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Abstract

Traditional cache design uses a consolidated block of memory address bits to index a

cache set, equivalent to the use of modulo functions. While this module-based map-

ping scheme is widely used in contemporary cache structures due to the simplicity of

its hardware design and its good performance for sequences of consecutive addresses, its

use may not be satisfactory for a variety of application domains having different char-

acteristics. Cache performance can be improved by using alternative mapping schemes

and especially by adding reconfigurability to the cache structure to adapt the mapping

between the memory address and cache index to the needs of an application.

Developed over decades, problem-solving methods inspired by Nature are by now popu-

lar and effective tools to tackle large and complicated optimization problems. Combined

with the programmble capability of reconfigurable hardware, these Nature-inspired op-

timization methods enable dynamic exploration of new hardware configurations by per-

forming evolutionary search.

This thesis presents a new type of cache mapping scheme, motivated by programmable

capabilities combined with Nature-inspired optimization of reconfigurable hardware.

This research has focussed on an FPGA-based evolvable cache structure of the first level

cache in a multi-core processor architecture, able to dynamically change cache indexing.

To solve the challenge of reconfigurable cache mappings, a programmable Boolean circuit

based on a combination of Look-up Table (LUT) memory elements is proposed. Focusing

on optimization aspects at the system level, a Performance Measurement Infrastructure

is introduced that is able to monitor the underlying microarchitectural metrics, and

an adaptive evaluation strategy is presented that leverages on Evolutionary Algorithms,

that is not only capable of evolving application-specific address-to-cache-index mappings

for level one split caches but also of reducing optimization times. Putting this all to-

gether and prototyping in an FPGA for a LEON3/Linux-based multi-core processor, the

creation of a system architecture reduces cache misses and improves performance over

the use of conventional caches.



Zusammenfassung

Traditionelle Cachedesigns verwenden konsolidierte Blöcke von Speicheradressbits um

einen Cachesatz zu indizieren, vergleichbar mit der Anwendung einer Modulofunktion.

Obwohl dieses modulobasierte Abbildungsschema in heutigen Cachestrukturen weit ver-

breitet ist, vor allem wegen seiner einfachen Anforderungen an das Hardwaredesign und

seiner Effizienz für die Indizierung eufeinanderfolgender Speicheradressen, kann seine

Verwendung für eine Vielzahl von Anwendungsdomänen mit unterschiedlichen Charak-

teristiken zu suboptimalen Ergebnissen führen. Die Effizienz des Caches kann verbessert

werden, indem ein alternatives Abbildungsschema eingesetzt wird, insbesondere aber

durch Verwendung von rekonfigurierbaren Cachestrukturen, welche die Abbildung von

Speicheradressen zu Cacheindizes an die Bedürfnisse der Applikation anpassen können.

Natur-inspirierte Problemlösungsverfahren sind mittlerweile beliebte und effiziente Tools,

um große und komplexe Optimierungsprobleme zu lösen. In Kombination mit der

Möglichkeit rekonfigurierbare Hardware umprogrammieren zu können, ermöglichen diese

naturinspirierten Optimierungsmethoden die dynamische Exploration neuer Hardwarek-

onfigurationen mittels evolutionärer Suche.

Diese Dissertation präsentiert einen neuen Typ von Cacheabbildungsschema, motiviert

durch die Kombination programmierbarer Ressourcen mit der naturinspirierten Opti-

mierung rekonfigurierbarer Hardware. Im Fokus dieser Forschung steht eine FPGA-

basierte Cachestruktur für den first level Cache einer Mehrkernprozessorarchitektur,

welche die Cacheindizierung dynamisch ändern kann. Um die Herausforderung rekonfig-

urierbarer Cacheabbildungen zu lösen, wird eine reprogrammierbare Boolesche Schal-

tung eingeführt, die auf Look-up Table (LUT) Speicherelementen basiert. Weiter-

hin wird eine Infrastruktur zur Effizienzmessung eingeführt, welche die zugrundeliege

Mikroarchitektur überwachen kann, sowie eine adaptive Evaluationsstrategie präsentiert,

die evolutionäre Algorithmen wirksam einsetzt, und die nicht nur anwendungsspezifis-

che Abbildungen von Speicheradressen zu Cacheindizes für level one Caches evolvieren

sondern dabei auch die Optimierungszeiten reduzieren kann. All diese Aspekte zusam-

men in einer prototypischen Implementierung auf einem FPGA für einen LEON3/Linux-

basierten Mehrkernprozessor zeigen, dass evolvierbare Cacheabbildungsfunktionen Cache

Misses reduzieren, sowie die Effizienz im Vergleich zu konventionellen Caches erhöhen

können.
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Chapter 1

Introduction

Today’s computing systems, whether they are servers, desktops, or embedded systems,

have a memory system as a fundamental component that significantly determines the

system’s performance and energy consumption. For decades, the well-known terminol-

ogy and the uses of hierarchical approaches have enabled designers to overcome the

complexity of memory system design by isolating the individual memory components

and optimizing them simultaneously. A modern memory hierarchy consisting of a cache

hierarchy, DRAMs, and (flash-)disks is the standard memory system in most of today’s

computers.

Over the years, the technology scale driven by Moore’s Law have enabled us to add

more and more transistors on a single die to gain performance. As a result, we have

seen the era of multi- many-core systems and even further are beginning to explore

heterogeneous systems, where potential future chips involving the integration of the

CPU, GPU, and FPGA on a single die will be employed, enable higher performance

gains. This trend undoubtedly demands a memory system with the capacity, energy,

bandwidth, and cost that can scale well with the system’s size. Unfortunately, memory

scaling is not as fast as core count growth, due to imposed impact factors given by the

difficulty of the interconnections of the enlarged physical components, technology-driven

limitations of DRAM, flash-memory designs, and disk performance as well. For example,

we have seen that the capacities of DRAM chips have recently improved by about 32%

per year, although the need for memory capacity per core is dropping by 30% every two

years due to the imbalance in the growing trend between processing cores and relative

memory capacity [12], [13]. Moreover, while memory latency has been improved by up

to 6.8×, there is still a big gap in comparison with the performance improvement for

1



Introduction 2

microprocessors, which has been improved by up to 80× [12], and this trend is still

ongoing.

To overcome the increased pressure on memory systems, many efforts are targeted on

memory redesign and optimization. Recently, new DRAM memory architectures, such as

Hybrid-Memory-Cube and High-Bandwidth-Memory, have appeared, enabling DRAM

scaling by providing higher bandwidth, lower energy/latency, and a simpler interface

than the traditional DRAMs [14] [15]. In addition, emerging scalable memory technolo-

gies such as phase-change memory (PCM) and spin-transfer torque magnetoresistive

RAM (STT-MRAM) have been demonstrated to have advantages over DRAMs [16–18],

potentially to be used as DRAM alternatives in the main memory. These technologies

are leading to promising hybrid memory systems comprising multiple technologies with

different features to gain better performances.

At higher levels of the memory hierarchy, designers rely on a cache hierarchy to exploit

locality in order to decrease main memory access latencies. While last level caches have

large sizes and high associativity to reduce cache miss rates, upper-level caches are

designed for smaller size and lower associativity, aiming at faster access times. The top-

most levels of cache should have low delays due to their placement in the critical path

and their being frequently accessed by the processing core. Therefore, efficient designs

for the first level cache would significantly impact the scaling factors for the system size.

In a modern processor, the access latency of on-chip first level caches lies in three

critical components: translation-lookaside-buffer accesses for virtual-to-physical address

translations, tag comparators for determining cache hit/misses, and read/write accesses

to the caches. Three addressing models are commonly used for the organization of the

first level cache. While the first model is the simplest one, in which the cache indexing

and tag matching are computed from physical addresses and virtual-to-physical address

translations must be performed before the accesses to the caches begin, this involves high

overheads due to the requirements of the translation-lookaside-buffer access. The second

addressing model works by accessing the caches purely by virtual addresses. While

virtual-to-physical address translations can be avoided for cache hits, this model suffers

synonym problems due to multiple virtual addresses being mapped to the same physical

address, and homonym problems resulting from the same virtual address being mapped

to multiple physical addresses. Non-trivial solutions addressing these issues do exist,

yet their implementations involve too much complexity, both for cache management

and coherence protocols [19, 20]. The typical addressing model implemented in the

first level cache in contemporary processors is the virtually indexed–physically tagged



Introduction 3

scheme. This model uses a physical address for the tag matching, and it performs, in

parallel, an index computation from untranslated address bits and virtual-to-physical

translation. This model presents a trade-off design when compared with the first and

the second models. However, the cache size is limited by the system page size (4KiB),

and increasing the cache capacity by adding more cache ways leads to increased access

latency and energy consumption. Notable recent works have presented some alternative

address models and demonstrated better trade-offs between physical and virtual caches

[21–26], yet the implementations are not trivial.

Whatever addressing models are employed in the first level cache, the traditional designs

use a consolidated block of memory address bits to map memory addresses onto cache

sets. Mathematically, this corresponds to computing the modulo function. This scheme

is popular since it has no temporal or resource overheads if the number of cache lines is

a power of two. One well-known performance loss occurs with the use of modulo-based

mapping schemes, especially for a direct-mapped cache: conflict misses resulting from

non-uniform distributions of accesses to cache sets. Using alternative cache mapping

schemes to eliminate conflicts is an option to improve the cache performance. Remark-

able works have proposed different mapping schemes by using permutation-based [27],

XOR-based [28–30] and arbitrary modulus-based functions [31], which have demon-

strated reductions in the number of conflict misses. Appling these mapping schemes in

a direct-mapped cache has improved overall cache hits significantly, comparable with a

set-associative cache.

On the other hand, nature-inspired optimizations, developed over recent decades, are

by now popular additional methods for scientists and engineers to tackle complex and

large optimization problems, such as evolutionary computing and neural networks. Mo-

tivated by Evolvable Hardware, a new type of cache mapping scheme operating with

reconfigurable mapping functions has been recently proposed in [32]. This approach

realizes arbitrary Boolean functions for computing the cache index sets by adding small

reconfigurable fabrics to the CPU. The fabrics’ configurations are evolved and optimized

by Evolutionary Strategies.

While the uses of alternative mapping schemes are very promising for first level cache

optimizations, the impacts of additional hardware of cache index computation on the

critical path have not been analyzed completely. Especially, a system integration of cus-

tom cache indexing schemes for an addressing model is still unknown. In addition, the

scarcity of research on customized memory-to-cache address mapping functions presum-

ably is due to the more complicated simulator set-up and prolonged simulation times.
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To this end, as far as the knowledge of the present author extends, no such system has

been built yet.

1.1 Thesis Contribution

Leveraging on the work presented in [32], the present thesis introduces into the first level

cache a new type of mapping scheme and an adaptive structure capable of changing

different mapping functions at run-time for performance gains. The main contribution

of this thesis includes the first fully working hardware implementation of a processor

that is able to freely define its memory-to-cache address functions and reconfigure them

at any point of time. To this end, the caches and their snooping mechanisms of a

Gaisler LEON3 SPARC multi-core architecture [33] have been extended, with universal

cache and hardware event sensors that can be incorporated smoothly into the standard

Linux performance measurement infrastructure; the Linux kernel has been extended

as well, so as to handle cache mapping reconfigurations at run-time. Altogether, this

not only improves the cache performance by evolving dedicated mapping functions for

applications and their input vector distributions, but also offers a very flexible way to

separate cache-friendly from cache-hostile applications. In more detail, the following

contributions to the research field of cache mapping scheme have been made:

• Reconfigurable Boolean circuits have been introduced into the FPGA, which have

not been presented before, so as to be able to evolve cache mapping functions.

There has also been developed a reconfigurable cache mapping architecture for

which the Gaisler LEON3 SPARC multi-core architecture was selected, but is

then the caches and their snooping mechanism is extended for reconfigurable cir-

cuit blocks. Lastly, a full system prototype has been created by compensating

a reconfiguration controller and a standard Linux device driver to control cache

mapping reconfigurations.

• In order to search for better-performing cache mappings, there has been introduced

a performance measurement infrastructure into the LEON3 platform capable of

monitoring underlying microarchitectural metrics. On the hardware side, this is

equipped with Performance Monitoring Units including a set of hardware counters,

which can be configured to measure a rich set of hardware events. For software,

Performance Monitoring Units are also integrated with the perf event and perf

tool, which are the standard performance monitoring architecture of the Linux
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kernel. The performance measurement infrastructure together with reconfiguration

circuits are utilized for the analysis and optimization of the evolved cache mapping

functions.

• Leveraged on the creation of a system architecture fully running a Linux OS, there

has been deployed a nature-inspired optimization strategy for cache mappings by

employing Evolutionary Algorithms.

On the real-time platform, while a candidate solution is usually evaluated multi-

ple times to capture its characteristic behavior, performance evaluation is highly

complex and non-deterministic due to the non-deterministic operation of the op-

erating system and evaluations of the functional quality may lead to unacceptably

long optimization times. To address this challenge, there has been developed an

adaptive evaluation scheme, in which there has been introduced the use of statis-

tical test methods to identify the best-performing candidates, using as few fitness

evaluations as possible. With this novel scheme, the optimization times have been

reduced by a factor of 3.6 without a significant drop in convergence behavior.

• By having established the optimization methodology, we have contributed a com-

prehensive evaluation and provided detailed results of cache mapping optimization

for eleven applications randomly selected from the MiBench suite and the BZIP2

application. For that, we have provided insight an analysis of the computational

overheads induced by the evolutionary strategy and proved how our adaptive eval-

uation scheme potentially reduces optimization efforts. To that end, we have

reported in details the optimization results and validated the best cache mappings

found.

1.2 Thesis Organization

The organization of this thesis is as follows.

Chapter 2 presents the basic concepts of cache structures, provides a taxonomy of open

source multi/many core platforms, and also highlights FPGA-based systems built for

reconfigurable computing and evolvable hardware research areas.

Chapter 3 is dedicated to state of the art of cache mapping schemes and discusses

related implementation issues.
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Chapter 4 presents the reconfiguration mapping cache architecture and details the

system prototype in the FPGA.

Chapter 5 describes a detailed implementation of the performance monitoring infras-

tructure.

Chapter 6 explains the idea of natural selection applied to the cache mapping func-

tion problem and elaborates the optimization methodology for cache mapping function

evolution.

Chapter 7 provides detailed experimental results for optimization evaluation for eleven

applications randomly selected from the MiBench suite and the BZIP2.

Chapter 8 summarizes the results and the contributions of this thesis, draws the lessons

learned, and suggests future research directions.



Chapter 2

Background

The first part of this chapter provides the basic concepts of cache memories. We present

the fundamental types of cache organization and the physical implementations based on

static-RAM cells. We then review three addressing models mostly used at the first level

cache and review the contemporary memory hierarchies used in a multi-core chip. Next,

we elaborate the different optimization techniques for cache design and particularly

emphasize the methods used in this thesis for optimizing the cache mapping scheme.

The second part gives a taxonomy of the different open source multi/many-core platforms

and provides an overview of the different FPGA-based systems which have become

attractive for reconfigurable computing.

2.1 Cache Memory Basics

The memory hierarchies of contemporary computer systems consist of multiple levels

of memory storage, as can see in Figure 2.1. The first level cache (L1 cache) placed

close to the processing unit provides the shortest access time. While this cache is the

smallest, fastest, and the most expensive, the lower level caches, placed farther from the

processing unit, are cheaper, slower, yet provide larger capacities. The cheapest, slowest

and the largest memory storage is provided by dynamic RAM (DRAM) and disks. Thus,

with a memory hierarchy, long latency accesses to the main memory can be hidden if

the processing units can find the data patterns in the caches.

Given by a memory hierarchy design, cache architectures normally demand the property

of Inclusion to be maintained between the levels of the caches. The property of Inclusion

7



Background 8

requires that all data found in one level be also found in the lower levels, and thus the Last

Level Cache (LLC) is a superset of all caches. While the design of a cache architecture

can be an exclusive cache hierarchy in which the data of one cache block is displayed

only in one level, the design of an inclusive cache hierarchy simplifies the cache coherence

for multi-core processors.

L1 Cache L2 Cache Last Level CacheCPU Inter-connection
(bus)

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Hard disks

CPUs and On-Chip Caches

Figure 2.1: Typical cache organization where the system has three level of caches.

The design of a cache architecture follows the principle of locality of program, i.e. that

programs tend to reuse instructions and data. Two fundamental types of locality are

temporal locality and spatial locality [12, 34, 35]. The principle of temporal locality says

that elements of a memory access sequence are likely to be referenced again in the near

future; and in space, the principle of spatial locality states that the neighboring locations

of a given access to a particular location are highly likely to be referenced soon.

As we have seen, having increased significantly more rapidly than the reduction in

DRAM access times, the performance improvements of processors have led to a gap

between processor and memory performances, and this gap has increased further in the

era of multi/many-core systems, requiring more memory bandwidth. Among the options

to ameliorate memory latency that an architect may consider, designing the memory

hierarchy efficiently, relying on caches, plays an important role in reducing latency.

2.1.1 Organization

Caches are typically used for both programs and data. The smallest unit of data that

a processing unit uses is commonly a word (4 bytes), and the cache manages and hosts

continuous words in cache lines, or interchangeably so-called cache blocks. Data trans-

fers between main and cache memories are performed in term of entire cache lines.

Conventionally, there are three logical cache organizations: direct-mapped cache, fully-

associative cache, and set-associative cache, as shown in Figure 2.2.
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Figure 2.2: Three logical cache organizations: (a) Direct-mapped cache; (b) Set-
associative cache, w-way associative cache; (c) Fully-associative cache.

An n-bit address is partitioned into tag, index and offset fields. The k-bit field at the

least significant bits, called the block offset is used to locate a word within a cache line.

Thus, a cache line consists of 2k words. When a memory access is made, an m-bit index

field in the direct-mapped cache (cf. Figure 2.2(a)) and the set-associative cache (cf.

Figure 2.2(b)) is used to select the appropriate cache line or the set entry among 2m sets.

The tag bit field of the current memory access is compared with the tags from previous

accesses stored in the tag-array memories. If there is a match, the access to the cache

is a cache hit, otherwise, we have a cache miss. When there is a cache hit, the word

data identified by the block offset in the cache block is returned to the processing unit.

But a cache miss leads to a replacement of the cache line by new data fetched from a

lower level of cache or main memory. The operations relating to a cache miss or hit are

handled by the cache controller.

Direct-mapped cache. This cache organization maps 2n−k memory blocks to 2m cache

lines (cf. Figure 2.2(a)). Among the three methods of organization, the direct-mapped
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cache is the simplest implementation with the lowest cost, highest speed, and the lowest

energy consumption. Compared with the other ways of organization, the direct-mapped

cache needs only one tag comparison and does not require a multiplexer for selecting

data from the multiple ways, as seen in the set-associative cache. While these properties

have made attractive the use of direct-mapped cache for L1 cache, this caching scheme

may result in higher miss rate than set-associative and fully-associative caches, due to

cache access contentions.

Fully-associative cache. This caching scheme provides the most flexibility for map-

pings, so that a memory block can be placed in any of 2m-cache lines. Thus, every

access requires the tag to be compared with all the tags stored in the tag array (cf.

Figure 2.2(c)). Among the three methods of cache organization, the fully-associative

cache offers the highest hit rate, as it’s fully-associative property can reduce the num-

ber of cache access contentions. However, the implementation of this caching scheme

involves a high hardware cost, due to the requirements of parallel tag comparators. Al-

though Content Addressable Memories (CAMs) are generally employed to implement

parallel tag comparators, these are very expensive for this cache design [36]. Therefore,

fully-associative caches are not commonly used.

Set-associative cache. This caching scheme is a compromise between the direct-

mapped and fully-associative caches, providing a trade-off between performance and

hardware cost. In a w-way associative cache, a cache set comprises w lines and is iden-

tified by m bits of the index field. Unlike the fully-associative cache, the set-associative

cache needs only w tag comparators to match tags simultaneously. The implementation

of the replacement policy is less complex as it considers only those cache lines in the

same set. Compared with the direct-mapped cache, the set-associative cache provides

higher cache hit rate due to its ability to reduce access contentions.

Replacement policy. For the direct-mapped cache, when there is a cache miss, only

one cache line is replaced. However, for the set-associative and fully-associative caches,

the cache controllers must decide which cache line is to be replaced from among those

within the set. Three typical replacement policies are commonly employed: Random –

the decision to replace a cache line is random; Least-recently used (LRU) – the candidate

cache line is the one that has not been accessed for the longest time; First-in, first-out

(FIFO) – a simpler implementation than LRU, the candidate for replacement is the

oldest cache access.
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2.1.2 Physical Implementation

Cache memories are implemented as organizations of static-RAM (SRAM) cells. This

choice is reasonable as the technology using the CMOS transistors applied in processor

logic components can be also utilized for the cache. The most traditional SRAM cell is

a full-CMOS cell consisting of 6 transistors as shown in the top of Figure 2.3. In a 1-bit

cell, the bit is read out by asserting the wordline to determine the value whether 0 or 1

by sensing a voltage difference of the bitline pair. On the other hand, a write operation

to store data into the memory cell is conducted by placing a differential voltage from an

external source onto the bitline pair.

... ... ... ...

...
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WL 2

WL n

BL BL BL BL

BL BL
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bit 0 bit 1 bit 3 bit k

+ -

Comparators

+ - + - + -
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... ...

de
co
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r
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Bitlines (BL)
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Column Muxes

a SRAM Cell
(full CMOS 6-transitors)SRAM array

Sense Amplifiers

driving

data bushit/miss

Figure 2.3: A simplified physical implementation of SRAM-based cache (Reproduced
from [36], [37]).

The bottom of Figure 2.3 shows a conventional physical implementation of a cache in

which the tag and data parts are made up from SRAM memory arrays. The index field

from the address bits is provided as input to a decoder. The decoder drives a wordline

both into the tag and data arrays and simultaneously activates column muxes. The

tag and data arrays comprise several wordlines, but only one wordline is driven high.
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When one row goes high, the contents of each memory cell in that row are placed on

two bitlines, which will be monitored by sense amplifiers to detect bit values before

driving out. A write operation will place new bit values on the bitlines in order to store

them into the cells. Column multiplexers allow multiple bitlines to share a single sense

amplifier, so that both power and area can be saved. The information read out from the

tag array is provided to a comparator, or w comparators in a w-way set-associative cache

to determine whether there is a cache hit or miss. Finally, the results of the comparators

will drive out valid data on a data bus.
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Figure 2.4: Access times of CMOS-SRAM caches varing in size and associativity. The
technology is 90 nm, cache line size is 64 bytes (Reproduced from [12]).

The energy and delay of the read and write operations within an SRAM cell are very

small. However, the cache access times are primarily induced by the wire delays of

the decoder, wordlines, bitlines, sense amplifiers, comparators, and data bus. These

latencies commonly contribute to a critical path delay and total power dissipation of

the processors. As demonstrated in Figure 2.4, the latencies of the cache hit time are

affected by the cache size and associativity. The cache hit time of a direct-mapped

cache is faster than that of a set-associative cache since the latter caching scheme uses

more comparators and muxes. Within a caching scheme, increasing the cache size also

lengthens the access times.

2.1.3 Addressing Model

In most of today’s virtual memory systems, each process has a virtual address space

dynamically mapped onto physical memory at run-time. This mapping is conducted
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by a paging technique in which page tables and translate look-aside buffers (TLBs) are

managed by the OS to track the mapping information between the virtual and physical

pages. In virtual memory systems, modern processors can access the L1 cache either by

using physical or virtual addresses. Assuming the page size to be 2p in terms of units

of cache lines, the virtual-to-physical address translation will not alter p-bits of the

page offset. Typically, three addressing models are used: Physically Indexed–Physically

Tagged, Virtually Indexed–Virtually Tagged, and Virtually Indexed–Physically Tagged,

as illustrated in Figure 2.5.
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PPN Page offset
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VPN: Virtual Page Number
PPN: Physical Page Number
VA/PA: Virtual Address/Physical Address

Figure 2.5: Three L1 cache addressing models: (a) PIPT; (b) VIVT; (c) VIPT.

Physically Indexed–Physically Tagged (PIPT) A cache utilizing a PIPT model

is called physical cache, in which the cache blocks are located by the use of the phys-

ical address. As illustrated in Figure 2.5(a), virtual-to-physical address translation by

observing the TLB must be done before cache acccess starts. Thus, every cache access

completes in two cycles. In a PIPT cache, in order to reduce these overheads, the TLB

and cache accesses can be performed by pipelining techniques.

Virtually Indexed–Virtually Tagged (VIVT) This cache addressing model is re-

ferred to as virtual cache, in which the cache is accessed by the use of virtual addresses.

As illustrated in Figure 2.5(b), the TLB is only referenced when a cache miss occurs.

Without requiring translation steps for cache hits, VIVT caches are beneficial for energy

savings. However, the use of this addressing model is not popular due to its suffering from
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synonym and homonym problems [19]. In fact, two common scenarios could happen in

virtual memory systems: two or more virtual pages can be mapped to the same physical

page, or a virtual-to-physical mapping is broken because of the remapped virtual-to-

physical pages. In a virtual cache, the former case leads to the situation where multiple

identical data can exist in different cache lines, so that the processor might access stale

copies. This is called a synonym problem. The latter case leads to the homonym prob-

lem of a virtual cache, in which the data belonging to a physical page can be accessible

again yet by a different virtual address of the remapped virtual page.

Virtually Indexed–Physically Tagged (VIPT) The model most commonly used in

the L1 cache is the VIPT model, in which the caches are accessed by virtual addresses

and use physical addresses for the tag comparisons. As illustrated in (Figure 2.5(c)),

cache indexing and the TLB reference start concurrently and thus a cache access can

complete in one cycle. Compared with the VIVT model, the use of physical addresses

for tags in a VIPT model can avoid the synonym and homonym problems if the m-bit

index field is shrunk to be equal or smaller than the p-bits of a page offset. However, this

resolution limits the cache size and the cache capacity can be enlarged only by increasing

the associativity.

There are several solutions to avoid or detect synonym and homonym problems, yet

their implementations are not trivial [19, 20, 22, 25, 38–40].

2.2 Multi-core Processor Caches

Multi-core systems implement memory hierarchies as shared memory address spaces,

where all cores use a single address space for memory accesses. Each core may have one

or two levels of private cache and normally has an LLC shared by all cores. Figure 2.6

shows the typical cache architecture implemented in most multi-core chips (or chip

multiprocessors) and an example of a floorplan for a four-core chip. The floorplan of

the chip shows that each core has a private level one instruction cache (L1:I) and data

cache (L1:D), connected to a shared L2 cache dedicated as an LLC via an interconnection

network. Shared LLC and memory controllers are responsible for handling data transfers

between caches and external memory devices. The use of a large size LLC provides

an increase in cache hit rate resulting in a reduction of the average memory accesses

latencies. On-chip LLCs may occupy half the modern chip’s die area and commonly

comprise many distributed memory banks.
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Unfortunately, the use of shared memory systems introduces inconsistent situations: a

core may obtain stale data due to multiple copies of the data replicated in the caches.

In order to avoid stale accesses, the cache structures implements coherence protocols,

that can ensure that the multiple cached copies of data are kept up to date.
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Figure 2.6: A typical two-level cache organization in a multi-core processor chip and
a floorplan of a four-core chip (Reproduced from [41])

.

Coherence Protocol. To prevent accesses to stale data in multiple caches, cache

coherence protocols maintain a set of rules to monitor the states of sharing cache blocks.

Two typical types of protocols are directory-based and snooping-based protocols. The

former reserve centralized or scattered directorial memories dedicated to tracking the

status of the cache accesses for all cores; The latter type requires the cache controllers

belonging to a core to broadcast invalidate messages to the remaining cores once copies

of data are modified.

Snooping-based protocol. Implementing a snooping-based protocol tightly relies on the

interconnection network of the private caches and LLCs that are commonly feasible

by the use of shared buses. The principle of a snooping protocol is whenever a core

modifies data in a cache or a cache miss requires new data to be fetched, the core must

place the modified or request messages regarding the accessed cache block on the bus

so that the other cores and LLCs can listen. When one core catches the messages, it

looks up their caches for whether the data of the requested block has been copied. If

the cache architectures implement a write-back strategy, the responsible core which is

keeping a valid copied data of the cache block must return the requested data block to

the requesting core. When there are no valid cached copies of the data among the cores,
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the LLCs are responsible to provide the requested cache block. In a bus-based snooping

protocol, a bus arbiter is commonly used to ensure exclusive accesses for the requesting

cores. If two or more cores attempt to place requests on the bus simultaneously, the

arbiter allows only one core to win the race.

Conventionally, there are two kinds of implementations for snooping-based protocols:

the write invalidate scheme, which requires a cache write operation of a cache block to

invalidate the other copies, and the write update scheme, which demands that the other

copies of the cache block be updated on write. The former is typically employed since

this scheme consumes less bandwidth than the latter, which demands a broadcast of the

whole cache block. Snooping-based protocols are simple to implement, however, their

drawbacks are scalability and thus they are suitable for system designs having small

number of cores.

Directory-based protocol. Directory-based protocols overcome the lacks of scalability of

the snooping-based protocols. These protocols maintain global information for every

cache block access, centralized in directory memories. They typically employ scalable

non-broadcast interconnection networks, i.e. mesh or torus topologies instead of relying

on buses. Directory memories are commonly integrated in the LLCs, where the orga-

nization of the directory memories comprises multiple entries and each directory entry

record the states of each cache block in the higher caches. For each cache block, there is

a corresponding entry, which must track the owner core and the sharers holding copies.

When there is a cache miss, the corresponding core sends requests directly to a directory

controller at the LLCs. A valid block of data at the LLCs is returned to the requesting

core and if any consistency requirements are necessary, the directory controller forces

the sharers to invalidate the copies in their caches.

2.3 Cache Miss Types

Before discussing, in the next section, the techniques for optimizing the cache, we provide

a review of cache miss classification. Typically, three types of cache miss are compulsory

miss, conflict miss and capacity miss.

Compulsory miss. Any first-time memory accesses to the cache must fetch the data.

For these first-time accesses, where there are no accesses, the cache controller demands

fetched data from the main memories. These cache misses are called compulsory misses.

Compulsory misses are inevitable and do not change with variations of the cache size.
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Conflict miss. In set-associative or direct-mapped caches, when the number of cache

accesses to the same set exceed the number of ways, cache misses occur. If these cache

misses result in cache hits in a same-size fully-associative cache, they are referred to as

conflict misses.

Capacity miss. Those cache misses which are not classified as compulsory or con-

flict misses are called capacity misses. When the capacity of a cache is not enough to

accommodate the working set of a program execution, capacity misses arise. In a fully-

associative cache, cache misses that are not classified as compulsory misses are capacity

misses.

2.4 Optimization Goals

As we have seen, the delay accesses to off-chip memory devices in a memory hierarchy

consume a very high amount of energy. System performance and power consumption

are more efficient when more instructions and data can be found in caches placed closer

to the processing units. The efficiency of a memory hierarchy is reflected in its average

memory access time, which is calculated as follows:

Average memory acess time = hit time+miss rate×miss penalty

where hit time is the cache hit access; miss rate is the cache miss rate, and miss penalty

is the cost to fetch a new cache block from memory. In optimizing a memory hierarchy,

measuring the cache miss rate can be used to evaluate its performance. But the average

memory access time can be a better metric to reflect the optimization objectives. The

formula above implies that ideal caches are those which possess both short access times

and low miss rates. Among the three cache organizations, the direct-mapped cache has

the fastest access time, yet this caching scheme may suffer from the highest miss rates.

Fully-associative and set-associative caches can achieve higher hit rates. However, both

suffer higher hardware costs as well as increased access times and power consumption.

Generally, cache optimization techniques focus on two categories: latency reduction, of

which the goals are to reduce the miss penalty, miss rate, or hit time; latency hiding

via techniques to overlap memory references with other operations, or to increase cache

bandwidth by hardware prefetching, compiler prefetching, and pipelining cache accesses.

Miss penalty reduction: Adding more levels of increasingly larger caches can reduce

the cost of a miss penalty. An L1 cache should be a small capacity one, providing fast



Background 18

access to match with the processor clock. LLCs are large in order to capture as many

cache miss accesses from the higher level caches as possible, providing a better possibility

of optimizing overall cache misses and long access latencies to the main memory [42].

Most of the on-chip cache architectures in contemporary systems have large LLCs with

many mega bytes of capacity, and half the processor chip’s die area is dedicated to LLCs.

Hit time reduction: Today’s L1 caches normally reside on-chip and are mostly located

at the critical path of the processor. Since the hit time of L1 caches often determines

the processor clock rate, L1 cache architectures should have small capacities, simpler

organizations, and mostly use direct-mapped caches or set-associative caches with a

feasibly small number of ways. Hit times can be improved by a decrease in cache size

and associativity, yet this design may lead to high miss rates for L1 caches.

While there are several options for optimizing cache hit times that an architect can

consider, a trade-off cache structure between the direct-mapped and set-associative cache

has been explored. For an example at the first level cache, a set-associative cache

structure featured by a way-prediction mechanism can reduce access times [43–45]. The

way-prediction technique works by adding predictor bits within cache sets to learn which

ways are being accessed. Based on that distribution information, the predictors choose

the best way to access, and if the prediction is wrong, the caches look in the other

remaining ways. Way-prediction techniques improve set-associative caches to such an

extent that a set-associative cache can achieve hit times approximately equal to those of

a direct-mapped cache, yet it still has the same hit rates of the traditional set-associative

caches.

An L1 cache design using VIVT addressing models can reduce cache hit time to one

cycle. Moreover, a VIVT cache is able to improve power consumption due to the TLBs’

references if the hit rates are larger than the miss rates. However, the use of VIVT

addressing models are complicated due to synonym and homonym problems. A common

practical design for a trade-off between VIVT and PIPT addressing models is the use of a

VIPT one in which the bit fields of the cache index are limited to those of the page offset

and the tag bits are parts of physical addresses. The VIPT caching scheme allows cache

indexing and virtual-to-physical address translation steps to take place simultaneously,

so that the cache hit time is still one cycle.

Bandwidth improvement: Cache bandwidth can be improved by improving the pro-

cessor’s clock. High bandwidth for L1 caches can be achieved via pipelining cache access

in which a cache access can be split into a number of pipeline stages and cache hits take
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place in multiple cycles, achieving faster clock cycle time [46, 47]. While this method en-

ables a faster processor clock and gains high bandwidth, it may lead to higher penalties

on mispredicted branches. Another technique for bandwidth improvement is to feature

caches with a non-blocking mechanism. Instead of stalling the pipeline during data cache

miss operations, a non-blocking cache can increase cache bandwidths by permitting the

processor to continue fetching instructions for executions [48]. While the interleaved-

access techniques of memory banks are being used in DRAM chips to achieve higher

memory bandwidth, these techniques are being applied also for LLC cache structures

[42].

Miss rate reduction: Compulsory and capacity miss ratios can be reduced by enlarg-

ing the cache line size. For the same cache size, a bigger cache line size may lead to an

increase in the number of conflict misses and in turn impact the overall miss ratios and

miss penalties. The techniques using stream buffer or hardware/software prefetching

are able to mitigate compulsory and capacity misses [49–51]. These techniques leverage

on a small buffer and take advantage of high memory bandwidth to fetch the requested

blocks by combining successive blocks into the cache and into the buffer respectively.

The prefetched data in the buffer thus are available for successive accesses instead of

accessing to main memories.

From a software perspective, compiler-assisted techniques via analysing and optimizing

the program source codes are able to improve cache miss ratios [12]. For example, two

of the most popular compiler techniques are loop interchange and blocking, which can

detect nested-loop codes throughout prior analysis and transform them into improved

spatial or temporal locality versions capable of reducing cache misses.

Mapping Optimization: A cache miss that occurs when at least two cache accesses

get mapped onto the same cache set is referred to as a conflict miss. The conventional

mapping to choose a set for an address of the data can be seen as the use of a power-

of-2-number modulo function such that the cache index is modulo-computed from the

block addresses onto the number of cache sets. This fixed mapping gives no choices

for colliding accesses co-existing in caches. Thus, the conflicting data in the cache, if

they are going to be reused soon, must be evicted, even if there are free cache sets at

other locations not touched. Consequently, conflict misses can impact the overall miss

rates due to the non-uniform distributions resulting from the conventional modulo-based

mappings.
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Instead of computing cache indices by using the modulo function, alternative types of

hash functions also are used. The fundamental idea is that alternative hash functions

can distribute memory accesses to the cache sets in more uniform ways to ease conflict

accesses. The most well-known alternative mapping schemes are the class of XOR-

based functions [28, 30, 52–55], the prime number [56, 57], selection-bit schemes [27, 58]

and the recent arbitrary modulus indexing schemes [31]. The work in this thesis is

orthogonal to most of the related works using better-performing mapping functions.

The present thesis differs from previous works in that it features cache structures using

novel reconfiguration circuits capable of reprogramming arbitrary mapping functions at

run-time. A detailed discussions of optimizing cache mapping schemes will be postponed

to the next chapter.

2.5 Open Source Processors

The trend to use multi-core processors is common in today’s high performance and

embedded systems, to gain higher performance. While much research is being carried

out by employing software simulators or the use of modeling tools [37, 59] enabling

architectural explorations and performance analysis [60–62], there are open source multi-

core platform implementations providing great opportunities to perform research at the

RTL and FPGA levels [33, 63–66]. A taxonomy of the different platforms of the well-

known open source multi/-many-cores processors is summarized in Table 2.1.

In order to realize ideas of reconfigurable cache mappings for an FPGA-based implemen-

tation of a processor that can reconfigure and adapt its own memory-to-cache address

mapping function at runtime, we have chosen the LEON3 multi-core platform provided

by Gaisler. Compared with other open-source platforms, the LEON3, implementing a

32-bit SPARC V8 architecture, presents advantageous features satisfying our demands.

The Gaisler LEON3 SPARC multi-core platform provides a simpler cache architecture, a

synthesizable VHDL model, a highly configurable platform, and is able to run a complete

Linux OS.

Our work has been to extend the caches and the snooping mechanisms of the Gaisler

LEON3 SPARC multi-core architecture [33] and feature reconfiguration circuit blocks

dedicated to programmable cache mapping structures. We realized universal cache and

hardware event sensors that incorporate smoothly into the standard Linux performance

measurement infrastructure, and extended the Linux kernel to handle cache mapping
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Table 2.1: Open source multi-core/many-core processor platforms.

Platforms Architecture Cache level & Prototype HDL OS
Coherency Support

LEON3 [33] 32b SPARC V8 L1 - Snooping FPGA VHDL
Linux,
RTOS

OpenScale [64] 32b MicroBlaze L1 - No Coherency FPGA VHDL RTOS

OpenSPARC
64b SPARC V9 L1/L2 - Directory ASIC Verilog Solaris

T1/T2 [65]

RISC-V
64b RISC-V L1/L2 - Directory FPGA/ASIC Chisel Linux

Rocket [66]

OpenPiton [63] 64b SPARC V9 L1/L2 - Directory FPGA/ASIC Verilog Linux

reconfigurations during task switches. The system was prototyped on an ML605 board

equipped with a Virtex-6 FPGA.

2.6 FPGA-based Systems

Field Programmable Gate Array (FPGA) architectures provide numerous lookup tables

(LUTs) implemented in small SRAMs. Arbitrary Boolean equations can be represented

by a combination of a number of LUTs within the FPGA devices, enabling arbitrary

digital circuit implementations. The basic element of the FPGA is an n-bit input LUT,

which is typically formed by n-SRAM bits holding the configuration memory and an

n : 1 multiplexer. Figure 2.7 illustrates an example of 2-input LUT configured for a

logical XOR.

0

1

1

0

SRAM a  b

a  XOR b

Figure 2.7: 2-input LUT is configured for a logical XOR.

In the 1980s, Xilinx, Inc. introduced configurable logic blocks (CLBs) for their FPGA

devices. The CLBs consist of slices, each one comprising LUTs, flip-flops (FFs), and a

collection of multiplexers. Slices are connected via programmable interconnection net-

works, enabling a flexible implementation of various logic functions. A slice architecture

in the 7-series FPGAs provided by Xilinx Inc. comprises four 6-LUTs and eight registers,

as shown in Figure 2.8.
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6-LUT

Slice

6-LUT

6-LUT

6-LUT

Figure 2.8: Slice architecture in the Xilinx 7-Series FPGAs (Reproduced from [67]).

One of the major application areas of FPGA devices is the pre-production develop-

ment and testing of new integrated circuit designs. Prototyping with FPGAs, system

architects can significantly reduce the time-to-market when compared to the use of in-

termediate test Application Specific Integrated Circuits (ASICs), which require time

consuming and costly procedures. Prototyping with FPGAs suffers from the notably

time consuming electronic design automation (EDA) tool-chains, especially with the

increases in chip size, since it requires the users to statically partition their designs,

resynthesizing only the modified chip areas when a system resynthesis is required. Most

of the modern FPGA architectures support partial synthesis so as to be able to shorten

the synthesis times and provide dynamic reconfiguration capabilities. When using Xil-

inx’s tools [68], partial synthesis is supported to a large extent, avoiding a full system

resynthesis by being able to reconfigure FPGA segments on-the-fly by partial bitstreams

through the Internal Configuration Access Port (ICAP).

Attracted by the dynamic reconfiguration capabilities provided by many modern FPGA
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devices, several works have featured integrating reconfigurable fabric parts inside conven-

tional processor architectures [69–72]. For instance, the ERA project [72] investigates

synthesis tools and hardware design aspects for the realization of an efficiently recon-

figurable platform for embedded systems. Using a dedicated reconfiguration controller,

the ERA system is able to dynamically adapt instruction sets, register files, Network-

on-Chip (NoC) interconnects, and memory hierarchies. Xilinx’s recent System on Chip

(SoC) Zynq-7000 FPGA [73] provides flexible ways for extending conventional processors

with reconfigurable fabrics. The need for efficiently reconfigurable computing platforms

has created multiple contributions dedicated to specialized programming models [74, 75].

In the context of Evolvable Hardware research [76–79], the work in [80] shows the im-

plementation of evolvable circuits for image filtering, exploiting virtually reconfigurable

circuits and dynamic partial reconfiguration.

2.7 Conclusion

In this chapter, we have introduced many major aspects of cache architecture designs.

We have presented the organization, the physical implementation, addressing models,

and cache hierarchies used in modern multi-core chips. We have also provided a detailed

review of different optimization techniques for cache designs. In addition, we have

also given a taxonomy of several open source multi/many-core platforms and furnished

a survey of different FPGA-based systems and especially emphasized reconfiguration

capabilities.

Having established the background in this chapter, we will focus on further discussions

of cache mapping designs and optimizations in the next chapter.



Chapter 3

Cache Mapping Schemes

The memory references of an application may lead to extremely non-uniformly dis-

tributed accesses when using the traditional modulo-based mapping scheme [56, 81].

The problems produced by a non-uniform access distribution cause some cache sets to

be accessed heavily while others are less used. Consequently, for a cache, these problems

may lead to a higher number of conflict misses, with a consequent higher overall cache

miss rate. Using a set-associative cache can achieve a reduction in the conflict misses.

However, in this cache organization, accessing multiple cache ways concurrently incurs

longer access latencies, more power consumption, and higher hardware cost than with

the use of a direct-mapped cache.

This chapter first presents the issues of cache conflict misses under the use of the con-

ventional modulo-based mapping scheme. Then, we present the state of the art of

existing solutions that use alternative cache mapping schemes, capable of alleviating

conflict access behavior. To this end, we discuss several major practical aspects of the

cache organizations, with the challenges faced in integrating these alternative mapping

techniques.

3.1 Cache Mapping Functions

Assume that an n-bit address is represented by a bit vector [an−1an−2...a0], where an−1

and a0 are the most and the least significant bits respectively. Consider a cache or-

ganization where a cache set is looked up by an m-bit index c represented by a bit

vector [cm−1cm−2...c0]. Assume that each cache set (per way for set-associativity cache)

contains 2k words and m < n− k.

24
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A cache mapping function is a hash function f that maps a cache block address a =

[an−1an−2...ak] to a cache set c = f(a).

Mathematically, there are in all (2m)(2n−k) functions for mapping n − k to m bits.

Implementing circuits for a cache mapping function should be inexpensive cost both in

area, power and access time. For example, the mapping hardware used for L1 caches

which are placed in the critical path of the processor must be simpler and the access

time as fast as possible.

3.2 The Conventional Mapping Scheme

The conventional modulo-based mapping scheme partitions an n-bit memory address

into an (n-m-k)-bit tag, m-bit set index, and k-bit block offset, as can be seen at the

top of Figure 3.1. The cache set is determined by the address via the mapping function

f(a) = a mod 2m, where 2m is the number of cache sets. This mapping scheme is used

in contemporary cache structures due to the simplicity of its hardware design and its

good performance for sequences of consecutive addresses.

tag array +
way-selection logic

𝑎𝑚+𝑘 −1…𝑎𝑘

t

𝑎𝑛−1…𝑎𝑚+𝑘

c

tag index

tag array +
way-selection logic

blk. offset

k bits

C’

a:

t’
ft
fc

Figure 3.1: Cache organizations with the conventional modulo mapping scheme (on
the top) and alternative mapping schemes (at the bottom).

One problem with the conventional mapping schemes is that they may lead to unde-

sirable levels of resource conflicts in the cache. For such a sequence of accesses, two

different addresses a 6= b can produce the same cache index c = f(a) = f(b), so that the

latter access produces a cache conflict miss. To reduce the number of conflict misses,

traditional solutions are to increase the associativity. Unfortunately, a set-associative

cache architecture with a higher associativity incurs overhead both in access time, power,

and area.
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3.3 Alternative Mapping Schemes

One solution for resolving the conflict miss issue is to choose suitable cache sets in

which such conflicting data can re-exist in the cache, such as the uses of alternative

mapping schemes in victim cache, hash-rehash cache, column-associate cache, adaptive

group-associate cache, and V-way cache [81–85].

The fundamental idea of the victim cache [82] is to add a small supplementary buffer

where conflicting blocks evicted from the cache are still available for subsequent accesses.

The techniques employed in the hash-rehash cache [83] and the column-associate cache

[84] are to rehash the addresses of conflicting blocks in order to select the suitable cache

sets. Adaptive group-associate cache [81] enhanced with a smart replacement can resolve

the conflict issues by picking up the less recently-used cache lines for evictions. Similarly,

the technique presented in the V-Way cache [85] is to increase the number of tag-store

entries relative to the number of data cache sets, so that if conflicting blocks are detected,

they can be placed in different sets. In general, the principles of these techniques feature

a conventional cache structure with a mechanism that when the conflicting misses are

detected, proper mapping functions and/-or replacement schemes are used to rehash the

conflicting addresses to different cache sets.

On the other hand, instead of using the conventional modulo-based mapping function, al-

ternative mapping schemes have been proposed that use different hash functions. These

hash functions are chosen so that they can distribute the memory addresses to the cache

sets in a more uniform way, and thus conflict accesses can be reduced. The most well-

known alternative schemes are the use of the class of XOR-based functions [28, 30, 52–55],

prime-modulo based mappings [56, 57], selection-bit mappings [27, 58] and the recent

arbitrary modulus indexings [31]. Considering different application characteristics, other

types of alternative schemes by adding dynamically reconfigurable capability for index

calculations have been also proposed in [32, 86–88], and in addition, a similar scheme

targeted for run-time adaptation has recently appeared [58].

3.3.1 XOR-based Mapping Schemes

Cache mapping schemes can use XOR-based functions so that the cache index is com-

puted as a vector–matrix multiplication f(a) = aH in the Galois Field of two elements
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(GF (2)), where H is a binary matrix [28, 89]:

H =


hn−1,m−1 hn−1,m−2 ... hn−1,0

hn−2,m−1 hn−2,m−2 ... hn−2,0

...
...

. . .
...

h0,m−1 h0,m−2 ... h0,0



Here, n and m are equal to the number of hashed address bits 1 and set index bits

respectively. The element hi,j is 1 if and only if ai is an input into XOR-gate, which

computes the jth set index bit.

XOR-based mapping schemes have been shown to be very efficient for cache conflict

avoidance. Index computations with XOR-based functions incur low latency, as the

mapping circuits comprise only a few multiple-input XOR-gates. While the spatial size

of general XOR-based functions is 2mn and still is large for cache design explorations,

several investigations have recently focused on sub-classes of XOR-based functions. For

example, well-known sub-classes include the permutation-based, polynomial, and bitwise

XOR-based functions.

Permutation-based Mapping Functions: A cache mapping scheme using permutation-

based functions is a special type of XOR-based indexing [28, 89]. Permutation-based

functions permute every run of 2m consecutive blocks to cache sets under a permuted

form of {0, ..., 2m − 1} indices. Thus, for those consecutive accesses {0, ..., 2m − 1},

{2m, ..., 2m+1 − 1} and so on, 2m of their cache indices are observed differently. Conse-

quently, every arranged run of 2m consecutive addresses is mapped conflict-free to the

cache sets.

Permutation-based mapping schemes are comparable with the conventional module-

based mapping ones, in which the tags are selected from the high-order n−m bits of the

given memory addresses. One characteristic of permutation-based functions is that the

matrix representation H has a unit matrix in the low-order m rows. Therefore, there are

2(n−m)m permutation-based functions, which is less than the spatial size of XOR-based

functions. Applying permutation-based functions for a cache mapping, Vandierendonck

et al. have used the hill climbing search algorithm [88], or a combination of reuse-edge

analysis with symbolic modeling [90] to search for an optimal matrix H. For a set of

experimental applications, the optimal permutation-based function has demonstrated a

reduction in the number of cache conflict misses.

1Since the block offset bits are not used for index computations, let us assume k = 0.
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Polynomial Mapping Function: Polynomial mapping functions constitute a sub-

class of the permutation-based mapping functions. These functions were originally used

in memory system designs with vector processors to avoid conflict-bank accesses for

access patterns commonly seen in the form of stride-based access sequences [89]. Poly-

nomial mapping functions were also adopted for cache memory designs, and cache map-

ping schemes using polynomial functions have been able to reduce the number of conflict

misses for L1 caches [29, 55, 91].

Index computations with a polynomial mapping function are the division of a polynomial

over GF(2), where the coefficients take binary values and the polynomial arithmetic

takes place modulo 2. In a polynomial representation, an address a = [an−1an−2...a0]

corresponds to the polynomial A(x) = an−1x
n−1 + ... + a1x + a0, of which the order is

n. Let us consider a polynomial P (x) of order m. Then the set index is determined by

the polynomial R(x) such that A(x) can be uniquely represented as

A(x) = V (x)P (x) +R(x),

where R(x) is of order less than m. Rau [89] has shown that every polynomial set index

function R(x) has a corresponding matrix H of single-bit coefficients, of which the ith

row corresponds to the polynomial Ri(x) = xi mod P (x). With a selected P (x), Rau

also showed how H can be determined in such a way that the bit vector of a set index

of R(x) can be accomplished. An irreducible polynomial (I-poly), a special function of

P (x), is recommended for use with this mapping scheme due to its simple hardware

implementation.

Let us consider an example with P (x) = x2 + x + 1, corresponding to I-poly 7, which

computes a 2-bit set index by a 5-bit address. The results of the cache indices are

illustrated in Table 3.1, compared with those of the conventional modulo-based mapping

function. With the corresponding matrix H, the set index bit vector is computed as

follows:

aH =
[
a4 a3 a2 a1 a0

]


1 0

0 1

1 1

1 0

0 1


=
[
a4 ⊕ a2 ⊕ a1, a3 ⊕ a2 ⊕ a0

]

The results in the left of the table are from the mappings given by the conventional

modulo function. Such access patterns, for example, {0, 2, 4, 6}, {1, 3, 5, 7}, {0, 4, 8, 12}
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and so on, incur conflict misses. Meanwhile, as demonstrated in the right of the table,

I-poly 7 is conflict-free for these access patterns. The characteristics of I-poly functions

are such that it can guarantee no cache conflicts for all 2k-strided accesses with sequences

if each of the sequence lengths is less than 2m cache sets.

Table 3.1: Results from applying I-poly 7 for cache mapping scheme. Each column
corresponds to one of four set-indices. On the left: modulo-based mapping; On the

right: permutation-based mapping with I-poly 7. (Reproduced from [28])

Set index
(by modulo)

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Set index
(by H)

0 1 2 3

0 1 2 3

7 6 5 4

9 8 11 10

14 15 12 13

18 19 16 17

21 20 23 22

27 26 25 24

28 29 30 31

Bitwise XOR-based Mapping Functions: Cache mapping schemes using a bitwise

XOR-based function compute the cache set index by performing a bitwise XOR from

two bits of the given address. A family of this mapping function and its usage for

conflict avoidance is described by Seznec [30, 52]. The family of twin bitwise XOR-

based functions used in his research is summarized in what follows.

Let us reconsider a cache organization comprising 2m cache sets and 2k blocks in a

cache line. Decompose a complete address a = [an−1, an−2, ..., a0] to have bit sub-

strings: a = (A3, A2, A1, A0), such that A0 = [ak−1, .., a0] are the block offset bits,

A1 = [am+k−2, .., ak] and A2 = [a2m+k−3, ..., am+k−1] are two m-bit strings, and A3 oc-

cupies the remaining bits. Let T be an integer such that 0 ≤ T < 2m, and T̄ = 2m−1−T ,

the binary opposite of T . The family of bitwise XOR-based functions is defined as

fT0 : {0...2n − 1} → {0...2m+k − 1}

(A3, A2, A1, A0)→ ((A2 • T )⊕A1, A0)

fT1 : {0...2n − 1} → {0...2m+k − 1}

(A3, A2, A1, A0)→ ((A2 • T̄ )⊕A1, A0)

where ⊕ and • denote the bitwise XOR and AND operations respectively. The advan-

tages of these mapping functions are their simple hardware implementations, which are
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only composed of a few two-input XOR gates.

A skewed-associative cache employing twin bitwise XOR-based functions as above can

efficiently alleviate cache access conflicts, as demonstrated by Seznec for a case of a

2-way set-associative cache [30]. As illustrated in Figure 3.2, there are two different

bitwise XOR-based functions f0, f1 placed at two distinct cache banks. These mapping

functions serve to scatter the requesting data: whenever two lines of conflicting accesses

for a single set occur in the cache bank 1 by f0, they have a very low probability for

conflicts at a location in cache bank 2 by f1.

In practice, the implementation of a skewed-associative cache has issues related to the

replacement policy, so that the well-known LRU replacement policy can not work in a

skewed-associative cache. In addition, introducing bitwise XOR-based functions into the

commonly used VIPT addressing model can run into obstacles. In a VIPT cache, when

the cache indices are selected from address bit fields limited to the page size in order

to avoid synonym problems, a new cache index calculation by performing XORs for

some bits of the Virtual Page Number and Physical Page Number may lead to synonym

problems.

f0 f1

a0,a1,a2

f0(a0)=
f0(a1)=
f0(a2)

f1(a0)

f1(a2)

f1(a1)

data     tag data     tag

bank 0 bank 1

Figure 3.2: Two-ways skewed-associative cache: Conflicting accesses at a cache line
on bank 0, but conflict-free accesses on bank 1 for three accesses a0, a1, a2. (Reproduced

from [30])

3.3.2 Prime Mapping Schemes

A prime mapping scheme [56, 57, 92] computes cache set indices similarly to the use of

the conventional modulo-based mapping scheme, so that f(a) = a mod nset, where nset

is the number of cache sets but instead of 2m, nset is a prime number. Cache mapping

schemes using prime modulo-based functions work very well for eliminating conflicts. As

demonstrated in [56, 57], for applications giving a non-uniform cache access distribution

across cache sets, a prime mapping scheme utilized at L2 caches is able to achieve a

more uniform distribution of cache accesses compared to the conventional modulo-based
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mapping scheme. As we can see in Figure 3.3, while using the conventional modulo-

based mapping scheme leads to an unbalanced cache miss distribution, using a prime

mapping scheme is able to achieve a more uniform distribution of cache accesses and

can eliminate many conflict misses.
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Figure 3.3: Cache miss distributions across the cache sets by using the conventional
modulo-based and a prime mapping scheme (Reproduced from [56])

One drawback of these schemes is that the prime number nset must be chosen as the

largest one and it should be smaller than the power of 2 of the physical cache sets 2m.

In addition, the choice of the prime number could lead to a fragmentation situation, in

that some cache sets may remain unused. Moreover, due to the hardware complexity

both in area and access time, these mapping schemes are suitable only with large-size

caches, such as L2 caches.

3.3.3 Arbitrary Modulus Mapping Schemes

For an arbitrary integer number nset of cache sets, including those that are not pow-

ers of 2, most cache mapping schemes using a modulo-based function compute the set

indices by f(a) = a mod nset, and the tags by f
′
(a) = a ÷ nset from the memory

address a. Although the schemes using prime numbers for nset are able to eliminate

conflict accesses to the caches, implementing efficiently the circuits for such schemes is

expensive. A recent mapping scheme introduced by Diamond et al. [31], called arbi-

trary modulus indexing, has a low-cost hardware implementation for any modulus. The

arbitrary modulus circuits include division calculations performed by reciprocal array

multiplications and can be configured for a variety of moduli. The optimized hardware

implementations for index calculation are simply composed of an array of adder blocks
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without requiring such complex division or multiplier circuits. Compared with a 32-bit

integer multiply circuit, the implementation of an arbitrary modulus indexing scheme

has shorter access times and consumes less than 3% of the area and less than 0.5% of

the power. The authors have reported that these schemes applied in GPU architectures

are able to alleviate up to 98% of the number of conflict accesses for memory banks and

caches.

Arbitrary-modulus mapping schemes have been adopted for L1 cache architecture de-

signs in some FPGA-based computing systems [93, 94] to achieve better access distri-

butions for memory accesses in the forms of power-of-two strides, both in maximizing

BRAM utilization and minimizing cache misses. In practice, to accelerate the index

computation, a cache controller integrated with an arbitrary modulus mapping scheme

can store pre-computed modulo results in a lookup table, so that an index computed by

an address in the next comings can be simply looked up for a faster access.

3.3.4 Bit-Selection Mapping Schemes

Bit-selection mapping schemes select bits from the block address used for the cache

index, with the search for the optimal indexing bits carried out by heuristics [27, 58].

The basic idea is to find one combination of m-bits from the address bits to establish a

cache index such that cache miss rates are reduced. Compared with other techniques,

bit-selection mapping schemes do not suffer any overhead of area or delay. While Givargis

[27] describes an offline heuristic algorithm to select the optimal index bits for cache miss

reductions, Ros et al. [58] introduced an adaptive selection strategy, where the selection

of the optimal cache indexing bits of an application is able to be changed at different

program phases, resulting in a better improvement in the cache performance. The latter

works reported that the proposed mapping scheme applied in a direct-mapped cache can

remove up to 85% of the cache conflict misses. Notably, in these mapping schemes, the

tags are computed by picking up the address bits excluding the m-bits already selected

for the cache index.

3.4 Reconfigurable Caches/-Mapping Schemes

When both current high-performance and embedded systems are being used for a variety

of application domains having different characteristics, designing one cache architecture

satisfying the memory requirements for each application is challenging. To address



Cache Mapping Schemes 33

this issue, application-specific cache optimizations by means of reconfigurable cache

structures have been proposed, and have been particularly successful in saving energy

consumption. One of the first efforts was conducted by Albonesi [95], and was the

investigation of the architectural aspects of cache structures; new configurable registers

were proposed to turn off certain cache ways in order to save energy while achieving

comparable miss rates. In contrast, associativity, replacement policy, and block sizes

are tuned in [96, 97]. A technique of cache partitioning at the LLCs has been shown to

be very efficient for performance improvements in [98].

Most of the cache mapping schemes discussed so far compute the cache indices stati-

cally by hashing the block addresses via a mapping function chosen for all applications.

Although XOR-based and prime mapping schemes are able to reduce significantly con-

flict behaviors for applications having non-uniform accesses to caches, for a variety of

application domains, these schemes may slow down others having uniform accesses [56].

Reconfigurable cache mapping schemes have been proposed that take into consideration

the different characteristics of different applications, so that the cache indexing of a given

application can be programmed at run-time [32, 58, 86–88, 99]. With these techniques,

a prior step is a search for the optimal cache indexing for a single application, where

heuristic or evolutionary algorithms are employed, and then at run-time, the configura-

tions of the optimal indexing are programmed into reconfigurable hardware parts before

executing the application. To support the reconfigurability, different programmable cir-

cuits have been developed, such as the use of Content Addressable Memory (CAM)

arrays [87, 99], programmable bit selectors [58, 86, 88] and FPGA LUT-based Boolean

circuits [32]. Using these schemes, the effects of the reconfigurability features may lead

to required cache flushes once a the method of cache indexing has changed. This can

increase the cache access delay due to the additional reconfigurable circuits.

3.5 Design Challenges

Using alternative mapping schemes may incur hardware costs both in area and delay due

to increased tag storages, additional hardware parts, or increased cache access times.

The second challenge is related to cache organizations and the use of addressing models,

so that using more address bits for hash computations beyond those limited by the page

size can break the operational correctness in some cache organizations.
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3.5.1 Overhead

Some alternative mapping schemes [32, 100] employing arbitrary hash functions to com-

pute the cache index from whole bits of the block address (making an exception for

those bits belonging to the block offset fields), and these schemes suffer storage over-

head due to the enlarged tag entries to store all the address bits. The work presented in

[100] reported that using arbitrary hashing functions for a 1MB L2 cache with 256-byte

blocks to compute the cache indices from 48-bit physical addresses increases the total

cache storage by 3.2%. While suffering insignificant storage overheads, the increased

tags could prolong the delay of the tag comparators. Particularly for a system having a

set-associative cache, this delay could lead to a slowdown of the processor performance

and increase the power dissipation. For these reasons, the techniques of partitioning

tag/-data memories and forcing a serialization of the tag/-data accesses may be applied

[100].

Other cache mapping schemes although they do not require larger tag storages, yet

critical overheads could come from the dedicated hardware parts for the new cache

indexing. To overcome these challenges, low-cost special circuits, such as the use of CAM

structures [87], bit-slice based programmable selectors [86], or low fan-in XOR-gates

[28, 88], have been developed. The delays of these circuits are insignificant overheads,

equivalent to the delays of only two inverter gates, one 2-input XOR gate, or having

negligibly increased access times of programmable decoders as reported in [86], [87] and

[88] respectively. Therefore, introducing these extra circuitries for alternative indexing

computation for L1 caches is feasible as the negligible delays are comparable with other

critical stages of the processor pipeline, such as ALU operations. The works in [30,

58, 87, 91] reported that integrating hash circuits in an L1 cache can still maintain

unchanged the pipeline cycle time.

Even considering the worst case, when the overheads leading to latency penalties may

need at most one extra pipeline cycle for cache access time, the systems using alternative

mapping schemes, as shown in [30, 54, 91], are still beneficial in terms of performance

improvements and energy efficiencies.

3.5.2 Cache Organization Consideration

When the hashing computation by the alternative mapping schemes requires extra ad-

dress bits from the tag bit field compared to those used in the conventional designs, for a
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synonym-free VIPT cache restricting the index to the bits of a page size, applying these

schemes could lead to the synonym problems and thus break the operational correctness

of this cache. In a balanced-cache [87] or skew-associative cache [30], at least three and

up to four significant bits of the virtual tag bits are used for alternative cache mapping

schemes, but page colouring techniques [19, 20] can be used for synonym resolvents.

Alternative cache mapping schemes applied in a VIVT cache are feasible if there are

mechanisms to detect synonym problems. Topham et al. [91] indicated a case of

virtually-tagged L1 cache enabling the use of alternative mapping schemes. This virtual

cache, implementing a synonym detector proposed by [40], is able to avoid synonyms

in the L1 cache by maintaining back pointers in the L2 caches. For every L1 cache

access miss, the back pointers are used to lookup synonym data in the cache and ensure

that at most one synonym exists. For this virtual cache architecture, once the synonym

problems are resolved, unlimited virtual address bits are available for alternative index

calculations and deploying an alternative mapping scheme is solely by supplementing

the new mapping circuits and replacing the back pointers by the hashed indices. How-

ever, in fact, the uses of VIVT caches are not popular due to the complex designs for

not only synonym detection but also coherence protocols [19, 20]. While there are some

particular implementations of virtually-tagged L1 caches [33], applying alternative map-

ping schemes in this cache could lead to the same problem as observed for the VIPT

addressing models.

While the synonym problems existing in the VIPT and VIVT caches make it difficult to

use alternative mapping schemes, their introduction into a PIPT cache is attractive and

the implementations are simple. In a PIPT L1 cache, physical addresses are available for

alternative index calculations after the TLB probes for virtual-to-physical translations.

In a PIPT cache, although the requirements of the address translation step preceding

cache indexing may lead to an increase in total cache hit times, combining the performing

translation step at most one stage in the processor pipeline can improve cache bandwidth.

PIPT caches are commonly used in many embedded processors, for instance, ARM

Cortex-72 processors [101] implement PIPT address models for their L1 caches.

3.6 Conclusion

This chapter has provided an overview of the mapping schemes used for cache memories

and presented the advantages of alternative cache mapping schemes for conflict access
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avoidance. Although many alternative mapping schemes employing a dedicated type of

mapping function are able to reduce significantly the number of cache conflict misses

for applications having non-uniform access distributions to caches in the traditional

organization, these schemes may slow down others having uniform access distributions.

On the other hand, instead of using static mapping schemes, the use of alternative

mapping schemes featured with an adaptive strategy that are able to configure suitable

mappings at run-time can provide further improvements in system cache performance.

To realize our idea for a reconfigurable cache mapping architecture able to dynamically

change mappings at run-time, we have also examined several practical aspects of cache

structures implementing alternative mapping schemes, both in their overhead and the

challenges arising with the cache organizations.



Chapter 4

Reconfigurable Cache Mapping

Architecture

Most of the related research for alternative cache mapping schemes has used simulations

to investigate cache optimization. On the other hand, building a prototype system is

considered the best way to investigate practical realistic design issues. Thus, our goal

has been a fully working hardware implementation of a processor that is able to freely

define its memory-to-cache address functions and reconfigure them at run-time. Our

target prototyping system is an FPGA.

This chapter presents a hardware implementation of programmable mapping circuits

integrated into the Gaisler LEON3 SPARC multi-core processor. The complete system

is able to run a standard Linux OS, featuring a device driver supporting dynamically

reconfigurable cache mapping functions at run-time.

4.1 Evolvable Cache

Traditional cache architectures use modulo-based functions for memory-to-cache map-

pings having no temporal or resource overhead. For a variety of application domains, we

can imagine that having multiple mapping functions tailored to different applications

would result in better performance improvements.

In order to take advantage of alternative cache mapping schemes and to find better

cache mappings, one of the promising methods is to exploit the techniques of Evolvable

Hardware for the optimization of the hardware by Evolutionary Algorithms. In [32],

37
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the first publication on such a system, there was coined the phrase Evolvable Cache.

There, an evolvable cache consists of small reconfigurable fabrics woven into the address

paths of the caches together with an optimization algorithm that searches for good cache

mappings and then reconfigures the fabrics. This approach realizes arbitrary Boolean

functions for computing the cache index sets by adding small reconfigurable fabrics

to the CPU. The fabrics configurations are evolved and optimized by an Evolutionary

Algorithm.

A high-level abstraction of the optimization strategy used for the Evolvable Cache is

illustrated in Figure 4.1. The reconfigurable circuits provide a programmable capability

to configure any arbitrary mapping functions. The optimization strategy is driven by an

Evolutionary Algorithm comprising a looping process evaluating the evolved mapping

functions through its functional quality using the given in-loop measurement feedbacks

from the system. The optimization process stops when the termination condition is met.

programmingmeasurement
feedback

reconfiguration circuits
(cache mapping functions)

Optimization Strategy
(Evolutionary Algorithm)

processor cache

address index

Figure 4.1: High level abstraction of optimization strategy used in Evolvable Cache.

4.2 System Architecture

Inspired by earlier work on an Evolvable Cache, the present thesis takes this concept

further and presents a multi-core architecture with distributed caches that allows deploy-

ing and evaluating the Evolvable Cache concept directly on a reconfigurable hardware

platform involving an FPGA. Figure 4.2 presents the system architecture implemented

in a four-core LEON3 processor, in which the grey parts are small partial reconfigurable

fabrics dedicated to mapping computations for the level one instruction/data caches.

The LEON3 processor uses a snooping coherence protocol to ensure a coherent memory

model among the cores. Each time a core invalidates a cache line, all other cores have
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to check whether their caches contain a cache line with the same address, and if so,

invalidate it. Since the LEON3 multi-core platform originally implements VIVT caching

schemes at level 1 for both the data and the instruction caches, we have enforced a

LEON3 multi-core architecture with a PIPT scheme for the level 1 data cache.
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Figure 4.2: The LEON3 system architecture featured with reconfigurable cache map-
pings both for L1 instruction and data caches.

As a multi-core system with distributed caches is aimed at, for each CPU, redundant

reconfigurable fabrics snoop the inter-CPU AMBA bus and help to detect write through

collisions. Because the LEON3 processor does not support self-modifying code, snooping

is required only for the data cache.

The Reconfiguration Controller (RecCONtroller) works in cooperation with a DMA con-

troller. This speeds up the transfer times of the configuration data located in the main

memory into the reconfigurable fabrics. The Cache Mapping Controller (CMCONtroller)

interacts with the RecCONtroller and cache controllers to handle the correct function-

alities of the cache mappings once the reconfiguration operation is done.

The implementation of the Performance Monitoring Units (PMU), one for each LEON3

core, is integrated with the main interrupt controller and can, but is not limited to,

monitor CPU cycles, cache misses, TLB misses, and reconfiguration times. In order to

access registers of PMUs and the CMCONtroller, the Address Space Identifier (ASI)

lda/sta instructions of the SPARC architecture are used [33]. These instructions are
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available in system mode only. In particular, ASI = 0x02 is reserved for system control

registers and is used for interfacing the presented controllers. The following sections

describe in more detail the implementations on the Xilinx Virtex-6 FPGA ML605 board.

4.3 Cache Mapping Organization

The conceptual cache organization with reconfigurable mappings in the LEON3 pro-

cessor is presented in Figure 4.3. The cache organization consists of a PIPT-scheme

L1 data (L1:D) cache, a VIVT-scheme L1 instruction (L1:I) cache, and reconfigurable

circuit blocks (RCBs) accommodating cache mapping functions.

CORE

L1:I cache

DTLB

ITLB

RCB

RCB

MEMORY

Virtual Address (VA)

f(VA) PA

f(PA)

PA

RCB

PA

PA

C
oherence

D
etection

f(PA)VA

L1:D cache

VIVT
scheme

PIPT
scheme

Physical Address (PA)

Figure 4.3: Conceptual L1 cache mapping organization: L1:I cache is a VIVT cache;
L1:D cache is a PIPT cache.

In the PIPT scheme of the L1:D cache, the Translation Look Aside Buffer (TLB) is

placed prior to the cache controller [12]. While this decision was motivated by a simpler

implementation of a coherent memory model among cores, we defer to future research

an investigation of virtually addressed caches. The L1:I cache is read-only, and does

not involve coherence protocols to maintain consistency between cores. Therefore, the

integration of reconfigurable mappings into the L1:I cache is simpler. In the organization

of a VIVT cache, the TLB is referenced when there is a cache miss, and the context

number used to distinguish process accesses (homonym problems) must be included in

the tag array.
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4.3.1 The L1 Data Cache

In the original LEON3 implementation of the virtually-tagged L1:D caches, the virtual

indexes of the synonyms were aligned in a cache set to prevent stale data accesses. Re-

taining this scheme while using reconfigurable cache mappings with non-aligned indexes

would require larger and wider back pointer tables for synonym detection. To avoid this

overhead, the L1:D caches have been configured to be physically addressed. In such a

configuration, the Data Cache (D) Translation Look-aside Buffer (DTLB) needs to be

consulted on each data access, adding latency to the processor pipeline (cf. Figure 4.3).

On the other hand, the implementation of back pointer tables can be avoided. The

integration of reconfigurable mappings into the L1:D caches is shown in Figure 4.4.
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Figure 4.4: Reconfigurable mapping organization of L1:D cache includes two RCBs.

There are two RCBs integrated in the L1:D cache, one placed in between the DTLB

and the cache memory, and the other located at the cache memory and the memory

bus. The first RCB maps processor memory requests to cache indexes while the second

snoops for write requests on the memory bus and checks whether a local cache block

needs to be invalidated.
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4.3.2 The L1 Instruction Cache

The L1:I cache is read-only and does not need to snoop on the memory bus for write

invalidate requests. It can therefore be addressed virtually, as in the original LEON3

implementation.

The integration of reconfigurable mappings into the L1:I can be seen in Fig. 4.5. Each

tag entry has a new virtual-addressed tag, the context identifier (cxt id.) to distinguish

the same virtual address mapped to different physical addresses, and valid bits. Unlike

the L1:D cache, the L1:I cache has only one RCB placed in between the virtual address

(VA) and the cache structure for index computations.
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Figure 4.5: Reconfigurable mapping organization of L1:I cache includes one RCB.

4.3.3 Multitasking and Cache Mapping Reconfiguration

In a multitasking environment, we assume that multiple tasks can share a reconfig-

urable circuit block and when a context switch takes place the cache mapping of the

corresponding core is reconfigured. Thus, in case two tasks share a memory block, it can
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happen that for a shared word two different cache indexes are computed by the different

mapping functions. While the first task may load the shared word to the cache line

address l, the subsequent task may index the same shared word at the address l′, l′ 6= l.

A similar situation may occur in a task’s context that each time a cache mapping of the

task gets reconfigured and becomes active, the same memory reference accessed again

may be mapped to a different cache block. These situations are similar to the synonym

issue in VIVT cache organizations, and this is solved here by flushing the cache each time

the cache mapping changes. While this increases the compulsory misses and introduces

overhead, it is acceptable in our target system, which is a multi-core platform, where

we can restrict some cores, and among them scheduling a task always run on the same

core. Therefore, context switches happen infrequently. A proper synonym detection

mechanism by storing the mapping identifier in the cache lines and comparing them,

for each cache access, with the mapping function being used can help to avoid cache

flushes. In a system where many RCBs can be implemented and each is dedicated to

one application, the identifiers of the RCBs can be stored in cache lines, being able to

distinguish the mappings. Although cache flushes can be avoided, this solution increases

the tag storages.

4.4 The Reconfigurable Circuit Blocks

This section describes the model and the implementation of the RCBs in the Xilinx

Virtex-6 FPGA and details the circuit’s reconfiguration operations as well.

4.4.1 The Boolean Circuit Model

We encode candidate solutions for memory-to-cache address mapping functions using

the Cartesian Genetic Programming model (CGP) [102, 103]. CGP is well suited to

represent combinational logic circuits, as it encodes a two-dimensional grid of functional

nodes connected by feedforward wires. Each CGP’s node can be programmed as an

arbitrary Boolean function.

We implemented an RCB by one CGP-based circuit. In our system, one cache mapping

must have at least two RCBs so that the system can still use the active RCB when

reconfiguration processes are taking place for the remaining RCB.
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Figure 4.6 top side shows the implementations of the CGP-based circuits, in which they

have 16 row × 5 columns of nodes. The routing between the combinational nodes is a

fixed butterfly network. To give the optimization algorithm more freedom for routing,

the first column may connect to any of the address bits. To that end, the CGP-based

mapping circuits were implemented as a grid of 80 nodes capable of producing hash

functions for up to 32 inputs and 16 outputs.
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Figure 4.6: CGP-based circuits implemented as a grid of 16× 5 of nodes: Each node
is modeled by a SRLC32E primitive. The left and right sides show a case for how address
bits are connected to the circuits to produce a cache index for an 8 KiB L1:D cache

configured as 2-ways, 16-bytes cache block.

A CGP node is configured to have two inputs and one output, and it is emulated by a

2 − LUT enabling configurations of up to 24 functions. On Virtex-6, the CGP nodes

are implemented by using SRLC32E primitives as we can see in Figure 4.6 bottom side.

While a SRLC32E primitive has 5 inputs, requiring 32-bits of configuration data, we are

using the first two inputs.

Figure 4.6 also presents an example of how the address bits are connected to the CGP

circuits to produce a new cache index. In this example, the 8 KiB L1:D cache is a 2-way

set-associative cache. With 32 address bits and 16 bytes in a data cache block, address

bits [31:4] are the inputs of the cache mapping function. Eight outputs bits are used for

cache indexing.
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4.4.2 The Reconfiguration Operation

The RecCONtroller is responsible for the reconfiguration of the CGP-based circuits.

CGP nodes are emulated as four-bit shift registers, which are programmed by serially

shifting the configuration data. Figure 4.7 shows the reconfiguration operations for 80

nodes, in which the configuration data and control bus are driven by the RecCONtroller.

Although the reconfiguration process for one node takes four clock cycles, the use of the

SRLC32E primitive requires 32 cycle times for a 32-bit configuration data.

The RecCONtroller has a buffer for caching reconfiguration data, which accounts for a

2560-bit length for 80 nodes. When the RecCONtroller is activated, and the reconfigu-

ration data are available in the buffer, 80 nodes are configured concurrently, finishing in

32 clock cycles.
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Figure 4.7: Handling reconfiguration operations of the CGP-based circuit.

Although a pair of CGP-based circuits is partially allocated for each cache mapping,

accommodating more CGP-based circuits is possible in our system architecture if larger

hardware resources are available. In that system, where each CGP-based circuit can

host a certain mapping function dedicated to an application, the overhead regarding the

reconfiguration times can be avoided once the mapping function is already programmed.

4.5 The Reconfiguration/-Cache Mapping Controllers

The whole process of reconfiguring the cache mappings is handled by the RecCON-

troller, which is extended by CMCONtroller located in the processing cores. The inner

implementations are presented in Figure 4.8. The RecCONtroller is decoupled from the
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processing cores, operating as an additional hardware module. Integrated into the cache

controllers inside each core, the CMCONtroller manages the requests from the corre-

sponding core, programs the reconfiguration data into the CGP-based circuits, flushes

the cache data, and switches to a cache mapping once it is ready to use. There is a bus

interface dedicated to communication between the RecCONtroller and CMCONtroller.
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Figure 4.8: Inner implementations of RecCONtroller and CMCONtroller. Via a
dedicated bus, the RecCONtroller drives reconfiguration data to a CGP-based circuit

located in the core fabrics.

4.5.1 The Operation of CMCONtroller

The CMCONtroller is located inside the core fabric and comprises a set of configura-

tion registers. The processing core can request a reconfiguration operation by writing

the reconfiguration information into these registers. The four main registers are: the

reconfiguration control register (recon ctrl), which starts and stops the read and write

transactions between the main memory and the reconfiguration area, the reconfigura-

tion data length register (recon len), indicating the size of the transferred data block,

the reconfigurable data address register (recon addr), specifying the physical memory

address of the reconfiguration data located in main memory, and the reconfiguration

status register (recon stat), indicating the status of the reconfiguration process.

Additionally, there are pairs of registers {addr in, cset index}, one for the L1:I cache

and another for the L1:D cache, implemented for debugging purposes. When the recon-

figuration operation of a cache mapping function is accomplished, the mapping behavior

can be verified by providing an address value into the addr in register and reading out
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a value of the cache index from the cset index register for checking. Table 4.1 lists the

registers and details their functionalities.

To access these registers, we extended the Address Space Identifier (ASI) lda/sta in-

structions of the SPARC architecture, available only in the system mode of the LEON3

processor. Especially, the ASI = 0x02 is reserved for system control registers and is used

for interfacing the presented controllers. Since the ASI = 0x02 is reserved for system

control registers and has an unused address range from 0x10 to 0x94, this region was

picked for interfacing with the RecCONtroller. The following sample code demonstrates

how these registers can be accessed:

u32 val;

asm volatile ("lda [%1] %2, %0": "=r"(val): "r"(0x10), i"(0x02));

In this sample code, the ASI value 0x02 encoded in the instruction lda makes the IU

load the current value in the global control register at address 0x10, storing it in the

variable val.

Inside the CMCONtroller, there is a hardware module, called CMLOAder, responsible

for driving the reconfiguration data from a buffer into any of the CGP-based circuits.

The reconfiguration data is loaded into this buffer by the RecLOAder module residing in

the RecCONtroller. When the programming process is done, the CMLOAder raises the

prog done = 1 for acknowledging the RecLOAder. In order to know which CGP-based

circuit is going to be reconfigured, circuit identifiers and cache type structure in the

recon ctrl register have to be provided.

4.5.2 The Operation of RecCONtroller

The inner hardware of the RecCONtroller includes two sub-modules: ARBITER and

RecLOAder. When reconfiguration information is already setup in the recon ctrl, re-

con addr, recon len registers, and the reconfiguration request is also set in (recon ctrl.bit[31]

= ”1” and recon ctrl.bit[0] == ”0”), the CMCONtroller activates the RecCONtroller

by submitting a request to the ARBITER. After that, the CMCONtroller waits for a

reconfiguration status to be returned by the RecCONtroller.

The ARBITER implements a round-robin circuit to handle multiple requests from four

processing cores. The chosen request is forwarded to the RecLOAder module, where the



Reconfigurable Cache Mapping Architecture 48

Table 4.1: Registers implemented for the CMCONtroller.

Registers accessed via ASI = 0x02

Register—32 bits Description ASI Mapping

recon ctrl (RW): Reconfiguration control 0x10

- Bit[0]: ’0’: Activate reconfiguration process
- Bit[1]: ’1’: Reserved for L2 cache mappings
- Bit[3..2]: ’00’: Reconfigure a mapping for L1:I cache

’01’: Reconfigure a mapping for L1:D cache
’1x’: Reserved

- Bit[7..4]: The identifier of the CGP-based circuits
to be reconfigured (for configurations
having more than two mapping circuits)

- Bit[29..8]: Reserved
- Bit[30]: ’1’: Activate debugging
- Bit[31]: ’1’: Start reconfiguration operation

recon addr (RW): Address of reconfiguration data 0x14

- Bit[31..0]: Physical address of reconfiguration data
in main memory (used for DMA transfers)

recon len (RW): Length of reconfiguration data 0x18

- Bit[31..0]: Length of reconfiguration data
for DMA transfer (in words)

recon stat (R): Reconfiguration status 0x1C

- Bit[0]: ’1’: Error
- Bit[3..1]: Reserved
- Bit[7..4]: The identifier of a mapping circuit

has been programmed successfully. If
there are only two mapping circuits,
the identifiers are written at:

[5..4]: for L1:I cache
[7..6]: for L1:D cache

- Bit[30..8]: Reserved
- Bit[31]: Reconfiguration process done

addr in (RW): Input address bits for debugging

- Bit[31..0]: 32-input address bits into an active
mapping circuit for debugging :

L1:I cache 0x80

L1:D cache 0x88

Snooping 0x90

cset index (R): Output cache set for debugging

- Bit[sb..0]: Output index bits from an active
mapping circuit for debugging :

(sb = L1:I cache 0x84

log2(nr of set)− 1) L1:D cache 0x8C

Snooping 0x94
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address and the length of reconfiguration data in the main memory are also latched to

support DMA transfers. The RecLOAder works in cooperation with a DMA controller,

speeding up the fetching times of reconfiguration data located in the main memory

into the dedicated buffer, inside the CMLOAder. The ARBITER ends up serving the

processing core’s request by probing ”1” on the req done line, so that the reconfiguration

status will then be delivered to the CMCONtroller.

Being responsible for writing reconfiguration data into the buffer inside the CMLOAder,

the inner RecLOAder module pulses a ”1” on the prog en line, and drives out data on

the prog data bus and then waits for a raised signal prog done = ”1”. To this end, the

RecCONtroller will update the reconfiguration status (prog status: error, done) to the

CMCONtroller of the requesting core.

4.5.3 Reconfiguration Operation

Figure 4.9 presents the reconfiguration operation handled by the RecCONtroller hard-

ware module. In state R0, whenever there is a programming/reconfiguration request

prog req = ”1” raised by a processing core, the reconfiguration operation starts by tran-

sitioning into R1. When the reconfiguration process is done (prog done = ”1”), the

RecCONtroller signals the end of the reconfiguration by pulsing a ”1” on the req done

line by transiting to R2 for a single cycle and then back to R0. In state R2, the RC

controller also clears the prog req bit, and updates the reconfiguration status to the

CMCONtroller.
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Figure 4.9: Simplified Finite State Machine of the reconfiguration operation: req done
= ”1” indicates that the reconfiguration operation is done.

Cache mapping switch: Once a new mapping function has been programmed success-

fully, the CMCONtroller, in turn, handles the two fundamental operations: flushing the

cache memory, and switching to use the active cache mapping. Figure 4.10 presents the
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Figure 4.10: Simplified Finite State Machine for handling cache mapping switches.

Finite State Machine of these operations. Starting with the prog status.done = ”1” and

when there are no errors (prog status.error = ”0”), indicating that the reconfiguration

process of an inactive mapping function has finished, the CMCONtroller transits from

H0 to H1 and once in this state, flushes the corresponding cache data. When the cache

is empty, signaled by flush done = ”1”, the CMCONtroller instantly moves to the H2

state, where the inactive mapping is activated to use. The switching mechanism finishes

within one clock cycle, ensuring that the coherence protocol operations are not affected

in a multi-core configuration.

Mapping’s reconfiguration of L1:D cache and snooping mechanism: For map-

pings of the L1:D cache and its snooping mechanism, the reconfiguration operations take

place simultaneously and the same reconfiguration data has to be programmed into two

CGP-based mapping circuits, one dedicated to the L1:D cache-snooping and the other to

the L1:D cache-snooping. In addition, once the two cache mappings are ready to use, the

mapping switch operation handled by the CMCONtroller module has to activate them

for use together in order to synchronize the cache and snooping invalidate accesses.

Updating reconfiguration status: The CMCONtroller needs to update the status of

the reconfiguration process in the recon stat register once the reconfiguration process has

been completed and the new cache mapping has been used. When there are no errors,

the CMCONtroller writes the identifier of the circuit in the recon stat.bit[7..4], clears

the error bit recon stat[0] = ”0”, and sets the reconfiguration bit recon stat[31] = ”1”.
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Table 4.2: Hardware cost estimation for a general L1 cache

Mapping Circuits Tag array increased

L1:I Cache 2 CGPs 2m ×m− bits×#ways

L1:D Cache 4 CGPs 2m ×m− bits×#ways

To that end, the CMCONtroller also generates an IRQ interrupt to the corresponding

processing core, indicating that the reconfiguration process has been completed.

4.6 Hardware Overheads

The hardware overhead induced by introducing the RCBs is summarized in Table 4.2.

Each mapping of the cache type structure should have at least two CGP-based circuits

so that while the system is executing with the active mapping function in one circuit, the

reconfiguration process can take place for the other. The L1:D cache needs an additional

CGP-based circuit for the snooping mechanism.

Introducing RCBs in a cache structure comprising 2m sets, each tag entry in a cache set

is increased by an additional m-bits. Therefore, the overall tag storages of the L1:I and

L1:D caches, depending on the cache configuration, are increased by 2m ×m − bits ×

#ways memory cells.

Due to the increased tag-bit length, the delays of the logic comparators for checking

cache misses and hits are increased, which may affect the processor’s critical path. In

high-performance processors, if the cache access time determines the pipeline cycle time

and the delays induced by introducing RCBs affects the process clock, we consider that

cache pipeline techniques may be applied [100]. Although these techniques increase the

number of pipeline stages, the process cycle time is not changed.

Circuit Timing Consideration: The implementation of a CGP-based circuit for a

80-node grid is equivalent to the use of 80 2-to-1 multiplexers, and thus the additional

delay in the circuit depends on the effective implementation of 5 layers of multiplexers.

In addition, since one multiplexer is needed to drive the outputs from multiple CGP-

based circuits, the additional delay corresponds to the propagation delay through a serial

combination of 6 multiplexers. The circuit lies on the critical path of the L1 cache access,

which may also affect the processor’s critical path. In fact, the propagation delay of 6

multiplexers was estimated with 130 nm ASIC technologies to be approximately 0.128
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ns. Considering a clock frequency of 400 MHz of the LEON3 processors achieved with

the same ASIC technologies, the impact of CGP-based circuits on the processor clock

frequency is negligible: about a 2% slow down.

However, if the delay of circuits critically affects the clock frequency of the target pro-

cessor, i.e. the use in high-performance processors, then pipelining L1 cache accesses

may help to mash the overheads.

4.7 System Prototyping on an FPGA

Table 4.3 summarizes the configuration parameters of the LEON3 system supporting

reconfigurable cache mappings prototyped in an FPGA. The prototype is implemented

on a ML605 board equipped with a Virtex-6 FPGA. We have implemented reconfigurable

circuits according to the CGP model for both L1:I and L1:D caches, where a specific

cache configuration can use any combination of L1:I and L1:D caches. Additionally, the

RecCONtroller and the PMU are implemented as new features which have not been

available in the LEON3 platform. Using corresponding device drivers, the system can

execute Linux and reconfigure the cache mappings at run-time. Due to the additional

hardware resources required, the achieved clock frequency is 50 MHz.

Table 4.3: The LEON3 platform prototype reconfigurable cache mappings.

System Hardware Configuration

Parameters Configuration

Clock Frequency 50 Mhz

Floating Point Unit FPU Hardware

Memory 1GB DRAM

I/D-TLB 8 entries

PMU 8 event counters

RecCONtroller Reconfiguration Controller

Cache Configuration

L1:I cache 4KiB, {1,2,4}-way, 16-bytes/line
8KiB, {1,2,4}-way, 16-bytes/line
two CGP-based cache mappings

L1:D cache 4KiB, {1,2,4}-way, 32-bytes/line
8KiB, {1,2,4}-way, 32-bytes/line
two CGP-based cache mappings

Coherency Snooping Protocol
two CGP-based cache mappings

CMCONtroller Cache Mapping Controller
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Enabling a Floating Point Unit hardware support, our synthesis achieves successfully

up to a quad-core for a configuration with 4KiB direct-mapped cache for both L1:I and

L1:D caches. For other cache configurations, successful platform synthesis achieves up

to two processing cores.

4.7.1 Hardware Resource Usage

Tables 4.4 and 4.5 report the hardware resource use corresponding to different syn-

theses of the LEON3 platform for several configurations of both L1:I and L1:D caches.

Accessing to the RecCONtroller module is shared by all processing cores and the in-

ner RecCONtroller implements hardware FIFOs for fetching reconfigurable data from

memory via a DMA interface. The implementation consumes 13 Distributed RAMs

(DRAMs) using Xilinx RAM32x1D primitives.

Table 4.4: Hardware resource use for the synthesis of RecCONtroller, CGP-based
circuits, and CMCONtroller.

FFs LUTs DRAMs

RecCONtroller 176 557 13
(RAM32x1Ds)

CGP-based circuits & 2972 1558 80 x 6
CMCONtroller (SRL16Es)

Table 4.5: Hardware resources used in synthesis for L1 cache structures.

L1 Cache Controllers

FFs [↑ %] LUTs [↑ %]

4KB,1-way 971 0.8 2510 2.8

4KB,2-way 1663 1.8 3637 12.6

4KB,4-way 3717 0.4 6051 12

8KB,1-way 1232 0.7 2819 1.8

8KB,2-way 2552 0.6 6086 8.7

8KB,4-way 6669 0.6 9921 15.3

Tags & Memories

FFs [↑ %] LUTs [↑ %] BRAMs 1 [↑ %]

4KB,1-way 46 21 47 18 7 0

4KB,2-way 92 21 88 19 14 0

4KB,4-way 184 21 176 22 28 0

8KB,1-way 48 23 48 23 12 9

8KB,2-way 96 23 92 29 24 9

8KB,4-way 192 23 192 23 48 9

1 BRAM types with different data widths

The implementation of CGP-based circuits is reported for both L1:I and L1:D caches.

A CGP-based grid of 80 nodes consumes 80 SRLC32Es primitives. Since only two inputs
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/*------------------------------------------------------------

rcache_mapping.c (user code)

------------------------------------------------------------*/

#define rcctrl_dev_name "/dev/reconctrl"

/* Open the rcctrl driver */

fd = open(rcctrl_dev_name, O_RDWR);

if(fd == -1){

printf("unable to open %s - \n", chfctrl_dev_name);

return -1;

}else{

printf("device opened on %s \n", chfctrl_dev_name);

}

/* Reconfigure a mapping function of L1:I cache */

// 1: Send an ioctl command to the driver

if(ioctl(fd, CHFCTRL_IOC_CMD_ICACHE_PROG, recon_sz) != 0)

return -1;

// 2: Loops: read data from "recon_buf" and send to the driver

while(1){

nbytes = write(fd, (void *) ((int) recon_buf + posn), rsize);

if(nbytes == -1){

close(fd);

return -1;

}

posn += nbytes;

rsize -= nbytes;

printf("write done with %d bytes\n", posn);

if(rsize == 0)

break;

}

// 3: Query reconfiguration status

do{

if((ioctl(fd, CHFCTRL_IOC_CMD_RECON_PROG_STATUS, &status) == 0)

&& (status == RCCTRL_PROG_STATUS_DONE)){

printf("reconfiguration done! \n");

break;

}

}while(1);

Figure 4.11: Reconfiguration procedures for how to program a mapping function for
L1:I cache via the "/dev/reconctrl" driver.

are used in each node, the synthesis tool optimizes hardware resource use by mapping

them to 80 SRL16E primitives.

The implementation for cache memories/controllers increases the number of LUTs and

FFs needed because the comparators for cache hit/miss have to be wider due to the

additional tag bits. In the original implementation of the LEON3 cache structure, while

Block RAMs (BRAMs) were used to store the cache tags and blocks, all the memory bit

cells were not fully employed. This resulted in steady BRAM use for the 4KiB, {1,2,4}-

way reconfigurable caches configurations. However, this depends on the concrete cache
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configuration, e.g. we observe an increase of 9% for cache configuration 8KB, {1,2,4}-

way.

4.7.2 Device Driver

At the software side, a device driver enumerated at /dev/reconctrl is implemented

for interfacing the RecCONtroller hardware module. By that abstraction, the user has

just to allocate a buffer for reconfiguration data, which is then handled by the driver

automatically.

In Figure 4.11, we present the reconfiguration steps using the device driver to program

a mapping function for the L1:I cache. The user codes first open the device driver and

then submit a ioctrl command, before writing the reconfiguration data corresponding

to a mapping function to the device driver. The final step requires checking whether the

reconfiguration process is done and the new cache mapping is being activated or not.

4.8 Conclusion

In this chapter, we have presented a reconfigurable cache mapping architecture and

provided a detailed hardware implementation using the Gaisler LEON3 SPARC multi-

core processor. We have extended the L1 cache structures and the snooping mechanisms

of the LEON3 multi-core architecture and extended the Linux kernel to handle cache

mapping reconfigurations at run-time.



Chapter 5

Performance Measurement

Infrastructure

Monitoring applications at run-time and evaluating the recorded statistical data of the

underlying microarchitecture is one of the key aspects required by many hardware archi-

tects and system designers as well as high-performance software developers. To fulfill this

requirement, most modern CPUs for High-Performance Computing (HPC) have been

equipped with Performance Monitoring Units (PMU) including a set of hardware coun-

ters, which can be configured to monitor a rich set of events. Unfortunately, embedded

and reconfigurable systems are mostly lacking this feature.

This chapter presents a PMU infrastructure which supports the monitoring of up to

7 concurrent hardware events. The PMU infrastructure is implemented on an FPGA

and is integrated into a LEON3 platform. We also present the integration of our PMU

infrastructure with the perf event, which is the standard PMU architecture of the Linux

kernel. At the user space, perf tool shows the measurement metrics of the underlying

microarchitectures. The optimization strategies to search for better-performing cache

mappings leverage on this PMU infrastructure.

5.1 Introduction: Monitoring a Processor

For many decades, computer architects have been using simulators to find and analyze

performance metrics by running workloads on a simulated architecture. The results

collected from the simulation may be inaccurate in some cases due to the workloads

56
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running on top of an operating system or the simulators not considering all the rele-

vant micro-architectural aspects. More recently, so-called full system simulators, such

as GEM5 [60], are being used by many researchers and system architects in order to

accurately gather full statistical data at the system level.

In case the investigated architecture is already available as an implementation, perfor-

mance data can also be collected at runtime with high accuracy and often at a higher

speed than a simulation [104]. To that end, many modern high-performance processors

feature a PMU that allows collecting performance data. A PMU is essentially a set

of counters and registers inside the processor that can be programmed to capture the

events happening during the execution of an application. At the end of a measurement,

performance monitoring software reads out the PMU counter values and aggregates the

results.

Performance monitoring is not only useful in high-performance computing but also in

embedded and reconfigurable computing. Especially the exploration of reconfigurable

computing has led many researchers to propose ideas for system optimization and adap-

tation at runtime, such as self-tuning caches [105]. Runtime adaptation techniques de-

mand a hardware/software infrastructure capable of system performance measurements

in real-time. While PMUs have recently been added to some well known embedded

processors, such as ARM [106], Blackfin [107], and SuperH [108], as well as to the ARM

cores in the Xilinx Zynq [73], a performance monitoring feature is usually lacking for

soft cores embedded into FPGAs. Previous efforts presented in [109, 110] have indi-

cated the challenges for reconfigurable computing performance analysis and proposed a

toolflow-like framework enabling designers to extend existing hardware designs with a

performance measurement infrastructure.

We have realized a performance monitoring unit, incorporated smoothly into the stan-

dard Linux performance measurement infrastructure, to support the system performance

evaluation of a reconfigurable cache mapping architecture. Figure 5.1 presents our per-

formance measurement infrastructure design in a quad-core LEON3 platform. Running

applications under Linux, perf event, monitors the measurement metrics of the under-

lying microarchitectures, and perf tool shows them.

In the remainder of this chapter, we first discuss the background of PMUs in Section 5.2

and then describe the hardware and software implementation of our PMU for the LEON3

multi-cores in Section 5.3. In Section ?? we present experimental results for MiBench

workloads and show the overhead incurred by performance monitoring.
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application perfUSER

Linux kernel

perf_event

OS

core 0

PMU L1:I/-D
cache

mappings

core 3

PMU L1:I/-D
cache

mappings

...

LEON3

application

HW

Figure 5.1: Performance measurement infrastructure used in the reconfigurable cache
mapping architecture.

5.2 Background: Performance Monitoring Units

Performance analysis based on PMUs requires both a hardware and software infrastruc-

ture. The hardware infrastructure for recording statistical data at the micro-architectural

level during program execution basically includes sets of control registers and counters.

The control registers can be programmed to specific events that should be captured,

which are then counted. The configuration written to control registers also determines

whether and which interrupts are generated on a counter overflow, whether data is

collected only for user mode or also for kernel mode execution, and generally to en-

able or disable data collection. While most modern processors include some form of a

PMU [111], the number of measurable events and hardware counters varies [106, 112].

Events commonly available for monitoring include the number of CPU cycles, access

and miss rates for caches and TLBs, and IPC values.

The software infrastructure for a PMU needs to configure the measurement infrastruc-

ture, start and stop the data collection, and finally read out and aggregate the counter

values. There are several tools and system interfaces supporting the collection of statis-

tical data from PMUs. Among them, PAPI [113] and the perf tool [114] are commonly

used in high-performance computing. These tools rely on a system interface running in

kernel mode to access the PMU hardware counters. Running the system interface in ker-

nel mode is advantageous since the hardware counters can easily be saved and restored

during a context switch, allowing for per-thread performance monitoring. In the Linux

operating system, two patches for performance monitoring are widely used: perfctr
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and perfmon2 [115]. More recently, the perf event interface [114] and the perf tool

have been included in the main Linux kernel source code. The perf tool works tightly

with the perf event interface and makes performance monitoring straight-forward for

users.

5.3 PMU Design and Integration

The architecture of our performance measurement units and how they integrate into the

LEON3 platform as well as into the standard Linux performance measurement infras-

tructure are described in this section.

5.3.1 The Architecture

We have been tailoring PMUs for LEON3 multi-core architectures. To be able to handle

properly the performance counters for workloads migrating between the processors, the

PMUs have been replicated for each processor core and the performance counters are

stored to and are loaded from the context of an application by the OS kernel during each

context switch. Figure 5.2 shows the PMU placement in our current implementation,

which is tailored for processor monitoring. The PMUs are connected to the signals

driven out from the Integer Units (IU), from L1 instruction and data cache controllers,

and from the ITLB as well as the DTLB modules of the MMU. The standard open-

source LEON3 architecture does not include L2 caches or hardware floating-point units.

However, our PMU architecture can easily be extended to monitor and aggregate events

from such sources or from custom hardware modules and reconfiguration controllers.

MP IRQ 
Controller PMU

MMU

L1
D$

L1
I$

Leon3, core 0

PMU
MMU

L1
D$

L1
I$

Leon3, core 3

Shared AMBA Bus

Interrupt level & 
Interrupt ACK

....

Figure 5.2: PMU modules are located close to the monitored event sources. The
interrupt signals for overflowed events are handled by the MP IRQ controller module.
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Figure 5.3 illustrates the hardware implementation of the overall PMU system. Each

event counter subsystem consists of an event source multiplexer, a control logic block,

a counter with according overflow logic, and a common logic for the overflow interrupt

generation. The heart of a performance counter subsystem is its control block. The

control block takes input from a global and a local control register as well as the interrupt

acknowledge from the interrupt controller. The functionality of the global register follows

the ARM Cortex-A9 PMU architecture [106] and allows us to reset and enable all event

counters by a single register access. This feature is of use for the Linux perf event

performance monitoring infrastructure.

Through the local control register, a performance counter subsystem can be cleared

(clr) and enabled (en), and counting can be started even if the measured processor

core is entering the super user mode (su). Furthermore, the local control register deter-

mines whether an overflow interrupt should be triggered and which event to measure.

Currently, the hardware event sources are the CPU clock cycle count, the number of

executed instructions, the number of instruction and data cache read accesses, the num-

ber of instruction and date cache read misses, and the number of data cache write

accesses as well as misses. The signal input of the first counter subsystem is hardwired

to monitor the execution time to allow for an accurate measurement basis to which other

measurement counters can be normalized.

The interrupt acknowledge input signal of the control block depends on the situation of

the associated counter. If the counter reaches its overflow threshold and the interrupt

generation is enabled for this measurement subsystem, an interrupt is generated and a

status bit in PMU’s global interrupt overflow register is set. The overflow comparator

signals the overflow to the control logic which, in turn, clears and sets its counter inac-

tive. The activated software interrupt handler checks which event counter has triggered

an interrupt and updates the according perf event counter variables. Afterward, the

interrupt handler releases the event counter by pulsing an interrupt acknowledgment

signal through MP IRQ to the control logic blocks.

The presence of an interrupt logic is the reason for selecting 32-bit wide event counter

registers. While using wider register widths, for instance 64 bits, would make a counter

overflow less likely, there are cases where it is required to generate an interrupt after

counting some specified amount of events. Additionally, even counting events at 100 MHz

will cause an interrupt request roughly every two minutes. Since the time overhead for

the interrupt handler needed to serve a PMU interrupt is negligible, we avoided wider

event counting registers for the sake of a compact architecture and a smaller memory
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Table 5.1: Memory map of the PMU system. The maximum number of event counters
supported is 7. The maximum number of monitored events can be up to 256. Currently,
cycles, instructions, L1:I / L1:D cache access and read misses as well as
L1:D write accesses and misses, and ITLB as well as DTLB misses are supported.

Registers accessed via ASI = 0x02

Register—32 bits ASI Address Mapping

Global control (RW):

0xC0

- Bit[0]: enable all event counters (en)
- Bit[1]: reset/clear all event counters (rst)
- Bit[2]: reset/clear cycles countered (cyc.rst)
- Bit[7..3]: number of event counters supported
- Bit[31]: reset/clear IRQ pending

Overflow status (RW):

0xC4
- Bit[0]: overflow cycle counter
- Bit[n..1]: overflow for event counter - n..1
- Bit[31]: indication for IRQ pending

Cycle counter (RW):
0xC8

- Bit[31..0]: counter value is being monitored

Cycle counter control (RW):

0xCC

- Bit[7..0]: reserved
- Bit[8]: enable the counter (en)
- Bit[9]: reset/clear the counter (clr)
- Bit[10]: counting kernel/user mode (su)
- Bit[11]: interrupt enable (irq en)

The ith event counter (RW):
0xD0 + 8 · (ith)

- Bit[31]: counter value is being monitored

The ith event counter control (RW):

0xD4 + 8 · (ith)

- Bit[7..0]: event identifier (event id)
- Bit[8]: enable the counter (en)
- Bit[9]: reset/clear the counter (clr)
- Bit[10]: counting kernel/user mode (su)
- Bit[11]: interrupt enable (irq en)

map. However, the counter widths and the memory map can be easily adapted if wider

counters are required.

5.3.2 PMU Registers: Address Mapping and Access

Table 5.1 shows the address mapping for the overall PMU system. Instead of defining

new instructions for reading and writing PMU registers, similar to the architecture im-

plementation for reconfigurable cache mappings, the extended Address Space Identifier

(ASI) lda/sta instructions of the Sparc architecture are used [33]. An unused address

range from 0xC0 to 0xFC is used to clamp the PMU registers.
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5.3.3 Handling Overflow Interrupts

There are two basic ways of introducing interrupt sources to LEON3 processors. First,

peripheral devices that are connected to the AMBA bus can use the AMBA interrupt

lines. The AMBA bus interrupt controller has then to prioritize and relay the interrupt

requests to the LEON3 MP IRQ controller. A PMU unit using this method of interrupt

generation would need to implement an AMBA bus slave controller and accept the

temporal overhead of the AMBA bus interrupt controller. Additionally, interrupts from

other peripheral devices may have an impact on the measurement precision.

The second option, and the one we have chosen in this work for interfacing to the

interrupt logic of the LEON3 processorm, is to directly connect the interrupt sources to

the internal logic of the MP IRQ controller. To that end, all PMU interrupt request lines

are aggregated by an OR gate and sourced into the external interrupt (EIRQ) handling

circuitry of the MP IRQ controller. This is shown in Figure 5.4. This method has also

the benefit that the number of AMBA bus devices is not increased.

The EIRQ is chosen with the interrupt level 14, which is unused in the LEON3 system,

in our design. Therefore, perf event just has to respond with the interrupt number 30

which is the corresponding PMU overflow interrupt registered inside the Linux kernel.

5.3.4 System Integration: The Software Stack

Figure 5.6 presents the integration of our PMUs into the standard Linux perf event

infrastructure. Instead of extending the standard Sparc-64 PMU code, we have adopted

the perf event.c code from the ARM PMU implementation due to similarities in the

interrupt handling mechanism.

From the user space perspective, the perf event interface and the perf tool work

together as follows: The perf tool invokes an application for measurement. Depend-

ing on the input parameters, the perf tool provides the event sources to monitor to

kernels perf event measurement infrastructure. The perf event infrastructure in turn

configures the PMU infrastructure and starts profiling. When the application finishes its

execution, the perf tool reads out the event counters and aggregates the final results

via the perf event interface. An example for the output of the perf tool is given in

Figure 5.5.
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IRQ
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IRQ
mask[0]

IRQ
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Priority
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Priority
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APBI.PIRQ[31:1]
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INTERRUPT [0] [eirq+16]

[eirq]

[15:1]

[eirq+16]

IRQO[0].IRL[3:0]

IRQ
Force[0]
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Figure 5.4: The additional logic gates inside the MP IRQ Controller of the LEON3
platform support handling PMU interrupts for overflowed event counters.

# perf stat -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses,

L1-dcache-stores,L1-dcache-store-misses ./queens -c 14

14 queens on a 14x14 board...

...there are 365596 solutions

Performance counter stats for ’./queens -c 14’:

8295258591 cycles

5309555048 instructions # 0.640 IPC

965961200 L1-dcache-loads

50932 L1-dcache-load-misses

191890081 L1-dcache-stores

27365021 L1-dcache-store-misses

115.170000000 seconds time elapsed

# _

Figure 5.5: Example: Launch and output of the perf tool.
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application perf tool

Linux Kernel

perf event

Leon3 PMU

static inline u32 leon3pmu_read_counter(int idx) {
asm volatile (" lda [%1] %2, %0 ": "=r"(value) :
"r"(idx*8 + 0xC8), i"(0x02));

}

static inline void leon3pmu_ctrl_write(enum
leon3_counters counter, unsigned long val){
asm volatile (" sta %0, [%1] %2 \n"

: // no outputs
: "r"(val), "r"(counter*8 + 0xCC), i"(0x02)
: "memory");

}

static irqreturn_t leon3pmu_handle_irq(int irq_num,
void *dev){
u32 val;
…
//read overflow register
asm volatile (" lda [%1] %2, %0 ": "=r"(val) :

"r"(0xC4), "i"(0x02));
…

}

arch/sparc/kernel/
perf_event.c

OS

USER

HW

Figure 5.6: System integration with perf event.

5.4 Hardware Overhead

Table 5.2: Hardware resource use for implementing a LEON3 PMU and the total
overhead in % compared to a PMU-less LEON3 system.

1 core 2 cores 4 cores

FFs LUTs FFs LUTs FFs LUTs

PMU 303 886 606 1641 1212 3956

MP IRQ without PMU 101 205 173 354 285 661

MP IRQ with PMU 102 210 175 368 289 694

Leon3 with PMU 15371 20956 19879 29413 28848 47142

Increase [%] 2.0 4.4 3.2 6.0 4.4 9.2

Table 5.2 sums up the hardware overhead for the PMU subsystem when implemented

for a single, dual and quad-core LEON3 platform to a Xilinx ML605 Virtex-6 board. For

the single-core variant, the overhead for flop flops and look-up tables amount to 2 and

4.4 per cent, respectively. When doubling the core number of a Leon system, the integer

units get duplicated. Busses and peripherals are typically not replicated. Therefore, the

size of a Leon system grows linearly with the number of cores but the hardware effort for

the busses and peripherals stays almost unchanged. This explains why when doubling

and quadrupling the core number and the according PMUs, the overhead for the PMUs

compared to the total size of an LEON3 platform increases from 2 over 3.2 to 4.4 per

cent for the number of flip flops and from 4.4 over 6.0 to 9.0 per cent for the number of

look-up tables.
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5.5 Accuracy Analysis

Table 5.3 displays all our measurements for the selected benchmarks. We have monitored

8 types of events: CPU cycles, instructions, L1:I load misses, L1:I loads, L1:D loads,

L1:D load misses, L1:D stores, and L1:D store misses. The presented results cover

the events captured during user mode, but exclude kernel mode execution. Since in

our prototypical implementation the maximum number of event counters is 7, we had

to invoke the perf tool twice in order to avoid multiplexing events, which can lead

to inaccurate results during measurement. The first invocation of the perf tool is

for counting the number of CPU cycles and instructions, the second for gathering the

remaining events. We have repeated each measurement for 10 times and computed the

coefficient variation (CV=σ/µ), i.e. the standard deviation divided by the mean average.

The chosen benchmark programs are deterministic in the sense that for a given input

data set they execute exactly the same instructions. The reason that the collected values

for the number of instructions is not deterministic is the perf tool, which also runs in

user space. Once the perf tool receives a signal indicating that the application has

stopped, the perf tool has to spend time on disabling the counters in the event control

registers. This leads to a certain deviation in consecutive measurements., which are

however, much below 1%.

The variations in the number of cycles, L1:I read, L1:D read, and L1:D store miss

events can be explained by the initially varying states of the cache lines. Thus, for more

accurate results, the presented PMU infrastructure should be extended by a cache flush

and a preheat procedure, to unify the starting conditions for all benchmarks.

5.6 Conclusion

In this chapter, we presented a performance measurement infrastructure for the single-

and multi-core LEON3 processing platform. The infrastructure integrates seamlessly

into the standard Linux performance measurement architecture perf event and allows

a comfortable and accurate analysis of microarchitectural measurements using the stan-

dard Linux profiling tools. From the reconfigurable system perspective, the presented

performance measurement infrastructure also supports monitoring the events generated

by the reconfigurable platform, such as partial reconfiguration times.
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Chapter 6

Optimization Methodology

In this chapter, it is first explained how the idea of natural selection is exploited in order

to search for good cache mapping functions for our FPGA-based multi-core architecture.

In particular, this chapter describes the use of the Cartesian Genetic Programming model

for cache mapping optimization.

The second part of this chapter presents an investigation of accurate performance eval-

uation of a non-deterministic system. Since significant measurement deviations of non-

deterministic behavior could lead to difficulties for the functional quality and to pro-

longed optimization times, statistical tests are used to identify the best performing

candidates using as few fitness evaluations as possible.

The third part of this chapter describes the creation of the architecture of an evaluation

framework capable of deploying parallel fitness evaluation. Then, based on that frame-

work, an optimization procedure is presented, which is an adaptive evaluation strategy

leveraging on an Evolutionary Algorithm to search for good cache mapping functions

and relying on the Wilcoxon rank-sum test to control the fitness evaluation, so as to

reduce the optimization times.

6.1 Background

Evolutionary Algorithms are a type of search procedure relying on the Darwinian theory

of evolution, which describes how species adapt to survive in nature. EAs present

an optimization problem in terms of populations of individuals and the optimization

strategies are iterated via reproduction and selection processes until the condition for

68
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termination is met. The following discussions about optimization methodology aim at

providing an overview of the generic Evolutionary Algorithm (EA) and its variants.

6.1.1 Evolutionary Algorithms

‘Evolutionary Algorithm’ is a general term for an optimization method that emulates

natural evolution to solve difficult problems on a computer [116], [117], [118]. Each

individual encoded in an EA can be seen as a candidate solution of the optimization

problem. The population comprises a set of candidate solutions and the fitness indicates

the quality of a candidate solution. In each generation, the individuals are randomly

varied to create new individuals who will be considered as the candidate solutions in

the next generation. This process is called variation. The next processes are evaluation

and selection: every individual, including the parents, is evaluated and those individuals

presenting the best fitnesses are selected for the next population. Mathematically, a

common EA comprising the evolutionary processes discussed above can be summarized

as follows (see [118])

P(t+ 1) = s(ε(v(P(t))))

where P(t) is the population in generation t, v is a variation operator on the current

population, ε is an evaluation operator, and s is an selection operator. A sequence of

these processes will repeat until it reaches the maximum number of generations or hits

a termination condition.

Variants of EAs include Evolution Strategies, Genetic Algorithms, Genetic Programming,

and the recent Cartesian Genetic Programming, the one most used for solving Evolvable

Hardware problems. A historical overview can be found in [76], [116]. We start by

summarizing them in next section.

6.1.2 Terminology

Before starting the discussion of the variants of EAs, let us summarize the terminology

widely used in this field. Each individual in a population is commonly encoded by a

binary string, and is called a chromosome or genotype. The units of the chromosome are

referred to as genes. In the variation process, the individuals that are selected to create

new individuals are called parents. The parents produce new individuals, which are also
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called offspring, by modifying some genes or all of them. The first operator mostly

used in variation is crossover, which basically exchanges genes at a randomly selected

point of the two parents to create the offspring. The second most popular operator is

mutation, in which a single offspring is created by altering the genes of only one parent.

In a binary-encoded chromosome, mutation can be done by flipping bits with a given

probability.

6.1.3 Evolution Strategies

Evolution Strategies (ESs), a sub-field of EAs, were introduced by Rechenberg and

Schwefel in 1965 [119]. In an (µ/ρ
{

+
,

}
λ)-ES, λ new offspring are evolved by ρ individuals

randomly chosen from µ parents. Each individual in an ES is an encoded vector including

not only an object of the search space (object parameter) but also a set of strategy

parameters. The iterative procedure of the algorithm for the ES creates λ offspring

from ρ ≤ µ parents by recombination (crossover) of object parameters and mutation of

both object and strategy parameters. After evaluating the fitness, the best µ individuals

for the new population are taken either from both old µ parents and λ offspring the

(plus-selection strategy) or from λ offspring (comma-selection strategy).

6.1.4 Genetic Algorithms

Genetic Algorithms (GAs), another sub-field of EAs, were introduced by John Holland

in 1975 [120]. They have been widely used for optimization problems, e.g. in VLSI

and automation design [117]. The principle of GAs is that they behave like natural

systems and the iterative procedure uses similar processes: selection, crossover, and

mutation to search for optimal solutions of the problem. A GA initializes a search space

with a random constant-size population comprising chromosomes that are constant-

size encoded bitstrings. In an iterative procedure, each individual is evaluated and

the selection operator picks the fitter individuals from the current generation with a

probability proportional to their relative fitness. This selection strategy is referred to as

roulette-wheel. Unlike ESs, GAs rely on the crossover operation to drive the evolution. At

a given crossover rate, a pair of parents creates offspring by recombining the chromosome

bits at a randomly selected crossover point of the chromosome length. After the crossover

operation, the mutation operator is applied to the new population members, so that

each bit in the binary-encoded chromosomes is flipped with a given probability. The
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evaluations for the next generations will repeat until reaching a sufficient population

size.

6.1.5 Genetic Programming

Another well-known sub-field of EAs is Genetic Programming (GPs) developed by Koza

[121]. The evolutionary approach in GP aims at enabling computers to be able to evolve

programs by themselves [122]. Unlike the other methods which restrict the fixed length

of the encoded bitstrings, the chromosomes of GP are strings of free-length symbols

encoding computer programs. Representations of the chromosomes of GP can be seen

as hierarchical and variable size structures of syntax trees on which the GP operates.

The crossover operator works by exchanging sub-trees of two parent trees at a random

crossover point to create two new offspring trees. The mutation operator replaces a

sub-tree of an individual at a mutation point with a randomly generated sub-tree.

6.1.6 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP), a variant of GP, was introduced by Miller and

Thomson in 2000 [103]. While standard GP encodes candidate solutions by tree-based

chromosomes, CGP represents a chromosome with a fixed-length list of integers. The

CGP’s chromosomes are mapped to directed acyclic graphs, which are more general than

the tree-based representations. The CGP model has been used in evolutionary digital

circuit design [123], [124], [116], [102].

The form of CGP: The CGP model is encoded as a two-dimensional grid of nc (columns)×

nr (rows) nodes. In a CGP model, the number of inputs ni and outputs no are fixed.

Each node’s content can be programmed with predefined functions from a set function

F . A node has nn inputs and one output and a node can be either connected or discon-

nected. A node’s inputs can receive either from the outputs of the nodes in the previous

columns or from any of ni inputs. The level of inter-connectivity is called the levels-

back, which determines how many previous columns of nodes may have their outputs

connected to a node in the current column, and is denoted by l.

A CGP’s chromosome can be seen as an encoded-integer array of the node’s input genes

and the node’s function genes. The length of a CGP’s chromosome is measured in the
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number of genes and is calculated by

Lg = nr × nc × (nn + 1) + no (6.1)

Figure 6.1 illustrates a CGP configuration with 16 × 5 programmable nodes and the

node connections. The encoded chromosome comprises 80 genes. Each node has two

inputs and one output, and can be configured with up to 24 functions.

f0 f1 f2 f4

f5 f6 f7 f9

f75 f76 f77 f79

I0

I1

I2

I3

I30

I31

O0

O1

O15

nc = 5

nr = 16

f3

f8

f78

l = 2 

nn = 2

Figure 6.1: An example of a CGP configuration: { nr = 16, nc = 5, nn = 2, ni =
32, no = 16, l = 2.}

EA applied for CGP: A derived EA utilized in the CGP model for an optimization

problem is demonstrated in Algorithm 1. The initial population is randomly generated,

comprising one individual. The selection operator works similarly to (1+λ)-ES, in which

the best offspring having a fitness better than or equal to that of the parent is selected

for the next generation.

Investigations by Muller et al. [125] and Vassilev et al. [126] have shown that the

crossover operator is inefficient at evolving circuits. Therefore, the crossover operator is

not used in the present thesis.

Mutation used for CGP: Mutation operators are feasible for evolutionary searches in

CGP. Such an operator is a one-point mutation operator in which a small number of genes
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µg are randomly selected either from the function or input genes. Another equivalent

quantity commonly used in CGP is the mutation rate µr, that is, the percentage of the

total number of genes in the chromosome chosen for mutation [102]. For a given Lg in

Equation 6.1, µg is related with µr in such a way that µg = µr ×Lg. Suitable values for

the parameters µr and µg are defined by the user. A common value of µr that one uses

should be small, for example µr ≈ 1% for a CGP grid having up to 100 nodes. However,

in order to determine a good configuration for the mutation rate, prior experimentation

may be conducted.

Algorithm 1: General (1 + λ)-ES used in CGPs [103].

P← initialize() /* initialize population */1

evaluate fitness(P) /*evaluate parent fitness*/2

while stopping criterion not reached do3

O← mutate(P, λ) /*create λ offspring*/4

evaluate fitness(O) /*evaluate offspring fitnesses*/5

P← select(O ∪ P) /*select the fittest genotype for new generation*/6

6.1.7 Fitness Functions

In Algorithm 1, the fitness evaluations are conducted through fitness functions, inter-

changeably also called objective functions (lines 2 and 5). Generally, the fitness functions

quantify the candidate solutions and the resulting scores are mapped onto the set of real

numbers. A numeric score is also referred to as the fitness. Mathematically, if F is a

fitness function and S is the space of possible solutions, then F : S → R. Given two

solutions s1, s2 ∈ S, we infer that solution s1 is better than solution s2 if F (s1) > F (s2).

The fitness function should reflect the objectives of the problem optimization, so that

the quantification race is determined by either a maximized or minimized value.

6.1.8 Summary

We have provided a review of different evolutionary approaches. For the cache map-

ping function optimization, we leveraged on the CGP model and have formed a cache

mapping function by an implementation with FPGA-based reconfigurable circuits. The

implementation of reconfigurable circuits is a variant of the standard CGP model, in

which the node interconnections are fixed and the node’s functions are able to be re-

programmed at run-time. We have provided details of the circuit implementation in

Chapter 4.
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6.2 Optimization with EAs

To drive the search for better cache mapping functions, we set up a training strategy by

employing a (1 + λ)-ES scheme, in which λ can be optionally selected to be either 4 or

1. Figure 6.2 illustrates a training algorithm established with a (1 + 4)-ES, in which the

mutation operator randomly modifies the genes of the parent to create four offspring.

In the bottom-left part of the figure are a CGP-based circuit and its corresponding

chromosome representing the form of the mapping function.

The training process iterates over a number of generations. Each iteration goes through

the steps of building a population, mutation, evaluation, and selection. In the first gen-

eration, the initial population is created either randomly or with the modulo function.

Next, the mutation operator selects a few genes of the parent for modification by ran-

domly flipping bits to create four offspring. In the evaluation operation, each offspring

is programmed into the reconfigurable circuits and the applications are executed for fit-

ness evaluation. In this step, the functional qualities, i.e. the fitness, of the candidate

solutions could be, e.g. the reduction of the number of cache misses. In the next step,

the selection operator will estimate the best candidate to become the new parent among

the parents and its offspring of the current generation. The new parent is fetched into

the population. From here, the next training generations will repeat. The training stops

when the evaluation reaches a pre-defined number of generations.

Discard

Mutation

Evaluation

Selection

Parent

Flip bits to produce
 4 offsprings

Initialize chromosome 
either from a random 

or modulo mapping function

|0111|1001|...|0001|1100|

The best offspring

A chromosome

Figure 6.2: Training strategy setup with a (1 + 4)-ES scheme.

For the CGP-based cache mapping function problem, in order to deploy (1 + λ)-ES

efficiently, a good mutation rate and λ should be defined. For our case, we determined

these configuration parameters from prior experiments. The details of this analysis will
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be presented in Chapter 7. The next section is dedicated to discussions of challenging

aspects regarding the functional qualities.

6.3 Functional Quality

We use the Miss Per 1000 Instructions (MPKI) as the goal metric for optimization.

MPKI is computed by

MPKI =
Miss

IC
× 1000,

where Miss and IC are the numbers of misses and retired instructions, respectively.

Miss and IC are measured by using perf tool. The fitness can also be one metric

directly reflecting performance enhancement, for instance, the execution time. When

measuring the performance might be inaccurate due to memory bandwidth contention

in shared multi-core platform memory [127], using this metric may involve difficulties

for the fitness evaluation. Since the evaluation platform is a shared memory system, our

optimization objective is to reduce the number of overall cache misses.

6.3.1 Non-Deterministic Measurements

Unlike from previous works, where optimization strategies have been deployed on sim-

ulation frameworks, the optimization presented here exploits a real hardware platform

prototyped in an FPGA. Since this FPGA-based multi-core platform enables running

Linux, the available real-time measurement perf tool is efficient at monitoring an ap-

plication’s execution and collect the underlying micro-architectural metrics.

The precise performance estimation of an application is difficult in a multi-tasking system

since concurrent applications may be accessing the same resources and the performance

measurement infrastructure could induce some overhead, e.g. over-counting of hardware

counters, interference by other applications scheduled by the OS, and so on. But even

when minimizing these inaccuracies, the memory access pattern of an application, which

is pivotal for estimating the application’s cache performance, is subject to variance.

For instance, the memory access pattern may depend on the size and the statistical

distribution of the values of the input data.

Figure 6.3 shows the MPKI measurements of L1:D cache resulting from the modulo-

based and two randomized mapping functions. The perf tool was used to execute

the CJPEG application for four input vectors, then each vector’s execution was repeated



Optimization Methodology 76

32 times to estimate values of the deviation. In this experiment, in order to reduce

interventions by other applications, Linux was forced to isolate and reserve one core for

executing the CJPEG application. The page size was set to 4 KiB, and the L1:D cache

configuration was 4 KiB, 1-way.

The experimental results were surprising. While the measurement results given by the

modulo function suffered insignificant deviations, the results for the two randomized

functions had higher deviations. Although one can probably define the fitness by an

average of the MPKI measured over multiple runs, greatly different deviations may lead

to inaccurate fitness comparison.
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Figure 6.3: Measurement results given by three different mapping functions for CJPEG.
Experiments were conducted for 4 input vectors and 4KiB,1-way L1:D cache.

Deviations due to dynamical physical page allocation: Two significant sources of

inaccuracies in run-time measurement tools could occur. The first source can be induced

by the interventions of other applications, the execution of the OS, or overheads of the
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monitoring tool [128]. The second source can be the random allocations of the physical

pages. For a certain mapping function, the physical page allocation of the OS could

lead to different sequences of cache indexing for each repeated application execution,

and thus to varying measurement results. In fact, in systems with dynamic memory

management, an application is usually loaded by the OS into different physical address

spaces, depending on the currently executed application set. The system loader usually

assigns the same virtual address ranges to program segments. However, the mapping

from virtual to physical pages is randomized, for example, the mapping mechanism of

the Binary Buddy Allocator algorithm implemented in Linux. As this processor imple-

mentation uses physically addressed L1:D caches, almost all these factors are relevant.

To get an insight into the deviation of this system implementing the PIPT cache address-

ing model, let us consider a case where an application execution is repeated multiple

times. As we can imagine, for each iteration, the OS will allocate on-demand different

physical pages. Thus, the sequence of physical addresses is different for each re-execution

of the application and the PIPT cache scheme leads to a situation where the sequences

of accessed cache lines with physical addresses are different for each re-execution of the

application. This situation may affect the behaviour of the cache mapping for which the

measurement of the values of MPKI could be observed differently for every iteration. As

we can see in Figure 6.3, dynamical physical page allocation produces inaccurate mea-

surements and the measurement distributions of the MPKI values for the modulo-based

and the two random mapping functions are very different.

Modulo-based mapping function: The modulo-based mapping function computes the set

indices by taking the index segment from the address bits. When we have an equal size

of 4KiB for both page and cache, the index bits belong to the page offset bits. Thus, even

when we repeat the application’s execution multiple times, sequences of cache indices are

not changed. As we can observe in Figure 6.4, the MPKI measurements of the modulo-

based mapping function have low deviations and the measurement samples correspond

to a normal distribution. The deviations are the overheads of the perf tool.

Non-Modulo mapping function: Since these mapping schemes compute the set indices

from all the address bits (cf. Figure 4.6), the dynamic allocation of the physical pages

may produce different sequences of cache accesses for each repeated execution. Con-

sequently, as we can see in Figure 6.4, the MPKI measurements of two randomized

mapping functions suffer from higher deviations than those of the modulo-based map-

ping function. Here, the measurement samples do not conform to a normal distribution.
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Figure 6.4: DMPKI distributions measured for three different mapping functions of
CJPEG: while the samples measured for the modulo function correspond to a normal

distribution, those measured for the two random function a, b do not.

Observation: When using alternative cache mapping schemes that suffer slight measure-

ment inaccuracies due to the overheads of the impacts of the measurement tools, this

may lead to non-deterministic behaviour of the measurement results impacted by the dy-

namic physical page allocation. Therefore, the functional quality applied for evolving the

cache mapping function must take into account not only the average values but also the

inaccuracy factors. The following section presents our fitness evaluation, in which we

employ statistical tests to assess the fitness values of the candidate solutions.

6.3.2 Statistical Formalization

For an application optimization, let us consider F as the set of evolved cache mapping

functions. For a cache mapping function f ∈ F, we assume MPKI is measured inde-

pendently in multiple runs, and in this context, the measurement for MPKI regarding
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the function f , according to statistics [129] [130], is considered a random variable. We

denote the measurement for MPKI by the random variable M(f).

The random variable M(f) is a discrete variable whose possible measurement values of

MPKI are the numerical outcomes of a random phenomenon. We are assuming that M(f)

comes from a distribution. At the ith measurement, the actual value MPKI observed

for an experimential application with the function f is denoted by mi
(f). That value can

be seen as an item out of a set of all observations which we also call the population of

M(f). The ‘expected value’ or the true mean of M(f) is defined as

µM(f)
= E[M(f)] =

∞∑
i=0

mi
(f)p(m

i
(f))

where p(mi
(f)) is the probability of seeing the actual value mi

(f). While the true mean

is unknown, it is commonly estimated by the mean from a sampling. For instance,

an experiment with n repeated measurements gives a sample m0
(f),m

1
(f), ...,m

n−1
(f) . The

sample mean is calculated as

µ̄M(f)
=

1

n

n−1∑
i=0

mi
(f)

Different observations may lead to different samples and the estimation µ̄M(f)
can be

different, changing from sample to sample. A statistical definition M0
(f),M

1
(f), ...,M

n−1
(f)

refers to a random sample of the random variable M(f) and another random variable

denoted as M̄(f) refers to the mean of the random sample:

M̄(f) =
1

n

n−1∑
i=0

M i
(f)

An alternative to the mean is the median, which one could use to observe the cen-

tral tendency of data from a population. In a skewed distribution, the median may

be useful to reflect the concentration of data. For an observation with a random sam-

ple M0
(f),M

1
(f), ...,M

n−1
(f) corresponding to the random variable M(f), M̃(f) denotes the

median random variable from the observed samples,and is calculated by

M̃(f) = median{M0
(f),M

1
(f), ...,M

n−1
(f) }
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6.3.3 Fitness Definition

We denote the modulo function by fmod ∈ F. Suppose that V is a set of selected

representative input vectors used for the evolution. With fmod, and a vector v ∈ V, the

measurement of MPKI for an application is a random variable denoted by M(fmod,v). We

calculate the average value of MPKI measured with fmod over n times for a vector v as

a sample median:

M̃(fmod,v) = median{M0
(fmod,v),M

1
(fmod,v), ...,M

n−1
(fmod,v)} (6.2)

As the search for good-performing cache mapping functions has to ensure that the

candidate solution excels for a wide range of potential input vectors, we evaluate the

candidate solutions on multiple input vectors. The input vectors are selected to be as

different and as representative as possible. To be able to aggregate the values of MPKI

for different input vectors, we normalize the values to the performance of the modulo

cache mapping function. That is, for an application, an input vector v, a candidate

cache mapping function f , and the reference modulo-based mapping function fmod, the

normalized MPKI is defined as

N(f,v) =
M(f,v)

M̃(fmod,v)

,

where M(f,v) is the MPKI measurement for f with a vector v and N(f,v) represents

the normalized MPKI metric for the data and instruction caches of the split L1 cache,

respectively.

N(f,v) is a random variable and its corresponding population set is N(f,v). Combining all

normalized metrics achieved for all input vectors of V, we have assumed they are drawn

from an unique set of normalized metrics with respect to a candidate cache mapping

function f . We denote this set by

Mf =
⋃
v∈V

N(f,v)

Considering a candidate solution f , an item mf ∈Mf reflects a qualified value depending

on whether the cache mapping function is better or worse than the modulo-based one

for all input vectors of V. Sequences of the normalized MPKI values are the basis

for the mutual comparisons of candidate solutions. Therefore, the fitness evaluation
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used in evolutionary strategies, to be presented in the next section, evaluates whether a

mapping function fi is better than another function fj by estimating and comparing

two populations Mfi , Mfj respectively. To present the maximization idea for fitness

comparison, we revert to the fitness defined by the function f as 1/mf . That value

indicates that a better-performing mapping function reduces the cache misses, resulting

in a greater fitness.

6.3.4 Fitness Evaluation Procedure

In this section, we present the use of statistical methods to compare two candidate

solutions as to whether one produces a better fitness population. For ease of discussion,

the following standard notation is adopted from statistics:

• F (t): A cumulative distribution function (CDF).

• H0, HA, HL, H1: Hypothesis tests.

Figure 6.5 and Figure 6.6 show fitness distributions at two generations of the evolution,

where the initial generation is started from a randomization and modulo function, re-

spectively. The experiments were conducted with 4KiB, 1-way L1:D cache for CJPEG

application and the mapping function was evolved by the (1 + 4)-ES.
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Figure 6.5: Fitness observed at the third generation of the evolution. Initialization
mapping function is randomized. Experimented application is CJPEG. Cache configura-

tion is 4KiB, 1-way, L1:D cache.



Optimization Methodology 82

0.90

0.95

1.00

1.05

Offspring − 1 Offspring − 2 Offspring − 3 Offspring − 4 Parent
Individuals

F
itn

es
s

O
ffspring −

 1
O

ffspring −
 2

O
ffspring −

 3
O

ffspring −
 4

P
arent

0.7 0.8 0.9 1.0 1.1 1.2

0

5

10

15

0

2

4

0

5

10

0

5

10

0

5

10

15

Fitness
de

ns
ity

individual
Offspring − 1
Offspring − 2
Offspring − 3
Offspring − 4
Parent

Distribution

Figure 6.6: Fitness observed at the second generation of the evolution. Initialization
mapping function is the modulo. Experimented application is CJPEG. Cache configura-

tion is 4KiB,1-way, L1:D cache.

As we can see in both figures, at the third (Figure 6.5) and the second (Figure 6.6)

generations, the fitnesses of four offspring and the parent tend to differently-skewed

distributions, something which results from the impacts of the non-deterministic be-

haviour of the system. Thus, when the objective of fitness evaluation needs to infer

the best candidate solution among the parent and offspring, it requires comparisons of

differently-skewed fitness distributions.

For a pair of fitness distributions, statistical test methods for two-population inference

allow us to detect differences in whether the central tendency of one fitness distribution

tends to yield larger values than the other [129]. Let us discuss some statistical test

methods to be able to apply them to our problem.

Fitness comparison of two population means: Assume that the evolution has

two candidate mapping functions fi, fj and their corresponding measurements are two

fitness random variables Mfi , Mfj respectively. When one is interested in comparing

two population means to infer whether fi is better than fj or not, a common statistical

method is to compute the p-value for the distribution of the distance between sample

averages. The comparison of two population means Mfi , Mfj is an inference for

µMfi
≤ µMfj

(stochastically less than or equal) (6.3)
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Table 6.1: Three normality tests applied to the normalized DMPKI of each
individuals of CJPEG:{ Shapiro--Wilk (sw-test), Kolmogorov--Smirnov (ks-test),

Anderson--Darling (ad-test).}. Number of generations is 1877.

.
sw-test (p<0.05) ks-test (p<0.05) ad-test(p<0.05) total individuals

3595 3097 3515 7509

While µFi and µFj are unknown, in order to reach a conclusion as to the Equation 6.3,

we can perform statistical hypothesis tests, e.g. performing a left-tailed test on the

measurement samples for a certain confidence level α. The statistical two-sample t-test

can give accurate results, yet it requires that the distribution of Mf follows a normal

distribution. Using the Shapiro–Wilk, Kolmogorov–Smirnov, and Anderson–Darling

tests for α = 5%, we have investigated the normality of the fitness sequences with the

results 47.9%, 41.1%, and 46.7%. So they are not following the normal distribution, as

one can see in Table 6.1.

An alternative statistical test is the z-test, yet this test requires that the sample size be

large enough (≥ 30). While this test method is applicable, repeating the measurements

to obtain a large sample size could lead to unacceptable optimization time.

Fitness comparison of two population medians: Evaluating whether fi is better

than fj or not can be done via inferences about comparisons of two population medians

Mfi and Mfj . There are non-parametric statistical test methods for the comparison of

population medians, yet they make specific assumptions about the forms of the distri-

butions of Mfi and Mfj , for example, both must have the same distribution skew.

Fitness comparison of two distributions: For skewed distributions, a better statis-

tical test method is the inference about a two-distribution comparison. Let FMfi
and

FMfj
be the CDFs corresponding to the Mfi and Mfj of the two candidate solution fi

and fj , respectively. A distribution comparison states that Mfi is stochastically larger

than Mfj if

FMfi
(t) ≤ FMfj

(t) for all t

FMfi
(t) < FMfj

(t) for some t.
(6.4)

An inference for a distribution comparison can be performed by two-sample nonparamet-

ric statistical test methods [131]. The advantage of these test methods is that there is

no assumption about the distribution of the population or the sample size. More specifi-

cally, with non-parametric statistical test methods, the inferences about the comparisons

of the population means and medians can also be tested with particular assumptions.
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One common assumption is the shift location model, which assumes that two population

distributions must have the same shape.

We start by briefly reviewing the class of different non-parametric statistical test meth-

ods. After that, this section will present how the rank-sum Wilcoxon test is used for the

cache mapping evolution.

6.3.5 Non-Parametric Statistical Tests

Two-sample problem: Evaluating two candidate mapping functions fi and fj requires

a fitness comparison of two populations Mfi and Mfj . When the fitness distributions are

skew, the inference about a fitness comparison is corresponds relatively well to the well-

known two-sample problem [131], [132]. The hypotheses of the non-parametric statistical

tests assume that the measurement items from the two samples are independent of each

other and are drawn from continuous distributions (i.e. numerical values).

Let FMfi
and FMfj

be the CDFs corresponding to Mfi and Mfj respectively. In general,

the null hypothesis for the two-sample problem states that the two observed samples are

drawn from identical populations. It is given by

H0 : FMfi
(t) = FMfj

(t) for all t

against the usual two-sided alternative hypothesis that states

HA : FMfi
(t) 6= FMfj

(t) for some t (6.5)

or, against the corresponding general one-sided alternative, which states

H1 : FMfi
(t) ≤ FMfj

(t) for all t

FMfi
(t) < FMfj

(t) for some t
(6.6)

Non-parametric statistical tests regarding the alternative statement HA in Equation 6.5

say that at a certain confidence level, e.g. α−1 = 95%, if the test leads to the suggestion

of rejecting H0, the random variable Mfi is stochastically different from the random

variable Mfj . Equivalently, this case can be interpreted as that the distributions of the

two populations Mfi and Mfj are different. In hypothesis H1 in Equation 6.6, if H0 is

rejected, we interpret this to mean that the random variable Mfi is stochastically larger
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than the random variable Mfj . The reversed one-sided alternative of H1 says that Mfi

is stochastically smaller than the random variable Mfj .

Most of the non-parametric statistical tests for the two-sample problem are based on the

rank analysis. Write nf = nfi +nfj for the total size of the two samples. Under the null

hypothesis, the two random samples can be considered as a single random sample of size

nf drawn from a continuous population. A rank-based combination of two samples is

one of the
(
nf
nfi

)
=

nf !
nfi

!nfj
! possible ranked arrangements. Thus, a sample pattern of this

combined ranking provides information about the types of difference which may exist in

two populations. Non-parametric statistical test procedures for the two-sample problem

examine ranked arrangements of the two-sample combination.

There are several non-parametric statistical tests for detecting the differences between

two populations. Four particular alternatives, subclasses of HA in formula 6.5, are sum-

marized by Gibbons et al. in [131]. We are concerned with two cases of the alternative

hypothesis, capable of being applied to a fitness evaluation.

Shifted location model test: The particular alternative of this test is to detect a shift

in the location of two distributions. The alternative assumes the two distributions have

the same form and examines a different central tendency. For some ∆,−∞ < ∆ < ∞,

the alternative can be expressed as

HL : FMfi
(t) = FMfj

(t−∆) for all t (6.7)

Under a location model test, if HL is accepted, we can state that Mfi is stochastically

larger than Mfj if and only if ∆ > 0. Thus, when ∆ > 0, the median or the mean

(provided that the mean exists) of Mfi is larger than that of Mfj .

Figure 6.7 shows a test result in which the H0 of the test is not rejected when the fitnesses

of ”offspring - 2” and ”parent” from an evolution generation presented in Figure 6.5 are

compared. Figure 6.8 illustrates another test case, in which the H0 is rejected and thus

supports the acceptance of the alternative HL. In both cases, the two distribution scales

are nearly the same. While in the first case we can conclude that there are no differences

of the population median, in the second case the population median given by ”offspring

3” is larger than that given by ”offspring 4”.

Differences in distribution model test: Examining the difference in the locations

of two populations is an interesting type of difference that experimenters wish to detect,

and the location model test provides an accurate result if the assumption that the two
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Figure 6.7: The null hypothesis H0 is not rejected for a fitness comparison of ”off-
spring - 2” and ”parent” from an evolution generation (cf. Figure 6.5): Thus, there is

no difference in the two fitness populations.
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Figure 6.8: The H0 is rejected and the alternative hypothesis HL is accepted for a
fitness comparison of ”offspring - 3” and ”offspring - 4” from an evolution generation (cf.
Figure 6.5). Thus, the fitness (including the median) of ”offspring - 3” is stochastically

larger than that of ”offspring - 4”.

distributions have the same shape is satisfied. For our cache mapping optimization, this

assumption for two fitness distributions is not always satisfied. For example, different

scales of fitness distributions can exist in the evolutions, as we can see in Figure 6.6

and 6.5. In Figure 6.9, we illustrate a case of applying the location test method, where

H0 is rejected in supporting the acceptance of the alternative HL. However, due to

the different shapes, we are not confident in stating whether the median of the fitness

population given by ”offspring - 1” is larger than that of the parent. We can only

conclude that the fitness of ”offspring - 1” is larger than that of the parent.

We have run experiments on this optimization strategy and our observations revealed

that the shapes of the distributions of the fitness populations do not satisfy assumptions
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Figure 6.9: The H0 is rejected and the alternative hypothesis H1 is accepted for a
fitness comparison of ”offspring - 1” and ”parent” from an evolution generation (cf.
Fig 6.5). Thus, the fitness of ”offspring - 1” is stochastically larger than that of the

”parent”.

of the shift location model test. While some candidate solutions have the same shape of

fitness distributions, some do not. This analysis had guided us to appropriate choice for

comparing two candidate solutions: we identify firstly the difference between the two

fitness distributions and then detect the difference in the medians of the populations.

Among test methods dedicated to the two-sample problem, the Wilcoxon rank-sum

test (also called the Mann–Whitney test) is far preferable as a test: it is sensitive

in the detection of differences in distributions. We have applied this test procedure for

our fitness evaluation. Since our interest is also in detecting a difference between the

medians of two fitness populations, we have applied a further median comparison if the

Wilcoxon rank-sum test could not discover a difference between the distributions.

6.3.6 Fitness Evaluation with Wilcoxon Rank-Sum Test

Wilcoxon rank-sum test : Let reconsider the fitness comparison of two mapping func-

tions fi and fj . Assume M0
(fi)

,M1
(fi)

, ...,Mni−1
(fi)

is a random sample of size ni from

population Mfi and FMfi
is the corresponding CDF. Assume M0

(fj),M
1
(fj), ...,M

nj−1

(fj) is

another random sample from the population Mfj and that the corresponding CDF is

FMfj
.

The assumptions of the Wilcoxon rank-sum test are:

• Given two samples are random samples from their respective populations.
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• The two samples are observed independently within each sample, and both samples

are mutually independent.

• The measurement scale is at least ordinal.

We have conducted experiments to verify these three assumptions. The measurement

samples of Mfi , Mfj are numeric values. Write nf = nfi + nfj for the total size of the

two samples. For the Wilcoxon test, the two samples are combined into one sample,

and then one assigns the ranks from 1 to nf . Denote by R(M i
fj

) the rank of M i
fj

in

this combined ranking set. The Wilcoxon rank-sum test evaluates the sum of the ranks

assigned to the sample of Mfj , that is,

T =

nfj
−1∑

i=0

R(M i
fj

).

Two-sided test : the hypotheses for the two-sided test are:

H0 : FMfi
(t) = FMfj

(t) for all t

HA : FMfi
(t) 6= FMfj

(t) for some t
(6.8)

Under the null hypothesis H0 of the Wilcoxon rank-sum test, we state that the fitness

distributions given by the two mapping functions fi and fj are not different. For the

hypotheses 6.8, the test rejects H0 if either a small or a large value of T is detected.

One-sided test : the hypotheses for the two-sided test are:

H0 : FMfi
(t) = FMfj

(t) for all t

H1 : FMfi
(t) ≤ FMfj

(t) for some t
(6.9)

Similar to the Wilcoxon two-sided test above, we interpret the null hypothesis H0 as

saying that the fitness distributions for the two mapping functions fi and fj are not

different. For the hypotheses 6.8, if the test rejects H0, implying accepting H1, we say

that Mfi is stochastically larger than Mfj . The test under this hypothesis is also called

a left-tailed test. The reversed test of the left-tailed test H1 is called a right-tailed test.

Applying the Wilcoxon rank-sum test for generation evaluation : We apply

the Wilcoxon rank-sum test as follows. In a generation evaluation of a (1 + 4)-ES, a

candidate solution from among the offspring will become a parent in the next generation
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if the Wilcoxon test reveals that its fitness is better than or equal to the others. The

evaluation is as follows.

• In the first step, we use the Wilcoxon left-tailed test for four pairs of fitnesses given

by the parent and four offspring. Those offspring drawn from the test which show

themselves to be worse than the parent will be removed.

• In the second step, those offspring which are not rejected in the first step will

combine with the parent for tournament evaluations with Wilcoxon right-tailed

and left-tailed tests. This step aims to find the best candidate mapping function.

wilcox.test(offspring - 1, parent, "less");
wilcox.test(offspring - 2, parent, "less");
wilcox.test(offspring - 3, parent, "less");
wilcox.test(offspring - 4, parent, "less");

Individual = {offspring - 1, offspring - 2, offspring - 3, offspring - 4, parent}

Individual = {offspring - 1, offspring - 2, offspring - 3, parent}

wilcox.test(offspring - 1, parent, "greater");

Individual = {offspring - 1, offspring - 2, offspring - 3}

wilcox.test(offspring - 2, offspring - 1, "greater");
wilcox.test(offspring - 2, offspring - 1, "less");

Individual = {offspring - 1, offspring - 3}

wilcox.test(offspring - 3, offspring - 1, "greater");
wilcox.test(offspring - 3, offspring - 1, "less");

Individual = {offspring - 3}

Figure 6.10: Step by step evaluation with Wilcoxon test: While
wilcox.test(1, parent, ”less”) is the Wilcoxon left-tailed test for fitness comparison
to detect whether ”offspring - 1 is worse than the parent, wilcox.test(2, 1, ”greater”)
is the Wilcoxon right-tailed test to detect whether the fitness of ”offspring - 2” is
better than ”offspring - 1”. The outcome is ”offspring - 3”, the best mapping function.

Figure 6.10 shows the step by step procedure for applying Wilcoxon test to the opti-

mization of CJPEG. The results of the comparisons of all pairs at the third generation

are shown in Figure 6.11 for the significance level 1 − α = 95%. If the test returns

p-value < 0.05, the hypothesis H0 is rejected, implying accepting the alternatives. In

Figure 6.10, the Wilcoxon left-tailed test reveals that among the four comparison pairs

(”offspring - 1”, parent), (”offspring - 2”, parent), (”offspring - 3”, parent), and (”off-

spring - 4”, parent), ”offspring - 4” is removed since p-value = 0 was returned. The
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result of this test can also be observed at the top right corner of Figure 6.11, where the

CDF of the fitness given by ”offspring - 4” is larger than that of the parent. After the

first step, the remaining individuals are the parent, ”offspring - 1”, ”offspring - 2”, and

”offspring - 3”. Next, the right-tailed test applied to the pair (”offspring - 1”, parent)

reveals that ”offspring - 1” is better than the parent, thus the parent is removed from

the set of individuals. Then, a comparison between ”offspring - 2” and ”offspring - 1”

shows that ”offspring - 1” is better, and thus ”offspring - 2” is removed. To this end,

two last Wilcoxon tests are applied to the pair ”offspring - 1” and ”offspring - 3”, with

the result that ”offspring - 3” is the best individual in this generation.

6.4 Optimization Procedure

Leveraging on the EA discussed in Section 6.2 and the efficiency of fitness evaluation

by using the Wilcoxon rank-sum test, we present in this section an adaptive parallel

evaluation for cache mapping function optimization. The optimization scheme exploits

fully available cores of the LEON3 platform including an offline algorithm run by a host

process communicating with another client process executing on one LEON3 core. To

evaluate an application for an evolved mapping function, the client acquires an available

LEON3 core and reconfigures the cache mapping circuit blocks accordingly. The client

then spawns another process for the application execution and migrates that process to

execute on the acquired core.

6.4.1 Evaluation Framework

Figure 6.12 shows our created architecture for a framework built for adaptive parallel

evaluation on a quad-core LEON3 platform. The host process running on a computer is

responsible for the optimization algorithm. The host interprets evaluation configurations

defined in a script file by users. During the evaluation, the host records performance

and cache metrics in logging files and it is able to resume terminated evaluations. Since

the evaluation scheme employs the Wilcoxon rank-sum test for fitness comparison, the

host process invokes calling functions of R software for statistical computations.

To evaluate a mapping function for an application, the host process communicates with

the client process via TCP/IP via evaluation commands. When the client receives the

commands, it acquires mapping functions from the host and programs them into recon-

figurable circuit blocks of the dedicated cores. The client communicates with the device
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Figure 6.12: The evaluation framework for cache mapping optimization.

driver enumerating a device handler at /dev/reconctrl for handling reconfiguration

process. The client can evaluate an application for multiple input vectors in parallel by

using the system call fork() to create processes and migrating executions on free cores.

Once running on a core, the new process image will be duplicated by perf tool for
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measurements. When an application’s execution is done, perf tool will collect metrics

via perf event and then asks the client to return the measurement metrics to the host

process.

To accelerate optimization times, the framework provides a higher parallelism evaluation

capability in which the client and dedicated application processes are able to be cloned

on multiple boards. By supporting this feature, we can reduce optimization times for

cases where a large number of evaluation samples are required.

6.4.2 Optimization Algorithm

Notation:

• V: set of selected representative input vectors.

• g: encoded mutation rate indicating number of genes used for mutation operator.

• fmod: modulo-based mapping function.

• f : a candidate mapping function during evolution.

• fop: the best evolved cache mapping function found.

• λ: number of offspring regarding the (1 + λ)-ES.

• nl: upper bound for number of iterations to execute an application for a vector

v ∈ V.

• ni: the interval of iterations at which the Wilcoxon rank-sum test is applied for

fitness evaluation.

• init: options for selecting initialization function (0: modulo; 1: randomization).

• nr gen: number of generations.

• nr core: number of available LEON3 cores.

• Mf : a set of fitness samples measured for f for all v ∈ V.

Leveraging on the evaluation framework, we have resorted at the end to use the Wilcoxon

rank-sum test and the final adaptive training algorithm is sketched in Algorithm 2.

Inputs are V, g, λ, nl, init, nr gen and the output is fop.

Our goal is to reduce the computational budget nl in order to decrease the training

time and use less hardware resources. The adaptive scheme uses the Wilcoxon test to

identify whether the fitness medians are significantly different. In the case of a tie, the

algorithms are executed for an additional round and the test is repeated. This procedure

continues until a winner has been found or the computational budget is exceeded. In

the latter case, the population with the better median wins.
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Algorithm 2: (1 + λ)-ES, adaptive training algorithm.

Input: V, g, λ, nl, ni, init, nr gen.

Output: fop

M̃fmod
← evaluate(fmod,V, nl) /*evaluate the modulo function in nl times*/1

Pold ← initialize(seed, init) /*initialize the population*/2

Mfp ← evaluate norm(fp ∈ Pold,V, nl, M̃f̄ ) /*parent evaluation/-normalization*/3

for i = 1 ... nr gen do4

Pnew ← mutate(Pold, g, λ) /*create a new population with λ offspring*/5

for each fi ∈ Pnew do6

for sl ← ni, 2ni ... nl do7

M′fi ← evaluate norm(fi,V, ni, M̃f̄ ) /*evaluate fi for ni samples*/8

Mfi ←Mfi ∪M′fi9

pl ← wilcox.test(Mfi ,Mfp , ”less”) /*Wilcoxon left-tailed test*/10

if pl < 0.05 then11

remove(fi,Pnew) /*remove the "bad" offspring*/12

break13

Pnew ← Pnew ∪ {fp} /*adding the parent fp ∈ Pold for next evaluation*/14

while |Pnew| > 1 do15

pick up a pair (fi, fj) ∈ Pnew16

pr ← wilcox.test(Mfi ,Mfj , ”greater”) /*Wilcoxon right-tailed test*/17

pl ← wilcox.test(Mfi ,Mfj , ”less”) /*Wilcoxon left-tailed test*/18

if pr < 0.05 or pl < 0.05 then19

if pr < 0.05 then20

remove(fj ,Pnew) /*fitness given by fi is larger*/21

else22

remove(fi,Pnew)23

else24

if median(Mfi) ≥ median(Mfj ) then25

remove(fj ,Pnew) /*fitness median given by fi is larger*/26

else27

remove(fi,Pnew)28

Pold ← Pnew /*select the best for next generation*/29

fop ← fp ∈ Pold30

return fop31
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For the first stage of the training algorithm, the modulo function fmod is evaluated for

each vector v ∈ V, repeated nl times for all input vectors, and then the median of the

MPKI metrics for each vector’s evaluation is computed (line 1). The output of this

step is M̃fmod
= {M̃(fmod,v0), M̃(fmod,v1), ...}, in which each item corresponds to the

median of the MPKI values of each vector’s execution. Next, the initial population Pold

is initialized either by a randomization function with a seed number or by the modulo

one. The next step is to evaluate the parent function fp and the fitnesses are normalized

by the MPKI values measured with fmod (line 3).

In the second part of the training algorithm, for each generation evaluation (lines 5–

13), λ offspring are created from the parent’s chromosome by modifying the genes,

randomly picked according to the probability encoded in g. The first stage of a generation

evaluation is to exclude those candidate solutions with fitnesses worse than the parent

(lines 6–13). Each offspring is evaluated for all input vectors v ∈ V periodically in ni

times instead of nl times, and then the Wilcoxon left-tailed test is used to drop early

those individuals that are worse than the parent fp (lines 10–12). If after evaluating the

candidate cache fi for ni times on all input vectors the Wilcoxon rank-sum test does

not indicate that fi is inferior to the parent fp, the next round of ni evaluations for all

input vectors is started to increase the population Mfi . The Wilcoxon rank-sum test

is repeated again for the larger sample population of fi and if an early exit is still not

possible, the whole procedure is repeated until the maximal number of fitness evaluations

nl per input vector v ∈ V has been reached.

After the first part of the training algorithm (lines 5–13), all remaining candidate solu-

tions stored in the set Pnew, and the parent, have been evaluated ni times on each input

vector. The remaining candidate solutions are also not worse than the parent in terms

of the Wilcoxon rank-sum test. In the second part of the algorithm (lines 15–23), all

individuals of Pnew that are worse than any other individual in the same set in terms of

the Wilcoxon rank-sum test are removed (lines 19–23). For the remaining individuals,

the individual with the lowest median fitness value is selected as the new parent for the

next generation (lines 25–28).

After the generation evaluation has been done, Pold is re-constructed with the best-

evolved mapping function (line 29). Finally, after the evaluation in nr gen generations,

the best function found is returned (line 31).
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6.4.3 Evaluation of A Mapping Function

When two functions evaluate() or evaluate norm() are invoked to evaluate an evolved

mapping function f , the host process is responsible for sending the corresponding config-

uration data to the client process, which in turn reconfigures the new mapping function

and evaluates the application on the LEON3 platform. At the client’s side, the evalua-

tion procedure is sketched in Algorithm 3.

Algorithm 3: Evaluation

Input: f, V, ne
Output: Mf

recon(f) /*reconfigure a cache mapping for all dedicated cores*/1

for each v ∈ V do2

for i = 1 ... ne do3

core id← remove queue() /*get a free core from the queue*/4

mi
(f,v) ← sched run perf(core id, v) /*measure application execution*/5

Mf ←Mf ∪ {mi
(f,v)} /*collect metrics*/6

return Mf7

Firstly, the reconfiguration data of the function f is programmed into the reconfigurable

circuit blocks for all available cores (line 1). Next, to evaluate the application for an

input vector, a core is selected from a scheduling queue on which the client process

schedules the application executing with perf tool (lines 2–6). When the execution is

done, the measurement metrics are collected and returned to the host process (line 7).

At the host’s side, the measurement metrics are computed for the fitnesses.

The two functions evaluate() and evaluate norm() are similar, except that the latter

includes a normalization step at the end.

6.5 Conclusion

In this chapter, we have discussed the relevant aspects of EAs and have highlighted

the use of the CGP model for cache mapping optimization. We have investigated the

functional quality and have introduced a novel fitness evaluation by applying statistical

test methods to overcome the effects of non-deterministic measurements. To compare

the fitness distributions given by candidate solutions, we have employed the Wilcoxon

rank-sum test to adaptively control a fitness evaluation scheme.
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In this chapter, we have also described an optimization procedure for searching for good

cache mapping functions. We have created an architecture for an evaluation framework

capable of deploying fitness evaluation in parallel. Leveraging on this framework, we

have set up an adaptive optimization scheme in which the Wilcoxon rank-sum test is

employed to identify the best-performing candidates using as few fitness evaluations as

possible.

In the next chapter, we will present the experimental results of the adaptive evaluation

scheme capable of reducing the optimization times and the optimization results for

searching for good cache mapping functions. The experiments involved 12 applications.



Chapter 7

Cache Mapping Evolution and

System Evaluation

This chapter presents the detailed results of the cache mapping evolution and system

evaluation. The experiments were conducted for 11 applications randomly selected from

the MiBench suite as well as the BZIP2 application.

In the first part of the chapter, we will discuss the computational overhead of the evo-

lution and assess how well the proposed adaptive evaluation scheme, presented in the

previous chapter, reduces the optimization times. With that information, we will then

further reduce the optimization time by means of a further step in which we refine the

Evolutionary Strategy configuration. The second part presents the results of several tri-

als of different mutation rates until we found the best setup and the third part presents

the optimization results for the cache mapping evolution. To that end, we report the

system evaluation for the best-performing cache mapping functions found.

7.1 Experimental Platform

Table 7.1 summarizes the configuration parameters of our prototype system. The pro-

totype is implemented on an ML605 board equipped with a Virtex-6 FPGA. The re-

configurable circuit blocks of the cache mapping functions, reprogrammed at run-time

and the performance measurement infrastructure are integrated into the standard Linux

device driver infrastructure.

98
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Table 7.1: LEON3 platform implementing reconfigurable cache mappings.

System Configuration

Parameter Configuration

Clock Frequency 50 MHz

Floating Point Unit Hardware Support

Memory 1GB DRAM

I/D-TLB 8 entries

Linux Kernel 2.6.36.4 patch from Gaisler

Compiler Pre-Built Linux
toolchain from Gaisler

PMU 8 event counters

CM/-Rec Controllers Cache Mapping
/-Reconfiguration Controllers

Cache Configuration

L1:I cache 4KiB, {1,2}-way, 16-bytes/line
L1:D cache 4KiB, {1,2}-way, 32-bytes/line
Coherency Snooping Protocol

The cache configurations for the L1:I and L1:D caches used in the evaluation are 4KiB,1-

way and 4KiB,2-way. The cache mapping optimization was carried out by the adaptive

evaluation scheme using the evaluation framework built for the LEON3 multi-core plat-

form presented in Section 6.4.1.

7.2 Benchmarks

We evolved application-specific cache mappings for 11 applications from the MiBench

suite [133], a free and open source benchmark suite developed at the University of Michi-

gan. The benchmark suite considers a variety of applications implemented for embedded

systems and is divided into 6 different categories: Automotive and Industrial Control,

Consumer, Office, Network, Security, and Telecommunications. We also evaluated BZIP2

([134]), which was evaluated on a simulation-based system in [32].

For each application, the cache mapping functions were evolved by four input data

vectors and the best-performing cache mapping functions were validated by a set unseen

vector. Table 7.2 summarizes the selection for each benchmark application and for each

number of vectors used for training and validation.
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Table 7.2: The selection of 12 applications and number of vectors used for training
and validation.

Category Application
Number of vectors for
training validation

Automotive and
SUSAN 4 8

Industrial Control

Consumer CJPEG, DJPEG, LAME 4 {10, 10, 10}
Network PATRICIA 4 3

Security SHA, CBLOWFISH, DBLOWFISH 4 {5, 5, 5}
Telecommunications FFT, CADPCM, DADPCM 4 {10, 8, 8}

Others BZIP2 4 10

7.3 Computational Overhead

In this section, we present the insights that can be obtained from the evolution of the

cache mapping functions for the CJPEG application and the computational overhead of

the fitness evaluation. Then we show the efficiencies of the adaptive evaluation scheme

described in Section 6.4.2 and present the explorations of (1 + λ)-ES as to whether it is

better to use the configuration for λ = 4 or λ = 1. The same observations are valid for

the other applications.

7.3.1 Reference evaluation

Before investigating ideas for the reduction of the computational overhead for the fit-

ness evaluation, the baseline performance for an example benchmark is established and

described in this section. We have selected CJPEG and evolved the cache mapping func-

tion in three experiments by a (1 + 4)-ES executed for up to 2000 generations for a

4KiB, 1-way L1:D cache. As described in the previous section, the fitness evaluation of

a candidate cache mapping function was conducted for four input vectors consisting of

256 by 256 pixel images. All three experiments were started from randomly initialized

solutions. The number of iterations for the application and the corresponding cache

mapping function executed for each input was set to n l = 32, giving a large sample size

of 32× 4 items for the fitness evaluation described in Section 6.3. This is considered as

the best setup for the training strategy, and we refer to it as the reference evaluation.

The dashed lines in Figure 7.1 show the evolutionary development of the fitness, com-

puted as median value of three runs of the reference evaluation. The values are nor-

malized to that of the conventional (modulo-based) mapping function. The thick solid

horizontal line presents the baseline of the conventional mapping function. The second
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uses the Wilcoxon rank-sum test. The thick solid horizontal line presents the baseline

of the modulo-based mapping function.

and third runs are able to achieve solutions better than the baseline as given by the

conventional mapping function evolved for 2000 generations, reducing the cache misses

of the L1:D cache by around 20% and more than 40%, respectively.

However, the training time for a single run amounted roughly to 12 days using one

Xilinx ML605 board synthesizing four LEON3 cores. Our first effort was to reduce

the computational overhead. One possibility was to execute the training applications

in parallel. The evaluation framework described in Section 6.4.1 is able to schedule

application executions spanning multiple boards. The speedup of this parallel execution

scheme with the reference evaluation can be seen on the right side of Figure 7.2. On

the left side of the figure, the execution time is the average value for one generation of

a training run. Using four Xilinx ML605 boards to have up to 16 LEON3 cores, each

board can execute an application concurrently 8 times, so the training time is decreased

to about 3 days. However, finishing a trial of three runs will require 12 Xilinx ML605

boards evolved concurrently. Nevertheless, when the goal is to evolve cache mapping

functions for all applications and especially to use larger input vectors, the trend of the

observed computational complexity becomes prohibitive.
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multiple Xilinx ML605 boards. Execution time is the average evaluation time of one
generation. Parallelizing the execution iterations on 4 Xilinx ML605 boards yields
a speedup of up to ∼ 3.8×. The optimization is for the L1:D cache of the CJPEG

application.

7.3.2 Adaptive Evaluation

While the adaptive evaluation scheme, described in Section 6.4.2, can help to reduce

the computational overhead, the evolved results are as good as the reference evaluation.

In Figure 7.1, the solid lines present the evolution of the adaptive evaluation. We have

executed three runs of the adaptive scheme for 1500 generations. The upper bound for

the number of iterations is set to 16. The interval of repeated times for the early fitness

evaluation applying the Wilcoxon rank-sum test to ignore the worse candidates is set as

ni = 8. As we can see in the figure, the results given by the adaptive evaluation present

a quality as good as that given by the reference evaluation.

Figure 7.3 shows the distribution breakdown for the number of iterations averaged for

one generation used in the adaptive evaluation scheme. The computational budget, the

upper bound of the number of iterations necessary for four-vector evaluation is 256,

in which each vector must be executed 16 times. On average, the adaptive training

strategy spends mostly 84.5% for 128 iterations. During the evolution, if there is at

least one good candidate, the evaluation step has to carry out further iterations. This

results in a further number of iterations 160, 192, 224 to be conducted and consumes on
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Figure 7.3: Distribution breakdown of total number of iterations required for three
(1+4)-ES runs for training L1:D cache of the CJPEG application with four input vectors.

The upper bound is 256 = 16× 4(vectors) ∗ 4(offsprings).

average 13.2%, 1.8%, 0.2% respectively. Therefore, the number of iterations required for

one generation evaluation is around 134.24 instead of 256. Moreover, compared to the

reference evaluation, in which 512 iterations are required for one generation evaluation,

the adaptive evaluation scheme has reduced the computational effort to 74% while still

obtaining nearly as good training results. Thus, while using one Xilinx ML605 board

for reference evaluation takes roughly 12 days to finish training the CJPEG application,

the adaptive scheme runs in only 3.3 days, a speedup of ∼ 3.6×.

7.3.3 Exploration of ES

While the (1+4)-ES may improve searching quality by using a wider local search space, it

requires four offspring to be evaluated in each generation. We carried out an exploration

to determine the configuration parameters for an (1 +λ)-ES, in particular, to determine

whether λ = 4 or λ = 1 was better to use. Two strategies, (1 + 4)-ES and (1 + 1)-

ES, were setup, running with the adaptive evaluation scheme evolving the L1:D cache

mapping for CJPEG for up to 1000 generations. Three runs were conducted, and the

first generation as initialized with the modulo-based mapping function. The results of

both strategies are presented in Figure 7.4. As we can see, while the quality of the

results given by (1 + 1)-ES is as good as that given by (1 + 4)-ES, the number of fitness

evaluations for the first is less than that for the latter by about 25%. Thus, the strategy
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set up by a (1 + 1)-ES reduces the optimization times to by 0.8 day, executing on one

Xilinx ML605 board instead of 3.2 days evolved by a (1 + 4)-ES using the same board.
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Figure 7.4: A comparison of the evolution with (1 + λ)-ES: λ = 4 and λ = 1. The
initial generation was started by a modulo-based cache mapping function.

7.4 Exploration of the Mutation Rate

One critical configuration parameter of an ES-based optimization scheme is the muta-

tion rate, that is, the ratio determining the maximum number of genes affected by the

mutation operator. In order to determine the configuration of the mutation rate, we ran

a prior training for the cache mapping function with a (1 + 4)-ES for 1500 generations.

In this experiment, the number of genes of the encoded chromosome modified by the

mutation operator was selected to be up to 25% of the chromosome length. The upper

bound for the mutation rate µr was set to 25% of the total number of CGP nodes,

resulting in the maximum number of mutating genes being 15. For a generation’s suc-

cessful evaluation, the number of mutated genes was recorded, so that at the end of

the evolution, we could estimate, from the recorded information, the best ratio of the

number of genes to use to achieve a successful mutation.

Figures 7.5 and 7.6 plot the successful mutations for all experimental applications in

which the mapping functions for L1:D and L1:I caches were evolved. The initial genera-

tions were started by random mapping functions and the application’s mapping functions
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were evolved for three runs. Our observations (for all the applications) are that while

there are high densities of successes at the early stages (generations: 1–200), the num-

ber of evolved successes gradually drops at later stages (generations: 201–1500). In

addition, a fewer number of genes picked for mutation results in better results.

Figures 7.7 and 7.8 show the recorded information for the L1:D and L1:I caches with

stacked distributions of the number of mutated genes that achieved successful evolutions.

As we can see, for the CJPEG application, the distributions of the number of genes gaining

a successful evolution show that for the total number of successes, the ability to achieve

better evolution is around 30% by mutating one gene, 15% by mutating two genes, and

so on.

With the distributions found for all experimental applications, we merged them to a

combined distribution and used this information in the actual training. While a sug-

gestion by Miler is that the mutation rate should be small, we determined the upper

bound of the number of genes to be used in the mutation operation to be 3 genes. As a

result, the mutation rate parameter for the L1:D cache optimization is an encoded prob-

ability [48%, 31%, 21%] by mutating [1, 2, 3] genes respectively. For L1:I cache

optimization, the mutation rate parameter is an encoded probability [46%, 31%, 23%]

by mutating [1, 2, 3] genes respectively.

7.5 Training Configuration

The configuration used for the training algorithm is summarized in Table 7.3, in which

λ and the mutation rate are determined from prior-experiments. The training algorithm

is the adaptive evaluation scheme with a (1 + 1)-ES, the computational budget n i is

12 repetitions, and the interval iteration time to apply the Wilcoxon rank-sum test is

n l = 4. Cache mapping functions are evolved by four input vectors.

The evolution was started either from a randomization or the modulo function. The

mutation operator flips 1, 2, or 3 bits of the encoded chromosome, according to the

probability distribution found in the prior-experiments. Each application’s mapping

functions are evolved with three runs for 3000 generations. The evolution was stopped

after 1500 generations if no further improvement was observed.

The following sections present the experimental results of the evolutions and the system

assessments.
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Figure 7.5: Distributions of the number of mutated genes achieving successful evolu-
tion after 1500 generations for the 4KiB L1:D cache.
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Figure 7.6: Distributions of the number of mutated genes achieving successful evolu-
tion after 1500 generations for the 4KiB L1:I cache.
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Figure 7.7: L1:D cache optimization with the distribution of the number of mutated
genes achieving successful evolution in 1500 generations. Combining all applications
and considering the maximum number of mutated genes to be 3, the ratio of successes

by mutating [1, 2, 3] genes is roughly [48%, 31%, 21%] respectively.
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Figure 7.8: L1:I cache optimization with the distribution of the number of mutated
genes achieving successful evolution in 1500 generations. Combining all applications
and considering the maximum number of mutated genes to be 3, the ratio of successes

by mutating [1, 2, 3] genes is roughly [46%, 31%, 23%] respectively.
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Table 7.3: Parameter setup for training.

Adaptive number (1,λ)- Initialization Mutation rate: probability of
evaluation of input ES mapping number of genes pickup for mutation.
ni nl vectors function L1:I L1:D

4 12 4 λ = 1
modulo & [-46%-,--31%--,-23%-] [-48%-,--31%--,-21%-]

randomization |-1..1-|-2..2-|-3..3-| |-1..1-|-2..2-|-3..3-|

7.6 Training Results

Figure 7.9 shows the evolution results regarding 4KiB,1-way L1 cache of the CJPEG

application. The optimization scheme evolves either from a randomization or the modulo

function. In general, the evolution of the L1:D cache that started from the modulo

function gains better results than that from the randomization one, except for the first

run, in which the randomization initialization obtained an improvement nearly the same

as three runs from the modulo initialization. For the evolution of the L1:I cache, while

only one run by the randomization initialization gains better improvements over the

conventional cache, three runs of the modulo initialization result in better improvements

over the conventional cache.

Optimization for 4KiB,1-way L1 cache: The optimization development of 4KiB,1-

way L1 cache for 12 applications is presented in Figure 7.10, in which the best candidate

solutions among three runs are plotted. The y-axis presents the fitness value demon-

strating the optimization development. The reference representation of the conventional

cache is plotted as a solid horizontal line.

For CJPEG, the L1:D cache fitness reaches up to 1.48 relative to the conventional cache,

when the searches were started either from the modulo or randomization function. The

improvement corresponds to a reduction of the cache misses (MPKI) by roughly 33%.

The L1:I cache misses were reduced by roughly 12.4% (1.14). Here, the search started

from the conventional cache mapping was able to perform better. While the L1:I cache

misses for the DJPEG were reduced by 64.5%, which is the highest improvement among

all benchmarks, no improvement over the conventional cache was possible for the L1:D

cache optimization.

For the FFT application, the L1:D and L1:I cache MPKI values have been reduced by

10.08% and 4.64%, irrespective of the type of initialization of the search. For the ap-

plications CBLOWFISH, DBLOWFISH, SUSAN, and LAME, we observed L1:I cache MPKI
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Figure 7.9: The evolution of 4KiB,1-way L1:D and L1:I caches of the CJPEG applica-
tion. EA starts either from a random or the modulo functions.

improvements of roughly 28.47%, 30.7%, 25.12%, and 35.27% when starting the opti-

mization from the conventional mapping function. The L1:D cache misses improved by

3.4%, 6.5%, 10.04% and 7.68% respectively.

For SHA, PATRICIA, CADPCM, DADPCM, the L1:I cache misses are improved by roughly

51.24%, 3%, 23.58%, and 16.28% when starting from the conventional cache mapping

function. The L1:D cache misses are improved by 17.68%, 10.66%, 1.45%, and 5.38%,

respectively.

Finally, the L1:D and L1:I cache misses for BZIP2 improved by 0.94% and 3.16% when

seeding the search by the conventional cache mapping function.
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In summary, only the miss rate of the L1:D cache for the BZIP2 application was not

improved significantly. For the remaining applications, the L1:D misses could be im-

proved by from 0.94% to 33%. The L1:I cache miss improvements range between 3%

and 64.5%.

Optimization for 4KiB,2-way L1 cache: Figure 7.11 presents the evolution for the

4KiB,2-w L1 cache. In this experiment, we did not evolve the cache mapping function

for the training configurations in which we did not observe an improvement or in which

the evolution was not better than the other configurations in the previous experiment for

the 4KiB,1-way L1 cache optimization. For instance, for the BZIP2 application, since the

searches starting from the randomization function gained no improvement for 4KiB,1-

way L1 cache optimization, the evolution for the 4KiB,2-way L1 cache was carried out

only with the modulo initialization.

For the CJPEG application, the L1:D cache evolutions starting from the randomization

function gained fitness improvements by 1.13, the equivalent of a cache miss reduction

by up to 11.6%. The evolutions for the L1:D and L1:I caches, both starting from the

modulo function, reduces the cache misses by 9.1%. Among the 12 applications, the

SHA evolution delivers the highest L1:D cache miss reduction, by up to 18.3%, and the

LAME optimization gives the highest L1:I cache miss reductions, by up to 53.4%. The

evolutions for the L1:I cache of SHA and the L1:D cache of LAME gain miss reductions by

up to 49.4% and 4%.

For DJPEG, FFT, CBLOWFISH, DBLOWFISH, SUSAN, PATRICIA, CADPCM, DADPCM, the

evolutions for the L1:D cache obtain miss reductions by roughly up to 4.4%, 6.3%,

6.9%, 4.2%, 4.7%, 11%, 3% and 0.8% respectively. The L1:I cache misses are reduced by

34.9%, 6.4%, 23.3%, 20.3%, 24.8%, 2.4%, 25.8% and 19.4%. Similar to the observation

for that of the previous experiment with the BZIP2 application, the evolution of this

cache configuration gives no significant improvements for the L1:D cache.

In summary, our adaptive evaluation scheme still can deliver good optimization results

for the set associative caches.

7.7 Validation

After the evolutions were done, we validated the best cache mapping functions found

for unseen input vectors. The hope is that the evolved cache mappings will perform



Cache Mapping Evolution and System Evaluation 113

0
10

00
20

00
30

00

0.60.81.01.2

C
JP

E
G

#G
en

er
at

io
ns

Fitness

●

●

●

●

●
●

●
●

●
●

●
●

●

0
10

00
20

00
30

00

0.40.81.21.6

D
JP

E
G

#G
en

er
at

io
ns

Fitness

●

●
●

●

●

●

●

●
●

●
●

●
●

0
10

00
20

00
30

00

0.60.81.0

F
F

T

#G
en

er
at

io
ns

Fitness

●

●

●

●

●
●

●
●

●
●

●
●

●

0
10

00
20

00
30

00

0.901.00

B
Z

IP
2

#G
en

er
at

io
ns

Fitness

0
10

00
20

00
30

00

0.91.11.3

C
B

LO
W

F
IS

H

#G
en

er
at

io
ns

Fitness

●

0
10

00
20

00
30

00

0.91.11.3

D
B

LO
W

F
IS

H

#G
en

er
at

io
ns

Fitness

●

0
10

00
20

00
30

00

0.61.01.4

S
U

S
A

N

#G
en

er
at

io
ns

Fitness

●

●

●

●

●
●

●

●
●

●
●

●
●

0
10

00
20

00
30

00

0.51.52.5

LA
M

E

#G
en

er
at

io
ns

Fitness

●

0
10

00
20

00
30

00

0.01.02.0

S
H

A

#G
en

er
at

io
ns

Fitness

●
●

●

●
●

●
●

●
●

●
●

●
●

0
10

00
20

00
30

00

0.60.81.01.2

P
AT

R
IC

IA

#G
en

er
at

io
ns

Fitness

0
10

00
20

00
30

00
0.40.81.2

C
A

D
P

C
M

#G
en

er
at

io
ns

Fitness
●

●
●

●

●
●

●
●

●
●

●
●

●

0
10

00
20

00
30

00

0.60.81.01.2

D
A

D
P

C
M

#G
en

er
at

io
ns

Fitness

●

●

●
●

●
●

●
●

●
●

●
●

●

●
C

on
ve

nt
io

na
l c

ac
he

L1
:D

−
ra

nd
om

 in
it.

L1
:D

−
m

od
ul

o 
in

it.
L1

:I−
ra

nd
om

 in
it.

L1
:I−

m
od

ul
o 

in
it.

F
ig
u
r
e
7
.1
1
:

O
p

ti
m

iz
at

io
n

re
su

lt
s

of
4K

iB
,2

1
-w

ay
L

1
ca

ch
e

fo
r

1
2

a
p

p
li

ca
ti

o
n

s.
O

n
ly

fi
tn

es
se

s
o
f

b
es

t
ca

n
d

id
a
te

so
lu

ti
o
n

s
a
re

sh
ow

n
.



Cache Mapping Evolution and System Evaluation 114

similarly for input data not used during the training. As the applications performance

numbers are non-deterministic, each combination of an application, the corresponding

best evolved cache mapping function, and a test vector, were executed 16 times and the

reduction of cache misses in percentages are reported using boxplots.

4KiB,1-way L1 cache: Figure 7.12 shows the generalization results of the best cache

mappings found in the previous experiments for the 4KiB,1-way L1 cache.
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Figure 7.12: Cache miss reduction results validated for 4KiB,1-way L1 caches.

The first observation is that for all except the L1:D cache mapping functions of SUSAN,

LAME, and SHA, the performances of the evolved cache mappings on unseen data are
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Figure 7.13: Performance improvement results validated for 4KiB,1-way L1 caches.

similar, and not follow the general trend observed in the training.

For the CJPEG application, the L1:D cache mapping evolved from a randomly seeded solu-

tion shows better generalization (35% improvement) than the evolved mapping starting

from the modulo function (29% improvement).

Interestingly, although the training improvements are around 32%, the median gener-

alization performance of the mapping evolved from randomly seeded solutions reaches

35%. For the L1:I cache, the median generalization performance is around 5% for map-

pings evolved from the modulo-based mappings, which is roughly 7% less than the

improvement in the medians achieved in the training.

For mappings evolved from randomly seeded solutions, the test performance is slightly

worse than that of the conventional cache (-0.62%) and roughly 6% worse than the

training performance.
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For DJPEG, the evolved L1:D cache mapping achieved a median improvement of 3.3%

on unseen data. For the L1:I cache, the performance was improved by more than 67%,

regardless of the initialization type. The peak miss rate reduction lies above 73%. SHA

is another application for which the L1:I cache mapping improvement is dramatic: 45%.

The overall best median miss rate reductions on unseen data for the L1:D cache are:

CJPEG (35%), PATRICIA (6%), FFT (5%), DBLOWFISH (4%), DJPEG (3%), CBLOWFISH (3%),

DADPCM (3%), BZIP2 (1%), CADPCM (0%), SHA (-4%), LAME (-7%), and SUSAN (-8%).

The overall best median miss rate reductions on unseen data for the L1:I cache are:

DJPEG (67%), SHA (45%), DBLOWFISH (20%), LAME (20%), CBLOWFISH (16%), CADPCM

(15%), DADPCM (12%), SUSAN (7%), CJPEG (5%), FFT (5%), PATRICIA (3%), and BZIP2

(2%)

Figure 7.13 shows the overall performance improvements in percentages of the best

cache mapping functions found for the 4KiB,1-way L1 cache. The column plots are

the median values and the diamond dots are the maximum performance improvements.

The applications with significant performance improvements with median and maximum

values in percentages are: FFT (2.63%, ↑ 8% – L1:D cache), DJPEG (2% – L1:D cache;

8.7%, ↑ 12.8% – L1:I cache), CJPEG (16.8%, ↑ 21% – L1:D cache), CBLOWFISH (1.6% –

L1:D cache), DBLOWFISH (2% – L1:D cache), LAME(1.23%, ↑ 4.8% – L1:I cache), PATRICIA

(3.1%, ↑ 4% – L1:I cache).

4KiB,2-way L1 cache: The validation results for the 4KiB,2-way L1 cache are pre-

sented in Figures 7.14 and 7.15 regarding the cache miss reduction and the performance

improvement in percentages, respectively.

For the L1:D cache, we observed that the experimental applications having miss reduc-

tions (in medians) are: FFT (5.1%), CJPEG (5.31%), CBLOWFISH (6%), DBLOWFISH (4%),

SHA (2.7%). For the L1:I cache, the applications achieving miss reductions are: FFT

(5.3%), DJPEG (11.6%), CJPEG (3.5%), BZIP2 (1.3%), CBLOWFISH (23.14%), DBLOWFISH

(9.7%), SUSAN (4.3%), LAME (39%), SHA (35.5%), PATRICIA (2.5%), CADPCM (18.1%),

DADPCM (13.5%).

Figure 7.15 shows the overall performance improvements in percentages of the best cache

mappings found for the 4KiB,2-way L1 cache. Among the 12 experimental applications,

the applications gaining performance improvements in median and maximum values

are: FFT (2.76%, ↑ 5% – L1:I cache), CJPEG (3.23%, ↑ 8.1% – L1:D cache), CBLOWFISH

(1.27%), LAME (1.88%, 3.3% L1:I cache), PATRICIA (2.64%, 3.2% – L1:I cache).
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Figure 7.14: Performance improvement results validated for 4KiB,2-way L1 caches.

In general, our observation is that the optimization for a set associative cache obtained

less improvement than that for a direct-mapped cache, which is potentially due to the

smaller number of sets and conflict access avoidance given by the set associative cache.

7.8 Conclusion

In this chapter, we have shown that the architecture of the evaluation framework and

the multi-core platform with a dynamically reconfigurable capability of cache mapping
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Figure 7.15: Performance improvement results validated for 4KiB,2-way L1 caches.

functions on an FPGA is able to evolve better-performing cache mappings online.

We have found that we can indeed find cache mapping functions better than the con-

ventional modulo-based cache mapping functions. For 12 experimental applications, the

evolved cache mapping functions reduce cache misses by up to 67% (L1:I) and 35%

(L1:D) for a 4KiB,1-way cache, and by up to 39% (L1:I) and 6% (L1:D) for a 4KiB,2-

way cache respectively. In terms of cache miss reductions, the performance improvement

gains are up to 16.8% and 3.2% for 4KiB,1-way, and 4KiB,2-way caches, respectively.



Chapter 8

Summary and Outlook

This chapter summarizes the contributions of this thesis, draws some conclusions, and

summarizes the lessons learned. Furthermore, future promising research directions are

also highlighted.

8.1 Contributions

Due to the increasing complexity of modern multi-core systems, conventional modulo-

based mapping schemes may not be satisfactory for a variety of application domains

having different characteristics. The use of alternative cache mapping schemes has grown

in recent times, providing better cache performance than the use of the traditional cache.

For instance, Intel has recently introduced an LLC with a customizable mapping for bank

selection and separation [135], be able to eliminate LLC resource conflicts and avoid the

risks of cache-based side channel attacks as well.

This thesis has introduced a reconfigurable cache mapping architecture for a multi-core

processor on an FPGA, describing the creation of a novel platform architecture capable

of evolving cache mappings while the system is operational, at run-time. Using the novel

platform, one can indeed find cache mappings that perform better than the traditional

modulo-based mapping. In more detail, the following major contributions to the research

field of cache mapping schemes have been provided by this thesis:

• This thesis has introduced reconfigurable Boolean circuits by a Cartesian Genetic

Programming model and applied this to the cache mapping modification problem.

The creation of a platform of a cache mapping architecture integrated into the

119
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LEON3 multi-core processor, featured with a standard Linux device driver, pro-

totyped in an FPGA, altogether provide a system capable of adapting mapping

schemes of the first level caches at run-time [1], [7], [6].

• To enable such deployments of optimization strategies, a performance measure-

ment infrastructure integrated into the LEON3 platform has been presented. The

introduced Performance Monitoring Unit module includes a set of hardware coun-

ters and can be configured to monitor a rich set of architectural events. Further-

more, Performance Monitoring Units integrated with the perf event and perf

tool, the standard performance monitoring architecture of the Linux kernel, pro-

vide a useful tool for measuring underlying microarchitectural hardware [5]. In

addition, this performance measurement infrastructure has been extended for a

run-time measurement of private/-shared memory accesses [2]. The measured in-

formation about memory references can offer an opportunity for simplifying virtual

cache designs, in which the use of alternate mapping schemes may be integrated

more simply.

• For a system prototype capable of running Linux OS, there has been developed an

adaptive evaluation strategy for cache mapping optimization at run-time. The in-

troduction of this adaptive scheme has enabled the reduction of the evaluation time

of a non-deterministic system by a factor of 3.6 without a significant deterioration

of the convergence of the functional quality evaluation [10], [7].

• A comprehensive evaluation of cache mapping optimization for 11 applications

randomly selected from the MiBench suite as well as the BZIP2 application has

been provided. Insight into the optimization overheads induced by the evolution

has been obtained, showing the benefits of the adaptive evaluation in reducing the

optimization times. The training phase and the results of the system validation

for the best mapping function found have also reported in detail [10], [7].

• It has been found that indeed one can find cache mappings that perform better

than the traditional cache mappings. For the 12 experimental applications, the

uses of the evolved mapping functions reduce cache misses by up to 67% (L1:I)

and 35%(L1:D) for a 4KiB,1-way cache and up to 39%(L1:I) and 6% (L1:D) for a

4KiB,2-way cache respectively. This leads to performance improvements of up to

16.8% for a 4KiB, 1-way cache, and 3.2% for a 4KiB, 2-way cache.

By providing a run-time system for both dynamically reconfigurable hardware and fea-

tured software, a step has been taken towards a run-time reconfiguration cache mapping
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design capable of deploying run-time optimization on a modern multi-core system-on-

chip. The benefits of this novel approach have been demonstrated through several exper-

iments that has found better cache mapping functions than the conventional modulus

function.

8.2 Conclusions and Lessons Learned

From the research done for this thesis, we can draw the following conclusions:

Although using alternative mapping schemes for performance improvement has been

explored with a static configuration in different ways, this novel approach, leveraging the

potential of dynamic reconfiguration, enables changing the mapping scheme at run-time.

It has been argued here that a run-time system supporting reconfiguration functionality

for the cache mapping scheme, where the best mapping functions can be programmed

with respect to their behaviour for the specific application, will lead to performance

gains. The included case studies have shown that better-performing cache mappings

indeed can help to reduce cache misses, and this resulted in improvements in the system

performance.

While the Cartesian Genetic Programming model is well suited to represent combina-

tional logic circuits by encoding a two-dimensional grid of functional nodes connected

by feedforward wires, we have found that such deployments for this model in an FPGA

are not trivial and such naive implementations are not suitable to tackle the cache map-

ping optimization problem. A reasonable implementation in an FPGA is having each

node encoded by using LUT with the reconfiguration operations done by loading partial

configuration bitstreams in which the LUT’s contents are changed, even though this

approach is challenging due to the fact that most FPGA chip vendors do not reveal

their bitstream format. In addition, the footprints of the partial configuration bitstream

generated by the tool flow are significantly large, leading to longer reconfiguration times.

Furthermore, while in a native Cartesian Genetic Programming model mostly targeted

for evolvable hardware research area the connections between the combinational nodes

are generally dynamic and their encoded chromosomes are used for evolutionary strate-

gies, for the cache mapping optimization problem, evolving the routings would lead to

a large design space that might lead to unacceptable optimization times. These issues

have been tackled by fixing the routing between the nodes with a butterfly network and
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encoding the Cartesian Genetic Programming’s nodes with the Xilinxs SRLC32E prim-

itives. The final architecture is therefore quickly reconfigurable, as only the contents of

a few FPGA LUTs need to be changed.

At the same time, deploying optimization strategies on a real system platform involves

the non-deterministic behavior of the operating system, leading to a complex non-

deterministic performance evaluation. This adaptive evaluation method, targeted for

non-deterministic goal functions, can reduce the optimization time, while still achieving

a similar convergence behavior.

For the rapid exploration of High-Performance Embedded Computing in the near fu-

ture, supporting infrastructures such as the performance measurement infrastructure

introduced in this thesis, will be necessary. This infrastructure is seamlessly integrated

into the standard Linux performance measurement architecture, and allows a comfort-

able and accurate analysis of microarchitecture measurements using the standard Linux

profiling tools. From the reconfigurable system perspective, it could also support mon-

itoring events generated by the reconfigurable platform, for example, reconfiguration

times.

8.3 Future Directions

Based on the work presented in this thesis, several promising research directions can be

outlined. Some of the most important of them follow.

Based on the created architecture of an FPGA-based platform, the optimization eval-

uation has resulted in multiple optimal memory-to-cache address mappings tailored to

different specific applications, gaining better performance. Using an alternative cache

mapping scheme in a multitasking system, where the hardware platform provides a lim-

itation of the number of reconfigurable circuit blocks, requires that the context switch

after scheduling an application needs to program the corresponding mapping functions,

and in the current implementation, this demands cache flushes to avoid stale data ac-

cesses. Associating the identifiers of the mapping functions into cache lines for cache

flush avoidance and investigating a system scheduler to reduce overheads may be inter-

esting research directions for multitasking systems.

In the first level caches, while this thesis has introduced a reconfigurable cache mapping

architecture targeting the VIVT and PIPT addressing models, this could be potentially
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extended to address the widely used VIPT cache scheme. When introducing alternative

cache schemes in this cache, design issues with the synonym problem may occur due to

cache index computations from virtual addresses. Recent new ideas for virtual cache

designs in [22], [23] and this author’s recent work on memory accesses classification [2]

may provide valuable references to tackle customized mapping schemes for VIPT caches.

While the presented analysis system has demonstrated the benefits of cache mapping

modification at the first level cache, the use of an alternate mapping scheme and the

implementation of reconfigurable cache mapping circuits are highly applicable to lower

level caches. In a modern multi-core processor chip, a large last level cache typically

is shared by all cores and the on-chip shared last level cache is physically implemented

either in a centralized or distributed manner. The centralized design places the cache

banks close to each other and is suitable for integration with a small number of cores.

The distributed design places the cache banks close to the core die in groups, also called

‘tiles’, allowing for an integration of a larger number of cores. While cache access times

in the former design are uniform, the access times involved in the latter design usually

vary with the distance between the tiles. The challenge is that the system performance

may deteriorate for some applications due to high conflict misses occurring within a

single cache bank, or due to long latency accesses when served by distant cache banks.

Intel has recently introduced a last level cache with a customizable mapping function

for bank selection [135], and the investigation of reconfigurable cache mapping functions

at the shared last level cache could be an interesting research topic.

A type of hash-associative cache discussed by Jacob et al. [136] is a highly set-associative

cache having a hash function for cache-bank selection, yet compatible with the lower

power consumption and access time of a direct-mapped cache. Besides using alternative

hash functions for optimizing the cache indexing scheme, investigations on how to use

them for cache-way selections may open promising solutions for energy efficiency design.

Although the novel performance measurement infrastructure presented in this thesis has

been targeted for cache mapping optimization, its implementation provides a portable

design. The infrastructure can be extended to power measurement integrations, and be

able to accommodate the monitoring of other microarchitectural components. While

hardware counters and profiling tools are available on GPUs [137], actual implementa-

tions for such measurement infrastructures in FPGA-based systems are missing, partic-

ularly in run-time reconfigurable systems. These systems require highly customizable

monitoring and run-time profiling mechanisms enabling adaptive designs to meet envi-

ronmental conditions. The novel performance measurement infrastructure that has been
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presented in this thesis provides a customizable design, extendable to use for a run-time

reconfigurable system platform.
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