifi=3,4.
(1) The asymptotic behavior of the functions AJ'; (x) as x — 0 is given by

AP (z) = ———2 20 4 (1)
AR TICHINES)
ov-1T (K) ™V +o(x™) ifv>0,
(M*|;|+2)] x2
M,V — J— —_ =
- 0 e (B o (2) oo
§F (—5) +o(1) if v <0,
v 21D (5) (5 )
Ag:j< ) (] _|_2,u)|1—\(21/—£2)] MQE 'LL+O<LU /’L)a
p+v—2 K n—v n—v
2mr (2) v o)
if v >0,
v T
M) = DO T i ] 27108 (5) +o (a7 1ex (5))
o (J + p)! if v=0,
p=2p (VY n
2 F( 2>x +ol@™)
\ if v <0,
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3.3. The eigenfunctions A} (z)

where (a), = ala+1)---(a+n — 1) is the Pochhammer symbol.
(2) As x — oo we have

. v+1 1 .
s =cpe e (1eo(5)). mw =0 ().

Xz

v+1

. v+l 1 A
ALy (@) = Chyal =% e (1 + 0O <—)) L MY =0 (xj_ : 6_z>

T

with constants CY, Cy # 0.

Proof. The basic ingredient for the proof is the asymptotic behavior of the Bessel

functions which is for x — 0 given in (D.19) and (D.20) and for x — oo in (D.21)).

We also make use of the well-known expansion

(1—t)*= Z (C;!)jtj. (3.9)

(1) We show how to calculate the asymptotic behavior at = 0 for the functions
Ay (x) with v > 0. The same method applies to the other cases.

Using the asymptotics (D.19)) and (D.20|) and the binomial expansion (3.9)
we find that

"Gy (t,x)| g =

2
_ e 21/—11“(%) ,U—2+ )jtj
—~ )
In view of (3.7)) this yields
2T (5)(E52)
ZEVA';’Z-/(I) = : 2 2 J
J |;L~_0 j!F(%Q)

(2) Let us first treat the case i = 1,2. With equation (3.8) it is easy to see that
A}y is a linear combination of terms of the form

9’“.@) (x) fori=1,
9"3}?%) (x) fori=2

with 0 < k < j such that the coefficient for k = j are non-zero. (In fact this
can be seen in a more direct way from the recurrence relation in Proposition

and Example [3.3.1]) Using (D.11) this simplifies to terms of the form

x%%ﬂg(x) for i =1,
2 Ky p(z) fori=2

105



Chapter 3. Generalized Laguerre functions

with 0 < k < j and non-zero coefficient for £ = j. Using (D.21]) the leading
term appears for kK = j and the asymptotics follow.
For i = 3,4 equation (3.8) implies that A} ’j” is a linear combination of terms
of the form

%

2" (61, ) (x) fori =3,
ahH 9@?3) (x) fori=4
2

with 0 < k+ ¢ < j + p. Using (D.11)) this simplifies to terms of the form

xk+2g_”“%+g(x) for ¢ = 3,
Ik+2€_MK%+g(CL’) fori=4

with 0 < k+ ¢ < j + p. Then again the claim follows from (D.21)). ]
As an immediate consequence of Theorem [3.3.2] we obtain:
Corollary 3.3.3. If yu+v,pu—v > =2, then Ay} € L*(Ry, z# ™ dx).

From the explicit formulas for the leading terms of the functions A}’ (x) at = 0
we can draw two more important corollaries.

Corollary 3.3.4. The function Aéf’jl’ s non-zero if one of the following conditions
18 satisfied:

e i=1and p,v,u+v>—2.

e =2and p+v,p—v>-—2.

o i =3,4, is a positive odd integer and v > —1 such that p — v ¢ 27.

Proof. In each case the assumption implies that the leading coefficient at x = 0 in
Theorem [3.3.2) is non-zero, so that the function itself is non-zero as well. O

Corollary 3.3.5. Suppose i is a positive odd integer and v > 0 such that u—v ¢ 27,

then for fized 7 € Ny the four functions AZ’]-”, 1 =1,2,3,4, are linearly independent.

Proof. The assumptions imply that the leading coefficients at x = 0 of the functions
A% (x) in Theorem @ never vanish and that the leading terms are distinct.
Hence, the asymptotic behavior near x = 0 is different and the functions have to
be linear independent. O

Now we can prove the main theorem of this section.

Theorem 3.3.6 (Differential equation). Fori = 1,2,3,4, j € Z, the function A"/
is an eigenfunction of the fourth order differential operator D,,, for the eigenvalue
45(5 + p + 1). If, in addition, p is a positive odd integer and v > 0 such that
p—v & 27, then for fized j € Ny the four functions A}y, i = 1,2,3,4, form a
fundamental system of the fourth order differential equation

D,,u=4j(j+p+1u. (3.10)
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3.3. The eigenfunctions A} (z)

Proof. In view of Corollary it only remains to show the first statement. We
deduce

D, A (2) =45 +p+ DAY (x) VjieZ (3.11)

from the corresponding partial differential equation for the generating function
G'""(t,x). For this we take generating functions of both sides of (3.11)). Clearly,
(D,,.,).G" (t, ) is the generating function for the left hand side of (3.11). The
generating function for the right hand side is calculated as follows

Dt 4 pt DAL (@)

j=—00
=4 ) (07 + (n+1)0,) ALY (x)
j=—o00

=460, (0, + p+ 1) G (t, ),
where 0, := t%. The resulting partial differential equation is
(Duw), G5 (8, x) = 46, (0 + p + 1) G (8, )
which was verified in Lemma [3.2.1] (1). O

Remark 3.3.7. Since D,,, = D,,,, — (u—v)(pu+v+2) by Proposition [3.1.1] (1) and

4<j+%> <(j+¥)+u+l) =45 +p+1)+(p—v)(p+v+2),

Theorem |3.3.6| implies that for 1 — v € 2Z also A,V’f v (x) is an eigenfunction of
b

D, for the eigenvalue 4j5(j + p + 1).

Corollary 3.3.8. If (u,v) € E, then the system (AyY)jen, forms an orthogonal
basis of L*(R,, z# 1 dz).

Proof. Lemma implies that u + v,u — v > —2. Hence, by Corollary [3.3.3]
the functions A%} are contained in L*(R,,z#™*' dx) and by Theorem each
function A’;]’/ is an eigenfunction of D,,, for the eigenvalue 4;(j + o+ 1). Therefore
the claim follows from Proposition [3.1.1] (4). O

Corollary provides a completeness statement for Bessel functions we could
not trace in the literature:

Corollary 3.3.9. For (u,v) € Z the sequence (Hjl?%)jeNo (resp. (ij[?%ﬂ)jeNO) is
a basis for L*(R,, z*™ 1 dz). The Gram-Schmidt process applied to this sequence
yields the orthogonal basis (AyY)jen, (up to scalar factors).
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Chapter 3. Generalized Laguerre functions

Proof. 1t is an easy consequence of the definitions that A‘QL;’ can be written as a linear

combination of the functions 6% K vfor 0 <k <j. (In fact this follows more directly

from the recurrence relation in Proposition [3.6.1.) Then the sequence (6’ K v);
clearly arises from the complete sequence (ASJ” ); by a base change and hence is

complete. Using (D.11) it is also easy to see that the second series (2% K v i)
arises by a base change from the sequence (67 K ¥ );- Finally, we note that both base

change matrices considered are upper triangular. Thus the Gram—Schmidt process
in both cases yields the orthogonal basis A4 O

We end this section with a formula for the local monodromy of the functions
A (x) at @ = 0. This implies a parity formula with respect to z + —z which can
be used to determine also the asymptotic behavior as ©+ — —oo0. The monodromy
formula itself is an immediate consequence of Lemma [3.2.3}

Proposition 3.3.10 (Local monodromy at x = 0). We have the following local
monodromy to the differential equation (3.10)):

A 10 0 0 Avy
Ay , b a 0 0 Ay
J ) = v ‘ il
IV A b 0 a0 agy | )
Ai}l‘/ buby  ayby  aub,  aya, AZ”;

with coefficients ay, by as in Lemma|3.2.5.

Remark 3.3.11. If v is an odd integer, the functions A}'J’(z) extend holomorphi-
cally to C\{0}, not only to its universal covering. In this case, Proposition
expresses Aj';'(—z) as linear combination of the functions Ay (z) (k = 1,2,3,4).
The coefficients contain a, and b, with o = 2n+1 an odd integer. In this case they
simplify significantly:

Aop+1 = —1, b2n+1 = (—1)n+17T-

3.4. Integral representations

In this section we show that for i = 1,2 the functions Aj";’(x) have integral rep-
resentations in terms of Laguerre polynomials. For the definition of the Laguerre

polynomials L%(z) see Appendix [D.2]

Theorem 3.4.1 (Integral representations). (1) For j € Ny, Re(u),Re(v) > —1
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3.4. Integral representations

we have the following double integral representations

Auu _ / / —$C05¢L 2 (gj(cose + cos ¢)) sm“@sm”qﬁ(w d9
(3.12)
M) =iy [t oL (alcost + cosho) sin sinh” 06 40,
(3.13)

with constants ¢’} and ¢y’ given by

- 1 d L 1
T A Eh e M ™ T )

2 2

(2) Forv=—1 and Re(p) > —1 we have
N (g) = ol Z/ (VLT (a(cosf + (—1))) sin” 06, (3.14)

»J J

Ay Y(z) = 0‘2"-_1/0 etLT (x(cosf + 1)) sin* 6 do (3.15)

y /l,,—l /"‘7_1 y
with constants ¢, and ¢y~ gwen by

1 . 1

u,fl_ M —
and ¢y, =

¢, = ——
Mo ()

Proof. We make use of the formula (3.8)) for A}"}” and the generating function (D.24
of the Laguerre polynomials. Further we need the integral representations @
and ( m ) for the I- and K-Bessel functions.
(1) Interchanging differentiation and integration we obtain the desired integral
representations for A‘l'“:;l:

w1 v+1 y
nl (T) F( 5 )A’f”j (x)

(D (L) Hi
™ ( 2 ) (2)8 G"fyy(t,l')

! ot |,

1 8J COoSs COS v
:ﬁata . t/ [t s sin s dos
: — —
—:ccos¢ Lo 1 —%(cosﬁ—&-cosd))
]' at] (1 _ t) EZS
sin” #sin” ¢ d¢ df

(z(cosf + cos ¢)) sin* O sin” ¢ de d6.

T[T ptv
— e % cos ¢Lj 2
0 0
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Chapter 3. Generalized Laguerre functions

For the functions Ay} we do a similar calculation:

w+1 v+1 "
()

2 —

1 3j / / 2 cos0 1 cosh o
,]' at'] 1 —t u+v+2
sin” # sinh” ¢ d¢ df
_ /W /OO e—mcoshqﬁl ﬁ [ 1 efﬁ(cosaJrcoshqﬁ)
o Jo gl ot | o | (1 — )5
sin” # sinh” ¢ d¢ df

= / / e " COSWL? (x(cos b + cosh ¢)) sin”  sinh” ¢ d¢ d6.

(2) Using (D.7)), similar calculations as in (1) give the second part. O

Remark 3.4.2. The integral representations in Theorem (2) for the special
case ¥ = —1 can also be obtained from the integral representations in part (1)
for v > —1 by taking the limit ¥ — —1. For example, to obtain the integral
representation for Ag;l we have to verify the limit formula

i 1
11m
v——1 F(—V'gl)

o 1
/ e~ %h 9 cosh® ¢ sinh” ¢ dg = 7€ (3.16)
0
for 0 < k < j. For k = 0 the identity (D.15] turns the left hand side into

\/_ yliml KV( )

The map a — K, (x) is continuous so (3.16) follows from (D.7). For k > 0 and
¢ > 0 we have

cosh® ¢ — cosh® ¢ = cosh” ¢ — 1 < sinh ¢ - p(sinh ¢)

with some polynomial p. Then one has to show that

P
-1 T(2E)

/ et cosh ¢ Sinhu—i-ﬁ—i—l Qb d¢ _ 56_:5.
0

for £ > 0. But this is easily seen using the integral representation (D.15)) and the
continuity of the map a — K, ().
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3.4. Integral representations

As an easy application of the integral representations we give explicit expressions
for the functions Aj’y’(x), i = 1,2, in the case where v = —1.

Corollary 3.4.3. For v = —1 and p € C arbitrary we have the following identity
of meromorphic functions

IERIUELD

7_1 —T €T
Ay (@) = TG+ p D) (e7"L¥(2x) + "Lt (—2x)) (3.17)
2,u—1r<j + ;Hrl)
=1 _ 2 —TTH
A27j (x) = TG+atl) e Lj (2x). (3.18)

Proof. For the proof we may assume that Re(u) > —1. The general case p € C
then follows by meromorphic continuation. With the integral formula (D.25)) the
substitution y = %(1 + cosf) yields

T o1 1 1 p—1 k=l
/0 L;? (z(cosf £1))sin* 0 df = 2”/0 (1- y)MT?JTLj P (£2z-y)dy

_ 2T+ 0

, 2 [(+2x). 3.19
I'G+p+1) 5 (+22) (3.19)
Inserting this into the integral representations (3.14]) and (3.15)) gives (3.17) and
B.19). u

Remark 3.4.4. The symmetry property (D.4) for the K-Bessel functions implies
that G5~ '(z) = £G4 () and hence

2 .
Ay (z) = EAg;j "(z). (3.20)
Therefore, Corollary also allows us to compute A‘Q‘]1 explicitly:

24T (5 + &)
ARt _ 2 Lo lem T LR (22). 21
@) = T e (3.21)

Remark 3.4.5. Corollary and Remark suggest a relation between the
fourth order differential equation D, ,u = 4j(j + ¢+ 1)u in the cases where v =
+1 and the second order differential equation for the Laguerre polynomials
L2 (x). In fact, by Proposition B.1.1] (5) the fourth order differential operator Dy, 1+
collapses to the simpler form

Dys1 =38 o — (p+1)°

with second order differential operators S, 11 (for their definition see Proposition
3.1.1] (5)). For u > —1 the operator S, _ itself is self-adjoint on L*(R,z*dx). It
has discrete spectrum given by (—(2j+p+1));en, and an easy calculation involving
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Chapter 3. Generalized Laguerre functions

(D.23)) shows that A%’} !is an eigenfunction of S,.—1 for the eigenvalue —(2j+p+1).
Applying S, _1 twice yields the fourth order differential equation of Theorem [3.3.6]
for Ay !, The same considerations apply for S, +1 and Ag;rl(:v) since we have the

relation (3.20) and
Syt =271S, . (3.22)

3.5. Orthogonal polynomials

In the previous section we have shown that for v = £1 the functions A (z) ba-
sically reduce to Laguerre polynomials. Now we prove that for any odd integer
v > —1 the functions A/ (z) reduce to polynomials.

Theorem 3.5.1. Suppose p ¢ —N and v > 1 is an odd integer. Then

2°T(j + 45)
AHY = 2 LV BN (9 2

where M (x) is a polynomial of degree j+ Y5* (j € Ny). The polynomial M!"" (x)
s given by

proy < OB DS RS TU—kt 8o —izl
P(j+ 45 & = KT —k+p+ 1) (5L —i— k)il
it
= > Bk, (3.24)
k=0
where

sk S
I'(j+45) (s T(n+p+1)
(v+n—Fk—1)!
mnl(k —n)!(j —m —n)/(45 +n —k —m)!
with
v 2. 0<n<j—m

Proof. Let us first assume Re(p) > —1. With the explicit expression for
the K-Bessel functions with half-integer parameter and the integral representation
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3.5. Orthogonal polynomials

(D.14]) for the I-Bessel function we obtain

1 ~ tx ~ T
v (t = I Kv
o0 = s (55) R (75

=)
_ 1+1 x—ue—a; / ;_le—%(cose-l-l) Sinp, 0 de
I'(57) o (I—t)=

Next, we compute the derivatives of the first factor with respect to t at t = 0. Using
the formula (D.24)) for the generating function of the Laguerre polynomials we find

that

6—3, ;e_lﬂ(c‘mfﬁrl ) sin® 6 d¢
oty =0 |Jo (1—t)%+

= 4! /07r L;%l (x(cos ¢ + 1)) sin* ¢ do

which is by (3.19)) equal to
2T+ ST
(G +p+1)

Now we can compute the Taylor coefficients of G4 (t,x) at t

LY (2z).

= 0 explicitly as

follows
o’ Y
% CTY}QL7 (t,[E)
j ] ] k 4 tx
_ T v fxz (]) 0 / 1#71 e—ﬁ(cose—i-l) sin“gbd@
F(T = =0 [Jo (1—1)= "
v—1
o < (v—i—1) : _—
X — - (22) (1 —t) 2 "
o |y | 2= (a2 =)

G124 (5 — k u_+1
E U=kt 5 e o)
k'F]—k:-I—,u—i—l) I

xZ%(Qx)i(—l)k(y_l—i)---(ygl—i—k—kl)
T ATk B i i
;( 1kk|r(]—k+u+1 e Ly-1(22)(22)"

\_/l\)
/—\
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Chapter 3. Generalized Laguerre functions

This gives the first expression for M""(z). Inserting the explicit formula (D.22)

for the Laguerre functions one obtains the expression for the coefficients ;‘ i

Since these clearly extend meromorphically to g € C with poles at most at u =
—1,-2,-3,..., the claim follows. [

Proposition 3.5.2. (1) (Top term)

1Y
M]””(x) = #x]+2 + lower order terms.
4!
(2) (Constant term)
2T+ p+ 1) (522)
NGNS

MH(0) =

Proof. For k = j + “5* the set S¥ defined in (3.25)) only contains the tuple (0, j)
and we obtain the top term .
(1)

J!
To calculate the bottom term M}""(0) we use the asymptotic behavior of A5 ()

as « — 0 (see Theorem [3.3.2] (1)). Together with (3.23) this gives the bottom term
M (0). O
j

wov _
gt =

Remark 3.5.3. As proved in the previous section, we have
1 _TH
M (z) = L (z).

However, for v > 3 the special polynomials M j“ ¥(x) do not appear in the standard
literature. Properties for these polynomials such as differential equations, orthog-
onality relations, completeness, recurrence relations and integral representations
simply translate from the corresponding properties for the functions A (z). The
corresponding statements can be found in [HKMMO09al.

3.6. Recurrence relations

In this section we give three types of recurrence relations for the functions Aﬁ Jy(x)

Our first recurrence relation involves the first order differential operator H,, (« €
C) on Ry, given by
o+ 2

H, =60+ 5

If « € R, then H, is a skew-symmetric operator on L*(R,, 2z dx). This allows
us to compute the L*-norms for Ay} explicitly if (u,v) € Z.
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3.6. Recurrence relations

Proposition 3.6.1. For u,v € C, i = 1,2,3,4 we have the following recurrence
relation in j € 7

(2] + i+ DHu ALY (2) = (G + D) + p+ DAL (2)
. +v . -V v
_ (J L ) ) <] 4B > )Aéf’j_l(x). (3.26)

Proof. As in the proof of Theorem we verify via a partial differential
equation for the generating function G%*”. A short calculation (similar to the one in
the proof of Theorem shows that the recurrence relation is equivalent
to the partial differential equation

AP
(20, + p+1) <95,; + %) G (t, )

1 2 — 2
= (Zet(et +p)—t <9t + %) (9t + %)) G (@),

which holds by Lemma (2). O
Corollary 3.6.2. If (u,v) € Z, then

2M+V—1F(j + M+g+2)r(j + u*g+2>
N2+ p+ DI +p+1)

(3.27)

ALY ’|2L2(R+,mu+v+l de) =

Proof. We prove this by induction on j. For j = 0, in view of Example and
the integral formula (D.18]), we can calculate

IG5 = [ g5 e da
1 /Oo 7% 2 1
= | |Ru(2)Partrt da
DRy
2u+u—lr(u+l2/+2>r<pfg+2)

(b + 1T (p+1)

For the induction step we reformulate (3.26)) as

(j+1>(j+ﬂ+1) psv _<2j+ﬂ+y)<2j+M_V)Au,y
2j+p+1 A 42/ +p+1) S

wY
H;HrvAQ,j =

Using the skew-symmetry of H,,,, on L*(R,,z#™ ! dx) together with the pairwise
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Chapter 3. Generalized Laguerre functions
orthogonality of the functions Ay’ (cf. Corollary [3.3.8)) we calculate

M A5 1P = (M N5 [ H o ALY ) = — (A5 1M, ASY)

NE+DG+p+1) v
= - (Ag,j 2]+M+1 H#+VAgj+l
_(2]+:u+y)(2]+:u_y) 1V
425+ p+1) Az
_ ((j+1)(j+u+1)_(2(j+1)+u+V)(2(j+1)+u—V)
2] +p+1 42+ 1) +p+1)
@ +ptv)@tp—v) J(G-D+pt )>II ‘|2,
425 +p+1) 20— +p+1

On the other hand, orthogonality and the recurrence relation yield

MV 12
ety P = (LD ) g

(2 +p+v)2j +n—v)\’ 2

Both identities together complete the induction.

The second type of recurrence relations expresses z?AY ’j” as linear combination
in Af w for k= j—2,...,7 +2. These recurrence relations are an immediate

consequence of the fifth order differential equation for the generating functions

G (t,z) given in Lemma [3.2.1] (3).
Proposition 3.6.3. For u,v € C we have

. ,U_l ,U"’l . /~L+3 PETRY
8(j+ 5 ><]+ 2 )(j+ 5 ):chiyj(:p)

=2+ DU+ +p+1)[G+p+2) (y + MT) Aji ()

=8+ +p+1) (ﬁ’“‘T_l) (j+“7+2) <J+“;3) Ay (@)

+2 (j + T) (aj* 4+ bj® + cj* + dj +e)A) (v)
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3.7. Meijer’s G-transform

. n—=v R
(44157 arate)

op+3 . optrv—2 . p—v—2
2 [l gz = sz - =
w2 () (s

N AN AN
X (] + T) <] + T) Aﬁj_2(x)
with a,b,c,d, e as in Lemma (3).

Remark 3.6.4. For j # —“T_l, —"TH, —“TJF?’ the recurrence relation of Proposition
B.6.3 can be rewritten as

2

SN (@) =) aly ()AL (@)

k=—2
with constants a;’; (k).

The last set of recurrence relations in the parameters p and v are again immediate
with the corresponding differential equations for the generating functions which have
already been stated in Lemma [3.2.2}

Proposition 3.6.5. Let u,v € C. With 6(i), €(i) as in (3.6) we have three different
recurrence relations:
(1) The recurrence relation in

() = A7 @) = 200) (A2 - (5) M%)

(2) The recurrence relation in v
v v . vV— T 2 v
v (Afj (x) — Afﬁl(m)) = 2¢(1) (Afj 2(:v) — <§> Afj +2(x)) .

(3) The recurrence relation in p and v

d v 14 N4 v N4 1%
- (A (@) = ALY (2) = S()SALZ (2) + (D5 AL ().

3.7. Meijer's GG-transform

The main result of this section is that for (u,v) € = the functions Ay} (x) are
eigenfunctions of a special type 7" of Meijer’s G-transform. This G-transform
appears as the radial part of the unitary inversion operator Fp (see Theorem [2.4.3)).
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The integral transform 7" is defined by

T f(z) = / K () f () dy Vi eCT(R,),

where the kernel function K*¥(x) is given by

Vi 1 20 [ ()2 voop ptv

Here G3}(z|by, by, b3, by) denotes Meijer’s G-function (see Appendix |D.4)). Using the
differential equation (D.32)) for the G-function it is easy to see that K*¥(x) satisfies
the fourth order differential equation

0(0 + p)(0 + v)(0 + p+ v)u(x) = 2%u(x) (3.28)

The operator 7" is a special case of the more general G-transform which was
first systematically investigated by C. Fox. In [Fox61, Theorem 1] he shows that
for certain parameters the G-transform defines a unitary involutive operator on a
certain L2-space. This result is used to prove the first statement of the following
proposition. Note that we do not yet assume that (u,v) € Z. However, if (u,v) € E,

then the following statement can also be obtained from representation theory (see
Section (3.8 for a proof).

Proposition 3.7.1. Suppose pp+ v, g —v > —2.
(1) Trv extends to a unitary involutive operator on L*(R,, x# T+ 1dx).
(2) The G-transform TH" commutes with the fourth order differential operator
D

o

Proof. (1) It is proved in [Fox61, Theorem 1] that
0, vop o ptv

T =+ [ 68 (0.~ 5 -5 1)

defines a unitary involutive operator 7' : L*(R,) — L*R,) if ¢ > 0 and
¢ > v. By assumption ¢ = ’%ﬁ satisfies this condition. Then the coordinate
change r = (%)26, r = (%)25 gives the claim.

(2) A short calculation, using that D,, is a symmetric operator in

L*(R,, z#+1 dx), gives the desired statement if one knows that the kernel
function K*(x) satisfies the following differential equation

(Dpu), K" (xy) = (Dp), K" (2y).
But this is easily derived from the expression for D,,,, using the identity
O K" (2y) = (OK"")(xy) = 0, K" (zy)
and the differential equation for Km¥(z). O
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3.7. Meijer’s G-transform

Theorem 3.7.2 (Meijer’s G-transform). Suppose that (u,v) € E. Then for each
j € Ny the function Ay () is an eigenfunction of Meijer’s G-transform T"" for
the eigenvalue (—1)7.

Proof. Since D,,,, and T*" commute, the function 7#*A4" is also an eigenfunction
of D,,, for the eigenvalue 4;(j 4+ 1+ 1). But by Proposition m (4) and Theorem
the function Ay} spans the L*-eigenspace of D, with eigenvalue 45(j+p+1).
Hence, there exists €; € R such that

THY AR (z) = e, ALY (). (3.29)

We calculate ¢; by specializing (3.29) to = 0.
Let us just treat the case v > 0 here. The other cases ¥ = 0 and v < 0 can be
treated similarly. Multiplying (3.29) with 2 and taking the limit © — 0 yields

lim [ (o) KO (o) S ()™ dy = & lim a" AL (). (3.30)

z—0 0

The right hand side is by Theorem |3.3.2| equal to

(=4t2) 01T (%)
JIT(42)

€j

To justify interchanging limit and integral on the left hand side we apply the domi-
nated convergence theorem. By the asymptotic behavior of the G-function at x = 0
and z = oo (see (D.36) and (D.37)), the function x¥ K*¥(x) is bounded on R, and

hence

|(zy) K™ (xy) ASY (y)y" ™| < C - | A (y)y* ™|

for some constant C' > 0. Therefore, the integrand in (3.30)) is dominated by the
function C'- |AS7 (y)y*+!| which is integrable by Theorem [3.3.2] Hence, the assump-
tions of the dominated convergence theorem are satisfied and with the asymptotic
behavior of the function K#¥(z) at x = 0 (see Lemma [2.4.9) we obtain

- 2-11(3)

. v gy BV pt1 —
glcli% ; (ny) K (xy)AQ,] (y)y dy QMF(MTH)F(#*;+2

) /0 ASY )yt dy
Together with the following lemma this shows that ¢; = (—1)7 which finishes the
proof. (Part (2) of the lemma is needed for the case v < 0.) O

; Q#F(H_TV‘"Q +4)
J!

Lemma 3.7.3. (1) / A;’}j(@x““ dr = (—1) 7
0
v v+2 .
j2p+ F(M+2+ +])

j!

(2) /000 /\57’;(x)x“+’”r1 dz = (—1)
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Chapter 3. Generalized Laguerre functions

Proof. We use the integral formula (D.17]). Together with (3.3]) we obtain

o - 2 p—v+2
/ Gg,ua) CL’)ZL“H_I dz = 2T (%) (1 . ) +2
0

2 — 2 2
><2F1<M_2|_ ,N ;+ ;H; %tz)

( _I/+2> +t)_,u—;/+2

O\ M (B2 .
J)<_t>J

j=0 ‘7
and
> 2 ,
/ Gy (t,o)e! ™ da = 20T (u 5 ) (1—)"5"
0
2 2 2
X oy prveE >N+ ;M‘i‘ ;tQ
2 2 2
2#"‘”1—‘ ,LL + 14 + 2 (1 t) +v42
2
QI (j 4 w2y
P
j=0 J:
In view of (3.7)) the claim follows. O

Remark 3.7.4. For v = £1 the functions Ay’ (x) are Laguerre functions by (3.18)
and (3.21)). In this case the reduction formula (D.33|) implies that the kernel function
K™ (z) simplifies to a J-Bessel function:

ptv+1

KP* (z) = 2= 55 J,(227).

Then 7#" is a Hankel type transform and Theorem is a reformulation of
[EMOT54, 8.9 (3)]. Note that the integral formula in [EMOT54) 8.9 (3)] holds for
a more general set of parameters.

One can use Theorem to obtain an integral formula for the generating
function G4 (¢, x) and hence for the Bessel functions involved:

Corollary 3.7.5. Let % <a < oo, 3= 525 and assume that (p,v) € Z. Then for
x>0

| KT (@ = 1) By (o)t dy
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3.8. Applications to minimal representations

Proof. By Theorem we have
THY Ay = (—1)jA’2‘7’J’7 for every j € Nj.
Taking generating functions of both sides yields
(TH"), GYY(t,x) = GY"(—t, x),

and this gives the desired formula for o = ﬁ O]

3.8. Applications to minimal representations

In this section we relate the L*-eigenfunctions A% (x) of Dy, to representation
theory in the case where (u,v) € =. If (u,v) € Z, then they are the parameters
introduced in Section corresponding to a simple real Jordan algebra V' of split
rank rg > 2 with simple euclidean subalgebra V* which is not isomorphic to RP¢
with p+¢q odd. For these Jordan algebras we have constructed a unitary irreducible
representation 7 of the simple group G on L*(©, du). We now show that for j € N
the functions A7 () give rise to €-spherical vectors in the £-type WJ. We further
explain the representation theoretic meaning of several properties for the special
functions Ay’ (x) which were derived in this chapter.

e-finite vectors

Theorem 3.8.1. In each t-type W7 the space of €-invariant vectors is one-dimen-
stonal and spanned by the functions

Pi(x) == Ay ([2]), z€0.

Proof. By Proposition the space of ¢-invariant vectors in each irreducible -
representation is at most one-dimensional. The functions v; are clearly €-invariant
since they are K-invariant. By Proposition the Casimir operator dm(C') acts
on W/ by the scalar
d
w-3]).

and by Theorems [2.3.3| and [3.3.6] it acts on v; by the same scalar. Since all these
scalars are distinct, the claim follows. O

Tod

(4j(j+,u+1)+7

To

&n

Remark 3.8.2. For the euclidean case it is (indirectly) shown in [FK94 Section
XV .4] that the subspace of Kp-invariant vectors in W7 is spanned by the so-called
generalized Laguerre function £}, (z) with m = (j,0...,0) and A = A\ = 24 = £,

2
We show that these functions agree with the functions v; on the orbit O.
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Chapter 3. Generalized Laguerre functions

The generalized Laguerre functions are defined in purely Jordan algebraic terms.
Let us recall their construction from [FK94, Section XV.4]: For m € N, m > 0
(i.e. my > ... >m, > 0), we define the generalized power function Ay, on V' by

Am(z) = Ay(z)™7™2 Ay ()™ A ()™

Here A;(z) denote the principal minors of V' (see [FK94, Section VI.3] for their def-
inition). Then the corresponding spherical polynomials are obtained by integrating
over Kp:

Do) 1= /K A (k) .

The polynomials @, constitute a basis for the K-invariant polynomials on V.
Since K, stabilizes the identity element e in the euclidean case, the polynomial
®,n(e + ) is again Kp-invariant and hence a linear combination

NCERTESY C‘:) O, ()

n

with certain coefficients (r:) which are called generalized binomial coefficients. We
then define the generalized Laguerre polynomials by

2 = 0 2 () g )

where

(M = H <)\ —(i— 1)%)%

i=1

and (a), = a(a+1)---(a+ n — 1) denotes the Pochhammer symbol. Finally, the
generalized Laguerre functions are

0 (z) = e @ LA (21).

Now let us calculate €3, (z) for m = (my,0,...,0), A =X = £ and = € O. Since
Aq(x) = (x|c1), we obtain:

Dpu(e+x) = /K (k(e 4+ x)|cr)™ dk = /K (1+ (kx|cy))™ dk

= (Z) /K (e dk = 3 (7:1) i 0,..0)():

L n1=0
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3.8. Applications to minimal representations

Therefore,

(m) <m1> ifny=...=n, =0,

n 0 else.
For the generalized Laguerre functions we thus obtain
d o mq 1
U () = 7" (—) ( )—% 0...0)(—22).
2 mi 1;=0 i (g)"l '

Now suppose & = ktc; € O with k € K and t > 0. Since £} is Kp-invariant, it
only depends on ¢t = |x| and we obtain

O (z) = el (%l)mnio (7:11)(%%(_2|x|)mq>(%0 _____ 0(e1). (3.31)

To calculate ®(,,, o,....0)(c1) we use the following expansion (see [FK94|, Section XI.5]):

(i) = 1Y

jnl=k ()

where dp, is defined in [FK94, Proposition XI.4.1 (i)]. For y = ¢; we have tr(c;) =1
and ®,(c;) = 0 if one of the ns, ..., n, is non-zero. Therefore

(F)m

ny! d(nl,o ..... 0) '

Du(y),

For dy, o,..,0) one obtains, using the results of [FK94, Section XIV.5|:
toa o~ O
ni,y,..., nl! (g)nl

Inserting all this into (3.31)) finally yields
1(d
(@) = T g (ol
(?)ml
where L&(z) denote the classical Laguerre polynomials as defined in Appendix .
In view of Corollary (2) we have

ff\m ,,,,, 0)(7) = const - e"x|L;-‘(2|x|) = const - Ay (|z]) = const - ¢;(z) V€O,

Example 3.8.3. For the metaplectic representation u of Mp(n,R) on L2 (R") as

even

introduced in Section the K -invariant vectors in each €-type W/ are spanned
by

Ub;(y) = N7 (|yy'|) = const - e LE(2]y|?).

123



Chapter 3. Generalized Laguerre functions

The unitary inversion operator

In Section 2.4 we introduced the unitary inversion operator Fp. On radial functions
it acts by the G-transform 7" (see Theorem [2.4.3). For the special case (y,v) € =
the results of Proposition |3.7.1| can also be obtained using representation theory. In
fact, Fo is (up to a scalar) given by the action of the element .
(1) Since 7 is a unitary representation, Fo is unitary on L*(O, du). The operator
THY being the radial part of Fp, also has to be unitary on the subspace

L*(O, dpt)aq = LA(Ry, 2" da)

of radial functions. This proves part (1) of Proposition [3.7.1]

(2) For part (2) observe that w, is central in K. Therefore, it particularly com-
mutes with the Casimir element Cf of £ as introduced in Section 2.3] It follows
that the actions of Wy and C¢ have to commute as well. The action of Wy on
radial functions gives 7" (up to a scalar) and the action of the Casimir Cl is
on radial functions (up to scalars) given by the differential operator D,, , (see
Theorem [2.3.3). Hence, T7#" and D,,, commute.

This proves Proposition [3.7.1] for the case where (u,v) € = using representation
theory.

In Section [2.4) we further showed that the unitary inversion operator Fo acts
as a scalar on each -type W7. For the minimal e-type W° we showed by direct
computation that this scalar is 1. Using the results of Section we can now give
the action on all &-types.

Corollary 3.8.4. The unitary inversion operator Fo acts on the €-type W7 by the
scalar (—1)7. In particular, Fo is of order 2.

Proof. By Theorem the operator Fp acts on radial functions by the G-
transform 7#”. The G-transform 7" acts on Ay} (x) by the scalar (—=1)7 (see

Theorem 3.7.2). Hence, Fo acts on the radial function V() = Ay (|z]) by the
1)7. B

scalar (— y Theorem the function v; is in the &-type W7. Since Fp acts
on W7 by a scalar, this scalar has to be (—1)7. O

Example 3.8.5. For the euclidean case the analogous statement for the continuous
part of the Wallach set is proved in [FK94, Corollary XV.4.3].

Recurrence relations via the g-action

Finally, we can also give a representation theoretic explanation for the recurrence
relations in Propositions|3.6.1land [3.6.3, For this we consider the Lie algebra action
dr. For H := (0,id, 0) € [ the action is given by

d
dn(H) = E + %,
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3.8. Applications to minimal representations

where £ = )"" | xi% denotes the Euler operator on O. Hence, H = (0,1id, 0) leaves

the space L?(0);aq of radial function invariant and acts on it by the differential
operator H,, (see Section . Further, let (ej), be any orthonormal basis of V
with respect to the inner product (—|—) and put Ny := (ex, 0,0) € n. Then

dn(Ng) = i(z|ex).

In particular, the sum of squares
> dm(N)? = —la|?
k=1

leaves the space L?(O);aq of radial function invariant.

The key to an understanding of the underlying algebraic structure of the recur-
rence relations in Propositions [3.6.1] and [3.6.3] is the action of H and N on the
t-types W/. For convenience put W1 := 0.

Lemma 3.8.6. The Lie algebra action dn(X) : @2 W/ — @, W/ (X € g)
induces the following linear maps for each j € Ny:

dr(H) : W/ — Wit g Wit
dr(Ny) : Wi — Wit o W @ Wi, 1<k<n.
Proof. We have

drn(X) : W9 — W VX et (3.32)

since W7 is a £-module. For the action of p recall that the E-weights of p are by
Section [1.6.3] contained in

{ﬂTi”:lsi,jgm}.

To determine which €-types may appear in dm(p)W? one has to add the weights of
p to the highest weight of W7. By the €-type decomposition (see Theorem [2.3.1))
the only possible £-types that also appear in W are W/~! and W7+, Hence, we
have

dr(X) : WI — Witt g Wit VX ep (3.33)
Putting (3.32) and ({3.33|) together proves the claim since H € a C p. ]

By our previous considerations both dm(H) and Y 7, dn(N;)* leave L*(O)rad
invariant. Since W7 ; = W7 N L?(O),aq is one-dimensional and spanned by ;(z) =
Ay (|2]) for every j € Ny, we obtain

Ho Ay € span{Ayy k=7 —1,j+1},
2? Ny espan{ALy ck=j—2,j—1,5,j+1,j+2},
which can be viewed as a qualitative version of Propositions [3.6.1] and [3.6.3|
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A.l.

Tables of simple real Jordan

algebras

Structure constants of V

V n r d e
I.1 Sym(n, R) s(n+1) | n 1 0
I.2 Herm(n, C) n? n 2 0
L.3 Herm(n, H) n(2n—1) | n 4 0
14 Rb1 (n > 3) n 2 n—2 0
L5 Herm(3,0) 27 3 8 0
II.1 X X X X X X X
1.2 M(n,R) n? n 2 0
1.3 Skew(2n, R) ni2n—1) | n 4 0
IL.4 R (p,q > 2) p+q 2 |p+qg—2| 0
IL.5 Herm(3, O;) 27 3 8 0
III.1 Sym(n, C) n(n+1) |2n 2 1
1.2 M (n,C) 2n? 2n 4 1
I11.3 Skew(2n, C) 2n(2n—1) | 2n 8 1
II1.4 C" (n > 3) 2n 4 | 2(n—2) 1
I1L.5 Herm(3,0)c 54 6 16 |
IV.1 | Sym(2n,C) N M(n,H) | n(2n+1) | 2n 4 2
V.2 M (n,H) 4n? 2n 8 3
IV.3 X X X X X X X
IV4 R™Y (n > 2) n 2 0 n—1
IV.5 X X X X X X X

Table A.1.: Structure constants of V'
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Appendix A. Tables of simple real Jordan algebras

A.2. Structure constants of VT

128

\%4 VJr No To do

I.1 Sym(n,R) L1] 8(n+1) | n 1
1.2 Herm(n, C) 1.2 n? n 2
L3 Herm(n, H) I3 | n2n—-1) | n 4
14 R (n > 3) 14 n 2 |n—
L5 Herm(3, Q) L5 27 3 8
II.1 X X X X X X X
I1.2 M(n,R) L1] 3(n+1) | n 1
I1.3 Skew(2n, R) [.2 n? n 2
1.4 RPY (p,q > 2) [.4 g+1 2 | q—
I1.5 Herm(3, Q) I.3 15 3 4
1.1 Sym(n, C) L1| 5n+1) | n 1
11.2 M(n,C) 2| w2 |nl| 2
1113 Skew(2n, C) 13 |n@2n—1) | n| 4
I11.4 C" (n > 3) 14 n 2 |n—
115 Herm(3,0)c L5 27 3] 8
IV.1 | Sym(2n,C) N M(n,H) | 1.2 n? n 2
V.2 M (n,H) [3 | n2n—-1)|n 4
IV.3 X X X X X X X
V.4 R™Y (n > 2) [4 1 1 0
IV.5 X X X X X X X

Table A.2.: Structure constants of V'




A.3. The constants p and v

A.3. The constants i and v

V 0 v
I.1 Sym(n, R) (n—2)/2 —1
1.2 Herm(n, C) n—1 -1
L.3 Herm(n, H) 2n —1 -1
L4| RV (n>3) n—3 1
L5 Herm(3,0) 11 -1
II.1 X X X X X
1.2 M(n,R) n—2 0
I1.3 Skew(2n, R) 2n —3 1
114 RP? (p,q > 2) max(p,q) — 2 | min(p, q) — 2
IL.5 Herm(3, Q) 7 3
III.1 Sym(n, C) n—1 —1
[11.2 M(n,C) 2(n — 1) 0
II1.3 Skew(2n, C) 2(2n —2) 2
I11.4 C" (n>3) n—2 n—4
II1.5 Herm(3,0)¢ 16 6
IV.1 | Sym(2n,C) N M (n,H) 2n—1 -1
V.2 M (n,H) dn — 2 0
IvV.3 X X X X X
V.4 R™Y (n > 2) n—2 -n
IV.5 X X X X X

Table A.3.: The constants p and v
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A.4. Conformal algebra and structure algebra
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Vv g=co(V) [ = ste(V)

I.1 Sym(n, R) sp(n,R) sl(n,R) x R

[.2 Herm(n, C) su(n,n) sl(n,C) x R

L.3 Herm(n, H) 50%(4n) sl(n,H) x R

I4 R (n > 3) s0(2,n) so(l,n—1) xR

15 Herm(3,@) €7(—25) €e(—26) X R

II.1 X X X X X X X X X

1.2 M(n,R) sl(2n,R) sl(n,R) x sl(n,R) x R
I1.3 Skew(2n, R) s0(2n,2n) sl(2n,R) x R

I1.4 RP (p,q > 2) so(p+1,q+1) so(p,q) x R

I1.5 Herm(3, Q) e7(7) es(6) X R
1.1 Sym(n, C) sp(n, C) sl(n,C) x C
I11.2 M (n,C) s[(2n,C) sl(n,C) x sl(n,C) x C
I11.3 Skew(2n, C) so(4n,C) s((2n,C) x C
I11.4 C" (n>3) so(n +2,C) so(n,C) x C
I11.5 Herm(?),@)(c 87(C) 2(;(@) x C
IV.1 | Sym(2n,C) N M(n,H) sp(n,n) sl(n, H) x H
V.2 M(n,H) s((2n, H) sl(n,H) x sl(n,H) x H
IV.3 X X X X X X X X X
V.4 R™0 (n > 2) so(l,n+1) so(n) x R
IV.5 X X X X X X X X X

Table A.4.: Conformal algebra and structure algebra




B. Calculations in rank 2

Let V = RP? with p,q > 2 (see Example (2)). The structure constants of V
and VT can be found in Tables and where V' corresponds to the case I1.4.
In particular, V' has dimension n = p + ¢ and rank » = ry; = 2. The parameter A
of the zeta function and the Bessel operator corresponding to the minimal orbit of
Str(V)g is A = 4 = 2X22 " Tet us for convenience assume that p < ¢. (The case

2r 2
p > q can be treated similarly.) Then u=¢g— 2 and v = p — 2.
Denote by (e;);j=1,..» the standard basis of V' = R". We use coordinates z1, ..., z,

for x = 2?21 xje;. In these coordinates the trace form and the determinant are
given by
T(2,y) = 2(x1y1 — Tay2 — ... = TpYp + Tpr1¥Ypr1 + -+ Tun),
Alw)=ai+.. . +al—al —...— 2

n*

Hence, ae; := €;e; defines a Cartan involution of V', where

+1 forj=1lorp+1<j5<n,
€, =
! —1 for2<j<p.

The basis dual to (e;) with respect to the trace form 7 is therefore given by €; =
%ejej. The corresponding inner product and norm are

(]J|y) = T(LL’, ay) = 2(xlyl +.o.+ 'rnyn)v
lz|? = ||z = 2(2% + ... + 22).
An orthonormal basis of V' with respect to the inner product (—|—) is hence given
by the vectors \/Liej, 1 < j <n. We also fix the Jordan frame ¢ := %(el + €piq);

C2 = %(61 — €ptq)-
The gradient % with respect to the trace form writes

9 _ (90N _tfo o 9 0 4
or  \ 2 0x; j_2 dxy’ Oxg’ 7 Oz, Oxpyr 0x,)

Let us use the notation = = (2/,2”) € R? x R? for x € V. Abusing notation, we
also write 2" and z” for the vectors (2/,0) € V and (0,2”) € V, respectively. In this
notation the minimal orbit @ = O; can be written as

O={zxeV\{0}:Ax) =0}
={(@,2") e VA {0} : [ = [2"|}.

131



Appendix B. Calculations in rank 2

In particular, for z = (2/,2") € O we have |2/|> = |2"> = J|z|*.

Now let us calculate the action of the Bessel operator By (A = A1) in this case.
To apply Proposition [1.7.6] we have to calculate ke for k € (K)o = SO(p) x SO(q).
One finds that for « = kte; € O with t > 0, k € (K)o we have kte = (22/,0).
Hence we obtain for ¢(z) = f(|z|):

1 1
Bu(e) = (£/(al) + dary £el) ) (e + (#(el) + (0 = do) ol ) ale”)
For the action of the Lie algebra elements (e;, 0, —ae;) € € this yields

dm(ej, 0, —ae;)Y(x)
F(J2l) + (a = D f'(jz)) = fl2]) ) (xle;) for 1 <j <p,

(B.1)
F(J2l) + (= D f' (=) = f(l2]) ) (2le;) forp+1<j<n

S S

B.1. The minimal K-type

In this section we prove the remaining parts (c¢) and (d) of Proposition and
calculate the action of Fp on . N

To prove and we need to calculate the £-action on the spaces Ky 44 ®
HM(RP), 0 < k < 4B, For this we introduce operators (—);IE on H*(RP) for j =
1,...,p by:

x%—l—...—i—xi&p

(=)f : HERP) — HMURP),  of (2) = 250(w) — (),

1 Oy
D k Py _ k—1 p - -

That ¢ and ¢; are (for ¢ € H*(R?)) indeed homogeneous harmonic polynomials
of degree k+ 1 and k — 1, respectively, can easily be checked by direct computation.
Then for ¢ € H*(RP) one clearly has the following decomposition of z;p(z) into
spherical harmonics:

zjp(r) = of (z) + (21 + ... + 23)¢5 (2).

For convenience we also put (=)} := (=); := 0 for j = p+1,...,n. Using the

j
operators (—);" and (—); we prove the following lemma:

Lemma B.1.1. For j = 1,...,n the action of (e;,0,—ce;) € £ on IN(%HC ®p €
I?%Jrk ® H*(RP) is given by

dm(e;, 0, —aej)(Kg+k ® ¥)

O
—

(2k+p =Ry © ¢ — @k +p+q— DR 047 .
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Proof. Let p € H*(RP) and 1 < j < n. With (2.12)), the product rule (1.69) and

(1.72) we obtain
dn(ej,0, —ae;) (K4 ® @) (1) = dr(e;,0,
2 Ky (|)) 9 1~
B R (P (owc, _cp) x,ej> + gK%Jrk(‘iL'DT(B)\QD(Q?),ej).

i || oz

—aej)f?gyg(ﬁ) - o(z)

Using the two identities

u dp L 9%
Z xja—x](x) = kp(z) and Z: 5
j=1 = J

which hold since ¢ € H¥(IRP), a short calculation gives
Oy

a@ . w1 /
P <0zx, %> xr = k(22" + —]x| %(x ),

9
Byp = (/\+l<;—1)ai

(a) 1 <j <p. With (B.1)) and the differential equation we obtain

dn(es 0, e (Ryn © 9)0) = 1 | =202k +p = ) Ky lla) -2y
dp

|ﬂKWMMw§§@w+waﬁ%:f)%ﬁumwaguﬂ.

Applying (D.11]) and (D.13) yields the stated formula.
" e;) = (ale;). Using (B

(b) p+ 1 < j <n. In this case T(g ,e;) =0 and 7(2", e;)
again we find that
dr(e;,0, —ae;)(Ky 5 @ ¢) ()
= 1 |REaalol) + @kt p = DR o) - Ryl alep)oto)
But this is = 0 by which finishes the proof. O

Now
t=0®{(v,0,—au):ueV}

and & = s0(p) ® so(q) acts irreducibly on H*(RP) for every k > 0. Therefore, the

previous lemma implies that

%

P Kz MR if g—p €22,
WO = k;O:OO

@ l?%Jrk ® H"(RP) else,

k=0
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which proves parts (c) and (d) of Proposition 2.1.4 It remains to calculate the
highest weight of Wj.

The isomorphism g — so(p + 1,¢ + 1) given in Example (2) restricts to an
isomorphism ¢ = so(p + 1) @ s0(q¢+ 1) C so(p+ 1,q+ 1) given by

(0,7,0) — T , T €t =so(p) ®so(q),
2(u/>t
—2u/
(U, Oa —Q{U) = —2u" ) ueV.
Z(uu)t
Lemma B.1.2. Under the identification € = so(p + 1) @ so(q + 1) the map

b f?gﬂc ® HF(RP) — H%(Rpﬂ),

k
~ (—20)F ~oo1yy
s (Kg+k ® %0) (w0, 2) = (1), C%,k(xo)w(xl)a (20, 2") € S” C RPFL.
becomes an isomorphism of €-modules.

Here 6’7’1\(2) denote the normalized Gegenbauer polynomials as defined in Ap-

pendix and (a)p =a(a+1)---(a+ k — 1) is the Pochhammer symbol.

Proof. Since so(g+1) acts trivially on both sides, we only have to check the s0(p+1)-
action. The action of A € so(p + 1) on ¢ € H'z" (RP*!) is given by

(A : ¢)($) = DA*:U¢(£) = _DAMD(:E)'
Then it is clear that ® intertwines the actions of so(p) C €. It remains to check
that it also intertwines the actions of (e;,0, —ae;) for 1 < j < p. To prove this,

we make use of the two formulas (D.28]) and (D.29)) for the normalized Gegenbauer
polynomials. We then have for (z¢,z’) € SP:

((ej, 0, —ae;) - D(Ky 4 @ 90)) (o, 2")

0 0 ~ ,
= (—ij—+2x0 - >®(K5+k®go)(xo,x)

(=28)% ~eta(ern) (—=20)F ety Op
= _4(’%%0 ke (W0) (2 HQ(”T)kxOC” x (70 )ax]( ')
[O29)

1 ~
= [kt p - 92Ky spen @ 9))
— 2k +p+q— DKy i) ® ;)| (w0, 2)

= <(ej, 0, —aey) - (I?%Jrk ® gp)) (wo, ")
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B.1. The minimal K-type

by Lemma [B.1.1] O

We use the identification € = so(p+1) @ s0(g+ 1) to transfer the torus t C £, the
roots {:i:%iT%} and our choice of a positive system from € to so(p + 1) ® so(q + 1).
Then by [Kna86, Chapter IV.7, Examples (1) & (2)| the function ((z) = (zo +
iz1)"z" is a highest weight vector in H*z" (RP*!) and the corresponding highest
weight is given by

Under the above identification e corresponds to “72(v; + 72) which is in turn the
highest weight of the -module W,. This proves the last part of Proposition [2.1.4

Finally we calculate the action of Fp = e_”%o(do_g)ﬂr(u?o) on the function 1y to
finish the proof of Proposition [2.4.11] The missing part in the proof is the following
lemma:

Lemma B.1.3. €328y = eim(55%) ).
Proof. By the definition of dm we have

i (cle=8) _ pdn(3(e0.-c).

Under the identification £ = so(p + 1) x so(q + 1) the element (e, 0, —e) € £ corre-
sponds to the matrix

0
Applying the exponential function of SO(p + 1) x SO(q + 1) to § times this matrix

gives
-1,
. B.2
( Lyt ) (B2)

By Lemma the function ¢y € W, corresponds to the function

1

SP — C, (z0,2") — C.2, (o). (B.3)

In view of the parity formula (D.26) for the Gegenbauer polynomials we see that the
p —_P

matrix (B.2)) acts on the function (B.3) by the scalar (—1)*z° = ¢™*z". Similarly
one shows that for p > ¢ the scalar is 1. Therefore, the claim follows. O
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Appendix B. Calculations in rank 2

B.2. The Casimir action

In this section we calculate the Casimir action in the rank 2 case. This completes
the proof of Theorem [2.3.3]

The action of (e;,0, —ce;) on radial functions is given in (B.1). Note that (e;);
denotes the standard basis of R™ which is not orthonormal with respect to the inner
product (—|—). With the notation of we find that for z € O:

- Z dr(ej, 0, —ae;)*(x)

Zp: { L)z (z]e)? + 27 (P (3(ng2f)‘ a(gfj)) x,@j)

" <Bq_2f><|x|>T<BA<x|ej>,e»}

2B o))l + T (Bpeaf V() 37 (P (o) .y
(Bua)(la) 3 (e5les)

J=1

NJIQ.

p

= (Bio)(lz)l=* + |%(Bq—zf)'(lfﬂl) Y7 (P(azlae))z,e;) +pd(By-of)(a])

and similarly for 37", dm(e;, 0, —ae;)*¥(x). Now a direct computation shows
that

J=1

7(P(az, aej)z, e;) = |z|? Vi=1,...,n.

Therefore, we obtain

=) dm(e;, 0, —ae;)*(x)
j=1

= |z|*(B; Qf)(lx\)Jr?p\w!( a—2f) ([2]) + dp(Bg—2f)(|])
+ 12 (Byof)(|2]) + 2ql2[(By—af) (|2]) + da(B,—2f)(|2]),

which turns out to be equal to 2D, , + (¢ — p)(p + ¢ — 2). Taking into account
that (\/Liej)j forms an orthonormal basis of V' with respect to (—|—) we obtain with

that
an(Cv(a) = -3 dn (\%ej,o, —%aej) ()

- <DW+ (q—p)(]?2+q—2))
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B.2. The Casimir action

which finishes the proof of Theorem [2.3.3]
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C. Parabolic subgroups

Let G be a real reductive group of inner type (i.e. Ad(G) C Int(gc)) and g =€+ p
be a Cartan decomposition of its Lie algebra. Further, let a C p be any (not neces-
sarily maximal) abelian subalgebra. Assume that the set (g, a) is a root system.
In this section we construct parabolic subgroups of G just in terms of the root sys-
tem (g, a), not involving a maximal abelian subalgebra.

For a € a* we consider the weight space
9o ={X€g:[H,X|=aH)XVH € a}.

Denote by (g, a) the set of all 0 # « € a* such that g, # 0. As mentioned in
the beginning, we assume that (g, a) is a root system. Choose a positive system
Y*(g,a) C X(g,a) and denote by TI(g, a) the corresponding set of simple roots. For
any subset F' C II(g, a) of simple roots we form the Lie algebras

ap={He€a:a(H)=0Va € F} Ca,
mp:={X €g:[X,ar] =0}

with corresponding Lie groups

Ap = exp(ar),
Mp:={9e€G:Ad(9)H=HVH € arp}.

Further put

Sh(8.0) = {a € T¥(g,0) : alo, # 0}

and

np = @ Ja;

aGZ}C(g,a)

Np :=exp(ng).
Finally, we define

PF = MFNF
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Appendix C. Parabolic subgroups

Theorem C.1. (1) For every subset F' C Il(g,a) the group Pr is a parabolic
subgroup of G.
(2) Fach Pg has the Langlands decomposition Pr =°MpApNp, where
Mp ={g € Mr:x(g) =1 V¥ characters x : Mp — R, },

and the maps

Mg X Np — Pp, (m,n) — mn,

Mp x Ap X Np — Pp, (m,a,n) — man,

are diffeomorphisms.
(3) G = KPg and we have the following integral formula for f € C.(G):

/Gf(g) dQZL[MF /Ap o f(kman)a®* dn da dm dk,

where dg, dk, dm, da and dn denote suitably normalized Haar measures on
G, K, °Mp, Ar and Ng, respectively, and

1

pr(H) = STr(ad(H)lo) = 5 3 dim(ga) o

aest(g,a)
is the half sum of all positive roots in Y}(g,a).

Proof. Choose a maximal abelian subalgebra a of p that contains a:
aCacCp.

We denote the weight space with respect to a € a* by g,. Then clearly
9o € a;

where @ = alq. Since g = P, o 9o = P, s Ja, We conclude that

®: X(g,a) U{0} — X(g,a) U{0}, o= & = af,,

is defined and surjective. One can choose a positive system X (g, a) of X(g, a) with
corresponding simple roots I1(g, a) such that ® restricts to surjections

ot ¥ (g,a) U{0} — X (g,a) U{0}, and &y :1I(g,a)U {0} — II(g,a) U {0}.

Then put F := &' (F) U (I(g,a) \ ®5'(I(g,a))) C II(g,d). The statements now
follow immediately from [Wal88, Lemmas 2.2.7, 2.2.8 and 2.4.1] applied to F'. [
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D. Special Functions

In this chapter we give definitions and basic properties of the classical special func-
tions that appear in this paper.

D.1. Bessel functions

The series

Lo(z) = <§>QZ n!F(n—ioH— 1) <§>2n (D-1)

n=0

defines a meromorphic function in z and «, called the modified Bessel function of
the first kind or /-Bessel function (see [Wat44, Section 3.7]). For « > —1 and z > 0
this function takes real values. I,(z) solves the following second order differential
equation:

Pt z— — (2 4+ a®)u=0. (D.2)

Another solution of (D.2)) which is linearly independent of I,(z) is given by the
modified Bessel function of the third kind or K-Bessel function:

™

Kao(z) : (I_a(2) — I(2)). (D.3)

2sin T

For convenience we use the following renormalizations:
T(z) == @_a In(2), Raolz) = (f)_o‘ Kao(2).

Note that fa(z) is an entire function. Further, since K_, = K, we have

z

Roo(z) = <§>2a Ka(2). (D.A)

It follows directly from the definitions that
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Appendix D. Special Functions

where
. ra—-9)1re ,
Ao = € by 1= L -35)0GE) 22) (3) (e7™ —1).
For the special value a = —% the normalized - and K-Bessel functions are
~ 1 -
I_1(z) = NG cosh(z), K_1(z) = \/T%B_z. (D.7)

In the case where the parameter a € Ny + % is a half-integer the K-Bessel function
degenerates to a combination of power and exponential function and polynomial
(see e.g. [Watdd] II1.71 (12)]):

Ralz) = vz e} (20 —i—1)!

1=

N|=

(22)". (D.8)

(a—i—3)!-d!

o

Corresponding to (D.2)), I,(z) and K4(z) solve the second order equation

d? d
z2d—;2b + (2a+ 1)zd—z —2?u =0, (D.9)

or equivalently
(0% +2a8 — 2*) u =0, (D.10)

d

where 6 = 24 For the normalized Bessel functions one has the differential recur-

rence relations (see [Wat44l, I11.71 (6)])
d ~ Z~ d ~ Z ~
L5 = (o) LR5) = 2R, (D.11)
with which the differential equation can equivalently be written as recurrence
relation (see e.g. [Watd4, II1.71 (1)]):

afu(2) = L1 (2) @2 (), (D.12)
W (2) = (2)2 Rour(2) = Ror(2). (D.13)

For Re(a) > —% the Bessel functions have the following integral representations in

x> 0 (cf. formulas I11.71 (9) and VI.15 (5) in [Wat44]):

~ 1 ™

I(2) = ———— —reostgin g dg D.14
o ﬁr<a+§>/o T (DAY

- NZS /°° _wcoshd . 12

Ko(z) = =——— Teosh® sinh®* ¢ dg. D.15
(ZL’) F(Oé"—%) 0 € S ¢ Cb ( )
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D.1. Bessel functions

The Mellin transform of the K-Bessel function is given by the following formula
which holds for Re(o),Re(o0 — 2a)) > 0 and Re(a) > 0 (see e.g. [GR65, equation
6.561 (16)]):

0~ -2
/ Ro(az)a’ ' dz = 2°24~°T <5> r (‘7 O‘) . (D.16)
0 2 2
We further have the following two integral formulas involving two Bessel functions:
e For Re(o),Re(0—203) > 0, a < b the following holds (see e.g. [GR65, equation
6.576 (5)]):

22T (§)T(22)

b+ 1)

o o—2 a\ 2

/ fa(am)f?ﬁ(bx)a:"_l dz =
0

e For Re(0) > 2max(Re(a),0)+2max(Re(3),0) we have (see formula 10.3 (49)
in [EMOT54))

/000 Ko(2)Kg(x)z" tde = mig—cj—ﬁ)r (g) . (0‘ _22a>

% T (U _225) r (#) . (D.18)

Finally, on the positive real line R, the normalized /- and K-Bessel functions have
the following asymptotic behavior (see [Wat44, Chapters IIT and VII| and [AAR99,
Chapter 4]): as z — 0

1,(0) = F(a1+ I (D.19)
N Do) (%)_QQ + o(z72%) %f a>0
Ko(r) =4 —log(5) +o(log(5)) ifa=0, (D.20)
LA 4 o(1) if @ <0
and as £ — 00
~ 1 /a3, 1
I (v) = DN <§> e (1 +0 <x)> ; Do)
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D.2. Laguerre polynomials

For n € Ny and o € C the Laguerre polynomial L%(z) is defined by (cf. [AAR99,
Equation (6.2.2)])

Lo(z) = (@ Un Zn: (Z) RO (D.22)

n! =0 (Oé + 1)k

L%(z) solves the following second order differential equation (see [AAR99, Equation
(6.2.8)])

d2+( +1- )d+ =0 (D.23)
Zdz2 « <z P njlju=~u. .

The generating function of the Laguerre polynomials is given by (see e.g. formula

(6.2.4) [AAR99)):

> a n ]. __tz
;Ln(Z)t :me 1=t (D24)

Finally, we have the following integral formula for Re(3) > Re(a) > —1 (cf. formula
16.6 (5) in [EMOT54])

Fla+n+1)I'(G - a>Lﬁ

Trrnen ) (D.25)

1
/ (1—y)P oty Lo (zy) dy =
0

D.3. Gegenbauer polynomials

The classical Gegenbauer polynomials C(z) with parameters n € Ny and A € C
are defined by (see [EMOT53| 3.15 (2)])

1 & (—D)FTN+ R+ 2X+k) (1—2\"
F(A)Z k\(n — k)IT(2X + 2k) ( 2 )

Cp(2) =

We rather use the normalized version
Cx(z) = T(\)C)(2).

C*(z) is an even function if n is even and an odd function if n is odd (see [EMOT53)
3.15 (5)&(6)]). This can be stated as the parity formula

Ca(=2) = (-1)"CL(=2). (D-26)

The Gegenbauer polynomial 6’2(2) solves the second order differential equation (see
[EMOT53), 3.15 (21)])

(22 — Du” 4+ (2A + Dz — n(n + 2\)u = 0. (D.27)
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D.4. Meijer’s G-function

With the differential recurrence relation (see [EMOT53, 3.15 (30)])
d ~ -
@cg(z) =202 (2) (D.28)
the differential equation (D.27)) rewrites as the recurrence relation
A +n —1)(n+1)CTHz) = 2220 = 1)CN2) + 4(1 — 22)CML(2) = 0. (D.29)

D.4. Meijer’'s G-function

The G-function can be defined in a very general setting. However, we restrict our
definition to the case which is needed in this paper. The results in this section are
taken from |[Luk69, Chapter V].

Let 0<m <¢q,0<n<p,p<qanday,...,ab,...,b, € C. Assume further
that ar — b, is not a positive integer for j = 1,...,m, k. =1,...,n. For 2 # 0 in
the univeral covering of C* we define

Gmn ai,...,ap \ 1 / H;n:1 I'(b; — s) H;'Z=1 I'(1—a;+s) s
z = q

br,....b, T b+ ) [ Tla, — )
Here L is a loop beginning and ending at +oo and encircling all poles of I'(b; — s),
1 < j < m, once in the negative direction, but none of the poles of I'(1 — ay + s),
1 <k < n. G;?(}”(z Z:’) is called Meijer’s G-function. From the definition one
immediately obtains the reduction formula (cf. [Luk69, Equation 5.4 (1)])

m,n ar,...,0qp _ ~mn—1 ag,...,0p
e (e o Y= - ) o

by,...,b4—1
The G-function G (z Z;’ ) solves the following differential equation of order
max(p, q) (see [Luk69, Equation 5.8 (1)]):

j=m+1

[(—1)m+”_pz ﬁ (0@ —a;+1)— ﬁ (0 — bk)] u =0, (D.31)

j=1 k=1

where 6 = z% and an empty product is treated as 1. For the special case of
G%Z(Z’bl, bQ, bg, b4) we find

[H (0 — bj)] w(z) = zu(z). (D.32)

j=1
Various special functions can be expressed in terms of the G-function. For instance,
the J- and K-Bessel functions are given by (see [Luk69, Equations 6.4 (8) & (11)])

() iz =63 (@4 5Za7ﬁ+z+2’6;a’ﬁ—j+2) o
22 o - (3] 222 252) oo
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Appendix D. Special Functions

We also need the following integral formula for the G-function G3)(z|by, b, bs, by)
which holds for w,n7 > 0 and Re(b; —a £ §) > —1 (j = 1,2) (see [Luk69, Equation
5.6 (21), assumptions as in case 4|):

/ 2 Ko (2(w)2))G2(nz|by, by, by, by) da
0

wafl n
=5 G (Z

Finally, we give the asymptotic behavior of the function G324 (z|b1, ba, b, by) as z — 0
and z — o0o. For the asymptotics as z — 0 we assume without loss of generality
that by < by. Then it follows from [Luk69, Equations 5.2 (7) & (10)] that

(e}

a+5,a—%
b17 b27 b37 b4 ) ' (D35)

G32(2|blu b27 b37 b4)

o 1 y F(bg — bl)Zbl -+ O(Zb1> if b < bg,
T+ by —by)T(1+ by — by) —In(2)2" + o(In(2)2%)  if by = by.

(D.36)

For the asymptotic behavior as  — oo we find with [Luk69 Section 5.10, Theorem
2] that

1 , B
Goi([by, ba, bg, by) = —\/—2—7T$0 Cos (4$4 + (bs + by — 20)7r) (1 + O(z 4)) ,
(D.37)

where 6 = %(bl + by + b3 + by — %)
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