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Abstract
In recent years, one of the main quests in quantum optics has been to finally show that quantum-
enhanced applications surpass their classical counterparts. In communication, computation and
metrology, this aim necessitates the implementation of large Hilbert spaces. Therefore in quan-
tum optics, the challenge is to push existing technology and develop compact architectures that
implement large quantum networks with many photons for large Hilbert spaces.

In this thesis, we present new techniques and applications aiming towards this goal. We start
with the implementation of a dual-path waveguide source of quantum light, where we exploit
the underlying waveguide architecture to specifically tailor a parametric down-conversion pro-
cess and produce post-selection free two-photon N00N states. Next, we investigate this source
in the few photon regime by means of quasi-photon-number-resolved detection. To this aim,
we consider the fundamental limits of time-multiplexed photon counting detectors and experi-
mentally calibrate a state-of-the-art implementation of such a detector. With this detector and
our dual-path source, we simulate the effects of atmospheric turbulence on the non-classicality
of a transmitted quantum signal. Extending the concept of the dual-path source, we discuss
large, non-linear waveguide arrays. Based on this system, we develop the theoretical concept
of driven quantum walks that allows us to probe fundamentally different dynamics compared to
passive systems. Furthermore, we show how to use this intrinsically non-linear waveguide ar-
ray to implement the intrinsically linear computational problem of BosonSampling. Finally, we
develop the protocol of Gaussian BosonSampling with squeezed states as a classically hard-to-
solve computation problem and can therefore answer the last open question of BosonSampling,
whether sampling problems with Gaussian states are hard, in the affirmative.
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In the beginning
there was the cold and the night
Prophets and angels
gave us the fire and the light
Man was triumphant
armed with the faith and the will
even the darkest ages couldn’t kill

Billy Joel - 2000 Years

1
High-dimensional Quantum

Optics

Hilbert space is a big place! This sentence from Carlton M. Caves summarises the advantages
of quantum mechanics in general, and quantum optics specifically, quite nicely. To motivate
why large Hilbert spaces are advantageous for quantum information science, let us first consider
the example of a classical bit [1], e.g. the ball in a hallway as in figure 1.1. This ball has only
two possibilities, either it goes to the left state 0 or it goes to the right state 1, so

ball = 0 or ball = 1 . (1.1)

As the ball has only two states that it can occupy, a single digit (0 or 1) is enough to store the
complete information.

Now, consider an equivalent quantum particle, or a qubit [1]. Imagine you have one photon,
a single energy quantum of the light field [2]. Due to its nature as an electric field, it possesses
the polarisation degree of freedom, which we can use to encode information. Contrary to the
described classical situation, we use superpositions in the context of quantum mechanics [1, 2],
which means that the photon can be both in horizontal and vertical polarisation at the same time1

with different weights
|photon〉 = α |0〉+β |1〉 . (1.2)

In our example with the hallway in figure 1.1, this means that the probability to find the photon
either in the left or right side splits according to the weights α, β ∈ [0, 1] × i[0, 1], with |α|2 +
|β|2 = 1 as the normalisation [1]. As such, we have infinitely many possibilities for a qubit
state, since α and β are continuous. For a single qubit, the corresponding Hilbert space is then
two-dimensional [1], as it is spanned by the two orthogonal basis vectors |0〉 and |1〉. As α

1However, we are not restricted to choose horizontal and vertical polarisation as basis states. A choice of diagonal
and anti-diagonal polarisation is equivalent. While the superposition of orthogonal polarisation states is well-
known from classical optics, the quantum exclusive bit is that we consider only a single energy quantum of the
field.
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CHAPTER 1 High-dimensional Quantum Optics

cl
as

si
ca

l w
or

ld

qu
an

tu
m

 w
or

ld

Figure 1.1 – Weird quantum world. A classical particle has to go either left or right, while a
quantum particle can go left and right in the quantum world.

and β are both complex, we now have to store two complex numbers to represent the encoded
information.

Let us now compare the same situation, but for two particles. In the classical case, we copy
the example with the ball and retain four possible combinations between the ball going left or
right

2 balls = 0A0B or 2 balls = 0A1B

or 2 balls = 1A0B or 2 balls = 1A1B ,
(1.3)

where the subscriptsA,B denote the possibilities of ballA and ballB going left or right, respec-
tively. This situation is sketched in figure 1.2(a). We can only combine two discrete possibilities,
as indicated by the isolated levels, therefore two binary numbers are enough to store the full in-
formation about two classical particles. Generalising this to N balls, or N bits, we can store all
the information that they contain in a string comprising N single binary digits.

As before with the single qubit, the situation differs drastically for the quantum particle.
Again, we allow for superpositions between the different basis states, however we now have
to consider four allowed basis vectors that span the Hilbert space for the two qubits. The corre-
sponding Hilbert space H therefore has the dimension dim(H) = 22 = 4. As with the single
qubit case, we have infinitely many possibilities for a qubit state, where the most general case
for two qubits is then given by

|2 photons〉 = α |0〉A ⊗ |0〉B + β |0〉A ⊗ |1〉B + γ |1〉A ⊗ |0〉B + δ |1〉A ⊗ |1〉B , (1.4)

where ⊗ is the tensor product and superpositions between the different basis states give rise to
unintuitive, quantum-exclusive features like entanglement [1, 2]. As we observe from equation
(1.4), we now have to store four complex variables to encode the full information of the quan-
tum state. In figure 1.2(b), we illustrate this situation by considering two qubits and represent the
necessary basis states to span the full Hilbert space in equation (1.4) by connecting arrows be-
tween the levels of the separate qubits. As such, if we consider N qubits, we find 2N orthogonal
basis states and need a string comprising 2N complex numbers to store the complete informa-
tion on the system. On the other hand this means that we can encode much more information in
the 2N complex numbers of the quantum system, than in the N bits of the classical one. This
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classical quantum(a) (b) (c)

2 bits 2 qubits 2 qutrits

...

4 possibilities 22 = 4 dimensions 32 = 9 dimensions

A B A B A B

Figure 1.2 – Dimensionality of two classical bits (a), two qubits (b) and two qutrits (c). While the
two classical bits in (a) only have four possible combinations, the two qubits in (b)
form a four-dimensional continuous Hilbert space due to the superposition principle.
We illustrated the needed combinations of the basis states by the arrows. The two
qutrits in (c) already form a nine-dimensional Hilbert space, as 32 combinations of
the single qutrit basis states are needed to span the full space.

exponential dependence for the quantum system presents such an enormous advantage that the
sentence from Carlton M. Caves, that we used to open this thesis, becomes understandable.

And this is only the beginning. For the particle with the next higher amount of states, i.e. a
single qutrit which is a three-level system with |0〉, |1〉 and |2〉, the single-particle Hilbert space
is three-dimensional and we need three variables per qutrit to store the full information of the
state. We illustrate the dimensionality of a two qutrit state in figure 1.2(c). As in the case of
the two qubits, we denote the necessary basis vectors with the connecting arrows between the
single qutrit levels. As such, we find that we need 32 basis states to span the full Hilbert space.
Following our considerations on the combination of N qubits, a combination of N qutrits then
needs 3N complex variables to store all the information in the system.

For even higher-dimensional systems of dimension m this generalises to mN complex num-
bers to store the full information of the composite quantum system [1]. Therefore, while the
qubit already possesses a lot of advantages for quantum information science, it is even more
desirable to encode information in higher-dimensional Hilbert spaces.

However, the situation is not as easy as we described above. The problem with the infinitely
many possible superpositions is to extract the precise information of the internal state (i.e. α,
β...) from the photons. A measurement, for example on a single qubit, always projects onto a
basis state with a probability of |α|2 and |β|2, and this even only if we use the correct encoding
for |0〉 and |1〉 [1]. As such, we have to perform measurements on infinitely many copies of the
same state in order to precisely reconstruct the information.

Nevertheless, we can use the encoded information to, for example, secure a quantum commu-
nication channel [1, 3, 4] or perform quantum computing operations [1, 5, 6]. The reason why
the inability to measure the full state of the qubit does not impact quantum information science
severely is that the internal state of the photons is oftentimes not relevant.

As such, the advantages of superpositions for quantum information science hold true and
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CHAPTER 1 High-dimensional Quantum Optics

can be exploited. This can be observed from the fact that many everyday applications have
acquired a "Quantum" for their names since the development of Quantum Mechanics in the
first half of the 20th century. Quantum computing [1, 5–7], quantum communication [1, 3,
4], quantum metrology [8–10] and quantum simulation [11–14] profit from the use of qubits
or higher-dimensional systems. All of them exploit quantum advantages to become better than
their classical counterpart. This ambition has coined the keyword Quantum Supremacy, which
is used to summarise all types of quantum-over-classical advantages. All those applications
promise something that the classical world cannot offer: extreme computing speed gain with
the same resources for quantum computing, unbreakable security for quantum communication,
better-than-classical resolution limits in quantum metrology, and so on and so forth. But how
would we implement something along those lines?

The space of degrees of freedom that we might use for such applications is almost as big as the
high-dimensional systems that we aim to implement. We can use space [15–24], time [25–33],
frequency [34–37], photon number [8–10], momenta in all variants [38–42], frequency comb
structures [43–46], spins of coupled atoms [47–52] etc. All these degrees of freedom implement
a large, and many of them even an infinite-dimensional, Hilbert space at least in theory.

This introductory chapter comprises the two following sections: In the next section, we intro-
duce some of the core concepts of quantum optics and quantum information science. If you are
familiar with these fields, you may want to skip the next section completely or skim it to get an
idea about the notation that we employ here. After this conceptual introduction, we explain the
road-map for this thesis that connects the different chapters of this work.

Basic concepts of quantum optics

Quantum optics is the part of quantum mechanics that deals with the quantised electric field [2].
Due to this fact, the notation in this field inherits the notation of standard quantum mechanics.
In general, we describe the states of our fields in terms of vectors |ψ〉 which live in a Hilbert
spaceH. They retain all properties that we expect from a quantum mechanical state [1], such as

scalar product : 〈ϕ|ψ〉

norm :
√
〈ψ|ψ〉 = 1

orthonormality : 〈i| j〉 = δij

completeness relation :
∑
i

|i〉 〈i| = I (1.5)

outer product e.g. for density matrices : ρ = |ψ〉 〈ψ|

and the time evolution : |ψ(t)〉 = exp

− i
~

t∫
t0

Ĥ(t′)dt′

 |ψ(t0)〉 ,
with Ĥ(t) as the Hamiltonian of the governing system. In this thesis, we deal with high-
dimensional composite systems. The overall Hilbert space of such systems is described by
composite Hilbert spaces Hcomp that are constructed by the tensor product of the isolated sys-
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tem’s Hilbert spacesHi [1]
Hcomp = H1 ⊗H2 . (1.6)

Analogously, the basis vectors that span such a Hilbert space (here, again the example for two
qubits) are also given by tensor products

|0〉1 ⊗ |0〉2 , |0〉1 ⊗ |1〉2 , |1〉1 ⊗ |0〉2 , |1〉1 ⊗ |1〉2 . (1.7)

A difference to quantum mechanics is the type of particles and the degrees of freedom that we
deal with in quantum optics. The intangible quantity that we work with in quantum optics is the
photon. This little beast is responsible for things like the photo-electric effect [53], the Boltz-
mann distribution [54] and some other effects that puzzled physicists until about 100 years ago,
when Planck and Einstein postulated the existence of this energy quantum of the electromagnetic
field.

In practice, the photon is a rather benign quantity. From the field quantisation [2], we find
that the energy quanta of the electric field behave like the excitations in a quantum harmonic
oscillator. As such, we can treat photons with creation and annihilation operators, â† and â that
obey the following rules [2]

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

â |0〉 = 0

|n〉 = 1√
n!
â†
n |0〉[

â, â†
]
= 1 .

(1.8)

Note, that the quantity n in the ket-notation is the number of photons and does not denote an
encoding2, as for example in equation (1.7). The commutation relation gives rise to the well-
known Heisenberg uncertainty relation [55]

∆x̂∆p̂ = ∆(â† + â)∆(â† − â) ≥ ~ . (1.9)

In these definitions, we did not consider that a photon may live on different degrees of freedom.
If we now include these properties, especially the commutation relation for the creation and
annihilation operators is modified[

âσ(ω, k), â
†
σ′(ω

′, k′)
]
= δσ,σ′δ(ω − ω′)δ(k − k′) . (1.10)

The dependencies of the creation and annihilation operators, here on the frequency and momen-
tum ω and k, as well as the polarisation σ, denote modes in the quantum optics language.

In quantum optics, we define a "mode" as a degree of freedom of the electric field that photons
can live on. In general, a photon will not only live on a single mode, but on a combination of all
possible degrees of freedom in the electric fields. However, it is not always necessary to consider

2In the case, where both the encoding and the photon number are considered, one writes something like |ω1;ω2〉
for two photons with frequencies ω1 and ω2.
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Figure 1.3 – Mode notation of a beam splitter in (a) and Hong-Ou-Mandel interference (b). The
Hong-Ou-Mandel effect, sketched in (b) is a path interference of two incoming in-
distinguishable, single photons |1〉A ⊗ |1〉B . We depict all possible paths that two
photons can take through the beam splitter. However, as the last two paths acquire
different signs from the unitarity of the beam splitter, they cancel out.

all modes for a specific experiment. Due to this definition, a mode can be basically anything. A
popular "mode" is, for example, the polarisation of a photon, as for our example with the qubit
in the beginning. However, also the frequency of a photon can be a mode [56], the momentum
of a photon [57] or even the spatial mode of a waveguide [58] can be a mode for a photon. In
the following section, we clarify this concept with the example of a beam splitter, which is the
simplest mode-mixing device in quantum optics [1].

Passive Quantum Optics

Since quantum optics is a sub-field of general quantum mechanics, the evolution of a photon is
described by a unitary transformation. Unitary transformations U are mainly characterised by
the fact that they preserve the scalar product and the norm of a quantum state. The main task
of passive unitaries, i.e. photon number preserving unitaries that we consider here, is to couple
different modes with each other. The dimension of the unitary transformation is given by the
number of modes that they can mix [1]3.

A beam splitter is the simplest unit to mix different modes, see figure 1.3(a). Two input modes
â(in) and b̂(in) are impinging on the device and mapped to two output modes via [2](

â(out)

b̂(out)

)
= UBS

(
â(in)

b̂(in)

)
=

1√
2

(
1 1
1 −1

)(
â(in)

b̂(in)

)
(1.11)

Here, we use the Heisenberg picture of quantum mechanics [1, 2], as we apply the transformation
on the operators and not on the quantum states themselves. Throughout this thesis, we use it
in several cases, since this description offers more intuition on the physics and simplifies the

3In a more technical phrasing, it is given by the dimension of the Hilbert space they live on. But since the Hilbert
space is spanned by the number of independent modes (as basis states), the two formulations are equivalent.
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Figure 1.4 – Mach-Zehnder interferometer with two single-photon inputs and resulting interfer-
ence compared to a classical reference.

calculations. The minus sign in the last entry of the matrix is needed to make the beam splitter
transformation UBS unitary. The beam splitter is the smallest mode mixing device with

dim (UBS) = 2 , (1.12)

as it couples only two modes to each other.
However, already with such simple mode mixing devices, we are able to observe genuine

quantum effects, such as the Hong-Ou-Mandel interference [59]. Here, two single, indistin-
guishable photons impinge on different sides on a beam splitter, one in mode A |1〉A and one in
mode B |1〉B , compare figure 1.3(b). Then, we have the input state

|ψ〉in = â(in)† b̂(in)† |0〉 = |1〉A ⊗ |1〉B . (1.13)

If we consider all paths that the two photons may take through the beam splitter, as sketched in
figure 1.3(b), we find that only the first two paths survive. This is because we cannot distinguish
the cases, where both photons are either transmitted or reflected. Due to the unitarity of the
beam splitter, one of them acquires a different sign and the two paths interfere destructively. As
such, we only retain both photons either in the upper or in the lower output mode of the beam
splitter and obtain the output state

|ψ〉out =
1√
2
(|2〉A ⊗ |0〉B − |0〉A ⊗ |2〉B) . (1.14)

This result, the Hong-Ou-Mandel effect, is considered a genuine quantum interference, as the
paths of the photons interfere and not the amplitudes of the involved electric fields, as in the clas-
sical case. In practice, the situation is not as simple. If the two photons differ in any other degree
of freedom (i.e. frequency or polarisation), they inhabit different modes during the interference
and we are able to distinguish the two cases where both photons were transmitted or reflected.
Then, the last two paths in figure 1.3(b) do not cancel anymore and the Hong-Ou-Mandel effect
vanishes.

The Hong-Ou-Mandel effect is a good example for the unintuitive ways that quantum optics
may surprise us. The resulting state on the other hand is also the starting point for the field of
quantum metrology [8]. The reason for this statement is depicted in figure 1.4. Figure 1.4(a)
shows a typical Mach-Zehnder setup with two single photons in the input ports of the first beam
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splitter. As we have seen in equation (1.14), the two input photons always exit the beam splitter
together, leaving vacuum in the other output. Then, we put a phase-plate ϕ into one arm of the
interferometer and record the interference pattern at one output of the second beam splitter.

The resulting interference pattern in this setup is shown in figure 1.4(b). While the interference
behaviour of a classical, coherent-state reference is shown in grey, the observed two-photon
interference shows a doubled fringing frequency. The reason for this behaviour is that each
single photon acquires the phase ϕ from the phase-plate. If two photons pass the plate then

UPS(ϕ) |2〉 = e2iϕ |2〉 (1.15)

each of the photons acquires a phase ϕ and the interference at the beam splitter exhibits twice
the classical fringing frequency. This effect can be generalised to N photons, the N00N states
[8]. They are defined analogously to equation (1.14)

|N00N〉 = 1√
2

(
|N〉A |0〉B + eiϑ |0〉A |N〉B

)
, (1.16)

where ϑ is an arbitrary phase-factor. In equation (1.14), we found ϑ = π as a special case, due to
the unitarity of the beam splitter. In the interference of N00N states, again each photon acquires
a phase of ϕ and the fringing frequency increases by a factor of N , proportional to the photon
number.

The reason why this is useful for quantum metrology applications lies in the increased phase
sensitivity. Compared to a classical reference, N00N states perform N times better than a clas-
sical reference of the same wavelength. This potentially allows for smaller structures in lithog-
raphy applications, better phase sensitivity for sensing applications, etc. However, the practical
use of this type of states is rather limited [8]. First, they are notoriously difficult to produce [9],
second, to obtain a practical use in lithographic applications special types of photo-resist would
be needed that work with multi-photon absorption and third, they are over-sensitive to loss and
lose their enhanced phase-sensitivity already for small loss values.

As a side remark, not only many photons in few modes, as for N00N states, is an interesting
application in passive quantum optics. Also rather few photons in many modes is an interesting
problem, as it is difficult to compute the output probabilities after a high-dimensional coupling
matrix [7, 60]. This is due to the fact that photons perform Hong-Ou-Mandel interference and
we have to count all different paths that the particles might have taken. To keep track of this
behaviour is difficult and led to the quantum computational problem of BosonSampling [7].
This is a problem that we will introduce in detail in section 4.3. For the moment, the take-
home message is that already passive quantum optical systems show a rich multitude of complex
quantum phenomena.

State Description in Phase-Space

In the previous section, we discussed the passive evolution of quantum states. Now, we introduce
a state description technique that is motivated by the classical phase-space description.

The classical phase-space describes the position x and momentum p of a single particle. The
time evolution of the particle is then described as trajectories through this phase-space. This

8



situation is sketched in figure 1.5.

Figure 1.5 – A classical par-
ticle in phase-
space.

Contrary to the classical particle, a quantum state cannot be de-
scribed by a single point in phase-space and we cannot describe
the time evolution by a defined trajectory [61]. The Heisenberg
uncertainty principle [55] ∆x · ∆p ≥ ~ prohibits to determine
a single point in space and assign a single momentum. Already
for the coherent state, which is often considered as classical be-
cause it has a description consistent with classical theory, this is
not possible. Hence, we have to find new mathematical ways to
describe quantum states to obtain a phase-space representation.

While it may sound trivial to extend a classical phase-space
description to the quantum domain by just adding some uncer-
tainty in the position and momentum space, it is anything but
easy. First, we have to find a good substitution for the two phase-
space variables x̂ and p̂ in the quantum optics domain. Considering that light may be described
by a quantum harmonic oscillator, position and momentum can be expressed by creation and
annihilation operators. Then, the coherent states |α〉 seem to be a prime candidate to build a
phase-space4.

As such, it is our task to develop the quantum states in question in the coherent state basis.
Although this basis is not orthonormal [2, 61], it has a completeness relation

I =
1

π

∫
dαdα∗ |α〉 〈α| , (1.17)

where the prefactor 1
π compensates for the fact that coherent states are overcomplete.

Using the fact that coherent states are the left- and right-hand eigenvectors for the creation
and annihilation operators, we can develop any quantum state density matrix ρ̂ into a diagonal
matrix of coherent states [61]

ρ̂ = |ψ〉 〈ψ| =
∫

d2αP (α) |α〉 〈α| . (1.18)

Here, we have used the short hand d2α = dαdα∗. The function P (α) [62, 63] is already one
solution to our problem. It is a quasi-probability distribution that describes the properties of the
quantum state in a phase-space representation. However, it is generally not very well-behaved.
Already for a single coherent state |α0〉, we find that the P -function does not behave like a
proper probability distribution, as it is singular

P (α) = δ(α− α0) . (1.19)

For Fock states, the situation becomes even more complicated, as the corresponding P -function
becomes even more singular than a δ-distribution, it introduces its n-th derivative for an n-

4Coherent states are left- and right-hand eigenstates to the creation and annihilation operators, i.e. 〈α| â† = 〈α|α∗
and â |α〉 = α |α〉. It reduces the operators â and â† to complex numbers α and α∗. From this, we infer
α = 1√

2
(x̂+ ip̂) For a derivation of the phase-space representation with coherent states, see [2, 61].
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CHAPTER 1 High-dimensional Quantum Optics

photon Fock state [61].
Therefore, it can be useful to try a different phase-space representation. Another way to

represent the density matrix ρ̂ in terms of coherent states is to calculate its expectation value
with coherent states

Q(α) =
1

π
〈α| ρ̂ |α〉 (1.20)

and receive the Q-function [64]. The Q-function is a completely equivalent description of the
quantum state ρ̂ in phase-space [61]. However, it is usually much better behaved than the P -
function and is much closer to the properties of a classical probability distribution, i.e.

0 ≤ Q(α) ≤ 1∫
d2αQ(α) = 1 .

The important take-home message for P - and Q-functions is that we can use them to calculate
expectation values. In general, quantum mechanical expectation values can be evaluated by
tracing over the operator in question multiplied by the quantum state, i.e.

〈Ô〉 = tr(Ôρ̂) . (1.21)

In phase-space, we transfer this expression to the P - and Q-functions, such that

〈Ô〉 =
∫

d2αPÔ(α)Qρ̂(α) =

∫
d2αPρ̂(α)QÔ(α) . (1.22)

This means that either the operator of interest is expressed in terms of the P -function and the
state via the Q-function or vice versa. For a full derivation of this expression, see [61]. The
main message of this equation however is that P - and Q-functions are complementary and we
can calculate expectation values with phase-space methods.

State description with Photon Number Statistics

Another popular method to describe or illustrate these different classes of states are their photon
number statistics [2]. As the Fock states [equation (1.8)]

|n〉 = 1√
n!
â†
n |0〉 (1.23)

form an infinite dimensional, orthonormal [2] basis, we can expand any quantum state into
this basis. It is therefore the perfect candidate to play around with high-dimensional spaces.
However, this is not the property that we want to consider at this point and will intensify our
relationship with the photon number basis at a later point in this thesis.

Due to the property that the Fock, or photon number states |n〉 form an orthonormal basis, we
can write any state |ψ〉 as

|ψ〉 =
∑
n

ψn |n〉 . (1.24)
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Compared to the phase space description, the photon number representation is a fully equiva-
lent way of thinking about quantum states. The advantage of this method is that we are able
to directly measure the photon number properties of a state by means of the photon number
statistics.

The photon number statistics give the probability of finding a fixed number of photons n0 in
the state |ψ〉, i.e.

P(n0) = | 〈ψ|n0〉|2 . (1.25)

The calculation of the photon number statistics from quantum states in the Fock representation
is straightforward. We exploit the orthonormality of the Fock basis and find that the probability
P(n0) is given by the coefficients ψn

P(n0) = |ψn0 |2 . (1.26)

In the scope of this thesis, we will consider the measurements of photon number statistics in
chapter 3 and show its applications for quantum information.

State Generation 101

In this section, we want to apply the state description techniques that we discussed in the pre-
vious section to three different classes of quantum states: coherent, single-mode and two-mode
squeezed states. Additionally to their description, we consider the mathematical representation
and the generation of the state in the laboratory.

Coherent States
(a)
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(b)

Figure 1.6 – Phase-space (a)
and photon-
number repre-
sentation (b) of a
coherent state.

Coherent states are typically considered the most classical of
quantum states [2], as they describe the light that is produced
by a laser. Another reason for this statement is their representa-
tion in phase space. In 1.6(a), we depicted the representation of
a coherent state. Its description is, as we will see later, the most
similar phase space function compared to a classical particle (a
point). It is a filled ball at a distance |α| from the origin, as it has
to obey the Heisenberg uncertainty principle [2]. The ball runs
with the speed of eiωt around the origin in the free time evolution,
if ω is the frequency of the light field.

In this thesis, we call the governing Hamiltonian for the gen-
eration of coherent states lasing Hamiltonian5. It can be defined
by [65]

Ĥlasing = i~(αâ† − α∗â) . (1.27)

5Our definition of this lasing Hamiltonian is inspired by the Schrödinger picture.
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CHAPTER 1 High-dimensional Quantum Optics

From this Hamiltonian, we obtain the coherent-state displacement operator

D̂(α) = exp

(
− i
~
Ĥlasing

)
= exp(αâ† − α∗â) , (1.28)

which, applied on vacuum creates a coherent state |α〉. This operator is decidedly non-passive
in the sense that it does not preserve the photon number6 when it is applied to a state. Therefore
we call it an active transformation. This is most obvious when we apply it to the vacuum state
D̂(α) |0〉 = |α〉 and calculate its mean photon number 〈n〉 = |α|2 > 0. To describe the state in
terms of photon number statistics, we have to develop it into the photon number basis. Then, the
coherent state reads as a superposition of different Fock states |n〉

|α〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

αn√
n!
|n〉 . (1.29)

We depict the photon number statistics of two coherent states with amplitudes |α|2 = 1.5 and
|α|2 = 5 in figure 1.6(b). As we expect from classical optics, the coherent state has Poissonian
statistics [2].

Squeezed States
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Figure 1.7 – Phase-space (a)
and photon-
number repre-
sentation (b) of
a single-mode
squeezed state.

Now let us go really quantum. The class of states that we use in
this thesis are squeezed vacuum states [2], where we have to dif-
ferentiate between single-mode and two-mode squeezing. Con-
sider single-mode squeezed states first. In the phase-space rep-
resentation, plotted in figure 1.7(a), it becomes clear, why this
state is called "squeezed". It is an ellipse, where the variance of
the state in one direction has been reduced at the cost of increas-
ing the other [2]. The time evolution is given as in the coherent
state case, it rotates at a speed of eiωt around its centre.

The generation process of single-mode squeezed states is gov-
erned by the squeezing Hamiltonian [65]

ĤSM squeezing =
i~
2

(
ζ∗â2 − ζâ†2

)
. (1.30)

The resulting quadrature-squeezed operator [2] for the single-
mode case is then given by

ŜSM(ζ) = exp

(
− i
~
ĤSM squeezing

)
= exp

(
1

2
ζ∗â2 − 1

2
ζâ†

2

)
(1.31)

This operator is also active as it does not preserve the photon
number 〈n〉 = sinh2(r) > 0. Here, r = |ζ| is the absolute value

6It is however unitary D̂(α)D̂†(α) = D̂†(α)D̂(α) = 1.
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of the complex squeezing parameter ζ = reiϑ. As with the coherent state, we develop the
single-mode squeezed state in the Fock basis and obtain [2]

|ζ〉SM =
1√

cosh(r)

∞∑
n=0

√
(2n)!

n!

[
−1

2
eiϑtanh(r)

]n
|2n〉 . (1.32)

Both from the operator representation and the Fock basis representation we observe that a
single-mode squeezed vacuum state only contains even photon numbers. This propagates through
to the photon number statistics, illustrated in figure 1.7(b), which show that the probability to
measure uneven photon numbers is zero.

For the two-mode squeezed vacuum state the situation is slightly different.
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Figure 1.8 – Phase-space (a)
and photon-
number repre-
sentation (b)
of a two-mode
squeezed state.

Instead of one mode in the single-mode squeezing case, now two
modes (i.e. â and b̂) are affected by the squeezing operation. For
the governing Hamiltonian of the state generation this means

ĤTM squeezing =
i~
2

(
ζ∗âb̂− ζâ†b̂†

)
. (1.33)

In the phase space representation in 1.8(a), this can be imagined
by having two ellipses that are tilted by 90◦. The small circle
describes the uncertainty for one variable, e.g. x̂ after a mea-
surement in the other mode, while the large circle describes the
uncertainty in the conjugate mode. As for the other cases, they
rotate around their centre with the speed eiωt. The corresponding
two-mode squeezing operator is given by

ŜTM(ζ) = exp

(
1

2
ζ∗âb̂− 1

2
ζâ†b̂†

)
, (1.34)

which depends on the same squeezing parameter ζ as the single-
mode squeezed state. The Fock expansion of the two-mode
squeezed state reads

|ζ〉TM =
1

cosh(r)

∞∑
n=0

[
eiϑtanh(r)

]n
|n〉A ⊗ |n〉B . (1.35)

The two-mode squeezed state yields perfect photon number correlation, i.e. same number of
photons, between the two affected modes A and B. We calculate the photon number statistics
of a two-mode squeezed state and plot them in figure 1.8(b). As we have to consider the photon
numbers for two modes A and B7, the corresponding plot is two-dimensional. From this figure,
we can directly observe the perfect photon number correlations between modes A and B, which
can be used for detector calibration [66].

7As two-mode squeezing populates two modes with n photons |n〉A ⊗ |n〉B , we obtain a two-dimensional proba-
bility distribution P(n0A , n0B ) = | 〈ψ|n0A ⊗ n0B 〉|

2 for the photon number statistics.
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CHAPTER 1 High-dimensional Quantum Optics

Figure 1.9 – Schematic of a down-conversion process. A high-energy pump photon p̂ decays prob-
abilistically into two daughter photons, signal ŝ† and idler î†.

Squeezed State Generation via Down-conversion

The remaining question that we have to answer is how to generate these states in the laboratory.
Implementing a coherent state is relatively easy, as it is the state that is produced by a laser [2].
The generation of a squeezed state is a bit more tricky. In this thesis, we employ the process of
parametric down-conversion [67, 68], as schematically depicted in figure 1.9. Here, a photon
from a high-energy, classical pump field decays probabilistically into two daughter photons,
usually labelled signal and idler, or signal and herald. In the following chapters, we will go into
the details of parametric down-conversion, however at this point we only want to roughly sketch
why such a process may be used to generate squeezed states. Encoding the corresponding decay
process in the second quantisation formalism yields [69]

ĤPDC ∝ p̂ŝ†î† + h.c. , (1.36)

where we use the hermitian conjugate to construct a hermitian operator. Here, p̂ denotes the
decayed pump photon, ŝ† the created signal and î† the created idler photon. Naturally, this
"derivation" is neither complete or an ironclad argument, however it is enough to motivate why
a decay process such as parametric down-conversion implements a squeezing Hamiltionan, as it
looks very similar to equations (1.30) and (1.33). With this argument, we can identify the two
generated photons of signal and idler as the two creation operators in the squeezing Hamiltonian.

However, in equation (1.36), we find an additional annihilation operator for a pump photon,
which is not contained in the squeezing Hamiltonian. This discrepancy may be resolved with the
information that the down-conversion process is very inefficient and we use a strong, classical
pump field to generate the photon pairs. Then, we approximate the annihilation operator in
equation (1.36) by a classical field amplitude.

Depending on the modes that the signal and idler photons are created in, we distinguish be-
tween different types of parametric down-conversion. If they are created in the same mode, we
implement

ĤPDC 1 = αpâ
†â† + h.c. , (1.37)

which is a single-mode squeezed state. As the photos are created in the same mode and described
by the same creation operator, the photons are fundamentally indistinguishable [2]. In practice,
this means that the two photons are generated into the same polarisation mode and the process
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is classified as either type-0 or type-I [69].
However, we can also create the signal and idler photons in different modes. Then, we imple-

ment a two-mode squeezer with our down-conversion process with the governing Hamiltonian

ĤPDC 2 = αpâ
†b̂† + h.c. . (1.38)

In the experiment, this means that we generate our two photons in orthogonal polarisation
modes. Such a down-conversion process is classified as type-II [69].

State Detection

The simplest measurement operator in quantum optics is the projector P̂m [1]. It projects the
incoming state |ψ〉 onto its subspace |m〉 and yields the probability |pm|2 that |ψ〉 has been in
this subspace

P̂m |ψ〉 = pm |m〉 . (1.39)

However, for many applications this formalism is too narrow. Especially in the case, where we
are only interested in the measurement probabilities |pm|2 the use of projectors is not always
the method of choice. Then, usually POVMs (or Positive Operator-Valued Measures) are used
[1]. Consider a measurement M which has different outcomes m. Then M̂m is a corresponding
measurement operator, whose shape is not of particular interest here. As before, we want to
measure a quantum state |ψ〉. The probability to measure the result m is given by

|pm|2 = 〈ψ| M̂ †mM̂m |ψ〉 . (1.40)

Note, that this expression does not consider the final state after the measurement, as it is not
of interest. We can further combine the two operators π̂M = M̂ †mM̂m, where π̂m is a positive
operator8 with ∑

m

π̂m = I

|pm|2 = 〈ψ| π̂m |ψ〉 .
(1.41)

The operators π̂m are called the POVM elements of the measurement M and the set of {π̂m}
is the associated POVM [1]. For this thesis, the only important thing to know about POVMs is
that they describe a specific measurement or detection setup completely. We will use this later
for the characterisation of a detector system.

Structure of this Work

In this work, we present and discuss new techniques and applications of high-dimensional quan-
tum optics. This field is a vast playground of degrees of freedom, so we have taken a perhaps
slightly unusual approach for this thesis. We proceed concept by concept, as we consider many
different aspects of high-dimensionality in this thesis and therefore discuss different concepts in

8Which means that its eigenspectrum only has positive-semidefinite eigenvalues.

15
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the different chapters and distribute the corresponding state of the art and the theoretical concepts
accordingly.

This thesis is divided into three main chapters. In chapter 2, we develop a novel type of
down-conversion source, which uses coupled waveguides to produce two-photon N00N states.
We review the theory of coupled waveguides and apply it to the process of parametric down-
conversion. With this approach, we develop a genuinely novel type of quantum state source and
experimentally show that we can produce and verify the expected two-photon N00N state.

In chapter 3 we apply the newly developed quantum state source with its higher photon num-
ber contributions to investigate transmission of non-classicality in atmospheric channels. As we
consider higher photon number contributions, we review a method for photon number resolved
detection by means of time-multiplexing and explore its limits for the resolution of high photon
number states in section 3.1. Afterwards, we develop a detector calibration technique in sec-
tion 3.2, based on the time-multiplexing technique to probe detector properties with minimal
experimental and computational overhead. Finally, in section 3.3, we combine our results from
chapters 2 and 3 to probe the resilience of non-classical light under atmospheric turbulences.
This is a particularly interesting question in the field of quantum communication, as the non-
classicality of the light may be destroyed on, e.g. the way from a satellite to the ground station.
Here, both our developed down-conversion source and the time-multiplexed technique find their
application to identify regimes where quantum secure communication is preserved.

Chapter 4 is inspired by a down-conversion source with many coupled waveguides, which we
review in section 4.1. From this idea, we develop several theoretical core concepts that find their
application in quantum computation. First, we present a new type of quantum walk scenario in
section 4.2, where we introduce fundamentally new quantum dynamics by introducing a driving
force, either by a lasing or a squeezing Hamiltonian. The last two sections of this work address
the concept of BosonSampling. We introduce this computational model in depth in section 4.3,
before we map it to the high-dimensional coupled waveguide system from section 4.1. Finally,
we present the concept of Gaussian BosonSampling, which uses genuine Gaussian states, i.e.
single-mode squeezed states, to formulate a problem that is hard to solve with classical resources
and probe the possibilities of quantum vs. classical computation power.

Finally, we summarise our work and give a conclusion in chapter 5.
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Before discussing high-dimensional quantum
systems, we begin with a small, manageable
system to understand the basics. To this aim,
we focus on the implementation of a dual-
path integrated parametric down-conversion
source and discuss how it is able to produce
post-selection free two-photon N00N states
[70].

We already learned about the existence of
two-photon N00N states and their applica-
tion for quantum metrology in chapter 1 in
the context of Hong-Ou-Mandel interference
[8, 59]. Yet, the generation of N00N states
in the Hong-Ou-Mandel experiment was a

rather accidental aspect and therefore has not been recognised at that time.
Originally, N00N states were introduced in 1989 by Barry Sanders [71], who was interested

in the dynamical properties of the nonlinear rotator. Even with the Hong-Ou-Mandel experi-
ment two years earlier [59], it took until the year 2000, when the group of Jonathan Dowling
recognised the potential of N00N states for quantum metrology [8]. They found that a state of
the form

|N00N〉 = 1√
2
(|N0〉+ eiϕ |0N〉) (2.1)

exhibits an N -fold enhanced sensitivity to phase changes in an optical interferometer, compared
to a coherent state reference. Due to this potential quantum advantage and the fact that with
large N , we obtain a macroscopic entangled state that may probe the quantum-classical border,
many experiments have been performed to generate these states.

The simplest generation technique for two-photon N00N states is the bulk Hong-Ou-Mandel
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CHAPTER 2 Dual-rail down-conversion source for two-photon N00N states

experiment [59], which we discussed in chapter 1. We take two indistinguishable photons,
however they have been produced, and interfere them on a beam splitter to obtain the desired
N00N state. However, N = 2 is the largest N00N state that we can directly generate with a
beam splitter. Consider the N -photon component of a two-mode squeezed input state |N〉 |N〉
and interfere the two modes on a beam splitter. This leads to a generalised Hong-Ou-Mandel
interference

UBS |N〉 |N〉
∝ cN |N〉 |0〉+ cN−2 |N − 2〉 |2〉+ ...+ cN/2 |N/2〉 |N/2〉
+ ...+ cN−2 |2〉 |N − 2〉+ cN |0〉 |N〉 ,

(2.2)

which definitely does not produce a N00N state [9]. While this state is still interesting for
quantum metrology, as it surpasses the classical resolution limit, it does not perform as optimal
as the pure N00N states [72].

As such, one challenge is to generate higher order N00N states in an experiment. As the
generalised Hong-Ou-Mandel interference does not produce N00N states, several other proto-
cols based on effective nonlinearities from detection processes (heralding or post-selection) have
been proposed [73–77]. Using these techniques, the firstN > 2 experiments could be performed
in 2004 by the groups of A. Steinberg (N = 3) [78] and A. Zeilinger (N = 4) [79], with fring-
ing visibilities1 of VStein = 42% and VZeil = 61%, respectively. Three years later, in 2007,
N00N-like superresolution with N = 6 was demonstrated by the group of A. White [80] using
only coherent states. This is a surprising result, as coherent states should follow the classical
behaviour that we discussed in chapter 1. However, the superresolution that was demonstrated
in this experiment does not contradict the classical expectations. While the fringing period of
the interference signal was enhanced by a factor of N = 6, the sensitivity of the state to phase
changes (as given by the slope of the interference curve) did not exceed the classical limit due
to the low visibility of the interference signal. Indeed, this problem with superresolution was
pointed out already in 2004 [79] and expected by the authors [80]. Only later in 2007, the first
experiment to achieve good enough visibility to both verify superresolution and supersensitivity
was demonstrated [81] with N = 4 N00N states and a fringing visibility of V = 91%. As it is,
the record number for "real" N00N states is N = 5, as demonstrated by the group of Y. Silber-
berg in 2010 [82]. Since then, many N00N state experiments have been performed in various
platforms [83–92]. However it still remains a challenge to reliably detect N00N states with a
good fidelity, as they are not only supersensitive with respect to phase changes, but also to loss
[8]. As such, different classes of states have been investigated that promise more robustness for
real-life quantum metrology [93–95].

In this thesis, it is not our aim to push the high N00N state production further, but we want to
investigate another challenge in the generation of N00N states, the transfer to an integrated plat-
form. While the task to integrate the Hong-Ou-Mandel experiment on a single chip may sound
straightforward, it is anything but easy. In an integrated platform, we use waveguided parametric
down-conversion processes, where the generated photons are usually created in the same spa-

1The visibility describes the contrast between minima and maxima of the interference curve. It is usually defined
by V = Max−Min

Max+Min .
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Figure 2.1 – Two-photon N00N state generation scheme adapted from [96, 97]. Two separate
down-conversion sources are interfered on a 50/50 beam splitter to erase the infor-
mation in which source the photon pair has been created. Both schemes need addi-
tional integrated phase-shifters (∆ϕ) to control the N00N state generation and nar-
rowband filtering after the chip (not shown) to enable the indistinguishability of the
two sources.

tial mode of the same waveguide [98]. As such, it is difficult to separate the generated photons
(for type-II down-conversion with a polarising beam splitter) and interfere them later on (as the
speed of the photons on the two polarisation axes has to be compensated). For a type-I process,
it is even impossible to separate them deterministically, as the photons are indistinguishable.

As such, only recently two experiments by Silverstone et al. [96] and Jin et al. [97] demon-
strated the generation of two-photon N00N states in an integrated platform. Both schemes
comprise two separately pumped down-conversion sources ([96] uses silica as support mate-
rial, while [97] uses lithium niobate) which are then interfered on an integrated beam splitter to
erase the information which source created the photon pair, see figure 2.1. While this two-source
solution fulfils the aim to generate the desired two-photon N00N states, it does not present a sin-
gle integrated device, but relies on a full integrated circuit comprising one phase-shifter (∆ϕ),
two separate sources and two integrated beam splitters. Furthermore, this approach needs to use
additional resources, such as post-selection and has to apply narrow-band filtering to ensure the
indistinguishability of the two down-conversion sources.

Our aim in this chapter of the thesis is to develop a single non-linear integrated component
which produces post-selection free two-photon N00N states. We use a non-linear waveguide
coupler that comprises two parallel, weakly coupled waveguides at a distance of several µm
which are periodically poled [99, 100], see figure 2.2. Our approach to utilise the underlying
linear waveguide geometry [101–104] to engineer the state generation via parametric down-
conversion (PDC) [67, 68, 98] is a novel physical concept that intrinsically introduces the path
degree of freedom to photonic state generation in waveguide based technology. As such, we
further increase the integration density by developing a single integrated device that produces
two-photon N00N states.

This chapter is structured as follows: we lay down the foundations of the linear coupling
model for weakly coupled waveguides in section 2.1, before we explain the impact on the pho-
ton generation via PDC in section 2.2. From the experimental side, we first characterise the
linear properties of the used sample2, i.e. loss and coupling strength in section 2.3. Afterwards,

2Courtesy of S. Brauner, who characterised the samples during his time as a student helper in our group.
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we focus on the main result, the verification that a non-linear two-coupled waveguide device
produces post-selection free two-photon N00N states in section 2.4. To do this, we first directly
record the spatially resolved two-photon click events (coincidences) as a necessary condition for
N00N states and in a second step show the expected double-frequency interference pattern as the
sufficient condition. Finally, we discuss the properties of the higher photon number contributions
of this coupled waveguide source in section 2.5.

2.1 Model for the Weak Coupling Regime

To understand the impact of coupled waveguides on the photon generation process, we review
the linear properties of coupled two-waveguide structures in this section. An example system is
sketched in figure 2.2(a). It consists of two parallel waveguide channels that are close enough
to each other that an incoupled field Ein can traverse to the adjacent channel. In our case, we
assume the waveguides to be weakly coupled, which implies two assumptions [104]3. Firstly,
the solution of the coupled system is given by a linear combination of the undisturbed waveguide
solutions [105], i.e. the spatial field distribution inside a single waveguide is not modified by the
coupling and only the field amplitudes change over time. Secondly, the coupling strength C is
proportional to the overlap between the electric fields in waveguide 1 and waveguide 2 [106].

Then, the evolution of the electric fields in the coupled waveguide structure along the propa-
gation direction z is given by the following differential equations [104]

d

dz
e1(z)E1(x, y) = iβ(ω)e1(z)E1(x, y)− iCe2(z)E2(x, y)

d

dz
e2(z)E2(x, y) = iβ(ω)e2(z)E2(x, y)− iCe1(z)E1(x, y) ,

(2.3)

where Ei(x, y) denotes the spatial mode profiles of the uncoupled waveguides in the x, y-plane,
perpendicular to z and β(ω) = neff(ω)ω/c is the propagation constant for an electric field
of frequency ω that propagates in a waveguide with effective refractive index neff(ω). Here,
we incorporated the assumption that the spatial mode profiles remain unmodified by separating
the propagating excitation amplitudes ei(z) along the z-axis from the mode profiles Ei(x, y).
Focusing only on the excitation amplitudes and using a matrix representation, equation (2.3)
reads

d

dz

(
e1(z)
e2(z)

)
= i

(
β(ω) −C
−C β(ω)

)(
e1(z)
e2(z)

)
. (2.4)

Solving equation (2.4) yields the eigenmode description of the coupled waveguide system.
The so-called anti-symmetric eigensolution is given by

βA(ω) = i[β(ω) + C]

EA =
1√
2

(
1
−1

)
(2.5)

3The large separation of the two waveguides in the experimental implementation justifies this pertubative approach.
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SECTION 2.1 Model for the Weak Coupling Regime

(a) (b) symmetric

anti-symmetric

Figure 2.2 – Sketch of the linear part of the sample and eigenmode description. Figure (a) shows
the linear part of our structure that consists of two parallel, weakly coupled waveg-
uides. The overlap of the electric fields between the two waveguides directly deter-
mines the coupling parameter C. In (b), we have depicted the eigenmode solution
to the system. In the weak coupling regime, the two eigenmodes are given by a
linear combination of the single waveguide modes, i.e. the symmetric (pink) and
anti-symmetric (green) combination.

and the symmetric solution by
βS(ω) = i[β(ω)− C]

ES =
1√
2

(
1
1

)
.

(2.6)

The eigensolutions are characterised by the fact that they are position-independent and βj(ω)
denotes the modified propagation constant of the j-th eigenmode. If we re-insert the spatial
mode profiles of the undisturbed waveguideE = ei(z)Ei(x, y), where ei(z) is in the eigenmode
description and position-independent, equations (2.5) and (2.6) read

EA =
1√
2

(
E1(x, y)
−E2(x, y)

)
and ES =

1√
2

(
E1(x, y)
E2(x, y)

)
. (2.7)

We plot two eigenmodes of a coupler system in figure 2.2(b). Finally, the position-dependent
electric field in the waveguides 1 and 2 is given by linear combinations of the eigenmodes [104]

E1(x, y, z) =
1√
2

[
e−iβS(ω)z + e−iβA(ω)z

]
E1(x, y)

E2(x, y, z) =
1√
2

[
e−iβS(ω)z − e−iβA(ω)z

]
E2(x, y) .

(2.8)

21



CHAPTER 2 Dual-rail down-conversion source for two-photon N00N states

This general solution to the coupled differential equation system of equation (2.3) describes the
field coupling between the two waveguides as an interference of the two eigenmodes. As the
eigenmodes themselves are position-independent with different propagation constants, they will
interfere constructively in waveguide 1 at4 z = 0. However, at this position, they will interfere
destructively in waveguide 2 and the overall field strength is concentrated in waveguide 1. This
situation is reversed at z = π

βS(ω)−βA(ω) .

2.2 Impact on the Photon Pair Generation

In the previous section, we have considered the effect of the weak coupling between two waveg-
uides on the electric fields. Now, we discuss the non-linear PDC process and analyse how the
modification by the coupling influences the properties of the photon generation. However, firstly
we briefly recapitulate the properties of a simple PDC process, either for bulk or single waveg-
uides. For a more in-depth discussion of PDC processes, along with a mathematical derivation
of the governing Hamiltonian, we recommend [69, 107, 108] as independent reading.

During the PDC process, a high-energy pump photon with frequency ωp spontaneously decays
inside a crystal of length L into two low energy photons, signal with ωs and idler with ωi,
compare figure 2.3(a). The pump, signal and idler fields are coupled via a χ(2) non-linearity and
the full process is governed by [109]

Ĥint ∝ χ(2)

∫
V

E(+)
p (~r, t) Ê(−)(~r, t) Ê(−)(~r, t) + h.c. d3r , (2.9)

where Ep is the classical pump and Ê are the generated quantum field amplitudes. In the scope
of this thesis we only consider type-I processes where the two quantum fields are generated in
the same polarisation mode5. Therefore, we have omitted the labels for signal and idler for the
quantum field amplitudes. Then, the generated photons are fundamentally indistinguishable [2],
which guarantees perfect interference properties [59] between them.

Solving the Hamiltonian is a straightforward calculation and results in the output state6

|Ψout〉 = exp

− i~
∞∫
−∞

dωs

∞∫
−∞

dωi, α(ωs + ωi)

× sinc

[
∆β(ωs, ωi)

L

2

]
e−i∆β(ωs,ωi)

L
2 â†(ωs)â

†(ωi) + h.c.

}
|0〉 ,

(2.10)
where α(ωs+ωi) contains the spectral shape of the pump field as well as the energy conservation

4This corresponds to an excitation of waveguide 1 at z = 0. Other initial conditions may be encoded by introducing
a z − z0 variable, with e1(z0) = 1.

5As opposed to a type-II process where the photons are generated into orthogonal polarisations. Speaking in quan-
tum states, a type-I process generates a single-mode squeezed state, while a type-II process generates a two-mode
squeezed state.

6Neglecting time-ordering effects [110], which is justified at our power levels.
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energy momentum both(a) (b) (c)

x =

Figure 2.3 – Interpretation of the governing functions in the PDC process. Figure (a) represents the
energy conservation with the frequencies of the involved fields. The corresponding
characteristic function is the pump distribution α(ωs +ωi), its width is directly given
by the pump spectrum. Figure (b) illustrates the momentum conservation for the prop-
agation vectors. Contrary to the energy conservation, the width of the characteristic
phase-matching function is mostly determined by the length of the crystal. In (c) both
are combined to the joint-spectral-amplitude function, that completely determines the
spectral properties of the PDC process.

condition [ωp = ωs+ωi]. The sinc-function represents momentum conservation that is given by
the propagation constants of the three light fields [∆β = β(ωp)− (β(ωs) + β(ωi))− 2π

Λ ]7. The
additional 2π

Λ comes from a periodic sign-inversion of the χ(2) non-linearity, the periodic poling
[99, 100]. This sign-inversion with period Λ introduces an additional momentum contribution,
which allows us to shift the phase-matching condition to the desired wavelength combinations.

A graphical interpretation of the output state in equation (2.10) is given in figure 2.3. We
consider the energy conservation condition in 2.3(a). The top part depicts this condition for the
frequencies and the bottom part shows the pump spectrum dependent on the signal and idler
wavelengths. As we have to fulfil ωp = ωs + ωi, α is oriented along the −45◦-diagonal. The
width of this function is solely given by the width of the pump spectrum ∆ωp. Correspondingly,
the top part of figure 2.3(b) represents the momentum conservation condition. Depicting the mo-
mentum conservation condition depending on the signal and idler frequencies also gives a curve
oriented along the−45◦-axis, however the width of this phase-matching function φ is determined
by the finite width of the crystal and the curvature by the dispersion of the material. Combin-
ing pump spectrum and phase-matching, as shown in (c), yields the joint-spectral-amplitude f
(shown in pink) that fully determines the spectral properties of the generated PDC state. Note
that the pump spectrum cuts only a finite part of the phase-matching. This will enable us to
excite specific spatial properties in the generated PDC states by tuning the pump spectrum.

7Usually, the output state also contains a phase-term that originates from the free propagation of the field inside the
crystal [111]. It is however not important for the interpretation of the state given in (2.10) and will be omitted at
this point of the discussion.

23



CHAPTER 2 Dual-rail down-conversion source for two-photon N00N states
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distribution phasematching

Figure 2.4 – Effect of the eigenmode combinations on the phase-matching function of the PDC
process. During PDC photons are always created pairwise. This means, that we have
three different possibilities to distribute the photons of one pair across the eigenmodes
of the coupler structure. Possibility 1) considers that both photons are generated into
the symmetric eigenmode and the corresponding phase-matching curve is given in
pink. For 2), both are generated into the anti-symmetric eigenmode and the phase-
matching curve is shifted, as drawn in green. The third possibility, one photon in each
eigenmode is shifted to the middle and sketched in blue.

The impact of the coupler structure on the PDC process is encoded in the phase-matching
condition ∆β !

= 0. As we have seen in the previous section, the coupler structure introduces
two, non-degenerate eigenvalues for the propagation vector. This means that we have to consider
the impact of different eigenmode combinations on the phase-matching condition. We have
sketched this influence on the phase-matching function in figure 2.4. During the PDC process,
photons are always created in pairs [69]. This gives us the freedom to distribute two photons
in combinations of two eigenmodes, as shown in the left-hand part of the figure. We have three
distinct possibilities with propagation vectors accordingly modified

1) both photons symmetric: ∆β = β(ωp)− [βS(ωs) + βS(ωi)],

2) both photons anti-symmetric: ∆β = β(ωp)− [βA(ωs) + βA(ωi)] and

3) one photon in each: ∆β = β(ωp)− [βS(ωs) + βA(ωi)] .

Due to the non-degeneracy of the coupler-eigenvalues βS/A(ω), we get three different, spec-
trally distinct phase-matching functions [70], as shown on the right side of figure 2.4. For better
comparability to the measured data in following sections, we have changed the axes from fre-
quency to wavelength scale. Possibility 1) gives a phase-mismatch ∆βSS = ∆β(0) +2C, which
shifts the phase-matching curve (pink) to higher wavelengths (or smaller frequencies). The
fully anti-symmetric possibility 2) gains the negative phase-mismatch from the coupler structure
∆βAA = ∆β(0) − 2C and is accordingly shifted to lower wavelengths (or higher frequencies)
(green). For the third combination, the contributions from symmetric and anti-symmetric eigen-
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SECTION 2.2 Impact on the Photon Pair Generation

value cancel out and we remain with ∆βSA,AS = ∆β(0) (blue). It is accordingly not shifted and
lies on the phase-matching curve of the undisturbed system.

For the full PDC output state of the coupler structure in the two-photon picture, i.e. taking only
the first order Taylor-expansion of equation (2.10), we have to add all possible phase-matching
conditions. The output state then reads [70]

|Ψ〉eig =
1

N

∞∫
−∞

dωs

∞∫
−∞

dωi α(ωs + ωi) [γ sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 â†S(ωs)â

†
S(ωi)

+δ sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 â†S(ωs)â

†
A(ωi)+δ sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2 â†A(ωs)â

†
S(ωi)

+ γ sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2 â†A(ωs)â

†
A(ωi)

]
|0〉 ,

(2.11)
in the eigenmode basis of the coupler, where γ and δ are the excitation amplitudes for the pump
in the symmetric and anti-symmetric eigenmode, respectively and N is the normalisation con-
stant of our state. The additional phase-terms e−i∆βi,j

L
2 in the coupler state stem from the linear

propagation inside the sample [111]. While they, in general, can be ignored, the use of a basis
transformation in the spatial domain is sensitive to additional phases. Omitting them from the
calculation yields incorrect results. For a complete mathematical derivation of the coupler state,
see appendix B.

To transform this description back to the waveguide basis of the experiment, we have to apply
the time-independent basis transformation of equation (2.8)

E1 =
1√
2
(ES + EA) E2 =

1√
2
(ES − EA) . (2.12)

This yields [70]

|Ψ〉WG =
1

2
√
N

∞∫
−∞

dωs

∞∫
−∞

dωi α(ωs + ωi)

[(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 + sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}
+ δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 + sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

})
â†1(ωs)â

†
1(ωi)

+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 − sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}

− δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 − sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

}
︸ ︷︷ ︸

= 0

 â†1(ωs)â
†
2(ωi)

(2.13)
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+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 − sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}

+ δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 − sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

}
︸ ︷︷ ︸

= 0

 â†2(ωs)â
†
1(ωi)

+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 + sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}
− δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 + sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

})
â†2(ωs)â

†
2(ωi)

]
|0〉 .

To simplify this equation, we can exploit the fact that we use a type-I PDC process (details in
section 2.4), where the two generated photons are fundamentally indistinguishable [2]. This
means that the marked terms in the |1, 1〉-part of the state cancel each other.

We can interpret this behaviour as Hong-Ou-Mandel interference [59] that happens during
the basis transformation. The AS- and SA-terms correspond to generating a photon in each
of the eigenmodes and the basis transformation is mathematically equivalent to a beam splitter.
As such, the two generated photons interfere equivalently to Hong-Ou-Mandel interference, but
without a beam splitter.

As the three phase-matching conditions are spectrally distinct, we can use the pump wave-
length to excite either the SS, AA or the SA,AS phase-matching condition. This yields three
different states with different spatial properties8

∆βSS : |Ψ〉WG = κ(∆βSS)

2
√
N [|2, 0〉 + 2 |1, 1〉 + |0, 2〉] = κ(∆βSS)

2
√
N (|1, 0〉 + |0, 1〉)2. This state is

equivalent to the generated output when two indistinguishable photons enter a beam split-
ter from the same side.

∆βAA: |Ψ〉WG = κ(∆βAA)

2
√
N [|2, 0〉+2 |1, 1〉+ |0, 2〉] = κ(∆βAA)

2
√
N (|1, 0〉+ |0, 1〉)2. This is again the

state that is created when two photons enter a beam splitter from the same side.

∆βAS : |Ψ〉WG = κ(∆βAS)

2
√
N [|2, 0〉 − |0, 2〉]. This is the state that is generated, when the photons

enter the beam splitter from opposite sides (i.e. Hong-Ou-Mandel interference) and a
genuine, post-selection free two-photon N00N state.

Hence, to generate the two-photon N00N state, which is the overall aim of this chapter, we have
to match the pump wavelength to the ∆βAS phase-matching condition, where we generated
post-selection free N00N states. In the following, our aim will be to implement such a source
and demonstrate the two-photon N00N state generation.

8Using also the spatial degree of freedom gives of course more flexibility in the state generation. Here, we have
restricted ourselves to a single waveguide pump for the sake of experimental stability and simplification. State
generation with use of the full spatial domain was demonstrated in [112].
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Figure 2.5 – The underlying waveguide structure of the implemented N00N state source. The over-
all sample, as shown in (a), consists of two times three test channels at the edges of
the sample and seven coupler groups of varying stem length Lstem. A single group is
shown in (b). It comprises three identical coupler structures, in particular for Lc1 with
a stem length Lstem = 11015µm and an uncoupled test waveguide (TWG). The dis-
tance between the waveguides in the coupling region is fixed throughout the sample
with dc = 13µm.

2.3 Device Characterisation

Before we are able to implement the PDC process for the quantum measurements, we have to
characterise the produced sample classically to evaluate parameters such as the coupling strength
or the phase-matching condition and to estimate the influence of fabrication imperfections, such
as waveguide losses and residual coupling outside the periodically poled region. The linear
characterisation, i.e. loss estimation and the measurement of the coupling properties were done
with S. Brauner during his time as a student helper.

First, we describe the sample layout and the fabrication parameters for the utilised sample
L224za. Afterwards, we describe the loss measurement technique that is used in our group
and summarise the results for our waveguide sample. Then, we experimentally determine the
coupling strength in the fabricated waveguide couplers and finally characterise the non-linear
response of the single waveguides and coupler structures.

2.3.1 Sample Layout and Fabrication Parameters

Our sample for the N00N state source was fabricated from lithium niobate (LiNbO3, LN) by R.
Ricken. He produced waveguides according to the sample layout, sketched in figure 2.5(a). This
layout consists of three control groups consisting of three waveguides each at both edges of the
sample, which frame seven coupler groups (Lc 1-7) of different coupler stem lengths Lstem. The
coupler group Lc1 that we are using in the experiment is magnified in figure 2.5(b). It comprises
a test waveguide (TWG) and three identical coupler structures with a nominal coupler stem
length of Lstem,Lc1 = 11015µm, which is the length where the waveguides run parallel at a
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Figure 2.6 – Schematic of the loss characterisation setup [113]. The two end-facets of the LN
crystal form a low-finesse cavity with a certain loss α. We scan the cavity resonances
by heating the crystal and monitor the transmission of a polarised single-frequency
continuous wave laser. With known end-facet reflectivities, the contrast of the cavity
transmission signal is solely determined by the loss inside the cavity, i.e. the loss of
the waveguide.

short distance, see 2.5(b). To both sides, the coupler stem is enclosed with a bending area that
bridges the distance of the waveguides at the end facets of≈ 100µm to the coupler separation of
dc = 13µm. As the waveguide distance close to the coupler stem length is still small, we expect
residual overcoupling of the light fields that has to be evaluated in the optical characterisation
later.

The waveguides were produced via titanium indiffusion [104]9, where a titanium strip of
defined width and height is deposited on the sample and heated to 1060◦C for 8.5 hours. This
causes an exchange of lithium atoms for titanium atoms in the crystal lattice, which increases
the refractive index of the material for both TE and TM polarisation. In our case, the stripes had
a measured width of w = 6.9µm and a measured height of h = 79 nm.

As a final step, the sample was periodically poled [99, 100] at the position of the Lc1 coupler
stem length. We only use a local periodic poling across the Lc1 coupler stem length to avoid
spurious down-conversion processes in the uncoupled regions. As we did not use a defined
mask for this process, the exact length of the poled region has to be determined in the non-linear
measurements. The used grating period of Λ = 16.6µm should lead to a type-I quasi-phase-
matching condition10 in the telecom regime at room temperature, which has to be evaluated by
a non-linear second harmonic measurement.

2.3.2 Losses

As the standard loss characterisation method in our group, we use the proposal by Regener and
Sohler [113]. To quickly summarise this technique, we consider the schematic characterisation
setup in figure 2.6. Due to the refractive index change at the two end-facets at the crystal, it

9This reference also contains a comprehensive overview for several fabrication techniques. Naturally, they do
not describe the exact process used by R. Ricken, as our group has optimised the manufacturing parameters.
Nevertheless, the overall procedure is very similar and should give an idea of the fabrication process.

10pump: extraordinary (TM)→ signal: extraordinary (TM), idler: extraordinary (TM)
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forms a low-finesse cavity. The two mirror reflectivities of the end-facets are directly determined
by the refractive index contrast between the LiNbO3 and the surrounding air. For the used
TM polarisation in the telecom regime, the reflectivities are r1 = r2 ≈

√
0.13. We heat the

sample, which scans the resonances of the low-finesse cavity via thermal expansion. We monitor
this scan by a single frequency (SF), continuous wave laser at a wavelength of λ = 1520 nm,
which is polarisation-cleaned by a polariser. After passing the sample, we detect the transmitted
cavity signal on a photo-diode (PD). Assuming, that the reflectivities of the end-facets remain
unchanged by heating, the contrast K of the transmitted cavity signal is solely determined by
the loss α inside the cavity [113]

α ≈ 4.34

Lsample
(lnR+ ln 2− lnK) , (2.14)

where R = r2
1.

With this method, we have measured the loss parameters α in the test waveguides (marked
TWG in figure 2.5(b)) of groups Lc 1-7. The measured sample length is Lsample = 40.7mm and
we measured at room temperature T0 = 21 ◦C. In table 2.1, we have summarised the loss values
for TM-polarisation, as measured by S. Brauner. The relatively low losses of α = 0.2 to 0.5dB

cm
throughout the sample underline the good fabrication quality of our in-house production.

Lc αmin.

[
dB
cm

]
αest.

[
dB
cm

]
αmax.

[
dB
cm

]
1 0.44 0.49 0.56
2 0.11 0.2 0.31
3 0.27 0.3 0.32
4 0.2 0.24 0.29
5 0.25 0.29 0.33
6 0.35 0.43 0.5

Table 2.1 – Loss values in the test waveguides of groups Lc 1-6. αest. is the estimated loss value
of the waveguide, while αmin. and αmax. give the estimated error bars.

2.3.3 Coupling

Additionally to the loss characterisation of the waveguides, we have to characterise the coupling
strength of the implemented coupler structures. In order to extract this parameter, we couple into
one waveguide of the coupler structure and measure the output powers at the output waveguides
separately, as sketched in figure 2.7.

With equation (2.8), we predict the expected behaviour of the coupler structures depending
on the stem length Lc [104]

P|| ∝ |E1(Lc)|2 =
1

2
+

1

2
cos(C · Lc)

PX ∝ |E2(Lc)|2 =
1

2
− 1

2
cos(C · Lc) ,

(2.15)
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Figure 2.7 – Coupling parameter characterisation and results. To analyse the coupling strength
of the implemented couplers, we launch infra-red light at λ = 1520µm into one
input of the structure, as depicted in (a). We then measure the output power in both
outputs and calculate the coupling ratio by normalising the cross-coupled power to
the overall output power. Measuring for different stem lengths Lc gives a sinusoidal
behaviour as shown in (b). By fitting the curve, we extract the coupling parameter
C = (358 ± 10)m−1 for our sample. Note, that for Lc = 0µm we still find a finite
coupling ratio, which is an indication that residual coupling happens in the s-bends of
the structure.

where P|| is the power remaining in the input waveguide and PX the coupled power to the
neighbouring waveguide. The input amplitudes for the eigenmodes are assumed to be equal,
as we launch light only into one input. To estimate the coupling strength, we measured the
coupling ratio for the coupled power dependent on the coupler stem length in TM polarisation.
We characterised all couplers from group Lc 1-6 twice by coupling into each input waveguide
separately and recorded the output powers. The results, as taken by S. Brauner, are plotted
in figure 2.7(b). While the trend roughly follows a sinusoidal behaviour, the strong scattering
at short stem lengths prevents a perfect fit. The reason for this strong scattering is that the
coupling strength is a sensitive parameter that reacts very strongly even to small variations in the
fabrication process. Since we compare many different implementations of the same structure at
different positions on the sample, the varying fabrication conditions over the width of the sample
lead to the strong scattering in the results for the coupling strength. Nevertheless, we were able
to extract the coupling parameter with C = (358± 10)m−1. Finally, we would like to point out
that for a stem length of LC = 0µm, we find a finite y-intercept of roughly 15%. This hints to
the fact that coupling of the electric fields does not only happen in the designed coupling region
but also outside, which will affect the quality of our generated two-photon N00N state.

2.3.4 Second Harmonic Characterisation

After the in-depth characterisation of the waveguide structures in the linear regime, we evaluate
the non-linear properties of the periodic poling. To this aim, we employ the process of second
harmonic generation (SHG) [69], which is colloquially referred to as the inverse process of our
desired PDC. Contrary to PDC, SHG is considered to be a fully classical effect, as it has a known
solution from the an-harmonic mechanical oscillator. Consider figure 2.8(a). In the case of the
harmonic potential (plotted in dashed lines as a reference), the time-dependent solution for a
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Figure 2.8 – Origin of second harmonic generation. Particles that move in an anharmonic poten-
tial (red curve in (a)) do not follow the harmonic solution after a certain excitation
amplitude (b). In the Fourierspectrum in (c), the higher frequency components in the
anharmonic solution become obvious.

particle moving inside this potential are the well-known harmonic sine and cosine functions.
However, the approximation of an arbitrary potential by the harmonic oscillator breaks down at
some point [69], e.g. a pendulum beyond Hooke’s law. In this scenario, we have to consider
anharmonic contributions (plotted in red) which disturb the harmonic solutions for a moving
particle, i.e. an electron in the potential of a nucleus, as shown in figure 2.8(b). In Fourier
space, as shown in figure 2.8(c), the anharmonic disturbances are revealed to be higher order
frequency contributions, which can be identified as the second harmonic (SHG) or even higher
order contributions [69].

In optics, the moving particles are electrons inside a crystal and the potential is the suscep-
tibility (or χ-) tensor of the material. Usually, only the harmonic approximation is considered,
which is the linear refractive index. However, when we drive the material system with high in-
tensities, a whole zoo of non-linear effects appears. For a thourough review of non-linear effects,
we recommend [69].

For our non-linear characterisation, we use the effect of second harmonic generation to probe
the χ(2)-level of the full susceptibility tensor. To do so, we implemented a setup based on figure
2.9(a). We pump a single waveguide of our coupler structure hard enough with telecom light
to generate measurable second harmonic power, divide the two colours on a dichroic mirror
and record both the fundamental and second harmonic powers. In this configuration, we probe
the phase-matching function along the +45◦-axis as illustrated in figure 2.9(b) by tuning the
wavelength of the fundamental field. For comparison, we perform this measurement also with
the corresponding TWG of group Lc1.

The results for this characterisation are plotted in figure 2.9(c) for the uncoupled test waveg-
uide. The x-axis gives the tuning of the fundamental wavelength plotted against an (uncorrected)
conversion efficiency that computes via the recorded powers P

ηSHG =
PSHG

P 2
fund.L

2
. (2.16)

The efficiency ηSHG is normalised to the square of the fundamental power, as the fundamental
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Figure 2.9 – Setup, working principle and results of second harmonic generation (SHG). To mea-
sure the non-linear SHG response of the periodic poling in (a), we couple light at the
fundamental wavelength of λF ≈ 1520 nm in one waveguide of the coupler and di-
vide the SHG from fundamental power at a dichroic mirror. We record fundamental
and second harmonic power for both waveguides. This measurement corresponds to
a scan along the +45◦-axis of the phase-matching function, as shown in (b). In (c),
we characterised the TWG of Lc 1 and could infer the length of the periodically poled
region to L ≈ 1.3 cm. Figure (d) shows the characterisation of a Lc 1 coupler. The
splitting of the three phase-matching conditions corresponds to a coupling parameter
of C ≈ 350m−1, which confirms the results from the linear coupling characterisa-
tion. The error bars on these values are difficult to infer, as we have fitted the expected
second harmonic signals to the measurement results by hand.

field enters into the conversion process twice. Furthermore, we have normalised the conversion
efficiency to the poled length of the sample L. With this rather simple relation between con-
version efficiency and the measurement parameters, we have ignored imperfect splitting of the
colours in the dichroic mirror, different detection efficiencies for the power meters or wavelength
dependent absorption in the transmissive optics, such as lenses. Therefore, we cannot scale the
conversion efficiency ηSHG absolutely, but can only give a coarse (uncorrected for errors) esti-
mate.

Nevertheless, we are able to extract the length of the periodically poled area by fitting the
expected sinc2-behaviour of the phase-matching function to the measured width of the second
harmonic signal. In the case of our isolated waveguide, this length was estimated with L ≈
1.3 cm. It is not possible to estimate the error bars on this value as the automated fit did not
converge properly and the SHG signal was fitted by hand.

Finally, we characterised the non-linear coupler structure in figure 2.9(d). Analogously to fig-
ure 2.9(c), we have plotted the conversion efficiency of the SHG process against the fundamental
wavelength. The expected splitting of the phase-matching into three peaks due to the coupling
is nicely observable. With the estimated length from the measurement of the uncoupled waveg-
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uide, we can fit the coupling parameter from the distance of the main peak to the two side-peaks.
For the measured couplers, we estimate a coupling parameter of C ≈ 350m−1, which confirms
the classical estimation of C = (358± 10)m−1.

Comparing figures 2.9(c) and (d), an asymmetry in the phase-matching conditions becomes
noticeable. This asymmetry is an artifact from inhomogeneities in the periodic poling and hints
towards a chirp in the poled-unpoled duty cycle, which therefore leads to an asymmetric phase-
matching condition. This behaviour is intrinsic in the source and will therefore also affect the
following quantum measurements with the two-photon N00N states.

2.4 Quantum Experiments: Implementing the two-photon N00N
State

After we have now fully characterised the sample and have extracted the defining parameters,
we can move on to the quantum measurements, as we reported in [70], to verify the generation
of genuine post-selection free two-photon N00N states in a single device.

The first step to verify the N00N state generation is to find the correct operation point of
the implemented device. As we have elaborated in section 2.2, we have to cut out the ∆βA,S
phase-matching condition with the correct pump wavelength to generate the two-photon N00N
state. To achieve this, we have implemented the setup in figure 2.10(a) and recorded the spatially
resolved coincidence patterns dependent on the pump wavelength in order to find a hint for two-
photon N00N state generation. We use ∼ 2.3 ps pulses11 (autocorrelation) from a Ti:Sapphire
laser (Coherent, Mira 900-D) with a pulse picker to generate a pulse train with a repetition rate of
Rrep = 1MHz. The pulses at a wavelength around λp ≈ 760 nm pass through a power control,
consisting of a half-wave-plate (HWP) and a polarising beam splitter (PBS), to achieve an input
power of Pin = 0.05µW (cw-equivalent) before the pulse polarisation is matched to the desired
type-I PDC process with a HWP. Afterwards, the light is coupled to waveguide Lc1,3a in which
the state generation takes place.

After the sample, we use a silicon slab (front: coated high-reflective around 800 nm and anti-
reflective for telecom wavelengths, back: anti-reflection coating for telecom wavelengths) to
filter out the remaining pump light with relatively low losses in the infrared of around 10 %. We
filter out undesired background light, i.e. from pump fluorescence or the other phase-matching
conditions, in the telecom regime with an angle-tunable band-pass filter with a bandwidth of
λBP = 50 nm. Finally, we couple the generated photons to single-mode fibres in the telecom
range (SMF28), where they are detected by time-gated InGaAs avalanche photo-diodes (APD,
IdQuantique201) with a gating window of 2 ns and a detection efficiency of ηdet = 20%.

To match the time delays between the two arms in our coincidence detection, we use an
electrical trigger pulse from the MIRA system and feed it through a delay generator (Stanford
Research DG645), which introduces a tunable time delay relative to the trigger pulse, see figure
2.11. We then use two channels of the delay generator to trigger the two APDs and optimise
the delays separately to obtain maximum count rates. We then record the arrival times of the

11An absolute value of this number is not available, as the pulse duration depends on the daily operation of the laser
and the length of the pulses was not monitored, due to equipment shortage.
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Figure 2.10 – Setup and results for the spatially resolved coincidence measurement as presented
in [70]. The pulses of a Ti:Sapphire laser at λp ≈ 760 nm and 1MHz repetition
rate (a) that pass trough a power and polarisation control consisting of half-wave
plates (HWP) and polarising beam splitters (PBS). Afterwards, we couple the pulses
into one waveguide of coupler Lc1,3a and clean the generated PDC photons from
remaining pump light and undesired background in the telecom regime. Finally, we
take the spatially resolved coincidences in (b) depending on the pump wavelength.
In green, we show the coincidences in pumped waveguide, in blue the unpumped
waveguide and in red the coincidences between waveguides. At a wavelength of
λ ≈ 758 nm, the coincidences between waveguides almost vanish, which is a clear
sign for the production of two-photon N00N states.

electric output pulses for the detection events by means of a time-to-digital converter (ACAM
AM-GPX, resolution: 82ps) and extract the single (all detection events of a single APD) and
coincidence (all detection events, where APD 1 and APD 2 record an event within the same gate
window) counts.
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Figure 2.11 – Circuitry of the
coincidence
measurement.

To find the correct operating point for the two-photon N00N
state generation, we scan the pump wavelength over all phase-
matching conditions and record the spatially resolved coin-
cidences, as shown in figure 2.10(b). In green, we de-
pict the coincidence counts for the pumped waveguide, split
by a fibre-coupled 50/50 beam splitter and normalised to the
measured detection efficiency. We can clearly identify the
peaks for the three phase-matching conditions: anti-symmetric,
anti-symmetric (∆βAA); symmetric, anti-symmetric (∆βSA =
∆β = 0) and symmetric, symmetric (∆βSS) eigenmode. Blue
represents the coincidence counts in the unpumped waveguide,
while red shows the coincidences between the two waveguide
modes. In the middle of the phase-matching curve, the coinci-
dences between the two waveguides vanish, which is a strong
indication for the generation of two-photon N00N states.

From the normalised coincidence counts, we extract a maxi-
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mum state fidelity at λp = 758.1 nm via

F =
R1 +R2 −R12

R1 +R2 +R12
= (84.2± 2.6)% , (2.17)

where Rj are the normalised coincidences in waveguide j and R12 are the normalised coinci-
dences between the waveguides. For details concerning the raw data, the setup characterisation
and the normalisation of the coincidence rates in figure 2.10(b), see appendix C.

The measured fidelity is limited by two mechanisms. The first is a finite finite spectral overlap
between the three phase-matching conditions due to the short stem length of the poled coupler
as well as the finite coupling parameter. This mechanism restricts the theoretically achievable
fidelity to Ftheo ≈ 93%, which we obtained from numerical simulations for the source param-
eters. The other, experimental, mechanism is the overcoupling in the bendings that enclose the
poled coupler region. As we have estimated in figure 2.7(b), we find a finite coupling ratio of
15% for a coupler stem length of Lstem = 0µm. Considering that we have one bending in
front of the coupled region and one behind, the generated quantum state is affected by a beam
splitter with roughly 90:10 coupling ratio, which diminishes the theoretically estimated fidelity
to roughly the measured value.

To optimise the measured fidelity, we recommend to use longer periodically poled couplers12

to reduce the spectral overlap between the different phase-matching conditions. Another way
to avoid this problem is, either, specific tailoring of the bending radii as well as the titanium
layer thickness to minimise overcoupling or cutting away the bendings completely and only
leaving the parallel coupling region, which however, might lead to interfacing problems with
fibre networks.

Nevertheless, the spatially resolved coincidence measurement is only a hint that a genuine
two-photon N00N state is generated. It remains to show the phase coherence between the two
implemented paths of the waveguide chip. To verify this phase coherence, we implemented
the interferometric setup shown in figure 2.12(a). We interfere the two waveguide outputs of
the already implemented source of figure 2.10(a) on a 50:50 bulk beam splitter and change the
relative phase between the two arms by tilting a thin glass plate. To ensure both spatial and
temporal mode matching between the two paths, we used classical light from a femtosecond
laser source at λref = 1550 nm (OneFive, Origami) to align the interference and record the
phase-dependent interference pattern with a power meter (Thorlabs). The result is shown in
figure 2.12(b). In grey, we plot the interference pattern of the classical reference dependent
on the implemented relative phase between the two arms. The measured visibility of Vclass =
(95.4± 0.4)% is close to the achievable limit, as given by the unequal output powers of the two
waveguides as well as the uneven splitting ratio of the bulk beam splitter.

After the classical reference measurement, we employed the PDC pumping scheme of fig-
ure 2.10(a) and tuned the pump wavelength to the phase-matching condition of the two-photon
N00N state generation. We used a pump power of Pin = 0.25µW for the state generation and
coupled the two output ports of the beam splitter to two single mode fibres, which were again
connected to APDs (this time with a detection efficiency of ηdet = 15%) and measured the

12Such coupler structures were not available in our group at the time of this experiment.
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Figure 2.12 – Interferometric setup and interference fringes for the coherence proof as in [70].
We interfere the waveguide outputs on a bulk 50:50 beam splitter (a), change the
phase ϕ between the two arms with a small glass plate and consequently record
the coincidences in the beam splitter outputs. Figure (b) shows the results. Grey
denotes the classical reference measurement with a femto-second pulsed laser (One-
Five Origami), while red gives the interference pattern of the PDC signal. The ex-
pected double frequency of the fringing is clearly observable with high visibility of
VPDC = (93.3± 3.7)%.

phase-dependent coincidence counts between the two outputs of the beam splitter with the same
coincidence logic as for the measurements in figure 2.10(b). The results for the quantum interfer-
ence are plotted in red in figure 2.12(b). The expected double fringing for the two-photon N00N
state is clearly observable also with a very high, measured visibility of VPDC = (93.3± 3.7)%.
This coincides with the classically measured visibility within the error bars, verifying both the
phase coherence between the two paths of the generated state, as well as the high level of indis-
tinguishability of the two waveguide outputs, as expected.

2.5 Higher-order Photon Number Contributions

Up to now, we restricted ourselves to the first order Taylor-expansion of equation (2.10) and
have shown that we produce a post-selection free two-photon N00N state, as predicted by the
two-photon picture. This has been a fair assumption, as our experiment only probed the pho-
ton generation at low pump powers, where the probability to generate higher photon number
contributions is negligible.

However, in the next chapter, we want to probe quantum effects with photon-number resolved
detection and need a well-calibrated source with higher photon-number contributions. To pro-
vide a theoretical framework for our coupled waveguide source, we investigate the higher order
photon-number contributions in this section.

As in the case for the two-photon N00N state generation, the interesting physics happens when
we select the symmetric-antisymmetric eigenmode combination for the photon-pair generation.
To investigate the higher photon numbers, we accordingly restrict ourselves to this condition and
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remind ourselves of the state in the two-photon picture

|ΨA,S〉1,2 =

ωmax∫
ωmin

dωs

ωmax∫
ωmin

dωi

[
fA,S(ωs, ωi)â

†
1(ωs)â

†
1(ωi)− fA,S(ωs, ωi)â

†
2(ωs)â

†
2(ωi)

]
|0〉 ,

(2.18)
where we have used the shorthand for the normalised joint-spectral amplitude fA,S(ωs, ωi) =
2δ
N ′ α(ωs + ωi) sinc

(
∆βA,S

L
2

)
e−i∆βA,S

L
2 and a possible filter bandwidth ∆ωFilter = ωmax to

ωmin. Using the full generation unitary for the PDC process, we recall (2.10)

ÛPDC |0〉 = exp

− i
~
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ωmax∫
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dωi

(
f(ωs, ωi)â

†
1(ωs)â
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1(ωi)− f(ωs, ωi)â

†
2(ωs)â

†
2(ωi)

)
+ h.c.

|0〉 .
(2.19)

We can use the properties of operator-valued exponential functions to rewrite this equation to
separate the components for the two waveguides

ÛPDC = exp
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~
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) ,
(2.20)

where the joint-spectral amplitude for waveguide 2 acquired a π-phase-shift. With a little bit
of rewriting, we identify that the two parts of the above equation represent two separate PDC
processes for the two waveguides

ÛPDC = ŜWG1 ⊗ ŜWG2 , (2.21)

where Ŝ is the squeezing operator for a spectrally multi-mode process [114–116]. From the
shape of this equation, i.e. its tensor-product form, we can tell that our source generates two
spectrally identical, independent, phase-stable, broadband single-mode squeezed states in spa-
tially separate output ports.

The fact that the dual-path source produces two independent squeezed states excludes the
possibility to generate higher-order N00N states in the same way as for the two-photon com-
ponent. N00N states are maximally entangled states in the path degree of freedom, however
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the two squeezers are independent and therefore cannot be entangled. Nevertheless, the phase-
stable generation of single-mode squeezed states may still be interesting for quantum metrology
applications.

Summary
In summary, we developed a post-selection free two-photon N00N state source by using
the underlying waveguide structure to engineer the spatial properties of the generated
photons. We developed a theoretical description for this type of devices and presented
the characterisation of our used sample. We furthermore verified the generation of the
N00N state with a fidelity of F = (84.2 ± 2.6)% and double-fringing visibility of VPDC =

(93.3 ± 3.7)%. Finally, we gave an outlook to the behaviour of the higher photon number
contributions and found that we generate two phase-stable single-mode squeezed states
with our dual-path source.
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Hello darkness, my old friend
I’ve come to talk with you again
Because a vision softly, creeping
Left its seeds while I was, sleeping
And the vision, that was planted in my brain... still remains
Within the sound of silence

Simon & Garfunkel - The Sound of Silence
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In this chapter, our main focus lies on the
detection of (high-dimensional) photon num-
ber statistics, which we discussed with the
aid of coherent and squeezed states in chap-
ter 1. The final aim will be to exploit the
higher order photon number contributions in
the photon number statistics of our dual-path
source from the previous chapter to probe the
resilience of nonclassical light under the in-

fluence of atmospheric turbulence.

There are several methods to detect higher order photon number contributions to gain infor-
mation about the photon number statistics. The most straightforward way is to build a truly
photon number resolving detector. However straightforward this idea may sound, the optimi-
sation of this type of detector is involved and only succeeded quite recently [117–120], com-
pared to single-photon sensitive diodes, which have been around since the 1980s [121]. Fur-
thermore, the realised transition-edge-sensors, which detect the photon absorption by means of
an infinitesimal temperature shift only became recently available and are quite expensive and
resource-demanding [122–126].

Due to these reasons, alternative approaches to photon counting have been investigated. In
general, these approaches use conventional on-off detectors, i.e. detectors that give a "click"
when any number of photons is present and "no-click" otherwise. An example for such an on-
off detector are the readily available APDs that we used in the previous chapter (see section
2.4).
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Figure 3.1 – Schematic of a time-multiplexed detector. A strong pulse at the input with higher
order photon number contributions gets split at the 50/50 beam splitters and is partially
delayed in different fibre lengths. At the end a pulse train, corresponding to different
time bins arrives at on-off detectors. The time bins should then contain less than one
photon on average.

Yet, a simple on-off detector is not able to give any amount of photon number resolution,
it gives a "click" independently of the mean photon number (if 〈n〉 & 1) that arrives on the
detector, because it will "click" every time. However, if we are able to weaken the impinging
mean photon number on a single detector to 〈n〉 � 1, we are not saturating the detector and the
count rate will be proportional to the impinging mean photon number. As such, the aim will be
to multiplex many on-off detectors, such that the mean photon number per detector fulfils this
requirement.

The method that we consider in this thesis uses time-multiplexing, which has been indepen-
dently developed in the groups of I. Walmsley [25, 28], M. Hamar [26] and J.D. Franson [27]
and for the first time applied to measure the photon statistics of a down-conversion source by
[29]. With the time-multiplexing method, we split the incoming photons probabilistically in dif-
ferent time bins, which we then feed consecutively on a single on-off detector. An example for
such a scheme comprising different time delays and 50/50 beam splitters is depicted in figure
3.1, where usually fibre-integrated realisations of the device are used to implement the necessary
time delays due to detector relaxation times1. Consider a strong input pulse with more than one
photon that impinges on the time-multiplexed detector (TMD). Then, the pulse gets split at the
first 50/50 beam splitter and one half gets delayed by a fibre of length L, compared to the other
half. As such, we now have two pulses in two time bins that each contain half the original photon
number. If we repeat this operation b times, we split up the strong input pulse in 2b different
pulses at different times containing a 1

2b
-fraction of the original photon number. Thus, the TMD

probabilistically splits up the higher order photon numbers such that, on average, less than one
photon impinges on the on-off detector, as desired. As the TMD uses the same on-off detec-
tors again and again, they are a cost-efficient, reliable and practical alternative to the demanding
photon number resolved detectors.

This chapter contains three main concepts that lead up to the application of the photon number

1For example the dead time of an InGaAs APD, such as the one we used, which is around 1µs corresponding to a
delay line of ≈ 300m length. For the superconducting detectors that we use in the latter part of this thesis the
cool-down times are ≈ 100 ns, which still requires a delay line of ≈ 30m length.
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statistics from our dual-path waveguide source in the context of quantum communication in
atmospheric channels. First, we probe the fundamental limits of the time-multiplexed photon
counting technique. How many photons can we reliably detect with this method and what is
the quality of the measured photon number statistics? We want to reliably detect higher photon
numbers, but inevitable losses in the fibre network and the distribution of photons on a finite
set of time bins will deteriorate the photon number statistics. We investigate this deterioration
effects with Fock input states and quantify the deterioration of statistics in the time-multiplexed
network. Secondly, we develop and perform a novel type of detector calibration for a photon
number resolved detector with 8 time-bins in each of the two modes. This work was done in
collaboration with M. Bohmann from the group of W. Vogel in Rostock, who provided the theory
support to evaluate our experimental data. Finally, we use these results to probe the transmitted
nonclassicality of the photon number statistics from the two-coupled waveguide source from
chapter 2 in a quantum communication setting with atmospheric noise. To do this, we simulate
the effect of atmospheric noise on the generated quantum state by a variable loss and mix the
different loss levels according to different atmospheric models. This work was also done in
collaboration with M. Bohmann from Rostock.

3.1 Limits on the Time-multiplexed Photon-counting Method

In this section, we consider the fundamental limits of detecting large photonic quantum states
with the time-multiplexing technique, which we presented in [127]. While this technique is
often called scalable and stable, up to this point a rigorous investigation of the scalablility has
been missing. While Sperling et al. [128] have investigated the minimum size that is needed to
get reliable data on large photonic quantum states, they considered loss-free networks which is
not feasible in reality. Therefore, we consider, for the first time, the limits of a time-multiplexing
network for photon counting that includes realistic imperfections such as loss or fibre dispersion.

First, we discuss the fundamental limits as imposed by the dispersion of the fibres itself and
impose a hard limit that we cannot overcome. Afterwards, we comment on the effect that losses
have on the photon number statistics in our network and discuss different figures of merit for
our investigation. We define our model for the TMD based on the loss formula by [28] and
the convolution description of [128]. With this model, we consider the ability to discriminate
between different Fock states after the TMD and probe the deterioration of Fock states after the
TMD for reconstruction purposes. With this information, we extract an optimal bin number for
our figures of merit.

3.1.1 Limitation by Dispersion

The first effect that we have to consider for the limits of TMD measurements is the dispersion of
the used fibres. In general, we use input pulses to measure the higher order photon numbers with
a TMD2. Thus, the input light comprises of more than one wavelength and is therefore subject
to dispersion. To investigate the effect of dispersion on our input pulses, we assume perfect

2We need a time information in the input state that we can split. In a continuous wave experiment a TMD does not
work.
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Figure 3.2 – Hard limit of the available time bins as determined by dispersion properties [127]. The
limits of the dispersion depend both on the repetition rate of the experiment Rrep =

1
∆τexp

and on the input pulse duration which gets dispersed by a fibre length Lexp and
overlap after the fibre. In (a), we plot the maximum number of available time bins
as restricted by dispersion. The maximum number for long pulses and low repetition
rates does not exceed ≈ 2.5 · 105 bins. For (b), we take different slices trough (a)
and consider the behaviour for different repetition rates. We show 250 fs in pink, 1 ps
in orange, 5 ps in green and 9 ps in black. As the dispersion does not play a strong
role for long pulses, we observe an increase of maximum time bins for long repetition
rates, while for short pulses this effect is cancelled out by dispersion in the longer
fibres.

detectors, which means no loss and perfect timing resolution. Then, the maximal number of
time bins is determined by the number of dispersed output pulses with an output width of∆τdisp

that fit into the time between two experiments, i.e. two input pulses ∆τexp, see system sketch in
figure 3.2. If we express the time between two experiments in terms of the repetition rate Rrep,
we can define the maximum number of time bins via [127]

Nmax,disp =
∆τexp

∆τdisp
= (Rrep∆τdisp)

−1 . (3.1)

We consider that ∆τdisp is the full width at half maximum (FWHM) of the output pulses. The
dispersion for standard single mode fibres is given by the group velocity dispersion, which is
determined by [129]

∆τdisp = ∆τin

√
1 +

(
4 ln(2)

∆τ2
in

· λ
2

2πc
·DλLexp

)2

, (3.2)
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where ∆τin is the input pulse duration, λ = 1550 nm the considered wavelength, Lexp = c ·
∆τexp [km] the longest passed fibre length and c the speed of light in the fibre. For standard
single mode fibres (type SMF28), the dispersion coefficient is specified with Dλ ≤ 18.0 ps

nm·km
[130] for a wavelength of λ = 1550 nm, as we consider here. To guarantee that we can resolve
the different time bins, we artificially halved the number of available time bins from equation
(3.1) as equation (3.2) applies to the FWHM of the output pulses.

The results for the maximally available number of time bins is plotted in figure 3.2. To con-
sider the behaviour of the available time bins on both the repetition rate and input pulse duration,
we consider figure 3.2(a). We depict only repetition rates below 1MHz as they give us sufficient
time between consecutive experiments. Furthermore, we do not consider any input pulse lengths
above 10 ps, as the effect of the dispersion becomes more and more negligible for long pulses.
Then the maximum number of time bins is bounded by the input pulse duration ∆τin

Nmax =
∆τexp

∆τin
. (3.3)

Interestingly, for the considered range of parameters, the maximal number of available time
bins is bounded by approximately 2.5 · 105 time bins, even for low repetition rates (i.e. long
time between experiments) and long input pulses (low dispersion effect). This result is quite
devastating, considering that we need around 104 bins to perfectly discriminate between the |9〉
and |10〉 Fock states without losses [128]. As such, already the dispersion has a profound impact
on the discrimination of large photon number states.

In figure 3.2(b), we slice the plot from (a) at different input pulse durations to gain more
insight to the dispersion effect. We depict the durations of 250 fs in pink, 1 ps in orange, 5 ps in
green and 9 ps in black. It becomes clear that decreasing the repetition rate to gain more bins
does not help. The reason is that the longer time between the experiments also brings longer
distances of fibre that the photons have to pass. As such, the dispersion stretching of the input
pulses completely eats up the advantage of lower repetition rates. Consecutively increasing the
input pulse duration lessens the effect of fibre dispersion such that we can observe a noticeable
increase in the available bin numbers. Then, the advantage of longer time between experiments
is not fully compensated by the dispersion and yields higher available bin numbers [127].

3.1.2 Limitation via Loss

After we considered the geometrical limit of the time-multiplexing setup by dispersion, we in-
vestigate the effects of loss and convolution (i.e. the distribution of n photons in N time bins
after passing the TMD) on the measured photon number statistics (click statistics). The figure of
merit that we use is the overlap of Fock states after passing the TMD [127], see figure 3.3(b) for
an example with the two Fock states |10〉 and |12〉. The advantage of this approach is that the
Fock states form an orthonormal basis of the photon numbers and therefore any overlap in the
photon number statistics after passing the TMD will be due to the effects of loss or convolution.
We review the model and the effects of these two mechanisms in the following.
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Figure 3.3 – Deterioration of Fock state photon number statistics after passing the TMD (a) and
overlap of click statistics as a figure of merit (b).

Model and Parameters

The distribution of photons in a TMD is governed by two processes: the convolution process
describes the probabilistic division ofN photons in k time bins and losses deteriorate the photon
number statistics. The effect of the convolution can be understood in the following: ideally, we
wish to distribute our photons such that only one photon is in any bin of the TMD. However, if we
haveN > k photons we will not be able to hold to this condition. As such, a low number of bins
will also destroy information about the high photon numbers and deteriorate the photon number
statistics. In this work, we assume only probabilistic splitting of our photons at the perfectly even
50/50 beam splitters, as proposed by Sperling et al. [128]. While we can try to replicate such a
perfect system in any experiment, it will not perfectly recount the action of a realistic TMD with
imbalanced splitting ratios. Nevertheless, as we are only interested in the fundamental limits of
the measurement technique, it will provide a sufficiently good approximation. In this framework
the convolution matrix that gives the probability to measure k clicks, when l photons impinge
on the TMD is defined by

Cl,k =

{
1
N l

(
N
k

)∑k
j=0(−1)j

(
k
j

)
(k − j)l, if l ≥ k

0, else
. (3.4)

In our case, we consider N = 2b time bins, with b as the number of used beam splitters. The
second mechanism that deteriorates the photon number statistics is loss. This effect has been ex-
tensively investigated and the governing matrix that describes the probability to retain l photons
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after n photons have undergone a loss of 1− η is [28]

Ln,l =

(
n

l

)
ηl(1− η)n−l . (3.5)

In our case, the losses comprise the finite transmission of the beam splitters, absorption in the
fibres and also a combined setup transmission and detection efficiency ηex.

Finally, we have to combine both effects and apply both matrices to the input photon number
statistics to retain the final, measured click statistics [28]

p
(out)
k = Cl,k Ln,l ρ

(in)
n . (3.6)

To simplify the treatment of the TMD operation, we consider losses and the convolution as two
separate processes. While this is not fully correct3, it is a justifiable approximation and makes
the simulations significantly easier. As such, the photons will undergo a collected loss, where
we use the worst case scenario, containing all possible beam splitter losses and the longest fibre
length in the TMD. We sketch the effect of an imperfect TMD with convolution effects and
losses on the click statistics in figure 3.3(a).

For the simulation [127], we use realistic parameters for state-of-the-art fibre components.
We assume that each beam splitter has a loss value of 0.05 dB [131] and a fibre absorption of
0.2 dB

km [130]. We neglect losses that are introduced during the splicing process4, as they are
very low compared to the loss values of the beam splitters and the fibre absorption. As detection
units, we assume superconducting nano-wire detectors, where a dead time of 10 ns is a realistic
value that defines our time-bin separation and therefore our needed fibre lengths [132]. If not
specified otherwise, we assume perfect setup transmission and detection efficiencies, otherwise
we specify a collective detection efficiency ηex.

Photon Number Discrimination

As we already stated above, we use the overlap of click statistics from different Fock states as
our figure of merit. The results are shown in figure 3.4. To illustrate the separate effects of
loss and convolution, we have first plotted the overlap of the click statistics of the Fock state
combination 〈15| 20〉 for different TMD sizes in figure 3.4(a). In black, we only consider the
effect of the convolution on the measured statistics. As expected, it decreases towards large
TMDs with many bins. Contrary to the influence of convolution, the losses increase with large
bin numbers, since the photons have to pass through longer fibres and more beam splitters, as
shown with the blue curve. As such, we have to make a trade-off between the deterioration via
the convolution at low bin numbers or the deterioration via loss at large bin numbers. We can
find this optimal trade-off point by considering both effects on the click statistics, as shown in
red. For this particular combination, the optimum is at 256 time bins with a minimal overlap of
around 25% [127].

3Different losses in the fibres can be transformed into an overall loss in front of the TMD. This however changes
the beam splitter ratios of the model slightly [28].

4Basically, one melts two fibre ends together.
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Figure 3.4 – Overlap of the click statistics for different Fock states after the TMD [127]. To give
an insight into the loss and convolution processes, we plot the overlap of the 〈15| 20〉
click statistics after passing TMDs of different sizes. While the effect of the convo-
lution decreases for large TMDs, the losses increase in this regime and we find an
optimal bin number for this Fock state combination. From (b) to (d), we scan dif-
ferent Fock states from |1〉 to |20〉 for different detection efficiencies ηex and find
the optimal bin number and the corresponding minimal overlap. The combination of
neighbouring Fock states is given in black, leaving one Fock state in between is shown
in blue and the combination of 〈n|n+ 5〉 is given in green. The lines are only shown
to provide a guide to the eye and hold no physical meaning.

In figure 3.4(b), we scan the Fock state basis from |1〉 to |20〉 and look at the overlap to its
nearest neighbour in black, skipping one in between in blue and the fifth-nearest neighbour in
green. For each combination, we have extracted the optimal bin number and the corresponding
overlap in the measured click statistics. In the case of perfect detection efficiencies ηex, we
already see that even for large Fock states of |20〉, the optimal bin number does not exceed
256 = 28 bins. Furthermore, we observe that the minimal overlap that we can reach with
this method increases monotonically and reaches one asymptotically, i.e. the states become
indistinguishable at the output. Especially in the case of discriminating nearest neighbour Fock
states this is a rather pronounced effect. Even for low Fock states, the minimal overlap does not
fall below 50% which makes a distinction difficult.

This behaviour even worsens when considering finite detection efficiencies. In figure 3.4(c),
we investigate a high, but realistic detection efficiency of ηex = 0.85. Even though the optimal
bin number for |n〉 = |20〉 is still 256 bins, the overlap between the click statistics increases
quite drastically compared to unit detection efficiency. Nevertheless for even lower detection
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Figure 3.5 – Overlap of Fock states after passing a TMD [127]. We consider a fixed Fock state n
from n = 5 in (a) up to n = 50 in (d) and calculate the overlap to the adjacent ±10
Fock states. This curve shows us how well we are able to distinguish between the dif-
ferent click statistics and gives us a crude error bar or precision for the reconstruction
for the Fock state from the click statistics. In black, we consider a 2 bin TMD, in blue
16 bins, in red 256 bins (our optimum from the last section) and in green 1024 bins.
The small improvement towards larger TMDs in the overlap curves does not justify
the effort to implement high-quality TMDs of this size. The lines only provide a guide
to the eye and hold no physical meaning.

efficiency of ηex = 0.6 in figure 3.4(d), the additional loss deteriorates the photon number
statistics much more. Here, even the optimal bin number decreases compared to the previous
cases, while the minimal overlap already approaches unity for low bin numbers. Summarising
our discussion, we can conclude that for our figure of merit and Fock states up to n = 20 it holds
no advantage to use TMDs that are larger than 256 bins [127].

Photon Number Reconstruction

In the previous section, we regarded the overlap between click statistics for the discrimination
of neighbouring Fock states. However, this is not the only aim for which one might want to use
photon number resolved detection techniques. Another very important field is the reconstruction
of the impinging state from the click statistics. To this aim, a lot of theoretical work has been
done to improve and optimise the reconstruction techniques [133–135]. In the scope of this
work, we do not discuss the different reconstruction algorithms and only approach this topic
from a purely experimental point of view.

The aim of this section is to assign something similar to error bars on the impinging state from
the click statistics or in other words, a precision with which the input state may be reconstructed.
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To achieve this, we again consider Fock states as our input for the TMD and calculate the overlap
of the click statistics for adjacent states. The results are shown in figure 3.5.

Consider figure 3.5(a). The different colours denote different TMD sizes, black for a 2 bin
TMD, blue for 16 bins, red for 256 bins (our optimum from the last section) and green for 1024
bins. We want to know the precision with which we can reconstruct |5〉 from the measured click
statistics. This precision is directly related to the overlap of the click statistics with neighbouring
Fock states, as we cannot discriminate them perfectly. As such, we plot the overlap of the click
statistics between |n〉 and |n+∆n〉, where∆n denotes how far the two Fock states are separated
from each other (i.e. ∆n = 1 means that they are neighbours). Consider the red curve for 256
bins. It peaks at ∆n = 0, as the same input state enters the TMD. For further separated Fock
states, the overlap diminishes and the width of the curve gives us a measure for the precision
with which we can reconstruct the initial Fock state [127]. The curves are slightly asymmetric
for the higher and lower photon numbers, as the binomial coefficients that govern the overlap are
different. This effect decreases towards higher photon numbers (see figure 3.5(d)) as the relative
difference between the Fock states decreases.

Towards high number Fock states, the overlap curve between the neighbouring Fock states
becomes broader and broader (figures 3.5(b)-(d)). The broadening is expected, as the effect
of the convolution matrix is more and more pronounced for large photon numbers. Therefore,
while for Fock states up to n = 25 a 256 bin TMD shows the narrowest curve, this changes
at around n = 50. However, the improvement for large TMDs is not very pronounced such
that it does not really justify the effort to fabricate a high-quality 1024 bin TMD over a 256
bin TMD. Furthermore, we have only considered perfect detection efficiency ηex = 1. In the
previous section, we have seen that finite detection efficiencies deteriorate the click statistics
quite drastically, such that we do not expect that TMD sizes larger than 256 bins hold significant
advantages in an experimental implementation [127].

Summary
In summary, we investigated the limitations of the time-multiplexed detection technique for
photon counting, which we presented in [127]. We saw that the fibre dispersion bounds
the maximum number of bins to 2.5 · 105 for repetition rates below Rrep < 1MHz and input
pulse durations of ∆τin = 10ps. Furthermore, we considered the effects of convolution
and loss for a realistic simulation of the TMD and extracted the optimal number of time bins
for the discrimination of different Fock states up to n = 20. Finally, we investigated the
precision with which we can reconstruct Fock states from the measured click statistics. For
these figures of merit, we find that it holds no advantage to implement TMDs larger than
256 bins.

3.2 Detector Calibration with Click Moments

In the previous section, we probed the limits of time-multiplexed detection technique. Now, we
bring this concept to the laboratory to experimentally calibrate a TMD with 8 bins. This cali-
bration of the measurement device is important for the reliable measurement of our generated
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quantum states with high photon numbers, as we do in section 3.3. However, the calibration of
detection systems is not only necessary to reliably measure high photon number contributions.
Since general quantum networks with high photon numbers are a promising candidate for secure
quantum communication channels and quantum computing applications [1, 136], reliable verifi-
cation procedures in the high-photon number regime are an indisputable necessity. In general, a
lot of work concerning this topic has been done with various approaches. However, the tomog-
raphy of detectors is a very difficult endeavour, because it necessitates a very precise generation
of specific probe states for the experimental characterisation.

There are different approaches to calibrate or characterise detectors with quantum states. The
most general one is a full detector tomography [137–140]. In this scenario, one uses precisely
defined probe states that are measured with the detector of interest. For this technique, we do not
assume any a priori knowledge about the detector and try to reconstruct the positive operator-
valued measures (POVMs) π̂n from the probability distributions measured with the probe states.
This universal method has been applied successfully for general detectors but also for time-
multiplexed devices [126, 140–146]. Nevertheless, it features several down sides. Conceptually,
the technique has the intrinsic problem that we try to infer POVMs acting on an infinite Hilbert
space (i.e. the photon number basis) from a finite set of measurement outcomes, which is an ill-
defined problem. This introduces a large systematic error already into the POVM reconstruction,
additionally to the numerical errors in the data analysis which have to be propagated. Further-
more, as we do not assume any a priori knowledge about the detectors, we have no knowledge
about the shape of the POVMs and have to scan a huge parameter space to achieve a converging
result for the tomography.

Another, way to calibrate detectors is the use of well-defined two-mode squeezed states [66,
147–150]. Due to the photon number correlation between the two arms of the state, this method
is able to extract the detector efficiency from the detectors of interest. However, as this method
critically relies on the exact form of the correlations between the two arms, the probing quantum
states have to be prepared with high precision. Furthermore, the true photon statistics that un-
derlie this method cannot be measured (as we discussed in the previous section) due to imperfect
photon number resolution of the probed detector. While there exist methods to reconstruct the
impinging quantum states from the measured click statistics, they suffer from systematic errors
which scales as 1/N [128], where N is the number of detector bins (i.e. time-bins for a TMD).

The method that we developed [151] in collaboration with Martin Bohmann from Werner
Vogel’s group in Rostock addresses and largely circumvents these problems. We assume some
a priori knowledge about the detector (that it is a photon number resolved detector with N bins)
and can therefore reduce the huge number of free parameters from detector tomography. In
our case, we only need the parameters for efficiency and dark count rate, for each of the two
detection modes A and B, see figure 3.6. Furthermore, our method does not rely on correlations
between twin beams and therefore works with readily available coherent states.

This section is structured as follows, first, we present the method that directly extracts the
detector response function from the measured click statistics and therefore circumvents prob-
lems like the finite to infinite Hilbert space mapping and reduces the number of free parameters
to only 2 for each mode. Second, we describe our experimental setup that we use to take the
calibration data. Then, we apply our method to the experimental data and extract the detector
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response function for superconducting nanowire detectors from QuantumOpus. Finally, we dis-
cuss experimental imperfections from the calibration of the attenuation factor of the coherent
states, as well as polarisation mixing effects in the fibres of our 8 bin TMD.

3.2.1 Moment-based Detector Calibration

The aim of this section is to find a technique that directly extracts the detector response function
Γ̂ [compare equation (3.11)] [152, 153] from the measured click statistics. Such a function
describes the response of the physical detector to the impinging light field and is therefore a
function of the photon number operators n̂. Considering our physical superconducting nano-wire
detectors, our detector response function reflects the central defining quantities of the detection
unit, i.e. the quantum efficiencies η and the dark count rate ν. In our model, these two quantities
are the only free parameters that we have to estimate from our data.

While we have already introduced a description for the measured click statistics with equation
(3.6), we would like to introduce an, in this context more expedient, definition to calculate the
click statistics corresponding to the operators of the higher click moments.

We begin with a full formal definition of the system that we consider here. We regard a two
mode detection system (a TMD system as in figure 3.1) that comprises N bins (N = 8 for our
experiment) for each of the j = A,B modes. We model the on-off detectors that detect the
photons after the TMD with the two operators [128]

π̂0 = |0〉 〈0| =: m̂ : and π̂1 = 1̂− π0 , (3.7)

where the expectation value of 〈π̂0〉 describes the probability to measure "no-click" and 〈π̂1〉
the probability to measure a "click" event. Then (assuming equal splitting among all bins), the
joint click counting probability ckA,kB , i.e. the probability to measure kA clicks in mode A and
kB clicks in mode B (with 0 ≤ kj ≤ Nj), can be constructed by an operator-valued binomial
distribution [128, 154]

ckA,kB =

〈
:

(
NA

kA

)
m̂NA−kA
A (1̂A − m̂A)

kA ×
(
NB

kB

)
m̂NB−kB
B (1̂B − m̂B)

kB :

〉
, (3.8)

where 〈: ... :〉 denotes the expectation value of a normally-ordered operator expression [2].
The joint click statistics ckA,kB is a probability distribution and has to fulfil the conventional
requirements. All probabilities sum up to unity, i.e.

∑N
kA,kB

ckA,kB = 1 and the marginal
distributions of the joint probability are given by tracing over one of the two modes, meaning
for mode A ckA =

∑NB
kB

ckA,kB and ckB =
∑NA

kA
ckA,kB for mode B, respectively.

The operators m̂j that appear in the binomial distribution are the "no-click" operators of equa-
tion (3.7) for modes A and B, respectively. For an ideal on-off detector, they are directly related
to the photon number operator via

m̂ = e−n̂ , (3.9)

however, in a realistic case, we have to consider different detector properties, such as finite
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detection efficiencies and dark count5 rates, that influence the response of the detector (and
hence the "click" and "no-click" operators) [151]

m̂j = e−Γj(n̂) , (3.10)

where we encoded the detector response in the function Γj(n̂) [154]. This is the function that
we finally want to evaluate with our experimental data. For a polarisation sensitive detector (as

the one we use), it can be written in the form Γ̂j = Γj(
n̂H
j

Nj
,
n̂V
j

Nj
) for each polarisation component.

Here, we consider a linear detector response function and include a finite dark count rate νj for
a typical response function in the following form [151]

Γ̂j = Γj

(
n̂H
j

Nj
,
n̂V
j

Nj

)
=
ηH
j n̂

H
j

Nj
+
ηV
j n̂

V
j

Nj
+ νj , (3.11)

where ηH/V
j are the detection efficiencies of the detector for horizontal and vertical polarisation,

respectively.
The only thing left to do to reach our aim is to express the detector response function in terms

of the measured click statistics. As such, we write down the normally ordered moments of the
no-click operators m̂j 〈

: m̂lA
A m̂

lB
B :
〉
=
〈
: e−lAΓ̂Ae−lB Γ̂B :

〉
, (3.12)

with lA = 0, ....NA (and for B equivalent) are the moments of the click statistics. They are
obtained from the measured click statistics via the sampling formula [154]

〈
: m̂lA

A m̂
lB
B :
〉
=

NA−lA∑
kA=0

NB−lB∑
kB=0

(
NA−kA
lA

)(
NB−kB
lB

)(
NA
lA

)(
NB
lB

) ckA,kB , (3.13)

which is the inverse function of equation (3.8).
Consider equation (3.12) for the situation that we want to use for our calibration technique. We

wish to calibrate our click detectors with well-defined coherent states. Evaluating the normally-
ordered expectation value (as an example for mode A and horizontally polarised light without
dark counts) for coherent states yields [151]

〈: m̂j :〉 =
∑
k

1

k!
〈: Γ̂ kA :〉

=
∑
k

1

k!
〈γj | :

(
ηH
j n̂

H
j

Nj

)
: |γA〉 = e−Γj(|γj |

2/Nj) .

(3.14)

As such, we generalise this to the higher order moments and for two modes with〈
: m̂lA

A m̂
lB
B :
〉
= e−lAΓA(|γA|2/NA)e−lBΓB(|γB |2/NB) , (3.15)

5Everything that clicks in the detector when there is no impinging light is a "dark count".
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where |γj |2 is the intensity of the coherent state that hits detector j. This is one of the main steps
of this approach, as equation (3.15) connects the measured click statistics with the coherent
probe states. Choosing one of the lj = 0, this relation reduces to the single mode form, that we
have already seen for the first order moment in equation (3.14)〈

: m̂
lj
j :
〉
= e−ljΓj(|γ|

2/Nj) , (3.16)

where |γ|2 is the intensity of the coherent field in the considered mode. This offers the neat
advantage that we can directly express the detector response function in terms of the measured
click statistics [151]

Γj

(
|γH|2

Nj
,
|γV|2

Nj

)
= − 1

lj
ln
(〈

: m̂
lj
j :
〉)

= − 1

lj
ln

Nj−lj∑
kj=0

(Nj−kj
lj

)(Nj
lj

) ckj
(
|γH|2, |γV|2

) (3.17)

for a single detector mode j. In this equation, we separated the coherent intensity into its hor-
izontal |γH|2 and vertical |γV|2 components as our detector will be polarisation sensitive. As
we can control the polarisation state of the incoming light, we obtain the intensities for the re-
spective polarisations6. Applying equation (3.17) to experimental data with coherent states, i.e.
a set of {|γn|2}, we infer the functional behaviour of the detector response function with an
appropriate regression of the acquired data {|γn|2, Γj(|γn|2/Nj)}. With the identification of the
detector response function, the detector is fully characterised. In particular, its POVMs are given
by [151]

π̂kA,kB = :

(
NA

kA

)
e−(NA−kA)Γ̂A(1̂A − e−Γ̂A)kA ×

(
NB

kB

)
e−(NB−kB)Γ̂B (1̂B − e−Γ̂B )kB : .

(3.18)
In principle, we can useNj different ways to characterise each mode of the detection system (the
different moments 〈: m̂lj :〉 with lj = 1, ..., Nj), which corresponds to a different evaluation of
the measured click statistics ckA,kB . However, we only consider the first moment of the click
statistics (lj = 1) as the statistical significance of the higher order moments is lower and we get
more reliable information about the response function with this contribution [151].

The main advantage of our scheme is the resource efficiency, both from a theoretical and
experimental point of view. Experimentally, we only need to perform phase-insensitive mea-
surements with power-controlled coherent states. Theoretically, we reduce the complexity of a
full detector tomography with the only assumption that we characterise a click-counting device
to evaluating equation (3.17). With the detector response function obtained from this equation,
we directly gain information about the defining quantities of the system, i.e. both detection effi-
ciency and dark count rate [151]. This knowledge about detector efficiency and dark count rate
is another advantage compared to general detector tomography. Here, this specific information

6Ideally. In section 3.2.4, we discuss why this is not always the case and what goes wrong if it isn’t.
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Figure 3.6 – Setup for the detector calibration [151]. We use picosecond pulses from a fibre-
coupled 1550 nm laser diode and clean the polarisation at a polarising beam splitter
(PBS). Afterwards, we change the input polarisation with a half-wave plate (HWP)
and couple the pulses to an electronic variable attenuator (Var. Att.). We monitor
the pulses with a power meter at a 90% and couple the remaining 10% to another
25 dB attenuation, before splitting the pulses at a 50/50 beam splitter. Finally, we
feed the pulses into an 8 bin TMD and measure the resulting output distribution with
superconducting nanowire detectors (SNSPDs) by QuantumOpus.

is not easily accessible in the general model, as the parameters of the reconstructed POVMs
do not necessarily identify with the physical properties of the detector. Only for more specific
detector models, such information can be extracted [126].

3.2.2 Setup

To obtain experimental data for our detector calibration, we implemented the setup in figure
3.6. We perform our experiment with pulses from a picosecond diode laser (PicoQuant) that
produces a pulse duration of about 35 ps at a wavelength of 1550 nm with a repetition rate of
250 kHz. Afterwards, we clean the polarisation of the incoming pulses with a bulk polarising
beam splitter (PBS), rotate the polarisation of our light with a half-wave plate (HWP). We then
couple the light into a single mode fibre (SMF 28) attenuator, which reduces the laser power by
a given value. For each attenuation level, we record data for an integration time of Tint = 50 s
and lower the laser power by an additional 0.2 dB after each measurement. We monitor the
action of the attenuator at a 90% tap-off with a power meter (Thorlabs). The remaining 10%
undergoes further 25 dB attenuation and is split at a single mode fibre 50/50 beam splitter to feed
both input fibres of the 8 bin time-multiplexed network7 with polarisation maintaining fibres.
Finally, we record the click statistics with superconducting nano-wire detectors (SNSPDs) from
QuantumOpus.

7125ns nominated time-bin separation due to detector relaxation time after detection event, fibres: Fujikura SM15-
PS-U25D, loss 0.25 dB

km , splitters: Evanescent Optics 954P, loss ≈ 0.1 dB, overall TMD transmission ≈ 90% for
both modes
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Figure 3.7 – Superconducting nano-wire detectors. Figure (a) shows an example geometry for the
folding of the nano-wire (adapted from [155]) and (b) the working principle of the
single photon detection (adapted from [146]).
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Figure 3.8 – Typical result for
measured click
statistics CkB ,kB
(HWP = 0◦, no
attenuation).

Each of the used SNSPDs comprises a long (≈ 100µm) and
thin (≈ 100 nm width and ≈ 5 nm height) wire made from
a superconducting material, e.g. Tungsten Silicide, which is
folded in a parallel orientation, see figure 3.7(a) [155]. It is oper-
ated slightly below the critical temperature (the point where the
material transitions from superconducting to normal conducting
state), however, we apply a bias voltage (≈ 0.64V, correspond-
ing to ≈ 65% detection efficiency) which leads to a current den-
sity in the wire that is just below the critical current density (the
current, where the material becomes normal conducting) [146].

The photon detection process is sketched schematically in fig-
ure 3.7(b). In the undisturbed system (i) the current may flow
through the wire unhindered. The impinging photon in (ii) cre-
ates a local hotspot, where the material becomes normal conduct-
ing. The current is then pressed to the outer sides of the wire, as
the material is still superconducting outside the hotspot. Yet, the accordingly increased current
density at the edges of the wire exceeds the critical current density, which leads to the full break-
down of the superconductivity in (iii). This leads to a voltage spike, which can be amplified and
finally passed on to be registered as a detection event at a time tagging mode, as in our case.
After the breakdown, the wire needs some cool-down time to regain the equilibrium (vi).

Contrary to the APDs which we used in the previous chapter (compare section 2.4), the
SNSPDs are free-running, meaning that they do not require a trigger signal to open a detec-
tion window, but are able to detect photons continuously over time. As such, we sent a copy
of the diode laser trigger to the time tagging module (AIT, TTM-8000, resolution: 82ps) and
recorded the relative arrival times of the SNSPD detection signal to the trigger. Finally, we first
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evaluated the time traces of the TMD signal [as an example for such a time trace, see figure
3.11(b)] and introduced time gates of 10ns width in the post-processing step to cut out each of
the different time bins separately. Counting the number of detection events between two trig-
ger events for each detection mode (the first N/2 = 4 bins belong to mode A, while the other
N/2 = 4 bins belong to mode B) and accumulating the results for all trigger events yields the
final measured, but unnormalised click statistics CkA,kB , see figure 3.8 for a typical result.

Due to the internal structure of the SNSPDs, as shown in figure 3.7(a), their detection effi-
ciency shows a significant dependency on the input polarisation of the incident light [145, 146].
Although we have implemented our TMD with polarisation maintaining fibres, our attenuator
and the other fibre components are based on single mode fibres. As those are not polarisation
maintaining, we do not enter the TMD with a well-defined polarisation. As polarisation main-
taining fibres are only maintaining the polarisation for horizontal and vertical polarisation, we
still see polarisation mixing for the different time bins at the detector due to the different fibre
lengths in the TMD. For a full discussion of the experimental imperfections and the effects on
the analysis, see section 3.2.4.

3.2.3 Data Analysis and Application of the Method

In this section, we perform the analysis of the experimental data for the above described 8 bin
TMD. First, we extract the detector response function for the inserted horizontal and vertical
polarisation into the fibre network. Secondly, we investigate the behaviour of a TMD for inter-
mediate polarisations.

Evaluation of the Detector Response Function

To extract the detector response function, we first analyse the measured data to evaluate the click
statistics. We measure the event distribution CkA,kB , see figure 3.8, which we have to normalise
by C =

∑NA
kA=0

∑NB
kB=0CkA,kB to obtain the joint click statistics ckA,kB . With equation (3.13),

we extract the corresponding moments 〈:m̂lA
A m̂

lB
B :〉 from the experimental data. In our notation,

the overline denotes the mean value of the sampled distribution. We calculate the statistical
errors by error propagation and obtain [151]

σ
(
〈:m̂lA

A m̂
lB
B :〉
)
=

1√
C − 1

√√√√√N−lA∑
kA=0

N−lB∑
kB=0

ckA,kB

((
N−kA
lA

)(
N−kB
lB

)(
N
lA

)(
N
lB

) −〈:m̂lA
A m̂

lB
B :〉

)2

. (3.19)

Then, we estimate the moments with 〈:m̂lA
A m̂

lB
B :〉 = 〈:m̂lA

A m̂
lB
B :〉 ± σ

(
〈:m̂lA

A m̂
lB
B :〉
)

. With the

estimated moments, we directly evaluate Γj
(
|γH|2
Nj

, |γ
V|2
Nj

)
. Note, that we extract the moments

directly from the measured data and do not apply any post-processing. As such, we do not
generate computational overhead, such as loss inversion or other data reconstruction techniques
[151].

Now that we obtained the complete data set with the measured moments, we have to eval-
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uate the corresponding coherent state intensity γ for each data point. We monitor the power
that impinges on the TMD via the 90% tap-off with a power meter (see figure 3.6). We intro-
duce a power operator P̂ for the measured power and express the corresponding photon number
operator via [151]

n̂j = χP̂ , (3.20)

with j = A,B and χ = (1.77± 0.17) · 108 W−1 is the measured attenuation factor between the
90% tap-off and the power that enters the TMD. The error for χ is obtained via error propagation
for the uncertainties of the power measurements, which are specified with a relative error of
±5%8. The coherent state intensities are given by |γk|2 = 〈n̂j〉.

With the full data set of coherent intensities and the extracted moments, we now analyse the
detector response function for the different modes and polarisations. For both horizontal and
vertical polarisation, we consider the click-counting statistics for 45 different power levels. We
plot the results in figure 3.9. The blue data points denote the measured data sets, where we
propagated the errors from the click statistics (in y-direction), however the uncertainties are so
small that they are not observable in the plot. The larger uncertainty is from the calibration of the
coherent intensities (error bars in x-direction) which stem from the uncertainties of the power
meter and the uncertainty in the calibration of the attenuation. As we see from the depicted data
sets, the uncertainties in the coherent intensities outweigh the statistical errors of the measured
data.

To obtain the functional behaviour of the detector response function, we have to find an appro-
priate regression for the measured data sets. For any general response function, we can express
it in terms of a Taylor expansion [151]

Γj(P̂j/Nj) =
∞∑
t=0

Γ̃
(t)
j (P̂j/Nj)

t . (3.21)

Here, we use the power operator P̂j so that we can perform the data analysis directly with the
measured click statistics, independent of the power calibration of the coherent state inputs. Any
quantity related to the power operator is marked with a tilde. With this notation, the weights for
the linear and quadratic terms of the Taylor expansion are Γ̃ (1)

j and Γ̃ (2)
j , respectively.

In order to ascertain the functional behaviour of the detector response function, we first con-
sider the impact of the non-linear terms of the Taylor expansion. Therefore, we perform a full
regression with a polynomial up to the third order and compare the higher order coefficients to
the linear one. This yields a contribution for the quadratic term of Γ̃ (2)

j /Γ̃
(1)
j ≈ 10−3 and for the

cubic term Γ̃
(3)
j /Γ̃

(1)
j ≈ 10−4. From this regression, we see that a linear function is sufficient to

describe the functional behaviour of the detector response function [151]

Γj(P̂j/Nj) = η̃jP̂j/Nj + ν̃j , (3.22)

with Γ̃
(0)
j = ν̃j as the dark count rate. Comparing the dark count rates ν̃j with the linear

coefficient Γ̃ (1)
j , we find that the dark count rate is approximately zero, such that we can neglect

8From the specifications of the used Thorlabs power meter.
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Figure 3.9 – Detector response functions for the two modes with horizontal and vertical polarisa-
tion [151]. (a) shows mode A with horizontal and (c) with vertical polarisation. (b)
and (d) show mode B with horizontal and vertical polarisation, respectively. All de-
tector modes show a clear linear dependence on the input intensity and the detection
efficiency for vertical polarisation is well below the one for horizontal polarisation, as
expected by the internal structure of the detectors.

this contribution and perform a regression of the form f(x) = ax. This fits to the known
behaviour of SNSPDs that are virtually dark count free [156]. As a regression algorithm, we
use a weighted total least-squares method [157], which also considers the measurement and
statistical uncertainties. We plot the regression curves as light blue lines in figure 3.9 and have
additionally summarised the results from the linear regressions for both modes A and B, as well
as the two polarisations H and V in table 3.1.

As we already stated above, the accurate determination of the detector response function
characterises the considered detector completely (for photo-electric models). Therefore, with
the parameters from our linear regression in table 3.1, we can evaluate the accuracy of our char-
acterisation method. Excluding the errors from the attenuation measurement, we first consider
the quantity that directly depends on the power operator, η̃. In our method, it is the slope of the
regression curve of the data points and it can be determined with a relative uncertainty of up to
0.04%. This is a very good relative error compared to conventional approaches. Methods that
use twin beam characterisations have achieved relative uncertainties of 0.18% [147], 0.04%
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Γ η̃ (1/nW) ση̃ (1/nW) η [%] ση [%] Figure
ΓH
A 52.86 · 10−3 0.04 · 10−3 29.8 2.8 3.9(a)
ΓH
B 46.83 · 10−3 0.02 · 10−3 26.4 2.5 3.9(b)
ΓV
A 33.23 · 10−3 0.04 · 10−3 18.7 1.8 3.9(c)
ΓV
B 28.63 · 10−3 0.01 · 10−3 16.1 1.6 3.9(d)

Table 3.1 – Parameters and error estimates (σ) of the linear detector response in equation (3.22)
[151].

[148], 0.39% [149] and 5% [150] up to now. In general detector tomography, a relative error of
about 8% [126] has been achieved. Compared to these benchmarks in the literature, our method
performs as good or even better than what has been shown previously [151].

Up to now, we have only considered the quantities that directly depend on the measured
power 〈P̂ 〉. To gain information about the "real" detection efficiencies, we need to include
the scaling factor for the single photon level. Note, that this quantity gives the net efficiency
of the whole detector system, accounting for losses inside and after the TMD, as well as the
detection efficiencies of the SNSP detector itself. The detection efficiency is given by η in table
3.1. With this information, we discuss the accuracy of the overall measurement process, which
we can estimate to an uncertainty of 9.4% for the quantum efficiency. The absolute error for
the detection efficiency is determined and limited by the accuracy of the attenuation parameter
χ = (1.77± 0.17) · 108 W−1. As we already stated above, this measurement was limited by the
accuracy of the used power meter at small powers, which causes a large error for the absolute
determination of the quantum efficiency. However, the optimisation of this measurement is a
purely experimental problem and does not affect our general characterisation method [151].

Investigation of the Polarisation Dependence

Previously, we investigated the response of our TMD system for the two principal polarisations
H and V . As the nanowire detectors possess a strong polarisation dependence for the detection
efficiency, we now analyse this effect with our time-multiplexed detector. We perform a charac-
terisation measurement for 17 different polarisations and extract the detector response function
from the measured data. Since the detector response function is purely linear and we can neglect
dark counts, we only need to compare the extracted quantum efficiencies.

The results are shown in figure 3.10 for the two detector modes A in figure 3.10(a) and B in
figure 3.10(b). The blue dots denote the extracted quantum efficiencies with our method and the
light blue lines indicate a cosine fit with

η(φ) =
ηmax − ηmin

2
cos[4(φ+ φ0)] +

ηmax + ηmin

2
. (3.23)

Here, we have chosen φ as the angle of the initial HWP (see figure 3.6) and ηmin, ηmax as the
minimal and maximal quantum efficiency, respectively.

Consider modeA in figure 3.10(a) first. We find a minimal and maximal quantum efficiency of
ηA,min = 19.3% and ηA,max = 30.2%. The offset from the nominal zero-value is φ0,A = 1.5◦.
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Figure 3.10 – Polarisation dependence of the measured quantum efficiencies for detector modes A
in (a) and B in (b) [151]. The dots denote the measured data points and the light
blue lines denote the sinusoidal fit. The exceptional values for horizontal and vertical
polarisation are indicated.

This shows that the principal axes for the detected horizontal and vertical polarisation coincide
well with the used angle of the half wave plate. In summary, this behaviour is expected due to
the geometry of the nanowire detectors [158].

For mode B in figure 3.10(b), the behaviour is different. We still see a clear sinusoidal be-
haviour depending on the initial HWP angle, but it is drastically shifted. For this curve, we find
minimal and maximal quantum efficiencies of ηB,min = 12.8% and ηB,max = 28.2% with a
nominal zero-value shift of φ0,B = 13.5◦. As such it is clear that the detected horizontal and
vertical polarisation for the A and B modes do not coincide. Additionally, the ratio between the
A andB modes for the minimal quantum efficiency is ηB,min/ηA,min ≈ 0.66, while this ratio for
the maximal quantum efficiency is ηB,max/ηA,max ≈ 0.93. This discrepancy raises the question
why the two detector modes yield such different behaviour for the minimal quantum efficiency,
while the maximal quantum efficiency is comparable. Furthermore, from the layout of our de-
tection scheme, we would not expect such a huge difference, as the same physical detectors are
used.

To understand these discrepancies, we consider the layout of the TMD. While we have used
polarisation maintaining fibres for the TMD itself, the fibre network in front of the detection
system is not polarisation maintaining. This means, in general, that the impinging light will
not be fully aligned to the primary axes of the fibre core of the polarisation maintaining fibre
and we obtain polarisation rotations due to the birefringence of the fibre itself. As the B mode
travels an additional length of fibre compared to theAmode, this explains the overall shift in the
polarisation dependence in figure 3.10(b). Nevertheless, it does not explain the significant dif-
ference in the minimal quantum efficiencies. Therefore, we discuss the impact of experimental
imperfections, in particular of inaccurately aligned polarisation states on TMD measurements.
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Figure 3.11 – Comparison of the different time bin efficiencies with a photo-diode and with the
SNSPDs [151]. In (a), we have measured the intensity of the time-bins with a po-
larisation insensitive photo-diode. Figure (b) shows the same measurement with the
nano-wire detectors. The strong difference in the detected intensities of figure (b)
cannot be explained by imperfect splitting ratios, as the photo-diode measurement
shows similar peak heights for all time bins. This hints at a polarisation dependent
imperfection due to the sensitivity of the nano-wire detectors.

3.2.4 Discussion of Experimental Imperfections and Impact on the Model

In the previous sections, we introduced and applied our method to infer the detector response
function directly from the measured data. We showed that our method is both reliable, resource
efficient from the theoretical and experimental side and provides an accurate estimation of the
characterising parameters such as detection efficiency. However, our model depends on several
assumptions that might not always be justified in an experiment. Here, we discuss the impact of
these experimental imperfections on our model.

The most critical assumption in our model is that the photons get split according to a binomial
distribution, compare equation (3.8), in the TMD. Experimentally, this means that the probability
of finding a photon in any time bin is equal and that we have perfectly even splitting in the beam
splitters. However, this is also the assumption that is most difficult to realise in an experiment.
In our experiments, we additionally found a strong polarisation dependence for the detection
efficiency which might affect separate time bins differently [151].

To investigate a possible effect of polarisation dependence on different time bins, consider
figure 3.11. In figure 3.11(a), we have recorded the time bin dependent intensity after the TMD
with a polarisation insensitive photo diode and an oscilloscope. The peak height is not fully
equal for all bins, however this small variation is within the specified fabrication imperfections
of the used fibre splitters. Compare figure 3.11(b), where we recorded the time bin resolved
photon counts from the SNSPDs, exemplarily for a half wave plate angle of φ = 0. Here, we
observe a significant difference in the separate bin count rates. We attribute this to a polarisation
mixing in the polarisation maintaining fibres of the TMD, as we do not observe this effect in the
measurement with the polarisation insensitive photo-diode.
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The observed polarisation mixing is due to the single mode fibre components in front of the
TMD. We enter the single mode fibre network with e.g. horizontally polarised light. Then, due
to the low birefringence in unavoidable fibre bendings of the single mode fibres, the polarisation
state is slightly rotated, depending on the positioning of the single mode fibres. Since polarisa-
tion maintaining fibres only maintain purely horizontally or vertically polarised light, a mixed
polarisation state at the input of the fibre gets projected onto this basis. Due to the intrinsic
birefringence of polarisation maintaining fibres, the phases between horizontal and vertical axis
change, depending on the passed fibre length. Coming back to our TMD implementation, this
means that, depending on which fibre length the light has passed, we end up with different polar-
isation states. In the corresponding time bins, we will therefore find different polarisation states
impinging on the nano-wire detectors and measure the bins with different detection efficiency.

In our model, we do not include such an effect [151]. Therefore, the imbalance and polarisa-
tion mixing mean that we do not estimate the detection efficiency for each time bin separately,
but only an averaged efficiency over all bins. This effect impacts especially mode B in our case,
consider figure 3.10(b) and the corresponding discussion.

Theoretically, this polarisation effect means the following for our model. Let us consider
a coherent state |α〉 that enters our TMD. It gets split on N bins as before, but with unequal
splitting ratios, i.e. |t1α, ...tNα〉 and

∑
i |ti|2 ≤ 1 to account for the losses. Compare the ideal

case of perfectly equal splitting and no loss with |ti|2 = 1/N . In this case, we can only evaluate
the average of the time bin statistics and therefore get a superposition of the response functions
for the separate bins [151]

ln〈:eΓ1(n̂1) . . . eΓN (n̂N ):〉 =
N∑
i=1

Γi(|α|2/|ti|2) . (3.24)

If we perform a Taylor expansion on this quantity, as before, we obtain

Γ (|α|2) =
∞∑
j=0

∑
i

c
(j)
i (|α|2)j =

∞∑
j=0

c(j)(|α|2)j , (3.25)

where we again identify especially the linear coefficient of the expansion with the averaged
quantum efficiency η = c(1) and the overlines denote the average over all time bins . Following
this expression, we find that we can characterise the TMD with an averaging over the time bins
and cannot resolve the individual detector response for each time bin. In this sense we also have
to regard the discussions in section 3.2.3, where we only estimate the average detector response
for all time bins [151]. Again, this imbalanced splitting is not a fundamental problem of our
calibration method, as in principle it can be adapted to arbitrary splitting ratios9.

From the experimental point of view, there are several possibilities to ensure that we obtain
an equally split distribution for our TMD. Either, we use polarisation independent detectors,
such as avalanche photo-diodes or we ensure that purely horizontally or vertically polarised
light enters the multiplexing part of the TMD. To achieve this we have two possibilities. First,
we could use a fully polarisation maintaining fibre network, including the fibre based electronic

9It involves heavy math to obtain the correct moments.
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attenuators or couplers. The second possibility is to insert a polarisation control in front of the
TMD network to re-align the polarisation state after the single mode fibres. This solution is very
practical, however, one has to carefully align the polarisation state, as the unequal splitting from
the imperfect beam splitters is indistinguishable from the effect of the polarisation mixing.

Summary
In summary, we introduced and applied a slim and efficient calibration technique for time-
multiplexed detectors [151]. We used the measured click statistics to obtain the click mo-
ments that directly depend on the detector response function. With this function, we are
able to fully characterise the detector and can, in principle, reconstruct the POVMs of the
system. We experimentally measured the click statistics for coherent states and calibrated
a time-multiplexed detector system together with superconducting nano-wire detectors. We
found a strong polarisation dependence for the detection efficiency and investigated a pos-
sible polarisation mixing effect in the TMD with respect to the calibration of our detector.
We quantified the resulting experimental imperfections and discussed their effect on our
method.

3.3 Testing Quantum Free-space Channels by Lab Experiments

In the previous sections, we investigated the limits of the time-multiplexed photon counting
method and developed a new, efficient detector calibration method for a time-multiplexed detec-
tor. Now, we apply time-multiplexed detection and simulate an atmospheric quantum commu-
nication free-space link. To set the correct framework for our experiment, we comment briefly
on the aims and intentions of quantum communication in general.

The dream of quantum communication is to span a earth-wide quantum-secure communi-
cation network. There are two necessary parts to achieve this dream. First, we have to de-
velop quantum-secure communication protocols. A lot of work has already been invested into
the development of these protocols since the 1980s and many of them have been successfully
demonstrated in the laboratory (for the early and most known protocols, see [3, 4, 159–162]).
This is the first part of the dream achieved. The second part is still work-in-progress. We need
to span an earth-wide communication network, which is quantum-enabled. This is a bit more
complicated. Usually, we need a nonclassical resource to transmit the desired information in
a quantum channel. Unfortunately, however these nonclassical states are rather fragile and not
very resilient against losses, noise and other undesirable processes that may deteriorate a com-
munication channel.

In classical communication, this is not really an issue. There, we can use coherent, classical
light to transmit the information through existing glass fibre networks. Of course, also coherent
light experiences losses in a fibre. Yet in classical optics, we can use amplifiers to compensate
for the losses that a coherent state experiences. As it is, this is not possible with a quantum
resource, it is forbidden by the no-cloning theorem [163, 164]. This theorem forbids to deter-
ministically and perfectly clone a quantum state. Perfect amplification falls under this category,
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as splitting the quantum state at a 50/50 beam splitter and amplifying both channels afterwards
would constitute a cloning procedure [1].

In practice, this poses a highly non-trivial problem. Due to the no-cloning theorem, we cannot
compensate for fibre losses. The compensation of noise effects is also difficult, as the light field
is too weak for a parallel monitoring of the noise. Furthermore, the nonclassical states are
fragile and once the nonclassicality is destroyed, it is virtually impossible to recover it. As
such, quantum communication has to put in a lot of effort to optimise or at least characterise the
properties of quantum channels themselves in order to enable secure communication.

Let us consider different quantum communication channels. Since we use light as a signal,
we can use the standard classical communication architecture. This means on the one hand fibre
links, which are buried underground and already optimised with respect to losses. Due to the
encapsulated transfer under the earth, this communication link is quite stable with respect to
noise. On the other hand, we use satellite communication systems to transfer TV, radio or com-
munication signals. As these signals are transmitted through the atmosphere, they suffer from
any atmospheric instability, the most obvious one being the weather. Already small changes
in the temperature or the pressure induce small changes in the refractive index of our transfer
medium. Due to the long distance between the orbit of the satellite and a ground station, these
small changes induce turbulent losses.

It becomes clear that atmospheric links require both a careful theoretical, as well as experi-
mental analysis. As free-space atmospheric quantum communication channels have been suc-
cessfully implemented over the years [165–171] and now with a real-life quantum communica-
tion satellite in the orbit [172–176], the behaviour of quantum light in such turbulent atmospheric
conditions has to be well investigated [177]. Based on optical measurements of the atmosphere,
several models for turbulent losses in quantum communication links have been developed in
the past [178–180]. They have been applied to various classes of nonclassical states and their
robustness under fluctuating losses has been investigated [181–189]. Another approach is to
re-create the atmospheric conditions in the laboratory with turbulence cells [190, 191] or with a
moving lens [192]. Also modulated phase-screens have been utilised [193, 194], however they
do not re-create the observed intensity fluctuations of a realistic scenario. As such, this approach
is limited to specialised applications [39, 195].

Here, we apply the click-counting method that we successfully utilised for detector character-
isation also for the characterisation of nonclassicality under turbulent losses, as experienced in
the atmosphere. As such, we develop a simulation procedure to simplify the laboratory experi-
ments and eliminate the need for bulky equipment, such as turbulence cells.

Many quantum communication protocols use pulsed light to transmit the information over
the channel. Due to this fact, the turbulent nature of the atmosphere affects each transmitted
pulse separately. This fact enables us to simulate the turbulence via an incoherent mixing of
constant loss values. Imagine the following. We take one pulse, which experiences a loss of
25%. the next one a slightly different one of 35%, the one after again 25%. Since the pulses
are independently affected, we can sort them by their losses and count their relative frequencies.
Hence, experimentally, it does not make a difference, if the pulses were recorded in a turbulent
manner or if the different loss levels were recorded separately and mixed afterwards.

This is exactly what we are going to do here. We develop our simulation procedure based on
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the description of the turbulent atmosphere via probability distributions of transmittance [177].
Furthermore, as we are interested in the robustness of the nonclassicality of our state, we briefly
review the nonclassicality criteria for click-counting methods [154]. Afterwards, we describe
the experimental setup and analyse three different cases of probability distributions with our
measured data. First, we consider general temperature and pressure fluctuations the main con-
tributions to strong turbulence, as modelled by a log-normal distribution [168]. Second, we
investigate the effect of beam wandering the main contribution to weak turbulence, given by
the Weibull distribution [178] and finally, we show the general applicability of our method by
applying our measured data to the general family of the beta-binomial probability distributions
[196].

3.3.1 Simulation of Atmospheric Channels with Click Counting Experiments

To sketch our simulation approach for the effects of atmospheric free-space channels in the
laboratory, we have to incorporate the atmospheric models in the transmitted quantum state
and describe the experienced deterioration in an appropriate formalism. Optical transmittance
through the atmosphere is difficult, as we have already elaborated above. The atmosphere is a
medium which is constantly changing. Depending on the illumination of the sun, it gets heated
selectively only from one side, the oceans warm up differently than the land etc. This leads
to the well-known phenomenon that we colloquially describe as weather. As we know from
everyday experience10, optical transmission through the atmosphere is difficult on a cloudy day,
as the water in the cloud absorbs the transmission signal. However, also on sunny days the
atmosphere is not a still medium. The air is still flowing around and this leads to small pressure
and temperature fluctuations. This leads to minimal, random changes in the refractive index of
our transmission channel. As such, our optical beam is affected and gets deteriorated by effects,
such as beam broadening, beam wandering, scattering and beam deformation.

The ground station or the satellite measure the light beam with a finite aperture detector. Then,
the degradation of the beam in form of wandering or distortion translates as different detection
efficiency or different losses on the detector. As such, we can in general describe the effect of
the atmosphere with a loss probability distribution P(η) [177]. In this function 1 − η is the
loss of the channel and P(η) describes with which probability a certain loss is to appear. In
the literature, this type of function is called probability distribution of transmittance (PDT) and
describes the free space channel completely.

The effect of the PDT on the transmitted quantum state is best described in terms of the
Glauber-Sudarshan P -function [62, 63]

Pout(α) =

1∫
0

dη
1

η
P(η)Pin

(
α
√
η

)
. (3.26)

The P -function is one possibility to transfer the classical concept of a phase-space function into
the quantum domain and describes the state fully, see chapter 1. The output state after passing
a free space communication channel, is then given by a convolution of the P -function of the
10Evil tongues would argue that we should know it best in Paderborn...
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input state with the PDT and we obtain the output P -function. However, we work directly with
the measured click statistics to simulate the atmospheric effects and therefore need a different
approach.

We wish to simulate the effects of an arbitrary atmospheric free-space link on our quantum
state in the laboratory. To do this, we take a finite, discrete number of different loss levels that
we can afterwards merge according to the PDT in question. However, the PDT is, in general, a
continuous function in the interval [0, 1]. We therefore need an appropriate discretisation routine
for the PDTs to apply them in our experiment. Here, we use the approach of probability mass
functions. In our case, the discrete PDT version is given by [197]

P̃(ηk) =
P(ηk)∑n
j=0 P(ηj)

(3.27)

This discretised distribution gives the probability to find a transmissivity ηk in a signal transmis-
sion of the quantum channel. It is given by the value of the continuous PDT P(ηk), normalised
to the sum of the discretised probability over all discretisation points (n = 100 in our case).

With this discrete probability distribution, we are now able to merge the different measured
constant loss settings to simulate the atmosphere. In the experiment, we take a data set x(ηk),
where with ηk as the transmission efficiency of the k-th measurement. Then, we merge the data
according to the discretised PDT via [198]

xatm. =

kmax∑
k=kmin

P̃(k)x(ηk) . (3.28)

Naturally, the measured data sets are not turbulent. The different loss levels are measured in an
ordered fashion and independent from each other. However, even in the turbulent atmosphere,
consecutive transmissions are independent from each other, since the transmission of a single
pulse is the interesting figure of merit. As such, we can sort the transmission events according to
the experienced losses without changing the problem. Therefore, it does not make a difference,
if we first measure the turbulent data and sort them afterwards (as we would do with the data
taken from the atmosphere) or measure them in an ordered fashion and mix them afterwards
(as we do here). Thus, our simulation method represents a realistic model of the atmospheric
free-space channel.

Now, we have a simulation routine for the effect of atmospheric channels on quantum states
on the laboratory scale. The only thing that is missing is the verification of the nonclassicality
in the transmitted signal. To this aim, we use click-counting detectors to take our measurement
data by means of time-multiplexed detection. As we have already discussed in sections 3.1 and
3.2, the normalised click counting probabilities ci are given by a binomial distribution [128, 154]

ci =

〈
:

(
N

i

)
m̂N−i(1̂− m̂)i :

〉
. (3.29)

Note, that this is the one-dimensional version of equation (3.8). As for equation (3.8), N is
the number of detectors (or time bins) and the normally ordered expectation value of m̂ give
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the no-click probability. As in section 3.2, we obtain the expectation values of m̂ from the
click statistics ci via (3.13). In our case, the different measured sets of {ci}k represent our
x(ηk) for the simulation of the atmospheric channel. For our investigation we only use the one-
dimensional representation of the click statistics, as the utilised source produces two copies of
the same state.

In order to identify the nonclassicality in the transmitted signal, we use the eigenvalues of the
matrix of moments, which is defined by [154]

M (2) =

(
1 〈: m̂ :〉

〈: m̂ :〉 〈: m̂2 :〉

)
. (3.30)

This is the smallest possible matrix, as it contains only the lowest moments of m̂. The superscript
(K) denotes the highest moment of m̂, which is contained in the matrix. For a click detector
with N bins, M (N) is the highest matrix of moments with dimension 5 × 5 for N = 8, as we
consider here. The general construction rule for the matrix of moments is given by [154]

M (K) =
(
〈: m̂s+t :〉

)
(s,t)

, (3.31)

where s, t = 0, ..., K2 ≤
N
2 for even K and even N . It can be shown that this matrix of moments

is positive-semidefinite for all classical states [154], which means that all eigenvalues e(K)
i fulfil

e
(K)
i ≥ 0 . (3.32)

By implication, this means that if we find any eigenvalue e(K)
i < 0, this is a sufficient condition

to verify the nonclassicality of the measured state [154]. Additionally to the simplicity and
elegance of this approach, we retain the advantage that we directly work with the measured
click statistics and do not have to use post-processing algorithms. This makes this method to
analyse the nonclassicality very efficient in terms of computation time and stability.

3.3.2 Setup

To simulate the influence of atmospheric free space links on nonclassical states, we utilise the
setup shown in figure 3.12. We use the dual-path source that we discussed in chapter 2 [70].
Due to the integrated design, it is intrinsically stable and can be well-integrated into existing
networks in the satellite that guarantee a stable source function in space. Additionally, we have
the advantage that we gain two communication channels in one, as the dual-path source gen-
erates two copies of the same nonclassical state [70], i.e. the two single-mode squeezed states
discussed in section 2.5. Nevertheless, we consider only one in the analysis, as the other arm
contains an exact copy of the state.

We pump the source with picosecond pulses (from Coherent MIRA900-D, RRep = 100 kHz)
at the two-photon N00N state generation wavelength of λp ≈ 758 nm. We choose the pump
power such that we measure 〈ndetected〉 ≈ 2.7 photons

pulse without additional attenuation [198].
This few photon regime is particularly interesting in free-space experiments [165–170, 172–
174]. After the source, we clean the generated state from remaining pump light and unwanted
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Figure 3.12 – Experimental setup to obtain the simulation data for the atmosphere [198]. We use
our dual-path source from chapter 2 to generate our nonclassical state [70]. After
the source we clean the light from the remaining pump and unwanted background
in the telecom regime. To realise the different attenuation levels x(ηk), we use a
motorised half-wave plate with a polarising beam splitter and measure n = 100
different attenuations with equal spacing. Finally, the remaining state impinges on
the combination of 8-bin TMD and superconducting nano-wire detectors that we
calibrated in section 3.2.

background in the telecom regime. To implement the different measurement settings for x(ηk),
we use a combination of a motorised half-wave plate and polarising beam splitter (var. att.) to
realise n = 100 different, constant attenuation levels with equal spacing on both arms of the
state. For no artificial attenuation, we obtain an overall detection efficiency of ηdetection ≈ 22%
[198]. Finally, the light impinges on the time-multiplexed detection system [25–28] that we
investigated in section 3.2.

To exclude artefacts in our setup that might introduce false nonclassicalities (i.e. saturation of
the TMD or false counts in the SNSPDs), we prepare a classical reference beam with a picosec-
ond pulsed laser source at λref = 1550 nm (PicoQuant, 35 ps pulse duration, 100 kHz repetition
rate). Analogously to the quantum state, we also implement and measure the click counting
statistics for n = 100 attenuation levels for a detected mean photon number of 〈nref

detected〉 < 1
[198]. In figure 3.13, we depict typical results for the click counting statistics for the PDC state
(a) and the classical reference (b). Note, that the classical reference is plotted in log-scale, since
we used a low mean photon number. As both arms are symmetric, we only consider the marginal
distribution of one arm to perform our nonclassicality analysis.

3.3.3 Analysis of Transmitted Nonclassicality

After performing the different attenuation measurements x(ηk), we now merge them appropri-
ately to simulate the effects of atmospheric turbulences on the nonclassicality of the transmitted
quantum state. First, we perform a sanity check on the raw data to exclude any artificial non-
classicality effects with the classical reference beam. Furthermore, we analyse two matrices of
moments M (2) and M (8), see equation (3.31). to check which approach shows the nonclassi-
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Figure 3.13 – Typical results for the click statistics for PDC (a) and classical reference (b). As the
two arms of the distribution (A and B) are fully symmetric, we only consider one
for the analysis.

cality of the quantum state in a more pronounced way. After these preliminary investigations
of our data, we begin to merge the raw data according to different models of the atmosphere
and analyse the retained nonclassicality. We begin with an investigation of general temperature
and pressure fluctuations in the atmosphere contributing to strong turbulence which is described
by a log-normal distribution [179]. Furthermore, we consider the effect of beam wandering,
the main contribution to weak turbulence, as given by the Weibull distribution [178, 180]. Fi-
nally, to demonstrate that our simulation method is applicable to any probability distribution, we
merge our raw data according to a whole family of probability distributions, the beta-binomial
distributions and check for remaining nonclassicality.

Sanity Check: Constant Losses

We begin our data analysis with the evaluation of the raw data with fixed attenuation levels. To
exclude any artificial nonclassicality introduced by the setup, we extract the minimal eigenvalue
of the matrix M (8) for the classical reference beam. The results are given in figure 3.14. For
all implemented attenuation levels, the minimal eigenvalue e(8) ≈ 0. This means that we do not
introduce any false nonclassicality and our setup works as expected [154]. The error bars for
low transmission values increase, as we measure more vacuum compared to high transmission
values, which decreases the statistical significance of the detected signal [198].

Now, we consider the nonclassicality of our quantum signal. In figure 3.15, we consider two
figures of merit for the nonclassicality. With the use of an N = 8 TMD, we can construct the
matrices of moments from the simplest case in equation (3.30) up to the order of M (8). Figure
3.15(a) contains the minimal eigenvalue of the second order matrix M (2), while figure 3.15(b)
contains the minimal eigenvalue of M (8). Both figures of merit show negative eigenvalues and
therefore nonclassicality for all constant transmission levels η. Yet, if we consider the statistical
significance of the result, i.e. the value is negative under consideration of the error bars, we only
achieve significant nonclassicality for η(2)

min ≈ 0.34 in the case of the second order matrix of
moments M (2). For the eighth order matrix of moments M (8), more data is considered in the
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Figure 3.14 – Nonclassicality of the classical reference for the different attenuation levels [198].
We depict the minimal eigenvalue e(8) of M (8). The constant value of e(8) ≈ 0 for
all attenuation levels shows that we do not introduce any false nonclassicality in our
setup and that it works as expected. For low transmission, the error bars increase, as
we retain less non-vacuum events to get good statistics.

evaluation, which decreases the threshold of significance is at η(8)
min ≈ 0.18. Due to this fact, we

will continue to use the minimal eigenvalue of M (8) to verify the remaining nonclassicality of
our transmitted signal as this value is more robust against constant losses [198].
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Figure 3.15 – Nonclassicality analysis for constant transmission values η [198]. We consider two
figures of merit to verify the nonclassical behaviour of our detected state, the min-
imal eigenvalue of M (2) in (a) and the minimal eigenvalue of M (8) in (b). Both
figures of merit remain negative for all transmission levels η, but the statistical sig-
nificance of e(8) in (b) is better than the one of e(2). Therefore, we will use e(8) for
the rest of our analysis.
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Figure 3.16 – Discretised probability mass function of the log-normal distribution [198]. We
choose n = 100 discretisation points to match the experiment. For this number
of discretisation points, we find good agreement to the continuous version. See table
3.2 for numbers.

Strong Turbulence: Log-normal Distribution

We begin our analysis of atmospheric effects on the transmitted nonclassicality with a simulation
of the temperature and pressure fluctuations in the atmosphere. This type of fluctuating losses
can be approximated by a log-normal distribution and describes a quantum channel under strong
turbulence [168, 179]. It is defined via

PLN(η) =
1

ησ
√
2π

exp

(
−(ln η − µ)2

2σ2

)
(3.33)

and characterised by the location parameter µ ∈ R and the scale parameter σ > 0. In this thesis,
we follow the theoretical analysis of Vasylyev et al. [179] and use the parameter set µ = −1.75
and σ2 = 0.55 for the atmospheric fluctuations.

As PLN is a continuous function in η, we have to apply the discretisation routine described in
equation (3.27). We plotted the resulting probability mass function in figure 3.16.

To evaluate the quality of the discretisation routine, we compare the mean η, variance σ2 and
skewness v of the continuous and discretised PDT and summarised the relative errors in table
3.2. The low relative errors show a good quality of the discretisation routine and justify the use of
a discretised PDT to simulate the atmospheric turbulences. As we described in the introduction
to this section, we now merge the measured click statistics according to the distribution in figure
3.16.

∆η ∆σ2 ∆v

0.6 · 10−3 2.1 · 10−3 4.7 · 10−3

Table 3.2 – Relative errors of the discretisation for the mean ∆η, the variance ∆σ2 and the skew-
ness ∆v compared to the continuous log-normal distribution [198].
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The main question that we have to answer now, is whether the nonclassicality of the light
is preserved after passing the modelled free-space channel. As such, we evaluate the minimal
eigenvalue of the eighth order matrix of moments and find [198]

e
(8)
LN = (2.34± 0.05) · 10−2 . (3.34)

This value is significantly larger than zero and the transmitted light does not exhibit any nonclas-
sicality. This is a surprising result, considering our analysis with the constant losses, where we
found nonclassicality for all attenuation levels. One could assume that a mixing of nonclassical
statistics would retain the nonclassicality, which is however clearly not the case. Particularly, it
becomes clear that turbulent loss channels have to be evaluated with care and that they cannot be
approximated by a single loss channel with the mean transmission of the turbulent one. Indeed
the fluctuating loss channel yields a statistical mixture of the input state in equation (3.26). Such
a statistical mixture might lose all the nonclassical features of the original input state [198].

While the destruction of the nonclassicality in the channel is a quite disappointing result, there
are some ways to modify the measurement on the channel and therefore recover the nonclassi-
cality as resource for secure quantum communication. One possibility that we consider here is a
post-selection method [171, 178], where we only consider events, if the transmittance is above
a certain threshold value ηPS.

The resulting minimal eigenvalues for different post-selection thresholds are depicted in fig-
ure 3.17. Towards higher post-selection thresholds ηPS, the minimal eigenvalue drops, as we
approximate a constant loss scenario and consider less mixing. For a value of ηPS & 0.59 [198],
we regain nonclassical behaviour with more than three standard deviations. This is not only a
promising result for the recovery of secure communication, but also shows the versatility of our
simulation approach. We are not only able to simulate the atmospheric losses, but are also able
to directly test a post-selection protocol with the same data sets.

Weak Turbulence: Weibull Distribution

As a second example, we consider the effect of beam wandering, which is the dominant con-
tribution to weakly turbulent channels [178]. Due to the atmospheric flows, the beam position
is not fixed on a finite aperture, which causes fluctuating losses depending on the beam posi-
tion. The effect of beam wandering in a single spatial mode is given by a log-negative Weibull
distribution [178, 180, 187], which is defined as

PWB(η) =
S2

σ2
RζT

[
ln

(
η0

η

)] 2
ζ
−1

exp

{
− S2

2σ2
R

[
ln

(
η0

η

)] 2
ζ

}
,

with

η0 = 1− exp

(
−2 a

2

w2

)
,

w = w0

√
1 +

(
zλ

πw2
0

)
(3.35)
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Figure 3.17 – Minimal eigenvalues of the eighth order matrix of moments for different threshold
transmissivities ηPS [198]. We only consider events with transmission higher than
ηPS and observe for ηPS & 0.59 a recovery of the nonclassicality.
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Here, I0 is the modified Bessel function of the 0-th order, S and ζ are the scale and shape
parameters of the function. The parameters z and σR describe the fluctuation of the beam.
Specifically, σ2

R is the variance around a point on the aperture, which has the distance z to the
centre of the detector. Furthermore, w0 the radius of the beam at the source and w consequently
the radius of the beam at the aperture, which has radius a.

However, the detailed shape of this equation is not crucial to the understanding of the concept,
but used to model the experimental parameters of a specific free-space link. The critical param-
eter is the Rytov parameter σ2

R. The Rytov parameter classifies the strength of the turbulence.
If σ2

R = 0 the channel is not turbulent, 0 < σ2
R < 1 describes a weakly turbulent channel and

for σ2
R ≈ 1...10, we simulate moderate turbulence strength. For our analysis, we use the same

parameters as in [179] which describe a 1.6 km long free-space channel, see table 3.3. As before,
we discretise the PDT with the algorithm of equation (3.27) and achieve the relative errors of
table 3.4.

Again, we merge our constant loss data according to the Weibull distribution and analyse the
transmitted nonclassicality for varying strength of the turbulence. The result is depicted in fig-
ure 3.18. We calculate the minimal eigenvalue of the eighth order matrix of moments and retain
negativity up to a turbulence strength of σ2

r . 1 [198]. This means that we retain nonclassicality
only for weakly turbulent channels, before it vanishes already at moderate turbulence strengths.
This result is consistent with the evaluation in the last section, where we could not establish
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Figure 3.18 – Evaluation of the nonclassicality with the Weibull distribution for different turbu-
lence strengths σ2

R [198]. For σ2
R . 1, we retain nonclassicality. This means that for

the effect of beam wandering, we observe nonclassicality only for weakly turbulent
channels, before it vanishes.

nonclassicality for our states after a strongly turbulent channel. With this analysis, we tested our
simulation approach for atmospheric turbulence conditions of a full-scale atmospheric transmis-
sion setup in the laboratory. From our simulation results, we could observe that even for weak
turbulences, the nonclassicality vanishes.

General Applicability: Beta-binomial Distributions

In the final section of this chapter, we examine the general applicability of our simulation method
to generic probability distributions. To this aim, we employ a family of probability distributions,
the beta-binomial distributions. This family of distributions depends on two parameters α and β
and is given by

P̃BB(η|n, α, β) =
(
n

η

)
B(η + α, n− η + β)

B(α, β)
. (3.36)

a [mm] w0 [mm] z [km] λ [nm] S

75 20 1.6 809 1.17582

Table 3.3 – Parameters for the Weibull distribution from [179], which we utilise for our analysis
[198].

∆η ∆σ2 ∆v

0.75% 1.48% 2.2%

Table 3.4 – Relative errors of the discretisation for the mean ∆η, the variance ∆σ2 and the skew-
ness ∆v compared to the continuous Weibull distribution [198].
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Figure 3.19 – Nonclassicality analysis for a family of beta-binomial distributions [198]. We plot
the signed significance of the minimal eigenvalue e(8) as a figure of merit and iden-
tify two large regions. In green (orange), we denote a classical (nonclassical) be-
haviour of the detected light. White regions denote the case, where the signed sig-
nificance is below three standard deviations.

Here, n (= 100 in our case) denotes the number of discretisation points and η is the transmission
in %. The function B is the beta-distribution, defined as

B(α, β) =
Γ (α)Γ (β)

Γ (α) + Γ (β)
, (3.37)

with Γ (α) as the well-known Γ -function. The best way to understand the beta-binomial dis-
tribution is with the corresponding urn model, the Pólya urn [196, 199]. Consider an urn that
contains α blue balls and β black balls and we draw balls randomly. Each time we draw a ball,
two balls of the same colour which was just drawn are put back into the bowl. If this is repeated
n times, the resulting probability distribution for blue and black is the beta-binomial distribution
with the parameters n, α and β. In our case, η is then the value of the random variable.

As the beta-binomial distribution is inherently discrete, we do not have to apply the discreti-
sation routine in this case. To cover a whole family of the beta-binomial distributions, we vary
the two parameters α and β independently to merge the constant loss data accordingly.

Analogously to the previous sections, we extract the minimal eigenvalue of the eighth order
matrix of moments. However, for better visibility, we plot the signed significance ( e(8)

∆e(8)
) de-

pendent on α and β in figure 3.19. We find two large regions in the parameter space, separated
by a white region. The orange region denotes parameters, where we find nonclassicality after
transmission through a channel with these properties. Accordingly, the green regions denote
parameter combinations, where the nonclassicality is not retained after the transmission. In
between, we find a large region, where the signed significance does not exceed three standard
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deviations from zero and distinguishing classical and nonclassical behaviour with respect to the
error bars is not possible [198].

With this result, we have shown that our simulation approach is very versatile and may be
used to simulate all types of fluctuating loss channels. The application of the beta-binomial
distribution to our data and the subsequent analysis of nonclassicality shows that our approach is
also valid for a broad range of probability distributions and not restricted to known atmospheric
functions.

Summary
In summary, we introduced a method to simulate the effect of fluctuating loss channels on
quantum states [198]. This is an important capability, as it allows us to simulate the effect
of atmospheric free space links for quantum communication in the laboratory. We used the
dual-path source, described in chapter 2 and measured constant attenuation levels with
our TMD, which we later mixed for the simulation of the atmospheric channel. We analysed
two PDTs, the log-normal distribution to simulate the effects of temperature and pressure
fluctuations and the Weibull distribution, which describes beam wandering. Finally, we
applied our method to a wide family of probability distributions and showed that we are
able to simulate a wide range of turbulent channels and are not restricted only to known
models of atmospheric channels.
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Down through the ribbon highway I will go
Searching for a brighter spotlight, a brighter sun
I am out on the open road
I’m more than a kick, and I’m more than a spark
I’m more than a flash in the dark

Katzenjammer - Flash in the dark
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In the previous chapters, we investigated
the properties of a non-linear two-coupled
waveguide structure, both in the two-photon
regime in chapter 2 and for higher photon
numbers in section 3.3. Now, we are pre-
pared to tackle the upscaling of the system
to many spatial modes, i.e. many non-linear
coupled waveguides: a uniform waveguide
array. Such a system, see figure 4.1(a), com-

prises a large, but finite number of waveguides that are weakly coupled. Similar to the two-
waveguide system described in chapter 2, we consider an implementation that comprises many
parallel, weakly coupled waveguides that are periodically poled to enable photon pair generation
via PDC.

The linear part of the structure, i.e. the weakly coupled waveguide array, is a widely studied
platform in the context of transport properties in continuous time quantum walks [16–24]. In
the wider context of quantum walks [200], a lot of theoretical and experimental progress has
been achieved on a variety of platforms. Quantum search algorithms have been developed [201–
204] and it has been shown that quantum walks present a building block for universal quantum
computing [6, 205, 206]. Due to the static implementation of quantum walks in integrated
photonic platforms, an alternative has been developed: discrete quantum walks [207] in bulk
optical implementations [15, 208, 209]. This approach offers more flexibility and control over
the quantum walk parameters and has been shown to be (in special configurations [30–33])
intrinsically scalable. We give a more detailed introduction to quantum walks in section 4.2.1
and recommend [33] and [210] as a comprehensive introduction into the topic.

Additionally to the linearly coupled waveguide array structure, we now implement a periodic
poling on top of the waveguides [99, 100]. Analogously to the dual-path source, this enables
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the PDC process [67, 68, 98]. As such, the photon pair generation is integrated into the linear
structure, which opens up new dynamics in the context of transport phenomena or quantum
walks.

The detailed study of these modified transport properties by integration of the photon pair
generation into the linear structure will be one of the main aims in this chapter. We begin this
chapter with a review of the PDC process in a non-linear waveguide array system in section 4.1
based on work done prior to this thesis [57, 211, 212]. After this mathematical description of the
process, we move on to interpret the process in terms of driven quantum walks in section 4.2,
as developed in cooperation with C. Hamilton from the group of I. Jex in Prague. Additionally
to the study of the modified transport properties, we introduce a novel type of search algorithm
that exploits the unique dynamics of the driven quantum walk. Using the formalism introduced
in section 4.2, we map, for the first time, a genuinely non-linear implementation to the (usually)
linear computational problem of BosonSampling in section 4.3. Finally, again together with C.
Hamilton from Prague, we take the non-linear waveguide array as a motivation to develop the
general concept of a truly Gaussian BosonSampling problem in section 4.4.

4.1 Non-linear Waveguide Arrays

This section is a short summary of the results presented in [57, 212] and independent work
from the group of Y. Kivshar [211, 213]. Historically, we began our work with the non-linear
waveguide array system [57]. Since this was before the starting point of this thesis, this section
should be considered state-of-the-art.

As in the dual-path source from chapter 2, the overall process is governed by two intertwined
mechanisms; the linear coupling between waveguides and the non-linear PDC process. In the
following, we first describe the coupling mechanism in infinite waveguide arrays via the Bloch
wave expansion [214]. Next, we consider a very simple adaptation to model periodic boundary
conditions. Finally, the effect of the coupling is included in the PDC process, analogously to the
calculations for the dual-path source.

4.1.1 Linear Coupling in Infinite Waveguide Arrays

To describe the coupling process on the propagation of the electric fields in a waveguide array,
we employ coupled-mode theory [104, 106], similar to the dual-path source. The electric field
amplitudes are given by the following equation system1 [214]

i
∂

∂z
En(x, y)en(z) = −β(0)(ω)En(x, y)en(z)

− C(En−1(x, y)en−1(z) + En+1(x, y)en+1(z)) .
(4.1)

In this differential equation system, En(x, y) is again the spatial mode profile of a single,
undisturbed waveguide n, while en(z, ω) is the corresponding excitation amplitude that we are

1Compared to equation (2.3) the signs of the propagation terms are different. This change in convention yields
equivalent results, but has the advantage that the eigenvalues of the propagation matrix become real-valued.
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(a) (b)
y

x

... ...

n1

n2

air

substrate

Figure 4.1 – Schematic system sketch (a) and assumed field distribution (b). In the non-linear
waveguide array (a), a strong, non-coupling pump field generates photon pairs in
the telecom regime. Here, the generated photons with frequencies ωs and ωi couple
between waveguides, which leads to unique dynamics. In (b), we depict a field dis-
tribution for the spatial modes of the waveguide array. As they are identical, we are
only interested in the corresponding excitation amplitudes, as for the dual-path source
in chapter 2.

interested in. As before with the dual-path source, we assume all spatial modes En(x, y) to be
identical and cancel them from equation (4.1). The quantity β(0)(ω) is the propagation constant
for the undisturbed waveguide and C the coupling parameter. In general, the coupling parameter
may also depend on ω, but we will neglect this dependence here since we only consider small
frequency ranges. Solving the equation for the excitation amplitudes en(z) with a Bloch ansatz2

[214], we obtain
en(z) = en(0) exp

[
i
(
k⊥n+ κz(k

⊥)z
)]

, (4.2)

which yields the band-structure for the uniformly coupled waveguide array

β(ω, k⊥) = β(0)(ω) + 2C cos(k⊥) . (4.3)

The interpretation of equation (4.3) is the same as for the eigensolutions of the dual-path source,
compare equations (2.5) and (2.6). The band-structure solution describes the impact of the eigen-
mode, labelled with the transverse momentum k⊥, on the propagation constant in z-direction
β(ω, k⊥). Using this description, we can write the fields for the down-conversion process in the
waveguide basis [57, 211, 212]

E(+)
p,n (z, t) =

∞∫
−∞

dωp

π∫
−π

dk⊥p α(ωp)

[
1

2π

∑
n′

A(n′)e−ik
⊥
p n
′

]
ei(β

(0)(ωp)z−ωpt)eik
⊥
p n

Ê(−)
µ,n (z, t) = B

∞∫
−∞

dωµ

π∫
−π

dk⊥µ e
−i(β(ωµ,k⊥µ )z−ωµt)e−ik

⊥
µ nâ†(ωµ, k

⊥
µ ) ,

(4.4)

2κz(k
⊥) is an auxiliary variable that contains the part of the z-propagation constant that is influenced by the

coupling.
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(a) (b)

Figure 4.2 – Schematic representation of fixed boundary conditions. In (a), we interpret the fixed
boundary conditions by introducing an amplitude constraint E0 = EN+1 = 0 for the
two additional outermost waveguides of the array. (b) represents a coupling matrix
that encodes the fixed boundary conditions in the C0,N+1 = CN+1,0 = 0 elements.

where µ = s, h denote signal and herald, respectively. We consider the spatial distribution of
the pump field in the waveguide array via A(n′), which is connected to the eigenmode basis
via a Fourier transformation. In the quantum fields, we considered again a type-I PDC process
that allows us to use the same electric field representation for the signal and herald fields. To
achieve a description of the electric fields in the waveguide basis, we included an inverse Fourier
transform

∫ π
−π ... e

−ik⊥ndk⊥. For more details concerning the solution of this system, see [214–
218].

4.1.2 Linear Coupling with Boundary Conditions

While the coupling in a waveguide array is described sufficiently well by the band-structure, it
cannot account for modified propagation when the light reaches the boundaries of the sample
[22]. There exists a lot of literature on the treatment of boundary conditions for the three main
scenarios [219]

a) open boundaries: the light has not touched the boundaries of the array

b) intermediate case: the light has touched the boundaries and is reflected back

c) steady-state case: an equilibrium has been reached between the propagating and back-
reflected light.

The first case is sufficiently described with the infinite waveguide array description. The cases b)
and c) require the introduction of boundary conditions. In this thesis, we assume fixed boundary
conditions [220], which means that the light in the outermost waveguides is reflected back into
the array, compare figure 4.2(a).

To achieve this, we add two unphysical outermost waveguides to the array, waveguide 0 and
waveguideN+1 and set the boundary conditions e0 = eN+1 = 0. Mathematically, this situation
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is encoded in the coupling matrix A that represents the equation system (4.1)

i
∂

∂z
~e(z) = C~e(z) , (4.5)

where ~e(z) is the vector that contains the excitation amplitudes of all N + 2 waveguides. Then,
A is an (N + 2) × (N + 2) matrix with its representation given in figure 4.2(b). Compared to
the infinite case, where the matrix is infinite-dimensional, the dimensions are fixed. The fixed
boundary conditions are encoded by the entries A0,N+1 = AN+1,0 = 03.

We can solve this differential equation system analogously by diagonalisation and find a
closed form expression for both the eigenvalues and eigenfunctions [220]

β(ω, k) = β(0)(ω) + 2C cos

(
kπ

N + 2

)
ek =

√
2

N

N∑
j=1

sin

(
jkπ

N + 2

)
ej .

(4.6)

Compared to the solution of the infinite case in equation (4.3), we retain the cosine shape of
the bandstructure and only find a discretisation of the transverse momenta k⊥k = kπ

N+2 . As
such, fixed boundaries allow for a sufficient description of the light propagation under boundary
conditions, while retaining the simple solution of the infinite array.

4.1.3 The Down-conversion State

As with the two-coupled waveguide source in section 2.2, we perform the calculation of the
down-conversion state with the eigenmodes of the linearly coupled system. For simplicity, we
restrict the discussion of the down-conversion state to a type-I process in an array with open
boundary conditions, i.e. the system is sufficiently large such that the light does not touch the
outermost waveguides. In this case, we consider the Hamiltonian of equation (2.9) and insert the
fields we derived in the previous sections [57]. We obtain

ĤArray = B
∑
n

0∫
−L

dz

∞∫
−∞

dωp

∞∫
−∞

dωs

∞∫
−∞

dωi

π∫
−π

dk⊥p

π∫
−π

dk⊥s

π∫
−π

dk⊥h α(ωp)Ã(k
⊥
p )e

i(β(0)(ωp)z−ωpt)eik
⊥
p n

× e−i(β(ωs,k⊥s )z−ωst)e−ik
⊥
s ne−i(β(ωh,k

⊥
h )z−ωht)e−ik

⊥
h nâ†(ωs, k

⊥
s )â

†(ωh, k
⊥
h ) + h.c. ,

(4.7)
where Ã(k⊥p ) denotes the Fourier transform of the pump distribution A(n) at the input in the
waveguide basis.

Solving this Hamiltonian in the two-photon picture analogously to section 2.2, we arrive at
the output state of the waveguide array [57, 211, 221]. Similarly to the two-coupled waveguide

3One could also use periodic boundary conditions. Here, the light exiting the right hand side of the array (waveguide
N ) is inserted at the left hand side of the array (waveguide 1) and vice versa. The correspondingN×N coupling
matrix would be modified with A1N = AN1 = −C. However, periodic boundary conditions support a different
type of eigenfunctions, i.e. k⊥ = ± 2πk

N
[220].
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source, we can express the PDC state in two different bases, i.e. the momentum or eigenmode
basis

|Ψ〉 = 1√
N

∞∫
−∞

dωs

∞∫
−∞

dωh

π∫
−π

dk⊥s

π∫
−π

dk⊥h α(ωs + ωh)Ã(k
⊥
s + k⊥h )Φ(ωs, ωh, k

⊥
s , k

⊥
h )

× a†(ωs, k⊥s )a†(ωh, k⊥h ) |0〉

(4.8)

and the waveguide basis, which is given by a Fourier transform on the k⊥ variables. For a
detailed interpretation and analysis of the PDC state in a non-linear waveguide array system, see
[57, 212].

With this brief review of non-linear coupled waveguide arrays, we move on to the theoretical
concepts in quantum information science that were inspired by this system.

4.2 Driven Quantum Walks

One of the aims of the following section, originating from a close collaboration with Craig S.
Hamilton in Prague, is to interpret the non-linear system of the coupled waveguide array in terms
of quantum information language [65]. Specifically, we relate non-linear coupled waveguide
arrays to the theoretical framework of quantum walks and develop the new concept of driven
quantum walks. The main difference of a driven quantum walk to a known, passive quantum
walk is that we generate photons during the evolution of the walk, instead of using a fixed state
at the beginning. This enables us to formulate a tailored search problem for our driven quantum
system that outperforms a classical search algorithm.

This section is structured as follows: We first review the concept and the properties of a pas-
sive quantum walk, before we begin our discussion about driven quantum systems and identify
two possible driving forces, lasing and squeezing. For both cases, we show that we can decom-
pose the output state of a driven quantum walk system into a passive quantum walk evolution
and a complex input state. Furthermore, we consider the impact of the different driving terms on
the system separately and investigate their effect on the system dynamics. Finally, we formulate
a search problem that demonstrates a speedup of a driven quantum walk system compared to
classical walker.

4.2.1 Passive Continuous-time Quantum Walk

Up to this point in this thesis, we only used the state description of non-linear processes in
coupled systems, see equation (2.13) in chapter 2 and equation (4.8) in section 4.1. As we now
want to transfer this description to the context of quantum information, especially to the context
of quantum walks, we first have to define what a quantum walk is and what it actually does.

Consider the classical analogue, the random walk [222]. An example system for this situation
is e.g. the Galton board, where a ball is inserted at the top of the board and is deflected left or
right at the pins that make up the board, see figure 4.3(a). If we repeat this board game with many
classical particles, we find that the output probability distribution of the corresponding random
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random walk quantum walk

(a) (b)

Figure 4.3 – Discrete random and quantum walk. The ball on the Galton board in (a) has the
possibility to go left or right at all pins on the board. The resulting distribution in
the buckets resembles a binomial distribution. In (b), we have sketched a quantum
walk, where the walker (represented by a laser pulse) has the possibility to go left and
right at the beam splitters on the board [15]. The resulting distribution in the buckets
is distinctly different than for the random walk and has two characteristic lobes that
travel to the edges.

walk is a gaussian distribution. While this example is very much discrete in the sense that we
deflect the balls only at certain positions, we are also able to define a continuous type, where
we consider a continuous spread of the particles. A prime example for this type of continuous
random walks [223] is diffusion [224] or heat transfer [225] that obey the diffusion equation

∂

∂t
f(~r, t) = D∇2f(~r, t) , (4.9)

whereD is the diffusion constant, a parameter that describes the coupling of heat, concentration,
etc., as represented by the density function f(~r, t), to adjacent space units.

For the transition from classical to quantum [200], one replaces the classical ball with e.g.
a laser pulse and the pins of the Galton board with beam splitters [15]. Instead of deflecting a
classical particle left or right, a quantum particle as represented by the laser pulse, is deflected
left and right to form a superposition. This directly gives a setup for a discrete quantum walk.
Due to interference effects of the quantum particle with itself (or other indistinguishable par-
ticles), the probability distribution at the output of the quantum walker differs drastically from
the classical gaussian one, compare figure 4.3(b). One particular difference is the change of the
variance, i.e. the wider spread [210]. Compared to a classical walker that has the the variance
of the gaussian distribution, i.e. σ2 = s, where s is the number of steps, or layers on the Galton
board, a quantum walker has a variance of σ2 = s2. This allows search algorithms to proceed
faster than a classical one, we utilise a quantum speedup [201–204]. In practice, building a quan-
tum walk setup analogously to the Galton board is rather involved [15], as the alignment of the
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different interfering paths is exponentially difficult. An elegant solution has been demonstrated
by time-multiplexing of the Galton board setup [30–33] which has coined the term discrete-time
quantum walk.

As for the classical case, we also find a continuous type of quantum walk. Here, contrary to the
discrete quantum walks, we observe a continuous coupling to adjacent space units for a quantum
particle. This type of quantum walks has been successfully implemented in waveguide arrays,
see the array in figure 4.2(a) [16–24]. As such, we already encountered the equation of motion
for the passive continuous-time quantum walk in equation (4.1). However, this description is
limited in the sense that it does not use the quantum information formalism. As such, we have
to formulate the Hamiltonian of the linear system4, which is given by e.g. [65]

Ĥpassive =
∑
i,j

Cj,kâ
†
j âk + h.c. . (4.10)

This Hamiltonian basically encodes the following situation: A photon from mode k gets de-
stroyed and is coupled to the mode j (where it is created) with the probability of |Cj,k|2. The
matrix C encodes the different coupling strengths between the different modes of the continu-
ous time quantum walk system5. The dynamics of the continuous time quantum walk is gov-
erned by the Schrödinger equation, where the initial state is localised in a single spatial mode
|Ψ(t = 0)〉 = â†j0 |0〉.

As we did with the coupled differential equation system, we use the eigenmode description of
the Hamiltonian which effectively diagonalises the system. We write

Ĥpassive =
∑
k

ΩkÂ
†
kÂk . (4.11)

In this description Ωk denote the eigenvalues of the system and Âk represent the corresponding
eigenmodes. The transformation between the waveguide modes and the eigenmode basis is
given by the transformation matrix T via

Âk =
∑
j

Tj,kâj . (4.12)

Due to the diagonalisation of the system, the dynamics of the eigenmodes mirror the dynam-
ics of free particle propagation. The traditional implementation of a quantum walk only uses
the Hamiltonian of equation (4.10). It encodes a passive transformation which means that the
number of particles inserted into the network remains constant during the propagation. Only
the phase evolution between the different eigenmodes of the system leads to the well-known
quantum walk properties. Contrary to this passive continuous time quantum walk, we strive to
incorporate a non-particle number preserving transformation that increases the number of parti-
cles during the walk. We wish to investigate a driven quantum walk system.

4The free propagation is included in the Cjj . In the following, we use time and length of the chip synonymously,
as they are directly connected via L = ct.

5An example of a coupling matrix with nearest neighbour coupling and periodic boundary conditions is given in
figure 4.2(b).
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4.2.2 Lasing Term

The key point to driven quantum systems is the choice of the driving Hamiltonian. In this thesis,
we selected two different driving forces, lasing and squeezing. We begin with a discussion on
lasing quantum walks, as the calculations are simpler and the method is easier to grasp. The
squeezing quantum walk, as represented by the non-linear waveguide array, will be discussed in
the following section.

As the driving force for the lasing quantum walk [65], we use the Hamiltonian

Ĥlasing =
∑
k

ΓL,k(t)â
†
k + Γ ∗L,k(t)âk , (4.13)

which generates photons continuously during the walk, such that we receive a coherent state at
the output, compare chapter 1. Figure 4.4(a) shows such a system. The vector ~ΓL(t), which
describes the spatial pump pattern for the lasing process at the input of the waveguide array, is
depicted in blue and creates photons according to the Hamiltonian of the process in red. Here,
we consider two degrees of freedom for the pump, i.e. the spatially resolved driving amplitude
|Γk| and the time dependence eiωpt. In an experiment, the lasing term can be realised in a discrete
quantum walk case, it can be achieved by inserting additional pulses after each step6.

Figure 4.4 shows the main goal of this subsection. We aim to find a decomposition of the
driven quantum system into a complex initial state |αL,in〉 and a passive quantum walk unitary
ÛPQW. If we assume that the driving is happening continuously during the propagation and that
the pump is an undepleted classical field (i.e. a large amplitude coherent state), we can write the
full Hamiltonian of the system as

Ĥ = Ĥpassive + Ĥlasing =
∑
k

[
ΩkÂ

†
kÂk + Sk(t)Â

†
k + h.c.

]
. (4.14)

Here, we transform the spatial pump shape ΓL via ~S(t) = T−1 ~ΓL(t) to the eigenbasis. Moving
to the rotating frame, we transfer the Hamiltonian to the interaction picture by applying the
unitary transformation Ûint = Πk exp(iΩkÂ

†
kÂk) [227] and remove the free propagation term

from equation (4.14)
Ĥint, lasing =

∑
k

Sk(t)Â
†
ke
iΩkt + h.c. . (4.15)

The output state is then given by a time-integration of the Hamiltonian7

|Ψ〉int = exp

−i t∫
0

dt′ Ĥint, lasing(t
′)

 |0〉 . (4.16)

6Which was later studied in [226].
7Time evolution in the interaction picture is given by UT = exp(− i

~
∫ T
t0
Ĥ(t′)dt′) [1]. As this is a theory proposal,

we work in units of ~.
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n
Iin
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passive QW
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driven QW(a)

(b)

Iout

Figure 4.4 – In a driven quantum walk system, a simple pump input distribution can be used to
generate |αL,out〉 due to the continuous creation of photons during the walk, as shown
in (a). The same output state may also be created by a passive quantum walk in (b),
however the necessary input state is much more involved [65].

This yields

exp

−i t∫
0

dt′ Ĥint, lasing(t
′)

 = exp

(
− i
2

∑
k

zkÂ
†
k + h.c.

)
= exp

(
~z
~̂
A†

2
− ~z∗

~̂
A

2

)
,

(4.17)
where ~z =

∫
dt′~S(t′) is the time-integrated pump profile. We can simplify this expression to

[228]

exp

(
~z
~̂
A†

2
− ~z∗

~̂
A

2

)
= exp

(
~z′
~̂
A†
)
exp

(
f(~z)

~̂
A†

~̂
A
)
exp

(
~z′
∗ ~̂
A
)
, (4.18)

and the reason for this becomes clear when we apply the transformation on the vacuum state.
Then, the last two exponential functions vanish, as they contain annihilation operators acting on
vacuum. Finally, we leave the rotating frame by adding Û †int

|αL, out〉 = exp

−it∑
k,k′

Ck,k′ â
†
kâk′


︸ ︷︷ ︸

ÛPQW

exp

(
−i
∑
k

z′kâ
†
k

)
︸ ︷︷ ︸

|αL, in〉

|0〉

= ÛPQW |αL, in〉

(4.19)

and see that we can decompose the output state into a complicated input state |αL, in〉 and a
passive quantum walk transformation ÛPQW, which we wanted to show [65].

This interpretation depends on the overall output state of our driven quantum walk system and
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therefore the overall length of the walk. As such, the input state and passive evolution are not
independent from each other. For different overall lengths of the walk, the combination of input
state and passive evolution will change accordingly. Due to the decomposition, we are quite
restricted in the realisation of the input states. However, we may lift this restriction to a certain
extent by inserting a non-vacuum state at the beginning of our evolution. In this case, we have to
consider extra terms (e.g. the f(~z) term) but the overall decomposition in input state and passive
evolution still holds.

The evolution and therefore our "input" state to our system are determined by the shape and
time-dependence of the driving pump contained in the vector ~S. As such, a driving term can
only create photons into eigenmodes, with which it has a finite overlap. First, we select the
eigenmode excitation at the beginning by the spatial shape of the pump given by the absolute
value of the elements |Sk|2. Only eigenmodes that have a finite overlap with our spatial pattern
can be driven by the pump. Additionally, we retain the frequency (i.e. the time-dependence)
of the pump field ωp as a degree of freedom. This leads to a phase-matching condition that
only allows photon creation in eigenmodes whose eigenvalues are sufficiently close to the pump
frequency

Ĥint =
∑
k

Sk exp[i(Ωk − ωp)t]Â†k + h.c. . (4.20)

This effect manifests in the dynamics through different growth in the eigenmodes, as shown in
figure 4.5(b). Here, the first eigenmode k = 1 is phase-matched with ωp = Ω1. During the
time evolution, the phase-matched eigenmode grows roughly on a linear scale, while the growth
for non-phase-matched eigenmodes gets weaker, the higher the frequency mismatch ωp − Ωk
gets. For highly non-phase-matched eigenmodes (roughly starting at eigenmode k = 10), no
continuous growth is observable and the photon numbers show an oscillating behaviour over
time8.

To consider the dynamics of a lasing quantum walk in more depth, we simulate a typical
passive quantum walk unitary with nearest neighbour coupling

Ĥpassive = ω
N∑
k=1

â†kâk + C
N−1∑
k=1

â†kâk+1 + h.c. (4.21)

and add the driving term for a single waveguide excitation k = 0 and a continuous wave pump
field Γ0e

−iωpt

Ĥlasing = Γ0e
−iωptâ†0 + h.c. . (4.22)

We summarise the results in figure 4.5. Figure 4.5(a) shows the photon number distribution
during the evolution in the waveguide basis. The photons remain localised around the pumped
waveguide k = 0, which differs drastically from the photon spread that characterises a passive
quantum walk system. There, the photons travel away from a single, localised input in two
lobes with a speed of ±

√
2C. Calling on our decomposition of input state and passive evolution

8This is the same effect that happens during a non-phase-matched PDC process, see e.g. [229]. Even for almost
phase-matched modes, the growth is not linear, but oscillating. However, the oscillation period is so large that it
is not observable in figure 4.5(b).
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Figure 4.5 – Dynamics of the lasing quantum walk [65]. (a) shows the photon number growth over
time in the waveguide basis for a single waveguide pump in the middle9. (b) gives the
corresponding evolution in the eigenmode basis. Only the phase-matched eigenmode
k = 1 shows a photon number growth that is linear in time, while the others oscillate
with varying period. In (c), we investigate the dependence of the spatial spread at the
end of the driven quantum walk depending on the pump frequency. While we retain a
peaked structure around the pumped waveguide at the edges ωp = 0; 2, the photons
spread outwards for intermediate frequencies (i.e. ωp = 1).

unitary, this means that we need a highly delocalised input state in a passive quantum walk to
mimic the output distribution of a driven quantum walk system.

As we already mentioned above, we find a nice illustration of the phase-matching behaviour
of the driven quantum walk system in figure 4.5(b). The phase-matched eigenmode ωp = Ω1

grows linearly over time, while the others oscillate. The total number of photons in both figures
4.5(a) and (b) is equal and grows quadratically over the length of the evolution in the lasing case.
Furthermore, we calculate how the spatial spread of the photons in the waveguide basis behaves
as a function of the pump wavelength in figure 4.5(c). We achieve a highly localised structure
around the input location for pump frequencies at the edges ωp = 0; 2, while the photons
experience a spatial spread for intermediate frequencies, which is a highly unusual behaviour
as the spread of a passive continuous-time quantum walk depends on the coupling strength C,
which monotonically depends on the inserted wavelength [57].

Nevertheless, we can quantify it with the typical measure for quantum walk propagation, the
variance of the position

σ2(t) =
∑
x

x2nx(t) . (4.23)

In a driven quantum walk system, such as the one we are considering, two different mechanisms
contribute to the spatial spread of walkers, the coupling of the walker itself as well as the photon
number growth due to the driving. The examples in figures 4.5(a) and (b) exhibit a cubic growth
in the variance. However, renormalising this spread with the growth in the photon number
σ2 ∝ t2, we end up only with a linear spatial-only variance. Compared to a passive walker
(which has a σ2 = t2 variance) this slower spread can be explained by the injection of additional

9Simulation parameters: N = 51, −25 ≤ k ≤ 25, C = 0.5, Γ0 = 1, ωp = Ω1 and tmax = 20 in dimensionless
units.
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Figure 4.6 – Dynamics of the squeezing quantum walk [65]. (a) shows the evolution in the
waveguide basis. As for the lasing quantum walk, the spatial distribution is peaked
around the pumped waveguide10. In the eigenmode basis (b), we observe a dou-
ble peaked phase-matching for the outer eigenmodes, which is due to the modified
phase-matching condition. (c) plots the spatial distribution of photons depending on
the pumped frequency. Opposite to the lasing quantum walk, the spatial distribution
remains peaked for all pump frequencies.

photons along the walk in the central channel. Photons that are created at the beginning of the
walk would spread with a t2-variance, but due to the rescaling with the photon number these
contributions are suppressed [65].

4.2.3 Squeezing Term

In this section, we summarise the results for a driving Hamiltonian that produces squeezed vac-
uum states at the output, see chapter 1,

Ĥsqueezing =
∑
k

ΓS,k(t)â
†2
k + Γ ∗S,k(t)â

2
k , (4.24)

where ΓS,k is again the distribution of the driving pump field and âk is an annihilation operator
working on waveguide k. Such a system may be implemented with the non-linear waveguide
array from section 4.1 and was the inspiration for this work. Analogously to the previous section,
we define the full system Hamiltonian in the eigenmode basis via [65]

Ĥ = Ĥpassive + Ĥsqueezing =
∑
k

ΩkÂ
†
kÂk +

∑
k,k′

Sk,k′(t)Â
†
kÂ
†
k′ + h.c. . (4.25)

Note, that the pump distribution in the eigenmode basis is not a vector anymore, but a matrix
depending on k, k′, as we have to include the basis transformation S(t) = T−1 ~ΓS(t)T of two
creation operators at the same time. Following the calculation with the lasing term in section

10Simulation parameters: N = 51,−25 ≤ k ≤ 25, C = 0.5, Γ0 = 0.1, ωp = Ω25 and tmax = 20 in dimensionless
units.
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4.2.2, we arrive at the output state

|ΨS, out〉 = Û exp

(
~̂
A†

T
z
~̂
A†

2
−
~̂
ATz∗

~̂
A

2

)
|0〉

=
∏
k

exp(iΩkÂ
†
kÂk) exp

(
~̂
A†

T
z′
~̂
A†

2

)
exp(f(z)

~̂
A†

~̂
A) exp

(
~̂
ATz′∗

~̂
A

2

)
|0〉 .

(4.26)

As the last two terms of this state operate on vacuum, they can be neglected. Finally, we trans-
form back to the waveguide basis and find

|ΨS, out〉 = exp

−it∑
k,k′

Ck,k′ â
†
kâk′

 exp

−i∑
k,k′

z′′k,k′ â
†
kâ
†
k′

 |0〉
= ÛPQW |ζS, in〉 ,

(4.27)

which reproduces the decomposition to a delocalised (squeezed) input state |ζS, in〉 and passive
state evolution ÛPQW of section 4.2.2.

Having confirmed that the decomposition of passive walk and intricate input state is also
valid for driving with a squeezing term, we now focus on the dynamics present in the squeezing
quantum walk. The results for this system are summarised in figure 4.6, where we implemented
the driving term for a single waveguide excitation k = 0 and a continuous wave pump field
Γ0e
−iωpt

Ĥsqueezing = Γ0e
−iωptâ†

2

0 + h.c. . (4.28)

Figure 4.6(a) shows the photon number in the waveguide basis during the length of the walk. As
in the lasing case, the state remains localised around the input channel. However, the behaviour
in the eigenmode basis in figure 4.6(b) differs drastically compared to the lasing Hamiltonian.
This is due to the fact that we have a modified phase-matching condition due to the â†

2
photon

creation that reads

Ĥsqueezing, int =
∑
k,k′

Sk,k′ exp(−i[(Ωk +Ωk′)− ωp]t)Â†kÂ
†
k′ + h.c. . (4.29)

This means that we will, in general, phase-match two or even more eigenmodes symmetrically
around the driving frequency of the pump. In the figure, this is evident by the symmetric gain of
the eigenmodes around the k = 25-th eigenmode in the centre. The fact that we can use different
combinations of eigenmodes to achieve phase-matching leads to the broadening of the gain in
the eigenmode basis. Figure 4.6(c) shows another distinct difference to the lasing quantum walk.
While the spatial distribution of the lasing quantum walk spreads at several pump frequencies,
the spatial distribution in the squeezing case always remains localised around the pump channel.
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Figure 4.7 – Layout and eigenmodes of the glued trees graph [65]. (a) shows an example tree of
depth N = 3 and its representation on the linear chain [230]. All vertices in a column
of the glued trees graph are grouped together to a single vertex on the linear chain,
where the coupling coefficients are Cm,m+1 = 1 and CN,N+1 =

√
2. In (b), we have

depicted an eigenmode of the glued trees graph of depth of N = 11 (inlay for the first
20 vertices). The large weights on the entry and target mode (k = 1; 8190) make this
eigenmode specifically interesting for the construction of our search algorithm.

4.2.4 Search Algorithm

In the previous sections, we investigated the behaviour of different driving terms in a continuous
time quantum walk system. Now, we want to exploit the unique dynamics of these systems and
apply it to implement a search algorithm. To this end, we go back to the lasing term, because it
is mathematically simpler to describe and investigate the spread of the walkers along the search
graph.

The reason why quantum walks are so interesting for search problems lies in the increased
spread of quantum walkers compared to classical particles (compare section 4.2.2). An example,
perhaps even the most famous one, for a quantum search algorithm is the Grover Search [201,
202]. In this case, a particular state is inserted into a discrete quantum walk and it can find a
marked vertex, a position on a lattice or a node of the quantum walk graph (i.e. the goal of the
search), in t ∝

√
N time, where N is the overall number of vertices. This particular property

has sparked several other proposals for search algorithms that are closely related [231–234].
Let us consider a well-investigated graph structure for the construction of our search problem,

the glued trees graph [230] in figure 4.7(a). It is characterised by its depth of N layers which
contain a total number of 2N+2 − 2 vertices. To gain a description of the glued trees graph
as a linear chain that would represent our continuous time quantum walk system, all vertices
âk of a layer, or a column, are grouped to a single vertex b̂m of the linear chain, as indicated
in figure 4.7(a). The coupling coefficients between the nodes on the linear chain are given by
Cm,m+1 = 1, except for the central coupling, which is CN,N+1 =

√
2. It has been shown that

a classical walker traverses this particular type of graph in an exponential time from entrance to
target mode, while a quantum walker only needs polynomial time [230]. It is our aim to construct
a search algorithm with driven quantum walks that also traverses the graph in polynomial time.

To construct our search algorithm, we consider the following problem. We start our search at
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Figure 4.8 – Comparison between target probabilities in passive and driven continuous time quan-
tum walk [65]. In the passive quantum walk in (a), the probabilities of finding the
quantum walker in either the entry (blue) or target (red) vertex of the graph oscillates
strongly due to the phase evolution between different eigenmodes of the graph. In
contrast, the probabilities to find the walker in the entry or target mode monotonously
increases in the driven quantum walk (b). As we phase-match an eigenmode that has
significant overlap only with the entry and target modes, the walkers are only cre-
ated in these two vertices and the phase evolution between the eigenmodes does not
play a role. This provides a significant advantage compared to passive quantum walk
systems.

an entrance, or pump mode âp on the glued trees graph11 and want to find our marked vertex, the
target or exit vertex, by having more walkers there than on any other parts of the graph, except
for the pumped waveguide. In the driven quantum walks setting, the first step is to choose a
suitable eigenmode of the graph that shows significant overlap with both the entrance and target
mode, i.e. ÂD ≈ µD,eâe + µD,dâd. Here, µD is the weight of the waveguide mode in the
composition of the eigenmode and we require µD,e ≈ µD,d ≈ 1√

2
. Secondly, we match our

pump frequency ωp = ΩN to the eigenfrequency of the selected eigenmode. This will cause a
continuous photon growth in this particular eigenmode and therefore favour photon growth on
both the entrance and target sites. This behaviour is in stark contrast to a passive quantum walk
search.

We compare the passive and driven search in figure 4.8. In figure 4.8(a), we consider a passive
quantum walk search, where blue gives the occupation probability on the entrance and red on the
target mode. At the start of the search the walker is localised in the entrance mode and due to the
phase rotations between the eigenmodes of the walk, we find a peaked probability of presence
on the target mode after some time. However, as the evolution is not complete, the phases go
out of turn and the probability to find the walker on the target mode diminishes again. This
oscillating behaviour means that the walker may only be found on the target mode at specific
points in time. Opposed to the passive search, the driven quantum walk search favours walkers
to be created in the entrance and target modes, as shown in figure 4.8(b). In turn, we observe
a continuous growth of probability of presence on both sites. This is a massive advantage to
the passive search, as we only have to wait for some minimum time before we can choose to

11Represented by a linear chain, as shown in figure 4.7(a).
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Figure 4.9 – Eigenmode of the glued trees graph and its linear chain representation [65]. In (a), we
plot the weights of the eigenmode on the vertices in the linear chain representation
of the glued trees graph. In (b), we rescale the weights to the total number of glued
trees graph vertices in a single column. As the number of vertices in a column de-
creases to the sides, the eigenmode weights on the entry and target vertices increase
exponentially.

measure our system and do not have to rely on specific timings for the walker to be present in
the target mode.

To show that our scheme enables a quantum walker to traverse the graph in only polynomial
time, we have to consider two main factors for an increasing system size, the weight of the cho-
sen eigenmode on the entrance and target modes, as well as the spacing of the eigenfrequencies
between adjacent eigenmodes of the system. We begin with the weights that the entrance and
target modes contribute to the chosen eigenmode for the search.

As we consider a defect in the centre of the linear chain (CN,N+1 =
√
2), the eigenvalues of

this system are not given by equation (4.6), but have to satisfy [235]

UN (λj) = UN−1(λj) , (4.30)

where UN is the Chebyshev polynomial of the second kind of degree N . However, the eigen-
vectors are given by [235] and are the same for the linear chain with and without the defect.
The difference in the shape of the eigenfunctions stems from the fact that they have to be eval-
uated at the eigenvalues, which differ for the two systems. As the size of the system increases
(N →∞), the eigenvalues of the two systems become more and more similar and therefore also
the eigenmodes converge to one another. The weight of the j-th vertex to the k-th eigenmode of
the linear chain is given by [235]

vj,k =

√
1

N
sin

(
jkπ

2N + 1

)
(4.31)

and we find that the mode with most weight at the edges of the chain is, for large N and k = N ,

vj,N =

√
1

N
sin

(
jNπ

2N + 1

)
≈
√

1

N
sin

(
jπ

2

)
. (4.32)
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Figure 4.10 – Numerically calculated weights of entrance and exit modes contributing to eigen-
mode ÂD on the glued trees graph [65]. (a) shows the direct dependence on the
depth of the full glued trees graph, whereas (b) shows a linear behaviour with respect
to a 1√

N
-scaled y-axis. This confirms that the weight contributing to the eigenmode

decreases only polynomially up to a depth of N = 11.

We plotted this mode already in figure 4.7(b) for vertices of the full glued trees graph. Further-
more, we depict the mode also directly for the vertices of the linear chain in figure 4.9. Figure
4.9(a) shows the unscaled weights, as given by equation (4.32). In figure 4.9(b) we rescale the
weights to the full number of vertices in a column of the glued trees graph. The weight on the
outer modes increases exponentially compared to the middle, as the number of vertices in the
middle of the glued trees graph increases exponentially with the depth of the graph.

We considered the eigenmode structure of the linear chain in such detail to answer whether the
weight of the entrance and target mode that contributes to the chosen eigenmode of the search
algorithm declines only polynomially with increasing system size. To answer this question,
we numerically calculate the weights of entrance and target mode for different depths of the
glued trees graph up to N = 11 in figure 4.10(a) and find a slow decrease in the weights. To
quantify this behaviour, we re-scale the y-axis of this plot with 1√

N
in figure 4.10(b). The linear

behaviour evident in this figure gives numerical evidence that the weights of entrance and target
mode to the chosen search mode decline by 1√

N
up to N = 11. Therefore, we do not have to

compensate an exponential escape of walkers to other positions on the graph due to the structure
of the eigenmode.

The second factor that we have to investigate is the spacing of the eigenfrequencies with
increasing system size. For large system sizes, the eigenfrequencies are roughly given by

Ωk ≈ cos

(
kπ

2N + 1

)
. (4.33)

Therefore, the minimal phase-mismatch ∆ between the chosen eigenmode with ωp = ΩN and
the adjacent ones ΩN±1 decreases only polynomially. As the photon growth in the adjacent
eigenmodesK = N±1 oscillates with a period of 1

∆ , the polynomial decrease in∆ only causes
a polynomial increase in the minimum time that we have to wait before measuring.
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To summarise, we investigated the shape of the optimal eigenmode for the search algorithm
and showed that the weights of the entrance and target mode contributing to it decrease as 1√

N
with the system size. This shows that we do not have to compensate an exponential escape
of walkers to unneeded positions on the graph, but only need to use a polynomial increase
in resources such as pump power. Secondly, we showed that the minimum time needed to
drown out the population on positions other than the entrance or target mode also increases only
polynomially with the system size. This is due to the polynomial decrease in the phase-mismatch
between the optimal and adjacent eigenmodes. From these two effects, we conclude that the
walker in the driven quantum walk system can traverse the glued trees graph in polynomial time
and with polynomial resources, which is a clear advantage over the classical walker that needs
exponential time to traverse the graph.

Summary
In conclusion, we introduced a new type of continuous-time quantum walk systems, driven
quantum walks. We investigated two driving mechanisms for the photon creation, a lasing
and a squeezing term. We showed fundamentally different dynamics compared to a pas-
sive quantum walk and quantified that for the lasing case with the variance of the walkers
of σ2 ∝ t3, where an increase of t2 comes from the photon creation.
Furthermore, we constructed a search problem with the well-investigated glued trees graph
and showed that a walker of a driven quantum walk system can traverse this graph in poly-
nomially increasing time and with polynomially increasing resources. This gives us an
exponential speed-up compared to a classical walker, which traverses the graph only in
exponential time.

4.3 BosonSampling in Non-linear Waveguide Arrays

Using the formalism and the concepts that we derived in the previous section, we are now able to
apply the non-linear waveguide array system from section 4.1 to the computationally hard prob-
lem of BosonSampling [7, 236]. This non-universal model of quantum computation is, at the
moment, the most promising candidate to show quantum-over-classical advantages. The con-
ventional approach to BosonSampling involves either deterministic or post-selected probabilistic
single-photon sources coupled to a passive, linear chip that encodes a sufficiently complex uni-
tary transformation [237–242]. In this section, we show that BosonSampling is also possible in
a genuinely non-linear system.

To do this, we use the previously introduced concepts to map a non-linear waveguide array
to a protocol called Scattershot BosonSampling [243]. First, we discuss the general problem
of BosonSampling and motivate its impact on the quantum optics and computational science
community. Second, we review the protocol of Scattershot BosonSampling, which we utilise
for the non-linear waveguide array. After this introductory part, we go into detail about the
considered non-linear waveguide array system and map it to a linear system by deriving the pas-
sive transfer unitary that is sampled during a BosonSampling experiment. This passive transfer
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unitary provides a novel matrix connection between the spatial modes of the signal and herald
photons and may provide new insights for the state interpretation, also in other fields. Follow-
ing this derivation, we investigate whether the transfer matrix is complex enough to allow for
valid BosonSampling runs. We find however, that the symmetry of the derived transfer matrix
prohibits us to give a final answer, since the complexity to calculate Permanents of symmetric
matrices has not been investigated before. Finally, we give an outlook on the prospects for an
experimental implementation of our scheme [236].

4.3.1 What is BosonSampling?

With a question like this, one usually first looks it up on Wikipedia [244], which says the fol-
lowing: Boson sampling constitutes a restricted model of non-universal quantum computation
introduced by S. Aaronson and A. Arkhipov..While this is a well-designed answer and very much
correct, it does not provide an insight to what BosonSampling does and why it is so interesting.

The motivation to introduce a non-universal quantum computational problem such as Boson-
Sampling is straightforward from a computational point of view. Consider the Extended Church-
Turing Thesis (ECT), which says that "all computational problems that are efficiently solvable
by realistic physical devices, are efficiently solvable by a probabilistic Turing machine" [7].
However since 1994, when Peter Shor [245] presented his famous algorithm which says that
predicting the results of a given quantum-mechanical experiment, to finite accuracy cannot be
done by a classical computer in probabilistic polynomial time, unless factoring integers can as
well to the computational science community, it has been clear that the ECT does not fit very
well to the accepted laws of quantum mechanics. Therefore, as Scott Aaronson presented during
his talk "The Limits of Quantum Computers (or: What We Can’t Do With Computers We Don’t
Have)"12 there are three possibilities

1.: The ECT is false.

2.: Textbook quantum mechanics is false.

3.: There exists an efficient classical factoring algorithm.

(4.34)

Unfortunately, the existence of Shor’s algorithm means that one of them must be the case. As
physicists, we believe that quantum mechanics is correct13. At the moment, the most acceptable
solution to this dilemma seems to be that proving the ECT false would have the least bad con-
sequences. Yet, the implementation of Shor’s algorithm to verify the function of this protocol
would require a universal quantum computer. Unfortunately, those are quite difficult to come
by, even though a lot of progress has been made towards this goal [246–251]. Nevertheless, we
would like to find a protocol on the photonic platform that does not have to be universal but still
shows a quantum advantage compared to the classical computation.

In 2004 Stefan Scheel [252] derived that the probability to measure a specific photon pattern
n at the end of a transformation matrix T depends on the photonic input state (which comprises
vacuum and specified inputs of indistinguishable single photons) and the transformation matrix.

12First given at: University of Waterloo, 19.2.2007
13Hopefully.
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Figure 4.11 – Schematic of the Aaronson & Arkhipov BosonSampling scheme [7] and selection
rules for the sampled matrix [253]. In (a), N photons are inserted into a transfor-
mation matrix T and the photon patterns at the output are detected. As the photon
pattern probabilities are proportional to the Permanent of the sampled submatrix TS
[252], the BosonSampling problem is in the #P computational complexity class.
The submatrix TS is sketched in (b), the columns are selected by the input pattern
and the rows by the modes, where a photon was detected. At the intersection, the en-
tries of T are selected. As such, the sketched matrix forN = 3 is a 3×3-dimensional
TS .

An example of the setup is given in figure 4.11(a). Scheel showed that for such a setup the output
probabilities are given by the Permanent of a submatrix TS

P (n) = |Perm(T[in|out])|2 := |Perm(TS)|2 =

∣∣∣∣∣∣
∑
σ∈PN

N∏
i=1

TSi,σ(i)

∣∣∣∣∣∣
2

, (4.35)

where [in|out] is the combination of the single photon input and occupied output modes of n
and PN are all symmetric permutations from 1 to N . While this notation for the Permanent may
look complicated, its calculation becomes intuitive if we note that the Permanent is calculated in
the same way as the determinant, however all signs in the summation are positive. The selection
process for the submatrix TS is sketched for three photons in 4.11(b). From the overall transfer
matrix T we first select the columns where we input a photon, i.e. the first three in our example.
The rows are selected by the output pattern n, where we detect a photon. At the intersection
points of the rows and columns, we retain the entries and use the obtained 3 × 3-dimensional
matrix to calculate the Permanent.

So far, we only drew on the results as published by S. Scheel in 2004 and did not even touch
the achievements of Scott Aaronson and Alex Arkhipov in 2011 [7]. Their achievement was to
use this probability formula in the context of computational complexity and develop a quantum
sampling problem that can disprove either of the noted claims in (4.34). In order to appreciate
the full scope of their results we summarise a few main points of their derivation14. We en-
trust anybody interested in their full proof to the metaphorical hands of the 96 pages of their
conference paper [7]. Everybody else may follow the summary below.

14We need a few of their main conjectures and theorems for the proof in section 4.4
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Consider the scheme in figure 4.11(a). It is identical to the setup used for the interpretation of
the Permanent relation by Scheel. We input N photons into adjacent modes of a linear transfor-
mation and measure the output probabilities. The calculation of all output pattern probabilities
falls into the #P complexity class15, as the generating function, the Permanent, is #P-complete
[255]. As such, they define the classically hard to solve problem of BosonSampling. Then, for
this particular setup, Aaronson and Arkhipov show 2 main theorems

• "The exact BosonSampling problem is not efficiently solvable by a classical computer,
unless P#P = BPPNP."16 To prove this theorem, they need to show that the approximation
of the Permanent up to a multiplicative constant is in #P and that if we had a classical
algorithm for the BosonSampling problem, then we could approximate the Permanent up
to a multiplicative constant and the polynomial hierarchy collapses17.

• As we wish to implement this BosonSampling computer, we have to allow for errors
and therefore approximate BosonSampling. In detail, this means that the BosonSampling
computer does not sample directly from an ideal distribution, DA, but from an approxi-
mate one D′A, with an additive error tolerance |DA −D′A| < ε. Therefore, Aaronson and
Arkhipov show that also an approximate BosonSampling problem is hard to solve. This is
a bit more complicated both to understand and to prove. In principle, they suppose that a
classical adversary machine might know which BosonSampling probability we would like
to sample and promptly corrupt this probability by inserting a classical approximation of
the corresponding click probability. While the value for the probability that the corrupted
BosonSampling machine spits out is a valid approximation, it will not provide a solution
to the #P-complete problem we want to investigate.

We will not use the proofs necessary for theorem 1 in this thesis. Therefore, it suffices to just
know that exact BosonSampling is hard. Nevertheless, we want to comment on the proof for
theorem 2 and the technical requirements for the sampled matrices.

The main requirement of Aaronson and Arkhipov that they need to prove theorem 2 is that
a BosonSampling computer is able to use a "robust" BosonSampling encoding, such that if a
small fraction ε of all events are "badly wrong", it retains the complementary 1 − ε as valid
results. If we suppose that an approximate BosonSampling computer indeed works this way,
we use this property to trick a possible classical adversary. The way to show that approximate
BosonSampling up to an additive error (Problem |GPE|2± in [7]) is hard uses the fact that we
smuggle the interesting probability into the scheme as a random output of the BosonSampling
computer. Heuristically, the adversary will not know which instance we are interested in and
cannot corrupt this result with a large probability. However, if the adversary (which is classical)
can approximate most of the results of our approximate BosonSampling computer18 and there-
fore corrupt our result, also the Permanent can be approximated in polynomial time. This would
be bad, as it implies a collapse of the polynomial hierarchy.

15For an introduction in computational complexity theory, see [254].
16AA 2011: Theorem 1
17Which the computational scientists strongly believe will not happen.
18Because of the robust encoding only ε results are allowed to be wrong.
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So, the answer we have to find is: How do we hide our interesting result in the output of a
BosonSampling computer and how do we make such a device robust? The technical component
that we need to make this argument valid is a special choice of the transformation matrix T . If
we choose a unitary transformation matrix of dimensionM×M according to the Haar measure,
then there exists a proof that the entries of any N × N submatrix (M > N2) are in variation
distance to a matrix of independent and identically distributed (i.i.d.) Gaussian matrices19 [7].
The sampling from such a device is random, meaning that even if we put in a defined input
photon pattern into the first N inputs of the transformation matrix, we cannot predict where the
photons will come out at the end. This fulfils the robustness criterion for our BosonSampling
computer. Furthermore, as we demand that the transformation matrix is much larger than our
photon number, we can also hide the interesting probability in the multitude of other randomly
sampled output patterns. As such, we conclude that given the choice of the Haar random unitary
transformation matrix, an approximate BosonSampling problem up to additive error is difficult
to solve, or more specifically in FBPPNPO .

However, Aaronson and Arkhipov remain short on the final proof that the approximate Boson-
Sampling problem up to additive error is actually in the #P complexity class. Nevertheless, they
base this claim on two conjectures, the Permanent-of-Gaussians conjecture, which says that es-
timating the Permanent of i.i.d. Gaussian matrices really is #P-hard (GPE× in [7]). The other
conjecture, the Permanent anti-concentration conjecture connects the absolute square of the Per-
manent that we sample, directly to the complexity of the Permanent itself and matches them to
the same complexity class, i.e. #P. With these two conjectures, Aaronson and Arkhipov con-
clude BosonSampling is indeed not solvable by a classical computer, unless P#P = BPPNP,
which implies a collapse of the polynomial hierarchy.

The BosonSampling problem is very interesting not only from a quantum computing point
of view, but as it is also almost experimentally feasible, many groups implemented such a sys-
tem as proof of principle experiments [237–242]. Unfortunately, the main issue to achieve a
scalable experimental implementation is the reliable generation of pure and indistinguishable
single photons. Using probabilistic single photon sources, e.g. heralded sources of paramet-
ric down-conversion, scales exponentially bad to high photon numbers, as the state creation is
probabilistic. While a lot of progress has been achieved on the field of deterministic single
photon sources from semiconductor quantum dots, the generation of indistinguishable photon
sources with perfect collection efficiency is still up to technological optimisation [256–261] and
proof-of-principle BosonSampling experiments have recently been published [262–264].

In this regard, Lund et al. [243] have proposed a conceptual improvement on the BosonSam-
pling scheme for the implementation with probabilistic down-conversion sources. The schematic
is given in figure 4.12(a).

Contrary to the original BosonSampling scheme, we now allow that all inputs of the Haar
random transfer matrix T are connected to probabilistic single photon sources. In this instance
they are realised by two-mode squeezers where one half of the created photon pairs is connected
to heralding detectors and the other half is coupled to the transformation matrix. A heralding
event of N photons, as well as a detection event of the other N photons constitutes a valid
BosonSampling instance.

19This means that all matrix entries are randomly chosen according to the complex normal distribution.
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Figure 4.12 – Schematic of the Scattershot BosonSampling scheme, as proposed by Lund et al.
[243]. Contrary to the original BosonSampling protocol, the input ports are cou-
pled to two-mode squeezers and the input photons to the transformation matrix are
heralded separately.

As they consider a randomised photon state input, they can improve the scaling of the genera-
tion probability for N photons by a binomial factor

(
M
N

)
, where M is the number of modes and

N =
√
M is the number of photons needed for the BosonSampling experiment. This gives them

a 1√
N

-scaling to generate large photon numbers N , compared to the exponentially small prob-
ability to generate N photons in a specific pattern. As they are only combining a multitude of
BosonSampling instances of the Aaronson and Arkhipov scheme, the complexity arguments for
this scheme propagate through to this proposal, called Scattershot BosonSampling. However,
the same multiplexing argument makes their scheme a zero sum game in terms of statistical sig-
nificance, compared to the Aaronson and Arkhipov scheme. Since we are sampling from

(
M
N

)
instances of the original scheme with exactly

(
M
N

)
more photons, we do not gain any improve-

ment per individual sampling problem. Nevertheless, the Scattershot scheme is the most general
scheme up to date and was experimentally implemented as a proof-of-principle by the group of
Fabio Sciarrino in Rome [265].

On a related note, the group of T. Ralph also tackled the question of BosonSampling from a
general Gaussian input state [266] (i.e. squeezed states or thermal light). However, while they
have shown that sampling from thermal light is not in the same complexity class as BosonSam-
pling with single photon states, it is still not easy to simulate. However, they have not found a
conclusive argument for squeezed states or Gaussian states in general. This is the question we
will answer in section 4.4.

As a concluding remark, we would like to point out that this abstract construction of the
BosonSampling computer may also be used in real life problems. In 2015, the group of A.
Aspuru-Guzik found a way to use BosonSampling to simulate the shape of molecular vibronic
spectra [267].
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Figure 4.13 – Schematic of the proposed waveguide array BosonSampling experiment [236]. We
use a highly non-degenerate down-conversion process and pump each waveguide
with a different pump frequency. After the state generation, we split of one half of
the generate photons as heralds. As their wavelength is in the near infrared regime
Ch = 0, the photons exit the waveguide in which they were created. The other
half that is generated in the telecom regime passes a single-frequency filter ωfilter =
ω0 to make them indistinguishable. Finally, we also detect the sampling patterns
depending on the heralding pattern.

4.3.2 System Design and Derivation of the BosonSampling Matrix

To utilise the non-linear waveguide array for BosonSampling experiments [236], we designed
the system depicted in figure 4.13. Our potential BosonSampling device comprises N weakly
coupled waveguides for the telecom regime, while we exclude coupling in the near infrared or
visible wavelength range [57, 211]. Additionally, we enable the process of parametric down-
conversion in a highly non-degenerate regime. This means that we use pump photons in the
green (λp ≈ 530 nm) that decay into photons in the near infrared (λh ≈ 800 nm, our herald) and
the telecom regime (λs ≈ 1550 nm, our sampling photons). As already discussed, parametric
down-conversion has to obey energy ωp = ωh+ωs and momentum conservation kp = kh+ κs.
The coupling of the signal photons in the telecom regime between the waveguides modifies
the propagation vectors [214] and therefore the momentum conservation and phase-matching
function.

To achieve a mapping of such a non-linear waveguide array system to the protocol of Scat-
tershot BosonSampling, we split the sampling and herald photons on a dichroic mirror. We
detect the herald photons directly and obtain a pattern b̂j . The sampling photons pass a single
frequency filter with ωfilter = ω0 to ensure their indistinguishability in the frequency domain.
Finally, we also detect the patterns of the sampling photons âj′ , which can couple back and
forth and evaluate them according to the corresponding heralding pattern. After we derive the
mathematical structure of our system, we will discuss, why we need to pump each waveguide of
the array with a different pump frequency [236].

BosonSampling experiments strongly depend on the implementation of the unitary transfor-
mation matrix T [7]. This T is usually implemented by a passive, linear coupling matrix, i.e. an
array of beam splitters. In our case however, we allow for photon creation inside our non-linear
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waveguide array and the overall transformation that we implement is decidedly non-passive. In
the following, we show how to extract a passive transformation matrix T between the heralding
pattern (depending on index j) and the sampling pattern (depending on index j′). This result is
already interesting, as it establishes a novel description of correlations between the signal and
herald photons that is not restricted to the scope of non-linear waveguide arrays.

To derive the transformation matrix for BosonSampling in non-linear waveguide arrays, we
use the notation introduced in section 4.2 [65]. We begin with the full Hamiltonian of the
coupled, non-linear system [236]

Ĥ(z, t) =
N∑
j=1

βh(ωh)b̂
†
j b̂j +

N∑
j=1

βs(ωs)â
†
j âj + Cs

∑
N.N.

â†j âj+1

+

N∑
j=1

Γj(t)â
†
je
−iωst b̂†je

−iωht + h.c. ,

(4.36)

where βν(ων) is the propagation constant of a light field in an uncoupled waveguide at frequency
ων , Cs is the coupling parameter for the sampling photons and Γj(t) denotes the undepleted
pump field in waveguide j. The first two terms encode the free propagation of the herald and
sampling photons in the waveguide array, while the third term adds a finite coupling probability
to adjacent waveguides only for the sampling photons, i.e. Cp = Ch = 0. Finally, the forth term
encodes the non-linear parametric down-conversion process, where a pump photon decays into
a herald b̂j and a sampling photon âj .

We solve this Hamiltonian by transforming it to the eigenmode picture for the sampling pho-
tons and obtain [236]

Ĥ(z, t) =

N∑
k=1

κs,kÂ
†
kÂk +

N∑
j=1

βh(ωh)b̂
†
j b̂j +

N∑
j=1

Γj(t)b̂
†
je
−iωht e−iωst

N∑
k=1

µ∗jkÂ
†
k + h.c. ,

(4.37)
where κs,k = βs(ωs) + 2Cs cos

(
kπ
N+2

)
is the eigenvalue for the k-th eigenmode of the finite

waveguide array with fixed boundary conditions, see section 4.1.2. The transformation from
waveguide to eigenmode basis is encoded by Âk =

∑N
j=1 µjkâj for the k-th eigenmode [220].

We move to the interaction picture, which removes the free propagation terms and enter the
classical pump field Γj(t) = Γj exp [i ωp,jt]. This yields [236]

Ĥint(z, t) =
N∑
j=1

N∑
k=1

Γj exp [i (ωp,j − (ωs + ωh)) t]

× exp [i (βp − (κs,k + βh)) z]µ
∗
jkÂ

†
k b̂
†
j + h.c. .

(4.38)

Note, that we allow for waveguide dependent pump frequencies ωp,j . To obtain the final output
state from a down-conversion source, we have to integrate over time and the crystal length. This
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yields the known generation unitary for a parametric down-conversion device [109]

exp

(
− i
~

∫
ĤPDCdt

)
= exp

− i
~

N∑
j=1

N∑
k=1

Γjµ∗jkδ(ωp,j − (ωs + ωh))

× sinc

[
(βp − (κs,k + βh))

L

2

]
exp

[
−i(βp − (κs,k + βh))

L

2

]
Â†k b̂

†
j + h.c.

)
,

(4.39)

where the δ-distribution encodes the energy conservation in the process, while the sinc-function
contains the momentum conservation. For simplicity, we ignore time-ordering effects and ne-
glect the h.c.-part in the following discussion to simplify the notation.

To find the transformation matrix for a BosonSampling experiment, we have to connect
the patterns of the herald photons with the sampling patterns. Therefore, we apply the back-
transformation from the eigenmodes Âk to the waveguide basis, which we denote âj′20. This
finally yields the unitary for the down-conversion state in the two-photon picture

|Ψ〉2 photon =
∑
j,k

N∑
j′=1

Γjµ
∗
kj′µ

∗
jkδ(ωp,j − (ωs + ωh))

× sinc

[
(βp − (κs,k + βh))

L

2

]
exp

[
−i(βp − (κs,k + βh))

L

2

]
â†j′ b̂

†
j |0〉

=:

N∑
j=1

N∑
j′=1

Tjj′ â
†
j′ b̂
†
j |0〉

(4.40)
where the matrix T is the desired BosonSampling transformation matrix that connects the herald-
ing photons b̂j to the sampling photons âj′ [236]. The transformation matrix Tj,j′ contains the
linear properties of the array with the band-structure for the sampling photons κs,k and the ba-
sis transformation to the eigenmode transformations µ∗kj′ and µ∗jk. Additionally, the non-linear
properties of the array are encoded through the energy conservation δ(ωp,j − (ωs+ωh)) and the
phase-matching function sinc

[
(βp − (κs,k + βh))

L
2

]
exp

[
−i(βp − (κs,k + βh))

L
2

]
.

For BosonSampling, the description of the output state in the two-photon picture is not suf-
ficient. In general, we want to consider many photons for this application. Using higher-order
contributions, we can write the output state, as [236]

|Ψ〉out = exp

[
− i
~

∫
ĤPDCdt

]
|0〉 =

∞∑
n=0

1

n!

− i
~

N∑
j=1

N∑
j′=1

Tjj′ â
†
j′ b̂
†
j

n

|0〉 . (4.41)

To understand the effect of the heralding scheme in the system, consider the example of measur-
ing a single herald photon b̂j in mode 1 (b̂1) and another photon in mode 2 (b̂2). This configura-

20As coupling might have happened between the generation waveguide and the detection waveguide, we use a new
label j′ for this basis transformation.
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tion selects the columns 1 and 2 from T for the sampling pattern

〈11, 12|Ψ〉out =
1

2

(
N∑
k=1

T1,kâ
†
k

) (
N∑
l=1

T2,lâ
†
l

)
|0〉 (4.42)

and the probability to measure two â photons in the two modes k and l, is given by

P (1k, 1l) ∝ |Perm(TS[12|kl]))|2 , (4.43)

where TS[12|kl] is the sampled 2 × 2 submatrix. In terms of Scattershot BosonSampling, we
interpret TS[12|kl] as TS[in|out], see figure 4.12(b).

Finally, we comment on the conditions to obtain a valid heralding procedure. The most im-
portant thing that we need to guarantee is that we reproducibly sample a unique row and column
for each heralding and sampling pattern [236]. Considering equation (4.39), this necessitates
a unique mapping from the heralded waveguides to the eigenmode, where a photon pair was
created. To understand this condition, consider the following counter example. We pump two
waveguides (i, j) of the array with the same pump frequency ωp,j = ωp. Then, the two pumped
waveguides generate photon pairs in the same eigenmode of the array. However, as the two
corresponding heralding photons will contribute to the same sampling pattern â, it is not clear
which sampling photon belongs to which generation event. As such, we cannot make a definite
statement which columns of the matrix T have been sampled in this experiment. To eliminate
this problem, we need to pump separate eigenmodes in different waveguides by adapting the
pump frequency in the k-th waveguide to pump also the k-th eigenmode of the waveguide array.
With this configuration, an ambiguous heralding event is not possible [236].

4.3.3 Complexity of the Transformation Matrix

To gain an idea about the computational complexity of our problem, we investigate the different
contributions to the transformation matrix T first. As we have shown above, it comprises the
basis transformation from waveguide to eigenmode basis, the phase-matching and energy con-
servation conditions together with the pump shape and the back transformation to the waveguide
basis.

In this thesis, we consider a finite size waveguide array for which the basis transformation is
given by [65]

Âk =
N∑
j=1

µjkâj =

√
2

N

N∑
j=1

sin

(
jkπ

N + 2

)
âj , (4.44)

as we have discussed in section 4.1. This real-valued transformation rule means that the trans-
formation into the eigenmode basis µjk and the back transformation µkj′ are equivalent and the
matrix T becomes symmetric [236].

The non-linear part of the matrix promises more complexity. We can select our pump fre-
quencies for the different waveguides, such that
sinc

[
(βp − (κs,k + βh))

L
2

]
exp

[
−i(βp − (κs,k + βh))

L
2

]
≈ 1 and therefore negligible. Then,
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our final matrix can be decomposed in

T = µΓµ (4.45)

where Γ is a diagonal matrix that contains the intensity of the pump distribution and the corre-
sponding phase for each waveguide input Γ = Γ0⊕Nj=1 e

−iφj . The matrices µ and µ encode the
basis transformations. If we now select a pump phase distribution according to the Haar measure
(i.e. the phases are randomly chosen), the matrix T is also a Haar random unitary. This is due to
the symmetry of the Haar group, which is invariant under unitary transformations [268, 269].

As such, the sampled matrix T fulfils the requirement for the approximate sampling condition,
i.e. that it belongs to the Haar random group. Furthermore, it is even reconfigurable as we can
change the pump phase distribution along the input waveguides [236]. However, if the unitary
transformation does not fulfil the criteria to make exact sampling hard, there is no point in con-
sidering an approximate sampling problem. Indeed, the symmetry of the matrix already presents
a problem for the complexity of exact sampling, as the complexity to sample Permanents from
symmetric matrices is not finally answered. As such, the implemented matrix T might be too
simple due to its symmetry.

4.3.4 Prospects for Experimental Implementation

The greatest challenge from an experimental point of view is to guarantee a valid heralding pro-
cedure. It demands that we pump separate eigenmodes in separate pump waveguides. However,
this also places a restriction on the minimal spectral separation of the corresponding phase-
matching conditions in frequency space. Consider the situation sketched in figure 4.14(a).
There, we illustrate the phase-matching conditions for different eigenmodes in the frequency
space spanned by the herald ωh and sampling ωs frequencies. The separation of the phase-
matching conditions in this frequency space is indicated by ∆ωEM and depends solely on the
coupling strength of the sampling photons Cs. Additionally, due to the finite waveguide length,
the phase-matching conditions have a finite width in frequency space, as defined by ∆ωPM.
They are represented by the small Gaussian curves on top of the phase-matching conditions.
To guarantee that we only pump one eigenmode per waveguide, we have to ensure that these
phase-matching conditions do not overlap in frequency space [236]. Otherwise the same pump
frequency could generate photon pairs in more than one eigenmode and we cannot be sure,
which columns of T are sampled in an experiment.

We plot this situation for a realistic system in figure 4.14(b). We assume that the sampling
photons passed the single-frequency filter and set ωs = ω0. Then we depict the spectral sepa-
ration of the eigenmodes depending on the herald wavelength (for better intuition of the dimen-
sions) in the upper panel. We inverted the the axes of the usual bandstructure plot, such that the
typical cosine bandstructure for the array is tilted by 90◦. We mark the spectral separation of
the eigenmodes for the undisturbed waveguide (which coincides with the k = N/2 eigenmode,
depicted in black). In the lower panel, we plot the corresponding phase-matching functions de-
pending on the herald wavelength and associated the colour coding to the different eigenmodes
of the system. From this figure, we already find a finite overlap between adjacent phase-matching
conditions. Especially for the outer phase-matching functions this overlap increases drastically,
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Figure 4.14 – Distance of phase-matching curves in the waveguide array down-conversion [236].
In (a), we depict the condition for a valid heralding procedure, i.e. the phase-
matching curves must not overlap. To investigate this situation for a realistic waveg-
uide array 21, in (b) we plot the spectral separation of different eigenmodes (upper
panel) and the corresponding widths of the phase-matching (lower panel). To quan-
tify the resulting overlap between adjacent phase-matching conditions, we vary the
number of waveguides in the array and its length in (c). For large arrays and short
waveguides the overlap approaches unity and reduces for long arrays and few waveg-
uides. The white line denotes the parameter combinations, where the overlap equals
5%.

as the eigenmode separation decreases due to the cosine shape.
In figure 4.14(c), we plot the overlap of the phase-matching functions between the central

k = N/2 and the adjacent k = N/2 + 1 eigenmodes, which is the best case available. The two
main parameters for determining the overlap are the length of the waveguides (they determine
∆ωPM) and the number of waveguidesN (determines∆ωEM for a fixed coupling constant). For
this calculation, we do not consider the full description of the phase-matching function, but use
the gaussian approximation [271]

sinc(x) ≈ exp(−0.193x2) . (4.46)

The separation between the eigenmodes becomes smaller for many waveguides, as we have to
fit more eigenmodes onto the cosine bandstructure and the overlap between the phase-matching
functions increases for large arrays [236]. Contrarily, the width of the phase-matching functions
decreases with longer waveguides (∆ωPM ∝ 1/L), the overlap decreases for long arrays. In
white, we highlighted the 5% isoline, which we can use as a maximally tolerable overlap be-
tween the two central phase-matching conditions. As we are limited with the available waveg-
uide size for an experimental implementation in LiNbO3 to approximately Lmax ≈ 10 cm,
we are limited to approximately 15-20 waveguides in an experimental implementation of our
scheme. Although this means that our system does not provide the necessary scalablility to high
photon numbers for an experiment, it can provide a simple platform to study BosonSampling
using non-linear processes. Furthermore, one might consider other material systems for the im-

21Simulation parameters: Cs = 350m−1 [70], N = 9, L = 0.04 cm, refractive indices: [270]
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plementation of non-linear waveguide arrays that are not subject to such stringent wafer size
requirements, such as silica. However, they do not possess the necessary χ(2)-non-linearity, that
is needed for the parametric down-conversion process. Then, less efficient χ(3)-processes, such
as four-wave mixing have to be considered and the results of this section have to be generalised
[272].

Summary
In summary, we mapped the non-linear system of waveguide arrays to the context of Boson-
Sampling experiments. We derived the transformation matrix that connects the spatial
properties of the herald to the signal photons, which is a completely new approach in quan-
tum information. As such, our result may not only be applicable in the context of non-linear
waveguide arrays, but also provide new insights into the quantum states of other systems.
Furthermore, we analysed the available complexity that we encode in the transformation
matrix. Finally, we investigated the prospects for the experimental implementation of such
a scheme and found that we are limited by the available length of waveguides for an imple-
mentation in LiNbO3. While this system is not intrinsically scalable due to the interplay of
waveguide number and necessary waveguide length, other material platforms such as sil-
ica might provide a solution with χ(3)-processes, such as four-wave mixing which is beyond
the scope of this thesis. Nevertheless, our non-linear waveguide array sparked research to
investigate BosonSampling schemes in the regime of non-linear systems, such as Driven
BosonSampling [273] that is not part of this thesis, as well as the protocol of Gaussian
BosonSampling, which we consider in the final section of this thesis.

4.4 Gaussian BosonSampling

In the previous section, we mapped a Scattershot BosonSampling problem to the system of
non-linear waveguide arrays. While this is interesting both from a theoretical and experimental
point of view, it does not answer the fundamental theoretical question to the computational
complexity from a general Gaussian state since the experiment is performed with heralded single
photons. Here, we now strive to construct the most general problem of BosonSampling and
answer this question [274, 275]. We first derive a general matrix relation that relates general
Gaussian input states to the probability of measuring a specific single photon output pattern
n after a linear transformation. From this result, we construct a BosonSampling problem that
takes Gaussian input states and show that it retains the complexity of the original scheme by
Aaronson and Arkhipov. Finally, we compare our scheme to the most efficient known single
photon BosonSampling scheme (Scattershot BosonSampling [243]) and show that our scheme
saves quadratically on the number of needed input states. As such, our scheme places the
experimental investigation of quantum supremacy into reach of current technology [274, 275].
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4.4.1 Photo-count Probabilities from a Gaussian State

Before we can construct a BosonSampling scheme akin to Aaronson and Arkhipov [7], we have
to find a closed-formula description for the probability to measure a specific photon pattern n
from a Gaussian state, akin to the results of the Scheel paper [252]. In this section, we show that
this probability is related to the Hafnian [276, 277], a matrix function that is more general than
the Permanent.

To do so, we begin with the phase space representation, see chapter 1, (similar to the ap-
proaches used in [266, 278]) for the probability to measure n

P(n) = πM
∫ M∏

j=1

dαjdα
∗
jQρ̂(α)Pn(α) (4.47)

with Qρ̂ is the Q-function representation of the Gaussian state and Pn is the P-representation of
the photon number measurement operator n̂ = ⊗Mj=1n̂j to measure n photons in the j-th mode.

We characterise a Gaussian input state solely by its 2M × 2M covariance matrix σ and a
displacement vector d [279]

σij =
1

2
〈{ζ̂i, ζ̂j}〉 − didj dj = 〈âj〉, (4.48)

where ζ̂ run over all âj , â
†
j and we assume d = 0. From the covariance matrix we can construct

the Q-function of the state, which is given by the convolution of the corresponding Wigner
function with another Gaussian function [227]

Qρ̂(α) =
1

|πσQ|
exp

[
−1

2
αtνσ

−1
Q αν

]
, (4.49)

where we substituted σQ = σ + I2M/2 and use the vector representation for
αν = [α1, α2...αM , α

∗
1, α
∗
2...α

∗
M ]. Note, that only the modes that include a detector at the output

contribute to σQ. If we do not measure a mode at all, the corresponding rows and columns are
removed.

With the P-function of the n-photon Fock state

Pn(α) =
e|α|

2

n!

(
∂2

∂α∂α∗

)n
δ(α)δ(α∗) (4.50)

we evaluate equation (4.47)

P(n) =
1

n!
√
|σQ|

M∏
j=1

(
∂2

∂α∂α∗

)nj
exp

[
1

2
αtνAαν

]∣∣∣∣
α=0

, (4.51)

with

A =

(
0 IM
IM 0

)[
I2M − σ−1

Q

]
. (4.52)

108



SECTION 4.4 Gaussian BosonSampling

( ) out

out

Figure 4.15 – Construction of the sampled submatrix AS from the overall matrix A for a three
photon pattern [274, 275]. Contrary to the single photon BosonSampling schemes,
our matrix entries are only selected by the measured output photon pattern. Due to
the symmetry of the problem in phase-space, we have a pattern in the selection of
the entries.

To further evaluate equation (4.50), we use Faà di Bruno’s formula [280] to calculate the deriva-
tives. We restrict ourselves to measuring either nj = {0, 1} photons in mode j as for the original
BosonSampling proposal. For N photons in total that means we have 2N remaining derivatives.
Expanding the derivatives yields [281]

∂2Ne
1
2
αtνAαν∏N

i ∂αi∂α
∗
i

= e
1
2
αtνAαν

∑
π

∏
χ∈π

∂|χ|αtνAαν∏
i∈χ ∂α

(∗)
i

, (4.53)

where the sum runs over all partitions π over the possible combinations of {α(∗)
i = αi, α

∗
i } and

the product over all the subgroups of π. An example term for two photons in modes 1 and 2 is
{α1}, {α∗1, α2, α

∗
2} and has the following term in the summation

1

4

∂αtνAαν
∂α1

∂3αtνAαν
∂α∗1∂α2∂α∗2

. (4.54)

Calculating the derivatives of αν , we find that the exponent has a quadratic dependency αtνAαν
and all derivatives of third order or higher vanish. Furthermore, the first order derivatives also
vanish as we evaluate equation (4.50) at α = 0. As such, the final expansion of the 2N deriva-
tives can be sorted into N sets of size 2, the perfect matching permutations (PMP). As an exam-
ple on how to construct the (2N−1)!! PMP22 for 2N indices, we consider the numbers 1, 2, 3, 4
and gain 3 possible PMPs

{12}{34}, {13}{24}, {14}{23} . (4.55)

22(.)!! denotes the double factorial.
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Using this construct, we write down the final result for equation (4.50) [274, 275]

P(n) =
1

n!
√
|σQ|

∑
µ∈PMP

N∏
j=1

ASµ(2j−1),µ(2j)
, (4.56)

where we stored the indices of the 2N derivatives in the vector µ. As it happens, Caianiello
[276, 277] defined this sum over the PMP as the Hafnian of a submatrix AS, which is defined by
the rows and columns that are selected by the detection events of n

P(n) =
1

n!
√
|σQ|

Haf(AS) . (4.57)

This closed-formula expression relates the photon counting probability for a specific detection
pattern to a well-defined matrix function, the Hafnian [276, 277]. With this approach, we can
include the covariance matrix of any Gaussian state, including squeezed (B 6= 0) and thermal
(C 6= 0) states, compare figure 4.15, as well as all combinations.

One main advantage of our approach is that we can absorb loss and noise dynamics directly
into the matrix A as they are Gaussian operations. As such, they do not deteriorate our statistics,
but only influence the shape of the matrix AS. Especially for the case of loss, we note that
squeezed contributions are transferred to thermal contributions and we move from a matrix with
only squeezing contributions (B 6= 0) to a matrix with squeezing and thermal contributions,
(B 6= 0) and (C 6= 0), in the presence of loss. However, we have to leave open the question on
how much loss we may tolerate, as sampling from thermal states only (B = 0 and C 6= 0) is not
in #P but BPPNP [266], which is not as hard.

As in the paper by Scheel [252], our photon counting probability depends on a submatrix AS.
To clarify the definition of the submatrix for our case, we sketch the construction of AS in figure
4.15. The full matrix of dimension 2M × 2M can be divided into four blocks of dimension
M ×M according to the combination of phase space variables α and α∗. Due to the symmetry
of the phase space construction, we find correlations between the single blocks. The matrix is
symmetric, as αi, α∗j has the same entry as α∗j , αi, i.e. the lower anti-diagonal block Ct has to
be the transposed matrix of the upper anti-diagonal block C. Similarly the diagonal blocks are
related, the lower diagonal block is the conjugated upper diagonal block. Then, an N photon
detection event selects a 2N × 2N submatrix AS where a click in mode j selects the columns j
and j +M and the corresponding rows j and j +M .

Extending this probability to the case where we measure more than one photon in one mode,
we still retain equation (4.57), however we have to modify the sampled submatrix [275]. Con-
sider a single spatial mode as an example. Then, the matrix A is of dimension 2× 2

A =

(
A11 A12

A21 A22

)
. (4.58)
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If we detect two photons in the same mode, we have to evaluate

P(n1 = 2) =
1√
|σQ|

1

2!

∂2

∂α2
1

∂2

∂α∗
2

1

e
1
2
αtνAαν

∣∣∣
α=0

. (4.59)

We can circumvent this problem by "inventing" a second mode and repeating the rows and
columns of A, i.e.

P(n1 = 1, n2 = 1) =
1

2!
√
|σQ|

∂

∂α1

∂

∂α∗1

∂

∂α2

∂

∂α∗2
e

1
2
αtνA

′αν
∣∣∣
α=0

, (4.60)

with A′ as a new matrix that is given by

A′ =


A′11 A′12 A′13 A′14

A′21 A′22 A′23 A′24

A′31 A′32 A′33 A′34

A′41 A′42 A′43 A′44

 =


A11 A12 A11 A12

A21 A22 A21 A22

A11 A12 A11 A12

A21 A22 A21 A22

 . (4.61)

Naturally, A′ cannot be related to a proper quantum covariance matrix. It is just a mathematical
tool to express the higher order photon detection events in the Hafnian form [275].

With this expression, we now construct a BosonSampling problem analogously to the Aaron-
son and Arkhipov scheme, however with Gaussian states. In this thesis, we will consider
squeezed states only, which means that the anti-diagonal blocks of A vanish, i.e. C = 0.

4.4.2 Construction of Gaussian BosonSampling

The main idea behind the construction of the original BosonSampling protocol was to find a
system which is classically hard to solve. In the original scheme, this argument relied on the fact
that the calculation of the Permanent belongs to the #P complexity class. As our scheme relies
on the Hafnian, we have to comment on the complexity of this function.

The Hafnian is a more general function than the Permanent. Comparing the definitions of the
Permanent [equation (4.35)] and the Hafnian [equation (4.56)], it becomes clear that whereas
the the Permanent only counts the perfect matchings on a bipartite graph [282] (encoded in
the summation over PN with the indices i, σ(i)), the Hafnian counts all perfect matchings on
a general graph (encoded in the indices µ(2j − 1), µ(2j)). As such, it is trivial to see from a
computational point of view to see that the Hafnian is at least as complex as the Permanent23.
Furthermore, we can re-write the Permanent as the Hafnian of a special matrix [282]

Perm(G) = Haf

[(
0 G
Gt 0

)]
. (4.62)

As such, if we had an efficient algorithm to calculate the Hafnian, we could just dial up the ma-

trix
(

0 G
Gt 0

)
and have an efficient algorithm for the Permanent. This argument also holds true

23Thanks to Andreas Björklund for pointing this out.
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Figure 4.16 – Schematic of a Gaussian BosonSampling computer [274]. A Gaussian Boson-
Sampling computer takes at least N single mode squeezed states at the input of
an M -dimensional Haar random unitary transformation TGBS. At the output, the
state is measured in the photon number basis, where the size of the interferometer
(M = dim(TGBS) = O(N2)) guarantees that only single photons are measured.

for the approximation proofs of the Permanent, at least for this specific matrix shape. Further-
more, we can decompose the Hafnian of a general matrix into a sum over Hafnians, a Permanent
and other terms

Haf(R) = Haf

(
A B
Bt C

)
= Haf(A)Haf(C) + Perm(B) + other terms ,

(4.63)

where we can still decompose the Hafnians of A and C into smaller submatrices and the other
terms are given by Hafnians over submatrices of R. As such, there exists strong evidence that a
multiplicative approximation of the Hafnian of a general matrix is in #P. This evidence fulfils
the criteria to show that exact sampling from a Gaussian state24 is in the same complexity class
as the scheme from Aaronson and Arkhipov.

With this argument, we proceed to construct a BosonSampling scheme based on Gaussian
states, as depicted in figure 4.16. We connect an array of single mode squeezers to the inputs of
an M -dimensional interferometer TGBS, which is represented by a Haar random unitary to keep
the technical conditions for the approximate sampling proof intact. At the output, we measure
all M modes with single photon detectors and record all clicks [274, 275].

Then, we can describe the effect of the squeezing on our system by the matrix

S =

(⊕M
j=1 coshrj

⊕M
j=1 sinhrj⊕M

j=1 sinhrj
⊕M

j=1 coshrj

)
, (4.64)

where rj is the squeezing parameter in the j-th mode and
⊕M

j=1Aj = diag(A1, A2, ...AM ) is a

24This is a different concept than in Scattershot BosonSampling, where we sample from heralded single photons
generated via Gaussian states.
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direct sum of block matrices. We write down the covariance matrix of the output state as

σ =
1

2

(
TGBS 0
0 T ∗GBS

)
SS†

(
T †GBS 0
0 T tGBS

)
(4.65)

and arrive at A = B ⊕B∗, with

B = TGBS

 M⊕
j=1

tanhrj

T tGBS . (4.66)

Here, we used that there are no thermal contributions to our state and therefore the anti-diagonal
blocks are C = 0. With this expression, we simplify equation (4.57) to

P(n) =
1√
|σQ|
|Haf(BS)|2 , (4.67)

where we restrict ourselves to the measurement of {0, 1} photons per mode. The construction
of the submatrix BS follows the construction of AS of equation (4.57). However, this formula is
not enough to fulfil all the criteria of a valid BosonSampling experiment. Below, we comment
on different aspects of our scheme.

Approximate Gaussian BosonSampling

To show that approximate Gaussian BosonSampling up to an additive error is computationally
hard, we have to show that a classical adversary may not corrupt a large fraction of the re-
sults from a Gaussian BosonSampling computer. In the Aaranson-Arkhipov proof, they use
randomised sampling to hide the interesting probability in the randomised output of the Boson-
Sampling computer. The technical claim that they have to fulfil is that the sampled entries are
within variation distance of independent and identically distributed (i.i.d.) Gaussian matrices.
To guarantee this condition, they use a transformation matrix according to the Haar measure
and sample only with N ≈ O(

√
M) photons. Then, the entries are distributed according to the

complex normal distribution and in variation distance to an i.i.d. Gaussian matrix.
In our scheme, we do not sample T directly, but submatrices of B. If we assume equal

squeezing parameters for all modes rj = r, we can simplify B = tanhr TT t, where TT t is
from the circular orthogonal ensemble of random matrices [283, 284]. For this class of matrices
it is known that a sufficiently small subset [N = O(

√
M)] is in variation distance to a product

of i.i.d. Gaussian matrices [285].
Consider now a classical adversary that wants to corrupt our BosonSampling experiment. We

believe that our BosonSampling computer is a "robust" one, i.e. a fraction of ε of the results
might be corrupted by the adversary25. However, as the measured output pattern is random in
the sense that we cannot anticipate which pattern we measure next, we and a possible adversary
do not know which probability (and therefore which submatrix) we will be interested in. Then,

25As the Hafnian is a more general function than the Permanent, it seems justified that it also allows for robust
encoding.
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if the adversary could approximate a large fraction of the probabilities to corrupt our result
this would contradict the assumed robust encoding. As such a classical adversary must be able
to approximate the problem, which implies a collapse of the polynomial hierarchy. Since the
approximation proof of Aaronson and Arkhipov only refers to the random sampling and the
hiding procedure of the sampled matrices, it is largely independent from the use of the Permanent
and is applicable to the situation at hand and we conclude that approximate Gaussian Boson
Sampling is also in FBPPNPO . The only problem that we may encounter is the symmetric
sampling of B (compare figure 4.15). However, since the Hafnian only considers the entries
above the main diagonal ofB [277] and the randomness ofB, we believe that the used sampling
technique is random enough.

As Aaronson and Arkhipov, we have to leave the final proof that approximate Gaussian
BosonSampling is in #P open. We can only conjecture that the complexity arguments of the
Permanent-of-Gaussians Conjecture and the Permanent-Anti-Concentration Conjecture hold
true for the Hafnians [274]. We believe that these two conjectures are justified as the Hafnian is
a more general function than the Permanent.

Dilute BosonSampling

For our scheme, we require that we only measure {0, 1} photons at the output in order to avoid
the repetition of rows and columns in the BS-matrix [275]. This has the simple reason that
the increased number of photons does not increase the complexity of this problem. As such,
we show that the probability to measure more than one photon at the output is sufficiently low.
Consider N single mode squeezers at the input that produce N photons on average. Then, if
we consider an M = O(N2) sized interferometer, we retain on average 1

N photons per mode
at the output. If we consider a single mode subsystem (and trace out over all others, we retain
a thermal state with mean photon number 〈n〉 ≈ 1/N . From the photon number statistics of a
thermal state, we calculate the ratio between the probabilities of two clicks versus one click and
find that

P(nj = 2)

P(nj = 1)
≈ 0.1 , (4.68)

which is sufficient to fulfil the condition.

Valid BosonSampling Events

For experiments with Fock states, as the original BosonSampling scheme from Aaronson and
Arkhipov or the Scattershot BosonSampling scheme, a fixed number of photons N enters and
exits the linear interferometer. Therefore, these experiments sample the pattern probabilities pj
from the family of photon patterns with N photons {PN}

{p1, p2, ...pCN }N = {PN} , (4.69)

where CN =
(
M
N

)
is the number of possible photon patterns of N single photons in M modes.

As the photons will leave the interferometer in any of these configurations, the probabilities have
to add up to unity, i.e.

∑
j pj = 1. For our scheme, this condition does not hold true anymore
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[274]. A single mode squeezed state may on average createN photons, but with a finite variance
according to its photon number statistics. Therefore, we sample from photon pattern families
with different photon numbers, i.e.

{{p0 = |σQ|}0, {p1, p2, ..., pC1}1, ...., {p1, p2, ..., pCN }N , ...} = {{P0}, {P1}, ..., {PN}, ...}
(4.70)

with
∑

N{PN} = 1. In principle this summation over photon number patterns runs from N ∈
[0,∞). However, in certain circumstances we might have to discard events as the complexity of
the BosonSampling experiment is in question. Especially, if N ≥

√
M , the complexity of the

problem is an open question, as the entries of the sampled submatrix may not be i.i.d. anymore.

Optimising Input Events

In order to optimise the input states and the complexity for an experimental implementation of
our BosonSampling scheme, we have to consider the photon pair event (PPE) probabilities for
photons from multiple (in our case K) single mode squeezed states.

Since the number of single mode squeezers at the input is directly absorbed in B, the overall
complexity of the BosonSampling scheme depends on the number of pumped input modes [274,
275]. If we pump K of our M input modes, B is a matrix of rank K (due to the diagonal
squeezing matrix). Since the matrix rank determines the complexity of the Permanent [286,
287], we can assume a similar result for the Hafnian. Then, we have to pump at least K = N
input modes with single mode squeezed states to saturate the possible complexity of our N
photon experiment in M = N2 modes. Therefore, we require that at least K ≥ N modes are
pumped at the input of the transformation matrix.

With this information, we can now adapt the operation regime of the squeezers at the input to
generateN PPEs. The probability to obtain such an event is determined by the negative binomial
distribution [288]

PK(N) =

(
K/2 +N − 1

N

)
sechK(r)tanh2N (r)

=
Γ (K/2 +N)

Γ (K/2)N !
sechK(r)tanh2N (r)

(4.71)

for N PPEs from K single mode squeezers. This curve is plotted in figure 4.17 for K = 14
single mode squeezed states with squeezing parameters rj = r = 0.8814. The average number
of photons per squeezer is 〈n〉 ≈ 1. Therefore, for the complete distribution, we find a mean
photon number of 〈n〉 = K sinh2(r) ≈ 14 and the modal number is (K − 1) sinh2(r) ≈ 13.

To estimate the optimal number of photons for our BosonSampling experiment, we have to
trade between too few photons (not difficult to simulate) and too many photons (complexity
of the problem not known). In the case we consider here, we assume an interferometer with
M = 142 = 196 modes and can therefore retain all events up to N = 7 PPEs from our
squeezing distribution (highlighted in green). A good estimate for a classically hard to solve
problem would be an implementation with around 10 photons, so the interesting target range
would only start at around N = 5 PPEs. The uninteresting regions are shaded in grey.
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Figure 4.17 – Probability distribution to generate N photon pair events from K = 14 single mode
squeezers with squeezing parameter r = 0.8814 [275]. In the 142 = 196 modes of
our system, we can retain 10-14 photons for a "useful" BosonSampling experiment.
As the mean photon number per single mode squeezer is 〈n〉 ≈ 1 the pump power
is much higher than for the single photon experiments.

In general, we can perform our Gaussian BosonSampling scheme in two regimes [274, 275].
Either, we decide to retain only a fixed photon number (i.e. 2N ) and choose the squeezing
parameter such that the modal number of the distribution obeys N = (K − 1) sinh2(r). In
the other regime, we consider a band of possible photon numbers (e.g. the highlighted band in
figure 4.17), that saturates the complexity of the problem. In this case, the squeezing parameter
is slightly different, such that each single mode squeezer generates 〈n〉 ≈ 1 on average.

4.4.3 Relation to Scattershot BosonSampling

The most general BosonSampling scheme up to now was Scattershot BosonSampling. In this
section, we show that our Gaussian BosonSampling scheme is a more general problem than
Scattershot BosonSampling, which is only a very restricted subset. To do so, we first express
the Scattershot scheme in terms of our proposal. Consider the sketch in figure 4.18. If we regard
only the outer structure, we recognise the single mode squeezed inputs, a large green unitary
TGBS and a detection unit as in Gaussian BosonSampling. However, in order to reproduce the
Scattershot scheme, we have to choose a special TGBS and introduce a specific structure to our
general matrix. First, we have to specify the first layer of our transformation unitary. While
we use single-mode squeezed states in Gaussian BosonSampling, we need two-mode squeezed
states for the Scattershot scheme. As such, we begin with 2M single-mode squeezed states at the
beginning and pass them pairwise through an array of phase-shifters and beam splitters encoded
with the unitaries

UPS =

(
1 0
0 i

)
UBS =

1√
2

(
1 1
−1 1

)
. (4.72)
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Figure 4.18 – Interpretation of Scattershot BosonSampling in terms of Gaussian BosonSam-
pling [275]. In Gaussian BosonSampling, single-mode squeezers generate the
photons and enter a general transformation matrix TGBS. To map this to Scatter-
shot BosonSampling, we have to implement a specific matrix structure for TGBS.
We transform the single-mode squeezers to the two-mode squeezers of Scattershot
BosonSampling by inserting an array of phase-shiftersUPS and beam splittersUBS.
Then, we implement a special transformation matrix that contains only the identity
in the upper half and a Haar random matrix in the lower half. Then, the overall
transformation matrix is given by TGBS = ⊕jUBSj

UPSj
× IM ⊕ TSBS2M . While

we can retain all patterns in Gaussian BosonSampling, we have to select specific
heralding patterns h for a valid Scattershot BosonSampling experiment.

After this transformation, our photons enter a very specific type of interferometer. The upper half
of the photons in figure 4.18 enter an identity transformation of dimension M (IM ) and pass on
directly to the detection unit. The other half enters a Haar random unitary transformation TSBS,
also of dimension M , before they enter the detection setup.

In total, we can therefore encapsulate the ingredients of a Scattershot BosonSampling experi-
ment into a specific shape of Gaussian BosonSampling interferometer [275]

TGBS = IM ⊕ TSBS ×⊕jUBSjUPSj . (4.73)

Due to the identity transformation in the upper half of the scheme, we have to reduce the squeez-
ing parameter to perform Scattershot BosonSampling. While in our case, all photons are on
average distributed over all modes equally (as guaranteed by the Haar random transformation),
the identity prohibits a mixing of the heralding photons. As such, in order to prevent higher
order photon detection events in the heralding arm, the squeezing parameter has to be signif-
icantly lower (usually around an order of magnitude). Finally, we detect a combined photon
pattern h ∩ n of the heralding h and the sampling n photons. Then, the probability for a valid
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Scattershot BosonSampling experiment is given by [275]

PSBS(n) = P(n|h) = PGBS(n ∩ h)
P(h)

, (4.74)

where we have related the probability to generate a Scattershot event to the probability of a
Gaussian BosonSampling event via Bayes’ theorem. We find the probability to generate a valid
heralding event in the denominator, as we have to consider that a valid Scattershot experiment
only happens when we find a valid heralding event of N single photons in the heralding detec-
tors.

While we have shown the relation between Scattershot BosonSampling and our scheme al-
ready by relating the pattern probabilities to each other, we can also use a more formal proof
using the matrix relations of the systems. We begin with the Scattershot experiment, where we
pump every mode of a Haar random interferometer with one arm of M two mode squeezed
states with the same squeezing parameter rj = r. Then, the probability to measure a specific
combination of heralding h and sampling n pattern is [275]

PSBS(n|h) =
|Perm(TS)|2

n!h!
=

Perm(TS)Perm(T ∗S)

n!h!
, (4.75)

where TS is again the submatrix that is sampled by the photons.

In order to map this probability to the Gaussian BosonSampling scheme, we now have to con-
sider the Scattershot scheme in terms of covariance matrices. The output state of a Scattershot
interferometer has a covariance matrix of the form

σ =
1

2
(I⊗ TSBS ⊗ I⊗ T ∗SBS)STMS

†
TM(I⊗ TSBS ⊗ I⊗ T ∗SBS)

† , (4.76)

where

STM =

 cosh(r) I2M
0M sinh(r) IM

sinh(r) IM 0M
0M sinh(r) IM

sinh(r) IM 0M
cosh(r) I2M

 (4.77)

encodes the operation of the two mode squeezers26. The ordering of the modes in this case is
[â1, ...âM , b̂1, ..., b̂M , â

†
1, ...â

†
M , b̂

†
1, ..., b̂

†
M ], where â denote the M herald modes and b̂ denote

the other M sampling modes.

Coming from the other side, we know the that the probability for Gaussian BosonSampling in
this scenario is [275]

PGBS(n ∩ h) =
Haf(AS)

n!h!
√
|σQ|

, (4.78)

with
√
|σQ| = sechM (r) for M two mode squeezed states. The matrix AS in this case is rather

26The vertical and horizontal bar are just for better readability of the four blocks.
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simple and has the following shape

AS = −tanh(r)


0 T †S 0 0
T ∗S 0 0 0
0 0 0 T tS
0 0 TS 0

 = BS ⊕B∗S . (4.79)

As our submatrix BS has the shape
(

0 BS
B∗S 0

)
, we can use equation (4.62) to express the

Hafnian in terms of the Permanent

Haf(AS) = Haf(BS)Haf(B
∗
S)

= (tanh(r))2NPerm(TS)Perm(T ∗S)

= (tanh(r))2N |Perm(TS)|2 .
(4.80)

Putting all of this together, we arrive at

PGBS = P(n ∩ h) = Haf(AS)

n!h!
√
|σQ|

=
tanh2N (r)|Perm(TS)|2sech2M (r)

n!h!
(4.81)

and
P(h) = sech2M (r)tanh2N (r) (4.82)

and see that therefore
PGBS(n ∩ h)

P(h)
=
|Perm(TS)|2

n!h!
= PSBS , (4.83)

as expected [275].

As we have now shown the relation between Scattershot and Gaussian BosonSampling, let us
stress that Gaussian BosonSampling is not restricted to the specific transformation that we used
for our comparison. In principle, we allow for any random transformation TGBS and therefore
Scattershot BosonSampling is a subset of our Gaussian BosonSampling.

4.4.4 Success Probabilities with Gaussian States

The previous discussions about the shape of different BosonSampling schemes are valuable from
a theoretical point of view and also answer the fundamental question about the computational
complexity of sampling from Gaussian states. However, what are the experimental improve-
ments of our scheme compared to the state of the art? We claimed at the beginning that our
Gaussian BosonSampling scheme saves quadratically on the number of required input states,
compared to the Scattershot scheme. In this section, we discuss this experimental advance of
our scheme.

Consider equation (4.71) for the generation probability of N photon pair events from 2K

119



CHAPTER 4 High-dimensional non-linear systems

squeezers27 with equal squeezing parameter r

P2K,GBS(N) =

(
K +N − 1

N

)
sech2K(r)tanh2N (r) . (4.84)

Contrary to our Gaussian BosonSampling scheme, Scattershot BosonSampling [243] may only
retain the first photon pair event from a single two mode squeezer (higher orders are forbidden
as they would sample the same row). Therefore, the probability to generate N photon pair
events from K two mode squeezed states and equal squeezing parameter r follows the binomial
distribution

PK,SBS(N) =

(
K

N

)
sech2K(r)tanh2N (r) , (4.85)

which will always have lower generation probabilities than the Gaussian BosonSampling scheme
[274]. Experimentally, we can explain this behaviour with the possible photon combinations.
Consider two photon pair events, with the probability to generate one pair event being p. Then,
the probability to create two photon pairs from two separate squeezers is28 p2. However, the
probability to generate two photon pairs from the same two mode squeezer is also p2, but we
have to throw these events away in Scattershot! As such, our Gaussian BosonSampling scheme
will always scale better towards higher photon numbers as we do not throw out the double and
triple photon pair events from the same squeezer.

Quantitatively, we can calculate this advantage by dividing the Scattershot generation prob-
ability by the Gaussian generation probability for equal squeezing parameters rSBS = rGBS

PSBS(N)

PGBS(N)
=

(
K

N

)[(
K +N − 1

N

)]−1

=
K!(K − 1)!

(K −N)!(K +N − 1)!

≈ lim
N→∞,K>N

(
K −N
K − 1

)N
.

(4.86)

This probability gives an e-fold improvement to Scattershot BosonSampling in the success
probability with the required K = N2 squeezers. However, our scheme does not require to
pump all N2 modes, but only K = N . As such, we can save on N(N − 1) squeezers and use
quadratically fewer resources than Scattershot. Furthermore, our scheme scales exponentially
better in terms of success probability as N probabilistic sources [274].

To summarise the generation advantages for Gaussian BosonSampling compared to Scatter-
shot BosonSampling, the first thing that comes to mind is that we do not use half of the generated
photons as a herald. This gives us a factor of 2 in favour of our scheme. Furthermore, we can
retain the higher photon pair events from a single squeezer which gives us an e-fold increase in
the generation probability. Finally, we only need K = N squeezers to saturate the complexity

27We consider 2K single mode squeezers as we want to compare it to K two mode squeezers. From figure 4.18, we
know that we need 2K single mode squeezers to generate K two mode squeezers.

28We are not counting all possible combinations. These are encoded in the binomial factors and we are only interested
in a heuristic argument.
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of the problem, which saves quadratically on the number of required squeezers [274, 275].

Summary
In conclusion, we related the photon counting probabilities of a Gaussian state to a matrix
function, the Hafnian. With this result, we argued that the Hafnian is in the #P complexity
class and constructed a BosonSampling experiment akin to the proposal from Aaronson
and Arkhipov. As losses and other noise can be described as a Gaussian operation, we can
absorb them directly into the sampled matrix. However, we leave open the question how
much loss we can tolerate before the scheme loses the original complexity. Furthermore,
we showed that Scattershot BosonSampling is a special subclass of Gaussian Boson-
Sampling experiments and presented a quadratic save in resources in favour of Gaussian
BosonSampling. With this result, we place the experimental proof of quantum supremacy,
which was the original idea behind all BosonSampling experiments, into the reach of cur-
rent technology.
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These are the last words I have to say
That’s why this took so long to write
There will be other words some other day
But that’s the story of my life

Billy Joel - Famous Last Words

5
Conclusion

In this thesis, we discussed several new techniques and their application in the field of high-
dimensional quantum optics. Due to the vast possibilities in the field, we introduced many
different aspects that improve the achievability of high-dimensional systems for quantum in-
formation science. We used different encodings and different degrees of freedom to probe the
possibilities in the field.

Starting in chapter 2, we specifically tailored the photonic quantum state from a down-conver-
sion process by exploiting the underlying linear waveguide structure of the device. Due to the
coupled waveguide structure, we found that the resulting eigenvalue splitting in the propagation
constant influences the spectral phase-matching structure of the parametric down-conversion
process drastically. Thus, we could use the pump frequency to tune the spatial properties of
the generated state. Due to an intrinsic Hong-Ou-Mandel interference effect of the generated
photons in the basis transformation from generation to measurement basis, we produced post-
selection free two-photon N00N states. Experimentally, we implemented this source and char-
acterised both the linear and non-linear properties of the chip. In the quantum experiments, we
could achieve a state fidelity of F = (84.2± 2.6)% for the two-photon N00N state and a N00N
fringing visibility of V = (93.3± 3.7)% which was comparable to the classical reference. With
this result, we showed that we implemented a compact dual-path source that produces tailored
photonic quantum states with a clever use of the linear waveguide properties.

Chapter 3 provided an application of our implemented dual-path source in the higher order
photon number regime by means of the time-multiplexed photon counting method. However, in
order to guarantee that this detection scheme works properly, we first investigated the limitations
of this measurement technique. We analysed the resulting click-statistics in a time-multiplexed
detector, under consideration of finite bin number and accounted for losses. In total, we found
that the optimal bin number for this type of measurement scheme is 256 bins for a discrimination
and reconstruction of Fock states up to n = 20.

Afterwards, we used the click-statistics of a time-multiplexed detector to perform a novel,
slim and efficient detector tomography scheme and inferred the detector response function Γ
from the measured click statistics with coherent states. We found that the experimental limita-
tions of the scheme are both the absolute calibration of the coherent state power to a reliable
reference, as well as the polarisation sensitivity of the detectors. Due to the used single-mode
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fibre components, we could not guarantee a well-oriented polarisation state entering the time-
multiplexed detector and found that the polarisation scrambling in the fibre delays introduces
a strong asymmetry in the detected time bin signal. Our model is therefore affected by an av-
eraging effect of different detection efficiencies, which lowers the total measured efficiency of
the detector system. However, these limitations are not fundamental to the method and may
be eliminated firstly with a well-calibrated reference measurement for the powers (e.g. NIST
calibrated power meter) and the use of either polarisation maintaining components throughout
the experimental setup or a separate polarisation control directly in front of the multiplexing
detector.

The final task in chapter 3 was to apply our implemented dual-path source together with
time-multiplexed detection to probe the surviving non-classicality under the effect of turbulent
channels. We developed a laboratory-scale simulation method of atmospheric links, i.e. from
satellites to ground stations. Our method uses separate measurements with different attenuation
levels to model the turbulent behaviour with appropriate post-processing of the measurements
according to the probability distribution of transmittance. We applied our method to probe the
effects of strong turbulences with a log-normal distribution and found that for a direct appli-
cation the non-classicality does not survive, but may be recovered with a fitting post-selection
protocol. Furthermore, we probed the effect of weak turbulence with the Weibull distribution
and found that non-classicality only survives for weak turbulences, which agrees with the pre-
vious result from the log-normal distribution. At the end of this chapter, we demonstrated the
general applicability of our simulation method by applying it to a general family beta-binomial
distributions.

Finally in chapter 4, we extended the concepts of chapter 2 to modify the state generation
properties in non-linear coupled waveguide arrays. We gave a quick introduction into this type
of systems and reviewed their properties. Based on this idea, we developed several new theoret-
ical core concepts, such as the driven quantum walks. Here, we reviewed the concept of passive
quantum walks and introduced the idea of a driving term into this basic building block of quan-
tum computation. With this idea, we found that we can probe genuinely different quantum
dynamics not available with passive quantum systems. We discussed two driving possibilities
in the system, lasing and squeezing and proved that the output state of the driven quantum walk
may be decomposed into a highly intricate input state and a passive quantum walk evolution.
This effect may be used to either generate complex spatially distributed quantum states by ap-
plying a passive evolution afterwards or to exploit the unique dynamics in quantum computation
applications. We have directly used it to construct a search algorithm on the glued trees graph
and shown that it performs better than a classical system.

In the last two sections of this thesis, we were concerned with the improved performance of
quantum systems over classical ones. In particular, we investigated the quantum computational
test bed of BosonSampling, which is a promising candidate to finally show the supremacy of
quantum concepts over their classical counterparts. We first reviewed the idea behind Boson-
Sampling and discussed the state of the art. Then, we aimed to map the non-linear waveguide
array system into this framework with the use of the formalism that we introduced in section
4.2. This gave us a compact and reconfigurable device to perform BosonSampling experiments.
However, we also found that this approach is not scalable to high photon numbers and many
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modes, as an overlap in the down-conversion phase-matching functions prohibits the unique
heralding procedure that is needed to guarantee the proper function of the protocol.

As a final concept, we developed the protocol of Gaussian BosonSampling. Here, we an-
swered the last remaining question on the computational complexity of sampling from Gaussian
states in the Fock basis. Under several conditions on the input states, we could prove that indeed
sampling from Gaussian states is hard. Our protocol fulfils the complexity requirements, if we
input at least N single-mode squeezed states into an N2-dimensional Haar random interferom-
eter and measure the output distributions of N photons at the output. We related this output
probabilities at the output to the matrix function of the Hafnian. Finally, we investigated the
experimental feasibility of this approach by comparing the generation probability forN photons
to known protocols and found that for N squeezers we scale exponentially better than proba-
bilistic single photon sources, while for N2 squeezers we achieve a constant improvement of e,
compared to the most general protocol up to now, Scattershot BosonSampling.

In total, we provided a survey over several research topics in the field of high-dimensional
quantum optics. We introduced new techniques for the state generation by means of the dual-
path waveguide source. We probed high-dimensional state manipulation in combination with
state generation with the concepts of the driven quantum walk and the waveguide array Boson-
Sampling proposal. We also showed highly complex passive quantum protocols with our pro-
tocol of Gaussian BosonSampling. However, we did not only cover state generation and ma-
nipulation, but we contributed to the field of state detection. We investigated the limits of time-
multiplexed photon counting and performed a detector calibration with this technique. Further-
more, we probed the detected non-classicality after it was deteriorated by a atmospheric quan-
tum communication link. As such, we contributed to the three fundamental aspects of quantum
information science in this thesis: quantum state generation, quantum state manipulation and
quantum state detection.
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B Derivation of the Dual-path
PDC State

In this appendix, we present a detailed version of the derivation for the final down-conversion
output state from the non-linear coupler in section 2.2. In section 2.1, we introduced the coupling
behaviour of classical light in a coupled waveguide structure and derived the eigensolutions of
the coupled system.

In order to calculate the down-conversion state, we also have to consider the pump field rep-
resentation in the eigenbasis of the coupled system. We assume, that the pump field has an
extremely small mode overlap between the two waveguides because its wavelength is in the near
infrared regime and far off the wavelength of the generated quantum fields. As the coupling
behaviour crucially depends on the mode overlap, the pump light does not couple significantly
and we therefore assume Cp ≈ 0.

With this, we can write the pump field as

E(+)
p = Bp

∫
dωpα(ωp)(γS + δA)ei[β(ωp)z−ωpt] , (B.1)

where α(ωp) is the spectral shape of the pump, γ and δ are the coefficients containing the spatial
excitation of the system

γ =
1√
2

(
p1 + ei∆pp2

)
δ =

1√
2

(
p1 − ei∆pp2

) (B.2)

and Bp collects all constants. The two amplitudes p1 and p2 denote the pump excitation in
waveguides 1 and 2 respectively and the input field is given by

Ein = p1E1(x, y) + ei∆pp2E2(x, y) , (B.3)

where Ei(x, y) denotes the spatial mode of the pump in waveguide i.

B.1 Quantum Fields and PDC State

With the description of the pump field in the eigenbasis of the coupled waveguides, we have all
ingredients that we need to calculate the output state of the non-linear coupler. We write our
quantum fields as

Ê(−) = Bq
∫
dω(S∗e−i[βS(ω)z−ωt]â†S(ω) +A∗e−i[βA(ω)z−ωt]â†A(ω)) , (B.4)

where βS(ω) [βA(ω)] is the propagation constant of the symmetric (antisymmetric) mode, â†S
[â†A] creates a photon in the symmetric (antisymmetric) mode and Bq collects all constants.

Using the expressions for pump and quantum fields in the eigenbasis of the coupler, we can
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insert them into the Hamiltonian of equation (2.9) in section 2.2 and gain

Ĥint = χ(2)

∫
V

d3r (E(+)
p Ê(−)Ê(−) + h.c.)

= B

∫
dx

∫
dz

∫
dωp

∫
dωs

∫
dωi

[
α(ωp)(γS + δA)ei[β(ωp)z−ωpt]

× (S∗e−i[βS(ωs)z−ωst]â†S(ωs) +A∗e−i[βA(ωs)z−ωst]â†A(ωs)) (B.5)

× (S∗e−i[βS(ωi)z−ωit]â†S(ωi) +A∗e−i[βA(ωi)z−ωit]â†A(ωi)) + h.c.
]
,

where χ(2) is the non-linear coefficient of our selected process1 and B collects all constants.
As we are considering a type-I process, the signal and idler photons are fundamentally in-

distinguishable, therefore, we loose the indices in the electric quantum fields and the creation
operators. Multiplying the electric fields and introducing the following abbreviations

∆βS,S = β(ωp)− βS(ωs)− βS(ωi)
∆βS,A = β(ωp)− βS(ωs)− βA(ωi)
∆βA,S = β(ωp)− βA(ωs)− βS(ωi)
∆βA,A = β(ωp)− βA(ωs)− βA(ωi) ,

(B.6)

we can rewrite the Hamiltonian as

Ĥint = B

∫
dz

∫
dωp

∫
dωs

∫
dωi α(ωp)γ

∫
dxSS∗S∗︸ ︷︷ ︸

2
√

2

ei(∆βS,Sz−[ωp−(ωs+ωi)]t)â†S(ωs)â
†
S(ωi)

+ δ

∫
dxAS∗S∗︸ ︷︷ ︸

0

ei(∆βS,Sz−[ωp−(ωs+ωi)]t)â†S(ωs)â
†
S(ωi)

+ γ

∫
dxSS∗A∗︸ ︷︷ ︸

0

ei(∆βS,Az−[ωp−(ωs+ωi)]t)â†S(ωs)âA(ωi)

+ δ

∫
dxAS∗A∗︸ ︷︷ ︸

2
√

2

ei(∆βS,Az−[ωp−(ωs+ωi)]t)â†S(ωs)â
†
A(ωi) (B.7)

+ γ

∫
dxSA∗S∗︸ ︷︷ ︸

0

ei(∆βA,Sz−[ωp−(ωs+ωi)]t)â†A(ωs)âS(ωi)

1The considered type-I process uses the d33 coefficient in LiNbO3 [289].

152



SECTION B.1 Quantum Fields and PDC State

+ δ

∫
dxAA∗S∗︸ ︷︷ ︸

2
√

2

ei(∆βA,Sz−[ωp−(ωs+ωi)]t)â†A(ωs)â
†
S(ωi)

+ γ

∫
dxSA∗A∗︸ ︷︷ ︸

2
√

2

ei(∆βA,Az−[ωp−(ωs+ωi)]t)â†A(ωs)âA(ωi)

+ δ

∫
dxAA∗A∗︸ ︷︷ ︸

2
√

2

ei(∆βA,Az−[ωp−(ωs+ωi)]t)â†A(ωs)â
†
A(ωi)

 .
With this Hamiltonian, we can calculate the generated output state of the non-linear coupler
system. We construct a generation unitary from the Hamiltonian by the usual Schrödinger rules
with [2]

ÛPDC = exp

(
− i
~
Ĥint

)
. (B.8)

Using a Taylor expansion up to first order and neglecting the vacuum term, we gain the wanted
output state in the two-photon picture

|Ψ〉eig =
1

N

∫
dωs

∫
dωi α(ωs + ωi)

×
[
γ sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 âS(ωs)âS(ωi)

+ δ sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 âS(ωs)âA(ωi) (B.9)

+ δ sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2 âA(ωs)âS(ωi)

+ γ sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2 âA(ωs)âA(ωi)

]
|0〉

in the eigenbasis of the coupled system, where N is the normalisation constant of our state.

However in the laboratory, we do not measure in the eigenbasis of the coupled waveguide
system, but in the waveguide basis directly. As such, we have to apply the corresponding back-
transformation

E1 =
1√
2
(S +A)

E2 =
1√
2
(S −A)

(B.10)

to the output state in the eigenbasis. As this is the transformation associated with a 50:50 beam
splitter, we will observe Hong-Ou-Mandel interference effects [59] for indistinguishable photons
and some terms will cancel out in the basis transformation, generating the desired two-photon
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N00N state. With the applied back-transformation, the output state in the waveguide basis reads

|Ψ〉WG =
1

2
√
N

∫
dωsdωi α(ωs + ωi)

×
[(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 + sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}
+δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 + sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

})
â†1(ωs)â

†
1(ωi)

+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 − sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}

−δ
{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 − sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

}
︸ ︷︷ ︸

= 0

 â†1(ωs)â
†
2(ωi)

(B.11)

+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 − sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}

+δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 − sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

}
︸ ︷︷ ︸

= 0

 â†2(ωs)â
†
1(ωi)

+

(
γ

{
sinc

(
∆βS,S

L

2

)
e−i∆βS,S

L
2 + sinc

(
∆βA,A

L

2

)
e−i∆βA,A

L
2

}
− δ

{
sinc

(
∆βS,A

L

2

)
e−i∆βS,A

L
2 + sinc

(
∆βA,S

L

2

)
e−i∆βA,S

L
2

})
â†2(ωs)â

†
2(ωi)

]
|0〉 .

The contributions from the antisymmetric eigenmode in the cross-coincidences (i.e. coinci-
dences between the two waveguides 1 and 2: â†1(ωs)â

†
2(ωi) and â†2(ωs)â

†
1(ωi)) disappear be-

cause of the symmetry in the phase-mismatch between S,A and A,S. This is the influence of
the Hong-Ou-Mandel effect in the basis transformation, as the two phase-matching conditions
are indistinguishable.
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C Setup Characterisation of the
Dual-Path source

PDC
1

2
S1

S2
CC

Figure C.1 – Schematic
for efficiency
calibration after
Klyshko [66].

In this appendix, we discuss the characterisation of the dual-
path source setup in section 2.4. To this aim, we first performed
a detection efficiency measurement by means of Klyshko effi-
ciency [66], see figure C.1. This characterisation measurement
relies on the fact that PDC always generates photons in pairs. By
splitting up the two arms of the PDC and assuming finite trans-
mission and detection efficiencies η1 and η2, we can measure
these quantities by relating the singles Si and coincidence counts
CC in both arms via

η1 =
CC

S2

η2 =
CC

S1
.

(C.1)

In figures C.2(a1−3), we depict the measured efficiencies η1 and η2 in dependence of the
incoupled pump power, where the error bars are given by error propagation from the square-
root-error of the raw count rates. Since we do not employ photon number resolving detectors
for this measurement, we cannot distinguish the single pair contribution from the higher-order
photon numbers, which artificially increase the ratio between coincidences and singles. To com-
pensate for this artificial increase of the detection efficiencies, we use the y-intercept of the graph
for the estimation of the physical, raw detection efficiency of the overall setup. The results of

coincidence measurement η1 [%] η2 [%]
pumped WG 3.03± 0.06 2.8± 0.04
unpumped WG 3.71± 0.04 3.74± 0.07
cross coinc. 0.35± 0.01 0.33± 0.01

Table C.1 – Resulting efficiencies for the Klyshko characterisation.

this measurement are summarised in table C.1 for the different coincidence measurements in the
pumped wavguide, the unpumped wavguide and between waveguides. The measured efficien-
cies are quite low, however, as we used comparatively inefficient GaAs APDs with a detection
efficiency of ηAPD = 20% and a 50/50 beam splitter to probabilistically split the generated
photons, the values are in the expected range and tolerable for the measurement at hand.

Comparing the values for the pumped and the unpumped waveguide of the source, we find
comparable detection efficiences of around 3 − 4%. In contrast, the efficiency measurement
for the cross coincidences shows a value that is an order of magnitude lower, although exactly
the same components and detectors were used in this measurement run. The reason for this dis-
agreement lies in the generated state of the dual-path source. Due to the state structure of two
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Figure C.2 – Setup characterisation for the different coincidence measurement configurations. Fig-
ures (a) show the calibration of the overall detection efficiency, while figures (b) show
the corresponding mean photon numbers, from which we extract the brightness by the
linear slope. Figures (c) show the raw data for the single S and coincidence counts
CC for the wavelength scan of figure 2.10(b).
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phase-stable single-mode squeezed states (and therefore two independent PDC sources), com-
pare section 2.5, we can use the coincidence measurements of the pumped and the unpumped
waveguide to obtain a measure for the detection efficiency. However, the Klyshko model does
not apply for the case of the cross coincidences, since we do not measure two arms of the same
PDC source, but two arms of two independent PDC sources. Especially, when we consider the
two-photon regime, we expect the cross coincidences to vanish and the low measured efficien-
cies make perfect sense. Only the finite state fidelity of F = (84.2 ± 2.6)% leads to a finite
cross coincidence count rate and therefore to efficiencies > 0. As such, the significance of this
measurement is rather limited and we only consider it for completeness.

We can also extract a second figure of merit from our measurements, the brightness of our
PDC source. We obtained it from the single rates in the two detectors and the corresponding
detection efficiencies via

〈n〉 =
(
S1

η1
+
S2

η2

)
1

Tint ·RRep
. (C.2)

Accordingly, we plot the measured mean photon numbers in figures C.2(b1,2), with error bars
by error propagation from the count rates and the efficiency errors. However, the error bars are
so small that they are within the size of the data points. We extracted the brightness of our PDC
source from the line slope of figure C.2(b1) with B ≈ 1.5 · 105 pairs

s×µW .
Finally, in figures C.2(c1−3), we depict the raw single and coincidence counts for figure

2.10(b), where error bars in all cases were estimated with the square-root-error of the count
rate. However, they are so small that they vanish in the size of the data points. To obtain 2.10(b)
from these numbers, we used the depicted coincidence rates for all three configurations and
normalised them to the respective detection efficiencies for the pumped and unpumped arm

CCpumped
norm = 2

CC
pumped
raw

η
pumped
1 · ηpumped

2 · Tint

CCunpumped
norm = 2

CC
unpumped
raw

η
unpumped
1 · ηunpumped

2 · Tint

CCcross
norm =

CCcross
raw

(η
pump
1 + η

pump
2 )/2 · (ηunpumped

1 + η
unpumped
2 )/2 · Tint

(C.3)

The additional factor of 2 in the pumped and unpumped waveguide measurement is to correct
for the 50/50 beam splitter, which reduces the coincidence count rates by a factor of 2. Due to
the non-applicability of the Klyshko model in the case of the cross-coincidence measurement,
the coincidences between the waveguides were normalised to the product of the mean efficiency
in the pumped and unpumped waveguide. To further normalise the count rates to counts per
second, all rates were divided by the corresponding integration time Tint.
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