
Verifying Concurrent Programs

under Weak Memory Models

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

an der
Fakultät für Elektrotechnik, Informatik und Mathematik

der
Universität Paderborn

vorgelegt von

Oleg Travkin, M.Sc.

Paderborn, Juli 2017

iii

Abstract

Modern multicore processors provide weak memory models like TSO, PSO
or even weaker execution semantics. These memory models – due to store
bu�ers – seemingly reorder program operations. Thus, they deviate from
the commonly assumed sequential consistency (SC) semantics. Analysis and
in particular veri�cation techniques for concurrent programs consequently
need to take these weak semantics into account. Linearizability, a de-facto
standard correctness condition for concurrent data structures, has been de�ned
under assumption of SC in the early 90’s. For years, it was open to personal
interpretation of what it means under weak memory models. Just recently,
new adaptations were proposed that would de�ne this relation formally.

In this thesis, we present a general veri�cation approach for concurrent
programs under the weak memory models TSO and PSO. The approach is based
on a reduction of concurrent programs under TSO (resp. PSO) to an SC program.
Thereby we enable reuse of standard veri�cation tools, developed under SC
assumption. The reduction involves two steps: a symbolic exploration of
possible store bu�er states, which results in a graph representation of program
behavior under TSO (resp. PSO). We call it a store bu�er graph. The latter
is then transformed into a new SC program that mimics the behavior of the
original program under TSO (resp. PSO). We prove both programs to be
behaviorally equivalent (bisimulation). Our tool Weak2SC implements these
steps as a transformation from LLVM IR programs towards Promela models
for the model checker Spin and predicate logic encoding for the theorem
prover KIV. Furthermore, we evaluate our reduction approach by comparing it
against more common modeling techniques of weak memory semantics, which
model store bu�ers and their behavior explicitly. To this end, we take existing
approaches for veri�cation of linearizability under SC and adapt them to the
setting of weak memory models. Two of them are model checking techniques
and aim at �nding bugs in implementations. The third is a proof method for
linearizability. We apply these approaches to a set of typical concurrent data
structures and achieve promising results in terms of performance (resp. proof
e�ort). In addition, we also discuss how the adapted veri�cation approaches
relate to the new formalisations of linearizability under weak memory models.

iv

Zusammenfassung

Moderne Multicore Prozessoren haben schwache Speichermodelle wie
TSO, PSO oder gar noch schwächere Ausführungssemantiken. Diese Spei-
chermodelle – auf Grund von Store Bu�ern – sortieren scheinbar Programm-
Operationen um. Damit weichen sie von der üblicherweise angenommenen
Sequenziellen Konsistenz (SC) ab. Analysen und insbesondere Veri�kation-
stechniken für nebenläu�ge Programme müssen daher diese schwachen Spei-
chermodelle berücksichtigen. Linearisierbarkeit, ein de-facto Standard Korrek-
theitskriterium für nebenläu�ge Datenstrukturen, wurde unter der Annahme
von SC Anfang der 90er Jahre de�niert. Jahrelang überließ man die Bedeu-
tung von Linearisierbarkeit unter schwachen Speichermodellen der eigenen
Interpretation. Erst kürzlich wurden neue Varianten davon vorgeschlagen, die
diesen Zusammenhang formalisieren.

In dieser Arbeit präsentieren wir einen allgemeinen Veri�kationsansatz
für nebenläu�ge Programme unter den schwachen Speichermodellen TSO und
PSO. Der Ansatz basiert auf einer Reduktion von nebenläu�gen Programmen
unter TSO (resp. PSO) auf SC Programme. Damit ermöglichen wir die Ver-
wendung von Standart-Veri�kationswerkzeugen, die unter Annahme von SC
entwickelt wurden. Die Reduktion erfolgt in zwei Schritten: Eine symbolische
Exploration von möglichen Store Bu�er-Zuständen, die zu einer Repräsen-
tation des Programmverhaltens unter TSO (resp. PSO) als Graph führt. Wir
nennen dies einen Store Bu�er Graphen. Letzterer wird anschließend in ein
neues SC Programm transformiert, welches das Verhalten des ursprünglichen
Programms unter TSO (resp. PSO) imitiert. Wir beweisen, dass beide Pro-
gramme Verhaltensäquivalent sind (Bisimulation). Unser Werkzeug Weak2SC
implementiert diese Schritte als Transformation von LLVM IR Programmen
hin zu Promela Modellen für den Model Checker Spin und in eine prädikatlo-
gische Kodierung für den Theorembeweiser KIV. Außerdem, evaluieren wir
den Reduktionsansatz, indem wir ihn gegen andere übliche Techniken zur
Modellierung schwacher Speichersemantiken vergleichen, die Store Bu�er
und ihr Verhalten explizit modellieren. Dafür nehmen wir bereits existierende
Veri�kationsansätze für Linearisierbarkeit unter SC und adaptieren diese für
schwache Speichermodelle. Zwei von ihnen sind Model Checking-Ansätze
und zielen auf das Finden von Implementierungsfehlern. Der dritte Ansatz
ist eine Beweismethode für Linearisierbarkeit. Wir wenden diese Ansätze auf
eine Menge von typischen nebenläu�gen Datenstrukturen an und erhalten
vielversprechende Resultate im Sinne von Performanz (resp. Beweisaufwand).
Außerdem diskutieren wir, wie die verwendeten Veri�kationsverfahren mit
den neuen Formalisierungen von Linearisierbarkeit unter schwachen Speicher-
modellen zusammenhängen.

v

Acknowledgments

A big “thank you” goes to Heike Wehrheim who gave me the opportunity
to become a PhD student, work in in an interesting research �eld and eventually
to write down this thesis. Thank you for all the advice that you gave me and
for all your trust in me.

I would also like to thank to our research fellows Gerhard Schellhorn,
Bogdan Tofan, John Derrick, Brijesh Dongol, Simon Doherty and Alasdair
Armstrong for all their advice and fruitful discussions. In particular, I would
like to thank Gerhard and Bogdan for their outstanding support and help to
me with the theorem prover KIV.

Thanks go to our research group including former and external members:
Thomas Ruhroth, Nils Timm, Dominik Steenken, Galina Besova, Ste�en Ziegert,
Daniel Wonisch, Sven Walther, Alexander Schremmer, Tobias Isenberg, Marie-
Christine Jakobs, Ste�en Behringer, Manuel Töws, Julia Krämer, Jürgen König
and Elisabeth Schlatt.

Furthermore, I would like to thank to my former student assistants Annika
Mütze, Thomas Haarho�, Monika Wedel and Alexander Hetzer for helping me
with the implementation of Weak2SC. Thanks go also to my former students
Michael Feldmann, Katharina Dridger, Matthias Multhaup and Sven Hartwig
with whom I had interesting discussions during my supervision of their theses.

Very special thanks go to my brother Dietrich, who pushed our parents
to buy our �rst computer in Christmas 1994 and with whom I shared my �rst
interest in computers. Since then, we kept it both until today. Of course, I also
thank may parents, Helene and Fjodor, for buying the computer and for their
support of both of us.

Special thanks go also to my wife Sandrina, who is desperately waiting for
the day when she can buy new door plates for us. ,

Contents

1 Introduction 1

1.1 Concurrency on Modern Multicore Processors 3
1.1.1 Weak Memory Models . 3
1.1.2 Towards Program Correctness 6

1.2 Contributions . 8
1.3 Overview . 10

2 Memory Models 11

2.1 Programs . 13
2.2 Parameterized Semantics . 14
2.3 Sequential Consistency . 18
2.4 Total Store Order . 19
2.5 Partial Store Order . 23
2.6 Relaxed Memory Order . 26
2.7 Related Work . 29

3 Reduction fromWeak Semantics to Sequential Consistency 31

3.1 Symbolic Execution with Weak Memory Semantics 33
3.1.1 Store Bu�er Graph . 35
3.1.2 Store Bu�er Graphs Properties 40

3.2 Transformation to a new SC Program 41
3.3 Reduction is Sound and Compositional 46

3.3.1 Local Bisimulation Equivalence 48
3.3.2 Compositionality of the Approach 52

vii

viii CONTENTS

3.3.3 Related Work and Discussion 54

4 Weak2SC – The Implementation 65

4.1 Architecture of Weak2SC . 66
4.2 Case Study – Work Stealing Queue 70
4.3 From LLVM IR to a Store Bu�er Graph 74
4.4 Template-based Generation of new Programs 78

4.4.1 Generating Promela Programs 80
4.4.2 Generating KIV Program Encoding 85
4.4.3 Promela Programs for Operational Memory Models 91

4.5 Discussion and Possible Future Extensions 95

5 Correctness of Concurrent Data Structures 99

5.1 Linearizability . 99
5.1.1 Linearizability - Original De�nition 100
5.1.2 Adaptations to Weak Memory Models 102

5.2 Discussion . 113
5.2.1 Veri�cation Methods for Linearizability 114

5.3 Other Correctness Conditions . 118

6 Verifying Linearizability under Weak Memory Models 121

6.1 Model Checking under Weak Memory Models 122
6.1.1 The Idea - Abstract Atomic Speci�cations 123
6.1.2 Experiments . 132
6.1.3 An alternative Idea - History Checking 140

6.2 Proving Linearizability under Weak Memory Models 145
6.2.1 Overview . 146
6.2.2 Abstract Data Type . 153
6.2.3 Concrete Data Type . 154
6.2.4 Abstraction Function . 160
6.2.5 Invariant . 165
6.2.6 Proof Procedure and Comparison 169

6.3 Related Work and Discussion . 170

7 Conclusion 175

7.1 Summary . 175
7.2 Future Work . 177
7.3 Design Decisions . 179
7.4 Concluding Thoughts . 180

CONTENTS ix

A Proofs 181

A.1 Behavioral Equivalence . 181
A.2 Compositionality . 195

B Code Examples 197

Bibliography 201

List of Figures

1.1 Programmer intuition of concurrency [AG96] 4
1.2 Illustration of the x86-architecture . 5
1.3 Litmus test for reordering of writes with later reads 5
1.4 Weak2SC, a memory model-aware veri�cation approach 8

2.1 Litmus test for reordering of writes with later reads 20
2.2 States of Process 1 of Fig. 2.1 . 20
2.3 Litmus test for early-reads . 21
2.4 States of Process 1 of Fig. 2.3 . 21
2.5 Litmus test for reordering of writes with other writes 24
2.6 States of Process 1 of Fig. 2.5 . 24
2.7 Illustration of relaxed architectures like RMO, Power and ARM [MSS12] 27
2.8 Litmus test: Independent Reads of Independent Writes (IRIW) 28

3.1 Three steps towards veri�cation of concurrent programs under weak
memory models . 32

3.2 Simple program and its in�nite state space under weak memory models 34
3.3 An example program (left) containing a write-def-chain and its store

bu�er graph (right). The important edges and the register variable r1

are marked red. 36
3.4 Store bu�er graph after �xing the write-def-chain (WDC) from Figure 3.3 38
3.5 Control �ow graph of the new program after transforming the store

bu�er graph from Figure 3.4. The nodes represent the new program lo-
cations now. Edges have been replaced with the respective SC operation
mimicking their e�ect under SC. 43

xi

xii List of Figures

4.1 Architecture of Weak2SC – external components are excluded 67
4.2 Work Stealing Queue by Arora et al. [ABP98] 71
4.3 LLVM IR code after compilation of the code in Figure 4.2. Includes

annotation for required fences. It shows only excerpt of the method
popBottom. 73

4.4 Store bu�er graph of pushBottom method under TSO 76
4.5 Store bu�er graph of pushBottom method under PSO 76
4.6 Excerpt of the generated Promela model for the program in Figure 4.3. 80
4.7 Promela model generated for the TSO store bu�er graph for the method

pushBottom in Figure 4.3. 83
4.8 Excerpt of generated global (left) and local (right) state de�nition for

Arora et al. work stealing queue[ABP98] 86
4.9 Declaration of constants, functions and predicates for the encoding of

the store bu�er graph as a transition system. 88
4.10 Excerpt of generated transition system using local state encoding for

Arora et al. work stealing queue[ABP98] 89
4.11 Promela programs based on operational memory models as proposed

in [TMW13] . 92
4.12 Communication between program process and OMM process; 1. read 2.

write 3. fence and 4. CAS . 93
4.13 Generated program model based on operational memory models of

pushBottom method. 94

5.1 Visualizing TSO-to-TSO linearizability as a mapping of events from a
concrete TSO history to an abstract TSO history. 105

5.2 Visualizing TSO-to-SC linearizability; store bu�er delays are ignored by
abstract histories. 108

5.3 Visualizing TSO linearizability; last �ush after response becomes the
new response. 110

6.1 Linearization points in concurrent executions and the corresponding
modi�cation of the abstract state. 124

6.2 Abstract double ended queue speci�cation in Promela. All operations
are atomic. 126

6.3 Instrumented queue implementation for consistency checks against
abstract data structure. Program model generated by Weak2SC based
on reduction from store bu�er graphs. 127

List of Figures xiii

6.4 Instrumented queue implementation for consistency checks against
abstract data structure. Program model generated by Weak2SC for the
use with an operational memory model. 128

6.5 Potential linearization points in an array based container data structure. 130
6.6 Overlapping of method execution and intra-process reordering. 131
6.7 Overall history checking procedure. Exploration triggers history checks

via assertion whenever all processes have run to completion. 142
6.8 Stepwise checking procedure of a concurrent history. Sequential data

structure and the history are input parameters to the check. 143
6.9 Visualizing non-atomic re�nement and the linearization status. 148

B.1 LLVM IR code after compilation of the code in Figure 4.2. Shows variable
de�nition and the methods pushBottom and popTop. 197

B.2 LLVM IR code after compilation of the code in Figure 4.2. Shows the
method popBottom. 198

B.3 C code of two transactions from the transactional memory implemen-
tation, TML by [DDS+10]. Method proc13 implements begin, write(x,1)
,commit; Method proc33 implements begin, read(x,lx), read(y,ly), commit.
The implementation also shows the required fence (sync synchronize).
Please note that we combined begin, read, write and commit operations
into one operation, in order to be able to take the reordering across
method boundaries into account. 199

List of Tables

6.1 Veri�cation results for the transformed programs (tso2sc, pso2sc) and
based on an operational memory model (tso, pso). Brackets state the
memory model for which a program was fenced. 134

6.2 Veri�cation results for full state space exploration error: #i are lines of
LLVM IR instructions (“/” separated for each method); #n number of
nodes in the sb-graph (“/” separated for each sb-graph); #s the number
of states explored t is the time in seconds. 137

6.3 Veri�cation results for full state space exploration error: #i are lines of
LLVM IR instructions (“/” separated for each method); #n number of
nodes in the sb-graph (“/” separated for each sb-graph); #s the number
of states explored t is the time in seconds. 138

6.4 Number of proof steps in the theorem prover KIV for the linearizability
proofs of the above case studies. 169

xv

1

Introduction

Today most modern processors are multicore processors, i.e., a single CPU consists
of multiple processor cores, which are interconnected with each other and work in
parallel. In the past, CPU performance could be increased by increasing its frequency.
However, a frequency increase comes along with an increase of heat emission by
the CPU. For the time being, the heat problem was tackled by miniaturizing the
transistors of a CPU (up to a few layers of atoms). This reduced heat emission and
allowed for higher frequencies. Thus, newer generations of CPUs could improve
performance over earlier generations. This development slowed down over the
recent years as the physical limits were approached closer and closer. In order to
further increase performance, CPU manufacturers started to combine a growing
number of processor cores on a single CPU. As a result of this development, today,
multicore processors are ubiquitous in most modern devices.

In order to fully use the o�ered performance of multicore processors, software
has to be concurrent, i.e., allowing tasks to be performed in parallel as much as
possible. However, often tasks or more generally processes need to agree on shared
data, i.e., they need to synchronize on the state of shared data, e.g., the �rst element
in a queue, even throughout con�icting accesses, e.g., two processes trying to remove
the �rst element simultaneously. One way to avoid such con�icts is to use locks.
Locks protect shared data by giving one process (owner of the lock) exclusive access
to the data. Processes who do not own the lock must wait until they successfully
acquire the lock. Thus, con�icts are avoided by serializing access to the shared data.
A simple way to use locks is to acquire the lock at method invocation and release
it at method return in all potentially con�icting methods. However, this is very
ine�ective, since usually only a few lines of code of a method are critical and thus,

1

2 CHAPTER 1. INTRODUCTION

serializing more than these few lines is often an unnecessary overhead. In order
to minimize the time in a critical section and thereby maximizing throughput, a
whole class of data structure implementations [Tre86, HW90, MS96, ABP98] relies
on �ne-grained synchronization. These data structures do not use locks, but single
atomic instructions in order to perform critical changes.

While �ne-grained concurrency increases performance of data structure imple-
mentations, it also comes at a cost. The algorithms implementing the data structures
are inherently complex and bugs are easily introduced into their implementations.
The latter is the case, because it is no longer relatively large (critical) sections of code
that are interleaved with other sections during execution, but single instructions
with other instructions. Due to the �ne-grained interleaving of di�erent processes,
there are many more possible executions as each possible interleaving is a di�erent
execution. These executions have to be considered during implementation of the data
structure. However, there are simply too many possible executions to consider them
all during development of an algorithm. Several processes can perform di�erent
operations and each new combination of a set of processes executing a sequence of
operations allows for new executions. To make things worse, in�nite executions are
also possible or at least must be considered, since a bug may also occur late during
an execution.

Testing each possible execution one by one is not su�cient as one might never
�nish with this task. Even though testing is often automated to a large extend, it
cannot show correctness, because the tests reveal only a fraction of the possible
behavior of an implementation. Instead developers use formal veri�cation in order to
prove correctness of concurrent data structure implementations. One such method is
model checking [CGP01, Cla08] where the state space of a program is systematically
explored and checked for requirements. If the exploration �nishes and no violation
of the requirements was found, then the program is proven to be safe. Otherwise,
a counterexample trace is reported that violates the requirement. However, even
with model checking it is di�cult to prove correctness of concurrent data structures,
simply because the state space of most concurrent data structures is not �nite. Thus,
it cannot be checked exhaustively unless abstractions to the state space are applied,
which would make the state space �nite. Nevertheless, testing and model checking
are useful tools for �nding bugs, but when it comes to show ultimate correctness of
a concurrent data structure, then a correctness proof is required. The latter formally
proves that an implementation behaves correct w.r.t. a correctness property that
de�nes its legal behavior.

Reasoning about the correctness of such �ne-grained concurrent data structures
can be challenging, since lots of �ne-grained steps tend to make the veri�cation
verbose and complex. Several correctness properties have been proposed, e.g., Serial-

1.1. CONCURRENCY ON MODERN MULTICORE PROCESSORS 3

izability [Pap79], Linearizability [HW90], Quiescent Consistency [HS08] including
di�erent variations of the mentioned properties. Among these, Linearizability has
established as a de-facto standard correctness criterion for concurrent data structures.
Di�erent veri�cation techniques have been developed in order to formally prove,
check or test the correctness of an implementation. Some prove a re�nement between
an abstract speci�cation and an implementation (usually by proving a simulation
relation) [Hes07, DSW07], some try to apply reduction techniques [EQS+10] and
others check or test for trace-equivalence [LCLS09, VYY09, BDMT10].

However, all of the above mentioned correctness criteria and veri�cation ap-
proaches have one assumption in common: they assume sequentially consistent (SC)
execution semantics [Lam79], i.e., programs of concurrent processes are executed
in a non-deterministically interleaved manner. This is not in line with the behavior
observable on modern multicore processors. These allow for out-of-order execution,
i.e., instructions appear to execute in a di�erent order than the program order. Thus,
there is a gap between the program behavior that is usually assumed by the veri�-
cation approach and the program behavior that can actually occur on a multicore
processor. Without further ado, this gap renders many veri�cation results unsound.

1.1 Concurrency on Modern Multicore Processors

In the following, we elaborate about concurrency on modern multicore processors
and in particular their weak execution semantics, which motivate this thesis. Fur-
thermore, we discuss why the assumption of sequentially consistent executions
semantics is a problem for existing veri�cation techniques. Later on, we introduce
the contribution of this thesis. Finally, the remaining chapters of this thesis are
outlined.

1.1.1 Weak Memory Models

Modern multicore processors provide weaker execution semantics than the often
assumed sequential consistency [Lam79]. Executions semantics are captured by
memory models as it is the architecture of a CPU that dictates the provided semantics.
Thus, semantics of multicore processors are known to be captured by weak memory

models, weak with respect to sequential consistency (SC).
The architecture of a CPU dictates the execution semantics in the sense that it

organizes how a single processor core accesses the memory in order to read from it
or write to it. Figure 1.1 illustrates a sequentially consistent architecture. Several
processor cores are connected to the memory via a non-deterministic switch. Only
if the switch establishes a connection between a core and the memory, the core

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Programmer intuition of concurrency [AG96]

can execute memory instructions. Otherwise, a core has to wait. Memory access is
atomic and the e�ect of each instruction becomes immediately visible to whoever
is next after it has been performed. Since each core executes a sequential program,
the resulting execution is always a non-deterministic interleaving of the sequential
programs run by all processor cores. This architecture is arti�cial and no common
multicore processor works this way, but still it is what is usually assumed when
people think about concurrency or even when they verify concurrent software.

One of the most common processors is based on the x86-architecture [Int12],
which is illustrated in Figure 1.2. It provides store bu�ers to each core, an optimization
technique originally developed for single core processors. A store bu�er is basically
a FIFO-queue. It allows processor cores to seemingly perform a write instruction,
but instead of writing the new value to the memory, the value and the location it
should be written to are temporarily stored in the store bu�er. The store bu�er is
emptied by �ushing its entries to the memory at an inde�nite later point in time.
Meanwhile, the core can further execute its program. If it tries to read a location
that was previously written and that is still present in the store bu�er, then it takes
the latest value from the store bu�er. Otherwise, it takes the value from the memory.
Please note, that the direct access to the memory (read or write) is considerably
slower than the access to the store bu�er of a core. This is not only the case because
of slow memory hardware, but also because of potential contention with other cores
trying to access the memory simultaneously.

As a consequence of store bu�ers and the delay it imposes on writes, instructions
may appear is if they were executed out-of-order. As an example take the Litmus
test in Figure 1.3. Litmus tests in the context of memory models are simple and often
minimal programs revealing e�ects, which can be observed due to weak execution
semantics. The Litmus test in Figure 1.3 detects reordering of writes with later reads.
Two shared variables x and y are initially 0. The �rst process writes 1 to variable

1.1. CONCURRENCY ON MODERN MULTICORE PROCESSORS 5

Core 1 Core n

FIFO

Write

Buffer

FIFO

Write

Buffer

Shared Memory

...

Figure 1.2: Illustration of the x86-
architecture

Initially : x = 0 ∧ y = 0

Process 1
write(x , 1);

read(y , r1);

Process 2
write(y , 1);

read(x , r2);

r1 = 0 ∧ r2 = 0 possible

Figure 1.3: Litmus test for reordering of
writes with later reads

x and then reads the value of y to a local register r1. The second process writes 1
to variable y and then reads the value of x into its local register r2. In all possible
interleavings under SC semantics, the value of at least one register, either r1 or r2

or both, will be 1. However, due to store bu�ers in x86 processors, the writes can be
delayed. A read instruction can execute while the previous write is still contained in
the store bu�er. Since it is a di�erent location than the previously written one, it has
to fetch the value from the memory. If the write of the other process was not �ushed
yet, the read will be observe the value 0. The same holds for the read of the other
process. As a consequence of the weak execution semantics due to store bu�ers, the
outcome (r1 = r2 = 0) becomes possible, which is not possible under SC semantics.

From the example, we can see that weak execution semantics can cause behavior,
which cannot be explained by SC semantics and which can be observed at runtime.
The fact that weak memory models do add behavior that cannot be observed under
SC renders most veri�cation approaches unsound, because they widely assume SC
semantics. However, such e�ects are only observable in a concurrent setting. Thus,
veri�cation approaches for concurrent software must consider weak memory models
instead of just assuming SC.

In the past, there has been a lot of research on weak memory models. Early
work [AG96] on weak memory models tried to characterize the possible e�ects
and provide an intuition of what kind of behavior must be expected from various
types of weak memory models. Over the years, the weak memory models have
been formalized [AH93, HKV98, SSO+10, AFI+08, MMS+12, DTDW13] in several
ways and their relationship has been studied [HKV98, Alg12, DTDW13]. There are
four generic types of memory models, which can be characterized by the order that
they preserve in interleavings of di�erent processes. Most other models are variants
of the four generic models. Sequential consistency (SC) preserves full program
order, but is not implemented on actual hardware. The most common architecture
(x86 [Int12]) preserves the order of writes, therefore it is known as Total Store Order
(TSO). It allows writes to be reordered with later reads. A further relaxation of TSO

6 CHAPTER 1. INTRODUCTION

is Partial Store Order (PSO). In contrast to TSO, it only preserves the order of writes
to each location, but allows writes to di�erent locations to be reordered with each
other. It is rarely used in practice, e.g., by the SPARC processor [SPA92]. An even
more aggressive reordering is o�ered by the Relaxed Memory Order (RMO). RMO
allows basically any instructions that operate on di�erent memory locations to be
reordered. The order of instructions operating on the same location is preserved.
The Power [IBM15] and ARM [ARM13] architectures implement a variant of RMO.

1.1.2 Towards Program Correctness

One of the strongest motivations for the vast amount of research is to avoid execution
results under weak memory that are impossible under SC. If a program does not reveal
any observable behavior under a particular weak memory model, then it is robust
against this model [BMM11]. Robustness of a program can be achieved by placing
fence instructions all over the program. A fence instruction is a special instruction
that blocks the processor from executing any further instructions until the store
bu�er is empty. Thus, it prevents reordering of previously executed instructions with
the instructions yet to be executed. Therefore it is also known as a memory barrier.
However, a fence instruction is an expensive instruction in terms of performance,
because it forces the processor to wait. Thus, one wants to place as few fences as
possible in order to not hurt program performance.

Several approaches [BAM07, AMSS10, KVY12, AAC+13] have been developed
to identify a (minimal) fence placement for a given program that avoids non-SC
executions. However, these approaches are not practical, as they require two ma-
jor steps for veri�cation. First, it must be ensured that the concurrent program is
correct under SC, which can be a di�cult task itself because of the state explosion
problem [Val98, HKV02] and second, the program potentially enriched by a few
fences must be veri�ed to conform to its SC behavior. The latter part can be consid-
ered as the more di�cult one. This is especially true, because it requires reasoning
about a program in its low-level representation (single instructions) rather than the
high-level language, e.g., C or C++, in which it was likely written. Memory models
de�ne the behavior of a processor and a processor executes single instructions, not
high-level language statements. Thus, a high-level program must be compiled to a
low-level representation in order to be able to apply the de�nitions from memory
models and furthermore, in order to rule out potential compiler optimizations. The
latter can modify the program in many di�erent ways and taking all variants of a
program into account that a compiler can produce is simply not feasible.

Anyway, it is not always necessary to add fences to a program in order to achieve
robustness against weak memory models. In particular, if a program is known to be

1.1. CONCURRENCY ON MODERN MULTICORE PROCESSORS 7

data-race-free, then it is also robust against weak memory models, since its observable
behavior in this case is known to be equivalent to the behavior under SC [CS10].
Thus, for data-race-free programs reasoning about memory models is obsolete. A
data-race occurs if two concurrent programs read or write shared data and at least
one of them writes to it. Data-race-freedom of a program is usually achieved by
design, by adding synchronization (e.g. locks) where data races can occur. Thus,
data races are avoided by ensuring that the data is owned by one process exclusively
at the time of access to it. Prominent programming languages such as Java and Rust
rely on data-race-freedom. Java guarantees SC semantics for Java programs if they
are properly synchronized [MPA05]. Rust goes even one step further and forces
developers to annotate ownership in the program. It also checks for potential data
races at compile time and reports them to the developer. A more general approach
to showing data race freedom is given in [CS10]. It introduces a reduction theorem,
which if can be shown for a program to hold, implies that the program is data race
free and thus is robust against TSO. However, many programs and in particular data
structure implementations have intentional data races. Programs with intentional
data-races usually rely on �ne-grained synchronization such as fence instructions,
atomic read-modify-write instructions or none at all. For these program, veri�cation
must consider the underlying memory model.

Considering all non-SC program behavior as harmful is stricter than necessary.
Just because non-SC behavior is observable for a program does not make the pro-
gram incorrect. A more intuitive correctness criterion is Linearizability [HW90].
The operations of linearizable data structure appear to be atomic at some point in
time between invoke and return, the linearization point. Thus, the implementa-
tion behaves as if it was a sequential one. Linearizability is the de-facto standard
correctness criterion for concurrent programs, but the original de�nition of lin-
earizability assumes SC [HW90]. There has been quite some e�ort towards trans-
forming the original de�nition into a de�nition that is aware of weak memory
models [BGMY12, GMY12, BDG13, DSD14, DSGD17]. The closest de�nition to the
original de�nition is the one in [GMY12], which was initially de�ned for TSO and
then extended to other memory models [BDG13]. The reason why the original
de�nition is no longer su�cient and why there are several new de�nitions of lin-
earizability are the invokes and returns of an operation. Under SC, an invocation and
a return are each a single atomic step and express the boundaries of an operation or
method. Considering the delay of writes inherent to weak memory models, these
boundaries are not as clear anymore. The de�nitions above vary mainly in their
interpretation of these boundaries. However, it is still unclear which de�nition
will establish as the new memory model aware de-facto standard and the di�er-
ences between these criteria are subtle. Therefor, it should not surprise that there

8 CHAPTER 1. INTRODUCTION

explore

& transform
program
(C/C++)

program
(LLVM IR)

WEAK2SC

compile

SC program
(KIV spec.)

SC program
(Promela)

check

prove
correctness

proof

property satisfied
or

counterexample

Figure 1.4: Weak2SC, a memory model-aware veri�cation approach

are only few attempts of verifying linearizability in the presence of weak memory
models [BDMT10, TMW13, TW14].

1.2 Contributions

Concurrent software veri�cation requires tools that are aware of the underlying
memory model in order to provide sound results. Most of the available memory
model-aware veri�cation tools [PD95, BAM07, AMSS10, KVY12, AAC+12] are dedi-
cated to a particular property or are limited in their applicability. Only few, mostly
model checking tools (CBMC [CBM], Nidhugg [AAA+15]), can be considered general
purpose veri�cation tools.

This thesis introduces a general purpose approach for concurrent software
veri�cation together with an implementation of it, Weak2SC. The key idea behind
it is to transform a program combined with the e�ects due to weak memory models
into a new program destined to execute under SC semantics. The transformation
is based on a reduction that involves symbolic exploration of possible store bu�er
states. This information is combined with the program control �ow and can be
represented in terms of a graph, which eventually is encoded into a new SC program.
According to our bisimulation proof, the new program is behaviorally equivalent
to the original program under weak memory semantics. Thus, existing veri�cation
tools (those which assume SC) can be used for veri�cation of the new program.
Because of the behavioral equivalence, the results also hold for the original program
under weak memory. The proposed approach allows developers to generally use a
veri�cation tool of their choice. However, the approach works best, if the underlying
program transformation is automated. Weak2SC implements the transformation to
Promela [Hol03], the input language to the model checker Spin, and a predicate logic
encoding as is required by the theorem prover KIV [EPS+14]. An extension to other
output formats and languages is possible, if these can express non-determinism.

Figure 1.4 gives an overview of the approach. First, a C or C++ program is

1.2. CONTRIBUTIONS 9

compiled into a low-level representation, since we later want to reason about weak
memory e�ects. The compilation is done by the LLVM compiler framework [LA04],
which produces LLVM IR code. In contrast to assembly, the LLVM IR code still
contains information from the original program, e.g., variable names and types and
thus, helps to understand the low-level version of the original program. Weak2SC
takes the LLVM IR program and performs a symbolic exploration, in order to de-
termine the e�ects of weak memory models to each process of the program. The
exploration is fast, because no concurrency has to be considered within this step. Out
of the thus obtained symbolic states, Weak2SC generates a new SC program that is
behaviorally equivalent to the original one under weak memory models. Depending
on the veri�cation goal, the new SC program can be either the input of a model
checker or a theorem prover.

We evaluate our approach on a number of case studies by extending di�erent
veri�cation approaches [Fla04, VYY09, DSW11b] to the weak memory model setting.
In particular, we experiment with model checking data structure implementations
against abstract atomic speci�cations. The idea behind this approach is similar
to [Fla04] and thus is not new, but it has never been applied in a weak memory setting
before and we are the �rst to achieve this. In addition, we present history-based
model checking, which is perhaps the most natural way of verifying correctness,
since correctness criteria are usually de�ned via sets of correct histories. Inspired by
the ideas in [VYY09], we extended the model checker Spin with capabilities to record
histories and for their validation against arbitrary sequential implementations of data
structures. Furthermore, we prove linearizability of a work-stealing queue [ABP98]
and the Burns mutex algorithm [BL80], each twice: First by applying our reduction
to them and second, by encoding the weak memory semantics explicitly into the
program behavior. Finally, we compare the impact of our reduction to the proof e�ort.
In order to achieve this, we instantiated the proof obligations from [DSW11b] for our
case study. The proofs are fully mechanized in the theorem prover KIV [EPS+14].
Usually, proofs, involving weak memory e�ects, are done manually or are applied to
trivial programs, e.g., Spinlock, which is used as a mutex algorithm in Linux [BC05].
With our proof [TMW13], we were one of �rst to fully mechanize such a proof to a
non-trivial program like the work-stealing queue by Arora et al. [ABP98].

Our approach is inspired by existing reductions [ABP11, AKNT13], but is limited
to a certain class of programs, which we discuss in Chapter 3. The limitation allows
our approach to produce comparably concise new programs, whereas the existing
approaches [ABP11, AKNT13] are not restricted, but produce complex new programs.
The complexity stems from a general encoding of weak execution semantics as part
of the new program. In [AKNT13], a complex abstract machine simulates the steps
of the underlying memory model. In [ABP11], the new program contains a lot of

10 CHAPTER 1. INTRODUCTION

auxiliary variables in order to maintain information about potential store bu�er
entries. A later veri�cation, be it a proof or state space exploration, has to consider
all this additional encoding, which makes it di�cult. Our approach barely requires
any auxiliary variables (at most one per write in a loop of the original program) and
thus limits this type of additional e�ort.

1.3 Overview

The thesis is structured as follows. In Chapter 2, a more detailed explanation of
(weak) memory models is given. It includes various common weak memory models.
For those memory models supported by the presented approach, a formal de�nition
is given. Chapter 3 introduces the reduction from weak semantics to sequential
consistency. We �rst explain the symbolic exploration of the low-level programs and
the transformation, which generates a new program out of the explored states. Fur-
thermore, a soundness proof for our approach is presented and discussed. Weak2SC,
the implementation of the presented approach, is introduced in Chapter 4. An
architecture of Weak2SC is given as an overview and technical aspects of the trans-
formation are discussed. In particular, the chapter also discusses how Weak2SC
can be extended to other output languages. In Chapter 5, variants of linearizability
de�nitions and their sometimes subtle consequences are discussed. Furthermore, the
chapter provides background on model checking and proof methods for linearizabil-
ity. The previously mentioned model checking and proof methods for linearizability
and their adaptations to weak memory models are introduced in Chapter 6. The
requirements and the main ideas are provided, followed by experimental results and
a discussion. The related work is distributed along the chapters where it �ts to the
context. Finally, Chapter 7 summarizes the thesis, gives conclusions and lays out
possible future work.

2

Memory Models

Programs have semantics, as well as each statement of a program and each instruction,
of which a statement may be composed of. Sequential program developers usually
don’t even have to think about semantics, as programs are simply expected to be
executed sequentially, one statement of the program at a time, one instructions after
the other. The result of a sequential program is the result of executing all program
instructions in program order. Thus, we are used to abstract the implementation
details and think of a program in its abstract meaning, e.g., a complete push operation
of a stack rather than the single lines of code implementing it.

However, instructions are often executed non-atomically and they are not nec-
essarily executed in program order because of performance optimizations. Actual
processors implement various performance optimizations, which can relax program
order, but do not a�ect the outcome of a sequential program. Thus, details from
the underlying hardware are hidden from developers. In other words, a developer
has an abstract view of what is actually going on in a processor and it is safe to
not care about the abstracted details, at least for developers of sequential programs.
The reason why it is safe is, because all common processors provide sequentially
consistent semantics for sequential programs. Thus, all possible program results can
be explained by sequential executions with respect to program order. However, this
is not true for concurrent programs that run on multicore processors as these have
di�erent, weaker semantics. For concurrent programs, it is widely assumed that the
result of an execution can be explained by an interleaving of the sequential programs
run by each process. This is not true for modern multicore processors and we have
given an example for this in Figure 1.3 in Section 1.1. Modern processors reveal
some of their internals to program developers by seemingly reordering program

11

12 CHAPTER 2. MEMORY MODELS

instructions. The reordering can lead to unexpected results or even program failure.
It is thus crucial to understand the semantics of these processors, especially in the
context of concurrent program veri�cation.

Not long ago, the semantics of processors were given by informal descriptions,
usually provided by the vendors. People soon realized that informal descriptions are
often ambiguous and thus do not provide the precision needed by developers of, e.g.,
operating systems, programming languages or veri�cation tools. Vendors adapted
to these needs by adding Litmus tests to their descriptions [Int12] or by providing
semi-formal descriptions of the semantics [Int, SPA94]. However, these can still be
ambiguous [AFI+08]. Especially for concurrency veri�cation, ambiguities in the
description of semantics may render veri�cation unsound.

Memory models formally de�ne the semantics of a processor. There are various
ways to de�ne a memory model, but we can generally distinguish between two types
of memory models: axiomatic or operational. An axiomatic memory model de�nition
de�nes axioms, usually for various orders that have to be preserved in an execution,
e.g., order of writes. The set of preserved orders characterizes all possible execution
orders of arbitrary programs on a particular memory model. As di�erent memory
models provide di�erent semantics, it is important to study the relationships between
di�erent memory models as it was done in [AH93, AM06, ABBM10, Alg12]. Usually,
the di�erences between two memory models can be characterized by one or several
orders that are preserved by one memory model but not by the other.

An operational memory model is basically a formal programming language
consisting of a set of operations. Each operation is a formal de�nition of the e�ect of
either a processor instruction, e.g, read or write or an internal step of the processor,
e.g., a �ush. Operations are usually modelled as atomic steps, e.g., a write enqueues a
written value to the store bu�er atomically. Operational memory models are practical
for model checking [Cla08], because a program implicitly de�nes which operations
are possible at a particular state and these just have to be explored. In veri�cation,
operational memory models are widely used and have been around for the last two
decades [PD95, BP09, SSO+10, TMW13].

The e�ects of a memory model are known for processor instructions, but cannot
be stated a priori for statements of high-level languages like C or C++. The reason
for this is simply that there are too many ways of how a compiler can transform the
original high-level program to a low-level program (usually assembly). Furthermore,
one line of code in a high-level language can correspond to many instructions of a
low-level program and these may depend on the code optimizations that the compiler
performs throughout compilation. Since memory accessing instructions are the most
expensive ones in terms of performance, compilers try to reduce the number of them
and optimize them as much as possible. Memory models de�ne the semantics of

2.1. PROGRAMS 13

these instructions and low-level programs state memory access explicitly. Thus, in
order to reason about programs in a weak memory setting, we need to consider
low-level programs.

Perhaps the most important insight from the early research is that weak memory
models do not a�ect the observable behavior of a program if it is data-race free
(DRF) [AH90, AG96]. A data-race occurs if two processes compete for a shared
resource like a variable and at least one of them attempts to write to it. Obviously,
sequential programs are data-race free by de�nition. For concurrent programs data-
races can be avoided by using synchronization primitives like locks. In fact, the
Java memory model [MPA05] was built around this property as it aims to guarantee
sequential consistency for correctly synchronized programs. However, several �aws
were identi�ed in the implementation of the Java memory model [SA08, Sev09]. The
latter shows that it is di�cult to hide the e�ects of weak memory models. Besides
that, there are plenty of concurrent data structure implementations [Tre86, MS96,
HW90], which rely on �ne-grained synchronization primitives and have data-races
intentionally for performance reasons. Such implementations do not bene�t from
DRF guarantees and their implementations must take the semantics of weak memory
models into account. The latter motivates our research.

In the following, we will de�ne programs and their semantics under SC, TSO
and PSO. These build the foundation of our later de�nitions and of our reduction in
Ch. 3. Parts of it have also been used in our previous publications [WT15, TW16]
and were revised for this thesis.

2.1 Programs

Reasoning about the e�ects of memory model requires reasoning about the semantics
of single processor instructions. Thus, we have to deal with low-level programs that
are the result of compiling a high-level language. In the following, we �rst introduce
an assembly-like low-level language. We will use it in order to de�ne the semantics
for the memory models SC, TSO and PSO. In Section 3, we will also use it in order to
de�ne a reduction and carry out our proofs.

For programs, we assume a set Reg of registers local to processes and a set of
variables Var , shared by processes. For simplicity, both take just integers as values.
A set of labels L is used to denote program locations. The following de�nition gives
the grammar of programs.

De�nition 1. A sequential program (or process) P is generated by the following

grammar:

P ::= ` : read(x , r) | ` : write(x , r) | ` : write(x ,n) |

14 CHAPTER 2. MEMORY MODELS

` : r := expr | ` : fence | ` : skip | P1; P2 |
` : if (bexpr) then P1 else P2 fi |
` : while (bexpr) do P1 od | ` : goto `′

where x ∈ Var , n ∈ Z, r ∈ Reg , `, `′ ∈ L and bexpr is a boolean and expr an

arithmetic expression over Reg and Z.

De�nition 2. A concurrent program S is de�ned as [P1 || . . . || Pn] where all

Pi , 1 ≤ i ≤ n, are sequential programs.

The language de�nes statements for reading or writing to shared variables in
memory. The value read from a shared variable x is stored in register r . The value
written to x can be either the value of register r or a constant n . Assignments modify
the value of a register r by assigning the value of an arithmetic expression expr to
it. The expression is evaluated over Reg and Z. A fence , also known as memory
barrier, is a statement that blocks until store bu�ers are emptied. Its purpose is
to ensure that potentially delayed writes before the fence are not reordered with
statements following the fence. A skip is an empty statement, i.e., it does not modify
any value. Furthermore, the language de�nes sequential composition of statements,
if -then-else statements for conditional execution, a while statement for looping and
a goto statement for jumping to a particular program location `′.

All program statements have their own unique program location `. Out of the
program text, we can derive a function suc : L → L denoting the successor of a label
` in the program. Similarly, we use functions sucT and sucF for the successors in
if and while statements (on condition being true , or false respectively). We assume
the �rst statement in a sequential program to have label `0.

2.2 Parameterized Semantics

Memory models di�er mainly in their memory access. Some access it directly and
others use store bu�ers in order to write to memory. Thus, we introduce a semantics
that is parameterized by a store bu�er type and a few predicates. These predicates
capture the characteristics of the memory model, while the rest of the semantics
remains equivalent among the memory models.

Processes have a local state represented by a function reg : Reg → Z (registers)
together with the value of a program counter, and a store bu�er. Concurrent programs
in addition have a shared global state represented by a function mem : Var → Z
(shared variables). We use the notation mem[x 7→ n] to stand for the function
mem ′ which agrees with mem up to x which is mapped to n (and similar for other
functions). A memory model is �xed by stating how the writing to and reading

2.2. PARAMETERIZED SEMANTICS 15

from global memory takes place. Memory models use store bu�ers to cache values
of global variables. Such store bu�ers take di�erent forms: in case of TSO it is a
sequence of pairs (variable,value); in case of PSO it is a mapping from variables to
sequence of values; in case of SC the store bu�er is not existing (which we model by
a set which is always empty). In the semantics, the store bu�er is represented by sb.
Since the type of store bu�er is di�erent among memory models, we will provide it
later, as a part of the parameter to the generalized semantics presented here.

De�nition 3. A memory model MM = (type, init , read , write,flush, fence) con-

sists of

• the type of the store bu�er, and

• formulae for initialization, read, write, �ush and fence operations ranging over

mem , sb and reg .

We assume all registers and variables to initially have value 0. Later, we de�ne
the semantics of programs by assigning a predicate to every statement stm according
to the given memory model, i.e., we �x JstmKMM . We de�ne Ops(P) to be the set
of all such predicates, which make up the operations of the program P together with
an operation predicate ` : flush for all ` ∈ L.

We describe the semantics of program operations by logical formulae over sb, reg

and mem . In this, primed variables are used to denote the state after execution of
the operation. A formula like (x = 0) ∧ (reg ′(r1) = 4) for instance describes the
fact that currently x has to be 0 and in the next state the register r1 has the value 4
(and all other registers stay the same). A state s for a process consists of a valuation
of the variables pc (the program counter), sb and reg . We write s |= p for a formula
p to say that p holds true in s . For convenience, we assume all variables keep their
value that are not mentioned in the predicate, e.g., if the predicate does not mention
sb, reg ,mem , then this implies (sb = sb′ ∧ reg = reg ′ ∧mem = mem ′).

De�nition 4. The semantics of a program with respect to a given memory model MM

are

J` : read(x , r)KMM =̂ pc = ` ∧ readMM (x , r) ∧ pc′ = suc(`)

J` : write(x , r)KMM =̂ pc = ` ∧ writeMM (x , r) ∧ pc′ = suc(`)

J` : write(x ,n)KMM =̂ pc = ` ∧ writeMM (x ,n) ∧ pc′ = suc(`)

J` : fenceKMM =̂ pc = ` ∧ fenceMM ∧ pc′ = suc(`)

J` : flushKMM =̂ flushMM

J` : r := exprKMM =̂ pc = ` ∧ r ′ = expr ∧ pc′ = suc(`)

J` : goto `′KMM =̂ pc = ` ∧ pc′ = `′

16 CHAPTER 2. MEMORY MODELS

J` : skipKMM =̂ pc = ` ∧ pc′ = suc(`)

J` : if (bexpr) then P1 else P2 fiKMM =̂ (pc = ` ∧ bexpr ∧ pc′ = sucT (`))

∨ (pc = ` ∧ ¬bexpr ∧ pc′ = sucF (`))

J` : while (bexpr) do P odKMM =̂ (pc = ` ∧ bexpr ∧ pc′ = sucT (`))

∨ (pc = ` ∧ ¬bexpr ∧ pc′ = sucF (`))

The semantics de�nition encodes each program statement as a predicate. Each
predicate encodes the control �ow of the program as pc = ` ∧ pc′ = `′, where ` is
the location before the actual operation and `′ the one after. The only exception to
this is the flushMM operation. A �ush removes entries from the store bu�er, but
it is not an explicit statement of a program. It is not restricted to any particular
location, but can occur whenever the store bu�er is not empty. Thus, it is always
an alternative to each of the other operations. The semantics provides placeholders
for the characteristic predicates of the respective memory model. For instance, a
read(x , r)MM represents the read semantics speci�c to the memory model MM .
The same holds for writeMM (x , r), writeMM (x ,n), fenceMM , and flushMM . The
possible values for MM are de�ned in the following sections. Besides these memory
model speci�c operations, we also de�ne the local operations, i.e., operations that
read or modify the state of only one process, the one executing them. Local operations
are assignments, if − then − else , while or goto statements.

Now that we have de�ned the parameterized semantics, we can de�ne the
transition system of a program. First, we de�ne a local transition system, i.e., the
transition system of a sequential program which corresponds to a single process.
This local transition system abstracts from its environment (i.e., other processes
running concurrently) in that it assumes arbitrary states of the global memory (which
could be produced by other processes). We call this an open semantics. We start with
a local transition system, because our later reduction is also applied locally to each
method of a program. Out of the local transition systems, we can construct a global
transition system as we will see.

De�nition 5. The local transition system of a sequential program P on memory model

MM , ltsMM (P) = (S ,−→,S0), consists of

• a set of states S = {(pc, sb, reg) | pc ∈ L, sb ∈ typeMM , reg ∈ (Reg → Z)},

• a set of initial states S0 = {s ∈ S | s |= initMM ∧ s |= (pc = `0)},

• a set of transitions −→ ⊆ S × Lab × S such that for s = (pc, sb, reg) and

s ′ = (pc′, sb′, reg ′), we have s −lab−→ s ′ i� ∃ op ∈ Ops(P), ∃mem,mem ′ :

2.2. PARAMETERIZED SEMANTICS 17

((s,mem), (s ′,mem ′)) |= op and label(op) = lab. For such transitions, we

use the notation s
lab−−−−−−−→

mem,mem ′
s ′.

Since the transition system is local, a state is represented by a tuple consisting
of pc, sb, reg , i.e., the current program location represented by pc, the current store
bu�er content sb and the current valuation of registers reg . A set of initial states must
satisfy initMM , the memory model speci�c initialization condition. Furthermore,
initial states start at program location `0. Transitions connect states s, s ′, i� an
operation op ∈ Ops(P) exists and we can provide memory values mem,mem ′ such
that ((s,mem), (s ′,mem ′)) |= op. Please note that we do not provide the labels
label(op) explicitly here. We label transitions in a particular way that helps us with
our later proofs. However, at this point, the labels would rather confuse than clarify,
because we have not introduced our reduction yet. We refer to Section 3.3.1 for the
label function.

Processes typically run in parallel with other processes. The semantics for
parallel compositions of processes is now a closed semantics already incorporating
all relevant components. In the following, we de�ne it for two processes. The initial
global state mem0 assigns 0 to all global variables.

De�nition 6. Let Pj , j ∈ {1, 2}, be two sequential programs and let (Sj ,−→j ,S0,j),

be their process local (i.e., open) labelled transitions systems for memory model MM .

The closed MM semantics of P1 || P2, ltsMM (P1 || P2), is the labelled transition

system (S ,−→,S0) with

• a set of states S ⊆ {(mem,s1,s2) | sj ∈ Sj , j ∈ {1, 2}},

• a set of inital states S0 = {(mem0, s0,1, s0,2 | s0,j ∈ S0,j , j ∈ {1, 2}},

• and a set of transitions s = (mem, s1, s2) −lab−→ s ′ = (mem ′, s ′1, s
′
2)

when (s1
lab−−−−−−−→

mem,mem ′
s ′1 ∧ s2 = s ′2) or (s2

lab−−−−−−−→
mem,mem ′

s ′2 ∧ s1 = s ′1).

The de�nition de�nes an interleaving semantics for two processes, more precisely
for their sequential programs P1 and P2. The transitions of the parallel composition
are the local transitions of P1 and P2. In contrast to the open semantics for one
process only, the processes now have to agree on the memory before and after
(mem,mem ′) a transition. However, we allow only one processes to make a step
at a time, i.e., only one process can modify memory and its local state, leaving the
respective other local state unchanged.

A generalisation to larger numbers of components is straightforward. We just
have to extend the state tuple (mem, s1, s2, . . . , sn) by additional local states up to
a an n as required. The interleaving is then again achieved by allowing only one of
the n local states to be modi�ed at a time.

18 CHAPTER 2. MEMORY MODELS

Due to the open semantics for processes, we are thus able to give a compositional

semantics for parallel composition. This is key to our transformation which operates
on single processes and which is presented in Section 3. However, before we come
to the transformation, we still need to �x the semantics of the memory models that
we want to consider in this thesis. So far, we only have the parameterized semantics,
where the characteristics of a memory model are provided as the parameter.

2.3 Sequential Consistency

As already mentioned, sequential consistency is our intuition of concurrency. Lam-
port was the �rst to de�ne it [Lam79]. In a sequentially consistent memory model,
all processes share a global view of the memory. The e�ects of reads or writes
appear immediately and are visible to all processes at the same time. The sequential
programs of all concurrent processes are interleaved. Thus, all possible outcomes of
a concurrent program execution can be explained by an interleaving of its sequential
programs.

In the following, we de�ne the parameter to our parameterized semantics from
the previous Section, which will generate sequentially consistent behavior.

De�nition 7. The memory model SC consists of

typeSC =̂ 2Var

initSC =̂ sb = ∅
writeSC (x ,n) =̂ mem ′ = mem[x 7→ n]

writeSC (x , r) =̂ mem ′ = mem[x 7→ reg(r)]

readSC (x , r) =̂ reg ′ = reg [r 7→ mem(x)]

fenceSC =̂ true

flushSC =̂ false

We de�ne the type of the store bu�er typeSC to be a set of variables. However,
it is actually irrelevant for SC as it is not needed in order to de�ne sequentially
consistent behavior. Therefore, it will be always empty. The initialization predicate
initSC ensures emptiness of store bu�ers.

Writes appear immediately in SC. Thus, writeSC modi�es the memory directly
by updating the the memory location of shared variable x to a new value. The new
value can be either a constant n or a value held by a register r , which is reg(r).
A readSC (x , r) takes the value of a shared variable x from the memory mem and
updates the valuation of register r by updating the register function reg .

The fenceSC predicate is de�ned to be true . Thus, the semantics is equivalent to
a skip step. A fence has blocking semantics for memory models making use of their

2.4. TOTAL STORE ORDER 19

store bu�ers. It blocks until the store bu�er is empty. Usually, it is used in order
to avoid reordering of instructions, which can be caused by the delay due to store
bu�ers. However, in SC, store bu�ers are not used and the only reason why we have
store bu�ers here is, because the generalized semantics de�nition (see Section 2.2) is
also used for store bu�er based memory models.

In the semantics de�nition, the flushSC predicate is an alternative case for all
operations. Its purpose is to model the non-deterministic �ushes of weak memory
models. However, since SC does not use store bu�ers and the content of store
bu�ers is always empty, we can de�ne flushSC to be false . This way, we eliminate
the alternative case in the disjunctions, which de�ne the operation semantics in
De�nition 4. By eliminating the alternative, the semantics preserve the sequential
program order in all executions.

2.4 Total Store Order

Total Store Order (TSO) is the memory model of most x86-based multicore proces-
sors manufactured by AMD and Intel. Out of the weak memory models, it can be
considered as one of the stronger memory models. In contrast to SC, TSO provides
store bu�ers for each processor core. The store bu�er is used as a temporary storage
of written values to a memory location. The written values and the location they
are written to are store in a First-In-First-Out (FIFO) manner. The entries are �ushed
to memory at an inde�nite later point in time, dictated by the contention on the
memory.

Store bu�ers work similar to a cache. They can be used by reads in order to obtain
a value faster than by actually accessing the memory. A read can therefore observe
a previously written value before it is �ushed to the memory. In contrast to caches,
which adhere to cache coherence protocols, e.g., [PP84], only the core owning the
store bu�er can access its previously written values before they are �ushed to the
memory. Cache coherence protocols usually track ownership (by cores) of cache
entries and invalidate entries in other caches, whenever an owner writes to a value
shared by several caches. In order to achieve this, caches coordinate with each other
according to the cache coherence protocol by snooping on the bus and tracking
ownership. However, store bu�ers, in particular those of x86 processors, do not
coordinate with each other, because they are physically closer to the processor core
than caches. Thus, they have to be faster than caches.

TSO allow for two e�ects to occur, which are not possible under SC: �rst, re-
ordering of reads with earlier writes and second, a read can obtain a previously
written value before it is �ushed to memory, also known as early-read. These e�ects

20 CHAPTER 2. MEMORY MODELS

allow for inconsistencies among multiple cores. The following two litmus tests can
be used to determine, whether these e�ects can occur on a processors.

Initially : x = 0 ∧ y = 0

Process 1
1 : write(x , 1);

2 : read(y , r1);

3 :

Process 2
1 : write(y , 1);

2 : read(x , r2);

3 :

result: r1 = 0 ∧ r2 = 0

Figure 2.1: Litmus test for reordering
of writes with later reads

(1, 〈 〉)

(2, 〈(x , 1)〉)

(2, 〈 〉) (3, 〈(x , 1)〉)

(3, 〈 〉)

write(x,1)

flush read(y,r1)

read(y,r1) flush

Figure 2.2: States of Process 1 of Fig. 2.1

Figure 2.1 shows a program identical to the one, we used in the introduction (see
p. 5). It detects reordering of reads with earlier writes, if the result (both observed
values become 0) below the program occurs. In SC, under any interleaving of the
given statements, only one of the processes can observe a value 0. If a process
observes value 0, then it has already processed its write (�rst statement) and the
other process has not yet written (because we observed 0). Thus, the process that
has yet to start can no longer observe value 0.

In contrast, under TSO, the write statement is not just one atomic event, but
two: First, the write is enqueued into the store bu�er. Second, it is �ushed to the
memory. In the meantime, further program statements can be processed. Figure 2.2
illustrates the states and transitions of Process 1 with respect to its program location
and store bu�er entries. A node consists of program location and store bu�er entries.
The transitions are labeled (purple) with the corresponding program statements or a
�ush label. After the write is processed, there is a non-deterministic choice between
going on with the next program statement (the read) or �ushing the entry in the
store bu�er. If the choice is to �ush the current bu�er entry (left branch), then the
observable behavior is equivalent to an SC execution, in which the write appears
before the consecutive read. Other processes cannot observe the non-atomicity of the
write in this case and the executing Process 1 has performed both steps consecutively,
which makes the write appear as if it was atomic. However, if the choice is to read
the value of y (right branch), then the two statements are e�ectively reordered. The
read obtains its value before the written value becomes visible to all other processes,
i.e., the �ush updates the memory with the new value.

The e�ect of an early-read is not an actual reordering of program statements. In
fact, the litmus test in Figure 2.3 shows a program, for which both processes cannot

2.4. TOTAL STORE ORDER 21

Initially : x = 0 ∧ y = 0

Process 1
1 : write(x , 1);

2 : read(x , r1);

3 : read(y , r2);

4 :

Process 2
1 : write(y , 1);

2 : read(y , r3);

3 : read(x , r4);

4 :

result: r1 = r3 = 1 ∧ r2 = r4 = 0

Figure 2.3: Litmus test for early-reads

(1, 〈 〉)

(2, 〈(x , 1)〉)

(2, 〈 〉) (3, 〈(x , 1)〉)

(3, 〈 〉) (3, 〈(x , 1)

(4, 〈 〉)

write(x,1)

flush read(x,r1)

read(x,r1) flush read(y,r2)

read(y,r2) flush

Figure 2.4: States of Process 1 of Fig. 2.3

agree on a global order of statements. It is similar to the previous program, but it
is extended with a read statement between the write to variable x and the read of
variable y . The new read reads the previously written variable x . A result, in which
r1 = r3 = 1 ∧ r2 = r4 = 0 holds, reveals the e�ect of early-reads. The register
variables r1 and r3 being 1 means that both processes have observed their own
previous write. The registers r2 and r4 being 0 means that both processes have not
seen the write of the respective other process. Thus, both processes observe their
own write �rst, before the write of the respective other process.

Obviously, this outcome cannot be explained by simple interleaving of program
statements as it is the case in SC. An interleaving is always a total order on the
program statements of sequential programs of each process. In this example, there
seem to be two orders. Again, Figure 2.4 illustrates the corresponding states of
process 1 from Figure 2.3 and we will use it to explain the e�ects. After the write to
variable x has been enqueued to the store bu�er, TSO again can non-deterministically
choose between �ushing the entry or to continue by processing program statements.
Again, if the �ush transition is chosen, then the observable behavior will look
equivalent to an SC run. However, if the processor continues with the next program
statement (right branch), which is a read of variable x , then the read �rst checks
the store bu�er for any entries. Since in this case, the store bu�er contains an entry
for x , the read fetches the value from the store bu�er instead of taking it from the
memory, which has not been updated yet. So, process 1 observes its own written
value. However, now being at program location 3, there is again the choice between
�ushing or processing of program statements. Please note, that the write to variable
x is still pending in the store bu�er and thus not visible to other processes. From
this point, the example continues as in the �rst litmus test, i.e., the read of variable
y is reordered with the pending write to x . Thus, if the process 2 has not yet �ushed
its write to variable y , then Process 1 can observe y = 0. Both processes can delay

22 CHAPTER 2. MEMORY MODELS

their writes to the very end of the execution. Thus, both processes can observe a
value 0 for the variable that they do not write themselves and both always observe
their own write.

In order to de�ne the memory model parameter for the semantics given in
De�nition 4, we have to consider two types of reads: an early-read and a normal read.
We use predicates readM (read from memory) and readL (early-read) to distinguish
between both variants of the read.

De�nition 8. The memory model TSO consists of

typeTSO =̂ (Var × Z)∗

initTSO =̂ sb = 〈 〉
writeTSO(x ,n) =̂ sb′ = sb a 〈(x ,n)〉
writeTSO(x , r) =̂ sb′ = sb a 〈(x , reg(r))〉
readTSO(x , r) =̂ (x 6∈ sb ∧ readMTSO(x , r))

∨ (x ∈ sb ∧ readLTSO(x , r))

fenceTSO =̂ sb = 〈 〉
flushTSO =̂ ∃(x ,n) ∈ (Var × Z) : sb = 〈(x ,n)〉a sb′

∧mem ′ = mem[x 7→ n]

In contrast to SC, the type of the store bu�er in TSO is important. In principal
the store bu�er in TSO is a FIFO queue. Thus, we model the typeTSO as a sequence
of tuples, where each tuple (Var×Z) consists of a variable and an integer value. The
initialization predicate initTSO states that the store bu�er is initially the empty se-
quence. Again, we have two write predicates, writeTSO(x ,n) for writing a constant
value n and writeTSO(x , r) for writing the value of a register r , which is taken from
reg(r). Since a write in TSO does not write to the memory directly, both write predi-
cates append the new entry, (x ,n) or (x , reg(r)), at the end of the store bu�er sb and
thus create the new store bu�er sequence sb′. The decision whether a readTSO(x , r)

takes the read value from the store bu�er or from the memory depends on the store
bu�er content. If there is an entry for the requested variable x in the store bu�er
(denoted by x ∈ sb), then it is taken from store bu�er by readLTSO(x , r) and from
the memory by readMTSO(x , r), otherwise. Both predicates are de�ned as follows:

readMTSO(x , r) =̂ reg ′ = reg [r 7→ mem(x)]

readLTSO(x , r) =̂ reg ′ = reg [r 7→ lstTSO(x , sb)]

lstTSO(x , sb) = n i� ∃ sbpre , sbsuf ∈ (Var × Z)∗ :

sb = sbpre
a 〈(x ,n)a sbsuf ∧ x 6∈ sbsuf

where readMTSO(x , r) updates register entry r in the function reg with value from
memory mem(x) and readLTSO(x , r) with the last value lstTSO(x , sb) from the

2.5. PARTIAL STORE ORDER 23

store bu�er. Please note that the semantics given by readMTSO(x , r) are equivalent
to readSC (x , r). We de�ne lstTSO(x , sb) via subsequences of sb, which divide
sb into a pre�x sbpre , the entry (x ,n) and a su�x sbsuf . The su�x sbsuf must not
contain an entry for x . Thus, the entry (x ,n) is the last or latest entry. The fenceTSO

predicate from the de�nition blocks until the store bu�er becomes empty (denoted
by sb = 〈 〉). In De�nition 4, the semantics of a fence JfenceKMM is stated to be
a �ush or a fence. Requiring sb to be the empty sequence for a fence, makes the
disjunction a mutual exclusive disjunction, because a �ush can only be performed, if
there is content in the store bu�er. Thus, if the store bu�er is not empty, a series of
�ushes has to be performed before the fence becomes enabled. The flushTSO is again
de�ned via subsequences of sb. Here, we divide sb into its �rst entry (x ,n) and rest
of the sequence sb′, which is also the new store bu�er value after the operation. The
�rst entry (x ,n) is then used to update the memory location of variable x to the
value n .

2.5 Partial Store Order

Partial Store Order (PSO) is a memory model that is provided by the SPARC V8 pro-
cessors [SPA92]. Since SPARC processors are rather a niche of multicore processors,
PSO is less common than TSO or the more relaxed memory models ARM [ARM13]
or Power [IBM15]. However, PSO is weaker than TSO and therefore can be seen as
a stepping stone towards weaker memory models, which include the e�ects of PSO
among other additional e�ects. Please note, that PSO allows all of the behavior that
can be observed on TSO.

As the name Partial Store Order suggests, PSO, in contrast to TSO, does not
preserve the order of writes. In particular, writes to di�erent locations can be
reordered with each other. However, the order of writes to the same location is
preserved. There are several possible causes for the behavior, all of which can be
summarized as performance optimizations by increasing throughput.

Figure 2.5 shows a litmus test that detects reordering of consecutive writes.
Process 1, �rst, writes to shared variable x and then to y . Process 2 reads both shared
variables in the opposite order, �rst y then x . So, in any interleaving under SC the
order of writes to x and y would be preserved. Thus, one can assume that if the
value of y is observed to be 1, then the value of x also has to be 1 since it must have
happened before the write to y . Thus, the result r1 = 1 ∧ r2 = 0 is not possible
under SC. It is also impossible under TSO since the TSO store bu�ers �ush the entries
in FIFO order, which is the program order.

However, under PSO the result is possible and we use Figure 2.6 in order to
describe the behavior. It shows again the states of process 1 as a combination of

24 CHAPTER 2. MEMORY MODELS

Initially : x = 0 ∧ y = 0

Process 1
1 : write(x , 1);

2 : write(y , 1);

3 :

Process 2
1 : read(y , r1);

2 : read(x , r2);

3 :

result: r1 = 1 ∧ r2 = 0

Figure 2.5: Litmus test for reordering
of writes with other writes

(1, 〈 〉)

(2, 〈(x , 1)〉)

(2, 〈 〉) (3, 〈(x , 1), (y , 1)〉)

(3, 〈(y , 1)〉) (3, 〈(x , 1)〉)

(3, 〈 〉)

write(x,1)

flush write(y,1)

write(y,1)
flush

flush

flush
flush

Figure 2.6: States of Process 1 of Fig. 2.5

program locations and store bu�er entries. In the most left branch, the writes and
�ushes are alternating. Since each written value is �ushed immediately after being
added to the store bu�er, the execution branch is equivalent to an SC execution of
the two writes. If both writes add their entries to the store bu�er before an entry
is �ushed, we get to location (3, 〈(x , 1), (y , 1)〉). It is here, where the di�erence
between PSO and TSO becomes visible. In TSO, all store bu�er entries are �ushed
in FIFO order. Thus, there would be only one �ush transition to (3, 〈(y , 1)〉). PSO
preserves only the order of writes to each memory location, but allows writes to
di�erent memory locations to be reordered. Thus, we get as many �ush transitions
as we have di�erent memory locations in our store bu�er. Therefore, we get another
�ush transition to (3, 〈(x , 1)〉) in our example, which represents an execution where
the older write entry to x is still pending, but the later write to y is already �ushed
to the memory.

In the following, we de�ne the memory model PSO, which can be used as a
parameter to De�nition 4.

De�nition 9. The memory model PSO consists of

typePSO =̂ (Var → Z∗)
initPSO =̂ ∀ v ∈ Var : sb(v) = 〈 〉

writePSO(x ,n) =̂ sb′ = sb[x 7→ sb(x)a 〈n〉]
writePSO(x , r) =̂ sb′ = sb[x 7→ sb(x)a 〈reg(r)〉]
readPSO(x , r) =̂ (sb(x) = 〈 〉 ∧ readMPSO(x , r))

∨ (sb(x) 6= ∅ ∧ readLPSO(x , r))

fencePSO =̂ ∀ v ∈ Var : sb(v) = 〈 〉
flushPSO =̂ ∃ x ∈ Var ,n ∈ Z : sb(x) = 〈n〉a sb′(x)

∧mem ′ = mem[x 7→ n]

2.5. PARTIAL STORE ORDER 25

The type typePSO is a function mapping variables V to sequences of integers
Z. We use each sequence to model a FIFO queue per shared variable. Thus, sb is
no longer a simple sequence as in TSO, but a function mapping to sequences of
entries. The initialization predicate initPSO ensures emptiness of each such sequence.
The write predicate writePSO(x ,n) (resp. writePSO(x , r)) takes a constant (resp.
register value reg(r)) and appends it to the queue sb(x). The updated function
sb′ then contains the same entries as sb for all entries except for x , for which it
is mapped to sb(x) a 〈n〉 (resp. sb(x) a 〈reg(r)〉). The predicate readPSO has to
distinguish between an early-read and a normal read from memory. The distinction
is made over the store bu�er contents in sb(x). If the sequence sb(x) is empty,
the requested value for variable x is taken from the memory by readMPSO(x , r)

and otherwise from the store bu�er by readLPSO(x , r). The former case is again
(as in TSO) equivalent to readSC)(x , r). For the latter case, we need an additional
predicate in order to determine the latest entry for a given shared variable x . Both
cases and the additional predicate are given below. In contrast to the read from
memory, readLPSO(x , r) takes the last entry from the store bu�er sequence sb(x),
represented by lstPSO(x , b). The latter is n , i� we can divide the sequence sb(x)

into a possibly empty sequence sbpre and n .

readMPSO =̂ reg ′ = reg [r 7→ mem(x)]

readLPSO =̂ reg ′ = reg [r 7→ lstPSO(sb(x))]

lstPSO(x , sb) = n i� ∃n ∈ Z, sbpre ∈ Z∗ : sb(x) = sbpre
a 〈n〉

The PSO fence fencePSO blocks until the store bu�ers becomes empty. For PSO,
this means that the sequence sb(v) for each shared variable v is the empty sequence.
In contrast to TSO, PSO has two kinds of fences: (1) A full fence, which blocks until
the bu�er becomes empty. (2) A store-store fence that does not block, but preserves
the order of earlier writes with later writes. Thus, it restricts the �ush order in a
similar way as TSO.

We could extend our de�nition of PSO in order to formalize the second fence, but
we refrain from doing this, as it would complicate the de�nition. One way of adding
such a fence could be to put a mark entry into the store bu�er sequences for each
shared variable. This mark, probably indexed in order to distinguish di�erent fences,
would then have to be considered in our fence semantics. In the fence semantics, all
entries before such a mark would then have to be �ushed before the mark can be
removed and later entries can be approached. A probably more elegant formalization
of a store-store fence would require the store bu�er to be a sequence of the currently

26 CHAPTER 2. MEMORY MODELS

used store bu�er type typePSO . Whenever a store-store fence occurs, a new element
(of type typePSO) would be added to this sequence. All operations would only be
allowed to operate on the last entry of the sequence. Flushes would have to empty
this store bu�er function sequence in FIFO order, thereby preserving the order
imposed by the store-store fence among writes. At the same time each store bu�er
function would allow writes to be reordered with each other, if they are contained in
the same store bu�er function. However, as the explanation above suggests, adding
di�erent kinds of fences complicates the de�nition as a trade-o� for being able to
deal with di�erent types of fences. Therefore, we consider only the blocking fence
semantics.

The flushPSO de�nes the �ush in PSO. It takes the �rst entry in the store bu�er
sequence sb(x) and updates the memory by assigning it mem[x 7→ n], where n is
the oldest value for x in the store bu�er or, in other words, the �rst element of the
sequnece sb(x). Please not that the existential quanti�er goes over x ∈ Var and
thus allows �ushing of an entry of each variable, for which sb(x) is not empty. This
in particular creates as many outgoing transitions from the current state as there
are di�erent shared variable entries in the store bu�er.

2.6 Relaxed Memory Order

Relaxed Memory Order (RMO) weakens the semantics of PSO even further by al-
lowing all reads and writes to be reordered with each other, if they are addressing
di�erent memory locations. Generally speaking, RMO preserves only program order
where there is data dependency between instructions, i.e., a later instruction uses the
output of a previous instruction as its input. There are two popular processor archi-
tectures providing semantics that are very similar to RMO. The �rst is ARM [ARM13],
which is often used in mobile devices and the second is Power [IBM15], which is
often used in servers. In this thesis, we do not handle RMO as an execution with
RMO semantics preserves barely anything from the program order. Furthermore, the
semantics of RMO depend on the number of concurrent processes and thus cannot
be stated in a process local way as as this section should reveal. Thus, we leave RMO
open for future extension. However, in the following, we give an overview of the
RMO semantics for sake of completeness.

In addition to the possible reordering of instructions, RMO also allows di�erent
processes to observe the writes of other processes at di�erent points in time. In TSO
and PSO, writes can be observed early by the writer and become visible to all other
processes at the same point in time, i.e., when the �ush updates the memory. In RMO,
the latter is not guaranteed. Thus, a write can become visible to one process, but at
the same time may be not visible to another process, yet. As a consequence, we can

2.6. RELAXED MEMORY ORDER 27

Figure 2.7: Illustration of relaxed architectures like RMO, Power and ARM [MSS12]

think of all processes to have an own view of the memory as Maranget et al. [MSS12]
illustrate it. Figure 2.7 illustrates the RMO architecture, in which all threads (or
processes) have their own memory. The di�erent memories are interconnected with
each other. Each memory forwards writes to other memories in separate updates
rather than one atomic broadcast. This results in di�erently delayed updates. As
each process only reads from its own memory, it can be outdated without being
noticed by the process.

As an example for the weak semantics of RMO, we give another litmus test in
Figure 2.8, which we took from [SSA+11]. It shows four processes, two of which
write to di�erent shared variables x and y independently. The other two processes
read from x and y independently and in di�erent orders, process 3 reads x before
y and process 4 reads y before x . Process 1 and 2 can write x and y in any order,
but one would expect that whatever the order may be, it is the same among all
other processes. In the example, this means that if process 3 and 4, both, observe
value 1 by their �rst reads (r1 = 1 = r3), then at least one of them must observe

28 CHAPTER 2. MEMORY MODELS

value 1 with their second read (r2 = 1 ∧ r4 = 1). However, this is not always the
case under RMO and the litmus detects such kind of reordering. The result can be
r1 = 1 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 0, in which case process 3 observed the write
by process 1, but not the write by process 2. Process 4 observed the write by process
2, but not the write by process 1.

Initially : x = 0 ∧ y = 0

Process 1 Process 2 Process 3 Process 4
1 : write(x , 1); 1 : write(y , 1); 1 : read(x , r1); 1 : read(y , r3);

2 : 2 : 2 : read(y , r2); 2 : read(x , r4);

3 : 3 :

result: r1 = 1 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 0

Figure 2.8: Litmus test: Independent Reads of Independent Writes (IRIW)

There are two possible e�ects that make this result possible. The �rst one is a
reordering of the reads of process 3 or process 4. In this case, the result becomes
possible by interleaving the partially reordered programs. The second possible e�ect
can be di�erent delays between the processes. Thus, a new value becomes visible
to one process before it becomes visible to the other. Di�erent delays can occur
for various reasons, e.g, by allowing processor cores to observe values from the
store bu�er of some processor cores and not allowing it for others. Asymmetric
cache hierarchies or complex interconnections can also be a reason for di�erent
delays [MSS12].

From a software veri�cation point of view, it means that the state of a concurrent
program must consist of n memories for n processes. Furthermore, each memory
must keep track of what writes are yet to be propagated to other memories and in
particular to which memories. So, for each write, there are (n − 1)! permutations
of propagation orders to other memories (considering that we propagate a write
to each memory separately and the process propagating will always be the �rst in
this sequence). Each order can be non-deterministically chosen. The combinatorial
problem worsens, if we add more writes. With k writes to di�erent locations, we
get (k ∗ (n − 1))! orders. The problem here is that the writes are not ordered at
all and thus can be propagated in any order. Please note, the above number does
not even consider other processes being interleaved with this propagation order.
Under SC, a program that writes 10 times to 10 di�erent shared variables would
have one single execution trace with 10 events. This single trace would have to be
interleaved with other concurrent processes. Under RMO, we have to consider the

2.7. RELATED WORK 29

number of concurrently running processes. So, for one other concurrently running
process (n = 2), there would be 10! (= 3.628 Million) traces, which would have to be
interleaved with the other process. For two processes, the number is approximately
2.4 ∗ 1018 and hence, too big to explore the state space of such a program by most
model checkers. This is also the reason, why we do not consider RMO in this thesis
and refrain from giving formal de�nition for RMO in this section. We leave it for
future work.

2.7 Related Work

Weak memory models have been studied extensively since the early 90’s. Early re-
search focused mainly on formalizing the semantics of weak memory models [AH93,
PD95, AG96, CKRW99] and experimenting with their observable e�ects.

Most formalization can be categorized into being either axiomatic or operational.
An axiomatic memory model is de�ned by a set of axioms which capsule the re-
lationship of instructions (or its e�ect) and particularly their preserved order in
executions. An axiomatic model does not need to de�ne state internals, e.g., the store
bu�er, but can abstractly de�ne the relationship between instructions. Axiomatic
models are mostly used for comparison of di�erent memory models and their re-
laxations [HKV98, AMSS10, SSO+10, Owe10, MMS+12, DTDW13]. These are often
used in order to reason about small programs (litmus tests) formally. In contrast,
operational memory models de�ne the small-step behavior of an architecture and
thus, allow for exploration and simulation of its behavior step-by-step. Therefore,
operational memory models [PD95, YGL05, BP09, TMW13] are better suited for au-
tomated experiments with the e�ects of weak memory models, e.g., model checking.
Our formalizations of TSO and PSO in this chapter are axiomatic, but also de�ne the
small-step semantics of the respective architecture. In that sense, they are similar
to the formalization by Owens et al. [SSO+10] of the x86-TSO memory model. Our
de�nitions do not have a hardware lock as part of the architecture and also de�ne
only most important instructions like read, writes, fences. We preferred to have
minimal memory model de�nitions for our later soundness proofs of our reduction
approach in the next chapter. Otherwise, we would have to consider many more
cases, which can also be expressed with the basic instruction set that our memory
models provide.

This chapter introduced the most important four memory models, SC, TSO, PSO
and RMO. A lot of research has been conducted on �nding relationships among
them and other memory models [AG96, AM06, BAM06, AMSS10, AMSS12, Alg12].
Nowadays, it is widely known that SC behavior is a subset of TSO, TSO a subset of
PSO and PSO a subset of RMO. The previous sections should have helped in under-

30 CHAPTER 2. MEMORY MODELS

standing this relationship as these memory models result from stepwise relaxations
of orders preserved in SC. However, this behavioral inclusion does not hold for the
Power and ARM processors [AG96], which are similar to RMO in terms of their
relaxation, but vary in some intricate details from it, e.g., the semantics of fences.

The above memory models can be considered generalizations of currently com-
mon multicore processor architectures. For instance, store bu�ers are not bounded,
but also other features of the highly complex multicore architectures like instruction
prefetching and speculation are avoided in those models. More accurate memory
models have been and are still being developed [AFI+08, SSO+10, SSA+11, MMS+12].
However, due to many details considered in their formalizations these memory mod-
els do not scale well for automated software veri�cation, but are rather intended
for determination of possible behavior under their in�uence as well as for their
comparison with each other. The scaling problem of �ne grained models is visible
in the work by Abe et al. [AM14]. Their memory models include the instructions
prefetching mechanism and they use their model for model checking of concur-
rent data structures like we do in this thesis. Their experiments with the Dekker
algorithm [Dij68] under SC require magnitudes more memory and time than our
approach does under TSO or PSO in a similar setup (see Chapter 6.1). We take
the latter as an indicator for abstraction being necessary when dealing with weak
memory models. Otherwise, these models have only limited practical use.

Recently, the C11 memory model gained popularity because of its formal founda-
tion [ISO11b, ISO11a] and its acquire/release semantics. The latter is a generalized
way to describe what parts of the program order are preserved during execution. In
this sense, the C11 memory model hides di�erent semantics available by various
multicore processors and provides a uni�ed semantics de�nition to program develop-
ers, similar to an interface that hides its implementations. Underneath, the compiler
is responsible to ensure the C11 semantics on each respective architecture, be it an
x86, Power or ARM processor. In contrast to the Java memory model [MPA05], the
C11 memory model does not attempt to establish SC behavior on weak architectures.
The latter remains a program developers concern, who needs to correctly place syn-
chronization primitives or reads and writes with acquire/release semantics (instead
of regular reads and writes, which do not impose any ordering constraints).

3

Reduction fromWeak

Semantics to Sequential

Consistency

In the previous chapter, we formally de�ned the semantics of Sequential Consistency
(SC), Total Store Order (TSO) and Partial Store Order (PSO). SC is a memory model
that is widely assumed by software veri�cation tools such as Spin, Blast, NuSMV
and many more. The memory models TSO and PSO are provided by actual multicore
processors such as x86 or SPARC. Their semantics are inherently weaker than SC by
allowing more behavior, which can be represented by reordering of program instruc-
tions. The weaker semantics can cause unexpected results to occur during program
execution, if it is a concurrent program. Thus, concurrent program veri�cation
approaches must consider weak memory models. Otherwise, such an approach may
deem a program correct, although it produces erroneous behavior when executed
on actual multicore processors.

In the presented approach, we overcome this gap by providing a reduction
technique in the form of transformation that we �rst published in [WT15] and
further extended in [TW16]. Instead of adapting all the tools available for concurrent
software veri�cation in order to support weak memory models, we provide the
transformation. It can be applied to programs before veri�cation and produces a new
program that in addition to the original program behavior also contains behavior
that is due to an underlying weak memory model such as TSO or PSO.

The reduction is a two step approach: First, a symbolic execution explores all
symbolic store bu�er states of each sequential program, of which the concurrent
program consists. Each explored state is represented by a combination of a program
location and a symbolic store bu�er content. In combination, the explored states
and the program transitions make up a graph, which we call the store bu�er graph.
The store bu�er graph incorporates all the behavior (and e�ects) due to a weak

31

32 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

memory model. In the second step, the store bu�er graph is used to generate a
new program that is behaviorally equivalent to the original program under TSO
or PSO. The new program assumes SC execution semantics and thus can be the
input to most veri�cation tools. However, as weak memory models are inherently
non-deterministic due to �ush transitions, the newly generated program is also non-
deterministic. Hence, we cannot simply generate a new C program incorporating the
behavior of weak memory models, because C programs are deterministic. Instead, we
are restricted to programming languages that allow for non-deterministic programs,
e.g., Promela, CSP. Fortunately, most veri�cation tools do support non-deterministic
programs or speci�cations in some way.

Figure 3.1 shows the overall approach as a three step approach, where the last
step is the actual veri�cation of correctness. While the former two steps are fully
automated, the last step heavily depends on the choice of the veri�cation tool and
correctness property. We have chosen the theorem prover KIV [EPS+14] and the
model checker Spin [Hol03] as veri�cation tools and hence, generate SC programs
for both tools. KIV is an interactive theorem prover and thus, needs manual guidance
in many cases. It provides a proof visualization in terms of proof trees. Proof trees
help as an abstract view to cases of a proof that are yet to be proved or that were
proved already. Especially for big proofs, proof trees can help not to get lost in the
details of a proof. Spin is a fully automated model checker. Once the correctness
property (a safety or an LTL property) is speci�ed, Spin performs a fully automated
explicit state space exploration.

Figure 3.1: Three steps towards veri�cation of concurrent programs under weak
memory models

In the remainder of this chapter, we �rst elaborate more on the symbolic ex-
ploration. We introduce and formally de�ne store bu�er graphs and explain their

3.1. SYMBOLIC EXECUTION WITH WEAK MEMORY SEMANTICS 33

derivation from the LLVM IR programs. Later, we de�ne the transformation from
the store bu�er graph to a new program. This includes a general transformation,
which we de�ne formally, and the transformation to Promela and KIV speci�cations.
This is followed by a section on the soundness of the presented transformation. We
prove that the original program executed with TSO (resp. PSO) semantics and a
newly generated program resulting from our transformation and executed under
SC semantics are behaviorally equivalent. The latter is shown via the existence of a
bisimulation relation between both transition systems. The chapter concludes with
a discussion of related work and the strengths and weaknesses of the presented
approach.

3.1 Symbolic Execution with Weak Memory Semantics

As previously mentioned, our approach aims at generating new programs, which
assume SC semantics, but incorporate the e�ects of a weak memory model in the
program. In other words, we transform every sequential program P into a new
program P ′ such that the labeled transitions systems ltsTSO(P) (resp. ltsPSO(P))
are bisimilar to ltsSC (P ′). See Section 2.2 for the de�nition of a labeled transition
system ltsMM for memory model MM .

For this purpose, we �rst have to determine the e�ects of a weak memory model
on the behavior of the program. In order to do so, we perform a symbolic execu-
tion of each sequential program (out of which a concurrent program is composed).
The symbolic execution tracks - besides the operations being executed and the
program locations reached - store bu�er contents only, and only in a symbolic
form. The symbolic form stores variable names together with either values of Z
(in case a constant was used in the write), or register names (in case a register was
used). A symbolic store bu�er content for TSO might thus for instance look like
this: 〈(x , 3), (y , r1), (x , r2), (z , 5)〉. The symbolic execution generates a symbolic
reachability graph, which we call store bu�er graph, and which we use as a basis
for the newly generated program P ′. The symbolic exploration can be performed
quickly, because it ignores actual register values and uses register names instead.
More importantly, each sequential program is explored separately in contrast to a
concurrent composition.

However, even though we ignore register valuations and thus abstract away
most of the state, the symbolic state space can become easily in�nitely larger under
TSO or PSO, although it might be �nite under SC. The reason for it is that, in contrast
to actual multicore processors, memory models generally do not limit the size of
a store bu�er. Thus, a simple program loop, which does nothing else but to write
some value to memory in each loop iteration, creates an in�nitely large state space.

34 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

1 : write(x , 1);

2 : goto 1;

(1, 〈 〉) (1, 〈(x , 1)〉) (1, 〈(x , 1), (x , 1)〉) . . .

(2, 〈 〉) (2, 〈(x , 1)〉) (2, 〈(x , 1), (x , 1)〉) . . .

write(x,1)

flush
goto 1 goto 1

flush

write(x,1)

flush
goto 1

flush

write(x,1)

flush

flush

Figure 3.2: Simple program and its in�nite state space under weak memory models

The non-determinism of TSO and PSO can be best described by always having the
choice between doing a program step or to �ush content from the store bu�er (if
there is any). The store bu�er can choose to accumulate writes in every iteration of
such a writing loop as it has no maximum number of entries. As a consequence, an
exploration of such a program would �nd in�nitely many store bu�er states with a
varying number of entries. Furthermore, a naive exploration of such a program’s
state space would never terminate. Figure 3.2 visualizes the mentioned example.
It is a simple two line program. Below the program, you can see its state space
illustrated as a store bu�er graph. Starting from the top left state (program location
1 and an empty store bu�er 〈 〉), the written entries can be accumulated by the store
bu�er in�nitely often. With this problem in hindsight, we state the �rst and most
important restriction of the presented approach.

Assumption 1: We assume programs to not have unfenced writing loops, i.e.,
loops with a write instruction also contain at least one fence or some other synchro-
nization instruction, which forces the store bu�er to be emptied.

The restriction is necessary in order to guarantee �niteness of the store bu�er
graph. Store bu�er graphs must be �nite in our approach, because they are used
to generate the new programs. The restriction is su�cient, because a fence forces
the store bu�er to be emptied at least once during each loop iteration. Since a loop
iteration is �nite and store bu�er entries are symbolic values, a constant or a register
name (representing the value of the register), a loop iteration can create only a �nite
number of store bu�er states. Thus, the store bu�er graph of a program, which has
no unfenced writing loops is �nite.

The restriction may sound like it would be limiting the applicability of our ap-
proach. It certainly does, but on a far smaller scale as it may look at �rst sight.

3.1. SYMBOLIC EXECUTION WITH WEAK MEMORY SEMANTICS 35

Most if not all concurrent programs have to use fences or synchronization instruc-
tions (e.g., compare-and-swap) in order to be correct under weak memory models.
Synchronization is part of pretty much every concurrent algorithm, as these have
to ensure at some point in time that changes made by one process are visible to
other processes. This is achieved by using fences or instructions with fence-like
semantics. Please note that we focus on concurrent data structure implementations
throughout this theses. These can have con�icting operations and therefor must
synchronize with each other. Programs, which do not have to synchronize with each
other perform independent tasks and cannot con�ict, i.e., they have no data races.
For programs, which have no data races, weak memory models do not have to be
taken into account as the observable behavior is always equivalent to what can be
observed under SC semantics [AH90, AG96].

Programs can vary in many ways and some of them may even make no sense,
e.g., programs writing to previously unde�ned variables. Since, we do not want
to deal with all possible special cases, but want to have clean de�nitions of our
reduction approach, we have to make on additional assumption:

Assumption 2: We assume that all sequential programs are in SSA-form (static
single assignment [CFR+91]), meaning that all the registers are (statically) assigned
to only once. We also assume that registers are never used before de�ned.

Assumption 2 is not an actual restriction of our approach, because all pro-
grams can be converted to SSA-form. Both properties, the SSA-form and no use
of registers before they are de�ned are guaranteed by modern compilers, e.g., the
LLVM-framework1 which we use in our approach.

In the remainder of this section, we de�ne store bu�er graphs and explain how
they can be derived from a program.

3.1.1 Store Bu�er Graph

In principle, the store-bu�er graph of a sequential program is its symbolic reachability
graph. Nodes in this graph represent possible combinations of program locations
and symbolic store bu�er contents. The value of an entry in a symbolic store bu�er
can be either a constant n ∈ Z or a register r ∈ Reg . We use SVal =̂ Z ∪ Reg as
the set of possible symbolic values. Consequently, the type stypeMM of a symbolic
store bu�ers di�ers slightly from typeMM . We use stypeTSO =̂ (Var × SVal)∗

and stypePSO =̂ (Var → SVal∗), respectively as the type of a symbolic store
bu�er. Edges in the graph have labels, however, only symbolic ones. We refer to
these symbolic labels as the name of an operation (Names). For memory model

1http://www.llvm.org

36 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

speci�c operations, this is simply the name used for the operation (e.g., flush) with
the exception that read is split into readM (read from memory) and readL (read
from store bu�er) according to the semantics. For the other operations it is the
(unevaluated) boolean condition bexpr or its negation (in case of if and while), or
simply goto.

De�nition 10. A store-bu�er (or sb-)graph G = (V ,E , v0) of a memory model

MM consists of a set of nodes V ⊆ L× stypeMM , edges E ⊆ V ×Names ×V and

initial node v0 ∈ V with v0 = (`0, sb0) and sb0 |= initMM .

Please note that we use the predicate initMM in various ways for convenience.
We state sb |= initMM to say that initMM holds true for sb and s |= initMM in order
to say that ∃ pc ∈ L, sb ∈ typeMM , reg ∈ Reg : s = (pc, sb, reg) ∧ sb |= initMM .

Before we give a formal de�nition of the store bu�er graph, we have to consider
a pattern of program instructions, which we call write-def-chain or short (WDC). A
WDC can occur in loops. It is a sequence, in which a write(x , r), the source of a
WDC, is followed by a rede�nition of the written value r , but there is no fence or
other synchronization in between these two instructions. Thus, there is no guarantee
that the �ush corresponding to the write occurs before r is rede�ned.

Process 1
1 : read(x , r1);

2 : fence;

3 : write(y , r1);

4 : goto 1;

(1, 〈 〉) (1, 〈(y , r1)〉)

(2, 〈 〉) (2, 〈(y , r1)〉)

(3, 〈 〉)

(4, 〈(y , r1)〉)

(4, 〈 〉)

readM(x,r1)

fence goto 1

write(y,r1)

flush

goto 1

readM(x,r1)

flush

flush

Figure 3.3: An example program (left) containing a write-def-chain and its store
bu�er graph (right). The important edges and the register variable r1 are marked
red.

This pattern is important, because in the later transformation, the main idea is
to transform writes into skips and �ushes into writes. Basically, a �ush of a symbolic

3.1. SYMBOLIC EXECUTION WITH WEAK MEMORY SEMANTICS 37

value r is replaced by a write of the register r . However, this is only possible, if the
register value is still the same as it was, when it was added to the store bu�er as
a symbolic entry. In a WDC, this is not necessarily the case. See Figure 3.3 for an
example WDC. The program is a simple loop, reading x in line 1 and writing the
read value into y in line 3. The read value is stored in the register variable r1. Our
assumptions 1 and 2 hold, i.e., it is a fenced loop (line 2), it conforms to SSA-form
and register variables are de�ned before they are used. The write in line 3 creates a
symbolic entry r1 in the store bu�er. Following the program order, we get to state
(1, 〈(y , r1〉) via goto 1 and then to state (2, 〈(y , r1〉) via readM (x , r1). When the
read occurs, it rede�nes the value of r1 to a new value, which is taken from the
memory. Thus, although we do not track register valuations in the store bu�er graph,
we know for sure that the value of r1 has changed at this state. Hence, we have lost
the value of r1, which was added to the store bu�er by the write in line 3. However,
the �ush (marked red) of the pair (y , r1) has yet to occur and �ushing the value of
r1 would be incorrect.

In order to get rid of the WDC and thus to overcome this problem, we have to
create a copy (an auxiliary variable) of the written value and use it instead of the
original variable until it is �ushed. Please note that this is very similar to what a
store bu�er does, since a store bu�er entry is just a copy of a register value at the
time of executing a write instruction. Thus, if a write is the source of a WDC, then
we know that we need an auxiliary variable as a copy of the written value. On the
other hand, we know for all other writes that their behavior can be mimicked by
reordering instructions.

Figure 3.4 shows the store bu�er graph after getting rid of the WDC in Figure 3.3.
The idea here is to replace the edge name of writes that are the source of a WDC
by something that we can later transform into equivalent SC behavior. Since our
general transformation idea is to convert write transitions into skip transitions and
the corresponding �ush transitions into the actual write transitions under SC, we
think it is elegant to make an exception for the write to skip conversion. Both,
a write under TSO or PSO and a skip under any memory model are inherently
local transitions, i.e., not visible by other processes. Thus, we can modify such a
transition as long as we ensure that the observable behavior (from the point of view
of other processes) does not change. In the example in 3.4, the edge write(y , r1) is
replaced by r1′ := r1∧write(y , r1′) where r1′ is a fresh variable, i.e., not used and
particularly not de�ned by any other instruction. The assignment r1′ := r1 ensures
that we have a copy of the written value and since it is a fresh variable, it is not
rede�ned before a fence ensures that it was �ushed. By also replacing r1 by r1′ in
write(y , r1), we also ensure that the symbolic store bu�er contains r1′ instead of

38 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

r1. Thus, when a later �ush occurs, it will use r1′ and not the potentially rede�ned
register variable r1.

(1, 〈 〉) (1, 〈(y , r1cpy)〉)

(2, 〈 〉) (2, 〈(y , r1cpy)〉)

(3, 〈 〉)

(4, 〈(y , r1cpy)〉)

(4, 〈 〉)

readM(x,r1)

fence goto 1

r1cpy := r1 ∧ write(y,r1cpy)

flush

goto 1

readM(x,r1)

flush

flush

Figure 3.4: Store bu�er graph after �xing the write-def-chain (WDC) from Figure 3.3

Generally, we have to �nd all WDCs of a program and apply this modi�cation
to all writes that are the source of a WDC. The WDCs of a program can be easily
determined by a reachability analysis in the control �ow graph. Starting at a write
instruction, we can simply follow the control �ow in order to determine, whether we
can reach an instruction which rede�nes the written value before a fence is reached.
If it is the case, then the write is the source of a WDC. If no such path can be found,
then the write is not involved in WDC and we can leave it as it is. Furthermore,
because we assume programs to conform to SSA-form (each variable is assigned
to/de�ned only once), we only have to consider write instructions in loops.

The store-bu�er graph for a program P is constructed via symbolic execution,
executing program operations step by step without constructing the concrete states
of registers. In particular, the symbolic execution follows the operations as given by
the memory model MM including �ush operations and tracks the reached symbolic
states. If a new state is discovered, a node representing the state and an edge leading
to it is added to the graph. The exploration is performed in a depth-�rst manner,
but could also be achieved with other search algorithms, e.g., breadth-�rst search.
The choice of the search algorithm is not important as we only take one sequential
program at a time into account. Thus, it is a signi�cantly smaller problem than the
exploration of a concurrent composition of sequential programs, which we have to

3.1. SYMBOLIC EXECUTION WITH WEAK MEMORY SEMANTICS 39

deal with in the later veri�cation.

De�nition 11. Let P be a sequential program and let wdc(P) ⊆ Ops(P) be the set

of write operations that are the source of a write-def-chain. The sb-graph of P wrt. a

memory model MM , sgMM (P), is inductively de�ned as follows:

1. v0 := (pc, sb) with sb |= initMM ∧ pc = `0,

2. if (pc, sb) ∈ V , we add a node (pc′, sb′) and an edge (pc, sb) −name−−−→ (pc′, sb′)

if ∃ op ∈ Ops(P) such that

• pc, pc′ |= op,

• sb, sb′ |= symMM (op)

• name = name(op).

where

symTSO(op) = (sb′ = sb a 〈(x , r)〉) if op = writeTSO(x , r) ∧ op 6∈ wdc(P)

symTSO(op) = (sb′ = sb a 〈(x , rcpy)〉) if op = writeTSO(x , r) ∧ op ∈ wdc(P)

symTSO(op) = op else,

symPSO(op) = (sb′(x) = sb(x)a 〈r〉) if op = writePSO(x , r) ∧ op 6∈ wdc(P)

symPSO(op) = (sb′(x) = sb(x)a 〈rcpy〉) if op = writePSO(x , r) ∧ op ∈ wdc(P)

symPSO(op) = op else

and

name(op) = rcpy := r ∧ write(x , rcpy) if op ∈ wdc(P) ∧ op = writeMM (x , r)

name(op) = readM (x , r) if op = readMM (x , r) ∧ x 6∈ sb

name(op) = readL(x , r) if op = readMM (x , r) ∧ x ∈ sb

name(op) = op else

The de�nition of the sb-graph creates an edge for each possible step (corre-
sponding to an operation op) of the program P that leads from one state (pc, sb) to
another state (pc′, sb′). The function symMM maps each write operation predicate
op to a di�erent predicate, which has to be satis�ed by the symbolic store bu�er,
i.e., if a write writes a register value, then the symbolic store bu�er has to contain
a symbolic register entry instead of the actual value. The function works as an
identity function for all other operations. The writes that are the source of a WDC
(op ∈ wdc(P)) get a special treatment, i.e., the symbolic store bu�er sb′ must contain
a fresh variable rcpy instead of the original r . This results in the above three cases

40 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

per function symMM . In addition to this, the name of such write edges is modi�ed to
rcpy := r ∧write(x , rcpy). The assignment is what will remain in the later generated
SC program as we need it, in order to remember the written value. In general, writes
will be represented as skip steps in the later program, but not writes involved in a
WDC. This is also the reason, why we rename the sources of a WDC. Please note
that none of the above modi�cations are necessary for writes of constants, which
have an identical representation in a symbolic store bu�er. Furthermore, the store
bu�er graph allows us to determine immediately, whether a read will take its value
from the store bu�er or from the memory. It can be determined just by looking at
the contents of the symbolic store bu�er. Read edges are renamed from read(x , r)

to readM (x , r), if (x 6∈ sb) and readL(x , r), otherwise. All other edges are named
according to their operation, e.g., flush for �ush operations, write(x , r) for write
operations, etc.

3.1.2 Store Bu�er Graphs Properties

Please note that a store bu�er graph does not di�er from a control �ow graph in
case of SC semantics. For TSO and PSO semantics, we can guarantee �niteness of
the store bu�er graph because of Assumption 1 and Assumption 2.

Proposition. Let P be a �nite sequential program in which every loop is fenced or

write-free. Then sgMM (P) is �nite for every MM ∈ {TSO ,PSO ,SC}.

Proof: The proposition is trivially true for SC, because sgSC (P) is simply the control
�ow graph of P and P is �nite.
Assume sgTSO(P) (resp. sgPSO(P)) is in�nite. Since a state is a pair of program
location and symbolic store bu�er and because program locations are �nite, there
must be a sequence of steps generating in�nitely many di�erent symbolic store
bu�er states. Since P is �nite, such a sequence can only be a loop. According to the
proposition, each loop is write-free or it contains a fence. A write-free loop does
not add content to the store bu�er and it is a �nite sequence. Thus, the number of
reachable states within a write-free loop is �nite.
A loop with a fence is a �nite sequence of steps, of which one step can only proceed if
the store bu�er is empty. Because the sequence of steps before the bu�er is emptied
is �nite in each iteration, the only way to generate an in�nite set of reachable states
is to write in�nitely many di�erent entries to the store bu�er. However, store bu�er
entries are symbolic, i.e., a constant or the name of the register variable, from which
the written value is taken. Both are statically �xed with the program. Thus, the set
of reachable symbolic states in a fenced loop is �nite. Together, this contradicts the
above assumption of sgTSO(P) (resp. sgPSO(P)) being in�nite. 2

3.2. TRANSFORMATION TO A NEW SC PROGRAM 41

One key property of our later transformation is that registers remain unmodi�ed
until the corresponding symbolic store bu�er entries are �ushed. If this is the case, we
can later replace �ush transitions by write transitions, i.e., if a �ush transition �ushes
an entry (x , r), then we replace it with a write(x , r) transition. For this replacement
to be sound, programs must not have WDCs as they allow for rede�nition of register
values before the value is �ushed.

Proposition. Let P be the program of a process in SSA form without WDCs. Let

s = (`, reg , sb) be a state of JPKMM with MM ∈ {TSO ,PSO} such that sb contains

an entry n ∈ N for a variable x ∈ Var . If this value has been put into the store bu�er

by an operation write(x , r), r ∈ Reg , then reg(r) = n .

Proof: Since P has no WDCs and by the de�nition of write-def-chains: after
write(x , r) there is no further operation de�ning r before the next fence operation.
Otherwise P would have a WDC and this would contradict the assumption. A fence,
however, needs an empty store bu�er in order to execute. 2

In principle, we want not only the above property to be true for a program P ,
but also a similar property to hold for its store bu�er graph sgMM (P). For sources of
WDCs, there must be an auxiliary variable which holds the copied value. Creation
of such variables is part of the store bu�er graph construction. In our soundness
proofs in Section 3.3.1, we show bisimulation equivalence of the original and the
transformed programs. This proof implies that �ushes in the original program and
writes in the transformed program do use the same values. Therefore, we refrain
from restating the above property lifted for store bu�er graphs.

Now that we have a formal de�nition of the store bu�er graph which represents
all program behavior of one sequential program, we can go on with the transforma-
tion towards an SC program.

3.2 Transformation to a new SC Program

In the previous section, we described the construction of the store bu�er graph for
a sequential program. A store bu�er graph represents all of the behavior that a
sequential program can examine under a weak memory model such as TSO (resp.
PSO). Please note that we did not di�erentiate whether any of the behavior is
observable by other processes as it depends on the sequential programs executed by
the other processes. There is no simpli�cation or modi�cation involved. Thus, the
behavior represented by the store bu�er graph will race on reads and writes of other
processes, i� the original program would also con�ict on the same reads and writes
of another process under the respective memory model.

42 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

The general transformation idea is to generate a new SC program that mimics the
e�ect of the semantics represented by each edge in the store bu�er graph. Because
the e�ect of each edge in the store bu�er graph is preserved in the new program,
the resulting behavior is equivalent to the original one with respect to con�icts with
other processes and, more generally, with respect to the observable behavior of the
program. Thus, a parallel composition out of the original sequential programs under
weak memory model semantics and a parallel composition of transformed programs
under SC will have equivalent behavior. The generation of the SC program now
proceeds by de�ning the operations of the new program (instead of program text).
Essentially, every edge in the store bu�er graph gives rise to one new operation,
where the nodes of the graph act as new location labels. The store bu�er graph is
thus the control �ow graph of the new program.

Please note that the new program will most likely be non-deterministic, because
�ushes of writes appear non-deterministically in weak memory models. Thus, the
only way a program can remain deterministic after deriving the store bu�er graph
and transforming it into a new SC program is, if it has no writes. Hence, the set of
possible target programming languages of our transformation is restricted to the
set of languages, which support non-determinism. However, our aim is to verify
concurrent data structure implementations, not running them on SC processors with
the e�ects of weak memory models. Most, if not all, concurrency veri�cation tools
and in particular their input languages do support non-determinism. This renders
the above restriction to be a rather theoretical one and not a practical one.

Before we give the formal de�nition, we provide an example of what a trans-
formed program looks like. In Figure 3.5, the control �ow of the new program after
transformation is shown. Its corresponding store bu�er graph was presented in
Figure 3.4 on page 38.

As you can see, the nodes in the graph are identical to those in the store bu�er
graph. However, here, the node labels act only as program location labels as opposed
to the combination of program location and a symbolic store bu�er state in a store
bu�er graph. The new program simply does not have a store bu�er as part of its states.
We keep the location labels as they are for now, since the label clearly identi�es the
state of the store bu�er graph that is represented by each program location of the
new program. We can also use numerical location labels or any other variant of
labels and, in fact, do so in our implementation of the approach as we explain later
in Chapter 4. The edge labels changed more or less compared to the corresponding
store bu�er graph. In particular, the reads that get their value from the memory are
represented by SC read operations. The semantics and thus the e�ect of a read in this
case are equivalent. The fence operation became a skip as there is no store bu�er to
be emptied under SC. The write starting at program location (3, 〈 〉) was the source

3.2. TRANSFORMATION TO A NEW SC PROGRAM 43

(1, 〈 〉) (1, 〈(y , r1cpy)〉)

(2, 〈 〉) (2, 〈(y , r1cpy)〉)

(3, 〈 〉)

(4, 〈(y , r1cpy)〉)

(4, 〈 〉)

readSC (x,r1)

skip goto (1, 〈(y , r1cpy)〉)

r1cpy := r1

goto (1, 〈 〉)

writeSC (y,r1cpy)

readSC (x,r1)

writeSC (y,r1cpy)

writeSC (y,r1cpy)

Figure 3.5: Control �ow graph of the new program after transforming the store
bu�er graph from Figure 3.4. The nodes represent the new program locations now.
Edges have been replaced with the respective SC operation mimicking their e�ect
under SC.

of a WDC. Hence, a copy of the written value (r1cpy := r1) is required. Otherwise,
the edge would have also become a skip operation. The �ush edges from the store
bu�er graph became writes in the new program. From the store bu�er graph, it is
obvious to see which store bu�er entries can be �ushed at any given state, no matter
whether the underlying memory model is TSO or PSO. Hence, we know exactly
which symbolic store bu�er entry is �ushed to the memory by an edge. In the new
program, these edges become write operations with the variable and value taken
from the symbolic store bu�er. In the example, it is variable y with value r1cpy for
all such edges. If the write in the example would not be the source of WDC, then
the original register variable r1 instead of r1cpy would be used. Finally, the target
locations of the goto edges are also modi�ed, in order to distinguish between the
two possible states of the store bu�er that they represent, one with an empty store
bu�er and one with content.

In the following, all operations of the new program are also given formally in
terms of predicates. The formal operations simply encode the graph in Figure 3.5.
In case you are missing the skip and goto operations in the encoding, these are
operations that do not alter the state except for modifying the program location
pc towards pc′. The skip is encoded in nOp2. The goto operations are encoded as

44 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

nOp5 and the second case of the disjunction in nOp4. The assignment r1cpy := r1

is replaced by its predicate logic encoding r1′cpy = r1 in nOp3. The new sequential
program P ′ has a set of operations Ops(P ′) = {nOpi | i ∈ {1, . . . 7}}. The only
new variant of an operation predicate, is the non-deterministic choice in nOp4

and nOp6, which is just a disjunction over two regular predicates encoding an SC
operation. Each such predicate can also be de�ned as two separate predicates, and
our general de�nition of the transformation de�nes two predicates in such cases. In
the example, we made the non-determinism explicit for presentation purpose.

nOp1 =̂ pc = (1, 〈 〉) ∧readSC (x , r1) ∧pc′ = (2, 〈 〉)
nOp2 =̂ pc = (2, 〈 〉) ∧pc′ = (3, 〈 〉)
nOp3 =̂ pc = (3, 〈 〉) ∧r1′cpy = r1 ∧pc′ = (4, 〈(y , r1cpy)〉)
nOp4 =̂ pc = (4, 〈(y , r1cpy)〉) ∧writeSC (y , r1cpy) ∧pc′ = (4, 〈 〉)

∨ pc = (4, 〈(y , r1cpy)〉) ∧pc′ = (1, 〈(y , r1cpy)〉)
nOp5 =̂ pc = (4, 〈 〉) ∧pc′ = (1, 〈 〉)
nOp6 =̂ pc = (1, 〈(y , r1cpy)〉) ∧readSC (x , r1) ∧pc′ = (2, 〈(y , r1cpy)〉)

∨ pc = (1, 〈(y , r1cpy)〉) ∧writeSC (y , r1cpy) ∧pc′ = (1, 〈 〉)
nOp7 =̂ pc = (2, 〈(y , r1cpy)〉) ∧writeSC (y , r1cpy) ∧pc′ = (2, 〈 〉)

Note that P ′ is not de�ned syntactically here, even though Figure 3.5 can be
viewed as a graphical syntax of the new program. Instead, the operations of P ′

are provided in terms of the SC semantics (see Section 2.1). We leave the syntax
of P ′ unde�ned and also do not need it here for the general approach, because it
is the semantics that de�nes the behavior of P ′. In principle, the syntax can be
anything that �ts to the given semantics. It has to be provided by an implementation
of our approach. The choice of the syntax dictates the tools that can be used for
veri�cation of the transformed program. Our implementation transforms programs
into of Promela and KIV models as we explain in Chapter 4 in detail.

Given the above example and the idea for the transformation, we are now ready
to present the de�nition of the transformation towards SC programs.

De�nition 12. Let G = (V ,E , v0) be a store bu�er graph of a sequential program

P on a memory model MM . The sequential SC program P ′ of G , prog(G), is given by

the new initial location `0 := v0 and the set of operations Ops(P ′) de�ned as follows:

for every edge (`, sb) −name−−−→ (`′, sb′) we construct an operation

(pc = (`, sb) ∧ op ∧ pc′ = (`′, sb′))

with

3.2. TRANSFORMATION TO A NEW SC PROGRAM 45

op =



true if name ∈ {fence,write(x , rn), skip, goto `′}
r ′cpy = r if name = (rcpy := r ∧ write(x , rcpy))

writeSC (x , rn) if name = flush ∧ flushedMM (x , rn, sb, sb′)

readSC (x , r) if name = readM (x , r)

r ′ = rn if name = readL(x , r) ∧ rn = lstMM (x , sb)

name else

where rn ∈ SVal ,

flushedTSO(x , rn, sb, sb′) =̂(sb = 〈(x , rn)〉a sb′)

flushedPSO(x , rn, sb, sb′) =̂(sb(x) = 〈rn〉a sb′(x)

and

lstTSO(x , sb) = rn i� ∃ sbpre , sbsuf ∈ stypeTSO :

∧ sb = sbpre
a 〈(x , rn)〉a sbsuf ∧ x 6∈ sbsuf

lstPSO(x , sb) = rn i� ∃ seqpre ∈ SVal∗ : sb(x) = seqpre
a 〈rn〉

The de�nition provides the operations of the new program P ′ in terms of pred-
icates, each consisting of a program location before (pc) and after (pc′) and some
operational predicate op. The new program locations take the store bu�er states
as possible set values, i.e., pc, pc′ ∈ V , where V is the set of nodes in store bu�er
graph G . Technically, this is not necessary, but it provides a clear link between each
program location in the new program and its corresponding state in the store bu�er
graph. The latter can be useful during a correctness proof, when the store bu�er
graph acts as an overview of the program’s behavior. The above de�nition maps each
edge to an operational predicate op, which is just a true value for fence , non-WDC
write , skip and goto edges. All of these edges modify the program location only.
Sources of a WDC are mapped to an assignment, which creates a copy of the written
value. Flush edges are mapped to SC writes. Since �ush edge labels do not contain
the information, which entry is �ushed from the store bu�er, we need an additional
predicate flushedMM (x , rn, sb, sb′). Its de�nition di�ers for TSO and PSO, but in
both cases it holds true, i� rn is the symbolic value �ushed by the given edge and x

is the shared variable it was written to. Reads are distinguished already in the store
bu�er graph by the source of the read value. A read from memory (readM (x , r))
is semantically equivalent to an SC read and thus is mapped to readSC (x , r). The
reads (readL(x , r)) that take the read value from the store bu�er are mapped to an
assignment r ′ = rn , where rn is the latest entry in the store bu�er for the requested

46 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

shared variable x . Again, we need two versions for the de�nition of the latest such
entry lstMM (x , sb) for both memory models, TSO and PSO. In TSO, the store bu�er
is a FIFO queue and the latest entry for variable x may be not the last element. So,
we divide the bu�er into three parts: a pre�x, the latest entry for x , and a su�x. The
su�x must not contain an entry for x . Otherwise, it would be the latest entry. In
PSO, the latest entry is easy to determine, since the store bu�er has a FIFO queue for
each shared variable. Thus, the latest entry for x is simply the last element in the
sequence sb(x). For all operations that are not explicitly mentioned in the de�nition,
the mapping is an identity mapping.

The full transformation from a sequential program on memory model MM into
its SC form (weak to SC) is �nally de�ned as

w2sc(P ,MM) =̂ prog(sgMM (P))

We have now fully de�ned the reduction for programs executed under weak
memory model into programs that reproduce the weak behavior under SC semantics.
The transformed programs are de�ned in terms of their semantics. A syntactical
representation of the program can be �xed for any programming or veri�cation
language that assumes SC semantics and allows for modeling non-deterministic
choice of program statements. In the following section, we show soundness of the
reduction and elaborate on strengths and weaknesses of the approach.

3.3 Reduction is Sound and Compositional

So far, we have shown how the store bu�er graph is constructed and how we can
generate new programs that reproduce the behavior of the original program under
SC. What remains to be shown is that the new programs are indeed behaviorally
equivalent to the original program. In other words, we have to show that the
reduction is sound.

Please remember that purely sequential programs (not part of a parallel compo-
sition) do not need to consider weak memory models and thus are guaranteed to
produce behavior that is also observable under SC. Our reduction applies to each
sequential program separately, but our focus lies on concurrent data structures,
i.e., programs that are a parallel composition of sequential programs. Even if we
can show that our reduction is sound for a single sequential program, this is not
necessarily true for parallel compositions. The Litmus tests in Chapter 2 are good
examples for it. When a sequential program is executed on TSO or PSO, it produces
SC results only and the observable behavior does not di�er from SC. However, when
combined in a parallel composition, the internals of TSO and PSO become observable
and the non-SC results reveal these internals.

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 47

This leaves us with an additional proof obligation. We have to show that the
transformed sequential programs also reproduce the behavior of the original pro-
gram, when executed in a concurrent setting. In other words, we have to show
compositionality of our reduction, i.e., we can replace an original program by its
transformed counterpart in a parallel composition without changing its behavior.
Essentially, this means that we need an equivalence relation that is also a congruence
w.r.t. the possible operations in our semantics. In other words, equivalent programs
must be indistinguishable from each other, even in a parallel composition with an
arbitrary other program.

Before we can prove that our reduction is sound and compositional, we need
to provide a notion of what we think is equivalent behavior. In particular, we are
interested in observable behavior. In a concurrent setting, processes communicate
with each other by modifying the memory and reading from it. Each process has a
local state that is not visible to other processes. Thus, the observable behavior of
a process is its access to the memory. All other operations that are not accessing
memory are hidden from other processes. Hence, whatever our reduction does
to a program, the resulting transformed program must be identical to the original
program in terms of its memory accesses.

Ultimately, we will be interested in comparing the weak memory model semantics
of one program with the SC semantics of another. We do this by comparing their
transition systems. Our notion of behavioral equivalence of transition systems is
based on bisimulation equivalence [Mil80], in particular strong bisimulation. Two
transition systems are bisimulation equivalent, if we can provide a bisimulation
relation for them. A bisimulation relation relates the states of both transition systems.
The related states are branching equivalent, i.e., the outgoing transitions and branches
from these states are equivalent and thus, also the remainder of the observable
behavior beginning at these states. For each step of one of the transition systems,
the other must be able to do the same step and vice versa. States that are reached by
such a step must again be related by the bisimulation relation.

In the following, we de�ne and prove our notion of bisimulation equivalence
formally. In our de�nition, we take arbitrary interference with other processes into
account by not making any assumption on the memory. We call it an open semantics.
In a second proof, we use the results (the bisimulation relation) from the �rst proof,
in order to show that bisimilar transition systems can safely replace each other in a
parallel composition. A discussion about related work and about remaining problems
of the reduction concludes this chapter.

48 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

3.3.1 Local Bisimulation Equivalence

Our de�nition of bisimulation compares transition systems with respect to their labels
on transitions as well as their local states. In Chapter 2.2, we gave a general de�nition
for the labelled transition system ltsMM (P) of a program , where the memory model
MM is a parameter to the de�nition. However, we did not introduce the labels
explicitly in order to avoid confusion. Now that the idea behind the reduction was
given in the previous two sections, the labels should be straightforward. We label
transitions in terms of their e�ect to the memory, to the register and to the program
location. The store bu�er is ignored in the labels. In spirit, we use SC operations in
order to label transitions of all labeled transition systems, including those constructed
for weak memory semantics.

De�nition 13. Let ltsMM (P) be the labelled transition system of a sequential program

P on a memory model MM ∈ {TSO ,PSO}. The labels labelMM for ltsMM (P) are

de�ned as follows:

labelMM (op) =̂ skip if op ∈ {fenceMM ,write(x ,n)}
labelMM (op) =̂ skip if op = write(x , r) and op 6∈ wdc(P)

labelMM (op) =̂ rcpy := reg(r) if op = write(x , r) and op ∈ wdc(P)

labelMM (op) =̂ write(x ,n) if op = flushMM and flushedconc
MM (x ,n, sb, sb′)

labelMM (op) =̂ read(x , r) if op = readMMM (x , r)

labelMM (op) =̂ r := n if op = readLMM (x , r) and n = lstconc
MM (x , sb)

labelMM (op) =̂ op else

Here, we must di�erentiate between normal writes and those which are a WDC
source. Normal writes become skip steps in the new program. Writes that are sources
of a WDC, are transformed to local assignments to a new register variable copy rcpy .
The chosen labels must re�ect that, because our later bisimulation proof requires,
among other properties, identical labels in both transition systems. Please note that
we use the predicate flushedconc

MM (x ,n, sb, sb′), and the function lstconc
MM (x , sb) in a

similar way to flushedMM (x ,n, sb, sb′) (resp. lstMM (x , sb)), both of which were
previously de�ned (see Def. 12) based on symbolic store bu�ers in a store bu�er
graph. The only di�erence here is that we have concrete store bu�ers instead of
symbolic ones, since we have concrete states of the labeled transition system. Thus,
store bu�ers do not contain symbolic entries and therefor contain only integer values.
Please also note that the operation readMM (x , r) has two di�erent cases in TSO and
PSO, for which the label function provides di�erent labels.

De�nition 14. Let ltsSC (P) be the labelled transition system of a sequential program

P under SC . The labels labelMM for ltsSC (P) are de�ned as follows:

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 49

labelSC (op) =̂ skip if op = fenceSC

labelSC (op) =̂ write(x ,n) if op = writeSC (x ,n)

labelSC (op) =̂ write(x , reg(r)) if op = writeSC (x , r)

labelSC (op) =̂ read(x , r) if op = readSC (x , r)

labelSC (op) =̂ op else

From the labelling, we can already see which transitions are mapped to similar
labels and thus also which transitions could potentially simulate transitions from
another transition system. We still need to de�ne when we consider two transition
systems to be behaviorally equivalent. Therefor, we de�ne a local bisimulation
equivalence, which is an adaption of bisimulation equivalence by Milner [Mil80]. We
call it local, because it is an equivalence of single process behavior. However, since
our semantics is open, we also take interference by other processes into account.
Our labeled transition system de�nition for sequential programs (see Chapter 2.2)
creates a transition for every possible combination of s,mem, op, s ′,mem ′, s.t.,
(s,mem), (s ′,mem ′) |= op. These combinations include all possible interferences
with other processes.

De�nition 15. Let T1 = (S ,−→1,S0) be an MM1 and T2 = (Q ,−→2,Q0) an MM2

transition system. Transition systems T1 and T2 are locally bisimilar, T1 ∼` T2, if

there is a bisimulation relationR ⊆ S ×Q such that the following holds:

1. Local state equality:

∀(s, q) ∈ R, s = (pc1, sb1, reg1), q = (pc2, sb2, reg2),

∀ r ∈ Reg1 ∩ Reg2: reg1(r) = reg2(r).

2. Matching on initial states:

• ∀ s0 ∈ S0 ∃ q0 ∈ Q0 s.t. (s0, q0) ∈ R, and
• ∀ q0 ∈ Q0 ∃ s0 ∈ S0 s.t. (s0, q0) ∈ R.

3. Mutual simulation of steps:

• if (s1, q1) ∈ R and s1 −lab−→ s2, then ∃ q2 such that q1 −lab−→ q2 and

(s2, q2) ∈ R,
• if (s1, q1) ∈ R and q1 −lab−→ q2, then ∃ s2 such that s1 −lab−→ s2 and

(s2, q2) ∈ R.

The de�nition states three properties that must hold for a bisimulation relation
R. The �rst one requires equality of local states, i.e., the register valuations must be
equal. However, this only has to hold for register variables that exist in both transition
systems (Reg1 ∩ Reg2). Since, our transformation creates auxiliary variables, this

50 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

property cannot hold without constraining it to the intersection of both register sets.
Local state equality does not make any assumption on the program locations or the
store bu�er content. This is crucial for us, since the transformed programs in our
approach do have a new set of program locations. On the other hand, a transformed
program (SC) does not actually have a store bu�er, because we de�ned it to be always
empty.

The second property states that the bisimulation relations must relate the initial
states of both transition systems. Each initial state must have a matching one in the
other transition and vice versa, s.t., both are inR.

The most important property of a bisimulation relation is the mutual simulation
of steps. If two states (s1, q1) are related byR and one makes a step by following a
transition labeled by lab, then the other can simulate this step by also following a
transition with the same label. The states reached (s2, q2) must again be related by
the bisimulation relationR.

The de�nition of local bisimulation equivalence is based on the fact that the
semantics is open. However, we could easily extend it to closed semantics. To do
so, we only have to add mem to both sets of states as a part of the state tuple. This
implicitly adds a requirement for both transition systems to agree on the memory in
addition to the already stated local state equality.

This completes our de�nition of behavioral equivalence of local transition sys-
tems and we are ready to introduce our �rst theorem. It states that the transformed
program produced by our approach is local bisimulation equivalent to the original
program under TSO (resp. PSO).

Theorem 1. Let P be a program with fenced or write-free loops only and with no

unfenced wd-chains and MM ∈ {PSO ,TSO} a memory model. Then

ltsMM (P) ∼` ltsSC (w2sc(P ,MM)) .

Proof Idea: The general proof idea is to make a case distinction over all types
of transitions. We only state the bisimulation relation here. For each transition type,
we prove that it simulates a transition of the respective other transition system and
that the states reached are again related by the bisimulation relation. The full proof
can be found in the Appendix A.1.

RMM := {(s1, s2) | si = (pci , sbi , regi), i = 1, 2,

∧ sb2 = ∅

∧ pc1 = first(pc2)

∧ concMM (reg2, second(pc2)) = sb1

∧ ∀ r ∈ Reg1 : reg1(r) = reg2(r)}

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 51

The relation contains pairs (s1, s2), both consisting of tuples (pci , sbi , regi), i = 1, 2.
The state s1 can have a non-empty store bu�er sb1 as it is the state of ltsTSO(P)

or ltsPSO(P). In contrast, s2 (an SC state) has always an empty store bu�er, i.e.,
sb2 = ∅. The program counter value pc2 is a tuple and it consists of two parts: a
location of the original program and a symbolic store bu�er (out of the sb-graph). For
a program location pc2 = (pc, sb), we use a function first(pc2) = pc in order access
the original program location (�rst tuple entry). The function second(pc) = sb

yields the symbolic store bu�er value sb (second tuple entry). The correspondence
between s1 and s2 consists of three major properties: First, the program locations
pc1 and first(pc2) have to match. Second, a concretization of the symbolic store
bu�er second(pc2) yields a store bu�er that is identical to the one in state s1. More
formally, we de�ne a function concMM (reg , sb) taking register values reg and a
symbolic store bu�er sb as arguments and returning a concrete store bu�er for a
memory model MM ∈ {PSO ,TSO} as

concTSO(reg , 〈 〉) = 〈 〉
concTSO(reg , 〈(x ,n)〉a sb) = 〈(x ,n)〉a concTSO(reg , sb)

concTSO(reg , 〈(x , r)〉a sb) = 〈(x , reg(r))〉a concTSO(reg , sb)

concVar(reg , 〈 〉) = 〈 〉
concVar(reg , 〈n〉a sb) = 〈n〉a concVar(reg , sb)

concVar(reg , 〈r〉a sb) = 〈reg(r)〉a concVar(reg , sb)

concPSO(reg , sb)(v) = concVar(reg , sb(v))

Here, n ∈ Z and r ∈ Reg . Both concretization functions are de�ned inductively.
For TSO , the function maps the symbolic store bu�er to a sequence of pairs (shared
variable and value). For PSO , we need a sequence for each shared variable. A
function concVar maps a symbolic value sequence to a concrete sequence. The
function concPSO is a higher order function. It maps the register valuation reg and
the symbolic store bu�er sb to typePSO , which is again a function. For each variable
v ∈ Var , it yields the concrete value sequence. The third part of the bisimulation
relation requires register equality. In particular, we require register values reg1 and
reg2 to be equal for each register r ∈ Reg1. The set Reg1 is the set of registers
from the program with weak semantics. We have Reg1 ⊆ Reg2, because Reg2 may
also contain auxiliary variables that were created during transformation. Obviously,
Reg1 is also the intersection of both sets and thus, �ts well to the state equality
requirement from De�nition 15.

Our proof shows behavioral equivalence of sequential programs under weak
memory semantics and their transformed SC form with respect to the local bisimu-

52 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

lation equivalence given in De�nition 15. However, as we already pointed out, that
is not enough. Every sequential program produces equivalent behavior under the
memory models SC, TSO, and PSO, if it does not con�ict with other concurrent pro-
grams. Concurrent data structure implementations do con�ict with each other and
they do it intentionally. Thus, we need to show that the transformed programs also
behave equivalently in a concurrent setting. We do this by proving compositionality
of the transformed program in the following section.

3.3.2 Compositionality of the Approach

In the previous section, we have shown behavioral equivalence of transformed
programs under SC (using our transformation approach) and the original program
under TSO or PSO with respect to local bisimulation equivalence (see Def. 15).
However, it is an equivalence of sequential programs and we have not derived
any implications for concurrent compositions of these sequential programs. The
major question is whether we can replace sequential programs by their transformed
versions in a concurrent composition and still observe the same behavior. Obviously,
this is the ultimate goal and one of the major bene�ts of our approach. The particular
bene�t is that we can verify a transformed program correct and know that the
veri�cation result also applies to original program under weak memory because
of their behavioral equivalence. This section shall provide a formal proof as an
argument for this conclusion.

Instead of a closed semantics, we decided to use an open semantics in our
de�nition of the labeled transition system of a program (see Section 2.2). Thus,
our labeled transition systems cover all possible behavior of a program in any
environment with other programs instead of just one possibility or a subset of the
possible behavior. The latter could be the result of �xing an initial memory state or
it could be the result of additional constraints on the changes to the memory. Our
semantics de�nition makes no assumptions about the initial state of the memory,
nor about possible steps of other processes. The latter can alter the memory in an
arbitrary way. Thus, implicitly, our labeled transition systems contain every possible
interference with other processes. Despite other processes possibly interfering, the
transformed programs are locally bisimulation equivalent to their respective original
programs.

We state a compositionality theorem for transformed programs and prove it.
Since we no longer have arbitrary interference with other processes, but particularly
with those processes that are part of the parallel composition, we need a closed
semantics. The di�erence between these two variants is that in a closed semantics
all processes have to agree on a memory mem while the open semantics simply

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 53

considers all values of mem (see also Def. 6 in Section 2.2). For the closed semantics,
we de�ne a global bisimulation equivalence ∼g between two transition systems,
which in addition to local bisimulation equivalence requires equality of shared
memory mem among the transition systems of the programs that are in the parallel
composition. For completeness, we de�ne global bisimulation equivalence in the
following de�nition:

De�nition 16. Let T1 = (S ,−→1,S0) be an MM1 and T2 = (Q ,−→2,Q0) an MM2

transition system. Transition systems T1 and T2 are globally bisimilar, T1 ∼g T2, if

there is a bisimulation relationR ⊆ S ×Q such that the following holds:

1. Global state equality:

∀(s, q) ∈ R, s = (mem, ls1, ls2), q = (mem, lq1, lq2),

lsi = (pci ,1, sbi ,1, regi ,1), lqi = (pci ,2, sbi ,2, regi ,2), i ∈ {1, 2},
∀ r ∈ Regi ,1 ∩ Regi ,2: regi ,1(r) = regi ,2(r).

2. Matching on initial states:

• ∀ s0 ∈ S0 ∃ q0 ∈ Q0 s.t. (s0, q0) ∈ R, and
• ∀ q0 ∈ Q0 ∃ s0 ∈ S0 s.t. (s0, q0) ∈ R.

3. Mutual simulation of steps:

• if (s1, q1) ∈ R and s1 −lab−→ s2, then ∃ q2 such that q1 −lab−→ q2 and

(s2, q2) ∈ R,
• if (s1, q1) ∈ R and q1 −lab−→ q2, then ∃ s2 such that s1 −lab−→ s2 and

(s2, q2) ∈ R.

The global bisimulation equivalence requires global state equality, similarly to
the local state equality in the local bisimulation. Since we are dealing with parallel
compositions, the state tuples in both transition systems consist of a memory mem

(the same in both transition systems) and local states lsi , lqi , which encode the state
of each single process. Each local state of the �rst transition system lsi has to have a
locally equal state lqi in the other transition system and vice versa. The matching of
initial states and the mutual simulation of steps are de�ned identically to the local
bisimulation. There are no further important di�erences to the local bisimulation
equivalence. The de�nition can be extended to an arbitrary number of processes in
a parallel composition by adding more local states to the state tuples in S ,Q . The
extension is straightforward and would be similar to an extension of our de�nition
of the parallel composition (see Def. 6 in Section 2.2).

In the following theorem, we state our desired compositionality result: Local
bisimilarity of processes implies global bisimilarity of their parallel compositions.

54 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

Theorem 2. Let P1,P
′
1,P2,P

′
2 be sequential programs such that ltsMM1(Pj) ∼`

ltsMM2(P
′
j) , j ∈ {1, 2}. Then

ltsMM1(P1 || P2) ∼g ltsMM2(P
′
1 || P ′2) .

Proof idea: Again, we only state the bisimulation relation and provide the full proof
in the Appendix A.2. The proof proceeds by showing that from a state, in which
the bisimulation relation holds, we can only reach states that are also related by
the bisimulation relation. By our assumption in the theorem, the processes of the
parallel compositions are locally bisimulation equivalent. Thus, we can reuse this
property in our global bisimulation relation. Let Rj , j ∈ {1, 2}, be the relations
showing local bisimilarity of ltsMM1(Pj) and ltsMM2(P

′
j). Out of this, we construct

the following global bisimulation relationR:

R := {((mem, ls1, ls2), (mem, lq1, lq2)) | (lsj , lqj) ∈ Rj , j ∈ {1, 2}}

With this proof, we show that our transformation from programs running under
TSO and PSO towards equivalent SC programs is sound. In particular, we have shown
that the transformed programs behave equivalently to original programs not only
in an isolated environment, but also in parallel compositions with other processes.
It is particularly this result that enables veri�cation of transformed programs and,
if veri�ed correct, to assume correctness of the original programs under TSO (resp.
PSO) semantics. In the following section, we discuss related work as well as strength
and weakness of the reduction presented in this chapter.

3.3.3 Related Work and Discussion

In the last years, several approaches were proposed in order to deal with software
veri�cation under the in�uence of weak memory models, ranging from theoretical
results to practical techniques. In the following, we cover only a fraction of them as
our main focus lies on di�erent variants of modeling behavior of programs under
weak memory. However, we start with some theoretical aspects and a property
called robustness. The latter states that programs reveal SC behavior only, even
though they are executed under weak memory models.

Theoretical Results

Atig et al. [ABBM10] have shown that the reachability problem for programs in a
TSO or PSO environment is decidable. Their decidability result was obtained via
a reduction to lossy channel machines. However, for other more relaxed memory
models like RMO, which allow reads to be reordered with later reads or writes, the

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 55

problem is undecidable. The latter was shown by Atig et al. via a reduction to the
post correspondence problem [Pos46], which is known to be undecidable. Their
decidability results �t to our experience with our attempts of reducing program
behavior under weak memory to an equivalent SC program. It is intrinsically more
di�cult to provide an equivalent SC program for a program with RMO semantics
than for a program with the stronger TSO or PSO semantics. TSO and PSO preserve
program order at least partially, i.e., reads are not reordered with later instructions.
In RMO, program order is only preserved among instructions that are control or data
dependent. Essentially, this leaves us with a more or less unordered set of instructions
that corresponds to a sequential program. The state space of a parallel composition
of seemingly unordered sets of instructions grows quickly with the number of
instructions. That is because for each process, all permutations of its instruction
set must be considered, except for those violating control or data dependencies.
This is also one of the reasons for us to exclude RMO from our reduction technique.
Although we think it is generally possible to represent symbolic states of a program
under RMO in a store bu�er graph (would have to be extended to represent parallel
compositions), we do not think it would be practical. Even for rather small and
simple programs, the store bu�er graph could grow large quickly since each possible
execution corresponds to a particular path in the store bu�er graph.

Bouajjani et al. [BMM11] determined the complexity (PSpace) of deciding ro-
bustness of programs against TSO. A program is considered robust against a weak
memory model, if its SC behavior and its observable behavior under the weak mem-
ory model are equivalent. In principle, robustness opens up an alternative for the
veri�cation of programs under weak memory models. Instead of verifying program
behavior under weak memory directly, robustness enables a two step veri�cation:
The �rst step is to show correctness of a program executed under SC, which can
be the result of reasoning about a program in its non-compiled representation. In a
second step, the program is shown to be robust against a particular weak memory
model. By separating these two concerns, the overall e�ort can potentially be less
than tackling both concerns at once. It is particularly the reasoning about correctness
of a low-level program that can be di�cult and complex and that is avoided by this
approach.

In [Der15], Derevenetc shows PSpace-completeness of deciding robustness also
for the weaker memory models PSO and RMO. He also developed algorithms in
order to determine, whether a program is robust against a particular weak memory
model. Because of its separation of concerns, robustness can be a practical property.
However, the assumption that a program executing under weak memory is correct, i�
it shows SC behavior only is not necessarily true. Some algorithms like the Spinlock
(used in Linux-Kernel) are considered correct, even though they allow for non-SC

56 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

behavior [GMY12]. For these highly optimized algorithms, robustness imposes
unnecessary restrictions on their behavior. Thus, reasoning about correctness and
the e�ects of weak memory semantics at the same time cannot always be avoided.
In such cases, complexity is probably the biggest challenge due to the programs
being low-level and weak memory models allowing instructions to be reordered
in many ways. Memory models are usually given as a set of axioms that de�ne
the possible execution orders or as an operational model that generates all possible
executions. In both cases, the memory model adds a whole layer of complexity to
reasoning about correctness. The latter is due to unfolding of possible next steps
during the reasoning process. Our reduction to an SC program avoids particularly
this complexity by mimicking the memory model in its e�ects in the generated
program. Although this comes at the cost of having a larger low-level program
than originally, the reasoning about whether a particular execution or reordering
is possible or not becomes obsolete. The overall behavior to be veri�ed is an SC
interleaving of the processes, each executing a transformed sequential program.

Model Checking

An approach for stateless model checking has been proposed in [AAA+15]. The
authors introduce chronological traces in order to represent TSO and PSO executions.
A chronological trace represents a class of equivalent traces under weak memory.
Based on chronological traces, the authors apply dynamic partial order reduction
techniques. A program is deemed correct, if all of its chronological traces do not
violate the property to be ful�lled. The authors compute the set of all chronological
traces incrementally, starting with a randomly scheduled execution. New traces are
the result of permuting pairs of events in a trace. The computation continues until all
chronological traces are found or the correctness property is violated. The approach
by [AAA+15] is a pure model checking approach and for some experiments, it
achieves better results than our reduction (see Chapter 6). However, it is also an
under-approximating technique, e.g., the approach replaces program loops by a read
and an assume statement. Thereby, the authors eliminate parts of the behavior,
which comes due to weak memory semantics in order to speed up the state space
exploration. Our reduction produces bisimulation equivalent SC programs without
any simpli�cation of the observable behavior. In order to apply similar techniques
in our approach, we would require a weaker notion of bisimulation equivalence
for soundness. It is not yet clear what this notion would be and we leave this for
future work. However, we also see potential for program simpli�cations, which do
not a�ect observable behavior of a program. Programs often have a write followed
by several process local instructions, which do not involve a memory access. For

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 57

instance, a write followed by two process local instructions generates three possible
execution paths in a store bu�er graph: First, the write can be �ushed immediately.
Second, the write can be �ushed after the �rst local instruction and third, it can be
�ushed after the second local instruction. All three possible executions generate a
di�erent path in a store bu�er graph, but do not vary in their observable behavior,
because local steps are hidden from observers, i.e., other processes. These executions
form an equivalence class and it is su�cient to check one of them for correctness
since the results will not vary with the choice of the execution. Thus, the store bu�er
graph can be reduced to one path instead of three in such a case. This suggestion
does not change the observable behavior and thus would remain sound with respect
to some weaker bisimulation equivalence than the one proposed. In [AAA+15],
the observable program behavior is modi�ed, but the modi�cations are justi�ed
only informally. The approach by [AAA+15] cannot be applied in a correctness
proof without formalizing the trace computation and reasoning about the set of
all chronological traces. The latter was avoided by the authors and it would not
be practical due the many traces. Our reduction is a general approach (w.r.t. our
assumptions about the programs) and thus, can help with model checking and
correctness proofs, e.g., in a theorem prover.

A recent approach of checking robustness has come up in [BCDM15]. The
authors propose a lazy model checking algorithm that uses a robustness-based
oracle. The check is applied to an automata encoding of parallel programs. It �rst
checks a program with pure SC semantics and reports if the correctness condition
was violated (state reachability). Otherwise, the oracle is asked for a path that leads
to a non-robust state, which can only exist due to store bu�ers. If such a path
exist, the program is extended by the path and checked again for the correctness
condition. The latter happens incrementally until either a counterexample was found
or until no more new non-robust states and their corresponding execution paths are
reported by the oracle. The path that is added to the SC program behavior simulates
TSO behavior under SC. Thereby, the overall behavior is a mixture of SC and TSO
behavior. In contrast to our reduction, the proposed approach creates auxiliary
variables for each entry in a store bu�er (address-value pairs) in order to simulate
store bu�er behavior under SC. Because of loop-unwinding and because the approach
in [BCDM15] is not restricted to programs like our approach (see Assumption 1),
the number of auxiliary variables required can grow quickly, especially in loops.
Our approach requires at most one auxiliary variable per write in a loop, which
we can guarantee because of our restriction to programs without unfenced writing
loops. If we would drop Assumption 1, we would also require auxiliary variables for
every entry in a store bu�er. Please note that this decision is a trade-o� between
having an approach that is as general as possible and an approach that is practical,

58 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

but restricted to a certain class of programs. In addition, the loop-unwinding by the
approach always sets an upper bound on the iterations of loops, which is not required
in our reduction due to the restricted class of programs considered. Another major
di�erence is that our store bu�er graphs are process local and compositional while
the oracle in the approach takes parallel compositions as input. Furthermore, the
correctness check in [BCDM15] is performed by incrementally extending program
behavior lazily with non-SC execution paths, which are returned by the oracle. From
a practical point of view, this involves two state space explorations in each iteration.
The �rst is a correctness checks of the SC behavior of the program including the
so far added paths leading to non-robust states. The second exploration checks for
new non-robust states that were not considered yet. Our reduction does not require
iterative checking procedures, because store bu�er graphs represent already all of
the behavior that a sequential program can generate under TSO (resp. PSO). Thus, a
parallel composition of our transformed programs incorporates already all of the
possible behavior and the state space must be explored only once.

Reductions

Cohen and Schirmer proposed a reduction theorem [CS10], which aims at avoiding
reasoning about TSO behavior. In particular, they suggest a programming disci-
pline, which guarantees sequentially consistent executions only, even though the
program is executed on TSO. The latter is shown via reduction from store bu�er

machines to SC computations. In their approach, they introduce auxiliary variables
for each memory location in order to keep track of the state and other attributes of
a location, i.e., ownership, sharing, whether it is a read-only location and process
local dirty �ags for all locations. The authors de�ne access policies to memory
locations with respect to their current state. Adherence to the access policy can be
shown via a program invariant while reasoning. The access policies mainly try to
avoid reordering of memory accesses to shared variables, but allow reordering of
memory accesses if a local variable is read or written. This is su�cient, because
local variables are never seen by other processes. Instruction reordering becomes
visible, when concurrent processes access a shared variables. This is particularly
where the proposed programming discipline requests use of volatile read and writes.
For writes, an ownership of the written location is also required. Volatile reads and
writes di�er in their semantics from regular reads and writes by ensuring program
order, e.g., by placing a fence after a write in order to �ush the store bu�er before the
program continues or by placing a fence before a read, s.t., it cannot read from the
store bu�er early. Thus, the proposed discipline systematically avoids weak memory
e�ects on shared locations, which is where they could be observed otherwise. In

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 59

other words, the programming discipline constructs robust programs against TSO by
design. Hence, it can be practical for developers, who do not want to reason about
correctness in the presence of weak memory semantics and who are willing to pay
the price for it in terms of performance. Otherwise, there is no way to circumvent
the weak memory semantics, which requires techniques like a robustness check at
least or a reduction technique like the one proposed in this thesis.

A very general reduction approach was introduced by Alglave et al. [AKNT13].
They de�ne an abstract machine that simulates weak memory models (TSO, PSO,
RMO and Power) under SC and proved it to be equivalent to their framework of
axiomatic memory models [AMSS10]. The abstract machine is used to construct an
abstract event graph for a given concurrent program, where the abstract events are
all reads and writes of a program. The edges in such an abstract event graph are
dictated by program order and external communication, e.g., if one process could
potentially read a value written by another process. The abstract event graph is
then transformed into an SC encoding in order to determine potentially critical
cycles among the events. A cycle indicates potential non-SC behavior. Where a
cycle is found, the SC program encoding is instrumented, in order to simulate weak
memory behavior, e.g., the delay of writes. The instrumented encoding can then
be checked for correctness conditions using SC veri�cation tools. In contrast to
our reduction, Alglave et al. start their analysis with a parallel composition, which
requires them to restart their transformation with any new process that is added or
removed. Our reduction is process local and compositional. Thus, once a sequential
program is transformed into its SC representation, it can be reused in di�erent
parallel compositions. The latter often correspond to di�erent scenarios for di�erent
properties under test. Furthermore, the approach by Alglave et al. is limited to
model checking only, because transformed parallel compositions are everything but
readable and therefore must be processed automatically. Since our reduction takes
each sequential program (each process) separately into account, the generated SC
programs (comparably concise models) can also be used for proving correctness, e.g.,
in a theorem prover.

Linden and Wolper [LW10] proposed a reduction for store bu�ers in TSO to
�nite automata and exploit it as a partial order reduction technique [God96] for
model checking. They use automata to represent symbolic store bu�er contents and
introduce conditions under which symbolic store bu�ers can represent each other.
These conditions can be met, if programs write the same content repeatedly to the
store bu�er as it can be the case in an unfenced writing loop. The proposed technique
certainly can reduce exploration time of a model checker. Our Assumption 1 allows us
to ignore the problem of unfenced writing loops among other bene�ts like having at
most one auxiliary variable per write in loops. If we would drop Assumption 1, then

60 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

store bu�er graphs could become in�nitely large in our approach. An adaption of
the approach by Linden and Wolper to store bu�er graphs could guarantee �niteness
even for programs with unfenced writing loops. We leave such an adaption for future
work. However, it is worth mentioning that the authors express their own doubt
that their reduction will be helpful with veri�cation of large programs, because the
�nite representation of bu�ers can still be very large in practice.

The approach closest to us is the one by Atig et al. [ABP11]. Similar to us, they
provide a translation from a TSO program to an equivalent SC program, but assume
an age bound k . The bound k stems from the observation that store bu�er entries
can stay for at most k steps in the store bu�er until they are eventually �ushed
to the memory. Their approach is to model the store bu�er behavior as part of
the new SC program by introducing k vectors of shared variable copies as part of
the local state. Hence, rather than getting rid of the complexity of store bu�ers,
store bu�ers are replaced with auxiliary vectors in the SC program. The bound
results in some sort of bounded veri�cation; if the program exceeds the bound (e.g.,
in case of loops without fences), the bound needs to be increased and veri�cation
restarted. In our approach (auxiliary) variable copies are only used if they are indeed
required, i.e., when the symbolic store bu�er entry corresponding to the source of a
write-def-chain can be rede�ned between write and �ush. We have at most one new
variable per register in the program. This is enough since we consider a restricted
class of programs (Assumption 1) for which we can then carry out a (non-bounded)
veri�cation. In summary, our approach works for a restricted class of programs,
but for this carries out a full veri�cation, whereas Atig et al.’s technique works for
all programs, however, sometimes only with an under-approximating analysis. For
the class of programs with fenced-loops our approach furthermore generates fewer
auxiliary variables, and may speed up veri�cation (see experiments in Chapter 6). We
thus see our approach as an excellent alternative to Atig et al.’s, in case the program
falls into our category of fenced-loop programs.

Another interesting approach by Dan et al.[DMVY13] developed predicate ab-
straction for weak memory models. Their starting point is a program that was
veri�ed under SC. Given the predicates or the invariant that was required to verify
the program correct under SC, they describe a way to extrapolate the invariant to
TSO and PSO semantics. The extrapolation involves adding auxiliary variables repre-
senting store bu�er entries under weak memory semantics. Similar to the previous
approach, this step is bounded by a �nite store bu�er length. If in case of an unfenced
writing loop, the store bu�er size can grow in�nitely, then authors impose an arti�-
cial constant bound on it. The extrapolation aims to preserve essential information
about variables from the SC proof into a TSO or PSO setting by adding predicates
involving the auxiliary variables. The result of the extrapolation is a new SC program

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 61

incorporating weak memory behavior. In a �nal step, the program together with
its inferred invariant have to be veri�ed by a model checker. In principle, the idea
is similar to the previous approach as it also is a transformation, but it is applied
to the program and an SC invariant instead of the program only. Furthermore, it
also di�ers in treatment of bu�er sizes, which may result in under-approximation of
the possible behavior due to introduction of arti�cial bounds. The authors are able
to verify in�nite state programs, but may fail to do so due to the abstractions they
introduce while extrapolating the invariant.

Limitations and Future Extensions

In the following, we elaborate on some limitations of our transformation approach
that haven’t been discussed in the related work above. Along the limitations, we
also discuss possible future extensions that could address the shortcomings of our
approach.

An open task for future extensions is the minimization of store bu�er graphs as
it could reduce exploration e�ort in a model checker. Much of the non-determinism
due to store bu�ers is not observable by other processes and thus, bears the potential
to be removed from store bu�er graphs without a�ecting veri�cation results. One
idea towards that direction is to make sequences of process local steps simply atomic.
If a program reaches such a sequence of local steps and still contains entries in
the store bu�er, then the resulting store bu�er graph will contain all possible �ush
sequences within that sequence of local steps. However, a �ush commutes with
local steps, i.e., the reached state will be the same in all of the sequences. Thus, it is
su�cient to consider only one such sequence and drop the others. Another idea could
be to reduce the number of variables that are introduced by the compiler in order
to compute temporary results. A compiler often introduces temporary variables
that are necessary to perform computations or evaluations of high-level expressions
based on the instruction set of a processor. Most veri�cation tools support high-level
expressions and thus do not need these temporary variables to compute the result of
such an expression. Fewer variables result in a smaller state vector. A smaller state
vector enables model checkers to explore more states before they run out of memory.
Besides being bene�cial for model checking, store bu�er graph minimization could
reduce complexity of programs and thereby also help with correctness proofs, e.g.,
by having more concise invariants. However, as already mentioned before, reducing
the size of store bu�er graphs also requires a weaker bisimulation equivalence than
the one used in Theorem 1. Otherwise, the soundness of the approach would be no
longer guaranteed, which is why we refrain from further modi�cation of transformed
programs throughout this thesis.

62 CHAPTER 3. REDUCTION FROM WEAK SEMANTICS TO SC

A probably less obvious restriction to our approach is that it implicitly assumes
fences at method invocation and return. By unfolding the behavior of a sequential
program, the symbolic execution starts with an empty store bu�er, which is similar
to the program having just passed a fence. The symbolic execution stops once,
it reaches an empty store bu�er while being at the program location of a return
statement, which is similar to the return statement being a fence. This restriction
does not represent actual weak memory semantics, but it is there for a practical
reason: we had to de�ne a starting and end point of the symbolic execution. More
importantly, it is not an actual limitation of our approach. Method calls that occur
in a program can be inlined in the surrounding method. Thus, reorderings that
would occur around method boundaries can be represented in store bu�er graphs,
but need some extra e�ort in that sense. However, because it is a static approach
and recursion ends are determined dynamically, the approach is restricted to non-
recursive functions and methods only. The assumption of an initially empty store
bu�er is due to us not knowing a priori what the context of a program can be. An
extension that would allow for speci�cation of initial content of store bu�ers prior to
the symbolic execution is straightforward and thus, not a limitation of the approach.
An extension that would inline methods into each other whenever a method call
occurs in the program code would have to consider potential namespace con�icts,
but should also be straightforward.

Our reduction is applied to program code. Thus, it can only consider statically
available information of a program which leaves some possible challenges for ver-
i�cation. One such challenge is pointer aliasing, i.e., di�erent variables or even
expressions in a program can refer to the same memory location. By construction
of a store bu�er graph, we symbolically execute a sequential program in order to
determine possible store bu�er states and in order to distinguish whether a read can
be early or not. That distinction is made by the names of pointer variables, which
represent memory locations. Our approach does not incorporate alias analysis. Thus,
the store bu�er graph construction fully relies on the alias detection of the LLVM
framework [LA04], which we use in order to compile programs into their low-level
representation. If an alias remains undetected, it could falsify a constructed store
bu�er graph, since possible early reads may be missed and in PSO, writes may be
enqueued in di�erent bu�er queues corresponding to di�erent memory locations
although they should be in the same queue. We are aware that the compiler does not
fully rule out pointer aliases and thus, we suggest adding an additional alias analysis
as a preprocessing step to the our proposed approach in future extensions. Alias
analysis is a challenging problem on its own it goes beyond the focus of this thesis.
For an extensive overview of state-of-the-art alias analyses techniques that could be
applied, we refer to [CNW13].

3.3. REDUCTION IS SOUND AND COMPOSITIONAL 63

As a last point, it should be mentioned that our reduction does not support
RMO, nor ARM or Power (the realworld counterparts of RMO). Although programs
under RMO can be transformed into equivalent SC programs, we do not think that a
reduction as the one proposed in this thesis (in case it would be extended to RMO)
would result in programs of manageable size. In other words, we do not think the
approach would be practical. The strength of our reduction stems from the following
fact: we transform programs, in which each process seemingly has its own view of
the memory due to store bu�ers, into SC programs, in which processes share one
global view of the memory. Parts of a program that previously allowed processes to
observe values that di�er from values observable by other processes are transformed
to local behavior of the new SC program. However, a reduction that achieves that for
programs under RMO is not possible. In RMO, processes can potentially observe a
write of another process early by taking it from their store bu�er. A process cannot
read early from all store bu�ers of a multicore processor, but only from a subset.
Otherwise, a reduction would be simple since all processes would always observe
the most recent values, just like in SC. Since the process scheduling is usually not
known a priori, RMO behavior must be over-approximated by allowing each process
to potentially, but not necessarily, observe values early from all other processes.
Because the store bu�ers in RMO are shared among di�erent processes, we cannot
transform the behavior related to the store bu�er into local behavior of a process
as we did for TSO and PSO. Instead, it changes with the number of processes in a
parallel composition and thus, is non-compositional. Hence, if we were to adapt our
reduction to the RMO setting, we would have to construct store bu�er graphs for
the full parallel composition. It would also require many auxiliary variables in order
to track which writes in a store bu�er are observable by di�erent processes. All
this information would have to be encoded in a program state. Adding reordering
of instructions, an SC representation of a program under RMO explodes in its size
unless under-approximating techniques are applied to it. Therefore, other approaches
like [AMSS10, AKNT13] should be preferred in this case.

4

Weak2SC – The

Implementation

In the previous chapter, we introduced the reduction of programs under TSO or PSO
to equivalent programs under SC. The reduction is generic up to the point, where
a store bu�er graph is created. However, the transformation from a store bu�er
graph to a particular encoding of the store bu�er graph using SC semantics, the
new SC program, highly depends on the choice of the veri�cation tool and its input
language. We have chosen the model checker Spin [Hol03] and the theorem prover
KIV [EPS+14] as our veri�cation tools, the model checker as bug-�nding tool and
the theorem prover for correctness proofs. We implemented all of the steps of our
approach from parsing an LLVM IR program to the transformed programs in a tool
called Weak2SC [Tra16].

In this chapter, we introduce the implementation of Weak2SC. Along the lines,
we also introduce an example that is prone to errors due to weak memory models and
which we will use in order to exemplify the application of our approach throughout
the thesis. The example is a work-stealing queue implementation by Arora et
al. [ABP98]. In this chapter, we will use it to showcase our program transformation
to an SC program incorporating weak semantics. In Chapter 6, we will use it as a
running example for veri�cation of linearizability under weak memory models. In
the following section, we start with the architecture of the tool and discuss the choice
of existing tools that helped us implement the approach. Section 4.2 introduces our
running example. In Section 4.3, we start with the LLVM IR parser that produces a
model of the program code and thereby allows us to implement the remaining steps
of the approach in a model-driven way. We go on by providing details about the
symbolic execution of programs, which is used to explore store bu�er states and to
construct the store bu�er graph. Out of the store bu�er graph, we generate the new

65

66 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

SC programs using templates. The template-based program generation is explained
in Section 4.4 for both veri�cation tools, Promela for Spin and a predicate logic
encoding for KIV. We conclude this chapter with a discussion of the implementation
and possible extensions.

4.1 Architecture of Weak2SC

Weak2SC was implemented as an extension to the Eclipse1 Integrated Development
Environment (IDE). Eclipse is a widely used open source developer tool. It is com-
mon among web, desktop and mobile application developers, embedded systems
developers and many other types of domain speci�c developers. One of the rea-
sons for its success and why we chose Eclipse as the foundation of Weak2SC is
its ability for customization. It is designed to be extended with features, such that
program developers can customize their IDE to their needs. By making Weak2SC
an extension to Eclipse, we enable program developers to integrate Weak2SC in
their development process within Eclipse without any considerable e�ort.

The architecture of Weak2SC is visualized in Figure 4.1. It consists of a set of
plugins, each implementing di�erent functionalities in the programming language
Java. Plugins in Eclipse are software components. Their intention is to accomplish
separation of concerns. Unlike UML component diagrams [Obj15b], Figure 4.1 does
not visualize the provided or required interfaces of each component. Instead, edges
were added in case a plugin “uses” or “extends” another plugin. Plugins in Eclipse
require or provide Java packages and thus, are not shown in the �gure as they would
clutter the tool structure.

The plugins shown in Figure 4.1 can be grouped into four main feature implemen-
tations of Weak2SC: 1. the LLVM IR parser, 2. the store bu�er graph construction, 3.
the store bu�er graph visualization and 4. the transformation of store bu�er graphs
into new program encodings. Each of the plugins visualized in the �gure belongs to
one of the four features. The features were implemented based on other tools that
are commonly used in Eclipse. As such, we used EMF2 for the design of our meta
models, Xtext3 for generating an LLVM IR parser, GMF4 for creation of a graphical
interface to the store bu�er graphs and Acceleo5 in order to de�ne a model-to-text
transformation that generates the new SC programs.

The Eclipse Modeling Framework (EMF) is an implementation of the Meta-Object
Facility (MOF) standard [Obj15a] for model-driven software engineering by the OMG.

1www.eclipse.org
2www.eclipse.org/emf
3www.eclipse.org/xtext
4www.eclipse.org/gmf
5www.eclipse.org/acceleo

4.1. ARCHITECTURE OF WEAK2SC 67

cfg
SB-Graph Model

cfg.diagram
Graphical UI

for SB-Graphs

cfg.editor
Tree Editor

for SB-Graphs

cfg.tools
Strategies, Checks

& Dialogs

cfg.diagram.custom
UI Customizations

transformations
SB-Graph to Promela & KIV

parser
Parser, AST-Model

& Grammar

parser.editor
Tree Editor

for AST-Models

parser.ui
UI & Dialogs

Weak2SC

<<uses>>

<<extends>>

<<uses>><<uses>>

<<uses>>

<<uses>>

<<uses>> <<extends>>

<<uses>>

<<uses>>

cfg.gendata
transformation

preprocessing data

<<uses>>

<<uses>>

Figure 4.1: Architecture of Weak2SC – external components are excluded

In EMF, meta models are described via Ecore models. Ecore models can be used to
de�ne all sorts of meta models, e.g. LLVM IR language, store bu�er graphs, Petri
nets or UML. In contrast to Ecore models, UML Class Diagrams are limited to object
oriented software systems. One of the reasons why we use EMF (and why it is a
popular Eclipse tool) is because it generates Java code for the instantiation of the
Ecore models. The generated code contains built-in features like object listeners
and model serialization to disk. Besides this, EMF can generate tree editors for the
instantiation and modi�cation of models. The parser generator Xtext makes use of
EMF by deriving the abstract syntax tree from language grammars and generating an
Ecore model for it. The latter is instantiated by the generated parser. The Graphical
Modeling Framework (GMF) can be used to generate graphical editors based on the
meta models that are provided as Ecore models. Acceleo is an implementation of the
MOF Model To Text Transformation Language standard [Obj08].

In the following, we will go over each plugin and explain its purpose as well as
how it is tight to the other plugins.

parser This plugin implements the LLVM IR parser and contains the meta model
de�ning the abstract syntax tree (AST) of the parsed language. The latter
is instantiated by the parser. Most parts of the plugin are generated by the
Xtext parser generator based on a grammar that was provided for the LLVM
IR language. The provided grammar is derived from the partially documented
LLVM IR grammar that was available from the source code implementing

68 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

the LLVM framework. Other parts were derived from the LLVM language
reference manual6.

parser.editor This plugin implements a tree editor for the models that are instan-
tiated by the parser plugin. The plugin enables inspection and modi�cation
of parse results before they are processed (before the store bu�er graphs is
created) and thereby helped us debugging Weak2SC. It was generated from
the Ecore model that was derived from the LLVM IR grammar.

parser.ui This plugin contains the text editor for the LLVM IR language. Together
with the parser, it is automatically generated based on the grammar that we had
to provide in the parser plugin. Key features of this editor are text highlighting
of key words, inline parse error reports and a tree-based structural outline
(similar to parser.ui) of the parsed code. The latter is parsed on the �y.

cfg This plugin contains the Ecore model for the store bu�er graphs. Furthermore, it
contains code that implements store bu�er graphs (EMF generated). The name
of this and the following plugins stems from our early development, when
we just thought of representing the control �ow of a program with respect to
weak memory models. Although control �ow graphs and store bu�er graphs
under SC are equivalent, they di�er for weak memory models. In order to
emphasize this di�erence, we renamed the constructed graphs to store bu�er
graphs, but did not adapt the plugin names for technical reasons.

cfg.tools The plugin contains most of our manual implementation. Most impor-
tantly, it contains the di�erent symbolic exploration strategies that are required
for the memory models SC, TSO and PSO. Besides this, the plugin contains
several sanity checks that are performed before the store bu�er graph of a
program is explored, e.g., in order to make sure that the program does not
have unfenced writing loops. Furthermore, we implemented dialogs that help
developers in Eclipse to go through the transformation process as we intended
it (see Figure 3.1 on page 32).

cfg.editor Similar to parser.editor, this plugin is an EMF generated tree-editor for
store bu�er graphs. It was used for debugging purposes.

cfg.diagram The graph visualization of store bu�er graphs is implemented in this
plugin. It is a GMF generated graph editor, which we use as a viewer only. A
GMF generated editor contains many features that would be otherwise di�cult
to implement, e.g., automated graphical layouts. However, the input that we

6www.llvm.org

4.1. ARCHITECTURE OF WEAK2SC 69

had to provide to GMF in order to generate the editor lies in the cfg plugin
together with the Ecore model of store bu�er graphs. GMF basically needs a
de�nition of graphical elements and a mapping of the graphical elements to
model elements in order to generate an editor.

cfg.diagram.custom This plugin contains manually implemented customizations
of the graphical visualization in cfg.diagram, e.g., label encoding of store
bu�er values. A drawback of generated code is that its customization and
maintenance is di�cult. The plugin cfg.diagram alone contains more than
7000 lines of generated code. Furthermore, the code is regenerated with every
change or extension in our meta models, which is why we externalized the
manual customizations to a separate plugin.

cfg.gendata This plugin contains a meta model for data that is computed before
the transformation is performed. It exists only for convenience and represents
technically redundant information like di�erent sets of program variables, e.g.,
local, global or all. It also contains mappings of variable or function names
to potentially new names. This information could also be derived during
transformation, but it would complicate the transformation de�nition with
algorithmic computations. We want the transformation de�nition to be simple
and easy to extend.

transformations This plugin contains templates that we de�ned in Acceleo, in
order to transform our models to the textual representation of the new SC
programs. It also contains the implementation of the transformation pre-
processing (instantiating the gendata model) and dialogs for triggering the
transformation with di�erent modes. For Promela, we have two modes: 1.
store bu�er graph encoding based on the proposed transformation in Chapter 3
and 2. a Promela model of the program including an operational encoding
of the chosen memory model semantics. For KIV, the modes allow to choose
between a local state encoding and a global state encoding. The local variant
de�nes the state of a process separately from the shared state, while the global
variant de�nes the program state as a single tuple that represents the shared
state and the state of all processes. In addition, one can choose to have natural
number or integer encoding. Sometimes the latter cannot be avoided due
to negative numbers used by the implementation. The former have better
support in KIV in terms of term simpli�cations that are applied automatically
to a lemma during a proof. The choice between global and local state encoding
highly depends on the proof obligations which are to be proven correct. These
are discussed in Chapter 6.2.

70 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

At the time of writing this thesis, the overall implementation of Weak2SC has ca.
160k lines of code (LOC) of which only ca. 10k LOC had to be manually implemented.
It is available on a git repository7 on Github. The complete repository, our later
case studies for the experiments and an update site for the installation in Eclipse is
made available on the DVD attached to this thesis. A short tutorial on how to use
Weak2SC is part of the tool and can be found in Eclipse Help after installation of
Weak2SC. In the following sections, we will go through the transformation process
step-by-step and in detail. For this purpose, we introduce a running example, which
is an implementation of a work-stealing queue by Arora et al. [ABP98]. In later
Chapters, we will also use it as a veri�cation example as it is not correct under TSO
and PSO.

4.2 Case Study – Work Stealing Queue

As a running example throughout this thesis, we will use a queue implementation by
Arora et al. [ABP98]. It is an interesting case study for several reasons. It is correct
under SC semantics, but it needs fences for correctness under TSO and PSO. By
correctness, we mean linearizability [HW90], but we will come back to di�erent
correctness criteria later in Chapter 5. Furthermore, the queue implementation is
a work stealing queue. In particular, di�erent processes have di�erent roles, i.e.,
processes can be the owner of the queue or a stealer of queue elements. In addition,
the implementation also exempli�es how a double compare-and-swap operation can
be implemented using a normal compare-and-swap (CAS) operation.

Following the pseudo code provided by Arora et al. in [ABP98], we implemented
the queue in C. Figure 4.2 shows the complete source code of our implementation.
The implementation uses an array pointed to by the variable deq. Furthermore, it
uses two shared variables bot and age. The variable bot is the index value of the
array that represents the end of the queue (precisely, the �rst free slot in the array).
The variable age is an encoding of two values in one 32 bit integer. The �rst 16
bits encode a value tag, which is used to avoid the ABA problem. The latter 16 bits
encode the value top, which is the index value representing the start of the queue
in the deq array. The encoding of two variables within one enables the algorithm
to perform a double compare-and-swap operation using regular a CAS instruction.
Processes can be the owner of the queue or they are a stealer. An owner process adds
and removes elements using the operations pushBottom and popBottom. Both operate
on the bottom end of the queue. Stealer processes can try to remove an element
from the top end of the queue. By having stealer and owner processes operate on
di�erent ends of the queue, the algorithm avoids contention.

7http://www.github.com/oleg82upb

4.2. CASE STUDY – WORK STEALING QUEUE 71

1 unsigned int ∗bot ;
2 int ∗deq , ∗age ;
3
4 int popTop () {
5 int oAge = ∗age ;
6 unsigned int locBot = ∗bot ;
7 i f (locBot <= (oAge >> 16))
8 {
9 return NULL;

10 }
11 int elem = deq[oAge >> 16] ;
12 int nAge = oAge;
13 nAge = (((nAge >> 16) + 1) << 16)
14 | (nAge & 0xFFFF) ;
15
16 i f (CAS(age , oAge, nAge))
17 {
18 return elem ;
19 }
20 return ABORT;
21 }
22
23 void pushBottom(int elem) {
24 unsigned int locBot = ∗bot ;
25 deq[locBot] = elem ;
26 locBot++;
27 ∗bot = locBot ;
28 }

29 int popBottom () {
30 unsigned int locBot = ∗bot ;
31 i f (locBot == 0)
32 {
33 return NULL;
34 }
35 locBot−−;
36 ∗bot = locBot ;
37 int elem = deq[locBot] ;
38 int oAge = ∗age ;
39 i f (locBot > (oAge >> 16))
40 {
41 return elem ;
42 }
43 ∗bot = 0;
44 int nAge = (0 << 16)
45 | ((oAge & 0xFFFF) + 1) ;
46 i f (locBot == (oAge >> 16))
47 {
48 i f (CAS(age , oAge, nAge))
49 {
50 return elem ;
51 }
52 }
53 ∗age = nAge;
54 return NULL;
55 }

Figure 4.2: Work Stealing Queue by Arora et al. [ABP98]

A pushBottom operation adds an element to the queue by simply writing to
the �rst free slot in the array, which is indexed by bot. By incrementing bot, the
new element is made visible to other processes. A popBottom operation removes an
element from the bottom end and if necessary, resets the array by setting top and bot

to zero. Otherwise, the queue would move through the array with ever increasing
values of top and bot until the array length is reached. The algorithm assumes that
the array length is chosen su�ciently high, such that it is never reached by top

and bot. If the popBottom operation detects that the queue is empty, (top < bot

and bot 6= 0), then it resets the values top and bot to zero (lines 43-53). Before the
queue is reset, the operation has to ensure that the last element is not stolen by
another process (lines 46-52). The latter can happen if top = bot . The CAS in line
48 resets the top value by replacing the age value with a new value nAge. The latter
contains an incremented tag value and a value age = 0. If the CAS succeeds, the
owner process also becomes the owner of the removed element elem. Otherwise,
a stealer process must have taken it already and the popBottom operation returns
NULL. In that case, the owner process can safely write the new value of age in line

72 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

53, because all other processes will see an empty queue and the owner is the only
process who can add elements to it. A stealer process starts with reading age and
bot in lines 5 and 6. If it observes top ≥ bot , then it observes an empty queue and
returns NULL (lines 7-10). If this is not the case, then stealer needs to make sure that
it does not con�ict with other processes. A stealer process modi�es only the top end
of the queue. In order to do so, it creates a new value of age (lines 13-14) with top

being incremented and tag being equal to the previous value. The new value nAge

replaces the old value of age, if the CAS in line 16 succeeds. Then, the stealer has
successfully stolen the element from the queue. The CAS can only fail if another
process has either stolen the element or if the element was the last and the owner
process has successfully reset the queue. If the CAS in line 16 fails, then the stealer
process aborts without retry.

In order to reason about the weak memory model e�ects to a program, we need
its low-level representation, because it reveals the position of all memory instruc-
tions. For that purpose the code in Figure 4.2 was compiled into the intermediate
representation provided by LLVM. The resulting code is shown in Figure 4.3. The
�gure shows all three operation implementations and the variable declarations. In
addition, line 13 and 56 indicate where a fence is required. For the popBottom opera-
tion, the �gure shows only an excerpt of the code. The complete implementation
can be seen in the Appendix B.

Methods in LLVM IR are de�ned by a return type, a name that becomes a global
variable and a list of typed parameters. The code is structured in terms of labeled
control �ow blocks. Each control �ow block ends with either a return (ret) or a
goto (br) to another block. The latter can also be conditional. Each line represents a
single instruction, e.g., load for a read, store for a write or getelementptr for a pointer
computation. To be more accurate, the code is in Single Static Assignment (SSA)
form [CFR+91]. Variables in LLVM IR are pre�xed by either “@” or “%”. Global
variables have the pre�x “@” while local variables (corresponding to registers) are
pre�xed by “%”. Variable names are preserved after the compilation, e.g., deq, bot and
age. However, the code also contains several auxiliary variables that are introduced
by the compiler. Most of the auxiliary variables are enumerated (%0, %1 and so on).
In addition to the names, the code also contains type annotations for most variables,
e.g., whether a variable is 32 bit integer (i32) or a pointer value (*i32) to a 32 bit
integer. At this stage, the types are technically no longer necessary as all values are
essentially register values, but they help understanding the code.

After compilation of the C program, the code obviously became longer in terms
of lines of code as all high level C program constructs are compiled into single
instructions implementing them. Some of the instructions may need some additional
explanation. The pushBottom method starts with three load instructions where the

4.2. CASE STUDY – WORK STEALING QUEUE 73

1 @bot = common global i32∗ null , align 4
2 @deq = common global i32∗ null , align 4
3 @age = common global i32∗ null , align 4
4
5 define void @pushBottom(i32 %elem) nounwind optsize {
6 entry:
7 %0 = load i32∗∗ @bot, align 4, !tbaa !0
8 %1 = load i32∗ %0, align 4, !tbaa !3
9 %2 = load i32∗∗ @deq, align 4, !tbaa !0

10 %idx = getelementptr inbounds i32∗ %2, i32 %1
11 store i32 %elem, i32∗ %idx, align 4, !tbaa !3
12 %inc = add i32 %1, 1
13 <<< fence required for PSO >>>
14 store i32 %inc, i32∗ %0, align 4, !tbaa !3
15 ret void
16 }
17
18 define i32 @popTop() nounwind optsize {
19 entry:
20 %0 = load i32∗∗ @age, align 4, !tbaa !0
21 %1 = load i32∗ %0, align 4, !tbaa !3
22 %2 = load i32∗∗ @bot, align 4, !tbaa !0
23 %3 = load i32∗ %2, align 4, !tbaa !3
24 %shr = ashr i32 %1, 16
25 %cmp = icmp ugt i32 %3, %shr
26 br i1 %cmp, label %if .end, label %return
27
28 if .end:
29 %4 = load i32∗∗ @deq, align 4, !tbaa !0
30 %idx = getelementptr inbounds i32∗ %4, i32 %shr
31 %5 = load i32∗ %idx, align 4, !tbaa !3
32 %add5 = add i32 %1, 65536
33 %6 = cmpxchg i32∗ %0, i32 %1, i32 %add5 seq_cst
34 %7 = icmp eq i32 %6, %1
35 %. = select i1 %7, i32 %5, i32−2
36 br label %return
37
38 return:
39 %retval.0 = phi i32 [−1, %entry] , [%., %if .end]
40 ret i32 %retval.0
41 }

42 define i32 @popBottom() nounwind {
43 entry:
44 %0 = load i32∗∗ @bot
45 %1 = load i32∗ %0
46 %cmp = icmp eq i32 %1, 0
47 br i1 %cmp, label %return, label %if .end
48
49 if .end:
50 %dec = add i32 %1,−1
51 store i32 %dec, i32∗ %0
52 %2 = load i32∗∗ @deq
53 %idx = getelementptr inbounds i32∗ %2, i32 %dec
54 %3 = load i32∗ %idx
55 %4 = load i32∗∗ @age
56 <<< fence required for TSO>>>
57 %5 = load i32∗ %4
58 %shr = ashr i32 %5, 16
59 %cmp1 = icmp ugt i32 %dec, %shr
60 br i1 %cmp1, label %return, label %if .end3
61
62 if .end:
63 %dec = add i32 %1,−1
64 store i32 %dec, i32∗ %0, align 4, !tbaa !3
65 %2 = load i32∗∗ @deq, align 4, !tbaa !0
66 %idx = getelementptr inbounds i32∗ %2, i32 %dec
67 %3 = load i32∗ %idx, align 4, !tbaa !3
68 %4 = load i32∗∗ @age, align 4, !tbaa !0
69 %5 = load i32∗ %4, align 4, !tbaa !3
70 %shr = ashr i32 %5, 16
71 %cmp1 = icmp ugt i32 %dec, %shr
72 br i1 %cmp1, label %return, label %if .end3
73
74 if .end3:
75 . . .
76
77 return:
78 %retval.0 = phi i32 [−1, %entry] , . . .
79 ret i32 %retval.0
80 }

Figure 4.3: LLVM IR code after compilation of the code in Figure 4.2. Includes
annotation for required fences. It shows only excerpt of the method popBottom.

74 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

C code starts with an assignment. The reason for it is that the shared variables
bot and deq are pointers variables. Thus, the �rst load of bot at line 7 fetches the
pointer value. The second load fetches the value pointed to by the pointer. It is
similar for the deq variable. However, since the access to the array is a writing one,
only one load is required to fetch the pointer value. A getelementptr computes the
memory location that is relative to the fetched pointer value. That is also the location
that the consecutive store writes to in order to complete the single line assignment
“deq[locBot] = elem;” from the C code (line 25). The other methods proceed in a similar
way and we will not go into details here as it is just the LLVM IR representation of
the C code in Figure 4.2. Other noteworthy instructions are ashr, which shifts (in
our case 16) bits of an integer value to the right, icmp, which is an integer compare
operation, select, which assigns a value to a variable based on a boolean condition,
phi, which assigns a value to a variable based on which was the previous control
�ow block before the program jumped to the block containing the phi instruction,
and cmpxchg which is a compare-and-swap operation.

This completes our introduction of the running example. In the following Section,
we will use it in order to demonstrate the most important steps involved in our tool
implementation of the presented approach, Weak2SC.

4.3 From LLVM IR to a Store Bu�er Graph

Weak2SC contains a built-in LLVM IR parser. The parser parses the textual input
and creates a model out of it. This greatly helps with processing the program input,
because our algorithms can be implemented in terms of walks over a tree model
instead of performing many string comparisons for every line of code. We did not
use the LLVM IR parser provided by the LLVM framework, because it is implemented
in C++ and therefore is di�cult to integrate into the Eclipse IDE, which uses Java as
its programming language. Instead, we developed a parser from scratch using the
Xtext framework. Xtext is parser generator framework for Eclipse, which generates
parsers from grammars together with a textual editor for the given language that
uses the generated parser. All of the features generated by Xtext come as Eclipse
plugins and thus are integrated in the Eclipse IDE. The only thing we had to provide
is a grammar for the LLVM IR language.

The LLVM IR parser implementation in the LLVM framework is partially doc-
umented with excerpts of a grammar for the LLVM IR language. We used it as a
starting point for our grammar and re�ned it whenever or wherever we felt, it was
necessary or where it was outdated. On the other hand, we were able to leave out
parts that we do not require for our implementation of Weak2SC, e.g., the structure
of generated code annotations.

4.3. FROM LLVM IR TO A STORE BUFFER GRAPH 75

The parse result is a model representation of the parsed program, the abstract
syntax tree (AST). Such models also have a meta model. The latter de�nes all possible
model instances or in other words, all valid program inputs that can be represented
by an AST. The meta-model is derived from the LLVM IR grammar that we provided
to Xtext and it is a starting point for all further computations like the exploration of
the store bu�er graph.

Before Weak2SC continues with the exploration of the store bu�er graphs for
weak memory, two checks are performed for the program. In particular, Weak2SC
checks for writing loops without fences and whether the program contains instruc-
tions that the tool does not support, e.g., vector based operations that are non-atomic.
In order to perform these checks, the control �ow of the program is required. Thus,
an SC-based exploration is performed at beginning in order to obtain the store bu�er
graph with SC semantics, which is just the control �ow graph of the program. The
checks generate warnings that are given as feedback to the user or even prevent
the user from applying Weak2SC to a program, e.g., when a writing loop without
fences is found.

If the program passes the checks, the user can select the memory model for
which he or she wants to explore the store bu�er graphs for. Figure 4.4 and 4.5
show the store bu�er graphs for the pushBottom operation of our case study, the
Arora et al. [ABP98] (see Figure 4.3 for the LLVM IR code). The di�erent semantics
corresponding to the memory models TSO and PSO can be observed immediately
from both �gures. Note that under SC the store bu�er graph is just a simple sequence
of states. Therefore, we refrain from showing it here.

The graphical representation of the editor in Weak2SC deviates from what we
used in Chapter 3, but should be self-explaining for the most part. The nodes are
labeled by the program location and symbolic store bu�er contents. However, if the
bu�er is empty, only the program location is used as a label. Nodes that represent the
program state before the �rst statement (resp. after the ret statement) are highlighted
in blue. Thereby, the begin and end of the behavior represented by the store bu�er
graph can be seen immediately. This helps especially with larger store bu�er graphs
and when the built-in automatic layout fails to organize the elements from top to
bottom. The editor provided with Weak2SC also allows for later adjustment of the
graph layout. The edges in the store bu�er graph editor are labeled and colored with
respect to their semantics. The example in the �gure does not contain all types of
transitions that di�er visually. Anyway, for the sake of completeness, we provide a
list of the colors that we use in order to highlight particular transitions:

gray transitions represent local statements. These statements cannot be observed
by other processes as only the local state of the executing process is a�ected

76 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

Figure 4.4: Store bu�er graph of push-
Bottom method under TSO

Figure 4.5: Store bu�er graph of pushBot-
tom method under PSO

by them.

green transitions represent reads (load) from memory. Transitions that represent
early reads have their labels replaced by an assignment, but remain green, in
order to visualize that they correspond to a read in the original program.

red transitions represent writes (store) to memory. However, these transitions do
not actually write to the memory, but add a memory location-value pair to
the store bu�er. Thus, they a�ect only the local state of the executing process.

brown transitions represent �ush transitions. A �ush transition removes a memory
location-value pair from the store bu�er and updates the shared memory at
the given location with the given value.

blue transitions have fence-like semantics, i.e., they block execution until the store
bu�er is emptied. Compare-and-swap and fence are two examples for such
instructions.

4.3. FROM LLVM IR TO A STORE BUFFER GRAPH 77

yellow transitions represent memory space allocating instructions.

The exploration of the store bu�er graph is essentially a breadth-�rst-search
(BFS) algorithm. Starting at an initial location L0 with an empty store bu�er, it
explores state after state of a process in BFS manner and constructs the store bu�er
graph as it explores the state space. We implemented three exploration strategies
corresponding to the memory models SC, TSO, PSO. Essentially, the exploration
strategies vary only in two aspects: 1. representation of the store bu�er in a node
and 2. computation of the next (outgoing) transitions of a state. The strategy for SC
exploration is the basic strategy and is extended by the TSO exploration strategy.
Similarly, the strategy for PSO extends the TSO exploration strategy.

In SC, the store bu�er is ignored as it is always empty and �ush transitions do
not exist. Thus, the exploration simply explores the control �ow of the program.
The other strategies are based on it.

In TSO, the store bu�er is a single FIFO queue for all memory locations and value
pairs. In contrast to the SC exploration, the store bu�er entries have to be considered
during exploration. Flush transitions extend the set of outgoing transitions that are
computed by the SC exploration. In addition, early reads must be taken care of. The
SC exploration strategy creates already read transitions. All we had to adapt for TSO
besides adding �ush transition is to re�ne the construction of read transitions in the
store bu�er graph. In TSO, every read is checked whether it is an early read or not.
If it is an early read, an assignment is constructed that assigns the latest symbolic
value in the store bu�er for the requested memory location to the target register
variable. Otherwise, a regular read transition is constructed.

In PSO, the store bu�er contains FIFO queues of values for each memory location.
In order to avoid di�erent implementations of symbolic store bu�ers and algorithms
e.g., for checking equivalence of bu�er contents, we use one representation for both
TSO, and PSO. In order to achieve this, we represent a store bu�er as a list of pairs,
where the pairs are pairs of memory location and again a list of values. Thereby,
the list of pairs models the FIFO queue under TSO and is ignored in PSO. A pair in
TSO contains always just one value. In PSO it contains a list of values to represent
the per location FIFO queues. In addition, the exploration strategy for PSO re�nes
the constructions of �ush transitions. In particular, when the store bu�er contains
entries for di�erent memory locations, then PSO allows for a �ush of the oldest
value to each of the di�erent memory locations. This can also be seen in Figure 4.5
at the node L7 <(v0: inc), (idx: elem)> as it has two outgoing �ush transitions. Note
that by �ushing the value inc to location v0, the order of writes is changed with
respect to program order. For the algorithm, it means that the new element becomes
visible to other processes before the element value elem is written to the memory. It

78 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

is particularly this behavior of the pushBottom operation that must be avoided under
PSO by adding a fence between the writes.

In TSO and PSO, write-def-chains (WDC) are detected before the actual TSO
or PSO speci�c exploration. In order to �nd writes that are involved in a WDC, a
breadth-�rst-search is performed starting at every write in the program that is part
of a loop. If a variable used by the write is rede�ned before it is guaranteed to be
�ushed, then we consider the write to be part of a WDC and mark it as such. The
strategies for TSO and PSO, both check for each write whether it is marked before
a write transition is constructed. If a write is marked, then a copy of the involved
variable (the one potentially rede�ned before �ush) is created, unless it exists already.
According to our transformation in Chapter 3, we modify the transition to be an
assignment and a write. The assignment copies the value of the copied variable at
the state before writing. In the write, the variable that is copied is replaced by the
copy. Consequently, the symbolic store bu�er in the state that is reached by the
modi�ed write transition will also contain the variable copy instead of the original
variable.

This closes our explanation of the strategies for exploration of store bu�er graphs
with SC, TSO and PSO semantics. For further details, such as examples, models,
and the full implementation of Weak2SC, we refer to our Github repository8. In
the following section, we will elaborate on the generated programs that Weak2SC
produces and which are the input to either the model checker Spin [Hol03] or the
theorem prover KIV [EPS+14].

4.4 Template-based Generation of new Programs

Having explored the store bu�er graph of a program, we can now go on with the
transformation by generating the new SC program that is meant to be the input
to either a model checker or a theorem prover. For this purpose, we de�ned sev-
eral model-to-text transformations in Weak2SC. The transformations were de�ned
within the Acceleo framework, which implements the OMG standard [Obj08] for
model-to-text transformations in model-driven development.

Weak2SC generates two types of Promela program models. The �rst is a store
bu�er graph encoding in Promela as proposed in our approach in Chapter 3.2. The
second is based on di�erent operational memory models for SC, TSO and PSO which
we de�ned in Promela. The transformation based on operational memory models
follows the approach in [TMW13] that we extended for PSO in [TW16]. Weak2SC
automates both types of transformation. Both types of generated Promela models

8www.github.com/oleg82upb

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 79

can be used in order to explore program behavior under weak memory model. The
models based on operational memory models are a good alternative if our program
assumptions are not met (see Sec. 3.1). Essentially, we assume programs to have no
unfenced writing loops and to be in SSA form.

Weak2SC also de�nes two types of program encodings for the theorem prover
KIV. These di�er in the way a program state is represented. One variant captures the
whole state (shared and local) in one tuple, while the other variant de�nes separate
tuples for shared and local states. We refer to the former variant as a global encoding
and as a local encoding to the latter. Since linearizability [HW90] is the correctness
criterion we focus on, we need to consider the available proof obligations and theory
for linearizability in KIV. These can be categorized into global [DSW07] and local
proof obligations [DSW11b]. The global (resp. local) proof obligations require a
program behavior de�nition that is based on a global (resp. local) state encoding.
While the global proof obligations are more general, the local proof obligations can
reduce the proof e�ort [DSW11b, TWS12, TTSW14] signi�cantly. Weak2SC can
generate both types of encodings from a store bu�er graph. The proof obligations are
discussed in Sec. 6.2 while in this chapter, we focus only on providing an encoding
of the program behavior.

The transformations are de�ned in terms of templates. A transformation template
de�nes how an element in a model, e.g., a store bu�er graph, is translated to the target
language. A template divides the target language representation of a model element
into a universally identical part (e.g., function de�nition with brackets for parameters
and statements) and a part that is model element speci�c (e.g., the function name).
In addition, templates help to structure the transformation into smaller parts that are
easy to understand or handle by de�ning separate templates and their composition,
e.g., by de�ning a template for a function and one for each type of statement that
could be used in a function. A template-based transformation essentially de�nes a
walk over the model (based on the template structure), where each model element is
handled by its respective transformation template. Each template results in a piece
of text, which is embedded in the textual result of a surrounding template. Thereby,
the outermost template de�nes the complete transformation of a model to its textual
representation in the target language.

Due to the size of our meta-models (more than 100 classes) and the fact that we
de�ned several transformation variants (all together over 2k LOC), we refrain from
showing the exact transformation templates. Instead, we will explain the structure of
the transformed new programs in the respective target language. This will be based
on our case study, the work-stealing queue by Arora et al. [ABP98] (see Section 4.2).

80 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

1 #define MEM_SIZE 15 / / size of memory
2 #define null 0
3
4 short memory[MEM_SIZE] ;
5 short memUse = 1; / / next free ce l l
6
7 / / pointer computation
8 inl ine getelementptr (type , instance ,
9 offset , targetRegister)

10 {
11 atomic {
12 assert (of fset <= type) ;
13 targetRegister = instance + offset ;
14 }
15 }
16
17 / /compare−and−swap
18 inl ine cas (adr , old , new, result)
19 {
20 atomic {
21 result = memory[adr] ;
22 i f
23 : : memory[adr] == old
24 −> memory[adr] = new;
25 : : else −> skip ;
26 f i ;
27 }
28 }

29 / /memory allocation
30 inl ine alloca (type , targetRegister)
31 {
32 atomic {
33 targetRegister = memUse;
34 memUse = memUse + type ;
35 assert (memUse < MEM_SIZE) ;
36 }
37 }
38
39 / / Stubs
40 proctype process1 () {
41 / /TODO: empty stub
42 }
43
44 proctype process2 () {
45 / /TODO: empty stub
46 }
47
48 in i t {
49 atomic {
50 alloca (1 , bot) ;
51 alloca (1 , deq) ;
52 alloca (1 , age) ;
53 run process1 () ;
54 run process2 () ;
55 }
56 }

Figure 4.6: Excerpt of the generated Promela model for the program in Figure 4.3.

4.4.1 Generating Promela Programs

Our Promela programs generated from store bu�er graphs can be divided into two
major parts. The �rst de�nes parts of a Promela model that for the most part remains
identical among di�erent programs, i.e., memory de�nition, pointer computation,
memory allocation, empty process stubs and an initial state de�nition. The second
part de�nes the behavior that corresponds to store bu�er graphs in terms of inline
statements. This way, an inline statement can be used in a similar style to method
calls in regular programming languages like C or C++. In the following, we explain
both parts using our case study, the Arora et al. work stealing queue (see Figure 4.3 for
the LLVM IR code and Figure 4.4 for the store bu�er graph of the method pushBottom

that is used here as an example).

Memory Representation and Access

Figure 4.6 contains an excerpt of the generated Promela code for our case study. The
foundation of our generated Promela models is our representation of the memory.

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 81

We use an array memory whose length can be adjusted to speci�c veri�cation needs,
but has to be de�ned statically. Each cell in the memory represents one value, be it
boolean, byte, short or integer. Thus, we have no built-in support for non-atomic
reads or writes, e.g., a write of a 64 bit value on 32 bit (word length) architecture
would need at least two atomic writes. In order to keep the size of the state vector
small and thereby being able to explore more states, we use short (16 bit) integers by
default in our generated models. This is su�cient in most cases, since high integer
values are rarely used by programs that are explored in a model checker.

Instead of modeling complex garbage collection and memory allocation mecha-
nisms, we decided to allow processes to allocate memory, but never release it. Our
models capture this by using a counter memUse (initially memUse = 1) that points
to the next free cell of the memory. The memory allocation (lines 29-37) then simply
returns value of memUse, if a pointer to a free memory cell is required. At the same
time, the counter memUse is incremented by the amount of free memory cells that
were requested. An assertion ensures that an error is generated by the model checker,
if the chosen memory length is not su�cient.

Objects, structs and arrays require pointer computations in order to access an
attribute of an object (resp. struct) or an element at a particular index of an array.
In LLVM IR, the getelementptr instruction performs these computations locally. All
of the data types are represented by consecutive cells in the memory. A pointer to
the object (resp. struct or array) always points to the �rst cell of the object (resp.
struct or array). Thus, an attribute or index can be accessed by computing an o�set
relative to the pointer and thereby getting a new pointer pointing exactly to the
requested memory cell. Our generated models simulate this computation in an inline
statement getelementptr. An assertion (line 12) checks whether the accessed cell is
still in bounds of the object (resp. struct or array). This check is only possible because
LLVM IR contains type information. Our transformation uses the type information
in order to derive the size of an object in terms of the number of memory cells it
requires.

In order to avoid clutter in the program behavior, the model also contains an
inline statement for a compare-and-swap (CAS) instruction. Another reason for the
separate de�nition is that the result of a CAS in LLVM IR is in fact a tuple, which
contains the read value (obtained from memory[adr]) and a success bit. In most
of the LLVM IR code we have seen, the result was used as if it was just the read
value. However, sometimes the CAS result is used as if it is only the success bit. By
outsourcing the CAS de�nition to an inline statement, it can be adapted at a single
point in the code.

82 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

Test Scenarios

Before the state space of a program can be explored, we need to �x the scenario
that is to be explored. A scenario de�nes the number of concurrent processes, their
behavior and an initial state. Processes in Promela are de�ned as proctypes. Weak2SC
generates empty proctype stubs. These can be used in order to de�ne particular
scenarios by �lling them with calls of the inline statements that we generate for each
store bu�er graph (resp. method). An initial state is de�ned in an init statement.
The generated init statement allocates memory for all variables that are globally
de�ned in a program. In addition, it starts both previously de�ned processes. Of
course, more processes can be de�ned and added in the same way. The reader may
notice that the variable deq should be a pointer to an array and thus should allocate
more memory cells than only one. Given the LLVM IR code in Figure 4.3, there is no
simple way of di�erentiating this from a regular pointer to an integer and thus, the
allocated amount must be checked manually afterwards. In fact, our implementation
allocated memory for the deq array in the main function, which we removed before
transformation as it is not part of the actual queue implementation. Weak2SC does
not aim at de�ning complete scenarios, but tries to help with providing de�nition
templates which reduce manual e�ort. However, some manual e�ort has to be spent
in order to de�ne a scenario.

Program Behavior and Variable Declaration

The second part of our generated Promela models de�nes the program behavior in
terms of inline statements. It also declares variables that are declared globally in the
LLVM IR code of a program. Figure 4.7 shows an excerpt of the generated Promela
model of the Arora et al. queue. In particular, it contains global variable declarations
and the inline statement that was generated for the pushBottom operation and its
respective store bu�er graph under TSO (see Figure 4.4). For the global variables bot,
deq and age, memory space is allocated in the init statement as previously mentioned.
Each store bu�er graph is represented by an inline statement. Each inline statement
has a number of parameters, which coincide with parameters of the underlying
method of the store bu�er graph. Since inline statements in Promela do not return
results, we add a result parameter if the underlying method returns a result value.
We also need to ensure that the result variable is assigned the returned value before
the control �ow of the inline statement is left.

In LLVM IR local variables are declared by their use. In contrast, Promela requires
explicit variable declarations. Thus, inline statements for a store bu�er graph declare
local variables �rst. The local variables are derived from the original program by
collecting all variables that are used in a method and which are not declared globally.

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 83

1 short bot = null ;
2 short deq = null ;
3 short age = null ;
4
5 inl ine pushBottom(elem) {
6 short v0 , v1 , v2 , idx , inc ;
7 AStart : goto A00;
8 A00: v0 = memory[bot] ; goto A01;
9 A01: v1 = memory[v0] ; goto A02;

10 A02: v2 = memory[deq] ; goto A03;
11 A03: getelementptr (1 , v2 , v1 , idx) ; goto A04;
12 A04: goto A05idx ;
13 A05idx :
14 i f
15 : : inc = v1 + 1; goto A06idx ;
16 : : memory[idx] = elem ; goto A05;
17 f i ;
18 A06idx :
19 i f
20 : : goto A07idxv0 ;
21 : : memory[idx] = elem ; goto A06;
22 f i ;
23 A05: inc = v1 + 1; goto A06;
24 A07idxv0 : memory[idx] = elem ; goto A07v0 ;
25 A06: goto A07v0 ;
26 A07v0 : memory[v0] = inc ; goto A07;
27 A07: goto AEnd;
28
29 AEnd: skip ;
30 }

Figure 4.7: Promela model generated for the TSO store bu�er graph for the method
pushBottom in Figure 4.3.

This collection is then of course extended by the variables that we introduced due
to WDCs. All variables are treated as integer variables. This also includes boolean
variables, where we treat 0 as false and all other values as true.

After local variable declaration, the program behavior is de�ned. All nodes of a
store bu�er graph have a unique label. For each label (corresponding to a node), the
possible outgoing transitions are de�ned. Because it is a graph encoding, we cannot
rely on the order of the statements in the generated Promela model. Thus, each
transition is followed by a goto statement that leads to the next label corresponding
to the target node in the store bu�er graph. In principle, all transition have the
form source label: transitions e�ect; goto target label;. The e�ect of each transition is
encoded straightforwardly. Access to memory is atomic as it is assumed for all SC
programs. See line 8 for a read of the shared variable bot from memory and line 16
for a write to the memory location represented by variable idx.

84 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

For nodes with several outgoing edges, the choice of the next transition can be
deterministic, non-deterministic or mix of both. Deterministic choices are introduced
by conditional branches. A non-deterministic choice to �ush store bu�er content
is added to a node, if its store bu�er is non-empty. A mix of both conditions can
occur, if a branch is conditional and the store bu�er is non-empty. In Promela, we
model all of the above mentioned cases as an if statement. An if in Promela is
a non-deterministic choice between statements that are not blocking. A blocking
statement in Promela is an expression that evaluates to false. Thus, for conditional
branches we can simply use the branching conditions to make the if statement
deterministic (see CAS de�nition in Figure 4.6 for an example). Non-deterministic
choices are achieved by simply stating no condition or one that always evaluates to
true. The code excerpt in Figure 4.7 uses the former variant at labels A05idx (line
13) and A06idx (line 18). We can also mix both types of choices. Thereby, we can
combine choices that are always enabled with choices that are enabled conditionally.

Each inline statement corresponding to a store bu�er graph has two additional
labels AStart and AEnd, for which we ensure that they are at the beginning (resp.
end) of the inline statement. At the label AStart, the program simply jumps to the
label corresponding to the �rst node of the store bu�er graph. The label is necessary,
because the order in which store bu�er graph nodes are processed by Acceleo during
transformation varies. Thus, it does not always begin with the �rst node. The label
AEnd is required, because programs can have several return statements. Inline
statements in Promela do not have a return statement as they de�ne only a piece of
control �ow. Thus, we add a label AEnd, which marks the control �ow end of the
inline statement. The label can be targeted by transitions corresponding to return
statements.

All labels are unique, but di�er from what we used in Chapter 3.2. We use a
label pre�x starting with “A” for the �rst method, “B” for the second and so on.
Besides this, labels are numbered identically to the numbering in the store bu�er
graph. A label su�x contains variable names if the corresponding node in the store
bu�er graph contains an entry. In most cases, using the variables that represent
the memory locations of the store bu�er entries is su�cient in order to distinguish
labels uniquely. However, in some cases the entries di�er only by their values. In
these cases, we add the values to the su�xes. Thus, labels are kept short where it is
su�cient and extended where it is necessary.

This concludes our store bu�er graph encoding in Promela. In the following
Section, we introduce its encoding in the theorem prover KIV. In Section 4.4.3, we
also explain how Weak2SC can be used to generate program models in Promela
based on an operational memory model as proposed in [TMW13].

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 85

4.4.2 Generating KIV Program Encoding

KIV [EPS+14] is an interactive theorem prover. The reason why we chose it as the
tool for proving an algorithm correct is its built-in proof assistance. It allows for proof
automation by implementing di�erent proof heuristics, e.g., automated quanti�er
instantiations or case splits. Furthermore, it has a powerful proof visualization that
helps with understanding proof goals and why they sometimes or rather the majority
of the time fail to close. KIV is distributed with a large library that contains various
data structures, fully formalized by axioms and additional lemmas that help with
developing user speci�c formalizations and proof obligations.

KIV supports Higher-Order Logic and Dynamic Logic. The proof calculus in KIV
is sequent calculus. In sequent calculus, a lemma is simpli�ed and split into di�erent
lemmas based on a set of rules until an axiom is reached and thus, we know the
lemma is correct. A lemma can be a proof goal that is split into minor proof goals. If
all minor proof goals are correct, then the original proof goal is also correct. Because
of this, proofs have a tree-like structure, which is where the proof visualization in
KIV provides a lot of useful information, e.g., all proof steps, closed and remaining
proof goals.

Our focus lies on veri�cation of concurrent data structure implementations,
where linearizability [HW90] is a quasi standard correctness criterion. Proof obliga-
tions for linearizability have been developed and published in [DSW11a, DSW11b,
SWD12]. The theory behind the proof obligations for linearizability was formalized
and proven sound in a KIV project. The latter is available online9 and can be used
for veri�cation of other case studies. Our transformation to program encodings in
KIV targets speci�cally these proof obligations, but is not limited to them. Other
properties can also be veri�ed as our transformation provides the program behavior
only, and not the correctness condition. Chapter 5 and Chapter 6 provide more
insights into the actual linearizability theory. For now, we will focus only on the
ingredients that must be generated, in order to encode a store bu�er graph into an
SC program in KIV. The KIV input is divided into two major parts, the de�nition
of program state and the encoding of all possible program steps, which will be the
concrete operations. In the following, we �rst introduce the program state encoding
and outline the encoding of concrete operations later.

Program State Representation

Similar to the generated Promela models, we de�ne the shared memory �rst. It
is a function that maps memory locations to values. For simplicity, we use the
positive natural numbers N as the domain of memory locations. Instead of de�ning

9http://swt.informatik.uni-augsburg.de/swt/projects/

86 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

a special number value as being null, we allow values taken from the memory to
be null. The set of all values ref is either null ∪ N or null ∪ Z. Weak2SC allows to
choose which of the ref variants shall be taken for the KIV program encoding. Using
positive natural numbers is usually more practical, but sometimes not su�cient,
i.e., when a program requires negative numbers. By de�ning the memory function
as memory : N → ref , any value taken from memory can be null. However, by
enabling memory access only for N values, proofs have to establish that the value is
not negative and not a null value. Otherwise, the access is unde�ned and the proof
cannot succeed.

Weak2SC provides two variants of program state representation: a global state
and a local state representation. While the global state representation is the general
form, the local state representation can be more practical as it can be used for proofs,
where the correctness arguments are local to each process. The bene�t of local
proof arguments comes from usually simpler properties that have to be considered,
because they are stated per process in contrast to properties involving all processes
in a global state representation.

data speci�cation

using PC, genProc, natref-memory

CS := mkcs(. .mem : memory ;

. .pc : Proc → PC ;

. .elem : Proc → nat ;

. .inc : Proc → nat ;

. .idx : Proc → ref ;

. .cmp : Proc → nat ;

. . .

);
variables

cs, cs ′ : CS ;

pcf , pcf ′ : Proc → PC ;

natf ,natf ′ : Proc → nat ;

reff , reff ′ : Proc → ref ;

end data speci�cation

data speci�cation

using natref, PC, Proc

Localstate := mkls(. .pid : Proc;

. .pc : PC ;

. .elem : nat ;

. .inc : nat ;

. .idx : ref ;

. .cmp : nat ;

. .add : nat ;

. .retval 0 : nat ;

. .v0 : ref ;

. . .

);
variables

ls, ls ′ : Localstate;

end data speci�cation

Figure 4.8: Excerpt of generated global (left) and local (right) state de�nition for
Arora et al. work stealing queue[ABP98]

In Figure 4.8, we show an excerpt of both variants of state de�nitions that
Weak2SC can generate for our case study. Both de�ne the respective state as a tuple.
CS models the global state. Thus, it includes the shared state (the memory) while for

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 87

each local variable, it contains a function that maps from a process identi�er Proc

to a value. Each tuple entry has its own access function that applied to a tuple yields
the respective value, e.g., cs.mem yields the current memory function value. Local
variables are accessed via a parameter p ∈ Proc, e.g., cs.pc(p) yields the program
location value of process p. The set of all program location is PC , which is generated
separately and we refrain from showing its speci�cation as it just de�nes a set of
disjoint label values. Local states Localstate are de�ned similarly to the global states,
but they model only state of one process. The entry ls.pid ∈ Proc models the owner
process of a local state ls ∈ LS . As each local state has its owner process, accesses to
local variables do not need to provide the owner explicitly as a parameter, e.g., ls.pc

yields the program location of the owner process of ls . For the local state encoding,
a separate shared state is required but not generated. The memory de�nition is
available as part of our library10 and it only needs to be instantiated as the shared
state of the program. Please note that the value of the global variables bot , deq and
age must be represented by an entry in the memory. Thus, we de�ne bot , deq and
age as constants in a later part of our generated speci�cations. The constant value
can then be used in order to access the respective memory entry, e.g., mem[bot]

yields the shared value of bot where mem is a variable representing the memory
function.

As the reader may have noticed by now, some of the variables are represented
by nat11 and others by ref values. The reason for this is that some of the variables
are used for memory access or are the result of it, e.g., a pointer. Thus, they could
be unde�ned and have the value null . An invariant usually has to rule out that
case if it is necessary for the proof. However, other variables are the result of an
arithmetic operation, for which we can safely assume that they are a numerical values.
Weak2SC determines the type of each variable based on its use in an instruction and
the provided type annotations in LLVM. If a variable is used in di�erent methods
and the type check for the variables results in ref for at least one of its uses, then its
type becomes ref and nat , otherwise. We do not introduce new variables in such a
case, because the program is already in a low-level representation at this point and
we want to keep the encoding of it as concise as possible.

Program Behavior

The program behavior is de�ned in a separate speci�cation module. Each atomic
step of the program is represented by a predicate that encodes its e�ect. We also
refer to these steps as concrete operations, since in our later proofs we will also have

10All our KIV projects and libraries are available on the DVD attached to this thesis.
11nat (resp. int) is the KIV speci�cation for positive (resp. and negative) natural numbers.

88 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

enrich natref-memory, localstate, cindex with

constants

bot : ref ;

deq : ref ;

age : ref ;

functions

INVOP : IJ → nat ×memory × Localstate ×memory × Localstate → bool ;
COP : CJ → memory × Localstate ×memory × Localstate → bool ;
RETOP : RJ → memory × Localstate ×memory × Localstate × nat → bool ;
predicates

LSInit : Localstate × Proc;

GSInit : memory ;

. . .

Figure 4.9: Declaration of constants, functions and predicates for the encoding of
the store bu�er graph as a transition system.

to deal with abstract operations. The latter usually encodes the e�ect of a method as
a single operation in contrast to multiple concrete operations implementing it.

We di�erentiate between concrete operations corresponding to method invo-
cation, method return and all other steps of a method implementation. Many cor-
rectness criteria de�ne correct behavior abstractly in terms of histories of invokes
and responses. Encoding these steps of a program as a special kind of concrete
operation simpli�es later proofs, because it makes additional predicates obsolete
that would otherwise de�ne whether a step is an invocation (resp. a response) or
not. Figure 4.9 shows the de�nition of constants, functions and predicates, which
are essential for the de�nition of the operation encoding. The constants correspond
to the global variable de�nitions in the LLVM IR code. They can be thought of as
constant identi�ers for memory locations, e.g., to the array pointed by variable deq

in the algorithm. The constants are followed by three function declarations INVOP ,
COP and RETOP , one for each type of concrete operation (invoke, return and all
other). Each of the functions maps labels (IJ ,CJ ,RJ) to a predicate encoding the
respective operation. The predicate de�nes the precondition and e�ect of an opera-
tion. Invoke (resp. response) operations have an additional parameter for the input
(resp. output) of a method. The encoding in Figure 4.9 is local. Thus, the predicates
are de�ned over two pairs of shared state and a local state, (memory × Localstate).
One pair represents the program state before and one after the e�ect of a concrete
operation. For the global encoding, we would replace memory × Localstate by CS .

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 89

In addition, predicates for the de�nition of initial states are declared (LSInit and
GSInit for local encoding and a CSInit for the global encoding).

axioms

LSInit :

|= LSInit(ls, p)⇔ ls.pc = N ∧ ls.pid = p;

;; pushBottom corresponds to method @pushBottom

pushBottomini :
|= INVOP(pushBottomini)(inp,mem, ls,mem ′, ls ′)⇔
ls.pc = N ∧ ls ′ = (ls.pc := A00 .elem := inp) ∧mem ′ = mem;

;; %0 = load i32** @bot, align 4, !tbaa !0

pushBottom1 :
|= COP(pushBottom1)(mem, ls,mem ′, ls ′)⇔
ls.pc = A00 ∧ ls ′ = (ls.pc := A01 .v0 := mem[bot .v]) ∧mem ′ = mem;

;; FlushTransition

pushBottom9 :
|= COP(pushBottom9)(mem, ls,mem ′, ls ′)⇔
ls.pc = A06idx ∧ ls ′ = ls.pc := A06 ∧mem ′ = mem[ls.idx .v , pls.elemq];

;; %inc = add i32 %1, 1

pushBottom10 :
|= COP(pushBottom10)(mem, ls,mem ′, ls ′)⇔
ls.pc = A05 ∧ ls ′ = (ls.pc := A06 .inc := (ls.v1 + 1)) ∧mem ′ = mem;

;; ret void

pushBottom14ret :
|= RETOP(pushBottom14ret)(mem, ls,mem ′, ls ′, return)⇔
ls.pc = A07 ∧ ls ′ = ls.pc := N ∧mem ′ = mem;

. . .
end enrich

Figure 4.10: Excerpt of generated transition system using local state encoding for
Arora et al. work stealing queue[ABP98]

In order to properly de�ne the program behavior, axioms must be de�ned. Fig-
ure 4.10 shows an excerpt of the axioms that Weak2SC generates for the work-
stealing queue case study. In fact, Figure 4.9 and Figure 4.10 are excerpts of the same

90 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

output �le. The initialization predicate LSInit binds a process p to a local state by
ls.pid = p and de�nes that a process is initially idle ls.pc = N , where N is the
program location of idle processes.

The remaining axioms de�ne concrete operations. The �gure depicts exemplary
an invoke, a return operation and other typical concrete operations such as a read,
a �ush and a local computation. Each operation is de�ned in terms of a comment,
an axiom name, a sequent de�nition and a statement of whether it should be used
as a simpli�er rule by the theorem prover (omitted in the �gure). Comments are
generated in order to help with orientation in the sometimes lengthy output. The
comments name the LLVM IR instruction corresponding to the concrete operation
or if there is none (e.g., if it is a �ush), its corresponding edge in the store bu�er
graph. Invoke operations mention the original name of a method in their comment,
because Weak2SC allows method names to be changed and the generated labels use
the chosen method name as a label pre�x.

Throughout the thesis, we will use unprimed variables as representative for
the state before the e�ect of an operation and primed variables as representatives
of the state after. In the �gure, an invoke operation is de�ned for the pushBottom

method. The operation named as pushBottomini de�nes that a process must be
idle (ls.pc = N) before invocation of pushBottom. The pc value of the local state
is updated to A00 and the parameter inp is assigned to the local variable elem by
the expression (ls ′ = ls.pc := A00 .elem : inp). The latter expression is a short
notation for stating that all values of the tuple ls ′ are equal to the values in ls , except
for the updated ones. The predicate part mem ′ = mem states that the memory is
not modi�ed by the operation.

The operation pushBottom1 is neither an invoke nor a return operation and
therefore it is de�ned as a COP operation. As the comment states, it encodes the
semantics of a load/read edge from the store bu�er graph. It updates the program
location pc and since it is a read, it assigns the value taken from the memory mem

at location bot .v to the local variable ls.v0. As the type of bot is ref , it can be either
null or a natural number. A natural number v can be lifted to a ref by pvq. The
natural number of a ref value r can be accessed by r .v . However, in a proof one
would need to establish that r is not null . Otherwise, the access is unde�ned.

The operation pushBottom9 corresponds to a �ush edge, which according to
our transformation becomes a write in our SC program. Thus, it updates the mem-
ory mem . The statement mem ′ = mem[ls.idx .v , pls.elemq] de�nes mem ′ to be
equivalent to mem , except for the location ls.idx .v , which is updated to the new
value pls.elemq]. Operation pushBottom10 is an addition and thus, a simple local
operation as it modi�es the local state only. It assigns the value ls.v1 + 1 to the
local variable ls.inc. Since, the variable ls.v1 has the type nat , it does not have to

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 91

be lifted.
The remaining operation pushBottom14ret encodes a return edge. Since the

method pushBottom does not return a value, the operation only updates the program
location value ls.pc to the idle value N . Otherwise, the predicate would also state a
property for the variable return that is part of predicate signature.

The complete encoding for the queue implementation together with its lineariz-
ability proofs can be found on the DVD attached to this thesis.

4.4.3 Promela Programs for Operational Memory Models

Besides the implementation of our reduction approach from Chapter 3, Weak2SC
also provides a generation of Promela program models based on operational memory
models. The intention behind the implementation and automation of this type of
program model generation was to provide a fall back solution for programs that do
not adhere to our assumptions 1 and 2 (see Ch. 3.1). In our later experiments (see
Ch. 6), we compare our reduction approach against the more common approach of
using an operational memory model for veri�cation. An operational memory model
is essentially a semantics de�nition that is operational. It de�nes the semantics in
terms of the behavior of its parts. In our case, this is the program control �ow and the
store bu�er. While the behavior of the control �ow is straightforward, the behavior
of the store bu�er is the interesting part as the operational memory model must
mimic all steps of an actual store bu�er. Operational memory models have been used
for quite a while in the research of weak memory behavior [PD95]. However, to the
best of our knowledge, we were the �rst to implement an operational memory model
for TSO in Promela and the model checker Spin [TMW13]. Later, we extended our
work with an operational memory model for PSO and an automated program model
generation, which has become part of Weak2SC and was published in [TW16]. In
the following, we will introduce this type of generated models.

The Operational Memory Model

The underlying approach separates the program model from the operational memory
model. Figure 4.11 shows the idea behind the separation. Each process in a concurrent
setup is represented by a pair of processes. The �rst one is the program process. It
models the program control �ow or simply the sequence of program instructions.
The second process implements the semantics of instructions in Promela according to
the memory model (SC, TSO or PSO). When a program process issues an instruction
that needs access to the memory, e.g., a read, then the request is forwarded via
handshake communication to the operational memory model (OMM) process. It is
the latter process that contains a write bu�er (in case of TSO or PSO) and which

92 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

OMM Process 2

loop {

 :: read

 :: write

 :: flush

 :: cas

 :: fence

}

ss #23

n #3

val 5

...

OMM Process 1

loop {

 :: read

 :: write

 :: flush

 :: cas

 :: fence

}

ss #23

n #3

val 5

...

Program Process 2

read(head, r1)

write(ss, r1)

read(ss, r2)

...

Program Process 1

read(head, r1)

write(ss, r1)

read(ss, r2)

...

1

8

2

#23

3

16

4

#6

5

#3

6

2

7

#1

...

instruction

forwarding

write to /

read from

response

Memory

Figure 4.11: Promela programs based on operational memory models as proposed
in [TMW13]

simulates the possible e�ects of a particular memory model, e.g., the delay of a
write due to the later appearance of a �ush. The OMM process essentially manages
all access to the memory and therefore can simulate atomic access in case of SC
or the weak memory e�ects. Since the OMM process is a separate process, the
non-determinism of a weak memory model is captured implicitly in the possible
interleavings of all processes.

The OMM processes for TSO and PSO are modelled by a loop over a non-
deterministic choice between �ve possible events. Four out of the �ve events are
the handshake communications with the program process. Thus, they are only
enabled if the program process issues such an event. The corresponding events are
a program process issuing a read, a write, a CAS or a fence. Figure 4.12 shows the
communication between a program process and an OMM process in case of these
events, but also how a request is executed by the OMM process. The �fth event
is a �ush and it does not require handshake communication. Instead, it is enabled
whenever the store bu�er is not empty. An OMM process for TSO and PSO has
an array that models the store bu�er. Thus, if a program process issues a write,
then the OMM process takes it via handshake communication and stores it into
its store bu�er. This also enables �ushing it, either immediately after or at a later
point in time. When a program process issues a read, then the OMM process looks
up for the requested value in its store bu�er. If it is present, then value from the
store bu�er is given in return to the program process, so that it can proceed with
its computation. Otherwise, the value is taken from the memory. A read issued by

4.4. TEMPLATE-BASED GENERATION OF NEW PROGRAMS 93

OMM ProcessProgram Process

OMM ProcessProgram Process

OMM ProcessProgram Process

atomic ! write

? write

enqueue

flush

atomic ! CAS ? CAS

? CAS
! CAS

execute

flushflush

OMM Process

atomic ! read

? read

? read

! read

fetch value

1) 2)

4)

atomic ! fence

? fence

flushflush

3)

Program Process

Figure 4.12: Communication between program process and OMM process; 1. read 2.
write 3. fence and 4. CAS

the program process is blocking it until it gets a response from the OMM process.
This way, a read remains atomic, even though two processes are involved. An issued
fence causes the OMM process to empty its store bu�er, which it does by �ushing its
entries all at once. Performing all �ushes at once is safe in this case, even though a
fence does not guarantee that all entries are �ushed atomically. Stepwise �ushing of
store bu�er entries is already covered by regular non-deterministic �ushes. A CAS
operates directly on the memory, but before it can be performed, the store bu�er
must be emptied. The latter is achieved similarly to fence.

For SC, we do not need a separate OMM process. Instead, all requests are
instantly forwarded to the memory and performed atomically, because Promela and
Spin provide already SC semantics.

As mentioned earlier, the operational memory models have been developed
earlier [TMW13, TW16]. However, they are also part of the output that Weak2SC
generates for a program, when an operational encoding is requested. All we need
now is to generate program processes that issue the handshake communication to
the OMM processes, whenever they would otherwise attempt to access and perhaps
modify the memory. The latter is achieved by simple inline statements, which issue
the communication for read, write, fence and CAS as depicted in Figure 4.12. They
are also used by the generated programs in our program processes. We provide them

94 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

as part of operational memory encoding, because they di�er for SC, which does not
need OMM processes.

Generating Program Processes

1 #define MEM_SIZE 10 / /memory size
2 #define BUFF_SIZE 3 / / buffer size
3 #define null 0
4 short memUse = 1; / / next free memory ce l l
5 //# include " sc .pml"
6 #include " tso .pml"
7 //# include "pso .pml"
8
9 chan channelT1 = [0] of {mtype , short , short , short } ;

10 chan channelT2 = [0] of {mtype , short , short , short } ;
11
12 short bot = null ;
13 short deq = null ;
14 short age = null ;
15
16 inl ine pushBottom(elem) {
17 short v0 , v1 , v2 , idx , inc ;
18 skip ;
19 entry :
20 read (bot , v0) ;
21 read (v0 , v1) ;
22 read (deq , v2) ;
23 getelementptr (1 , v2 , v1 , idx) ;
24 write (idx , elem) ;
25 inc = v1 + 1;
26 write (v0 , inc) ;
27 goto ret ;
28
29 ret : skip ;
30 }

Figure 4.13: Generated program model based on operational memory models of
pushBottom method.

For the sake of completeness, we show an excerpt of the generated program
model for the Arora et al. queue in Figure 4.13. The memory is represented as a
�xed but adjustable size array, similar to our previously introduced Promela models
in Section 4.4.1. The same holds for the write bu�er that is carried by the OMM
processes. We have to �x these sizes, because Promela does not support dynamic
data structures. Memory allocation and pointer computations also work in the same
way as previously introduced. The program representation is signi�cantly shorter
as it does not represent non-determinism due to weak memory semantics explicitly.

4.5. DISCUSSION AND POSSIBLE FUTURE EXTENSIONS 95

The latter is hidden in a separate operational memory model, which is simulated by
OMM processes. In summary, the program model is close to the original LLVM IR
code as the control �ow blocks and statements remain in program order and even the
block labels correspond to those in the original code (see Fig. 4.3 on p. 73). The only
exception to the block labels is the return statement, which is modeled as a separate
labeled block (label ret). It is the last program location within the inline statement
and the target jump location of statements corresponding to return instructions
(particularly those which are not the last program statement of a method).

For all memory accessing instructions, inline statements are de�ned, which per-
form the handshake communication with the respective OMM process. Each pair of
processes gets its own channel, which is unbu�ered (synchronized communication).
Whether SC, TSO or PSO semantics are used is determined by the include statement
in lines 5 to 7. The OMM process de�nitions are part of the generated output for a
given program and can be exchanged one for another with minor model adjustments.
We refrain from showing them here and refer to our publication [TMW13], where we
initially presented the approach. The complete operational memory models encoded
in Promela can also be found in our Github repository[Tra16] or the DVD attached
to this thesis, where they are part of generated program models for various case
studies.

4.5 Discussion and Possible Future Extensions

From the beginning of the implementation, it was clear thatWeak2SCwould be a tool
that we would extend incrementally with more and more features. Thus, we focused
on following the OMG standards for model-driven software development [Obj15b,
Obj15a, Obj08], which, besides other objectives, aim for minimizing e�ort in software
maintenance and future extensions. With an ever growing list of implemented
features, there is also an ever growing list of possible extensions. In the following,
we want to discuss the ones we think would be the most promising extensions.
Alias Analysis As already pointed out in Chapter 3.3.3, our implementation of the
reduction approach in Weak2SC lacks a pointer alias analysis. We fully rely on the
pointer alias detection by the LLVM compiler framework. However, pointer variables
do not necessarily represent disjoint memory locations. In Weak2SC, we treat them
as if they were disjoint, e.g., when we detect early reads. As a consequence, a program
generated by Weak2SC based on a store bu�er graph could miss possible behavior
due to pointer aliases. Therefore, we suggest an extension towards consideration of
potential pointer aliases in future work in order to improve the quality of the results
achieved with Weak2SC. In particular, such an extension would determine whether
two pointer variables can alias each other and consider this information in the store

96 CHAPTER 4. WEAK2SC – THE IMPLEMENTATION

bu�er graph construction, e.g., by distinguishing the case in which both variables
represent the same memory location from the case where they do not.
Target Languages and Tools So far, Weak2SC produces output for two veri�cation
tools, which have no built-in support for weak memory models. Thus, one direction
for future extensions is obviously the support for more veri�cation tools in order to
widen the range of possible choices by users of Weak2SC. We expect the potential
users of Weak2SC to be veri�cation experts, but even experts are usually experts
in few veri�cation tools. Thus, it is important to o�er input to tools they are
familiar with. For model checking concurrent software, the tools Z3 [dMB08] and
NuSMV [CCG+02] would be our �rst choice, as the former is an SMT solver and
the latter a symbolic model checker. Both would contrast the explicit state model
checker Spin. In terms of theorem proving, Isabelle [NPW02] and Coq [BC04] are
widely used and therefore would be good candidates, even though they o�er a less
extensive graphical user interface compared to KIV [EPS+14].
Invariant Checking The overall approach proposed in this thesis for veri�cation
of concurrent data structure implementation still involves quite a bit of manual
e�ort. We think, the model checking branch is well automated in terms of program
model generation and checking a program property. Although Weak2SC also helps
with generating an encoding of the program behavior for the theorem prover KIV, it
does not automate the actual proof in any sense. A correctness proof is usually the
most time consuming part of program veri�cation, even with the help of a theorem
prover. The di�culty lies in �nding the correctness arguments like an invariant
and particularly get them right. It is an iterative process of trying to prove program
correctness. If the proof fails, the correctness arguments must be revised and the
proof attempted again until the proof either succeeds or an argument is found why
the program is incorrect. Weak2SC generates already input to model checkers. So,
it could be extended towards checking parts of the correctness arguments like the
invariant that are required for a proof. An automated check could reduce e�ort
spend on proof attempts with an insu�cient invariant. At the time of writing, we
plan and develop an extension of Weak2SC towards this direction in the near future.
Store Bu�er Graph Representation We mentioned already that store bu�er
graphs can also help with understanding how an algorithm works and that this
is crucial in the veri�cation process. However, a store bu�er graph can grow quickly
with the size of the corresponding program, particularly, if it has only few fences
that would limit possible reorderings. One idea, we have not followed yet, is to
change the visual representation of store bu�er graphs towards a hierarchical state
representation. Sometimes parts of a store bu�er graph (the control �ow) repeat
themselves combined with di�erent store bu�er states. Therefore, we suggest evalu-
ation of a hierarchical store bu�er graph representation for future work. It would

4.5. DISCUSSION AND POSSIBLE FUTURE EXTENSIONS 97

group nodes with the same store bu�er state. Each such group node would again
contain nodes and edges, essentially representing the control �ow of the program
that does not a�ect the store bu�er state. Currently, every node with a non-empty
symbolic store bu�er has a separate outgoing �ush transition to some other node
(same program location, but �ushed value removed from store bu�er). With group
nodes for each store bu�er state, several �ush transitions could be represented by a
single edge between the group nodes. Edges corresponding to writes would mark
the start of the control �ow within such a group node. The proposed store bu�er
graph representation would avoid redundant �ush transitions and help with struc-
turing a graph into meaningful parts. Consequently, we think it has the potential to
signi�cantly reduce visual clutter for larger programs.
Fences and other InstructionsWeak2SC supports only a subset of the possible
LLVM IR instruction set. In particular, it supports what we found would be used most
often in concurrent data structure implementations. Also, Weak2SC supports only
full fences so far. For TSO this is fully su�cient. However, under PSO, there is also a
weaker type of fence, which Weak2SC does not take into account, yet. The weak
fence can prevent writes to be reordered with each other without imposing an order
on reads. The weak fence does not block until the bu�er is emptied, but it allows for a
processor to continue its execution (including early reads) while ensuring that writes
before the weak fence are �ushed before the writes after the fence. For the sake of
completeness, this type of fence should be added to the considered semantics of PSO
in the future work. An extension of the store bu�er graph construction should be
straightforward in this case. Most of the other instructions that are not supported by
Weak2SC are essentially multi-word instructions, i.e., the respective memory access
(read or write) may involve several reads (resp. writes) per instruction. Although
we think it would be desirable to support the complete instructions set of LLVM IR,
we do not give it a high priority in our future work as software veri�cation without
multi-word semantics is challenging enough already.

The discussion concludes the chapter on the implementation of the proposed
reduction from Chapter 3 in terms of the tool Weak2SC. In the following Chapter,
we provide some background on concurrent correctness criteria, particularly on
linearizability, and on the veri�cation techniques used to check or prove it for a
given program. In Chapter 6, we present our own experiments with veri�cation of
linearizability and explain how Weak2SC allowed us to perform them.

5

Correctness of Concurrent

Data Structures

Throughout this thesis, we are ultimately interested in veri�cation of concurrent
data structures. For concurrent data structures, there are many correctness condi-
tions [Pap79, HW90, HS08, SK09, HKP+13] that de�ne when an implementation is
considered correct. One of the oldest is serializability [Pap79]. It was also one of the
�rst to capture the idea that concurrent behavior should be explainable by sequential
behavior. In other words, for any concurrent execution of a program there should
be an equivalent sequential execution. Many other correctness conditions evolved
from serializability. Some correctness conditions relax serializability, e.g., snapshot
isolation [BBG+95] for data bases, others strengthen it by tying it to a certain context
and the de�nition of additional properties that have to hold, e.g., opacity [GK08]
for transactional memory implementations [HM93, ST97]. All of them stick to the
fundamental idea of de�ning correctness via equivalence to sequential behavior.

5.1 Linearizability

For concurrent data structures, linearizability [HW90] was developed by Herlihy
and Wing and since then has become the quasi standard correctness condition. It is
popular for particularly two reasons: �rst, it ties the de�nition of correctness of a
concrete data type to an arbitrary abstract and sequential data type, e.g., an atomic
stack speci�cation for a stack implementation. Abstract data types represent the
correct behavior of concrete data structures and are essentially missing in serializ-
ability [Pap79]. The latter requires a concurrent execution of a set of transactions to
be equivalent to some sequential execution of the same set. Sequential executions of
an abstract data type justify concurrent behavior, which also makes it an intuitive

99

100 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

correctness condition.
The second reason for the popularity of linearizability is the re�nement guar-

antees that it provides. At some point between invocation and response, the lin-

earization point (LP), an implementations appears to take e�ect just like its abstract
speci�cation. The re�nement between a linearizable implementation and its ab-
stract speci�cation means that the implementation can be replaced by its abstract
speci�cation without changing the observable behavior. The latter is also possible,
because linearizability is compositional [Wei89], i.e., objects that are composed out
of linearizable objects will be linearizable again. Compositionality combined allows
us to investigate and verify supposedly linearizable implementations separately
from larger programs in which they are meant to be embedded. This also helps
with the veri�cation of programs embedding linearizable implementations, since the
linearizable code parts can be replaced by abstract atomic (and thus usually simpler)
speci�cations.

With the rise of weak memory models in modern multicore processors, it quickly
became obvious that their is a semantic gap. Not only do most veri�cation techniques
assume sequential consistent (SC) memory models [Lam79], but also the original def-
inition of linearizability [HW90]. Recently, several adaptations have been proposed.
In this section, we would like to provide an overview of the original linearizability
de�nition and how it was adapted to the setting of weak memory models. Our
intention is to clarify the di�erent meanings and consequences of using a particular
linearizability de�nition. This also lays the ground for the next Chapter 6, where
we present approaches for the veri�cation of linearizability under weak memory
models. A recent survey on di�erent linearizability de�nitions was also given in
[DD15].

5.1.1 Linearizability - Original De�nition

All versions of linearizability are de�ned by relating histories of a concrete data type
with histories of their abstract data type. Therefore, we �rst have to de�ne what a
history is before we can deal with the actual linearizability de�nition. This part is
a brief rewriting of de�nitions in [HW90]. The de�nitions are modi�ed slightly as
parts of them were given informally in the original paper.

In [HW90], histories are de�ned as �nite sequences of invoke and response
events. Here, we use P for the set of all processes, M is set of all operations (or
implemented methods). INP and OUT de�ne the input and output domain.

E =̂inv(P ×M × INP) | ret(P ×M ×OUT)

H =̂seq(E)

5.1. LINEARIZABILITY 101

Each event e ∈ E is issued by a process e.p ∈ P , corresponds to an operation of
the data type e.m ∈ M and has input values e.i ∈ INP in case of an invoke and
output values in case of a response e.o ∈ OUT . Furthermore, we use predicates
inv?(e) (resp. ret?(e)) which are true i� e is an invoke event (resp. a return event).
A history h ∈ H is of the form e1 a e2 a . . . a en , if n = #h is the length of h .
Furthermore, the events are totally ordered by the order of their appearance in h ,
i.e., ∀ i , j ∈ N • i < j ⇒ ei < ej .

Additional terminology from [HW90] de�nes when events match and when
an invocation is pending. A response event ej is said to match an invoke event ei ,
match(ei , ej), if inv?(ei) ∧ ret?(ej) ∧ ej .p = ei .p ∧ ej .m = ei .m . An invocation
ei is considered pending(ei) if no matching response follows the invocation in the
history. [HW90] de�nes a history h to be sequential, sequential(h), if

1. the �rst event in h is an invoke event
∃ e ∈ E • first(h) = e ∧ inv?(e), and

2. every invoke is immediately followed by its matching response. Only the
last invoke event is allowed to not have an immediately following matching
response. Responses are followed by invokes.
∀n ∈ N • 0 < n < #h − 1 ∧ inv?(en−1)⇒ ret?(en)

A history that is not sequential is concurrent. Also, since linearizability relates
di�erent histories, we need a notion of equivalence. In [HW90], this is de�ned
via subhistories. A subhistory h|p of h is the sequence of events that remains,
if we remove all events that do not belong to process p. Two histories h, h ′ are
equivalent if the subhistories of all processes are identical, i.e., ∀ p ∈ P • h|p = h ′|p .
Furthermore, a history is de�ned to be well-formed if the subhistories of all processes
are sequential, i.e.,

wf (h) =̂ ∀ p ∈ P • sequential(h|p)

Herlihy and Wing assume all histories to be well-formed. The latter includes partic-
ularly concurrent histories, which is important, because this assumption does not
necessarily hold under weak memory models.

A history h also induces an irre�exive partial order <h on operations, which is
better known as real-time order:

∀ i , j ∈ N • ret?(ei) < inv?(ej)⇒ ei <h ej

which is the order between each response and its following invoke events. The above
de�nitions orders operations according to their real-time occurrence. Operations
that overlap in h are not ordered by <h .

102 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

A history h is legal(h) if it belongs to a sequential speci�cation of a data structure.
The idea behind legal is that it captures the semantics of a data structure, e.g., making
it illegal to pop an element from an empty stack. In addition, all legal histories are
sequential. Abstract atomic data types always provide legal executions and thus
are a simple representation of the correct behavior of a data structure. The original
de�nition is informal and we leave it as informal as it is.

Linearizability relates concurrent histories with sequential histories. Concurrent
histories can have multiple operations executing at the same time without having
reached their response, i.e., such histories have several invokes without matching
response. These histories do not have a direct sequential counterpart, but must be
completed before compared to a sequential history. A history h ′ is created from h ,
which can be compared to sequential histories instead of h . Essentially h ′ results from
removing invoke events of operations, which have not taken e�ect yet (not reached
their linearization point yet) and appending response events for those operations
which have taken e�ect. The function complete(h) does the former. The latter can
be achieved by appending a sequence of responses. With this in mind, the de�nition
of linearizability [HW90] by Herlihy and Wing is as follows:

De�nition 17. A history h is linearizable if it can be extended (by appending zero or

more response events for pending invokes) to some history h ′ such that:

L1 complete(h ′) is equivalent to some legal sequential history s and

L2 <h⊆<s .

Furthermore, a linearizable data structure (or object originally) is one whose
concurrent histories are linearizable with respect to some sequential speci�cation.
In other words, linearizable data structures behave as if their operations were atomic
and thus like a sequential data structure.

5.1.2 Adaptations to Weak Memory Models

As already mentioned, the original linearizability de�nition assumes a sequential
consistent memory model and thus, there is a gap between its assumptions and the
semantics that we �nd on our latest multicore processors. Under SC, the execution
of an operation begins with its invocation and ends with its response. The e�ect of
an operation must become globally visible within the interval between invoke and
response. Although both events are also present under weak memory models, they
do not necessarily represent the begin and end of an operation, because parts of it
can be delayed. Thus, the interval in which the e�ect of an operation must become
visible is up to interpretation. Depending on the choice of the execution interval we

5.1. LINEARIZABILITY 103

end up with di�erent consequences for practicality and the guarantees provided by
an adapted linearizability de�nition.

In this section, we want to discuss three di�erent adaptations of linearizability
towards weak memory models [BGMY12, GMY12, DSD14]. All of them were initially
stated for the TSO memory model. However, so far, only the adaptation by Gotsman
et al. [GMY12] was also extended to more relaxed memory models [BDG13]. All of
the linearizability adaptations come with di�erent foundations, particularly with
their own weak memory semantics. The memory model is crucial, because it de�nes
the set of possible executions or traces out of which the set of possible concurrent
histories can be derived. When dealing with linearizability de�nitions, we are mostly
dealing with histories, but we also have to understand what an event in a history
tells us about the execution from which it was derived. We refrain from giving the
complete semantics de�nitions (as used by the resp. de�nition), but instead provide
an informal description of the history events. The latter should su�ce to present
the crucial di�erences for each of the adapted linearizability de�nitions.

TSO-to-TSO Linearizability

To to best of our knowledge, the �rst adaptation of linearizability towards weak
memory models came from Burckhardt et al. [BGMY12]. It targets the TSO memory
model. A major focus by Burckhardt et al. was to de�ne linearizability as a re�nement
relation and thus, to be able to replace an implementation by its speci�cation without
a change in the observable behavior from a clients perspective. A client observes
all interactions with the implementation via its interface, but can also experience
delays, e.g., through results obtained by other processes.

Under TSO, method execution is not necessarily �nished, when a client receives
a response, because writes can be delayed due to store bu�ers. Thus, a later method
may be executing already while writes of the previous operation are still waiting
to be �ushed to memory. Consecutive operations of a single process can overlap in
their execution and thus, can be considered as internally concurrent in such a case.
Overlapping execution within a process violates the well-formedness assumption by
Herlihy and Wing, which assumes sequential execution for each process. The latter
means that the linearization point of an operation must be somewhere between its
invoke and response. The linearization point (LP) is a step at which the e�ect of an
operations becomes visible to all processes. Under TSO, the LP of an operation can
be delayed and thus can occur after its response.

The key question here is whether overlapping of operations within a process
should be generally allowed for linearizable data structures or whether it should be
considered incorrect. If allowed, consecutive operations can take e�ect in a di�erent

104 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

order than their program order. The latter is possible under TSO, if the later operation
linearizes on a read while the earlier operation linearizes with a write and both are
reordered due store bu�er delay. The adaptation by Burckhardt et al. [BGMY12]
allows overlapping of operations within a process. However, the linearizability
de�nition by Burckhardt et al. [BGMY12] allows this only if the abstract speci�cation
also allows it. The latter is only possible, if the abstract speci�cation can examine
TSO behavior itself. This is also the reason why Gotsman et al. [GMY12] called this
version of linearizability TSO-to-TSO linearizability as it relates TSO histories to TSO
histories.

A history in [BGMY12] consists of four events:

Etso2tso =̂inv(P ×M × INP) | ret(P ×M ×OUT) | flush(inv) | flush(ret)

Htso2tso =̂seq(Etso2tso)

where the invoke and response events are identical to the previous de�nition. In
addition, histories contain flush(inv) and flush(ret) events. By adding these events,
a history represents two layers of execution: First, the interface to a client, who calls
an operation (invoke) and obtains a result (response). Second, the delayed execution
interval of writes to memory due to the store bu�er, which are represented by the
two �ush events. These events mark the point in time at which the store bu�er
switches from �ushing writes of one operation to the writes of the next operation. In
the TSO semantics by Burckhardt et al. [BGMY12] invoke and response markers are
added to the store bu�er when an operation is invoked and when it returns. Later,
these markers are �ushed just like other writes in the store bu�er, but without any
other e�ect than being removed from the bu�er. The moment when the markers are
�ushed is recorded as flush(inv) and flush(ret) events in a history. Similar, to inv?

and ret?, we will use finv? and fret? as a predicates for events which are true i� the
event is a flush(inv) (resp. flush(ret)).

Given the above type of histories, the TSO-to-TSO linearizability de�nition by
Burckhardt et al. [BGMY12] is as follows:

De�nition 18. The TSO-to-TSO linearizability relation is a binary relation v on

histories de�ned as follows: h v h ′ if ∀ p ∈ P • h|p = h ′|p and there is a bijection

π : {1, . . . ,#h} → {1, . . . ,#h ′} such that ∀ i ∈ hi = h ′π(i) and

∀ i , j • (i < j) ∧ (ret?(hi) ∨ fret?(hi)) ∧ (inv?(h ′j) ∨ finv?(h ′j))

⇒ π(i) < π(j)

As in the original de�nition, an implementation can be considered TSO-to-
TSO linearizable if all its histories are TSO-to-TSO linearizable with respect to an

5.1. LINEARIZABILITY 105

abstract speci�cation. The crucial di�erence is that the abstract speci�cation does
not necessarily have to be atomic, but produces TSO histories itself.

Similar to the original de�nition, it relates histories by maintaining real-time
order of certain events. In contrast to original de�nition, this de�nition deals with
more di�erent types of events and in particular maintains the order between re-
sponses or their �ushes with later invokes or their �ushes. If the �ush events are
ignored or if we use an atomic abstract speci�cation which places the flush(inv) and
flush(ret) events immediately after their respective invoke and response events, then
TSO-to-TSO linearizability provides identical guarantees to the original de�nition of
linearizability.

inv(p,m,inp) ret(p,m,inp)

flush(inv)

inv(p,m,inp) ret(p,m,inp)

flush(inv) flush(ret)

flush(ret)

...

...

...

...

inv(p,m‘,inp‘)

flush(inv)

flush(inv)

inv(p,m‘,inp‘)

control flow of p

store buffer of p

control flow of p

store buffer of p

Figure 5.1: Visualizing TSO-to-TSO linearizability as a mapping of events from a
concrete TSO history to an abstract TSO history.

What is new about TSO-to-TSO linearizability is that it de�nes a re�nement
relation between TSO histories which incorporate �ush events. TSO-to-TSO lin-
earizable data structures can be implementations at di�erent granularity levels up
to an atomic speci�cation. However, if a concrete data structure can have its LP
delayed after the response, then TSO-to-TSO linearizability requires this also to be
possible in the abstract data structure. Otherwise, the concrete data structure is
not TSO-to-TSO linearizable w.r.t. the abstract data structure. Figure 5.1 shall help
with the visualization of the TSO-to-TSO linearizability relation. It shows two TSO
histories of a single process p executing an operation m followed by m ′. The dashed
lines connect identical events in both histories. The overlapping execution of both
operations due delayed �ushes should be obvious. For both TSO histories, control
�ow and the delayed store bu�er events are shown in separate time lines. The bottom
history is supposed to re�ne the top history. The intervals formed by the dashed
lines must be present in both histories. Their real-time order must be respected by a
permutation. However, they do not have to be exactly above each other as is shown
in the �gure. Essentially, any operation has three fundamental intervals: 1. the over-

106 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

lap with a previous operation (inv(. . .) . . .flush(inv)), where it can linearize before
the previous operation. 2. its core interval (flush(inv) . . . ret(. . .)), in which it does
not overlap with any other operation of the same process. And 3. the overlap with
a later operation ret(. . .) . . .flush(ret), in which the later operation can linearize
earlier as in (1.). Please note that these intervals can also be empty or shifted in way
that there is no core interval, e.g., if the previous operation has pending writes and
these remain in the store bu�er until after the response of the current operation. The
latter example also allows multiple consecutive operations of a process to overlap.
The top history is a permutation of the events from bottom history and must respect
the real-time order (not only for p but on all processes). Furthermore, the events of
each process must not be reordered in a permutation, ∀ p ∈ P • h|p = h ′|p . Just to
clarify, that does not mean that the e�ect of an operation must appear in program
order of a process. Instead, the e�ect can appear in any order that is legal w.r.t. the
semantics of the abstract data type that provides the abstract TSO history.

Burckhardt et al. also prove an abstraction theorem (soundness), which states
that a TSO-to-TSO linearizable implementation can be replaced by its abstract im-
plementation, while assuming the most general client. The latter can be best viewed
as arbitrary code calling methods of the data structure, but not knowing or using
any variables that are also used by the data structure implementation internally.

TSO-to-TSO linearizability is probably the least restrictive adaptation of lineariz-
ability [HW90] to a weak memory model setting. However, it also imposes a burden
for reasoning about correctness, because abstract data structures are not necessarily
atomic. For linearizability, sequential histories are derived from usually simple data
structures with atomic operations. The latter simpli�es the de�nition of correct
behavior. For non-atomic abstract data structures as in TSO-to-TSO linearizability,
de�ning what is correct can be unintuitive and more importantly error prone due to
the concurrency involved.

TSO-to-SC Linearizability

In the previous section, we posed an important question about what should be
considered correct under weak memory models. The question is whether to allow
data structure implementations to take e�ect outside of an operation’s invoke-
response interval. TSO-to-TSO linearizability [BGMY12] adapts linearizability to
TSO memory models and allows this type of behavior. In this section, we will discuss
TSO-to-SC linearizability [GMY12] by Gotsman et al. which prohibits this type of
behavior.

As in our previous sections, we start with the histories. Under the TSO-to-SC
case, no additional events like flush(inv) or flush(ret) are required, because the

5.1. LINEARIZABILITY 107

de�nition in a sense ignores the delays of writes due to store bu�ers. Histories consist
of invoke and response events E , just like in the original de�nition of linearizability.
In contrast to the original de�nition, invoke and response events do not mark the
beginning and end of an operation, but only its interface events, i.e., when an
operation is called by a client and when the client receives a response. The latter
does not necessarily mean that the corresponding operation is fully �nished with its
execution, since writes can still be pending in the store bu�er during a response.

One of the reasons why the original linearizability de�nition [HW90] had to
be adapted to weak memory models is that the above was not considered. Under
weak memory models, there is no single point in time at which an operation begins
execution and at which it ends execution, but at least two possible points for each
case. For the beginning, it can be the invocation of the method or some later point
tied to the store bu�er, just like flush(inv) in TSO-to-TSO linearizability. Similarly,
the end of an operation can be either the return to a client or the last �ush issued by
the operation. Gotsman et al. de�ne their TSO semantics to generate traces in which
the call and return of a method (interface events) represent invoke and response of
the operation. It is an elegant way to close the semantic gap between TSO and SC
semantics, because it allows for reuse of the original linearizability relation without
any signi�cant changes to it.

The TSO-to-SC linearizability de�nition by Gotsman et al. [GMY12] is as follows:

De�nition 19. The TSO-to-SC linearizability relation is a binary relation v on

histories de�ned as follows: h v h ′ if ∀ p ∈ P • h|p = h ′|p and there is a bijection

π : {1, . . . ,#h} → {1, . . . ,#h ′} such that ∀ i ∈ hi = h ′π(i) and

∀ i , j • (i < j) ∧ ret?(hi) ∧ inv?(hj)⇒ π(i) < π(j)

Again, one history linearizes the other if it is a permutation of the same events.
The order of events of each process must be maintained. Furthermore, the real-time
order imposed by response and invoke events must be respected. In contrast to the
original de�nition, the TSO-to-SC linearizability de�nition does not state explicitly
that the abstract history must be sequential. This is a slight generalization of the
original de�nition (and also the case for TSO-to-TSO linearizability), because it
allows for non-atomic abstract speci�cations. As argued before, correct behavior
of data structure is usually de�ned in terms of atomic speci�cations which provide
sequential histories only. Nevertheless, the inclusion of non-sequential histories into
the de�nition enables two-step veri�cation. In such a two-step approach, one would
�rst show that a data structure implementation under TSO is TSO-to-SC linearizable
w.r.t. an implementation under SC. Essentially, this step proves that the program is
robust [BMM11] against TSO. In a second veri�cation step, one would show that the

108 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

implementation under SC is linearizable w.r.t. an atomic data structure. The latter
veri�cation step would be free of weak memory concerns and thus, could be handled
with common veri�cation techniques for linearizability.

inv(p,m,inp) ret(p,m,inp)

inv(p,m,inp) ret(p,m,inp)

flush(inv) flush(ret)

...

...

...

inv(p,m‘,inp‘)

flush(inv)

inv(p,m‘,inp‘)
control flow of p

store buffer of p

execution of p

Figure 5.2: Visualizing TSO-to-SC linearizability; store bu�er delays are ignored by
abstract histories.

In order to contrast TSO-to-SC linearizability from TSO-to-TSO linearizability,
we provide Figure 5.2. On the bottom, we have the same TSO history as before,
where the events flush(inv) and flush(ret) represent the delay due store bu�ers.
These events are exclusive to the TSO-to-TSO linearizability de�nition, but we leave
them in the �gure as a reminder for the delay of writes. Again, the �gure shows only
process p and its events for operation m followed by m ′. The top history shows an
SC execution of these operations, where the execution is completed at response time.
Please note that the abstract history is a permutation of the concrete history and
thus, identical events in the concrete and abstract history do not have to be exactly
at the same position. What TSO-to-SC linearizability requires from a concrete data
structure implementation is that its LP or its globally visible e�ect appears between
the invoke and response events, just like in the original linearizability de�nition. In
the �gure, the operation m must linearize between the dashed lines. However, it
also allows writes to be pending at response, e.g., writes that do not a�ect the visible
abstract state or simply writes to variables that are exclusive to the writing process.

Gotsman et al. [GMY12] argue that some algorithms, even though commonly
considered correct, are not linearizable w.r.t. this de�nition, because their linearizing
operation, the LP, can be delayed outside the invoke-response interval. In such cases,
they suggest relaxing the speci�cation of the abstract data structure in a way that
allows operations of it to fail occasionally. Although this can be simple in some cases
like the Spinlock implementation (which was used by the authors to showcase such
a relaxation), it won’t be for most concurrent data structures as they are inherently
more complex. Thus, by relaxing the abstract speci�cation, there is high risk of

5.1. LINEARIZABILITY 109

changing it in an unintended way. An abstract speci�cation, which represents the
correct behavior, may be rendered incorrect in this way and ultimately lead to an
unsound veri�cation. We do not promote this idea in general, particularly because
we would be relaxing the correctness speci�cation in order to be able to prove it.
In the next section, we present an alternative linearizability de�nition that allows
delayed linearization without the necessity to relax an abstract speci�cation and
without having to provide abstract speci�cations in terms of TSO histories as in the
previous TSO-to-TSO linearizability de�nition.

In essence, TSO-to-SC linearizability provides the guarantee that all behavior of
a concrete data structure (that is observable via interface events) can be reproduced
by an abstract data structure. Everything this de�nition requires is the interface
events of an execution, i.e., calls and returns of methods to be taken as invokes and
responses in a history. The memory model does not even play an important role for
this de�nition as long as we make some sanity assumption, e.g., histories of a single
process are sequential w.r.t. its interface events.

Batty et al. [BDG13] proposed a similar de�nition of linearizability for the C11
and C++11 memory models. It also enforces linearization between invoke and
response (like TSO-to-SC), but with C11 and C++1 it also takes weaker memory
models than TSO into account. C11 and C++11 are ISO standards [ISO11b, ISO11a]
for the programming language C and C++. Both support common modern multicore
processor architectures like the x86 [SSO+10], Power [IBM15] or ARM [ARM13]
and can be best viewed as a generalized programming interface to these architectures.
Consequently, one could call the linearizability de�nition by Batty et al. “All-to-SC”
or more precisely “C11-to-SC” linearizability.

TSO Linearizability

The previous two adaptations of the linearizability de�nition for weak memory
models [BGMY12, GMY12] have some major practical problems. TSO-to-TSO lin-
earizability has an inherently complex re�nement relation, because the abstract
speci�cation can be itself a TSO implementation. TSO-to-SC linearizability is sim-
ple, but can be too strict for some implementations whose LP can be delayed past
the response event. TSO linearizability [DSD14, DSGD17] bridges the gap between
the other two as it allows delayed linearization, but relies on sequential abstract
speci�cations. To the best of our knowledge, we were the �rst to present this idea
informally [TMW13]. In [DSD14], it was partially formalized for the �rst time and a
proof methodology for it was introduced. In a more recent version [DSGD17], TSO
linearizability was fully-�edged formalized and the proof method from [DSD14] was
generalized.

110 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

inv(p,m,inp)

ret(p,m,inp)

inv(p,m,inp) ret(p,m,inp)

flush(inv) flush(ret)

...

...

...

inv(p,m‘,inp‘)

flush(inv)

inv(p,m‘,inp‘)
control flow of p

store buffer of p

execution of m‘ by p

… of m by p

Figure 5.3: Visualizing TSO linearizability; last �ush after response becomes the new
response.

The key idea behind TSO linearizability is to extend the execution interval
between invoke and response by the interval between the response and the last �ush
issued by a method. This allows methods that are issued by single process to be
reordered w.r.t. the order in which they were issued. In Figure 5.3, we visualize the
TSO linearizability idea as event intervals. Again, we leave the �ush events as they
are given in TSO-to-TSO linearizability in order to mark points in time where the
store bu�er begins and ends �ushing content of operation m . The interval in which
operation m must linearize, begins with the invoke of m . Depending on what is
later, it ends either with the response event or with the latest �ush event. In the
�gure, it is the flush(inv) event. This also enables linearization of the later operation
m ′ while the previous operation m may not yet have linearized. At top, we have
visualized the execution of both operation m and m ′ via separate time lines in order
to highlight the overlap of them.

Please note that it is particularly this interval overlap that all three linearizability
adaptations treat di�erently. TSO-to-TSO generally allows it, but requires a non-
atomic abstract speci�cation, because the behavior within this interval must re�ne
the abstract speci�cation. TSO-to-SC does not allow this interval to contain any
important steps, i.e., �ushes related to operation m within this interval are skip steps
in the abstract speci�cation. In other words, this interval is abstractly not visible. TSO
linearizability simply treats this interval as an extension of the execution of operation
m and thus, as if operation m and m ′ were executed concurrently, even though they
are executed by the same process p. This time, the top history in Figure 5.3 is not
the abstract history, but it is the result of a transformation applied to the concrete
history. It is this transformed history which can have internal concurrency and
which must be linearizable w.r.t. a sequential history. Here, we mean the original
linearizability de�nition [HW90] modulo the well-formedness assumption, which

5.1. LINEARIZABILITY 111

clearly does not hold in this case.
In contrast to the other two, TSO linearizability is mostly concerned with atom-

icity of a concrete data structure and that it behaves semantically correct. TSO
linearizability does not enable for a sound replacement of a concrete speci�cation
with its abstract speci�cation without changing the observable behavior. The latter
is the case, because an abstract data structure is atomic and thus, it does not generate
out-of-order executions as can be observed in concrete data structures due to opera-
tion overlap. However, TSO linearizability does guarantee that there is an equivalent
sequential execution for a concurrent one (possibly not respecting program order).
The justi�cation of a concurrent execution with a sequential one, so far, has been one
of the major concerns for most correctness conditions for concurrent data structures
and that problem is solved by TSO linearizability without the necessity of complex
abstract data types.

In order to formalize the notion of linearizability for TSO, �ushes have to be
taken into account. TSO linearizability is de�ned in terms of a history transforma-
tion. The transformation converts a concurrent history (containing �ushes) into
another concurrent history that consists only of invoke and response events and
where the response events are either the original response events or the latest �ush
of the corresponding operation. After transformation, the original linearizability
de�nition [HW90] is applied to the transformed concurrent histories. As mentioned
previously, such a transformed history can violate the well-formedness assumption
by Herlihy and Wing. However, because TSO linearizability cannot and does not
intend to provide the same guarantees as the original de�nition, this is a lesser
concern.

The �rst version of TSO linearizability [DSD14] and the latest version [DSGD17]
di�er in the way how �ushes are represented and taken into account. In [DSD14],
�ushes are a third type of event (besides invoke and response) and belong to the
process, who issued the method. A history is de�ned as a sequence of these events:

Etso′ =̂inv(P ×M × INP) | ret(P ×M ×OUT) | flush(P)

Htso′ =̂seq(Etso′)

Informally, the authors state that the histories in Htso′ are transformed by replacing
�ush events by response events and removing previous response events that are no
longer required (only the last response of a method remains). After transformation,
the resulting histories contain only invoke and response events, but also allow for
overlap within a process. As a consequence of the extension of execution intervals,
the real-time order that has to be preserved in an abstract history is relaxed. Without
the extension, consecutive methods would have to remain in order in the abstract

112 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

history. With the extension, they can appear in any order if their intervals overlap,
i.e., if they are concurrent.

As some parts of the former de�nition of TSO linearizability were given infor-
mally, the authors provide an updated and full-�edged formal de�nition in [DSGD17].
The major changes were applied to representation of histories and a formalization
of the transformation was added. In contrast to the previous work [DSD14], �ushes
are assumed to be issued by a separate cpu process and each �ush has its own
invoke and response event. A �ush is an atomic operation, i.e., invoke immediately
followed by corresponding response. By the choice of representing �ushes at the
same granularity of a method, the authors were able to avoid a third type of event.
Histories are de�ned as:

Etso =̂inv(P ×M × INP × N) | ret(P ×M ×OUT × N)

Htso =̂seq(Etso)

In their updated history de�nition, invoke and response have an additional integer
parameter. It is required for the memorization of pending writes in the store bu�er.
Recording the number of pending writes at invoke and response events allows for
identi�cation of the last �ush event correspond to them and thus, also to determine
the extension of the execution interval. The latter can be determined by computing
arithmetic di�erences, which de�ne the number of �ushes that have yet to appear
before the last �ush.

As a consequence of the deviation from the original invoke and response events,
the authors also adapted other parts of the de�nitions like matching pairs of invoke
and response events. However, their de�nition [DSGD17] remains very similar to
the original de�nition:

De�nition 20. A history h : Htso isTSO linearizablewith respect to some sequential

history hs i� linTSO(h, hs) holds, where

linTSO(h, hs) =̂ ∃ h0 ∈ HistFR •legalTSO(h a h0)∧
linrelTSO(Trans(complete(h a h0)), hs, h a h0)

where legalTSO(h) states some sanity assumptions about a history h , i.e., re-
sponses have a corresponding invoke and that there are no more �ushes than issued
by methods. However, as previously mentioned, legal histories do not have to be
necessarily well-formed. The set HistFR represents sequences of �ushes and returns
that are required for completion of a history just like in the original linearizability
de�nition. The actual linearizability relation is stated in linrelTSO , which is applied
to the transformed complete history Trans(complete(h a h0)). We refrain from

5.2. DISCUSSION 113

showing the full formal de�nition, since we would have to de�ne more fundamentals.
Informally, the relation linrelTSO(h ′, hs, h) encodes the following:

1. existence of permutation f on h ′ (the transformed history) to a sequential
history hs

2. the permutation f also orders the matching pairs (invoke and response) in h

(not transformed history) sequentially

3. the real-time order (derived from h but takes extended intervals into account)
is respected by the permutation f .

Of course, a speci�cation is TSO linearizable, if all its histories are. That is similar
to the other de�nitions. As the name suggests, TSO linearizability has not been
adapted to other memory models yet, although the principle of execution interval
extension should also be applicable to other memory models like PSO or RMO.

5.2 Discussion

In this thesis, we do not want to determine the next standard de�nition for concurrent
data structures. However, we do prefer TSO-to-SC and TSO linearizability over the
TSO-to-TSO linearizability because of their simplicity. As the above three adaptations
of linearizability towards weak memory models show, there are arguments for
and against each one of them. These pose a tradeo� between simplicity and the
re�nement guarantees that they provide.

TSO-to-TSO linearizability provides the strongest guarantees in the sense that
a concrete data structure can be replaced in the context of a client by its abstract
data structure while maintaining all observable behavior. The latter also includes
observable behavior after a method response. However, it can be di�cult to �nd
an abstract data structure that is indeed more abstract than the concrete one and
also provides the same behavior. In other words, it can be di�cult to �nd a correct
speci�cation for an implementation. Furthermore, the relationship between abstract
and concrete data structure is more complex than for the other de�nitions and thus
likely more di�cult to prove.

TSO-to-SC linearizability also provides strong guarantees and essentially es-
tablishes very similar guarantees under weak memory models as provided by the
original linearizability de�nition under SC, i.e., a method seemingly takes e�ect
atomically at some point between its invoke and response. Even though the de�-
nition assumes a weak memory model, it does not change this very fundamental
concept of the original de�nition. The latter is also the reason why this de�nition is
easy to understand for somebody familiar with the original de�nition by Herlihy

114 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

and Wing. However, as discussed above, TSO-to-SC linearizability can be too strict
for some implementations which are commonly accepted as correct.

TSO linearizability provides the weakest re�nement relation to abstract data
structures among the considered de�nitions. It guarantees that methods seem to take
e�ect atomically. However, methods have an extended interval to do so, which is
also the reason why the guarantees provided by TSO linearizability are weaker than
for the other de�nitions. In contrast to the other de�nitions, TSO linearizable data
structures cannot be soundly replaced by their abstract data structure. The program
order of single processes is only maintained partially in the permuted histories of
abstract data structures. Furthermore, preservation of the real-time order does not
have the same implications as for the other de�nitions, because the response events
after history transformation do not necessarily represent actual response events, but
can also be �ushes after an actual response. Thus, TSO linearizability shows that
an implementations behaves like a sequential implementations, but not necessarily
within the same boundaries.

In the remainder of this thesis, our veri�cation approach will rely on TSO-to-SC
and TSO linearizability. Our model checking approach in Chapter 6.1 was developed
with TSO linearizability in hindsight, although it was not formally de�ned at that
time, yet. We can therefore claim to have the �rst model checking approach for
TSO linearizability. Our proofs in Chapter 6.2 were carried out for TSO-to-SC
linearizability, essentially by using a proof method [DSW11a] that was developed
for the original linearizability de�nition [HW90]. The latter was possible, because
we only had to exchange SC program semantics with TSO program semantics and
assume fences at invoke and response. Our reduction from Chapter 3 helped us
to achieve that as we were able to use SC programs that are equivalent to the
same programs under TSO. We did not consider TSO linearizability as a correctness
condition for our proofs, because the underlying theory and proof method [DSW11a]
for the original linearizability de�nition would require signi�cant changes for it.
The latter were out of scope of this thesis.

5.2.1 Veri�cation Methods for Linearizability

Many veri�cation approaches have evolved since the proposal of linearizability by
Herlihy and Wing [HW90]. These can be divided into two types of veri�cation:
The �rst type is state-space exploration-based approaches (model checking) which
in most cases cannot show correctness (linearizability) of a data structure. This is
because most data structures allow for in�nite state space. Thus, unless abstractions
are applied, the state space cannot be fully explored. Instead these approaches are
good for �nding bugs, because they can be automated to large extend and do not need

5.2. DISCUSSION 115

as much expertise as for a formal proof. The second type of veri�cation approaches
aims at ultimate correctness arguments as a result of formal proofs. Correctness
proofs do require lots of expertise and are generally hard to automate, because
the arguments for data structure correctness are often complex. In this section,
we discuss existing veri�cation approaches for linearizability under assumption of
sequentially consistent memory model. A discussion on linearizability veri�cation
that also involves weak memory models can be found in Section 6.3.

Model Checking

While there are plenty of tools and methods for testing concurrent programs [MQ06,
CBM10, Sen15], testing usually provides no guarantee of correctness. That is because
testing examines only a (usually) small fraction of possible program executions and
thus, testing can only show the presence of bugs, but not their absence. In contrast
to testing, model checking [Cla08] explores the whole state-space of a program and
thus can determine whether a bug is present or not. However, this applies only to
�nite state programs or programs whose state-space representation is �nite. The key
problem from which model checking su�ers is the state explosion problem [Val98].
Many techniques evolved to push the boundaries at which the state space of program
becomes impossible to handle. Among these techniques, there are CEGAR [CGJ+00],
symbolic model checking [BCM+92], partial order reduction [Val89], bounded model
checking [BCCZ99] and many others, as well as combinations of them.

Linearizable data structure rarely have a �nite state space, unless they are trivial.
Most of them are designed for use with an arbitrary number of processes. Model
checking requires the number of processes and their operations to be �xed (a test
scenario), before being able to explore the state space of a concurrent program.
Furthermore, we can de�ne an arbitrary number of di�erent scenarios by using
di�erent parameters, combinations of operations or number of processes. Thus,
concurrent data structures cannot be fully explored using model checking techniques
as there is always the risk of missing a scenario in which the implementation can
fail. Instead, model checking of linearizable data structures has to be viewed as an
instance of extensive and systematic testing, i.e., model checking of concurrent data
structures usually cannot show the absence of a bug, but only its presence. However,
experience shows that small test scenarios are often su�cient to �nd concurrency
bugs [BAM07].

Some model checking approaches do not even attempt to check for linearizability,
but they check for atomicity of operations [Fla04, WS05]. Atomicity is important
for linearizable data structures as it enables operations to take e�ect atomically.
Flanagan [Fla04] instruments code blocks with consistency checks at commit points

116 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

which are similar to LPs in linearizability. In fact, his approach is very similar to our
own model checking approach in Section 6.1. In Flanagan’s approach, the instru-
mented checks take the sequential semantics into account, which in our approach
is an abstract speci�cation of the data structure. Wang and Stoller [WS05] propose
an inference of atomic blocks of code that also can be used as an instance of partial
order reduction, or if the complete operation can be inferred as atomic, then as a
technique to show atomicity of operations. A drawback of atomicity is that one
has to know in advance where the commit point/LP of an operation, s.t., it can be
instrumented.

A very straightforward idea of model checking linearizability is to compare
concurrent histories with sequential histories. This is also the principle behind
[VYY09, BDMT10]. Both approaches instrument the implementation at invoke
and response, in order to record the events with their parameters or outputs in a
history. Vechev et al. [VYY09] �rst record the concurrent history and check it later
against possible sequential histories. Because the concurrent history is part of the
program state, there is a bound on the number of invocations per process since each
modi�cation of the history also introduces a new state. Burckhardt et al. [BDMT10]
do the check in a di�erent order. First, they collect all possible sequential histories
and then they check against concurrent histories that are obtainable via exploration.
Furthermore, they assume the concurrent data structure to be correct in a sequential
setting. This enables them to generate the sequential histories by executing the
concurrent implementation without having to provide an abstract data structure for
it. The latter enables a fully automated linearizability check.

Other instances of model checking make use of the re�nement relation between
an abstract and a concrete data structure as in [LCLS09]. Liu et al. [LCLS09] charac-
terize each step of a concrete data structure (more precisely of its labeled transition
system (LTS)) as invoke, response or LP. A re�nement check on the cross-product
of the concrete and an abstract data structure LTS then reveals whether they are
consistent. However, their approach is only sound if all of the LPs are known and a
check has been performed that shows that no other step of the LTS can be an LP.

Another model checking approach [CRZ+10] proposes the use of method au-
tomata as a formalism for data structure speci�cations. The linearizability check is
reformulated into a reachability check on method automata. Method automata are
limited to list-based data structures only. The approach does not need any knowledge
about LPs, but can bene�t from this knowledge as the authors note.

5.2. DISCUSSION 117

Proof Methods

Since model checking is not su�cient for showing linearizability of a data structure,
proof techniques have to do this task. In fact, Herlihy and Wing [HW90] were not
only the �rst to provide a de�nition of linearizability, but also presented the �rst
proof technique together with the de�nition. Their approach relies on an abstraction
function that maps from concrete states to abstract states. The essential idea for a
proof of correctness is to show a subset relation between concrete and abstract states.
This is achieved by proving that the abstraction of every concrete state reached
by a history is contained in a set of non-empty abstract states that are reachable
via a linearization of the same history. Besides being a manual proof technique,
their approach is structurally similar to a backward-simulation as Henzinger et
al. [HSV13] point out. Backward-simulations are inherently complex to prove.

Simulations are widely used by linearizability proof techniques[GH04, CDG05,
DSW07, Hes07]. Gao and Hesselink [GH04] de�ne re�nement mappings as a means
to reduce a concrete data structure to its abstract data structure. The re�nement map-
ping also involves a simulation between both speci�cations. Colvin et al. [CDG05]
use forward simulations to prove re�nement between IO-Automata [LT89]. The
latter is a formalism for concrete and abstract data structures. Both, backward and
forward simulations have been proven to be sound [DSW07, DSW11a], but only
backward simulation is also a complete method to prove linearizability [DSW11a].
Derrick et al. [DSW07] extend the work by Colvin et al. [CDG05] by restating lin-
earizability as a non-atomic re�nement property [DW05]. The latter allows an
abstract operation to be implemented by a sequence of concrete steps. The general
idea is that a linearizable data structure non-atomically re�nes an abstract one. If a
concrete data structure simulates an abstract data structure, then it must also re�ne it
and thus is linearizable. In [DSW11b, SWD12], the authors also provide generalized
proof obligations for both, thread-local and global reasoning. The proof obligations
together with their soundness and completeness proofs are provided as libraries
to the theorem prover KIV [EPS+14] and are ready to use for mechanised proofs.
These proof obligations are also the foundation for our own linearizability proofs
presented in Chapter 6.2.

Vafeiadis [VHHS06, Vaf07] combines separation logic [Rey02] with rely/guar-
antee reasoning [Jon83] into a new logic RGSep. He uses the latter to reason about
linearizability. His approach is di�erent from simulation-based proof methods, be-
cause the abstract state of a data structure is embedded into the concrete state.
The actual proof then shows, that an abstraction map holds throughout the entire
program. For some if his case studies, he was able to fully automate the proofs.

Many other proof methods emerged for linearizability. Some show atomicity

118 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

via simulation and re�nement [Hes07], use shape-analysis as a static reasoning
technique for linked data structures [ARR+07], or use temporal logic (TL) as another
means for thread local reasoning about linearizability [BSTR11, TSR14]. Other
approaches [EQS+10, Jon12] try to abstract and reduce concrete operations to the
point at which complete operations are atomic. If all operations can be reduced to
atomic operations, then the concrete data structure can be considered linearizable.
While Elmas et al. [EQS+10] alternate between abstraction and reduction steps,
Jonsson [Jon12] uses only reduction steps and maintains a re�nement relation.

A lot of e�ort has also been spent on reducing the complexity of proofs. A
notable approach was proposed by Henzinger et al. [HSV13] in that direction. The
approach restates linearizability of queues into four comparably simple properties
which can be proved independently. Together these properties imply linearizability
of queue implementations, but are also restricted to queues only.

A more extensive survey on proof methods for linearizability can be found in
[DD15].

5.3 Other Correctness Conditions

Besides the above variants of linearizability, there are several other relaxations of
linearizability [HS08, SK09, AKY10, HKP+13]. Part of the motivation for further
relaxation of linearizability is that concurrent data structures, even though they
are optimized for concurrency, can still become the bottle neck of a system due to
contention. Furthermore, the semantics as provided by an abstract data structure in
linearizability can be too strict in many cases. For instance, it is not important for
most schedulers to strictly adhere to FIFO order of a queue as long as processes do
not get preempted for too long. Some variants of linearizability or similar conditions
take this into account in their de�nition and allow concurrent executions to deviate
further from a legal execution than linearizability (which requires real-time order
preservation).

Quasi-linearizability [AKY10] is one such condition. It relates concrete and ab-
stract histories in a similar way to linearizability, but in addition allows permutations
to violate real-time order by a certain bound. Thus, if there exist a legal history for a
concurrent history or a permutation of it within the range of a prede�ned bound,
then the concurrent history is considered quasi-linearizable. A similar condition
was proposed by Henzinger et al. [HKP+13] and is called k-linearizability, where
k is also a bound. The di�erence to quasi-linearizability is that the bound k is not
tied to permutation of events, but to an abstract state. In this sense, it is a semantic
distance and relaxation. As an example, in a k-linearizable stack it is legal to pop

5.3. OTHER CORRECTNESS CONDITIONS 119

one of the �rst k elements where only the top element would be allowed by original
linearizability.

Quiescent consistency [HS08] takes the relaxation one step further and requires
consistency only at certain states, the quiescent states. A quiescent state is a state,
in which no operation is active. Quiescent consistency requires that whenever an
execution reaches a quiescent state, then there exists an equivalent sequential history
leading to the same state. In between two quiescent states, any behavior is allowed
as long is it becomes consistent whenever a quiescent state is reached.

An even more relaxed correctness criterion is eventual consistency [SK09], which
is not even a safety property but a liveness property. Eventual consistency guaran-
tees that in the absence of new changes, eventually all processes observe the same
state (or all reads return the same value). Although it sounds vague, it is a common
criterion among distributed software systems with replicated data.

While the above conditions are relaxations to linearizability, they adhere to
all types of data structures. Another line of recent research goes towards speci�c
data structures like the transactional memory [HM93]. A transactional memory
(TM) allows for arbitrary transactions consisting of reads and writes (like database
transactions). A transaction must appear atomically or it must remain invisible to
all other transactions. In contrast to linearizable implementations, which have a
small and �nite set of operations, TMs can have arbitrary transactions that are not
known a priori, but still must be guaranteed to appear atomically. Intuitively, a TM
is correct if it is serializable [Pap79]. However, serializability does not take aborting
transactions into account and thus there remains an open semantic gap. Most of
the proposed correctness conditions [GK08, DGLM13, AGHR14] try to �ll this gap
by relating internal behavior of transactions to that of an abstract speci�cation.
In contrast to linearizability, TMs require atomicity of transactions, where each
transaction is implemented by multiple operations like begin, read, write, commit and
abort. The complexity of TMs lies within the relationship between these operations
and an abstract history, in which they have to appear sequentially ordered by each
transaction.

None of the above conditions take weak memory into account, but assume
sequentially consistent semantics. Taking weak memory models into account for
the above condition raises similar questions as for the adaptations of linearizability,
i.e., when does an operation begin and when does it end its execution? Should
an operation’s execution interval be extended as in TSO linearizability and what
would be the consequences for the correctness condition? These questions are out
of scope of this thesis. However, a similar approach to the TSO-to-SC adaptation of
linearizability by Gotsman et al. should be possible for all of the above correctness

120 CHAPTER 5. CORRECTNESS OF CONCURRENT DATA STRUCTURES

conditions, because the general idea to take the interface events of an operation as
the invoke and response events in a history does not dependent on the underlying
memory model.

6

Verifying Linearizability

under Weak Memory

Models

Linearizability [HW90] is a de-facto standard correctness criterion for concurrent
data structure implementations as we pointed out in the last chapter. Since its
proposal in the early nineties by Herlihy and Wing, many techniques have been
developed for the veri�cation of linearizability [VHHS06, DSW07, EQS+10, BDMT10,
TMW13]. However, only few consider weak memory models in their approaches. It
is uncertain which of the linearizability de�nitions (see previous chapter) will become
the new standard under consideration of weak memory models. Nevertheless, we
think linearizability will remain an important correctness condition and thus, we
aimed at adapting existing veri�cation techniques to the weak memory model setting.

The reduction that we proposed in Chapter 3 already de�nes the semantics of
TSO and PSO. Once applied to a program, the reduction provides the weak program
speci�c semantics in terms of a new SC program that reproduces the behavior of
the original program under TSO or PSO. In this chapter, we focus on two di�erent
methods that �t into our overall approach for the veri�cation of concurrent data
structures under weak memory models. We use linearizability as the correctness
criterion. We follow two di�erent branches corresponding to two di�erent general
veri�cation techniques. The �rst is model checking [Cla08], which is good for �nding
bugs in implementations. It can be applied automatically and thus can yield results
quickly. However, most concurrent data structures can have an in�nite state space,
because the elements they can hold is usually unbounded as well as the number
of processes sharing and using the data structure. Thus, model checking usually
cannot show correctness of an implementation. In order to show correctness of an
implementation, one would have to explore the complete state space of it. The latter
is only possible, if the state space is �nite or at least, if it is possible to represent it in

121

122CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

a �nite manner, which would consequently make the check �nite. Since this is not
always possible, our approach uses deductive veri�cation as a second veri�cation
technique. Due to their complexity, correctness proofs require a lot of expertise and
manual e�ort. Interactive and partially automated theorem provers can help with
proving algorithms correct. Anyway, the manual e�ort of a correctness proof is
usually signi�cantly larger than the e�ort required for a correctness check. This
is also why model checking should always be applied before a correctness proof
is attempted. Only, if model checking reveals no implementation errors, a proof
attempt makes sense.
Throughout the chapter, we will try to answer the following two research questions:
RQ1: How can we use the proposed reduction for the veri�cation of concurrent data
structure implementations?
RQ2: What are the advantages and disadvantages of using the reduction compared
to conventional approaches?

In order to answer RQ1, we propose di�erent methods that rely on existing
veri�cation methods for linearizability under sequential consistency. We revise
the original methods by replacing their SC program inputs with the programs
generated by our tool Weak2SC. This also includes programs that are generated
in combination with an operation memory model or with an explicit encoding
of store bu�er behavior. The latter will help us answer RQ2, since veri�cation
based on operational memory models can be considered as a conventional approach.
We perform experiments in order to determine the impact of the reduction on
the veri�cation in terms of performance, but also investigate the verbosity of the
generated models. Verbosity and complexity are especially important for the proof
approach, where deep understanding of a program can be more crucial than the
automation of the actual proof.

In the following, we present each approach as one possible answer toRQ1. Please
note that the reduction can be applied to many other veri�cation techniques, which
are not necessarily tied to linearizability. Each of the presented approaches is followed
by experiments that will help us answer RQ2 or at least discuss experimental results
and our own practical experience.

6.1 Model Checking under Weak Memory Models

We have two model checking approaches that are revised for weak memory models.
We have one that we think is promising in terms of performance and practical-
ity and another that is general, but does not perform well. In the following, we
present our �rst approach in detail and provide experiments. The second approach

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 123

will be presented without experiments for the sake of an alternative checking pro-
cedure that can be easily adapted to other correctness conditions, e.g., quiescent
consistency [HS08].

6.1.1 The Idea - Abstract Atomic Speci�cations

Our �rst approach requires an abstract atomic speci�cation of the implemented
data structure. The general idea is to use the abstract atomic speci�cation for con-
sistency checks at linearization points (LP) of the implementation. The proposed
instrumentation and consistency checks are similar to an existing approach for
veri�cation of commit atomicity [Fla04], a property that requires executions to be
serializable [Pap79]. Since serializability is weaker than linearizability [HW90], we
can also use it for detection of non-linearizable executions. The key di�erence be-
tween the two is that serializability requires executions only to be equivalent to
any sequential execution while linearizability in addition requires the sequential
execution to conform to a sequential execution of an object. In [Fla04] the imple-
mentation is instrumented at commit points that are similar to linearization points
in linearizability. However, the approach does not consider weak memory models
and does not promote the use of an abstract speci�cation. The latter is a crucial
di�erence to our approach and ensures the conformity of concurrent executions to
a sequential execution of the underlying data structure. An initial publication of
the approach together with the operational memory model for TSO that we use in
Weak2SC can be found in [TMW13].

LPs are the steps of an implementation at which an operation takes e�ect and
becomes visible to all processes. Thus, before an operation reaches its LP, all other
processes must not see the e�ect of the operation that is about to linearize. After an
LP (or after the operation linearized), all processes must observe a state in which
the operation seemingly has �nished. Each LP corresponds to an operation. Each
process is essentially a sequential program that is a sequence of operations. Con-
current executions are interleavings of the sequential programs corresponding to
di�erent processes. In a concurrent run, the sequence of reached LPs can be used to
construct the sequential history that linearizability demands for a concurrent run to
be linearizable.

Instead of computing the actual history for a concurrent execution, we use the
abstract speci�cation and let it perform all operations simultaneously with the imple-
mentation, whenever a step corresponding to an LP is taken by the implementation.
The abstract speci�cation is encoded as part of the program model to be checked.
The operations of the abstract speci�cation must be atomic, such that they can be
performed atomically at the linearization points (LP) of the implementation. For

124CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

pop() push(y)P1

push(x) pop()P2

xempty empty x

y

x

pop():empty push(x) pop():ypush(y)
Abstract
Stack

Figure 6.1: Linearization points in concurrent executions and the corresponding
modi�cation of the abstract state.

instance, if a stack implementation linearizes on a pop operation by observing an
empty state, then this should be consistent with the state of the abstract speci�-
cation. If an operation modi�es the data structure, then this has to happen to the
implementation as well as to the abstract speci�cation. In addition, LPs must be
instrumented with consistency checks, such that inconsistencies are reported as
counterexamples by the model checker. As an example see Figure 6.1. It depicts two
concurrently running processes performing two consecutive stack operations each.
Time progresses from left to right. P1 performs a pop operation �rst and then a
push operation with argument y . P2 pushes x on the stack �rst, and then attempts
to pop an element from the stack. The red dots represent LPs of the operations.
Corresponding to the LPs, the abstract stack must perform the same operations
atomically with the same outcome. The abstract transitions corresponding to LPs
are indicated by a dashed arrow.

Imagine now, the LPs of the pop operation by P2 and the push operation by P1

would be reordered. The pop operation would then observe a value y , which was not
yet pushed to the stack, because the push LP of P1 would have yet to be reached and
thus, has had no e�ect yet. The abstract speci�cation enables detection of such situ-
ations. Consistency checks at LPs must compare the values of the concrete program
with the values obtainable from the abstract state. If an inconsistency is detected,
either the program has a bug which must be corrected or the LP instrumentation is
incorrect. In both cases a counterexample will be reported by the model checker and
adjustments will be necessary, either to the program or to the LP instrumentation.
The method obviously requires knowledge about the linearization points of an imple-
mentation in order to be able to instrument it. Otherwise, the model checker would
report spurious counterexamples that are reported due to wrong instrumentation
and not because of an actual bug or missing fence in the implementation.

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 125

Example application to Work-stealing Queue

In the following, we give an example for the work-stealing queue by Arora et
al. [ABP98], which we presented already in the previous chapters. The Promela
models generated by Weak2SC for it can be found in Section 4.4.

As a brief reminder, the work-stealing queue is owned by one process. The
owner adds and removes elements from the bottom end of the queue in a stack-like
(LIFO) manner. This is also the reason why the corresponding methods are named
pushBottom and popBottom. Other processes can steal an element from the top end
(method popTop). Stealer processes essentially dequeue the oldest element in the
queue. In order to check the work-stealing queue for correctness, we need an abstract
data structure that supports these operations.

Figure 6.2 depicts a Promela model for the double ended queue data structure,
which is implemented by the Arora et al. queue [ABP98]. We also used it in our
experiments that we will discuss in the following section. It uses an array asDeq to
store its elements. The length of the array is determined by ASSIZE, which can be
adjusted to personal needs. The variables asTop and asBot represent both ends of
the queue and are initially 0.

The model in Figure 6.2 contains four di�erent atomic operations corresponding
to four di�erent possible linearization points in the queue implementation. The
�rst is a linearization corresponding to an empty state. The corresponding abstract
atomic operation (lines 5-7) contains only an assertion that checks for emptiness
in the abstract state (asTop == asBot). Only popBottom and popTop can linearize by
observing an empty state. In such a case, the observable abstract state is not modi�ed.
Thus, the asEmpty operation does not modify the state and only checks the assertion.
A succeeding popBottom method removes an element at the bottom end of the queue.
The atomic operation asPopBot corresponding to the LP is modelled in lines 9-17.
It ensures that the abstract queue is not empty. It also has a parameter popValue
which has to be equal to the bottom element of the abstract state (asDeq[asBot] after
asBot was decremented). The LP corresponding to a succeeding popTop method is
represented by the asPopTop operation. In contrast to the previous operation, it has
to ensure that the popped value is equal to the top value in the queue asDeq[asTop].
The method pushBottom always succeeds. Thus, the operation corresponding to
its LP asPushBot only ensures that array representing the queue has enough space
for one more element. Besides this it adds the same element (passed by parameter
pushValue) to the queue at the bottom end.

So far, we have only seen an example of how an abstract data structure together
with built-in consistency checks can be modelled in Promela. What is still missing
is the instrumentation of the actual program behavior that triggers these checks.

126CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

1 #define ASSIZE 5
2 short asDeq[ASSIZE] ;
3 byte asTop = 0 , asBot = 0;
4
5 inl ine asEmpty () {
6 assert (asTop == asBot) ;
7 }
8
9 inl ine asPopBot (popValue) {

10 atomic
11 {
12 assert (asTop < asBot) ; / / not empty
13 asBot−−;
14 assert (asDeq[asBot] == popValue) ;
15 asDeq[asBot] = 0;
16 }
17 }
18
19 inl ine asPopTop(popValue) {
20 atomic
21 {
22 assert (asTop < asBot) ; / / not empty
23 assert (asDeq[asTop] == popValue) ;
24 asDeq[asTop] = 0;
25 asTop++;
26 }
27 }
28
29 inl ine asPushBot (pushValue) {
30 atomic
31 {
32 assert (asBot < ASSIZE) ; / /make sure , stack array is never f u l l
33 asDeq[asBot] = pushValue ;
34 asBot++;
35 }
36 }

Figure 6.2: Abstract double ended queue speci�cation in Promela. All operations are
atomic.

Figure 6.3 shows the instrumented Promela code for the pushBottom method that
was generated by Weak2SC based on our proposed reduction. The instrumentation
on its own is simple. The di�culty lies in �nding the LP of a method, which requires
experience and expertise. Once the step corresponding to the LP is identi�ed, it
is replaced by an atomic statement. The statement will then perform both steps,
the original step corresponding to the LP and its corresponding abstract operation
simultaneously. The consistency checks as part of the abstract operation will trigger
during an exploration, if one if its internal assertion fails. For the pushBottom method,
the LP is the step following the label A08v0 in line 18. The step corresponds to a

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 127

1 inl ine pushBottom(elem) {
2 short v0 , v1 , v2 , arrayidx , inc ;
3 AStart : goto A00;
4 A00: v0 = memory[bot] ; goto A01;
5 A01: v1 = memory[v0] ; goto A02;
6 A02: v2 = memory[deq] ; goto A03;
7 A03: getelementptr (10 , v2 , v1 , arrayidx) ; goto A04;
8 A04: goto A05arrayidx ;
9 A05arrayidx :

10 i f
11 : : inc = v1 + 1; goto A06arrayidx ;
12 : : memory[arrayidx] = elem ; goto A05;
13 f i ;
14 A06arrayidx : memory[arrayidx] = elem ; goto A06;
15 A05: inc = v1 + 1; goto A06;
16 A06: goto A07;
17 A07: goto A08v0 ;
18 A08v0 : atomic {memory[v0] = inc ; asPush (elem) ; } ; goto A08;
19 A08: goto AEnd;
20 AEnd: skip ;
21 }

Figure 6.3: Instrumented queue implementation for consistency checks against
abstract data structure. Program model generated by Weak2SC based on reduction
from store bu�er graphs.

�ush of the incremented value of the bot variable.

What looks simple for the reduction-based program models, can be slightly more
complicated for models based on an operational memory model. Since we need
to instrument the step corresponding to an LP, we need to modify the operational
memory model, if the LP corresponds to a �ush. The latter is the case that we have
in the pushBottom method. Figure 6.4 shows the instrumented Promela code for the
control �ow of the pushBottom method. The LP is in line 12, which is the write of
the incremented value of variable bot. In order to instrument it, we use a special
write inline statement with a third parameter for the pushed value. Because of the
separation between program control �ow and executions semantics in two di�erent
processes, we have to �ag the write as an LP. The �agged write will then trigger the
abstract operation asPush during its �ush. The triggering of the abstract operation
and the additional �eld in the write bu�er for the LP �ag must be added to the
operational memory model manually. The extension has to be added with care as
the execution semantics provided by the operational memory model must not be
changed by the modi�cation. We refrain from showing the extension of the models,
as we would have to go through all the encoding details of an operational memory
model in Promela. Instead we refer to our Git repository [Tra16], where it can be

128CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

1 inl ine pushBottom(elem) {
2 short v0 , v1 , v2 , arrayidx , inc ;
3 skip ;
4 entry :
5 read (bot , v0) ;
6 read (v0 , v1) ;
7 read (deq , v2) ;
8 getelementptr (10 , v2 , v1 , arrayidx) ;
9 write (arrayidx , elem) ;

10 inc = v1 + 1;
11 mfence () ; / / required for PSO
12 writeLP (v0 , inc , elem) ;
13 goto ret ;
14 ret : skip ;
15 }

Figure 6.4: Instrumented queue implementation for consistency checks against
abstract data structure. Program model generated by Weak2SC for the use with an
operational memory model.

found.

Please note that we cannot trigger the abstract operation from the program
process, because a write in a program is non-atomic and corresponds to two separate
steps. The �rst step, performed by the program process, moves the value to the
bu�er. The second step �ushes it to the memory at a later point in time. The latter
step is performed by the semantics process, which is de�ned by the operational
memory model. Thus, the abstract operation must be triggered within the semantics
process. Otherwise, the abstract state would be modi�ed too early, i.e., before the
write is �ushed and becomes visible to other processes. In such a case, a concurrent
process could try to steal (popTop) an element from the queue and would not be able
to observe a state that is consistent with the abstract state. The abstract state would
contain a new element that is not yet visible to other processes.

Since we have discussed how to instrument a �ush transition in our operational
memory models, the reader might ask how instrument early read transitions. The
answer is simple. We do not instrument early reads, because a transition corresponding
to an early read cannot be a linearization point. The reason becomes obvious
from the SC programs that are generated from the store bu�er graph. Early read
transitions are transformed to local assignments in these programs, because they
are not visible to other processes. A local transition cannot be a linearization point
of any deterministic program. The linearization point has to be a transition that is
visible to all processes, i.e., a transition accessing the shared state. In our approach,
these are always transitions that access the memory, either writing, reading or both

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 129

in case of CAS.
The following steps summarize the approach for the veri�cation of programs

under weak memory models in combination with an abstract speci�cation:

1. Generate the Promela model for the program using the Weak2SC tool for the
target memory model. This is will be the concrete speci�cation of the program.
It can be either based on the proposed reduction (an SC program model) or it
can be a program model with an exchangeable operational memory.

2. Embed an abstract atomic speci�cation of the data structure into the concrete
speci�cation.

3. Identify the linearization points of the program and instrument them with the
corresponding abstract operations. Add assertions as part of the instrumen-
tation that will report inconsistencies between the concrete and the abstract
speci�cation. If concrete and abstract states are inconsistent, then either the
LP instrumentation is incorrect or the concrete speci�cation is not linearizable.

4. Perform a state space exploration. Start with a simple scenario consisting of
few processes and operations. Increase the complexity of scenario iteratively.
If counterexamples are reported, make sure that they are not spurious due to an
incorrect LP by inspecting the counterexample trace. If no counterexamples are
reported by the model checker, then the program is probably a good candidate
for a linearizability proof.

Abstract Atomic Speci�cation vs. Potential LPs

Linearizability requires programs to behave as if they had atomic operations. Thus,
the proposed consistency check at LPs against an abstract atomic speci�cation will
certainly reveal many bugs that can occur in a non-linearizable implementation.
However, there are also concurrent data structure implementations that cannot
be checked using this approach or which are at least di�cult to instrument prop-
erly. The reason for this is that some implementations have potential linearization
points [DSW11a]. Potential LPs are LPs that cannot be statically �xed to a certain
program location, because whether an operation linearizes or not depends on the
execution of other concurrent processes. In other words, the LP of one operation
can be also the LP of several other concurrently running operations.

As an example, think of an array based implementation of container data struc-
ture that has the operations add, remove and contains. It should be easy to �nd the
program step that corresponds to the LP of add and remove, because it will be a step
that makes an element visible (resp. invisible) to other processes. Assuming the

130CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

x

x x

x

contains(x)

contains(x)

contains(x)

remove(x)

add(x)

remove(x)

remove(x)

Figure 6.5: Potential linearization points in an array based container data structure.

contains operation would be implemented by a walk over the array, it is impossible
to �x the LP to a certain program location. Think of an array that has an element
x placed at the end of the array as depicted in Figure 6.5 in the top array. While
the contains operation walks the array searching for x another concurrent remove

operation could succeed. Thus, the contains operation cannot have linearized, yet.
However, an add operation could add x at an early index (second array in the �gure).
The operation contains has already passed that index and thus will not observe the
newly added element x . In the meantime, the remove operation is scheduled to
�nish and removes element x from the array (bottom array in the �gure). The latter
causes the contains operation to �nish with a negative result, even though the array
contained the element x at all points in time. The question may rise whether this
is a linearizable execution and the answer is yes. Linearizability imposes no order
on concurrently running operations, only on those which are sequentially ordered.
In the example all three operations are concurrent and thus, can be reordered arbi-
trarily in a justifying sequential history. For the example, the linearization order is
1. remove(x), 2. contains(x) and 3. add(x). It is the only order that justi�es the
contains operation to not observe element x .

What is interesting in the example is that the array modi�cations by add and
remove must be reordered in order to �nd an equivalent sequential history for the con-
current execution, because of the potential LP of contains. In our approach, this is not
feasible, because the LPs of each operation must be �xed in the code. Otherwise, they
cannot be instrumented. Furthermore, we use the abstract atomic speci�cation as an
alternative for the construction of a sequential history from a concurrent execution.
This is achieved by capturing the sequence of LPs in a concurrent execution and by
applying the same changes atomically in the abstract speci�cation. Inconsistencies
between abstract and concrete state reveal non-linearizable executions.

However, linearizability allows for concurrently executed operations to linearize
in any order as long as the semantics of the implemented data structure allows it.
Thus, whenever several operations appear concurrently, there can be several possible

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 131

linearization orders which consequently lead to di�erent abstract states. If all LPs
can be �xed statically, then there is just one such order. It is the sequence of LP
occurrences in an execution. Potential LPs cannot be �xed statically. Thus, there are
several possible linearization orders to be considered which correspond to di�erent
abstract states. Which of the possible states is the correct one at any point in time, is
determined by the future of the execution.

For our approach, this means that we would have to validate against a dynamic
set of possible abstract states instead of just one abstract state. An encoding of
such a dynamic set of possible states would probably exceed the complexity of the
actual data structure implementation that is to be veri�ed. Thus, we restrict this
approach to the class of data structure implementations that have no potential LPs.
Implementations with potential LPs should be checked with a di�erent approach.
One such approach is presented in Section 6.1.3. It is based on history recording and
was developed together with the help of one of our bachelor students. A more detailed
discussion on potential linearization points can be found in [DSW11a, TTSW14].
The above example is taken from [TTSW14] and is a simpli�ed version of a multiset
case study that we proved linearizable.

Intra-Process Reordering vs. Linearizability

OP1

OP1

flushes OP1

OP2

flushes OP0

OP0

OP0 OP2SC

TSO/PSO

Ret OP0; Inv OP1

flushes OP2

Ret OP0; Inv OP1 Ret OP1; Inv OP2

Ret OP1; Inv OP2

Figure 6.6: Overlapping of method execution and intra-process reordering.

One e�ect that we also need mention here is the intra-process reordering of
linearization points. In essence it is the e�ect that allows writes to be reordered with
later reads. With the above approach, it is possible that LPs of di�erent operations
are reordered within a process. In Figure 6.6, we visualize operation execution of
a single process for SC, as well as for TSO or PSO. Time passes from left to right.
Invokes and returns are marked. For SC, the bar represents the execution of all
program statements including their e�ect to the shared memory. At the bottom, the
operation execution is separated into two bars. The top bar represents the execution
of all program statements of the operation. The bar below it, represents the delayed
execution of writes, i.e., �ushes. For the sake of completeness, we would like to

132CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

mention that PSO allows single writes to be reordered with each other, which we
omit in the �gure. Due to the overlap of operations, it is possible that operations
linearize in a di�erent order than the program order. This can happen under the
circumstance that the earlier operation linearizes with a �ush to a certain memory
location, while the later operation linearizes with a read of a di�erent memory
location.

The proposed consistency checks against the abstract atomic speci�cation do
not recognize such a reordering. However, the consistency checks still require
both, abstract and concrete, states to be consistent at an LP. Thus, even in this case
the linearization order is equivalent to a sequential order. TSO-to-SC linearizabil-
ity [GMY12, BDG13] as well as the original de�nition of linearizability [HW90]
allow linearization points to be only between invoke and return of a method. TSO
linearizability [DSD14, DSGD17] allows the linearization points to be reordered
within a process under the above conditions. For the latter de�nition, our approach
is the �rst and to the best of our knowledge the only model checking approach.
Please note that the potential for intra-process reordering of LPs is easy to identify
in the code, if the LPs are known. It can occur under the following circumstances:

1. An operation has an LP that corresponds to a �ush, which is not guaranteed
to happen before the operation’s return statement. Such a guarantee can be
provided by a fence or a CAS instruction.

2. An operation has an LP corresponding to a read of a memory location that is
di�erent from the other operation’s written memory location, s.t., both can be
reordered.

Thus, even though our approach does not detect the intra-process reordering, it can
be easily spotted in the code and avoided, if necessary. It could be necessary, if one
wants to establish a stricter de�nition of linearizability (TSO-to-SC).

6.1.2 Experiments

In this section, we present our experiments. The experiments do not only evaluate
our veri�cation approach with abstract atomic speci�cations presented in this chap-
ter, but also our reduction from Chapter 3 in comparison with the more common
approach of using operational memory models.

We have selected several concurrent programs for the experiments. These range
from rather simple mutual exclusion algorithms [BL80, Dij68, Pet81, Szy88, Lam74]
over actual concurrent data structures such as a stack [Tre86] and a queue [ABP98]
to a transactional memory implementation [DDS+10]. All of these algorithms are
typical concurrent programs and thus are candidates for bugs due to weak memory

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 133

models, which would not be found with veri�cation techniques that assume SC.
Some of these algorithms are known to be incorrect under weak memory models
and thus, require fences. To the best of our knowledge, we are the �rst to analyze the
transactional memory implementation from [DDS+10] under weak memory models
(�rst published in [TW16]), which requires a fence for PSO in order to be correct.

We implemented all of the programs in C and C++ while following the pseudo
code as available from their respective publications and compiled them to LLVM
IR1. For all of our experiments, we used Weak2SC to generate the Promela models.
For each case study, we generated several program versions. One version relies on
the operational memory models that we provide for SC, TSO and PSO. For this type
of model, it was su�cient to exchange the underlying memory model in order to
analyze it with the respective memory model semantics. The programs generated
from store bu�er graphs had to be generated for each memory model separately,
because the store bu�er graph changes with the choice of the memory model. Thus,
we have several versions of a transformed program, one for each memory model.

If we were able to �nd bugs in a program, then we added fences as we found
would be necessary to correct the programs. We tried to use as few fences as possible,
but cannot claim that the number of fences used is minimal. In order to be able to
make such claims, we would have to apply additional analyzes such as [KVY12].
Please note that all of the programs are correct under SC. Thus, we knew that each
bug can be �xed by adding fences to these programs unless we got something wrong
in our implementation of these programs. Luckily, the latter was not the case as our
experiments have shown. However, adding a fence to a program changes its behavior
and thus, we had to regenerate all of the above program versions as fenced versions.
Because we were able to �nd weak memory model related bugs in all except one
(the Treiber stack) of the case studies, we report on unfenced and fenced versions of
the program models.

Algorithm Correctness

Table 6.1 shows the correctness results for the di�erent versions of the programs
that we used for our experiments. A checkmark entry means that we were not able
to �nd counterexamples, given the instrumentation of the program with an abstract
speci�cation at its LPs as explained in the previous section. A cross indicates that
we were able to �nd a counterexample using this method. A uwl entry denotes the
cases for which we were not able to perform an experiment, because the reduction
was not applicable due to an unfenced writing loop (see Section 3.1). The most left
column names the algorithm. The brackets behind the name denote the memory

1LLVM Compiler Framework v3.1

134CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

Algorithm tso tso2sc pso pso2sc
Burns [BL80] × × × ×
Burns (TSO) X X X X

Dekker [Dij68] × uwl × uwl
Dekker (TSO) X X X X

Peterson [Pet81] × × × ×
Peterson (TSO) X X × ×
Peterson (PSO) X X X X

Lamport bakery [Lam74] × × × ×
Lamport bakery (TSO) X X × ×
Lamport bakery (PSO) X X X X

Szymanski [Szy88] × × × ×
Szymanski (TSO) X X X X

Arora queue [ABP98] × × × ×
Arora queue (TSO) X X × ×
Arora queue (PSO) X X X X

Treiber stack [Tre86] X X X X

TML [DDS+10] X X × ×
TML (PSO) X X X X

Table 6.1: Veri�cation results for the transformed programs (tso2sc, pso2sc) and
based on an operational memory model (tso, pso). Brackets state the memory model
for which a program was fenced.

model for which we added fences in order to make it robust against the respective
memory model. No brackets, except for the reference, refer to an algorithm without
any additional fences. The columns on the right denote the type of experiment and
memory model choice. The column tso (resp. pso) shows our results for the algorithm
version with an underlying operational memory model. The column tso2sc (resp.
pso2sc) shows the results with the algorithm versions obtained by reduction via store
bu�er graphs.

Our experiments show consistent results among transformed programs and
those based on operational memory models. One exception is the Dekker mutex
algorithm [Dij68], which could not be transformed via store bu�er graph into an SC
program due to an unfenced writing loop. It is the only case study with such a loop
in our set of case studies and it requires a fence in the previously unfenced loop in
order to be correct. The latter is shown via our experiments with operational TSO
and PSO memory models. Please note that the operational approach in this case
also was only successful, because the test scenario performs only one iteration of
acquire and release. The latter ensures that �nite store bu�ers are su�cient for the
veri�cation under TSO and PSO. Otherwise, the veri�cation would also not succeed
due to quickly �lled bu�ers. One could conclude that unfenced writing loops can
be an indicator for erroneous behavior in concurrent data structures under weak
memory. However, we would like to be careful with such generalizations, because
it is easy to add unfenced writing loops to any given algorithm without changing

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 135

its core behavior. Such an algorithm could work as intended, but our reduction
would not be applicable anymore due to the added loop. Fortunately, most of the
concurrent algorithms are highly optimized and thus, do not contain obsolete code.
In order to decide whether unfenced writing loops are a true indicator for erroneous
behavior in concurrent data structures, more case studies that have such loops have
to be analyzed. The latter is out of scope of this thesis. The remaining case studies
performed as expected, i.e., i� we were able to �nd a counterexample in a reduction
based check (tso2sc or pso2sc), then we were also able to �nd it using our operational
memory models (tso or pso).

Among the mutex algorithms, Burns, Dekker and Szymanski do not require
any additional fences under PSO, if they are already fenced for TSO. In each of the
algorithms, each process writes to only one memory location and thus, the mutual
order of writes by each process is preserved. In contrast, processes in the algorithms
Peterson and Lamport’s Bakery do write to di�erent memory locations and therefore
require an additional fence that preserves their order. Similarly, the order of writes
in the pushBottom operation of the queue by Arora et al. have to be preserved.
Otherwise, a new element in the queue becomes visible to other processes before
the value of the element is written to the memory. The latter allows other processes
to steal an element containing an inconsistent value. The transactional memory
(TM) implementation TML also requires an additional PSO fence. Transactions are
seemingly atomic and can consist of di�erent reads and writes to di�erent memory
locations. A transaction always �nishes with a commit. A commit allows other
processes to observe the written values and makes the changes permanent. TML
requires a fence in order to ensure that the values written by a transaction are �ushed
before the write corresponding to the commit is �ushed. Otherwise, the commit
would signal to other transactions that they can read and write to the memory while
more changes by the committing transaction are still being �ushed. The latter breaks
the atomicity of a transaction as it is intended by TM algorithms [HM93]. Actually,
the desired correctness condition for TM algorithms is opacity [GK08], which takes
the di�erent aspects of a transaction into account, e.g., that a transaction is sequenced
into a begin operation, followed by reads and writes and �nally a commit or abort
operation. An abstract memory combined with atomic transactions enabled us to
check for atomicity of transactions in our experiments anyway and revealed that
the algorithm requires a fence for PSO. In the Appendix B, Fig. B.3, we also show
our TML implementation (including the required fence) of two example transactions
that we used in our experiments.

The most robust algorithm in our case studies happened to be the Treiber stack,
which required no additional fences, neither for TSO nor for PSO. It does not require
additional fences, because it relies on CAS instructions. CAS instructions have a

136CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

built-in fence semantics and thus, ensure that the store bu�er is emptied before they
are executed atomically. Please note that in our previous publication in [TW16], one
of our experiment tables contains an accidental entry that suggests, we added a fence
for PSO. This was not case and the entry is incorrect. If a CAS instruction would not
have built-in fence semantics, then the Treiber stack certainly would require a fence
under PSO. Otherwise, the algorithm would su�er from problems similar to those in
Arora et al. queue.

Performance Comparison

One aspect of the research question RQ2 is whether veri�cation performance is
improved by applying our proposed reduction compared to using an operational
memory model. In order to answer this question, we conducted experiments with
identical exploration scenarios and compared them with each other. Table 6.2 shows
our �rst batch of results, particularly for the veri�cation of programs under TSO.
A second one with the same programs and scenarios under PSO can be found in
Table 6.3. Out of the set of di�erent program versions that we obtained from our
previous results, we took those, for which we were not able to �nd counterexamples
under PSO. By choosing these versions, we ensure that the exploration always
reveals the complete state space under TSO and PSO and the di�erent explorations
are comparable in exploration e�ort. An exploration yielding a counterexample can
be fast if it is lucky, but it may also have to explore almost the entire state space in
order to �nd that counterexample. A comparison of such exploration runs would
not be conclusive, which is why we consider only full state space explorations.

The tables provide the size of the program in terms of the number of instructions
per method in column “#i”. If several methods exist in the implementation, then their
respective numbers of instructions are separated by slashes. The remaining columns
separate into results obtained from exploration with an underlying operational
memory model (tso and pso) and the programs transformed into SC programs
(tso2sc and pso2sc). For each run, we provide the number of explored states (#s),
the state vector (v) and the time in seconds (t) as reported by the model checker
Spin2. All of our experiments were performed on an Intel Core I5 4690 processor
with 3.5 GHz and 3 GB of memory dedicated to Spin. The times in the tables are
pure exploration times as reported by Spin, i.e., they do not include transformation,
compilation and manual instrumentation. Each experiment was repeated �ve times.
The table entries are the respective average times. Best results are given in bold font.

The number of instructions per method provides an impression of size of the
original programs and their respective encoding in the operational approach. Since

2Spin Version 6.2.3

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 137

tso tso2sc
Algorithm #i #s v t #n #s v t
Burns (TSO) [BL80] 3/19/11 464 172 ≈ 0.000 4/30/12 425 72 ≈ 0.000

Dekker (TSO) 33 2193 204 0.006 56 1237 120 ≈ 0.000

Peterson (PSO) 24 2241 188 0.004 30 1465 104 ≈ 0.000

Lamport Bakery (PSO) 49 12.3 k 248 0.022 59 7645 168 0.01

Szymanski (TSO) 32/35 21.9 k 204 0.056 59/68 12.2 k 124 0.012

Arora Q. (PSO)
uuuoouo‖sss 9/15/30 186.7 k 428 0.456 13/18/49 147.2 k 316 0.202

uououo‖ss‖ss 9/15/30 24.6 M 492 87.94 13/18/49 7.90 M 344 12.58

Treiber Stack
uouo‖uouo 13/16 168.9 k 360 0.398 16/29 115.8 k 252 0.152

uuuooo‖ ooouuu 13/16 2.365 M 448 6.66 16/29 1.702 M 340 2.816

TML (PSO)
wr ‖ wr 30 2136 260 ≈ 0.000 55 1298 152 ≈ 0.000

wrr ‖ wrr 37 3651 276 0.008 86 4290 168 0.002

IRIW: w ‖ w ‖ rr ‖ rr 22/23 17.6 M 356 63.34 33/38 3.717 M 192 5.838

Table 6.2: Veri�cation results for full state space exploration error: #i are lines of
LLVM IR instructions (“/” separated for each method); #n number of nodes in the
sb-graph (“/” separated for each sb-graph); #s the number of states explored t is the
time in seconds.

the transformed SC programs grow in size compared to the original program, we also
provide the number of nodes of the respective store bu�er graphs. These numbers
are actually a good indicator for the amount of behavior that is present only due to
weak memory models. Please note that LLVM IR code is already organized by the
compiler into control �ow blocks. Because an SC store bu�er graph is essentially a
control �ow graph, it has #i + 1 nodes for a program with #i instructions. If the
actual number of nodes exceeds #i + 1, then it can only be due to additional nodes
in the store bu�er graph, which again can only be due to combinations of program
locations with non-empty symbolic store bu�ers.

Throughout all of our experiments the reduction approach outperformed the
usage of operational memory models. In all but one of our experiments, the model
checker had to explore less states in the reduced SC programs. Without exception,
the checks of the reduced SC programs were faster than those based on operational
memory models. The speed up goes up to a magnitude in our experiments and
grows with increasing di�culty of the experiments. The latter is mainly driven by
the number of concurrent processes and the number of method calls each process
executes consecutively.

The mutual exclusion algorithms Burns, Dekker, Peterson, Lamport Bakery and
Szymanski posed barely a challenge to the model checker using both of our methods.
The scenario that we veri�ed for all of these case studies consists of two processes,
each attempts to acquire the mutex and then releases it once. For some of the mutex

138CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

pso pso2sc
Algorithm #i #s v t #n #s v t
Burns (TSO) [BL80] 3/19/11 464 412 ≈ 0.000 4/30/12 425 72 ≈ 0.000

Dekker (TSO) 33 2332 340 0.008 60 1480 120 ≈ 0.000

Peterson (PSO) 24 2241 324 0.004 30 1465 104 ≈ 0.000

Lamport Bakery (PSO) 49 12.3 k 384 0.052 59 7645 168 0.012

Szymanski (TSO) 32/35 21.9 k 340 0.088 70/82 15.3 k 124 0.02

Arora Q. (PSO)
uuuoouo‖sss 9/15/30 185.3 k 812 0.894 13/18/52 147.2 k 316 0.21

uououo‖ss‖ss 9/15/30 24.0 M 1068 184 13/18/52 7.9 M 344 12.62

Treiber Stack
uouo‖uouo 13/16 172.3 k 728 0.842 16/31 126.8 k 252 0.174

uuuooo‖ ooouuu 13/16 2.46 M 816 13.62 16/31 1.9 M 340 3.326

TML (PSO)
wr ‖ wr 30 2183 428 0.004 59 1450 152 0.002

wrr ‖ wrr 37 7938 444 0.028 111 5559 168 0.008

IRIW: w ‖ w ‖ rr ‖ rr 22/23 18.7 M 692 132 42/58 4.18 M 192 6.884

Table 6.3: Veri�cation results for full state space exploration error: #i are lines of
LLVM IR instructions (“/” separated for each method); #n number of nodes in the
sb-graph (“/” separated for each sb-graph); #s the number of states explored t is the
time in seconds.

algorithms, Spin reported 0 time for the veri�cation, i.e., the time required for the
full state space veri�cation is below measurement threshold. For some cases 0 time
was reported for all of the �ve explorations. We use the entry ≈ 0.000 in the table
for these cases in order to highlight that the actual time of the exploration must be
close to zero. Please note that Spin reports times only with at most 10ms or two
digit accuracy and that the entries with values below 0.01 are the resulting average
of our �ve runs.

The di�erence between both approaches in veri�cation times becomes more
obvious with the size of the programs or the veri�cation scenario. We did not extend
the scenario that we used to check the mutex algorithms, but rather focused on
actual concurrent data structure implementations as intended from the beginning of
this thesis. The work-stealing queue by Arora et al. and the Treiber stack are two
such implementations. In contrast to mutex algorithms, these algorithms allow for
in�nite abstract and concrete states. However, we can still verify �nite scenarios
by providing a set of processes, each executing a prede�ned sequence of operations.
The tables denotes the scenarios in a short notation. For the Arora et al. queue, we
use “u” for a pushBottom call, “o” for a popBottom call and “s” for a popTop call. The
parameter to pushBottom is a unique integer value for each call. We denote parallel
composition as ‖. For instance, a scenario uu‖s denotes two processes, where the
�rst process executes two consecutive pushBottom calls and the second process a
popTop call. We use a similar notation for the Treiber stack, where “u” corresponds

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 139

to a push call and “o” to a pop call. The TML algorithm di�ers from the previous
two in the sense that we need consider transactions. In our scenarios, each process
executes one transaction. A transaction can perform arbitrary modi�cations to the
shared memory, which have to appear atomic. The explored scenarios represent
the litmus tests from Chapter 2 where each transaction performs writes (“w”) and
reads (“r”) of one of the processes from the underlying litmus test. Thus, if the TML
algorithms is not properly synchronized, we should be able to observe results that
are identical to the ones these litmus tests aim to detect. In fact, we were able to
identify a fence that is required under PSO.

From both tables, we can observe smaller veri�cation times with reduction-
based approach for all of our experiments. If we ignore the explorations below
time measurement threshold, then the speedup provided by the reduction over an
operational memory model is roughly a factor of 2 to 10. The largest speedup was
observed for the scenarios with three or four processes involved. Please note that
even for the TML scenario, where the reduction approach had to explore more states
than the operational approach, we were able to observe a speedup.

We think there are several reasons for the observed speedup in our experiments.
One obvious reason for it is that the model checker had to explore less states in most
cases. This is likely due to fewer variables used in the reduced programs, while the
operational memory model requires some auxiliary variables as part of the encoding
of its behavior. Furthermore, fewer variables result in a smaller state vector. The latter
allows for faster state coverage checks during exploration, since less information has
to be taken from memory in case of cache miss. Furthermore, more states can be held
in the processor cache, which should result in less cache misses on average. Please
note that a cache allows for a signi�cantly faster access to data than the memory,
if the requested data is present in the cache. Another bene�t from the comparably
small state vectors of the reduction-based approach is that the exploration is capable
of exploring more states before it runs out of memory. Another possible argument
for the observed speedup is the partial order reduction [Val89] provided by Spin,
which was active throughout our experiments. It avoids exploration of states that
are present due to commuting events. For instance, two concurrent processes could
modify one of their local variables. The order of these modi�cations does not matter
since they will end up in the same state. Thus, it is su�cient to explore only one of
the possible orders. We think, it is also possible that the partial order order reduction
as implemented by Spin performs better with reduced programs, because they do
not separate program and semantics into two processes as our operational approach
does.

Please note that in [TW16] we used simple assertions in our experiments in
order to compare veri�cation performance between operational memory models and

140CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

the reduced programs. The experiments in this section used an abstract speci�cation
as proposed in the previous section. In contrast to simple assertions, the abstract
speci�cation has to be carried throughout the whole exploration as part of the state.
Thus, the results presented here di�er from our previously published results. You
will also notice that we do not present results for the �b bench case study [sv-16].
The reason for it is that is not a data structure implementation and thus, there is no
abstract speci�cation for it. Instead, it is just a rather simple concurrent program
with assertions that have to hold.

6.1.3 An alternative Idea - History Checking

An alternative approach for the veri�cation of linearizability under any memory
model is to record all possible histories of a program during exploration and then to
check whether the histories are linearizable while ignoring the rest of the program.
The idea is to check concurrent histories against sequential histories. For this, we
need a set of histories produced by an implementation. The set can be gathered
by logging events in test runs or systematically through state space exploration.
In addition, we need to de�ne a checking procedure, which determines whether
a concurrent history is linearizable. For linearizability, we have to �nd a witness
history that is (1) sequential, (2) equivalent to the concurrent history and (3) respects
its real-time order. An execution (or more accurately its history) can be considered
linearizable, if we can �nd a witness for it. If there exists a concurrent history for
which no witness history can be found, then it is a counterexample for linearizability
of the implementation.

The idea, we follow here, is very general and in its spirit combines the ideas
from [VYY09, BDMT10]. Vechev et al. [VYY09] de�ne history based linearizability
checks using abstract atomic speci�cations in Spin, where the abstract speci�cations
are similar to those in the previous section. Burckhardt et al. [BDMT10] use the
implementation under analysis in order to generate all possible sequential histories.
Later, these are used as a set of potential witnesses for all concurrent histories. In
contrast to the above, our approach is to use Spin for the exploration of all possible
concurrent histories while using actual sequential data structure implementations
for the generation of witness histories in the linearizability check. Both of the above
approaches assume an SC memory model. However, a memory model in�uences
only the set of possible concurrent histories. If a weak memory model has an impact
on the correctness of an implementation, then it must be observable via a non-
linearizable history. This is also how the approach aims to �nd bugs due to weak
memory models.

The history based check has been implemented by one of our students (Katharina

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 141

Dridger) during her bachelor thesis [Dri14]. She implemented checks for Lineariz-
ability [HW90] and also for Quiescent Consistency [HS08]. The approach can also
be extended to other correctness conditions that rely on sequential histories as
witnesses. In the following, we elaborate on this approach.

Logging of Concurrent Histories

A model checker like Spin explores the state space of a Promela model, in our case
a data structure implementation. Thus, the explored state space also includes all
possible interleavings of the program. With all possible interleavings, we also get all
possible concurrent histories for an explored test scenario.

Unfortunately, these histories are di�cult to extract from the explored state
space, which is why the program must be instrumented. The instrumentation of
the program is straightforward in the sense that we need to log the invoke and
response events of all operations, including parameter and return values. Thus, at
each operation invocation we log an invoke event and at each operation return
we log a return event. Each event is a tuple (eType × eID × P × Op × Param),
where eType = {inv , res}, eID ⊆ N is a unique event identi�er, P ⊆ N the process
identi�er, Op ⊆ N an operation identi�er and Param one or more input or output
values. Please note that we can add other events as long as we make sure that the
instrumentation is correct. Thus, the approach is adequate for checking all three
adaptations of linearizability (see Chapter 5) to weak memory models as well as the
original linearizability de�nition [HW90].

Promela does not allow for dynamically sized data structures like lists. Thus, we
need to de�ne an array h in our model that will store the events and particularly
their order of appearance in an execution. This array represents the concurrent
history and it is the only variable that our later checking procedure will consider
from for any execution of the implementation. The length of the array #h must be
#h ≥ 2n , where n the number of method calls in the explored test scenario. Since
h is �nite, we can only log �nitely many method calls with this approach.

In principle, this is all we have to do in order to gather all possible concurrent
histories of an implementation in a particular test scenario. However, we also need
a condition to be checked for each of the logged histories and which determines
whether the history is linearizable or not. In particular, we also want it to be validated
during the exploration and not afterwards, since �nding a non-linearizable history
renders the rest of an exploration obsolete. Figure 6.7 provides an overview of the
separate steps in this approach. The linearizability check is implemented in C as
an extension to Spin and must be added as an assertion in the Promela model. The
check must be triggered after all processes have �nished their work. The latter can

142CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

be achieved by �ags for each process that are set to true once the process is �nished.
The reason why the correctness check should be triggered after all processes are
�nished is because it is expensive. It deals with permutations of events as the check
has to �nd an equivalent sequential history for the concurrent one. If it fails to �nd
one, the assertion evaluates to false and stops the state space exploration in Spin
with a history as a counterexample to the correctness condition. Consequently, the
check considers only complete histories and no pre�xes of it.

exploration

(DFS)

data structure

(Promela)

instrumented

data structure +

test scenario

instrumentation

linearizability

check

OK or

counterexample

history from

complete run
true or false

Figure 6.7: Overall history checking procedure. Exploration triggers history checks
via assertion whenever all processes have run to completion.

Checking Histories for Correctness

Checking whether a single concurrent history is linearizable or correct w.r.t. some
other correctness condition is not very di�cult. In principle, it is the search for a
permutation of events in the concurrent history, s.t., characteristic constraints of the
checked correctness condition hold in the permutation. If such a permutation can
be found, then it is the witness for the correctness of the concurrent history. More
importantly, the permutations we search for are sequential executions of the imple-
mented data structure. That means, we can use actual sequential implementations
in order to generate all possible sequential histories by using the same inputs as in
a concurrent history obtained during exploration. Furthermore, it is su�cient to
permute pairs of events corresponding to an operation, because an invoke is always
followed by its return in a sequential history.

With this in mind, our student Dridger implemented a standard library of simple
sequential implementations of a queue, a stack, a set and a multiset as an extension
to Spin. On top of them, a sequential history generator was implemented. Figure 6.8
shows the major steps of the implemented linearizability check. As an input, it
takes the concurrent history ch as provided by the instrumented Promela model
and generates all sequential permutations with the given inputs from ch . The result

6.1. MODEL CHECKING UNDER WEAK MEMORY MODELS 143

is a set HSpot of potential linearizability witnesses. However, this set has yet to be
�ltered according to the other two requirements for linearizability, which require it
to be equivalent to ch and respect the real-time order of it. Filtering for equivalence
is simple, because we only have to check whether the output of return events is
identical to what was stated in ch . Since the input values of invoke events were
already considered in the generation HSpot , only the output values of each response
event have to be compared with those in ch . Whether the real-time order is preserved
by a candidate hs ∈ HSpot or not is also simple. For each event hs we only need to
check whether it violates any ordering that needs to be preserved from ch . Please
note that the real-time order also covers the sequential order of operations by each
process. Both checks can be performed in O(n2) per potential witness history.
Throughout the above �ltering procedure of HSpot it is possible that we end up with
an empty set of witness histories. If HSpot is empty, then ch is a non-linearizable
history and the checking procedure returns false. At this point, the exploration in
Spin is stopped due to the assertion containing the linearizability check and the
history ch is reported. Otherwise, if the set HSpot remains non-empty at the end
of the �ltering steps, the exploration can continue, because each of the histories in
HSpot is a linearizability witness for the currently explored history ch .

generate all

sequential

histories

history from

exploration

witnesses with

identical events

potential

witnesses

filter witnesses

by return values

data structure

(sequential)

filter by real-

time constraints

definite

witnesses

return true if

witnesses non-

empty

Figure 6.8: Stepwise checking procedure of a concurrent history. Sequential data
structure and the history are input parameters to the check.

Please note that the overall procedure of this approach works best with a depth-
�rst-search (DFS) state-space exploration, because our Promela models trigger the
check when all processes �nished their work. DFS ensures early validation of
histories in the exploration procedure and thus, enables the exploration to abort
early in case of detecting a non-linearizable history. In a breadth-�rst-search (BFS)
exploration, the linearizability check would be triggered only after a large fraction of
the state-space was already explored. The latter can be a waste of time and resources
if the data structure is not linearizable and can be avoided by exploration in DFS
manner.

144CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

Weak Memory Models and Discussion

As the reader may have noticed, weak memory models do not play an important
role in this approach. The instrumentation is mostly independent of the underlying
memory model, because only operation invocations and responses are taken into
account. In general, the approach can be applied for each of the linearizability
de�nition adaptations from Chapter 5.1 and also other correctness conditions. Two
of the latest versions of linearizability [BGMY12, DSGD17] also take �ushes in terms
of special events into account. An instrumentation to log �ushes as part of the history
is considerably more di�cult, because one has to identify statically when a particular
�ush occurs. The latter highly depends on how the weak memory semantics are
modeled, be it as part of the analyzed program or in terms of a separate operational
memory model. In either case, expertise is required. However, most correctness
conditions consider invoke and response events only. For such correctness conditions
this approach is practical and simple to apply.

The only manual task in our approach is to instrument the data structure properly
and to de�ne test scenarios for the exploration. The Promela model of the data
structure can be generated with the help of Weak2SC. The approach does not
require any knowledge of linearization points and thus also suits non-expert users.
However, it su�ers from some problems with complexity and performance, which
are di�cult to avoid.

First of all, the history enlarges the program state in this approach. Thus, it takes
more memory to encode a state as a bit vector. Consequently, a smaller number
of states can be explored than without a history as part of the program state. This
can have a signi�cant e�ect on the explorable state-space, especially if the actual
program does not have many variables. In such cases, most of the state vector will be
required for the history. Furthermore, we have to make sure that test scenarios are
�nite. Otherwise, the exploration would run out of memory quickly just by �lling
the history and we could not complete any exploration. Spin does not allow for
dynamic data structures anyway and that is also the reason why we use an array
to encode the history in our Promela models. In contrast to our previous approach
in Section 6.1, this approach can only check �nite executions instead of �nite state
programs, which can have in�nite executions.

A second limiting factor to this approach is the number of times the linearizabil-
ity check is triggered due to the interleaving of di�erent processes. The state-space
exploration in a model checker like Spin explores all possible interleavings of con-
current processes. The latter are of course more �ne grained than a history that
consists of invoke and response events. An exploration will likely reveal many
program executions that may lead to di�erent states, but which are represented by

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 145

the same history. A linearizability check is triggered by an assertion in the Promela
model whenever the exploration reveals a new state at the program location of
the assertion. Many of the histories will be identical. In order to avoid checking
identical histories multiple times for a corresponding linearizability witness, we can
memorize previously checked histories. Obviously, a memorization of previously
checked histories would also come at the price of even more memory consumption
and would further decrease the number of states that can be explored.

Generally, we can say that the history checking approach does not scale well
with the size of the test scenarios. In particular, this is the case, because the search
for a linearizability witness is a search for a permutation of history events. The latter
has factorial complexity. The experiments by our bachelor student Dridger [Dri14]
had less than ten operations (all processes combined) and at most four concurrent
processes before they ran out of memory. The checked data structures implemen-
tations were the Michael and Scott queue [MS96], the Treiber stack [Tre86], QC-
Queue [DDS+14] and a multiset implementation [EQS+10]. Her experiments were
conducted under SC semantics and thus, did not even take the increase of possible
interleavings due to weak memory models into account. However, her experiments
also show that small test scenarios can be veri�ed with this approach.

Besides being a simple but not well scaling approach for checking linearizability, it
is also an approach that is easy to extend in two ways: First, more data structures can
be added to the mechanism for generating sequential histories, simply by providing
their implementation and a de�nition of its possible invoke and response events (per
operation). This would allow for linearizability checks of other than the provided
data structures. A second way to extend this approach is by providing a di�erent
history checking procedure, e.g., for di�erent correctness conditions or in order
to experiment with di�erent optimizations. Our student Dridger implemented a
checking procedure for quiescent consistency [HS08]. Thereby, she was one of the
�rst to provide a model checking approach for quiescent consistency. The history
check is a separate module of our extension to Spin and can be easily exchanged
with other checking procedure implementations.

6.2 Proving Linearizability under Weak Memory

Models

As a proof approach, we suggest the linearizability theory developed by Derrick
et al. [DSW07]. It was stated for the original de�nition of linearizability [HW90]
and thus considers only sequential consistency [Lam79]. However, the more recent
de�nitions of linearizability by Gotsman et al. [GMY12] and the more general ver-

146CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

sion of it by Batty et al. [BDG13] can be viewed as generalizations of the original
linearizability de�nition that do not change its essential meaning. As explained in
the previous chapter, the boundaries for the linearization points (have to lie between
invoke and response of an operation) remain the same in these de�nitions, even un-
der consideration of weak memory semantics. Thus, we can apply existing SC proof
techniques for linearizability as long as the behavior that we consider incorporates
the weak memory semantics of our target architecture. The latter is achieved by our
reduction from Chapter 3 or it can be part of a memory model speci�cation (in the
style of an operational model) that reveals all possible program transitions during a
proof.

We have chosen the proof theory and proof approach by Derrick et al. [DSW07,
DSW11a], because it is fully speci�ed in the theorem prover KIV [EPS+14] and was
also proven to be sound and complete [DSW11a, SWD12]. Furthermore, we were able
to gain some expertise with the theory and the theorem prover in proving earlier case
studies correct [TWS12, TTSW14]. The latter can be crucial when proving programs
correct as the proofs are inherently complicated. The linearizability theory comes
with two versions of proof obligations, local [DSW11b] and global [DSW11a, SWD12]
ones, which is also the reason why Weak2SC provides two types of data type
encodings for KIV. These proof obligations can be instantiated within the theorem
prover for any given case study and then, with the help of the theorem prover, be
proven correct.

In this section, we exemplify the application of the proof approach to our running
example, the Arora et al. work-stealing queue [ABP98]. Particularly, we want to
identify the impact of our proposed reduction on the proof e�ort compared to an
operational style memory model speci�cation. The latter shall help us answer RQ2
as stated at the beginning of this chapter.

6.2.1 Overview

The proof methodology proposed by Derrick et al. [DSW11a, DSW11b] shows lin-
earizability via a non-atomic re�nement proof between a concrete and an abstract
data type. Both, the concrete and the abstract data structure, are formalized as in-
stances of an abstract data type in Z [DB14]. Essentially, the methodology shows that
all histories of the concrete data structure are in a subset relation with those of the
abstract data structure. Such proofs are usually achieved by showing forward or back-
ward simulations between two data types [LV95]. Both types of simulations are sound
and in case of the backward simulation also a complete proof technique [SWD12]
for linearizability. In this chapter, we present an instance of a backward simulation
from [DSW11b], which in contrast to the forward simulation in [DSW11a] also can

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 147

handle potential linearization points. Even though our case studies do not have
potential LPs, we chose these proof obligations as a precautionary measure just in
case we might encounter an LP that we were not aware of. Backward simulations
are often more di�cult to prove than forward simulations, because they can require
reasoning about the past of an object. The latter can be counterintuitive. However,
often they cannot be avoided as in case of potential linearization points. We assume
that the concrete data structures are results of the program transformation that we
introduced in Chapter 3. Thus, their speci�cations include all the behavior that can
be caused by weak memory models to them.

The methodology by Derrick et al. [DSW11b] provides local proof obligations
that can be instantiated for case studies. If these proof obligations can be proven
to hold, then this implies that there exists a certain type of simulation between the
concrete and the abstract data type. The latter does not have be stated explicitly in
order to prove the proof obligations, but. it implies that the concrete data type is a
non-atomic re�nement [DW05] of the abstract data type. That is, one of the many
concrete operations that implement an abstract operation simulates the abstract
operation while all other concrete operations are stutter steps. The step simulating
the abstract operation is what we refer to as the linearization point (LP). At last, the
non-atomic re�nement implies that the concrete data type is linearizable w.r.t. the
abstract data type. The proof obligations as well as their soundness proofs [DSW11a,
DSW11b, SWD12] are formalized in the theorem prover KIV [EPS+14] and are ready
to use. Thus, all we have to do in order to prove an implementation linearizable is to
prove the local proof obligations for it.

The Local Proof Obligations for Linearizability

A data type DT = (S ,SInit , (OPp,i)p∈P ,i∈I) consists of a state space S , a set of
initial states SInit and a set of operations (OPp,i)p∈P ,i∈I that are executed by some
process p. We use I (and later also J) to index operations. We pre�x these sets and
de�nitions with an “A” for an abstract (ADT) and “C” for a concrete (CDT) data
type. Please note that we decompose the concrete state CS into globally shared
state GS and a local state function lsf : P → LS that maps processes to their local
states LS . This enables reasoning and de�nition of the proof obligations in a thread
modular way.

An operation AOPi (resp. COPj) is a predicate over a state as, as ′ ∈ AS (resp.
gs, gs ′ ∈ GS , ls, ls ′ ∈ LS), where the unprimed variables refer to the state before
the operation and the primed variable refers to the state after.

Figure 6.9 visualizes the re�nement relation that the proof obligations from
[DSW11a] prove. At the top, we see an abstract operation AOP(in, out) with input

148CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

IDLE IN(in) IN(in) OUT(out) OUT(out) IDLE

AOP(in,out)

COPLPINVOP(in) RETOP(out)COP* COP*

Figure 6.9: Visualizing non-atomic re�nement and the linearization status.

parameter in and a result out . We assume in, out ∈ V to be from some value
domain V . The operation brings us from one abstract state to the other. At the
bottom, we see a sequence of concrete operations which together implement the
abstract operation. These start always with an invoke operation INVOP(in) and
end with a �nal operation RETOP(out). Both operations have identical input and
output parameter to the abstract operation. In between, there are possibly many
concrete operations COP , out of which one is the linearizing operation COPLP

or simply the LP. Abstract and concrete states must be related by a re�nement
relation R ⊂ AS × (GS × LS) which is visualized by the dashed lines. In the
proof obligations, the re�nement relation is further split into an abstraction function
Abs : GS → AS and an invariant predicate INV over (GS × LS). In principle,
all the concrete states before COPLP must be related to the abstract state before
AOP(in, out) and all the concrete states after COPLP must be related to the abstract
state after it. Abstractly, all of these steps, except for COPLP , are skip steps, which
do not modify the state. The linearization status (denoted at each concrete state)
describes whether an operation has linearized already and will return with output
out or whether it has yet to linearize with its input in .

The linearization points must be known in advance, because we need to de�ne
which of the concrete operations is the LP. That is achieved by the linearization status,
which is represented by a status function. The function status : LS → STATUS

de�nes whether a process is IDLE , whether it has not yet reached its LP (IN (in))
or whether it has reached its LP already and only needs to return (OUT (out)). An
additional status value INOUT (in, out) represents a state, in which an operation
potentially may have linearized already, but its outcome can still be in�uenced by
other processes and thus is not de�nite, yet. The latter can only appear in operations
with potential LPs.

The local proof obligations are structured into three important parts. The �rst
and most important part de�nes the non-atomic re�nement between concrete and
abstract operations. Since the �rst part is local, we also need to make sure that other

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 149

processes do not interfere with the local assumptions of each process. Thus, the
second part of the proof obligations deals with interference freedom and disjointness
among processes. The third and last part covers initialization, in which invariants
and the re�nement relation must be established for initial states.

Non-atomic Re�nement The proof obligations for the non-atomic re�nement
split concrete operations into essentially four di�erent cases. Each case has its own
lemma that must be proven. The cases correspond to the possible linearization status
of an operation and particularly to how the status can change from one status to
another. The �rst lemma must be proven for invoke operations:

(∀ as ∈ AS , gs, gs ′ ∈ GS , ls, ls ′ ∈ LS • INVOP(in, gs, ls, gs ′, ls ′)

∧Abs(gs ′) = as ∧ INV (gs, ls) ∧ status(gs, ls) = IDLE)

⇒ Abs(gs) = as ∧ INV (gs ′, ls ′) ∧ status(gs ′, ls ′) = IN (in)

where INVOP(in, gs, ls, gs ′, ls ′) is the invoke operation and it must start at a state
gs, ls with input in . The invariant INV (gs, ls) is assumed to hold initially. The
invoke operation modi�es the state to gs ′, ls ′. As we deal with an instance of
backward simulation, we assume the abstraction Abs(gs ′) = as to hold for the
modi�ed state gs ′ and we have to prove that it was also valid initially Abs(gs) = as .
Furthermore, the linearization status must have been IDLE at start. After the invoke,
the new status must be IN (in), i.e., the operation must not have linearized yet. Also,
the invariant must still hold INV (gs ′, ls ′) in the new state.

The second case must be proven for all internal operations COPj that are neither
invoke, nor response operations and which lie before the linearizing operation:

(∀ as ′ ∈ AS , gs, gs ′ ∈ GS , ls, ls ′ ∈ LS • COPj (gs, ls, gs ′, ls ′)

∧Abs(gs ′) = as ′ ∧ INV (gs, ls) ∧ status(gs, ls) = IN (in))

⇒ Abs(gs) = as ′ ∧ INV (gs ′, ls ′) ∧ status(gs ′, ls ′) = IN (in)

∨ (∃ as ∈ AS , out ∈ V • AOPabs(j)(in, as, as ′, out)

∧Abs(gs) = as ∧ INV (gs ′, ls ′) ∧ status(gs ′, ls ′) = OUT (out))

where two outcomes are possible. Either COPj was a skip step or a linearizing
step. In both cases, the invariant must hold initially, INV (gs, ls), and after COPj

was performed, INV (gs ′, ls ′). Also status(gs, ls) = IN (in) must hold initially in
both cases. If the operation COPj is not an LP (a skip step), then the status(gs, ls)

must remain IN (in) and the abstract state Abs(gs) = Abs(gs ′) = as ′ must not be
modi�ed. If COPj is the LP of the implemented operation, then there must have been

150CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

an abstract state as , from which the abstract operation AOPabs(j)(in, as, as ′, out)

leads to the new state as ′. Here, we use abs(j) to map concrete operations to their
corresponding abstract operation that they implement. Furthermore, the return
value out is �nalized in case of an LP and the status must change to OUT (out).

The third case deals with all internal operations COPj after the LP and before
the response operation:

(∀ as ∈ AS , gs, gs ′ ∈ GS , ls, ls ′ ∈ LS • COPj (gs, ls, gs ′, ls ′)

∧Abs(gs ′) = as ∧ INV (gs, ls) ∧ status(gs, ls) = OUT (out))

⇒ Abs(gs) = as ∧ INV (gs ′, ls ′) ∧ status(gs ′, ls ′) = OUT (out)

where again the invariant INV has to hold before and after the operation COPj .
The abstraction function Abs(gs) = Abs(gs ′) must also map both global states
gs, gs ′ to the same abstract state as . Furthermore, the linearization status must not
be modi�ed by the operation, because otherwise, a concrete operations would be
able to linearize again as we could end up in the previous case.

The last case is the lemma that must be proven for response operations:

(∀ as ∈ AS , gs, gs ′ ∈ GS , ls, ls ′ ∈ LS • RETOP(gs, ls, gs ′, ls ′, out)

∧Abs(gs ′) = as ∧ INV (gs, ls) ∧ status(gs, ls) = OUT (out))

⇒ Abs(gs) = as ∧ INV (gs ′, ls ′) ∧ status(gs ′, ls ′) = IDLE

where RETOP(gs, ls, gs ′, ls ′, out) is a response operation with the output out .
As in all previous cases, the invariant has to hold before and after the operation.
Similarly, the abstraction function must map both states to the same abstract state.
The speci�c part of this case is that the linearization status changes from OUT (out)

to IDLE , which allows the process to invoke new operations.
The above proof obligations consider only internal operations COPj being the

LP of an implemented operation. However, in some cases an invoke or response
operation can also be the LP. In such a case, the proof obligations for the invoke or
response must look similar to the second case, in which they also have to perform an
abstract operation AOPabs(j) and change their linearization status accordingly. Also
important to note is that by stating whether an operation is IN (in) or OUT (out),
we must know de�nitely whether a concrete operation is the LP or not (the LP
is �xed). That is not always possible as there are implementations with potential
linearization points. A potential LP often occurs, if the outcome of an operation is
determined by another concurrent process. Potential LPs are handled in the proof
obligations by an additional linearization status value INOUT (in, out). The latter
represents a state in which an operation has potentially linearized, but is still able to

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 151

revise its decision. The additional status value also adds several possible cases to the
above proof obligations by allowing an operation to transition to INOUT (in, out)

and out of it to the other status values. We omit these cases here, because our later
presented case studies did not require them and we do not want to further distract
from our overview of the local proof obligations. A more detailed explanation of
potential linearization points can be found in [DSW11b, TWS12, TTSW14].

Interference Freedom and Disjointness The previously presented proof obli-
gations for non-atomic re�nement consider only re�nement of individual operations.
Interference by other processes is not taken into account. Thus, the proof obligations
can only be considered valid, if we ensure that other processes do not interfere with
the re�nement relation that holds for each process individually. In other words, we
have to prove interference freedom:

(∀ gs, gs ′ ∈ GS , lsp, lsp′, lsq ∈ LS • COPj (gs, lsp, gs ′, lsp′)

∧ INV (gs, lsp) ∧ INV (gs, lsq) ∧D(lsp, lsq))

⇒ INV (gs ′, lsq) ∧D(lsp′, lsq) ∧ status(gs, lsq) = status(gs ′, lsq)

where lsp, lsp′ belong to some process p performing the operation COPj and lsq

is the local state of another process q . The process q represents all other processes
symbolically with whom process p can interfere. Initially, the invariants of both
processes INV (gs, lsp) ∧ INV (gs, lsq) hold. Furthermore, a disjointness predicate
D(lsp, lsq) is assumed to hold as well. The latter is sometimes necessary for formal-
izing invariant properties among di�erent processes, which cannot be formalized
in a pure thread modular setting, e.g., disjointness of process identi�ers (p 6= q).
Essentially the above lemma combines all steps of p with all possible states of q . All
of this combinations must not invalidate the invariant INV (gs ′, lsq) of process q ,
even if the global state was changed by p. The disjointness predicate D(lsp′, lsq)

also must still hold and the linearization status of q must remain unchanged by the
operation COPj . Identical lemmas also must be proven for invoke and response
operations, since they also have the potential to interfere with other processes.

Initialization The previous proof obligations and the interference freedom proof
obligations together guarantee that the concrete data structure re�nes the abstract
data structure in a concurrent setting. However, each lemma that we presented here
assumes the invariants and/or the abstraction function to hold in the �rst place.
Thus, as a last proof obligation we must prove correct initialization, which must

152CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

establish exactly this assumption for initial states:

∀ gs ∈ GSInit •
(∃ as ∈ ASInit • Abs(gs) = as)

∧ (∀ ls ∈ LS , p ∈ P • LSInit(ls, p)⇒ INV (gs, ls))

∧ (∀ ls, lsq ∈ LS , p, q ∈ P • LSInit(ls, p) ∧ LSInit(lsq , q) ∧ p 6= q ⇒ D(ls, lsq))

where GSInit is the set of global initial states and ASInit the set of abstract initial
states. The abstraction function Abs must map all initial global states to an initial
abstract state. Furthermore, each initial local state ls ∈ LS owned by a process
p ∈ P must satisfy its invariant INV (gs, ls). Consider LSInit(ls, p) to be true, i�
ls belongs to process p and is an initial state. Lastly, all initial local states ls, lsq

owned by disjoint processes p, q must satisfy the disjointness predicate D(ls, lsq).
This completes our presentation of the local proof obligations for linearizability,

which in turn imply the existence of a backward simulation between the concrete
and abstract data structure. More details on the construction of the simulation can
be found in the work by Derrick et al. [DSW11a, DSW11b, SWD12].

The practical steps towards a linearizability proof within the above framework
are as follows:

1. Provide speci�cation of the abstract data type ADT in terms of a state de�ni-
tion AS and a set of abstract operations AOPi .

2. Provide speci�cation of the concrete data type CDT in terms of shared and
local states GS and LS and a set of operations COPj . Weak2SC can generate
these speci�cations from store bu�er graphs.

3. Provide an abstraction relation ABS (or function) that maps concrete states
to abstract states.

4. Identify LPs and de�ne the status function by mapping concrete operations
to skip steps and abstract steps accordingly.

5. Provide a local invariant INV .

6. Instantiate the proof obligations from the provided linearizability theory and
carry out the proofs.

These steps will guide us through the linearizability proofs for our case study.
As stated above, Weak2SC can generate the concrete state speci�cations and the set
of operation from store bu�er graphs. However, at the time when we carried out the
proofs, the transformation was not yet implemented in Weak2SC and we had to do it

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 153

manually. Therefore, parts of the provided speci�cations in this section may deviate
from what was presented in Section 4.4.2. The experiment aims at comparing proof
e�ort and complexity of a store bu�er graph based encoding against an operational
style encoding. When we initially proposed our reduction in [WT15], we carried out
a similar proof comparison for the Burns Mutex algorithm [BL80] and the results
were promising. The proof based on the reduction, could be automated to a higher
degree and the invariant was simpler. It was also back then, when we proved
the Arora et al. work stealing queue to be linearizable under TSO. The underlying
concrete speci�cation was an encoding of its store bu�er graphs. In order to compare
the in�uence of the underlying encoding on the proof e�ort, we proved the work-
stealing queue linearizable once again. This time, we went the extra mile and proved
it with an underlying operational style encoding of TSO. Thus, we can report on
two case studies, each proved twice to be linearizable. Please note that the e�ort
required for a linearizability proof can be days if not weeks of work, which is also
why we report only on two case studies here.

In the following, we will limit our presentation to the pushBottom operation
of the Arora et al. queue, in order to keep presentation concise. The pushBottom

operation is the shortest, but allows us to present all facets of the proof method. The
complete proofs can be found on the DVD attached to this thesis.

6.2.2 Abstract Data Type

An abstract data type de�nes the legal behavior of a linearizable data structure.
A data structure is linearizable if all its concurrent histories are equivalent to a
sequential history. In order to provide all possible sequential histories of a data
structure, we can use an abstract speci�cation that has only atomic operations. All
its executions are sequential and thus correspond to a sequential history.

An abstract atomic speci�cation consists of two parts, an initialisation predicate
ASInit and a set of operations AOPop , each encoding one operation op atomically.
Since our chosen case study is a queue, we can de�ne its behavior in terms of
operations on a list x . Consequently, we represent the abstract state as a list. Lists
and general operations on lists (e.g., obtain �rst element or remove last element) are
prede�ned in the theorem prover KIV.

ASInit(x) =̂x = ∅

AOPpushBottom(n, x , x ′, r) =̂x ′ = x + n

AOPpopBottom(n, x , x ′, r) =̂x = ∅ ∧ r = null

∨ x ′ = x .butlast ∧ r = px .lastq

154CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

AOPpopTop(n, x , x
′, r) =̂x = ∅ ∧ r = null

∨ x ′ = x .rest ∧ r = px .firstq

Initially, a queue should be empty and thus x = ∅ must hold. There are three op-
erations to be de�ned, pushBottom, popBottom and popTop. For each of the operations,
we de�ne a predicate AOPop describing it with an input variable n ∈ N, the list
before x and after x ′ the operation took e�ect and an output variable r ∈ N ∪ null .
The AOPpushBottom operation simply appends the parameter n to the end of the
list x . Thus, the new list is x ′ = x + n , where the plus operator is a concatenator
between a list and an element. We do not have to de�ne what the return parameter
r is, because the pushBottom operation of the work-stealing queue does not produce
any output. Similarly, we do not use the input n for the encoding of the other two
operations. In addition, we have to consider a possibly empty list x = ∅, for which
both operations return r = null . The popBottom operation operates at the bottom
end of the queue or in other words at the end of the list. Thus, AOPpopBottom returns
the last element of the list x .last , where last is one of the prede�ned list operations.
Please note that we use pnq to lift a natural number n to the sort we de�ned for
N ∪ null . The new list x ′ after removal of the last element from x becomes x .butlast .
The popTop method operates on the top end of the queue or at the beginning of the
list. Thus, the operation AOPpopTop removes the �rst element x .first and returns
it. Consequently, the list x ′ after removal of the �rst element is x .rest , where rest

applied to x returns the list obtained by removing the �rst element from x .
As a next step, we have to de�ne the concrete data type, such that we can de�ne

its relation to the abstract data type.

6.2.3 Concrete Data Type

The concrete data type is an encoding of a data structure implementation. Before
we de�ne its operations, we �rst need a de�nition of the set of states. Later, the
concrete operations will be de�ned over this set of states. As already mentioned
previously, the proof obligations come in two di�erent versions, local [DSW11b]
and global [SWD12]. These di�er essentially in the way the state is formalized. The
global proof obligations require a state de�nition that combines all variables, the
shared state such as the memory and the local state of all processes, into one single
state tuple CS . On the other hand, the local proof obligations assume a separation
between the state shared by all processes GS and the local state of a process LS .
Both must be de�ned as separate tuples. Please note that the global state can be
constructed simply by combining the shared state GS with a local state function
lsf : P → LS that maps all processes p ∈ P to a local state ls ∈ LS . The latter is

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 155

exactly what happens in the soundness proofs of the linearizability theory for the
local proof obligations [DSW11b, SWD12].

By choosing the local proof obligations, we can avoid quanti�cation over pro-
cesses when de�ning operations or invariant properties as we always talk about the
combination of one local state with the shared state. This limits our ability to de�ne
properties, e.g., putting states of di�erent processes in relation, but it also simpli�es
our speci�cation task as we consider only one process at a time.

Since we want to analyze the impact of our reduction approach to the proof
e�ort, we provide two di�erent concrete speci�cations. The �rst is a speci�cation
based on an operational style encoding of the semantics. This is essentially an
explicit encoding of the store bu�er and all possible behavior related to it. Local
states in this encoding have a store bu�er. The semantics are given as a set of axioms
de�ning the e�ects of program statements, such as read, write or the e�ect of a �ush.
The concrete speci�cation encodes the control �ow of each operation of our data
structure. Flushes are triggered implicitly and non-deterministically at any state that
has a non-empty store bu�er.

State De�nition

We use one de�nition of the shared state in both of our concrete speci�cations. The
shared state is the memory function Mem : N→ {N ∪ null}. We use the notation
mem[n] = a in order to say that the memory at location n has the value a . We use
mem ′ = mem[n, a] to denote a memory mem ′ that is identical to mem except for
location n for which value a replaces the old value mem[n].

We de�ne the local state tuple as follows:

LS ⊆(PC × P (.pc .p)
× N× N× N (.bot .top .tag)
× N× N× N (.bota .topa .taga)
× N× N× N (.deqa .ntop .ntag)
× N× {N ∪ null} (.elem .ret)
× (N× {N ∪ null})∗) (.buf)

where we added access functions to each tuple entry at the right of the de�nition (in
brackets). The �rst two entries encode the program location PC and the process
identi�er P . These are followed by the local variables as used by the work-stealing
queue implementation. The variables bota , topa , taga and deqa encode pointers, and
thus represent memory locations that contain the actual values. The local variables
bot , top and tag hereby represent actual values, which the algorithm obtains from

156CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

reading a value from the above locations. The variable deqa points to the �rst location
of the array that holds the elements of the queue. The array is assumed to be an
in�nite sequence of consecutively allocated memory locations. The implementation
by Arora et al. also does not handle the case of a full array and thus, implicitly
assumes an in�nite length of the array. The tuple entries elem and ret are used to
encode input and output parameters. The last entry buf represents the store bu�er
and is only required by the operational style encoding of the concrete speci�cation.

Store Bu�er Semantics

The TSO semantics based on explicit store bu�er representation were de�ned as
follows:

read(loc, buf ,mem) =(loc ∈ buf

⊃ latest(loc, buf)

; mem[loc])

write(loc, r , ls.buf) =ls.buf + (loc × r)

flush(buf ,mem, buf ′,mem ′) =̂buf 6= ∅ ∧ buf ′ = buf .rest

∧mem ′ = mem[buf .first .l , buf .first .v]

cas(loc, r1, r2, buf ,mem,mem ′) =̂buf = ∅ ∧ (mem[loc] = r1

⊃ mem ′ = mem[loc, r2]

; mem ′ = mem)

where we de�ned the semantics of reads and writes as functions for convenience
and used predicates for �ushes and CAS operations. The function read determines
the value that it returns based on its parameter buf and mem . If loc ∈ buf , then the
value is taken from the store bu�er. In this case it is an early read. The obtained
value has to be the latest entry latest(loc, buf) in the store bu�er. Otherwise, the
read function maps to the memory value mem[loc] of the requested location loc.
We de�ne the case distinction using the short notation in KIV, where a condition is
followed by “⊃” and the statement in case of a true condition, followed by “; ” and
the else case statement. Note that statements do not have to be boolean expressions
as in case of the above read function, which maps to N ∪ null . The write function
maps to a new bu�er value. It simply creates a pair of the given location parameter
loc ∈ N and the value r ∈ N ∪ null and appends it at the end of the bu�er buf . The
flush predicate de�nes two cases. The �rst case represents a skip step that does not
modify the state, buf ′ = buf and mem ′ = mem . The second case is only enabled, if
the bu�er is non-empty, buf 6= ∅. In this case, the new bu�er value buf ′ becomes

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 157

the remaining list of the previous bu�er after removing the �rst element, which
is buf .rest . The memory is also updated by the �ushed entry buf .first . Thus, the
new memory mem ′ becomes mem[buf .first .l , buf .first .v], where .l (resp. .v) is the
access function to the location (resp. value) of the entry. The cas predicate encodes
the semantics of a compare-and-swap instruction. Similar to a fence, it blocks if the
bu�er is not empty. A cas succeeds, if the memory mem at location loc equals the
expected value r1. In this case, the memory is updated with the new value r2 at the
location loc. Otherwise, the memory remains unmodi�ed, mem ′ = mem .

Concrete Operations

In the following, we provide an excerpt of the concrete operations that we used to
encode the behavior of the pushBottom method of the work-stealing queue. The
complete speci�cation can be found in our proof projects on the DVD attached to
this dissertation. In fact, we provide two versions of the operation encoding. The �rst
one used the TSO semantics as de�ned above. The second one is de�ned according
to our reduction in Chapter 3 and could also be generated by Weak2SC. However, as
we carried out the proofs before the transformation from store bu�er graphs towards
KIV speci�cations was automated in Weak2SC, the encodings were created manually
and therefore deviate slightly from our implementation in Weak2SC, e.g., in terms
of naming conventions. We present both encodings by de�ning the operations of
the pushBottom method.

We distinguish between three types of operations: invoke (INVOP), return
(RETOP) and internal operation (COP). An invoke updates the program location
from being idle (N) to the �rst program location of a method and assigns an input
value (elem in our case study) to a local variable. Similarly, a return operation changes
the program location to being idle again and de�nes the returned value (named
return). All the remaining behavior corresponding to the pushBottom operation is
de�ned by internal operations, COPi .

Explicit Store Bu�er Encoding The operation encoding of pushBottom based
on explicit store bu�er representation and the above TSO semantics is de�ned as
follows:

INVOPub0 =̂ls.pc = N ∧ ls.pid = owner ∧mem ′ = mem;

∧ ls ′ = (ls.pc := UB0 .elem := elem)

COPub1 =̂ls.pc = UB0 ∧mem ′ = mem;

∧ ls ′ = (ls.pc := UB1 .bota := read(bota, ls.buf ,mem).v)

COPub2 =̂ls.pc = UB1 ∧mem ′ = mem;

158CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

∧ ls ′ = (ls.pc := UB2 .bot := read(ls.bota, ls.buf ,mem).v)

COPub3 =̂ls.pc = UB2 ∧mem ′ = mem;

∧ ls ′ = (ls.pc := UB3 .deqa := read(deqa, ls.buf ,mem).v)

COPub4 =̂ls.pc = UB3 ∧mem ′ = mem

∧ ls ′ = (ls.pc := UB4 .buf := write(ls.deqa + ls.bot , pls.elemq, ls.buf))

COPub5 =̂ls.pc = UB4 ∧mem ′ = mem

∧ ls ′ = (ls.pc := UB5 .buf := write(ls.bota, pls.bot + 1q, ls.buf))

RETOPub6 =̂ls.pc = UB5 ∧mem ′ = mem

∧ return = p1q ∧ ls ′ = (ls.pc := N)

COPflush =̂∃ buf ′ • ls ′ = ls.buf := buf ′

∧ flush(ls.buf ,mem, buf ′,mem ′)

Unprimed and primed variables represent the variables before and after the e�ect
of an operation. Each operation is a predicate over ls, ls ′ and mem,mem ′. Most
changes do only a�ect a single variable of the local state while leaving the rest
unmodi�ed. We use the KIV short notation in these cases, e.g. ls ′ = (ls.pc :=

UB0 .elem := elem) in order to de�ne that ls ′ equals to ls , except for the entries pc

and elem , which are updated with the respective values.
Except for the �ush operation COPflush , all of the above operations only modify

the local state ls . All of them are enabled only at certain program locations and
update them to the next program location, thereby encoding the control �ow of
pushBottom. However, COPflush is not restricted to a certain program location and
is enabled whenever the store bu�er ls.buf is not empty. The �rst three COP

operations read from memory. Transition COPub4 and COPub5 write to it, but since
a write does not write directly to the memory, only the store bu�er is modi�ed.
Variable ls.deqa points to the start of the array in the memory. Since, the array
allocates a number of consecutive memory locations, ls.deqa + ls.bot points to the
ls.bot cell in the array. In fact, we reduced two local operation to a single one here in
order to avoid an additional temporary variable that holds the value ls.deqa + ls.bot .
This is sound, since local operations cannot be observed by other processes. In other
words, they commute with the operations of other processes and thus qualify for
partial order reduction [Val89].

Store Bu�er Graph Encoding The operation encoding of pushBottom based on
our proposed reduction approach is as follows:

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 159

INVOP r
ub0 =̂ls.pc = N ∧ ls.pid = owner ∧mem ′ = mem

∧ ls ′ = (ls.pc := UB0 .elem := elem)

COP r
ub1 =̂ls.pc = UB0 ∧ ls ′ = (ls.pc := UB1 .bota := mem[bota].v)

∧mem ′ = mem

COP r
ub2 =̂ls.pc = UB1 ∧ ls ′ = (ls.pc := UB2 .bot := mem[ls.bota].v)

∧mem ′ = mem

COP r
ub3 =̂ls.pc = UB2 ∧ ls ′ = (ls.pc := UB3 .deqa := mem[deqa].v)

∧mem ′ = mem

COP r
ub4 =̂ls.pc = UB3 ∧ ls ′ = (ls.pc := UB4)

∧mem ′ = mem[ls.deqa + ls.bot , pls.elemq]

COP r
ub5 =̂ls.pc = UB4 ∧ ls ′ = (ls.pc := UB5)

∧mem ′ = mem[ls.bota, pls.bot + 1q]

RETOP r
ub6 =̂ls.pc = UB5 ∧ ls ′ = (ls.pc := N)

∧ return = p1q ∧mem ′ = mem

The operations look very similar to the ones we used for the explicit store bu�er
encoding. Please note that we again removed the same local operations that would
otherwise introduce additional temporary local variables. Operations INVOP r

ub0 and
RETOP r

ub6 are identical to INVOPub0 and RETOPub6. However, the remaining
operations encode the edges from our store bu�er graph (see Figure 4.4 on p. 76)
and their e�ect according to our transformation. So, instead of using additional
predicates and functions that de�ne the semantics, mostly based on the local store
bu�er, we use simple SC semantics. Thus, the �rst three (read) operations simply
take their value from the memory. It may not be obvious, but this signi�cantly
simpli�es later proof reasoning. We know from our store bu�er graph that the store
bu�er is empty during the �rst three statements. Thus, these reads will not take their
value from the store bu�er. However, in our explicit store bu�er encoding the read

predicate takes a non-empty store bu�er into account. Thus, a later proof will unfold
a case for a non-empty bu�er. This case then must be ruled out by establishing an
invariant property, which states that the store bu�er is empty throughout the �rst
three statements of pushBottom. It is particularly the latter steps that make proofs
complex or tedious and which are obsolete for the above encoding, because they are
computed in advance.

Operations COP r
ub4 and COP r

ub5 may seem like they encode the writes COPub4

160CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

and COPub5 from the previous encoding, but this is not the case. COP r
ub4 and

COP r
ub5 encode the �ush edges from the store bu�er graph, which correspond to

the respective writes. The actual write edges became skip operations and a skip
is a commuting operation, which is why they were omitted here. Otherwise, we
would have to introduce an additional pc value (say UBi) and an operation that
does nothing but to modify the pc value from UB3 to UBi . In addition, we would
have to modify operation COP r

ub4 to start at location UBi . We would like to remind
the reader that the pc values in our store bu�er graph encoding are essentially
enumerating the nodes in the store bu�er graph, and each node corresponds to a
program location and a symbolic store bu�er state. In contrast, the program locations
in the previous encoding correspond to actual program locations in the code. The
naming of the program locations in both encodings is therefore a coincidence and
not given by construction.

For convenience, we also introduced a few constants that we could use to abbre-
viate our notation. In our LLVM code for the Arora et al. queue, we have pointers
to memory locations that are de�ned statically. These are deqa, bota, topa, taga , all
su�xed for with an “a” for address. However, these pointers must be initialized
and are not changed by the program implementation. Thus, we de�ned constants
deq , bot , top, tag to represent these memory locations.

mem[deqa].v =deq

mem[bota].v =bota

mem[topa].v =top

mem[taga].v =tag

You may also notice that top and tag are represented by separate variables, although
the implementation by Arora et al. represents both values as a single age variable.
The operations reading from or writing to variable age are modi�ed to perform the
same operation on top and tag . The adjustment allows us to avoid verbosity in our
encoding. Otherwise, we would have to deal with a memory function that maps to
pairs of natural numbers, which woulds require even more lifting of variables than
we already have, e.g., su�x .v in order to obtain the non-null value in a memory
location.

6.2.4 Abstraction Function

After providing an abstract and concrete speci�cation of the implemented data
structure, we have to relate the two. In principle, de�ning a relation is su�cient, but
a function that maps each concrete state to an abstract state is more convenient for

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 161

a proof. In case of a relation, it is possible that a concrete state is related to several
abstract states or that there is no abstract state related to a concrete state. The later
linearizability proof will almost certainly fail if we run into such a case. In case of a
function, each concrete state is mapped to a single abstract state, which reliefs us
from this type of complications.

In order to de�ne an abstraction function, we need to �rst ask whether local states
of processes are relevant for the abstract state or whether we can fully determine
the abstract state from the shared state. This is an essential question, because if local
states are relevant and the abstract state cannot be fully observed from the shared
state, then the abstraction function (taking only shared state into account) may miss
important aspects and we may not be able to succeed with a linearizability proof
based on the local proof obligations [DSW11a].

The local proof obligations for linearizability take the execution of a single
process into account, which executes against a symbolic process that represents
all other processes. The latter is only valid, if they all appear to be identical to the
executing processes, i.e., they can be generalized to one symbolic adversary process.
If this is not the case, as it is for the Arora et al. queue (owner and stealer roles of
processes), we have two options: we can use global proof obligations [SWD12] or
we can add auxiliary variables. The global proof obligations do not separate between
shared and local state encoding and therefore allow to refer to local states of all
processes directly. However, the speci�cation of invariants etc. also tend to be more
verbose. The other option that we also chose for our running example is to add
auxiliary variables. Auxiliary variables allow us to share information from the local
state of other processes by adding this information to the shared state. Thus, we
can then refer to the auxiliary variables whenever we would otherwise refer to the
local state of a process. Auxiliary variables enable us to enjoy the bene�ts of local
reasoning while reasoning about global arguments whenever it cannot be avoided.

The abstraction function for the Arora et al. queue maps from a memory mem

to a list list that represents the queue. Therefore, we �rst de�ne how to retrieve a
list from a memory in general. The memory locations reserved for the queue q in
the memory mem start at some constant location deq . By considering all locations
that are larger than deq as array locations, we assume the array has in�nite length.
We have to make this assumption. Otherwise, the implementation would be trivially
not linearizable, because it does not handle �nite size arrays. Within that range of
array locations, we now have to distinguish which elements are considered as being
in the abstract queue. These are given by the variables top and bot , where top marks
the start of the queue and bot the end of it. Each location within that range must be
an element of the abstract queue. The function q : memory × N× N× N→ list is

162CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

de�ned recursively as follows:

n ≤ m |= q(mem, k ,m,n) = ∅

m < n + 1 |= q(mem, k ,m,n + 1) = q(mem, k ,m,n) + mem[k + n].v

where m,n, k ∈ N. Variables m and n are the start and end of the queue. Variable
k marks the beginning of the array locations. The �rst row provides an empty
queue if n ≤ m . The second row de�nes the recursion, which appends the element
mem[k + n].v to the end of the list given by q(mem, k ,m,n). As a reminder, the
memory function mem maps to null ∪ N and by using the su�x .v , we explicitly
request the value to be not null .

Naively, we could de�ne q(mem, deq ,mem[top].v ,mem[bot].v) to be the ab-
straction function, because the elements between top and bot are meant to be the
abstract queue. However, this alone is not enough. In particular, the mapping to
abstract states depends on the state of the owner processes. When a queue owner
performs a popBottom operation, variable bot is decremented and furthermore, if the
owner notices that it was the last element in the queue, then bot is reset to 0 again
(see Figure 4.2 on page 71). A change of the bot value would be immediately visible
in the abstract state based on the above function. However, bot is modi�ed before
the pushBottom linearizes, which means that, during the computation by the owner
process, the change must not be re�ected in the abstract state until the linearization
point of pushBottom is reached.

In other words, the abstraction function must deal with two cases: one case in
which the owner has not modi�ed bot and one case in which the owner decremented
or has even reset bot . In order to distinguish these two cases, we decided to add an
auxiliary variable3 range that encodes the progression of the owner process. Initially,
range = 0 holds. When the owner decrements bot during execution of pushBottom,
the range is set to 1. When the owner resets variable bot to 0, then range becomes
2. When pushBottom linearizes and the remaining queue is not empty or when the
reset of the implementation �nishes by setting top = 0 and incrementing tag in
the last statement of pushBottom, range = 0 is set to hold again. We modi�ed the
operations encoding pushBottom to set these values. Please note that it is safe to
use auxiliary variables in order to make behavior observable in the shared state.
However, an auxiliary variable must have no in�uence on an operation’s enabling
condition, i.e., an auxiliary variable must not be contained in the set of unprimed
variables of an operation encoding.

3 Auxiliary variables have their own dedicated memory locations in our encoding. Thereby, we can
avoid cascading tuple de�nitions that would result in verbose notation of formulas. Thus, whenever
we use range (resp. obot) in our formulas, the technically correct representation is mem[range].v

(resp. mem[obot].v), which we avoid for the purpose of presentation.

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 163

Now that we can determine whether the owner process has modi�ed bot or not,
we have to de�ne what the abstract state in each range is. For range = 0, it is clearly
our naive abstraction function. For range = 1, we could use bot + 1 as the end of
the queue. However, for the last range = 2, where bot is set to 0, the end of the
queue is lost (only known to owner process) even though pushBottom does not have
necessarily linearized, yet. In order to overcome this, we add a second auxiliary vari-
able obot that captures the bot value before it is modi�ed by pushBottom. Essentially,
obot acts as a snapshot of the bot value throughout execution of pushBottom and
thus, while the end of the queue would not be observable from the shared state mem

without the auxiliary variable. Given that second auxiliary variable, the abstraction
function is de�ned as follows:

Abs(mem) =(range = 0)

⊃ q(mem, deq ,mem[top].v ,mem[bot].v)

; q(mem, deq ,mem[top].v , obot)

where we again use KIV short notation for if-then-else. While range = 0, we let top

and bot determine the start and end of the queue in the array. Otherwise (while bot

is modi�ed), we let top and obot determine the start and end of the queue. Please
note that stealer processes only modify the top variable and thus, can still modify
the abstract state obtained from the abstraction function. The latter is crucial for the
proof, since the abstraction function must hold for each and every step of the concrete
speci�cation. Any change in the concrete state must be immediately re�ected by the
abstract state while the abstract speci�cation de�nes whether it is consistent with a
sequential execution.

Linearization Status

In addition to the abstraction function, the local proof obligations for linearizabil-
ity [DSW11b] also require a �xation of the linearization point (LP). The abstraction
function does not de�ne how often the abstract state is allowed to change during
execution of a method. In principle, the abstract state to which the abstraction
function maps could change with every step of the concrete speci�cation. However,
this is not what we want for the linearizability proofs. For linearizability, there must
be exactly one LP per method execution. The latter ensures that methods appear to
be atomic. The abstraction function alone does not guarantee that.

In the proof obligations by Derrick et al. [DSW11b], this relationship is captured
by a status function that de�nes when and under which conditions a method lin-
earizes. Implicitly, this also de�nes which of the concrete steps must be skip steps
and which have to be mapped to an actual abstract step AOP . The status function

164CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

is a big case distinction over program locations and additional conditions. In the
following, we provide an excerpt of the status function that concerns the pushBottom
operation. For the encoding with explicit store bu�ers, this part looks as follows:

status(mem, ls) =IN (in) if(ls.pc ∈ {UB0,UB1,UB2,UB3,UB4}
∨ls.pc = UB5 ∧ ls.buf 6= ∅)

status(mem, ls) =OUT (out) else

where IN (in) with input parameter in means that the LP has not been passed yet
and OUT (out) means that the LP has been passed and out is the return value. For
the pushBottom operation, the LP is not in�uenced by parameter in and as it does
not return a value, it has also no in�uence on out . The operation has one single LP
and that is when incrementation of bot is written to the memory. Therefore, we can
say that pushBottom has not linearized until it reaches program location UB5. For
location UB5, we further have to distinguish whether the written value has also
been �ushed to the memory. As long as the store bu�er is not empty (ls.buf 6= ∅),
the operation cannot have linearized and it must have linearized, otherwise.

For the store bu�er graph-based encoding, the status function is simpler:

status(mem, ls) =IN (in) if(ls.pc ∈ {UB0,UB1,UB2,UB3,UB4})
status(mem, ls) =OUT (out) else

In case of pushBottom, we can simply distinguish the status of linearization by
program location only. The above case of a non-empty store bu�er does not occur
here. Since write edges in the store bu�er graph become skip operations and because
skips commute with other operations, we were able to remove it for convenience.
If the skips were still present, we would have additional program locations in the
above set corresponding to the nodes with non-empty store bu�ers in the store
bu�er graph.

We provide the remaining linearization points of the Arora et al. queue informally
and refer to the LLVM code in Figure B.1 and Figure B.2 in the appendix. The LPs of
popBottom and popTop are as follows:

• popBottom linearizes with its �rst read (line 44) of variable bot , if mem[top].v =

mem[bot].v holds at this point. In this case the queue is empty and the method
will return null .

• popBottom also linearizes by observing the age value (line 56) that combines
top and tag variables in one variable. However, it only linearizes at this point,
if mem[top].v < mem[bot].v holds and thus, the queue remains non-empty.

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 165

• The last linearization point of popBottom is the CAS instruction (line 81).
At this point, the owner process competes with a stealer process for the last
element in the queue. If the CAS succeeds, then popBottom obtains the element,
otherwise a stealer process has already obtained it.

• popTop linearizes with its read of the bot variable (line 22), if mem[top].v ≥
mem[bot].v holds. In this case, the queue is empty.

• popTop has to succeed with its CAS instruction (line 32) in order to obtain an
element from the queue. In contrast to an owner, the stealer process does not
necessarily compete for the last element at this stage, but possibly with other
stealer processes. Therefore, it can also fail because of another stealer process
although the queue is not empty.

Given the above de�nitions of the abstraction function and the status function,
we have de�ned how and when the abstract data structure must re�ect the changes
of the concrete data structure. What remains to be de�ned before a proof can be
attempted is the invariant, which we explain in the following section.

6.2.5 Invariant

Besides �nding an abstraction function, the most di�cult and time consuming part of
a correctness proof is to �nd and establish an invariant for a program. The di�culty
comes from di�erent aspects of a proof. First of all, an invariant must be proven
to hold throughout the entire program execution, i.e., for each possible step of the
transition system. Second, it has to be strong enough in order to deduce that the
abstraction function maps to a state that is consistent with the abstract speci�cation.
The di�culty arises from the interplay of the two and from the fact that, at least at
the beginning, one is usually not aware of all special cases that can appear in an
execution of the program to be proven correct.

Structurally, an invariant is a big conjunction of cases over possible program
locations and the properties that hold at these locations. Some properties do not
depend on program locations. Others hold over a range of program locations. Our
choice of the local proof obligations also matters in the sense that we need to quantify
over processes in the global proof obligations. For the local proof obligations this
is not necessary, because local invariants refer to the shared state and one process
only. However, the invariant still has to hold for all processes, but the quanti�cation
within the invariant becomes obsolete.

Not being able to specify relationships between di�erent processes in the local
proof obligations can also be a drawback, which can be tackled by a disjointness
predicate and auxiliary variables. The latter is also the case for the Arora et al.

166CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

work-stealing queue, where we had to encode local variables of the owner process
into auxiliary variables as part of the shared state. The reason for it is that just from
observing the shared state and the state of a stealer process, we do not know enough
in order to deduce the correct abstract state. Because the owner process can have
decremented variable bot during his popBottom operation, we may observe a state
in which bot is decremented and popBottom may have not linearized yet. From a
stealer perspective, this situation looks identical to all other states, where bot is not
decremented. However, the abstract state is di�erent for these two cases, which is
also why our abstraction function distinguishes them.

Again, we provide only an excerpt of our invariant that we used to prove the case
study linearizable. Please note that the complete invariant speci�cation in KIV is over
200 lines of speci�cation long. A �rst excerpt INVgen shows properties that do not
depend on program locations and which is identical in both of our encodings. The
program location dependent properties are separated into INVubsb for the explicit
store bu�er encoding and INVubr for the store bu�er graph encoding. The latter
two are invariant excerpts for the pushBottom operation only.

INVgen(mem, ls) =̂

(range = 0⇒ mem[top].v ≤ mem[bot].v)

∧ (range = 1⇒ mem[top].v ≤ obot ∧mem[bot].v + 1 = obot)

∧ (range = 2⇒ mem[bot].v = 0

∧ (mem[top].v = obot ∨mem[top].v + 1 = obot))

∧ (range ∈ {0, 1, 2})
∧ (∀n • (n < deq + mem[bot].v ∧ n ≥ deq)⇒ mem[n] 6= null)

∧ (range 6= 0⇒ ∀n • (n < deq + obot ∧ n ≥ deq)⇒ mem[n] 6= null)

∧ (owner(ls.pc)⇒ ls.pid = owner)

∧ (nowner(ls.pc)⇒ ls.pid 6= owner)

∧ (range 6= 0⇒ obot 6= 0)

The �rst three conjuncts are the most important properties of the algorithm. In
range = 0, we know that the owner process does not try to remove an element from
the queue. In this case, we know that top is always smaller than bot (queue non-
empty) or equal to bot (queue is empty). During range = 1, the owner tries to remove
an element from the queue and has already decremented the bot variable. Before bot

is decremented, its value is assigned to obot . Thus, mem[bot].v +1 = obot holds. In
range = 2, the value of bot is reset to 0 by the owner process. In this case, there is at

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 167

most one element in the queue. The owner and a stealer process could still compete
for the last element within this range. The winner of the last element becomes the
process whose CAS operation succeeds. Of course, our invariant must also establish
that an owner process assigns the proper values to the auxiliary variables range

and obot during execution of popBottom. This is achieved in a similar way to the
program location dependent invariants INVubsb and INVubr for the pushBottom

operation. Here, we only state that range must be in the set {0, 1, 2}. A minor
invariant property is also that when range 6= 0, then obot also cannot be 0 as it is
the value of bot before it is decremented.

Furthermore, we need to establish that values taken from memory, e.g., the
return value of a popBottom operation, are not null . In order to do so, we quantify
over all memory locations between start of the array deq and the current end of the
queue represented by deq + mem[bot].v . During the phase of a decremented bot

value (when range 6= 0 holds), we use our auxiliary variable obot instead of bot in
order to establish that the last element in the queue remains not null after bot has
been decremented. The latter argument is particularly necessary at a linearization
point of popBottom, which occurs when bot is decremented, but the actual value of
the last element has not been read from the memory, yet. We also need to establish
the roles of processes, i.e., an owner can only be at program locations of pushBottom
and popBottom while a stealer process can only be at locations of a popTop operation.
However, both processes can be at the program location N , representing the idle
state. This is also why the predicates owner and nowner are not complementary.

The local invariant of a process executing pushBottom for the encoding with
explicit store bu�ers looks as follows:

INVubsb(mem, ls) =̂

(ls.pc ∈ {UB0,UB1,UB2,UB3} ⇒ ls.buf = ∅)

∧ (ls.pc = UB4⇒ ls.buf = ∅

∨ ls.buf = ∅+ mk(ls.deqa + ls.bot , pls.elemq)

∧ (ls.pc = UB5⇒ ls.buf = ∅

∨ ls.buf = ∅+ mk(ls.bota, pls.bot + 1q))

∨ ls.buf = (∅+ mk(ls.deqa + ls.bot , pls.elemq)) + mk(ls.bota, pls.bot + 1q))

∧ (ls.pc ∈ {UB1,UB2,UB3,UB4,UB5} ⇒ ls.bota = mem[bota].v)

∧ (ls.pc ∈ {UB2,UB3,UB4,UB5} ⇒ ls.bot = mem[ls.bota].v)

∧ (ls.pc ∈ {UB3,UB4,UB5} ⇒ ls.deqa = mem[deqa].v)

∧ (ls.pc ∈ {UB4,UB5} ∧ ls.buf = ∅⇒ mem[deqa + ls.bot] = pls.elemq)

∧ (ls.pc = UB5 ∧ ls.buf = ∅⇒ mem[bot] = pls.bot + 1q)

168CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

where the �rst three conjuncts describe the possible states of the store bu�er. If
we do not de�ne the possible states of the store bu�er here, we would have to deal
with arbitrarily �lled store bu�ers in our proofs. The proof would most likely fail,
because we have to at least assume that the store bu�er does not contain writes to
the relevant variables like bot or top. Otherwise, an arbitrary write or particularly
its �ush to one of those variables would violate our invariant properties immediately.
The store bu�er is empty until it is �lled in location UB4 and UB5, where it can also
be empty as a result of �ushes that may have occurred. The notation for an explicit
store bu�er value in our KIV encoding always concatenates a memory location-value
pair (e.g., mk(ls.bota, pls.bot + 1q)) to an empty list constant ∅.

Besides the possible states of the store bu�er, we also have to relate some of the
local variables to the shared ones in the memory. These may or may not depend on
the state of the store bu�er. For the local variables bota , bot and deqa representing
pointer variables in our original C code, we need to establish that they do not change
after they are read until the end of pushBottom at location UB5. The algorithm
does not modify those locations and therefore, they are trivial. The more important
properties are the last two conjuncts. The �rst of them ensures that the input
parameter ls.elem is indeed written to the memory at location deqa+ls.bot , however
only if the store bu�er ls.buf is empty. Similarly, the last conjunct establishes the
incrementation of mem[bot], and again only if the the store bu�er is emptied already.

For the store bu�er graph encoding of the pushBottom method, we used the
following invariant:

INVubr (mem, ls) =̂

(ls.pc ∈ {UB1,UB2,UB3,UB4,UB5} ⇒ ls.bota = mem[bota].v)

∧ (ls.pc ∈ {UB2,UB3,UB4,UB5} ⇒ ls.bot = mem[ls.bota].v)

∧ (ls.pc ∈ {UB3,UB4,UB5} ⇒ ls.deqa = mem[deqa].v)

∧ (ls.pc ∈ {UB4,UB5} ⇒ mem[deqa + ls.bot] = pls.elemq)

∧ (ls.pc = UB5⇒ mem[bot] = pls.bot + 1q)

which contains all of the properties from explicit store bu�er encoding, except for the
store bu�er states. Since some skip transitions were removed (as mentioned earlier),
we also have identical program location ranges. Otherwise, we would simply extend
the program location ranges over which the above properties have to hold. Please
note that the store bu�er state from the previous invariant is captured within the set
of operations encoding the pushBottom behavior and therefore does not have to be

6.2. PROVING LINEARIZABILITY UNDER WEAK MEMORY MODELS 169

explicit sb sb-graph
#steps #intera. #steps #intera.

Arora et al. Queue [ABP98] 12,197 1,624 6,923 1,100
Burns Mutex [BL80] 3,784 201 1,536 63

Table 6.4: Number of proof steps in the theorem prover KIV for the linearizability
proofs of the above case studies.

considered here. The complete invariant can be found in the KIV project provided
with this thesis.

6.2.6 Proof Procedure and Comparison

Since we proved the local proof obligations [DSW11a], our proofs are separated into
several proofs. These proofs combined imply linearizability of the implemented data
structure w.r.t. an abstract data structure. Most of the proofs were trivial, but we
had three proofs where most of our e�ort was spent. Two of these three proofs
show re�nement of internal concrete operations and the abstract speci�cation (see
Section 6.2.1). The latter is split into two separate proofs, one for the preservation
of the invariant and one for the abstraction function. The third proof concerns
non-interference. It is no surprise that most of our time was spent in particularly
these three proofs as they deal with all the complexity from the internal behavior of
the concrete data structure.

All of the proof obligations were proved via a case distinction over the possible
concrete operations. This enabled us to tackle each operation separately with all
its preconditions and postconditions, be it the invariant or the abstract state tran-
sitioning from one state to another. Table 6.4 shows the overall number of steps
and manual interactions during the proofs for both of our case studies, the Arora
et al. work-stealing queue [ABP98] and the Burns Mutex algorithm [BL80]. For
the latter, the proof results were also published in [WT15]. The left two columns
contain the steps and interactions that we obtained by using explicit store bu�er
encoding of TSO semantics. The right two columns show the number of steps and
interactions that we were able to achieve with our store bu�er graph encoding. We
should mention that we did not focus on automation of these proofs, but rather let
the theorem prover KIV apply its heuristics. Only in some cases like the lifting of
variables, we added some rules to automate parts of the proofs. These rules were
applied in all four proofs.

The number of steps and interactions give a good hint on which of the approaches
requires more e�ort. However, these number have to be taken with a grain of salt

170CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

as some steps can be more di�cult than others up to the point that we can fully
automate some steps. Nevertheless, we can say that several properties in the explicit
store bu�er encoding were more complex than those in the encoding of the store
bu�er graph. That is simply because a store bu�er is not present in the store bu�er
graph encoding an all properties refer to valuations of either some memory location
or some local variable, i.e., rather simple properties. These properties hold over some
range of program locations.

With explicit store bu�ers, there are additional properties concerning the store
bu�er that have to be stated and also derived in the proofs, just as can be seen by
the invariants INVubsb and INVubr in the previous section. Since store bu�ers are
lists of elements, the reasoning requires dealing with an additional set of axioms and
lemmas for lists. Some properties depend on the state of the store bu�er. For these
properties, reasoning about store bu�ers is required for obvious reasons. In a store
bu�er graph encoding, these states are represented as program locations only and
thus, simplify both, the invariant and the actual reasoning in the theorem prover.

However, store bu�er graphs have also a drawback. Generally, one has to deal
with signi�cantly more program locations, because program locations in a store
bu�er graph encoding represent the combination of an original program location with
a certain symbolic state of the store bu�er. Nevertheless, the relief from reasoning
about store bu�ers simpli�es not only the properties we have to deal with, but also
the number of proof steps as our linearizability proofs show. This also summarizes
our answer toRQ2 posed in the beginning of this chapter. It shows that our reduction
from Chapter 3 can be used to simplify and reduce e�ort of correctness proofs when
dealing with weak memory semantics. Although it is di�cult to generalize from
two case studies, we have to take them as promising results, at least. Please note
that each of the linearizability case studies required days to weeks of e�ort to setup
all speci�cations and iterate through several proof attempts until all proofs went
through. The latter is also the reason why we can only present two case studies here.

6.3 Related Work and Discussion

In previous chapters, we have discussed di�erent lines of research. In Chapter 2.7,
we discussed di�erent frameworks for comparison of memory models, but also
for exposing programs to weak memory model semantics. In Chapter 3.3.3, we
discussed closely related work to our proposed reduction towards SC programs,
which incorporate behavior of the programs under weak memory semantics. In
Chapter 5.2.1, we discussed di�erent methods for linearizability veri�cation under
SC semantics. While there has been a lot of research in the last two decades on
linearizability and weak memory models, only few combined both lines of research.

6.3. RELATED WORK AND DISCUSSION 171

The most important work on this combination was already discussed in Chapter 5.
It is the adaptation of the original de�nition of linearizability [HW90] to weak
memory models, TSO-to-TSO linearizability [BGMY12], TSO-to-SC [GMY12], All-
to-SC [BDG13] linearizability and TSO linearizability [DSD14, DSGD17]. In fact, all
of these papers can also be viewed as a proof method for their respective de�nition
of linearizability under weak memory models.

However, the tool support and veri�cation techniques for the rather new adapta-
tions of linearizability to weak memory models have been very limited so far. Thanks
to our reduction from Chapter 3, we were able to adapt some existing linearizability
veri�cation techniques (developed under SC assumption) to the setting of weak
memory models. With our approach from Section 6.1 and which was published
in [TMW13], we were one of the �rst to provide a model checking approach for TSO
linearizability. With the presented alternative model checking idea based on history
checking, we also provide an approach that �ts to the other variations of linearizabil-
ity and which can be also extended to other correctness criteria. However, for in�nite
state programs like most concurrent data structures, model checking usually can
only show presence of bugs in concurrent data structure, not their correctness. Thus,
it can be seen as an instance of systematic testing. For proving linearizability under
SC, there are plenty of methods [DD15], some of which we discussed in Chapter 5.2.1
already. With our reduction towards SC programs, we enable many of them also to
be carried out in a weak memory setting.

Few other approaches besides the ones that we have discussed deeply in the
previous chapter focus on linearizability under weak memory models. In essence,
linearizability is just a safety property (although being an important one) and most
veri�cation approaches that are sensitive to weak memory semantics focus on safety
properties in general, not particularly linearizability. For instance, they focus on
certain aspects that can be helpful in veri�cation, e.g., robustness [BMM11, Der15],
data-race-freedom [CS10] or fence inference [KVY12]. Of course, if a program can
only examine SC behavior, even though the underlying architecture provides weak
semantics, then veri�cation does not need to take weak memory models into account.
A similar argument applies to data-race-freedom, which makes reasoning about
weak memory semantics obsolete. As mentioned earlier, requiring robustness or
data-race-freedom can be too strict as one may want to allow for non-SC behavior
for performance reasons. Furthermore, many concurrent data structures contain
data races intentionally, which disquali�es data-race-freedom as a general solution.

Either way, if a program provides non-SC behavior or is simply incorrect (e.g.,
not linearizable) under weak memory models, then it most likely requires additional
fence instructions. The latter are meant to enforce program order during execution
and thus avoid some of the e�ects due to weak memory models. The main question

172CHAPTER 6. VERIFYING LINEARIZABILITY UNDER WEAK MEMORY MODELS

is where to put fences in a program. Fences are expensive instructions and therefore
one wants to minimize their usage. Several approaches have been developed for fence
inference. Most approaches for veri�cation under weak memory models can also be
used for inference of fence placement in a program. Essentially any counterexample
to a property that appears only under weak semantics, but not under SC, will provide
insights on where to put fences in order to avoid it.

Three approaches target fence inference particularly [BAM07, LNP+12, KVY12].
Burckhardt et al. [BAM07] compares SC execution traces with those exhibited from
an arti�cial memory model Relaxed. The latter is an approximate memory model
of the most relaxed memory models like RMO, but leaves out some of the behavior
that is possible under Power. The approach is based on bounded model checking
using a SAT solver. Liu et al. [LNP+12] try to infer fence placement by dynamic
fences synthesis. They provide a tool framework that automatically repairs programs
if they lead to previously speci�ed incorrect behavior. To this end, they identify
possible reorderings with their own scheduler. If incorrect behavior is detected
during a test run, then possible fence placements are determined with help of a SAT
solver. Their framework also supports linearizability [HW90], but the authors do not
clarify on their interpretation of linearizability under weak memory models. Their
approach seems to be similar to our history-based check (see Sec. 6.1.3), but is applied
dynamically during test runs. Kuperstein et al. [KVY12] aim for automatic fence
inference and focus particularly on the e�ciency of fence placements. Starting at a
reachable state that violates a correctness property, their algorithm detects avoidable
transitions, which by being removed from the transition system, make the state
unreachable. Their approach iteratively computes a maximally permissive set of
transitions. However, there are often multiple ways to remove transitions from the
transition system by placing fences. Thus, their results are not guaranteed to be
minimal.

Burnim et al. [BSS11b, BSS11a] apply extensive testing and monitoring methods
in order detect non-SC behavior under TSO and PSO. Their monitoring algorithm de-
lays writes as much as possible (in the resp. memory model) for any given execution.
If the delayed executions result in a di�erent outcome from an SC execution, then the
program is not robust and thus, needs fences. Their approach is sound and complete.
Their testing approach [BSS11b] is guided by potential cycles in the happens-before
relations. The latter are determined dynamically and indicate non-SC behavior. Abe
et al. [AUMM16] have developed a very detailed operational Promela model of TSO,
PSO and RMO. Since their memory model also models instruction fetching, it is
inherently more complex than our operational model and thus, does not scale well
for TSO and PSO. However, the detailed model also allows them to verify programs
under RMO. As mentioned earlier, other veri�cation approaches generally focus on

6.3. RELATED WORK AND DISCUSSION 173

checking and testing robustness or general safety properties like state reachability.
The latter two approaches also fall into this category. We discussed the important
work in the research are in previous chapters already.

7

Conclusion

In this Chapter, we summarize the main contributions of the thesis as well as mention
some of the possible future work. We �nish it with a discussion of some design
decisions and concluding remarks.

7.1 Summary

Veri�cation of concurrent data structures is di�cult, even without consideration of
weak memory semantics. It has been well studied over the past years and lineariz-
ability [HW90] has emerged as the de-facto standard correctness criterion. However,
program veri�cation for concurrent programs rarely considers the e�ects of weak
memory models. The latter can cause programs to behave unexpectedly or faulty.
Instead, veri�cation approaches widely assume sequential consistency, which leaves
a semantics gap between the behavior that is veri�ed and the behavior that can be
observed on actual hardware.

In order to overcome this gap, we proposed a reduction towards SC programs,
the major contribution of this thesis. The reduction enables a transformation from
programs under TSO or PSO into an SC program that simulates the behavior of the
original program and the e�ects of the memory model to it. We have proven that
the behavior of the original program under TSO (resp. PSO) and the transformed
SC program are bisimulation equivalent. A consequence of this equivalence is that
programs can be veri�ed in their transformed SC variant with existing veri�cation
tools developed for SC, while knowing that the veri�cation results also hold for the
original program under weak memory model.

Based on our reduction, we proposed a general veri�cation approach for con-

175

176 CHAPTER 7. CONCLUSION

current programs under weak memory models. The approach involves a symbolic
exploration of a program under TSO (resp. PSO). The latter results in a store bu�er
graph for each method, each of which represents all possible behavior of one proces-
sor executing the respective method under TSO (resp. PSO) semantics. We provide
transformations from store bu�er graphs to Promela models and KIV inputs. Promela
models are input models to the model checker Spin and aim at �nding bugs in an
implementation via state space exploration. When model checking reveals no bugs,
the next step is to carry out a formal correctness proof. For this step, we use the
interactive theorem prover KIV. The steps up to the point of providing Promela
models and KIV inputs have been implemented and automated in our tool Weak2SC.

We evaluated our reduction by comparing veri�cation of the transformed pro-
grams against more common modeling techniques, e.g., operational memory models
in case of model checking or explicit modeling of store bu�ers as part of a process
for the theorem prover. In both cases our results look promising. In our evaluation,
we used linearizability [HW90] as the correctness condition. To this end, we looked
at di�erent linearizability de�nitions under weak memory models, in particular to
its adaptations [BGMY12, GMY12, BDG13, DSD14, DSGD17].

We presented a model checking approach that checks for TSO linearizabil-
ity [DSD14, DSGD17] based on atomicity checks with the help of abstract data
structures as part of the Promela model. The approach was evaluated over programs
which were encoded based on store bu�er graphs and on an operational memory
models. For most of our case studies, we achieved better performance with the
models based on store bu�er graphs. Our reduction is limited to programs which
have no unfenced writing loops. Their store bu�er graph would be in�nitely large,
if constructed. If a program contains unfenced writing loops, other semantics en-
codings should be preferred, e.g., an operational memory model. The performance
improvement was essentially achieved by avoiding complex encoding of store bu�ers
and their behavior while also minimizing auxiliary variables as part of states. In ad-
dition, we presented an alternative idea for model checking of concurrent programs
under weak memory semantics based on history checks. The approach is decoupled
from memory model semantics and thus, only needs a checking procedure for the
correctness of a history. In this sense it is �exible and can be used for veri�cation of
di�erent de�nitions of linearizability, but also for other correctness conditions.

In our case studies for proving linearizability, we compared explicit store bu�er
encoding against store bu�er graph based encoding of program behavior. We used
the proof obligations from [DSW11b], which combined with program encoding
result in a proof of TSO-to-SC linearizability [GMY12]. Again our store bu�er graphs
have shown advantages over the explicit store bu�er encoding. In particular, we
were able to achieve smaller proofs and we had to deal with less complexity in the

7.2. FUTURE WORK 177

behavioral encoding.
For now, it remains open which of the linearizability adaptations towards weak

memory models will establish as the new standard correctness criterion for con-
current data structures. Independent of what it will be, we will need practical
representations of programs incorporating weak semantics that reduce complexity
of a correctness proofs and improve performance of correctness checks. The reduc-
tion proposed in this thesis achieves this, albeit for a limited class of concurrent
programs.

7.2 Future Work

In this Section, we want to brie�y mention some of the possible future work following
from this dissertation. More detailed discussions can be found in the previous
chapters.
Store Bu�er Graph Size The size of store bu�er graphs grows quickly with the size
of a program, but most importantly with the amount of non-determinism that can
occur due to store bu�ers. So far, store bu�er graphs represent all possible behavior
of an operation under TSO (resp. PSO). Parts of that behavior cannot be observed by
other processes due to being local behavior only. These parts could be abstracted
and they also qualify for partial order reduction, which would reduce the size of
the graph. There is also an interesting approach by Elmas et al. [EQS+10] which
iteratively applies reduction and abstraction rules to concurrent programs in order
to prove them linearizable. Their approach is only sound under SC as they say. It
would be interesting to investigate how their approach can be applied to store bu�er
graphs, either to reduce their size or in the best case as another proof method for
linearizability under weak memory models.
Pointer Alias Analysis Our implemented tool Weak2SC would bene�t from a
pointer-alias analysis. During construction of the store bu�er graph, it is possible
that two symbolic representations of the same memory location are found. If there
are two representations for one memory location, then there will be two di�erent
nodes representing the same state in the store bu�er graph. This can falsify the
constructed store bu�er graph, because our proven bisimulation equivalence holds
only under the assumption of each memory location being represented by a unique
symbol. Pointer-alias analysis could help identify such cases. If identi�ed, we could
treat the seemingly di�erent nodes in the store bu�er graph as potentially equivalent,
and thus restore validity of the store bu�er graph.
Other Veri�cation Languages So far, we have focused on Promela for Spin as a
model checker and KIV for theorem proving. It would be interesting to see how other
veri�cation tools handle encodings of store bu�er graphs. In particular, we think a

178 CHAPTER 7. CONCLUSION

symbolic model checker could further improve veri�cation results due to its ability to
handle sets of states in contrast to Spin as an explicit state model checker. Generating
store bu�er graph encodings in other veri�cation languages can be of great help in
general. Not only would it help with weak memory sensitive veri�cation, but also
automate derivation of program encodings from LLVM IR to the respective language.
As of now, the latter are usually the result of manual encoding and thus error prone.
Further Automation We are ultimately interested in linearizability proofs, which,
even with the help of the transformation provided by Weak2SC, remain tedious and
full of manual tasks. One such task is �nding and stating an invariant that enables a
linearizability proof to complete. Even with a correct idea of an invariant, mistakes
are made frequently during its formalization and are noticed often only after hours
have been spent on a proof attempt. With the combination of a model checker and a
theorem prover, one could formalize the invariant in the theorem prover and check
it with the model checker before manual e�ort on a proof attempt is spent. However,
this task can be very complex as the expressiveness of the input languages to a
model checker and a theorem prover can di�er due to di�erent domains. Thus, it can
be challenging to keep both models consistent, especially throughout incremental
modi�cation.
Method Boundaries In our store bu�er graphs, we assume fences at the beginning
and the end of a method. Such fences can be necessary in order to make sure a data
structure is TSO-to-SC linearizable. However, they are not realistic in general and
instruction reordering can occur across method boundaries due to weak memory
semantics. In future extensions, we therefore need a possibility to specify initial store
bu�er content. Also this content needs to be considered when other methods are
called from within a method. Considering this in the store bu�er graph construction
means to weave in one store bu�er graph into the other and to allow for some
additional reorderings w.r.t. memory model semantics. Currently, this can only
be achieved by copying the code of two consecutive method into one method and
by constructing the store bu�er graph of the combined method. Although not
particularly challenging, the support of reordering across method boundaries would
further improve practicality of our approach and its implementation, Weak2SC.
Concurrency IDE When developing concurrent programs one has to be aware of
the e�ects by weak memory models. At the best, developers should be provided with
feedback while they are still programming, similar to highlighting of compile errors
in the code in most IDEs. Most IDEs do not di�erentiate between sequential and
concurrent program code. The visualization remains the same in both cases. We sug-
gest using visualizations like store bu�er graphs or similar graph like structures that
enable visualization of possible reorderings under weak memory models. As argued
before, these can help in understanding where to put synchronization primitives in

7.3. DESIGN DECISIONS 179

the code. Store bu�er graphs are great candidates for such a visualization, since they
are process local, i.e., tools do not have to be aware of other processes and they can
be computed quickly. However, for a general visualization in an IDE, we would �rst
have to �nd a �nite representation of unfenced writing loops in a store bu�er graph.

7.3 Design Decisions

Our approach aims at veri�cation of concurrent data structures. For this we had to
answer several critical questions. 1. How do we represent their behavior? 2. What is
their correct behavior and 3. how can we verify it? In the end, we also wanted to
have a practical tool that helps with automation of tedious steps in the veri�cation
process.

From the very beginning it was clear that our behavioral models had to consider
weak memory models, in order to close the gap between the SC semantics that
is assumed by standard veri�cation methods and the weak semantics provided by
the, nowadays, ubiquitous multicore processors. Since there is no consideration of
high-level programming language constructs in the formalization of weak memory
models, our choice was obvious in taking a compiled program (LLVM IR) as a
starting point for veri�cation. We also had an attempt of de�ning high-level language
semantics incorporating TSO semantics [DTDW13], but we must admit that it is
very challenging to de�ne such semantics on a sound basis, because compilers can
interfere in too many di�erent ways with the program and all of them must be
considered.

Our �rst choice for modeling program behavior was to use operational memory
models (Promela models for Spin), because they impose barely any restrictions,
except for being bounded by the length of store bu�ers. However, in a sense, an
operational memory model is nothing but a detailed abstraction of actual multicore
processor hardware. Thus, a developer using such a model still has to have expertise
in weak memory models. More importantly, standard veri�cation tools rely on SC
semantics. In order to be able to use them, we would have to provide an operational
memory model to each of them, written in the respective input language. Driven by
these issues, we developed our reduction by which we were truly be able to get rid
of store bu�ers in models of program behavior, albeit for limited class of programs.
These models do not require expertise in weak memory models, because they assume
SC semantics and because of this, they can also be veri�ed with standard veri�cation
tools.

The second and third questions deal with correctness of concurrent data struc-
tures under weak memory models. Under SC, linearizability as de�ned by Herlihy
and Wing [HW90] evolved as the de-facto standard correctness condition for con-

180 CHAPTER 7. CONCLUSION

current data structures. However, under weak memory models there is no such
standard, yet and as we have discussed in depth (see Ch. 5), there are several interpre-
tations of linearizability under weak memory models. We do prefer TSO-to-SC (resp.
All-to-SC) linearizability [GMY12, BDG13], because it is the closest interpretation
to the original de�nition [HW90] and it provides strong guarantees. We also use
this variant in our linearizability proofs. Nonetheless, it can be too strict in some
cases, which is also the reason why we proposed a di�erent notion of linearizability
in [TMW13] that was later formalized as TSO linearizability [DSD14, DSGD17]. Our
model checking approach [TMW13] checks for TSO linearizability and thanks to
our reduction, can now also be veri�ed by tools assuming SC semantics.

Since we wanted to provide a practical tool implementation of our approach, we
wanted allow software developers to integrate it into existing development processes.
Eclipse IDE is a common software developer platform to which our tool, Weak2SC,
is an extension. We developed Weak2SC following model-driven development
standards from parsing the LLVM IR code to the output encoding of transformed
SC program. Thus, we also enable for seamless integration of future extensions of
Weak2SC, e.g., de�nitions of other store bu�er graph encodings in terms of other
input languages to other veri�cation tools.

7.4 Concluding Thoughts

With this thesis, we provide a veri�cation approach for concurrent programs and in
particular concurrent data structures under TSO and PSO. Currently, more relaxed
memory models like Power and ARM are becoming more and more ubiquitous
and we expect this trend to continue. The semantics of these processors are more
relaxed, because some processor cores share their store bu�ers (or even caches) and
some do not. These memory models allow for even more non-determinism than
TSO or PSO. With an ever growing number of cores in a multicore processor, these
memory models are here to stay and we need to tame their complexity. In the near
future, we expect this to be one of the major challenges in concurrent program
veri�cation. Brute-force state space exploration of programs executed under such
memory models is not su�cient, as it does not scale well, even for small programs.
Instead, we think abstractions or programming disciplines will be needed, which
guarantee stricter execution semantics of programs executed under weaker memory
models, similar to robustness [BDM13], but not necessarily SC.

A

Proofs

A.1 Behavioral Equivalence

Theorem 1. Let P be a program with fenced or write-free loops only and with no

unfenced wd-chains and MM ∈ {PSO ,TSO} a memory model. Then

ltsMM (P) ∼` ltsSC (w2sc(P ,MM)) .

Proof of Local Bisimilarity: The general proof idea is to make a case distinction
over all types of transitions. For each transition type, we prove that it simulates a
transition of the respective other transition system and that the states reached are
again related by the bisimulation relation. Our proof proceeds for both memory
models (TSO and PSO) in one go and thus, we have additional case distinctions
where TSO and PSO di�er in their semantics.

Let ltsMM (P) = (S ,→1,S0) and ltsSC (w2sc(P ,MM)) = (Q ,→2,Q0) be the
transition systems for program P , with MM ∈ {TSO ,PSO}. We use the following
relation in our proof:

RMM := {(s, q) | s = (pc1, sb1, reg1), q = (pc2, sb2, reg2)

∧ pc1 = first(pc2) (C1)
∧ sb2 = ∅ (C2)

∧ sb1 = concMM (reg2, second(pc2)) (C3)
∧ ∀ r ∈ Reg1 : reg1(r) = reg2(r)} (C4)

181

182 APPENDIX A. PROOFS

and the concretization function:

concTSO(reg , 〈 〉) = 〈 〉
concTSO(reg , 〈(x ,n)〉a sb) = 〈(x ,n)〉a concTSO(reg , sb)

concTSO(reg , 〈(x , r)〉a sb) = 〈(x , reg(r))〉a concTSO(reg , sb)

concVar(reg , 〈 〉) = 〈 〉
concVar(reg , 〈n〉a sb) = 〈n〉a concVar(reg , sb)

concVar(reg , 〈r〉a sb) = 〈reg(r)〉a concVar(reg , sb)

concPSO(reg , sb)(v) = concVar(reg , sb(v))

Please note that we gave each line of the bisimulation relation a separate tag
C1-C4. We will use them to clarify what we assume at certain steps of the proof. We
place them in bold font, C1-C4, in order to mark location in the proof, where we
think that we have shown them to hold for the primed pair of states.

Initial states:
Let s0 = (`0, 〈 〉, reg1) be an initial state in S0.

Then by construction of w2sc(P ,MM), there exists a corresponding initial state
q0 = ((`0, 〈 〉),∅, reg2) in Q0, first(q0(pc)) = s0(pc) = `0 and
concMM (second(q0(pc))) = s0(sb) = 〈 〉. Furthermore, s0 |= Init and q0 |= Init ′

and ∀ r ∈ Reg1: reg1(r) = reg2(r). Thus, (s0, q0) ∈ RMM .
By construction of w2sc(P ,MM), we can �nd for any initial state q0 ∈ Q0 its

corresponding initial state s0 ∈ S0. Hence, the other direction also holds true.

Mutual simulation — (ltsSC (w2sc(P ,MM)) simulates ltsMM (P)):

Let (s, q) ∈ RMM with s = (pc1, sb1, reg1), q = (pc2, sb2, reg2). Since (s, q) ∈
RMM , we know pc1 = first(pc2), sb2 = ∅, sb1 = concMM (reg2, second(pc2)),
and ∀ r ∈ Reg1: reg1(r) = reg2(r). Thus, we can safely assume s = (`, sb1, reg1),
q = ((`, ssb),∅, reg2), where ` is some arbitrary but �xed program location and ssb

is some symbolic store bu�er value s.t. concMM (reg2, ssb) = sb1.
Now, assume s

lab−−−−−−−→
mem,mem ′ 1s ′ in ltsMM (P). We distinguish the cases based on the

type of lab:

• lab = (r := n):

The label can be the result of three di�erent cases:

1. A simple local assignment, in which case n = reg1(expr), where expr

is the expression or constant, which is evaluated and assigned to the

A.1. BEHAVIORAL EQUIVALENCE 183

to register r . Then P has an operation COPs = (pc = ` ∧ pc′ =

`′∧r := expr) and by sem. def. s ′ = (`′, reg ′1, sb) with reg ′1 = reg1[r 7→
reg1(expr)] and mem ′ = mem .
By construction, then w2sc(P) has an operation COPq = (pc =

(`, ssb) ∧ pc′ = (`′, ssb) ∧ r := expr). (C1)
Then, by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

r :=reg ′
2(expr)−−−−−−−−→

memq ,mem ′
q

2q ′ and q ′ = ((`′, ssb),∅, reg ′2) with

reg ′2 = reg2[r 7→ reg2(expr)].(C2)
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately.
By assumption (C4), we know ∀ r ∈ Reg1 : reg1(r) = reg2(r). This
implies reg1(expr) = reg2(expr) and ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r).
(C4)
By construction, w2sc(P ,MM) has no write-def-chains and thus, r 6∈
ssb holds and consequently ∀ r ′ ∈ Reg2 : r ′ 6= r ⇒ reg2(r

′) = reg ′2(r
′)

holds. Thus, concMM (reg2, ssb) = concMM (reg ′2, ssb) = sb1 (C3) and
hence, (s ′, q ′) ∈ RMM .

2. The label corresponds to local read operation. Then P has an opera-
tion COPs = (pc = ` ∧ pc′ = `′ ∧ read(x , r)) and x ∈ sb1, n =

lstMM (x , sb1).
By sem. def. sb1 = sb′1, reg ′1[r 7→ lstMM (x , sb1)] and mem = mem ′.
By construction, then w2sc(P ,MM) has either an operation COPq =

(pc = (`, ssb) ∧ pc′ = (`′, ssb) ∧ r := rsrc), rsrc = lstMM (x , ssb) or if
the entry in the symbolic store bu�er is a constant, then COPq = (pc =

(`, ssb) ∧ pc′ = (`′, ssb) ∧ r := nq), nq = lstMM (x , ssb). (C1)
Then, by sem. def., ltsSC (w2sc(P ,MM)) has a transition
q

r :=reg2(rsrc)−−−−−−−−→
memq ,mem ′

q

2q ′ (resp. q
r :=nq−−−−−−−→

memq ,mem ′
q

2q ′) and q ′ = ((`′, ssb),∅, reg ′2)

with reg ′2 = reg2[r 7→ reg2(rsrc)] (resp. reg ′2 = reg2[r 7→ nq]).(C2)
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately.
By assumption ((s, q) ∈ RMM), the latest value for x is
n = lstMM (x , sb1) = lstMM (x , concMM (reg2, ssb)) and n = reg2(rsrc)

(resp. n = nq) follows immediately from it. Also ∀ r ∈ Reg1 : reg ′1(r) =

reg ′2(r) follows from it. (C4)
By construction, w2sc(P ,MM) has no wd-chains and thus, r 6∈ ssb.
Thus, also sb1 = sb′1 = concMM (reg2, ssb) = concMM (reg ′2, ssb) (C3)
and (s ′, q ′) ∈ RMM .

184 APPENDIX A. PROOFS

3. The label corresponds to a write source of a write-def-chain. Then P

has an operation COPs = (pc = `∧ pc′ = `′ ∧write(x , rorg)). Then by
sem. def., s ′ = (`′, reg ′1, sb′) with n = reg1(rorg), mem ′ = mem

and under TSO sb′ = sb a 〈(x ,n)〉,
resp. under PSO sb′ = sb[x 7→ sb a 〈n〉] .
By construction, then w2sc(P ,TSO) (resp. w2sc(P ,PSO)) has an
operation COPq = (pc = (`, ssb)∧pc′ = (`′, ssba〈(x , r)〉)∧r := rorg)

(resp. COPq = (pc = (`, ssb) ∧ pc′ = (`′, ssb[x 7→ ssb(x)a 〈r〉])
∧ r := rorg)). (C1)
Let nq = reg2(rorg). Then by sem. def., ltsSC (w2sc(P ,MM)) has a tran-
sition q

r :=nq−−−−−−−→
memq ,mem ′

q

2q ′ and for TSO q ′ = ((`′, ssb a 〈(x , r)〉),∅, reg ′2)

(resp. for PSO q ′ = ((`′, ssb(x) a 〈r〉),∅, reg ′2)) and reg ′2 = reg2[r 7→
nq]. (C2)
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately. By assumption (C4), reg1(rorg) = reg2(rorg) =

reg ′2(r) holds. Please note that r 6∈ Reg1 as it is an auxiliary variable.
Thus, ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) and furthermore, n = nq follows.
(C4)
From the above and assumption (C3), for TSO we can derive
sb′1 = sb1 a 〈(x ,n)〉 = concMM (reg ′2, ssb a 〈(x , r)〉)
and resp. for PSO
sb′1 = sb1(x)a 〈n〉 = concMM (reg ′2, ssb[x 7→ ssb(x)a 〈r〉]). (C3)
Hence, (s ′, q ′) ∈ RMM .

• lab = b

Then P has an operation COPs = (pc = ` ∧ pc′ = `′ ∧ bexpr) and by sem.
def. s ′ = (`′, reg ′1, sb′1) with reg ′1 = reg1 and sb′1 = sb1 and mem ′ = mem

and b = reg1(bexpr).

By construction, then w2sc(P ,MM) has an operation COPq = (pc =

(`, ssb) ∧ pc′ = (`′, ssb) ∧ bexpr). (C1)

Then by sem. def. ltsSC (w2sc(P ,MM)) contains a transition
q

bq−−−−−−−→
memq ,mem ′

q

2q ′ and q ′ = ((`′, ssb),∅, reg ′2), reg ′2 = reg2 and bq = reg2(bexpr).

(C2)

By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately.

By assumption (C4), reg1(bexpr) = reg2(bexpr) holds and thus also b = bq

holds. Registers and store bu�ers are not modi�ed. Hence, register equality

A.1. BEHAVIORAL EQUIVALENCE 185

(∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r)) (C4) is preserved and concMM (reg2, ssb) =

sb′1. (C3) Hence, (s ′, q ′) ∈ RMM .

• lab = skip:

Then P has an operation COPs = (pc = ` ∧ pc′ = `′ ∧ op) with op ∈
{fence,write(x , r),write(x ,n)}. We distinguish the cases based on op:

– op = fence : Then by sem. def., s ′ = (`′, reg ′1, 〈 〉) with reg ′1 = reg1 and
mem ′ = mem .
By construction, then w2sc(P) has an operation COpq = (pc = (`, 〈 〉)∧
pc′ = (`′, 〈 〉) ∧ skip). (C1)
Then by sem. def., ltsSC (w2sc(P ,MM)) has a transition
q

skip−−−−−−−→
memq ,mem ′

q

2q ′ and q ′ = ((`′, 〈 〉),∅, reg ′2) with reg ′2 = reg2. (C2).

By assumption (C3 and C4), and because reg ′1 = reg1 and reg ′2 = reg2

we also have ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) (C4 and C3).
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately.
Hence, (s ′, q ′) ∈ RMM .

– op = write(x , r): Then by sem. def., s ′ = (`′, reg ′1, sb′1)with reg ′1 = reg1

and under TSO sb′1 = sb1 a 〈(x , reg1(r))〉 (resp. under PSO sb′1 =

sb1[x 7→ sb1(x)a 〈reg1(r)〉]) and mem ′ = mem .
Furthermore, by our de�nition of labels (Def.12), the write(x , r) cannot
be the source of a write-def-chain. We label those like local assignments.
By construction, then w2sc(P ,TSO) has an operation COPq = (pc =

(`, ssb)∧pc′ = (`′, ssb a 〈(x , r)〉)∧ skip) and w2sc(P ,PSO) an opera-
tion COPq = (pc = (`, ssb)∧pc′ = (`′, ssb[x 7→ ssb(x)a 〈r〉])∧skip).
C1

Then by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

skip−−−−−−−→
memq ,mem ′

q

2q ′ and under TSO q ′ = ((`′, ssb a 〈(x , r)〉),∅, reg ′2)

(resp. under PSO q ′ = ((`′, ssb[x 7→ ssb(x)a 〈r〉]),∅, reg ′2))
with reg ′2 = reg2. C2, C4
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately. By assumption (C3 and C4), we know reg1(r) =

reg2(r). Thus, we get sb′1 = concTSO(reg ′2, ssb a 〈(x , r)〉) and
sb′1 = concPSO(reg ′2, ssb[x 7→ ssb(x)a 〈r〉]). C3
Hence, (s ′, q ′) ∈ RMM .

186 APPENDIX A. PROOFS

– op = write(x ,n): Then by sem. def., s ′ = (`′, reg ′1, sb′1) with reg ′1 =

reg1 and under TSO sb ′1 = sb1a〈(x ,n)〉 (resp. under PSO sb′1 = sb1[x 7→
sb1(x)a 〈n〉]) and mem ′ = mem .
Furthermore, by our de�nition of labels (Def.12), the write(x ,n) cannot
be the source of a write-def-chain. We label those like local assignments.
By construction, then w2sc(P ,TSO) has an operation COPq = (pc =

(`, ssb)∧pc′ = (`′, ssb a 〈(x ,n)〉)∧ skip) and w2sc(P ,PSO) an opera-
tion COPq = (pc = (`, ssb)∧pc′ = (`′, ssb[x 7→ ssb(x)a〈n〉])∧skip).
(C1)
Then by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

skip−−−−−−−→
memq ,mem ′

q

2q ′ and under TSO q ′ = ((`′, ssb a 〈(x ,n)〉),∅, reg ′2)

(resp. under PSO q ′ = ((`′, ssb[x 7→ ssb(x)a 〈n〉]),∅, reg ′2))
with reg ′2 = reg2. (C2)
By assumption (C4) and because of reg ′1 = reg1 and reg ′2 = reg2, we
conclude ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r). (C4)
By sem. def. we can choose mem = memq , from which mem ′ = mem ′q
follows, immediately. By assumption (C3 and C4) and from the above
arguments, we get
sb′1 = concTSO(reg ′2, ssb a 〈(x ,n)〉) and
sb′1 = concPSO(reg ′2, ssb[x 7→ ssb(x)a 〈n〉]). (C3)
Hence, (s ′, q ′) ∈ RMM .

• lab = write(x ,n) :

Then P has an operation COPs = flush , which is enabled and by sem. def.,
sb 6= 〈 〉, s ′ = (`, reg ′1, sb′1) with reg ′1 = reg1 and sb1 = 〈(x ,n)〉 a sb′1 and
mem ′ = mem[x 7→ n].

By construction, there are two cases, depending on whether value n stems
from a register or a constant:

– if constant, then by construction w2sc(P ,MM) contains an operation
COPq = (pc = (`, ssb) ∧ pc′ = (`, ssb′) ∧ writesc(x ,n))

with ssb = 〈(x ,n)〉a ssb′ in case of TSO,
and in case of PSO ssb′ = ssb[x 7→ ssb(x)′] with ssb(x) = 〈n〉assb′(x).
(C1)
Then by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

write(x ,n)−−−−−−−→
memq ,mem ′

q

2q ′ and q ′ = ((`′, ssb′),∅, reg ′2) and reg2 = reg ′2. (C2)

By assumption (C4) and because of reg ′1 = reg1 and reg ′2 = reg2, we
conclude ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r). (C4)

A.1. BEHAVIORAL EQUIVALENCE 187

By assumption (C4 and C3) and from the above arguments, we can derive
for TSO:
sb1 = concMM (reg ′2, ssb)

〈(x ,n)〉a sb1 = concMM (reg ′2, 〈(x ,n)〉a ssb′)

sb′1 = concMM (reg ′2, ssb′).
and for PSO:
sb1 = concMM (reg ′2, ssb)

sb1[x 7→ 〈n〉a sb1(x)] = concMM (reg ′2, ssb[x 7→ 〈n〉a ssb′(x)])

sb′1 = concMM (reg ′2, ssb′). (C3)
By sem. def. we can choose mem = memq , from which mem ′ =

mem ′q = mem[x 7→ n] follows.
Hence, (s ′, q ′) ∈ RMM .

– if register, then by construction w2sc(P ,MM) contains an operation
COPq = (pc = (`, ssb) ∧ pc′ = (`, ssb′) ∧ writesc(x , r)) with
ssb = 〈(x , r)〉a ssb′ in case of TSO,
and in case of PSO ssb′ = ssb[x 7→ ssb(x)′] with ssb(x) = 〈r〉assb′(x).
(C1)
Then by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

write(x ,reg2(r))−−−−−−−−−−→
memq ,mem ′

q

2q ′ and q ′ = ((`′, ssb′),∅, reg ′2) and reg2 = reg ′2. (C2)

By assumption (C4) and because of reg ′1 = reg1 and reg ′2 = reg2, we
conclude ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r). (C4)
From C3 and C4, we get reg2(r) = n , since sb1 = concMM (reg2, ssb)

holds initially. By assumption (C4 and C3) and from the above arguments,
we can derive for TSO:
sb1 = concMM (reg ′2, ssb)

〈(x ,n)〉a sb1 = concMM (reg ′2, 〈(x , r)〉a ssb′)

sb′1 = concMM (reg ′2, ssb′).
and for PSO:
sb1 = concMM (reg ′2, ssb)

sb1[x 7→ 〈n〉a sb1(x)] = concMM (reg ′2, ssb[x 7→ 〈r〉a ssb′(x)])

sb′1 = concMM (reg ′2, ssb′). (C3)
By sem. def. we can choose mem = memq , from which mem ′ =

mem ′q = mem[x 7→ n] follows.
Hence, (s ′, q ′) ∈ RMM .

• lab = read(x , r):

188 APPENDIX A. PROOFS

Then P has an operation COPs = (pc = ` ∧ pc′ = `′ ∧ read(x , r)) with
x 6∈ sb1, and by sem. def. s ′ = (`′, reg ′1, sb′1) with sb′1 = sb1 and reg ′1 =

reg1[r 7→ mem(x)] and mem ′ = mem .

By construction, then w2sc(P ,MM) has an operation COPq = (pc =

(`, ssb) ∧ pc′ = (`′, ssb) ∧ read(x , r)). (C1)

Then by sem. def., ltsSC (w2sc(P ,MM)) contains a transition
q

read(x ,r)−−−−−−−→
memq ,mem ′

q

2q ′ and q ′ = ((`′, ssb),∅, reg ′2) and reg ′2 = reg2[r 7→ memq(x)].

(C2)

By sem. def. we can choose mem = memq , from which mem ′ = mem ′q fol-
lows, immediately. From this combined with assumption C4, register equality
follows again, ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r). (C4)

By construction, w2sc(P ,MM) has no write-def-chains and thus, r 6∈ ssb

holds. Thus, sb′1 = conqMM (reg ′2, ssb) follows. (C3)

Hence, (s ′, q ′) ∈ RMM .

Mutual simulation –

(ltsMM (P) simulates ltsSC (w2sc(P ,MM))):
Let (s, q) ∈ RMM with s = (pc1, sb1, reg1), q = (pc2, sb2, reg2). Since (s, q) ∈
RMM , we know pc1 = first(pc2), sb2 = ∅, sb1 = concMM (reg2, second(pc2)),
and ∀ r ∈ Reg1: reg1(r) = reg2(r). Thus, we can safely assume s = (`, sb1, reg1),
q = ((`, ssb),∅, reg2), where ` is some arbitrary but �xed program location and ssb

is some symbolic store bu�er value s.t. concMM (reg2, ssb) = sb1.
Now, assume q

lab−−−−−−−→
mem,mem ′ 2q ′ in ltsSC (w2sc(P ,MM)). We distinguish the possible

cases based on the type of lab:

• lab = r := n :

Then w2sc(P) has an operation COPq = (pc = (`, ssb) ∧ pc′ = (`′, ssb′) ∧
r := expr) and by SC semantics def. q ′ = ((`′, ssb′),∅, reg ′2) with reg ′2 =

reg2[r 7→ n], n = reg2(expr) and mem ′ = mem . (C2)

By construction of w2sc(P), the label can only be generated in three cases (1.
local assignment, 2. a local read or 3. for the write source of a write-def-chain).
Based on the case, we can further strengthen our assumptions on the operation
COPq , in particular on the value ssb′:

1. Then P has an operation COPs = (pc = ` ∧ pc′ = `′ ∧ r := expr).
(C1)
Then, by sem. def. ltsMM (P) contains a transition s

r :=reg(expr)−−−−−−−−→
mems ,mem ′

s

1s ′

with s ′ = (`′, sb′1, reg ′1), sb′1 = sb1 and reg ′1 = reg1[r 7→ reg1(expr)]

A.1. BEHAVIORAL EQUIVALENCE 189

and mem ′s = mems . By sem. def. we can choose mem = mems , from
which mem ′ = mem ′s follows, immediately.
By construction of the sb-graph, we know that ssb′ = ssb must hold. By
assumption (C4), we get reg1(expr) = reg2(expr) = n and hence can
also derive ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r). (C4)
By construction w2sc(P) is free of wd-chains, and thus r 6∈ ssb. Thus,
sb′1 = conqMM (reg ′2, ssb′) follows. (C3)
Hence, (s ′, q ′) ∈ RMM .

2. Then P has an operation COPs = (pc = `∧ pc′ = `′ ∧ read(x , r)) and
by de�nition of labels x ∈ sb1 must hold. (C1)
Then, by sem. def. ltsMM (P) contains a transition s

r :=ns−−−−−−−→
mems ,mem ′

s

1s ′

with s ′ = (`′, sb′1, reg ′1), sb′1 = sb1 and reg ′1 = reg1[r 7→ n], n =

lstMM (x , sb1) and mem ′s = mems . By sem. def. we can choose mem =

mems , from which mem ′ = mem ′s follows, immediately.
By construction of the sb-graph, we know that ssb′ = ssb must hold. By
assumption (C4), n = ns = lstMM (x , sb) = lstMM (x , concMM (reg2, ssb)),
and then also reg ′1(r) = reg ′2(r) from which we can derive ∀ r ∈ Reg1 :

reg ′1(r) = reg ′2(r). (C4)
By construction w2sc(P) is free of wd-chains, and thus r 6∈ ssb. Thus,
sb′1 = conqMM (reg ′2, ssb′) follows. (C3)
(s ′, q ′) ∈ RMM .

3. Then P has an operation COps = (pc = ` ∧ pc′ = `′ ∧ write(x , rorg)).
(C1)
Then, by sem. def. ltsMM (P) contains a transition s

r :=ns−−−−−−−→
mems ,mem ′

s

1s ′

with s ′ = (`′, sb′1, reg ′1), reg ′1 = reg1, ns = reg1(rorg)

and under TSO sb′1 = sb1 a 〈(x ,ns)〉
(resp. under PSO sb′1 = sb1[x 7→ sb1 a 〈ns〉])
and mem ′s = mems . By sem. def. we can choose mem = mems , from
which mem ′ = mem ′s follows, immediately.
By construction of the sb-graph and of w2sc(P), we know that
under TSO ssb′ = ssb a 〈(x , r)〉
and under PSO ssb′ = ssb[x 7→ ssb(x)a 〈r〉].
Furthermore, we know that expr = rorg holds for the operation COPq .
Please note that r in this case is our auxiliary variable (r 6∈ Reg1).
By assumption (C4), we get ns = reg1(rorg) = n = reg2(rorg). Since,
r 6∈ Reg1, reg ′1 = reg1, and reg ′2 = reg2[r 7→ reg2(rorg)], we can still
conclude that ∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) must hold. (C4)

190 APPENDIX A. PROOFS

By construction w2sc(P) is free of wd-chains, and thus r 6∈ ssb. How-
ever, r ∈ ssb′ holds.
By assumption (C4 and C3) and from n = reg1(rorg) = reg2(rorg) =

reg ′2(r), we can derive for TSO:
sb1 = concMM (reg ′2, ssb)

sb1 a 〈(x ,n)〉 = concMM (reg ′2, ssb a 〈(x , r)〉)
sb′1 = concMM (reg ′2, ssb′).
and for PSO:
sb1 = concMM (reg ′2, ssb)

sb1[x 7→ sb1(x)a 〈n〉] = concMM (reg ′2, ssb[x 7→ ssb(x)a 〈r〉])
sb′1 = concMM (reg ′2, ssb′). (C3)
(s ′, q ′) ∈ RMM .

• lab = b

Then w2sc(P) has an operation COPq = (pc = (`, ssb) ∧ pc′ = (`′, ssb′) ∧
bexpr) and by sem. def. q ′ = ((`′, ssb′),∅, reg ′2) with reg ′2 = reg2, ssb′ = ssb,
mem ′ = mem and b = reg2(bexpr). (C2)

By construction of the sb-graph and w2sc(P), P has an operation COps =

(pc = ` ∧ pc′ = `′ ∧ bexpr). Then, by sem. def. ltsMM (P) contains a
transition s

bs−−−−−−−→
mems ,mem ′

s

1s ′ with s ′ = (`′, sb′1, reg ′1), reg ′1 = reg1, sb′1 = sb1

and bs = reg1(bexpr). By sem. def. we can choose mem = mems , from
which mem ′ = mem ′s follows, immediately. (C1)

By assumption (C4), reg2(bexpr) = reg1(bexpr) holds and thus also b = bs

holds. Registers and store bu�ers are not modi�ed. Thus, register equality,
∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) holds. (C4)

By assumption (C3) and from the above sb′1 = conqMM (reg ′2, ssb′) follows.
(C3)

Hence, (s ′, q ′) ∈ RMM .

• lab = write(x ,n):

If the written value was obtained from a constant, then w2sc(P) has an
operation COPq = (pc = (`, ssb) ∧ pc′ = (`′, ssb′) ∧ writesc(x ,n)). If the
written value was obtained from a register, then w2sc(P) has an operation
COPq = (pc = (`, ssb) ∧ pc′ = (`′, ssb′) ∧ writesc(x , r)).

By sem. def. q ′ = ((`′, ssb′),∅, reg ′2) with mem ′ = mem[x 7→ n] and
reg ′2 = reg2 and if the value was obtained from a register, then also n = reg2(r).
(C2)

A.1. BEHAVIORAL EQUIVALENCE 191

Then, by construction of the sb-graph and w2sc(P ,MM), P has an operation
COps = flush that is enabled at the state s .

Then, by sem. def., ltsMM (P) contains a transition s
write(x ,ns)−−−−−−−→
mems ,mem ′

s

1s ′ with

s ′ = (`′, sb′1, reg ′1), with `′ = `, reg ′1 = reg1

and under TSO sb1 = 〈(x ,ns)〉a sb′1
(resp. under PSO sb′1 = sb1[x 7→ sb′1(x)] where sb1(x) = 〈ns〉a sb′1(x))
and mem ′s = mems [x 7→ ns].

By assumption (C4) and since reg ′1 = reg1 and reg ′2 = reg2, register equality
still holds (∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r)). (C4)

By construction of sb-graph and w2sc(P ,MM), we can concretize the pro-
gram locations of COPq :

Under TSO we have `′ = `, ssb = 〈(x ,n)〉 a ssb′ for a constant n and
ssb = 〈(x , r)〉a ssb′ for a register r .
Under PSO we have `′ = `, ssb′ = ssb[x 7→ ssb′(x)] where ssb(x) = 〈n〉a
ssb′(x) for constant n and ssb(x) = 〈r〉a ssb′(x) for a register r . (C1)

In any of those cases by assumption (C3), sb1 = concMM (reg2, ssb), we get
that ns = n .

By sem. def. we can choose mem = mems , from which mem ′ = mem ′s =

mems [x 7→ ns] = mem[x 7→ n] follows.

By assumption (C4 and C3) and from the above arguments, we can derive for
TSO for writing constant n :

sb1 = concMM (reg ′2, ssb)

〈(x ,n)〉a sb′1 = concMM (reg ′2, 〈(x ,n)〉a ssb′)

sb′1 = concMM (reg ′2, ssb′).

and for a write from a register r

sb1 = concMM (reg ′2, ssb)

〈(x ,n)〉a sb′1 = concMM (reg ′2, 〈(x , r)〉a ssb′)

sb′1 = concMM (reg ′2, ssb′).

and for PSO:

sb1 = concMM (reg ′2, ssb)

sb1[x 7→ 〈n〉a sb′1(x)] = concMM (reg ′2, ssb[x 7→ 〈n〉a ssb′(x))

sb′1 = concMM (reg ′2, ssb′).

and for a write from a register r

sb1 = concMM (reg ′2, ssb)

192 APPENDIX A. PROOFS

sb1[x 7→ 〈n〉a sb′1(x)] = concMM (reg ′2, ssb[x 7→ 〈r〉a ssb′(x))

sb′1 = concMM (reg ′2, ssb′).

(C3)

Hence, (s ′, q ′) ∈ RMM .

• lab = read(x , r):

Then w2sc(P ,MM) has an operation COpq = (pc = (`, ssb) ∧ pc′ =

(`′, ssb′) ∧ readsc(x , r)) and by sem. def. q ′ = ((`′, ssb′),∅, reg ′2), reg ′2 =

reg2[r 7→ mem(x)] and mem ′ = mem . (C2)

By construction of the sb-graph and w2sc(P ,MM), then P has an operation
COPs = (pc = ` ∧ pc′ = `′ ∧ read(x , r)) and x 6∈ sb1 (otherwise we would
have a di�erent label). (C1)

Then by sem. def. ltsMM (P) contains a transition s
read(x ,r)−−−−−−−→

mems ,mem ′
s

1s ′ with s ′ =

(`′, sb′1, reg ′1), sb′1 = sb1 and reg ′1 = reg1[r 7→ mems(x)] and mem ′s = mems .
By sem. def. we can choose mem = mems , from which mem ′ = mem ′s
follows, immediately.

By assumption (C4) and by choosing equal memories mem = mems , ∀ r ∈
Reg1 : reg ′1(r) = reg ′2(r) follows. (C4)

By construction of the sb-graph and w2sc(P ,MM), we can concretize COPq

by stating ssb′ = ssb. By assumption (C3), sb′1 = sb1, ssb′ = ssb, we conclude
that sb1 = conqMM (reg ′2, ssb′) still holds. (C3)

Hence, (s ′, q ′) ∈ RMM .

• lab = skip:

Then w2sc(P ,MM) has an operation COPq = (pc = (`, ssb) ∧ pc′ =

(`′, ssb′) ∧ skip) and by sem. def. q ′ = ((`′, ssb′),∅, reg ′2) with reg ′2 = reg2

and mem ′ = mem . C2

By construction of the sb-graph and w2sc(P ,MM), then P has an operation
COPs = (pc = `∧pc′ = `′∧op)with op ∈ {fence,write(x , r),write(x ,n)}.
We distinguish the cases based on op

– op = fence :
Then by sem. def., ltsMM (P) contains a transition s

skip−−−−−−−→
mems ,mem ′

s

1s ′ with

s ′ = (`′, sb′1, reg ′1) and sb′1 = sb1 = 〈 〉∧reg ′1 = reg1 and mem ′s = mems .
By sem. def. we can choose mem = mems , from which mem ′ = mem ′s
follows, immediately. (C1)

A.1. BEHAVIORAL EQUIVALENCE 193

Then, by construction of sb-graph and w2sc(P ,MM), we can concretize
COPq by ssb′ = ssb = 〈 〉.
We trivially get sb′1 = concMM (reg ′2, ssb′) = 〈 〉. (C3)
By assumption (C4) and because registers are not modi�ed, ∀ r ∈ Reg1 :

reg ′1(r) = reg ′2(r) holds. (C4)
Hence, (s ′, q ′) ∈ RMM .

– write(x ,n):

Then by sem. def., ltsMM (P) contains a transition s
skip−−−−−−−→

mems ,mem ′
s

1s ′ with

s ′ = (`′, sb′1, reg ′1), reg ′1 = reg1,
under TSO sb′1 = sb1 a 〈(x ,n)〉
(resp. under PSO sb′1 = sb1[x 7→ sb1(x)a 〈n〉])
and mem ′s = mems .
By sem. def. we can choose mem = mems , from which mem ′ = mem ′s
follows, immediately. (C1)
Then, by construction of sb-graph and w2sc(P ,MM), we can concretize
COPq by ssb′ = ssb a 〈(x ,n)〉 under TSO
and ssb′ = ssb[x 7→ ssb a 〈n〉] under PSO.
By assumption (C4) and since reg ′1 = reg1, reg ′2 = reg2, we conclude
∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) holds. (C4)
By assumption (C4 and C3) and from the above arguments, we can derive
for TSO:
sb1 = concMM (reg ′2, ssb)

sb1 a 〈(x ,n)〉 = concMM (reg ′2, ssb a 〈(x ,n)〉)
sb′1 = concMM (reg ′2, ssb′).
and for PSO:
sb1 = concMM (reg ′2, ssb)

sb1[x 7→ sb1(x)a 〈n〉] = concMM (reg ′2, ssb[x 7→ ssb(x)a 〈n〉])
sb′1 = concMM (reg ′2, ssb′). (C3)
Hence, (s ′, q ′) ∈ RMM .

– write(x , r):

Then by sem. def., ltsMM (P) contains a transition s
skip−−−−−−−→

mems ,mem ′
s

1s ′ with

s ′ = (`′, sb′1, reg ′1), reg ′1 = reg1,
under TSO sb′1 = sb1 a 〈(x , reg1(r))〉
(resp. under PSO sb′1 = sb1[x 7→ sb1(x)a 〈reg1(r)〉])
and mem ′s = mems . (C1)

194 APPENDIX A. PROOFS

By sem. def. we can choose mem = mems , from which mem ′ = mem ′s
follows, immediately.
Then, by construction of sb-graph and w2sc(P ,MM), we can concretize
COPq by
ssb′ = ssb a 〈(x , r)〉 under TSO
and ssb′ = ssb[x 7→ ssb a 〈r〉] under PSO.
By assumption (C4) and since reg ′1 = reg1, reg ′2 = reg2, we conclude
∀ r ∈ Reg1 : reg ′1(r) = reg ′2(r) holds. (C4)
Let n = reg1(r), by assumption (C4 and C3) and from the above argu-
ments, we can derive for TSO:
sb1 = concMM (reg2, ssb)

sb1 a 〈(x ,n)〉 = concMM (reg2, ssb a 〈(x , r)〉)
sb′1 = concMM (reg ′2, ssb′).
and for PSO:
sb1 = concMM (reg2, ssb)

sb1[x 7→ sb1(x)a 〈n〉] = concMM (reg2, ssb[x 7→ ssb(x)a 〈r〉])
sb′1 = concMM (reg ′2, ssb′). (C3)
Hence, (s ′, q ′) ∈ RMM .

2

A.2. COMPOSITIONALITY 195

A.2 Compositionality

Theorem 2. Let P1,P
′
1,P2,P

′
2 be sequential programs such that ltsMM1(Pj) ∼`

ltsMM2(P
′
j) , j ∈ {1, 2}. Then

ltsMM1(P1 || P2) ∼g ltsMM2(P
′
1 || P ′2) .

Proof of Compositionality: By our assumption, the processes of the parallel
compositions are locally bisimulation equivalent. Thus, we can reuse this property in
our global bisimulation relation. We show that from a state, in which the bisimulation
relation holds, we can only reach states that are also related by the bisimulation
relation.

Let ltsMM1(P1 || P2) = (S ,→1,S0) and ltsMM2(P
′
1 || P ′2) = (Q ,→2,Q0) be

the transition systems for program (P1 || P2) and (P ′1 || P ′2) respectively. We use
the following relation in our proof: LetRj , j ∈ {1, 2}, be the relations showing local
bisimilarity of ltsMM1(Pj) and ltsMM2(P

′
j). Out of this, we construct the following

global bisimulation relationR:

R := {((mem, ls1, ls2), (mem, lq1, lq2)) | (lsj , lqj) ∈ Rj , j ∈ {1, 2}}

Initial states:

• Let s0 = (mem, ls0,1, ls0,2) an be initial state in ltsMM1(P1 || P2) with ls0,i =

(l0,i , sbi , regi) and s0 |= Init1∧Init2∧Init , i.e., ls0,1 |= Init1 and ls0,2 |= Init2

and mem |= Init .

By assumption (Ri), there exists lq0,i = (l ′0,i , sb′i , reg ′i) s.t. (ls0,i , lq0,i) ∈ Ri .

Hence, there exists q0 = (mem, lq0,1, lq0,2), an initial state in ltsMM2(P
′
1 || P ′2)

such that q0 |= Init1 ∧ Init2 . By assumption, mem |= Init and thus also
q0 |= Init holds.

Thus, (u0, v0) ∈ R.

• arguments analog for the other direction

Mutual simulation (ltsMM1(P1 || P2) simulates ltsMM2(P
′
1 || P ′2)):

Let (s, q) ∈ R and s
lab−−−−−−−→

mem,mem ′ 1s ′, where s = (mem, ls1, ls2), with lsi =

(ls,i , sbs,i , regs,i) and q = (mem, lq1, lq2) with lqi = (lq,i , sbs,i , regq,i).
By semantics de�nition of parallel composition two cases are possible: either (1)
s ′ = (mem ′, ls ′1, ls2) or (2) s ′ = (mem ′, ls1, ls

′
2).

In the following, we prove case (1). Note that (2) is analog to (1).
By assumption (ls1, lq1) ∈ R1, there exists a lq ′1, s.t., lq1

lab−−−−−−−→
memq ,mem ′

q

2lq ′1 and

(ls ′1, lq
′
1) ∈ R1.

196 APPENDIX A. PROOFS

Then, by semantics de�nition of parallel composition, ltsMM2(P
′
1 || P ′2) contains a

transition q
lab−−−−−−−→

mem,mem ′
q

q ′ with q ′ = (mem ′q , lq
′
1, lq2).

All we have to show now is that mem ′q = mem ′. However, that follows from
our previous proof of local bisimilarity, where we had to derive identical labels for
both transition systems. In the previous proof, we had to choose mem = memq and
obtained mem ′q = mem ′ in all cases.
Hence, we conclude (s ′, q ′) ∈ R.

Mutual simulation (ltsMM2(P
′
1 || P ′2) simulates ltsMM1(P1 || P2)):

analog to the other direction
2

Please note that the open semantics of local transition system considers all
possible values of mem . In our proof of local bisimulation, we had to �nd one
transition in the other LTS (and with it a memq value) for all possible transitions
of the �rst LTS starting at all possible values of mem . This had to be done in
both directions. Our choice was mem = memq in all cases and it always lead to
mem ′ = mem ′q . In the closed semantics, the local states have to agree on the same
value of mem before a transition and consequently it must hold after it as we have
shown in the previous proof.

B

Code Examples

1 @bot = common global i32∗ null , align 4
2 @deq = common global i32∗ null , align 4
3 @age = common global i32∗ null , align 4
4
5 define void @pushBottom(i32 %elem) nounwind optsize {
6 entry:
7 %0 = load i32∗∗ @bot, align 4, !tbaa !0
8 %1 = load i32∗ %0, align 4, !tbaa !3
9 %2 = load i32∗∗ @deq, align 4, !tbaa !0

10 %idx = getelementptr inbounds i32∗ %2, i32 %1
11 store i32 %elem, i32∗ %idx, align 4, !tbaa !3
12 %inc = add i32 %1, 1
13 <<< fence required for PSO >>>
14 store i32 %inc, i32∗ %0, align 4, !tbaa !3
15 ret void
16 }

17 define i32 @popTop() nounwind optsize {
18 entry:
19 %0 = load i32∗∗ @age, align 4, !tbaa !0
20 %1 = load i32∗ %0, align 4, !tbaa !3
21 %2 = load i32∗∗ @bot, align 4, !tbaa !0
22 %3 = load i32∗ %2, align 4, !tbaa !3
23 %shr = ashr i32 %1, 16
24 %cmp = icmp ugt i32 %3, %shr
25 br i1 %cmp, label %if .end, label %return
26
27 if .end:
28 %4 = load i32∗∗ @deq, align 4, !tbaa !0
29 %idx = getelementptr inbounds i32∗ %4, i32 %shr
30 %5 = load i32∗ %idx, align 4, !tbaa !3
31 %add5 = add i32 %1, 65536
32 %6 = cmpxchg i32∗ %0, i32 %1, i32 %add5 seq_cst
33 %7 = icmp eq i32 %6, %1
34 %. = select i1 %7, i32 %5, i32−2
35 br label %return
36
37 return:
38 %retval.0 = phi i32 [−1, %entry] , [%., %if .end]
39 ret i32 %retval.0
40 }

Figure B.1: LLVM IR code after compilation of the code in Figure 4.2. Shows variable
de�nition and the methods pushBottom and popTop.

197

198 APPENDIX B. CODE EXAMPLES

41 define i32 @popBottom() nounwind {
42 entry:
43 %0 = load i32∗∗ @bot
44 %1 = load i32∗ %0
45 %cmp = icmp eq i32 %1, 0
46 br i1 %cmp, label %return, label %if .end
47
48 if .end:
49 %dec = add i32 %1,−1
50 store i32 %dec, i32∗ %0
51 %2 = load i32∗∗ @deq
52 %idx = getelementptr inbounds i32∗ %2, i32 %dec
53 %3 = load i32∗ %idx
54 %4 = load i32∗∗ @age
55 <<< fence required for TSO>>>
56 %5 = load i32∗ %4
57 %shr = ashr i32 %5, 16
58 %cmp1 = icmp ugt i32 %dec, %shr
59 br i1 %cmp1, label %return, label %if .end3
60
61 if .end:
62 %dec = add i32 %1,−1
63 store i32 %dec, i32∗ %0, align 4, !tbaa !3
64 %2 = load i32∗∗ @deq, align 4, !tbaa !0
65 %idx = getelementptr inbounds i32∗ %2, i32 %dec
66 %3 = load i32∗ %idx, align 4, !tbaa !3
67 %4 = load i32∗∗ @age, align 4, !tbaa !0
68 %5 = load i32∗ %4, align 4, !tbaa !3
69 %shr = ashr i32 %5, 16
70 %cmp1 = icmp ugt i32 %dec, %shr
71 br i1 %cmp1, label %return, label %if .end3

73 if .end3:
74 store i32 0, i32∗ %0, align 4, !tbaa !3
75 %and = and i32 %5, 65535
76 %add = add nsw i32 %and, 1
77 %cmp5 = icmp eq i32 %dec, %shr
78 br i1 %cmp5, label %if .then6, label %if .end9
79
80 if .then6:
81 %6 = cmpxchg i32∗ %4, i32 %5, i32 %add seq_cst
82 %7 = icmp eq i32 %6, %5
83 br i1 %7, label %return, label %if .then7
84
85 if .then7:
86 %.pre = load i32∗∗ @age, align 4, !tbaa !0
87 br label %if .end9
88
89 if .end9:
90 %8 = phi i32∗ [%.pre, %if .then7] , [%4, %if .end3]
91 store i32 %add, i32∗ %8, align 4, !tbaa !3
92 br label %return
93
94 return:
95 %retval.0 = phi i32 [−1, %if .end9] ,
96 [−1, %entry] , [%3, %if .end] , [%3, %if .then6]
97 ret i32 %retval.0
98 }

Figure B.2: LLVM IR code after compilation of the code in Figure 4.2. Shows the
method popBottom.

199

1 #define cas (_ptr , _old , _new)
__sync_bool_compare_and_swap(_ptr , _old , _new)

2 #define ABORT−1
3 #define OK 1
4
5 int volat i le ∗ glb = 0 , ∗x = 0 , ∗y = 0;
6 int lx1= 0 , ly1=0 , lx2= 0 , ly2 =0;
7
8 int proc13 () {
9 int loc , tmp;

10 / / TMBegin

11 do {
12 loc = ∗ glb ;
13 } while (loc & 1) ;
14 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 / / TMWrite x := 1 ;

16 i f (! (loc & 1)) {
17 i f (! cas (glb , loc , loc + 1)) {
18 return ABORT;
19 }
20 loc++;
21 }
22 ∗x = 1;
23
24 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 / /TMend

26 i f (loc & 1) {
27 __sync_synchronize () ;
28 (∗ glb)++;
29 }
30 return OK;
31 }

32 int proc33 () {
33 int loc , tmp;
34 / / TMBegin

35 do {
36 loc = ∗ glb ;
37 } while (loc & 1) ;
38 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 / /TMRead lx := x ;

40 tmp = ∗x ;
41 i f (∗ glb != loc) {
42 return ABORT;
43 }
44 lx1 = tmp;
45
46 / /TMRead ly := y ;

47 tmp = ∗y ;
48 i f (∗ glb != loc) {
49 return ABORT;
50 }
51 ly1 = tmp;
52
53
54 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 / /TMend

56 i f (loc & 1) {
57 __sync_synchronize () ;
58 (∗ glb)++;
59 }
60 return OK;
61 }

Figure B.3: C code of two transactions from the transactional memory implemen-
tation, TML by [DDS+10]. Method proc13 implements begin, write(x,1) ,commit;
Method proc33 implements begin, read(x,lx), read(y,ly), commit. The implementation
also shows the required fence (sync synchronize). Please note that we combined
begin, read, write and commit operations into one operation, in order to be able to
take the reordering across method boundaries into account.

Bibliography

[AAA+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos F. Sagonas. Stateless
model checking for TSO and PSO. In Christel Baier and Cesare Tinelli,
editors, TACAS 2015, volume 9035 of LNCS, pages 353–367. Springer,
2015.

[AAC+12] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Counter-example guided fence in-
sertion under TSO. In Proceedings of the 18th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’12, pages 204–219, Berlin, Heidelberg, 2012. Springer-Verlag.

[AAC+13] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Memorax, a precise and sound tool
for automatic fence insertion under TSO. In Nir Piterman and Scott A.
Smolka, editors, Tools and Algorithms for the Construction and Analysis

of Systems - 19th International Conference, TACAS 2013, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of
Lecture Notes in Computer Science, pages 530–536. Springer, 2013.

[ABBM10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and
Madanlal Musuvathi. On the veri�cation problem for weak memory
models. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’10, pages 7–18,
New York, NY, USA, 2010. ACM.

201

202 BIBLIOGRAPHY

[ABP98] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread schedul-
ing for multiprogrammed multiprocessors. In Proceedings of the Tenth

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’98, pages 119–129, New York, NY, USA, 1998. ACM.

[ABP11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting
rid of store-bu�ers in TSO analysis. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer

Science, pages 99–115. Springer, 2011.

[AFI+08] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit
Sarkar, Peter Sewell, and Francesco Zappa Nardelli. The semantics of
Power and ARM multiprocessor machine code. In Proceedings of the 4th

workshop on Declarative aspects of multicore programming, DAMP ’09,
pages 13–24, New York, NY, USA, 2008. ACM.

[AG96] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29(12):66–76, 1996.

[AGHR14] Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky.
Safety of live transactions in transactional memory: TMS is necessary
and su�cient. In Fabian Kuhn, editor, Distributed Computing - 28th

International Symposium, DISC 2014, Austin, TX, USA, October 12-15,

2014. Proceedings, volume 8784 of Lecture Notes in Computer Science,
pages 376–390. Springer, 2014.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering - A new de�nition. In
Jean-Loup Baer, Larry Snyder, and James R. Goodman, editors, Proceed-
ings of the 17th Annual International Symposium on Computer Architec-

ture. Seattle, WA, June 1990, pages 2–14. ACM, 1990.

[AH93] Sarita V. Adve and Mark D. Hill. A uni�ed formalization of four shared-
memory models. IEEE Trans. Parallel Distrib. Syst., 4(6):613–624, 1993.

[AKNT13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig.
Software veri�cation for weak memory via program transformation.
In In Procedings of ESOP 2013, volume 7792 of LNCS, pages 512–532.
Springer, 2013.

[AKY10] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. In Chenyang Lu,
Toshimitsu Masuzawa, and Mohamed Mosbah, editors, Principles of

BIBLIOGRAPHY 203

Distributed Systems - 14th International Conference, OPODIS 2010, Tozeur,

Tunisia, December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes
in Computer Science, pages 395–410. Springer, 2010.

[Alg12] J. Alglave. A formal hierarchy of weak memory models. Formal Methods

in System Design, 41(2):178–210, 2012.

[AM06] Arvind Arvind and Jan-Willem Maessen. Memory model = instruction
reordering + store atomicity. SIGARCH Comput. Archit. News, 34(2):29–
40, May 2006.

[AM14] Tatsuya Abe and Toshiyuki Maeda. A general model checking frame-
work for various memory consistency models. In 2014 IEEE International

Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ,

USA, May 19-23, 2014, pages 332–341. IEEE Computer Society, 2014.

[AMSS10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in
weak memory models. In Touili et al. [TCJ10], pages 258–272.

[AMSS12] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences
in weak memory models (extended version). Formal Methods in System

Design, 40(2):170–205, 2012.

[ARM13] ARM. ARM Architecture Reference Manual - ARMv8, for ARMv8 - A

architecture pro�le, April 2013.

[ARR+07] Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran
Yahav. Comparison under abstraction for verifying linearizability. In
Werner Damm and Holger Hermanns, editors, Computer Aided Veri�-

cation, 19th International Conference, CAV 2007, Berlin, Germany, July

3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,
pages 477–490. Springer, 2007.

[AS14] Elvira Albert and Emil Sekerinski, editors. Integrated Formal Methods -

11th International Conference, IFM 2014, Bertinoro, Italy, September 9-11,

2014, Proceedings, volume 8739 of Lecture Notes in Computer Science.
Springer, 2014.

[AUMM16] Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Mat-
sumoto. Reducing state explosion for software model checking with
relaxed memory consistency models. In Martin Fränzle, Deepak Kapur,
and Naijun Zhan, editors, Dependable Software Engineering: Theories,
Tools, and Applications - Second International Symposium, SETTA 2016,

204 BIBLIOGRAPHY

Beijing, China, November 9-11, 2016, Proceedings, volume 9984 of Lecture
Notes in Computer Science, pages 118–135, 2016.

[BAM06] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Bounded
model checking of concurrent data types on relaxed memory models: A
case study. In T. Ball and R. B. Jones, editors, Computer Aided Veri�cation,

18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20,

2006, Proceedings, volume 4144 of LNCS, pages 489–502. Springer, 2006.

[BAM07] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence:
checking consistency of concurrent data types on relaxed memory
models. In PLDI, pages 12–21, 2007.

[BBG+95] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels.
In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data,

San Jose, California, May 22-25, 1995., pages 1–10. ACM Press, 1995.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-

gram Development - Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004.

[BC05] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly
& Associates Inc, 2005.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Rance Cleaveland,
editor, Tools and Algorithms for Construction and Analysis of Systems, 5th

International Conference, TACAS ’99, Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,

The Netherlands, March 22-28, 1999, Proceedings, volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer, 1999.

[BCDM15] Ahmed Bouajjani, Georgel Calin, Egor Derevenetc, and Roland Meyer.
Lazy TSO reachability. In Alexander Egyed and Ina Schaefer, editors,
FASE 2015, volume 9033 of LNCS, pages 267–282. Springer, 2015.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond.
Inf. Comput., 98(2):142–170, 1992.

BIBLIOGRAPHY 205

[BDG13] Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for
C/C++ concurrency. In Giacobazzi and Cousot [GC13], pages 235–248.

[BDM13] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and
Enforcing Robustness against TSO. In In Procedings of ESOP 2013, volume
7792 of LNCS, pages 533–553. Springer, 2013.

[BDMT10] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
Line-up: a complete and automatic linearizability checker. In Ben-
jamin G. Zorn and Alexander Aiken, editors, Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages
330–340. ACM, 2010.

[BGMY12] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent
library correctness on the TSO memory model. In Helmut Seidl, editor,
ESOP, volume 7211 of Lecture Notes in Computer Science, pages 87–107.
Springer, 2012.

[BL80] James Burns and Nancy A. Lynch. Mutual exclusion using indivisible
reads and writes. In In Proceedings of the 18th Annual Allerton Conference

on Communication, Control, and Computing, pages 833–842, 1980.

[BMM11] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding ro-
bustness against total store ordering. In Luca Aceto, Monika Henzinger,
and Jiri Sgall, editors, Automata, Languages and Programming - 38th

International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,

Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science,
pages 428–440. Springer, 2011.

[BP09] Gérard Boudol and Gustavo Petri. Relaxed memory models: an op-
erational approach. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2009, Savannah, GA, USA, January

21-23, 2009, pages 392–403. ACM, 2009.

[BSS11a] Jacob Burnim, Koushik Sen, and Christos Stergiou. Sound and Complete
Monitoring of Sequential Consistency for Relaxed Memory Models. In
Parosh Aziz Abdulla and K. Rustan M. Leino, editors, TACAS, volume
6605 of Lecture Notes in Computer Science, pages 11–25. Springer, 2011.

206 BIBLIOGRAPHY

[BSS11b] Jacob Burnim, Koushik Sen, and Christos Stergiou. Testing concurrent
programs on relaxed memory models. In Matthew B. Dwyer and Frank
Tip, editors, ISSTA, pages 122–132. ACM, 2011.

[BSTR11] Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, and Wolfgang
Reif. Proving linearizability with temporal logic. Formal Asp. Comput.,
23(1):91–112, 2011.

[CBM] CBMC bounded model checker. http://www.cprover.org/
cbmc/. Accessed: 2016-06-06.

[CBM10] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi.
GAMBIT: e�ective unit testing for concurrency libraries. In R. Govin-
darajan, David A. Padua, and Mary W. Hall, editors, Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP 2010, Bangalore, India, January 9-14, 2010, pages
15–24. ACM, 2010.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer

Aided Veri�cation, 14th International Conference, CAV 2002,Copenhagen,

Denmark, July 27-31, 2002, Proceedings, volume 2404 of Lecture Notes in
Computer Science, pages 359–364. Springer, 2002.

[CDG05] R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data struc-
tures by simulation. Electr. Notes Theor. Comput. Sci., 137(2):93–110,
2005.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. E�ciently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13:451–490, 1991.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction re�nement. In E. Allen
Emerson and A. Prasad Sistla, editors, Computer Aided Veri�cation, 12th

International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,

Proceedings, volume 1855 of Lecture Notes in Computer Science, pages
154–169. Springer, 2000.

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/

BIBLIOGRAPHY 207

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001.

[CKRW99] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based
structural operational semantics of multi-threaded Java. In J. Alves-
Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of LNCS,
pages 157–200. Springer-Verlag, Jan 1999.

[Cla08] Edmund M. Clarke. The Birth of Model Checking, pages 1–26. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[CNW13] Dave Clarke, James Noble, and Tobias Wrigstad, editors. Aliasing in

Object-Oriented Programming. Types, Analysis and Veri�cation, volume
7850 of Lecture Notes in Computer Science. Springer, 2013.

[CRZ+10] Pavol Cerný, Arjun Radhakrishna, Damien Zu�erey, Swarat Chaudhuri,
and Rajeev Alur. Model checking of linearizability of concurrent list
implementations. In Touili et al. [TCJ10], pages 465–479.

[CS10] E. Cohen and B. Schirmer. From total store order to sequential con-
sistency: A practical reduction theorem. In M. Kaufmann and L. C.
Paulson, editors, ITP, volume 6172 of Lecture Notes in Computer Science,
pages 403–418. Springer, 2010.

[DB14] John Derrick and Eerke A. Boiten. Re�nement in Z and Object-Z -

Foundations and Advanced Applications (2. ed.). Springer, 2014.

[DD15] Brijesh Dongol and John Derrick. Verifying linearisability: A compara-
tive survey. ACM Comput. Surv., 48(2):19:1–19:43, 2015.

[DDS+10] L. Dalessandro, D. Dice, M. L. Scott, N. Shavit, and M. F. Spear. Transac-
tional mutex locks. In Pasqua D’Ambra, Mario Rosario Guarracino, and
Domenico Talia, editors, Euro-Par (2), volume 6272 of Lecture Notes in
Computer Science, pages 2–13. Springer, 2010.

[DDS+14] John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan, Oleg
Travkin, and Heike Wehrheim. Quiescent consistency: De�ning and
verifying relaxed linearizability. In Cli� B. Jones, Pekka Pihlajasaari,
and Jun Sun, editors, FM 2014: Formal Methods - 19th International

Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of
Lecture Notes in Computer Science, pages 200–214. Springer, 2014.

[Der15] Egor Derevenetc. Robustness against Relaxed Memory Models. PhD
thesis, University of Kaiserslautern, 2015.

208 BIBLIOGRAPHY

[DGLM13] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. To-
wards formally specifying and verifying transactional memory. Formal

Asp. Comput., 25(5):769–799, 2013.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In Programming

Languages, pages 43–112. Academic Press, 1968.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an e�cient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-

ternational Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[DMVY13] Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav.
Predicate abstraction for relaxed memory models. In Francesco Logozzo
and Manuel Fähndrich, editors, SAS, volume 7935 of Lecture Notes in
Computer Science, pages 84–104. Springer, 2013.

[Dri14] Katharina Dridger. Integration von History-basierten Korrektheits-
Checks im Model Checker SPIN. Bachelor Thesis, 5 2014. University
Paderborn.

[DSD14] John Derrick, Graeme Smith, and Brijesh Dongol. Verifying lineariz-
ability on TSO architectures. In Albert and Sekerinski [AS14], pages
341–356.

[DSGD17] John Derrick, Graeme Smith, Lindsay Groves, and Brijesh Dongol.
A Proof Method for Linearizability on TSO Architectures, pages 61–91.
Springer International Publishing, Cham, 2017.

[DSW07] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability
via non-atomic re�nement. In J. Davies and J. Gibbons, editors, iFM,
volume 4591 of LNCS, pages 195–214. Springer, 2007.

[DSW11a] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically veri�ed proof
obligations for linearizability. ACM Trans. Program. Lang. Syst., 33(1):4,
2011.

[DSW11b] J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisability
with potential linearisation points. In M. Butler and W. Schulte, editors,
FM, volume 6664 of LNCS, pages 323–337. Springer, 2011.

BIBLIOGRAPHY 209

[DTDW13] Brijesh Dongol, Oleg Travkin, John Derrick, and Heike Wehrheim. A
high-level semantics for program execution under total store order
memory. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors,
Theoretical Aspects of Computing - ICTAC 2013 - 10th International Collo-

quium, Shanghai, China, September 4-6, 2013. Proceedings, volume 8049
of Lecture Notes in Computer Science, pages 177–194. Springer, 2013.

[DW05] John Derrick and Heike Wehrheim. Non-atomic re�nement in Z and
CSP. In Helen Treharne, Steve King, Martin C. Henson, and Steve A.
Schneider, editors, ZB 2005: Formal Speci�cation and Development in

Z and B, 4th International Conference of B and Z Users, Guildford, UK,

April 13-15, 2005, Proceedings, volume 3455 of Lecture Notes in Computer

Science, pages 24–44. Springer, 2005.

[EPS+14] G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV -
overview and VerifyThis competition. Software Tools for Techn. Transfer,
pages 1–18, 2014.

[EQS+10] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In J. Esparza and
R. Majumdar, editors, TACAS, volume 6015 of LNCS, pages 296–311.
Springer, 2010.

[Fla04] Cormac Flanagan. Verifying commit-atomicity using model-checking.
In In Proc. 11th Int’l. SPIN Workshop on Model Checking of Software,

volume 2989 of LNCS, pages 252–266. Springer-Verlag, 2004.

[GC13] Roberto Giacobazzi and Radhia Cousot, editors. The 40th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’13, Rome, Italy - January 23 - 25, 2013. ACM, 2013.

[GH04] Hui Gao and Wim H. Hesselink. A formal reduction for lock-free parallel
algorithms. In Rajeev Alur and Doron A. Peled, editors, Computer Aided

Veri�cation, 16th International Conference, CAV 2004, Boston, MA, USA,

July 13-17, 2004, Proceedings, volume 3114 of Lecture Notes in Computer

Science, pages 44–56. Springer, 2004.

[GK08] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Siddhartha Chatterjee and Michael L. Scott, editors, PPOPP,
pages 175–184. ACM, 2008.

[GMY12] Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Show no
weakness: sequentially consistent speci�cations of TSO libraries. In

210 BIBLIOGRAPHY

Proceedings of the 26th international conference on Distributed Computing,
DISC’12, pages 31–45, Berlin, Heidelberg, 2012. Springer-Verlag.

[God96] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concur-

rent Systems - An Approach to the State-Explosion Problem, volume 1032
of Lecture Notes in Computer Science. Springer, 1996.

[Hes07] Wim H. Hesselink. A criterion for atomicity revisited. Acta Informatica,
44(2):123–151, 2007.

[HKP+13] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin,
and Ana Sokolova. Quantitative relaxation of concurrent data structures.
In Giacobazzi and Cousot [GC13], pages 317–328.

[HKV98] Lisa Higham, Jalal Kawash, and Nathaly Verwaal. Weak memory con-
sistency models. part i: De�nitions and comparisons. Technical report,
Department of Computer Science, The University of Calgary, 1998.

[HKV02] David Harel, Orna Kupferman, and Moshe Y. Vardi. On the complexity
of verifying concurrent transition systems. Inf. Comput., 173(2):143–161,
2002.

[HM93] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Alan Jay Smith, editor, ISCA,
pages 289–300. ACM, 1993.

[Hol03] Gerard Holzmann. The Spin model checker: Primer and Reference Manual.
Addison-Wesley Professional, �rst edition, 2003.

[HS08] M. Herlihy and N. Shavit. The art of multiprocessor programming. Mor-
gan Kaufmann, 2008.

[HSV13] Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented
linearizability proofs. In Pedro R. D’Argenio and Hernán C. Melgratti,
editors, CONCUR 2013 - Concurrency Theory - 24th International Con-

ference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.

Proceedings, volume 8052 of Lecture Notes in Computer Science, pages
242–256. Springer, 2013.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[IBM15] IBM. Power ISA Version 2.07 B, April 2015.

BIBLIOGRAPHY 211

[Int] Intel. A formal speci�cation of Intel Itanium processor family memory
ordering. http://www.intel.com/design/itanium/downloads/251429.htm.
Accessed: 05 July 2016.

[Int12] Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software
Developer’s Manual Volume 3A: System Programming Guide, Part 1, May
2012.

[ISO11a] ISO/IEC. Programming languages - c++, 14882:2011. Technical report,
ISO, 2011.

[ISO11b] ISO/IEC. Programming languages - c, 9899:2011. Technical report, ISO,
2011.

[Jon83] Cli� B. Jones. Speci�cation and design of (parallel) programs. In IFIP

Congress, pages 321–332, 1983.

[Jon12] Bengt Jonsson. Using re�nement calculus techniques to prove lineariz-
ability. Formal Asp. Comput., 24(4-6):537–554, 2012.

[KVY12] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic
inference of memory fences. SIGACT News, 43(2):108–123, 2012.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the In-

ternational Symposium on Code Generation and Optimization: Feedback-

directed and Runtime Optimization, CGO ’04, pages 75–, Washington,
DC, USA, 2004. IEEE Computer Society.

[Lam74] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):690–691,
1979.

[LCLS09] Yang Liu, Wei Chen, YanhongA. Liu, and Jun Sun. Model checking
linearizability via re�nement. In Ana Cavalcanti and DennisR. Dams,
editors, FM 2009: Formal Methods, volume 5850 of Lecture Notes in

Computer Science, pages 321–337. Springer Berlin Heidelberg, 2009.

[LNP+12] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and
Eran Yahav. Dynamic synthesis for relaxed memory models. SIGPLAN
Not., 47(6):429–440, June 2012.

212 BIBLIOGRAPHY

[LT89] N. Lynch and M. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3):219–246, 1989.

[LV95] N. Lynch and F. Vaandrager. Forward and backward simulations I:
Untimed systems. Inf. Comput., 121(2):214–233, 1995.

[LW10] Alexander Linden and Pierre Wolper. An automata-based symbolic
approach for verifying programs on relaxed memory models. In Pro-

ceedings of the 17th International SPIN Conference on Model Checking

Software, SPIN’10, pages 212–226, Berlin, Heidelberg, 2010. Springer-
Verlag.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[MMS+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian,
Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell,
and Derek Williams. An axiomatic memory model for POWER multi-
processors. In Madhusudan and Seshia [MS12], pages 495–512.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. In Jens Palsberg and Martín Abadi, editors, Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005,
pages 378–391. ACM, 2005.

[MQ06] Madan Musuvathi and Shaz Qadeer. CHESS: systematic stress testing
of concurrent software. In Germán Puebla, editor, Logic-Based Program
Synthesis and Transformation, 16th International Symposium, LOPSTR

2006, Venice, Italy, July 12-14, 2006, Revised Selected Papers, volume 4407
of Lecture Notes in Computer Science, pages 15–16. Springer, 2006.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In James E.
Burns and Yoram Moses, editors, Proceedings of the Fifteenth Annual

ACM Symposium on Principles of Distributed Computing, Philadelphia,

Pennsylvania, USA, May 23-26, 1996, pages 267–275. ACM, 1996.

[MS12] P. Madhusudan and S. A. Seshia, editors. Computer Aided Veri�cation -

24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13,

2012 Proceedings, volume 7358 of LNCS. Springer, 2012.

[MSS12] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduc-
tion to the ARM and POWER relaxed memory models - revision 120.

BIBLIOGRAPHY 213

http://www.cl.cam.ac.uk/ pes20/weakmemory/, October 2012. Accessed:
25 July 2016.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer, 2002.

[Obj08] Object Management Group (OMG). MOF model to text transformation
language, v1.0. OMG Document Number formal/2008-01-16 (http:
//www.omg.org/spec/MOFM2T/1.0/), 2008.

[Obj15a] Object Management Group (OMG). Meta object facility (MOF) core,
v2.5. OMG Document Number formal/2015-06-06 (http://www.
omg.org/spec/MOF/2.5/), 2015.

[Obj15b] Object Management Group (OMG). OMG uni�ed modeling language
(OMG UML), infrastructure, v2.5. OMG Document Number formal/2015-
03-01 (http://www.omg.org/spec/UML/2.5/), 2015.

[Owe10] Scott Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In Theo D’Hondt, editor, ECOOP, volume 6183
of Lecture Notes in Computer Science, pages 478–503. Springer, 2010.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, October 1979.

[PD95] Seungjoon Park and David L. Dill. An executable speci�cation, analyzer
and veri�er for RMO (relaxed memory order). In SPAA, pages 34–41,
1995.

[Pet81] G.L. Peterson. Myths about the mutual exclusion problem. Information

Processing Letters, 12:115–116, 1981.

[Pos46] Emil Leon Post. A variant of a recursively unsolvable problem. Bulletin
of the American Mathematical Society, 52:264–268, 1946.

[PP84] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In Dharma P.
Agrawal, editor, Proceedings of the 11th Annual Symposium on Computer

Architecture, Ann Arbor, USA, June 1984, pages 348–354. ACM, 1984.

[Rey02] J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55–74. IEEE Computer Society, 2002.

http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/UML/2.5/

214 BIBLIOGRAPHY

[SA08] Jaroslav Sevcík and David Aspinall. On validity of program trans-
formations in the Java memory model. In Jan Vitek, editor, ECOOP
2008 - Object-Oriented Programming, 22nd European Conference, Paphos,

Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in
Computer Science, pages 27–51. Springer, 2008.

[Sen15] Koushik Sen. Concolic testing: a decade later (keynote). In Harry Xu and
Walter Binder, editors, Proceedings of the 13th International Workshop on

Dynamic Analysis, WODA@SPLASH 2015, Pittsburgh, PA, USA, October

26, 2015, page 1. ACM, 2015.

[Sev09] Jaroslav Sevcík. Program transformations in weak memory models. PhD
thesis, University of Edinburgh, UK, 2009.

[SK09] Marc Shapiro and Bettina Kemme. Eventual consistency. In Ling Liu
and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages
1071–1072. Springer US, 2009.

[SPA92] SPARC International, Inc., CORPORATE. The SPARC Architecture Man-

ual: Version 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[SPA94] SPARC International, Inc., CORPORATE. The SPARC Architecture Man-

ual (Version 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER multiprocessors. In Mary W. Hall
and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

2011, San Jose, CA, USA, June 4-8, 2011, pages 175–186. ACM, 2011.

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: a rigorous and usable programmer’s
model for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

[ST97] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[sv-16] SV-Competition Benchmarks, April 2016. https://github.com/dbeyer/sv-
benchmarks.

[SWD12] G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms
linearisable. In Madhusudan and Seshia [MS12], pages 243–259.

BIBLIOGRAPHY 215

[Szy88] B. K. Szymanski. A simple solution to Lamport’s concurrent program-
ming problem with linear wait. In Proceedings of the 2Nd International

Conference on Supercomputing, ICS ’88, pages 621–626, New York, NY,
USA, 1988. ACM.

[TCJ10] Tayssir Touili, Byron Cook, and Paul Jackson, editors. Computer Aided

Veri�cation, 22nd International Conference, CAV 2010, Edinburgh, UK,

July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer

Science. Springer, 2010.

[TMW13] Oleg Travkin, Annika Mütze, and Heike Wehrheim. SPIN as a lineariz-
ability checker under weak memory models. In Valeria Bertacco and
Axel Legay, editors, Hardware and Software: Veri�cation and Testing

- 9th International Haifa Veri�cation Conference, HVC 2013, Haifa, Is-

rael, November 5-7, 2013, Proceedings, volume 8244 of Lecture Notes in
Computer Science, pages 311–326. Springer, 2013.

[Tra16] Oleg Travkin. Weak2SC - git repository. https://github.com/oleg82upb,
2016. Accessed: December 2016.

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism. Technical
Report RJ 5118, IBM Almaden Res. Ctr., 1986.

[TSR14] Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. A compositional
proof method for linearizability applied to a wait-free multiset. In Albert
and Sekerinski [AS14], pages 357–372.

[TTSW14] Bogdan Tofan, Oleg Travkin, Gerhard Schellhorn, and Heike Wehrheim.
Two approaches for proving linearizability of multiset. Sci. Comput.

Program., 96:297–314, 2014.

[TW14] Oleg Travkin and Heike Wehrheim. Handling TSO in mechanized
linearizability proofs. In Eran Yahav, editor, Hardware and Software: Ver-
i�cation and Testing, volume 8855 of Lecture Notes in Computer Science,
pages 132–147. Springer International Publishing, 2014.

[TW16] Oleg Travkin and Heike Wehrheim. Veri�cation of concurrent programs
on weak memory models. In Augusto Sampaio and Farn Wang, editors,
Theoretical Aspects of Computing - ICTAC 2016 - 13th International Col-

loquium, Taipei, Taiwan, ROC, October 24-31, 2016, Proceedings, volume
9965 of Lecture Notes in Computer Science, pages 3–24, 2016.

216 BIBLIOGRAPHY

[TWS12] Oleg Travkin, Heike Wehrheim, and Gerhard Schellhorn. Proving
linearizability of multiset with local proof obligations. ECEASST, 53,
2012.

[Vaf07] V. Vafeiadis. Modular �ne-grained concurrency veri�cation. PhD thesis,
University of Cambridge, 2007.

[Val89] Antti Valmari. Stubborn sets for reduced state space generation. In Grze-
gorz Rozenberg, editor, Advances in Petri Nets 1990 [10th International

Conference on Applications and Theory of Petri Nets, Bonn, Germany,

June 1989, Proceedings], volume 483 of Lecture Notes in Computer Science,
pages 491–515. Springer, 1989.

[Val98] Antti Valmari. The state explosion problem. In Lectures on Petri Nets

I: Basic Models, Advances in Petri Nets, the Volumes Are Based on the

Advanced Course on Petri Nets, pages 429–528, London, UK, UK, 1998.
Springer-Verlag.

[VHHS06] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of
highly-concurrent linearisable objects. In J. Torrellas and S. Chatterjee,
editors, PPOPP, pages 129–136, 2006.

[VYY09] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Experience with model
checking linearizability. In SPIN, pages 261–278, 2009.

[Wei89] William E. Weihl. Local atomicity properties: Modular concurrency con-
trol for abstract data types. ACM Trans. Program. Lang. Syst., 11(2):249–
283, 1989.

[WS05] Liqiang Wang and Scott D. Stoller. Static analysis of atomicity for pro-
grams with non-blocking synchronization. In Keshav Pingali, Kather-
ine A. Yelick, and Andrew S. Grimshaw, editors, Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP 2005, June 15-17, 2005, Chicago, IL, USA, pages 61–71. ACM, 2005.

[WT15] Heike Wehrheim and Oleg Travkin. TSO to SC via symbolic execution.
In Nir Piterman, editor, Hardware and Software: Veri�cation and Testing

- 11th International Haifa Veri�cation Conference, HVC 2015, Haifa, Israel,

November 17-19, 2015, Proceedings, volume 9434 of Lecture Notes in

Computer Science, pages 104–119. Springer, 2015.

[YGL05] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. UMM: an
operational memory model speci�cation framework with integrated

BIBLIOGRAPHY 217

model checking capability. Concurrency and Computation: Practice and

Experience, 17(5-6):465–487, 2005.

	Introduction
	Concurrency on Modern Multicore Processors
	Weak Memory Models
	Towards Program Correctness

	Contributions
	Overview

	Memory Models
	Programs
	Parameterized Semantics
	Sequential Consistency
	Total Store Order
	Partial Store Order
	Relaxed Memory Order
	Related Work

	Reduction from Weak Semantics to Sequential Consistency
	Symbolic Execution with Weak Memory Semantics
	Store Buffer Graph
	Store Buffer Graphs Properties

	Transformation to a new SC Program
	Reduction is Sound and Compositional
	Local Bisimulation Equivalence
	Compositionality of the Approach
	Related Work and Discussion

	Weak2SC – The Implementation
	Architecture of Weak2SC
	Case Study – Work Stealing Queue
	From LLVM IR to a Store Buffer Graph
	Template-based Generation of new Programs
	Generating Promela Programs
	Generating KIV Program Encoding
	Promela Programs for Operational Memory Models

	Discussion and Possible Future Extensions

	Correctness of Concurrent Data Structures
	Linearizability
	Linearizability - Original Definition
	Adaptations to Weak Memory Models

	Discussion
	Verification Methods for Linearizability

	Other Correctness Conditions

	Verifying Linearizability under Weak Memory Models
	Model Checking under Weak Memory Models
	The Idea - Abstract Atomic Specifications
	Experiments
	An alternative Idea - History Checking

	Proving Linearizability under Weak Memory Models
	Overview
	Abstract Data Type
	Concrete Data Type
	Abstraction Function
	Invariant
	Proof Procedure and Comparison

	Related Work and Discussion

	Conclusion
	Summary
	Future Work
	Design Decisions
	Concluding Thoughts

	Proofs
	Behavioral Equivalence
	Compositionality

	Code Examples
	Bibliography

