
On the Design and Implementation
of Reliable and Economical

Telematics Software Architectures
for Embedded Systems.

A Domain-specific Framework.

A dissertation to obtain the degree of
doctor rerum naturalium

submitted to the
University of Paderborn,

Faculty of Computer Science,
Electrical Engineering and Mathematics

by Dipl.-Wirt.-Inf. Jan Stehr, Kassel, Germany

2nd November 2010

1

Abstract

The massive growth of mobile telecommunications and computing
power of mobile phone devices over the past decade established an ex-
tensive infrastructure for distributed services. Of the corresponding
applications, Electronic Toll Collection (ETC) is a prime example for
mission-critical telematics systems. Consequently, ETC may serve as an
archetype in the elaboration of an architecture for reliable and economic
telematics software, as presented here.

Due to a lack of substantiated publications, this work first establishes
a software view on the ETC domain. It differentiates related domains
and describes the defining aspects as well as generic concepts, setup and
processes.

With the focus narrowed on the distributed, embedded software com-
ponents, the initial requirements of domain-specific reliability and econ-
omy are refined and substantiated. Submitting the previously speci-
fied deployment to a systematic Fault Tree Analysis (FTA) produces a
scheme for risk evaluation of telematics solutions as well as a first set of
detailed architectural requirements. Approaches to optimized utilization
of the costly ETC infrastructure lead to the second set of requirements.
These resulting, intended software properties are complemented by high-
integrity constraints to modeling and implementation of the architecture.

As primary result, this work presents a set of fundamental design
patterns, establishing the HIRTE – a High-Integrity Run-Time Environ-
ment for mission-critical telematics applications, especially ETC. Con-
forming to the domain-specific requirements and constraints, the patterns
represent building blocks of a framework for state-based service compo-
nents; statically implementable, exhaustively monitor- and controllable.
In this context, the Virtual Control Unit (VCU) provides an original,
lean virtual machine for crucial applications, extended by the notion of
the Distributable State Machine Fragment (DSMF), enabling selective,
safe delegation of processing steps. As a proof of concept as well as
foundation for future research and development, all patterns feature a
reference implementation in a language subset of Ada.

Application architecture patterns complement the fundamental de-
sign patterns, structuring them in a framework context, refining their
implementation roles and finally sketching an ETC software smartphone
solution based on the introduced original concepts.

Keywords: telematics, telecommunications, smart cards, electronic
toll collection, automotive, fault-awareness, high-integrity, mission-critical
components, virtual machines, state automatons, Ada.

2

Zusammenfassung

Das vergangene Jahrzehnt sah ein massives Wachstum sowohl mobi-
ler Telekommunikation als auch der Rechenleistung von Mobiltelefonen.
Daraus entstand eine breit verfügbare Infrastruktur für verteilte Dienste.
In der Menge der damit verbundenen Anwendungen stellt die elektroni-
sche Mauterhebung (Electronic Toll Collection; ETC) ein herausragendes
Beispiel für hochkritische Telematiksysteme dar. Bei der Erarbeitung ei-
ner Architektur für zuverlässige und wirtschaftliche Telematiksoftware,
wie hier präsentiert, kann ETC daher als ein Archetyp dienen.

Wegen des Mangels an fundierten Veröffentlichungen führt diese Ar-
beit zunächst die Domäne ETC aus Sicht der Software ein. Dabei grenzt
sie verwandte Gebiete ab und beschreibt die definierenden Aspekte, wie
auch generische Konzepte, den Aufbau und Prozesse.

Ein Fokus auf den verteilten, eingebetteten Software-Komponenten
verfeinert und konkretisiert die initialen Anforderungen domänenspezifi-
scher Zuverlässigkeit und Wirtschaftlichkeit. Die systematische Analyse
der potentiellen Defekte (Fault Tree Analysis; FTA) liefert ein Schema
zur Risikoevaluierung von Telematiklösungen, als auch einen ersten Satz
detaillierter Anforderungen an die Architektur. Ansätze zur optimierten
Auslastung der aufwändigen ETC-Infrastruktur führen zu einem zweiten
Satz von Anforderungen. Die so gegebenen angestrebten Eigenschaften
der Software werden durch Randbedingungen für hochintegre Modellie-
rung und Implementierung der Architektur ergänzt.

Als primäres Ergebnis präsentiert die vorliegende Arbeit eine Rei-
he von grundlegenden Entwurfsmustern. Damit führt sie die HIRTE
(High-Integrity Run-Time Environment) ein – eine hochintegre Lauf-
zeitumgebung für kritische Telematikanwendungen, insbesondere ETC.
Konform zu den domänenspezifischen Anforderungen und Randbedin-
gungen bilden die Muster Bausteine eines Realisierungsrahmens für zu-
standsbasierte Dienstkomponenten; statisch implementierbar, erschöp-
fend kontrollier- und steuerbar. In diesem Zusammenhang stellt die vir-
tuelle Steuereinheit (Virtual Control Unit; VCU) eine neuartige, schlanke
virtuelle Maschine für kritische Applikationen zur Verfügung, erweitert
durch den Ansatz eines verteilbaren Zustandsmaschinenfragments (Dis-
tributable State Machine Fragment; DSMF), welches die selektive und
sichere Auslagerung von Verarbeitungsschritten ermöglicht. Als Nach-
weis der Konzepttauglichkeit sowie Grundlage für künftige Forschung
und Entwicklung verfügen alle Entwurfsmuster über eine Referenzimple-
mentierung in einer Sprachuntermenge von Ada.

Applikationsarchitekturmuster vervollständigen die grundlegenden Ent-
wurfsmuster, strukturieren sie in einem Framework-Kontext, verfeinern
ihre Rollen in der Implementierung und skizzieren zum Abschluss eine
ETC-Softwarelösung für Smartphones, basierend auf den vorgestellten
neuen Ansätzen.

Stichworte: Telematik, Telekommunikation, Chipkarten, automati-
sche Mauterhebung, Automotive, Mängelbewusstsein, Hochintegrität, kri-
tische Komponenten, virtuelle Maschinen, Zustandsautomaten, Ada.

3

Contents

Contents 4

List of Figures 8

List of Tables 9

Listings 10

1 Introduction 11
1.1 Motivation . 11
1.2 Aims . 14
1.3 Approach and Structure . 15

2 Establishing the Domain of ETC Software Systems 19
2.1 Related Domains . 20

2.1.1 Automotive . 20
2.1.1.1 Car Control Circuit 20
2.1.1.2 ECUs and Busses 21
2.1.1.3 Vehicle Subsystems 22
2.1.1.4 Development Approach 24

2.1.2 Traffic Telematics . 26
2.1.2.1 A Telematics Infrastructure 26
2.1.2.2 Communications and Interfaces 29
2.1.2.3 Development Approach 31

2.2 Electronic Toll Collection (ETC) 33
2.2.1 Toll Collection Fundamentals 33
2.2.2 Automation of Toll Collection 38
2.2.3 Preconditions and Assumptions 39

2.3 Aspects and Business Processes 45
2.3.1 Locating . 48
2.3.2 Charging and Payment 48
2.3.3 Active Data Storage . 49
2.3.4 Communications . 50

4

Contents

2.3.5 Enforcement . 52
2.3.6 Security . 53
2.3.7 Concurrency and Real-time 54
2.3.8 ETC OBE Software Business Logics 56

2.3.8.1 Pre-Operations 58
2.3.8.2 Operations . 58
2.3.8.3 Post-Operations 62
2.3.8.4 Terminating all Activities: Shutdown and Er-

ror Handling 62
2.4 Chapter Conclusion . 64

3 Substantiating Domain-specific Reliability and Economy 67
3.1 Requirements refined . 68

3.1.1 Hazards and Reliability 68
3.1.1.1 Locating Failure 72
3.1.1.2 Disrupted Operating Data 74
3.1.1.3 Faulty Operating Data 75
3.1.1.4 Charging Transaction Protocol Failure 77
3.1.1.5 CN Communication Failure 78
3.1.1.6 Faulty User Settings 80
3.1.1.7 Locating Deviation 81
3.1.1.8 DSRC Interconnection Failure 81
3.1.1.9 Security Protocol Failure 83
3.1.1.10 Hazards Generalized 85

3.1.2 Hazard-derived Requirements 88
3.1.3 Costs and Economy . 91

3.1.3.1 Approach I – Opening the ETC Infrastructure 91
3.1.3.2 Approach II – Automotive Integration 93
3.1.3.3 Approach III – Interoperability 100
3.1.3.4 General Angle 107

3.1.4 Economy-driven Requirements 108
3.2 Concerning the Implementation 111

3.2.1 Model-Program Interdependencies 111
3.2.2 Language Selection . 112
3.2.3 Requirements and Programming Restrictions 115

3.3 Modeling Approach and Design Notation 116
3.3.1 Discussing the Software Model and its Purpose 117
3.3.2 Syntax – Views, Diagrams and their Elements 118
3.3.3 Semantics . 119

3.4 Chapter Conclusion . 121

4 Fundamental HIRTE Patterns 125
4.1 Structural Elements . 126

4.1.1 Behavioral Stereotypes 126

5

Contents

4.1.2 Data Structure Stereotypes 127
4.1.3 Distributable State Machine Fragment Stereotype 128

4.2 Elementary Patterns and Structures 132
4.2.1 Statically Resolvable State Machine Pattern 132

4.2.1.1 Abstract . 132
4.2.1.2 Structure . 135
4.2.1.3 Collaboration 135
4.2.1.4 Implementation 140
4.2.1.5 Instantiation and Application 147
4.2.1.6 Eliminating Pointers 153

4.2.2 State Tracer Pattern . 154
4.2.2.1 Abstract . 154
4.2.2.2 Structure . 154
4.2.2.3 Collaboration 154
4.2.2.4 Implementation 156

4.2.3 Virtual Control Unit Pattern 161
4.2.3.1 Abstract . 161
4.2.3.2 Interpretable State Machine Code 162
4.2.3.3 Structure . 168
4.2.3.4 Collaboration 168
4.2.3.5 Implementation 176
4.2.3.6 Variants and Extensions 200
4.2.3.7 Related Approaches 201

4.2.4 Distributable State Machine Fragment Pattern 202
4.2.4.1 Abstract . 202
4.2.4.2 Extending the ISMC 203
4.2.4.3 Structure . 204
4.2.4.4 Collaboration 204
4.2.4.5 Implementation 209
4.2.4.6 Variants and Extensions 216

4.3 Chapter Conclusion . 217

5 HIRTE Application Architecture Patterns 223
5.1 HIRTE Framework Pattern . 224

5.1.1 Abstract . 224
5.1.2 Structure . 224
5.1.3 Collaboration . 224
5.1.4 Implementation Considerations 227

5.2 HIRTE Implementation Pattern 229
5.2.1 Abstract . 229
5.2.2 Structure . 229
5.2.3 Collaboration . 229
5.2.4 Single-Thread and Multi-Thread Environment Variants 233

5.3 HIRTE Application Pattern . 235

6

Contents

5.3.1 Abstract . 235
5.3.2 Structure . 235
5.3.3 Collaboration . 235
5.3.4 Setup and Deployment Alternatives 239

5.4 Chapter Conclusion . 240

6 Conclusion and Outlook 243
6.1 Approach Evaluation and Achievement of Objectives 243

6.1.1 Concerning Guideline 1: Design as an Artifact 243
6.1.2 Concerning Guideline 2: Problem Relevance 245
6.1.3 Concerning Guideline 3: Design Evaluation 246
6.1.4 Concerning Guideline 4: Research Contributions 247
6.1.5 Concerning Guideline 5: Research Rigor 247
6.1.6 Concerning Guideline 6: Design as a Search Process . . 248
6.1.7 Concerning Guideline 7: Communication of Research . . 249

6.2 HIRTE as a Framework . 249
6.3 Impact on the Development Process 250
6.4 State-forming Heuristics . 252
6.5 Formal Validation and Certification 254
6.6 Venturesome and Bolder Research Notions 256

6.6.1 Dynamic Fragment Generation 256
6.6.2 State Machine Fragments and Homomorphic Encryption 256

6.7 Tools Applied to This Work . 257

Acknowledgements 259

Glossary and Abbreviations 261

Bibliography 273

7

List of Figures

2.1 Generic Car Control Circuit . 20
2.2 Automotive Subsystems illustrated 22
2.3 Traffic Telematics Infrastructure Overview 26
2.4 From Toll Atom Identification to Payment 37
2.5 Expanding Toll Collection Use Cases 38
2.6 ETC Deployment Overview . 43
2.7 Core ETC Aspects . 47
2.8 ETC OBE Software Business Logics Overview 57
2.9 The Tolling Activity . 63

3.1 Fault Tree of a Faulty Charging . 71
3.2 Fault Tree of a Locating Failure . 73
3.3 Fault Tree of Operating Data Disruption 74
3.4 Fault Tree of Faulty Operating Data 76
3.5 Fault Tree of a Charging Transaction Protocol Failure 78
3.6 Fault Tree of a CN Communication Failure 79
3.7 Fault Tree of Faulty User Settings 80
3.8 Fault Tree of a Locating Deviation 82
3.9 Fault Tree of a DSRC Interconnection Failure 83
3.10 Fault Tree of a Security Protocol Failure 84
3.11 Generalization of Hazard Correlation and Classification 86
3.12 Classification of Potentially Mission-critical Problems 87
3.13 Identified Hazards in Relation to the Deployment 88
3.14 Value Added Services Use Case Structure Example 92
3.15 Automotive ETC Integration Scenario 99
3.16 Smart Card Integrated Interoperability Scenario 102
3.17 OMS and ETC Smart Card Interaction Example 106
3.18 Class Structures influencing Dispatching 119

4.1 Stereotypes representing Tasks, Function and Procedure References 126
4.2 Stereotypes representing Data Structures 127
4.3 Machine Fragment Stereotype with Model Queries 131

8

4.4 Distributable State Machine Fragment Notation 133
4.5 Statically Resolvable State Machine Pattern Structure 136
4.6 Pattern Example Statechart . 148
4.7 State Tracer Pattern Structure . 155
4.8 Interpretable State Machine Code Overview 164
4.9 ISMC Interpreter Automaton . 169
4.10 ISMC Interpreter Automaton (continued) 170
4.11 ISMC Interpreter Automaton (continued) 171
4.12 ISMC Interpreter Automaton (continued, finished) 172
4.13 ISMC Business Process . 173
4.14 Virtual Control Unit Pattern Structure 174
4.15 ISMC Interpreter Automaton Extensions for DSMF 205
4.16 Distributable State Machine Fragment Pattern Structure 206
4.17 DSMF Processing Interaction between Local and Remote RTE . . 210

5.1 HIRTE Framework Pattern Structure 225
5.2 HIRTE Implementation Pattern Structure 230
5.3 Uniform Handling of Single- and Multi-Thread HIRTE Configurations233
5.4 HIRTE Application Pattern Structure 236

List of Tables

2.1 Example Media of Communications in a Telematics System 30
2.2 Tolling System Payment Paradigms 36
2.3 Digest of a GNSS/CN ETC system as introduced in Germany and

extracted from [DC021] . 42
2.4 Scales of ETC time constraints . 55

3.1 Generic ETCSC Configuration . 105

9

Listings

3.1 Restriction Definitions for the ETC Software 116
4.1 HIRTE State Machine Spec . 140
4.2 HIRTE State Machine Body . 142
4.3 Pattern-conforming Example Spec 147
4.4 Pattern-conforming Example Body 150
4.5 Extended Component Package Spec 156
4.6 Log_State Body . 157
4.7 State Tracer Spec . 157
4.8 State Tracer and Configuration Trace Bodies 159
4.9 Instantiating the Tracer . 160
4.10 ISMC Syntax in EBNF . 164
4.11 ISMC Interpreter Spec . 177
4.12 ISMC Interpreter Body . 180
4.13 ISMC DSMF Extensions in EBNF 203
4.14 ISMC Interpreter Spec Additions 209
4.15 ISMC Interpreter Body Additions 211
4.16 VCU Component Run Procedure Example 214

10

One

Introduction

1.1 Motivation

The mobile telecommunications sector saw a massive technological develop- dawn of mobile
infrastructurement and commercial growth over the last decade. Along with the increasing

capabilites of mobile devices, the ubiquity of the internet and decline of data
traffic costs, today we find an efficient, readily available infrastructure for dis-
tributed services.

One of the hype topics in this context, the term of telematics was adopted telematics in
generalby many projects. An amalgam of telecommunications and informatics, we

designate it an infrastructure composed of distributed components that inter-
act with each other or server components over some radio net, a fixed line
or mobile telecommunications network. Application domains are diverse and
range from healthcare (e.g. the German Elektronische Gesundheitskarte) over
traffic management and renewable energies (smart grids) to defense (e.g. au-
tonomous systems and drones).

Many telematics solutions provide convenience services to a user, i.e. their just for
convenienceoutput generates some benefit, but failure does not result in objective damage

(beyond inconvenience). A navigation system represents a proper example
found in the domain of traffic telematics: if it works, it smoothly leads the
user1 to a selected destination – if not, a paper map or passers-by may help.
Annoying, but no harm done.

On the other hand, more and more mission-critical applications employ ... and in earnest
telematics infrastructures. These systems realize services which process infor-
mation that represents or is associated with an artifact of actual and immediate
importance: the well-being of a person, integrity of a vehicle or simply a large
sum of money. Consequently, failure of such a service may cause substantial
damage. Characteristic examples include telemedicine (remotely monitoring
vital signs) in healthcare and automatic emergency calls in traffic telematics.

1A regular user, not paramedics, firefighers etc.

11

1. Introduction

And one more step of differentiation: mission-critical relating to potentialhealth versus
money physical harm of human beings or monetary losses. This distinction is fun-

damental for the avenues available to system development to handle failures.
In the former case, efforts in time and money are less an issue, because lit-
erally "life is invaluable". Stringent effectiveness, not necessarily efficiency,
permits approaches like multiple redundancy – clear, robust, but costly solu-
tions. Merely monetary risks, however, demand subtly different concepts: the
system design needs to balance costs to achieve reliability with the potential
pecuniary losses. So, now it is about reliability and economy.

A scientifically rewarding subject to further research this specific type ofETC as
representative mission-critical telematics system is the domain of Electronic Toll Collection

(ETC), more precisely Global Navigation Satellite System/Cellular Networks
(GNSS/CN) solutions:

• An ETC system handles massive amounts of money; billions of Euros
per year that require complete and consistent audit trails. Quality of
service requirements are unforgiving and very specific. The operator
may be held liable for the system overstepping any of the defined fault
thresholds. Penalties can easily reach many million Euros a day.

• It features a complex, heterogenous infrastructure with embedded au-
tomotive units, interacting with center servers over CNs, with roadside
devices over various short-range media – all that reproducibly and se-
curely conforming to elaborate business processes.

• Correspondingly, these business processes call for the seamless and secure
integration of a multitude of software components and services, ranging
from navigation to payment and communications via different interfaces,
all in a distributed automotive environment.

• With a harmonization on a European level politically and legislatively
settled, the technical implementation of the ambitious EU concepts and
directives will provide a challenge for some time.

• The current rapid development and dissemination of devices like smart-
phones and services of the mobile internet is very likely to impact the
closed, proprietary ETC systems eventually, demanding answers to the
questions of safe and reliable integration of open components.

When a development team has to tackle a project of the magnitude ofdomain-related
approaches ETC, preparations include the selection of domain-specific software engineer-

ing approaches to follow. Naturally, available valid and proven methods (and
corresponding tools) are candidates for customization and integration into a
defined development process. If one surveys the seemingly innumerable initia-
tives and works on software in the context of telecommunications, telematics,
automotive and embedded systems, the somehow related topic of ETC seems

12

1.1. Motivation

well (if not exhaustively) covered. On close examination however, many of the
works are not as readily applicable to the domain as the close technological
relation might suggest.

First of all, often, the published experts have either a rather hypothetical ... and their
shortcomingsunderstanding of these systems, or their practical experience is limited to con-

sulting, pilots and prototypes or – see above – non-critical software (navigation,
infotainment, multimedia). Second, due to the variety and complexity of appli-
cations, they have to either concentrate on specific details of the development
(like modeling, e.g. [Do04]), with disregard to determining dependencies to
other steps in the process (e.g. feasibility analysis, validation, coding), or they
leave out any details whatsoever and keep a rather orbital distance to their
subject (e.g. [HR02]). Third, the ostensible similarity of use cases – e.g. iden-
tification of a road by navigation and by road tolling – can prove treacherous,
leading to the assumption that similar development approaches must surely
be fitting, then. This completely ignores the very different quality of service
requirements; the distinction between convenience and mission-criticality (see
above).

In contrast to that, the classic engineering sciences are already well estab- classic versus
software
engineering

lished in the domain of ETC: works e.g. on signal processing and communica-
tions in a motorway environment are available, as are exhaustive documents on
road pricing-specific positioning, locating and dead reckoning. Corresponding
dedicated works on software engineering and architecture however, are quite
rare – but still software plays a crucial role in these deployments, determin-
ing functionality and processes, shaping the service chain, and contributing
significantly to the overall quality of service.

When a government authority commissions an ETC operator, or a toll reliability of
an ETC systemcharger an EETS provider (cmp. [EU09] or 5.3), it has basically two (non-

exclusive) options to safeguard its interests: 1) hold the operator/provider
financially liable for any disruption, thus ensuring steady revenue by means of
a contract, or 2) exact a solid proof of reliability. Both options offer challenges
to software engineering. In the case that something goes awry – i.e. loss of
revenue –, the operator has to consistently prove down to a technical level that
it cannot be held liable, or at least that it is able to systematically identify
the problem and its solution quickly to prevent further damage and minimize
losses. Proving the reliability means that the operator and its suppliers have
to systematically ensure that the probability of revenue loss is acceptably low.

This is a characteristic example for the specific properties of mission-critical about software
architecturetelematics systems handling material values. With the discovered deficiency

of software engineering and architecture works on this topic, narrowed down
to the software components, the distributed elements – in the case of ETC the
on-board equipment (OBE) applications – are the most rewarding subjects for
research:

• They are immediately associated with the primary value creation of the

13

1. Introduction

system, thus realizing crucial and irreplaceable elements of the business
process.

• They operate in a restrictive, embedded environment, adhering to real-
time constraints on a multitude of heterogenous hardware platforms, not
necessarily under their full control.

• They integrate a variety of sensor and communications interfaces, short-
and long-range, into their activities. Interaction with the associated de-
vices ranges from continuous, frequent and even intervals to event-driven
and interactive. In consequence, neither purely automotive development
approaches, nor the common telematics frameworks congruently fit the
mission.

• They are deployed in unsafe, distributed environments outside of the
operator’s sphere of direct influence.

That leads us to the aims of this work.

1.2 Aims

With subject and context set, this work answers the following purposes.

1. Introduce ETC to software systems
As sketched in the previous section, from a software point of view, the
domain of ETC is similar, but not equal to related domains. With its
use case and deployment considered mission-critical, so is the design ap-
proach and the differentiation from the parent domains of automotive
systems and traffic telematics a sensitive issue. Lacking other dedicated
sources, the defining aspects and properties of an ETC system respec-
tively its distributed software components need to be examined and de-
scribed as a foundation for systematic further reasoning.

2. Manifest reliability and economy
Unreflected, these requirements are arbitrary and obvious for almost any
software system. Consequently, they need refinement and specialization
on the ETC domain. Especially the constraints introduced by mitigating
mission-criticality to the handling of monetary values inhibits the liberal
application of costly solutions: reliability is balanced against economy,
demanding a detailed analysis of the original facilities actually essential
in this case.

3. Provide a specialized architectural framework
A detailed, domain-specific set of requirements can determine the tai-
lored construction of a compatible software architecture. As we regard
the ETC domain as archetype, i.e. a representative case study for an

14

1.3. Approach and Structure

original type of mission-critical telematics system, it is necessary to take
measures to ensure broader applicability of the emerging solution and its
elements. The resulting architecture may then provide a foundation for
related scientific research and industrial development.

1.3 Approach and Structure

The previously described aims are successional in their results. Consistently,
they determine the structure of this work, as the artifacts produced in one
chapter are built upon in the following. While we present the primary results
in chapter 4, the artifacts of the other chapters not only form their basis,
but also represent secondary results that contribute to the field of software
engineering and architectures themselves. They may be used as devices for
conducted reasoning about specific views on telematics systems, like aspects,
risks, employed programming languages and RTEs, and platforms.

Chapter 2 – Establishing the Domain of ETC Software Systems first
describes the details of the parent domains automotive and traffic telem-
atics relevant to this work and gives an overview of their respective sys-
tem setups and software development approaches to clarify the differen-
tiation from ETC. The chapter then introduces toll collection fundamen-
tals – defining generic concepts and processes, automation – and narrows
the focus on the ETC type and component representatively treated here;
a GNSS/CN thick client.

The essential and characteristic aspects of ETC systems, i.e. concerns
cross-cutting the software architecture and application, are introduced
along with a generic business process of an ETC OBE software that
details activities to be implemented and processed for operations.

Original artifacts: classification of telematics deployments, a software-
specific view on ETC, defining aspects, generic business logics of the
distributed component.

Chapter 3 – Substantiating Domain-specific Reliability and Economy
describes a comprehensive refinement of the initial requirements. Start-
ing with a systematic approach to reliability, the chapter submits the
previously introduced deployment to a fault tree analysis (FTA), identi-
fying potential problems and isolating risks. From the results, we derive
a set of architectural requirements directed toward a stable system. The
elaborations on cost-efficiency on the other hand are constructive: the
chapter presents three approaches to optimized utilization of the costly
ETC infrastructure; that is, leading to what requirements should the
software fulfill in detail to enable these scenarios.

15

1. Introduction

After completing the requirements set – detailing how to achieve a domain-
specific, balanced interpretation of reliability and economy – we have
gained the mold of a high-integrity telematics software, with a strong
emphasis on state machine-based structure and behavior. In addition,
we examine its development process itself to pursue a holistic view and
further support its qualities with constraints to the model and program-
ming language, prominently enforcing static resolvability of structures
and reasonably selecting a subset of Ada.

Original artifacts: a scheme for risk evaluation of mission-critical telem-
atics software, a concept for smart card-based interoperability, a set of
domain-specific requirements for a high-integrity architecture, comple-
menting constraints for a corresponding model and source code.

Chapter 4 – Fundamental HIRTE Patterns describes the primary results
of this work. In preparation for their specification, the chapter introduces
behavioral and structural stereotypes to enhance the UML accordingly.
The distributable state machine fragment offers a substantial contribu-
tion, as it is preceded by a formal extension of the state machine concept:
the self-contained state.

With four patterns, conforming to the previously given requirements,
we present the HIRTE – a High Integrity Run-Time Environment for
mission-critical telematics applications, especially ETC. Instead of con-
structing a dedicated, monolithic architecture solution for our domain,
the separation into patterns benefits reusability, conceptual evolution
and generally attains a higher degree of universality.

Two of the patterns provide the blueprints for the design of high-integrity
components for the realization of services in the context of an OBE
application. The Statically Resolvable State Machine (SRSM) pattern
specifies an executable hierarchical state automaton structure that com-
pletely avoids polymorphy, dispatching and similar dynamic techniques
and mechanisms. The Virtual Control Unit (VCU) pattern offers a vir-
tual machine for Interpretable State Machine Code (ISMC) that repre-
sents state machines as a sequence of opcodes.

The other two patterns complement a component-based architecture.
The State Tracer pattern specifies a structure and mechanism to trace
a system’s state configuration quasi real-time. The Distributable State
Machine Fragment (DSMF) pattern applies the previously defined stereo-
type to an executable state automaton, enabling it to delegate declared
parts to remote interpreters for external processing.

All HIRTE patterns feature reference implementations in Ada, conform-
ing to the high-integrity constraints of the given domain. These sources
– instantiating a proof of concept to begin with – are fit to practically

16

1.3. Approach and Structure

validate the concept, establish a framework or for further development
and extension.

Original artifacts: the concept of self-contained states, SRSM, VCU,
DSMF, State Tracer patterns and high-integrity reference implementa-
tions.

Chapter 5 – HIRTE Application Architecture Patterns sets the fun-
damental HIRTE patterns of the previous chapter in the context of an
application architecture, thus giving them coherence and further purpose
in roles. To this end, three successive patterns lower the abstract view
to a concrete level.

As a high level view, the framework pattern illustrates the relationships
of the HIRTE elements when arranged into a framework for OBE applica-
tions. The implementation pattern refines the element roles, details their
associations and proposes alternative realizations of module integrity.
The work is concluded with an application pattern that sketches actual
ETC OBE services realized by HIRTE components of 4, coming full cir-
cle from the previous chapters with an architecture for a software that
corresponds to the introduced aspects of 2 and fulfills the domain-specific
variation of reliability and economy, the requirements of 3.

Additionally, the application section proposes an original concept of com-
ponent separation between a regular OBE and secure module RTE. This
is based on the interoperability approach of 3.1.3.3, facilitated by the
HIRTE, especially DSMFs.

Original artifacts: the HIRTE concept, implementation and application
patterns.

Chapter 6 – Conclusion and Outlook discusses approach and results of
this work, presenting a structured evaluation. Besides opportunities for
further research, open issues and a general outlook on the topics touched,
we consider the potential practical impact of our results.

17

1. Introduction

Legal Disclaimer This work benefits from now twelve years of continuous
development and operation experience with a complex, large-scale GNSS/CN
ETC system. However,

• this work merely employs ETC as an archetype of a scientifically reward-
ing, mission-critical telematics use case, suited for high-integrity software
engineering,

• where this work elaborates on ETC, it establishes the general domain,
describes generic deployments, components and interfaces, not any spe-
cific system currently in operation,

• discussed examples of (sub-)systems and (sub-)processes reference only
publicly available sources,

• fault and risk analyses are based on the generic ETC architecture intro-
duced by this work and do not reproduce any actual incidents, past or
present,

• methods and approaches of this work do not allow any inference on any
past or present methods and approaches used in the development of an
ETC system currently in operation, neither how something was/is done,
nor how somethin was/is not done.

18

Two

Establishing the Domain of ETC
Software Systems

... in which we define the aspects of electronic toll collection, their deploy-
ment attributes and alternatives. A discussion of the ETC parent domains
enables a characterization of the ETC software domain and its differentiation.
For the further elaboration on the ETC software architecture, technical and
operational preconditions are given. Generic business logics provide a starting
point for the architecture requirements analysis.

To present a valid software architecture for ETC systems, this work first
has to stake out their domain. On a general level, we find ETC a subdomain
of both embedded automotive software and traffic telematics. Telematics in an
automotive environment today seem to be common and established enough,
the introduction of telematics services into a vehicle seemingly natural and
effortless. After all, modern cars already represent "computers on wheels".

Interestingly, while a large number of applications are available – in dif-
ferent stages of product maturity –, as we will see, some characteristics of the
domains seem to contradict each other. This is of little concern if we deal with
non-critical services on dedicated and isolated platforms, e.g. a navigation
system that updates its maps via GSM, but is installed into the car with its
own sensors and dedicated CAN. There are scenarios however, where a tighter
integration and/or higher criticality of the software brings these contradictions
to the front. ETC is such a scenario, producing very specific requirements for
an implementation, as will be shown later.

19

2. Establishing the Domain of ETC Software Systems

2.1 Related Domains

2.1.1 Automotive

2.1.1.1 Car Control Circuit

The automotive software technology domain traditionally focuses on a level
close to the hardware. Engine, brake or chassis management (cmp. [Bo022],
[SZ06], 2.1 ff) compose transforming functions with limited and clearly defined
interactivity. They are integral parts of a control circuit system comprised of
driver, vehicle and environment (cmp. fig. 2.1). The vehicle’s setpoint devices
translate driver’s directions W* to W for the network of controllers, which
feed actuators the processed values U. Accordingly, the actuators implement
the nominal directions Y on the road, with the result X measured by sensors
in turn providing the controllers with actual feedback data R for comparison
and adjustment. The environment introduces a disturbance variable Z.

Figure 2.1: Generic Car Control Circuit

Note that, naturally, the illustrated circuit is abstract in that W is not
necessarily a direct, driver-induced input for any controller. As we will see,
controllers are organized in networks. Thus, interaction is also realized be-
tween controllers without some actual user interface, with the actor driver
only indirectly influencing the process.

As a basic principle, interactions are submitted to hard real-time con-real-time
constraints straints (cmp. e.g. [Li00]): the timespan between receiving a signal and send-

ing the result as well as the timespan to communicate a signal from one con-
troller to another are subjects to defined deadlines. Timescales in this context
are measured in the magnitude of micro- and milliseconds. Many automotive
subsystems like brakes, steering etc. are clearly classified as mission-critical,mission-critical

systems i.e. the safety of human lives or at least substantial material assets depends
on their faultless performance. Consequently, violating the constraints is not
acceptable regardless of the system load. An automotive development process
requires explicit verification of the invariant validity of these constraints.

20

2.1. Related Domains

For the following considerations, a transforming component accepts sets of transforming,
intra-car isolated
components

numerical signals from various types and numbers of sensors. These signals
are first obtained by sampling1 a time- and value-continuous data stream (i.e.
a signal S of W or R yields a unique value S(t) for any time t) conforming to
a defined sampling rate dT , in order to map it to a time-discrete sequence of
values. dT may be constant or dynamic, e.g. in proportion to speed, and of
differing value for different component inputs. Thus, the result finds time- and
also value-discrete readouts, as the signals are digitally encoded by a limited
number of bits, the range of the corresponding input variable. Likewise, the
output value sequence U can be mapped from time- and value-discrete to
continuous after processing by the component, if the receiver expects analog
input.

For the software component processing, we assume a stateless, functional transforming
components cont.relationship between the input and output values. Incoming value sequences

are transformed directly according to the implemented function algorithm,
without input set i influencing the computation of set i + 1. Examples for
the description of continuous relations can take the form of differential equa-
tions, or difference equations in the discrete case. Production of the output
sequences has to conform to real-time constraints (s.a.); the computing capac-
ity of the component has to match dT (dTmin in the dynamic case), so that no
signal buffers are necessary. Beyond the intra-car interfaces, the components
are, aside from maintenance purposes, isolated from the outside world during
regular operations.

2.1.1.2 ECUs and Busses

The hardware platforms of automotive software applications commonly take
the form of Electronic Control Units (ECUs, [SZ06], 2.3.1, [Bo01]), programmable
microcontrollers connected by bus systems like CAN (Controller Area Network,
[ISO94]), LIN (Local Interconnect Network, [LI06]), MOST (Media Oriented
Systems Transport, [MO06]) or FlexRay ([Fl05]). For our purposes, we can
categorize busses into highspeed real-time (CAN, Flexray), lowspeed (LIN) and
multimedia (MOST). We will discuss bus characteristics in the light of ETC
in chapter 3.1.3.2.

From our software point of view, an ECU as a "computer-on-a-chip" rep- ECU
characteristicsresents an adequate computing device on which to run programs on: outfitted

with a processor (4, 8, 16 or 32 bit), RAM for data storage, ROM (e.g. EEP-
ROM or Flash) for code/parameter storage and input/output interfaces, e.g.
to/from sensors and busses. Additionally, embedded devices are often outfitted
with a watchdog that checks the system’s responsiveness at regular intervals
and restarts it if necessary (and sensible from the application’s perspective).

1The signal’s origin is generally assumed to be analog. Whether the actual sampling is
performed by the sensor module itself or the preprocessor of a microcontroller component is
not relevant in this context.

21

2. Establishing the Domain of ETC Software Systems

Car infotainment platforms even approach the computing power of regular
PCs. With that, they mark an evolution from the established transforming
("input-processing-output", s.a.), stateless unit to a reactive module with per-
sistent memory and processing states (cmp. 2.1.2).

2.1.1.3 Vehicle Subsystems

Figure 2.2: Automotive Subsystems illustrated

Connected by the different busses, the ECUs form electronic vehicle subsys-
tems. Fig. 2.2 illustrates such a deployment. The resulting network provides
a logical layer to implement complex, composite functions. Note the simpli-
fication in that certain applications, in addition to the also omitted sensors,

22

2.1. Related Domains

imply integration of more than one ECU in a subsystem. Their specific capac-
ities and characteristics depend on the tasks they have to realize in the overall
system car:

Chassis – finds software functions of varying complexity. They range from
plain translation, e.g. in the case of the handbrake or tire pressure mon-
itoring, to brake-/steer-by-wire systems and integrated applications, e.g.
safety measures like ABS (Anti-lock Braking System), ESC (Electronic
Stability Control) and SBC (Sensotronic Brake Control, [Bo02]), aggre-
gating the previous. The currently still prevalent bus is CAN, serial, with
priority-based, event-driven bus allocation for short messages (up to 8
bytes of data), resulting in a maximum transmission rate of 1 Mbit/s.

Power Train – implements comparably few, but complex functions of engine
and gear control. Correspondingly, here the number of deployed ECUs
is rather low, with high-performance units for real-time processing of the
setpoint input by accelerator and shifted gear, complemented by numer-
ous sensors, e.g. air mass, temperature, throttle position. Here also, the
CAN bus is most common. However, we find an aspiring successor in
FlexRay, with time-based exclusive bus allocation for messages of up to
254 bytes of data and a maximum transmission rate of 10 Mbit/s.

Body – is subdivided into the critical passive safety functions (airbag control
with seat occupancy detection, roll-over bars), and the less critical con-
venience functions, like window controls, rain sensors, air conditioning
etc. The current generation of cars features the highest number of ECUs
and software functions in the body, but with a low degree of inter-ECU
integration compared to the above subsystems, and less synchronisation
parameters between its units. Computing capacities are also minor, re-
flected in the slow LIN bus: up to 20 kbit/s, between 1 and 8 bytes of
data per message (fixed for any message identifier on setup), determin-
istic, signal-based allocation.

Multimedia – represents a departure from the embedded approach of re-
alizing existing car-specific mechanisms in ECUs and software, or cre-
ating additional functions by composing them. Instead the subsystem
introduces functions from other domains into the vehicle: video/audio,
telecommunications and navigation. In consequence, software-techno-
logically it anticipates section 2.1.2, as most of the in-car telematics
components currently can be found in the context of the multimedia
subsystem. Processing capacity and software complexity are naturally
high, with the MOST bus providing synchronous streaming as well as
asynchronous packet transmission capabilities with an overall maximum
bandwidth of 50 Mbit/s.

23

2. Establishing the Domain of ETC Software Systems

With e.g. ESC or the Adaptive Cruise Control (ACC), we find compositeECU integration
and concurrency software functions that cannot be assigned strictly to one subsystem. This

inter-subsystem integration of components is enabled by gateways, with a cen-
tral gateway commonly used for diagnostics and maintenance. Even with the
general low-level, hardware-close programming associated with microcontroller
software, the consequent sharing of resources becomes critical when it goes be-
yond mere readouts of sensors. Concurrent access to actuators – e.g. ACC
overriding driver induced actions on converging on another vehicle – demands
adequate, strict formalisms of software specification, implementation and ver-
ification concerning scheduling, priority management, mutual exclusion etc.

2.1.1.4 Development Approach

The car-fitted ECUs have to be very intimately known hardware components.hardware and
programming Imperative precondition for changing the manufacturer or series is a thorough,

most accurate certification process. This is complemented by the fact that a
vehicle’s product life cycle covers around three years of development, seven
years of production and ten to 15 years of operation and service (cmp. e.g.
[SZ06], 1.4.2.3). Thus, implementing software hard real-time behavior is sig-
nificantly facilitated by the fact that the program can rely on the predefined,
exact behavior of its run-time environment. Integration of software and hard-
ware is therefore tight, with little or no abstraction layer between program and
machine.

The implementations as elements of the car need to exhibit an obligatory,techniques and
methods validable stability and compliance to a range of regulations, e.g. concern-

ing safety, ecology; pollutant emissions. Fundamental standards applied to
automotive systems are represented by DIN 19250 [DIN89] and IEC 61508
[IEC98]. Consequently, the software is submitted to strict specifications and
formal constraints. Development processes – themselves subject to certifica-
tion – are therefore dominated by e.g. the Mathworks environment ([Ma07],
with Matlab/Simulink and Stateflow) and MISRA C [MI04] as preferred lan-
guage subset. Conformance to run-time and memory restrictions is implied by
usually very limited computing resources, resulting in static, safe programming
techniques, of which we will learn more in chapter 3.2.

Production processes of component suppliers in the automotive industriethe question for
automotive software
frameworks

are highly standardized and formalized in every way from specification to ac-
ceptance and commissioning to the manufacturer. Given the criticality of the
technology both for human lifes (ecology and operational risks, safety issues)
and the economy (notably in Germany), this is comprehensible. Numerous
past and recent publications stressed the fact that software as a car component
still gains importance. Coherently we have to ask the question for a funda-
mental, widely adapted automotive software standard beyond the established
practices mentioned above.

Over the years, a number of significant endeavours to establish a standardbasic aims of
frameworks

24

2.1. Related Domains

framework for automotive software modules were conducted, in each case with
the participation of all major automotive players. The basic aims were similar
in all cases:

• provide an accepted run-time environment by introducing a middleware
between ECU software and hardware or OS (where present), or substi-
tuting2 the OS,

• abstract and unify the communications between ECUs with a common
mechanism (e.g. layer, bus) and

• generally define an approved interface for ECU applications with the
corresponding set of implementation rules,

• in order to facilitate component portability over vehicle lines and revi-
sions, especially important due to the long product lifecycles (see above)
and the nevertheless evolutional market of ECU hardware.

The results – e.g. Offene Systeme für die Elektronik im Kraftfahrzeug /
Vehicle Distributed eXecutive (OSEK/VDX, [OS05]), Herstellerinitiative Soft-
ware (HIS, [HI04]) and the most recent candidate Automotive Open Systems
Architecture (AUTOSAR, [AU06]) – have to prove themselves longterm be-
yond pilot projects and non-mission-critical applications. We discuss some of
their specifics related to this work in chapter 3.1.3.2. Here, we assume a more
general perspective.

From the software view, all approaches share common potential flaws: potential practical
framework
contradictions

given the criticality concerning both risks and proprietary, competition-relevant
knowledge, it could be detrimental if the standard’s RTE implementations
would be supplied by any single source. Instead, to ensure the necessary
complete control over the mechanisms of the supplied item, each automo-
tive component supplier might effectively be coerced into realizing its own
interpretation. The stated increased importance of software in cars implies
competition-relevant assets in the programs, which have to be protected. In
turn, this encourages the tendency for proprietary extensions, optimizations
to gain technological advantages. Furthermore, in a way, the resulting mid-
dleware is contradictory at least to some established paradigms – efficient,
lean programming close to the hardware – of the automotive software domain.
Whether or not an approach like AUTOSAR eventually leads to cost-savings
by standardization or more expensive electronics due to high complexity and
performance requirements needs to be proven. In any case, the framework
approaches do not mitigate, but merely strive to standardize the described
domain-specific characteristics of automotive software. With the possible ex-
ception of tight hardware-orientation as stated above, the high-integrity im-
plementation constraints stay valid.

2Actually, due to the often very limited resources of the automotive environment, in the
given context OS may equal framework.

25

2. Establishing the Domain of ETC Software Systems

2.1.2 Traffic Telematics

Traffic telematics as a subdomain of the general telematics encompass a varietytelematics narrowed
down to
traffic applications

of use cases, e.g. related to public transportation, individual or commercial
road, air, rail and sea traffic. Government-initiated traffic telematics endeav-
ours are often related to ecology or safety. As a general rule, they aim at
influencing commercial and/or individual mobility habits, either by punishing
malpractice (e.g. by tolling and fees, restrictions) or rewarding the desired
behavior (e.g. optimized access to infrastructure, tax savings). Safety applica-
tions find e.g. automatic emergency calls (eCall, [eC06]) or road hazard alerts
deduced from floating car data (FCD). Commercial, market-driven products
can be subdivided into business applications, e.g. for the logistics domain, and
convenience or entertainment.

2.1.2.1 A Telematics Infrastructure

Figure 2.3: Traffic Telematics Infrastructure Overview

Fig. 2.3 illustrates a generic infrastructure deployment from the perspec-
tive of this work. Communicating software components act in standard and
embedded computer environments, joined by a variety of interfaces. Consti-
tuting their operational effort and costs (also cmp. [Ste03]), we classify com-
ponents conforming to their hardware’s locality – center-side or distributed
– and mode of deployment – fixed or mobile –, as these attributes and their

26

2.1. Related Domains

determining factors strongly influence behavior, upkeep, maintenance and in-
terconnection requirements.

locality and
mode of deploymentCenter-side systems represent components running on server infrastruc-

ture. Determining quantifiable quality of service (QoS) factors are given
by availability, the type and number of parallel connections to distributed
components and the performance concerning transactions per time unit;
average or during peaks.

Functionally, communications implement the basic protocols of distributed
transactions over fixed lines or a cellular network. If more than one
provider is utilizing the servers, a gateway dispatches messages to and
from the respective service-related instances. Device management han-
dles the general, not necessarily service-specific remote provisioning and
maintenance of distributed components.

Distributed systems can be deployed in two ways:

• fixed – encompass roadside installations like traffic flow measure-
ment units, signal beacons and access control mechanisms, e.g. for
harbors or large-scale construction sites. These embedded devices
are outfitted with an usually very limited array of sensors and inter-
faces corresponding to the implemented service they provide. For
device to vehicle interaction, we find Dedicated Short Range Com-
munications (DSRC) via microwave or infrared. Long range inter-
faces depend on the site accessability of the installation, with some
fixed line in the case of close proximity to existing network infras-
tructure and CN for more remote sites. The same differentiation is
relevant for power supply and the corresponding costs. Additional
determining factors of fixed systems are safety (the installation must
not pose a hazard for passing traffic) and security measures of the
hardware and software, e.g. protection against tampering.

• mobile – in our context designate automotive On Board Equip-
ment (OBE) composed of a run-time environment for software with
a processor, memory, interfaces to the user, sensors and communi-
cations. Evident defining factors of these components are the pro-
cessing capabilities and memory size and types in relation to the
software’s complexity regarding data structures and concurrency,
as well as the associated features of the user interface. These range
from plain on/off-switches, e.g. in the case of an area access tag, to
the color touch screens of navigation systems.
A very important effort and cost driver is the mode of in-car in-
stallation: integrated/ECU as part of a subsystem (cmp. 2.1.1.3),
connected to a subsystem (e.g. manufacturer pre-installed telem-
atics), fixed installation with dedicated bus (aftermarket, e.g. Ger-

27

2. Establishing the Domain of ETC Software Systems

man Toll Collect OBU) or cradled with no connection to vehicle
electronics at all (e.g. current off-the-shelf navigation solutions).
This also has a high impact on software component interfacing, and
conversely, as we will discuss in 3.1.3.2. Depending on the approach
of integration of the telematics application in the vehicle, the ques-
tion for communication protocol standards and accessability of the
vehicle ECUs arises. Consequently, it further characterizes the re-
spective component in its transactions with its environment.

Additionally (and not shown in the illustration), we have to distinguishthin and thick
clients between thin and thick3 mobile clients. This refers to the complexity of soft-

ware processes run on the mobile equipment, i.e. the division of computation
workload the respective service requires between center (off-board processing)
and distributed (on-board processing) components. It directly affects hard-
ware costs, generally more critical on the distributed side due to specialized
elements and higher maintenance effort. In many cases, it also has an impact
on communications, as it may be feasible to compensate for mobile computing
capacity by transferring data for central processing and replying the result.
Here, a cost-benefit analysis of mobile equipment versus e.g. cellular network
services and quality (also cmp. next section) is required. An example can
be found in off-board routing approaches, compared to the common on-board
solutions, to enable navigation on low-end mobile phones.

Besides the above focus on processing, a final, alternative view on thepoint of provision
characterization of the telematics service is the point of provision, i.e. whether
the service’s output is consumed on the road or centrally.

Central provision – distributed components collect data to feed a center
service; e.g. traffic control systems.

Distributed provision – a central server feeds distributed components; e.g.
GSM-updated navigation solutions.

Strictly distributed provision – the service is instantiated by ad-hoc net-
works of mobile components; e.g. FCD hazard warnings.

Combined provision – the data is circulated and refined between mobile
components and central servers. Both sides introduce data into the
service; e.g. disposition services for approaching trucks in large cargo
transport centers, providing both optimized scheduling to clients as well
as optimized capacity utilization for the center.

In the case of a commercial service, this influences the technical architecture
as well as the business model in regard to payment and billing approaches.

3[MVW08] further distincts slim and smart clients. Beyond a very specific context, we
regard this as arbitrary, as it should be obvious that there can be numerous variants between
the extremes of thin and thick client realization.

28

2.1. Related Domains

2.1.2.2 Communications and Interfaces

As mentioned above, a telematics infrastructure may feature interfaces for
short and long range interactions, depending on the implemented use cases.
In this section, we will not regard intra-vehicle interactions, as the automotive
busses are discussed in the context of 2.1.1 and 3.1.3.2.

Table 2.1 depicts established and potential solutions for component com-
munications, beyond the vehicle network, from a software applications’s point
of view4. Note that every case implies data and time for protocol overhead
processing, diminishing the capacity for net user data.

Critical attributes of communications should cover the common parameters
of quality of service, but for a telematics application additional factors have
to be taken into consideration.

All of the service’s communications interfaces have to be analyzed for tem- availability
poral and local availability. Referring to time, this information has to be de- ... temporal
rived from the interface technology’s specification, field tests or it may be
guaranteed by the vendor. It can be expressed by a percentage associated
with a time interval or a discrete event (e.g. data update necessary) and
should approximate the maximum likelihood for failure during the operating
time or for failure of the event, respectively.

Referring to locations, either the actual geographical regions have to be ... local
specified, or types of areas should be classified corresponding to the local
communication service coverage (e.g. high availability in metropolitan areas).
Furthermore, an area has to be analyzed for interfering structures or signal
sources, which could degrade availability. Besides long range communications,
also the internal interfaces of the mobile application can be of interest: in a
multi-process environment, the availability of a commonly used communica-
tions interface may be determined by assigning priorities to the collaborating
processes.

While today’s GSM networks usually have a quite complete coverage, it
is still possible that the vehicle discovers an area without cells. As it is, an
important question for applications on mobile devices concerns the defined
reactions to the temporary failure of communications interfaces – this situation
may arise frequently and should not be critical for the overall stability and
functioning of the service implemented by a component.

As communication occurs, in most cases there is limited time to complete throughput and
transfer ratesthe transmission. To ensure efficient transactions, the underlying technology

has to provide sufficient throughput or transfer rates. We interpret throughput
in a rather loose sense, not only describing transfer rates of continuous connec-
tions like bits per second, but also the length of data encodable in a discrete

4I.e. we disregard physical or signal-engineering issues and do not differentiate between
technologies, protocols and their ISO OSI layer mapping. A corresponding wrapper is pre-
sumed.

29

2. Establishing the Domain of ETC Software Systems

Technology Throughput and Comment Range or
Coverage

Wireless LAN
(IEEE802.11)

Approx. 11 Mbit/s. Vehicle to vehi-
cle and vehicle to roadside. A num-
ber of proprietary adaptions for the
automotive environment exist (e.g.
[C2C08]).

Currently ap-
prox. 150 m.

WAVE (Wire-
less Access in
the Vehicular
Environment,
IEEE802.11p)

Adaption of WLAN for data ex-
change between passing vehicles up
to 500 km/h relative speed, up to 27
Mbit/s gross. Currently a draft.

Supposedly up
to 1,000 m.

Dedicated Short
Range Com-
munications,
Infrared (e.g. ISO
21214:2006)

Currently maximum of 500 bytes at
a passing speed of 150 km/h, vehicle
to roadside.

Approx. 25 m.

GSM Short Mes-
sage Service
(GSM 03.40)

140 bytes of user data per message.
Message based protocol of GSM.

Coverage can
be considered
sufficient for
any telem-
atics service
in western
Europe.

GSM Bearer
Service 26 (GSM
02.02)

Asynchronous, connection-oriented
transmission of up to 9,600 bit/s.
Establishing the connection may
take some seconds.

Dito.

GSM General
Packet Radio
Service (GSM
07.60, 09.61)

Packet-oriented transmission of ap-
prox. 40 kbit/s downlink and 13
kbit/s uplink with a typical access
time of .5 to 1.0 sec.

While based
on GSM in-
frastructure,
still requires
cell modifica-
tions in some
areas.

Universal Mobile
Telecommuni-
cations Sys-
tem (3GPP TS
22.100)

Allows packet-oriented uplink and
downlink between approx. 384
kbit/s and 1.8 Mbit/s.

Currently
insufficient
coverage ex-
cept for urban
telematics
services.

Table 2.1: Example Media of Communications in a Telematics System

30

2.1. Related Domains

message like in SMS, which can be sent completely (i.e. it is not necessary to
split it up) in a specified frequency (e.g. one message per second).

Especially for the evaluation of a maintained connection (like e.g. BS 26) throughput and
availabilitybetween mobile component and central system it is important to correlate the

throughput with availability: transfer rates may drop dramatically in the case
of degrading availability, making it necessary to identify the corresponding sit-
uations and their relevance for the service in question. A telematics application
should keep the data to exchange with a moving unit as short as possible. If
the mobile component requires larger updates of its operating data, eventually
SMS may become insufficient. As BS 26 connections tend to break down while
moving (resulting in less available throughput and the necessity of a protocol
to enable partial transfer and continuation), either a packet-oriented service
(like GPRS) has to be used in these cases, or the data transfer should only be
initiated when the component is stationary.

The acceptance of a telematics service can be influenced strongly by the interoperability
of interfacesquestion of interoperability, concerning both application-internal and external

communications. If the mobile application communicates with its underlying
OS and hardware over a specified interface (e.g. an API) or middleware that
may be implemented on a number of different platforms, the service can be
deployed on a wider range of devices. External interoperability has to deal
with communicating with infrastructure outside of the service provider’s pro-
prietary systems. An implementation might have to take a future Galileo into
consideration for positioning, in addition to or as substitution for the current
GPS. GSM services may be used for over the air data exchange because of the
currently quite complete coverage of Europe, although the application should
interoperate with different GSM networks to ensure regional fallback where
necessary – in the case that one network has better coverage in certain areas
than another – and enable roaming in other countries. As newly available and
future cellular phone technologies (next generation UMTS etc.) will give access
to higher data transfer rates, the component’s interfaces have to be prepared to
interoperate with these correspondingly. Furthermore, a number of telematics
services rely on roadside infrastructure, like e.g. DSRC beacons. Accordingly,
a system integrating beacons should be able to communicate short range via
both microwave and infrared.

2.1.2.3 Development Approach

The current market of vehicular telematics applications reveals a prevalence of informing systems
informing systems: multimedia, navigation, floating car data – generally, with
few exceptions like the eCall, designated non-mission-critical. An informing
system’s output may range from merely convenient to cost-effective, e.g. in
the case of a logistics disposition solution. However, no associated actor is
dependent exclusively on its performance. Real-time constraints are soft, cor-
rections and retries of many operations are possible. If a navigation’s routing

31

2. Establishing the Domain of ETC Software Systems

fails, the driver has to find an alternative way; an approaching delivery to a
freight harbor that failed to register automatically has to and will wait for a
free unloading slot.

In contrast to the deterministric transformation of 2.1.1.1, interfaces tointeractive
components these implementations are open, variable and very interactive, with the user

as well as outside service servers being able to access and interact with the
software at any time. [Ku05] gives a similar concept of reactive systems con-
tinually interacting with their environments. In a strict sense, this term seems
appropriate, as even activities initiated by the respective component may be
the reaction to some internal event, e.g a time trigger. For our context, we
need to emphasize the interactions with other components like depicted in the
above telematics infrastructure, and the component’s ability to initiate activ-
ities as a proactive process. Thus, we will designate this kind of component
interactive.

Due to the informing character of the services, requirements concerningstandard
requirements,
relaxed constraints

reliability are rather loose, or at least not significantly higher than for any
other commercial application. With the introduction of lavish graphical and
voice-controlled user interfaces into the car console, the traditional resource
restrictions of embedded systems in these cases became a thing of the past.
A direct result was the departure from restricting high-integrity development
environments and languages (cmp. 2.1.1.4) to more common approaches like
Java (also cmp. 3.2.2). In the process, practical experience finds many cases
where features like dynamic memory management, dynamic binding, polymor-
phy, garbage collection and complex libraries were introduced unadjusted into
an embedded environment.

Distributed hardware platforms for telematics services are highly dynamicdynamically evolving
platforms in many regards. Not only do device series and models change quickly to

attune to market demands, the developer also has to consider different kinds
of devices to be fitted into the vehicle, from proprietary OBE to mobile phones.
In order to reduce development costs and serve the consumer in an economical
fashion, this called for abstraction layers to ensure flexibility and keep software
porting efforts over series in check.

Telematics software products thus integrate with a specific OS and, if ap-run-time
environment
examples

plicable, framework rather than hardware platform, e.g. processor family.
Device abstraction and application environments are provided by correspond-
ingly complex products like Windows Automotive [Mi07] with Fiat’s Blue&Me.
The complexity and architecture of these solutions is much closer to the com-
mon desktop/server OS than the established embedded minimal RTEs with
lightweight memory footprints and microkernels, e.g. QNX (cmp. [Hi92]).
Windows Automotive even provides a Direct 3D graphics API. Most of these
approaches have the dynamic mechanisms mentioned above in common, in-
ducing non-deterministic behavior and generally impeding hard real-time con-
formance.

32

2.2. Electronic Toll Collection (ETC)

2.2 Electronic Toll Collection (ETC)

2.2.1 Toll Collection Fundamentals

Toll Collection generally aims at the pricing and charging of traffic infrastruc-
ture access: roads, areas, tunnels, bridges. In contrast to non-discriminating
approaches like taxes on vehicles and gasoline, its levy is based on the actual
usage of specific elements. The user, commonly the driver of some vehicle,
discharges a defined amount of money for accessing the corresponding infra-
structure.

Note that definitions and descriptions of this work may differ from [ISO03].
As we focus on the software architecture of ETC OBE, our priority is clarity
in the given context rather than adherence to a standard with a significantly
wider perspective.

The traffic infrastructure managed by a toll collection system is either rep- closed and
open systemsresented by a single element, e.g. in the case of a major tunnel, or some

aggregation, e.g. a directed graph in the case of a motorway network. Closed
systems (cmp. e.g. [PB06]) detect entry and exit of the vehicle to and from the
element or aggregated structure. The amount due is then derived as flat/fixed
rate, or from the time or distance travelled inside the system. Open solu-
tions register each discrete element access by the vehicle, allowing for prompt
charging.

In the following, we will designate a single, not further resoluble infrastruc- toll atoms
ture element processed by a tolling system a toll atom. They are described
by

TA ⊆ LTA ×MTA.

Fundamentally, toll atoms are attributed with a location LTA and measure-
mentMTA component. The former specifies a fixed location like a road segment
enclosed by some entry and exit point, the latter any minimum, i.e. atomic
duration or distance measurement unit incremented when using the associated
location. The actual localized reference is system-specific: it may be given
by an enclosing traverse (area), linked vectors (road segment), both for GNSS
detection, an ID of a segment’s roadside installation for DSRC detection, or
any proprietary data structure (e.g. a virtual tolling spot defined by ID, coor-
dinates and radius).

Example 1 (British London Congestion Charge) processes vehicle ac-
cess for one day to inner city London:

TALCC GB = {(< downtown area >,< 1 day >)}.

Example 2 (Swiss Leistungsabhängige Schwerverkehrsabgabe) – records
kilometer usage of trucks inside the borders of Switzerland:

TALSVA CH = {(< national territory >,< 1 km >)}.

33

2. Establishing the Domain of ETC Software Systems

Example 3 (French Télépéage Inter-Sociétés Poids Lourds) – checks ve-
hicle entry and exit to/from selected subsets of road sections, managed
by a multitude of TC operators:

(< motorway section >,< length in km >) ∈ TAF .

Example 4 (German Lkw-Maut) – detects a vehicle’s usage of discrete
road segments (entry to exit ramps) with defined lengths:

(< motorway segment >,< length in km >) ∈ TAD.

Note that this, similar to France, is a special case of distance based
tolling in that it processes segments and adds up their lengths to obtain a
reproducible measurement instead of directly measuring each kilometer.

The pricing associated with a toll atom is described by a tariff scheme.tariff scheme
The tariff scheme defines a mapping

Tariff ⊆ TA× Pvehicle × Pdriver × Ptime × Poperator × T

that assigns a set of parameters to an amount of money T to levy, with

• TA the accessed toll atom,

• Pvehicle the vehicle-specific parameters like type (truck, car, bike, other),
number of axles, pollution/emission, weight class,

• Pdriver the driver-specific parameters, e.g. concerning profession (police,
paramedics) or status (e.g. disabled),

• Ptime time-specific parameters describing periods, by day (e.g. holidays)
or by hour segments (e.g. rush hour) during which T applies,

• Poperator other, operator-specific parameters concerning roaming/interop-
erability agreements, discounts for modes of payment, voucher handling,
credit accounts, combination with services or specific products.

The tariff scheme mapping may be established either explicitly, i.e. in the
form of a matrix, or functionally, i.e. in algorithmic form.

Example 1 cont. for a regular car:

(taLCC GB, < car >, < regular >,
< 7 am− 6 pm >, < 8.0 £>)
∈ TariffLCC GB.

34

2.2. Electronic Toll Collection (ETC)

Example 2 cont. for vehicles over 3.5 tons, weight limit 40 tons:

(taLSVA CH, < permissible max weight >,
< average emission class >, < 1.7 ct per ton and kilometer >)
∈ TariffLSVA CH.

Example 3 cont. for large trucks, collected by a specific operator:

(< Paris – Le Mans >, < class 4 >,
< Cofiroute > < 51.10 EUR >)
∈ TariffF .

Example 4 cont. for a comparably environmentally friendly truck with four
axles:
(< AS PB-Elsen – AS PB-Zentrum >, < 4 axles >,
< locational class >, < temporal class >,
< emission category A >, < 0.34 EUR >)
∈ TariffD.

Note that both locational and temporal classes are currently imple-
mented but not activated.

In the following, a tour designates a vehicle entering, travelling on and tour
leaving the system’s traffic infrastructure. Between entering and exiting, the
vehicle uses any coherent sequence of toll atoms. The tour concept applies both
for open and closed systems, with implicit or explicit entry/exit, respectively.

A vehicle successively accessing the system’s infrastructure on a tour ac- rating and
pricingcumulates references to toll atom elements and attributes them conforming to

the tariff scheme5, in effect rating and pricing the usage based on currently
valid parameters. While some parameters are fixed for each tour, e.g. the ve-
hicle type, others will or may change over time, like the number of axles with
or without a trailer. However, generally, the pricing determines the costs for
using the infrastructure and can technically be handled prior to, on, or subse-
quent to the actual access, depending on the system’s flexibility and payment
paradigm (see below).

The resulting set of tariff elements are thus loosely comparable to the charging and
billingtelecommunications domain’s Call Detail Records (CDRs). Charging comple-

ments them by an individual vehicle’s unique identification, i.e. license plate
code, associating the specifically priced elements with a user. Subsequently,
the resulting sum of T (total or as subtotals) is assigned to a debitor and
presented to the user. Whether this is considered still a part of charging or
already billing, again depends on the system’s paradigms and the actual busi-
ness processes. In our view, billing not necessarily interacts with the driver
but any debitor entity (e.g. a logistics contractor) decoupled from the user,
whereas the result of charging may be imminently relevant for the current

5Note that this merely refers to an abstract principle of tolling, not the technical process.

35

2. Establishing the Domain of ETC Software Systems

Flatrate Measured
Prepaid Fixed payment on booking

or starting the tour.
Specification and payment
of a tour on booking, or
payment into an account
to balance future measured
charging.

Postpaid Fixed payment on ending
the tour.

Payment on ending the
measured tour, or after re-
ceiving a bill of the mea-
sured tour.

Table 2.2: Tolling System Payment Paradigms

user/driver. If the mode of presentation of a charging amount is regulated by
legal issues, it may have a strong impact on the technical realization options.
In the case that charging has to enable the user to instantaneously validate
or at least acknowledge the respective figure, i.e. it has to be reproducible at
all times, it narrows the approaches down to – like in Germany – either pre-
booking (terminals, internet) of tours or real-time charging with rating and
pricing handled on-board by the OBE.

Charged sums are balanced by a payment transaction, i.e. the flow ofpayment
money, of the amount due from debitor to operator. The actual sequence
and realization of pricing, charging and payment steps depends on the pay-
ment paradigm established by the tolling system, as described in table 2.2.
"Flatrate" corresponds to one atom or a fixed rate for any sequence of toll
atoms of a tour. "Measured" tolls each atom of a tour consisting of more than
one. Other tariff parameters may still apply in both cases. Independent from
the implemented paradigm, the finalization of a non-flatrate tolling business
process has to mediate an equilibrium of the

• kilometers driven by the vehicle,

• kilometers measured by the OBE or declared by the user,

• kilometers charged and reported to the center,

• kilometers billed to clients and

• kilometers toll collected from clients (cmp. [SKG08]).

A generic business process from identification to payment is described by fig.
2.4 for reference.

Directly related to the pricing/charging approach and especially relevantenforcement
in systems with mandatory participation, like governmentally introduced road
tolling, is the enforcement. It encompasses measures to

36

2.2. Electronic Toll Collection (ETC)

Figure 2.4: From Toll Atom Identification to Payment

• check if a vehicle is obliged to participate in the tolling system,

• if so, check if a vehicle participates,

• if so, check if the parameters of participation in the tolling scheme cor-
respond to the vehicle’s configuration,

• if so, check if the pricing was correct and the charging accepted,

to ensure participation and enable fraud detection. On check failure, the en-
forcement may have to determine the reason, especially whether it is the effect
of a technical failure or deliberate evasion. In the case of an intentional act,
the vehicle may be physically barred from the traffic infrastructure, or the user
may be fined. The efforts required of the enforcement implementation depend
on the details and levels of the above checks necessary to validate conformance
to the respective tariff scheme and charging modes. Enforcement mechanisms
may from a technical view thus be plain, like the French tollgates, or sophisti-

37

2. Establishing the Domain of ETC Software Systems

cated solutions, like the German enforcement bridges, outfitted with infrared,
laser measurement units and video surveillance.

2.2.2 Automation of Toll Collection

Electronic Toll Collection represents an evolution from the manual levy. Asgeneral
advantages such, two advancements become immediately apparent. First, the automation

of hitherto manual processes and the commonly associated cost-efficiency; sec-
ond, the avoidance of interfering with the flow of traffic. Manned tollbooths
are replaced by free-flow signal beacons or completely virtual entities, with the
passing of a vehicle detected by OBE with GNSS, and no roadside infrastruc-
ture. Business logics are primarily implemented as software. In consequence,
ETC is able to refine and expand the corresponding fundamental toll collection
use cases (cmp. fig. 2.5).

Figure 2.5: Expanding Toll Collection Use Cases

Pricing may now be based on both more finely grained temporal and lo-TC refinements
cational parameters that are kept dynamic, i.e. they change over time. These
changes can be determined by fixed, periodical schedules or as reaction to ir-
regular incidents, like construction sites or traffic jams, referring to specific
road segments or hours. A manual solution would be challenged to implement
these refinements with regard to pricing consistency and reproducibility.

Example scenario: a pricing adjustment effective from time t sees one ve-
hicle passing a manual tollgate at t − 1 min, another at t + 1 min, after the
price for the successive road segments increases due to the rush hour. The
following traffic jam finds both vehicles on the same road segment at the same
time. A manual approach would charge different prices after the preceding

38

2.2. Electronic Toll Collection (ETC)

pricing. A GNSS solution could price the segment real-time and charge both
users equally.

Beyond the vertical refinement, automation can help to extend a toll col- TC extensions
lection system horizontally, i.e. by additional use cases. To effectively control
traffic flow, e.g. to achieve relief from environmental pollution, authorities re-
quire the means to convey such a directive. A tolling system in combination
with an adjustable, dynamic tariff scheme may provide just that. As the in-
creasing complexity of a tariff scheme implies growing operational efforts to
determine parameter weights and costs and calculate prices, again, from a cer-
tain scale on – like truck tariffing in Germany – a manual solution would be
unfit for implementation.

Another example for sensible ETC extension is the value added service
(VAS), building on ETC-specific infrastructure for processing, storage and
communications. VAS add user-supporting functionality to the ETC system
that aim at optimizing its capacity utilization. We will discuss an ETC VAS
approach in the context of economy in chapter 3.1.3.1.

2.2.3 Preconditions and Assumptions

Corresponding to the differentiation of the traffic telematics infrastructure in
2.1.2 we find three principal6 ETC approaches to implement a tariff scheme as
introduced above.

DSRC beacon-based – focuses on roadside infrastructure. Signals are ex-
changed between gantry-installed beacons and lightweight windshield
OBUs that can be reduced to mere virtual tags. As there are no ad-
ditionaly sensors, beacons are placed on any toll atom, e.g. like every
motorway section in Austria. On passing, the OBE transmits the vehi-
cle’s ID, indicating the usage of the corresponding atom. Pricing and
charging may be handled real-time on- or off-board, depending on the
OBE capabilities.

Thin client OBE – focuses on communications and center-side systems. Busi-
ness logics realized on distributed components and thus OBE processing
capabilities are kept to a minimum. OBE collects personalized vehicle
positions that are periodically transmitted to and evaluated off-board
by central servers. The identified routes are priced according to the ac-
cessed toll atoms. Due to the characteristics of mobile communications
concerning availability and throughput (also cmp. 2.1.2.2), there is a
non-deterministic delay between usage, pricing and charging. Neither
can the OBE guarantee the timely transmission of routes, nor can the
center control the reachability of distributed components for replying
with the receipts.

6We do not regard dedicated approaches for special, single toll atoms here, but univer-
sally deployable solutions.

39

2. Establishing the Domain of ETC Software Systems

Thick client OBE – focuses on complex software processes of distributed
components. Business logics from infrastructure identification, i.e. locat-
ing, to pricing and charging are handled on-board. Real-time processing
enables immediate user information, dynamic tariff adjustment and flex-
ible enforcement, e.g by sensor bridges or mobile units. Charging data
is transmitted periodically to and receipted by central systems. OBE
requires sufficient locating sensors, interfaces, memory and processing
resources to ensure a defined quality of service of its part of the ETC
business processes. Expensive roadside infrastructure can be kept to a
minimum.

As a subject of this work is an embedded architecture in an automotivefocus on the
thick client environment, we will concentrate on the thick client approach, more specifically

GNSS/CN OBE. It features the most complex processes of distributed software
components. In consequence, results for a reliable and economical system im-
plementation may at least partially be applied to less comprehensive variants.
Note that this does not imply any bias toward the general usefulness or valid-
ity of any of the described solutions, but is rooted in the software architecture
perspective adopted by this work and the additonal reasons given below. For
a (obviously biased) discussion of thick vs. thin see e.g. [Si06], chapter 10.

There are a number of additional facts that make this emphasis seem worth-reasons for
this focus
... dictated by
necessity

while. First and foremost, the currently functionally most capable and complex
ETC deployment in operation is the German Toll Collect [TC07] system. In
2007, over 610,000 thick GPS/GSM OBUs managed 12,000 km of motorway
sections, levying 3.3 billion Euros (cmp. [BMVBS08]). While still being ex-
pensive with approximately 20 % costs of operations, output and performance
make it a success. Improving operational efficiency – in the process lowering
costs – is thus a very rewarding endeavour.

Requiring very little costly roadside infrastructure, the operator can adapt... economical
adaptability
and basis for
interoperability

substantial parts of a GNSS/CN solution’s functionality via software updates.
This holds especially true for the issue of interoperability (also cmp. 3.1.3.3),
which becomes increasingly important with each European neighboring nation
introducing ETC: compliance of software interfaces and business logics is either
achievable mutually on a common technological basis, or unilaterally with a
flexible, capable platform. So, a GNSS/CN implementation might interoperate
with a DSRC system, but not conversely. If the respective update processes
are stable and handled reliably, they are significantly more economical than
construction measures or large-scale hardware modifications.

On the European level, we find another reason for our focus in the Eu-... future standards
ropean Interoperability Directive [EU04], [EU042]. Its article 2 (technological
solutions) states a clear preference for GNSS/CN ETC solutions, arguing for
future-proofness and versatility. Also, the directive explicitly mentions value
added safety and information services in the context of ETC. While especially
services with central provisioning (cmp. 2.1.2.1) may be supported by thin

40

2.2. Electronic Toll Collection (ETC)

clients, thick clients arguably represent a more flexible platform for VAS, as
they can provide more run-time resources for sophisticated additional pro-
cesses. For the German tolling system, [EU04] is reflected in [BMJ05].

A more detailed account of OBU component requirements is given in chap-
ter 3 (technical specification) of [RCI07]. The EC-funded Road Charging In-
teroperability (RCI) project aims at establishing a technical basis for a Euro-
pean Electronic Toll System (EETS, [EU09]). As minimal OBE connections,
it requires both GNSS/CN and DSRC interfaces. The explicitly stated com-
patibility to the German system implies a thick client. For the work given
here, this line of argumentation leads to a tendency toward a thick platform
architecture in order to enable support for a wide range of potential ETC
realizations, anticipating their specific requirements.

For the overall structure of a GNSS/CN ETC system with thick client OBE, relevant patents,
general structurewe have to follow [DC021], [DC022] and the related sketch of [DC06] regarding

general composition and functionality. These patents have to be considered
the currently relevant that come closest to the approach on tolling presumed
by this work. However, while the general ideas seem valid, the system illus-
trated by [DC021] and [DC022] is too incoherent, informal and unfocused for
our purpose, coming from an engineering point of view. It does not provide a
distinctive software architecture, intermingles static and dynamic aspects, and
unnecessarily couples software with hardware. Furthermore, partially (e.g.
concerning the tariffing algorithm), it is only valid for a specific tariffing so-
lution, of the type implemented in Germany. Anyway, we can identify the
elements as listed in table 2.3.

To better suit the purpose of this work, and still accepting the general con- our view on an
ETC deploymentcept of [DC021] and [DC022], we have to map the components to a deployment

for future reference, in the process complementing the structure with omitted
but relevant elements. The result is illustrated in figure 2.6.

In accordance with our basic configuration of a telematics infrastructure
from section 2.1.2.1, we discriminate distributed fixed, mobile and center-side
components. Central communications and gateways are implied.

We further differentiate the central processes of [DC021] into commercial the center side
administration, customer relationship management and basic/operating data
processing. From our experience, the software of the former two components
is very different from the latter. For the commercial and CRM domains, es-
tablished standard solutions are widely known and available, e.g. SAP. They
have to be customized for the ETC system interfaces and domain, but that
is also industrial standard procedure. Correspondingly, the operational risks
and potential problems are generally manageable and known.

Basic and operating data processing on the other hand currently are still for
the larger part proprietary implementations. This is due to the fact that while
there are a number of standard map solution providers – with the associated
map editing applications –, ETC demands a guaranteed accuracy and specific
attribution of geo data. Additionally, details of the locating algorithms may be

41

2. Establishing the Domain of ETC Software Systems

Components General administrative central processes, a monitoring/con-
trol system, a GNSS, a service point and the user.
An automatic toll collection system consisting of an on board
unit, OBU service center, charging data management and
support beacon.
The OBU is structured in three layers:
The ETC application consists of the modules identification
algorithm (for road segments), tariffing, communications
process, user interface and control process.
An operating system provides priority management, manip-
ulation detection, logging, version control and access to the
hardware.
The OBU hardware consists of modules for communications
(GSM and DSRC), navigation (GPS and additional sensors)
and a control unit with HMI, processor, memory, a smart
card and service interfaces.

Functions As primary functions of the automatic toll collection system,
road segment identification,
charging,
transmission of data,
establishing access to the ETC system,
supporting control/enforcement and
warranting and monitoring correct charging
are defined.

Interfaces,
Data Flow

The central processes define and communicate OBU operat-
ing data sets (toll road and tariff data) to the OBU service
center and service points for versioned distribution to OBUs
in the field.
GNSS and support beacons provide positional data to the
OBU.
The OBUs communicate charging data to the charging data
management.
Receipts and status information are transmitted to monitor-
ing and central processes.

Table 2.3: Digest of a GNSS/CN ETC system as introduced in Germany and
extracted from [DC021]

42

2.2. Electronic Toll Collection (ETC)

Figure 2.6: ETC Deployment Overview

classified, including their operating data specifications. For the time being, the
respective processing is handled by the ETC operators to minimize both costs
involved and the risks of faulty operating data entering the charging process.
Thus, this distinction is relevant for our hazard analysis following in chapter
3.1.1.

To extend its scope and stress the importance, we generalize the OBU
service center to a universal device management. This still encompasses the
systematic provisioning of OBE with operating data. Additionally, experience
has shown us that maintaining the OBE in workshops or garages (as suggested
in [DC021]) is very costly due to the necessary service point network and
physical presence of the vehicle. While this is unavoidable for the hardware
equipment, the operator may update many parameters and modules of the
ETC software remotely, over the air (OTA). This is common practice in the
domain of mobile telecommunications (cmp. e.g. products based on [ETSI96]).
For ETC, it significantly improves economy of operations, and thus is relevant

43

2. Establishing the Domain of ETC Software Systems

for this work.
A certification authority (CA) manages the center-side of system security:

administration of keys, certificates and the OBE SAMs (see below). Due to the
high criticality of ETC security, commonly the operator establishes a dedicated
CA.

Billing on first glance may seem a standard component similar to the com-
mercial/CRM elements. Depending on the respective toll atoms and tariff
scheme of the actual ETC implementation however, mapping to the CDRs of
a standard billing system may or may not be trivial.

Monitoring realizes a number of functions on different levels. It is used
to request and receive status information of OBE, process the results of dis-
tributed enforcement components for fraud detection and provide high level
operating figures on system performance, e.g. load, transactions per time unit
and overall failure rate.

A direct result of the necessity for in-house basic data compilation (seethe distributed
side above) is the measurement and validation unit, responsible for gathering raw

data on the toll atom geometries and validating the resulting OBE operating
data sets with actual road profiles.

Mobile enforcement components enable authorized personnel to access the
OBE software of a vehicle and compare the stored parameters and charging
data with observed details. Fixed roadside-installed enforcement components
feature sensors to automatically take measurements of vehicles for comparison.
Conspicuous data is forwarded to monitoring.

Even with OTA device management (see above) handling the bulk of OBE
maintenance, a certain number of service points are needed. In the cases of the
analysis software reporting hardware failures and subsequent inaccessibility of
the OBE software, physical replacements are indicated.

Unlike [DC021], we regard the GNSS itself as completely out of the influ-
enceable scope of the ETC deployment. Consequently, it merely appears as one
of the sensor components providing some interface to positioning. Its output
may be evaluated for quality and even enhanced in certain ways (e.g. sensor
fusion algorithms), but the ETC software has to accept any GNSS solution
available. The one type of ETC element offering a position update as defined
by the operator is the auxiliary beacon. In a GNSS/CN system, these are in-
stalled in places where GNSS is not sufficiently reliable concerning selectivity:
urban environments, close roads with similar geometry. In these scenarios, the
beacon signal overrides and corrects the GNSS position.

In the context of this work, on board equipment (OBE) designates a general,
automotive platform for ETC software. It encompasses, but is not limited
to the dedicated OBU that we currently find e.g. in Germany. That means
especially that the OBE is not necessarily integrated in one device. It comprises

• a run-time environment (or run-time execution environment; RTE) able
to process the ETC software with sufficient computing power, e.g. con-

44

2.3. Aspects and Business Processes

cerning real-time constraints, RAM, ROM (for code and configuration)
and I/O interfaces,

• a static storage to hold an operating database which has to be able to
cope with the automotive-specific incidents like sudden loss of voltage
without losing integrity,

• a cryptography module, i.e. secure access module (SAM), encapsulating
cryptographic functions, keys and certificates, commonly a smart card,

• long and short range communications interfaces for message exchange
over CN and DSRC modems,

• a GNSS receiver and additional sensors, e.g. odometer, gyroscopes, to
support and enhance the GNSS locating algorithms and

• a human machine interface (HMI) for interactions with the driver; man-
ual tolling scheme parameter declaration, visual and/or audible output.

The RTE and the devices may be connected by some proprietary interfaces,
including single-mainboard integration, and/or standard automotive busses as
previously introduced. Note that we imply some wrapper or API software
for all components and interfaces, i.e. the nodes of the deployment diagram
strictly represent hardware, the components software.

2.3 Aspects and Business Processes

After establishing the general structure and functionality of an ETC system,
we can now narrow the focus on the ETC OBE software. While the previous
section defines a number of assumptions, substantiating a GNSS/CN thick
client approach, we still have the need for an abstract view on the ETC ap-
plication, consciously avoiding unnecessary restrictions for an actual solution,
e.g. by directly describing concrete components or functions in an early stage
of conception. On the other hand, this abstraction should be valid for any
ETC OBE realization, not restricted to the approach preferred here.

Today, we find a multitude of ETC concepts and installations. Business the question for
ETC software
characteristics

logics and technical components of the British city access pricing of London,
the Swiss undiscriminated tolling of kilometers, Austrian and German dedi-
cated motorway tolling – some elements they share, some are completely unre-
lated to the other. As they still belong to one family of systems, the question
for their essential aspects and common characteristics arises: what defines an
ETC system from a software point of view?

The desired high level of abstraction is achieved by establishing the ETC- the notion of
aspectsspecific core aspects. We take the notion of aspects from [FECA04], denoting

cross-cutting concerns and properties that are not necessarily congruent with

45

2. Establishing the Domain of ETC Software Systems

some specific module, class, function or other decomposed element of the re-
spective language (design or programming). They may also encompass non-
functional characteristics of the software. Instead, an aspect can pervade a
number of system components, or, vice versa, a set of elements may imple-
ment an aspect. As we will see below, an ETC software features very tightly
integrated interdependencies concerning its processes and component interac-
tions, e.g. with the omnipresent security. This may result in situations where
a decomposition is necessary to manifest a property, but not feasible, or at
least not sufficiently comprehensible, if based on classes etc.

On a side note, [BM98] and [MNS95] give a related, very pragmatic and
practical solution in the form of conceptual modules and the software reflexion
model. Conceptual module querying is typically used for reengineering pur-
poses of source code and potentially for design conformance checking. Only
based on line numbers, variables and procedures, it allows to establish a re-
lation between a set of these and a logical unit – the conceptual module, e.g.
some "aspect" – very rapidly.

Aside from the software design, identification and generic description ofreasons for the
aspect view these aspects has pragmatic reasons: as the software defines the functional

behavior and implements the intended business processes of the system, it de-
termines many components of the costly hardware infrastructure. By system-
atically examining the actual requirements of a tender invitation corresponding
to the core ETC aspects, potential platforms may be evaluated transparently
and purposefully (similar to [Ste03]). Furthermore, enabling systematic feature
classification allows better comparison of ETC systems, helping the pursuit of
interoperability by highlighting the factors to harmonize. Finally, a traceable
implementation of explicit aspects supports the selective advancement of speci-
fied features by improving only the associated elements. Vice versa, changes to
the platform (e.g. due to general technical advancements, or supplier changes)
may be examined for functional consequences. Aspects may be mapped to
a deployment and reflect themselves as conceptual modules or cross-cutting
concerns in the implementation.

Figure 2.7 illustrates the core, primary aspects of an ETC OBE softwarethe ETC core
aspects system as identified by this work:

locating – geometric on the physical traffic infrastructure and logical on the
corresponding tariff scheme graph, i.e. the decision if the vehicle is riding
a toll atom (road segment, area, etc.) and which (identification),

charging and payment – determining the amount due and processing the
transaction to produce a receipt,

communications – exchanging structured information between distributed
components of the system,

46

2.3. Aspects and Business Processes

Figure 2.7: Core ETC Aspects

active data storage – memory/access optimized storing and selective, expiry-
date-dependent synchronization of operating data,

enforcement – checking the consistency of traffic infrastructure access and
tolling transactions, identification of trespassers and

security – cryptographic measures to ensure privacy, authenticity and in-
tegrity of the system’s processes and their data in a

concurrent, real-time context – time is a critical processing parameter for
a set of activities that need to be executed simultaneously in order to
fulfill all quality of service requirements the software is confronted with.

Consequently, we regard associations to billing, subscription, CRM, etc.
as secondary and outside of our focus. Interdependencies between the aspects
induce pre- and postconditions for their respective activities, e.g. accessible
resources and yielded results. An invariant of all aspects is operational secu-
rity, i.e. functions for en-/decryption and signature are available with current
interfaces, keys are present and valid. Failure postconditions and resulting
problems are subject to section 3.1.1.

47

2. Establishing the Domain of ETC Software Systems

2.3.1 Locating

Preconditions: means of positioning (services, devices) operational, map data
current and accessible.

The aspect of ETC locating is manifold, with three ordered refinements.positioning,
operator matching,
toll atom matching

First of all, it implies the positioning, i.e. getting a fix on the vehicle’s phys-
ical location. In a GNSS system, this may typically be obtained from a GPS
receiver in the form of latitude, longitude, heading, speed and estimation of
deviation data. Second, a rough geographic matching of the position to an
ETC operator’s managed area, i.e. a polygon encompassing toll traffic infras-
tructure. Note that this matching is not reduced merely to a true (inside area)
or false (outside area) decision, but also has to detect the approach toward
an area, notifying the active data storage (see below). The third refinement
matches the vehicle’s position to the geometries of a toll atom, e.g. the seg-
ments of a motorway. Given a DSRC ETC solution, the aspect of locating is
still valid, but the refinement order may be reversed. By receiving a logical ID
from a beacon, we can deduce the vehicle’s physical location.

Besides the geographic respectively geometric view, locating refinementslogical view
two and three also include a logical view, yielding the result essential for ETC:
selecting the currently active operator ID to apply the corresponding business
processes and tariff scheme, and identifying the toll atom ID as reference for
the tariff scheme data structures and pricing algorithms.

Postconditions: valid operator ID, current toll atom ID or outside operator
area/toll atom.

2.3.2 Charging and Payment

Preconditions: relevant parameters including toll atom ID declared and cur-
rent, tariff scheme current and queryable, communications operational.

Charging and payment encompasses all structures and mechanisms to im-commercial
transactions plement the commercial transactions, starting with a toll atom to process. A

tariff scheme, provided by the active data storage, is queried based on the
current vehicle, driver, time and operator parameters and applied to the atom
(rating and pricing), resulting in an amount of money. On that, the application
charges some user account and generates a receipt, finalizing the transaction in
a pre-paid system. In the case of the thick client, this is handled on-board, i.e.
the signed receipt represents a cash-equivalent entity that should be protected
against manipulation or loss.

From the view of the OBE software, the toll atom is cleared with thereceipt handling
generation and signing of the receipt. Consequently, it can be presented to
an enforcement as proof of correct and accepted charging. Eventually, on
reaching a defined limit in a post-paid system, the OBE transmits the receipts
to the billing servers via communications (see below), where the previously
charged account is balanced. The respective transaction interfaces (e.g. receipt

48

2.3. Aspects and Business Processes

formats) and protocols are also associated with the aspect of charging and
payment.

Postconditions: corresponding account(s) charged or balanced, last/cur-
rent toll atom cleared, receipt/proof available for transmission to center or
enforcement, or transmitted/validated.

2.3.3 Active Data Storage

Preconditions: file/memory resources operational, locating and communica-
tions available, update triggered externally (optional).

The ETC OBE data storage provides the operating data (OD) to the appli- operating data
cation’s processes. Operating data management concerns received data from
central servers as well as persistent structures generated and updated by the
OBE software itself. It consists of

map data – geographical references of the area managed by a specific oper-
ator, geometrical descriptions of toll atoms (virtual toll points, vectors,
areas etc.), optionally surrounding traffic infrastructure to enhance dif-
ferentiation between toll and toll-free sections,

tariff scheme – an update- and queryable representation of the scheme in-
troduced in 2.2.1,

configuration – the set of currently valid system parameters of the OBE
hardware and software components, access information for the interac-
tion with ETC operators (MSISDN, protocols),

set of receipts – an ordered collection of cleared toll atoms. The order may
be defined e.g. by date/time, operator, location or tour.

Persistent storage, updates and querying of map and tariff data imply some database
realizationskind of database. This may be implemented as single table files for simple data

structures, a proprietary embedded database, any standard ISAM or SQL
solution, depending e.g. on the degree of efficiency required on the hardware
platform due to performance or memory restrictions. Receipt datasets may
be stored as single files in a directory, or as list in a file depending on their
complexity and order. Storage of receipt data also includes memory located
on a smart card.

The aspect of data storage in an ETC environment has to implement spe-
cific characteristics regarding active updating and integrity.

Active data storage in this context implies validity time intervals and expi- active data
management,
OD invariant

ration dates for externally provided operating data release versions. The OBE
data storage has to recurrently check all of these objects and actively initiate
updates if the data is about to expire. A similar mechanism checks sum limits

49

2. Establishing the Domain of ETC Software Systems

of receipt sets and initiates transmission to billing. In the process, the invari-
ant condition of current and valid operating data must never be violated for
the application as a whole.

Consequently, update management and scheduling of the storage has to
consider the fact that it is not guaranteed that the OBE may access the cor-
responding operator’s device management center via CN at any given time.
Besides the time constraints, updates are thus additionally determined by lo-
cation: if the need arises, the active data storage has to detect the approach
of an operator’s area to enable the timely update of expired data that was not
accessible before. A final update scenario is triggered by an external cue broad-
cast by the center in the case of an unscheduled modification due to abrupt and
temporary alterations to traffic infrastructure e.g. induced by road damage.

The above invariant also requires that the incoming operating data struc-
tures are completely and correctly stored on the OBE before becoming valid.
With the expiration of the previous set, they are activated, the obsolete set
discarded. As our software is potentially operating in a resource-restricted
embedded environment, data management and storage has to be optimized
for memory usage, as it has to handle more than one full operating data set
version at a given time. This can be achieved e.g. by selective updates of
specific elements only, or "delta" versions of operating data sets, describing
the differences between two releases.

Database integrity constraints are also tightened for the ETC use case.ETC data
integrity Commonly, coherency and consistency in data structures may be achieved by

the introduction of transactions: insert, update or delete operations on data
records are explicitly commited; if they fail, the structures roll back to the
state before these operations. Due to the rigid time constraints for automotive
system shutdown (cmp. sections 2.3.8.4 and 3.1.4), the software has to ensure
that no data loss may occur in the case that the software shuts down before a
record is commited from local variable/object/memory to persistent storage.
This is especially critical in the case of signed receipts stored on a smart
card, demanding either sufficiently efficient transaction implementations or
the general safe, static storage of these objects.

Postconditions: operating data current and queryable.

2.3.4 Communications

Preconditions: communication devices operational, connection configuration
parameters, keys and certificates current and valid.

The OBE software has to manage the different long and short range trans-basic
management port media with their specific characteristics as stated in 2.1.2.2 regarding

bandwidth, time constraints and availability. This management – correspond-
ing to the ISO OSI [Zi80] physical, data link and network layers 1 to 3 defini-
tions – starts with maintaining a status of operativeness: continuous respon-
siveness of the respective device, signal strength where available, registered

50

2.3. Aspects and Business Processes

coverage of configured CN operators. A basic level of communication protocol
defines how to establish, maintain and release a connection including reacting
on interruptions in the case of connection-oriented media.

An important distinction lies between outgoing and – if permitted – non- incoming signals
OBE-initiated incoming calls, as the devices have to be polled for received
signals (it is not sensible to generally presume an interrupt mechanism of the
HW platform). Here, the software has to find an optimum polling frequency
between excessive workload (busy waiting), message queue overflow and miss-
ing a real-time deadline.

Concerning time constraints, both long and short range transaction proto- timeout handling
cols from OSI layer 4 (transport) upwards need to regard timeouts, albeit of
different magnitude. Without prematurely touching the application layer 7,
messages sent over CN generally require an acknowledgement to ensure cor-
rect reception and the completion of a transaction. This holds true for both
directions, e.g. the OBE confirming a new version of operating data, or the
center confirming a set of receipts. In the case of timeouts, the information
may be retransmitted after a defined time, e.g. seconds or minutes in the case
of a dead spot, or dependent on location, e.g. on reentering an operator’s area
after the OBE left it an indeterminate time before (note the interdependencies
to locating and active data storage above).

For short range transactions between passing OBE and roadside installa- short range
time constraintstions, we find strict deadlines for completion. These can be comparably short,

e.g. if we have to assume a maximum speed of 250 km/h on German motor-
ways. Applied to the example media performance parameters from 2.1.2.2, this
leaves little time/space for complex protocols or more than a few bytes of user
data. Consequently, a timeout in the worst case equals to a failed transaction
for the short range communications scenarios.

Mechanisms for the handling of message exchange between OBE and center message formats and
exchange protocolsare also directly associated with the aspect of communications. Interdependent

with the security aspect (see below), this implies the mutual authentication,
en-/decryption and integrity safeguarding of the messages. The previously
stated connection parameters bandwidth and timeout constraints determine
the message formats and protocols:

• binary encoding of single message overhead and user data, defined as e.g.
TLV, ASN.1 with Packed Encoding Rules (PER) to optimize memory
consumption, cmp. [ITU021], [ITU022],

• management of message sequences; segmenting user data in a number of
chained messages in the case of a connectionless medium like SMS, order
of message exchange, e.g. challenge/response, ACK/NAK, reacting on
errors, aborts.

On the boundary between the communication components and other soft- component interface
ware modules, the aspect relates to the handling of application objects to

51

2. Establishing the Domain of ETC Software Systems

communicate from and to the OBE, primarily the serialization and deserial-
ization from record/object to and from one or more binary arrays. This level
may also provide a uniform interface for all types of communications in the
form of virtual connections for connectionless media, e.g. by implementing
some open and close for a message transmission via SMS.

Postconditions: objects successfully transmitted or received objects ready
for processing by other application modules.

2.3.5 Enforcement

Preconditions: toll atom clearance receipt current and available, communica-
tions operational, enforcement challenge received.

While – as was established in 2.2.1 – seemingly secondary to the processingextending charging
and payment of tolling itself, and actually only indirectly maintainable in ETC systems other

than thick client solutions with real-time charging, the aspect of enforcement
irregularly extends charging and payment. This commonly can be considered
sufficient to encourage participation in the tolling system. Enforcement is thus
crucial to the overall ETC use case and is considered an aspect in itself. It
is closely interdependent with security (mutual authentication of both OBE
and enforcer, integrity of exchanged data) and communications (transmission
medium DSRC).

From the OBE perspective, enforcement is reactive, i.e. the software in-OBE view,
reactive feature vokes the corresponding processes only on being challenged: the OBE com-

munications receive a signal requesting the receipt of a defined toll atom. Ad-
ditionally, the enforcement unit may readout a set of parameters determining
the amount to charge and declared in the OBE software for confirmation with
the actual vehicle attributes. The requested objects are selected and handed
over to communications for transmission to the enforcer. With respect to a
defined time constraint, the answer is accepted by the OBE.

Another notable interdependency can in specific cases be found with lo-enforcement
positions
and timing

cating. The ETC operator has to ensure that fixed enforcement installations
as well as mobile enforcers are positioned in a way that grants the OBE lo-
cating sufficient time to safely produce a receipt, i.e. determine the toll atom
and process charging and payment. For the OBE software, the enforcement
consequently implies a time constraint for the processing of toll road segments
equal to or larger than a minimum length. Example: this constraint may as-
sume a maximum speed of 250 km/h and a minimum length of 1 km, with
a viable site for enforcement equipment after 500 m, resulting in a maximum
locating, charging and payment activity duration of 7.2 sec after entering the
toll segment.

Postconditions: OBE response and clearance of toll atom accepted.

52

2.3. Aspects and Business Processes

2.3.6 Security

Preconditions: keys, certificates valid and available.
The ETC domain handles business-critical information; large sums of money

as well as user-related data, e.g. the implied position of the person of a driver,
in a distributed, not trustworthy environment. A system’s operator has to ac-
count for non-repudiation and attestability of the tolling transactions. Thus,
security is a mandatory, integral part of the ETC business processes both on
the micro level of the OBE software components – integrity checks, access
control, manipulation detection, providing privacy – and macro level of the
system – OTA transactions between distributed and center elements. Security
measures are commonly classified in three categories (cmp. [Ste03]).

Privacy functions ensure that information processed and communicated privacy
between OBE and central systems is not readable by a third party. This can
be realized by encrypting the exchanged data, e.g. with public key algorithms.
As GSM transmissions usually are already encrypted by the GSM operator,
an ETC service provider has to evaluate if this would be sufficient (i.e. it just
has to be made sure that a message can not be easily intercepted and read –
while the GSM operator is not regarded as a possible attacker) or if the service
requires an independent security module under complete control of the service
provider itself.

Authenticity functions have to validate the identity of the communicating authenticity
parties. Central systems must be able to safely assume that they transact
with a valid mobile unit and vice versa. By adding a unique signature to the
exchanged messages (respectively over their content), a sender can prove its
identity to the receiver.

Integrity functions detect manipulation – for example of data by calculating integrity
a checksum or hash value over newly generated and updated data. If on a later
occasion (e.g. when receiving the data) this unique value is recalculated and
differs from the previous regularly calculated, the contents have been altered in
the meantime and an integrity failure has been detected. An ETC application
may utilize this in the context of message exchange as well as protection of the
mobile devices: Unlike the server systems, which usually can only be attacked
over defined public interfaces, the mobile units are fully accessible – hardware
as well as software – because of their deployment "on the road". Consequently,
the integrity of the operating data stored on the devices as well as the device’s
physical components are integrity-checked to detect manipulation and be able
to react accordingly (e.g. by shutting down the application).

While security measures permeate many components of the software, im- SAM
plementation of the core functionality – encrypt/decrypt, hash/sign, authenti-
cate – is currently often associated with a secure access module (SAM), com-
monly represented by a smart card. It provides a sufficiently secure envi-
ronment for cryptographic algorithms, certificates and (private) keys (cmp.
[RE08], chapter 16).

53

2. Establishing the Domain of ETC Software Systems

The given pre- and postconditions notwithstanding, the aspect also spans
heuristics to detect manipulation attempts: certain conspicuous usage, signal
or event patterns hinting at violations, e.g. only road segments with fixed
enforcement installations were charged, otherwise the OBE was turned off.

Postconditions: processing of encryption, decryption or signature check
completed without violations.

2.3.7 Concurrency and Real-time

Preconditions: multiple threads of execution access resources (e.g. active data
storage and payment use communications), time constraints defined.

The preconditions and assumptions stated in 2.2.3 imply that we have tothe issue of
concurrency accept concurrency in the ETC OBE software, as the thick client solution

features a set of invariants that need its activities to run simultaneously (cmp.
next section for an explicit illustration). Due to the adjunctive interleaving of
states of the software’s different component threads of execution, the number
of overall system states grows exponentially with the number components. The
complexity of the system state configuration rises to a "state explosion" (cmp.
[Ro98]), impeding controllability of the OBE processes. Nondeterminism of
the application’s behavior, deadlocks and lifelocks of threads are the potential
problems arising in this context.

The concurrency aspect of this work differentiates processes and tasks re-processes and
threads/tasks spectively threads. A process generally represents a complete application like

the ETC OBE software, with its dedicated memory address space, run-time,
input and output resources, running in some execution environment like in-
troduced in 2.2.3. Tasks or threads each implement sequential operations in
the run-time context of a process, and access its memory and resources. They
may run in parallel7 – that means that their corresponding state traces are
interleaved to produce the composite process state configuration. Note: this
work also uses the widely established term business process to designate the
comprehensive procedures implemented by the ETC system as a whole and
its components, including processing, program and information flow. Business
processes realize the system’s use cases.

Closely associated with the parallel processing of tasks is the aspect ofETC real-time
real-time (RT) behavior. Actually, a number of real-time constraints demand
concurrent tasking, e.g. an operating data update must not delay a tolling
in process. Real-time in the context of ETC differs from the interpretation
of other domains. Partially, e.g. because the timescales are different from
other RT applications like automotive (cmp. RT term and scale in 2.1.1.1 to
table 2.4), we find tendencies that do not regard ETC as real-time at all. This
however, would be wrong, as the primary function of toll collection clearly
depends on the timely execution of various subfunctions. Depending on the

7We use the terms simultaneous and parallel also for task-switched quasi-parallel software
in the case of a single processor architecture.

54

2.3. Aspects and Business Processes

Timescale Constraint Context
< 1 sec Sensor readout information availability for locating.

OBE internal component interaction, en-/decoding.
Seconds Locating, charging, receipt generation.

Enforcement response, message exchange with road-
side equipment.

Minutes Transactions between OBE and center.
Weeks – Months Operating data update time slot.

Table 2.4: Scales of ETC time constraints

viewpoint8, ETC should be considered soft RT (cmp. [Do04], 1.2.1): as we will
elaborate on in detail in 3.1.1, an ETC system has to fulfill an overall quality
of service measured by a failure rate, i.e. here we find a statistic measurement
that implies a strictly defined but nevertheless existent tolerance for faults.

A specific influence on ETC RT is the interdependency between enforce- RT and post-
processingment and locating (see above). A navigation system for example is allowed to

switch (observable as a "jumping" position) between location alternatives de-
pending on the current state of the map matching algorithm, as it is expected
to provide a real-time "best guess" to the user. In contrast, ETC locating has
to reach a stable solution as a precondition for valid charging. Combined with
the maximum speed-induced deadline for a response to enforcement, ETC lo-
cating needs to converge on a sufficiently high probability while adhering to a
time constraint. Up to that point, there is no tight cohesion between current
location result and time, permitting post-processing of locating data inside of
the deadline time interval boundaries.

To effectively handle concurrency, the software has to implement handling concurrency

task management to instantiate the threads, associate and provide them
with run-time resources (memory, access to other threads and devices),

priority-based scheduling to systematically and fairly allocate run-time to
the threads (single processor case),

inter-task communications in the form of queues and communicable mes-
sages, signals, objects, and

mechanisms to guarantee mutual exclusion on entering critical program
sections, e.g. semaphores or monitors (cmp. [Be06], chapters 6 and 7).

Also explicitly associated with the aspect of concurrency are the thread pri-
ority settings, e.g. in the context of a static priority pattern (cmp. [Do03], 5.9),

8In 2.1.1.1, we gave an alternative reference on hard and soft RT.

55

2. Establishing the Domain of ETC Software Systems

to facilitate predictability by additionally analyzing task periodicity, worst-case
execution times and deadlines.

Postconditions: collision free resource access, time constraints unviolated
or violation identified9.

2.3.8 ETC OBE Software Business Logics

In section 2.2.3 we introduced the deployment and components of an ETC
system with a description of their distinctive purposes. Together with the
previously defined aspects that detailed the primary assignments and charac-
teristics of the OBE component software, we are now able to sketch a generic
business process of the ETC OBE application. This illustrates the activities
required to implement a thick client automatic tolling device – their basic se-
quence, concurrency and constraints. As that, they represent a section of the
overall ETC system’s business process, namely the distributed measuring and
charging of toll atoms. The process section directly integrates with the busi-
ness logics of the center and other distributed system components. While their
processes are outside the focus of this work, we still regard the interfaces be-
tween them and the OBE logics, i.e. how they interact with the OBE software
activities.

An important definition in the context of the OBE software is the systemsystem state
configuration;
validity, consistency

state configuration. For any time t during the software’s operation it designates
the current step of execution10, variable values and queue contents of each
thread. As we will see, some requirements demand the explicit handling of
this state configuration. In order to be expedient, the configuration needs to
be valid and consistent, thus two corresponding invariants. Validity implies
a time-, location- and state-trace-related coherence between the system state
of ti and ti+1, i.e. there are no unexplained11 clock or position offsets and
no illegal state sequences in each task. This is especially relevant if an OBE
shutdown lies between ti and ti+1, e.g. if the vehicle resumes a tour from
the same location. Consistency requires the adherence of concurrent tasks to
defined safety conditions (cmp. [Ste032], 4.1.2, [Ro98], 1.3.3). The software
has to ensure that contradictory, mutually exclusive task states do not occur
coinstantaneously in t, e.g. charging a toll atom while travelling a toll free
area. Additionally, the data objects processed in the current state of each
thread have to correspond over the system state configuration, i.e. their OD
versions, timestamps, exchanged message types.

Figure 2.8 presents an overview of the business logics to realize by ansignals, events,
activities, actions ETC OBE software. In a way, they also reflect the lifecycle of the ETC OBE

9In an integration scenario, this might be a valuable result that can hint at insufficient
hardware capabilities for timely processing.

10Not necessarily the program counter, but a proprietary reference, as described in later
chapters.

11Transporting the vehicle by ferry is an example for inducing an explained offset.

56

2.3. Aspects and Business Processes

Figure 2.8: ETC OBE Software Business Logics Overview

from commissioning to deinstallation. For the activity diagram semantics we
generalize the above mentioned interactions with other system components
over the given interfaces to signal (cmp. [OMG092], 13.3.24) input/output;
sensor data, GSM messages, GPS positions, hardware interrupts. Also, we use
the term event (cmp. [OMG092], 13.3.13) for some measureable incident in
the state configuration; clock ticks, variable value changes, signal reception.
Each activity describes the command sequence and data flow to realize a part
of the system’s use cases, corresponding to the CompleteStructuredActivities of
[OMG092], chapter 12. Note that activities, or sequences of, do not necessarily
equal tasks or threads of an RTE. A task may implement a part of an activity,
one activity or n activities. Finally, the command sequences are assumed to

57

2. Establishing the Domain of ETC Software Systems

be made up of actions (cmp. [OMG092], 11), atomic operations on the state
configuration.

2.3.8.1 Pre-Operations

Physical installation of the device(s) in the vehicle entails installation andinstallation and
commissioning commissioning of the software. A linear activity, commonly realized by the

OBE in concert with some service terminal or OTA service center, imports
the application and if need be some base software or OS, followed by an initial
set of operating data. The OD includes a valid initialization file with device
parameters and operator contact data (server MSISDNs, IP addresses etc.).
The local process is completed with the personalization and activation of the
OBE. We assume a smart card-based personalization, e.g. user/vehicle data is
stored on an operator-issued card that is inserted into the OBE and activated
by a PIN. After contacting and being acknowledged by the center (e.g. CRM),
the OBE is effectively conscribed to the operator, thus introduced and enabled
to participate in the ETC system.

If the software resumes operations after a shutdown, it has to restoreresuming
operations the complete system state configuration. Due to the criticality of the spe-

cific checks (see above), the activity should be handled by the ETC soft-
ware itself and not left to an operating system or other third-party RTE.
On successful task state restoration including data, each activity of the ap-
plication is continued. The restoration activity itself is submitted to a tim-
ing constraint: its duration is limited by a maximum acceptable startup time
(MAX_STARTUP_TIME), after which the driver can presume that the ETC
OBE is operational and is allowed to proceed with the tour. If the deadline is
missed or a fault occurs during the system state reconstruction, a malfunction
is flagged.

2.3.8.2 Operations

Both the commissioning and continuation include a general checking of run-reasons for
concurrent activities time resource and device availability, so that after successfully completing ei-

ther activity, proper OBE software operations can begin. With the evolution
from sequential to concurrent sections, these present an important trait. In
pre-operations, installation as well as restoration after shutdown consist of a
sequence of steps. During regular operations however, i.e. tolling, system use
cases and invariants dictate parallel, synchronous activities due to the following
reasons:

1. Invariant "active tolling" and invariant "OD current" – From the overall
ETC application domain it should have become clear that it is imperative
that the operational OBE is able to toll at all times. A precondition for a
valid processing of toll atoms is current operating data, in turn requiring
timely updates over the air. As update scheduling is nondeterministic,

58

2.3. Aspects and Business Processes

i.e. initiated by irregular events like reaching the OD expiration date
or external signalization, both tolling and update activities need to run
simultaneously, so that a necessary update does never preempt requisite
tolling run-time.

2. Use case "enforcement" with above invariants – An enforcement chal-
lenge is another event the OBE software is confronted with occuring
nondeterministically. The enforcement invariant itself notwithstanding,
an OBE has to respond with its status immediately on contact with an
enforcement instance to be considered operational. Consequently, the
enforcement transaction handling runs concurrently to tolling and OD
updates.

3. Use case "monitoring" with above invariants – Permanent monitoring
and control of valid ETC processing is a critical precondition for binding
monetary transactions and their attestability. Monitoring activities of
the OBE impact both the micro level – the software of each distributed
device – and macro level – the aggregate collaboration of all devices and
the center – of the ETC system. First, the software needs to continu-
ously log critical regular, conspicuous and fault incidents to support a
directed encircling in the case of problems. On a larger scale, the cen-
ter requires information about the overall operational availability and
potential hazards, e.g. increased occurrence of locating or accessibility
disturbances. Thus, it would not be sufficient to interpret monitoring
in a passive sense, e.g. in the form of a logging function to call by the
components to observe. Instead, we have to consider OBE monitoring
an active task, also in the sense of an independent component: it may be
used by other modules as a protocol instance, but it is also able to register
and flag problems like irregular behavior/traces or blocked threads.

We find four overall activities processed simultaneously, of which three – op- the four
concurrent ETC
activities

erating data updating, enforcement response and monitoring/control – provide
auxilliary functions, thus ensuring the application’s adherence to constraints
of the primary tolling activity.

Operating Data Updating Operating data updating manages versions of operating data
updatingthe tolling area, road segments and tariff schemes stored on the OBE. Thus,

it checks and ensures the validity of current operating data. This validity
encompasses a number of constraints. Completeness requires that all accessible
toll segments are available in the data set and associated with tariff data for
any accredited vehicle and date. Temporal and geographical coherence demands
a gapless succession of operating data set versions and road segment chains,
while consistency in this context refers to non-overlapping durations of validity,
unique versions, segments and unambiguous attributes. Whenever triggered,

59

2. Establishing the Domain of ETC Software Systems

e.g. by a received signal or a timer event, the updating activity requests status
of the operating data, processes insertion of new records and reorganizes the
database structures accordingly. Besides the apparent association with the
aspect of an active data storage, this activity is associated with the aspects
of communications and security to process transactions over the air and effect
data authenticity and integrity respectively.

Monitoring and Control Monitoring and control perpetually checks allmonitoring
and control other activities for fault states, warnings, errors or otherwise suspicious behav-

ior. It maintains validity and consistency of the system state configuration.
Beyond local logging of regular events and other incidents this activity may
interact with a central service to transmit aggregated monitoring information
and receive commands to control the configuration of the device. Command
sequences received via CN (aspect of communications) from the outside are
authenticated to ensure a legal source (aspect of security). Depending on the
level of criticality set by general policies, outgoing system logs and notifica-
tions may be encrypted in addition to integrity-verifiable (e.g. by adding a
checksum to the respective message).

Enforcement Response The enforcement response merely reacts on a chal-enforcement
response lenge from mobile or roadside checkpoint equipment: the activity reads out

the required data from the smart card and memory. However, timing of the
response is crucial to prove correct operativeness and produce evidence of pay-
ment. This authenticated message, transmitted via DSRC, may carry a single
toll atom charging confirmation or a tour, i.e. chain of road segment receipts,
and currently declared vehicle parameters for additional plausibility checks –
coherence of segments, gaps in a tour, set versus observed vehicle attributes
etc.

Tolling The tolling activity itself (cmp. fig. 2.9) consists of a number ofconfiguration,
initial location sequential steps that fork out to concurrent threads of execution. Initially,

tolling relevant attributes (2.2.1) are set by manual input from the user or
reading a configuration file. All run-time resources (memory, sensors, devices)
are checked for availability and operation. If the software and OBE meet all
prerequisites, the application determines its current location. From that, it
derives the responsible operator, if a query of the operating database yields
coordinates of a corresponding area that encompasses or is close to the current
location.

Approaching or inside the operator area, the application activates its dataset:setting
active operator
and account

the tariff scheme is checked for applicability conforming to the time, date,
user’s and vehicle’s current attributes. To process charging on-board, the soft-
ware reopens an account in the case one exists that was not yet closed and
transmitted to the billing systems. Otherwise, it opens a new account, if no

60

2.3. Aspects and Business Processes

defined limit – based on sums, time or storage – denies that. Accounts are
commonly kept securely on a smart card, thus the storage limit is relevant
even if the related data records are small.

When a debitable account is available, recognition features, e.g. geograph- toll atom detection
ical references of toll atoms are then submitted to detection by GPS or DSRC.
Depending on the specific locating aspect’s implementation, the references
may be organized in map subsets, and take the form of vectors for continu-
ous matching or virtual toll points for discrete matching. In any case, regular
position updates represent input for a toll atom detection loop. On the iden-
tification of a specific atom – a sufficient sequence of positions matches to the
corresponding geometry, or a DSRC signal was received – the atom’s record is
attributed with relevant data: date, time of day, configured vehicle and user
characteristics.

From the atom attribute values, the software compiles a tariff scheme query rating and
chargingand accesses the operating database. The resulting record may directly contain

the amount associated with the atom’s use, or (parameters of) a function to
calculate the amount. When the amount to toll is determined, the thusly rated
atom is charged: the application passes ID, amount and timestamp to the
smart card, which stores it in the currently open account, in effect debiting
it. Additionally, the card generates a signed receipt as proof, consequently
clearing the atom. This receipt may then be used in response to enforcement
challenges.

At this point of execution, the tolling activity forks. It is necessary to
continue immediately with the detection of toll atoms, as the vehicle is still
considered as moving.

For that purpose, the working map subset resulting from a defined area area updating
surrounding the vehicle’s position is updated; the process removes farther ge-
ometry and adds close toll atom recognition features. Elements of the subset
can then be submitted to detection.

Additionally and concurrently, account management maintains adherence account management
and transmissionto the commercial constraints for continued tolling. If the last debit opera-

tion reaches no account limit (see above), the currently active account is still
debitable. The activity joins with that of the update after both are complete,
tolling is resumed. In the case of a reached limit, the activity forks again. It
opens a new account and again – if the operation was successful – joins with
the update to continue tolling.

The other thread of execution closes the previous account, encodes it in a account balancing
transmittable message format and signs it to ensure integrity and authenticity.
A scheduled12 or directly initiated interaction with the center servers hands
over the account via CN for billing, in return accepting a receipt. The receipt

12Note that an account is not necessarily passed to the center immediately on closure.
Due to a preset schedule or data transfer volume optimization, accounts may be collected
and then transmitted in packages.

61

2. Establishing the Domain of ETC Software Systems

is checked for integrity and authenticity, and stored on the OBE, associated
with the corresponding user account, which is now considered balanced by the
ETC software. This activity then terminates, with the others continuing.

2.3.8.3 Post-Operations

Either by direct service access after initialization, or by terminating the pri-activities beyond
operations mary activities, the system reaches service and diagnosis. In contrast to moni-

toring and control of the operations section, this activity handles maintenance
of the software in a halted state and post-mortem analysis of crashed OBE.

While the application may exchange or update certain software compo-service
nents during regular operations and still function properly – e.g. the database
as mentioned above –, others, most notably hardware components like a smart
card, cannot provide their required functionality during that kind of interven-
tion. Respectively, if not redundant, tolling cannot continue with sufficient
reliability during maintenance of these components.

These service and maintenance interactions with external systems located
in a workshop or center-side are exchanged over a specific and secure service
interface. It may be realized as either a fixed link or OTA, providing methods
to modify critical components, shut down the OBE for hardware modification
and configure new or updated modules on reentering this activity after reboot.

Diagnosis reads out system logs (states, events, messages, free memory, sig-diagnosis
nal quality etc.) in the context of regular maintenance to check for suspicious
entries that may hint at probable future problems, a use case similar to the
above monitoring during operations. In the case of critical failures and system
crashes, the logs have to support fault reproduction. Their data – leading up to
the point where the software stopped logging its activities – is then recovered
and analyzed post-mortem, i.e. after the OBE ceased to function.

After service and diagnosis, the OBE software may either continue opera-decommissioning
tions, or be taken out of commission. This implies deinstallation of proprietary
software components, extraction and thorough, physical deletion of data (e.g.
personal-/customer-related; tours, payments etc.). Crucial hardware compo-
nents are removed (e.g. smart cards with keys) and the remaining equipment
is prepared for a potential refurbishment depending on condition and age.

2.3.8.4 Terminating all Activities: Shutdown and Error Handling

Any time during processing of the given activities, the software may receiveshutdown
the signal to shut down. In this event, it only has a limited amount of time
to orderly finish all activities, indicated by a time constraint MAX_SHUT-
DOWN_TIME. This is generally owed to the installation of OBE in an auto-
motive environment e.g. potentially concerned with hazardous goods logistics
(cmp. 3.1.4). It may not be required for every realization of the software, but
has to be considered in the design all the same.

62

2.3. Aspects and Business Processes

Figure 2.9: The Tolling Activity 63

2. Establishing the Domain of ETC Software Systems

Handling of errors is often constricted on embedded platforms like the OBE.error handling
Resources are limited, with little redundancy, leaving little avenues to recovery.
Even if a fallback or plain reboot is possible – automatically or interactively
initiated by the user –, the software will potentially at least abandon a sequence
of toll atoms. As we will see in detail in the next chapter, failure of a single link
in the chains of process activities means failure of the application with utmost
probability. Hence, the logics given in this section handle any activity’s signal
of a critical fault by logging and preserving as much information about the
incident as possible before terminating. By these means, subsequent recovery
and systematic analysis is enabled (s.a.).

2.4 Chapter Conclusion

In contrast to existing works, we introduced the domain of ETC from a strictly
software point of view. Specifically, the introduction took the perspective of
the OBE software, an embedded, distributed component of the deployment,
which implements mission-critical processes.

The initial sections of this chapter gave an overview over the automotiveconflictive parent
domains and traffic telematics software domains, both representing a parent domain of

ETC with differing development approaches, as shown in 2.1.1.4 and 2.1.2.3.
Characteristical attributes of an automotive ECU application are sequen-

tial processing, deterministic interactivity with other components limited to
the vehicle bus network, real-time stateless transformation algorithms with
input and output consisting of signals, i.e. plain numerical values. Quality
requirements are high due to safety-critical functions. Traffic telematics appli-
cations on the other hand typically rely on protocol-defined interactions with
widely distributed components over various interfaces, car to car, roadside
or center OTA, dynamically exchanging messages with complex structures.
Concurrent processing is common, as reaction to events is triggered nonde-
terministically, entailing forking of execution. Requirements to reliability are
generally lower, as application output is non-critical respectively informing for
most use cases.

We depicted the domain of ETC software as a fusion of these two con-description of
the ETC software
domain

trasting fields, with additional features distinguishing it from its parents and
justifying its originality, e.g. a specific view on RT, interoperability and reliable
management of a significant money flow. This included a general introduction
to toll collection, the notion of toll atoms and their processing, expanding on
tolling automation, a corresponding system deployment and focusing this work
on the specific thick client OBE.

A set of aspects – locating, charging/payment, active data storage, com-
munications, enforcement and security – manifested specific ETC functionality
and features that need to be implemented by an ETC OBE software and at
the same time describe it sufficiently. The chapter complemented these aspects

64

2.4. Chapter Conclusion

with generic ETC OBE business logics, further substantiating the aspects, re-
lating them to pre-/post-/operational activities and illustrating the need for
concurrency and real-time behavior.

Based on these intermediate results, we can now explicitly acknowledge characteristics of
ETC softwarethe characteristics of ETC software for the given context. And apparently, the

conflicting traits of both parent domains need to be harmonized by the ETC
domain, providing a challenge to system design and implementation.

Structure – The set of unique aspects realized by an ETC OBE software
implies a complex structure, both concerning a set of many associated
components and the data handled and processed by them. This en-
compasses mechanisms for reliable interactions between the active and
passive elements that go beyond direct function calls.

Behavior – Business logics and events during tolling operations imply com-
plex, state-based behavior, i.e. concurrent threads of execution reacting
on the non-deterministic occurence and reception of events and highly in-
teractive signals. All the same, processes adhere to real-time constraints.
To comply with the interoperability directive, the software has facilities
to manage different ETC business logics, e.g. in the form of services.

Interfaces – Interactions with the various actors beyond the OBE are di-
verse regarding both associated hardware and heterogenous protocols of
usage. Interfaces have to meet human users (MMI), as well as handle
continuous automotive sensor readouts and time- or event-triggered, i.e.
irregular, OTA transactions with center servers. Flexibility in definition
and implementation supports interoperability, i.e. specifications need
to be open to adaption to other ETC solutions, with correspondingly
customizable software modules.

Security – At the same time, the software operates in an open, insecure envi-
ronment. As outside interfaces are exposed to attacks, application logics
and data are protected by constant plausibility, integrity and authentic-
ity checks.

Quality – While the ETC software domain borrows structural and behavioral
complexity from telematics, reliability, robustness and overall quality of
service take after automotive requirements: the processed fees induce
high criticality. Due to the software’s described structure and behavior,
straightforward application of most automotive ECU validation methods
is hardly feasible, as formal preconditions cannot be met. Thus, we take
alternative approaches to ensure quality.

Platforms and RTE – ETC software has to cope with varying and evolving
hardware platforms and run-time engines. The tight integration with
well-known hardware – found in the automotive ECU development as

65

2. Establishing the Domain of ETC Software Systems

well as first ETC generations – is abandoned in favor of open solutions
and future European markets for OBE. Behavior of the run-time envi-
ronment, e.g. concerning timing and memory management, may strongly
influence the ETC software, anyway. In the event of failures, the appli-
cation supplier still has to prove that its product worked correctly. The
software thusly exhibits transparent and reproducible behavior.

What do we gain by these results toward our aim of a reliable and economicmaking use of the
chapter’s results architecture of the introduced application? A systematic approach needs to

concretize the at first rather generic meanings of reliability and economy for
the context of this work. The given preconditions, characteristics, aspects
and logics provide a basis for a consequential analysis: we are now able to
determine reasons for system failures and identify cost-drivers of the OBE
software. From there, an appropriate architectural answer to the resulting
requirements can be devised. Furthermore, the descriptions of this chapter
already hint at specific constraints and conflicts in need of further discussion:
complexity versus robustness, proven stability of the software versus variable
third-party run-time environments.

The question of how to build stable software systems is still ubiquitous;
good solutions abound. However, it is hard to answer on a universal but still
practical level if time and money are limited, as is commonly the case. Instead,
a domain-specific solution seems pragmatic as well as sufficient to answer the
needs of ETC.

66

Three

Substantiating Domain-specific
Reliability and Economy

... in which we describe architectural aims and design decisions; apply the
initial requirements defined in chapter 1 to the domain and business processes
introduced in chapter 2, elaborating in detail on the meaning of reliability and
economy in the context of ETC software. The derived and refined domain-
specific requirements determine the software design as well as implementation
qualities. Suitable modeling and programming techniques are discussed.

The elaboration of an OBE software architecture with the aims of reliable design decisions ...
and economical operations as stated in chapter 1.2 requires consideration of
a number of design decisions. These concern the development process as well
as the intended product, ranging from the notation to apply to the definition
of structure and behavior to the intended programming technique of the re-
sulting source code. A contextual refinement of the high-level requirements
initially defined enables us to reason about these specifics of the HIRTE foun-
dation in the following sections. Each described attribute has to reflect in the
requirements and be justified in the light of its contribution to fulfillment.

Note that the following sections label the intended architecture’s character- ... and requirements
istics "requirements", instead of "design decisions". This is merely to express
a certain openness regarding the results of this chapter. We actually interpret
the defined requirements as design decisions for the architecture introduced
in the next chapters. However, this chapter should also be of use outside the
context of this work, providing a set of requirements as guidelines, not hard
decisions, for similar solutions.

67

3. Substantiating Domain-specific Reliability and Economy

3.1 Requirements refined

On first sight, the aims of economy and reliability seem rather mundane forcomprehending
the aims a software (or perhaps, any) product. After all, this is what every customer

expects. What is not trivial are concrete technical measures to achieve these
goals, and respective comprehensible proofs of validity. Especially if it is not
acceptable for the operator to achieve and prove requirements conformance
a-posteriori, i.e. deploying a system and then see if it is running satisfyingly,
distributing bugfixes during regular operations to gradually reach stability.

An ETC system adds yet another dimension: as participation is usuallyan accentuation
not optional for the user, its complex transactions are closely scrutinized. It
may be rewarding to challenge the validity of the output of an implementation
independently from any actual, observable defects. Any participant is entitled
to contest an invoice, e.g. claiming not to have taken the respective route.
In this case, a general ISO 9000 certificate of the supplier responsible for the
software as proof of correctness may not satisfy a judge.

From the previous chapter we gained an understanding of the operationalmanifesting
the qualities aspects of the software, and the business processes it has to implement. So the

question for manifestations of the qualities economy and reliability in a corre-
sponding ETC architecture arises: how can its specific development, structures
and behavior transparently support these aims? To answer this question, we
have to discuss the determining attributes of a reliable ETC software, breaking
down hazards to stability and cost factors to a technical level. Focus lies, as
stated before, on a GNSS/CN "thick client" solution with the OBE comput-
ing the identification and charging of toll atoms, as this alternative obviously
exhibits the highest complexity of the introduced potential deployments con-
cerning the distributed OBE1 software. Respective subsets of the following
conclusions are valid for "thin client" implementations.

3.1.1 Hazards and Reliability

Commonly, governmental authorities issue a set of accepted maximum fail-failure rates
ure rates (for an example see [MVW05]). From a top-down point of view,
it starts with the aggregated system’s overall failure rate, to which any ele-
ment of the process chain may contribute. A decisive characteristic of system
acceptance by authorities, market and users, it does not diffentiate between
hardware, software, organization or business processes. Further requirements
define threshold percentages for invoices that may contain incorrect entries,
for on-road tolling transactions that yield incorrect results and general MTBF
(Mean Time Between Failure) rates for components like the OBU.

These statistical rates convey an important message: faulty system be-accepting
imperfection 1Note that the terms OBE and OBU in this context does not necessarily refer to an

integrated device with sensors and communication modules like in Germany. It merely
denotes the vehicle-side run-time execution environment.

68

3.1. Requirements refined

havior is – up to a defined, low level limited by the corresponding pecuniary
damages – unavoidable in a complex system like the given. Consequently, a
reliable ETC software design has to emphasize measures to facilitate stable
operations as well as mechanisms to respond to problems efficiently. It is im-
portant to acknowledge the fact that these problems may not necessarily be
inherent in the software itself. The ETC OBU software however is perfectly
situated in the ETC systemscape to detect a range of problems and incidents,
i.e. conspicuous events ([Sto96], chap. 4).

The failure rate requirements provide us with an indication of the pursued
reliability. We can relate them to the ETC OBU software aspects and take
them as an initial lead to risk and cost identification, deriving requirements
for the HIRTE architecture on the way.

Generally, the OBU elements primarily contribute to the overall failure fault scenarios
rate of an ETC system with monitored and proven cases of faulty processing
of toll atoms. We differentiate five scenarios:

1. The vehicle uses a toll atom while the system completely fails to detec-
t/charge it (commonly denominated as type I error).

2. The vehicle uses a toll atom, the system detects it correctly, but charges
it incorrectly.

3. The system detects/charges a toll atom while the vehicle is travelling on
a toll free segment (type II error).

4. The system correctly charges a toll atom, but fails an associated enforce-
ment verification.

5. A genuine fifth fault scenario is introduced by the successful appeal
against a correctly charged atom. If a user questions the OBU’s integrity
and the operator is unable to consistently rebut this claim, another case
of failure would be registered.

Corresponding to the focus of this work, acknowledgement of a charging output of our
subsystemevent or message is the final step of the ETC business subprocess addressed

here. It refers to a system component being notified of a specific vehicle or
user liable to pay a specific amount for usage of a toll atom (cmp. chapter
2) and subsequent transaction-concluding reply. This component responsible
for further processing and debiting is usually a central billing system (pre- or
post-payment mode).

Thus the question of hazards to the reliability of the ETC software can be approaching
hazardsnarrowed down to an analysis of the aspects (as defined in chapter 2) of our

solution in relation to the types of potential error cases defined above, that the
operator needs to avoid. The Fault Tree Analysis (FTA) approach ([VGRH81]
with extensions introduced in [KLM03]; more precisely a fault graph) provides

69

3. Substantiating Domain-specific Reliability and Economy

us with a structured view on this relation. While similar methods of hazard
analysis like FMEA (Failure Mode and Effects Analysis, [IEC85]) progressively
examine components or functions for possible problems, FTA takes another
perspective: starting with a faulty charging processing, equivalent to a primary
ETC OBU software failure, we work our way backward, dissecting the processes
introduced by the aspects for potential causes of fault events as illustrated in
figure 3.1.

Starting with a general root event, a rectangular node represents a furtherFTA
refinable, or intermediate, fault event. Relations between one node and two
or more refining nodes take either AND (&) or OR (≥ 1) logical gate form,
implying either all or one or more of the successive events, respectively, as
precondition of the intermediate node. A conditioning event can be applied
to a logical gate in the form of an oval shape to define specific conditions or
restrictions for the associated events. If the condition refers to one event, a
hexagon inhibit gate is used. Similarly, two or more intermediate events may
be traced back to one single event. As leafs we find triangular transfer-in and
transfer-out symbols to indicate further development of a tree in another, cor-
respondingly named diagram. Circle leafs represent basic fault events requiring
no further refinement, rectangular leafs with a tip normally expected external
events. Diamond shapes indicate undeveloped events. In the given context,
originators of these fault events would lie outside of the ETC software’s scope
– operating system functions, hardware resources, sensors. Consequently, the
ETC application can exert very limited or no control at all over these external
components.

In our application of the FTA, we are not interested in probabilistic risk
analysis, often associated with this method. Aim of the following FTA is a
systematic analysis of ETC software hazards to identify and efficiently handle
potential problems.

Fault scenario 1 has the vehicle travelling on a toll road or other trafficfault scenario 1
infrastructure. The corresponding processing of the toll atom however is not
completed due to a number of potential reasons. If it is not possible to track
a reliable position of the vehicle (cmp. 3.1.1.1 and 3.1.1.7), all successive
computations – most notably the matching of the position to a map element
representing the toll atom – based on this input become invalid. The same
holds true conversely: a valid position match fails if the map’s operating data is
disrupted (3.1.1.2) or faulty (3.1.1.3), the correct required elements missing or
inaccessible. To enforce correctness of transmission, security and to optimize
CN load, different transaction protocols are defined between distributed OBUs
and central servers. If any inconsistency between the actual charging record
message exchange and the protocol implementation was detected (3.1.1.4), the
charging process is aborted. Consequently, if the prerequisite for processing of
the charging transaction protocol – a stable CN connection to the server – is
not met (3.1.1.5), completion of the charging will also fail.

The incorrect charging of scenario 2 refers to a valid matching of the ve-fault scenario 2

70

3.1. Requirements refined

Figure 3.1: Fault Tree of a Faulty Charging

hicle’s position to a toll element, with a subsequent computing of an amount
due based on the wrong tariff parameters. These parameters may refer to clas-
sifying attributes of the vehicle (e.g. weight, number of axles etc.) as well as
the toll atom (e.g. temporal factors, base tariff for usage etc.). The associated
values are either entered by the user at the beginning of a trip and stored
temporarily, or they are records of the persistent operating database that is
updated over-the-air by the servers. Thus, determination of the amount by
applying a tariff scheme to the parameters will suffer from faulty operating

71

3. Substantiating Domain-specific Reliability and Economy

data (3.1.1.3) as well as faultily declared user settings (3.1.1.6)2.
As the user is initially (financially) damaged by the system charging a tollfault scenario 3

free road, scenario 3 has to be regarded as very critical to the acceptance of the
implementation. While the operating database is updated and uncorrupted,
a sufficiently severe deviation in locating (3.1.1.7) may lead the software to
the false assumption that the vehicle is using a matching toll atom and trigger
the corresponding charging process. If the operating data is obsolete or was
faultily updated, actually invalid or inactive records of toll atoms, temporal
validities and tariff schemes could activate (3.1.1.3). The software would then
effectively use either outdated or future tolling schemes for charging.

Fault scenario 4 implies a correct charging by the ETC software. However,fault scenario 4
failing a subsequent enforcement check means that it is unable to prove that
in the immediate context. Formally, the charging process could actually still
be correctly resolved during regular operations: if the charging records are
received by the billing servers, the offender would be cleared later. But as the
vehicle might be stopped by the authorities based on the checking failure, the
user might unjustly experience a major inconvenience. Thus, the scenario has
to be regarded as critical failure. The OBU software element of the enforce-
ment commonly relies on DSRC (infrared or microwave) to carry the trans-
action. Failure of DSRC interconnection (3.1.1.8) or the protocol (3.1.1.4)
implementing the enforcement check results in a failure of the validation of
proper charging.

As scenario 5 is not the result of a technical failure, it will be treatedexcluding scenario 5
implicitly later in the context of system transparency.

3.1.1.1 Locating Failure

Generally, a failure of accurate positioning affects the charging process onlya selective problem
while the vehicle is travelling a toll atom. Beyond that, it becomes a ne-
glectable fault if occurring randomly and seldom. A regular recurrence off toll
atom would at least have to be logged as suspicious incident for analysis during
the next scheduled maintenance.

In a DSRC/beacon-based deployment a positioning failure would be equiv-application view
on positioning alent to the failure of the DSRC interconnection (3.1.1.8). A GNSS positioning

module has to be regarded as concurrently running process by the OBU soft-
ware, as positions in a tolling context have to be determined perpetually and
independent from other activities of the the application (e.g. communications)
to ensure coherent charging. The underlying hardware is actually often an em-
bedded computer of its own (e.g. [Ga06]), providing application-ready data.
Alternatively, a corresponding thread of the OBU application uses a GNSS

2The case of incidentally reaching the correct sum based on false parameters is likely
to be discovered either by trace analysis during testing runs or by a customer complaining
about a suspicious bill.

72

3.1. Requirements refined

Figure 3.2: Fault Tree of a Locating Failure

device driver to read the satellite signal (and other sensors, see below) for fur-
ther processing. In both cases, the positioning process continuously estimates
a position fix of the vehicle with a specific sampling rate. Consequently work-
ing asynchronously, the resulting data is placed in a queue to be dequeued and
used by the respective consumer.

While an upper bound to the position sampling rate is given by the device violating constraints
capabilities, a software use case (cmp. chapter 2) dictates the effectively re-
quired value. If this value is set too high, the position queue could overflow,
resulting in a position loss, or, in other words, an invalid position. From the
view of the software, and provided that the high sampling rate is a confirmed
requirement, this may either mean that the queue size is insufficient, or that
real-time requirements/timing constraints of the positional data computations
are being violated. In this case, processing of the positions would lag behind.
Reasons for that could be found in an inefficient algorithm implementation
or inadequate priority of the corresponding thread of execution. That ruled
out, insufficient embedded platform computing power would be the potential

73

3. Substantiating Domain-specific Reliability and Economy

source of failure.
A locating algorithm requires a certain number of positions to reliablyposition sampling

match them to a toll atom. The sufficient sequence of data varies with the
type and geometry of the atom, and the speed of the vehicle. If the effective
sampling rate is too low in a given situation, gaps between positions become
too wide, i.e. the trace resolution degrades. The resulting inaccuracy leads
to a diffuse selectivity of toll atoms and other geometry, consequently to an
invalid positioning. To avoid type II errors (s.a.) damaging the user, this has
to be interpreted as toll free situation.

To improve the accuracy of positioning, a sensor fusion algorithm (cmp.sensor fusion
2.2.3) accepts a number of input sources to minimize the overall error. Applied
properly (i.e. a suitable algorithm, validly parametrized), the sensor fusion will
indicate the exceeding of a threshold specifying the maximum tolerable error,
marking the current position as invalid. This situation may occur if one or
more of the input sensors persistently exhibit faulty behavior. After some
time – depending on the actual implementation and relevance of the defective
sensor(s) – the algorithm is unable to compensate for the malfunction.

3.1.1.2 Disrupted Operating Data

Figure 3.3: Fault Tree of Operating Data Disruption

Disruption of operating data generally refers to inaccessible or missingfailed updates
records and associations between them. Potential software sources of faults are
update or reorganization activities. An improperly handled update operation

74

3.1. Requirements refined

may affect a single attribute, structures or an entire dataset release version.
Data might be plainly illegaly overwritten or – if a transaction is not coherently
executed and interrupted – deleted and not correctly replaced.

In an embedded environment usually memory is still an issue. In con- reorganization
sequence, consumption by the application has to be optimized, demanding
regular reorganization algorithm runs e.g. to avoid fragmentation. Depending
on the structure or layer of implementation, either the application itself or
an operating system driver is responsible for this procedure. A faulty step or
abort, combined with lack of robustness, can lead to corrupted and inconsistent
storage locations, disrupting the contained, represented data structures.

On a hardware level, we find that the static storage memory devices re- memory hardware
quired for persistent data may also fail the application. In the case of chip-
based memory, the device driver may wear out and damage the hardware. By
continually addressing a single specific position or segment for assignments, it
can quickly reach the limited number of guaranteed erase-write cycles. Conse-
quently, even with equal distribution the lifetime will be exceeded eventually,
with the device becoming unstable and unreliable if not replaced in time.
Furthermore, a number of hazards to electronics arise from the automotive
deployment, straining and potentially damaging the hardware.

3.1.1.3 Faulty Operating Data

In contrast to operating data disruption (s.a.), faulty data in special cases subtlety
induces more subtle sources of failure, i.e. the corresponding incident might not
be represented by a single failed action, but by inconsistencies only detectable
in subsequent steps of the charging process. All the more critical becomes the
breakdown of potential causes of defect.

An integrity proven transmission from the central servers may be imported center-imported
problemsinto the OBU data storage while including structurally correct, but faulty

information. Validity of the data entered has to be checked by the server
processes, as the distributed software generally cannot account for plausibility:
it simply has no means. An OBU application will only be able to indicate
certain obvious inconsistencies, e.g. an excessively high tariff definition for a
short road segment. Thus, centrally cleared distribution of a faulty record or
faulty full release of an operating dataset (e.g. an obsolete version accidentally
tagged as current) will eventually lead to a faulty charging.

A complete dataset will become obsolete, rendering the OBU unable to pro- premature OD
transitionscess any charging, if a release transition occurs before the superseding release

is received and imported by the application. The transition may in this case
refer either to a chronological (physical changes to the infrastructure, changes
in tariffs etc.) or regional (the vehicle travelled to a new map segment, city,
country etc.) update.

An underlying failure of update distribution can have a number of rea- distribution
managementsons. Problems with cellular communications (3.1.1.5) can prohibit the nec-

75

3. Substantiating Domain-specific Reliability and Economy

Figure 3.4: Fault Tree of Faulty Operating Data

essary connection to a central server. If updates are scheduled and initiated
by the OBU software, faults in the corresponding timetables, errors in ran-
dom distribution algorithms (or their parameters), inactive update threads or
lost events/signals make the application miss the allocated time slot. The
same holds true if the update transaction is centrally initiated, with the server
failing to notify the distributed OBUs of an upcoming release. Furthermore,
the received messages of a successful update transmission have to be security
checked. If this action fails (3.1.1.9), the application is not allowed to import
and activate the new operating data.

The client OBU itself introduces a range of problems into the charging pro-message handling
cess, if the handling of accepted messages is faulty. Deserialization of records
with attribute order and values has to be consistent with the server-side en-
coding. A rather basic case of failure is given with plainly undecodable or
incongruous data, e.g. noticeable type violations – it may eventually lead to
an obsolete dataset (s.a.), but identification of the source should be appar-
ent. But furthermore, the deserialization could permute the order of values

76

3.1. Requirements refined

of the same type, interchanging assignments to record attributes, respectively.
It could misinterpret the bit order of values, conforming to the proper type
while producing wrong values. If the resulting span between expected and
falsely decoded values is only slight, a plausibility check might not detect the
inconsistency, potentially resulting in very subtle anomalies of the charging
process.

Depending on the strictness of the database management implementation, importing data
similar problems may arise when the decoded data is imported into the stored
datasets, as records have to be serialized again for this purpose. Even if the
updating process handles de-/serialization and assignments correctly, it could
still associate the set with a wrong release version, effectively either deleting
or abandoning the corresponding release. This would eventually result, again,
in an obsolete dataset for the specific period. Equivalent risks have to be
considered regarding database reorganization procedures.

3.1.1.4 Charging Transaction Protocol Failure

When the client OBU software communicates with the central servers during invariant security
the charging process, the transaction adheres to a specified protocol, defining
sequence, timing constraints and types of messages. As described in chap-
ter 2, security is an integral element of the software and its activities: each
transaction protocol has to conform to an underlying security protocol. Con-
sequently, a transaction fails, if in any step a security constraint should be
violated (3.1.1.9).

If at any time during an (over-the-air) exchange expected and received protocol
inconsistenciesmessages contradict each other, the software is confronted with an inconsis-

tent protocol sequence and correspondingly an implementation inconsistency
between OBU and server application. This inconsistency may be founded in
a buggy or specification-nonconforming operation of the client or server pro-
gram. Lack of coordination and alignment between distributed and central
software releases can also imply a potential collision of protocol implementa-
tion versions. Reception of an unknown message type is a particular case of
protocol inconsistency, basically with equal underlying faults.

A transaction has to be regarded incomplete, the corresponding charging lost messages
failed, if the server does not explicitly confirm the sent charging records. The
central system may either reply with a rejection of the transmitted and actually
received records, or not reply at all. In this case, after a specified period and
depending on the kind of cellular network service, a communication timeout
will occur. If the timeout condition recurs over a defined number of subsequent
retries, the transaction is failed.

The access-, availability and integrity of OBU-processed charging records is lost records
a prerequisite for the OBU software to generate the charging record messages
to convey to a central instance for further processing and billing. Charging
records usually have to be buffered, as the application collects them until a

77

3. Substantiating Domain-specific Reliability and Economy

Figure 3.5: Fault Tree of a Charging Transaction Protocol Failure

transmission to the server is scheduled, e.g. to minimize CN usage. Similarly
to 3.1.1.2 and 3.1.1.3, handling and storing of these records may fail.

3.1.1.5 CN Communication Failure

For interactions between distributed and central units, the system relies on the
availability of a cellular network and its services. General quality of service
considerations can be decomposed with regard to the OBU application.

The software may find the respective device (e.g. a GSM modem) and theinaccessible
CN devices associated service (e.g. SMS, BS 26, GPRS, UMTS; cmp. [EVB01], chap.

4) unresponsive in the first place. A rather trivial case of broken hardware
is complemented here by potentially inconsistent modules: it is possible that
either the software version does not correspond to the installed device, or that
the application software does not work with the provided device driver.

78

3.1. Requirements refined

Figure 3.6: Fault Tree of a CN Communication Failure

Given a responsive CN module, establishment of the transmission will fail, no CN interaction
if the passed message itself was constructed incorrectly by the application con-
cerning length, structure, attribute/field formats or termination. As a prereq-
uisite to contact a server, the OBU requires a set of communication parameters,
e.g. MSISDN ([EVB01]), IP addresses and additional configuration specifics
depending on the type of connection. Erroneous or obsolete definitions of any
one of these parameters will very likely result in a transmission initialization
failure. In contrast, the case of a correctly defined but unavailable CN operator
may be related to lack of network coverage, either due to general infrastruc-
ture gaps or the vehicle travelling outside of the area bounded by a quality of

79

3. Substantiating Domain-specific Reliability and Economy

service agreement (e.g. beyond the borders of a country). Furthermore, the
distributed unit may find the server element down for irregular reasons.

After a defined number of retries following a connection timeout event, theenduring timeouts
CN communication is failed. This CN timeout refers to a physically estab-
lished service connection and has to be differentiated from the logical timeout
of 3.1.1.4 during message interchange. Thus, the link between OBU and server
can be temporarily terminated by insufficient CN coverage and signal distor-
tions in a given area, handover problems during travel, or a stressed, lagging
server system. On the side of the OBU, if the resource CN device is shared
between threads of the OBU software, enduring or permanent allocation by
one thread and subsequent but denied request by another may lead to the
timeout of a CN connect action attempted by latter thread.

3.1.1.6 Faulty User Settings

Figure 3.7: Fault Tree of Faulty User Settings

The topic of user settings in relation to an ETC system touches the verysensitive questions
sensitive aspect of the user’s obligation to co-operate (cmp. beginning of 3.1).
In the case of a non-technically induced incorrect declaration of charging pa-
rameters, the question whether it was intentional or unintentional arises, and

80

3.1. Requirements refined

if technical measures (e.g. plausibility checks) could have prevented or proven
it.

Especially with a multi-language, multi-character set human machine in- MMI complexity
terface (HMI; or man machine interface MMI), conversion of country-specific
entries to internal value assignments becomes an issue. On a more general
level, ranges and types of user entries have to be checked after conversion from
string or list items. The same may be required during the process of storing
the input data.

To compute and generate charging records the application has to access,
among other values, the user setting parameters – they effectively become
part of the operating database of the OBU software. Consequently, similar
potential faults have to be regarded (cmp. 3.1.1.2).

3.1.1.7 Locating Deviation

In contrast to a locating failure recognized as such (cmp. 3.1.1.1), a locating off-atom effects
deviation presumes position data indicated as valid. But unlike the detected
failure, it may have an effect on the charging process even if the vehicle is not
travelling a toll atom (cmp. type II errors above).

In a GNSS-based ETC system, positions have to be mapped to geomet- map matching
rically described toll atom structures (cmp. 2.2.1). While the corresponding
algorithm can be loosely or tightly coupled with a sensor fusion, map matching
introduces genuine potential faults into the process. An incorrect mapping may
be the result of errors in the implementation as well as improper parameter
values, like too high/low tolerance or selectivity thresholds. For a given sce-
nario, a map matching approach itself can prove conceptually false: an efficient
heuristic applicable on motorways may be unfit for an urban environment.

The combination of a faultily parametrized sensor fusion filter and a dete- combined problems
riorating quality of position may yield an irregular failure. In this situation,
the fusion algorithm is incapable to notice and identify a progressive failure
of one or more positioning or dead reckoning sensors. Due to incongruous
parameters, it misreads the sensor values, thus introducing a defect into its
computations and passing on the flawed result as valid3.

In a DSRC-based locating scenario, a deviation in locating may be triggered DSRC scatter
by the sender’s signal scattering beyond the intended limits of communications,
e.g. to a road running close to the toll atom structure.

3.1.1.8 DSRC Interconnection Failure

Interacting with roadside infrastructure via DSRC exhibits some hazards sim-
ilar to CN communications. Others are genuine, related to the fact that the

3The case of a deteriorating position induced by other, inconspicuous reasons than sensor
failure and the case of a faulty parametrization distorting valid sensor readouts are implied.
They both lead to the same conclusion – an unflagged but invalid position.

81

3. Substantiating Domain-specific Reliability and Economy

Figure 3.8: Fault Tree of a Locating Deviation

transaction between moving vehicle and fixed installation is constricted by a
narrow window of opportunity.

Consequently, here also (cmp. 3.1.1.5), device failure or hardware/software
inconsistencies may lead to the OBU software being unable to access the DSRC
module. One step further, an incorrectly constructed message, invalid param-
eters of the connection definition or a shut down DSRC beacon will prohibit
the establishment of the transmission.

While a timeout of a message may be the result of a service blocked byDSRC-specific
constraints another thread of the application or a signal distortion, in contrast to a CN

scenario, a given time constraint exists for the completion of the transaction
itself. This constraint may be violated in relation to the speed of the vehicle
passing the DSRC installation. With respect to feasibility and acceptability

82

3.1. Requirements refined

Figure 3.9: Fault Tree of a DSRC Interconnection Failure

of the system, this is a critical scenario: the domestic speed limit determines
a minimum time interval available for processing and concluding the trans-
action (the domestic limit would be replaced by a technical limit on German
motorways). If a charging failure occurs in the context of a DSRC timeout,
the OBU software has to support anwering the question whether the run-time
execution was too slow or the driver was speeding.

3.1.1.9 Security Protocol Failure

Security being an integral part of all ETC processes, the OBU software im-
plements the standard functions to authenticate, encrypt, decrypt and check
integrity. Consequently, any of these actions may fail during operations. As
the mechanisms (today) can be safely assumed to be based on public key cryp-

83

3. Substantiating Domain-specific Reliability and Economy

Figure 3.10: Fault Tree of a Security Protocol Failure

tography, their crucial parts encapsuled in one security module (e.g. a smart
card), we can expect equivalent or at least closely related reasons for failure
in each case.

An authentification failure can occur on the OBU as well as server-side:authentification
whenever a connection has to be established, or a message is received, sender
and receiver have to identify and authenticate themselves (cmp. [Sc96], chpt.
21). If a charging record set is received by the center systems, it has to be
proven that an authentic OBU – registered with the operator – is the sender.
Conversely, the OBU software has to ensure that it is sending its revenue-
effective records to a legitimate server.

The same holds true for integrity checks. On reception of a message, bothintegrity of
process steps OBU and server require, as a precondition for further processing, that no

attacker tampered with its content. If the checking of a transaction step fails,
the corresponding activity has to be canceled.

A failure of data decryption is generally more likely to affect the serverdecryption
system. This is based on the fact that the necessity for privacy primarily
concerns information sent from OBU to center: charging records or positions
of the vehicle have to be regarded as related to an individual person and
therefore have to be protected.

84

3.1. Requirements refined

Any security operation will fail if the underlying module malfunctions or basic failure
fails. The respective device as well as connectors (e.g. a bus of any kind)
between the OBU software platform and the security hardware may be subject
to defects in this case.

Faulty scheduling of updates can lead to an exceeded lifetime of a key, key inconsistency
rendering the OBU software incapable of authenticating itself anymore due to
inconsistent key validities between OBU and center. Additionally, operational
respectively administrational problems (e.g. in the certification authority) may
interfere with the processing of key distribution, resulting in inconsistent key
pairs.

Algorithm and protocol implementation inconsistencies can become an implementation
inconsistencyinter-component issue (e.g. between OBU and server side), and especially

when it comes to international interoperability between domestic system in-
stallations. While common cryptographic procedures are largely standardized,
different interpretations of specifications or proprietary modifications might
still be discovered, e.g. concerning the computation of (intermediary) results
or sequence of actions.

As consequence of a successfully repelled attack, the defending security attacks
operation will fail, recognizing the illicit input. The associated transaction
will be subsequently terminated.

Potentially, it may be hard to differentiate between the effects of the faults fault
identificationdescribed above and failures caused by a plainly deficient software implemen-

tation, i.e. source code bugs. Here, the degree of subtlety – and thus, the costs
to eliminate the problem – depends on whether an operation explicitly fails or
completes, producing a flawed result.

3.1.1.10 Hazards Generalized

The fault tree analysis of the previous paragraphs takes the processes intro-
duced in chapter 2 into consideration, highlighting potential flaws. While an
actual deployment may feature a range of additional vulnerabilities, the de-
scribed set of hazards is sufficient to allow us reasoning about a generalization
of conceivable problems in the context of the OBU software. Here, realization
of the aspects has a number of dependencies, which might be subject to failure.

Update notification faults, release inconsistencies and the issue of wrong system area/level
of hazard
manifestation

connection parameters can be examples for problems in organizational respec-
tively operational processes. As an ETC system calls for a significant ad-
ministrational overhead, mistakes on that level eventually affect the technical
software process level. Additionally, the ETC deployment relies on defined,
mandatory quality of service agreements of its infrastructure elements. Unmet
requirements may result in invalid GNSS positions and unstable CN connec-
tions. Mismatched positions, invalid information and incorrect amounts may
hint at faulty data: all processes rely on the validity, integrity and timeliness of
operating data. Finally, any aspect can be affected by faults of the implemen-

85

3. Substantiating Domain-specific Reliability and Economy

tation itself. From a certain level of maturity of the software on, this should
be the least likely origin of a failure. However, a software fault – in coding,
memory management, concurrency, logics – may represent the root of any of
the problems described above.

Hazards may manifest themselves in any element of the deployment andsystem element
of hazard
manifestation

their relations: the ETC software itself, the actors associated with it (its under-
lying hardware with memory, sensors and communications interfaces; roadside
and server-side infrastructure, third-party services like a cellular network), or
the interfaces between them.

Figure 3.11: Generalization of Hazard Correlation and Classification

The overall, generalized correlations are illustrated in figure 3.11. We
can apply these criteria to systematically classify the mission-critical hazards
gained from the previous analysis as shown by figure 3.12. The assignment of
a fault to a system element is indicated by angular brackets.

For a hazard-based deduction of actual requirements for the architecture,lessons learned
so far we come to a conclusion. The system is highly interactive: actors related to

the OBU software are diverse in interface, behavior and degree of integration
(e.g. tightly as sensor, or peripheral as billing system). In consequence, the
multitude of potential fault originators effectively denies a closed elimination
of hazards – even those considered mission-critical, leading to system failure –
by finding all faults of the ETC software itself4. Many problems may plainly
stem from outside of the scope of the application (cmp. figure 3.13), making
a risk assessment (i.e. determining hazard likelihoods and safety integrity

4At least hypothetically this is achievable, if all else fails by "brute force": allocating
unlimited resources on testing this element.

86

3.1. Requirements refined

Figure 3.12: Classification of Potentially Mission-critical Problems
87

3. Substantiating Domain-specific Reliability and Economy

requirements, cmp. [IEC05], 3.2 and 3.3) of our identified hazards obsolete.
It is important to note that accepting this statement does not imply to relax
the conventional measures of quality assurance, neither does it argue toward
contentedness with flawed products. Instead, we now have gained a basis for
a systematic, robust and constructive handling of problems, including critical
ones.

Figure 3.13: Identified Hazards in Relation to the Deployment

3.1.2 Hazard-derived Requirements

To meet our initial claim not only to minimize faults, but to identify, locate andan altered view
on fault tolerance handle the remaining ones efficiently, we slightly alter the concept of fault tol-

erance that is primarily concerned with the redundancy-based (cmp. [Sto96],
chap. 6) or self-reconfiguring (e.g. [RW05]) avoidance of system failure. While
it is still desireable to compensate for failures whenever feasible (see the sen-
sor fusion above for an example), the options are rather limited in the given
situation, as redundancy is generally expensive and malfunctions of an ETC
system do cost money, but do not endanger human lifes.

We find many examples that present measures to ensure reliability as costdemands of
redundancy

88

3.1. Requirements refined

drivers. Redundancy as a basic principle requires more resources than actu-
ally necessary to ensure functionality. Hardware elements (computers, sensors,
etc.) have to be installed multiple times. Redundant software modules imply
multiplication of the associated run-time hardware resources (processor, mem-
ory, interfaces) to be effective. Additionally, failure management becomes not
just an issue of shutting down systematically, but seamlessly switching to an-
other part of the system during operations. This results in higher software
complexity, e.g. due to the required synchronisation mechanisms, and neces-
sarily higher development and validation costs.

Alternatively, we set the focus on fault awareness and maximum trans- fault awareness
parency, facilitating a rapid selective analysis of problems. A related approach
is described with the availability tactics of [BCK03] (chapter 5.2). This will
also benefit the testing and integration phases by pinpointing and isolating
trouble spots – in consequence, more faults may be discovered and resolved in
a given time, stabilizing the system prior to deployment.

To systematically handle actual error manifestations based on the general- problem
manifestationsizations of the previous section, we have to classify their effect and symptoms

relating to the OBU software. In this context, the severity of a problem de-
termines much of what will be remaining to analyze after the occurrence.

Total Crash – a plain OBU software crash completely halts all processes
of the application. It is by any means unrecoverable and cuts off all
interaction with the OBU element. In this case, effect equals symptoms.
If any artifact remains for analysis, depends on whether the crash affected
or was caused by the hardware, e.g. physically damaged memory would
preclude the retrieval of an error log.

Relevant information for resolution: the system state(s) leading up to
the crash, including variable values, contents of message buffers and last
process activities, potentially hinting at the problem’s origin.

Example: undiscovered memory constraint violations leading to arbitrary
address space overwriting.

Critical Error – OBU application functionality and integrity can neither be
maintained nor recovered without outside intervention. An OBU system
element – hardware module, process/thread, data record including mes-
sages – produced/contained invalid results or was unavailable/did not
reply at all, if applicable regarding a defined number of retries.

Symptoms: business process becomes incoherent, the chain of events is
broken or inconsistent with nominal condition, fatal error messages.

Example: a defective GSM modem suppressing sending and acknowl-
edgement of tolling records, deadlocked threads.

Recoverable Error – the software raises a tolling failure according to 3.1.1.
An OBU system element or process step fails temporarily, but is still

89

3. Substantiating Domain-specific Reliability and Economy

responsive and eventually continues to operate. Based on the current
system state, measures to confine the loss are defined and applicable.

Symptoms: chain of business events is temporarily broken, regular error
messages of the application, one-time failed plausibility checks.

Example: temporal GPS failure in urban environment.

Suspicious Incident – problems that do not immediately collide with the
ETC business process logics, but potentially converge toward error condi-
tions. A missing/corrupted result that can be reproduced, retransmitted
or interpolated.

Symptoms: regular warning level messages of the application, sequences
of values approaching plausibility thresholds, isolated deviations from
nominal conditions.

Examples: increasing number of GSM modem timeouts and retries, con-
tinually dropping free memory, uncritical but recurring positioning er-
rors.

The descriptions of the previous sections illustrate that the origins of faultscentralized control
requirement potentially occurring in the context of the OBU software are manifold. To ini-

tiate a management hub to handle the multitude of activities, we deduce

Requirement I (centralized control): a dedicated active element shall monitor
and orchestrate the processes of the software effectively.

Note that we can accept a potential single point of failure (SPOF) here, as
2.3.8.4 and the previous section already declared a tight integration of pro-
cesses and little room for redundancy. In consequence, either all crucial com-
ponents are available, or the entire application fails, i.e. the larger number of
modules represent SPOFs, anyway. Running the application without a cen-
tral control element especially would imply lack of coherent orchestration and
therefore intransparent transactions.

Furthermore, it should have become clear that detection of the symptomssystem state
automata
requirement

goes beyond identifying single event occurrences. Rather, it requires consider-
ation of full system state configurations and progression of states, values and
events over time. Thus

Requirement II (system state automata): the software processes shall adhere
to a concept of state machines (cmp. e.g. [Gi62]), making explicit and
resolving their behavior into discrete states.

90

3.1. Requirements refined

This way we approach a unification of the behavioral descriptions that is for-
malizable and makes the processes implemented by our architecture compara-
ble.

To be able to utilize the information of the state machines during run-time, activity transparency
requirementwe define

Requirement III (transparency of activities over time): for any point t in
the real-time span observed since system initialization, there has to exist a
complete and timely system state and data configuration.

Implied is a tracing instance, instantaneously updated after the transition of a
state machine into a new state. Beyond generally providing a detailed view on
the software behavior, the resulting trace log can identify potentially hazardous
state configurations or state sequences, e.g. recurring (but still recoverable)
fault states of a degrading component.

By conforming to these requirements, the OBU software can actively and
systematically provide the means to support the controllability of hazards: an
exploitable transparency of processes leads to the rapid identification of prob-
lems in all phases of the software lifecycle and consequently to solid reliability.

3.1.3 Costs and Economy

The requirement of efficiently handling potential hazards to operations, as
introduced in the previous chapter, addressed an important parameter of the
overall cost structure of the ETC system. It directly influences the efforts
for maintenance and upkeep. With the departure from redundancy, another
substantial cost driver was excluded from our considerations.

The question remains for further technical means to optimize the opera-
tional cost structures, i.e. what amount has to be spent on which component
of the system. From a wide range of possibilities we identified three cost-driven
approaches fitting the context of this work. They all aim at avoiding the ne-
cessity of dedicated hardware infrastructure, in the process optimizing usage
of resources. But – from the perspective of the ETC application – they take
different paths.

3.1.3.1 Approach I – Opening the ETC Infrastructure

Deployment of an ETC system includes the installation of a broad basis of
telematics units in vehicles and the establishment of communication channels
between distributed and center components. This is complemented by the
ensurance of availability and service quality of both components and interfaces.

Earlier, we explained that the high effort is justified in the light of the universally
usable
infrastructure

amount of fees levied by the ETC operation, and the consequent risks involved

91

3. Substantiating Domain-specific Reliability and Economy

for the operator. However, there are other applications that would benefit from
the ETC infrastructure and its quality, without themselves being able to cover
the associated costs. We find a number of these telematics services that can
be partially mapped to a subset of the ETC aspects defined in chapter 2.3.
Two examples from the domain introduced in section 2.1.2 will illustrate this.

Tracking and tracing use cases describe a vehicle sending a message to atracking and
tracing example central server on a regular basis, with the center or OBU side initiating com-

munications, respectively. The information encoded in the message generally
has to be considered confidential. It might include the vehicle’s and thus the
driver’s position, the payload in case of a truck and various operating figures
concerning the state of the vehicle; motor, fuel, tires. Consequently, each mes-
sage has to be encrypted. Depending on the extent of information to convey,
additional interfaces or sensors might be required. ETC commonly does not
include e.g. measuring tire pressure, or reading out fuel consumption or engine
hours over CAN via FMS (Fleet Management Standard, [FMS05]). In other
cases, the service process may completely rely on the ETC resources, e.g. for
cryptography, position and vehicle ID, with no further need for specific exten-
sions. In any case, the implementation of the service requires less dedicated
investments, if integrated into the ETC environment (cmp. fig. 3.14).

Figure 3.14: Value Added Services Use Case Structure Example

Autonomously controlled logistics processes ([FSH04]) introduce use caseslogistics support
example with communicating logistics elements, e.g. containers. Applications range

from first implementations like payload status monitoring (e.g. temperature)
to future self-navigation and routing through a network of transportation con-
tractors. An economic handicap of current solutions is the necessity of a dedi-
cated GSM modem for each container, the modem requiring a GSM SIM and
associated network operator (sub-)contract (cmp. [BT05]). If the container
could instead access an ETC OBU (e.g. over WLAN) as already established

92

3.1. Requirements refined

transparent gateway to communicate via GSM (or, as it is, an alternative cel-
lular network), acceptance of such an approach to manage and control logistic
chains could rise significantly. Again, this would mean extending the logistics
use case by ETC aspects.

Both cases represent applications that have proven hard to establish as VAS acceptance
issuesstand-alone solutions on dedicated devices and infrastructure. Actually, a

number of similar telematics services suffered from lack of acceptance for var-
ious reasons ([RG06]). While the details in each case may differ, the main
drawback can often be narrowed down to costs. Compared to their apparent
economic gain, costs for service deployment or operation were considered too
high. Consequently, this resulted in prices potential users – private as well as
business – were unwilling to pay.

If introduced into an ETC environment under certain conditions (defined VAS ETC
integrationunder 3.1.4) however, the services may be operated economically: the ETC

system can directly respond to the stated weaknesses of the services by offer-
ing to share certain expensive resources. Besides the cellular network access
already mentioned above, we find security another demanding aspect. Cur-
rent state-of-the-art implementations require smart card integration of Secure
Access Modules (SAM) for the distributed components, with a corresponding
certification authority center-side ([Sc96], chap. 8.12). Cryptographic func-
tions (cmp. 2.3.6) are mandatory for many commercial applications, e.g. to
ensure confidentiality and to safely implement payment transactions. Services
could benefit significantly if relieved from having to implement a dedicated
security environment. ETC-specific interfaces to vehicle data, sensors and an-
tennae are additional potentially rewarding resources to share, either directly
as device or on a rather aggregated level as aspect (cmp. 2.3), e.g. as a high-
quality positioning component encompassing related functionality like sensor
fusion or map-matching.

The large number of vehicle-installed OBUs would not only help service integration
gainsoperators gain from plain economies of scale. In contrast to proprietary telem-

atics solutions, the ETC domain promotes standardization (cmp. e.g. [RCI07])
and subsequent robustness of interfaces, platforms etc. If the resources can be
shared on a therefore stable basis, services add value to the ETC application
by helping cover the costs of the ETC infrastructure.

3.1.3.2 Approach II – Automotive Integration

If the above scenario considers sharing ETC resources with value added ser-
vices, we consequently have to ask the question of an ETC software utilizing
non-dedicated hardware. Here also, a number of possibilities arise. Due to
the declared automotive focus of this work, we will not yet regard potential
alternative run-time environments like those of e.g. smartphones. Instead, we
discuss the identification of complementary car electronics modules to provide
ETC resources related to the domain discussed in section 2.1.1.

93

3. Substantiating Domain-specific Reliability and Economy

Modern cars are outfitted with a large number of sensors to gather andautomotive
electronics evaluate information about the driving profile, e.g. wheel speed, acceleration,

yaw for the rotation. As we have seen, with that come run-time processing
and memory resources in the form of ECUs.

These combined reliability, processing power and communications inter-determining factors
for automotive ETC
integration

faces – especially of the chassis and multimedia subsystems – represent a po-
tential environment for the implementation of ETC functionality. However,
the introduction of additional functions to car electronics has to take a num-
ber of determining factors into account.

Proprietary Circulation of Information First of all, while standards for
specific bus layers are established (see above), the circulation of the information
itself in a vehicle ECU network is encoded proprietarily. Syntax and semantics
of data depend on the manufacturer of the component in question as well as
the scope of the application implemented by the component. The actual form
of e.g. yaw measures of an ESC ECU may differ dramatically from those
expected by a navigation sensor fusion. FMS ([FMS05]) is an example for an
approach to overcome these differences. In any case, a set of sensor information
associated with the vehicle’s driving profile that can be gained from the chassis
subsystem is potentially valuable input for an ETC application: it can either
add to the quality of the tolling process (cmp. 3.1.1.1), or help lowering the
costs of operation by superseding dedicated sensors. We can consider the
proprietary encoding of information a minor hindrance to ETC integration, as
sensor data generally has to be interpreted for ETC purposes, no matter the
source.

Specific Characteristics of Busses Depending on the automotive subsys-
tem to integrate with, the ETC components have to connect to the vehicle’s
communication busses. Especially concerning the quality of service aspect
of resource dependencies of the ETC software (cmp. 3.1.1.10), we have to
be aware of the diverse characteristics of bus systems: our interactions re-
quire conformance to real-time constraints, e.g. the frequency of sensor data
transmissions, or the exchange of payment-related messages. Regarding vehi-
cle onboard communications, we find highspeed real-time control, lowspeed and
multimedia bus systems (cmp. [ZS07], 1.1). Relevant5 bus parameters for the
given context are

• message length and transmission rate, defining throughput and influenc-
ing the protocol overhead to implement for processing large (composite)
objects, e.g. due to the necessity to split messages,

5Here we do not need to consider costs explicitly, as an already existing infrastructure
would be shared.

94

3.1. Requirements refined

• latency and error safety, related to protocol overhead and real-time con-
straints of complex transactions, due to potential re-transmissions and
timeouts induced by concurrently sharing a bus with a lower priority
assigned to ETC, and

• access assignment strategies, critical for deployability in a real-time sys-
tem, strongly determining the risks and efforts related to the addition of
ETC processes to an existing onboard network.

Note that the common specifications of CAN, LIN or FlexRay define ISO busses and
ISO OSI layersOSI layers 0 to 2. For transport and application protocols, i.e. layers 3,4 and

5 to 7 respectively, ISO as well as manufacturers like Audi/VW established a
number of different and dedicated solutions. Thus, this work has to accept that
upper layer protocols are defined by the application’s domain and not given
universally. Examples are provided by the ISO TP (ISO 15765-2) for CAN,
AUTOSAR TP for FlexRay (refer to [AU062]; both layer 4), UDS (Unified
Diagnostics Services, ISO 14229) and CCP/XCP (CAN/Extended Calibration
Protocol, European standard ASAM AE MCD 1; all three layer 7). However,
it is safe to assume functionality like de-/segmentation of messages, flow con-
trol between sender and receiver, and services for communications between
application and transport layer. For software integration purposes, C APIs
are common for application bus access.

While our elaborations will not needlessly exclude an alternative, examin- ETC-suitability
of bussesing the actual specifications of available busses reveals preferable candidates.

Here, for an ETC application a tradeoff is given between the pairs of param-
eters stated above: the short latency and high reliability of a highspeed C+
class6 bus like TTCAN (Time Triggered CAN, [ISO02]) finds short messages
with only a few bytes length. In the case of CAN, the corresponding DATA
field has a length of 8 bytes maximum, FlexRay allows 254 bytes. A multime-
dia bus like MOST on the other hand, provides a general bandwidth of up to
1.2 MB/s for asynchronous communications, but without any guaranteed la-
tency and low reliability due to its non-critical application domain. LIN seems
less preferable in the given context, as it was designed as a cheap solution for
non-critical low speed applications like controlling headlights, seat and window
motors.

Concerning the allocation strategies, we differentiate the methods central- bus allocation
ly/locally controlled, random collision free/non collision free and event/time
triggered (combinations are feasible). CAN uses Carrier Sense Multiple Ac-
cess/Collision Avoidance (CSMA/CA), an event-driven random approach with
a priority-based arbitration phase prior to transmission. FlexRay and TTCAN
implement Time Division Multiple Access (TDMA), with fixed time slots en-
suring exclusive bus access. An advantage of bus control based on time is

6Bitrate classification of bus systems defines highspeed classes C (125 to 1000 kbit/s),
C+ (> 1 mbit/s) and Infotainment (> 10 mbit/s).

95

3. Substantiating Domain-specific Reliability and Economy

predictability: e.g. latency can be determined for any message. Determinis-
tic bus behavior, if achievable, would be complementary to the requirements
defined for the ETC software itself in 3.1.4.

Safety Issues Beyond allowing even read-only access to its data busses, an
ECU network represents a high-integrity environment (cmp. 2.1.1) and is, as
such, generally averse to extension. This is especially relevant for non-native
component providers, i.e. third parties other than the vehicle manufacturer
and its established suppliers. Consequently, any element of the network –
hardware and software – has to submit itself to the mandatory defined re-
quirements of the environment: specifications of interfaces, resource consump-
tion and access, structure and behavior. Self-diagnosis and -monitoring are
mandatory safety measures during run-time. Naturally, strictness of these re-
quirements rises with the criticality of the respective subsystem. They may
be comparably modest in the multimedia context, but get unforgiving when
we cross the threshold to potentially endangering passenger safety, e.g. con-
cerning safety measures of the chassis. [IEC05] describes requirements for a
quantitative proof of functional safety for electrical and/or electronic and/or
programmable electronic (E/E/PE) components that is suited for its subtype
automotive ECU. Risk-freedom of system or equipment operations is brought
about by a risk-based approach of a complete safety lifecycle covering all de-
velopment and operational activities from initial concept to decommissioning.
With specified techniques and measures the safety integrity level (SIL; 1 to 4,
with SIL4 being the highest) of a system may be determined.

Interactivity Beyond the Vehicle A further obstacle to automotive ETC
integration concerns the system’s interactivity beyond the vehicle itself. For
the safety-critical chassis and power train subsystems we find test, diagnostics
and maintenance interfaces in the form of gateways (cmp. [MS07], 2.2.3).
Gateways provide indirect access to onboard electronics, a uniform inter-
face and optimized bus load by isolating diagnostic from regular information
streams. The associated ECUs should be accessible exclusively for workshops
licensed by the manufacturer, although unwarranted flashing ("chip tuning")
abounds and has to be countered, e.g. by trusted flashing ([SRM06]) to achieve
tamper-proofness. In- and outbound communications of the moving vehicle in
a state of operations beyond maintenance are restricted to information and
entertainment subsystems. Introducing a highly interactive component like
an ETC software into the automotive environment in general, without strictly
limiting its access, would again imply complete conformance of the new com-
ponent to automotive requirements including security and monitoring. The
existence of gateways, however, represents a potential integration approach.

96

3.1. Requirements refined

Run-time Environments Finally, any automotive software integration en-
deavour has to cope with the lack of standardized architectures and run-time
environments as stated in 2.1.1. While established methodical standards ex-
ist for the specification, implementation and testing of ECU software (cmp.
3.2.2), acceptance of automotive application frameworks suffers from a number
of problems (also cmp. [ZS07], 7.1).

• Initiatives and standardization comittees consist of competitors: when-
ever a universal solution is about to emerge, interests of the participants
collide. Proprietary advantages are protected and not put forth, poten-
tial benefits for other parties forestalled.

• Overlapping initiative participation: in order to observe any development
and (potential) competitors, commitment to a single standard is seldomly
found, especially within large companies.

• Integration with existing proprietary technology: No manufacturer is will-
ing to migrate an operational, complete automotive electronics platform
just to conform to a new framework. Also, concurrently to the stan-
dardization activities, actual development proceeds. Premature products
preempt the standard, forcing it to factor in their characteristics and fea-
tures, often plainly due to the weight of the corresponding player.

• Internal development standards: Especially in the context of high-integrity
systems and liability risks, established and certified development meth-
ods are strictly preserved. If they collide with requirements of the general
standard, it is modified – resulting in a proprietary version.

As a result, we find "conformant" or "compatible" solutions, applications,
modules, tools, which are actually exhibiting discrepant traits. Similar exam-
ples7 can be found with Offene Systeme für die Elektronik im Kraftfahrzeug /
Vehicle Distributed eXecutive (OSEK/VDX, [OS05]), Herstellerinitiative Soft-
ware (HIS, [HI04]) and Automotive Open Systems Architecture (AUTOSAR,
[AU06]).

These problems cannot be solved solely by technical means, however effi- conclusion of the
above issuescient they may be. In consequence, it could be detrimental to our approach if

it would select and directly build on one of the aspiring standards, or would
be too tightly integrated with its specific workings. Instead, the question for
the underlying shared aims and features of the automotive frameworks arises.
There, we find the objective of realizing

• highly dependent (e.g. in [OS042]),

• concurrently running (e.g. in [HI03])
7Each of them presenting intersecting participants like BMW, Daimler, VW etc.

97

3. Substantiating Domain-specific Reliability and Economy

• real-time components (e.g. in [AU06])

• in the restrictive ECU environment,

• exchanging messages based on communication layers (IO Library in HIS,
OSEK COM in OSEK/VDX, Virtual Function Bus in AUTOSAR) ab-
stracting the automotive busses.

Thus, potential standard adherence in the context of this work would pri-
marily manifest itself in conformance to the respective interface specifications.
In order to at least alleviate integration into any such future framework, our
architecture should complement, not contradict, their fundamental require-
ments and constraints, like [AU063]. Furthermore, as discussed in 2.1.1, below
and 3.1.3.4, there is good reason to disregard third-party components in the
given ETC context due to operational risks and the desirable high component
controllability.

Potential Integration Approach Corresponding to the differentiation ofa new telematics
subsystem the domains in chapter 2 and the previous descriptions, a potential automotive

ETC integration scenario justifies a telematics subsystem (cmp. fig. 3.15),
complementing the established subsystems as described in 2.1.1.

On first glance, the multimedia subsystem seems to support ETC require-why new
ments sufficiently in order to justify the aggregation of ETC components there.
As was shown above however, some crucial aspects cannot be provided, as guar-
anteed reliability and high integrity of commercial ETC transactions are less
of an issue in the context of infotainment, navigation and communications.
Characteristics of e.g. the MOST bus are not congruent with the real-time
ETC component interactions. And while real-time constraints are satisfiable
in the chassis subsystem, its transformational signal processing capabilities,
comparably low bus bandwidth and car safety criticality are inapplicable to
the direct integration of reactive, interactive ETC processes.

This leaves the connection of dedicated ETC ECUs to a bus like TTCANhow to (HW)
or FlexRay (see above), that is in turn attached via subsystem gateway to the
vehicle network’s central gateway. A smart card SAM and DSRC module are
introduced into the automotive environment by telematics, or more specific,
ETC use cases. Once installed in the vehicle, a secure access module could be
utilized by other subsystems, e.g. for trusted flashing or general access control
to car electronics, increasing the economic attractiveness of this scenario. As
pivotal element, the primary ETC software with business logics and processes
is implemented on a sufficiently capable8 micro controller.

Once this telematics subsystem thusly participates in the vehicle ECUhow to (SW)

8The actual capabilities – processor run-time, memory – are determined by specifics of
the ETC use cases: necessary computations of the selected locating algorithm in MIPS,
real-time concurrency constraints concerning payment processing, enforcement and so on.

98

3.1. Requirements refined

Figure 3.15: Automotive ETC Integration Scenario

network, interfacing the software to selected ECUs of the other subsystems at
least partially implements ETC aspects (cmp. 2.3; fig. 3.15 illustrates this
mapping) without the need for additional dedicated resources. Concerning lo-
cating, the ETC application may acquire a position from a navigation system’s
GPS receiver, improving it with data gained from chassis sensors9. To avoid
compromising the integrity of the critical chassis subsystem, the interface is
strictly read-only. This may be realized e.g. by the corresponding ECUs just
writing every nth sensor value to their gateway, where other subsystems can
fetch it via the central gateway (e.g. diagnostics interface) without depending
on internal chassis access. If the ETC ECU memory itself can handle criti-
cal scenarios (e.g. concerning abrupt current interruption), static storage of

9It is questionable to merely use the locating result of an arbitrary navigation system,
as ETC may require a dedicated, reproducible locating algorithm due to certification and
liability reasons.

99

3. Substantiating Domain-specific Reliability and Economy

the multimedia subsystem may provide data persistency for less critical cases.
The GSM module of a car mobile phone installation can grant cellular net-
work access to the ETC processes, realizing a non-time-critical part of the
communications aspect.

Here, we may derive a general rule for the utilization of non-dedicatedutilizing other
automotive
resources in
ETC processes

resources in the vehicle: units involved in time-critical transactions (like the
SAM in payment or DSRC in the enforcement) have to be included in the
telematics subsystem (real-time bus with sufficient bandwidth), together with
the ECU running the ETC software. Others, with more relaxed real-time con-
straints allowing a certain lag (e.g. positioning), or which implement services
from which non-deterministic behavior is expected (like GSM services), may
be accessed by gateways and connected to other busses.

We are well aware of the fact that given the current automotive system-acceptance
scape, the above approach today might be considered too risky. Especially
component suppliers need to protect their product’s domains from intrusions
of third party elements due to issues of liability. Nevertheless, the situation is
similar to the introduction of performant bus systems and programmable mi-
cro controllers into cars in the early 1990s (cmp. [SZ06], 1.2). The consequent
departure from autonomous, specialized controllers leads to the realization of
more economical high-level software functions sharing e.g. sensors without the
need for dedicated wiring. With the ETC scenario, large-scale deployment and
cost pressure will eventually open vehicle electronics for integration. Especially
if there is additional business involved for car technology suppliers, which are
already implementing very similar inter-subsystem collaborations – albeit still
proprietary, as was shown in chapter 2.1.1.

3.1.3.3 Approach III – Interoperability

The introduction to this work implied the assumption that international road
tolling systems will always represent a heterogenous systemscape, even if this
might sometimes manifest itself only in partial aspects, like the tolling scheme
or tariff model. A number of practical reasons – e.g. the limited facilities for
OBE fitting in a vehicle – call for the interoperability of ETC installations.
Already confirmed and corroborated by the EU (cmp. directive [EU04] with
corrigendum [EU042], [RCI07]), interoperability of a larger number of ETC
systems furthers economy. Again, achievable by sharing available infrastruc-
ture resources10, this time between a number of ETC operators.

Interoperating ETC requires a vehicle’s OBE to transact with a multitudeinteroperability
requirements of operators respectively service providers. For that, a number of preconditions

have to be met: the corresponding devices and interfaces have to be present,
operating and configuration data (called toll context data in [RCI072], 2.2)

10The fact that a corresponding harmonization of interfaces also helps to create an open
market for ETC OBE, again promoting economy, is out of the focus of this work.

100

3.1. Requirements refined

up to date for each operator and the OBU software has to implement the re-
spective operator’s business processes – specific locating, tolling computation,
transaction protocols.

Most of the OBE hardware infrastructure in question may be considered focus on the
ETC softwareuniversal for realization of the aspects of any GNSS/GPS ETC system. De-

ployment of proprietary modules is very unlikely due to high production and
replacement costs. Apparently, the hardware, with one possible exception, is
fixedly installed and thus actual change of modules is associated with high ef-
fort. With this precondition of compatible hardware, interoperability therefore
almost exclusively pertains to the OBE software.

Here, we find three general realization alternatives: realization
scenarios

Multi-operator software – one application implements the operational trans-
action sequences and interfaces of multiple operators. For this purpose,
it aggregates specific libraries and/or threads, switching the internal con-
text initiated by activation events like entering an operator’s area (GPS)
or an explicit signal by roadside infrastructure (automatically) or the
user (manually).
Advantages: Unified handling of multiple processes, one software to man-
age, update and maintain.
Drawbacks: At least limited need for disclosure of proprietary algorithms
by each operator. With a growing number of operators to integrate, soft-
ware may get too complex for the run-time environment.

Multi-application OBE – the OBU runs a multitude of independent appli-
cations concurrently. Each process is responsible for implementing its
respective operator’s business logics, activation and dormant states.
Advantages: Clear assignments of responsibilities on the business process
level, encapsulation of proprietary activities.
Drawbacks: Requires complex real-time OS to provide safe mechanisms
for concurrency management. Costly testing and integration due to the
lack of a centralized management component. Run-time environment
limits the number of operators on the OBE (memory, file handles, pro-
cessing).

Application switching – a framework manages updates, installation, acti-
vation and removal of ETC application modules during run-time. These
ETC operator software components implement a corresponding inter-
face, but may keep their internal structures opaque.
Advantages: Unified management of multiple operators. Generally un-
limited number of supported operators due to the ability to replace com-
ponents dynamically.
Drawbacks: While the process leading to activation may be complex, the
framework nevertheless has to guarantee timeliness. Elaborate frame-
works allocate scarce OBE run-time resources.

101

3. Substantiating Domain-specific Reliability and Economy

In any of the interoperability scenarios, we find security a most criticalsecurity as
determining aspect aspect. As stated in 2.3.6, it is an integral part of all processes of the ETC

software. In addition to that, it represents a part of the system the operator is
very unlikely allowed to delegate or disclose lightly (liability). Integrity of the
transactions is a prerequisite for commercial and legal validity. Consequently,
distributed elements of OBE security, like algorithms for en-/decryption, sig-
natures, are encapsuled in smart cards, providing an environment with strictly
controlled access (cmp. [RE08], chapter 16).

The fact that these SAMs are – compared to the other installed equip-separation of
generic and
operator-specific
parts

ment – OBE hardware components that are in their chip card manifestation
designed for easy replacement11, indicates an approach for interoperability: we
suggest a systematic separation of the universal OBE with a generic resource
management software from a completing operator-specific business process im-
plementation on a smart card, in addition to its cryptographic functions. This
offers a robust variant of application switching by physically exchanging the
card in conformance with the travelled operator domain.

Figure 3.16: Smart Card Integrated Interoperability Scenario

Figure 3.16 illustrates the approach. The ETC OBE Management Softwaredeployment scenario
with OMS (OMS) acts as middleware or interpreting agent between the smart card ETC

application and OBE resources: it implements interfaces to communications,
positioning, data storage and user input/output. Note that this scenario may
coincide with the previous approaches 3.1.3.1 and 3.1.3.2. In these cases, the

11Not possible in the current deployment of the German system, as the smart card reader
is inaccessible without opening the OBU. This, however, is installation-specific and does not
constrict the general replaceability option.

102

3.1. Requirements refined

OMS additionally needs to factor in concurrently sharing OBE modules. The
OMS is effectively controlled by the smart card logics. Its application de-
fines the actual ETC software activities conforming to the specifications of the
corresponding operator – transactions, states, actions, incoming and outgoing
messages, their frequency and conditions. We suggest using the asynchronous,
block-oriented, half-duplex T=1 transmission protocol (cmp. [ISO97]) between
terminal and card, as it allows for secure messaging.

Note: A related but very vague approach was patented by [DC03], in that
a smart card computation unit shall be used for the identification of toll road
segments, a number of plausibility checks and security, interacting with some
vehicle-fitted hardware in an unspecified way. However, [DC03] completely
disregards the determining, critical realization issues and thusly renders its
description effectively as obvious as arbitrary: a) The smart card is explicitly
required to handle the computation necessary to identify a road segment from
a digital map section and a set of positions. The card hardware may not be
able to process the necessary computation in time or at all. No alternative
mode is provided for this likely12 scenario. b) The smart card is explicitly
required to actively, initiatively control its automotive environment. As is
widely known (e.g. from the ISO 7816 standard applying here) and described
below, this is not feasible directly. Instead, while not overly complicated (cmp.
e.g. SIM Toolkit, [ETSI96]), the relevant question would be how to represent
the desired, ETC domain-specific interaction scheme with the means actually
provided by the smart card. No answers whatsoever are given by [DC03].

The characteristics of interaction between ETC OBE management and smart card
message specificsoperator process implementation depend on the capabilities of the deployed

smart card. To begin with, messages have to be resolved into Application
Protocol Data Units (APDUs; [ISO05]). Current smart card communications
conform to a master-slave relation, with the terminal issuing commands as C-
APDUs/command APDUs and the card responding with R-APDUs/response
APDUs. Length of the unit’s Data field is specified in the fields Lc (Length
command) and Le (Length expected), either encoded in a byte, resulting in a
maximum length of 256 bytes, or, in the extended case, up to three bytes,
resulting in 65,536 bytes maximum.

In consequence, the smart card ETC software may not actively control the overcoming
master-slaveOMS, as it is unable to initiate an interaction. Instead, here we suggest a

protocol implying a strictly reactive ETC application that expects specified
messages from the OBE, processes these and responds with commands to the
management module. We find a similar mechanism with the SIM Applica-
tion Toolkit (SAT, [ETSI96], [3G03]). That solution realizes proactive card
commands by coupling the smart card application with a mobile device coun-
terpart continuously polling the card for function call messages. In the case
of SAT, the STATUS command is used for that purpose commonly every 20

12Based on current road segment identification algorithms and smart card capabilities.

103

3. Substantiating Domain-specific Reliability and Economy

seconds, as it is short and quick to transmit (cmp. [Ra06], 5.8).
In the ETC scenario, liveliness of this interaction is perpetuated by thepolling with

payload regular and frequent stimulus of positioning, inherent to the ETC domain and
its use cases (cmp. chapter 2). The payload-free polling message – resembling
a busy waiting – can therefore be substituted by the position updates, required
by the modules implementing the locating aspect.

Furthermore, like in 3.1.3.2, we have to take the limited run-time andregarding card
limitations memory resources of a smart card into account. Depending on the operator’s

available budget, the ETC software might have to work on a 16 bit processor
and with as little as 64 kb RAM13. As a variety of cards may be deployed
by different operators, the OMS has to integrate them flexibly, according to
their respective performance profile. This is also congruent with a common
mechanism of the smart card domain: the initial exchange between terminal
and card sees the reset and the card-specific Answer To Reset (ATR, [RE08],
8.1), declaring data transmission and chip card characteristics to apply to the
subsequent transactions.

The ETC scenario complements these predefinitions between terminal andETCSC
configuration card with domain-specific predefinitions between OMS and ETC software. De-

pending on the card hardware the ETC application is running on, this approach
has to be taken one step further, beyond the agreement on communications
parameters. Therefore, an ETCSC (ETC Smart Card) configuration consists
of the entries depicted in table 3.1. The definition includes constraints and
quality of service requirements to fulfill by the OMS when providing data or
accepting commands, e.g. value array sizes14, time cycles and frequencies,
maximum durations.

The external computation instructions represent most critical entries incomputation
distribution this context. Corresponding to its individual run-time capabilities, a card

may partially delegate its ETC application’s workload to the OBE, e.g. in
the case of computationally intensive algorithms. This way, the ETC business
process can be realized by the overall, integrated OMS/ETC card software
system, even if the smart card hardware cannot handle it completely.

The ETC domain requires different features for sharing on-card and off-cardthe Java Card
view resources than e.g. provided by the Java Card platform ([Sun061], [Sun062],

[Sun063]). Its Remote Method Invocation (RMI) service complies to the master-
slave principle, denying the card applet access to methods on the terminal/-
Card Acceptance Device (cmp. [Sun061], 8.1.1.3). Via the package javac-
ardx.external (cmp. [Sun063]), the applet may only be enabled to access ex-
ternal memory subsystems.

However, even the ability to actively invoke remote procedures of the OMSETC-specific
view might not be sufficient for the given scenario. This would imply predefinition

13While there are cheaper cards with 8 bit processors addressing 6 to 30 kb on the lower
end of the performance spectrum, we will consider them as clearly unfit for the ETC scenario.

14E.g. for the case of having to pass more than one position at once to optimize the
number of exchanged messages in a given time.

104

3.1. Requirements refined

Entry (Cardi-
nality)

Generic Record
Format

Description

ETC Operator (1) [id][name] Unique ID required for associat-
ing incoming and outgoing mes-
sages, operating data manage-
ment, payment record account-
ing; name as string for HMI dis-
play.

Incoming Mes-
sage Registration
(*)

[service]
[type]
[constraints]

Information received or gener-
ated by the OBE to be passed
on to the ETCSC, with defined
quality of service.

Outgoing Mes-
sage Registration
(*)

[service]
[type]
[constraints]

Messages the ETCSC software
will be sending and is expecting
to be accepted, processed and/or
passed on by the OBE with de-
fined quality of service.

External Compu-
tation Instruction
(*)

[id][body]
[constraints]

Computation delegated by the
ETCSC to the OBE to be pro-
cessed in conformance to defined
constraints.

Table 3.1: Generic ETCSC Configuration

of any operator-required functions on the OBE/OMS, contradicting a strict
separation of a universal OBE and specific card, and in turn requiring the
operator to disclose specifications. Instead, the OMS has to provide generic
computation functions, e.g. for complex mathematical operations, as well as
an interpreter for operator-specific computation instructions stored on, passed
by and on completion returned to the ETCSC. Depending on the actual ETC
algorithms, this mechanism allows for the time-optimized distribution of work-
load. We will revisit it in chapters 4 and 5.

Figure 3.17 illustrates an example of the above OMS/smart card ETC ap- interaction
exampleplication coupling. After exchange of reset and ATR, the OMS requests the

configuration as APDUs and registers it upon receival. A successful registra-
tion implies a number of postconditions. The current tolling operator with the
ID 00 01 is selected for interactions with center systems and accounting. The
OMS is set to feed the ETCSC application position data every five seconds,
generated by some OBE navigation service, and incoming SMS and DSRC
messages from operator 00 01, received by a communications service. It ex-
pects short messages from the ETCSC software, which to forward to operator
00 01 via an OBE communications service. Finally, the OMS will accept com-
putation instructions identified by MATCH_POS and described by a binary

105

3. Substantiating Domain-specific Reliability and Economy

Figure 3.17: OMS and ETC Smart Card Interaction Example

body, which to process in 100 msec maximum after invocation.

While it is generally possible to do without the explicit declaration of re-why validate
on insertion quired services and assignment of computations, and handle these dynamically

on invocation, there is a practical reason for this configuration step. The user is
expected to insert the card prior to using the operator’s traffic infrastructure.
On insertion, the OBE may validate the ETC software’s requirements and

106

3.1. Requirements refined

check for conformance. If a problem should arise, the user may be warned ac-
cordingly and thusly avoid being singled out by the enforcement (cmp. 3.1.1).

The operating data associated with the processes of 00 01 is updated. example
continuedAfter that, the main loop is entered and iterated until system shutdown. With

a frequency of five seconds, a position update is due and sent, encoded in
an APDU, to the ETCSC application. The position message is processed,
resulting in an updated ETCSC application state and a command to the OMS:
the APDU may encode a request to forward accumulated tolling accounts
to the center systems, a request for updated map data, a request to match
positions to the map, or a plain acknowledgement or error. This command in
turn is processed by the OMS, which then replies with the result. Between
the position updates, incoming short and DSRC messages are forwarded and
processed correspondingly.

3.1.3.4 General Angle

A more general aspect of economy pervades the three previous approaches. general economy
aspectConcurrent operations in an embedded environment with limited processing

and memory resources call for lean, resource-aware implementation. Features
of run-time engines should be reduced to the essentials.

However, our professional experience showed that the introduction of Java, influence of
"standard" solutions.NET/Windows mobile and other "standard" run-time environments, frame-

works and components in cadence with the capability upgrading of mobile
phones and Personal Digital Assistants (PDAs) lead to a similar attitude as
can be found in the desktop and server domains: memory and processing power
are not an issue anymore; they are abundant.

This is obviously a questionable approach for the still restrictive platforms consequences ...
ECU and smart card described above. But even if, given time, these restric-
tions would be removed by advancements of the respective hardware tech-
nology, deployment of standard run-time engines or components imply conse-
quences for reliability and economy.

Complex third-party products like the named may reduce net implemen- ... of deploying
third-party
components

tation costs. On the other hand, controlling the risks they introduce into
the system is expensive: either the component is certified (cmp. e.g. section
3.2.2), which is associated with a higher price, or it has to be tested as black
box with high efforts. Furthermore, nonessential but integrated features may
use up valuable system resources, while stripping the component down may
be either restricted (no source code available) or costly due to the necessity
for the developers to become deeply acquainted with it.

In the case of a high-integrity system, developing a specialized run-time ... of developing
dedicated
components

environment and application is, on a first glimpse, more costly than buying
standard components and just putting them together. But the other side of the
balance sheet finds optimized resource usage due to systematic customization,
lowering the price of hardware or at least leaving resources for other applica-

107

3. Substantiating Domain-specific Reliability and Economy

tions. Explicit and systematic controllability (cmp. requirements I to III in
section 3.1.2) leads to more efficient tests and thusly lowered risks.

3.1.4 Economy-driven Requirements

All of the discussed approaches to an economically operatable ETC software
focus on resource sharing. Thus, definition of the requirements concerning
economy has to ensure that conformance is equivalent to the prerequisites
for stable concurrent operations in the given domain context and technical
environment.

Approach I aims at the safe operation of VAS components: VA servicecomponent
requirement processes must not have any effect on ETC processes whatsoever, and ETC

processes have priority in any given situation15 , i.e. system state. A sensible
consequence is to isolate VAS from ETC functionality on the implementation
level. If the VAS accesses ETC resources, it has to use a defined, contro-
lable interface. The need for a central controlling element has already been
expressed by requirement I. So, we postulate the necessary structuring with

Requirement IV (component organization): any interactive, non purely
transforming process (designated a service) has to be implemented in the
form of a component. The component completely encapsules the service be-
havior and provides message queues for synchronous or asynchronous input
and output.

This requirement has implications for an implementation in the context of
this work. As a departure from the functional, transforming ECU applications
common to the automotive domain (cmp. 2.1.1), we have the service. Accord-
ing to requirement II, its behavior has to be defined by a state automaton.
The service reacts to signals in the form of messages that we allow to take an
arbitrarily complex form, from records to chained messages conforming to a
protocol (cmp. e.g. [Do04], chap. 3.4.7). In contrast to the classic stateless
electronics control circuit with directors, sensors and actuators based on plain
numeric values, we therefore get a network of communicating state machines,
less restrained in their interactions. If we further apply requirement III to the
known component approach (cmp. e.g. [Do04], chap. 2.4.3), a differentiation
from the common concept of hidden internals and public interfaces becomes
apparent: internal behavior of the component implementations is not allowed
to be opaque. Instead, the controlling instance proclaimed by requirement I
a) keeps track of every component activity and b) orchestrates the component
interaction, and for that purpose has to provide and schedule a message bus.
It is left to the architecture foundation in chapter 4 to incorporate this feature

15With the possible exception of an emergency call. But this special case has no influence
on the general approach and the need for priorities.

108

3.1. Requirements refined

in a non-intrusive way so as not to obstruct maintainability and replaceability
of components.

Approach II sets the ETC application into an automotive environment to
safely coexist with vehicle electronics functions and concurrently access their
resources. As discussed, depending on the criticality of the respective sub-
system, the ETC software has to conform to the defined standards enforcing
high-integrity of installed components. We pursue a general acceptance of
a new, behaviorally complex component that is frequently interacting with
outside systems over various interfaces like GSM and DSRC into a hitherto
restricted system. Consequently, preemptive support of any potential certifi-
cation concerning software stability seems to be in order. Deterministic and
controllable behavior is aided by requirements I to IV, which will reflect in the
static and dynamic architecture. The conformity to reliability standards and
guidelines (for an overview refer to [Sto96], chap. 14) however, also strongly
concerns the implementation.

From a number of sources – [MI04], [Ba03], [BDV03], [Sto96], chap. 9, statics
requirement[ISO00] – we can derive generalized characteristics of a software considered

highly reliable. Based on these, we define a set of high-integrity requirements
for the ETC software.

Requirement V (statically determinable implementation): an implementa-
tion of the architecture shall avoid dynamic structures and mechanisms. No
dynamic memory allocation during run-time, including class instantiation,
is allowed. Implicit allocation is allowed only if bounded and the maximum
size is determinable during compile time. Types of all values of assignments
and operations have to be determinable during compile time; no dynamic
bindings, polymorphic functions or data types are allowed.

This satisfies a very basic condition for high-integrity systems: deterministic
memory consumption of the application is fundamental for reliability. If the
memory footprint of the ETC software is specified for a given configuration of
service components, hardware resources may be selected accordingly, and out
of memory run-time errors due to unbounded storage are precluded. We will
allow recursion in a controlled way, so that the resulting implicit stack memory
allocation can be measured prior to run-time, e.g. by examining the maximum
depth of recursive function calls. Further potential run-time problems induced
by type incompatibilities, e.g. in implicit conversions of polymorphic opera-
tions, are precluded by a general directive for static typing. This especially
forbids assignments of subclass instances to variables of their parent classes
in any context, which – as we will see in chapter 4 – directly influences the
freedom of architecture design.

The cited standards and guidelines define a range of additional rules for
reliable systems. They may be applied to the implementation of an ETC soft-

109

3. Substantiating Domain-specific Reliability and Economy

ware, but have no further impact on the elaborations of this work16.

After the obligation for deterministic memory usage and typing, we considerdeterminism
requirement the run-time behavior with

Requirement VI (deterministic run-time behavior): a software based on the
architecture shall exhibit deterministic run-time behavior concerning con-
currency and scheduling.

This complements requirement V: implied is e.g. a fixed number of pro-
cesses with static priorities to facilitate timing analysis (aimed at a potential
certification). By denying the application complex, dynamic concurrency fea-
tures like arbitrarily adding or removing threads, also the requisites concerning
the run-time environment are kept to a minimum. In turn, costs of its hard-
ware platform are reduced (aimed at economy).

The final requirement is the implication of a domain-specific scenario,persistency
requirement which strongly impacts a certain aspect of the architecture:

Requirement VII (persistency of activities): the complete system configura-
tion of requirement III has to be persistent for selected points of time t.

A necessity due to the fact that a large number of trucks is registered as
transport for hazardous goods. On switching off the ignition, electronics of
these vehicles have to shut down immediately. In practice, we find a shutdown
time of approximately 20 milliseconds, after which the electric current is inter-
rupted (known as clamp 30). As the continuity of process chains is critical for
ETC functionality – from locating to payment including data update protocols
– measures have to be taken to ensure continuous processing even under unsta-
ble conditions. Preserving the full configuration of the system after reaching
defined process states provides a fallback position for power loss and events
with similar effects. But we also find justification of this requirement beyond
the vehicle domain: Running an ETC application on e.g. smart phone plat-
forms removes the immediate physical hazards for third parties, but introduces
risks for the valid operation of the ETC business processes. A common smart
phone OS is generally capable of buffering a full system state on shutdown.
However, to protect the legally relevant data of our software, it is necessary
not to rely on other party functions; instead providing a self-managed solution.

This concludes the definition of requirements for a reliable and economical
ETC architecture. By conforming to IV to VII, the ETC software can be op-
erated economically and safely in a shared environment. It may take the form

16Many of them can be regarded as "common sense" today (e.g. no use of gotos), anyway.

110

3.2. Concerning the Implementation

of an ETC platform with additional services, a smartphone, or an automotive
ECU network running an ETC component.

3.2 Concerning the Implementation

It is a well established practice to abstract the model from the actual system
implementation. The design may then focus on essentials and does not have
to concern itself with technical details, often regarded as trivial17. In the given
case however, early discussion of the issue of implementing the ETC software
is necessary, while keeping an abstraction from the programming generally in
effect.

3.2.1 Model-Program Interdependencies

Due to the previously defined requirements for the architecture, a set of pro- interdependencies
between model
and program
characteristics

gramming characteristics has to reflect in the system’s model and its design.
Early consideration of these implications becomes especially important as they
mostly constrict the use of common modeling patterns and their approaches,
like polymorphy: in the given context, a buffer, for example, may not be
defined generically to handle instances of any subclass of some generalized
Message class. To ensure conformance of the subsequent implementation to
the explicit and implicit design constraints given by the requirements, first,
the software model has to incorporate them – in order to actually be imple-
mentable in the required way.

Furthermore, only certain constituents of the referenced guidelines and implicit
reliability
requirements

standards were treated explicitly in the previous section, like determinism. By
additionally providing sufficiently defined semantics, strong data typing, and
facilities to protect against memory exhaustion at run-time (cmp. [CGW91]),
a language can immensely benefit the reliability certification of a product based
on the architecture introduced in this work. Naturally, a bad choice can have
the reverse effect, up to even completely denying the software a desired cer-
tificate. Aspiring to comply to those general measures commonly considered
to achieve reliability in a software is an implicit requirement complementing
the definitions of sections 3.1.2 and 3.1.4. And again, the model has to ensure
that conformance is not hindered by its design.

We are aware that the consideration of implementation details on the model scrutinizing an
established ruleabstraction level may seem presumptuous and seems to question the appar-

ent. Nevertheless, the unguarded, unreflected exercise of this established rule
may lead to problems in practice. Consider a potential counterexample to the
rule in [Ko97], chap. 4.1.3: Without reservation it declares data representa-
tion (syntax) as irrelevant for real-time system models, suggesting "gateway
components" to take care of differences between subsystems. This implies an

17And rashly so.

111

3. Substantiating Domain-specific Reliability and Economy

unwarranted disregard for implementation restrictions that are quite common
especially for embedded RT applications; restrictions that might impede the
encoding of certain data value semantics, e.g. regarding their precision, or
restrictions of interface realizations that forbid the necessary transformations
due to limited bandwidth. An actual example from the ETC domain is given
by GPS positions and their different representations concerning allowed mem-
ory usage in the receiver and map data storage, which must be respected in
the model design.

For similar reasons we completely dismiss the "Executable UML" approachother approaches
of [MB02] for the ETC software domain. The abstraction layer upheld by
the action semantics approach given there forces an independence from the
software platform and especially the programming that has to be considered
directly opposed to the transparency requirements and liability of the ETC
software architecture (cmp. [MB02], p. 110).

3.2.2 Language Selection

Consequently, the selection of a programming language has to consider a) the
general fitness for a high-integrity context and b) the specific requirements
from 3.1.4, namely V and VI. In both cases, the language itself as well as its
run-time engine18 (or kernel) are subject to examination. This is owed to the
fact that we cannot necessarily presume availability of an operating system in
our architecture, e.g. in the case that the software has to operate on a smaller
system like an ECU.

Criteria for programming languages in high-integrity systems were dis-selection
criteria cussed in [Sto96], chapter 9. Besides the ones already mentioned, we find

the questions for simple, formal definitions of language features and the de-
tection of violation of language definitions during compile time. [RE92] im-
plies general requirements of analyzability and predictability. A comparison
in [CGW91] revealed Modula-2 as relatively best suited for the field in ques-
tion, in that case compared to e.g. C, Ada, Pascal and Assembler. However,
the result also revealed a problem this work is confronted with 16 years later:
there are factors outside the rather technical scope of such an analysis that can
lead to disqualification. Limited industrial acceptance, either resulting from
or leading to insufficient support by vendors of development environments and
lack of qualified personnel, effectively rules out the respective language.

At the time of this work, the relevant domains of telecommunications,Java
telematics and automotive see C, C++ and Java as preeminent for many ap-
plications (cmp. e.g. [Sc07]). Although Java tries to invade the domain of
automotive telematics for some time now, the associated development is usu-
ally about non-critical, informing systems and car-multimedia. We are aware

18This work understands the run-time engine as provider of – besides basic functional-
ity, cmp. [KPRR91] chap. 2.6 – memory management and concurrency features (threads,
scheduling, synchronization, timing etc.) for the application.

112

3.2. Concerning the Implementation

of a number of activities to emphasize safety aspects in Java (e.g. in the smart
card sector, Ravenscar Java [KWK02]). Anyway, most of these are either
strictly proprietary and/or still in a beta or prototype stage. In a recent anal-
ysis, [BW06] also came to the conclusion that many of Java’s principles collide
with the issues of safety-critical systems: due to its OO characteristics and
error-prone lexical structure it is hard to define a safe language subset; subset-
ting for e.g. static analyzability conflicts with the general dynamic approach.
[BW09] still find it appropriate for dynamic, soft real-time applications, but
raise concerns over RTE efficiency (cmp. chap. 16 there).

On a first glance, this leaves C/C++. Pertaining to the deployment on C/C++
an automotive platform, any development endeavour is confronted with es-
tablished approaches. Most prominently, we find MISRA C [MI04] with the
development environment dominated by the Mathworks suite ([Ma07], with
Matlab/Simulink and Stateflow). HIS ([HI04]) as well as the Run-Time En-
vironment of AUTOSAR, for example, require their code to conform to the
MISRA C standard (cmp. [AU06], 5.1.1), OSEK/VDX provides ISO/ANSI-C
interfaces ([OS04], 2.9). These de-facto19 standards provide an orientation for
programming of a new component like the ETC software and its techniques.

The introduction of a new component into a high-integrity system will put Ada
it under very close scrutiny. Consequently, a potential contribution to ac-
ceptance would be to over-achieve the reliability status quo of the domain in
question. Direction may be found in domains with use cases of even higher op-
erational safety levels: avionics and defense. There, C and C++ are generally
not accepted for mission-critical applications (cmp. [Sto96], p. 227). Instead,
e.g. the American Department of Defense commissions much of its work, like
the GPS, to be performed in Ada, the language also used for implementing the
European Fighter Aircraft systems. Civil users and applications include the
European Space Agency, the NASA space station, European Rail switching
systems, Boeing 777 and Airbus A320/330/340 ([GH93]).

Ada, in its current version Ada 2005 ([ISO95], [ISO07]) provides a solid Ada concepts
foundation for the fulfillment of the requirements defined. The reasons lie in
Ada’s view on the following concepts:

Typing – many potential problems may be discovered during compile time
due to static and strong typing. Types of all objects have to be declared.
They are generally incompatible with each other, so any conversion has
to be handled explicitly. Instead of structural equivalence (e.g. size or bit
representation), Ada checks for name equivalence when comparing types.
Additionally, explicit conversions are restricted to any two numeric types,
subtypes of the same type and types derived from the same type. This
inherent strictness of the language protects against e.g. assignment bugs
from sloppy type conversions so often discovered especially in rushed
phases of C/C++ projects.

19Or, in the case of AUTOSAR, potentially emerging.

113

3. Substantiating Domain-specific Reliability and Economy

Aspect/Record representation – both approaches I (3.1.3.1) and II (3.1.3.2)
include the sharing of resources in a way that components encapsulating
sensors, other devices, message busses, services etc. have to interact.
To facilitate arbitrary protocol data records of the telematics and au-
tomotive domain, the ability to explicitly define the bitwise memory
representation of object data is very beneficial for the respective integra-
tion. In addition to this convergent20 encoding, the record representation
provides an object serialization fit for persistency purposes.

Concurrency – Ada is a concurrent programming language, parallel activ-
ity constructs are defined on a language level. In contrast to func-
tion/method calls to proprietary, OS specific libraries (like e.g. employed
in C/C++), concurrent structures can be expressed directly in Ada syn-
tax. Experience shows us that faults introduced by inconsistent thread
behavior, e.g. between two APIs, platforms or operating systems, can be
as hard to discover as their effects are unpredictable. The actual seman-
tics of the concurrency constructs are dependent on the implementation
of the respective run-time engine (see below), be it provided by the OS or
a dedicated, linked RTE. However, parallel programming support pro-
vided by the language represents a uniform, binding fundamental for
stable processes.

Restrictions and profiles – with the pragma compiler directive, especially
Restriction, Ada supports customized subsetting of the language and
tailoring of the run-time system. This way, potentially risky parts of the
language can be excluded from the implementation and thusly poten-
tial problems avoided, along the way resulting in more efficient, smaller
RTEs. For specific purposes, the Ada standard aggregates restrictions
together with additional program configuration policies in a run-time
Profile, defining an alternative mode of operation for a program. The
Ravenscar profile ([BDV03]) e.g. subsets the Ada tasking model (cmp.
[BW98]), aiming at determinism, schedulability and memory-boundedness.

Run-time engines – In the mission-critical embedded environment, besides
the program itself, also the run-time engine may be subject to certifi-
cation. Concurrency features like threads and mutexes are either pro-
vided by the operating system, or a dedicated run-time engine – es-
pecially if the execution environment does not allow for an OS. For
Ada, there are a number of certified or certifiable RTEs available that
avoid program constructs which are not verifiable: the Green Hills Mini-
mal Ada Run-Time (GMART, [GH081]) conformant to SPARK ([Ba03];
see below), Real-Time RAVEN ([Ao06]), Green Hills Safe-Tasking Ada

20I.e. the ETC software’s internal record encoding may converge toward a message format
given by another application, e.g. an automotive subsystem.

114

3.2. Concerning the Implementation

Run-Time (GSTART, [GH082]) and Open Ravenscar Real-Time Kernel
(ORK, [Pu01]), the latter three specifically supporting the Ravenscar
profile language subset.

In the context of Ada and high-integrity systems we also find SPARK SPARK,
RavenSPARK([Ba03]) and RavenSPARK ([ST06], [CA08]) for concurrent applications. SPARK

is a safe Ada subset, extended by formal specifications, e.g. pre- and postcon-
ditions of functions, in the form of annotations. A tool (SPARK Examiner)
uses these annotations, written as Ada comments to be ignored by the Ada
compiler, to check the program for consistency with its specification, well-
formedness and to verify the validity of specified properties, e.g. exception-
freedom. The focus of this dialect thusly lies on statically proving a program’s
correctness. We established that, due to the discussed characteristics of the
system introduced with this work, it is not possible to completely prove free-
dom from faults by analyzing the ETC software exclusively. Nevertheless,
the SPARK approach provides valid propositions concerning the safety of Ada
programs for our context (also see next section).

Of the languages discussed above, Ada seems to represent the best choice selecting a
referencefor implementing a high-integrity system. It provides strictness and a host

of features that assist in achieving the aims defined for the approach of this
work. With other languages evolving toward high-integrity systems, this might
change in the future. By selecting Ada for the realization of the architecture
introduced here, we present a reference implementation conforming to our
requirements defined for an ETC software. This is not meant to restrict alter-
native implementations in other languages, but merely as a concise description
of the system’s workings. However, when using another language, the stated
characteristics of the implementation should be emulated as explicitly and
closely as possible with the respective means available.

3.2.3 Requirements and Programming Restrictions

A number of the Ada concepts mentioned above accommodate our require-
ments implicitly, on a general level: e.g. strong typing and concurrency lan-
guage features can be considered beneficial to the reliability of the resulting
system. With the ability to subset the language for our purpose, an addi-
tional explicit derivation of a corresponding pragma set from the requirement
definitions of 3.1.4 is indicated.

Requirement V calls for a statically determinable implementation. This static
implementationconcerns memory allocation, the determination of variable and function types

in assignments and calls, and the binding of methods (dispatching of calls):

Memory allocation – we need to disallow dynamic heap memory allocation;
explicit allocation on the application level (with new) as well as implicit
by any operations realized by the respective Ada run-time environment
(e.g. with unbounded types or the creation of task attributes).

115

3. Substantiating Domain-specific Reliability and Economy

Type determination – types of all variables and instances need to be re-
solved during compile time. Consequently, generic variables to store
arbitrary instances of a class hierarchy (class-wide types in Ada) are not
acceptable.

Method binding – the same applies to dynamic method call dispatching.
The code to be called during run-time needs to be determined during
compilation.

The deterministic run-time behavior required by VI finds expression indeterministic
behavior the Ravenscar profile as mentioned above in 3.2.2. It activates a number of

pragmas including restrictions that enforce non-terminating, non-hierarchical
tasks with fixed priorities, communicating via protected objects only. Queues
are stripped down to one entry per object and single queued up tasks, with
simple Boolean entry barriers.

Listing 3.1: Restriction Definitions for the ETC Software
1 pragma P r o f i l e (Ravenscar) ;
2
3 pragma Re s t r i c t i o n s (No_Allocators) ;
4 pragma Re s t r i c t i o n s (No_Dispatch) ;

Listing 3.1 defines the restrictions imposed on the architecture implemen-restricting
source code tation. No_Allocators takes care of explicit memory allocation, No_Impli-

cit_Heap_Allocations covers implicit allocations, but is already included in
the Ravenscar profile. No_Dispatch supresses dynamic method binding as well
as variables of general base class types by effectively excluding class-wide types
(T’Class) from the program. As an important benefit in an embedded envi-
ronment, we reduce code overheads, e.g. dispatch look-up tables and record
tags.

We will not completely restrict the use of pointers, or the similar21 conceptpointer
of access types in Ada. The SPARK approach considers them problematic
([Ba03], 1.4) and this work agrees. However, the HIRTE architecture accepts
their employment within the limitations of a static allocation pattern (cmp.
[Do03], 6.2) and for an initial linking of statically allocated and declared ele-
ments.

3.3 Modeling Approach and Design Notation

The development process necessary to realize a high-integrity system in con-
formance to the requirements given encompasses a number of topics besides
the already mentioned. Regardless of the actual project organization – from

21Ada distinguishes Access and Address, with the former representing a fat pointer with
additional information like constraints (size, first, last), the latter merely pointing to a
memory address.

116

3.3. Modeling Approach and Design Notation

extreme (cmp. [BA04]) to waterfall (cmp. [Bo81]) – we find the model a cru-
cial development artifact in a multitude of roles. Thus, we have to establish a
formal approach to formulate the system in order to pursue maximum model
useability: as specification, origin of the implementation, basis for validation
and a structured means to communicate and elaborate on the software.

3.3.1 Discussing the Software Model and its Purpose

First, on modeling in general. While some time ago a heated discussion about modeling and
the UMLuniversal approaches versus domain-specific modeling languages broke out,

we will only consider the UML ([OMG091] and [OMG092]) here – it is cus-
tomizable and a clear preference of all our industrial customers. Many of the
published profiles, prominently the UML Profile for MARTE ([OMG09], Mod-
eling and Analysis of Real-Time Embedded Systems; previously the schedu-
lability, performance, and time specification [OMG05]), cover an impressive
width of real-time system aspects, providing numerous diagrams, stereotypes
and tagged values.

When designing an actual product however, one has to keep in mind that model elements
and the need
for semantics

every single element used in the respective model has to transport an unam-
biguous meaning. These semantics cannot be (exhaustively) defined outside
of the corresponding development itself, as especially the operational seman-
tics are dependent on an actual, if possibly abstract, machine. Consequently,
some run-time level semantics definition has to be part of the development
preparation.

So – as the above preparations consume time and money –, an initial selecting sensible
syntax elementsthorough selection of language units (cmp. [OMG092], 2.1) and their syntax

elements is indicated: what is really necessary to describe the system, and
what purpose does each element serve during the development process? Take,
for example, time constraints in statechart diagrams (cmp. [Do04], chap. 2.6).
Once the detailed time behavior of the application’s processes has been de-
fined (again, it takes a lot of work), what will become of the respective model
attributes? Will they just be a part of the documentation someone may refer
to later if something went wrong to find out why? If they are a requirement
specification, how will the programmer be able to ensure a corresponding im-
plementation? In this context it is important to note that a telematics software
might be located on a layer too remote from the hardware to actually control or
even directly adjust to the hardware run-time behavior. Here, time constraints
are useful for validation purposes as well as monitoring during operations.

[Te02] made an interesting point concerning the UML in high integrity role of a model
systems, stating that in order to be useful, it would have to be effectively iso-
morphic with the target programming language. This is understandable, but
we would not go that far. Instead, again we ask for the purpose of the model.
A direct, explicit semantical correspondence could result in "programming in
UML" – quite impractical, as any experienced software engineer would prob-

117

3. Substantiating Domain-specific Reliability and Economy

ably reply. The contribution of a model and its language to a project can
well be simple, but still valuable. The model may just represent a structured
documentation; a class diagram a kind of map for the developers over the
software lifecycle. Behavior diagrams may be produced for critical processes
only, so that a general understanding is granted for all stakeholders. Addition-
ally, with the selective definition of domain-/project-specific semantics, model
transformation techniques can significantly add to completing the development
process. Without the need to express everything in the model or the UML,
consider e.g. a statechart to be checked for consistency or be transformed into
code. Predefinitions and parameters of its run-time environment and struc-
ture might be described elsewhere, e.g. encoded in a transformation tool and
associated mapping rules.

In industrial telematics projects we use the UML very successfully in theexperiences
sketched way: selective employment of diagrams in combination with selective
but exhaustive domain-specific semantics definition, transformation rules for
pragmatic model checking and code generation.

3.3.2 Syntax – Views, Diagrams and their Elements

Like the requirements reflect in implementation characteristics (see 3.2), they
influence the software model in a number of ways. Obviously, we have to spec-
ify both the static view, or structure ([OMG092], part I), and dynamic view, or
intended behavior ([OMG092], part II), of the ETC software architecture. By
selecting the UML, a work is confronted with a multitude of potentially useful
syntax elements, i.e. means to describe the system for the various stakeholders.

To express the fulfillment of the defined requirements concerning the model,applied diagrams
we use elements of class, component and statechart diagrams22. Their adoption
is further differentiated for closeness to the implementation, i.e. whether the
structure represented by the diagram merely defines a pattern, or is meant as
input for model transformation. The former case is subject to interpretation
by a software architect and thusly still allows for a degree of freedom, the latter
requires unambiguous mapping rules to support automation.

Impact of the requirements on syntax element selection is marginal butrequirements
impacting the model worth mentioning. Besides the straightforward use of class, component and

statechart diagrams to illustrate fulfillment of II and IV, requirement V has
more subtle consequences. To ensure a valid translation of diagram structures
into statically determinable code, i.e. its records and classes, we have to re-
strict associations to generic, base classes. Indiscriminate application would
potentially result in the need for dispatching in the corresponding software.

22Various other design and implementation level diagrams can be found during the course
of this document, e.g. sequences and deployments. They are used to illustrate specific topics
or aspects, but are no immediate representation of the core result – the architecture and its
implementation – of this work.

118

3.3. Modeling Approach and Design Notation

Note that it is unnecessary to disallow class inheritance in general; a selective
approach is sufficient.

Figure 3.18: Class Structures influencing Dispatching

In fig. 3.18, case A illustrates a problematic constellation. On invoking an model implications
for dispatchingoperation of a, the RTE needs to determine the type of object bound to that

attribute (A1, A2 or A if it is not abstract), check if the operation is defined
for that type and then proceed to the specific implementation for execution.
As long as the inheriting classes do not overload d, case B is acceptable, as
it does not imply dispatching. A syntax restriction suppressing dispatching
could thusly be enforced by checking the model for corresponding syntactical
patterns as given by case A.

3.3.3 Semantics

Conforming to [OMG092], chapt. 6.2 we need to define run-time semantics for
the selected syntax elements. These semantics definitions have to refer to a
specific RTE and support fulfillment of the introduced requirements, i.e. the
resulting architecture description can exhaustively describe an implementable
solution. Here, we take a rather pragmatic view on the term of semantics, gen-
erally denoting the meaning of specific elements during run-time, facilitating
a realization in a programming language.

Relating structural and behavioral syntax elements of UML to our selected UML semantics
in Adalanguage Ada implies the explicit mapping to run-time representations and

operational processes. Due to the interdependencies between model and im-
plementation induced by the restrictions (as discussed in 3.2), applicability of
both static and dynamic language structures is limited for this work; the Ada
language is narrowed down to a subset.

In consequence, instead of generically mapping basic UML, e.g. classes and mapping of
aggregationsprimitive types of the Core library [OMG091] part II to Ada tagged records,

tasks and other types ([ISO95]), we describe transformations of aggregations
and complete patterns. This way, by considering the context of the actual

119

3. Substantiating Domain-specific Reliability and Economy

intended application domain, the impact of safety constraints on architecture
and implementation should become clearer. Also, generic transformations of
UML to Ada have been handled before; e.g. [KK01] discusses and defines
a mapping for reactive, distributed systems, but without regard to our high
integrity considerations.

A special case is given by statecharts. Already, numerous solutions arestatechart mappings
available for operational semantics and conforming statechart model transfor-
mations into process algebras or programming languages. [Sa02], describing
yet another approach, compared a representative set of standard state ma-
chine implementations besides its own Quantum framework: nested switch
statement, state table, State design pattern ([GHJV95], p. 305) and a com-
bination of the previous called optimal FSM implementation. An Ada state
machine is presented in [Sa00], which is primarily a plain variant of nested
switches.

Requirements II and IV established state-based components for our archi-specific requirements
for state machines tecture. Like stated in the previous section, the use of statechart diagrams in

the software model can merely illustrate conformance to the requirement. Ac-
tual fulfillment is achieved by the realization of components as state machines.
At this point, requirements V and VI take effect. They introduce state machine
implementation characteristics relevant specifically for this work: the machine
program structure is free from dynamic memory allocation and dynamic bind-
ing. Overhead event processing, interleaving or concurrency mechanisms sup-
port (or at least do not hinder) static priority patterns (cmp. [Do03], 5.9, 7.5).
Additionally, for all components implementing services to meet the stipulation
of conformance to a state machine organization, we imply a corresponding
expressiveness of its structure. As the application features complex business
logics (cmp. 2.3.8), construction of the state machine includes hierarchy and
(de-)composition, i.e. structural means to cope with complexity, similar to
a regular programming language. Related to the common approaches this
means:

• The nested switch and state table approaches are too restricted in their
expressiveness. With just simple states it would be hard to formulate
complex services. Introducing composite states and direct transitions
leads to hardly manageable and suboptimal program structures, e.g.
hard-coded transition and action chains over state hierarchies. Still it
should be noted that the switch structure is a very efficient implementa-
tion method for flat lexical scanners and parsers (as we will see later in
our reference implementations).

• Both the State pattern and the Quantum framework heavily rely on dy-
namic OO features. Examples: The State pattern subclasses a generic
State class, overloading handle() methods resulting in regular dispatch-
ing. Events in the Quantum framework are dynamically allocated, passed

120

3.4. Chapter Conclusion

and propagated bound to generic variables (cmp. [Sa02], 8.5). Note that
these dynamics are inherent to both approaches, and not adaptable to a
static architecture without substantially changing the concepts.

• While set in the context of embedded systems, the Quantum framework
aims at providing a universal solution. As such, it is burdened with the
comprehensive realization of any UML statechart elements. This collides
with our intended selection as motivated in the previous sections. In over
ten years of designing ETC and VAS software, no use case realization
ever depended on e.g. deferred events, history states or behavioral inher-
itance. They require a significant management overhead, in consequence
introducing risks due to high complexity, but in turn provide little gain
for our domain.

As a result, this work tailors a specific approach in conformance with the
ETC domain-specific requirements, in the case of a state machine namely static
determinability of memory consumption and function calls.

3.4 Chapter Conclusion

The previous chapter affording us substance to analyze, the generic require-
ments of reliability and economy could be primed for the design of a corre-
sponding architecture.

To detail the meaning of reliability in the context of the ETC domain, we hazard
classificationasked for reasons that could disrupt regular and correct operations of the sys-

tem. Application of a fault tree analysis – with a root node of faulty toll atom
processing – to the introduced ETC structures and processes identified a set
of these hazards. They originate from a variety of sources, but corresponding
to their symptoms can be generalized and classified conforming to

the ETC aspect of the application – locating, charging, active data stor-
age, communications, enforcement and security (as introduced in chap.
2.3),

the system area or level – organization and business processes, quality of
service, data and implementation and

the system element – the system itself, its interfaces and actors interacting
with it.

Based on these generalized correlations, relations to the system deploy- reliability
requirementsment and classifications of effects on the ETC software, we deduced a set of

hazard-induced requirements for the architecture. In the process, it was an
important insight having to accept the general concept of a safe application in
an unsafe environment. In consequence, the application itself is neither in the

121

3. Substantiating Domain-specific Reliability and Economy

position of being able to fully control its environment, especially beyond the
OBE, ensuring overall ETC system stability. Nor is it sufficient for a complete
tempering, i.e. operational validation, of the whole system to verify the ETC
OBE software. To answer and compensate for this, the software architecture
needs

• a central element controling or at least monitoring all application pro-
cesses (requirement I),

• to pattern all processes as state automata to explicitly manifest uniform
behavior (requirement II) and

• to continuously log a (real-)timely state configuration of this behavior
(requirement III).

Adhering to these requirements enables the validated application to prove
its correct operation even if interaction partners in its environment exhibit
faulty behavior (the OBE hardware, center components, communications in-
terfaces etc.).

After the question of reliability, we related economy to the ETC softwareachieving
cost-efficiency domain, based on the optimized utilization of the necessary infrastructure. To

avoid the need for dedicated – and thus expensive – solutions, three cost-driven
approaches considered running the ETC application in non-exclusive RTEs:

Open ETC infrastructure describes value added services (VAS) on ETC
platforms.

Automotive integration uses ECU networks of modern vehicles as RTE for
ETC modules.

Interoperability suggests using multi-operator software, multi-application
OBE or application switching to participate in more than one ETC ser-
vice, respectively communicate with more than one ETC operator. In
this context, we detailed an original smart card-based scenario to further
substantiate the economic view.

Generalizing the requirements of these approaches led to the question foreconomy
requirements stable resource sharing. Their realization has a number of preconditions. Con-

sequently, the economy-driven architecture in the ETC domain needs

• to organize all services in the form of components – encapsuling the
behavior, interacting over message queues (requirement IV),

• to be implementable as completely static structures and operations (re-
quirement V), avoiding dynamic memory management, dynamic typing
and dynamic binding,

122

3.4. Chapter Conclusion

• to allow for deterministic concurrency and scheduling (requirement VI),
i.e. it should not be dependent on schemes considered unsafe, like dy-
namic priority patterns (cmp. [Do03], 5.10) or priority inheritance pat-
terns (cmp. [Do03], 7.13), and

• an architecture-fixed feature to safeguard the persistency of the applica-
tion’s state configuration at any time (requirement VII).

An ETC software conforming to these requirements reduces the risks of
side effects to concurrently present processes and itself will not (or at least is
sufficiently unlikely to) impede sharing run-time ressources.

The seven requirements substantiating reliability and economy for the ETC model versus
programsoftware architecture set a scope for its design. However, requirements V and

VI immediately affect the implementation. Thus, we established interdepen-
dencies between model and program that reflect each view, i.e. the model
design may not arbitrarily disregard the implementation level, as this might
lead to dead ends – unimplementable structures – later. As the work has to
provide reference implementations of crucial parts, the chapter motivated the
selection of a suitable language – in this case Ada.

We then proceeded to concretize the requirements V and VI as program- modeling and
programming rulesming restrictions for the Ada sources and RTE, resulting in three pragma

directives. Correspondingly, we described modeling restrictions and guidelines
for the selected UML syntax elements and their semantics conforming to the
defined requirements. Regarding requirement II (system state automata), rea-
sons for a genuine approach to the implementation of state machines were
given, discarding existing solutions in the process.

Implicit to these measures is a general correctness by construction approach
(similar to [Ba03]), as we strive to support program correctness by proper
techniques employed from early on in the development process. Experience
shows us that by restricting dynamic memory management23 alone, errors are
reduced significantly, especially in early builds – the program construction
effectively excludes problems like memory leaks.

With this chapter, an ETC software architecture – generalizable to mission-
critical telematics systems – finds concrete requirements to further and attain
robustness and cost-efficiency in a corresponding application. Matching rules
for modeling and implementing the domain-specific architecture complement
the seven requirements. Together with the structures and processes of chapter
2, the next chapter can now lay the foundation for the architecture itself.

23Experience also tells us that this – by all means – includes garbage collection!

123

Four

Fundamental HIRTE Patterns

... in which we provide the schematics and building blocks of a reliable and eco-
nomic mission-critical telematics software. The bottom-up construction starts
with a number of elemental stereotypes for differentiation from common real-
izations and preparatory conceptual advancements. To emphasize reusability
and orderly decomposition, separate patterns are given for specific aspects of
the architecture, e.g. static state machines and logging. Each pattern also
describes its Ada reference implementation.

The aspects and business processes of chapter 2, and the decisions and
requirements of chapter 3 regarding the architectural design, provide us with
sufficient information to specifiy a solution for an ETC OBE software. How-
ever, it seems rewarding to dwell on the transition – represented by this chapter
– from requirement (respectively design decision) to realization. Instead of di-
rectly describing a specialized application, we first elaborate on the underlying
patterns and mechanisms. These are qualified to provide a basis for a reliable
and economic ETC software, but also for similar distributed architectures of
related telematics domains, e.g. healthcare or smart energy grids.

This corresponds to the notion of HIRTE: A High Integrity Run-Time
Environment may generally compose a set of components, each representing a
mission-critical operational aspect. While any composition needs to conform
to the established high integrity requirements, the architectural concept needs
to allow for variants. As was established in 3.1.1.10, an ETC application has
little influence on its hardware and OS platform. Consequently, HIRTE, in
the given case directly implementing the ETC functionality, has to adapt to
fundamental underlying RTE parameters like available memory, multitasking
(or lack of) – while still maintaining the invariant HI conformity.

125

4. Fundamental HIRTE Patterns

4.1 Structural Elements

The UML stereotype mechanism (cmp. [OMG092], 18.3.8) allows the exten-
sion of metaclasses. Thus, the stereotypes given here represent a set of basic
elements that serve two purposes: refinement and differentiation.

By extending a metaclass, we gain a specialization for our domain. Adding
specific attributes refines a metaclass to better fit into our architectural con-
cept, stipulating information required by the application. Furthermore, the
stereotype instances are easily identified by both a human software engineer
and a model transformation tool. I.e. instead of checking for various character-
istics determining a domain-specific type, one can directly refer to a stereotype
regarding its supposed implementation scheme.

4.1.1 Behavioral Stereotypes

The common view on object-oriented software sets procedures and functions
in the context of classes, i.e. they represent methods defined to operate on
abstract data structures. Aside from their actual definition, it is possible to
declare class attributes that point to methods of other classes.

Figure 4.1: Stereotypes representing Tasks, Function and Procedure Refer-
ences

The stereotypes in fig. 4.1 additionally allow class attributes defined byfunction and
procedure associations to classes that represent function and procedure (function without

126

4.1. Structural Elements

a return value) references. The name of an instance of these stereotypes is
determined by the name of the function or procedure, respectively. Its signa-
ture may be specified by the tagged value. Whether or not the programming
language of the implementation restricts functions and procedures to class op-
erations, and if that operation would be defined directly in the extended class
or elsewhere, is not considered relevant for application. In such a case, the
tagged value type would be Operation*.

The task1 stereotype is introduced to facilitate identification and language- task
specific conversion by model transformation tools. It designates an active class,
i.e. it represents an execution unit during run-time. Therefore, it requires an
Operation to run its body. This body shall be specified as a state machine,
associated per definitionem with the first element of the method set given by
the meta base class BehavioralFeature. Whether the task implements a thread
or process, its details of activation, execution and finalization, depend on an
actual RTE.

4.1.2 Data Structure Stereotypes

As discussed and established in chapter 3.2, a general abstraction from an im-
plementation is desireable, but not always advisable. Thus, in addition to the
induced restrictions, the implementation requires complementary information
from the model.

Figure 4.2: Stereotypes representing Data Structures

The static memory segment stereotype as given by fig. 4.2 A enables the static memory
segmentmodel to specify direct memory usage, instead of a class or other variable, that

is bound by a compiler. A corresponding instance represents a fixed memory
segment with the tagged values

1In this case akin to the task type as introduced by Ada ([ISO95], section 9).

127

4. Fundamental HIRTE Patterns

start – the starting address as an assumed long value,

length – the size of the segment in bytes and

content – an array of bytes with its binary content.

All attributes are deliberately declared public to emphasize the immediate
access character of the instance. No detours over get and set methods are
intended. The option to explicitly specify an actual starting address (at least
symbolically) in the model is especially useful for our domain, as it allows
referencing a static storage for crucial content.

The cyclic buffer stereotype (fig. 4.2 B) represents a memory segment thatcyclic buffer
is organized as a queue, or FIFO, for length binary strings, overwriting the
earliest entry after reaching the condition position = length. We introduce
this stereotype, because the cyclic binary buffer is a recurring entity in ETC
domain models, which has to be implemented in specific ways depending on
the underlying platform, e.g. with regard to dedicated memory segments (see
above).

A stereotype for a Record structure allows the declaration of plain variablerecord
tuples, excluding operations by applying a corresponding constraint to the
extension of the metaclass.

4.1.3 Distributable State Machine Fragment Stereotype

The UML state machine metamodel defines (besides a number of pseudostates)UML state machine
restrictions simple states, composite states and submachine states (cmp. [OMG092] 15.3.11),

with the submachine being semantically equivalent to a composite state. Any
actions associated with states or transitions aggregated by (regions of) the
machine may access and operate on attributes defined by a classifier context,
an association with a behaviored classifier, or the association specification with
a behavioral feature that owns the state machine (cmp. [OMG092] 15.3.12
and 13.3.2), respectively of which the machine specifies the method. This im-
plies that any state taken out of context of its machine has to be considered
incomplete, as references to required features become invalid.

In order to concisely extend this model for our purposes, we need a formalintroducing
the self-contained
state

definition. Similar to our description given in [Ste032], a state machine SM =
(S, substates, regions,E, P,Ep, A, actions, V,G, T) consists of

• a non-empty, finite set of states S = Ss∪Sc∪Scc∪Scc,r∪Ssc with simple
states Ss, composite (OR) states Sc, concurrent composite (AND) states
Scc and regions Scc,r of AND states. Additionally, we introduce the self-
contained state Ssc, which is defined in detail below.

• Functions

128

4.1. Structural Elements

substates : Sc ∪ Scc,r ∪ Ssc → P(Ss ∪ Sc ∪ Scc) (mapping of a set of ag-
gregated states to a composite state or region of a concurrent composite
state; with P the power set) and

regions : Scc → P(Scc,r) (mapping of a set of regions to a concurrent
composite state).

• A finite set of events E, parameters P and a parametrization relation
Ep ⊆ E×P×...×P (parameterless events shall be denoted simple events
Es).

• A finite set of actions A = Aevent ∪ Avar ∪ Agen with triggers Aevent
of elements of E, value assignments Aval to elements of V and generic
actions Agen, e.g. invocations of methods, procedures and functions de-
fined outside of the scope of the state machine, and a relation actions ⊆
S×An, n ∈ N that specifies the sequence of actions to execute in a state.

• A finite set V of variables accessible by the state machine.

• A finite set of guard conditions G that apply relational operators to
variables of V and values.

• A relation T ⊆ S × E × An × G × S, n ∈ N, defining a transition from
one state of S to the same or another s ∈ S on an event of E and/or a
true condition of G, triggering a sequence of actions in A.

• A self-contained state is defined as tuple Ssc = (Sσ, substatesσ, regionsσ,
Eσ, Pσ, Ep,σ, Aσ, actionsσ, Vσ, Gσ, Tσ), with

Sσ ⊆ S, substatesσ ⊆ substates, regionsσ ⊆ regions the substates con-
tained in Ssc,

Eσ ⊆ E,Pσ ⊆ P,Ep,σ ⊆ Ep the (parametrized) events triggered by
elements of Aevent,σ or triggering transitions in Tσ,

Aσ, actionsσ the actions executed by states in Sσ,

Vσ variables evaluated by Gσ and accessed by Avar,σ and Agen,σ,

Gσ guard conditions evaluated by Tσ and

Tσ transitions (ssource, e, a, g, starget) with ssource ∈ Sσ and starget ∈ S
(targets may lie outside of the self-contained state).

Note that the above definition focuses on the algebraic structure of a ma-
chine. Specifics of run-time semantics – invoking actions (on entry, exit), event
handling, transition firing, updating variables (especially those referenced by
a self-contained state) – are not yet significant, but will be treated in detail
later.

The concept of a self-contained state establishes a fragment that is valid valid state
machine fragmentsand meaningful without its ambient state machine. Validity in this context

129

4. Fundamental HIRTE Patterns

pursues closed interpretability, i.e. the fragment contains sufficient elements
and associations between them to result in a meaningful structure when a
semantics definition is applied. Finally this closedness leads to isolated exe-
cutability: binding the fragment specification to the run-time semantics of an
actual RTE enables a transformation from a defined start state to some final
state.

To harness this concept in our HIRTE architecture, the stereotype dis-utilizing the
self-contained
state in UML

tributable state machine fragment migrates the self-contained state into the
UML model. In the process, the notion of self-containment serves as founda-
tion for distributability: the isolated state machine element can be transferred
to another RTE. Here, this fragment has to provide an external component
with sufficient information to execute the self-contained state and return it on
reaching a transition beyond its scope, i.e. leaving its vertex, or some other
defined condition (e.g. timeouts, errors, unresolvable references).

The stereotype as defined in fig. 4.3 extends the metaclass State and adds
the following tagged values.

Property array sm variable subset declaration – defines a subset of the
attributes given by the state machine’s owning structural element. Each
array element of a corresponding fragment instance specifies name, type
and a value, thus representing a copy of the original variable. Instead
of directly mapping the full property set, the tagged value allows the
explicit declaration of a limited set of variables. This way, the array can
constrain itself to the attributes actually accessed by the state machine,
reducing memory consumption of a fragment object. Furthermore, while
it is still possible to generate the set from a model query2 of the associated
class, as the stereotype’s concept implies handing data over to external
systems, being able to exclude variables from the set provides means to
restrict accidental distribution of critical values (e.g. keys or certificates).

Action array sm action requirements – specifies the actions required in
the execution of the fragment. These actions may be derived from an
iteration over the the entry, exit and do associations of each state owned
by the machine, where the type of the Behavior evaluates to Action.
In contrast to the variable array, the requirements merely represent ref-
erences to actions, not their implementation. Consequently, the action
descriptions may serve to check in advance if a RTE is able to execute a
fragment, i.e. if it provides realizations of the required actions. Congru-
ously, confining specific actions to a fragment when modeling the state
machine assures external execution, relieving the local RTE from having
to implement them.

2The query sketches in fig. 4.3 are not intended to be compilable OCL terms, but specify
the model elements to iterate and conditions for identification of the desired attributes. They
are kept abbreviated for better comprehension.

130

4.1. Structural Elements

Figure 4.3: Machine Fragment Stereotype with Model Queries

Event array sm event requirements – specifies the events expected in tran-
sitions owned by the fragment. In a similar fashion to the actions, queries
of the state machine model yield the events associated with triggers of
transitions. Here also, it is possible to reference events that will be gen-
erated exclusively by the external RTE.

Signal array sm signal requirements – refers to signals that may be gen-
erated by a SendSignalAction subset of the above actions. As long as
these actions are available on external execution, the fragment will be
able to process its states. However, there is a potential indirect effect
concerning signal reception by the external RTE and its reactions. In-
teractions between machine fragment and environment depend on signal
acceptance and target presence, i.e. the signal array combined with the

131

4. Fundamental HIRTE Patterns

above event array describes the prerequisites for consistent information
interchange.

Section 4.2.4 (the distributable state machine fragment pattern) will elab-
orate in detail on the run-time characteristics and handling of machine frag-
ments.

We suggest the notation as given by fig. 4.4 for distributable states in a
statechart diagram. A corresponding symbol complements and distinguishes
the state rectangle. Four compartments contain the tagged value arrays of
the embedded variables and the expected action, event and signal realizations.
Depending on the statechart’s layout and the quantity of compartment entries,
alternatively, the tagged values may be specified as notes attached to the state
(cmp. [OMG092], fig. 18.19).

4.2 Elementary Patterns and Structures

We use the principle of design patterns (cmp. [GHJV95]) to provide further,
more complex building blocks of the HIRTE architecture. An emphasis lies on
mechanisms that enable efficient, HI-preserving conformance to requirement
II (3.1.2) – the implementation of HIRTE services as state machines.

All presented Ada sources compile with the Ravenscar profile and addi-
tional restrictions in force as defined in listing 3.1. The implementations need
to refrain from object-oriented reusability structures and concepts that might
compromise static determinability. Instead, the given systematic composition
of the sources implies (at least partial) generation from a model. This way,
even without certain comforts of OO, the efforts of feature changes are allevi-
ated.

4.2.1 Statically Resolvable State Machine Pattern

4.2.1.1 Abstract

In 3.3.3 we discussed and motivated the need for a state machine implemen-relation to
UML statecharts tation tailored to the HIRTE requirements. The Statically Resolvable State

Machine provides a realization blueprint for the behavior of an active3 compo-
nent. Construction of the pattern aimed at a lightweight, safe and manageable
structure. A machine instance may be based on a UML statechart description
for manual or automatic transformation, i.e. the pattern recognizes a subset
of UML elements:

• simple states with entry and exit actions,

• single region composite states with entry and exit actions,
3This is the focus here; nothing should prevent the pattern to apply to passive modules

also.

132

4.2. Elementary Patterns and Structures

Figure 4.4: Distributable State Machine Fragment Notation

• initial and final pseudostates,

• direct, high-level, explicit and completion transitions with actions,

• triggered by events resp. message reception and/or guards.

While the selection may appear reduced compared to other works, it reflects achieving
light weighta conscious decision that balances a mandatory overhead to process the state

machine structures against practical gain (also cmp. section 3.3.3). The most
disputable (in the sense of fundamental) ommission might well be orthogonal
regions, i.e. concurrent composite states. However, we come to a similar con-
clusion as [Sa02] (cmp. object composition in 5.4.3 there): multiple regions

133

4. Fundamental HIRTE Patterns

require a heavyweight management mechanism and can in our case be sys-
tematically substituted by multiple tasks or additional machine structures in
the main loop (shown below, see implementation). This is also confirmed by
industrial experience with complex state machine models in the treated do-
main that yielded not a single automaton dependent4 on orthogonal regions.
Consequently, the pattern abandons them to keep the architecture lean.

A safe realization is aided by statical resolvability. Implied is a generalsupporting statical
resolvability adherence to the restrictions established in 3.2.3. More precisely, an imple-

mentation conforming to the pattern allows determination of memory usage,
variable and procedure binding at compile-time. It avoids dependencies on dy-
namic mechanisms in its structure, proven by the actual source code given in
this section. There is a distinction between checks by the compiler and checks
at compile-time that are not necessarily performed by the compiler itself. This
is a concession to the tentative permission of pointers, colliding with other
high-integrity approaches like SPARK ([Ba03]), which excludes them from its
Ada language subset. But pointers simplify our reference Ada sources consid-
erably, hence they help to convey the principles of the pattern workings. By
sacrificing a measure of decomposition, it is feasible to eliminate pointers in a
pattern realization, which is sketched at the end of the section.

In the coded solution given here, all pointers refer to statically allocateddealing with
pointers objects. Pointers defining the state machine structure are only assigned once

on initialization. The associations between states, transitions, guards and ac-
tions stay invariant once established and can be traversed deterministically
by an interpreter procedure. Still, formally the program handles these point-
ers at run-time. As a result, the compiler has no approach to check these
constructions for correctness. Even so, it is possible to assert completeness
(all state machine elements required for execution/interpretation accounted
for), coherency (or well-formedness, associations between elements valid) and
– in the case where some model is available for reference – consistency (no
deviations between specification and implementation). If the initialization is
contained obligatorily in a designated procedure (cmp. reference sources be-
low), this may be achieved dependably by checking the corresponding source
by proprietary means.

Correspondences between UML statecharts and the elements of our statepattern model
and code machine pattern facilitate source code generation based on a model. A model-

driven development process (cmp. e.g. [BCK03]) benefits from such a feature,
as it may accelerate specification/modeling and programming cycles. It offers
an option to delegate management of the state machine structures to a quali-
fied tool ([We07] for an overview). Nonetheless, industrial telematics domain
experience tells us that an actual complete round-trip software engineering
– UML modeling, executable code generation, code modification (test cycles

4Actually, quite to the contrary: specifications became unwieldy, their purpose and
implementation ambiguous.

134

4.2. Elementary Patterns and Structures

omitted), model updating – is in most cases considered too costly to set up
(cmp. 3.3.1). In consequence, expressing the pattern structures in a program-
ming language needs to result in source code that can be authored, understood
and maintained without the aid of modeling or other advanced software engi-
neering tools.

The concept of a state machine, illustrated as a statechart, is a proven manageable
resultsapproach to cope with the complexities of component behavior: a vehicle for

specification, discussion and implementation. When mapping a state machine
metamodel to a state machine pattern, one is (simplified) confronted with
the trade-off between preserving the original structures and accepting heavy
processing overhead, or altering the structures and optimizing them for more
efficient processing. The Statically Resolvable State Machine Pattern strikes a
balance by selectively introducing auxiliary constructs – state reference chains
– while keeping a basic equivalence – states, transitions, actions, guards –
intact for facilitated recognition.

4.2.1.2 Structure

The structure of the pattern is described by fig. 4.5.

4.2.1.3 Collaboration

• HIRTE Component
An active task, implementing a service component which needs to con-
form to high-integrity requirements and whose behavior may be ex-
pressed as a state machine. During execution, it can read and write
variables declared in its Attributes. For interaction with other compo-
nents, the task accesses an Input and Output Queue.

The component stores the IDs of its complete state configuration in the
array Active States with regard to hierarchy – more than one state can
be active. Unique state IDs are defined by the enumeration State ID.
Current Depth serves as indicator for the hierarchy level and is thus
equivalent to the write index of the Active State array. The currently
processed state is referenced in Current State, the currently fired transi-
tion in Current Transition. Per definitionem, i.e. as a precondition, the
first state to process is denominated Initial. Current Chain references a
state in a sequence of composites if a (high-level or explicit) transition
traverses a state hierarchy.

Coming from the task stereotype’s runBody operation, a Run Machine
operation constitutes an iteration, e.g. an outer loop, over the state
machine elements. The Check Transition operation implements a mech-
anism to determine the firing of a transition, i.e. evaluation of guard
conditions and defined events.

135

4. Fundamental HIRTE Patterns

Figure 4.5: Statically Resolvable State Machine Pattern Structure

• Task Attribute Set
A record declaring and composing all variables – standard, array or struc-
ture types – required in the execution of the service the component real-
izes. This directly implies a restriction for any procedure implementing
activities and data flows of the component: it may only refer, i.e. read
from and write to, this global set local to the task.

Introducing the set to the pattern goes a long way toward requirements
V and VII: it avoids implicit or local allocations and, when properly
applied, can completely contain variables relevant to the service run-
time state as contribution to a persistent system state.

136

4.2. Elementary Patterns and Structures

• Message Queue
Provides means for interaction between components, conforming to some
organization principle and parameters. While the Ravenscar restrictions
refer to Ada RTE entities (e.g. tasks and their internal queues), their
policies should reflect in the architecture itself: besides size, internal
structure and mutual exclusion, the application-level queue also needs
to refrain from dynamic priorities (cmp. [BW98], 12.1.4).

The actual messages and formats are implementation-specific. On the
component implementation level, especially for guard conditions, we as-
sume the following relationships between messages, events, calls and sig-
nals (cmp. [OMG092], 13). An event is universally a message event
([OMG092], 13.3.18), i.e. a message of specific type is read5 from the
queue. A signal is represented by a message, both for sending and re-
ceiving. Same applies to a call; if a service provides methods, they would
be invoked by messages, with their return values also encoded as a reply
message.

This implies that the message queue is the exclusive interface to interact
with a component in the HIRTE6. Only elements of the HIRTE itself
(e.g. the state tracer introduced below) may override this mechanism.

• State Specification
Defines a simple or composite state of the machine, identified by the ID
of the State ID enumeration type, or the pseudostates Initial and Final
with the corresponding IDs. If specified, Entry and Exit Action reference
procedures implementing the actions to execute on entering and leaving
the state.

Transitions references a linked list of all outgoing transitions, direct and
indirect, i.e. high-level origins. The order may express hierarchical prece-
dence, depending on the implementation (see next section for an exam-
ple).

Executing Proc discriminates between state types by assigning a pro-
cedure to process the specificied state either as simple or composite.
Resolving the association of an attribute with two subtypes could tech-
nically be classified as dispatching. Note however, that HIRTE handles
this with an explicit assignment and subsequent call, no involvement of
an interpreter procedure base class and consequently no dispatching over-
head required in the RTE. Therefore, while avoiding the constellation of
3.3.2 case A, the pattern achieves a similar result, as demonstrated in
the reference source 4.1.

5In contrast to the mere entry of the message in the queue, which is not immediately
detected by the component state machine itself.

6It is still possible to induce unchecked input from outside the HIRTE sphere of influence
as was established in 3.1.1.10; see Actions below.

137

4. Fundamental HIRTE Patterns

• Transition Specification
Establishes a complete transition between two states, originating from
Source, with the Target designating a simple state or a partial transition
to a composite state, if the transition enters or leaves one or more hi-
erarchically arranged borders. Event specifies the type of message that
could trigger the transition on reception, i.e. reading from the compo-
nent’s in queue, if the boolean function referenced by Guard evaluates
to true. For a firing transition, the procedure referenced by Transition
Action is called.

The specification represents a list of outgoing transitions, so Next refer-
ences the successor.

• State Reference Chain
Indirectly7 establishes a hierarchical order between states by separating
a transition into successive steps Next into states referenced by Current.
In contrast to the Transition Specification, which may be derived directly
from a model, the State Reference Chain is an auxiliary construct that
helps to determine the actual internal processes of the state machine
implementation, based on given semantical assumptions.

Accordingly, the chain always needs to end in a simple state, as beyond
the transition decomposition from source to target, it also explicitly re-
gards default entries into and exits on completion from composite states.
A composite state cannot remain active without activating a contained
state8. If a transition’s target is composite, the chain needs to comple-
ment a step into the default state, generally an Initial substate (repeat
for multiple composition respectively indirect substates).

To account for the order of exit action execution when traversing hierar-
chies of states, Inbound differentiates the direction of a partial transition
into and out of a composite state (note that the flag may change over
the course of a transition chain). Here, we find varied precedences for
UML statecharts or e.g. STATEMATE9 (cmp. [HP98]).

• Guard Condition
A boolean function implementing checks and logical comparisons of the
variables declared by the Task Attribute Set. Note that in an Ada con-
text, a function may not alter variable values; thus, the guard may be
considered free from side-effects.

7The association is directed from chain to state; the state specification provides no
information about actual hierarchy sequences.

8We are aware of the fact that this is a semantic variation point in [OMG092], 15.3.11,
but consider the alternative impractical.

9The focus on UML should not restrict the applicability of our approach to other do-
mains.

138

4.2. Elementary Patterns and Structures

The pattern assumes that guards on timing conditions may access a
system clock. Alternatively, the HIRTE may dispatch defined timing
events as messages to the component queue.

• Action
A procedure aggregating any operations on variables of the Task At-
tribute Set. Additionally, in the context of actions, the HIRTE may
allow calls to libraries beyond its sphere of influence, e.g. to interface
devices. Restricting these external implementation invocations to action
procedures allows limited containment of potential side-effects: address
violations are detectable inside the HIRTE space, pre- and postcondi-
tions on the attribute set may be checked.

• Interprete Simple State
A procedure that processes a specification record conforming to a simple
state. If referenced, first it calls the Entry Action procedure.

After completion, it iterates the Transitions list. A semantic variation
point offers different solutions to determine a firing transition. The list
order relates outgoing transitions of the state to transitions of its con-
taining composite states, recursively for further hierarchical containment.
Depending on the intended precedence, transitions may be ordered from
inner to outer enclosure or vice versa. The break condition either con-
cludes the checks after the first positive trigger (accepting the precedence
given by the order), or iterates over the full list to resolve other firing
criteria the implementation deems expedient, e.g. explicit priorities.

Determining fire conditions comprises evaluating the guard function and
comparing the defined trigger event with the type of message last re-
ceived. Conditions based on message parameter values would be defined
as guards. The trigger check then merges both values (if given). We find
another semantic variation point with the mode of event consumption. If
the transition specifies both an event and a guard condition, it is possible
for a received message to match the event but the guard to circumvent
the trigger. In this case, the event may or may not be consumed in the
process.

On leaving the state, i.e. a transition firing, a referenced Exit Action
executes if indicated. The triggered transition is assigned to the task’s
Current Transition for reference in the outer loop.

• Interprete Composite State
A procedure that processes a specification record conforming to a com-
posite state. As such, conforming to our above statement that any config-
uration not including a simple state is transitory, it needs to differentiate
two cases: an ingoing or outgoing transition.

139

4. Fundamental HIRTE Patterns

Depending on a true Inbound flag of the task’s Current Chain, the con-
figuration increments the state depth and, if referenced, executes the
composite states Entry Action. On an outbound transition – Inbound is
false –, it decrements the state depth and, depending on the semantic
regulation, either calls an Exit Action, or pushes it onto a call stack. This
call stack would empty on entering a state, thusly marking the outermost
exit from some hierarchy.

Before exiting, the procedure assigns the Next element to the task’s Cur-
rent Chain, effectively providing the outer iteration of the HIRTE Com-
ponent with a further partial transition to process (see above).

4.2.1.4 Implementation

Our Ada reference implementation takes the form of a generic package. Thisbenefits of a
generic package way, it achieves a clean decoupling of variant application-specific structures

and the invariant state machine mechanisms. There is an important distinction
between this package concept and e.g. a library or a class template: While a
common library package would provide the types respectively classes that the
state machine specializes and instantiates, the Ada package itself is instantiated
for a specific component task. Such a declaration requires a type defining the
State IDs and the maximum depth of the machine’s state hierarchy. The
thusly parametrized package represents a blueprint (the types defining the
machine’s structure) as well as an interpreter for the structures conforming to
the Statically Resolvable State Machine pattern. In addition to the adapted
types necessary to build a machine, it immediately includes attributes required
for the processing, instead of leaving them to be declared by the component10.
The association with a task – i.e. a single caller, no recursion – avoids reentrant
interpreter procedures, the package is not shared (cmp. [ISO95], 12.3, par. 13).

The HIRTE state machine spec as given in listing 4.1 uses a package
HIRTE_Communications that specifies and implements Messages, including
their types and buffers, and Message_Queues. HIRTE state machine decla-
rations correspond to the types and attributes of the pattern. Associations
between the elements are realized as access types. Complementary variables
and procedures handle the message queues.

Listing 4.1: HIRTE State Machine Spec
1 with Ada . Real_Time ,
2 HIRTE_Communications ;
3 use Ada . Real_Time ,
4 HIRTE_Communications ,
5 HIRTE_Communications . Messages ;

10This might appear as a deviation from the pattern, but should be considered merely
a pragmatic rearrangement, as the pattern is not concernded with implementation specifics
like the use of packages, and the package is still instantiated in the context of the component.
Same holds true for Run Machine.

140

4.2. Elementary Patterns and Structures

6
7 −−−−−−−−−−−−−−−−−−−−−−− HIRTE Sta te Machine Generics
8 generic
9

10 type State_ID i s private ;
11 Max_State_Depth : Po s i t i v e ;
12
13 package HIRTE_State_Machine i s
14
15 type Tran s i t i on_Spec i f i c a t i on ;
16 type Trans_Ref i s access a l l Tran s i t i on_Spec i f i c a t i on ;
17 type Action_Ref i s access procedure ;
18 type Guard_Ref i s access function return Boolean ;
19 type Sta t e_Spec i f i c a t i on ;
20 type State_Ref_Chain ;
21 type State_Ref_Chain_Ref i s access a l l State_Ref_Chain ;
22 type State_Proc_Ref i s access procedure ;
23
24 type Sta t e_Spec i f i c a t i on i s record
25
26 ID : State_ID ;
27 Executing_Proc : State_Proc_Ref ;
28 Entry_Action : Action_Ref ;
29 Exit_Action : Action_Ref ;
30 Trans i t i on s : Trans_Ref ;
31
32 end record ;
33
34 type State_Ref i s access a l l Sta t e_Spec i f i c a t i on ;
35
36 type State_Ref_Chain i s record
37
38 Current : State_Ref ;
39 Inbound : Boolean := True ;
40 Next : State_Ref_Chain_Ref ;
41
42 end record ;
43
44 type Tran s i t i on_Spec i f i c a t i on i s record
45
46 Source : State_ID ;
47 Target : aliased State_Ref_Chain ;
48 Event : Messages .Msg_Type ;
49 Guard : Guard_Ref ;
50 Action : Action_Ref ;
51 Next : Trans_Ref ;
52 −− Add p r i o r i t y i f i nd i ca t ed .
53
54 end record ;
55
56 type Current_State_Configuration i s
57 array (1 . . Max_State_Depth) of State_Ref ;
58
59 type Action_Array i s
60 array (1 . . Max_State_Depth) of Action_Ref ;
61
62 protected type Action_Stack i s
63
64 procedure Push (a : in Action_Ref) ;
65 procedure Pop(a : out Action_Ref) ;
66 function Is_Empty return Boolean ;
67

141

4. Fundamental HIRTE Patterns

68 private
69
70 Put_Index : I n t eg e r := 0 ;
71 Actions : Action_Array ;
72
73 end ;
74
75 −− At t r i b u t e s f o r machine proces s ing
76 Current_States_Active : Current_State_Configuration ;
77 Current_Depth : Po s i t i v e := 1 ;
78 Input_Queues : Message_Queues . Ref_Queue_Ref_List ;
79 Input_Queue_Count : I n t eg e r := 0 ;
80 Output_Queues : Message_Queues . Ref_Queue_Ref_List ;
81 Output_Queue_Count : I n t eg e r := 0 ;
82 Queue_Wait_Delay : Time_Span := Microseconds (500000) ;
83 Current_State : State_Ref ;
84 Current_Chain : State_Ref_Chain_Ref := null ;
85 Current_Transit ion : Trans_Ref := null ;
86 Transit ion_Action : Action_Ref := null ;
87 Last_Message_Type : Messages .Msg_Type ;
88 Last_Message_Body : Messages . Binary_Buffer ;
89 Next_Queue_Polled : I n t eg e r := 0 ;
90 Next_Queue_Served : Message_Queues . Message_Queue_Index ;
91 AStack : Action_Stack ;
92
93 procedure Get_Message_From_Queues ;
94
95 procedure Consume_Last_Message ;
96
97 procedure Check_Transition (T : in Trans_Ref ;
98 Fire : out Boolean) ;
99

100 procedure Interprete_Simple_State ;
101 procedure Interprete_Composite_State ;
102
103 procedure Empty_Action_Stack ;
104
105 procedure Run_Machine ;
106
107 end HIRTE_State_Machine ;

The HIRTE state machine body, listing 4.2, realizes the spec defined above.
Variation points annotate implementation alternatives to the solution provided
here.

Listing 4.2: HIRTE State Machine Body
1 package body HIRTE_State_Machine i s
2
3 procedure Get_Message_From_Queues i s
4 −− Retr i eve s a message from the current queue , s t o r e s i t in
5 −− Last_Message_Type and Last_Message_Body . Otherwise sw i t che s
6 −− to the next queue de f ined .
7 −− Determines the access p r i n c i p l e o f the machine ’ s queues .
8
9 OK : Boolean := Fal se ;

10
11 begin
12
13 Message_Queues .Get_Msg(Input_Queues . a l l (Next_Queue_Polled) . al l ,
14 Last_Message_Body ,

142

4.2. Elementary Patterns and Structures

15 OK) ;
16 i f not OK then
17
18 i f Next_Queue_Polled+1 > Input_Queue_Count then
19 Next_Queue_Polled := 1 ;
20 else
21 Next_Queue_Polled := Next_Queue_Polled+1;
22 end i f ;
23
24 delay until Clock + Queue_Wait_Delay ;
25
26 else
27
28 Last_Message_Type := Messages . S e r i a l i z a t i o n .
29 Get_First_Msg_Byte (Last_Message_Body (1)) ;
30
31 end i f ;
32
33 end ;
34
35 procedure Consume_Last_Message i s
36 −− "Empties" the l a s t message .
37 begin
38 Last_Message_Type := Messages . undef ined ;
39 end ;
40
41 procedure Check_Transition (T : in Trans_Ref ;
42 Fire : out Boolean) i s
43 −− Determines the t r i g g e r cond i t i ons (event and guard) o f a t r an s i t i o n .
44 −− Fire i s t rue i f event r e t r i e v e d from queue and guard eva lua t ed to t rue
45 −− (or e i t h e r undef ined) , f a l s e o therwi se .
46
47 Event_Fire ,
48 Guard_Fire : Boolean := False ;
49
50 begin
51
52 i f T. Event /= Messages . undef ined then
53
54 −− Unconsumed message a v a i l a b l e ? I f not , t r y to r e t r i e v e .
55 i f Last_Message_Type = Messages . undef ined then
56 Get_Message_From_Queues ;
57 end i f ;
58
59 i f T. Event = Last_Message_Type then
60 −− Variat ion po in t : process and compare message
61 −− parameters i f i nd i ca t ed .
62 Event_Fire := True ;
63 end i f ;
64
65 else
66 Event_Fire := True ;
67 end i f ;
68
69 i f T. Guard /= null then
70 Guard_Fire := T. Guard . a l l ;
71 else
72 Guard_Fire := True ;
73 end i f ;
74
75 Fire := Event_Fire and Guard_Fire ;
76

143

4. Fundamental HIRTE Patterns

77 end ;
78
79 procedure Interprete_Simple_State i s
80 −− Ca l l s a s soc i a t ed act ions , checks t r a n s i t i o n s .
81 −− Exits , i f a t r a n s i t i o n f i r e s . Assigns Current_Chain (i f t r a n s i t i o n
82 −− not nu l l) and Current_Transition (nu l l i f f i n a l s t a t e) .
83
84 T_Check : Trans_Ref ;
85 Fir ing_Trans i t ion : Trans_Ref := null ;
86 Fire : Boolean := False ;
87
88 begin
89
90 −− Variat ion po in t : depends on h i e r a r c h i c a l precedence
91 −− o f composite s t a t e e x i t ac t i ons .
92 Empty_Action_Stack ;
93
94 Current_States_Active (Current_Depth) := Current_State ;
95
96 i f Current_State . Entry_Action /= null then
97 Current_State . Entry_Action . a l l ;
98 end i f ;
99

100 T_Check := Current_State . Trans i t i on s ;
101
102 −− Variat ion po in t : depends on h i e r a r c h i c a l precedence
103 −− o f r e gu l a r versus high− l e v e l t r a n s i t i o n s .
104 while T_Check /= null loop
105
106 Check_Transition (T_Check , F i r e) ;
107 i f Fire then
108 Fir ing_Trans i t ion := T_Check ;
109 end i f ;
110
111 T_Check := T_Check . Next ;
112
113 −− Variat ion po in t : repea t checks u n t i l a t r a n s i t i o n f i r e s ,
114 −− or s top fo r an e x p l i c i t r e invoca t i on .
115 i f T_Check = null and Fir ing_Trans i t ion = null then
116 T_Check := Current_State . Trans i t i on s ;
117 end i f ;
118
119 −− Add e x p l i c i t p r i o r i t i e s i f i nd i ca t ed .
120 −− Add c o l l i s i o n de t e c t i on and warning i f i nd i ca t ed .
121
122 end loop ;
123
124 i f Current_State . Exit_Action /= null then
125 Current_State . Exit_Action . a l l ;
126 end i f ;
127
128 i f Fir ing_Trans i t ion /= null then
129
130 −− Variat ion po in t : consumption o f message i f event matches
131 −− but guard e va l ua t e s to f a l s e .
132 i f Fir ing_Trans i t ion . Event /= Messages . undef ined
133 and Fir ing_Trans i t ion . Event = Last_Message_Type then
134 Consume_Last_Message ;
135 end i f ;
136
137 Transit ion_Action := Fir ing_Trans i t ion . Action ;
138 Current_Chain := Fir ing_Trans i t ion . Target ’ Access ;

144

4.2. Elementary Patterns and Structures

139
140 while Fir ing_Trans i t ion . a l l . Source
141 /= Current_States_Active (Current_Depth) . a l l . ID loop
142
143 −− Resolve high− l e v e l t r a n s i t i o n : l e a ve s t a t e s u n t i l
144 −− l e v e l i s reached .
145 Current_Depth := Current_Depth−1;
146 i f Current_States_Active (Current_Depth) . Exit_Action /= null then
147 AStack . Push (Current_States_Active (Current_Depth) . Exit_Action) ;
148 end i f ;
149
150 end loop ;
151
152 end i f ;
153
154 Current_Transit ion := Fir ing_Trans i t ion ;
155
156 end ;
157
158 procedure Interprete_Composite_State i s
159 −− Ca l l s a s soc i a t ed act ions , immediate ly makes the t r an s i t i o n
160 −− to a contained (h ierarchy increment) or conta in ing (h ierarchy
161 −− decrement) s t a t e . Ex i t s wi th a s s i gn ing the next element to
162 −− Current_Chain .
163
164 begin
165
166 Current_States_Active (Current_Depth) := Current_State ;
167
168 i f Current_Chain . Inbound then
169
170 −− Variat ion po in t : e x i t ac t ion h ierarchy precedence .
171 Empty_Action_Stack ;
172
173 Current_Depth := Current_Depth+1;
174
175 i f Current_State . Entry_Action /= null then
176 Current_State . Entry_Action . a l l ;
177 end i f ;
178
179 else −− Outbound
180
181 Current_Depth := Current_Depth−1;
182
183 i f Current_State . Exit_Action /= null then
184 −− Variat ion po in t : e x i t ac t ion h ierarchy precedence .
185 AStack . Push (Current_State . Exit_Action) ;
186 end i f ;
187
188 end i f ;
189
190 Current_Chain := Current_Chain . Next ;
191
192 end ;
193
194 procedure Empty_Action_Stack i s
195 −− Pops s tacked e x i t ac t i ons and c a l l s them .
196
197 Exit_Action : Action_Ref := null ;
198
199 begin
200

145

4. Fundamental HIRTE Patterns

201 i f not AStack . Is_Empty then
202 loop
203 AStack . Pop(Exit_Action) ;
204 exit when Exit_Action = null ;
205 Exit_Action . a l l ;
206 end loop ;
207 end i f ;
208
209 end ;
210
211 procedure Run_Machine i s
212 −− Implements an outer loop to i t e r a t e the machine ’ s s t a t e s
213 −− un t i l a f i n a l s t a t e y i e l d s a nu l l t r a n s i t i o n .
214
215 begin
216
217 loop
218
219 −− Variat ion po in t : to s u b s t i t u t e or thogona l reg ions ,
220 −− in t roduce add i t i ona l s t a t e machine s t r u c t u r e s .
221
222 Current_State . Executing_Proc . a l l ;
223
224 exit when Current_Transit ion = null ;
225
226 i f Transit ion_Action /= null then
227 −− Cal l a t r a n s i t i o n ac t ion then ass i gn nu l l to
228 −− a s s e r t i t i s only c a l l e d once when t r a v e r s i n g
229 −− a chained t r an s i t i o n .
230 Transit ion_Action . a l l ;
231 Transit ion_Action := null ;
232 end i f ;
233
234 Current_State := Current_Chain . Current ;
235
236 end loop ;
237
238 end ;
239
240 protected body Action_Stack i s
241 −− Plain s tack f o r e x i t ac t i ons .
242
243 procedure Push (a : in Action_Ref) i s
244 begin
245 Put_Index := Put_Index+1;
246 Actions (Put_Index) := a ;
247 end ;
248
249 procedure Pop(a : out Action_Ref) i s
250 begin
251 i f Put_Index > 0 then
252 a := Actions (Put_Index) ;
253 Put_Index := Put_Index−1;
254 else
255 a := null ;
256 end i f ;
257 end ;
258
259 function Is_Empty return Boolean i s
260 begin
261 return Put_Index = 0 ;
262 end ;

146

4.2. Elementary Patterns and Structures

263
264 end ;
265
266 end HIRTE_State_Machine ;

The procedure Run_Machine (l. 211) presents a significant variation point multiple structures
with the potential extension toward n state machines iterated by the main loop:
as an array of size n, Current_State then references a sequence of structures
to interprete successively. To cope with divergent state complexity between
the machines, i.e. one state regularly claims more run-time for processing
than another, a simple (static) scheduler may be realized by adapting the call
frequency of each Executing_Proc accordingly.

Another variation point is given by the optional extension of events by event parameters
parameters. In addition to the expected message type as referenced in the
transition record, the procedure may also compare a sequence of TLV-encoded
parameter values with the fields of a received message.

Despite the arguments above, one might still argue that attributing the function pointers
versus dispatchingstructures with pointers to functions for their processing is just a variant on,

or veiled, dispatching. However, there are significant differences. Dispatching
is handled by the RTE and requires a corresponding module to manage the
assignment during run-time that is not (without effort) influencable by the
developer. Function pointers on the other hand are assigned explicitly by the
program, without any additional RTE support. In contrast, dispatching is
a complex, black-box mechanic, while pointer assignment and evaluation are
(very) basic, side-effect free operations.

4.2.1.5 Instantiation and Application

Consider the state machine illustrated by the statechart in figure 4.6, assume it
is associated with the behavior of a Component A. To implement it conforming
to the pattern, we first describe the specification with listing 4.3.

Listing 4.3: Pattern-conforming Example Spec
1 package Component_A i s
2
3 −− S ta t e s . . .
4 type Component_A_State_ID i s (I n i t i a l , Simple_1 , Simple_2 , Simple_3 ,
5 Composite_1 , Composite_2 , Final , Composite_1_Initial ,
6 Composite_1_Sub_1 , Composite_1_Sub_2 , Composite_1_Final ,
7 Composite_2_Initial , Composite_2_Sub_1 , Composite_2_Sub_2 ,
8 Composite_2_Final) ;
9

10 −− . . . and t h e i r numerical r ep r e s en ta t i on (e x p l i c i t , f o r the purpose o f
11 −− s t a t e t r a c ing by other components) .
12 for Component_A_State_ID use (I n i t i a l => 1 , Simple_1 => 2 ,
13 Simple_2 => 3 , Simple_3 => 4 , Composite_1 => 5 , Composite_2 => 6 ,
14 Fina l => 7 , Composite_1_Init ia l => 8 , Composite_1_Sub_1 => 9 ,
15 Composite_1_Sub_2 => 10 , Composite_1_Final => 11 ,
16 Composite_2_Init ia l => 12 , Composite_2_Sub_1 => 13 ,
17 Composite_2_Sub_2 => 14 , Composite_2_Final => 15) ;
18

147

4. Fundamental HIRTE Patterns

Figure 4.6: Pattern Example Statechart

19 −− Same fo r t r a n s i t i o n s .
20 type Component_A_Transition_ID i s (T_Initial_TO_Simple_1 ,
21 T_Simple_1_TO_Simple_2 , T_Simple_2_TO_Composite_1 ,
22 T_Simple_2_TO_Composite_2 , T_Composite_1_TO_Composite_2_Sub_1 ,
23 T_Composite_1_TO_Simple_3 , T_Composite_1_Initial_TO_Composite_1_Sub_1 ,
24 T_Composite_1_Sub_1_TO_Composite_1_Sub_2 ,
25 T_Composite_1_Sub_1_TO_Composite_2 ,
26 T_Composite_1_Sub_2_TO_Composite_1_Final , T_Composite_2_TO_Simple_3 ,
27 T_Composite_2_Initial_TO_Composite_2_Sub_1 ,
28 T_Composite_2_Sub_1_TO_Composite_2_Sub_2 ,
29 T_Composite_2_Sub_2_TO_Composite_2_Final , T_Simple_3_TO_Final) ;
30
31 for Component_A_Transition_ID use (T_Initial_TO_Simple_1 => 1 ,
32 T_Simple_1_TO_Simple_2 => 2 , T_Simple_2_TO_Composite_1 => 3 ,
33 T_Simple_2_TO_Composite_2 => 4 ,
34 T_Composite_1_TO_Composite_2_Sub_1 => 5 ,
35 T_Composite_1_TO_Simple_3 => 6 ,
36 T_Composite_1_Initial_TO_Composite_1_Sub_1 => 7 ,
37 T_Composite_1_Sub_1_TO_Composite_1_Sub_2 => 8 ,
38 T_Composite_1_Sub_1_TO_Composite_2 => 9 ,
39 T_Composite_1_Sub_2_TO_Composite_1_Final => 10 ,

148

4.2. Elementary Patterns and Structures

40 T_Composite_2_TO_Simple_3 => 11 ,
41 T_Composite_2_Initial_TO_Composite_2_Sub_1 => 12 ,
42 T_Composite_2_Sub_1_TO_Composite_2_Sub_2 => 13 ,
43 T_Composite_2_Sub_2_TO_Composite_2_Final => 14 ,
44 T_Simple_3_TO_Final => 15) ;
45
46 −− I n s t a n t i a t e the s t a t e machine package to ob ta in a s p e c i a l i z e d copy :
47 package Component_A_State_Machine i s
48 new HIRTE_State_Machine (State_ID => Component_A_State_ID ,
49 Max_State_Depth => 2) ;
50 use Component_A_State_Machine ;
51
52 −− To s to r e the current s t a t e con f i gu ra t i on :
53 type State_Array i s array (1 . . 2) of Component_A_State_ID ;
54
55 −− The a t t r i b u t e s e t o f Component A:
56 type Component_A_Attribute_Set i s record
57
58 Current_States_Active : State_Array ;
59 a t t r i bu t e 1 : I n t e g e r ;
60 a t t r i bu t e 2 : I n t e g e r ;
61
62 end record ;
63
64 Att r ibute s : Component_A_Attribute_Set ;
65
66 −− Actions :
67 procedure A_privateOp1 ;
68 procedure A_Simple_1_Entry ;
69 procedure A_Simple_1_Exit ;
70 procedure Composite_1_Exit ;
71
72 −− Guards :
73 function Guard_Simple_2_TO_Composite_1 return Boolean ;
74 function Guard_Simple_2_TO_Composite_2 return Boolean ;
75 function Guard_Simple_3_TO_Final return Boolean ;
76 function Guard_Composite_1_TO_Simple_3 return Boolean ;
77 function Guard_Composite_2_TO_Simple_3 return Boolean ;
78
79 −− Arrays to cons t ruc t and con f i gure the s t a t e machine :
80 Component_A_States : array (I n i t i a l . . Composite_2_Final)
81 of aliased Component_A_State_Machine . S t a t e_Spec i f i c a t i on ;
82 Component_A_Transitions : array (T_Initial_TO_Simple_1 . . T_Simple_3_TO_Final)
83 of aliased Component_A_State_Machine . T ran s i t i on_Spec i f i c a t i on ;
84
85 −− Arrays to con f i gure the t r an s i t i o n chains :
86 Simple_2_TO_Composite_1_Chain : array (1 . . 1)
87 of aliased Component_A_State_Machine . State_Ref_Chain ;
88 Simple_2_TO_Composite_2_Chain : array (1 . . 1)
89 of aliased Component_A_State_Machine . State_Ref_Chain ;
90 Composite_1_Sub_1_TO_Composite_2_Chain : array (1 . . 2)
91 of aliased Component_A_State_Machine . State_Ref_Chain ;
92 Composite_1_TO_Composite_2_Sub_1_Chain : array (1 . . 1)
93 of aliased Component_A_State_Machine . State_Ref_Chain ;
94
95 −− A ded ica ted procedure to handle a l l po in t e r assignments :
96 procedure Construct_State_Machine ;
97
98 −− The ac tua l component ta s k with communication queues :
99 task type Component_A_Task (

100 To_Kernel_Queue : Message_Queues . Ref_Queue_Ref_List ;
101 From_Kernel_Queue : Message_Queues . Ref_Queue_Ref_List) i s

149

4. Fundamental HIRTE Patterns

102 end Component_A_Task ;
103
104 end Component_A ;

Aside from providing a scheme to apply the introduced pattern to an ac-programming and
code generation tual state machine, the spec conveys an inherent formalism for both systematic

manual programming and model transformation. Hence e.g. the one-element-
arrays for transition chains (l. 86) that a developer would probably recast to
plain variables, but which otherwise reflect the underlying chain construction
principle array size = number of composite state borders crossed. This mech-
anistic approach is continued in the body of listing 4.4. As the underlying
heuristic is manifest (see below), the source is truncated accordingly.

Listing 4.4: Pattern-conforming Example Body
1 package body Component_A i s
2
3 procedure A_privateOp1 i s
4 begin
5 −− Some operat ion on the ta sk a t t r i b u t e s e t .
6 end ;
7
8 procedure A_Simple_1_Entry i s
9 begin

10 Att r ibute s . a t t r i bu t e 1 := 42 ;
11 end ;
12 . . .
13
14 function Guard_Simple_2_TO_Composite_1 return Boolean i s
15 begin
16 i f Att r ibute s . a t t r i bu t e 1 = 42 then
17 return True ;
18 else
19 return False ;
20 end i f ;
21 end ;
22 . . .
23
24 function Guard_Composite_1_TO_Simple_3 return Boolean i s
25 −− Completion cond i t i on fo r Composite_1 reg ion .
26 begin
27 i f Component_A_State_Machine . Current_States_Active (2) . ID
28 = Composite_1_Final then
29 return True ;
30 else
31 return False ;
32 end i f ;
33 end ;
34 . . .
35
36 procedure Construct_State_Machine i s
37 begin
38
39 −− At t r i bu t e t r a n s i t i o n s :
40
41 Component_A_Transitions (T_Initial_TO_Simple_1) . Source := I n i t i a l ;
42 Component_A_Transitions (T_Initial_TO_Simple_1) . Target . Current :=
43 Component_A_States (Simple_1) ’Access ;
44 Component_A_Transitions (T_Initial_TO_Simple_1) . Target . Next := null ;

150

4.2. Elementary Patterns and Structures

45 Component_A_Transitions (T_Initial_TO_Simple_1) . Event :=
46 Messages . undef ined ;
47 Component_A_Transitions (T_Initial_TO_Simple_1) . Guard := null ;
48 Component_A_Transitions (T_Initial_TO_Simple_1) . Action := null ;
49 Component_A_Transitions (T_Initial_TO_Simple_1) . Next := null ;
50
51 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Source := Simple_1 ;
52 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Target . Current :=
53 Component_A_States (Simple_2) ’Access ;
54 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Target . Next := null ;
55 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Event :=
56 Messages . publicOp1 ;
57 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Guard := null ;
58 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Action :=
59 A_privateOp1 ’ Access ;
60 Component_A_Transitions (T_Simple_1_TO_Simple_2) . Next := null ;
61 . . .
62
63 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Source :=
64 Composite_1_Sub_1 ;
65 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Target .
66 Current := Component_A_States (Composite_1) ’Access ;
67 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Target .
68 Inbound := False ;
69 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Target .
70 Next := Composite_1_Sub_1_TO_Composite_2_Chain (1) ’ Access ;
71 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Event :=
72 Messages . publicOp1 ;
73 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Guard := null ;
74 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Action := null ;
75 Component_A_Transitions (T_Composite_1_Sub_1_TO_Composite_2) . Next :=
76 Component_A_Transitions (T_Composite_1_TO_Composite_2_Sub_1) ’Access ;
77 . . .
78
79 −− At t r i bu t e s t a t e s :
80
81 Component_A_States (I n i t i a l) . ID := I n i t i a l ;
82 Component_A_States (I n i t i a l) . Executing_Proc :=
83 Component_A_State_Machine . Interprete_Simple_State ’ Access ;
84 Component_A_States (I n i t i a l) . Entry_Action := null ;
85 Component_A_States (I n i t i a l) . Exit_Action := null ;
86 Component_A_States (I n i t i a l) . T rans i t i on s :=
87 Component_A_Transitions (T_Initial_TO_Simple_1) ’Access ;
88
89 Component_A_States (Simple_1) . ID := Simple_1 ;
90 Component_A_States (Simple_1) . Executing_Proc :=
91 Component_A_State_Machine . Interprete_Simple_State ’ Access ;
92 Component_A_States (Simple_1) . Entry_Action := A_Simple_1_Entry ’ Access ;
93 Component_A_States (Simple_1) . Exit_Action := A_Simple_1_Exit ’ Access ;
94 Component_A_States (Simple_1) . Tran s i t i on s :=
95 Component_A_Transitions (T_Simple_1_TO_Simple_2) ’Access ;
96 . . .
97
98 Component_A_States (Composite_1) . ID := Composite_1 ;
99 Component_A_States (Composite_1) . Executing_Proc :=

100 Component_A_State_Machine . Interprete_Composite_State ’ Access ;
101 Component_A_States (Composite_1) . Entry_Action := null ;
102 Component_A_States (Composite_1) . Exit_Action := Composite_1_Exit ’ Access ;
103 Component_A_States (Composite_1) . Tran s i t i on s :=
104 Component_A_Transitions (T_Composite_1_TO_Composite_2_Sub_1) ’Access ;
105 . . .
106

151

4. Fundamental HIRTE Patterns

107 Component_A_States (F ina l) . ID := Fina l ;
108 Component_A_States (F ina l) . Executing_Proc :=
109 Component_A_State_Machine . Interprete_Simple_State ’ Access ;
110 Component_A_States (F ina l) . Entry_Action := null ;
111 Component_A_States (F ina l) . Exit_Action := null ;
112 Component_A_States (F ina l) . Trans i t i on s := null ;
113 . . .
114
115 −− At t r i bu t e t r a n s i t i o n s t a t e chains :
116
117 Simple_2_TO_Composite_1_Chain (1) . Current :=
118 Component_A_States (Composite_1_Init ia l) ’Access ;
119 Simple_2_TO_Composite_1_Chain (1) . Next := null ;
120
121 Simple_2_TO_Composite_2_Chain (1) . Current :=
122 Component_A_States (Composite_2_Init ia l) ’Access ;
123 Simple_2_TO_Composite_2_Chain (1) . Next := null ;
124
125 Composite_1_Sub_1_TO_Composite_2_Chain (1) . Current :=
126 Component_A_States (Composite_2) ’Access ;
127 Composite_1_Sub_1_TO_Composite_2_Chain (1) . Next :=
128 Composite_1_Sub_1_TO_Composite_2_Chain (2) ’Access ;
129 Composite_1_Sub_1_TO_Composite_2_Chain (2) . Current :=
130 Component_A_States (Composite_2_Init ia l) ’Access ;
131 Composite_1_Sub_1_TO_Composite_2_Chain (2) . Next := null ;
132
133 Composite_1_TO_Composite_2_Sub_1_Chain (1) . Current :=
134 Component_A_States (Composite_2_Sub_1) ’Access ;
135 Composite_1_TO_Composite_2_Sub_1_Chain (1) . Next := null ;
136
137 end ;
138
139 task body Component_A_Task i s
140 begin
141
142 Component_A_State_Machine . Current_States_Active (1) :=
143 Component_A_States (I n i t i a l) ’Access ;
144 Construct_State_Machine ;
145 Att r ibute s . a t t r i bu t e 1 := 0 ;
146 Att r ibute s . a t t r i bu t e 2 := 0 ;
147
148 Component_A_State_Machine . Last_Message_Type := Messages . undef ined ;
149 Component_A_State_Machine . Input_Queues := From_Kernel_Queue ;
150 Component_A_State_Machine . Input_Queue_Count := 1 ;
151 Component_A_State_Machine . Next_Queue_Polled := 1 ;
152 Component_A_State_Machine . Next_Queue_Served := 1 ;
153 Component_A_State_Machine . Current_State :=
154 Component_A_States (I n i t i a l) ’Access ;
155 Component_A_State_Machine . Current_Chain := null ;
156 Component_A_State_Machine . Current_Transit ion := null ;
157
158 Component_A_State_Machine . Run_Machine ;
159
160 end Component_A_Task ;
161
162 end Component_A ;

For the instantiation and application of the Statically Resolvable State Ma-
chine Pattern, we summarize the following rules:

152

4.2. Elementary Patterns and Structures

1. Completion conditions of regions are complemented as guard condition
functions. The array index for the current state configuration is given
by the hierarchy level of the corresponding composite state.

2. Access types, addresses or pointers reference statically declared elements.

3. The procedure Construct_State_Machine handles all initial pointer as-
signments constituting the state machine structure. All subsequent pointer
operations merely reference the established structure and its elements,
e.g. for transition chain iterations.

4. Conditionless transitions from initial states are attributed with null for
guards and events.

5. Outgoing transitions of a state are linked by the Next attribute. The
order is arbitrary. Next = null ends the list.

6. High-level transitions are assigned to the Next attribute of the last el-
ement of the transition list, successively for each inner-to-outer hierar-
chy level of containing composite states (note the variation point in the
sources above).

7. A transition chain is attributed whenever a transition crosses the bor-
ders of composite states, explicitly or implicitly (e.g. via a region’s initial
state). Each element represents, i.e. references, a visited state, ending
with the target, Next = null concluding the list. The Target of a tran-
sition that references a chain with Target.Next is the composite state
visited first in the chain, i.e. the chain itself’s first Current reference
would be the second step. "Visited" applies to inbound or outgoing
transition steps, distinguished by Inbound for each step. This direction
flag may change over the course of a chain, conforming to a transition
from a contained state to another state contained in a different region.

8. A state’s transition reference is assigned the first element of the outgoing
transition list (see above).

9. The state machine’s final state is assigned null as transition reference.

4.2.1.6 Eliminating Pointers

In a scenario that completely restricts the use of pointers of any kind, e.g. pointers vs. IDs
a SPARK ([Ba03]) implementation, we need to substitute the references as
realized above. A valid and immediate approach is presented by the already
defined State ID and Transition ID types and the corresponding arrays.

The difference, and an important reason why we relied on pointers in the pointers and
decompositionreference implementation, is that the decomposition into generic state machine

mechanisms and actual application structures is countermanded: the state

153

4. Fundamental HIRTE Patterns

machine records and procedures need the IDs as array indices to address the
state and transition instances. In consequence, the HIRTE_State_Machine
package would now depend on the package Component_A, resulting in a cyclic
relationship.

We can resolve this by merging both packages, integrating the type defini-merging generic and
application package tions and instantiations. The result is lacking the generic setup of the reference

sources, but retains all significant qualities – static resolvability and efficient
processing. Along the way, another requirement of SPARK, exclusion of tem-
plates, is met.

4.2.2 State Tracer Pattern

4.2.2.1 Abstract

First and foremost, the State Tracer is a direct response to requirements III
(activity transparency) and VII (activity persistency). On a more general level,
it provides a solution for immediate, quasi-RT logging. Common approaches
to implement a logging component define an interface with mutual exclusive
write operations, respectively a queue for log entries, that controls access to
one or more log files. Due to this organization, some delay of the state report
is inevitable. The tracer instead conceives a sequence of n memory segments
for n components realizing services to directly register their current states,
collision-free. These state data arrays are compiled to a state configuration
trace in a defined frequency or triggered by events.

4.2.2.2 Structure

The structure of the pattern is described by fig. 4.7.

4.2.2.3 Collaboration

• Service Component
An active task, implementing some service of the application. The com-
ponent defines a method logState that takes the current component state
to encode and store it as byte array. For the states, an enumeration E-
States specifies the corresponding byte values, therefore also determining
the set of traceable states in the context of a given application. Addi-
tionally, the array may include any variable values necessary to represent
the complete state of the service.

Intuitively, the log method might be provided by the associated Current
State Log. The departure from established OO conventions allows a more
direct, efficient write operation: instead of referencing an encapsuled log
object, stateLog points to a memory segment that is exclusively allo-
cated for one service component. In consequence, the implementation
can avoid mutex or reentrancy overhead. Another potential problem

154

4.2. Elementary Patterns and Structures

Figure 4.7: State Tracer Pattern Structure

(as identified in 3.2.3) is tackled by eliminating the need for generic,
dynamically bound parameters, respectively a polymorphic log method
that would be necessary to handle the diverse state-related component
attributes.

• Current State Log
A static memory segment stores the current state of the associated com-
ponent as binary array. I.e. on concluding a transition, the component
calls logState, writing a fixed length segment to the start_address.

• State Tracer
A passive module that aggregates the current state logs of all compo-
nents, identified and referenced by the enumeration EComponents, and
provides an intermediate stateBuffer for a complete configuration, i.e.
the states of all components for a given instant, or time t. This sam-
ple is assembled by sampleConfiguration, which copies the content of
all logs from their start addresses to the transient buffer, clearing the
log segments for overwriting. Subsequently, the state configuration is
committed to the associated State Configuration Trace.

Depending on the complexity and frequency of entries, the stateBuffer
itself may be realized as cyclic buffer to maintain timing constraints
between RT logging and the (long-term) trace archive.

• State Configuration Trace
A cyclic buffer used by the tracer to store state configurations of n steps

155

4. Fundamental HIRTE Patterns

(see below). commitState accepts a state array, a step number to assure a
relative order and component ID as parameters. The cyclic organization
implies that after writing the nth step, the first entry will be overwritten.
In practice however, the sequence of stored steps may not necessarily be
strictly successive, as certain conditions may forbid overwriting of critical
entries, e.g. fault states or states that hint at manipulation.

• Control Component
An active kernel module that composes the State Tracer for monitoring
the application’s components. It triggers the sampling by the tracer,
thus effectively defining a step of the trace. This invocation may be
time- or event-based. In the time-based case, the interval and frequency
of samples needs to consider the transition frequency of the traced com-
ponents in order to gain meaningful data while minimizing log memory
consumption. The event-based case can introduce a feedback loop: if
e.g. the control component imposes step semantics on the components,
it is able to register completion (all traced components processed their
current states/transitions). Before initiating the next step, the state
configuration is sampled.

4.2.2.4 Implementation

To integrate a state tracer into the architecture, we extend the component
package described in 4.3 by the structures as given in listing 4.5.

Listing 4.5: Extended Component Package Spec
1 package Component_A i s
2
3 . . .
4
5 type Component_A_Attribute_Set i s record
6
7 Component_ID : State_Tracer . EComponents ;
8 Current_States_Active : State_Array ;
9 a t t r i bu t e 1 : I n t e g e r ;

10 a t t r i bu t e 2 : I n t e g e r ;
11 Last_Message_Type : Messages .Msg_Type ;
12 Last_Message_Body : Messages . Binary_Buffer ;
13
14 end record ;
15
16 for Component_A_Attribute_Set use record
17
18 Component_ID at 0 range 0 . . 7 ;
19 Current_States_Active at 1 range 0 . . 1 5 ;
20 a t t r i bu t e 1 at 3 range 0 . . 3 1 ;
21 a t t r i bu t e 2 at 8 range 0 . . 3 1 ;
22 Last_Message_Type at 12 range 0 . . 7 ;
23 Last_Message_Body at 13 range 0 . .MSG_BUFFER_SIZE_BITS−1;
24
25 end record ;
26
27 for Component_A_Attribute_Set ’ S i z e use 152 ;

156

4.2. Elementary Patterns and Structures

28
29 package S e r i a l i z a t i o n i s
30
31 package Component_A_Attribute_Set_Serialization i s
32 new Ada . Storage_IO (Component_A_Attribute_Set) ;
33
34 end S e r i a l i z a t i o n ;
35
36 procedure Log_State (Attr ibute_Set : in Component_A_Attribute_Set ;
37 State_Log : out Storage_Array) ;
38
39 task type Component_A_Task (
40 To_Kernel_Queue : Message_Queues . Ref_Queue_Ref_List ;
41 From_Kernel_Queue : Message_Queues . Ref_Queue_Ref_List ;
42 State_Log : HIRTE. State_Tracer . Component_A_Storage_Array_Ref) i s
43 end Component_A_Task ;
44
45 end Component_A ;

The task attribute set is complemented by two additional entries (l. 5;
a component identification, the recent message) and a specification of its bi-
nary encoding, a record representation clause (l. 16), resulting in an array of
152/8 = 19 Storage Elements, i.e. bytes. An instantiation11 ofAda.Storage_IO
for the defined type provides functions for de-/serialization of the set. Con-
forming to the pattern, the component package includes a Log_State procedure
to serialize a given state into a log storage. The component task definition itself
adds a parameter referencing the dedicated log memory.

Listing 4.6: Log_State Body
1 package body Component_A i s
2
3 procedure Log_State (Attr ibute_Set : in Component_A_Attribute_Set ;
4 State_Log : out Storage_Array) i s
5 begin
6
7 Component_A . S e r i a l i z a t i o n .
8 Component_A_Attribute_Set_Serialization .
9 Write (State_Log , At t r ibut e s) ;

10
11 end ;
12
13 . . .

The Log_State implementation is described by listing 4.6: application of
the previously declared package Component_A.Serialization writes the binary
attribute set representation to the provided storage array.

Listing 4.7 defines the state tracer specification.

Listing 4.7: State Tracer Spec
1 package State_Tracer i s
2
3 STATE_CONFIGURATION_TRACE_ENTRIES : constant Pos i t i v e := 100 ;

11Despite of the new allocator, this expression does not violate the imposed restrictions.
Instantiation happens at compile-time.

157

4. Fundamental HIRTE Patterns

4 TRACE_STEP_RANGE : constant Pos i t i v e := 100000;
5 STATE_BYTE_LENGTH : constant Storage_Count := 1 ;
6 COMPONENT_ID_BYTE_LENGTH : constant Storage_Count := 1 ;
7 KERNEL_STATE_LOG_LENGTH : constant Storage_Count := 177/8 ;
8 COMPONENT_A_STATE_LOG_LENGTH : constant Storage_Count := 152/8;
9 COMPONENT_B_STATE_LOG_LENGTH : constant Storage_Count := 150/8;

10 STATE_TRACER_ENTRY_LENGTH : constant Storage_Count :=
11 KERNEL_STATE_LOG_LENGTH
12 + COMPONENT_A_STATE_LOG_LENGTH
13 + COMPONENT_B_STATE_LOG_LENGTH;
14 KERNEL_LOG_OFFSET : constant Storage_Count := 0 ;
15 COMPONENT_A_LOG_OFFSET : constant Storage_Count :=
16 KERNEL_LOG_OFFSET + KERNEL_STATE_LOG_LENGTH;
17 COMPONENT_B_LOG_OFFSET : constant Storage_Count :=
18 COMPONENT_A_LOG_OFFSET + COMPONENT_A_STATE_LOG_LENGTH;
19
20 type EComponents i s (kerne l , component_a , component_b) ;
21 for EComponents ’ S i z e use 8 ;
22 for EComponents use (k e rne l => 1 , component_a => 2 ,
23 component_b => 3) ;
24
25 subtype Current_State_Log i s
26 Storage_Array (1 . .STATE_TRACER_ENTRY_LENGTH) ;
27 type Current_State_Log_Ref i s access a l l Current_State_Log ;
28 type Kernel_Storage_Array_Ref i s
29 access a l l Storage_Array (1 . .KERNEL_STATE_LOG_LENGTH) ;
30 type Component_A_Storage_Array_Ref i s
31 access a l l Storage_Array (1 . .COMPONENT_A_STATE_LOG_LENGTH) ;
32 type Component_B_Storage_Array_Ref i s
33 access a l l Storage_Array (1 . .COMPONENT_B_STATE_LOG_LENGTH) ;
34 type Trace_Step_Sequence i s mod TRACE_STEP_RANGE;
35 type Trace_Entry_Index i s mod STATE_CONFIGURATION_TRACE_ENTRIES;
36 type Entry_Prior ity i s (c r i t i c a l , warning , r egu la r , i n f o) ;
37 for Entry_Priority ’ S i z e use 2 ;
38
39 type State_Trace_Entry i s record
40
41 Step : Trace_Step_Sequence ;
42 Pr i o r i t y : Entry_Prior ity ;
43 Timestamp : Time_Span ;
44 State_Trace : Current_State_Log ;
45
46 end record ;
47
48 type State_Trace_Array i s
49 array (Trace_Entry_Index) of State_Trace_Entry ;
50
51 protected type State_Configuration_Trace i s
52
53 procedure Commit_State (Step : in Trace_Step_Sequence ;
54 Pr i o r i t y : in Entry_Prior ity ;
55 Timestamp : in Time_Span ;
56 State : in Current_State_Log ;
57 Co l l i s i o n s : out I n t eg e r) ;
58
59 procedure Print_Trace ;
60
61 private
62
63 Put_Index : Trace_Entry_Index := 0 ;
64 State_Trace : State_Trace_Array ;
65

158

4.2. Elementary Patterns and Structures

66 end ;
67
68 type State_Configuration_Trace_Ref i s
69 access a l l State_Configuration_Trace ;
70
71 type Log_Address_Array i s
72 array (1 . .NO_OF_COMPONENTS) of Storage_Count ;
73
74 protected type State_Tracer (Log_Reference : Current_State_Log_Ref ;
75 Trace_Reference : State_Configuration_Trace_Ref) i s
76
77 procedure Sample_Configuration (Sample_Status : out I n t eg e r) ;
78
79 private
80
81 Current_Step : Trace_Step_Sequence := 1 ;
82 State_Buffer : State_Trace_Entry ;
83 Component_Log_Address : Log_Address_Array :=
84 (KERNEL_LOG_OFFSET, COMPONENT_A_LOG_OFFSET) ;
85
86 end ;
87
88 Type State_Tracer_Ref i s access a l l State_Tracer ;
89
90 In i t ia l_Time : Time := Clock ;
91
92 end State_Tracer ;

The specification defines a sequence of constants that determine the num-
ber and size of state log entries, range of the step counter and relative addresses
of each component log in the complete storage array. The trace step range is
required to be larger than the entry count to maintain the invariant of an
intact relative order.

A component ID enumeration (l. 20) is declared in the context of the
state tracer, as it is generally associated with component control. The sub-
type Current_State_Log corresponds to the pattern element of the same name,
with the subsequent declarations mapping the sections dedicated to compo-
nents (in the given example Kernel and Component A). By defining the trace
step sequence and trace entry index as modulo types, they implement a wrap-
around arithmetic, conforming to the relative order invariant and cyclic buffer,
respectively. For illustration purposes, an example of four entry priorities (l.
36; encoded in two bits) is given – they may be used to prevent overwriting of
log entries or realize automatic alerts in critical states.

The pattern elements State Tracer and State Configuration Trace are im-
plemented as protected types, their bodies realized in listing 4.8. With the
Component_Log_Address array (l. 83), the State_Tracer gains a handle on
the set of all aggregated component logs. In this reference implementation,
this is less crucial, as all sublogs are contained in one storage array. Another
implementation however may distribute the individual logs arbitrarily and in-
coherently.

Listing 4.8: State Tracer and Configuration Trace Bodies

159

4. Fundamental HIRTE Patterns

1 package body State_Tracer i s
2
3 protected body State_Configuration_Trace i s
4
5 procedure Commit_State (Step : in Trace_Step_Sequence ;
6 Pr i o r i t y : in Entry_Prior ity ;
7 Timestamp : in Time_Span ;
8 State : in Current_State_Log ;
9 Co l l i s i o n s : out I n t eg e r) i s

10 begin
11 State_Trace (Put_Index) . Step := Step ;
12 State_Trace (Put_Index) . P r i o r i t y := Pr i o r i t y ;
13 State_Trace (Put_Index) . Timestamp := Timestamp ;
14 State_Trace (Put_Index) . State_Trace := State ;
15 −− Implement checks f o r c r i t i c a l p r i o r i t y e n t r i e s here ,
16 −− i f i nd i ca t ed .
17 Co l l i s i o n s := 0 ;
18 Put_Index := Put_Index+1;
19 end ;
20
21 end ;
22
23 protected body State_Tracer i s
24
25 procedure Sample_Configuration (Sample_Status : out I n t eg e r) i s
26 Co l l i s i o n : I n t eg e r ;
27 begin
28 State_Buffer . Step := Current_Step ;
29 State_Buffer . Timestamp := Clock−In i t ia l_Time ;
30 State_Buffer . State_Trace := Log_Reference . a l l ;
31 Trace_Reference . a l l . Commit_State (State_Buffer . Step , r egu la r ,
32 State_Buffer . Timestamp , State_Buffer . State_Trace , C o l l i s i o n) ;
33 Current_Step := Current_Step+1;
34 −− Implement r eac t i on s on c r i t i c a l entry c o l l i s i o n s here ,
35 −− i f i nd i ca t ed .
36 Sample_Status := 1 ;
37 end ;
38
39 end ;
40
41 end State_Tracer ;

Both procedures given here are kept most rudimentary. The tracer commits
each entry directly after taking the sample.

Based on these specs, the tracer is instantiated and referenced in the envi-
ronment (listing 4.9).

Listing 4.9: Instantiating the Tracer
1 package HIRTE_Environment i s
2
3 . . .
4
5 State_Log : aliased HIRTE. State_Tracer . Current_State_Log ;
6
7 HIRTE_Kernel_State_Log :
8 aliased Storage_Array (1 . .HIRTE. State_Tracer .
9 KERNEL_STATE_LOG_LENGTH) ;

10 for HIRTE_Kernel_State_Log ’ Address use
11 State_Log ’ Address+HIRTE. State_Tracer .KERNEL_LOG_OFFSET;
12

160

4.2. Elementary Patterns and Structures

13 HIRTE_Component_A_State_Log :
14 aliased Storage_Array (1 . .HIRTE. State_Tracer .
15 COMPONENT_A_STATE_LOG_LENGTH) ;
16 for HIRTE_Component_A_State_Log ’ Address use
17 State_Log ’ Address+HIRTE. State_Tracer .COMPONENT_A_LOG_OFFSET;
18
19 The_State_Config_Trace : aliased HIRTE. State_Tracer .
20 State_Configuration_Trace ;
21 The_State_Tracer : aliased HIRTE. State_Tracer .
22 State_Tracer (State_Log ’ Access , a_State_Config_Trace ’ Access) ;
23
24 The_HIRTE_Kernel : HIRTE. Kernel . Kernel_Task (
25 HIRTE_Kernel_Input ’ Access ,
26 HIRTE_Kernel_Output ’ Access ,
27 HIRTE_Kernel_State_Log ’ Access ,
28 The_State_Tracer ’ Access) ;
29
30 HIRTE_Component_A : HIRTE.Component_A .Component_A_Task(
31 Queue_C_A_to_K’ Access ,
32 Queue_K_to_C_A’ Access ,
33 HIRTE_Component_A_State_Log ’ Access) ;
34
35 end HIRTE_Environment ;

The environment uses the tracer spec’s constants to complement the sizes
of the declarations. In the given implementation, we declare one coherent
State_Log as container for all component logs. After declaring a component
sublog, the address of its Storage_Array is set to a section of the composing
log, based on an offset (ls. 10, 16). Conforming to the pattern approach, this
address may be any other fitting memory segment. In that case, instead of
passing the state tracer instance a single log reference, it would require a set.

4.2.3 Virtual Control Unit Pattern

4.2.3.1 Abstract

Chapter 2.1.1 described the Electronic Control Units of the automotive do-
main. In this section, we combine the notion of such delimited components
controlled by restrictive programs with a refinement respectively specializa-
tion of virtual machines (cmp. the virtual machine pattern in [Do03], 4.7) to
Virtual Control Units (VCU). As an additional constraint, our requirement
II (system state automata) constitutes the build of a control unit program,
consequently designated Interpretable State Machine Code (ISMC).

The resulting VCU represents a lightweight, state automaton-driven virtual
machine. It is designed

• to be scalable and adaptable – operations, i.e. actions and guards, may
be implemented natively as interpreter command sequences or externally
in corresponding operation sets. Both options need to conform to certain
restrictions (see next sections), but aside from that may realize arbitrarily
simple or complex logics of any kind. With the VCUs providing a safe
RTE, their composing application might represent a slim solution (cmp.

161

4. Fundamental HIRTE Patterns

2.2.3), its operations merely reading out sensors and handling OTA data
distribution, or a fat client, with computation-heavy map-matching and
database operations. By keeping the essential VCU mechanisms generic,
we gain the additional benefit of adaptability to other telematics domains
by replacing the operations.

• to be distributable – the above scalability directly impacts the resulting
executables memory footprints. This implies being able to adapt an ap-
plication’s components to the capabilities of various RTE hardware plat-
forms, and thusly distributing them over a network of e.g. ECUs, OBE
and smartphones etc. depending on given economical or technological
standards. Interaction with the VCU machine can be completely limited
to input and output message queues that in turn may be mapped to any
protocol stack from automotive busses to TCP/IP, enabling integration
into local (vehicle) and/or OTA (CN) networks.

• to be externally controllable – which presents an active scheduling op-
tion and a passive view in terms of monitoring. A VCU machine can run
unimpeded as a "black box" in the loop of some execution unit, exhibit-
ing similar outside behavior as a component based on the SRSM pattern
above. Construction of the interpreter machine given below, however,
permits a detailed active control of the ISMC processing steps. Thus, a
control entity can explicity schedule execution of a set of VCUs. Pas-
sively, in each step, a controlling instance can gain the "white box" state
configurations of the interpreter automaton as well as the application
task realized by the ISMC program.

The VCU approach is an example for the pursuit of plain divide and conquerdivide and
conquer deconstruction. Instead of a complex, heavyweight universal virtual machine

with dynamic threads and a full language set for programming, we propose a
network of strictly controlled lightweight machines, specializable and statically
(safely) implemented, and a limited (manageable) language that facilitates
transparency of behavior. In this regard, the above ECU analogy emphasizes
the distinction between a VCU and e.g. a JavaVM: as an ECU with its limited
but deterministic capabilities is deployed in a risk-averse (sub-)system, recip-
rocally, a complex VM, if anything with nondeterministic features like garbage
collection, is unsuited for safety-critical scenarios that require full white-box
reproducibility of activities.

4.2.3.2 Interpretable State Machine Code

In 3.1.2 we established the usefulness of state automata in the operation oforigin of ISMC
complex distributed systems. As an answer, 4.2.1 proposed a pattern to build
components that adhere to state machine behavior. Further development of

162

4.2. Elementary Patterns and Structures

this concept now leads us to a program scheme that not only mimics but struc-
turally represents a state automaton. For that purpose, this section defines
a language which allows the description of state automata with (in the given
case) binary terminals – the Interpretable State Machine Code12.

While any format could be chosen for convenience, the binary terminals designation of
ISMCconsciously emphasize the disregard for options of some intermediate format,

like XML. The resulting byte sequences are meant to represent machine pro-
grams, i.e. compact instructions for a RTE. They need to be efficiently in-
terpretable, implying an alignment toward optimized parsing for execution, in
contrast to exhaustive structural exploration as found e.g. in the XMI DTD
for the UML metamodel ([OMG07]). Furthermore, the concept has to cope
with the memory constraints of embedded devices and OTA interfaces the
given domain imposes on any realization. Thus, we prefer a compact format
from the start, optimizable in the process (cmp. 4.2.3.6).

The idea of our specific state machine interpreter approach is loosely bor- Turing machines
inspiring ISMCrowed from the concept of Turing machines13 (cmp. [Co04] for a compilation

of the papers). To begin with, a common notion of the derived requirements
I to VI is controllability – clear-cut components with deterministic or at least
fully reproducible behavior. In the context of a "safe application in an unsafe
environment", a consistent implication is to consider a proprietary RTE. This
still does not guarantee faultless execution14, but it goes a long way toward
avoiding side-effects and ensuring monitoring of our own applications. An ad-
ditional benefit is a general independence from existing (or lacking) RTEs. Join
requirement VII: persistent transitions of the complete state configuration are
greatly facilitated by containing the run-time representation of an application
in a coherent repository.

This leads us to the general setup as illustrated by fig. 4.8. Due to its setup of an
ISMC programintended closed character, ISMC complements the automaton structures – the

actual program with State 1 to n – with segments that provide initial in-
formation and run-time registers for the interpreter (notably including the
interpreter state register and head registers), and working memory for the
implemented application. Thus, this tape contains the complete component
program state at any time t during execution.

The interpreter is realized as a state machine itself; its transition function. setup of the
interpreterBased on the instructions read from the tape’s cells at the positions indicated

by the interpreter head, transition chain head and of the registers, it traverses
the states and transitions. To reduce complexity of the interpreter machine
and encapsulate specifics of the actual binary code, a tape reader compiles
tokens from a sequence of cells and passes them, along with their types, to the

12In the following, we use the term "ISMC" for both the language format/type and an
instance, i.e. a program, byte sequence or machine represented in ISMC.

13We are aware of the fact that they are meant as a vehicle for theoretical considerations.
Still, their setup also is useful practically.

14Obviously, if the environment is not under control, what could?

163

4. Fundamental HIRTE Patterns

Figure 4.8: Interpretable State Machine Code Overview

interpreter machine. On reading the cell content, the tape reader advances the
respective head to the position of the first cell of the subsequent token. The
interpreter additionally may execute jumps, i.e. directly setting the heads to
specified tape indices, and write to registers where indicated.

The listing 4.10 defines the ISMC language syntax in Extended Backus-formal ISMC
Naur Form (EBNF)15.

Listing 4.10: ISMC Syntax in EBNF
1 I n t e r p r e t ab l e State Machine Code = Header ,
2 Reg i s t e r s ,
3 Attr ibute Set ,
4 Sta t e s ;
5
6 Header = Name , State Machine ID , I n i t i a l State Reference ;
7 Name = 10 ∗ Byte ;
8 State Machine ID = 4 ∗ Byte ;
9 I n i t i a l State Reference = ISMC Index ;

10
11 Reg i s t e r s = In t e r p r e t e r Head ,
12 Index Marker ,
13 External Operation Marker ,
14 Status ,
15 Trans i t i on Source ,

15Intuitively, ASN.1 would have been a suitable candidate, especially with PER. However,
it would introduce unwanted overhead into the binary format, similarly TLV encoding,
contradicting our optimized approach that is content with TV.

164

4.2. Elementary Patterns and Structures

16 Trans i t i on Chain Head ,
17 Current Leve l ,
18 Active State Conf igurat ion ,
19 Exit Action Markers ,
20 Assignment Marker ,
21 Last Message Buf f e r ,
22 Temporary Message Buf f e r ,
23 Trans i t i on Tr igger ,
24 I n t eg e r Reg i s t e r ,
25 I n t e r p r e t e r State ;
26
27 I n t e r p r e t e r Head = ISMC Index ;
28 Index Marker = { ISMC Index }− ;
29 External Operation Marker = ISMC Index ;
30 Status = GUARD TRUE | GUARD FALSE ;
31 Trans i t i on Source = State ID ;
32 Trans i t i on Chain Head = ISMC Index ;
33 Current Leve l = Hierarchy Marker ;
34 Active State Conf igurat ion = { State ID }− ;
35 Exit Action Marker = { ISMC Index }− ;
36 Assignment Marker = ISMC Index ;
37 Last Message Buf f e r = Message ;
38 Temporary Message Buf f e r = Message ;
39 Trans i t i on Tr igger = Message ;
40 I n t eg e r Reg i s t e r = In t eg e r ;
41 I n t e r p r e t e r State = State ID ;
42
43 Attr ibute Set = Var iab le Count , Var i ab l e s ;
44 Var iab le Count = In t eg e r ;
45 Var iab l e s = { Var iab le } ;
46 Var iab le = n ∗ Byte ; (∗ Appl icat ion−s p e c i f i c ∗)
47
48 (∗ The ISMC In t e r p r e t e r I n s t r u c t i o n Set ∗)
49 Sta t e s = { State }− ;
50
51 State = Simple State | Composite State ;
52
53 Simple State = SIMPLE STATE , State ID ,
54 [Completion] ,
55 [Entry Act ions] ,
56 [Exit Act ions] ,
57 [T ran s i t i on s] ;
58
59 Composite State = COMPOSITE STATE , State ID ,
60 [Entry Act ions] ,
61 [CS Exit Act ions] ,
62 EOL ,
63 [T ran s i t i on s] ;
64
65 Completion = STOP ;
66 Entry Act ions = ENTRY ACTIONS , { Action }− ;
67 Exit Act ions = EXIT ACTIONS , Length , { Action }− , EOL ;
68 CS Exit Act ions = EXIT ACTIONS , { Action }− ;
69
70 Trans i t i on s = TRANSITIONS , { Trans i t i on }− ;
71 Trans i t i on = TRANSITION ,
72 [Event] , [Guard] ,
73 Trans i t i on Chain Marker ,
74 Source ,
75 Next Trans i t i on Reference ,
76 [Trans i t i on Act ions] ,
77 [Targets] ;

165

4. Fundamental HIRTE Patterns

78
79 Event = EVENT , Message ;
80 Message = Message ID , Parameter Count , { Parameter } ;
81 Guard = GUARD , S p e c i f i c Guard ;
82 Sp e c i f i c Guard = (NATIVE_GUARD , Native Guard)
83 | (EXTERNAL_GUARD , External Guard) ;
84 Native Guard = ISMC Index , In t eg e r ;
85 External Guard = Guard ID , Length , Parameter Count , { Parameter } ;
86 Trans i t i on Chain Marker = TC MARKER , ISMC Index ;
87 Source = State ID ;
88 Next Trans i t i on Reference = ISMC Index ;
89 Trans i t i on Act ions = TRANSITION ACTIONS , { Action }− ;
90 Targets = TARGETS , { Target }− , EOL ;
91 Target = State Reference , [Inbound Flag] ;
92 Inbound Flag = INBOUND | OUTBOUND ;
93 State Reference = ISMC Index ;
94
95 State ID = Byte ;
96 Action = (NATIVE ACTION , Native Action)
97 | (EXTERNAL ACTION , External Action) ;
98 Native Action = Send Message | Assign Value ;
99 Send Message = SEND , Message ID , { Parameter } ;

100 Message ID = Byte ;
101 Assign Value = ASSIGN , Action Var iab le , Constant ;
102 External Action = Action ID , Length , Parameter Count , { Parameter } ;
103 Action ID = 2 ∗ Byte ;
104 Parameter = Action Var iab le | Constant ;
105 Action Var iab le = ISMC Index ;
106 Constant = Type , Length , Value ;
107
108 Type = Byte ;
109 Length = ISMC Index ;
110 ISMC Index = 2 ∗ Byte ;
111 I n t eg e r = 4 ∗ Byte ;
112
113 (∗ Al l c ap i t a l− l e t t e r d e f i n i t i o n s are r e s o l v ed to app l i c a t i on−s p e c i f i c
114 byte t e rmina l s . ∗)

The ISMC Header consists of an informal Name, a unique ID, which weheader
propose could serve as fingerprint if computed as some hash (e.g. current
issues of Message Digest or Secure Hash Algorithm, cmp. [Sc96]; sequence
length needs alignment) over the States. The Initial State Reference indicates
the starting cell of the ISMC program in the States sequence, similar to a start
marker in assembler.

Registers provide direct access storage for information, i.e. they offerregisters
unique addresses respectively offsets. It is not necessary to position a head
to read from or write to a register.

Interpreter Head is the primary read/write head of the interpreter machine;
the quasi program counter.

Index Marker is used to temporarily store return addresses, e.g. to reiterate
a transition sequence.

External Operation Marker indicates the starting cell of an operation in-
vocation specification for a call by the composing component.

166

4.2. Elementary Patterns and Structures

Status contains the result of a guard condition evaluation.

Transition Source stores the source state of a current transition for checks
regarding high-level transitions.

Transition Chain Head is the secondary head used to iterate the states
visited by direct transitions and set the primary head accordingly on
each of these states.

Current Level indicates the depth of hierarchical composite state aggrega-
tion for the active state.

Active State Configuration stores the currently active state on each hier-
archy level.

Exit Action Markers indicate the starting cells of exit actions of each com-
posite state for the current depth.

Assignment Marker temporarily stores the cell index of a variable to assign
a value to.

Last Message Buffer contains the message last received by the component’s
input queue.

Temporary Message Buffer stores messages to send via the component’s
output queue.

Transition Trigger temporarily stores the message that triggered a transi-
tion for later event consumption reference.

Interpreter State contains the current state of the interpreter machine.

The Attribute Set provides the storage for all application specific variables. application
attributesGenerally, the HIRTE component containing the interpreter declares a cor-

responding record that maps its address to the attribute set cell sequence in
the ISMC. Thus, the binary representation format is application-specific and
not given in the syntax definition. Merely a Variable Count is proposed and a
generic byte sequence reserved.

The States specification effectively defines the ISMC interpreter instruction body of states
as instructionsset, as each element prompts the interpreter to transition and process the

actions defined for its current state, i.e. execute the program given by the
ISMC. The state automaton of figures 4.9 to 4.12 exhaustively defines the
operational semantics of the States productions – as explained in 3.3.1, the
semantics in this case relate to and depend on the actual run-time machine
that is realized by the interpreter. Each byte opcode changes the state of the
RTE in the way specified by the ISMC interpreter automaton.

The underlying modus operandi of composite state processing, direct and recalling the
SRSM pattern

167

4. Fundamental HIRTE Patterns

high-level transitions corresponds to the mechanisms established in 4.2.1. The
same holds true for the supported statechart elements: simple states with en-
try and exit actions, single region composite states with entry and exit actions,
initial and final pseudostates, direct, high-level, explicit and completion tran-
sitions with actions, triggered by events respectively message reception and/or
guards.

The interpreter automaton was consciously structurally specified as simplea plain and
flat automaton (and thus robust) as possible without composite states or transition actions.

This aims at an intelligible run-time model and execution semantics: e.g. a
transition only affects the interpreter state, it does not alter the state of the
application or the ISMC, respectively. Implementation and also extension are
therefore mechanistic and straightforward, minimizing ambiguity.

Fig. 4.13 sketches the business process and artifacts intended for the gener-creating ISMC
programs ation and utilization of ISMC. This work provides the crucial HIRTE conven-

tions and constraints for modeling (sections 3.2, 3.3), formal ISMC language
definition (listing 4.10) and ISMC interpreter automaton (figures 4.9 to 4.12,
listings 4.11 and 4.12). Other steps of the process have to be based on these
results, but are out of scope of this work. For the creation and modification
of the model, a common UML tool like Enterprise Architect ([SS10]) is suit-
able, able to export in XML respectively XMI format. With the language
defined, compilation from XML to ISMC is a standard exercise. A rewarding
subject for future extensions should lie in the integration of model checking
techniques into the process: e.g. a transformation of the model into pro-
cess algebra terms respectively systems specification languages (CSP [Ro98],
[Ho04], PROMELA [Ho03]) allows for the verification and successive ensuring
of semantical properties like consistency (cmp. [Ste032]), schedulability and
collision-free concurrency.

4.2.3.3 Structure

The structure of the VCU pattern is described by fig. 4.14.

4.2.3.4 Collaboration

• HIRTE Component
Represents a service respectively an application element with restricted
interfaces, its activity specification conforming to a state machine struc-
ture. Unlike the HIRTE Component of 4.2.1, this one is not necessarily
an active task itself, i.e. it is not required to implement and run it as a
thread. Instead, either this (passive) component’s Run or Step method is
invoked in the context of another active execution unit, which we discuss
in the next chapter 5.

Interactions with other components read from or write to the Input and
Output Queues. The record App Variables composes all attributes the

168

4.2. Elementary Patterns and Structures

Figure 4.9: ISMC Interpreter Automaton

169

4. Fundamental HIRTE Patterns

Figure 4.10: ISMC Interpreter Automaton (continued)

170

4.2. Elementary Patterns and Structures

Figure 4.11: ISMC Interpreter Automaton (continued)

171

4. Fundamental HIRTE Patterns

Figure 4.12: ISMC Interpreter Automaton (continued, finished)

172

4.2. Elementary Patterns and Structures

Figure 4.13: ISMC Business Process

component application requires for processing, same as App Ops contains
all procedures referenced by actions or guards of the application’s state
machine.

The component is able to execute n ISMC programs by managing n com-
posed ISMC Interpreters: it receives a program on calls of Set Tape and
passes it to the corresponding Machine. After that, Run prompts the
component to invoke the Machines in a continuous loop, Step advances
processing one state of each interpreter machine (not of the service real-
ized by the component).

The existence of a superordinate control instance notwithstanding, the
Run method may already apply some local scheduling strategy (cmp.
[BW09], chapter 11) to the invocation of a sequence of interpreters by
considering the measurable number of interpreter transitions, the number
of application transitions, the number of actions and guards (external op-
erations), and waiting for events/messages. The frequency of calls to Step
of each Machine can then be adjusted to given ISMC program priorities,
whether the realized activity is sporadic or aperiodic and its operation
run-time requirements (as an approximation of temporal requirements).
Correspondingly, Step is meant for scheduling by an instance controlling
a composition of VCUs (ref. to chapter 5).

The separation of application and generic state machine concerns im-
plies a direct handle of the component to the ISMC byte sequence. This
pertains to the execution of external operations (see below); a mecha-
nism that is not entirely encapsuled by the Get and Set methods of the
interpreter.

173

4. Fundamental HIRTE Patterns

Figure 4.14: Virtual Control Unit Pattern Structure

• Task Attribute Set
Composes all standard type, array and structure variables of the appli-
cation realized by the VCU. All operations, i.e. actions and guards, work
with this set.

A critical additional property is the relation to the ISMC byte sequence:
the addresses of the variable declarations map to a subsequence reserved
for the attribute set. This works toward achieving fulfillment of require-
ment VII (persistency of activities) by containing all elements relevant
to the system state as a precondition for structured storage.

• External Operation Set
The ISMC interpreter differentiates between native and external oper-
ations. Generally, these encompass actions as well as guards, i.e. pro-
cedures that check guard conditions. While native operations are part
of the ISMC instruction set and are thus processed by the interpreter,
external operations call for separate execution.

To this end, an external operation marker registers an address in the
ISMC byte array that tags the specification (ID, parameters) of the op-
eration to invoke. After each Step of the interpreter, the HIRTE compo-

174

4.2. Elementary Patterns and Structures

nent checks the register with Get_External_Operation_Marker. If the
value is not equal to UNDEFINED, the component directly accesses the
ISMC at the given index, retrieving the operation’s ID and, if given,
parameters.

Conforming to a mapping of the IDs to the actions and guards of the set,
the corresponding operation is invoked. As stated above, it may access
variables of the Task Attribute Set and additionally the ISMC registers, so
a guard may Set_Status to GUARD_TRUE or GUARD_FALSE after
evaluation. Thus, on return, the component merely notifies the inter-
preter with Set_External_Operation_Marker(COMPLETE).

• Message Queue
The input and output queues for interaction with other components have
the same properties as given in 4.2.1.3. To achieve the handover of
messages between queue interface structures and ISMC, the component
utilizes ISMC registers with the Get/Set methods of the interpreter.

If an action prompts the ISMC program to send a message, it writes it
to the Temporary Message Buffer register. In the loop of Steps, the com-
ponent checks the register for messages (Get_Tmp_Message_Buffer not
equal UNDEFINED_MSG). On a stored message, the component writes
it to the output queue and sets the register to UNDEFINED_MSG.

Whenever the component reads a message from its input queue in the
interpreter processing loop, it writes it to the ISMC tape with Set_-
Last_Message_Buffer, if the previous message was already consumed
by the ISMC program (register equals UNDEFINED_MSG), i.e. con-
sumption is handled by an interpreter state.

• ISMC Interpreter
Implements the ISMC interpreter automaton of the previous section. All
attributes necessary for ISMC processing are mapped to the ISMC tape,
so the overall system state is contained in this structure, working toward
fulfillment of requirement VII (persistency of activities). The possible
exception are the variables of Cell Tokens and types used by the tape
reader procedure. However, this is uncritical, as the current and last read
tokens may be reproduced from the position of the Interpreter Head (see
above), which in turn is safely stored in an ISMC register.

With Set Tape, the HIRTE Component passes a handle to the ISMC
to process. Get and Set methods provide access to the registers and
other ISMC attributes, where applicable. Step invokes the interpreter
processing and the transition of the automaton states.

Actions of the interpreter states rely on Read Tape for compiling cell
content at the position of a given head to tokens. This implies the
conversion of the byte sequence to tokens of

175

4. Fundamental HIRTE Patterns

SM Control – an instruction affecting the machine’s control flow,

State ID – the identification of an application state,

ISMC Index – a position on the ISMC tape,

Byte – some byte value,

Double – two bytes,

Integer – some integer value and

Event – a message byte sequence with ID and content respectively mes-
sage body.

The token type is explicitly provided in an interpreter attribute for dis-
crimination after each call to Read Tape.

Note: another convenient approach might have been to implement the
tape reader as a class and associate the interpreter with an instance. This
consequent encapsulation would support replacement of the byte scanner
in cases of other potential ISMC formats without needing to change the
interpreter itself. However, we banned dispatching in section 3.3.2: the
call to Tape Reader.Read Tape would have to be resolved dynamically.
Thus, the alternative scanner procedure still provides us with a degree
of encapsulation (procedure instead of class, defined set of associated
attributes) and clear boundaries for future adaptions.

• Interpretable State Machine Code
A byte array structurally conforming to the specification of listing 4.10
(ISMC Syntax in EBNF). It contains the HIRTE component’s applica-
tion program, its variables and values, and the current state of execution.

The given collaboration achieves a separation of concerns of the applica-application and
state machine
concerns

tion and the generic state machine mechanisms. The component realizes the
application per se, the attribute and operation sets are directly associated
with the application’s domain, providing its corresponding data and special-
ized functionality if needed. These application specifics take a generic form in
the context of the interpreter and ISMC: native operations will usually be of
general utility, application states are not interpreted beyond their byte value
and the application attributes map to an opaque byte sequence.

In the following, we will interpret the VCU boundary as a component; avcu stereotype
stereotype «vcu »will indicate that it contains the setup as given above.

4.2.3.5 Implementation

The following listings provide a reference implementation for the elements of a
Virtual Control Unit. To keep the extensiveness of the sources in check, basic
modules (message queues, operation sets) as well as various checks have been
omitted; like an initial signature check of the ISMC body’s hash and especially

176

4.2. Elementary Patterns and Structures

concerning the explicit conversions of binary formats. This does not affect the
essence of the solution.

Listing 4.11: ISMC Interpreter Spec
1 with System . Storage_Elements ,
2 Ada . Storage_IO ,
3 Ada . Integer_Text_IO ,
4 Ada . Unchecked_Conversion ,
5 HIRTE_Configuration ,
6 HIRTE_Communications ,
7 Ada . Text_IO ;
8
9 use System . Storage_Elements ,

10 Ada . Integer_Text_IO ,
11 HIRTE_Configuration ,
12 HIRTE_Communications ,
13 Ada . Text_IO ;
14
15 package HIRTE_ISMC_Interpreter i s
16
17 −− Conf igurat ion and Reg i s t e r O f f s e t s
18 ISMC_LENGTH : constant Storage_Count := 5000 ;
19 MAX_HIERARCHY_DEPTH : constant Storage_Count := 3 ;
20
21 ID_OFFSET : constant Storage_Count := 11 ;
22 INITIAL_STATE_REF_OFFSET : constant Storage_Count := 15 ;
23 I_HEAD_OFFSET : constant Storage_Count := 17 ;
24 INDEX_MARKER_OFFSET : constant Storage_Count := 19 ;
25 EXTERNAL_OPERATION_MARKER_OFFSET : constant Storage_Count := 23 ;
26 STATUS_OFFSET : constant Storage_Count := 25 ;
27 TRANSITION_SOURCE_OFFSET : constant Storage_Count := 26 ;
28 TC_HEAD_OFFSET : constant Storage_Count := 27 ;
29 CURRENT_LEVEL_OFFSET : constant Storage_Count := 29 ;
30 ACTIVE_STATE_OFFSET : constant Storage_Count := 30 ;
31 EXIT_ACTION_MARKERS_OFFSET : constant Storage_Count := 34 ;
32 ASSIGNMENT_MARKER_OFFSET : constant Storage_Count := 42 ;
33 LAST_MESSAGE_BUFFER_OFFSET : constant Storage_Count := 44 ;
34 TMP_MESSAGE_BUFFER_OFFSET : constant Storage_Count := 54 ;
35 TRANSITION_TRIGGER_OFFSET : constant Storage_Count := 64 ;
36 INTEGER_REGISTER_OFFSET : constant Storage_Count := 74 ;
37
38 INTERPRETER_STATE_OFFSET : constant Storage_Count := 92 ;
39 HEADER_OFFSET : constant Storage_Count := 93 ;
40
41 −− Types and Constants
42 subtype ISMC_Tape i s Storage_Array (1 . . ISMC_LENGTH) ;
43 type ISMC_Tape_Ref i s access a l l ISMC_Tape ;
44 type ISMC_Index i s range 0 . .ISMC_LENGTH;
45 for ISMC_Index ’ S i z e use 16 ;
46 UNDEFINED : constant ISMC_Index := 0 ;
47 COMPLETE : constant ISMC_Index := 1 ;
48 UNDEFINED_MSG : constant Messages . Binary_Buffer :=
49 (16#00#,16#00#,16#00#,16#00#,16#00#,16#00#,16#00#,16#00#,16#00#,16#00#);
50 UNDEFINED_STATE : constant Storage_Element := 16#00#;
51 subtype ISMC_Index_Cell i s Storage_Array (1 . . 2) ;
52 type Hierarchy_Marker i s range 0 . .MAX_HIERARCHY_DEPTH;
53 for Hierarchy_Marker ’ S i z e use 8 ;
54 subtype Active_State_Conf igurat ion i s Storage_Array (0 . .MAX_HIERARCHY_DEPTH) ;
55 subtype Integer_Buf fe r i s Storage_Array (1 . . 4) ;
56
57 type ISMC_Automaton_State i s (I n i t i a l , I n i t i a l i z e , Enter_Simple_State ,

177

4. Fundamental HIRTE Patterns

58 Set_Active_Simple_State , Process_SS_Entry_Actions ,
59 Process_SS_Native_Entry_Action , Process_SS_External_Entry_Action ,
60 Set_Head_on_Next_SSEA_Item , Set_SS_Exit_Action_Marker ,
61 Set_Head_on_Next_SS_Item , I t e ra t e_Trans i t i ons , Check_Transition ,
62 Check_Event , Compare_Events , Event_Occured , Check_Guard ,
63 Evaluate_Native_Guard , Skip_Guard , Evaluate_External_Guard ,
64 Set_Head_on_Next_Guard_Item , Firing_Condition_False ,
65 Firing_Condition_True , Skip_Transition_Chain_Marker ,
66 Read_Transition_Chain_Marker , Set_Transition_Chain_Head ,
67 Skip_Transition_Source , Check_Next_Transition , Set_Transition_Source ,
68 Rei te rate_Trans i t ions , Determine_Triggering , Set_Head_on_SS_Exit_Actions ,
69 Process_SS_Exit_Actions , Process_SS_Native_Exit_Action ,
70 Process_SS_External_Exit_Action , Set_Head_on_Next_SSXA_Item ,
71 Leave_Simple_State , Determine_Triggering_Event , Consume_Message ,
72 Reach_Transition_Level , Determine_HLT_Exit_Actions , Process_Transit ion ,
73 Set_Head_on_HLT_Exit_Actions , Process_HLT_Exit_Actions ,
74 Process_HLT_Native_Exit_Action , Process_HLT_External_Exit_Action ,
75 Set_Head_on_Next_HLTXA_Item , Leave_HLT_Composite_State , Transit ,
76 Process_Transit ion_Actions , Process_Native_Transition_Action ,
77 Process_External_Transit ion_Action , Set_Head_on_Next_TA_Item ,
78 Set_Head_on_State , Process_Composite_State , Enter_Composite_State ,
79 Set_Active_Composite_State , Process_CS_Entry_Actions ,
80 Process_CS_Native_Entry_Action , Process_CS_External_Entry_Action ,
81 Set_Head_on_Next_CSEA_Item , Set_CS_Exit_Action_Marker ,
82 Raise_Hierarchy_Level , Determine_CS_Exit_Actions ,
83 Set_Head_on_CS_Exit_Actions , Process_CS_Exit_Actions ,
84 Process_CS_Native_Exit_Action , Process_CS_External_Exit_Action ,
85 Set_Head_on_Next_CSXA_Item , Leave_Composite_State , Final , Fa i l u r e) ;
86
87 for ISMC_Automaton_State use (I n i t i a l => 0 , I n i t i a l i z e => 1 ,
88 Enter_Simple_State => 2 , Set_Active_Simple_State => 3 ,
89 Process_SS_Entry_Actions => 4 , Process_SS_Native_Entry_Action => 5 ,
90 Process_SS_External_Entry_Action => 6 , Set_Head_on_Next_SSEA_Item => 7 ,
91 Set_SS_Exit_Action_Marker => 8 , Set_Head_on_Next_SS_Item => 9 ,
92 I t e r a t e_Trans i t i on s => 10 , Check_Transition => 11 , Check_Event => 12 ,
93 Compare_Events => 13 , Event_Occured => 14 , Check_Guard => 15 ,
94 Evaluate_Native_Guard => 16 , Skip_Guard => 17 ,
95 Evaluate_External_Guard => 18 , Set_Head_on_Next_Guard_Item => 19 ,
96 Firing_Condit ion_False => 20 , Firing_Condition_True => 21 ,
97 Skip_Transition_Chain_Marker => 22 , Read_Transition_Chain_Marker => 23 ,
98 Set_Transition_Chain_Head => 24 , Skip_Transit ion_Source => 25 ,
99 Check_Next_Transition => 26 , Set_Transit ion_Source => 27 ,

100 Rei t e ra te_Trans i t i ons => 28 , Determine_Triggering => 29 ,
101 Set_Head_on_SS_Exit_Actions => 30 , Process_SS_Exit_Actions => 31 ,
102 Process_SS_Native_Exit_Action => 32 , Process_SS_External_Exit_Action => 33 ,
103 Set_Head_on_Next_SSXA_Item => 34 , Leave_Simple_State => 35 ,
104 Determine_Triggering_Event => 36 , Consume_Message => 37 ,
105 Reach_Transition_Level => 38 , Determine_HLT_Exit_Actions => 39 ,
106 Process_Trans i t ion => 40 , Set_Head_on_HLT_Exit_Actions => 41 ,
107 Process_HLT_Exit_Actions => 42 , Process_HLT_Native_Exit_Action => 43 ,
108 Process_HLT_External_Exit_Action => 44 , Set_Head_on_Next_HLTXA_Item => 45 ,
109 Leave_HLT_Composite_State => 46 , Trans i t => 47 ,
110 Process_Transit ion_Actions => 48 , Process_Native_Transit ion_Action => 49 ,
111 Process_External_Transit ion_Action => 50 , Set_Head_on_Next_TA_Item => 51 ,
112 Set_Head_on_State => 52 , Process_Composite_State => 53 ,
113 Enter_Composite_State => 54 , Set_Active_Composite_State => 55 ,
114 Process_CS_Entry_Actions => 56 , Process_CS_Native_Entry_Action => 57 ,
115 Process_CS_External_Entry_Action => 58 , Set_Head_on_Next_CSEA_Item => 59 ,
116 Set_CS_Exit_Action_Marker => 60 , Raise_Hierarchy_Level => 61 ,
117 Determine_CS_Exit_Actions => 62 , Set_Head_on_CS_Exit_Actions => 63 ,
118 Process_CS_Exit_Actions => 64 , Process_CS_Native_Exit_Action => 65 ,
119 Process_CS_External_Exit_Action => 66 , Set_Head_on_Next_CSXA_Item => 67 ,

178

4.2. Elementary Patterns and Structures

120 Leave_Composite_State => 68 , F ina l => 69 , Fa i l u r e => 70) ;
121
122 for ISMC_Automaton_State ’ S i z e use 8 ;
123 for ISMC_Automaton_State ’ Alignment use 1 ;
124
125 type ISMC_Token_Type i s (T_SM_Control , T_State_ID , T_ISMC_Index , T_Event ,
126 T_Byte , T_Double , T_Integer) ;
127 for ISMC_Token_Type use (T_SM_Control => 1 , T_State_ID => 2 , T_ISMC_Index => 3 ,
128 T_Event => 4 , T_Byte => 5 , T_Double => 6 , T_Integer => 7) ;
129 for ISMC_Token_Type ’ S i z e use 8 ;
130 type ISMC_Control_Item i s (SIMPLE_STATE, STOP, TRANSITIONS, ENTRY_ACTIONS,
131 EXIT_ACTIONS, NATIVE_ACTION, EXTERNAL_ACTION, TRANSITION, EVENT, TC_MARKER,
132 GUARD, NATIVE_GUARD, EXTERNAL_GUARD, EOL, TARGETS, TRANSITION_ACTIONS,
133 COMPOSITE_STATE, INBOUND, OUTBOUND, SEND, ASSIGN) ;
134 for ISMC_Control_Item use (SIMPLE_STATE => 1 , STOP => 2 , TRANSITIONS => 3 ,
135 ENTRY_ACTIONS => 4 , EXIT_ACTIONS => 5 , NATIVE_ACTION => 6 , EXTERNAL_ACTION => 7 ,
136 TRANSITION => 8 , EVENT => 9 , TC_MARKER => 10 , GUARD => 11 , NATIVE_GUARD => 12 ,
137 EXTERNAL_GUARD => 13 , EOL => 14 , TARGETS => 15 , TRANSITION_ACTIONS => 16 ,
138 COMPOSITE_STATE => 17 , INBOUND => 18 , OUTBOUND => 19 , SEND => 20 , ASSIGN => 21) ;
139 for ISMC_Control_Item ’ S i z e use 8 ;
140 type ISMC_Status i s (GUARD_FALSE, GUARD_TRUE, STATUS_UNDEFINED) ;
141 for ISMC_Status use (GUARD_FALSE => 0 , GUARD_TRUE => 1 , STATUS_UNDEFINED => 2) ;
142 for ISMC_Status ’ S i z e use 8 ;
143
144 protected type ISMC_Automaton i s
145
146 procedure Set_Tape (T : in ISMC_Tape_Ref) ;
147 function Get_Tape return ISMC_Tape_Ref ;
148 procedure Set_Interpreter_State (S : in ISMC_Automaton_State) ;
149 function Get_Interpreter_State return ISMC_Automaton_State ;
150 procedure Set_ISMC_Name(S : in St r ing) ;
151 function Get_ISMC_Name return St r ing ;
152 procedure Set_ISMC_ID(ID : in Storage_Array) ;
153 function Get_ISMC_ID return Storage_Array ;
154 procedure Set_Ini t ia l_State_Reference (S : in ISMC_Index_Cell) ;
155 function Get_Init ia l_State_Reference return ISMC_Index_Cell ;
156 procedure Set_Interpreter_Head (H : in ISMC_Index_Cell) ;
157 function Get_Interpreter_Head return ISMC_Index_Cell ;
158 procedure Set_Index_Marker (M : in ISMC_Index_Cell) ;
159 function Get_Index_Marker return ISMC_Index_Cell ;
160 procedure Set_External_Operation_Marker (I : in ISMC_Index) ;
161 function Get_External_Operation_Marker return ISMC_Index ;
162 procedure Set_Status (S : in ISMC_Status) ;
163 function Get_Status return ISMC_Status ;
164 procedure Set_Transit ion_Source (S : in Storage_Element) ;
165 function Get_Transition_Source return Storage_Element ;
166 procedure Set_Transition_Chain_Head (H : in ISMC_Index_Cell) ;
167 function Get_Transition_Chain_Head return ISMC_Index_Cell ;
168 procedure Set_Current_Level (L : in Hierarchy_Marker) ;
169 function Get_Current_Level return Hierarchy_Marker ;
170 procedure Set_Active_State (S : in Storage_Element ; i : in Hierarchy_Marker) ;
171 function Get_Active_State (i : in Hierarchy_Marker) return Storage_Element ;
172 procedure Set_Exit_Action_Marker (M : in ISMC_Index_Cell ;
173 i : in Hierarchy_Marker) ;
174 function Get_Exit_Action_Marker (i : in Hierarchy_Marker)
175 return ISMC_Index_Cell ;
176 procedure Set_Assignment_Marker (M : in ISMC_Index_Cell) ;
177 function Get_Assignment_Marker return ISMC_Index_Cell ;
178 procedure Set_Last_Message_Buffer (M : in Messages . Binary_Buffer) ;
179 function Get_Last_Message_Buffer return Messages . Binary_Buffer ;
180 procedure Set_Tmp_Message_Buffer (M : in Messages . Binary_Buffer) ;
181 function Get_Tmp_Message_Buffer return Messages . Binary_Buffer ;

179

4. Fundamental HIRTE Patterns

182 procedure Set_Transit ion_Trigger (M : in Messages . Binary_Buffer) ;
183 function Get_Transition_Trigger return Messages . Binary_Buffer ;
184
185 procedure Read_Tape(Head : in out ISMC_Index_Cell) ;
186 procedure Write_Index_to_Tape (Head : in out ISMC_Index_Cell ;
187 Index : in ISMC_Index) ;
188 procedure Write_Control_Item_to_Tape (Head : in out ISMC_Index_Cell ;
189 Item : in ISMC_Control_Item) ;
190 procedure Step ;
191
192 private
193
194 ISMC : ISMC_Tape_Ref ;
195 In t e rp r e t e r_Sta t e : ISMC_Automaton_State := I n i t i a l ;
196 Token_Type : ISMC_Token_Type ;
197 Token_SM_Control : ISMC_Control_Item ;
198 Token_State_ID : Storage_Element ;
199 Token_ISMC_Index : ISMC_Index ;
200 Token_Byte : Storage_Element ;
201 Token_Double : Storage_Array (1 . . 2) ;
202 Token_Integer : I n t e g e r ;
203 Token_Event : Messages . Binary_Buffer ;
204
205 end ISMC_Automaton ;
206
207 end HIRTE_ISMC_Interpreter ;

Listing 4.11 specifies the ISMC interpreter. For all types relevant to the
system state configuration an explicit representation is defined to enable per-
sistency, i.e. structured and systematic storage of the program in a given
run-time state of execution.

Listing 4.12: ISMC Interpreter Body
1 package body HIRTE_ISMC_Interpreter i s
2
3 protected body ISMC_Automaton i s
4
5 procedure Set_Tape (T : in ISMC_Tape_Ref) i s
6 begin
7 ISMC := T;
8 end ;
9

10 function Get_Tape return ISMC_Tape_Ref i s
11 begin
12 return ISMC;
13 end ;
14
15 procedure Set_Interpreter_State (S : in ISMC_Automaton_State) i s
16 begin
17 ISMC(INTERPRETER_STATE_OFFSET) := Write_ISMC_Automaton_State (S) ;
18 end ;
19
20 function Get_Interpreter_State return ISMC_Automaton_State i s
21 begin
22 return Read_ISMC_Automaton_State (ISMC(INTERPRETER_STATE_OFFSET)) ;
23 end ;
24
25 procedure Set_ISMC_Name(S : in St r ing) i s
26 begin
27 ISMC(1 . . 1 0) := Set_Name(S) ;

180

4.2. Elementary Patterns and Structures

28 end ;
29
30 function Get_ISMC_Name return St r ing i s
31 begin
32 return Get_Name(ISMC(1 . . 1 0)) ;
33 end ;
34
35 procedure Set_ISMC_ID(ID : in Storage_Array) i s
36 begin
37 ISMC(ID_OFFSET . . ID_OFFSET+3) := ID ;
38 end ;
39
40 function Get_ISMC_ID return Storage_Array i s
41 begin
42 return ISMC(ID_OFFSET . . ID_OFFSET+3);
43 end ;
44
45 procedure Set_Ini t ia l_State_Reference (S : in ISMC_Index_Cell) i s
46 begin
47 ISMC(INITIAL_STATE_REF_OFFSET . . INITIAL_STATE_REF_OFFSET+1) := S ;
48 end ;
49
50 function Get_Init ia l_State_Reference return ISMC_Index_Cell i s
51 begin
52 return ISMC(INITIAL_STATE_REF_OFFSET . . INITIAL_STATE_REF_OFFSET+1);
53 end ;
54
55 procedure Set_Interpreter_Head (H : in ISMC_Index_Cell) i s
56 begin
57 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) := H;
58 end ;
59
60 function Get_Interpreter_Head return ISMC_Index_Cell i s
61 begin
62 return ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
63 end ;
64 . . .
65
66 procedure Read_Tape(Head : in out ISMC_Index_Cell) i s
67 −− Precondi t ion : Head re f e r ence s a c e l l conta in ing a token type .
68 −− Advancing the head w i l l not exceed the s p e c i f i e d ISMC index range .
69 −− Accepts an ISMC c e l l index rep re s en t ing a machine read/wr i t e head .
70 −− Reads the f i r s t by t e from the current po s i t i on o f the head ,
71 −− i n t e r p r e t i n g i t as the type o f token to read . I t then advances
72 −− the head ’ s po s i t i on by one to n bytes , according to the type to read .
73 −− The token type and token contained by the n ISMC by t e s are s to red
74 −− in the d i s c r imina tor and corresponding a t t r i b u t e , r e s p e c t i v e l y .
75 −− Postcondi t ion : Token_Type s p e c i f i e s the read token , Token_X
76 −− conta ins the token , Head re f e r ence s the succes sor token type .
77 begin
78
79 Token_Type :=
80 Read_ISMC_Token_Type(ISMC(Storage_Offset (Read_ISMC_Index(Head)))) ;
81
82 case Token_Type i s
83
84 when T_SM_Control =>
85 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
86 Token_SM_Control :=
87 Read_ISMC_Control_Item(ISMC(Storage_Offset (Read_ISMC_Index(Head)))) ;
88 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
89

181

4. Fundamental HIRTE Patterns

90 when T_State_ID =>
91 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
92 Token_State_ID := ISMC(Storage_Offset (Read_ISMC_Index(Head))) ;
93 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
94
95 when T_ISMC_Index =>
96 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
97 Token_ISMC_Index :=
98 Read_ISMC_Index(ISMC(Storage_Offset (Read_ISMC_Index(Head))
99 . . Storage_Offset (Read_ISMC_Index(Head))+1)) ;

100 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+2);
101
102 when T_Event =>
103 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
104 Token_Event :=
105 ISMC(Storage_Offset (Read_ISMC_Index(Head))
106 . . Storage_Offset (Read_ISMC_Index(Head))
107 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1);
108 Head := Write_ISMC_Index (Read_ISMC_Index(Head)
109 +ISMC_Index(HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES)) ;
110
111 when T_Byte =>
112 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
113 Token_Byte := ISMC(Storage_Offset (Read_ISMC_Index(Head))) ;
114 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
115
116 when T_Double =>
117 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
118 Token_Double := ISMC(Storage_Offset (Read_ISMC_Index(Head))
119 . . Storage_Offset (Read_ISMC_Index(Head))+1) ;
120 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+2);
121
122 when T_Integer =>
123 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+1);
124 Token_Integer :=
125 Read_Integer_Buffer (ISMC(Storage_Offset (Read_ISMC_Index(Head))
126 . . Storage_Offset (Read_ISMC_Index(Head))+3)) ;
127 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+4);
128
129 end case ;
130
131 end ;
132
133 procedure Write_Index_to_Tape (Head : in out ISMC_Index_Cell ;
134 Index : in ISMC_Index) i s
135 begin
136 ISMC(Storage_Offset (Read_ISMC_Index(Head))) :=
137 Write_ISMC_Token_Type(T_ISMC_Index) ;
138 ISMC(Storage_Offset (Read_ISMC_Index(Head))+1
139 . . Storage_Offset (Read_ISMC_Index(Head))+2) := Write_ISMC_Index (Index) ;
140 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+3);
141 end ;
142
143 procedure Write_Control_Item_to_Tape (Head : in out ISMC_Index_Cell ;
144 Item : in ISMC_Control_Item) i s
145 begin
146 ISMC(Storage_Offset (Read_ISMC_Index(Head))) :=
147 Write_ISMC_Token_Type(T_SM_Control) ;
148 ISMC(Storage_Offset (Read_ISMC_Index(Head))+1) :=
149 Write_ISMC_Control_Item(Item) ;
150 Head := Write_ISMC_Index (Read_ISMC_Index(Head)+2);
151 end ;

182

4.2. Elementary Patterns and Structures

152
153 procedure Step i s
154 −− Precondi t ion : In t e rpre t e r_Sta t e i s ass i gned a v a l i d s t a t e .
155 −− Processes the ac t i ons de f ined fo r the g iven s ta t e , updates
156 −− In t e rpre t e r_Sta t e to the s t a t e r e s u l t i n g from the t r a n s i t i o n cond i t i ons .
157 −− Postcondi t ion : In t e rpre t e r_Sta t e i s ass i gned a v a l i d s ta t e , machine heads
158 −− are in con s i s t en t po s i t i on s , or f a i l u r e s t a t e and i n con s i s t e n t heads .
159 begin
160
161 In t e rp r e t e r_Sta t e := Get_Interpreter_State ;
162
163 case In t e rp r e t e r_Sta t e i s
164
165 when I n i t i a l =>
166
167 In t e rp r e t e r_Sta t e := I n i t i a l i z e ;
168
169 when I n i t i a l i z e =>
170
171 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
172 ISMC(INITIAL_STATE_REF_OFFSET . . INITIAL_STATE_REF_OFFSET+1);
173 ISMC(CURRENT_LEVEL_OFFSET) := 1 ;
174 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
175
176 i f Token_Type = T_SM_Control and Token_SM_Control = SIMPLE_STATE then
177 In t e rp r e t e r_Sta t e := Enter_Simple_State ;
178 else
179 In t e rp r e t e r_Sta t e := Fa i l u r e ;
180 end i f ;
181
182 when Enter_Simple_State =>
183
184 ISMC(EXIT_ACTION_MARKERS_OFFSET
185 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
186 . .EXIT_ACTION_MARKERS_OFFSET
187 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) :=
188 Write_ISMC_Index (UNDEFINED) ;
189 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1) := Write_ISMC_Index (UNDEFINED) ;
190 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
191
192 I f Token_Type = T_State_ID then
193 In t e rp r e t e r_Sta t e := Set_Active_Simple_State ;
194 else
195 In t e rp r e t e r_Sta t e := Fa i l u r e ;
196 end i f ;
197
198 when Set_Active_Simple_State =>
199
200 ISMC(ACTIVE_STATE_OFFSET+Storage_Count (ISMC(CURRENT_LEVEL_OFFSET))) :=
201 Token_State_ID ;
202 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
203
204 i f Token_Type = T_SM_Control then
205 i f Token_SM_Control = STOP then
206 In t e rp r e t e r_Sta t e := Fina l ;
207 else
208 i f Token_SM_Control = ENTRY_ACTIONS then
209 In t e rp r e t e r_Sta t e := Process_SS_Entry_Actions ;
210 else
211 i f Token_SM_Control = EXIT_ACTIONS then
212 In t e rp r e t e r_Sta t e := Set_SS_Exit_Action_Marker ;
213 else

183

4. Fundamental HIRTE Patterns

214 i f Token_SM_Control = TRANSITIONS then
215 In t e rp r e t e r_Sta t e := I t e r a t e_Trans i t i on s ;
216 else
217 In t e rp r e t e r_Sta t e := Fa i l u r e ;
218 end i f ;
219 end i f ;
220 end i f ;
221 end i f ;
222 else
223 In t e rp r e t e r_Sta t e := Fa i l u r e ;
224 end i f ;
225
226 when Process_SS_Entry_Actions =>
227
228 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
229
230 i f Token_Type = T_SM_Control then
231 i f Token_SM_Control = NATIVE_ACTION then
232 In t e rp r e t e r_Sta t e := Process_SS_Native_Entry_Action ;
233 else
234 i f Token_SM_Control = EXTERNAL_ACTION then
235 In t e rp r e t e r_Sta t e := Process_SS_External_Entry_Action ;
236 else
237 i f Token_SM_Control = EXIT_ACTIONS then
238 In t e rp r e t e r_Sta t e := Set_SS_Exit_Action_Marker ;
239 else
240 i f Token_SM_Control = TRANSITIONS then
241 In t e rp r e t e r_Sta t e := I t e r a t e_Trans i t i on s ;
242 else
243 In t e rp r e t e r_Sta t e := Fa i l u r e ;
244 end i f ;
245 end i f ;
246 end i f ;
247 end i f ;
248 else
249 In t e rp r e t e r_Sta t e := Fa i l u r e ;
250 end i f ;
251
252 when Process_SS_Native_Entry_Action =>
253
254 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
255
256 i f Token_Type = T_SM_Control then
257 i f Token_SM_Control = ASSIGN then
258 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
259 ISMC(ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1) :=
260 Write_ISMC_Index (Token_ISMC_Index) ;
261 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
262 ISMC(Storage_Offset (Read_ISMC_Index(ISMC(
263 ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1))))
264 := Token_Byte ;
265 else
266 i f Token_SM_Control = SEND then
267 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
268 ISMC(TMP_MESSAGE_BUFFER_OFFSET. .TMP_MESSAGE_BUFFER_OFFSET
269 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) :=
270 Token_Event ;
271 else
272 In t e rp r e t e r_Sta t e := FAILURE;
273 end i f ;
274 end i f ;
275 else

184

4.2. Elementary Patterns and Structures

276 In t e rp r e t e r_Sta t e := FAILURE;
277 end i f ;
278
279 when Process_SS_External_Entry_Action =>
280
281 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
282 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
283 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
284 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
285 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
286 Write_ISMC_Index (Read_ISMC_Index(
287 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
288 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
289 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
290 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
291
292 i f Token_Type = T_ISMC_Index then
293 In t e rp r e t e r_Sta t e := Set_Head_on_Next_SSEA_Item ;
294 else
295 In t e rp r e t e r_Sta t e := Fa i l u r e ;
296 end i f ;
297
298 when Set_Head_on_Next_SSEA_Item =>
299
300 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
301 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
302 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
303
304 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
305 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
306 In t e rp r e t e r_Sta t e := Process_SS_Entry_Actions ;
307 else
308 In t e rp r e t e r_Sta t e := Fa i l u r e ;
309 end i f ;
310
311 when Set_SS_Exit_Action_Marker =>
312
313 ISMC(EXIT_ACTION_MARKERS_OFFSET
314 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
315 . .EXIT_ACTION_MARKERS_OFFSET
316 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) :=
317 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
318 ISMC(EXIT_ACTION_MARKERS_OFFSET
319 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
320 . .EXIT_ACTION_MARKERS_OFFSET
321 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) :=
322 Write_ISMC_Index (Read_ISMC_Index(ISMC(EXIT_ACTION_MARKERS_OFFSET
323 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
324 . .EXIT_ACTION_MARKERS_OFFSET
325 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1))+3) ;
326 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
327
328 i f Token_Type = T_ISMC_Index then
329 In t e rp r e t e r_Sta t e := Set_Head_on_Next_SS_Item ;
330 else
331 In t e rp r e t e r_Sta t e := Fa i l u r e ;
332 end i f ;
333
334 when Set_Head_on_Next_SS_Item =>
335
336 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
337 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET

185

4. Fundamental HIRTE Patterns

338 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
339 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
340
341 i f Token_Type = T_SM_Control and Token_SM_Control = TRANSITIONS then
342 In t e rp r e t e r_Sta t e := I t e r a t e_Trans i t i on s ;
343 else
344 In t e rp r e t e r_Sta t e := Fa i l u r e ;
345 end i f ;
346
347 when I t e r a t e_Trans i t i on s =>
348
349 ISMC(INDEX_MARKER_OFFSET. .INDEX_MARKER_OFFSET+1) :=
350 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
351 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
352
353 i f Token_Type = T_SM_Control and Token_SM_Control = TRANSITION then
354 In t e rp r e t e r_Sta t e := Check_Transition ;
355 else
356 In t e rp r e t e r_Sta t e := Fa i l u r e ;
357 end i f ;
358
359 when Check_Transition =>
360
361 ISMC(TMP_MESSAGE_BUFFER_OFFSET. .TMP_MESSAGE_BUFFER_OFFSET
362 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) := UNDEFINED_MSG;
363 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
364
365 i f Token_Type = T_SM_Control then
366 i f Token_SM_Control = EVENT then
367 In t e rp r e t e r_Sta t e := Check_Event ;
368 else
369 i f Token_SM_Control = GUARD then
370 In t e rp r e t e r_Sta t e := Check_Guard ;
371 else
372 i f Token_SM_Control = TC_MARKER then
373 In t e rp r e t e r_Sta t e := Read_Transition_Chain_Marker ;
374 else
375 In t e rp r e t e r_Sta t e := Fa i l u r e ;
376 end i f ;
377 end i f ;
378 end i f ;
379 else
380 In t e rp r e t e r_Sta t e := Fa i l u r e ;
381 end i f ;
382
383 when Check_Event =>
384
385 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
386
387 i f Token_Type = T_Event then
388 In t e rp r e t e r_Sta t e := Compare_Events ;
389 else
390 In t e rp r e t e r_Sta t e := Fa i l u r e ;
391 end i f ;
392
393 when Compare_Events =>
394
395 i f Token_Event = ISMC(LAST_MESSAGE_BUFFER_OFFSET
396 . .LAST_MESSAGE_BUFFER_OFFSET
397 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) then
398 In t e rp r e t e r_Sta t e := Event_Occured ;
399 else

186

4.2. Elementary Patterns and Structures

400 In t e rp r e t e r_Sta t e := Skip_Guard ;
401 end i f ;
402
403 when Event_Occured =>
404
405 ISMC(TMP_MESSAGE_BUFFER_OFFSET. .TMP_MESSAGE_BUFFER_OFFSET
406 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) := Token_Event ;
407 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
408
409 i f Token_Type = T_SM_Control then
410 i f Token_SM_Control = GUARD then
411 In t e rp r e t e r_Sta t e := Check_Guard ;
412 else
413 i f Token_SM_Control = TC_MARKER then
414 In t e rp r e t e r_Sta t e := Read_Transition_Chain_Marker ;
415 else
416 In t e rp r e t e r_Sta t e := Fa i l u r e ;
417 end i f ;
418 end i f ;
419 else
420 In t e rp r e t e r_Sta t e := Fa i l u r e ;
421 end i f ;
422
423 when Check_Guard =>
424
425 ISMC(STATUS_OFFSET) := Write_ISMC_Status (STATUS_UNDEFINED) ;
426 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
427
428 i f Token_Type = T_SM_Control then
429 i f Token_SM_Control = NATIVE_GUARD then
430 In t e rp r e t e r_Sta t e := Evaluate_Native_Guard ;
431 else
432 i f Token_SM_Control = EXTERNAL_GUARD then
433 In t e rp r e t e r_Sta t e := Evaluate_External_Guard ;
434 else
435 In t e rp r e t e r_Sta t e := Fa i l u r e ;
436 end i f ;
437 end i f ;
438 else
439 In t e rp r e t e r_Sta t e := Fa i l u r e ;
440 end i f ;
441
442 when Evaluate_Native_Guard =>
443
444 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
445 i f Token_Type = T_ISMC_Index then
446 ISMC(INTEGER_REGISTER_OFFSET. . INTEGER_REGISTER_OFFSET+3) :=
447 ISMC(Storage_Offset (Token_ISMC_Index)
448 . . Storage_Offset (Token_ISMC_Index)+3);
449 else
450 In t e rp r e t e r_Sta t e := Fa i l u r e ;
451 end i f ;
452 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
453 i f Token_Type = T_Integer then
454 i f Token_Integer = Read_Integer_Buffer (
455 ISMC(INTEGER_REGISTER_OFFSET. . INTEGER_REGISTER_OFFSET+3)) then
456 ISMC(STATUS_OFFSET) := Write_ISMC_Status (GUARD_TRUE) ;
457 In t e rp r e t e r_Sta t e := Firing_Condition_True ;
458 else
459 ISMC(STATUS_OFFSET) := Write_ISMC_Status (GUARD_FALSE) ;
460 In t e rp r e t e r_Sta t e := Firing_Condit ion_False ;
461 end i f ;

187

4. Fundamental HIRTE Patterns

462 else
463 In t e rp r e t e r_Sta t e := Fa i l u r e ;
464 end i f ;
465
466 when Skip_Guard =>
467
468 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
469
470 i f Token_Type = T_SM_Control then
471 i f Token_SM_Control = TC_MARKER then
472 In t e rp r e t e r_Sta t e := Skip_Transition_Chain_Marker ;
473 else
474 i f Token_SM_Control = GUARD then
475 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
476 i f Token_SM_Control = NATIVE_GUARD then
477 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
478 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
479 In t e rp r e t e r_Sta t e := Firing_Condit ion_False ;
480 else
481 i f Token_SM_Control = EXTERNAL_GUARD then
482 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
483 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
484 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
485 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
486 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
487 In t e rp r e t e r_Sta t e := Firing_Condit ion_False ;
488 else
489 In t e rp r e t e r_Sta t e := Fa i l u r e ;
490 end i f ;
491 end i f ;
492 else
493 In t e rp r e t e r_Sta t e := Fa i l u r e ;
494 end i f ;
495 end i f ;
496 else
497 In t e rp r e t e r_Sta t e := Fa i l u r e ;
498 end i f ;
499
500 when Evaluate_External_Guard =>
501
502 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
503 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
504 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
505 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
506 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
507 Write_ISMC_Index (Read_ISMC_Index(ISMC(
508 EXTERNAL_OPERATION_MARKER_OFFSET
509 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
510 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
511 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
512
513 i f Token_Type = T_ISMC_Index then
514 In t e rp r e t e r_Sta t e := Set_Head_on_Next_Guard_Item ;
515 else
516 In t e rp r e t e r_Sta t e := Fa i l u r e ;
517 end i f ;
518
519 when Set_Head_on_Next_Guard_Item =>
520
521 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
522 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
523 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;

188

4.2. Elementary Patterns and Structures

524
525 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
526 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
527 i f Read_ISMC_Status (ISMC(STATUS_OFFSET)) = GUARD_TRUE then
528 In t e rp r e t e r_Sta t e := Firing_Condition_True ;
529 else
530 In t e rp r e t e r_Sta t e := Firing_Condit ion_False ;
531 end i f ;
532 else
533 In t e rp r e t e r_Sta t e := Fa i l u r e ;
534 end i f ;
535
536 when Firing_Condit ion_False =>
537
538 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
539
540 i f Token_Type = T_SM_Control and Token_SM_Control = TC_MARKER then
541 In t e rp r e t e r_Sta t e := Skip_Transition_Chain_Marker ;
542 else
543 In t e rp r e t e r_Sta t e := Fa i l u r e ;
544 end i f ;
545
546 when Firing_Condition_True =>
547
548 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
549
550 i f Token_Type = T_SM_Control and Token_SM_Control = TC_MARKER then
551 In t e rp r e t e r_Sta t e := Read_Transition_Chain_Marker ;
552 else
553 In t e rp r e t e r_Sta t e := Fa i l u r e ;
554 end i f ;
555
556 when Skip_Transition_Chain_Marker =>
557
558 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
559 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
560
561 i f Token_Type = T_State_ID then
562 In t e rp r e t e r_Sta t e := Skip_Transit ion_Source ;
563 else
564 In t e rp r e t e r_Sta t e := Fa i l u r e ;
565 end i f ;
566
567 when Read_Transition_Chain_Marker =>
568
569 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
570
571 i f Token_Type = T_ISMC_Index then
572 In t e rp r e t e r_Sta t e := Set_Transition_Chain_Head ;
573 else
574 In t e rp r e t e r_Sta t e := Fa i l u r e ;
575 end i f ;
576
577 when Set_Transition_Chain_Head =>
578
579 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET +1) :=
580 Write_ISMC_Index (Token_ISMC_Index) ;
581 ISMC(TRANSITION_TRIGGER_OFFSET. .TRANSITION_TRIGGER_OFFSET
582 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) :=
583 ISMC(TMP_MESSAGE_BUFFER_OFFSET. .TMP_MESSAGE_BUFFER_OFFSET
584 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1);
585 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;

189

4. Fundamental HIRTE Patterns

586
587 i f Token_Type = T_State_ID then
588 In t e rp r e t e r_Sta t e := Set_Transit ion_Source ;
589 else
590 In t e rp r e t e r_Sta t e := Fa i l u r e ;
591 end i f ;
592
593 when Skip_Transit ion_Source =>
594
595 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
596
597 i f Token_Type = T_ISMC_Index then
598 In t e rp r e t e r_Sta t e := Determine_Triggering ;
599 else
600 In t e rp r e t e r_Sta t e := Fa i l u r e ;
601 end i f ;
602
603 when Check_Next_Transition =>
604
605 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
606 Write_ISMC_Index (Token_ISMC_Index) ;
607 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
608
609 i f Token_Type = T_SM_Control and Token_SM_Control = TRANSITION then
610 In t e rp r e t e r_Sta t e := Check_Transition ;
611 else
612 In t e rp r e t e r_Sta t e := Fa i l u r e ;
613 end i f ;
614
615 when Set_Transit ion_Source =>
616
617 ISMC(TRANSITION_SOURCE_OFFSET) := Token_State_ID ;
618 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
619
620 i f Token_Type = T_ISMC_Index then
621 In t e rp r e t e r_Sta t e := Determine_Triggering ;
622 else
623 In t e rp r e t e r_Sta t e := Fa i l u r e ;
624 end i f ;
625
626 when Rei t e ra t e_Trans i t i ons =>
627
628 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
629 ISMC(INDEX_MARKER_OFFSET. .INDEX_MARKER_OFFSET+1);
630 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
631
632 i f Token_Type = T_SM_Control and Token_SM_Control = TRANSITION then
633 In t e rp r e t e r_Sta t e := Check_Transition ;
634 else
635 In t e rp r e t e r_Sta t e := Fa i l u r e ;
636 end i f ;
637
638 when Determine_Triggering =>
639
640 i f Token_ISMC_Index = UNDEFINED then
641 i f Read_ISMC_Index(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1))
642 = UNDEFINED then
643 In t e rp r e t e r_Sta t e := Re i t e ra t e_Trans i t i ons ;
644 else
645 In t e rp r e t e r_Sta t e := Leave_Simple_State ;
646 end i f ;
647 else

190

4.2. Elementary Patterns and Structures

648 In t e rp r e t e r_Sta t e := Check_Next_Transition ;
649 end i f ;
650
651 when Set_Head_on_SS_Exit_Actions =>
652
653 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
654 ISMC(EXIT_ACTION_MARKERS_OFFSET
655 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
656 . .EXIT_ACTION_MARKERS_OFFSET
657 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) ;
658
659 In t e rp r e t e r_Sta t e := Process_SS_Exit_Actions ;
660
661 when Process_SS_Exit_Actions =>
662
663 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
664
665 i f Token_Type = T_SM_Control then
666 i f Token_SM_Control = NATIVE_ACTION then
667 In t e rp r e t e r_Sta t e := Process_SS_Native_Exit_Action ;
668 else
669 i f Token_SM_Control = EXTERNAL_ACTION then
670 In t e rp r e t e r_Sta t e := Process_SS_External_Exit_Action ;
671 else
672 i f Token_SM_Control = EOL then
673 In t e rp r e t e r_Sta t e := Determine_Triggering_Event ;
674 else
675 In t e rp r e t e r_Sta t e := Fa i l u r e ;
676 end i f ;
677 end i f ;
678 end i f ;
679 else
680 In t e rp r e t e r_Sta t e := Fa i l u r e ;
681 end i f ;
682
683 when Process_SS_Native_Exit_Action =>
684
685 −− See above .
686
687 when Process_SS_External_Exit_Action =>
688
689 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
690 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
691 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
692 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
693 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
694 Write_ISMC_Index (Read_ISMC_Index(ISMC(
695 EXTERNAL_OPERATION_MARKER_OFFSET
696 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
697 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
698 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
699
700 i f Token_Type = T_ISMC_Index then
701 In t e rp r e t e r_Sta t e := Set_Head_on_Next_SSXA_Item ;
702 else
703 In t e rp r e t e r_Sta t e := Fa i l u r e ;
704 end i f ;
705
706 when Set_Head_on_Next_SSXA_Item =>
707
708 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
709 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET

191

4. Fundamental HIRTE Patterns

710 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
711
712 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
713 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
714 In t e rp r e t e r_Sta t e := Process_SS_Exit_Actions ;
715 else
716 In t e rp r e t e r_Sta t e := Fa i l u r e ;
717 end i f ;
718
719 when Leave_Simple_State =>
720
721 i f Read_ISMC_Index(ISMC(EXIT_ACTION_MARKERS_OFFSET
722 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
723 . .EXIT_ACTION_MARKERS_OFFSET
724 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1))
725 /= UNDEFINED then
726 In t e rp r e t e r_Sta t e := Set_Head_on_SS_Exit_Actions ;
727 else
728 In t e rp r e t e r_Sta t e := Determine_Triggering_Event ;
729 end i f ;
730
731 when Determine_Triggering_Event =>
732
733 i f ISMC(LAST_MESSAGE_BUFFER_OFFSET. .LAST_MESSAGE_BUFFER_OFFSET
734 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1)
735 = ISMC(TRANSITION_TRIGGER_OFFSET. .TRANSITION_TRIGGER_OFFSET
736 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1)
737 and ISMC(TRANSITION_TRIGGER_OFFSET
738 . .TRANSITION_TRIGGER_OFFSET
739 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1)
740 /= UNDEFINED_MSG then
741 In t e rp r e t e r_Sta t e := Consume_Message ;
742 else
743 In t e rp r e t e r_Sta t e := Reach_Transition_Level ;
744 end i f ;
745
746 when Consume_Message =>
747
748 ISMC(LAST_MESSAGE_BUFFER_OFFSET. .LAST_MESSAGE_BUFFER_OFFSET
749 +HIRTE_Configuration .MSG_BUFFER_SIZE_BYTES−1) := UNDEFINED_MSG;
750
751 In t e rp r e t e r_Sta t e := Reach_Transition_Level ;
752
753 when Reach_Transition_Level =>
754
755 i f ISMC(ACTIVE_STATE_OFFSET+Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))
756 = ISMC(TRANSITION_SOURCE_OFFSET) then
757 In t e rp r e t e r_Sta t e := Process_Trans i t ion ;
758 else
759 In t e rp r e t e r_Sta t e := Determine_HLT_Exit_Actions ;
760 end i f ;
761
762 ISMC(ACTIVE_STATE_OFFSET+Storage_Count (ISMC(CURRENT_LEVEL_OFFSET))) :=
763 UNDEFINED_STATE;
764
765 when Determine_HLT_Exit_Actions =>
766
767 ISMC(CURRENT_LEVEL_OFFSET) := ISMC(CURRENT_LEVEL_OFFSET)−1;
768
769 i f Read_ISMC_Index(ISMC(EXIT_ACTION_MARKERS_OFFSET
770 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
771 . .EXIT_ACTION_MARKERS_OFFSET

192

4.2. Elementary Patterns and Structures

772 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1))
773 /= UNDEFINED then
774 In t e rp r e t e r_Sta t e := Set_Head_on_HLT_Exit_Actions ;
775 else
776 In t e rp r e t e r_Sta t e := Leave_HLT_Composite_State ;
777 end i f ;
778
779 when Process_Trans i t ion =>
780
781 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
782
783 i f Token_Type = T_SM_Control then
784 i f Token_SM_Control = TARGETS then
785 In t e rp r e t e r_Sta t e := Trans i t ;
786 else
787 i f Token_SM_Control = TRANSITION_ACTIONS then
788 In t e rp r e t e r_Sta t e := Process_Transit ion_Actions ;
789 else
790 In t e rp r e t e r_Sta t e := Fa i l u r e ;
791 end i f ;
792 end i f ;
793 else
794 In t e rp r e t e r_Sta t e := Fa i l u r e ;
795 end i f ;
796
797 when Set_Head_on_HLT_Exit_Actions =>
798
799 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
800 ISMC(EXIT_ACTION_MARKERS_OFFSET
801 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
802 . .EXIT_ACTION_MARKERS_OFFSET
803 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) ;
804
805 In t e rp r e t e r_Sta t e := Process_HLT_Exit_Actions ;
806
807 when Process_HLT_Exit_Actions =>
808
809 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
810
811 i f Token_Type = T_SM_Control then
812 i f Token_SM_Control = NATIVE_ACTION then
813 In t e rp r e t e r_Sta t e := Process_HLT_Native_Exit_Action ;
814 else
815 i f Token_SM_Control = EXTERNAL_ACTION then
816 In t e rp r e t e r_Sta t e := Process_HLT_External_Exit_Action ;
817 else
818 i f Token_SM_Control = EOL then
819 In t e rp r e t e r_Sta t e := Leave_HLT_Composite_State ;
820 else
821 In t e rp r e t e r_Sta t e := Fa i l u r e ;
822 end i f ;
823 end i f ;
824 end i f ;
825 else
826 In t e rp r e t e r_Sta t e := Fa i l u r e ;
827 end i f ;
828
829 when Process_HLT_Native_Exit_Action =>
830
831 −− See above .
832
833 when Process_HLT_External_Exit_Action =>

193

4. Fundamental HIRTE Patterns

834
835 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
836 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
837 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
838 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
839 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
840 Write_ISMC_Index (Read_ISMC_Index(ISMC(
841 EXTERNAL_OPERATION_MARKER_OFFSET
842 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
843 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
844 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
845
846 i f Token_Type = T_ISMC_Index then
847 In t e rp r e t e r_Sta t e := Set_Head_on_Next_HLTXA_Item ;
848 else
849 In t e rp r e t e r_Sta t e := Fa i l u r e ;
850 end i f ;
851
852 when Set_Head_on_Next_HLTXA_Item =>
853
854 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
855 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
856 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
857
858 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
859 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
860 In t e rp r e t e r_Sta t e := Process_HLT_Exit_Actions ;
861 else
862 In t e rp r e t e r_Sta t e := Fa i l u r e ;
863 end i f ;
864
865 when Leave_HLT_Composite_State =>
866
867 i f ISMC(CURRENT_LEVEL_OFFSET) < 1 then
868 In t e rp r e t e r_Sta t e := Set_Head_on_Chain ;
869 else
870 i f ISMC(ACTIVE_STATE_OFFSET
871 +Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))
872 = ISMC(TRANSITION_SOURCE_OFFSET) then
873 In t e rp r e t e r_Sta t e := Process_Trans i t ion ;
874 else
875 In t e rp r e t e r_Sta t e := Determine_HLT_Exit_Actions ;
876 end i f ;
877 end i f ;
878
879 ISMC(ACTIVE_STATE_OFFSET
880 +Storage_Count (ISMC(CURRENT_LEVEL_OFFSET))) := UNDEFINED_STATE;
881
882 when Trans i t =>
883
884 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
885
886 i f Token_Type = T_ISMC_Index then
887 In t e rp r e t e r_Sta t e := Set_Head_on_State ;
888 else
889 In t e rp r e t e r_Sta t e := Fa i l u r e ;
890 end i f ;
891
892 when Process_Transit ion_Actions =>
893
894 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
895

194

4.2. Elementary Patterns and Structures

896 i f Token_Type = T_SM_Control then
897 i f Token_SM_Control = NATIVE_ACTION then
898 In t e rp r e t e r_Sta t e := Process_Native_Transit ion_Action ;
899 else
900 i f Token_SM_Control = EXTERNAL_ACTION then
901 In t e rp r e t e r_Sta t e := Process_External_Transit ion_Action ;
902 else
903 i f Token_SM_Control = TARGETS then
904 In t e rp r e t e r_Sta t e := Trans i t ;
905 else
906 In t e rp r e t e r_Sta t e := Fa i l u r e ;
907 end i f ;
908 end i f ;
909 end i f ;
910 else
911 In t e rp r e t e r_Sta t e := Fa i l u r e ;
912 end i f ;
913
914 when Process_Native_Transit ion_Action =>
915
916 −− See above .
917
918 when Process_External_Transit ion_Action =>
919
920 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
921 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
922 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1);
923 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
924 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
925 Write_ISMC_Index (Read_ISMC_Index(ISMC(
926 EXTERNAL_OPERATION_MARKER_OFFSET
927 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
928 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
929 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
930
931 i f Token_Type = T_ISMC_Index then
932 In t e rp r e t e r_Sta t e := Set_Head_on_Next_TA_Item ;
933 else
934 In t e rp r e t e r_Sta t e := Fa i l u r e ;
935 end i f ;
936
937 when Set_Head_on_Next_TA_Item =>
938
939 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1) :=
940 Write_ISMC_Index (Read_ISMC_Index(ISMC(
941 TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1))+Token_ISMC_Index) ;
942
943 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
944 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
945 In t e rp r e t e r_Sta t e := Process_Transit ion_Actions ;
946 else
947 In t e rp r e t e r_Sta t e := Fa i l u r e ;
948 end i f ;
949
950 when Set_Head_on_State =>
951
952 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
953 Write_ISMC_Index (Token_ISMC_Index) ;
954 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
955
956 i f Token_Type = T_SM_Control then
957 i f Token_SM_Control = SIMPLE_STATE then

195

4. Fundamental HIRTE Patterns

958 In t e rp r e t e r_Sta t e := Enter_Simple_State ;
959 else
960 i f Token_SM_Control = COMPOSITE_STATE then
961 In t e rp r e t e r_Sta t e := Process_Composite_State ;
962 else
963 i f Token_SM_Control = DSM_FRAGMENT then
964 In t e rp r e t e r_Sta t e := Process_DSM_Fragment ;
965 else
966 In t e rp r e t e r_Sta t e := Fa i l u r e ;
967 end i f ;
968 end i f ;
969 end i f ;
970 else
971 In t e rp r e t e r_Sta t e := Fa i l u r e ;
972 end i f ;
973
974 when Process_Composite_State =>
975
976 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
977
978 i f Token_Type = T_SM_Control then
979 i f Token_SM_Control = INBOUND then
980 In t e rp r e t e r_Sta t e := Enter_Composite_State ;
981 else
982 i f Token_SM_Control = OUTBOUND then
983 In t e rp r e t e r_Sta t e := Determine_CS_Exit_Actions ;
984 else
985 In t e rp r e t e r_Sta t e := Fa i l u r e ;
986 end i f ;
987 end i f ;
988 else
989 In t e rp r e t e r_Sta t e := Fa i l u r e ;
990 end i f ;
991
992 when Enter_Composite_State =>
993
994 ISMC(EXIT_ACTION_MARKERS_OFFSET
995 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
996 . .EXIT_ACTION_MARKERS_OFFSET
997 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) :=
998 Write_ISMC_Index (UNDEFINED) ;
999

1000 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1001
1002 i f Token_Type = T_State_ID then
1003 In t e rp r e t e r_Sta t e := Set_Active_Composite_State ;
1004 else
1005 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1006 end i f ;
1007
1008 when Set_Active_Composite_State =>
1009
1010 ISMC(ACTIVE_STATE_OFFSET
1011 +Storage_Count (ISMC(CURRENT_LEVEL_OFFSET))) := Token_State_ID ;
1012 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1013
1014 i f Token_Type = T_SM_Control then
1015 i f Token_SM_Control = ENTRY_ACTIONS then
1016 In t e rp r e t e r_Sta t e := Process_CS_Entry_Actions ;
1017 else
1018 i f Token_SM_Control = EXIT_ACTIONS then
1019 In t e rp r e t e r_Sta t e := Set_CS_Exit_Action_Marker ;

196

4.2. Elementary Patterns and Structures

1020 else
1021 i f Token_SM_Control = EOL then
1022 In t e rp r e t e r_Sta t e := Raise_Hierarchy_Level ;
1023 else
1024 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1025 end i f ;
1026 end i f ;
1027 end i f ;
1028 else
1029 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1030 end i f ;
1031
1032 when Process_CS_Entry_Actions =>
1033
1034 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1035
1036 i f Token_Type = T_SM_Control then
1037 i f Token_SM_Control = NATIVE_ACTION then
1038 In t e rp r e t e r_Sta t e := Process_CS_Native_Entry_Action ;
1039 else
1040 i f Token_SM_Control = EXTERNAL_ACTION then
1041 In t e rp r e t e r_Sta t e := Process_CS_External_Entry_Action ;
1042 else
1043 i f Token_SM_Control = EXIT_ACTIONS then
1044 In t e rp r e t e r_Sta t e := Set_CS_Exit_Action_Marker ;
1045 else
1046 i f Token_SM_Control = EOL then
1047 In t e rp r e t e r_Sta t e := Raise_Hierarchy_Level ;
1048 else
1049 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1050 end i f ;
1051 end i f ;
1052 end i f ;
1053 end i f ;
1054 else
1055 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1056 end i f ;
1057
1058 when Process_CS_Native_Entry_Action =>
1059
1060 −− See above .
1061
1062 when Process_CS_External_Entry_Action =>
1063
1064 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1065 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
1066 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
1067 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1068 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
1069 Write_ISMC_Index (Read_ISMC_Index(ISMC(
1070 EXTERNAL_OPERATION_MARKER_OFFSET
1071 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
1072 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1073 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1074
1075 i f Token_Type = T_ISMC_Index then
1076 In t e rp r e t e r_Sta t e := Set_Head_on_Next_CSEA_Item ;
1077 else
1078 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1079 end i f ;
1080
1081 when Set_Head_on_Next_CSEA_Item =>

197

4. Fundamental HIRTE Patterns

1082
1083 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
1084 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
1085 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
1086
1087 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1088 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
1089 In t e rp r e t e r_Sta t e := Process_CS_Entry_Actions ;
1090 else
1091 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1092 end i f ;
1093
1094 when Set_CS_Exit_Action_Marker =>
1095
1096 ISMC(EXIT_ACTION_MARKERS_OFFSET
1097 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
1098 . .EXIT_ACTION_MARKERS_OFFSET
1099 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) :=
1100 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
1101
1102 In t e rp r e t e r_Sta t e := Raise_Hierarchy_Level ;
1103
1104 when Raise_Hierarchy_Level =>
1105
1106 ISMC(CURRENT_LEVEL_OFFSET) := ISMC(CURRENT_LEVEL_OFFSET)+1;
1107
1108 In t e rp r e t e r_Sta t e := Trans i t ;
1109
1110 when Determine_CS_Exit_Actions =>
1111
1112 ISMC(CURRENT_LEVEL_OFFSET) := ISMC(CURRENT_LEVEL_OFFSET)−1;
1113
1114 i f Read_ISMC_Index(ISMC(EXIT_ACTION_MARKERS_OFFSET
1115 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
1116 . .EXIT_ACTION_MARKERS_OFFSET
1117 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1))
1118 /= UNDEFINED then
1119 In t e rp r e t e r_Sta t e := Set_Head_on_CS_Exit_Actions ;
1120 else
1121 In t e rp r e t e r_Sta t e := Leave_Composite_State ;
1122 end i f ;
1123
1124 when Set_Head_on_CS_Exit_Actions =>
1125
1126 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
1127 ISMC(EXIT_ACTION_MARKERS_OFFSET
1128 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2
1129 . .EXIT_ACTION_MARKERS_OFFSET
1130 +(Storage_Count (ISMC(CURRENT_LEVEL_OFFSET)))∗2+1) ;
1131
1132 In t e rp r e t e r_Sta t e := Process_CS_Exit_Actions ;
1133
1134 when Process_CS_Exit_Actions =>
1135
1136 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1137
1138 i f Token_Type = T_SM_Control then
1139 i f Token_SM_Control = NATIVE_ACTION then
1140 In t e rp r e t e r_Sta t e := Process_CS_Native_Exit_Action ;
1141 else
1142 i f Token_SM_Control = EXTERNAL_ACTION then
1143 In t e rp r e t e r_Sta t e := Process_CS_External_Exit_Action ;

198

4.2. Elementary Patterns and Structures

1144 else
1145 i f Token_SM_Control = EOL then
1146 In t e rp r e t e r_Sta t e := Leave_Composite_State ;
1147 else
1148 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1149 end i f ;
1150 end i f ;
1151 end i f ;
1152 else
1153 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1154 end i f ;
1155
1156 when Process_CS_Native_Exit_Action =>
1157
1158 −− See above .
1159
1160 when Process_CS_External_Exit_Action =>
1161
1162 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1163 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
1164 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
1165 ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1166 . .EXTERNAL_OPERATION_MARKER_OFFSET+1) :=
1167 Write_ISMC_Index (Read_ISMC_Index(ISMC(
1168 EXTERNAL_OPERATION_MARKER_OFFSET
1169 . .EXTERNAL_OPERATION_MARKER_OFFSET+1))+1);
1170 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1171 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
1172
1173 i f Token_Type = T_ISMC_Index then
1174 In t e rp r e t e r_Sta t e := Set_Head_on_Next_CSXA_Item ;
1175 else
1176 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1177 end i f ;
1178
1179 when Set_Head_on_Next_CSXA_Item =>
1180
1181 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
1182 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
1183 . . I_HEAD_OFFSET+1))+Token_ISMC_Index) ;
1184
1185 i f Read_ISMC_Index(ISMC(EXTERNAL_OPERATION_MARKER_OFFSET
1186 . .EXTERNAL_OPERATION_MARKER_OFFSET+1)) = COMPLETE then
1187 In t e rp r e t e r_Sta t e := Process_CS_Exit_Actions ;
1188 else
1189 In t e rp r e t e r_Sta t e := Fa i l u r e ;
1190 end i f ;
1191
1192 when Leave_Composite_State =>
1193
1194 ISMC(ACTIVE_STATE_OFFSET
1195 +Storage_Count (ISMC(CURRENT_LEVEL_OFFSET))) := UNDEFINED_STATE;
1196
1197 i f ISMC(CURRENT_LEVEL_OFFSET) >= 1 then
1198 In t e rp r e t e r_Sta t e := Read_Next_Target ;
1199 else
1200 In t e rp r e t e r_Sta t e := Outside_Machine_Scope ;
1201 end i f ;
1202
1203 when Fina l =>
1204
1205 null ;

199

4. Fundamental HIRTE Patterns

1206
1207 when Fa i l u r e =>
1208
1209 null ;
1210
1211 end case ;
1212
1213 Set_Interpreter_State (In t e rp r e t e r_Sta t e) ;
1214
1215 end ;
1216
1217 end ISMC_Automaton ;
1218
1219 end HIRTE_ISMC_Interpreter ;

Listing 4.12 implements the ISMC interpreter. After discussing and dis-why case-when
instead of SRSM missing established state machine implementation approaches and introducing

an allegedly more efficient solution, it may appear contradictory to use a plain
case-when construct. However, there are a number of valid reasons. First, the
ISMC interpreter includes an example for a parser – it traverses a sequential
data structure with the recognized tokens directly actuating the interpreter ac-
tions. A flat, cyclic command structure like case-when is a fitting answer. Our
SRSM pattern rather aims at more complex, hierarchical activities. Second,
beyond effectiveness at least in the sense of a proof of concept, the reference
implementation is supposed to convey a clearly represented, unobfuscated al-
gorithm, illustrating the pattern workings as actual Ada code. Case-when
requires no state machine management overhead if applied to a flat automa-
ton like the given, putting the states, transitions and their relations to the
fore, thusly making it better suitable for exemplification.

Another remark is indicated by the differentiation of native and externalconcerning native
and external ops operations. A reason for this distinction was mentioned: native operations

are implemented in the context of the generic machine interpreter. Their con-
sequently generic functionality may – and potentially needs to – be comple-
mented by specialized, e.g. domain-specific or optimized, operations of the ap-
plication. Furthermore, native operations comply to the step-wise execution of
the ISMC, i.e. they do not require special consideration concerning scheduling.
In contrast, external operation invocation implies atomic run-to-completion. If
the operation is not fragmented into fixed run-time subprocedures called by
successive ISMC instructions, it will execute without regard to a scheduler16.

For an example of a VCU Run procedure with external operation calls refer
to listing 4.16.

4.2.3.6 Variants and Extensions

To keep the binary sequence lean, i.e. to avoid unnecessary control overhead,reducing ISMC
memory demand we did not select ASN.1 for specification and implementation of the ISMC

tape. However, the Packed Encoding Rules (PER) of this standard suggest a
16A preemptive multitasking of some underlying OS notwithstanding.

200

4.2. Elementary Patterns and Structures

sensible optimization of our defined format. For the conceptual scope of this
work, bytewise encoding of all ISMC token types assists the comprehension of
the structures, not to say tests and empirical validation – and also a human
reader may gain insights from a glance at the byte stream and recognize the
opcodes. For an actual deployment of the architecture, size of the ISMC pro-
grams may be reduced significantly by applying encoding rules similar to PER:
e.g. for the state machine control instructions, 5 bits are sufficient (cmp. list-
ing 4.11). As our provided Ada reference sources demonstrate, adaption of the
internal memory representation is straightforward (the ’Size and ’Alignment
attributes). With the corresponding basic modifications of the interpreter’s
Read Tape procedure, the system would benefit from the reduction.

The addition of a state tracer (cmp. 4.2.2) to a VCU set enables a detailed activity monitoring
and systematic monitoring of both the virtual machine and application activ-
ities. If all components report their states quasi real-time, a control instance
may realize functionality beyond logging for after-action analysis. The intro-
duction of configurable timing and other constraints related to the designated
execution profile of a software based on HIRTE could provide immediate feed-
back to the user (MMI) or a center component (OTA). Especially an early
warning distribution of these measurement results to the center would benefit
stable operations, as preemptive action could be taken in the case of increas-
ing deviation from regular parameters, e.g. concerning quality of service (cmp.
the suspicious incident of 3.1.2). But also locally – considering the potentially
unsafe environment of our components – the software could at least selectively
request resources for proper execution.

4.2.3.7 Related Approaches

Mentionable works that at least bear a resemblance in name/concept or field
of application are DCharts ([Fe04]) and virtual finite state machines (Vfsm,
[WSWW06]).

DCharts ambitiously cover a wide range of statechart elements, including DCharts
history and concurrent composite states. Similar to our approach, they pro-
vide a description language with an interpreter and also a compiler, producing
a state machine implementation in Java. In contrast however, the interpreter
takes the role of a simulator, not an RTE for field operations, i.e. it consciously
does not pursue efficiency of execution. This directly affects the model descrip-
tion format, which rather has an intermediary character; a view we dismissed
in 4.2.3.2. While emphasizing performance, the generated Java machine repre-
sentation is complex and relies on dynamic features. Applied to HIRTE, this
would violate our HI restrictions.

Vfsm and their development suite StateWORKS establish a method based Vfsm
on a virtual environment. Consisting of name sets for inputs, outputs and
states, it is different to the HIRTE, focusing on the specification of decisions
as essence of a state machine. The definition of corresponding conditions for

201

4. Fundamental HIRTE Patterns

entry actions, transitions and exit actions takes the form of "positive logic
algebra" expressions (because NOT is not applicable) on the name sets. For
the overall state machine specification, [WSWW06] gives a state transition
table concept on flat state sets that associates actions and transitions with the
triggering conditions. All thusly created objects are organized in a real-time
database (RTDB), which serves as a repository for the RTE, interpreting and
executing the loaded structures. Vfsms do not support composite states, in-
stead advocating master-slave-hierarchies of state machines. With their OFUN
user defined functions, they provide a mechanism similar, while more limited,
to the HIRTE external operations.

4.2.4 Distributable State Machine Fragment Pattern

4.2.4.1 Abstract

In chapter 3.1.3.3, we suggested a smart card integrated interoperability solu-revisiting SC
interoperability tion. An essential feature of that scenario was the partitioning of computation.

The smart card, a secure but very limited platform, delegated complex proce-
dures and sensor data evaluation to an external RTE. To a better part, this
was security-driven: the operator may keep proprietary algorithms and busi-
ness process implementations on the card; like private keys, they are not meant
for dissemination.

Now, ISMC and VCUs present a similar constellation that allows us arelation to VCU
scalability generalization of the use case, i.e. broadening the applicability scope, and to

provide an actual realization of the concept. In the previous sections, structure
and reference implementation of the ISMC interpreter illustrated the scalabil-
ity of the VCU. Depending on the intended run-time platform, the interpreter
automaton may immediately provide computation-heavy native operations, or
it may resort to a comprehensive external operation set implemented by its
associated component. Alternatively, the VCU may be reduced to a minimum,
resulting – as shown – in a lean engine with static memory requirements for
traversing state machines in a safe and controlled manner.

Apparently, these two extremes – a fat versus thin RTE – reflect our ini-moving beyond
RPCs tial scenario. Still, the external processing mechanism of section 4.2.3 applies

locally to the VCU RTE and is restricted to procedure calls. Consequently,
this section complements the VCU with a means for distributed machine ex-
ecution. Due to the nature of the domain of this work, remote processing
needs to go beyond remote procedure calls (RPC): aside from security issues
like above, we have to presume that the remote system provides unique, i.e.
locally not available, but generic functionality that is meant to be employed
by specific business logics, and furthermore that these logics might include a
number of calls too high for efficient exchange between RTEs. Instead, the
remote RTE receives instructions on how to compute a replyable result with
its proprietary operations or other capabilities. With this, HIRTE moves from

202

4.2. Elementary Patterns and Structures

simply invoking a procedure implemented on a remote RTE to the external
execution with a preparatory selective outsourcing and subsequent return of
the program fragment itself.

Consolidating the statements, HIRTE requires a mechanism to coherently ISMC adaption
delegate complex computations to remote RTEs, while upholding security, e.g.
privacy of its application activities. Section 4.1.3 delivers the appropriate
concept: applied to ISMC as distributable state machine fragment (DSMF),
the self-contained state enables selective delegation of machine parts.

4.2.4.2 Extending the ISMC

The introduction of DSMFs to ISMC implies extending the ISMC syntax and
enabling the interpreter to handle DSMFs accordingly. Listing 4.13 introduces
the DSMF to the ISMC syntax. Productions directly refer to listing 4.10,
integrating the extensions into the existing structures.

Listing 4.13: ISMC DSMF Extensions in EBNF
1 Header = . . . , ISMC Program Length , . . .
2 ISMC Program Length = ISMC Index ;
3 . . .
4
5 Reg i s t e r s = . . .
6 DSM Fragment Marker ,
7 DSMF Trans i t i on Chain ,
8 . . .
9 DSM Fragment Marker = ISMC Index ;

10 DSMF Trans i t i on Chain = m ∗ Target ; (∗ Depending on h i e ra r chy depth ∗)
11 . . .
12
13 State = Simple State | Composite State | DSM Fragment ;
14 DSM Fragment = DSM FRAGMENT , Requirements , I n t e r p r e t ab l e State Machine Code ;
15 Requirements = Var iab le Subset , Operation Requirements , Event Requirements ;
16 Var iab le Subset = { Var iab le Reference Pair } , EOL ;
17 Var iab le Reference Pair = SM Var iab le , Fragment Var iab le ;
18 Operation Requirements = ? Appl icat ion−s p e c i f i c ? ;
19 Event Requirements = ? Appl icat ion−s p e c i f i c ? ;
20 SM Var iab le = ISMC Index ;
21 Fragment Var iab le = ISMC Index ;

The ISMC Header adds the ISMC Program Length, indicating the overall header extension
byte usage on an ISMC tape. Additional Registers are a DSM Fragment Marker
– specifies the starting index of the head’s current fragment, similar to the
External Operation Marker – and the DSMF Transition Chain, to store an
inbound sequence of states in a fragment composite state, used by the remote
interpreter on entering a fragment.

As a complementing State, the DSM Fragment consists of Requirements state extension
and, consistently, the structure of a complete Interpretable State Machine
Code. This recursive inclusion achieves orthogonality of the ISMC and frag-
ment concepts in an inornate way.

The Variable Subset declares a mapping between state machine variables
and fragment variables. These are referenced by their respective indices in

203

4. Fundamental HIRTE Patterns

the ISMC byte array. In the reference implementation, for demonstration and
brevity purposes, the interpreter assumes integer variables of four byte length.
An actual application will consider additional type differentiation, e.g. by
TLV-encoding. Alternatively, to keep variable memory consumption minimal
and in line with the given record representation (see sources above), it might
implement an indiscriminate byte-wise mapping. Moreover, specification of
Operation and Event Requirements, and the corresponding checks, fully depend
on conventions of the remote RTE and its application. Thus, while being
significant to the ISMC definition, they are beyond the interpreter’s scope,
which merely needs to provide a referenceable, structured container for the
requirements, as given.

Figure 4.15 specifies the necessary extensions of the ISMC interpreter au-interpreter
extension tomaton to handle – especially hand over, maintaining coherency – DSM frag-

ments. The greyed states represent established parts of the automaton as given
by figures 4.9 to 4.12, with their existing transitions omitted, complemented
by new relations.

Note that while the above syntax structure of the fragment complies withfragment
conventions the definition of an ISMC, the interpreter automaton still enables the state ma-

chine to treat a fragment like any composite state, including direct transitions
into and out of the fragment state hierarchy. Implied is a handover mecha-
nism that touches a number of semantic variation points. For example, the
reference implementation presumes that events that trigger transitions with
the fragment state itself as source have to occur in the remote RTE, equal
to transitions inside the fragment. Furthermore, message respectively event
buffers are currently not included in the handover – other realizations might
take a different view.

4.2.4.3 Structure

Figure 4.16 presents the structure of the DSMF pattern.

4.2.4.4 Collaboration

Figure 4.17 illustrates the interaction realizing DSMF processing between the
components, described in the following.

• Local Environment
A distributed hardware platform, e.g. vehicle-installed OBE, ECU, smart-
phone or the smart card of the interoperability use case. Runs the HIRTE
Component.

• Remote Environment
Either a hardware platform tightly integrated with the local module, e.g.
a device with a smart card reader, another ECU in the same vehicle, or
a center-side server. Runs the Remote RTE software.

204

4.2. Elementary Patterns and Structures

Figure 4.15: ISMC Interpreter Automaton Extensions for DSMF

205

4. Fundamental HIRTE Patterns

Figure 4.16: Distributable State Machine Fragment Pattern Structure

• Transport Connection
Some physical link between the local and remote modules with low-level
protocols up to the OSI transport layer. May range from an automotive
bus wiring to a CN OTA connection.

• DSM Fragment Management Interface
Requires the associated component to implement methods to extract a
fragment byte subsequence from the ISMC on the local Interpreter’s
DSM Fragment Marker referencing a DSMF, encode it as a message, or
sequence of submessages in case of length restrictions, decode message(s)
to ISMC and replace a fragment in the ISMC byte array. Additionally,
this interface may include methods to check requirements (see previous
section and below) of the fragment execution regarding operations to
invoke and expected events/messages.

• DSM Fragment Transaction Interface
For fragment distribution, the local HIRTE Component requires an in-
terface that hides the specifics of the Transport Connection and provides
methods to send and receive the ISMC subarrays encoded in a corre-
sponding message format. This interface also has to regard application-
specific addressing respectively miscellaneous message control issues.

• HIRTE Component
Representing the software controlling processing of the ISMC that in turn

206

4.2. Elementary Patterns and Structures

determines the behavior of the implemented service. The port with the
associated (required) interface connection DSM Fragment Transaction
is implemented by the input/output message queues as introduced in
4.2.3.4. Basically, the setup conforms to a VCU.

In a Run loop, the component continuously checks steps for the ISMC
Interpreter reaching a distributable fragment (DSM Fragment Marker).
On getting such reference, it reads out the corresponding byte string,
determined by the starting index stored in the marker register plus the
program length as stored in the fragment ISMC Program Length header
entry (cmp. constraints in fig. 4.17). Depending on the Transport Con-
nection and Transaction protocol transferable message size, the compo-
nent packs the fragment into n message partitions. The encoded mes-
sage is handed over to the local output queue buffer, and from there
distributed to the remote input queue of the Remote RTE.

After remote processing, the updated message(s) are returned via the
local input queue and subsequently unpacked to a decoded ISMC frag-
ment. Its byte sequence is written to the original ISMC’s above index,
replacing the fragment ISMC in a new state configuration. Prompting
the interpreter to commence machine processing, the component sets the
DSM Fragment Marker to COMPLETE.

• Remote RTE
While designated RTE, this component generally represents an applica-
tion that provides a RTE – interpreter, attributes and operations – for
HIRTE ISMC and implements the corresponding interfaces for fragment
transaction and management. It may also have other purposes beyond
serving the HIRTE.

The remote component receives the fragment as message(s) in its in-
put queue. It unpacks the received data to one ISMC fragment byte
sequence and uses the contained specified requirements to check for a
valid executability in the given RTE: does the component support the
required operations and signals, does it declare an attribute set matching
the fragment’s subset?

If the capabilities are asserted, the fragment changes its role to a regular
ISMC – Set Tape prepares the remote interpreter for processing of the
machine program. Here, we assume that the remote Set Tape method
strips or disregards the bytes preceding the ISMC specification, e.g. by
resuming the head’s position after reading out the requirements.

The remote execution loop takes the same structure and flow as the es-
tablished local Run processing. It Steps through the interpreter states,
managing input/output message queues, invoking external operations
where indicated and also distributing fragments, effectively enabling dis-
tribution cascades if an ISMC fragment contains another fragment. As

207

4. Fundamental HIRTE Patterns

the one distinction, a fragment program execution is expected to termi-
nate with the state Outside Machine Scope, indicating a transition that
left the fragment composite state and needs to continue in its compos-
ing machine’s context, namely after returning the fragment to the local
RTE.

Accordingly, on a proper termination, the processed fragment with up-
dated attributes is repacked for transmission, the resulting message handed
over to the remote component’s output queue for passing back to the lo-
cal input queue.

• Local and Remote ISMC Interpreters
Process and execute an ISMC program conforming to their interpreter
state automata. Local and remote instances are meant to be distinct in-
sofar as the remote complements the local interpreter: depending on the
capabilities – computing power, available resources, accessable devices,
security levels, quality of service – the remote module provides native
operations the local module cannot or is not allowed to realize.

• Local and Remote External Operation Set
Provide procedures that elude implementation as native operations due
to complexity or RTE-proprietary character (e.g. sensor access). Mean-
ing of the complements dependency is equal to the relationship between
local and remote interpreter, only referring to external operations. Sum-
marized, this implies that the union of local and remote, native and
external operation sets contains the set of operations invoked by the
valid ISMC programs of a VCU system.

• Local ISMC and Remote Fragment
Represent valid and executable (in relation to the given interpreter real-
izations) ISMC programs. With a composite state preceded by a DSM
FRAGMENT opcode, the local ISMC declares the structure and content
of the remote ISMC Fragment. Due to our implementation restrictions
still in effect (recall 3.2.3), the differentiation of the two given elements
in the pattern is intentional and significant: actual instances of both ex-
ist at any time, at least as containers, as it is not allowed to create the
fragment dynamically.

Likewise, the local ISMC declares the remote Task Attribute Set by spec-
ifying the Variable Subset mapping between original state machine and
fragment variables: the remote Task Attribute Set is a subset of or equal
to the set of locally mapped fragment variables.

• Local and Remote Task Attribute Set
Compose and provide at least17 all variables the ISMC and fragment ex-
ternal operations access, respectively. The declares dependency between

17Thus, the possible subset relation between mapped fragment variables and the remote

208

4.2. Elementary Patterns and Structures

ISMC and remote attributes implies the subset dependency between the
two attribute sets.

4.2.4.5 Implementation

The listings given in this section complete the sources of 4.2.3.5. First, listing
4.14 introduces the spec for DSMF processing.

Listing 4.14: ISMC Interpreter Spec Additions
1 package HIRTE_ISMC_Interpreter i s
2 . . .
3
4 ISMC_PROGRAM_LENGTH_OFFSET : constant Storage_Count := 78 ;
5 DSM_FRAGMENT_MARKER_OFFSET : constant Storage_Count := 80 ;
6 DSMF_TCHAIN_OFFSET : constant Storage_Count := 82 ;
7 . . .
8
9 type ISMC_Automaton_State i s (. . . Read_Next_Target , Process_DSM_Fragment ,

10 Initialize_DSMF_Variable_Subset , Copy_Variable_Value ,
11 Init ial ize_DSMF_Registers , Init ia l ize_Inbound_Chain , Copy_Direction ,
12 Set_DSMF_Marker , Wait_for_Completion , Set_Head_on_Chain ,
13 Outside_Machine_Scope , Refit_DSM_Fragment , Read_DSMF_Variable_Subset ,
14 Update_Variable_Value) ;
15
16 for ISMC_Automaton_State use (. . . Read_Next_Target => 71 ,
17 Process_DSM_Fragment => 72 , Initialize_DSMF_Variable_Subset => 73 ,
18 Copy_Variable_Value => 74 , Init ia l ize_DSMF_Registers => 75 ,
19 In it ia l ize_Inbound_Chain => 76 , Copy_Direction => 77 ,
20 Set_DSMF_Marker => 78 , Wait_for_Completion => 79 ,
21 Set_Head_on_Chain => 80 , Outside_Machine_Scope => 81 ,
22 Refit_DSM_Fragment => 82 , Read_DSMF_Variable_Subset => 83 ,
23 Update_Variable_Value => 84) ;
24 . . .
25
26 type ISMC_Control_Item i s (. . . DSM_FRAGMENT) ;
27 for ISMC_Control_Item use (. . . DSM_FRAGMENT => 22) ;
28 . . .
29
30 protected type ISMC_Automaton i s
31 . . .
32
33 procedure Set_DSM_Fragment_Marker(I : in ISMC_Index) ;
34 function Get_DSM_Fragment_Marker return ISMC_Index ;
35 procedure Set_ISMC_Program_Length(I : in ISMC_Index) ;
36 function Get_ISMC_Program_Length return ISMC_Index ;
37 . . .
38
39 end ISMC_Automaton ;

The spec adds attributes and opcode of the syntax definition of listing 4.13
as well as the states of the automaton of fig. 4.15. To confer the conceptual

attribute set: strictly speaking, the attribute set record is necessary only for the external
operations as a convenient way to access the corresponding byte sequence in the ISMC
(compare its record representation). Native operations directly address this sequence without
a detour over a declared attribute set record and in consequence do not need explicit variable
declarations in any record.

209

4. Fundamental HIRTE Patterns

Figure 4.17: DSMF Processing Interaction between Local and Remote RTE
210

4.2. Elementary Patterns and Structures

orthogonality of ISMC and fragment on the implementation, we do not provide
a specialized interpreter for DSMFs, instead integrating the mechanism directly
to avoid module variants. Accordingly, listing 4.15 realizes this specification.

Listing 4.15: ISMC Interpreter Body Additions
1 package body HIRTE_ISMC_Interpreter i s
2
3 protected body ISMC_Automaton i s
4 . . .
5
6 procedure Step i s
7 begin
8 . . .
9

10 when Read_Next_Target =>
11
12 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
13
14 i f Token_Type = T_ISMC_Index then
15 In t e rp r e t e r_Sta t e := Set_Head_on_State ;
16 else
17 In t e rp r e t e r_Sta t e := Fa i l u r e ;
18 end i f ;
19
20 when Process_DSM_Fragment =>
21
22 ISMC(INDEX_MARKER_OFFSET. .INDEX_MARKER_OFFSET+1) :=
23 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
24 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
25
26 i f Token_Type = T_ISMC_Index then
27 In t e rp r e t e r_Sta t e := Initialize_DSMF_Variable_Subset ;
28 else
29 i f Token_Type = T_SM_Control and Token_SM_Control = EOL then
30 In t e rp r e t e r_Sta t e := Init ia l ize_DSMF_Registers ;
31 else
32 In t e rp r e t e r_Sta t e := Fa i l u r e ;
33 end i f ;
34 end i f ;
35
36 when Initialize_DSMF_Variable_Subset =>
37
38 ISMC(ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1) :=
39 Write_ISMC_Index (Token_ISMC_Index) ;
40 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
41
42 i f Token_Type = T_ISMC_Index then
43 In t e rp r e t e r_Sta t e := Copy_Variable_Value ;
44 else
45 In t e rp r e t e r_Sta t e := Fa i l u r e ;
46 end i f ;
47
48 when Copy_Variable_Value =>
49
50 −− Prototype cop i e s four by t e s as i n t e g e r :
51 ISMC(Storage_Count (Token_ISMC_Index)
52 . . Storage_Count (Token_ISMC_Index)+3) :=
53 ISMC(Storage_Count (Read_ISMC_Index(ISMC(ASSIGNMENT_MARKER_OFFSET
54 . .ASSIGNMENT_MARKER_OFFSET+1)))
55 . . Storage_Count (Read_ISMC_Index(ISMC(
56 ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1)))+3);

211

4. Fundamental HIRTE Patterns

57 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
58
59 i f Token_Type = T_ISMC_Index then
60 In t e rp r e t e r_Sta t e := Initialize_DSMF_Variable_Subset ;
61 else
62 i f Token_Type = T_SM_Control and Token_SM_Control = EOL then
63 In t e rp r e t e r_Sta t e := Init ia l ize_DSMF_Registers ;
64 else
65 In t e rp r e t e r_Sta t e := Fa i l u r e ;
66 end i f ;
67 end i f ;
68
69 when Init ia l ize_DSMF_Registers =>
70
71 ISMC(INDEX_MARKER_OFFSET+2. .INDEX_MARKER_OFFSET+3) :=
72 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1);
73 ISMC(Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
74 . . INDEX_MARKER_OFFSET+3)))+TC_HEAD_OFFSET−1
75 . . Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
76 . . INDEX_MARKER_OFFSET+3)))+TC_HEAD_OFFSET) :=
77 Write_ISMC_Index (ISMC_Index(DSMF_TCHAIN_OFFSET)) ;
78 ISMC(Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
79 . . INDEX_MARKER_OFFSET+3)))+CURRENT_LEVEL_OFFSET−1) := 0 ;
80 ISMC(Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
81 . . INDEX_MARKER_OFFSET+3)))+INTERPRETER_STATE_OFFSET−1) :=
82 Write_ISMC_Automaton_State (Trans i t) ;
83 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
84 Write_ISMC_Index (Read_ISMC_Index(ISMC(I_HEAD_OFFSET
85 . . I_HEAD_OFFSET+1))+ISMC_Index(DSMF_TCHAIN_OFFSET−1)) ;
86 −− Per d e f a u l t s e t the fragment ’ s CS to the f i r s t s t a t e to enter
87 −− remote ly :
88 Write_Index_to_Tape (ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) ,
89 Read_ISMC_Index(ISMC(Storage_Offset (
90 Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
91 . . INDEX_MARKER_OFFSET+3)))+INITIAL_STATE_REF_OFFSET−1
92 . . Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
93 . . INDEX_MARKER_OFFSET+3)))+INITIAL_STATE_REF_OFFSET))) ;
94 Write_Control_Item_to_Tape (ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) ,
95 INBOUND) ;
96 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ; −− Discard inbound
97 −− f l a g
98 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
99

100 i f Token_Type = T_ISMC_Index then
101 In t e rp r e t e r_Sta t e := Init ia l ize_Inbound_Chain ;
102 else
103 In t e rp r e t e r_Sta t e := Fa i l u r e ;
104 end i f ;
105
106 when In it ia l ize_Inbound_Chain =>
107
108 Write_Index_to_Tape (ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) ,
109 Token_ISMC_Index−Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
110 . . INDEX_MARKER_OFFSET+3))+1);
111 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
112
113 i f Token_Type = T_ISMC_Index then
114 In t e rp r e t e r_Sta t e := Init ia l ize_Inbound_Chain ;
115 else
116 i f Token_Type = T_SM_Control then
117 i f Token_SM_Control = EOL then
118 In t e rp r e t e r_Sta t e := Set_DSMF_Marker ;

212

4.2. Elementary Patterns and Structures

119 else
120 In t e rp r e t e r_Sta t e := Copy_Direction ;
121 end i f ;
122 else
123 In t e rp r e t e r_Sta t e := Fa i l u r e ;
124 end i f ;
125 end i f ;
126
127 when Copy_Direction =>
128
129 Write_Control_Item_to_Tape (ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) ,
130 Token_SM_Control) ;
131 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
132
133 i f Token_Type = T_ISMC_Index then
134 In t e rp r e t e r_Sta t e := Init ia l ize_Inbound_Chain ;
135 else
136 i f Token_Type = T_SM_Control and Token_SM_Control = EOL then
137 In t e rp r e t e r_Sta t e := Set_DSMF_Marker ;
138 else
139 In t e rp r e t e r_Sta t e := Fa i l u r e ;
140 end i f ;
141 end i f ;
142
143 when Set_DSMF_Marker =>
144
145 ISMC(DSM_FRAGMENT_MARKER_OFFSET. .DSM_FRAGMENT_MARKER_OFFSET+1) :=
146 ISMC(INDEX_MARKER_OFFSET+2. .INDEX_MARKER_OFFSET+3);
147
148 In t e rp r e t e r_Sta t e := Wait_for_Completion ;
149
150 when Wait_for_Completion =>
151
152 i f Read_ISMC_Index(ISMC(DSM_FRAGMENT_MARKER_OFFSET
153 . .DSM_FRAGMENT_MARKER_OFFSET+1)) = COMPLETE then
154 In t e rp r e t e r_Sta t e := Refit_DSM_Fragment ;
155 end i f ;
156
157 when Refit_DSM_Fragment =>
158
159 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1) :=
160 ISMC(Storage_Offset (Read_ISMC_Index(ISMC(
161 INDEX_MARKER_OFFSET+2. .INDEX_MARKER_OFFSET+3)))+TC_HEAD_OFFSET−1
162 . . Storage_Offset (Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
163 . . INDEX_MARKER_OFFSET+3)))+TC_HEAD_OFFSET) ;
164 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1) :=
165 Write_ISMC_Index (Read_ISMC_Index(
166 ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1))
167 +Read_ISMC_Index(ISMC(INDEX_MARKER_OFFSET+2
168 . . INDEX_MARKER_OFFSET+3))−1);
169 ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1) :=
170 ISMC(INDEX_MARKER_OFFSET. .INDEX_MARKER_OFFSET+1);
171 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
172
173 i f Token_Type = T_ISMC_Index then
174 In t e rp r e t e r_Sta t e := Read_DSMF_Variable_Subset ;
175 else
176 i f Token_Type = T_SM_Control and Token_SM_Control = EOL then
177 In t e rp r e t e r_Sta t e := Trans i t ;
178 else
179 In t e rp r e t e r_Sta t e := Fa i l u r e ;
180 end i f ;

213

4. Fundamental HIRTE Patterns

181 end i f ;
182
183 when Read_DSMF_Variable_Subset =>
184
185 ISMC(ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1) :=
186 Write_ISMC_Index (Token_ISMC_Index) ;
187 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
188
189 i f Token_Type = T_ISMC_Index then
190 In t e rp r e t e r_Sta t e := Update_Variable_Value ;
191 else
192 In t e rp r e t e r_Sta t e := Fa i l u r e ;
193 end i f ;
194
195 when Update_Variable_Value =>
196
197 −− Prototype cop ie s four by t e s as i n t e g e r :
198 ISMC(Storage_Count (Read_ISMC_Index(ISMC(
199 ASSIGNMENT_MARKER_OFFSET. .ASSIGNMENT_MARKER_OFFSET+1)))
200 . . Storage_Count (Read_ISMC_Index(ISMC(ASSIGNMENT_MARKER_OFFSET
201 . .ASSIGNMENT_MARKER_OFFSET+1)))+3) :=
202 ISMC(Storage_Count (Token_ISMC_Index)
203 . . Storage_Count (Token_ISMC_Index)+3);
204 Read_Tape(ISMC(I_HEAD_OFFSET. . I_HEAD_OFFSET+1)) ;
205
206 i f Token_Type = T_ISMC_Index then
207 In t e rp r e t e r_Sta t e := Read_DSMF_Variable_Subset ;
208 else
209 i f Token_Type = T_SM_Control and Token_SM_Control = EOL then
210 In t e rp r e t e r_Sta t e := Trans i t ;
211 else
212 In t e rp r e t e r_Sta t e := Fa i l u r e ;
213 end i f ;
214 end i f ;
215
216 when Set_Head_on_Chain =>
217
218 Read_Tape(ISMC(TC_HEAD_OFFSET. .TC_HEAD_OFFSET+1)) ;
219
220 i f Token_Type = T_SM_Control and Token_SM_Control = TARGETS then
221 In t e rp r e t e r_Sta t e := Outside_Machine_Scope ;
222 else
223 In t e rp r e t e r_Sta t e := Fa i l u r e ;
224 end i f ;
225
226 when Outside_Machine_Scope =>
227
228 null ;
229 . . .
230
231 end ;
232
233 end ISMC_Automaton ;
234
235 end HIRTE_ISMC_Interpreter ;

For the sake of completeness, listing 4.16 shows a plain implementation of
the Run procedure. Its external operations refer to the state machine example
of 4.2.1.5.

214

4.2. Elementary Patterns and Structures

Listing 4.16: VCU Component Run Procedure Example
1 procedure Run i s
2
3 I_State : ISMC_Automaton_State ;
4 Op_ID : External_Operation_Set . External_Operation_ID ;
5 Last_Message_Body : Messages . Binary_Buffer ;
6 OK : Boolean := Fal se ;
7
8 begin
9

10 loop −− Main execu t ion loop
11
12 −− Process an i n t e r p r e t e r s t ep . . .
13 Machine . Step ;
14 −− . . . and ge t the r e s u l t i n g s t a t e :
15 I_State := Machine . Get_Interpreter_State ;
16
17 −− I f the i n t e r p r e t e r message b u f f e r i s empty . . .
18 i f Machine . Get_Last_Message_Buffer = UNDEFINED_MSG then
19 −− . . . check f o r a new message . . .
20 Message_Queues .Get_Msg(From_Kernel_Queue . al l , Last_Message_Body , OK) ;
21 i f OK then
22 −− . . . and hand i t over to the i n t e r p r e t e r machine :
23 Machine . Set_Last_Message_Buffer (Last_Message_Body) ;
24 end i f ;
25 end i f ;
26
27 −− I f the i n t e r p r e t e r r e que s t s execu t ion o f an e x t e rna l operat ion . . .
28 i f Machine . Get_External_Operation_Marker /= COMPLETE then
29 −− . . . r e t r i e v e i t s i d e n t i f i c a t i o n . . .
30 Op_ID := Read_External_Operation_ID (Machine . Get_Tape(
31 Storage_Offset (Machine . Get_External_Operation_Marker)
32 . . Storage_Offset (Machine . Get_External_Operation_Marker)+1)) ;
33
34 −− . . . and c a l l i t :
35 case Op_ID i s
36
37 when External_Operation_Set . A_Simple_1_Entry_ID =>
38 External_Operation_Set . A_Simple_1_Entry ;
39
40 when External_Operation_Set . A_Simple_1_Exit =>
41 External_Operation_Set . A_Simple_1_Exit ;
42
43 when External_Operation_Set . A_privateOp1 =>
44 External_Operation_Set . A_privateOp1 ;
45
46 when External_Operation_Set . Composite_1_Exit =>
47 External_Operation_Set . Composite_1_Exit ;
48
49 when External_Operation_Set . Guard_Composite_1_TO_Simple_3 =>
50 External_Operation_Set . Guard_Composite_1_TO_Simple_3 ;
51
52 when External_Operation_Set . Guard_Composite_2_TO_Simple_3 =>
53 External_Operation_Set . Guard_Composite_2_TO_Simple_3 ;
54
55 end case ;
56
57 −− On return , n o t i f y the i n t e r p r e t e r :
58 Machine . Set_External_Operation_Marker (COMPLETE) ;
59
60 end i f ;
61

215

4. Fundamental HIRTE Patterns

62 −− Stop or i n t e r r up t proces s ing on f i n i s h i n g the ISMC proces s ing
63 −− or encounter ing a f a t a l problem . . .
64 exit when I_State = Fina l or I_State = Fa i l u r e
65 −− . . . or l e a v i n g the ISMC s t a t e h ierarchy . . .
66 or I_State = Outside_Machine_Scope
67 −− . . . or to d i s t r i b u t e a fragment f o r remote execu t ion :
68 or Machine . Get_DSM_Fragment_Marker /= COMPLETE;
69 −− Variat ion po in t : the VCU might d i r e c t l y pack the fragment as
70 −− a message and d i s t r i b u t e i t v ia an output queue .
71
72 end loop ;
73
74 end ;

4.2.4.6 Variants and Extensions

The concept of DSMFs is not necessarily tied exclusively to ISMC. If we ab-fragment aspects
stract the essential aspects of the fragments, we find segregation and handover.
The former takes a static view and refers to the systematic practical pursuit of
self-containment (cmp. 4.1.3) in states: the automaton structures need to al-
low partitioning under the constraint of maintained integrity and validity of all
(sub-)machine attributes relevant for processing. The latter, a dynamic view,
pertains to "hotgrafting" an automaton part, i.e. transfering at run-time, while
ensuring invariant coherence and consistency of its static structures and dy-
namic traces – at any step, independent from the local fragment distribution,
the exhibited behavior has to conform to the original automaton.

With these aspects identified, we revisit the SRSM pattern of 4.2.1. Afragmenting SRSM
fundamental prerequisite for the segregation of a fragment composite state is a
serviceable state hierarchy that makes the composition of states explicit. ISMC
achieves this fragment cohesion by conforming to the syntax of listing 4.13;
per definitionem, its states occupy a coherent byte sequence. In contrast, a
SRSM structure specializes the hierarchical relation on its utilizing element: it
is implied in the transition chains. Consequently, compilation of the fragment
state set demands deriving the compositional information from these records.
As the conceptual structure and underlying processing approaches of SRSMs
and ISMC are equivalent (as established in 4.2.3.2), we can reduce the handover
of SRSM fragments to the questions of serialization and selective processing.
Serializing the state and transition records does not involve high efforts if we
substitute pointers with indices (sketched in 4.2.1.6). Processing the structures
pre and post handover requires limiting the traversion of transition chains to
the states contained in the fragment while preserving the remaining order for
the replacement. This merely requires additional (boolean) discriminants and
corresponding exit conditions in the Interprete and Run Machine procedures.

The fragment distribution approach – handing over executable programparametrization
parts to remote components – unlocks another avenue: parametrized fragments.
While still preserving the in- and outgoing transitions, we can introduce dy-

216

4.3. Chapter Conclusion

namic18 composition respectively compilation of the fragment programs. The
ETC domain suggests a number of use cases, especially in the context of toll
atom identification and rating to charging (cmp. 2.2.1). To generate receipt
records, e.g. to answer automatic enforcement challenges, the local HIRTE
component may compile specific tariff calculation instruction machines for an
infrastructure access (segment, tour, area). This customized automaton may
then be passed to a remote component for computation without a complex
tariff scheme required externally. A similar process is feasible for traffic in-
frastructure geometry identification. Computation instructions for a specific
infrastructure may be passed to a component outfitted with corresponding
sensors; again, this external component does not need access to the tolling
service’s operating database. The results are returned encoded in the updated
ISMC, its proper transitions having fired to be concluded locally, depending on
the result. Answering the question for a robust, safe formalism to distribute
tariff calculation instructions is crucial for the EETS scenario ([EU09]).

4.3 Chapter Conclusion

It would seem that the results of chapters 2 and 3 presented us with an objec- why the detour
tive and set of requirements sufficient to design a proper ETC application archi-
tecture. The aspects, business processes, interfaces and logics of the domain
introduction served as alignment of the software’s modular setup: without
needing the details of infrastructure identification, communication protocols
or payment record structures, it already gave us a clear idea of the separation
of concerns in the sense of layers, basic and composite services that will in
concert reflect the aspects and realize the application. The substantiations
of reliability and economy, their set of concrete requirements and regulations
even instructed us how exactly to implement these ideas.

In this light, the results of this chapter might appear as a kind of detour. wider benefits
Instead of describing the actual solution, it presents a set of patterns; generic
approaches, that is. This is owed to the fact that we introduced the domain
of ETC as one representative of a genuine, mission-critical type of telematics
system. This example allowed us to reason purposefully about the characteris-
tics of distributed, embedded software with various and variable environment
interactions. Consequently, the intermediate step of the patterns offers build-
ing blocks not only for ETC deployments, but for any telematics system with
similar requirements – found in such dissimilar subdomains as healthcare and
defense.

Earlier (3.3.1), we selected the UML as modeling language of choice to some stereotypes
and the
self-contained
state

illustrate the results of this work. For the description of the patterns, the
first section of this chapter derived a number of supplementary stereotypes –

18Only related to the ISMC content, not structure – the static programming techniques
stay in effect.

217

4. Fundamental HIRTE Patterns

behavioral with procedure, function and task, data structure with static mem-
ory segment, cyclic buffer and record – from the UML metamodel. A more
significant stereotype was introduced as the distributable state machine frag-
ment. With the notion of a self-contained state, it extends the concept of the
state automaton by a selectively transferable part: a substate that entrains
and aggregates all information to be meaningful, or interpretable, beyond the
context of its original state machine.

The component is a basic element of our architecture. It is supposed tothe HIRTE
core patterns be a module realizing some service with defined input/output interfaces in the

form of message queues. Our component’s behavior is determined by a state
automaton. With the preparatory work, the chapter introduced the elementary
design patterns and structures that make up the HIRTE core:

Statically Resolvable State Machine Pattern – a blueprint for the im-
plementation of a component conforming to a hierarchical state machine.
Superficially, it exhibits a similar structure and behavior as established
solutions (a state automaton per se is nothing original, after all). Inter-
nally, the pattern dismisses all elements and configurations that might
rely on dynamic memory allocation, polymorphy, dispatching and sim-
ilar mechanisms considered unsafe in a high-integrity deployment. In
contrast to existing works, despite this robustness it still maintains a
sufficient expressiveness to match the complexity of the services of the
given domain.

While not discouraging manual programming, the setup of the pattern
generally aims at automatic generation of sources, i.e. model transfor-
mation. This is illustrated by the instantiation example, which follows a
systematic and repetitive program composition.

State Tracer Pattern – structures and refines the utilization of a dedicated,
statically allocated memory segment to log the system state configuration
and its traces in (near) real-time. To this end, it avoids access collisions
and mutual exclusion.

Virtual Control Unit Pattern – evolves the concept of a component im-
plemented as a state machine to a scalable, high-integrity RTE for state
automaton programs. The core VCU implementation is lean and ex-
tendable, consisting of a program interpreter, message queues, a set of
procedures complementing the interpreter features and a set of variables
for these operations. In the process, the pattern introduces the automa-
ton programs in the form of Interpretable State Machine Code (ISMC),
which realize the respective service, or actual application, of the VCU
component.

Instead of the common deployments of virtual machines – either pro-
viding the extensive functionality of a full-scale OO language RTE or

218

4.3. Chapter Conclusion

emulating a whole computer for an OS –, the VCU approach establishes
networks of distributed lightweight modules controlled by restrictive pro-
grams. This follows the idea of reducing risks and supporting robustness
of the overall system by reducing the complexity of the single element,
working toward the notion of composability as defined in [Ko97].

With regard to the general approach of virtualization, we effectively vir-
tualize a conceptual ECU (whereas an abstract one instead of some spe-
cific type); a small, efficiently controllable element. Correspondingly, a
set of VCUs is meant to run on a single processor, be distributed over a
network of processors (cmp. e.g. the automotive integration proposal of
3.1.3.2), but the case of one VCU spanning more than one processor is
no relevant scenario of the given – embedded systems – domain.

Distributable State Machine Fragment Pattern – applies the self-con-
tained state to VCUs and ISMC. An additional opcode allows fragment
declarations of ISMC composite states. Transitions entering a fragment
prompt the VCU to extract the corresponding byte segment, including
all variables accessed by this subprogram, and transfer it to a remote
RTE for processing. On an outgoing transition, the fragment is returned
to the local VCU, replaced in the ISMC and the transition resumed.

This conceptual extension enables a VCU network to distribute its ac-
tivities over a variety of RTEs, with the prerequisites of a remote ISMC
interpreter and supported fragment transaction protocols. Among the
use cases, we find smart card interoperability (cmp. 3.1.3.3; relevant for
the economy of our solution) and the general ability to safely delegate
computations to specialized components – regarding security, sensors,
computation power, communication devices.

All pattern descriptions feature a reference source in Ada, with the restrict- reference sources
versus abandoned
alternatives

ing pragmas in effect. Besides the purposes of standard implementations that
an actual system may adopt – directly, refactored or ported to another lan-
guage –, and proof-of-concept prototypes during the elaboration of this work,
the Ada specs and bodies effectively serve as operational semantics of the pat-
tern models. Here, and especially with the presentation of the ISMC semantics,
we consciously infringe on the all-to-common norm of algebraic specification
of operational semantics, prominently in the form of Structured Operational
Semantics (SOS, [Pl04]). Under the pretense of scientific universality, too
many publications thus a) (semantically) stay on a level of arbitrariness when
they claim to present a concrete solution and b) invite fundamental mistakes
by forgoing the relentlessnes of automated checks of their results, e.g. by a
compiler. Our experience with above a-cases showed us that applying a com-
prehensive SOS to an actual system is not "trivial" (like often postulated in

219

4. Fundamental HIRTE Patterns

these works), and found results of works that were almost rendered completely
useless because of b-cases19.

Even with the HIRTE application architecture only due next chapter, itrequirements
revisited is already worthwhile to revisit the seven requirements. Instead of examining

one integrated architectural solution for fulfillment later, we can match each
building block to the requirement set, allowing a more selective composition
of a solution regarding the aspects touched.

Requirement I (centralized control) – is the one requirement we so far
only served implicitly and will answer in the next chapter 5. We did
not (yet) specify a controlling instance, except incidentally in the State
Tracer Pattern. Nevertheless, this chapter provides the proper tools for
the job. Stepwise execution of the VCUs, the immediate availability of
the states in the State Tracer and defined interfaces to both SRSM and
VCU components are sine qua non, necessary means to orchestrate the
elements.

Requirement II (system state automata) – designates the underlying struc-
tural and behavioral principle of all patterns. Note that the patterns not
only retain HIRTE-constituted application components to adhere to the
state automaton alignment, but also consistently apply this design to
their interpreter infrastructure. This facilitates methodical validation
and eventual modification of a HIRTE solution by ensuring a formal,
uniform system structure.

Requirement III (transparency of activities over time) – is explicitly
fulfilled by the State Tracer, which provides the components (including
a centralized control instance) with a safe interface to immediately log
(and monitor) their behavior. The thusly emerging traces always provide
a clear picture of the incorporated modules’ activities.

Requirement IV (component organization) – is met by the SRSM and
VCU patterns, which both employ the HIRTE Component with its mes-
sage queues to compose the structures implementing the state automa-
ton behavior, i.e. some service state machine conforming to II is always
encapsuled and represented by a component.

Requirement V (statically determinable implementation) – is enforced
by the profile and restriction pragmas imposed on the source code. Hence,
the pattern design considers the implied constraints for the model, only
admitting statically implementable structures.

Requirement VI (deterministic run-time behavior) – is answered indi-
rectly; it concerns the scheduling of a set of components and message

19This is by no means a statement against the sophistication and usefulness of the SOS
approach in general.

220

4.3. Chapter Conclusion

queue organization. We did not specify a scheduler or queue manage-
ment, and will not in detail, as valid solutions for high-integrity appli-
cations exist. Essential for the HIRTE patterns is an effective option of
controllability. That is granted by the component Run and Stepmethods,
which may apply suitable strategies to the machine respectively inter-
preter invocations (preferably fixed priority scheduling, like rate mono-
tonic; cmp. [BW09], [Bu05]) and queue access (e.g. FIFO without re-
queuing). Additionally, the pattern decomposition (component logics,
queues, operation sets) allows for efficient analysis of determining fac-
tors, e.g. run-time of native and external operations.

Requirement VII (persistency of activities) – reflects in the ISMC ap-
proach: in a VCU-exclusive setup, the corresponding set of binary strings
represents a complete system state. In conjunction with interpreter
Steps, ISMC permits transaction based execution, e.g. by keeping per-
sistent copies of the byte sequences that are updated and commited only
after faultless step processing. While certain real-time dependencies of
the activities (cue sensor readouts) still need consideration, the software
can perpetuate a consistent state configuration – particularly crucial as
well as effective for payment and operating data transactions.

Now that this chapter produced requirements-conformant building blocks
for high-integrity telematics architectures, the next chapter may put them to
– ETC domain-specific – use.

221

Five

HIRTE Application Architecture
Patterns

... in which we finally illustrate how to build a software solution in confor-
mance to our requirements of reliability and economy. Again, a set of patterns
achieves this: they define the three successive views on a HIRTE architecture
– the framework, the implementation and application. To come full circle from
our introduction, the latter pattern sketches an ETC setup built of HIRTE
components.

The architecture elements introduced in the previous chapter constitute a
complex infrastructure for applications. Isolating each partial solution in a
pattern ensures broader applicability in the general telematics domain. Any
high-integrity system may select a proper subset of the offered elements for
realization of its specific use cases.

Nevertheless, we chose a specimen of telematics systems as a representative returning to ETC
for this work. Consequently, this chapter will gradually refocus our endeavors
on ETC to illustrate the methodical approach of a HIRTE implementation.

An actual deployment of an ETC system based on the HIRTE architecture
has to be able to reflect the aspects introduced in 2.3. While the software pro-
cesses determine hardware attributes like memory size, processor capabilities
and communication service bandwidth, the distribution of the software mod-
ules over a technological infrastructure is usually the result of a business case.
In consequence, an ETC reference architecture has to be flexible: portable,
modular and scaleable. Here however, this flexibility has to effect a more ab-
stract level than the run-time implementation, generally enabling systematic
shifting and changing of interfaces, selective exchange of components (in de-
velopment as well as during operation) and easy (economical) introduction of
additional vehicle or infrastructure types.

223

5. HIRTE Application Architecture Patterns

5.1 HIRTE Framework Pattern

5.1.1 Abstract

The building blocks of the previous chapter each cover a defined aspect of
the HIRTE architectural concept. In order to present a coherent foundation
for applications, we need to establish the relations between these core pattern
elements, composing a framework structure. To that end, packages express
the separation of concerns between the contained components. Regarding an
actual application, this still illustrates a meta-level: a service infrastructure
will rely on the package contents as development reference to realize their
structures and processes.

While it might appear redundant to specify a pattern – which is generic
in itself – for a framework, commonly already representing a generic software
structure, this pattern also lays out details of application-specific parts. Thus,
it goes beyond e.g. a mere API structure, strictly only later integrated by
application modules, instead conveying a sensible arrangement for selective and
delimited specialization for an actual mission-critical telematics respectively
ETC deployment. Also, an actual framework as manifestation of the pattern
will provide concrete action sets, messages and queues.

A general consideration of the framework notion regarding the HIRTE is
given in 6.2, after the description of all three application architecture patterns.

5.1.2 Structure

Fig. 5.1 describes the pattern’s structure.

5.1.3 Collaboration

• Generic High Integrity Run-time Environment
Contains components for the interpretation and controlled execution of
state machine structures, thusly providing the core of the HIRTE. The
package is denominated generic1, as it is not concerned with functionality
beyond the run-time processing of the machine states and their basic
native actions.

At this point, we introduce a Kernel, the control component as signified
in 4.2.2, into HIRTE: it assumes the role of a central, integrating hub for
all infrastructure elements of the system. While certain characteristics
resemble that of a middleware, we use the term "kernel" for this control
module of HIRTE. First of all, a middleware often is used to encapsule (or
hide) the implementation of communications and connections between
modules or layers of a system. In contrast, the HIRTE kernel controls and

1"Generic" still inside the HIRTE domain; not transgressing the overall domain-specific
approach.

224

5.1. HIRTE Framework Pattern

Figure 5.1: HIRTE Framework Pattern Structure

monitors the module transactions, while explicitly exposing the behavior
of all elements (step semantics, state tracer). Secondly, a middleware is
usually interpreted as a kind of mediating service layer. Our kernel on
the other hand may implement elementary services for the components,
effectively enabling it to replace the operating system for these.

Employing the IRunControl interface, it controls the services of an ap-
plication. IRunControl defines the operations Run (execute a machine
until it reaches Final, Failure or Outside_Machine_Scope states), Step
(process a machine step as defined for SRSMs or ISMC) and SetTape (in
the case of an ISMC component) as described in 4.2.1 and 4.2.3. Addi-
tionally, a State Tracer memory sequence as part of the kernel instance
retains monitoring data, collated by the mechanism of 4.2.2.

For both interactions with the components and for controlling interac-
tions between components, the kernel uses a Communications package.

The component ISMC Interpreter contains the spec and implementation
of the module of the same name, and the record specification of an ISMC
program, representing the generic SM concerns of the VCU (cmp. fig.

225

5. HIRTE Application Architecture Patterns

4.14). Correspondingly, SRSM Processor aggregates the spec and imple-
mentation of the Interprete Simple and Composite State procedures, as
well as the specs of the generic state machine structures (cmp. fig. 4.5).

We allow one to many SRSM processors, as at least the kernel shall be
based on this pattern. Customization of processors for specific services
is not desireable, but possible. Correspondingly, the cardinality of ISMC
interpreters depends on the partitioning of native action subsets over the
services, potentially (again, not desireable) resulting in as many inter-
preters as services, if every service component should require different
native actions.

• Generic Extension
Provides a set of Basic Actions. Conforming to the descriptions of
4.2.3.4, this action set realizes external procedures and functions assumed
to serve on a level common to many applications of the domain, e.g. file
operations, vector calculations for map matching, storage of configura-
tion data entries, locating, timing and calculating amounts of money, but
it may also realize access to essential cryptographic operations of some
SAM, like de-/encryption and hashing/signature checking.

• Application-specific Extension
Offers external actions realizing proprietary operations, e.g. message de-
/encoding including object de-/serialization, operating database man-
agement, communications management (opening, using, closing chan-
nels), access to devices and sensor readouts.

Both ISMC and SRSM components may refer to the included actions,
both are complemented by the generic and application-specific extensions,
resulting in a full, deployable RTE for the applications. While reuse is
encouraged, if necessary, every service component may be supported by
a dedicated extension.

• Communications
Contains the Message Queue specifications and implementations em-
ployed by the kernel and components for interaction to assert uniform
communications. Communications form a distinct conceptual package,
because depending on the actual, underlying (hardware) RTE, the re-
alization may need to comply closely to proprietary mechanisms, which
we need to isolate from the generic elements.

The message definitions distinguish Infrastructure and Application Mes-
sages. Infrastructure message specifications refer to the generic, under-
lying mechanisms of the HIRTE, i.e. interactions between kernel and
components for management purposes – described in the context of the
kernel modules in the next section. Messages introduced by the applica-
tion realize interactions between the service components and potentially

226

5.1. HIRTE Framework Pattern

beyond to center systems. Handling of these message types by the ker-
nel is supposed to be transparent on the service respectively application
level.

• Application-specific Business Logics
Composes the Service component specs and bodies. While, as stated in
the previous chapters, the architecture avoids inheritance, services need
to conform to a uniform component structure. This is achieved by the
interfaces ITrace and IRunControl.

An implementation of ITrace provides the method LogState (cmp. 4.2.2)
to feed the current state configuration to the kernel, utilizing the static
memory segment reserved for the respective component. Note that while
the interface is defined for the service component, it is also used solely
by that element. IRunControl answers execution instructions (see above)
from the kernel.

With these interfaces given, the realization of a HIRTE component may
take different forms – according to the established patterns and beyond.
Component VCU is a service implemented as VCU. It aggregates the
application-specific structures as defined in 4.2.3: a HIRTE Component
class and the Task Attribute Set record, with the ISMC record represent-
ing the state machine code defining the service’s behavior. An interpreter
is instanced from the Generic HIRTE package, input and output queues
from Communications (see above). Similarly, the Component SRSM ag-
gregates a Task Attribute Set, all State, Transition Specifications and
associated structures as specified in 4.2.1, making up the behavior. Inter-
preter procedures for simple/composite states and the queues are taken
from the generics and communications packages, respectively.

Additionally, an External SM may implement any other – non-HIRTE,
thus designated external – approach to component state machine pat-
terns. As long as it conforms to or maps the defined interfaces, including
the interactions via the queues and messages of the Communications
package, the HIRTE application may integrate such a service.

5.1.4 Implementation Considerations

Chapter 4 lays a concrete foundation for the setup and the implementation degrees of freedom
of a HIRTE application architecture. Further context is established by the
pattern of this section in fig. 5.1. Nevertheless, actual application modules
still find degrees of freedom to emphasize varying elements of the HIRTE.
When designing a solution based on HIRTE, important and closely related
considerations will be the balance between

• state machine and action/operation logics, and

227

5. HIRTE Application Architecture Patterns

• native and external operations.

The first point touches a fundamental question: which (sub-)processes re-state sequences
versus operations spectively activities of the application are suited to adapt a state machine

structure? It might become tempting – think of a pressing project schedule
that comes to consider the modeling a hindrance for quick results (code) – to
hide2 significant parts of the logics in operations. During the course of this
work, and explicitly with requirement II, we strongly advocated a state-based
application design. In consequence, it is consistent to only exclude transform-
ing (cmp. 2.1.1.1) parts with a clearly direct, functional and stateless relation
between input and output from the automaton state set. Even in the case of
a step-wise numerical computation with intermediate results, decomposition
into a state sequence might be advisable to ensure reproducibility. The Ac-
tion of 4.2.1.3 and External Operation Set of 4.2.3.4 established freedom from
side-effects and variable access restricted to an attribute set, giving another
distinction principle.

An evident approach to the second point lies in the integration of devicenative versus
external operations access APIs or drivers, OS functions and other third-party libraries. Usually,

these kinds of modules have to be considered black boxes owing to legal rea-
sons, with the external form as only option. Apart from that, it becomes a
question of size and adaptability of the interpreter engine. Reducing native
operations to an elemental minimum keeps the ISMC RTE lean, but requires
foresight concerning the ISMC programs it is supposed to run, respectively
which external operation sets they will supposedly need to access. In effect,
this contrasts tailored, specialized application VCUs to full spectrum versions.
The operational level of the corresponding service – does it realize a high-level
business subprocess or a basic device management close to the hardware? –
is a potential indicator for the adequate scale of an underlying VCU, as the
degree of VCU specialization rises with a lower level.

Finally, an implementation may have to assess the interface operations RunRun versus Step
and Step. In the case of a VCU-based component, step semantics are explicitly
defined. Finely grained for subtle control and scheduling options, they refer
to a step of the interpreter and operations on its tape. If not handled, in-
congruencies might arise in heterogenous environments that combine different
concepts of steps, e.g. VCU ISMC and SRSM, stepping through the machine’s
state set, or any other approaches focusing on transitions, actions, etc. We
have to consider if step-wise execution is required for a given application or
component, or if we may rely on OS threads and scheduling with plain calls
to Run. In the former case, the high-granularity have to be mapped to the
low-granularity step semantics to ensure homogenous execution and control
respectively scheduling.

2E.g. from the perspective of a HIRTE State Tracer.

228

5.2. HIRTE Implementation Pattern

5.2 HIRTE Implementation Pattern

5.2.1 Abstract

The HIRTE’s implementation view puts its elements in a realization context,
i.e. a setup for instances of the framework pattern. With regard to the appli-
cation, it describes the infrastructure roles and purposes immediately above
the abstraction level of actual services. Consequently, it is made up of and
– in the case of the kernel – refines the conceptual packages of the previous
section.

5.2.2 Structure

Fig. 5.2 describes the structure of the implementation pattern.

5.2.3 Collaboration

• HIRTE Kernel
To fulfill its supervisory purpose as described in 5.1.3, the kernel module
composes a set of subcomponents.

A Component Manager serves as registry and configurator of the services, Component
Managerprominent features depending on the type of implementing components.

Generally, the manager administrates service priorities, message or event
subscriptions compliant to a publish-subscribe mechanism (cmp. e.g.
distribution patterns in [Do03]) and other properties related to the ser-
vice behavior and interactions. In the case of VCU modules, service
ISMC programs may actually be replaced or modified during run-time3,
resulting in necessary (re-)registration of the potentially updated service
characteristics.

The primary assignment of the Scheduler lies in the practical exercise of Scheduler
the automaton’s step semantics in the single-thread scenario (see 5.2.4
below). Observing the above configured priorities, it invokes the associ-
ated VCUs’ ISMC or SRSM interpreter Step methods. If an underlying
OS provides threads of execution and thusly a proprietary scheduler, the
HIRTE scheduler module reverts to managing the corresponding inter-
face as a secondary option, e.g. starting, suspending and stopping the
service components.

The Communications Broker represents a controller for the message- Communications
Brokerbased interactions between the HIRTE elements. For this purpose, it

handles all Message Queues. This implies that communications between
3At first glance, this may seem to violate our staticality constraints. However, changes

to the overall configuration of the application must only be conducted during a maintenance
superstate – cmp. Service and Diagnosis in chapter 2.3.8.3. Thus, during regular machine
operations, priorities may remain fixed.

229

5. HIRTE Application Architecture Patterns

Figure 5.2: HIRTE Implementation Pattern Structure

a component and the kernel (via Infrastructure Messages, cmp. previous
section) and broadcasts, as well as information exchange between service
components (via Application Messages) use the broker as mediator, or
switchboard. A component addresses another by complementing a mes-
sage with the receiver’s ID and sending it to the broker, which receives
it in one of its Kernel In queues. Assigning it to the Kernel Out queue
with the corresponding ID, the broker forwards the message. Again, this
aims at facilitating controllability, in this case by enabling the kernel
to regulate message distribution and frequency in the interval between
reception and dispatching.

Aggregating all information about the system’s state configuration, theMonitor

230

5.2. HIRTE Implementation Pattern

Monitor realizes a passive module. For the service components, it as-
sumes the role of current State Log; for the kernel, it incorporates a
State Tracer in conformance to the elements of the State Tracer pattern
of 4.2.2. Additionally, it may observe any other mechanism or resource
deemed relevant for the stability of the system’s activities. The kernel
may then further collate, analyze or synthesize the collected informa-
tion to assess conditions and tendencies (cmp. 3.1.2), and take proper
measures, e.g. signaling center components.

For VCU components, the Persistency Manager enforces requirement VII Persistency
Manager(persistency of activities): it copies the ISMC tapes – representing the

complete state of a VCU program (cmp. 4.2.3.2) – and message queue
contents to a static storage. Triggering of this action is synchronized
with the scheduler, which may employ the step semantics and process-
ing to define such a transaction. Its granularity has to align to the service
activity and will potentially range from corresponding to the interpreter
steps, in the case of crucial components demanding high integrity of pro-
cesses, to service states or even just specific events, e.g. start/end of
interactions or computations, reported to the monitor. If all tapes and
queues were successfully saved, i.e. stored integrity-checked, the trans-
action is commited, otherwise the system may rollback to the previous
state configuration to maintain processing consistency.

Especially in deployments without an OS, the kernel itself may be com- Critical
Resourcespelled to manage a set of Critical Resources – storage segments, commu-

nications interfaces, or generally limited capacity devices and elements
providing some kind of write operation for the service components. Ac-
cess interaction is handled by the communications broker and infras-
tructure messages (see above), management and mutual exclusion by
the corresponding kernel resource component.

Put in the already discussed context of virtualization (see 4.3), the ap- HIRTE Kernel
versus
Hypervisor

proach to control a set of virtual machines, in the given case the VCUs,
by a superordinate instance like the HIRTE kernel, resembles the Hy-
pervisor concept (cmp. e.g. [Go73] for the related Virtual Machine
Monitor). However, our differentiation still stands: the common so-
lutions enable complex, universal multi-OS configurations, whereas the
HIRTE kernel specializes on the high-integrity telematics domain with
a dedicated approach regarding design, implementation and especially
constraints. Furthermore, it exerts direct, active control of the VCU
machines and explicitly provides lines of communication between the
components, which usually depend on each other to realize an overall ap-
plication. Present hypervisors rather focus on hardware resource sharing
under strict partitioning of OSs and applications.

• Application Service

231

5. HIRTE Application Architecture Patterns

Designates a general service component in the context of a HIRTE ar-
chitecture. As the most basic of service abstractions, it features a Com-
ponent Out message queue to send messages to or via the kernel and
a Component In queue to receive messages from the kernel, and from
other components via the kernel. For the implementation of the ITrace
interface (see framework pattern of 5.1), it is associated with a State
Log memory segment of the Monitor. Thus, an application service is
expected to register its current state with the kernel.

• Message Queue
Represents a structured container to manage infrastructure and application-
specific messages exchanged by HIRTE components and kernel, as de-
scribed in 4.2.1.3 and 5.1.3. With the kernel as central hub, a pair of
dedicated queues is assigned to every service component for inbound and
outgoing communications.

To effect rapid persistency, a queue is supposed to store messages in a
serialized representation format, i.e. as (binary) strings, regardless if the
message is conveyed to a remote RTE or received and processed locally.
As attaining a persistent system configuration may be time-critical (cmp.
e.g. 3.1.4), this anticipates serialization by the Persistency Manager,
relieving it from having to iterate all queues for this purpose.

• HIRTE Service
A refinement of the Application Service, in addition to conforming to a
state machine structure respectively behavior, it implements the IRun-
Control interface (cmp. 5.1.3). In consequence, the HIRTE service con-
stitutes a subject for the kernel’s Scheduler, submitting to a higher, or
active, degree of controllability than the general service component.

• Singular Service
Realizes a HIRTE Service as VCU with high-integrity requirements, de-
manding transaction-based persistency of its state configuration. To this
end, the Persistency Manager may directly access the ISMC tape.

This kind of service realizes a vital element of the application, with an
activity and state configuration that cannot be reconstructed from other
component states and is not implied by other modules, e.g. sensors or
modems. As an example we find a complex real-time rating and payment
process with intermediary, transient results.

• Oblique Service
In order to propose some distinction between scenarios for the adaption
of either a SRSM or ISMC VCU, we suggest to employ the exhaustively
controllable VCU for Singular Services (above) and SRSM-based com-
ponents for dependent, oblique services. These may not necessarily be

232

5.2. HIRTE Implementation Pattern

Figure 5.3: Uniform Handling of Single- and Multi-Thread HIRTE Configura-
tions

less crucial to the application, but their state can be derived from other
components, and is therefore not submitted to the Persistency Manager.
However, they need to enable scheduling by the kernel.

Typical examples would be services that manage devices like a GNSS
sensor – polled in a frequency set by the kernel – or CN modem. The
relevant information is not held by the service component. Instead, e.g.
after a shutdown, it is merely reread4 from the originator.

• Value Added Service
Without the need for active intervention (beyond plain termination),
these services do not contribute to a crucial application, merely running
in its RTE (cmp. 3.1.3.1). Consequently, the kernel requires their state
log to notice and analyze potential disruptive incidents, e.g. resource
access collisions.

5.2.4 Single-Thread and Multi-Thread Environment Variants

For commercial acceptance in the context of the ETC use case, the question coping with
rudimentary RTEs4Assuming proper handling that only deletes data on acknowledgment of processing by

the client.

233

5. HIRTE Application Architecture Patterns

for capabilities of an RTE platform may become crucial: tenders might require
low-cost hardware, dramatically restricting options of an OS with sophisticated
process/thread management. While this may come down to a single-process
single-thread RTE without scheduling, the HIRTE still has to cope with the
concurrency demands of the ETC business process as established in 2.3.8.

The HIRTE architecture is expressly intended for both complex OS asflexible
deployments of
VCUs and SRSMs

well as minimum RTE environments (e.g. smartphones in contrast to ECUs).
Thus, it provides facilities for both scenarios. As a VCU realizes a proprietary
RTE, it is the obvious choice for deployments with only a rudimentary OS
respectively RTE. However, like shown in the previous section, it is not limited
to this assignment (also see next paragraph). The interpreter faculties of the
SRSM component refer to structures declared in its source code, without the
explicit program/interpreter separation of VCU ISMC. One consequence of
these approaches is the differing granularity of step semantics, relevant for
program monitoring, but also for scheduling of component program execution.

A distinctive feature of complex versus plain RTE is thread handling. Forthread handling
the domain considered in this work, the POSIX standard (cmp. [IO08]) offers
the currently prevalent view on thread-based concurrency. Pragmatic con-
siderations regarding HIRTE, however, have to accept the fact that industral
practice reveals inconsistencies and ambiguity in the "POSIX-compliance" of
available RT-OSs (examples in 2.1.2.3). One proper answer lies in the option
of forgoing the OS mechanisms altogether, relying on a set of VCUs instead.
This decision is important to illustrate that the selection and adaption of the
corresponding HIRTE elements is not necessarily dependent on OS features
only.

Regardless of the design decisions, HIRTE offers two configurations fordual setup
single- and multi-thread scenarios, illustrated in fig. 5.3. Both assume the
HIRTE elements to run in the context of an application, itself a process, i.e.
an execution unit with some (not necessarily exclusive) address space.

The single-thread configuration specifies the HIRTE Kernel as schedulersingle-thread
specifics and control of the associated HIRTE Components realizing the application’s

services. Components become instances of e.g. the class as defined by 4.2.3,
implying the ISMC interpreter, external operation and task attribute sets.
Input and output message queues connect all components with each other
via and with the kernel. Sensibly, the kernel will implement some primary,
main operation of the application process. Corresponding to its scheduler role
(and module), the kernel regards the components as tasks, calling their Step
methods in an execution loop, conforming to a scheduling scheme (cmp.4.2.3.4,
4.3). Beyond that, between scheduling cycles, the kernel manages and controls
the services as described in the section above, employing its remaining modules
for monitoring, messaging, persistency etc.

A multi-thread configuration sees kernel and components as threads of ex-multi-thread
specifics ecution running in the context of the application process. Each thread im-

plements some Run method, with the kernel responsibility now reduced to

234

5.3. HIRTE Application Pattern

managing its modules. Accordingly, the scheduler/task association does not
apply, the duty now falling to the OS. In the implementation, e.g. the HIRTE
Component class of 4.2.1 will extend some proprietary OS API class, or imple-
ment some interface, structure or functions. A risk assessment for an actual
deployment in question will have to evaluate if this delegation is acceptable
for the HIRTE application supplier.

The high degree of structural congruency in the model of fig. 5.3 empha- dual validity
sizes the flexibility of the approach. Most of the elements introduced in chapter
4 are valid and serviceable in both configurations.

5.3 HIRTE Application Pattern

5.3.1 Abstract

A view on the application of HIRTE produces a pattern that assembles a set of
services making up an actual ETC OBE software. Concerning the application,
there is not the one pattern – we sketch an original solution based on the
insights and suggestions of this work, loosely oriented toward the requirements
of EETS (cmp. [EU09]). For other system deployments, this structure may
differ. In the process, we apply the setup of approach III; the interoperability
scenario of 3.1.3.3.

As hardware execution environment or OBE, here we consider a smart-
phone. Irrespective of the actual type and OS, this platform touches many
of the topics discussed and is thus a rewarding subject. It is a representative
telematics platform, integrating CN services and the capability to run com-
plex software, with various additional interfaces for local machine-to-machine
interaction (e.g. Bluetooth, WLAN) and to other devices (e.g. memory cards,
automotive networks and sensors). As a generally non-dedicated environment,
unlike a proprietary ETC OBU, other applications are likely to run concur-
rently to our ETC software, stressing the reliability aspect of a safe application
in an unsafe RTE and also corresponding to our approach I to economy with
an open infrastructure (cmp. 3.1.3.1).

5.3.2 Structure

Fig. 5.4 presents the structure of an application pattern.

5.3.3 Collaboration

• Universal ETS App
Composes a set of services and a management component for the real-
ization of an ETS business process. As such, it stages an ETC OBE
software to begin with, constituting a universal foundation for the ap-
plication. The degree of this generality – and thus the variety of actual,

235

5. HIRTE Application Architecture Patterns

Figure 5.4: HIRTE Application Pattern Structure

realizeable applications based on it – depends on the qualities and quan-
tities of composed service components.

To integrate the component implementing the operator-specific business
process logics of the ETS (see below), the universal app connects to a
smart card via e.g. PC/SC (cmp. [PC05]) or similar interface.

• HIRTE Kernel
After declaring its conceptual role in the set of HIRTE elements as con-
troller and manager of the generic RTE, its composed elements and duties
to other components of the implementation, in the application the kernel
serves as the unifying component of all services. Thus, here it assumes
the role of the OBE Management Software of 3.1.3.3.

The kernel connects all services via the message queues and associations
for scheduling and persistency as specified in the previous section 5.2.
In fig. 5.4, this is depicted implicitly by the associations and ports that

236

5.3. HIRTE Application Pattern

may be used to aggregate the messages employed to offer and request
the services.

• MMI
Displays states and information relevant to a user, e.g. rating results,
overall operativeness, and handles user interaction. In a smartphone
environment, this component very likely relies heavily on proprietary
GUI libraries of the OS, integrated in the context of actions (SRSM) or
external operations (ISMC).

• Maintenance
Is activated when the application enters the states Installation and Com-
missioning, Service and Diagnosis or Decommissioning and Deinstalla-
tion of the ETC OBE software business process (cmp. 2.3.8). Stopping
or locking all other, unrelated services and interfaces, maintenance in-
teracts over a dedicated protocol in close coordination with the Commu-
nications service. In the case of severe failures and a requisite visit to a
repair shop, the protocol will rely on short-range media like Bluetooth
or even cable; for regular maintenance, on CN OTA solutions.

The maintenance service allows access to and updates of crucial elements
of the software, i.e. the executable itself, ISMC programs and smart card
applications. Additionally, it is used for recovery of system logs after
critical failures prevent regular remote log analysis.

• Communications
Provides access to the interfaces of long- and short-range communication
devices, and manages them, where applicable. The degree of control the
software may exercise on these resources depends on their exclusiveness:
it has to compete for smartphone internal services like GSM- or UMTS-
based data transmission, WLAN and Bluetooth, but may command any
additionally connected units discretionary.

Management of communications implies message en- and decoding, cor-
responding to the proper transmission formats required by the inter-
faces, and connection (re-)establishment and termination (session man-
agement). For incoming messages or connection sessions, other services
may register themselves as receivers via the kernel.

• Rating
Applies the tariff scheme (cmp. 2.2.1) provided by the Operating Data
Repository to a toll atom identified and passed by the Map Matching
service, factoring in the current vehicle configuration and local time, if
required. In the process, the rating service generates a billable entity,
similar to a CDR. This, in turn, is handed to and processed by the smart
card application (see below).

237

5. HIRTE Application Architecture Patterns

• Operating Data Repository
Realizes the active data storage aspect of 2.3, i.e. it stores and also
actively manages map respectively geometrical toll atom data, the tariff
scheme, configuration and set of receipts. This implies checking the
stored datasets for validity periods and requesting Communications to
contact the center services for updates on a regular basis. Locally, the
repository ensures that crucial data is filed in static storage memory
spaces.

For other services, the component provides reporting and location-based,
spatial querying functionality, accessing map segments for Map Match-
ing, tariff scheme entries for Rating and storing configuration data for
Maintenance. Implementation of the low-level storage operations may
utilize the OS’s file system (actions and external operations, see above),
but will also integrate other memory devices for safe respectively static
storage.

• Positioning
Determines the vehicle’s respectively smartphone unit’s position using a
sensor fusion of the integrated GPS receiver, GSM signals and gyroscope,
if present. The ETC system may demand additional, external sensors
like tachometers that require connection of the smartphone to a vehicle
subsystem (e.g. via the gateway of 2.1.1.3). For positional data, other
services register with their required frequency of updates via the kernel.

A risk analysis has to determine whether the service can rely on OS-
native interfaces for positioning, or needs to implement its own, pro-
prietary sensor fusion algorithm for reproducibility and verification. In
the case of OS modules, the service at least has to continuously gain a
measure of their quality of service and indicate potential problems.

• Map Matching
Maps the output of the Positioning service to geometries referencing or
representing toll atoms provided by the Operating Data Repository. The
complexity of the atom geometries as well as the matching algorithm
implemented by this service again depends on the degree of reuse of
facilities provided by the smartphone native libraries and services. If
their quality is considered sufficient (risk analysis), the ETC operating
data toll atom set may be reduced to a layer over e.g. a navigation
service – the application’s service component measuring its reliability.

• HIRTE SCApp Wrapper
Realizes the specification of a HIRTE component (cmp. 4.2.1 and 4.2.3)
as smart card platform-specific application. The message queue inter-
faces are mapped to APDUs respectively PC/SC.

238

5.3. HIRTE Application Pattern

• Toll Charger Business App
The consideration of EETS in the given pattern implies adapting the dis-
tinction between toll charger and EETS provider. With this service, the
EETS provider, responsible for the technical implementation and opera-
tion of the system, supports the business processes stipulated by the toll
charger, in turn responsible for the economical, legal and organizational
aspects.

Consequently, this component integrates all other services in its imple-
mentation of the business process (for detailed steps of the process refer
to 2.3.8). Corresponding to the concept of 3.1.3.3, it is kept lean, limited
to the proprietary arrangement and conducting of the activities by mes-
sage interaction via the kernel. This implies handling charging/payment
(cmp. 2.3.2) based on Rating output, and enforcement responses (2.3.5),
as the associated structures and records, e.g. accounts, are likely to be
provider-specific and also sensitive concerning security.

• Security
Provides functions for en- and decryption, hashing, signing and authen-
tification as described in 2.3.6, encapsuled as SAM.

• OS API
Provides a variety of interfaces and modules – depending on the ac-
tual platform – from low-level device drivers to application frameworks.
Whether an OS API element may substitute (parts of) a HIRTE ser-
vice has to be subject to a risk analysis and evaluation (for the analysis
template see 3.1.1.10).

• Proprietary Drivers
Device drivers for additional, external sensors, automotive networks, me-
dia etc. not provided by the smartphone platform.

5.3.4 Setup and Deployment Alternatives

Selected as representative application type of this work (cmp. 2.2.3), the adaptability
pattern of fig. 5.4 sketches a thick client solution on an open platform. We
can illustrate its adaptability to other setups and deployments with a short
excursion to a thin client application and a dedicated OBE platform.

Pursuing the thin client approach reduces the demands to the RTE plat- thin client
HIRTEform, but shifts them to the center and especially to the communication in-

frastructure: the OBE merely collects positions and passes them to the center
systems for further processing. For the application pattern the client complex-
ity reduction means

• optimizing Communications for packed position track encoding and trans-
mission,

239

5. HIRTE Application Architecture Patterns

• removing the Rating service,

• removing toll atom data structures from the Operating Data Repository,
enabling it to temporarily and securily store position tracks (if CN trans-
mission fails, Maintenance has to recover the full tracks),

• either removing the Map Matcher, or reducing it to border detection of
toll charger respectively operator areas and

• removing states processing an enforcement transaction, charging/pay-
ment and associated local accounts from the Toll Charger Business App,
replacing these activities with position handling (personalization, en-
cryption of tracks or tours).

In summary, HIRTE applies to a thin client software without reservation: the
reliability and economy requirements are still valid, reproducibility of activities
in case of problems is still crucial.

Different approaches to ETC OBE platforms were described e.g. in 3.1.3.2HIRTE on
dedicated OBE and 3.1.3.3. Similar to the thin client architecture reducing software and dis-

tributed process complexity, a dedicated platform requires less effort to oper-
atively handle than the open variant. The pattern’s setup projects on a single
application OBE without significant alterations. Resources are exclusively
available for an ETS application; concurrent modules and competition for ac-
cess do not apply. However, internal complexity of the service components may
rise, as the dedicated platform is likely (based on our industrial experience)
to offer a plain OS only, or none at all. In consequence, actions and external
operations of HIRTE components may not rely on sophisticated application
frameworks. Still, the consequent HIRTE-proprietary implementations benefit
controllability.

5.4 Chapter Conclusion

The elaboration of this work lead us from a treatise on the high-integrity telem-abstracting to
the HIRTE ... atics domain of ETC over a thorough analysis of its aspects and processes –

focusing on economy and reliability – to the HIRTE building blocks of chapter
4. The ETC use case served as a representative archetype, featuring proper-
ties like vehicle-embedded distributed deployment, cash value equivalent OTA
transactions and complex liable activities that need exhaustive monitoring.
From this concrete example, we derived a set of requirements that allowed us
the directed, systematic construction of the HIRTE.

With the HIRTE core elements, we purposefully reached an abstraction... and coming
down to an
application

from the ETC domain. This chapter now gradually leads the focus back to
the application level of ETC in three steps:

240

5.4. Chapter Conclusion

1. The framework pattern groups the original HIRTE building blocks, as-
signs roles and relations between them. This way, it provides a blueprint
after which the reference implementations may be organized in libraries
of an application framework. Finally, the pattern assists reasoning about
the design of an actual solution concerning the structuring of its states
and operations as defined by the HIRTE.

2. The implementation pattern details the kernel and the internal services
it implements to manage a HIRTE software. Furthermore, a realization
hierarchy of the service components is given – depending on the context
and setup of an application, a HIRTE implementation allows different
levels of module integrity; ranging from merely monitored to tightly con-
trolled integration.

3. The application pattern then specifies the structure and services of a
thick client ETS solution on an open platform. In the process, it picks
up on an original concept of smart card integration. As declared in the
previous two patterns, the HIRTE kernel now represents the integrating
and controlling instance of all services. These in turn are specified as
HIRTE services, i.e. they need to conform to the structures and inter-
faces of the implementation pattern. Selection of a variant – SRSM or
VCU, single- or multi-thread – is left to an actual realization, which,
adhering to the ETC OBE business process (2.3.8), will then reflect the
distinctive ETC aspects of the domain introduction (2.3).

By setting the generic HIRTE elements in the context of an ETC appli- coming full circle
cation, this work is finalized by coming full circle to an answer to the initial
question of a reliable and economic telematics software solution in the do-
main of ETC. The provided three patterns illustrate the consistency between
conceptual elements and application, allowing the pursuit of congruency of
ETC aspects (chapter 2), the genuine requirements (chapter 3) and HIRTE
fundamental patterns (chapter 4) with an application solution design.

241

Six

Conclusion and Outlook

... in which we discuss and summarize the results of this work, give some
comments and suggestions for their application, and encourage potential future
research and development.

6.1 Approach Evaluation and Achievement of
Objectives

For a discussion of the results of this work, [HMPR04] provides orientation. Fo-
cusing on design science, it reasons about a framework for information systems
research. We can apply its guidelines to gain a measurement and understand-
ing of validity and value of our approach and obtained artifacts.

6.1.1 Concerning Guideline 1: Design as an Artifact

"Design-science research must produce a viable artifact in the form of a con-
struct, a model, a method, or an instantiation."

We regard the building block patterns of chapter 4, together with their primary results
and their structureintegrating patterns of chapter 5, as the primary results of this work. For the

fundamental patterns, we specify a model defining the reproducible structure
of each suggested solution part it represents, describe the collaboration of its
elements and give a manifest reference implementation in Ada. The applica-
tion architecture patterns specify the purposeful composition of the original
elements, in the process assigning roles to the corresponding components to
realize an actual solution for the mission-critical telematics respectively ETC
domain.

• The artifact fundamental pattern is a blueprint for application compo-
nents in the given or a related domain. Adapting to the SRSM pat-

243

6. Conclusion and Outlook

tern of 4.2.1, a component may conform to a hierarchical state machine
structure and behavior, maintaining a static memory footprint. The pat-
tern and interpreter automaton specifications of the VCU component of
4.2.3 enable the design of a high-integrity network of lightweight virtual
machines controlled by programs representing encoded state machines.
With the introduction of DSMFs in 4.2.4, a VCU program may selec-
tively delegate fragments of its processing to other RTEs. Generally, a
focus on state automaton formalisms facilitates systematic monitoring
and reproducibility of all activities – supported by a state tracer module
(4.2.2) that allows the instrumentation of a system for the purpose of
state configuration tracing.

• Preparatory to the DSMF, the formal introduction of the self-contained
state in 4.1.3 augments and extends the concept of state automatons
toward distributed execution.

• The complementing artifact reference implementation removes ambigu-
ity from the presented models and pragmatically transports the intended
characteristics of an instantiation, while immediately warranting appli-
cability. Sources as given in listings 4.1 to 4.16 may directly implement
the core of a safe telematics application framework or serve as point of
origin for integration, refactoring or translation to other languages.

• The integrating artifacts of the application architecture patterns describe
the views on a valid HIRTE system architecture. By separating the con-
cerns of framework, implementation and application, we open the overall
system setup to reuse and adaption. The framework pattern arranges the
above basic pattern components into generic and application-specific as
well as infrastructure and application elements. In the implementation
pattern, roles and scope of infrastructure and application components
are refined, with the application pattern mapping actual ETC services
to the elements. Each of the patterns allows substitution, specializa-
tion and refinement of the composed components inside the conceptual
boundary of HIRTE, as given by the requirements of 3.1.2, 3.1.4 and
constraints of 3.2 and 3.3.

With regard to methods, we present a number of secondary results; byprod-secondary results
ucts of the elaborations on HIRTE. The hazard analysis of an ETC system
(cmp. 3.1.1.1 to 3.1.1.9), leading from FTA to the generalized classification
scheme for mission-critical problems in 3.1.1.10 is valid for future deployments
in the telematics domain. Likewise, the derived requirements I to VII provide
a guideline for the specification and development of high-integrity telematics
solutions. As a practical solution complementary to the HIRTE approach,
3.1.3.3 describes a smart card integrated interoperability concept.

244

6.1. Approach Evaluation and Achievement of Objectives

6.1.2 Concerning Guideline 2: Problem Relevance

"The objective of design-science research is to develop technology-based solu-
tions to important and relevant business problems."

Chapter 2 introduces the domain of this work. In the case of ETC, it is sen- the domain of
ETC ...sible to actually establish the domain from a software system view, as available

works on the topic either focus on engineering/hardware, lack the necessary
substantial operational experience or simply do not exist. Furthermore, the
differentiation from related domains – like the discussed parents of automotive
and telematics systems – yields sufficiently significant unique characteristics
of ETC deployments (cmp. 2.3, 2.4).

At the same time, ETC software architectures generally represent a kind of ... and what it
stands forlarge-scale, mission-critical telematics system that is currently just emerging –

with still only one major GNSS/CN ETC installation, the ongoing discussion
of the German Elektronische Gesundheitskarte in eHealth, promotion of Smart-
Grids in renewable energy systems. The specific or even unique requirements
regarding economy and reliability justify a dedicated approach. Summarized,
we find an original combination of

• a highly complex system of distributed and center software components
interacting over telecommunications interfaces,

• managing, handling and measuring cash-equivalent services reaching a
turnover with the magnitude of billions of Euro per year and

• penalty-relevant service level agreements with third parties1 besides op-
erator and customer: government authorities, infrastructure and resource
providers.

Problems, for whose solutions especially the software can contribute, arise domain-specific
questions and
needed answers

from the combination of heterogenous platforms of the distributed components
and liability of an operator for steady charging and accurate accounting. Due
to OBE elements eluding application control (cmp. 3.1.2) – in the future even
more pressing, when migrating from dedicated devices to open platforms like
smartphones –, the answer shifts from the common solutions of e.g. redun-
dancy to a fault-aware, safe application in an unsafe environment. From the
view of an OBE software supplier with the significant difference of abandoning
reliability in the sense of global high-availability in favor of enforcing local,
component-wide controllability and reproducibility of activities. The operator
has to be enabled to rapidly identify problem causes and actively prove the
correctness of its very own component, including interactions with the sys-
tem environment, to keep it clear of claims of compensation in the case of
aggregated quality of service transgressions.

1An important distinction to the admittedly sophisticated but actually rather noncom-
mital common services of telco operators.

245

6. Conclusion and Outlook

Recalling the generic telematics infrastructure of fig. 2.6, the software
components treated by this work are fittingly situated in the deployment to
provide answers to the raised problems.

6.1.3 Concerning Guideline 3: Design Evaluation

"The utility, quality, and efficacy of a design artifact must be rigorously demon-
strated via well-executed evaluation methods."

The primary artifacts of this work, the HIRTE patterns 4.2.1 to 4.2.4 andcustom-tailored
architecture 5.1 to 5.3 with their reference implementations, were specifically constructed

and tailored to the reliability and economy requirements derived from the
domain. Additionally, they adhere to a set of constraints regarding model and
programming (cmp. above 6.1.1).

In consequence, software architecture evaluation methods like ATAM (cmp.predetermined
evaluation [CKK02]) would lead us to cyclic dependencies of inferences: its utility trees

should resemble refinements of the stated requirements and constraints, the
scenarios closely relate to or imply the aspects of 2.3. The evaluation conclu-
sion would be predetermined.

As an alternative, the artifact reference implementation assumes two ad-evaluation by
implementation ditional roles:

• validator – as described in 4.3, both the structure of application compo-
nents conforming to the HIRTE framework and the HIRTE infrastructure
itself (SRSM elements, ISMC interpreter) adhere to a systematic state
automaton configuration. This facilitates a directed construction of test
components a) covering all features of the state machines supported by
the SRSM and ISMC patterns, and b) covering all states of the ISMC
interpreter. By analyzing the resulting traces (test application and in-
frastructure elements) and comparing them with the model artifacts,
we verified that the realization behaves as intended, as well as that the
model describes the intended system.

• proof of concept – on a more general, for all intends and purposes concep-
tual level, representative application modules may employ the framework
for realizations of domain-specific use cases. In effect, such implementa-
tions prove the adequacy of the offered solutions quasi-empirically. Sim-
ilar to the evaluation of the architecture, an empirical evaluation of the
efficiency of the implementation’s structures should be considered redun-
dant2: the constructive approach (see below) ensured compliance with
the domain constraints of language subsetting, static memory footprints
and deterministic processing in a reproducible way.

2Referring to the generic level; evaluations of potential deployments and specific under-
lying RTE platforms notwithstanding.

246

6.1. Approach Evaluation and Achievement of Objectives

6.1.4 Concerning Guideline 4: Research Contributions

"Effective design-science research must provide clear and verifiable contribu-
tions in the areas of the design artifact, design foundations, and/or design
methodologies."

The initial contribution of this work is the elaboration and introduction of establishing the
domain itselfthe mission-critical ETC telematics domain – in this case, the area itself – into

the discipline of software engineering. This includes a set of results that may
be directly applied to system architectures of industrial projects and scientific
works, most notably the aspects of 2.3. Analysis, classification and structuring
of planned or existing systems based on this scheme of cross-cutting concerns
will yield evidence of its completeness and significance. Likewise, the hazard
classification scheme of 3.1.1.10 directly allows alignment and comparison with
an actual deployment and its components.

The software architectural contributions present views on two different micro and macro
level solutionslevels of abstraction, corresponding to the requirements stated for the results

of this work: globally, economy and reliability, refined into seven concrete
properties to achieve these goals. Consequently, on a micro level, we provide
solutions for safe, high-integrity components in a distributed deployment that
conform to a state automaton configuration. The macro level synthesizes these
elements into an application architecture, arranging them in specific roles. All
levels and results focus on the previously defined domain; where necessary, they
were differentiated from or compared to potentially related works, justifying
and establishing the unique approaches of the HIRTE.

Each of the fundamental HIRTE patterns of SRSM, State Tracer, VCU applicable artifacts
and DSMF were designed to be serviceable and valid in as well as beyond the
application architecture pattern context of chapter 5. Hence, complemented by
their reference implementations and in the sense of the above proof of concept
principle, they stand immediately available for empirical or other methods
of verification. The same holds true for the macro level patterns, with the
additional, initial effort of composing a full application.

6.1.5 Concerning Guideline 5: Research Rigor

"Design-science research relies upon the application of rigorous methods in both
the construction and evaluation of the design artifact."

Over the elaborations of this work and the successive development of the approach per task
HIRTE, we applied the following methods to approach the different questions
and emerging tasks.

• Comparative – chapter 2 contrasted related domains and the mission-
critical telematics discovered in the ETC use cases. This comparison
allowed a differentiation and the description of the domain’s original
aspects, structure and processes.

247

6. Conclusion and Outlook

• Analytical – chapter 3.1.1 applied a FTA to the previously introduced do-
main and its elements, allowing purposeful deconstruction that resulted
in a framework for risk-classification and requirements.

• Constructive – chapter 3.1.3 systematically developed approaches to in-
frastructure usage optimization, producing concepts of solutions in the
telematics domain that aim at cost-efficiency.

• Inferential – from the results of the risk and economy considerations,
we derived a set of seven requirements for a safe and economic software
architecture (3.1.2, 3.1.4).

• Comparative – based on our specific requirements, we considered com-
mon, potentially related concepts like redundancy and fault-tolerance,
as well as solutions like JavaVMs and established patterns for state au-
tomaton implementation. All options were reasonably discarded as unfit
for our specific domain (throughout chapter 3).

• Comparative – unlike other works, we consider the implementation a cru-
cial and inseparable element of a software architecture proposal (at least
in the mission-critical telematics domain). Consequently, 3.2 discussed
options of languages for our domain and selected a subset of Ada.

• Constructive – conforming to the given domain in general and specifi-
cally to the introduced requirements, chapter 4 described architectural
building blocks for mission-critical, distributed components. To provide
an exhaustive specification, they are composed of a model, collaboration
and Ada sources, which adhere to the constraints of 3.2 and 3.3.

• Empirical – the reference implementations were used to test and validate
the results of chapter 4.

• Synthetical – chapter 5 assembled the fundamental building blocks to an
application architecture consisting of framework, implementation and
application views.

6.1.6 Concerning Guideline 6: Design as a Search Process

"The search for an effective artifact requires utilizing available means to reach
desired ends while satisfying laws in the problem environment."

The primary results of this work as noted above are the result of a thoroughsteps of the
elaboration development,

1. starting with the exploration and definition of the problem domain, its
representative properties and constraints (ETC aspects and business log-
ics),

248

6.2. HIRTE as a Framework

2. continuing with an examination and elaboration of the characteristic
details directly related to the initial questions of reliability and economy
(FTA, infrastructure usage optimization),

3. deriving the desired properties of the result artifacts (the seven require-
ments and complementing constraints),

4. selecting the appropriate methods and tools for their construction (state
automata, UML model patterns, Ada) with respect to specific limitations
(static implementability, language subsets),

5. extending the methods where necessary (self-contained state, stereotypes)
and

6. finding a suitable pattern set that – besides satisfying the domain’s de-
mands – allows universal application inside of the boundaries of the given
domain.

6.1.7 Concerning Guideline 7: Communication of Research

"Design-science research must be presented effectively both to technology-oriented
as well as management-oriented audiences."

In the given case, this dissertation thesis was chosen as vehicle for formal science and industry
presentation and introduction of the results into the scientific community. At
the same time, the HIRTE will serve as core of a telematics framework product
at omp computer gmbh in Paderborn, Germany.

The initial, general requirements of reliability and economy reflect differ- technology and
businessent views on the HIRTE architecture: the creation of reliable systems assumes

a technology-oriented perspective, while – at least at first glance – economy
should concern the business level of a product respectively solution develop-
ment. In this work’s chapter 3.1.3 however, we presented immediate technical
solutions to an economical question. From a more abstract point of view,
especially our concept of exhaustive (white box) reproducibility of processes,
activities and interactions for the purpose of rapid troubleshooting becomes as
valuable as the penalties warranted for system downtimes may be costly.

Thus, the HIRTE and its components can have a significant impact on
both technical and business levels of a system.

6.2 HIRTE as a Framework

The HIRTE patterns in union with their reference implementations (cmp. concrete artifacts
chapters 4, 5) present concrete artifacts for the design and implementation
of an OBE software. Component models of an application may be fashioned
after the SRSM or VCU schemes, their Ada source integrated and refined into
service realizations.

249

6. Conclusion and Outlook

Use of the term framework is commonly rather intuitive and sometimes ar-intuitive attempt
bitrary. With the application architecture patterns, the employment of HIRTE
in the building of a software system was described in detail: a reusable ab-
straction sets the scope, setup and collaboration for a realization. However, an
explicit consideration of the framework character of the content of this work
seems indicated.

From [Ri00] we can derive some manifest characteristics to check the HIRTEframework
characteristics elements for:

1. HIRTE kernel and component collaboration implies an inversion of con-
trol from application program to infrastructure – the HIRTE determines
basic interactions and the underlying program flow.

2. The HIRTE infrastructure with the state automatons and kernel services
defines a default behavior.

3. To implement an actual application, the HIRTE structures are exten-
sible. Note that extensibility mechanisms based on the safe reference
implementations do not support common object-oriented concepts like
overriding or inheritance. Instead, it specifies the necessary interfaces
and the run-time environment for applications and their services.

4. The crucial modules of the HIRTE – generic SRSM structures and VCU
machines – are not meant for liberal modification. Instead, they are ex-
plicitly partitioned into core respectively generic and application-specific
elements (cmp. e.g. the framework pattern of 5.1).

Likewise, recalling 2.1.1.4, we can substitute the subjects of the identifiedautomotive
similarities basic aims of automotive frameworks with our VCU approach: HIRTE provides

a RTE respectively middleware, unifies the communications between VCUs
with the corresponding kernel management component, defines an interface
and implementation rules for VCU applications, facilitating portability of the
ISMC programs over systems that implement a HIRTE.

Thus, we regard the HIRTE as a framework.

6.3 Impact on the Development Process

Full adherence to the concepts of the HIRTE – established by the require-interventions
and conflicts ments, constraints and patterns – implies a significant intervention in the de-

velopment process in general and specifically programming. In the context
of established high-integrity respectively mission-critical systems, we already
find strict formalisms and standards, like in the ETC parent automotive (cmp.
2.1.1.4). These, however, often present use cases and functionality that are
equally restricted: the complexity of transforming systems, with a stateless

250

6.3. Impact on the Development Process

relation between input and output (cmp. 2.1.1.1), lies e.g. in numerical com-
putation algorithms rather than the management of interactive services and
transactions handling heterogenous information entities from sensor data to
CDRs.

When a project necessitates the unification of different, or even conflic- reliability vs.
costs (again)tive development techniques (as discussed in 2.4), it seeks to strike a similar

balance in its practical methods to what we were confronted with in the ar-
chitecture concept. In the given case of the mission-critical telematics system,
attempting to apply the full suite of formal verification methods established
in high-integrity systems (cmp. e.g. [Ba03]) is very likely (deduced from in-
dustrial experience) to exceed acceptable economic limits to costs.

A solid compromise is presented with this work: a framework regulating the implications
of the HIRTEdesign and anticipating crucial parts of the programming ensures the safety of

a significant portion of the system by standard reuse of validated components
– reliability by construction. However, if not consistently perpetuated, the
induced reliability is compromised. For the development of HIRTE service
components this has the following implications:

Design as state automatons – this work is not the first that propagates a
state-based software structure and flow of control. [Sa02] and [WSWW06]
make cases for the application of state machines in the design and imple-
mentation of software systems. However, even with the domain-specific,
concrete reference frame given here, a development team still needs to un-
derstand and translate component behavior in a meaningful and efficient
way. And while the formal definition and introduction (syntax, seman-
tics) of any state automaton approach may be communicated mecha-
nistically in the preparation of a project, a standard or even realizable
recommendations for corresponding "good design" is more elusive (also
cmp. 6.4).

Prudent actions, internal and external operations – in 5.1.4, we pro-
vided a preliminary guideline to the selection and definition of actions
and operations as specified for the HIRTE. Especially the external form
is prone to misuse, if its scope and complexity of program flow are not
clearly specified. Disciplined addition and implementation of actions
(SRSM) and external operations (VCU) has to avoid excessively dele-
gating business logics from the automaton to procedures, therefore de-
preciating controllability.

Statically resolvable structures – deny accustomed techniques and data
structures, demanding alternative methods or realizations. This forces
the developer in both design and implementation to think ahead to the
intended deployment and allowed parameter ranges for buffers etc., as
these may not be resized during run-time. Also, it influences the design

251

6. Conclusion and Outlook

and instantiation of class hierarchies, as e.g. overloading and dispatching
are restricted.

Employment of a safe language or subset and RTE – in principle, any
language may implement the HIRTE. As long as the development process
involves manual programming or, as a matter of fact, modeling, that is
not submitted to exhaustive automatic correctness checks, we strongly
suggest the Ada subset described and justified in 3.2.2. Alternatively,
the MISRA subsets of C/C++ might be considered (cmp. [MI04]). Re-
garding the RTE, any nondeterministic features like garbage collection
should be avoided – or deactivated due to the static implementation – at
all costs, as it may frustrate any attempt on reproducing failures related
to memory management3.

Sadly, we are also well aware that Ada today has become a rather "aca-the harsh reality
demic" recommendation, at least outside of the specialized domains of
e.g. defense and avionics. Due to the alleged liberation from the chores
of memory and pointer management (that actually may help to gain
a deeper understanding of programming and software behavior), highly
dynamic languages like Java are now prevalent; first in education, now
in the IT workforce. Arguably, it is easier for an experienced developer
to migrate from Ada, C or C++ to Java than vice versa. Especially
in larger companies, it is our experience that we are now at a point
where high-integrity experts and senior programmers proficient in more
sophisticated languages, or programming techniques beyond the basic
adoption of standard libraries, are crowded out and considered too ex-
pensive. With regard to the effective omnipresence of embedded software
and its collateral strategic economic significance, this is a problematic
trend, unlikely to be solved by forcing unsuitable concepts on sensitive
products.

6.4 State-forming Heuristics

Defining a state formally is a common enough exercise: algebraically (cmp.states in general
e.g. 4.1.3) as well as a metamodel element, e.g. of UML ([OMG092], 15.3.11),
we find precise and serviceable definitions. Coming from a clear syntax, the
generic (run-time) semantics quickly become more elusive with every step away
from a strictly mathematical model – compare for example the contrast be-
tween the concise execution transition relation→G on Petri nets (cmp. [CL08],
4) and "a situation during which some (usually implicit) invariant condition

3Remember that an OBE application does not necessarily control the full OBE; other
components beyond HIRTE might not abandon dynamic memory management. Keeping the
HIRTE memory consumption static retains it as the monitoring instance unlikely to be the
cause of such a problem, and – as intended – a valuable facility for rapid troubleshooting.

252

6.4. State-forming Heuristics

holds" with 14 pages descriptions of states, state types, intended behavior,
semantics and examples for the UML.

And what then makes a proper state in the context of an application? How application
statesdoes a system architect, a software designer derive actual and meaningful states

for the module structure from the specification of the business logics? We do
not presume to be able to provide a universal answer to these questions (or,
as a matter of fact, that such an attempt would even be sensible). Instead,
a valid compromise might be found in domain-specific heuristics, i.e. some
scheme to capture the states of a service component in an ETC OBE software.

A systematic approach to gain such a methodical description could con- potential
indicatorssider the following indications for the information available and related to

component state synthesis. Reflecting three views on associated state set ab-
stractions,

• the application program state of a service4 composing the variables, in
this case the task attribute sets, the message queues and – yet lacking a
program counter – a step in the business process (2.3.8) or corresponding
aspect-related activities (2.3),

• the infrastructure processing state, e.g. given by a VCU interpreter,
in analogy to the application-independent states of a POSIX thread
([IO08]), and

• fault states (ref. 3.1.1) as results of a risk analysis, potentially raised or
detectable by the software

should provide some orientation respectively purchase to derive and form a
concrete state set.

The granularity of the resulting set in relation to the program logics is a granularity
further crucial parameter for examination. On one end of the spectrum, states
immediately derived from the program would map to a new configuration in
the state tracer (cmp. 4.2.2) on every variable update – actually a feasible
approach for specific values, think of current toll atom identifications, but
hardly generalizable. On the other hand, keeping the application states on
a level of abstraction with infrastructure situations, e.g. processing action,
sending message etc., would be too vague to gain an understanding of the
application’s behavior during operations.

With viable indicators for state derivation pinpointed, the compilation of
an actual heuristic lies out of the scope of this work and is left for future
research.

4We assume that the component structure is determined prior to the behavior, based on
the use cases, scenarios and superordinate business activities.

253

6. Conclusion and Outlook

6.5 Formal Validation and Certification

The process of devising the HIRTE created, among others, three kinds ofhelpful artifacts
artifacts:

1. a model specifying the intended structure and behavior of the system,

2. source code implementing the model and realizing the specified behavior
and

3. traces of the measured behavior in specific scenarios, respectively output
of the system corresponding to defined calls and messages.

The quality of each artifact notwithstanding, these represent a sufficient basis
for different methods of validation.

Provided a sufficient formality that allows processing of the model struc-model checking
tures by tools, they may check it for a range of properties (cmp. e.g. [Bé01]). A
rewarding and multifaceted subject is consistency (cmp. e.g. [Ste032]), allow-
ing assessment of structural as well as behavioral traits including the semantic
level. Checking for discrepancies and contradictions e.g. between operations
declared for a component and the corresponding actions in its statechart, or
between statechart message input/output and associated sequence diagrams
with their message orders serves to identify problems at an early phase.

Aside from the model checking features of the used tool, transformingsystems validation
languages the model into process algebra expressions respectively a systems specification

language yields a complementing artifact – and view on the software and its
architecture – for examination. Aside from said consistency checks, tools like
FDR2 ([Ro98]) for CSP or SPIN ([Ho03]) for PROMELA allow simulation of
the processes, and thusly conclusions about service behaviour: life-/deadlocks,
reachability of states, fairness of scheduling and occurence of problematic state
configurations. In the case of the HIRTE, such a transformation is facilitated
by the step semantics defined by the automaton of 4.2.3.2 (cmp. e.g. [Hi99] for
an example of step semantics in CSP). It provides an unambiguous behavioural
specification that can be directly employed in the translation, detailing a ser-
vice’s dynamic properties for the verification.

Our intended business process for ISMC program development already con-HIRTE model
transformation siders an appropriate model transformation (cmp. 4.2.3.2, fig. 4.13). Espe-

cially for the implementation of service components as VCUs, code generation
based on a model is a reasonable approach, making sure that a communicable
specification is maintained and – once the compilation itself is stable – help-
ing lower errors. Consequently, the formalism necessary to map the model to
ISMC, its detail, completeness and unambiguousness, is also a workable basis
for a mapping to a verification language.

Furthermore, the source code of our reference implementation goes a longstatic source
code verification way towards permitting formal static validation, excluding many language

254

6.5. Formal Validation and Certification

features considered unsafe or hard to determine in their run-time behaviour.
Further restriction of access types respectively pointers (in the case of the
VCU code, they are negligible, anyway) would enable us to extend the Ada
programs e.g. with SPARK ([Ba03]) annotations, effectively eliminating con-
straint, storage, program and tasking errors (cmp. [Ba03], 3.1).

A beneficial implication of the state machine structures of the HIRTE and traces and log
queryingits component services is that the implementation systematically produces

uniform state and message traces, i.e. a component is supposed to log its
current state in a defined format and prescribed container. Provided equal
names or a mapping, this makes them comparable with the corresponding
elements of the model. According queries of the state tracer log thus facilitate
alignment and adjustments between the implementation and

• the statecharts defined for each component, describing its service be-
haviour (filtering the log for the entries of a specific component ID),

• inter-component activities detailing the business processes of the appli-
cation (filtering for a subset or the set of all components) and

• interactions between components or the application and external systems
(filtering for message queue access).

In the domain of mission-critical telematics, certification is an important certification
and recurring topic. Whether it aims at allowing installation of a component
into an automotive environment, e.g. connection to a bus, or the participation
of an OBE software in an ETS, the provider respectively the instance held
liable for proper operations has to establish a defined, approved process to
reach acceptance. With appropriate and reproducible methods, this facility
needs to determine the degree of qualification of a new element for accurate
interaction and integration with the operator’s system.

Conveniently, for a software component, a certification procedure may re- certifying HIRTE
conformanceutilize artifacts of the verification:

• The specification, in the case of HIRTE the patterns, provides a com-
ponent supplier with the static and dynamic requirements to implement
against. It details what is expected from a product to be introduced into
the corresponding system environment.

• A reference implementation may either support the component supplier
in the role of a framework (cmp. above 6.2), or, unpublished, serve as
benchmarking resource for trial runs in an acceptance procedure. As a
compromise, a subset of the reference modules may realize drivers and
stubs during the development of a conforming product, allowing the suc-
cessive integration of new modules. For example, it may provide a tem-
porary ISMC interpreter for early tests of services that is later replaced

255

6. Conclusion and Outlook

by a proprietary implementation (in another language, in optimized form
etc.).

• Traces produced by both the reference system and the qualified product
measure demanded and achieved qualities. Aside from expected traces
on specified stimuli, timestamps of state tracer entries report on the
fulfillment of real-time constraints. Additional threshold values (e.g. re-
sponse times of OTA transactions) and expected output (e.g. format
and content of receipt record messages) may be introduced by center
and other infrastructure elements of the overall deployment.

6.6 Venturesome and Bolder Research Notions

6.6.1 Dynamic Fragment Generation

The DSMF mechanism introduced in 4.2.4 supports a use case that delegates
a declared part of an implemented state automaton to a remote system for
execution. This delegation was motivated mainly by performance, security and
handling issues (e.g. interoperability efficiency) and confined to the extraction
of a static, defined segment of an ISMC program.

Intuitively, it would violate our carefully established requirement for static
implementation, but the question for rewarding use cases that could benefit
from the dynamic construction of machine fragments, arises. Whether to serve
a specific type of remote infrastructure or mode of transmission, the machine
could specify a template, parameters or other complementable concept that
the interpreter may use to generate the specialized, customized fragment.

6.6.2 State Machine Fragments and Homomorphic
Encryption

During the work on this thesis, [Ge10] published some significant progress
towards the applicability of homomorphic encryption. Being able to perform
meaningful operations on ciphertexts without compromising security would
enable the outsourcing of confidential computations.

An important aspect of the DSMF application in 5.3 was the operator’s
ability to contain not only private keys and other security-relevant elements
on the smart card respectively SAM, but also its proprietary algorithms, only
selectively having to distribute them. Actual, efficient future solutions for
homomorphic encryption could extend this use case to scenarios with higher
security requirements, completely securing the state automaton while still re-
taining distributability of fragments.

This raises the question if it would be possible to map the available oper-
ations of (fully) homomorphic cryptosystems to the – or at least some – step
operations of an ISMC interpreter.

256

6.7. Tools Applied to This Work

6.7 Tools Applied to This Work

The UML models were designed with Enterprise Architect up to Version 7.5,
c© SparxSystems 1998-2009.

The Ada reference sources were written and tested with the GNAT Program-
ming Studio (GPS), Version 4.3.1, GPL Edition (all produced sources are
published with this work), c© AdaCore 2001-2008.

The document itself was written in LATEX using MiKTeX up to Version 2.8
and the TeXnicCenter, Version 1 Beta 7.01, c© TeXnicCenter.org 1999-2006.
The English is supposed to be inclined toward the American conception.

Additional diagrams were done with Microsoft Office PowerPoint 2007, c©
Microsoft.

257

Acknowledgements

This work is dedicated solely to my wife Sandra, who had to put up with a
grumpy hermit for years and supported me indispensably. I love you with all
my heart, more than anything else in this world and beyond.

I am very grateful to Prof. Dr. Franz Josef Rammig for accepting me as
a doctoral candidate at an advanced stage (referring to both the thesis and
my age :-), helpful reviews and support.

Many thanks (late, but anyway!) to Klaus Füller and Eckhard Müller of
the Georg-Christoph-Lichtenberg-Schule in Kassel for inciting my enthusiasm
for informatics beyond C64 and Amiga geekdom and imparting knowledge I
still benefit from today.

To Arjen Klei, owner of omp computer gmbh, my gratitude for many years
of constructive discussions and invaluable shared experience in (sometimes a
bit too exciting) projects. Of my colleagues at omp, especially Thomas Her-
brüggen was a great help in saving me from a lot of micromanagement. Michael
Gollan provided valuable input concerning comprehensibility and certain com-
munications engineering issues.

Jan Stehr, November 2010

Beckmesser den Vorhang aufreißend:
Seid Ihr nun fertig?

Walther Wie fraget Ihr?
Beckmesser Mit der Tafel ward ich fertig schier.

Er hält die ganz mit Kreidestrichen bedeckte Tafel heraus;
die Meister brechen in ein Gelächter aus.

259

Glossary and Abbreviations

Note: this glossary does not intend to give universally valid explanations.
It provides definitions explicitly for the specific context of this work. Thus,
certain descriptions may intentionally differ from other sources.

ABS
Anti-lock Braking System. Sensors detect locking brakes, a controller
adjusts accordingly to ensure control of the vehicle.

ACC
Adaptive Cruise Control. Integrates sensor feedback data from its envi-
ronment, e.g. other traffic as measured by radar.

Access Type
A fat pointer in Ada. In contrast to the thin memory address, it includes
additional information, e.g. constraints (size, first, last).

Activity
Program/control flow, events and transactions implementing the use cases
and facilitating business processes of a system. May be partitioned over a
set of executing components respectively processes.

Address
Memory address; a thin pointer in Ada in contrast to the access type.

APDU
Application Protocol Data Unit. Carries application data between a smart
card and terminal.

API
Application Programming Interface. Commonly encapsuling and provid-
ing access to some function/class library, framework or device.

App
Common, established term for smartphone applications.

ASN.1
Abstract Syntax Notation One. Language to describe data structures for

261

Glossary and Abbreviations

the purposes of encoding, transmitting and decoding.

ATAM
Architecture Tradeoff Analysis Method. A heuristic approach to evaluate
the qualities of software architectures.

AUTOSAR
Automotive Open System Architecture. One standard for automotive
software with a focus on scalability and maintainability.

Billing
Compiling priced/rated services and presenting it to a debitor.

Black Box
A component of which only the inputs and outputs, i.e. externally mea-
surable behavior are/is considered.

BS 26
Bearer Service 26. Allows transmission of data in a GSM network with a
maximum bandwidth of 9,600 bit/s.

Business Logics
See activity, but generally limited to the behaviour of a single component.

Business Process
A specified commercial activity implemented by an organization, e.g. a
company.

CAN
Controller-Area Network. An event-driven automotive bus standard for
the communication between ECUs, up to 1 Mbit/s.

CDR
Call Detail Record. A record describing attributes of a phonecall (or other
similar services) relevant for billing in a CN.

Charging
The process of debiting an account with the amount associated with a
priced service or unit, e.g. a toll atom.

CN
Cellular Network. Any network for cellular mobile communications, based
on e.g. GSM or UMTS.

Compile Time
Interval of the translation of software code into an executable in a single
pass or multiple passes. Note that in the context of statically determinable
code, there is a distinction between checks by the compiler and checks at
compile-time that are not necessarily performed by the compiler itself,
but by any other tool prior to execution or run-time.

262

Component
A module of a system with defined interfaces to its environment or other
components. Also a complete (sub-)system in the context of large-scale
architectures. May be composed of other components.

CSP
Communicating Sequential Processes. A process algebra for the descrip-
tion of concurrent processes interacting via messages.

Dead Reckoning
Estimating positions based on the last valid fix and sensors still available,
e.g. compass, gyroscope and/or tachometer, after loosing a GNSS signal.

Dispatching
Run-time determination of method code to be called.

DSMF
Distributable State Machine Fragment. A composite state that is self-
contained, i.e. its attributes enable interpretation and execution outside
of its parent machine.

DSRC
Dedicated Short Range Communications. Infrared or microwave band
data transmissions between OBE and roadside infrastructure.

Dynamic Binding
Determination of the implementation of an accessed operation or object
during run-time.

eCall
Automatic emergency call. On sensors detecting a crash, the vehicle’s
position is transmitted to a rescue dispatcher.

EBNF
Extended Backus-Naur Form. Metasyntax notation for the definition of
context-free grammars. Standardized in ISO/IEC 14977.

ECU
Electronic Control Unit. Programmable microcontroller to implement
vehicle functions in software.

EETS
European Electronic Toll Service. Umbrella term for activities and stan-
dards of the EU to establish an interoperable tolling infrastructure.

EETS Provider
Operator responsible for the technical implementation and management
of an EETS system.

EEV

263

Glossary and Abbreviations

Enhanced Environmentally-friendly Vehicle. European emission standard
for the definition of (comparably) clean vehicles.

EFC
Electronic Fee Collection. See ETC.

EEPROM
Electrically Erasable Programmable Read-Only Memory. Non-volatile
memory, persistent data after power-off.

ESC
Electronic Stability Control. Intervenes in braking and acceleration to
prevent skids.

ETC
Electronic Toll Collection. Means to (semi-)automatically levy toll for
traffic infrastructure usage.

ETC Software
Implements the business logics of distributed ETC OBE.

ETS
Electronic Toll Service. Used synonymously for ETC.

Execution Environment
Hardware and/or software resources to run software programs on, e.g. a
microcontroller or an operating system. Ranges from basic, like a pro-
cessor, memory, I/O, to concurrent thread and process management and
communication busses.

Execution Unit
A generic term for process and thread.

FCD
Floating Car Data. The concept of collecting position, direction and speed
of vehicles e.g. for traffic analysis and control.

Flash
Non-volatile memory based on EEPROM.

FlexRay
A time- and event-triggered automotive bus protocol for up to 10 Mbit/s.

FMS
Fleet Management Standard. Allows telemetry CAN readout of vehicle
data, e.g. current engine parameter values, fuel consumption.

FSM
Finite State Machine.

Galileo

264

A civillian GNSS, issued by the European Union, if installed would be
based on 30 satellites.

GNSS
Global Navigation Satellite System. Any satellite constellation allowing
positioning by receiving, decoding and evaluating its signals.

GPRS
General Packet Radio Service. Provides data transfer in GSM networks,
approx. 40 kbit/s in practical application.

GPS
Global Positioning System. A GNSS, operated by the US military, con-
sisting of 24 to 32 satellites.

GSM
Global System for Mobile communications. During the time of this work,
the globally most accepted standard for mobile phones.

HI
High Integrity. A software quality aiming at verifiable, systematic stability
and reliability. "Integrity" in the context of a program generally refers to
(the absence of) constructs considered unsafe in the respective language,
e.g. dynamic memory management and binding.

HIS
Herstellerinitiative Software. One of the standard frameworks for auto-
motive software modules.

HMI
Human Machine Interface. Any user interface, implemented in hardware
or software.

Homomorphic Encryption
Allows meaningful operations on cyphertexts without the need for prior
decryption or keys. Realizes programs that operate on encrypted input
to produce an encryption of their output without the need to decode the
input during execution.

Informing System
Component providing convenient, non-critical data to the user or envi-
ronment, e.g. navigation solutions, news, entertainment. Failure has no
impact on physical integrity of the user, others, or significant commercial
transactions.

Interactive System
A system or component that during its execution processes transactions,
exchanges messages, generally interacts with the user or other components
to produce results.

265

Glossary and Abbreviations

ISAM
Indexed Sequential Access Method. A database organization approach
with the index implementation based on B-trees.

ISMC
Interpretable State Machine Code. Designates either the language for
representing state machines as a sequence of opcodes conforming to the
specification introduced by this work, or a corresponding program.

ISO
International Organization for Standardization.

ITU
International Telecommunication Union.

MDn
Message Digest algorithm (n denoting the version). A cryptographic hash
function.

Microkernel
Component providing basic memory management, scheduling of threads
of execution and inter-process communications.

Mission-Critical System
Component providing crucial data to the user or environment, i.e. failure
could lead to physical harm or cause substantial monetary losses.

MSISDN
Mobile Subscriber Integrated Services Digital Network Number. Uniquely
identifies a subscriber in a GSM or UMTS CN.

MTBF
Mean Time Between Failures. The average time between failures of a
system.

Mutex
Mutual exclusion. Algorithms and structures to control concurrent access,
e.g. rendezvous, semaphores, monitors.

OBE
On Board Equipment. Electronic components distributed in a vehicle,
connected by some bus system. The aggregate provides an execution en-
vironment for software.

OBE Software
Any component running on the OBE.

OBU
On Board Unit. An integrated OBE solution. The intended use cases
determine the sensors, interfaces and components of the OBU.

266

OBU Software
Any component running on the OBU.

OMS
OBE Management Software. Broker between an ETC application imple-
mented on a smart card and its required OBE resources.

Opcode
Operation Code. Machine language (binary) specification of an operation
to perform by the RTE.

OS
Operating System. A common RTE for applications.

OSEK/VDX
Offene Systeme für die Elektronik im Kraftfahrzeug / Vehicle Distributed
eXecutive. A standard framework for automotive software modules, pro-
viding an ISO/ANSI-C interface.

OSI
Open Systems Interconnection. An ISO standard that describes a refer-
ence model for communications and protocols with seven layers (Applica-
tion, Presentation, Session, Transport, Network, Data-Link, Physical; top
to bottom).

OTA
Over The Air. Interfaces, protocols and interactions utilizing a CN for
communications between system components.

PC/SC
Personal Computer/Smart Card. Specification for smart card system in-
tegration. Unlike the name might suggest, implementations are available
for a wide range of platforms, including smartphone OSs.

PER
Packed Encoding Rules. ASN.1 definition for encoding data units using
the minimum number of bits.

POSIX
Portable Operating System Interface (for Unix). A set of standards defin-
ing software interfaces of a Unix OS.

Pricing
The process of associating a service or unit, e.g. a toll atom, with an
amount of money in conformance to a defined tariff scheme.

Process
Any structured sequence of activities, steps, actions or commands. Tech-
nical view: a program execution with its own memory address space.

267

Glossary and Abbreviations

May aggregate and manage sub-processes in the form of threads. For the
business view see Business Process.

Program Counter
Represents respectively stores the position of the current instruction dur-
ing program execution.

PROMELA
Process or Protocol Meta Language. A language for the modeling and
verification of concurrent processes interacting via message channels.

Provisioning
The process of outfitting and maintaining a system to enable it to provide
services, respectively a component to enable its participation in a system.

QoS
Quality of Service. Any measurement that allows assessment of the per-
formance or output of a system respectively its processes.

RAM
Random Access Memory. In the context of embedded systems, this is a
limited resource, which is required to adhere to strict specifications con-
cerning reliability, e.g. operation temperature ranges, timing and voltage
fluctuation.

Rating
Very close or equal to Pricing.

RCI
Road Charging Interoperability. Predecessor to EETS.

Reactive System
A component continually interacting with its environment.

Refurbishment
Overhauling and updating of used hardware components for the purpose
of reissue.

Roaming
A mobile phone using another CN than its home. The visited network,
commonly in another geographical area, provides services under special
conditions concerning available features and billing.

ROM
Read Only Memory. See RAM for context.

RPC
Remote Procedure Call. Invoking a procedure in another RTE, involving
some protocol to specify name, parameters and retrieve return values.

268

RTE
Run-time Engine or Run-time (Execution) Environment. A platform
which can execute a software program. May consist of hardware (pro-
cessor, memory, I/O interfaces) and software (scheduling, memory man-
agement, process communication), designate a software solution running
on unspecified hardware or refer to a formal machine specification.

Run-time
Interval of a program’s execution.

Run-to-completion
An execution model of e.g. a program or ISMC that assumes that specific
operations like event processing or procedure invocation have to be com-
pleted before processing of the next operation can begin. While avoid-
ing the need for concurrency mechanisms in the executable, it requires
event/message queues to handle requests received during these atomic
activities.

SAM
Secure Access Module. Encapsulates cryptographic algorithms, often im-
plemented on a smart card.

Scanner
A lexical analyzer that compiles a sequence of bytes and converts it to a
token of a specific type.

SHA
Secure Hash Algorithm. A cryptographic hash function.

SIL
Safety Integrity Level. A relative level of risk reduction measured by
various quantitative and qualitative characteristics. Ranges from SIL1
(least dependable) to SIL4 (most dependable).

SIM
Subscriber Identity Module. Commonly a smart card that securely stores
subscriber-specific data and keys for a CN provider in a mobile phone.

Smart Card
8 or 16 bit processor with 6 to 64 kb of memory and I/O encapsuled in a
smart card module. OS is stored in ROM, memory data access from the
outside is controlled by the processor and its software.

SMS
Short Message Service. Provides interchange of messages up to 140 bytes
in a GSM CN.

Spec
Specification. In the context of Ada, a specification file, defining data

269

Glossary and Abbreviations

structures and operation signatures.

SPOF
Single Point of Failure. System element, whose failure implies failure of
the entire system.

SQL
Structured Query Language. Language for the management, querying
and modifying data of relational databases.

SRSM
Statically Resolvable State Machine. Refers to a pattern introduced by
this work. A state automaton configuration respectively structure that
does not rely on polymorphy, dispatching or similar dynamic concepts
during run-time.

Step Semantics
of a state machine define a decomposed execution of its structure with a
starting point, conditioned processing of states, transitions, (where appli-
cable parts of) their actions, events and signals, and a completion point
from which the starting point of the successive step can be derived, if the
machine did not reach its final state.

T=0
Asynchronous, byte-oriented, half-duplex transmission protocol between
a terminal and smart card. Simple, requires little memory.

T=1
Asynchronous, block-oriented, half-duplex transmission protocol between
a terminal and smart card. Allows secure messaging.

Tariff Scheme
Defines the price of a service or unit dependent on a set of parameter
values, e.g. time, user attributes.

Telematics
Fusion of technologies, methods and processes of both telecommunications
and informatics. Prominent application examples are traffic, healthcare
and defense.

Thick Client
OBE outfitted with sufficient resources (execution environment) to com-
pletely process tolling data and provide a result to send to a center com-
ponent for billing.

Thin Client
OBE with minimum run-time resources that merely collects and transmits
tolling-relevant data, leaving complex computations to center systems.

270

Thread
Sequential execution of commands running in the context (memory ad-
dress space, management) of a process.

TLV
Type or Tag Length Value. Encoding of message data units according to
the first bytes representing the type of the unit’s value, the next bytes
representing the length n of the value, followed by the n bytes of the value
itself.

Toll Charger
Organization determining the business and legal schemes, processes and
parameters of an EETS system. Responsible for the collection and cession
of tolled amounts to the government (where applicable).

Tolling Scheme
See Tariff Scheme.

Transforming System
Component implementing a stateless, functional relationship between the
input and output values. Takes input and deterministically converts it
into a specified result.

Turing Machine
A theoretical computation model consisting of a symbol tape, head, reg-
isters and a transition function.

UMTS
Universal Mobile Telecommunications System. CN standard technology
allowing packet-oriented uplink and downlink between approx. 384 kbit/s
and 7.2 Mbit/s.

VAS
Value Added Service. Utilizes the infrastructure of some base service, e.g.
ETC, to offer supplemental functionality, e.g. vehicle tracking.

VCU
Virtual Control Unit. Run-time interpreter for ISMC, with associated
message queues and function sets for interaction and action implementa-
tion.

VFB
AUTOSAR Virtual Function Bus. Interconnection middleware abstract-
ing from the underlying automotive hardware, e.g. the busses.

Virtualization
The concept of emulating a system component that realizes a RTE for
other components, e.g. a whole computer for running an OS, or a JavaVM
for bytecode programs.

271

Glossary and Abbreviations

White Box
A component of which both the externally measurable behavior and in-
ternal states are considered.

WLAN
Wireless Local Area Network. Connects two or more devices, providing
approx. 11 Mbit/s.

272

Bibliography

[3G03] 3rd Generation Partnership Project: 3GPP TS 51.014 V4.3.0, Techni-
cal Specification Group Terminals; Specification of the SIM Application
Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM –
ME) interface (Release 4). 3GPP, 2003.

[Ao06] Aonix, Inc.: ObjectAda Real-Time RAVEN Product Fact Sheet.
www.aonix.com, 2006.

[AU06] AUTOSAR Administration: Specification of RTE Software, Version
1.0.1. AUTOSAR GbR, 2006.

[AU062] AUTOSAR Administration: Specification of Module FlexRay Inter-
face, Version 2.0.0. AUTOSAR GbR, 2006.

[AU063] AUTOSAR Administration: Requirements on RTE, Version 1.0.1.
AUTOSAR GbR, 2006.

[Ba03] J. Barnes: High Integrity Software. Addison Wesley, 2003.

[BA04] K. Beck, C. Andres: Extreme Programming Explained, 2nd Edition.
Addison Wesley, 2004.

[BCK03] L. Bass, P. Clements, R. Kazman: Software Architecture in Practice,
Second Edition. Addison Wesley, 2003.

[BDV03] Burns, Dobbing, Vardanega: Guide for the use of the Ada Ravenscar
Profile in high integrity systems. University of York technical report YCS
348, 2003.

[Be06] M. Ben-Ari: Principles of Concurrent and Distributed Programming,
Second Edition. Addison Wesley, 2006.

[Bé01] B. Bérard et al.: Systems and Software Verification: Model-Checking
Techniques and Tools. Springer, 2001.

273

Bibliography

[BM98] E. L. A. Baniassad, G. C. Murphy: Conceptual Module Querying for
Software Reengineering. Proceedings of the 20th International Conference
on Software Engineering, 1998.

[BMJ05] Bundesministerium der Justiz: Gesetz über den Betrieb elektroni-
scher Mautsysteme (Mautsystemgesetz – MautSysG). www.juris.de, 2005.

[BMVBS08] Bundesministerium für Verkehr, Bau und Stadtentwicklung: Die
Lkw-Maut: Fragen und Antworten. www.bmvbs.de, 2008.

[Bo81] B. W. Boehm: Software Engineering Economics. Prentice Hall, 1981.

[Bo01] Robert Bosch GmbH (Ed.): Mikroelektronik im Kraftfahrzeug. Robert
Bosch GmbH, Stuttgart, 2001.

[Bo02] Robert Bosch GmbH (Ed.): Konventionelle und elektronische
Bremssysteme. Robert Bosch GmbH, Stuttgart, 2002.

[Bo022] Robert Bosch GmbH (Ed.): Autoelektrik/Autoelektronik, Systeme
und Komponenten, 4. Auflage. Vieweg Verlag, 2002.

[BT05] Becker, Timm-Giel: Selbststeuerung in der Transportlogistik: Model-
lierung der mobilen Kommunikation. Industrie Management, 5/2005, S.
71-74, GITO-Verlag, Berlin.

[Bu05] G. C. Buttazzo: Hard Real-Time Computing Systems, Second Edition.
Springer, 2005.

[BW98] A. Burns, A. Wellings: Concurrency in Ada. Cambridge University
Press, 1998.

[BW06] B. Brosgol, A. Wellings: A Comparison of Ada and Real-Time Java
for Safety Critical Applications. Reliable Software Technologies – Ada
Europe 2006.

[BW09] A. Burns, A. Wellings: Real-Time Systems and Programming Lan-
guages, Fourth Edition. Addison Wesley, 2009.

[C2C08] Car 2 Car Communication Consortium Website. www.car-2-car.org,
2008.

[CA08] R. Chapman, P. Amey: SPARK 95 – The SPADE Ada 95 Kernel
(including RavenSPARK), Edition 4.8. Praxis High Integrity Systems,
2008.

[CGW91] Cullyer, Goodenough, Wichmann: The choice of computer lan-
guages for use in safety-critical systems. Software Eng. J., 1991.

274

Bibliography

[CKK02] P. Clements, R. Kazman, M. Klein: Evaluating Software Architec-
tures. Addison Wesley, 2002.

[Cl03] P. Clements et al.: Documenting Software Architectures. Addison Wes-
ley, 2003.

[CL08] C. G. Cassandras, S. Lafortune: Introduction to Discrete Event Sys-
tems, Second Edition. Springer, 2008.

[Co04] B. J. Copeland: The Essential Turing. Oxford University Press, 2004.

[DC021] DaimlerChrysler AG: System for Determining Road Tolls, WO
02/061691 A1. World Intellectual Property Organization, 2002.

[DC022] DaimlerChrysler AG: Control Method for Use in a Toll Determination
System, WO 02/061690 A1. World Intellectual Property Organization,
2002.

[DC03] DaimlerChrysler AG: Europäische Patentanmeldung EP 1 335 324 A2.
European Patent Office, 2003.

[DC06] DaimlerChrysler Services Mobility Management GmbH: Market Con-
sultation "Anders Betalen voor Mobiliteit", Research Assignment 1: Total
Cost of System and Organization for the KMP. Kostenmonitor Kilome-
terprijs, The Netherlands, 2006.

[DIN89] DIN Deutsches Institut für Normung e. V.: DIN 19250: Grundlegende
Sicherheitsbetrachtungen für MSR-Schutzeinrichtungen. DIN, 1989.

[Do03] B. P. Douglass: Real-Time Design Patterns. Addison Wesley, 2003.

[Do04] B. P. Douglass: Real-Time UML, Third Edition. Addison Wesley, 2004.

[Dr06] D. Drusinsky: Modeling and Verification Using UML Statecharts. New-
nes/Elsevier, 2006.

[eC06] eCall Driving Group: Recommendations of the DG eCall for the intro-
duction of the pan-European eCall, Version 2.0. www.esafetysupport.org,
2006.

[ETSI96] European Telecommunications Standards Institute: Digital cellular
telecommunications system (Phase 2+); Specification of the SIM Appli-
cation Toolkit for the Subscriber Identity Module - Mobile Equipment
(SIM - ME) interface (GSM 11.14), Version 5.2.0. ETSI, 1996.

[EU04] Official Journal of the European Union: Directive 2004/52/EC of the
European Parliament and of the Council of 29 April 2004 on the inter-
operability of electronic road toll systems in the Community. European
Union, 2004.

275

Bibliography

[EU042] Official Journal of the European Union: Corrigendum to Directive
2004/52/EC of the European Parliament and of the Council of 29 April
2004 on the interoperability of electronic road toll systems in the Com-
munity. European Union, 2004.

[EU09] Official Journal of the European Union: Commission Decision of 6
October 2009 on the definition of the European Electronic Toll Service
and its technical elements. European Union, 2009.

[EVB01] Eberspächer, Vögel, Bettstetter: GSM Global System for Mobile
Communication, Third Edition. B. G. Teubner, 2001.

[Fe04] H. Feng: DCharts, a Formalism for Modeling and Simulation Based De-
sign of Reactive Software Systems. McGill University, Montréal, Canada,
2004.

[FECA04] R. E. Filman, T. Elrad, S. Clarke, M. Aksit: Aspect-Oriented Soft-
ware Development. Addison-Wesley Longman, 2004.

[Fl05] FlexRay Consortium: FlexRay Communications System – Protocol
Specification Version 2.1. www.flexray.com, 2005.

[FMS05] FMS-Standard Working Group: FMS-Standard Interface Descrip-
tion, Vers. 01.00. fms-standard.com, 2005.

[FSH04] Freitag, Scholz-Reiter, Herzog: Selbststeuerung logistischer Prozesse
– Ein Paradigmenwechsel und seine Grenzen. Industrie Management 20
(2004) 1, S. 23-27.

[Ga06] Garmin International, Inc.: GPS 15H & 15L Technical Specifications.
Garmin, USA, 2006.

[Ge10] C. Gentry: Computing Arbitrary Functions of Encrypted Data. Com-
munications of the ACM, Vol. 53, No. 3. ACM, 2010.

[GH081] Green Hills Software, Inc.: Green Hills Minimal Ada Run-Time
(GMART) Datasheet. www.ghs.com, 2008.

[GH082] Green Hills Software, Inc.: Green Hills Safe-Tasking Ada Run-Time
(GSTART) Datasheet. www.ghs.com, 2008.

[GH93] H. Garavel, R.-P. Hautbois: An experience with the LOTOS for-
mal description technique on the flight warning computer of the Airbus
330/340 aircrafts. Proc. First AMAST Int. Workshop on Real-Time Sys-
tems, Springer, 1993.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Addison Wesley, 1995.

276

Bibliography

[Gi62] A. Gill: Introduction to the Theory of Finite-state Machines. McGraw-
Hill, 1962.

[Go73] R. P. Goldberg: Architectural Principles for Virtual Computer Sys-
tems. Harvard University, 1973.

[HMPR04] A.R. Hevner, S.T. March, J. Park, S. Ram: Design Science in
Information Systems Research. MIS Quarterly, vol. 28, 75-105. University
of Minnesota, 2004.

[Hi92] D. Hildebrand: An Architectural Overview of QNX. Proceedings of the
Workshop on Micro-kernels and Other Kernel Architectures, 1992.

[Hi99] J. Hiemer: Statecharts in CSP. Schriftenreihe Forschungsergebnisse zur
Informatik, Bd. 48, Verlag Dr. Kovac, 1999

[HI03] Herstellerinitiative Software: OSEK OS Extensions for Protected
Applications Version 1.0. DaimlerChrysler AG, www.automotive-his.de,
2003.

[HI04] Herstellerinitiative Software: API IO Library Version 2.0.3.
www.automotive-his.de, 2004.

[HMU07] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Au-
tomata Theory, Languages, and Computation, 3rd Edition. Addison Wes-
ley, 2007.

[Ho03] G. J. Holzmann: The SPIN Model Checker. Addison Wesley, 2003.

[Ho04] C. A. R. Hoare: Communicating Sequential Processes.
www.usingcsp.com, 2004.

[HP98] D. Harel, M. Politi: Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGraw-Hill, 1998.

[HR02] P. Hruschka, C. Rupp: Agile Softwareentwicklung für Embedded Real-
Time Systems mit der UML. Hanser, 2002.

[IEC85] IEC International Electrotechnical Commission: International Stan-
dard 812, Analysis Techniques for System Reliability, Procedures for Fail-
ure Mode and Effects Analysis. IEC, Geneva, 1985.

[IEC98] IEC International Electrotechnical Commission: IEC 61508 – Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. IEC, 1998.

[IEC05] IEC International Electrotechnical Commission: Functional Safety
and IEC 61508. IEC, Geneva, 2005.

277

Bibliography

[IO08] IEEE, The Open Group: POSIX.1-2008, IEEE Std 1003.1-2008, The
Open Group Technical Standard Base Specifications, Issue 7. The IEEE
and The Open Group, 2001-2008.

[ISO00] ISO International Organization for Standardization/IEC: ISO/IEC
TR 15942: Guide for the use of the Ada programming language in high
integrity systems. ISO/IEC, 2000.

[ISO02] ISO International Organization for Standardization: ISO 11898-4:
Time Triggered CAN. ISO/IEC, 2002.

[ISO03] ISO International Organization for Standardization: ISO/TS
17573:2003 Road Transport and Traffic Telematics – Electronic Fee Col-
lection (EFC) – Systems architecture for vehicle related transport services.
ISO, 2003.

[ISO05] ISO International Organization for Standardization: ISO/IEC 7816-
4:2005 Identification cards – Integrated circuit cards – Part 4: Organiza-
tion, security and commands for interchange. ISO/IEC, 2005.

[ISO07] ISO International Organization for Standardization/IEC: ISO/IEC
8652:1995/Amd 1:2007. ISO/IEC, 2007.

[ISO94] ISO International Organization for Standardization: ISO 11898: Aus-
tausch digitaler Informationen; Controller Area Network (CAN) für
schnellen Datenaustausch. ISO, 1994.

[ISO95] ISO International Organization for Standardization/IEC: Ada Refer-
ence Manual, ISO/IEC 8652:1995(E) with Technical Corrigendum 1 and
Amendment 1. ISO/IEC, 1995, 2006.

[ISO96] ISO International Organization for Standardization/IEC: Information
technology – Syntactic metalanguage – Extended BNF, ISO/IEC 14977.
ISO/IEC, 1996.

[ISO97] ISO International Organization for Standardization: ISO/IEC 7816-
3:1997 Identification cards – Integrated circuit cards – Part 3: Electronic
signals and transmission protocols. ISO/IEC, 1997.

[ITU021] ITU International Telecommunication Union: ITU-T Recommen-
dation X.680, Information technology — Abstract Syntax Notation One
(ASN.1): Specification of basic notation. ITU, 2002.

[ITU022] ITU International Telecommunication Union: ITU-T Recommenda-
tion X.691, Information technology -– ASN.1 encoding rules: Specification
of Packed Encoding Rules (PER). ITU, 2002.

278

Bibliography

[Ka03] S. H. Kan: Metrics and Models in Software Quality Engineering, Sec-
ond Edition. Addison Wesley, 2003.

[KK01] M. Kersten, H. B. Keller: Die Problematik der Abbildung von UML-
Modellen auf Konstrukte der Programmiersprache ADA. ADA und Soft-
ware Qualität: 3. Ada Deutschland Tagung. Shaker Verlag, 2001.

[KLM03] Kaiser, Liggesmeyer, Mäckel: A new component concept for fault
trees. Proc. 8th Australian workshop on Safety critical systems and soft-
ware (SCS ’03). Australian Computer Society, 2003.

[Ko97] H. Kopetz: Real-Time Systems. Kluwer, 1997.

[KPRR91] Klöppel, Paul, Rauch, Ruhland: Compilerbau. Vogel, 1991.

[Ku05] R. Kurki-Suonio: A Practical Theory of Reactive Systems. Springer,
2005.

[KWK02] Kwon, Wellings, King: Ravenscar-Java: A high integrity profile for
real-time Java. Proceedings of Joint ACM Java ISCOPE Conference 2002.

[Li00] J. W. S. Liu: Real-time Systems. Prentice Hall, 2000.

[LI06] LIN Consortium: LIN Specification Package Revision 2.1. www.lin-
subbus.org, 2006.

[Ma07] Mathworks Website, www.mathworks.com, 2007.

[MB02] S. J. Mellor, M. J. Balcer: Executable UML. Addison Wesley, 2002.

[MI04] Motor Industry Software Reliability Association: MISRA-C: 2004
Guidelines for the use of the C language in critical systems, 2004.

[Mi07] Microsoft Corporation: Windows Automotive Data Sheet.
www.microsoft.com/windowsautomotive, 2007.

[MNS95] G. C. Murphy, D. Notkin, K. Sullivan: Software Reflexion Mod-
els: Bridging the Gap between Source and High-Level Models. IEEE CS
Transactions on Software Engineering, 1995.

[MO06] MOST Cooperation: MOST Specification Rev. 2.5.
www.mostcooperation.com, 2006.

[MS07] C. Marscholik, P. Subke: Datenkommunikation im Automobil –
Grundlagen, Bussysteme, Protokolle und Anwendungen. Hütig, 2007.

[MVW05] Ministerie van Verkeer en Waterstaat: Anders Betalen voor Mo-
biliteit, Requirements Specification (draft version 0.2). The Netherlands,
2005.

279

Bibliography

[MVW08] Ministerie van Verkeer en Waterstaat: Kilometre Pricing in the
Netherlands (KMP), Information Update. The Netherlands, 2008.

[OMG05] Object Management Group: UML Profile for Schedulability, Per-
formance, and Time Specification, Version 1.1. www.omg.org, 2005.

[OMG07] Object Management Group: MOF 2.0/XMI Mapping, Version 2.1.1.
www.omg.org, 2007.

[OMG091] Object Management Group: OMG Unified Modeling Language
(OMG UML), Infrastructure, V2.2. www.omg.org, 2009.

[OMG092] Object Management Group: OMG Unified Modeling Language
(OMG UML), Superstructure, V2.2. www.omg.org, 2009.

[OMG09] Object Management Group: UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems, Version 1.0.
www.omg.org, 2009.

[OS04] OSEK Group: OSEK/VDX Communication Version 3.0.3. www.osek-
vdx.org, 2004.

[OS042] OSEK Group: OSEK/VDX Binding Specification Version 1.4.2.
www.osek-vdx.org, 2004.

[OS05] OSEK Group: OSEK/VDX Operating System Version 2.2.3.
www.osek-vdx.org, 2005.

[PB06] A. T. W. Pickford, P. T. Blythe: Road User Charging and Electronic
Toll Collection. Artech House, 2006.

[PC05] PC/SC Workgroup: Interoperability Specification for ICCs and
Personal Computer Systems, Part 1. Introduction and Architecture
Overview, Revision 2.01.01. www.pcscworkgroup.com, 2005.

[Pl04] G. D. Plotkin: A Structural Approach to Operational Semantics
(Preprint submitted to Journal of Logic and Algebraic Programming).
University of Edinburgh, 2004.

[Pu01] de la Puente et al.: Open Ravenscar Real-Time Kernel Operation Man-
ual Version 2.2b. Universidad Politécnica de Madrid, 2001.

[Ra06] W. Rankl: Chipkartenanwendungen – Entwurfsmuster für Einsatz und
Programmierung von Chipkarten. Hanser, 2006.

[RCI07] Road Charging Interoperability Project Consortium: Minimum Ar-
chitecture for Interoperability, Version 1.01. ERTICO ITS Europe, 2007.

280

Bibliography

[RCI072] Road Charging Interoperability Project Consortium: Consortium
high-level view on RCI architecture and specifications, Version 1.1. ER-
TICO ITS Europe, 2007.

[RE08] W. Rankl, W. Effing: Handbuch der Chipkarten, 5. Auflage. Hanser,
2008.

[RE92] RTCA/EUROCAE: Software Considerations in Airborne Systems and
Equipment Certification. RTCA/DO-178B; EUROCAE/ED12-B. RTCA,
EUROCAE, 1992.

[RG06] K. Rüdiger, M. Gersch: In-Vehicle M-Commerce: Business Models for
Navigation Systems and Location-based Services. Embedded Security in
Cars. Springer, 2006.

[Ri00] D. Riehle: Framework Design. A Role Modeling Approach. Swiss Fed-
eral Institute of Technology, Zurich, 2000.

[Ro98] A. W. Roscoe: The Theory and Practice Of Concurrency. Prentice
Hall, 1998.

[RW05] P. Robertson, B. Williams: A Model-Based System Supporting Auto-
matic Self-Regeneration of Critical Software. Proceedings SelfMan, 2005.

[Sa00] B. I. Sandén: Implementation of state machines with tasks and pro-
tected objects. Ada User Journal 20:4, 2000.

[Sa02] M. Samek: Practical Statecharts in C/C++. CMP Books, 2002.

[Sc07] H. Schwichtenberg: Bestandsaufnahme – Programmiersprachen in
Lehre und Praxis. Heise, iX 06/2007.

[Sc96] B. Schneier: Applied Cryptography, Second Edition. Wiley, 1996.

[Si06] Siemens AG: Anders Betalen Voor Mobiliteit Phase 2 Market Consulta-
tion, Total Cost of System and Organization for KMP, Siemens response.
Siemens, 2006.

[SKG08] Special Knowledge Group "Anders Betalen voor Mobiliteit": Re-
port round table discussions SKG ABvM September 2008 "Collection and
(forced) debt collection (NL: inning en dwanginvordering)", Version 1.0.
ITS Netherlands, connekt, 2008.

[SRM06] Stephan, Richter, Müller: Aspects of Vehicle Software Flashing. Em-
bedded Security in Cars. Springer, 2006.

[SS10] Sparx Systems Ltd. Website. www.sparxsystems.eu, 2010.

281

Bibliography

[ST06] SPARK Team: The SPARK Ravenscar Profile, Issue 1.5. Praxis High
Integrity Systems, 2006.

[Ste03] J. Stehr: Aspects of Mobile Telematics Applications and Services. Eu-
ropean Journal of Navigation, 2003.

[Ste032] J. Stehr: Semantische Konsistenzprüfung von UML-
Verhaltensdiagrammen zur Modellierung von eingebetteten Systemen.
Ein formaler Ansatz durch Abbildung in die Prozessalgebra CSP.
Universität Paderborn, 2003.

[Ste06] J. Stehr: Modellgetriebene Entwicklung von Mautsystemen: Domä-
nenspezifische Aspekte der Verkehrstelematik. ObjektSPEKTRUM
04/2006.

[Sto96] N. Storey: Safety-Critical Computer Systems. Prentice Hall, 1996.

[Sun061] Sun Microsystems, Inc.: Runtime Environment Specification, Java
CardTMPlatform, Version 2.2.2. www.sun.com, 2006.

[Sun062] Sun Microsystems, Inc.: Virtual Machine Specification, Java
CardTMPlatform, Version 2.2.2. www.sun.com, 2006.

[Sun063] Sun Microsystems, Inc.: Application Programming Interface, Java
CardTMPlatform, Version 2.2.2. www.sun.com, 2006.

[SZ06] J. Schäuffele, T. Zurawka: Automotive Software Engineering, 3. Au-
flage. Vieweg, 2006.

[Ta97] A. S. Tanenbaum: Operating Systems, Second Edition. Prentice Hall,
1997.

[TC07] Toll Collect GmbH: Lkw-Maut in Deutschland. Nutzerinformationen.
www.toll-collect.de, 2007.

[Te02] T. Tempelmeier: On The Real Value Of New Paradigms. OMER —
Object-oriented Modeling of Embedded Real-Time Systems. Gesellschaft
für Informatik, 2002.

[VGRH81] Vesely, Goldberg, Roberts, Haasl: Fault Tree Handbook (NUREG-
0492). U.S. Nuclear Regulatory Commission, 1981.

[VM04] Bundesrepublik Deutschland: V-Modell XT. www.v-modell-xt.de,
2004.

[Wa05] A. Wasowski: Code Generation and Model Driven Development for
Constrained Embedded Software. IT University of Copenhagen, 2005.

[We07] T. Weilkiens: Die Wogen glätten sich. ObjektSPEKTRUM 04/2007.

282

Bibliography

[WSWW06] Wagner, Schmuki, Wagner, Wolstenholme: Modeling Software
with Finite State Machines. Auerbach Publications, 2006.

[Zi80] H. Zimmermann: OSI Reference Model —- The ISO Model of Archi-
tecture for Open Systems Interconnection. IEEE Transactions on Com-
munications, Vol. 28, No. 4, April 1980.

[ZS07] W. Zimmermann, R. Schmidgall: Bussysteme in der Fahrzeugtechnik
– Protokolle und Standards. 2. Auflage. Vieweg, 2007.

283

