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Kurzfassung

Angesichts des steigenden Bedarfs zur Erhöhung der Zuverlässigkeit, Verfügbarkeit und Sicherheit
technischer Systeme, wird eine große Anzahl von proaktiven Wartungsstrategien vorgeschlagen.
Von größtem Interesse ist die Entwicklung von Strategien basierend auf Diagnose- und Progno-
semethoden, bei denen die Wartung auf Basis des aktuellen und des vorhergesagten zukünftigen
Zustands eines technischen Systems geplant wird. Darüber hinaus können Prognoseinformationen
verwendet werden, um die Zuverlässigkeit von intelligenten mechatronischen Systemen zu steuern,
um einen erfolgreichen Betrieb zu gewährleisten. Daher werden Methoden für eine zuverlässige
und präzise Schätzung des aktuellen und zukünftigen Zustands des Systems benötigt. Mit dem
Fortschritt in der Sensortechnik sind die Mehrheit der heutigen technischen Systeme mit einem
Netzwerk von Sensoren für Zustands- oder Leistungsüberwachung ausgestattet. Dies führt zu ei-
ner gesteigerten Anwendung von maschinellen Lernverfahren in der Zustandsüberwachung und
-prognose. In Abhängigkeit von den verfügbaren Sensordaten, können verschiedene Ansätze von
maschinellen Lernverfahren für die Verwendung der Daten, angewendet werden. Allerdings fehlt
ein Leitfaden zur Auswahl eines geeigneten Ansatzes für ein gegebenes System oder es ist noch
nicht umfangreich untersucht worden. Daher stellt diese Arbeit einen Leitfaden für die Auswahl
geeigneter Ansätze und maschineller Lernverfahren für ein gegebenes System, abhängig von den
verfügbaren Zustandsüberwachungsdaten, bereit. Es werden fünf ausgewählte Prognoseansätze in
Abhängigkeit von den verfügbaren Zustandsüberwachungsdaten und der Anwendung von maschi-
nellen Lernverfahren innerhalb dieser Ansätze dargestellt. Da nicht alle extrahierten Merkmale
relevante Informationen für die Diagnose und Prognose enthalten, werden Methoden für eine
Merkmalauswahl vorgestellt. Die Ansätze werden anhand von Zustandsüberwachungsdaten von
tatsächlichen Systemen evaluiert und validiert. Diese Informationen können als Anhaltspunkt für
die Auswahl einer geeigneten Methode für eine bestimmte Systeme, in Abhängigkeit von den
verfügbaren Zustandsüberwachungsdaten, dienen.

Abstract

As the need to improve reliability, availability and safety of technical systems increases, a lar-
ge number of proactive maintenance strategies have been proposed. Of greater interest is the
development of prognostic and health management strategies where maintenance is scheduled
based on the current and the predicted future health state of a technical system. In addition,
prognostic information can be used to control the reliability of intelligent mechatronic systems to
ensure their mission objective is achieved. Therefore methodologies for estimating these current
and future health states reliably and accurately are imperative. With the advancement in sensor
technology, majority of the present day technical systems are installed with a network of sensors
for condition or performance monitoring. This has led to the increased application of machine
learning algorithms in condition monitoring. Depending on the sensor data available, different
approaches for utilizing the data with machine learning algorithms can be applied. However, a
guide for selecting the appropriate approach for a given system is either lacking or has not been
explored extensively. Therefore, this work aims at providing a guide for selecting suitable approa-
ches and machine learning algorithms for a given system depending on the available sensor data.
Five approaches for prognostics and an ensemble of the best performing approaches are presented.
Since the performance of machine learning algorithms is highly dependent on the input features,
methods for feature extraction and selection are also presented. The approaches are evaluated
and validated with run-to-failure condition monitoring data of actual systems. This information
could serve as a guide for selecting the appropriate method for a given kind of system depending
on the available condition monitoring data.
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1 Introduction

Traditionally, preventive maintenance has been the most common maintenance stra-
tegy [1, 2]. In this strategy, maintenance tasks are carried out after elapsed time or
operation that is based on statistical or historical failure times of a fleet of systems. In
some cases, periodic manual inspection is carried out where the machine in question is
periodically shut down and an inspection on the health of the components is carried
out [3]. During this routine inspection, the machine often lies idle and there may be
no faults detected. This machine downtime adds significantly to its cost of operation.
Although this strategy is designed to prevent failure and consequently reduce operating
costs, it ends up increasing the overall cost of maintenance by reducing availability as
well as replacing components which have some remaining useful lifetime. In the recent
years, condition based maintenance (CBM) is gradually becoming the most preferred
maintenance strategy. The strategy involves the use of condition monitoring data to esti-
mate the current health state of the system and when the system is likely to fail. This
information is then used in maintenance planning.
Figure 1.1 shows the evolution of maintenance strategies visavis benefits and complexi-
ty [4]. In corrective maintenance, components are repaired or replaced when they fail.
This reduces the availability, safety and reliability of the system. In preventive mainte-
nance, components are replaced before failure and in some cases, the components may
contain some amount of useful lifetime. This leads to high maintenance costs. With
condition based maintenance, components are replaced depending on their current and
future health state, leading to maximum utilization of the components and consequent-
ly reducing the maintenance costs. In addition, this strategy increases the availability,
safety and reliability.
The overall objective of condition based maintenance is to eliminate unscheduled main-
tenance and increases the system reliability, availability, safety, maximize component
useful lifetime while preventing failure and consequently secondary damage to other
components and to assist in planning operations and inventory [5]. New technical sys-
tems, referred to as self-optimizing mechatronic systems with the ability to adaptively
control reliability have been developed [6, 7]. These systems are able to react to chan-
ged operating conditions or faults within the system through behavior adaptation based
on multi-objective optimization and thus ensuring that the system continues to operate
until the next scheduled maintenance.
Prognostics and health management (PHM) refers to the integration of diagnostics, pro-
gnostics and a decision module into condition monitoring [8]. Diagnostics involves fault
detection, isolation to locate the fault and identification of the type of fault. In most
cases, expert knowledge on the type of faults that can occur is required. This infor-
mation can be obtained through failure mode and effect analysis (FMEA). Prognostics
involves assessment of the future health of a component and is defined as “estimation
of time to failure and risk for one or more existing and future failure modes”, according
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Figure 1.1: Evolution of maintenance strategies [4]

to International Organization for Standardization (ISO 13381-1) [9, 10]. Its objective
is to predict the remaining useful lifetime (RUL) of a component before failure occurs
given the current machine condition and past operation profile [11]. Figure 1.2 shows
the key elements of a prognostics and health management system. In this approach, raw
condition monitoring data is acquired from the system through a network of sensors and
preprocessed. Relevant features that give the maximum information on the health of a
system are extracted. These features are used in diagnostics to identify developing faults.
A decision (maintenance or adaptive control) can be made at this stage. Alternatively,
this information can be combined with the extracted features for prognostics to estimate
when the system is likely to fail. The results of prognostics are then used as input to the
decision module. In the framework of this work, the decision module has not been ad-
dressed and therefore, methods for estimating when the system will fail, will be referred
to as prognostic methods.

In recent years, a huge number of prognostic methods have been developed. The methods
can be broadly classified into three categories: 1) reliability based, which rely on failure
times of similar units, 2) model based, which rely on mathematical models based on phy-
sics of failure and 3) data-driven methods, which rely on raw sensory data obtained from
a system during operation [12]. Reliability based methods are the simplest to employ
since they do not require condition monitoring data. However, their accuracy is relative-
ly low especially for systems with varying lifetimes due to manufacturing tolerances and
varying operating conditions. Model-based methods though found to be very accurate,
are system or component specific and are not easily adaptable to different systems. In
addition, due to the complexity of modern day systems, the system models are very
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Figure 1.2: Elements of a prognostics and health management system [4]

complex and computationally intensive. Data-driven methods have received considerable
efforts since they can be adapted to different systems. Data-driven methods utilize ma-
chine learning algorithms to learn the degradation behavior from condition monitoring
data of technical systems. The trained algorithm is then used with condition monitoring
data of similar system for real-time diagnosis and prognosis.

A significant number of machine learning algorithms have been developed and evaluated
on their suitability for diagnostics and prognostics of technical systems. Different pro-
gnostic approaches describing how degradation indices can be defined from the condition
monitoring data for use with machine learning algorithms have also been developed.
Figure 1.3 shows the general workflow when applying machine learning algorithms for
diagnostics and prognostics.

Figure 1.3: General workflow of data-driven PHM methods
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The methodology involves two main stages: training and testing. In the training stage,
a machine learning algorithm learns the underlying model that maps the input (features
from condition monitoring data) to a target. Typical targets for technical systems include:

1. Health state - a value or descriptive name describing the current condition of a sys-
tem depending on damage/fault severity. Health state is usually used with systems
that undergo discrete states before failure, for instance normal-faulty-failed.

2. Health index - an index describing the damage severity of a system. It can be
physically measurable from the system, for instance wear or defined virtually using
a predetermined function. It is mainly used for tracking continuous damage.

3. Remaining useful lifetime (RUL) - the useful lifetime left on a system at a particular
time of operation. Units of time such as days, hours or cycles are used depending
on application. It is suited for applications where a large number of run-to-failure
data of similar systems is available.

4. Fault type and location - a value or descriptive name describing different fault
modes of a system. Mainly used in diagnostics.

In the testing/online prognostics stage, the trained model is used to map the input
features of a similar system to an output from which an inference on the state of the
system is made. The performance of most prognostic methods will depend on how the
input features and the targets are defined.

A key component missing from published prognostic research is a systematic performance
evaluation of different prognostic approaches as well as different machine learning algo-
rithms on different types of systems. Such information would be useful in selection of
a prognostic approach and corresponding machine learning algorithm and consequently
reducing the time and overall cost required for the design and development of a PHM
system for a specified technical system. This work attempts to fill that gap by developing
a database of prognostic approaches evaluated on real world technical systems to serve
as a way of selecting the prognostic approach and corresponding algorithm(s) depen-
ding on the type of technical system being monitored and the condition monitoring data
available.

1.1 Problem Statement

Machinery health management has been extensively investigated and intelligent diagno-
stic and prognostic methods developed to monitor and manage machinery health. Howe-
ver, there are still some aspects that need to be explored for the design and development
of efficient and reliable PHM systems.

The performance of proposed prognostic methods is subject to the technical system in
use. Different methods perform differently on different technical systems depending on the
type of condition monitoring data available. A database of prognostic methods evaluated
on data from different technical systems is necessary. This information will provide a
quick reference for the design and development of PHM systems for a given technical
system depending on the condition monitoring data available, consequently reducing the
time and cost time that would be incurred in evaluating different methods.
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The performance of these algorithms also depends on suitability of the features extracted
from the raw data [13]. For classification of health states, good features should demons-
trate separability between different health states. For systems undergoing continuous da-
mage where regression methods for approximating continuous functions (either a health
index or remaining useful lifetime) are used, then the features should have the abili-
ty to capture the degradation trend, preferably monotonic change. In addition, feature
selection helps in avoiding overfitting in some machine learning algorithms. Overfitting
occurs when the trained prognostic model is excessively complex and overreacts to minor
fluctuations in the training data leading to poor predictive performance when used with
unseen testing data. A method of feature selection depending on application is therefore
necessary.
Many of the machine learning algorithms available require tuning of various parameters
for each type of system. A systematic method of parameter tuning using optimization
algorithms as well as identifying the parameter search range in order to improve accuracy
and reduce the computation time for training and testing of algorithms is necessary.

1.2 Objectives

The main objective of this study is to develop a database of machinery prognostic me-
thods and evaluate their performance based on condition monitoring data of different
kinds of technical systems.
The specific objectives of this research are:

1. To study and identify the degradation indices from condition monitoring data of
various technical systems as a prerequisite for defining a prognostic approach.

2. To develop methods for feature selection and a method for selecting the optimum
number of health states for unlabeled data.

3. To develop a database of prognostic methods for various technical systems based
on the condition monitoring data and degradation information available.

4. To evaluate the performance of various prognostic approaches on their ability to
estimate the current health state of a system and to predict the remaining useful
lifetime so as to serve as a guide for selecting the most suitable method for a given
application.
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1.3 Thesis Outline

This thesis consists of five chapters. In this introductory chapter, the concept of progno-
stics and health management (PHM) as a state of the modern day maintenance strategy
is introduced. Presently a lot of research on PHM methods is being conducted. Howe-
ver, a number of issues remain to be addressed in order to obtain efficient and robust
prognostic methods. For this reason, in the following chapter 2, a detailed literature
review on diagnostics, prognostics and the state of the art prognostic approaches that
exist so far is presented. Diagnostic methods based on physics-based models and data
driven methods are described in detail, including typical application areas. Prognostics
methods which are the main focus of this research are also discussed in detail. These in-
clude reliability-based, model-based and data driven based methods. Gaps that exist in
the current research are highlighted. In order to form a basis for evaluating and selecting
prognostic methods, performance metrics for prognostics are discussed in this chapter.
Chapter 3 begins with a description of commonly used condition monitoring data for
different technical systems. Data processing to convert the raw sensor data into useful
information and also reduce the dimensionality of a data set is discussed. This inclu-
des data preprocessing, feature extraction and filtering methods. Since not all extracted
features contain relevant information for diagnostics and prognostics, methods for selec-
ting the features with most information on the health of a system are presented in this
chapter.
In chapter 4, five selected prognostics approaches depending on the type of condition mo-
nitoring data available and the application of machine learning algorithms within three
of these approaches are presented. The other two methods include health index propaga-
tion method and a simple model-based approach that utilizes temperature measurements
for systems with wear. The performance of the methods is evaluated with condition mo-
nitoring data of three real technical systems using the prognostic metrics described in
chapter 2. Further, a weighted ensemble approach that combines predictions from the
best performing methods is presented and evaluated. This performance evaluation ser-
ves as a guide for selecting the prognostic approach for a given type of application and
condition monitoring data available.
In chapter 5, prognostics of piezoelectric transducers using the concept of self-sensing in
a laboratory experiment is introduced. The identification of health indices and the use
of performance monitoring data for prognostics is discussed. The application of some
selected prognostic methods from chapter four is discussed. The methods are evaluated
with prognostic metrics and the suitable method for this application is identified.
Lastly, chapter 6 provides a summary the work presented and conclusions. An overview
of prognostic method selection for a specified application and depending on the condition
monitoring data available is presented. This chapter also includes an overview of proposed
future work which does not fall under the scope of this research.



2 Literature Review

With today’s competitive industrial environment, there is need to maximize machinery
availability, safety and reliability in addition to reducing maintenance costs. Condition
monitoring of technical systems is playing a significant role in technical systems as it
provides information on operation and performance characteristics as well as the health
state of a system [14]. Advances in information technology has led to the development of
low cost microprocessors and multi-functional data acquisition systems with direct sensor
connectivity. Advances in sensor technology, automated controls as well as data teleme-
try have led to innovative and low cost sensors for monitoring operation characteristics
such as electric current, pressure, flow, temperature as well as for condition monitoring
such as tribology, thermography, vibration, acoustics and force [14]. Technologies in re-
mote condition monitoring have made it possible to monitor systems in locations that
are not easily accessible. A state of the art real-time monitoring system referred to as
Supervisory Control and Data Acquisition (SCADA) has been extensively employed in
real-time performance and remote condition monitoring of complex industrial systems
[14]. The sensor data acquired is mainly used for performance monitoring and for control-
ling various processes in a plant and therefore further analysis of the data for diagnostics
and prognostics is necessary. Advancement in these technologies has led to condition ba-
sed maintenance gaining popularity as the present day maintenance strategy. It aims at
avoiding inopportune maintenance spending in addition to maximizing component and
system life [9].
Prognostics and health management (PHM) involves integrating diagnostics, prognostics
and a decision module into condition monitoring. A fault is first detected, located and
identified. The evolution of the fault with continued operation is then tracked and pro-
gnostics is conducted at predetermined intervals. Presentation of the output of prognostic
can vary depending on the application. Some typical outputs are as follows [15]:
• Time to failure (TTF) of a or system.
• Remaining useful lifetime (RUL).
• Probability that failure will occur before the next scheduled inspection, replacement
or overhaul.

Extensive research on diagnostics and prognostics has been carried out and the following
sections highlight the milestones and limitations identified in the available literature
relevant to this research.

2.1 Diagnostic Methods

Diagnosis is an assessment of the current health state of a system based on observed
features from condition monitoring data. It involves identifying anomalous behavior in
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a system, locating the component with anomalous behavior and identifying the type of
anomaly in that component. In some instances, diagnosis can imply the isolation of a
faulty component, a failure mode, or a failure condition [8]. Fault diagnosis methods can
be boldly categorized into model-based and data-driven.

2.1.1 Model Based Fault Diagnosis

Model based fault diagnosis involves the use of mathematical models of the physical
laws governing the behavior of a system [16, 17]. Models of possible faults and how they
influence the state of the system are developed and based on deviation of at least one
characteristic property of a variable from an acceptable behavior, faults can be detected
and identified [16].
Figure 2.1 shows a basic structure of a model-based diagnostic system. The system model
G is described by differential equations with input u(t), system parameters θ. The system
produces a measurable output for some given disturbances d(t) and faults f(t). The
output y(t) and nominal output ŷ(t) are used to generate residues r(t) given by

ŷ(t) = G
[
u(·), θ

]
, (2.1)

r(t) = y(t)− ŷ(t). (2.2)

The residue is compared to nominal behaviour of the system for diagnostic purposes.
This approach is closely linked to analytical redundancy used for fault detection and
isolation [18]. Analytical redundancy involves the use of analytical relationships to de-
scribe the interconnection between various system components and fault detection and
isolation is done by comparing a system’s available measurements to information from
the analytical relationship [19].

Figure 2.1: General structure of model-based fault diagnosis [16]

Model based diagnostic approach has been widely used in the aircraft industry and a
number of studies have been reported. Of greater interest are actuators used in various
mechatronic application and from which a number of failures have been reported [20, 21].
Isermann [16] proposed a process model based fault diagnosis method of a cabin pres-
sure outflow valve actuator of a passenger aircraft. With the combination of parameter
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estimation and parity equations, four measurements were used to diagnose faults with
the help of fuzzy-logic inferencing. Byington et al. [22] proposed a model based approach
to PHM that uses physical modeling and advanced parametric identification techniques
along with fault detection and failure prediction algorithms for prognostics for each com-
petitive failure mode within the system. The approach was validated and demonstrated
on an electromechanical actuator (EMA) for flight control [22]. Varga and Ossmann [20]
developed a fault detection and diagnosis method for flight actuator faults such as jam-
ming, runaway, oscillatory failure or loss of efficiency. The method is based on a linear
parameter varying (LPV) model of the actuator which relies on a fault detection filter
to generate residuals for fault diagnosis. Daigle et al. [23] developed a medium fidelity
lumped-parameter dynamical model of spacecraft propellant for loading cryogenic. A mo-
del based diagnostic approach was employed where deviations in measured values from
model predicted values are compared for fault detection and isolation. Particle filters
were used for fault identification through parameter estimation.

Application in robotics have also been reported in [24–27]. Caccavali et al. [24] developed
a fault diagnosis approach for actuator faults of robot manipulators. This approach em-
ploys a diagnostic observer that computes the estimation error of the system state from
which a residual vector is obtained. A fault is said to occur when the norm of the residual
vector exceeds a predetermined threshold [24]. Fourlas et al. [25] presented a model based
actuator fault diagnosis for a four wheel skid steering robot that use structural analysis
based technique to generate residuals. A kinematic model of the robot used to create
the structural model of the system was developed and parity equation derived from the
system model were used to generate residuals for diagnosis [25]. Hsiao and Weng [26] pro-
posed a hierarchical multiple-model scheme for robotic actuator faults that incorporates
a small number of models which are mixtures of the dynamic and kinematic equations
of a robot manipulator. All possible faults are contained in the models and a fault is
said to occur when the probability of the kinematic fault model exceeds a predetermined
threshold [26]. Wahrburg et al. [27] presented an interpretation of cartesian contact for-
ce estimation schemes in the context of fault diagnosis of robotic applications involving
physical contact between the robot and the environment where collisions are likely to
occur (e.g. human interaction or robotic assembly). The study provided a perspective of
bridging the gap between robotics and fault diagnosis.

Rotating machinery are some of the most critical systems in industry and prone to failure
due to the large number of moving parts. Model based diagnostics methods have also
found application in rotating machinery [28–31]. Xiangyang and Wanqiang [28] develo-
ped a physical model of a rolling element bearing to simulate the normal state of the
bearing. With the use of one-class support vector machines, the authors were successful
in detecting 90% of bearing faults. Do and Chong [29] proposed an approach for fault
diagnosis of induction motors using vibration signals. The proposed approach consists of
two steps: fault detection and fault diagnosis. In the fault detection step, relevant features
are extracted from the vibration signals using scaled invariant feature transform (SIFT)
to generate fault symptoms while in the fault diagnosis step, the fault symptoms are used
for pattern classification to identify the type of fault present. Wang and Wong [30] pre-
sented a model based technique for detection and diagnosis of gear faults. The proposed
technique establishes an autoregressive (AR) model of an averaged signal obtained by
time synchronous averaging under healthy state of the gearbox. The health condition of
a gearbox is then diagnosed using the residual signal between the AR filtered signal and
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the original healthy state signal. The feasibility of the method was demonstrated using
in-flight vibration data of a helicopter gearbox. The method was found to successfully
detect cracks in gears. Park et al. [31] proposed a lumped-parameter model to simulate
the dynamic behavior of planetary gear trains. The approach uses the gear transmission
error to derive various health indices that can be used for fault diagnosis. The results
showed that the approach can be used to detect cracks in gears. Treetrong [32] proposed
a method for condition monitoring of induction motor through parameter estimation
using Genetic algorithm. The proposed method estimates key motor parameters such
as stator and rotor resistance, stator and rotor reactance and magnetizing reactance
from two measurements: stator phase current and rotor speed. Errors between estimated
parameters and nominal parameters are used to diagnose stator and rotor faults [32].

Model based fault diagnosis has been found very accurate in detecting faults but requires
mathematical models of the target system to be available. In addition, the approach may
be computationally unfeasible for online diagnosis.

2.1.2 Data-Driven Fault Diagnosis

Data-driven methods process raw sensory data into useful information that indicates the
state of health of a system. The methods involve advanced signal processing, feature
extraction and a comparative analysis with known health conditions of a system. Tra-
ditionally, advanced signal processing coupled with expert knowledge of the system is
used to identify possible faults. Graphical tools such as power spectrum graph, cepstrum
graph, spectrogram, etc, are employed [11, 33]. In rotating machinery, fault characteristic
frequencies such as bearing frequency characteristics, gear mesh frequencies, shaft fre-
quencies and their harmonics, etc, have been extensively used in fault diagnosis [34, 35].
Figure 2.2 shows the frequency spectrum of a healthy and faulty bearings. In Figure
2.2(a) only the shaft frequency and its harmonics are visible. In faulty bearings, the fault
characteristic frequencies are visible. A bearing with a fault on the outer ring will have
the ball pass frequency of outer ring (BPFO) present while that with an inner ring fault
will have the ball pass frequency of inner ring (BPFI) present, as shown in Figure 2.2
respectively.
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Figure 2.2: Frequency spectrum of ball bearing for (a) healthy bearing, (b) bearing with
outer race fault (presence of BPFO) and (c) bearing with inner ring fault
(presence of BPFI)
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Various studies have been conducted on signal processing techniques to enhance si-
gnals in either time-, frequency- or time-frequency domain for accurate fault diagnosis.
Zhang et al. [34] proposed a resonant demodulation method with adaptive frequency
selection implemented in LabVIEW. The method employs wavelet particle decompo-
sition to decompose and reconstruct a vibration signal and consequently extract fault
information from the noisy signal [34]. The method was evaluated with vibration data
of a rolling element bearing with inner ring fault. Yi et al. [35] proposed an approach
for multi-fault diagnosis of railway axle bearings based on ensemble empirical mode de-
composition (EEMD) and Hilbert marginal spectrum. EEMD decomposes a signal into
intrisinc mode functions (IMFs) which are then subjected to Hilbert transformation to
obtain the instantaneous frequencies from which fault characteristic frequencies are iden-
tified [35]. The approach was found to be effective in identifying single or multiple faults
in bearings. Pan et al. [36] proposed a method for fault diagnosis in rolling element
bearings through virtual instrument technology and Hilbert transform. The method in-
volves detecting the envelope of the raw signal from which the frequency spectrum is
obtained. Fault characteristic frequencies are then identified for diagnostic purposes. Sa-
walhi et al. [37] proposed an algorithm for enhancement of fault detection and diagnosis
in rolling element bearings using combined spectral kurtosis (SK) with autoregressive
(AR) based linear prediction filtering and minimum entropy deconvolution (MED). The
algorithm separates impulses originating from a faulty bearing using an AR-based linear
prediction filter. The impulses are then enhanced with MED by deconvolving the trans-
mission path after which the signal is decomposed using complex Morlet wavelets and
the SK is calculated to select the best filter for the envelope analysis [37]. The method
can be further extended to prognosis by tracking the SK values with evolution of the
fault.

Apart from rolling element bearings, the approach has also found applications in gear-
boxes, electric motors and combustion engines. Guoji et al. [38] proposed the uses of
bispectrum analysis for gearbox fault diagnosis. The method exploits the presence of
peaks in the harmonic mesh frequencies of gears due to local defects. Thomson and Gil-
more [39] presented an analysis on the use of electric motor current signature analysis
(MCSA) for fault diagnosis of induction motors. MCSA has been successfully applied
in diagnosis of induction motor faults such as bearing faults, broken rotor bars, airgap
eccentricity, shorted turns and bent shaft [39–41]. Lee and Kim [42] developed a two-
stage adaptive line enhancer to enhance impulsive signals of a faulty combustion engine
embedded in background noise. The method was used as a signal preprocessor prior to
time-frequency analysis for fault diagnosis.

So far the methods discussed are system specific and suited for single-point faults which
give rise to characteristic fault frequencies. In presence of distributed and multiple faults,
the methods may not be suitable for diagnosis. In addition, the methods require expert
knowledge of the system and may not be readily adaptable to different kinds of technical
systems.

In the recent years, pattern recognition has been widely employed in fault diagnosis and
overcomes some of the limitations highlighted in diagnostic methods based on signal
processing. This approach employs algorithms to automatically identify patterns within
condition monitoring data or extracted features. These patterns are further used to clas-
sify the data into different categories [43]. In fault diagnosis, the approach is based on the
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fact that different kinds of faults in a system create unique patterns in the data/features,
which can be used to detect their presence. These patterns can be used together with
failure mode and effect analysis (FMEA) to classify different types of faults. Figure 2.3
shows clustering of features extracted from healthy and faulty bearings.
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Figure 2.3: Clustering of features from different health states of a ball bearing

Data-driven methods based on pattern recognition are based on either unsupervised or
supervised machine learning.

2.1.2.1 Fault Diagnosis through Unsupervised Pattern Recognition

Unsupervised pattern recognition, also referred to as clustering, identifies the underlying
patterns within unknown multivariate data (mainly consisting of a number of features
extracted from condition monitoring data). This approach is especially beneficial when
dealing with data without apriori information [44]. This approach can be used to detect
deviations from normal operation without prior knowledge of faults within the system
by partitioning the data into clusters with similar regularities. Algorithms such as k-
means, fuzzy c-means and self-organizing maps (SOM) neural networks can be employed.
Clustering by k-means algorithm is done by partitioning observations in an n× p matrix
into k clusters by iteratively finding k cluster centers. The distance between each point
and the centroid of each cluster is computed and the point is assigned to the closest
centroid [45]. Figure 2.4 shows the centroid of different health states of the ball bearing
in Figure 2.3 computed using k-means clustering algorithm, assuming that the health
states are unknown.
A number of studies have been conducted on application of unsupervised machine lear-
ning for fault diagnosis in technical systems. Liu et al. [46] proposed a two-step machinery
fault diagnosis using fuzzy c-means and fuzzy integral theory. The fuzzy c-means is em-
ployed to group condition monitoring data into similar clusters in the first step while
fuzzy measure and fuzzy integral theory are applied to make a final decision on the
diagnosis process [46]. The approach was evaluated with vibration data from rolling ele-
ment bearing and found to detect inner race, outer race and ball faults with an average
of 95% accuracy. Datta et al. [44] proposed a hybrid model for unsupervised clustering
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Figure 2.4: Cluster centroids of ball bearing health states computed using k-means
algorithm

method which was applied in fault diagnosis of industrial robots. The approach combi-
nes SOM with quality threshold which is an algorithm initially developed for clustering
of genes based on micro array data and has been found to have a higher cluster quali-
ty. Yu et al. [47] proposed a cluster based feature extraction method for machine fault
diagnosis. The approach extracts features from coefficients of discrete wavelet transform
and employs similar means to cluster data. The method was evaluated on ball bearing
data. Widodo et al. [48] applied SOM in machine fault diagnosis using infrared images
acquired through thermography camera. Results showed that SOM can diagnose faults
such as shaft misalignment, bearing faults and unbalance in rotating machinery [48].

One disadvantage of most clustering algorithms is that they require an estimation of the
possible number of clusters of the data in consideration [44]. However, methods such as
multidimensional scaling (MDS) can be used to determine the number of clusters in a
data set [44]. MDS projects the data into a higher dimensional space so as to maximize
intra-cluster distance in the data [44]. This way, separation between clusters is revealed.

2.1.2.2 Fault Diagnosis through Supervised Pattern Recognition

In supervised pattern recognition, a machine learning algorithm is trained to map input
features to a target. The training process involves determining and adjusting weights,
biases and parameters which constitute a model such that the error between the actu-
al target and the predicted target for the same input is minimized as shown in Figu-
re 2.5 [49]. Once the model is obtained, it can be used to predict the output of a new set
of input from a similar system. In fault diagnosis of technical systems, the input consists
of either condition monitoring data or features extracted from the condition monitoring
data while the output consists of the health state of the system. The health state may
be determined through FMEA, expert knowledge from maintenance engineers [4], seeded
fault testing [50], etc.

The machine learning algorithms are trained offline resulting in a model that can be
used with input features obtained in real-time from sensory data to monitor the health
of a system. A large number of studies on application of supervised machine learning
algorithms for diagnosis have been conducted. Table 2.1 lists some of the most commonly
used state of the art algorithms in machinery fault diagnosis.
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Figure 2.5: General approach to supervised machine learning, where x is the input fea-
tures, y is the target and yp is the predicted output for the same input

Table 2.1: List of most commonly used state of the art supervised machine learning
algorithms for fault diagnosis

Algorithm Application
Artificial neural networks
(ANN)

Rolling element bearings [51–56], reciprocating com-
pressor [57], HVAC systems [58], combustion en-
gines [59, 60], gearbox [61, 62], induction machi-
nes [63, 64], turbine generators [65], robot manipu-
lators [66]

Support vector machines
(SVM)

Rolling element bearings [67–70], gearboxes [62, 71–
74], shaft-rotor systems [75], centrifugal pump [76],
induction motors [77]

Classification and regression
trees (CART)

Rolling element bearings [78–80], induction machi-
nes [81, 82]

Neuro-Fuzzy Rolling element bearings [78, 83–85], Combustion en-
gines [86], pneumatic valve [87], induction machi-
nes [81]

Hidden Markov Models
(HMMs)

Rolling element bearings [12, 88–90], shaft-rotor sys-
tem [91], gearbox [92], induction machines [93]

k-Nearest Neignbors (kNN) Rolling element bearings [94–97], induction machi-
nes [98], gearboxes [99–102]

As seen in Table 2.1, artificial neural network is the most widely used algorithm in ma-
chine diagnosis followed by support vector machine. An artificial neural network (ANN)
is a computational model inspired by the structure of the human brain. It consists of
neurons that are interconnected to form a network [103]. Figure 2.6 shows the general
structure of a multi-layer feed-forward ANN commonly used in fault diagnosis.

ANN operates as a ’black box’ model that does not require detailed knowledge about
the system being modeled but rather, it learns the underlying relationship between the
input and output of a system by adjusting its weights and biases. The main difference
in the reviewed literature lies in the selection of the type of ANN and in tuning ANN
parameters in order to improve generalization and consequently the classification accu-
racy. Generalization refers to the ability to accurately predict an output from unseen
input data. Unal et al. [55] proposed the use of genetic algorithm to tune the number of
hidden layers and neurons in each hidden layer for the classification of rolling element
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Figure 2.6: General structure of multi-layer feed-forward neural network [103]

bearing faults. Chen et al. [54] proposed the combined use of dependent feature vector
and probability neural network (PNN) for fault diagnosis of rolling element bearings.
The dependent feature vector method identifies the main feature that describes the fault
characteristics and its dependent features. These features are used as inputs to the PNN.
There is no clear guideline on selection of the type and structure of ANN for a given
system and as such the application of ANN is not straightforward. In addition, ANN
requires a large number of training samples for better performance.
Support vector machine has been identified as a power pattern recognition tool which is
capable of learning the underlying relationship between input and outputs of a pattern
recognition problem when provided with few training samples. SVM solves the classifica-
tion problem by transforming the input features into a higher dimensional feature space
in which a hyperplane that separates data between classes is defined [104]. However,
to improve generalization, SVM requires tuning of its parameters for each application
and various authors have developed methods for automatically tuning these parameters.
Zhang et al. [67] proposed the use of ant colony algorithm for feature selection and SVM
parameter tuning for fault diagnosis of a shaft-rotor system. Hang et al. [105] investigate
the application of fuzzy support vector machine (FSVM) for fault diagnosis of a wind tur-
bine. The study employed kernel fuzzy c-means clustering algorithm and particle swarm
optimization (PSO) to optimize the kernel parameters of FSVM. Results showed that
optimized FSVM has higher classification accuracies than standard SVM and ANN.
Although fault diagnosis is currently a mature technology, a guide for selection of al-
gorithms to apply for a given technical system is lacking. The selection guide can be
developed by evaluating the performance of the state of the art algorithms on different
technical systems and creating a database of these algorithms as well their performance.

2.2 Prognostic Methods

Prognostics involves estimating the current health state of a technical system/component
and predicting when the system/ component is likely to fail. Prognostics is concerned
with estimating the remaining useful lifetime (RUL) of a system/component and is more
complicated than diagnostics since it aims at predicting an event that is yet to occur [8].
The predictions can either be done as an event where the end of life is predicted or
as a degradation prediction where the future trajectory until the end of life (EoL) is
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predicted. There are various uncertainties, like future operating conditions of the system,
that make the process complicated [4]. Due to benefits, such as increasing availability,
safety, reliability and maximizing usable life, that would occur if the remaining useful
lifetime could be estimated within acceptable limits, a lot of research is being conducted
on accurate and robust prognostic methods. The prognostic methods detailed in the
available literature depend on the type of data and system information available and can
be broadly classified into three categories: 1) reliability based, 2) model based and 3)
data-driven based [12].

2.2.1 Reliability Based Prognostic Methods

Reliability based prognostic methods stem from traditional reliability analysis that uti-
lizes distribution of historical failure times of similar systems [106]. This approach is
suitable for low risk systems that do not have sensor network for health monitoring and
have relatively shorter lifetimes [107]. The prognostic methods require historical failure
times as input [107]. A probability distribution is fit to the lifetimes of a population of
similar units to give an estimate of the time of failure (tof ) distribution. The remaining
useful lifetime at a given probability of failure can then be estimated as follows

RUL = tof − tc, (2.3)

where tc is the current operating time. Weibull distribution is the most common statistical
model, especially in prognostics of electronic components [106, 107]. Other commonly
used lifetime distributions include exponential, lognormal and normal distributions [107].
The Weibull model can be applied in a variety of forms such as 1-parameter, 2-parameter,
3-parameter or mixed parameter. The failure rate λ defined by a 2-parameter Weibull
model is given by

λ(t) = β

η

(
t

η

)β−1
, (2.4)

where β is the shape parameter and η is the scale parameter that defines where the
bulk of the distribution lies [106]. Several methods have been developed to estimate the
distribution parameters to fit a lifetime distribution to a particular population of units.
These include probability plotting, rank regression and maximum likelyhood estimation
(MLE).

Several reliability based prognostic methods have been proposed. Yang et al. [108] in-
vestigated the use of Weibull distribution to predict the lifetime of a scrapper conveyor.
Chen and Zheng [109] extended the use of reliability based prognostics to incorporate
degradation data in order to improve lifetime predictions. Heng [110] proposed the com-
bined use of survival probabilities, degradation-based failure probabilities and artificial
neural networks to incorporate equipment with censored lifetime in prognostics. Fan and
Hsu [111] presented an analysis of a series system under accelerated lifetime tests (ALT)
with masked data (where components causing failure are not observed) while assuming
that the components have independent exponential lifetime distributions. These methods
have been found to be unreliable since they do not take into account the operating con-
ditions of a system [106, 107]. In addition, the methods are not capable of detecting and
tracking the incipient faults.
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2.2.2 Model Based Prognostic Methods

Model based prognostic methods utilize a detailed mathematical model of a system,
usually derived from first principles, to track its degradation. More often than not, the
models are capable of capturing the nominal behavior of the system as well as the faulty
behavior and how the faults evolve with time [112]. Therefore a model based approach
requires an in-depth understanding of the underlying physic laws in order to produce
an accurate and reliable system model that is able to diagnose faults and track their
evolution [23]. Figure 2.7 shows the architecture of a model based prognostic approach.

Figure 2.7: A general model based prognostic architecture

For some given set of inputs u(t), disturbances d(t) and faults f(t), the system produces
some measurable output y(t) which is used together with the output of the model to
produce a residue r(t). The residue is used in defining a health index for diagnosis and
prognosis. A suitable damage propagation model is selected from a database of models
and used to propagate the health index forward in time to a predetermined threshold.
The remaining useful lifetime is then estimated from the distribution of a number of
model parameters as shown in Figure 2.8. Typical approach is to take the mean or a
specified percentile of the distribution.
Algorithms such as extended Kalman filters, reduced order unknown input observers,
interacting multiple models, particle filters, are used to track and propagate the damage
index [113]. Particle filters have become popular in prognostics and health management
where they are used to track degradation through state parameter estimation [112]. Par-
ticle filters are non-linear state observers that use Monte Carlo simulation to approximate
the posterior state probability distribution as a set of discrete weighted samples called
particles [114].
Several model based prognostic methods have been proposed. Byington et al. [115] propo-
sed a model based approach to prognostics and health management that applies physical
modeling and advanced parametric identification techniques together with fault detecti-
on and failure prediction algorithms to predict the time of failure of critical components
in a system [115]. The feasibility of the approach was evaluated on an electromechanical
actuator for flight control. Daigle and Goebel [112] developed a general model based pro-
gnostic framework of a pneumatic valve from a Space Shuttle cryogenic refueling system
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Figure 2.8: Propagating a health index to a threshold (a) trajectories of HI and (b)
distribution of RUL

using particle filters. A nominal model as well as fault models that capture how mo-
del parameters change as a result of damage were developed. Kulkarni [116] developed a
physics based degradation model schemes for electrolytic capacitors. A Bayesian tracking
framework using Kalman filter and unscented Kalman filter was used to track degrada-
tion and for RUL estimation [116]. The method was evaluated with both accelerated
and nominal degradation and found to be accurate and robust. Sankavaram et al. [113]
discussed a systematic approach to prognostics based on a hybrid model based, data-
driven and knowledge based integrated diagnosis and prognosis framework for automotive
suspension, battery systems and on-board electronic systems.

Model based prognostic approaches have also been applied to rotating machinery. Patrick-
Aldaco [117] developed a generic model based fault diagnosis and failure prognosis me-
thod applicable to large scale dynamical mechanical systems. The method constitutes
model based vibration characterization of complex rotary systems, fault identification
from vibration signals through reverse engineering and damage progression model based
on particle filters for prognosis [117]. A finite element model of a planetary carrier of
a helicopter gearbox was developed to evaluate the effect of crack geometry on crack
growth parameters which were used in the model for crack progression. The approach
also incorporates uncertainties in future loading conditions and noisy measurements.
Bolander et al. [118] proposed a physics-based approach for predicting the remaining
useful life of engine systems. The method employs finite element analysis (FEA) to mo-
del roller/spall impact in rolling element bearings, with spall severity as the damage
index. Particle filters with Bayesian update were employed to track and propagate the
damage index to a predetermined threshold. Luo et al. [119] employed singular pertur-
bation methods of control theory coupled with state estimation techniques to estimate
the remaining useful life of a system with multiple operational modes. The approach was
evaluated with an automotive suspension system using lumped-parameter model excited
through a rough road of different profiles to create the different operational modes [119].

The main advantage of model based prognostics is the ability to incorporate the physical
understanding of the system which makes them very accurate. It is also easier to incor-
porate varying operating and loading conditions and their influence on the degradation
process. However, the modern day technical systems are very complex requiring complex
dynamic models which might be difficult to develop especially in situations where the
manufacturer is not willing to supply the design details of the system [113]. In addition,
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simulations might be too complex and computationally unfeasible for online prognostics.

2.2.3 Data-Driven Prognostic Methods

Data-driven prognostic methods make use of condition monitoring data to extract useful
information that represents the degradation behavior of a system [8]. The methods use
historical condition monitoring data of similar systems to learn the degradation behavior
which is stored as a model in form of weights, biases and parameters, often done offline.
The resulting model is then used with condition monitoring data of a running system to
estimate the current health state and to predict when the system is likely to fail. This
information is used in scheduling maintenance or for adaptive control of the reliability of
the system [7]. The main feature of data-driven methods is the use of machine learning
algorithms to learn patterns and trends in the data. These require input (often run-
to-failure condition monitoring data) and a target (health index or remaining useful
lifetime) and learn the underlying correlation between the input and target. In complex
systems that display several failure modes, each failure mode may present a different
degradation trend and as such, a diagnostic module is integrated to determine the type
of failure mode present. A prognostic model for each failure mode is trained and stored
in a database. During testing or online prognosis, the current health state and failure
mode are identified and the appropriate model is retrieved. Figure 2.9 shows the general
architecture of a prognostics method with integrated diagnostics. For systems that have
several failure modes, each failure mode may have its own unique degradation trend. The
diagnostic output in Figure 2.9 is used to identify the current failure mode so as to select
the appropriate prognostic model for estimating the remaining useful lifetime.

Figure 2.9: General architecture of a prognostic method with integrated diagnostics

Depending on the type of condition monitoring data and degradation information availa-
ble, several data-driven methodologies have been proposed. In cases where the run-to-
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failure condition monitoring data of a number of similar systems is available, machine
learning algorithms can be trained to map the condition monitoring data or features
extracted from the data to the remaining useful lifetime or probability of failure. This
approach is suitable for systems run at constant operating conditions that have very
small variance in lifetimes. Sutrisno et al. [120] evaluated the application of least square
support vector machines (LS-SVR) in estimating the remaining useful lifetime of ball
bearings. The input consisted of time-, frequency- and time-frequency features reduced
through principal components analysis (PCA) while the target was the remaining useful
lifetime. Tian et al. [121] presented a method of estimating the remaining useful lifetime
of technical systems utilizing both failure and suspension histories of the systems using
artificial neural networks (ANN). The method was evaluated with run-to-failure and sus-
pended vibration data from rolling element bearings. Extracted features were used as
input and percentage RUL was used as the target in training and evaluating the ANN.
Caesarendra et al. [122] presented a combination of probability approach and support
vector machines to predict failure degradation of rolling element bearings. Kurtosis of
vibration data was used as the input while the target was failure rate computed through
Cox proportional hazard model and reliability theory.
For systems that undergo discrete, usually unobservable degradation stages before fai-
lure, the prognostic methods can be trained to identify the current health state. Using
historical percentage RUL at each health state or normalized RUL, the RUL from the
current health state can be estimated. Figure 2.10 shows typical degradation stages of a
ball bearing, where a fault develops and evolves with continued operation until failure.
As the probability of one health state decreases, the probability of the next health state
increases.
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Figure 2.10: Discrete health states of a degrading component

Kim et al. [123] evaluated the use of support vector machines with probability estimates
to identify the current health state. Five health states were selected as optimal in tracking
degradation of rolling element bearings. The method used time- and frequency-domain
features as inputs and health state identifier as target. The RUL was computed from
historical RUL at each health state. Ocak et al. [124] proposed the use of Hidden Markov
Models (HMM) to track the severity of bearing faults through probability estimates. The
results showed that as the bearing approached the end of its life (approximately 10%), the
HMM probability of normal condition dropped significantly. Chinnam and Baruah [125]
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employed HMMs to identify the health states (Good → Bad → Worse) of a cutting tool
from which the remaining useful life was estimated. The approach uses the loglikelihood
of HMMs to identify the current health state and the transition points between diffe-
rent health states. Camci and Chinnam [126] employed HMMs to estimate health states
of a cutting tool using observable sensor signals obtained during machining. The ap-
proach employed Monte Carlo simulation with state transition probabilities derived from
hierarchical HMMs to estimate the remaining useful life [126]. Tamilselvan et al. [127]
proposed the use of Deep Belief Networks (DBN) for health state classification of a de-
grading system using multi-sensor data. The approach was demonstrated with aircraft
wing structures and aircraft engine health diagnosis.

Some systems have a physical health index that can be measured, for instance, wear
can be used as the health index for systems that experience wear-induced failures. For
such systems, it is possible to quantify the health index with continued operation of the
system and define suitable thresholds. However, in most cases, due to the location of the
components, it may be difficult to measure these quantities during operation. In such
cases, training data can be obtained by measuring the health index simultaneously with
other condition monitoring data at predetermined intervals. Machine learning algorithms
are then trained to map condition monitoring data/extracted features to the health index.
Once a trained model is available, it can be applied together with condition monitoring
data to monitor the health of similar systems in real-time. Pal et al. [128] proposed the
use of neural networks for sensor data fusion for tool wear monitoring during turning
process. Measurements of cutting strains in tool holder and motor current were taken
for different machining conditions consisting of cutting speed, depth of cut and feed
rate [128]. Flank wear was derived from photos taken concurrently with the condition
monitoring measurements. The approach was found to be effective in predicting tool
wear. Cus and Zuperl [129] proposed the use of neural networks and adaptive neural
fuzzy inference system (ANFIS) to predict tool wear and tool breakage from cutting force
signals. The approach was evaluated on a milling machine with cutting forces measured
using a piezoeletric force transducer while tool wear was periodically measured using a
tool microscope. The approach was found to be effective in classifying the different health
states including tool breakage and tool wear.

In some systems the condition monitoring data or performance monitoring data can be
used as the health index. For components like fuel cells and lithium-ion batteries, the
charging and discharge capacities can be used to track degradation of a system. Algo-
rithms such as particle filters, that can be adapted to predict future trajectories, are
usually suited for these systems. Tang et al. [130] developed a robotic test rig for develo-
ping and evaluating realtime PHM and Automated Contingency Management techniques
for autonomous vehicles. Particle filter method was implemented on the prognosis server
of the system and used to track aging of a battery. The charge capacity of the battery was
used as the health index with end of life (EoL) defined as the time when the capacity falls
below the critical limit. Saha et al. [131] compared the performance of three algorithms;
autoregressive integrated moving average (ARIMA), extended Kalman filter (EKF) and
particle filter in estimating the RUL of batteries. ARIMA and EKF have been found to
have unsatisfactory performance in prognostics due to various sources of errors such as
modeling inconsistencies, system noise and degraded sensor fidelity [131]. Gearboxes can
be monitored using oil debris mass (ODM) [132]. He et al. [132] evaluated the use of
ODM and a health index computed from vibration signals to estimate the RUL of gears
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through particle filter approach. An ARIMA model was fitted to the experimental data
to define the state transition function while a double exponential smoothing function
was used to define the measurement function [132]. The results showed that the particle
filter produces good RUL predictions.

2.3 Performance Evaluation

Prognostics and health management (PHM) aims at increasing availability, reliability
and safety by avoiding catastrophic failures through fault diagnostics and prognostics.
However, the process is complicated by uncertainties in future operating conditions, sen-
sor noise, model inaccuracies, manufacturing variability and false diagnosis [133]. This
calls for performance evaluation of the PHM methods before they can be deployed in
critical technical systems. Performance evaluation also plays a big role in selection of
algorithms for a given application. There is no clear definition of performance metrics for
prognostic methods from standardization organizations but various authors have propo-
sed various metrics to assist in standardizing the evaluation of prognostic methods [133–
136]. Uckun et al. [134] presented a critical review of current research methods in PHM
and made a comparison with standard research approaches in medicine which is more
established. The study revealed that the current PHM research is based on ad-hoc ex-
perimental methods without a clear statistical rigor. A proposal for the steps required
to bring PHM to maturity was made [134]. Saxena et al. [135] presented a survey of
prognostic metrics already in use in various disciplines such as medicine, nuclear, aero-
space, automotive and electronics. The study analyzed the similarities and differences of
the prognostic metrics in the different disciplines and which metrics could be borrowed
for PHM methods. Saxena et al. [133] proposed prognostic metrics which have the ca-
pability of incorporating probabilistic uncertainty estimates from prognostic algorithms.
Guidelines for selection of methods based on distribution characteristics were also propo-
sed [133]. Zhou et al. [136] presented a hierarchical method of comparison and selection
of prognostic metrics for performance evaluation of algorithms for use in aircraft PHM.
Figure 2.11 shows the functional classification of prognostic metrics [133]. Accuracy is a
measure of error in the predicted RUL relative to the actual RUL while precision quan-
tifies the length of 95% confidence bounds relative to the predicted RUL at any given
time. Precision is normalized between 0 and 1 with the perfect value being 1 [137]. Re-
turn on investment (ROI) assesses the benefits of deploying a PHM system while cost
and savings refers to the total cost of installing and operating the PHM system and the
savings realized from the system [137].

2.3.1 Prognostic Performance Metrics

The following are the prognostic metrics that are relevant to this work. Other commonly
used metrics can be found in [133, 138].
a) Relative error er defined as the relative deviation of the predicted remaining useful

lifetime RULp from the actual remaining useful lifetime RULa and is given by

er = RULa − RULp

RULa
× 100%. (2.5)
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Figure 2.11: Functional classification of prognostic metrics [133]

The perfect score is zero and most accuracy based metrics are derived from error. A
negative error means late prediction where a system or component fails before the
predicted time while a positive error means early prediction. Late prediction is unde-
sirable in prognostics, since the system may fail before the scheduled maintenance.

b) False positives (FP) assesses unacceptable early predictions at specified time instan-
ces. The user must set acceptable range for early prediction [133]. Very early predic-
tions result in excessive lead time consequently minimizing the usable lifetime of a
system or component. The perfect score is zero. FP is given by

FP =
1 if er > eFP

0 otherwise,
(2.6)

where er is the relative error given by Equation 2.5 and eFP is the allowable error for
early predictions.

c) False negatives (FN ) assesses unacceptable late predictions at specified time instances
and similarly, the user must set the acceptable range for late prediction [133]. FN is
given by

FN =
1 if er < −eFN

0 otherwise,
(2.7)

where eFN is the allowable error for late predictions. Figure 2.12 shows the acceptable
range of RUL prediction at specified prediction instances. Predictions outside the
acceptable range are either FP or FN .

d) Prognostic horizon (PH ) is defined as the difference between time index when the
prediction first meets the specified performance criteria (allowable relative error) and
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the time at the end of life (tEoL) of the component with

PH = tEoL − t(eFP ,eFN ), (2.8)

where t(eFP ,eFN ) is the time index when the prediction first falls within the allowable
relative error, as shown in Figure 2.12.

e) Mean absolute percentage error (MAPE) is the average absolute percentage error of
L units at the same prediction horizon.

MAPE = 1
L

L∑
l=1
|er|. (2.9)

The perfect score is also zero. MAPE can also be used to evaluate a single unit, where
L is taken as the total prediction horizons in the lifetime of the unit.

2.3.2 Uncertainty in Prognostics

A good prognostic method should be capable of specifying the confidence levels associa-
ted with the RUL predictions. Inherent physical randomness and failure processes, un-
certainty in model selection and propagation, sensor noise, etc., often lead to inaccurate
predictions [139, 140]. It is therefore important to identify the sources of uncertainty
for a specific technical system, quantify the uncertainties and integrate them into the
prognostic method. Typical sources of uncertainty include:

1. Physical variability such as variability in material properties, manufacturing errors,
variability in loading conditions, variability in initial health state, etc.

2. Measurement uncertainty resulting from sensor inaccuracies, measurement noise,
data reduction effects and few training data sets

3. Future usage uncertainty where the future operating conditions are unknown and
may vary from the estimated conditions at which the RUL is predicted

4. Model uncertainty where model selection inaccuracies as well as parameter selection
uncertainties affect the RUL prediction

The uncertainties are usually integrated in form of probability distribution, especially
in model based prognostics. The process involves identification and quantification of
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the uncertainties, uncertainty propagation from input to output and sensitivity analysis
to evaluate how the uncertainties influence the output [140]. For methods that integrate
incremental learning, as more training data becomes available during operation, the effect
of uncertainties on RUL prediction reduces and the probability distribution becomes
narrower as seen in Figure 2.13.
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Figure 2.13: Probability distribution of RUL at specified prediction times

A number of approaches to incorporate uncertainties in prognostics have been proposed.
Gu et al. [141] presented a method for uncertainty analysis of prognostics of electronic
components subject to random vibration. The proposed approach employs a sensitivity
analysis to identify the dominant input variables that affect the model output. Distri-
butions of these input variables are then used in Monte-Carlo simulations to quantify
damage. Liu et al. [142] proposed the use of Weibull distribution to quantify uncertainty
in Lithium-ion battery prognostics by fitting the probability distribution to the output
of multiple models of monotonic echo state network. The feasibility of the approach was
evaluated with direct and indirect battery capacity measurements. Zhao et al. [143] pro-
posed an integrated prognostic approach for gear RUL prediction based on finite element
method for gear stress analysis, gear dynamic model for dynamic load calculation and
a damage propagation model described using Paris’ Law. The approach incorporates
material and model uncertainties. Sun et al. [140] proposed a cognitive framework for
uncertainty management in prognostics. The study proposed the use of fault state feature
to quantify uncertainty and Monte Carlo methods for uncertainty propagation.

2.3.3 Confidence Intervals

In prognostics, confidence intervals CI consist of a range of RUL values that act as good
estimates of the unknown value of RUL at each given prediction time [144]. The CI are
calculated based on a sample population NT of similar systems with available failure
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times tEoL. At any given operating time tc, and assuming that the distribution of failure
times of similar systems is Gaussian, the (1 − α)100% CI of the mean RUL can be
calculated as [144]:

RUL = 1
NT

NT∑
i=1

tEoL,i − tc, (2.10)

CI(1−α)% =
[
RUL − ζα

2

σ

NT
,RUL + ζα

2

σ√
NT

]
, (2.11)

where RUL is the mean RUL of the sample population at the current prediction time tc,
σ is the standard deviation of RUL of the sample population, α is the level of significance
and ζ is the critical value for (1−α)100% confidence level. Typical values of ζ for a sample
population with known standard deviation are shown in Table 2.2. The width of the CI
depends on the sample size and the type of distribution and may be used as an indication
of whether the estimated value falls within or it deviates from possible intervals of the
sample population.

Table 2.2: Typical values of ζ for (1 − α)100% confidence level for a sample population
with Gaussian distribution [145]

Confidence level α ζ
90% 0.10 1.645
95% 0.05 1.960
98% 0.02 2.326
99% 0.01 2.576

2.4 Conclusion

Selection of prognostic approaches as well as the algorithms largely depends on the tech-
nical system and the condition monitoring information available. In most applications
of machine learning algorithms, there is no clear guideline on how to handle condition
monitoring data for training and testing/online prognostics. There is also little informa-
tion in literature on suitable approaches and algorithms to apply for a given technical
system and this work aims at bridging this gap by creating a database of prognostic
approaches as well as performance evaluation of these approaches on different kinds of
condition monitoring data to serve as a guide for algorithm/method selection. Typical
information necessary for method selection include:
• Type of condition monitoring data available such as, continuous type or single value
type.
• Distribution of lifetimes of similar units.
• Degradation mechanism, for instance continuous degradation or degradation through
discrete stages.
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• Availability of measurable health index.
• Availability of mathematical models that describe failure.
• Operating conditions.





3 Data Preprocessing and Feature
Extraction

The stages in a prognostic approach can be extracted from the key elements of a progno-
stics and health management system described in Chapter 1. Figure 1.2. The first step is
the acquisition of condition monitoring data through a network of sensors. The data is
then preprocessed and relevant features are extracted. Since not all features may contain
useful information on the health of a system, a subset of features is selected and used as
input to the prognostic method. Health indices or states are also defined at this stage,
for use as the target in the prognostic method. This chapter discusses the first stages of
a prognostic approach, which is mainly data acquisition and preprocessing.

3.1 Condition Monitoring Data

The success of a prognostic method depends on the information contained in the data
acquired through sensors. Therefore, it is important to collect data that contains the
most information about the condition or health of various components within the system.
In addition, in order to reduce the cost and complexity of the system, it is important
to identify critical components that need to be monitored and also evaluate whether
operational data of a system could be used to indicate the condition of the system,
thereby reducing the number of additional sensors in the system. Once sensor data that
contains indicators of fault progression is acquired, it is pre-processed and features are
extracted to reduce the dimensionality of the data. The choice of condition monitoring
data depends on the system in consideration and the possible sensor data that can be
acquired without interrupting operation while ensuring the most cost effective installation
of the measuring units. In some cases where it is difficult to mount sensors for data
acquisition or in structural health monitoring, active sensing is applied, where the system
is excited at predetermined time intervals and the response is measured and analyzed
to determine the condition of the system. In fluid machinery, a wide range of sensors
for the acquisition of process data (pressure, temperature, flow rate, etc.) and fluid data
(fluid condition, contamination, water content, etc.) are used for condition monitoring.
The combined use of process data and fluid data together with machine data such as
cycle times, energy consumption, etc., are processed and used for fault diagnosis and
prognosis beyond the conventional threshold monitoring. The acquired data falls into
three categories [146]:

i) Single value type, where the only one sample is recorded at each prediction interval.
Typical examples include quasi-static condition monitoring data such as tempera-
ture, pressure, load.
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ii) Continuous signal type, where at each prediction interval, the signal is sampled for
a predetermined duration at a specified sampling frequency, e.g. vibration, force,
electric voltage, electric current.

iii) Multi-dimensional type, e.g. thermal images, X-Ray images.

This section briefly describes a number of commonly used sensor data for condition
monitoring of technical systems which are relevant to this work and are used in later
stages.

3.1.1 Temperature Measurements

Temperature can be used as the condition monitoring data for systems with relative mo-
tion giving rise to wear-related failures. Wear is approximately proportional to frictional
energy which is usually dissipated in form of heat leading to temperature rise [147]. By
tracking the change in temperature with time, it is possible to track degradation and con-
sequently conduct prognosis on such systems. Figure 3.1 shows a typical run-to-failure
temperature curve of a ball bearing [148].
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Figure 3.1: Run-to-failure temperature curve of a ball bearing

3.1.2 Performance Index Monitoring

In some systems, diagnosis and prognosis can be achieved through monitoring the per-
formance of the technical system. Since degradation of components leads to loss of per-
formance, performance monitoring data can be processed to diagnose faults as well as
predict when a system is likely to fail. For instance, irreversible degradation of proton
exchange membrane (PEM) fuel cells can be linked to their measured output voltage.
By tracking the changes in the output voltage and defining suitable failure thresholds,
the RUL of these systems can be estimated [149]. Figure 3.2 shows aging of a PEM fuel
cell tracked using measured output voltage [150].
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Figure 3.2: Aging of a PEM fuel cell tracked using output voltage

3.1.3 Vibration Measurement

Vibration measurement is the most common condition monitoring data for dynamic
systems, especially rotating machinery, since vibrations are usually the first sign that a
system is prone to failure. The vibrations are recorded for a specified period of time at
predetermined intervals depending on typical lifetime or expected lifetime of the system.
The vibration signals can be analyzed for fault diagnosis, for instance using frequency
spectrum to identify fault characteristic frequencies as seen in Figure 2.2. Figure 3.3(a)
shows run-to-failure vibration data of a rolling element bearing. The data consists of
concatenated signals that are sampled at predetermined intervals up to the end of life
of the bearing. Figure 3.3(b) is the root mean square (RMS) value computed for each
sampled signal up to the end of life, to show fault progression [148].
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Figure 3.3: Vibration data of ball bearing (a) concatenated signals and (b) corresponding
RMS value showing fault progression with continued operation

3.1.4 Force Measurements

Dynamic force can be used to monitor the condition of dynamic systems such as machine
tools. A force transducer is mounted on the system subjected to dynamic loading and
as the system degrades, the degradation manifests itself in the measured force as seen in
Figure 3.4. Figure 3.4(a) shows concatenated signals that are sampled during each cutting
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cycle of a milling machine tool, while (b) shows the corresponding RMS value computed
for each sampled signal. The use of force measurement as the condition monitoring data
has been widely used in machine tools for monitoring tool wear.
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Figure 3.4: Run-to-failure force data of a milling machine tool (a) concatenated signals
and (b) corresponding RMS value showing tool wear progression with conti-
nued operation

3.1.5 Electric Current Signatures

Motor current signal analysis (MCSA) is gaining popularity as condition monitoring
data for electromechanical drive systems. Motor current measurements are obtained from
current sensors embedded onto the system for control of motor operation, for example
by a frequency inverter or for performance monitoring. The MCSA is especially used
to detect broken rotor bars or motor bearing faults which result in changes in the air-
gap [151, 152]. Recently, further investigations on the use of MCSA for detecting faults
in the downstream equipment are being conducted [153, 154]. Figure 3.5(a) shows the
raw current signals of healthy and faulty bearings obtained from a Permanent Magnet
Synchronous Motor while Figure 3.5(b) shows clustering of features for a healthy and
faulty bearings [155]. From the raw signals, it is not easy to distinguish between a healthy
and faulty bearing. However, the different health states can be clearly observed from
extracted features.
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Figure 3.5: Application of MCSA for condition monitoring of an electromechanical drive
system (a) raw current data (b) extracted features for different health states
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3.1.6 Active Sensing

For systems which undergo random excitation, active sensing may be applied periodically
to assess the health of the technical systems. In this case, the system is excited through
a set of actuators and the response is measured using a set of sensors. With constant
excitation, the response can be processed for fault diagnosis and prognosis. Typical appli-
cation of this approach is structural health monitoring of systems such as wind turbines,
bridges, composite structures for aerospace industry, etc. The approach can also be ex-
tended to monitoring piezoelectric transducers through the concept of self-sensing [156].
Figure 3.6 shows application of active sensing using piezoelectric transducers to detect
delamination in fibre-reinforced composites subjected to fatigue cyclic loading [157]. Ac-
tive sensing was conducted at intervals of 50,000 cycles. Figure 3.6(c) shows progressive
reduction of the RMS value of the sensor signal as delamination increases.
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Figure 3.6: Sensor and actuator signals applied to a fibre-reinforced composite for (a)
healthy (b) delaminated states and (c) progression of degradation

3.2 Data Preprocessing

Real world data is highly susceptible to noise, missing values, outliers and inconsistency.
The quality of the data being processed for condition monitoring affects the fault dia-
gnostic and prognostic results. In order to improve on the quality of the raw data and
consequently of the prognostic results, the raw data is preprocessed through filtering to
remove noise and data cleaning. Data cleaning involves filling in missing values, removal
of outliers and resolving inconsistencies.

3.2.1 Wavelet Signal Denoising

Most of the acquired data for condition monitoring is usually corrupted by noise which
should be removed for better condition monitoring results. Vibration is the most widely
used condition monitoring data for rotating machinery. The measured signal is made up
of the true vibration signal which consist of narrow band signals spaced by the fault
characteristic frequencies and wide band noise [158]. Wavelets can be used for signal de-
noising to remove high frequency sub bands which contain the most of the noise and very
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little signal information. Unlike the band-width based filter methods, wavelet denoising
does not alter the nature of the signal and hence no important information on the state
of a system is lost [159]. Wavelet denoising involves the decomposition of a signal into
frequency components using discrete wavelet transform (DWT)as follows [160]:

1) The raw signal is decomposed into approximate and detailed coefficients using discrete
wavelet transform

2) The detailed coefficients are suppressed using a threshold criteria and value.

3) The signal is reconstructed by applying inverse wavelet transform to the original
approximate coefficients and suppressed detail coefficients.

Figure 3.7 shows raw and wavelet denoised vibration signals of a rolling element bearing
at different health states [161, 162]. Figure 3.7(a) shows the vibration signals of a healthy
bearing while Figures 3.7(b) and (c) shows the vibration signals of a bearing with fault
on the outer ring (OR) and inner ring (IR) respectively.

0 0.05 0.1
Time [s]

-5

0

5

V
ib

ra
ti
on

A
m

p
li
tu

d
e
[g
]

Healthy Bearing

0 0.05 0.1
Time [s]

-20

0

20

V
ib

ra
ti
on

A
m

p
li
tu

d
e
[g
]

IR Fault

Raw signal Denoised signal

0 0.05 0.1
Time [s]

-5

0

5

V
ib

ra
ti
on

A
m

p
li
tu

d
e
[g
]

OR Fault

(a) (b) (c)

Figure 3.7: Raw and denoised ball bearing signals for different health states (a) healthy
bearing, (b) bearing with outer ring (OR) fault and (c) bearing with inner
ring (IR) fault

From Figure 3.7(b)-(c), the periodic impulses arising from bearing faults are enhanced
by denoising. The frequency of these impulses depends on the bearing characteristic
frequency which can be computed from bearing geometry and operating speed. Table 3.1
shows the bearing characteristic frequencies for the data in Figures 3.7 - 3.9. BPFI is the
ball pass frequency of inner ring, BPFO is the ball pass frequency of outer ring, BSF is
the ball spin frequency and FTF is the fundamental train frequency (frequency of the
cage).

Figures 3.8 and 3.9 show the frequency spectrum of the raw and denoised vibration
signals. It can be observed that the amplitude at the bearing characteristic frequencies
are increased by denoising.

Another important feature used in fault diagnosis and prognosis in rotating machinery
is the kurtosis which represents the fourth statistical moment of the distribution of data
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Table 3.1: Bearing characteristic frequencies and operating conditions

Bearing information

BPFO 3.245× shaft speed
BPFI 4.755× shaft speed
BSF 2.556× shaft speed
FTF 0.594× shaft speed

Operating conditions

Nominal speed 25 Hz
Load 1200 N
Sampling rate 97.6 kHz/ 48.8 kHz
Record length 6 s/ 3 s
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Figure 3.8: Frequency spectrum of a ball bearing at different health states obtained from
raw vibration signals
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Figure 3.9: Frequency spectrum of a ball bearing at different health states from denoised
vibration signals

about the mean [163] and is given by

Kurt = 1
n

n∑
i=1

(
si − µ
σ

)4
, (3.1)

where µ is the mean of the signal and σ is the standard deviation of the data. It is used
to measure the impulsive characteristic of a signal and as such it is an important feature
for detecting and tracking evolution of rolling element bearing faults. The kurtosis of
a healthy bearing is ≈ 3.0 [163]. As seen in Table 3.2, the maximum amplitude of the
frequency spectrum and kurtosis of the denoised signals are higher than the raw signals,
further emphasizing on the importance of denoising the signals.
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Table 3.2: Comparison of features extracted from raw and denoised signals
Feature Bearing condition Raw signal Denoised signal

FFT amplitude
Normal 0.0156 0.0193
OR fault 0.163 0.255
IR fault 0.197 0.208

Kurtosis
Normal 3.01 3.47
OR fault 5.08 11.79
IR fault 27.96 35.57

3.2.2 Outlier Removal and Filtering

Single valued condition monitoring data or features extracted from signals may contain
outliers, which are values that are distant from other observations or inconsistent with
other observations and may lead to false alarms being raised by the condition monitoring
system. The outliers may be due to variability or data acquisition errors. Various methods
for detecting and removing outliers have been proposed [164]. The condition monitoring
data or feature may also contain noise which affects regularization of machine learning
algorithms and therefore should be removed (feature filtering/smoothing). The most
common method for smoothing is the moving average which involves creating a series
of averages of different subsets of the full data set. The disadvantages of smoothing
methods based on moving average is that it lags behind the trend and hence the end of
the feature which represents the current health condition is biased to the historical data
values. A more suitable approach for smoothing condition monitoring data and indices is
the kernel based smoother which operates like a weighted moving average. The weights
in the average depend on a kernel function K(t), usually Gaussian [165].

Consider a signal s(t) with n data points and let s(ti) denote a sample point, where
i = 1, 2, 3, ...n. The estimate of the filtered data point, sf (ti) is given as

sf (ti) =
∑n
j=1 skj · s(ti)∑n

j=1 skj
, (3.2)

where,
skj = K

(
ti − tj
hw

)
(3.3)

is a Gaussian Kernel function given by

K

(
ti − tj
hw

)
= e

− 1
2

(
ti−tj
hw

)2

√
2π

, (3.4)

with the filtered signal sf and the smoothing window length hw.

Figure 3.10 shows the noisy voltage with outliers (peaks) and smoothed voltage used as
condition monitoring data for a PEM fuel cell [150].
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Figure 3.10: Condition monitoring data of a PEM fuel cell (a) raw data and (b) data
filtered with a kernel smoother

3.3 Feature Extraction

In most technical systems, condition monitoring data is acquired for a certain duration
at predetermined intervals leading to huge amounts of data. In order to reduce the data
set and obtain better generalization of machine learning algorithms in both diagnosis
and prognosis, it is important to extract features from the condition monitoring data
(usually filtered or denoised data). Feature extraction also reduces the complexity and
computational requirements of the machine learning algorithms. For waveform type and
image type condition monitoring data, the features can be extracted in the following
domains:

1. time domain features,

2. frequency domain features,

3. time - frequency domain.

3.3.1 Time Domain Features

These features are computed directly from the waveform/image data and contain sta-
tistical information pertaining to the health of the system [166] and usually represent
energy, amplitude and distribution of the condition monitoring data. These features have
been successfully employed in fault diagnosis of various technical systems such as bea-
rings, gears, electromechanical drives [62, 166, 167]. Table 3.3 shows a list of time domain
features commonly used in fault diagnosis and prognosis.

Figure 3.3(b) shows an increasing trend of the RMS value of vibration signal with damage
propagation and hence it is a good feature for prognostics (Data obtained from [148]).
Figure 3.11 shows the distribution of impulse factor for different health states of a ball
bearing and hence its suitability for fault diagnosis.

Time synchronous averaging (TSA) methods have also been employed to isolate signals
of different components in a system, for instance in gearboxes [166]. However, one must
have prior knowledge of the repetitive frequencies of the desired signals, for instance gear
mesh frequencies and bearing characteristic frequencies [132, 166]
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Table 3.3: Time domain features

Feature Equation

RMS value RMS =
√

1
n

∑n
i=1 s

2
i

Variance variance = 1
n

∑n
i=1(si − s̄)2

Skewness Skewness =
∑n

i=1(si−s̄)3

(n−1)σ3

Entropy Entropy = −∑n
i=1 si log2(si)

Kurtosis Kurtosis = 1
n

∑n
i=1

(
si−µ
σ

)4

Peak value Peak = max(|si|)

Peak to peak Peak to Peak = max(si)−min(si)

Crest factor Crest factor = Peak
RMS

Shape factor Shape factor = RMS
1
n

∑n

i=1 |si|

Clearance factor Clearance factor = Peak(
1
n

∑n

i=1 |si|
)2

Line integral Line integral = ∑n
i=1 |si+1 − si|

Impulse factor Impulse factor = Peak
i
n

∑n

i=1 |si|
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Figure 3.11: Time domain features showing feature distribution for fault diagnosis
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3.3.2 Frequency Domain Features

A visual observation of a signal may not reveal the periodic components of the signal
associated with faults. However, the Discrete Fourier Transform (DFT),

S(mωs) =
n−1∑
i=0

sie
−jmωsk, m = 1, 2...n, (3.5)

where S is the signal in frequency domain, s is the signal in time domain, ωs = 2π
n is

the angular frequency, can be computed to see if the signal has characteristic frequency
components [168]. Therefore, extraction of frequency features involves transforming the
signal from time domain to frequency domain. These features are important in identify-
ing characteristic frequencies of a system associated with various types of faults, as well
as resonance frequencies of the system. Fast Fourier Transform (FFT) is the most widely
used fault diagnosis technique for identifying frequency features from condition monito-
ring data [166]. Once in the frequency domain, features in Table 3.4 may be extracted
for fault diagnosis and prognosis.

Table 3.4: Frequency domain features

Feature Equation

Maximum amplitude Maximum Amplitude = max(S)

Frequency at maximum amplitude Frequency = ωs|max(S)

Energy of signal Es = ∑n
m=1 |Sm|2

Figure 3.12(a) shows the maximum amplitude of the frequency spectrum of vibration
signals of a ball bearing at different health states which shows separation of different
health states and hence it is a good feature for fault diagnosis. Figure 3.12(b) shows the
evolution of the maximum amplitude of the frequency spectrum with degradation of a
bearing when run to failure. Since this feature shows a trend consistent with degradation
of the bearing, it is suitable for prognostics.

3.3.3 Time-Frequency Domain Features

The disadvantage of frequency-domain features is that only the frequency components are
captured and therefore the features may not show how the frequency components change
with time or the location of these frequency components in the signal. They are there-
fore not suited for non-stationary signals, that is, signals whose frequency components
are changing with time. Some technical systems such as bearings and gears generate
non-stationary vibrations in presence of faults and require feature extraction techniques
capable of presenting the features in both time and frequency domain [169].
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Figure 3.12: Frequency domain features showing (a) feature distribution for fault dia-
gnosis and (b) feature evolution with damage progression

Various time-frequency methods for analyzing non-stationary signals in condition monito-
ring have been proposed [35, 159, 169, 170]. Of these methods, discrete wavelet transform
(DWT) and empirical mode decomposition (EMD) have received a lot of attention due to
their high resolution in both time and frequency domains [35, 171]. In DWT, described in
section 3.2.1, the signal is decomposed into a sequence of wavelet coefficients from which
statistical and frequency features can be extracted. EMD also involves decomposing a
signal into a series of components called intrinsic mode functions (IMFs). Each IMF must
satisfy the following rules [172]:

1. The number of extrema and the number of zero crossing should be equal to 0 or
differ by at most 1.

2. The mean value of the envelope defined by local maxima and the envelope defined
by local minima should be zero.

EMD decomposes the signal into these IMFs as follows [172]:

1. Identify all local extrema in the data and connect the local maxima using a cubic
spline to form the upper envelope. Connect the local minima to form the lower
envelope.

2. Obtain the mean of the envelope of local maxima and envelope of the local minima,
m1(t) and subtract it from the original signal,

h1(t) = s(t)−m1(t). (3.6)

If h1(t) is an IMF, it becomes the first component of s(t), if not, h1(t) becomes
the original signal and the process is repeated k times until an IMF is obtained
or a stopping criteria (e.g when the standard deviation of components from two
consecutive trials is 0.1) is reached. This process is called sifting and the resulting
component is the IMF,

imf 1(t) = h1k(t). (3.7)

3. The process is then repeated to obtain subsequent IMFs, imf 2(t)....imf nf (t). The
process is stopped when imf nf (t) becomes monotonic, which is referred to as a
residue, rnf (t) = imf nf (t).
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4. By summing up all the IMFs, the original signal is obtained as follows

s(t) =
nf∑
j=1

imfj(t) + rnf , (3.8)

where imfi(t) are intrinsic mode functions and rnf is the residue [172].

The IMFs consist of different frequency components and can be used to isolate cha-
racteristic frequencies of various faults from the condition monitoring data as shown in
Figure 3.13. In Figure 3.13, the original vibration signal is decomposed into 13 IMFs
(only 4 IMFs and the residue are shown). Relevant statistical and frequency features can
then be extracted from the IMFs.
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Figure 3.13: EMD of a vibration signal of a bearing with inner ring fault and correspon-
ding frequency spectrum (shaft frequency ≈ 25 Hz, BPFI=118.2 Hz)
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3.4 Feature Selection

Not all extracted features may contain useful information on the condition of a tech-
nical system and in order to improve the performance of the diagnostic and prognostic
algorithms (classification or regression approaches), it is important to select a subset
of features that contain the most information relating to faults or damage propagation.
Feature selection helps to improve accuracy, avoid overfitting as well as reducing compu-
tation time or algorithms by selecting only relevant features and discarding redundant
features. Feature selection approach depends on the application and may fall under two
categories: classification and regression. There has been considerable effort to develop
algorithms for automatic feature selection, mostly focused on feature selection for fault
diagnosis. In this case, features are selected based on their capability to discriminate
between different classes (fault categories or health states). Linear discriminant analy-
sis (LDA) which is based on the assumption that different classes generate data based
on Gaussian distributions has been employed in feature selection for fault classification
[173]. Distance evaluation technique, which computes the largest distance separating data
between classes, is another feature selection technique that has been employed to select
the optimal features that represent the different health states of a degrading component
[123]. Camci et al., [174] proposed a feature evaluation method for effective bearing pro-
gnostics based on separability value. The features were divided into time segments and
the separability of the segments based on 25th and 75th percentile distributions com-
puted. The overall separability value of each feature was then computed as a feature
evaluation value. The use of separability of features as a method of feature selection
can also be found in [175]. Benkedjouh et al., [176] employed isometric feature mapping
reduction technique to find a small number of features that represent a large number of
observations. Other methods of feature selection can be found in [56, 79, 177]. Tran and
Yang [78] presented a method for feature selection based on classification and regression
trees. Most of the methods presented were found to have high computational require-
ments and in some cases have poor generalization in that a different subset of features
are selected for the same data set at different test runs. In this work, two approaches for
feature selection have been proposed and are presented in the following sections.

3.4.1 Feature Selection for Health State Classification

Suitable features for fault or health state classification should provide a good separati-
on between different classes. In this section, a new feature selection method based on
maximum separation distance between different health states is presented [155].

Given a feature set of j = 1, 2, ...Q features in c = 1, 2, ...Nc classes or health states, the
feature selection is performed as follows:

1. Normalize the features between 0 and 1.

2. Compute the mean of each normalized feature xj within class c as follows

mjc = 1
n

n∑
i=1

xijc. (3.9)
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3. Compute the mean of the squared Euclidean distance between each feature data
point, i and the mean of the corresponding feature in each class,

dj = 1
N2
c n

Nc∑
k=1

Nc∑
c=1

n∑
i=1

(
xijk −mjc

)2
. (3.10)

4. Normalize the separation distance with the maximum feature separation distance
to produce a performance evaluation criteria

d̄j = dj
max(d) . (3.11)

5. Select distance with a performance greater than a predetermined threshold. The
threshold can be defined by evaluating the classification accuracy for each combined
set of features.

The performance of this approach was evaluated with experimental data for condition
monitoring of defects and damages of rotating machinery obtained from the Chair of
Design and Drive Technology, University of Paderborn, as described in the next section.

3.4.1.1 Experimental Set-up

The test rig is a modular system for diagnosing various defects in rotating machinery
components such as gearboxes, electrical machines and rolling element bearings and
shafts [155]. The electric motor current and vibration signals of test bearings are measured
for bearings at different health conditions such as normal, inner ring and outer ring pitting
or fracture. Figure 3.14 shows the test rig consisting of several modules: a drive motor,
a torque-measuring shaft, a bearing module, a flywheel and a load motor.

Figure 3.14: Modular testrig for fault diagnosis of rotating machinery: (1) drive motor,
(2) torque measuring shaft, (3) rolling element bearing module, (4) gear
module, (5) flywheel, (6) load motor [155]
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Table 3.5: Operating conditions
Designation Rotational Speed

[RPM]
Load Torque

[Nm]
Radial Load

[N]
N09_M07_F10 900 0.7 1000
N15_M01_F10 1500 0.1 1000
N15_M07_F04 1500 0.7 400
N15_M07_F10 1500 0.7 1000

Several types of damages were produced and categorized by their type and severity. These
damages consist of indentation and pitting. The pitting size is categorized by the length
of the damaged surface in the rolling direction as shown in Table 3.6. Data was acquired
at four operating conditions shown in Table 3.5.

Table 3.6: Grouping of bearing damages and severity for both inner ring and outer ring
faults

Designation Damage type and severity
P1 small pitting (< 2 mm)
P2 medium pitting (2 - 5 mm)
P3 large pitting (> 5 mm)
I indentation

Two electric current signals and one vibration signal were recorded at a sampling fre-
quency of 64 kHz for a period of 4 seconds. For each bearing condition and operating
condition, 20 samples were recorded, with each sample recorded after dismantling and
reassembling the bearing module. This ensures that assembly variability expected in real
practice is taken care of.
A total of 31 features were extracted from each signal as follows:

1. 12 time domain features shown in Table 3.3.
2. 7 frequency domain features (Table 3.4) consisting of:

• Maximum amplitude of FFT of each signal, corresponding frequency and ener-
gy of FFT signal.
• Maximum power spectral density (PSD) amplitude and corresponding frequen-
cy.
• Maximum amplitude of FFT of envelope signal and corresponding frequency.

3. 12 time-frequency domain features extracted from the first six IMFs of EMD. The
12 features consist of signal energy and clearance factor of each of the six IMFs.

Three samples were randomly selected for feature extraction using the proposed method.
Figure 3.15 shows the performance evaluation of the features extracted from (a) electric
current signals and (b) vibration signal.
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Figure 3.15: Normalized separation distance of features extracted from (a) electric cur-
rent signals and (b) vibration signals

A plot of the two features showing the maximum separation distance between classes
for the two types of signals is shown in Figure 3.16. Features from the vibration signals
show a better separation between classes compared to the motor current signals. However,
motor current signals could still be used for diagnostics and prognostics since the different
health states can be clearly observed from the features.
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Figure 3.16: Clustering of different health states from (a) motor current signals and (b)
vibration signals

3.4.2 Feature Selection for Regression

Regression involves analyzing the relationship between variables and in the context of
prognostics, this process involves estimating a function that represents the health index,
degradation or remaining useful lifetime of a technical system. The process involves
mapping condition monitoring data or features extracted from the data to a function and
hence feature selection involves selecting features that accurately represent the health
index. In this work, kernel based extreme learning machines (ELM) is employed for
feature selection due to its robust prediction and fast training and prediction times. The
features are first evaluated individually on their ability to estimate the health index.
The input to the ELM method is the feature xj while the target vector y is the health
index or RUL. The performance of the features is based on the mean square error (MSE)
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between the actual health index and the predicted health index is computed as follows:

MSEj = 1
n

n∑
i=1

y2
i − y2

ijp, (3.12)

pj = 1
MSEj

, (3.13)

p̄j = pj
max(p) . (3.14)

This yields performance values within the range, 0 ≤ p̄j ≤ 1 and the selection criteria
can be evaluated by iteratively selecting features above a minimum p̄j and computing
the MSE of the predicted health index.

3.4.2.1 Extreme Learning Machines (ELM)

Extreme learning machines is a relatively new simple learning algorithm for single-
hidden layer feedforward neural network (SLFN) which was first proposed by Huang
in 2005 [178]. Figure 3.17 shows the structure of an SLFN with radial basis function
(RBF) hidden neurons. xj is the input vector at the input neuron j, al is the input
weight connecting the hidden neuron l and the input neurons, bl is the bias of the hidden
neuron, βl is the output weight of the hidden neuron and y is the output [178].

Figure 3.17: Structure of ELM [178]

In ELM, the input weights and hidden layer biases of SLFN are randomly generated, while
the output weights linking the hidden layer to the output layer are determined through
simple generalized inverse operation of the hidden layer output matrices [178]. The ELM
learning process is extremely fast compared to other machine learning algorithms such
as support vector machines and artificial neural networks with back propagation [178]
and involves three steps:

1. The input weights al and hidden node bias bl are randomly generated and used
with an activation function to calculate the hidden layer output,

Gl =
Q∑
i=1

gj(al, bl, xj), (3.15)
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where gi is the activation function which can be sigmoid, sine, radial basis function
(RBF), etc. In this work, the RBF was found to yield the best performance for
most applications,

gj(al, bl, xj) = exp
(
−bl|xj − al|

γ2

)
, (3.16)

where γ is the RBF parameter. The network output is given by

y =
L∑
l=1

βlGl. (3.17)

2. Given n training samples {xi, yi}, where i = 1, 2..n, the output weights are calcu-
lated as follows

β = H†y, (3.18)

where H† is the Moore-Penrose generalized inverse of the hidden layer output matrix
H = [GT (xi)....GT (xn)]T .
To improve generalization performance so that the ELM can accurately predict new
input data, a regularization parameter is added. In this case, the output weights
are obtained as follows

β =
(

I
C

+ HTH
)−1

HTy, (3.19)

where C is a regularization parameter and I is a unit matrix.
3. The learned model consists of the input and output weights and the hidden node

biases which can be used with input data x to predict an output yp, in a same
way as the general approach for supervised machine learning algorithms shown in
Figure 2.5.

3.4.2.2 Application Example

To evaluate the proposed feature extraction method, run-to-failure condition monito-
ring data for a high-speed CNC milling machine provided for the 2009 PHM Society
Conference was used [179]. Condition monitoring data was recorded from three types of
sensors:

1. Dynamometer to record force measurements in three directions.
2. Accelerometer for recording vibrations in three directions.
3. Acoustic emission sensors for recording the acoustic emissions data.

Data was acquired at 50 kHz for an average duration of 4 seconds during each cutting
cycle. Table 3.7 shows the operating conditions of the machine.
In addition to the condition monitoring data, the flank wear of a 6mm ball nose tungsten
carbide tool was measured after each cycle using a microscope system to provide the
ground truth wear of the tool. The wear was measured from three flutes of the tool and
the maximum wear of the three measurements shown in Figure 3.18 is taken as the health
index. Six data sets are provided but only three that contain the wear measurements are
used in this study.
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Table 3.7: Milling machine operating conditions
Item Value
Spindle speed 10,400 RPM
Feed rate 1555 mm/min
Y depth of cut (radial) 0.125 mm
Z depth of cut (axial) 0.2 mm
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Figure 3.18: Tool wear for test 1

31 features are extracted from each signal, yielding a total of 217 features. Each feature
is evaluated on its ability to estimate the tool wear. Half of the samples are randomly
selected and used to train the ELM algorithm while the other half is used for testing and
validation. The performance of the method is evaluated as described in section 3.4.2.
Figures 3.19-3.21 show the performance of each sensor data as well as a plot of the
best and worst performing feature. The best performing features show an increasing
trend consistent with degradation while the worst performing feature does not show a
consistent trend. However, some of these features may be suitable with classification.
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Figure 3.19: Performance of features from accelerometer in X direction (a) Performance
for each feature, (b) A plot of best and worst features

To determine the threshold of p̄j for feature selection, p̄j was varied within the range
0 ≤ p̄j ≤ 1 and all features with p̄j above each value were selected for training using 60%
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Figure 3.20: Performance of features from dynamometer in X direction (a) Performance
for each feature, (b) A plot of best and worst features
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Figure 3.21: Performance of features from acoustic emission data (a) Performance for
each feature, (b) A plot of best and worst features

of randomly selected samples and 40% for testing. The MSE between the actual and the
predicted wear of the test data was computed. For this application, the minimum MSE
was found by selecting features with p̄j ≥ 0.65 as shown in Figure 3.22(a).
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Figure 3.22: Feature selection criteria (a) MSE between predicted and actual wear for
features with 0 ≤ p̄j ≤ 1 and (b) selected features with p̄j ≥ 0.65

Figure 3.22(b) shows the features with p̄j ≥ 0.65 for accelerometer Z, while Table 3.8
shows the number of features selected from each sensor.

To demonstrate the feasibility of this approach, for each trial, two data sets were selected
for training and one for testing. Figure 3.23 shows a comparison of the actual tool wear
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Table 3.8: Number of features selected per sensor
Sensor Number of features
Accelerometer X 2
Accelerometer Y 7
Accelerometer Z 10
Dynamometer X 4
Dynamometer Y 8
Dynamometer Z 2
Acoustic Emission 21

and predicted tool wear using all features as input and using selected features as input.
Using selected features as input to ELM results to a better estimation of the tool wear.
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Figure 3.23: Comparison of actual and predicted tool wear with all features and with
selected features as input to ELM for test data set 2

Table 3.9 shows the MSE between actual and predicted tool wear. The MSE obtained
with feature selection is much lower, thus emphasizing on the need for feature selection.

Table 3.9: Comparison of MSE of predicted tool wear using ELM with all features and
ELM with selected features as input

Test All features Selected features
1 128.13 69.21
2 80.44 44.90
3 166.86 103.36

Another approach for feature selection is to set the number of features to use, Qf . The p̄j
is then ordered in a descending manner and the first Qf features are selected. However,
this approach may not provide the optimum features to use for a given application.



4 Development and Evaluation of
Prognostic Approaches

The following sections outline different methodologies that have been evaluated on their
suitability for fault diagnosis and prognosis of technical systems. The methods can be
categorized into five approaches depending on the condition monitoring data available:

1) Health state estimation.
2) Application of machine learning algorithms to map extracted features to remai-

ning useful lifetime (RUL).
3) Application of machine learning algorithms to map extracted features to a he-

alth index HI .
4) Propagating a health index HI to a threshold.
5) Model-based approach utilizing temperature measurements.

4.1 Health State Estimation

Some technical systems undergo a number of discrete health states before failure. For in-
stance, a ball bearing pitting fault may begin on a race of a rolling element bearing which
propagates to the rolling element and on to other bearing components before failure. This
evolution of the fault may exhibit a number of health states which can be identified using
classification algorithms. If run to failure data of similar systems is available, unsuper-
vised machine learning algorithms such as k-means and self-organizing maps (som) of
neural networks can be used to discretize the condition monitoring data/features into a
number of clusters (health states). The clustered data is then used to train supervised
machine learning algorithms for classification to identify the current health state from
features extracted from condition monitoring data. This is done in two phases:

1. Training, where the machine classification algorithm uses labeled data to learn the
underlying behavior between different health states. This results to a classification
model with the necessary weights, biases and parameters.

2. Testing or online condition monitoring phase where unlabeled features from condi-
tion monitoring data of a similar unit are used as the input to the algorithm for
classification.

Machine learning algorithms that produce health state probabilities as an output are
better suited for this prognostic approach since the health state probabilities can be
combined with the historical lifetimes of similar systems at each health state to estima-
te the RUL. Such algorithms include support vector machines (SVM), random forests
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(RF) and probabilistic neural networks (PNN). In this study, only SVM and RF are
implemented since they have been found to result in high classification accuracies [180].

If the health states of the training data are already known, for instance through FMEA,
then this approach can be used for both diagnosis and prognosis. It may also be integrated
in multilevel dependability concept for self-optimizing mechatronic systems [6], as well as
low level prognosis where only the current health state is indicated and when the system
reaches the critical health state, then an alarm for shut-down or maintenance planning
is raised. Figure 4.1 shows the workflow of this approach for long-term prognostics.

Figure 4.1: Work flow of health state estimation approach to prognostics

The following subsections discuss the background of support vector machines (SVM) and
random forests (RF), which are implemented with this approach. When run-to-failure
data of a system is not labeled, then the number of possible health states is unknown
and should be determined prior to clustering the data into the health states. After the
discussion of SVM and RF, a method for identifying the number of possible health states
in the data is discussed. The approach is then evaluated with run-to-failure data of ball
bearings and wear data of a high speed milling machine.

4.1.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) is a supervised machine learning technique for solving
binary data classification problems introduced in 1995 by Vapnik et al. [181]. The binary
classification problem is solved by finding a hyperplane that separates the data into its
two classes as shown in Figure 4.2 [104]. The planes that are parallel to the hyperplane
and lie on the border of each class are called bounding planes. Data points that lie on
the bounding planes are called support vectors [104]. Given n training samples {xi, yi},
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orientation=43 degrees

Figure 4.2: SVM hyperplane for linearly separable data

i = 1, 2...n, where each sample has Q features, (xi ∈ RQ) and a class label with one of
the binary values (yi ∈ {−1, 1}), a hyperplane is a n− 1 dimensional space described by

wTx + b = 0, (4.1)

where, w is a vector orthogonal to the hyperplane and b is a constant. Such a hyperplane
(w, b) that separates data defines the function

f(x) = sgn(wTx + b), (4.2)

for correctly classifying the data [182]. The hyperplane is chosen such that the bounding
planes are a functional distance of at least 1 from the hyperplane, giving rise to the
constraints

wTx + b ≥ 1 when yi = +1, (4.3)
wTx + b ≤ −1 when yi = −1, (4.4)

or in compact form: yi(wTx + b) ≥ 1 ∀i. (4.5)

The problem of SVM involves maximizing the margin (distance between the two boun-
ding planes) separating the two classes of data. The margin between linearly separable
data is given by

ρ = 2
‖ w ‖

, (4.6)

whose derivation is given in Appendix A. Maximizing the margin involves minimizing
‖ w ‖ [181],

min
w,b

f(w) = ‖ w ‖2

2 , (4.7)

subject to the distance constraint in Equation 4.5. Since the problem involves optimiza-
tion subject to inequality constraints, Lagrange Multipliers are introduced so that the
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problem becomes [181],

f(w, b, α) = 1
2 ‖ w ‖2 −

n∑
l=i
αi
[
yi(wTxi + b)− 1

]
, (4.8)

where αi is a Lagrangian multiplier, one for each data point. The solution to this quadratic
programming problem (QP) is obtained by maximizing f with respect to α ≥ 0 and
minimizing it with respect to (w, b) [183]. The optimal solution can be obtained by
differentiating Equation 4.8 with respect to w, b and setting the derivatives to 0. This
leads to

∂f(w, b, α)
∂w

= w−
n∑
i=1

αiyixi = 0, (4.9)

∂f(w, b, α)
∂b

= −
n∑
i=1

αiyi = 0, (4.10)

which leads to the optimal solution

w =
n∑
i=1

αiyixi, (4.11)

and
b = yi −wTxi. (4.12)

Substituting Equations 4.11 and 4.12 into Equation 4.8 leads to the dual problem

F (α) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxixj, (4.13)

subject to: ∑
αiyi = 0, (4.14)
αi ≥ 0 ∀i. (4.15)

The optimization problem involves computing the inner products xTi xj between all trai-
ning points and finding αi, i = 1, 2...n such that f(α) is maximized. Each αi > 0 indicates
that the corresponding xi is a support vector and the decision function will have the form

f(x) = sgn
(

n∑
i=1

αiyixTi x + b

)
. (4.16)

As seen in Equation 4.16, the decision function relies on an inner product between the
test point x and the support vectors xi [182].

4.1.1.1 Non-Linearly Separable Data

For data that is not linearly separable, a kernel function z = φ(x) can be used to map
the features into a higher dimensional feature space and constructing a hyperplane in
this space [183]. The kernel function is selected in such a way that the new training data
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{φ(xi), yi} is separable by a hyperplane as shown in Figure 4.3 [182]. To set up the new

Figure 4.3: Transforming input data to a new feature space where it is linearly separable

optimization problem, all the occurrences of x are replaced by φ(x) so that the inner
product becomes

K(xixj) = φ(xi)Tφ(xj), (4.17)

and the QP problem becomes

f(α) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjφ(xi)Tφ(xj), (4.18)

subject to: ∑
αiyi = 0, (4.19)
αi ≥ 0 ∀i. (4.20)

The decision function becomes

f(x) = sgn
(

n∑
i=1

αiyiφ(xi)Tφ(x) + b

)
. (4.21)

The kernel function allows the construction of a hyperplane in the higher dimensional fea-
ture space without explicitly performing calculations in this feature space [183]. Typical
kernel functions used include:

• Linear, K(xi,xj) = xTi xj.

• Polynomial of power p, K(xi,xj) = (1 + xTi xj)p.

• Radial basis function (RBF), K(xi,xj) = exp(−γ ‖ xi − xj ‖2)

• Multi-layer perceptron, K(xi,xj) = tanh(γ0xTi xj + γ1),

where γ is a tunable parameter. Figure 4.4 shows the effect of the kernel parameter of
a radial basis function in transforming the input features to a higher dimensional space
where the data is linearly separable.
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Figure 4.4: Effect of RBF kernel parameter on separation margin of data that is not
linearly separable

4.1.1.2 Soft Margin SVM

In most applications, the training data set contains noise and may not be linearly sepa-
rable. In such a case, slack variables ζi may be introduced to allow misclassification of
difficult or noisy examples as shown in Figure 4.5 [183].

Figure 4.5: Soft margin classification

The new formulation of the optimization problem incorporating slack variables becomes

min f(w) = f(w) = ‖ w ‖2

2 + C
n∑
i=1

ζi, (4.22)
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subject to
yi(wTx + b) ≥ 1− ζi and ζi ≥ 0 ∀i. (4.23)

C is referred to as a regularization parameter that controls trade-offs between maximizing
the margin and minimizing misclassification and can be tuned during training to provide
better regularization. A very large value of C may lead to over-fitting while a small
value may lead to high misclassification rate during training and consequently during
testing [183].

4.1.1.3 Multi-Class SVM

Multi-class classification is achieved by constructing and combining several binary clas-
sifiers. Pairwise coupling method, in which Nsvm SVM classifiers are constructed, is com-
monly used for multi-class classification of data with Nc classes, where,

Nsvm = Nc(Nc − 1)
2 . (4.24)

A binary classifier is built for each pair as shown in Table 4.1.

Table 4.1: Pairwise method for multi-class classification using binary classifiers
(1,2) (1,3) (1,4) .. (1,Nc)

(2,3) (2,4) .. (2,Nc)
(3,4) .. (3,Nc)

(Nc − 1, Nc)

Class probability estimates are computed through voting rule [184].

4.1.1.4 Optimal Tuning of SVM Parameters

For each SVM application there are at least two parameters that require tuning, the cost
parameter C and the kernel function parameter γ. In this work, the optimal parameters
of SVM were obtained through combined use of differential evolution (DE) and particle
swarm optimization (PSO) methods. DE is used to find the search limit of the parameters
while PSO is used to obtain the optimum parameters within the search limit. Details
of DE and PSO are given in Appendix B. During the optimization process, 3-fold cross
validation is employed, where the training data is partitioned into three parts and for
each iteration, two parts are used for training and the other part is used for testing
and validation. The objective function of the optimization process is to reduce the cross
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validation error ecv between the target y and predicted output yp, computed as follows

eci =
0 if ypi = yi,

1 if ypi 6= yi,
(4.25)

ecv = 1
ncv

ncv∑
i=1

eci, (4.26)

where eci is the classification error for sample i and ncv is the number of samples in
the testing and validation partition. Figure 4.6 shows the workflow of parameter tuning
for multi-class SVM. Once the optimum parameters have been found, the parameters
are used together with the whole training data to train the SVM which results in a
classification model that can be used with test data or for online health state classification
as described in Figure 4.1. The termination criteria for optimization can be set as desired
CV error (ideal is 0) or maximum number of iterations.

Figure 4.6: SVM parameter tuning through DE and PSO

4.1.2 Random Forests

Random forests consist of an ensemble of randomized decision trees used for classification
and regression applications [185]. A random forest consists of a set of trees Mk where
each tree consists of split nodes and leaves as illustrated in Figure 4.7.

A tree is grown using training data by recursive splitting at the split nodes where each
feature is evaluated and, depending on the value of the feature, it is passed to the left or
right child [185]. Each leaf stores the statistics of the feature passed on during training.
The terminal nodes are the decision nodes and each terminal node is dominated by one
of the classes. New observations are classified by passing x down to the terminal node of
the tree and a class is assigned by majority vote.
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Figure 4.7: A sample decision tree for classification

The measures for selecting the best split are often based on the amount of information
at the child node. Examples of such measures include [186]:

Entropy(k) = −
Nc∑
c=1

p(c|k) log2 p(c|k), (4.27)

Gini(k) = 1−
Nc∑
c=1

[
p(c|k)

]2
, (4.28)

Classification error(k) = 1−max
c

[p(c|k)], (4.29)

where p(c|k) is the probability of class c at node k.
Given an original feature vector x ∈ RQ with Q features x1...xn, the random forest with
Mk trees is constructed as follows [187]:

1. Each tree is constructed from a random selection of m =
√
Q features {xij}mj=1.

2. For each select the best split based on the maximum amount of information at the
child node. The amount of information at the child can be obtained by computing
the entropy at the nodes.

3. Predict data by aggregating the predictions ofMk decision trees, majority votes for
classification and average for regression.

4. Probability estimates for classification can be computed from the number of votes
for each class from Mk trees.

4.1.3 Identifying the Number of Health States of Unlabeled
Run-to-Failure Data

Unsupervised machine learning algorithms such as k-means and self-organizing maps
(SOM) neural networks for clustering unlabeled data require prior knowledge of the
number of clusters. For run-to-failure data that is not labeled, the optimum number of
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health states within the data can be determined through k-means clustering algorithm
using the extracted features as input in a recursive process as follows:
• The number of health states Nc is varied from 2 to Ncm and the similarity between
the clusters for each set number of health states is determined.
• For each set number of health states, k-means algorithm is used to cluster data into
Nc health states. The centroid ctij of each feature at each health state is computed,
where i = 1, 2.., Nc and j = 1, 2.., Q.
• For each feature, the centroids are normalized between [0,1] and the mean for each
health state is obtained as follows

cti = 1
Q

Q∑
j=1

ctij. (4.30)

• The pairwise difference between the resulting centroids is then obtained as follows

∆ctjk = ctj − ctk, j = 1, 2.., Nc − 1, and k = j + 1. (4.31)

This produces an (Nc − 1)×Nc upper matrix.
• For each column k of the upper matrix, all the elements with |∆ctj| ≤ th are located,
where th is a predetermined threshold. These elements indicate a similarity between
clusters within a set number of health states. The number of these elements with
non-similar or unique indices Nu is obtained as follows

sck =
0 if jk = jk+1,

1 if jk 6= jk+1,
(4.32)

Nu =
Nc−1∑
k=1

sck, (4.33)

where sc is a value for unique indices. The threshold can be set by taking the
absolute value of the difference between standard deviation and the mean of ct.
• The identified number of health states is then obtained by subtracting the number
of similar health states from the initial number of health states

Nc,opt = Nc −Nu. (4.34)

• The most frequently identified number of health states in Ncm is selected as the
optimum number for a given data set.

To demonstrate the feasibility of this method of determining the optimum number of
health states in unlabeled data, rolling element data with three known health states
(healthy and outer ring (OR) fault at two severity levels), described in section 3.4.1.1
were used. The extracted features from vibration signals were used as input. Figure 4.8(a)
shows the clustering of the data within the feature space while Figure 4.8(b) shows the
histogram of the number of health states. The count is the number of times that the
number of health states Nc is identified from Ncm. The method correctly identifies 3
health states in this data.
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Figure 4.8: Identification of optimum number of health states for bearing data with 3
health states (a) Clustering of data within feature space and (b) distribution
of identified health states

4.1.4 Remaining Useful Life Estimation from Health State
Probabilities

The output of the machine learning algorithms is the health state and the health state
probability Pi, which is the probability that a data point belongs to health state i. This
section describes a method for estimating the remaining useful lifetime (RUL) from the
health state probabilities. The nomenclature of computing the RUL from the health
state probabilities is shown in Figure 4.9. RULi is the remaining useful lifetime at the
transition point between health state i−1 and i, tc is the current time at which the RUL
is being computed, tHSi is the duration spent at the current health state. As the system
degrades, the probability of the current health state decreases while the probability of
the next health state increases.

Figure 4.9: Nomenclature for computing RUL

A fleet of units operating under similar conditions can be assumed to undergo through
similar health states until failure occurs. Therefore, it can be assumed that the units
spend the same percentage of lifetime in each health state. Based on these assumptions,
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the RUL of a test data set is computed based on the historical percentage RUL of the
training data sets at each health state as follows

RUL =
tEoL,1

∑Nc
i=1 PiLi − tHSi, if HSi = 1,

t̄EoL
∑Nc
i=1 PiLi − tHSi, if HSi > 1,

(4.35)

where Li = RULi
tEoL,1

is the percentage RUL at health state i, tEoL,1 is the time at end of
life of the training data, HSi is the current health state and t̄EoL is the mean predicted
time to end of life computed as follows

t̄EoL = 1
HSi − 1

HSi∑
i=2

tc
1− Li

. (4.36)

4.1.5 Application Examples

The feasibility of the health state estimation approach to prognosis is demonstrated on
two types of data sets:

1. ball bearing data

2. tool wear of a high speed milling machine

4.1.5.1 Health state estimation of ball bearings

Run to failure data of ball bearings obtained from the 2012 IEEE PHM challenge was
used [148]. The data consists of two vibration signals sampled at 25.5 kHz for 0.1 seconds
at intervals of 10 seconds, obtained from a test rig suited for highly accelerated degrada-
tion tests for rolling element bearings [148]. In addition, temperature measurements for
some tests were provided. The temperature was sampled at 10 Hz for 60 seconds each
minute. The operating conditions of the bearings are shown in Table 4.2.

Table 4.2: Operating conditions of bearing (Designation: 61804-2RS1)
Variable Rated Value Utilized value
Speed 13000 RPM 1800 RPM
Radial Load 3.1 kN 4 kN

31 features described in section 3.3 were extracted from each vibration sensor giving rise
to 62 features. The optimum number of health states was determined using the method
for identifying optimum number of health states, described in section 4.1.3, with Q = 30
and Ncm = 40. Figure 4.10 shows the distribution of the number of clusters identified
from training data sets. 5 health states were found to have the highest count (number of
times Nc is identified within Ncm) and hence selected as the optimum number of health
states. k-means algorithm was then used to cluster the features into 5 health states.
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Figure 4.10: Histogram of number of health states for training data sets (a) bearing 1_1
and (b) bearing 1_2

With the health states identified from the training data, 23 features were selected using
the maximum separation distance method described in section 3.4.1. Figure 4.11 shows
the performance measure for each feature which represents the ability to distinguish
different health states. With a selection threshold of d̄j ≥ 0.6, 23 features from both
sensors were selected.
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Figure 4.11: Performance of each feature on separability of health states (a) sensor 1 and
(b) sensor 2

The selected features are used as inputs to the machine learning algorithms while the
health state label is used as the target for training. The output from the trained model
is the health state probability from which the remaining useful lifetime (RUL) can be
estimated using the method described in section 4.1.4. Figure 4.12(a) and (c) show the
health state probability of training data set 1_1 from support vector machines (SVM)
and random forests (RF) with a number of trees Mk = 100 respectively, while (b) and
(d) are comparisons of predicted RUL and actual RUL at specified time intervals (tc =
(1, 2, ...19)× 0.05tEOL).
From Figure 4.12(b) and (d), 14 and 12 predictions out of 19 respectively fall within
the acceptable error region of ±10%. This indicates that the proposed method would be
fairly accurate for similar systems. The trained models were then used with the test data
of similar bearings in order to evaluate the performance and regularization of the method
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Figure 4.12: Health state probabilities of training bearing 1_1 obtained from (a) SVM
and (c) RF and the corresponding predicted RUL at specified prediction
times (b) and (d)

for unknown data, similar to online prognosis. The selected features of the test data are
used as input to the trained models which gives the health state probability as the output.
RUL is estimated using equation 4.35. Figure 4.13 shows the health state probabilities
of test bearing 1_3 and 1_4 at different prediction times, estimated using SVM with
optimally tuned parameters, while Figure 4.14 are the health state probabilities of the
same bearings estimated using RF. As the bearing degrades, the probability of the next
health state increases while the probability of the current health state decreases.

From Figures 4.13(b),(d) and Figures 4.14(b),(d) the predicted RUL improves as the
bearing changes to health state 2 and onwards since the estimated t̄EOL is updated as
more information is made available. Both the SVM and RF methods were evaluated with
all the training and test bearings and Table 4.3 summarizes the performance of the SVM-
based health state estimation method while Table 4.4 is the performance of the RF-based
health estimation method. RUL is estimated at 19 prediction intervals at increments of
0.05tEOL. In both cases, majority of the predictions fall within the acceptable error region
of ±10%. FP refers to the total number of false positives, while FN is the total number
of false negatives, which are predictions outside the acceptable region (as defined in
section 2.3). Considering all the test cases, SVM method has a mean MAPE of 11.89
with 78 out of 133 predictions within the acceptable region. Random forests has a MAPE
of 12.68 with 75/133 acceptable predictions. This is a good performance considering the
low number of training data sets available. The FP and FN can be reduced by increasing
the number of training data sets to cover the high variation in lifetime of the bearings.
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Figure 4.13: Health state probabilities and corresponding RUL predictions at specified
prediction times for test bearing 1_3 - (a) and (b), and test bearing 1_4 -
(c) and (d), estimated using SVM with optimally tuned parameters
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Figure 4.14: Health state probabilities and corresponding RUL predictions at specified
prediction times for test bearing 1_3 - (a) and (b), and test bearing 1_4 -
(c) and (d), estimated using RF
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Table 4.3: Performance evaluation of the SVM-based health estimation method based on
prognostic metrics

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 3 11.71 2 -38.59 7.36
1_2 6 21.83 2 -39.06 14.82
1_3 1 20.81 3 -27.73 8.81
1_4 2 13.08 2 -49.24 11.08
1_5 6 15.74 5 -34.34 15.92
1_6 7 16.82 2 -44.89 14.18
1_7 4 18.84 4 -31.95 12.92

Table 4.4: Performance evaluation of the RF-based health estimation method based on
prognostic metrics

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 7 20.58 0 0 8.89
1_2 6 19.32 7 -13.56 13.48
1_3 4 38.48 1 -15.04 12.87
1_4 6 24.40 2 -10.90 11.93
1_5 8 15.20 3 -25.90 13.87
1_6 5 15.36 2 -65.98 15.16
1_7 5 26.34 1 -27.99 12.54

4.1.6 Health state estimation of tool wear

In this application, condition monitoring data of a high speed milling machine described
in section 3.4.2.2 was used. Three sets of data that contain the ground truth wear data
are used for evaluation of the proposed methods. For each data set, 31 features per sensor
were extracted from the raw data giving a total of 217 features. Failure threshold was
set at a wear value of 170×10−3 mm to define the end of life of the tool. The method for
identifying the optimum number of clusters in unlabeled data, described in section 4.1.3,
was used to determine the optimum number of health states, with Q = 60 and Ncm = 40.
4 health states were identified as the optimum health states as shown in Figure 4.15(a).
k-means algorithm is then used to cluster the training data into (k=4) health states.
Figure 4.15 shows clustering of features within the four health states.
Maximum separation distance feature selection method for health state classification
described in section 3.4.1 was used to select suitable features from each sensor, with a
selection criterion of d̄j ≥ 0.8. Figure 4.16 shows the performance of the features for each
sensor. A total of 82 features were selected.
The three data sets were used for evaluation of the method in a three-fold cross evaluation
manner where two data sets are used for training and the other data set for testing. The
selected features are used as inputs to the machine learning algorithms while the health
state label is used as the target.
Figure 4.17 shows the health states and corresponding RUL at 19 specified prediction
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Figure 4.15: Health states for data set 1 (a) optimum number of health states and (b)
clustering of features into four health states
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Figure 4.16: Performance evaluation of features extracted from data set 1 based on ma-
ximum separation distance between health states, (a)-(c) acceleration data,
(d)-(f) force data and (g) acoustic emission data

times for each of the three data sets obtained from SVM while Figure 4.18 are the
results from the RF. Both approaches estimate the RUL within an average MAPE of
20. However, RF based method has a better performance with a mean MAPE of 9.75
compared to SVM with a mean MAPE of 12.38. In addition, random forest produces
fewer false positives and false negatives.
Table 4.5 summarizes the performance of the SVM-based health state estimation method
while Table 4.6 is the performance of the RF-based health estimation method.
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Figure 4.17: SVM-based Health state probabilities and RUL of the training data sets:
data set 1 - (a) and (b), data set - 2 (c) and (d) and data set - 3 (e) and (f)

Table 4.5: Performance evaluation of the SVM-based health state estimation method
based on prognostic metrics

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 3 23.17 4 -41.05 13.91
2 4 22.86 3 -32.29 11.36
3 5 20.63 3 -27.56 11.87

Table 4.6: Performance evaluation of the RF-based health state estimation method based
on prognostic metrics

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 6 19.48 2 -10.77 9.79
2 4 19.76 1 -18.30 9.11
3 5 18.65 2 -28.35 10.33
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Figure 4.18: RF-based Health state probabilities and RUL of the training data sets: data
set 1 - (a) and (b), data set - 2 (c) and (d) and data set - 3 (e) and (f)
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4.2 Mapping Extracted Features to Remaining Useful
Lifetime

This approach involves the use of machine learning (ML) algorithms to map features
extracted from raw condition monitoring data to the remaining useful lifetime of a fleet
of systems operated at similar operating conditions. The process involves function ap-
proximation and regression machine learning algorithms are therefore recommended. For
satisfactory results, the systems/condition monitoring data should fulfill the following
conditions:

• The systems should have narrow distribution of lifetimes.

• The operating conditions should have very small standard deviations.

• The extracted features should display monotonic change (increasing or decreasing).

The workflow of this method is shown in Figure 4.19. A health index derived from nor-
malized RUL is used as the target. The training process results in a regression model
that can be used with input features from similar systems for testing or online progno-
stics. In order to improve trendability of the extracted features, an autoregressive model
is applied to each extracted feature. This serves as a smoothing technique as well as
enhancing the degradation trend of the feature.

Figure 4.19: Workflow of the proposed method utilizing machine learning algorithms to
map extracted features to the RUL

4.2.1 Autoregressive (AR) Model

AR model represents a time series in which the next value in the sequence is predicted
based on a certain number of previous values. The AR model parameters may contain
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important information regarding the condition of a component [188]. The following model
is established to each of the extracted features x to obtain degradation trend:

xi =
m∑
k=1

akxi−k + ei, i = 1, 2...n (4.37)

where ak are the model parameters, m is the model order, ei is the residual of the model
and n is the number of data points in x. In this work, the model parameters were determi-
ned using the Yule-Walker method [189]. The performance of the AR model depends on
the choice of the model order m. In this study, the modified Akaike information criteria,
AIC was employed to determine the optimum m[190]:

AIC (m) = log(σ̂m) + 2m
n
, (4.38)

where,
σ̂m = 1

(n−m)
n∑

i=m+1
(xi −

m∑
k=1

akxi−k)2, (4.39)

The denominator n − m in Equation 4.39 is used to reduce bias of low values of the
model order. In this study, the model order was varied from 1 to 100 and the model
order m yielding the minimum AIC was selected. Figure 4.20(a) shows the AIC for
different values of m for an extracted feature in Figure 4.20(b). Model order m = 16
yields the lowest AIC and hence it is selected as the optimum model order for use in
Equation 4.37. Figure 4.20(c) shows the resulting feature after application of AR. An
increasing trend can be observed from the feature, indicating suitability of the method
for processing features to be used for prognosis.
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Figure 4.20: Estimating the AR model order m using Akaike information criteria (a)
AIC for different model order (b) extracted feature before application of
AR and (c) new feature after application of AR

The AR features are used as the input to machine learning algorithms. Normalized RUL
of the training data set is used as the health index, HI or target. The normalized health
index is used in order to account for the varying lifetimes of the different units. The RUL
at the current time is then computed through Equation (4.40) which is derived from
Figure 4.21. Given the current time, tc, and the current health index, HI c, the estimated
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remaining useful lifetime RULp can be obtained by similar triangles as follows

RULp = tEoL − tc = tc
1− HI c

HI c. (4.40)

0

Operating Time

H
I

H
I
c

tc tEoL

RUL

Figure 4.21: Estimating the RUL from the current time and normalized RUL

4.2.2 Application Examples

4.2.2.1 Ball Bearing Data

Features extracted from the raw data were selected using the method for feature selection
for regression described in section 3.4.2, using a threshold of 0.65. 42 out of 62 features
were selected and used as the input to the machine learning algorithms, while the norma-
lized health index was used as the target. This resulted to a regression model consisting
of weights, biases and parameters used in the mapping process. For testing, the selected
features of the test data were used as input to the trained model and the current HI
was obtained as the output. Equation 4.40 was then applied to obtain the RUL at the
current time. Two data sets were used for training while all the data sets, including the
training data sets were evaluated in the testing stage.
Figure 4.22 shows the estimated and actual RUL of bearing 1_3 at specified opera-
ting times estimated using extreme learning machines (ELM), random forests (RF) and
support vector machines (SVM).
The results for three algorithms already described previously (ELM, RF and SVM) are
presented in Tables 4.7, 4.8 and 4.9 respectively. ELM has a better performance overall
with fewer FP and FN . All the algorithms produce predictions within a MAPE of 20.
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Figure 4.22: Estimated and actual RUL of bearing 1_3 at specified operating times: (a)
ELM, (b) RF and (c) SVM

Table 4.7: Performance evaluation of the ELM-based RUL estimation approach

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 9 14.47 0 0.00 11.09
1_2 7 14.97 3 -60.82 17.98
1_3 0 0.00 10 -21.86 13.76
1_4 3 20.02 4 -43.65 14.67
1_5 9 12.86 2 -26.85 12.31
1_6 17 25.02 0 0.00 21.51
1_7 5 21.60 3 -30.62 13.39

Table 4.8: Performance evaluation of the RF-based RUL estimation approach

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 6 11.68 6 -11.73 9.37
1_2 0 0.00 10 -40.65 23.39
1_3 0 0.00 14 -20.05 16.99
1_4 0 0.00 6 -45.40 17.09
1_5 0 0.00 6 -21.65 9.74
1_6 2 17.47 3 -28.34 8.80
1_7 8 22.03 3 -31.82 16.33
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Table 4.9: Performance evaluation of the SVM-based RUL estimation approach

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 1 21.78 6 -23.96 13.04
1_2 0 0.00 6 -41.45 16.34
1_3 0 0.00 9 -36.25 20.68
1_4 3 23.61 9 -26.98 18.24
1_5 9 28.11 0 0.00 16.22
1_6 16 14.78 0 0.00 13.38
1_7 0 0.00 2 -22.30 5.95

4.2.2.2 Milling Machine Cutting Tool Data

Similarly, features extracted from the raw signals were selected using the method for
feature selection for regression described in section 3.4.2. 54 features (from Table 3.8)
were used as input to the machine learning algorithms and the normalized HI as the
target. Training and testing was done in a 3-fold manner, with two data sets used for
training and the other for testing. Figure 4.23 shows the estimated and actual RUL of
test set 1 of milling machine cutting tool at specified operating times estimated using
ELM, RF and SVM.
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Figure 4.23: Estimated and actual RUL of test data set 1 of milling machine cutting tool
at specified operating times: (a) ELM, (b) RF and (c) SVM

Tables 4.10 - 4.12 summarize the performance of the three algorithms in estimating RUL.
All the algorithms yield results with a MAPE of less than 20. Given the limited number
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of data sets available, the approach is quite promising on this kind of systems.

Table 4.10: Performance evaluation of the ELM-based RUL estimation approach for mil-
ling machine cutting tool

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 6 22.86 0 0 11.02
2 6 20.20 13 -30.34 11.62
3 1 20.47 9 -25.07 13.55

Table 4.11: Performance evaluation of the RF-based RUL estimation approach for milling
machine cutting tool

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 10 12.78 2 -54.21 15.14
2 2 18.86 0 0.00 4.53
3 0 0 8 -36.91 15.31

Table 4.12: Performance evaluation of the SVM-based RUL estimation approach for mil-
ling machine cutting tool

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 14 16.67 2 -45.18 17.85
2 0 0.00 5 -39.47 11.54
3 0 0.00 4 -38.75 10.00

4.3 Mapping Extracted Features to a Health Index

Some technical systems have a physical health index which is measurable and may be
used to represent the ground truth degradation of the system. A good example of such
a system is tool wear monitoring in machine tools. Monitoring tool wear is important
since it reduces maintenance costs by optimizing maintenance planning, increases the
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availability of the machine tool, helps in product quality control since a worn out tool
reduces the quality of a product and also increases safety. In such systems, the tool wear
can be measured with a microscope, concurrently with condition monitoring data. Since
it would be costly to set-up a tool wear system for each machine tool, a number of run-to-
failure tests can be conducted and the data used for training machine learning algorithms
to map extracted features from condition monitoring data to the ground truth wear. The
trained model can then be used with condition monitoring data of similar systems to
monitor wear. The workflow of this approach is similar to Figure 4.19 but the ground
truth health index is used as the target. Machine learning algorithms are then trained
to map the extracted features to the health index. In the testing stage, the selected
features of the testing data sets are used as input to the trained model which produces
the predicted/estimated health index at the current time. Once the current health index
is estimated, the remaining useful lifetime can be estimated in two ways:

1. Using similarity based measure where the similarity between the predicted health
index of the test data set and the health index of the training data sets is computed
through MSE. Weights w are then generated from the mean square error (MSE)
and used with the RULT of the training data at the predicted value of HI to obtain
a weighted RUL of the test data set. Given NT training data sets,

wk =
[

1
n

n∑
i=1

(HI aki − HI pki)2
]−1

, (4.41)

W =
NT∑
k=1

wk, (4.42)

RULp = 1
W

NT∑
k=1

wkRULTk , (4.43)

where n is the number of data points in the test data.
2. Propagating the health index to a threshold using methods such as particle filter

(section 4.4.1), extended/unscented kalman filters and multi-step ahead autoregres-
sive methods.

4.3.1 Application Example

To evaluate the performance of this approach, three data sets for monitoring tool wear
of high speed milling machine described in section 3.4.2.2 were used. For each case, two
data sets were used for training and the other for testing so that NT = 2. Features were
selected using the method for feature selection for regression described in section 3.4.2
and used as input to machine learning algorithms. The health index HI was taken as
the maximum tool wear as described in the application example in section 3.4.2.2 and
used as the target for the machine learning algorithms. Figure 4.24 shows the predicted
health index at the current time and the RULT of the training data at the current health
index, used in estimating the RULp of the test data through weighted approach.
Figure 4.25 shows a comparison of predicted remaining useful lifetime RUL and actual
remaining useful lifetime HI of data set 2 as the test data set using extreme learning
machines (ELM). Majority of the predictions lie within the 10% error bound.
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Figure 4.24: ELM-based predicted health index of data set 2 and RULT of training data
sets (1 and 3) at the current health index, HI c. HI a is the actual health
index of the test data .
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Figure 4.25: ELM-based estimated RUL at specified operating times for data set 2

Tables 4.13-4.15 show the performance of the proposed approach using different machine
learning algorithms.

Table 4.13: Performance evaluation of the ELM-based health index prediction

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 9 17.59 2 -29.64 13.23
2 6 24.65 3 -17.67 11.91
3 10 28.34 0 0.00 15.46

This approach yields the best results with random forests, producing a mean MAPE
of 12.22 for the three data sets. However, the MAPE is still outside 10% margin which
could be attributed to the low number of training data sets. The performance could
be improved by employing methods that propagate the predicted health index to the
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Table 4.14: Performance evaluation of the RF-based health index prediction

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 6 16.80 1 -38.52 10.74
2 7 23.20 2 -25.16 12.74
3 0 0.00 9 -19.94 11.45

Table 4.15: Performance evaluation of the SVM-based health index prediction

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 9 20.92 3 -38.11 17.56
2 2 11.77 5 -24.03 10.30
3 0 0.00 6 -21.37 8.63

threshold.

4.4 Propagating Health Index to a Threshold

If the condition monitoring data consists of a measurable health index or performance
index, then the health index can be propagated from the current value to a predetermined
threshold, from which the RUL is estimated as shown in Figure 2.8(a). Methods that
account for various uncertainties during the propagation are best suited for this approach,
where the RUL is represented as a distribution as shown in Figure 2.8(b). In this work,
particle filter method which has been extensively used for model based prognostics of
non-linear systems [132, 149, 191–193], is employed.

4.4.1 Particle Filter Approach

Particle filter is a general Monte Carlo (Sampling) method for estimating the state of a
system that changes over time using a sequence of noisy measurements obtained from
the system [114]. The state of the system is considered to evolve according to

qk = f (qk−1, tk−1, tk) + nk, (4.44)

where qk is the state of the system at time k and f is the transition function that
propagates qk−1 to qk, and nk is the process noise. The state vector is assumed to be
unobservable and its information is only obtained through noisy measurements of its
observation ok which is obtained by

ok = g(qk) + νk, (4.45)

where g is the observation model and νk is the measurement noise. The filtering process
involves the estimation of the state vector at time k, given all the measurements up to
time k, denoted by o1:k. From a Bayesian inference, this problem involves recursively
calculating the posterior distribution p(qk|o1:k) which is done in two steps [114].
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1. Prediction step, where the distribution p(qk|o1:k−1) is computed from the filtering
distribution p(qk−1|o1:k−1) at time k − 1 as follows:

p(qk|o1:k−1) =
∫
p(qk|q1:k−1)p(qk−1|o1:k−1)dqk−1, (4.46)

where p(qk−1|o1:k−1) is assumed to be known due to recursion and p(qk|qk−1) is
given in Equation (4.44) [114]. The distribution p(qk|o1:k−1) is known as a prior
over qk before receiving the most recent measurement ok. Equation 4.46 is known
as Chapman-Kolmogorov equation whose derivation can be found in [194].

2. Update step, where the prior is updated with the new measurement ok using Bayes’
rule to obtain the posterior over qk

p(qk|o1:k) = p(ok|qk)p(qk|o1:k−1)
p(ok|o1:k−1) . (4.47)

The computations in the prediction and update steps Equations (4.46-4.47) can be done
using approximation methods such as Monte Carlo sampling [114].

When using this approach for prognostics, there is no new measurement available and
hence the update step is not carried out. The system state is propagated using the state
model until a predefined threshold is reached and this defines the end of life of the system,
tEoL. The RUL is then calculated for i = 1, 2, ...Np particles as follows

RULi = tEoL,i − tc. (4.48)

The overall RUL is obtained from the distribution of the RUL obtained from the Np par-
ticles. A typical approach is by taking a certain percentile (e.g. 45%) of the distribution.
This increases the probability of early predictions and lowers that of late predictions.
This approach has been employed in prognostics of various technical systems such as
batteries [192, 195], fuel cells [149, 196], gears [132] and bearings [193].

4.4.2 Application Example

4.4.2.1 Remaining Useful Lifetime of PEM Fuel Cell

In this part, data sets provided by FCLAB Research Federation as part of the IEEE PHM
2014 Data Challenge [150] to evaluate the health states and remaining useful lifetime of
proton exchange membrane (PEM) fuel cells are utilized. The challenge involved two
activities:

1. State of Health (SOH) estimation.

2. Remaining Useful Lifetime (RUL) prediction.

This work discusses the method used in the second part of the challenge, that is, predicti-
on of the remaining useful lifetime. Three kinds of data were available for the challenge:
polarization and electrochemical impedance spectroscopy (EIS) parameters and aging
parameters [150]. The EIS experiments were conducted at predetermined intervals, a



80 4 Development and Evaluation of Prognostic Approaches

process referred to as characterization of the fuel cells. In estimating the remaining use-
ful lifetime, only the aging parameters were utilized. The following two data sets were
provided:

1. Run-to-failure data from fuel cell 1 (FC1) which was operated in a stationary re-
gime. This data was considered as the learning data set.

2. Truncated run-to-failure data from fuel cell 2 (FC2) which was operated under
dynamic current. This data was considered as the testing data set and the challenge
was to estimate the remaining useful lifetime from the truncation time (550 hours)
to the time that the initial voltage drops to predefined thresholds.

Data Description

As mentioned before, only the ageing data of both the training and testing data sets
was used in this study. The data was drawn from two 5-cell PEM fuel cell stacks with
an active area of 100 cm2. FC1 was operated under a constant current of 70 A while
FC2 was operated under a ripple current of 70 A with a 7 A oscillation at a frequency
of 5 kHz. Condition monitoring data like power loads, temperatures, hydrogen and air
stoichiometry rates, etc., were acquired. Figure 4.26 shows sample ageing parameters
for FC1, where Tin H2 is the inlet temperature of hydrogen and Tout H2 is the outlet
temperature of hydrogen, I is the current drawn from the cells and Utot is the stack
voltage of the cells.

0 200 400 600 800 1000 1200
20

30

40

T
i
n
H
2
[o
C
]

0 200 400 600 800 1000 1200
41

42

43

T
i
n
H
2
[o
C
]

0 200 400 600 800 1000 1200
70

70.5

71

I
[A
]

0 200 400 600 800 1000 1200
3

3.2

3.4

U
t
o
t
[V

]

Time [h]

Figure 4.26: Sample monitoring parameters for FC1.
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From Figure 4.26, it is evident that the stack voltage drops with time, indicating degra-
dation phenomena. The voltage was therefore taken as the health index of the system
HI . A suitable threshold can be defined as a percentage drop from the initial value of
the HI when the fuel cell is new. At any given operational time, tc, the RUL can be
estimated as the remaining time before the threshold is reached, as shown in Figure 4.27.
The focus of the challenge was to estimate RUL before a certain amount of power loss is
reached and since voltage is directly proportional to power, in this context, the RUL is
defined as the time before a certain amount of voltage drop (drop in HI ) is reached.
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Figure 4.27: Estimating the RUL based on the current time and failure threshold

Data Preprocessing

From Figure 4.28(a), one can observe that the raw data is noisy and contains large peaks.
Therefore the first step in processing the data was to remove the peaks and filter the
noise. A kernel based smoother described in section 3.2.2 was employed to filter the noisy
data. The filtered data (Figure 4.28(b)) was taken as the health index. After filtering,
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Figure 4.28: Condition monitoring data of a FC2 (a) raw data and (b) data filtered with
a kernel smoother
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the data was interpolated using cubic spline method so as to obtain samples at a uniform
time interval of 0.5 hours.

Data Evaluation Challenges

Some of the challenges experienced in the data processing and analysis include:

• Threshold values depend on how the data is filtered and the filtering window used.
This means that the estimated RUL also depends on how the data is preprocessed.

• In the test data, some threshold voltages are reached before the truncated time.
These voltages were ignored.

• The degradation process showed different degradation trends after each characteri-
zation. In addition, the self-healing effect observed after each characterization was
not uniform.

State Equation Selection

For the transition function in Equation 4.44, the following equations were tested with
the training data and the equation parameters were adjusted accordingly:

1. Exponential equation:

f(HIk−1, tk−1, tk) = exp(−β · (tk − tk−1)) · HI k−1 (4.49)

2. Pure logarithmic equation:

f(HI k−1, tk−1, tk) = −α · ln(tk/tk−1) + HI k−1 (4.50)

3. Log-linear equation:

f = −α · ln(tk/tk−1)− β · (tk − tk−1) + HI k−1 (4.51)

4. Linear equation:
f = −β · (tk − tk−1) + HI k−1 (4.52)

5. Polynomial equation:

f = −α · (tk − tk−1)2 − β · (tk − tk−1) + HI k−1 (4.53)

Parameters α and β in the state equation need to be initialized and this can be do-
ne through a parameter sensitivity analysis using the training data. The observation
equation was defined as

ok = HIk + νk, (4.54)

where nu is the observation noise computed from the training data.
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Parameter Initialization

In order to initialize the model parameters and evaluate the effectiveness of the method
in RUL estimation, the training data was truncated at time, tc = 550 hours. A sensitivity
analysis was conducted and the first series of results was used in parameter initialization.
Since the initial distributions have to be defined first, it was assumed that for the initial
state HI 0, the distribution is centered on the initially measured value with a range of
±0.1 V. The unknown state equation parameters were also initialized with distributions
taken as 1% of the nominal value. However, if more data sets are available for training,
then the distribution of various parameters can be computed from the data sets. Data
was fitted to the model to identify a suitable range of these parameters. Through sensi-
tivity analysis, the number of particles was set to 2000 and predictions were made every
0.5 hours.

Remaining Useful Lifetime Estimation

The state models defined in section 4.4.2.1 were tested with the training data on their
ability to estimate the remaining useful lifetime. The failure threshold was set to 96% of
the initial voltage. This threshold was based on typical values for PEM fuel cells [149].
Figure 4.29(a) and (b) shows the predicted HI and the RUL distribution respectively,
using the particle filter method. The overall RULp is taken as the 45th percentile of the
distribution in Figure 4.29(b) to ensure early predictions. This means the area to the left
of the 45th percentile is equal to 45% of the total distribution.
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Figure 4.29: RUL estimation with exponential equation as the state model (a) HI tra-
jectories and (b) RUL distribution

Table 4.16 shows the results of estimated remaining useful lifetime (RULp) at a failure
threshold on 96%, with the error calculated using Equation 2.5. The approach produces
estimations within an error margin of 14% which is a good reference for prognostics
considering the limited number of training data sets available. However, the predictions
can be improved through parameter adaption depending on the rate of degradation, as
described in the next section.
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Table 4.16: RUL estimation using particle filter with different state equations. RULa =
258 hours

State equation RULp er [%]
Exponential 237.0 8.13
Pure logarithmic 241.5 6.40
Log-linear 222.5 13.75
Linear 249.5 3.29
Polynomial 254.0 1.55

Parameter Adaptation

Figure 4.30 shows the self-healing effects where the voltage abruptly increases after cha-
racterization (EIS measurements). In addition, one can observe different degradation
trends after each characterization. The model presented in Figure 4.29 does not cater for
these effects.
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Figure 4.30: Self-healing effects of the PEM fuel cells after characterization

To address these limitations, a self-healing factor was introduced after each characte-
rization step and then the state equation parameters were adapted to the changing
degradation trend. This process was conducted at the prediction stage of the particle fil-
ter. Parameter adaptation was achieved by computing the difference in average gradient
between any two characterization intervals. The self-healing factor, sf was computed by
taking the average fractional increase in voltage after each characterization. Figure 4.31
shows the workflow of parameter adaptation and integration of self-healing factors sf . tc
is the current time, tch is the characterization time, HI(i)

k is the system state for particle
i. A stopping criteria can be defined based on the failure threshold.
Figure 4.32 shows the predicted HI with integration of a self-healing factor and state
model parameter adaptation. From Figure 4.32, it is evident that the proposed method is
able to capture the degradation trend of the fuel cells, including adapting to the changing
rate of degradation after characterization.
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Figure 4.31: Workflow of method with parameter adaption and integration of self-healing
factors
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Figure 4.32: RUL estimation with integration of self-healing factors and parameter ad-
aptation (a) HI trajectories and (b) RUL distribution

Table 4.17 shows the performance of the particle filter with integration of self-healing
factor and parameter adaptation. A comparison between Tables 4.16 and 4.17 shows a
relatively great improvement in the RUL prediction.

Table 4.17: RUL estimation with integration of self-healing and parameter adaptation.
RULa = 258 hours.

State model RULp [h] er [%]
Exponential 253.5 1.74
Pure logarithmic 247.5 4.07
Log-linear 247.5 4.07
Linear 253.0 1.94
Polynomial 256.0 0.78

Performance Evaluation with Test Data

After parameter identification and adaptation, the models were applied to the test data
and the RUL at the given current time and for predetermined failure thresholds was
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evaluated. Figure 4.33 shows sample RUL estimation using polynomial state model.
The predicted remaining useful lifetime RULp is taken as the 45th percentile of the
distributions as shown in Figure 4.33(b). This allows early predictions in most of the
cases.

0 200 400 600 800 1000 1200
3

3.1

3.2

3.3

3.4

Time [h]

H
ea
lt
h
In
d
ex
,
H
I

350 400 450
0

0.01

0.02

0.03

RUL [h]

p
d
f
of

R
U
L

Measured HI

Propagated HI

tc tEoL

(a) (b)

Threshold
(0.945HI o) RUL

RULp

Figure 4.33: RUL estimation with integration of self-healing factors and parameter adap-
tation (polynomial state model) (a) HI trajectories and (b) RUL distribution

In order to exploit the benefits of individual state equations for propagating HI , a weigh-
ted ensemble of the results from the five state equations was applied as follows:

RUL =
∑5
k=1wk · RULk∑5

k=1wk
. (4.55)

RULk is the estimated remaining useful lifetime using state model k and wk is the weight
of state equation k, computed from the errors in Table 4.17 as shown in Equation 4.56.
The weight of each state model could also be calculated based on the mean square error
obtained during the training stage.

wk = 1− erk
100 . (4.56)

Table 4.18 shows the estimated RUL at different failure threshold values and associated
percentage errors, computed using Equation 2.5. The failure threshold was taken as a
specified percentage power drop, in this case, percentage drop of the initial value of the
health index (HIo). Apart from the first threshold, which is too close to the current
time tc, all other predictions are very accurate (within 1% error). This is very good
performance and hence it can be concluded that the proposed approach is suited for this
kind of systems.

In prognostics, good performance of algorithms relates to early predictions and as such
late predictions were penalized more in the scoring of the challenge. The score accuracy
of a RUL estimate was defined as follows [150]:

AFT =
e

ln(0.5)· er5 if % er ≤ 0, (FN),
e− ln(0.5)· er20 if % er ≥ 0, (FP ).

(4.57)
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Table 4.18: Estimated RULk at different failure thresholds and associated percentage
errors.

Failure RULa RULp er [%]
threshold [h] [h]
3.5% of HIo 021.4442 062.0146 -189.19
4.0% of HIo 194.1917 194.0457 0.075
4.5% of HIo 209.7127 209.0492 0.316
5.0% of HIo 384.3280 381.5899 0.713
5.5% of HIo 386.7023 389.0192 -0.618

where AFT is the score at a failure threshold

FT ∈ {3.5; 4.0; 4.5; 5.0; 5.5%}.

The final score for all RUL estimates at the various thresholds, FT was taken as the mean
of all AFT . A score of 0.77 out of the maximum 1.0 was achieved with this approach,
which was the top score in the challenge. Considering that only one data set was used
for training, the performance of the method is very good. However, with more training
data sets, the performance can be improved since the distribution of various parameters
can be computed.

4.4.2.2 Ball Bearing Data

Temperature measurements can be used to monitor the degradation of systems that un-
dergo wear. Although temperature measurements have been recognized as a condition
monitoring data, their application in estimating the remaining useful life has not been
fully realized. One of the identified limitations of temperature in machinery diagnosis
and prognosis is the inability to identify faults at the development stage. However, this
limitation can be overcome by strategic positioning of the temperature sensors. A number
of sensors for condition monitoring of technical systems have been developed. A wireless
temperature sensor for condition monitoring of bearings operating through thick metal
plates was proposed by [197]. The sensor consists of a temperature-sensitive permanent
magnet which is attached to the inner ring of the bearing, thus allowing the bearing
temperature to modulate the produced magnetic field. Joshi et al. [198] demonstrated
the application of radio telemetry for bearing cage temperature measurement for use in
condition monitoring of bearings. The cage telemetry was found to capture faults such as
loss of lubrication much faster than housing thermocouple. Brecher et al. [199] demons-
trated the use of a customized telemetry system for measuring a bearing’s inner ring
temperature for high speed applications. The analysis showed that the inner ring tempe-
rature was vital in accurately monitoring the health of the bearing. These developments
could prove useful in enhancing fault identification and estimation of remaining useful
life in bearings as well as reducing the overall cost of the condition monitoring system.
The temperature of the bearing increases rapidly during initial operation and then incre-
ases slowly to a steady state temperature as shown in Figure 4.34. As the bearing nears
failure, the rate of temperature rise increases.

In this section, the approach described in section 4.4.1 can be implemented with tem-
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Figure 4.34: Typical run-to-failure temperature curve of a ball bearing

perature measurements as the health index. In this case, the system state is defined
as qk = HI k. HI is obtained by normalizing the temperature change within the range
0 ≤ HI ≤ 1 as shown in Equation (4.58)

HI = ∆T −∆Tmin
∆Tmax −∆Tmin

. (4.58)

In this study, two state equation were selected based on the temperature trend. The
first part of the curve was approximated using a logarithmic equation while the second
part was approximated using an exponential equation. The transition point was taken
as the point where the rate of change of the health index (filtered using a kernel-based
smoother) is zero, that is, dHI

dt = 0. Figure 4.35 shows the selection of state equations
based on training data set from bearing 1_1.
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Figure 4.35: Health index with different state models

The selected state equations are shown below:

f1 = α · ln
(
tk
tk−1

)
+ HI k−1, (4.59)

f2 = HI k−1 · exp(β(tk − tk−1)), (4.60)
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where, α and β are state equation parameters to be fitted from the training data.
To evaluate the performance of the approach on the training data and the suitability
of the selected state equation parameters, the available training data is truncated at
different fractions of the component’s lifetime. The health index is then computed and
propagated until it reaches a threshold. The RUL is then calculated from the trajectories
of the HI as shown in Figure 4.36(a). The overall RULp is taken as the 45th percentile
of the RUL distribution as shown in Figure 4.36(b). As stated earlier, this approach
increases the probability of early predictions.
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Figure 4.36: RUL estimation for bearing 1_1 at tc = 0.5tEoL (a) HI trajectories and (b)
RUL distribution

Figure 4.37 shows the performance of the approach based on the training data at different
prediction intervals. At the early stages of prediction, the approach performs poorly, with
a number of predictions falling outside the allowed error margin. This is because the rate
of degradation changes at different stages of the bearings lifetime.
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Figure 4.37: Estimated RUL at different prediction intervals without parameter
adaptation

Most of the particle filter approaches employed in literature use single state equation
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parameters when propagating the state of the system. However, as seen in Figure 4.37,
due to the non-linearity of the degradation trend, it is difficult to obtain parameters
that are able to track degradation of the systems accurately throughout its lifetime. The
parameters are accurate at certain degradation stages and inaccurate at others. This
limitation can be addressed by adapting the parameters to the rate of degradation. Figure
4.38 shows the RUL estimation at specified prediction intervals, with state equation
parameter adaptation based on the rate of change of the health index. With this approach,
the estimated RUL is approximately within the allowable ±10% error bounds at all
degradation stages.
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Figure 4.38: Estimated RUL at different prediction intervals with parameter adaptation

Once suitable state equation parameters have been identified, the method is then app-
lied to truncated test data or data acquired in real-time. This involves normalizing the
change in temperature of the test data using Equation 4.58 together with the maximum
and minimum values obtained from the training data. The particles are propagated with
resampling until the available data is exhausted after which the model is used to propa-
gate the health index up to the threshold. Figure 4.39 shows the RUL estimated through
this approach for bearing 1_7. The overall RULp at each prediction interval is taken as
the 45th percentile of the RUL distribution as shown in Figure 4.39(b).

The method was applied to other test bearings and a performance analysis conducted and
presented in Table 4.19. With this approach, a mean absolute percentage error (MAPE)
less than 20, computed for all the prediction intervals was achieved in all the data sets.
Apart from data set 4, the approach results in fewer false negatives FN , which is a
good attribute for prognostic methods. The approach takes into account measurement
and state propagation uncertainties as well as the changing rate of degradation. The
prediction accuracy also increases as more data becomes available due to resampling.
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Figure 4.39: RUL estimation for bearing 1_7 at tc = 0.5tEoL (a) HI trajectories and (b)
RUL distribution

Table 4.19: Performance evaluation of the PF-based HI propagation using temperature
measurement

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 3 26.66 0 0.00 6.17
1_2 8 21.10 6 -31.92 19.75
1_4 0 0.00 18 -14.55 13.90
1_5 15 18.19 1 -24.79 16.63
1_6 16 19.41 0 0.00 17.10
1_7 0 0.00 5 -62.53 18.30

4.5 Model Based Approach for Systems that Undergo
Wear

This section discusses a simplified model based prognostic approach for systems that
experience wear-induced failures. The approach is derived by correlating wear with tem-
perature rise due to frictional heating and uses run-to failure temperature measurements
to obtain coefficients which can be used with the temperature measurements at any given
time to estimate the remaining useful life. Typical application includes rolling element
bearings, journal bearings, shafts supported under journal bearings, friction clutches,
gears, etc. Due to lack of sufficient temperature measurements for prognostics, only ball
bearings are discussed in this section.
During operation, rolling element bearings encounter resistance to rotation which consist
of rolling and sliding friction. This resistance occurs at the rolling contacts, contact
areas between the rolling elements and the cage, as well as the guiding races [147]. The
frictional forces perform work which is dissipated in form of heat, consequently increasing
the bearing temperature. The frictional heat generated depends on the applied load,
rotational speed, the type and size of bearing, properties and quantity of lubricant as
well as the rate of heat dissipation. The rise in temperature reduces the viscosity of the
lubricant which leads to a reduction in the lubricant film thickness. This results to higher
asperity contact, increased heat generation due to increased friction and consequently
increased wear [198]. Wear results to continued loss of geometric accuracy of the rolling
and gradual development of other faults such as micro-pitting [147]. Since it is assumed
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that wear can be prevented by proper attention to the bearing, no considerable effort has
been made to estimate the remaining useful life of bearings related to wear and change
in temperature [147]. Johnson [200] investigated the temperature produced by frictional
heating in sliding contact by examining the temperature produced in a half space by a
heat source which moves on the surface. The maximum temperature occurs towards the
rear of the heated zone which has the longest exposure, as shown in Figure 4.40 [200].
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Figure 4.40: Temperature distribution due to uniform moving heat source, where qs is the
heat source, ∆T is the temperature difference, a is the half contact length
and v is the velocity of the heat source

For a bearing rotating at constant speed, frictional heat is generated at all contact points
leading to an overlap in the maximum temperature throughout the bearing. This would
result to an almost constant temperature distribution. Therefore, the temperature will
not be a function of position but the factors mentioned previously. The bearing operating
temperature will also depend on the balance between the heat generated and the heat
removed from the bearing through conduction, convection and radiation.
When a bearing is run continuously to failure, at constant speed, initially the rate of
temperature change increases rapidly then decreases to an almost constant value. Just
before failure, the temperature change again increases rapidly. This behavior can be
observed in Figure 4.34 and is consistent with degradation of bearings, where degradation
is high initially, followed by gradual degradation and finally high degradation towards
failure. This indicates that temperature can be used to effectively track degradation of
components occasioned by wear.
Assuming that the heat removal rate is constant for a given system, then it is possible
to track bearing degradation from temperature measurements. Since wear is approxima-
tely proportional to the work done by the frictional forces which give rise to frictional
heat, then it may be assumed to be directly proportional to the temperature rise in the
component. This relationship can be formulated as

∆ṁ
∆A ∝

∆PR
∆A ∝ (T (t)− To), (4.61)

where ∆ṁ is the material removal rate, ∆PR is frictional power, T (t) is the current
temperature, Ti is the room temperature and ∆A is the contact area. Taking the in-
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itial temperature as the reference for temperature change and considering that wear is
approximated by the material removal rate yields

mEoL = ρ∆A∆z =
∫ tEoL

0
ṁ(t)dt = k

∫ tEoL

0
∆T (t)dt, (4.62)

where ρ is the density of the material, ∆A is the contact area, ∆z is the approximate wear
depth, tEoL is the time at the end of life of the component, k is proportionality constant,
mEoL, is the allowable mass that can be removed through wear before a component is
considered to have failed. The ratio of allowable mass to the proportional constant can
be obtained from the training data as by

mEoL

k
=
∫ tEoL

0
∆T (t)dt. (4.63)

Considering the current time, tc, Equation 4.63 can be rewritten in cumulative form as

mEoL

k
=
∫ tc

0
∆T (t)dt+

∫ tEoL

tc
∆T (t)dt. (4.64)

During testing or online prognosis, the second term of Equation (4.64) is unknown.
This term is proportional to the remaining allowable wear before the component fails.
Therefore this factor can be referred to as the remaining wear coefficient. Equation (4.64)
can be rearranged as: ∫ tEoL

tc
∆T (t)dt = mEoL

k
−
∫ tc

0
∆T (t)dt. (4.65)

The term ∫ tEoL
tc ∆T (t)dt can be used as a health index HI , defined as follows

HI =
∫ tEoL
tc ∆T (t)dt

mEoL

k

. (4.66)

Division by mEoL

k normalizes the health index so that HI is within the range 0 ≤ HI ≤ 1,
with HI = 1 for a healthy component and HI = 0 for a failed component. Figure 4.41
shows the health index of the two bearings used to generate the training data sets. The
health index can be approximated by a 2nd order polynomial.

The term mEoL

k is computed from the training data sets which contain run-to-failure
temperature measurements. The health index of the test bearing at the current time is
computed using Equation (4.66), with mEoL

k obtained from the training data sets. To
obtain the time to end of life, tEoL of the test bearing, a polynomial curve of order 2
is fitted to the calculated health index and extrapolated to the point where the health
index is zero. The RUL is calculated as shown in Figure 4.42(a). Figure 4.42(b) shows
the RUL estimation at specified prediction intervals. The method has performs poorly
during the early lifetime of the component when less data for fitting the HI is available.
However, towards the end of life, the approach is very accurate.

The method was applied to other test bearings and a performance analysis conducted and
presented in Table 4.20. With this approach, a mean absolute percentage error (MAPE)
less than 20 for all the data sets was achieved. The approach is particulary very accurate
towards the end of life of the components and majority of the predictions that are within
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Figure 4.41: Health index computed from the training bearings
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Figure 4.42: RUL prediction for bearing 1_6 at tc = 0.5tEoL (a) HI trajectory and (b)
estimated RUL at specified prediction intervals

the allowable error margin are located within the second half of the component’s lifetime.
Compared to theHI propagation method discussed in section 4.4, this approach performs
better with an overall MAPE of 14.37 compared to 15.31 and very few false negatives.
The performance can be improved if more training data sets are available to compute
the distribution of mEoL

k .

Table 4.20: Performance evaluation of the proposed model-based approach using tempe-
rature measurement

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 7 30.14 0 0.00 13.43
1_2 10 23.02 1 -25.00 15.56
1_4 8 25.40 0 0.00 11.81
1_5 13 21.23 0 0.00 17.21
1_6 10 21.97 0 0.00 13.60
1_7 9 26.04 1 -10.53 14.65
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4.6 Ensemble of Methods

Different methods perform differently depending on the training data available and also
the degradation level at the time of prediction. For instance, the model based method
utilizing temperature measurements, is very accurate for predictions made within the
second half of the component’s lifetime. In order to improve prediction accuracy and build
a more robust prognostic method, an ensemble of methods can be built by combining
predictions of several methods based on a weighted average. The weights can be generated
through performance evaluation of the training data in cases where only few data sets
are available or by evaluating the training data sets in a cross validation manner in cases
where more training data sets are available. The weight of each method can be taken
as the average score computed through Equation 4.57 at different prediction intervals.
This results in a weight of 1 for accurate predictions, in which er = 0%. Table 4.21
shows the weights of each method computed from the training data sets of the ball
bearings while Table 4.22 shows the weights of the methods for the milling cutter data
sets. Although the mean absolute percentage error (MAPE) of the model-based approach
utilizing temperature is lower than some of the other methods, majority of the predictions
are early thereby giving it a higher weight.

Table 4.21: Prognostic method weight computed from ball bearing data sets
Prognostic method MAPE wi
Health State Estimation - SVM 11.50 0.68
Health State Estimation - RF 11.18 0.57
Mapping features to RUL - ELM 14.40 0.66
Mapping features to RUL - RF 16.38 0.42
Mapping features to RUL - SVM 14.49 0.47
Propagating HI (temperature) 12.96 0.60
Model-based approach (temperature) 14.50 0.58

Table 4.22: Prognostic method weight computed from milling machine data sets
Prognostic method MAPE wi
Health State Estimation - SVM 12.37 0.64
Health State Estimation - RF 10.58 0.65
Mapping features to RUL - ELM 10.75 0.51
Mapping features to RUL - RF 14.45 0.52
Mapping features to RUL - SVM 12.01 0.53
Mapping features to HI - ELM 12.52 0.60
Mapping features to HI - RF 12.20 0.56
Mapping features to HI - SVM 12.43 0.56
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The resulting RUL is computed as follows

RULens =
∑nm
i=1wiRULi∑nm

i=1wi
, (4.67)

where RULi is the RUL estimated by method i, wi is the weight of method i and nm is
the number of methods. Performance evaluation of the ensemble of methods is shown in
Table 4.23 for ball bearing data sets. Various combinations of the methods were evaluated
and for the ball bearing data sets, combination of the five best algorithms was found to
yield the best results, with a mean MAPE of less than 10% and 101/133 predictions
within the acceptable error region of ±10%. The ensemble of methods outperforms all
individual methods and it also integrates the advantages of each of the combined methods
to yield a robust approach.

Table 4.23: Performance evaluation of the ensemble of 5 best methods for ball bearing
data sets

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1_1 1 10.26 0 0.00 3.72
1_2 0 0.00 4 -35.57 10.36
1_3 0 0.00 5 -22.00 8.95
1_4 0 0.00 4 -17.01 7.11
1_5 1 16.41 1 -24.17 6.55
1_6 9 14.02 2 -50.57 14.12
1_7 0 0.00 5 -27.48 11.04

The performance evaluation of ensemble of methods for the milling machine cutting
tool data sets is shown in Table 4.24. Similarly, various combinations of the methods
were evaluated and a combination of four best methods was found to yield the best
performance with a mean MAPE of 9.58 and 36/57 predictions within allowable error
region. The ensemble of methods also outperforms all the individual methods.

Table 4.24: Performance evaluation of the ensemble of 4 best methods for milling machine
cutting tool data sets

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 2 16.45 2 -24.32 7.54
2 3 14.73 2 -31.60 8.70
3 11 16.47 1 -17.79 12.52
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4.7 Prognostic Method Selection

Selection of the most suitable method for a given application depends on a number of
factors as listed in conclusion of the literature review in section 2.4.
In cases where run-to-failure condition monitoring data is available, a number of approa-
ches may be applicable. However some approaches perform better than others depending
on the type of system. Table 4.25 summarizes the performance of different approaches on
ball bearing data. FP and FN are the total number of false positive and false negatives
for all the data sets. Am is the mean score of all tests, based on specified prediction time
intervals computed using Equation 4.57. Health state estimation approach based on sup-
port vector machines (SVM) with optimally tuned parameters has the best performance
for individual algorithms, with a performance score of 0.62 out of the maximum 1. The
method has fewer total number of false positives and false negatives. This is attributed to
the high classification accuracy of SVM with tuned parameters. This approach is suited
for systems such as bearings, gears, pumps, etc., that have several failure modes that
can be identified from condition monitoring data. For systems that undergo wear and for
which temperature sensors can be incorporated to track temperature rise from dissipated
frictional heat, then a model-based approach is best suited. This approach is particularly
very accurate towards the end of life of the system, when maintenance decision is re-
quired. This approach is also less costly in terms of instrumentation and computational
requirements. In order to incorporate the benefits of individual algorithms, an ensemble
of methods based on a weighted approach is necessary. The ensemble method has the
best overall performance with a mean performance score of 0.64, a mean MAPE of 8.83
and 101/133 predictions within the allowable error region. This shows that the proposed
methods are excellent for prognostics considering the limited number of data sets used
for training and hence can be used as reference for prognostics at the industry level.

Table 4.25: Summary of the performance of different approaches on ball bearing data
sets
Method FP FN MAPE Am
Health State Estimation - SVM 29 20 12.27 0.62
Health State Estimation - RF 41 16 12.67 0.59
Mapping features to RUL - ELM 48 22 14.92 0.56
Mapping features to RUL - RF 16 48 14.53 0.44
Mapping features to RUL - SVM 29 32 14.83 0.48
Propagating HI (temperature) 42 30 15.31 0.50
Model-based approach (temperature) 57 2 14.37 0.62
Ensemble (5 best methods) 11 21 8.83 0.64

Table 4.26 summarizes the performance of different approaches on milling machine cut-
ting tool data. Random forest (RF) based health state estimation method provides the
overall best performance with a score of 0.66. This could be attributed to the several
wear states that the tool undergoes before it fails as observed on different contours of the
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wear data in Figure 3.18. Other methods such as SVM-health state estimation method
and extreme learning machines (ELM)-based method of mapping extracted features to a
health index derived from RUL also produce good performance. The ELM-based health
index estimation approach is the easiest to implement and if a physical health index is
not available, then a virtual health index can be defined from the data using data fitting
methods. The methods can be improved further using more training data sets as this
increases the probability of covering more failure modes.

Table 4.26: Summary of the performance of different approaches on milling machine cut-
ting tool data sets
Method FP FN MAPE Am
Health State Estimation - SVM 12 10 12.38 0.60
Health State Estimation - RF 15 5 9.74 0.66
Mapping features to RUL - ELM 13 21 12.32 0.53
Mapping features to RUL - RF 12 10 11.66 0.55
Mapping features to RUL - SVM 14 11 13.13 0.53
Mapping features to HI - ELM 25 5 13.53 0.61
Mapping features to HI - RF 13 12 11.65 0.57
Mapping features to HI - SVM 11 14 12.16 0.56
Ensemble (4 best methods) 16 5 9.59 0.66

For systems where a health index is used as the condition monitoring data, such as
fuel cells, lithium ion batteries, electronic components, etc., then the best approach is to
propagate the HI to a predetermined threshold using a method such as particle filter, that
can incorporate various uncertainties and also adapt to the changing rate of degradation.



5 Prognostics of Piezoelectric
Transducers

Piezoelectric transducers are used in a wide range of applications and in most cases they
are subjected to electromechanical cyclic loading. This often leads to accumulated fatigue
damage and eventually to failure. For systems with high throughput, unforeseen failures
often lead to long machine downtime leading to loss of production time and revenue. The
reliability of these transducers is therefore an important aspect in their application [201].
Condition monitoring which comprises continuous or periodic monitoring of the health
of technical systems and utilizing this information to predict failures and estimate the
remaining useful life RUL can be used to increase reliability, safety and availability [8].
This is achieved by using the RUL estimates to schedule appropriate maintenance or to
adaptively control the reliability for high precision positioning of actuators.

Traditionally, condition monitoring of piezoelectric transducers involves periodic charac-
terization of health indices through impedance measurements, which requires additional
measuring equipment, increases downtime and decreases availability. The cost of a con-
dition monitoring system can be reduced by use of quantities such as driving electric
current or voltage which are normally used for control and performance monitoring pur-
poses. Ronkanen [202] evaluated the use of electric current measurement in control and
monitoring applications. The study showed that current measurements can be used for
applications such as displacement control, force estimation and to detect self-heating in
actuators without the use of additional sensors [202]. Self-sensing approach using electric
current has also been used in detection of cavitation in ultrasound transducers [156].

In this chapter, methods proposed in Chapter 4 are extended to utilize self-sensing ca-
pability of piezoelectric transducers to estimate their current health state and RUL. The
impedance of a piezoelectric transducer operating at constant conditions changes with
degradation. Therefore, if the transducer is excited with a constant amplitude voltage,
the electric current is expected to change with degradation of the transducer. The electric
current can be used as condition monitoring data to track degradation. The proposed
approach uses machine learning algorithms to map features extracted from electric cur-
rent to a health index (as detailed in section 4.3) derived from velocity measurements.
Similarity based methods (described in section 4.3) and propagating HI with particle
filters (described in section 4.4) are used to estimate the RUL from the current health
index. The feasibility of the approach is demonstrated using run-to-failure experiments
of piezoelectric bimorph benders.
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5.1 Experimental Set-up

A set-up for electric cyclic loading of piezoelectric bimorph actuators (type M1876 from
Johnson Matthey) was developed. The bimorph is clamped between two aluminum bars
on one end while the other end is free as shown in Figure 5.1. It is dynamically ex-
cited with a sinusoidal voltage (Vpp = 80 V, fe = 200 Hz), which is generated by a
signal generator (Wavetek 395) and amplified by an amplifier (Piezomechanik LE250/2).
Electric current is measured using a non-intrusive current probe (Tektronix TM5003)
while the displacement of the free end is measured using a laser vibrometer (Polytec
OFV 3001+OFV 512). The data are recorded for 0.5 s at intervals of 1 minute and at
a sampling frequency of 20 kHz using a data acquisition (DAQ) board (Measurement
Computing USB-202). Fifteen run-to-failure experiments were conducted.

Figure 5.1: Experimental set-up for electrical cyclic loading of a piezoelectric bimorph
actuator

Table 5.1 shows the material and geometric data of the piezoelectric bimorphs utilized in
the experiments. The bimorph is rated at 150 V, but at frequencies near resonance, dis-
placements is dynamically amplified. Therefore at these frequencies, the bimorph should
be operated at much lower voltages, approximately 15 V [203]. With the mentioned exci-
tation voltage, the degradation of the bimorph is accelerated so that failure occurs within
20 hours or after approximately 15 million cycles.

Typical application of the set-up in Figure. 5.1 is in textile knitting machines where
the bimorphs are used for controlling the position of the needle during knitting [204].
The main mode of failure observed with this set-up was development and evolution of
surface and internal micro cracks in the piezoelectric ceramic of the bimorph as shown
in Figure 5.2.
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Table 5.1: Specifications of the Bimorphs
Parameter Value
Total length of piezoelectric layers 45±0.1 mm
Effective length of bender 38±0.5 mm
Beam width 2.1±0.1 mm
Resonance frequency ∼250 Hz

Figure 5.2: A bimorph showing development of surface and internal cracks in the bi-
morph after 2 × 107cycles (a) top view and (b) a section of the side view
(magnification of 30×)

5.2 Identification of Health Indices

In order to develop a suitable condition monitoring system, it is important to identify
measurable quantities that give an indication of the health of a component. The tradi-
tional approach is to use admittance or impedance measurements to characterize various
properties of the piezoelectric device. Measurement of performance indicators such as
displacement or force developed by the piezoelectric device is another approach which is
easier to implement in online condition monitoring.

5.2.1 Admittance Measurement

An impedance analyzer (HP 4192A) was used to measure the electrical admittance of
the piezoelectric bimorph over a range of excitation frequencies between 200-300 Hz at
an amplitude of 1 V. The resonance and anti-resonance frequencies of the piezoelectric
bimorph in this set-up are expected to lie within this range. The measurements were
conducted after every hour (approximately 7.2 × 105 cycles). Figure 5.3(a) shows the
admittance over the specified frequency range after specified operation cycles. The ad-
mittance decreases with continued operation, which corresponds to an increase in the
impedance of the piezoelectric bimorph. Therefore, the equivalent resistance, Rm due to
internal damping of the bimorph can be used to track degradation as shown in Figu-
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re 5.3(b). The equivalent resistance is computed from the admittance by

Rm = 1
max(Re(Yel))

, (5.1)

where Yel is the admittance.
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Figure 5.3: Health index identification of piezoelectric bimorph (a) admittance measu-
rement at specified operation cycles and (b) change in equivalent resistance
with continued operation

Another indicator that shows a trend consistent with degradation is the minimum phase
of the admittance which is also proportional to the internal damping of the piezoelectric
bimorph. A plot of the phase of the admittance over the excitation frequencies is shown
in Figure 5.4(a), while Figure 5.4(b) shows the trend of the minimum phase over the
lifetime of a bimorph.
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Figure 5.4: Tracking degradation through minimum phase of electrical admittance
(a) phase measurement and (b) trend of minimum phase with continued
operation

The disadvantage of admittance or impedance measurements taken over a range of fre-
quencies for tracking degradation of piezoelectric bimorphs is that it may require in-
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terruption of production during operation and hence it may not be suitable for online
condition monitoring. In addition, it is difficult to define failure threshold based on these
quantities without assessing the performance of the transducer. A more realistic ap-
proach would be to use a performance index such as displacement or force measurements
as the health index. The quantity to use depends on the application of the piezoelectric
bimorph.

5.2.2 Displacement Measurements

Displacement of the free end is one of the measurable performance indices that can be
used to track degradation of piezoelectric transducers. In this work, the velocity of the free
end which is proportional to the displacement was measured using a laser vibrometer.
Figure 5.5(a) shows changes in velocity after specified operation cycles for a bimorph
excited by a sinusoidal voltage set at a constant value at the signal generator. The peak
to peak velocity can be used to define a health index as

HI = vA
vAo

, (5.2)

where vA is the peak to peak velocity, vAo = vA(t = to) is the initial peak to peak
velocity. Figure 5.5(b) shows the trend of the health index of the lifetime of a piezoelectric
transducer.

Figure 5.5: Change in velocity with degradation (a) raw velocity measurements and (b)
health index derived from velocity

The normalization of the health index with the excitation voltage prevents a false alarm
due to changes in the excitation voltage, especially for systems that require precise dis-
placement where the excitation voltage is varied to ensure a constant displacement is
attained. The end of life of a transducer can be defined as a predefined percentage drop
of the health index, which depends on the application of the transducer. In this work,
the failure threshold was set at 10% drop of the health index.
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5.2.3 Electric Current Measurements

In most applications of piezoelectric transducers, driving electric current and voltages
are measured for control purposes. As seen in Figure 5.3, the admittance changes with
degradation, therefore, if one of these quantities is held constant, then the other quantity
may be tracked to represent degradation under constant load. In this application, the
amplitude of the driving voltage is held constant and the electric current is measured
using a non-intrusive electric current probe. Figure 5.6(a) shows changes in current af-
ter specified operation cycles. The trend in the electric current change throughout the
lifetime of a piezoelectric transducer can be observed from features extracted from the
raw electric current signals, as seen in Figure 5.6(b). This trend appears to be consistent
with degradation.
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Figure 5.6: Change in electric current with degradation (a) raw electric current measu-
rements and (b) RMS value of the current with continued usage

5.3 Prognostics Approach

In actual practice, the physical health index may not be measured easily. However, mea-
surable quantities such as the driving electric current or voltage can be used together with
machine learning algorithms to approximate the health index from which the remaining
useful life can be estimated. Figure 5.7 shows the workflow of the proposed approach
which is an extension of the method described in section 4.3. The approach involves two
steps: training, where a machine learning algorithm is trained to map extracted features
to the health index and testing, where the learned model is used with extracted features
from the test data to estimate the current health index of the transducer. The estimated
health index is then either propagated to a predetermined threshold using particle filter,
from which the RUL is determined or the RUL is computed through similarity approach.

5.3.1 Health Index Prediction

Nine run-to-failure data sets (NT = 9) were used to train three machine learning (ML)
algorithms: extreme learning machines (ELM), random forests (RF) and support vector
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Figure 5.7: Workflow of the prognostic approach for piezoelectric transducers

machines (SVM). The data sets consisted of Q input features xtrk extracted from current
measurements using methods described in section 3.3 and selected using methods descri-
bed in section 3.4.2. The data sets also contain velocity measurements which were used
as health indices HI tr and as ground truth representation of degradation. This resulted in
nine models for each algorithm, each consisting of weights, biases and parameters used in
mapping the features to the health index. The use of multiple models ensures that various
uncertainties such as loading and manufacturing variability are taken into consideration.
Six data sets were used for testing. For each test data set, extracted features xtek were
used as inputs to the trained models which have predicted health index as output. Nine
trajectories of the predicted HI pi, corresponding to i = 1, 2, ...NT models are produced.
The final HI p is obtained by combining all HI pi using weighted approach. The weights wi
are obtained through a similarity measure computed from the mean square error (MSE)
between the training features xtr and test features xte as follows

wi = 1
Q

Q∑
k=1

([1
n

n∑
j=1

(
xtrijk − xtejk

)2]−1)
, (5.3)

W =
NT∑
i=1

wi, (5.4)

HI p = 1
W

NT∑
i=1

wi · HI pi, (5.5)

where n is the number of data points in the test data. Figure 5.8is a comparison of
predicted health index with ELM, RF and SVM and the actual health index of a sample
test bimorph obtained according to Equation 5.2. The two indices overlap each other
but a slight difference between the different algorithms can be observed. The overlap
indicates that the algorithms accurately predict the health index.

The performance of the algorithm in predicting the health index was evaluated by com-
puting the mean square error (MSE) and correlation coefficient between the predicted
and actual HI . Table 5.2 shows the performance of the algorithm. A correlation coeffi-
cient, rc close to 1 and MSE close to 0 shows high similarity between the predicted and
actual HI . The approach is accurate in estimating the HI , as can be observed from the
performance metrics in Table 5.2.
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Figure 5.8: Comparison of predicted HI p and actual HI a health index for test data set 1

Table 5.2: Performance evaluation of the approach in predicting HI

Test ELM RF SVM
MSE rc MSE rc MSE rc

[×10−6] [×10−6] [×10−6]
1 6.62 0.990 2.76 0.997 8.84 0.991
2 11.30 0.996 10.47 0.997 11.08 0.996
3 8.14 0.993 8.62 0.999 6.86 0.994
4 6.46 0.994 2.42 0.998 5.32 0.995
5 7.85 0.991 2.57 0.998 7.44 0.992
6 9.09 0.993 3.14 0.998 16.3 0.993

5.3.2 Remaining Useful Lifetime Estimation

In prognostics and health management of technical systems, the RUL is estimated at
specified intervals of operation. This information is then used to either schedule appro-
priate maintenance or control the reliability of the technical systems. In this work, two
methods, similarity based method (described in section 4.3) and particle filter (described
in section 4.4), are used to estimate the RUL.

5.3.2.1 Similarity Based Method

The similarity between the features of the test data set and those of the training data
sets is computed through MSE. The similarity weights obtained in section 5.3.1 are used
with the RUL of the training data at the predicted value of HI to obtain a weighted
RUL of the test data set as follows

RULp = 1
W

NT∑
i=1

wiRULtri . (5.6)

The confidence intervals were calculated as described in section 2.3.3 using normal dis-
tribution of the lifetimes, since the lifetimes of the training data sets were found to be
normally distributed as shown in Figure 5.9.
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Figure 5.10 shows a comparison of estimated RUL of test data set 1 based on similarity
method with HI predicted using (a) extreme learning machines (ELM), (b) random
forests (RF) and (c) support vector machines (SVM).
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Figure 5.10: RUL predictions at specified time intervals for test data set 1 with HI pre-
dicted through, (a) ELM, (b) RF and (c) SVM

The performance of the methods was evaluated and is presented in Tables 5.3, 5.4 and 5.5.
The mean MAPE for ELM, RF and SVM are 8.9, 9.4 and 9.7 respectively, all less than
10. Therefore, it can be concluded that this approach is a good reference for prognostics
as long as there is sufficient (above ten) training data sets.
An ensemble of the HI obtained from the three methods based on a simple mean was
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Table 5.3: Performance evaluation of the method with the health index estimated using
ELM

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 1 19.69 1 -23.7 6.35
2 2 17.84 6 -14.31 8.50
3 0 0.00 4 -20.31 7.34
4 0 0.00 4 -19.93 6.74
5 2 14.00 3 -44.42 11.29
6 10 20.58 1 -11.02 13.16

Table 5.4: Performance evaluation of the method with the health index estimated using
RF

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 2 28.56 1 -12.06 6.87
2 1 53.52 5 -14.45 10.90
3 0 0.00 9 -17.26 10.31
4 0 0.00 5 -20.13 7.35
5 0 0.00 4 -42.02 11.37
6 6 18.26 0 0.00 9.82

Table 5.5: Performance evaluation of the method with the health index estimated using
SVM

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 3 26.99 0 0.00 8.14
2 4 26.93 3 -16.59 11.57
3 1 61.55 2 -11.05 7.78
4 1 47.13 4 -16.22 7.62
5 1 12.00 3 -34.64 8.79
6 10 22.31 0 0.00 14.15

also evaluated and results are presented in Table 5.6. The mean MAPE for the ensemble
is 8.7, which is very close to that of the three algorithms. This shows that the algorithms
(ELM, RF and SVM) perform more or less the same with this approach. However, the
ensemble exploits the advantages of each algorithm and hence resulting in a more robust
prognostic method.

5.3.2.2 Particle Filter Method

In this method, particle filter is used to propagate the health index from the current
time stamp to a threshold from which the RUL is estimated. The current health index
is taken as the mean of the HI obtained from the three machine learning algorithms.
The training data was used to fit a state model for propagating the health index. The
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Table 5.6: Performance evaluation of the method with the health index estimated using
ensemble of ELM, RF and SVM

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 3 17.21 0 0.00 6.35
2 2 30.15 3 -16.15 10.21
3 1 18.07 5 -15.53 7.86
4 0 0.00 4 -18.22 6.11
5 1 11.55 3 -43.04 9.87
6 10 18.24 0 0.00 11.97

state equation and its parameters were identified through particle swarm optimization
(PSO) by fitting various state equations to the training data. The lowest mean square
error (MSE) between the actual health index and the fitted health index was used as the
selection criteria for the state equation. A two-degree exponential equation given below
was found to be the best fit for the health index:

HI k+1 = HI k
[
exp (−αtk) + exp

(
β

tk + 1

)]
, (5.7)

with the model parameters obtained as: α = 9.5× 10−5 and β = 0.016.

The observation equation was taken as

ok = HI k + νk, (5.8)

where νk is the observation noise, computed from the training data sets.

Figure 5.11 shows a comparison of the actual and the fitted HI for training data set 4. As
seen in Figure 5.11, the two curves overlap each other indicating that the fitted equation
correctly represents the behavior of the data. The MSE between the actual HI and fitted
HI for this data set was found to be 1.94×10−5.
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Figure 5.11: Comparison of the actual HI and fitted HI for training data set 4, obtained
through particle swarm optimization (PSO)
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The available predicted HIp is used as the observation or measurement during the update
step. The particles are initialized with the initial HIpo, which was found to be distributed
around 1 with a standard deviation of 0.015. The HIp is propagated until the threshold
is reached from which the RUL is estimated as shown in Figure 5.12(a). Figure 5.12(b)
shows the distribution of RUL from the particles. The overall RUL is obtained as the
45th percentile of the RUL distribution, as shown in Figure 5.12(b). The 45th percentile
of the distribution is the RULp at which the area to the left is 45% of the distribution.
This ensures early prediction in most cases.
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The RUL estimation was conducted at specific prediction intervals and a sample per-
formance is shown in Figure 5.13. The confidence interval was computed based on the
standard deviation of the RUL of the training specimens at the specified prediction in-
tervals. The confidence interval lies within the 10% error margin as can be observed from
Figure 5.13.
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Table 5.7 shows the performance of the particle filter approach for all the test data
sets. The mean absolute percentage error (MAPE) for all the prediction intervals lies
within ±15% indicating the approach can be used as a good reference for scheduling
maintenance or for controlling the reliability of the transducers.

Table 5.7: Performance evaluation of the method with RUL estimated using particle filter
method

Test
Early Predictions Late Predictions

MAPEFP Mean er [%] FN Mean er [%]
1 3 21.31 1 -12.98 6.77
2 2 31.32 2 -13.82 8.73
3 0 0.00 4 -14.09 6.07
4 0 0.00 3 -18.67 5.85
5 2 11.70 2 -53.43 9.10
6 11 17.08 0 0.00 12.15

In estimating the health index from the features, SVM shows the best performance and
has the least mean square error (MSE), as seen in Table 5.2. However, RF and ELM also
perform relatively well. The accuracy of the RUL estimations depends on the accuracy in
predicting the HI . Table 5.8 compares some of the performance metrics for the different
methods presented. The average computation time per prediction does not include the
training time since it is assumed that during online prognosis, the trained model is
already available. The mean MAPE is for all the six test data sets and the performance
evaluation value Am takes into account early and late predictions. The highest score
when all predictions are timely is 1.

Table 5.8: Performance Evaluation of different methods in RUL estimation

Method FP FN mean MAPE Am
Average computation
time per prediction [s]

ELM 15 19 8.89 0.598 0.78
RF 9 24 9.43 0.586 0.14
SVM 20 12 9.68 0.618 1.07
Ensemble 17 15 8.73 0.613 1.99
PF 18 12 8.11 0.646 88.00

Particle filter method shows the overall best performance but has more computational
requirements in terms of time and memory.





6 Conclusion and Future Work

6.1 Conclusion

The ability to estimate the current health state of a technical system and to accurately
estimating its remaining useful life is very important in condition based maintenance.
The information on the health condition of a system is not only useful in scheduling
maintenance but also in optimizing inventory and resource utilization. This information
can also be used to ensure the mission objective of autonomous and intelligent systems
is achieved. In the case of machine tools, the health state of the system can also be
used for indirect quality control of products since the quality of a product is affected
by the condition of the tools. Given the importance of condition monitoring of technical
systems, this work focussed on development of four approaches for condition monitoring
of technical systems with the aim of predicting when a system is likely to fail within
reasonable accuracies. The approaches depend on the type of system and the condition
monitoring data and how it is processed. The main aim of this work was to develop a guide
for selecting the appropriate approach and method for prognostics of a given system.
This was done by evaluating the performance of selected approaches and algorithms
with condition monitoring data of different systems.

For continuous signal-type condition monitoring data, such as vibration signals, signal
denoising through discrete wavelet transform (DWT) is an important step in preproces-
sing the data. Denoising removes the high frequency sub-bands of a signal which contain
the most noise and thereby ensuring that the denoised signal has the most information on
the condition of the system. It was demonstrated that denoising the signals enhances the
extracted features for fault diagnosis and prognosis. Features extracted from the denoised
signals are used together with machine learning algorithms to predict the current health
state as well as the remaining useful life. Since not all features contain information on
the health state of a system, it is important to select relevant features in order to redu-
ce dimensionality of the data and consequently reduce the computational requirements.
Feature selection also reduces over-fitting of machine learning algorithms and hence im-
proves the generalization ability of the algorithms. In this work, two methods for feature
selection have been proposed. The maximum separation distance method is proposed for
systems with discrete health states or for diagnoses. In this case, the separation distance
between any two classes is computed and features that show maximum separation of clas-
ses are selected as input to machine learning algorithms. The method was validated with
vibration and electric current data of ball bearing with different faults. For regression
or function approximation (for instance health index approximation), the use of extreme
learning machines to evaluate the performance of each feature on approximating the he-
alth index is best suited for feature selection. This allows the selection of features that
closely approximate the health index.
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For single valued condition monitoring data or in some cases data used for performance
monitoring of technical systems, preprocessing involves the removal of outliers as well
as filtering out the noise using smoothing algorithms such as kernel based regression
smoother and moving average smoother. The kernel smoother provides better results
since it does not have the bias at the end point of a feature/health index as opposed to
the moving average approach. The condition monitoring data is then directly used as the
health index and propagated to a predetermined threshold.

A large number of machine learning algorithms have been proposed in literature. Ho-
wever, there is no clear guideline on which approach to use with the machine learning
algorithms for prognostics. In this work, a number of approaches based on the type of
system being monitored and the condition monitoring data available, have been propo-
sed:

• For systems or components that display several discrete health states before failure,
such as ball bearings and gearboxes, machine learning algorithms can be trained to
identify the current health state through health state probabilities. Once the current
health state is identified, the health state probabilities are used with the historical
percentage of the remaining useful life of similar systems to estimate the remaining
useful life. In this work, a method for identifying the optimum number of health
states has been introduced. The approach involves the use of k-means clustering
algorithm with randomly sampled features to cluster data into a number of clusters
and a similarity index between sorted elements of the clusters is computed. The
number of clusters with the highest similarity index is selected as the optimum
number of health states. The approach was validated with vibration data of ball
bearings with three health states or conditions: healthy, small pitting on outer
ring and large pitting on outer ring. Once the optimum health states have been
identified, the k-means algorithm is used to cluster the training data from which
the health state label/class is identified. The selected features are used as inputs to
machine learning algorithms and the health state as the target. The result from the
training process is a health state classification model which can be used online or
with test data of similar systems. Two machine learning algorithms were evaluated
based on this approach:

1. support vector machines (SVM) with optimally tuned parameters

2. random forests (RF)

The methods were evaluated with run-to-failure data of ball bearings and milling
machine cutting tools with both methods yielding a mean absolute percentage
error (MAPE) of less than 20 and with majority of the predictions falling within
acceptable error. SVM produces the best overall performance.

• If a system is operating continuously at constant or near constant operating condi-
tions, then machine learning algorithms can be used to map extracted features to a
health index that represents the fractional remaining useful life of the system. This
involves function approximation and the utilization of machine learning algorithms
for regression. In this work, three state of the art algorithms for regression: extre-
me learning machines (ELM), random forests (RF) and support vector machines
(SVM) are evaluated with the ball bearing and milling machine cutting tool data.
In both types of data, the algorithms estimate the RUL with a MAPE less than
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20, which is a good reference for prognostics. However, ELM method has better
predictions, with the majority of the predictions being early predictions.
• When a system has a measurable health index in addition to condition monitoring
data, then machine learning algorithms can be employed to map the extracted
features from condition monitoring data to the health index. The approximated
health index is then used with either similarity based approach or particle filter
to estimate the RUL. Similarly, this involves function approximation and requires
regression machine learning algorithms. ELM, RF and SVM were evaluated with
milling machine data and found to yield MAPE of less than 20. The performance
of this approach compares very well with health-state based methods but has the
advantage of being less complex since the selection of health states is not required.
• In some systems, a performance index which is usually measured for control pur-
poses, for instance voltage measured in fuel cells for purposes of regulating power
usage, could also be used as condition monitoring data. In systems or components
that have relative motion and hence wear is a failure mode, temperature could be
used as a condition monitoring data. In this case, the data is usually single valued
and can be used with a method for propagating the health index from the current
value to a predetermined threshold, from which the RUL is determined. In this
work, particle filter approach was used for this approach. The method was adapted
to cater for changing degradation rates and self-healing effects observed in some
systems such as fuel cells. The approach was evaluated with run-to-failure data of
PEM fuel cells and temperature measurements for ball bearings. The approach was
found to yield high accuracies when used with voltage measurements of fuel cells.
The performance with temperature measurements of ball bearings was moderate.
This is because temperature is very sensitive of the surroundings and may require
an additional sensor for reference.
• For systems that undergo wear and for which temperature sensors can be incorpo-
rated to track temperature rise from dissipated frictional heat, then a model-based
approach best suited. This approach correlates wear with heat dissipated due to
friction from which a health index is computed. This approach is particularly very
accurate towards the end of life of the system, when maintenance decision is requi-
red. This approach is also less costly in terms of instrumentation and computational
requirements.
• In order to incorporate the benefits of individual methods, then an ensemble of
the methods based on a weighted average can be constructed. Various combination
of the methods can be evaluated in order to obtain the best combination for a
given approach. The ensemble proves to be a robust approach for prognostics and
outperforms all individual algorithms.

To demonstrate the applicability of some of the methods for online prognosis, laboratory
experiments on degradation of piezoelectric bimorph benders were conducted. Electric
current, normally used for control purposes, was used as the condition monitoring data
while displacement was measured as a health index for ground truth degradation. The
use of machine learning algorithms to map the extracted features to the health index
was evaluated. Random forests machine learning algorithm was found to yield the best
results in predicting the health index. To estimate the RUL, particle filter method and
similarity based methods were evaluated. Particle filter approach was found to yield the
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best performance of a mean MAPE less than 10 and an overall performance of 0.64 out of
the possible 1. However, the approach has higher computational requirements in terms
of computation time and memory and may not be applicable for systems with short
lifetimes.

6.2 Future Work

Although a number of prognostic methods have been developed, evaluated and validated
using various data sets, a number of research issues have been identified.
• Some technical systems are operated under non-stationary conditions such as speed
and load, which may vary with time either in a periodic or stochastic manner. Most
condition monitoring data do not show any observable change with degradation as
a result of the varying operating conditions and as such it would be very diffi-
cult to conduct diagnosis and prognosis using the methods already proposed here
and in literature. In addition, without knowledge of future operating conditions,
it becomes a challenge to quantify the remaining useful lifetime. An approach for
incorporating the non-stationary operating conditions so that a degradation trend
is clearly captured is therefore necessary.
• Most mechatronic systems are very complex and consist of many interacting com-
ponents. In order to monitor all critical components, many sensors are required,
thereby increasing the cost of the condition monitoring system. In order to reduce
the number of sensors and consequently the cost, strategic sensor placement should
be evaluated. This can be done by combining model-based and data driven methods
to identify critical points where sensors can be mounted to provide the maximum
information about a system.
• The prognostic methods proposed have been validated using run-to-failure labo-
ratory experiments. A way of adapting the methods with real-life equipment wi-
thout having to run the equipment to failure is necessary. This could be done by
correlating the real-life sensor data with the experimental data and determining
transfer/mapping factors that could be used with the methods for diagnostic and
prognostic purposes.
• There is need for prognostic methods for systems without run-to-failure condition
monitoring data but for which prognostics would improve reliability and safety, for
instance wind turbine components. In most cases only the baseline data is available.
Prognostic methods that detect and quantify deviation from baseline data can be
used together with predefined thresholds to estimate when the system is likely to
fail.
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A Derivation of the Support Vector
Machines (SVM) Margin

Consider a plane (line in 2D) defined by w1x1+w2x2+b = 0, or in vector form (wTx+b =

0), where w =
(
w1
w2

)
is a vector normal to the plane, as shown in Figure A.1.

Figure A.1: SVM margin formulation

Since vector v = (x11−x10, x21−x20) is parallel to vector w, the distance from point Q to
point P is the length of the projection of v onto the unit normal vector of w. Therefore,

‖v‖ = v ·w
‖w‖

= w1(x11 − x10) + w2(x21 − x20)
‖ w ‖

= w1x11 + w2x21 − (w1x10 + w2x20)
‖ w ‖

.

(A.1)
Since point Q lies on the hyperplane,

w1x10 + w2x20 + b = 0⇒ w1x10 + w2x20 = −b. (A.2)

Equation A.1 reduces to:
‖v‖ = w1x11 + w2x21 + b

‖ w ‖
. (A.3)

Since point P lies on the upper margin, (w1x11 + w2x21 + b = 1) and then the distance
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from the hyperplane to the upper margin is given by:

‖v‖ = 1
‖ w ‖

. (A.4)

A similar derivation can be used for the lower margin. The total margin is thus given by:

ρ = 2‖v‖ = 2
‖ w ‖

. (A.5)

To maximize the margin, max 2
‖w‖ is a difficult problem since the norm of w involves a

square root. Therefore, the problem can be reformulated as minimizing the magnitude
of the vector, w by

min 1
2 ‖ w ‖2 .

The square is introduced to simplify the minimization problem.
In order to cater for misclassification, the objective function f(w) for SVM is formulated
as:

Minimize f(w) = 1
2wTw + C

∑
i

ζi, (A.6)

subject to:

wTx+ b ≥ 1− ζi, if yi = +1,
wTx+ b ≤ −1 + ζi, if yi = −1,

where C is the cost parameter and ζi is the slack parameter introduced to minimize
misclassification in the data.



B SVM Parameter Optimization
Techniques

As mentioned in chapter 4 section 4.1.1.4, there are two parameters for support vector
machines that require tuning: the cost or regularization parameter, C and the kernel
function parameter, γ, resulting to a 2-dimensional search space D. In this work, a
combination of differential evolution (DE) and particle swarm optimization were used to
tune these parameters for each application.

B.1 Differential Evolution

Differential evolution is a direct search method that utilize Np population with D-
dimensional individual vectors denoted by

z(g) = zij, i = 1, 2...Np and j = 1, 2..D, (B.1)

where g indicates the generation to which the vector belongs [205]. In this work, the
population consists of zi = [Ci γi]. DE optimization consists of four steps: initialization,
mutation, crossover and selection.

1. Initialization: The initial vector population is generated randomly within a pre-
defined parameter space as follows

zij = zmin,j + rn(zmax,i − zmin,j), (B.2)

where rn is a random number uniformly generated within the range [0,1].

2. Mutation: New parameter vectors are generated by adding weighted difference
between two population vectors to a third vector called a mutant. For each target
vector, a mutant vector is generated as follows

vi(g + 1) = zr1(g) + F · (zr2(g)− zr3(g)), (B.3)

with random indices r1, r2, r3 ∈ {1, 2..Np} and F ∈ {0, 2} is the mutation control
parameter that scales the difference between the vectors.

3. Crossover: A trial vector is generated between zi(g) and vi(g)using a binomial
crossover operator as follows

oi(g) =
vij(g) if rn ≤ cr or j = jrn

zij(g) otherwise,
(B.4)
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where rn is a random number that is uniformly distributed within the range [0,1],
cr is the crossover control parameter and jrn is a random number generated within
the range [1,D]

4. Selection: The better individual between trial vector oi(g) and the target vector
zi(g) is selected based on the objective function as follows

zi(g + 1) =
oi(g) if f(oi(g)) ≤ f(zi(g)
zij(g) otherwise.

(B.5)

Once a new population is generated, the process of mutation, crossover and selection
is repeated until a termination criteria is met. In this work, DE was implemented with
zi = {γi, Ci}, initialized within the range:

γi ∈ {2−15, 23}
Ci ∈ {20, 215}.

DE locates the range within which the optimum values lie. This range is then used to
define the search region for PSO. The advantage of PSO is the ability to obtain the global
optimum within a finer search space [206].

B.2 Particle Swarm Optimization

Particle swarm optimization was first proposed by Kennedy and Eherbert [207] to emulate
the social behavior of a swarm of birds or insects (referred to as particles) that move in a
search space. Particles interact with one another and together with their own experience,
gradually move to better regions within the search space [207]. The particles are initially
placed at random positions within the search space and move in random directions. The
direction of each particle is then gradually changed so that it moves in the direction of
its best previous positions and positions of its peers while searching within their vicinity
with respect to a fitness function. Each particle i (i = 1, 2, ...n) is characterized by two
factors: its position zi = (zi1, zi2) and its velocity vi = (vi1, vi2)) [206]. The new position
and velocity of particle i in the next iteration in D dimensional space is

vij(k + 1) = ωvij(k) + a1rn1j(k)(pij(k)− zij(k)) + a2rn2j(k)(pgj(k)− zij(k)), (B.6)
zij(k + 1) = zij(k) + vij(k), (B.7)

where pij is the particles personal best position attained so far, pgj is the global best
position attained so far by all particles, a1 and a2 are acceleration coefficients, rn1 and
rn2 are random numbers uniformly distributed within [0,1] and ω is the inertia weight
that controls the influence of the particles previous velocity in the current iteration.
The particles are first initialized within the range obtained by differential evolution. Then
for each iteration, the velocity and position of each particle are calculated and compared
with the previous personal best and global best until a termination criteria is reached.
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Figure B.1 summarizes the application of PSO in tuning the parameters of SVM. The
objective function is to minimize the cross-validation error during training of SVM.

Figure B.1: Application of particle swarm optimization in tuning SVM parameters
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