
Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik

Fachgruppe Didaktik der Informatik

Bachelorarbeit

vorgelegt von

Adrian Wilke

Paderborn, 27. Juli 2010

A N A L Y S I S A N D I N T E G R A T I O N O F W E B 2 . 0 D A T A
S O U R C E S I N T O A S Y S T E M F O R A N A L Y S I S A N D
S T O R A G E O F A R T E F A C T - A C T O R - N E T W O R K S

Betreuer__

Dipl.-Inform. Wolfgang Reinhardt

Gutachter__
Prof. Dr. Johannes Magenheim

Prof. Dr. Marco Platzner

Adrian Wilke: Analysis and integration of Web 2.0 data sources into
a system for analysis and storage of Artefact-Actor-Networks

NACHTRÄGLICHE ÄNDERUNGEN ZUR VERÖFFENTLICHUNG

Entfernung persönlicher Angaben, Hinweis Copyright, Layout Titelblatt ,
Kürzung Danksagung, keine inhaltlichen Änderungen.

URN:
DOI:

urn:nbn:de:hbz:466:2-28332
10.17619/UNIPB/1-87

D A N K S A G U N G

Bei allen, die mich während der Anfertigung meiner Bachelor-
arbeit unterstützt haben, möchte ich mich herzlich bedanken.
Herrn Prof. Dr. Johannes Magenheim danke ich für die Möglich-
keit, die Arbeit in der Fachgruppe Didaktik der Informatik anfer-
tigen zu können. Bei meinem Betreuer Dipl.-Inform. Wolfgang
Reinhardt bedanke ich mich für den Themenvorschlag und seine
Betreuung. Vielen Dank an Tobias Varlemann und Matthias Moi,
die mir gerade anfänglich sehr geholfen haben. Meiner Familie
möchte ich für ihre Unterstützung aller Art danken. Vielen Dank
auch an Selwyn Nurse, für seine spontane Bereitschaft, einige
Texte nach sprachlichen Fehlern durchzusehen.

iii

C O N T E N T S

1 Introduction 1

1.1 Objective and tasks 2

1.2 Structure of the thesis 2

2 Theoretical framework 5

2.1 Science 2.0 . 5

2.1.1 Web 2.0 . 5

2.1.2 Introduction of Science 2.0 6

2.1.3 Awareness in Technology Enhanced Learning 6

2.1.4 Investigation of collaboration 7

2.2 Summary: New practices of collaboration 8

3 Problem description 9

3.1 Artefact-Actor-Networks 9

3.1.1 Consolidation of network types 9

3.1.2 Semantic relations 13

3.1.3 Ontology . 16

3.1.4 Practical application 17

3.2 Extension by data sources 18

3.2.1 Delicious . 19

3.2.2 SlideShare . 19

3.2.3 Scribd . 20

3.3 Summary: Numerous possibilities to apply the
concepts of AAN . 21

4 Technical foundations 23

4.1 OSGi Service Platform 23

4.2 AAN framework . 24

4.2.1 Backend . 26

4.2.2 Crawler . 26

4.2.3 Datastore . 27

4.2.4 Analyzer . 27

4.3 Resource formats . 28

4.3.1 Resource Description Framework 28

4.3.2 RDF Schema 29

4.3.3 Web Ontology Language 30

4.4 Further used technologies 31

4.4.1 SPARQL . 31

4.4.2 Jena . 32

4.4.3 JavaScript Object Notation 32

4.5 Summary: A basis of dynamics and semantics . . . 33

5 Solution approach 35

v

vi CONTENTS

5.1 Analysis of relevant data sources 35

5.1.1 Delicious . 37

5.1.2 SlideShare . 44

5.1.3 Scribd . 48

5.2 Solution design . 52

5.2.1 Enhancements of the ontology 52

5.2.2 Integration of Delicious 54

5.2.3 Integration of the document networks 57

5.2.4 Draft of software components 59

5.3 Summary: Successful preparation for a practical
application . 64

6 Details of implementation 65

6.1 The implementation in general 65

6.1.1 Access by webservices 65

6.1.2 CrawlerManager and Crawler 66

6.1.3 Parser . 66

6.2 Delicious . 67

6.2.1 The DeliciousCrawlerManager 67

6.2.2 The DeliciousParser 69

6.3 SlideShare . 70

6.3.1 The SlideShareCrawlerManager 70

6.3.2 The SlideShareParser 70

6.4 Scribd . 70

6.4.1 The ScribdCrawlerManager 70

6.4.2 The ScribdParser 71

6.5 Practical application 71

6.5.1 Test sets . 71

6.5.2 Test results . 72

6.6 Summary: Diverse levels of complexity 73

7 Conclusion and outlook 75

7.1 Conclusion . 75

7.2 Outlook: Future works 75

a Appendix 77

a.1 Return values of Delicious feeds 77

a.2 Delicious feed patterns 78

a.3 Response formats of the SlideShare API 79

a.4 Results of the Scribd API method docs.search . . . 81

a.5 CrawlerManager webservices and parameters . . . 82

BIBLIOGRAPHY 83

L I S T O F F I G U R E S

Figure 1 Consolidation of artefact networks I 10

Figure 2 Consolidation of artefact networks II 11

Figure 3 Consolidation of actor networks 12

Figure 4 Consolidation of artefact- and actor networks 13

Figure 5 Artefact-Artefact-Relations 14

Figure 6 Actor-Actor-Relations 15

Figure 7 Artefact-Actor-Relations 16

Figure 8 AAN ontology: Prime version 17

Figure 9 Architecture of the AAN framework 25

Figure 10 RDF example 29

Figure 11 RDFS example 30

Figure 12 Delicious feed patterns 43

Figure 13 Use of SlideShare API methods 46

Figure 14 Use of Scribd interfaces 51

Figure 15 AAN ontology: Version 2 53

Figure 16 AAN ontology: Delicious 55

Figure 17 AAN ontology: Documents 58

Figure 18 Working chain: Crawl of a Delicious resource 60

Figure 19 Use Cases DeliciousCrawlerManager 62

Figure 20 Use Cases DeliciousParser 63

Figure 21 Crawling process of CrawlerManagers . . . 65

Figure 22 CrawlTask controlled by a Crawler 66

Figure 23 DeliciousCrawlerManager crawling process 68

Figure 24 DeliciousParser parsing process 69

Figure 25 SlideshareParser parsing process 70

Figure 26 ScribdParser parsing process 71

vii

L I S T O F T A B L E S

Table 1 Comparison of Delicious Interfaces 40

Table 2 Schemes of used Delicious feeds 42

Table 3 Use of SlideShare API Methods 46

Table 4 Comparison of SlideShare Interfaces 47

Table 5 Comparison of Scribd Interfaces 49

Table 6 Use of Scibd API Methods 50

Table 7 Delicious feed patterns 78

Table 8 Scribd API docs.search 81

viii

A C R O N Y M S

AA Artefact-Actor-Relation

AAN Artefact-Actor-Networks

ACT2 Actor-Actor-Relation

API Application Programming Interface

ART2 Artefact-Artefact-Relation

DCMI Dublin Core Metadata Initiative

FOAF Friend of a Friend

FTP File Transfer Protocol

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OSGi Open Services Gateway initiative

OWL Web Ontology Language

PDF Portable Document Format

PLE Personal Learning Environment

RDF Resource Description Framework

REST Representational State Transfer

RDFS RDF Schema

RSS Really Simple Syndication

SIOC Semantically-Interlinked Online Communities

SPARQL SPARQL Protocol and RDF Query Language

TEL Technology Enhanced Learning

URI Uniform Resource Identifier

URL Uniform Resource Locator

WWW World Wide Web

XML Extensible Markup Language

ix

1

I N T R O D U C T I O N

The evolution of the World Wide Web (WWW) is based on new
technologies and practices. Rising possibilities for publishing
and sharing data increased processes of collaboration. Published
artifacts, such as documents, are described via comments and
social tagging. Artifacts can also contain references to other arti-
facts. Networks of artifacts are generated in this manner.

Furthermore, the cooperating persons are in contact. Social net-
works are formed through the communication and interaction of
the participating persons. Social networks exist within organiza-
tions and personal surroundings. They can be widened by a con-
solidation of different sub-networks. Moreover, social networks
are spanned by communities formed on Web 2.0 platforms.

Both of these network types can be combined. The concept of
Artefact-Actor-Networks (AAN) is based on the consolidation of
artefact networks and social networks. It provides additional
opportunities for retrieving information. A platform for new
requests is generated based on the data from several source net-
works. For instance, all artifacts of a persons personal surround-
ing, extracted from different sources, but related to a specific
topic can be requested.

Appropriate data must exist and is a precondition before infor-
mation can be received for further processing. This data can
be extracted from different sources. Appropriate sources are
open and available for free, such as services provided by the
Web 2.0. Data of the microblogging service Twitter [Twi10], and
data based on MediaWikis [Wik10] have been integrated into
the AAN system. The integration of the social bookmarking
service Delicious [Yah10a], and the document-sharing services
SlideShare [Sli10b] and Scribd [Scr10b] are treated in this thesis.

1

2 INTRODUCTION

1.1 OBJECTIVE AND TASKS

Objective of this thesis is the extension of the existing AAN sys-
tem with additional data sources. The basis and data sources
of this extension is formed by the social networks Delicious,
SlideShare, and Scribd. During the embedding of the networks,
additional components for access and storage have to be devel-
oped. Furthermore, corresponding ontologies have to be de-
fined.

The development and implementation of the system components
Crawler and Parser of the AAN framework is a part of the thesis.
If necessary, the same applies to an additional CrawlerManager.
Therefore the respective OSGi bundles and services have to be
created. Data of the networks should be stored as RDF data and,
if necessary, as full text.

1.2 STRUCTURE OF THE THESIS

The structure of this thesis depends on the gradual development
of the components. In Chapter 1 the work is introduced. An
initial overview of the topic is given, the objective of the thesis is
clarified, and the structure of the document is explained.

The theoretical framework of this work is described in Chapter 2.
The classification of the thesis is done in the context of the field
of Science 2.0. It contains the adaption of Web 2.0 opportunities
for scientific requirements.

The problem description in Chapter 3 comprises two points. First-
ly, the concept of AAN is explained. This mainly comprehends
the consolidation of artefact networks and social networks, the
introduction of different semantic relation types, and a descrip-
tion of the ontology. Secondly, the social networks Delicious,
SlideShare, and Scribd are presented.

Foundations, which are necessary for comprehension of the tech-
nical part of this thesis, are part of Chapter 4. At first, the OSGi

Service Platform is introduced. It forms the basis of the AAN

framework, which is described afterwards. The next section in-
troduces formats, which are used to describe and store the data
of AAN. Finally, further used technologies are described.

1.2 STRUCTURE OF THE THESIS 3

The most extensive section of the thesis is the solution approach
in Chapter 5. Firstly, the data sources are analyzed. This is done
by determining relevant data for AAN and the choice of inter-
faces. Secondly, a solution design is presented. It contains an
integration of data into the ontology and a draft for the software
components.

The implementation of the developed components is described
in Chapter 6. Details of the implementation are described by the
workflow of CrawlerManager and Parser components. At least,
a practical application of the implemented components is pre-
sented.

Chapter 7 provides a conclusion of the work. Finally, an outlook
is given by possibilities of future works.

2

T H E O R E T I C A L F R A M E W O R K

The young field of Science 2.0 is closely related with several as-
pects of this work. Further, the field is an origin of the funda-
mental concepts, on which this thesis is based.

2.1 SCIENCE 2.0

2.1.1 Web 2.0

The innovations of the so-called Web 2.0 have been implemented
in the world of science. Main elements of the evolution of the
web are new technologies and the resulting options for interac-
tion. Several applications have derived from the development of
these technologies: News are published by the usage of blogs,
a plethora of users describe artifacts of every stripe by tagging,
websites are shared via social bookmarking, documents are
shared, and they are edited collaboratively in the form of wikis.
The use of these applications results in a altered behavior, caused
by the options of new activities. Users can cooperate as they
work together. Users can also comment contents and commu-
nicate with each other, collaborate and share information. The
web can be used worldwide and applications can also be used
for organization. This wealth of options supports creativity and
productivity. It has been adapted in fields such as journalism,
industry, and politics. But how is it adapted in science?

5

6 THEORETICAL FRAMEWORK

2.1.2 Introduction of Science 2.0

Waldrop [Wal08]) explained the current situation in the context
of science: “Science 2.0 generally refers to new practices of scien-
tists who post raw experimental results, nascent theories, claims
of discovery and draft papers on the Web for others to see and
comment on.” In his article, he gives examples such as Open-
WetWare1, a wiki of graduate students working in the laborato-
ries of the Massachusetts Institute of Technology. It is used by
students to make notes regarding contents of their studies and
functions as a reference in addition to protocols. Another exam-
ple is the social bookmarking service Connotea2, which is used
for research references. Such references can be scientific papers.
Nowadays, free and public online repositories for papers also
appear.

Another definition of Science 2.0 was suggested by Ullmann et
al. [UWS+

10]. After incorporating several viewpoints of Science
2.0., they described it as “the application of new practices that fo-
cus on opening up the research process to broaden participation
and collaboration with the help of new technologies that are able
to foster continuous engagement and further development.”

2.1.3 Awareness in Technology Enhanced Learning

A considerable amount of data is published every day owing to
the application of Web 2.0 technologies. A part of this data, for
instance resources created by experts, could be used for further
education in numerous fields. In some cases, the data is already
contained in a Personal Learning Environment (PLE). For exam-
ple, if data was published on websites such as Wikipedia3, which
is already a part of a persons learning resources. It is conceiv-
able, that a lot of additional experts are publishing resources,
which are related to a current resource of interest. Accessing
this data could be a problem as the user of this data has no in-
formation about the expert or the platform where this resource
was published.

1 OpenWetWare, http://openwetware.org/
2 Connotea, http://www.connotea.org/
3 Wikipedia, http://wikipedia.org/

http://openwetware.org/
http://www.connotea.org/
http://wikipedia.org/

2.1 SCIENCE 2.0 7

This is a general challenge in Technology Enhanced Learning
(TEL). A similar scenario is the creation of content of researchers,
which takes place beyond the of official scientific publications.
Persons having interest in the contents but are unaware of its ex-
istence are disadvantaged. This example was described by Ull-
mann et al. [UWS+

10]. They explain the importance of aware-
ness: “However, in many community and group work situations
the awareness of others is essential for effective and efficient
work.” Approaches to handle such challenges are one aspect
of the field of Science 2.0

2.1.4 Investigation of collaboration

Like the use of Web 2.0 technologies, applications, and oppor-
tunities, the processes of the collaborative working itself can be
reflected. Shneiderman [Shn08] supports practical approaches to
examine the problem area of Science 2.0: “Science 2.0 challenges
cannot be studied adequately in laboratory conditions because
controlled experiments do not capture the rich context of Web
2.0 collaboration [...] Moreover, in Science 2.0 the mix of people
and technology means that data must be collected in real set-
tings”. In relation to this, a set of preconditions for a study is
needed. A basis of public data is necessary to examine processes
within the field of Science 2.0 and Web 2.0 in general. Further-
more, there is a demand for software, which can handle data pro-
cessing. Studies in this area should cover a broad field of given
Science 2.0 opportunities, such as the use of special webservices.
In an effort to use special web-services effectively, resources have
to be analyzed, and data giving explanation of collaboration, has
to be extracted. The collaboration data should be extracted from
several channels of communication. Communication channels
are usually used by numerous participants. Hence, knowledge
of the relationship between these participants is desirable. An
overview of states at different points in time would be desirable
when examining the development of collaboration.

8 THEORETICAL FRAMEWORK

2.2 SUMMARY: NEW PRACTICES OF COLLABO-
RATION

New technologies of the Web 2.0 provide new opportunities of
collaboration and sharing information. These innovations are
adopted by the field of science, whereby practices for research
and learning come into being. For instance, some Web 2.0 ser-
vices provide options for communication, which can be used to
increase the awareness of others. Furthermore, processes of col-
laboration can be observed for research. This has to be done in
real settings and requires special software for analysis.

3

P R O B L E M D E S C R I P T I O N

This chapter provides a description of the problem area. Firstly,
the concept of Artefact-Actor-Networks (AAN) is introduced by a
gradual construction of different types of networks. Secondly, an
overview of the data sources is provided. Furthermore, aspects
of the sources necessary for the integration into the AAN system
are explained.

3.1 ARTEFACT-ACTOR-NETWORKS

This thesis is based on the special network type of Artefact-
Actor-Networks (AAN), which was introduced by Reinhardt, Moi,
and Varlemann in [RMV09].

AAN are the result derived as artefact networks and actor net-
works have been amalgamated. This consolidation is described
in Section 3.1.1.

In AAN, distinction between the different classes is specified. Sev-
eral types of connections can be determined through relations
between the specified classes. Section 3.1.2 deals with those se-
mantic relations, which are used later in the ontology.

Finally, an ontology, which has been defined in [RMV09], is in-
troduced. This scheme of classes, relations, and properties is
shown in Section 3.1.3.

3.1.1 Consolidation of network types

This section is structured as follows: Firstly, some terms are de-
termined. Secondly, the consolidation of different artefact net-

9

10 PROBLEM DESCRIPTION

Network of documentsNetwork in World Wide Web Consolidated artefact network I

Website A

Website B

Document C

Document D

(1) (2) (3)

D

C
A

B

Figure 1: Consolidation of artefact networks I

works is described. In the following, actor networks are de-
scribed in the same manner. The last step is the consolidation of
both network types.

Terminology

In many fields, especially in the computer science, relationships
are visualized as graphs. In the following, the composition of the
different network types are explained by the usage of graphs
consisting of nodes and edges. Nodes, used in the examples, rep-
resent objects as instances of the respective classes and edges are
representing relations between classes.

A relation between two objects has an originating point and a
terminating point. The originating point is called the domain
and the terminating point the range.

In the AAN context, several classes consist in special networks. In
contrast to [RMV09], these networks are called spaces instead of
layers. This naming has been chosen, because the spaces are not
built upon each other. A space contains all classes, relations, and
data, which are contained in a network. For example, a website
is an instance of the class OnlineArtefact, which describes the
space of artifacts, which can be accessed on the WWW.

In the AAN ontology (Section 3.1.3), actors are seen as accounts
of persons in several networks. It must be mentioned, that over-
lapping occurs in this section of the terminology.

The point of view of social networks is described in the section
actor networks (Section 3.1.1), to express the composition of this
network.

Consequently, actors are seen similar to persons.

3.1 ARTEFACT-ACTOR-NETWORKS 11

Consolidated artefact network IINetwork with bookmarksConsolidated artefact network I

Website B

Bookmark E

(1) (2) (3)

Figure 2: Consolidation of artefact networks II

Artefact networks

A simple artefact network can be imagined as follows: Different
sites on the WWW are connected by hyperlinks. For instance, as
shown in Figure 1-1, a website A is linked to another website B.
Related sites form an artefact sub-network in the WWW due to a
linkage between the websites.

Such networks exist in different spaces. One other example are
scientific documents. These refer to each other via the reference
part, where papers can be exactly determined by the given meta-
data. A document C, which refers a document D is shown in Figure
1-2.

It is imaginable, that a document C contains an URL of a website
B. A website also could contain reference data to a document.
Through these combinations, the two given spaces are consoli-
dated (see 1-3). The involved artefact networks form subspaces
of the resulting network.

Webservices such as SlideShare [Sli10b] or Scribd [Scr10b] are
parts of such a consolidation. They form interfaces between the
space of documents and the space of the WWW. For instance,
a document can be uploaded and published into SlideShare. A
relation between the respective part of the website, is created
during the publishing process, and the uploaded document is
available. Consequently, the Uniform Resource Locator (URL) of
the website can be used to reference the document.

Bookmarks form a special class in the context of networks. Do-
main and range of bookmarks are naturally different. Book-
marks link to web documents, the range is given by OnlineArte-
facts, which is the space of artifacts in the web. By social book-
marking services such as Delicious [Yah10a], bookmarks can be

12 PROBLEM DESCRIPTION

Consolidated actor networkActor network of company Private actor network

Person X

Person Y

Person X

Person Z

Person Z

Person X

Person Y

(1) (2) (3)

Figure 3: Consolidation of actor networks

stored and published online. Consequently, the web document
has a domain designated by the respective bookmarking service.

Figure 2 shows the combination (2-3) of the consolidated artefact
network (2-1) and a consolidated bookmarking network (2-2).

Actor networks

Actor networks, or social networks, are a result of persons inter-
acting with each other. Mitchell [Mit69] defined social networks
as follows:

“[...] a specific set of linkages among a defined set of persons
with the additional property that the characteristics of these link-
ages as a whole may be used to interpret the social behavior of
the persons involved”

In Figure 3-1, known colleagues of person Y in a company are vi-
sualized. Figure 3-2 shows the space of the private network of a
person Z. Both persons, Y and Z, do not know each other person-
ally. By interaction with person X a consolidation of both spaces
takes place. As shown in Figure 3-3, person Y and person Z are
connected by involving person X as an communication interface.

By interpretation of the figure is assumed, that a network is a
personal environment. Such a network can also be a social net-
work like Facebook1 or studiVZ2

Consolidation to AAN

Finally, artefact networks and actor networks can be combined to
a consolidated AAN. In such a network, there are numerous pos-

1 Facebook,http://www.facebook.com/

2 studiVZ,http://www.studivz.de/

Facebook, http://www.facebook.com/
studiVZ, http://www.studivz.de/

3.1 ARTEFACT-ACTOR-NETWORKS 13

Consolidated artefact network II Consolidated actor network

Figure 4: Consolidation of artefact- and actor networks

sibilities for information retrieval. It is logical that on account of
the number of consolidations, the created network will consists
of multiple branches. A consolidated AAN is shown in Figure 4

on page .

The combination of the different network types create new in-
direct relations. For instance, a connection between two non-
connected actors could result, if the first actor has set a book-
mark to a document of the other actor.

Further, a new class of relations between the different network
types is created by the consolidation. Similar to the classes of
the networks, relations can also be classified. Relations with a
special meaning are called semantic relations. The next section
deals with the different types of such semantic relations.

3.1.2 Semantic relations

If relations represent a special meaning, they are called seman-
tic relations. Semantic relations are used in ontologies to de-
scribe relationships between classes. The structure of AAN, de-
scribed in Part 3.1.1, exhibits three basic types of semantic re-
lations: Artefact-Artefact-Relations, Actor-Actor-Relations, and
Artefact-Actor-Relations.

Artefact-Artefact-Relations

An Artefact-Artefact-Relation (ART2) is a relation with the class
Artefact at domain and range. This type of relation can be found
in artefact networks and AAN. The meaning of semantic relations
of this type is added by inheritance.

14 PROBLEM DESCRIPTION

Website A Website B

linksTo : references : ART²

Document C

references : ART²

hasLink : isReferencedBy : ART² isReferencedBy : ART²

Figure 5: Artefact-Artefact-Relations

Figure 5 shows three objects related by four different semantic
relations. In this instance two properties can be found:

• Relations can have inverses. The semantic relation linksTo,
which is spanned from website B to website A, has the in-
verse relation hasLink. For the other relations, inverses can
also be determined.

• Relations can be defined in an hierarchical order. The rela-
tion linksTo is a sub-class of the relation references, which is
a sub-class of ART2.

If an ART2 relation is spanned between two artifacts, it can be
determined, which type of relationship between the artifacts is
given. In the example, document C references to the website B. As
the relation linksTo from website B to website A is more special,
the given information is more exact.

Basic default types for ART2 relations like source or relation are
published by the Dublin Core conventions [Dub10]. More spe-
cific and useful definitions, like links_to with the subclass refer-
ences, are provided by the SIOC project [SIO10]. These relations
can be used for social bookmarking. The three networks, still to
be analyzed, consist of simple relations between artifacts, stan-
dard vocabularies should provide sufficient relations types to
describe the relationships.

Actor-Actor-Relations

Types of an Actor-Actor-Relation (ACT2) are part of AAN, as well
as artefact networks. At the domain and range a class of the type
Actor is defined.

In figure 6 semantic relations hasInBuddyList and relates are shown.
The relation relates describes a simple directed relationship be-
tween two actors. A more specific statement is given by the

3.1 ARTEFACT-ACTOR-NETWORKS 15

isRelatedBy : ACT²

Actor ZActor XActor Y

relates : ACT²

isInBuddyList : isRelatedBy : ACT²

hasInBuddyList : relates : ACT²

Figure 6: Actor-Actor-Relations

relation hasInBuddyList. It gives evidence about the type of the
relationship, actor X has a list of buddies, where actor Y is listed.

The Friend of a Friend (FOAF) project [FOA10] provides the ba-
sic ACT2 relation knows. This is a very general statement and
can be used as a base to extend the vocabulary. An extensive
approach is provided by RELATIONSHIP [Dav10]. It provides
very special ART2 relations like influencedBy or closeFriendOf.

The networks Delicious, SlideShare and Scribd mainly provide
relationships between artifacts. Offering the possibility to add
other network users to a personal list of known users, semantic
relations like knows or relates could be added. Which relations
will be created to describe the relationships is determined in
Chapter 5.

Artefact-Actor-Relations

The third type of semantic relations in AAN describe relation-
ships between artifacts and actors. An Artefact-Actor-Relation
(AA) is part of a set, which can be further subdivided into two
types:

• Actor-to-Artefact relations with domain Actor and range
Artefact, and

• Artefact-to-Actor relations with domain Artefact and range
Actor.

This type of relation is a main part of an consolidated AAN. Fig-
ure 7 shows two semantic relations, which are the inverse of each
other. For example, in this construct, for example, all bookmarks
of an actor or recent bookmarks of an website by several actors
can be requested.

The vocabularies mentioned above provide numerous possibili-
ties to express relationships. For the integration of social book-

16 PROBLEM DESCRIPTION

Bookmark QActor Y

hasBookmarker : ART-ACT

bookmarkerOf : ACT-ART

Figure 7: Artefact-Actor-Relations

marks, a semantic relation isBookmarkerOf could describe the
fact, that an actor has created a bookmark, sufficiently. In the
case of publishing documents on SlideShare or Scribd, it has to
be determined, if an actor is the creator or publisher of an arte-
fact.

The consolidation of the network types and the resulting types
of semantic relations have to be described technically. This has
been done by the AAN ontology.

3.1.3 Ontology

In the context of the Semantic Web, ontologies need to specify
descriptions for the following concepts [W3C10b]:

• Classes (general things) in the many domains of interest

• The relationships that can exist among things

• The properties (or attributes) those things may have

In this thesis it is differenced between the terms classes, semantic
relations and data properties. Classes are given by different net-
work spaces, as described in Section 3.1.1. The main semantic
relations have been introduced in Section 3.1.2. Properties consist
of metadata, describing the respective instances of classes.

Technically, the AAN ontology is based on Web Ontology Language,
which will be introduced in Section 4.3.3.

Figure 8 visualizes a prime version of the AAN ontology, based
on [RMV09] and [Var10]. The overview is subdivided into five
blocks: AANBase, Web, Blog, Microblog, and Personmanagement.
The main part is the block AANBase, where the basic classes of
Actor, Artefact and Keyword are defined. These are related via
semantic relations knows (ACT2), hasArtefact (ART2), and hasKey-

3.1 ARTEFACT-ACTOR-NETWORKS 17

Figure 8: Prime version of the AAN ontology

word (AA). This set of fundamental classes and relations can be
used for extension of the AAN network.

In the visualized part, two types of inheritance are shown. Firstly,
classes are defined in a hierarchy. For instance, the class We-
bArtefact a specialization of the class Artefact. Classes of special
network spaces are united in blocks. An example are the classes
MicroblogActor and MicroblogArtefact, which belong to the space
of Microblogs. The second type of inheritance is the specializa-
tion of semantic relations. The relation isRelated is a generalized
form of linksTo.

3.1.4 Practical application

Fields of application of AAN arise by the use and the extension
of the given structures and data.

Moi [Moi10] has extended the AAN system by the possibility of
integrating MediaWiki sources [Wik10]. In his diploma thesis,
he integrated a computation and visualization of semantical sim-

18 PROBLEM DESCRIPTION

ilarity for MediaWiki artifacts, which is based on artifacts stored
within the AAN system.

Information Retrieval offers the greatest ambiance for this ap-
plication. Objects of the classes Artefact, Actor, and Keyword can
provide valuable information by simply applying special queries.
If one requests artifacts by insertion of keywords of interest, then
related artifacts of different networks and their actors will be of-
fered. Actors may be contacts with expertise. Hence, AAN are
interesting for the area of expert finding. Another example is
to request related data to an artefact. The given tags for the
artefact provide relations to other artifacts. The data of these
artifacts should receive relevant information to the topic of the
initial artefact. Consequently, the use of AAN is a tool for inves-
tigation and can be used as a part of a PLE. Several types of
requests and returned data are conceivable

Valuable data can only be accessed if it stored within the AAN

system. This is done by accessing data of several sources. Three
source networks are introduced in the next section.

3.2 EXTENSION BY DATA SOURCES

With the objective of analyzing stored data in the AAN system
and to benefit from the system itself, data firstly has to be stored.
At this time, data from the sources of websites, twitter entries,
and MediaWikis can be accessed. Additional data of general
interest and for the field of research is consisted in presenta-
tions, slides and similar documents. The social media websites
SlideShare [Sli10b] and Scribd [Scr10b] provide such data, which
include documents related to topical science subjects. Another
relevant area are bookmarks. Bookmarks can be described with
keywords and artifacts of every stripe can be referenced. The
social bookmarking service Delicious [Yah10a] provides access
to bookmarks of numerous fields of interest.

3.2 EXTENSION BY DATA SOURCES 19

3.2.1 Delicious

The web-based social bookmarking service Delicious started in
2003. Five years later, 5.3 million users were registered and cre-
ated 180 million unique URLs. [Yah10c]

The bookmarking service is used to store and share bookmarks
online. One main advantage is the access to bookmarks world-
wide, once a connection to the website is established. A backup
of bookmarks is generated automatically when storage is done
and a social bookmarking service is used. Registered users can
create bookmarks and relate it with notices and keywords in the
form of tags. Public bookmarks can be browsed on the website.
This can be done for the bookmarks of a special user or a tag. It
can also be combined by a user and a set of tags.

Delicious can be used for sharing bookmarks in projects. There-
fore, users can add other users to their personal networks. An-
other option is to define a project-related tag. By the choice of a
tag, a unique string is favorable. Tags such as “web20” are used
frequently. Hence project bookmarks, exclusively listed by such
a tag, are difficult to retrieve.

As Delicious is one of the first and most popular social book-
marking services, it has been used for research. The free avail-
ability of users, bookmarks, and tags provides options for eval-
uating concepts and algorithms in reality. For instance, Mika
[Mik07] used it for a case study of an abstract model of social-
semantic networks.

Delicious is useful for the application of AAN, because it pro-
vides a combination of both artefact networks and actor net-
works. Further, bookmarks are naturally related with artifacts
of different network spaces. Referenced websites are a part of
several networks in the WWW.

3.2.2 SlideShare

The slide hosting service SlideShare was launched in October
2006. In September 2007, 3 million unique visitors used the site.
Today, there are 25 million visitors per month and 70 million
monthly page views. [Sli07, Sli10a]

20 PROBLEM DESCRIPTION

Users of the service can upload presentations (files of presen-
tation programs such as Microsoft PowerPoint), general docu-
ments (files of document preparation systems such as Microsoft
Word and other office application formats), and videos (video
files of different formats and codecs). For each document, ad-
ditional metadata can be entered: A title, a description, tags, a
category, the language, details of privacy, and it can also be se-
lected, if other users are allowed to download the document.

SlideShare is used for publishing data from different fields. As
it is used for sharing presentations and documents in addition
to scientific papers, it provides valuable data. Some examples of
popular users are the founder of O’Reilly Media, Tim O’Reilly3,
the environmental organization WWF Germany4, and Erik Du-
val5, professor of the University of Leuven.

As uploaded documents could contain valuable data for several
fields of interest, the integration of SlideShare into the AAN net-
work provides usable data for Information Retrieval. Like in
Delicious, additional actor networks can be extracted.

3.2.3 Scribd

Scribd, a website for sharing documents, was launched in March
2007. It has at least ten millions published documents and the
same amount of readers monthly. [Scr10a]

On Scribd, users have the possibility to upload, share, and sell
documents in several formats. Some of these formats are Portable
Document Format (PDF), office documents (OpenDocument and
Microsoft Word, PowerPoint, Exel), plain text, or the Tagged Im-
age File Format. By uploading, details of title, categories, tags
and descriptions can be set. Additional fields to describe the
content are offered afterwards: Choices offered are, if a file is
declared public or private, the language of the document can be
set and comments can be allowed. Further, details of the view
mode, download formats, printing, copying text, and the license
can be set. Scribd users have the possibility to subscribe to other
users. This action generates a new network of subscribers.

3 Tim O’Reilly at SlideShare, http://www.slideshare.net/timoreilly
4 World Wide Fund For Nature, Germany, at SlideShare,
http://www.slideshare.net/wwfdeutschland

5 Erik Duval at SlideShare, http://www.slideshare.net/erik.duval

http://www.slideshare.net/timoreilly
http://www.slideshare.net/wwfdeutschland
http://www.slideshare.net/erik.duval

3.3 SUMMARY: NUMEROUS POSSIBILITIES TO APPLY THE CONCEPTS OF AAN 21

Scribd is used by several groups of people, such as authors, mu-
sicians and publishers. Publishers use the platform offering an
insight in publications and to promote the probability of selling
them. Some examples of publishers are the Springer Publishing
Company6, O’Reilly Media7, and the Harvard University Press8.

In the context of AAN, the Scribd network can be seen similar
to SlideShare. A distinction can be made in the types of arti-
facts. SlideShare provides certain documents such as presenta-
tions. Scribd is more specialized in publishing artifacts, such as
different sections or articles of books.

3.3 SUMMARY: NUMEROUS POSSIBILITIES TO
APPLY THE CONCEPTS OF AAN

The concepts of AAN provide many variations of extension. This
is caused by the consolidation of networks composed of artifacts
and actors. Semantics and a hierarchical structure offers the pos-
sibility of diverse requests is given. Consequently, various types
of information can be derived. For a practical application of AAN,
a precondition is the existence of data. The networks Delicious,
SlideShare, and Scribd provide useful data of different fields.
This data could be used in AAN for exploring information.

6 The Springer Publishing Company at Scribd,
http://www.scribd.com/Springer%20Publishing%20Company

7 O’Reilly Media at Scribd, http://www.scribd.com/O%27Reilly
8 The Harvard University Press at Scribd,
http://www.scribd.com/harvard_press

http://www.scribd.com/Springer%20Publishing%20Company
http://www.scribd.com/O%27Reilly
http://www.scribd.com/harvard_press

4

T E C H N I C A L F O U N D A T I O N S

This chapter provides foundations, necessary for comprehension
of the technical terms and relationships used in this thesis. The
first section introduces the OSGi Service Platform, on which the
implementation of the AAN framework (Section 4.2) is based.
Section 4.3 serves as an insight to the resource formats, with
which the data of AAN is described. The chapter is concluded by
Section 4.4, which subsumes further essential technologies.

4.1 OSGI SERVICE PLATFORM

The foundation of the conception and implementation of the
AAN framework is the OSGi Service Platform, which is specified
by the OSGi Alliance, formerly known as Open Services Gate-
way initiative (OSGi) [OSG10]. The specification is applied in
different fields. For instance it is implemented as Equinox, a
framework developed by the Eclipse Foundation1. This is the
implementation used for the AAN framework. It is based on Java
[Ora10], thereby affording portability.

[WHKL08] gives an appropriate summary about the platform:
“The OSGi Service Platform is Java-based software platform, which
enables a dynamic integration and remote management of soft-
ware components (bundles) and services. Without a need to stop
or restart the platform as a whole, bundles and services can be
installed, started, stopped, and deinstalled at runtime.”

The core component of the platform is the OSGi Framework. It
consists of four main layers: Modules, Life-Circle, Service, and Se-

1 Eclipse Foundation, Inc., http://www.eclipse.org/

23

http://www.eclipse.org/

24 TECHNICAL FOUNDATIONS

curity. The Security Layer comprises all other layers. It defines
execute permissions of components and similar security aspects.

Components of the OSGi Framework are specified by the Mod-
ules Layer. This is done via modulation and dependence man-
agement, which operates on versioning. Individual components
are organized in bundles. Such bundles consist of resources and
classes, which are not visible for other bundles by default. To
define visible parts, bundles can be exported statically or they
are provided dynamically as Java objects of service interfaces.

Bundles can be in different states, which are handled by the Life-
Circle Layer. It defines the states uninstalled, installed, resolved,
starting, active, and stopping. These states make the dynamic in-
tegration of the bundles possible.

One of the most important aspects of dynamism is provided
by the Service Layer. Without interruptions of available services,
bundles can be replaced at runtime. This possibility is given
by decoupling services via interfaces. By implementation of a
respective service interface, a service can be provided by differ-
ent bundles, or bundle versions. Service interfaces have names,
which are used to register the services at the Service-Registry.
Further, offered services can be requested and used by bundles
without a need for information of implementation details.

The OSGi Service Platform provides several standard services.
For instance, the transmission of system information or debug
messages can be handled by the defined Log Service. Another
example is the Event Service, by which events can be propagated
between bundles. This two services are used by the AAN frame-
work, introduced in the next Chapter.

4.2 AAN FRAMEWORK

The practical realization of the AAN concepts were done by Var-
lemann, who designed and implemented the components based
on the OSGi Service Platform [Var10]. Moi has extended the archi-
tecture by including components for similarity analysis of texts
[Moi10].

The architecture of the AAN framework is shown in Figure 9.
It consists of components, realized as OSGi bundles, which are

4.2 AAN FRAMEWORK 25

Figure 9: Architecture of the AAN framework

26 TECHNICAL FOUNDATIONS

combined into the main blocks Crawler, DataStore, Analyzer and
AAN_Backend. Colored components are parts of the integration
of this work and described in Chapter 5.2. The component Web-
service is also part of the current implementation. The functions
of blocks and contained components are presented in the follow-
ing.

4.2.1 Backend

The AAN_Backend-Block only consists of the component Webser-
vice. The component functions as an interface between the AAN

backend and users or applications at the frontend. It provides
access to stored data and can be used to add new tasks, which
mainly consist of an Uniform Resource Identifier (URI), to the
Crawler or CrawlerManager.

4.2.2 Crawler

In the Crawler-Block, tasks are handled by the Crawler component.
This is done by a working chain, consisting of Accessor, Mime-
Typer, and Parser. A sequence diagram of the working chain is
displayed in Figure 18 on page 60. The Crawler creates a Crawler-
DataObject, which is used by the components of the working
chain, to store the state and information of the crawling process.

The Accessor component allows access to data sources by pro-
tocols like Hypertext Transfer Protocol (HTTP) or File Transfer
Protocol (FTP). Loaded resources are stored locally, and refer-
ences to created files are returned for re-working.

In the next step, the MimeTyper component detects one or sev-
eral MIME types (like text/html or text/xml) of the loaded resource.
MIME types and the parser type are used to choose a suitable
parser.

There are two types of the Parser component: special and general.
By the choice of a suitable parser, special parsers are preferred.
Special parsers provide functionalities to extract data of a special
type of resource. Such a special type could be a user-specific
website of the Delicious network, which provides metadata, that
can be extracted by a DelicousParser. A general parser, which

4.2 AAN FRAMEWORK 27

also could parse the resource is the HTML Parser. It mainly would
follow hyperlinks without extracting network-specific metadata.

The last component of this block is the CrawlerManager. Crawler-
Managers provide special functionality to crawl resources with
individual properties. This could be websites or networks, of
which structures require special information to extract metadata.
A CrawlerManager makes use of Crawler services.

4.2.3 Datastore

The Datastore-Block is subdivided into the components DataStore,
Jena, FullTextStore, RelevanceStore, and FullTextLucene. Data, for
the most part, is stored by Accessor and Parser components, and
provided by Webservices.

In the current architecture, the DataStore component is combined
with the Jena component. This combination is used to store and
provide Resource Description Framework (RDF) triples, which
are extracted via the crawling process. This data forms the
model of AAN.

Via the FullTextStore, complete texts, such as the source code of
websites, are stored. This is done during the crawling process by
Accessor components.

The component FullTextLucene provides storing functionalities to
calculate similarities. It is a combination of the FullTextStore and
the RelevanceStore. The RelevanceStore is explicitly used to store
relevancies, whereas the FullTextStore is used for full texts during
the computation of relevances.

4.2.4 Analyzer

Finally, the Analyzer-Block contains three different components
for the analysis of networks, texts, and relevancies. Analyzer
components react to events, which are fired by components of
the Datastore-Block.

Components of the type NetworkAnalyzer are calculating with
the data of the DataStore component. Their computations are
based on data consisting of the RDF format and can be used for
structural analysis.

28 TECHNICAL FOUNDATIONS

TextAnalyzers, such as the planned OpenCalaisAnalyzer, based on
OpenCalais2, are using the FullTextStore to extract metadata from
full text sources. Extracted data can be stored using the DataStore
component.

The last group of analyzers components are of the type Relevance-
Analyzer. Components of this type provide functions to compute
similarity between different artifacts.

In this work, the AAN framework has to be extended for an in-
tegration of data sources. Accordingly, for the access of data,
CrawlerManagers and Parsers have to be developed. CrawlerMan-
agers provide the functionality to crawl the structure of given net-
works and Parsers are used to extract relevant data of resources.
The source networks are introduced in the next section.

4.3 RESOURCE FORMATS

This section introduces the formats, which are used to describe
and store the data of AAN. It starts with syntactic definitions,
afterwards semantics are added. Finally, all resource formats
needed for comprehension of the structure of AAN are given.

4.3.1 Resource Description Framework

“The RDF is a language for representing information about re-
sources [...].” [W3C10c] Such a resource is identified uniquely
via an URI, which is a string of characters structured in the URI

scheme. A popular example for an URI is an URL, which identi-
fies a website.

RDF provides a formal description of information of resources.
This description is done via triples. Such a triple comprises three
parts in the following order: a subject, a predicate, and an object.
These parts again can consist of different values:

• A subject is a resource. This is either an URI or a blank node,
which describes an anonymous resource.

• A predicate also is a resource, blank nodes excluded.

2 OpenCalais, http://www.opencalais.com/

http://www.opencalais.com/

4.3 RESOURCE FORMATS 29

http://www.cs.uni-paderborn.de

http://ddi.uni-paderborn.de

http:/ /www.terms.example.org/has-working-group

Didactics of Informatics

http://purl.org/dc/elements/1.1/descript ion

Figure 10: Example of two RDF triples

• An object can be a resource (also a blank node), or a literal,
which is a constant value.

Figure 10 shows an example of two triples. The subject
http://www.cs.uni-paderborn.de at the top is related with the object
http://ddi.uni-paderborn.de by the predicate [...] has-working-group.
This resource again is subject of another triple with the predicate
[...] description and a literal Didactics of Informatics as object. By
such chains of relations, directed RDF graphs come into being.
Based on these graphs, the syntax of data of AAN is described.

Generally, concerning the terminology of RDF, it is differenced
between resources, properties, and property values. In the context
of the example above, a resource DDI can have a property De-
scription with the value Didactics of Informatics.

4.3.2 RDF Schema

The RDF Schema (RDFS) is “RDF’s vocabulary description lan-
guage” [W3C10d], by which ontologies can be defined. Ontolo-
gies, in terms of the semantic web, deliver descriptions of the
concepts of classes, relationships, and properties. They “define
terms used to describe and represent an area of knowledge.”
[W3C10b]

RDF provides a syntax to describe resources, however a seman-
tical description is not available. For instance, the predicate [...]
description of the example, visualized in figure 10, has been set
without any semantical description.

The application of RDFS constructs delivers possibilities for the
description of relationships. This is done by concepts of sev-

30 TECHNICAL FOUNDATIONS

University

Corporation

rdfs:subClassOf

hasEmployee

Person

rdfs:domain rdfs:range

Figure 11: Example of RDFS properties

eral classes (rdfs:Class) and properties (rdf:Property), which are
defined again by RDF. The basis of the vocabulary is formed by
a hierarchy of classes, consisting of the rdfs:Class concept and
several subclasses, e.g. rdfs:Resource, rdfs:Literal, or rdf:Property.
Additionally, various instances of the class rdf:Property are de-
fined. By those, for example, a relations origin (rdfs:domain) and
objective (rdfs:range) can be determined. Further, hierarchical
structures can be formed by the properties rdfs:subClassOf and
rdfs:subPropertyOf.

Three examples of RDFS properties shows figure 11. The figure
contains three classes (Corporation, Person, and University) and a
property (hasEmployee). By RDFS the domain and range of hasEm-
ployee are defined. Further, a hierarchy is given by the prop-
erty subClassOf from University to Corporation. By this way, an
implicit relationship “University-hasEmployee-Person” can be ex-
ploited for two instances of University and Person.

4.3.3 Web Ontology Language

The “Web Ontology Language (OWL) is intended to be used
when the information contained in documents needs to be pro-
cessed by applications [...]. OWL can be used to explicitly repre-
sent the meaning of terms in vocabularies and the relationships
between those terms.” [W3C10a]

This quotation resembles the description of RDFS above. OWL

in fact includes some classes and properties of RDFS. Indeed, it
delivers more expressive constructs, also in support of applica-
tions.

4.4 FURTHER USED TECHNOLOGIES 31

There are three sub-languages in OWL: OWL Lite, OWL DL, and
OWL Full. The languages differ in the expressiveness. Some
features, which are included in all sub-languages, are following.

In comparison with RDFS, OWL provides some additional prop-
erty characteristics. One example is the property inverseOf, which
is used by the AAN ontology. Assume, a property isBookmarkOf
is the inverseOf a property hasBookmark. Further, a resource A is
related to a resource B by hasBookmark. Then B is related to A by
isBookmarkOf.

In addition to this property characteristic, statements of transi-
tivity or symmetry can be defined. Moreover, restrictions, e.g. in
cardinality, can be done.

The AAN ontology, introduced in Section 3.1.3, is based on the
possibilities of OWL. In the next parts, further used technolo-
gies are described. Some of them refer to the resource formats
described in this section.

4.4 FURTHER USED TECHNOLOGIES

4.4.1 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) “can be
used to express queries across diverse data sources”, if the given
“data is stored [...] as RDF” [W3C10e].

In the AAN framework (see Chapter 4.2), SPARQL is used by web-
services, which form interfaces between the framework and ex-
ternal frontends or users, which directly request queries.

Utilizing SPARQL, one can request queries by giving graph pat-
terns containing conjunctions and disjunctions. By this, usual
sets of results or RDF graphs can be returned.

SPARQL is supported by ARQ, a query engine for the Jena frame-
work, introduced in the next section.

32 TECHNICAL FOUNDATIONS

4.4.2 Jena

Jena is a “framework for building Semantic Web applications”
[Jen10]. It is written in Java [Ora10] and was developed at the
HP Labs3. Today, it is an open source framework.

Jena supplies RDF support by providing an Application Program-
ming Interface (API), with which RDF graphs can be read and
written. RDF graphs can be serialized and persistently stored in
different ways, e.g. by rational databases (SDB), or by an spe-
cialized engine (TDB) with high performance. This is done by
custom indexing and storage. Models, stored or in memory, can
be queried via SPARQL and the query engine ARQ.

As Jena additionally supports the OWL vocabulary, it was inte-
grated into the AAN datastore [Var10].

4.4.3 JavaScript Object Notation

“JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format. [...] JSON de-
fines a small set of formatting rules for the portable representa-
tion of structured data.” [IET10]

JSON is used to serialize structured data and an alternative to the
Extensible Markup Language (XML). Generally, JSON is smaller
than non-compressed XML, because no closing tags are used.

In JSON, the values array, number, object, string, true, false, and null
are defined. An array consists of an opening “[”, a closing “]”,
and values divided by commas. An object begins with a “{”, ends
with a “}” and the main contents are given by pairs of strings
and values in the form string:value, divided by commas.

JSON is used by Delicious feeds as an alternative to Really Simple
Syndication (RSS).

3 Semantic Web Research at the Laboratories of the Hewlett-Packard Develop-
ment Company, L.P., http://www.hpl.hp.com/semweb/

http://www.hpl.hp.com/semweb/

4.5 SUMMARY: A BASIS OF DYNAMICS AND SEMANTICS 33

4.5 SUMMARY: A BASIS OF DYNAMICS AND
SEMANTICS

The OSGi Service Platform provides a foundation for dynamic
system components. Such components have been developed and
form the AAN framework. It was designed to provide extensibil-
ity, following an integration of new components is supported.

RDF provides a representation format for information of resources.
This is integrated into RDFS, by which ontologies can be defined.
The opportunities for describing ontologies are extended by OWL.
It provides a basis for defining a hierarchical structure of classes
and semantical definitions. This data can be stored by Jena.

5

S O L U T I O N A P P R O A C H

For a solution approach Delicious, SlideShare, and Scribd are
analyzed to determine accessible data. Afterwards, the data is
integrated into the ontology.

5.1 ANALYSIS OF RELEVANT DATA SOURCES

The three data sources are analyzed In this section. The analy-
sis of the respective networks is divided into two parts: Firstly,
possible data for extraction is collected by practical use of the
network services and by analysis of the provided outcome of the
websites. Secondly, at least one interface has to be chosen, which
has to provide the desired data. The method used to integrate
the data, by simply extending the given ontology, is covered by
the next chapter.

When analyzing a network preliminarily, the classes, semantic
relations, and the data properties of each source network to be
extracted are classified. This data has to be relevant for the use of
AAN. Relevant data correlates with the classes and semantic re-
lations of the base ontology, introduced in Section 3.1.3. Classes
of the ontology can be related with data properties. These data
properties provide metadata, which describes the instances of
classes. As extracted data is stored within the AAN system, only
static data should be chosen for integration. Dynamic data, such
as the current number of bookmarks of an actor, or the num-
ber of followers, refers to a point of time and could be outdated
without notice. Furthermore, data which describes artifacts, is
not generated automatically. In some cases, users have options
to add data in their personal predilections. Inconsistency results
when predetermined fields are used differently.

35

36 SOLUTION APPROACH

Summarized, certain criteria applied for data processing:

• Data has to be relevant for use of AAN.

• Only public data can be accessed.

• Values of data properties should be static.

• Data properties should be used consistently.

After determining which data is offered for extraction, the me-
thod of accessing must be defined. The public website of the
service is an interface which is provided by each network. The
HyperText Markup Language (HTML) code of a site could be
parsed. This method of access has a disadvantage as the pos-
sibility exist that the code format is not well structured. Even
if the HTML code is structured and contains describing IDs and
names, changes in the structure of the website can result in a
non-parsable code for a current parser. Therefore, other options
for accessing should be analyzed.

An example of a preferable interface is an API, which is provided
by serveral webservices. An API is well-structured and even if
new versions of an API are published, old versions are further
supported for a period of time, or old versions are integrated to
newer ones.

The choice of an appropriate interface is dependent on these
criteria:

• The interface must provide public data.

• All relevant data, which has been chosen in the first section
of a networks analysis, has to be available.

• Restrictions of an interface should not hinder the process
of crawling or parsing.

• A well-defined structure of the data is favorable.

It must be analyzed, which options of accessing the data is the
most appropriate alternative, and these options defined for de-
velopers. The preferred choice is the use of an API, which pro-
vides all relevant and public data without restrictions. If such
an interface is not offered, other suitable interfaces can be used.
Thus, a combination of different interfaces is thinkable.

The analysis of the Delicious network contains procedures, which
are applied in each of the networks. As the way of proceeding is
introcuded by the first part, the analysis of Delicious is described
more detailed.

5.1 ANALYSIS OF RELEVANT DATA SOURCES 37

5.1.1 Delicious

Data for Extraction

It must first be analyzed which fundamental data exists and has
been published by Delicious network in order to extract the rele-
vant data. The method of proceeding at this point, is to examine
which data can be set by users and which public data will be
published by the Delicious website afterwards.

Delicious is primarily an artefact network. Therefore, the focus
here is on bookmarks. The relevant details which are set by users
are URL, title, notes, tags, and for, when a bookmark is set. When
viewed from the Artefact-Actor-Networks ontology, the details
can be interpreted as follows:

• The field URL is construed as an semantic relation of the
type ART2 with domain Artefact and range OnlineArtefact.
This means, that a created bookmark points to an artefact
reachable by the WWW. These links should be included
to the set of extracted data, to give options for accessing
external artifacts during the crawling process.

• Title and notes can be seen as data properties of an Artefact.
They form additional meta information of a bookmark.

When a set of received bookmarks are analyzed, it may be
discovered that the field notes are used inconsistently. Fre-
quently notes of different users are equal, this could a re-
sult by the use of applications, which automatically set this
field to the first headline or a describing meta-element in
the head section of a HTML document. Such data is already
explained by the title field. Secondly, different languages
are used for taking notes. Therefore, values of the field
notes will not be extracted.

• The field tags provide two points for each tag: Firstly, it
describes an object of the class Keyword. Additionally two
semantic relations can be extracted: The hasKeyword rela-
tion and the isKeywordOf relation.

• By filling in the field for, the additional option of notifying
users of bookmarks is defined. An addressee could be an-
other Delicious user, an email address or a notification by
the social network twitter. As this data is not published, it
is not relevant for this task.

38 SOLUTION APPROACH

Beside the creation of bookmarks and tags, Delicious users are
able to add other users to their network. This can be done by us-
ing the hyperlink “Add a user to Network”, if an user is logged
in. By this option, actor networks are generated. This forms an
additional point, which can be extracted:

• When crawling a users network, data which corresponds to
the semantic relation ACT2 is provided.

The second source for potentially usable data of the Delicious
network is given by analyzing the result of the Delicious web-
site. In addition to the data properties above, the author of a
bookmark can be accessed by the web. For each bookmark the
date of the creation is published additionally. If a visitor looks up
a users bookmarks, he can refine the result by limiting the users
bookmarks to those described with selectable tags. This selection can
also be done by hyperlinks.

Some more details about the network (e.g. the number of book-
marks for a specific URL) are provided by the Delicious web-
site. This information affects points, which are not relevant
for the current use of Artefact-Actor-Networks. When consid-
ering the example of the number of bookmarks for a specific
URL, the information is uninteresting, because once the crawling
process is concluded, all bookmarks of an URL should have been
stored. Then the number of bookmarks can then be requested
via SPARQL.

Summarized, we gather the following points for further options
of extraction.

• Author corresponds to the class Actor of the base ontology.

• As an Author is creating bookmarks, this generates seman-
tic relation between Actor and Artefact.

• Date is a data property of an Delicious Artefact.

• Artifacts can be selected by a combination of an user and
tags. As the base ontology is build up without direct se-
mantic relations between Actors and Keywords, this point
cannot be used for the ontology itself. However, it pro-
vides a useful method for extraction.

Finally, here is an overview of data which can be potentially ex-
tracted:

5.1 ANALYSIS OF RELEVANT DATA SOURCES 39

Classes:

• Bookmark (Artefact) with the data properties: Title and Date

• Tag (Keyword) with the data property: Name

• Actor with the data property: Name

Semantic relations:

• ACT2 with domain Actor and range Actor from actor A to
actor B

• ACT2 with domain Actor and range Actor from actor B to
actor A

• hasArtefact of type AA, with domain Actor and range Arte-
fact

• isArtefactOf of type AA, with domain Artefact and range
Actor

• ART2 with domain Artefact and range Online Artefact

• ART2 with domain Online Artefact and range Artefact

• hasKeyword with domain Artefact and range Tag

• isKeywordOf with domain Tag and range Artefact

The classes, relations and data properties collected in this sec-
tion should be offered by the chosen interface. The next section
examines possible methods of data access.

Choice of Interface

Delicious offers multiple options for developers to access the
available data [Yah10d]. Depending on the desired result, one
can choose from different interfaces, e.g. an API, feeds, [Yah10b]
or linkrolls. In this section three applicable alternatives to access
the Delicious network are examined: The Delicious API, the use
of feeds and the possibility to parse HTML code of the Delicious
Website.

DELICIOUS API Generally, one of the most applied methods to
access data is by the use of an API. This option was also tested
for applicability to the AAN system. The offered API-methods
are custom-made for the access and use of a users personal data.
A user can create, edit and receive personal bookmarks, tags

40 SOLUTION APPROACH

INTERFACE PUBLIC DATA WELL-DEFINED

API – X

Feeds X X

HTML parser X –

Table 1: Comparison of Delicious Interfaces

and tag bundles. All these actions require an user authentica-
tion. The AAN was developed to extract and analyze public
data. However, the need for the users authentication by the API

presents an hindrance. The alternatives must offer a public in-
terface to access the data. Other than that, the hindrance must
be completely eliminated.

DELICIOUS FEEDS A more usable approach to access data is
the use of Delicious feeds. Feeds are offered in JSON (see Sec-
tion 4.4.3) and RSS format, and provide an access to public data.
It is possible to get the latest bookmarks, tags and network mem-
bers of a specified user. Furthermore, requests for bookmarks
can be refined by combining a specific username and tags. Gen-
erally, recent bookmarks for an URL can also be retrieved. This
forms an extensive base for information retrieval.

HTML PARSER The last examined method is the use of a HTML

parser. Parsing the Delicious website is a method of accessing
the largest amount of data. Most of the data created by users
is published on the web, except the data described as private.
The HTML code of the network is structured and provides a lot
of class and id statements. A disadvantage of this interface is,
that the code is not well-defined. As a result an implemented
parser would not work, if changes in the structure of the code
were done.

COMPARISON AND DECISION Taken together, the use of Deli-
cious feeds is the best option to access the network. Table 1

shows the advantages: Feeds provide the necessary public data
and a well-defined structure. The chosen format of the feeds is
JSON. The JSON feeds provide almost the same amount of data as
feeds in RSS format in a clearly more compressed form. Further-
more one feed address (urlinfo) is provided only in this format.

5.1 ANALYSIS OF RELEVANT DATA SOURCES 41

The use of the Delicious JSON feeds is described more detailed
in the next section.

Use of Delicious Feeds

Delicious provides 23 feed addresses to receive network data.
A complete list of URL patterns and descriptions are shown in
Appendix A.2. The list was taken from [Yah10b]. For a better
assignment, the feed addresses are numbered.

FEED ADDRESSES WITHOUT USE 10 of the provided 21 feed
addresses are not used. The addresses affected are explained in
this section.

• The patterns 1, 2, and 4 provide data about bookmarks
which are not requested by arguments consisting of an Ac-
tor, Tag or web URL. Therefore they do not provide specific
data and are useless for the usage of AAN.

• The feed address 6 is reserved for Delicious site alerts.

• The URL patterns 8, 10, 15, 17, and 19 provide private data.
This data only can be accessed, if a key is handed over. As
such private keys are unknown hence, private data cannot
be accessed.

• Feed address 11 returns static user information. Return
values are the number of bookmarks, network members,
and network fans of a given user. This data will already be
available, if user-related feeds are crawled completely.

• Pattern 14 delivers recent bookmarks from user subscrip-
tions. As these are not associated with a users bookmarks,
they are not in use.

• Finally the feeds 16 and 18 provide the latest bookmarks
form a users network. As the network will be crawled by
the system, this is redundant data.

FEED ADDRESSES IN USE The method of classifying and uti-
lizing the 10 used Delicious feeds are analysed in this section.
The URL patterns can be classified by examining the schemes of
the return values. Table 2 shows an overview of the used feeds.
The feeds are named for a better understanding. Further, the
needed input values and the resulting output schemes are listed,

42 SOLUTION APPROACH

FEED NAMING INPUT OUTPUT SCHEME REF.

bmPopularByTag Tag Bookmarks 5

bmByTags Tag(s) Bookmarks 3

bmByUrl URL Bookmarks 22

bmByUser User Bookmarks 7

bmByUserAndTags User, Tag(s) Bookmarks 9

networkFans User Users 21

networkMembers User Users 20

tagsByUser User Tags 12

tagsByUserAndTags User, Tag(s) Tags 13

urlInfo URL URL 23

Table 2: Schemes of used Delicious feeds

and references to the Delicious feed patterns (see Appendix A.2)
are given.

For example, the feed bmByUserAndTags needs two arguments:
An user name and a set of tags. The returned scheme provides a
set of bookmarks. Each of these bookmarks were created by the
user which was handed over and was described with each of the
given tags.

Four different types of feeds can be examined by classification:
Bookmarks, Users, Tags, and URL. Each of these schemes provides
different sets of values, which refer to classes of the ontology. On
the one hand, the scheme types themselves differ, on the other
hand, the number of returned values of a scheme can also be
different.

The feed schemes can be seen at Appendix A.1. Here is an
overview of the scheme properties is listed:

• The scheme Bookmarks counts up to 100 bookmark entries.
Every entry consists of one OnlineArtefact, one Author, and
a set of Tags.

• The scheme Tags delivers a set of Tags.

• The scheme Users delivers a set of Actors.

• The scheme URL consists of one OnlineArtefact and a set of
Tags.

5.1 ANALYSIS OF RELEVANT DATA SOURCES 43

URLTag(s)

Tag(s)

Actor(s)

Tag(s)

URL

Actor

URL(s)

Tag(s)

Tag(s)

Tag(s)

URL

Actor

Actor

Actor

Actor

Actor

bmPopularByTag

bmByTags

bmByUrl

bmByUser

bmByUserAndTags

networkFans

networkMembers

tagsByUser

tagsByUserAndTags

urlInfo URL

Tags

Users

Bookmarks

Input classes Output schemesFeed patterns Output classes

Actor

URL

Tag

Figure 12: Inputs and outputs of Delicious feed patterns

To visualize the data flow, input classes, feed patterns, output
schemes, and output classes are shown schematically in Fig-
ure 12. For instance, if two objects of the classes Actor and Tag
are passed to the feed bmByUserAndTags, the corresponding re-
turn is a set of data of the scheme Bookmarks. This set may con-
tain some instances of the class Bookmark. Each of the Bookmark
objects provides data about the creating Actor, the URL of the
referred OnlineArtefact and Tags, which provide some meta data.

DISADVANTAGES OF FEEDS The use of feeds to access data of
the Delicious network poses two difficulties.

The first disadvantage is, that the number of returned feed en-
tries is limited to 100. Additionally, no possibility to start at an
older entry (e.g. by an argument “start at entry 101”) is given.
The reason for this is that the originate in the spreading of news.
Therefore the normal case is, that only recent news are inter-
esting and provided. This affects the return of methods of the
scheme Bookmarks.

The second restriction is, that only one request per second is
allowed. As a result, the access by feeds should be limited to
one thread. Furthermore every request becomes valuable by this
limitation.

44 SOLUTION APPROACH

5.1.2 SlideShare

Data for Extraction

SlideShare is primarily a platform to share presentations and
documents. For each of these resources it has to be determined,
which data can be extracted. Available data is created during
the process of publication. In this process it has to be examined,
which data of a resource is extracted by SlideShare. Furthermore,
some additional data can be entered by users. This data could
also be published. Summarized, it has to be determined, which
metadata is relevant for the AAN system.

When uploading files1, SlideShare users can choose between var-
ious of file types, e.g. PDF, PPT (files of presentation programs
such as Microsoft PowerPoint), DOC (files of document prepara-
tion systems such as Microsoft Word), or other office application
formats. Some metadata can be added for these artifacts: a title,
a description, a list of tags, a category, the language, a privacy
statement (public, private, or visible for followers), and it can
be determined, if the document is available for download. After
concluding editing document details, a license can be chosen.

A published resource is displayed on the public website, where
additional data is made available. The extracted text version of
the resource is the only usable part. The rest of the displayed
data consists of the sharing options and dynamic statistics. It is
not practicable for the use in AAN.

In addition to the options of uploading resources, a user can
also follow other users. These users may also follow other users.
Therefore, the SlideShare network contains actor networks.

Possible elements for integration into the ontology can be deter-
mined at this point:

• The classes Actor, Artefact, Tag, and Category can be created
for the storage of SlideShare.

• Semantic relations between an Actor and an Artefact, which
has been added by the actor, are generated.

• Semantic relations between an Artefact and its Category and
Tags are defined.

1 http://www.slideshare.net/singleupload

http://www.slideshare.net/singleupload

5.1 ANALYSIS OF RELEVANT DATA SOURCES 45

• Semantic relations between Actors are provided, whilst other
users are followed.

• The data properties title, description, language, download URL,
license, and full text of an Artefact can be extracted.

The privacy statement is not relevant for the extraction of data.
If it is set to “private”, or “visible for followers”, it is not public
and can not be accessed. Otherwise, it is public and will be
extracted.

The next step is to clarify, how the data can be accessed.

Choice of Interface

SlideShare provides an RESTful2 API for developers. [Sli10c] It is
available free of charge for non-commercial use. Developers can
apply for an API key, which is needed to access the interface.

The SlideShare API provides 14 Methods. They are listed in ta-
ble 3. Seven methods can be used to access personal data of
users. The authenticity is a result of the users name and pass-
word. As only public data is of interest, methods commented
with “Method is private” are ignored.

Two methods are related to SlideShare groups. As the possibility
of determining a users followers is given, these groups and re-
lated methods are not used. The next point is the scale of return
values, which is extensive. If resources are returned, all data pro-
vided by get_slideshow is included. Following, there is no need
for this method. At least, resources can be accessed by requests
of tags and users. As a result, the method search_slideshows is
not needed.

Three methods of the SlideShare API provide all relevant data:
get_slideshows_by_tag, get_slideshows_by_user, and get_user_contacts.
This is caused by the extensive scale of return values. The rela-
tionships of methods and classes of the AAN ontology are schemat-
ically visualized in Figure 13. Continuous lines mark access via
API methods and dotted lines present returned data in XML.

To understand the relations given by the returned XML code,
the response formats of the SlideShare API can be seen in Ap-

2 A RESTful API uses the principles of Representational State Transfer
(REST). See http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_

arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

46 SOLUTION APPROACH

METHOD USE COMMENT

edit_slideshow No Method is private
delete_slideshow No Method is private
get_slideshow No Return values given by

other used methods
get_slideshows_by_group No No use of SlideShare groups
get_slideshows_by_tag Yes Used for requesting

slideshows by tag
get_slideshows_by_user Yes Used for requesting

slideshows by user
get_user_campaign_leads No Method is private
get_user_campaigns No Method is private
get_user_contacts Yes Used for requesting

contacts by user
get_user_groups No No use of SlideShare groups
get_user_leads No Method is private
get_user_tags No Method is private
search_slideshows No Return values given by

other used methods
upload_slideshow No Method is private

Table 3: Use of SlideShare API Methods

Artefact

KeywordActor

get_user_contacts(username)

get_slideshows_by_user(username)
get_slideshows_by_tag(tag)

Query ID | URL

search_slideshows(query) get_slideshow(id | url)

API method

XML Response

Figure 13: Use of SlideShare API methods

5.1 ANALYSIS OF RELEVANT DATA SOURCES 47

INTERFACE PUBLIC DATA WELL-DEFINED

API X X

HTML parser X –

Table 4: Comparison of SlideShare Interfaces

pendix A.3. The return of a single slide show contains 32 fields.
The fields include an actor (Username), a set of keywords (Tag),
an id (ID), and an url (URL). The methods get_slideshows_by_tag
and get_slideshows_by_user return whole sets of such slideshows.
The method get_user_contacts mainly provides a set of usernames.

The full text, which is displayed on the website of SlideShare
artifacts, is not delivered by the XML code of the API. If this
is needed, a HTML parser could be developed. The HTML code
of the website of SlideShare is generated dynamically and not
well-defined (see Table 5). Following, changes in the code could
produce interferences in the process of extraction. As artifacts
of the SlideShare network are described by title, description, tags,
and category, an access via a parser is not implemented.

In addition to the data properties determined in Section 5.1.2,
some more properties can be extracted from the XML code and
used for AAN:

• The ID of the resource (ID)

• The web permalink (URL)

• A link to a thumbnail image (ThumbnailURL)

• The time of creation (Created)

• The format of the resource (Format)

• The type of a resource (SlideshowType), which can be a pre-
sentation, a document, or a video

• The number of slides (NumSlides)

The property license is not provided by the API. Hence, it will
not be integrated.

The classes, relations, and data properties delivered by the SlideShare
API are integrated into the AAN ontology in Section 5.2.

48 SOLUTION APPROACH

5.1.3 Scribd

Data for Extraction

The choice of accessible and relevant data is composed of the
data, which can be given by publishers of artifacts and the gen-
erated website output.

Users can make some statements by uploading and editing an
artefact. They have two options: The candidate is asked to fill
in the missing words or a selection can be made from a multiple
choice proposal. The title and the description is entered in the
Şmissing wordŤ field, whereby tags are separated by commas.
Selected items are classified under one of the following; privacy
(public or private), category and sub-category, language, default
view-mode, the possibility of downloads, download formats, en-
abling comments, the license, and permissions of printing and
copying text.

The date of publication of an artefact, as well as a download link
is also disclosed on the website.

In addition, users can subscribe to other users. Such relation-
ships build up actor networks.

The following candidates of ontology elements can be deter-
mined with this data:

• The classes Actor, Artefact, Category, and Tags.

• Semantic relations between the classes Actor and Artefact,
by the publication of an resource.

• Semantic relations between an Artefact and its Categories
and Tags.

• Semantic relations between two Actors, caused by subscrip-
tions.

• Some Data properties of an Artefact: the title and descrip-
tion, the language, a download URL, the download format, a
license, and the publishing date.

The field “privacy” is not relevant, because only public data can
be accessed.

5.1 ANALYSIS OF RELEVANT DATA SOURCES 49

INTERFACE PUBLIC DATA WELL-DEFINED COMPLETE DATA

API X X –
HTML parser X – X

Table 5: Comparison of Scribd Interfaces

Choice of Interface

Scribd provides a RESTful API similar to SlideShare. [Scr10c] This
is the only alternative provided to Parsing the HTML code. A
comparison of the two interfaces is shown in Table 5. The Scribd
API provides methods for uploading, converting, editing, delet-
ing, and searching documents. Three alternatives for authentica-
tion are given:

1. No authentication. Just the API key has to be passed.

2. API sessions. A session can be started by entering a users
name and password.

3. Use of an additional parameter. This is for integration of
ones own system.

Alternative three provides options for integration of a system
with ones own user management. This option can only be used
in further handling to store data outside the AAN system, but
not to extract data within the local AAN. Alternative two can
be used for systems to extend Scribd services. This is not the
intention of the concept of AAN. Hence, the first method has
been chosen.

The Scribd API mainly provides methods for document manage-
ment of authorized users. An overview of the provided methods
is given in Table 6. Only the method docs.search can be used effi-
ciently. It contains a parameter query, which can be extended by
the parameters title, content, tags, and description. It returns a set
of XML fields, listed in Appendix A.4.

The methods docs.getConversionStatus and thumbnail.get could be
used for additional information. The return value of
docs.getConversionStatus provides information about the current
state of access. It is returned, if the resource is in the initial PRO-
CESSING state, already DISPLAYABLE, or if the document is
fully indexed and the upload is completely DONE. The method
thumbnail.get returns an URL to an image, which can be used

50 SOLUTION APPROACH

METHOD USE COMMENT

docs.upload No Document management
docs.uploadFromUrl No Document management
docs.getList No Requires user authorization
docs.getConversionStatus Yes Status of upload
docs.getSettings No Requires user authorization
docs.changeSettings No Document management
docs.getDownloadUrl No Requires user authorization
docs.getStats No Provides only the number

of reads
docs.delete No Document management
docs.search Yes Provides requests for

artifacts
docs.getCategories No Extracted at runtime
docs.featured No Not related to categories

or tags
docs.browse No Browsing of categories
docs.uploadThumb No Document management
docs.getCollections No Document management
docs.addToCollection No Document management
docs.removeFromCollection No Document management
thumbnail.get Yes Image for visualization
user.login No User administration
user.signup No User administration
user.getAutoSigninUrl No User administration
security.setAccess No Document management
security.getDocumentAccessList No Document management
security.getUserAccessList No Document management

Table 6: Use of Scribd API Methods

5.1 ANALYSIS OF RELEVANT DATA SOURCES 51

Artefact

KeywordActor

docs.search(@tag)

Query

docs.search(query)

API method

HTML parser

ACT²

AA

AA

Keywords
of Artefact

Figure 14: Use of Scribd interfaces

for visualization of the data. It is also provided by the method
docs.search.

As the API mainly provides an access by the input of tags, an
additional HTML parser has to be developed. It has to provide
all types of access, excepted the access of artifacts by tags. Figure
14 shows the use of the interfaces.

After an analysis of the structure of the HTML code, the following
elements will be integrated:

• The classes Actor, Artefact, and Tag.

• Semantic relations of the type ACT2, which describe sub-
scriptions of Actors.

• Semantic relations of the type AA, between Actors and Arte-
facts.

• Semantic relations of the type AA, between an Actor and an
OnlineArtefact, which describes the personal website of the
actor.

• Semantic relations between Actors and Tags.

• A set of data properties for an Actor: name, location, and
biography.

• A set of data properties for an Artefact: document id, title,
description, license, thumbnail, number of pages, download for-
mats, upload date, and download URL.

52 SOLUTION APPROACH

The next step is to integrate the available elements into the on-
tology.

5.2 SOLUTION DESIGN

Before the solution design is described, some enhancements of
the ontology are introduced. Afterwards, determined classes, re-
lations, and data properties of the data sources are integrated
into the ontology. Finally, software components for the respec-
tive services are developed.

5.2.1 Enhancements of the ontology

Various possibilities for improvement arose during the develop-
ment and use of AAN and during research on this thesis.

The idea of refining the class Keyword in the base ontology was
derived during the integration of additional networks.

Furthermore, compatibility with several metadata vocabularies
was necessary. Consequently, a new version of the ontology was
developed by the AAN team and external participants.

Figure 15 shows the base ontology of the revised version 2. The
class Keyword has now been divided into two subclasses, Cate-
gory and Tag. By these means it can be differentiated, whether
predetermined categories or arbitrary tags are needed. More-
over, numerous semantic relations were added to provide a higher
level of compatibility with some proven vocabularies: Dublin
Core Metadata Initiative (DCMI) Metadata terms [Dub10], the
Friend of a Friend (FOAF) project [FOA10], and the terms of
Semantically-Interlinked Online Communities (SIOC) [SIO10]. This
enhancements provide uniformity for the work with different
components. For instance, two semantic relations hasSection and
hasChapter of different external sources can be handled uniformly
by using or specializing the relation hasPart. If relations of the
class hasPart are requested later, a set of returned data provides
a higher number of results.

5.2 SOLUTION DESIGN 53

Figure 15: Version 2 of AAN ontology

54 SOLUTION APPROACH

5.2.2 Integration of Delicious

Integration into the AAN Ontology

A concept for the integration of Delicious data, analyzed in Chap-
ter 5.1.1, into the AAN ontology is worked out in this section.

For this, the existing ontology has to be extended. It has to
be initially determined, which existing classes and relations of
the base ontology can be used. Furthermore, the expandability
of the system has to be taken into account. During the design
process, created classes should be reusable. Figure 16 shows a
visualization of the completed integration of Delicious.

USE AND MAINTENANCE OF EXPANDABILITY Attention has to
be payed as to the expandability of the data structure for future
application. Possibly, other bookmarking services such as Deli-
cious will be integrated.

As Delicious can be seen as a web service and all classes can be
accessed via the WWW, they will have be classified as subclasses
of the AANOnline block in the AAN ontology.

On the other hand, the Delicious block itself has to be a sub-
section of a general block for bookmarks. Social bookmarking
services such as Delicious, Simpy3, or Mister Wong4 mostly are
using tags to describe bookmarks. Additionally, actors and the
bookmarks themselves form parts of these networks. As a re-
sult, a new sub-block AANSocialBookmarks of AANOnline was
inserted. AANSocialBookmarks consists of three classes: Book-
markActor, BookmarkArtefact, and BookmarkTag. The new classes
extend classes of AANOnline, only BookmarkTag is extending the
class Tag of the block AANBase, because no corresponding class
is defined for AANOnline.

INTEGRATION OF EXTRACTED DATA After the integration of new
classes for the field of social bookmarking, specialized sub-classes
for Delicious have to be converted. For this purpose, a block
AANDeliciousBookmarks consisting of the classes DeliciousActor,
DeliciousBookmark, and DeliciousTag has been created. These classes

3 Simpy, http://www.simpy.com/
4 Mister Wong, http://www.mister-wong.de/

http://www.simpy.com/
http://www.mister-wong.de/

5.2 SOLUTION DESIGN 55

Figure 16: AAN ontology: Integration of Delicious

56 SOLUTION APPROACH

are direct sub-classes of the three classes in the AANSocialBook-
marks block.

Semantic relations The semantic relations found in Chapter 5.1.1
have to be integrated before storing the networks relationship.

Two existing semantic relations (and their inverses) can be used
through inheritance from AANBase and AANOnline. A Book-
markActor is a bookmarkerOf (inverse: hasBookmarker) a BookmarkArte-
fact. This corresponds to the relations hasArtefact (and isArte-
factOf) of the analysis. Further, a BookmarkArtefact is related via
hasTag (inverse: isTagOf) to a BookmarkTag. This corresponds to
the relations hasKeyword and isKeywordOf of the analysis.

Four additional semantic relations have to be added to the ontol-
ogy. The two ACT2 relations are included by hasNetworkMember
and hasNetworkFan with domain and range DeliciousActor. They
are specializations of the relations hasInBuddyList and isInBud-
dyList of the base ontology.

Finally, the semantic relations between artifacts have to be real-
ized. The respective artifacts of domain and range are of dif-
ferent types. Bookmarks of the Delicious network are instances
of the class DeliciousBookmark. On the other hand, an artefact
which is related by a bookmark is more general. As this could
be any document in the WWW, the range of the relation is of the
type OnlineArtefact. The types of the semantic relations are cho-
sen from the base ontology: linksTo inherits from references and
hasLink inherits from isReferencedBy.

Data properties Data properties of the classes have to be de-
fined to complete the integration. Some properties are given by
the hierarchy:

• Actors already have the data properties name and webUrl.

• Artifacts take over the properties storeTime and webUrl.

• Tags have the property keywordValue.

The property webUrl has also been defined for tags, allowing
actors as well as artefacts and tags to have an access point to
retrieve information via the WWW. For instance, a stored webUrl
for the Delicious tag “socialmedia” is http://delicious.com/

tag/socialmedia.

http://delicious.com/tag/socialmedia
http://delicious.com/tag/socialmedia

5.2 SOLUTION DESIGN 57

In addition to the existing data properties, some more relevant
metadata to describe bookmarks is delivered by the Delicious
feeds. This data should also be delivered by other social book-
marking networks, therefore it is referenced by BookmarkArtefact
instead of DeliciousArtefact. The data consists of the properties
creationTime, targetUrl and title. All properties are delivered by
the scheme “bookmarks” of the JSON return values, listed in Ap-
pendix A.1.

5.2.3 Integration of the document networks

SlideShare and Scribd provide data regarding documents. This
common ground should be reflected in the ontology. As a re-
sult, the classes of both networks become sub-parts of a common
block for document networks. Figure 17 visualizes the document
part of the ontology.

The document block AANDocument consists of two classes, Doc-
umentActor and DocumentArtefact. They are derived form On-
lineActor and OnlineArtefact of AANOnline. This was done, be-
cause all resources of the networks can be accessed in the WWW.
The class DocumentArtefact is related to several data properties.
These properties exist in the artefact classes of SlideShare and
Scribd. By inheritance, SlideShareArtefact and ScribdArtefact are
related to the data properties creationTime, description, download-
Url, formats, id, pages, title, and thumbnailUrl.

Additionally, each network has its own definitions. These are
described in the next sections.

SlideShare

Further classes for tags and categories have been defined in addi-
tion to the classes SlideShareActor and SlideShareArtefact. SlideShare
tags are defined by the class SlideShareTag and categories by
SlideShareCategory. They are directly derived form the base classes
Tag and Category. Artifacts of the SlideShare network contain de-
tails, which are not given by inheritance form the class Documen-
tArtefact. Accordingly, two additional data properties type and
language have been added.

58 SOLUTION APPROACH

Figure 17: AAN ontology: Integration of document networks

5.2 SOLUTION DESIGN 59

Scribd

The AANScribd block contains an additional class ScribdTag, which
is derived from the class Tag of the base ontology. Further, some
data properties are defined. Artifacts of the Scribd network con-
tain a license. Hence, the class ScribdArtefact has a data property
license. For actors in the Scribd network, the details location,
biography, and website can be defined. As a result, the class
ScribdArtefact has two data properties location and biography. The
website of a Scribd actor has been defined in another way. In
the ontology, websites are represented by OnlineArtefacts. As a
result, actor websites have been realized as semantic relations
between ScribdActor and OnlineArtefact.

5.2.4 Draft of software components

In this section some preparation for a practical implementation
is provided. Following, a draft of the components is described
by the definition of interfaces.

The realization of the components is oriented to the architecture
shown in Figure 9 on page 25. It consists of two OSGi bundles
for each of the three networks.

On the one hand, a CrawlerManager controls the process of crawl-
ing and is responsible for the handling of new crawling tasks.
Additionally, it uses data, extracted by a Parser, to control the
crawling process. The webservice, displayed in the architecture
in Figure 9, is also a component of the CrawlerManager bundle.

On the other hand, a Parser is necessary and responsible for the
extraction of data. A Parser determines and extracts objects of
classes, contained in the ontology. Furthermore, it extracts se-
mantical relations and data properties.

A Crawler component is not necessary and will not be developed.
The CrawlerManagers are using existing Crawlers to access data.
An insight to the crawling process is defined before the compo-
nents are planned.

60 SOLUTION APPROACH

Figure 18: Working chain: Successful Crawl of a Delicious resource

5.2 SOLUTION DESIGN 61

The crawling process

The crawling process integrates several components which are
part of a working chain as described here by a visualization. Fig-
ure 18 depicts an instance of a successful crawl of a Delicious
resource. Firstly, the DeliciousCrawlerManager adds a new crawl
task. The task is started and controlled by a Crawler component
which needs access to bundles of different types. The accessing
is done by provided services. References to the services can be
accessed via the OSGi framework.

The first part of the working chain is to access the resources.
It is been done by an Accessor component. After the Accessor
component stored the resource locally, the MimeTyper detects the
MIME types of it. The MIME types are used to choose a special-
ized parser to process the resource. If no specialized parser is
found, a general parser would process the task. In the example,
the method isParsable is called at the DeliciousParser. As the De-
liciousParser can process the resource and returns the value true.
If it would return false, the method isParsable would be called
at other parsers. Finally, the Crawler component starts the pars-
ing process by calling the method parse at the DeliciousParser. A
CrawlerDataObject with information of the parsing process is re-
turned to the DeliciousCrawlerManager.

The controlling component CrawlerManager

A CrawlerManager controls the process of crawling. It can be
accessed by a webservice and is specialized for a specific type
of network. In this thesis, three types of networks should are
integrated. The three types of CrawlerManagers developed are
as follows: A DeliciousCrawlerManager, a SlideShareCrawlerMan-
ager, and a ScribdCrawlerManager. Each of these CrawlerMan-
agers are realized as an OSGi bundle and provide services which
are accessed by interfaces. The procedure of accessing several
networks are similar and the interfaces provide the same meth-
ods. For each network, a method to add, get, and remove a
task is defined. Furthermore, methods for the special tasks of
crawling an actor, artefact, and tag will be implemented. Ad-
ditionally a method for list all unfinished tasks is defined. The
Scribd network differs from the other networks, because it has

62 SOLUTION APPROACH

Figure 19: Use Cases of component DeliciousCrawlerManager

an additional class Category. A crawl of a whole category is no
special task, it can be started by adding a general task.

For categories no additional use case is defined. Figure 19 shows
the provided methods in the form of use cases.

The seven use cases provide the following functions:

ADDJOB Adds a new task. Tasks mainly consist of an URI of a
resource, which has to be examined.

ADDACTJOB Adds a new task for crawling an Actor. By this,
related properties, artifacts and other actors are examined.

ADDARTJOB Adds a new task for crawling an Artefact. By this,
related properties, actors and tags are examined.

ADDTAGJOB Adds a new task for crawling an Tag. By this, re-
lated artifacts are examined.

GETJOB Returns the CrawlerDataObject related to the task.

LISTJOBS Returns a list of tasks, which are not finished.

REMOVEJOB Removes the given task from the set of unfinished
tasks.

The CrawlerManagers control the extraction of data. The extrac-
tion itself is done by Parsers.

5.2 SOLUTION DESIGN 63

Figure 20: Use Cases of component DeliciousParser

The extraction component Parser

A Parser extracts relevant information of a resource. Information
is added to the model, structured by the ontology. Additionally,
data for the crawling process is returned.

A parser has to be developed for each of the networks: a De-
liciousParser, a SlideShareParser, and a ScribdParser. Parser pro-
vide an interface, which is mainly used by two components: The
Crawler and the CentralCralingManager.

The Crawler is controlled by a CrawlerManager. The Central-
CrawlingManager has been developed for observation and to
persist data. It needs an interface for actors and tags, which pro-
vides methods to return URIs. Later, these URIs can be passed to
Parsers for extracting data of the respective actors and tags. Fig-
ure 20 displays the provided methods in the form of use cases.

The four use cases provide the following functions:

ISPARSABLE Returns a boolean value, which gives evidence about
the suitability of parsing the resource.

PARSE Starts the parsing process, in which data is extracted and
information about the parsing process is returned.

CREATEACTOROBSERVATIONURI Returns an URI, which can be
used to parse a given actor.

CREATETAGOBSERVEURI Returns an URI, which can be used to
parse a given tag.

The described interfaces only provide a small set of methods.
Numerous opportunities for crawling processes can be devel-
oped by specifying parameters.

64 SOLUTION APPROACH

5.3 SUMMARY: SUCCESSFUL PREPARATION FOR
A PRACTICAL APPLICATION

The analysis of the networks data and interfaces provides a de-
tailed preparation for the practical integration of data. Firstly,
relevant data of the several sources have been chosen. In the sec-
ond step, interfaces were chosen. The combination of the desired
data with interfaces, provided by the networks, was limited by
restrictions. Despite this, the majority of the necessary data has
been integrated into the ontology.

New components for crawling networks and parsing data have
been developed. This was possible, because the AAN framework
was conceived to accommodate expandability. The next step is
an implementation of the defined component interfaces. In this
practice the network interfaces and the integration of objects into
the AAN model are demonstrated.

6

D E T A I L S O F I M P L E M E N T A T I O N

The description of the implementation starts with some general
aspects. Afterwards, the implementation of Delicious compo-
nents is described more detailed as the document networks, as
the access of data by Delicious feeds is more complex. Finally, a
practical application is introduced.

6.1 THE IMPLEMENTATION IN GENERAL

The implementation is based on the interfaces defined in Sec-
tion 5.2.4. The interfaces of the components CrawlerManager and
Parser are implemented for each of the networks. Firstly, some
general aspects of the implementation are described.

6.1.1 Access by webservices

The CrawlerManager components can be accessed by webservices.
Webservices are provided for the tasks addJob, addActJob, addArtJob,
addTagJob, getJob, listJobs, and removeJobs. URLs provided by the
webservices are listed in Appendix A.5.

Figure 21: General crawling process of CrawlerManagers

65

66 DETAILS OF IMPLEMENTATION

Figure 22: CrawlTask controlled by a Crawler

6.1.2 CrawlerManager and Crawler

The structure of a crawling process and the working chain were
introduced in Section 4.2 and visualized in Section 5.2.4 by a se-
quence diagram. The following activity diagrams are explaining
the implementation.

Figure 21 shows a general workflow of the implemented Crawler-
Managers. A crawling process is initialized by the access of a
webservice. Firstly, a CrawlerManager analyzes the parameters
of a webservice and creates initial CrawlTasks. A finished Crawl-
Task returns a CrawlerDataObject, which can be analyzed to start
further CrawlTasks.

A CrawlTask is handled by a Crawler, as shown in Figure 22. A
resource is accessed, examined and parsed. All stages are using
the CrawlerDataObject to share data. Finally, it is returned to
the CrawlerManager. The process of parsing is relevant for the
implementation and described for each integrated data source.

6.1.3 Parser

A Parser is implemented for each data source. It is the last com-
ponent of the working chain. Parsers analyze resources, store
data, and add data to the CrawlerDataObject, which is used by
CrawlerManagers to control the process of crawling.

6.2 DELICIOUS 67

6.2 DELICIOUS

Data of the Delicious network is accessed by feeds. This is a dis-
advantage, because only the 100 latest bookmarks of a request
are provided. During the process of crawling, all related objects
to a requst should be parsed. Therefore, the DeliciousCrawler-
Manager was designed to make gradual refinements. Further-
more the feeds and feed patterns (see Figure 12 on page 43) are
combined.

6.2.1 The DeliciousCrawlerManager

The workflow of the DeliciousCrawlerManager is visualized in Fig-
ure 23. Figure 23-1 shows the initial activities. Firstly, it is de-
termined, if a special actor, artefact, tag, or a general task was
requested. General requests are handled as described in Section
6.1.2. For the remaining types of tasks, special workflows have
been implemented.

The crawling process for an actor is presented in Figure 23-2.
The network of an actor is crawled by using the feeds network-
Fans and networkMembers. A CrawlTask is created for each feed.
The CrawlTasks are controlled by a Crawler (see Section 6.1.2). At
the end of the working chain, the feeds are parsed by the Deli-
ciousParser. Bookmarks of the Actor are requested by the feed
bmByUser. After the request, it is determined, if 100 bookmarks
were received. If not, the crawling process is finished. If the feed
provided 100 bookmarks, possibly more bookmarks could be re-
quested. In that eventuality, a CrawlTask for the feed tagsByUser
provides all tags of the actor. Next, a recursive crawl is started.

Figure 23-5 shows the activities of a recursive crawl for book-
marks of an actor. At first, the username of the actor and his
tags are extracted from the CrawlerDataObject. If the set of tags is
empty, no bookmarks are described with tags and the task is fin-
ished. Otherwise, each tag is combined with the username of the
actor and bookmarks related to this combination are requested
by the feed bmByUserAndTags. If the result of this request counts
less than 100 bookmarks, all related tags have been received and
this task is finished. If the returned set of bookmarks contains
100 entries, the request will be refined. A CrawlTask for tags re-
lated to the current combination of username and one or more

68 DETAILS OF IMPLEMENTATION

Figure 23: Crawling process of the DeliciousCrawlerManager

6.2 DELICIOUS 69

Figure 24: Parsing process of the DeliciousParser

tags is started. The corresponding feed is tagsByUserAndTags.
At least, a recursive crawl with this new set of tags on the one
hand, and the username and tags of the current request on the
other hand is started. This refinement is repeated until all re-
quests return less than 100 bookmarks or no additional tags can
be determined.

The next special task is a crawl of an artefact. Figure 23-3 shows
the requests of bmByUrl and urlInfo. The returned data provides
up to 100 bookmarks for a requested URL and a set of popular
related tags.

Finally, the workflow for the crawling process of a tag is pre-
sented in figure 23-4. The two feeds bmPopularByTag and bm-
ByTags provide sets of bookmarks. Each of the bookmarks was
created by an actor. The usernames of these actors and combined
with the initial tag to start recursive crawls.

Each of the used CrawlTasks is finally parsed by the Delicious-
Parser, which extracts data.

6.2.2 The DeliciousParser

Each CrawlTask mainly consists of an URI. The URI of a task is
stored in the CrawlerDataObject and analyzed by the Delicious-
Parser to detect a feed pattern as presented in Figure 24. If a
pattern was detected, the DeliciousParser parses the content of
the feed. The content is also contained in the CrawlerDataObject.
If data of interest is found, RDF triples are extracted are stored.
Furthermore, actors, bookmarks, or tags are saved for further
proceeding. Finally, if all data is parsed, the CrawlerDataObject
is returned.

70 DETAILS OF IMPLEMENTATION

Figure 25: Parsing process of the SlideshareParser

6.3 SLIDESHARE

6.3.1 The SlideShareCrawlerManager

Data of SlideShare is accessed by an API. This provides a com-
fortable access. The workflow of the SlideShareCrawlerManager
was designed how described in Section 6.1.2. Requests are struc-
tured accordingly the methods, introduced in Section 5.1.2.

6.3.2 The SlideShareParser

Activities of the SlideShareParser are shown in Figure 25. Firstly,
the URL is analyzed. The API of SlideShare uses the REST princi-
ples. Hence, the content can be classified without problems. The
content itself is based on XML. The SlideShare data is parsed and
data for the SlideShareCrawlerManager is returned by the Crawler-
DataObject.

6.4 SCRIBD

6.4.1 The ScribdCrawlerManager

The ScribdCrawlerManager was implemented as described in in
Section 6.1.2. Data of the Scribd network is accessed by two
interfaces. Accordingly, CrawlTasks for Scribd are specified by
two alternatives: If artefacts are requested and the input of the
request consists of tags, an URI for an API call is generated. Oth-

6.5 PRACTICAL APPLICATION 71

Figure 26: Parsing process of the ScribdParser

erwise, an URL of the Scribd website, related to the requested
object, is used.

6.4.2 The ScribdParser

As shown in Figure 26, the process of parsing is build up similar
to the ScribdCrawlerManager. If the URL of the current resource
refers to the API, an artefact has been requested. Following, the
properties document id, title, description, license, thumbnail, num-
ber of pages, download formats, upload date, and download URL are
extracted. Otherwise, HTML code is parsed. This is done by fol-
lowing the hierarchical DOM structure of the website. The code
is structured and nodes provide IDs. the desired data can be
parsed.

6.5 PRACTICAL APPLICATION

To evaluate the developed components, a small test set was cho-
sen. In the following, the sets are described and results pre-
sented.

6.5.1 Test sets

Three test instances were chosen:

• A crawl task of the Delicious network without restrictions

• A crawl task of the SlideShare network without restrictions

72 DETAILS OF IMPLEMENTATION

• A crawl task of the SlideShare network, restricted to the
tag fsln10

These instances were chosen to test the Delicious components
and the components of a document network. Furthermore, a
comparison of the test sets is possible. The results were received
using webservices of the Datastore component:

• datastore/actor/count

• datastore/artefact/count

The test instances were started with an internal crawl-depth of
20 and a search input fsln10. The system was running for 10

minutes.

6.5.2 Test results

Delicious: Performance

As a result of the Delicious crawl task, 280 actors and 950 arti-
facts were received. The low numbers could be caused by restric-
tions of the Delicious feeds. In a previous test set, 1849 actors
could be received in 5 minutes.

SlideShare: Performance

During the SlideShare crawl task, 2149 actors and 3092 artifacts
were received.

SlideShare: Completeness

The restricted SlideShare crawl task received 8 actors and 9 arti-
facts. This result was verified by the website http://www.slideshare.
net/search/slideshow?q=%40tag+fsln10. All recources were
received.

http://www.slideshare.net/search/slideshow?q=%40tag+fsln10
http://www.slideshare.net/search/slideshow?q=%40tag+fsln10

6.6 SUMMARY: DIVERSE LEVELS OF COMPLEXITY 73

6.6 SUMMARY: DIVERSE LEVELS OF COMPLEX-
ITY

The implementation of the components varied in complexity.
The implemented Delicious components required extensive work-
flows, whereas the document networks could be accessed di-
rectly. Tests of the SlideShare components provided satisfactory
results, artifacts of a requested tag were crawled completely. The
Test results of Delicious components provided little satisfaction.

7

C O N C L U S I O N A N D O U T L O O K

7.1 CONCLUSION

During the work on this thesis, I acquired various kinds of knowl-
edge. This includes theoretical, technical, and practical topics.
Theoretical topics are Science 2.0 and awareness. Some more
technical is the field of semantics and the approaches of represen-
tation. Technical areas are the architecture of the OSGi platform
and the AAN framework. I gained some practical experience by
designing extensions of the AAN ontology and the implementa-
tion of OSGi components of the AAN system.

The conception and practical implementation of the access of
APIs, feeds and HTML code was differently. Data offered by APIs
were received directly. The implementation of the HTML parser
seemed to be difficultly, but the implementation was supported
by Java components. The application of Delicious feeds was
more complex, caused by different restrictions.

Finally, now I know how much time it takes, to write a thesis in
another than ones native language.

7.2 OUTLOOK: FUTURE WORKS

In future works, the developed components can be extended to
store full texts. The SemSim analyzer [Moi10] can be used to
compute similarities between documents. The Delicious compo-
nents can be extended by a HTML parser, to receive all artifacts
related to tags more efficiently. A visualization of stored arti-
facts is another option for extension. Such a visualization could
provide a view of all resources of a person, including the ac-

75

76 CONCLUSION AND OUTLOOK

tors in different networks. The AAN system can be extended by
some more social networks specialized of communication. On
the other hand, a development of an interface to offer stored
data to other systems is also possible. The AAN ontology can
be extended to provide direct relations between the classes Actor
and Keyword. If data can be persisted, a comparison of states of
different points of time would be possible. By such states, the
possibility of simulations arises. Maybe one day the AAN system
can be used to make predictions of a users behavior.

A
A P P E N D I X

A.1 RETURN VALUES OF DELICIOUS FEEDS

Listing 1: Scheme of JSON return values for bookmarks
[{

"u":"<URL >",

"d":"< DESCRIPTION >",

"t":["<TAG 1>","<TAG 2>",*],

"dt":"<YYYY -MM-DDTHH:MM:SSZ >",

"n":"<NOTES >",

"a":"<AUTHOR >"},

*]

Listing 2: Scheme of JSON return values for tags
{

"<TAG 1>":<NUMBER OF USES >,

"<TAG 2>":<NUMBER OF USES >,

*}

Listing 3: Scheme of JSON return values for users in network
[

{"user":"< USERNAME 1>","dt":"<YYYY -MM -DDTHH:MM:SSZ >"},

{"user":"< USERNAME 2>","dt":"<YYYY -MM -DDTHH:MM:SSZ >"},

*]

Listing 4: Scheme of JSON return values for url information
[{

"hash":"<MD5 OF URL >",

"title":"<TITLE >",

"url":"<URL >",

"total_posts ":<NUMBER >,

"top_tags ":{

"<TAG 1>":<NUMBER OF USES >,

"<TAG 2>":<NUMBER OF USES >,

*}

}]

77

78 APPENDIX

A.2 DELICIOUS FEED PATTERNS

NO
.

UR
L

PA
TT

ER
N

DE
SC

RI
PT

IO
N

1
/

Bo
ok

m
ar

ks
fr

om
th

e
ho

tl
is

t

2
/r

ec
en

t
R

ec
en

t
bo

ok
m

ar
ks

3
/t

ag
/{

ta
g[

+t
ag

+.
..

+t
ag

]}
R

ec
en

t
bo

ok
m

ar
ks

by
ta

g

4
/p

op
ul

ar
Po

pu
la

r
bo

ok
m

ar
ks

5
/p

op
ul

ar
/{

ta
g}

Po
pu

la
r

bo
ok

m
ar

ks
by

ta
g

6
/a

le
rt

s
R

ec
en

t
si

te
al

er
ts

7
/{

us
er

na
m

e}
Bo

ok
m

ar
ks

fo
r

a
sp

ec
ifi

c
us

er

8
/{

us
er

na
m

e}
?p

ri
va

te
={

ke
y}

Pr
iv

at
e

bo
ok

m
ar

ks
fo

r
a

sp
ec

ifi
c

us
er

9
/{

us
er

na
m

e}
/{

ta
g[

+t
ag

+.
..

+t
ag

]}
Bo

ok
m

ar
ks

fo
r

a
sp

ec
ifi

c
us

er
by

ta
g(

s)

1
0

/{
us

er
na

m
e}

/{
}?

pr
iv

at
e=

{k
ey

}
Pr

iv
at

e
bo

ok
m

ar
ks

fo
r

a
sp

ec
ifi

c
us

er
by

ta
g(

s)

1
1

/u
se

ri
nf

o/
{u

se
rn

am
e}

Pu
bl

ic
su

m
m

ar
y

in
fo

rm
at

io
n

ab
ou

t
a

us
er

1
2

/t
ag

s/
{u

se
rn

am
e}

A
lis

t
of

al
lp

ub
lic

ta
gs

fo
r

a
us

er

1
3

/t
ag

s/
{u

se
rn

am
e}

/{
ta

g[
+t

ag
+.

..
+t

ag
]}

A
lis

t
of

re
la

te
d

pu
bl

ic
ta

gs
fo

r
a

us
er

ta
g

co
m

in
at

io
n

1
4

/s
ub

sc
ri

pt
io

ns
/{

us
er

na
m

e}
Bo

ok
m

ar
ks

fr
om

a
us

er
’s

su
bs

cr
ip

ti
on

s

1
5

/i
nb

ox
/{

us
er

na
m

e}
?p

ri
va

te
={

ke
y}

Pr
iv

at
e

fe
ed

fo
r

a
us

er
’s

in
bo

x
bo

ok
m

ar
ks

fr
om

ot
he

rs

1
6

/n
et

w
or

k/
{u

se
rn

am
e}

Bo
ok

m
ar

ks
fr

om
m

em
be

rs
of

a
us

er
’s

ne
tw

or
k

1
7

/n
et

w
or

k/
{u

se
rn

am
e}

?p
ri

va
te

={
ke

y}
Bo

ok
m

ar
ks

fr
om

m
em

be
rs

of
a

us
er

’s
pr

iv
at

e
ne

tw
or

k

1
8

/n
et

w
or

k/
{u

se
rn

am
e}

/{
ta

g[
+t

ag
+.

..
+t

ag
]}

Bo
ok

m
ar

ks
fr

om
m

em
be

rs
of

a
us

er
’s

ne
tw

or
k

by
ta

g

1
9

/n
et

w
or

k/
{u

se
rn

am
e}

/{
}

Bo
ok

m
ar

ks
fr

om
m

em
be

rs
of

a
us

er
’s

pr
iv

at
e

ne
tw

or
k

by
ta

g

2
0

/n
et

w
or

km
em

be
rs

/{
us

er
na

m
e}

A
lis

t
of

a
us

er
’s

ne
tw

or
k

m
em

be
rs

2
1

/n
et

w
or

kf
an

s/
{u

se
rn

am
e}

A
lis

t
of

a
us

er
’s

ne
tw

or
k

fa
ns

2
2

/u
rl

/{
ur

lm
d5

}
R

ec
en

t
bo

ok
m

ar
ks

fo
r

a
U

R
L

2
3

/u
rl

in
fo

/{
ur

lm
d5

}
Su

m
m

ar
y

in
fo

rm
at

io
n

ab
ou

t
a

U
R

L

Table 7: URL patterns of Delicious feeds [Yah10b]

A.3 RESPONSE FORMATS OF THE SLIDESHARE API 79

A.3 RESPONSE FORMATS OF THE SLIDESHARE
API

Listing 5: Response XML Format for method get_slideshow of
SlideShare API [Sli10c]

<Slideshow >

<ID >{ slideshow id }</ID>

<Title >{ slideshow title }</Title >

<Description >{ slideshow description }</Description >

<Status >{ 0 if queued for conversion , 1 if converting , 2 if converted ,

3 if conversion failed }

</Status >

<Username >{ username }</Username >

<URL >{ web permalink }</URL >

<ThumbnailURL >{ thumbnail URL }</ThumbnailURL >

<ThumbnailSmallURL >{ URL of smaller thumbnail }</ThumbnailSmallURL >

<Embed >{ embed code }</Embed >

<Created >{ date slideshow created }</Created >

<Language >{ language , as specified by two -letter code }</Language >

<Format >ppt (or pdf , pps , odp , doc , pot , txt , rdf) </Format >

<Download >{ 1 if available to download , else 0 }</Download >

<DownloadUrl >{ returns if available to download }</DownloadUrl >

<SlideshowType >{ 0 if presentation , 1 if document , 2 if ,

3 if video }</SlideshowType >

<InContest >{ 1 if part of a contest , 0 if not }</Download >

<UserID >{ userID }</UserID >

<ExternalAppUserID >{ ExternalAppUserID if uploaded using an

external app }</ExternalAppUserID >

<ExternalAppID >{ ExternalAppID for the external app }</ExternalAppID >

<PPTLocation >{ PPTLocation }</ExternalAppUserID >

<StrippedTitle >{ Stripped Title }</StrippedTitle >

<Tags >

<Tag Count ="{ number of times tag has been used }" Owner ="{ 1 if owner

has used the tag , else 0 }">{ tag name }

</Tag >

</Tags >

<NumDownloads >{ number of downloads }</NumDownloads >

<NumViews >{ number of views }</NumViews >

<NumComments >{ number of comments }</NumComments >

<NumFavorites >{ number of favorites }</NumFavorites >

<NumSlides >{ number of slides }</NumSlides >

<RelatedSlideshows >

<RelatedSlideshowID rank ="{ rank , where 1 is highest}">

{ slideshow id } </RelatedSlideshowID >

</RelatedSlideshows >

<PrivacyLevel >{ 0, or 1 if private }</PrivacyLevel >

<SecretURL >{ 0, or 1 if secret URL is enabled }</SecretURL >

<AllowEmbed >{ 0, or 1 if embeds are allowed }</AllowEmbed >

<ShareWithContacts >{ 0, or 1 if set to private , but contacts can view

slideshow }

</ShareWithContacts >

</Slideshow >

80 APPENDIX

Listing 6: Response XML Format for method get_slideshows_by_user
of SlideShare API [Sli10c]

<User >

<Name >{ username_for }</Name >

<Count >{ Number of Slideshows }</Count >

<Slideshow >

{ as in get_slideshow }

</Slideshow >

...

</User >

Listing 7: Response XML Format for method get_slideshows_by_tag
of SlideShare API [Sli10c]

<Tag >

<Name >{ Tag Name }</Name >

<Count >{ Number of Slideshows }</Count >

<Slideshow >

{ as in get_slideshow }

</Slideshow >

...

</Tag >

Listing 8: Response XML Format for method get_user_contacts of
SlideShare API [Sli10c]

<Contacts >

<Contact >

<Userame >{ Username }</Name >

<NumSlideshows >{ Number of Slideshows }</Name >

<NumComments >{ Number of Comments }</Name >

<Contact >

...

</Contacts >

A.4 RESULTS OF THE SCRIBD API METHOD DOCS.SEARCH 81

A.4 RESULTS OF THE SCRIBD API METHOD DOCS.SEARCH

See Scribd API method docs.search:
http://www.scribd.com/developers/api?method_name=docs.search

TYPE METHOD COMMENT

list result_set List of results returned by the search query.

list result Contains each individual result

integer doc_id Scribd has a unique document ID.

string secret_password Secret password for private documents.

string access_key Embed a document on an external site.

string title –

string description –

string tags Comma separated list of tags.

string license See Creative Commons License.

URL thumbnail_url Link to a JPG.

integer page_count The number of pages in the document.

list download_formats List of downloadable extensions.

float price The price at which it is sold.

integer reads Number of reads.

string uploaded_by User who uploaded this document.

datetime when_uploaded The date of upload.

datetime when_updated The date of last update.

boolean available_on_api Indicates availability API.

Table 8: Results of the method docs.search

http://www.scribd.com/developers/api?method_name=docs.search

82 APPENDIX

A.5 CRAWLERMANAGER WEBSERVICES AND PA-
RAMETERS

Listing 9: Webservice for adding general jobs
addJob?URI=uriToRessource

&starttime=startTimeInMilliSeconds

&depthExternLinks=searchDepthInternal

&depthInternalLinks=searchDepthExternal

&doobserve=observeUri

&rescan=rescanResources

Return value: CrawlerJob

Listing 10: Webservice for adding actor jobs
addActJob?actor=nameOfActor

&starttime=startTimeInMilliSeconds

&depthExternLinks=searchDepthInternal

&depthInternalLinks=searchDepthExternal

Return value: CrawlerJob

Listing 11: Webservice for adding artefact jobs
addArtJob?actor=urlOfArtefact

&starttime=startTimeInMilliSeconds

&depthExternLinks=searchDepthInternal ,

&depthInternalLinks=searchDepthExternal

Return value: CrawlerJob

Listing 12: Webservice for adding tag jobs
addTagJob?actor=nameOfTag

&starttime=startTimeInMilliSeconds

&depthExternLinks=searchDepthInternal

&depthInternalLinks=searchDepthExternal

Return value: CrawlerJob

Listing 13: Webservice for receiving job information
getJob?uri=uriOfJob

Return value: CrawlerJob

Listing 14: Webservice for listing jobs
listJobs

Return value: CrawlerJob [] (Array of CrawlerJobs)

Listing 15: Webservice for removing jobs
removeJob?uri=uriOfResource

Return value: void (Nothing returned)

B I B L I O G R A P H Y

[Dav10] Ian Davis. RELATIONSHIP. http://vocab.org/relationship/, accessed
11 July 2010, 2010.

[Dub10] Dublin Core Metadata Initiative. Dublin Core. http://dublincore.org/,
accessed 11 July 2010, 2010.

[FOA10] FOAF. The friend of a friend (foaf) project. http://www.foaf-project.

org/, accessed 10 July 2010, 2010.

[IET10] IETF, Internet Engineering Task Force. The application/json Media Type
for JavaScript Object Notation (JSON). http://www.ietf.org/rfc/rfc4627,
accessed 13 July 2010, 2010.

[Jen10] Jena team. Jena – A Semantic Web Framework for Java. http://openjena.

org/, accessed 13 July 2010, 2010.

[KL09] Barbara Kieslinger and Stefanie N. Lindstaedt. Science 2.0 Practices in the
Field of Technology Enhanced Learning. In EC-TEL 2009, 2009.

[Mik07] Peter Mika. Social Networks and the Semantic Web. Springer Science+Business
Media, New York, 2007.

[Mit69] J Clide Mitchell. Social networks in urban situations. University press, Univer-
sity of Manchester, Manchester, 1969.

[Moi10] Matthias Moi. Anwendung und Evaluierung von Artefact-Actor-Networks
im Kontext von Wikis – Entwicklung von MediaWiki-Erweiterungen zur Ex-
traktion und Visualisierung semantischer änlichkeiten in MediaWikis, 2010.
Diploma thesis, University of Paderborn, Didactics of Informatics, 2010.

[Ora10] Oracle Corporation. Java. http://java.sun.com/, accessed 13 July 2010,
2010.

[OSG10] OSGi Alliance. OSGi Technology. http://www.osgi.org/About/

Technology, accessed 14 July 2010, 2010.

[RMV09] Wolfgang Reinhardt, Matthias Moi, and Tobias Varlemann. Artefact-Actor-
Networks as tie between social networks and artefact networks. In Proceed-
ings of CollaborateCom 2009, 2009.

[Scr10a] Scribd Inc. About Scribd. http://www.scribd.com/, accessed 22 July 2010,
2010.

[Scr10b] Scribd Inc. Scribd. http://www.scribd.com/, accessed 10 July 2010, 2010.

[Scr10c] Scribd Inc. Scribd API Overview. http://www.scribd.com/developers/

api, accessed 23 July 2010, 2010.

[Shn08] Ben Shneiderman. Science 2.0. SCIENCE, 319:1349–1350, March 2008.

[SIO10] SIOC-Project. SIOC, Semantically-Interlinked Online Communities. http:

//sioc-project.org/, accessed 11 July 2010, 2010.

[Sli07] SlideShare Inc. Happy Birthday SlideShare. http://blog.slideshare.net/
2007/10/05/happy-birthday-slideshare/, accessed 22 July 2010, 2007.

[Sli10a] SlideShare Inc. About us. http://www.slideshare.net/about, accessed 22

July 2010, 2010.

83

http://vocab.org/relationship/
http://dublincore.org/
http://www.foaf-project.org/
http://www.foaf-project.org/
http://www.ietf.org/rfc/rfc4627
http://openjena.org/
http://openjena.org/
http://java.sun.com/
http://www.osgi.org/About/Technology
http://www.osgi.org/About/Technology
http://www.scribd.com/
http://www.scribd.com/
http://www.scribd.com/developers/api
http://www.scribd.com/developers/api
http://sioc-project.org/
http://sioc-project.org/
http://blog.slideshare.net/2007/10/05/happy-birthday-slideshare/
http://blog.slideshare.net/2007/10/05/happy-birthday-slideshare/
http://www.slideshare.net/about

84 BIBLIOGRAPHY

[Sli10b] SlideShare Inc. Slideshare. http://www.slideshare.net/, accessed 09 July
2010, 2010.

[Sli10c] SlideShare Inc. Slideshare API Documentation. http://www.slideshare.

net/developers/documentation, accessed 09 July 2010, 2010.

[Twi10] Twitter Inc. Twitter. http://twitter.com/, accessed 27 July 2010, 2010.

[UWS+
10] Thomas Ullmann, Fridolin Wild, Peter Scott, Eric Duval, Bram Vandenputte,

Gonzalo Parra, Wolfgang Reinhardt, Nina Heinze, Peter Kraker, Angela
Fessl, Stefanie Lindstaedt, Til Nagel, and Denis Gillet. A Science 2.0 In-
frastructure for Technology-Enhanced Learning. In EC-TEL 2010, 2010.

[Var10] Tobias Holger Varlemann. Konzeption und Entwicklung einer Architektur
zur semantischen Analyse, Speicherung und Bereitstellung von Daten aus
Blogs und Microblogs in Artefact-Actor-Networks, 2010. Bachelor’s thesis,
University of Paderborn, Didactics of Informatics, 2010.

[W3C10a] W3C, World Wide Web Consortium. Owl Web Ontology Language. http:

//www.w3.org/TR/owl-features/, accessed 13 July 2010, 2010.

[W3C10b] W3C, World Wide Web Consortium. OWL Web Ontology Language – Use
Cases and Requirements: What is an ontology? http://www.w3.org/TR/

webont-req/#onto-def, accessed 14 July 2010, 2010.

[W3C10c] W3C, World Wide Web Consortium. RDF Primer. http://www.w3.org/TR/
rdf-primer/, accessed 13 July 2010, 2010.

[W3C10d] W3C, World Wide Web Consortium. RDF Vocabulary Description Language
1.0: RDF Schema. http://www.w3.org/TR/rdf-schema/, accessed 13 July
2010, 2010.

[W3C10e] W3C, World Wide Web Consortium. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, accessed 13 July 2010, 2010.

[Wal08] M. Mitchell Waldrop. Science 2.0. Scientific American, 298:68–73, May 2008.

[WHKL08] Gerd Wütherich, Nils Hartmann, Bernd Kolb, and Matthias Lübken. Die
OSGi Service Platform. dpunkt.verlag GmbH, Heidelberg, 2008.

[Wik10] Wikimedia Foundation Inc. MediaWiki. http://www.mediawiki.org/, ac-
cessed 16 July 2010, 2010.

[Yah10a] Yahoo! Inc. Delicious. http://delicious.com/, accessed 05 July 2010, 2010.

[Yah10b] Yahoo! Inc. Delicious Feeds. http://delicious.com/help/feeds, accessed
05 July 2010, 2010.

[Yah10c] Yahoo! Inc. Delicious is 5! http://blog.delicious.com/blog/2008/11/

delicious-is-5.html, accessed 22 July 2010, 2010.

[Yah10d] Yahoo! Inc. Delicious Tools. http://delicious.com/help/tools/, accessed
05 July 2010, 2010.

http://www.slideshare.net/
http://www.slideshare.net/developers/documentation
http://www.slideshare.net/developers/documentation
http://twitter.com/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://www.mediawiki.org/
http://delicious.com/
http://delicious.com/help/feeds
http://blog.delicious.com/blog/2008/11/delicious-is-5.html
http://blog.delicious.com/blog/2008/11/delicious-is-5.html
http://delicious.com/help/tools/

E I D E S S T A T T L I C H E E R K L Ä R U N G

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe
Dritter und nur mit den angegebenen Quellen und Hilfsmitteln
angefertigt zu haben. Alle Stellen, die aus den Quellen entnom-
men wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungs-
behörde vorgelegen.

Paderborn, July 27, 2010

Adrian Wilke

	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Objective and tasks
	1.2 Structure of the thesis

	2 Theoretical framework
	2.1 Science 2.0
	2.1.1 Web 2.0
	2.1.2 Introduction of Science 2.0
	2.1.3 Awareness in Technology Enhanced Learning
	2.1.4 Investigation of collaboration

	2.2 Summary: New practices of collaboration

	3 Problem description
	3.1 Artefact-Actor-Networks
	3.1.1 Consolidation of network types
	3.1.2 Semantic relations
	3.1.3 Ontology
	3.1.4 Practical application

	3.2 Extension by data sources
	3.2.1 Delicious
	3.2.2 SlideShare
	3.2.3 Scribd

	3.3 Summary: Numerous possibilities to apply the concepts of AAN

	4 Technical foundations
	4.1 OSGi Service Platform
	4.2 AAN framework
	4.2.1 Backend
	4.2.2 Crawler
	4.2.3 Datastore
	4.2.4 Analyzer

	4.3 Resource formats
	4.3.1 Resource Description Framework
	4.3.2 RDF Schema
	4.3.3 Web Ontology Language

	4.4 Further used technologies
	4.4.1 SPARQL
	4.4.2 Jena
	4.4.3 JavaScript Object Notation

	4.5 Summary: A basis of dynamics and semantics

	5 Solution approach
	5.1 Analysis of relevant data sources
	5.1.1 Delicious
	5.1.2 SlideShare
	5.1.3 Scribd

	5.2 Solution design
	5.2.1 Enhancements of the ontology
	5.2.2 Integration of Delicious
	5.2.3 Integration of the document networks
	5.2.4 Draft of software components

	5.3 Summary: Successful preparation for a practical application

	6 Details of implementation
	6.1 The implementation in general
	6.1.1 Access by webservices
	6.1.2 CrawlerManager and Crawler
	6.1.3 Parser

	6.2 Delicious
	6.2.1 The DeliciousCrawlerManager
	6.2.2 The DeliciousParser

	6.3 SlideShare
	6.3.1 The SlideShareCrawlerManager
	6.3.2 The SlideShareParser

	6.4 Scribd
	6.4.1 The ScribdCrawlerManager
	6.4.2 The ScribdParser

	6.5 Practical application
	6.5.1 Test sets
	6.5.2 Test results

	6.6 Summary: Diverse levels of complexity

	7 Conclusion and outlook
	7.1 Conclusion
	7.2 Outlook: Future works

	A Appendix
	A.1 Return values of Delicious feeds
	A.2 Delicious feed patterns
	A.3 Response formats of the SlideShare API
	A.4 Results of the Scribd API method docs.search
	A.5 CrawlerManager webservices and parameters

	Bibliography
	Declaration

